
The Journal of Machine Learning Research

Volume 8

Print-Archive Edition

Pages 1393–2790

Microtome Publishing

Brookline, Massachusetts

www.mtome.com

The Journal of Machine Learning Research

Volume 8

Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open

access journal. All articles published in JMLR are freely available

via electronic distribution. This Print-Archive Edition is published

annually as a means of archiving the contents of the journal in

perpetuity. The contents of this volume are articles published

electronically in JMLR in 2007.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and

Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,

Inc. For further information regarding JMLR, including open

access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome

Publishing under agreement with Journal of Machine Learning

Research, Inc. For further information regarding the Print-Archive

Edition, including subscription and distribution information and

background on open-access print archiving, visit Microtome

Publishing at http://www.mtome.com/.

Collection copyright © 2007 The Journal of Machine Learning

Research, Inc. and Microtome Publishing. Copyright of individual

articles remains with their respective authors.

ISSN 1532-4435 (print)

ISSN 1533-7928 (online)

JMLR Editorial Board

Editor-in-Chief

Leslie Pack Kaelbling
Massachusetts Institute of Technology,
USA

Managing Editor

Christian R. Shelton
University of California at Riverside,
USA

Production Editor

Rich Maclin
University of Minnesota, Duluth,
USA

JMLR Action Editors

Peter Bartlett
University of California at Berkeley,
USA

Yoshua Bengio
Université de Montréal, Canada

Léon Bottou
NEC Research Institute, USA

Mikio L. Braun
Technical Universtiy of Berlin,
Germany

David Maxwell Chickering
Microsoft Research, USA

William W. Cohen
Carnegie-Mellon University, USA

Michael Collins
Massachusetts Institute of Technology,
USA

Nello Cristianini
UC Davis, USA

Sanjoy Dasgupta
University of California at San Diego,
USA

Peter Dayan
University College, London, UK

Andre Elisseeff
IBM Zurich Research Laboratory,
Switzerland

Charles Elkan
University of California at San Diego,
USA

Stephanie Forrest
University of New Mexico, USA

Yoav Freund
University of California at San Diego,
USA

Nir Friedman
Hebrew University, Israel

Donald Geman
Johns Hopkins University, USA

Zoubin Ghahramani
University of Cambridge, UK

Carlos Guestrin
Carnegie Mellon University, USA

Isabelle Guyon
ClopiNet, USA

Ralf Herbrich
Microsoft Research, Cambridge, UK

Haym Hirsh
Rutgers University, USA

Aapo Hyvärinen
University of Helsinki, Finland

Tommi Jaakkola
Massachusetts Institute of Technology,
USA

Thorsten Joachims
Cornell University, USA

Michael Jordan
University of California at Berkeley,
USA

John Lafferty
Carnegie Mellon University, USA

Michael Littman
Rutgers University, USA

Gábor Lugosi
Pompeu Fabra University, Spain

David Madigan
Rutgers University, USA

Sridhar Mahadevan
University of Massachusetts, Amherst,
USA

Marina Meila
University of Washington, USA

Andrew McCallum
University of Massachusetts, Amherst,
USA

Melanie Mitchell
Portland State University, USA

Cheng Soon Ong
MPI for Biological Cybernetics,
Germany

Pietro Perona
California Institute of Technology, USA

Saharon Rosset
IBM TJ Watson Research Center, USA

Sam Roweis
University of Toronto, Canada

Stuart Russell
University of California at Berkeley,
USA

Bernhard Schölkopf
Max-Planck-Institut für Biologische
Kybernetik, Germany

Dale Schuurmans
University of Alberta, Canada

Rocco Servedio
Columbia University, USA

Sören Sonnenburg
Fraunhofer FIRST, Germany

John Shawe-Taylor
Southampton University, UK

Xiaotong Shen
University of Minnesota, USA

Lyle Ungar
University of Pennsylvania, USA

Nicolas Vayatis
Ecole Normale Supérieure de Cachan,
France

Martin J. Wainwright
University of California at Berkeley,
USA

Manfred Warmuth
University of California at Santa Cruz,
USA

Chris Williams
University of Edinburgh, UK

Stefan Wrobel
Fraunhofer IAIS and University
of Bonn, Germany

Bin Yu
University of California at Berkeley,
USA

Bianca Zadrozny
Fluminense Federal University, Brazil

JMLR Editorial Board

Naoki Abe
IBM TJ Watson Research Center, USA

Christopher Atkeson
Carnegie Mellon University, USA

Andrew G. Barto
University of Massachusetts, Amherst,
USA

Jonathan Baxter
Panscient Pty Ltd, Australia

Richard K. Belew
University of California at San Diego,
USA

Tony Bell
Salk Institute for Biological Studies,
USA

Yoshua Bengio
University of Montreal, Canada

Kristin Bennett
Rensselaer Polytechnic Institute, USA

Christopher M. Bishop
Microsoft Research, UK

Lashon Booker
The Mitre Corporation, USA

Henrik Boström
Stockholm University/KTH, Sweden

Craig Boutilier
University of Toronto, Canada

Justin Boyan
ITA Software, USA

Ivan Bratko
Jozef Stefan Institute, Slovenia

Carla Brodley
Purdue University, USA

Peter Bühlmann
ETH Zürich, Switzerland

Rich Caruana
Cornell University, USA

David Cohn
Google, Inc., USA

Walter Daelemans
University of Antwerp, Belgium

Luc De Raedt
Katholieke Universiteit Leuven,
Belgium

Dennis DeCoste
Microsoft Live Labs, USA

Saso Dzeroski
Jozef Stefan Institute, Slovenia

Usama Fayyad
DMX Group, USA

Douglas Fisher
Vanderbilt University, USA

Peter Flach
Bristol University, UK

Dan Geiger
The Technion, Israel

Sally Goldman
Washington University, St. Louis, USA

Russ Greiner
University of Alberta, Canada

David Heckerman
Microsoft Research, USA

David Helmbold
University of California at Santa Cruz,
USA

Geoffrey Hinton
University of Toronto, Canada

Thomas Hofmann
Brown University, USA

Larry Hunter
University of Colorado, USA

Daphne Koller
Stanford University, USA

Erik Learned-Miller
University of Massachusetts, Amherst,
USA

Yi Lin
University of Wisconsin, USA

Wei-Yin Loh
University of Wisconsin, USA

Yishay Mansour
Tel-Aviv University, Israel

David J. C. MacKay
University of Cambridge, UK

Tom Mitchell
Carnegie Mellon University, USA

Raymond J. Mooney
University of Texas, Austin, USA

Andrew W. Moore
Carnegie Mellon University, USA

Klaus-Robert Muller
Technical University of Berlin,
Germany

Stephen Muggleton
Imperial College London, UK

Una-May O’Reilly
Massachusetts Institute of Technology,
USA

Fernando Pereira
University of Pennsylvania, USA

Foster Provost
New York University, USA

Dana Ron
Tel-Aviv University, Israel

Lorenza Saitta
Universita del Piemonte Orientale,
Italy

Claude Sammut
University of New South Wales,
Australia

Lawrence Saul
University of Pennsylvania, USA

Robert Schapire
Princeton University, USA

Jonathan Shapiro
Manchester University, UK

Jude Shavlik
University of Wisconsin, USA

Yoram Singer
Hebrew University, Israel

Satinder Singh
University of Michigan, USA

 Alex Smola
Australian National University,
Australia

Padhraic Smyth
University of California, Irvine, USA

Richard Sutton
University of Alberta, Canada

Moshe Tennenholtz
The Technion, Israel

Sebastian Thrun
Stanford University, USA

Naftali Tishby
Hebrew University, Israel

David Touretzky
Carnegie Mellon University, USA

Larry Wasserman
Carnegie Mellon University, USA

Chris Watkins
Royal Holloway, University of London,
UK

JMLR Advisory Board

Shun-Ichi Amari
RIKEN Brain Science Institute, Japan

Andrew Barto
University of Massachusetts
at Amherst, USA

Thomas Dietterich
Oregon State University, USA

Jerome Friedman
Stanford University, USA

Stuart Geman
Brown University, USA

Geoffrey Hinton
University of Toronto, Canada

Michael Jordan
University of California at Berkeley,
USA

Michael Kearns
University of Pennsylvania, USA

Steven Minton
University of Southern California, USA

Thomas Mitchell
Carnegie Mellon University, USA

Stephen Muggleton
Imperial College London, UK

 Nils Nilsson
Stanford University, USA

Tomaso Poggio
Massachusetts Institute of Technology,
USA

Ross Quinlan
Rulequest Research Pty Ltd, Australia

Stuart Russell
University of California at Berkeley,
USA

Terrence Sejnowski
Salk Institute for Biological Studies,
USA

Richard Sutton
University of Alberta, Canada

Leslie Valiant
Harvard University, USA

Stefan Wrobel
Fraunhofer IAIS and University of
Bonn, Germany

JMLR Web Master

Luke Zettlemoyer
Massachusetts Institute of Technology,
USA

 1 Nonlinear Boosting Projections for Ensemble Construction
 Nicolás García-Pedrajas, César García-Osorio, Colin Fyfe

 35 A Multi-Task Learning for Classifi cation with
 Dirichlet Process Priors
 Ya Xue, Xuejun Liao, Lawrence Carin, Balaji Krishnapuram

65 A Unifi ed Continuous Optimization Framework for
 Center-Based Clustering Methods
 Marc Teboulle

103 Minimax Regret Classifi er for Imprecise Class Distributions
 Rocío Alaiz-Rodríguez, Alicia Guerrero-Curieses, Jesús Cid-Sueiro

131 Distances between Data Sets Based on Summary Statistics
 Nikolaj Tatti

155 Building Blocks for Variational Bayesian Learning
 of Latent Variable Models
 Tapani Raiko, Harri Valpola, Markus Harva, Juha Karhunen

203 A Probabilistic Analysis of EM for Mixtures of Separated,
 Spherical Gaussians
 Sanjoy Dasgupta, Leonard Schulman

227 Noise Tolerant Variants of the Perceptron Algorithm
 Roni Khardon, Gabriel Wachman

249 Learnability of Gaussians with Flexible Variances
 Yiming Ying, Ding-Xuan Zhou

277 Separating Models of Learning from Correlated
 and Uncorrelated Data
 Ariel Elbaz, Homin K. Lee, Rocco A. Servedio, Andrew Wan

291 Comments on the “Core Vector Machines: Fast SVM
 Training on Very Large Data Sets”
 Gaëlle Loosli, Stéphane Canu

303 General Polynomial Time Decomposition Algorithms
 Nikolas List, Hans Ulrich Simon

 www.jmlr.org

323 Dynamics and Generalization Ability of LVQ Algorithms
 Michael Biehl, Anarta Ghosh, Barbara Hammer

361 Statistical Consistency of Kernel Canonical
 Correlation Analysis
 Kenji Fukumizu, Francis R. Bach, Arthur Gretton

385 Learning Equivariant Functions with Matrix Valued Kernels
 Marco Reisert, Hans Burkhardt

409 Boosted Classifi cation Trees and Class
 Probability/Quantile Estimation
 David Mease, Abraham J. Wyner, Andreas Buja

441 Value Regularization and Fenchel Duality
 Ryan M. Rifkin, Ross A. Lippert

481 Integrating Naïve Bayes and FOIL
 Niels Landwehr, Kristian Kersting, Luc De Raedt

509 A Stochastic Algorithm for Feature Selection
 in Pattern Recognition
 Sébastien Gadat, Laurent Younes

549 Learning Horn Expressions with LOGAN-H
 Marta Arias, Roni Khardon, Jérôme Maloberti

589 Consistent Feature Selection for Pattern Recognition
 in Polynomial Time
 Roland Nilsson, José M. Peña, Johan Björkegren, Jesper Tegnér

613 Estimating High-Dimensional Directed Acyclic
 Graphs with the PC-Algorithm
 Markus Kalisch, Peter Bühlmann

637 Margin Trees for High-dimensional Classifi cation
 Robert Tibshirani, Trevor Hastie

653 Relational Dependency Networks
 Jennifer Neville, David Jensen

693 Dynamic Conditional Random Fields:
 Factorized Probabilistic Models for Labeling and
 Segmenting Sequence Data
 Charles Sutton, Andrew McCallum, Khashayar Rohanimanesh

725 ! e Pyramid Match Kernel: Effi cient Learning with
 Sets of Features
 Kristen Grauman, Trevor Darrell

761 Infi nitely Imbalanced Logistic Regression
 Art B. Owen

775 Sparseness vs Estimating Conditional Probabilities:
 Some Asymptotic Results
 Peter L. Bartlett, Ambuj Tewari

791 Concave Learners for Rankboost
 Ofer Melnik, Yehuda Vardi, Cun-Hui Zhang

813 Gini Support Vector Machine: Quadratic Entropy
 Based Robust Multi-Class Probability Regression
 Shantanu Chakrabartty, Gert Cauwenberghs

841 Preventing Over-Fitting during Model Selection
 via Bayesian Regularisation of the Hyper-Parameters
 Gavin C. Cawley, Nicola L. C. Talbot

863 Combining PAC-Bayesian and Generic Chaining Bounds
 Jean-Yves Audibert, Olivier Bousquet

891 Anytime Learning of Decision Trees
 Saher Esmeir, Shaul Markovitch

935 Classifi cation in Networked Data: A Toolkit
 and a Univariate Case Study
 Sofus A. Macskassy, Foster Provost

985 Covariate Shift Adaptation by Importance
 Weighted Cross Validation
 Masashi Sugiyama, Matthias Krauledat, Klaus-Robert Müller

1007 On the Consistency of Multiclass Classifi cation Methods
 Ambuj Tewari, Peter L. Bartlett

1027 Dimensionality Reduction of Multimodal Labeled
 Data by Local Fisher Discriminant Analysis
 Masashi Sugiyama

1063 Undercomplete Blind Subspace Deconvolution
 Zoltán Szabó, Barnabás Póczos, András Lörincz

1097 Bilinear Discriminant Component Analysis
 Mads Dyrholm, Christoforos Christoforou, Lucas C. Parra

1113 Loop Corrections for Approximate Inference on
 Factor Graphs
 Joris M. Mooij, Hilbert J. Kappen

1145 Penalized Model-Based Clustering with Application
 to Variable Selection
 Wei Pan, Xiaotong Shen

1165 Local Discriminant Wavelet Packet Coordinates for
 Face Recognition
 Chao-Chun Liu, Dao-Qing Dai, Hong Yan

1197 Synergistic Face Detection and Pose Estimation
 with Energy-Based Models
 Margarita Osadchy, Yann Le Cun, Matthew L. Millert

1217 Maximum Entropy Density Estimation with
 Generalized Regularization and an Application
 to Species Distribution Modeling
 Miroslav Dudík, Steven J. Phillips, Robert E. Schapire

1261 Measuring Diff erentiability: Unmasking
 Pseudonymous Authors
 Moshe Koppel, Jonathan Schler, Elisheva Bonchek-Dokow

1277 Bayesian Quadratic Discriminant Analysis
 Santosh Srivastava, Maya R. Gupta, Béla A. Frigyik

1307 From External to Internal Regret
 Avrim Blum, Yishay Mansour

1325 Graph Laplacians and their Convergence on Random
 Neighborhood Graphs
 Matthias Hein, Jean-Yves Audibert, Ulrike von Luxburg

1369 Generalization Error Bounds in Semi-supervised
 Classifi cation Under the Cluster Assumption
 Philippe Rigollet

1393 Learning to Classify Ordinal Data: ! e Data
 Replication Method
 Jaime S. Cardoso, Joaquim F. Pinto da Costa

1431 Attribute-Effi cient and Non-adaptive Learning
 of Parities and DNF Expressions
 Vitaly Feldman

1461 PAC-Bayes Risk Bounds for Stochastic Averages
 and Majority Votes of Sample-Compressed Classifi ers
 François Laviolette, Mario Marchand

1489 On the Eff ectiveness of Laplacian Normalization
 for Graph Semi-supervised Learning
 Rie Johnson, Tong Zhang

1519 An Interior-Point Method for Large-Scale
 L1 -Regularized Logistic Regression
 Kwangmoo Koh, Seung-Jean Kim, Stephen Boyd

1557 Multi-class Protein Classifi cation Using Adaptive Codes
 Iain Melvin, Eugene Ie, Jason Weston,
 William Staff ord Noble, Christina Leslie

1583 Spherical-Homoscedastic Distributions: ! e Equivalency
 of Spherical and Normal Distributions in Classifi cation
 Onur C. Hamsici, Aleix M. Martinez

1623 Handling Missing Values when Applying
 Classifi cation Models
 Maytal Saar-Tsechansky, Foster Provost

1659 Compression-Based Averaging of Selective Naive
 Bayes Classifi ers
 Marc Boullé

1687 A Nonparametric Statistical Approach to Clustering
 via Mode Identifi cation
 Jia Li, Surajit Ray, Bruce G. Lindsay

1725 Polynomial Identifi cation in the Limit of Substitutable
 Context-free Languages
 Alexander Clark, Rémi Eyraud

1747 Structure and Majority Classes in Decision Tree Learning
 Ray J. Hickey

1769 Characterizing the Function Space for
 Bayesian Kernel Models
 Natesh S. Pillai, Qiang Wu, Feng Liang,
 Sayan Mukherjee, Robert L. Wolpert

1799 “Ideal Parent” Structure Learning for
 Continuous Variable Bayesian Networks
 Gal Elidan, Iftach Nachman, Nir Friedman

1835 Behavioral Shaping for Geometric Concepts
 Manu Chhabra, Robert A. Jacobs, Daniel Štefankovič

1867 Large Margin Semi-supervised Learning
 Junhui Wang, Xiaotong Shen

1893 Fast Iterative Kernel Principal Component Analysis
 Simon Günter, Nicol N. Schraudolph, S. V. N. Vishwanathan

1919 A Generalized Maximum Entropy Approach to
 Bregman Co-clustering and Matrix Approximation
 Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh,
 Srujana Merugu, Dharmendra S. Modha

 1987 Truncating the Loop Series Expansion for Belief Propagation
 Vicenç Gómez, Joris M. Mooij, Hilbert J. Kappen

2017 Very Fast Online Learning of Highly Non Linear Problems
 Aggelos Chariatis

2047 Unlabeled Compression Schemes for Maximum Classes
 Dima Kuzmin, Manfred K. Warmuth

2083 Refi nable Kernels
 Yuesheng Xu, Haizhang Zhang

2121 A Complete Characterization of a Family of Solutions
 to a Generalized Fisher Criterion
 Marco Loog

2125 Transfer Learning via Inter-Task Mappings for
 Temporal Diff erence Learning
 Matthew E. Taylor, Peter Stone, Yaxin Liu

2169 Proto-value Functions: A Laplacian Framework for
 Learning Representation and Control in Markov
 Decision Processes
 Sridhar Mahadevan, Mauro Maggioni

2233 Online Learning of Multiple Tasks with a Shared Loss
 Ofer Dekel, Philip M. Long, Yoram Singer

2265 Euclidean Embedding of Co-occurrence Data
 Amir Globerson, Gal Chechik, Fernando Pereira, Naftali Tishby

2297 Harnessing the Expertise of 70,000 Human
 Editors: Knowledge-Based Feature Generation
 for Text Categorization
 Evgeniy Gabrilovich, Shaul Markovitch

2347 AdaBoost is Consistent
 Peter L. Bartlett, Mikhail Traskin

2369 ! e On-Line Shortest Path Problem Under
 Partial Monitoring
 András György, Tamás Linder, Gábor Lugosi, György Ottucsák

2405 ! e Locally Weighted Bag of Words Framework
 for Document Representation
 Guy Lebanon, Yi Mao, Joshua Dillon

2443 ! e Need for Open Source Software in Machine Learning
 Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong,
 Samy Bengio, Leon Bottou, Geoff rey Holmes, Yann LeCun,
 Klaus-Robert Müller, Fernando Pereira, Carl Edward Rasmussen,
 Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola,
 Pascal Vincent, Jason Weston, Robert Williamson

2467 On the Representer ! eorem and Equivalent
 Degrees of Freedom of SVR
 Francesco Dinuzzo, Marta Neve, Giuseppe De Nicolao,
 Ugo Pietro Gianazza

2497 Nonlinear Estimators and Tail Bounds for
 Dimension Reduction in L1 Using Cauchy
 Random Projections
 Ping Li, Trevor J. Hastie, Kenneth W. Church

2533 Revised Loss Bounds for the Set Covering Machine
 and Sample-Compression Loss Bounds for
 Imbalanced Data
 Zakria Hussain, François Laviolette, Mario Marchand,
 John Shawe-Taylor, Spencer Charles Brubaker,
 Matthew D. Mullin

2551 VC ! eory of Large Margin Multi-Category Classifi ers
 Yann Guermeur

2595 Learning in Environments with Unknown Dynamics:
 Towards more Robust Concept Learners
 Marlon Núñez, Raúl Fidalgo, Rafael Morales

2629 Hierarchical Average Reward Reinforcement Learning
 Mohammad Ghavamzadeh, Sridhar Mahadevan

2671 Ranking the Best Instances
 Stéphan Clémençon, Nicolas Vayatis

2701 Stagewise Lasso
 Peng Zhao, Bin Yu

2727 A New Probabilistic Approach in Rank Regression
 with Optimal Bayesian Partitioning
 Carine Hue, Marc Boullé

2755 Dynamic Weighted Majority: An Ensemble Method
 for Drifting Concepts
 J. Zico Kolter, Marcus A. Maloof

Journal of Machine Learning Research 8 (2007) 1393-1429 Submitted 2/06; Revised 9/06; Published 7/07

Learning to Classify Ordinal Data: The Data Replication Method

Jaime S. Cardoso JAIME.CARDOSO@INESCPORTO.PT
INESC Porto, Faculdade de Engenharia, Universidade do Porto
Campus da FEUP, Rua Dr. Roberto Frias, n 378
4200-465 Porto, Portugal

Joaquim F. Pinto da Costa JPCOSTA@FC.UP.PT
Faculdade Ciências Universidade Porto
Rua do Campo Alegre, 687
4169-007 Porto, Portugal

Editor: Ralf Herbrich

Abstract
Classification of ordinal data is one of the most important tasks of relation learning. This paper
introduces a newmachine learning paradigm specifically intended for classification problems where
the classes have a natural order. The technique reduces the problem of classifying ordered classes
to the standard two-class problem. The introduced method is then mapped into support vector
machines and neural networks. Generalization bounds of the proposed ordinal classifier are also
provided. An experimental study with artificial and real data sets, including an application to gene
expression analysis, verifies the usefulness of the proposed approach.
Keywords: classification, ordinal data, support vector machines, neural networks

1. Introduction

Predictive learning has traditionally been a standard inductive learning, where different sub-problem
formulations have been identified. One of the most representative is classification, consisting on
the estimation of a mapping from the feature space into a finite class space. Depending on the
cardinality of the finite class space we are left with binary or multiclass classification problems.
Finally, the presence or absence of a “natural” order among classes will separate nominal from
ordinal problems.

Although two-class and nominal data classification problems have been thoroughly analysed in
the literature, the ordinal sibling has not received nearly as much attention yet. Nonetheless, many
real life problems require the classification of items into naturally ordered classes. The scenarios in-
volved range from information retrieval (Herbrich et al., 1999a) and collaborative filtering (Shashua
and Levin, 2002) to econometric modeling (Mathieson, 1995) and medical sciences (Cardoso et al.,
2005). It is worth pointing out that distinct tasks of relational learning, where an example is no
longer associated with a class or rank, which include preference learning and reranking (Shen and
Joshi, 2005), are topics of research on their own.

Conventional methods for nominal classes or for regression problems could be employed to
solve ordinal data problems. However, the use of techniques designed specifically for ordered
classes yields simpler and with better performance classifiers. Although the ordinal formulation
seems conceptually simpler than the nominal one, difficulties to incorporate in the algorithms this

c©2007 Jaime S. Cardoso and Joaquim F. Pinto da Costa.

CARDOSO AND PINTO DA COSTA

piece of additional information—the order—may explain the widespread use of conventional meth-
ods to tackle the ordinal data problem.

This work addresses this void by introducing in Section 2 the data replication method, a nonpara-
metric procedure for the classification of ordinal data. The underlying paradigm is the extension of
the original data set with additional variables, reducing the classification task to the well known two-
class problem. Starting with the simpler linear case, already established in Cardoso et al. (2005), the
section develops the nonlinear case; from there the method is extended to incorporate the procedure
of Frank and Hall (2001). Finally, the generic version of the data replication method is presented,
allowing partial constraints on variables.

In section 3 the data replication method is instantiated in two important machine learning algo-
rithms: support vector machines and neural networks. A comparison is made with a previous SVM
approach introduced by Shashua and Levin (2002), the minimummargin principle, showing that the
data replication method leads essentially to the same solution, but with some key advantages. The
section is concluded with a reinterpretation of the neural network model as a generalization of the
ordinal logistic regression model.

Section 4 describes the experimental methodology and the algorithms under comparison; results
are reported and discussed in the succeeding sections. Finally, conclusions are drawn and future
work is outlined in Section 8.

2. The Data Replication Method

Assume that examples in a classification problem come from one of K ordered classes, labeled from
C1 to CK , corresponding to their natural order. Consider the training set {x(k)

i }, where k = 1, . . . ,K
denotes the class number, i = 1, . . . , !k is the index within each class, and x

(k)
i ∈ Rp, with p the

dimension of the feature space. Let ! = ∑K
k=1 !k be the total number of training examples.

Suppose that a K-class classifier was forced, by design, to have (K−1) nonintersecting bound-
aries, with boundary i discriminating classes C1, . . . ,Ci against classes Ci+1, . . . ,CK . As the in-
tersection point of two boundaries would indicate an example with three or more classes equally
probable—not plausible with ordinal classes—this strategy imposes a sensible restriction. With
this constraint emerges a monotonic model, where a better value in an attribute does not lead to a
lower decision class. For the linear case, this translates into choosing the same weighted sum for all
decisions—the classifier would be just a set of weights, one for each feature, and a set of thresholds,
the scale in the weighted sum. By avoiding the intersection of any two boundaries, this model tries
to capture the essence of the ordinal data problem. Additionally, we foresee a better generalization
performance due to the reduced number of parameters to be estimated.

This rationale leads to a straightforward generalization of the two-class separating hyperplane
(Shashua and Levin, 2002). Define (K−1) hyperplanes that separate the training data intoK ordered
classes by modeling the ranks as intervals on the real line. The geometric interpretation of this
approach is to look for (K − 1) parallel hyperplanes, represented by vector w ∈ Rp and scalars
b1, . . . ,bK−1, such that the feature space is divided into K regions by the decision boundaries wtx+
br = 0, r = 1, . . . ,K−1.

Given that there are many good two-class learning algorithms, it is tempting to reduce this
ordinal formulation to a two-class problem. The data replication method allows us to do precisely
that.

1394

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

2.1 Data Replication Method—the Linear Case1

Before moving to the formal presentation of the data replication method, it is instructive to motivate
the method by considering a hypothetical, simplified scenario, with five classes in R2. The plot
of the data set is presented in Figure 1(a); superimposed is also depicted a reasonable set of four
parallel hyperplanes separating the five classes.

C1

C2

C3

C4

C5

(a) Plot of the data points. Also shown are
reasonable class boundaries.

1-st

C1 {C2,C3}
2-nd

{C1,C2} {C3,C4}
3-rd

{C2,C3} {C4,C5}
4-th

{C3,C4} C5

(b) Classes involved in the hy-
perplanes definition, for K = 5,
s= 2.

Figure 1: Toy model with 5 classes in R2.

The i-th hyperplane discriminates classes C1, . . . ,Ci against classes Ci+1, . . . ,CK . Due to the
order among classes, the i-th hyperplane is essentially determined by classes Ci and Ci+1. More
generally, it can be said that the i-th hyperplane is determined by s classes to its ‘left’ and s classes
to its ‘right’, with 1 ≤ s ≤ K− 1. Naturally, for some of the hyperplanes, there will be less than
s classes to one (or both) of its sides. The i-th hyperplane has i classes on its left and (K− i) on
its right. Hence, for a chosen s value, we may say that classifier i depends on min(s, i) classes on
its left—classes Ck,k=max(i− s+1,1), . . . , i—and depends on min(s,K− i) classes on its right—
classes Ck,k = i+1, . . . ,min(i+1+ s−1, i+1+K− i−1) = i+1, . . . ,min(i+ s,K). The classes
involved in each hyperplane definition, for the five class data set with s= 2, are illustrated in Figure
1(b).

To start the presentation of the data replication method let us consider an even more simplified
toy example with just three classes, as depicted in Figure 2(a). Here, the task is to find two parallel
hyperplanes, the first one discriminating class C1 against classes {C2,C3} (we are considering s =
K − 1 = 2 for the explanation) and the second discriminating classes {C1,C2} against class C3.
These hyperplanes will correspond to the solution of two binary classification problems but with the
additional constraint of parallelism—see Figure 2. The data replication method suggests solving
both problems simultaneously in an augmented feature space.

1. The linear version of the data replication method was already presented in Cardoso et al. (2005); here we provide,
arguably, a cleaner presentation.

1395

CARDOSO AND PINTO DA COSTA

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C1

C2

C3

(a) Original data set in R2, K =
3.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Binary problem C1 against
classes {C2,C3}.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) Binary problem {C1,C2}
against class C3.

Figure 2: Binary problems to be solved simultaneously with the data replication method.

Using a transformation from the R2 initial feature-space to a R3 feature space, replicate each
original point, according to the rule (see Figure 3(b)):

x ∈ R2↗↘

[xh] ∈ R3

[x0] ∈ R3
, where h= const ∈ R+.

Observe that any two points created from the same original point differ only in the new variable.
Define now a binary training set in the new (higher dimensional) space according to (see Figure
3(c)): [

x(1)i
0

]
∈ C 1,

[
x(2)i
0

]
,
[
x(3)i
0

]
∈ C 2 ;

[
x(1)i
h

]
,
[
x(2)i
h

]
∈ C 1,

[
x(3)i
h

]
∈ C 2 . (1)

In this step we are defining the two binary problems as a single binary problem in the augmented
feature space. A linear two-class classifier can now be applied on the extended data set, yielding a
hyperplane separating the two classes, see Figure 3(d). The intersection of this hyperplane with each
of the subspace replicas can be used to derive the boundaries in the original data set, as illustrated
in Figure 3(e).

Although the foregoing analysis enables one to classify unseen examples in the original data
set, classification can be done directly in the extended data set, using the binary classifier, without
explicitly resorting to the original data set. For a given example ∈ R2, classify each of its two
replicas ∈ R3, obtaining a sequence of two labels ∈ {C 1,C 2}2. From this sequence infer the class
according to the rule

C 1C 1 =⇒ C1, C 2C 1 =⇒ C2, C 2C 2 =⇒ C3.

To exemplify, from the test point in Figure 3(a), create two replicas and classify them in R3 (high-
lighted in Figure 3(d)). The first replica is classified as C 2 and the second as C 1. Hence, the class
predicted for the test point is C2. This same class could have been obtained in the original feature
space, as represented in Figure 3(e).

It is clear now that the principle behind the replication method is to have a replica of the original
data set for each boundary. The replica i is binarized to discriminate classes C1, . . . ,Ci against classes

1396

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TEST
POINT

(a) Original data set in R2, K = 3.

0
0.5

1
1.5

2 0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

TEST POINT
REPLICA 2

TEST POINT
REPLICA 1

(b) Data set in R3, with samples replicated (h =
1).

0
0.5

1
1.5

2 0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

TEST POINT
REPLICA 1

TEST POINT
REPLICA 2

(c) Transformation into a binary classification
problem.

0
0.5

1
1.5

2 0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

TEST POINT
REPLICA 1

TEST POINT
REPLICA 2

(d) Linear solution to the binary problem.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TEST
POINT

(e) Linear solution in the original data set.

Figure 3: Proposed data extension model in a toy example.

1397

CARDOSO AND PINTO DA COSTA

Ci+1, . . . ,CK (more generally, when parameterized by s, discriminating classes Ck,k = max(i− s+
1,1), . . . , i against classes Ck,k = i+ 1, . . . ,min(i+ s,K)). The additional variables, in number of
(K− 2), provide just the right amount of flexibility needed for having boundaries with the same
direction but with different thresholds.

After the above exposition on a toy model, we will now formally describe a general K-class
classifier for ordinal data classification. Define e0 as the sequence of (K− 2) zeros and eq as the
sequence of (K− 2) symbols 0, . . . ,0,h,0, . . . ,0, with h > 0 in the q-th position. Considering the
problem of separating K ordered classes C1, . . . ,CK with training set {x(k)

i }, define a new binary
training data set in Rp+K−2 as

[
x(k)ie0

]
∈

{
C 1 k = 1,
C 2 k = 2, . . . ,min(K,1+ s),

...
[
x(k)ieq−1

]
∈

{
C 1 k =max(1,q− s+1), . . . ,q,
C 2 k = q+1, . . . ,min(K,q+ s),

...
[
x(k)ieK−2

]
∈

{
C 1 k =max(1,K−1− s+1), . . . ,K−1,
C 2 k = K,

(2)

where parameter s ∈ {1, . . . ,K−1} plays the role of bounding the number of classes defining each
hyperplane. This setup allows controlling the increase of data points inherent to this method. The
toy example in Figure 3(b) was illustrated with s = K− 1 = 2; by setting s = 1 one would obtain
the extended data set illustrated in Figure 4.

0
0.5

1
1.5

2 0
0.5

1
1.5

2

0

0.2

0.4

0.6

0.8

1

Figure 4: Toy data set replicated in R3, h= 1, s= 1.

Next, build a linear two-class classifier on this extended data set; to predict the class of an unseen
example, obtain a sequence of (K− 1) labels ∈ {C 1,C 2}(K−1) by classifying each of the (K− 1)
replicas in the extended data set with the binary classifier. Note that to make a prediction, all (K−1)
replicas of the test point are always classified, even if the classifier was trained with s< K−1. It is
also worth noticing that the binary decision w̄t x̄+b= 0, with w̄, x̄ ∈ Rp+K−2 when mapped into the

1398

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

original space gives rise to the (K−1) boundaries, in the form wtx+bi, with

bi =

{
b if i= 1,
hwp+i−1+b if i> 1.

Now, what possible sequences can one obtain?
Assume for now that the thresholds are correctly ordered as −b1 ≤ −b2 ≤ . . . ≤ −bK−1. Or,

equivalently, that 0≥ hwp+1 ≥ hwp+2 . . .≥ hwp+K−2. If the replica [xei] of a test point x is predicted
as C̄1, that is because w̄t [xei] + b < 0. But then also the replica [x

ei+1] is predicted as C̄1 because
0≥ hwp+i ≥ hwp+i+1. One can conclude that the only K possible sequences and the corresponding
predicted classes are

C 1,C 1, . . . ,C 1,C 1 =⇒ C1,
C 2,C 1, . . . ,C 1,C 1 =⇒ C2,

...
C 2,C 2, . . . ,C 2,C 1 =⇒ CK−1,
C 2,C 2, . . . ,C 2,C 2 =⇒ CK .

Henceforth, the target class can be obtained by adding one to the number of C 2 labels in the se-
quence. To emphasize, the process is depicted in Figure 5 for a data set in R with four classes.

The reduction technique presented here uses a binary classifier to make multiclass ordinal pre-
dictions. Instead of resorting to multiple binary classifiers to make predictions in the ordinal prob-
lem (as is common in reduction techniques from multiclass to binary problems), the data replication
method uses a single binary classifier to classify (K−1) dependent replicas of a test point. A perti-
nent question is how the performance of the binary classifier translates into the performance on the
ordinal problem. In Appendix A, a bound on the generalization error of the ordinal data classifier is
expressed as a function of the error of the binary classifier.

The thresholds bi were assumed correctly ordered. It is not trivial to see how to keep them well
ordered with this standard data replication method, for s general. We present next an alternative
method of replicating the data, in which constraints on the thresholds are explicitly incorporated in
the form of extra points added to the training set. This formulation enforces ordered boundaries for
s values as low as 1, although compromising some of cleanliness in the interpretation as a binary
classification problem in the extended space.

2.2 Homogeneous Data Replication Method

With the data replication method just presented, the boundary in the extended space w̄t x̄+ b = 0
has correspondence in the original space to the (K − 1) boundaries wtx+ bi, with b1 = b, bi =
hwp+i−1+b1, i= 2, . . . ,K−1. It is notorious the asymmetry with respect to b1.

One could attain a symmetric formulation by introducing the well-known homogenous coordi-
nates. That would lead to the addition of a new variable and to the restriction of linear boundaries
going through the origin. The same result can be obtained by starting with a slightly different
extension of the data set.

Define uq as the sequence of (K−1) symbols 0, . . . ,0,h,0, . . . ,0, with h> 0 in the q-th position.
Considering the problem of separating K ordered classes C1, . . . ,CK with training set {x(k)

i }, define
a new binary training data set in Rp+K−1 as

1399

CARDOSO AND PINTO DA COSTA

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Original data set in R, K = 4.

1
2

3
4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x3

x1
x2

(b) Data set inR3, with samples repli-
cated (h= 1).

1
2

3
4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x3

x1
x2

(c) Transformation into a binary clas-
sification problem.

1
2

3
4

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x1
x2

x3

(d) Linear solution to the binary prob-
lem.

Figure 5: Proposed data extension model for a data set in R, with K = 4.

[
x(k)iu1

]
∈

{
C 1 k = 1,
C 2 k = 2, . . . ,min(K,1+ s),

...
[
x(k)iuq

]
∈

{
C 1 k =max(1,q− s+1), . . . ,q,
C 2 k = q+1, . . . ,min(K,q+ s),

...
[
x(k)iuK−1

]
∈

{
C 1 k =max(1,K−1− s+1), . . . ,K−1,
C 2 k = K.

Note that the homogeneous extended data set has dimension p+K−1, as opposed to (p+K−2)
in the standard formulation of the data replication method. It also comes that bi = hwp+i, i =
1, . . . ,K−1. Under the homogeneous approach, one has to look for a linear homogeneous boundary
of the form w̄t x̄= 0, as the bias of the boundary is incorporated as a new coordinate.

1400

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

The main reason for preferring the standard over the homogeneous formulation of the data
replication method is that most of the existing linear binary classifiers are formulated in terms of
non-homogeneous boundaries having the form w̄t x̄+ b = 0, instead of w̄t x̄ = 0. Therefore, some
adaptation is required before applying existing linear binary classifiers to the homogeneous data
replication method.

Homogeneous Data Replication Method with Explicit Constrains on the Thresholds

Unless one sets s = K− 1, the data replication method does not enforce ordered thresholds (we
will return to this point later, when mapping to SVMs and neural networks). This is true for both
the standard and the homogeneous formulations. Explicit constraints in the model’s formulation
can be introduced to enforce the correct order. With the homogeneous formulation, those explicit
constraints can take the form of additional (K−2) points in the training set.

Consider the relation −bi < −bi+1. This relation can be equivalently written as

−hwp+i < −hwp+i+1 ⇐⇒−w̄t
[0p
ui

]
< −w̄t

[
0p
ui+1

]
⇐⇒ w̄t

[
0p

ui+1−ui

]
< 0.

As a result, constraining −bi to be less than −bi+1 is equivalent to correctly classify the point[
0p

ui+1−ui

]
in the C1 class. It is interesting to note that this point is not in the subspace of any of the

data replicas. To introduce the (K− 2) explicit constraints on the thresholds, just enforce that the
(K−2) points

[
0p

ui+1−ui

]
, i= 1, . . . ,K−2 are correctly classified in C1. Note that violations of these

constraints can not be allowed.

2.3 Data Replication Method—the Nonlinear Case

Previously, the data replication method was considered as a design methodology of a linear classi-
fier for ordinal data. This section addresses scenarios where data is not linearly separable and for
which the design of a linear classifier does not lead to satisfactory results. Therefore, the design
of nonlinear classifiers emerges as a necessity. The only constraint to enforce during the design
process is that boundaries should not intersect.

Inspired by the data replication method just presented, we now look for generic boundaries that
are level curves of some nonlinear, real-valued function G(x) defined in the feature space. The
(K− 1) boundaries are defined as G(x) = bi, i = 1, . . . ,K− 1,bi ∈ R. It is worth emphasizing that
interpreting the decision boundaries as level curves of some (unknown) function does not result in
loss of generality. For the linear version one take G(x) = wtx+b.

Once again, the search for nonintersecting, nonlinear boundaries can be carried out in the ex-
tended space of the data replication method. First, extend and modify the feature space to a binary
problem, as dictated by the data replication method. Next, search for a boundary G(x) defined in
the extended space that results on (K−1) boundaries G(x) = bi when reverted to the original space.
The simplest form for G(x) is as a partially linear (nonlinear in the original variables but linear in
the introduced variables) boundary G(x) = G(x)+wtei = 0, with w ∈ RK−2, and x = [xei]. Notice
that restricting the function G(x) to be linear in the (K−2) added variables imposes automatically
nonintersecting boundaries in the original space: boundaries will have the form G(x)+bi = 0 with

bi =

{
0 if i= 1,
hwp+i−1 if 2≤ i≤ K−1.

1401

CARDOSO AND PINTO DA COSTA

Although a partially linear function G(x) is the simplest to provide nonintersecting boundaries in
the original space (level curves of some function G(x)), it is by no means the only type of function
to provide them.

The intersection of the constructed high-dimensional boundary with each of the subspace repli-
cas provides the desired (K−1) boundaries. This approach is plotted in Figure 6 for the toy example.
The #C 2+1 rule can still be applied to predict the class of a test example directly in the extended
feature space.

0
0.5

1
1.5

2 0
0.5

1
1.5

2
0

0.2

0.4

0.6

0.8

1

(a) Nonlinear solution to the binary prob-
lem. G(x) = 0.4(x21+ x22−1)+ x3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Nonlinear solution in the original data
set. G(x) = x21+ x22−1

Figure 6: Nonlinear data extension model in the toy example.

The nonlinear extension of the homogeneous data replication method follows the same rationale
as the standard formulation. Now the G(x) = G(x)+wtui = 0 boundary, with w ∈ RK−1, must be
constrained such that G(0) = 0⇐⇒ G(0) = 0. Finally, the enforcement of ordered thresholds with
the introduction of additional training points is still valid in the nonlinear case, as

G(
[

0p
ui+1−ui

]
) = G(0p)+wt(ui+1−ui) = hwp+i+1−hwp+i = bi+1−bi.

2.4 A General Framework

As presented so far, the data replication method allows only searching for parallel hyperplanes (level
curves in the nonlinear case) boundaries. That is, a single direction is specified for all boundaries.
In the quest for an extension allowing more loosely coupled boundaries, let us start by reviewing
the method for ordinal data by Frank and Hall (2001).

2.4.1 THE METHOD OF FRANK AND HALL

Frank and Hall (2001) proposed to use (K− 1) standard binary classifiers to address the K-class
ordinal data problem. Toward that end, the training of the i-th classifier is performed by converting
the ordinal data set with classes C1, . . . ,CK into a binary data set, discriminating C1, . . . ,Ci against
Ci+1, . . . ,CK . To predict the class value of an unseen instance, the (K− 1) outputs are combined
to produce a single estimation. If the i-th classifier predicts CX > Ci with probability pi, Frank and

1402

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

Hall (2001) suggest to estimate the probability values of each of the K classes as

pC1 = 1− p1,
pC j = p j−1− p j j = 2, · · · ,K−1,
pCK = pK−1.

Note however that this approach may lead to negative estimates of probability values. A solution
to that problem is to identify the output pi of the i-th classifier with the conditional probability
p(CX > Ci |CX > Ci−1). This meaning can be exploited to rank the classes according to the following
formulas:

p(CX > C1) = p1, pC1 = 1− p1,
p(CX > C j) = p j p(CX > C j−1), pC j = (1− p j) p(CX > C j−1) j = 2, · · · ,K−1,

pCK = p(CX > CK−1).

Any binary classifier can be used as the building block of this scheme. Observe that, under
our approach, the i-th boundary is also discriminating C1, . . . ,Ci against Ci+1, . . . ,CK ; the major
difference lies in the independence of the boundaries found with Frank and Hall’s method. This
independence is likely to lead to intersecting boundaries.

2.4.2 A PARAMETERIZED FAMILY OF CLASSIFIERS

Thus far, nonintersecting boundaries have been motivated as the best way to capture ordinal relation
among classes. That may be a too restrictive condition for problems where some features are not in
relation with the ordinal property. Suppose then that the order of the classes is not totally reflected
in a subset of the features. Without further information, it is unadvised to draw from them any
ordinal information. It may be more advantageous to restrict the enforcing of the nonintersecting
boundaries to the leftover features.

We suggest a generalization of the data replication method where the enforcement of noninter-
secting boundaries is restricted only to the first j features, while the last p− j features enjoy the
independence as materialized in the Frank and Hall’s method. Towards that end we start by showing
how the independent boundaries approach of Frank and Hall can be subsumed in the data replication
framework.

Instead of replicating the original train data set as expressed by Eq. (2), we indent to arrive at a
strategy that still allows a single binary classifier to solve the (K−1) classification problems simul-
taneously, but yielding independent boundaries. If the boundaries are expected to be independent,
each of the (K−1) data replicas of the original data should be made as ‘independent’ as possible.

Up to this point, when replicating the original data set, the original p variables were the first p
variables of the p+K−2 variables of the augmented data set, for each subspace replica, as seen in
Eq. (2). Each of the (K− 2) extra variables accounts for a different threshold term, while the fact
that the original variables are ‘shared’ among the different replicas results in a common direction
for all of the boundaries. The argument is that if the set of the original p features is mapped into
a different set of p variables for each data replica, while keeping the (K − 2) extra variables to
account for different thresholds, the binary classifier will return (almost) independent boundaries.
It is worth noticing that this procedure increases the number of variables in the extended space to
(K−1)× p+(K−2).

Returning to the toy example, assume that the replication was done not according to Eq. (1) but
instead using the following rule:

1403

CARDOSO AND PINTO DA COSTA

[
x(1)i
02
0

]
∈ C 1,

[
x(2)i
02
0

]
,

[
x(3)i
02
0

]
∈ C 2,

[02
x(1)i
h

]
,

[02
x(2)i
h

]
∈ C 1,

[02
x(3)i
h

]
∈ C 2

where 02 is the sequence of 2 zeros. Intuitively, by misaligning variables involved in the deter-
mination of different boundaries (variables in different subspaces), we are decoupling those same
boundaries.

Proceeding this way, boundaries can be designed almost independently (the mapping on SVMs
will clarify this issue). In the linear case we have now four parameters to estimate, the same as for
two independent lines in R2. Intuitively, this new rule to replicate the data allows the estimation of
the direction of each boundary in essentially an independent way.

The general formulation in Eq. (2) becomes

[
x(k)i

0p(K−2)
e0

]
∈

{
C 1 k = 1,
C 2 k = 2, . . . ,min(K,1+ s),

...


0p(q−1)
x(k)i

0p(K−q−1)
eq−1



 ∈
{

C 1 k =max(1,q− s+1), . . . ,q,
C 2 k = q+1, . . . ,min(K,q+ s),

...
[0p(K−2)

x(k)ieK−2

]
∈

{
C 1 k =max(1,K−1− s+1), . . . ,K−1,
C 2 k = K,

(3)

where 0∗ is the sequence of ∗ zeros.

While the basic linear data replication method requires the estimation of (p− 1) + (K − 1)
parameters, the new rule necessitates of (p− 1)(K − 1) + (K − 1) = p(K − 1), the same as the
Frank and Hall approach; this corresponds to the number of free parameters in (K−1) independent
p-dimensional hyperplanes. While this does not aim at being a practical alternative to Frank’s
method, it does pave the way for intermediate solutions, filling the gap between the totally coupled
and totally independent boundaries.

To constrain only the first j variables of the p initial variables to have the same direction in all
boundaries, while leaving the (p− j) final variables unconstrained, we propose to extend the data
according to

1404

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD




x(k)i (1: j)
x(k)i (j+1:p)
0(p− j)(K−2)

e0



 ∈
{

C 1 k = 1,
C 2 k = 2, . . . ,min(K,1+ s),

...



x(k)i (1: j)
0(p− j)(q−1)

x(k)i (j+1:p)
0(p− j)(K−q−1)

eq−1



 ∈
{

C 1 k =max(1,q− s+1), . . . ,q,
C 2 k = q+1, . . . ,min(K,q+ s),

...


x(k)i (1: j)
0(p− j)(K−2)

x(k)i (j+1:p)
eK−2



 ∈
{

C 1 k =max(1,K−1− s+1), . . . ,K−1,
C 2 k = K.

With this rule [p− 1− (j− 1)](K− 1)+ (K− 1)+ j− 1, j ∈ {1, . . . , p}, parameters are to be
estimated.

This general formulation of the data replication method allows the enforcement of only the
amount of knowledge (constraints) that is effectively known a priori, building the right amount of
parsimony into the model (see the pasture production experiment).

Now, in this general setting, we can no longer assume nonintersecting boundaries. Therefore,
the space of features may be partitioned in more than K regions. To predict the class of an unseen
instance we may estimate the probabilities of the K classes using the (K−1) replicas, similarly to
Frank and Hall (2001), or simply keep the #C 2+1 rule.

3. Mapping the Data Replication Method to Learning Algorithms

In this section the data replication method just introduced is instantiated in two important machine
learning algorithms: support vector machines and neural networks.

3.1 Mapping the Data Replication Method to SVMs

The learning task in a classification problem is to select a prediction function f (x) from a family of
possible functions that minimizes the expected loss.

In the absence of reliable information on relative costs, a natural approach for unordered classes
is to treat every misclassification as equally likely. This translates into adopting the non-metric
indicator function l0−1(f (x),y) = 0 if f (x) = y and l0−1(f (x),y) = 1 if f (x) += y, where f (x) and
y are the predicted and true classes, respectively. Measuring the performance of a classifier using
the l0−1 loss function is equivalent to simply considering the misclassification error rate. However,
for ordered classes, losses that increase with the absolute difference between the class numbers are
more natural choices in the absence of better information (Mathieson, 1995). This loss should be
naturally incorporated during the training period of the learning algorithm.

A risk functional that takes into account the ordering of the classes can be defined as

R(f) = E
[
ls

(
f (x(k)),k

)]
(4)

with
ls

(
f (x(k)),k

)
=min

(
| f (x(k))− k|,s

)
.

1405

CARDOSO AND PINTO DA COSTA

The empirical risk is the average of the number of mistakes, where the magnitude of a mistake
is related to the total ordering: Rsemp(f) = 1

! ∑
K
k=1∑

!k
i=1 l

s
(
f (x(k)

i),k
)
.

Arguing as Herbrich et al. (1999a), we see that the role of parameter s (bounding the loss in-
curred in each example) is to allow for an incorporation of a priori knowledge about the probability
of the classes, conditioned by x, P(Ck|x). This can be treated as an assumption on the concentra-
tion of the probability around a “true” rank. Let us see how all this finds its place with the data
replication method.

3.1.1 THE MINIMUM MARGIN PRINCIPLE

Let us formulate the problem of separating K ordered classes C1, . . . ,CK in the spirit of SVMs.
Starting from the generalization of the two-class separating hyperplane presented in the beginning
of previous section, let us look for (K−1) parallel hyperplanes represented by vector w ∈ Rp and
scalars b1, . . . ,bK−1, such that the feature space is divided into K regions by the decision boundaries
wtx+br = 0, r = 1, . . . ,K−1.

Going for a strategy to maximize the margin of the closest pair of classes, the goal becomes
to maximize min |wtx+bi|/||w||. Recalling that an algebraic measure of the distance of a point to
the hyperplane wtx+ b is given by (wtx+ b)/‖w‖, we can scale w and bi so that the value of the
minimum margin is 2/‖w‖.

The constraints to consider result from the (K−1) binary classifications related to each hyper-
plane; the number of classes involved in each binary classification can be made dependent on a
parameter s, as detailed in Section 2.1. For the hyperplane q ∈ {1, . . . ,K−1}, the constraints result
as

−(wtx(k)
i +bq) ≥ +1 k =max(1,q− s+1), . . . ,q,

+(wtx(k)
i +bq) ≥ +1 k = q+1, . . . ,min(K,q+ s).

(5)

Reasoning as in the two-class SVM for the non-linearly separable data set, the inequalities can
be relaxed using slack variables and the cost function modified to penalise any failure to meet the
original (strict) inequalities. The model becomes (where sgn (x) returns+1 if x is greater than zero;
0 if x equals zero; −1 if x is less than zero)

min
w,bi,ξi

1
2
wtw+C

K−1

∑
q=1

min(K,q+s)

∑
k=max(1,q−s+1)

!k

∑
i=1

sgn (ξ(k)
i,q)

s.t.

−(wtx(k)
i +b1) ≥ +1−ξ(k)

i,1 k = 1,
+(wtx(k)

i +b1) ≥ +1−ξ(k)
i,1 k = 2, . . . ,min(K,1+ s),

...
−(wtx(k)

i +bq) ≥ +1−ξ(k)
i,q k =max(1,q− s+1), . . . ,q,

+(wtx(k)
i +bq) ≥ +1−ξ(k)

i,q k = q+1, . . . ,min(K,q+ s),
...
−(wtx(k)

i +bK−1) ≥ +1−ξ(k)
i,K−1 k =max(1,K− s), . . . ,K−1,

+(wtx(k)
i +bK−1) ≥ +1−ξ(k)

i,K−1 k = K,

ξ(k)
i,q ≥ 0.

(6)

1406

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

Since each point x(k)
i is replicated 2s times, it is also involved in the definition of 2s boundaries;

consequently, it can be shown to be misclassified min(| f (x(k)
i)− k|,s) = ls(f (x(k)

i),k) times, where
f (x(k)

i) is the class estimated by the model. As with the two-class example,
∑K−1
q=1 ∑

min(K,q+s)
k=max(1,q−s+1)∑

!k
i=1 sgn (ξ(k)

i,q) is an upper bound of ∑k∑i ls(f (x
(k)
i),k), proportional to the

empirical risk.2
However, optimization of the above is difficult since it involves a discontinuous function sgn ().

As it is common in such cases, we choose to optimize a closely related cost function, and the goal
becomes

min
w,bi,ξi

1
2
wtw+C

K−1

∑
q=1

min(K,q+s)

∑
k=max(1,q−s+1)

!k

∑
i=1

ξ(k)
i,q

subject to the same constraints as Eq. (6).
In order to account for different misclassification costs or sampling bias, the model can be

extended to penalise the slack variables according to different weights in the objective function (Lin
et al., 2002):

min
w,bi,ξi

1
2
wtw+

K−1

∑
q=1

min(K,q+s)

∑
k=max(1,q−s+1)

!k

∑
i=1
C(k)
i,q ξ

(k)
i,q .

As easily seen, the proposed formulation resembles the fixed margin strategy in Shashua and
Levin (2002). However, instead of using only the two closest classes in the constraints of an hyper-
plane, more appropriate for the loss function l0−1(), we adopt a formulation that captures better the
performance of a classifier for ordinal data.

Some problems were identified in the Shashua’s approach. Firstly, it is an incompletely specified
model. In fact, although the direction of the hyperplanes w is unique under the above formulation
(proceeding as Vapnik (1998) for the binary case), the scalars b1, . . . ,bK−1 are not uniquely defined,
as illustrated in Figure 7.

b1 b2

Figure 7: Scalar b2 is undetermined over an interval under the fixed margin strategy.

Secondly, setting s< (K−1) may produce awkward results on some unfortunate cases. In fact,
as pointed out by Chu and Keerthi (2005), the ordinal inequalities on the thresholds −b1 ≤ −b2 ≤

2. Two parameters named s have been introduced. In Section 2.1 the s parameter bounds the number of classes involved
in the definition of each boundary, controlling the growth of the original data set. The parameter s introduced in Eq.
(4) bounds the loss incurred in each example. Here we see that they are the same parameter.

1407

CARDOSO AND PINTO DA COSTA

. . .≤−bK−1 are not guaranteed in this case. Only under the setting s=K−1 the ordinal inequalities
on the thresholds are automatically satisfied (Chu and Keerthi, 2005).

Lastly, although the formulation was constructed from the two-class SVM, it is no longer solv-
able with the same algorithms. It would be interesting to accommodate this formulation under the
two-class problem. That would allow the use of mature and optimized algorithms, developed for
the training of support vector machines (Platt, 1998; Dong et al., 2005).

3.1.2 THE OSVM ALGORITHM

In order to get a better intuition of the general result, consider first the toy example previously
presented. The binary SVM formulation for the extended and binarized training set can be described
as

(
with w= [ww3] , w ∈ R2

)

minw,b
1
2w

tw

s.t.

−(wt
[
x(1)i
0

]
+b) ≥ +1,

+(wt
[
x(2)i
0

]
+b) ≥ +1,

+(wt
[
x(3)i
0

]
+b) ≥ +1,

−(wt
[
x(1)i
h

]
+b) ≥ +1,

−(wt
[
x(2)i
h

]
+b) ≥ +1,

+(wt
[
x(3)i
h

]
+b) ≥ +1.

But because {
wt [xi0] = wtxi
wt [xih] = wtxi+w3h

and renaming b to b1 and b+w3h to b2 the formulation above simplifies to

minw,b1,b2
1
2w

tw+ 1
2

(b2−b1)2
h2

s.t.

−(wtx(1)
i +b1) ≥ +1,

+(wtx(2)
i +b1) ≥ +1,

+(wtx(3)
i +b1) ≥ +1,

−(wtx(1)
i +b2) ≥ +1,

−(wtx(2)
i +b2) ≥ +1,

+(wtx(3)
i +b2) ≥ +1.

Two points are worth mentioning: a) this formulation, being the result of a pure SVM method,
has an unique solution (Vapnik, 1998); b) this formulation equals the formulation in Eq. (5) for
ordinal data previously introduced, with K = 3, s = K− 1 = 2, and a slightly modified objective
function by the introduction of a regularization member, proportional to the distance between the
hyperplanes. The oSVM solution is the one that simultaneously minimizes the distance between

1408

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

boundaries and maximizes the minimum of the margins—see Figure 8. The h parameter controls
the trade-off between the objectives of maximizing the margin of separation and minimizing the
distance between the hyperplanes. To reiterate, the data replication method enabled us to formulate

−2 −1 0 1 2 3 4

(a) Original data set in R.

−2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

(b) Data set in R2, with sam-
ples replicated (s = 2, h = 1)
and oSVM solution to the bi-
nary problem.

−2 −1 0 1 2 3 4

(c) oSVM solution in the origi-
nal feature space.

Figure 8: Effect of the regularization member in the oSVM solution.

the classification of ordinal data as a standard SVM problem and to remove the ambiguity in the
solution by the introduction of a regularization term in the objective function.

The insight gained from studying the toy example paves the way for the formal presentation of
the instantiation of the data replication method in SVMs. Consider a general extended data set, as
defined in Eq. (2). After the simplifications and change of variables suggested for the toy example
(b= b1, b+hwp+i = bi+1, i= 1, . . . ,K−2), the binary SVM formulation for this extended data set
yields

min
w,bi,ξi

1
2
wtw+

1
h2

K−1

∑
i=2

(bi−b1)2

2
+C

K−1

∑
q=1

min(K,q+s)

∑
k=max(1,q−s+1)

!k

∑
i=1

ξ(k)
i,q

with the same set of constraints as in Eq. (6).
This formulation for the high-dimensional data set matches the proposed formulation for ordinal

data up to an additional regularization member in the objective function. This additional member is
responsible for the unique determination of the thresholds.3

From the equivalence of the instantiation of the data replication method in SVMs and the model
in Shashua and Levin (2002) and Chu and Keerthi (2005), the proof on the order of the thresholds is
automatically valid for the oSVM algorithm with s= K−1 (see the footnote on page 5 of Chu and
Keerthi, 2005). The model parameter s cannot be chosen arbitrarily without additional constraints
on the scalars b1, . . . ,bK−1 or some additional information about classes’ distribution.

To instantiate the homogeneous data replication method in support vector machines, some pop-
ular algorithm for binary SVMs, such as the SMO algorithm, must be adapted for outputting a so-

3. Different regulation members could be obtained by different extensions of the data set. For example, if eq had
been defined as the sequence h, . . . ,h,0, . . . ,0, with q h’s and (K− 2− q) 0’s, the regularization member would be
1
2 ∑

i=K−1
i=2

(bi−bi−1)2
2 .

1409

CARDOSO AND PINTO DA COSTA

two-class SVM
algorithmkernel

K(x,y)

data data
extension

data
in

kernel
modification

kernel
definition

Figure 9: oSVM interpretation of an ordinal multiclass problem as a two-class problem.

lution without the bias term. Moreover, kernels have to be restricted to those satisfying K(0,0) = 0,
as for instance the linear kernel or the homogeneous polynomial kernel K(x,y) = (xty)d . To im-
plement the enforcement on the thresholds with additional training points, one can use a different
value for the C parameter in these points, sufficiently high to make certain a correct classification.
Alternatively, these points must not be relaxed with a slack variable in the SVM formulation.

Nonlinear Boundaries As explained before, the search for nonlinear level curves can be pur-
sued in the extended feature space by searching for a partially linear function G(x) = G(x)+wtei.
Since nonlinear boundaries are handled in the SVM context making use of the well known kernel
trick, a specified kernel K(xi,x j) in the original feature space can be easily modified to K(xi,x j) =
K(xi,x j)+ etxiex j in the extended space.

Summarizing, the nonlinear ordinal problem can be solved by extending the feature set and
modifying the kernel function, as represented diagrammatically in Figure 9. Clearly, the extension
to nonlinear decision boundaries follows the same reasoning as with the standard SVM (Vapnik,
1998).

It is true that the computational complexity of training a SVM model depends on the dimension
of the input space, since the kernel functions contain the inner product of two input vectors for
the linear or polynomial kernels or the distance of the two vectors for the Gaussian RBF kernel.
However the matrix Q of inner products, with (Q)i j = K(xi,x j) can be computed once and kept in
memory. Even on problems with many training examples, caching strategies can be developed to
provide a trade-off between memory consumption and training time (Joachims, 1998). Therefore,
most of the increase in the computational complexity of the problem is due to the duplication of
the data; more generally, for a K-class problem, the data set is increased at most (K − 1) times,
O (!(K−1)).

Independent Boundaries Considering now the setup for independent boundaries, as presented in
Eq. (3), the linear, binary SVM formulation yields

1410

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

min
w,bi,ξi

K−1

∑
k=1

1
2
wt(kp− p+1 : kp)w(kp− p+1 : kp)+

1
h2

K−1

∑
i=2

(bi−b1)2

2
+C

K−1

∑
q=1

min(K,q+s)

∑
k=max(1,q−s+1)

!k

∑
i=1

ξ(k)
i,q

s.t.

−(wt(1 : p)x(k)i +b1) ≥ +1−ξ(k)
i,1 k = 1,

+(wt(1 : p)x(k)i +b1) ≥ +1−ξ(k)
i,1 k = 2, . . . ,min(K,1+ s),

...
−(wt(qp− p+1 : qp)x(k)

i +bq) ≥ +1−ξ(k)
i,q k =max(1,q− s+1), . . . ,q,

+(wt(qp− p+1 : qp)x(k)
i +bq) ≥ +1−ξ(k)

i,q k = q+1, . . . ,min(K,q+ s),
...

−(wt((K−1)p− p+1 : (K−1)p)x(k)
i +bK−1) ≥ +1−ξ(k)

i,K−1 k =max(1,K− s), . . . ,K−1,
+(wt((K−1)p− p+1 : (K−1)p)x(k)

i +bK−1) ≥ +1−ξ(k)
i,K−1 k = K,

ξ(k)
i,q ≥ 0.

If the regularization term 1
h2 ∑

K−1
i=2

(bi−b1)2
2 is zero (in practice, small enough), the optimization

problem could then be broken in (K−1) independent optimization problems, reverting to the pro-
cedure of Frank and Hall (2001).

3.2 Mapping the Data Replication Method to NNs

When the nonlinear data replication method was formulated, the real-valued function G(x) was
defined arbitrarily. Nonintersecting boundaries were enforced by making use of a partially linear
function G(x) = G(x)+wtei defined in the extended space. Setting G(x) as the output of a neural
network, a flexible architecture for ordinal data can be devised, as represented diagrammatically in
Figure 10. Because G(x) an arbitrary real-valued function, it can be set as the output of a generic
neural network with a single output. In Figure 10 G(x) is represented as the output of a generic
feedforward network. This value is then linearly combined with the added (K− 2) components to
produce the desired G(x) function.

For the simple case of searching for linear boundaries, the overall network simplifies to a single
neuron with p+K−2 inputs. A less simplified model, also used in the conducted experiments, is to
consider a single hidden layer, as depicted in Figure 11. Note that this architecture can be obtained
from Figure 10 by collapsing layers 2 to N − 1 into layer N, a valid operation when activation
functions f2 to fN−1 are all linear.

Similarly to the SVM mapping, it is possible to show that, if we allow the samples in all the
classes to contribute errors for each threshold, by setting s = K− 1, the order inequalities on the
thresholds are satisfied automatically, in spite of the fact that such constraints on the thresholds are
not explicitly included in the formulation. Refer to Appendix B for the detailed proof.

The mapping of the homogeneous data replication method to neural networks is easily realized.
In order to obtain G(0) = 0, just remove the biases inputs, represented in Figure 10, and restrict
the activation functions fi() to those verifying fi(0) = 0. The constrains on the thresholds in form
of additional training points can be realized in networks by adapting the performance function to
penalise with a sufficiently high value any error in classifying these points.

1411

CARDOSO AND PINTO DA COSTA

Generic neural network

+
activation
function

fN

+
activation
function
fN−1

+
activation
function
fN−2

+
activation
function
fN−2

+
activation
function

f1

+
activation
function

f1

x1

xp

xp+1

xp+K−2

G(x)

binary

classifier

bias

bias

bias

bias

bias

bias

Figure 10: Data replication method for neural networks (oNN).

+
activation
function

fN

+
activation
function

f1

+
activation
function

f1

x1

xp

xp+1

xp+K−2

binary
classifier

bias

bias

bias

Figure 11: Simplified oNN model for neural networks.

3.2.1 ORDINAL LOGISTIC REGRESSION MODEL

Here we provide a probabilistic interpretation for the ordinal neural network model just introduced.
The traditional statistical approach for ordinal classification models the cumulative class probability
Pk = p(C ≤ k|x) by

logit(Pk) =Φk−G(x) ⇔ Pk = logsig(Φk−G(x)), k = 1, . . . ,K−1 (7)

Remember that logit(y) = ln y
1−y , logsig(y)=

1
1+e−y and logsig(logit(y)) = y.

For the linear version (McCullagh, 1980; McCullagh and Nelder, 1989) we take G(x) = wtx.
Mathieson (1995) presents a nonlinear version by letting G(x) be the output of a neural network.
However other setups can be devised. Start by observing that in Eq. (7) we can always assume
Φ1 = 0 by incorporating an appropriate additive constant in G(x). We are left with the estimation of

1412

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 12: Decision boundaries for the oNN with 3 units in the hidden layer, for a synthetic data
set from Mathieson (1995). C1 = ◦, C2 = !, C3 = ", C4 = ∗

G(x) and (K−2) cut points. By fixing fN() = logsig() as the activation function in the output layer
of our oNN network, we can train the network to predict the values Pk(x), when fed with x= [x

ek−1],
k = 1, . . . ,K−1 . By setting C 1 = 1 and C 2 = 0 we see that the extended data set as defined in Eq.
(2) can be used to train the oNN network. The predicted cut points are simply the weights of the
connection of the added K−2 components, scaled by h.

Illustrating this model with the synthetic data set from Mathieson (1995), we attained the deci-
sion boundaries depicted in Figure 12.

3.3 Summation

The data replication method has some advantages over standard algorithms presented in the litera-
ture for the classification of ordinal data:

• It has an interesting and intuitive geometric interpretation. It provides a new conceptual
framework integrating disparate algorithms for ordinal data classification: Chu and Keerthi
(2005) algorithm, Frank and Hall (2001), ordinal logistic regression.

• While the algorithm presented in Shashua and Levin (2002); Chu and Keerthi (2005) is only
formulated for SVMs, the data replication method is quite generic, with the possibility of
being instantiated in different classes of learning algorithms, ranging from SVMs (or other
kernel based approaches) to neural networks or something as simple as the Fisher method.

• Even the SVM instantiation of the data replication method possesses an advantage over the
algorithm presented in Chu and Keerthi (2005): the latter misses the explicit inclusion of
a regularization term in the objective function, leading to ambiguity in the solution. The
data replication method incorporates naturally a regularization term; the unique regularization
term allows interpreting the optimization problem as a single binary SVM in an extended
space.

1413

CARDOSO AND PINTO DA COSTA

4. Experimental Methodology

In the following sections, experimental results are provided for several models based on SVMs and
NNs, when applied to diverse data sets, ranging from synthetic to real ordinal data, and to a problem
of feature selection. Here, the set of models under comparison is presented and different assessment
criteria for ordinal data classifiers are examined.

4.1 Neural Network Based Algorithms

We compare the following algorithms:

• Conventional neural network (cNN). To test the hypothesis that methods specifically targeted
for ordinal data improve the performance of a standard classifier, we tested a conventional
feed forward network, fully connected, with a single hidden layer, trained with the special
activation function softmax.

• Pairwise NN (pNN): Frank and Hall (2001) introduced a simple algorithm that enables stan-
dard classification algorithms to exploit the ordering information in ordinal prediction prob-
lems. First, the data is transformed from a K-class ordinal problem to (K− 1) binary prob-
lems. To predict the class value of an unseen instance the probabilities of the K original
classes are estimated using the outputs from the (K−1) binary classifiers.

• Costa (1996), following a probabilistic approach, proposes a neural network architecture
(iNN) that exploits the ordinal nature of the data, by defining the classification task on a
suitable space through a “partitive approach”. It is proposed a feedforward neural network
with (K−1) outputs to solve a K-class ordinal problem. The probabilistic meaning assigned
to the network outputs is exploited to rank the elements of the data set.

• Regression model (rNN): as stated in the introduction, regression models can be applied to
solve the classification of ordinal data. A common technique for ordered classes is to estimate
by regression any ordered scores s1 ≤ . . . ≤ sK by replacing the target class Ci by the score si.
The simplest case would be setting si = i, i = 1, . . . ,K (Mathieson, 1995; Moody and Utans,
1995; Agarwal et al., 2001). A neural network with a single output was trained to estimate
the scores. The class variable Cx was replaced by the score sx = Cx−0.5

K before applying
the regression algorithm. These scores correspond to take as target the midvalues of K equal-
sized intervals in the range [0,1). The adopted scores are suitable for a sigmoid output transfer
function, which always outputs a value in (0,1). In the test phase, if a test query obtains the
answer ŝx the corresponding class is predicted as Ĉx = /Kŝx0+1.

• Proposed ordinal method (oNN), based on the standard data extension technique, as previ-
ously introduced.

Experiments with neural networks were carried out in Matlab 7.0 (R14), making use of the
Neural Network Toolbox. All models were configured with a single hidden layer and trained with
Levenberg-Marquardt back propagation method, over at most 2000 epochs.

4.2 SVM Based Algorithms

We compare the following algorithms:

1414

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

• A conventional multiclass SVM formulation (cSVM), as provided by the software imple-
mentation LIBSVM 2.8., based on the one-against-one decomposition. The one-against-one
decomposition transforms the multiclass problem into a series of K(K−1)/2 binary subtasks
that can be trained by a binary SVM. Classification is carried out by a voting scheme.

• Pairwise SVM (pSVM): mapping in support vector machines the strategy of Frank and Hall
(2001) above mentioned for the pNN model.

• Regression SVM (rSVM): The considered class of support vector regression was that of ν-
SVR Scholkopf et al. (2000), as provided by the software implementation LIBSVM 2.8. Note
that the model was trained to estimate the scores sx as defined before in respect to the rNN
model. Because ν-SVR does not guarantee outputs∈ [0,1), the predicted class Ĉx= /Kŝx0+1
was properly cropped.

• Proposed ordinal method (oSVM), based on the standard data extension technique, as previ-
ously introduced.

All support vector machine models were implemented in C++, using as core the software im-
plementation provided by LIBSVM 2.8.

4.3 Measuring the Performance of Ordinal Data Classifiers

Having built a classifier, the obvious question is “how good is it?”. This begs the question of what
we mean by good. A common approach is to treat every misclassification as equally costly, adopt-
ing the misclassification error rate (MER) criterion to measure the performance of the classifier.
However, as already expressed, losses that increase with the absolute difference between the class
numbers capture better the fundamental structure of the ordinal problem. The mean absolute devia-
tion (MAD) criterion takes into account the degree of misclassification and is thus a richer criterion
than MER. The loss function corresponding to this criterion is l(f (x),y) = | f (x)− y|. A variant of
the above MAD measure is the mean square error (MSE), where the absolute difference is replaced
by the square of the difference, l(f (x),y) = (f (x)− y)2.

Still, all these measures depend on the number assigned to each class, which is somewhat ar-
bitrary. In order to try to avoid the influence of the numbers chosen to represent the classes on the
performance assessment, we can look only at the order relation between true and predicted class
numbers. The use of Spearman (rs) and Kendall’s tau-b (τb) coefficients, nonparametric rank-order
correlation coefficients well established in the literature (Press et al., 1992) are a step forward in that
direction.

To get rs start by ranking the two vectors of true and predicted classes. Ranking is achieved
by giving the ranking ‘1’ to the biggest number in a vector, ‘2’ to the second biggest value and so
on. Obviously, there will be many examples in the class vector with common values; when ranking,
those examples are replaced by average ranks. If R and Q represent two rank vectors, then

rs = ∑(Ri− R̄)(Qi− Q̄)√
∑(Ri− R̄)2∑(Qi− Q̄)2

.

To define τb, start with the N data points (Cxi , Ĉxi), i = 1, . . . ,N, associated with the true and
predicted classes, and consider all 12N(N−1) pairs of data points. Following the notation in Press

1415

CARDOSO AND PINTO DA COSTA

et al. (1992), we call a pair (i, j) concordant if the relative ordering of the true classes Cxi and Cx j is
the same as the relative ordering of the predicted classes Ĉxi and Ĉx j . We call a pair discordant if the
relative ordering of the true classes is opposite from the relative ordering of the predicted classes. If
there is a tie in either the true or predicted classes, then we do not call the pair either concordant or
discordant. If the tie is in the true classes, we will call the pair an “extra true pair”, et . If the tie is in
the predicted classes, we will call the pair an “extra predicted pair”, ep. If the tie is both on the true
and the predicted classes, we ignore the pair. The τb coefficient can be computed as

τb =
concordant−discordant√

concordant+discordant+ et
√
concordant+discordant+ ep

.

Although insensitive to the number assigned to each class, both rs and τb are in fact more appropriate
for pairwise ranking rather than to ordinal regression, due to their failure to detect bias errors. In
fact, if the predicted class is always a shift by a constant value of the true class, both indices will
report perfect performance of the classifier.

Without a clear advantage of one criterion over the others, we decided on employing all the
abovementioned assessment criteria in the conducted experiments.

5. Results for Synthetic Data

In a first comparative study we generated a synthetic data set in a similar way to Herbrich et al.
(1999b). We generated 1000 example points x = [x1 x2]t uniformly at random in the unit square
[0,1]× [0,1] ⊂ R2. Each point was assigned a rank y from the set {1,2,3,4,5}, according to

y= min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1−0.5)(x2−0.5)+ ε < br},

(b0,b1,b2,b3,b4,b5) = (−∞,−1,−0.1,0.25,1,+∞).

where ε∼ N(0;0.1252) simulates the possible existence of error in the assignment of the true class
to x. Figure 13(a) depicts the 14.2% of examples which were assigned to a wrong class after the
addition of ε. The unbalanced distribution of the random variable is shown is Figure 13(b).

In order to compare the different algorithms, we randomly split 100 times the data set into
training, validation and test sets. Each model parameterization, namely the C parameter for SVMs
(we tried values of the form C = 1.25i, where i ∈ {−8, . . . ,40}) and the number of neurons in the
hidden layer for networks (varied from 0 to 10), was selected in accordance with the best mean
performance over the 100 setups of the validation set. This was repeated taking ! ∈ {20,40,80} for
size of the training set, ! for the validation set and 1000−2× ! for the test set. The test results for
SVMs are shown in Table 1, for the MAD criterion.

We also investigated the other introduced criteria to assess models’ relative performance. Re-
sults depicted in Figure 14 for this synthetic data set are representative of the agreement observed
throughout the experimental study. All indices portrayed essentially the same relative models’ per-
formance. For this reason, we shall restrict in the following to present only the results for the MAD
criterion, possibly the most meaningful criterion for the ordinal regression problem.

The results attained with neural networks based models are presented in Table 2. Notice that
the size of the training set, !, was taken in {40,80,120}. The training time of both SVM and NN
models represents the total time to search on the parameter range and over the 100 setups.

1416

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

0 1
0

1

x1

x 2

C1

C2

C3

C4

C5 C1

C2

C4

C5

(a) Scatter plot of the 14.2% data points
wrongly classified. Also shown are the
class boundaries.

1 2 3 4 5
0

50

100

150

200

250

300

350

Fr
eq
ue
nc
y

Class

(b) Class distribution.

Figure 13: Synthetic data set with 5 classes in R2.

Model
Training sets size Training time

! = 20 ! = 40 ! = 80 for ! = 80
MAD (sec)

cSVM 0.47 (0.11) 0.30 (0.05) 0.22 (0.03) 25
pSVM 0.40 (0.10) 0.27 (0.04) 0.22 (0.02) 26
rSVM 0.32 (0.06) 0.26 (0.04) 0.24 (0.03) 2 246

oSVM
s= 1 0.29 (0.07) 0.20 (0.03) 0.17 (0.02) 508
s= 2 0.28 (0.07) 0.20 (0.03) 0.17 (0.02) 488
s= 4 0.28 (0.07) 0.20 (0.03) 0.17 (0.02) 449

Table 1: Mean (standard deviation) of MAD over 100 setups of the test set. Configuration: K (x,y)
= (1+xty)2, h= 10 for oSVM, ν= 0.5 for rSVM.

5.1 Accuracy Dependence on the Number of Classes and Data Dimension

To investigate the influence of the number of classes and data dimension on models’ relative perfor-
mance, the described experiment was repeated for a data set with 10 classes in R4. This time 2000
example points x= [x1 x2 x3 x4]t were generated uniformly at random in the unit square in R4. The
rank of each example was assigned according to the rule

y= min
r∈{1,2,3,4,5,6,7,8,9,10}

{r : br−1 < 1000
4

∏
i=1

(xi−0.5)+ ε < br},

(b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10) = (−∞,−5,−2.5,−1,−0.4,0.1,0.5,1.1,3,6,+∞).

where ε∼ N(0;0.1252). Class distributions are presented in Figure 15.

1417

CARDOSO AND PINTO DA COSTA

20 40 80

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training set size

M
ER

cSVM
pSVM
rSVM
oSVM

(a) MER coefficient.

20 40 80

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Training set size

M
SE

cSVM
pSVM
rSVM
oSVM

(b) MSE coefficient.

20 40 80
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Training set size

r s

cSVM
pSVM
rSVM
oSVM

(c) Spearman coefficient.

20 40 80
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Training set size

τ b

cSVM
pSVM
rSVM
oSVM

(d) Kendall’s tau-b coefficient.

Figure 14: SVMs’ results for 5 classes in R2. Configuration: K (x,y) = (1+ xty)2, h = 10 for
oSVM, ν= 0.5 for rSVM.

All models were trained following the same methodology as presented in the previous experi-
ment, the only differences being those of a degree 4 for the polynomial kernel taken for the SVMs
and the range of the hidden neurons for NNs, now from 0 to 20. Moreover, due to practical consid-
erations, results were averaged only over twenty runs. Tables 3 and 4 show the test results.

5.2 Discussion

The main assertion concerns the superiority of all algorithms specific to ordinal data over con-
ventional methods, both for support vector machines and neural networks. Additionally, neural
networks exhibit a slower learning curve than support vector machine models. However, it is true
that the nonlinearity selected for the data clearly favours the polynomial kernel of a support vector

1418

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

Model
Training sets size Training time

! = 40 ! = 80 ! = 120 for ! = 120
MAD (sec)

cNN 0.66 (0.21) 0.58 (0.18) 0.50 (0.18) 11 764
iNN 0.48 (0.13) 0.43 (0.18) 0.38 (0.16) 4 995
pNN 0.42 (0.10) 0.37 (0.09) 0.37 (0.11) 3 814
rNN 0.33 (0.15) 0.24 (0.04) 0.21 (0.03) 4 229

oNN
s= 1 0.38 (0.14) 0.28 (0.05) 0.26 (0.08) 11 879
s= 2 0.37 (0.19) 0.30 (0.11) 0.25 (0.08) 11 079
s= 4 0.38 (0.21) 0.30 (0.20) 0.26 (0.10) 11 477

Table 2: Mean (standard deviation) of MAD over 100 setups of the test set (h= 10 for oNN).

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Fr
eq
ue
nc
y

Class

Figure 15: Class distribution for data set with 10 classes in R4.

Model
Training sets size Training time

! = 80 ! = 160 ! = 240 for ! = 240
MAD (sec)

cSVM 2.26 (0.09) 2.06 (0.10) 1.88 (0.13) 536
pSVM 2.06 (0.13) 1.23 (0.11) 0.84 (0.07) 14 140
rSVM 1.73 (0.23) 1.29 (0.10) 1.20 (0.09) 382 867

oSVM
s= 1 1.36 (0.24) 0.51 (0.08) 0.33 (0.04) 97 691
s= 2 1.35 (0.25) 0.50 (0.08) 0.31 (0.03) 113 383
s= 9 1.35 (0.25) 0.50 (0.08) 0.31 (0.03) 115 917

Table 3: Mean (standard deviation) of MAD over twenty setups of the test set. Configuration: K
(x,y) = (1+xty)4, h= 10 for oSVM, ν= 0.5 for rSVM.

machine algorithm over the possible models of a neural network with standard activation functions.
The proposed data replication method, in spite of being the simplest model, exhibits the best per-
formance among the support vector machine methods and the second best among networks. These

1419

CARDOSO AND PINTO DA COSTA

Model
Training sets size Training time

! = 240 ! = 320 ! = 480 for ! = 480
MAD (sec)

cNN 2.28 (0.15) 2.31 (0.39) 2.01 (0.23) 89 347
iNN 1.23 (0.41) 0.87 (0.33) 0.57 (0.34) 89 775
pNN 1.26 (0.13) 1.12 (0.14) 0.93 (0.09) 15 786
rNN 0.59 (0.07) 0.42 (0.03) 0.44 (0.24) 12 216

oNN
s= 1 1.06 (0.32) 0.64 (0.15) 0.44 (0.26) 14 618
s= 2 0.80 (0.39) 0.54 (0.07) 0.39 (0.17) 26 057
s= 9 0.79 (0.28) 0.52 (0.27) 0.40 (0.15) 58 381

Table 4: Mean (standard deviation) of MAD over twenty setups of the test set (h= 10 for oNN).

conclusions were reinforced with the increase of the dimension and the number of classes of the
data, where differences were exacerbated.

Finally, it is worth pointing out that in these experiments no difference is visible among the
performance of the different instantiations of the proposed method with SVMs, when trained with
s= 1, s= 2 or s=K−1. Moreover, the difference is only visible for the neural network instantiation
of the method when the number of classes is 10. This conclusion is likely to embody the fact
that, while with neural networks all training points contribute to the boundary, with support vector
machines only a small set of the same—the support vectors—have a say in the solution. Therefore,
for well behaved data sets, the extra points intrinsic to s> 1 may not contribute to the set of support
vectors, and the impact in the final solution be negligible.

6. Classifying Real Ordinal Data

In this section, we continue the experimental study by applying the algorithms considered to the
classification of real ordinal data, namely to solving problems of prediction of pasture production
and employee selection. The considered data sets are available at the WEKA website (http://
www.cs.waikato.ac.nz/ml/index.html).

6.1 Pasture Production

The objective related to the pasture data set is to predict pasture production from a variety of bio-
physical factors. Vegetation and soil variables from areas of grazed North Island Hill Country with
different management (fertilizer application/stocking rate) histories (1973-1994) were measured and
subdivided into 36 paddocks. Nineteen vegetation (including herbage production); soil chemical,
physical and biological; and soil water variables were selected as potentially useful biophysical in-
dicators, totaling 22 attributes. The target feature, the pasture production, has been categorized in
three classes (Low, Medium, High), evenly distributed in the data set of 36 instances. Before train-
ing, the data was scaled to fall always within the range [0,1], using the transformation x′ = x−xmin

xmax−xmin .
The fertiliser attribute was represented using 4 variables: LL = (1, 0, 0, 0), LN = (0, 1, 0, 0), HL =
(0, 0, 1, 0) and HH = (0, 0, 0, 1).

1420

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

Continuing with the same experimental methodology, theC parameter was varied from 1.25−32
to 1.2532; the number of neurons in the hidden layer for NNs was varied from 0 to 10. The results
attained are summarized in Table 5.

Model
Training sets size Training time

! = 3 ! = 6 ! = 16 for ! = 16
MAD (sec)

cSVM 0.44 (0.12) 0.42 (0.13) 0.28 (0.26) 1
pSVM 0.50 (0.12) 0.42 (0.12) 0.26 (0.12) 2
rSVM 0.49 (0.12) 0.38 (0.12) 0.29 (0.21) 5

oSVM
s= 1 0.40 (0.10) 0.40 (0.12) 0.34 (0.23) 3
s= 2 0.40 (0.10) 0.40 (0.12) 0.34 (0.23) 3

s= 1, j = 21 0.39 (0.37) 0.36 (0.16) 0.21 (0.13) 3
cNN 0.51 (0.19) 0.44 (0.15) 0.29 (0.26) 708
pNN 0.49 (0.17) 0.43 (0.13) 0.26 (0.26) 278
iNN 0.52 (0.18) 0.43 (0.12) 0.34 (0.27) 282
rNN 0.74 (0.24) 0.36 (0.23) 0.26 (0.28) 748

oNN s= 1 0.43 (0.13) 0.41 (0.15) 0.34 (0.26) 195
s= 2 0.45 (0.14) 0.43 (0.15) 0.35 (0.15) 192

Table 5: Mean (standard deviation) of MAD over 100 setups of the test set. Configuration: K (x,y)
= (1+xty)2 for SVMs, h= 1 for oSVM and oNN, ν= 0.5 for rSVM.

We start by observing that conventional methods performed as well as ordinal methods. We
were led to the suggestion that some of the features may not properly reflect the ordinal relation
among classes. A likely exemplar is the fertiliser attribute. The lack of motivation to impose an
ordered relation in the fertiliser attribute, suggests a good scenario to apply the general version of
the data replication method, where only 21 attributes (j = 21) are constrained to have the same
direction, with the fertiliser attribute (coded with four binary variables) left free. Using a linear
kernel emerges a classifier with expected MAD of 21%. This way, a very simple classifier was
obtained at the best performance.

6.2 Employee Selection: the ESL Data Set

The ESL data set contains 488 profiles of applicants for certain industrial jobs. Expert psychologists
of a recruiting company, based upon psychometric test results and interviews with the candidates,
determined the values of the input attributes (4 attributes, with integer values from 0 to 9). The
output is an overall score (1..9) corresponding to the degree of fitness of the candidate to this type
of job, distributed according to Figure 16.

Continuing with the same methodology and range of values for theC and the number of hidden
neurons parameters from Pasture, one obtained the results reported in Table 6. In this experiment,
as well as in all the previous ones, the SVM instantiation of the data replication method exhibits
a performance nearly independent of the s parameter. The reasons for this behaviour were already
invoked. The neural network mapping, on the other hand, seems to perform better with the increase
of the s value, mainly when the number of classes involved is significant. Nonetheless, in this

1421

CARDOSO AND PINTO DA COSTA

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

Fr
eq
ue
nc
y

Class

Figure 16: Class distribution for the 488 examples of the ESL data set.

Model
Training sets size Training time

! = 25 ! = 50 ! = 100 for ! = 100
MAD (sec)

cSVM 0.52 (0.06) 0.47 (0.04) 0.39 (0.04) 3
pSVM 0.47 (0.05) 0.40 (0.03) 0.36 (0.03) 3
rSVM 0.36 (0.02) 0.34 (0.03) 0.33 (0.01) 32

oSVM
s= 1 0.46 (0.07) 0.42 (0.04) 0.35 (0.02) 47
s= 2 0.45 (0.05) 0.39 (0.03) 0.34 (0.02) 64
s= 8 0.45 (0.05) 0.39 (0.04) 0.34 (0.02) 85

cNN 0.88 (0.24) 0.80 (0.12) 0.49 (0.06) 8 611
pNN 0.56 (0.09) 0.52 (0.08) 0.39 (0.05) 3 498
iNN 0.55 (0.09) 0.46 (0.13) 0.39 (0.04) 7 398
rNN 0.43 (0.04) 0.38 (0.03) 0.34 (0.02) 1 622

oNN s= 1 0.66 (0.28) 0.56 (0.24) 0.38 (0.16) 6 444
s= 2 0.48 (0.08) 0.44 (0.08) 0.35 (0.03) 8 422
s= 8 0.49 (0.14) 0.45 (0.13) 0.35 (0.05) 7 635

Table 6: Mean (standard deviation) of MAD over twenty setups of the test set. Configuration: K
(x,y) = xty for SVMs, h= 10 for oSVM and oNN, ν= 0.5 for rSVM.

experiment the instantiation with s = 2 already performed as well as the largest possible value of
s = 8. Moreover, it is not clear a correlation between s and the training time. The overall results
suggest that the data replication method learns faster than standard methods, although followed
closely by the regression based models.

7. Gene Expression Analysis

Now we address the problem of selection of a small subset of genes from broad patterns of gene ex-
pression data, recorded on DNA micro-arrays. Singh et al. (2002) carried out microarray expression
analysis on 12600 genes to identify genes that might anticipate the clinical behaviour of prostate
cancer. Fifty-two samples of prostate tumour were investigated. For each sample, the degree of
tumour cell differentiation or Gleason score (GS) was assessed by the pathologist; for tumour sam-

1422

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

ples the GS ranged from 6 to 10. Predicting the Gleason score from the gene expression data is thus
a typical ordinal classification problem, already addressed in Chu and Ghahramani (2005) using
Gaussian processes. Following Chu and Ghahramani (2005), and since only 6 samples had a score
greater than 7, we merged them as the top level, leading to three levels {= 6,= 7,≥ 8}, with 26, 20
and 6 samples respectively.

To evaluate the suitability of the oSVM algorithm for feature ranking and selection according
to their relevance for the classification task, we applied the oSVM to the data set with the 12600
genes. A quality of SVMs is that the weights of the features in the borders wtx+ br can be used
for feature ranking and for the selection of subsets that are useful to build a good predictor (Guyon
et al., 2002). Because the oSVMmodel computes the same set of weights for all borders, it provides
an obvious feature ranking.

The application of the oSVM algorithm to the 12600 genes provided a first ranking of the genes
given by the weights in the classifier. We then removed the irrelevant genes based on the rank
list, assessing several subsets, as presented in Table 7(a). The best subset found had 500 genes.
However, it is unlikely that the ranking of the 12600 genes have enough resolution to correctly rank
genes in subsets much smaller than the original.

Therefore, we iterated the procedure starting now from the 500 genes selected by the first rank-
ing: applying the oSVM algorithm to the 500 genes provided a second, refined ranking of these
genes. Then, several subsets were assessed, Table 7(b). As visible, the ranking was in fact im-
proved: the result for the first 100 genes was remarkably improved. Once again, starting with the
best subset identified—100 genes—the oSVM algorithm was used to re-rank the genes, after which
several subsets were again evaluated, Table 7(c). The procedure was successively repeated with 60,
40, 30, 26, 24, 19, 16 and 15 genes, when further reduction of the number of genes increased the
misclassification error, Tables 7(d)-7(j).

During this process the leave one out method was used to estimate the MAD coefficient. The
parameterization of the method was kept constant: h = 1, s = 1, C = 5. Before training, the data
was scaled to fall always within the range [−1,1], using the transformation x′ = 2x−xmax−xmin

xmax−xmin . In this
way the weight of each gene in the classifier conveys the relevance of the gene for the classification
process.

Finally, the performance of the remaining algorithms was also determined in the considered
subsets of genes.4 Results are displayed in Table 8. We observe great and steady improvement of
all classifiers using the subset of genes selected by the oSVM algorithm. The results attained agree
with the results reported in Chu and Ghahramani (2005), although we were able to attain lower
error rates. The best validation output was achieved with 15 genes, better than the 26 needed by
the approach reported in Chu and Ghahramani (2005), revealing a better selection of genes for the
classification task.

SVMs are particularly suited for the analysis of gene expression. They easily accommodate the
high number of genes and perform well even with the small samples frequent in this area. Here
the integration of the feature selection operation with the algorithm of classification in a consistent
framework provided positive results.

4. Due to difficulties to handle such a high number of features with the Matlab Neural Network Toolbox, this
experiment was only conducted with the SVM based algorithms.

1423

CARDOSO AND PINTO DA COSTA

n genes MAD

12600 57.7
5000 67.3
500 21.1
100 38.5

(a) Ranking with
12600 genes.

n genes MAD

500 21.1
300 13.5
100 3.8
50 13.5

(b) Ranking with
500 genes.

n genes MAD

100 3.8
80 1.9
60 0.0
50 3.8

(c) Ranking with
100 genes.

n genes MAD

60 0.0
50 0.0
40 0.0
30 7.7

(d) Ranking with
60 genes.

n genes MAD

40 0.0
30 0.0
20 3.8
10 28.8

(e) Ranking with
40 genes.

n genes MAD

30 0.0
28 0.0
26 0.0
25 1.9

(f) Ranking with
30 genes.

n genes MAD

26 0.0
25 0.0
24 0.0
23 3.8

(g) Ranking with
26 genes.

n genes MAD

24 0.0
21 0.0
19 0.0
17 5.8

(h) Ranking with
24 genes.

n genes MAD

19 0.0
17 0.0
16 0.0
15 3.8

(i) Ranking with
19 genes.

n genes MAD

16 0.0
15 0.0
14 1.9
13 7.7

(j) Ranking with
16 genes.

Table 7: MAD (%) for the oSVM algorithm, for the prostate cancer data set.

Model
MAD (%)
n genes

1 14 15 20 30 40 60 100 500 5000 12600
cSVM 81 6 10 6 2 2 6 8 23 58 48
pSVM 62 6 10 6 2 2 6 8 25 59 52
rSVM 62 15 11 2 10 19 4 6 21 69 60
oSVM 75 2 0 0 0 0 0 4 21 67 58

Table 8: Results using a linear kernel on the prostate cancer data of selected genes.

8. Conclusion

This study focuses on the application of machine learning methods, and in particular of neural
networks and support vector machines, to the problem of classifying ordinal data. A novel approach
to train learning algorithms for ordinal data was presented. The idea is to reduce the problem to the
standard two-class setting, using the so called data replication method, a nonparametric procedure
for the classification of ordinal categorical data. This method was mapped into neural networks and
support vector machines. Two standard methods for the classification of ordinal categorical data
were unified under this framework, the minimum margin principle (Shashua and Levin, 2002) and
the generic approach by Frank and Hall (2001). Finally, a probabilistic interpretation for the neural
network model was also presented.

The study compares the results of the proposed model with conventional learning algorithms
for nominal classes and with models proposed in the literature specifically for ordinal data. Simple

1424

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

misclassification, mean absolute error, Spearman and Kendall’s tau-b coefficients are used as mea-
sures of performance for all models and used for model comparison. The new methods are likely to
produce simpler and more robust classifiers, and compare favourably with state-of-the-art methods.
In spite of being usually assumed that learning in a higher dimension becomes a harder problem,
the performance of the data replication method does not seem to be affected, probably due to the
dependence among the data replicas.

The data replication method is parameterised by h (andC); because it may be difficult and time
consuming to choose the best value for h, it would be interesting to study possible ways to auto-
matically set this parameter, probably as a function of the data and C. It would also be interesting
to study if this algorithm can be successfully applied to nominal data. Although the data replica-
tion method was designed for ordinal classes, nothing impedes its application to nominal classes.
It is expected that the classifier should be evaluated for each possible permutation of the classes,
choosing the one conducting to the best performance (feasible only when the number of classes is
small).

Acknowledgments

The authors are grateful to Luı́s F. Teixeira and Vitor Cardoso for their help on preparing the
manuscript and to the Reviewers and the JMLR Editor for their many stimulating and thoughtful
comments.

Appendix A.

In this appendix we derive a margin-based bound on the generalization error of the proposed ordinal
classifier. The following theorem shows that the fat-shattering dimension gives generalization error
bounds for large margin classifiers (Bartlett and Shawe-Taylor, 1999).

Theorem Consider a class F of real-valued functions. With probability at least 1− δ over ! inde-
pendently generated examples x, if a classifier sgn(f) ∈ sgn(F) has margin at least γ on x, then the
error of sgn(f) is bounded from above by

2
!

(
Z log2

8e!
Z
log2(32!)+ log2

8!
δ

)
,

where Z = fatF (γ/16), with fatF () the fat shattering dimension. Furthermore, with probability at
least 1−δ, every classifier sgn(f) ∈ sgn(F) has error no more than

R0−1emp(f)+
√
2
!
(Z log2(34e!/Z) log2(578!)+ log2(4/δ)),

where R0−1emp(f) is the average of the number of training examples with margin less than γ.

It is not possible to apply the above equations directly to the extended data set because examples
are not independently generated. We will proceed as follows. For each example x(k)

i ∈ Rp define
x’(k)i as a single replica in Rp+K−2×{−1,1} chosen uniformly at random from all the replicas from

1425

CARDOSO AND PINTO DA COSTA

x(k)
i . Since an error is made on example x

(k)
i if any of its (K−1) replicas is wrongly classified, it is

necessary to guarantee that no error is made. It follows that the generalization error for the ordinal
problem is bounded from above by

2(K−1)
!

(
Z log2

8e!
Z
log2(32!)+ log2

8!
δ

)

or by

Remp(f)+(K−1)
√
2
!
(Z log2(34e!/Z) log2(578!)+ log2(4/δ))

where Remp(f) is the average of the magnitude of ‘mistakes’ of training examples:Remp(f) =
1
! ∑

K
k=1∑

!k
i=1 l

(
f (x(k)

i),k
)

= 1
! ∑

K
k=1∑

!k
i=1 | f (x

(k)
i)− k|.

Appendix B.

In this appendix we prove the following claim from Section 3.2:
Claim For the mapping of the data replication method in NNs, if we allow the samples in all the
classes to contribute errors for each threshold, by setting s = K− 1, the order inequalities on the
thresholds are satisfied automatically, in spite of the fact that such constraints on the thresholds are
not explicitly included in the formulation.
Proof To prove the inequalities on the thresholds at the optimal solution, let us consider the situation
where w is fixed (the first p components of w) and only the bi’s are optimized. Note that wp+ jh+
b1 = b j+1, j = 1..K−2.

The error contributed at the data replica with x(k)
i =

[
x(k)ieq−1

]
, where k= 1, . . . ,K denotes the class

number, i= 1, . . . , !k is the index within each class and q= 2..K−1 comes as

q

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i)− t−}+

K

∑
k=q+1

!k

∑
i=1

err{ fN(wtx(k)
i)− t+}

=
q

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t−}+

K

∑
k=q+1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t+}.

where err is the error performance function and t− and t+ are the target values for C 1 and C 2
respectively (fN is the output transfer function).

Likewise, the error due to the data replica with x(k)
i =

[
x(k)ieq

]
comes as

q+1

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i + wp+qh) − t−} +

K

∑
k=q+2

!k

∑
i=1

err{ fN(wtx(k)
i + wp+qh) − t+}.

The error contribution of the data replicas q and q+1 is just the sum of these two parcels:

q

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t−}+

K

∑
k=q+1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t+}+

q+1

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+qh)− t−}+

K

∑
k=q+2

!k

∑
i=1

err{ fN(wtx(k)
i +wp+qh)− t+}. (8)

1426

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

Suppose that, at the optimal solution, we have wp+q−1 <wp+q. Exchanging the value of wp+q−1
with the value of wp+q, we obtain a solution where the error contribution of the data replicas q−1
and q is given by:

q

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+qh)− t−}+

K

∑
k=q+1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+qh)− t+}+

q+1

∑
k=1

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t−}+

K

∑
k=q+2

!k

∑
i=1

err{ fN(wtx(k)
i +wp+q−1h)− t+}. (9)

Observing that the error contribution of the other data replicas do not get affected by this swap
of values, the total error difference between the new solution and the optimal solution simplifies to
(given by subtracting the value of Eq. (8) to the value of Eq. (9))

!q+1

∑
i=1

{
err{ fN(wtx(q+1)

i +wp+q−1h)− t−}− err{ fN(wtx(q+1)
i +wp+qh)− t−}+

err{ fN(wtx(q+1)
i +wp+qh)− t+}− err{ fN(wtx(q+1)

i +wp+q−1h)− t+}
}
. (10)

For clarity, assume now that fN is the log-sigmoide transfer function logsig, t− = 0, t+ = 1, and
err () is the absolute error performance function. Then, Eq. (10) simplifies to

!q+1

∑
i=1

{
logsig(wtx(q+1)

i +wp+q−1h)− logsig(wtx(q+1)
i +wp+qh)+

− logsig(wtx(q+1)
i +wp+qh)+ logsig(wtx(q+1)

i +wp+q−1h)
}
.

Because this last value is clearly less than zero, we obtained a solution with lower error than the
optimal solution. Then, at the optimal solution wp+q−1 ≥ wp+q ⇐⇒−bq ≤−bq+1,q= 2, . . . ,K−2
. Note that this reasoning does not get affected by using other transfer functions such as the tan-
sigmoid function, together with t− = −1 and t+ = +1, or other error performance functions such as
the squared error performance function. For the nonlinear case, we just need to replace wtx(k)

i by
G(x(k)

i) in the proof. The proof of the order relation between b1 and b2 in the optimal solution is left
to the reader.

References

A. Agarwal, J. T. Davis, and T. Ward. Supporting ordinal four-state classification decisions using
neural networks. In Information Technology and Management, pages 5–26, 2001.

P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and
other pattern classifiers. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in
Kernel Methods - Support Vector Learning, pages 43–54. MIT Press, Cambridge, MA, 1999.

J. S. Cardoso, J. F. Pinto da Costa, and M. J. Cardoso. Modelling ordinal relations with SVMs:
an application to objective aesthetic evaluation of breast cancer conservative treatment. Neural
Networks, 18:808–817, june-july 2005.

1427

CARDOSO AND PINTO DA COSTA

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Journal of Machine Learn-
ing Research, 6:1019–1041, 2005.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. In Proceedings of
International Conference on Machine Learning (ICML05), pages 145–152, 2005.

M. Costa. Probabilistic interpretation of feedforward network outputs, with relationships to statisti-
cal prediction of ordinal quantities. International Journal Neural Systems, 7(5):627–638, 1996.

J. Dong, A. Krzyzak, and C. Y. Suen. Fast SVM training algorithm with decomposition on very
large data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):603–618,
2005.

E. Frank and M. Hall. A simple approach to ordinal classification. In Proceedings of the 12th
European Conference on Machine Learning, volume 1, pages 145–156, 2001.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using
support vector machines. Machine Learning, 46:389–422, 2002.

R. Herbrich, T. Graepel, and K. Obermayer. Regression models for ordinal data: a machine learning
approach. Technical Report TR-99/03, TU Berlin, 1999a.

R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression. In Ninth
International Conference on Artificial Neural Networks ICANN, volume 1, pages 97–102, 1999b.

T. Joachims. Making large-scale support vector machine learning practical. In A. Smola
B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT
Press, Cambridge, MA, 1998.

Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations.
Machine Learning, 46:191–202, 2002.

M. J. Mathieson. Ordinal models for neural networks. In A.-P.N Refenes, Y. Abu-Mostafa, and
J. Moody, editors, Neural Networks for Financial Engineering. World Scientific, Singapore,
1995.

P. McCullagh. Regression models for ordinal data. Journal of the Royal Statistical Society Series,
42:109–142, 1980.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall, 1989.

J. Moody and J. Utans. Architecture selection strategies for neural networks: application to corpo-
rate bond rating prediction. In A.-P. Refenes, editor, Neural Networks in the Capital Markets,
pages 277–300, Chichester, 1995. Wiley.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In Ad-
vances in Kernel Methods-Support Vector Learning, pages 185–208, 1998.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C: the Art of Scientific
Computing. Cambridge University Press, 1992.

1428

LEARNING TO CLASSIFY ORDINAL DATA: THE DATA REPLICATION METHOD

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207–1245, 2000.

A. Shashua and A. Levin. Ranking with large margin principle: Two approaches. In Neural Infor-
mation and Processing Systems (NIPS), 2002.

L. Shen and A. K. Joshi. Ranking and reranking with perceptron. Machine Learning, 60:73–96,
September 2005.

D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V.
D’Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, andW. R. Sellers. Gene
expression correlates of clinical prostate cancer behavior. Cancer Cell, 1:1019–1041, 2002.

V. N. Vapnik. Statistical Learning Theory. John Wiley, 1998.

1429

Journal of Machine Learning Research 8 (2007) 1431-1460 Submitted 5/06; Revised 10/06; Published 7/07

Attribute-Efficient and Non-adaptive Learning of Parities and DNF
Expressions∗

Vitaly Feldman† VITALY@EECS.HARVARD.EDU
School of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138

Editor: Peter Auer

Abstract
We consider the problems of attribute-efficient PAC learning of two well-studied concept classes:
parity functions and DNF expressions over {0,1}n. We show that attribute-efficient learning of
parities with respect to the uniform distribution is equivalent to decoding high-rate random linear
codes from low number of errors, a long-standing open problem in coding theory. This is the first
evidence that attribute-efficient learning of a natural PAC learnable concept class can be computa-
tionally hard.

An algorithm is said to use membership queries (MQs) non-adaptively if the points at which
the algorithm asks MQs do not depend on the target concept. Using a simple non-adaptive parity
learning algorithm and a modification of Levin’s algorithm for locating a weakly-correlated parity
due to Bshouty et al. (1999), we give the first non-adaptive and attribute-efficient algorithm for
learning DNF with respect to the uniform distribution. Our algorithm runs in time Õ(ns4/ε) and
uses Õ(s4 · log2 n/ε) non-adaptive MQs, where s is the number of terms in the shortest DNF repre-
sentation of the target concept. The algorithm improves on the best previous algorithm for learning
DNF (of Bshouty et al., 1999) and can also be easily modified to tolerate random persistent classi-
fication noise in MQs.
Keywords: attribute-efficient, non-adaptive, membership query, DNF, parity function, random
linear code

1. Introduction

The problems of PAC learning parity functions and DNF expressions are among the most funda-
mental and well-studied problems in machine learning theory. Along with running time efficiency,
an important consideration in the design of learning algorithms is their attribute-efficiency. A class
C of Boolean functions is said to be attribute-efficiently learnable if there is an efficient algorithm
which can learn any function f ∈ C using a number of examples which is polynomial in the “size”
(description length) of the function f to be learned, rather than in n, the number of attributes in
the domain over which learning takes place. Attribute-efficiency arises naturally from a ubiqui-
tous practical scenario in which the total number of potentially influential attributes is much larger
than the number of relevant attributes (i.e., the attributes on which the concept actually depends),
whereas examples are either scarce or expensive to get.

∗. Parts of this work are published in the Proceedings of 18th Annual Conference on Learning Theory, 2005.
†. Supported by grants from the National Science Foundation NSF-CCF-9877049, NSF-CCF-0432037, and NSF-CCF-
0427129.

c©2007 Vitaly Feldman.

FELDMAN

Learning of DNF expressions and attribute-efficient learning of parities from random examples
with respect to the uniform distribution are both long-standing challenges in learning theory. The
lack of substantial progress on these questions has resulted in attempts to solve them in stronger
learning models. The most well-studied such model is one in which a membership query oracle is
given to the learner in addition to the example oracle. The learning algorithm may query this oracle
for a value of the target function at any point of its choice. Jackson (1997) gave the first algorithm
that learns DNF from membership queries (MQs) under the uniform distribution and later Bshouty,
Jackson, and Tamon (1999) gave a more efficient and attribute-efficient algorithm for learning DNF
in the same setting. The first algorithm for attribute-efficient learning of parities using MQs is due
to Blum et al. (1995), and their result was later refined by Uehara et al. (1997).

A restricted model of membership queries, which addresses some of the disadvantages of the
MQ model, is the model in which MQs are asked non-adaptively. An algorithm is said to use MQs
non-adaptively if the queries of the algorithm do not depend on the target concept (in our context we
will often call it non-adaptive for brevity). In other words, the learning algorithm can be split into
two stages. In the first stage, given the learning parameters, the algorithm generates a set S of queries
for the membership oracle. In the second stage, given the answers to the queries in S, the algorithm
produces a hypothesis (without further access to the oracle). An immediate advantage of this model
(over the usual MQ model) is the fact that the queries to the membership oracle can be parallelized.
This, for example, is crucial in DNA sequencing and other biological applications where tests are
very time-consuming but can be parallelized (Farach et al., 1997; Damaschke, 1998, and references
therein). Another advantage of a non-adaptive learner is that the same set of points can be used to
learn numerous concepts. This is conjectured to happen in the human brain where a single example
can be used to learn several different concepts and hence systems that aim to reproduce the learning
abilities of the human brain need to possess this property (Valiant, 1994, 2000, 2006).

As it is detailed later, attribute-efficiency is easy to achieve using a simple technique that re-
lies on adaptive MQs but there is no known general method to convert a learning algorithm to an
attribute-efficient one using MQs non-adaptively. It is important to note that in the two practical
applications mentioned above, attribute-efficiency is also a major concern. It is therefore natural to
ask: which classes can be PAC learned attribute-efficiently by non-adaptive MQs? We refer to this
model of learning as ae.naMQ learning. This question was first explicitly addressed by Damaschke
(1998) who proved that any function of r variables is ae.naMQ learnable when it is represented by
the truth table of the function (requiring r logn+ 2r bits). Later Hofmeister (1999) gave the first
ae.naMQ algorithm for learning parities and Guijarro et al. (1999a) gave an algorithm for learning
functions of at most logn variables in the decision tree representation. But the question remains
open for numerous other representations used in learning theory.

1.1 Previous Results

Blum et al. (1995) were the first to ask whether parities are learnable attribute-efficiently (in the
related on-line mistake-bound model). They also presented the first algorithm to learn parity func-
tions attribute-efficiently using MQs. Their algorithm is based on the following approach: first all
the relevant attributes are identified and then a simple (not attribute-efficient) algorithm restricted to
the relevant variables is used to learn the concept. Since then other algorithms were proposed for
attribute-efficient identification of relevant variables (Bshouty and Hellerstein, 1998; Guijarro et al.,
1999b). All the algorithms are based on a binary search for a relevant variable given a positive

1432

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

and a negative example. Binary search and the fact that queries in the second stage depend on the
variables identified in the first stage only allows for the construction of adaptive algorithms via this
approach. Uehara et al. (1997) gave several algorithms for attribute-efficient learning of parities that
again used adaptiveness in an essential way.

Hofmeister gave the first ae.naMQ algorithm for learning parities based on BCH error-correcting
codes. When learning the class of parities on at most k variables his algorithm has running time of
O(kn) and uses O(k logn) non-adaptive MQs. While the complexity of this algorithm is asymptot-
ically optimal it is based on the relatively complex Berlekamp-Massey algorithm for creating and
decoding BCH codes (Massey, 1969).

Little previous work has been published on attribute-efficient learning of parities from random
examples only. Indeed, the first non-trivial result in this direction has only recently been given by
Klivans and Servedio (2004). They prove that parity functions on at most k variables are learnable
in polynomial time using O(n1− 1

k logn) examples.

1.1.1 LEARNING DNF

Efficient learning of unrestricted DNF formulae under the uniform distribution begins with a famous
result by Jackson (1997). The algorithm, while polynomial-time, is somewhat impractical due to
the Õ(ns10/ε12) bound on running time (where s is the number of terms in the target DNF). By
substantially improving the key components of Jackson’s algorithm, the works of Freund (1992),
Bshouty et al. (1999), and Klivans and Servedio (2003) resulted in an algorithm that learns DNF in
time Õ(ns6/ε2) and uses Õ(ns4/ε2)MQs.1 This algorithm is non-adaptive, but is also not attribute-
efficient. Using the algorithm for identification of relevant variables by Bshouty and Hellerstein
mentioned above, Bshouty et al. (1999) gave an attribute-efficient version of their algorithm running
in time Õ(rs6/ε2+n/ε) and using Õ(rs4 logn/ε2) adaptive MQs, where r is the number of relevant
variables.

Bshouty et al. (2003) give an algorithm for learning DNF expressions from examples generated
by a random walk on the Boolean hypercube. This model is more passive than non-adaptive MQs
but their algorithm is not attribute-efficient as it is an adaptation of the non-attribute-efficient algo-
rithm of Bshouty and Feldman (2002). In fact, it is information-theoretically impossible to learn
anything non-trivial attribute-efficiently in this model.

1.2 Our Results

We give a simple and fast randomized algorithm for ae.naMQ learning of parities (Theorem 9) and
provide a transformation that converts a non-adaptive parity learning algorithm into an algorithm for
finding significant Fourier coefficients of a function while preserving attribute-efficiency and non-
adaptiveness (Theorem 13). Using these components we give the first ae.naMQ algorithm for learn-
ing DNF expressions with respect to the uniform distribution (Theorem 24). It runs in time Õ(ns4/ε)
and uses Õ(s4 log2 n/ε)MQs. The algorithm improves on the Õ(ns6/ε2)-time and Õ(ns4/ε2)-query
algorithm of Bshouty et al. (1999). In Theorem 28 we also show a simple and general modification
that allows the above algorithm to efficiently handle random persistent classification noise in MQs
(see Section 2.1 for the formal definition of the noise model). Earlier algorithms for learning DNFs
that handled persistent classification noise were based on Jackson’s DNF learning algorithm and
therefore are substantially less efficient (Jackson et al., 1997; Bshouty and Feldman, 2002).

1. Bshouty et al. claimed sample complexity Õ(ns2/ε2) but this was in error as explained in Remark 19.

1433

FELDMAN

Alongside our ae.naMQ algorithm for learning of parities we establish the equivalence between
attribute-efficient learning of parities from random uniform examples and decoding high-rate ran-
dom linear codes from a low number of errors, a long-standing open problem in coding theory
widely believed to be intractable (Theorems 6 and 8). Thus we may consider this equivalence
as evidence of the hardness of attribute-efficient learning of parities from random examples only.
Previously hardness of attribute-efficient learning results were only known for specially designed
concept classes (Decatur et al., 1999; Servedio, 2000).

The connection between attribute-efficient learning of parities by membership queries and lin-
ear codes was earlier observed by Hofmeister (1999). His result allows to derive attribute-efficient
parity learning algorithms from efficiently decodable linear codes with appropriate parameters. Our
result can be seen as an adaptation of this connection to random and uniform examples. The restric-
tion to the uniform distribution allows us to prove the connection in the other direction, giving the
above-mentioned negative result for attribute-efficient learning of parities from random examples
only.

1.3 Organization

In the next section we describe the models and tools that will be used in this work. In Section 3, we
give the required background on binary linear codes and prove the equivalence between attribute-
efficient learning of parities from random uniform examples and decoding high-rate random linear
codes from a low number of errors. In Section 4, we show a simple algorithm for ae.naMQ learning
of parities. Section 5 gives a way to convert a non-adaptive parity learning algorithm into an algo-
rithm for finding significant Fourier coefficients of a function while preserving attribute-efficiency
and non-adaptiveness, yielding an ae.naMQ algorithm for weakly learning DNF expressions. Then
in Section 6 we describe our ae.naMQ algorithm for learning DNF expressions and in Section 7 we
show how this algorithm can be modified to handle random persistent classification noise.

2. Preliminaries

For vectors x,y ∈ {0,1}n we denote by x⊕ y the vector obtained by bitwise XOR of x and y; by
[k] the set {1,2, . . . ,k}; by ei a vector with 1 in i-th position and zeros in the rest; by xi the i-th
element of vector x. Dot product x · y of vectors x,y ∈ {0,1}n denotes ∑i xiyi (mod 2) or simply
vector product xyT overGF(2) (with vectors being row vectors by default). By wt(x) we denote the
Hamming weight of x and we define dist(x,y) = wt(x⊕ y).

To analyze the accuracy and confidence of estimates produced by random sampling we will use
the following standard inequalities.

Lemma 1 (Chernoff) Let X1, . . . ,Xm be a sequence of m independent Bernoulli trials, each with
probability of success E[Xi] = p and let S= ∑m

i=1Xi. Then for 0≤ γ≤ 1,

Pr[S> (1+ γ)pm] ≤ e−mpγ
2/3

and

Pr[S< (1− γ)pm] ≤ e−mpγ
2/2 .

1434

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

Lemma 2 (Bienaymé-Chebyshev) Let X1, . . . ,Xm be pairwise independent random variables all
with mean µ and variance σ2. Then for any λ≥ 0,

Pr

[∣∣∣∣∣
1
m

m

∑
i=1

Xi−µ

∣∣∣∣∣ ≥ λ

]
≤ σ2

mλ2
.

For a function t(· · ·) we say a function q(· · ·) (of the same parameters as t) is Õ(t(· · ·)) when
there exist constants α and β such that q(· · ·) ≤ αt(· · ·) logβ (t(· · ·)).

2.1 PAC Learning

We study learning of Boolean functions on the Boolean hypercube {0,1}n. Our Boolean functions
take values +1 (true) and −1 (false). Our main interest are the classes of parity functions and DNF
expressions. A parity function χa(x) for a vector a ∈ {0,1}n is defined as χa(x) = (−1)a·x. We refer
to the vector associated with a parity function as its index and the Hamming weight of the vector as
the length of the parity function. We denote the concept class of parity functions {χa | a ∈ {0,1}n}
by PAR and the class of all the parities of length at most k by PAR(k). We represent a parity function
by listing all the variables on which it depends. This representation for a parity of length k requires
θ(k logn) bits.

For the standard DNF representation and any Boolean function f we denote by DNF-size(f)
the number of terms in a DNF representation of f with the minimal number of terms. In context of
learning DNF this parameter is always denoted s. The uniform distribution over {0,1}n is denoted
U.

Our learning model is Valiant’s well-known PAC model (Valiant, 1984) for learning Boolean
functions over {0,1}n. In this model, for a concept c and distribution D over X , an example oracle
EXD(c) is an oracle that upon request returns an example 〈x,c(x)〉 where x is chosen randomly
with respect to D , independently of any previous examples. For ε ≥ 0 we say that function g
ε-approximates a function f with respect to distribution D if PrD [f (x) = g(x)] ≥ 1− ε. For a
concept class C , we say that an algorithm A efficiently learns C , if for every ε > 0, n, c ∈ C , and
distribution D over {0,1}n, A(n,ε, s) (where s is the size of c in the representation associated with
C) outputs, with probability at least 1/2, and in time polynomial in n,1/ε, and s a hypothesis h
that ε-approximates c. When a learning algorithm is guaranteed to learn only with respect to a
specific distribution we specify the distribution explicitly. We say that an algorithm weakly learns
C if it produces a hypothesis h that (12 −

1
p(n,s))-approximates (or weakly approximates) c for some

polynomial p.
Note that in this definition of learning we do not use the confidence parameter δ that requires a

learning algorithm to succeed with probability at least 1−δ. Instead we assume that it equals 1/2.
In order to obtain an algorithm with success probability 1−δ one can always use a standard confi-
dence boosting procedure (cf. the textbook by Kearns and Vazirani, 1994). The boosting procedure
consists of repeating the original algorithm k= log(1/δ)+1 times with slightly increased accuracy
(e.g., ε/2), each time on new examples and independent coin flips. The hypotheses obtained from
these runs are then tested on an independent sample of size O(ε−1 log(1/δ)) and the best one is
chosen.

A membership query oracle MEM(c) is the oracle that, given any point x ∈ {0,1}n, returns the
value c(x). When learning with respect toU, EXU(c) can be trivially simulated using MEM(c) and
therefore EXU(c) is not used at all.

1435

FELDMAN

An algorithm A is said to be attribute-efficient if the number of examples (both random and
received from the MQ oracle) it uses is polynomial in the size of the representation of the concept
and 1/ε. We say that a variable xi is relevant for a function f if there exists y ∈ {0,1}n such that
f (y))= f (y⊕ ei). The number of relevant variables of the target concept is denoted by parameter r.
Attribute-efficiency does not allow the number of examples to depend polynomially on n. Instead
the number of examples used can depend polynomially on r and logn since for most representations
(including the ones considered in this work) the size of the representation of f is lower bounded by
both logn and r.

2.1.1 NOISE MODELS

We consider two standard models of noise in learning. The first one is the well-studied random
classification noise model introduced by Angluin and Laird (1988). In this model for any η ≤
1/2 called the noise rate the regular example oracle EXD(c) is replaced with the faulty oracle
EXηD(c). On each call, EXη

D(c), draws x according to D , and returns 〈x,c(x)〉 with probability η
and 〈x,¬c(x)〉 with probability 1−η. When η approaches 1/2 the result of the corrupted query
approaches the result of the random coin flip, and therefore the running time of algorithms in this
model is allowed to polynomially depend on 1

1−2η .

This model of noise is not suitable for corrupting labels returned by MEM(c) since a learn-
ing algorithm can, with high probability, find the correct label at point x by asking the label of x
polynomial (in 1

1−2η) number of times and then returning the label that appeared in the majority of
answers. An appropriate modification of the noise model is the introduction of random persistent
classification noise by Goldman, Kearns, and Schapire (1993). In this model, as before, the answer
to a query at each point x is flipped with probability 1−η. However, if the membership oracle was
already queried about the value of f at some specific point x or x was already generated as a random
example, the returned label has the same value as in the first occurrence (i.e., in such a case the
noise persists and is not purely random). If the learner does not ask for the label of a point more
than once then this noise can be treated as the usual independent random classification noise.

2.1.2 FOURIER TRANSFORM

The Fourier transform is a technique for learning with respect to the uniform distribution (pri-
marily) based on the fact that the set of all parity functions {χa(x)}a∈{0,1}n forms an orthonor-
mal basis of the linear space of real-valued function over {0,1}n. This fact implies that any real-
valued function f over {0,1}n can be uniquely represented as a linear combination of parities,
that is f (x) = ∑a∈{0,1}n f̂ (a)χa(x). The coefficient f̂ (a) is called Fourier coefficient of f on a and
equals EU [f (x)χa(x)]; a is called the index and wt(a) the degree of f̂ (a). Given the values of f
on all the points of the hypercube {0,1}n one can compute the values of all the Fourier coefficients
{ f̂ (a)}a∈{0,1}n using the Fast Fourier Transform (FFT) algorithm in timeO(n2n) (Cooley and Tukey,
1965). The same algorithm FFT also converts the set of all Fourier coefficients { f̂ (a)}a∈{0,1}n into
the values of the function f on all the points of the hypercube. This transformation is called inverse
Fourier transform. For further details on the technique we refer the reader to the survey by Mansour
(1994).

1436

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

2.1.3 RANDOMIZED FUNCTIONS

Besides deterministic functions on {0,1}n we will also deal with functions whose value on a point x
is a real-valued random variableΨ(x) independent ofΨ(y) for any y)= x and of any previous evalua-
tions ofΨ(x). To extend learning and Fourier definitions to this case we include the probability over
the random variableΨ in estimations of probability, expectation and variance. For example, we say
that a randomized function Ψ ε-approximates f with respect to D if PrD,Ψ[f (x) = Ψ(x)] ≥ 1− ε.
Similarly, Ψ̂(a) = EU,Ψ[Ψ(x)χa(x)].

2.2 Learning by Non-adaptive Membership Queries

We say that an algorithm A uses MQs non-adaptively if it can be split into two stages. The first
stage, given all the parameters of learning, (n, ε and a bound on the size of the target concept) and
access to points randomly sampled with respect to the target distribution, generates a set of points
S⊆ {0,1}n. The second stage, given the labels of the random points and the answers from MEM(c)
on points in S, that is, the set {(x,c(x)) | x ∈ S}, computes a hypothesis (or, in general, performs
some computation). Neither of the stages has any other access to MEM(c).

We note that in the general definition of PAC learning we did not assume that size of the target
concept (or a bound on it) is given to the learning algorithm. When learning with adaptive queries a
good bound can be found via the “guess-and-double” technique, but for non-adaptive algorithms we
will assume that this bound is always given. To emphasize this we specify the parameters that have
to be given to a non-adaptive algorithm in the name of the algorithm. Clearly the same “guess-and-
double” technique can be used to produce a sequence of independent and non-adaptive executions
of the learning algorithm.

The immediate consequence of non-adaptiveness is that in order to parallelize a non-adaptive
learning algorithm only the usual computation has to be parallelized since all the MQs can be made
in parallel. Non-adaptiveness is also useful when learning ! concepts from the same concept class in
parallel. The fact that queries are independent of the target concept implies that same set of points
can be used for learning different concepts. To achieve probability of success 1/2 in learning of
all ! concepts we will have to learn with each concept with probability of success 1−1/(2!). This
implies that the number of points needed for learning might grow by a factor of log! whereas in the
general case ! times more examples might be required.

Results of Goldreich et al. (1986) imply that if one-way functions exist then the concept class
of all polynomial circuits is not learnable even with respect to U and with access to a MQ oracle
(Kearns and Valiant, 1994). By modifying the values of each circuit to encode the circuit itself in a
polynomial number of fixed points one can make this class learnable by non-adaptive MQs but not
learnable from random and uniform examples only (the modification is very unlikely to be detected
by random examples yet MQs to the fixed points will reveal the circuit). Similarly, by placing
the encoding of the circuit in some location that is encoded in a fixed location, one can create a
function class learnable by adaptive membership queries but not learnable by the non-adaptive ones
(if one-way functions exist). Further details of these simple separations are left to the reader.

3. Learning of Parities and Binary Linear Codes

In this section we show that attribute-efficient learning of parities with respect to the uniform dis-
tribution from random examples only is likely to be hard by proving that it is equivalent to an open

1437

FELDMAN

problem in coding theory. Unlike in the rest of the paper in this section and the following section
parity functions will be functions to {0,1}. To emphasize this we use χ̇ instead of χ.

3.1 Background on Linear Codes

We say that a code C is an [m,n] code if C is a binary linear code of block length m and message
length n. Any such code can be described by its n×m generator matrix G as follows: C= {xG | x ∈
{0,1}n}. Equivalently, a code can be described by its parity-check matrix H of size m× (m− n)
by C = {y | yH = 0m−n}. It is well-known that G ·H = 0n×(m−n) and decoding given a corrupted
message y is equivalent to decoding given the syndrome of the corrupted message. The syndrome
equals to yH and the decoding consists of finding a vector e of Hamming weight at most w such
that y⊕ e= xG, where w= ,(d−1)/2- and d is the distance of the code (cf. the book by van Lint,
1998). For a linear codeC the distance equals to the Hamming weight of a non-zero vector with the
smallest Hamming weight.

By saying that C is a random [m,n] code we mean that C is defined by choosing randomly,
uniformly, and independently n vectors in {0,1}m that form the basis of C. Alternatively, we can
say that the generator matrixG ofC was chosen randomly with each entry equal to 1 with probability
1/2 independently of others. We denote this distribution byUn×m. Some authors restrict the random
choice of G’s to matrices of full rank n. As we will see, this definitions would only make our proofs
simpler.

Binary linear codes generated randomly meet the Gilbert-Varshamov bound with high proba-
bility, that is, they achieve the best known rate (or n/m) versus distance trade-off (cf. the lecture
notes by Sudan, 2002). However decoding a random linear code or even determining its distance
is a notorious open problem in coding theory. For example the McEliece cryptosystem is based,
among other assumptions, on the hardness of this problem (McEliece, 1978). Besides that, while
the average-case hardness of this problem is unknown, a number of worst-case problems related to
decoding linear codes are NP-hard (Barg, 1997; Vardy, 1997; Sudan, 2002).

A potentially simpler version of this problem in which the errors are assumed to be random
and independent with some rate η (and not adversarial as in the usual definition) is equivalent to
learning of parities with random classification noise of rate η, a long-standing open problem in
learning theory. In fact, Feldman et al. (2006) have proved that when learning parities from random
and uniform examples, random classification noise of rate η is as hard as adversarial noise of rate η
(up to a polynomial blowup in the running time). The only known non-trivial algorithm for learning
parities with noise is a slightly subexponential algorithm by Blum et al. (2000). In our discussion η
is very low (e.g., lognn), yet even for this case no efficient noise-tolerant algorithms are known.

Correcting a random linear [m,n] from up to w errors is defined as follows.

Definition 3 Input: An n×m binary generator matrix G randomly chosen according to Un×m and
y ∈ {0,1}m.
Output: x ∈ {0,1}n such that dist(xG,y) ≤ w if there exists one.

A successful algorithm for this problem is an algorithm that would allow to correct up to w errors
in a “good” fraction of randomly created linear codes. That is, with non-negligible probability over
the choice of G, and for every y, the algorithm should produce the desired output. Note that the
algorithm can only be successful when the code generated by G has distance at least 2w+1.

1438

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

For simplicity, we will usually assume a constant probability of success but all the results can
be translated to algorithms having the success probability lower-bounded by a polynomial (in m)
fraction.

3.2 The Reduction

The equivalence of attribute-efficient learning of parities with respect to the uniform distribution
and decoding of random linear codes relies on two simple lemmas. The first one, due to Hofmeister
(1999), is that the syndrome decoding of a linear code implies attribute-efficient learning of parities.
We include it with a proof for completeness.

Lemma 4 (Hofmeister) Let H be a parity-check matrix of some [m,n] w-error correcting code C.
Let A be an algorithm that for any y∈ {0,1}m such that y= c⊕e where c∈C and wt(e)≤w, given
the syndrome yH, finds e. Then A learns PAR(w) over {0,1}m given the values of an unknown
parity on the columns of H.

Proof The condition y = c⊕ e for c ∈ C implies that yH = eH. Therefore the syndrome yH is
equal to the vector eH = χ̇e(H1), χ̇e(H2), . . . , χ̇e(Hm−n) where Hi is the i-th column of H. Therefore
finding an error vector e of weight at most w using the syndrome yH is the same as finding a parity
of length at most w given the values of the unknown parity on the columns of H.

This observation has lead Hofmeister to a simple ae.naMQ algorithm for learning parities that uses
the columns of the parity check matrix of BCH code as MQs. We note that the converse of this
lemma is only true if the learning algorithm is proper, that is, produces a parity function in PAR(w)
as a hypothesis.

To obtain the claimed equivalence for the uniform distribution we first need to prove that gener-
ating a linear code by choosing a random and uniform parity check matrix (that is, fromUn×m−n) is
equivalent to (or indistinguishable from) generating a linear code by choosing a random and uniform
generator matrix (that is, from Un×m).

Let p(i, j) denote the probability that i vectors chosen randomly and uniformly from {0,1} j are
linearly independent. Each i≥ 1 linearly independent vectors span subspace of size 2i and therefore
there are 2 j − 2i vectors that are linearly independent of them. This implies that, p(i+ 1, j) =
p(i, j)(1− 2− j+i). All vectors except for 0 j form a linearly independent set of size 1. Therefore
p(1, j) = (1−2− j). Hence

p(i, j) = (1−2− j) · (1−2− j+1) · · ·(1−2− j+i−1) .

Note that
p(i, j) ≥ 1−2− j−2− j+1−·· ·−2− j+i−1 > 1−2− j+i (1)

and for i= j, p(j, j) = 1
2 p(j, j−1) > 1

2(1−
1
2) = 1

4 . This means that for any i≤ j, p(i, j) > 1/4.
Let Vn×m denote the distribution on matrices of size n×m resulting from the following process.

Choose randomly and uniformly a m× (m−n) matrix H of rank m−n and then choose randomly
and uniformly a matrix G of size n×m of rank n such that GH = 0n×(m−n). To generate G’s like
this we find a basis b1, . . . ,bn for the subspace of {0,1}m that is “orthogonal” to H in the standard
(and efficient) way. Let G0 denote the matrix whose rows are the vectors b1, . . . ,bn. It is easy to see
that any matrix G of rank n such that GH = 0n×(m−n), can be represented uniquely as F ·G0 where
F is a matrix of size n×n and full rank (∗). Therefore we can generate G’s as above by choosing

1439

FELDMAN

randomly and uniformly a matrix F of rank n. If we choose a random matrix F according Un×n,
with probability at least p(n,n) > 1/4, it will have the full rank. We can repeatedly sample from
Un×n to get a full-rank F with any desired probability. This implies that we can generate a matrix
according to Vn×m with probability 1− δ in time O(m3 log(1/δ)) (or less if a non-trivial matrix
multiplication algorithm is used).

All we need to prove now is that Vn×m is “close” to Un×m. More specifically, the statistical
distance between two distributionsD1 andD2 over X is defined to be Δ(D1,D2) = 1

2 ∑x∈X |D1(x)−
D2(x)|. It is well known and easy to see that for any event E ⊆ X , |PrD1 [x ∈ E]−PrD2 [x ∈ E]| ≤
Δ(D1,D2).

Lemma 5 The distribution Vn×m is uniform over matrices of size n×m and rank n. In particular,
Δ(Vn×m,Un×m) ≤ 2−m+n.

Proof LetG be any matrix of size n×mwith linearly independent rows. Its probability underUn×m
isUn×m(G) = 2−mn. When sampling with respect toVn×m,G can be obtained only if all the columns
ofH are “orthogonal” to rows ofG, that is belong to a linear subspace of {0,1}m of dimensionm−n.
The total number of H’s like these of rank m− n is 2(m−n)2 p(m− n,m− n) (as follows from (∗))
and the total number of matrices size m× (m−n) of rank m−n is 2m(m−n)p(m−n,m). Therefore
the probability of getting each H like this is 2−n(m−n) p(m−n,m−n)p(m−n,m) . Given H the total number of
matrices of size n×m and rank n that are “orthogonal” to H is p(n,n)2n2 (as follows from (∗))
and therefore G will be generated with probability 2−n2/p(n,n). Hence the total probability of G
under Vn×m is Vn×m(G) = 2−mn p(m−n,m−n)

p(m−n,m)p(n,n) . For every i< j, p(j− i, j)p(i, i) = p(j, j). Therefore
Vn×m(G) = 2−mn/p(n,m). This implies that Vn×m is uniform over matrices of size n×m and rank
n. The statistical distance between Vn×m and Un×m equals to

1
2 ∑
G∈{0,1}n×m

|Vn×m(G)−Un×m(G)| =

1
2

[

∑
rank(G)<n

2−mn+ ∑
rank(G)=n

2−mn
(

1
p(n,m)

−1
)]

= 1− p(n,m).

According to Equation (1), 1− p(n,m) < 1− (1−2−m+n) = 2−m+n.

We can now prove that decoding of random linear codes implies attribute-efficient learning of pari-
ties from random examples only.

Theorem 6 Assume that there exists an algorithm RandDec that corrects a random linear [m,n]
code from up to w errors with probability at least 1/2+ γ for any constant γ. Then PAR(w) over
{0,1}m is efficiently learnable from m−n random examples.

Proof Let χ̇e ∈ PAR(w) be the unknown parity function and z1,z2, . . . ,zm−n be random and uniform
examples given by the example oracle. Let H be the m× (m−n) matrix whose column i is equal to
zi for each i ≤ m− n. If H does not have rank m− n we return χ0m . Otherwise let G be a random
matrix such that GH = 0n×(m−n) generated as in the description of Vn×m for δ = γ/2. The values
of χ̇e on zi’s give us the vector eH. Let y be any solution to the linear equation yH = eH. Clearly
(y⊕e)H = 0m−n and therefore y⊕e equals to xG for some x ∈ {0,1}n. This means that RandDec (if

1440

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

successful) will output x on input G and y. By the definition of x, e= xG⊕ y, giving us the desired
parity function.

To analyze the success probability of the algorithm we observe that the procedure above gener-
ates G according to Vn×m with probability at least p(m−n,m)(1−γ/2)≥ 1−2−n−γ/2. According
to Lemma 5, the statistical distance between the G generated as above and Un×m is at most 2−m+n.
RandDec is successful with probability 1/2+ γ and therefore our algorithm will succeed with prob-
ability at least 1/2+ γ− (γ/2+2−n+2−m+n) ≥ 1/2.

The transformation above produces an attribute-efficient algorithm only if m−n is polynomial in w
and logm. According to the Gilbert-Varshamov bound, a random linear code will, with high prob-
ability, have distance d = Ω(m−nlogm). Therefore if the number of errors that RandDec can correct is
at least w = dα errors for some constant α > 0 then the sample complexity of learning a parity of
length at most w over m variables would equal O(w1/α logm). Therefore such an algorithm could
be used to obtain an attribute-efficient algorithm for learning parities.

We have noted previously that using a parity learning algorithm to obtain a syndrome decoding
algorithm requires the parity learning algorithm to be proper. When a distribution over examples
is not restricted it is unknown whether proper learning of parities is harder than non-proper. For-
tunately, when learning with respect to the uniform distribution any learning algorithm for parities
can be converted to a proper and exact one (that is, with a hypothesis equal to the target function).
We include a proof of this folklore fact for completeness.

Fact 7 Let A be an algorithm that learns PAR(k) in time t(n,k,ε) and with sample complexity
s(n,k,ε). Then there exists a probabilistic algorithm A ′ that learns PAR(k) properly and exactly in
time t(n,k,1/5)+ Õ(nk) and using s(n,k,1/5) samples.

Proof We assume for simplicity that if A is probabilistic then it succeeds with probability at least
3/4. Let h be the output of A when running on an unknown parity χ̇e ∈ PAR(k) with ε = 1/5.
Given h that is correct on 4/5 of all the points we can use it simulate membership queries to χ̇e(x)
as follows. Let y ∈ {0,1}n be any point and let x be a randomly and uniformly chosen point. Then
h(x) = χ̇e(x) with probability at least 4/5 and h(x⊕ y) = χ̇e(x⊕ y) with probability at least 4/5.
Therefore with probability at least 3/5, h(x)⊕h(x⊕y) = χ̇e(x)⊕ χ̇e(x⊕y) = χ̇e(y). We can increase
the confidence in the label to 1− δ by repeating this procedure for O(log(1/δ)) independent x’s.
Given these membership queries we can use a proper and exact MQ algorithm for learning PAR(k).
A number of such algorithms are known running in time Õ(nk) and usingO(k logn)MQs (including
AEParityStat(k) given in Theorem 9). In order to get correct answers to all the membership
queries with probability at least 3/4 we need each of the MQs to be correct with probability 1− δ
for δ=Ω(1

k logn). This means that makingO(k logn)MQs will takeO(nk logn log(k logn)) = Õ(nk)
steps. Altogether we get algorithmA ′ that succeeds with probability at least 1/2 and has the claimed
complexity bounds.

We can now assume that algorithms for learning parity with respect to the uniform distribution are
proper and exact (and in particular do not require parameter ε) and use this to obtain the other
direction of the equivalence.

Theorem 8 Assume that there exists an algorithm AELearnParU(k) that efficiently learns PAR(k)
over {0,1}m using at most q(m,k) random examples. Then there exists an algorithm RandDec that
corrects a random linear [m,m−q(m,k)] code from up to k errors with probability at least 1/2− γ
for any constant γ> 0.

1441

FELDMAN

Proof Let G and y be the input of RandDec, n= m−q(m,k), x be the vector for which y= xG⊕ e
where wt(e) ≤ k. If G is not of rank n we just return the vector 0n. Otherwise let H be a random
matrix such thatGH = 0n×(m−n) generated as rankm−nwe return χ0m . Otherwise letG be a random
matrix such that GH = 0n×(m−n) generated as in the description of Vn×m for δ= γ/2 (with the roles
of G and H reversed).

The syndrome yH is equal to eH and gives the values of χ̇e on q(m,k) columns of H. We feed
these columns as random examples to AELearnParU(k) and obtain χ̇e from it (if AELearnParU(k)
is successful). Given e we obtain x by solving the system of linear equations xG= y⊕e. To analyze
the success probability of the algorithm we observe that the procedure above generates H according
to Vm×(m−n) with probability at least p(n,m)(1−γ/2)≥ 1−2−q(m,k)−γ/2. According to Lemma 5,
the statistical distance between H’s generated as above and Um×(m−n) is at most 2−m+(m−n) = 2−n.
Therefore AELearnParU(k) will succeed with probability at least 1/2− 2−n. This implies that
RandDec will return the correct x with probability at least 1/2− (2−m+q(m,k) + 2−q(m,k) + γ/2) ≥
1/2− γ.

4. A Fast Randomized Algorithm for ae.naMQ Learning of Parities

We next present a simple randomized algorithm for ae.naMQ learning of parities. The only previ-
ously known ae.naMQ algorithm for learning parities is due to Hofmeister (1999) and is a determin-
istic algorithm based on constructing and decoding of BCH binary linear codes (see also Section
3.2). The algorithm we present is substantially simpler and has essentially the same asymptotic
complexity as Hofmeister’s.

The basic idea of our algorithm is to use a distribution over {0,1}n for which each attribute is
correlated with the parity function if and only if it is present in the parity.

Theorem 9 For each k ≤ n there exists an algorithm AEParityStat(k) that ae.naMQ learns the
class PAR(k) in time O(nk logn) and asks O(k logn) MQs.

Proof Let χ̇c be the target concept (such that wt(c)≤ k). We defineD 1
t
to be the product distribution

such that for each i, Pr[xi = 1] = 1
t . Let us draw a point x randomly according to distribution D 1

4k
.

Then for each i≤ n

PrD 1
4k

[xi = 1 and χ̇c(x) = 1] = PrD 1
4k

[χ̇c(x) = 1 | xi = 1] PrD 1
4k

[xi = 1]

=
1
4k
PrD 1

4k
[χ̇c(x) = 1 | xi = 1] .

Our second observation is that for any set of indices B ⊆ [n] and the corresponding parity function
χ̇b,

PrD 1
4k

[χ̇b(x) = 1] ≤ 1−PrD 1
4k

[∀i ∈ B, xi = 0] = 1− (1− 1
4k

)|B| ≤ |B|
4k

.

First examine the case that ci)= 1 and therefore does not influence χ̇c. Then by the second observa-
tion,

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c(x) = 1] ≤ k
4k

≤ 1/4 .

1442

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

Now assume that ci = 1 and let c′ = c⊕ ei. Then χ̇c′(x) is independent of xi and χ̇c(x) = 1 if and
only if χ̇c′(x) = 0. Therefore

PrD 1
4k

[χ̇c(x) = 1 | xi = 1] = PrD 1
4k

[χ̇c′(x) = 0 | xi = 1]

= 1−PrD 1
4k

[χ̇c′(x) = 1] ≥ 1− k−1
4k

> 3/4 .

Hence estimation of PrD 1
4k

[xi = 1 and χ̇c(x) = 1] within the half of the expectation can be used to
find out whether ci = 1. Lemma 1 for γ = 1/2 implies that by taking O(k logn) independent sam-
ples with respect toD 1

4k
we will get that each estimate is correct with probability at least 1−1/(2n)

and therefore we will discover c with probability at least 1− n/(2n) = 1/2. The running time of
AEParityStat(k) is clearly O(nk logn).

5. Finding Fourier Coefficients and Weak DNF Learning

The original Jackson’s algorithm for learning DNF expressions with respect to the uniform distri-
bution is based on a procedure that weakly learns DNF with respect to the uniform distribution
(Jackson, 1997). The procedure for weak learning is essentially an algorithm that, given a Boolean
function f finds a significant Fourier coefficient of f , if one exist. Jackson’s algorithm is based on a
technique by Goldreich and Levin (1989) for finding a significant Fourier coefficient (also called the
KM algorithm (Kushilevitz and Mansour, 1991)). Bshouty, Jackson, and Tamon (1999) used a later
algorithm by Levin (1993) to give a significantly faster weak learning algorithm. In this section we
will briefly describe Levin’s algorithm with improvements by Bshouty et al.. Building on their ideas
we then present an attribute-efficient and non-adaptive version of the improved Levin’s algorithm.
This algorithm will give us an ae.naMQ algorithm for weak learning of DNF expressions that will
serve as the basis of our ae.naMQ algorithm for DNF learning.

A Fourier coefficient φ̂(a) of a real-valued function φ over {0,1}n is said to be θ-heavy if
|φ̂(a)| ≥ θ. For a Boolean f , E[fχa] ≥ θ if and only if Pr[f = χa] ≥ 1/2+ θ/2. This means that
| f̂ (a)| ≥ θ is equivalent to either χa or −χa being a (1/2−θ/2)-approximator of f . Therefore find-
ing a significant Fourier coefficient of f is sometimes called weak parity learning (Jackson, 1997).
It can also be interpreted as a learning algorithm for parities in the agnostic learning framework of
Haussler (1992) and Kearns et al. (1994) Feldman et al. (see the work of 2006, for details).

Definition 10 (Weak Parity Learning) Let f be a Boolean function with at least one θ-heavy
Fourier coefficient. Given θ > 0 and access to MEM(f), the weak parity learning problem con-
sists of finding a vector z such that f̂ (z) is θ/2-heavy.

We will only consider algorithms for weak parity learning that are efficient, that is, produce
the result in time polynomial in n, and θ−1. In addition we are interested in weak parity learning
algorithms that are attribute-efficient.

Definition 11 (Attribute-Efficient Weak Parity Algorithm) Attribute-efficient weak parity algo-
rithm is an algorithm that given k, θ, and MEM(f) for f that has a θ-heavy Fourier coefficient of
degree at most k efficiently solves weak parity learning problem and asks polynomial in k, logn, and
θ−1 number of MQs.

1443

FELDMAN

We follow the presentation of Levin’s weak parity algorithm given by Bshouty et al. and refer
the reader to their paper for detailed proofs of all the statements and smaller remarks (we use the
same definitions and notation to simplify the reference). Levin’s algorithm is based on estimating
a Fourier coefficient f̂ (a) by sampling f on randomly-chosen pairwise independent points. More
specifically, the following pairwise independent distribution is generated. For a fixed m, a random
m-by-n 0-1 matrix R is chosen and the set Y = {pR | p ∈ {0,1}m \ {0m}} is formed. For different
vectors p1 and p2 in {0,1}m \ {0m}, p1R and p2R are pairwise independent. The variance σ2 of
a Boolean function is upper-bounded by 1 and thus Bienaymé-Chebyshev’s inequality (Lemma 2)
implies that

PrR
[
|∑x∈Y f (x)χa(x)

2m−1 − f̂ (a)| ≥ γ

]
≤ 1

(2m−1)γ2 (2)

Therefore using a sample for m= log(16ρ−1θ−2+1), ∑x∈Y f (x)χa(x) will, with probability at least
1−ρ, approximate f̂ (a) within θ/4.

On the other hand, ∑x∈Y f (x)χa(x) is a summation over all (but one2) elements of a linear
subspace of {0,1}n and therefore can be seen as a Fourier coefficient of f restricted to subspace Y .
That is, if we define fR(p) = f (pR) then, by definition of Fourier transform, for every z ∈ {0,1}m

f̂R(z) = 2−m ∑
p∈{0,1}m

fR(p)χz(p) .

This together with equality χa(pR) = χaRT (p) implies that f̂ (a) is approximated by f̂R(aRT) (with
probability at least 1−ρ).

All the coefficients f̂R(z) can be computed exactly in timeO(m2m) via the FFT algorithm giving
estimations to all the Fourier coefficients of f .

Another key element of the weak parity algorithm is the following equation (Bshouty et al.,
1999).

Lemma 12 For c ∈ {0,1}n let fc(x) = f (x⊕ c). Then f̂c(a) = f̂ (a)χa(c).

Proof
f̂c(a) = 2−n ∑

x∈{0,1}n
f (x⊕ c)χa(x) = 2−n ∑

x∈{0,1}n
f (x)χa(x⊕ c) = f̂ (a)χa(c) .

Assuming that f̂ (a) ≥ θ estimation of f̂ (a) within θ/4 (when successful) has the same sign as
f̂ (a). Similarly we can obtain the sign of f̂c(a). By Lemma 12, the sign of the product f̂ (a) f̂c(a)
is equal to χa(c). This gives a way to make MQs for χa using the values f̂c,R(aRT) for a random R.
Levin and Bshouty et al. implicitly used this technique with a basic membership query algorithm for
learning parities. The speed-up in Levin’s algorithm is achieved by making each MQ to many χa’s
in parallel. Therefore only a non-adaptive membership query algorithm for learning parities can be
used. In our next theorem we give an interpretation of improved Levin’s algorithm that makes the
use of a non-adaptive membership query algorithm explicit.

2. The value at 0m does not influence the estimation substantially and therefore can be offset by slightly increasing the
size of sample space Y (Bshouty et al., 1999).

1444

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

Theorem 13 Let B(k) be an ae.naMQ algorithm for learning parities that runs in time t(n,k) and
uses q(n,k)MQs. There exists an attribute-efficient and non-adaptive algorithm AEBoundedSieve-
B(θ,k) that, with probability at least 1 − δ, solves the weak parity learning problem.
AEBoundedSieve-B(θ,k) runs in time Õ

(
θ−2t(n,k) ·q(n,k) log(1/δ)

)
and asks

Õ
(
θ−2q2(n,k) log(1/δ)

)
MQs.

Proof We assume for simplicity that B(k) succeeds with probability at least 3/4. Besides that
according to Fact 7, we can assume that B(k) is a proper algorithm.

Let S be the set of MQs for an execution of B(k). Choose randomly an m-by-n matrix R for
m= log(16θ−2 ·4 · (q(n,k)+1)+1) and compute the Fourier transforms of fR = f0n,R and fy,R for
each y ∈ S via the FFT algorithm. Then, for each z ∈ {0,1}m, we run B(k) with the answer to MQ
y ∈ S equal to sign(f̂R(z) f̂y,R(z)). If the output of B(k) is a parity function χa of length at most k
then we test that (i) : | f̂R(z)| ≥ 3θ/4 and (ii) : aRT = z. If both conditions are satisfied we add a to
the set of hypotheses H.

By Equation (2), for a such that | f̂ (a)| ≥ θ and wt(a)≤ k, with probability at least 1− 1
4(q(n,k)+1) ,

each of the estimations f̂y,R(aRT) for y ∈ S∪{0n} will be within θ/4 of f̂y(a). In particular, with
probability at least 3/4, for all y ∈ S∪ {0n}, sign(f̂y(a)) = sign(f̂y,R(aRT)) . If all the signs
are correct then by Lemma 12, sign(f̂R(z) f̂y,R(z)) = χa(y) and as a result B(k) will succeed with
probability at least 3/4. Therefore a will satisfy both conditions (i) and (ii) and will be added as a
possible hypothesis with probability at least 1/2. Note that B(k) is executed on up to 2m possible
hypotheses while using the same set of queries S. This is only possible for a non-adaptive algorithm
B(k).

On the other hand, for any fixed b such that | f̂ (b)| < θ/2, if bRT = z (condition (ii)) then with
probability at least 1− 1

4(q(n,k)+1) ≥ 7/8, f̂R(z) approximates f̂ (b) within θ/4. This implies that
| f̂R(z)| < 3θ/4 and therefore condition (i) will be failed with probability at least 7/8. This implies
that b can be added to the set of hypotheses with probability at most 1/8.

Now we use a simple method of Bshouty et al. (1999) to remove all “bad” (not θ/2-heavy)
hypotheses from the set of hypotheses without removing the “good” ones (θ-heavy). We repeat the
described algorithm ! times for independent choices of R and S generating ! sets of hypotheses (each
of size at most 2m). This procedure generates at most !2m hypotheses. According to Chernoff’s
bound (Lemma 1) each “good” hypothesis appears in at least 1/3 of all the sets with probability at
least 1−2−α! and each fixed “bad” hypothesis appears in at least 1/3 of all the sets with probability
at most 2−α!, for a fixed constant α (since 1/8 < 1/3 < 1/2). Note that we need to fix a “bad”
hypothesis to apply this argument. A hypothesis can be fixed as soon as it has appeared in a set of
hypotheses. We then exclude the first set in which a hypothesis has appeared when counting the
fraction of sets in which the hypothesis has appeared (Chernoff bound is now on !−1 trials but this
is insubstantial). By setting ! = (m+ logm+2log(1/δ)+3)/α we will get that !2m2−α!−1 ≤ δ/2.
Therefore the probability that a “bad” hypothesis will appear in 1/3 of the sets is at most δ/2.
Similarly all “good” hypotheses will appear in 1/3 of the sets with probability at least 1− δ/2.
Thus by picking any a that appears in at least 1/3 of all the sets we will find a θ/2-heavy coefficient
with probability at least 1−δ.

Computing each of the Fourier transforms takes O(m2m) = Õ(θ−2 ·q(n,k)) time. They are per-
formed for each of q(n,k)MQs of B and this is repeated ! =O(m+ log(1/δ)) times giving the total
bound of Õ(θ−2q2(n,k) log(1/δ)). For each of the 2m values of z we run B(k) and tests (i) and (ii).

1445

FELDMAN

This takes O(2m(t(n,k)+mn)) = Õ(θ−2t(n,k) ·q(n,k)) time and is repeated ! = O(m+ log(1/δ))
times. Therefore the total running time is Õ(θ−2 · t(n,k) · q(n,k) log(1/δ)). Similarly we observe
that each of the estimations via FFT uses 2m examples and ! ·(q(n,k)+1) such estimations are done.
This implies that the sample complexity of the algorithm is Õ

(
θ−2q2(n,k) log(1/δ)

)
. It can also be

easily seen that all MQs are non-adaptive.

Another way to see Theorem 13 is as a way to convert an ae.naMQ algorithm for learning of
parities to an ae.naMQ algorithm for agnostic learning of parities.

By plugging AEParityStat(k) algorithm (Theorem 9) into Theorem 13 we obtain our weak
parity learning algorithm.

Corollary 14 There exists an attribute-efficient and non-adaptive weak parity learning algorithm
AEBoundedSieve(θ,k) that succeeds with probability at least 1 − δ, runs in time
Õ

(
nk2θ−2 log(1/δ)

)
, and asks Õ

(
k2 log2 n ·θ−2 log(1/δ)

)
MQs.

Jackson (1997) has proved that for every distribution D , every DNF formula f has a parity
function that weakly approximates f with respect to D . A refined version of this claim by Bshouty
and Feldman (2002) shows that f has a short parity that weakly approximates f if the distribution
is not too far from the uniform. More formally, for a real-valued function φ we define L∞(φ) =
maxx{|φ(x)|} and we view a distribution D as a function over {0,1}n that for a point x gives its
probability weight under D .

Lemma 15 For any Boolean function f of DNF-size s and a distributionD over {0,1}n there exists
a parity function χa such that

|ED [fχa]| ≥
1

2s+1
and wt(a) ≤ log((2s+1)L∞(2nD)) .

By combining this fact with Corollary 14 we get an algorithm for weakly learning DNF.

Theorem 16 There exist an algorithm WeakDNFU(s) that for a Boolean function f of DNF-size s
given n,s, and access to MEM(f), with probability at least 1/2, finds a (12 −Ω(1s))-approximator
to f with respect to U. Furthermore, WeakDNFU(s) runs in time Õ

(
ns2

)
and asks Õ

(
s2 log2 n

)

non-adaptive MQs.

Proof Lemma 15 implies that there exists a parity χa on at most log(2s+1) variables such that
|EU [fχa]| = | f̂ (a)| ≥ 1

2s+1 . This means that f has a
1

2s+1 -heavy Fourier coefficient of degree at
most log(2s+1). Using Corollary 14 for δ = 1/2, we can find a 1

2(2s+1) -heavy Fourier coefficient
f̂ (a′) in time Õ

(
ns2

)
and using Õ

(
s2 log2 n

)
non-adaptive MQs. The parity χa′ or its negation

(12 −
1

4(2s+1))-approximates f .

The algorithm for weakly learning DNFs by Bshouty et al. (1999) requires Õ
(
ns2

)
MQs and

runs in time3 Õ
(
ns2

)
.

3. The running time bound is based on use of a membership query oracle, that given any two vectors x,y ∈ {0,1}n,
passed to it “by reference”, returns f (x⊕ y) in O(1) time.

1446

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

6. Learning DNF Expressions

In this section we show an ae.naMQ algorithm for learning DNF expressions. Following Jackson’s
approach we first show how to generalize our weak DNF learning algorithm to other distributions
(Jackson, 1997). We then use Freund’s boosting algorithm to obtain a strong DNF learning algo-
rithm (Freund, 1992). Besides achieving attribute-efficiency and non-adaptiveness we show a way
to speed up the boosting process by exploiting several properties of our WeakDNF algorithm.

6.1 Weak DNF Learning with Respect to Any Distribution

The first step in Jackson’s approach is to generalize a weak parity algorithm to work for any real-
valued function. We follow this approach and give a generalization of our AEBoundedSieve(θ,k)
algorithm (Corollary 14) to any real-valued and also randomized functions.

Lemma 17 There exists an algorithm AEBoundedSieveRV(θ,k,V) that for any real-valued ran-
domized function Ψ with a θ-heavy Fourier coefficient of degree at most k, given k, θ, V ≥
VarU,Ψ(Ψ(x)), and an oracle access toΨ, finds, with probability at least 1−δ, a θ/2-heavy Fourier
coefficient of Ψ of degree at most k. The algorithm runs in time Õ

(
nk2θ−2V log(1/δ)

)
and asks

Õ
(
k2 log2 n ·θ−2V log(1/δ)

)
non-adaptive MQs.

Proof By revisiting the proof of Theorem 13, we can see that the only place where we used the
fact that f is Boolean and deterministic is when relying on Equation (2) in which the variance of the
random variable f (x) ∈ {−1,+1} was upper-bounded by 1. In this bound f (x) is already treated as
a random variable on pairwise independent x’s. For any point x, Ψ(x) is independent of any other
evaluations of Ψ and therefore evaluations of Ψ on pairwise independent points are pairwise inde-
pendent. This implies that in order to estimate Ψ̂(a) within θ/4 we only need to account for the fact
that the variance of Ψ(x) is not necessarily bounded by 1. This can be done by using Var(Ψ) ≤ V
times more samples, that is, we setm= log(16Vθ−2 ·4 · (q(n,k)+1)+1). It is now straightforward
to verify that the rest of the proof of Theorem 13 is unchanged. The increase in the required sample
size increases the running time and the sample complexity of the algorithm by a factor Õ(V) giving
us the claimed bounds.

As in Jackson’s work we use the generalized weak parity algorithm to obtain an algorithm that
weakly learns DNF expressions with respect to any distribution. The algorithm is efficient only
when the distribution function is “close” to the uniform and requires access to the value of the
distribution function at any point x.

Theorem 18 There exist an algorithm WeakDNF(s,B) that for a Boolean function f of DNF-size s
and any distribution D , given n,s,B≥ L∞(2nD(x)), access to MEM(f), and an oracle access to D ,
with probability at least 1−δ, finds a (12−Ω(1s))-approximator to f with respect toD . Furthermore,
WeakDNF(s,B)

• runs in time Õ(ns2B log(1/δ));

• asks Õ(s2 log2 n ·B log(1/δ)) non-adaptive MQs;

• returns a parity function of length at most O(log(sB)) or its negation.

1447

FELDMAN

Proof Lemma 15 states that there exists a vector a of Hamming weight bounded by
O(log(sL∞(2nD))) such that |ED [f (x)χa(x)]| =Ω(1/s). But

ED [f (x)χa(x)] =∑
x

[f (x)D(x)χa(x)] = E[f (x)2nD(x)χa(x)] = ψ̂(a) , (3)

where ψ(x) = f (x)2nD(x). This means that ψ(x) has a Ω(1/s)-heavy Fourier coefficient of degree
bounded by O(log(sL∞(2nD))) = O(log(sB)). We can apply AEBoundedSieveRV on ψ(x) to find
its Ω(1/s)-heavy Fourier coefficient of degree O(log(sB)). All we need to do this is to provide a
bound V on the variance of f (x)2nD(x).

Var(f (x)2nD(x)) = E[(f (x)2nD(x))2]−E2[f (x)2nD(x)]
≤ L∞(2nD(x))E[2nD(x)]−E2[f (x)2nD(x)] ≤ L∞(2nD(x))E[2nD(x)]
= L∞(2nD(x)) ≤ B (4)

This bound on variance relies essentially on the fact that D(x) is a distribution function 4 and
therefore E[2nD(x)] =ED [1] = 1. This improves on L2∞(2nD(x)) bound for an unrestricted function
D(x) that was used in analysis of previous weak DNF learning algorithms (Jackson, 1997; Bshouty
et al., 1999).

We can now run AEBoundedSieveRV(θ,k,V) for θ = Ω(1/s), k = O(log(sB)), V = B, and
a simulated oracle access to ψ = f2nD to obtain a′ such that |ψ̂(a′)| = Ω(1/s) and wt(a′) =
O(log(sB)). By equation (3), we get that |ED [f (x)χa′(x)]| = Ω(1/s) and therefore χa′(x) or its
negation (12 −Ω(1s))-approximates f with respect to D . The claimed complexity bounds can be
obtained by using Lemma 17 for θ,k and V as above.

6.2 Background on Boosting a Weak DNF Learner

Jackson (1997) obtained his DNF learning algorithm by converting a weak DNF learning algorithm
to a strong one via a boosting algorithm. Boosting is a general technique for improving the accuracy
of a learning algorithm. It was introduced by Schapire (1990) who gave the first efficient boosting
algorithm. Let C be a concept class and let WLγ be a weak learning algorithm for C that for any
distribution D , produces a (1/2− γ)-approximating hypothesis. Known boosting algorithms have
the following structure.

• At stage zero WLγ is run on D0 = D to obtain h0.

• At stage i a distributionDi is constructed usingD and previous weak hypotheses h0, . . . ,hi−1.
The distribution Di usually favors the points on which the previous weak hypotheses do
poorly. Then random examples from Di are simulated to run WLγ with respect to Di and
obtain hi.

• After repeating this for a number of times an ε-approximating hypothesis h is created using
all the generated weak hypotheses.

4. Actual D(x) given to a weak learner will be equal to cD ′(x) where D ′(x) is a distribution and c is a constant in
[2/3,4/3] (Bshouty et al., 1999). This modifies the bound above by a small constant factor.

1448

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

Jackson’s use of Freund’s boosting algorithm slightly deviates from this scheme as it provides
the weak learner with the oracle that returns the density of the distribution function Di at any de-
sired point instead of simulating random examples with respect to Di. The WeakDNF algorithm also
requires oracle access toDi(x) and therefore we will use a boosting algorithm in the same way. The
running time of Jackson’s (and our) algorithm for weak learning of DNF expression depends poly-
nomially on L∞(2nD) and therefore it can only be boosted by a boosting algorithm that produces
distributions that are polynomially-close to the uniform distribution; that is, the distribution function
is bounded by p2−n where p is a polynomial in learning parameters (such boosting algorithms are
called p-smooth). In Jackson’s result Freund’s (1990) boost-by-majority algorithm is used to pro-
duce distribution functions bounded by O(ε−2). More recently, Klivans and Servedio (2003) have
observed that a later boosting algorithm of Freund (1992) produces distribution functions bounded
by Õ(1/ε), thereby improving the dependence of running time and sample complexity on ε. This
improvement together with improved weak DNF learning algorithm of Bshouty et al. (1999) gives
DNF learning algorithm that runs in Õ(ns6/ε2) time and has sample complexity of Õ(ns4/ε2).

Remark 19 Bshouty et al. claimed sample complexity of Õ(ns2/ε2) based on erroneous assump-
tion that sample points for weak DNF learning can be reused across boosting stages. A distribution
function Di in i-th stage depends on hypotheses produced in previous stages. The hypotheses de-
pend on random sample points and therefore in i-th stage the same set of sample points cannot be
considered as chosen randomly and independently of Di (Jackson, 2004). This implies that new and
independent points have to be sampled for each boosting stage and increases the sample complexity
of the algorithm by Bshouty et al. by a factor of O(s2).

As in the work of Klivans and Servedio (2003), we use Freund’s (1992) B-Comb boosting al-
gorithm to boost the accuracy of our weak DNF learning algorithm. We will now briefly describe
the B-Comb boosting algorithm (see also the work of Klivans and Servedio (2003) for a detailed
discussion on application of B-Comb to learning DNF expressions).

6.2.1 FREUND’S B-Comb BOOSTING ALGORITHM

B-Comb boosting algorithm is based on a combination of two other boosting algorithms. The first
one in an earlier F1 algorithm due to Freund (1990) and is used to boost from accuracy 1

2 − γ to
accuracy 1/4. Its output is the function equal to the majority vote of the weak hypotheses that
it received. This algorithm is used as a weak learner by the second boosting algorithm B-Filt.
At stage k B-Filt sets h! to be either the output of a weak learner or a random coin flip (that
is a randomized function equal to either 1 or −1, each with probability 1/2). Accordingly the
distribution function generated at stage i depends on random coin flips and the final hypothesis is a
majority vote over hypotheses from the weak learner and random coin flips. As it is done by Freund
(1992), we analyze the algorithm for a fixed setting of these coin flip hypotheses. Freund’s analysis
shows that with overwhelming probability over the coin flips the randomized hypothesis produced
by the boosting algorithm ε-approximates the target function.

Each of the executions of F1 has O(γ−2) stages and B-Filt has O(log(1/ε)) stages. We denote
the distribution function generated at stage i of F1 during stage ! of B-Filt as DComb

!,i . In both
boosting algorithms Di(x) = β(i,N(x))D/α, where N(x) is the number of previous hypotheses that
are correct on x, β is a fixed function from a pair of integers to the interval [0,1] computable in
polynomial (in the length of its input) time, and α is the normalization factor equal toED [β(i,N(x))].

1449

FELDMAN

We can therefore say that

DComb
!,i (x) = β(!,NFilt(x)) ·β(i,NF1(x))D(x)/(α!α!,i) , (5)

where NFilt(x) and NF1(x) count the correct hypotheses so far for B-Filt and F1 respectively. The
normalization factor α! equals ED [β(!,NFilt(x))] and

α!,i = ED [β(!,NFilt(x)) ·β(i,NF1(x))D(x)/α!] .

The analysis by Freund implies that for every ! and i,

L∞(2nDComb
!,i) ≤ 1/(α!α!,i) = Õ(1/ε) .

In Figure 6.2.1 we include the pseudocode of B-Comb algorithm simplified and adapted to our set-
ting.

6.3 Optimized Boosting

We now use Freund’s (1992) B-Comb boosting algorithm to boost the accuracy of our weak DNF
learning algorithm. Unlike in the previous work, we will exploit several properties of WeakDNF
to achieve faster execution of each boosting stage. Specifically, we note that evaluation of the
distribution function Di(x) at boosting stage i involves evaluation of i− 1 previous hypotheses on
x and therefore, in a general case, for a sample of size q will require Ω(i ·q) steps, making the last
stages of boosting noticeably slower. Our goal is to show that for our WeakDNF algorithm and the
B-Comb boosting algorithm the evaluation of Di(x) for the whole sample needed by WeakDNF can
be made more efficiently.

The idea of the speed-up is to use Equation (5) together with the facts that weak hypotheses are
parities and MQs of WeakDNF come from a “small” number of low-dimension linear subspaces. Let
g be a function that is equal to a linear combination of short parity functions. We start by showing
a very efficient way to compute the values of g on a linear subspace of {0,1}n. We will assume
that vectors of Hamming weight at most w are represented by the list of indices where the vector is
equal to 1 (as we did for parities). One can easily see that adding such vectors or multiplying them
by any vector takes O(w logn) time.

Lemma 20 Let {c1,c2, . . . ,ci} be a set of vectors in {0,1}n of Hamming weight at most w; ᾱ ∈ Ri

be a real-valued vector, and R be a m-by-n 0-1 matrix. Then the set of pairs

S= {〈p,∑
j≤i
α jχc j(pR)〉 | p ∈ {0,1}m}

can be computed in time Õ(i ·w logn+2m).

Proof We define g(x) = ∑ j≤iα jχc j(x) and for p ∈ {0,1}m we define gR(p) = g(pR) (as in Sect. 5).
Our goal is to find the values of function gR on all the points of {0,1}m. The function g is given
as a linear combination of parities, or in other words, we are given its Fourier transform. Given the
Fourier transform of g we can derive the Fourier transform of gR from the following equation:

gR(p) =∑
j≤i
α jχc j(pR) =∑

j≤i
α jχc jRT (p) = ∑

z∈{0,1}m



(∑
j≤i; c jRT=z

α j)χz(p)



 .

1450

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

B-Comb(ε,δ,D,WLγ)

1. k← c0 log(1/ε)
2. Θ← c1ε/ log(1/ε)
3. h0 ← F1(1/4,δ/(2k+1),D,WLγ)
4. for ! ← 1 to k
5. N(x) ≡ |{h j | 0≤ j ≤ !−1 and h j(x) = f (x)}|
6. α′

! ← EstExpRel(β(!,N(x)),D,1/3,δ/(2k+1))
7. if α′

! ≥Θ then
8. D ′

! ≡ β(!,N(x))/α′
!

9. h! ← F1(1/4,δ/(2k+1),D ′
!,WLγ)

10. else
11. h! ← Random(1/2)
12. end for
13. return Majority(h0,h1, . . . ,hk)

F1(ε,δ,D,WLγ)

1. k← c2/γ2

2. Θ← c3ε2

3. h0 ← WLγ(D,δ/(2k+1))
4. for i← 1 to k
5. N(x) ≡ |{h j | 0≤ j ≤ i−1 and h j(x) = f (x)}|
6. α′

i ← EstExpRel(β(i,N(x)),D,1/3,δ/(2k+1))
7. if α′

i ≥Θ then
8. D ′

i ≡ β(i,N(x))/α′
i

9. hi ← WLγ(D ′
i ,δ/(2k+1))

10. else
11. k← i−1
12. break for
13. end for
14. return Majority(h0,h1, . . . ,hk)

Figure 1: Pseudocode of B-Comb boosting algorithm. The first part is B-Filt with F1 used as a
weak learner. WLγ is a weak learning algorithm that has accuracy 1

2−γ and takes an oracle
for a distribution D and confidence δ as parameters. EstExpRel(R,D,λ,δ) produces
estimates of the expectation of a random variable Rwith respect to a distributionD within
relative accuracy λ and confidence δ (that is the estimate v′ ∈ [(1−λ)v,(1+λ)v], where
v is the true expectation). Various unspecified constants are denoted by c0,c1, . . . The
membership query oracle for the target function f is available to all procedures.

1451

FELDMAN

Hence ĝR(z) = ∑ j≤i; c jRT=zα j. Given the Fourier transform of gR we can use the FFT algorithm to
perform the inverse Fourier transform of gR giving us the desired values of gR(p) on all the points
of {0,1}m. This task can be performed in O(m2m) steps. To compute the Fourier transform of gR
we need to compute c jRT for each j ≤ i and sum the ones that correspond to the same z. Given
that each c j is of Hamming weight w, c jRT can be computed in O(wm logn) steps (note that we do
not read the entire matrix R). Therefore the computation of the Fourier transform and the inversion
using the FFT algorithm will take O(m(iw logn+2m)) = Õ(i ·w logn+2m) steps.

Note that a straightforward computation would take Ω(iw2m logn) steps. We apply Lemma 20 to
speed up the evaluation ofDComb

!,i (x) on points at which WeakDNF asks non-adaptive MQs (here again
we will rely on the non-adaptiveness of the weak learning algorithm). The speed-up is based on the
following observations.

1. WeakDNF is based on estimating Fourier coefficients on a “small” number of linear subspaces
of {0,1}n (as in Equation 2).

2. WeakDNF produces a short parity function (or its negation) as the hypothesis.

3. In computation ofDComb
!,i (x) the only information that is needed about the previous hypotheses

is NFilt(x) and NF1(x), that is the number of hypotheses so far that are correct on the given
point. The number of correct hypotheses is determined by f (x) and the sum (in particular, a
linear combination) of the values of the hypotheses on x.

Now we prove these observations formally and show a more efficient way to compute D Comb
!,i (x)

given oracle access to NFilt(x), in other words, we show a more efficient way to compute NF1(x).

Lemma 21 Let {b1χc1 ,b2χc2 , . . . ,biχci} be the set of hypotheses returned by WeakDNF(s,B) in i first
stages of F1 boosting algorithm during stage ! of B-Filt, where b j ∈ {−1,+1} is the sign of χc j
(indicating whether or not it is negated). Let W be the set of queries for the (i+ 1)-th execution
of WeakDNF(s,B) with confidence parameter δ and B ≥ L∞(2nDComb

!,i). Then, given MEM(f) and
an oracle access to NFilt(x), the set of pairs S = {〈x,λDComb

!,i (x)〉 | x ∈W} for some constant
λ∈ [2/3,4/3], can be computed, with probability at least 1−δ, in time Õ((i+s2B) log2 n log(1/δ)).

Proof We start by proving our first observation. By revisiting the proof of Theorem 13 we can
see that our weak parity algorithm asks queries on Y = {pR | p ∈ {0,1}m} for a randomly chosen
R and then for each query z of a ae.naMQ parity algorithm it asks queries on points of the set
Yz = {z⊕y | y ∈Y}. The set Yz is a subset of the linear subspace of dimension m+1 spanned by the
rows of R and vector y. These queries are then repeatedO(m+ log(1/δ)) times to single out “good”
Fourier coefficients. Therefore by substituting the parameters of WeakDNF(s,B) into the proofs of
Lemma 17 and Theorem 13, we can see thatW can be decomposed into Õ(log2 (sB) logn log(1/δ))
linear subspaces of dimension m= logT for T = Õ(s2B logn).

Our second observation is given by Theorem 18 and states that for each j ≤ i, χc j is a parity on
at most logsB variables.

Our next observation is that the number of hypotheses from {b1χc1 ,b2χc2 , . . . ,biχci} that agree
with f on x equals to

NF1(x) =
f (x)

(
∑ j≤i b jχc j(x)

)

2
+
i
2

,

1452

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

that is, given ∑ j≤i b jχc j(x) and f (x), NF1(x) can be computed in O(1) steps. According to Lemma
20, we can compute ∑ j≤i b jχc j(x) on a linear subspace of dimension m in time Õ(iw logn+ 2m).
Together with the first observation this implies that computing NF1(x) for all points in W can be
done in time

Õ(log2 (sB) logn log(1/δ))Õ(i · log(sB) logn+ s2B logn) = Õ((i+ s2B) log2 n log(1/δ)) .

Equation (5) implies that for every point x, given NF1(x), oracle access to NFilt(x) and α!α!,i we
obtainDComb

!,i (x). The normalization factor α!,i is estimated with relative accuracy 1/3 and therefore
instead of the true DComb

!,i (x) we will obtain λDComb
!,i (x) for some constant λ ∈ [2/3,4/3].

Lemma 21 assumes oracle access to NFilt(x). In the next lemma we show that this oracle can be
simulated efficiently.

Lemma 22 Let {h0,h1, . . . ,h!−1} be the set of hypotheses obtained by B-Comb in ! first stages of
boosting. Let W be the set of queries for the (i+1)-th execution of WeakDNF(s,B) with confidence
parameter δ and B ≥ L∞(2nDComb

!,i). Then, given MEM(f), the set of pairs S = {〈x,NFilt(x)〉 | x ∈
W} can be computed, with probability at least 1−δ, in time Õ(!s2B · log2 n log(1/δ)).

Proof For each j ≤ !− 1, h j is an output of F1 or a random coin flip hypothesis. WeakDNF(s,B)
returns (12−Ω(1s))-approximate hypotheses and therefore each hypothesis generated by F1 is a ma-
jority vote of O(γ−2) = O(s2) short parities (or their negations). A majority vote of these parities
and their negations is simply the sign of their sum, and in particular is determined by a linear com-
bination of parity functions. Hence, as in Lemma 21, h j(x) for all points in W can be computed
Õ((s2+ s2B) log2 n log(1/δ)) time. Therefore for any stage !, h0,h1, . . . ,h!−1 can be computed on
points inW in Õ(!s2B log2 n log(1/δ)) steps giving the required oracle NFilt(x).

Remark 23 In this simulation of B-Comb we ignored the complexity of procedure EstExpRel that is
used to evaluate the normalization factors. The factor α! = E[β(!,NFilt(x))] needs to be estimated
within relative accuracy 1/3 and its value is only used when the estimate α′

! ≥ Θ = c1ε/ log(1/ε)
for some constant c1 since otherwise B-Comb uses a random coin flip hypothesis (see line 7 of the
pseudocode). This implies that the estimate is only used when α! ≥ 3Θ/4. The Chernoff bound
(Lemma 1) implies that if α! ≥ 3Θ/4 then using M = O(log(1/ε) log(1/δ)

ε) random uniform samples
will be sufficient to estimate α! within relative accuracy 1/3 with confidence 1− δ. If α! < 3Θ/4
then with probability 1− δ the obtained estimate α′

! will be less than Θ and therefore will not be
used. Evaluating NFilt(x) on each of these points will take O(!ns2) steps and therefore each of
these estimation will run in time Õ(!ns2 log(1/δ)/ε).

At each stage of the F1 boosting algorithm we need to estimate

α!,i = E[β(!,NFilt(x)) ·β(i,NF1(x))/α′
!]

to within relative accuracy 1/3 and its value is only used when the estimate α′
!,i ≥ c for some

constant c. Therefore it is sufficient to estimate α!,i to within constant additive accuracy. With
probability at least 1− δ this can be achieved by using a sample of O(log(1/δ)) random uniform
points. Estimating both NFilt(x) and NF1(x) on each point takes O(!ns2) steps and therefore each
of these estimations runs in time O(!ns2 log(1/δ)).

1453

FELDMAN

We are now ready to describe the resulting ae.naMQ algorithm for learning DNF expressions.

Theorem 24 There exists an algorithm AENALearnDNF(s) that for any Boolean function f of DNF-
size s, given n,s,ε, and access to MEM(f), with probability at least 1/2, finds an ε-approximator to
f with respect to U. Furthermore, AENALearnDNF(s) runs in time Õ

(
ns4/ε

)
and asks

Õ
(
s4 log2 n/ε

)
non-adaptive MQs.

Proof As we know from the description of B-Filt, it has O(log(1/ε)) stages and for each !
and i, L∞(2nDComb

!,i) = Õ(1/ε). Therefore the running time of each execution of WeakDNF(s,B) is
Õ(ns2/ε). In particular, for every boosting stage of F1, it dominates the running time of comput-
ing the distribution function DComb

!,i (Lemmas 21 and 22) and estimations of α! and α!,i (Remark
23). There are total O(s2 log(1/ε)) executions of WeakDNF and therefore the total running time of
AENALearnDNF(s) is Õ

(
ns4/ε

)
and the total number of non-adaptiveMQs used is Õ

(
s4 log2 n/ε

)
.

The improvements to the algorithm by Bshouty et al. (1999) are summarized below.

• The use of attribute-efficient weak learning improves the total sample complexity from
Õ

(
ns4/ε2

)
to Õ

(
s4 log2 n/ε2

)
and the same running time is achieved without assumptions

on the MQ oracle (see Theorem 16).

• Faster computation of distribution functions used in boosting improves the total running time
from Õ

(
ns6/ε2

)
to Õ

(
ns4/ε2

)
(see Lemmas 20, 21 and 22).

• Tighter estimation of variance improves the dependence of running time and sample com-
plexity on ε from 1/ε2 to 1/ε (Equation 4).

Remark 25 While the analysis of the speedup was done for Freund’s B-Comb booster the same
idea works for any other booster in which estimation of new weight function is based on a linear
combination of previous hypotheses. In particular, for the other known boosting algorithms that
produce smooth distributions: SmoothBoost by Servedio (2003) and AdaFlat by Gavinsky (2003).

7. Handling Noise

Now we would like to show that our DNF learning algorithm can be modified to tolerate random
persistent classification noise in MQs. To simplify the proof we first show that we can assume that
we are dealing with random and independent classification noise.

Lemma 26 The probability that AENALearnDNF(s) asks an MQ for the same point more than once
is upper bounded by P ·2−n/ logQ where P and Q are polynomial in n,s and 1/ε.

Proof We start by observing that in the algorithm AENALearnDNF(s) all the points that are given to
the MQ oracle are chosen uniformly and the points that are used in different executions of WeakDNF
are independent. As can be seen from the proof of Theorem 13, the generated points are of the form
pR⊕y, where R is a randomly and uniformly chosen matrix, y is chosen randomly according toD 1

4k
(defined in Theorem 9) or equal to 0n, and p ∈ {0,1}m. Points generated for two randomly chosen
R1 and R2 are independent of each other and uniformly distributed. Let y0 = 0n, q be the number of
samples taken from D 1

4k
, and y1,y2, . . . ,yq denote the samples.

1454

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

For some randomly chosen R, let x1 = p1R⊕yi and x2 = p2R⊕y j be two different sample points.
For two different sample points either i)= j or p1)= p2. If i)= j then either i)= 0 or j)= 0. Without
loss of generality we assume that i)= 0. Then

Pryi∼D 1
4k

[p1R⊕ yi = p2R⊕ y j] = Pryi∼D 1
4k

[yi = p1R⊕ p2R⊕ y j] ≤ (1− 1
4k

)n ≤ e−n/(4k) .

If p1)= p2 then PrR∼Um×n [(p1⊕ p2)R = yi⊕ y j] = 2−n. This implies that for any two MQs made
by AENALearnDNF(s), probability that they are equal is at most e−n/(4k). As it can be seen from the
analysis of AENALearnDNF(s), k=O(log(s/ε)) and the total number of MQs used is polynomial in
n,s and 1/ε.

If an algorithm does not ask a MQ for the same point again then persistent classification noise
can be treated as random and independent.

7.1 Boosting Weak Parity Learning Algorithm in the Presence of Noise

The main part of the modification is to show an algorithm that can locate heavy Fourier coefficients
of any randomized function can be used to learn DNFs in the presence of noise. Our method can
be applied in more general setting. In particular, it could be used to prove that Jackson’s original
algorithm is resistant to persistent noise in MQs and was recently used to produce a noise tolerant
DNF learning algorithm by Feldman et al. (2006). Previous methods to produce noise-tolerant
DNF learning algorithms gave statistical query analogues of Jackson’s algorithm and then simulated
statistical queries5 in the presence of noise (Jackson et al., 1997; Bshouty and Feldman, 2002). Our
approach is more direct and the resulting algorithm is substantially more efficient than the previous
ones.

The goal of a weak DNF learning algorithm at stage i of boosting is to find a parity correlated
with the function 2nDi(x) f (x) given an oracle access to values of Di(x) and the oracle for f with
noise of rate η< 1/2 instead of MEM(f). Handling the noisy case is further complicated by the fact
that the computation of Di(x) by the boosting algorithm uses the value f (x) (in particular, B-Comb
and B-Filt need the value of f (x) to compute N(x)) which is not available in the noisy case. To
make this dependence explicit we defineDi(x,b) (for b∈ {−1,+1}) to be the value ofDi on x when
the boosting algorithm is supplied with the value b in place of f (x) to compute Di(x) (in particular,
Di(x) = Di(x, f (x))). We will now show a general method to compute a Fourier coefficient of a
function that depends on f (x) given a noisy oracle for f .

Lemma 27 Let g(x,b) be any real-valued function over {0,1}n×{−1,+1} and let Φη denote a
randomized function such that for every x, Φη(x) = f (x) with probability 1−η andΦη(x) =− f (x)
with probability η. Then for each a∈ {0,1}n, [̂g(x, f (x))](a) = Ψ̂g,η(a), whereΨg,η is a randomized
function defined as

Ψg,η(x) =
1
2

(
1

1−2η(g(x,1)−g(x,−1)) ·Φη(x)+g(x,1)+g(x,−1)
)

.

5. They used stronger versions of statistical queries than those introduced by Kearns (1998).

1455

FELDMAN

Proof We use the following observation due to Bshouty and Feldman (2002). For any real-valued
function ψ(x,b)

ψ(x, f (x)) = ψ(x,−1)1− f (x)
2

+ψ(x,1)
1+ f (x)
2

=

1
2
((ψ(x,1)−ψ(x,−1)) f (x)+ψ(x,1)+ψ(x,−1)) .

Then

Ex,Φη(x)[
1
2
(ψ(x,1)−ψ(x,−1)) ·Φη(x)] = (1−2η)Ex[

1
2
(ψ(x,1)−ψ(x,−1)) f (x)] ,

and therefore we can offset the effect of noise in g(x, f (x)) as follows.

̂[g(x, f (x))](a) = E[g(x, f (x))χa(x)]

=
1
2

(Ex[(g(x,1)−g(x,−1))χa(x) f (x)]+Ex[(g(x,1)+g(x,−1))χa(x)])

=
1
2

(
1

1−2ηEx,Φ
η(x)[(g(x,1)−g(x,−1))χa(x) ·Φη(x)]+Ex[(g(x,1)+g(x,−1))χa(x)]

)

= Ex,Φη(x)

[
1
2

(
1

1−2η(g(x,1)−g(x,−1)) ·Φη(x)+g(x,1)+g(x,−1)
)
χa(x)

]
= Ψ̂(a)

An oracle for Φη(x) is exactly the membership query oracle for f (x) with noise of rate η that is
given to us (by Lemma 26 we can ignore the persistency of noise). Therefore Lemma 27 gives a
way to find heavy Fourier coefficients using an oracle for Φη(x) instead of the membership query
oracle for f (x). We apply it to WeakDNF and obtain our noise-tolerant ae.naMQ DNF learning
algorithm.

Theorem 28 There exists an algorithm AENALearnDNF(s,η) that for any Boolean function f of
DNF-size s, given n,s,η,ε, and access to MEM(f) corrupted by random persistent classification
noise of rate η, with probability at least 1/2, finds an ε-approximator to f with respect to U. Fur-
thermore, AENALearnDNF(s,η) runs in time Õ

(
ns4/(ε(1−2η)2)

)
and asks

Õ
(
s4 log2 n/(ε(1−2η)2)

)
non-adaptive MQs.

Proof Section 6.3 gives a way to efficiently compute DComb
!,i (x) given the label f (x). This com-

putation defines the oracle for DComb
!,i (x,b) where b is the supposed label of f (x). Let g(x,b) =

b · 2nDComb
!,i (x,b) and let Ψg,η(x) be defined as in Lemma 27. Given the oracle for DComb

!,i (x,b) and
oracle access to Φη(x) we use AEBoundedSieveRV(θ,k,V) on Ψg,η(x) in the same way it was used
on ψ(x) by WeakDNF(s,B) (see the proof of Theorem 18). By Lemma 27, Ψg,η(x) has the same
Fourier coefficients as f (x)2nDComb

!,i (x, f (x)). Therefore this modified weak learning algorithm will
produce an equivalent hypothesis. We can deal with the noise while estimating the normalization
factor α!,i in exactly the same way.

Furthermore, the definition of Ψg,η and Equation (4) imply that

L∞(Ψg,η) ≤
2

1−2ηL∞(2nDComb
!,i) and Var(Ψg,η) ≤

4
(1−2η)2

L∞(2nDComb
!,i) .

1456

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

By substituting these bounds into Theorem 18 we obtain that the running time and the sample com-
plexity of each execution of the modified weak learner will grow by (1−2η)2. They also imply that
WeakDNF(s,B) will produce parities on log(s2/(ε(1−2η))) variables (this change is absorbed by Õ
notation).

8. Conclusions and Open Problems

In this work we have demonstrated equivalence of attribute-efficient learning of parities from ran-
dom and uniform examples and decoding of random linear binary codes. This result appears to be
the only known evidence of hardness of attribute-efficient learning for a natural concept class. Many
other problems remain open in this area. For example it is unknown whether decision lists or linear
thresholds are learnable attribute-efficiently.

Our results show that some of the most important concepts classes that are learnable attribute
efficiently with respect to the unform distribution using membership queries are also learnable by
significantly weaker non-adaptive MQs. We believe that it is interesting to understand if similar
results can be obtained in the distribution-independent setting. In particular whether monotone
DNF formulae and decision trees can be learned attribute-efficiently using non-adaptive MQs in the
distribution-independent PAC model.

We have also shown an improved algorithm for learning DNF expressions with respect to the
uniform distribution. In addition to being the most efficient known algorithm for learning DNF, it is
attribute-efficient, noise tolerant, and uses membership queries non-adaptively. All known efficient
algorithms for learning DNF are based on Jackson’s (1997) approach to learning DNF expressions.
It would be interesting to find other approaches to learning DNF, possibly avoiding some of the
overheads of the current approach (such as boosting a weak DNF learning algorithm).

Acknowledgments

We thank Leslie Valiant for his advice and encouragement of this research. We are grateful to Jeffrey
Jackson for discussions and clarifications on the DNF learning algorithm of Bshouty et al.. We also
thank Alex Healy, Dmitry Gavinsky, and anonymous COLT and JMLR reviewers for valuable and
insightful comments.

References

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-
Wesley Series in Computer Science and Information Processing. Addison-Wesley, 1974.

D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2:343–370, 1988.

A. Barg. Complexity issues in coding theory. Electronic Colloquium on Computational Complexity
(ECCC), 4(046), 1997.

A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or infinitely many
irrelevant attributes. Journal of Computer and System Sciences, 50:32–40, 1995.

1457

FELDMAN

A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statisti-
cal query model. In Proceedings of STOC, pages 435–440, 2000.

N. Bshouty and V. Feldman. On using extended statistical queries to avoid membership queries.
Journal of Machince Learning Research, 2:359–395, 2002.

N. Bshouty and L. Hellerstein. Attribute efficient learning with queries. Journal of Computer and
System Sciences, 56:310–319, 1998.

N. Bshouty, J. Jackson, and C. Tamon. More efficient PAC learning of DNF with membership
queries under the uniform distribution. In Proceedings of COLT, pages 286–295, 1999.

N. Bshouty, E. Mossel, R. O’Donnell, and R. Servedio. Learning DNF from random walks. In
Proceedings of FOCS, pages 189–199, 2003.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Statist., 23:493–507, 1952.

J. Cooley and J. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series.
Math. Computat., 19:297–301, 1965.

P. Damaschke. Adaptive versus nonadaptive attribute-efficient learning. In Proceedings of STOC,
pages 590–596, 1998.

S. Decatur, O. Goldreich, and D. Ron. Computational sample complexity. SIAM Journal on Com-
puting, 29(3):854–879, 1999.

M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan. Group testing problems in experimental
molecular biology. In Proceedings of Sequences ’97, 1997.

V. Feldman, P. Gopalan, S. Khot, and A. Ponuswami. New Results for Learning Noisy Parities and
Halfspaces. In Proceedings of FOCS, pages 563–574, 2006.

Y. Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, pages 202–216, 1990.

Y. Freund. An improved boosting algorithm and its implications on learning complexity. In Proceed-
ings of the Fifth Annual Workshop on Computational Learning Theory, pages 391–398, 1992.

D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of
Machine Learning Research, 4:101–117, 2003.

S. Goldman, M. Kearns, and R. Schapire. Exact identification of read-once formulas using fixed
points of amplification functions. SIAM Journal on Computing, 22(4):705–726, 1993.

O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proceedings of
STOC, pages 25–32, 1989.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the
ACM, 33(4):792–807, 1986.

1458

ATTRIBUTE-EFFICIENT LEARNING BY NON-ADAPTIVE MEMBERSHIP QUERIES

D. Guijarro, V. Lavin, and V. Raghavan. Exact learning when irrelevant variables abound. In
Proceedings of EuroCOLT ’99, pages 91–100, 1999a.

D. Guijarro, J. Tarui, and T. Tsukiji. Finding relevant variables in PAC model with membership
queries. Lecture Notes in Artificial Intelligence, 1720:313 – 322, 1999b.

D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning
applications. Information and Computation, 100(1):78–150, 1992.

T. Hofmeister. An application of codes to attribute-efficient learning. In Proceedings of EuroCOLT,
pages 101–110, 1999.

J. Jackson. Personal communication, 2004.

J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform
distribution. Journal of Computer and System Sciences, 55:414–440, 1997.

J. Jackson, E. Shamir, and C. Shwartzman. Learning with queries corrupted by classification noise.
In Proceedings of the Fifth Israel Symposium on the Theory of Computing Systems, pages 45–53,
1997.

M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6):
983–1006, 1998.

M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite au-
tomata. Journal of the ACM, 41(1):67–95, 1994.

M. Kearns and U. Vazirani. An introduction to computational learning theory. MIT Press, Cam-
bridge, MA, 1994.

M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine Learning, 17
(2-3):115–141, 1994.

A. Klivans and R. Servedio. Boosting and hard-core set construction. Machine Learning, 51(3):
217–238, 2003.

A. Klivans and R. Servedio. Toward attribute efficient learning of decision lists and parities. In
Proceedings of COLT, pages 234–248, 2004.

E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. In Proceedings
of STOC, pages 455–464, 1991.

L. Levin. Randomness and non-determinism. Journal of Symbolic Logic, 58(3):1102–1103, 1993.

Y. Mansour. Learning boolean functions via the fourier transform. In V. P. Roychodhury, K. Y.
Siu, and A. Orlitsky, editors, Theoretical Advances in Neural Computation and Learning, pages
391–424. Kluwer, 1994.

J. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory, 15:122–127,
1969.

1459

FELDMAN

R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN progress report,
42-44, 1978.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

R. Servedio. Computational sample complexity and attribute-efficient learning. Journal of Com-
puter and System Sciences, 60(1):161–178, 2000.

R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning
Research, 4:633–648, 2003.

M. Sudan. Essential coding theory (lecture notes). Available at
http://theory.lcs.mit.edu/˜madhu/FT02/, 2002.

R. Uehara, K. Tsuchida, and I. Wegener. Optimal attribute-efficient learning of disjunction, parity,
and threshold functions. In Proceedings of EuroCOLT ’97, pages 171–184, 1997.

L. Valiant. A neuroidal architecture for cognitive computation. Journal of the ACM, 47(5):854–882,
2000.

L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

L. Valiant. Circuits of the Mind. Oxford University Press, 1994.

L. G. Valiant. Knowledge infusion. In Proceedings of AAAI, 2006.

J.H. van Lint. Introduction to Coding Theory. Springer, Berlin, 1998.

A. Vardy. Algorithmic complexity in coding theory and the minimum distance problem. In Pro-
ceedings of STOC, pages 92–109, 1997.

1460

Journal of Machine Learning Research 8 (2007) 1461-1487 Submitted 7/06; Revised 4/07; Published 7/07

PAC-Bayes Risk Bounds for Stochastic Averages and Majority Votes of
Sample-Compressed Classifiers

François Laviolette FRANCOIS.LAVIOLETTE@IFT.ULAVAL.CA
Mario Marchand MARIO.MARCHAND@IFT.ULAVAL.CA
Département IFT-GLO
Université Laval
Québec (QC)
Canada, G1K 7P4

Editor:Manfred K. Warmuth

Abstract
We propose a PAC-Bayes theorem for the sample-compression setting where each classifier is de-
scribed by a compression subset of the training data and a message string of additional information.
This setting, which is the appropriate one to describe many learning algorithms, strictly general-
izes the usual data-independent setting where classifiers are represented only by data-independent
message strings (or parameters taken from a continuous set). The proposed PAC-Bayes theorem
for the sample-compression setting reduces to the PAC-Bayes theorem of Seeger (2002) and Lang-
ford (2005) when the compression subset of each classifier vanishes. For posteriors having all their
weights on a single sample-compressed classifier, the general risk bound reduces to a bound simi-
lar to the tight sample-compression bound proposed in Laviolette et al. (2005). Finally, we extend
our results to the case where each sample-compressed classifier of a data-dependent ensemble may
abstain of predicting a class label.
Keywords: PAC-Bayes, risk bounds, sample-compression, set covering machines, decision list
machines

1. Introduction

The PAC-Bayes approach, initiated by McAllester (1999), aims at providing PAC guarantees to
“Bayesian-like” learning algorithms. These algorithms are specified in terms of a prior distribution
P over a space of classifiers that characterizes our prior belief about good classifiers (before the
observation of the data) and a posterior distribution Q (over the same space of classifiers) that takes
into account the additional information provided by the training data. A remarkable result that came
out from this line of research, known as the “PAC-Bayes theorem”, provides a tight upper bound on
the risk of a stochastic classifier (defined on the posterior Q) called the Gibbs classifier.

This PAC-Bayes bound (see Theorem 1) depends both on the empirical risk (i.e., training errors)
of the Gibbs classifier and on “how far” is the data-dependent posteriorQ from the data-independent
prior P. Consequently, a Gibbs classifier with a posteriorQ having all its weight on a single classifier
will have a larger risk bound than another Gibbs classifier, making the same amount of training
errors, using a “broader” posterior Q that gives weight to many classifiers. Hence, the PAC-Bayes
theorem quantifies the additional predictive power that stochastic classifier selection might have
over deterministic classifier selection.

c©2007 François Laviolette and Mario Marchand.

LAVIOLETTE AND MARCHAND

A constraint normally imposed by the PAC-Bayes theorem is that the prior P must be defined
without reference to the training data. Consequently, we cannot directly use the PAC-Bayes theo-
rem to bound the risk of sample-compression learning algorithms (Littlestone and Warmuth, 1986,
Floyd and Warmuth, 1995) because the set of classifiers considered by these algorithms are those
that can be reconstructed from various subsets of the training data. However, this is an important
class of learning algorithms since many well known learning algorithms, such as the support vector
machine (SVM) and the perceptron learning rule, can be considered as sample-compression learn-
ing algorithms (Graepel et al., 2005). Moreover, some sample-compression algorithms (Marchand
and Shawe-Taylor, 2002, Marchand and Sokolova, 2005) have achieved very good performance in
practice by deterministically choosing a sparse classifier making few training errors. It is therefore
worthwhile to investigate how the stochastic selection of sample-compressed classifiers provides an
additional predictive power over the deterministic selection of a single sample-compressed classi-
fier.

In this paper, we extend the PAC-Bayes theorem in such a way that it applies now to both the
usual data-independent setting and the more general sample-compression setting. In the sample-
compression setting, each classifier is represented by two independent sources of information: a
compression set which consists of a small subset of the training data, and a message string of the
additional information needed to obtain a classifier. In the limit where the compression set vanishes,
each classifier is identified only by a message string and the new PAC-Bayes theorem reduces to
the “usual” PAC-Bayes theorem of Seeger (2002) and Langford (2005). However, new quantities
appear in the risk bound when classifiers are also described by their compression sets. As in the case
for the usual data-independent setting, the PAC-Bayes theorem for the sample-compression setting
states that a stochastic Gibbs classifier defined on a posterior over several sample-compressed clas-
sifiers generally has a smaller risk bound than any such single (deterministic) sample-compressed
classifier. Nevertheless, in the limit where the posterior Q puts all its weight on a single sample-
compressed classifier, the new PAC-Bayes risk bound reduces to a bound similar to the tight sample-
compression bound of Laviolette et al. (2005) (which applies only to single sample-compressed
classifiers).

Several “PAC-Bayesian sample-compression bounds” have recently been proposed by Graepel
et al. (2005). However, all these bounds, except one (that concerns consistent SVM classifiers with
fixed sparsity), deals with classifiers that use a fixed subset of the training examples. In contrast, we
provide bounds that applies to a stochastic average (and a majority vote) of classifiers using different
subsets (of different sizes) of the training examples. Finally, we extend our results to the important
case where we have an ensemble of sample-compressed classifiers that can abstain of predicting a
class label.

The paper is organized as follows. After providing a few definitions in Section 2, we review,
in Section 3, the PAC-Bayes theorem for the data-independent setting. Section 4 is the “core”
section of this paper. In that section, we present the sample-compression setting and show how it
generalizes the usual data-independent setting. We then provide the main theorem of this paper,
Theorem 3, which is a PAC-Bayes theorem for the sample-compression setting. In Section 5, we
provide examples of learning algorithms that produce classifiers that are well-described within this
sample-compression setting. We then show, in Section 6, that Theorem 3 reduces to a bound similar
to the tight sample-compression bound of Laviolette et al. (2005) in the limit where the posterior Q
puts all its weight on a single sample-compressed classifier. In that section, we also present a bound
for the “intermediate” case where the posterior has all its weight on a single compression sequence

1462

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

and non-zero weight on several messages. We then show that the risk bound reduces to the one
recently proposed in Laviolette et al. (2006) for the PAC-Bayes SCM. In Section 7, we provide an
alternative formulation of Theorem 3 by including the training errors into the compression sequence.
We then generalize, in Section 8, Theorem 3 to the case were the individual sample-compressed
classifiers may abstain of predicting a class label. Finally, we conclude in Section 9.

This paper extends the preliminary work of Laviolette andMarchand (2005) and Laviolette et al.
(2006).

2. Basic Definitions

We consider binary classification problems where the input space X consists of an arbitrary subset
of Rn and the output space Y = {−1,+1}. An example (x,y) is an input-output pair where x ∈ X
and y ∈ Y .

Throughout the paper, we adopt the PAC setting where each example (x,y) is drawn according
to a fixed, but unknown, probability distribution D on X ×Y . The risk R(f) of any classifier f is
defined as the probability that it misclassifies an example drawn according to D. Hence,

R(f) def= Pr
(x,y)∼D

(
f (x) $= y

)
= E

(x,y)∼D
I(f (x) $= y) ,

where I(a) = 1 if predicate a is true and 0 otherwise.
Given a training sequence S = 〈(x1,y1), . . . ,(xm,ym)〉 of m examples, the empirical risk RS(f)

on S, of any classifier f , is defined according to

RS(f)
def=
1
m

m

∑
i=1

I(f (xi) $= yi)
def= E

(x,y)∼S
I(f (x) $= y) .

In this paper, we will distinguish the usual data-independent setting from the (more general)
sample-compression setting. By the data-independent setting, we mean the “usual” setting where a
space H of classifiers is defined without making any reference to the training data S. Examples of
such a spaceH include the set of linear classifiers on Rn, the set of radial-basis functions on Rn, the
set of k-CNF Boolean formulae (Valiant, 1984) on {0,1}n, the set of decision lists (Rivest, 1987) on
{0,1}n. In contrast, the set of data-dependent balls (Marchand and Shawe-Taylor, 2002)—where
each ball of this set is centered on a training example—is an example of a set of classifiers which
is defined only after observing the training data S. Such a set of classifiers is qualified as being
data-dependent. Moreover, since each data-dependent ball is constructed from a small subset of
the training data S, it is an example of what we call a sample-compressed classifier. We define
more formally the sample-compression setting in section 4 in such a way that it extends the usual
data-independent setting. The next section presents the PAC-Bayes theorem within the (restricted)
data-independent setting.

3. The PAC-Bayes Theorem in the Data-Independent Setting

The PAC-Bayes theorem provides tight upper and lower bounds on the risk of a stochastic classifier
called the Gibbs classifier. Given an input example x, the label assigned to x by the Gibbs classifier
GQ is defined by the following process. We first choose randomly a classifier h according to the

1463

LAVIOLETTE AND MARCHAND

posterior distribution Q and then use h to assign the label to x. The risk of GQ is defined as the
expected risk of classifiers drawn according to Q. Hence,

R(GQ) def= E
h∼Q

R(h) = E
h∼Q

E
(x,y)∼D

I(h(x) $= y) .

Similarly, the empirical risk RS(GQ) of GQ, on a training sequence S of m examples, is given by

RS(GQ) def= E
h∼Q

RS(h) = E
h∼Q

1
m

m

∑
i=1

I(h(xi) $= yi) .

The PAC-Bayes theoremwas first proposed byMcAllester (1999, 2003a). The version presented
here is due to Seeger (2002) and Langford (2005).

Theorem 1 Given any space H of classifiers. For any data-independent prior distribution P over
H and any δ ∈ (0,1], we have

Pr
S∼Dm

(
∀Q on H : kl(RS(GQ)‖R(GQ)) ≤ 1

m

[
KL(Q‖P)+ ln

m+1
δ

])
≥ 1−δ ,

where KL(Q‖P) is the Kullback-Leibler divergence between distributions Q and P:

KL(Q‖P) def= E
h∼Q

ln
Q(h)
P(h)

,

and where kl(q‖p) is the Kullback-Leibler divergence between the Bernoulli distributions with prob-
ability of success q and probability of success p:

kl(q‖p) def= q ln
q
p

+(1−q) ln
1−q
1− p

.

It is rarely mentioned that this theorem provides both an upper bound and a lower bound on the
true risk R(GQ) based on its empirical risk RS(GQ). With probability at least 1−δ over the random
draws of S, R(GQ) is upper-bounded by

sup
(
R : kl(RS(GQ)‖R) ≤ 1

m

[
KL(Q‖P)+ ln

m+1
δ

])

and lower-bounded by

inf
(
R : kl(RS(GQ)‖R) ≤ 1

m

[
KL(Q‖P)+ ln

m+1
δ

])
.

The bounds provided by Theorem 1 hold for any fixed prior P on H and also hold uniformly for
all posteriors Q on H ; this includes any Q chosen by the learner after observing S. This is specified
in the theorem by the fact that the quantifier ∀Q occurs inside the probability over the random draws
of S whereas the quantifier ∀P occurs (textually) outside that probability.

The upper bound given by the PAC-Bayes theorem for the risk of Gibbs classifiers can be turned
into an upper bound for the risk of majority-vote classifiers (often called Bayes classifiers) in the
following way. Given a posterior distribution Q, the Bayes classifier BQ performs a majority vote

1464

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

(under measure Q) of binary classifiers in H . Then BQ misclassifies an example x iff at least half
of the binary classifiers (under measure Q) misclassifies x. It follows that the error rate of GQ is
at least half of the error rate of BQ. Hence R(BQ) ≤ 2R(GQ). It has been shown (Langford and
Shawe-Taylor, 2003, McAllester, 2003b, Germain et al., 2007, Lacasse et al., 2007) that there exists
circumstances where this “factor-of-two” rule can be improved. However, for many 1 posteriors Q,
one can often find a data-generating distribution where we have R(BQ) = 2R(GQ)− ε for arbitrary
small ε> 0.

Finally, for certain distributions Q, a bound for R(BQ) can be turned into a bound for the risk of
a single classifier whenever there exists h∗ ∈ H such that h∗(x) = BQ(x) ∀x ∈ X . Such a classifier
h∗ is equivalent to BQ since it performs the same classification ∀x ∈ X . For example, a linear
classifier with weight vector w is equivalent to a Bayes classifier BQ over linear classifiers with
any distribution Q rotationally invariant around w. By choosing a Gaussian (or a rectified Gaussian
tail) centered on w for Q and Gaussian centered at the origin for P, Langford (2005), Langford and
Shawe-Taylor (2003), and McAllester (2003b) have been able to derived tight risk bounds for the
SVM from the PAC-Bayes theorem in terms of the “margin errors” achieved on the training data.

4. A PAC-Bayes Theorem for the Sample-Compression Setting

In the sample-compression setting, learning algorithms have access to a data-dependent set of clas-
sifiers defined as follows. Given a training sequence S= 〈z1, . . . ,zm〉 of m examples, each classifier
is described entirely by two complementary sources of information: a subsequence Si of S, called
the compression sequence, and a message σ which represents the additional information needed to
obtain a classifier from the compression sequence.

Given a training sequence S of m examples, the compression subsequence Si of S is defined by
the following vector i of indices

i def= (i1, i2, . . . , i|i|)
with : i j ∈ {1, . . . ,m} ∀ j
and : i1 < i2 < .. . < i|i| ,

where |i| denotes the number of indices present in i. Hence, Si denotes the |i|-tuple of examples of
S that are pointed by the vector i of indices defined above. We will also use i to denote the vector of
indices not present in i. Hence, the union of all the examples of Si and Si gives all the m examples
of S. Finally, we will denote by I the set of the 2m possible realizations of i.

The fact that each classifier is described by a compression sequence and a message implies that
there exists a reconstruction function R that outputs a classifier R (σ,Si) when given an arbitrary
compression sequence Si and a message σ chosen from the set M (Si) of all distinct messages that
can be supplied to R with the compression sequence Si. This set M (Si) must be defined a priori
(before observing S) for all possible sequences Si of examples. For any sequence S of m examples,
we will also use

MS
def=

[

i∈I
M (Si) .

1. For example, if there exists (x,y) such that BQ(x) != y and Pr
h∼Q

(h(x) != y) = 1
2 + ε, then R(BQ) = 2R(GQ)− 2ε for

the data-generating distribution that has all its weight on (x,y).

1465

LAVIOLETTE AND MARCHAND

The perceptron learning rule and the SVM are examples of learning algorithms where the final
classifier can be reconstructed solely from a compression sequence (Graepel et al., 2005). In con-
trast, the reconstruction functions for the set covering machine (Marchand and Shawe-Taylor, 2002)
and the decision list machine (Marchand and Sokolova, 2005) need both a compression sequence
and a message string. Furthermore, Marchand and Sokolova (2005) provide numerous examples
where it is advantageous to have a set M (Si) of possible messages that depend on the compression
sequence Si. In these circumstances, the set of messages can be substantially reduced by using the
information contained in Si. We will provide detailed examples below of data-dependent distribu-
tions of messages M (Si).

It is important to realize that the sample-compression setting is strictly more general than the
usual data-independent setting where the space H of possible classifiers (considered by learning
algorithms) is defined without reference to the training data. Indeed, we recover this usual setting
when each classifier is identified only by a message σ taken from a set M def= M (/0). In that case,
for each σ ∈ M , we have a classifier R (σ). Hence, in this limit, we have a data-independent set H
of classifiers given by R and M such that

H = {R (σ) | σ ∈ M } .

However, the validity of Theorem 1 has been established only in the usual data-independent
setting where the priors are defined without reference to the training data S. More recently, Catoni
(2004) has introduced priors where some data-dependence is allowed. Here, we derive here a new
PAC-Bayes theorem for priors that are more natural for sample-compression algorithms. These are
priors defined over I ×MS for any possible S ∈ (X ×Y)m. More precisely, for each S ∈ (X ×Y)m,
we will only consider priors PS on I ×MS that can be be written as the product

PS(i,σ) = PI (i)PM (Si)(σ) , (1)

where PI (i) is the prior probability of using the vector i of indices (defined above) and where
PM (Si)(σ) is the prior probability of using the message string σ given that we use the compression
sequence Si (i.e., a vector i with a sequence S). The message string σ could also be a parameter
chosen from a continuous setM (Si). In this case, PM (Si)(σ) specifies a probability density function.
Throughout the paper, a distribution on I ×MS, prior or posterior, will always mean a distribution
that factorizes as Equation 1.

We consider learning algorithms that output a posterior distributionQ on I ×MS after observing
some training sequence S. The posterior Q has the same form QI (i)QM (Si)(σ) as the one given for
the prior PS but both QI (i) and QM (Si)(σ) can be chosen after observing the training data S, that
is, they can both depend on S in any way. In contrast, PI (i) cannot depend on S at all and PM (Si)
can only depend on S through M (Si). This implies that PI (i) must be defined before observing S
and PM (Si) defined

2 for all possible values of S. Consequently, the set of messages M (Si) must be
defined a priori for any compression sequence Si (we will provide examples in the next section).

Since we do not allow any dependence on S for PI (i), we cannot discriminate a priori between
two vectors of indicies i, i′ ∈ I that have same size. Hence, we propose to assign the same prior
probability to every vector i having the same size, that is, we choose

PI (i) = ζ(|i|) ·
(
m
|i|

)−1
, (2)

2. As we will precisely see later, the allowed dependence on Si of the prior comes from the fact that the empirical risk
of the classifiers will be computed only on the examples of S that are not in the compression sequence Si.

1466

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

where ζ can be any function satisfying ∑m
d=0 ζ(d) = 1. However, since the risk upper bound will

deteriorate as we put more weight on classifiers with large compression sizes |i|, it will be preferable
to choose a function ζ(d) that puts more weight on small values of d.

To shorten the notation, we will denote the true risk R(R (σ,Si)) of classifier R (σ,Si) simply
by R(σ,Si). Similarly, we will denote the empirical risk RSi (R (σ,Si)) of classifier R (σ,Si) simply
by RSi(σ,Si). Recall that Si is the set of training examples which are not in the compression set Si.
Indeed, it will become obvious that the bound on the risk of classifier R (σ,Si) depends only on its
empirical risk on Si.

Given a training sequence S and a distribution Q, and given a new (testing) input example x,
a sample-compressed Gibbs classifier GQ chooses randomly i according to QI and then chooses σ
according to QM (Si) to obtain classifier R (σ,Si) which is then used to determine the class label of
x. Therefore, given a training sequence S and a distribution Q, the true risk R(GQ) of the sample-
compressed Gibbs classifier GQ is given by

R(GQ) = E
i∼QI

E
σ∼QM (Si)

R(σ,Si) .

Furthermore, its empirical risk RS(GQ) is given by

RS(GQ) = E
i∼QI

E
σ∼QM (Si)

RSi(σ,Si) .

Note that these expectations are defined only within the context of a training sequence S.
Given a posterior Q, some expectations below will be performed on a re-scaled distribution

defined by the following.

Definition 2 Given a distribution Q on I ×MS, we will denote by QI the distribution defined as

QI (i)
def=

QI (i)
|i| E

i∼QI

1
|i|

∀i ∈ I , (3)

where |i| def= m−|i|. We will also denote by Q, the distribution on I ×MS given by the product

QI (i)QMSi
(σ) .

Furthermore, let
dQ

def= E
i∼QI

|i| . (4)

It follows directly from these definitions that

E
i∼QI

1
|i|

=
1

E
i∼QI

|i|
=

1
m−dQ

. (5)

Let i f
def= (1,2, . . . ,m) be the (full) vector i that contains all the m indicies. Since |i f | = 0,

we might think that QI is undefined whenever QI (i f) > 0. However, we can simply show that

1467

LAVIOLETTE AND MARCHAND

definition 2 implies that we must have QI (i f) = 1 (and QI (i) = 0 ∀i $= i f) whenever QI (i f) > 0.
This claim simply follows from the fact that for all i we can write

|i| E
j∼QI

1
|j|

= QI (i)+ |i|∑
j'=i
QI (j)

1
|j|

.

Consequently, we have

QI (i f) =
QI (i f)

|i f | E
j∼QI

1
|j|

=
QI (i f)

QI (i f)+ |i f |∑j'=i f QI (j) 1|j|
= 1 .

And for all i $= i f , we have

QI (i) =
QI (i)

|i| E
j∼QI

1
|j|

=
QI (i)

QI (i)+ |i|∑j '=iQI (j) 1|j|

≤ QI (i)
QI (i)+ |i|QI (i f) 1

|i f |
= 0 ,

which proves the claim.
The next theorem constitutes our main result.

Theorem 3 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
∀Q on I ×MS : kl(RS(GQ)‖R(GQ))

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

m+1
δ

])
≥ 1−δ .

Similarly as Theorem 1, Theorem 3 provides both an upper bound and a lower bound on the
true risk R(GQ) based on the empirical risk RS(GQ).

Note that

KL(Q‖PS) = E
i∼QI

E
σ∼QM (Si)

ln
QI (i)QM (Si)(σ)
PI (i)PM (Si)(σ)

= E
i∼QI

ln
QI (i)
PI (i)

+ E
i∼QI

E
σ∼QM (Si)

ln
QM (Si)(σ)
PM (Si)

= KL(QI‖PI) + E
i∼QI

KL(QM (Si)‖PM (Si)) .

Although we must define a priori a continuous family of priors (one prior PT on I ×MT per
possible sequence T ∈ (X ×Y)m), only the prior on the observed training sequence S will contribute
to the bounds.

Theorem 3 is a generalization of Theorem 1 because the latter corresponds to the case where the
probability distribution Q has non-zero weight only for |i|= 0. Indeed, in this case we have 1

m−dQ
=

1
m and Q= Q.

1468

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

Note also that, when QI is non-zero only for one compression size |i| = d, we have QI = QI
and dQ = d. Hence, for a stochastic average of sample-compressed classifiers of fixed compression
size d, the risk bounds depend only on the “original” posterior QI .

More generally, note that QI (i) is smaller than QI (i) for classifiers having a compression size
|i| smaller than the Q-average. This, combined with the fact that KL(Q‖PS) favors Q’s close to PS,
implies that there will be a specialization performed by Q on classifiers having small compression
sizes. As an example, in the case where Q= PS, it is easy to see that Q will put more weight than PS
on “small” classifiers. The specialization suggested by Theorem 3 is therefore stronger than what
it would have been if KL(Q‖PS) would have been in the risk bound instead of KL(Q‖PS). Thus,
Theorem 3 reinforces Occam’s principle of parsimony.

Note also that, since R(BQ) ≤ 2R(GQ), Theorem 3 provides an upper bound for the true risk of
the (deterministic) majority vote BQ. Consider, for example, a majority vote of m classifiers, each
having a compression size |i|= 1. In that case, this majority vote uses all the m training examples of
S. However, the upper bound given by Theorem 3 will be small (whenever KL(Q‖PS) and RS(GQ)
are both small) since dQ = 1.

The rest of this section is devoted to the proof of Theorem 3. We first provide a lemma about
the following quantity.

Definition 4 Let S ∈ (X ×Y)m and D be a distribution on X ×Y . We will denote by BS(i,σ), the
probability that the classifier R (σ,Si) of (true) risk R(σ,Si) makes exactly |i|RSi(σ,Si) errors on
S′i ∼ D|i|. Hence, equivalently, we have

BS(i,σ) def=
(

|i|
|i|RSi(σ,Si)

)
(R(σ,Si))

|i|RSi (σ,Si) (1−R(σ,Si))
|i|−|i|RSi (σ,Si) .

Lemma 5 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

≤ m+1
δ

)
≥ 1−δ .

Proof First observe that (for any i ∈ I , Si ∈ (X ×Y)|i|, and σ ∈ M (Si))

E
Si∼D|i|

1
BS(i,σ)

=
|i|

∑
k=0

Pr
Si∼D|i|

(
RSi(σ,Si) =

k
|i|

)

 E
Si∼D|i|

∣∣RSi (σ,Si)= k
|i|

(
1

BS(i,σ)

)



=
|i|

∑
k=0

Pr
Si∼D|i|

(
|i|RSi(σ,Si) = k

)

(|i|
k
)
(R(σ,Si))k (1−R(σ,Si))|i|−k

=
m−|i|

∑
k=0

1 = m−|i|+1 .

Since the expectation over Si is independent of Si, for any PI and PM (Si) we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

m−|i|+1

= m−|i|+1 ≤ m+1 .

1469

LAVIOLETTE AND MARCHAND

In the first equation above, note that M (Si) must be defined for all possible values of Si since the
expectation on the left-hand side is performed for all possible values of S. Note also that the depen-
dence of the prior P on S comes only through Si. Finally, since E

i∼PI
E

σ∼PM (Si)

1
BS(i,σ) is a non-negative

random variable (function of S) having an expectation of at most m+ 1, we can use Markov’s in-
equality to obtain the lemma.

The next step is to transform the expectation over PS into an expectation over Q to obtain the
following lemma.

Lemma 6 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
∀Q on I ×MS : E

i∼QI
E

σ∼QM (Si)

1
|i|
ln

1
BS(i,σ)

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

m+1
δ

])
≥ 1−δ .

Proof Lemma 5 gives us

Pr
S∼Dm

(
ln

[
E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

]
≤ ln

m+1
δ

)
≥ 1−δ .

Now, for any distribution Q (possibly dependent on S), we have

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼QI

E
σ∼QM (Si)

PI (i)PM (Si)(σ)
QI (i)QM (Si)(σ)

1
BS(i,σ)

.

Since lnx is concave, we can use Jensen’s inequality to obtain

ln

(
E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

)
≥ E

i∼QI
E

σ∼QM (Si)
ln

(
PI (i)PM (Si)(σ)
QI (i)QM (Si)(σ)

1
BS(i,σ)

)

= E
i∼QI

E
σ∼QM (Si)

ln

(
PI (i)PM (Si)(σ)
QI (i)QM (Si)(σ)

)

+ E
i∼QI

E
σ∼QM (Si)

ln
(

1
BS(i,σ)

)

= −KL(Q‖PS)+ E
i∼QI

E
σ∼QM (Si)

ln
(

1
BS(i,σ)

)
.

Consequently, we have

Pr
S∼Dm

(
∀Q on I ×MS : E

i∼QI
E

σ∼QM (Si)
ln

[
1

BS(i,σ)

]
≤ KL(Q‖PS)+ ln

m+1
δ

)
≥ 1−δ .

The lemma is obtained from this last equation by using Equations 3, 4, and 5 to transform the ex-
pectation with respect to QI into an expectation with respect to QI .

1470

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

We can now prove that Theorem 3 is a direct consequence of Lemma 6, of the convexity of
kl(q‖p), and of a trivial upper-bound on the Binomial.

Proof of Theorem 3

For all non-negative integers n and k such that k ≤ n and n≥ 1, we have
(
n
k

)(
k
n

)k(
1− k

n

)n−k
≤ 1 .

From Definition 4, we then have (for any i, σ, and S)

BS(i,σ) ≤
(
R(σ,Si)
RSi(σ,Si)

)|i|RSi (σ,Si) (1−R(σ,Si)
1−RSi(σ,Si)

)|i|−|i|RSi (σ,Si)
.

Consequently, for any i, σ, and S, we have

1
|i|
ln

1
BS(i,σ)

≥ RSi(σ,Si) ln
RSi(σ,Si)
R(σ,Si)

+(1−RSi(σ,Si)) ln
1−RSi(σ,Si)
1−R(σ,Si)

def= kl
(
RSi(σ,Si)‖R(σ,Si)

)
. (6)

We now exploit the fact that kl(q‖p) is a convex function of the pair (q, p) of variables. Indeed, from
the log-sum inequality (Cover and Thomas, 1991), we can show that for any (q, p) ∈ [0,1]× [0,1],
any (r,s) ∈ [0,1]× [0,1], and any α ∈ [0,1], we have

kl
(
αq+(1−α)r‖αp+(1−α)s

)
≤ αkl(q‖p)+(1−α)kl(r‖s) .

Hence, from Equation 6 and Jensen’s inequality applied to kl(q‖p), we have

E
i∼QI

E
σ∼QM (Si)

1
|i|
ln

1
BS(i,σ)

≥ E
i∼QI

E
σ∼QM (Si)

kl
(
RSi(σ,Si)‖R(σ,Si)

)

≥ kl(RS(GQ)‖R(GQ)) .

Theorem 3 then directly follows from this equation and Lemma 6.

5. Learning Algorithms for Stochastic Averages and Majority-Votes of
Sample-Compressed Classifiers

There exists numerous learning algorithms for producing a single sample-compressed classifier.
The perceptron learning rule, for example, produces a linear classifier which can be reconstructed
from the subsequence of training examples that have been used to update the weight vector and the
bias of the linear separator (Graepel et al., 2005). This subsequence of examples then constitutes
the compression sequence of the sample-compressed classifier and the reconstruction function just

1471

LAVIOLETTE AND MARCHAND

consists of the perceptron learning rule executed on the compression sequence. Another example,
also studied by Graepel et al. (2005), is the support vector machine (SVM). Here, the compression
sequence consists of the set of support vectors and the reconstruction function, again, just consists
of running the original learning algorithm on the compression sequence.

Theorem 3 bounds the risk a stochastic average (and the associated majority-vote) of sample-
compressed classifiers. Hence, to apply Theorem 3 to algorithms producing a single classifier (as
the ones described above), we need to use a posterior Q that has all its weight on a single classifier.
In that case, Theorem 3 reduces to Theorem 7 of the next section. However, due to the presence of
KL(Q‖PS) in Theorem 3, and because the prior PI in Equation 2 gives an equal a priori weight to
every vector i having the same number |i| of indices, Theorem 3 can provide a smaller risk upper-
bound for posteriors Q having non-zero weight on several sample-compressed classifiers than for
posteriors having all their weight on a single sample-compressed classifier. In short, the guarantee
provided by Theorem 3 might be better for a stochastic average of sample-compressed classifiers
than for any single sample-compressed classifier. This observation motivates the consideration of
learning algorithms for producing posteriors having non-zero weight over several classifiers.

One way to produce a (hopefully) good posterior over several sample-compressed classifiers
is to exploit some inherent randomness, or variability, present in the base learning algorithm for
single classifiers. The perceptron learning rule is a good example of a learning algorithm that
naturally presents some variability that can be exploited. Indeed, the linear classifier produced
by the perceptron learning rule is generally very sensitive to the order of the training sequence of
examples. Different permutations of the training sequence are likely to produce different linear
classifiers. This variability has been exploited by Herbrich et al. (2001) to produce a large-scaled
Bayes point machine. If we are not concerned by the space occupied by a large population of
classifiers, it is clear from the work of Herbrich et al. (2001) that we could equally well produce
a uniformly-weighted majority vote of perceptrons obtained from a large number of permutations
of the training sequence.3 In that case, the stochastic average of these classifiers would represent
the typical perceptron that we would obtain by choosing at random a permutation of the training
sequence S. We therefore expect that this stochastic Gibbs classifier would be less sensitive to S
than any single perceptron obtained from S. Theorem 3 confirms this intuition with an upper-bound
on the risk that increases with the amount of the KL-divergence between the posterior and the prior.

Often, the base learning algorithm has no obvious randomness or variability that can be ex-
ploited. The SVM provides an obvious example of this type of algorithm since, given any training
sequence S, the maximum soft-margin classifier is unique (and the same for any permutation of S).
In these cases, a population of distinct classifiers can be obtained by training the base learning algo-
rithm on several training sequences sampled from the bootstrap distribution defined on the original
training sequence S; as done in bagging (Breiman, 1996). Another possibility, is to boost (Freund
and Schapire, 1997) the base learning algorithm by adaptively re-weighting a distribution defined
on the training sequence S.

5.1 Stochastic Averages and Majority-Votes of Set Covering Machines

The perceptron learning rule and the SVM are examples of learning algorithms that produce sample-
compressed classifiers R (Si) that can be reconstructed solely from a compression sequence Si.

3. For the case where the training sequence is not linearly-separable, we could simply add a correction to the diagonal
of the kernel matrix as was done by Herbrich et al. (2001).

1472

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

Hence, they are not examples illustrating all the potential of the machinery of data-dependent mes-
sages and priors that was developed in Section 4. We therefore present here an example of a learning
algorithm, called the set covering machine (SCM) (Marchand and Shawe-Taylor, 2002), that does
make use of data-dependent messages to represent sample-compressed classifiers.

As described in Marchand and Shawe-Taylor (2002) and Marchand and Sokolova (2005), a
SCM classifier is a conjunction of data-dependent Boolean-valued features.4 For simplicity, let us
limit ourselves to the case where this set of features consists of data-dependent balls and holes; as
described in Marchand and Sokolova (2005).

Each such feature g is identified by a center xc and a radius ρ. Let d : X ×X → R+ be any
metric. In the case where feature g is a ball, its output g(x), for any x ∈ X , is given by

g(x) =
{
1 if d(x,xc) ≤ ρ
0 if d(x,xc) > ρ

(for balls) .

When feature g is a hole, its output g(x), for any x ∈ X , is given by

g(x) =
{
0 if d(x,xc) ≤ ρ
1 if d(x,xc) > ρ

(for holes) .

Each possible pair (zc,zb) of training examples taken from S defines a feature (ball or hole) that
could potentially be included in the (final) conjunction classifier. The first example, zc = (xc,yc),
defines the center of the feature and the second example, zb = (xb,yb), called the border, determines
its radius ρ= d(xc,xb)±ε; where ε is some very small positive constant chosen a priori. To obtain a
conjunction consistent with each center of its features, we limit ourselves to the case where a feature
centered on a positive example must be a ball and a feature centered on a negative example must
be a hole. Moreover, because we want to obtain a conjunction that makes few training errors and
that contains a small number of features, it is a good strategy to try to use features that, individually,
assigns 0 to a large number of negative examples and to a small number of positive examples.5 In
order to achieve this goal reasonably rapidly and to reduce as far as possible the expected size of
the message strings, we will here limit ourselves to conjunctions of features satisfying the following
conditions:

1. no two concentric balls or holes can belong to the same conjunction;

2. border points are only chosen among the positive examples of S;

3. the conjunction makes no error on its compression sequence Si.

The algorithm proposed by Marchand and Shawe-Taylor (2002) greedily constructs conjunctions of
balls and holes that respect these conditions. Condition 1 is motivated by the fact that a conjunction
of two concentric balls gives the same classifier as the single inner ball (and, symmetrically, a
conjunction of two concentric holes can be replaced by the outer hole). Condition 2 follows from our
strategy of looking for features that, individually, assign 0 to a large number of negative examples

4. Here we use the usual convention that the truth values “false” and “true” of Boolean-valued classifiers are mapped,
respectively, to the output values of −1 and +1 of binary-valued classifiers.

5. We exploit here some properties of a conjunction. Namely, a conjunction that makes no training errors consists of
features that, individually, classify correctly all the positive examples in S. In addition, each negative example of S
must be correctly classified by at least one feature in the conjunction.

1473

LAVIOLETTE AND MARCHAND

and to a small number of positive examples. Indeed, a hole, that can assign 0 to one more negative
example by increasing its radius, without assigning 0 to an extra positive example, will be a “better”
hole to include in the conjunction (a similar observation applies to balls). For Condition 3, we
will see, in the next paragraph, how it helps in reducing the expected size of the messages strings.
For now, note that, to make each feature consistent with its border point, we have to choose ρ =
d(xc,xb)+ ε for a ball and ρ= d(xc,xb)− ε for a hole.

Even under these three conditions, the compression sequence Si alone, does not give enough
information to reconstruct the conjunction of features. From the previous paragraph, we do know
that each negative example in Si must be the center of a hole. However, each positive example in
Si could either be a center (of a ball) or a border point (or both). Hence, we will use messages to
identify centers from among the positive examples in Si. For this task, let P(Si) denote the set of
positive examples among Si. It follows from Condition 1 that, once we use a message that specifies
which are the examples among P(Si) that are used for centers, we automatically know how many
balls to reconstruct from Si. Moreover, since, by Condition 2, each negative example of Si must be
the center of one hole, the number of holes to reconstruct from Si is equal to the number of negative
examples in Si. What remains to be determined, to specify the (final) conjunction classifier, is the
border point in P(Si) for each center in Si. Let us now recall that a conjunction that makes no
errors on Si consists of features that, individually, classify correctly each example in P(Si). Thus,
Condition 3 implies that the border point of each ball center xc must be the example in P(Si) which
is located furthest from xc and the border point of each hole center x′c must be the example in P(Si)
which is located closest from x′c. Hence, the additional information message σ ∈ M (Si) only needs
to specify which are the examples in P(Si) that are centers. For this task, we can simply use a single
bit for each example in P(Si) to indicate if that example is a center. The set M (Si) then consists
of the set of all such possible bit sequences that we can use, given Si. The total number |M (Si)| of
possible messages is then equal to 2p(Si), where p(Si) = |P(Si)|.

Now, to use Theorem 3 as a risk bound for a stochastic average (i.e., Gibbs) of SCMs, we need
to specify the prior PI (i)PM (Si)(σ) over sets of indices and messages. For PI (i), we use the form
proposed in Equation 2. For PM (Si)(σ), we can simply6 assign the same probability to each message
σ ∈ M (Si). In that case we have

PM (Si)(σ) = 2−p(Si) ∀σ ∈ M (Si) .

The task of the learner will then be to produce a posterior QI (i)QM (Si)(σ) such that, hopefully,
R(GQ) (and thus, indirectly, R(BQ)) will be minimal. For this task we could either bag (Breiman,
1996) or boost (Freund and Schapire, 1997) the SCM learning algorithm proposed byMarchand and
Shawe-Taylor (2002). In these cases, the message part of the posterior, QM (Si)(σ), will be non-zero
only for the particular message that is actually used for each compression sequence Si that occurs in
the majority-vote of SCMs. Hence, for each such Si, we have

KL(QM (Si)‖PM (Si)) = p(Si) ln2 .

Another version of the SCM, called PAC-Bayes SCM, has been proposed recently by Laviolette
et al. (2006). In this version each ball radius is specified by a real-valued “message” instead of

6. Marchand and Sokolova (2005) proposed a different data-dependent set of messages and prior which can give a
(slightly) tighter risk bound than the solution we present here. For pedagogical reasons, we have chosen to present
here a simpler (and easier to understand) example of M (Si) and PM (Si)(σ).

1474

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

a border point. Hence, each compression sequence Si consists only of the centers. Given Si, the
message σσσ consists of a |i|-tuple of radius values. Given some large distance R defined a priori, the
prior is given by

PM (Si)(σσσ) = ∏
i∈i

1
R

∀σi ∈ [0,R] , (7)

and the posterior is given by

QM (Si)(σσσ) = ∏
i∈i

1
bi−ai

∀σi ∈ [ai,bi] ⊆ [0,R] , (8)

where each ai and bi values are selected by the learner. This gives

KL(QM (Si)‖PM (Si)) =∑
i∈i
ln

(
R

bi−ai

)
.

A posterior over several SCMs of this type could be constructed by bagging (Breiman, 1996)
or boosting (Freund and Schapire, 1997) the soft-greedy algorithm proposed by Laviolette et al.
(2006). Theorem 3 then provides an upper bound for the risk of these stochastic averages (and
associated majority-votes) of PAC-Bayes SCMs.

6. Single Sample-Compressed Classifiers

In this section, we examine the case when the posterior has all its weight on a single sample-
compressed classifier and show that the risk upper-bound for this case is competitive with the
currently-known tightest sample-compression risk bounds (Langford, 2005, Laviolette et al., 2005).

Let us examine the case when, given a training sequence S, the (stochastic) sample-compressed
Gibbs classifier becomes a deterministic classifier with a posterior having all its weight on a sin-
gle sample-compressed classifier R (Si,σ). In that case, QI = QI , dQ = |i|, and KL(Q‖PS) =
− ln(PI (i)PM (Si)(σ)). Consequently, Lemma 6 gives the following inequality for any prior PS and
any reconstruction function.

Pr
S∼Dm

(
∀i ∈ I ,∀σ ∈ M (Si) : E

i∼QI
E

σ∼QM (Si)
ln

1
BS(i,σ)

≤ ln
1

PI (i)PM (Si)(σ)
+ ln

m+1
δ

)
≥ 1−δ . (9)

Now, let us use the binomial distribution

Bin(m,k,r) def=
(
m
k

)
rk(1− r)m−k ,

to express BS(i,σ) as
BS(i,σ) = Bin

(
m,mRSi(σ,Si),R(σ,Si)

)
.

Let us now define the binomial inversion as

Bin(m,k,δ) def= sup{r : Bin(m,k,r) ≥ δ} .

Equation 9 then gives the following theorem.

1475

LAVIOLETTE AND MARCHAND

Theorem 7 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
∀i ∈ I ,∀σ ∈ M (Si) : R(σ,Si) ≤ Bin

(
m,mRSi(σ,Si),

PI (i)PM (Si)(σ)δ
(m+1)

))
≥ 1−δ .

Let us now compare this risk bound with the tightest currently known sample-compression
risk bounds. The bound proposed in Laviolette et al. (2005) generalizes the the bound proposed
by Langford (2005) to the case where message strings are also used to identify classifiers. With the
current notation, the bound proposed by Laviolette et al. (2005) can be written as

Pr
S∼Dm

(
∀i ∈ I ,∀σ ∈ M (Si) : R(σ,Si) ≤ BinT

(
m,mRSi(σ,Si),PI (i)PM (Si)(σ)δ

))
≥ 1−δ ,

where, instead of the binomial inversion, we use the binomial tail inversion defined as

BinT(m,k,δ) def= sup

{
r :

k

∑
i=0
Bin(m, i,r) ≥ δ

}
.

Consequently, for all values of m,k,δ, we have

Bin(m,k,δ) ≤ BinT(m,k,δ)

When both m and δ are non zero, the equality is realized only for k = 0. Hence, the bound of
Theorem 7 would be tighter than the bound of Laviolette et al. (2005) if Theorem 7 would hold for
δ instead of δ/(m+ 1) . The bound of Theorem 7 is therefore “competitive” with the currently-
known tightest sample-compression risk bound.

Let us now examine the “intermediate” case where QI has all its weight on a single vector of
indices i and QM (Si) has non-zero weight on several messages σ ∈ M (Si). In this case we have
Q = Q and KL(Q‖PS) = − ln(PI (i))+KL(QM (Si)‖PM (Si)). Moreover, given a training sequence
S of m examples and a vector i selected by the learner, the Gibbs classifier GQM (Si)

just chooses
randomly according to QM (Si) a message σ to classify any new example x with classifier R (σ,Si).
Consequently, Theorem 3 reduces to the following corollary.

Corollary 8 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
∀i ∈ I , ∀QM (Si) : kl(RS(GQM (Si)

)‖R(GQM (Si)
)

≤ 1
m−|i|

[
ln

1
PI (i)

+KL(QM (Si)‖PM (Si))+ ln
m+1
δ

])
≥ 1−δ .

This corollary gives the risk bound proposed in Laviolette et al. (2006) for the PAC-Bayes SCM
when the prior is given by Equation 7 and the posterior is given by Equation 8.

1476

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

7. Compression Sequences that Include Training Errors

In their pioneering work on sample compression, Littlestone and Warmuth (1986) have handled
the case of non-zero training errors (also called the “lossy” compression case) by including the
training error points in the sample compression sequence Si. Within this methodology, a part of
the message string σ is used to indicate which indices in i are pointing to training error examples.
The other indices in i are then automatically pointing to the training examples actually used for
constructing the classifier. We can also use this methodology for deriving another upper-bound
on the risk of a stochastic average of sample-compressed classifiers. The resulting upper-bound is
generally slightly looser than the one given by Theorem 3 but it has the advantage of being simpler
(and easier to interpret). In addition, it becomes slightly tighter than the bound of Theorem 3 in the
limit of a consistent Gibbs classifier (i.e., when GQ makes no training errors). We will thus present
(and prove) this other upper-bound.

Since each sample-compressed classifier R (σ,Si) is still given by i and σ (once we have a
training sequence S), we can still use all the definitions up to Theorem 3. However, i points also
to training errors in S and σ specifies also the indices of i pointing to training errors. In particular,
this implies that we still use posteriors of the form QI (i)QM (Si)(σ) but now RS(GQ) is always zero.
With this important difference in mind, we have the following theorem.

Theorem 9 For any δ∈ (0,1], for any reconstruction function mapping compression sequences and
messages to classifiers, for any T ∈ (X ×Y)m and for any prior PT on I ×MT , we have

Pr
S∼Dm

(
∀Q on I ×MS such that RS(GQ) = 0:

R(GQ) ≤ 1− exp
[

−1
m−dQ

(
KL(Q‖PS)+ ln

1
δ

)])
≥ 1−δ .

Before we prove this theorem, let us compare it with Theorem 3 in the consistent case (when GQ
makes no training errors). For Theorem 9, this means that no part of the message σ is needed to
indicate the indices in i that point to training errors. Hence, the messages used for the reconstruction
function are identical for both theorems in the consistent case. Theorem 3, however, applies for
RS(GQ) = 0. Since

kl(0‖R(GQ)) = ln
(

1
1−R(GQ)

)
,

the upper bound of Theorem 3 becomes identical to the bound of Theorem 9 except for the presence
of a ln(m+ 1) term in the argument of the exponential in Theorem 3. Consequently, the bound of
Theorem 9 is slightly tighter in the consistent case.

Proof Since the index vector i, used by classifier R (σ,Si), now contains pointers to error points,
all the classifiers having non-zero posterior weight will have RSi(σ,Si) = 0. Consequently, instead
of using BS(i,σ) (see Definition 4), we will now useCS(i,σ) defined as

CS(i,σ) def=
1

(1−R(σ,Si))m−|i| I
(
RSi(σ,Si) = 0

)
.

1477

LAVIOLETTE AND MARCHAND

For any i ∈ I , Si ∈ (X ×Y)|i|, and σ ∈ M (Si), we have

E
Si∼D|i|

CS(i,σ) = Pr
Si∼D|i|

(
RSi(σ,Si) = 0

)
[

E
Si∼D|i||RSi (σ,Si)=0

CS(i,σ)

]
= 1 .

Then for any PI and PM (Si), we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

CS(i,σ) = E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

CS(i,σ) = 1 .

Since E
i∼PI

E
σ∼PM (Si)

CS(i,σ) is a non-negative random variable (function of S) having an expectation

of 1, we can use Markov’s inequality to obtain

Pr
S∼Dm

(
E
i∼PI

E
σ∼PM (Si)

CS(i,σ) ≤ 1
δ

)
≥ 1−δ .

Thus

Pr
S∼Dm

(
ln

[
E
i∼PI

E
σ∼PM (Si)

CS(i,σ)

]
≤ ln

1
δ

)
≥ 1−δ .

Given this last result, we can use the same technique as in the proof of Lemma 6 to convert the
expectation over PS into an expectation over Q. With this technique, we find that, for any prior PS,
we have

Pr
S∼Dm

(
∀Q on I ×MS such that RS(GQ) = 0:

E
i∼QI

E
σ∼QM (Si)

1
|i|
lnCS(i,σ) ≤ 1

m−dQ

[
KL(Q‖PS)+ ln

1
δ

])
≥ 1−δ . (10)

Since the posterior QI (i)QM (Si)(σ) is non-zero only when RSi(σ,Si) = 0, we have

E
i∼QI

E
σ∼QM (Si)

1
|i|
lnCS(i,σ) = E

i∼QI
E

σ∼QM (Si)
ln

(
1

1−R(σ,Si)

)
≥ ln

(
1

1−R(GQ)

)
,

where the last inequality results from Jensen’s inequality applied to the convex function ln(1/(1−
x)).

The theorem is obtained by including this last result into Equation 10.

8. A PAC-Bayes Theorem for Classifiers that Can Abstain

Many commercial learning systems are producing a “meta-classifier” that consists of an ensemble
of rules. In these cases, each rule is basically a classifier that abstains of predicting the class label
of an example x whenever its premiss (which often consists of a conjunction of Boolean-valued
features) is false on x. If several rules predict a class label for x, the assigned class label will be the
one which is predicted by the largest number of rules in the ensemble. When there is a tie, the whole

1478

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

ensemble may abstain or predict the most frequently encountered class in the training sequence S.
Hence, an ensemble of rules is just a majority-vote of classifiers that may abstain.

To bound the risk of majority-votes and stochastic averages of classifiers that can abstain, it
is “natural” to consider loss functions that may take values /∈ {0,1}. If we limit ourselves to loss
functions taking values in the [0,1] interval (including the loss value for abstaining), we can use the
risk bound of Theorem 1 of McAllester (2003a). However, that bound can be considerably higher
than the trivial upper-bound of 1. A better approach would be to use the bound of Theorem 3.2
of Seeger (2003)—which is valid for classifiers predicting a class among k possible values (for
any integer k > 1). In this section, we propose to generalize this latter approach to the sample-
compression setting. 7 Consequently, we will generalize Theorem 3 for a stochastic average of
sample-compressed classifiers that may abstain. As before, the theorem will also apply to the usual
data-independent setting in the limit where each classifier is only described by a data-independent
message (and an empty compression sequence).

Each classifier h has now three possible outcomes h(x)∈ {−1,0,+1} on any x∈ X . Classifier h
abstains on x whenever h(x) = 0. Therefore, each classifier h is now characterized by two different
probabilities with respect to the random draws of an example (x,y) ∈ X ×Y (where Y is still equal
to {−1,+1}). First, we are concerned with the probability a(h) that classifier h abstains on a new
example, where

a(h) def= Pr
(x,y)∼D

(h(x) = 0) .

And we are also concerned with the probability e(h) that classifier h predicts the wrong class label
of a new example, where

e(h) def= Pr
(x,y)∼D

(h(x) $= y∧h(x) $= 0) .

The probability that classifier h predicts the correct class label of a new example is then equal to
1− e(h)− a(h). In contrast with the case where classifiers cannot abstain, each classifier is now
characterized by a trivalent random variable (instead of a Bernoulli random variable).

The empirical estimates (of these probabilities) on a training sequence S of m examples are
defined as

eS(h)
def=

1
m

m

∑
i=1

I(h(xi) $= 0) · I(h(xi) $= yi) ,

aS(h)
def=

1
m

m

∑
i=1

I(h(xi) = 0) .

Similarly as before, each classifier R (σ,Si) is described by a compression sequence Si and a
message σ taken from a data-dependent set M (Si). Given a training sequence S, the prior and the
posterior have the same form as before. Moreover, a(σ,Si) and e(σ,Si)will denote, respectively, the
probability of abstaining and the probability of incorrectly predicting a label for classifier R (σ,Si).
We will also denote by aSi(σ,Si) and eSi(σ,Si) the empirical estimates (of the corresponding proba-
bilities) on the subsequence Si of examples in S that are not used for constructing classifier R (σ,Si).

7. We consider here the particular case where each classifier either predicts -1 or +1 or abstains of predicting. The
generalization to k classes is straightforward.

1479

LAVIOLETTE AND MARCHAND

The stochastic sample-compressed Gibbs classifier is the same as before. Namely, given a
training sequence S and a distribution Q, and given a new (testing) input example x, a sample-
compressed Gibbs classifier GQ chooses randomly i according to QI and then chooses σ according
toQM (Si) to obtain classifierR (σ,Si)which is then used to determine the class label of x. Therefore,
given a training sequence S and a distribution Q, e(GQ) and a(GQ) are given by

e(GQ) = E
i∼QI

E
σ∼QM (Si)

e(σ,Si) ,

a(GQ) = E
i∼QI

E
σ∼QM (Si)

a(σ,Si) .

Furthermore, their empirical estimates (on a training sequence S of m examples) are given by

eS(GQ) = E
i∼QI

E
σ∼QM (Si)

eSi(σ,Si) ,

aS(GQ) = E
i∼QI

E
σ∼QM (Si)

aSi(σ,Si) .

Note that these expectations are defined only within the context of a training sequence S.
Given a posterior Q, the re-scaled posterior Q is still given by Definition 2.

Theorem 10 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y)m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(
∀Q on I ×MS : kl(aS(GQ),eS(GQ)‖a(GQ),e(GQ))

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

(m+1)(m+2)
2δ

])
≥ 1−δ ,

where kl(q1,q2‖p1, p2) is the Kullback-Leibler divergence between the distributions of two trivalent
random variables Yq and Yp with probabilities (q1,q2) and (p1, p2) respectively. Hence,

kl(q1,q2‖p1, p2) = q1 ln
q1
p1

+q2 ln
q2
p2

+(1−q1−q2) ln
1−q1−q2
1− p1− p2

.

Proof The proof essentially parallels the one given for Theorem 3 but with the important difference
that the empirical estimates eSi(σ,Si) and aSi(σ,Si) are distributed according to a trinomial (instead
of a binomial) with respect to the random draws of S. Consequently, we now define BS(i,σ) as

BS(i,σ) def=
(

|i|
|i|aSi(σ,Si)

)(|i|(1−aSi(σ,Si))
|i|eSi(σ,Si)

)
(a(σ,Si))

|i|aSi (σ,Si)

(e(σ,Si))
|i|eSi (σ,Si) (1−a(σ,Si)− e(σ,Si))

|i|(1−aSi (σ,Si)−eSi (σ,Si)) .

1480

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

Then, for any i ∈ I , Si ∈ (X ×Y)|i| and σ ∈ M (Si), we have

E
Si∼D|i|

1
BS(i,σ)

=
|i|

∑
j=0

|i|− j

∑
k=0

Pr
Si∼D|i|

(
aSi(σ,Si) =

j
|i|

∧ eSi(σ,Si) =
k
|i|

)

E

Si∼D|i|

∣∣∣∣
aSi (σ,Si) = j

|i| ,

eSi (σ,Si) = k
|i|





(
1

BS(i,σ)

)

=
|i|

∑
j=0

|i|− j

∑
k=0

Pr
Si∼D|i|

(
aSi(σ,Si) = j

|i| ∧ eSi(σ,Si) = k
|i|

)

(|i|
j
)(|i|− j

k
)
(a(σ,Si)) j (e(σ,Si))k (1−a(σ,Si)− e(σ,Si))|i|− j−k

=
(|i|+1)(|i|+2)

2
.

Since the expectation over Si is independent of Si, for any PI and PM (Si) we have

E
S∼Dm

E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

E
Si∼D|i|

1
BS(i,σ)

= E
i∼PI

E
Si∼D|i|

E
σ∼PM (Si)

(|i|+1)(|i|+2)
2

=
(|i|+1)(|i|+2)

2
≤ (m+1)(m+2)

2
.

Since E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ) is a non-negative random variable (function of S) having an expectation of

at most (m+1)(m+2)/2, we can use Markov’s inequality to obtain

Pr
S∼Dm

(
E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

≤ (m+1)(m+2)
2δ

)
≥ 1−δ .

Hence,

Pr
S∼Dm

(
ln

[
E
i∼PI

E
σ∼PM (Si)

1
BS(i,σ)

]
≤ ln

(m+1)(m+2)
2δ

)
≥ 1−δ .

Similarly as in the proof of Lemma 6, we can transform the expectation over PS into an expectation
over Q to obtain

Pr
S∼Dm

(
∀Q on I ×MS : E

i∼QI
E

σ∼QM (Si)

1
|i|
ln

1
BS(i,σ)

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

(m+1)(m+2)
2δ

])
≥ 1−δ . (11)

For all non-negative integers n, j,k such that j+ k ≤ n and n≥ 1, we have
(
n
j

)(
n− j
k

)(
j
n

) j(k
n

)k(
1− j

n
− k
n

)n− j−k
≤ 1 .

1481

LAVIOLETTE AND MARCHAND

Then, for any i, σ, and S, we have

BS(i,σ) ≤
(
a(σ,Si)
aSi(σ,Si)

)|i|aSi (σ,Si)
·
(
e(σ,Si)
eSi(σ,Si)

)|i|eSi (σ,Si)

·
(

1−a(σ,Si)− e(σ,Si)
1−aSi(σ,Si)− eSi(σ,Si)

)|i|(1−aSi (σ,Si)−eSi (σ,Si))
.

Consequently, for any i, σ, and S, we have

1
|i|
ln

1
BS(i,σ)

≥ aSi(σ,Si) ln
aSi(σ,Si)
a(σ,Si)

+ eSi(σ,Si) ln
eSi(σ,Si)
e(σ,Si)

+(1−aSi(σ,Si)− eSi(σ,Si)) ln
1−aSi(σ,Si)− eSi(σ,Si)
1−a(σ,Si)− e(σ,Si)

def= kl
(
aSi(σ,Si),eSi(σ,Si)‖a(σ,Si),e(σ,Si)

)
.

Since kl(q1,q2‖p1, p2) is a convex function of (q1,q2, p1, p2), we can use Jensen’s inequality to
obtain

E
i∼QI

E
σ∼QM (Si)

1
|i|
ln

1
BS(i,σ)

≥ E
i∼QI

E
σ∼QM (Si)

kl
(
aSi(σ,Si),eSi(σ,Si)‖a(σ,Si),e(σ,Si)

)

≥ kl(aS(GQ),eS(GQ)‖a(GQ),e(GQ)) .

The theorem directly follows from this equation and Equation 11.

All PAC-Bayes theorems, including the above, are statements about probabilities and their em-
pirical estimates on a sample—no loss functions are involved. Here, let us consider that the loss
!(h(x),y) suffered by classifier h on an example (x,y) is given by

!(h(x),y) =






1 if h(x) $= y ∧ h(x) $= 0
0 if h(x) = y
c if h(x) = 0 ,

for some constant c ∈ [0,1]. Since the risk R(h) of classifier h is its expected loss, we have

R(h) = e(h)+ c ·a(h) .

Hence, for a sample-compressed Gibbs classifier GQ, we have R(GQ) = e(GQ)+ c · a(GQ) (with a
similar relation for the empirical estimates on a training sequence S). Therefore, to upper-bound
R(GQ), we simply need to find the largest value of e(GQ) + c · a(GQ) permitted by Theorem 10
given that we know eS(GQ) and aS(GQ). Consequently, Theorem 10 has the following corollary.

Corollary 11 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y)m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(
∀Q on I ×MS : R(GQ) ≤ sup

{
e+ ca

∣∣ kl(aS(GQ),eS(GQ)‖a,e)

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

(m+1)(m+2)
2δ

]})
≥ 1−δ .

1482

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

To upper-bound the risk of the majority-vote BQ with Theorem 10, we need to redefine the
risk R(BQ) (in terms of the loss function ! defined above) and related it to e(GQ) and a(GQ). For
this task, let us adopt the convention that BQ(x) abstains of predicting the label of x whenever the
Q-weight of classifiers predicting +1 is equal to the Q-weight of classifiers predicting −1 (this
includes the case when all the classifiers having non-zero posterior weight abstain).

Similarly as our definition of e(GQ), let e(BQ) denote the probability that BQ predicts incorrectly
the label of x on a random draw of (x,y). Furthermore, let e(x,y)(GQ) denote the probability that GQ
predicts incorrectly the label of (x,y) and let a(x,y)(GQ) denote the probability that GQ abstains on
(x,y), that is,

e(x,y)(GQ) def= E
h∼Q

I(h(x) $= y ∧ h(x) $= 0)

a(x,y)(GQ) def= E
h∼Q

I(h(x) = 0) .

Similarly, let e(x,y)(BQ) = 1 iff BQ predicts incorrectly the label of (x,y). Therefore,

e(x,y)(BQ) = 1 ⇐⇒ e(x,y)(GQ) >
1−a(x,y)(GQ)

2
.

Hence,

e(BQ) def= E
(x,y)∼D

e(x,y)(BQ)

= E
(x,y)∼D

I
(
e(x,y)(GQ) >

1−a(x,y)(GQ)
2

)

= Pr
(x,y)∼D

(
2e(x,y)(GQ)+a(x,y)(GQ) > 1

)

< 2e(GQ)+a(GQ) ,

where, for the last line, we have used Markov’s inequality for the non-negative random variable
2e(x,y)(GQ)+a(x,y)(GQ) with expectation 2e(GQ)+a(GQ).

Since R(BQ) = e(BQ)+ c ·a(BQ), we can obtain an upper bound on R(BQ) by upper-bounding
a(BQ). However,

a(BQ) = Pr
(x,y)∼D

(
e(x,y)(GQ) =

1−a(x,y)(GQ)
2

)
.

Since Theorem 10 gives non control on the domain of (e(GQ),a(GQ)) that is bounded with high
probability, we cannot use it to find a tight upper-bound for a(BQ). Therefore, since the loss c of
abstaining is at most 1, we will simply use

R(BQ) ≤ e(BQ)+a(BQ) = E
(x,y)∼D

I
(
e(x,y)(GQ) ≥

1−a(x,y)(GQ)
2

)

= Pr
(x,y)∼D

(
2e(x,y)(GQ)+a(x,y)(GQ) ≥ 1

)
≤ 2e(GQ)+a(GQ) ,

where we have, once again, used Markov’s inequality. 8 Consequently, we have the following
corollary to bound R(BQ).

8. We might think that this upper bound for R(BQ) is worse than the the upper bound of 2R(GQ) for classifiers that
cannot abstain. However, the two upper bounds coincides whenever the cost c of abstaining is 1/2 or, equivalently, if
we force the abstaining classifiers to predict and if their predictions are correct with probability 1/2.

1483

LAVIOLETTE AND MARCHAND

Corollary 12 For any δ ∈ (0,1], for any reconstruction function mapping compression sequences
and messages to classifiers that may abstain, for any T ∈ (X ×Y)m and for any prior PT on I ×MT ,
we have

Pr
S∼Dm

(
∀Q on I ×MS : R(BQ) ≤ sup

{
2e+a

∣∣ kl(aS(GQ),eS(GQ)‖a,e)

≤ 1
m−dQ

[
KL(Q‖PS)+ ln

(m+1)(m+2)
2δ

]})
≥ 1−δ .

Note that the values of e and a for which the supremum in Corollary 11 and 12 are attained
are generally not upper bounds of both e(GQ) and a(GQ). Consequently, the risk bound given by
Corollary 11 and 12 are tighter than those we would have obtained by bounding e(GQ) and a(GQ)
separately.

8.1 Reduced Coulomb Energy Networks

Corollaries 8 and 11 can be used to bound the risk of stochastic averages and majority-votes of
sample-compressed classifiers that can abstain. The reduced Coulomb energy (RCE) network
(see Reilly et al. 1982 and Duda et al. 2000) provides a simple example of such a majority-vote.
Indeed, a RCE network is basically a majority-vote of single balls. As for the SCM case, each ball
is described by a training example called a center (xc,yc), and another training example called a
border (xb,yb). Given any metric d, the output h(x) on any input example x of a ball is given by yc
if d(x,xc)≤ d(x,xb), otherwise (if d(x,xc) > d(x,xb)) it abstains of predicting a class label. Hence,
each sample-compressed classifier has here a compression sequence Si of only two examples. Given
Si, the message string (which consists here of a single bit) just specifies which of the two examples
of Si is the center.

Consequently, the prior PI (i) will be non-zero only for |i| = 2 and distributed uniformly over
all pairs of (distinct) indices. The posterior QI (i) will also be non-zero only for |i| = 2 but only
balls selected by the RCE network learning algorithm, described in Reilly et al. (1982) and Duda
et al. (2000), will give pairs of indices of non-zero posterior weight. The message-part of the prior,
PM (Si)(σ), assigns equal probability to the two possible single-bit messages and the message-part
of the posterior, QM (Si)(σ), assigns a weight of one to the single-bit message that is actually used
with the two-example compression sequence Si. With this form for the prior and the posterior,
Corollary 8 provides a tight bound for the risk of the stochastic average GQ. However, the empirical
error rate eS(GQ) may be large on some S for simple classifiers that are constructed from only two
examples in the RCE network. Hence, since eS(GQ) may be large, Corollary 11 may only provide
a loose bound for the majority-vote BQ due to the looseness involved in upper-bounding e(BQ) by
2e(GQ)+a(GQ).

9. Conclusion

We have derived a PAC-Bayes theorem for the sample-compression setting where each classifier
is described by a compression subset of the training data and a message string of additional in-
formation. We have emphasized that many learning algorithms are producing classifiers that are
well-described within this setting. We have seen that the PAC-Bayes theorem for the sample-
compression setting reduces to the PAC-Bayes theorem of Seeger (2002) and Langford (2005) in the

1484

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

usual data-independent setting when classifiers are represented only by data-independent message
strings (or parameters taken from a continuous set). For posteriors having all their weights on a
single sample-compressed classifier, the general risk bound reduces to a bound similar to the tight
sample-compression bound of Laviolette et al. (2005). The PAC-Bayes risk bound of Theorem 3
is, however, valid for sample-compressed Gibbs classifiers with arbitrary posteriors. Moreover,
we have seen that the risk bound supports the strategy of randomizing the predictions over several
sample-compressed classifiers instead of predicting with a single sample-compressed classifier. In-
deed, a stochastic Gibbs classifier defined on a posterior over several sample-compressed classifiers
can have a smaller risk bound than any such single (deterministic) sample-compressed classifier.
Finally, to obtain a performance guarantee for many “rule-based systems” and RCE networks, we
have generalized the PAC-Bayes theorem to the case where each sample-compressed classifier in
the ensemble can abstain of predicting a class label.

Since the risk bounds derived in this paper are tight for stochastic averages of classifiers, it is
hoped that they will be effective at guiding learning algorithms for choosing the optimal tradeoff
between the empirical risk, the sample compression set size, and the “distance” between the prior
and the posterior. However, given an ensemble of classifiers, we usually prefer to predict with the
majority-vote BQ instead of the stochastic average GQ. In these cases, the PAC-Bayesian guarantee
for BQ only comes indirectly through the inequality R(BQ) ≤ 2R(GQ) (for ensemble of classifiers
that cannot abstain). This is clearly inappropriate for many extensively-used learning algorithms,
such as Adaboost (Freund and Schapire, 1997), that produce majority-votes having a large under-
lying R(GQ) and a very small R(BQ). Finding better guarantees in these circumstances, along the
lines proposed by Lacasse et al. (2007) and Germain et al. (2007), is therefore an important open
problem in machine learning.

Acknowledgments

Work supported by NSERC Discovery grants 262067 and 122405.

References

Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

Olivier Catoni. A PAC-Bayesian approach to adaptive classification. Thecnical report, Université
Paris 6, 2004.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory, chapter 12. Wiley, 1991.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, 2000.

Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

1485

LAVIOLETTE AND MARCHAND

Pascal Germain, Alexandre Lacasse, Francois Laviolette, and Mario Marchand. A pac-bayes risk
bound for general loss functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in
Neural Information Processing Systems 19. MIT Press, Cambridge, MA, 2007.

Thore Graepel, Ralf Herbrich, and John Shawe-Taylor. PAC-Bayesian compression bounds on the
prediction error of learning algorithms for classification. Machine Learning, 59:55–76, 2005.

Ralf Herbrich, Thore Graepel, and Colin Campbell. Bayes point machines. Journal of Machine
Learning Research, 1:245–279, 2001.

Alexandre Lacasse, Francois Laviolette, Mario Marchand, Pascal Germain, and Nicolas Usunier.
PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing
Systems 19. MIT Press, Cambridge, MA, 2007.

John Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learn-
ing Research, 6:273–306, 2005.

John Langford and John Shawe-Taylor. PAC-Bayes & margins. In S. Thrun S. Becker and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 423–430. MIT
Press, Cambridge, MA, 2003.

François Laviolette and Mario Marchand. PAC-Bayes risk bounds for sample-compressed Gibbs
classifiers. Proceedings of the 22nth International Conference on Machine Learning (ICML
2005), pages 481–488, 2005.

François Laviolette, Mario Marchand, and Mohak Shah. Margin-sparsity trade-off for the set cover-
ing machine. Proceedings of the 16th European Conference on Machine Learning (ECML 2005);
Lecture Notes in Artificial Intelligence, 3720:206–217, 2005.

François Laviolette, Mario Marchand, and Mohak Shah. A PAC-Bayes approach to the set covering
machine. Proceedings of the 2005 conference on Neural Information Processing Systems (NIPS
2005), 2006.

Nicholas Littlestone and Manfred K. Warmuth. Relating data compression and learnability. Tech-
nical report, University of California Santa Cruz, Santa Cruz, CA, 1986.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of Machine Learning
Reasearch, 3:723–746, 2002.

Mario Marchand and Marina Sokolova. Learning with decision lists of data-dependent features.
Journal of Machine Learning Reasearch, 6:427–451, 2005.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37:355–363, 1999.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5–21, 2003a.

David McAllester. Simplified PAC-Bayesian margin bounds. Proceedings of the 16th Annual Con-
ference on Learning Theory, Lecture Notes in Artificial Intelligence, 2777:203–215, 2003b.

1486

SAMPLE-COMPRESSED PAC-BAYES BOUNDS

Douglas L. Reilly, Leon N. Cooper, and Charles Elbaum. A neural model for category learning.
Biological Cybernetics, 45:35–41, 1982.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

Matthias Seeger. PAC-Bayesian generalization bounds for gaussian processes. Journal of Machine
Learning Research, 3:233–269, 2002.

Matthias Seeger. Bayesian gaussian process models: PAC-Bayesian generalisation error bounds and
sparse approximations. PhD Thesis, University of Edinburgh, 2003.

Leslie G. Valiant. A theory of the learnable. Communications of the Association of Computing
Machinery, 27(11):1134–1142, November 1984.

1487

Journal of Machine Learning Research 8 (2007) 1489-1517 Submitted 7/06; Revised 3/07; Published 7/07

On the Effectiveness of Laplacian Normalization for Graph
Semi-supervised Learning

Rie Johnson RIE1@US.IBM.COM
IBM T.J. Watson Research Center
Hawthorne, NY 10532, USA

Tong Zhang TZHANG@YAHOO-INC.COM
Yahoo! Inc.
New York City, NY 10011, USA

Editor: Charles Elkan

Abstract
This paper investigates the effect of Laplacian normalization in graph-based semi-supervised learn-
ing. To this end, we consider multi-class transductive learning on graphs with Laplacian regular-
ization. Generalization bounds are derived using geometric properties of the graph. Specifically,
by introducing a definition of graph cut from learning theory, we obtain generalization bounds that
depend on the Laplacian regularizer. We then use this analysis to better understand the role of graph
Laplacian matrix normalization. Under assumptions that the cut is small, we derive near-optimal
normalization factors by approximately minimizing the generalization bounds. The analysis reveals
the limitations of the standard degree-based normalization method in that the resulting normaliza-
tion factors can vary significantly within each connected component with the same class label,
which may cause inferior generalization performance. Our theory also suggests a remedy that does
not suffer from this problem. Experiments confirm the superiority of the normalization scheme
motivated by learning theory on artificial and real-world data sets.
Keywords: transductive learning, graph learning, Laplacian regularization, normalization of graph
Laplacian

1. Introduction

Graph-based methods, such as spectral embedding, spectral clustering, and semi-supervised learn-
ing, have drawn much attention in the machine learning community. While various ideas have been
proposed based on different intuitions, only recently have there been theoretical studies trying to
understand why these methods work.

In spectral clustering, a traditional starting point is to find a partition of a graph that minimizes
a certain definition of “graph cut” that quantifies the quality of the partition. The cut is the objective
one attempts to minimize. Spectral methods can then be derived as a certain continuous relaxation
that approximately solves the “graph cut” problem. Based on various intuitions and heuristics,
various definitions of cuts have been proposed in the literature (for example, Shi and Malik, 2000,
Ding et al., 2001, among others). In order to understand such methods, we need to ask the following
two questions. First what is the quality of the relaxation approach as an approximation method to
solve the original “graph cut” problem. Second, and more importantly, we need to understand why
one should optimize one definition of “cut” instead of other alternatives. In the literature, different
arguments and intuitions have been proposed to justify different choices. However, without a more

c©2007 Rie Johnson and Tong Zhang.

JOHNSON AND ZHANG

universally acceptable criterion, it is difficult to argue that one cut definition is better than another
just based on heuristics. If a universally agreeable standard does exist, then one should focus on that
criterion instead of an artificially defined cut problem.

For example, in the context of spectral clustering, there are two well-known types of graph cut,
the ratio cut (Hagen and Kahng, 1992) and the normalized cut (Shi and Malik, 2000). Approximate
optimization of the ratio cut leads to eigenvector computation of the unnormalized graph Laplacian
matrix (which we will define later), and that of the normalized cut involves the normalized graph
Laplacian matrix (normalized using node degrees). Although a number of empirical studies indicate
that the normalized cut often leads to better clustering results, there isn’t any direct theoretical proof
except for some implicit evidence. As another example, the definition of graph Laplacian in the
spectral graph theory in Chung (1998) is normalized, but that is for graph theoretical reasons instead
of statistical reasons. Specifically, the normalized Laplacian allows easier translation of results from
differential geometry, and it also allows consistent relations with conductance on Markov chains.
The compatibility of continuous Laplacian on manifold and normalized graph Laplacian was also
noted by von Luxburg et al. (2005) from a different perspective. Similarly, some analysis of spectral
clustering employs normalized cut (Meilă et al., 2005, for example) as that makes derivation easier.
These can be regarded as implicit evidence for preferring the normalized Laplacian over the unnor-
malized Laplacian. However, it has not been directly proved that such degree-based normalization
(corresponding to normalized cut) should improve performance.

In order to understand this issue better, we take a different approach in this paper. Observe that
for spectral clustering applications, there are often pre-defined (but unknown) clusters (classes). In
this setting, the goal is to find such classes either using unsupervised or semi-supervised methods.
Therefore for such problems, a universally agreeable standard is to find clusters that overlap sig-
nificantly with the underlying class labels. That is, instead of using any artificially defined cut,
we should design an algorithm to minimize the classification error. This is the criterion we focus
on in this paper. We will see that normalization comes naturally into the generalization analysis
we develop. By optimizing the corresponding generalization bounds, we seek to obtain a better
understanding of the effect of Laplacian normalization.

In spectral clustering or graph based semi-supervised learning, one starts with similarity graphs
that link similar data points. For example, one may connect data points that are close in the feature
space to form a k-nearest neighbor graph. If the graph is fully connected within each class and
disconnected between the classes, then appropriate cut minimization leads to perfect classification.
It was proposed in Ng et al. (2002) that one may first project these data points into the eigenspace
corresponding to the largest eigenvalues of a normalized adjacency matrix of the graph and then
use the standard k-means method to perform clustering. The basic motivation is quite similar to
that of Shi and Malik (2000). It can be shown that in the ideal case (each class forms a connected
subgraph, and there is no inter-class edge), points in the same cluster will be mapped into a single
point in the reduced eigenspace, while points in different clusters will be mapped to different points.
This implies that for clustering the distance in the reduced space is better than the original distance.
A natural question in this setting is how to design a distance function that leads to better clustering.
While the argument in Ng et al. (2002) gives a satisfactory answer in the idealized case, it is far less
clear what happens in general. One approach to address this problem is to learn a distance metric
that can lead to more desirable clustering results from a set of labeled examples (for example, as in
Xing et al., 2003). The inner product associated with a distance metric can be viewed as a kernel,

1490

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

and the kernel fully determines the outcome of the k-means algorithm. Therefore this approach can
also be viewed as designing a kernel optimal for clustering.

Closely related to clustering, one may also consider kernel design methods in semi-supervised
learning using a discriminative method such as SVM (e.g., Lanckriet et al., 2004). In this setting, the
change of the distance metric becomes a change of the underlying kernel. If the kernel is induced
from a graph, then one may formulate semi-supervised learning directly on the graph; for example,
see Belkin and Niyogi (2004), Szummer and Jaakkola (2002), Zhou et al. (2004) and Zhu et al.
(2003). In these studies, the kernel is induced from the adjacency matrixW whose (i, j)-entry is the
weight of edge (i, j). W is often normalized by D−1/2WD−1/2 as in Chung (1998), Shi and Malik
(2000), Ng et al. (2002), Zhou et al. (2004), where D is a diagonal matrix whose (j, j)-entry is the
degree of the j-th node, but sometimes not (Belkin and Niyogi, 2004, Zhu et al., 2003). Although
such normalization can significantly affect the performance, the issue has not been carefully studied
from the learning theory perspective. The relationship of kernel design and graph learning was
investigated in Zhang and Ando (2006), where it was argued that quadratic regularization-based
graph learning can be regarded as kernel design in the spectral domain. That is, one keeps the kernel
eigenvectors and modifies the corresponding eigenvalues. Moreover if input data are corrupted with
noise, then such spectral kernel design can help to improve classification performance. However,
the analysis does not explain why normalization of the adjacency matrixW is useful for practical
purposes.

Our goals here are twofold. First we present a model for transductive learning on graphs and
develop a margin analysis for multi-class graph learning. We then analyze graph learning using
graph properties such as graph-cut and a concept we call pure subgraph. The analysis naturally
employs quantities formalizing the standard graph-learning assumption that well connected nodes
are likely to have the same label. Second, we use this analysis to obtain a better understanding
of normalizing the Laplacian matrix (D−W) in graph semi-supervised learning. As mentioned
above, normalization has been commonly practiced and appears to be useful, but there hasn’t been
any solid theoretical justification on why it should be useful. Our analysis addresses this issue
from a learning theoretical point of view, and reveals a limitation of the standard degree-based
normalization scheme. We then propose a remedy based on the learning theory results and use
experiments to demonstrate that the remedy leads to improved classification performance.

This paper expands on our preliminary results reported in Ando and Zhang (2007).

2. Transductive Learning Model

We consider the following multi-category transductive learning model defined on a graph. Let
V = {v1, . . . ,vm} be a set of m nodes, and let Y be a set of K possible output values. Assume
that each node v j is associated with an output value y j ∈ Y , which we are interested in predicting.
In order to do so, we randomly draw a set of n indices Zn = { ji : 1 ≤ i ≤ n} from {1, . . . ,m}
uniformly and without replacement. We manually label the n nodes v ji with labels y ji ∈ Y , and then
automatically label the remaining m−n nodes. The goal is to estimate the labels on the remaining
m−n nodes as accurately as possible.

In this paper, we shall assume that the labels y = [y1, . . . ,ym] are deterministic. However, the
analysis can also be applied if we have random labels. In the transductive learning setting consid-
ered in this paper, we may assume that we are given a single random draw y = [y1, . . . ,ym], which
we fix. With this fixed y vector, we are interested in the performance of reconstructing it from a

1491

JOHNSON AND ZHANG

subset of labels. This formulation is more appropriate for problems such as classification on graphs
considered here.

In modern machine learning, instead of estimating the labels y j directly, y j is often encoded
into a vector in RK , so that the problem becomes that of generating an estimation vector f j =
[f j,1, . . . , f j,K] ∈ RK , which can then be used to recover the label y j. In multi-category classifica-
tion with K classes Y = {1, . . . ,K}, we encode each y j = k ∈ Y as ek ∈ RK , where ek is a vector of
zero entries except for the k-th entry being one. Given a function f j = [f j,1, . . . , f j,K] ∈ RK (which is
intended to approximate ey j), we decode the corresponding label estimation ŷ j as:

ŷ j = ŷ(f j) = argmax
k

{
f j,k : k = 1, . . . ,K

}
.

If the true label is y j, then the corresponding classification error is:

err(f j,y j) = I(ŷ(f j) $= y j),

where we use I(·) to denote the set indicator function.
In order to estimate the concatenated vector f= [f j] = [f j,k] ∈ RmK from only a subset of labeled

nodes, we have to impose restrictions on possible values of f. In this paper, we consider restrictions
defined through a quadratic regularizer of the following form:

fTQKf=
K

∑
k=1
fT·,kK−1f·,k,

where K ∈ Rm×m is a positive definite kernel matrix and f·,k = [f1,k, . . . , fm,k] ∈ Rm. That is, the
predictive vector for each class k is regularized separately. We assume that the kernel matrix K is
full-rank. We will consider the kernel matrix induced by the graph Laplacian, which we shall define
later in the paper. Note that we use the bold symbol K to denote the kernel matrix and the regular
capitalized K to denote the number of classes.

Given a vector f ∈ RmK , the accuracy of its component f j = [f j,1, . . . , f j,K] ∈ RK is measured by
a loss function φ(f j,y j). Our learning method attempts to minimize the empirical risk on the set Zn
of n labeled training nodes, subject to fTQKf being small:

f̂(Zn) = arg min
f∈RmK

[
1
n ∑j∈Zn

φ(f j,y j)+λfTQKf

]
. (1)

where λ> 0 is an appropriately chosen regularization parameter.
In this paper, we focus on a special class of loss functions of the form φ(f j,y j)=∑K

k=1 φ0(f j,k,δk,y j),
where δa,b is the delta function defined as: δa,b = 1 when a= b and δa,b = 0 otherwise. In addition,
we introduce the following assumption for convenience.

Assumption 1 Let φ(f j,y j) = ∑K
k=1 φ0(f j,k,δk,y j) in (1), where f j = [f j,1, . . . , f j,K] ∈ RK . Assume

that there exist positive constants a, b, and c such that

• φ0(x,y) is non-negative and convex in x.

• When y= 0,1, and φ0(x,y) ≤ a, |∇1φ0(x,y)| ≤ b, where ∇1φ0(x,y) denotes a sub-gradient of
φ0(x,y) with respect to x.

1492

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

• c= inf{x : φ0(x,1) ≤ a}− sup{x : φ0(x,0) ≤ a}.

The formulation presented here corresponds to the one-versus-all method for multi-category classi-
fication, and standard binary loss functions such as least squares, logistic regression, and SVMs can
be used. For the SVM loss function φ0(x,y) =max(0,1− (2x−1)(2y−1)), we may take a= 0.5,
b = 2, and c = 0.5. For the least squares function φ0(x,y) = (x− y)2, we may choose a = 1/16,
b= 0.5, c= 0.5.

We are interested in the generalization behavior of (1) compared to a properly defined optimal
regularized risk. This type of inequality is often referred to as “oracle inequality” in the learning the-
ory literature and is particularly useful for analyzing the quality of the underlying learning method.
The following theorem gives an oracle inequality, and its proof can be found in Appendix A.

Theorem 1 Consider (1) with loss function φ satisfying Assumption 1. Then ∀p > 0, the expected
generalization error of the learning method (1) over the training samples Zn, uniformly drawn
without replacement from graph nodes {1, . . . ,m}, can be bounded by:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j(Zn),y j) ≤

1
a
inf
f∈RmK

[
1
m

m

∑
j=1

φ(f j,y j)+λfTQKf

]
+

(
btrp(K)
λnc

)p
,

where Z̄n = {1, . . . ,m}−Zn,

trp(K) =

(
1
m

m

∑
j=1
Kp
j, j

)1/p

,

and K j, j denotes the j-th diagonal entry of matrix K.
If we take p = 1 in Theorem 1, then the bound depends on the trace of matrix K: tr(K) =

mtr1(K). The trace of a kernel matrix has been employed in a number of previous studies to char-
acterize generalization ability of kernel methods. The generalized quantity in Theorem 1 with p $= 1
has non-trivial consequences which we will investigate in the paper.

Although we consider a specific form of loss function in this paper, one can obtain similar
bounds with other forms of loss functions such as φ(f j,y j) = supk %=y j φ0(f j,y j − f j,k). What is im-
portant in our analysis are the two quantities fTQKf and trp(K) that determine the generalization
performance. We will focus on the interpretation of these quantities.

3. Margin and Graph Cut

Consider an undirected graph G= (V,E) defined on the nodes V = {v j : j = 1, . . . ,m}, with edges
E ⊂ {1, . . . ,m}×{1, . . . ,m}, and weights w j, j′ ≥ 0 associated with edges (j, j′)∈ E. For simplicity,
we assume that (j, j) /∈ E and w j, j′ = 0 when (j, j′) /∈ E. Let deg j(G) =∑m

j′=1w j, j′ be the degree of
node j of graph G. We consider the following definition of normalized Laplacian.

Definition 2 Consider a graph G = (V,E) of m nodes with weights w j, j′ (j, j′ = 1, . . . ,m). The
unnormalized Laplacian matrix L(G) ∈ Rm×m is defined as: L j, j′(G) = −w j, j′ if j $= j′; deg j(G)
otherwise. Given m scaling factors S j (j = 1, . . . ,m), let S= diag({S j}). The S-normalized Lapla-
cian matrix is defined as: LS(G) = S−1/2L(G)S−1/2. The corresponding regularization is based
on:

fT·,kLS(G)f·,k =
1
2

m

∑
j, j′=1

w j, j′

(
f j,k√
S j

−
f j′,k√
S j′

)2

.

1493

JOHNSON AND ZHANG

A common choice of S is S= I, corresponding to regularizing with the unnormalized Laplacian
L . The idea is natural: we assume that the predictive values f j,k and f j′,k should be close when
(j, j′) ∈ E with a strong link. Another common choice is to normalize by S j = deg j(G), as in
Ng et al. (2002), Shi and Malik (2000), Zhou et al. (2004) and Chung (1998), which we refer
to as degree-based normalization. At first sight, the need for normalization is not immediately
clear. However, as we will show later, normalization using appropriate scaling factors can improve
performance.

3.1 Generalization Analysis Using Graph-Cut

We will adapt Theorem 1 in Section 2 to analyze graph learning using graph properties such as
graph-cut. We now introduce a learning theoretical definition of S-normalized graph cut as follows.

Definition 3 Given label y = {y j} j=1,...,m on V , we define the cut for the S-normalized Laplacian
LS in Definition 2 as:

cut(LS,y) = ∑
j, j′:y j %=y j′

w j, j′

2

(
1
S j

+
1
S j′

)
+ ∑

j, j′:y j=y j′

w j, j′

2

(
1√
S j

− 1√
S j′

)2

.

Note that unlike typical graph-theoretical definitions of graph-cut in the literature, the learning
theoretical definition of cut not only penalizes a normalized version of between-class edge weights,
but also penalizes within-class edge weights when such an edge connects two nodes with different
scaling factors. This difference has important consequences, which we will investigate later in the
paper. For unnormalized Laplacian, the second term on the right hand side of Definition 3 vanishes,
which means that it only penalizes weights corresponding to edges connecting nodes with different
labels. In this case, the learning theoretical definition corresponds to the graph-theoretical definition:
cut(L ,y) = ∑ j, j′:y j %=y j′ w j, j′ .

It is worth noting that in our framework, cut is used to indicate the absolute amount of pertur-
bation from the idealized case with zero-cut. In spectral clustering, the absolute cut is often scaled
and the resulting quantity is used as a quality measure for the clusters. In comparison, our quality
measure is always to minimize the classification error. In particular, the unnormalized Laplacian
is used in spectral clustering to approximately minimize the ratio cut = ∑ j∈A, j′∈Bw j, j′/(|A| · |B|)
(Hagen and Kahng, 1992) instead of ∑ j∈A, j′∈Bw j, j′ . The scaling in the ratio cut (when K = 2) corre-
sponds to the normalization of a specific encoding of the target vectors (f·,k ∈ Rm which encodes the
true output values in our setting); it is used in the computation of the second smallest eigenvalue of
the unnormalized Laplacian. Our analysis throughout this paper assumes unmodified target vectors
with components taking values in {0,1}, which differs from Hagen and Kahng (1992). As such,
the discrepancy of cut definition is merely due to a difference in representation of the target vectors,
and both lead to the same unnormalized Laplacian matrix algorithmically. Although our definition
is motivated by classification problems, it may also be useful for clustering problems because there
is a strong relationship between clustering and transductive classification (where class labels indi-
cate the underlying clusters). This means that the normalization method we propose in the paper
might be useful in spectral clustering as well.

1494

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

Using the learning theoretical graph-cut definition, we can obtain a generalization result for the
estimator in (1) with K defined as follows:

K−1 = αS−1+LS(G) = S−1/2(αI+L(G))S−1/2 , (2)

where I is the identity matrix. Note that α > 0 is a tuning parameter to ensure that K is strictly
positive definite. As we will see later, this parameter is important. The corresponding regularization
condition is

fTQKf=
K

∑
k=1



α
m

∑
j=1

f 2k, j
S j

+
1
2

m

∑
j, j′=1

(
f j,k√
S j

−
f j′,k√
S j′

)2

w j, j′



 .

Another possibility is to let K−1 = αI+LS(G). The conclusions, which we will not include in this
paper, are similar to that of (2).

For simplicity, we state the generalization bound based on Theorem 1 with optimal λ. Note
that in applications, λ is usually tuned through cross validation. Therefore assuming optimal λ
will simplify the bound so that we can focus on the more essential characteristics of generalization
performance. The following assumption is used to simplify the bound

Assumption 2 Consider (1) with regularization condition (2), loss function φ satisfying Assump-
tion 1, and assume that φ0(0,0) = φ0(1,1) = 0.

It is easy to check that the conditions on the loss function in Assumption 2 hold for the least squares
method (which we focus on in this paper) as well as other standard loss functions such as SVM.

Theorem 4 Consider (1) such that Assumption 2 is satisfied. Then ∀p> 0, there exists a sample in-
dependent regularization parameter λ in (1) such that the expected generalization error is bounded
by:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j(Zn),y j) ≤

Cp(a,b,c)
np/(p+1) (αs+ cut(LS,y))p/(p+1)trp(K)p/(p+1),

Cp(a,b,c) =(b/ac)p/(p+1)(p1/(p+1) + p−p/(p+1)), (3)

where s= ∑m
j=1S−1j .

Proof Let f j,k = δy j,k. It can be easily verified that

1
m

m

∑
j=1

φ(f j,y j)+λfTQKf= λ(αs+ cut(LS,y)).

Now, using this expression in Theorem 1, and then optimizing over λ, we obtain the desired in-
equality.

Note that with the least squares loss, we can take b/ac= 16 in Theorem 1. With a fixed p, the
generalization error decreases at the rateO(n−p/(p+1))when the sample size n increases. This rate of
convergence is faster when p increases. However in general, trp(K) is an increasing function of p.
Therefore we have a trade-off between the two terms, and without appropriate normalization (which

1495

JOHNSON AND ZHANG

we will consider later in the paper), one may prefer a smaller p in order to optimize the bound. An
analysis will be provided in the next section. The bound also suggests that if we normalize K so
that its diagonal entries K j, j become a constant, then trp(K) is independent of p, and thus a larger
p can be used in the bound. This motivates the idea of normalizing the diagonals of K, which
we will further investigate later in the paper. The generalization bound in Theorem 4 is closely
related to the margin analysis for binary linear classification. Specifically, the right hand side can
be viewed as a margin-like-quantity associated with the target function f j,k = δy j,k that separates the
data. Here it is related to the concept of graph cut. Our goal is to better understand the quantity
(αs+ cut(LS,y))p/(p+1)trp(K)p/(p+1) using graph properties, which gives better understanding of
graph based learning.

In the following, we will give example applications of Theorem 4. They illustrate that theoreti-
cally it is important to tune the parameter α to achieve good performance, which is also empirically
observed in our experiments.

3.2 Zero-cut and Geometric Margin Separation

We consider an application of Theorem 4 for the unnormalized Laplacian under the zero-cut as-
sumption that each connected component of the graph has a single label. With this assumption, the
task is simply to estimate what label each connected component has.

Theorem 5 Consider (1) such that Assumption 2 is satisfied and the regularization condition is
K−1 = αI+ L . Assume that cut(L ,y) = 0, and the graph has q connected components of sizes
m1 ≤ ·· · ≤mq (∑!m! =m). For all p> 0, let α→ 0, and with optimal λ, we have the generalization
bound

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤

Cp(a,b,c)
np/(p+1)

(
q

∑
!=1

(m/m!)p−1
)1/(p+1)

+O(α),

where Cp is defined in (3). In particular, we have

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤min

[
2
√

b
ac

· q
n
,
b
ac

· m
nm1

]
+O(α).

Proof Since the graph has q connected components, L has q eigenvectors v! (! = 1, . . . ,q) associ-
ated with zero-eigenvalues, where each eigenvector v! is the indicator function of the !-th connected
component in the graph, that is, the j-th entry of vector v! is 1 if j belongs to the !-th connected
component and 0 otherwise. It is not hard to check that as α → 0, αK→ ∑

q
!=1

1
m!
v!vT! +O(α).

Therefore αtrp(K) → m−1/p(∑q
!=1m

1−p
!)1/p. Now, we can use Theorem 4 to obtain the first in-

equality. The second inequality is obtained by setting p= 1 and by letting p→ ∞ on the right hand
side.

Under the zero-cut assumption, the generalization performance can be bounded as O(
√
q/n)

when α → 0. However, we can also achieve a faster convergence rate of O(1/n), although the
generalization performance depends on the inverse of the smallest component size through m/m1 ≥

1496

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

q. This implies that we will achieve better convergence at the O(1/n) level if the sizes of the
components are balanced. If the component sizes are significantly different, the convergence may
behave like O(

√
q/n).

We discuss a concrete example in which Theorem 5 is applicable. Assume that each node v j is
associated with a data point x j that belongs to the d-dimensional unit ball B= {x ∈ Rd : ‖x‖2 ≤ 1}.
We form a graph by connecting all nodes v j to their nearest neighbors. In particular, we may
consider an ε-ball centered at each v j: B j(ε) = {x : ‖x− x j‖2 ≤ ε}. We then form a graph by
connecting each j with all points within the ball B j(ε) and with unit weights.

We say that the data points are separable with geometric margin γ if for each node v j the ball
B j(γ) only contains points in class y j. Now assume we use a ball of size ε ≤ γ. In this case,
cut(L ,y) = 0, and there is a constant q ≤ ε−d such that the graph has at most q connected compo-
nents, and we have:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤ 2

√
b
ac

· q
n

+O(α).

This bound does not depend on margin γ but depends only on q, the number of connected compo-
nents. So even if the margin γ is small, the bound can still be good as long as q is small. This result
can be used to understand why graph based semi-supervised learning may work better than stan-
dard kernel learning. In fact, it is not possible to derive similar generalization bounds for supervised
learning because one needs unlabeled data (in addition to labeled data) to define such connected
components. This means that graph semi-supervised learning can take advantage of the new quan-
tity q to characterize its generalization performance, and this quantity cannot be used by standard
supervised learning.

Note that we have assumed a very specific generative model for the data. In particular, if the data
are generated in a way such that the number of connected components q is small, and each connected
component belongs to a single class, then graph based semi-supervised learning can work better
than supervised kernel learning. If this assumption does not hold (at least approximately), then
graph based learning methods may fail. However, for many practical applications, the geometric
margin separation assumption does appear quite reasonable. Therefore for such problems, graph
based semi-supervised learning, which can take advantage of the underlying data generation model,
may become helpful.

This section only considers a special case where the graph has q connected components. In
this particular situation, the learning method (1) and the analysis provided here may not be optimal.
The best method is just to identify each connected component to be a cluster and then determine
its label by looking at one point of the cluster. However, this idea won’t generalize to graphs with
components that are weakly connected. In comparison, our analysis can easily generalize to that
situation, as we shall investigate in the next section.

3.3 Non-Zero Cut and Pure Components

It is often too restrictive to assume that each connected component has only one label (that is, the
cut is zero). In this section, we show that similar bounds can be obtained when this data generation
assumption is relaxed. We are still interested in giving a characterization of the performance of (1)
in terms of properties of the graph and introduce the following definition.
Definition 6 A subgraph G0 = (V0,E0) of G= (V,E) is called a pure component if G0 is connected,
E0 is induced by restricting E on V0, and the labels y have identical values on V0. A pure subgraph

1497

JOHNSON AND ZHANG

G′ = ∪q!=1G! of G divides V into q disjoint sets V = ∪q!=1V! such that each subgraph G! = (V!,E!)
is a pure component. Denote by λi(G!) = λi(L(G!)) the i-th smallest eigenvalue of L(G!).

For instance, if we remove all edges of G that connect nodes with different labels, then the
resulting subgraph is a pure subgraph (though it may not be the only one). For each pure component
G!, its first eigenvalue λ1(G!) is always zero. The second eigenvalue λ2(G!) > 0 because G! is
connected. This λ2(G!) can be regarded as a measurement of how well G! is connected. We use it
together with graph cut to derive a generalization bound. The proof is given in Appendix B.

Theorem 7 Consider (1) such that Assumption 2 is satisfied. Let G′ = ∪q!=1G! (G! = (V!,E!)) be a
pure subgraph of G. For all p≥ 1, there exist sample-independent regularization parameter λ and
a fixed tuning parameter α, such that

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j)

≤Cp(a,b,c)
np/(p+1)



s1/2
(

q

∑
!=1

s!(p)/m
mp

!

)1/2p

+ cut(LS,y)1/2
(

q

∑
!=1

s!(p)/m
λ2(G!)p

)1/2p



2p/(p+1)

,

where Cp is defined in (3), m! = |V!|, s= ∑m
j=1S−1j , and s!(p) = ∑ j∈V!

Spj .

Theorem 7 is a natural generalization of Theorem 5 when p≥ 1. It quantitatively illustrates the
importance of analyzing graph learning using a partition of the original graph into well-connected
pure components. The second eigenvalue λ2(Gi) measures how well-connected Gi is. A more
intuitive quantity that measures the connectedness of graph G= (V,E) is the isoperimetric number
hG defined as

hG = inf
S⊂V ∑

j∈S, j′∈V−S
w j, j′/min(|S|, |V −S|).

It is well-known that λ2(Gi) ≥ h2Gi/(2max j deg j(Gi)) (Chung, 1998). The isoperimetric number of
a graph is large when the nodes are well-connected everywhere. In particular, if deg j(G) is of the
order |V |, and wi, j = 1 when (i, j) ∈ E, then for a well-connected graph, ∑ j∈S, j′∈V−Sw j, j′ is of the
order |S||V − S|, and hG = O(|V |). Let G′ be a well-behaved pure-subgraph of G, such that each
pure component G! of G′ is well-connected in the above sense. We thus have the condition

λ2(G!)/m! ≥ u(G′)

for some constant u(G′) that does not depend on the size of the pure components (but only how
well-connected each pure component is). Under this condition, we may replace ∑q

!=1m!λ2(G!)−p

by u(G′)−p∑q
!=1m

1−p
! in Theorem 7 and obtain a simplified bound:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤

Cp(a,b,c)
np/(p+1)

(
q

∑
!=1

s!(p)/m
(m!/m)p

)1/(p+1) (√
s
m

+

√
cut(LS,y)
u(G′)m

)2p/(p+1)

,

1498

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

where we define u(G′) =min!(λ2(G!)/m!). We consider two special cases: p= 1 and p→ ∞:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤2

√
b
ac

· ∑
q
!=1(s!(1)/m!)

n

(√
s
m

+

√
cut(LS,y)
u(G′)m

)
, (4)

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤

b
ac

·
max!max j∈V!(S j/m!)

n

(
√
s+

√
cut(LS,y)
u(G′)

)2

. (5)

These bounds are generalizations of those in Theorem 5. Suppose that we take S= I. Then the
number of pure components q affects the O(1/

√
n) convergence rate in (4) as ∑q

!=1 s!(1)/m! = q. If
the sizes of the components are balanced, we can achieve better convergence at the O(1/n) level as
in (5); otherwise, the convergence may behave like O(

√
q/n). This observation motivates a scaling

matrix S that compensates for the unbalanced pure component sizes, which we will investigate next.

3.4 Optimal Normalization for Near-zero-cut Partition

As discussed in the introduction, the common practice of the normalization of the adjacency matrix
(W) or the graph Laplacian (D−W) is based on degrees, which corresponds to setting S = D.
Although such normalization may significantly affect the performance, to our knowledge, there is
no learning theory analysis on the effect of normalization. The purpose of this section is to fill this
gap using the theoretical tools developed earlier. We shall focus on a near ideal situation to gain
intuition.

Consider a pure subgraph G′ = ∪q!=1G! (G! = (V!,E!)) of G. If scaling factors S j are approx-
imately constant within each pure component, then using the Laplacian in Definition 2, we have
a small regularization penalty for the edges within a pure component and between the nodes that
have close output values (i.e., f j,k ≈ f j′,k). Therefore, in the following we focus on finding the op-
timal scaling matrix S such that S j is constant within each pure component V!, and assume that S is
quantified by q numbers [s̄!]!=1,...,q, such that S j = s̄! when j ∈V!.

Consider the following quantity:

cut(G′,y) = ∑
j, j′:y j %=y j′

w j, j′ + ∑
!%=!′

∑
j∈V!, j′∈V!′

w j, j′

2
.

It is easy to check that
cut(LS,y) ≤ cut(G′,y)/min

!
s̄!.

Assume that weights are small between pure components, and therefore, cut(G′,y) is small.
With the O(1/n) convergence rate, we obtain from (5) that

1
m−n ∑j∈Z̄n

err(f̂ j,y j) ≤
b
ac

· max!(s̄!/m!)
n

(√
q

∑
!=1

m!/s̄! +

√
cut(G′,y)
u(G′)min! s̄!

)2

.

If cut(G′,y) is small, then the dominating term on the right hand side is

max!(s̄!/m!)
n

q

∑
!=1

m!

s̄!
,

1499

JOHNSON AND ZHANG

which can be optimized with the choice s̄! = m!, and the resulting bound becomes:

1
m−n ∑j∈Z̄n

err(f̂ j,y j) ≤
b
ac

· 1
n

(
√
q+

√
cut(G′,y)

u(G′)min!m!

)2

.

That is, if cut(G′,y) is small, then we can choose scaling factor s̄! ∝ m! for each pure component !
so that the generalization performance is approximately (ac)−1b ·q/n, which is of the orderO(1/n).

The analysis provided here not only proves the importance of normalization under the learn-
ing theoretical framework, but also suggests that the good normalization factor for each node j is
approximately the size of the well-connected pure component that contains node j (assuming that
nodes belonging to different pure components are only weakly connected). Our analysis focused
on the case that the scaling factors are a constant within each pure component. This condition is
quite natural if we look at the normalized Laplacian regularization condition in Definition 2, where
f j,k/

√
S j should be similar to f j′,k/

√
S j′ when w j, j′ is large. If j and j′ belongs to the same class,

then f j,k should be similar to f j′,k. Therefore for such a pair (j, j′), we want to have S j ≈ S j′ if
w j, j′ is large. Note that this requirement is not enforced by the standard degree-based normalization
method S j = deg j(G) because a well-connected pure component may contain nodes with quite dif-
ferent degrees. The assumption is satisfied under a simplified “box model”, which is related to the
models used by some previous researchers to derive the standard normalization method (e.g., Shi
andMalik, 2000). In this model, a pure component is completely connected, and each node connects
to all other nodes and itself with edge weight w j, j′ = 1. The degree is thus deg j(G!) = |V!| = m!,
which gives the optimal scaling in our analysis.

In general, the box model may not be a good approximation for practical problems. A more
realistic approximation, which we call core-satellite model, will be introduced in the experimental
section. For such a model, the degree-based normalization can fail because the deg j(G!) within
each pure component G! is not approximately constant, and it may not be proportional to m!. In
general, this approximation using degrees causes S j to potentially vary significantly within a pure
component because each S j is only determined by its immediate neighbors.

Our analysis suggests that it is necessary to modify the degree-based scaling method S j =
deg j(G) so that the scaling factor is approximately a constant within each pure component, which
should be proportional to m!. Our remedy is to look for connected components at a larger distance
scale. Although there could be various methods to achieve this effect, we shall focus on a specific
method motivated by the proofs of Theorem 5 and Theorem 7. Let K̄ = (αI+ L)−1 be the ker-
nel matrix corresponding to the unnormalized Laplacian. Using the terminology in the proofs, we
observe that for small α:

αK̄=
q

∑
!=1
v!vT! /m! +O(1),

and thus K̄ j, j ∝ m−1
! for each j ∈V!. Therefore with small α, the scaling factor S j = 1/K̄ j, j is near

optimal for all j. For α > 0, the effect of this scaling factor is essentially equivalent to looking
for connected components at a scale of at most O(1/α) number of nodes. We call this method of
normalization K-scaling in this paper. It is equivalent to a normalization of the kernel matrix K,
so that each K j, j = 1. Although this method coincides with a common practice in standard kernel
learning, it is important to notice that to show this method behaves well in the graph learning setting
is highly non-trivial and novel. To our best knowledge, no one has proposed this normalization

1500

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

method in the graph learning setting before. In fact, without learning theoretical results developed
in this paper, it is not obvious that this method should work better than the more standard degree-
based normalization method. In our framework, the main advantage of K-scaling (compared to the
standard degree-scaling, which we call L-scaling) is twofold:

• The resulting S j does not vary significantly within a well-connected pure component.

• The resulting scaling is approximatelym! (at a scale of 1/α), which is predicted by our theory
to be desirable.1

The superiority of this method will be demonstrated in our experiments. The main drawback of
this method is the computational cost of directly inverting (αI+ L). For large scale problems,
approximation methods are required.

3.5 Dimension Reduction

Normalization and dimension reduction have been commonly used in spectral clustering such as Ng
et al. (2002) and Shi and Malik (2000). For semi-supervised learning, dimension reduction (without
normalization) is known to improve performance (Belkin and Niyogi, 2004, Zhang and Ando, 2006)
while the degree-based normalization (without dimension reduction) has also been explored (Zhou
et al., 2004). In this section, we present a brief high-level argument that an appropriate combination
of normalization and dimension reduction (as commonly used in spectral clustering) can improve
classification performance. Detailed analysis can be found in Appendix C.

Let us first introduce dimension reduction with normalized Laplacian LS(G). Denote by PrS(G)
the projection operator onto the eigenspace of αS−1+LS(G) corresponding to the r smallest eigen-
values. Now, we may define the following regularizer on the reduced subspace:

fT·,kK−1f·,k =

{
fT·,kK

−1
0 f·,k if PrS(G)f·,k = f·,k,

+∞ otherwise.
(6)

The benefit of dimension reduction in graph learning has been investigated in Zhang and Ando
(2006), under the spectral kernel design framework. The idea is to modify the kernel eigenvalues so
that the target spectral coefficient matches the kernel coefficients. Note that the normalization issue,
which will change the eigenvectors and their ordering, wasn’t investigated there. However, with a
fixed scaling matrix S, the reasoning given in Zhang and Ando (2006) can also be applied here. It
was shown there that if noise is added into the kernel matrix, then in general kernel eigenvalues
will decay slower than the target spectral coefficients. Because of this, dimension reduction, which
makes kernel eigenvalues better match the decay of target spectral coefficients, will become helpful.
For Laplacian regularization investigated here, we may regard noise as edges connecting pure com-
ponents of different classes, which increase the cut in Definition 3. Such noise can be significantly
reduced if we project it into a low-dimensional space, and if the target functions approximately lie
in this low-dimensional space. In this context, the effect of modification of eigenspaces through ap-
propriate Laplacian normalization is to achieve faster decay of the target spectral coefficients in the

1. Although “the scaling factor S j = m!” might be reminiscent of the ratio cut in spectral clustering, note that, as
mentioned earlier, the ratio cut corresponds to the unnormalized Laplacian. K-scaling suggested here normalizes the
Laplacian matrix, which is in the same spirit of normalized cut (degree-scaling) but fixes some of its short-comings
based on learning theoretical insights developed here.

1501

JOHNSON AND ZHANG

classes #1, #2 classes #3–#10
graph1 (4,2) (2,1)
graph2 (6,3) (2,1)
graph3 (8,4) (2,1)

Figure 1: Generation of graph 1–5. (c,e) in the table indicates that for each node, we randomly
chose c nodes of the same class and connect it to them, and we randomly chose e nodes
of other classes (introducing errors) and connect it to them. Edge weights are fixed to 1.

0

20

40

60

80

100

graph1 graph2 graph3

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 2: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
n = 40,m = 2000. With dimension reduction (dim ≤ 20; chosen by cross validation). Average
over 10 random splits with one standard deviation.

first few eigenvectors of the kernel. Therefore, under certain conditions, dimension reduction can
reduce noise (corresponding to a small cut), which essentially makes normalization more effective
as shown in Section 3.4.

We show our formal analysis of the combination of dimension reduction (as in (6) above) and
normalization of Laplacian, for completeness, in Appendix C and empirical results in the next sec-
tion.

4. Experiments

We experiment with the Laplacian regularization with the normalization methods discussed above,
on synthesized data sets generated by controlling graph properties as well as three real-world data
sets.

4.1 Experimental Framework

The Laplacian matrix L is generated from a graph G so that L j, j′ = −w j, j′ for j $= j′ and L j, j =
deg j(G). Using L , we define matrix K as follows:

• Unnormalized: K= (αI+L)−1. That is, S= I. No scaling.

1502

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

0

20

40

60

80

100

graph6 graph7 graph8 graph9 graph10

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 3: Classification accuracy on the core-satellite graphs. n = 40,m = 2000. With dimension reduc-
tion (dim ≤ 20; chosen by cross validation). Average over 10 random splits with one standard
deviation.

• K-scaling: K= (S−1/2(αI+L)S−1/2)−1 where S= diag j(K̄−1
j, j) with K̄= (αI+L)−1. The

diagonal entries of K are all ones.

• L-scaling: K = (αI+S−1/2LS−1/2)−1 where S = diag j(deg j(G)). The diagonal entries of
K−1 are constant (α+1). This is the standard degree-based scaling.

Using these three types of matrix K, we test the following two types of regularization. One regu-
larizes by fT·,kK−1f·,k using K without dimension reduction, as in Section 3. The other reduces the
dimension of K−1 to r by leaving out all but several eigenvectors corresponding to the smallest r
eigenvalues to obtain the eigenspace projector PrS(G) and regularizes by:

{
fT·,kK−1f·,k if PrS(G)f·,k = f·,k
+∞ otherwise

as in Section 3.5. We use the one-versus-all strategy and use least squares as our loss function:
φk(a,b) = (a−δk,b)2.

Fromm data points, n training labeled examples are randomly chosen while ensuring that at least
one training example is chosen from each class. The remaining m−n data points serve as test data.
The regularization parameter λ is chosen by cross validation on the n training labeled examples. We
will show performance when the rest of the parameters (α and dimensionality r) are also chosen
by cross validation on the training labeled examples and when they are set to the optimum. The
dimensionality r is chosen from K,K+5,K+10, · · · ,100 where K is the number of classes unless
otherwise specified. Our focus is on small n close to the number of classes. Throughout this section,
we conduct 10 runs with random training/test splits and report the average accuracy.

4.2 Controlled Data Experiments

The purpose of the controlled data experiments is to observe the correlation of the effectiveness of
the normalization methods with graph properties. The graphs we generate contain 2000 nodes, each
of which is assigned one of 10 classes.

First, we show the results when dimension reduction is applied to the three types of matrix K.
Figure 2 shows classification accuracy on three graphs that were generated so that the node degrees

1503

JOHNSON AND ZHANG

(of either correct edges or erroneous edges) are close to constant within each class but vary across
classes. Details of their generation are described in Figure 1. We observe that on these graphs,
both K-scaling and L-scaling significantly improve classification accuracy over the unnormalized
baseline. There is no prominent difference between K-scaling’s and L-scaling’s performance.

Observe thatK-scaling and L-scaling perform differently on the graphs used in Figure 3. These
graphs have the following properties. Each class consists of core nodes and satellite nodes. Core
nodes of the same class are tightly connected with each other and do not have any erroneous edges.
Satellite nodes are relatively weakly connected to core nodes of the same class. The satellite nodes
are also connected to some other classes’ satellite nodes (i.e., introducing errors). This core-satellite
model is intended to simulate real-world data in which some data points are close to the class
boundaries (satellite nodes). More precisely, graphs 6–10 were generated as follows. Each graph
consists of 2000 nodes (m = 2000) uniformly distributed over 10 classes (K = 10). 10% of the
nodes are the core nodes. For every core node, we randomly choose 10 other core nodes of the
same class and connect it to them with edge weight 1 (that is, each core node is connected to at
least 10 core nodes of the same class). For every satellite node, we randomly choose one core
node of the same class and connect them with edge weight 0.01. Also, for each satellite node,
we randomly choose one satellite node of some other class (i.e., introducing error) and connect
them with edge weight we. We set the error edge weight we = 0.002,0.004, · · · ,0.01 for graphs
6,7, · · · ,10, respectively. Note that although classes are uniformly distributed, pure components
that optimize the generalization bound may be non-uniform in size. For graphs generated in this
manner, degrees vary within the same class since the satellite nodes have smaller degrees than the
core nodes. Our analysis suggests that L-scaling will do poorly. Figure 3 shows that on the five
core-satellite graphs, K-scaling indeed produces higher performance than L-scaling. In particular,
K-scaling does well even when L-scaling rather underperforms the unnormalized baseline.

Our analysis suggests thatK-scaling should work well when the graph has relatively small error.
This trend is more clearly observed on these core-satellite graphs without dimension reduction. As
shown in Figure 4, the advantage of K-scaling over L-scaling is more prominent on the graphs
with smaller error edge weights. On the other hand, the theory suggests that when the graph has
large error (large cut), the benefit of normalization is less clear (since the derivation of K-scaling
assumes near-zero cut). This is especially so when dimension reduction is not applied because as
pointed out in Section 3.5, dimension reduction reduces error. This trend can be observed in Figure
5, which shows that on graphs 1–3 (having larger errors than the core-satellite graphs), neither L-
scaling nor K-scaling prominently improves performance over the unnormalized Laplacian without
dimension reduction though L-scaling seems to perform slightly better. Note that the performance
without dimension reduction (Figure 5) is significantly worse than the performance with dimension
reduction (Figure 2). This means that dimension reduction, which reduces error, is important when
we try to apply graph based methods.

Additionally, we show illustrative toy examples based on the core-satellite model. Given the
original graph as in Figure 6 (a), Figure 6 (b)–(d) show the graphs corresponding to the scaled
adjacency matrices S−1/2WS−1/2 where S is derived from L-scaling, K-scaling with α = 0.01,
and K-scaling with α = 0.1, respectively. We observe that, compared with the unnormalized case,
K-scaling and L-scaling essentially balance the edge weights between the two classes (i.e., “nor-
malizing”) by relatively lowering the weights of class2 which is more “massive”. However, in this
example, L-scaling in a sense overdoes it and so is rather harmful as it amplifies the error edge
weights over the weights of the within-class edges. K-scaling does not suffer from this problem.

1504

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

80

85

90

95

100

0 0.005 0.01

Error edge weight
Ac

cu
ra

cy
 (%

)

Unnormalized
L-scaling
K-scaling

Figure 4: Classification accuracy on the core-satellite graphs. x-axis: error edge weight we. n = 40,m =
2000. Without dimension reduction. Average over 10 random splits.

0

20

40

60

80

100

graph1 graph2 graph3

Ac
cu

ra
cy

 (%
)

Unnormalized L-scaling K-scaling

Figure 5: Classification accuracy (%) on the graphs where degrees are nearly constant within the class.
Average over 10 random splits. n= 40,m= 2000. Without dimension reduction.

4.3 Real-world Data Experiments

Our real-world data experiments use two image data sets (MNIST and UMIST) and one text data
set (RCV1).

4.3.1 DATA AND BASELINE

TheMNIST data set, downloadable from http://yann.lecun.com/exdb/mnist/, consists of hand-written
digit image data (representing 10 classes, from digit “0” to “9”). For our experiments, we randomly
choose 2000 images (i.e., m = 2000). The UMIST data set, downloadable from
http://images.ee.umist.ac.uk/danny/database.html, consists of 575 face images taken from several
angles of 20 people (representing 20 classes). The details of this data are described in Graham and
Allinson (1998). We use all the images (i.e., m = 575). Reuters Corpus Version 1 (RCV1) con-
sists of news articles labeled with topics. For our experiments, we chose 10 topics (representing
10 classes) that have relatively large populations and randomly chose 2000 articles that are labeled
with exactly one of those 10 topics. The class distribution over these 2000 articles is non-uniform
as shown in Figure 7.

1505

JOHNSON AND ZHANG

(a) Original graph (b) L-scaling
class1 class2

(c) K-scaling with α=0.1 (d) K-scaling with α=0.01

1

0.1

0.1

0.1

0.10.1

1

0.05

0.1

0.1

0.1

0.05

0.05

0.05 0.1

0.1

1

1
1

0.28

0.28

0.28

0.210.28

0.55

0.4

0.21

0.21

0.21

0.4

0.4

0.4 0.26

0.26

0.55

0.55

1

0.13

0.13

0.13

0.110.13

0.7

0.09

0.11

0.11

0.11

0.09

0.09

0.09 0.12

0.12

0.71

0.71
1

0.12

0.12

0.12

0.10.12

0.83

0.07

0.1

0.1

0.1

0.07

0.07

0.07 0.12

0.12

0.84

0.84

Figure 6: Illustrative toy examples of scaled adjacency matrices S−1/2WS−1/2 where S is derived from L-
scaling or K-scaling. For the two-class core-satellite graph in (a), L-scaling makes the weights of
error edges larger than the edge weights between the core nodes and satellite nodes of the same
class as in (b). K-scaling does not suffer from this problem ((c),(d)). (For an easy comparison, in
(b)–(d), edge weights are multiplied with constants so that the largest weight becomes one.)

To generate graphs from the image data, as is commonly done, we first generate the vectors of
the gray-scale values of the pixels, and produce the edge weight between the i-th and the j-th data
points Xi and X j by wi, j = exp(−||Xi−X j||2/t) where t > 0 is a parameter (radial basis function
(RBF) kernels). To generate graphs from the text data, we first create the bag-of-word vectors using
content words only2 and then set wi, j based on RBF as above or set wi, j to the inner product of
Xi and X j (linear kernels). Optionally, we zero out all wi, j but k nearest neighbors (i.e., i is j’s k
nearest neighbors or j is i’s k nearest neighbors) to reduce error in graphs and refer to it as the RBF
(or linear) kernel with kNN.

As our baseline, we also test the supervised configuration by letting W+ βI (where W is a
weight matrix whose (i, j)-entry is wi, j) be the kernel matrix and using the same least squares loss
function. We set β to the optimum, which was 0.001 for the RBF kernel for RCV1 and 1 for the
other graphs.

2. To generate a bag-of-word vector from a document, as is commonly done, we remove function words (such as “a”,
“the”, and so on), set word frequencies of the document to the corresponding vector entries, and then scale the vector
into a unit vector.

1506

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

GPOL Domestic politics 486
GSPO Sports 407
GDIP International relations 299
GCRIM Crime, law enforcement 224
GJOB Labor issues 206
GVIO War, civil war 142
GDIS Disasters and accidents 89
GHEA Health 57
GENT Arts, culture, entertainment 47
GENV Environments 43

Total 2000

Figure 7: 10 RCV1 categories and their populations used in our experiments.

45

50

55

60

65

70

75

80

85

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

45

50

55

60

65

70

75

80

85

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling (w/ dim reduction)

L-scaling (w/ dim reduction)

Unnormalized (w/ dim redu.)

K-scaling

L-scaling

Unnormalized

Supervised baseline

(a) MNIST, dim and alpha
determined by cross validation

(b) MNIST, w/ optimum dim
and optimum alpha

Figure 8: Classification accuracy (%) in relation to the number of labeled examples (n) on MNIST. m =
2000. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and α
were set to the optimum. Average over 10 random splits.

4.3.2 RESULTS

Figure 8 shows performance in relation to the number of labeled examples (n) on the MNIST data
set. The comparison of the three bold lines (representing the methods with dimension reduction)
in Figure 8 (a) shows that when the dimensionality and α are determined (performing simple 2-
dimensional grid search) by cross validation, K-scaling outperforms L-scaling, and L-scaling out-
performs the unnormalized Laplacian. These performance differences are statistically significant
(p ≤ 0.01) based on the paired t test. The performance of the unnormalized Laplacian (with di-
mension reduction) is roughly consistent with the performance with similar (m,n) with heuristic
dimension selection in Belkin and Niyogi (2004). Although without dimension reduction, L-scaling

1507

JOHNSON AND ZHANG

30

35

40

45

50

55

60

65

70

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

35

40

45

50

55

60

65

70

75

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling (w/ dim reduction)

L-scaling (w/ dim reduction)

Unnormalized (w/ dim redu.)

K-scaling
L-scaling

Unnormalized

Supervised baseline

(a) RCV1, RBF, dim and alpha
determined by cross validation

(b) RCV1, RBF, w/ optimum dim
and optimum alpha

Figure 9: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. RBF
kernel (with t = 0.25). m= 2000. (a) Dimensionality and α were determined by cross validation.
(b) Dimensionality and αwere set to the optimum. Performance differences of the best performing
method ‘K-scaling (w/ dim reduction)’ from ‘L-scaling (w/ dim reduction)’ and ‘Unnormalized
(w/ dim redu.)’ are statistically significant (p≤ 0.01) in both the settings (a) and (b).

45

50

55

60

65

70

75

80

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

45

50

55

60

65

70

75

80

85

10 30 50 70 90 110

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling (w/ dim reduction)

L-scaling (w/ dim reduction)

Unnormalized (w/ dim redu.)

K-scaling
L-scaling

Unnormalized

Supervised baseline

(a) RCV1, linear, dim and alpha
determined by cross validation

(b) RCV1, linear, w/ optimum dim
and optimum alpha

Figure 10: Classification accuracy (%) in relation to the number of labeled examples (n) on RCV1. Linear
kernel. m = 2000. (a) Dimensionality and α were determined by cross validation. (b) Dimen-
sionality and α were set to the optimum. Performance differences of the best performing method
‘K-scaling (w/ dim reduction)’ from the second and third best ‘L-scaling (w/ dim reduction)’ and
‘Unnormalized (w/ dim redu.)’ are statistically significant (p≤ 0.01) in both the settings (a) and
(b).

1508

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

45

50

55

60

65

70

75

80

85

90

95

20 40 60 80

of labeled examples

ac
cu

ra
cy

 (%
)

45

50

55

60

65

70

75

80

85

90

95

20 40 60 80

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling (w/ dim reduction)

L-scaling (w/ dim reduction)

Unnormalized (w/ dim redu.)

K-scaling

L-scaling

Unnormalized

Supervised baseline

(a) UMIST, dim and alpha
determined by cross validation

(b) UMIST, w/ optimum dim
and optimum alpha

Figure 11: Classification accuracy (%) in relation to the number of labeled examples (n) on UMIST. m =
575. (a) Dimensionality and α were determined by cross validation. (b) Dimensionality and
α were set to the optimum. In (b), performance differences of the best performing method
‘K-scaling (w/ dim reduction)’ from the second and third best ‘K-scaling’ and ‘L-scaling’ are
statistically significant (p≤ 0.01).

and K-scaling still improve performance over the unnormalized Laplacian, the best performance is
always obtained by K-scaling with dimension reduction (the bold line with circles).

In Figure 8 (a), the unnormalized Laplacian with dimension reduction underperforms the un-
normalized Laplacian without dimension reduction, indicating that dimension reduction rather de-
grades performance in this case. By comparing Figure 8 (a) and (b), we observe that this seemingly
counter-intuitive performance trend is caused by the difficulty in choosing the right dimensionality
by cross validation. Figure 8 (b) shows the performance at the optimum dimensionality and the
optimum α. As observed, if the optimum dimensionality is known (as in (b)), dimension reduc-
tion improves performance either with or without normalization by K-scaling and L-scaling, and
that all the transductive configurations outperform the supervised baseline. We also note that the
comparison of Figure 8 (a) and (b) shows that choosing good dimensionality by cross validation is
much harder than choosing α by cross validation especially when the number of labeled examples
is small. This trend was observed also on the other data sets on which we experimented.

On the RCV1 data set, the performance trend is essentially similar to that of MNIST. Figure 9
shows the performance on RCV1 using the RBF kernel (t = 0.25, 100NN). In the setting of Figure 9
(a) where the dimensionality and α were determined by cross validation, K-scaling with dimension
reduction generally performs the best. By setting the dimensionality and α to the optimum, the
benefit of K-scaling with dimension reduction is even clearer (Figure 9 (b)).

On text data like RCV1, linear kernels (instead of RBF) are often used. Figure 10 shows the
performance with linear kernels with 100NN. Again, K-scaling with dimension reduction performs
the best. Its performance differences from the second and third best ‘L-scaling (w/ dim reduction)’

1509

JOHNSON AND ZHANG

and ‘Unnormalized (w/ dim redu.)’ are statistically significant (p≤ 0.01) in both Figure 10 (a) and
(b).

In Figure 11, we observe that dimension reduction seems less useful on the UMIST data set.
We conjecture that this may be because UMIST differs from our other data sets in that it is much
more ‘sparse’; UMIST has a smaller number of data points (m = 575 vs. m = 2000) while it
has more classes (K = 20 vs. K = 10). Nevertheless, when the dimensionality and α are set to
the optimum (Figure 11 (b)), again, K-scaling with dimension reduction performs the best. Its
differences from the second and the third best methods (K-scaling without dimension reduction and
L-scaling without dimension reduction) are statistically significant (p≤ 0.01).

Overall, on these graphs generated from image and text data sets, K-scaling with dimension
reduction consistently outperformed the others. But without dimension reduction, K-scaling and
L-scaling were not always effective. Transductive learning (either with or without normalization)
generally improved performance.

4.4 Approximation of K-scaling

Although K-scaling consistently improves performance as shown above, its drawback is the rela-
tively large runtime as it involves the computation of the inverse of an m-by-mmatrix. We propose a
less computationally-intensive approximation method using a known fact that (I−A)−1 = ∑∞

k=0Ak
if ||A||2 < 1. As in the introduction, let D= diagi(degi(G)), and letW be a weight matrix such that
Wi, j = wi, j so that we can write L = D−W. Let D̂= D+αI. We define K̂(h) to be the h-th order
approximation of K̄= (L +αI)−1 as follows:

K̂(h) = D̂−1/2

(
h

∑
k=0

(
D̂−1/2WD̂−1/2

)k
)
D̂−1/2 .

We then set the i-th scaling factor Si so that:

Si = K̂(h)−1i,i .

Since limh→∞ K̂(h) = K̄, the scaling factors produced with a sufficiently large h closely approximate
K-scaling. On the other hand, since K̂(0) = D̂−1= (D+αI)−1, the scaling factors produced by K̂(0)
with α= 0 are exactly the same as L-scaling (or the standard degree-scaling).

Figure 12 shows the performance of this approximation method with h= 0,2,5,10 with dimen-
sion reduction in comparison with corresponding K-scaling and L-scaling on MNIST. In Figure 12
(b), we observe that at the optimum dimensionality and α, the performance of the approximation
method lies exactly between that of L-scaling and K-scaling, and it approaches to K-scaling as
the order h increases. Intuitively, with a larger h, this approximation method takes more and more
global connections into account and improves performance.

5. Conclusion

We derived generalization bounds for multi-category classification on graphs with Laplacian regu-
larization, using geometric properties of the graph. In particular, we used this analysis to obtain a
better understanding of the role of normalization of the graph Laplacian matrix. We argued that the
standard L-scaling normalization method has the undesirable property that the normalization factors

1510

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

(a) MNIST, dim and alpha
determined by cross validation

(b) MNIST, w/ optimum dim
and optimum alpha

55

60

65

70

75

80

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

72

74

76

78

80

82

84

10 30 50

of labeled examples

ac
cu

ra
cy

 (%
)

K-scaling (w/ dim reduction)

h=10

h=5

h=2

h=0

L-scaling (w/ dim reduction)

Figure 12: Classification accuracy (%) of the approximation method using K̂(h). MNIST. (a) Dimension-
ality and α were determined by cross validation. (b) Dimensionality and α were set to the
optimum.

can vary significantly within a pure component. An alternate normalization method, which we call
K-scaling, is proposed to remedy the problem. Experiments confirm the superiority of K-scaling
combined with dimension reduction. Finally, there are possible extensions of this work that require
further investigation, for example, how to use the K-scaling for other types of graphs such as direct
graphs, and how to apply this idea to spectral clustering.

Appendix A. Proof of Theorem 1

The proof employs the stability analysis of Zhang (2003), and is similar to the proof of a related
bound for binary-classification in Zhang and Ando (2006). We shall introduce the following nota-
tion. let in+1 $= i1, . . . , in be an integer randomly drawn from Z̄n, and let Zn+1 = Zn ∪{in+1}. Let
f̂(Zn+1) be the semi-supervised learning method (1) using training data in Zn+1:

f̂(Zn+1) = arg min
f∈RmK

[
1
n ∑
j∈Zn+1

φ(f j,y j)+λfTQKf

]
.

We have the following stability lemma (a related result can be found in Zhang, 2003);

Lemma 8 The following inequality holds for each k = 1, . . . ,K:

| f̂in+1,k(Zn+1)− f̂in+1,k(Zn)| ≤ |∇1,kφ(f̂in+1(Zn+1),yin+1)|Kin+1,in+1/(2λn),

where ∇1,kφ(fi,y) denotes a sub-gradient of φ(fi,y) with respect to fi,k, where fi = [fi,1, . . . , fi,K].

Proof From Rockafellar (1970), we know that there exist sub-gradients ∇1,kφ such that the follow-
ing first-order condition for the optimization problem (1) holds:

−2λnK−1f̂·,k(Zn) = ∑
j∈Zn

∇1,kφ(f̂ j(Zn),y j)e j,

1511

JOHNSON AND ZHANG

where e j is the m-dimensional vector with all zeros except for the j-component with value one.
Similarly, we have

−2λnK−1f̂·,k(Zn+1) = ∑
j∈Zn+1

∇1,kφ(f̂ j(Zn+1),y j)e j.

Now, for simplicity, let g = f̂(Zn) and h = f̂ (Zn+1). By subtracting the above two equations, and
then taking the inner product with h·,k−g·,k, we obtain

−2λn(h·,k−g·,k)TK−1(h·,k−g·,k) =∇1,kφ(hin+1 ,yin+1)(hin+1,k−gin+1,k)
+ ∑

j∈Zn
(∇1,kφ(h j,y j)−∇1,kφ(g j,y j))(h j,k−g j,k).

Note that if c(s) is a convex function of s, then it is easy to verify that (∇c(s1)−∇c(s2))(s1−s2)≥ 0.
Therefore we have ∑ j∈Zn(∇1,kφ(h j,y j)−∇1,kφ(g j,y j))(h j,k−g j,k) ≥ 0. This implies that

2λn(h·,k−g·,k)TK−1(h·,k−g·,k) ≤−∇1,kφ(hin+1 ,yin+1)(hin+1,k−gin+1,k).

Using Cauchy-Schwartz inequality, we have

2λn(hin+1,k−gin+1,k)
2 =2λn((h·,k−g·,k)T ein+1)2

≤2λn(h·,k−g·,k)TK−1(h·,k−g·,k)eTin+1Kein+1
≤|∇1,kφ(hin+1 ,yin+1)| · |hin+1,k−gin+1,k|Kin+1,in+1 .

Therefore we have |hin+1,k−gin+1,k| ≤ |∇1,kφ(hin+1 ,yin+1)|Kin+1,in+1/(2λn).

Lemma 9 The following inequality holds

err(f̂in+1(Zn),yin+1) ≤ sup
k=k0,in+1

[
1
a
φ0(f̂in+1,k(Zn+1),δin+1,k)+

(
b
cλn

Kin+1,in+1

)p]
.

Proof If f̂(Zn) does not make an error on the in+1-th example. That is, if err(f̂in+1(Zn),yin+1) = 0,
then the inequality automatically holds.

Now, assume that f̂(Zn) makes an error on the in+1-th example: err(f̂in+1(Zn),yin+1) = 1. Then
there exists k0 $= yin+1 such that f̂in+1,yin+1 (Zn) ≤ f̂in+1,k0(Zn). This means that for any d, either
f̂in+1,yin+1 (Zn) ≤ d or f̂in+1,k0(Zn) ≥ d. We simple let d = (inf{x : φ0(x,1) ≤ a}+ sup{x : φ0(x,0) ≤
a})/2. By the definition of c, either we have inf{x : φ0(x,1) ≤ a}− f̂in+1,yin+1 (Zn) ≥ c/2 or we have
f̂in+1,k0(Zn)− sup{x : φ0(x,0) ≤ a} ≥ c/2. It follows that there exists k = k0 or k = yin+1 such that
either φ0(f̂in+1,k(Zn+1),δyin+1 ,k) ≥ a or

∣∣ f̂in+1,k(Zn+1)− f̂in+1,k(Zn)
∣∣ ≥ c/2.

Using Lemma 8, we have either φ0(f̂in+1,k(Zn+1),δyin+1 ,k)≥ a or bKin+1,in+1/(2λn)≥ c/2, imply-
ing that

1
a
φ0(f̂in+1,k(Zn+1),δyin+1 ,k)+

(
bKin+1,in+1

cλn

)p
≥ 1= err(f̂in+1(Zn),yin+1).

1512

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

We are now ready to prove Theorem 1. For every j ∈ Zn+1, denote by Z
(j)
n+1 the subset of n

samples in Zn+1 with the j-th data point left out. From Lemma 9, we have

err(f̂ j(Z(j)
n+1),y j) ≤

1
a
φ(f̂ j(Zn+1),y j)+

(
b
cλn

K j, j

)p
.

We thus obtain for all f ∈ RmK :

∑
j∈Zn+1

err(f̂ j(Z(j)
n+1),y j) ≤

1
a ∑
j∈Zn+1

φ(f̂ j(Zn+1),y j)+ ∑
j∈Zn+1

(
b
cλn

K j, j

)p

≤1
a

[

∑
j∈Zn+1

φ(f j,y j)+λfTQKf

]
+ ∑

j∈Zn+1

(
b
cλn

K j, j

)p
.

Therefore

EZn
1

m−n ∑j∈Z̄n
err(f̂ j(Zn),y j)

=EZn+1err(f̂n+1(Z
(n+1)
n+1),yn+1) =

1
n+1

EZn+1 ∑
j∈Zn+1

err(f̂ j(Z(j)
n+1),y j)

≤ n
a(n+1)

EZn+1

[
1
n ∑
j∈Zn+1

φ(f j,y j)+λfTQKf

]
+

1
n+1

EZn+1 ∑
j∈Zn+1

(
b
cλn

K j, j

)p

=
1
a

[
1
m

m

∑
j=1

φ(f j,y j)+
λn
n+1

fTQKf

]
+
1
m

m

∑
j=1

(
bK j, j

cλn

)p
.

Appendix B. Proof of Theorem 7

The idea is similar to that of Theorem 5. We use the same notation, and let v! be the indicator
function of V! in V . Let I! be the diagonal matrix with value ones for nodes corresponding to V!

and zeros elsewhere. We have ∀u = [u1, . . . ,um] ∈ Rm, (u−uTv!v!/m!)Tv! = 0. Therefore by the
definition of λ2(G!), we have

1
2 ∑
j, j′∈V!

w j, j′(u j−uk)2 =(I!u−uTv!v!/m!)TL(G′)(I!u−uTv!v!/m!)

≥λ2(G!)‖I!u−uTv!v!/m!‖22 = λ2(G!)uT [I!−v!v!/m!]u.

We thus obtain

uTLu=
1
2

m

∑
j, j′=1

w j, j′(u j−uk)2 ≥
q

∑
!=1

1
2 ∑
j, j′∈V!

w j, j′(u j−uk)2

≥uT
[

q

∑
!=1

λ2(G!)(I!−v!vT! /m!)

]
u.

1513

JOHNSON AND ZHANG

Therefore L −∑
q
!=1λ2(G!)(I!−v!vT! /m!) is positive semi-definite, and thus

(
αI+

q

∑
!=1

λ2(G!)(I!−v!vT! /m!)

)−1

− (αI+L)−1

is positive-semi-definite. Also, from (2) we have S−1/2KS−1/2 = (αI+ L(G))−1, so we know that
the diagonal entries of S−1/2KS−1/2 can be upper-bounded by those of

(
αI+

q

∑
!=1

λ2(G!)(I!−v!vT! /m!)

)−1

=
q

∑
!=1

(α+λ2(G!))−1
(
I! +α−1λ2(G!)v!vT! /m!

)
.

For the latter, itsm! diagonal entries for each pure component ! can be upper bounded by λ2(G!)−1+
(αm!)−1. Therefore:

m1/ptrp(K) ≤
(

q

∑
!=1

s!(p)(α−1m−1
! +λ2(G!)−1)p

)1/p

≤



α−1

(
q

∑
!=1

s!(p)m−p
!

)1/p

+

(
q

∑
!=1

s!(p)λ2(G!)−p
)1/p



 .

Substitute this estimate into Theorem 4, and we have

EZn
1

m−n ∑j∈Z̄n
err(f̂ j(Zn),y j) ≤

Cp(a,b,c)
np/(p+1)

[
m−1/p(αs+C)(α−1A+B)

]p/(p+1)
,

where A = (∑q
!=1 s!(p)m

−p
!)1/p, B = (∑q

!=1 s!(p)λ2(G!)−p)1/p, and C = cut(LS,y). Now optimize
over α (let α=

√
AC/(sB)), and simplify to obtain the desired inequality.

Appendix C. Dimension Reduction

As in Section 3.5, denote by PrS(G) the projection operator onto the eigenspace of αS−1+ LS(G)
corresponding to the r smallest eigenvalues, and define the following regularizer on the reduced
subspace:

fT·,kK−1f·,k =

{
fT·,kK

−1
0 f·,k if PrS(G)f·,k = f·,k,

+∞ otherwise.

Note that in the following, we will focus on bounding the generalization complexity using the
reduced dimensionality r. In such context, the choice of K0 is not important as far as our analysis is
concerned. We may simply choose K0 = I (or we may let K−1

0 = αS−1+LS(G)).
The following theorem shows that the target vectors can be well approximated by their projec-

tion via PqS(G).

Theorem 10 Let G′ = ∪q!=1G! (G! = (V!,E!)) be a pure subgraph of G. Consider r ≥ q. Then we
have:

λr+1(LS(G)) ≥ λr+1(LS(G′)) ≥min
!
λ2(LS(G!)).

1514

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

For each k, let f̄ j,k = δy j,k be the target (encoding of the true labels) for class k (j = 1, . . . ,m). Then
‖PrS(G)f̄·,k− f̄·,k‖22 ≤ δr(S)‖f̄·,k‖22, where

δr(S) =
‖LS(G)−LS(G′)‖2+d(S)

λr+1(LS(G))
, d(S) =max

!

1
2|V!| ∑j, j′∈V!

w j, j′(S
−1/2
j −S−1/2j′)2.

Proof Let E= LS(G)−LS(G′), then E is a positive semi-definite matrix. Therefore, we know that
the eigenvalues of LS(G) are no less than the corresponding eigenvalues of LS(G′). This follows
easily from the minimax variational formulation for the q+ 1-th smallest eigenvalue of a matrix
L ∈ Rm×m, which can be written as

max
Vq∈Rm×q:V T

q Vq=Iq×q
min

v∈Rm:‖v‖2=1,V T
q v=0

vTLv,

together with the fact that vTLS(G)v≥ vTLS(G′)v.
Since the (q+ 1)-th smallest eigenvalue of LS(G′) is min!λ2(L(G!)), we obtain the first dis-

played inequalities. Moreover,

f̄T·,kLS(G)f̄·,k = f̄T·,kEf̄·,k + f̄T·,kLS(G′)f̄·,k ≤ (‖E‖2+d(S))f̄T·,k f̄·,k.

Since PrS(G)f̄·,k belongs to the subspace spanned by the smallest r eigenvectors of LS(G), and (I−
PrS(G))f̄·,k belongs to the subspace spanned by the remaining eigenvectors, we obtain

λr+1(LS(G))f̄T·,k(I−PrS(G))f̄·,k ≤f̄T·,k(I−PrS(G))LS(G)(I−PrS(G))f̄·,k
=f̄T·,kLS(G)f̄·,k− (PrS(G)f̄·,k)TLS(G)(PrS(G)f̄·,k)
≤f̄T·,kLS(G)f̄·,k
≤[‖LS(G)−LS(G′))‖2+d(S)]‖f̄·,k‖22.

The result follows from the observation that f̄T·,k(I−PrS(G))f̄·,k = ‖f̄·,k−PrS(G)f̄·,k‖22.

In Theorem 10, normalization plays a direct role because S affects δr(S). Note that the eigen-
value inequality implies that δr(S) can be bounded by 1/min!λ2(LS(G!)). If LS(G)≈ LS(G′), then
d(S) ≈ 0, which means that S j ≈ S j′ if j and j′ belongs to the same V!. Moreover, λ2(LS(G!)) is
approximately a constant; otherwise, we may reduce the largest eigenvalue λ2(G!) by increasing
the corresponding scaling factor, which reduces ‖LS(G)−LS(G′))‖2, thus reduces δr(S). Using
reasoning that is analogous to Section 3.4, we can obtain similar conclusion under the condition
LS(G) ≈ LS(G′). That is, δr(S) is approximately minimized when S j = s̄! = m! for each j ∈V!.

Similar to Theorem 5, we can prove the following generalization bound using Theorem 10. For
simplicity, we only consider a simple kernel K0 = I, and take p= 1.

Theorem 11 Let the assumptions of Theorem 10 hold. Consider the least squares loss φ(f j,y j) =
∑K
k=1(f j,k−δk,y j)2 in (1) using the regularization condition (6) andK0 = I. The generalization error

with optimal λ can be bounded as:

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤ 16δr(S)+8

√
r/n.

1515

JOHNSON AND ZHANG

Proof Using Theorem 10, it can be easily verified that

1
m

m

∑
j=1

φ(PrS(G)f̄ j,y j)+λ
K

∑
k=1

(PrS(G)f̄·,k)TK−1(PrS(G)f̄·,k) ≤ δr(S)+λm.

Since regularizing withK0 = I is equivalent with regularizing withK0 =PrS(G), we can use tr(K) =
r. Now using this estimate in Theorem 1, we have

EZn
1

m−n ∑j∈Z̄n
err(f̂ j,y j) ≤ 16(δr(S)+λm)+

r
λnm

.

Optimizing over λ gives the desired bound.

Similar to Theorem 7, it is possible to prove a bound for general p in Theorem 11, but the
estimation of trp(K) is more complicated than that of tr(K). We skip the derivation because
the extra complication is not important for the purpose of this paper. Compared to Theorem 7,
the advantage of dimension reduction in Theorem 11 is that the quantity cut(LS,y) is replaced by
‖LS(G)−LS(G′)‖2, which is typically much smaller. Instead of a rigorous analysis, we shall just
give a brief intuition. For simplicity we take S = I so that we can ignore the variations caused by
S. The 2-norm of the symmetric error matrix LS(G)−LS(G′) is its largest eigenvalue, which is no
more than the largest 1-norm of one of its row vectors. In contrast, cut(LS,y) behaves similar to the
absolute sum of entries of the error matrix, which is m times more than the averaged 1-norm of its
row vectors. Therefore if error is relatively uniform across rows, then cut(LS,y) can be at an order
of m times more than ‖LS(G)−LS(G′)‖2.

References

Rie K. Ando and Tong Zhang. Learning on graph with Laplacian regularization. In NIPS 19, 2007.

Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
Learning, Special Issue on Clustering:209–239, 2004.

Fan R.K. Chung. Spectral Graph Theory. Regional Conference Series in Mathematics. American
Mathematical Society, Rhode Island, 1998.

Chris Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst Simon. A min-max cut algorithm for
graph partitioning and data clustering. In IEEE Int’l Conf. Data Mining, pages 107–114, 2001.

Daniel B. Graham and Nigel M. Allinson. Characterizing virtual eigensignatures for general pur-
pose face recognition. Face Recognition: From Theory to Applications, NATO ASI Series F,
Computer and Systems Sciences, 163:446–456, 1998.

Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut partitioning and clustering.
IEEE Transactions on Computer-Aided Design, 11(9):1074–1085, 1992.

Gert R.G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.
Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Re-
search, 5:27–72, 2004.

1516

ON THE EFFECTIVENESS OF LAPLACIAN NORMALIZATION FOR GRAPH SEMI-SUPERVISED LEARNING

Marina Meilă, Susan Shortreed, and Liang Xu. Regularized spectral learning. In AISTATS, 2005.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algo-
rithm. In NIPS 14, pages 849–856, 2002.

Ralph Tyrrell Rockafellar. Convex analysis. Princeton University Press, Princeton, NJ, 1970.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell, 22:888–905, 2000.

Martin Szummer and Tommi Jaakkola. Partially labeled classification with Markov random walks.
In Advances in Neural Information Processing Systems 14, 2002.

Ulrike von Luxburg, Olivier Bousquet, and Mikhail Belkin. Limits of spectral clustering. In
Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Pro-
cessing Systems 17, pages 857–864. MIT Press, Cambridge, MA, 2005.

Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning, with
application to clustering with side-information. In NIPS 15, 2003.

Tong Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 15:1397–1437, 2003.

Tong Zhang and Rie K. Ando. Analysis of spectral kernel design based semi-supervised learning.
In NIPS 18, 2006.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schlkopf.
Learning with local and global consistency. In Advances in Neural Information Processing Sys-
tems 16, pages 321–328, 2004.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using Gaussian
fields and harmonic functions. In ICML 2003, 2003.

1517

Journal of Machine Learning Research 8 (2007) 1519-1555 Submitted 7/06; Revised 1/07; Published 7/07

An Interior-Point Method for Large-Scale !1-Regularized
Logistic Regression

Kwangmoo Koh DENEB1@STANFORD.EDU
Seung-Jean Kim SJKIM@STANFORD.EDU
Stephen Boyd BOYD@STANFORD.EDU
Information Systems Laboratory
Electrical Engineering Department
Stanford University
Stanford, CA 94305-9510, USA

Editor: Yi Lin

Abstract
Logistic regression with !1 regularization has been proposed as a promising method for feature
selection in classification problems. In this paper we describe an efficient interior-point method
for solving large-scale !1-regularized logistic regression problems. Small problems with up to a
thousand or so features and examples can be solved in seconds on a PC; medium sized problems,
with tens of thousands of features and examples, can be solved in tens of seconds (assuming some
sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient
method to compute the search step, can solve very large problems, with a million features and ex-
amples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warm-start techniques,
a good approximation of the entire regularization path can be computed much more efficiently than
by solving a family of problems independently.
Keywords: logistic regression, feature selection, !1 regularization, regularization path, interior-
point methods.

1. Introduction

In this section we describe the basic logistic regression problem, the !2- and !1-regularized versions,
and the regularization path. We set out our notation, and review existing methods and literature.
Finally, we give an outline of this paper.

1.1 Logistic Regression

Let x ∈Rn denote a vector of explanatory or feature variables, and b ∈ {−1,+1} denote the associ-
ated binary output or outcome. The logistic model has the form

Prob(b|x) =
1

1+ exp(−b(wT x+ v))
=

exp
(
b(wT x+ v)

)

1+ exp(b(wT x+ v))
,

where Prob(b|x) is the conditional probability of b, given x∈Rn. The logistic model has parameters
v ∈ R (the intercept) and w ∈ Rn (the weight vector). When w #= 0, wT x+ v= 0 defines the neutral
hyperplane in feature space, on which the conditional probability of each outcome is 1/2. On the
shifted parallel hyperplane wT x+ v = 1, which is a distance 1/‖w‖2 from the neutral hyperplane,

c©2007 Kwangmoo Koh, Seung-Jean Kim and Stephen Boyd.

KOH, KIM AND BOYD

the conditional probability of outcome b= 1 is 1/(1+1/e) ≈ 0.73, and the conditional probability
of b = −1 is 1/(1+ e) ≈ 0.27. On the hyperplane wT x+ v = −1, these conditional probabilities
are reversed. As wT x+ v increases above one, the conditional probability of outcome b= 1 rapidly
approaches one; as wT x+ v decreases below −1, the conditional probability of outcome b = −1
rapidly approaches one. The slab in feature space defined by |wT x+ v| ≤ 1 defines the ambiguity
region, in which there is substantial probability of each outcome; outside this slab, one outcome is
much more likely than the other.

Suppose we are given a set of (observed or training) examples,

(xi,bi) ∈ Rn×{−1,+1}, i= 1, . . . ,m,

assumed to be independent samples from a distribution. We use plog(v,w)∈Rm to denote the vector
of conditional probabilities, according to the logistic model,

plog(v,w)i = Prob(bi|xi) =
exp(wTai+ vbi)

1+ exp(wTai+ vbi)
, i= 1, . . . ,m,

where ai = bixi. The likelihood function associated with the samples is ∏m
i=1 plog(v,w)i, and the

log-likelihood function is given by

m

∑
i=1
log plog(v,w)i = −

m

∑
i=1

f (wTai+ vbi),

where f is the logistic loss function

f (z) = log(1+ exp(−z)). (1)

This loss function is convex, so the log-likelihood function is concave. The negative of the log-
likelihood function is called the (empirical) logistic loss, and dividing by m we obtain the average
logistic loss,

lavg(v,w) = (1/m)
m

∑
i=1

f (wTai+ vbi).

We can determine the model parameters w and v by maximum likelihood estimation from the
observed examples, by solving the convex optimization problem

minimize lavg(v,w), (2)

with variables v∈R and w∈Rn, and problem data A= [a1 · · · am]T ∈Rm×n and the vector of binary
outcomes b= [b1 · · · bm]T ∈ Rm. The problem (2) is called the logistic regression problem (LRP).

The average logistic loss is always nonnegative, that is, lavg(v,w) ≥ 0, since f (z) ≥ 0 for any z.
For the choice w = 0, v = 0, we have lavg(0,0) = log2 ≈ 0.693, so the optimal value of the LRP
lies between 0 and log2. In particular, the optimal value can range (roughly) between 0 and 1. The
optimal value is 0 only when the original data are linearly separable, that is, there exist w and v such
that wT xi + v > 0 when bi = 1, and wT xi + v < 0 when bi = −1. In this case the optimal value of
the LRP (2) is not achieved (except in the limit with w and v growing arbitrarily large). The optimal
value is log2, that is, w = 0, v = 0 are optimal, only if ∑m

i=1 bi = 0 and ∑m
i=1 ai = 0. (This follows

from the expression for ∇lavg, given in Section 2.1.) This occurs only when the number of positive

1520

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

examples (i.e., those for which bi = 1) is equal to the number of negative examples, and the average
of xi over the positive examples is the negative of the average value of xi over the negative examples.

The LRP (2) is a smooth convex optimization problem, and can be solved by a wide variety of
methods, such as gradient descent, steepest descent, Newton, quasi-Newton, or conjugate-gradients
(CG) methods (see, for example Hastie et al., 2001, § 4.4).

Once we find maximum likelihood values of v and w, that is, a solution of (2), we can predict the
probability of the two possible outcomes, given a new feature vector x ∈ Rn, using the associated
logistic model. For example, when w #= 0, we can form the logistic classifier

φ(x) = sgn(wT x+ v), (3)

where
sgn(z) =

{
+1 z> 0
−1 z≤ 0,

which picks the more likely outcome, given x, according to the logistic model. This classifier is
linear, meaning that the boundary between the two decision outcomes is a hyperplane (defined by
wT x+ v= 0).

1.2 !2-Regularized Logistic Regression

When m, the number of observations or training examples, is not large enough compared to n, the
number of feature variables, simple logistic regression leads to over-fit. That is, the classifier found
by solving the LRP (2) performs perfectly (or very well) on the training examples, but may perform
poorly on unseen examples. Over-fitting tends to occur when the fitted model has many feature
variables with (relatively) large weights in magnitude, that is, w is large.

A standard technique to prevent over-fitting is regularization, in which an extra term that pe-
nalizes large weights is added to the average logistic loss function. The !2-regularized logistic
regression problem is

minimize lavg(v,w)+λ‖w‖22 = (1/m)∑m
i=1 f (wTai+ vbi)+λ∑n

i=1w2i . (4)

Here λ> 0 is the regularization parameter, used to control the trade-off between the average logistic
loss and the size of the weight vector, as measured by the !2-norm. No penalty term is imposed
on the intercept, since it is a parameter for thresholding the weighted sum wT x in the linear classi-
fier (3). The solution of the !2-regularized regression problem (4) (which exists and is unique) can
be interpreted in a Bayesian framework, as the maximum a posteriori probability (MAP) estimate
of w and v, when w has a Gaussian prior distribution on Rn with zero mean and covariance λI and
v has the (improper) uniform prior on R; see, for example, Chaloner and Larntz (1989) or Jaakkola
and Jordan (2000).

The objective function in the !2-regularized LRP is smooth and convex, and so (like the ordi-
nary, unregularized LRP) can be minimized by standard methods such as gradient descent, steepest
descent, Newton, quasi-Newton, truncated Newton, or CG methods; see, for example, Luenberger
(1984), Lin et al. (2007), Minka (2003), Nocedal and Wright (1999), and Nash (2000). Other meth-
ods that have been used include optimization transfer (Krishnapuram and Hartemink, 2005; Zhang
et al., 2004) and iteratively re-weighted least squares (Komarek, 2004). Newton’s method and vari-
ants are very effective for small and medium sized problems, while conjugate-gradients and limited
memory Newton (or truncated Newton) methods can handle very large problems. In Minka (2003)

1521

KOH, KIM AND BOYD

the author compares several methods for !2-regularized LRPs with large data sets. The fastest meth-
ods turn out to be conjugate-gradients and limited memory Newton methods, outperforming IRLS,
gradient descent, and steepest descent methods. Truncated Newton methods have been applied to
large-scale problems in several other fields, for example, image restoration (Fu et al., 2006) and
support vector machines (Keerthi and DeCoste, 2005). For large-scale iterative methods such as
truncated Newton or CG, the convergence typically improves as the regularization parameter λ is
increased, since (roughly speaking) this makes the objective more quadratic, and improves the con-
ditioning of the problem.

1.3 !1-Regularized Logistic Regression

More recently, !1-regularized logistic regression has received much attention. The !1-regularized
logistic regression problem is

minimize lavg(v,w)+λ‖w‖1 = (1/m)∑m
i=1 f (wTai+ vbi)+λ∑n

i=1 |wi|, (5)

where λ > 0 is the regularization parameter. The only difference with !2-regularized logistic re-
gression is that we measure the size of w by its !1-norm, instead of its !2-norm. A solution of the
!1-regularized logistic regression must exist, but it need not be unique. Any solution of the !1-
regularized logistic regression problem (5) can be interpreted in a Bayesian framework as a MAP
estimate of w and v, when w has a Laplacian prior distribution and v has the (improper) uniform
prior. The objective function in the !1-regularized LRP (5) is convex, but not differentiable (specif-
ically, when any of the weights is zero), so solving it is more of a computational challenge than
solving the !2-regularized LRP (4).

Despite the additional computational challenge posed by !1-regularized logistic regression,
compared to !2-regularized logistic regression, interest in its use has been growing. The main moti-
vation is that !1-regularized LR typically yields a sparse vector w, that is, w typically has relatively
few nonzero coefficients. (In contrast, !2-regularized LR typically yields w with all coefficients
nonzero.) When w j = 0, the associated logistic model does not use the jth component of the feature
vector, so sparse w corresponds to a logistic model that uses only a few of the features, that is,
components of the feature vector. Indeed, we can think of a sparse w as a selection of the relevant
or important features (i.e., those associated with nonzero w j), as well as the choice of the intercept
value and weights (for the selected features). A logistic model with sparse w is, in a sense, sim-
pler or more parsimonious than one with nonsparse w. It is not surprising that !1-regularized LR
can outperform !2-regularized LR, especially when the number of observations is smaller than the
number of features (Ng, 2004; Wainwright et al., 2007).

We refer to the number of nonzero components in w as its cardinality, denoted card(w). Thus,
!1-regularized LR tends to yield w with card(w) small; the regularization parameter λ roughly con-
trols card(w), with larger λ typically (but not always) yielding smaller card(w).

The general idea of !1 regularization for the purposes of model or feature selection (or just
sparsity of solution) is quite old, and widely used in other contexts such as geophysics (Claerbout
and Muir, 1973; Taylor et al., 1979; Levy and Fullagar, 1981; Oldenburg et al., 1983). In statistics,
it is used in the well-known Lasso algorithm (Tibshirani, 1996) for !1-regularized linear regression,
and its extensions such as the fused Lasso (Tibshirani et al., 2005), the grouped Lasso (Kim et al.,
2006; Yuan and Lin, 2006; Zhao et al., 2007), and the monotone Lasso (Hastie et al., 2007). The
idea also comes up in signal processing in basis pursuit (Chen and Donoho, 1994; Chen et al.,

1522

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

2001), signal recovery from incomplete measurements (Candès et al., 2006, 2005; Donoho, 2006),
and wavelet thresholding (Donoho et al., 1995), decoding of linear codes (Candès and Tao, 2005),
portfolio optimization (Lobo et al., 2005), controller design (Hassibi et al., 1999), computer-aided
design of integrated circuits (Boyd et al., 2001), computer vision (Bhusnurmath and Taylor, 2007),
sparse principal component analysis (d’Aspremont et al., 2005; Zou et al., 2006), graphical model
selection (Wainwright et al., 2007), maximum likelihood estimation of graphical models (Banerjee
et al., 2006; Dahl et al., 2005), boosting (Rosset et al., 2004), and !1-norm support vector machines
(Zhu et al., 2004). A recent survey of the idea can be found in Tropp (2006). Donoho and Elad
(2003) and Tropp (2006) give some theoretical analysis of why !1 regularization leads to a sparse
model in linear regression. Recently, theoretical properties of !1-regularized linear regression have
been studied by several researchers; see, for example, Zou (2006), Zhao and Yu (2006), and Zou
et al. (2007).

To solve the !1-regularized LRP (5), generic methods for nondifferentiable convex problems can
be used, such as the ellipsoid method or subgradient methods (Shor, 1985; Polyak, 1987). These
methods are usually very slow in practice, however. (Because !1-regularized LR typically results in
a weight vector with (many) zero components, we cannot simply ignore the nondifferentiability of
the objective in the !1-regularized LRP (5), hoping to not encounter points of nondifferentiability.)

Another approach is to transform the problem to one with differentiable objective and constraint
functions. We can solve the !1-regularized LRP (5), by solving an equivalent formulation, with
linear inequality constraints,

minimize lavg(v,w)+λ1Tu
subject to −ui ≤ wi ≤ ui, i= 1, . . . ,n, (6)

where the variables are the original ones v ∈ R, w ∈ Rn, along with u ∈ Rn. Here 1 denotes the
vector with all components one, so 1Tu is the sum of the components of u. (To see the equivalence
with the !1-regularized LRP (5), we note that at the optimal point for (6), we must have ui = |wi|,
in which case the objectives in (6) and (5) are the same.) The reformulated problem (6) is a convex
optimization problem, with a smooth objective, and linear constraint functions, so it can be solved
by standard convex optimization methods such as SQP, augmented Lagrangian, interior-point, and
other methods. High quality solvers that can directly handle the problem (6) (and therefore, carry out
!1-regularized LR) include for example LOQO (Vanderbei, 1997), LANCELOT (Conn et al., 1992),
MOSEK (MOSEK ApS, 2002), and NPSOL (Gill et al., 1986). These general purpose solvers can
solve small and medium scale !1-regularized LRPs quite effectively.

Other recently developed computational methods for !1-regularized logistic regression include
the IRLS method (Lee et al., 2006; Lokhorst, 1999), a generalized LASSO method (Roth, 2004)
that extends the LASSO method proposed in Osborne et al. (2000) to generalized linear models,
generalized iterative scaling (Goodman, 2004), bound optimization algorithms (Krishnapuram et al.,
2005), online algorithms (Balakrishnan and Madigan, 2006; Perkins and Theiler, 2003), coordinate
descent methods (Friedman et al., 2007; Genkin et al., 2006), and the Gauss-Seidel method (Shevade
and Keerthi, 2003). Some of these methods can handle very large problems (assuming some sparsity
in the data) with modest accuracy. But the additional computational cost required for these methods
to achieve higher accuracy can be very large.

The main goal of this paper is to describe a specialized interior-point method for solving the !1-
regularized logistic regression problem that is very efficient, for all size problems. In particular our
method handles very large problems, attains high accuracy, and is not much slower than the fastest

1523

KOH, KIM AND BOYD

large-scale methods (conjugate-gradients and limited memory Newton) applied to the !2-regularized
LRP.

Numerical experiments show that our method is as fast as, or faster than, other methods, and
reliably provides very accurate solutions. Compared with high-quality implementations of general
purpose primal-dual interior-point methods, our method is far faster, especially for large problems.
Compared with first-order methods such as coordinate descent methods, our method is comparable
in solving large problems with modest accuracy, but is able to solve them with high accuracy with
relatively small additional computational cost.

In this paper we focus on methods for solving the !1-regularized LRP; we do not discuss the
benefits or advantages of !1-regularized LR, compared to !2-regularized LR or other methods for
modeling or constructing classifiers for two-class data.

1.4 Regularization Path

Let (v!λ,w
!
λ) be a solution for the !1-regularized LRP with regularization parameter λ. The family of

solutions, as λ varies over (0,∞), is called the (!1-) regularization path. In many applications, the
regularization path (or some portion) needs to be computed, in order to determine an appropriate
value of λ. At the very least, the !1-regularized LRP must be solved for multiple, and often many,
values of λ.

In !1-regularized linear regression, which is the problem of minimizing

‖Fz−g‖22+λ‖z‖1

over the variable z, where λ > 0 is the regularization parameter, F ∈ Rp×n is the covariate matrix,
and g ∈ Rp is the vector of responses, it can be shown that the regularization path is piecewise
linear, with kinks at each point where any component of the variable z transitions from zero to
nonzero, or vice versa. Using this fact, the entire regularization path in a (small or medium size) !1-
regularized linear regression problem can be computed efficiently (Hastie et al., 2004; Efron et al.,
2004; Rosset, 2005; Rosset and Zhu, 2007; Osborne et al., 2000). These methods are related to
numerical continuation techniques for following piecewise smooth curves, which have been well
studied in the optimization literature (Allgower and Georg, 1993).

Path following methods have been applied to several problems (Hastie et al., 2004; Park and
Hastie, 2006a,b; Rosset, 2005). Park and Hastie (2006a) describe an algorithm for (approximately)
computing the entire regularization path for general linear models (GLMs) including logistic re-
gression models. In Rosset (2005), a general path-following method based on a predictor-corrector
method is described for general regularized convex loss minimization problems. Path-following
methods can be slow for large-scale problems, where the number of kinks or events is very large (at
least n). When the number of kinks on the portion of the regularization path of interest is modest,
however, these path-following methods can be very fast, requiring just a small multiple of the effort
needed to solve one regularized problem to compute the whole path (or a portion).

In this paper we describe a fast method for computing a large number of points on the regu-
larization path, using a warm-start technique and our interior-point method. Unlike the methods
mentioned above, our method does not attempt to track the path exactly (i.e., jumping from kink
to kink on the path); it remains efficient even when successive values of λ jump over many kinks.
This is essential when computing the regularization path in a large-scale problem. Our method al-
lows us to compute a large number of points (but much fewer than n, when n is very large) on the

1524

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

regularization path, much more efficiently than by solving a family of the problems independently.
Our method is far more efficient than path following methods in computing a good approximation
of the regularization for a medium-sized or large data set.

1.5 Outline

In Section 2, we give (necessary and sufficient) optimality conditions, and a dual problem, for the
!1-regularized LRP. Using the dual problem, we show how to compute a lower bound on the subopti-
mality of any pair (v,w). We describe our basic interior-point method in Section 3, and demonstrate
its performance in Section 4 with small and medium scale synthetic and machine learning bench-
mark examples. We show that !1-regularized LR can be carried out within around 35 or so iterations,
where each iteration has the same complexity as solving an !2-regularized linear regression problem.

In Section 5, we describe a variation on our basic method that uses a preconditioned conjugate
gradient approach to compute the search direction. This variation on our method can solve very
large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in under
an hour, on a PC, provided the data matrix is sufficiently sparse.

In Section 6, we consider the problem of computing the regularization path efficiently, at a
variety of values of λ (but potentially far fewer than the number of kinks on the path). Using warm-
start techniques, we show how this can done much more efficiently than by solving a family of
problems independently. In Section 7, we compare the interior-point method with several existing
methods for !1-regularized logistic regression. In Section 8, we describe generalizations of our
method to other !1-regularized convex loss minimization problems.

2. Optimality Conditions and Dual

In this section we derive a necessary and sufficient optimality condition for the !1-regularized LRP,
as well as a Lagrange dual problem, from which we obtain a lower bound on the objective that we
will use in our algorithm.

2.1 Optimality Conditions

The objective function of the !1-regularized LRP, lavg(v,w)+λ‖w‖1, is convex but not differentiable,
so we use a first-order optimality condition based on subdifferential calculus (see Bertsekas, 1999,
Prop. B.24 or Borwein and Lewis, 2000, §2). The average logistic loss is differentiable, with

∇vlavg(v,w) = (1/m)
m

∑
i=1

f ′(wTai+ vbi)bi

= −(1/m)
m

∑
i=1

(1− plog(v,w)i)bi

= −(1/m)bT (1− plog(v,w)),

1525

KOH, KIM AND BOYD

and

∇wlavg(v,w) = (1/m)
m

∑
i=1

f ′(wTai+ vbi)ai

= −(1/m)
m

∑
i=1

(1− plog(v,w)i)ai

= −(1/m)AT (1− plog(v,w)).

The subdifferential of ‖w‖1 is given by

(∂‖w‖1)i =






{1} wi > 0,
{−1} wi < 0,
[−1,1] wi = 0.

The necessary and sufficient condition for (v,w) to be optimal for the !1-regularized LRP (5) is

∇vlavg(v,w) = 0, 0 ∈ ∇wlavg(v,w)+λ∂‖w‖1,

which can be expressed as
bT (1− plog(v,w)) = 0, (7)

and

(1/m)
(
AT (1− plog(v,w))

)
i ∈






{+λ} wi > 0,
{−λ} wi < 0,
[−λ, λ] wi = 0,

i= 1, . . . ,n. (8)

Let us analyze when a pair of the form (v,0) is optimal. This occurs if and only if

bT (1− plog(v,0)) = 0, ‖(1/m)AT (1− plog(v,0))‖∞ ≤ λ.

The first condition is equivalent to v= log(m+/m−), where m+ is the number of training examples
with outcome 1 (called positive) and m− is the number of training examples with outcome −1
(called negative). Using this value of v, the second condition becomes

λ≥ λmax = ‖(1/m)AT (1− plog(log(m+/m−),0))‖∞.

The number λmax gives us an upper bound on the useful range of the regularization parameter λ:
For any larger value of λ, the logistic model obtained from !1-regularized LR has weight zero (and
therefore has no ability to classify). Put another way, for λ ≥ λmax, we get a maximally sparse
weight vector, that is, one with card(w) = 0.

We can give a more explicit formula for λmax:

λmax = (1/m)
∥∥∥∥
m−
m ∑

bi=1
ai+

m+

m ∑
bi=−1

ai
∥∥∥∥
∞

= (1/m)
∥∥∥∥X

T b̃
∥∥∥∥
∞
,

where
b̃i =

{
m−/m bi = 1
−m+/m bi = −1, i= 1, . . . ,m.

Thus, λmax is a maximum correlation between the individual features and the (weighted) output
vector b̃. When the features have been standardized, we have ∑m

i=1 xi = 0, so we get the simplified
expression

λmax = (1/m)
∥∥∥∥ ∑
bi=1

xi
∥∥∥∥
∞

= (1/m)
∥∥∥∥ ∑
bi=−1

xi
∥∥∥∥
∞
.

1526

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

2.2 Dual Problem

To derive a Lagrange dual of the !1-regularized LRP (5), we first introduce a new variable z ∈ Rm,
as well as new equality constraints zi = wTai+ vbi, i= 1, . . . ,m, to obtain the equivalent problem

minimize (1/m)∑m
i=1 f (zi)+λ‖w‖1

subject to zi = wTai+ vbi, i= 1, . . . ,m.
(9)

Associating dual variables θi ∈ R with the equality constraints, the Lagrangian is

L(v,w,z,θ) = (1/m)
m

∑
i=1

f (zi)+λ‖w‖1+θT (−z+Aw+bv).

The dual function is

inf
v,w,z

L(v,w,z,θ) = (1/m) inf
z

m

∑
i=1

(f (zi)−mθizi)+ inf
w

(
λ‖w‖1+θTAw

)
+ inf

v
θTbv

=
{

−(1/m)∑m
i=1 f ∗(−mθi) ‖ATθ‖∞ ≤ λ, bTθ= 0,

−∞ otherwise,

where f ∗ is the conjugate of the logistic loss function f :

f ∗(y) = sup
u∈R

(yu− f (u)) =






(−y) log(−y)+(1+ y) log(1+ y), −1< y< 0
0 y= −1 or y= 0
∞, otherwise.

For general background on convex duality and conjugates, see, for example, Boyd and Vanden-
berghe (2004, Chap. 5) or Borwein and Lewis (2000).

Thus, we have the following Lagrange dual of the !1-regularized LRP (5):

maximize G(θ)
subject to ‖ATθ‖∞ ≤ λ, bTθ= 0, (10)

where
G(θ) = −(1/m)

m

∑
i=1

f ∗(−mθi)

is the dual objective. The dual problem (10) is a convex optimization problem with variable θ∈Rm,
and has the form of an !∞-norm constrained maximum generalized entropy problem. We say that
θ ∈ Rm is dual feasible if it satisfies ‖ATθ‖∞ ≤ λ, bTθ= 0.

From standard results in convex optimization we have the following.

• Weak duality. Any dual feasible point θ gives a lower bound on the optimal value p! of the
(primal) !1-regularized LRP (5):

G(θ) ≤ p!. (11)

• Strong duality. The !1-regularized LRP (5) satisfies a variation on Slater’s constraint qualifi-
cation, so there is an optimal solution of the dual (10) θ!, which satisfies

G(θ!) = p!.

In other words, the optimal values of the primal (5) and dual (10) are equal.

1527

KOH, KIM AND BOYD

We can relate a primal optimal point (v!,w!) and a dual optimal point θ! to the optimality
conditions (7) and (8). They are related by

θ! = (1/m)(1− plog(v!,w!)).

We also note that the dual problem (10) can be derived starting from the equivalent problem (6),
by introducing new variables zi (as we did in (9)), and associating dual variables θ+ ≥ 0 for the
inequalities w≤ u, and θ− ≥ 0 for the inequalities −u≤ w. By identifying θ= θ+ −θ− we obtain
the dual problem (10).

2.3 Suboptimality Bound

We now derive an easily computed bound on the suboptimality of a pair (v,w), by constructing a
dual feasible point θ̄ from an arbitrary w. Define v̄ as

v̄= argmin
v
lavg(v,w), (12)

that is, v̄ is the optimal intercept for the weight vector w, characterized by bT (1− plog(v̄,w)) = 0.
Now, we define θ̄ as

θ̄= (s/m)(1− plog(v̄,w)), (13)
where the scaling constant s is

s=min
{
mλ/‖AT (1− plog(v̄,w))‖∞,1

}
.

Evidently θ̄ is dual feasible, so G(θ̄) is a lower bound on p!, the optimal value of the !1-regularized
LRP (5).

To compute the lower boundG(θ̄), we first compute v̄. This is a one-dimensional smooth convex
optimization problem, which can be solved very efficiently, for example, by a bisection method on
the optimality condition

bT (1− plog(v,w)) = 0,
since the lefthand side is a monotone function of v. Newton’s method can be used to ensure ex-
tremely fast terminal convergence to v̄. From v̄, we compute θ̄ using (13), and then evaluate the
lower bound G(θ̄).

The difference between the primal objective value of (v,w), and the associated lower bound
G(θ̄), is called the duality gap, and denoted η:

η(v,w) = lavg(v,w)+λ‖w‖1−G(θ̄)
= (1/m)∑m

i=1
(
f (wTai+ vbi)+ f ∗(−mθi)

)
+λ‖w‖1.

(14)

We always have η ≥ 0; and (by weak duality (11)) the point (v,w) is no more than η-suboptimal.
At the optimal point (v!,w!), we have η= 0.

3. An Interior-Point Method

In this section we describe an interior-point method for solving the !1-regularized LRP (5), in the
equivalent formulation

minimize lavg(v,w)+λ1Tu
subject to −ui ≤ wi ≤ ui, i= 1, . . . ,n,

with variables w,u ∈ Rn and v ∈ R.

1528

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

3.1 Logarithmic Barrier and Central Path

The logarithmic barrier for the bound constraints −ui ≤ wi ≤ ui is

Φ(w,u) = −
n

∑
i=1
log(ui+wi)−

n

∑
i=1
log(ui−wi) = −

n

∑
i=1
log(u2i −w2i),

with domain
domΦ= {(w,u) ∈ Rn×Rn | |wi| < ui, i= 1, . . . ,n}.

The logarithmic barrier function is smooth and convex. We augment the weighted objective function
by the logarithmic barrier, to obtain

φt(v,w,u) = tlavg(v,w)+ tλ1Tu+Φ(w,u),

where t > 0 is a parameter. This function is smooth, strictly convex, and bounded below, and so
has a unique minimizer which we denote (v!(t),w!(t),u!(t)). This defines a curve in R×Rn×Rn,
parametrized by t, called the central path. (See Boyd and Vandenberghe, 2004, Chap. 11 for more
on the central path and its properties.)

With the point (v!(t),w!(t),u!(t)) we associate

θ!(t) = (1/m)(1− plog(v!(t),w!(t))),

which can be shown to be dual feasible. (Indeed, it coincides with the dual feasible point θ̄ con-
structed from w!(t) using the method of Section 2.3.) The associated duality gap satisfies

lavg(v!(t),w!(t))+λ‖w!(t)‖1−G(θ!(t)) ≤ lavg(v!(t),w!(t))+λ1Tu!(t)−G(θ!(t)) = 2n/t.

In particular, (v!(t),w!(t)) is no more than 2n/t-suboptimal, so the central path leads to an optimal
solution.

In a primal interior-point method, we compute a sequence of points on the central path, for an
increasing sequence of values of t, using Newton’s method to minimize φt(v,w,u), starting from the
previously computed central point. A typical method uses the sequence t = t0,µt0,µ2t0, . . ., where
µ is between 2 and 50 (see Boyd and Vandenberghe, 2004, §11.3). The method can be terminated
when 2n/t ≤ ε, since then we can guarantee ε-suboptimality of (v!(t),w!(t)). The reader is referred
to Nesterov and Nemirovsky (1994), Wright (1997), and Ye (1997) for more on (primal) interior-
point methods.

3.2 A Custom Interior-Point Method

Using our method for cheaply computing a dual feasible point and associated duality gap for any
(v,w) (and not just for (v,w) on the central path, as in the general case), we can construct a custom
interior-point method that updates the parameter t at each iteration.

CUSTOM INTERIOR-POINT METHOD FOR !1-REGULARIZED LR.

given tolerance ε> 0, line search parameters α ∈ (0,1/2), β ∈ (0,1)

Set initial values. t := 1/λ, v := log(m+/m−), w := 0, u := 1.
repeat

1529

KOH, KIM AND BOYD

1. Compute search direction.

Solve the Newton system ∇2φt(v,w,u)




Δv
Δw
Δu



 = −∇φt(v,w,u).

2. Backtracking line search. Find the smallest integer k ≥ 0 that satisfies

φt(v+βkΔv,w+βkΔw,u+βkΔu) ≤ φt(v,w,u)+αβk∇φt(v,w,u)T



Δv
Δw
Δu



.

3. Update. (v,w,u) := (v,w,u)+βk(Δv,Δw,Δu).
4. Set v := v̄, the optimal value of the intercept, as in (12).
5. Construct dual feasible point θ from (13).
6. Evaluate duality gap η from (14).
7. quit if η≤ ε.
8. Update t.

This description is complete, except for the rule for updating the parameter t, which will be
described below. Our choice of initial values for v, w, u, and t can be explained as follows. The
choice w= 0 and u= 1 seems to work very well, especially when the original data are standardized.
The choice v= log(m+/m−) is the optimal value of v when w= 0 and u= 1, and the choice t = 1/λ
minimizes ‖(1/t)∇φt(log(m+/m−),0,1)‖2. (In any case, the choice of the initial values does not
greatly affect performance.) The construction of a dual feasible point and duality gap, in steps 4–6,
is explained in Section 2.3. Typical values for the line search parameters are α = 0.01, β = 0.5,
but here too, these parameter values do not have a large effect on performance. The computational
effort per iteration is dominated by step 1, the search direction computation.

There are many possible update rules for the parameter t. In a classical primal barrier method, t
is held constant until φt is (approximately) minimized, that is, ‖∇φt‖2 is small; when this occurs, t
is increased by a factor typically between 2 and 50. More sophisticated update rules can be found
in, for example, Nesterov and Nemirovsky (1994), Wright (1997), and Ye (1997).

The update rule we propose is

t :=

{
max{µmin{t̂, t}, t} , s≥ smin
t, s< smin

(15)

where t̂ = 2n/η, and s= βk is the step length chosen in the line search. Here µ> 1 and smin ∈ (0,1]
are algorithm parameters; we have found good performance with µ= 2 and smin = 0.5.

To explain the update rule (15), we first give an interpretation of t̂. If (v,w,u) is on the central
path, that is, φt is minimized, the duality gap is η = 2n/t. Thus t̂ is the value of t for which the
associated central point has the same duality gap as the current point. Another interpretation is that
if t were held constant at t = t̂, (v,w,u) would converge to (v!(t̂),w!(t̂),u!(t̂)), at which point the
duality gap would be exactly η.

We use the step length s as a crude measure of proximity to the central path. When the current
point is near the central path, that is, φt is nearly minimized, we have s = 1; far from the central
path, we typically have s) 1. Now we can explain the update rule (15). When the current point
is near the central path, as judged by s ≥ smin and t̂ ≈ t, we increase t by a factor µ; otherwise, we
keep t at its current value.

1530

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

We can give an informal justification of convergence of the custom interior-point algorithm. (A
formal proof of convergence would be quite long.) Assume that the algorithm does not terminate.
Since t never decreases, it either increases without bound, or converges to some value t̄. In the
first case, the duality gap η converges to zero, so the algorithm must exit. In the second case, the
algorithm reduces (roughly) to Newton’s method for minimizing φt̄ . This must converge, which
means that (v,w,u) converges to (v!(t̄),w!(t̄),u!(t̄)). Therefore the duality gap converges to η̄ =
2n/t̄. A basic property of Newton’s method is that near the solution, the step length is one. At the
limit, we therefore have

t̄ =max{µmin{2n/η̄, t̄}, t̄} = µt̄,

which is a contradiction since µ> 1.

3.3 Gradient and Hessian

In this section we give explicit formulas for the gradient and Hessian of φt . The gradient g =
∇φt(v,w,u) is given by

g=




g1
g2
g3



 ∈ R2n+1,

where

g1 = ∇vφt(v,w,u) = −(t/m)bT (1− plog(v,w)) ∈ R,

g2 = ∇wφt(v,w,u) = −(t/m)AT (1− plog(v,w))+




2w1/(u21−w21)

...
2wn/(u2n−w2n)



 ∈ Rn,

g3 = ∇uφt(v,w,u) = tλ1−




2u1/(u21−w21)

...
2un/(u2n−w2n)



 ∈ Rn.

The Hessian H = ∇2φt(v,w,u) is given by

H =




tbTD0b tbTD0A 0
tATD0b tATD0A+D1 D2
0 D2 D1



 ∈ R(2n+1)×(2n+1),

where

D0 = (1/m)diag(f ′′(wTa1+ vb1), . . . , f ′′(wTam+ vbm)),
D1 = diag

(
2(u21+w21)/(u

2
1−w21)

2, . . . ,2(u2n+w2n)/(u
2
n−w2n)

2) ,

D2 = diag
(
−4u1w1/(u21−w21)

2, . . . ,−4unwn/(u2n−w2n)
2) .

Here, we use diag(z1, . . . ,zm) to denote the diagonal matrix with diagonal entries z1, . . . ,zm, where
zi ∈ R, i= 1, . . . ,m. The Hessian H is symmetric and positive definite.

1531

KOH, KIM AND BOYD

3.4 Computing the Search Direction

The search direction is defined by the linear equations (Newton system)



tbTD0b tbTD0A 0
tATD0b tATD0A+D1 D2
0 D2 D1








Δv
Δw
Δu



 = −




g1
g2
g3



 .

We first eliminate Δu to obtain the reduced Newton system

Hred
[
Δv
Δw

]
= −gred, (16)

where

Hred =
[
tbTD0b tbTD0A
tATD0b tATD0A+D3

]
, gred =

[
g1

g2−D2D−1
1 g3

]
, D3 = D1−D2D−1

1 D2.

Once this reduced system is solved, Δu can be recovered as

Δu= −D−1
1 (g3+D2Δw).

Several methods can be used to solve the reduced Newton system (16), depending on the relative
sizes of n and m and the sparsity of the data A.

3.4.1 MORE EXAMPLES THAN FEATURES

We first consider the case when m ≥ n, that is, there are more examples than features. We form
Hred, at a cost of O(mn2) flops (floating-point operations), then solve the reduced system (16) by
Cholesky factorization of Hred, followed by back and forward substitution steps, at a cost of O(n3)
flops. The total cost using this method is O(mn2+ n3) flops, which is the same as O(mn2) when
there are more examples than features.

When A is sufficiently sparse, the matrix tATD0A+D3 is sparse, so Hred is sparse, with a dense
first row and column. By exploiting sparsity in forming tATD0A+D3, and using a sparse Cholesky
factorization to factor Hred, the complexity can be much smaller than O(mn2) flops (see Boyd and
Vandenberghe, 2004, App. C or George and Liu, 1981).

3.4.2 FEWER EXAMPLES THAN FEATURES

When m ≤ n, that is, there are fewer examples than features, the matrix Hred is a diagonal matrix
plus a rank m+ 1 matrix, so we can use the Sherman-Morrison-Woodbury formula to solve the
reduced Newton system (16) at a cost of O(m2n) flops (see Boyd and Vandenberghe, 2004, §4.3).
We start by eliminating Δw from (16) to obtain

(tbTD0b− t2bTD0AS−1ATD0b)Δv= −g1+ tbTD0AS−1(g2−D2D−1
1 g3),

where S = tATD0A+D3. By the Sherman-Morrison-Woodbury formula (Golub and Van Loan,
1996, p. 50), the inverse of S is given by

S−1 = D−1
3 −D−1

3 AT
(
(1/t)D−1

0 +AD−1
3 AT

)−1AD−1
3 .

1532

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

We can now calculate Δv via Cholesky factorization of the matrix
(
(1/t)D−1

0 +AD−1
3 AT

)
and two

backsubstitutions (Boyd and Vandenberghe, 2004, App. C). Once we compute Δv, we can compute
the other components of the search direction as

Δw = −S−1(g2−D2D−1
1 g3+ tATD0bΔv),

Δu = −D−1
1 (g3+D2Δw).

The total cost of computing the search direction is O(m2n) flops. We can exploit sparsity in the
Cholesky factorization, whenever (1/t)D−1

0 +AD−1
3 AT is sufficiently sparse, to reduce the com-

plexity.

3.4.3 SUMMARY

In summary, the number of flops needed to compute the search direction is

O(min(n,m)2max(n,m)),

using dense matrix methods. If m ≥ n and ATA is sparse, or m ≤ n and AAT is sparse, we can use
(direct) sparse matrix methods to compute the search direction with less effort. In each of these
cases, the computational effort per iteration of the interior-point method is the same as the effort of
solving one !2-regularized linear regression problem.

4. Numerical Examples

In this section we give some numerical examples to illustrate the performance of the interior-point
method described in Section 3, using algorithm parameters

α= 0.01, β= 0.5, smin = 0.5, µ= 2, ε= 10−8.

(The algorithm performs well for much smaller values of ε, but this accuracy is more than ade-
quate for any practical use.) The algorithm was implemented in both Matlab and C, and run on a
3.2GHz Pentium IV under Linux. The C implementation, which is more efficient than the Matlab
implementation (especially for sparse problems), is available online (www.stanford.edu/˜boyd/
l1_logreg).

4.1 Benchmark Problems

The data are four small or medium standard data sets taken from the UCI machine learning bench-
mark repository (Newman et al., 1998) and other sources. The first data set is leukemia cancer gene
expression data (Golub et al., 1999), the second is colon tumor gene expression data (Alon et al.,
1999), the third is ionosphere data (Newman et al., 1998), and the fourth is spambase data (Newman
et al., 1998).

For each data set, we considered four values of the regularization parameter: λ = 0.5λmax,
λ = 0.1λmax, λ = 0.05λmax, and λ = 0.01λmax. We discarded examples with missing data, and
standardized each data set. The dimensions of each problem, along with the number of interior-
point method iterations (IP iterations) needed, and the execution time, are given in Table 1. In
reporting card(w), we consider a component wi to be zero when

∣∣(1/m)
(
AT (1− plog(v,w))

)
i

∣∣ ≤ τλ,

1533

KOH, KIM AND BOYD

Data Features n Examples m λ/λmax card(w) IP iterations Time (sec)
Leukemia 7129 38 0.5 6 37 0.60
(Golub et al., 1999) 0.1 14 38 0.62

0.05 14 39 0.63
0.01 18 37 0.60

Colon 2000 62 0.5 7 35 0.26
(Alon et al., 1999) 0.1 22 32 0.25

0.05 25 33 0.26
0.01 28 32 0.25

Ionosphere 34 351 0.5 3 30 0.02
(Newman et al., 1998) 0.1 11 29 0.02

0.05 14 30 0.02
0.01 24 33 0.03

Spambase 57 4061 0.5 8 31 0.63
(Newman et al., 1998) 0.1 28 32 0.66

0.05 38 33 0.69
0.01 52 36 0.75

Table 1: Performance of the interior-point method on 4 data sets, each for 4 values of λ.

where τ= 0.9999. This rule is inspired by the optimality condition in (8).
In all sixteen examples, around 35 iterations were required. We have observed this behavior over

a large number of other examples as well. The execution times are well predicted by the complexity
order min(m,n)2max(m,n).

Figure 1 shows the progress of the interior-point method on the four data sets, for the same four
values of λ. The vertical axis shows duality gap, and the horizontal axis shows iteration number,
which is the natural measure of computational effort when dense linear algebra methods are used.
The figures show that the algorithm has linear convergence, with duality gap decreasing by a factor
around 1.85 in each iteration.

4.2 Randomly Generated Problems

To examine the effect of problem size on the number of iterations required, we generate 100 random
problem instances for each of 20 values of n, ranging from n = 100 to n = 10000, with m = 0.1n,
that is, 10 times more features than examples. Each problem has an equal number of positive
and negative examples, that is, m+ = m− = m/2. Features of positive (negative) examples are
independent and identically distributed, drawn from a normal distribution N (v,1), where v is in
turn drawn from a uniform distribution on [0,1] ([−1,0]).

For each of the 2000 data sets, we solve the !1-regularized LRP for λ = 0.5λmax, λ = 0.1λmax,
and λ = 0.05λmax. The lefthand plot in Figure 2 shows the mean and standard deviation of the
number of iterations required to solve the 100 problem instances associated with each value of n
and λ. It can be seen that the number of iterations required is very near 35, for all 6000 problem
instances.

In the same way, we generate a family of data sets withm= 10n, that is, 10 times more examples
than features, with 100 problem instances for each of 20 values of n ranging from n= 10 to n= 1000,
and for the same 3 values of λ. The righthand plot in Figure 2 shows the mean and standard deviation

1534

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSIONPSfrag replacements

du
al
ity
ga
p

0 10 20 30 40

50
10−10

10−8

10−6

10−4

10−2

100

PSfrag replacements

duality gap

0 10 20 30 40

50
10−10

10−8

10−6

10−4

10−2

100

du
al
ity
ga
p

PSfrag replacements

duality gap

0
10
20
30
40
50

10−10
10−8
10−6
10−4
10−2
100

duality gap

iterations

du
al
ity
ga
p

0 10 20 30 40

50
10−10

10−8

10−6

10−4

10−2

100

PSfrag replacements

duality gap

0
10
20
30
40
50

10−10
10−8
10−6
10−4
10−2
100

duality gap

iterations
duality gap

0 10 20 30 40

50
10−10

10−8

10−6

10−4

10−2

100

iterations

du
al
ity
ga
p

Figure 1: Progress of the interior-point method on 4 data sets, showing duality gap versus iteration
number. Top left: Leukemia cancer gene data set. Top right: Colon tumor gene data set.
Bottom left: Ionosphere data set. Bottom right: Spambase data set.

of the number of iterations required to solve the 100 problem instances associated with each value
of n and λ. The results are quite similar to the case with m= 0.1n.

5. Truncated Newton Interior-Point Method

In this section we describe a variation on our interior-point method that can handle very large prob-
lems, provided the data matrix A is sparse, at the cost of having a run time that is less predictable.
The basic idea is to compute the search direction approximately, using a preconditioned conjugate
gradients (PCG) method. When the search direction in Newton’s method is computed approxi-
mately, using an iterative method such as PCG, the overall algorithm is called a conjugate gradient
Newton method, or a truncated Newton method (Ruszczynski, 2006; Dembo and Steihaug, 1983).
Truncated Newton methods have been applied to interior-point methods (see, for example, Vanden-
berghe and Boyd, 1995 and Portugal et al., 2000).

5.1 Preconditioned Conjugate Gradients

The PCG algorithm (Demmel, 1997, §6.6) computes an approximate solution of the linear equations
Hx= −g, where H ∈ RN×N is symmetric positive definite. It uses a preconditioner P ∈ RN×N , also
symmetric positive definite.

1535

KOH, KIM AND BOYD

PSfrag replacements

number of features n

ite
ra
tio
ns

102 103 104
0

10

20

30

40

PSfrag replacements

number of features n
iterations

102
103
104

0

10
20
30
40

number of features n

ite
ra
tio
ns

101 102 103

10

20

30

40

Figure 2: Average number of iterations required to solve 100 randomly generated !1-regularized
LRPs with different problem size and regularization parameter. Left: n = 10m. Right:
n= 0.1m. Error bars show standard deviation.

PRECONDITIONED CONJUGATE GRADIENTS ALGORITHM

given relative tolerance εpcg > 0, iteration limit Npcg, and x0 ∈ Rk

k := 0, r0 := Hx0−g, p1 := −P−1g, y0 := P−1r0.

repeat
k := k+1
z := Hpk
θk := yTk−1rk−1/p

T
k z

xk := xk−1+θkpk
rk := rk−1−θkz
yk := P−1rk
µk+1 := yTk rk/y

T
k−1rk−1

pk+1 := yk +µk+1pk
until ‖rk‖2/‖g‖2 ≤ εpcg or k = Npcg.

Each iteration of the PCG algorithm involves a handful of inner products, the matrix-vector
product Hpk and a solve step with P in computing P−1rk. With exact arithmetic, and ignoring the
stopping condition, the PCG algorithm is guaranteed to compute the exact solution x = −H−1g in
N steps. When P−1/2HP−1/2 is well conditioned, or has just a few extreme eigenvalues, the PCG
algorithm can compute an approximate solution in a number of steps that can be far smaller than N.
Since P−1rk is computed in each step, we need this computation to be efficient.

5.2 Truncated Newton Interior-Point Method

The truncated Newton interior-point method is the same as the interior-point algorithm described in
Section 3, with the search direction computed using the PCG algorithm.

1536

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

We can compute Hpk in the PCG algorithm using

Hpk =




tbTD0b tbTD0A 0
tATD0b tATD0A+D1 D2
0 D2 D1








pk1
pk2
pk3





=




bTu

ATu+D1pk2
D2pk2+D1pk3



 ,

where u = tD0(bpk1 +Apk2) ∈ Rm. The cost of computing Hpk is O(p) flops when A is sparse
with p nonzero elements. (We assume p≥ n, which holds if each example has at least one nonzero
feature.)

We now describe a simple choice for the preconditioner P. The Hessian can be written as

H = t∇2lavg(v,w)+∇2Φ(w,u).

To obtain the preconditioner, we replace the first term with its diagonal part, to get

P= diag
(
t∇2lavg(v,w)

)
+∇2Φ(w,u) =




d0 0 0
0 D3 D2
0 D2 D1



 , (17)

where
d0 = tbTD0b, D3 = diag(tATD0A)+D1.

(Here diag(S) is the diagonal matrix obtained by setting the off-diagonal entries of the matrix S
to zero.) This preconditioner approximates the Hessian of tlavg with its diagonal entries, while
retaining the Hessian of the logarithmic barrier. For this preconditioner, P−1rk can be computed
cheaply as

P−1rk =




d0 0 0
0 D3 D2
0 D2 D1




−1


rk1
rk2
rk3





=




rk1/d0

(D1D3−D22)−1(D1rk2−D2rk3)
(D1D3−D22)−1(−D2rk2+D3rk3)



 ,

which requires O(n) flops.
We can now explain how implicit standardization can be carried out. When using standardized

data, we work with the matrix Astd defined in (20), instead of A. As mentioned in Appendix A,
Astd is in general dense, so we should not form the matrix. In the truncated Newton interior-point
method we do not need to form the matrix Astd; we only need a method for multiplying a vector by
Astd and a method for multiplying a vector by Astd T . But this is easily done efficiently, using the
fact that Astd is a sparse matrix (i.e., A) times a diagonal matrix, plus a rank-one matrix; see (20) in
Appendix A.

There are several good choices for the initial point in the PCG algorithm (labeled x0 in Sec-
tion 5.1), such as the negative gradient, or the previous search direction. We have found good
performance with both, with a small advantage in using the previous search direction.

1537

KOH, KIM AND BOYD

The PCG relative tolerance parameter εpcg has to be carefully chosen to obtain good efficiency
in a truncated Newton method. If the tolerance is too small, too many PCG steps are needed to
compute each search direction; if the tolerance is too high, then the computed search directions do
not give adequate reduction in duality gap per iteration. We experimented with several methods of
adjusting the PCG relative tolerance, and found good results with the adaptive rule

εpcg =min{0.1,ξη/‖g‖2} , (18)

where g is the gradient and η is the duality gap at the current iterate. Here, ξ is an algorithm
parameter. We have found that ξ= 0.3 works well for a wide range of problems. In other words, we
solve the Newton system with low accuracy (but never worse than 10%) at early iterations, and solve
it more accurately as the duality gap decreases. This adaptive rule is similar in spirit to standard
methods used in inexact and truncated Newton methods (see Nocedal and Wright, 1999).

The computational effort of the truncated Newton interior-point algorithm is the product of
s, the total number of PCG steps required over all iterations, and the cost of a PCG step, which
is O(p), where p is the number of nonzero entries in A, that is, the total number of (nonzero)
features appearing in all examples. In extensive testing, we found the truncated Newton interior-
point method to be very efficient, requiring a total number of PCG steps ranging between a few
hundred (for medium size problems) and several thousand (for large problems). For medium size
(and sparse) problems it was faster than the basic interior-point method; moreover the truncated
Newton interior-point method was able to solve very large problems, for which forming the Hessian
H (let alone computing the search direction) would be prohibitively expensive.

While the total number of iterations in the basic interior-point method is around 35, and nearly
independent of the problem size and problem data, the total number of PCG iterations required by
the truncated Newton interior-point method can vary significantly with problem data and the value
of the regularization parameter λ. In particular, for small values of λ (which lead to large values of
card(w)), the truncated Newton interior-point method requires a larger total number of PCG steps.
Algorithm performance that depends substantially on problem data, as well as problem dimension,
is typical of all iterative (i.e., non direct) methods, and is the price paid for the ability to solve very
large problems.

5.3 Numerical Examples

In this section we give some numerical examples to illustrate the performance of the truncated
Newton interior-point method. We use the same algorithm parameters for line search, update rule,
and stopping criterion as those used in Section 4, and the PCG tolerance given in (18) with ξ =
0.3. We chose the parameter Npcg to be large enough (5000) that the iteration limit was never
reached in our experiments; the typical number of PCG iterations was far smaller. The algorithm is
implemented in both Matlab and C, on a 3.2GHz Pentium IV running Linux, except for very large
problems. For very large problems whose data could not be handled on this computer, the method
was run on AMD Opteron 254 with 8GB main memory. The C implementation is available online
at www.stanford.edu/˜boyd/l1_logreg.

5.3.1 A MEDIUM SPARSE PROBLEM

We consider the Internet advertisements data set (Newman et al., 1998) with 1430 features and 2359
examples (discarding examples with missing data). The total number of nonzero entries in the data

1538

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

PSfrag replacements

iterations

du
al
ity
ga
p

0 10 20 30 40

50
10−10

10−8

10−6

10−4

10−2

100

(a),(b),(c)
(d)

PSfrag replacements

iterations
duality gap

0
10
20
30
40
50

10−10
10−8
10−6
10−4
10−2
100

(a),(b),(c)

(d)

cumulative PCG iterations

du
al
ity
ga
p

0 200 400 600 700 1000

10−10

10−8

10−6

10−4

10−2

100

(a) (b) (c) (d)

Figure 3: Progress of the truncated Newton interior-point method on the Internet advertisements
data set with four regularization parameters: (a) λ = 0.5λmax, (b) λ = 0.1λmax, (c) λ =
0.05λmax, and (d) λ= 0.01λmax.

matrix A is p = 39011. We standardized the data set using implicit standardization, as explained
in Section 5.2, solving four !1-regularized LRPs, with λ = 0.5λmax, λ = 0.1λmax, λ = 0.05λmax,
and λ = 0.01λmax. Figure 3 shows the convergence behavior. The lefthand plot shows the duality
gap versus outer iterations; the righthand plot shows duality gap versus cumulative PCG iterations,
which is the more accurate measure of computational effort.

The lefthand plot shows that the number of Newton iterations required to solve the problem is
not much more than in the basic interior-point method described in Section 3. The righthand plot
shows that the total number of PCG steps is several hundred, and depends substantially on the value
of λ. Thus, the search directions are computed using on the order of ten PCG iterations.

To give a very rough comparison with the direct method applied to this sparse problem, the
truncated Newton interior-point method is much more efficient than the basic interior-point method
that does not exploit the sparsity of the data. It is comparable to or faster than the basic interior-point
method that uses sparse linear algebra methods, when the regularization parameter is not too small.

5.3.2 A LARGE SPARSE PROBLEM

Our next example uses the 20 Newsgroups data set (Lang, 1995). We processed the data set in a
way similar to Keerthi and DeCoste (2005). The positive class consists of the 10 groups with names
of form sci.*, comp.*, and misc.forsale, and the negative class consists of the other 10 groups. We
used McCallum’s Rainbow program (McCallum, 1996) with the command

rainbow -g 3 -h -s -O 2 -i

to tokenize the (text) data set. These options specify trigrams, skip message headers, no stoplist,
and drop terms occurring fewer than two times. The resulting data set has n = 777811 features
(trigrams) and m = 11314 examples (articles). Each example contains an average of 425 nonzero
features. The total number of nonzero entries in the data matrix A is p= 4802169. We standardized
the data set using implicit standardization, as explained in Section 5.2, solving three !1-regularized
LRPs, with λ= 0.5λmax, λ= 0.1λmax, and λ= 0.05λmax. (For the value λ= 0.01λmax, the runtime
is on the order of one hour. This case is not of practical interest, and so not reported here, since

1539

KOH, KIM AND BOYD

λ/λmax card(w) Iterations PCG iterations Time (sec)
0.5 9 43 558 134
0.1 544 60 1036 256
0.05 2531 58 2090 501

Table 2: Performance of truncated Newton interior-point method on the 20 newsgroup data set
(n= 777811 features, m= 11314 examples) for 3 values of λ.

PSfrag replacements

iterations

du
al
ity
ga
p

0 20 40 60

80
100

10−10

10−8

10−6

10−4

10−2

100

(a) (b)(c)

PSfrag replacements
iterations

duality gap

0
20
40
60
80
100

10−10
10−8
10−6
10−4
10−2
100

(a)
(b)

(c)

cumulative PCG iterations

du
al
ity
ga
p

0 500 1000 1500 2000

10−10

10−8

10−6

10−4

10−2

100

(a) (b) (c)

Figure 4: Progress of the truncated Newton interior-point method on the 20 Newsgroups data set
for (a) λ = 0.5λmax, (b) λ = 0.1λmax, and (c) λ = 0.05λmax. Left. Duality gap versus
iterations. Right. Duality gap versus cumulative PCG iterations.

the cardinality of the optimal solution is around 10000 and comparable to the number of examples.)
The performance of the algorithm, and the cardinality of the weight vectors, is given in Table 2.
Figure 4 shows the progress of the algorithm, with duality gap versus iteration (lefthand plot), and
duality gap versus cumulative PCG iteration (righthand plot).

The number of iterations required to solve the problems ranges between 43 and 60, depending on
λ. The more relevant measure of computational effort is the total number of PCG iterations, which
ranges between around 500 and 2000, again, increasing with decreasing λ, which corresponds to
increasing card(w). The average number of PCG iterations, per iteration of the truncated Newton
interior-point method, is around 13 for λ = 0.5λmax, 17 for λ = 0.1λmax, and 36 for λ = 0.05λmax.
(The variance in the number of PCG iterations required per iteration, however, is large.) The running
time is consistent with a cost of around 0.24 seconds per PCG iteration. The increase in running
time, for decreasing λ, is due primarily to an increase in the average number of PCG iterations
required per iteration, but also from an increase in the overall number of iterations required.

5.3.3 RANDOMLY GENERATED PROBLEMS

We generated a family of 21 data sets, with the number of features n varying from one hundred
to ten million, and m = 0.1n examples. The data were generated using the same general method
described in Section 4.2, but with A sparse, with an average number of nonzero features per example
around 30. Thus, the total number of nonzero entries in A is p ≈ 30m. We standardized the data

1540

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION
PSfrag replacements

number of features n

ru
nt
im
e
in
se
co
nd
s

102 103 104 105 106 107
10−2

10−1

100

101

102

103

104

λ= 0.5λmax

λ= 0.1λmax

λ= 0.05λmax

Figure 5: Runtime of the truncated Newton interior-point method, for randomly generated sparse
problems, with three values of λ.

set using implicit standardization, as explained in Section 5.2, solving each problem instance for
the three values λ = 0.5λmax, λ = 0.1λmax, and λ = 0.05λmax. The total runtime, for the 63 !1-
regularized LRPs, is shown in Figure 5. The plot shows that runtime increases as λ decreases, and
grows approximately linearly with problem size.

We compare the runtimes of the truncated Newton interior-point and the basic interior-point
method using dense linear algebra methods to compute the search direction. Figure 6 shows the re-
sults for λ= 0.1λmax. The truncated Newton interior-point method is far more efficient for medium
problems. For large problems, the basic interior-point method fails due to memory limitations, or
extremely long computation times.

By fitting an exponent to the data over the range from n= 320 to the largest problem successfully
solved by each method, we find that the basic interior-point method scales as O(n2.8) (which is
consistent with the basic flop count analysis, which predicts O(n3)). For the truncated Newton
interior-point method, the empirical complexity is O(n1.3).

When sparse matrix methods are used to compute the search direction in the basic interior-
point method, we get an empirical complexity of O(n2.2) for the Matlab implementation of the
basic interior-point method that uses sparse matrix methods, showing a good efficiency gain over
dense methods, for medium scale problems. The C implementation would have the same empirical
complexity as the Matlab one with a smaller constant hidden in the O(·) notation.

5.3.4 PRECONDITIONER PERFORMANCE

To examine the effect of the preconditioner (17) on the efficiency of the approximate search direction
computation, we compare the eigenvalue distributions of the Hessian H and the preconditioned
Hessian P−1/2HP−1/2, for the colon gene tumor problem (n= 2000 features, m= 62 examples) at
the 15th iterate, in Figure 7. The eigenvalues of the preconditioned Hessian are tightly clustered,

1541

KOH, KIM AND BOYD

PSfrag replacements

number of features n

ru
nt
im
e
in
se
co
nd
s

102 103 104 105 106 107
10−2

10−1

100

101

102

103

104

(a)

(b)

Figure 6: Runtime of (a) the basic interior-point method and (b) the truncated Newton interior-point
method, for a family of randomly generated sparse problems.

PSfrag replacements

index

ei
ge
nv
al
ue
s

preconditioned Hessian

Hessian

1 1000 2000 3000 400010−1

100

101

102

103

104

105

PSfrag replacements
index

eigenvalues

preconditioned Hessian
Hessian

1
1000
2000
3000
4000
10−1
100
101
102
103
104
105

index

ei
ge
nv
al
ue
s

preconditioned Hessian

Hessian

1 1000 2000 3000 400010−2

100

102

104

106

108

1010

Figure 7: Eigenvalue distributions of Hessian and preconditionned Hessian, at the 15th iterate, for
the colon gene tumor problem, for λ= 0.5λmax (left) and λ= 0.05λmax (right).

with just a few extreme eigenvalues, which explains the good performance with relatively few PCG
iterations per iteration (Demmel, 1997, §6.6).

6. Computing the Regularization Path

In this section we consider the problem of solving the !1-regularized LRP for M values of the
regularization parameter λ,

λmax = λ1 > λ2 > · · · > λM > 0.

This can be done by applying the methods described above, for each of the M problems. This
is called a cold-start approach, since each problem is solved independently of the others. This

1542

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

is efficient when multiple processors are used, since the LRPs can be solved simultaneously, on
different processors. But when one processor is used, we can solve these M problems much more
efficiently by solving them sequentially, using the previously computed solution as a starting point
for the next computation. This is called a warm-start approach.

We first note that the solution for λ= λ1 = λmax is (log(m+/m−),0,0). Since this point does not
satisfy |wi| < ui, it cannot be used to initialize the computation for λ= λ2. We modify it by adding
a small increment to u to get

(v(1),w(1),u(1)) = (log(m+/m−),0,(εabs/(nλ))1),

which is strictly feasible. In fact, it is on the central path with parameter t = 2n/εabs, and so is
εabs-suboptimal. Note that so far we have expended no computational effort.

Now for k = 2, . . . ,M we compute the solution (v(k),w(k),u(k)) of the problem with λ = λk, by
applying the interior-point method, with starting point modified to be

(vinit,winit,uinit) = (v(k−1),w(k−1),u(k−1)),

and initial value of t set to t = 2n/εabs.
In the warm-start technique described above, the number of grid points, M, is fixed in advance.

The grid points (andM) can be chosen adaptively on the fly, while taking into account the curvature
of the regularization path trajectories, as described in Park and Hastie (2006a).

6.1 Numerical Results

Our first example is the leukemia cancer gene expression data, for M = 100 values of λ, uniformly
distributed on a logarithmic scale over the interval [0.001λmax,λmax]. (For this example, λmax =
0.37.) The left plot in Figure 8 shows the regularization path, that is, w(k), versus regularization
parameter λ. The right plot shows the number of iterations required to solve each problem from a
warm-start, and from a cold-start.

The number of cold-start iterations required is always near 36, while the number of warm-start
iterations varies, but is always smaller, and typically much smaller, with an average value of 3.1.
Thus the computational savings for this example is over 11 : 1.

Our second example is the 20 Newsgroups data set, withM = 100 values of λ uniformly spaced
on a logarithmic scale over [0.05λmax,λmax]. For this problem we have λmax = 0.12. The top plot
in Figure 9 shows the regularization path. The bottom left plot shows the total number of PCG
iterations required to solve each problem, with the warm-start and cold-start methods. The bottom
right plot shows the cardinality of w as a function of λ.

Here too the warm-start method gives a substantial advantage over the cold-start method, at least
for λ not too small, that is, as long as the optimal weight vector is relatively sparse. The total runtime
using the warm-start method is around 2.8 hours, and the total runtime using the cold-start method
is around 6.2 hours, so the warm-start methods gives a savings of around 2 : 1. If we consider only
the range from 0.1λmax to λmax, the savings increases to 5 : 1.

We note that for this example, the number of events (i.e., a weight transitioning between zero
and nonzero) along the regularization path is very large, so methods that attempt to track every event
will be very slow.

1543

KOH, KIM AND BOYD

PSfrag replacements

λ

w
ei
gh
ts

cold start
warm start

10−3λmax 10−2λmax 10−1λmax λmax
−0.3

0

0.3

0.6

0.9

PSfrag replacements
λ

weights

cold start

warm start

10−3λmax
10−2λmax
10−1λmax

λmax
−0.3

0
0.3
0.6
0.9

λ

ite
ra
tio
ns
re
qu
ire
d

10−3λmax 10−2λmax 10−1λmax λmax
0

10

20

30

40

Figure 8: Left. Regularization path for leukemia cancer gene expression data. Right. Iterations
required for cold-start and warm-start methods.

7. Comparison

In this section we compare the performance of our basic and truncated Newton interior-point meth-
ods, implemented in C (called l1 logreg), with several existing methods for !1-regularized logistic
regression, We make comparisons with MOSEK (MOSEK ApS, 2002), IRLS-LARS (Lee et al., 2006),
BBR (Genkin et al., 2006), and glmpath (Park and Hastie, 2006a).

MOSEK is a general purpose primal-dual interior-point solver, which is known to be quite effi-
cient compared to other standard solvers. MOSEK can solve !1-regularized LRPs using the separable
convex formulation (9), or by treating the problem as a geometric program (GP) (see Boyd et al.,
2006). We used both formulations and report the better results here in each case. MOSEK uses a
stopping criterion based on the duality gap, like our method.

IRLS-LARS alternates between approximating the average logistic loss by a quadratic approx-
imation at the current iterate, and solving the resulting !1-regularized least squares problem using
the LARS method (Efron et al., 2004) to update the iterate. IRLS-LARS outperforms many existing
methods for !1-regularized logistic regression including GenLASSO (Roth, 2004), SCGIS (Goodman,
2004), Gl1ce (Lokhorst, 1999), and Grafting (Perkins and Theiler, 2003). IRLS-LARS used in
our comparison is implemented in Matlab and C, with the LARS portion implemented in C. The
hybrid implementation is called IRLS-LARS-MC and available from http://ai.stanford.edu/
˜silee/softwares/irlslars.htm. We ran it until the primal objective is within tolerance from
the optimal objective value, which is computed using l1 logreg, with small (10−12) duality gap.

BBR, implemented in C, uses the cyclic coordinate descent method for Bayesian logistic regres-
sion. The C implementation is available from http://www.stat.rutgers.edu/˜madigan/BBR/.
The stopping criterion is based on lack of progress, and not on a suboptimality bound or duality gap.
Tightening the tolerance for BBR greatly increased its running time, and only had a minor effect on
the final accuracy.

glmpath uses a path-following method for generalized linear models, including logistic models,
and computes a portion of the regularization path. It is implemented in the R environment and avail-
able from http://cran.r-project.org/src/contrib/Descriptions/glmpath.html. We com-
pared glmpath to our warm-start method, described in Section 6.

1544

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

PSfrag replacements

λ

w
ei
gh
ts

0.05λmax 0.1λmax0.5λmax

λmax

−0.4

−0.2

0

0.2

0.4

PSfrag replacements
λ

weights

0.05λmax
0.1λmax
0.5λmax

λmax
−0.4
−0.2

0
0.2
0.4

λ

PC
G
ite
ra
tio
ns

cold start

warm start

0.05λmax0.1λmax 0.5λmax λmax
0

1000

2000

3000

PSfrag replacements
λ

weights

0.05λmax
0.1λmax
0.5λmax

λmax
−0.4
−0.2

0
0.2
0.4
λ

PCG iterations

cold start

warm start

0.05λmax
0.1λmax
0.5λmax

λmax
0

1000
2000
3000

λ

ca
rd

(w
)

0.05λmax0.1λmax 0.5λmax λmax
0

1000

2000

3000

Figure 9: Top. Regularization path for 20 newsgroup data. Bottom left. Total PCG iterations re-
quired by cold-start and warm-start methods. Bottom right. card(w) versus λ.

1545

KOH, KIM AND BOYD

We report the run times of the methods, using the different stopping criteria described above. We
also report the actual accuracy achieved, that is, the difference between the achieved primal objective
and the optimal objective value (as computed by l1 logreg with duality gap 10−12). However, it
is important to point out that it is very difficult, if not impossible, to carry out a fair comparison
of solution methods, due to the issue of implementation (which can have a great influence on the
algorithm performance), the choice of algorithm parameters, and the different stopping criteria.
Therefore, the comparison results reported below should be interpreted with caution.

We report comparison results using four data sets: the leukemia cancer gene expression and
spambase data sets, two dense benchmark data sets used in Section 4.1, the Internet advertisements
data set, the medium sparse data set used in Section 5.3, and the 20 Newsgroups data set, the large
sparse data set used in Section 5.3. When the large 20 Newsgroups data set was standardized, the
three existing solvers could not handle a data set of this size, so it was not standardized. The solvers
could handle the standardized Internet advertisements data set but do not exploit the sparse plus
rank-one structure of the standardized data matrix. Therefore, the Internet advertisements data set
was not standardized as well. For small problems (leukemia and spambase), the solvers were all run
on a 3.2GHz Pentium IV under Linux; for medium and large problem (Internet advertisements and
20 Newsgroups), the solvers were run on an AMD Opteron 254 (with 8GB RAM) under Linux.

The regularization parameter λ can strongly affect the runtime of the methods, including ours.
For each data set, we considered many values of the regularization parameter λ over the interval
[0.0001λmax,λmax] (which appears to cover the range of interest for many standardized problems).
We report here the results with λ = 0.001λmax for the two small benchmark data. The cardinality
of the optimal solution is 21 for the leukemia data and 54 for the spambase data, larger than half of
the minimum of the number of features and the number of examples. For the two unstandardized
problems, !1-regularized LRwith a regularization parameter in the interval [0.0001λmax,λmax] yields
a very sparse solution. We used λ= 0.0001λmax for the Internet advertisements and λ= 0.001λmax
for the 20 Newsgroups data. The cardinalities of optimal solutions are relatively very small (19
for the Internet advertisements and 247 for the 20 Newsgroups) compared with the sizes of the
problems.

Table 3 summarizes the comparison results for the four problems. Here, the tolerance has a dif-
ferent meaning depending on the method, as described above. As shown in this table, our method
is as fast as, or faster than, existing methods for the small two data sets, but the discrepancy in
performance is not significant, since the problems are small. For the unstandardized Internet adver-
tisements data set, our method is most efficient. MOSEK could not handle the unstandardized large
20 Newsgroups data set, so we compared l1 logreg with BBR and IRLS-LARS-MC on the unstan-
dardized 20 Newsgroups data set, for the regularization parameter λ = 0.001λmax. The truncated
Newton interior-point method solves the problem to the accuracy 2× 10−6 in around 100 seconds
and to a higher accuracy with relatively small additional run time; BBR solves them to this ultimate
accuracy in a comparable time, but slows down when attempting to compute a solution with higher
accuracy.

Finally, we compare the runtimes of the warm-start method and glmpath. We consider the
leukemia cancer gene expression data set and the Internet advertisements data set as benchmark
examples of small dense and medium sparse problems, respectively. For each data set, the warm-
start method findsM points (w(k), k= 1, . . . ,M) on the regularization path, with λ uniformly spaced
on a logarithmic scale over the interval [0.001λmax,λmax]. glmpath finds an approximation of the
regularization path by choosing the kink points adaptively over the same interval. The results are

1546

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

Program Tol. Leukemia Spambase Internet adv. Newsgroups
time accuracy time accuracy time accuracy time accuracy

l1 logreg 10−4 0.37 2×10−6 0.34 2×10−5 0.14 4×10−5 90 2×10−6
10−8 0.57 1×10−10 0.74 1×10−9 0.27 5×10−9 140 2×10−10

IRLS-LARS-MC 10−4 0.75 6×10−6 0.29 9×10−6 1.2 1×10−5 450 8×10−5
10−8 0.81 6×10−11 0.37 3×10−11 2.5 1×10−10 1200 7×10−9

MOSEK 10−4 9 8×10−6 10 8×10−8 1.3 3×10−9 - -
10−8 10 3×10−9 11 5×10−13 1.4 4×10−13 - -

BBR 10−4 15 1×10−7 39 3×10−6 0.44 1×10−7 140 2×10−6
10−11 73 4×10−8 300 1×10−11 1.1 1×10−12 850 1×10−6

Table 3: Comparison results with two standardized data sets (leukemia and spambase) and two
unstandardized data sets (Internet advertisements and 20 Newsgroups). The regularization
parameter is taken as λ = 0.001λmax for leukemia and spambase, λ = 0.0001λmax for
Internet advertisements and λ= 0.001λmax for 20 Newsgroups.

Data warm-start (M = 25) warm-start (M = 100) glmpath
Leukemia 2.8 6.4 1.9
Internet 5.2 13 940

Table 4: Regularization path computation time (in seconds) of the warm-start method and glmpath
for standardized leukemia cancer gene expression data and Internet advertisements data.

shown in Table 4. For the small leukemia data set, glmpath is faster than the warm-start method.
The warm-start method is more efficient than glmpath for the Internet advertisements data set, a
medium-sized sparse problem. The performance discrepancy is partially explained by the fact that
our warm-start method exploits the sparse plus rank-one structure of the standardized data matrix,
whereas glmpath does not.

8. Extensions and Variations

The basic interior-point method and the truncated Newton variation can be extended to general !1-
regularized convex loss minimization problems, with twice differentiable loss functions, that have
the form

minimize (1/m)∑m
i=1 φ(zi)+λ‖w‖1

subject to zi = wTai+ vbi+ ci, i= 1, . . . ,m,
(19)

with variables are v ∈ R, w ∈ Rn, and z ∈ Rm, and problem data ci ∈ R, ai ∈ Rn, and bi ∈ R
determined by a set of given (observed or training) examples

(xi,yi) ∈ Rn×R, i= 1, . . . ,m.

Here φ : R→ R is a loss function which is convex and twice differentiable. Prior work related to
the extension includes Park and Hastie (2006a), Rosset (2005), and Tibshirani (1997).

In !1-regularized (binary) classification, we have yi ∈ {−1,+1} (binary labels), and zi has the
form zi = yi(wT xi + v), so we have the form (19) with ai = yixi, bi = yi, and ci = 0. The associ-
ated classifier is given by y = sgn(wT x+ v). The loss function φ is small for positive arguments,

1547

KOH, KIM AND BOYD

and grows for negative arguments. When φ is the logistic loss function f in (1), this general !1-
regularized classification problem reduces to the !1-regularized LRP. When φ is the convex loss
function φ(u) = − logΦ(u), where Φ is the cumulative distribution function of the standard normal
distribution, this !1-regularized classification problem reduces to the !1-regularized probit regres-
sion problem. More generally, !1-regularized estimation problems that arise in generalized linear
models (McCullagh and Nelder, 1989; Hastie et al., 2001) for binary response variables (which in-
clude logistic and probit models) can be formulated problems of the form (19); see Park and Hastie
(2006a) for the precise formulation.

In !1-regularized linear regression, we have yi ∈ R, and zi has the form zi = wT xi + v− yi,
which is the difference between yi and its predicted value, wT xi+ v. Thus !1-regularized regression
problems have the form (19) with ai = xi, bi = 1, and ci =−yi. Typically φ is symmetric, with φ(0) =
0. When the loss function is quadratic, that is, φ(u) = u2, the convex loss minimization problem (19)
is the !1-regularized least squares regression problem studied extensively in the literature.

The dual of the !1-regularized convex loss minimization problem (19) is

maximize −(1/m)∑m
i=1 φ

∗(−mθi)+θT c
subject to ‖ATθ‖∞ ≤ λ, bTθ= 0,

where A= [a1 · · · am]T ∈ Rm×n, the variable is θ ∈ Rm, and φ∗ is the conjugate of the loss function
φ,

φ∗(y) = sup
u∈R

(yu−φ(u)) .

As with !1-regularized logistic regression, we can derive a bound on the suboptimality of (v,w), by
constructing a dual feasible point θ̄, from an arbitrary w,

θ̄= (s/m)p(v̄,w), p(v̄,w) =




φ′(wTa1+ v̄b1+ c1)

...
φ′(wTam+ v̄bm+ cm)



 ,

where v̄ is the optimal intercept for the offset w,

v̄= argmin
v

(1/m)
m

∑
i=1

φ(wTai+ vbi+ ci),

and the scaling constant s is given by s=min
{
mλ/‖AT p(v̄,w))‖∞,1

}
.

Using this method for cheaply computing a dual feasible point and associated duality gap for
any (v,w), we can extend the custom interior-point method for !1-regularized LRPs to general !1-
regularized convex (twice differentiable) loss problems.

Other possible extensions include !1-regularized Cox proportional hazards models (Cox, 1972).
The associated !1-regularized problem does not have the form (19), but the idea behind the custom
interior-point method for !1-regularized LRPs can be readily extended. The reader is referred to
Park and Hastie (2006a) and Tibshirani (1997) for related work on computational methods for !1-
regularized Cox proportional hazards models.

1548

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

Acknowledgments

This work is supported in part by the National Science Foundation under grants #0423905 and
(through October 2005) #0140700, by the Air Force Office of Scientific Research under grant
#F49620-01-1-0365, by MARCO Focus center for Circuit & System Solutions contract #2003-
CT-888, and by MIT DARPA contract #N00014-05-1-0700. The authors thank Michael Grant,
Trevor Hastie, Honglak Lee, Suin Lee, Mee Young Park, Robert Tibshirani, Yinyu Ye, and Sungroh
Yoon for helpful comments and suggestions. The authors thank anonymous reviewers for helpful
comments and suggestions (especially on comparison with existing methods).

Appendix A. Standardization

Standardization is a widely used pre-processing step applied to the feature vector, so that each
(transformed) feature has zero mean and unit variance (over the examples) (Ryan, 1997). The mean
feature vector is µ= (1/m)∑m

i=1 xi, and the vector of feature standard deviations σ is defined by

σ j =

(
(1/m)

m

∑
i=1

(xi j−µj)2
)1/2

, j = 1, . . . ,n,

where xi j is the jth component of xi. The standardized feature vector is defined as

xstd = diag(σ)−1(x−µ).

When the examples are standardized, we obtain the standardized data matrix

Astd = diag(b)(X−1µT)diag(σ)−1 = Adiag(σ)−1−bµT diag(σ)−1, (20)

where X = [x1 · · ·xm]T . We carry out logistic regression (possibly regularized) using the data matrix
Astd in place of A, to obtain (standardized) logistic model parameters wstd, vstd. In terms of the
original feature vector, our logistic model is

Prob(b|x) =
1

1+ exp(−b(wstd T xstd+ vstd))
=

1
1+ exp(−b(wT x+ v))

where
w= diag(σ)−1wstd, v= vstd−wstd T diag(σ)−1µ.

We point out one subtlety here related to sparsity of the data matrix. For small or medium sized
problems, or when the original data matrix A is dense, forming the standardized data matrix Astd
does no harm. But when the original data matrix A is sparse, which is the key to efficient solution
of large-scale !1-regularized LRPs, forming Astd is disastrous, since Astd is in general dense, even
when A is sparse.

But we can get around this problem, when working with very large problems, by never actually
forming the matrix Astd, as explained in Section 5.

1549

KOH, KIM AND BOYD

References

E. Allgower and K. Georg. Continuation and path following. Acta Numerica, 2:1–64, 1993.

U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, and A. Levine. Broad patterns
of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonu-
cleotide arrays. Proceedings of the National Academy of Sciences, 96:6745–6750, 1999.

S. Balakrishnan and D. Madigan. Algorithms for sparse linear classifiers in the massive data setting,
2006. Manuscript. Available from www.stat.rutgers.edu/˜madigan/papers/.

O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization techniques for
fitting sparse Gaussian graphical models. In Proceedings of the 23rd International Conference
on Machine Learning, 2006.

D. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

A. Bhusnurmath and C. Taylor. Solving the graph cut problem via !1 norm minimization, 2007.
University of Pennsylvania CIS Tech Report number MS-CIS-07-10.

J. Borwein and A. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2000.

S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on geometric programming, 2006.
To appear in Optimization and Engineering.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Boyd, L. Vandenberghe, A. El Gamal, and S. Yun. Design of robust global power and ground
networks. In Proceedings of ACM/SIGDA International Symposium on Physical Design (ISPD),
pages 60–65, 2001.

E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate mea-
surements. Communications on Pure and Applied Mathematics, 59(8):1207–1223, 2005.

E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on Information Theory, 52
(2):489–509, 2006.

E. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory,
51(12):4203–4215, 2005.

K. Chaloner and K. Larntz. Optimal Bayesian design applied to logistic regression experiments.
Journal of Statistical Planning and Inferenc, 21:191–208, 1989.

S. Chen and D. Donoho. Basis pursuit. In Proceedings of the Twenty-Eighth Asilomar Conference
on Signals, Systems and Computers, volume 1, pages 41–44, 1994.

S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM Review, 43
(1):129–159, 2001.

J. Claerbout and F. Muir. Robust modeling of erratic data. Geophysics, 38(5):826–844, 1973.

1550

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

A. Conn, N. Gould, and Ph. Toint. LANCELOT: A Fortran package for large-scale nonlinear
optimization (Release A), volume 17 of Springer Series in Computational Mathematics. Springer-
Verlag, 1992.

D. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B, 34(2):
187–220, 1972.

J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation of Gaussian
graphical models: Numerical implementation and topology selection. Submitted. Available from
www.ee.ucla.edu/˜vandenbe/covsel.html, 2005.

A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for sparse PCA
using semidefinite programming, 2005. In L. Saul, Y. Weiss and L. Bottou, editors, Advances in
Neural Information Processing Systems, 17, pp. 41-48, MIT Press.

R. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale unconstrained optimiza-
tion. Math. Program., 26:190–212, 1983.

J. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics,
1997.

D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–1306,
2006.

D. Donoho and M. Elad. Optimally sparse representation in general (non-orthogonal) dictionaries
via !1 minimization. Proc. Nat. Aca. Sci., 100(5):2197–2202, March 2003.

D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia? J. R.
Statist. Soc. B., 57(2):301–337, 1995.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32
(2):407–499, 2004.

J. Friedman, T. Hastie T, and R. Tibshirani. Pathwise coordinate optimization, 2007. Manuscript
available from www-stat.stanford.edu/˜hastie/pub.htm.

H. Fu, M. Ng, M. Nikolova, and J. Barlow. Efficient minimization methods of mixed !1-!1 and !2-!1
norms for image restoration. SIAM Journal on Scientific computing, 27(6):1881–1902, 2006.

A. Genkin, D. Lewis, and D. Madigan. Large-scale Bayesian logistic regression for text categoriza-
tion, 2006. To appear in Technometrics. Available from www.stat.rutgers.edu/˜madigan/
papers/.

A. George and J. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall,
1981.

P. Gill, W. Murray, M. Saunders, and M. Wright. User’s guide for NPSOL (Version 4.0): A FOR-
TRAN package for nonlinear programming. Technical Report SOL 86-2, Operations Research
Dept., Stanford University, Stanford, California 94305, January 1986.

1551

KOH, KIM AND BOYD

G. Golub and C. Van Loan. Matrix Computations, volume 13 of Studies in Applied Mathematics.
John Hopkins University Press, third edition, 1996.

T. Golub, D. Slonim, P. Tamayo, C. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing,
M. Caligiuri, C. Bloomfield, and E. Lander. Molecular classification of cancer: Class discov-
ery and class prediction by gene expression monitoring. Science, 286:531–537, 1999.

J. Goodman. Exponential priors for maximum entropy models. In Proceedings of the Annual
Meetings of the Association for Computational Linguistics, 2004.

A. Hassibi, J. How, and S. Boyd. Low-authority controller design via convex optimization. In
Proceedings of the IEEE Conference on Decision and Control, pages 140–145, 1999.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector
machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

T. Hastie, J. Taylor, R. Tibshirani, and G. Walther. Forward stagewise regression and the monotone
lasso. Electronic Journal of Statistics, 1:1–29, 2007.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in
Statistics. Springer-Verlag, New York, 2001. ISBN 0-387-95284-5.

T. Jaakkola and M. Jordan. Bayesian parameter estimation via variational methods. Statistics and
Computing, 10:25–37, 2000.

S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear
SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16:375–390, 2006.

P. Komarek. Logistic Regression for Data Mining and High-Dimensional Classification. PhD thesis,
Carnegie Mellon University, 2004.

B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink. Sparse multinomial logistic regres-
sion: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(6):957–968, 2005.

B. Krishnapuram and A. Hartemink. Sparse multinomial logistic regression: Fast algorithms and
generalization bounds. IEEE Transactions on Pattern Analysis and Mach. Intelligence, 27(6):
957–968, 2005. ISSN 0162-8828.

K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twenty-First International
Conference on Machine learning (ICML), pages 331–339, 1995.

S. Lee, H. Lee, P. Abeel, and A. Ng. Efficient l1-regularized logistic regression. In Proceedings of
the 21st National Conference on Artificial Intelligence (AAAI-06), 2006.

S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a portion of its spectrum and
application to high-resolution deconvolution. Geophysics, 46(9):1235–1243, 1981.

1552

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

C.-J. Lin, R. Weng, and S. Keerthi. Trust region Newton methods for large-scale logistic regres-
sion, 2007. To appear in Proceedings of the 24th International Conference on Machine Learning
(ICML).

M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs.
Annals of Operations Research, 2005.

J. Lokhorst. The LASSO and generalised linear models, 1999. Honors Project, Department of
Statistics, The University of Adelaide, South Australia, Australia.

D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, second edition, 1984.

A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering. Available from www.cs.cmu.edu/˜mccallum/bow, 1996.

P. McCullagh and J. Nelder. Generalized Linear Models. Chapmand & Hall/CRC, second edition,
1989.

T. Minka. A comparison of numerical optimizers for logistic regression, 2003. Technical report.
Available from research.microsoft.com/˜minka/papers/logreg/.

MOSEK ApS. The MOSEK Optimization Tools Version 2.5. User’s Manual and Reference, 2002.
Available from www.mosek.com.

S. Nash. A survey of truncated-Newton methods. Journal of Computational and Applied Mathe-
matics, 124:45–59, 2000.

Y. Nesterov and A. Nemirovsky. Interior-Point Polynomial Methods in Convex Programming, vol-
ume 13 of Studies in Applied Mathematics. SIAM, Philadelphia, PA, 1994.

D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning databases,
1998. Available from www.ics.uci.edu/˜mlearn/MLRepository.html.

A. Ng. Feature selection, !1 vs. !2 regularization, and rotational invariance. In Proceedings of the
Twenty-First International Conference on Machine learning (ICML), pages 78–85, New York,
NY, USA, 2004. ACM Press. ISBN 1-58113-828-5.

J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research.
Springer, 1999.

D. Oldenburg, T. Scheuer, and S. Levy. Recovery of the acoustic impedance from reflection seis-
mograms. Geophysics, 48(10):1318–1337, 1983.

M. Osborne, B. Presnell, and B. Turlach. A new approach to variable selection in least squares
problems. IMA Journal of Numerical Analysis, 20(3):389–403, 2000.

M.-Y. Park and T. Hastie. An !1 regularization-path algorithm for generalized linear mod-
els, 2006a. To appear in Journal of the Royal Statistical Society, Series B. Available from
www-stat.stanford.edu/˜hastie/pub.htm.

1553

KOH, KIM AND BOYD

M.-Y. Park and T. Hastie. Regularization path algorithms for detecting gene interactions, 2006b.
Manuscript. Available from www-stat.stanford.edu/˜hastie/Papers/glasso.pdf.

S. Perkins and J. Theiler. Online feature selection using grafting. In Proceedings of the Twenty-First
International Conference on Machine learning (ICML), pages 592–599. ACM Press, 2003.

B. Polyak. Introduction to Optimization. Optimization Software, 1987. Translated from Russian.

L. Portugal, M. Resende, G. Veiga, and J. Júdice. A truncated primal-infeasible dual-feasible net-
work interior point method. Networks, 35:91–108, 2000.

S. Rosset. Tracking curved regularized optimization solution paths. In L. Saul, Y. Weiss, and L. Bot-
tou, editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA,
2005.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths, 2007. To appear in Annals of
Statistics.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

V. Roth. The generalized LASSO. IEEE Transactions on Neural Networks, 15(1):16–28, 2004.

A. Ruszczynski. Nonlinear Optimization. Princeton university press, 2006.

T. Ryan. Modern Regression Methods. Wiley, 1997.

S. Shevade and S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic
regression. Bioinformatics, 19(17):2246–2253, 2003.

N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer Series in Computa-
tional Mathematics. Springer, 1985.

H. Taylor, S. Banks, and J. McCoy. Deconvolution with the l1 norm. Geophysics, 44(1):39–52,
1979.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267–288, 1996.

R. Tibshirani. The Lasso for variable selection in the Cox model. Statistics in Medicine, 16:385–
395, 1997.

R. Tibshirani, M. Saunders, S. Rosset, and J. Zhu. Sparsity and smoothness via the fused Lasso.
Journal of the Royal Statistical Society Series B, 67(1):91–108, 2005.

J. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE
Transactions on Information Theory, 52(3):1030–1051, 2006.

L. Vandenberghe and S. Boyd. A primal-dual potential reduction method for problems involving
matrix inequalities. Math. Program., 69:205–236, 1995.

1554

AN INTERIOR-POINT METHOD FOR LARGE-SCALE !1-REGULARIZED LOGISTIC REGRESSION

R. Vanderbei. LOQOUser’s Manual — Version 3.10, 1997. Available from www.orfe.princeton.
edu/loqo.

M. Wainwright, P. Ravikumar, and J. Lafferty. High-dimensional graphical model selection using
!1-regularized logistic regression., 2007. To appear in Advances in Neural Information Process-
ing Systems (NIPS) 19. Available from http://www.eecs.berkeley.edu/˜wainwrig/Pubs/
publist.html#High-dimension%al.

S. Wright. Primal-dual Interior-point Methods. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 1997. ISBN 0-89871-382-X.

Y. Ye. Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, 1997.

M. Yuan and L. Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society, Series B, 68(1):49–67, 2006.

Z. Zhang, J. Kwok, and D. Yeung. Surrogate maximization/minimization algorithms for AdaBoost
and the logistic regression model. In Proceedings of the Twenty-First International Conference
on Machine learning (ICML), pages 927–934, New York, NY, USA, 2004. ACM Press.

P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model selection through composite absolute
penalties, 2007. Tech Report 703. Stat Dept. UCB. Available from www.stat.berkeley.edu/
˜binyu/ps/703.pdf.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Re-
search, 7:2541–2563, 2006.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In S. Thrun, L Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 49–56,
Cambridge, MA, 2004. MIT Press.

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Associa-
tion, 101(476):1418–1429, 2006.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computa-
tional and Graphical Statistics, 15(2):262–286, 2006.

H. Zou, T. Hastie, and R. Tibshirani. On the degrees of freedom of the Lasso, 2007. To appear in
Annals of Statistics.

1555

Journal of Machine Learning Research 8 (2007) 1557-1581 Submitted 8/06; Revised 4/07; Published 7/07

Multi-class Protein Classification Using Adaptive Codes

Iain Melvin∗ IAIN@NEC-LABS.COM
NEC Laboratories of America
Princeton, NJ 08540, USA

Eugene Ie∗ TIE@UCSD.EDU
Department of Computer Science and Engineering
University of California
San Diego, CA 92093-0404, USA

Jason Weston JASONW@NEC-LABS.COM
NEC Laboratories of America
Princeton, NJ 08540, USA

William Stafford Noble NOBLE@GS.WASHINGTON.EDU
Department of Genome Sciences
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195, USA

Christina Leslie CLESLIE@CS.COLUMBIA.EDU
Center for Computational Learning Systems
Columbia University
New York, NY 10115, USA

Editor: Nello Cristianini

Abstract
Predicting a protein’s structural class from its amino acid sequence is a fundamental problem in
computational biology. Recent machine learning work in this domain has focused on develop-
ing new input space representations for protein sequences, that is, string kernels, some of which
give state-of-the-art performance for the binary prediction task of discriminating between one class
and all the others. However, the underlying protein classification problem is in fact a huge multi-
class problem, with over 1000 protein folds and even more structural subcategories organized into
a hierarchy. To handle this challenging many-class problem while taking advantage of progress
on the binary problem, we introduce an adaptive code approach in the output space of one-vs-
the-rest prediction scores. Specifically, we use a ranking perceptron algorithm to learn a weight-
ing of binary classifiers that improves multi-class prediction with respect to a fixed set of out-
put codes. We use a cross-validation set-up to generate output vectors for training, and we de-
fine codes that capture information about the protein structural hierarchy. Our code weighting
approach significantly improves on the standard one-vs-all method for two difficult multi-class
protein classification problems: remote homology detection and fold recognition. Our algorithm
also outperforms a previous code learning approach due to Crammer and Singer, trained here us-
ing a perceptron, when the dimension of the code vectors is high and the number of classes is
large. Finally, we compare against PSI-BLAST, one of the most widely used methods in pro-
tein sequence analysis, and find that our method strongly outperforms it on every structure clas-

∗. The first two authors contributed equally to this work.

c©2007 Iain Melvin, Eugene Ie, Jason Weston, William Stafford Noble and Christina Leslie.

MELVIN, IE, WESTON, NOBLE AND LESLIE

sification problem that we consider. Supplementary data and source code are available at http:
//www.cs.columbia.edu/compbio/adaptive.
Keywords: multi-class classification, error-correcting output codes, structured outputs

1. Introduction

Numerous statistical and supervised learning methods have been developed for detecting protein
structural classes from primary sequence information alone. These methods can be categorized into
three major types of approaches: pairwise sequence comparison algorithms (Altschul et al., 1990;
Smith and Waterman, 1981), generative models for protein families (Krogh et al., 1994; Park et al.,
1998), and discriminative classifiers (Jaakkola et al., 2000; Leslie et al., 2002b; Liao and Noble,
2002; Ben-Hur and Brutlag, 2003; Saigo et al., 2004). Many recent studies (see, e.g., Leslie et al.,
2004) have shown that discriminative classifiers such as support vector machines (SVMs) used with
appropriate sequence representations outperform the other two types of protein classification meth-
ods in the context of binary classification, that is, prediction of whether a sequence belongs to a
particular structural class or not. The binary classification performance of semi-supervised discrim-
inative methods, which incorporate unlabeled protein sequence data into the learning algorithm, is
particularly strong (Kuang et al., 2005; Weston et al., 2005). However, it is uncertain how best to
leverage these accurate binary classifiers to solve the more important multi-class problem of clas-
sifying protein sequences into one of a vast number structural classes. Currently, for example, the
manually curated Structural Classification of Proteins (SCOP, Murzin et al., 1995) contains more
than 1000 distinct 3D conformation classes called folds and even more structural subcategories
(protein superfamilies and families). This complex prediction task provides a challenging problem
for multi-class algorithms.

In the machine learning literature, two main strategies have been devised to tackle multi-class
problems (reviewed in Rifkin and Klautau, 2004): formulating multi-class optimization problems
that generalize binary classifiers like support vector machines (Vapnik, 1998; Weston and Watkins,
1999), or reducing multi-class problems to a set of binary classification problems and processing
the output vectors of binary predictions to obtain a multi-class prediction (Allwein et al., 2000;
Dietterich and Bakiri, 1995). The difficulty with the first method is that one usually ends up with a
complex optimization problem that is computationally expensive. We therefore focus on the second,
more computationally tractable approach, which encompasses standard methods like one-vs-all, all-
vs-all, and error-correcting output codes. By “one-vs-all,” we refer to the procedure of training N
one-vs-the-rest real-valued classifiers to obtain a length-N output vector and testing new examples
by predicting the class with the largest binary prediction score. All-vs-all is similar, except that one
trains all pairwise binary classifiers to obtain a length N(N − 1)/2 output vector (Allwein et al.,
2000). In error-correcting output codes (ECOC), one represents different classes by binary vectors,
called output codes, in the output vector space and predicts the class based on which output code
is closest to the binary output vector for the example (Dietterich and Bakiri, 1995; Crammer and
Singer, 2000). Despite the wide range of proposed multi-class solutions, a recent empirical study
suggests that the simple one-vs-all approach performs as well or better than all other methods in
most cases (Rifkin and Klautau, 2004).

One failing of one-vs-all is that it assumes that the prediction scores of the component binary
classifiers are comparable, so that the individual classifier with the largest prediction corresponds
to the best class. This assumption is often invalid in practice. One proposed remedy for SVM

1558

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

classifiers in particular is to fit a sigmoid function to the predicted margins for each classifier (Platt,
1999). After this procedure, the output probabilities rather than the margins are compared in one-
vs-all. However, in many applications, the training data may be insufficient to fit the sigmoids
accurately, or the sigmoids may be poor models for the margin distributions. Moreover, one-vs-
all and the other standard output vector approaches do not take advantage of known relationships
between classes, such as hierarchical relationships in the protein structural taxonomy, although there
has been some recent work on hierarchical classification (Dekel et al., 2004; Cesa-Bianchi et al.,
2006; Barutcuoglu et al., 2006). We further note that within the Bayesian learning community,
alternative probabilistic strategies have been proposed for the multi-class problem, for example the
multinomial probit model for multi-class Gaussian process classification (Girolami and Rogers,
2006).

In this work, we present a simple but effective multi-class method for protein structural classi-
fication that combines the predictions of state-of-the-art one-vs-the-rest SVM protein classifiers by
supervised learning in the output space. In order to solve the problem that prediction scores from
different classifiers are not on the same scale, we pose an optimization problem to learn a weighting
of the real-valued binary classifiers that make up the components of the output vector. Instead of
using ad hoc output codes as in ECOC, we design codes that are directly related to the structural
hierarchy of a known taxonomy, such as SCOP, with components that correspond to fold, super-
family, and family detectors. We use a cross-validation set-up to generate output vectors as training
data for learning weights, which we accomplish with a simple ranking perceptron approach. We
note that Rätsch et al. (2002) considered a more general and difficult problem of adapting codes
and embeddings, that is, learning both the code vectors and the embedding of the vector of pre-
diction scores in output space via a non-convex optimization problem. In addition, Crammer and
Singer (2000) formulated another more general problem of learning a mapping of all inputs to all
outputs. By restricting ourselves to the simpler problem of reweighting the output space so that our
fixed codes perform well, we are able to define a convex large-margin optimization problem that is
tractable in very large-scale settings. We can also choose which loss function we wish to optimize.
For example, in protein classification, we can use the balanced loss, so that performance on the large
classes does not dominate the results.

The rest of the paper is organized as follows. In Section 2, we provide background on the pro-
tein classification problem, including our choice of base classifiers and construction of hierarchical
codes. We then present our algorithmic approach for learning code weights in the output space using
the ranking perceptron, describe different perceptron update rules, and compare to the code learning
method of Crammer and Singer (2000) and other related work in Section 3. We provide large-scale
experimental results on the multi-class remote homology detection and fold recognition problems
in Section 4, comparing our approach with a number of alternatives: standard one-vs-all, sigmoid
fitting, PSI-BLAST (Altschul et al., 1997) used in a nearest neighbor approach to make multi-class
predictions, and a perceptron version of Crammer and Singer’s code learning method. We find that
our adaptive code approach significantly outperforms one-vs-all in both multi-class problem set-
tings and over all choices of code elements. We also strongly outperform PSI-BLAST for every
structural classification problem that we consider. Finally, we find that our code learning algorithm
obtains significantly better results than the higher capacity scheme of Crammer and Singer in the
setting where the number of classes and dimension of the output space are both high. The current
work is an expanded version of a conference proceedings paper (Ie et al., 2005). For this version,
we have provided a much larger-scale experimental validation, added results on the fold recognition

1559

MELVIN, IE, WESTON, NOBLE AND LESLIE

problem, introduced improved perceptron update rules and extended code vectors, and included a
comparison with the Crammer and Singer method.

Our adaptive code algorithm is used in a newly deployed protein fold recognition web server
available called SVM-Fold, available at http://svm-fold.c2b2.columbia.edu.

2. Background on Protein Classification: Problems, Representations, and Codes

In this section, we first discuss protein classification problems in general. We then give an overview
of our method.

2.1 Remote Homology Detection and Fold Recognition

Protein classification is the prediction of a protein’s structural class from its primary sequence of
amino acids. This prediction problem is of fundamental importance in computational biology for
a number reasons. First, a protein’s structure is closely linked to its biological function, so knowl-
edge of the structural category can allow improved prediction of function. Moreover, experimental
methods for determining the full 3D structure of a protein (X-ray crystallography, NMR) are time
consuming and difficult and cannot keep pace with the rapid accumulation of unannotated protein
sequences from newly sequenced genomes. Indeed, the complete repository of known protein struc-
tures, deposited in the Protein Data Bank, contains just 27K structures, while there are about 1.5M
protein sequences in the Non-redundant Database of protein sequences. Second, prediction of a
protein sequence’s structural class enables the selection of a template structure from the database,
which can then used with various comparative modeling techniques to predict a full 3D structure
for the protein. Predicted structures are important for more detailed biochemical analysis and in
particular for drug design. Note that template-based modeling approaches far outperform ab ini-

Remote homology detection Fold recognition

Figure 1: Two protein classification problems. (Left) In the SCOP database, we simulate the remote
homology detection problem by holding out a test family (shown in dark gray) from a su-
perfamily and using the other families as positive training data (shown in light gray). The
task is to correctly predict the superfamily or fold membership of the held-out sequences.
(Right) We simulate the fold recognition problem by holding out a test superfamily (dark
gray) from a fold and using the other superfamilies as training data (light gray). The task
is to correctly recognize the fold of the held-out sequences.

1560

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

tio techniques for protein structure, that is, methods that search for conformations that optimize an
energy function without any template structure.

In this work, we focus on two protein classification problems that are considered unsolved in
the structural biology community: remote homology detection and fold recognition. In remote
homology detection, we wish to recognize when a new protein sequence has a distant evolutionary
relationship to a protein sequence in a database (e.g., one whose structure is known). Due to a distant
common ancestor, the protein sequences exhibit subtle sequence similarities (remote homology) that
cannot generally be detected by statistical, alignment-based methods (Altschul et al., 1990, 1997).
In fold recognition, we wish to recognize when a new protein sequence will exhibit the same fold as
a protein from the structure database, even is there is no evidence of any evolutionary relationship
between the proteins.

We base our experiments on SCOP, a manually curated hierarchical classification system for
known protein structures. At the top level of the hierarchy are SCOP folds, consisting of sequences
that have the same general 3D structural architecture. SCOP folds are divided into superfamilies,
containing sequences that are at least remotely homologous (evolutionarily related). Each superfam-
ily is further divided into families, consisting of homologous sequences with an easily detectable
level of sequence similarity. We can design experiments based on the SCOP hierarchy to test per-
formance on both the remote homology detection and the fold recognition problem, as depicted in
Figure 1.

2.2 Profile-Based Fold, Superfamily and Family Detectors

For our base binary classifiers, we use profile-based string kernel SVMs (Kuang et al., 2005) that are
trained to recognize SCOP fold, superfamily, and family classes. We call these trained SVMs fold
detectors, superfamily detectors, and family detectors. The profile kernel is a function that measures
the similarity of two protein sequence profiles based on their representation in a high-dimensional
vector space indexed by all k-mers (k-length subsequences of amino acids). A sequence profile
is based on a multiple alignment of protein sequences to the input sequence and simply refers
to the position-specific distribution of amino acids estimated from each column of the alignment.
Intuitively, we use each k-length window of the sequence profile to define a positional mutation
neighborhood of k-mers that satisfy a likelihood threshold, and the underlying feature map counts
the k-mers from all the positional neighborhoods.

Specifically, for a sequence x and its sequence profile P(x), the positional mutation neighbor-
hood at position j and with threshold σ is defined to be the set of k-mers β= b1b2 . . .bk satisfying a
likelihood inequality with respect to the corresponding block of the profile P(x), as follows:

M(k,σ)(P(x[j+1 : j+ k])) =

{β= b1b2 . . .bk :−
k

∑
i=1
log p j+i(bi) < σ}.

Note that the emission probabilities, p j+i(b), i = 1 . . .k, come from the profile P(x); for notational
simplicity, we do not explicitly indicate the dependence on x.

We now define the profile feature mapping as

ΦProfile(k,σ) (P(x)) = ∑
j=0...|x|−k

(φβ(P(x[j+1 : j+ k])))β∈Σk

1561

MELVIN, IE, WESTON, NOBLE AND LESLIE

where the coordinate φβ(P(x[j+ 1 : j+ k])) = 1 if β belongs to the mutation neighborhood M(k,σ)
(P(x[j+ 1 : j+ k])), and otherwise the coordinate is 0. The profile kernel between two protein
sequences, that is, the inner product of feature vectors, can be efficiently computed from the original
pair of profiles using a trie data structure (Kuang et al., 2005).

The use of profile-based string kernels is an example of semi-supervised learning, since unla-
beled data in the form of a large sequence database is used in the discrimination problem (specifi-
cally, to estimate the probabilistic profiles).

A large variety of kernels have been designed specifically for protein sequences (e.g., Jaakkola
et al., 2000; Liao and Noble, 2002; Leslie et al., 2002a,b;Weston et al., 2005; Saigo et al., 2004; Ben-
Hur and Brutlag, 2003; Rangwala and Karypis, 2005). For this work, we selected the profile kernel
because it is state-of-the-art. However, we have no reason to suspect that our primary conclusions
regarding various multi-class classification methods depend on the choice of kernel function.

2.3 PSI-BLAST Family Detectors

PSI-BLAST (Altschul et al., 1997) is a widely used sequence comparison algorithm that builds a
probabilistic profile around a query sequence, based on iterative alignment to database sequences.
The resulting profile is then used to evaluate pairwise sequence similarities between the query and
target sequences in the database. PSI-BLAST reports the significance of the similarity as an E-value
(defined as the expected number of times that a similarity as strong or stronger than the observed
similarity would be observed in a random protein sequence database of the given size), based on
a profile-sequence alignment score. In theory, the E-value calculation makes PSI-BLAST results
from different queries comparable to each other.

In this work, we use PSI-BLAST as a baseline method for comparison as well as a tool for
generating sequence profiles for the profile kernel. In addition, we use PSI-BLAST to define an
additional set of base classifiers for extended components of the output vectors in our multi-class
approach.

For a given input sequence, we compute 1.0 - (the smallest PSI-BLAST E-value from the input
sequence to training proteins in the family) and use this value as the component for the PSI-BLAST
family detector in the discriminant vectors. Sequences with high similarity to one of the training
sequences in the family receive a prediction score close to 1; if the E-value is highly insignificant,
the score will be negative and large.

2.4 Output Vectors and Codes

To incorporate hierarchical labels into our output representation, we simply concatenate into a single
output vector the one-vs-the-rest classification scores for classes at all relevant levels of the hierar-
chy. For example, in either the remote homology detection or fold recognition setting, both fold and
superfamily detectors may be relevant for making fold-level predictions on test examples. Suppose
the number of superfamilies and folds in a SCOP-based data set is k and q respectively. Then the
real-valued output vector for each test sequence x would be !f (x) = (f1(x), ..., fk+q(x)), where the
fi are binary SVM superfamily or fold detectors trained using profile string kernels as described
above. One can also extend the output vector to include binary family detectors. More generally, in
this work we consider code elements that correspond to binary class detectors at the same level in
the hierarchy as the target class (e.g., the fold level for fold predictions) as well as sublevels of the
target class.

1562

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

In the same output space, we define binary vectors that represent the hierarchical labels relevant
for the problem. For the fold-level prediction example above, we define for superfamily classes
j ∈ {1, ...,k} the code vectors C j = (superfam j, fold j), where superfam j and fold j are vectors with
length equal to the number of known superfamilies (k) and folds (q), and each of these two vectors
has exactly one non-zero component corresponding to structural class identity.

Our main idea is to learn a weight vector W = (W1, . . . ,Wk+q) to perform multi-class predic-
tions with the weighted code prediction rule, ŷ= argmax j(W∗ !f (x)) ·C j, whereW∗ !f (x) denotes
component-wise multiplication. In the next section, we describe how to learnW by using a ranking
perceptron with a cross-validation set-up on the training set, and we develop update rules suited to
the hierarchical problem.

3. Multi-Class Algorithms

In this section we describe methods for combining binary classification models into multiclass al-
gorithms.

3.1 Motivation: Optimizing Weights in Output Space

Given a fixed set of binary codesC j and real-valued output vectors !f (x) in the same output spaceRN

(see Section 2.4 for an example whereN= k+q=#folds + #superfamilies), we want to adapt the cod-
ing system by learning a weight vectorW so that the multi-class prediction rule ŷ= argmax j(W∗
!f (x)) ·C j gives good empirical loss on the training data and generalizes well.

To learnW, we first propose a hard margin optimization problem as

min
W

||W||22, (1)

subject to (
W∗ !f (xi)

)
· (Cyi −C j) ≥ 1, ∀ j &= yi.

Intuitively, our problem is to find an optimal weighting of the output vector elements such that the
re-weighted embedding of examples in the output space RN will exhibit a large margin between
correct and incorrect codes.

We use the ranking perceptron to find an approximate solution to this optimization problem,
though a structured SVM approach (see Section 3.4.4) is also possible. Since for the SVM base
classifiers in particular, discriminant scores on training sequences are not very informative, we use
a cross-validation set-up to produce prediction scores for the weight learning optimization. The
full methodology consists of five steps: (1) split the training data into 10 cross-validation sets; (2)
for each held-out fold, train a collection of fold-, superfamily-, and family-level detectors on the
remaining data and use them to generate real-valued predictions on the held-out fold; (3) using
the cross-validation scores to form output vectors, learn code weights with the ranking perceptron
algorithm; (4) re-train fold, superfamily, and family detectors on the full training set; and (5) test on
the final untouched test set.

3.2 Learning Weights with the Ranking Perceptron

The ranking perceptron algorithm (Collins and Duffy, 2002) is a variant of the well-known percep-
tron linear classifier (Rosenblatt, 1958). In our experiments, the ranking perceptron receives as input

1563

MELVIN, IE, WESTON, NOBLE AND LESLIE

(A) Code weights learning
1: Define F(x,y) =W · (!f (x)∗Cy)
2: Input ν:
3: W←!0
4: for i= 1 to n do
5: k = argmaxp∈{Y−yi}F(xi, p)
6: if F(xi,yi)−m< F(xi,k) then
7: W←W+νn−1i

(
!f (xi)∗Cyi −!f (xi)∗Ck

)

8: end if
9: end for
10: ReturnW

(B) Class prediction
1: Define F(x,y) =W · (!f (x)∗Cy)
2: InputW, xi:
3: Return ŷ← argmax jF(xi, j)

Figure 2: Pseudocode for the ranking perceptron algorithm used to learn code weighting. In the
pseudocode, ν is the learning parameter; ni = |{y j : y j = yi}| for balanced-loss, and ni = 1,
for zero-one loss.

the discriminant vectors for training sequences (generated through a cross-validation procedure) and
produces as output a weight vectorW which is a linear combination of the discriminant vectors pro-
jected onto the non-zero components of codes. We modify the ranking perceptron algorithm such
that it will learn our weight vectorW by satisfying n constraints:

W · (!f (xi)∗Cyi −!f (xi)∗C j) ≥ m, ∀ j &= yi, (2)

where m is the size of the margin that we enforce (Figure 2).
The update rule of the ranking perceptron algorithm depends upon what loss function one is

aiming to optimize. In standard zero-one loss (or classification loss), one counts all prediction
mistakes equally,

lz(y, ŷ) =

{
1 if ŷ &= y;
0 otherwise.

The final zero-one empirical loss is 1
n ∑i lz(yi, ŷi). In balanced loss, the cost of each mistake is

inversely proportional to the true class size,

lb(y, ŷ) =

{
1

|yi:yi=y| if ŷ &= y;
0 otherwise.

The final balanced empirical loss is 1
|Y | ∑i lb(yi, ŷi), where Y denotes the set of output labels.

Balanced loss is relevant to the protein structure prediction because class sizes are unbalanced,
and we do not want to perform well only on the largest classes. The particular ranking percep-
tron training and prediction algorithms that we use are summarized in the pseudocode in Figure 2,
including update rules for both zero-one and balanced loss.

3.3 The Friend/Foe and Mean Friend/Foe Update Rules

When using codes representing multiple levels of the label hierarchy, we can also use relationships
between codes to redefine the perceptron update rule. For a given label y, let friends(y) be the

1564

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

set of codes for classes belonging to the same superclass as y. For example, if we are using both
superfamily and fold detectors for fold-level predictions and Cy = (superfamy, foldy), the set of
friends would be the codes for the superfamilies in the same fold as y (in particular, y itself belongs to
friends(y)). We let foes(y) be all the codes that are not in friends(y). Then we can use the following
update rule that updates all of friends(y) when the weakest friend does not beat the strongest foe by
a margin:

1: k = argminp∈{friends(yi)}F(xi, p)
2: l = argmaxp∈{foes(yi)}F(xi, p)
3: if F(xk,k)−m< F(xi, l) then
4: W←W+νn−1i

(
!f (xi)∗Cfriends(yi) −!f (xi)∗Cl

)

5: end if

In this rule, the vector Cfriends(y) is the binary OR of all code vectors belonging to the super-
class of y. We also implement a “mean friend/foe” rule whereby each element of Cfriends(n) is the
arithmetic mean of the occurrences of the code in all code vectors belonging to the superclass.

3.4 Comparison with Existing Approaches

In this section we compare our method to a range of existing approaches.

3.4.1 THE RANKING PERCEPTRON AND STRUCTURED OUTPUT LEARNING

The ranking perceptron (Collins, 2000; Freund and Schapire, 1999) has been used to solve structured
learning problems, particularly in natural language processing. Collins and Duffy (2002) trained
parsers on the Penn Treebank that output a parse tree given a input sentence. This mapping from
structured input to structured output is achieved by embedding both input and output objects into a
joint feature space and computing for a test example:

ŷ= argmax
y∈Y

〈W,ψ(x,y)〉.

Our approach follows the same framework, but we compute ŷ= argmax j(W∗!f (x)) ·C j, where
W∗ !f (x) denotes component-wise multiplication. That is, we choose the joint feature embedding:

ψ(x,y) = !f (x)∗Cy =∑
i
(!f (x))i(Cy)i.

Our approach is thus an instance of structured output learning where the joint feature space cap-
tures dependencies between input and output variables. Firstly, inputs are modeled by !f which uses
classifiers relating to the levels of the label hierarchy in SCOP. Secondly, the outputs are modeled
such that they are only dependent on classifiers from the relevant node or its ancestors.

3.4.2 MULTI-CLASS SVMS

Multi-class SVMs (Weston and Watkins, 1999; Vapnik, 1998) are a generalization of SVMs that
handle the multi-class classification case by optimizing a single objective function. They use the
rule ŷ= argmaxy∈Y 〈wi · x〉 as in the one-versus-all approach but enforce constraints of the form:

〈wyi · x〉−〈wy · x〉 > 1 ∀y ∈ Y ,y &= yi.

1565

MELVIN, IE, WESTON, NOBLE AND LESLIE

1: Define F(x,y) =Wy · (!f (x))
2: k = argmaxp∈{Y−yi}F(xi, p)
3: if F(xi,yi)−m< F(xi,k) then
4: Wyi ←Wyi +νn−1yi !f (xi)
5: Wk ←Wk−νn−1j !f (xi)
6: end if

Figure 3: Pseudo-code for the perceptron implementation of the Crammer-Singer code learning
method detailed in Crammer and Singer (2000).

Crammer and Singer (2002) later extended this approach by simplifying computations in the non-
separable case (although the separable case remains the same). These constraints are identical to
the ranking perceptron approach if, for that method, one selects the embedding (see Tsochantaridis
et al., 2004):

ψ(x,y) = φ(x)⊗Λ(y), (3)

where Λ(y) = (δ1,y, ..,δN,y)% ∈ {0,1}K , K is the number of clases, δ·,· is the Kronecker delta, and
(a⊗b) j+(i−1)K) = ai ·b j.

Multi-class SVMs are rather slow to train for non-linear systems which use kernels, since train-
ing in the dual has worst case complexity O((mK)3), where m is the number of training examples
and K is the number of classes (Hsu and Lin, 2002). For this reason, we do not compare our ap-
proach to this method. However, our two-stage approach of training one-vs-all classifiers and then
improving their performance with adaptive codes is tractable, because we train in primal variables
and only have N input features, equal to the number of classifiers trained.

3.4.3 THE CRAMMER-SINGER METHOD

Crammer and Singer (2000) also suggested a method for learning codes in a two-step fashion, which
represents the closest algorithmic approach to ours that we know of. In their method, N weight
vectors (one for each class) are optimized simultaneously but with no dependency between input
and output features. The classification rule they use is ŷ= argmaxiWi ·!f (x), and the feature space
they use is identical to (3). In other words, they use the multi-class SVM to learn the second stage
of their two-stage approach. This formulation means that the prediction of a given label i could
depend on the output of any of the classifiers from the first stage, if the weight vector learned is not
sparse. By contrast, in our approach, the ith label only depends on classifiers related to that label in
the label hierarchy. In the case of a flat hierarchy (pure multi-class classification), our approach only
rescales the classifiers in the one-vs-all approach, whereas the Crammer-Singer method learns, for
each output, a weighted combination from all the one-vs-all classifiers. That is, they learn the more
difficult problem of a mapping of all inputs to all outputs. Because of this, we hypothesise that the
Crammer-Singer approach is likely to fail in the case of a large number of classes, as uncorrelated
classes are essentially noisy features in the second stage of learning.

In Section 4 we make a comparison between our method and the Crammer-Singer approach. To
facilitate comparisons, we implemented a perceptron-style learning of their algorithm (Figure 3),
both with and without balanced loss. In our experiments, which use a very large number of classes,
our approach indeed does outperform the one of Crammer and Singer.

1566

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

3.4.4 USING STRUCTURED SVMS TO LEARN CODE WEIGHTS

Support vector machines have been applied to problems with interdependent and structured output
spaces in Tsochantaridis et al. (2004). These authors make use of a combined input-output feature
representationψ(x,y) as training vectors to learn a linear classification rule ŷ= argmaxy∈Y 〈W,ψ(x,y)〉.
Specifically, they use the ψ(·, ·) relation to discover input-output relations by forming n|Y |−n linear
constraints. These linear constraints specify that all correct input-output structures must be clearly
separated from all incorrect input-output structures,

〈W,δψi(y)〉 > 0 ∀i,y &= yi,

where δψi(y)≡ψ(xi,yi)−ψ(xi,y). By defining, ψ(xi,y) = !f (xi)∗Cy, we arrive at linear constraints
that are a special case of Equation 2. Using standard maximum-margin methods like SVMs, we
obtain the hard margin problem described by (1) above and the soft margin problem

minW,ξ
1
2 ||W||22+ C

n ∑
n
i=1 ξi

∀i,ξi ≥ 0;∀i,∀y ∈ {Y − yi} : 〈W,δψ(y)〉 ≥ 1−ξi,

where the ξi correspond to slack variables (the amount an example can violate the margin), and C
corresponds to the trade-off betweenmaximizing the margin and the degree to which noisy examples
are allowed to violate the margin.

Intuitively, our definition of ψ defines the distance between two different protein embeddings
in code space, and we are using large margin SVM methods to find the relative weighting of the
dimensions in code space. Moreover, one can optimize the balanced loss by rescaling the slack

variables ξi ←
ξi

lb(yi,y)
in the constraint inequalities. However, in preliminary results (Ie et al.,

2005), we found that the structured SVM gave similar performance to the ranking perceptron when
used with our joint input-output embedding ψ, so we focus on perceptron approaches in the current
study.

3.4.5 LOSS FUNCTIONS AND ENERGY BASED LEARNING

Another general approach to structured output learning, called Energy Based Learning (EBL), was
suggested by LeCun and Huang (2005), which is derived from the earliest approach to structured
output prediction that we know of (Bottou et al., 1997). In EBL, for a given input, one chooses the
output with the lowest energy:

ŷ= argmin
y∈Y

E(x,y).

One therefore seeks to use a loss function that pushes “down” the energy of the correct output(s) and
pushes “up” the energy of other outputs. The authors show how different choices of loss function
lead to different existing algorithms, including the ranking perceptron, which only pushes up the
incorrect answers produced by the model, and negative log-likelihood, which pushes up the energies
for all the examples with a force proportional to the likelihood of each answer under the model. Our
friend/foe update rule can be seen in this framework as a different loss function that takes account
of multiple output values that all give the same original loss.

1567

MELVIN, IE, WESTON, NOBLE AND LESLIE

3.4.6 RÄTSCH ET AL.’S ADAPTIVE CODE LEARNING

Rätsch et al. (2002) also considered the problem of adaptive code learning and proposed a general
approach consisting of learning both code vectors and the embedding of the vector of prediction
scores in output space. Their algorithm involves iteration between learning the codes and learning
the embedding, resulting in a difficult non-convex optimization problem.

By restricting ourselves to the simpler problem of reweighting the output space so that our
fixed codes perform well, we are able to define a convex large-margin optimization problem that
is tractable in very large scale settings. Furthermore, by training our second-stage code learning
by first running cross-validation on the first-stage predictors, we attempt to learn correcting codes
which minimize the cross-validation classification error.

3.4.7 PLATT’S SIGMOID METHOD

Platt (1999) proposed a method for estimating posterior probabilities from SVM outputs in or-
der to enable various kinds of post-processing. By converting the outputs of one-vs-the-rest SVM
classifiers to class-specific posterior probabilities, in principle the probabilities are comparable and
multi-class prediction through a one-vs-all strategy should improve. Platt’s approach involves fitting
a sigmoid for the posterior distribution,

P(y= 1| f) =
1

1+ exp(A f +B)
,

using training data of the form {(fi, ti)}, where fi is the output of a trained SVM and ti is the 0 or
1 target probability. The parameters A and B are found by maximizing the log likelihood of this
training data. Typically, one would want to use a held-out set or cross-validation to generate outputs
for fitting the sigmoid, since the outputs for the examples used to train the SVM give a biased
estimate of the true output distribution. In addition to Platt’s original sigmoid fitting algorithm, Lin
et al. (2003) have proposed a more robust procedure.

However, in some cases, the sigmoid may be a poor description of the posterior probability, or
there may be too little positive training data to properly fit the sigmoid. In our preliminary results
(Ie et al., 2005), we found that sigmoid fitting performed poorly in our problem setting on a smaller
data set. We retest here on larger benchmarks and again find that sigmoid fitting does not improve
over one-vs-all for this problem (see Section 4).

3.4.8 IN DEFENSE OF ONE-VS-ALL

A recent empirical study suggests that the simple one-vs-all approach performs as well or better than
all other multi-class methods in most cases (Rifkin and Klautau, 2004) when all the methods are
well-tuned. However, the authors use only data sets with relatively few classes (between 4 and 48)
for comparison and readily admit that that they use “toy data sets” from the UCI repository. Intu-
itively, the one-vs-all approach can be quite brittle in the many-class case: if only a single classifier
is “corrupted” and always outputs a high score, then all of the examples can be misclassified. The
more classes one has, the more chance that such corruptions can take place. In multi-class protein
prediction, one has hundreds or thousands of classes. We present experimental results to show that
the adaptive code approach improves over the “one-vs-all” by reweighting and effectively correcting
such mistakes (see Section 4). Moreover, our approach also offers control of the loss function (such
as using balanced loss) and use of hierarchical labels, which are not possible in one-vs-all.

1568

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

4. Experimental Results

In this section we describe our data sets, methods and experimental results.

4.1 Data Sets

We assembled benchmark data sets for the remote homology detection and fold recognition prob-
lems using sequences from the SCOP 1.65 protein database (see Section 2.1 for a definition of
these problems). We used ASTRAL (Brenner et al., 2000) to filter these sequences so that no two
sequences share greater than 95% identity.

For the fold recognition problem, we designed our experiments so that the test set consists of
held-out superfamilies belonging to folds that are represented in the training data. We prepared
a data set by first removing all superfamilies that have less than 5 sequence examples. We then
removed all folds that have less than 3 superfamilies. We selected superfamilies for testing at
random from the remaining superfamilies such that the test set for the superfamily contains no
more than 40% of the remaining sequences for the fold. If at least one suitable superfamily could
not be found, then the fold was removed from the experiment. The resulting fold detection data set
contains of 26 folds, 303 superfamilies, and 652 families for training. We completely hold out 614
sequences from 46 superfamilies for testing.

For the remote homology detection, the test set should contain held-out families belonging to
superfamilies that are represented in the training data. One can evaluate performance for multi-class
prediction of fold or superfamily levels, and it is natural to try different codes for these two tasks;
therefore, we prepared a separate data set for remote homology superfamily and fold detection. For
the superfamily data set, we used the same selection scheme as for fold recognition, except the
minimum number of sequences for the children of the superfamilies is relaxed to 3, and we selected
random families for testing instead of superfamilies. The resulting superfamily detection data set
contains of 74 superfamilies, and 544 families for training. We completely hold out 802 sequences
from 110 families for testing.

For the remote homology fold detection data set, we first removed all superfamilies with less
than 2 families. We then selected families from the remaining superfamilies for testing. We selected
families at random from each superfamily such that we never selected more than 40% of the parent
superfamily for testing. If no such families were found then the superfamily was removed from
the data set. If a fold was then found to have no superfamilies with held out families for testing,
it was removed from the data set. The resulting remote homology detection set contains 44 folds,
424 superfamilies, and 809 families for training. We completely hold out 381 sequences from 136
families for testing.

We use the training sequences in a cross-validation set-up to obtain classification scores and
learn code weights. When training base classifiers, we only use negative data from outside of the
target class of the experiment. For fold recognition, this means that when we train superfamily or
family detectors, we exclude negative example sequences that come from the parent fold. We then
retrain the base classifiers on all the training data to generate prediction scores for the test sequences,
and then use the weighted code vectors to obtain multi-class predictions.

1569

MELVIN, IE, WESTON, NOBLE AND LESLIE

4.2 Methods

We test our weight learning approach using the ranking perceptron with the class-based, friend/foe,
and mean class update rules for a variety of code sets for the remote homology detection and fold
recognition problems. For each choice of codes, we compare against standard one-vs-all, sigmoid
fitting using the robust procedure described in Lin et al. (2003), and a ranking perceptron version
of the Crammer and Singer code learning method (Crammer and Singer, 2000). We do not test
the SVM-struct implementation of our code learning optimization problem, since our preliminary
results showed little difference in performance between the perceptron and SVM-struct on this prob-
lem (Ie et al., 2005).

As an additional baseline method, we also test PSI-BLAST, a widely used pairwise sequence
comparison algorithm. In order to produce multi-class predictions, we use PSI-BLAST E-values as
a distance measure for a nearest neighbor approach. PSI-BLAST E-values are not symmetric, since
PSI-BLAST obtains somewhat different results depending on whether it builds a profile around
each training sequence or each test sequence; however, preliminary results suggested that nearest
neighbor performance was not significantly affected by this choice (Ie et al., 2005). Therefore, we
use PSI-BLAST E-values based on training sequence profiles, which is the more computationally
efficient choice.

For all ranking perceptron experiments, we train the perceptron algorithm for 200 iterations.
When using SVM one-vs-all classifier codes, the learning parameter for all ranking perceptron
experiments is set to 0.01, and the required margin is chosen to be m = 2. For ranking perceptron
on one-vs-all classifier codes with PSI-BLAST extension, we set the initial weights on the PSI-
BLAST portion of the codes to 0.1. We also use two learning parameters, 0.01 for the SVM portion
and 0.001 for the PSI-BLAST portion. This choice effectively stops our algorithm from adjusting
weights in the PSI-BLAST part of the code. We take this approach because the individual PSI-
BLAST codes are derived from E-values and hence should already be comparable to each other. We
use the same required margin of m= 2 in the ranking perceptron algorithm.

4.3 Remote Homology Detection Results

For the remote homology detection data set, where the test set consists of held-out protein families
that belong to superfamilies represented in the training data, we evaluate performance both for
the superfamily-level and fold-level prediction tasks. Results for multi-class superfamily and fold
prediction are provided in Tables 1 and 2, respectively. Significance tests are given comparing the
methods in Tables 4, 5, 7, and 8. The last two tables use a balanced error measure by averaging the
error rates over each prediction label before computing the significance test.

We compare our adaptive code method to PSI-BLAST, a standard homology detection method
based on sequence alignment, as well as simple one-vs-all, sigmoid fitting, and the Crammer-Singer
method, using various choices of code vectors. In addition to reporting classification loss and bal-
anced loss results, we give “top 5” classification and balanced loss performance, which evaluates
whether the correct class was found in the top 5 class predictions. The motivation for top 5 loss
results is that a structural biologist might be willing to investigate a small number of false positives
if it was likely that the list also contained the true structural class.

For the superfamily prediction task, we find that the adaptive codes method significantly out-
performs one-vs-all both in terms of classification and balanced error, even when superfamily-only
codes are used, and performance improves as more elements are added to the codes. By contrast,

1570

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.399 0.457 0.273 0.365
one-vs-all: Sfams 0.271 0.445 0.105 0.197
one-vs-all: Sfams,Fams 0.271 0.445 0.110 0.207
Sigmoid Fitting: Sfams 0.365 0.547 0.197 0.369
Adaptive Codes: Sfams (zero-one) 0.247 0.385 0.096 0.148
Adaptive Codes: Sfams (balanced) 0.247 0.362 0.110 0.161
Adaptive Codes: Sfams,Fams (zero-one) 0.243 0.382 0.090 0.141
Adaptive Codes: Sfams,Fams (balanced) 0.239 0.352 0.107 0.162
Adaptive Codes: Sfams,Fams,PSI-Fams (zero-one) 0.223 0.338 0.094 0.142
Adaptive Codes: Sfams,Fams,PSI-Fams (balanced) 0.217 0.320 0.103 0.153

Table 1: Results for multi-class superfamily prediction in the remote homology detection set-up.
Results for the adaptive code method are reported for a SCOP benchmark data set (67
folds, 74 superfamilies, 544 families, with 802 test sequences) and compared to nearest
neighbor using PSI-BLAST, standard one-vs-all, and a perceptron version of the Crammer
and Singer method. The mean class update rule is used to train the adaptive weights
method.

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.409 0.443 0.297 0.367
one-vs-all: Folds 0.331 0.456 0.126 0.195
one-vs-all: Folds,Sfams 0.331 0.456 0.126 0.195
Sigmoid Fitting: Folds 0.339 0.514 0.163 0.329
Adaptive Codes: Folds (zero-one) 0.307 0.383 0.121 0.177
Adaptive Codes: Folds (balanced) 0.336 0.378 0.165 0.186
Adaptive Codes: Folds,Sfams (zero-one) 0.276 0.370 0.118 0.182
Adaptive Codes: Folds,Sfams (balanced) 0.297 0.351 0.134 0.173
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.252 0.351 0.100 0.168
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.265 0.340 0.115 0.142

Table 2: Results for multi-class fold prediction in the remote homology detection set-up. Results
for the adaptive codes method are reported for a SCOP benchmark data set (44 folds, 424
superfamilies, 809 families, with 381 test sequences) and compared to nearest neighbor us-
ing PSI-BLAST, standard one-vs-all, and a perceptron version of the Crammer and Singer
method. The mean class update rule is used to train the adaptive weights method.

the Crammer-Singer code-learning method does not beat simple one-vs-all for this task, and perfor-
mance tends to degrade as more elements are added to the codes. We also note that sigmoid fitting

1571

MELVIN, IE, WESTON, NOBLE AND LESLIE

gives substantially worse performance than one-vs-all for this task. When compared to the widely-
used PSI-BLAST method, even simple one-vs-all outperforms PSI-BLAST strongly in terms of
classification error and slightly in terms of balanced error; adaptive codes outperforms PSI-BLAST
very strongly by both measures and also when considering “top 5” prediction performance.

For the fold prediction task, we use a different set of codes, including code elements correspond-
ing to protein fold detectors. We observe a similar trend, but with better results for Crammer-Singer
when compared to one-vs-all. In this case, both Crammer-Singer and adaptive codes beat one-vs-all
with respect to classification and balanced loss when fold-only codes are used; in fact, for fold-only
codes, performance of Crammer-Singer is slightly better than adaptive codes. However, as we add
more code elements, the performance of Crammer-Singer degrades while adaptive codes continues
to improve, so that the best result for our method (corresponding to the longest code that we tried) is
better than the best result for Crammer-Singer (the shortest code). The best results for both methods
are significantly better than PSI-BLAST. Finally, sigmoid fitting slightly degrades performance as
compared to one-vs-all.

Overall, we observe that when the individual code elements are helpful, as seems to be the case
in remote homology detection, our adaptive code method can successfully improve performance
by adding elements without overfitting. By contrast, the Crammer-Singer method, which learns a
matrix of weights from the discriminant vectors to the label vectors, can perform well when codes
are short but is susceptible to overfitting as they grow.

4.4 Fold Recognition Results

For the more difficult fold recognition task, where the data set consists of held-out superfamilies
from protein folds represented in the training data, we expect that code elements from subclasses
(i.e., superfamilies and families) will provide less information, since protein sequences from differ-
ent superfamilies in principle have no detectable sequence similarity.

Results for the fold recognition problem are provided in Table 3. Note first that the errors
for PSI-BLAST, even for the top 5 fold predictions, are very high, underscoring the difficulty of
the problem. Sigmoid fitting appears to slightly help reduce one-vs-all error in this case, though
balanced error is unaffected. We find that the adaptive codes method can again beat one-vs-all and
strongly outperform PSI-BLAST, but we see no trend of improvement as more code elements are
added, with various length codes leading to similar error rates. The best classification error rate
for adaptive codes is somewhat lower than the best one for Crammer-Singer. Interestingly, in this
case, Crammer-Singer with fold-only codes outperforms the best adaptive codes result in terms of
balanced loss, though the top 5 results for adaptive codes are uniformly better than Crammer-Singer
by either loss function. We conclude that in this case, since the code elements corresponding to
subclasses are not very helpful, the adaptive code method cannot leverage longer codes to achieve
much higher accuracy. However, the weight learning approach does significantly outperform one-
vs-all by all evaluation measures. Significance tests are given comparing the methods in Tables 6
and 9.

1572

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Balanced Balanced
Top 5 Top 5

Method (and optimization target) Error Error Error Error
PSI-BLAST 0.648 0.703 0.518 0.543
one-vs-all: Folds 0.463 0.628 0.145 0.235
one-vs-all: Folds,Sfams 0.463 0.628 0.145 0.235
Sigmoid Fitting: Folds 0.451 0.628 0.169 0.287
Adaptive Codes: Folds (zero-one) 0.406 0.558 0.107 0.156
Adaptive Codes: Folds (balanced) 0.371 0.512 0.112 0.145
Adaptive Codes: Folds,Sfams (zero-one) 0.409 0.552 0.117 0.172
Adaptive Codes: Folds,Sfams (balanced) 0.357 0.508 0.109 0.146
Adaptive Codes: Folds,Sfams,Fams (zero-one) 0.401 0.535 0.106 0.173
Adaptive Codes: Folds,Sfams,Fams (balanced) 0.370 0.499 0.114 0.155

Table 3: Results for multi-class fold prediction in the fold recognition set-up. Results for the adap-
tive codes method are reported on a SCOP benchmark data set (26 folds, 303 superfam-
ilies, 614 test sequences) and compared to nearest neighbor using PSI-BLAST, standard
one-vs-all, and a perceptron version of the Crammer and Singer method. The adaptive
codes method was trained using the mean class update rule.

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
Sf
(b
al
an
ce
d)

C&
S:
Sf
,f
(b
al
an
ce
d)

C&
S:
Sf
,f,
PS
I-f
(b
al
an
ce
d)

A
-C
od
es
:S
f(
ba
la
nc
ed
)

A
-C
od
es
:S
f,f
(b
al
an
ce
d)

A
-C
od
es
:S
f,f
,P
SI
-f
(b
al
an
ce
d)

PSI-BLAST 1 - - - - - 0.61 - - -
one-vs-all: Folds 0 1 1 0 0 0 0 - - -

one-vs-all: Folds,Sfams 0 1 1 0 0 0 0 - - -
Sigmoid Fitting: Folds 0.06 - - 1 - 0.25 0 - - -
C&S: Sf (balanced) 0 - - 0 1 0 0 - - -
C&S: Sf,f (balanced) 0.25 - - - - 1 0.05 - - -

C&S: Sf,f,PSI-f (balanced) - - - - - - 1 - - -
A-Codes: Sf (balanced) 0 0.01 0.01 0 0 0 0 1 - -
A-Codes: Sf,f (balanced) 0 0 0 0 0 0 0 0.13 1 -

A-Codes: Sf,f,PSI-f (balanced) 0 0 0 0 0 0 0 0 0 1

Table 4: P-values from the Wilcoxon signed rank test for superfamily prediction in the remote ho-
mology setup. The table shows, at the 0.05 significance level, whether a method in a given
row beats a method in a given column (numbers with gray background are significant).
Dashes represent when a method in a given row did not beat the method in the given
column.

1573

MELVIN, IE, WESTON, NOBLE AND LESLIE

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
F
(b
al
an
ce
d)

C&
S:
F,
Sf
(b
al
an
ce
d)

C&
S:
F,
Sf
,f
(b
al
an
ce
d)

A
-C
od
es
:F
(b
al
an
ce
d)

A
-C
od
es
:F
,S
f(
ba
la
nc
ed
)

A
-C
od
es
:F
,S
f,f
(b
al
an
ce
d)

PSI-BLAST 1 - - - - 0 0 - - -
one-vs-all: Folds 0 1 1 0.59 0.05 0 0 0.77 - -

one-vs-all: Folds,Sfams 0 1 1 0.59 0.05 0 0 0.77 - -
Sigmoid Fitting: Folds 0.01 - - 1 0.1 0 0 - - -
C&S: F (balanced) 0.24 - - - 1 0 0 - - -
C&S: F,Sf (balanced) - - - - - 1 - - - -
C&S: F,Sf,f (balanced) - - - - - 0 1 - - -
A-Codes: F (balanced) 0.01 - - 0.89 0.03 0 0 1 - -
A-Codes: F,Sf (balanced) 0 0.05 0.05 0.04 0 0 0 0 1 -
A-Codes: F,Sf,f (balanced) 0 0 0 0 0 0 0 0 0 1

Table 5: P-values from the Wilcoxon signed rank test for fold prediction in the remote homology
setup. The table shows, at the 0.05 significance level, whether a method in a given row
beats a method in a given column (numbers with gray background are significant). Dashes
represent when a method in a given row did not beat the method in the given column.

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
F
(b
al
an
ce
d)

C&
S:
F,
Sf
(b
al
an
ce
d)

C&
S:
F,
Sf
,f
(b
al
an
ce
d)

A
-C
od
es
:F
(b
al
an
ce
d)

A
-C
od
es
:F
,S
f(
ba
la
nc
ed
)

A
-C
od
es
:F
,S
f,f
(b
al
an
ce
d)

PSI-BLAST 1 - - - - - - - - -
one-vs-all: Folds 0 1 1 - - 0.07 0 - - -

one-vs-all: Folds,Sfams 0 1 1 - - 0.07 0 - - -
Sigmoid Fitting: Folds 0 0.39 0.39 1 - 0.02 0 - - -
C&S: F (balanced) 0 0 0 0 1 0 0 - - -
C&S: F,Sf (balanced) 0 - - - - 1 0 - - -
C&S: F,Sf,f (balanced) 0 - - - - - 1 - - -
A-Codes: F (balanced) 0 0 0 0 0.56 0 0 1 - -
A-Codes: F,Sf (balanced) 0 0 0 0 0.15 0 0 0.03 1 0.21
A-Codes: F,Sf,f (balanced) 0 0 0 0 0.48 0 0 0.88 - 1

Table 6: P-values from the Wilcoxon signed rank test for fold recognition. The table shows, at the
0.05 significance level, whether a method in a given row beats a method in a given column
(numbers with gray background are significant.) Dashes represent when a method in a
given row did not beat the method in the given column.

1574

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
Sf
(b
al
an
ce
d)

C&
S:
Sf
,f
(b
al
an
ce
d)

C&
S:
Sf
,f,
PS
I-f
(b
al
an
ce
d)

A
-C
od
es
:S
f(
ba
la
nc
ed
)

A
-C
od
es
:S
f,f
(b
al
an
ce
d)

A
-C
od
es
:S
f,f
,P
SI
-f
(b
al
an
ce
d)

PSI-BLAST 1 - - 0.03 - 0.07 0.08 - - -
one-vs-all: Folds 0.79 1 1 0 0.4 0.01 0.02 - - -

one-vs-all: Folds,Sfams 0.79 1 1 0 0.4 0.01 0.02 - - -
Sigmoid Fitting: Folds - - - 1 - - - - - -
C&S: Sf (balanced) 0.86 - - 0 1 0.01 0.07 - - -
C&S: Sf,f (balanced) - - - 0.55 - 1 - - - -

C&S: Sf,f,PSI-f (balanced) - - - 0.35 - 0.44 1 - - -
A-Codes: Sf (balanced) 0.01 0 0 0 0 0 0 1 - -
A-Codes: Sf,f (balanced) 0.01 0 0 0 0 0 0 0.09 1 -

A-Codes: Sf,f,PSI-f (balanced) 0 0 0 0 0 0 0 0.02 0.05 1
Table 7: P-values from the Wilcoxon signed rank test for balanced superfamily prediction in the

remote homology setup. The table shows, at the 0.05 significance level, whether a method
in a given row beats a method in a given column (numbers with gray background are
significant). Dashes represent when a method in a given row did not beat the method in
the given column.

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
F
(b
al
an
ce
d)

C&
S:
F,
Sf
(b
al
an
ce
d)

C&
S:
F,
Sf
,f
(b
al
an
ce
d)

A
-C
od
es
:F
(b
al
an
ce
d)

A
-C
od
es
:F
,S
f(
ba
la
nc
ed
)

A
-C
od
es
:F
,S
f,f
(b
al
an
ce
d)

PSI-BLAST 1 0.95 0.95 0.34 - 0.34 0.73 - - -
one-vs-all: Folds - 1 1 0.39 - 0.34 - - - -

one-vs-all: Folds,Sfams - 1 1 0.39 - 0.34 - - - -
Sigmoid Fitting: Folds - - - 1 - - - - - -
C&S: F (balanced) 0.04 0.05 0.05 0.01 1 0.01 0.04 0.84 0.67 -
C&S: F,Sf (balanced) - - - 1 - 1 - - - -
C&S: F,Sf,f (balanced) - 0.78 0.78 0.38 - 0.39 1 - - -
A-Codes: F (balanced) 0.12 0.01 0.01 0.01 - 0.02 0.13 1 - -
A-Codes: F,Sf (balanced) 0.02 0 0 0 - 0.01 0.03 0.03 1 -
A-Codes: F,Sf,f (balanced) 0.01 0 0 0 0.43 0.01 0.02 0.01 0.09 1

Table 8: P-values from the Wilcoxon signed rank test for balanced fold prediction in the remote
homology setup. The table shows, at the 0.05 significance level, whether a method in a
given row beats a method in a given column (numbers with gray background are signifi-
cant). Dashes represent when a method in a given row did not beat the method in the given
column.

1575

MELVIN, IE, WESTON, NOBLE AND LESLIE

PS
I-B
LA
ST

on
e-
vs
-a
ll:
Fo
ld
s

on
e-
vs
-a
ll:
Fo
ld
s,S
fa
m
s

Si
gm
oi
d
Fi
tti
ng
:F
ol
ds

C&
S:
F
(b
al
an
ce
d)

C&
S:
F,
Sf
(b
al
an
ce
d)

C&
S:
F,
Sf
,f
(b
al
an
ce
d)

A
-C
od
es
:F
(b
al
an
ce
d)

A
-C
od
es
:F
,S
f(
ba
la
nc
ed
)

A
-C
od
es
:F
,S
f,f
(b
al
an
ce
d)

PSI-BLAST 1 - - - - - - - - -
one-vs-all: Folds 0.16 1 1 0.92 - - - - - -

one-vs-all: Folds,Sfams 0.16 1 1 0.92 - - - - - -
Sigmoid Fitting: Folds 0.36 - - 1 - - - - - -
C&S: F (balanced) 0 0.01 0.01 0.01 1 0.03 0 0.12 0.19 0.21
C&S: F,Sf (balanced) 0.16 0.58 0.58 0.49 - 1 0.24 - - -
C&S: F,Sf,f (balanced) 0.7 0.66 0.66 0.96 - - 1 - - -
A-Codes: F (balanced) 0 0 0 0.01 - 0.21 0.02 1 - -
A-Codes: F,Sf (balanced) 0 0 0 0.01 - 0.17 0.03 0.81 1 -
A-Codes: F,Sf,f (balanced) 0 0 0 0.01 - 0.12 0.03 0.73 0.52 1

Table 9: P-values from the Wilcoxon signed rank test for balanced fold recognition. The table
shows, at the 0.05 significance level, whether a method in a given row beats a method in
a given column (numbers with gray background are significant). Dashes represent when a
method in a given row did not beat the method in the given column.

4.5 Modified Perceptron Update Rules

Finally, for all multi-class prediction class, we evaluate the effectiveness of our modified perceptron
update rules: the friend/foe rule and the mean class update rule. Results are shown in Table 10.
Significance tests are given comparing the methods in Table 11.

We find that the new update rules consistently and significantly improve performance for both
remote homology prediction tasks when evaluated in terms of classification error, with the most
dramatic improvements occurring when training the perceptron using balanced loss in the remote
homology fold prediction task. The same performance improvement is true when measured in terms
of balanced error for the remote homology fold prediction task; however, for remote homology
superfamily prediction, the improvement in balanced error only holds when the perceptron is also
trained with balanced error.

In the case of fold recognition, previous results indicate that the subclass code elements are
less useful, so we expect that update rules which respect the code structure may be less effective.
Indeed, we get mixed results here, with a neutral or slightly weakening effect when the percep-
trons are trained using classification loss. However, even for fold recognition, the new update rules
significantly improve classification error when the perceptrons are trained using balanced loss.

1576

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Error Balanced Error
single mean single mean

Method (and optimization target) codes friend/foe friend/foe codes friend/foe friend/foe
Fold recognition
Folds,Sfams (zero-one) 0.402 0.414 0.409 0.547 0.558 0.552
Folds,Sfams (balanced) 0.412 0.368 0.357 0.535 0.509 0.508
Folds,Sfams,Fams (zero-one) 0.404 0.406 0.401 0.548 0.553 0.535
Folds,Sfams,Fams (balanced) 0.406 0.378 0.370 0.497 0.508 0.499
Remote Homology Superfamily Prediction
Sfams,Fams (zero-one) 0.251 0.239 0.243 0.372 0.380 0.382
Sfams,Fams (balanced) 0.266 0.241 0.239 0.385 0.347 0.352
Sfams,Fams,PSI-Fams (zero-one) 0.232 0.219 0.223 0.330 0.340 0.338
Sfams,Fams,PSI-Fams (balanced) 0.241 0.213 0.217 0.346 0.313 0.320
Remote Homology Fold Prediction
Folds,Sfams (zero-one) 0.310 0.283 0.276 0.391 0.372 0.370
Folds,Sfams (balanced) 0.375 0.312 0.297 0.401 0.360 0.351
Folds,Sfams,Fams (zero-one) 0.252 0.247 0.252 0.363 0.347 0.351
Folds,Sfams,Fams (balanced) 0.315 0.278 0.265 0.373 0.349 0.340

Table 10: Results for multi-class prediction comparing different perceptron update rules. Results
for the friend/foe and mean friend/foe update rules are compared with the standard per-
ceptron update rule for the fold recognition and remote homology fold and superfamily
prediction tasks when using hierarchical codes. Experiments shown with a gray back-
ground are those for which the modified update rule gives poorer performance than the
standard rule, usually by an insignificant amount. In all other experiments, the modified
rules consistently outperform the regular rule, usually by a significant amount (but with
one case of a tie).

5. Discussion

We have presented a novel and effective method for multi-class classification that uses the ranking
perceptron to learn a reweighting of components of output vectors. Our application domain is the
highly multi-class protein structural classification problem, where there are typically hundreds of
classes arranged in a hierarchical taxonomy. In this domain, we focus on two difficult subprob-
lems: remote homology detection and fold recognition. We exploit hierarchical information in this
problem by training one-vs-the-rest SVM classifiers to recognize classes at different levels of the
hierarchy and using these classifiers to define different components of the output vectors. We then
use fixed binary codes to represent the hierarchy of labels associated with each class, and we adapt
our output vector embedding in order to improve classification relative to these fixed codes.

Unlike the results of a recent empirical study of multi-class classification algorithms that used
smaller “toy data sets” (Rifkin and Klautau, 2004), we find that we can significantly outperform
one-vs-all in our problem setting. We also convincingly beat PSI-BLAST, which is a widely-used
alignment-based method for detecting relationships between protein sequences.

Many authors have presented “output code” methods for multi-class classification. We compare
our approach to a perceptron version of the recent Crammer-Singer code-learning approach, which
seeks to learn a mapping from the vector of prediction scores for an input example to the vector of

1577

MELVIN, IE, WESTON, NOBLE AND LESLIE

Superfamily Fold Fold (Remote Homology)

sin
gl
e
Co
de
s

fri
en
d/
fo
e

m
ea
n
fri
en
d/
fo
e

sin
gl
e
Co
de
s

fri
en
d/
fo
e

m
ea
n
fri
en
d/
fo
e

sin
gl
e
Co
de
s

fri
en
d/
fo
e

m
ea
n
fri
en
d/
fo
e

single Codes 1 - - 1 0.73 0.92 1 - -
friend/foe 0.03 1 0.85 - 1 - 0.01 1 -

mean friend/foe 0.08 - 1 - 0.22 1 0 0.12 1

Table 11: P-values from the Wilcoxon signed rank test for different perceptron update rules. The
table shows, at the 0.05 significance level, whether a method in a given row beats a
method in a given column (numbers with gray background are significant). Dashes rep-
resent when a method in a given row did not beat the method in the given column. All
measurments are for balanced error.

output classes. We find that when there are a smaller number of classes and when relatively few
code elements are used, the Crammer-Singer method can tie or slightly outperform (but not statis-
tically significantly) our adaptive code approach. However, as the number of code elements grows,
Crammer-Singer performance deteriorates, often giving much poorer results than one-vs all, while
our performance continues to improve. Therefore, as we add more base classifiers, we can almost
always beat the best Crammer-Singer result. Moreover, we also present results using modified up-
date rules for the ranking perceptron which take into consideration multi-class predictions that lead
to the same loss. These update rules, called the friend/foe and mean friend/foe updates, lead to small
but significant performance advantages across multiple experiments.

A large body of recent work has focused on finding good representations for the inputs in the
protein classification problem, in particular in the form of novel string kernels for protein sequence
data. Our current study focuses on the complementary problem of adapting the embedding of the
outputs. Our experimental results provide a promising indication that new kernel methods combined
with novel multi-class “output space” algorithms can truly achieve state-of-the-art performance in a
large-scale multi-class protein classification setting.

As we scale to the full-scale protein classification problem, with on the order of 1000 folds,
one issue with our approach is limited coverage: for many small SCOP folds, there are not enough
labeled sequences to train an SVM fold detector. In ongoing work, we are considering two strate-
gies for increasing coverage. First, there is a standard method for increasing the positive training
set size in this problem, namely using PSI-BLAST or another alignment-based method to pull in
additional sequences from the non-redundant database that are homologous to the known fold mem-
bers. Adding domain homologs creates a larger, if biased, training set, and one could investigate
the trade-off between coverage and multi-class accuracy as one applies this strategy to very small
classes. Second, we are investigating a strategy of “punting” from one prediction method to another
based on a prediction score threshold. The goal is to combine a method with weaker performance
but full coverage, such as PSI-BLAST, with a higher accuracy method with reduced coverage, such

1578

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

as SVM adaptive codes, to produce a hybrid method with full coverage that in general outperforms
both component methods. Details and results of this approach will be reported elsewhere.

Acknowledgments

We would like to thank Thorsten Joachims for helpful suggestions on the implementation of SVM-
Struct and Asa Ben-Hur for helpful comments on the manuscript. This work was supported by NSF
grant EIA-0312706 and NIH grant GM74257 and by the NIH Roadmap Initiative, National Centers
for Biomedical Computing Grant 1U54CA121852.

References

Erin L. Allwein, Robert E. Schapire, and Yoram Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. In Proceedings of the 17th International Conference on Machine
Learning, pages 9–16. Morgan Kaufmann, San Francisco, CA, 2000.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. A basic
local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchical multi-label predic-
tion of gene function. Bioinformatics, 22(7):830–836, 2006.

Asa Ben-Hur and Douglas Brutlag. Remote homology detection: a motif based approach. Proceed-
ings of the Eleventh International Conference on Intelligent Systems for Molecular Biology, 19
suppl 1:i26–i33, 2003.

Léon Bottou, Yann LeCun, and Yoshua Bengio. Global training of document processing systems
using graph transformer networks. In Proc. of Computer Vision and Pattern Recognition, pages
490–494, Puerto-Rico, 1997. IEEE.

Steven E. Brenner, Patrice Koehl, and Michael Levitt. The ASTRAL compendium for sequence and
structure analysis. Nucleic Acids Research, 28:254–256, 2000.

Nicolò Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. Incremental algorithms for hierarchical
classification. Journal of Machine Learning Research, 7:31–54, 2006.

Michael Collins. Discriminative reranking for natural language parsing. In Proceedings of the
17th International Conference on Machine Learning, pages 175 – 182. Morgan Kaufmann, San
Francisco, CA, 2000.

Michael Collins and Nigel Duffy. New ranking algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pages 263–270, 2002.

1579

MELVIN, IE, WESTON, NOBLE AND LESLIE

Koby Crammer and Yoram Singer. On the learnability and design of output codes for multiclass
problems. In Computational Learning Theory, pages 35–46, 2000.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal Machine Learning Research, 2:265–292, 2002. ISSN 1533-7928.

Ofer Dekel, Joseph Keshet, and Yoram Singer. Large margin hierarchical classification. In Pro-
ceedings of the 21st International Conference on Machine Learning, 2004.

Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277 – 296, 1999.

Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaus-
sian process priors. Neural Computation, 18(8):1790–1817, 2006.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines.
Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

Eugene Ie, Jason Weston, William Stafford Noble, and Christina Leslie. Multi-class protein fold
recognition using adaptive codes. Proceedings of the 22nd International Conference on Machine
Learning, 2005.

Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework for detecting
remote protein homologies. Journal of Computational Biology, 7(1–2):95–114, 2000.

Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjölander, and David Haussler. Hidden
Markov models in computational biology: Applications to protein modeling. Journal of Molecu-
lar Biology, 235:1501–1531, 1994.

Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and Christina Leslie.
Profile kernels for detecting remote protein homologs and discriminative motifs. Journal of Bioin-
formatics and Computational Biology, 2005. To appear.

Yann LeCun and Fu Jie Huang. Loss functions for discriminative training of energy-based models.
In Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, 2005.

Christina Leslie, Eleazar Eskin, and William S. Noble. The spectrum kernel: A string kernel for
SVM protein classification. Proceedings of the Pacific Biocomputing Symposium, pages 564–575,
2002a.

Christina Leslie, Eleazar Eskin, Jason Weston, and William S. Noble. Mismatch string kernels
for SVM protein classification. Advances in Neural Information Processing Systems 15, pages
1441–1448, 2002b.

Christina Leslie, Eleazar Eskin, Adiel Cohen, JasonWeston, andWilliam S. Noble. Mismatch string
kernels for discriminative protein classification. Bioinformatics, 20(4):467–476, 2004.

1580

MULTI-CLASS PROTEIN CLASSIFICATION USING ADAPTIVE CODES

Li Liao andWilliam S. Noble. Combining pairwise sequence similarity and support vector machines
for remote protein homology detection. Proceedings of the 6th Annual International Conference
on Research in Computational Molecular Biology, pages 225–232, 2002.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s probabilistic outputs for
support vector machines. Technical report, Department of Computer Science and Information
Engineering, National Taiwan University, 2003.

Alexey G. Murzin, Steven E. Brenner, Tim Hubbard, and Cyrus Chothia. SCOP: A structural
classification of proteins database for the investigation of sequences and structures. Journal of
Molecular Biology, 247(4):536–540, 1995.

Jong Park, Kevin Karplus, Christian Barrett, Richard Hughey, David Haussler, Tim Hubbard, and
Cyrus Chothia. Sequence comparisons using multiple sequences detect twice as many remote
homologues as pairwise methods. Journal of Molecular Biology, 284(4):1201–1210, 1998.

John Platt. Probabilities for support vector machines. Advances in Large Margin Classifiers, pages
61–74, 1999.

Huzefa Rangwala and George Karypis. Profile-based direct kernels for remote homology detection
and fold recognition. Bioinformatics, 21(23):4239–4247, 2005.

Gunnar Rätsch, Alexander J. Smola, and Sebastian Mika. Adapting codes and embeddings for
polychotomies. Advances in Neural Information Processing Systems, 15:513–520, 2002.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Journal Machine Learn-
ing Research, 5:101–141, 2004. ISSN 1533-7928.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–407, 1958.

Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology detection
using string alignment kernels. Bioinformatics, 20(11):1682–1689, 2004.

Temple Smith and Michael Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–197, 1981.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector
learning for interdependent and structured output spaces. Proceedings of the 21st International
Conference on Machine Learning, pages 823–830, 2004.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

Jason Weston and Chris Watkins. Support vector machines for multiclass pattern recognition. In
Proceedings of the 7th European Symposium On Artificial Neural Networks, 1999.

JasonWeston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff, and William S. Noble.
Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241–3247,
2005.

1581

Journal of Machine Learning Research 8 (2007) 1583-1623 Submitted 4/06; Revised 1/07; Published 7/07

Spherical-Homoscedastic Distributions: The Equivalency of Spherical
and Normal Distributions in Classification

Onur C. Hamsici HAMSICIO@ECE.OSU.EDU
Aleix M. Martinez ALEIX@ECE.OSU.EDU
Department of Electrical and Computer Engineering
The Ohio State University
Columbus, OH 43210, USA

Editor: Greg Ridgeway

Abstract
Many feature representations, as in genomics, describe directional data where all feature vectors
share a common norm. In other cases, as in computer vision, a norm or variance normalization
step, where all feature vectors are normalized to a common length, is generally used. These repre-
sentations and pre-processing step map the original data from Rp to the surface of a hypersphere
Sp−1. Such representations should then be modeled using spherical distributions. However, the
difficulty associated with such spherical representations has prompted researchers to model their
spherical data using Gaussian distributions instead—as if the data were represented in Rp rather
than Sp−1. This opens the question to whether the classification results calculated with the Gaus-
sian approximation are the same as those obtained when using the original spherical distributions.
In this paper, we show that in some particular cases (which we named spherical-homoscedastic)
the answer to this question is positive. In the more general case however, the answer is negative.
For this reason, we further investigate the additional error added by the Gaussian modeling. We
conclude that the more the data deviates from spherical-homoscedastic, the less advisable it is to
employ the Gaussian approximation. We then show how our derivations can be used to define
optimal classifiers for spherical-homoscedastic distributions. By using a kernel which maps the
original space into one where the data adapts to the spherical-homoscedastic model, we can derive
non-linear classifiers with potential applications in a large number of problems. We conclude this
paper by demonstrating the uses of spherical-homoscedasticity in the classification of images of
objects, gene expression sequences, and text data.
Keywords: directional data, spherical distributions, normal distributions, norm normalization,
linear and non-linear classifiers, computer vision

1. Introduction

Many problems in science and engineering involve spherical representations or directional data,
where the sample vectors lie on the surface of a hypersphere. This is typical, for example, of
some genome sequence representations (Janssen et al., 2001; Audit and Ouzounis, 2003), in text
analysis and clustering (Dhillon and Modha, 2001; Banerjee et al., 2005), and in morphometrics
(Slice, 2005). Moreover, the use of some kernels (e.g., radial basis function) in machine learning
algorithms, will reshape all sample feature vectors to have a common norm. That is, the original
data is mapped into the surface of a hypersphere. Another area where spherical representations are
common is in computer vision, where spherical representations emerge after the common norm-

c©2007 Onur C. Hamsici and Aleix M. Martinez.

HAMSICI AND MARTINEZ

normalization step is incorporated. This pre-processing step guarantees that all vectors have a com-
mon norm and it is used in systems where the representation is based on the shading properties of
the object to make the algorithm invariant to changes of the illumination intensity, and when the rep-
resentation is shape-based to provide scale and rotation invariance. Typical examples are in object
and face recognition (Murase and Nayar, 1995; Belhumeur and Kriegman, 1998), pose estimation
(Javed et al., 2004), shape analysis (Dryden and Mardia, 1998) and gait recognition (Wang et al.,
2003; Veeraraghavan et al., 2005).

Figure 1 provides two simple computer vision examples. On the left hand side of the figure the
two p-dimensional feature vectors x̂i, i = {1,2}, correspond to the same face illuminated from the
same angle but with different intensities. Here, x̂1 = αx̂2, α ∈ R, but normalizing these vectors to a
common norm results in the same representation x; that is, the resulting representation is invariant to
the intensity of the light source. On the right hand side of Figure 1, we show a classical application
to shape analysis. In this case, each of the p elements in ŷi represents the Euclidean distances from
the centroid of the 2D shape to a set of p equally separated points on the shape. Normalizing each
vector with respect to its norm, guarantees our representation is scale invariant.

The most common normalization imposes that all vectors have a unit norm, that is,

x=
x̂
‖x̂‖ ,

where x̂ ∈ Rp is the original feature vector, and ‖x‖ is the magnitude (2-norm length) of the vector
x. When the feature vectors have zero mean, it is common to normalize these with respect to their
variances instead,

x=
x̂√

1
p−1 ∑

p
i=1 x̂2

=
√
p−1 x̂‖x̂‖ ,

which generates vectors with norms equal to
√
p−1. This second option is usually referred to as

variance normalization.
It is important to note that these normalizations enforce all feature vectors x to be at a common

distance from the origin; that is, the original feature space is mapped to a spherical representation
(see Figure 1). This means that the data now lays on the surface of the (p− 1)-dimensional unit
sphere Sp−1. 1

Our description above implies that the data would now need to be interpreted as spherical.
For example, while the illumination subspace of a (Lambertian) convex object illuminated by a
single point source at infinity is known to be 3-dimensional (Belhumeur and Kriegman, 1998), this
corresponds to the 2-dimensional sphere S2 after normalization. The third dimension (not shown in
the spherical representation) corresponds to the intensity of the source. Similarly, if we use norm-
normalized images to define the illumination cone, the extreme rays that define the cone will be the
extreme points on the corresponding hypersphere.

An important point here is that data would now need to be modeled using spherical distributions.
However, the computation of the parameters that define spherical models is usually complex, very
costly and, in many cases, impossible to obtain (see Section 2 for a review). This leaves us with
an unsolved problem: To make a system invariant to some parameters, we want to use spherical

1. Since all spherical representations are invariant to the radius (i.e., there is an isomorphism connecting any two rep-
resentations of distinct radius), selecting a specific value for the radius is not going to effect the end result. In this
paper, we always impose this radius to be equal to one.

1584

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Figure 1: On the left hand side of this figure, we show two feature vectors corresponding to the
same face illuminated from the same position but with different intensities. This means
that x̂1 = αx̂2, α ∈ R. Normalizing these two vectors with respect to their norm yields a
common solution, x = x̂1

‖x̂1‖ = x̂2
‖x̂2‖ . The norm-normalized vector x is on S

p−1, whereas
x̂i ∈Rp. On the right hand side of this figure we show a shape example where the elements
of the feature vectors ŷi represent the Euclidean distance between the centroid of the
2D shape and p points on the shape contour. As above, ŷ1 = βŷ2 (where β ∈ R), and
normalizing them with respect to their norm yields y.

representations (as in genomics) or normalize the original feature vectors to such a representation
(as in computer vision). But, in such cases, the parameter estimation of our distribution is impossible
or very difficult. This means, we are left to approximate our spherical distribution with a model that
is well-understood and easy to work with. Typically, the most convenient choice is the Gaussian
(Normal) distribution.

The question arises: how accurate are the classification results obtained when approximating
spherical distributions with Gaussian distributions?

Note that if the Bayes decision boundary obtained with Gaussians is very distinct to that found
by the spherical distributions, our results will not generally be useful in practice. This would be
catastrophic, because it would mean that by using spherical representations to solve one problem,
we have created another problem that is even worse.

In this paper, we show that in almost all cases where the Bayes classifier is linear (which is
the case when the data is what we will refer to as spherical-homoscedastic—a rotation-invariant
extension of homoscedasticity) the classification results obtained on the true underlying spherical
distributions and on those Gaussians that best approximate them are identical. We then show that for
the general case (which we refer to as spherical-heteroscedastic) these classification results can vary
substantially. In general, the more the data deviates from our spherical-homoscedastic definition,
the more the classification results diverge from each other. This provides a mechanism to test when
it makes sense to use the Gaussian approximation and when it does not.

Our definition of spherical-homoscedasticity will also allow us to define simple classification
algorithms that provide the minimal Bayes classification error for two spherical homoscedastic dis-
tributions. This result can then be extended to the more general spherical-heteroscedastic case by
incorporating the idea of the kernel trick. Here, we will employ a kernel to (intrinsically) map the
data to a space where the spherical-homoscedastic model provides a good fit.

1585

HAMSICI AND MARTINEZ

The rest of this paper is organized as follows. Section 2 presents several of the commonly used
spherical distributions and describes some of the difficulties associated to their parameter estimation.
In Section 3, we introduce the concept of spherical-homoscedasticity and show that whenever two
spherical distributions comply with this model, the Gaussian approximation works well. Section 4
illustrates the problems we will encounter when the data deviates from our spherical-homoscedastic
model. In particular, we study the classification error added when wemodel spherical-heteroscedastic
distributions with the Gaussian model. Section 5 presents the linear and (kernel) non-linear classi-
fiers for spherical-homoscedastic and -heteroscedastic distributions, respectively. Our experimental
results are in Section 6. Conclusions are in Section 7. A summary of our notation is in Appendix A.

2. Spherical Data

In this section, we introduce some of the most commonly used spherical distributions and discuss
their parameter estimation and associated problems. We follow with a description of the corre-
sponding distance measurements derived from the Bayes classification rule.

2.1 Spherical Distributions

Spherical data can be modeled using a large variety of data distributions (Mardia and Jupp, 2000),
most of which are analogous to distributions defined for the Cartesian representation. For example,
the von Mises-Fisher (vMF) distribution is the spherical counterpart of those Gaussian distributions
that can be represented with a covariance matrix of the form τ2I; where I is the p× p identity matrix
and τ > 0. More formally, the probability density function (pdf) of the p-dimensional vMF model
M(µ,κ) is defined as

f (x|µ,κ) = cMF(p,κ)exp{κµTx}, (1)

where cMF(p,κ) is a normalizing constant which guarantees that the integral of our density over the
(p− 1)-dimensional sphere Sp−1 is one, κ ≥ 0 is the concentration parameter, and µ is the mean
direction vector (i.e., ‖µ‖ = 1). Here, the concentration parameter κ is used to represent distinct
types of data distributions—from uniformly distributed (for which κ is small) to very localized (for
which κ is large). This means that when κ= 0 the data will be uniformly distributed over the sphere,
and when κ→ ∞ the distribution will approach a point.

As mentioned above, Equation (1) can only be used to model circularly symmetric distributions
around the mean direction. When the data does not conform to such a distribution type, one needs
to use more flexible pdfs such as the Bingham distribution (Bingham, 1974). The pdf for the p-
dimensional Bingham B(A) is an antipodally symmetric function (i.e., f (−x) = f (x), ∀x ∈ Sp−1)
given by

f (±x|A) = cB(p,A) exp{xTAx}, (2)

where cB(p,A) is the normalizing constant and A is a p× p symmetric matrix defining the param-
eters of the distribution. Note that since the feature vectors have been mapped onto the unit sphere,
xTx = 1. This means that substituting A for A+ cI with any c ∈ R would result in the same pdf
as that shown in (2). To eliminate this redundancy, we need to favor a solution with an additional
constraint. One such constraint is λMAX(A) = 0, where λMAX(A) is the largest eigenvalue of A.

For many applications the assumption of antipodally symmetric is inconvenient. In such cases,
we can use the Fisher-Bingham distribution (Mardia and Jupp, 2000) which combines the idea

1586

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

of von Mises-Fisher with that of Bingham, yielding the following p-dimensional Fisher-Bingham
FB(µ,κ,A) pdf

f (x|µ,κ,A) = cFB (κ,A) exp{κµTx+xTAx},

where cFB(κ,A) is the normalizing constant and A is a symmetric p× p matrix, with the constraint
tr(A) = 0. Note that the combination of the two components in the exponential function shown
above, provides enough flexibility to represent a large variety of ellipsoidal distributions (same as
Bingham) but without the antipodally symmetric constraint (same as in von Mises-Fisher).

2.2 Parameter Estimation

To use each of these distributions, we need to first estimate their parameters from a training data-set,
X= (x1,x2, . . . ,xn); X a p×n matrix, with xi ∈ Sp−1 the sample vectors.

If one assumes that the samples in X arise from a von Mises-Fisher distribution, we will need
to estimate the concentration parameter κ and the (unit) mean direction µ. The most common way
to estimate these parameters is to use the maximum likelihood estimates (m.l.e.). The sample mean
direction µ̂ is given by

µ̂=
x̄

‖x̄‖ , (3)

where x̄= 1
n ∑

n
i=1 xi is the average feature vector. It can be shown that

cMF =
(κ
2

)p/2−1 1
(2π)p/2Ip/2−1(κ)

in (1), where Iv(.) denotes the modified Bessel function of the first kind and of order v (Banerjee
et al., 2005).2 By substituting this normalization constant in (1) and calculating the expected value
of x (by integrating the pdf over the surface of Sp−1), we obtain ‖x̄‖ = Ip/2(κ̂)

Ip/2−1(κ̂)
. Unfortunately,

equations defining a ratio of Bessel functions cannot be inverted and, hence, approximation methods
need to be defined for κ̂. Banerjee et al. (2005) have recently proposed one such approximation
which can be applied regardless of the dimensionality of the data,

κ̂=
‖x̄‖p−‖x̄‖3

1−‖x̄‖2 .

This approximation makes the parameter κ̂ directly dependent on the training data and, hence, can
be easily computed.

For the Bingham distribution, the normalizing constant, c−1B =
R
Sp−1 exp

{
xTAx

}
dx, requires

that we estimate the parameters defined in A. Since A is a symmetric matrix, its spectral decom-
position can be written as A = QΛQT , where Q = (q1,q2, . . . ,qp) is a matrix whose columns qi
correspond to the eigenvectors of A and Λ = diag(λ1, . . . ,λp) is the p× p diagonal matrix of cor-
responding eigenvalues. This allows us to calculate the log-likelihood of the data by adding the log
version of (2) over all samples in X, L(Q,Λ) = ntr(SQΛQT)+n ln(cB(p,Λ)); where S= n−1XXT
is the sample autocorrelation matrix (sometimes also referred to as scatter matrix). Since the tr(SA)
is maximized when the eigenvectors of S and A are the same, the m.l.e. of Q (denoted Q̂) is given

2. The modified Bessel function of the first kind is proportional to the contour integral of the exponential function
defined in (1) over the (p−1)-dimensional sphere Sp−1.

1587

HAMSICI AND MARTINEZ

by the eigenvector decomposition of the autocorrelation matrix, S= Q̂Λ̂SQ̂; where Λ̂S is the eigen-
value matrix of S. Unfortunately, the same does not apply to the estimation of the eigenvalues Λ,
because these depend on S and cB. Note that in order to calculate the normalizing constant cB we
need to know Λ, but to compute Λ we need to know cB. This chicken-and-egg problem needs to be
solved using iterative approaches or optimization algorithms. To define such iterative approaches,
we need to calculate the derivative of cB. Since there are no known ways to express Λ as a function
of the derivative of cB(p,Λ), approximations for cB (which permit such a dependency) are nec-
essary. Kume and Wood (2005) have recently proposed a saddlepoint approximation that can be
used for this purpose. In their approach, the estimation of the eigenvalues is given by the following
optimization problem

argmax
Λ

ntr(Λ̂SΛ)−n ln(ĉB(Λ)),

where ĉB(Λ) is now the estimated normalizing constant given by the saddlepoint approximation of
the density function of the 2-norm of x.

The estimation of the parameters of the Fisher-Bingham distribution comes at an additional cost
given by the large number of parameters that need to be estimated. For example, the normalizing
constant cFB depends on κ, µ and A, making the problem even more complex than that of the Bing-
ham distribution. Hence, approximation methods are once more required. One such approximation
is given by Kent (1982), where it is assumed that the data is highly concentrated (i.e., κ is large) or
that the data is distributed more or less equally about every dimension (i.e., the distribution is almost
circularly symmetric). In this case, the mean direction µ is estimated using (3) and the estimate of
the parameter matrix (for the 3-dimensional case) is given by A = β(q1qT1 −q2qT2); where q1 and
q2 are the two eigenvectors associated to the two largest eigenvalues (λ1 ≥ λ2) of S̄, S̄ is the scatter
matrix calculated on the null space of the mean direction, and β is the parameter that allows us to
deviate from the circle defined by κ.3 Note that the two eigenvectors q1 and q2 are constrained to
be orthogonal to the unit vector µ̂ describing the mean direction. To estimate the value for κ and
β, Kent proposes to further assume the data can be locally represented as Gaussian distributions on
Sp−1 and shows that in the three dimensional case β̂ ∼= 1

2
(
(2−2‖x̄‖− r2)−1+(2−2‖x̄‖+ r2)−1

)

and κ̂∼= (2−2‖x̄‖− r2)−1+(2−2‖x̄‖+ r2)−1, where r2 = λ1−λ2.
The Kent distribution is one of the most popular distribution models for the estimation of 3-

dimensional spherical data, since it has fewer parameters to be estimated than Fisher-Bingham and
can model any ellipsoidally symmetric distribution. A more recent and general approximation for
Fisher-Bingham distributions is given in Kume and Wood (2005), but this requires the estimate of a
larger number of parameters, a cost to be considered.

As summarized above, the actual values of the parameters of spherical distributions can rarely
be computed, and approximations are needed. Furthermore, we have seen that most of these ap-
proximation algorithms require assumptions that may not be applicable to our problem. In the case
of the Kent distribution, these assumptions are quite restrictive. When the assumptions do not hold,
we cannot make use of these spherical pdfs.

3. Recall that the first part of the definition of the Fisher-Bingham pdf is the same as that of the von Mises-Fisher, κµT x,
which defines a small circle on Sp−1, while the second component xTAx allows us to deviate from the circle and
represent a large variety of ellipsoidal pdfs.

1588

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

2.3 Distance Calculation

The probability (“distance”) of a new (test) vector x to belong to a given distribution can be defined
as (inversely) proportional to the likelihood or log-likelihood of x. For instance, the pdf of the p-
dimensional Gaussian N(m,Σ) is f (x|m,Σ) = cN(Σ)exp{− 1

2(x−m)TΣ−1(x−m)}, wherem is the
mean, Σ is the sample covariance matrix of the data and c−1N (Σ) = (2π)p/2|Σ|1/2 is the normalizing
constant. When the priors of each class are the same, the optimum “distance” measurement (in
the Bayes sense) of a point x to f (x|m,Σ) as derived by the Bayes rule is the negative of the log-
likelihood

d 2N(x) = − ln f (x|m,Σ) =
1
2

(x−m)T Σ−1 (x−m)− ln(cN(Σ)). (4)

Similarly, we can define the distance of a test sample to each of the spherical distributions
defined above (i.e., von Mises-Fisher, Bingham and Fisher-Bingham) as

d 2MF(x) = −κµTx− ln(cMF(p,κ)), (5)
d 2B(x) = −xTAx− ln(cB(p,A)), (6)
d 2FB(x) = −κµTx−xTAx− ln(cFB (κ,A)). (7)

As seen in Section 2.2, the difficulty with the distance measures defined in (5-7) will be given by
the estimation of the parameters of our distribution (e.g., µ, κ, and A), because this is usually com-
plex and sometimes impossible. This is the reason why most researchers prefer to use the Gaussian
model and its corresponding distance measure defined in (4) instead. The question remains: are
the classification errors obtained using the spherical distributions defined above lower than those
obtained when using the Gaussian approximation? And, if so, when?

The rest of this paper addresses this general question. In particular, we show that when the data
distributions conform to a specific relation (which we call spherical-homoscedastic), the classifica-
tion errors will be the same. However, in the most general case, they need not be.

3. Spherical-Homoscedastic Distributions

If the distributions of each class are known, the optimal classifier is given by the Bayes Theorem.
Furthermore, when the class priors are equal, this decision rule simplifies to the comparison of
the likelihoods (maximum likelihood classification), p(x|wi); where wi specifies the ith class. In
the rest of this paper, we will make the assumption of equal priors (i.e., P(wi) = P(w j) ∀i, j). An
alternative way to calculate the likelihood of an observation x to belong to a class, is to measure the
log-likelihood-based distance (e.g., d 2N in the case of a Gaussian distribution). In the spherical case,
the distances defined in Section 2.3 can be used.

In the Gaussian case, we say that a set of r Gaussians, {N1(m1,Σ1), . . . ,Nr(mr,Σr)}, are ho-
moscedastic if their covariance matrices are all the same (i.e., Σ1 = · · ·= Σr). Homoscedastic Gaus-
sian distributions are relevant, because their Bayes decision boundaries are given by hyperplanes.

However, when all feature vectors are restricted to lay on the surfaces of a hypersphere, the
definition of homoscedasticity given above becomes too restrictive. For example, if we use Gaus-
sian pdfs to model some spherical data that is ellipsoidally symmetric about its mean, then only
those distributions that have the same mean up to a sign can be homoscedastic. This is illustrated
in Figure 2. Although the three classes shown in this figure have the same covariance matrix up to
a rotation, only the ones that have the same mean up to a sign (i.e., Class 1 and 3) have the exact

1589

HAMSICI AND MARTINEZ

Class 1

Class 2

Class 3

 m1

 m2

 m3

Figure 2: Assume we model the data of three classes laying on Sp−1 using three Gaussian distri-
butions. In this case, each set of Gaussian distributions can only be homoscedastic if the
mean feature vector of one class is the same as that of the others up to a sign. In this
figure, Class 1 and 3 are homoscedastic, but classes 1,2 and 3 are not. Classes 1, 2 and 3
are however spherical-homoscedastic.

same covariance matrix. Hence, only classes 1 and 3 are said to be homoscedastic. Nonetheless,
the decision boundaries for each pair of classes in Figure 2 are all hyperplanes. Furthermore, we
will show that these hyperplanes (given by approximating the original distributions with Gaussians)
are generally the same as those obtained using the Bayes Theorem on the true underlying distribu-
tions. Therefore, it is important to define a new and more general type of homoscedasticity that is
rotational invariant.

Definition 1 Two distributions (f1 and f2) are said to be spherical-homoscedastic if the Bayes
decision boundary between f1 and f2 is given by one or more hyperplanes and the variances in f1
are the same as those in f2.

Recall that the variance of the vMF distribution is defined using a single parameter, κ. This
means that in the vMF case, we will only need to impose that all concentration parameters be the
same. For the other cases, these will be defined by κ and the eigenvalues of A. This is what is meant
by “the variances” in our definition above.

Further, in this paper, we will work on the case where the two distributions (f1 and f2) are of
the same form, that is, two Gaussian, vMF, Bingham or Kent distributions.

Our main goal in the rest of this section, is to demonstrate that the linear decision boundaries
(given by the Bayes Theorem) of a pair of spherical-homoscedastic von Mises-Fisher, Bingham or
Kent, are the same as those obtained when these are assumed to be Gaussian. We start with the
study of the Gaussian distribution.

Theorem 2 Let two Gaussian distributions N1(m,Σ) and N2(RTm,RTΣR) model the spherical
data of two classes on Sp−1; where m is the mean, Σ is the covariance matrix (which is assumed to
be full ranked), and R ∈ SO(p) is a rotation matrix. Let R be spanned by two of the eigenvectors of
Σ, v1 and v2, and let one of these eigenvectors define the same direction asm (i.e., vi =m/‖m‖ for
i equal to 1 or 2). Then, N1(m,Σ) and N2(RTm,RTΣR) are spherical-homoscedastic.

1590

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Proof We want to prove that the Bayes decision boundaries are hyperplanes. This boundary is
given when the ratio of the log-likelihoods of N1(m,Σ) and N2(RTm,RTΣR) equals one. Formally,

ln(cN(Σ))− 1
2

(x−m)T Σ−1 (x−m) =

ln(cN(RTΣR))− 1
2

(
x−RTm

)T (RTΣR)−1
(
x−RTm

)
.

Since for any function f we know that f (|RTΣR|) = f (|Σ|), the constant parameter cN(|RTΣR|) =
cN(|Σ|); where |M| is the determinant of M. Furthermore, since the normalizing constant cN only
depends on the determinant of the covariance matrix, we know that cN(RTΣR) = cN(Σ). This allows
us to simplify our previous equation to

(x−m)T Σ−1 (x−m) =
(
x−RTm

)T RTΣ−1R
(
x−RTm

)

= (Rx−m)T Σ−1 (Rx−m) .

Writing this equation in an open form,

xTΣ−1x−2xTΣ−1m+mTΣ−1m = (Rx)TΣ−1(Rx)−2(Rx)TΣ−1m+mTΣ−1m,

xTΣ−1x−2xTΣ−1m = (Rx)TΣ−1(Rx)−2(Rx)TΣ−1m. (8)

Let the spectral decomposition of Σ be VΛVT = (v1, · · · ,vp)diag(λ1, · · · ,λp)(v1, · · · ,vp)T .
Now use the assumption that m is orthogonal to all the eigenvectors of Σ except one (i.e., v j =

m/‖m‖ for some j). More formally, mTvi = 0 for all i *= j and mTv j = s‖m‖, where s = ±1.
Without loss of generality, let j = 1, which yields Σ−1m = VΛ−1VTm = λ1

−1m. Substituting this
in (8) we get

xTΣ−1x−2λ−11 x
Tm= (Rx)TΣ−1(Rx)−2λ−11 (Rx)Tm.

Writing Σ−1 in an open form,
p

∑
i=1

λ−1i
(
xTvi

)2−2λ−11 x
Tm=

p

∑
i=1

λ−1i
(
(Rx)Tvi

)2−2λ−11 (Rx)Tm,

p

∑
i=1

(
λ−1i

[(
xTvi

)2−
(
xTRTvi

)2])−2λ−11 x
Tm+2λ−11 x

TRTm= 0.

Recall that the rotation is constrained to be in the subspace spanned by two of the eigenvectors
of Σ. One of these eigenvectors must be v1. Let the other eigenvector be v2. Then, xTRTvi = xTvi
for i *= {1,2}. This simplifies our last equation to

λ−11

[(
xTv1

)2−
(
xTRTv1

)2]+λ−12

[(
xTv2

)2−
(
xTRTv2

)2]+2λ−11
(
xTRTm−xTm

)
= 0. (9)

Noting that
(
xTv1

)2−
(
xTRTv1

)2 = (xTRTv1− xTv1)(−xTv1− xTRTv1), and that m = s‖m‖v1,
allows us to rewrite (9) as

λ−11 (xTRTv1−xTv1)(2‖m‖s−xTv1−xTRTv1)

+λ−12
((
xTv2

)2−
(
xTRTv2

)2) = 0,

λ−11 (xTRTv1−xTv1)(2‖m‖s−xTv1−xTRTv1)
+λ−12 (xT (v2−RTv2))(xT (v2+RTv2)) = 0. (10)

1591

HAMSICI AND MARTINEZ

− RT v2

 RT v2

 RT v1

 v1

− v1

 u

 v2

 w
θ/2

θ/2

π/2−θ

.
..

Figure 3: Shown here are two orthonormal vectors, v1 and v2, and their rotated versions, RTv1
and RTv2. We see that RTv1+ v1 = 2ucos

(
θ
2
)
, RTv2+ v2 = 2wcos

(
θ
2
)
, RTv1− v1 =

2wcos
(
π
2 −

θ
2
)
and v2−RTv2 = 2ucos

(
π
2 −

θ
2
)
.

In addition, we know that the rotation matrix R defines a rotation in the (v1,v2)-plane. As-
sume that R rotates the vector v1 θ degrees in the clockwise direction yielding RTv1. Similarly, v2
becomes RTv2. From Figure 3 we see that

v2−RTv2 = 2ucos
(
π
2
− θ
2

)
, v2+RTv2 = 2wcos

(
θ
2

)
,

RTv1−v1 = 2wcos
(
π
2
− θ
2

)
, RTv1+v1 = 2ucos

(
θ
2

)
,

where u and w are the unit vectors as shown in Figure 3. Therefore,

v2+RTv2 = (RTv1−v1)cot
(
θ
2

)
and v2−RTv2 = (RTv1+v1) tan

(
θ
2

)
.

If we use these results in (10), we find that

λ−11 (xTRTv1−xTv1)(2‖m‖s−xTv1−xTRTv1)

+ λ−12 (xTRTv1−xTv1)cot
(
θ
2

)
(xTRTv1+xTv1) tan

(
θ
2

)
= 0,

which can be reorganized to
[
xT (RTv1−v1)

][
(λ−12 −λ−11)xT (RTv1+v1)+2λ−11 ‖m‖s

]
= 0.

The two possible solutions of this equation provide the two hyperplanes for the Bayes classifier.
The first hyperplane,

xT (RTv1−v1)
2sin

(
θ
2
) = 0, (11)

1592

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

passes through the origin and its normal vector is (RTv1−v1)/2sin(θ2). The second hyperplane,

xT R
Tv1+v1
2cos

(
θ
2
) +

λ−11 ‖m‖s
(λ−12 −λ−11)cos

(
θ
2
) = 0, (12)

has a bias equal to
λ−11 ‖m‖s

(λ−12 −λ−11)cos
(
θ
2
) ,

and its normal is
(
RTv1+v1

)
/2cos(θ/2).

The result above, shows that when the rotation matrix is spanned by two of the eigenvectors of
Σ, then N1 and N2 are spherical-homoscedastic. The reader may have noted though, that there exist
some Σ (e.g., τ2I) which are less restrictive on R. The same applies to spherical distributions. We
start our study with the case where the true underlying distributions of the data are vonMises-Fisher.

Theorem 3 Two von Mises-Fisher distributions M1(µ,κ) and M2(RTµ,κ) are spherical-
homoscedastic if R ∈ SO(p).

Proof As above, the Bayes decision boundary is given when the ratio between the log-likelihood
ofM1(µ,κ) and that ofM2(RTµ,κ) is equal to one. This means that

κµTx+ ln(cMF(κ)) = κ(RTµ)Tx+ ln(cMF(κ)) ,
κ(xTRTµ−xTµ) = 0. (13)

We see that (13) defines the decision boundary between M1(µ,κ) and M2(RTµ,κ) and that this is a
hyperplane4 with normal

RTµ−µ
2cos(ω/2)

,

where ω is the magnitude of the rotation angle.5 Hence, M1(µ,κ) and M2(RTµ,κ) are spherical-
homoscedastic.

We now want to show that the Bayes decision boundary of two spherical-homoscedastic vMF
is the same as the classification boundary obtained when these distributions are modeled using
Gaussian pdfs. However, Theorem 2 provides two hyperplanes—those given in Equations (11-12).
We need to show that one of these equations is the same as the hyperplane given in Equation (13),
and that the other equation gives an irrelevant decision boundary. The irrelevant hyperplane is that
in (12). To show why this equation is not relevant for classification, we will demonstrate that this
hyperplane is always outside Sp−1 and, hence, cannot divide the spherical data into more than one
region.

4. Since this hyperplane is constrained with ‖x‖ = 1, the decision boundary will define a great circle on the sphere.
5. Note that since the variance about every direction orthogonal to µ is equal to τ2, all rotations can be expressed as a
planar rotation spanned by µ and any µ⊥ (where µ⊥ is a vector orthogonal to µ) .

1593

HAMSICI AND MARTINEZ

Proposition 4 When modeling the data of two spherical-homoscedastic von Mises-Fisher distribu-
tions, M1(µ,κ) and M2(RTµ,κ), using two Gaussian distributions, N1(m,Σ) and N2(RTm,RTΣR),
the Bayes decision boundary will be given by the two hyperplanes defined in Equations (11-12).
However, the hyperplane given in (12) does not intersect with the sphere and can be omitted for
classification purposes.

Proof Recall that the bias of the hyperplane given in (12) was

b2 =
s‖m‖

((λ1/λ2)−1)cos(θ/2)
. (14)

We need to show that the absolute value of this bias is greater than one; that is, |b2| > 1.
We know from Dryden and Mardia (1998) that if x is distributed asM(µ,κ), then

m= E(x) = Ap(κ)µ,

and the covariance matrix of x is given by

Σ= A′
p(κ)µµ

T +
Ap(κ)
κ

(Ip−µµT),

where Ap(κ) = Ip/2(κ)/Ip/2−1(κ) and A′
p(κ) = 1−A2p(κ)−

p−1
κ Ap(κ). Note that the first eigenvector

of the matrix defined above is aligned with the mean direction, and that the rest are orthogonal to it.
Furthermore, the first eigenvalue of this matrix is

λ1 = 1−A2p(κ)−
p−1
κ

Ap(κ),

and the rest are all equal and defined as

λi =
Ap(κ)
κ

, ∀i> 1.

Substituting the above calculated terms in (14) yields

b̂2(κ) =
Ap(κ)

1−A2p(κ)−
p−1
κ Ap(κ)

Ap(κ)
κ

−1
=

A2p(κ)
κ
(
1−A2p(κ)−

p
κAp(κ)

) (15)

with b2 = s b̂2(κ)
cos(θ/2) .

Note that we can rewrite Ap(κ) as

Ap(κ) =
Iν(κ)
Iν−1(κ)

,

where ν = p/2. Moreover, the recurrence relation between modified Bessel functions states that
Iν−1(κ)− Iν+1(κ) = 2ν

κ Iν(κ), which is the same as 1− (Iν+1(κ)/Iν−1(κ)) = (2νIν(κ))/(κIν−1(κ)).
This can be combined with the result shown above to yield

p
κ
Ap(κ) = 1− Iν+1(κ)

Iν−1(κ)
.

1594

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

By substituting these terms in (15), one obtains

b̂2(κ) =

(
Iν(κ)
Iν−1(κ)

)2

κ

(
−

(
Iν(κ)
Iν−1(κ)

)2
+ Iν+1(κ)Iν−1(κ)

I2ν−1(κ)

) =
I2ν(κ)

κ(−I2ν(κ)+ Iν+1(κ)Iν−1(κ))
.

Using the bound defined by Joshi (1991, see Equation 3.14), 0< I2v (κ)− Iv−1(κ)Iv+1(κ) < I2v (κ)
v+κ

(∀κ> 0), we have

0< I2ν(κ)− Iν−1(κ)Iν+1(κ) <
I2ν(κ)
ν+κ

,

I2ν(κ)
κ(I2ν(κ)− Iν−1(κ)Iν+1(κ))

>
(ν+κ)
κ

,

I2ν(κ)
κ(−I2ν(κ)+ Iν−1(κ)Iν+1(κ))

<
(ν+κ)
−κ < −1.

This upper-bound shows that |b2| =
∣∣∣ b̂2(κ)
cos(θ/2)

∣∣∣ > 1. This means that the second hyperplane will not
divide the data into more than one class and therefore can be ignored for classification purposes.

From our proof above, we note that Σ is spanned by µ and a set of p− 1 basis vectors that are
orthogonal to µ. Furthermore, since a vMF is circularly symmetric around µ, these basis vectors
can be represented by any orthonormal set of vectors orthogonal to µ. Next, note that the mean
direction of M2 can be written as µ2 = RTµ. This means that R can be spanned by µ and any
unit vector orthogonal to µ (denoted µ⊥)—such as an eigenvector of Σ. Therefore, N1 and N2 are
spherical-homoscedastic. We can summarize this results in the following.

Corollary 5 If we model two spherical-homoscedastic vonMises-Fisher, M1(µ,κ) andM2(RTµ,κ),
with their corresponding Gaussian approximations N1(m,Σ) and N2(RTm,RTΣR), then N1 and N2
are also spherical-homoscedastic.

This latest result is important to show that the Bayes decision boundaries of two spherical-
homoscedastic vMFs can be calculated exactly using the Gaussian model.

Theorem 6 The Bayes decision boundary of two spherical-homoscedastic von Mises-Fisher,
M1(µ,κ) and M2(RTµ,κ), is the same as that given in (11), which is obtained when modeling
M1(µ,κ) and M2(RTµ,κ) using the two Gaussian distributions N1(m,Σ) and N2(RTm,RTΣR).

Proof From Corollary 5 we know that N1(m,Σ) and N2(RTm,RTΣR) are spherical-homoscedastic.
And, from Proposition 4, we know that the hyperplane decision boundary given by Equation (12) is
outside the sphere and can be eliminated. In the proof of Proposition 4 we also showed that v1 = µ.
This means, (11) can be written as

xT (RTµ−µ)
2sin(θ/2)

= 0. (16)

The decision boundary for two spherical-homoscedastic vMF was derived in Theorem 3, where it
was shown to be

κ(xTRTµ−xTµ) = 0. (17)

1595

HAMSICI AND MARTINEZ

We note that the normal vectors of Equations (16-17) are the same and that both biases are zero.
Therefore, the two equations define the same great circle on Sp−1; that is, they yield the same clas-
sification results.

When the vMF model is not flexible enough to represent our data, we need to use a more
general definition such as that given by Bingham. We will now study under which conditions two
Bingham distributions are spherical-homoscedastic and, hence, can be efficiently approximated with
Gaussians.

Theorem 7 Two Bingham distributions, B1(A) and B2(RTAR), are spherical-homoscedastic ifR∈
SO(p) defines a planar rotation in the subspace spanned by any two of the eigenvectors of A, say
q1 and q2.

Proof Making the ratio of the log-likelihood equations equal to one yields

xTAx= xTRTARx. (18)

Since the rotation is defined in the subspace spanned by q1 and q2 and A = QΛQT , then the
above equation can be expressed (in open form) as ∑p

i=1λi(xTqi)2 = ∑
p
i=1λi(xTRTqi)2. In addi-

tion, RTqi = qi for i> 2, which simplifies our equation to

p

∑
i=1

λi(xTqi)2 =
2

∑
i=1

λi(xTRTqi)2+
p

∑
i=3

λi(xTqi)2

λ1
(
(xTq1)2− (xTRTq1)2

)
+λ2

(
(xTq2)2− (xTRTq2)2

)
= 0. (19)

From the proof of Theorem 2, we know that q2 can be expressed as a function of q1 as q2+RTq2 =(
RTq1−q1

)
cot(θ/2) and q2−RTq2 =

(
RTq1+q1

)
tan(θ/2). This allows us to write the decision

boundary given in (19) as
xT (RTq1+q1) = 0, (20)

and
xT (RTq1−q1) = 0. (21)

These two hyperplanes are necessary to successfully classify the antipodally symmetric data of two
Bingham distributions.

Since antipodally symmetric distributions, such as Bingham distributions, have zero mean, the
Gaussian distributions fitted to the data sampled from these distributions will also have zero mean.
We now study the spherical-homoscedastic Gaussian pdfs when the mean vector is equal to zero.

Lemma 8 Two zero-mean Gaussian distributions, N1(0,Σ) and N2(0,RTΣR), are spherical-
homoscedastic if R ∈ SO(p) defines a planar rotation in the subspace spanned by any two of the
eigenvectors of Σ, say v1 and v2.

1596

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Proof The Bayes classification boundary between these distributions can be obtained by making
the ratio of the log-likelihood equations equal to one, xTΣx= xTRTΣRx. Note that this equation is
in the same form as that derived in (18). Furthermore, since the rotation is defined in the subspace
spanned by v1 and v2 and Σ= VΛVT , we can follow the proof of Theorem 7 to show

xT (RTv1+v1) = 0, (22)

and
xT (RTv1−v1) = 0. (23)

And, therefore, N1 and N2 are also spherical-homoscedastic.

We are now in a position to prove that the decision boundaries obtained using two Gaussian
distributions are the same as those defined by spherical-homoscedastic Bingham distributions.

Theorem 9 The Bayes decision boundaries of two spherical-homoscedastic Bingham distributions,
B1(A) and B2(RTAR), are the same as those obtained when modeling B1(A) and B2(RTAR) with
two Gaussian distributions, N1(m,Σ) and N2(RTm,RTΣR), wherem= 0 and Σ= S.

Proof Since the data sampled from a Bingham distribution is symmetric with respect to the origin,
its mean will be the origin, m = 0. Therefore, the sample covariance matrix will be equal to the
sample autocorrelation matrix S= n−1XXT . In short, the estimated Gaussian distribution of B1(A)
will be N1(0,S). We also know from Section 2.2 that the m.l.e. of the orthonormal matrixQ (where
A = QΛQT) is given by the eigenvectors of S. This means that the two Gaussian distributions
representing the data sampled from two spherical-homoscedastic Bingham distributions, B1(A) and
B2(RTAR), are N1(0,S) and N2(0,RTSR).

Following Lemma 8, N1(0,S) and N2(0,RTSR) are spherical-homoscedastic if R is spanned by
any two eigenvectors of S. Since the eigenvectors of A and S are the same (vi = qi for all i), these
two Gaussian distributions representing the two spherical-homoscedastic Bingham distributions will
also be spherical-homoscedastic. Furthermore, the hyperplanes of the spherical-homoscedastic
Bingham distributions B1(A) and B2(RTAR), Equations (20 - 21), and the hyperplanes of the
spherical-homoscedastic Gaussian distributions N1(0,S) and N2(0,RTSR), Equations (22 - 23), will
be identical.

We now turn to study the similarity between the results obtained using the Gaussian distribution
and the Kent distribution. We first define when two Kent distributions are spherical-homoscedastic.

Theorem 10 Two Kent distributions K1(µ,κ,A) and K2(RTµ,κ,RTAR) are spherical-homoscedastic,
if the rotation matrixR is defined on the plane spanned by the mean direction µand one of the eigen-
vectors of A.

Proof By making the two log-likelihood equations equal, we have κµTx+ xTAx = κ(RTµ)Tx+
xTRTARx. Let the spectral decomposition ofA beA=QΛQT , then κ(µTx−µTRx)+∑

p
i=1λi(xTqi)2

−∑
p
i=1λi(xT (RTqi))2 = 0. SinceR is defined to be in the plane spanned by an eigenvector ofA (say,

q1) and the mean direction µ, one can simplify the above equation to κ(µTx−µTRx)+λ1(xTq1)2−

1597

HAMSICI AND MARTINEZ

λ1(xT (RTq1))2 = 0. Since the first term of this equation is a constant, its transpose would yield the
same result,

κ(xT (µ−RTµ))+λ1(xT (q1−RTq1))(xT (q1+RTq1)) = 0.

Using the relation between v1 and v2 (now µ and q1) given in the proof of Theorem 2,

(q1+RTq1) = (RTµ−µ)cot
(
θ
2

)
,

(q1−RTq1) = (RTµ+µ) tan
(
θ
2

)
,

we can write (xT (RTµ−µ))(xT (RTµ+µ)λ1−κ) = 0, where θ is the rotation angle defined by R.
This equation gives us the hyperplane decision boundary equations,

xT (RTµ−µ)
sin

(
θ
2
) = 0, (24)

xT
(
RTµ+µ
cos

(
θ
2
)

)
− κ

cos
(
θ
2
)
λ1

= 0. (25)

Finally, we are in a position to define the relation between Kent and Gaussian pdfs.

Theorem 11 The first hyperplane given by the Bayes decision boundary of two spherical-
homoscedastic Kent distributions, K1(µ,κ,A) and K2(RTµ,κ,RTAR), is equal to the first hyper-
plane obtained when modeling K1 and K2 with the two Gaussian distributions N1(m,Σ) and
N2(RTm,RTΣR) that best approximate them. Furthermore, when κ> λ1K and ‖m‖ > 1−λ1G/λ2G ,
then the second hyperplanes of the Kent and Gaussian distributions are outside the sphere and can
be ignored in classification; where λ1K is the eigenvalue associated to the eigenvector of A defining
the rotation R, and λ1G and λ2G are the two eigenvalues of Σ defining the rotation R.

Proof If we fit a Gaussian distribution to an ellipsoidally symmetric pdf, then the mean direction of
the data is described by one of the eigenvectors of the covariance matrix. Since the Kent distribution
assumes the data is either concentrated or distributed more or less equally about every dimension,
one can conclude that the eigenvectors of S̄ (the scatter matrix calculated on the null-space of the
mean direction) are a good estimate of the orthonormal bases of A (Kent, 1982). This means that
(11) and (24) will define the same hyperplane equation. Furthermore, we see that the bias in (12)
and that of (25) will be the same when

−κλ−11K =
‖m‖s(
λ1G
λ2G

−1
) ,

where λ1K is the eigenvalue associated to the eigenvector defining the rotation plane (as given in
Theorem 10), and λ1G and λ2G are the eigenvalues associated to the eigenvectors that span the
rotation matrix R (as shown in Theorem 2—recall that λ1G is associated to the eigenvector aligned
with the mean direction).

1598

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Similarly to what happened for the vMF case, the second hyperplane may be outside Sp−1.
When this is the case, such planes are not relevant and can be eliminated. For this to happen, the
two biases need not be the same, but need be larger than one; that is,

|κλ−11K | > 1 and

∣∣∣∣∣∣
s‖m‖(
λ1G
λ2G

−1
)

∣∣∣∣∣∣
> 1. (26)

These two last conditions can be interpreted as follows. The second hyperplane of the Kent dis-
tribution will not intersect with the sphere when κ > λ1K . The second hyperplane of the Gaussian
estimate will be outside the sphere when ‖m‖ > 1−λ1G/λ2G . These two conditions hold, for exam-
ple, when the data is concentrated, but not when the data is uniformly distributed.

Thus far, we have shown where the results obtained by modeling the true underlying spherical
distributions with Gaussians do not pose a problem. We now turn to the case where both solutions
may differ.

4. Spherical-Heteroscedastic Distributions

When two (or more) distributions are not spherical-homoscedastic, we will refer to them as spherical-
heteroscedastic. In such a case, the classifier obtained with the Gaussian approximation needs not
be the same as that computed using the original spherical distributions. To study this problem, one
may want to compute the classification error that is added to the original Bayes error produced by
the Bayes classifier on the two (original) spherical distributions. Following the classical notation in
Bayesian theory, we will refer to this as the reducible error. This idea is illustrated in Figure 4. In
Figure 4(a) we show the original Bayes error obtained when using the original vMF distributions.
Figure 4(b) depicts the classifier obtained when one models these vMF using two Gaussian distribu-
tions. And, in Figure 4(c), we illustrate the reducible error added to the original Bayes error when
one employs the new classifier in lieu of the original one.

In theory, we could calculate the reducible error by means of the posterior probabilities of the
two spherical distributions, PS(w1|x) and PS(w2|x), and the posteriors of the Gaussians modeling
them, PG(w1|x) and PG(w2|x). This is given by,

P(reducible error) =
Z

PG(w1|x)
PG(w2|x)

≥1

PS(w2|x) p(x)dSp−1+
Z

PG(w1|x)
PG(w2|x)

<1

PS(w1|x) p(x)dSp−1

−
Z

Sp−1
min(PS(w1|x),PS(w2|x)) p(x)dSp−1,

where the first two summing terms calculate the error defined by the classifier obtained using the
Gaussian approximation (as for example that shown in Figure 4(b)), and the last term is the Bayes
error associated to the original spherical-heteroscedastic distributions (Figure 4(a)).

Unfortunately, in practice, this error cannot be calculated because it is given by the integral of a
number of class densities over a nonlinear region on the surface of a sphere. Note that, since we are
exclusively interested in knowing how the reducible error increases as the data distributions deviate
from spherical-homoscedasticity, the use of error bounds would not help us solve this problem
either. We are therefore left to empirically study how the reducible error increases as the original
data distributions deviate from spherical-homoscedastic. This we will do next.

1599

HAMSICI AND MARTINEZ

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

vMF
Bayes
Boundary

M1(µ1,κ1)
Bayes
Error

M2(µ2,κ2)

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

M1(µ1,κ1)
N1(m1,Σ1)

M2(µ2,κ2)

N2(m2,Σ2)Gaussian
Bayes
Boundary

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Reducible
Error

M2(µ2,κ2)

M1(µ1,κ1)

Reducible
Error
vMF
Bayes
Classifier

Gaussian
Bayes
Classifier

(b) (c)

Figure 4: (a) Shown here are two spherical-heteroscedastic vMF distributions with κ1 = 10 and
κ2 = 5. The solid line is the Bayes decision boundary, and the dashed lines are the corre-
sponding classifiers. This classifier defines the Bayes error, which is represented by the
dashed fill. In (b) we show the Bayes decision boundary obtained using the two Gaussian
distributions that best model the original vMFs. (c) Provides a comparison between the
Bayes classifier derived using the original vMFs (dashed lines) and that calculated from
the Gaussian approximation (solid lines). The dashed area shown in (c) corresponds to
the error added to the original Bayes error; that is, the reducible error.

4.1 Modeling Spherical-Heteroscedastic vMFs

We start our analysis with the case where the two original spherical distributions are given by the
vMF model. Let these two vMFs be M1(µ1,κ1) and M2(µ2,κ2), where µ2 = RTµ1 and R ∈ SO(p).
Recall that R defines the angle θ which specifies the rotation between µ1 and µ2. Furthermore,
let N1(m1,Σ1) and N2(m2,Σ2) be the two Gaussian distributions that best model M1(µ1,κ1) and
M2(µ2,κ2), respectively. From the proof of Proposition 4 we know that the means and covariance
matrices of these Gaussians can be defined in terms of the mean directions and the concentration
parameters of the corresponding vMF distributions. Defining the parameters of the Gaussian dis-
tributions in terms of κi and µi (i= {1,2}) allows us to estimate the reducible error with respect to
different rotation angles θ, concentration parameters κ1 and κ2, and dimensionality p.

1600

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Since our goal is to test how the reducible error increases as the original data distributions
deviate from spherical-homoscedasticity, we will plot the results for distinct values of κ2/κ1. Note
that when κ2/κ1 = 1 the data is spherical-homoscedastic and that the larger the value of κ2/κ1 is,
the more we deviate from spherical-homoscedasticity. In our experiments, we selected κ1 and κ2
so that the value of κ2/κ1 varied from a low of 1 to maximum of 10 at 0.5 intervals. To do this we
varied κ1 from 1 to 10 at unit steps and selected κ2 such that the κ2/κ1 ratio is equal to one of the
values described above.

The dimensionality of the feature space is also varied from 2 to 100 at 10-step intervals. In
addition, we also vary the value of the angle θ from 10o to 180o at 10o increments.

The average of the reducible error over all possible values of κ1 and over all values of θ from 10o
to 90o is shown in Figure 5(a). As anticipated by our theory, the reducible error is zero when κ2/κ1=
1 (i.e., when the data is spherical-homoscedastic). We see that as the distributions start to deviate
from spherical-homoscedastic, the probability of reducible error increases really fast. Nonetheless,
we also see that after a short while, this error starts to decrease. This is because the data of the
second distribution (M2) becomes more concentrated. To see this, note that to make κ2/κ1 larger,
we need to increase κ2 (with respect to κ1). This means that the area of possible overlap between
M1 and M2 decreases and, hence, the reducible error will generally become smaller. In summary,
the probability of reducible error increases as the data deviates from spherical-homoscedasticity and
decreases as the data becomes more concentrated. This means that, in general, the more two non-
highly concentrated distributions deviate from spherical-homoscedastic, the more sense it makes
to take the extra effort to model the spherical data using one of the spherical models introduced
in Section 2. Nevertheless, it is important to note that the reducible error remains relatively low
(∼ 3%).

We also observe, in Figure 5(a), that the probability of reducible error decreases with the dimen-
sionality (which would be something unexpected had the original pdf been defined in the Cartesian
space). This effect is caused by the spherical nature of the von Mises-Fisher distribution. Note that
since the volume of the distributions need to remain constant, the probability of the vMF at each
given point will be reduced when the dimensionality is made larger. Therefore, as the dimensional-
ity increase, the volume of the reducible error area (i.e., the probability) will become smaller.

In Figure 5(b) we show the average probability of the reducible error over κ1 and p, for differ-
ent values of κ2/κ1 and θ. Here we also see that when two vMFs are spherical-homoscedastic (i.e.,
κ2/κ1= 1), the average of the reducible error is zero. As we deviate from spherical-homoscedasticity,
the probability of reducible error increases. Furthermore, it is interesting to note that as θ increases
(in the spherical-heteroscedastic case), the probability of reducible error decreases. This is because
as θ increases, the two distributions M1 and M2 fall farther apart and, hence, the area of possible
overlap generally reduces.

4.2 Modeling Spherical-Heteroscedastic Bingham Distributions

As already mentioned earlier, the parameter estimation for Bingham is much more difficult than that
of vMF and equations directly linking the parameters of any two Bingham distributions B1(A1) and
B2(A2) to those of the corresponding Gaussians N1(0,Σ1) and N2(0,Σ2) are not usually available.
Hence, some parameters will need to be estimated from randomly chosen samples from Bi. Recall
from Section 2.2 that another difficulty is the calculation of the normalizing constant cB(A) because

1601

HAMSICI AND MARTINEZ

0
5

10

0

50

100
0

0.01

0.02

0.03

κ2 / κ1
p

P(
re

du
cib

le
 e

rro
r)

0

0.005

0.01

0.015

0.02

0.025

0.03

0
5

10

0
50

100
150
0

0.005

0.01

0.015

κ2 / κ1θ

P(
re

du
cib

le
 e

rro
r)

0

5

10

15

x 10−3

(a) (b)

Figure 5: In (a) we show the average of the probability of reducible error over κ1 and θ =
{10o,20o, . . . ,90o} for different values of κ2/κ1 and dimensionality p. In (b) we show
the average probability of reducible error over p and κ1 for different values of κ2/κ1 and
θ= {10o,20o, . . . ,180o}.

this requires us to solve a contour integral on Sp−1. This hypergeometric function will be calculated
with the method defined by Koev and Edelman (2006).

Moreover, if we want to calculate the reducible error on Sp−1, we will need to simulate each of
the p variance parameters of B1 and B2 and the p− 1 possible rotations between their means; that
is, 3p− 1. While it would be almost impossible to simulate this for a large number of dimensions
p, we can easily restrict the problem to one of our interest that is of a manageable size.

In our simulation, we are interested in testing the particular case where p = 3.6 Furthermore,
we constrain our analysis to the case where the parameter matrix A1 has a diagonal form; that is,
A1 = diag(λ1,λ2,λ3). The parameter matrix A2 can then be defined as a rotated and scaled version
of A1 as A2 = ςRTA1R, where ς is the scale parameter,

R= R1R2 ∈ SO(3), (27)

R1 defines a planar rotation θ in the range space given by the first two eigenvectors of A1, and R2
specifies a planar rotation φ in the space defined by the first and third eigenvectors of A1. Note
that B1 and B2 can only be spherical-homoscedastic if ς = 1 and the rotation is planar (φ = 0 or
θ = 0). To generate our results, we used all possible combinations of the values given by −1/2 j
(with j the odd numbers from 1 to 15 to represent low concentrations and j = {30,60} to model
high concentrations) as entries for λ1, λ2 and λ3 constrained to λ1 < λ2 < λ3 (i.e., a total of 120
combinations). We also let θ= {0o,10o, . . . ,90o}, φ= {0o,10o, . . . ,90o} and ς= {1,2, . . . ,10}.

In Figure 6(a), we study the case where ς= 1. In this case, B1 and B2 are spherical-homoscedastic
when either φ or θ is zero. As seen in the figure, the probability of reducible error increases as the

6. We have also simulated the cases where p was equal to 10 and 50 and observed almost identical results to those
shown in this paper.

1602

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

0

50

100

0

50

100
0

1

2

3

4

5

6

x 10−3

θ
φ

P(
re

du
cib

le
 e

rro
r)

0

1

2

3

4

5

6

x 10−3

0

20

40

60

80

100

0

20

40

60

80

100

0

0.1

0.2

θφ

P(
re

du
cib

le
 e

rro
r)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

(a) (b)

0
50

100

2
4

6
8

10
0

0.05

0.1

θς

P(
re

du
cib

le
 e

rro
r)

0

0.02

0.04

0.06

0.08

0.1

(c)

Figure 6: We show the average of the probability of reducible error over all the possible set of vari-
ance parameters when ς= 1 in (a) and when ς *= 1 in (b). In (c) we show the increase of
reducible error as the data deviates from spherical-homoscedastic (i.e., when ς increases).
The more the data deviates from spherical-homoscedastic, the larger the reducible error
is. This is independent of the closeness of the two distributions.

data starts to deviate from spherical-homoscedastic (i.e., when the rotation R does not define a pla-
nar rotation). Nonetheless, the probability of reducible error is still very small even for large values
of φ and θ—approximately 0.006.7

When the scale parameter ς is not one, the two Bingham distributions B1 and B2 can never be
spherical-homoscedastic. In this case, the probability of reducible error is generally expected to be
larger. This is shown in Figure 6(b) where the probability of reducible error has been averaged over
all possible combinations of variance parameters (λ1,λ2,λ3) and scales ς *= 1. Here, it is important
to note that as the two original distributions get closer to each other the probability of reducible
error increases quite rapidly. In fact, the error can be incremented by more than 20%. As in vMF,

7. Note that the plot shown in Figure 6(a) is not symmetric. This is due to the constraint given above (λ1 < λ2 < λ3)
which gives less flexibility to φ.

1603

HAMSICI AND MARTINEZ

this means that if the data largely deviates from spherical-homoscedastic, extra caution needs to be
taken with our results.

To further illustrate this point, we can plot the probability of reducible error over ς and θ, Figure
6(c). In this case, the larger ς is, the more different the eigenvalues of the parameter matrices
(A1 and A2) will be. This means, that the larger the value of ς, the more the distributions deviate
from spherical-homoscedastic. Hence, this plot shows the increase in reducible error as the two
distributions deviate from spherical-homoscedastic. We note that this is in fact independent of how
close the two distributions are, since the slop of the curve increases for every value of θ.

4.3 Modeling Spherical-Heteroscedastic Kent Distributions

Our final analysis involves the study of spherical-heteroscedastic Kent distributions. Here, we
want to estimate the probability of reducible error when two Gaussian distributions N1(m1,Σ1)
and N2(m2,Σ2) are used to model the data sampled from two Kent distributions K1(µ1,κ1,A1) and
K2(µ2,κ2,A2). Recall that the shape of a Kent distribution is given by two parameters: βi, which
defines the ovalness of Ki, and κi, the concentration parameter. From Kent (1982) we know that
if 2βi/κi < 1, then the normalizing constant c(κi,βi) can be approximated by 2πeκi [(κi−2βi)(κi+
2βi)]−1/2. Note that 2βi/κi < 1 holds regardless of the ovalness of our distribution when the data
is highly concentrated, whereas in the case where the data is not concentrated (i.e., κi is small) the
condition holds when the distribution is almost circular (i.e., βi is very small).

To be able to use this approximation in our simulation, we have selected two sets of concentra-
tion parameters: one for the low concentration case (where κi = {2,3, . . . ,10}), and another where
the data is more concentrated (κi = {15,20, . . . ,50}). The value of βi is then given by the following
set of equalities 2βi/κi = {0.1,0.3, . . . ,0.9}. As was done in the previous section (for the spherical-
heteroscedastic Bingham), we fixed the mean direction µ1 and then rotate µ2 using a rotation matrix
R; that is, µ2 =RTµ1. To do this, we used the same rotation matrixR defined in (27). Now, however,
R1 defines a planar rotation in the space spanned by µ1 and the first eigenvector of A1, and R2 is a
planar rotation defined in the space of µ1 and the second eigenvector of A1. In our simulations we
used {0o,15o, . . . ,90o} as values for the rotations defined by θ and φ.

In Figure 7(a), we show the results of our simulation for the special case where the variance
parameters of K1 and K2 are the same (i.e., κ1 = κ2 and β1 = β2) and the data is not concentrated.
Note that the criteria defined in (26) hold when either R1 or R2 is the identity matrix (or equiv-
alently, in Figure 7(a), when θ or φ is zero). As anticipated in Theorem 11, in these cases the
probability of reducible error is zero. Then the more these two distributions deviate from spherical-
homoscedastic, the larger the probability of reducible error will become. It is worth mentioning,
however, that the probability of reducible error is small over all possible values for θ and φ (i.e.,
< 0.035). We conclude (as with the analysis of the Bingham distribution comparison) that when
the data only deviates from spherical-homoscedastic by a rotation (but the variances remain the
same), the Gaussian approximation is a reasonable one. This means that whenever the parameters
of the two distributions (Bingham or Kent) are defined up to a rotation, the results obtained using
the Gaussian approximation will generally be acceptable.

The average of the probability of reducible error for all possible values for κi and βi (including
those where κ1 *= κ2 and β1 *= β2) is shown in Figure 7(b). In this case, we see that the probability
of reducible error is bounded by 0.17 (i.e., 17%). Therefore, in the general case, unless the two

1604

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

0
20

40
60

80
100

0
20

40
60

80
100
0

0.02

θφ

P(
re

du
cib

le
 e

rro
r)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0
20

40
60

80
100

0
20

40
60

80
100

0

0.1

θφ

P(
re

du
cib

le
 e

rro
r)

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

(a) (b)

0
20

40
60

80
100

0
20

40
60

80
100
0

0.02

0.04

θφ

P(
re

du
cib

le
 e

rro
r)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0
20

40
60

80
100

0
20

40
60

80
100

0

0.05

θφ

P(
re

du
cib

le
 e

rro
r)

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

(c) (d)

Figure 7: In (a) we show the average of the probability of reducible error when κ1 = κ2 and β1 = β2
and the data is not concentrated. (b) Shows the probability of reducible error when the
parameters of the pdf are different in each distribution and the values of κi are small. (c-d)
Do the same as (a) and (b) but for the cases where the concentration parameters are large
(i.e., the data is concentrated).

original distributions are far away from each other, it is not advisable to model them using Gaussian
distributions.

Figure 7(c-d) show exactly the same as (a-b) but for the case where the data is highly-concentrated.
As expected, when the data is more concentrated in a small area, the probability of reducible error
decreases fast as the two distributions fall far apart from each other. Similarly, since the data is
concentrated, the maximum of the probability of reducible error shown in Figure 7(d) is smaller
than that observed in (b).

As seen up to now, there are several conditions under which the Gaussian assumption is accept-
able. In vMF, this happens when the distributions are highly concentrated, and in Bingham and Kent
when the variance parameters of the distributions are the same.

1605

HAMSICI AND MARTINEZ

Our next point relates to what can be done when neither of these assumptions hold. A powerful
and generally used solution is to employ a kernel to (implicitly) map the original space to a high-
dimensional one where the data can be better separated. Our next goal is thus to show that the
results defined thus far are also applicable in the kernel space.

This procedure will provide us with a set of new classifiers (in the kernel space) that are based
on the idea of spherical-homoscedastic distributions.

5. Kernel Spherical-Homoscedastic Classifiers

To relax the linear constraint stated in Definition 1, we will now employ the idea of the kernel
trick, which will permit us to define classifiers that are nonlinear in the original space, but linear
in the kernel one. This will be used to tackle the general spherical-heteroscedastic problem as if
the distributions were linearly separable spherical-homoscedastic. Our goal is thus to find a kernel
space where the classes adapt to this model.

We start our description for the case of vMF distributions. First, we define the sample mean di-
rection of the first distributionM1(µ,κ) as µ̂1. The sample means of a set of spherical-homoscedastic
distributions can be represented as rotated versions of this first one, that is, µ̂a = RTa µ̂1, with
Ra ∈ SO(p) and a= {2, . . . ,C},C the number of classes. Following this notation, we can derive the
classification boundary between any pair of distributions from (13) as

xT (µ̂a− µ̂b) = 0, ∀a *= b.

The equation above directly implies that any new vector x will be classified to that class a for which
the inner product between x and µ̂a is largest, that is,

argmax
a
xT µ̂a. (28)

We are now in a position to provide a similar result in the feature space F obtained by the
function φ(x), which maps the feature vector x from our original space Sp−1 to a new spherical
space Sd of d dimensions. In general, this can be described as a kernel k(xi,x j), defined as the inner
product of the two feature vectors in F , that is, k(xi,x j) = φ(xi)Tφ(x j).

Note that the mappings we are considering here are such that the resulting space F is also spher-
ical. This is given by all those mappings for which the resulting norm of all vectors is a constant;
that is, φ(x)Tφ(x) = h, h ∈ R+.8 In fact, many of the most popular kernels have such a property.
This includes kernels such as the Radial Basis Function (RBF), polynomial, and Mahalanobis, when
working in Sp−1, and several (e.g., RBF and Mahalanobis) when the original space is Rp. This ob-
servation makes our results of more general interest yet, because even if the original space is not
spherical, the use of some kernels will map the data into Sd . This will again require the use of
spherical distributions or their Gaussian equivalences described in this paper.

In this new space F , the sample mean direction of class a is given by

µ̂φa =
1
na ∑

na
i=1 φ(xi)√

1
na ∑

na
i=1 φ(xi)T

1
na ∑

na
j=1 φ(x j)

=
1
na ∑

na
i=1 φ(xi)√
1TK1

,

8. Further, any kernel k1(xi,x j) can be defined to have this property by introducing the following simple normalization
step k(xi,x j) = k1(xi,x j)/

√
k1(xi,xi)k1(x j,x j).

1606

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

where K is a symmetric positive semidefinite matrix with elements K(i, j) = k(xi,x j), 1 is a vector
with all elements equal to 1/na, and na is the number of samples in class a.

By finding a kernel which transforms the original distributions to spherical-homoscedastic vMF,
we can use the classifier defined in (28), which states that the class label of any test feature vector x
is

argmax
a

φ(x)T µ̂φa =
1
na ∑

na
i=1 φ(x)Tφ(xi)√
1TK1

=
1
na ∑

na
i=1 k(x,xi)√
1TK1

. (29)

Therefore, any classification problem that uses a kernel which converts the data to spherical-
homoscedastic vMF distributions, can employ the solution derived in (29).

A similar result can be derived for Bingham distributions. We already know that the decision
boundary for two spherical-homoscedastic Bingham distributions defined as B1(A) and B2(RTAR),
with R representing a planar rotation given by any two eigenvectors of A, is given by the two
hyperplane Equations (20) and (21). Since the rotation matrix is defined in a 2-dimensional space
(i.e., planar rotation), one of the eigenvectors was described as a function of the other in the solution
derived in Theorem 7. For classification purposes, this result will vary depending on which of the
two eigenvectors of A we choose to use. To derive our solution we go back to (19) and rewrite it
for classifying a new feature vector x. That is, x will be classified in the first distribution, B1, if the
following holds

λ1
(
(xTq1)2− (xTRTq1)2

)
+λ2

(
(xTq2)2− (xTRTq2)2

)
> 0.

Using the result shown in Theorem 7, where we expressed q2 as a function of q1, we can simplify
the above equation to

(λ1−λ2)
(
(xTq1)2− (xTRTq1)2

)
> 0.

Then, if λ1 > λ2, x will be in B1 when

(xTq1)2 > (xTRTq1)2,

which can be simplified to
|xTq1| > |xTRTq1|. (30)

If this condition does not hold, x is classified as a sample of B2. Also, if λ2 > λ1, the reverse
applies. In the following, and without loss of generality, we will always assume q1 corresponds
to the eigenvector of A defining the rotation plane of R that is associated to the largest of the two
eigenvalues. This means that whenever (30) holds, x is classified in B1.

The relevance of (30) is that (as in vMF), a test feature vector x is classified to that class provid-
ing the largest inner product value. We can now readily extend this result to the multi-class problem.
For this, let B1(A) be the distribution of the first class and Ba(RTaARa) that of the ath class, where
now Ra is defined by two eigenvectors of A, qa1 and qa2 , with corresponding eigenvalues λa1 and
λa2 and we have assumed λa1 > λa2 . Then, the class of a new test feature vector x is given by

argmax
a

|xTqa1 |. (31)

1607

HAMSICI AND MARTINEZ

Following Theorem 7, we note that not all the rotations Ra should actually be considered, because
some may result in two distributions Ba and Bb that are not spherical-homoscedastic. To see this,
consider the case with three distributions, B1(A), B2(RT2AR2) and B3(RT3AR3). In this case, B1
and B2 will always be spherical-homoscedastic if R2 is defined in the plane spanned by two of the
eigenvectors of A. The same applies to B1 and B3. However, even when R2 and R3 are defined
by two eigenvectors of the parameter matrix, the rotation between B2 and B3 may not be planar.
Nonetheless, we have shown in Section 4 that if the variances of the two distributions are the same
up to an arbitrary rotation, the reducible error is negligible. Therefore, and since imposing additional
constraints would make it very difficult to find a kernel that can map the original distributions to
spherical-homoscedastic, we will consider all rotations about every qa1 .

We see that (31) still restricts the eigenvectors qa1 to be rotated versions of one another. This
constraint comes from (30), where the eigenvector of the second distribution must be the first eigen-
vector rotated by the rotation matrix relating the two distributions. Since the rotation is a rigid
transformation, all qa1 will be defined by the same index i in q̂ai , where Q̂a = {q̂a1 , . . . , q̂ap} are the
eigenvectors of the autocorrelation matrix Sa of the ath class. This equivalency comes from Section
2.2, where we saw that the eigenvectors of Aa are the same as those of the autocorrelation matrix.
Also, since we know the data is spherical-homoscedastic, the eigenvectors of the correlation matrix
will be the same as those of the covariance matrix Σa of the (zero-mean) Gaussian distribution as
seen in Theorem 9.

Our next step is to derive the same classifier in the kernel space. From our discussion above,
we require to find the eigenvectors of the covariance matrix. The covariance matrix in F can be
computed as

ΣΦa =Φ(Xa)Φ(Xa)T ,

where Xa is a matrix whose columns are the sample feature vectors, Xa =
(
xa1 ,xa2 , . . . ,xana

)
, and

Φ(X) is a function which maps the columns xi of X with φ(xi).
This allows us to obtain the eigenvectors of the covariance matrix from

ΣΦa VΦa = VΦa ΛΦa .

Further, these d-dimensional eigenvectorsVΦ
a = {vΦa1 , . . . ,v

Φ
ad} are not only the same as those ofA

Φ
a ,

but, as shown in Theobald (1975), are also sorted in the same order.
As pointed out before though, the eigenvalue decomposition equation shown above may be

defined in a very high dimensional space. A usual way to simplify the computation is to employ the
kernel trick. Here, note that since we only have na samples in class a, rank(ΛΦ

a) ≤ na. This allows
us to write VΦa =Φ(Xa)Δa, where Δa is a na×na coefficient matrix, and thus the above eigenvalue
decomposition equation can be stated as

Φ(Xa)Φ(Xa)TΦ(Xa)Δa =Φ(Xa)ΔaΛΦa .

Multiplying both sides by Φ(Xa)T and cancelling terms, we can simplify this equation to

Φ(Xa)TΦ(Xa)Δa = ΔaΛ
Φ
a ,

KaΔa = ΔaΛ
Φ
a ,

where Ka is known as the Gram matrix.

1608

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

We should now be able to obtain the eigenvectors in F using the equality

V̂Φa =Φ(Xa)Δa.

However, the norm of the vectors V̂Φa thus obtained is not one, but rather

ΛΦa = ΔTaΦ(Xa)TΦ(Xa)Δa.

To obtain the (unit-norm) eigenvectors, we need to include a normalization coefficient into our
result,

VΦa =Φ(Xa)ΔaΛΦa
−1/2

,

where VΦa = {vφa1 , . . . ,v
φ
ana}, and v

φ
ai ∈ Sd .

The classification scheme derived in (31) can now be extended to classify φ(x) as

argmax
a

|φ(x)Tvφai |,

where the index i= {1, . . . , p} defining the eigenvector vφai must be kept constant for all a.
The result derived above, can be written using a kernel as

argmax
a

∣∣∣∣∣∣

na
∑
l=1

k(x,xl)δai(l)√
λφai

∣∣∣∣∣∣
, (32)

where Δa = {δa1 , . . . ,δana}, δai(l) is the l
th coefficient of the vector δai , and again i takes a value

from the set {1, . . . , p} but otherwise kept constant for all a.
We note that there is an important difference between the classifiers derived in this section for

vMF in (29) and for Bingham in (32). While in vMF we are only required to optimize the kernel re-
sponsible to map the spherical-heteroscedastic data to one that adapts to spherical-homoscedasticity,
in Bingham we will also require the optimization of the eigenvector (associated to the largest eigen-
value) vφai defining the rotation matrix Ra. This is because there are many different solutions which
can convert a set of Bingham distributions into spherical-homoscedastic.

To conclude this section, we turn to the derivations of a classifier for the Kent distribution in the
kernel space. From Theorem 10, the 2-class classifier can be written as

xT (µa−µb) > 0,

xT (µa+µb)−
κ
λa1

> 0.

The first of these equations is the same as that used to derive the vMF classifier, and will therefore
lead to the same classification result. Also, as seen in Theorem 11 the second equation can be
eliminated when either: i) the second hyperplane is identical to the first, or ii) the second hyperplane
is outside Sp−1. Any other case should actually not be considered, since this would not guarantee
the equality of the Gaussian model. Therefore, and rather surprisingly, we conclude that the Kent
classifier in the kernel space will be the same as that derived by the vMF distribution. The rational
behind this is, however, quite simple, and it is due to the assumption of the concentration of the data
made in the Kent distribution: Since the parameters of the Kent distributions are estimated in the
tangent space of the mean direction, the resulting classifier should only use this information. This
is exactly the solution derived in (29).

1609

HAMSICI AND MARTINEZ

6. Experimental Results

In this section we show how the results reported in this paper can be used in real applications. In
particular, we apply our results to the classification of text data, genomics, and object classification.
Before we get to these though, we need to address the problems caused by noise and limited number
of samples. We start by looking at the problem of estimating the parameters of the Gaussian fit of a
spherical-homoscedastic distribution from a limited number of samples and how this may effect the
equivalency results of Theorems 6, 9 and 11.

6.1 Finite Sample Set

Theorems 6, 9 and 11 showed that the classifiers separating two spherical-homoscedastic distri-
butions are the same as those of the corresponding Gaussian fit. This assumes, however, that the
parameters of the spherical distributions are known. In the applications to be presented in this sec-
tion, we will need to estimate the parameters of such distributions from a limited number of sample
feature vectors. The question to be addressed here is to what extent this may effect the classification
results obtained with the best Gaussian fit. Following the notation used above, we are interested in
finding the reducible error that will (on average) be added to the classification error when using the
Gaussian model.

To study this problem, we ran a set of simulations. We started by drawing samples from two
underlying spherical-homoscedastic distributions that are hidden (unknown) to the classifier. Then,
we estimated the mean and covariance matrix defining the Gaussian distribution of the samples
in each of the two classes. New test feature vectors were randomly drawn from each of the two
(underlying) distributions and classified using the log-likelihood equations defined in Section 2.3.
The percentage of samples misclassified by the Gaussian model (i.e., using 4) as opposed to the
correct classification given by the corresponding spherical model (i.e., Equations 5-7), determines
the probability of reducible error.

Our spherical-homoscedastic vMF simulation used the following concentration parameters κ1 =
κ2 = {1,2, . . . ,10}, and the following rotations between distributions θ = {10,20, . . . ,180}. The
number of samples randomly drawn from each distribution varied from 10 times the dimensionality
to 100 times that value, at increments of ten. The dimensionality was tested for the following
values p = {2,10,20,30,40,50}. Our experiment was repeated 100 times for each of the possible
parameters, and the average was computed to obtain the probability of reducible error.

Fig. 8(a)-(b) show these results. In (a) the probability of reducible error is shown over the
dimensionality of the data p and the scalar γ, which is defined as the number of samples over
their dimensionality, γ = n/p. As already noticed in Section 4, the probability of reducible error
decreases with the dimensionality. This is the case since the volume of the distribution is taken over
a larger number of dimensions, forcing the overlapping area to shrink. As the scalar γ increases, so
does the number of samples n. In those cases, if p is small, the probability of the reducible error
decreases. However, when the dimensionality is large, this probability increases at first. In short,
we are compensating the loss in volume caused by the increase in dimensionality, by including
additional samples. When the dimension to sample ratio is adequate, the probability of reducible
error decreases as expected. The decreasing rate for larger dimensions is, however, much slower.
This result calls for a reduction of dimensionality from Sp−1 to a hypersphere where the scalar γ is
not too large. This will be addressed in our next section.

1610

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

50

100

10
20

30
40

50

0.02

0.025

0.03

γ
p

P(
re

du
cib

le
 e

rro
r)

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

50
100

150

20
40

60
80

100

2
4
6
8

10

x 10−3

θ
γ

P(
re

du
cib

le
 e

rro
r)

2

4

6

8

10

x 10−3

(a) (b)

20
40

60
80

20
40

60
80
100

0

0.1

θγ

P(
re

du
cib

le
 e

rro
r)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

20

40
60

80

20
40

60
80
100

0

0.2

0.4

θγ

P(
re

du
cib

le
 e

rro
r)

0.02

0.04

0.06

0.08

0.1

0.12

(c) (d)

Figure 8: (a-b) Shown here are the average reducible errors obtained when fitting two Gaussian dis-
tributions to the data sampled from two spherical-homoscedastic vMFs with parameters
κ = {1,2, . . . ,10} and θ = {10,20, . . . ,180}. The number of samples is n = γp, where γ
is a constant taking values in {10,20, . . . ,100}, and p is the dimensionality with values
p = {2,10,20, . . . ,50}. (c) Shows the average reducible error when data sampled from
spherical-homoscedastic Bingham distributions is fitted with the Gaussians estimates. In
this case, p = 3 and the number of samples as defined above. (d) Summarizes the same
simulation for spherical-homoscedastic Kent distributions, with p= 3.

We also note that in the worse case scenario, the probability of reducible error is very low and
shall not have a dramatic effect in the classification results when working with vMF.

In Fig. 8(b), we see that the closer two vMF distributions get, the larger the reducible error can
be. This is because the closer the distributions, the larger the overlap. Once more, however, this
error is negligible. With this, we can conclude that the parameters of the vMF can very reliably be
estimated with the corresponding Gaussian fit described in this paper even if the number of samples
is limited. This is especially true when the dimensionality of the data is relatively low.

1611

HAMSICI AND MARTINEZ

To simulate the probability of reducible error in Bingham and Kent, several of the parameters
of the distributions were considered. For simplicity, we show the results obtained in the three-
dimensional case, p = 3. Similar results were observed in larger dimensions (e.g., 10 and 50).
The number of samples n = γp, was determined as above by varying the values of the scalar, γ =
{10,20, . . . ,100}. Recall that in both distributions, spherical-homoscedasticity is satisfied when
θ1 = 0 and θ2 = {10,20, . . . ,90}, and when θ2 = 0 and θ1 = {10,20, . . . ,90}. The parameter matrix
of the second distribution A2 can be defined as a rotated version of A1 as A2 = RTA1R, where R is
given by (27). Further, in Kent, we impose the concentration and skewness parameters to be equal
in both distributions, that is, κ1 = κ2 and β1 = β2.

In Fig. 8(c-d) we show the probability of reducible error as a function of γ and the rotation θ. In
both cases, and as expected, when the two distributions get closer, the error increases. In Bingham,
when the sample to dimensionality ratio decreases, the error slightly increases (to about 6%). But,
in Kent, as in vMF, reducing the number of samples produces a negligible effect. Therefore, as in
vMF, we conclude that, in the worst case scenarios, keeping a ratio of 10 samples per dimension,
results in good approximations. When the distributions are not in tight proximity, this number can
be smaller. These observations bring us to our next topic: how to project the data onto a feature
space where the ratio sample-to-dimensionality is adequate.

6.2 Subsphere Projection

As demonstrated in Section 6.1, a major concern in fitting a distribution model to a data set is the
limited amount of samples available. This problem is exacerbated when the dimensionality of the
data p surpasses the number of samples n. This problem is usually referred to as the curse of di-
mensionality. In such circumstances, the classifier can easily overfit and lead to poor classification
results on an independent set of observations. A typical technique employed to mitigate this prob-
lem, is the use of Principal Components Analysis (PCA). By projecting the sample vectors onto
the subspace defined by the PCs of largest data variance, we can eliminate data noise and force
independent test vectors to be classified in the subspace defined by the training data. This procedure
is typically carried out in Rp by means of an eigendecomposition of the covariance matrix of the
training data. In this section, we show how to employ PCA on the correlation matrix to do the same
in Sp−1.

This problem can be easily stated as follows: We want to find a representation x̃i ∈ Sr−1 of the
original feature vectors xi ∈ Sp−1, r ≤ p, with minimal loss of information. This can be done with a
p× r orthogonal projection matrixW, that is,WTW= I. The least-squares solution to this problem
is then given by

argmin
W

n

∑
i=1

(xi−Wx̃i)T (xi−Wx̃i), (33)

where x̃i =WTxi/‖WTxi‖, that is, the unit-length vector represented in Sr−1.

Note that as opposed to PCA in the Euclidean space, our solution requires the subspace vectors
to have unit length, since these are also in a hypersphere. To resolve this, we can first search for that

1612

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

projection which minimizes the projection error,

argmin
W

n

∑
i=1

(xi−WWTxi)T (xi−WWTxi)

= argmin
W

n

∑
i=1

(xTi xi−2xTi WWTxi+xTi WWTWWTxi)

= argmin
W

n

∑
i=1

(1−‖WTxi‖2)

= argmax
W

n

∑
i=1

‖WTxi‖2

= argmax
W
WT

n

∑
i=1
xixTi W

= argmax
W
WTSW,

where S is the sample correlation matrix. Then, the resulting data vectors need to be normalized to
unit length to produce the final result.

To justify this solution, note that the direct minimization of (33) would result in

argmin
W

n

∑
i=1

(
xTi xi−2

xTi WWTxi
‖WTxi‖

+ x̃Ti x̃i
)

= argmin
W

n

∑
i=1

(
2− 2x

T
i WWTxi
‖WTxi‖

)

= argmin
W

n

∑
i=1

(
1−‖WTxi‖

)

= argmax
W

n

∑
i=1

‖WTxi‖. (34)

Since we are only interested in eliminating those dimensions of Sp−1 that are close to zero and
‖xi‖ = 1, it follows that ‖WTxi‖ ∼= ‖WTxi‖2. Further, because (34) may not generate unit length
vectors x̃i, this will require a normalization step.

The projection to a lower dimensional sphere Sr−1 minimizing the least-squares error can hence
be carried out in two simple steps. First, project the data onto the subspace that keeps most of the
variance as defined by the autocorrelation matrix, that is, x̌i =WTxi, where SW =WΛ. Second,
normalize the vectors to produce the following final result x̃i = x̌i/‖x̌i‖.

6.3 Object Categorization

As already mentioned in the Introduction, norm normalization is a typical pre-processing step in
many systems, including object recognition and categorization. In the latter problem, images of
objects need to be classified according to a set of pre-defined categories, for example, cows and
cars. A commonly used database for testing such systems is the ETH-80 data set of Leibe and
Schiele (2003). This database includes the images of eight categories: apples, cars, cows, cups,
dogs, horses, pears and tomatoes. Each of these consists of a set of images representing ten different
objects (e.g., ten cars) photographed at a total of 41 orientations. This means that we have a total of
410 images per category.

1613

HAMSICI AND MARTINEZ

In an attempt to emulate the primary visual areas of the human visual system, many feature
representations of objects are based on the outputs of a set of filters corresponding to the derivatives
of the Gaussian distribution at different scales. In our experiments, we consider the first deriva-
tive about the x and y axes for a total of three different scales, that is, υ = {1,2,4}, where υ is
the variance of the Gaussian filter. The convolution of each of these filters with the input images
produces a different result, which means we will generate a total of six images. Next, we compute
the histogram of each of these resulting images. This histogram representation is simplified to 32
intensity intervals. These histograms are generally assumed to be the distribution of the pixel val-
ues in the image and, therefore, the sum of the values over all 32 intervals should be one (because
the integral of a density is 1). Hence, these 32 values are first represented in vector form and then
normalized to have unit norm. The resulting unit-norm feature vectors are concatenated to form a
single feature representation. This generates a feature space of 192 dimensions. We refer to this
feature representation as Gauss.

As an alternative, we also experimented with the use of the magnitude of the gradient and the
Laplacian operator. The latter generally used for its rotation-invariant properties, which is provided
by its symmetric property. As above, the gradient and Laplacian are computed using three scales,
that is, υ = {1,2,4}. To reduce the number of features, we use the histogram representation de-
scribed above, which again produces unit-norm feature vectors of 192 dimensions. This second
representation will be referred to asMagLap.

These two image representations are tested using the leave-one-object-out strategy, where, at
each iteration, we leave all the images of one of the objects out for testing and use the remaining for
training. This is repeated (iterated) for each of the possible objects that one can leave out.

We now use the PCA procedure described in Section 6.2 to map the data of each of the two
feature spaces described above onto the surface of an 18-dimensional sphere. This dimensionality
was chosen such that 99.9% of the data variance was kept. Note that in this subsphere, the sample
to dimensionality ratio (which is about 180) is more than adequate for classification purposes as
demonstrated in Section 6.1.

To generate our results, we first use the vMF and Bingham approximations introduced in Section
2.2 and then use (5) and (6) for classification. We refer to these approaches as vMF and Bingham
classifiers, respectively. These are the classifiers one can construct based on the available approxi-
mation defined to estimate the parameters of spherical distributions.

Next, we consider the Gaussian equivalency results shown in this paper, which allow us to
represent the data with Gaussian distributions and then use (4) for classification. This algorithm
will be labeled Gaussian classifier in our tables.

In Section 5, we derived three algorithms for classifying spherical-homoscedastic vMF, Bing-
ham, and Kent. These were obtained from Theorems 3, 7 and 10. We also showed how the vMF
and Kent classifiers were identical. These classifiers were given in (28) and (31), and will be labeled
SH-vMF and SH-Bingham, respectively.

Table 1 shows the average of the recognition rates using the leave-one-object out with each of
the algorithms just mentioned. In this table, we have also included the results we would obtained
with the classical Fisher (1938) Linear Discriminant Analysis algorithm (LDA). This algorithm is
typically used in classification problems in computer vision, genomics and other machine learning
applications. In LDA, the data of each class is approximated with a Gaussian distribution, but
only the average of these, Σ̄, is subsequently used. This is combined with the scatter-matrix of the
class means SB to generate the LDA basis vectors U from Σ̄−1SBU= UΛLDA; where SB is formally

1614

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Method vMF Bingham Gaussian SH-vMF SH-Bingham LDA
Gauss 13.75 73.11 73.14 45.85 46.16 62.9
MagLap 12.5 74.18 73.75 51.95 52.90 66.25

Table 1: Average classification rates for the ETH database with Gauss and MagLap feature repre-
sentations.

defined as SB = ∑Ci=1 ni/n(µ̂i− µ̂)(µ̂i− µ̂)T , ni is the number of samples in class i, µ̂i the mean of
these samples, and µ̂ the global mean. In LDA, the nearest mean classifier is generally used in the
subspace spanned by the eigenvectors of U associated to non-zero variance.9

It is clear that, in this particular case, the vMF model is too simplistic to successfully represent
our data. In comparison, the Bingham model provides a sufficient degree of variability to fit the
data.

Next, we turn to the results of the Gaussian fit defined in this paper, Table 1. We see that
the results are comparable to those obtained with the Bingham model. A simple data analysis
reveals that the data of all classes is highly concentrated. We see this by looking at the eigenvalues
of each class scatter matrix Sa, a = {1, . . . ,C}. The average of the variance ratios between the
first eigenvector (defining the mean direction) and the second eigenvector (representing the largest
variance of the data on Sd−1), which is 66.818. From the results obtained in Section 4, we expected
the Gaussian fit to perform similarly to Bingham under such circumstances. This is clearly the case
in the classification results shown in Table 1.

While the Gaussian fit has proven adequate to represent the data, the spherical-homosce-dastic
classifiers derived in Section 5 performed worse. This is because the class distributions are far from
spherical-homoscedastic. We can see that by studying the variability of the variance in each of the
eigenvectors of the class distributions. To do this, we look at the variance λ̂ai about each eigenvector
q̂ai . If the data were spherical-homoscedastic, the variances about the corresponding eigenvectors
should be identical, that is, λ̂ai = λ̂bi , ∀a,b (recall a and b are the labels of any two distributions).
Seemingly, the more the class distributions deviate from spherical-homoscedastic, the larger the
difference between λ̂ai and λ̂bi will be. The percentage of variability among the variances λ̂ai for
different a, can be computed as

100
stdv{λ̂1i , . . . , λ̂Ci}

1
C ∑

C
j=1 λ̂ ji

, (35)

where stdv{·} is the standard deviation of the values of the specified set. Hence, a 0% variability
would correspond to perfect spherical-homoscedastic distributions. The more we deviate from this
value, the more the distributions will deviate from the spherical-homoscedastic model.

Applying (35) to the resulting class distributions of the ETH data set with the Gauss represen-
tation and then computing the mean of all resulting differences yields 58.04%. The same can be
done for the MagLap representation, resulting in an average variability of 76.51%. In these two
cases, we clearly see that the class distributions deviate considerably from spherical-homoscedastic.
As demonstrated in Figure 6(c). The effects of heteroscedasticity are further observed in the low
performances of the LDA algorithm, which assumes the data is homoscedastic.

9. Note that the rank of U is upper-bounded by C− 1, because the scatter-matrix matrix SB is defined by the C− 1
vectors interconnecting theC class means.

1615

HAMSICI AND MARTINEZ

Method K-SH-vMF K-SH-Bingham
Gauss 79.24 (ς̄= 3.2) 78.84 (ς̄= 3.96, v̄= 1)
MagLap 77.23 (ς̄= 5.63) 77.16 (ς̄= 6.35, v̄= 1)

Table 2: Average classification rates for the ETH database with Gauss and MagLap feature repre-
sentations using the nonlinear spherical-homoscedastic vMF and Bingham classifiers. In
these results, we used the Mahalanobis kernel.

As shown in Section 5, we can improve the results of our spherical-homoscedastic classifiers by
first (intrinsically) mapping the data into a space where the underlying class distributions fit to the
spherical-homoscedastic model.

Since the original class distributions need to be reshaped to fit the spherical-homoscedastic
model, the Mahalanobis kernel is a convenient choice. This kernel is defined as

k(x,y) = exp

(
−(x−y)T Σ̄−1 (x−y)

2ς2

)

where ς is a scale parameter to be optimized using the leave-one-object-out test (looot) on the
training set. This looot is not to be confused with the object left out for testing, which is used to
compute the classification error. In our experimental results, we tested the following scalar values
for the kernel, ς= {1,2, . . . ,10}.

Table 2 shows the recognition rates for the (nonlinear) spherical-homoscedastic vMF and Bing-
ham classifiers, using the Mahalanobis kernel just defined. These classifiers are labeled, K-SH-vMF
and K-SH-Bingham, respectively. The classification rates are shown in percentages. The values in
parentheses indicate the average over all scale parameters as determined by looot. This includes the
average scalar kernel parameter, denoted ς̄, for vMF and Bingham, and the average value of i in qai ,
denoted v̄, when optimizing the Bingham classifier defined in (32). We see that the classification
results are boosted beyond those obtained with Bingham and the Gaussian fit.

6.4 Gene Expression Classification

Spherical representations can be applied to gene expression data in a variety of ways. For exam-
ple, some genome sequences are circular, and the gene co-orientation as well as its expression are
relevant (Audit and Ouzounis, 2003; Janssen et al., 2001). In analyzing other genomes or the expres-
sion of a set of genes from microarrays, correlation coefficients (e.g., Pearson) provide a common
way to determine the similarity between samples (Banerjee et al., 2005). These are generally norm
invariant and, hence, whenever density estimations are required, spherical models are necessary.

To demonstrate this application, we have used the gene expression data set A of Pomeroy et al.
(2002). This data set consists of five different classes of tumors in the central nervous system:
medulloblastomas, malignant gliomas, AT/RT (atypical teratoid/rhabdoid tumors), normal cerebel-
lums and supratentorial PNETs (primitive neuroectodermal tumors). The first three classes each has
a total of ten samples. The fourth class includes four samples. And, the fifth class, has a total of 8
samples. Each sample is described with 7,132 features corresponding to the expression level from
a set of genes. The goal is to classify each of these gene expression samples into their correct class.

1616

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

This can be done using the leave-one-out test (loot), where we use all but one of the samples for
training and determine whether our algorithm can correctly classify the sample left out.

Before we can use the data of Pomeroy et al. (2002), a set of normalization steps are required.
First, it is typical to threshold the expression levels in each microarray to conform to a minimum
expression value of 100 and a maximum of 1,600. Second, the maximum and minimum of each
feature, across all samples, is computed. The features with low-variance, that is, those that have
max/min < 12 and max−min < 1200, do not carry significant class information and are therefore
eliminated from consecutive analysis. This results in a feature representation of 3,517. Finally,
to facilitate the use of correlation-based classifiers, the variance of each of the samples is norm-
normalized. This maps the feature vectors to S3516.

Since the number of samples is only 42, we require to project the data onto a subsphere (Sec-
tion 6.2) to a dimensionality where the sample-to-dimension ratio is appropriate. By reducing the
dimensionality of our space to that of the range of the data, we get an average sample-to-dimension
ratio of 1.18. Note that this ratio could not be reduced further, because the number of samples in
gene expression analysis is generally very small (in this particular case 10 or less samples per class).
Reducing the dimensionality further would impair our ability to analyze the data efficiently.

The average recognition rates obtained with each of the algorithms described earlier with loot
are in Table 3. The small sample-to-dimension ratio, characteristic of this gene expression data
sets, makes most of the algorithms perform poorly. For example, Fisher’s LDA is about as bad
as a random classifier which assigns the test vector to a class randomly. And, in particular, the
Bingham approximation could not be completed with accuracy and its classifier is even worse than
LDA’s. As opposed to the results with the ETH database, when one has such a small number of
samples, distributions with few parameters will usually produce better results. This is clearly the
case here, with vMF and Gaussian providing a better fit than Bingham. To resolve the issues caused
by the small sample-to-dimension ratio, one could regularize the covariance matrix of each class
to allow the classifier to better adapt to the data (Friedman, 1989). By doing this, we were able
to boost the results of our Gaussian fit to around 80%. At each iteration of the loot, the regu-
larization parameter (also optimized with loot over the training data) selected 90% of the actual
covariance matrix and 10% for the regularizing identity matrix term. We can now calculate how
close to spherical-homoscedastic these regularized distributions are. As above, we can do this by
estimating the average of percentage variance from the median of the eigenvalues obtained from the
distribution of each class.10 This results in ∼ 0.08% deviation, which means the data can be very
well represented with spherical-homoscedastic distributions. These results imply that the regular-
ized Gaussian fit will outperform the other estimates, which is indeed the case. Since the classifiers
derived in Section 5 are also based on the assumption of spherical-homoscedasticity, these should
also perform well in this data set. We see in the results of Table 3 that these results were also the
best. Furthermore, the spherical-homoscedastic classifiers do not require of any regularization. This
means that the computation associated to these is very low, reversing the original problem associ-
ated to the (non-linear) estimation of the parameters of the distributions—making the SH-Bingham
the best fit.

Further investigation of the spherical-homoscedastic classifiers in a higher dimensional nonlin-
ear space by means of the Mahalanobis kernels defined above shows that these results can be further
improved. In these experiments, the kernel parameters are optimized with loot over the training set.

10. We restricted the comparison to the first three eigenvalues, because the rest were many time zero due to the singularity
of some of the class covariance matrices.

1617

HAMSICI AND MARTINEZ

Method vMF Bingham Gaussian SH-vMF SH-Bingham LDA
Data Set A 28.57 14.29 33.33 80.95 85.71 21.43
ALL-AML 41.18 41.18 41.18 94.12 94.12 91.18

Table 3: Average classification rates on the gene expression data of Pomeroy et al. (2002) and Golub
et al. (1999).

Method K-SH-vMF K-SH-Bingham
Data Set A 88.10 (ς̄= 0.1) 90.48 (ς̄= 0.2, v̄= 1.11)
ALL-AML 85.29 (ς̄= 0.7) 85.29 (ς̄= 0.7, v̄= 1)

Table 4: Average classification rates on the gene expression data using the Mahalanobis kernel. The
values in parentheses correspond to the average parameters of the classifiers. These have
been optimized using the leave-one-sample-out strategy on the training data.

As shown in Table 4, the performances of the SH-vMF and SH-Bingham classifiers improved to
88.10% and 90.48%, respectively.

Next, we tested our algorithms on the RNA gene expression data set of Golub et al. (1999).
The training set consists of a total of 38 bone marrow samples, 27 of which correspond to Acute
Lymphoblastic Leukemia (ALL) and 11 to Acute Myeloid Leukemia (AML). the testing set includes
20 ALL and 14 AML samples, respectively. Each feature vector is constructed with a total of 7,129
probes from 6,817 human genes, where a probe is a labeled subset of the original set of bases of a
gene.

The feature vectors in this data set are norm-normalized to eliminate the variance changes across
the samples. We then used the subsphere projection technique to represent the training set on a
subsphere of dimensionality equal to the range space of the data, resulting in a sample-to-dimension
ratio of 1.

The results obtained using the independent testing set on each of the trained classifiers are
shown in Table 3. Once again, we see that the sample-to-dimension ratio is too small to allow good
results in the estimate of the parameters of the spherical distributions or the Gaussian fit. As we
did above, one can improve the Gaussian fit with the use of a regularization parameter, yielding
∼ 94% classification rate (with a regularization of about 0.2). This is superior to the result of LDA,
which in this case is much better than before. The LDA results are also surpassed by those of the
spherical-homoscedastic classifiers, which again work well because the data can be estimated with
spherical-homoscedastic distributions.

We note that the results obtained with the spherical-homoscedastic classifiers are already very
good. Adding another optimization step to select the most appropriate kernel parameter may be too
much to ask from such a small number of samples. We see in the results of Table 4 (which the use of
the Mahalanobis kernel) this actually resulted in poorer classifications. This can be further studied
with the use of the polynomial kernel, defined as

k(x,y) = (xTy)d ,

where d defines the degree. If we substitute the Mahalanobis kernel for this one in our implemen-
tation and optimize d with loot, we find that this is given at d = 1. That is, the best polynomial

1618

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Method vMF Gaussian SH-vMF SH-Bingham LDA
Classic 38.64 21.23 89.67 89.23 (v̄= 1) 76.40
CMU 57.33 33.33 69.07 68 (v̄= 1) 34.53

Table 5: Average classification rate on text data sets.

kernel is that which does not change the space, and the classification results will be the same as
those shown in Table 3.

7. Text Data Set

In text recognition the documents are usually represented as a bag of words, which can be described
in vector form by assigning to each feature the frequency of each of the words in the document. In
this representation, the important information is that of the frequency of a word with respect to the
rest (i.e., percentage of occurrence). This can be easily obtained by norm-normalizing these feature
vectors, which maps the data into a spherical representation.

The first data set (labeled Classic) we will test is composed of three classes.11 The first class
is a collection of documents from MEDLINE (the index of medical related papers), which includes
1,033 documents. The second class consists of 1,460 documents from the CISI database. The
third class includes 1,400 documents from the aeronautical system database CRANFIELD. The
second data set (labeled CMU) we will use, is a subset of the CMU set.12 This corresponds to
1,500 randomly selected documents, 500 from each of the following three classes: newsgroups
comp.graphics, comp.os.ms-windows.misc and comp.windows.x.

The preprocessing of the data, which is common to the two data sets, includes eliminating high
and low frequency words as well as those words that have less than 3 letters (examples are, “a”,
“and”,“the”). After this preprocessing, each feature vector in the Classic data set consists of 4,427
dimensions and those in the CMU data set 3,006 dimensions.

We have done a 10-fold cross-validation on these data sets using the algorithms described above.
This means that we kept 10% of the data set for testing and fit the distribution models or classifiers
to the remaining 90%. This was repeated 10 times and the average classification rates are shown in
Table 5.

The resulting sample vectors are sparse—described in a high dimensional feature space with
most of the features equal to zero. This makes the estimation problem very difficult. For instance,
this sparseness did not permit computation of the normalizing constant of the Bingham distribution
with the saddlepoint approximation of Kume and Wood (2005). For this reason Table 5 does not
provide recognition rates for Binghams. The sparseness of the data did not allow for a good estimate
of the parameters of the vMF or Gaussian modeling either, as is made evident in the poor results
shown in Table 5. The Gaussian modeling result, in particular, can be improved in two ways. One, as
above, would correspond to using a regularization term. A second option corresponds to calculating
the average class covariance matrix of all Gaussians and use this as a common covariance matrix.
This is in fact LDA’s results, which is much better. Since eliminating the bases with lowest variance
can reduce noise, we can further improve this results to about 98% for the Classical data set and
64% for CMU, by using the spherical projection of Section 6.2.

11. Available at ftp://ftp.cs.cornell.edu/pub/smart/.
12. Available at http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.

1619

HAMSICI AND MARTINEZ

Method K-SH-vMF K-SH-Bingham K-SH-vMF K-SH-Bingham
Polynomial Polynomial RBF RBF

Classic 90.21 (d̄ = 9.8) 88.92 (d̄ = 2.3, v̄= 1) 90.54 (̄ς= 0.3) 88.23 (ς̄= 0.7, v̄= 1)
CMU 71.13 (d̄ = 7.9) 68.27 (d̄ = 5.4, v̄= 1) 75.27 (̄ς= 0.22) 69.33 (ς̄= 0.50, v̄= 1)

Table 6: Average classification rate on text data sets using kernel extension. The value of d̄ specifies
the average degree of the polynomial kernel optimized over the training set.

As we have shown above, these issues are generally less problematic when using the spherical-
homoscedastic classifiers derived in this paper. The reason for that is given by the simplicity of
these classifiers, which facilitates robustness. Yet, these results can be boosted by using the kernel
classifiers derived above. To do this, we first note that we should not use the Mahalanobis kernel on
these data sets, because the Gaussian fits will be biased by the sparseness. For this reason, we have
used the polynomial kernel given above and the RBF kernel defined as k(x,y) = exp

(
− ‖x−y‖2

2ς2

)
. As

demonstrated in Table 6, the results improved to about 90% on the Classic data set and over 75%
for CMU.

8. Conclusions

In this paper, we investigated the effect of modeling von Mises-Fisher, Bingham and Kent distribu-
tions using Gaussian distributions. We first introduced the concept of spherical-homoscedasticity
and showed that if two spherical distributions comply with this model, their Gaussian approxima-
tions are enough to obtain optimal classification performance in the Bayes sense. This was shown to
be true for the von Mises-Fisher and Bingham distribution. For the Kent distribution the additional
criteria defined in (26) must hold.

We further investigated what happens if we model the data sampled from two spherical-
heteroscedastic distributions using their Gaussian approximations. In such a scenario, the Gaus-
sian modeling will result in a decision boundary different to that produced by the original spherical
distributions. We have referred to the additional error caused by this approximation as the reducible
error. We have then empirically evaluated this and showed that as the two distributions start to devi-
ate from spherical-homoscedastic, the probability of reducible error increases. We have also stated
the particular cases where two spherical-heteroscedastic distributions may lead to a small error. For
example, for vMFs this happens when these are highly concentrated, and for Bingham and Kent
when the variance parameters are the same.

Since spherical-homoscedasticity provides an optimal model for parameter estimation, we were
also able to define classifiers based on these. These classifiers are linear, since the Bayes deci-
sion boundary for two spherical-homoscedastic distributions in Sp−1 is a hyperplane (same as for
homoscedastic distributions in Rp). When the data is spherical-heteroscedastic, we can first map
the data into a space where the projected distributions adapt to the spherical-homoscedastic model.
With this, we can use our spherical-homoscedastic classifiers in a large number of data sets. Finally,
this can be efficiently implemented using the idea of the kernel trick as shown in Section 5. We have
shown how all these results apply to a variety of problems in object recognition, gene expression
classification, and text organization.

1620

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

Acknowledgments

We thank the referees for their insightful comments. Thanks also go to Lee Potter for discussion.
This research was partially supported by the National Institutes of Health under grant R01-DC-
005241.

Appendix A. Notation

x feature vector
p dimensionality of the original feature space
Sp−1 (p−1)-dimensional unit sphere in Rp

SO(p) p-dimensional Special Orthogonal Group
κ concentration of our spherical distribution
β ovalness of the Kent distribution
µ mean direction vector
m mean feature vector
Γ(·) Gamma function
Iν(·) Bessel function of the first kind and order ν
R rotation matrix
Σ covariance matrix
S autocorrelation (scatter) matrix
S̄ scatter matrix calculated on the null space of the mean direction
A parameter matrix for the Bingham and Fisher-Bingham
K gram matrix
vi ith eigenvector of the covariance matrix
qi ith eigenvector of the parameter matrix A
λi ith eigenvalue of a symmetric matrix
N(µ,Σ) Gaussian (Normal) distribution
M(µ,κ) von Mises-Fisher distribution
B(A) Bingham distribution
K(µ,κ,A) Kent distribution
FB(µ,κ,A) Fisher-Bingham distribution
E(·) expected value
ς scale parameter
θ, φ, ω rotation angles
k(., .) mercer kernel
φ(.) vector mapping function
Φ(.) matrix mapping function

1621

HAMSICI AND MARTINEZ

References

B. Audit and C.A. Ouzounis. From genes to genomes: Universal scale-invariant properties of
microbial chromosome organisation. Journal of Molecular Biology, 332(3):617–633, 2003.

A. Banerjee, I.S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von
Mises-Fisher distributions. Journal of Machine Learning Research, 6:1345–1382, 2005.

P.N. Belhumeur and D.J. Kriegman. What is the set of images of an object under all possible lighting
conditions? International Journal of Computer Vision, 28(3):245–260, 1998.

C. Bingham. An antipodally symmetric distribution on the sphere. Annals of Statistics, 2(6):1201–
1225, 1974.

I.S. Dhillon and D.S. Modha. Concept decompositions for large sparse text data using clustering.
Machine Learning, 42(1):143–175, 2001.

I.L. Dryden and K.V.Mardia. Statistical Shape Analysis. JohnWiley & Sons, West Sussex, England,
1998.

R.A. Fisher. The statistical utilization of multiple measurements. Annals of Eugenics, 8:376–386,
1938.

J.H. Friedman. Regularized discriminant analysis. Journal of The American Statistical Association,
84(405):165–175, 1989.

T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh,
J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular classification of
cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439):
531–537, 1999.

P.J. Janssen, B. Audit, and C.A. Ouzounis. Strain-specific genes of Helicobacter pylori: distribution,
function and dynamics. Nucleic Acids Research, 29(21):4395–4404, 2001.

O. Javed, M. Shah, and D. Comaniciu. A probabilistic framework for object recognition in video.
In Proceedings of International Conference on Image Processing, pages 2713–2716, 2004.

C.M. Joshi. Some inequalities for modified Bessel functions. Journal of the Australian Mathematics
Society, Series A, 50:333–342, 1991.

J.T. Kent. The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical Society,
Series B (Methodological), 44:71–80, 1982.

P. Koev and A. Edelman. The efficient evaluation of the hypergeometric function of a matrix argu-
ment. Mathematics of Computation, 75:833–846, 2006.

A. Kume and A.T.A. Wood. Saddlepoint approximations for the Bingham and Fisher-Bingham
normalising constants. Biometrika, 92:465–476, 2005.

B. Leibe and B. Schiele. Analyzing appearance and contour basedmethods for object categorization.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2003.

1622

SPHERICAL-HOMOSCEDASTIC DISTRIBUTIONS

K.V. Mardia and P.E. Jupp. Directional Statistics. John Wiley & Sons, West Sussex, England, 2000.

H. Murase and S.K. Nayar. Visual learning and recognition of 3D objects from appearance. Inter-
national Journal of Computer Vision, 14:5–24, 1995.

S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y.H. Kim,
L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson, T. Curran, C.Wetmore,
J.A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P.
Mesirov, E.S. Lander, and T.R. Golub. Prediction of central nervous system embryonal tumour
outcome based on gene expression. Nature, pages 436–442, 2002.

D.E. Slice, editor. Modern Morphometrics in Physical Anthropology. Kluwer Academics, New
York, NY, 2005.

C.M. Theobald. An inequality for the trace of the product of two symmetric matrices. Proc. Cam-
bridge Phil. Soc., 77:265–267, 1975.

A. Veeraraghavan, R.K. Roy-Chowdhury, and R. Chellappa. Matching shape sequences in video
with applications in human movement analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(12):1896–1909, 2005.

L. Wang, T. Tan, W. Hu, and H. Ning. Automatic gait recognition based on statistical shape analysis.
IEEE Transactions on Image Processing, 12(9):1120–1131, 2003.

1623

Journal of Machine Learning Research 8 (2007) 1625-1657 Submitted 7/05; Revised 5/06; Published 7/07

Handling Missing Values when Applying Classification Models

Maytal Saar-Tsechansky MAYTAL@MAIL.UTEXAS.EDU
The University of Texas at Austin
1 University Station
Austin, TX 78712, USA

Foster Provost FPROVOST@STERN.NYU.EDU
New York University
44West 4th Street
New York, NY 10012, USA

Editor: Rich Caruana

Abstract
Much work has studied the effect of different treatments of missing values on model induction,
but little work has analyzed treatments for the common case of missing values at prediction time.
This paper first compares several different methods—predictive value imputation, the distribution-
based imputation used by C4.5, and using reduced models—for applying classification trees to
instances with missing values (and also shows evidence that the results generalize to bagged trees
and to logistic regression). The results show that for the two most popular treatments, each is
preferable under different conditions. Strikingly the reduced-models approach, seldom mentioned
or used, consistently outperforms the other two methods, sometimes by a large margin. The lack of
attention to reduced modeling may be due in part to its (perceived) expense in terms of computation
or storage. Therefore, we then introduce and evaluate alternative, hybrid approaches that allow
users to balance between more accurate but computationally expensive reduced modeling and the
other, less accurate but less computationally expensive treatments. The results show that the hybrid
methods can scale gracefully to the amount of investment in computation/storage, and that they
outperform imputation even for small investments.
Keywords: missing data, classification, classification trees, decision trees, imputation

1. Introduction

In many predictive modeling applications, useful attribute values (“features”) may be missing. For
example, patient data often have missing diagnostic tests that would be helpful for estimating the
likelihood of diagnoses or for predicting treatment effectiveness; consumer data often do not include
values for all attributes useful for predicting buying preferences.

It is important to distinguish two contexts: features may be missing at induction time, in the
historical “training”data, or at prediction time, in to-be-predicted “test”cases. This paper compares
techniques for handling missing values at prediction time. Research on missing data in machine
learning and statistics has been concerned primarily with induction time. Much less attention has
been devoted to the development and (especially) to the evaluation of policies for dealing with
missing attribute values at prediction time. Importantly for anyone wishing to apply models such as
classification trees, there are almost no comparisons of existing approaches nor analyses or discus-
sions of the conditions under which the different approaches perform well or poorly.

c©2007 Maytal Saar-Tsechansky and Foster Provost.

SAAR-TSECHANSKY AND PROVOST

Although we show some evidence that our results generalize to other induction algorithms, we
focus on classification trees. Classification trees are employed widely to support decision-making
under uncertainty, both by practitioners (for diagnosis, for predicting customers’ preferences, etc.)
and by researchers constructing higher-level systems. Classification trees commonly are used as
stand-alone classifiers for applications where model comprehensibility is important, as base clas-
sifiers in classifier ensembles, as components of larger intelligent systems, as the basis of more
complex models such as logistic model trees (Landwehr et al., 2005), and as components of or tools
for the development of graphical models such as Bayesian networks (Friedman and Goldszmidt,
1996), dependency networks (Heckerman et al., 2000), and probabilistic relational models (Getoor
et al., 2002; Neville and Jensen, 2007). Furthermore, when combined into ensembles via bagging
(Breiman, 1996), classification trees have been shown to produce accurate and well-calibrated prob-
ability estimates (Niculescu-Mizil and Caruana, 2005).

This paper studies the effect on prediction accuracy of several methods for dealing with missing
features at prediction time. The most common approaches for dealing with missing features involve
imputation (Hastie et al., 2001). The main idea of imputation is that if an important feature is
missing for a particular instance, it can be estimated from the data that are present. There are
two main families of imputation approaches: (predictive) value imputation and distribution-based
imputation. Value imputation estimates a value to be used by the model in place of the missing
feature. Distribution-based imputation estimates the conditional distribution of the missing value,
and predictions will be based on this estimated distribution. Value imputation is more common in
the statistics community; distribution-based imputation is the basis for the most popular treatment
used by the (non-Bayesian) machine learning community, as exemplified by C4.5 (Quinlan, 1993).

An alternative to imputation is to construct models that employ only those features that will
be known for a particular test case—so imputation is not necessary. We refer to these models as
reduced-feature models, as they are induced using only a subset of the features that are available
for the training data. Clearly, for each unique pattern of missing features, a different model would
be used for prediction. We are aware of little prior research or practice using this method. It
was treated to some extent in papers (discussed below) by Schuurmans and Greiner (1997) and by
Friedman et al. (1996), but was not compared broadly to other approaches, and has not caught on in
machine learning research or practice.

The contribution of this paper is twofold. First, it presents a comprehensive empirical compari-
son of these different missing-value treatments using a suite of benchmark data sets, and a follow-up
theoretical discussion. The empirical evaluation clearly shows the inferiority of the two common
imputation treatments, highlighting the underappreciated reduced-model method. Curiously, the
predictive performance of the methods is more-or-less in inverse order of their use (at least in AI
work using tree induction). Neither of the two imputation techniques dominates cleanly, and each
provides considerable advantage over the other for some domains. The follow-up discussion exam-
ines the conditions under which the two imputation methods perform better or worse.

Second, since using reduced-feature models can be computationally expensive, we introduce
and evaluate hybrid methods that allow one to manage the tradeoff between storage/computation
cost and predictive performance, showing that even a small amount of storage/computation can
result in a considerable improvement in generalization performance.

1626

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

2. Treatments for Missing Values at Prediction Time

Little and Rubin (1987) identify scenarios for missing values, pertaining to dependencies between
the values of attributes and the missingness of attributes. Missing Completely At Random (MCAR)
refers to the scenario where missingness of feature values is independent of the feature values (ob-
served or not). For most of this study we assume missing values occur completely at random. In
discussing limitations below, we note that this scenario may not hold for practical problems (e.g.,
Greiner et al., 1997a); nonetheless, it is a general and commonly assumed scenario that should
be understood before moving to other analyses, especially since most imputation methods rely on
MCAR for their validity (Hastie et al., 2001). Furthermore, Ding and Simonoff (2006) show that the
performance of missing-value treatments used when training classification trees seems unrelated to
the Little and Rubin taxonomy, as long as missingness does not depend on the class value (in which
case unique-value imputation should be used, as discussed below, as long as the same relationship
will hold in the prediction setting).

When features are missing in test instances, there are several alternative courses of action.

1. Discard instances: Simply discarding instances with missing values is an approach often
taken by researchers wanting to assess the performance of a learning method on data drawn
from some population. For such an assessment, this strategy is appropriate if the features
are missing completely at random. (It often is used anyway.) In practice, at prediction time,
discarding instances with missing feature values may be appropriate when it is plausible to
decline to make a prediction on some cases. In order to maximize utility it is necessary to
know the cost of inaction as well as the cost of prediction error. For the purpose of this study
we assume that predictions are required for all test instances.

2. Acquire missing values. In practice, a missing value may be obtainable by incurring a cost,
such as the cost of performing a diagnostic test or the cost of acquiring consumer data from a
third party. To maximize expected utility one must estimate the expected added utility from
buying the value, as well as that of the most effective missing-value treatment. Buying a
missing value is only appropriate when the expected net utility from acquisition exceeds that
of the alternative. However, this decision requires a clear understanding of the alternatives
and their relative performances—a motivation for this study.

3. Imputation. As introduced above, imputation is a class of methods by which an estimation of
the missing value or of its distribution is used to generate predictions from a given model. In
particular, either a missing value is replaced with an estimation of the value or alternatively
the distribution of possible missing values is estimated and corresponding model predictions
are combined probabilistically. Various imputation treatments for missing values in histori-
cal/training data are available that may also be deployed at prediction time. However, some
treatments such as multiple imputation (Rubin, 1987) are particularly suitable to induction.
In particular, multiple imputation (or repeated imputation) is a Monte Carlo approach that
generates multiple simulated versions of a data set that each are analyzed and the results are
combined to generate inference. For this paper, we consider imputation techniques that can
be applied to individual test cases during inference.1

1. As a sanity check, we performed inference using a degenerate, single-case multiple imputation, but it performed no
better and often worse than predictive value imputation.

1627

SAAR-TSECHANSKY AND PROVOST

(a) (Predictive) Value Imputation (PVI): With value imputation, missing values are replaced
with estimated values before applying a model. Imputation methods vary in complexity.
For example, a common approach in practice is to replace a missing value with the at-
tribute’s mean or mode value (for real-valued or discrete-valued attributes, respectively)
as estimated from the training data. An alternative is to impute with the average of the
values of the other attributes of the test case.2

More rigorous estimations use predictive models that induce a relationship between the
available attribute values and the missing feature. Most commercial modeling packages
offer procedures for predictive value imputation. The method of surrogate splits for
classification trees (Breiman et al., 1984) imputes based on the value of another feature,
assigning the instance to a subtree based on the imputed value. As noted by Quinlan
(1993), this approach is a special case of predictive value imputation.

(b) Distribution-based Imputation (DBI). Given a (estimated) distribution over the values of
an attribute, one may estimate the expected distribution of the target variable (weighting
the possible assignments of the missing values). This strategy is common for applying
classification trees in AI research and practice, because it is the basis for the miss-
ing value treatment implemented in the commonly used tree induction program, C4.5
(Quinlan, 1993). Specifically, when the C4.5 algorithm is classifying an instance, and a
test regarding a missing value is encountered, the example is split into multiple pseudo-
instances each with a different value for the missing feature and a weight corresponding
to the estimated probability for the particular missing value (based on the frequency of
values at this split in the training data). Each pseudo-instance is routed down the ap-
propriate tree branch according to its assigned value. Upon reaching a leaf node, the
class-membership probability of the pseudo-instance is assigned as the frequency of the
class in the training instances associated with this leaf. The overall estimated probability
of class membership is calculated as the weighted average of class membership proba-
bilities over all pseudo-instances. If there is more than one missing value, the process
recurses with the weights combining multiplicatively. This treatment is fundamentally
different from value imputation because it combines the classifications across the dis-
tribution of an attribute’s possible values, rather than merely making the classification
based on its most likely value. In Section 3.3 we will return to this distinction when
analyzing the conditions under which each technique is preferable.

(c) Unique-value imputation. Rather than estimating an unknown feature value it is possible
to replace each missing value with an arbitrary unique value. Unique-value imputation
is preferable when the following two conditions hold: the fact that a value is missing
depends on the value of the class variable, and this dependence is present both in the
training and in the application/test data (Ding and Simonoff, 2006).

4. Reduced-feature Models: Imputation is required when the model being applied employs an
attribute whose value is missing in the test instance. An alternative approach is to apply a dif-
ferent model—one that incorporates only attributes that are known for the test instance. For

2. Imputing with the average of other features may seem strange, but in certain cases it is a reasonable choice. For
example, for surveys and subjective product evaluations, there may be very little variance among a given subject’s
responses, and a much larger variance between subjects for any given question (“did you like the teacher?”, “did you
like the class?”).

1628

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

example, a new classification tree could be induced after removing from the training data the
features corresponding to the missing test feature. This reduced-model approach may poten-
tially employ a different model for each test instance. This can be accomplished by delaying
model induction until a prediction is required, a strategy presented as “lazy” classification-
tree induction by Friedman et al. (1996). Alternatively, for reduced-feature modeling one may
store many models corresponding to various patterns of known and unknown test features.

With the exception of C4.5’s method, dealing with missing values can be expensive in terms
of storage and/or prediction-time computation. In order to apply a reduced-feature model to a test
example with a particular pattern P of missing values, it is necessary either to induce a model for
P on-line or to have a model for P precomputed and stored. Inducing the model on-line involves
computation time3 and storage of the training data. Using precomputed models involves storing
models for each P to be addressed, which in the worst case is exponential in the number of attributes.
As we discuss in detail below, one could achieve a balance of storage and computation with a hybrid
method, whereby reduced-feature models are stored for the most important patterns; lazy learning
or imputation could be applied for less-important patterns.

More subtly, predictive imputation carries a similar expense. In order to estimate the missing
value of an attribute A for a test case, a model must be induced or precomputed to estimate the
value of A based on the case’s other features. If more than one feature is missing for the test
case, the imputation of A is (recursively) a problem of prediction with missing values. Short of
abandoning straightforward imputation, one possibility is to take a reduced-model approach for
imputation itself, which begs the question: why not simply use a direct reduced-model approach?4
Another approach is to build one predictive imputation model for each attribute, using all the other
features, and then use an alternative imputation method (such as mean or mode value imputation, or
C4.5’s method) for any necessary secondary imputations. This approach has been taken previously
(Batista and Monard, 2003; Quinlan, 1989), and is the approach we take for the results below.

3. Experimental Comparison of Prediction-time Treatments for Missing Values

The following experiments compare the predictive performance of classification trees using value
imputation, distribution-based imputation, and reduced-feature modeling. For induction, we first
employ the J48 algorithm, which is the Weka (Witten and Frank, 1999) implementation of C4.5
classification tree induction. Then we present results using bagged classification trees and logistic
regression, in order to provide some evidence that the findings generalize beyond classification trees.

Our experimental design is based on the desire to assess the relative effectiveness of the differ-
ent treatments under controlled conditions. The main experiments simulate missing values, in order
to be able to know the accuracy if the values had been known, and also to control for various con-
founding factors, including pattern of missingness (viz., MCAR), relevance of missing values, and
induction method (including missing value treatment used for training). For example, we assume
that missing features are “important”: that to some extent they are (marginally) predictive of the
class. We avoid the trivial case where a missing value does not affect prediction, such as when a
feature is not incorporated in the model or when a feature does not account for significant variance

3. Although as Friedman et al. (1996) point out, lazy tree induction need only consider the single path in the tree that
matches the test case, leading to a considerable improvement in efficiency.

4. We are aware of neither theoretical nor empirical support for an advantage of predictive imputation over reduced
modeling in terms of prediction accuracy.

1629

SAAR-TSECHANSKY AND PROVOST

in the target variable. In the former case, different treatments should result in the same classifica-
tions. In the latter case different treatments will not result in significantly different classifications.
Such situations well may occur in practical applications; however, the purpose of this study is to
assess the relative performance of the different treatments in situations when missing values will af-
fect performance, not to assess how well they will perform in practice on any particular data set—in
which case, careful analysis of the reasons for missingness must be undertaken.

Thus, we first ask: assuming the induction of a high-quality model, and assuming that the values
of relevant attributes are missing, how do different treatments for missing test values compare? We
then present various followup studies: using different induction algorithms, using data sets with
“naturally occurring” missing values, and including increasing numbers missing values (chosen
at random). We also present an analysis of the conditions under which different missing value
treatments are preferable.

3.1 Experimental Setup

In order to focus on relevant features, unless stated otherwise, values of features from the top two
levels of the classification tree induced with the complete feature set are removed from test instances
(cf. Batista and Monard, 2003). Furthermore, in order to isolate the effect of various treatments
for dealing with missing values at prediction time, we build models using training data having no
missing values, except for the natural-data experiments in Section 3.6.

For distribution-based imputation we employ C4.5’s method for classifying instances with miss-
ing values as described above. For value imputation we estimate missing categorical features using
a J48 tree, and continuous values using Weka’s linear regression. As discussed above, for value
imputation with multiple missing values we use mean/mode imputation for the additional missing
values. For generating a reduced model, for each test instance with missing values, we remove all
the corresponding features from the training data before the model is induced so that only features
that are available in the test instance are included in the model.

Each reported result is the average classification accuracy of a missing-value treatment over 10
independent experiments in which the data set is randomly partitioned into training and test sets.
Except where we show learning curves, we use 70% of the data for training and the remaining 30%
as test data. The experiments are conducted on fifteen data sets described in Table 1. The data
sets comprise web-usage data sets (used by Padmanabhan et al., 2001) and data sets from the UCI
machine learning repository (Merz et al., 1996).

To conclude that one treatment is superior to another, we apply a sign test with the null hy-
pothesis that the average drops in accuracy using the two treatments are equal, as compared to the
complete setting (described next).

3.2 Comparison of PVI, DBI and Reduced Modeling

Figure 1 shows the relative difference for each data set and each treatment, between the classification
accuracy for the treatment and (as a baseline) the accuracy obtained if all features had been known
both for training and for testing (the “complete” setting). The relative difference (improvement) is
given by 100 · ACT−ACKACK , where ACK is the prediction accuracy obtained in the complete setting, and
ACT denotes the accuracy obtained when a test instance includes missing values and a treatment T
is applied. As expected, in almost all cases the improvements are negative, indicating that missing

1630

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

Data Nominal
Set Instances Attributes Attributes
Abalone 4177 8 1
Breast Cancer 699 9 0
BMG 2295 40 8
CalHouse 20640 8 0
Car 1728 6 6
Coding 20000 15 15
Contraceptive 1473 9 7
Credit 690 15 8
Downsize 1277 15 0
Etoys 270 40 8
Expedia 500 40 8
Move 3029 10 10
PenDigits 10992 16 0
Priceline 447 40 8
QVC 500 40 8

Table 1: Summary of Data Sets

values degrade classification, even when the treatments are used. Small negative values in Figure 1
are better, indicating that the corresponding treatment yields only a small reduction in accuracy.

Reduced-feature modeling is consistently superior. Table 2 shows the differences in the relative
improvements obtained with each imputation treatment from those obtained with reduced modeling.
A large negative value indicates that an imputation treatment resulted in a larger drop in accuracy
than that exhibited by reduced modeling.

Reduced models yield an improvement over one of the other treatments for every data set. The
reduced-model approach results in better performance compared to distribution-based imputation
in 13 out of 15 data sets, and is better than value imputation in 14 data sets (both significant with
p< 0.01).

Not only does a reduced-feature model almost always result in statistically significantly more-
accurate predictions, the improvement over the imputation methods often was substantial. For ex-
ample, for the Downsize data set, prediction with reduced models results in less than 1% decrease
in accuracy, while value imputation and distribution-based imputation exhibit drops of 10.97% and
8.32%, respectively; the drop in accuracy resulting from imputation is more than 9 times that ob-
tained with a reduced model. The average drop in accuracy obtained with a reduced model across all
data sets is 3.76%, as compared to an average drop in accuracy of 8.73% and 12.98% for predictive
imputation and distribution-based imputation, respectively. Figure 2 shows learning curves for all
treatments as well as for the complete setting for the Bmg, Coding and Expedia data sets, which
show three characteristic patterns of performance.

3.3 Feature Imputability and Modeling Error

Let us now consider the reasons for the observed differences in performance. The experimental
results show clearly that the two most common treatments for missing values, predictive value

1631

SAAR-TSECHANSKY AND PROVOST

-40

-35

-30

-25

-20

-15

-10

-5

0

5
Aba

lon
e

Brea
stC

an
cer

BMG
Calh

ou
s

Car Cod
ing

Con
tra

ce
ptiv

e

Cred
it

Dow
ns

ize

Etoy
s

Exp
ed

ia

Mov
e

Pen
Digit

s

Pric
elin

e

QVC

Di
ffe

re
nc

e
in

 a
cc

ur
ac

y
co

m
pa

re
d

to

wh
en

 v
al

ue
s

ar
e

kn
ow

n

Reduced ModelPredictive ImputationDistribution-Based Imputation (C4.5)

Figure 1: Relative differences in accuracy (%) between prediction with each missing data treatment
and prediction when all feature values are known. Small negative values indicate that
the treatment yields only a small reduction inaccuracy. Reduced modeling consistently
yields the smallest reductions in accuracy—often performing nearly as well as having all
the data. Each of the other techniques performs poorly on at least one data set, suggesting
that one should choose between them carefully.

imputation (PVI) and C4.5’s distribution-based imputation (DBI), each has a stark advantage over
the other in some domains. Since to our knowledge the literature currently provides no guidance as
to when each should be applied, we now examine conditions under which each technique ought to
be preferable.

The different imputation treatments differ in how they take advantage of statistical dependencies
between features. It is easy to develop a notion of the exact type of statistical dependency under
which predictive value imputation should work, and we can formalize this notion by defining feature
imputability as the fundamental ability to estimate one feature using others. A feature is completely
imputable if it can be predicted perfectly using the other features—the feature is redundant in this
sense. Feature imputability affects each of the various treatments, but in different ways. It is reveal-
ing to examine, at each end of the feature imputability spectrum, the effects of the treatments on
expected error.5 In Section 3.3.4 we consider why reduced models should perform well across the
spectrum.

3.3.1 HIGH FEATURE IMPUTABILITY

First let’s consider perfect feature imputability. Assume also, for the moment, that both the primary
modeling and the imputationmodeling have no intrinsic error—in the latter case, all existing feature

5. Kohavi and John (1997) focus on feature relevance and identify useful features for predictive model induction. Fea-
ture relevance pertains to the potential contribution of a given feature to prediction. Our notion of feature imputability
addresses the ability to estimate a given feature’s value using other feature values. In principle, these two notions are
independent—a feature with low or high relevance may have high or low feature imputability.

1632

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

Data Predictive Distribution-based
Set Imputation Imputation (C4.5)
Abalone 0.12 0.36
Breast Cancer -3.45 -26.07
BMG -2.29 -8.67
CalHouse -5.32 -4.06
Car -13.94 0.00
Coding -5.76 -4.92
Contraceptive -9.12 -0.03
Credit -23.24 -11.61
Downsize -10.17 -7.49
Etoys -4.64 -6.38
Expedia -0.61 -10.03
Move -0.47 -13.33
PenDigits -0.25 -2.70
Priceline -0.48 -35.32
QVC -1.16 -12.05
Average -5.38 -9.49

Table 2: Differences in relative improvement (from Figure 1 between each imputation treatment
and reduced-feature modeling. Large negative values indicate that a treatment is substan-
tially worse than reduced-feature modeling

imputability is captured. Predictive value imputation simply fills in the correct value and has no
effect whatsoever on the bias and variance of the model induction.

Consider a very simple example comprising two attributes, A and B, and a class variableC with
A = B = C. The “model” A → C is a perfect classifier. Now given a test case with A missing,
predictive value imputation can use the (perfect) feature imputability directly: B can be used to
infer A, and this enables the use of the learned model to predict perfectly. We defined feature
imputability as a direct correlate to the effectiveness of value imputation, so this is no surprise. What
is interesting is now to consider whether DBI also ought to perform well. Unfortunately, perfect
feature imputability introduces a pathology that is fatal to C4.5’s distribution-based imputation.
When using DBI for prediction, C4.5’s induction may have substantially increased bias, because
it omits redundant features from the model—features that will be critical for prediction when the
alternative features are missing. In our example, the tree induction does not need to include variable
B because it is completely redundant. Subsequently when A is missing, the inference has no other
features to fall back on and must resort to a default classification. This was an extreme case, but
note that it did not rely on any errors in training.

The situation gets worse if we allow that the tree induction may not be perfect. We should
expect features exhibiting high imputability—that is, that can yield only marginal improvements
given the other features—to be more likely to be omitted or pruned from classification trees. Similar
arguments apply beyond decision trees to other modeling approaches that use feature selection.

1633

SAAR-TSECHANSKY AND PROVOST

Bmg

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based imputation

Coding

 56

 58

 60

 62

 64

 66

 68

 70

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based imputation

Expedia

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based imputation

Figure 2: Learning curves for missing value treatments

1634

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

A

A=1, 30%A=3, 30%

BBB

90% -
10% +

20% -
80% +

70% -
30% +

90% -
10% +

B=1, 50%B=0, 50%B=1, 50%B=0, 50%

70% -
30% +

90% -
10% +

B=1, 50%B=0, 50%

A=2, 40%

Figure 3: Classification tree example: consider an instance at prediction time for which feature A
is unknown and B=1.

Finally, consider the inference procedures under high imputability. With PVI, classification
trees’ predictions are determined (as usual) based on the class distribution of a subset Q of training
examples assigned to the same leaf node. On the other hand, DBI is equivalent to classification
based on a superset S of Q. When feature imputability is high and PVI is accurate, DBI can only do
as well as PVI if the weighted majority class for S is the same as that of Q. Of course, this is not
always the case so DBI should be expected to have higher error when feature imputability is high.

3.3.2 LOW FEATURE IMPUTABILITY

When feature imputability is low we expect a reversal of the advantage accrued to PVI by using Q
rather than S. The use of Q now is based on an uninformed guess: when feature imputability is very
low PVI must guess the missing feature value as simply the most common one. The class estimate
obtained with DBI is based on the larger set S and captures the expectation over the distribution
of missing feature values. Being derived from a larger and unbiased sample, DBI’s “smoothed”
estimate should lead to better predictions on average.

As a concrete example, consider the classification tree in Figure 3. Assume that there is no
feature imputability at all (note that A and B are marginally independent) and assume that A is
missing at prediction time. Since there is no feature imputability, A cannot be inferred using B and
the imputation model should predict the mode (A= 2). As a result every test example is passed to the
A= 2 subtree. Now, consider test instances with B= 1. Although (A= 2, B= 1) is the path chosen
by PVI, it does not correspond to the majority of training examples with B= 1. Assuming that test
instances follow the same distribution as training instances, on B = 1 examples PVI will have an
accuracy of 38%. DBI will have an accuracy of 62%. In sum, DBI will “marginalize” across the
missing feature and always will predict the plurality class. PVI sometimes will predict a minority
class. Generalizing, DBI should outperform PVI for data sets with low feature imputability.

1635

SAAR-TSECHANSKY AND PROVOST

Difference between Value Imputation and DBI

-13.00

-3.00

7.00

17.00

27.00

37.00

Car
Cred

it

CalH
ouse

Cod
ing

Con
tra

ce
ptiv

e
Mov

e

Dow
ns

ize

BcW
isc Bmg

Aba
lon

e
Etoys

Pen
Digit

s

Exp
ed

ia

Pric
elin

e
Qvc

Low Feature Imputability High

Figure 4: Differences between the relative performances of PVI and DBI. Domains are ordered left-
to-right by increasing feature imputability. PVI is better for higher feature imputability,
and DBI is better for lower feature imputability.

3.3.3 DEMONSTRATION

Figure 4 shows the 15 domains of the comparative study ordered left-to-right by a proxy for in-
creasing feature imputability.6 The bars represent the differences in the entries in Table 2, between
predictive value imputation and C4.5’s distribution-based imputation. A bar above the horizontal
line indicates that value imputation performed better; a bar below the line indicates that DBI per-
formed better. The relative performances follow the above argument closely, with value imputation
generally preferable for high feature imputability, and C4.5’s DBI generally better for low feature
imputability.

3.3.4 REDUCED-FEATURE MODELING SHOULD HAVE ADVANTAGES ALL ALONG THE
IMPUTABILITY SPECTRUM

Whatever the degree of imputability, reduced-feature modeling has an important advantage. Re-
duced modeling is a lower-dimensional learning problem than the (complete) modeling to which
imputation methods are applied; it will tend to have lower variance and thereby may exhibit lower

6. Specifically, for each domain and for each missing feature we measured the ability to model the missing feature
using the other features. For categorical features we measured the classification accuracy of the imputation model;
for numeric features we computed the correlation coefficient of the regression. We created a rough proxy for the
feature imputability in a domain, by averaging these across all the missing features in all the runs. As the actual
values are semantically meaningless, we just show the trend on the figure. The proxy value ranged from 0.26 (lowest
feature imputability) to 0.98 (highest feature imputability).

1636

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

generalization error. To include a variable that will be missing at prediction time at best adds an
irrelevant variable to the induction, increasing variance. Including an important variable that would
be missing at prediction time may be worse, because unless the value can be replaced with a highly
accurate estimate, its inclusion in the model is likely to reduce the effectiveness at capturing predic-
tive patterns involving the other variables, as we show below.

In contrast, imputation takes on quite an ambitious task. From the same training data, it must
build an accurate base classifier and build accurate imputation models for any possible missing
values. One can argue that imputation tries implicitly to approximate the full-joint distribution,
similar to a graphical model such as a dependency network (Heckerman et al., 2000). There are
many opportunities for the introduction of error, and the errors will be compounded as imputation
models are composed.

Revisiting the A,B,C example of Section 3.3.1, reduced-feature modeling uses the feature im-
putability differently from predictive imputation. The (perfect) feature imputability ensures that
there will be an alternative model (B→C) that will perform well. Reduced-feature modeling may
have additional advantages over value imputation when the imputation is imperfect, as just dis-
cussed.

Of course, the other end of the feature imputability spectrum, when feature imputability is very
low, is problematic generally when features are missing at prediction time. At the extreme, there is
no statistical dependency at all between the missing feature and the other features. If the missing
feature is important, predictive performance will necessarily suffer. Reduced modeling is likely to
be better than the imputation methods, because of its reduced variance as described above.

Finally, consider reduced-feature modeling in the context of Figure 3, and where there is no
feature imputability at all. What would happen if due to insufficient data or an inappropriate in-
ductive bias, the complete modeling were to omit the important feature (B) entirely? Then, if A is
missing at prediction time, no imputation technique will help us do better than merely guessing that
the example belongs to the most common class (as with DBI) or guessing that the missing value is
the most common one (as in PVI). Reduced-feature modeling may induce a partial (reduced) model
(e.g., B= 0→C = −, B= 1→C = +) that will do better than guessing in expectation.

Figure 5 uses the same ordering of domains, but here the bars show the decreases in accuracy
over the complete-data setting for reduced modeling and for value imputation. As expected, both
techniques improve as feature imputability increases. However, the reduced-feature models are
much more robust—with only one exception (Move) reduced-feature modeling yields excellent
performance until feature imputability is very low. Value imputation does very well only for the
domains with the highest feature imputability (for the highest-imputability domains, the accuracies
of imputation and reduced modeling are statistically indistinguishable).

3.4 Evaluation using Ensembles of Trees

Let us now examine whether the results we have presented change substantively if we move beyond
simple classification trees. Here we use bagged classification trees (Breiman, 1996), which have
been shown repeatedly to outperform simple classification trees consistently in terms of generaliza-
tion performance (Bauer and Kohavi, 1999; Perlich et al., 2003), albeit at the cost of computation,
model storage, and interpretability. For these experiments, each bagged model comprises thirty
classification trees.

1637

SAAR-TSECHANSKY AND PROVOST

-5

5

15

25

35

45

Car
Cred

it

Calh
ou

s

Cod
ing

Con
tra

ce
ptiv

e
Mov

e

Dow
ns

ize

BcW
isc Bmg

Aba
lon

e
Etoys

Pen
Digit

s

Exp
ed

ia

Pric
elin

e
Qvc

Accuracy decrease with Reduced Models
Accuracy decrease with imputation

Low Feature Imputability High

Figure 5: Decreases in accuracy for reduced-feature modeling and value imputation. Domains are
ordered left-to-right by increasing feature imputability. Reduced modeling is much more
robust to moderate levels of feature imputability.

Figure 6 shows the performance of the three missing-value treatments using bagged classifica-
tion trees, showing (as above) the relative difference for each data set between the classification
accuracy of each treatment and the accuracy of the complete setting. As with simple trees, reduced
modeling is consistently superior. Table 3 shows the differences in the relative improvements of
each imputation treatment from those obtained with reduced models. For bagged trees, reduced
modeling is better than predictive imputation in 12 out of 15 data sets, and it performs better than
distribution-based imputation in 14 out of 15 data sets (according to the sign test, these differences
are significant at p< 0.05 and p< 0.01 respectively). As for simple trees, in some cases the advan-
tage of reduced modeling is striking.

Figure 7 shows the performance of all treatments for models induced with an increasing training-
set size for the Bmg, Coding and Expedia data sets. As for single classification models, the advan-
tages obtained with reduced models tend to increase as the models are induced from larger training
sets.

These results indicate that for bagging, a reduced model’s relative advantage with respect to
predictive imputation is comparable to its relative advantage when a single model is used. These
results are particularly notable given the widespread use of classification-tree induction, and of
bagging as a robust and reliable method for improving classification-tree accuracy via variance
reduction.

Beyond simply demonstrating the superiority of reduced modeling, an important implication is
that practitioners and researchers should not choose either C4.5-style imputation or predictive value
imputation blindly. Each does extremely poorly in some domains.

1638

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

-40

-35

-30

-25

-20

-15

-10

-5

0

5
Aba

lon
e

Brea
st

Can
ce

r

BMG
Call

Hou
se

Car Cod
ing

Con
tra

ce
ptiv

e

Cred
it

Dow
ns

ize

Etoys
Exp

ed
ia

Mov
e

Pen
Digi

ts

Pric
elin

e

QVC

Figure 6: Relative differences in accuracy for bagged decision trees between each missing value
treatment and the complete setting where all feature values are known. Reduced modeling
consistently is preferable. Each of the other techniques performs poorly on at least one
data set.

Predictive Distribution-based
Data Set Imputation Imputation (C4.5)

Abalone -0.45 -0.51
Breast Cancer -1.36 -1.28
BMG -3.01 -7.17
CalHouse -5.16 -4.41
Car -22.58 -9.72
Coding -6.59 -2.98
Contraceptive -8.21 0.00
Credit -25.96 -5.36
Downsize -6.95 -4.94
Etoys -3.83 -8.24
Expedia 0.20 -8.48
Move -0.92 -10.61
PenDigits -0.11 -2.33
Priceline 0.36 -25.97
QVC 0.13 -9.99
Average -5.47 -6.57

Table 3: Relative difference in prediction accuracy for bagged decision trees between imputation
treatments and reduced-feature modeling.

3.5 Evaluation using Logistic Regression

In order to provide evidence that the relative effectiveness of reduced models is not specific to clas-
sification trees and models based on trees, let us examine logistic regression as the base classifier.

1639

SAAR-TSECHANSKY AND PROVOST

Bmg

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based Imputation

Coding

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based Imputation

Expedia

 86

 88

 90

 92

 94

 96

 98

 0 10 20 30 40 50 60 70 80 90 100

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Training Set Size (% of total)

Complete
Reduced Models

Predictive Imputation
Distribution-based Imputation

Figure 7: Learning curves for missing value treatments using bagged decision trees.

1640

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

-40

-35

-30

-25

-20

-15

-10

-5

0

5
Aba

lon
e

Brea
st

Can
ce

r

BMG
Call

Hou
se

Car Cod
ing

Con
tra

ce
ptiv

e

Cred
it

Dow
ns

ize

Etoys
Exp

ed
ia

Mov
e

Pen
Digit

s

Pric
elin

e

QVC

Figure 8: Relative differences in accuracies for a logistic regression model when predicitve value
imputation and reduced modeling are employed, as compared to when all values are
known.

Because C4.5-style distribution-based imputation is not applicable for logistic regression, we com-
pare predictive value imputation to the reduced model approach. Figure 8 shows the difference in
accuracy when predictive value imputation and reduced models are used. Table 4 shows the differ-
ences in the relative improvements of the predictive imputation treatment from those obtained with
reduced models. For logistic regression, reduced modeling results in higher accuracy than predictive
imputation in all 15 data sets (statistically significant with p# 0.01).

3.6 Evaluation with “Naturally Occurring” Missing Values

We now compare the treatment on four data sets with naturally occurring missing values. By “nat-
urally occurring,” we mean that these are data sets from real classification problems, where the
missingness is due to processes of the domain outside of our control. We hope that the compari-
son will provide at least a glimpse at the generalizability of our findings to real data. Of course,
the missingness probably violates our basic assumptions. Missingness is unlikely to be completely
at random. In addition, missing values may have little or no impact on prediction accuracy, and
the corresponding attributes may not even be used by the model. Therefore, even if the qualitative
results hold, we should not expect the magnitude of the effects to be as large as in the controlled
studies.

We employ four business data sets described in Table 5. Two of the data sets pertain to market-
ing campaigns promoting financial services to a bank’s customers (Insurance and Mortgage). The
Pricing data set captures consumers’ responses to price increases—in response to which customers
either discontinue or continue their business with the firm. The Hospitalization data set contains
medical data used to predict diabetic patients’ rehospitalizations. As before, we induced a model
from the training data. Because instances in the training data include missing values as well, models
are induced from training data using C4.5’s distribution-based imputation. We applied the model to
instances that had at least one missing value. Table 5 shows the average number of missing values
in a test instance for each of the data sets.

1641

SAAR-TSECHANSKY AND PROVOST

Predictive
Data Set Imputation

Abalone -0.20
Breast Cancer -1.84
BMG -0.75
CalHouse -7.11
Car -12.04
Coding -1.09
Contraceptive -1.49
Credit -3.05
Downsize -0.32
Etoys -0.26
Expedia -1.59
Move -3.68
PenDigits -0.34
Priceline -5.07
QVC -0.02
Average -2.59

Table 4: Relative difference in prediction accuracy for logistic regression between imputation and
reduced-feature modeling. Reduced modeling never is worse, and sometimes is substan-
tially more accurate.

Data Nominal Average Number
Set Instances Attributes Attributes of Missing Features
Hospitalization 48083 13 7 1.73
Insurance 18542 16 0 2.32
Mortgage 2950 10 1 2.76
Pricing 15531 28 8 3.56

Table 5: Summary of business data sets with “naturally occurring” missing values.

Figure 9 and Table 6 show the relative decreases in classification accuracy that result for each
treatment relative to using a reduced-feature model. These results with natural missingness are con-
sistent with those obtained in the controlled experiments discussed earlier. Reduced modeling leads
to higher accuracies than both popular alternatives for all four data sets. Furthermore, predictive
value imputation and distribution-based imputation each outperforms the other substantially on at
least one data set—so one should not choose between them arbitrarily.

3.7 Evaluation with Multiple Missing Values

We have evaluated the impact of missing value treatments when the values of one or a few impor-
tant predictors are missing from test instances. This allowed us to assess how different treatments
improve performance when performance is in fact undermined by the absence of strong predictors

1642

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Hospitalization Insurance Mortgage Pricing

Figure 9: Relative percentage-point differences in predictive accuracy obtained with distribution-
based imputation and predictive value imputation treatments compared to that obtained
with reduced-feature models. The reduced models are more accurate in every case.

Predictive Distribution-based
Data Set Imputation Imputation (C4.5)

Hospitalization -0.52 -2.27
Insurance -3.04 -3.03
Mortgage -3.40 -0.74
Pricing -1.82 -0.48

Table 6: Relative percentage-point difference in prediction accuracy between imputation treatments
and reduced-feature modeling.

at inference time. Performance may also be undermined when a large number of feature values are
missing at inference time.

Figure 10 shows the accuracies of reduced-feature modeling and predictive value imputation
as the number of missing features increases, from 1 feature up to when only a single feature is
left. Features are removed at random. The top graphs are for tree induction and the bottom for
bagged tree induction. These results are for Breast Cancer and Coding, which have moderate-to-
low feature imputability, but the general pattern is consistent across the other data sets. We see
a typical pattern: the imputation methods have steeper decreases in accuracy as the number of
missing values increases. Reduced modeling’s decrease is convex, with considerably more robust
performance even for a large number of missing values.

Finally, this discussion would be incomplete if we did not mention two particular sources of
imputation-modeling error. First, as we mentioned earlier when more than one value is missing, the
imputation models themselves face a missing-at-prediction-time problem, which must be addressed
by a different technique. This is a fundamental limitation to predictive value imputation as it is used
in practice. One could use reduced modeling for imputation, but then why not just use reduced
modeling in the first place? Second, predictive value imputation might do worse than reduced
modeling, if the inductive bias of the resultant imputation model is “worse” than that of the reduced
model. For example, perhaps our classification-tree modeling does a much better job with numeric
variables than the linear regression we use for imputation of real-value features. However, this does
not seem to be the (main) reason for the results we see. If we look at the data sets comprising only

1643

SAAR-TSECHANSKY AND PROVOST

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

 0 2 4 6 8 10 12 14

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced model
Distribution-based imputation

Predictive Imputation
 65

 70

 75

 80

 85

 90

 95

 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced model
Distribution-based imputation

Predictive Imputation

Coding (Single tree) Breast Cancer (Single tree)

 45

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12 14

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced model
Distribution-based imputation

Predictive Imputation
 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced model
Distribution-based imputation

Predictive Imputation

Coding (Bagging) Breast Cancer (Bagging)

Figure 10: Accuracies of missing value treatments as the number of missing features increases

categorical features (viz., Car, Coding, and Move, for which we use C4.5 for both the base model
and the imputation model), we see the same patterns of results as with the other data sets.

4. Hybrid Models for Efficient Prediction with Missing Values

The increase in accuracy of reduced modeling comes at a cost, either in terms of storage or of
prediction-time computation (or both). Either a new model must be induced for every (novel) pat-
tern of missing values encountered, or a large number of models must be stored. Storing many
classification models has become standard practice, for example, for improving accuracy with clas-
sifier ensembles. Unfortunately, the storage requirements for full-blown reduced modeling become
impracticably large as soon as the possible number of (simultaneous) missing values exceeds a
dozen or so. The strength of reduced modeling in the empirical results presented above suggests its
tactical use to improve imputation, for example by creating hybrid models that trade off efficiency
for improved accuracy.

1644

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

4.1 Likelihood-based Hybrid Solutions

One approach for reducing the computational cost of reduced modeling is to induce and store mod-
els for some subset of the possible patterns of missing features. When a test case is encountered,
the corresponding reduced model is queried. If no corresponding model has been stored, the hy-
brid would call on a fall-back technique: either incurring the expense of prediction-time reduced
modeling, or invoking an imputation method (and possibly incurring reduced accuracy).

Not all patterns of missing values are equally likely. If one can estimate from prior experience
the likelihood for any pattern of missing values, then this information may be used to decide among
different reduced models to induce and store. Even if historical data are not sufficient to support
accurate estimation of full, joint likelihoods, it may be that the marginal likelihoods of different
variables being missing are very different. And even if the marginals are or must be assumed to
be uniform, they still may well lead to very different (inferred) likelihoods of the many patterns of
multiple missing values. In the context of Bayesian network induction, Greiner et al. (1997b) note
the important distinction between considering only the underlying distribution for model induc-
tion/selection and considering the querying distribution as well. Specifically, they show that when
comparing different Bayesian networks one should identify the network exhibiting the best expected
performance over the query distribution, that is, the distribution of tasks that the network will be
used to answer, rather than the network that satisfies general measures such as maximum likelihood
over the underlying event distribution. H. and F. (1992) employ a similar notion to reduce inference
time with Bayesian networks. H. and F. (1992) precompute parts of the network that pertain to a
subset of frequently encountered cases so as to increase the expected speed of inference.

The horizontal, dashed line in Figure 11 shows the performance of pure predictive value impu-
tation for the CalHouse data set. The lower of the two curves in Figure 11 shows the performance of
a likelihood-based reduced-models/imputation hybrid. The hybrid approach allows one to choose
an appropriate space-usage/accuracy tradeoff, and the figure shows that storing even a few reduced
models can result in considerable improvement. The curve was generated as follows. Given enough
space to store k models, the hybrid induces and stores reduced models for the top-k most likely
missing-feature patterns, and uses distribution-based imputation for the rest. The Calhouse data
set has eight attributes, corresponding to 256 patterns of missing features. We assigned a random
probability of occurrence for each pattern as follows. The frequency of each pattern was drawn
at random from the unit uniform distribution and subsequently normalized so that the frequencies
added up to one. For each test instance we sampled a pattern from the resulting distribution and
removed the values of features specified by the pattern.

Notice that for the likelihood-based hybrid the marginal improvement in accuracy does not de-
crease monotonically with increasing model storage: the most frequent patterns are not necessarily
the patterns that lead to the largest accuracy increases. Choosing the best set of models to store
is a complicated optimization problem. One must consider not only the likelihood of a pattern of
missing features, but also the expected improvement in accuracy that will result from including the
corresponding model in the “model base.” Calculating the expected improvement is complicated by
the fact that the patterns of missing values form a lattice (Schuurmans and Greiner, 1997). For an
optimal solution, the expected improvement for a given pattern should not be based on the improve-
ment over using the default strategy (e.g., imputation), but should be based on using the next-best
already-stored pattern. Determining the next-best pattern is a non-trivial estimation problem, and,

1645

SAAR-TSECHANSKY AND PROVOST

68

69

70

71

72

73

74

75

76

77

78

79

0 50 100 150 200 250 300

Num ber of m odels induced (for hybrid approaches)

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

Reduced Models/Imputation Hybrid
Prediction with Imputation
Expected Utility

Figure 11: Accuracies of hybrid strategies for combining reduced modeling and imputation. Stor-
ing even a small fraction of the possible reduced models can improve accuracy consid-
erably.

even if it weren’t, the optimization problem is hard. Specifically, the optimal set of reduced models
M corresponds to solving the following optimization task:

argmaxM

(

∑
f
[p(f) ·U(f |M)]

)

s.t. ∑
fm∈M

t(fm) ≤ T ,

where M is the subset of missing patterns for which reduced models are induced, t(f) is the
(marginal) resource usage (time or space) for reduced modeling with pattern f , T is the maxi-
mum total resource usage allocated for reduced model induction, and U(f |M) denotes the utility
from inference for an instance with pattern f given the set of reduced models in the subsetM (when
f ∈M the utility is derived from inference via the respective reduced model, otherwise the utility is
derived from inference using the next-best already-stored pattern).

The upper curve in Figure 11 shows the performance of a heuristic approximation to a utility-
maximizing hybrid. We estimate the marginal utility of adding a missing-feature pattern f as
u(f) = p(f) · (ârm(f)− âi(f)), where p(f) is the likelihood of encountering pattern f , ârm(f) is
the estimated accuracy of reduced modeling for f and âi(f) is the estimated accuracy of a predic-
tive value imputation model for missing pattern f . We estimate ârm(f) and âi(f) based on cross-
validation using the training data. The figure shows that even a heuristic expected-utility approach
can improve considerably over the pure likelihood-based approach.

4.2 Reduced-Feature Ensembles

The reduced-feature approach involves either on-line computation or the storing of multiple mod-
els, and storing multiple models naturally motivates using ensemble classifiers. Consider a simple

1646

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

Reduced-Feature Ensemble (ReFE), based on a set R of models each induced by excluding a single
attribute, where the cardinality of R is the number of attributes. Model i ∈ R tries to capture an
alternative hypothesis that can be used for prediction when the value for attribute vi, perhaps among
others, is unknown. Because the models exclude only a single attribute, a ReFE avoids the com-
binatorial space requirement of full-blown reduced modeling. When multiple values are missing,
ReFE ensemble members rely on imputation for the additional missing values. We employ DBI.

More precisely, a ReFE classifier works as follows. For each attribute vi a model mi is induced
with vi removed from the training data. For a given test example in which the values for the set
of attributes V are missing, for each attribute vi ∈ V whose value is missing, the corresponding
model mi is applied to estimate the (probability of) class membership. To generate a prediction, the
predictions of all models applied to a test example are averaged. When a single feature is missing,
ReFE is identical to the reduced-model approach. The application of ReFE for test instances with
two or more missing features results in an ensemble. Hence, in order to achieve variance reduction
as with bagging, in our experiments training data are resampled with replacement for each member
of the ensemble.

Table 7 summarizes the relative improvements in accuracy as compared to a single model using
predictive value imputation. For comparison we show the improvements obtained by bagging alone
(with imputation), and by the full-blown reduced-model approach. For these experiments we fixed
the number of missing features to be three. The accuracies of ReFE and bagging are also plotted in
Figure 12 to highlight the difference in performance across domains. Bagging uses the same number
of models as employed by ReFE, allowing us to separate the advantage that can be attributed to the
reduced modeling and that attributable to variance reduction.

We see that ReFE consistently improves over both a single model with imputation (positive en-
tries in the ReFE column) and over bagging with imputation. In both comparisons, ReFE results in
higher accuracy on all data sets, shown in bold in Table 7, except Car; the 14-1 win-loss record is
statistically significant with p< 0.01. The magnitudes of ReFE’s improvements vary widely, but on
average they split the difference between bagging with imputation and the full-blown reduced mod-
eling. Note that although full-blown reduced modeling usually is more accurate, ReFE sometimes
shows better accuracy, indicating that the variance reduction of bagging complements the (partial)
reduced modeling.

The motivation for employing ReFE instead of the full-blown reduced-feature modeling is the
substantially lower computational burden of ReFE as compared to that of reduced modeling. For a
domain with N attributes, (2N−1) models must be induced by reduced modeling in order to match
each possible missing pattern. ReFE induces only N models—one for each attribute. For example,
the Calhouse data set, which includes only 8 attributes, required more than one-half hour to produce
all the 256 models for full-blown reduced modeling. It took about a minute to produce the 8 models
for the ReFE.

4.3 Larger Ensembles

The previous results do not take full advantage of the variance reduction possible with large en-
sembles (Hastie et al., 2001). Table 8 shows the percentage improvement in accuracy over a single
model with imputation, for ReFE, bagging with imputation, and bagging of reduced models, each
using thirty ensemble members. The ReFE ensembles comprise 10 reduced models for each missing
feature, where each individual model is generated using sampling with replacement as in bagging.

1647

SAAR-TSECHANSKY AND PROVOST

Reduced
Data Sets Bagging ReFE Model
Abalone 0.11 0.26 0.05
BreastCancer 4.35 4.51 4.62
Bmg 2.88 3.51 2.57
CalHouse 1.25 6.06 5.45
Car 0.10 -0.28 17.55
Coding 4.82 6.97 5.32
Contraceptive 0.39 0.45 1.16
Credit 2.58 5.54 8.12
Downsize 3.09 3.78 6.51
Etoys 0.00 2.28 1.07
Expedia 1.76 2.11 2.73
Move 3.26 5.99 8.97
Pendigits 0.06 0.58 1.57
Priceline 3.29 4.98 10.84
Qvc 1.83 2.44 2.60
Average 1.98 3.27 5.27

Table 7: Relative improvements in accuracy for bagging with imputation and ReFE, as compared
to a single model with imputation. Bold entries show the cases where ReFE improves both
over using a single model with imputation and over bagging with imputation. For compar-
ison, the rightmost column shows the improvements of full-blown reduced modeling. The
ReFEs are more accurate than either a single model with imputation, or bagging with im-
putation, while being much more efficient than reduced modeling in terms of computation
and/or storage.

For control, for any given number of missing features in a test example, we evaluate the performance
of bagging with the same number of individual models. Similarly, we generate a bagged version
of the full-blown reduced model, with the same number of models as in the other approaches. As
before, we fix the number of missing values in each test instance to three.

As expected, including a larger number of models in each ensemble results in improved perfor-
mance for all treatments, for almost all data sets. The advantage exhibited by ReFE over bagging
with imputation is maintained. As shown in Table 8. ReFE results in higher accuracy than bagging
with imputation for all 15 data sets (statistically significant at p# 0.01).

4.4 ReFEs with Increasing Numbers of Missing Values

For the smaller ensembles, Figure 13 shows the decrease in classification accuracy that results when
the number of missing values in each test instance is increased. Attributes are chosen for removal
uniformly at random. For all data sets, the accuracies of all methods decrease as more attributes
are missing at prediction time. The marginal reductions in accuracy with increasing missing values
are similar for ReFE and for bagging with imputation, with ReFE’s advantage diminishing slowly

1648

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

-1

0

1
2

3

4

5
6

7

8

Abalo
ne

Breas
tCan

ce
r

Bmg

CalHou
se Car

Cod
ing

Contr
ace

ptiv
e

Cred
it

Downs
ize

Etoys

Exp
edia

Mov
e

Pen
dig

its

Pric
elin

e
QVC

R
el

ai
tv

e
Im

pr
ov

em
en

t i
n

Ac
cu

ra
cy

Figure 12: Relative improvement in accuracy (%) as obtained for bagging with imputation and
ReFE, with respect to a single model with imputation.

Bagging with Bagging with
Data Sets Imputation ReFE Reduced Model

Abalone 0.34 0.49 0.83
BreastCancer 5.10 5.89 5.15
Bmg 7.22 7.88 8.21
CalHouse 2.66 7.10 8.47
Car -0.10 -0.08 17.55
Coding 14.39 15.28 17.65
Contraceptive 0.64 0.89 1.03
Credit 4.98 6.77 9.35
Downsize 6.91 7.60 11.13
Etoys 2.95 3.35 3.48
Expedia 3.41 4.19 5.27
Move 6.48 9.73 13.78
PenDigits 0.44 0.90 1.52
Priceline 7.55 9.42 11.02
QVC 4.23 5.88 7.16
Average 4.48 5.69 8.11

Table 8: Percentage improvement in accuracy compared to a single model with imputation, for
bagging with imputation, ReFE, and bagging with reduced models. All ensembles employ
30 models for prediction. Bold entries show the cases where ReFE improves both over
using a single model with imputation and over bagging with imputation.

with increasing missing values. This is in stark contrast to the robust behavior of reduced models
(also shown in Figure 13). This is because ReFE uses imputation to handle additional missing

1649

SAAR-TSECHANSKY AND PROVOST

 60

 65

 70

 75

 80

 85

 0 2 4 6 8 10 12

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced Models
ReFE

Imputation-Bagging
Imputation - Tree

 56

 58

 60

 62

 64

 66

 68

 70

 72

 74

 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Reduced Models
ReFE

Imputation-Bagging
Imputation - Tree

Credit Move

Figure 13: Performance of missing value treatments for small ensemble models as the number of
missing values increases.

 60

 65

 70

 75

 80

 85

 0 2 4 6 8 10 12

A
cc

ur
ac

y

ging - els
E

ging with Imputation
 56

 58

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Number of missing features

Bagging- Reduced Models
ReFE

Bagging with Imputation

Credit Move

Figure 14: Performance of treatments for missing values for large ensemble models as the number
of missing values increases.

values. For the larger ensembles, Figure 14 shows the classification accuracies for ReFE, bagging
with imputation, and bagging with reduced models, where each ensemble includes 30 models. In
general, the patterns observed for small ensembles are exhibited for larger ensembles as well.

In sum, while using no more storage space than standard bagging, ReFE offers significantly
better performance than imputation and than bagging with imputation for small numbers of missing
values and hence provides another alternative for domains where full-blown reduced modeling (and
especially reduced modeling with bagging) is impracticably expensive. Thus, in domains in which
test instances with few missing values are frequent it may be beneficial to consider the use of ReFE,
resorting to reduced modeling only for (infrequent) cases with many missing values.

Finally, as desired the ReFE accuracies clearly are between the extremes, trading off accuracy
and storage/computation. Clearly, ReFE models could be parameterized to allow additional points

1650

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

on the tradeoff spectrum, by incorporating more reduced models. As in Section 4.1 we face a
difficult optimization problem, and various heuristic approximations come to mind (e.g., somehow
combining the models selected for storage in Section 4.1).

5. Related Work

Although value imputation and distribution-based imputation are common in practical applications
of classification models, there is surprisingly little theoretical or empirical work analyzing the strate-
gies. The most closely related work is the theoretical treatment by Schuurmans and Greiner’s (1993)
within the PAC framework (Valiant, 1984). The present paper can be seen in part as an empirical
complement to their theoretical treatment. Schuurmans and Greiner consider an “attribute blocking”
process in which attribute values are not available at induction time. The paper discusses instances
of the three strategies we explore here: value imputation (simple default-value imputation in their
paper), distribution-based prediction, and a reduced-feature “classifier lattice” of models for all pos-
sible patterns of missing values. For the missing completely at random scenario, they discuss that
reduced-feature modeling is the only technique that is unconditionally consistent (i.e., is always
guaranteed to converge to the optimal classifier in the large-data limit).

Our experimental results support Schuurmans and Greiner’s assertion that under some condi-
tions it is beneficial to expose the learner to the specific pattern of missing values observed in a test
instance (reduced modeling), rather than to “fill in” a missing value. Our analysis gives insight into
the underlying factors that lead to this advantage, particularly in terms of the statistical dependencies
among the predictor variables.

Empirical work on handling missing values has primarily addressed the challenge of induction
from incomplete training data (e.g., Rubin, 1987; Dempster et al., 1977; Schafer, 1997; Batista and
Monard, 2003; Feelders, 1999; Ghahramani and Jordan, 1994, 1997). For example, Ghahramani
and Jordan (1997) assume an explicit probabilistic model and a parameter estimation procedure
and present a framework for handling missing values during induction when mixture models are
estimated from data. Specifically for classification trees, Quinlan (1993) studies joint treatments
for induction and prediction with missing nominal feature values. The study explores two forms of
imputation similar to those explored here7 and classification by simply using the first tree node for
which the feature is missing (treating it as a leaf); the study does not consider reduced-feature mod-
els. Quinlan concludes that no solution dominates across domains. However, C4.5’s DBI seems to
perform best more often and hence the paper recommends its use.8 Our study revealed the opposite
pattern—predictive value imputation often is superior to C4.5’s DBI. More importantly, however,
we show that the dominance of one form of imputation versus another depends on the statistical de-
pendencies (and lack thereof) between the features: value imputation is likely to outperform C4.5’s
DBI when feature imputability is particularly high, and vice versa.

Porter et al. (1990) propose a heuristic classification technique (Protos) for weak-theory do-
mains. In contrast to the induction of an abstract generalization, Protos learns concepts by retaining
exemplars, and new instances are classified by matching them with exemplars. Porter et al. apply

7. Predictive value imputation was implemented by imputing either the mode value or a prediction using a decision tree
classifier.

8. In the study, some treatments for incomplete test instances are evaluated using different models that correspond to
different treatments for handling incomplete training instances and therefore their relative performance cannot be
compared on equal footing.

1651

SAAR-TSECHANSKY AND PROVOST

Protos, ID3, and another exemplar-based program to a medical diagnosis problem where more than
50% of the test feature values are missing, and where missingness depends on the feature values
(e.g., yes/no features were always missing when the true value is “no”). They note that because of
the large proportion of missing values, ID3 with various imputation techniques performed poorly.
Our empirical results show a similar pattern.

To our knowledge very few studies have considered reduced-feature modeling. Friedman et al.
(1996) propose the induction of lazy classification trees, an instance of run-time reduced modeling.
They induce single classification-tree paths that are tailored for classifying a particular test instance,
thereby not incorporating any missing features. When classifying with missing values, Friedman
et al. report the performance of lazy tree induction to be superior to C4.5’s technique. Explain-
ing the results, the authors note that “avoiding any tests on unknown values is the correct thing to
do probabilistically, assuming the values are truly unknown...” Our study supports this argument
and complements it by showing how the statistical dependencies exhibited by relevant features are
either exploited or ignored by each approach. For example, our followup analysis suggests that
C4.5’s technique will have particular difficulty when feature imputability is high, as it is for many
benchmark data sets. Ling et al. (2004) examine strategies to reduce the total costs of feature-value
acquisitions and of misclassifications; they employ lazy tree induction and show similar results to
Friedman et al. Neither paper considers value imputation as an alternative, nor do they explore the
domain characteristics that enable the different missing-value treatments to succeed or fail. For ex-
ample, our followup analysis shows that with high feature imputability, predictive value imputation
can perform just as well as lazy (reduced-feature) modeling, but reduced modeling is considerably
more robust to lower levels of imputability.

We described how reduced modeling may take advantage of alternative predictive patterns in the
training data. Prior work has noted the frequent availability of such alternative predictive patterns,
and suggests that these can be exploited to induce alternative hypotheses. In particular, co-training
(Blum and Mitchell, 1998) is an induction technique that relies on the assumption that the feature
set comprises two disjoint subsets such that each is sufficient to induce a classifier, and that the
features in each set are not highly correlated with those of the other conditional on the class. Blum
and Mitchell offer web pages as an example for alternative representations, in which a page can
be represented by its content or by the words occurring in hyperlinks that point to that page. Each
representation can be used to induce models of comparable performance. Nigam and Ghani (2000)
show that co-training is often successful because alternative representations are rather common.
Specifically, Nigam and Ghani demonstrate that even for data sets for which such a natural partition
does not exist, a random partition usually produces two sets that are each sufficient for accurate
classification. Our empirical results for reduced models provide additional evidence that alternative
feature subsets can be used effectively. Hence, accurate reduced models can frequently be induced
in practice and offer an alternative that consistently is at least comparable to and usually superior to
popular treatments.

6. Limitations

We consider only the MCAR setting. For practical problems there are many reasons why features
may be missing, and in many cases they are not missing completely at random. To be of full prac-
tical use, analyses such as this must be extended to deal with such settings. However, as mentioned
earlier, the performance of missing-value treatments for inducing classification trees seems unre-

1652

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

lated to the Little and Rubin taxonomy, as long as missingness does not depend on the class value
(Ding and Simonoff, 2006).

Schuurmans and Greiner (1997) consider the other end of the spectrum, missingness being a
completely arbitrary function of an example’s values, and conclude that none of the strategies we
consider will be consistent (albeit one may perform better than another consistently in practice).
However, there is a lot of ground between MCAR and completely arbitrary missingness. In the
“missing at random” (MAR) scenario (Little and Rubin, 1987) missingness is conditioned only on
observed values. For example, a physician may decide not to conduct one diagnostic test on the
basis of the result of another. Presumably, reduced modeling would work well for MAR, since two
examples with the same observed features will have the same statistical behavior on the unobserved
features. If features are “missing not at random” (MNAR), there still may be useful subclasses. As
a simple example, if only one particular attribute value is ever omitted (e.g., “Yes” to “Have you
committed a felony?”), then unique-value imputation should work well. Practical application would
benefit from a comprehensive analysis of common cases of missingness and their implications for
using learned models.

Although we show some evidence of generalizability with logistic regression, our study was
primarily limited to classification trees (and ensembles of trees). As noted at the outset, trees are
very common both alone—especially when comprehensibility is a concern—and as components of
ensembles, more sophisticated models, and larger inference systems. Some of the arguments apply
to many model types, for example that reduced modeling will have lower variance. Others are spe-
cific to C4.5’s DBI (which of course in the artificial intelligence and machine learning literatures is a
widely used and cited missing-value treatment). C4.5’s DBI is not based on an estimation of the full,
joint distribution—the lack of which is the basis for the pathology presented in Section 3.3.1. How-
ever, full-joint methods also have practical drawbacks: they are very expensive computationally,
can be intractable for large problems, and they are awkward for practitioners (and for researchers)
in comparison to simpler classification/regression methods. Nevertheless, extending beyond classi-
fication trees, it would be well to consider DBI based on a full-joint model. (And it should be noted
that naive Bayes marginalizes simply by ignoring attributes with missing values, so treatments such
as these are unnecessary.)

Imputation may be more (or less) effective if we were to use other classification and regression
methods. However, our arguments supporting the results are not limited a particular imputation
model. In the case of multiple missing values, we have not analyzed the degree to which imputation
would improve if a reduced-modeling approach were taken for the imputation itself, rather than
using simple value imputation. We see no justification for doing so rather than simply using reduced
modeling directly.

We avoid, as beyond the scope of this paper, the complicated question of whether there are
notable interactions between the missing value treatment used at induction time and the missing
value treatment used when the resultant models are applied.

Finally, we calculate feature imputability per domain, rather than per feature. Although this
is sufficient for demonstrating the relationship between feature imputability and the efficacy of the
various techniques, in practice it would be wise to assess imputability on a feature-by-feature basis.

1653

SAAR-TSECHANSKY AND PROVOST

7. Conclusions

Reduced-feature models are preferable both to C4.5’s distribution-based imputation and to predic-
tive value imputation. Reduced models undertake a lower-variance learning task, and do not fall
prey to certain pathologies. Predictive value imputation and C4.5’s DBI are easy to apply, but one
almost always pays—sometimes dearly—with suboptimal accuracy.

If one must choose between C4.5’s technique and predictive value imputation, the choice should
be made based on the level of feature imputability, as demonstrated both by theoretical arguments
and by empirical results. A lack of feature imputability is problematic for any imputation; C4.5’s
weighted averaging reduces estimation variance and thereby leads to more accurate estimation.
High feature imputability increases the effective bias of C4.5’s technique, but of course is ideal for
predictive value imputation. However, even for the highest levels of feature imputability, the per-
formance of reduced-feature modeling is indistinguishable from that of predictive value imputation.
Moreover, reduced-feature modeling is substantially more robust as the level of feature imputability
decreases.

Our analyses focused on suboptimalities of the imputation techniques as reasons for inferior
performance. Nonetheless, these are not mistakes by the developers and users of the techniques.
They are choices made to render the techniques convenient for practical use. We show the consis-
tency and magnitude of their negative impact. In light of these results, it is clear that researchers and
practitioners should choose a treatment based on a careful consideration of the relative advantages
and drawbacks of the different treatments—and on the expected or estimated feature imputability.

The obvious drawback to reduced modeling is that it can be expensive either in terms of run-time
computation or storage. We introduced and demonstrated several sorts of reduced-feature hybrids
that allow one to manage the tradeoff between computation and storage needs or between efficiency
and accuracy. Reduced-feature hybrids could be applied in various ways. Storage could be allocated
to the reduced models that will see the most use or provide the most utility, and run-time compu-
tation applied for unlikely or less useful missing-data patterns. If run-time computation simply is
not an option, then storage could be allocated to the most advantageous reduced models, and an
imputation technique used otherwise. In the former case, the full accuracy of reduced modeling
is maintained but both storage and run-time requirements are reduced from their extremes. In the
latter case, accuracy is traded off for decreased storage and/or run time. The results show that even
heuristic techniques for selecting the most advantageous reduced models can improve accuracy con-
siderably. The issue of how best to choose the most advantageous reduced models is open. We also
showed how ensemble methods can be modified to help deal with missing values—Reduced-Feature
Ensembles—incorporating different reduced models.

Researchers and practitioners often face missing values when applying learned models. We
hope this study provides a valuable step toward understanding how best to deal with them, and why.

Acknowledgments

The paper was improved by substantive comments by Haym Hirsh and the anonymous reviewers.
Thanks to Eibe Frank, Tom Mitchell, and David Stork for helpful feedback, and to Jeff Simonoff
and Yufeng Ding for discussions about induction with missing values. This research was supported
in part by an NEC Faculty Fellowship.

1654

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

References

Gustavo E. A. P. A. Batista and Maria Carolina Monard. An analysis of four missing data treatment
methods for supervised learning. Applied Artificial Intelligence, 17(5-6):519–533, 2003.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting and variants. Machine Learning, 36(1-2):105–139, 1999.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proc. of the
11th Annual Conf. on Computational Learning Theory, pages 92–100, Madison, WI, 1998.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39:1–38, 1977.

Y. Ding and J. Simonoff. An investigation of missing data methods for classification trees. Working
paper 2006-SOR-3, Stern School of Business, New York University, 2006.

A. J. Feelders. Handling missing data in trees: Surrogate splits or statistical imputation? In Prin-
ciples of Data Mining and Knowledge Discovery, pages 329–334, Berlin / Heidelberg, 1999.
Springer. Lecture Notes in Computer Science, Vol. 1704.

J. H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. In Howard Shrobe and Ted Sena-
tor, editors, Proceedings of the Thirteenth National Conference on Artificial Intelligence and the
Eighth Innovative Applications of Artificial Intelligence Conference, pages 717–724, Menlo Park,
California, 1996. AAAI Press.

N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In Proc. of 12th
Conference on Uncertainty in Artificial Intelligence (UAI-97), pages 252–262, 1996.

L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link structure.
Journal of Machine Learning Research, 3:679–707, 2002.

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via the EM approach.
In Advances in Neural Information Processing Systems 6, pages 120–127, 1994.

Z. Ghahramani and M. I. Jordan. Mixture models for learning from incomplete data. In R. Greiner,
T. Petsche, and S.J. Hanson, editors, Computational Learning Theory and Natural Learning Sys-
tems, volume IV, pages 7–85. MIT Press, Cambridge, MA, 1997.

R. Greiner, A. J. Grove, and A. Kogan. Knowing what doesn’t matter: Exploiting the omission of
irrelevant data. Artificial Intelligence, 97(1-2):345–380, 1997a.

R. Greiner, A. J. Grove, and D. Schuurmans. Learning Bayesian nets that perform well. In The
Proceedings of The Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 198–
207, 1997b.

1655

SAAR-TSECHANSKY AND PROVOST

Herskovits E. H. and Cooper G. F. Algorithms for Bayesian belief-network precomputation. In
Methods of Information in Medicine, pages 362–370. 1992.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Verlag,
New York, August 2001.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. M. Kadie. Dependency net-
works for inference, collaborative filtering, and data visualization. Journal of Machine Learning
Research, 1:49–75, 2000.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):
273–324, 1997.

N. Landwehr, M. Hall, and E. Frank. Logistic model trees. Machine Learning, 59(1-2):161–205,
2005.

C. X. Ling, Q. Yang, J. Wang, and S. Zhang. Decision trees with minimal costs. In Proc. of 21st
International Conference on Machine Learning (ICML-2004), 2004.

R. Little and D. Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, 1987.

C. J. Merz, P. M. Murphy, and D. W. Aha. Repository of machine learning databases
http://www.ics.uci.edu/˜mlearn/mlrepository.html. Department of Information and Computer
Science, University of California, Irvine, CA, 1996.

J. Neville and D. Jensen. Relational dependency networks. Journal of Machine Learning Research,
8:653–692, 2007.

A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In
Proc. of 22nd International Conference on Machine Learning (ICML-2005), pages 625–632,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-180-5.

K. Nigam and R. Ghani. Understanding the behavior of co-training. In Proc. of 6th Intl. Conf. on
Knowledge Discovery and Data Mining (KDD-2000), 2000.

B. Padmanabhan, Z. Zheng, and S. O. Kimbrough. Personalization from incomplete data: what
you don’t know can hurt. In Proc. of 7th Intl. Conf. on Knowledge Discovery and Data Mining
(KDD-2001), pages 154–163, 2001.

C. Perlich, F. Provost, and J. S. Simonoff. Tree induction vs. logistic regression: a learning-curve
analysis. Journal of Machine Learning Research, 4:211–255, 2003. ISSN 1533-7928.

B. W. Porter, R. Bareiss, and R. C. Holte. Concept learning and heuristic classification in weak-
theory domains. Artificial Intelligence, 45:229–263, 1990.

J. R. Quinlan. Unknown attribute values in induction. In Proc. of 6th International Workshop on
Machine Learning, pages 164–168, Ithaca, NY, June 1989.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

D. B. Rubin. Multiple imputation for nonresponse in surveys. John Wiley & Sons, New York, 1987.

1656

HANDLING MISSING VALUES WHEN APPLYING CLASSIFICATION MODELS

J.L. Schafer. Analysis of Incomplete Multivariate Data. Chapman & Hall, London, 1997.

D. Schuurmans and R. Greiner. Learning to classify incomplete examples. In Computational Learn-
ing Theory and Natural Learning Systems IV: Making Learning Systems Practical, pages 87–105.
MIT Press, Cambridge MA, 1997.

L. G. Valiant. A theory of the learnable. Communications of the Association for Computing Ma-
chinery, 27(11):1134–1142, 1984.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, San Francisco, 1999.

1657

Journal of Machine Learning Research 8 (2007) 1659-1685 Submitted 1/07; Published 7/07

Compression-Based Averaging of Selective Naive Bayes Classifiers

Marc Boullé MARC.BOULLE@ORANGE-FTGROUP.COM
France Telecom R&D
2, avenue Pierre Marzin
22300 Lannion, France

Editors: Isabelle Guyon and Amir Saffari

Abstract
The naive Bayes classifier has proved to be very effective on many real data applications. Its
performance usually benefits from an accurate estimation of univariate conditional probabilities
and from variable selection. However, although variable selection is a desirable feature, it is prone
to overfitting. In this paper, we introduce a Bayesian regularization technique to select the most
probable subset of variables compliant with the naive Bayes assumption. We also study the limits of
Bayesian model averaging in the case of the naive Bayes assumption and introduce a new weighting
scheme based on the ability of the models to conditionally compress the class labels. The weighting
scheme on the models reduces to a weighting scheme on the variables, and finally results in a naive
Bayes classifier with “soft variable selection”. Extensive experiments show that the compression-
based averaged classifier outperforms the Bayesian model averaging scheme.

Keywords: naive Bayes, Bayesian, model selection, model averaging

1. Introduction

The naive Bayes classification approach (see Langley et al., 1992; Mitchell, 1997; Domingos and
Pazzani, 1997; Hand and Yu, 2001) is based on the assumption that the variables are independent
within each output label, and simply relies on the estimation of univariate conditional probabilities.
The evaluation of the probabilities for numeric variables has already been discussed in the literature
(see Dougherty et al., 1995; Liu et al., 2002; Yang and Webb, 2002). Experiments demonstrate that
even a simple equal width discretization brings superior performance compared to the assumption
using a Gaussian distribution.

The naive independence assumption can harm the performance when violated. In order to better
deal with highly correlated variables, the selective naive Bayes approach of Langley and Sage (1994)
exploits a wrapper approach (see Kohavi and John, 1997) to select the subset of variables which
optimizes the classification accuracy. In the method of Boullé (2006a), the area under the receiver
operating characteristic (ROC) curve (see Fawcett, 2003) is used as a selection criterion and exhibits
a better predictive performance than the accuracy criterion.

Although the selective naive Bayes approach performs quite well on data sets with a reason-
able number of variables, it does not scale on very large data sets with hundreds of thousands of
instances and thousands of variables, such as in marketing applications. The problem comes both
from the search algorithm, whose complexity is quadratic in the number of the variables, and from
the selection process which is prone to overfitting.

c©2007 Marc Boullé.

BOULLÉ

In this paper, we present a new regularization technique to compromise between the num-
ber of selected variables and the performance of the classifier. The resulting variable selection
criterion is optimized owing to an efficient search heuristic whose computational complexity is
O(KN log(KN)), where N is the number of instances and K the number of variables. We also apply
the Bayesian model averaging approach of Hoeting et al. (1999) and extend it with a compression-
based averaging scheme, which better accounts for the distribution of the models. We show that
averaging the models turns into averaging the contribution of the variables in the case of the selec-
tive naive Bayes classifier. Finally we proceed with extensive experiments to evaluate our method.

The remainder of the paper1 is organized as follows. Section 2 introduces the assumptions and
recalls the principles of the naive Bayes and selective naive Bayes classifiers. Section 3 presents
the regularization technique for variable selection based on Bayesian model selection and Section 4
applies the Bayesian model averaging method to selective naive Bayes classifiers. In Section 5, the
new selective naive Bayes classifiers are evaluated on an illustrative example. Section 6 analyzes
the limits of Bayesian model averaging and proposes a new model averaging technique based on
model compression coefficients. Section 7 proceeds with extensive experimental evaluations and
Section 8 reports the results obtained in the performance prediction challenge organized by Guyon
et al. (2006c). Finally, Section 9 concludes this paper and outlines research directions.

2. Selective Naive Bayes Classifier

This section formally states the assumptions and notations and recalls the naive Bayes and selective
naive Bayes approaches.

2.1 Assumptions and Notation

Let X = (X1,X2, . . .XK) be the vector of the K explanatory variables and Y the class variable. Let
λ1,λ2, . . .λJ be the J class labels of Y .

Let N be the number of instances and D= {D1,D2, . . . ,DN} the labeled database containing the
instances Dn = (x(n),y(n)).

Let M = {Mm} be the set of all the potential selective naive Bayes models. Each model Mm is
described by K parameter values amk, where amk is 1 if variable k is selected in model Mm and 0
otherwise.

Let us denote by P(λ j) the prior probabilities P(Y = λ j) of the class values, and by P(Xk|λ j)
the conditional probability distributions P(Xk|Y = λ j) of the explanatory variables given the class
values.

We assume that the prior probabilities P(λ j) and the conditional probability distributions
P(Xk|λ j) are known, once the preprocessing is performed.

In the paper, the class conditional probabilities are estimated using the MODL discretization
method of Boullé (2006c) for the numeric variables and the MODL grouping method of Boullé
(2005a,b) for the categorical variables. MODL stands for minimum optimized description length
and refers to the principle of minimum description length (MDL) of Rissanen (1978) as a model
selection technique. More specifically, the MODL preprocessing methods exploit a maximum a
posteriori (MAP) technique (see Robert, 1997) to select the most probable model of discretization

1. This paper is an extended version of the 2006 IJCNN conference paper (Boullé, 2006b).

1660

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

(resp. value grouping) given the input data. The choice of the prior distribution of the models is
optimized for the task of data preparation, and the search algorithms are deeply optimized.

Using the Bayes optimal MODL preprocessing methods to estimate the conditional probabil-
ities has proved to be very efficient in detecting irrelevant variables (see Boullé, 2006a). In the
experimental section, the P(λ j) are estimated by counting and the P(Xk|λ j) are computed using the
contingency tables, resulting from the preprocessing of the explanatory variables. The conditional
probabilities are estimated using a m-estimate (support+mp)/(coverage+m) with m= J/N and
p= 1/J, in order to avoid zero probabilities.

2.2 Naive Bayes Classifier

The naive Bayes classifier assigns to each instance the class value having the highest conditional
probability

P(λ j|X) =
P(λ j)P(X |λ j)

P(X)
.

Using the assumption that the explanatory variables are independent conditionally to the class
variable, we get

P(λ j|X) =
P(λ j)∏K

k=1P(Xk|λ j)
P(X)

. (1)

In classification problems, Equation (1) is sufficient to predict the most probable class given
the input data, since P(X) is constant. In problems where a prediction score is needed, the class
conditional probability can be estimated using

P(λ j|X) =
P(λ j)∏K

k=1P(Xk|λ j)
∑J
i=1P(λi)∏K

k=1P(Xk|λi)
. (2)

The naive Bayes classifier is poor at predicting the true class conditional probabilities, since
the independence assumption is usually violated in real data applications. However, Hand and Yu
(2001) show that the prediction score given by Equation (2) often provides an effective ranking of
the instances for each class value.

2.3 Selective Naive Bayes Classifier

The selective naive Bayes classifier reduces the strong bias of the naive independence assumption,
owing to variable selection. The objective is to search among all the subsets of variables, in order
to find the best possible classifier, compliant with the naive Bayes assumption.

Langley and Sage (1994) propose to evaluate the selection process with the accuracy criterion,
estimated on the train data set. However, this criterion suffers from some limits, even when the
predictive performance is the only concern. In case of a skewed distribution of class labels for
example, the accuracy may never be better than the majority accuracy, so that the selection process
ends with an empty set of variables. This problem also arises when several consecutive selected
variables are necessary to improve the accuracy. In the method proposed by Langley and Sage
(1994), the selection process is iterated as long as there is no decay in the accuracy. This solution
raises new problems, such as the selection of irrelevant variables with no effect on accuracy, or even
the selection of redundant variables with either insignificant effect or no effect on accuracy.

1661

BOULLÉ

Provost et al. (1998) propose to use receiver operating characteristic (ROC) analysis rather than
the accuracy to evaluate induction models. This ROC criterion, estimated on the train data set (as
in Langley and Sage, 1994), is used by Boullé (2006a) to assess the quality of variable selection for
naive Bayes classifier. The method exploits the forward selection algorithm to select the variables,
starting from an empty subset of variables. At each step of the algorithm, the variable which brings
the best increase of the area under the ROC curve (AUC) is chosen and the selection process stops as
soon as this area does not rise anymore. This allows capturing slight enhancements in the learning
process and helps avoiding the selection of redundant variables or probes that have no effect on the
ROC curve.

Altogether, the variable selection method can be implemented in O(K2N logN) time. The pre-
processing step needsO(KN logN) to discretize or group the values of all the variables. The forward
selection process requires O(K2N logN) time, owing to the decomposability of the naive Bayes for-
mula on the variables. The O(N logN) term in the complexity is due to the evaluation of the area
under the ROC curve, based on the sort of the training instances.

3. MAP Approach for Variable Selection

After introducing the aim of regularization, this section applies the Bayesian approach to derive a
new evaluation criterion for variable selection and presents the search algorithm used to optimize
this criterion.

3.1 Introduction

The naive Bayes classifier is a very robust algorithm. It can hardly overfit the data, since no hy-
pothesis space is explored during the learning process. On the opposite, the selective naive Bayes
classifier explores the space of all subsets of variables to reduce the strong bias of the naive indepen-
dence assumption. The size of the searched hypothesis space grows exponentially with the number
of variables, which might cause overfitting. Experiments show that during the variable selection
process, the last added variables raise the “complexity” of the classifier while having an insignifi-
cant impact on the evaluation criterion (AUC for example). These slight improvements during the
training step, which have an insignificant impact on the test performance, are detrimental to the ease
of deployment of the models and to their understandability.

We propose to tackle this overfitting problem by relying on a Bayesian approach, where the
MAP model is found by maximizing the probability P(Model|Data) of the model given the data.
In the following, we describe how we compute the likelihood of the models P(Data|Model) and
propose a prior distribution P(Model) for variable selection.

3.2 Likelihood of Models

For a given modelMm parameterized by the set of selected variable indicators {amk}, the estimation
of the class conditional probability Pm(λ j|X) turns into

Pm(λ j|X) =
P(λ j)∏K

k=1P(Xk|λ j)amk
P(X)

=
P(λ j)∏K

k=1P(Xk|λ j)amk

∑J
i=1P(λi)∏K

k=1P(Xk|λi)amk
. (3)

1662

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

Equation (3) provides the class conditional probability distribution for each model Mm on the
basis of the parameter values amk of the model. For a given instanceDn, the probability of observing
the class value y(n) given the explanatory values x(n) and given the model Mm is Pm(Y = y(n)|X =
x(n)). The likelihood of the model is obtained by computing the product of these quantities on the
whole data set. The negative log-likelihood of the model is given by

− logP(D|Mm) =
N

∑
n=1

− logPm(Y = y(n)|X = x(n)).

3.3 Prior for Variable Selection

The parameters of a variable selection model Mm are the Boolean values amk. We propose a hier-
archic prior, by first choosing the number of selected variables and second choosing the subset of
selected variables.

For the number Km of variables, we propose to use a uniform prior between 0 and K variables,
representing (K+1) equiprobable alternatives.

For the choice of the Km variables, we assign the same probability to every subset of Km vari-
ables. The number of combinations

(K
Km

)
seems the natural way to compute this prior, but it has the

disadvantage of being symmetric. Beyond K/2 variables, every new variable makes the selection
more probable. Thus, adding irrelevant variables is favored, provided that this has an insignificant
impact on the likelihood of the model. As we prefer simpler models, we propose to use the number
of combinations with replacement

(K+Km−1
Km

)
.

Taking the negative log of this prior, we get the following code length l(Mm) for the variable
selection models

l(Mm) = log(K+1)+ log
(
K+Km−1

Km

)
.

Using this prior, the “informational cost” of the first selected variables is about logK and about
log2 for the last variables.

To summarize our prior, each number of Km variable is equiprobable, and for a given Km, each
subset of Km variables randomly chosen with replacement is equiprobable. This means that each
specific small subset of variables has a greater probability than each specific large subset of vari-
ables, since the number of variable subsets of given size grows with Km.

3.4 Posterior Distribution of the Models

The posterior probability of a model Mm is evaluated as the product of the prior and the likelihood.
This is equivalent to the MDL approach of Rissanen (1978), where the code length of the model
plus the data given the model has to be minimized:

l(Mm)+ l(D|Mm) = log(K+1)+ log
(
K+Km−1

Km

)
−

N

∑
n=1
logPm(y(n)|X = x(n)). (4)

The first two terms encode the complexity of the model and the last one the fit of the data. The
compromise is found by minimizing this criterion.

We can notice a trend of increasing attention to the predicted probabilities in the evaluation
criteria proposed for variable selection. Whereas the accuracy criterion focuses only on the majority
class and the area under the ROC curve evaluates the correct ordering of the predicted probabilities,

1663

BOULLÉ

our regularized criterion evaluates the correctness of all the predicted probabilities (not only their
rank) and introduces a regularization term to balance the complexity of the models.

3.5 An Efficient Search Heuristic

Many heuristics have been used for variable selection (see Guyon et al., 2006b). The greedy forward
selection heuristic evaluates all the variables, starting from an empty set of variables. The best
variable is added to the current selection, and the process is iterated until no new variable improves
the evaluation criterion. This heuristic may fall in local optima and has a quadratic time complexity
with respect to the number of variables. The forward backward selection heuristic allows to add or
drop one variable at each step, in order to avoid local optima. The fast forward selection heuristic
evaluates each variable one at a time, and adds it to the selection as soon as this improves the
criterion. This last heuristic is time effective, but its results exhibit a large variance caused by the
dependence over the order of the variables.

Algorithm 1 Algorithm MS(FFWBW)
Require: X ← (X1,X2, . . .XK) {Set of input variables}
Ensure: B {Best subset of variables}
1: B← /0 {Start with an empty subset of variables}
2: for Step=1 to log2KN do
3: {Fast forward backward selection}
4: S← /0 {Initialize an empty subset of variables}
5: Iter← 0
6: repeat
7: Iter← Iter+1
8: X ′ ← Shuffle(X) {Randomly reorder the variables to add}
9: {Fast forward selection}
10: for Xk ∈ X ′ do
11: if cost(S∪{Xk}) < cost(S) then
12: S← S∪{Xk}
13: end if
14: end for
15: X ′ ← Shuffle(X) {Randomly reorder the variables to remove}
16: {Fast backward selection}
17: for Xk ∈ X ′ do
18: if cost(S−{Xk}) < cost(S) then
19: S← S−{Xk}
20: end if
21: end for
22: until no improvement or Iter ≥MaxIter
23: {Update best subset of variables}
24: if cost(S) < cost(B) then
25: B← S
26: end if
27: end for

1664

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

We introduce a new search heuristic called fast forward backward selection (FFWBW), based
on a mix of the preceding approaches. It consists in a sequence of fast forward selection and fast
backward selection steps. The variables are randomly reordered between each step, and evaluated
only once during each forward or backward search. This process is iterated as long as two successive
(forward and backward) search steps bring at least one improvement of the criterion or when the
iteration number exceeds a given parameterMaxIter. In practice, the whole process converges very
quickly, in one or two steps in most of the cases. Setting MaxIter = 5 for example is sufficient to
bound the worst case complexity without decreasing the quality of the search algorithm.

Evaluating a selective naive Bayes model requires O(KN) computation time, mainly to evaluate
all the class conditional probabilities. According to Equation (3), these class conditional proba-
bilities can be updated in O(1) per instance and O(N) for the whole data set when one variable
is added or removed from the current subset of selected variables. Each fast forward selection or
fast backward selection step considers O(K) additions or removals of variables and requires O(KN)
computation time. The total time complexity of the FFWBW heuristic is O(KN), since the number
of search steps is bounded by the constant parameterMaxIter.

In order to further reduce both the possibility of local optima and the variance of the results, this
FFWBW heuristic is embedded into a multi-start (MS) algorithm, by repeating the search heuristic
starting from several random orderings of the variables. The number of repetitions is set to log2KN,
which offers a reasonable compromise between time complexity and quality of the optimization.
Overall, the time complexity of the MS(FFWBW) heuristic is O(KN logKN). The heuristic is
detailed in Algorithm 1.

4. Bayesian Model Averaging of Selective Naive Bayes Classifiers

Model averaging consists in combining the prediction of an ensemble of classifiers in order to reduce
the prediction error. This section reminds the principles of Bayesian model averaging and applies
this averaging scheme to the selective naive Bayes classifier.

4.1 Bayesian Model Averaging

The Bayesian model averaging (BMA) method (Hoeting et al., 1999) aims at accounting for the
model uncertainty. Whereas the MAP approach retrieves the most probable model given the data,
the BMA approach exploits every model in the model space, weighted by their posterior probability.
This approach relies on the definition of a prior distribution on the models, on an efficient compu-
tation technique to estimate the model posterior probabilities and on an effective method to sample
the posterior distribution. Apart from these technical difficulties, the BMA approach is an appealing
technique, with strong theoretical results concerning the optimality of its long-run performance, as
shown by Raftery and Zheng (2003).

The BMA approach has been applied to the naive Bayes classifier by Dash and Cooper (2002).
Apart from the differences in the weighting scheme, their method (DC) differs from ours mainly on
the initial assumptions. The DC method does not manage the numeric variables and assumes multi-
nomial distributions with Dirichlet priors for the categorical variables, which requires the choice of
hyper-parameters for each variable. Structure modularity of the Bayesian network is also assumed:
each selection of a variable is independent from the others. The DC approach estimates the full data
distribution (explanatory and class variables), whereas we focus on the class conditional probabili-
ties. Once the prior hyper-parameters are fixed, the DC method allows to compute an exact model

1665

BOULLÉ

averaging, whereas we rely on an heuristic to estimate the averaged model. Compared to the DC
method, our method is not restricted to categorical attributes and does not need any hyper-parameter.

4.2 From Bayesian Model Averaging to Expectation

For a given variable of interest Δ, the BMA approach averages the predictions of all the models
weighted by their posterior probability.

P(Δ|D) =∑
m
P(Δ|Mm,D)P(Mm|D).

This formula can be written, using only the prior probabilities and the likelihood of the models.

P(Δ|D) = ∑mP(Δ|Mm,D)P(Mm)P(D|Mm)
∑mP(Mm)P(D|Mm)

.

Let f (Mm,D) = P(Δ|Mm,D) and f (D) = P(Δ|D). Using these notations, the BMA formula can
be interpreted as the expectation of function f for the posterior distribution of the models

E(f) =∑
m
f (Mm,D)P(Mm|D).

We propose to extend the BMA approach in the case where f is not restricted to be a probability
function.

4.3 Expectation of the Class Conditional Information

The selective naive Bayes classifier provides an estimation of the class conditional probabilities.
These estimated probabilities are the natural candidates for averaging. For a given modelMm defined
by the variable selection {amk}, we have

f (Mm,D) =
P(Y)∏K

k=1P(Xk|Y)amk

P(X)
. (5)

Let I(Mm,D) = − log f (Mm,D) be the class conditional information. Whereas the expectation
of f relates to a (weighted) arithmetic mean of the class conditional probabilities, the expectation
of I relates to a (weighted) geometric mean of these probabilities. This puts more emphasis on the
magnitude of the estimated probabilities. Taking the negative log of (5), we obtain

I(Mm,D) = I(Y)− I(X)+
K

∑
k=1

amkI(Xk|Y). (6)

We are looking for the expectation of this conditional information

E(I) = ∑m I(Mn,D)P(Mm|D)
∑mP(Mm|D)

= I(Y)− I(X)+ ∑mP(Mm|D)∑K
k=1 amkI(Xk|Y)

∑mP(Mm|D)

= I(Y)− I(X)+
K

∑
k=1

I(Xk|Y)∑m amkP(Mm|D)
∑mP(Mm|D)

.

1666

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

Let bk = ∑m amkP(Mm|D)
∑mP(Mm|D) . We have bk ∈ [0,1].

The bk coefficients are computed using (4), on the basis of the prior probabilities and of the
likelihood of the models. Using these coefficients, the expectation of the conditional information is

E(I) = I(Y)− I(X)+
K

∑
k=1

bkI(Xk|Y). (7)

The averaged model thus provides the following estimation for the class conditional probabili-
ties:

P(Y |X) =
P(Y)∏K

k=1P(Xk|Y)bk

P(X)
.

It is noteworthy that the expectation of the conditional information in (7) is similar to the condi-
tional information estimated by each individual model in (6). The weighting scheme on the models
reduces to a weighting scheme on the variables. When the MAP model is selected, the variables
have a weight of 1 when selected and 0 otherwise: this is a “hard selection” of the variables. When
the above averaging scheme is applied, each variable has a [0,1] weight, which can be interpreted
as a “soft selection”.

4.4 An Efficient Algorithm for Model Averaging

We have previously introduced a model averaging method which relies on the expectation of the
class conditional information. The calculation of this expectation requires the evaluation of all the
variable selection models, which is not computationally feasible as soon as the number of variables
goes beyond about 20. This expectation can heuristically be evaluated by sampling the posterior
distribution of the models and accounting only for the sampled models in the weighting scheme.

We propose to reuse the MS(FFWBW) search heuristic to perform this sampling. This heuristic
is effective for finding high probability models and searching in their neighborhood. The repetition
of the search from several random starting points (in the multi-start meta-heuristics) brings diversity
and allows to escape local optima. We use the whole set of models evaluated during the search to
estimate the expectation.

Although this sampling strategy is biased by the search heuristic, it has the advantage of being
simple and computationally tractable. The overhead in the time complexity of the learning algo-
rithm is negligible, since the only need is to collect the posterior probability of the models and to
compute the weights in the averaging formula. Concerning the deployment of the averaged model,
the overhead is also negligible, since the initial naive Bayes estimation of the class conditional
probabilities is just extended with variable weights.

5. Evaluation on an Illustrative Example

This section describes the waveform data set, introduces three evaluation criteria and illustrates the
behavior of each variant of the selective naive Bayes classifier.

5.1 The Waveform Data Set

The waveform data set introduced by Breiman et al. (1984) contains 5000 instances, 21 continuous
variables and 3 equidistributed class values. Each instance is defined as a linear combination of two

1667

BOULLÉ

out of the three triangular waveforms pictured in Figure 1, with randomly generated coefficients and
Gaussian noise. Figure 2 plots 10 random instances from each class.







                    

  

Figure 1: Basic waveforms used to generated the 21 input variables of the waveform data set.











                    











                    











                    

Figure 2: Waveform data.

Learning on the waveform data set is generally considered a difficult task in pattern recognition,
with reported accuracy of 86.8% using a Bayes optimal classifier. The input variables are correlated,
which violates the naive Bayes assumption. Selecting the best subset of variables compliant with
the naive Bayes assumption is a challenging problem.

5.2 The Evaluation Criteria

We evaluate three criteria of increasing complexity: accuracy (ACC), area under the ROC curve
(AUC) and informational loss function (ILF).

The ACC criterion evaluates the accuracy of the prediction, no matter whether its conditional
probability is 51% or 100%.

The AUC criterion (see Fawcett, 2003) evaluates the ranking of the class conditional probabili-
ties. In a two-classes problem, the AUC is equivalent to the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative instance. Extending the
AUC criterion to multi-class problems is not a trivial task and has lead to computationally intensive
methods (see for example Deng et al., 2006). In our experiments, we use the approach of Provost
and Domingos (2001) to calculate the multi-class AUC, by computing each one-against-the-others
two-classes AUC and weighting them by the class prior probabilities P(λ j). Although this version
of multi-class AUC is sensitive to the class distribution, it is easy to compute, which motivates our
choice.

The ILF criterion (see Witten and Frank, 2000) evaluates the probabilistic prediction owing to
the negative log of the predicted class conditional probabilities

− logPm(Y = y(n)|X = x(n)).

1668

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

The empirical mean of the ILF criterion is equal to

ILF(Mm) =
1
N

N

∑
n=1

− logPm(Y = y(n)|X = x(n)).

The predicted class conditional probabilities in the ILF criterion are given by Equation (2) for
the naive Bayes classifier and by Equation (3) for the selective naive Bayes classifier.

Let M /0 be the “null” model, with no variable selected. The null model estimates the class
conditional probabilities by their prior probabilities, ignoring all the explanatory variables. For the
null modelM /0, we obtain

ILF(M /0) =
1
N

N

∑
n=1

− logP(Y = y(n))

= −
J

∑
j=1

P(λ j) logP(λ j)

= H(Y),

where H(Y) is the entropy of Shannon (1948) of the class variable.
We introduce a compression rate to normalize the ILF criterion using

CR(Mm) = 1− ILF(Mm)/ ILF(M /0)
= 1− ILF(Mm)/H(Y).

The normalized CR criterion is mainly ranged between 0 (prediction not better than the basic
prediction of the class priors) and 1 (prediction of the true class probabilities in case of perfectly
separable classes). It can be negative when the predicted probabilities are worse than the basic prior
predictions.

5.3 Evaluation on the Waveform Data Set

We use 70% of the waveform data set to train the classifiers and 30% to test them. These evaluations
are merely illustrative; extensive experiments are reported in Section 7.

In the case of the waveform data set, the MODL preprocessing method determines that 2 vari-
ables (1st and 21st) are irrelevant, and the naive Bayes classifier uses all the 19 remaining variables.
We evaluate four variants of selective naive Bayes methods. The SNB(ACC) method of Langley and
Sage (1994) optimizes the train accuracy and the SNB(AUC) method of Boullé (2006a) optimizes
the area under the ROC curve on the train data set. The SNB(MAP) method introduced in Section
3 selects the most probable subset of variables compliant with the naive Bayes assumption, and the
SNB(BMA) method described in Section 4 averages the selective naive Bayes classifiers weighted
by their posterior probability. In this experiment, we evaluate exhaustively the half a million models
related to the 219 possible variable subsets. This allows us to focus on the variable selection criterion
and to avoid the potential bias of the optimization algorithms.

The selected subsets of variables are pictured in Figure 3. The SNB(ACC) method selects 12
variables and the SNB(AUC) 18 variables. The SNB(MAP) which focuses on a subset of variables
compliant with the naive Bayes assumption selects only 8 variables, which turns out to be a subset
of the variables selected by the alternative methods.

1669

BOULLÉ

SNB(ACC)






                  

SNB(AUC)






                  

SNB(MAP)






                  

SNB(BMA)






                  

Figure 3: Variables selected by the selective naive Bayes classifiers for the waveform data set.

The predictive performance for the ACC, AUC and ILF criteria are reported in Figure 4. In
multi-criteria analysis, a solution dominates (or is non-inferior to) another one if it is better for all
criteria. A solution that cannot be dominated is Pareto optimal: any improvement of one of the
criteria causes a deterioration on another criterion (see Pareto, 1906). The Pareto surface is the set
of all the Pareto optimal solutions.







  




















    





Figure 4: Evaluation of the predictive performance of selective naive Bayes classifiers on the wave-
form data set.

The SNB(ACC) method is slightly better than the NB method on the ACC criterion. Owing to
its small subset of selected variables, it manages to reduce the redundancy between the variables and
to significantly improve the estimation of the class conditional probabilities, as reported by its ILF
evaluation. The SNB(AUC) method gets the same AUC performance as the NB method with one
variable less. The SNB(MAP) and SNB(BMA) methods almost directly optimizes the ILF criterion
on the train data set, with a regularization term related to the model prior. They get the best ILF
evaluation on the test set, but are dominated by the NB and SNB(ACC) methods on the two other
criteria, as shown in Figure 4. Almost all the methods are Pareto optimal: none of them is the best
on the three evaluated criteria.

Compared to the other variable selection methods, the SNB(MAP) truly focuses on complying
with the naive independence assumption. This results in a much smaller subset of variables and a
better prediction of the class conditional probabilities, at the expense of a decay on the other criteria.

1670

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

The SNB(BMA) method exploits a model averaging approach which results in soft variable
selection. Figure 3 shows the weights of each variable. Surprisingly, the selected variables are
almost the same as the 8 variables selected by the SNB(MAP) method. Compared to the hard
variable selection scheme, the soft variable selection exhibits mainly one minor change: a new
variable (V20) is selected with a small weight of 0.15. The other modifications of the variable
weights are insignificant: two variables (V6 and V17) decrease their weight from 1.0 to 0.99 and
three variables (V7, V18 and V19) appear with a tiny weight of 0.01.

Since the variable selection is almost the same as in the MAP approach, the model averaging
approach does not bring any significant improvement in the evaluation results, as shown in Figure
4.

6. Compression Model Averaging of Selective Naive Bayes Classifiers

This section analyzes the limits of Bayesian model averaging and proposes a new weighting scheme
that better exploits the posterior distributions of the models.

6.1 Understanding the Limits of Bayesian Model Averaging

We use again the waveform data set to explain why the Bayesian model averaging method fails to
outperform the MAP method.

Figure 5: Index of the selected variables in the 200 most probable selective naive Bayes models for
the waveform data set. Each line represents a model, where the variables are in black
color when selected.

The variable selection problem consists in finding the most probable subset of variables com-
pliant with the naive Bayes assumption among about half a million (219) potential subsets. In order
to study the posterior distribution of the models, all these subsets are evaluated. The MAP model
selects 8 variables (V5, V6, V9, V10, V11, V12, V13, V17). A close look at the posterior distri-
bution shows that most of the good models (in the top 50%) contain around 10 variables. Figure 5
displays the selected variables in the top 200 models (0.05%). Five variables (V5, V9, V10, V11,

1671

BOULLÉ

V12) among the 8 MAP variables are always selected, and the other models exploit a diversity of
subsets of variables. The potential benefit of model averaging is to account for all these models,
with higher weights for the most probable models.

However, the posterior distribution is very sharp everywhere, not only around the MAP. Variable
V18 is first selected in the 3rd model, which is about 40 times less probable than the MAP model.
Variable V4 is first selected in the 10th model, about 4000 times less probable than the MAP model.
Figure 6 displays the repartition function of the posterior probabilities, using a log scale. Using
this logarithmic transformation, the posterior distribution is flattened and can be visualized. The
MAP model is 101033 times more probable than the minimum a posteriori model, which selects no
variable.











          











 







Figure 6: Repartition function of the posterior probabilities of half a million variable selection mod-
els evaluated for the waveform data set, sorted by increasing posterior probability. For
example, the 10% models on the left represent the models having the lowest posterior
probability.

In the waveform example, averaging using the posterior probabilities to weight the models is
almost the same as selecting the MAP model (which itself is hard to find with a heuristic search) and
model averaging is almost useless. In theory, BMA is optimal (see Raftery and Zheng, 2003), but
this optimality result assumes that the true distribution of the data belongs to the space of models.
In the case of the selective naive Bayes classifier, this assumption is violated on most real data sets
and BMA fails to build effective model averaging.

6.2 Model Averaging with Compression Coefficients

When the posterior distribution is sharply peaked around the MAP, averaging is almost the same
as selecting the MAP model. These peaked posterior distributions are more and more likely to
happen when the number of instances rises, since a few tens of instances better classified by a model
are sufficient to increase its likelihood by several orders of magnitude. Therefore, the algorithmic
overhead is not valuable if averaging turns out to be the same as selecting the MAP.

In order to have a theoretical insight on the relation between MAP and BMA, let us analyze
again the model selection criterion (4). It is closely related to the ILF criterion described in Section
5.2, according to

l(Mm)+ l(D|Mm) = − logP(Mm)+N ILF(Mm).

1672

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

For the the “null” modelM /0, with no variable selected, we have:

l(M /0)+ l(D|M /0) = − logP(M /0)+NH(Y).

The posterior probability P(Mm|D) of a modelMm relative to that of the null model is

P(Mm|D)
P(M /0|D)

=
P(Mm)
P(M /0)

(
H(Y)

ILF(Mm)

)N

. (8)

Equation (8) shows that the posterior probability of the models is exponentially peaked when
N goes to infinity. Small improvements in the estimation of the conditional entropy brings very
large differences in the posterior probability of the models, which explains why Bayesian model
averaging is asymptotically equivalent to selecting the MAP model.

We propose an alternative weighting scheme, whose objective is to better account for the set of
all models. Let us precisely define the compression coefficient c(Mm,D) of a model. The model
selection criterion l(Mm)+ l(D|Mm) defined in Equation (4) represents the quantity of information
required to encode the model plus the class values given the model. The code length of the null
model M /0 can be interpreted as the quantity of information necessary to describe the classes, when
no explanatory data is used to induce the model.

Each modelMm can potentially exploit the explanatory data to better “compress” the class con-
ditional information. The ratio of the code length of a model to that of the null model stands for a
relative gain in compression efficiency. We define the compression coefficient c(Mm,D) of a model
as follows:

c(Mm,D) = 1− l(Mm)+ l(D|Mm)
l(M /0)+ l(D|M /0)

.

The compression coefficient is 0 for the null model, is maximal when the true class conditional
probabilities are correctly estimated and tends to 1 in case of separable classes. This coefficient can
be negative for models which provide an estimation worse than that of the null model.

In our heuristic attempt to better account for all the models, we replace the posterior probabilities
by their related compression coefficient in the weighting scheme.

Let us focus again on the variable weights bk introduced in Section 4 in our first model averaging
method. Dividing the posterior probabilities by those of the null model, we get

bk =
∑m amk

P(Mm|D)
P(M /0|D)

∑m
P(Mm|D)
P(M /0|D)

.

We introduce new ck coefficients by taking the log of the probability ratios and normalizing by
the code length of the null model. We obtain

ck = ∑m amkc(Mm,D)
∑m c(Mm,D)

.

Mainly, the principle of this new heuristic weighting scheme consists in smoothing the expo-
nentially peaked posterior probability distribution of Equation (8) with the log function.

In the implementation, we ignore the “bad” models and consider the positive compression co-
efficients only. We evaluate the compression based model averaging (CMA) model using the model
averaging algorithm introduced in Section 4.4.

1673

BOULLÉ

6.3 Evaluation on the Waveform Data Set

We use the protocol introduced in Section 5 to evaluate the SNB(CMA) compression model aver-
aging method on the waveform data set, with an exhaustive evaluation of all the models to avoid the
potential bias of the optimization algorithms.

Figure 7 shows the weights of each variable resulting from the soft variable selection of the
SNB(CMA) compression model averaging method. Contrary to the SNB(BMA) method, the aver-
aging has a significant impact on variable selection.

SNB(ACC)






                  

SNB(AUC)






                  

SNB(MAP)






                  

SNB(BMA)






                  

SNB(CMA)






                  

Figure 7: Variables selected by the SNB(CMA) method and the alternative selective naive Bayes
classifiers for the waveform data set.

Instead of “hard selecting” about half of the variables as in the SNB(MAP) method, the
SNB(CMA) method selects all the variable with weights around 0.5. Interestingly, the variable
selection pattern is similar to that of the alternative variable selection methods, in a smoothed ver-
sion. A central group of variables is emphasized around variable V11, between two less important
groups of variables around variables V5 and V17.







  














 





    





Figure 8: Evaluation of the predictive performance of selective naive Bayes classifiers on the wave-
form data set.

1674

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

In the waveform data set, all the variables are informative, but the most probable subsets of
variables compliant with the naive Bayes assumption select only half of the variables. In other
words, whereas many good SNB classifiers are available, none of them is able to account for all the
information contained in the variables. Since the BMAmodel is almost the same as the MAPmodel,
it fails to perform better than one single classifier . Our CMA approach averages complementary
subsets of variables and exploits more information than the BMA approach. This smoothed variable
selection results in improved performance, as shown in Figure 8. The SNB(CMA) method is the
best one: it dominates all the other methods on the three evaluated criteria.

7. Experiments

This section presents an experimental evaluation of the performance of the selective naive Bayes
methods described in the previous sections.

7.1 Experimental Setup

The experiments aim at comparing the performance of model averaging methods versus the MAP
method, the standard selective naive Bayes (SNB) and naive Bayes (NB) methods. All the classi-
fiers except the last one exploit the same MODL preprocessing, allowing a fair comparison. The
evaluated methods are:

• No variable selection

– NB(EF): NB with 10 bins equal frequency discretization and no value grouping,
– NB: NB with MODL preprocessing,

• Variable selection

– SNB(ACC): optimization of the accuracy,
– SNB(AUC): optimization of the area under the ROC curve,
– SNB(MAP): MAP SNB model,

• Variable selection and model averaging

– SNB(BMA): Bayesian model averaging,
– SNB(CMA)2 : compression-based model averaging.

The three last SNB classifiers (SNB(MAP), SNB(BMA) and SNB(CMA)) represent our con-
tribution in this paper. All the SNB classifiers are optimized with the same MS(FFWBW) search
heuristic, except the SNB(ACC), based on the forward selection greedy heuristic. The DC method
(Dash and Cooper, 2002), similar to the SNB(BMA) approach, was not evaluated since it is re-
stricted to categorical attributes.

The evaluated criteria are the same as for the waveform data set: accuracy (ACC), area un-
der the ROC curve (AUC) and informational loss function (ILF) (with its compression rate (CR)
normalization).

2. The method is implemented in a tool available as a shareware at
http://www.francetelecom.com/en/group/rd/offer/software/technologies/middlewares/khiops.html.

1675

BOULLÉ

Name Instances Numerical Categorical Classes Majority
variables variables accuracy

Abalone 4177 7 1 28 16.5
Adult 48842 7 8 2 76.1
Australian 690 6 8 2 55.5
Breast 699 10 0 2 65.5
Crx 690 6 9 2 55.5
German 1000 24 0 2 70.0
Glass 214 9 0 6 35.5
Heart 270 10 3 2 55.6
Hepatitis 155 6 13 2 79.4
HorseColic 368 7 20 2 63.0
Hypothyroid 3163 7 18 2 95.2
Ionosphere 351 34 0 2 64.1
Iris 150 4 0 3 33.3
LED 1000 7 0 10 11.4
LED17 10000 24 0 10 10.7
Letter 20000 16 0 26 04.1
Mushroom 8416 0 22 2 53.3
PenDigits 7494 16 0 10 10.4
Pima 768 8 0 2 65.1
Satimage 6435 36 0 6 23.8
Segmentation 2310 19 0 7 14.3
SickEuthyroid 3163 7 18 2 90.7
Sonar 208 60 0 2 53.4
Spam 4307 57 0 2 64.7
Thyroid 7200 21 0 3 92.6
TicTacToe 958 0 9 2 65.3
Vehicle 846 18 0 4 25.8
Waveform 5000 21 0 3 33.9
Wine 178 13 0 3 39.9
Yeast 1484 8 1 10 31.2

Table 1: UCI Data Sets

We conduct the experiments on two collections of data sets: 30 data sets from the repository
at University of California at Irvine (Blake and Merz, 1996) and 10 data sets from the NIPS 2003
feature selection challenge (Guyon et al., 2006a) and the IJCNN 2006 performance prediction chal-
lenge (Guyon et al., 2006c). A summary of some properties of these data sets is given in Table 1 for
the UCI data sets and in Table 2 for the challenge data sets. We use stratified 10-fold cross validation
to evaluate the criteria. A two-tailed Student test at the 5% confidence level is performed in order
to evaluate the significant wins or losses of the SNB(CMA) method versus each other method.

7.2 Results

We collect and average the three criteria owing to the stratified 10-fold cross validation, for the
seven evaluated methods on the forty data sets. The results are presented in Table 3 for the UCI data

1676

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

Name Instances Numerical Categorical Classes Majority
variables variables accuracy

Arcene 200 10000 0 2 56.0
Dexter 600 20000 0 2 50.0
Dorothea 1150 100000 0 2 90.3
Gisette 7000 5000 0 2 50.0
Madelon 2600 500 0 2 50.0
Ada 4147 48 0 2 75.2
Gina 3153 970 0 2 50.8
Hiva 3845 1617 0 2 96.5
Nova 1754 16969 0 2 71.6
Sylva 13086 216 0 2 93.8

Table 2: Challenge Data Sets

sets and in Table 4 for the challenge data sets. They are summarized across the data sets using the
mean, the number of wins and losses (W/L) for the SNB(CMA) method and the average rank, for
each of the three evaluation criteria.

Method ACC AUC CR
Mean W/L Rank Mean W/L Rank Mean W/L Rank

SNB(CMA) 0.824 2.2 0.920 1.9 0.577 2.2
SNB(BMA) 0.817 9/2 3.7 0.916 11/0 3.3 0.559 12/6 2.6
SNB(MAP) 0.813 11/1 4.5 0.913 17/1 4.4 0.549 15/6 3.6
SNB(AUC) 0.820 8/0 3.3 0.918 10/2 3.1 0.532 17/4 4.4
SNB(ACC) 0.817 5/1 3.5 0.910 14/0 4.5 0.536 13/2 4.5
NB 0.814 11/0 4.0 0.913 16/1 4.6 0.476 19/2 5.3
NB(EF) 0.796 15/1 4.6 0.911 13/3 4.8 0.401 15/2 5.3

Table 3: Evaluation of the methods on the UCI data sets

The three ways of aggregating the results (mean, W/L and rank) are consistent, and we choose
to display the mean of each criterion to ease the interpretation. Figure 9 summarizes the results for
the UCI data sets and Figure 10 for the challenge data sets.

The results of the two NB methods are reported mainly as a sanity check. The MODL pre-
processing in the NB classifier exhibits better performance than the equal frequency discretization
method in the NB(EF) classifier.

The experiments confirm the benefit of selecting the variables, using the standard selection
methods SNB(ACC) and SNB(AUC). These two methods achieve comparable results, with an em-
phasis on their respective optimized criterion. They significantly improve the results of the NB
methods, especially for the estimation of class conditional probabilities measured by the CR crite-
rion. It is noteworthy that the NB and NB(EF) classifiers obtain poor CR results. Their mean CR

1677

BOULLÉ

Method ACC AUC CR
Mean W/L Rank Mean W/L Rank Mean W/L Rank

SNB(CMA) 0.883 1.9 0.904 1.0 0.510 1.0
SNB(BMA) 0.872 3/0 3.5 0.882 6/0 2.9 0.446 9/0 2.3
SNB(MAP) 0.865 4/0 4.5 0.863 6/0 5.1 0.425 9/0 3.7
SNB(AUC) 0.872 6/0 3.6 0.888 7/0 2.7 0.331 10/0 4.1
SNB(ACC) 0.875 3/2 2.9 0.869 8/0 4.8 0.365 9/0 4.3
NB 0.841 7/0 4.9 0.846 9/0 5.3 -0.321 9/0 5.9
NB(EF) 0.823 9/0 6.6 0.833 9/0 6.2 -0.423 10/0 6.7

Table 4: Evaluation of the methods on the challenge data sets







  


















  












Figure 9: Mean of the ACC, AUC and CR evaluation criteria on the 30 UCI data sets.

result is less than 0 in the case of the challenge data sets, which means that their estimation of the
class conditional probabilities is worse than that of the null model (which selects no variable).

The three regularized methods SNB(MAP), SNB(BMA) and SNB(CMA) focus on the estima-
tion of the class conditional probabilities, which are evaluated using the compression rate criterion.
They clearly outperform the other methods on this criterion, especially for the challenge data sets
where the improvement amounts to about 50%. However, the SNB(MAP) method is not better than
the two standard SNB methods for the accuracy and AUC criteria. The MAP method increases the
bias of the models by penalizing the complex models, leading to a decayed fit of the data.









  




















   












Figure 10: Mean of the ACC, AUC and CR evaluation criteria on the 10 challenge data sets.

1678

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

The model averaging approach exploited in SNB(BMA) method offers only slight enhance-
ments compared to the SNB(MAP) method. This confirms the analysis drawn from the waveform
case study.

The compression-based averaging method SNB(CMA) clearly dominates all the other methods
on all the criteria. On average, the number of significant wins is about 10 times the number of
significant losses, and amounts to more than half of the 40 data sets. On the 10 challenge data
sets, having very large numbers of variables, the SNB(CMA) method always gets the best results
on the AUC and CR criteria, and almost always on the accuracy criterion. The domination of
the SNB(CMA) method increases with the complexity of the criteria: it is noteworthy for accuracy
(ACC), important for the ordering of the class conditional probabilities (AUC) and very large for the
prediction of the class conditional probabilities (CR). This shows that the regularized and averaged
naive Bayes classifier becomes effective for conditional probability estimation, whereas the standard
naive Bayes classifier is usually considered to be poor at estimating these probabilities.

To summarize, this experiment demonstrates that variable selection is useful to improve the
classification accuracy of the naive Bayes classifier. The MAP selection approach presented in
Section 3 allows to find a selective naive Bayes classifier which is as compliant as possible with the
naive Bayes assumption. Although this has little impact on the classification accuracy, this greatly
improves the estimation of the class conditional probabilities.

Model averaging aims at improving the predictive performance at the expense of models which
are more difficult to understand and to deploy. From this point of view, the experiment indicates
that Bayesian model averaging is not much useful, since it does not significantly outperform the
MAP model. On the opposite, our compression model averaging scheme introduced in Section 6
takes benefit from the full posterior distribution of the models and obtains superior results for all the
evaluated criteria.

8. Evaluation on the Performance Prediction Challenge

This section reports the results obtained by our compression-based averaging method on the perfor-
mance prediction challenge of Guyon et al. (2006c).

8.1 The Performance Prediction Challenge

The purpose of the performance prediction challenge is “to stimulate research and reveal the state-
of-the art in model selection”. Each method is evaluated according to its predictive performance
and to its ability to guess its performance. The performance is assessed using the balanced error
rate (BER) criterion to account for skewed distributions. The BER guess error is evaluated as
the absolute value of the difference between the test BER and the predicted BER. A test score is
computed as a combination of the test BER and the BER guess error to rank the participants.

Five data sets are used in the challenge (the five last data sets in Table 2). The ada data set comes
from the marketing domain, the gina data set from handwriting recognition, the hiva data set from
drug discovery, the nova data set from text classification and the sylva data set from ecology. The
test sets used to assess the performance are 10 times larger than the train data sets.

1679

BOULLÉ

8.2 Details of the Submissions

All our entries are based on the compression-based averaging of the selective naive Bayes classifier
SNB(CMA).

The method computes the posterior probabilities of the classes, which is convenient when the
accuracy criterion or the area under the ROC curve is evaluated. In a two-classes problem, any
instance whose class posterior probability is beyond a threshold τ = 0.5 is classified as positive,
and otherwise as negative. For the challenge, the BER criterion is the main criterion, and it is no
longer optimal to predict the most probable class. In order to improve the BER criterion, we adjust
the decision threshold τ in a post-optimization step. We sort the train instances by decreasing class
posterior probabilities, which determines N possible values of the threshold τ. We then loop on the
instances, and for each τ, we compute the confusion matrix between the prediction outcome and the
actual class value. We keep the threshold that maximizes the BER of the related confusion matrix.
Post-optimizing the BER criterion requires 0(N logN) computation time to sort the instances and
O(N) to compute the N possible confusion matrices, since evaluating each successive τ involves the
move of only one instance in the confusion matrix.

For the challenge, we perform several trials of feature construction in order to evaluate the
computational and statistical scalability of the method, and to leverage the naive Bayes assumption:

• 10k F(2D): 10 000 features constructed for each data set, each one is the sum of two randomly
selected initial features,

• 100k F(2D): 100 000 features constructed (sums of two features),

• 10k F(3D): 10 000 features constructed (sums of three features).

The performance prediction guess is computed using a stratified tenfold cross-validation on the
train data set.

8.3 Results

The challenge started Friday September 30, 2005, and ended Monday March 1, 2006. About 145
entrants participated to the challenge and submitted more than 4000 “development entries”. A total
of 28 participants competed for the final ranking by providing valid challenge entries (results on
train, validation, and test sets for all five tasks of the challenge). Each participant was allowed to
submit at most 5 entries.

In the challenge, we rank 7th out of 28, according to the average rank computed by the orga-
nizers. On 2 of the 5 five data sets (ada and sylva), our best entry ranks 1st , as shown in Table 5.
The AUC criterion, which evaluates the ranking of the class posterior probabilities, indicates high
performance for our method, which ranks 3rd on this criterion.

The detailed results of our entries are presented in Figure 11, together with all the final entries
of the 28 finalists. The analysis of Guyon et al. (2006c) reveals that the top ranking entries exploit
a variety of methods: ensembles of decision trees, support vector machines (SVM) kernel methods,
Bayesian neural networks, ensembles of linear methods. On three out of the five data sets (gina,
hiva and nova), the data set winner exploits a SVM kernel method. This type of the method is the
most frequently used by the challenge participants, but their performance shows a lot of variance, so
they need human expertise to adjust their parameters. On the contrary, ensembles of decision trees,
like the method of the challenge winner, perform consistently well on all the data sets. Overall, the

1680

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

Data Set Our best entry The challenge best entry

Test BER Guess Test Test BER Guess Test
BER Guess Error Score BER Guess Error Score

Ada 0.1723 0.1650 0.0073 0.1793 0.1723 0.1650 0.0073 0.1793
Gina 0.0733 0.0770 0.0037 0.0767 0.0288 0.0305 0.0017 0.0302
Hiva 0.3080 0.3170 0.0090 0.3146 0.2757 0.2692 0.0065 0.2797
Nova 0.0776 0.0860 0.0084 0.0858 0.0445 0.0436 0.0009 0.0448
Sylva 0.0061 0.0060 0.0001 0.0062 0.0061 0.0060 0.0001 0.0062
Overall 0.1307 0.1306 0.0096 0.1399 0.1090 0.1040 0.0079 0.1165

Table 5: Results of our best entry on the performance prediction challenge data sets.

top five ranked methods get an average test BER of 11%. Our method gets an average test BER of
13% and is ranked only 11th on the BER criterion, even though it obtains very good results on the
ada and sylva data sets.

The main limitation of our SNB(CMA) method comes from the naive Bayes assumption. Our
method fails to correctly approximate the true class conditional distribution when the representation
space of the data set does not contain any competitive subset of variables compliant with the naive
Bayes assumption. For example, the gina data set consists of a set of image pixels, where the clas-
sification problem is to predict the parity of a number. On the initial representation of the gina data
set, our test BER is only 13%, far from the best result which is about 3%. However, when the con-
structed features allow to “partially” circumvent the naive Bayes assumption, the method succeeds
in significantly improving its performance, from 13% down to 7%. According to the challenge orga-
nizers, the hiva and nova data sets are also highly non-linear, which explains our poor BER results.
For example, the nova data set is a text classification problem with approximately 17000 variables
in a bag-of-words representation. In the case of this sparse data set, adding randomly constructed
features is useless and results mainly in duplicating the variables. This explains why all our nova
entries obtained the same BER results of 8%, far from the best result which is about 4%.

It is noteworthy that our method is very robust and ranks 4th on average on the guess error
criterion. Although we use all the train data to select our model without reserving validation data,
our method is not prone to overfitting. In our feature construction schemes, we expand the size of the
initial representation space of the data sets by a one hundred factor, which turns variable selection
into a challenging problem. However, adding many variables never decreases the performance
of our method. This means that our method correctly account for many useless and redundant
variables, and is able to benefit from the potentially informative constructed variables, like in the
gina data set for example.

Our method is evaluated with data sets having almost one billion values (up to 100 000 con-
structed features). Figure 12 reports the training time for all our submissions in the challenge. Our
method is highly scalable and resistant to noisy or redundant features: it is able to quickly process
about 100 000 constructed features without decreasing the predictive performance.

1681

BOULLÉ















  

















   




 









   














 














     
















Figure 11: Detailed results of all of our entries on the performance prediction challenge data sets.













    













Figure 12: Training times for the SNB(CMA) classifier for all our entries in the performance pre-
diction challenge.

9. Conclusion

The naive Bayes classifier is a popular method that is often highly effective on real data sets and is
competitive with or even sometimes outperforms much more sophisticated classifiers. This paper
confirms the potential benefit of variable selection to obtain still better performance.

We have proposed a MAP approach to select the best subset of variables compliant with the
naive Bayes assumption and introduced an efficient search algorithm which time complexity is
O(KN log(KN)), where K is the number of variables and N the number of instances. We have also
showed empirically that Bayesian model averaging is not much useful, since it does not perform
significantly better that the MAP model.

1682

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

On the basis of experimental and theoretical evidence that indicates that the posterior distribu-
tion of the models is exponentially peaked, we have shown that choosing a logarithmic smooth-
ing of the posterior distribution makes sense. We have empirically demonstrated that the result-
ing compression-based model averaging scheme clearly outperforms the Bayesian model averaging
scheme. This is encouraging and suggests that further research could be done to design a still more
effective averaging scheme with more grounded foundations.

Our method consistently improves the performance of the naive Bayes classifier, but is outper-
formed by more sophisticated methods when the naive Bayes assumption is too harmful. In future
work, we plan to exploit multivariate preprocessing methods in order to circumvent the naive Bayes
assumption. On the basis of a set of univariate and multivariate conditional density estimators, our
goal is to build a classifier that better approximates the true conditional density. In this setting, we
think that compression-based model averaging might still be superior to Bayesian model averaging
to account for the whole posterior distribution of the models.

Acknowledgments

I am grateful to the editor and the anonymous reviewers for their useful comments.

References

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1996.
http://www.ics.uci.edu/mlearn/MLRepository.html.

M. Boullé. Feature Extraction: Foundations And Applications, chapter 25, pages 499–507.
Springer, 2006a.

M. Boullé. Regularization and averaging of the selective naive Bayes classifier. In International
Joint Conference on Neural Networks, pages 2989–2997, 2006b.

M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes. Journal
of Machine Learning Research, 6:1431–1452, 2005a.

M. Boullé. MODL: a Bayes optimal discretization method for continuous attributes. Machine
Learning, 65(1):131–165, 2006c.

M. Boullé. A grouping method for categorical attributes having very large number of values. In
P. Perner and A. Imiya, editors, Proceedings of the Fourth International Conference on Ma-
chine Learning and Data Mining in Pattern Recognition, volume 3587 of LNAI, pages 228–242.
Springer verlag, 2005b.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees.
California: Wadsworth International, 1984.

D. Dash and G.F. Cooper. Exact model averaging with naive Bayesian classifiers. In Proceedings
of the Nineteenth International Conference on Machine Learning, pages 91–98, 2002.

1683

BOULLÉ

K. Deng, C. Bourke, S. Scott, and N.V. Vinodchandran. New algorithms for optimizing multi-class
classifiers via ROC surfaces. In Proceedings of the ICML 2006 Workshop on ROC Analysis in
Machine Learning, pages 17–24, 2006.

P. Domingos and M.J. Pazzani. On the optimality of the simple bayesian classifier under zero-one
loss. Machine Learning, 29(2-3):103–130, 1997.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous
features. In Proceedings of the 12th International Conference on Machine Learning, pages 194–
202. Morgan Kaufmann, San Francisco, CA, 1995.

T. Fawcett. ROC graphs: Notes and practical considerations for researchers. Technical Report
HPL-2003-4, HP Laboratories, 2003.

I. Guyon, S. Gunn, A. Ben Hur, and G. Dror. Feature Extraction: Foundations And Applications,
chapter 9, pages 237–263. Springer, 2006a. Design and Analysis of the NIPS2003 Challenge.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction: Foundations And
Applications. Springer, 2006b.

I. Guyon, A.R. Saffari, G. Dror, and J.M. Bumann. Performance prediction challenge. In Interna-
tional Joint Conference on Neural Networks, pages 2958–2965, 2006c.

D.J. Hand and K. Yu. Idiot bayes ? not so stupid after all? International Statistical Review, 69(3):
385–399, 2001.

J.A. Hoeting, D. Madigan, A.E. Raftery, and C.T. Volinsky. Bayesian model averaging: A tutorial.
Statistical Science, 14(4):382–417, 1999.

R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97(1-2):273–324,
1997.

P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelligence, pages 399–406. Morgan Kaufmann, 1994.

P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classifiers. In 10th national confer-
ence on Artificial Intelligence, pages 223–228. AAAI Press, 1992.

H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling technique. Data Mining
and Knowledge Discovery, 4(6):393–423, 2002.

T.M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

V. Pareto. Manuale di Economia Politica. Piccola Biblioteca Scientifica, Milan, 1906. Translated
into English by Ann S. Schwier (1971), Manual of Political Economy, MacMillan, London.

F. Provost and P. Domingos. Well-trained pets: Improving probability estimation trees. Technical
Report CeDER #IS-00-04, New York University, 2001.

F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction
algorithms. In Proceedings of the Fifteenth International Conference onMachine Learning, pages
445–553, 1998.

1684

COMPRESSION-BASED AVERAGING OF SELECTIVE NAIVE BAYES CLASSIFIERS

A.E. Raftery and Y. Zheng. Long-run performance of Bayesian model averaging. Technical Report
433, Department of Statistics, University of Washington, 2003.

J. Rissanen. Modeling by shortest data description. Automatica, 14:465–471, 1978.

C.P. Robert. The Bayesian Choice: A Decision-Theoretic Motivation. Springer-Verlag, New York,
1997.

C.E. Shannon. A mathematical theory of communication. Technical report, Bell systems technical
journal, 1948.

I.H. Witten and E. Frank. Data Mining. Morgan Kaufmann, 2000.

Y. Yang and G. Webb. A comparative study of discretization methods for naive-Bayes classifiers.
In Proceedings of the Pacific Rim Knowledge Acquisition Workshop, pages 159–173, 2002.

1685

Journal of Machine Learning Research 8 (2007) 1687-1723 Submitted 1/07; Revised 4/07; Published 8/07

A Nonparametric Statistical Approach to Clustering via Mode
Identification

Jia Li JIALI@STAT.PSU.EDU
Department of Statistics
The Pennsylvania State University
University Park, PA 16802, USA

Surajit Ray SRAY@MATH.BU.EDU
Department of Mathematics and Statistics
Boston University
Boston, MA 02215, USA

Bruce G. Lindsay BGL@STAT.PSU.EDU
Department of Statistics
The Pennsylvania State University
University Park, PA 16802, USA

Editor: Charles Elkan

Abstract
A new clustering approach based on mode identification is developed by applying new optimiza-
tion techniques to a nonparametric density estimator. A cluster is formed by those sample points
that ascend to the same local maximum (mode) of the density function. The path from a point to
its associated mode is efficiently solved by an EM-style algorithm, namely, the Modal EM (MEM).
This method is then extended for hierarchical clustering by recursively locating modes of kernel
density estimators with increasing bandwidths. Without model fitting, the mode-based clustering
yields a density description for every cluster, a major advantage of mixture-model-based clustering.
Moreover, it ensures that every cluster corresponds to a bump of the density. The issue of diagnos-
ing clustering results is also investigated. Specifically, a pairwise separability measure for clusters
is defined using the ridgeline between the density bumps of two clusters. The ridgeline is solved
for by the Ridgeline EM (REM) algorithm, an extension of MEM. Based upon this new measure,
a cluster merging procedure is created to enforce strong separation. Experiments on simulated and
real data demonstrate that the mode-based clustering approach tends to combine the strengths of
linkage and mixture-model-based clustering. In addition, the approach is robust in high dimensions
and when clusters deviate substantially from Gaussian distributions. Both of these cases pose diffi-
culty for parametric mixture modeling. A C package on the new algorithms is developed for public
access at http://www.stat.psu.edu/∼jiali/hmac.
Keywords: modal clustering, mode-based clustering, mixture modeling, modal EM, ridgeline
EM, nonparametric density

1. Introduction

Clustering is a technology employed in tremendously diverse areas for a multitude of purposes. It
simplifies massive data by extracting essential information, based on which many subsequent anal-
ysis or processes become feasible or more efficient. For instance, in information systems, clustering

c©2007 Jia Li, Surajit Ray and Bruce G. Lindsay.

LI, RAY AND LINDSAY

is applied to text documents or images to speed up indexing and retrieval (Li, 2005a). Clustering
can be a stand-alone process. For example, microarray gene expression data are often clustered in
order to find genes with similar functions. Clustering is also the technical core of several prototype-
based supervised learning algorithms (Hastie et al., 2001) and has been extended to non-vector data
in this regard (Li and Wang, 2006). Recent surveys (Kettenring, 2006; Jain et al., 1999) discuss the
methodologies, practices, and applications of clustering.

1.1 Background

Clustering methods fall roughly into three types. The first type uses only pairwise distances between
objects to be clustered. These methods enjoy wide applicability since a tractable mathematical
representation for objects is not required. However, they do not scale well with large data sets
due to the quadratic computational complexity of calculating all the pairwise distances. Examples
include linkage clustering (Gower and Ross, 1969) and spectral graph partitioning (Pothen et al.,
1990). The second type targets on optimizing a given merit function. The merit function reflects
the general belief about good clustering, that is, objects in the same cluster should be similar to
each other while those in different clusters be as distinct as possible. Different algorithms vary in
the similarity measure and the criterion for assessing the global quality of clustering. K-means and
k-center clustering (Gonzalez, 1985) belong to this type.

The third type relies on statistical modeling (Fraley and Raftery, 2002). In particular, each
cluster is characterized by a basic parametric distribution (referred to as a component), for instance,
the multivariate Gaussian for continuous data and the Poisson distribution for discrete data. The
overall probability density function (pdf) is a mixture of the parametric distributions (McLachlan
and Peel, 2000). The clustering procedure involves first fitting a mixture model, usually by the
EM algorithm, and then computing the posterior probability of each mixture component given a
data point. The component possessing the largest posterior probability is chosen for that point.
Points associated with the same component form one cluster. Moreover, the component posterior
probabilities evaluated in mixture modeling can be readily used as a soft clustering scheme. In
addition to partitioning data, a probability distribution is obtained for each cluster, which can be
helpful for gaining insight into the data. Another advantage of mixture modeling is its flexibility in
treating data of different characteristics. For particular applications, mixtures of distributions other
than Gaussian have been explored for clustering (Banfield and Raftery, 1993; Li and Zha, 2006).
Banerjee et al. (2005) have also used the mixture of Mises-Fisher distributions to cluster data on a
unit sphere.

The advantages of mixture modeling naturally result from its statistical basis. However, the
parametric assumptions about cluster distributions are found restrictive in some applications. Li
(2005b) addresses the problem by assuming each cluster itself is a mixture of Gaussians, providing
greater flexibility for modeling a single cluster. This method involves selecting the number of
components for each cluster and is sensitive to initialization. Although some success has been
shown using the Bayesian Information Criterion (BIC), choosing the right number of components
for a mixture model is known to be difficult, especially for high dimensional data.

Another limitation for mixture modeling comes from the sometimes serious disparity between
a component and a cluster complying to geometric heuristics. If a probability density is estimated
from the data, preferably, every cluster corresponds to a unique “bump” in the density resulting from
a tight mass of data. We refer to a bump as a “hill” and the local maximum associated with it the

1688

NONPARAMETRIC MODAL CLUSTERING

“hilltop”, that is, the mode. The rational for clustering by a mixture model is that if the component
distributions each possess a single hilltop, by fitting a mixture of them, every component captures
one separate hilltop in the data. However, this is often not true. Without careful placement and
control of their shapes, the mixture components may not align with the hills of the density, especially
when clusters are poorly separated or the assumed parametric component distribution is violated. It
is known that two Gaussians located sufficiently close result in a single mode. (On the other hand, a
two component multivariate Gaussian mixture can have more than two modes, as shown by Ray and
Lindsay, 2005). In this case, equating a component with a cluster is questionable. This profound
limitation of mixture modeling has not been adequately investigated. In fact, even to quantify the
separation between components is not easy.

Here, we develop a new nonparametric clustering approach, still under a statistical framework.
This approach inherits the aforementioned advantages of mixture modeling. Furthermore, data are
allowed to reveal a nonparametric distribution for each cluster as part of the clustering procedure. It
is also guaranteed that every cluster accounts for a distinct hill of the probability density.

1.2 Clustering via Mode Identification

To avoid restrictions imposed by parametric assumptions, we model data using kernel density func-
tions. By their nature, such densities have a mixture structure. Given a density estimate in the form
of a mixture, a new algorithm, aptly called the Modal EM (MEM), enables us to find an increasing
path from any point to a local maximum of the density, that is, a hilltop. Our new clustering algo-
rithm groups data points into one cluster if they are associated with the same hilltop. We call this
approach modal clustering. A new algorithm, namely the Ridgeline EM (REM), is also developed
to find the ridgeline linking two hilltops, which is proven to pass through all the critical points of
the mixture density of the two hills.

The MEM and REM algorithms allow us to exploit the geometry of a probability density func-
tion in a nontrivial manner. As a result, clustering can be conducted in accurate accordance with
our geometric heuristics. Specifically, every cluster is ensured to be associated with a hill, and ev-
ery sample point in the cluster can be moved to the corresponding hilltop along an ascending path
without crossing any “valley” that separates two hills. Moreover, by finding the ridgeline between
two hilltops, the way two hills separate from each other can be adequately measured and exhibited,
enabling diagnosis of clustering results and application-dependent adjustment of clusters. Modal
clustering using MEM also has practical advantages such as the irrelevance of initialization and the
ease of implementing required optimization techniques.

Our modal clustering algorithm is not restricted to kernel density estimators. In fact, it can be
used to find the modes of any density in the form of a mixture distribution. It is known that when the
number of components in a mixture increases, as long as there are sufficiently many components,
the overall fitted density of the mixture is not sensitive to that number. On the other hand, the
resulting partition of data can change dramatically if we identify each mixture component with a
cluster, as normally practiced in mixture-model-based clustering. In modal clustering, there is no
such identification, and mixture components only play the role of approximating a density. We
thus have much more flexibility at choosing mixture distributions. Specifically, we adopt the fully
nonparametric kernel density estimation, using Gaussian kernels for continuous data.

We summarize the main contributions of this paper as follows:

1689

LI, RAY AND LINDSAY

• A new nonparametric statistical clustering algorithm and its hierarchical extension are devel-
oped by associating data points to their modes identified by MEM. Approaches to improve
computational efficiency and to visualize cluster structures for high dimensional data are pre-
sented.

• The REM algorithm is developed to find the ridgeline between the modes of any two clusters.
Measures for the pairwise separability between clusters are proposed using ridgelines. A
cluster merging algorithm to enhance modal clustering is developed.

• Experiments are conducted using both simulated and real data sets. Comparisons are made
with several other clustering algorithms such as linkage clustering, k-means, and Gaussian
mixture modeling.

1.3 Related Work

Clustering is an extensively studied research topic with vast existing literature (see Jain et al., 1999;
Everitt et al., 2001, for general coverage). Works most related to ours are mode-based clustering
methods independently developed in the communities of pattern recognition (Leung et al., 2000)
and statistics (Cheng et al., 2004). The MEM and REM algorithms, the cluster diagnosis tool, and
cluster merging procedure built upon REM are unique to our work.

In pattern recognition, mode-based clustering is studied under the name of scale-space method,
inspired by the smoothing effect of the human visual system. The scale-space clustering method
is pioneered by Wilson and Spann (1990), and furthered studied by Roberts (1997) using density
estimation and by Chakravarthy and Ghosh (1996) using the radial basis function neural network.
Leung et al. (2000) forms a function called “space scale image” for a data set. This function is es-
sentially a Gaussian kernel density estimate (differing from a true density by an ignorable constant).
The modes of the density function are solved by numerical methods. To associate a data point with
a mode, a gradient dynamic system starting from the point is defined and solved by the Euler differ-
ence method. A hierarchical clustering algorithm is proposed by gradually increasing the Gaussian
kernel bandwidth. The authors also note the non-nested nature of clustering results obtained from
increasing bandwidths.

It can be shown that the iteration equation derived from the Euler difference method is identi-
cal to that from MEM. However, MEM applies generally to any mixture of Gaussians as well as
mixtures of other parametric distributions. Its ascending property is proved rather than based on
approximation. Under the framework of scale-space clustering, general mixtures do not arise as a
concern, and naturally, only the case of Gaussian kernel density is discussed (Leung et al., 2000).
It is not clear whether the gradient dynamic system can be efficiently solved for general mixture
models. Our hierarchical clustering algorithm differs slightly from that of Leung et al. (2000) by
enforcing nested clustering. This difference only reflects an algorithmic preference and is not in-
trinsic to the key ideas of modal clustering.

Cheng et al. (2004) defined a gradient tree to be the set of steepest ascent curves of a kernel
density estimate, treating each sample point as the starting position of a curve. The gradient curves
are similar to the paths solved by the gradient dynamic system of Leung et al. (2000), but are
computed by discrete approximation. Minnotte and Scott (1993) developed the mode tree as a
visualization tool for nonparametric density estimate. The emphasis is on graphically illustrating the

1690

NONPARAMETRIC MODAL CLUSTERING

relationship between kernel bandwidths and the modes of uni- or bivariate kernel density functions.
Minnotte et al. (1998) also extended the mode tree to the mode forest.

Because clustering of independent vectors has been a widely used method for image segmen-
tation, especially in the early days (Jain and Dubes, 1988), we test the efficiency of our algorithm
on segmentation, a good example of computationally intensive applications. We have no intention
to present our clustering algorithm as a state-of-the-art segmentation method although it may well
be applied as a fast method. We note that much advance has been achieved in image segmentation
using approaches beyond the framework of clustering independent vectors (Pal and Pal, 1993; Shi
and Malik, 2000; Joshi et al., 2006).

The rest of the paper is organized as follows. Notations and the MEM algorithm are introduced
in Section 2. In Section 3, a new clustering algorithm and its hierarchical extension are developed
by associating data points with the modes of a kernel density estimate. In Section 4, the REM algo-
rithm for finding ridgelines between modes is presented. In addition, several measures of pairwise
separability between clusters are defined, which lead to the derivation of a new cluster merging
algorithm. This merging method strengthens the framework of modal clustering. In Section 5, we
present a method to visualize high dimensional data so that the discrimination between clusters is
well preserved. Experimental results on both simulated and real data sets and comparisons with
other clustering approaches are provided in Section 6. Finally, we conclude and discuss future work
in Section 7.

2. Preliminaries

We introduce in this section the Modal EM (MEM) algorithm that solves a local maximum of a
mixture density by ascending iterations starting from any initial point. The algorithm is named
Modal EM because it comprises two iterative steps similar to the expectation and the maximization
steps in EM (Dempster et al., 1977). The objective of the MEM algorithm is different from the
EM algorithm. The EM algorithm aims at maximizing the likelihood of data over the parameters of
an assumed distribution. The goal of MEM is to find the local maxima, that is, modes, of a given
distribution.

Let a mixture density be f (x) = ∑K
k=1πk fk(x), where x ∈ R d , πk is the prior probability of

mixture component k, and fk(x) is the density of component k. Given any initial value x(0), MEM
solves a local maximum of the mixture by alternating the following two steps until a stopping
criterion is met. Start with r = 0.

1. Let

pk =
πk fk(x(r))
f (x(r))

, k = 1, ...,K.

2. Update

x(r+1) = argmax
x

K

∑
k=1

pk log fk(x) .

The first step is the “Expectation” step where the posterior probability of each mixture com-
ponent k, 1 ≤ k ≤ K, at the current point x(r) is computed. The second step is the “Maximiza-
tion” step. We assume that ∑K

k=1 pk log fk(x) has a unique maximum, which is true when the fk(x)
are normal densities. In the special case of a mixture of Gaussians with common covariance ma-
trix, that is, fk(x) = φ(x | µk,Σ), where φ(·) is the pdf of a Gaussian distribution, we simply have

1691

LI, RAY AND LINDSAY

x(r+1) = ∑K
k=1 pkµk. For other parametric densities fk(x), the solution to the maximization in the

second step can be more complicated and sometimes requires numerical procedures. On the other
hand, similarly as in the EM algorithm, it is usually much easier to maximize ∑K

k=1 pk log fk(x) than
the original objective function log∑K

k=1πk fk(x).
The proof of the ascending property of the MEM algorithm is provided in Appendix A. We omit

a rigorous discussion regarding the convergence of x(r) here. By Theorem 1 of Wu (1983), if f (x)
is a mixture of normal densities, all the limit points of {x(r)} are stationary points of f (x). It is
possible that {x(r)} converges to a stationary, but not locally maximal, point, although we have not
observed this in our experiments. We refer to (Wu, 1983) for a detailed treatment of the convergence
properties of EM style algorithms.

3. Clustering by Mode Identification

We focus on clustering continuous vector data although the framework extends readily to discrete
data. Given a data set {x1,x2, ...,xn}, xi ∈ R d , a probability density function for the data is estimated
nonparametrically using Gaussian kernels. As the kernel density estimate is in the form of a mixture
distribution, MEM is applied to find a mode using every sample point xi, i = 1, ...,n, as the initial
value for the iteration. Two points xi and x j are grouped into one cluster if the same mode is obtained
from both. When the variances of Gaussian kernels increase, the density estimate becomes smoother
and tends to group more points into one cluster. A hierarchy of clusters can thus be constructed by
gradually increasing the variances of Gaussian kernels. Next, we elaborate upon the clustering
algorithm, illustrate it with an example, and discuss approaches to speed up computation.

3.1 The Algorithm

Let the set of data to be clustered be S = {x1,x2, ...,xn}, xi ∈ R d . The Gaussian kernel density
estimate is formed:

f (x) =
n

∑
i=1

1
n
φ(x | xi,Σ) ,

where the Gaussian density function

φ(x | xi,Σ) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(x− xi)tΣ−1(x− xi)) .

We use a spherical covariance matrix Σ = diag(σ2,σ2, ...,σ2). The standard deviation σ is also
referred to as the bandwidth of the Gaussian kernel. We use notation D(σ2) = diag(σ2,σ2, ...,σ2)
for brevity.

With a given Gaussian kernel covariance matrix D(σ2), data are clustered as follows:

1. Form kernel density

f (x | S,σ2) =
n

∑
i=1

1
n
φ(x | xi,D(σ2)) , (1)

2. Use f (x|S,σ2) as the density function. Use each xi, i = 1,2, ...,n, as the initial value in the
MEM algorithm to find a mode of f (x|S,σ2). Let the mode identified by starting from xi be
Mσ(xi).

1692

NONPARAMETRIC MODAL CLUSTERING

3. Extract distinctive values from the set {Mσ(xi), i = 1,2, ...,n} to form a set G. Label the
elements in G from 1 to |G|. In practice, due to finite precision, two modes are regarded equal
if their distance is below a threshold.

4. If Mσ(xi) equals the kth element in G, xi is put in the kth cluster.

In the basic version of the algorithm, the density f (x|S,σ2) is a sum of Gaussian kernels centered
at every data point. However, the algorithm can be carried out with any density estimate in the form
of a mixture. The key step in the clustering algorithm is the identification of a mode starting from
any xi. MEM moves from xi via an ascending path, or, figuratively, via hill climbing, to a mode.
Points that climb to the same mode are located on the same hill and hence grouped into one cluster.
We call this theMode Association Clustering (MAC) algorithm.

Although the density of each cluster is not explicitly modeled by MAC, this nonparametric
method retains a major advantage of mixture-model-based clustering, that is, a pdf is obtained
for each cluster. These density functions facilitate soft clustering as well as cluster assignment of
samples outside the data set. Denote the set of points in cluster k, 1 ≤ k ≤ |G|, by Ck. The density
estimate for cluster k is

gk(x) = ∑
xi:xi∈Ck

1
|Ck|

φ(x | xi,D(σ2)) . (2)

Because we do not assume a parametric form for the densities of individual clusters, our method
tends to be more robust and characterizes clusters more accurately when the attempted parametric
assumptions are violated.

It is known in the literature of mixture modeling that if the density of a cluster is estimated using
only points assigned to this cluster, the variance tends to be under estimated, although the effect on
clustering may be small (Celeux and Govaert, 1993). The under estimation of variance becomes
more severe for poorly separated clusters, which often decay towards zero too quickly on leaving
the cluster. We will see a similar phenomenon here with gk(x) having over fast decaying tails. A
correction to this problem in mixture modeling is to use soft instead of hard clustering. Every point
is allowed to contribute to every cluster by a weight computed from the posterior probability of the
cluster.

Under this spirit, we can make an ad-hoc modification on the density estimation. With gk(x) in
(2) as the initial cluster density, compute the posterior of cluster k given each xi by pi,k ∝ |Ck|

n gk(x),
k = 1, ..., |G|, subject to ∑|G|

k′=1 pi,k′ = 1. Form the updated density of cluster k by

g̃k(x) = ∑n
i=1 pi,kφ(x | xi,D(σ2))

∑n
i=1 pi,k

.

With the cluster density modified, it is natural to question if pi,k should be updated again, which
in turn will lead to another update of g̃k(x). This iterative procedure can be carried out infinitely.
Whether it converges is not clear and may be worthy of investigation. On the other hand, if the
maximum a posteriori clustering based on the final g̃k(x) differs significantly from the result of
modal clustering, this procedure may have defeated the very purpose of modal clustering and turned
it into merely an initialization scheme. We thus do not recommend many iterative updates on g̃k(x).
One round of adjustment from gk(x)may be sufficient. Or one can take gk(x) cautiously as a smooth
signature of a cluster, likely tighter than an accurate density estimate.

1693

LI, RAY AND LINDSAY

When the bandwidth σ increases, the kernel density estimate f (x|S,σ2) in (1) becomes smoother
and more points tend to climb to the same mode. This suggests a natural approach for hierarchical
clustering. Given a sequence of bandwidths σ1 <σ2 < · · ·<ση, hierarchical clustering is performed
in a bottom-up manner. We start with every point xi being a cluster by itself. The set of cluster
representatives is thus G0 = S = {x1, ...,xn}. This extreme case corresponds to the limit when σ
approaches 0. At any bandwidth σl , the cluster representatives in Gl−1 obtained from the preceding
bandwidth are input into MAC using the density f (x|S,σ2l). Note that the kernel centers remain
at all the original data points although modes are identified only for cluster representatives when
l > 1. The modes identified at this level form a new set of cluster representatives Gl . This procedure
is repeated across all σl’s. We refer to this hierarchical clustering algorithm as Hierarchical MAC
(HMAC). It corresponds to the mappings xi → Mσ1(xi) → Mσ2(Mσ1(xi)) → ·· · .

Denote the partition of points obtained at bandwidth σl by Pl , a function mapping xi’s to cluster
labels. If K clusters labeled 1, 2, ..., K, are formed at bandwidth σl , Pl(xi) ∈ {1,2, ...,K}. HMAC
ensures that Pl’s are nested, that is, if Pl(xi) = Pl(x j), then Pl+1(xi) = Pl+1(x j). Recall that the
set of cluster representatives at level l is Gl . HMAC starts with G0 = {x1, ...,xn} and solves Gl ,
l = 1,2, ...,η, sequentially by the following procedure:

1. Form kernel density

f (x|S,σ2l) =
n

∑
i=1

1
n
φ(x | xi,D(σ2l)).

2. Cluster Gl−1 by MAC using density f (x|S,σ2l). Let the set of distinct modes obtained be Gl .

3. If Pl−1(xi) = k and the kth element inGl−1 is clustered to the k′th mode inGl , then Pl(xi) = k′.
That is, the cluster of xi at level l is determined by its cluster representative in Gl−1.

It is worthy to note that HMAC differs profoundly from linkage clustering, which also builds a
hierarchy of clusters. In linkage clustering, at every level, only the two clusters with the minimum
pairwise distance are merged. The hierarchy is constructed by a sequence of such small greedy
merges. The lack of overall consideration tends to result in skewed clusters. In HMAC, however, at
any level, the merging of clusters is conducted globally and the effect of every original data point
on clustering is retained through the density f (x|S,σ2l).

3.2 An Example

We now illustrate the HMAC algorithm using a real data set. This is the glass identification data
provided by the UCI machine learning database repository (Blake et al., 1998). The original data
were contributed by Spiehler and German at the Diagnostic Products Corporation. For clarity of
demonstration, we take 105 sample points from two types of glass in this data set. Moreover, we
only use the first two principal components of the original 9 dimensions.

HMAC is applied to the data using a sequence of kernel bandwidths σ1 < σ2 < · · ·< ση, η= 20,
chosen equally spaced from [0.1σ̂,2σ̂] = [0.225,4.492], where σ̂ is the larger one of the sample
standard deviations of the two dimensions. Among the 20 different σl’s, only 6 of them result in
clustering different from σl−1, reflecting the fact that the bandwidth needs to increase by a sufficient
amount to drive the merging of some existing cluster representatives. The number of clusters at the
6 levels is sequentially 21, 11, 5, 3, 2, 1.

1694

NONPARAMETRIC MODAL CLUSTERING

We demonstrate the clustering results at the 2nd and 3rd level in Figure 1. At the 2nd level, 11
clusters are formed, as shown by different symbols in Figure 1(a). The 11 modes identified at level
2 are merged into 5 modes at level 3 when the bandwidth increases from 0.449 to 0.674. Figure 1(b)
shows the ascending paths generated by MEM from the 11 modes (crosses) at level 2 to the 5 modes
(squares) at level 3. The contour lines of the density function with the corresponding bandwidth of
level 3 are plotted in the background for better illustration. The 5 clusters at level 3 are shown in
Figure 1(c). These 5 modes are again merged into 3 modes at level 4, as shown in Figure 1(d).

3.3 Measures for Enhancing Speed

Because the nonparametric density estimate in (1) is a sum of kernels centered at every data point,
the amount of computation to identify the mode associated with a single point grows linearly with
n, the size of the data set. The computational complexity of clustering all the data by MAC is thus
quadratic in n. In practice, however, it is often unnecessary to use the basic kernel estimate. A
preliminary clustering can be first applied to {x1, ...,xn} to yield m clusters, where m is significantly
smaller than n, but still much larger than the desired number of clusters. Suppose the m cluster
centroids are S= {x1, ...,xm} and the number of points in cluster S j is n j, j = 1,2, ...,m. We use the
density estimate

f (x | S,D(σ2)) =
m

∑
j=1

n j
n
φ(x | x j,D(σ2))

in MAC to cluster the xi’s. Since MEM applies to general mixture models, the modified density
function causes no essential changes to the clustering procedure.

The purpose of the preliminary clustering is more of quantizing the data than clustering. Com-
putation is reduced by not discerning points in the same quantization region when formulating the
density estimate. If m is sufficiently large, S is adequate to retain the topological structures in the
nonparametric density estimate. In this fast version of MAC, we search for a mode for every xi.
Examples exploiting the fast MAC are given in Section 6.

4. Analysis of Cluster Separability via Ridgelines

A measure for the separability between clusters is useful for gaining deeper understanding of clus-
tering structures in data. With this measure, the difference between clusters is quantified, rather
than being simply categorical. This quantification can be useful in certain situations. For instance,
in taxonomy study, after grouping instances into species, scientists may need to numerically assess
the disparity between species, often taken as an indicator for evolutionary proximity. A separability
measure between the clusters of species can effectively reflect such disparity. Such a measure is also
useful for diagnosing clustering results and for the mere interest of designing clustering algorithms.
Based upon it, we derive a mechanism to merge weakly separated clusters. Although the separabil-
ity measure is a diagnostic tool and the cluster merging method can adjust the number of clusters, in
this paper, we do not pursue the problem of choosing the number of clusters fully automatically. It
is well known that determining this number is a deep problem, and domain knowledge often needs
to be called upon for a final decision in various applications.

The separability measure we define here exploits the geometry of the density functions of two
clusters in a comprehensive manner. We only require the cluster pdf to be a mixture distribution,
for example, a Gaussian kernel density estimate. Before formulating the separability measure, we

1695

LI, RAY AND LINDSAY

−5 0 5 10
7

8

9

10

11

12

13

14

15

1
2
3
4
5
6
7
8
9
10
11

−5 0 5 10
7

8

9

10

11

12

13

14

15

(a) (b)

−5 0 5 10
7

8

9

10

11

12

13

14

15

1
2
3
4
5

−5 0 5 10
7

8

9

10

11

12

13

14

15

(c) (d)

−5 0 5 10
7

8

9

10

11

12

13

14

15

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Ri
dg

el
in

e
de

ns
ity

 (s
ca

le
d)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

α

(e) (f)

Figure 1: Clustering results for the glass data set obtained from HMAC. (a) The 11 clusters at level
2. (b) The MEM ascending paths from the modes at level 2 (crosses) to the modes at
level 3 (squares), and the contours of the density estimate at level 3. (c) The 5 clusters
at level 3. (d) The ascending paths from the modes at level 3 (crosses) to those at level 4
(squares) and the contours of the density estimate at level 4. (e) Ridgelines between the
3 major clusters at level 3. (f) The density function along the 3 ridgelines.

1696

NONPARAMETRIC MODAL CLUSTERING

define a ridgeline between two unimodal clusters. The REM algorithm is developed to solve the
ridgeline.

4.1 Ridgeline

The ridgeline between two clusters with density g1(x) and g2(x) is

L = {x(α) : (1−α)∇ logg1(x)+α∇ logg2(x) = 0,0≤ α≤ 1} . (3)

For a mixture density of the two clusters, g̃(x) = π1g1(x)+ π2g2(x), π1+ π2 = 1, if g̃(x) > 0
for any x, the modes, antimodes (local minimums), and saddle points of g̃(x) must occur in L for
any prior probability π1. The locations of these critical points, however, depend on π1. This fact is
referred to as the critical value theorem and is proved by Ray and Lindsay (2005).

Remarks:

1. Eq. (3) is precisely the critical point equation for the exponential tilt density g(x|α) =
c(α)g1(x)1−αg2(x)α, where c(α) is a normalizing constant. This density family is an ex-
ponential family, with sufficient statistic log(g2(x)/g1(x)).

2. The set of solutions in L is, in general, a 1-dimensional manifold; that is, a curve. When both
g1 and g2 are normal densities, the solution is explicit (see Ray and Lindsay, 2005), and the
solutions form a unique one-dimensional curve. More generally, the solutions are possibly a
set of curves that pass through the modes of the g1(x) and g2(x).

3. If both g1 and g2 are unimodal and have convex upper contour sets, it can be proved that the
solutions form a unique curve between the modes of g1 and g2 respectively. In our discussion,
we assume unimodal g1 and g2.

Since the local maxima of the exponential tilt function g(x;α) satisfy Eq. (3), we solve (3) by
maximizing log(g(x|α)) = (1−α) logg1(x)+α logg2(x). In the case when the two cluster densi-
ties g1 and g2 are themselves mixtures of basic parametric distributions, for example, normal, we
develop an ascending algorithm to maximize the function, referred to as the Ridgeline EM (REM)
Algorithm. For notational brevity, assume that both g1 and g2 are mixtures of T parametric distri-
butions:

gi(x) =
T

∑
κ=1

πi,κhi,κ(x) , i= 1,2 .

Starting from an initial value x(0), REM updates x by iterating the two steps:

1. Compute

pi,κ = πi,κhi,κ(x(r))/
T

∑
j=1

πi, jhi, j(x(r)) , κ= 1, ...,T , i= 1,2 .

2. Update x(r+1):

x(r+1) = argmax
x

(1−α)
T

∑
κ=1

p1,κ logh1,κ(x)+α
T

∑
κ=1

p2,κ logh2,κ(x) .

1697

LI, RAY AND LINDSAY

REM ensures that g(x(r+1) | α) ≥ g(x(r) | α). Proof is given in Appendix B. As with MEM,
we will not rigorously study the convergence properties of the sequence {x(r)}. In the special case
hi,κ(x) = φ(x | µi,κ,Σ), the update equation for x(r+1) becomes

x(r+1) = (1−α)
T

∑
κ=1

p1,κµ1,κ+α
T

∑
κ=1

p2,κµ2,κ .

The Gaussian kernel density estimate belongs to this case.
At the two extreme values α= 0,1, the solutions are the modes of g1(x) and g2(x) respectively.

We solve x(α) sequentially on a set of grid points 0 = α0 < α1 < · · · < αζ = 1. First, x(0) =
argmaxx g1(x) is solved by MEM. For every αl , x(αl−1), previously calculated, is used as initial
value to start the iterations in REM.

Suppose two clusters, denoted by z1 and z2, have densities g1 and g2, and prior probabilities π1
and π2 respectively. We define a pairwise separability as

S(z1,z2) = 1− minαπ1g1(x(α))+π2g2(x(α))
π1g1(x(0))+π2g2(x(0))

= 1− π1g1(x(α∗))+π2g2(x(α∗))
π1g1(x(0))+π2g2(x(0))

(4)

where α∗ = argminαπ1g1(x(α))+π2g2(x(α)). Usually, the prior probabilities π1 or π2 are propor-
tional to the cluster sizes. It is obvious that S(z1,z2) ∈ [0,1]. To symmetrize the measure, we define
the pairwise symmetric separability as S̃(z1,z2) =min[S(z1,z2),S(z2,z1)].

By finding x(α∗), we can evaluate the amount of “dip” along the ridgeline. By the critical
value theorem, the minimum of π1g1(x) + π2g2(x), if exists, lies on the ridgeline and therefore
must be x(α∗). Hence, if there is a “dip” in the mixture of the two clusters, it will be captured
by the ridgeline. According to definition (4), a deeper “dip” leads to higher separability. In our
implementation, we approximate α∗ by

α∗ ≈ argmin
αl ,0≤l≤ζ

π1g1(x(αl))+π2g2(x(αl)) ,

where αl , 0≤ l ≤ ζ, are the grid points.
We also define the separability for a single cluster to quantify its overall distinctness from other

clusters. Specifically, suppose there are m clusters denoted by zi, i = 1, ...,m. The separability of
cluster zi, denoted by s(zi) is defined by

s(zi) = min
j:1≤ j≤m, j '=i

S(zi,z j) .

We call a cluster “insignificant” if its separability is below a given threshold ε. In our discussion,
ε= 0.5.

Take the glass data set as an example. As shown in Figure 1(c), the points are divided into 5
groups at that level of the clustering hierarchy. Two of the clusters each contain a single sample
point, which is far from the other points and forms a mode alone. The separability of these two
clusters are weak, respectively 0.00 and 0.30. The three other clusters are highly separable, with
separability values 0.94, 0.84 and 0.81. Figure 1(e) shows the ridgelines between any two of the
three significant clusters, and Figure 1(f) shows the density function along the ridgelines, normalized
to one at the ridgeline end point x(0) or x(1) (depending on whichever is larger).

The task of identifying insignificant clusters in Figure 1(c) is not particularly challenging be-
cause the two smallest clusters are “singletons” (containing only one sample). However, cluster size

1698

NONPARAMETRIC MODAL CLUSTERING

is not the sole factor affecting separability. Take the clusters in Figure 1(a) as an example. The
separability of the 11 clusters and their corresponding sizes (number of points contained) are listed
in Table 1. It is shown that although cluster 9 is the third largest cluster, its separability is low. At
threshold ε = 0.5, this cluster is insignificant. In contrast, by being far from all the other clusters,
cluster 6, a singleton, has separability 0.87. The low separability of cluster 9 is caused by its prox-
imity to cluster 1, the largest cluster which accounts for 60% of the data. Clusters that contain a
large portion of data tend to “absorb” surrounding smaller clusters. The attraction of a small cluster
to a bigger one depends on its relative size, tightness, distance to the bigger cluster, as well as the
orientation of the data masses in the two clusters.

Cluster 1 2 3 4 5 6 7 8 9 10 11
Size 63 1 1 2 4 1 1 1 5 1 25

Separability 0.94 0.41 0.41 0.31 0.68 0.87 0.13 0.13 0.18 0.46 0.92

Table 1: Separability between clusters in the glass data set

4.2 Merging Clusters Based on Separability

To elaborate on the relationships between clusters, we compute the matrix of separability between
any pair of clusters. We can potentially use this matrix to decide which clusters can be merged due
to weak separation. As discussed previously, one way to merge clusters is to increase the bandwidth
of the kernel function used by HMAC. However, an enlarged bandwidth may cause prominent clus-
ters to be clumped while leaving undesirable small “noisy” clusters unchanged. Merging clusters
according to the separability measure is one possible approach to eliminate “noisy” clusters without
losing important clustering structures found at a small bandwidth. We will show by the glass data
that the merging method makes clustering results less sensitive to bandwidth.

Let the clusters in consideration be {z1,z2, ...,zm}. We denote the pairwise separability between
cluster zi and z j in short by Si, j, where Si, j = S(zi,z j). Note in general Si, j '= S j,i. Let a threshold for
separability be ε, 0< ε < 1. Let the density function of cluster zi be gi(·) and the prior probability
be πi. Denote the weighted mode of each cluster density function by δ(zi) = πimaxgi(x). Since in
MEM the mode maxgi(x) for each cluster zi is computed when zi is formed, δ(zi) requires no extra
computation after clustering. We refer to δ(zi) as the significance index of cluster zi.

The main idea of the merging algorithm is to have clusters with a higher significance index
absorb other clusters that are not well separated from them and are less dominant (lower significance
index). Several issues need to be resolved to avoid arbitrariness in merging. First, a cluster zi may be
weakly separated from several other clusters with higher significance indices. Among those clusters,
we let the one from which zi is worst separated to absorb zi. Second, two weakly separated clusters
zi and z j may have the same significance indices, that is, δ(zi) = δ(z j); and hence it is ambiguous
which cluster should be treated as the dominant one. We solve this problem by introducing the
concept of cliques. The clusters are first grouped into cliques which contain weakly separated zi’s
with the same value of δ(zi). Clusters in different cliques are ensured to be either well separated or
have different significance indices. We then apply the absorbing process to the cliques, without the
possibility of encountering the aforementioned ambiguity.

1699

LI, RAY AND LINDSAY

Next, we describe how to form cliques and extend the definition of pairwise separability to
cliques. In order to carry out the merging of cliques, a directed graph is constructed upon the
cliques based on pairwise separability and the comparison of significance indices.

1. Tied: Cluster zi and z j are defined to be tied if S(zi,z j) < ε and δ(zi) = δ(z j).

2. Clique: Cluster zi and z j are in the same clique if (a) zi and z j are tied, or (b) there is a cluster
zk such that zi and zk are in the same clique, and z j and zk are in the same clique.

Remark: the relationship “tied” results in a partition of zi’s. Each group formed by the par-
tition is a clique. Because being tied requires δ(zi) = δ(z j), in practice, we only observe
clusters being tied when they are all singletons.

We now define the separability between cliques. Without loss of generality, let clique c1 =
{z1,z2, ...,zm1} and c2 = {zm1+1, ...,zm1+m2}. Denote the clique-wise separability by Sc(c1,c2):

Sc(c1,c2) ! min
1≤i≤m1

min
m1+1≤ j≤m1+m2

S(zi,z j) .

Since in general, S(zi,z j) '= S(z j,zi), the asymmetry carries over to Sc(c1,c2) '= Sc(c2,c1). We
also denote the significance index of a clique ci as δ(ci). Since all the clusters in ci have equal
significance indices, we let δ(ci) = δ(zi′), where zi′ is any cluster included in ci.

Regard each clique as a node in a graph. Suppose there are m̃ cliques {c1, ...,cm̃}. A directed
graph is built as follows. For two arbitrary cliques ci and c j, a link from ci to c j is made if

1. Sc(ci,c j) < ε.

2. Sc(ci,c j) = mink '=i Sc(ci,ck) and j is the smallest index among all those j′’s that achieve
Sc(ci,c j′) =mink '=i Sc(ci,ck).

3. δ(ci) < δ(c j).

A clique ci is said to be linked to c j if there is a directed edge from ci to c j. It is obvious by
the second requirement in the link construction that every clique is linked to at most another clique.
In Appendix C, it is proved that a graph built by the above rules has no loops. An example graph
is illustrated in Figure 2(b). If we disregard the directions of the links, the graph is partitioned into
connected subgraphs. In the given example in Figure 2(b), there are four connected subgraphs. The
basic idea of the merging algorithm is to let the most dominant clique in one subgraph absorb all
the others in the same subgraph.

We call clique c j the parent clique of ci if there is a directed link from ci to c j. In this case, we
also say ci is directly absorbed by c j. By construction, δ(ci) < δ(c j). More generally, if there is a
directed path from ci to c j, then c j is called an ancestor of ci, and ci is absorbed by c j. Again, we
have δ(ci) < δ(c j) by transitivity. In each connected subgraph containing k nodes, because there
is no loop, there are exactly k− 1 links. Since every node has at most one link originating from
it, the k−1 links have to originate from k−1 different nodes. Therefore, there is precisely 1 node
in each connected subgraph that has no link originating from it. This node is called the head node
(clique) of the connected nodes. It is not difficult to see that the head node is an ancestor for all the
other nodes in the subgraph. As a result, the significance index of the head clique is strictly larger

1700

NONPARAMETRIC MODAL CLUSTERING

than that of any other clique in the subgraph. In this sense, the head clique dominates all the other
connected cliques.

Combining clusters by the above method is the first and main step in our merging algorithm.
To account for outliers, the second step in the algorithm employs the notation of coverage rate.
Outlier points far from all the essential clusters tend to yield high separability and hence will not be
merged. In HMAC, to “grab” those outliers, the kernel bandwidth needs to grow so large that under
such a bandwidth, many significant clusters are undesirably merged. To address this issue, we find
the smallest clusters and mark them as outliers if their total size proportional to the entire data set is
below a threshold. For instance, if the coverage rate allowed is 95%, this threshold is then 5%.

We now summarize our cluster merging algorithm as follows. We call the merging procedure
conducted based on the separability measure stage I merging and that based on coverage rate stage II
merging. The two stages do not always have to be concatenated. We can apply each alone. Applying
only stage I is equivalent to applying two stages and setting the coverage rate to 100%; applying
only stage II is equivalent to setting the threshold of separability to 0.0. Assume the starting clusters
are {z1,z2, ...,zm}.

1. Stage I: merging based on separability.

(a) Compute the separability matrix [Si, j], i, j = 1, ...,m, and the significant index δ(zi),
i= 1, ...,m.

(b) Form cliques {c1,c2, ...,cm̃} based on [Si, j] and δ(zi)’s, where m̃ ≤ m. Record the zi’s
contained in each clique.

(c) Construct the directed graph.
(d) Merge cliques that are in the same connected subgraph. zi’s contained in merged cliques

are grouped into one cluster. Denote those merged clusters by {ẑ1, ẑ2, ..., ẑm̂}, where
m̂≤ m̃.

2. Stage II: merging based on coverage rate. Denote the coverage rate by ρ.

(a) Calculate the sizes of clusters {ẑ1, ẑ2, ..., ẑm̂} and denote them by n̂i, i = 1, ..., m̂. The
size of the whole data set is n= ∑m̂

i=1 n̂i.
(b) Sort n̂i, i = 1, ..., m̂, in ascending order. Let the sorted sequence be n̂(1), n̂(2), ..., n̂(m̂).

Let n̂(0) = 0. Let k be the largest integer such that ∑k
i=0 n̂(i) ≤ (1−ρ)n.

(c) If k > 0, go to the next step. Otherwise, stop and the final clusters are {ẑ1, ẑ2, ..., ẑm̂}.
(d) For each ẑ(i), i= 1, ...,k, find all the original clusters z j’s that are merged into ẑ(i). Denote

the index set of the z j’s by H(i). Let H ′ = ∪ki=1H(i) and H ′′ = ∪m̂i=k+1H(i).
(e) For each ẑ(i), i= 1, ...,k, find j∗ = argmin j∈H ′′minl∈H(i) S(zl,z j). Find the cluster ẑ j′ that

contains z j∗ . Merge ẑ(i) with ẑ j′ . The new clusters obtained are {z1,z2, ...,zm}, where
m= m̂− k < m̂.

(f) Reset m→ m̂ and zi → ẑi, i= 1, ...,m. Go back to step (a).

Unless there is a definite need to assign every data point to one of the major clusters, in certain ap-
plications, it may be more preferable to keep the outlier status of some points rather than allocating
them to distant clusters.

1701

LI, RAY AND LINDSAY

−5 0 5 10
7

8

9

10

11

12

13

14

15

1
2
3
4
5
6
7
8
9
10
11

6

11

5

2,3 7,8

10

1

4

9

(a) (b)

−5 0 5 10
7

8

9

10

11

12

13

14

15

1
2
3
4
5
6
7
8
9
10
11

−5 0 5 10
7

8

9

10

11

12

13

14

15

1
2
3
4
5
6
7
8
9
10
11

(c) (d)

Figure 2: The process of merging clusters for the glass data set. (a) The clustering result after
merging clusters in the same cliques. (b) The cliques and directed graph constructed
based on separability. (c), (d) The clustering results after stage I and stage II merging
respectively.

The first stage merging based on separability is intrinsically connected with linkage-based ag-
glomerative clustering. For details on linkage clustering, see Jain et al. (1999). In a nutshell,
linkage clustering forms clusters by progressively merging a pair of current clusters. Initially,
every data point is a cluster. The two clusters with the minimum pairwise distance are chosen
to merge at each step. The procedure is greedy in nature since minimization is conducted se-
quentially through every merge. Linkage clustering methods differ by the way between-cluster
distance is updated when a new cluster is combined from two smaller ones. For instance, in sin-
gle linkage, if cluster ξ2 and ξ3 are merged into ξ4, the distance between ξ1 and ξ4 is calculated
as d(ξ1,ξ4) = min(d(ξ1,ξ2),d(ξ1,ξ3)). If complete linkage, the distance becomes d(ξ1,ξ4) =
max(d(ξ1,ξ2),d(ξ1,ξ3)).

Our merging algorithm is a particular kind of linkage clustering where the elements to be clus-
tered are cliques and the distance between the cliques is the separability. The update of this distance
for merged groups of cliques is however different from commonly used versions in linkage clus-
tering. The update is the same as single linkage under a certain scenario, but differs in general
because of the directed links and the notion of head cliques. We may call this linkage clustering

1702

NONPARAMETRIC MODAL CLUSTERING

algorithm directional single linkage for reasons that will be self-evident shortly. Consider the above
example where ξ2 and ξ3 merge into ξ4. We call ξ more dominant than ξ′ if the head clique in ξ
has a higher significance index than that in ξ′, and denote δ(ξ) > δ(ξ′). Without loss of generality,
assume δ(ξ2) > δ(ξ3). Then the update of d(ξ1,ξ4) and the ordering of δ(ξ1) and δ(ξ4) (needed for
updating the distance) follows three cases:





d(ξ1,ξ4) = d(ξ1,ξ2), and δ(ξ1) > δ(ξ4), if δ(ξ1) > δ(ξ2)
d(ξ1,ξ4) = d(ξ1,ξ2), and δ(ξ1) < δ(ξ4), if δ(ξ3) < δ(ξ1) < δ(ξ2)
d(ξ1,ξ4) =min(d(ξ1,ξ2),d(ξ1,ξ3)), and δ(ξ1) < δ(ξ4), if δ(ξ1) < δ(ξ3) .

In our proposed merging procedure, we essentially employ a threshold to stop merging when all the
between-cluster distances exceed this value. An alternative is to apply the directional single linkage
clustering and stop merging when a desired number of clusters is achieved.

We use the glass data set in the previous section to illustrate the merging algorithm. The thresh-
old for separability is set to ε= 0.5 and the coverage rate is ρ= 95%. Apply the algorithm to the 11
clusters formed at the 2nd level of the hierarchical clustering, shown in Figure 1(a). We refer to the
clusters as z1, ..., z11, where the label assignment follows the indication in the figure. The 11 clus-
ters form 9 cliques. Figure 2(a) shows the clustering after merging clusters in the same clique. The
square (triangle) symbol used for z2 (z7) is now used for both z2 (z7) and z3 (z8) to indicate that they
have been merged. To highlight the relationship between the merged clusters and the original clus-
ters, the list of updated symbols for each original cluster is given in every scatter plot. Figure 2(b)
demonstrates the directed graph constructed for the cliques. The zi’s contained in each clique are
indicated in the node. Figure 2(c) shows the clustering result after stage I merging. The symbol of
the head clique in each connected subgraph is adopted for all the clusters it absorbs. The 4 clusters
generated at stage I contain 73, 25, 6, 1 points respectively. At ρ = 95%, only the cluster of size 1
is marked as an outlier cluster, and is merged with the cluster of size 6.

Because clusters with low separability are apt to be grouped together when the kernel band-
width increases, it is not surprising for the clustering result obtained by the merging algorithm to
agree with clustering at a higher level of HMAC. On the other hand, examining separability and
identifying outlier clusters enhance the robustness of clustering results, a valuable trait especially
in high dimensions. Examples will be shown in Section 6. For practical interest, when equipped
with the merging algorithm, we do not need to generate all the hierarchical levels in HMAC until
reaching a targeted number of clusters. Instead, we can apply the merging algorithm to a relatively
large number of clusters obtained at an early level and reduce the number of clusters to the desired
value.

5. Visualization

For clarity, we have used 2-D data to illustrate our new clustering methods, although these methods
are not limited by data dimensions. Projection into lower dimensions is needed to visualize clus-
tering results for higher dimensional data. PCA (principal component analysis) is a widely used
linear projection method, but it is not designed to reveal clustering structures. We will describe in
this section a linear projection method that aims at effectively showing clustering structures. The
method is employed in our experiments. We note that visualization is a rich research area in its own
right. However, because this topic is beyond the focus of the current paper, we will not discuss it in
great depth, nor make thorough comparisons with other methods.

1703

LI, RAY AND LINDSAY

Modal clustering provides us an estimated density function and a prior probability for each clus-
ter. Suppose K clusters are generated. Let the cluster density function of x, x ∈ R d , be gk(x), and
the prior probability be πk, k= 1,2, ...,K. For any x ∈ R d , its extent of association with each cluster
k is indicated by the posterior probability pk(x) ∝ πkgk(x). To determine the posterior probabili-
ties pk(x), under a given set of priors, it suffices to specify the discriminant functions log g1(x)

gK(x) , ...,
log gK−1(x)gK(x) . Without loss of generality, we use gK(x) as the basis for computing the ratios. Our pro-
jection method attempts to find a plane such that log gk(x)

gK(x) , k= 1, ...,K−1 can be well approximated
if only the projection of data into the plane is specified. By preserving the discriminant functions,
the posterior probabilities of clusters will remain accurate.

Let the data set be {x1,x2, ...,xn}, xi ∈ R d . Denote a particular dimension of the data set by
x·,l = (x1,l,x2,l, ...,xn,l)t , l = 1, ...,d. For each k, k= 1, ...,K−1, the pairs (xi, log gk(xi)

gK(xi)), i= 1, ...,n,
are computed. Let yi,k = log gi(xi)

gK(xi) . Linear regression is performed based on the pairs (xi,yi,k), i =
1, ...,n, to acquire a linear approximation for each discriminant function. Let βk,0,βk,1,βk,2, ...,βk,d
be the regression coefficients for the kth discriminant function. Denote βk = (βk,1,βk,2, ...,βk,d)t and
the fitted values for log gk(xi)

gK(xi) by ŷi,k = βk,0+βtkxi. Also denote ỹi,k = βtkxi = ŷi,k−βk,0. For mathe-
matical tractability, we convert the approximation of the discriminant functions to the approximation
of their linearly regressed values (ŷi,1, ŷi,2, ..., ŷi,K−1), i= 1, ...,n, which is equivalent to approximate
(ỹi,1, ỹi,2, ..., ỹi,K−1) since the two only differ by a constant. To precisely specify (ỹi,1, ỹi,2, ..., ỹi,K−1),
we need the projection of xi onto the K−1 directions, β1, β2, ..., βK−1. If we are restricted to show-
ing the data in a plane and K− 1 > 2, further projection of (ỹi,1, ỹi,2, ..., ỹi,K−1) is needed. At this
stage, we employ PCA on the vectors (ỹi,1, ỹi,2, ..., ỹi,K−1) (referred to as the discriminant vectors),
i= 1, ...,n, to yield a two-dimensional projection. Suppose the two principal component directions
for the discriminant vectors are γ j = (γ j,1, ...,γ j,K−1)t , j = 1,2. The two principal components v j,
j = 1,2, are





v1, j
v2, j
...
vn, j




= γ j,1





ỹ1,1
ỹ2,1
...
ỹn,1




+ · · ·+ γ j,K−1





ỹ1,K−1
ỹ2,K−1
...
ỹn,K−1




=

d

∑
l=1

[
K−1

∑
k=1

γ j,kβk,l

]
x·,l .

To summarize, the two projection directions for xi are

τ j =

(
K−1

∑
k=1

γ j,kβk,1,
K−1

∑
k=1

γ j,kβk,2, ...,
K−1

∑
k=1

γ j,kβk,d

)t

, j = 1,2 . (5)

In practice, it may be unnecessary to preserve all the K− 1 discriminant functions. We can apply
the above method to a subset of discriminant functions corresponding to major clusters. The two
projection directions in (5) are not guaranteed to be orthogonal, but it is easy to find two orthonormal
directions spanning the same plane.

If we use a basis function other than gK(x), say gk′(x), to form the discriminant functions, the
new set of vectors βk’s will span the same linear space as the βk’s obtained with gK(x). The reason is
that the new discriminant functions log gk(xi)

gk′ (xi)
, 1≤ k≤K, k '= k′, can be linearly transformed from the

previously defined (yi,1,yi,2, ...,yi,K−1) by log gk(xi)
gk′ (xi)

= yi,k−yi,k′ , for k '= k′,K, log gK(xi)
gk′ (xi)

=−yi,k′ , and
linear regression is used on the yi,k’s. On the other hand, as the linear transform is not orthonormal,
the PCA result is not invariant under the transform and the projection directions τ j can change.

1704

NONPARAMETRIC MODAL CLUSTERING

6. Experiments

We present in this section experimental results of the proposed modal clustering methods on simu-
lated and real data. We also discuss measures for enhancing computational efficiency and describe
the application to image segmentation, which may involve clustering millions of data points.

6.1 Simulated Data

We experiment with three simulated examples to illustrate the effectiveness of modal clustering. We
start by comparing linkage clustering with mixture modeling using two data sets. This will allow
us to illustrate the strengths and weaknesses of these two methods and therefore better demonstrate
the tendency of modal clustering to combine their strengths. We then present a study to assess the
stability of HMAC over multiple implementations and its performance under increasing dimensions.
In this study, comparisons are made with the Mclust function in R, a state-of-the-art mixture-model-
based clustering tool (Fraley and Raftery, 2002, 2006).

For our two data sets, single linkage, complete linkage, and average linkage yield similar re-
sults. For brevity, we only show results of average linkage. In average linkage, if cluster z2 and
z3 are merged into z4, the distance between z1 and z4 is calculated as d(z1,z4) = n2

n2+n3 d(z1,z2)+
n3

n2+n3 d(z1,z3), where n2 and n3 are the cluster sizes of z2 and z3 respectively. Details on clustering
by mixture modeling are referred to Section 1.1. We will also show results of k-means clustering.

The first data set, referred to as the noisy curve data set, contains a half circle and a straight line
(or bar) imposed with noise, as shown in Figure 3(a). The circle centers at the origin and has radius
7. The line is a vertical segment between (13,−8) and (13,0). Roughly 2

3 of the 200 points are
uniformly sampled from the half circle and 1

3 of them uniformly from the bar. Then, independent
Gaussian noise with standard deviation 0.5 is added to both the horizontal and vertical directions of
each point.

Consider clustering into two groups. The results of average linkage, mixture modeling, and
k-means are shown in Figure 3(a), (b), (c). For this example, average linkage partitions the data
perfectly into a noisy half circle and bar. Results of mixture modeling and k-means are close. In
both cases, nearly one side of the half circle is grouped with the bar. In this example, the mixture
model is initialized by the clustering obtained from k-means; and the covariance matrices of the two
clusters are not restricted.

The second data set contains 200 samples generated as follows. The data are sampled from two
clusters with prior probability 1/3 and 2/3 respectively. The first cluster follows a single Gaussian
distribution with mean (6,0) and covariance matrix diag(1.52,1.52). The second cluster is generated
by a mixture of two Gaussian components with prior probability 1/5 and 4/5, means (−3,0) and
(0,0), and covariance matrices diag(32,32) and diag(1,1) respectively. The two clusters are shown
in Figure 4(a). Again, we compare results of average linkage, mixture modeling, and k-means,
shown in Figure 4(b), (c), (d). For mixture modeling, we use Mclust with three components and
optimally selected covariance structures by BIC. Two of the three clusters generated by Mclust are
combined to show the binary grouping. For this example, mixture modeling and k-means yield a
partition close to the two original clusters, while average linkage gives highly skewed clusters, one
of which contains a very small number of points on the outskirt of the mass of data.

We apply HMAC to both data sets and show the clustering results obtained at the level where
two clusters are formed. For the noisy curve data set, HMAC perfectly separates the noisy half circle
and the bar, as shown in Figure 3(a). For the second example, shown in Figure 4(e), HMAC yields

1705

LI, RAY AND LINDSAY

−10 −5 0 5 10 15
−10

−5

0

5

Cluster 1
Cluster 2

−10 −5 0 5 10 15
−10

−5

0

5

Cluster 1
Cluster 2

(a) (b)

−10 −5 0 5 10 15
−10

−5

0

5

Cluster 1
Cluster 2

−10 −5 0 5 10 15
−10

−5

0

5

(c) (d)

Figure 3: Clustering results for the noisy curve data set. (a) The two original clusters. The two
clusters obtained by average linkage clustering and HMAC are identical to the original
ones. (b) Clustering by mixture modeling with two Gaussian components. (c) Clustering
by k-means. (d) Clustering by HMAC at the first level of the hierarchy.

clusters closest to the original ones among all the methods. Comparing with mixture modeling,
HMAC is more robust to the non-Gaussian cluster distributions.

The above two data sets exemplify situations in which either the average linkage clustering or
mixture modeling (or k-means) performs well but not both. In the first data set, the two clusters are
well separated but seriously violate the assumption of Gaussian distributions. By greedy pairwise
merging, average linkage successfully divides the two clusters. In contrast, both mixture modeling
and k-means attempt to optimize an overall clustering criterion. Mixture modeling favors elliptical
clusters because of the Gaussian assumption, and k-means favors spherical clusters due to extra
restrictions on Gaussian components. As a result, one side of the noisy half circle is grouped with
the bar to achieve better fitting of Gaussian distributions. On the other hand, mixture modeling
and k-means perform significantly better than average linkage in the second example. The greedy
pairwise merging in average linkage becomes rather arbitrary when clusters are not well separated.

HMAC demonstrates a blend of traits from average linkage and mixture modeling. When the
kernel bandwidth is small, the cluster to which a point is assigned is largely affected by its neighbors.
Points close to each other tend to be grouped together, as shown by Figure 3(d) and Figure 4(f).
This strong inclination of putting neighboring points in the same cluster is also a feature of average
linkage. However, a difference between HMAC and average linkage is that decisions to merge in

1706

NONPARAMETRIC MODAL CLUSTERING

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2

(a) (b)

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8
Cluster 1
Cluster 2

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2

(c) (d)

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

Cluster 1
Cluster 2

−10 −5 0 5 10

−6

−4

−2

0

2

4

6

8

(e) (f)

Figure 4: Clustering results for the second simulated data set. (a) The original two clusters. (b)
Clustering by average linkage. (c) Clustering by mixture modeling using Mclust with
three Gaussian components. Two clusters are merged to show the binary grouping. (d)
Clustering by k-means. (e) Clustering by HMAC. (f) Clustering by HMAC at the first
level of the hierarchy.

1707

LI, RAY AND LINDSAY

the latter are always local. While in HMAC, when the bandwidth increases, global characteristics
of the data become highly influential on clustering results. Hence the clustering result tends to
resemble that of mixture modeling (k-means) which enforces a certain kind of global optimality. In
spite of this similarity, HMAC is more robust for clusters deviating from Gaussian distributions. In
practice, it is usually preferable to ensure very close points are grouped together and in the mean
time to generate clusters with global optimality. These two traits, however, are often at odds with
each other, a phenomenon discussed in depth by Chipman and Tibshirani (2006).

Chipman and Tibshirani (2006) noted that bottom-up agglomerative clustering methods, such
as average linkage, tend to generate good small clusters but suffer at extracting a few large clusters.
The strengths and weaknesses of top-down clustering methods, such as k-means, are the opposite.
A hybrid approach is proposed in that paper to combine the advantages of bottom-up and top-
down clustering, which first seeks mutual clusters by bottom-up linkage clustering and then applies
top-down clustering to the mutual clusters. HMAC also integrates the strengths of both types of
clustering, in a way not as explicit as the hybrid method but more automatically.

To systematically study the performance of HMAC for high dimensional data and its stability
over multiple implementations, we conduct the following experiment. We generate 55 random data
sets each of dimension 50 and size 200. The first two dimensions of the data follow the distribution
of the noisy curve data in the first example described. The other 48 dimensions are independent
Gaussian noise all following the normal distribution with mean zero and standard deviation 0.5,
same as the noise added to the half circle and line segment in the first two dimensions. As gold
standard, we regard data generated by adding noise to the half circle as one cluster and those to the
line segment as the other.

Clustering results are obtained for each of the 55 data sets using HMAC andMclust respectively.
For HMAC, the level of the dendrogram yielding two clusters is chosen to create the partition of the
data. In another word, the basic version of HMAC is used without the separability based merging of
clusters. For Mclust, we set the number of clusters to 2, but allow the algorithm to optimally select
the structure of the covariance matrices using BIC. All the structural variations of the covariance
matrices provided by Mclust are searched over. In Mclust, the mixture model is initialized using the
suggested default option, that is, to initialize the partition of data by an agglomerative hierarchical
clustering approach, an extension of linkage clustering based on Gaussian mixtures (Fraley and
Raftery, 2006). This initialization may be of advantage especially to data in this study because as
shown previously, linkage clustering generates perfect clustering for the noisy curve data set in the
first example.

Denote each data set k, k = 1,2, ...,55, by Ak = {x(k)i , i= 1, ...,200}, where x(k)
i = (x(k)i,1 ,x

(k)
i,2 , ...,

x(k)i,50)
t . For each x(k)i , we form a sequence of its lower dimensional vectors: x

(k,l)
i =(x(k)i,1 ,x

(k)
i,2 , ...,x

(k)
i,l)t ,

l = 2,3, ...,50. Let Ak,l = {x(k,l)i , i = 1, ...,200}. HMAC and Mclust are applied to every Ak,l ,
l = 2, ...,50, k = 1, ...,55. Let the clustering error rate obtained by HMAC for Ak,l be r

(H)
k,l and

that by Mclust be r(M)
k,l . We summarize the clustering results in Figure 5.

To assess the variation of clustering performance over multiple implementations, we compute
the percentage of the 55 data sets that are not perfectly clustered by the two methods at each dimen-
sion l = 2, ...,50. Figure 5(a) shows the result. For HMAC, this percentage stays between 25% and
32% over all the dimensions. While, for Mclust, the percentage is consistently and substantially
higher, and varies greatly across the dimensions. For l ≥ 43, none of the data sets can be perfectly
clustered by Mclust.

1708

NONPARAMETRIC MODAL CLUSTERING

5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90

100

110

Dimension

Pe
rc

en
ta

ge
 w

ith
 n

on
−p

er
fe

ct
 c

lu
st

er
in

g
(%

)
HMAC
Mclust

5 10 15 20 25 30 35 40 45 50

0

0.05

0.1

0.15

0.2

0.25

0.3

Dimension

Cl
us

te
rin

g
er

ro
r r

at
e

HMAC, Average error rate
HMAC, Median error rate
Mclust, Average error rate
Mclust, Median error rate

(a) (b)

Figure 5: Clustering results obtained by HMAC andMclust for the 55 high dimensional noisy curve
data sets. (a) The percentage of data sets that are not perfectly clustered with increasing
dimensions. (b) The average and median of clustering error rates.

To examine clustering accuracy with respect to increasing dimensions, for each l = 2, ...,50, the
mean r(H)

·,l , r
(M)
·,l , and the median r̃

(H)
·,l , r̃

(M)
·,l over the data sets are computed and shown in Figure 5(b).

For HMAC, the mean r(H)
·,l varies only slightly around 7.5% when the dimension increases, and

the median r̃(H)
·,l stays at zero. The error rates obtained from Mclust, on the other hand, change

dramatically with the dimension. And for l = 2 and l ≥ 30, both r(M)
·,l and r̃(M)

·,l are significantly
higher than r(H)

·,l . Interestingly, the worst error rate fromMclust is achieved at l = 2 with r
(M)
·,2 > 23%

rather than at the high end of the range of dimensions. This seems to suggest that the extra noise
dimensions help to mollify the effect of non-Gaussian shaped clusters. When l ≥ 30, r(M)

·,l and r̃(M)
·,l

increase steadily with the dimension and eventually reaches nearly 20%.

Because it is expected that Gaussian components in the mixture model cannot well capture the
half circle structure in the data, we have also tested Mclust with 3 components so that the half circle
can possibly be characterized by two components. In this case, two of the three clusters need to be
combined in order to compute the accuracy with respect to the original two classes. The selection
of the two clusters to combine is not trivial. If we use a simple rule of combining the two clusters
with the closest pair of centers, the average classification accuracies (over different dimensions)
are mostly inferior to those by Mclust with 2 components. Note that the ridgeline based merging
procedure in Section 4 may be invoked instead. A detailed examination in this direction is out of the
scope of this paper. If we search through all the possible combinations and always choose the one
that yields the best classification accuracy, the average accuracies are better than those achieved by
HMAC. However, this comparison inherently favors Mclust because the true class labels are used
to decide the binary grouping of the 3 components, while HMAC is purely unsupervised.

1709

LI, RAY AND LINDSAY

6.2 Real Data Sets

In this section, we apply HMAC to real data sets, compare our method of visualization described
in Section 5 with PCA, and demonstrate the usage of the cluster merging algorithm described in
Section 4.2.

6.2.1 GLASS DATA

We first examine the aforementioned glass data set using the entire set of 214 samples and all
the original 9 features. Applying HMAC, a dendrogram of 10 levels is obtained, as shown in
Figure 6(a). The number of clusters at each level is listed in Table 2. The sizes of the largest 4
clusters at each level are also given in this table. The dendrogram and the table show that 3 clusters
containing more than 5 points are formed at the first level. These 3 prominent clusters are retained
or augmented up to level 3. At level 4, two of the 3 prominent clusters are merged, leaving 2
prominent clusters which are further merged at level 7. At this level, both the dendrogram and
the table suggest the main clustering structure in the data is annihilated by the very large kernel
bandwidth. However, the number of clusters generated at level 7 is 7 instead of 1. Except the largest
cluster, the other 5 clusters each contain no more than 3 points and in total only 9. They may be
considered more appropriately as “outliers” than clusters. At even higher levels, these tiny clusters
are merged gradually into the main mass of data.

Level 1 2 3 4 5 6 7 8 9 10
clusters 29 25 18 15 13 11 7 6 4 3

Size of 1st cluster 160 163 176 177 179 180 205 208 210 211
Size of 2nd cluster 12 12 12 21 21 22 3 2 2 2
Size of 3rd cluster 9 9 9 3 3 3 2 1 1 1
Size of 4th cluster 5 6 2 2 2 2 1 1 1 not exist

Table 2: The clustering results for the full glass data set.

The above discussion suggests that to obtain a given number of clusters, it is not always a good
practice to choose a level in the hierarchy that yields the desired number of clusters. We may select a
level at which major clusters are merged and outliers are mistaken as plausible clusters. One remedy
is to apply the cluster merging algorithm to a larger number of clusters formed at a lower level. We
will present results of this approach shortly.

To compare our visualization method with PCA, the clustering results at level 3 are shown in
Figure 6(b) and (c) using the two projection methods respectively. Both projections are orthonormal.
In our visualization method, the projection only attempts to approximate the discriminant functions
between the 3 major clusters. It is obvious that the new visualization method shows the clustering
structure better than PCA. The two projection directions derived by our method are used when
presenting other clustering results for a clear correspondence between points in different plots.

If we apply our cluster merging algorithm at level 3, we obtain results shown in Figure 6(d) and
(e). In Figure 6(d), three clusters are formed by applying stage II merging based on coverage rate.
The parameter ρ= 95%. Merging based on separability is not conducted because we attempt to get
3 clusters and the 3 largest clusters at this level already account for close to 95% of the data. This
clustering result is much more preferable than the 3 clusters directly generated by HMAC at level

1710

NONPARAMETRIC MODAL CLUSTERING

Level 1

Level 3

Level 7

Level 10

(a)

−0.4 −0.2 0 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Cluster 1

Cluster 2

Cluster 3

−0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
Cluster 1

Cluster 2

Cluster 3

(b) (c)

−0.4 −0.2 0 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

−0.4 −0.2 0 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) (e)

Figure 6: Results for the full glass data set. (a) The dendrogram created by HMAC. (b) Visual-
ization by our method using regression on discriminant functions. (c) Visualization by
PCA. (d), (e) Three (two) clusters obtained by applying the merging algorithm to clusters
generated by HMAC at level 3.

1711

LI, RAY AND LINDSAY

Level 2

Level 3

Level 8

Figure 7: The dendrogram generated by HMAC for the infant data set.

10, containing 211, 2, and 1 points respectively. If we apply merging based on separability with
threshold ε= 0.4 (stage I) and merging based on coverage rate with ρ= 95% (stage II), we obtain
two clusters shown in Figure 6(e).

6.2.2 INFANT ATTENTION TIME

The second real data set is provided by Hoben Thomas, funded by the German Research Foundation
Grant (Az. Lo 337/19-2), in the Department of Psychology at Penn State. In a study of infants’
behavior, 51 infants were tested in two occasions apart by several months. In each occasion, a visual
stimulus was given to the infants repeatedly for 11 times, with a fixed amount of time separating the
stimuli. An infant’s attention time in every stimulus was recorded. We thus have a data set of 51
samples with dimension 22. It is of interest to examine whether the infant data possess clustering
structure and the behavior patterns of different groups. It is challenging to cluster this data set
because of the high dimensionality and relatively small sample size.

Applying HMAC to the data, we obtain a dendrogram shown in Figure 7. At level 2, two promi-
nent clusters emerge, containing 8 and 27 samples respectively. All the other clusters are singletons.
At the next higher level, the two main clusters are merged. Because all the other clusters are sin-
gletons, we essentially partition the data into a main group and several outliers. There is no clear
clustering structure preserved after level 2. Figure 8(a) and (b) show the clustering results obtained
at level 2 using projection directions derived by our visualization method and PCA respectively.
Specifically, in our method, the density of the largest cluster is used as the basis to form the dis-
criminant functions of the other clusters. The projection directions are derived to best preserve the
discriminant functions of the second and third largest clusters. The separation of the 2 main clusters
is reflected better in (a) than (b). The ridgeline between the two major clusters at level 2 is com-
puted, and the density function along this ridgeline is plotted in Figure 8(c). The plot shows that the
“valley” between the two clusters is not deep comparing with the peak of the less prominent cluster,
indicating weak separation between the clusters.

As the dendrogram suggests, if we need to cluster the infants into two groups, specifically, to
assign the singletons into the two main clusters, we cannot simply cut the dendrogram at a level that

1712

NONPARAMETRIC MODAL CLUSTERING

−100 −80 −60 −40 −20 0 20
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Cluster 2

Cluster 1

50 100 150 200 250
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

Cluster 1
Cluster 2

(a) (b)

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

α

Ri
dg

el
in

e
de

ns
ity

 (s
ca

le
d)

−100 −80 −60 −40 −20 0 20
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Cluster 2

Cluster 1

(c) (d)

2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

Record ID (Occasion 1)

At
te

nt
io

n
tim

e

2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

Record ID (Occasion 2)
2 4 6 8 10

0

20

40

60

80

100

120

140

160

180

Record ID (Occasion 1)

At
te

nt
io

n
tim

e

2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

Record ID (Occasion 2)

(e) (f)

Figure 8: Results for the infant data set. (a) Visualization by our method using regression on dis-
criminant functions. (b) Visualization by PCA. (c) Density function along the ridgeline
between the two major clusters at level 2. (d) Two clusters obtained by applying the
merging algorithm to clusters generated by HMAC. (e) The modal curves of the two
main clusters obtained by HMAC at level 2. Dashed line: cluster 1. Solid line: cluster
2. Dash-dot line: the observation on the 10th infant, who deviates enormously from the
cluster modes. (f) The mean curves of the two clusters obtained by fitting a mixture of 2
Gaussian components.

1713

LI, RAY AND LINDSAY

yields two clusters. For this purpose, we use the stage II merging procedure with a coverage rate of
85%. The clustering result is shown in Figure 8(d).

To compare the infants in the two main clusters identified by HMAC, we plot the “modal curves”
for both test occasions in Figure 8(e). By modal curve, we refer to the mode of a cluster displayed
with the dimension index as the horizontal axis and the value in that dimension as the vertical axis.
It is meaningful to view a mode as a curve in this study because the experiments were conducted
sequentially and dimension i corresponds to the ith measurement in the sequence. According to
Figure 8(e), the main difference between the two groups of infants is their attention time for the
first stimulus in each test occasion. The circle cluster exhibits a significantly longer attention time
for the initial stimulus in both occasions. According to HMAC, 8 infants belong to the long initial
attention time group and 27 infants belong to the short time group. The other 16 infants’ data are
distinct from both groups. In Figure 8(e), the attention time of the 10th infant is shown by the dash-
dot lines. This infant is the most “extreme” outlier which corresponds to the right most branch in
the dendrogram of Figure 8(c). The plot shows that this infant behaved very differently from the
average in the first test. Instead of gradually decreasing, his attention time jumped to a very high
value for the third stimulus and again for the last stimulus. If a clear-cut two groups are desired,
Figure 8(d) shows that 13 infants are partitioned into the long time group and 38 into the short time
group.

We also perform clustering on this data set by fitting a mixture of two Gaussian components. The
EM algorithm is used to estimate the mixture model using k-means clustering to initialize, and the
maximum a posterior criterion is used to partition the data. For the two clusters obtained, we display
the two Gaussian mean vectors as curves in Figure 8(f). Just as in the clustering by HMAC, one
cluster had longer attention time to the initial stimulus in both occasions. However, the difference
between the attention time in the first occasion for the two clusters was not substantial. Using
mixture modeling, the long time group included 26 infants while the short time group included 25.

6.2.3 NEWSGROUP DATA

In the previous two examples, we cannot quantitatively examine the clustering performance be-
cause there are no given class labels for the data points. In the third example, we use a data
set containing documents labeled by different topics. This data set is taken from the newsgroup
data (Lang, 1995). Each instance corresponds to a document in one of the two computer related
topics: comp.os.ms-windows.misc (class 1) and comp.windows.x (class 2). The numbers of in-
stances in the two classes are close: 975 (class 1) and 997 (class 2). The raw data for each document
simply contain the words appeared in this document and their counts of occurrences. We process the
data by stemming the words and employing two stages of dimension reduction. For details on the
dimension reduction procedure, which relies mainly on two-way mixture modeling, we refer to (Li
and Zha, 2006). In summary, we represent every document by a 10-dimensional vector, where each
dimension is the total number of occurrences for a chosen collection of words. We then normalize
the vector such that each dimension becomes the frequency of the corresponding set of words.

Due to the large data size, it is unrealistic to show the dendrogram generated by HMAC directly.
Instead, we provide a summarized version of the dendrogram emphasizing prominent clusters in
Figure 9(a). In order to retain as much information as possible in the summary, a cluster will
be regarded “prominent” and shown individually if it contains at least 3% of the total data. This
requirement for showing a cluster is rather mild. The number in each node box in the tree indicates

1714

NONPARAMETRIC MODAL CLUSTERING

..

.
..
.

963

19

21

Level 19

Level 18

Level 7

Level 9

Level 8

Level 6

Uncovered data

840841

Prominent clusters (size > 3%)

75

183

445

765761

86121

7682 412

64 1518

446

882

291

1953

..

.
..
.

988

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

α

Ri
dg

el
in

e
de

ns
ity

 (s
ca

le
d)

(a) (b)

Figure 9: Results for the document data set. (a) The summarized dendrogram showing the promi-
nent clusters. (b) The density function along the ridgeline between the two major clusters
at level 12.

the cluster size. The number of data points not covered by the prominent clusters at any level is
shown in the box to the right of the dendrogram. As shown in the figure, prominent clusters do
not appear until level 6. At level 6, the four prominent clusters are very small. About 77% of the
data are scattered in tiny clusters. At level 8, two major clusters emerge, each accounting for nearly
39% of the data. The rest data do not form any prominent clusters. The two major clusters remain
through level 8 to level 18, and each absorbs more data points at every increased level. For brevity,
we omit showing the sizes of these two clusters between level 9 and 18. At level 19, the two major
clusters are merged, and there are 19 outlier points not absorbed into the main mass of data. This
dendrogram strongly suggests there are two major clusters in this data set because before level 8, the
clusters formed are too small and the percentage of data not covered by the clusters is too high. If
we allow 5% points to lie outside prominent clusters, we can choose level 12 in the dendrogram. At
level 12, the two clusters are of size 950 and 932. To examine the separation of the two clusters at
this level, we calculate the ridgeline between them and plot the density function along the ridgeline
in Figure 9(b). The mode heights of the two clusters are close, and the cluster separation is strong.

Level 8 9 10 11 12 13 14 15 16 17 18
Correct (%) 73.5 80.4 85.4 87.7 89.0 90.2 91.0 91.2 91.5 91.6 91.7
Incorrect (%) 3.9 4.9 5.7 6.1 6.4 6.5 6.8 6.8 6.9 7.1 7.2
Uncovered (%) 22.6 14.8 8.9 6.2 4.6 3.2 2.2 2.0 1.6 1.2 1.0

Table 3: The clustering accuracy of HMAC for the document data set. The percentages of points
that are correctly clustered, incorrectly clustered, and not covered by the two major clusters
are listed.

1715

LI, RAY AND LINDSAY

From level 8 to 18, we compute the percentages of points that are correctly clustered, incorrectly
clustered, and not covered by the two major clusters. Table 3 provides the result. At level 18, 91.7%
data points are correctly clustered. For comparison, we apply Mclust to the same data set. If we
specify the range for the number of clusters as 2 to 10 and let Mclust choose the best number and the
best covariance structure using BIC, the number of clusters chosen is 3. The sizes of the 3 clusters
are 763, 668, and 541. The first two clusters are highly pure in the sense of containing points from
the same class. The third cluster however contains about 40% class 1 points and 60% class 2. If we
label the third cluster as class 2, the overall clustering accuracy is 87.6%. On the other hand, if we
fix the number of clusters at 2 and run Mclust, the clustering accuracy becomes 94%.

6.2.4 DISCUSSION ON PARAMETER SELECTION

As shown by the above examples of real data clustering, it is often not obvious which level in the
dendrogram produced by HMAC should be used to yield the final clustering. This is a general issue
faced by agglomerative clustering approaches. Prior information about data or our implicit assump-
tions about good clusters can play an important role in this decision. One common assumption we
make is that a valid cluster ought not be too small. Under this principle, we declare a level of the
dendrogram too low (small bandwidth) if all the clusters are small and a level too high (large band-
width) if a very large portion of the data (e.g., 95%) belong to a single cluster. For the intermediate
acceptable levels in the dendrogram, we have designed the coverage rate mechanism to ensure that
very small clusters are excluded. The chosen coverage rate reflects the amount of outliers one be-
lieves to exist. Despite the inevitable subjectiveness of this value, the coverage rate affects only the
grouping of a small percentage of outlier points.

A more profound effect on the clustering result comes from the merging procedure based on sep-
arability which involves choosing a separability threshold. As we have discussed in Section 4.2, the
merging process based on separability is essentially the directional single linkage clustering which
stops when all the between-cluster separability measures are above the threshold. The threshold
directly determines the final number of clusters, but is irrelevant to the full clustering hierarchy gen-
erated by the directional single linkage. Hence in situations where we have a targeted number of
clusters to create, we can avoid choosing the threshold and simply stop the directional single linkage
when the given number is reached. Of course, if at a certain level of the dendrogram, there exist
precisely the targeted number of valid clusters, we can use that level directly rather than applying
merging on clusters at a lower level. Whether the HMAC dendrogram clearly suggests the right
number of clusters can be highly data dependent. For instance, in the document clustering example,
the dendrogram in Figure 9(a) strongly suggests two clusters because at all the acceptable levels
there are two reasonably large clusters. On the other hand, for the glass data set with results shown
in Figure 6, it is not so clear-cut whether there are three or two clusters.

Another choice we need to make in HMAC is the sequence of kernel bandwidths, σ1 < σ2 <
· · · < ση. It is found empirically that as long as the grid of bandwidths is sufficiently fine, the
prominent clusters created are not sensitive to the exact sequence. Major clustering structures often
remain over a wide range of bandwidths. We have always used a uniformly spaced sequence of
bandwidths in our experiments. If precisely two clusters merge at every increased level of a dendro-
gram, that is, the number of clusters decreases exactly by one, the dendrogram will have n levels,
where n is the data size. We call such a dendrogram all-size since the clustering into any number of
groups smaller than n appears at a certain level. We rarely observe an all-size dendrogram generated

1716

NONPARAMETRIC MODAL CLUSTERING

by HMAC. On the other hand, by using extremely refined bandwidths, we indeed obtained all-size
dendrograms for the example in Section 3.2 and the infant data set.

We note that linkage clustering by construction generates the all-size dendrogram. However, it
is not necessarily a good practice to simply choose a level in the dendrogram that yields the desired
number of clusters, as we have discussed previously for the dendrogram of HMAC. Hence, the fact
that the dendrogram generated by HMAC is usually not all-size raises little concern. In practice,
since the targeted number of clusters is normally much smaller than the data size, it is easy to find
a relatively low level at which the number of clusters exceeds the target. We can then apply the
separability based directional single linkage clustering at that level, and achieve any number of
clusters smaller than the starting value.

6.3 Image Segmentation

To demonstrate the applicability of HMAC to computationally intensive tasks, we develop an im-
age segmentation algorithm based on HMAC. A basic approach to image segmentation is to cluster
the pixel color components and label pixels in the same cluster as one region (Li and Gray, 2000).
This approach partitions images into regions that are relatively homogeneous. Examples of seg-
mentation via clustering are shown in Figure 10. We employed the speeding up method described
in Section 3.3. Our image segmentation method comprises the following steps: (a) Apply k-center
algorithm to cluster image pixels into a given number of groups. This number is significantly larger
than the desired number of regions. In particular, we set it to 100. (b) Form a data set {x1, ...,xn},
n = 100, where xi is the mean of the vectors assigned to the ith group by k-center clustering. For
each xi, assign weight wi, where wi is the percentage of pixels assigned to xi. (c) Apply the weighted
version of HMAC to the data set. The only difference lies in the formula for the kernel density esti-
mator. In the weighted version, f (x) = ∑n

i=1wiφ(x | xi,D(σ2)). (d) Starting from the first level of the
dendrogram formed by HMAC, apply the cluster merging algorithm described in Section 4.2. If the
number of clusters after merging is smaller than or equal to the given targeted number of segments,
stop and output the clustering results at this level. Otherwise, repeat the merging process at the
next higher level of the dendrogram. For brevity, we simply refer to this segmentation algorithm as
HMAC.

To assess the computational efficiency of HMAC, we experiment with 100 digital photo images
randomly selected from the Corel image database (Wang et al., 2001). Every image is of size
256×384 or 384×256. The experiments were conducted on a 1.2GHz Sun UltraSparc processor.
We compare the segmentation time of HMAC and k-means. On average, it takes 4.41 seconds
to segment an image using HMAC. The average number of segmented regions is 6.0. For k-means
clustering, we experimented with both dynamically determining and fixing the number of segmented
regions. In the dynamic case, the average number of regions generated per image by thresholding
is 5.5. The average segmentation time for each image is 4.43 seconds, roughly equal to the time
of HMAC. However, the computation time of k-means increases if more regions are formed for an
image. If we fix the number of segmented regions to 6.0, the average segmentation time is 4.87
seconds per image.

In terms of segmentation results, whether HMAC or k-means is preferred is application depen-
dent. K-means clusters the pixels and computes the centroid vector for each cluster according to
the criterion of minimizing the mean squared distance between the original vectors and the centroid
vectors. HMAC, however, finds the modal vectors, at which the kernel density estimator achieves

1717

LI, RAY AND LINDSAY

Figure 10: Segmentation results. First row: Original images. Second row: mode colors of the
clusters generated by HMAC. Third row: mean colors of the clusters generated by k-
means.

a local maxima. These vectors are peaks of density bumps. They are significant in the sense of
possessing locally maximum density, but may not be the best approximation to the original vectors
in an average sense. Figure 10 shows the representative colors extracted by HMAC and k-means
for several impressionism paintings. For HMAC, the mode color vector of each cluster is shown as
a color bar; and for K-means, the mean vector of each cluster is shown. The representative colors
generated by k-means tend to be “muddier” due to averaging. Those by HMAC retain the true col-
ors better, for instance, the white color of the stars in the first picture and the purplish pink of the
vase in the second. On the other hand, HMAC may ignore certain colors that either are not distinct
enough from others or do not contain enough pixels. For the purpose of finding the main palette of
a painting, HMAC may be more preferable.

7. Conclusion

In this paper, we have introduced an EM-style algorithm, namely, Modal EM (MEM), for finding
local maxima of mixture densities. For a given data set, we model the density of the data non-
parametrically using kernel functions. Clustering is performed by associating each point to a mode
identified by MEM with initialization at this point. A hierarchical clustering algorithm, HMAC, is
developed by gradually increasing the bandwidth of the kernel functions and by recursively treating
modes acquired at a smaller bandwidth as points to be clustered when a larger bandwidth is used.

1718

NONPARAMETRIC MODAL CLUSTERING

The Ridgeline EM (REM) algorithm is developed to find the ridgeline between the density
bumps of two clusters. A separability measure between two clusters is defined based on the ridge-
line, which takes comprehensive consideration of the exact densities of the clusters. A cluster merg-
ing method based on pairwise separability is developed, which addresses the competing factors of
using a small bandwidth to retain major clustering structures and using a large one to achieve a low
number of clusters.

The HMAC clustering algorithm and its combination with the cluster merging algorithm are
tested using both simulated and real data sets. Experiments show that our algorithm tends to unite
merits of linkage clustering and mixture-model-based clustering. Applications to both simulated
and real data also show that the algorithm works robustly with high dimensional data or clusters de-
viating substantially from Gaussian distributions. Both of these cases pose difficulty for parametric
mixture modeling.

A C package at http://www.stat.psu.edu/∼jiali/hmac is developed, which includes the
implementation of the HMAC algorithm, REM for computing ridgelines, and the separability/
coverage rate based merging algorithm.

There are several directions that can be pursued in the future to strengthen the framework of
modal clustering. In the current work, we use a fixed bandwidth for the kernel density functions.
We can explore ways to make the bandwidth vary with the location of the data because there may not
exist a single bandwidth suitable for the entire data set. Moreover, in this paper, we have discussed
an approach to best visualize clusters in lower dimensions. A related and interesting question is to
find a lower dimensional subspace in which the data form well separated modal clusters. We expect
that the optimization of the subspace needs to be conducted as an integrated part of the modal
clustering procedure.

Acknowledgments

We would like to thank the reviewers and the associate editor for insightful comments and construc-
tive suggestions. We also thank Hongyuan Zha at Georgia Institute of Technology for pointing out
some useful references, and Hoben Thomas at The Pennsylvania State University for providing us a
real data set. Jia Li and Bruce Lindsay’s research is supported by the National Science Foundation.

Appendix A.

We prove the ascending property of the MEM algorithm. Let the mixture density be f (x) =
∑K
k=1πk fk(x). Denote the value of x at the rth iteration of MEM by x(r). We need to show
f (x(r+1)) ≥ f (x(r)), or equivalently, log f (x(r+1) ≥ log f (x(r)).

Let us introduce the latent discrete random variable J ∈ {1,2, ...,K} with prior probabilities
P(J = k) = πk. Assume that the conditional density of X given J = k is fk(x). Then the marginal

1719

LI, RAY AND LINDSAY

distribution of X is f (x), as specified above. Define the following functions:

L(x) = log f (x),

Q(x′ | x) =
K

∑
k=1

pk(x) logπk fk(x′),

H(x′ | x) = Q(x′ | x)−L(x′) =
K

∑
k=1

pk(x) log pk(x′)

where pk(x) = P(J = k | X = x) = πk fk(x)
f (x) is the posterior probability of J being k given x. Denote

the posterior probability mass function (pmf) given x by p(x) = (p1(x), p2(x), ..., pK(x)).
Because H(x | x)−H(x′ | x) = D(p(x) ‖ p(x′)) and relative entropy D(· ‖ ·) is always nonneg-

ative (Cover and Thomas, 1991), H(x′ | x) ≤ H(x | x) for any pair of x and x′. On the other hand,
according to the MEM algorithm,

x(r+1) = argmax
x

K

∑
k=1

pk(x(r)) log fk(x)

= argmax
x

(
K

∑
k=1

pk(x(r)) logπk +
K

∑
k=1

pk(x(r)) log fk(x)

)

= argmax
x

Q(x | x(r)).

Hence, Q(x(r+1) | x(r)) ≥ Q(x(r) | x(r)). Finally, we prove the ascending property:

L(x(r+1)) = Q(x(r+1) | x(r))−H(x(r+1) | x(r)) ≥ Q(x(r) | x(r))−H(x(r) | x(r)) = L(x(r)) .

Appendix B.

Recall that the Ridgeline EM algorithm aims at maximizing logg(x | α) = (1− α) logg1(x) +
α logg2(x), where 0≤ α≤ 1 and g1(x) and g2(x) are two mixture densities gi(x) =∑T

κ=1πi,κhi,κ(x),
i= 1,2. We prove here the ascending property of this algorithm, as described in Section 4.1.

Following the definitions in Appendix A, we form functions Li(x), Qi(x′ | x), and Hi(x′|x)
for densities gi(x), i = 1,2, respectively. Specifically, Li(x) = loggi(x), Qi(x′ | x) = ∑T

κ=1 pi,κ(x)
logπi,κhi,κ(x′), and Hi(x′ | x) =∑T

κ=1 pi,κ(x) log pi,κ(x′), where pi,κ(x) = πi,κhi,κ(x)/gi(x). Note that,
based on the proof in Appendix A, we have Li(x′) = Qi(x′ | x)−Hi(x′ | x) and Hi(x | x) ≥Hi(x′ | x).
We now define

L̃(x) = (1−α)L1(x)+αL2(x) ,

Q̃(x′ | x) = (1−α)Q1(x′ | x)+αQ2(x′ | x) ,

H̃(x′ | x) = (1−α)H1(x′ | x)+αH2(x′ | x) .

According to the Ridgeline EM algorithm, x(r+1) = argmaxx′ Q̃(x′ | x(r)). Hence Q̃(x(r+1) |
x(r)) ≥ Q̃(x(r) | x(r)). Also, it is obvious that H̃(x(r) | x(r)) ≥ H̃(x(r+1) | x(r)). Finally, we prove
the ascending property:

L̃(x(r+1)) = Q̃(x(r+1) | x(r))− H̃(x(r+1) | x(r)) ≥ Q̃(x(r) | x(r))− H̃(x(r) | x(r)) = L̃(x(r)) .

1720

NONPARAMETRIC MODAL CLUSTERING

Appendix C.

We prove here the graph constructed in Section 4.2, where every clique corresponds to a node, has
no loop. We denote a node (i.e., a clique) by ci. By construction, a directed edge from ci to c j exists
if the following conditions are satisfied:

1. Sc(ci,c j) < ε.

2. Sc(ci,c j) = mink '=i Sc(ci,ck) and j is the smallest index among all those j′’s that achieve
Sc(ci,c j′) =mink '=i Sc(ci,ck).

3. δ(ci) < δ(c j).

We refer to the three conditions as Condition 1, 2, 3.
We prove the non-existence of loops by contradiction. We will first show that if there is a loop in

the graph, this loop is directed. Then, we will prove that a directed loop cannot exist. Without loss
of generality, assume that there is a loop connecting nodes {c1,c2, ...,ck} sequentially. The edges
in the loop are {e1,2,e2,3, ...,ek−1,k,ek,1}, where ei, j connects ci and c j. Let head(ei,i+1) indicate the
node from which edge ei,i+1 starts. Obviously, head(ei,i+1) = ci or ci+1.

Without loss of generality, let head(ek,1) = ck. By Condition 2, every node can have almost
one edge starting from it. Hence head(ek−1,k) = ck−1. For an arbitrary j > 1, assume that for
i = j, j+ 1, ...,k− 1, we have head(ei,i+1) = ci. Since head(e j, j+1) = c j, again by Condition 2,
head(e j−1, j) = c j−1. Thus, for i = j− 1, j, ...,k− 1, we have head(ei,i+1) = ci. By induction, for
any i = 1, ...,k− 1, we have head(ei,i+1) = ci. Therefore, the loop connecting {c1,c2, ...,ck} is
directed.

By Condition 3 of the graph construction procedure, if head(ei, j) = ci, then δi < δ j. Thus, if
there is a directed loop connecting nodes {c1,c2, ...,ck} and head(ei,i+1) = ci, we get the contradic-
tion: δ1 < δ2 < · · · < δk < δ1. This proves that there is no loop (regardless of directed or not) in the
graph.

References

A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von
Mises-Fisher distributions. Journal of Machine Learning Research, 6:1345-1382, 2005.

J. D. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian clustering. Biometrics,
49:803-821, 1993.

C. Blake, E. Keogh, and C. J. Merz. UCI repository of machine learning databases.
http://www.ics.uci.edu/mlearn/MLRepository.html, Dept. of Information and Computer Science,
UCI, 1998.

G. Celeux and G. Govaert. Comparison of the mixture and the classification maximum likelihood
in cluster analysis. Journal of Statistical Computation & Simulation, 47:127-146, 1993.

S. V. Chakravarthy and J. Ghosh. Scale-based clustering using the radial basis function network.
IEEE Trans. Neural Networks, 7(5):1250-1261, 1996.

M.-Y. Cheng, P. Hall, and J. A. Hartigan. Estimating gradient trees. A Festschrift for Herman Rubin,
IMS Lecture Notes Monogr. Ser., 45:237-49, Inst. Math. Statist., Beachwood, OH, 2004.

1721

LI, RAY AND LINDSAY

H. Chipman and R. Tibshirani. Hybrid hierarchical clustering with applications to microarray data.
Biostatistics, 7(2):286-301, 2006.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., 1991.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal Royal Statistics Society, 39(1):1-21, 1977.

B. S. Everitt, S. Landau, and M. Leese. Cluster Analysis. Oxford University Press US, 2001.

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation.
Journal of the American Statistical Association, 97:611-631, 2002.

C. Fraley and A. E. Raftery. MCLUST Version 3 for R: Normal mixture modeling and model-based
clustering. Technical Report, no. 504, Department of Statistics, University of Washington, 2006.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comp. Sci.,
38(22):293-306, 1985.

J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis. Applied
Statistics, 18(1):54-64, 1969.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer-Verlag,
2001.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., NJ, USA, 1988.

A. K. Jain , M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3):264-323, 1999.

D. Joshi, J. Li, and J. Z. Wang. A computationally efficient approach to the estimation of two- and
three-dimensional hidden Markov models. IEEE Transactions on Image Processing, 15(7):1871-
1886, 2006.

J. R. Kettenring. The practice of cluster analysis. Journal of Classification, 23(1):3-30, 2006.

K. Lang. NewsWeeder: Learning to filter netnews. In Proceeding of the International Conference
on Machine Learning, pages 331-339, 1995.

Y. Leung, J.-S. Zhang, and Z.-B. Xu. Clustering by scale-space filtering. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 22(12):1396-1410, 2000.

J. Li. Two-scale image retrieval with significant meta-information feedback. In Proc. ACM Multi-
media, pages 499-502, Singapore, November 2005.

J. Li. Clustering based on a multi-layer mixture model. Journal of Computational and Graphical
Statistics, 14(3):547-568, 2005.

J. Li and R. M. Gray. Image Segmentation and Compression Using Hidden Markov Models.
Springer, 2000.

1722

NONPARAMETRIC MODAL CLUSTERING

J. Li and J. Z. Wang. Real-time computerized annotation of pictures. In Proc. ACM Multimedia
Conference, pages 911-920, ACM, Santa Barbara, CA, October 2006.

J. Li and H. Zha. Two-way Poisson mixture models for simultaneous document classification and
word clustering. Computational Statistics and Data Analysis, 50(1):163-180, 2006.

G. J. McLachlan and D. Peel. Finite Mixture Models. New York: Wiley, 2000.

M. C. Minnotte and D. W. Scott. The mode tree: A tool for visualization of nonparametric density
features. Journal of Computational and Graphical Statistics, 2(1):51-68, 1993.

M. C. Minnotte, D. J. Marchette, and E. J. Wegman. The bumpy road to the mode forest. Journal of
Computational and Graphical Statistics, 7(2):239-51, 1998.

N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern Recognition, 26:1277-
94, 1993.

A. Pothen, H. D. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM Journal on Matrix Analysis and Applications, 11(3):430-452, 1990.

S. Ray and B. G. Lindsay. The topography of multivariate normal mixtures. Annals of Statistics,
33(5):2042-2065, 2005.

S. J. Roberts. Parametric and nonparametric unsupervised clustering analysis. Pattern Recognition,
30(2):261-272, 1997.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(8):888-905, 2000.

J. Z. Wang, J. Li, and G. Wiederhold. SIMPLIcity: Semantics-sensitive integrated matching for
picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947-
963, 2001.

R. Wilson andM. Spann. A new approach to clustering. Pattern Recognition, 23(12):1413-25, 1990.

C. F. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1):95-
103, 1983.

1723

Journal of Machine Learning Research 8 (2007) 1725-1745 Submitted 3/07; Revised 5/07; Published 8/07

Polynomial Identification in the Limit of Substitutable Context-free
Languages

Alexander Clark ALEXC@CS.RHUL.AC.UK
Department of Computer Science,
Royal Holloway, University of London
Egham, Surrey, TW20 0EX
United Kingdom

Rémi Eyraud REMI.EYRAUD@LIF.UNIV-MRS.FR
Laboratoire d’Informatique Fondamentale
Centre de Mathmatiques et Informatique
39 rue Joliot-Curie
Marseille Cedex 13
FRANCE

Editor: Rocco Servedio

Abstract
This paper formalises the idea of substitutability introduced by Zellig Harris in the 1950s and makes
it the basis for a learning algorithm from positive data only for a subclass of context-free languages.
We show that there is a polynomial characteristic set, and thus prove polynomial identification in
the limit of this class. We discuss the relationship of this class of languages to other common classes
discussed in grammatical inference. It transpires that it is not necessary to identify constituents in
order to learn a context-free language—it is sufficient to identify the syntactic congruence, and the
operations of the syntactic monoid can be converted into a context-free grammar. We also discuss
modifications to the algorithm that produces a reduction system rather than a context-free grammar,
that will be much more compact. We discuss the relationship to Angluin’s notion of reversibility
for regular languages. We also demonstrate that an implementation of this algorithm is capable of
learning a classic example of structure dependent syntax in English: this constitutes a refutation of
an argument that has been used in support of nativist theories of language.
Keywords: grammatical inference, context-free languages, positive data only, reduction system,
natural languages

1. Introduction

Current techniques for grammatical inference have for a long time been focused to a great extent on
learnable subclasses of regular languages. For many application domains though, there are struc-
tural dependencies in the data that are more naturally modelled by context-free grammars of various
types. One of the oldest ideas for a grammatical inference algorithm, and one geared towards
context-free inference, is Harris’s use of substitutability (Chomsky, 1953; Harris, 1954). Though
this has formed the intuitive motivation for a number of grammatical inference algorithms before,
it has never been adequately formalized. In this paper we present an explicit mathematical formal-
ization of this idea of substitutability and use it to define a subclass of context-free languages that
we call the substitutable languages, that can be learned according to the polynomial identification

c©2007 Alexander Clark and Rémi Eyraud.

CLARK AND EYRAUD

in the limit paradigm (de la Higuera, 1997). These languages are not comparable to the very simple
languages, but seem better suited to be the basis for algorithms that can learn natural languages.

In this paper we use a polynomial variant of Gold’s identification in the limit (IIL) paradigm,
working from positive data only. We hope in the future to be able to extend this to a more practical
PAC-learning result, but in the meantime work in this paradigm allows some foundational issues
to be addressed. The contribution of the work presented in this paper lies in two main directions.
First we demonstrate that it is not necessary to learn constituent structure in order to learn context-
free grammars. Indeed, it is sufficient to be able to learn the syntactic congruence: the syntactic
monoid can be converted into a context-free grammar in Chomsky normal form in a very natural
way. Secondly, we define a simple, purely language theoretic criterion, which allows the syntactic
congruence to be identified very easily. This criterion is sufficient to guarantee polynomial identifi-
cation in the limit.

Additionally, we point out the relationship to NTS grammars, which in our opinion are an
unarticulated assumption underlying many algorithms in GI and unsupervised learning of natural
language (see for instance the work of Adriaans et al., 2000; van Zaanen, 2002; Solan et al., 2004).

The key to the Harris approach for learning a language L, is to look at pairs of strings u and v
and to see whether they occur in the same contexts; that is to say, to look for pairs of strings of the
form lur and lvr that are both in L. This can be taken as evidence that there is a non-terminal symbol
that generates both strings. In the informal descriptions of this, there is an ambiguity between two
ideas. The first is that they should appear in all the same contexts; and the second is that they should
appear in some of the same contexts. We can write the first criterion as follows: (we define our
notation more formally in the next section, but we hope the reader will bear with us for the moment)

∀l,r lur ∈ L if and only if lvr ∈ L. (1)
The second, weaker, criterion is

∃l,r lur ∈ L and lvr ∈ L. (2)

The problem is then that to draw conclusions about the structure of the language, one needs
the former; but all one can hope for by observation of given data is the latter. In general, the class
of context-free grammars will be unlearnable: certainly according to the Gold style approach we
take in this paper since it is a superfinite class. Therefore to obtain learnability results we must
define subclasses of the languages that sufficiently restrict the class so that learning can take place.
The restriction we consider here is that whenever two strings have one context in common, then
they have all contexts in common: Equation 2 implies Equation 1. We call these the substitutable
languages.

Our main formal result is that this simple, but powerful constraint on languages—and note that
it is expressed in purely language theoretic terms—sufficiently restricts the class of context-free
languages to the extent that it can be learned using a simple polynomial algorithm. In this case, we
can learn according to the IIL criterion, and the algorithm will be polynomial in the amount of data
it needs (the characteristic set) and in computation.

More generally, this work shows how one can move from the syntactic congruence of a context-
free language to a grammar for that language under certain assumptions. This can be done through
a remarkably simple construction, and finally provides a solid theoretical grounding for the nu-
merous empirical algorithms based on different heuristics that have relied on learning the syntactic
congruence.

1726

SUBSTITUTABLE LANGUAGES

2. Definitions

We start by defining some standard notation.
An alphabet Σ is a finite nonempty set of symbols called letters. A string w over Σ is a finite

sequence w = a1a2 . . .an of letters. Let |w| denote the length of w. In the following, letters will be
indicated by a,b,c, . . ., strings by u,v, . . . ,z, and the empty string by λ. We shall write |u|a for the
number of occurrences of the letter a in the string u. Let Σ∗ be the set of all strings, the free monoid
generated by Σ. By a language we mean any subset L⊆ Σ∗. The set of all substrings of a language
L is denoted Sub(L) = {u ∈ Σ+ : ∃l,r ∈ Σ∗ such that lur ∈ L} (notice that the empty word does not
belong to Sub(L)). We shall assume an order≺ or& on Σ which we shall extend to Σ∗ in the normal
way by saying that u≺ v if |u| < |v| or |u| = |v| and u is lexicographically before v.

In general, and though it is not the case of the main class studied in this paper, the definition of
a class of languages L relies on a class R of abstract machines, here called representations, together
with a function L from representations to languages, that characterize all and only the languages of
L: (1) ∀R ∈ R,L(R) ∈ L and (2) ∀L ∈ L,∃R ∈ R such that L(R) = L. Two representations R1 and
R2 are equivalent iff L(R1) = L(R2).

Definition 1 (Grammar) A grammar is a quadruple G= 〈Σ,V,P,S〉 where Σ is a finite alphabet of
terminal symbols, V is a (distinct) finite alphabet of variables or non-terminals, P is a finite set of
production rules, and S ∈V is a start symbol.

If P ⊆ V × (Σ∪V)+ then the grammar is said to be context-free (CF), and we will write the
productions as T → α.

Note that we do not allow empty right hand sides to the productions and thus these grammars
will not generate the empty string.

We will write uTv⇒ uαv when T → α ∈ P. ∗⇒ is the reflexive and transitive closure of⇒.
We denote by L(G) = {w ∈ Σ∗ : S ∗⇒G w} the language defined by the grammar. Since we do

not allow rules with an empty right hand side this language cannot contain λ.

Definition 2 (Syntactic congruence) We say that two words u and v are syntactically congruent
w.r.t. a language L, written u≡L v, if and only if ∀l,r ∈ Σ∗ lur ∈ L iff lvr ∈ L.

We can think of this syntactic congruence as the strong notion of substitutability. Note two
things: first this is clearly an equivalence relation, and secondly, it is a congruence of the monoid
Σ∗, that is,

u≡L v implies ∀l,r lur ≡L lvr.

The syntactic monoid of the language L is just the quotient of Σ∗ by this relation. It is a standard
result that this will be finite if and only if L is regular.

We shall write [u]L for the equivalence class of the string u under ≡L.

Example 1 Consider the language L = {u ∈ {a,b}∗ : |u|a = |u|b}. We can see that u ≡L v iff
(|u|a− |u|b) = (|v|a− |v|b); the congruence classes will thus correspond to particular values of
(|u|a−|u|b) and the syntactic monoid will be isomorphic to Z.

Another way of looking at this relation is to define the set of contexts of a string:

1727

CLARK AND EYRAUD

Definition 3 (Set of contexts) The set of contexts of a string u in a language L is written CL(u) and
defined as CL(u) = {(l,r) : lur ∈ L}.

Using this definition we can say that u≡L v if and only ifCL(u) =CL(v).
We define the weaker idea of substitutability that we will use in the following way.

Definition 4 (Weak substitutability) Given a language L, we say that two words u and v are
weakly substitutable w.r.t. L, written u .=L v, if there exist l,r ∈ Σ∗ such that lur ∈ L and lvr ∈ L.

Note that this is in general not a congruence or even a transitive relation. Normally we will have
a finite sample S of the language L: clearly u .=S v implies u

.=L v.
We now can define the class of languages that we are concerned with:

Definition 5 (Substitutable language) A language L is substitutable if and only if for every pair of
strings u,v, u .=L v implies u≡L v.

In terms of contexts we can say that a language is substitutable, if whenever the sets of contexts
of two strings have non-empty intersection, they are identical. The substitutable context-free lan-
guages are just those languages that are both substitutable and context-free. A number of examples
can be found in Section 6.

Lemma 6 There are languages which are substitutable but not context-free.

Proof Let Σ = {a,b,c,d} be the alphabet. The language L = {u ∈ Σ∗ : |u|a = |u|b ∧ |u|c = |u|d}
is substitutable, as can easily be verified: the syntactic monoid here is isomorphic to Z×Z. The
intersection of L with the regular language {a∗c∗b∗d∗} gives the language {ancmbndm : n,m > 0}
which is not context-free; therefore L is not context-free.

2.1 Learning

We now define our learning criterion. This is identification in the limit from positive text (Gold,
1967), with polynomial bounds on data and computation (de la Higuera, 1997), but not on errors of
prediction (Pitt, 1989).

A learning algorithm A for a class of representationsR, is an algorithm that computes a function
from a finite sequence of strings s1, . . . ,sn to R. We define a presentation of a language L to be
an infinite sequence of elements of L such that every element of L occurs at least once. Given
a presentation, we can consider the sequence of hypotheses that the algorithm produces, writing
Rn = A(s1, . . .sn) for the nth such hypothesis.

The algorithm A is said to identify the class R in the limit if for every R ∈ R, for every presen-
tation of L(R), there is an N such that for all n> N, Rn = RN and L(R) = L(RN).

We further require that the algorithm needs only polynomially bounded amounts of data and
computation. We use the slightly weaker notion defined by de la Higuera (1997); note that the size
of a set of strings S is defined as ∑w∈S |w|.

Definition 7 (Polynomial identification in the limit) A representation classR is identifiable in the
limit from positive data with polynomial time and data iff there exist two polynomials p(),q() and
an algorithm A such that

1728

SUBSTITUTABLE LANGUAGES

1. Given a positive sample S of size m A returns a representation R ∈ R in time p(m)

2. For each representation R of size n there exists a characteristic set CS of size less than q(n)
such that if CS⊆ S, A returns a representation R′ such that L(R) = L(R′).

However, this definition initially designed for the learning of regular languages, is somehow
unsuitable as a model for learning context-free grammars.

Example 2 A context-free grammar Gn with the one letter alphabet {a} is defined as follows: it
contains a set of non-terminals N1, . . .Nn. The productions consist of Ni → Ni−1Ni−1 for i= 2, . . .n
and N1 → aa. The sentence symbol is Nn. It can easily be seen that L(Gn) consists of the single
string a2n , yet the size of the representation of Gn is linear in n.

According to the de la Higuera definition, no non-trivial language class that contains the gram-
mars G1,G2 . . . can be learnable, since any characteristic set for Gn must contain the string a2

n , and
will therefore have size exponential in the size of the representation. Yet it seems absurd to insist
on a polynomial size characteristic set, when reading a single example requires exponential time.

There is not at present a consensus on the most appropriate modification of this criterion for
the learning of context-free grammars. Clearly, relaxing the constraint for polynomial size of the
characteristic set, to merely requiring polynomial cardinality, is unsatisfactory, since it would allow
algorithms to use exponential amounts of computation, by specifying an exponentially long string
in the characteristic set. Several ideas have been formulated to tackle this problem, such as to
focus on shallow languages (Adriaans, 2002) or to require a characteristic sample that is polynomial
in a parameter other than the size of the target (Wakatsuki and Tomita, 1993), but none of them
represents a consensus.1 Nonetheless, it is beyond the scope of this paper to attempt to resolve this
difficulty, and we shall thus adopt this approach in this paper.

3. Algorithm

We now define an algorithm SGL (Substitution Graph Learner), that will learn a context-free gram-
mar from a sample of positive strings of a language.

The primary data structure of our algorithm can be conceived of as a graph, where each node of
the graph corresponds to a substring of a string in the sample, and where there is an edge between
any two nodes corresponding to substrings u,v if and only if u .=S v where S is the set of positive
examples.

In the next section we will define a characteristic set of examples for a context-free grammar,
and show that whenever the corresponding context-free language is substitutable, and the sample
contains the characteristic set, then SGL will produce a grammar that generates the same language
as the target.

Definition 8 (Substitution graph) Given a finite set of words S, we define the substitution graph
SG(S) = (V,E) as follow:

V = {u ∈ Σ+ : ∃l,r ∈ Σ∗, lur ∈ S},
E = {(u,v) ∈ Σ+×Σ+ : u .=S v}.

1. One can check that our main result holds in both of the frameworks cited above.

1729

CLARK AND EYRAUD

This graph will consist of a number of components, in the usual graph theoretic sense. If the lan-
guage is substitutable, then every member of the same component will be syntactically congruent,
and can thus be freely swapped with each other without altering language membership. In general,
there may be more than one component corresponding to the same congruence class, since we are
deriving the graph from a small finite sample.

First, note that since syntactic congruence is transitive, and we are interested in substitutable
languages, we can compute the transitive closure of the graph, by adding any edges (u,w) when
we have edges (u,v),(v,w). We will write ∼=S for the transitive closure of

.=S. If S is a subset of a
substitutable language L then u ∼=S v implies u≡L v.

We can write SG/ ∼=S for the set of components of the substitution graph and 1u2S for the
component that contains the string u. We will normally omit the subscript where there is no risk
of confusion. Recall that we write [u]L for the congruence class of u with respect to the syntactic
congruence of L.

3.1 Constructing the Grammar

Algorithm 1: Algorithm to generate a grammar from a substitution graph.
Data: A substitution graph SG= (V,E)
Result: A context-free grammar Ĝ
Let Σ be the set of all the letters used in the nodes of SG ;
Compute V̂ the set of components of SG ;
Store map V → V̂ defined by u 3→ 1u2 ;
Let Ŝ be the unique element of V corresponding to the context (λ,λ). ;
P̂= {} ;
for u ∈V do
if |u| > 1 then
for v,w such that u= vw do

P̂← P̂∪ (1u2 → 1v21w2) ;
end

else
P̂← P̂∪ (1u2 → u)

end
end
output Ĝ= 〈Σ,V̂ , Ŝ, P̂〉 ;

Given the SG we now construct a grammar Ĝ= 〈Σ,V̂ , P̂, Ŝ〉.
We define the set of non-terminals to be the set of components of the substitution graph, V̂ =

SG/ ∼=S. First note that there will be precisely one component of the substitution graph that will
contain all the strings in the sample S. This is because they will all appear in the empty context
(λ,λ). This component is defined to be Ŝ.

We now define the set of productions for the grammar. These consist of two types. First for
every letter in the alphabet, that occurs as a substring in the language, we have a production.

1a2 → a

1730

SUBSTITUTABLE LANGUAGES

Note that if we have two letters such that a .= b, then 1a2 = 1b2 and the same non-terminal will
have two productions rewriting it.

The second set of productions is defined for every substring of length greater than 1. For every
node in the substitution graph u, if |u|> 1, for every pair of non-empty strings v,w such that u= vw,
we add a production 1u2→ 1v21w2. Again note that if the component has more than one node in it,
then all of the productions will have the same left hand side.

This is the most important step in the algorithm. It is worth pausing here to consider this con-
struction informally: we shall prove these results formally below. Here we are taking an operation
in the syntactic monoid; and constructing a production directly from it. Given some substrings such
that [u] = [v][w], we can consider this as saying, that any element of the congruence class [v] con-
catenated with any element of the congruence class [w] will give an element of the congruence class
[u]. Phrased like this, it is clear that this can be directly considered as a production rule: if we wish
to generate an element of [u] one way of doing it is to generate a string from [v] and then a string
from [w].

We can define the set of productions formally as:

P̂= {1u2 → 1v21w2 : u= vw,u ∈V o f SG, |v| > 0, |w| > 0}∪{1a2 → a : a ∈ Σ}.

Algorithm 1 defines the process of generating a grammar from a substitution graph. To be
fully explicit about the global algorithm, we show it in Algorithm 2, rather than relying on the
characteristic set.
Algorithm 2: SGL algorithm
Data: A sequence of strings s1,s2, . . .
Result: A sequence of CFGs G1,G2, . . .
G= Grammar generating the empty language ;
while true do

read next string sn;
if sn 5∈ L(G) then

set SG to be the substitution graph generated from {s1, . . .sn};
set G to be the grammar generated from SG;

end
output G;

end

3.2 Examples

To clarify the behaviour of the algorithm, we shall now give two examples of its execution. The
first one is a step-by-step description on a (very) small sample. The second one allows a discussion
about the induced grammar for a particular language.

Example 3 Suppose the sample consists of the two strings S = {a,aa}. Sub(S) = {a,aa}. It is
clear that a .=S aa. Therefore there is only one component in the substitution graph, associated with
the non-terminal Ŝ. The grammar will thus have productions 1aa2 → 1a21a2 which is Ŝ→ ŜŜ and
1a2 → a which is Ŝ→ a. Thus the learned grammar will be 〈{a},{Ŝ},{Ŝ→ ŜŜ, Ŝ→ a}, Ŝ〉 which
generates the language a+.

1731

CLARK AND EYRAUD

Example 4 Consider the language L = {ancbn : n ≥ 0} that can be represented, for instance, by
the set of productions {S → aSb,S → c}. Suppose we have a large sample of strings from this
language. The substitution graph will have components Ci ⊂ {amcbm+i : m,m+ i ≥ 0} for both
positive and negative values of i, with C0 = Ŝ ⊂ {amcbm : m ≥ 0} being the sentence symbol. We
also have components made of a unique string: Ai = {ai} and Bi = {bi}, for positive values of i.
The grammar generated from this sample will then have rules of the form

C j+k →C jBk for all k > 0, j ∈ Z ,

C j−k → AkC j for all k > 0, j ∈ Z,

C0 → c,
Ai+ j → AiA j for all i, j > 0,

A1 → a,
Bi+ j → BiB j for all i, j > 0,

B1 → b.

This grammar defines the language L, but as can be seen the set of non-terminals can be sub-
stantially larger than that of the original grammar.

3.3 Polynomial Time

We now show that SGL runs in a time bounded by a polynomial in the total size of the sample.
Suppose the sample is S = {w1, . . . ,wn}. We can define N = ∑ |wi|, and L = max |wi|. Clearly
L≤ N, and n≤ N. The total number of substrings, and thus nodes in the graph, is less than N2. The
cost of computing, for a given pair of strings u,v, all of the substrings u′,v′ such that u′ .=S v′ can be
done in time less than L2, and thus assuming a constant time map from substrings to nodes in the
graph, we can compute all the edges in the graph in time less than L2n2. Computing the transitive
closure of .= or equivalently identifying the components of the substitution graph, can be done in
time linear in the sum of the number of nodes and edges which are both polynomially bounded.
When constructing the grammar, the number of rules defined by each component/non-terminal is
clearly bounded by the number of different ways of splitting the strings in the component, and thus
the total number of rules must be bounded by LN2, and each rule can be constructed in constant
time.

There are clearly much more efficient algorithms that could be used: hashing from contexts to
components and using a union-find algorithm to identify the components, for example.

4. Proof

Our main result is as follows:

Theorem 9 SGL polynomially identifies in the limit the class of substitutable (context-free) lan-
guages.

We shall proceed in two steps. First, we shall show that for any sample, the language defined by
the grammar inferred from the sample will be a subset of the target language; another way of saying
this is that the learner will never make a false positive error. The second step is to show that there

1732

SUBSTITUTABLE LANGUAGES

is a characteristic set; so that whenever the sample contains this characteristic set, the hypothesis
will be correct. This set will have a cardinality which is linear in the size of the representation;
however the size of the characteristic set (the sum of the lengths of all the strings in the set) will
not necessarily be polynomially bounded. Indeed this is inevitable as the problem class contains
examples where every string is exponentially large.

4.1 Proof that Pypothesis is Not Too Large

First of all we shall show that, for any finite sample of a substitutable language, the grammar derived
from a finite sample does not define a language that is too large.

We start by proving a basic lemma, which is intuitively clear from the definitions.

Lemma 10 For any sample C, not necessarily including a characteristic set, if w ∈ Sub(C) then
1w2 ∗⇒Ĝ w.

Proof The proof can be done by induction on the length of the string. If |w| = 1, then by the con-
struction of the grammar there is a unary rule 1w2 → w. If |w| = k+1, we can write w= ua, where
|u| = k,a ∈ Σ. By the inductive hypothesis, 1u2 ∗⇒Ĝ u. By the construction of the grammar, there
will be a production 1w2→ 1u21a2, which establishes the lemma. Therefore the generated grammar
will always include the training sample.

The next lemma states that derivation with respect to Ĝ maintains syntactic congruence.

Lemma 11 For any sample C, for all x ∈ Σ∗, for all u ∈ Sub(C), 1u2 ∗⇒Ĝ x implies u≡L x

Proof As u≡L u is trivial, we can restrict ourselves to the case u 5= x.
By induction on the length of the derivations k. Base step: k = 1. This means the derivation

must be a single production of the form 1u2→ x. This will only be the case if |x| = 1 and x is in the
same component as u; therefore u≡L x.

Inductive step: suppose this is true for all derivations of length less than k. Suppose we have
a derivation of length k > 1. By construction of the grammar, there exist 1v2 and 1w2 such that
1u2⇒ 1v21w2⇒k−1 x. There must be strings x1,x2 such that x= x1x2 and 1v2

∗⇒Ĝ x1 and 1w2
∗⇒Ĝ x2

with derivations of length less than k. Therefore by the inductive hypothesis, v≡L x1 and w≡L x2.
Since we have a production 1u2→ 1v21w2 in P̂, there must be strings v′,w′ such that v′w′ is a string
in the same component as u, and v′ ≡L v and w′ ≡L w and u≡L v′w′. Since ≡L is a monoid congru-
ence, we have u≡L v′w′ ≡L vw′ ≡L vw≡L x1w≡L x1x2 = x.

Theorem 12 For any positive sample of a substitutable context-free language L, if Ĝ is the result
of applying the algorithm to it then L(Ĝ) ⊆ L.

Proof LetC⊂ L be the sample. If u∈ L(Ĝ) then there must be some v∈C, such that Ŝ= 1v2 ∗⇒Ĝ u.
Therefore u≡L v, which implies u ∈ L.

1733

CLARK AND EYRAUD

4.2 Proof that Hypothesis is Large Enough

To prove that the hypothesis is large enough, we first need to define a characteristic set, that is to
say a subset of a target language L∗ which will ensure that the algorithm will output a grammar G
such that L(G) = L∗.

4.2.1 CONSTRUCTION OF THE CHARACTERISTIC SAMPLE

Let G∗ = 〈V,Σ,P,S〉 be a target grammar. We will assume without loss of generality, that G∗ is
reduced, that is to say for every non-terminal N ∈ V , there are strings l,u,r ∈ Σ∗ such that S ∗⇒
lNr ∗⇒ lur. We are going to define a setCS of words of L∗, such that the algorithm SGL will identify
L∗ from any superset ofCS.

We define w(α)∈ Σ+ to be the smallest word, according to≺, generated by α ∈ (Σ∪V)+. Thus
in particular for any word u ∈ Σ+, w(u) = u. For each non-terminal N ∈ V define c(N) to be the
smallest pair of terminal strings (l,r) (extending ≺ from Σ∗ to Σ∗ ×Σ∗, in some way), such that
S ∗⇒ lNr.

We can now define the characteristic setCS(G∗) = {lwr : (N→α)∈P,(l,r) = c(N),w=w(α)}.
The cardinality of this set is at most |P| which is clearly polynomially bounded. In general the
cardinality of the set will not polynomially bound the size of the sample, for reasons discussed
above in Section 2.1. However, notice that if there exists a polynomial-sized structurally complete
sample (that is to say a sample where there is at least a string that uses each production rule Dupont
et al., 1994) then the size of that characteristic set is polynomial.

Example 5 Let G = 〈{a,b,c},{S},{S→ aSb,S→ c},S〉 be the target grammar. It generates the
language {ancbn : n≥ 0}. For the rule S→ c, the construction gives C(S) = (λ,λ) and w(c) = c, so
the string c belongs to the characteristic set. Concerning the rule S→ aSb, we have C(S) = (λ,λ)
and w(aSb) = acb. The characteristic set is then CS(G) = {c,acb}.

4.2.2 CONVERGENCE

We now must show that for any substitutable context-free grammar G, if the sample C contains the
characteristic set CS(G), that is, CS(G) ⊆ C ⊆ L(G), and if Ĝ is the output SGL produces on the
sampleC, then L(Ĝ) = L(G).

Lemma 13 For any sample C containing the characteristic set, if (N→ α)∈ P, where α=V1 . . .Vl ,
then for any 0< i< j ≤ l, 1w(Vi) . . .w(V j)2

∗⇒Ĝ 1w(Vi)2 . . .1w(V j)2.

Proof By construction of the characteristic set, if (N → α) ∈ P then w(α) = w(V1) . . .w(Vl) is
going to appear as a substring in the characteristic sample. Each production in the derivation
1w(Vi) . . .w(V j)2⇒Ĝ 1w(Vi) . . .w(V j−1)21w(V j)2 · · ·⇒Ĝ 1w(Vi)2 . . .1w(V j)2will be in the set of pro-
ductions by the construction of the grammar.

Lemma 14 For all N ∈V if N ∗⇒G u then 1w(N)2 ∗⇒Ĝ u.

Proof By induction on the length of the derivation. Suppose the derivation is of length 1. Then
N ⇒G u and we must have N → u ∈ P. Therefore by the construction of the characteristic set,

1734

SUBSTITUTABLE LANGUAGES

w(N) ∈ Sub(C), u ∈ Sub(C), and 1u2 = 1w(N)2. By Lemma 10, 1w(N)2 = 1u2 ∗⇒Ĝ u. This es-
tablishes the base case. Suppose this is true for all derivations of length at most k. Suppose
N ⇒k+1

G u. So we take the first production N ⇒G α ⇒k
G u. Suppose |α| = l. Then we write

α = V1 . . .Vl
∗⇒G u1 . . .ul = u, where Vi ∈ V ∪ Σ and Vi

∗⇒G ui. if Vi ∈ V , then by the induction
hypothesis 1w(Vi)2

∗⇒Ĝ ui. If Vi ∈ Σ, then we have 1w(Vi)2
∗⇒Ĝ ui thanks to Lemma 10. By

the construction of the characteristic set, we have 1w(N)2 = 1w(α)2. By Lemma 13 we have
1w(N)2 ∗⇒Ĝ 1w(V1)2 . . .1w(Vl)2

∗⇒Ĝ u1 . . .ul = u.

Theorem 15 For any substitutable CFG G, when the sample contains the characteristic set, L ⊆
L(Ĝ).

This follows immediately by applying the previous theorem to S: if S ∗⇒G u then 1w(S)2 ∗⇒Ĝ u.
Combining this with Theorem 12 establishes that L(Ĝ) = L(G), and therefore Theorem 9 holds.

5. Reduction System

As described up to now, our focus has been on producing an algorithm for which it is easy to prove
some correctness results. However, the algorithm is not practical, since the number of non-terminals
will often become very large, since in the worst case the algorithm will have one non-terminal for
each substring in the training data. Many of these substrings will of course be redundant, and can be
removed without reducing the language. In this section we will consider some algorithms for doing
this; the languages defined will be unchanged, but the algorithms will be more efficient.

There are a number of algorithms for reducing the number of non-terminals. Clearly one can
recursively remove all non-terminals that only have one production by replacing the non-terminal
on the left hand side of the production with the right hand side, wherever it occurs. Secondly, one
can remove non-terminals, one by one, and test whether the grammar continues to accept all of the
sample, and thus arrive at a minimal CFG. Although the cost of that last operation is considerable,
it obviously is polynomial.

In this section we describe a variant algorithm that is efficient and practical for large data sets,
but that produces a reduction system, rather than a grammar. The idea is that if two substrings
appear in the same component of the substitution graph, then we can rewrite every occurrence of
the bigger one into the smaller.

The key point here is to reduce the substitution graph, by removing strings that are potentially
redundant. In particular if we have one component that contains the strings u and v, where v ≺ u,
and another that contains the strings lur and lvr, we can reduce the graph by removing the string
lur. This is equivalent to reducing the reduction system associated with the graph. Indeed, if we
know we can rewrite u into v, then there is no need to add a rule that rewrites lur into lvr.

5.1 Definitions

We will briefly describe semi-Thue systems or reduction systems (Book and Otto, 1993).

1735

CLARK AND EYRAUD

Definition 16 (Reduction system) A reduction system T , over an alphabet Σ is a finite set of pairs
of strings T ⊂ Σ∗×Σ∗, where each pair (u,v) is normally written u 9T v, is called a reduction rule
and satisfies v≺ u.2

By extension, we will denote lur 9 lvr when u 9 v ∈ T . 9∗ is the reflexive and transitive closure
of 9.

Definition 17 (Confluent and weakly confluent reduction system) A reduction system T is

• confluent if and only if for all w,w1,w2 ∈ Σ∗ such that w 9 w1 and w 9 w2, there exists e ∈ Σ∗

such that w1 9 e and w2 9 e.

• weakly confluent on a set S if and only if for all w,w1,w2 ∈ S such that w 9 w1 and w 9 w2,
there exists e ∈ S such that w1 9∗ e and w2 9∗ e.

Note that as defined these reduction systems are Noetherianwhich means that there is no infinite
sequence of reductions. This defines a congruence relation where u and v are congruent if and only
if they can be reduced to the same element. Being confluent and Noetherian means that there is a
simple algorithm to determine this congruence: each string belong to only one congruence class.
If we have the strict requirement that the reductions must be length reducing (|v| < |u|), then the
maximum number of reductions is the length of the string you start with. Since we have a looser
definition (v≺ u), this number can be exponential.

Given a reduction system one can define a language as the union of finitely many congruence
classes. Thus given a reduction system T and a set of irreducible strings A on an alphabet Σ, we can
define a language L(T,A) = {v ∈ Σ∗ : ∃a ∈ A ∧ v 9∗

T a}. These are the congruential languages. In
some cases, this is a more natural way of defining the structure of a language than systems from the
traditional Chomsky hierarchy.

For example consider the reduction system T = {(aca,c),(bcb,c)}, and the axiom c (i.e., we are
looking at the congruence class of c). The language defined by L(T,{c}) is exactly the palindrome
language over a,b with center marker c.

The next subsection deals with the modifications of the algorithm SGL allowed by the use of
reduction systems instead of grammars.

5.2 Reduction of a Substitution Graph

Given a substitution graph SG = 〈V,E〉, we say that SG reduces to SG′ = 〈V ′,E ′〉 if and only if
there exists (u,v) ∈ E : v ≺ u, and (l,r), |l|+ |r| > 0, such that lur ∈ V , V ′ = (V \ {lur})∪{lvr},
E ′ = {(x,y) ∈V ′×V ′ : (x,y) ∈ E ∨ ((lur,y) ∈ E ∧ x= lvr)}.

We say that a substitution graph SG is irreducible if there exists no other substitution graph SG′

such that SG reduces to SG′.
Given this reduced graph, we define a reduction system directly from the graph.
In this case we will define the set of reductions T to be exactly the set of all pairs u 9 v, where

v≺ u and u,v are nodes in the same component of the substitution graph. We can also limit v to be
the unique least node (with respect to ≺) in each component.

Assuming that we have a set of examples generated from a substitutable CFG that contains the
characteristic set, it is easy to prove the following lemmas.

2. This differs slightly from the standard definition which requires |v| < |u|.

1736

SUBSTITUTABLE LANGUAGES

Lemma 18 If N ∈V and N ∗⇒ u for u ∈ Σ∗, then u 9∗ w(N).

Proof Suppose N = α0 ⇒ α1 ⇒ ·· · ⇒ αn = u is a derivation of u. Map this to a sequence
(w(N),w(α1), . . . ,w(αn),u) of strings from Σ∗. Consider a single step αi = lMr and αi+1 = lβr and
there is a production M→ β in P. We have w(αi) = w(l)w(M)w(r) and w(αi+1) = w(l)w(β)w(r),
which implies w(αi+1) 9∗

T w(αi) by construction. Therefore u 9∗ w(N).

Lemma 19 If u 9 v then u ∈ L iff v ∈ L.

Proof u 9 v implies ∃(x,y) ∈ T and l,r ∈ Σ∗ such that u = lxr and v = lyr. x .=S y implies x
.=L y

implies x≡L y implies lxr ∈ L iff lyr ∈ L.

The reduction system will be weakly confluent on L, and it is Noetherian, since the number of
strings smaller (w.r.t. ≺) than a given string is clearly finite. Unfortunately in general we will
not be able to compute an irreducible string for any given word u in a polynomial (in the size of
u) number of reductions (see Lohrey, 2000, for a formal proof). Thus though the reduction system
itself may be much smaller, in some cases the “parsing” algorithm, determining whether a word
is in the language, may be exponential. Subject to this caveat, we can define a small reduction
system that represents the same language, namely the set of all strings that reduces to the least
string w(S) (w.r.t. ≺) in the language, but without the large number of redundant rules that the
simple grammar construction produces. Without positing further restrictions on the sample set, it is
not possible to give precise bounds on the relative sizes of the reduction system and the grammar.

6. Substitutable Languages

This section contains some examples of substitutable CFLs, as well as some simple CFLs that are
not substitutable, and a discussion on the relationship of this class of languages to other standard
classes. This is without a doubt a restricted class of languages but contains some interesting exam-
ples. They are not closed under any standard operation except reversal.

Since we are learning under a Gold style paradigm, we cannot hope to learn all finite lan-
guages (Gold, 1967). Indeed, the more complex the languages we hope to learn, the smaller the set
of finite languages we will be able to learn.

6.1 Examples

We will now give some examples of some simple languages that are substitutable as well as some
simple languages that are not. In general it will not be possible to decide for any given context-free
language if it is substitutable. However, it can be checked “by hand” on particular examples.

Given an alphabet Σ, the following languages are substitutable:

• The set Σ∗ of all the strings on the alphabet is substitutable. Indeed, all substrings appear in
all possible contexts.

• Any language consisting of only one string (namely a singleton language) is substitutable,
since in that case u .= v implies u= v.

1737

CLARK AND EYRAUD

• The languages {an : n> 0}, for all a ∈ Σ, are substitutable.

• A more complex language, {wcwR : w ∈ (a,b)∗} (the language of palindromes with center
marker) is substitutable.

We now turn our attention to simple languages that are not substitutable.
First, the finite language L= {a,aa} is not substitutable. Indeed, a .=L aa, since they appear in

the context (λ,λ), but they are not congruent since (a,λ) is a context of a but not aa. This (counter)
example shows that the class is not superfinite and is thus part of the explanation of the positive
result proven above. The algorithm presented here would return the hypothesis {an : n> 0}.

The well-known context-free language {anbn : n > 0} is also not substitutable. Indeed, a .=
aab, because they share the context (a,bb), but they are clearly not syntactically congruent, since
(a,abbb) is a context of a but not of aab. However, the language {ancbn : n > 0} is substitutable.
Here the addition of a center marker removes the problem.

6.2 Relation to Other Language Classes

The state of the art concerning polynomial identification of context-free languages from positive
example only is quite limited. In addition, as all studied subclasses are defined with respect to a
particular class of representations, the comparison with our purely syntactically defined class is a
hard task.

The fact that substitutable context-free languages can be represented by reduction systems
proves that they are properly included within the class of congruential languages (Book and Otto,
1993). The examples previously presented show that they are incomparable with the classes of finite
languages and regular languages.

The most important subclass of context-free languages that is polynomially identifiable is that
of very simple grammars (Yokomori, 2003). It consists of CFGs in Greibach normal form such
that no terminal symbol is used in more than one production. Some very simple grammars are not
substitutable: an example is the regular grammar with productions S→ aNP,S→ bN,N → n,P→
rP,P→ p. This generates the language anr∗p∪ bn = {bn,anp,anrp,anrrp, . . .}. We can see that
n .= nr but it is not the case that n≡ nr, since bn is in the language but bnr is not.

On the other hand, some substitutable languages, as for instance {wcwR : w ∈ (a,b)∗}, are not
very simple.

Finally, we also note the relationship to NTS grammars (Sénizergues, 1985); which can be seen
to be relevant in Section 8. NTS grammars have the property that if N ∗⇒ v and M ∗⇒ uvw then
M ∗⇒ uNw. We conjecture that all substitutable context free languages are NTS languages.

7. Practical Experiment

We will now present a simple experiment that demonstrates the applicability of this algorithm to the
learning of natural languages.

For some years, a particular set of examples has been used to provide support for nativist theo-
ries of first language acquisition (FLA). These examples, which hinge around auxiliary inversion in
the formation of questions in English, have been considered to provide a strong argument in favour
of the nativist claim: that FLA proceeds primarily through innately specified domain specific mech-
anisms or knowledge, rather than through the operation of general-purpose cognitive mechanisms.

1738

SUBSTITUTABLE LANGUAGES

A key point of empirical debate is the frequency of occurrence of the forms in question. If these
are vanishingly rare, or non-existent in the primary linguistic data, and yet children acquire the con-
struction in question, then the hypothesis that they have innate knowledge would be supported. But
this rests on the assumption that examples of that specific construction are necessary for learning to
proceed. In this paper we show that this assumption is false: that this particular construction can be
learned without the learner being exposed to any examples of that particular type. Our demonstra-
tion is primarily mathematical/computational: we present a simple experiment that demonstrates
the applicability of this approach to this particular problem neatly, but the data we use is not in-
tended to be a realistic representation of the primary linguistic data, nor is the particular algorithm
we use suitable for large scale grammar induction. We will present the dispute in traditional terms,
though later we shall analyse some of the assumptions implicit in this description. In English, polar
interrogatives (yes/no questions) are formed by fronting an auxiliary, and adding a dummy auxiliary
“do” if the main verb is not an auxiliary. For example,

Example 1a The man is hungry.

Example 1b Is the man hungry?
When the subject NP has a relative clause that also contains an auxiliary, the auxiliary that is

moved is not the auxiliary in the relative clause, but the one in the main (matrix) clause.

Example 2a The man who is eating is hungry.

Example 2b Is the man who is eating hungry?
An alternative rule would be to move the first occurring auxiliary, that is, the one in the relative

clause, which would produce the form

Example 2c Is the man who eating is hungry?
In some sense, there is no reason that children should favour the correct rule, rather than the

incorrect one, since they are both of similar complexity and so on. Yet children do in fact, when
provided with the appropriate context, produce sentences of the form of Example 2b, and rarely if
ever produce errors of the form Example 2c (Crain and Nakayama, 1987). The problem is how to
account for this phenomenon.

Chomsky claimed first, that sentences of the type in Example 2b are vanishingly rare in the
linguistic environment that children are exposed to, yet when tested they unfailingly produce the
correct form rather than the incorrect Example 2c. This is put forward as strong evidence in favour
of innately specified language specific knowledge: we shall refer to this view as linguistic nativism.

In a special volume of the Linguistic Review, Pullum and Scholz (2002) showed that in fact
sentences of this type are not rare at all. Much discussion ensued on this empirical question and
the consequences of this in the context of arguments for linguistic nativism. These debates revolved
around both the methodology employed in the study, and also the consequences of such claims for
nativist theories. It is fair to say that in spite of the strength of Pullum and Scholz’s arguments,
nativists remained completely unconvinced by the overall argument.

Reali and Christiansen (2004) present a possible solution to this problem. They claim that local
statistics, effectively n-grams, can be sufficient to indicate to the learner which alternative should be
preferred. However this argument has been carefully rebutted by Kam et al. (2005), who show that
this argument relies purely on a phonological coincidence in English. This is unsurprising since it
is implausible that a flat, finite-state model should be powerful enough to model a phenomenon that
is clearly structure dependent in this way.

1739

CLARK AND EYRAUD

7.1 Implementation

We have implemented the algorithm described above. There are a number of algorithmic issues that
were addressed. First, in order to find which pairs of strings are substitutable, the naive approach
would be to compare strings pairwise which would be quadratic in the number of sentences. A more
efficient approach maintains a hashtable mapping from contexts to congruence classes. Caching
hashcodes, and using a union-find algorithm for merging classes allows an algorithm that is effec-
tively linear in the number of sentences. However, since it is necessary to consider every substring
in the sentence, there appears to be a quadratic dependence on sentence length that seems to be hard
to remove. Nonetheless this compares favourably to the complexity of context-free parsing.

In order to handle large data sets with thousands of sentences, it was necessary to modify the al-
gorithm in various ways which slightly altered its formal properties. Primarily these involved prun-
ing non-terminals that appeared to be trivial: since in the worst case the number of non-terminals
approaches the number of distinct substrings in the corpus this is an enormous improvement. How-
ever for the experiments reported here we used a version which performs exactly in line with the
mathematical description above.

7.2 Data

For clarity of exposition, we have used extremely small artificial data-sets, consisting only of sen-
tences of types that would indubitably occur in the linguistic experience of a child. We do not
attempt in this paper to demonstrate that, with naturally occurring distributions of data, this algo-
rithm will correctly learn this distinction.

Our first experiments were intended to determine whether the algorithm could determine the
correct form of a polar question when the noun phrase had a relative clause, even when the algorithm
was not exposed to any examples of that sort of sentence. We accordingly prepared a small data set
shown in Table 1. Above the line is the training data that the algorithm was trained on. It was then
tested on all of the sentences, including the ones below the line. By construction the algorithmwould
generate all sentences it has already seen, so it scores correctly on those. The learned grammar also
correctly generated the correct form and did not generate the final form.

We can see how this happens quite easily since the simple nature of the algorithm allows a
straightforward analysis. We can see that in the learned grammar “the man” will be congruent to
“the man who is hungry”, since there is a pair of sentences which differ only by this. Similarly,
“hungry” will be congruent to “ordering dinner”. Thus the sentence “is the man hungry ?” which is
in the language, will be congruent to the correct sentence.

One of the derivations for this sentence would be: [is the man hungry ?] → [is the man hungry]
[?] → [is the man] [hungry] [?] → [is] [the man] [hungry] [?] → [is] [the man] [who is hungry]
[hungry] [?] → [is] [the man] [who is hungry] [ordering dinner] [?].

Our second data set is shown in Table 2, and is a fragment of the English auxiliary system. This
has also been claimed to be evidence in favour of nativism. This was discussed in some detail by
Pilato and Berwick (1985). Again the algorithm correctly learns: the learned language includes the
correct form but not the incorrect form.

1740

SUBSTITUTABLE LANGUAGES

the man who is hungry died .
the man ordered dinner .
the man died .
the man is hungry .
is the man hungry ?
the man is ordering dinner .
is the man who is hungry ordering dinner ?
∗is the man who hungry is ordering dinner ?

Table 1: Auxiliary fronting data set. Examples above the line were presented to the algorithm
during the training phase, and it was tested on examples below the line.

it rains.
it may rain.
it may have rained.
it may be raining.
it has rained.
it has been raining.
it is raining.
it may have been raining.
∗it may have been rained.
∗it may been have rain.
∗it may have been rain.

Table 2: English auxiliary data. Training data above the line, and testing data below.

1741

CLARK AND EYRAUD

7.3 Conclusion of the Experiment

Chomsky was among the first to point out the limitations of Harris’s approach, and it is certainly
true that the grammars produced from these toy examples overgenerate radically. On more real-
istic language samples SGL would eventually start to generate even the incorrect forms of polar
questions.

Given the solution we propose it is worth looking again and examining why nativists have felt
that auxiliary fronting was such an important issue. It appears that there are several different areas.
First, the debate has always focused on how to construct the interrogative from the declarative
form. The problem has been cast as finding which auxiliary should be “moved”. Implicit in this
is the assumption that the interrogative structure must be defined with reference to the declarative,
one of the central assumptions of traditional transformational grammar. Now, of course, given
our knowledge of many different formalisms which can correctly generate these forms without
movement we can see that this assumption is false. There is of course a relation between these
two sentences, a semantic one, but this does not imply that there need be any particular syntactic
relation, and certainly not a “generative” relation.

Secondly, the view of learning algorithms is very narrow. It is considered that only sentences of
that exact type could be relevant. We have demonstrated, if nothing else, that that view is false. The
distinction can be learned from a set of data that does not include any example of the exact piece of
data required: as long as the various parts can be learned separately, the combination will function
in the natural way.

8. Discussion

The important step in the algorithm is the realisation that it is not necessary to learn constituent
structure in order to learn context-free languages. The rule 1uv2 → 1u21v2 appears at first sight
vacuous, yet it is sufficient to define correct languages for an interesting class of grammars.

8.1 Related Work

This work is related to two other strands of work. First work that proves polynomial IIL of other
subclasses of context-free grammars. Yokomori (2003) shows that the class of very simple lan-
guages can be polynomially identified in the limit. Unfortunately the time complexity is N |Σ|+1 and
the alphabet size is equal to the number of productions in a very simple grammar, so this algorithm
is not practical for large scale problems. Secondly, we can relate it to the work of Adriaans et al.
(2000), who uses a similar heuristic to identify languages. Finally, we can mention the similar
work of Starkie (2004) who shows an identification in the limit result of a class of grammars called
“left-aligned R grammars”. This work defines a rather complicated family of grammars, and shows
how constituents can be identified. We also note Laxminarayana and Nagaraja (2003) who show a
learnable subclass of CFGs.

We can compare substitutability with reversibility (Angluin, 1982; Makinen, 2000). Recall that
a regular language is reversible if whenever uw and vw are in the language then ux is in the language
if and only if vx is in the language. Thus reversibility is the exact analogue of substitutability for
regular languages. Note that reversibility is a weaker criterion than substitutability. Substitutability
implies reversibility, but not vice versa, as can be seen from the finite language {ab,bb} which is
reversible but not substitutable. Nonetheless, following the work on reversible regular languages,

1742

SUBSTITUTABLE LANGUAGES

one can think of a definition of k-substitutable languages and may obtain positive learning results
on that hierarchy of languages.

We can also compare the substitutability to µ-distinguishability for inference of regular lan-
guages (Ron et al., 1998). Ron uses a measure of similarity of residual languages, rather than of
contexts as we use here. Considered in this way, our measure is very crude, and brittle—contexts
are equal if they have non empty intersection. Nonetheless the techniques of Ron et al., suggest a
way that this technique could be extended to a PAC-learning result, using a bound on a statistical
property of the distribution. There are some technical problems to be overcome, since the number
of syntactic congruence classes will be infinite for non regular languages, and thus the distinguisha-
bility will not in general be bounded from below. A more serious problem is that the worst case
sample complexity, if the data is drawn randomly, is clearly exponential, since the chance of getting
two strings that differ only in a single point is in general exponential in the derivational entropy of
the grammar.

Algorithms for learning regular languages focus on identifying the states of a deterministic au-
tomaton. When trying to move to learning context-free languages, the obvious way is to try to
identify configurations (i.e., pairs of states and strings of stack symbols) of a deterministic push
down automaton. A problem here is that the structure of this set depends on the representation, the
automaton. One way of viewing the work presented in this paper is to say that a better approach is to
try to identify the elements of the syntactic monoid. This monoid represents in the barest form the
combinatorial structure of the language. From a learnability point of view this is interesting because
it is purely syntactic—it is not semantic as it does not depend on the representation of the language
but only on the language itself. Since we are interested in algorithms that learn from unstructured
data—strings from the language that are not annotated with structural information—this seems a
more natural approach. Importantly, our algorithm does not rely on identifying constituents: that is
to say on identifying which substrings have been generated by the non-terminals of the target gram-
mar. This has up to now been considered the central problem in context-free grammatical inference,
though it is in some sense an ill-posed problem since there may be many different grammars with
different constituent structure that are nonetheless equivalent, in the sense that they define the same
language.

One of the weaknesses in the work is the fact that we do not yet have a grammatical characterisa-
tion of substitutability, nor an algorithm for determining whether a grammar defines a substitutable
language. It is clear from standard results in the field that this property will be undecidable in
general, but it might be possible to decide it for NTS grammars (Sénizergues, 1985).

Looking at our approach more generally, it is based on identifying syntactically congruent sub-
strings. Substitutable languages have a property that allows a trivial procedure for determining when
two substrings are congruent, but it is easy to think of much more robust methods of determining
this that rely on more complex properties of the context distributions. Thus in principle we can use
any property of the sample from the context distribution: average length, substring counts, marginal
distributions at certain offsets and so on.

To conclude, we have shown how a simple formalization of Harris’s substitutability criterion
can be used to polynomially learn an interesting subclass of context-free languages.

1743

CLARK AND EYRAUD

Acknowledgments

This work has benefited from the support of the EU funded PASCAL Network of Excellence on
Pattern Analysis, Statistical Modelling and Computational Learning. We would like to thank Colin
de la Higuera, Jean-Christophe Janodet, Géraud Sénizergues, Brad Starkie and the two anonymous
reviewers for helpful comments and discussions.

References

P. Adriaans. Learning shallow context-free languages under simple distributions. In K. Vermeulen
and A. Copestake, editors, Algebras, Diagrams and Decisions in Language, Logic and Compu-
tation, volume 127. CSLI Publications, 2002.

P. Adriaans, M. Trautwein, and M. Vervoort. Towards high speed grammar induction on large text
corpora. In SOFSEM 2000, pages 173–186. Springer Verlag, 2000.

D. Angluin. Inference of reversible languages. Communications of the ACM, 29:741–765, 1982.

R. Book and F. Otto. String Rewriting Systems. Springer Verlag, 1993.

N. Chomsky. Systems of syntactic analysis. Journal of Symbolic Logic, 18(3):242–256, 1953.

S. Crain and M. Nakayama. Structure dependence in grammar formation. Language, 63(3):522–
543, 1987.

C. de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning, 27
(2):125–138, 1997.

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference? In R. C.
Carrasco and J. Oncina, editors, Grammatical Inference and Applications, Second International
Colloquium, ICGI-94, pages 25–37, 1994.

E. M. Gold. Language identification in the limit. Information and Control, 10(5):447 – 474, 1967.

Z. Harris. Distributional structure. Word, 10(2-3):146–62, 1954.

X. N. C. Kam, I. Stoyneshka, L. Tornyova, J. D. Fodor, and W. G. Sakas. Non-robustness of syntax
acquisition from n-grams: A cross-linguistic perspective. In The 18th Annual CUNY Sentence
Processing Conference, April 2005.

J. A. Laxminarayana and G. Nagaraja. Inference of a subclass of context free grammars using
positive samples. In Proceedings of the Workshop on Learning Context-Free Grammars at
ECML/PKDD 2003, 2003.

M. Lohrey. Word problems and confluence problems for restricted semi-thue systems. In RTA,
volume 1833 of LNCS, pages 172–186. Springer, 2000.

E. Makinen. On inferring zero-reversible languages. Acta Cybernetica, 14:479–484, 2000.

S. Pilato and R. Berwick. Reversible automata and induction of the english auxiliary system. In
Proceedings of the ACL, pages 70–75, 1985.

1744

SUBSTITUTABLE LANGUAGES

L. Pitt. Inductive inference, DFA’s, and computational complexity. In AII ’89: Proceedings of the
International Workshop on Analogical and Inductive Inference, pages 18–44. Springer-Verlag,
1989.

G. Pullum and B. Scholz. Empirical assessment of stimulus poverty arguments. The Linguistic
Review, 19(1-2):9–50, 2002.

Florencia Reali and Morten H. Christiansen. Structure dependence in language acquisition: Uncov-
ering the statistical richness of the stimulus. In Proceedings of the 26th Annual Conference of the
Cognitive Science Society, Mahwah, NJ, 2004. Lawrence Erlbaum.

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic finite
automata. J. Comput. Syst. Sci., 56(2):133–152, 1998.

G. Sénizergues. The equivalence and inclusion problems for NTS languages. J. Comput. Syst. Sci.,
31(3):303–331, 1985.

Z. Solan, D. Horn, E. Ruppin, and S. Edelman. Unsupervised context sensitive language acquisition
from a large corpus. In Proceedings of NIPS 2003, 2004.

B. Starkie. Identifying Languages in the Limit using Alignment Based Learning. PhD thesis, Uni-
versity of Newcastle, Australia, 2004.

M. van Zaanen. Implementing alignment-based learning. In Grammatical Inference: Algorithms
and Applications, ICGI, volume 2484 of LNCS, pages 312–314. Springer, 2002.

M. Wakatsuki and E. Tomita. A fast algorithm for checking the inclusion for very simple deter-
ministic pushdown automata. IEICE Trans. on Information and Systems, E76-D(10):1224–1233,
1993.

T. Yokomori. Polynomial-time identification of very simple grammars from positive data. Theoret-
ical Computer Science, 298(1):179–206, 2003.

1745

Journal of Machine Learning Research 8 (2007) 1747-1768 Submitted 7/06; Revised 3/07; Published 8/07

©2007 Ray J. Hickey.

Structure and Majority Classes in Decision Tree Learning

Ray J. Hickey RJ.HICKEY@ULSTER.AC.UK
School of Computing and Informating Engineering
University of Ulster
Coleraine
Co. Londonderry
N. Ireland, UK, BT52 1SA

Editor: Greg Ridgeway

Abstract
To provide good classification accuracy on unseen examples, a decision tree, learned by an
algorithm such as ID3, must have sufficient structure and also identify the correct majority class in
each of its leaves. If there are inadequacies in respect of either of these, the tree will have a
percentage classification rate below that of the maximum possible for the domain, namely (100 -
Bayes error rate). An error decomposition is introduced which enables the relative contributions of
deficiencies in structure and in incorrect determination of majority class to be isolated and
quantified. A sub-decomposition of majority class error permits separation of the sampling error at
the leaves from the possible bias introduced by the attribute selection method of the induction
algorithm. It is shown that sampling error can extend to 25% when there are more than two
classes. Decompositions are obtained from experiments on several data sets. For ID3, the effect of
selection bias is shown to vary from being statistically non-significant to being quite substantial,
with the latter appearing to be associated with a simple underlying model.

Keywords: decision tree learning, error decomposition, majority classes, sampling error, attribute
selection bias

1 Introduction
The ID3 algorithm (Quinlan, 1986) learns classification rules by inducing a decision tree from
classified training examples expressed in an attribute-value description language. A rule is
extracted from the tree by associating a path from the root to a leaf (the rule condition) with the
majority class at the leaf (the rule conclusion). The majority class is simply that having the
greatest frequency in the class distribution of training examples reaching the leaf. The set of such
rules, one for each path, is the induced classifier and can be used to classify unseen examples.
Many different trees may adequately fit a training set. The bias of ID3 is that, through use of an
information gain heuristic (expected entropy) to select attributes for tree expansion, it will tend to
produce small, that is, shallower, trees (Mitchell, 1997).

For good generalization accuracy, the induced tree must have sufficient structure, that is,
depth, to fully extract the conditions of each rule and, in addition, must identify the correct
majority class in each leaf. Yet, as is well-known, a major weakness of decision tree induction
lies in its progressive sub-division of the training set as the tree develops (divide and conquer).

HICKEY

 1748

This causes the two requirements work to against each other: deepening the tree to create the
necessary structure reduces the sample sizes in the leaves upon which inferences about majority
classes are based. In a real-world domain there may be hundreds of attributes and it would require
a massive training set to build a full tree having an adequate number of examples reaching each
leaf.

In the literature, building trees has received the most attention. There has been comparatively
little investigation into whether the class designated as the majority using the leaf sample
distribution will be the true majority class. Frank (2000) provided some analysis, for two classes,
of the error in classification arising from a random sample. Weiss and Hirsh (2000) noted that
small disjuncts (rules with low coverage extracted from the tree) contribute disproportionately to
classification error and that this behaviour is related to noise level. A sister problem, that of
estimating probability distributions in the leaves of the grown tree, has been discussed by Provost
and Domingos (2003) but this has little direct bearing on the problem faced here.

The classification rate of an induced tree on unseen examples is limited by the Bayes rate,
BCR = (100 - Bayes error rate), which is the probability (expressed as a percentage) that a correct
classification would be obtained if the underlying rules in the domain were used as the classifier.
This is 100% in a noise-free domain but decreases accordingly with increasing noise. It is an
asymptote in the learning curve of accuracy against training set size.

If the classification rate of an induced tree is CR, then the shortfall in accuracy compared to
the maximum that can be achieved is BCR - CR. Throughout the paper this shortfall will be called
the (total) inductive error of the induced tree. Thus here error is relative to the best performance
possible, which differs from the usual practice that defines classification error as complementary
to classification rate, that is, 100 - CR. The intention is to assign blame for inductive error
partially to inadequacies in tree structure and partially to inadequacies in majority class
identification.

In this paper, a decomposition of inductive error for decision trees will be introduced.
Initially this will separate inductive error into the two components mentioned above. The
component for majority class determination will then be further broken down to allow the
sampling behaviour at the leaves and the bias introduced by the induction algorithm’s attribute
selection competition to be isolated and quantified.

Such a decomposition is reminiscent of the bias-variance decomposition of induced classifier
performance that has received considerable attention recently. In the latter, the intention is to
account for expected mean square loss for a given loss function defined on the classification
process. In part this deviation is due to the classifier being 'off target' (bias) and in part to its
variability over learning trials (variance). A major feature of the work of the authors involved has
been the pursuit of an appropriate definition of the loss function for the classification problem.
James (2003) provides a general framework for bias-variance decomposition and compares the
different approaches that have been proposed.

The decomposition of inductive error that will be discussed below differs from bias-variance
decomposition in that there is no term representing variability. Instead, the focus will be solely on
average performance as assessed by classification rate. The analysis will require complete
knowledge of the probabilistic model of the domain although it is estimable from a sufficiently
large data set.

Nevertheless, it may be that aspects of these two different types of decomposition are
indirectly related in some way but this will not be investigated further here.

In Section 2, the notion of a classification model and its decision tree representation are
discussed. The fundamental notion of a core tree is defined. In Section 3, the main decomposition
for inductive error and for a sub-decomposition are introduced. In Section 4, an analysis of the
probability of selecting the correct majority class from a random sample is presented and this is

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1749

applied to the decomposition. In Section 5, experiments are carried out on data from the well-
known LED domain to show the behaviour of the error decompositions along the learning curve.
In Section 6, an automatic classification model generator is described and is used to obtain
several models. Error decompositions are then obtained from experiments on data generated from
these models. The results show how the decomposition is influenced by the major factors in
induction, that is, training set size, complexity of the underlying rules, noise level and numbers of
irrelevant attributes. In Section 7, the decomposition is applied to a large real data set.

2 The Class Model and its Representation by a Decision Tree
A model for a set of attributes, consisting of description attributes and a class attribute, can be
specified by the joint probability distribution of all the attributes. This will be called a domain
here. From the domain may be derived the class model, that is, a set of rules specifying the
mapping associating a description attribute vector with a probability distribution over classes
(Hickey, 1996). The class model is analogous to a regression model in statistics with the class
attribute as the dependent variable and the description attributes as the independent variables.
Noise in the relationship is then explicated by the class distributions (analogous to the Normal
error distribution is regression). As discussed in Hickey (1996), these distributions account for all
physical sources of uncertainty in the relationship between example descriptions and class,
namely attribute noise, class noise and inadequacy of attributes. The model may contain pure
noise attributes.1 These are irrelevant to the determination of class. Their presence, however,
usually makes learning more difficult.

A class model may be represented in a number of different ways. If all attributes are finite
discrete (to which case we limit ourselves here) then a fully extensional representation is a table
relating fully instantiated description vectors to class distributions. At the other end of the scale, it
may be possible to represent the model using a small number of very general rules. It is an
obvious but important point that altering the representation does not alter the model. Finding a
representation to satisfy some requirement, for example, that with the smallest number of rules,
will usually require a search.

A decision tree2 can be used to represent a class model (Hartmann et al., 1982; Hickey,
1992). Each leaf would contain the class probability distribution conditional on the path to the
leaf. Such a distribution is the theoretical analogue of the class frequency distribution in a leaf of
a tree induced from training examples. Using the tree as a classifier, where the assigned class is
the majority class in the appropriate leaf, will achieve the Bayes classification rate.

Often, only the mapping of description attribute vector to majority class is of interest. This is
typically the case in ID3 induction. Recently there has been work on estimating the full class
model, that is, including the class distributions, by inducing probability estimation trees (Provost
and Domingos, 2003).

To fully represent a class model a tree must have sufficient depth. The notion of the core of a
tree is central to the development below.

Definition 1. With regard to the representation of a class model, a decision tree is said to be a
core tree if un-expansion of any set of sibling leaves would result in a reduction in expected

1As a property of an attribute, the notion of pure noise as used by Breiman et al. (1984) and Hickey (1996) corresponds
to that of irrelevant as defined by Kohavi and John (1997). Also, the latter's the notion of weakly relevant corresponds
to redundant in Hickey (1996).
2 The discussion here is limited to trees in which node expansion is based on the values of a single attribute.

HICKEY

 1750

information3 about class. If, in addition, there is no expansion of the leaves of the core to any
depth that would increase the expected information then the tree is said to be a complete core;
else it is incomplete. The leaf nodes of a core are referred to collectively as its edge. �

A complete core, together with the appropriate class distributions in its leaves, adequately
represents the class model (and any further expansion is superfluous) whereas an incomplete core
under represents it.

Any given tree has a unique core and can be reduced to this by recursively un-expanding its
leaves until sibling nodes having different distributions are first encountered. This is analogous to
post-pruning of an induced tree but, of course, does not involve statistical inference because all
distributions are known. Expansions thus removed may involve attributes, which, while being
locally uninformative, are globally informative, and hence appear elsewhere in the tree. Pure
noise attributes will also have been removed as they are always locally uninformative.

In addition, the core may also contain internal 'locked-in' pure noise nodes (Liu and White,
1994) and is said to be inflated by them. A core that does not contain internal splits on pure noise
attributes is said to be deflated. A deflated complete core offers an economical tree representation
of a class model: it has no wasteful expansion on pure noise attributes either internal to the core
or beyond its edge.

2.1 Deterministic Classifiers and the Reduced Core
Replacing each class distribution in the leaf of a tree with a majority class for that distribution
will produce a deterministic classification tree. To achieve the Bayes rate in classification, this
tree must have sufficient structure. Sufficient structure will normally mean a complete core
(whether inflated or not); the tree may extend beyond the core. The only exception to this occurs
when, near the edge of the core, there is a final internal node, N, all of whose children (leaves of
the core) possess the same true majority class. In this case, it is possible to have a sub-complete
tree, with N as a leaf node, which achieves the Bayes rate. Cutting back the core in such a
situation will be called same majority class pruning. A tree thus obtained will be referred to as a
reduced core. This lossless pruning applies only to the building of a deterministic classification
tree, not to a probability estimation tree. A reduced core deterministic classification tree which
achieves the Bayes rate is called complete.

Since the concern here is with inducing trees for deterministic classification, it will be
assumed, in what follows, that all core trees are reduced.

3 A Decomposition of Inductive Error
Insufficient tree structure and inaccurate majority class identification both contribute to inductive
error in trees. It is possible to break down the overall inductive error into components that are
attributable to these separate sources.

3.1 Tree Structure and Majority Class Errors
Let the classification rate of an induced tree, T, be CR(T). The correct majority classes for any
tree can be determined from the class model. Altering an induced tree to label each leaf with the
true majority class, as distinct from the leaf sample estimate of this, produces the corrected
majority class version of the tree, T(maj). The classification rate of this tree is called the
corrected majority class classification rate. For any tree it follows that

3 This is the usual entropy-based definition applied to domain probabilities; however any strong information measure
can be used. See Hickey (1996) for a general discussion on information measures.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1751

CR(T) ! CR(T(maj)) ! BCR.

Recall that inductive error is BCR - CR. Correcting majority classes as indicated above removes
majority class determination as a source of inductive error. Thus, the amount by which
CR(T(maj)) falls short of BCR is solely a measure of inadequacy of the tree structure. This
component of inductive error will be called (tree) structure error so that

structure error = BCR - CR(T(maj)) .

The amount by which CR falls short of CR(T(maj)) is then attributable to incorrect determination
of majority classes in the fully-grown tree. This is called majority class error so that

majority class error = CR(T(maj)) – CR .

This gives the initial decomposition:

BCR - CR = (BCR - CR(T(maj))) + (CR(T(maj)) - CR) . (1)
That is:

inductive error = structure error + majority class error .

Let Tcore be the reduced core of T. This core can also be majority class corrected. From the
definition of a core, it is easy to see that the corrected core and the corrected full tree must have
the same classification rate, that is:

CR(T(maj)) = CR (Tcore(maj)) .

Structure error can then be re-expressed as:

structure error = BCR - CR(Tcore(maj)) .

Since the core is the essential structural element of the tree, this reinforces the notion of structure
error. The completeness of a core can be expressed in terms of structure error: the reduced core of
a tree is complete if and only if structure error is zero.

3.2 A Sub-decomposition of Majority Class Error
As noted by Frank (2000), the majority class as determined from the leaf of an induced tree may
be the wrong one because it is based on a small sample and also because that sample is obtained
as a result of competitions taking place, as the tree is grown, to select which attribute to use to
expand the tree. The latter is an example of a multiple comparison problem (MCP) as discussed
by Jensen and Cohen (2000). In theory, though, the effect of this could be to improve majority
class estimation: the intelligence in the selection procedure might increase the chance that the
majority class in the leaf is the correct one.

It is possible to decompose majority class error, as defined above, into two terms that reflect
the contribution of each of these factors, namely sampling and (attribute) selection bias.

Ideally, the sample arriving at a leaf should be a random sample from the probability
distribution at the leaf as derived from the class model. In the induced tree, the sample in each
leaf can be replaced by a new random sample of the same size generated from this distribution.
This new tree will be called the corrected sample tree, T(ran).

The classification rate of this tree, CR(T(ran)), depends on the particular random samples
obtained at each of its leaves. Let E(CR(T(ran))) be the expectation of CR(T(ran)) over all
possible random samples of the appropriate size at each leaf of T and then over all leaves. If there
is a difference between E(CR(T(ran))) and CR(T) then this indicates that the samples reaching
the leaves of T are not random. The selection bias error can thus be defined as

HICKEY

 1752

selection bias error = E(CR(T(ran))) - CR(T)

and can be positive, negative or zero.
The complementary component of majority class error is then

CR(T(maj)) – E(CR(T(ran))) .

This term measures the shortcoming of the random sample in determining the correct majority
class and can thus be called sampling error. It must be non-negative since failure to determine
one or more leaf majority classes correctly can only reduce the classification rate.

Majority class error can now be decomposed as:

CR(T(maj)) – CR(T) = (CR(T(maj)) – E(CR(T(ran)))) + (E(CR(T(ran))) – CR(T)) . (2)

That is:

majority class error = sampling error + selection bias error .

Taken together, the two decompositions in Equations 1 and 2 yield an overall decomposition of
inductive error into three components as

inductive error = structure error + sampling error + selection bias error. (3)

4 Identifying Majority Class from a Random Sample and Leaf Sampling Error
The extent of sampling error is dependent on the probability that the majority class in a random
sample is the correct one. By 'correct class' is meant a class (or one of several), called a majority
class, which has the largest probability of occurrence at that leaf as determined from the model.
Bechofer et al. (1959) and Kesten and Morse (1959) investigated the problem of correct selection
with a view to determining the least favourable distribution, defined as that which minimizes,
subject to constraints, the probability that the correct class will be identified.

In a k class problem (k " 2), suppose the probability distribution of the classes at a leaf node
according to the class model is 1(,...,)kp p . Assume throughout this discussion, following
Bechofer et al. (1959), that the ip are re-arranged so that 1i ip p #! for all i. A majority class is then
one having probability kp . Given a random sample of n from 1(,...,)kp p with frequency
distribution 1(,...,)kF f f$ across classes, the usual estimate of majority class based on F is:

� arg max()majclass F$.

For various n, k and 1(,...,)kp p , the probability, corrP , that this selection will be correct can be
calculated from the multinomial distribution as:

�()majcorr majP P class class$ $

where majclass is a majority class.

4.1 Properties of Pcorr
Henceforth, kp will be denoted majp . corrP " majp and increases with n (unless majp = 1/k in which

case, corrP = 1/k for all n). corrP has the same value for n =1 as for n = 2. For k = 2 and odd n,

corrP has the same value for n and n + 1.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1753

Intuitively, for a given n, corrP should be greater in situations where 1k majp p% � since the

majority class has less competition and, conversely, should be small when all the ip are fairly
equal. Based on the work of Kesten and Morse (1959), Marshall and Olkin (1979) used
majorisation theory to establish that, for fixed and unique majp , corrP is Schur-concave in the

residual probabilities 1 1(,...,)kp p % . That is, corrP is non-decreasing under an equalization
operation on these probabilities in the sense of de-majorisation Hickey (1996).

For k = 2, majp determines the complete distribution (1 ,)maj majp p% . For k > 2 and fixed majp ,
the greatest equalization occurs when all residual probabilities are identical, that is, each is
(1) /(1)majp k% % . This will be referred to as the equal residue distribution and will be
denoted (,)e majD p k . Thus, corrP is maximised amongst all distributions on k classes with
given majp by (,)e majD p k . At the other end of the scale, assuming 1/ 2majp & , then concentration
of the residue at a single class produces the minimum corrP for that n and kp . Note that this latter
situation is identical to that of a two-class problem with distribution (1 ,)maj majp p% . An
implication of this is that, for 0.5majp & and any given n, corrP for the two class problem provides

a lower bound for corrP over all distributions on k classes, k > 2.
Bechofer et al. (1959) were concerned with the probability of correct selection when a

(unique) majority class had at least a given margin of probability over the next largest, expressed
as a multiplicative factor, a. Kesten and Morse (1959) showed that under the constraint

1, 1maj kp ap a%" &

corrP is minimized by the distribution
1 1, ,...,

1 1 1
a

a k a k a k
' (
) *# % # % # %+ ,

.

The proof of this intuitive result is quite complex. An alternative proof was provided by Marshall
and Olkin (1979) using the Schur-concavity property of corrP for fixed majp discussed above.

For (,)e majD p k , corrP increases with k for fixed majp and increases with majp for fixed k. The

first of these results follows from the Schur-concavity of corrP in the residual probabilities for
fixed majp because for k < k-, (,)e majD p k can be viewed as a distribution on k- classes. The
second follows immediately from the Kesten and Morse theorem stated above because
when majp is increased it will still satisfy the constraint 1, 1maj kp ap a%" & for the value of a
applicable before the increase.

The value of majp has considerable impact on the value of corrP for given n. For example, for k
= 2 and n = 10, majp = 0.6 produces corrP of approximately 73% whereas for majp = 0.8, corrP will be
98%. When k = 3 and n = 10, majp = 0.6 gives (,3)e majD p = (0.2, 0.2, 0.6) and corrP = 89%. The
least favourable distribution here is (0, 0.4, 0.6) with corrP = 73% as noted above.

When k > 2, it is possible that majp < 0.5. In this case, accumulating the residual probabilities
on a single class will result in that class becoming the majority and thus the lower bound
for corrP offered by the corresponding two class problem does not hold.

HICKEY

 1754

Also, when k > 2, there may be tied majority classes in the leaf class probability distribution.
Any of these when identified from the sample will qualify as a correct selection. Thus it is
possible for majp to be very small and yet corrP be large.

Bechofer et al. (1959) provide tables of corrP for various values of the multiplicative factor a
in the Kesten and Morse theorem and offer a large sample approximation for corrP . Frank (2000)
also considered the problem for k = 2 and graphs 1- corrP against majp .

4.2 Leaf Classification Rate and Leaf Sampling Error
The sampling error of an induced tree is contributed to by the individual classifications taking
place at each leaf of the tree. Inability to determine the correct majority class at a leaf impairs the
classification rate locally at the leaf. The best rate that can be obtained at a leaf, that is, its local
Bayes rate, is majp from its class probability distribution. The expected actual rate from a random
sample, that is, the expectation of the probability of the selected class, will be called the
(expected) leaf classification rate (LCR). Thus LCR ! majp .

LCR can be calculated as an expectation over two events: either the correct majority class has
been identified giving a conditional percentage classification rate of 100 * majp or it has not giving

a conditional rate of 100* �(())majresE P class , where �(())majresE P class is the conditional expected
probability of the estimated majority class when it is incorrect, that is, over the residual
probabilities. Thus, expressed as a percentage,

�100*(* (())* (1-))majmaj corr res corrLCR p P E P class P$ # . (4)

The Schur-concavity of corrP for given majp does not extend to LCR. In Equation 4, for given majp ,

corrP will increase as the residue probabilities are equalized, however this may be offset by the

decrease in �(())majresE P class as the larger residue probabilities decrease. For example, when k = 4,

majp = 0.4 and n = 3, the distribution (0, 0.3, 0.3, 0.4) has LCR = 34.2%. Equalising the residue
probabilities to (0.4,4)eD = (0.2, 0.2, 0.2, 0.4) reduces LCR to 29.0%. On the other hand when k =
5, majp = 0.8 and n = 3, the distribution (0, 0, 0, 0.2, 0.8) has LCR = 73.8% whereas for the equal

residue distribution (0.8,5)eD = (0.05, 0.05, 0.05, 0.05, 0.8) this increases slightly to 74.0%.
For (,)e majD p k , Equation 4 becomes:

100*(* (1-)* (1-) /(-1))maj corr maj corrLCR p P p P k$ # . (5)

Using results stated above for (,)e majD p k , it is straightforward to show that, for given n and k,
LCR in Equation 5 increases with majp .

The shortfall100* majp - LCR is the expected loss in classification rate at a leaf due to the
determination of majority class from a random sample and thus can be called the leaf sampling
error (LSE). As noted above, the expectation of LSE over leaves in a tree is the sampling error as
defined in Section 3.2.

In Table 1, LCR and LSE for (,)e majD p k are shown for n = 1, 2, 4 and 10 for several values of
k and a range of values of majp . For given n and k it is seen that, although LCR increases
with majp , as noted above, LSE increases and decreases again. When majp is large, majority class is

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1755

very likely to be correctly determined and hence sampling error is low. When majp is low, then the
consequence of wrongful determination of majority class, although more likely, is cushioned by
the complimentary probability being only slightly less than majp and so loss of classification rate is
again minimal. As k and n increase, the maximum value of LSE tends to occur at smaller majp .

k 100* majp

 10 20 30 40 50 60 70 80 90

 n = 1, 2

2 52.0+8.0 58.0+12.0 68.0+12.0 82.0+8.0

3 34.0+ 6.0 37.5+12.5 44.0+16.0 53.5+16.5 66.0+14.0 81.5+8.5

4 25.3+4.7 28.0+12.0 33.3+16.7 41.3+18.7 52.0+18.0 65.3+14.7 81.3+8.7

5 21.3+8.7 25.0+15.0 31.3+18.7 40.0+20.0 51.3+18.7 65.0+15.0 81.3+8.7

10 11.1+8.9 14.4+15.6 20.0+20.0 27.8+22.2 37.8+22.2 50.0+20.0 64.4+15.5 81.1+8.9

15 6.8+3.2 8.6+11.4 12.5+17.5 18.6+21.4 26.8+23.2 37.1+22.9 49.6+20.4 64.3+15.7 81.1+8.9

 n = 4

2 53.0+7.0 61.4+8.6 73.8+6.2 87.8+2.2

3 34.3+5.7 39.8+10.2 49.4+10.6 61.8+8.2 75.4+4.6 88.7+1.3

4 25.5+4.5 29.7+10.3 38.0+12.0 49.3+10.7 62.6+7.4 76.2+3.8 89.0+1.0

5 21.9+8.1 27.9+12.1 37.4+12.6 49.6+10.4 63.1+6.9 76.7+3.3 89.2+0.8

10 11.6+8.4 16.8+13.2 25.5+14.5 37.1+12.9 50.4+9.6 64.3+5.7 77.6+2.4 89.5+0.5

15 6.8+3.2 9.4+10.6 15.5+14.5 25.0+15.0 37.2+12.8 50.8+9.2 64.7+5.3 77.8+2.2 89.6+0.4

 n = 10

2 54.7+5.3 66.0+4.0 78.8+1.2 89.9+0.1

3 35.0+ 5.0 43.2+ 6.8 55.5+ 4.5 68.3+ 1.7 79.7+ 0.3 90.0+ 0.0

4 25.8+ 4.2 32.3+ 7.7 43.8+ 6.2 56.9+ 3.1 69.0+ 1.0 79.9+ 0.1 90.0+ 0.0

5 23.1+ 6.9 32.2+ 7.8 44.7+ 5.3 57.7+ 2.3 69.4+ 0.6 79.9+ 0.1 90.0+ 0.0

10 12.8+ 7.2 21.5+ 8.5 34.0+ 6.0 47.0+ 3.0 59.0+ 1.0 69.8+ 0.2 80.0+ 0.0 90.0+ 0.0

15 6.9+ 3.1 11.7+ 8.3 22.1+ 7.9 35.0+ 5.0 47.8+ 2.2 59.3+ 0.7 69.9+ 0.1 80.0+ 0.0 90.0+ 0.0

Table 1: Leaf classification rate (LCR) and leaf sampling error (LSE) for leaf sample size n = 1,
2, 4 and 10 for various k and majp under (,)e majD p k . Cell format is LCR + LSE, both
expressed as percentages; largest LSE for each k is shown bolded.

For k = 2, LSE reaches a maximum of approximately 12% when n = 1, 2 and majp lies
between 0.7 and 0.8. For k > 2, LSE has the potential to be much larger than for k = 2 when n is
small. For n = 1, 2, corrP = majp and, from Equation 5, LCR for (,)e majD p k can be expressed as:

HICKEY

 1756

2 2100*((1-) /(-1))maj majLCR p p k$ #

which decreases with k to 2100* majp . Thus, as k increases, LSE for (,)e majD p k tends to

2100* 100* = 100* (1)maj maj maj majp p p p% %

which has a maximum value of 25% at majp = 0.5. Table 1 shows that LSE can be 20% or above
for k " 5.

For n > 2 and given majp , LCR for (,)e majD p k can increase or decrease with k. This is because
LCR, in Equation 5, is a convex combination of majp and (1-) /(-1))majp k weighted by corrP and
1 corrP% respectively. As k increases, corrP increases and (1-) /(-1))majp k , which by definition is
less than majp , decreases but its weight,1 corrP% , is also decreasing.

Since the sampling error of the tree is the average of its leaf sampling errors, the behaviour of
leaf sampling error should be reflected in the overall sampling error. As training set size
increases, induced trees will tend to have more structure and so the leaf class probability
distributions will be more informative with the result that individual majp in the leaf distributions
will tend to increase. Thus the pattern of increase and decrease in sampling error with increases in

majp noted above for LSE should be observable in the sampling error for the whole tree.

5 The LED Domain Revisited
To illustrate the error decompositions described in Section 3 and to motivate further discussion,
decompositions will be calculated for decision trees induced using training data generated from
the LED artificial domain (Breiman et al., 1984). An LED display for digits has seven binary
indicators as illustrated in Figure 1. Each of these is corrupted, that is, inverted, independently
with a given probability. If each digit has the same prior probability of being selected for display,
then a complete probability model on attributes (x1 , … , x7, class) has been defined. The class
model can be derived and represented, extensionally, as a set of 128 rules whose conditions
express the instantiation of (x1, …, x7) and associate this with a probability distribution on the
vector of ten classes, (1, … , 9, 0).

Figure 1: Mapping of attributes in the LED display.

5.1 Experimental Results
Experiments to induce ID3 trees were carried out on data generated from the LED domain with
corruption probability 0.1 for which the Bayes rate is 74.0%. These were repeated on the 24

x1

x4

x2 x3

x3

x1

x4

x2 x3

x3
x1

x2

x5
x4

x7

x6

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1757

attribute domain obtained by augmenting the seven attributes with 17 mutually independent
binary pure noise attributes (Breiman et al., 1984). In a final series of experiments, random
attribute selection was used for induction on the 24 attribute domain.

A number of replications were performed at each of several points along the learning curve
varying from 10000 at sample size 25 down to 10 at sample size 10000. For each trial, the error
decomposition in Equation 1 and the sub-decomposition of majority class error in Equation 2
were obtained yielding the overall decomposition in Equation 3.

Sampling error was estimated in a tree by replacing each leaf with a freshly drawn random
sample of the same size and obtaining the classification rate of the resulting tree. This produces
an unbiased estimate of sampling error over replications and is more efficient than calculating the
exact sampling error from the leaf class probability distribution, particularly when the sample
reaching a leaf is large. The results are shown in Table 2.

For the seven attribute domain shown in Table 2(a), structure error decreases with sample
size and is virtually eliminated at size 1000. For most of the learning curve, it is dominated by
majority class error and the sub-decomposition shows that this is due mostly to sampling error
with selection bias being either negative or approximately zero. Sampling error decreases with
sample size due to the rapid increase in examples reaching the leaves. For sample sizes 25 and 50
the negative selection biases are two-tailed significant at the 5% level. The attribute selection
competition here is aiding the determination of majority class: the sample reaching a leaf is better
able to determine majority class than is an independent random sample.

Table 2 (b) shows that, with the addition of 17 pure noise attributes, the full trees are now
much larger and that total error, structure and majority class error are considerably larger than for
the seven attribute domain. There is still structure error at sample size 10000. Core trees are
initially smaller but become larger as they inflate with locked in pure noise attributes. The large
majority class error is due to both sampling and selection bias errors. Because of the availability
of attributes for expansion, leaf sample sizes do not increase to reduce sampling error.

There is also some evidence of an increase and then decrease in sampling error due to a
gradual increase in information in the leaf distributions as noted Section 4.2. In contrast to the
seven attribute case, selection bias is now two-tailed significant at the 1% level along the learning
curve apart from size 25, where, as for the seven attribute domain, it is significantly negative. As
tree depth increases, there are fewer attributes available for selection, yet selection bias continues
to increase along the learning curve suggesting that it accumulates with depth, that is, a leaf
inherits a selection bias from its parent and adds to it.

Comparing Table 2 (c) with Table 2 (b) shows that random attribute selection produces much
larger trees with fewer examples reaching each leaf. Core trees are also considerably inflated as is
to be expected. The increase in error is accounted for by the much greater structure error. In
contrast, the majority class error is generally much lower due to the reduction in selection bias
error, which more than compensates for the larger sampling error. There is a modest increase in
selection bias error along the learning curve becoming statistically different from zero at the 5%
level from size 250 onwards. The process of tree expansion produces child node frequency
configurations constrained to add up to that of the parent and which are, therefore, not genuinely
independent of one another. Thus although there is no attribute selection competition, the process
of repeatedly sub-dividing a single overall sample into progressively smaller constrained sub-
samples does produce a small bias.

The experiments above were repeated for corruption probabilities 0.05 and 0.2. The results
(not shown) exhibit similar characteristics to those reported above. Errors, particularly majority
class error, worsen as corruption probability increases.

HICKEY

 1758

 Full Tree Core Tree Err Decomp Maj Err

Sub Decomp

Samp
Size

No.
Leaves

Av.
Leaf
Size

Av.
Depth

No.
Leaves

Av.
Leaf
Size

Av.
Depth

CR
(%)

Err
(%)

Struct
Err
(%)

Maj
Err
(%)

Samp
Err
(%)

Sel
Bias
Err
(%)

(a) ID3 inductions on the seven attribute LED domain with corruption probability 0.1

25 13 2.0 4.0 10 2.6 3.5 53.9 20.1 13.6 6.5 11.0 -4.5
50 20 2.5 4.7 13 4.1 4.0 61.6 12.4 6.4 6.0 7.3 -1.3

100 32 3.1 5.4 16 6.4 4.3 66.6 7.4 3.6 3.8 3.9 -0.1
250 55 4.6 6.0 23 11 4.9 69.6 4.4 1.3 3.1 3.0 0.1
500 72 6.9 6.4 26 20 5.1 71.6 2.4 0.4 2.0 2.1 -0.1

1000 88 11 6.6 27 38 5.1 73.0 1.0 0.1 0.9 0.9 0.0
2500 108 23 6.8 29 87 5.3 73.6 0.4 0.0 0.4 0.4 0.0
5000 118 43 6.9 29 174 5.2 73.8 0.2 0.0 0.2 0.1 0.1

10000 124 81 7.0 28 363 5.2 73.9 0.1 0.0 0.1 0.1 0.0

(b) ID3 inductions on the 24 attribute LED domain with corruption probability 0.1

25 11 2.3 3.7 6.1 4.4 2.7 33.0 41.0 36.8 4.2 6.0 -1.8
50 19 2.7 4.6 8.4 6.2 3.3 42.4 31.6 22.1 9.5 7.0 2.5

100 34 3.0 5.6 10 10 3.6 47.9 26.1 13.0 13.2 6.9 6.3
250 76 3.3 6.8 14 19 4.2 51.7 22.3 8.8 13.5 5.7 7.8
500 145 3.5 7.9 20 26 4.8 53.2 20.8 7.4 13.4 5.2 8.2

1000 288 3.5 9.1 25 41 5.2 53.9 20.1 5.7 14.4 5.0 9.4
2500 711 3.5 10.7 32 80 5.8 54.6 19.4 4.2 15.2 5.1 10.1
5000 1447 3.5 11.9 46 112 7.1 54.8 19.3 4.1 15.2 5.0 10.2

10000 2935 3.4 13.0 60 181 7.9 54.8 19.2 3.4 15.8 5.1 10.7

(c) Inductions using random attribute selection on the 24 attribute LED domain with corruption probability 0.1

25 30 0.9 5.8 17 1.7 4.9 17.1 56.9 52.2 4.7 4.8 -0.1
50 59 0.9 6.9 33 1.6 6.1 19.0 55.0 49.3 5.7 5.7 0.0

100 116 0.9 8.0 63 1.7 7.1 21.1 52.9 46.4 6.6 6.5 0.1
250 283 0.9 9.3 151 1.7 8.5 23.5 50.6 43.3 7.3 7.1 0.2
500 554 0.9 10.4 284 1.8 9.6 26.1 48.0 39.7 8.3 8.0 0.3

1000 1089 0.9 11.4 524 2.0 10.6 28.8 45.2 36.0 9.2 8.7 0.5
2500 2618 1.0 12.8 1192 2.2 11.9 31.8 42.2 31.7 10.5 9.5 1.0
5000 5082 1.0 13.8 2285 2.2 12.9 34.5 39.5 28.7 10.8 9.8 1.0

10000 9956 1.0 14.8 4441 2.3 13.9 36.1 37.9 26.5 11.4 10.1 1.3

Table 2: Tree statistics (No. Leaves = number of leaves in the tree; Av. Leaf Size = average
number of examples in the leaves of the tree; Av. Depth = average depth of the tree),
classification rate (CR), inductive error (Err) and error decompositions for tree
inductions on examples generated from the LED domain. All results are averages over
replications.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1759

6 Experiments with the Autouniv Classification Model Generator
It is important to establish the extent to which the results from the LED domain, regarding the
behaviour of the error decompositions, hold in general and how they change under different
model characteristics. To investigate this, an artificial model generator, Autouniv, was built.

6.1 An Outline of the Autouniv Procedure
Autouniv produces a class model together with a joint distribution of the description

attributes. At present the generator is implemented for discrete attributes only. To create a model,
the number of informative attributes, pure noise attributes and classes are specified; the number
of values for an attribute is specified as either a range across attributes or as the same fixed value
for all attributes.

To create the joint attribute distribution, attributes are separated randomly into independent
factors with the maximum number of attributes allowable in a factor also being specified. A pure
noise attribute cannot be in the same factor as an informative attribute. The joint probability
distribution for each factor is then generated at random. If the number of values for the attributes
was specified as a range then, for each attribute, the actual number is randomized separately
within this range.

To create the class model, a decision tree is generated and a class distribution is built at each
leaf. The tree is then converted to a rule set. The tree is built in a random fashion as follows. At
each expansion, an available attribute is selected at random from one of the informative factors.
Pure noise attributes are never used for expansion. A minimum depth for the tree is set. After the
tree has been built to this depth, further expansion along a path is controlled by a stopping
probability, which is chosen at random between specified lower and upper limits and is generated
independently at each leaf. This probability is then used in a ‘coin toss’ to determine whether the
current node will be expanded. Finally, lower and upper limits are specified for the number of
leaves of the tree. A tree will be rejected if its size is outside these limits. It will also be rejected if
there is an informative factor at least one of whose attributes does not appear in the tree.

The class distribution at a leaf is created in two stages. First the majority class is selected
from a specified distribution; ties are possible. Then the probability of this majority class (classes)
is determined at random between given limits; these limits can be set differently for different
classes. For the remaining non-majority classes, a subset of these is selected at random to receive
positive probability which is assigned randomly.

The Autouniv procedure was developed to facilitate simple construction of a rich variety of
realistic models. The tree building mechanism permits a degree of control of model complexity
through specification of the number of informative attributes, the minimum depth of the tree,
stopping probability range and the number of leaves. It also guarantees that all attributes declared
as informative will be informative but also, through the factoring mechanism, that some of these
may be redundant (Hickey, 1996). The procedure for constructing class distributions allows for
specification of noise at different levels (and hence differing Bayes rates). It also permits
heterogeneity in the noise across rules within a particular model. Some classes can be made
noisier than others and class base rates can vary with one or more classes made rare if required.

In spite of the control provided by the parameters, some of the properties of the generated
model remain implicit. An example is the degree of interaction of the description attributes. In
some models most of the information about class will be carried by a small number of attributes
whereas in others it will be distributed across a large number with no one or two attributes
dominating.

Because of the generality of the Autouniv procedure, which can produce models from simple
to very complex, with differing noise levels and degrees of attribute interaction, there is no reason

HICKEY

 1760

to suppose that it might be biased towards creating models for which induced trees exhibit a
particular pattern of error decomposition, such as unusually large majority class error.

Once it has been generated, a model can be queried for a supply of training examples: an
example description is obtained randomly from the attribute joint distribution, the matching rule
is looked up and a class determined using the class distribution for that rule.

Finally, the parameters settings can themselves be randomized between given limits. This
allows for easy generation of a heterogeneous series of models for experimentation.

6.2 Experiments with Autouniv
Ten models were generated to give variety with regard to the number of attributes and classes,
default classification rate, lift, noise levels and model complexity. A summary of the main
characteristics of these models is given in Table 3. All but three have pure noise attributes. The
first five models have two classes; the remaining five have more than two classes. The columns
headed No. Rules and No. conditions in a rule give an indication of model complexity. Most
models are heterogeneous in the lengths of rule conditions.

Experiments similar to those performed on the LED domains in Section 5 were carried out on
these 10 models. The results are shown in Table 4 (for the first five models) and in Table 5 (for
the remaining five). The principal model characteristics from Table 3 are summarized in the first
columns of Tables 4 and 5 for convenience. A classification rate (CR) which is less than the
default classification rate (DCR) for the model is shown in italics in Tables 4 and 5. For several
models the classification rate remains below the default well into the learning curve indicating
that interaction of several attributes is required for lift.

For all models, structure error falls along the learning curve and for most is almost eliminated
by size 10000. The exception is model 4. From Table 3, model 4 is quite complex in that the
minimum rule condition length is 8, which is greater than for the other models. Majority class
error is substantial for all models and, for most, exceeds structure error in the latter part of the
learning curve, remaining high even when structure error has almost been eliminated.

Model No.

atts
No.
rel
atts

No.
pure
noise
atts

No. of
vals of an

att

(Min-Max
or

constant)

No.
Classes

No.
Rules

No.
conditions in

a rule

(Min-Av-Max)

Def
Rate,
DCR
(%)

Bayes
Rate,
BCR
(%)

Lift
(%)

1 5 5 0 7 2 11467 3 - 5 - 5 59.5 82.7 23.2
2 8 2 6 2 - 3 2 6 2 - 2 - 2 76.9 87.6 10.7
3 30 20 10 2 2 28 3 - 7.3 - 12 51.2 92.6 41.4
4 40 20 20 2 2 438 8 - 9.4 - 17 50.9 76.8 25.9
5 50 5 45 2 - 6 2 1030 3 - 4.8 - 5 61.6 81.7 20.1

6 8 2 6 2 - 5 10 4 2 - 2 - 2 81.0 91.7 10.7
7 12 12 0 2 - 4 4 530 1 - 10.3 - 12 42.9 98.3 55.4
8 15 15 0 3 13 1981 2 - 13.9 - 15 29.0 46.3 17.3
9 23 7 16 2 3 9 3 - 3.2 - 4 59.8 79.9 20.1

10 37 12 25 2 - 4 15 74 3 - 6.3 - 12 16.9 44.1 27.2

Table 3: Details of 10 models generated by Autouniv.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1761

 Full Tree Err Decomp Maj Err
Sub Decomp

Model Sample
Size

No.
Leaves

Av.
Leaf
Size

Av.
Depth

CR
(%)

Err
(%)

Struct
Err
(%)

Maj
Err
(%)

Samp
Err
(%)

Sel
Bias
Err
(%)

25 34 0.8 2.1 52.3 30.4 23.0 7.4 7.2 0.2
50 67 0.8 2.5 52.7 30.0 22.6 7.4 7.7 -0.3

100 139 0.7 2.9 53.4 29.3 21.8 7.5 7.4 0.1
500 716 0.7 3.8 56.5 26.2 18.0 8.2 8.9 -0.7

1000 1435 0.7 4.2 57.7 25.0 15.5 9.5 9.8 -0.3
5000 5161 1.0 4.7 66.6 16.1 5.4 10.7 10.4 0.3

1

No. Atts: 5
No. Classes: 2
No. Rules: 11467
DCR (%): 59.5
BCR (%): 82.7 10000 7482 1.3 4.8 70.8 11.9 2.6 9.3 9.1 0.2

25 9 3.1 2.8 74.9 12.7 2.9 9.8 5.0 4.8
50 16 3.3 3.6 76.5 11.1 1.4 9.7 4.1 5.6

100 33 3.1 4.7 77.9 9.7 0.5 9.2 3.5 5.7
500 129 3.9 6.4 81.1 6.5 0.0 6.5 3.1 3.4

1000 206 4.9 6.8 82.8 4.8 0.0 4.8 2.4 2.4
5000 455 11.0 7.5 86.4 1.2 0.0 1.2 0.8 0.4

2

No. Atts: 8
No. Classes: 2
No. Rules: 6
DCR (%): 76.9
BCR (%): 87.6 10000 573 17.5 7.7 87.1 0.5 0.0 0.5 0.3 0.2

25 7 3.7 3.2 64.4 28.2 22.3 5.9 4.3 1.6
50 12 4.5 4.2 71.3 21.3 13.2 8.1 4.0 4.1

100 20 5.3 5.1 78.4 14.2 5.8 8.4 1.9 6.5
500 78 6.5 7.9 82.5 10.1 1.5 8.6 1.6 7.0

1000 149 6.8 9.5 83.7 8.9 1.0 7.9 1.6 6.3
5000 760 6.6 12.6 84.0 8.6 0.4 8.2 1.2 7.0

3

No. Atts: 30
No. Classes: 2
No. Rules: 28
DCR (%): 51.2
BCR (%): 92.6 10000 1588 6.3 14.4 84.4 8.2 0.1 8.1 1.1 7.0

25 7 3.5 3.3 50.2 26.6 25.4 1.2 1.4 -0.2
50 14 3.5 4.4 50.3 26.5 25.0 1.5 1.7 -0.2

100 28 3.6 5.5 50.4 26.4 24.8 1.6 1.8 -0.2
500 144 3.5 8.1 50.9 25.9 23.5 2.4 3.0 -0.6

1000 291 3.5 9.2 51.0 25.8 23.0 2.8 2.8 0.0
5000 1427 3.5 11.6 54.1 22.7 16.8 5.9 5.0 0.9

4

No. Atts: 40
No. Classes: 2
No. Rules: 438
DCR (%): 50.9
BCR (%): 76.8 10000 2846 3.5 12.7 55.3 21.5 14.6 6.9 5.0 1.9

25 18 1.5 1.9 53.9 27.8 20.0 7.8 6.6 1.2
50 33 1.6 2.4 54.2 27.5 19.7 7.8 7.1 0.7

100 66 1.5 2.8 54.1 27.6 19.4 8.2 7.0 1.2
500 309 1.6 3.9 56.9 24.8 15.7 9.1 7.3 1.8

1000 607 1.7 4.6 60.2 21.5 12.1 9.4 7.0 2.4
5000 2680 1.9 5.5 65.6 16.1 4.6 11.5 7.4 4.1

5

No. Atts: 50
No. Classes: 2
No. Rules: 1030
DCR (%): 61.6
BCR (%): 81.7 10000 5133 2.0 6.1 66.4 15.3 3.0 12.3 7.8 4.5

Table 4: Tree statistics and inductive error decomposition for ID3 tree inductions on examples
generated from models 1 to 5 in Table 3.

HICKEY

 1762

 Full Tree Err Decomp Maj Err

Sub Decomp

Model Sample
Size

No.
Leaves

Av.
Leaf
Size

Av.
Depth

CR
(%)

Err
(%)

Struct
Err
(%)

Maj
Err
(%)

Samp
Err
(%)

Sel
Bias
Err
(%)

25 10 3.5 2.4 79.7 12.0 3.8 8.2 3.9 4.3
50 19 3.3 3.3 81.8 9.9 1.7 8.2 2.2 6.0

100 38 2.8 4.2 83.2 8.5 0.5 8.0 2.5 5.5
500 181 2.8 5.8 84.4 7.3 0.0 7.3 2.3 5.0

1000 320 3.1 6.2 85.4 6.3 0.0 6.3 2.4 3.9
5000 1070 4.7 7.0 88.2 3.5 0.0 3.5 1.5 2.0

6

No. Atts: 8
No. Classes: 10
No. Rules: 4
DCR (%): 81.0
BCR (%): 91.7 10000 1610 6.2 7.2 89.6 2.1 0.0 2.1 1.0 1.1

25 11 2.5 2.1 72.8 25.5 19.3 6.2 4.7 1.5
50 17 3.0 2.7 76.7 21.6 15.6 6.0 4.6 1.4

100 28 3.8 3.4 83.3 15.0 9.6 5.4 4.2 1.2
500 75 6.8 4.5 92.5 5.8 2.7 3.1 1.4 1.7

1000 138 7.4 5.1 93.1 5.2 1.8 3.4 1.0 2.4
5000 525 9.6 6.5 95.0 3.3 0.6 2.7 0.7 2.0

7

No. Atts: 12
No. Classes: 4
No. Rules: 530
DCR (%): 42.9
BCR (%): 98.3 10000 1071 9.3 7.3 95.7 2.6 0.4 2.2 0.3 1.9

25 22 1.1 3.0 20.0 26.3 14.3 12.0 12.1 -0.1
50 43 1.2 3.7 25.0 21.3 10.5 10.8 10.6 0.2

100 82 1.2 4.4 27.6 18.7 7.3 11.4 10.2 1.2
500 382 1.3 5.8 31.9 14.4 1.6 12.8 11.0 1.8

1000 760 1.3 6.5 32.5 13.8 1.0 12.8 11.5 1.3
5000 3899 1.3 8.1 33.2 13.1 0.2 12.9 11.5 1.4

8

No. Atts: 15
No. Classes: 13
No. Rules: 1981
DCR (%): 29.0
BCR (%): 46.3 10000 7997 1.3 8.8 33.7 12.6 0.1 12.5 11.2 1.3

25 8 3.2 3.5 61.7 18.2 2.3 15.9 5.8 10.1
50 15 3.4 4.7 63.1 16.8 0.1 16.7 5.7 11.0

100 31 3.3 6.1 63.9 16.0 0.0 16.0 5.6 10.4
500 161 3.1 9.1 63.8 16.1 0.0 16.1 5.6 10.5

1000 345 2.9 10.6 64.1 15.8 0.0 15.8 5.6 10.2
5000 1817 2.8 13.6 64.7 15.2 0.0 15.2 6.4 8.8

9

No. Atts: 23
No. Classes: 3
No. Rules: 9
DCR (%): 59.8
BCR (%): 79.9 10000 3718 2.7 15.0 64.9 15.0 0.0 15.0 6.6 8.4

25 27 1.0 2.6 11.2 32.9 24.1 8.8 9.0 -0.2
50 51 1.0 3.1 12.6 31.5 22.0 9.5 9.7 -0.2

100 101 1.0 3.7 13.8 30.3 20.3 10.0 10.1 -0.1
500 428 1.2 5.3 23.7 20.4 8.5 11.9 10.9 1.0

1000 786 1.3 6.1 27.6 16.5 4.9 11.6 10.4 1.2
5000 3664 1.4 7.7 32.0 12.1 0.2 11.9 10.5 1.4

10

No. Atts: 37
No. Classes: 15
No. Rules: 74
DCR (%): 16.9
BCR (%): 44.1 10000 7296 1.4 8.3 33.2 10.9 0.1 10.8 9.2 1.6

Table 5: Tree statistics and inductive error decomposition for ID3 tree inductions on examples
generated from models 6 to 10 in Table 3.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1763

Sampling errors are consistent with those expected from the discussion in Section 4.2 and
from Table 1. In model 4, which has the lowest initial sampling error, the default rate is 50.9%
indicating that near the beginning of the learning curve there is little penalty from obtaining an
incorrect majority class. As the trees acquire structure, sampling error rises while the sample size
at the leaf remains constant. The largest sampling error occurs for models 8 and 10, which have
13 and 15 classes respectively and quite low default and Bayes rates. Leaf sample sizes are
smallest for these models. Sampling errors, though, fall short of the maxima in Table 1.

Selection bias error shows a more complex pattern. There are instances of very high bias and
of virtually non-existent bias and the extent seems comparatively unrelated to the number of
attributes and other characteristics of the model. For model 1 with five attributes, it is similar to
that seen for the seven attribute LED domain. For model 2, however, with eight attributes, it is
fairly large at the beginning of the learning curve when the leaf sample size is small, falling later
on when it increases. In contrast, for model 4, with 40 attributes, 20 of which are pure noise,
selection bias error only becomes statistically significant from size 5000.

There is some indication that the occurrence of larger selection bias is associated with simpler
models such as 2, 3, 6 and 9. A possible explanation for this is that when structure error is low,
the attribute selection competition is taking place amongst attributes none of which can offer
much information gain. The competition is then more vulnerable to spurious leaf distributions.

6.2.1 RANDOM TREES
All experiments were repeated with random attribute selection. The random trees were much
larger for all models, typically having between 2 and 4 times as many leaves as the corresponding
ID3 trees. For all models, except model 1, the classification rates along the learning curve were
significantly lower than for the corresponding ID3 curve.

The random trees for model 1 matched the classification rates for ID3, with no significant
difference all along the learning curve. Likewise there was no significant difference in
decomposition errors. This is due to there being only five attributes all of which are relevant.
Moreover, from Table 4, the classification rates are less than the default until after sample size
1000 so that the lift is shared amongst the attributes rather than being concentrated in one or two.
Thus, as noted by Liu and White (1994), there is little benefit from selection based on maximising
information gain over that offered by random selection.

For nearly all models, the selection bias error was virtually eliminated along the learning
curve. Only for models 6 and 9 was here a slight increase as was observed for the LED domain.

These results broadly confirm the findings of Liu and White (1994). Their poorer
performance is due to much larger structure error caused by the interference of pure noise
attributes. They tend to have very much larger reduced cores indicating a high degree of inflation.
Where the ID3 tree has significant selection bias error, this will be almost eliminated in the
random tree but this benefit, which may be accompanied anyway by larger sampling error due to
smaller leaf samples, is usually not sufficient to compensate for the increased structure error.

7 Experiments with Real Data
Determination of the error decomposition requires knowledge of the joint probability distribution
of the description attributes and the class. This is necessary to calculate, for example, the Bayes
rate and the correct majority class at a leaf. Only the sub-decomposition of majority class into
sampling and selection bias errors was estimated from sample data for convenience as explained
in Section 5. If a large data set is available then it is possible to estimate the whole
decomposition. To illustrate the procedures involved, the Forest Cover data set (UCI KDD
Archive) will be used.

HICKEY

 1764

In the Forest Cover data, seven species of tree are classified using 54 attributes that describe
their location. The data consists of 581012 examples. There are no missing values. Five of the
classes are comparatively rare. These were combined into a single class called ‘other’. There are
40 binary attributes that describe soil type. These were eliminated. Four binary attributes
describing wilderness area were combined into a single four-valued wilderness attribute.

The remaining 10 attributes are all continuous. These were made discrete by binning each
into four bins with labels 1, 2, 3 and 4 as shown in Table 6.

Attribute Binning Ranges for Bins 1 - 4
 1 2 3 4

Elevation < 2400 2400 < 3000 3000 < 3300 " 3300
Aspect < 60 60 < 180 180 < 300 " 300
Slope < 11 11 < 33 33 < 55 " 55

Horizontal_Distance_To_Hydrology < 233 233 < 699 699 < 1165 " 1165
Vertical_Distance_To_Hydrology < -44 -44 < 214 214 <472 " 472

Horizontal_Distance_To_Roadways < 1187 1187 < 3559 3559 < 5930 " 5930
Hillshade_9am < 42.3 42.3 < 127.0 127.0 < 211.7 " 211.7

Hillshade_Noon < 42.3 42.3 < 127.0 127.0 < 211.7 " 211.7
Hillshade_3pm < 42.3 42.3 < 127.0 127.0 < 211.7 " 211.7

Horizontal_Distance_To_Fire_Points < 1196 1196 < 3587 3587 < 5978 " 5978

Table 6: Continuous to discrete conversion of 10 Forest Cover attributes.

The final data set consists of 11 discrete attributes and three classes. This was split randomly
into approximately 75% to represent the model and 25% to be used as a test set. Statistics relating
to these sets are shown in Table 7.

 Class Distribution

Data Set Size Lodgepole Pine Spruce/Fir Other

Whole 581012
(100%)

283301
(48.76%)

211840
(36.46%)

85871
(14.78%)

Model 436169
(75.1%)

212587
(48.74%)

158968
(36.45%)

64614
(14.81%)

Test 144843
(24.9%)

70714
(48.82%)

52872
(36.50%)

21257
(14.68%)

Table 7: Statistics for the revised Forest Cover data with 11 attributes and three classes obtained
from a random partitioning into model and test subsets.

To estimate the Bayes rate, the CART algorithm was applied to the model set to build a
decision tree. The twoing measure was used for attribute selection. Cost complexity pruning with

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1765

the 1 standard error setting was applied. The resulting tree, which is an approximation to the true
model, had 1131 leaves. The rule set derived from this tree was applied to the test set producing a
classification rate of 73.78% as an estimate of the true Bayes rate. From Table 7, the default
classification rate in the test set is 48.82% giving a lift of 24.96%.

Experiments similar to those in Sections 5 and 6 were carried out on the revised data.
Training examples were drawn randomly from the model data set. To determine structure and
majority class error, an estimate of the true majority class at a leaf in an induced tree needs to be
obtained. This was provided by applying the rule condition associated with the leaf to the whole
of the model data set. The majority class amongst examples matching this condition was then
taken as the estimate of the true majority class. Such estimates are typically based on fairly large
numbers of matching examples. For example, if a tree induced from 10000 examples has a leaf
containing two examples then the expectation, from Table 7, is that there would be 2 *
436169/10000 = 87 matching examples in the model set. These estimates of majority class were
also used to estimate the reduced core of each induced tree through same majority class pruning.

Sampling error was calculated by the method described in Section 5 using random samples
obtained from the model data set. All classification rates needed for the decomposition were
estimated from the test data set.

The results, shown in Table 8, exhibit similar patterns of decomposition to those seen earlier.
A sample of about 30000 is required to virtually eliminate structure error. Majority class error
dominates structure error all along the learning curve. This is mostly due to sampling error. The
low selection bias error across the learning curve is consistent with that observed for the more
complex artificial models in Section 6.

 Full Tree Core Tree Err Decomp Maj Err
Sub Decomp

Samp
Size

No.
Leaves

Av.
Leaf
Size

Av.
Depth

No.
Leaves

Av.
 Leaf
Size

Av.
Depth

CR
(%)

Err
(%)

Struct
Err
(%)

Maj
Err
(%)

Samp
Err
(%)

Sel
Bias
Err
(%)

25 25 1.1 2.9 16 1.8 2.5 52.6 21.2 9.4 11.8 11.0 0.8
50 51 1.0 3.7 29 1.9 3.2 55.3 18.5 6.8 11.7 9.9 1.8

100 102 1.0 4.5 55 1.9 4.0 56.6 17.2 5.8 11.4 9.4 2.0
500 502 1.0 6.3 241 2.1 5.6 60.0 13.8 3.6 10.2 8.2 2.0

1000 908 1.1 6.8 425 2.4 6.2 62.1 11.7 2.7 9.0 7.5 1.5
2500 1746 1.4 7.3 799 3.1 6.6 65.2 8.6 1.6 7.0 5.9 1.1
5000 2633 1.9 7.7 1195 4.2 7.0 67.8 6.0 1.1 4.9 4.2 0.7

10000 3671 2.7 7.9 1597 6.3 7.2 69.8 4.0 0.6 3.4 3.1 0.3
20000 4971 4.0 8.1 2065 9.7 7.4 71.4 2.4 0.4 2.0 1.7 0.3
30000 5727 5.2 8.2 2402 12.5 7.5 72.3 1.5 0.2 1.3 1.3 0.0

Table 8: Tree statistics and inductive error decomposition for ID3 inductions on examples
generated from the revised Forest Cover data.

HICKEY

 1766

8 Conclusion and Future Work
The contribution of this paper has been the introduction of a method of decomposition of the
classification error occurring in decision tree induction. Its application has been demonstrated on
both artificial and real data. Instead of comparing tree induction algorithms in terms of
classification error is it now possible to provide further insight into how this arose, specifically
whether it is due to failure to grow sufficient tree structure or to successfully estimate majority
class at the leaves.

It has been shown that majority class error is often quite substantial and that it can be further
broken down into sampling error and selection bias error with the extent of these sources being
quantified.

By factoring out the effects of selection bias, the sub-decomposition of majority class error
permits a statistical analysis of sampling error not previously possible because of the biased
samples reaching the leaves. For two classes, sampling error appears to be limited to a maximum
of about 12%. For more than two classes it could be as much as 25%. Sampling error does
decrease reasonably quickly when the size of sample reaching the leaves eventually begins to
increase, particularly if the level of noise in the domain is low.

In ID3, selection bias error is due to the corruption in the sample reaching a leaf caused by
the multiple comparison effect of the competition to select the best attribute with which to expand
the tree. It may be insignificantly different from zero along the learning curve even when there
are a large number of attributes involved in the selection competition and yet may be large when
there are only a small number of attributes. The initial evidence provided here supports the
hypothesis that if the underlying model is sufficiently complex, then this offers some protection
against selection bias error. Although regarded here as a source of majority class error, selection
bias error could, conceivably, be viewed as part of the error in forming tree structure.

The results provided here offer further insight into why ID3 typically outperforms trees
grown with random attribute selection. It is due to a largely successful trade-off in forming
structure efficiently at the expense of creating selection bias error.

The challenge for future work is to use the decomposition to develop better tree induction
algorithms. For example, it may be possible to find a better trade-off between forming structure
and incurring selection bias than that offered by ID3. The decomposition can be applied to
induced trees however constructed. In particular, it can be obtained for trees that have been
pruned and so should enhance investigation into issues relating to overfitting avoidance (Schaffer,
1993) and the properties of methods of pruning (Oates and Jensen, 1997; 1999).

It may also be possible to extend the approach to investigate the behaviour of bagging and
boosting techniques for decision trees.

Majority class error was decomposed into sampling and selection bias errors. It is possible,
instead, to decompose it in a way that reflects contributions from the reduced core and from
extension beyond the core. Such an alternative sub-decomposition may be especially useful in
investigating overfitting avoidance. Structure error can also be decomposed to isolate the effect of
pure noise attributes on the induction. Work is being undertaken on both of these.

References
Robert E. Bechhofer, Salah Elmaghraby and Norman Morse. A single sample multiple-decision

procedure for selecting the multinomial event which has the highest probability. Annals of
Mathematical Statistics, 30:102-119, 1959.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen and Charles J. Stone. Classification and

Regression Trees. Wadsworth, Pacific Grove, California, 1984.

STRUCTURE AND MAJORITY CLASSES IN DECISION TREE LEARNING

 1767

Eibe Frank. Pruning Decision Trees and Lists. PhD thesis, University of Waikato, Hamilton,

New Zealand, 2000.

Carlos R.P. Hartmann, Pramod K. Varshney, Kishan G. Mehrotra and Carl L. Gerberich.

Application of information theory to the construction of efficient decision trees. IEEE
Transactions on Information Theory, IT-28:565-577, 1982.

Ray J. Hickey. Artificial universes: towards a systematic approach to evaluating algorithms which

learn from examples. In Proceedings of the Ninth International Conference on Machine
Learning, pages 196-205, Aberdeen, Scotland, 1992.

Ray J. Hickey. Noise modelling and evaluating learning from examples. Artificial Intelligence,

82(1-2):157-179, 1996.

Gareth M. James. Variance and bias for general loss functions. Machine Learning, 51(2):115-

135, 2003.

David D. Jensen and Paul R. Cohen. Multiple comparisons in induction algorithms. Machine

Learning, 38(3):309-338, 2000.

Harry Kesten and Norman Morse. A property of the multinomial distribution. Annals of

Mathematical Statistics, 30:120-127, 1959.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence,

97(1-2):273-324, 1997.

Wei Zhong Liu and Allan P. White. The importance of attribute selection measures in decision

tree induction. Machine Learning, 15(1):25-41, 1994.

Albert W. Marshall and Ingram Olkin. Inequalities: The Theory of Majorisation and its

Applications. Academic Press, New York, 1979.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

Tim Oates and David D. Jensen. The effects of training set size on decision tree complexity. In

Proceedings of the Fourteenth International Conference on Machine Learning, pages. 254-261,
Nashville, Tennessee, 1997.

Tim Oates and David D. Jensen. Toward a theoretical understanding of why and when decision

tree pruning algorithms fail. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pages 372-378, Orlando, Florida, 1999.

Foster Provost and Pedro Domingos. Tree induction for probability-based ranking. Machine

Learning, 52(3):199-215, 2003.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81-106, 1986.

Cullen Schaffer. Overfitting avoidance as bias. Machine Learning, 10(2):153-178, 1993.

UCI KDD Archive. http://kdd.ics.uci.edu

HICKEY

 1768

Gary M. Weiss and Haym Hirsh. A quantitative study of small disjuncts. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence, pages 665-670, Austin, Texas,
2000.

Journal of Machine Learning Research 8 (2007) 1769-1797 Submitted 7/06; Revised 1/07; Published 8/07

Characterizing the Function Space for Bayesian Kernel Models

Natesh S. Pillai NSP2@STAT.DUKE.EDU
Qiang Wu QIANG@STAT.DUKE.EDU
Department of Statistical Science
Duke University
Durham, NC 27708, USA

Feng Liang FENG@STAT.UIUC.EDU
Department of Statistics
University of Illinois at Urbana-Champaign
Urbana-Champaign, IL 61820, USA

Sayan Mukherjee SAYAN@STAT.DUKE.EDU
Department of Statistical Science
Institute for Genome Sciences & Policy
Duke University
Durham, NC 27708, USA

Robert L. Wolpert WOLPERT@STAT.DUKE.EDU
Department of Statistical Science
Professor of the Environment and Earth Sciences
Duke University
Durham, NC 27708, USA

Editor: Zoubin Ghahramani

Abstract

Kernel methods have been very popular in the machine learning literature in the last ten years,
mainly in the context of Tikhonov regularization algorithms. In this paper we study a coherent
Bayesian kernel model based on an integral operator defined as the convolution of a kernel with
a signed measure. Priors on the random signed measures correspond to prior distributions on the
functions mapped by the integral operator. We study several classes of signed measures and their
image mapped by the integral operator. In particular, we identify a general class of measures whose
image is dense in the reproducing kernel Hilbert space (RKHS) induced by the kernel. A conse-
quence of this result is a function theoretic foundation for using non-parametric prior specifications
in Bayesian modeling, such as Gaussian process and Dirichlet process prior distributions. We dis-
cuss the construction of priors on spaces of signed measures using Gaussian and Lévy processes,
with the Dirichlet processes being a special case the latter. Computational issues involved with sam-
pling from the posterior distribution are outlined for a univariate regression and a high dimensional
classification problem.

Keywords: reproducing kernel Hilbert space, non-parametric Bayesian methods, Lévy processes,
Dirichlet processes, integral operator, Gaussian processes

c©2007 Natesh S. Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee and Robert L. Wolpert.

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

1. Introduction

Kernel methods have a long history in statistics and applied mathematics (Schoenberg, 1942; Aron-
szajn, 1950; Parzen, 1963; de Boor and Lynch, 1966; Micchelli and Wahba, 1981; Wahba, 1990)
and have had a tremendous resurgence in the machine learning literature in the last ten years (Poggio
and Girosi, 1990; Vapnik, 1998; Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004).
Much of this resurgence was due to the popularization of classification algorithms such as support
vector machines (SVMs) (Cortes and Vapnik, 1995) that are particular instantiations of the method
of regularization of Tikhonov (1963). Many machine learning algorithms and statistical estimators
can be summarized by the following penalized loss functional (Evgeniou et al., 2000; Hastie et al.,
2001, Section 5.8)

f̂ = argmin
f∈H

[
L(f ,data)+λ‖ f‖2K

]
,

where L is a loss function, H is often an infinite-dimensional reproducing kernel Hilbert space
(RKHS), ‖ f‖2K is the norm of a function in this space, and λ is a tuning parameter chosen to balance
the trade-off between fitting errors and the smoothness of the function. The data is assumed to
be drawn independently from a distribution ρ(x,y) with x ∈ X ⊂ Rd and y ∈ Y ⊂ R. Due to the
representer theorem (Kimeldorf and Wahba, 1971) the solution of the penalized loss functional will
be a kernel

f̂ (x) =
n

∑
i=1

wiK(x,xi),

where {xi}ni=1 are the n observed input or explanatory variables. The statistical learning community
as well as the approximation theory community has studied and characterized properties of the
RKHS for various classes of kernels (DeVore et al., 1989; Zhou, 2003).

Probabilistic versions and interpretations of kernel estimators have been of interest going back to
the work of Hájek (1961, 1962) and Kimeldorf and Wahba (1971). More recently a variety of kernel
models with a Bayesian framework applied to the finite representation from the representer theorem
have been proposed (Tipping, 2001; Sollich, 2002; Chakraborty et al., 2005). However, the direct
adoption of the finite representation is not a fully Bayesian model since it depends on the (arbitrary)
training data sample size (see remark 3 for more discussion). In addition, this prior distribution is
supported on a finite-dimensional subspace of the RKHS. Our coherent fully Bayesian approach
requires the specification of a prior distribution over the entire space H .

A continuous, positive semi-definite kernel on a compact space X is called aMercer kernel. The
RKHS for such a kernel can be characterized (Mercer, 1909; König, 1986) as

HK =

{
f
∣∣∣ f (x) = ∑

j∈Λ
a jφ j(x) with ∑

j∈Λ
a j2/λ j < ∞

}
, (1)

where {φ j} ⊂ H and {λ j} ⊂ R+ are the orthonormal eigenfunctions and the corresponding non-
increasing eigenvalues of the integral operator with kernel K on L2

(
X ,µ(du)

)
,

λ jφ j(x) =
Z

X
K(x,u)φ j(u)µ(du) (2)

and where Λ :=
{
j : λ j > 0

}
. The eigenfunctions {φ j} and the eigenvalues {λ j} depend on the

measure µ(du), but the RKHS does not. This suggests specifying a prior distribution over H by

1770

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

placing one on the parameter space

A =
{
{a j}

∣∣∣ ∑
j∈Λ

a j2/λ j < ∞
}

as in Johnstone (1998) and Wasserman (2005, Section 7.2). There are serious computational and
conceptual problems with specifying a prior distribution on this infinite-dimensional set. In par-
ticular, only in special cases are the eigenfunctions {φ j} and eigenvalues {λ j} available in closed
form.

Another approach, the Bayesian kernel model, is to study the class of functions expressible as
kernel integrals

G =
{
f
∣∣∣ f (x) =

Z

X
K(x,u) γ(du), γ ∈ Γ

}
, (3)

for some space Γ⊆B(X) of signed Borel measures. Any prior distribution on Γ induces one on G .
The natural question that arises in this Bayesian approach is:

For what spaces Γ of signed measures is the RKHS HK identical to the linear space
span(G) spanned by the Bayesian kernel model?

The space G is the rangeLK[Γ] of the integral operatorLK : Γ→ G given by

LK[γ](x) :=
Z

X
K(x,u)γ(du). (4)

Informally (we will be more precise in Section 2) we can characterize Γ as the range of the inverse
operator L −1

K : HK → Γ. The requirements on Γ for the equivalence between LK[Γ] and HK is the
primary focus of this paper and in Section 2 we formalize and prove the following proposition:

Proposition 1 For Γ= B(X), the space of all signed Borel measures, G = HK .

The proposition asserts that the Bayesian kernel model and the penalized loss model both operate
in the same function space when Γ includes all signed measures.

This result lays a theoretical foundation from a function analytic perspective for the use of
two commonly used prior specifications: Dirichlet process priors (Ferguson, 1973; West, 1992;
Escobar and West, 1995; MacEachern and Müller, 1998; Müller et al., 2004) and Lévy process
priors (Wolpert et al., 2003; Wolpert and Ickstadt, 2004).

1.1 Overview

In Section 2, we formalize and prove the above proposition. Prior distributions are placed on the
space of signed measures in Section 4 using Lévy, Dirichlet, and Gaussian processes. In Section 5
we provide two examples using slightly different process prior distributions for a univariate regres-
sion problem and a high dimensional classification problem. This illustrates the use of these process
priors for posterior inference. We close in Section 6 with a brief discussion.

Remark 2 Equation (3) is a Fredholm integral equation of the first kind (Fredholm, 1900). The
problem of estimating an unknownmeasure γ for a specified element f ∈HK is ill-posed (Hadamard,
1902) in the sense that small changes in f may give rise to large changes in estimates of γ. It was
precisely the study of this problem that led Tikhonov (1963) to his regularization method, in a study

1771

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

of problems in numerical analysis such as interpolation or Gauss quadrature. Bayesian methods
for interpolation and Gauss quadrature were explored by Diaconis (1988). A Bayesian method us-
ing Lévy process priors to address numerically ill-posed problems was developed by Wolpert and
Ickstadt (2004). We will return to this relation between robust statistical estimation and numerically
stable methods in the discussion.

Remark 3 Due to the relation between regularization and Bayes estimators the finite representation
is a MAP (maximal a posterior) estimator (Wahba, 1999; Poggio and Girosi, 1990). However,
functions in the RKHS having a posterior probability very close to that of the MAP estimator need
not have a finite representation so building a prior only on the finite representation is problematic
if one wants to estimate the full posterior on the entire RKHS. Thus the prior used to derive the
MAP estimate is essentially the same as those used in Sollich (2002). This will lead to serious
computational and conceptual difficulties when the full posterior must be simulated.

2. Characterizing the Function Space of the Kernel Model

In this section we formalize the relationship between the RKHS and the function space induced by
the Bayesian kernel model.

2.1 Properties of the RKHS

Let X ⊂ Rd be compact and K : X ×X → R a continuous, positive semi-definite (Mercer) kernel.
Consider the space of functions

H =

{
f
∣∣∣ f (x) =

n

∑
j=1

a jK(x,x j) : n ∈ N, {x j} ⊂ X , {a j} ⊂ R
}

with an inner product 〈· , ·〉K extending
〈
K(·,xi), K(·,x j)

〉
K := K(xi,x j).

The Hilbert space closure HK of H in this inner-product is the RKHS associated with the kernel K
(Aronszajn, 1950). The kernel is “reproducing” in the sense that each f ∈ HK satisfies

f (x) = 〈 f ,Kx〉K

for all x ∈ X , where Kx(·) := K(·,x).
A well-known alternate representation of the RKHS is given by an orthonormal expansion

(Aronszajn 1950, extended to arbitrary measures by König 1986; see Cucker and Smale 2001). Let
{λ j} and {φ j} be the non-increasing eigenvalues and corresponding complete orthonormal set of
eigenvectors of the operator LK of Equation (4), restricted to the Hilbert space L2

(
X , du

)
of mea-

sures γ(du) = γ(u)du with square-integrable density functions γ ∈ L2
(
X , du

)
. Mercer’s theorem

(Mercer, 1909) asserts the uniform and absolute convergence of the series

K(u,v) =
∞

∑
j=1

λ j φ j(u)φ j(v), (5)

1772

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

whereupon with Λ :=
{
j : λ j > 0

}
we have

HK =

{
f = ∑

j∈Λ
a jφ j

∣∣∣ ∑
j∈Λ

λ j
−1 a j2 < ∞

}
.

2.2 Bayesian Kernel Models and Integral Operators

Recall the Bayesian kernel model was defined by

G =
{

LK[γ](x) :=
Z

X
K(x,u) γ(du), γ ∈ Γ

}
,

where Γ is a space of signed Borel measures on X . We wish to characterize the spaceL −1
K (HK) of

Borel measures mapped into the RKHS HK of Equation (1). A precise characterization is difficult
and instead we will find a subclass Γ ⊂ L −1

K (HK) which will be large enough in practice, in the
sense thatLK(Γ) is dense in HK .

First we study the image underLK of four classes of measures: (1) those with square integrable
(Lebesgue) density functions; (2) all finite measures with Lebesgue density functions; (3) the set of
discrete measures; and (4) linear combinations of all of these. Then we will extend these results to
the general case of Borel measures (see Appendix A for proofs).

We first examine the class L2(X ,du), viewed as the space of finite measures on X with square-
integrable density functions with respect to Lebesgue measure; in a slight abuse of notation we write
γ(du) = γ(u)du, using the same letter γ for the measure and its density function. Since X is compact
and K bounded,LK is a positive compact operator on L2(X ,du) with a complete ortho-normal sys-
tem (CONS) {φ j} of eigenfunctions with non-increasing eigenvalues {λ j} ⊂ R+ satisfying Equa-
tion (5). Each γ ∈ L2(X ,du) admits a unique expansion γ = ∑ j a jφ j, with ‖γ‖22 = ∑ j a2j < ∞. The
image underLK of the measure γ(du) := γ(u)duwith Lebesgue density function γmay be expressed
as the L2-convergent sum

LK [γ](x) =∑
j
λ j a jφ j(x).

Proposition 4 For every γ ∈ L2(X ,du), LK [γ] ∈ HK and

‖LK [γ]‖2K = 〈LK [γ],γ〉2.

Consequently, L2(X ,du) ⊂ L −1
K (HK).

The following corollary illustrates that the space L2(X ,du) is too small for our purpose—that
is, that important functions f ∈ L −1

K (HK) fail to lie in L2(X ,du).

Corollary 5 If the set Λ :=
{
j : λ j > 0

}
is finite, then LK(L2(X ,du)) = HK; otherwise

LK(L2(X ,du)) ! HK . The latter occurs whenever K is strictly positive definite and the RKHS
is infinite-dimensional.

Thus only for finite dimensional RKHS’s is the space of square integrable functions sufficient to
span the RKHS. In almost all interesting non-parametric statistics problems, the RKHS is infinite-
dimensional.

Next we examine the space of integrable functions L1(X ,du), a larger space than L2(X ,du)
when X is compact.

1773

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

Proposition 6 For every γ ∈ L1(X ,du), LK [γ] ∈ HK . Consequently, L1(X ,du) ⊂ L −1
K (HK).

Another class of functions to be considered is the space of finite discrete measures,

MD =

{
µ=∑

j
c jδx j : {c j} ⊂ R, {x j} ⊂ X , ∑

j
|c j| < ∞

}
,

where δx is the Dirac measure supported at x ∈ X (the sum may be finite or infinite). This class will
arise naturally when we examine Lévy and Dirichlet processes in Section 4.3.

Proposition 7 For every µ∈ MD, LK [µ] ∈ HK . Consequently, MD ⊂ L −1
K (HK).

By Proposition 6 and 7 the spaceM spanned by L1(X ,du)∪MD is a subset ofL −1
K (HK). The

range of LK on just the elements of MD with finite support is precisely H , linear combinations of
the

{
Kx j

}
x j∈X ; thus

Proposition 8 LK(M) is dense in HK with respect to the RKHS norm.

Let B+(X) denote the cone of all finite nonnegative Borel measures on X and B(X) the set
of signed Borel measures. Clearly every µ∈ B(X) can be written uniquely as µ= µ+ −µ− with
µ+,µ− ∈ B+(X). The set B\M contains those Borel measures that are singular with respect to
the Lebesgue measure. In this context, the set M = MD∪L1(X ,du) contains the Borel measures
that can be used in practice. The above results, Propositions 6 and 4, also hold if we replace the
Lebesgue measure with a Borel measure. It is natural to compareB(X) withL −1

K (HK).

Proposition 9 B(X) ⊂ L −1
K (HK).

We close this section by showing that even B(X) need not exactly characterize the class
L −1
K (HK). The proof of Proposition 6 implies that

‖LK [γ]‖2K =
ZZ

X×X
K(x,u)γ(x)γ(u)dxdu. (6)

¿From the above it is apparent thatLK [γ] ∈ HK holds only ifLK [γ] is well defined and the quantity
on the right hand side of (6) is finite. If the kernel is smooth and vanishes at certain x,u∈ X , then (6)
can be finite even if γ /∈ L1(X ,du). For example in the case of polynomial kernels δ′x, the functional
derivatives of the Dirac measure δx, are mapped into HK .

Proposition 10 B(X) ! L −1
K (HK(X)).

Proof
We construct an infinite signed measure γ satisfyingLK [γ] ∈ HK . As in Example 1 below, let

K(x,u) := x∧u− xu

be the covariance kernel for the Brownian bridge on the unit interval X = [0,1] (as usual, “x∧ u”
denotes the minimum of two real numbers x,u). Consider the improper Be(0,0) distribution

γ(du) =
du

u(1−u)
,

1774

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

with image under the integral operator

f (x) := LK [γ](x) = −x log(x)− (1− x) log(1− x).

The function f (x) satisfies f (0) = 0= f (1) and has finite RKHS norm

‖ f‖2K = −2
Z 1

0

log(x)
1− x

dx=
π2

3
,

so f (x) is in the the RKHS (see Example 1). Thus the infinite signed measure γ(ds) is inL −1
K [HK]

but not inB(X), soL −1
K [HK] is larger than the space of finite signed measures.

3. Two Concrete Examples

In this section we construct two explicit examples to help illustrate the ideas of Section 2.

Example 1 (Brownian bridge) On the space X = [0,1] consider the kernel

K(x,u) := (x∧u)− xu,

which is jointly continuous and the covariance function for the Brownian bridge (Rogers and
Williams, 1987, §IV.40) and hence a Mercer kernel. The eigenfunctions and eigenvalues of Equa-
tion (2) for Lebesgue measure µ(du) = du are

λ j =
1
j2π2

φ j(x) =
√
2 sin(jπx).

The associate integral operator of Equation (4) is

LK[γ](x) :=
Z

X
K(x,u)γ(du)

= (1− x)
Z

[0,x)
uγ(du)+ x

Z

[x,1]
(1−u)γ(du),

mapping any γ(du) = γ(u)du with γ ∈ L1(X ,du) to a function f (x) = LK[γ](x) that satisfies the
boundary conditions f (0) = 0= f (1) and, for almost every x ∈ X ,

f (x) = (1− x)
Z x

0
uγ(u)du+ x

Z 1

x
(1−u)γ(u)du,

f ′(x) =
Z 1

x
γ(u)du−

Z 1

0
uγ(u)du,

f ′′(x) = −γ(x)
and hence, by Equation (6) and integration by parts,

‖ f‖2K =
Z 1

0
f (x)γ(x)dx

=
Z 1

0
− f (x) f ′′(x)dx

=
Z 1

0
f ′(x)2 dx.

1775

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

Evidently the RKHS is just

HK =

{
f (x) =

∞

∑
j=1

a j
√
2sin(jπx)

∣∣∣
∞

∑
j=1

π2 j2 a j2 < ∞

}

=
{
f in L2(X ,du)

∣∣ f (0) = 0= f (1) and f ′ ∈ L2(X ,du)
}

,

the subspace of the Sobolev space H+1(X) satisfying Dirichlet boundary conditions (Mazja, 1985,
Section 1.1.4), and

L −1
K

(
HK

)
=

{
γ(x) =

∞

∑
j=1

a j
√
2sin(jπx)

∣∣∣
∞

∑
j=1

a j2

π2 j2
< ∞

}

=
{
γ= f ′′

∣∣ f , f ′ ∈ L2(X ,du), f (0) = 0= f (1)
}

,

a subspace of H−1(X).

Example 2 (Splines on a circle) The kernel function for first order splines on the real line is

K(x,u) := |x−u| x,u ∈ R

and the corresponding RKHS norm is

‖ f‖2K =
Z ∞

−∞
f ′(x)2 dx.

However, since the domain is not compact the spectrum of the associated integral operator on
L2(R,du) is continuous rather than discrete, the approach of Section 2 does not apply.

Instead we consider the case of splines with periodic boundary conditions. On the space X =
[0,1] we consider the kernel function

K(x,u) =
∞

∑
j=1

1
2π2 j2

cos(2π j|u− x|)

=
1
2

(
|x−u|− 1

2

)2
− 1
24

0< x,u< 1

The eigenfunctions and eigenvalues of Equation (2) for Lebesgue measure µ(du) = du are

φ2 j−1(x) :=
√
2 sin(2π jx), λ2 j−1 = 1

4π2 j2 ,

φ2 j(x) :=
√
2 cos(2π jx) , λ2 j = 1

4π2 j2 ,
j ∈ N.

The RKHS norm for this kernel is

‖ f‖2K =
Z 1

0
f ′(x)2 dx

and the RKHS is

HK =

{
f (x) =

∞

∑
j=1

√
2
[
a j sin(2π jx)+b j cos(2π jx)

] ∣∣∣
∞

∑
j=1
4π2 j2 (a2j +b2j) < ∞

}

1776

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

the subspace of the Sobolev space H+1(X) satisfying periodic boundary conditions and orthogonal
to the constants (Wahba, 1990, Section 2.1) and

L −1
K

(
HK

)
=

{
γ(x) =

∞

∑
j=1

√
2
[
a j sin(π jx)+b j cos(π jx)

] ∣∣∣
∞

∑
j=1

a2j +b2j
4 j2π2

< ∞

}
,

a subspace of H−1(X).

Elements in either RKHS given in the above two examples with a finite representation

f (x) =
m

∑
i=1

ciK(x,xi), m< ∞

are splines. For the first example these functions are linear splines that vanish at {0,1}. In the
second example if the coefficients sum to zero (∑m

i=1 ci = 0), then these functions are linear splines
with periodic boundary conditions. If the coefficients do not sum to zero then they are quadratic
splines with periodic boundary conditions.

4. Bayesian Kernel Models

Our goal from Section 1 is to present a coherent Bayesian framework for non-parametric function
estimation in a RKHS. Suppose we observe data (with noise), {(xi,yi)} ⊂ X ×R from the linear
regression model

yi = f (xi)+ εi (7)

where we assume {εi} are independent No(0,σ2) random variables with unknown variance σ2, and
f (·) is an unknown function we wish to estimate. For a fixed kernel we assume f ∈ HK . Recall
that the integral operator LK maps M (X) into HK and in particular LK(M (X)) is dense in HK .
Therefore, we assume that

f (x) =
Z

X
K(x,u)Z(du) (8)

where Z(du) ∈ M (X) is a signed measure on X . If we put a prior on M (X), we are in essence
putting a prior on the functions f ∈ G .

Our measurement error model (7) gives us the following likelihood for the dataD := {(xi,yi)}ni=1

L(D|Z) ∝
n

∏
i=1
exp

[
− 1
2σ2

(yi− f (xi))2
]
. (9)

With a prior distribution on Z, π(Z), we can obtain the posterior density function given data

π(Z|D) ∝ L(D|Z) π(Z), (10)

which implies a posterior distribution for f via the integral operator (8).

1777

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

4.1 Priors onM

A random signed measure Z(du) on X can be viewed as a stochastic process on X . Therefore the
practice of specifying a prior on M (X) via a stochastic process is ubiquitous in non-parametric
Bayesian analysis. Gaussian processes and Dirichlet processes are two commonly used stochastic
processes to generate random measures.

We first apply the results of Section 2 to Gaussian process priors (Rasmussen and Williams,
2006, Section 6) and then to Lévy process priors (Wolpert et al., 2003; Tu et al., 2006). We also
remark that Dirichlet processes can be constructed from Lévy process priors.

4.2 Gaussian Processes

Gaussian processes are canonical examples of stochastic processes used for generating random
measures. They have been used extensively in the machine learning and statistics community with
promising results in practice and theory (Kimeldorf and Wahba, 1971; Chakraborty et al., 2005;
Rasmussen and Williams, 2006; Ghosal and Roy, 2006).

We consider two modeling approaches using Gaussian process priors:

i. Model I: Placing a prior directly on the space of functions f (x) by sampling from paths of the
Gaussian process with its covariance structure defined via a kernel K;

ii. Model II: Placing a prior on the random signed measures Z(du) on X by using a Gaussian
process prior for Z(du) which implies a prior on the function space defined by the kernel
model in Equation (8).

For both approaches we can characterize the function space spanned by the kernel model. The
first approach is the more standard approach for non-parametric Bayesian inference using Gaussian
processes while the later is an example of our Bayesian kernel model. However, as pointed out
by (Wahba, 1990, Section 1.4) the random functions from the first approach will be almost surely
outside the RKHS induced by the kernel. However these functions will be contained in a larger
RKHS, as we show in the next section.

We first state some classical results on the sample paths of Gaussian processes. We then use
these properties and the results of Section 2 to characterize the function spaces of the two models.

4.2.1 SAMPLE PATHS OF GAUSSIAN PROCESSES

Consider a Gaussian process {Zu, u ∈ X } on a probability space {Ω,A ,P} having covariance func-
tions determined by a kernel function K. Let HK be the corresponding RKHS and let the mean m
be contained in the RKHS, m ∈ HK . Then the following zero-one law holds:

Theorem 11 (Kallianpur 1970, Theorem 5.1) If Z• ≡ {Zu,u ∈ X } is a Gaussian process with co-
variance K and mean m ∈ HK , and HK is infinite dimensional, then

P(Z• ∈ HK) = 0.

The probability measure is assumed to be complete.

Thus the sample paths of the Gaussian process are almost surely outside HK . However, there exists
a RKHS HR that is bigger than HK that contains the sample paths almost surely. To construct such
an RKHS we first need to define nuclear dominance.

1778

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

Definition 12 Given two kernel functions R and K, R dominates K (written as R. K) if HK ⊆ HR.

Given the above definition of dominance the following operator can be defined:

Theorem 13 (Lukić and Beder, 2001) Let R. K. Then

‖g‖R ≤ ‖g‖K , ∀g ∈ HK .

There exists a unique linear operator L :HR → HR whose range is contained in HK such that

〈 f ,g〉R = 〈L f ,g〉K, ∀ f ∈ HR, ∀g ∈ HK .

In particular
LRu = Ku, ∀u ∈ X .

As an operator into HR, L is bounded, symmetric, and positive.
Conversely, let L :HR → HR be a positive, continuous, self-adjoint operator then

K(s, t) = 〈LRs,Rt〉R, s, t ∈ X

defines a reproducing kernel on X such that K ≤ R.

L is the dominance operator of HR over HK and this dominance is called nuclear if L is a
nuclear or trace class operator (a compact operator for which a trace may be defined that is finite
and independent of the choice of basis). We denote nuclear dominance as R..K.

4.2.2 IMPLICATIONS FOR THE FUNCTION SPACES OF THE MODELS

Model I placed a prior directly on the space of functions using sample paths from the Gaussian
process with covariance structure defined by the kernel K. Theorem 11 states that sample paths
from this Gaussian process are not contained in HK . However, there exists another RKHS HR with
kernel R which does contain the sample path if R has nuclear dominance over K.

Theorem 14 (Lukić and Beder, 2001) Let K and R be two reproducing kernels. Assume that the
RKHS HR is separable. A necessary and sufficient condition for the existence of a Gaussian process
with covariance K and mean m ∈ HR and with trajectories in HR with probability 1 is that R..K.

The implication of this theorem is that we can find a function space HR that contains functions
generated by the Gaussian process defined by covariance function K.

Model II places a prior on random signed measures Z(du) on X by using a Gaussian process
prior for Z(du). This implies a prior of the space of functions spanned by the kernel model in
Equation (8). This space G is contained inHK by our results in Section 2. This is due to the fact that
any sample path from a continuous Gaussian process on a compact domain X is in L1 and therefore
the corresponding function from the integral (8) is still in HK .

1779

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

4.3 Lévy Processes

Lévy processes offer an alternative to Gaussian processes in non-parametric Bayesian modeling.
Dirichlet processes and Gaussian processes with a particular covariance structure can be formulated
from the framework of Lévy processes. For the sake of simplicity in exposition, we will use the
univariate setting X = [0,1] to illustrate the construction of random signed measures using Lévy
processes. The extension to the multivariate setting is straightforward and outlined in Appendix B.

A stochastic process Z := {Zu ∈ R : u ∈ X } is called a Lévy process if it satisfies the following
conditions:

1. Z0 = 0 almost surely.

2. For any integerm∈N and any 0= u0 < u1 < ... < um, the random variables {Zu j−Zu j−1}, 1≤
j ≤ m are independent. (Independent increments property)

3. The distribution of Zs+u − Zs does not depend on s (Temporal homogeneity or stationary
increments property).

4. The sample paths of Z are almost surely right continuous and have left limits, that is, are
“càdlàg”.

Familiar examples of Lévy processes include Brownian motion, Poisson processes, and gamma
processes. The following celebrated theorem characterizes Lévy processes.

Theorem 15 (Lévy-Khintchine) Z is a Lévy process if and only if the characteristic function of
Zu : u≥ 0 has the following form:

E[eiλZu] = exp
{
u
[
iλa− 1

2
σ2λ2+

Z

R\0
[eiλw−1− iλw1{w:|w|<1}(w)]ν(dw)

]}
, (11)

where a ∈ R, σ2 ≥ 0 and ν is a nonnegative measure on R\0 with
Z

R\0
(1∧|w|2)ν(dw) < ∞. (12)

Note that (11) can be written as a product of two components,

exp
{
iauλ− uσ2

2
λ2

}
× exp

{
u

Z

R\0

[
eiλw−1− iλw1{w:|w|<1}(w)

]
ν(dw)

}
,

the characteristic functions of a Gaussian process and of a partially compensated Poisson process,
respectively. This observation is the essence of the Lévy-Itô theorem (Applebaum, 2004, Theorem
2.4.16), which asserts that every Lévy process can be decomposed into the sum of two independent
components: a “continuous process” (Brownian motion with drift) and a (possibly compensated)
“pure jump” process. The three parameters (a,σ2,ν) in (11) uniquely determine a Lévy process
where a denotes the drift term, σ2 denotes the variance (diffusion coefficient) of the Brownian
motion, and ν(dw) denotes the intensity of the jump process. The so-called “Lévy measure” ν need
not be finite, but (12) implies that ν[(−ε,ε)c] < ∞ for each ε> 0 and so ν is at least sigma-finite.

1780

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

4.3.1 PURE JUMP LÉVY PROCESSES

Pure jump Lévy processes are used extensively in non-parametric Bayesian statistics due to their
computationally amenability. In this section we first state an interpretation of these processes using
Poisson random fields. We then describe Dirichlet and symmetric α-stable processes.

4.3.2 POISSON RANDOM FIELDS INTERPRETATION

Any pure jump Lévy process Z has a nice representation via a Poisson random field. Set ΔZu :=
Zu− lims↑uZs, the jump size at the location u. Set Γ = R×X , the Cartesian product of R with X .
For any sets A⊂ R\0 bounded away from zero and B⊂ X we can define the counting measure

N(A×B) := ∑
s∈B
1A

(
ΔZs

)
. (13)

The measure N defined above turns out to be a Poisson random measure on Γ, with mean measure
ν(dw)du where du is the uniform reference measure on X (for instance the Lebesgue measure
when X = [0,1]). For any E ⊂ Γ with µ=

R
E ν(dw)du<∞ the random variable N(E) has a Poisson

distribution with intensity µ.
When ν is a finite measure, the total number of jumps J ∈ N of the process follows a Poisson

distribution with finite intensity µ(Γ). When Z has a density with respect to the Lévy random field
M with Lévy measure m, Zu has finite total variation and determines a finite measure Z(du) = dZu.
In this case, any realization of Z(du) can be formulated as

Z(du) =
J

∑
j=1

w jδu j , (14)

where (w j,u j) ∈ Γ are i.i.d. draws from ν(dw)du representing the jump size and the jump location,
respectively. Given a realization of Z(du) = {u j,w j}Jj=1, Equation (8) reduces to

Z

X
K(x,u)Z(du) =

Z

Γ
K(x,u)N(dwdu) =

J

∑
j=1

w jK(x,u j),

where N(dwdu) is a Poisson random measure as defined by (13). Then the likelihood for the data
D := {(xi,yi)}ni=1 is given by

L(D|Z) ∝
n

∏
i=1
exp

[
− 1
2σ2

(
yi−

J

∑
j=1

w jK(xi,u j)
)2]

.

If the measure ν(dw)du has a density function ν(w,u) with respect to some finite reference measure
m(dwdu), then the prior density function for Z with respect to a Lévy(m) process is

π(Z) =
[J

∏
j=1

ν(w j,u j)
]
em(Γ)−ν(Γ). (15)

Using Bayes’ theorem, we can calculate the posterior distribution for Z via (10).
When ν is an infinite measure the number of jumps in the unit interval is countably infinite

almost surely. However, if the Lévy measure satisfies
Z

R
(1∧|w|)ν(dw) < ∞, (16)

1781

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

then the sequence {w j} is almost surely absolutely summable (i.e, ∑∞
j=1 |w j| < ∞ a.s.) and we can

still represent the process Z via the summation (14). Note that condition (16) is stronger than the
integrability condition (12) in the Lévy-Khintchine theorem. This allows for the existence of Lévy
processes with jumps that are not absolutely summable.

4.3.3 DIRICHLET PROCESS

The Dirichlet process is commonly used in non-parametric Bayesian analysis (Ferguson, 1973,
1974) mainly due to its analytical tractability. When passing from prior to posterior computations,
it has been shown that the Dirichlet process is the only conjugate member of the whole class of
normalized random measures with independent increments (James et al., 2005) so the posterior can
be efficiently computed. Recently it has received much attention in the machine learning literature
(Blei and Jordan, 2006; Xing et al., 2004, 2006). Though Dirichlet processes are often defined
via Dirichlet distributions, they can also be defined as a normalized Gamma process as noted by
Ferguson (1973). A Gamma process is a pure jump Lévy process, which has the Lévy measure

ν(dw) = aw−1 exp{−bw}dw, w> 0,

so at each location u Zu ∼ Gamma(au,b). Suppose Zu is a Gamma(a,1) process defined on X =
[0,1], then

Z̃u = Zu/Z1

is the DP(adu) Dirichlet process. Since the Dirichlet process is a random measure on probability
distribution functions, it can be used when the target function f (x) is a probability density function.
Dirichlet processes can also be used to model a general smooth function f (x) in combination with
other random processes. For example, Liang et al. (2007) and Liang et al. (2006) consider a variation
of the integral (8)

f (x) =
Z

X
K(x,u)Z(du) =

Z

X
w(u)K(x,u)F(du), (17)

where the random signed measure Z(du) is modeled by a random probability distribution function
F(du) and random coefficients w(u). A Dirichlet process prior is specified for F and a Gaussian
prior distribution is specified for w.

4.3.4 SYMMETRIC α-STABLE PROCESS

Symmetric α-stable processes are another class of Lévy processes, arising from symmetric α-stable
distributions. The symmetric α-stable distribution has the following characteristic function:

ϕ(η) = exp(−γ|η|α),

γ is the dispersion parameter, and α ∈ (0,2] is the characteristic exponent. The case, when γ= 1 is
called the standard symmetric α-stable (SαS) distribution. It has the following Lévy measure

ν(dw) =
Γ(α+1)

π
sin

(
πα
2

)
|w|−1−αdw α ∈ (0,2].

Two important cases of SαS distributions are the Gaussian when α= 2 and the Cauchy when α= 1.
Thus SαS processes allow us to model heavy or light tail processes by varying α. One can verify
that the Lévy measure is infinite for 0 < α ≤ 2 since ν(R) =

R
R ν(dw) = 2

R
(0,∞]αw−1−α dw = ∞.

1782

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

Hence the process has an infinite number of jumps in any finite time interval. However by a limiting
argument, we can ignore the jumps of negligible size (say < ε). Hence our space reduces to

Γε = (−ε,ε)c× [0,1].

Given the jumps sizes {w j}, jump locations {u j}, and the number of jumps J, the prior probability
density function (15) is

π(Z) =
[
ΠJ
j=1|w j|

]1−α
e2(ε

−1−ε−α)αJ, |w j| ≥ ε (18)

with respect to a Cauchy random field.
Using this prior is essentially the same as using a penalty term in a regularization approach. For

the SαS process, we have

logπ(Z) ∝ J logα+(1−α)
(
∑
j
log |u j|1|u j|>ε

)
+ constant.

The first term is an AIC like penalty for the number of knots J and the second term is a LASSO-type
penalty in log-scale. There is also a hidden penalty which shrinks all the coefficients with magnitude
less than ε to zero.

4.4 Computational and Modeling Considerations

The computational and modeling issues involved in choosing process priors, especially in high
dimensional settings, are at the heart of non-parametric Bayesian modeling. In this section we
discuss these issues for the models discussed in the previous section.

A main challenge with Gaussian process models is that a finite dimensional representation of the
sample path is required for computation. For low dimensional problems (say d ≤ 3), a reasonable
approach is to place a grid on X . Then we can approximate a continuous process Z by its values on
the finitely many points {u j}mj=1 on the grid. Using this approximation, our kernel model (8) can be
written as

f (x) =
m

∑
j=1

w jK(x,u j),

and the implied prior distribution on (w1, . . . ,wm) is a multivariate normal with mean and covariance
structure as defined by the kernel K evaluated at points {u j}. For low-dimensional data a grid can
be placed on the input space. However, this approach is not practical in higher dimensions. This
issue is addressed in Gaussian process regression models by evaluating the function at the training
and future test data points. This corresponds to a fixed design setting. It is important to note
however, that the prior being sampled in this model is not over X but the restriction of X to the data.
Both the direct model and the kernel model will face this computational consideration and thus the
computational cost will not differ significantly between models.

For pure jump processes discretization is not the bottleneck. The nature of the pure jump process
ensures that the kernel model will have discrete knots. The key issue in using a pure jump processes
to model multivariate data is that the knots of the model should be representative of samples drawn
from the marginal distribution of the data ρX . This is a serious computational as well as modeling
challenge, it is obvious that independently sampling each dimension will typically not be a good

1783

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

idea either in terms of computational time or modeling accuracy. In Section 5.2 we provide a kernel
model that addresses this issue.

A theoretical and empirical comparison of the accuracy of the various process priors on a variety
of function classes and data sets would be of interest, but is beyond the scope of this paper. Due to
the extensive literature on Gaussian process models from theoretical as well as practical perspectives
(Rasmussen and Williams, 2006; Ghosal and Roy, 2006) our simulations will focus on two pure
jump process models.

5. Posterior Inference

For the case of regression our model is

yi = f (xi)+ εi for xi ∈ X

with {εi} as normal independent random variables and the unknown regression function f (which
is assumed to be in HK) is modeled as

f (x) =
Z

X
K(x,u)Z(du).

In the case of binary regression we can use a probit model

P(yi = 1|xi) =Φ[f (xi)],

where Φ[·] is the cumulative distribution function of the standard normal distribution.
In Section 4, we discussed specifying a prior on HK via the random measure Z(du). The ob-

served data add to our knowledge of both the “true function” f (·) and the distribution of Z(du).
This information is used to update the prior and obtain the posterior density π(Z|D). For pure jump
measures Z(du) and most non-parametric models this update is computationally difficult because
there is no closed-form expression for the posterior distribution. However, Markov chain Monte
Carlo (MCMC) methods can be used to simulate the posterior distribution.

We will apply a Dirichlet process model to a high-dimensional binary regression problem and
illustrate the use of Lévy process models on a univariate regression problem.

5.1 Lévy Process Model

Posterior inference for Lévy random measures have been less explored than Dirichlet and Gaussian
processes. Wolpert et al. (2003) is a recent comprehensive reference on this topic. We use the
methodology developed in this work for our model.

The random measure Z(du) is given by

Z(du) ∼ Lévy(ν(dw)du)

where
ν(dw) =

Γ(α+1)
π

sin
(
πα
2

)
|w|−1−α 1{w:|w|>ε} dw α ∈ (0,2]

is the Lévy measure (truncated) for the SαS process. As explained in Section 4.3.4, since ν(dw) is
not a finite measure on R, we ignore jumps of size smaller than ε. Any realization of the random

1784

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

measure Z(du) is an element of the parameter space Θ

Θ :=
∞[

J=0

(
(−ε,ε)c× [0,1]

)J

with the prior probability density function given by Equation(18), with respect to a Cauchy random
field.

5.1.1 TRANSITION PROBABILITY PROPOSAL

In this section, we describe an MCMC algorithm to simulate from Θ according to the posterior dis-
tribution. We construct an irreducible transition probability distribution Q(dθ∗|θ) on the parameter
space Θ such that the stationary distribution of the chain will be the posterior distribution.

Two different realizations from the parameter space Θmay not have the same number of jumps.
Hence the number of jumps J is modeled a birth-death process. At any iteration step t the parameter
space consists of J jump locations {u j} of size {w j}, θt = {w j,u j}Jj=1. The (weighted) transition
probability algorithm, Algorithm 1, computes the weighted transition probability to a new state θ∗
given the current state θ.

Algorithm 1: Weighted transition probability algorithm Q (θ).

input : 0< pb, pd < 1, τ> 0, current state θ ∈Θ

return: proposed new state θ∗ and its weighted transition probability Q(θ∗|θ)π(θ)

Draw t ∼U [0,1];
if t < 1− pb then

draw uniformly j ∈ {1, ...,J}; draw γ1,γ2 ∼ No(0,τ2);
w∗ ← w j + γ1; u∗ ← u j + γ2;
if (|w∗| < ε or t < pd) then

J← J−1; delete (w j,u j);
Q(θ∗|θ)π(θ) ← (J+1)pb

2ε−α
(
(1−pb−pd)

[
Φ(

w j+ε
τ)−Φ(

w j−ε
τ)

]
+pd

) ;

else
Q(θ∗|θ)π(θ) ←

∣∣∣w∗
w j

∣∣∣; w j ← w∗; u j ← u∗;

else
J← J+1; uJ ∼U [X]; wJ ∼ Birth;

Q(θ∗|θ)π(θ) ←
2ε−α

(
(1−pd−pb)

[
Φ(

wJ+ε
τ)−Φ(

wJ−ε
τ)

]
+pd

)

pbJ ;

In the above algorithm, No(0,τ2) denotes the normal distribution with mean 0 and variance τ2 and
Φ(·) denotes the distribution function of the standard normal distribution. The variables (pb, pd)
stand for probability of birth step and death step respectively. There is an implicit update step,
where a chosen point(u j) is ‘updated’ with another point(u∗) with probability 1− pb− pd . In the
birth step, a new point is sampled according to the density

α|w|−1−α

2ε−α
ε> 0.

1785

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

5.1.2 THE MCMC ALGORITHM

The MCMC algorithm, Algorithm 2, simulates draws from the posterior distribution. This is done
by Metropolis-Hastings sampling using the weighted transition probability algorithm above to gen-
erate a Markov chain whose equilibrium density is the posterior density.

Algorithm 2: MCMC algorithm

input : data D, number of iterations T , weighted transition probability algorithm Q (θ)

return: parameters drawn from the posterior {θi}Ti=1
J ∼ Po(2ε−α); // initialize J
for j← 1 to J do

// initialize θ(0)
u j ∼U [X]; w j ∼ Birth;

for t ← 1 to T do
// t-th iteration of the Markov chain
{θ∗,Q(θ∗|θt)π(θt)}← Q (θ(t)); // call the weighted transition probability

algorithm

logπ(θ∗|D)− logπ(θt |D) = log L(D|θ∗)L(D|θt) + log π(θ∗)π(θt) ;
ζ∗ ← logπ(θ∗|D)+ logQ(θt |θ∗)− logπ(θt |D)− logQ(θ∗|θt); // the

Metropolis-Hastings log acceptance probability

e∼ Ex(1);
if e+ζt+1 > 0 then θt+1 ← θ∗ else θt+1 ← θt ;

The MCMC algorithm will provide us with T realizations of the jump parameters {θt}Tt=1. We
assume that the chain reaches its stationary distribution after b iterations (b4 T). For each of the
T −b realizations, we have a corresponding function

f̂t(x) =
Jt
∑
i=1

witK(x,uit),

where for the t-th realization Jt is the number of jumps, wit is the magnitude of the i-th jump, and uit
is the position of the i-th jump. Point estimates can be made by averaging f̂ and credible intervals
can be computed from the distribution of f̂ to provide an estimate of uncertainty.

5.1.3 ILLUSTRATION ON SIMULATED DATA

Data is generated from a noisy sinusoid

f (xi) = sin(2πxi)+ εi for x ∈ [0,1], (19)

with εi
iid∼ No(0, .01), {xi}100i=1 points equally spaced in [0,1], and {yi}100i=1 are computed by Equa-

tion (19). We applied the SαS model with α = 1.5 and a Gaussian kernel K(x,u) = exp{(x−u)2}

1786

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

to this data. We set ε= 0.01 and (pb, pu, pd) = (0.4,0.2,0.4), in algorithms 1 and 2. In Figure 1a-d
we plot the target sinusoid, the function realized at an iteration t of the Markov chain, and the jump
locations and magnitudes of the random measure. In Figure 1e,f we provide a plot of the target
function, realization of the data, and the 95% point-wise credible band—the 95% credible interval
at each point xi.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a)
0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(b)

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(c)
0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(d)

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(e) (f)

Figure 1: Plots of the target sinusoid (solid line), the function realized at an iteration t of the Markov
chain (dashed line), and the jump locations and magnitudes of the measure (spikes) for (a)
t = 1, (b) t = 10, (c) t = 5×103, and (d) t = 104. (e) A realization of the simulated data
(circles) and the underlying target sinusoid (solid line). (f) The 95% point-wise credible
band for the data and the target sinusoid.

1787

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

5.2 Classification of Gene Expression Data

For Dirichlet processes there is extensive literature on exact posterior inference using MCMCmeth-
ods (West, 1992; Escobar and West, 1995; MacEachern and Müller, 1998; Müller et al., 2004) as
well as work on approximate inference using variational methods (Blei and Jordan, 2006). Recently
Dirichlet process priors have been applied to a Bayesian kernel model for high dimensional data.
For example in Liang et al. (2006) and Liang et al. (2007) the Bayesian kernel model was used to
classify gene expression data as well as digits, the MNIST database. We apply this model to gene
expression data consisting of microarray gene expression profiles from 190 cancer samples and 90
normal samples (Ramaswamy et al., 2001; Mukherjee et al., 2003), over 16,000 genes.

The model is based upon the integral operator given in Equation (17)

f (x) =
Z

X
K(x,u)Z(du) =

Z

X
w(u)K(x,u)F(du),

where the random signed measure Z(du) is modeled by a random probability distribution function
F(du) and a random weight function w(u). We assume that the support of Z(du) and w(u)F(du)
are equal. A key point in our model will be that if our estimate of F is discrete and puts masses wi
at support points (or “knots”) ui, then the expression for f (·) is simply

f (x) =∑
i
w(ui)K(x,ui).

The above model, in which basis functions are placed at random locations and a joint distribution is
specified for the coefficients, has been considered previously in the literature (see Neal, R. M. 1996
and Liang et al. 2007). In Liang et al. (2007) uncertainty about F is expressed using a Dirichlet
process prior, Dir(α,F0). The posterior after marginalization is also a Dirichlet distribution and
given data (x1, . . . ,xn) the posterior will have the following representation (Liang et al., 2007, 2006)

f̂ (x) =
α

α+n

Z
w(u)K(x,u)F0(du)+

1
α+n

n

∑
i=1

w(xi)K(x,xi),

which can be approximated by the following discrete summation

f̂ (x) ≈
n

∑
i=1

wiK(x,xi) (20)

when α
n is small and wi =

w(xi)
α+n . We specify a mixture-normal prior on the coefficients wi as in Liang

et al. (2007) and use the same MCMC algorithm to simulate the posterior.
Note that although Equation (20) has the same form as the representer theorem, it is derived

from a very different formulation. In fact, when there is unlabeled data available—(xn+1, . . . ,xn+m)
drawn from the margin ρX—our model has the following discrete representation

f̂ (x) =
n

∑
i=1

wiK(x,xi)+
m

∑
i=1

wi+nK(x,xi+n),

where w! = w(x!)
α+m+n . The above form is identical to the one obtained via the manifold regularization

framework (Belkin and Niyogi, 2004; Belkin et al., 2006). The two derivations are from different

1788

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

perspectives. This simple incorporation of unlabeled data into the model further illustrates the
advantage of placing the prior over random measures in the Bayesian kernel model.

In our experiments we first applied a standard variation filter to reduce the number of genes to
p = 2800. We then randomly assigned 20% of the samples from the cancer and normal groups to
training data and use the remaining 80% as test data. We used a linear kernel in the model and we
used the classification model detailed in Liang et al. (2007).

We performed two analyses on this data:

Analysis I—The training data were used in the model and the posterior probability was sim-
ulated for each point in the test set. A linear kernel was used.

Analysis II—The training and unlabeled test data were used in the model and the posterior
probability was simulated for each point in the test set. A linear kernel was used.

The classification accuracy for Analyses I and II were 73% and 85%, respectively. The accuracy
of the predictive models in Analysis I is comparable to that obtained for support vector machines in
Mukherjee et al. (2003). Figure 2 displays boxplots of the posterior mean of the 72 the normal and
152 cancer samples for the two analyses.

Analysis I Analysis II

0

0.2

0.4

0.6

0.8

1

72 Normal Samples

Analysis I Analysis II

0

0.2

0.4

0.6

0.8

1

152 Cancer Samples

Figure 2: Boxplots of the posterior mean for normal and cancer samples with just the training data
(Analysis I) and the training and unlabeled test data (Analysis II). (In the above boxplots,
the box ranges from the first quartile (F.Q.) to the third quartile (T.Q.) of the data, while
the line shows the median. The dots denote the outliers, which are points which lie beyond
1.5*(T.Q. - F.Q.) on either side of the box.)

1789

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

6. Discussion

The modeling objective underlying this paper is to formulate a coherent Bayesian perspective for
regression using a RHKS model. This requires a firm theoretical foundation characterizing the
function space that the Bayesian kernel model spans and the relation of this space to the RKHS. Our
results in Section 2 are interesting in their own right, in addition to providing this foundation.

We examined the function class defined by the Bayesian kernel model, the integral of a kernel
with respect to a signed Borel measure

G =
{
f
∣∣∣ f (x) =

Z

X
K(x,u) γ(du), γ ∈ Γ

}
,

where Γ ⊆ B(X). We stated an equivalence under certain conditions of the function class G and
the RKHS induced by the kernel. This implies: (a) a theoretical foundation for the use of Gaus-
sian processes, Dirichlet processes, and other jump processes for non-parametric Bayesian kernel
models, (b) an equivalence between regularization approaches and the Bayesian kernel approach,
and (c) an illustration of why placing a prior on the distribution is natural approach in Bayesian
non-parametric modelling.

Coherent non-parametric methods have been of great interest in the Bayesian community, how-
ever function analytic issues have not been considered. Conversely theoretical studies of RKHS
have not approached the approximation and estimation problems from a Bayesian perspective (the
exception to both of these are the works of Wahba 1990 and Diaconis 1988). It is our view that the
interface of these perspectives is a promising area of research for statisticians, computer scientists,
and mathematicians and has both theoretical and practical implications.

A better understanding of this interface may lead to a better understanding of the following
research problems:

1. Posterior consistency: It is natural to expect the posterior distribution to concentrate around
the true function since the posterior distribution is a probability measure on the RKHS. A
natural idea is to use the equivalence between the RKHS and our Bayesian model to exploit
the well understood theory of RKHS in proving posterior consistency of the Bayesian ker-
nel model. Tools such as concentration inequalities, uniform Glivenko-Cantelli classes, and
uniform central limit theorems may be helpful.

2. Priors on function spaces: In this paper we discuss general function classes without concern
for more subtle smoothness properties. An obvious question is can we use the same ideas
to relate priors on measures and the kernel to specific classes of functions, such as Sobolev
spaces. A study of the relation between integral operators and priors could lead to interesting
and useful results for putting priors over specific function classes using the kernel model.

3. Comparison of process priors for modeling: A theoretical and empirical comparison of the
accuracy of the various process priors on a variety of function classes and data sets would be
of great practical importance and interest, especially for high dimensional problems.

4. Numerical stability and robust estimation: The original motivation for regularization methods
was to provide numerical stability in solving Fredholm integral equation of the first kind.
Our interest is that of providing robust non-parametric statistical estimates. A link between
stability of operators and the generalization or predictive ability of regression estimates is

1790

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

known (Bousquet and Elisseeff, 2002; Poggio et al., 2004). Further developing this relation
is a very interesting area of research and may be of importance for the posterior consistency
of the Bayesian kernel model.

Acknowledgments

We would like to thank the reviewers for many useful suggestions and comments. FL would like
to acknowledge NSF grant DMS 0406115. SM and QW would like to acknowledge support for
this project from the Institute for Genome Sciences & Policy at Duke as well as the NIH grant P50
HG 03391-02 for the Center for Public Genomics. RW would like to acknowledge NSF grants
DMS–0112069 and DMS–0422400. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

Appendix A. Proofs of Propositions

In this appendix we provide proofs for the propositions in Section 2.

A.1 Proof for Proposition 4

It holds that

‖LK [γ]‖2K‖ = ‖∑
j∈Λ

λ ja jφ j‖2K = ∑
j∈Λ

(λ ja j)2

λ j
= ∑

j∈Λ
λ ja2j

which is upper bounded by λ1∑ j a2j < ∞. HenceLK [γ] ∈ HK . By direct computation, we have

〈LK [γ],γ〉2 =
〈
∑λ jakφ j,∑a jφ j

〉
2 =∑λka2j = ‖LK [γ]‖2K .

A.2 Proof for Corollary 5

The first claim is obvious since both LK [L2(X ,du)] and HK are the same finite dimensional space
spanned by

{
φ j

}
j∈Λ.

The second claim follows from the existence of the sequence (c j) j∈Λ such that

∑
j∈Λ

c2j
λ j

< ∞ and ∑
j∈Λ

c2j
λ2j

= ∞.

For any such sequence, the function f = ∑ j∈Λ c jφ j lies in HK . But by Proposition 4, one cannot
find a γ ∈ L2(X ,du) such thatLK [γ] = f . A simple example is (c j) j∈Λ = (λ j) j∈Λ.

If K is strictly positive definite, then all its eigenvalues are positive. So the last claim holds.

A.3 Proof for Proposition 6

Since K(u,v) is continuous on the compact set X ×X , it has a finite maximum κ2 := supu,vK(u,v) <

∞. Since L2(X ,du) is dense in L1(X ,du), for every γ ∈ L1(X ,du), there exists a Cauchy sequence

1791

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

{γn}n≥1 ⊂ L2(X ,du) which converges to γ in L1(X ,du). It follows from Proposition 4 thatLK [γn]∈
HK and

‖LK [γn]‖2K =
Z

X

Z

X
K(u,v)γn(u)duγn(v)dv≤ κ2

Z

X
|γn(u)|du

Z

X
|γn(v)|dv= κ2‖γn‖21 < ∞.

Therefore we have {LK [γn]}n≥1 ⊂ HK and

lim
n→∞

sup
m>n

‖LK [γn]−LK [γm]‖K ≤ lim
n→∞

sup
m>n

κ‖γn− γm‖1 = 0,

so {LK [γn]}n≥1 is a Cauchy sequence in HK . By completeness it converges to some f ∈ HK . The
proof will be finished if we showLK [γ] = f .

By the reproducing property of HK convergence in the RKHS norm implies point-wise conver-
gence for x ∈ X , so LK [γn](x) → f (x) for every x.

In addition, for every x ∈ X , we have

lim
n→∞

|LK [γn](x)−LK[γ](x)| ≤
Z

X
|K(x,u)(γn(u)− γ(u))|du≤ κ2‖γn− γ‖1 = 0,

which implies thatLK [γn](x) also converges toLK [γ](x). HenceLK [γ] = f ∈ HK .

A.4 Proof for Proposition 7

Let γ= ∑ciδxi ∈ MD. ThenLK [γ] = ∑ciKxi and

‖LK [γ]‖2K =∑
i, j
ciK(xi,x j)c j ≤ κ2

(

∑
i
|ci|

)2

< ∞.

Therefore, our conclusion holds.

A.5 Proof for Proposition 9

The arguments for Lebesgue measure hold if we replace the Lebesgue measure with any finite Borel
measure. We denote the corresponding integral operator as LK,µ and function space of integrable
and square integrable functions as L1µ(X) and L2µ(X) respectively. Then

L2µ(X) ⊂ L1µ(X) ⊂ L−1K,µ(HK).

Since the function 1X (x) = 1 lies in L1µ(X) we obtain

LK(µ) = LK,µ(1X) =
Z

X
K(·,u)dµ(u) ∈ HK .

This impliesB+(X) lies in L−1K (HK) and so doesB(X).

Appendix B. Multivariate Version of Lévy-Khintchine Formula

Here we give the statement of the multivariate version of the Lévy-Khintchine formula (Applebaum,
2004, Corollary 2.4.20).

1792

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

Theorem 16 (Lévy-Khintchine) Let X be a d-dimensional Lévy process with characteristic func-
tion φt(u) := E(ei〈u,Xt〉),u ∈ Rd . Then there exists a unique vector a ∈ Rd , a d× d semi-positive
definite matrix σ, and ν a positive measure on Rd\0 with

R
Rd (1∧|u|2)ν(du) < ∞ such that,

φt(u) = exp
{
t
[
i〈u,a〉− 1

2
〈u,σu〉+

Z

Rd\0
[ei〈u,s〉−1− i〈u,s〉1{s:|s|<1}(s)]ν(ds)

]}

where 〈·, ·〉 denotes the standard inner product in Rd .

The results we have presented extend to the multivariate case without complication. The sim-
plest multivariate extension is to assume independence of the dimensions, however for small sample
sizes and many dimensions this is not practical. This issue can be addressed by carefully inducing
covariance structure in the model (Liang et al., 2007, 2006).

References

David Applebaum. Lévy Processes and Stochasitic Calculus. Cambridge Studies in Advanced
Mathematics. Cambridge Univ. Press, Cambridge, UK, 2004.

Nachman Aronszajn. Theory of reproducing kernels. T. Am. Math. Soc., 686:337–404, 1950.

Mikhail Belkin and Partha Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
Learning, 56(1-3):209–239, 2004.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. J. Mach. Learn. Res., 7:2399–2434,
2006.

David M. Blei and Michael I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian
Anal., 1(1):121–143 (electronic), 2006.

Olivier Bousquet and André Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499–
526, 2002.

Sounak Chakraborty, Malay Ghosh, and Bani K. Mallick. Bayesian non-linear regression for large
p small n problems. J. Am. Stat. Assoc., 2005. Under revision.

Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

Felipe Cucker and Stephen Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39:1–49, 2001.

Carl de Boor and Robert E. Lynch. On splines and their minimum properties. J. Math. Mech., 15:
953–969, 1966.

Ronald A. DeVore, Ralph Howard, and Charles A. Micchelli. Optimal nonlinear approximation.
Manuskripta Mathematika, 1989.

1793

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

Persi Diaconis. Bayesian numerical analysis. In Shanti S. Gupta and James O. Berger, editors,
Statistical decision theory and related topics, IV, volume 1, pages 163–175. Springer-Verlag,
New York, NY, 1988.

Michael D. Escobar and Mike West. Bayesian density estimation and inference using mixtures.
J. Am. Stat. Assoc., 90:577–588, 1995.

Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and sup-
port vector machines. Advances in Computational Mathematics, 13:1–50, 2000.

Thomas S. Ferguson. Prior distributions on spaces of probability measures. Ann. Stat., 2:615–629,
1974.

Thomas S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Stat., 1:209–230,
1973.

Erik Ivar Fredholm. Sur une nouvelle méthode pour la résolution du problèm de Dirichlet. Eu-
vres complètes:publiées sous les auspices de la Kungliga svenska vetensakademien par l’Institut
Mittag-Leffler, pages 61–68, 1900.

Subhashis Ghosal and Anindya Roy. Posterior consistency of Gaussian process prior for nonpara-
metric binary regression. Ann. Statist., 34(5):2413–2429, 2006.

Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. Prince-
ton University Bulletin, pages 49–52, 1902.

Jaroslav Hájek. On linear statistical problems in stochastic processes. Czechoslovak Math. J., 12
(87):404–444, 1962.

Jaroslv Hájek. On a property of normal distributions of any stochastic process. Select. Transl. Math.
Statist. and Probability, 1:245–252, 1961.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer-Verlag, 2001.

Lancelot F. James, Antonio Lijoa, and Igor Prünster. Conjugacy as a distinctive feature of the
Dirichlet process. Scand. J. Stat., 33:105–120, 2005.

Iain Johnstone. Function estimation in Gaussian noise: sequence models. Draft of a monograph,
1998.

Gopinath Kallianpur. The role of reproducing kernel Hilbert spaces in the study of Gaussian pro-
cesses. Advances in Probability and Related Topics, 2:49–83, 1970.

Hermann König. Eigenvalue distribution of compact operators, volume 16 of Operator Theory:
Advances and Applications. Birkhäuser, Basel, CH, 1986.

George S. Kimeldorf and GraceWahba. A correspondence between Bayesian estimation on stochas-
tic processes and smoothing by splines. Ann. Math. Statist., 41(2):495–502, 1971.

1794

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

Feng Liang, Sayan Mukherjee, and Mike West. Understanding the use of unlabelled data in predic-
tive modeling. Stat. Sci., 2006. To appear.

Feng Liang, Ming Liao, Kai Mao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian
kernel models. Discussion Paper 2007-10, Duke University ISDS, Durham, NC, 2007. URL
{\emwww.stat.duke.edu/research/papers/}.

Milan N. Lukić and Jay H. Beder. Stochasitic processes with sample paths in reproducing kernel
Hilbert spaces. T. Am. Math. Soc., 353(10):3945–3969, 2001.

Stephen MacEachern and Peter Müller. Estimating mixture of Dirichlet process models. J. Comput.
Graph. Stat., pages 223–238, 1998.

Vladimir G. Mazja. Sobolev Spaces. Springer-Verlag, New York, NY, 1985.

Peter Müller, Fernando Quintana, and Gary Rosner. A method for combining inference across
related nonparametric Bayesian models. J. Am. Stat. Assoc., pages 735–749, 2004.

James Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society, London A, 209:415–446,
1909.

Charles A. Micchelli and Grace Wahba. Design problems for optimal surface interpolation. In Zvi
Ziegler, editor, Approximation Theory and Applications, pages 329–348, 1981.

Sayan Mukherjee, Pablo Tamayo, Simon Rogers, Ryan M. Rifkin, Anna Engle, Colin Campbell,
Todd R. Golub, and Jill P. Mesirov. Estimating dataset size requirements for classifying DNA
Microarray data. Journal of Computational Biology, 10:119–143, 2003.

Neal, R. M. Bayesian Learning for Neural Networks. Springer, New York, 1996. Lecture Notes in
Statistics 118.

Emanuel Parzen. Probability density functionals and reproducing kernel Hilbert spaces. In Murray
Rosenblatt, editor, Proceedings of the Symposium on Time Series Analysis, pages 155–169, New
York, NY, 1963. John Wiley & Sons.

Tomaso Poggio and Federico Girosi. Regularization algorithms for learning that are equivalent to
multilayer networks. Science, 247:978–982, 1990.

Tomaso Poggio, Ryan M. Rifkin, Sayan Mukherjee, and Partha Niyogi. General conditions for
predictivity in learning theory. Nature, 428:419–422, 2004.

Sridhar Ramaswamy, Pablo Tamayo, Ryan M. Rifkin, Sayan Mukherjee, Chen-Hsiang Yeang,
Michael Angelo, Christine Ladd, Michael Reich, Eva Latulippe, Jill P. Mesirov, Tomaso Pog-
gio, William Gerald, Massimo Loda, Eric S. Lander, and Todd R. Golub. Multiclass cancer
diagnosis using tumor gene expression signatures. Proc. Nat. Aca. Sci., 98:149–54, 2001.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA, 2006.

1795

PILLAI, WU, LIANG, MUKHERJEE AND WOLPERT

L. Chris G. Rogers and David Williams. Diffusions, Markov Processes, and Martingales, volume 2.
John Wiley & Sons, New York, NY, 1987. ISBN 0-471-91482-7.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2001.

Isaac J. Schoenberg. Positive definite functions on spheres. Duke Mathematics Journal, 9:96–108,
1942.

John S. Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univ.
Press, Cambridge, UK, 2004.

Peter Sollich. Bayesian methods for support vector machines: Evidence and predictive class prob-
abilities. Machine Learning, 46(1-3):21–52, 2002.

Andrei Nikolaevich Tikhonov. Solution of incorrectly formulated problems and the regularization
method. Soviet Doklady, 4:1035–1038, 1963.

Michael E. Tipping. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn.
Res., 1:211–244, 2001.

Chong Tu, Merlise A. Clyde, and Robert L. Wolpert. Lévy adaptive regression kernels. Discussion
Paper 2006-08, Duke University ISDS, Durham, NC, 2006. URL http://www.stat.duke.
edu/research/papers/.

Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, NY, 1998.

GraceWahba. Splines Models for Observational Data, volume 59 of Series in Applied Mathematics.
SIAM, Philadelphia, PA, 1990.

GraceWahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV.
In Bernhard Schölkopf, Alexander J. Smola, Christopher J. C. Burges, and Rosanna Soentpiet,
editors, Advances in Kernel Methods: Support Vector Learning, pages 69–88. MIT Press, Cam-
bridge, MA, 1999.

Larry Wasserman. All of Nonparametric Statistics. Springer-Verlag, 2005.

Mike West. Hyperparameter estimation in Dirichlet process mixture models. Discussion Paper
1992-03, Duke University ISDS, Durham, NC, 1992. URL http://www.stat.duke.edu/
research/papers/.

Robert L. Wolpert and Katja Ickstadt. Reflecting uncertainty in inverse problems: A Bayesian
solution using Lévy processes. Inverse Problems, 20(6):1759–1771, 2004.

Robert L. Wolpert, Katja Ickstadt, and Martin Bøgsted Hansen. A nonparametric Bayesian ap-
proach to inverse problems (with discussion). In José Miguel Bernardo, Maria Jesus Bayarri,
James O. Berger, A. Phillip Dawid, David Heckerman, Adrian F. M. Smith, and Mike West,
editors, Bayesian Statistics 7, pages 403–418, Oxford, UK, 2003. Oxford Univ. Press. ISBN
0-19-852615-6.

1796

CHARACTERIZING THE FUNCTION SPACE FOR BAYESIAN KERNEL MODELS

Eric P. Xing, Roded Sharan, and Michael I. Jordan. Bayesian haplotype inference via the Dirichlet
process. In Carla E. Brodley, editor, Machine Learning, Proceedings of the 21st International
Conference (ICML 2004), Banff, Canada, New York, NY, 2004. ACM Press. URL http://www.
aicml.cs.ualberta.ca/_banff04/icml/pages/accepted.htm.

Eric P. Xing, Kyung-Ah Sohn, Michael I. Jordan, and Yee-Whye Teh. Bayesian multi-population
haplotype inference via a hierarchical Dirichlet process mixture. In William Cohen and Andrew
Moore, editors, Machine Learning, Proceedings of the 23rd International Conference (ICML
2006), Pittsburgh, PA, New York, NY, 2006. ACM Press. URL http://www.icml2006.org/
icml2006/technical/accepted.html.

Ding-Xuan Zhou. Capacity of reproducing kernel spaces in learning theory. IEEE T. Inform. Theory,
49:1743–1752, 2003.

1797

Journal of Machine Learning Research 8 (2007) 1799-1833 Submitted 09/06; Revised 5/07; Published 8/07

“Ideal Parent” Structure Learning for
Continuous Variable Bayesian Networks

Gal Elidan GALEL@CS.STANFORD.EDU
Department of Computer Science
Stanford University
Stanford, CA 94305, USA

Iftach Nachman INACHMAN@CGR.HARVARD.EDU
FAS Center for Systems Biology
Harvard University
Cambridge, MA 02138, USA

Nir Friedman NIR@CS.HUJI.AC.IL
School of Computer Science and Engineering
Hebrew University
Jerusalem 91904, Israel

Editor: David Maxwell Chickering

Abstract
Bayesian networks in general, and continuous variable networks in particular, have become increas-
ingly popular in recent years, largely due to advances in methods that facilitate automatic learning
from data. Yet, despite these advances, the key task of learning the structure of such models re-
mains a computationally intensive procedure, which limits most applications to parameter learning.
This problem is even more acute when learning networks in the presence of missing values or hid-
den variables, a scenario that is part of many real-life problems. In this work we present a general
method for speeding structure search for continuous variable networks with common parametric
distributions. We efficiently evaluate the approximate merit of candidate structure modifications
and apply time consuming (exact) computations only to the most promising ones, thereby achiev-
ing significant improvement in the running time of the search algorithm. Our method also naturally
and efficiently facilitates the addition of useful new hidden variables into the network structure, a
task that is typically considered both conceptually difficult and computationally prohibitive. We
demonstrate our method on synthetic and real-life data sets, both for learning structure on fully and
partially observable data, and for introducing new hidden variables during structure search.
Keywords: Bayesian networks, structure learning, continuous variables, hidden variables

1. Introduction

Probabilistic graphical models have gained wide-spread popularity in recent years with the advance
of techniques for learning these models directly from data. The ability to learn allows us to over-
come lack of expert knowledge about domains and adapt models to a changing environment, and can
also lead to scientific discoveries. Indeed, Bayesian networks in general, and continuous variable

A preliminary version of this paper appeared in the Proceedings of the Twentieth Conference on Uncertainty in
Artificial, 2004 (UAI ’04).

c©2007 Gal Elidan, Iftach Nachman and Nir Friedman.

ELIDAN, NACHMAN AND FRIEDMAN

networks in particular, are now being used in a wide range of applications, including fault detection
(e.g., U. Lerner and Koller, 2000), modeling of biological systems (e.g., Friedman et al., 2000) and
medical diagnosis (e.g., Shwe et al., 1991).

A key task in learning these models from data is adapting the structure of the network based on
observations. This NP-complete problem (Chickering, 1996a) is typically treated as a combinatorial
optimization problem that is addressed by heuristic search procedures, such as greedy hill climbing.
This procedure examines local modifications to single edges at each step, evaluates them using
some score, and proceeds to apply the one that leads to the largest improvement in score, until a
local maximum is reached. Even with this simple approach structure learning is computationally
challenging for all but small networks due to the large number of possible modifications that can be
evaluated, and the cost of evaluating each one. To make things worse, the problem is even harder in
the (realistic) presence of missing values, as non-linear optimization is required to evaluate different
structure modification candidates during the search. Learning is particularly problematic when we
also want to allow for hidden variables and want to effectively add them during the learning process.
Thus, in practice, most applications are still limited to parameter estimation.

Of particular interest to us is learning continuous variable networks, which are crucial for a wide
range of real-life applications. One case that received scrutiny in the literature is learning linear
Gaussian networks (Geiger and Heckerman, 1994; Lauritzen and Wermuth, 1989). In this case,
we can use sufficient statistics to summarize the data, and a closed form equation to evaluate the
score of candidate structure modifications. In general, however, we are also interested in non-linear
interactions. These do not have sufficient statistics, and require applying parameter optimization
to evaluate the score of candidate structures. These difficulties severely limit the applicability of
standard heuristic structure search procedures to rich non-linear models.

In this work, we present a general method for speeding structure search for continuous variable
networks. In contrast to innovative structure learning methods that modify the space explored by the
search algorithm (e.g., Chickering, 1996b; Moore and Wong, 2003; Teyssier and Koller, 2005), our
method leverages on the parametric structure of the conditional distributions in order to efficiently
approximate the benefit of an individual structure candidate. As such, our method can be used to
speed up many existing structure learning algorithms and heuristics.

The basic idea is straightforward and is inspired from the notion of residues in regression (Mc-
Cullagh and Nelder, 1989). For each variable, we construct an ideal parent profile of a new hypo-
thetical parent that would lead to the best possible prediction of that variable. Intuitively, a candidate
parent of a variable is useful if it is similar to the ideal parent. Using basic principles, we derive a
similarity measure for efficiently comparing a candidate parent to the ideal profile. We show that this
measure approximates the improvement in score that would result from the addition of that parent
to the network structure. This provides us with a fast method for scanning many potential parents
and focuses more careful evaluation (exact scoring) on a smaller number of promising candidates.

The ideal parent profiles we construct during search also provide new leverage on the problem
of introducing new hidden variables during structure learning. Basically, if the ideal parent profiles
of several variables are sufficiently similar, and are not similar to one of their current parents, we
can consider adding a new hidden variable that serves as a parent of all these variables. The ideal
profile allows us to estimate the impact this new variable will have on the score, and suggest the
values it takes in each instance. The method therefore provides a guided approach for introduc-
ing new variables during search and allows for contrasting them with alternative search steps in a
computationally efficient manner.

1800

THE “IDEAL PARENT” ALGORITHM

We apply our method using linear Gaussian and non-linear Sigmoid Gaussian conditional prob-
ability distributions to several tasks: learning structure with complete data; learning structure with
missing data; and learning structure while allowing for the automatic introduction of new hidden
variables. We evaluate all tasks on both realistic synthetic experiments and real-life problems in the
field of computational biology.

The rest of the paper is structured as follows: In Section 2 we provide a brief summary of con-
tinuous variable networks. In Section 3 we present the “Ideal Parent” concept as it applies to the
simple case of linear Gaussian models. In Section 4 we discuss how our method is used within a
structure learning algorithm. In Section 5 we show how our method can be leveraged in order to
introduce new useful hidden variables during learning, and in Section 6 we discuss the computa-
tional modifications needed to address both the presence of missing values and hidden variables. In
Section 7 we show how our entire framework can be generalized to the challenging case of more
general non-linear distributions. In Section 8 we present a further extension to conditional proba-
bility distributions that use non-additive noise models. In Section 9 we present our experimental
results for both synthetic and real-life data. We conclude with a discussion of related works and
future directions in Section 10.

2. Continuous Variable Networks

Consider a finite set X = {X1, . . . ,Xn} of random variables. A Bayesian network (BN) is an an-
notated directed acyclic graph G that represents a joint probability distribution over X . The nodes
of the graph correspond to the random variables and are annotated with a conditional probability
density (CPD) of the random variable given its parents Ui in the graph G. The joint distribution is
the product over families (variable and its parents)

P(X1, . . . ,Xn) =
n

∏
i=1

P(Xi|Ui).

The graph G represents independence properties that are assumed to hold in the underlying distri-
bution: Each Xi is independent of its non-descendants given its parents Ui.

Unlike the case of discrete variables, when the variable X and some or all of its parents are
real valued, there is no representation that can capture all conditional densities. A common choice
is the use of linear Gaussian conditional densities (Geiger and Heckerman, 1994; Lauritzen and
Wermuth, 1989), where each variable is a linear function of its parents with Gaussian noise. When
all the variables in a network have linear Gaussian conditional densities, the joint density over X
is a multivariate Gaussian (Lauritzen and Wermuth, 1989). In many real world domains, such as
in neural or gene regulation network models, the dependencies are known to be non-linear (for
example, a saturation effect is expected). In these cases, we can still use Gaussian conditional
densities, but now the mean of the density is expressed as a non-linear function of the parents (for
example, a sigmoid).

Given a training data setD = {x[1], . . . ,x[M]}, where themth instance x[m] assigns values to the
variables in X , the problem of learning a Bayesian network is to find a structure and parameters that
maximize the likelihood ofD given the graph, typically along with some regularization constraints.
Given a data set D and a network structure G, we define

!(D : G,θ) = logP(D : G,θ) =∑
m
logP(x[m] : G,θ)

1801

ELIDAN, NACHMAN AND FRIEDMAN

Algorithm 1: Greedy Hill-Climbing Structure Search for Bayesian Networks
Input : D // training set

G0 // initial structure
Output : A final structure G

Gbest ← G0
repeat

G← Gbest
foreach Operator Add,Delete,Reverse,Replace edge in G do
if Operator does not create a directed cycle then

G ′ ← ApplyOperator(G)
if Score(G ′ : D) > Score(Gbest : D) then

Gbest ← G ′

end
end

end foreach
until Gbest == G
return Gbest

to be the log-likelihood function, where θ are the model parameters. In estimating the maximum
likelihood parameters of the network, we aim to find the parameters θ̂ that maximize this likelihood
function. When the data is complete (all variables are observed in each instance), the log-likelihood
can be rewritten as a sum of local likelihood functions,

!(D : G,θ) =∑!i(D : Ui,θi)

where !i(D :Ui,θi) is a function of the choice ofUi and the parameters θi of the corresponding CPD:
it is the log-likelihood of regressing Xi on Ui in the data set with the particular choice of CPD. Due
to this decomposition, we can find the maximum likelihood parameters of each CPD independently
by maximizing the local log-likelihood function. For some CPDs, such as linear Gaussian ones,
there is a closed form expression for the maximum likelihood parameters. In other cases, finding
these parameters is a continuous optimization problem that is typically addressed by gradient based
methods.

Learning the structure of a network is a significantly harder task. The common approach is to
introduce a scoring function that balances the likelihood of the model and its complexity and then
attempt to maximize this score using a heuristic search procedure that considers local changes (e.g.,
adding and removing edges). A commonly used score is the Bayesian Information Criterion (BIC)
score (Schwarz, 1978)

BIC(D,G) =max
θ

!(D : G,θ)− logM
2

Dim[G] (1)

where M is the number of instances in D , and Dim[G] is the number of parameters in G. The BIC
score is actually an approximation to the more principled full Bayesian score, that integrates over all
possible parameterizations of the CPDs. While a closed form for the Bayesian score, with a suitable
prior, is known for Gaussian networks (Geiger and Heckerman, 1994), numerical computation of

1802

THE “IDEAL PARENT” ALGORITHM

this score is extremely demanding for the non-linear case. Thus, we adopt the common approach
and focus on the BIC approximation from here on.

A common search procedure for optimizing the score is the greedy hill-climbing procedure
outlined in Algorithm 1. This procedure can be augmented with mechanisms for escaping local
maxima, such as random walk perturbations upon reaching a local maxima (also known as random
restarts), and using a TABU list (Glover and Laguna, 1993).

3. The “Ideal parent” Concept

Our goal is to speed up a generic structure search algorithm for a Bayesian network with continuous
variables. The complexity of any such algorithm is rooted in the need to score each candidate
structure change, which in turn may require non-linear parameter optimization. Thus, we want to
somehow efficiently approximate the benefit of each candidate and score only the most promising of
these candidates. The manner in which this helps us to discover new hidden variables will become
evident in Section 5.

3.1 Basic Framework

Consider adding Z as a new parent of X whose current parents in the network areU. Given a training
data D of M instances, to evaluate the change in score, when using the BIC score of Eq. (1), we
need to compute the change in the log-likelihood

ΔX |U(Z) = max
θX |U,Z

!X(D : U∪{Z},θX |U,Z)− !X(D : U, θ̂X |U) (2)

where θ̂X |U are the maximum likelihood parameters of X given U and θX |U,Z are the parameters for
the family where Z is an additional parent of X . The change in the BIC score is this difference
combined with the change in the model complexity penalty terms. Thus, to evaluate this difference,
we need to compute the maximum likelihood parameters of X given the new choice of parents. Our
goal is to speed up this computation.

The basic idea of our method is straightforward. For a given variable, we want to construct a
hypothetical ideal parent Y that would best predict the variable. We will then compare each existing
candidate parent Z to this imaginary one using a similarity measure C("y,"z) (which we describe
below). Finally, we will fully score only the most promising candidates: those that are most similar
to the ideal parent. Figure 1 illustrates this process. In order for this approach to be beneficial,
we want the similarity score to approximate the actual change in likelihood defined in Eq. (2).
Furthermore, we want to be able to compute the similarity measure in a fraction of the time it takes
to fully score a candidate parent.

3.1.1 CONDITIONAL PROBABILITY DISTRIBUTION

To make our discussion concrete, we focus on networks where we represent X as a function of its
parents U = {U1, . . . ,Uk} with a conditional probability distribution (CPD) that has the following
general form:

X = g(α1u1, . . . ,αkuk : θ)+ ε (3)

1803

ELIDAN, NACHMAN AND FRIEDMAN

U

X

U

X

U

X

Z2

Y

Z1

Z2

(a)

(b)

(c)

(d)

Figure 1: The “Ideal Parent” Concept: Illustration of the “Ideal Parent” approach for a variable
with a single parent U and a linear Gaussian conditional distribution. The top panel of
(a) shows the profile (assignment in all instances) of the parent. The panel below shows
the profile of the child node along with the profile predicted for the child based on its
parent (dotted red). (b) shows the profile of the ideal hypothetical parent that would lead
to zero error in prediction of the child variable if added to the current model. In the linear
Gaussian case, this profile is simply the residual of the two curves shown in (a). (c) shows
the profiles of two candidate parents, compared to the profile of the ideal parent (dotted
black). (d) shows the child profile along with its prediction based on the original parent
and the new chosen parent from the candidate in (c) that was most similar to the ideal
profile of (b). Note that the prediction is not perfect as the profile of the parent chosen
does not, in general, match the profile of the ideal parent exactly.

1804

THE “IDEAL PARENT” ALGORITHM

where g is a link function that integrates the contributions of the parents with additional parameters
θ, αi that are scale parameters applied to each of the parents, and ε that is a noise random variable
with zero mean. In the following discussion, we assume that ε is Gaussian with variance σ2.

When the function g is the sum of its arguments, this CPD is the standard linear Gaussian CPD.
However, we can also consider non-linear choices of g. For example,

g(α1u1, . . . ,αkuk : θ) ≡ θ1
1

1+ e−∑iαiui
+θ0 (4)

is a sigmoid function where the response of X to its parents’ values is saturated when the sum is far
from zero.

3.1.2 LIKELIHOOD FUNCTION

Given the above form of CPDs, we can now write a concrete form of the log-likelihood function

!X(D : U,θ) = −1
2

M

∑
m=1

[
log(2π)+ log(σ2)+

1
σ2

(x[m]−g(u[m]))2
]

= −1
2

[
M log(2π)+M log(σ2)+

1
σ2∑m

(x[m]−g(u[m]))2
]

(5)

where, for simplicity, we absorbed each scaling factor α j into each value of u j[m]. Similarly, when
the new parent Z is added with coefficient αz, the new likelihood is

!X(D : U∪{Z},αz,θ,) = −1
2

[
M log(2π)+M log(σ2z)+

1
σ2z
∑
m

(x[m]−g(u[m],αzz[m]))2
]

where σ2z is used to denote the variance parameter after Z is added. Consequently, the difference in
likelihood of Eq. (2) takes the form of

ΔX |U(Z) = −M
2

[
logσ2z − logσ2

]

−1
2

[
1
σ2z
∑
m

(x[m]−g(u[m],αzz[m]))2− 1
σ2∑m

(x[m]−g(u[m]))2
]
. (6)

3.1.3 THE “IDEAL PARENT”

We now define the ideal parent for X

Definition 3.1: Given a data set D , and a CPD for X given its parents U, with a link function g and
parameters θ and α, the ideal parent Y of X is such that for each instance m,

x[m] = g(α1u1[m], . . . ,αkuk[m],y[m] : θ).

Under mild conditions, the ideal parent profile (i.e., value of Y in each instance) can be computed
for almost any uni-modal parametric conditional distribution. The only requirement from g is that it
should be invertible w.r.t. each one of the parents. Note that in this definition, we implicitly assume

1805

ELIDAN, NACHMAN AND FRIEDMAN

that x[m] lies in the image of g. If this is not the case, we can substitute x[m] with xg[m], the point in
g’s image closest to x[m]. This guarantees that the prediction’s mode for the current set of parents
and parameters is as close as possible to X .

The resulting profile for the hypothetical ideal parent Y is the optimal set of values for the
(k+1)th parent, in the sense that it would maximize the likelihood of the child variable X . This is
true since by definition, X is equal to the mode of the function of its parents defined by g. Intuitively,
if we can efficiently find a candidate parent Z that is similar to the hypothetically optimal parent, we
can improve the model by adding an edge from this parent to X . We are now ready to instantiate the
similarity measureC("y,"z). Below, we demonstrate how this is done for the case of a linear Gaussian
CPD. We extend the framework for non-linear CPDs in Section 7.

3.2 Linear Gaussian

Let X be a variable in the network with a set of parents U, and a linear Gaussian conditional
distribution. In this case, g in Eq. (3) takes the form

g(α1u1, . . . ,αkuk : θ) ≡∑
i
αiui+θ0.

To choose promising candidate parents for X , we start by computing the ideal parent Y for X given
its current set of parents. This is done by inverting the linear link function g with respect to this
additional parent Y (note that we can assume, without loss of generality, that the scale parameter of
this additional parent is 1). This results in

y[m] = x[m]−∑
j
α ju j[m]−θ0.

We can summarize this in vector notation, by using"x= 〈x[1], . . . ,x[M]〉, and so we get

"y="x−U"α−θ0

where U is the matrix of parent values on all instances, and "α is the vector of scale parameters.
Having computed the ideal parent profile, we now want to efficiently evaluate its similarity to

the profile of candidate parents. Intuitively, we want the similarity measure to reflect the likelihood
gain by adding Z as a parent of X . Ideally, we want to evaluate ΔX |U(Z) for each candidate parent
Z. However, instead of re-estimating all the parameters of the CPD after adding Z as a parent, we
approximate this difference by only fitting the scaling factor associated with the new parent and
freezing all other parameters of the CPD (the scaling parameters of the current parents U and the
variance parameter σ2).

Theorem 3.2 Suppose that X has parents U with a set "α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in the log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all scaling and variance parameters
except the scaling factor of Z, is

C1("y,"z) ≡ max
αZ

!X(D : U∪{Z}, θ̂X |U∪{αZ})− !X(D : U, θ̂X |U)

=
1
2σ2

("y ·"z)2

"z ·"z . (7)

1806

THE “IDEAL PARENT” ALGORITHM

Proof: In the linear Gaussian case y[m] = x[m]− g(u[m]) by definition and g(u[m],αzz[m]) =
g(u[m])+αzz[m] so that Eq. (6) can be written as

ΔX |U(Z) = −M
2

[
logσ2z − logσ2

]
− 1
2

[
1
σ2z
∑
m

(y[m]−αzz[m])2− 1
σ2∑m

y[m]2
]

= −M
2

[
logσ2z − logσ2

]
− 1
2

[
1
σ2z

(
"y ·"y−2αz"z ·"y+α2z"z ·"z

)
− 1
σ2

"y ·"y
]
. (8)

Since σz = σ this reduces to

ΔX |U(Z : αz) ≡ !X(D : U∪{Z}, θ̂X |U∪{αZ})− !X(D : U, θ̂X |U)

= − 1
2σ2

(
−2αz"z ·"y+α2z"z ·"z

)
. (9)

To optimize our only free parameter αz, we use

∂ΔX |U(Z : αz)
∂αz

= − 1
2σ2

(−2"z ·"y+2αz"z ·"z) = 0 ⇒ αz =
"z ·"y
"z ·"z .

Plugging this into Eq. (9), we get

C1("y,"z) ≡ max
αz

ΔX |U(Z : αz)

= − 1
2σ2

(
−2"z ·"y

"z ·"z"z ·"y+
(
"z ·"y
"z ·"z

)2
"z ·"z

)

=
1
2σ2

("z ·"y)2

"z ·"z .

The form of the similarity measure can be even further simplified

Proposition 3.3 Let C1("y,"z) be as defined above and let σ be the maximum likelihood parameter
before Z is added as a new parent of X. Then

C1("y,"z) =
M
2

("y ·"z)2

("z ·"z)("y ·"y) =
M
2
cos2 φ!y,!z

where φ!y,!z is the angle between the ideal parent profile vector "y and the candidate parent profile
vector"z.

Proof: To recover the maximum likelihood value of σ we differentiate the log-likelihood function
as written in Eq. (5)

∂!X(D : U,θ)
∂σ2

= − M
2σ2

+
1
σ4∑m

(x[m]−g(u[m]))2 = 0

⇒ σ2 =
1
M∑m

(x[m]−g(u[m]))2 =
1
M

"y ·"y

where the last equality follows from the definition of"y. The result follows immediately by plugging
this into Theorem 3.2 and from the fact that cos2 φ!y,!z ≡ (!y·!z)2

(!z·!z)(!y·!y)

1807

ELIDAN, NACHMAN AND FRIEDMAN

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Si
m
ila
rit
y

Δ Score
0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Si
m
ila
rit
y

Δ Score
(a) (b)

Figure 2: Demonstration of the (a) C1 and (b) C2 bounds for linear Gaussian CPDs. The x-axis is
the true change in score as a result of an edge modification. The y-axis is the lower bound
of this score. Points shown correspond to several thousand edge modifications in a run of
the ideal parent method on real-life Yeast gene expressions data.

Thus, there is an intuitive geometric interpretation to the measureC1("y,"z): we prefer a profile"z that
is similar to the ideal parent profile"y, regardless of its norm. It can easily be shown that"z= c"y (for
any constant c) maximizes this similarity measure. We retain the less intuitive form of C1("y,"z) in
Theorem 3.2 for compatibility with later developments.

Note that, by definition, C1("y,"z) is a lower bound on ΔX |U(Z), the improvement on the log-
likelihood by adding Z as a parent of X : When we add the parent we optimize all the parameters,
and so we expect to attain a likelihood as high, or higher than, the one we attain by freezing some
of the parameters. This is illustrated in Figure 2(a) that plots the true likelihood improvement vs.
C1 for several thousand edge modifications taken from an experiment using real life Yeast gene
expression data (see Section 9).

We can get a better lower bound by optimizing additional parameters. In particular, after adding
a new parent, the errors in predictions change, and so we can readjust the variance term. As it turns
out, we can perform this readjustment in closed form.

Theorem 3.4 Suppose that X has parents U with a set "α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in the log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all other parameters except the
scaling factor of Z and the variance of X, is

C2("y,"z) ≡ max
αZ ,σZ

!X(D : U∪{Z}, θ̂X |U∪{αZ,σZ})− !X(D : U, θ̂X |U)

= −M
2
log sin2 φ!y,!z

where φ!y,!z is the angle between"y and"z.

1808

THE “IDEAL PARENT” ALGORITHM

Proof: To optimize σz we again consider Eq. (8) and set

∂ΔX |U(Z)
∂σz

= −M
σz

+
1
σ3z

[
"y ·"y−2αz"z ·"y+α2z"z ·"z

]
= 0.

Solving for σz and plugging the maximum likelihood parameter αz from the development ofC1("y,"z)
(which does not depend on σz), we get

σ2z =
1
M

[
"y ·"y−2αz"z ·"y+α2z"z ·"z

]
=
1
M

[
"y ·"y− ("z ·"y)2

"z ·"z

]
.

As in the case of Proposition 3.3 where σ = 1
M"y ·"y, the variance term σ2z “absorbs” the sum of

squared errors when optimized. Thus, the second term in Eq. (8) becomes zero and we can write

C2("y,"z) = −M
2

[
log(σ2z)− log(σ2)

]

=
M
2
log

(
"y ·"y

"y ·"y− (!z·!y)2
!z·!z

)
=
M
2
log



 1
1− (!z·!y)2

(!z·!z)(!y·!y)



 =
M
2
log

(
1

1− cos2 φ!y,!z

)

= −M
2
logsin2 φ!y,!z.

It is important to note that bothC1 andC2 are monotonic functions of (!y·!z)2
!z·!z , and so they consistently

rank candidate parents of the same variable. However, when we compare changes that involve
different ideal parents, such as adding a parent to X1 compared to adding a parent to X2, the ranking
by these two measures might differ. Due to the choice of parameters we freeze in each of these
measures, we have

C1("y,"z) ≤C2("y,"z) ≤ ΔX |U(Z)

and soC2 can provide better guidance to some search algorithms. Indeed, Figure 2(b) clearly shows
thatC2 is a tighter bound thanC1, particularly for promising candidates.

4. Ideal Parents in Search

The technical developments of the previous section show that we can approximate the score of
candidate parents for X by comparing them to the ideal parent Y using the similarity measure. Is
this approximate evaluation useful?

When performing a local heuristic search such as the one illustrated in Algorithm 1, at each
iteration we have a current candidate structure and we consider some operations on that structure.
These operations might include edge addition, edge replacement, edge reversal and edge deletion.
We can readily use the ideal profiles and similarity measures developed to speed up two of these:
edge addition and edge replacement. In a network with N nodes, there are in the order of O(N 2)
possible edge additions, O(E ·N) edge replacement where E is the number of edges in the model,
and only O(E) edge deletions and reversals. Thus our method can be used to speed up the bulk of
edge modifications considered by a typical search algorithm.

When considering adding an edge Z → X , we use the ideal parent profile for X and compute
its similarity to Z. We repeat this for every candidate parent for X . We then compute the full score

1809

ELIDAN, NACHMAN AND FRIEDMAN

only for the K most similar candidates, and insert them (and the associated change in score) into a
queue of potential operations. In a similar way, we can use the ideal parent profile for considering
edge replacement for X . Suppose that Ui ∈ U is a parent of X . We can define the ideal profile for
replacingU while freezing all other parameters of the CPD of X .

Definition 4.1: Given a data set D , and a CPD for X given its parents U, with a link function g,
parameters θ and α, the replace ideal parent Y of X and Ui ∈ U is such that for each instance m,

x[m] = g(α1u1[m], . . . ,αi−1ui−1,αi+1ui+1, . . . ,αkuk[m],y[m] : θ).

The rest of the developments of the previous section remain the same. For each current parent of X
we compute a separate ideal profile that corresponds to the replacement of that parent with a new
one. We then use the same policy as above for examining the replacement of each one of the parents.
In particular, we freeze the scale parameters computed with U as the parent set of X , take out the
parameter corresponding to Ui, and use the C1 or the C2 measures to rank candidate replacements
for Ui.

For both operations, we can trade off between the accuracy of our evaluations and the speed of
the search, by changing K, the number of candidate changes per family for which we compute a full
score. Using K = 1, we only score the best candidate according to the ideal parent method ranking,
thus achieving the largest speedup, However, since our ranking only approximates the true score
difference, this strategy might miss good candidates. Using higher values of K brings us closer
to the standard search algorithm both in terms of candidate selection quality but also in terms of
computation time.

In the experiments in Section 9, we integrated the changes described above into a greedy hill
climbing heuristic search procedure. This procedure also examines candidate structure changes
that remove an edge and reverse an edge, which we evaluate in the standard way. The greedy
hill climbing procedure applies the best available move at each iteration (among those that were
chosen for full evaluation) as in Algorithm 1. Importantly, the ideal parent method is independent
of the specifics of the search procedure and simply pre-selects promising candidates for the search
algorithm to consider. Algorithm 2 outlines a generalization of the basic greedy structure search
algorithm of Algorithm 1 to include a candidate ranking/selection algorithm such as our “Ideal
Parent” method.

5. Adding New Hidden Variables

Somewhat unexpectedly, the “Ideal Parent” method also offers a natural solution to the difficult
challenge of detecting new hidden variables. Specifically, the ideal parent profiles provide a straight-
forward way to find when and where to add hidden variables to the domain in continuous variable
networks. The intuition is fairly simple: if the ideal parents of several variables are similar to each
other, then we know that a similar input is predictive of all of them. Moreover, if we do not find
a variable in the network that is close to these ideal parents, then we can consider adding a new
hidden variable that will serve as their combined input, and, in addition, have an informed initial
estimate of its profile. Figure 3 illustrates this idea.

To introduce a new hidden variable, we would like to require that it be beneficial for several
children at once. The difference in log-likelihood due to adding a new parent with profile"z is the

1810

THE “IDEAL PARENT” ALGORITHM

Algorithm 2: Greedy Hill-Climbing Structure Search with Candidate Ranking/Selection
Input : D // training set

G0 // initial structure
CE // candidate evaluation method such as our “Ideal Parent”
K // number of candidates to evaluate

Output : A final structure G

Gbest ← G0
repeat

G ← Gbest
L ← ø // initialize list of modifications to evaluate
// for each family, choose the top ’add’ and ’replace’ candidates for evaluation
foreach Xi node in G do

Q ← ø // initialize family specific queue
foreach Add,Replace parent of Xi in G do

score← CE.Score(Operator)
Q← (Operator,score)

end foreach
foreach top K Operators in Q do

L← (Operator)
end foreach

end foreach
// add all delete and reverse operations
foreach Delete,Reverse edge in G do

L← (Operator)
end foreach
// process all candidate operations chosen for evaluation
foreach Operator in L do
if Operator does not create a directed cycle then

G ′ ← ApplyOperator(G)
if Score(G ′ : D) > Score(Gbest : D) then

Gbest ← G ′

end
end

end foreach
until Gbest == G
return Gbest

sum of differences between the log-likelihoods of families it is involved in:

ΔX1,...,XL(Z) =
L

∑
i
ΔXi|Ui(Z)

where we assume, without loss of generality, that the members of the cluster (children set of the
candidate hidden variable) are X1, . . . ,XL. To score the network with Z as a new hidden variable, we

1811

ELIDAN, NACHMAN AND FRIEDMAN

Y1

H

X1 X2 X3 X4

H

X1 X2 X3 X4
Y4

Y3

Y2

Figure 3: Illustration of how the ideal parent profiles can be used to suggest new hidden variables.
Shown on the left are the ideal parent profiles Y1 . . .Y4 of the variables X1 . . .X4, respec-
tively. These correspond to the residual information of these variables that is not ex-
plained by the current model. As can be seen, the first, second and fourth variables have
similar ideal profiles. These profiles are averaged, resulting in a candidate hidden par-
ent profile of these three variables (top right). Assuming that there is no variable in the
network with a similar profile, our method will propose adding this hidden variable to
the network as shown on the bottom right. Note that the average ideal profile of these
variables provides an informed starting point for the EM algorithm.

also need to deal with the difference in the complexity penalty term, and the likelihood of Z as a
root variable. These terms, however, can be readily evaluated. The difficulty is in finding the profile
"z that maximizes ΔX1,...,XL(Z). Using the C1 ideal parent approximation, we can lower bound this
improvement by

L

∑
i
C1("yi,"z) ≡

L

∑
i

1
2σ2i

("z ·"yi)2

"z ·"z ≤ ΔX1,...,XL(Z) (10)

and so we want to find "z∗ that maximizes this bound. We will then use this optimized bound as our
approximate cluster score. That is we want to find

"z∗ = argmax
!z
∑
i

1
2σ2i

("z ·"yi)2

"z ·"z ≡ argmax
!z

"zTY Y T"z
"zT"z

(11)

where Y is the matrix whose columns are yi/σi. Note that the vector "z∗ must lie in the column span
of Y since any component orthogonal to this span increases the denominator of the right hand term
but leaves the numerator unchanged, and therefore does not obtain a maximum. We can therefore
express the solution as:

"z∗ =∑
i
vi
yi
σi

= Y"v (12)

1812

THE “IDEAL PARENT” ALGORITHM

where"v is a vector of coefficients. Furthermore, the objective in Eq. (11) is known as the Rayleigh
quotient of the matrix Y Y T and the vector "z. The optimum of this quotient is achieved when "z
equals the eigenvector of Y Y T corresponding to its largest eigenvalue (Wilkinson, 1965). Thus, to
solve for "z∗ we want to solve the following eigenvector problem

(Y Y T)"z∗ = λ"z∗. (13)

Note that the dimension of Y Y T is M (the number of instances), so that, in practice, this problem
cannot be solved directly. However, by plugging Eq. (12) into Eq. (13), multiplying on the right by
Y , and defining A≡ Y TY , we get a reduced generalized eigenvector problem 1

AA"v= λA"v.

Although this problem can now be solved directly, it can be further simplified by noting that A is
only singular if the residue of observations of two or more variables are linearly dependent along
all of the training instances. In practice, for continuous variables, A is indeed non-singular, and we
can multiply both sides A−1 and end up with a simple eigenvalue problem:

A"v= λ"v

which is numerically simpler and easy to solve as the dimension of A is L, the number of variables
in the cluster, which is typically relatively small. Once we find the L dimensional eigenvector "v∗
with the largest eigenvalue λ∗, we can express with it the desired parent profile "z∗.

We can get a better bound of ΔX1,...,XL(Z) if we use C2 similarity rather than C1. Unfortunately,
optimizing the profile"z with respect to this similarity measure is a harder problem that we do not
have a closed solution for. Since the goal of the cluster identification is to provide a good starting
point for the following iterations that will eventually adapt the structure, we use the closed form
solution for Eq. (11). Note that once we optimize the profile z using the above derivation, we can
still use theC2 similarity score to provide a better bound on the quality of this profile as a new parent
for X1, . . . ,XL.

Now that we can approximate the benefit of adding a new hidden parent to a cluster of variables,
we still need to consider different clusters to find the most beneficial one. As the number of clusters
is exponential, we adapt a heuristic agglomerative clustering approach (e.g., Duda and Hart, 1973)
to explore different clusters. We start with each variable as an individual cluster and repeatedly
merge the two clusters that lead to the best expected improvement (or the least decrease) in the
BIC score. This procedure potentially involves O(N3) merges, where N is the number of possible
variables. We save much of the computations by pre-computing the matrixY TY only once, and then
using the relevant sub-matrix in each merge. In practice, the time spent in this step is insignificant
in the overall search procedure.

6. Learning with Missing Values

In real-life domains, it is often the case that the data is incomplete and some of the observations are
missing. Furthermore, once we add a hidden variable to the network structure, we have to copy with
missing values in subsequent structure search even if the original training data was complete.

1In the Generalized Eigenvector Problem, we want to find eigenpairs (λ,!v) so that B!v= λA!v holds.

1813

ELIDAN, NACHMAN AND FRIEDMAN

To deal with this problem, we use an Expectation Maximization approach (Dempster et al.,
1977) and its application to network structure learning (Friedman, 1997). At each step in the search
we have a current network that provides an estimate of the distribution that generated the data, and
use it to compute a distribution over possible completions of the data. Instead of maximizing the
BIC score, we attempt to maximize the expected BIC score

IEQ[BIC(D,G) | Do] =
Z
Q(Dh | Do)BIC(D,G)dDh

where Do is the observed data, Dh is the unobserved data, and Q is the distribution represented by
the current network. As the BIC score is a sum over local terms, we can use linearity of expectations
to rewrite this objective as a sum of expectations, each over the scope of a single CPD. This implies
that when learning with missing values, we need to use the current network to compute the posterior
distribution over the values of variables in each CPDwe consider. Using these posterior distributions
we can estimate the expectation of each local score, and use them in standard structure search. Once
the search algorithm converges, we use the new network for computing expectations and reiterate
until convergence (see Friedman, 1997).

How can we combine the ideal parent method into this structural EM search? Since we do not
necessarily observe X and all of its parents, the definition of the ideal parent cannot be applied
directly. Instead, we define the ideal parent to be the profile that will match the expectations given
Q. That is, we choose y[m] so that

IEQ[x[m] | Do] = IEQ[g(α1u1[m], . . . ,αkuk[m],y[m] : θ) | Do].

In the case of linear CPDs, this implies that

"y= IEQ["x | Do]− IEQ[U | Do]"α.

Once we define the ideal parent, we can use it to approximate changes in the expected BIC
score (given Q). For the case of a linear Gaussian, we get terms that are similar to C1 and C2 of
Theorem 3.2 and Theorem 3.4, respectively. The only change is that we apply the similarity measure
on the expected value of"z for each candidate parent Z. This is in contrast to exact evaluation of
IEQ

[
ΔX |U(Z) | Do

]
, which requires the computation of the expected sufficient statistics of U, X , and

Z. To facilitate efficient computation, we adopt an approximate variational mean-field form (e.g.,
Jordan et al., 1998; Murphy and Weiss, 1999) for the posterior. This approximation is used both
for the ideal parent method and the standard greedy approach used in Section 9. This results in
computations that require only the first and second moments for each instance z[m], and thus can be
easily obtained from Q.

Finally, we note that the structural EM iterations are still guaranteed to converge to a local
maximum. In fact, this does not depend on the fact that C1 and C2 are lower bounds of the true
change to the score, since these measures are only used to pre-select promising candidates which
are scored before actually being considered by the search algorithm. Indeed, the ideal parent method
is a modular structure candidate selection algorithm and can be used as a black-box by any search
algorithm.

7. Non-linear CPDs

We now address the important challenge of non-linear CPDs. In the class of CPDs we are consid-
ering, this non-linearity is mediated by the link function g, which we assume here to be invertible.

1814

THE “IDEAL PARENT” ALGORITHM

Examples of such functions include the sigmoid function shown in Eq. (4) and hyperbolic functions
that are suitable for modeling gene transcription regulation (Nachman et al., 2004), among many
others. When we learn with non-linear CPDs, parameter estimation is harder. To evaluate a poten-
tial parent P for X we have to perform non-linear optimization (e.g., conjugate gradient) of all of
the α coefficients of all parents as well as other parameters of g. In this case, a fast approximation
can boost the computational cost of the search significantly.

As in the case of linear CPDs, we compute the ideal parent profile"y by inverting g. (We assume
that the inversion of g can be performed in time that is proportional to the calculation of g itself as
is the case for the CPDs considered above.) Suppose we are considering the addition of a parent to
X in addition to its current parents U, and that we have computed the value of the ideal parent y[m]
for each sample m by inversion of g. Now consider a particular candidate parent Z whose value at
the mth instance is Z[m]. How will the difference between the ideal value and the value of Z reflect
in the prediction of X for this instance?

As we have seen for the linear case in Section 3, the difference z[m]− y[m] translated through g
to a prediction error. In the non-linear case, the effect of the difference on predicting X depends on
other factors, such as the values of the other parents. To see this, consider again the sigmoid function
g of Eq. (4). If the sum of the arguments to g is close to 0, then g locally behaves like a sum of
its arguments. On the other hand, if the sum is far from 0, the function is in one of the saturated
regions, and big differences in the input almost do not change the prediction. This complicates our
computations and does not allow the development of similarity measures as in Theorem 3.2 and
Theorem 3.4 directly.

We circumvent this problem by approximating g with a linear function around the value of the
ideal parent profile. We use a first-order Taylor expansion of g around the value of"y and write

g("u,"z) ≈ g("u,"y)+(αz"z−"y) · ∂g(
"u,"z)

∂αz"z

∣∣∣∣
αz!z=!y

.

As a result, the “penalty” for a distance between"z and"y depends on the gradient of g at the particular
value of "y, given the value of the other parents. In instances where the derivative is small, larger
deviations between y[m] and z[m] have little impact on the likelihood of x[m], and in instances where
the derivative is large, the same deviations may lead to worse likelihood.

To understand the effect of this approximation in more detail we consider a simple example with
a sigmoid Gaussian CPD as defined in Eq. (4), where X has no parents in the current network and
Z is a candidate new parent. Figure 4(a) shows the sigmoid function (dotted) and its linear approx-
imation at Y = 0 (solid) for an instance where X = 0.5. The computation of Y = log

(1
0.5 −1

)
= 0

by inversion of g is illustrated by the dashed lines. (b) is the same for a different sample where
X = 0.85. In (c),(d) we can see the effect of the approximation for these two different samples on
our evaluation of the likelihood function. For a given probability value, the likelihood function is
more sensitive to changes in the value of Z around Y when X = 0.5 when compared to the instance
X = 0.85. This can be seen more clearly in (e) where equi-potential contours are plotted for the sum
of the approximate log-likelihood of these two instances. To recover the setup where our sensitivity
to Z does not depend on the specific instance as in the linear case, we consider a skewed version of
Z ·∂g/∂y rather than Z directly. The result is shown in Figure 4(f). We can generalize the example
above to develop a similarity measure for the general non-linear case:

1815

ELIDAN, NACHMAN AND FRIEDMAN

X = 0.5

g(
z)

Y(0.5)

Exact
Approx

Z
0

1

0.5

-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4

X = 0.85

g(
z)

Y(0.85)
-4 -2 0 2 4-4 -2 0 2 4

0

1

Z
(a) (b)

Z
0

2

-4 -2 0 2 4

Li
ke
lih
oo
d

P(
X=
0.
5|
Z)

Li
ke
lih
oo
d

P(
X=
0.
5|
Z)

Z
0

2

-4 -2 0 2 4
P(
X=
0.
85
|Z
)

Li
ke
lih
oo
d

P(
X=
0.
85
|Z
)

Li
ke
lih
oo
d

(c) (d)

-1.85 -0.64 0.58 1.79-1.85 -0.64 0.58 1.79

-0.11

1.1

2.31

3.52

-0.11

1.1

2.31

3.52

Z (X=0.5)

Z
(X

=0
.8

5)

-0.86 -0.3 0.27 0.83

0.04

1.15

2.26

3.37

Z x ∂g0.5

Z
x
∂g

0.
85

(e) (f)

Figure 4: A simple example of the effect of the linear approximation for a sigmoid CPD where X
has no parents in the current network and Z is considered as a new candidate parent. Two
samples (a) and (b) show the function g(y1, . . . ,yk : θ)≡ θ1 1

1+e−∑i yi +θ0 for two instances
where X = 0.5 and X = 0.85, respectively, along with their linear approximation at the
ideal parent value Y of X . (c) and (d) show the corresponding likelihood function and its
approximation. (e) shows the equi-potential contours of the sum of the log-likelihood of
the two instances as a function of the value of Z in each of these instances. (f) is the same
as (e) when the axes are skewed using the gradient of g with respect to the value of Y .

1816

THE “IDEAL PARENT” ALGORITHM

Theorem 7.1 Suppose that X has parents U with a set "α of scaling factors. Let Y be the ideal
parent as described above, and Z be some candidate parent. Then the change in log-likelihood of X
in the data, when adding Z as a parent of X, while freezing all other parameters, is approximately

C1("y◦g′("y),"z◦g′("y))−
1
2σ2

(k1− k2) (14)

where g′("y) is the vector whose mth component is ∂g("αu,y)/∂y |u[m],y[m], and ◦ denotes component-
wise product. Similarly, if we also optimize the variance, then the change in log-likelihood is ap-
proximately

C2("y◦g′("y),"z◦g′("y))−
M
2
log

k1
k2

.

In both cases,
k1 = ("y◦g′("y)) · ("y◦g′("y)) ; k2 = ("x−g("u)) · ("x−g("u))

do not depend on"z.

Thus, we can use exactly the same measures as before, except that we “distort” the geometry with
the weight vector g′(y) that determines the importance of different instances. To approximate the
likelihood difference, we also add the correction term which is a function of k1 and k2. This cor-
rection is not necessary when comparing two candidates for the same family, but is required for
comparing candidates from different families, or when adding hidden variable. Note that unlike the
linear case, and as a result of the linear approximation of g, our theorem now involves an approxi-
mation of the difference in likelihood.
Proof: Using the general form of the Taylor linear approximation for a non-linear link function g,
Eq. (6) can be written as

ΔX |U(Z)

≈ −M
2
log

σ2z
σ2

− 1
2

[
1
σ2z

[
"x−g("u,"y)− (αz"z−"y)◦g′

]2− 1
σ2

["x−g("u)]2
]

= −M
2
log

σ2z
σ2

− 1
2σ2z

[
α2z ("z◦g′)2−2αz("z◦g′) · ("y◦g′)+("y◦g′)2

]
+

1
2σ2

["x−g("u)]2

= −M
2
log

σ2z
σ2

− 1
2σ2z

[
α2z"z" ·"z"−2αz"z" ·"y" +"y" ·"y"

]
+

1
2σ2

["x−g(u)]2 (15)

where we use the fact that"x−g("u,"y) = 0 by construction of"y, and we denote for clarity"y" ≡"y◦g′
and"z" ≡"z◦g′. To optimize αz we use

∂ΔX |U(Z)
∂αz

≈− 1
2σ

[2αz"z" ·"z"−2"z" ·"y"] ⇒ αz =
"z" ·"y"
"z" ·"z"

.

Plugging this into Eq. (15) we get

ΔX |U(Z) ≈ 1
2σ2

("z" ·"y")2

"z" ·"z"
− 1
2σ2

"y" ·"y" +
1
2σ2

["x−g("u)]2

= C1("y","z")−
1
2σ2

(k1− k2)

1817

ELIDAN, NACHMAN AND FRIEDMAN

which proves Eq. (14). When we also optimize that variance, as noted before, the variance terms
absorbs the sum of squared errors, so that

σz =
1
M

[
"y" ·"y"−

("z" ·"y")2

"z" ·"z"

]
.

Plugging this into Eq. (15) results in

ΔX |U(Z) ≈ −M
2
log

σ2

σ2z

=
M
2
log

["x−g(u)]2

"y" ·"y"− (!z!·!y!)2
!z!·!z!

=
M
2
log

["x−g(u)]2

"y" ·"y"
[
1− (!z!·!y!)2

!z!·!z!!y!·!y!

]

=
M
2
log

1
1− (!z!·!y!)2

!z!·!z!!y!·!y!

+
M
2
log ["x−g(u)]2−M

2
log("y" ·"y")

= C2("y","z")−
M
2
log

k1
k2

.

As in the linear case, the above theorem allows us to efficiently evaluate promising candidates for the
add edge step in the structure search. The replace edge step can also be approximated with minor
modifications. As before, the significant gain in speed is that we only perform a few parameter
optimizations (that are expected to be costly as the number of parents grows), rather than O(N)
such optimizations for each variable.

Adding a new hidden variable with non-linear CPDs introduces further complications. We want
to use, similar to the case of a linear model, the structure score of Eq. (10) with the distorted C1
measure. Optimizing this measure has no closed form solution in this case and we need to resort
to an iterative procedure or an alternative approximation. We use an approximation where the
correction terms of Eq. (14) are omitted so that a form that is similar to the linear Gaussian case is
used, with the “distorted” geometry of "y. Having made this approximation, the rest of the details
are the same as in the linear Gaussian case.

8. Other Noise Models

So far, we only considered conditional probability distributions of the form of Eq. (3) where the
uncertainty is modeled using an additive Gaussian noise term. In some cases, such as when mod-
eling biological processes related to regulation, using a multiplicative noise model may be more
appropriate, as most noise sources in these domains are of multiplicative nature (Nachman et al.,
2004). We can model such a noise process using CPDs of the form

X = g(α1u1, . . . ,αkuk : θ)(1+ ε) (16)

where, as in Eq. (3), ε is a noise random variable with zero mean. Another popular choice for
modeling multiplicative noise is the log-normal form:

log(X) = log(g(α1u1, . . . ,αkuk : θ))+ ε

1818

THE “IDEAL PARENT” ALGORITHM

where the log of the random variable is distributed normally. In this section we present a formulation
that generalizes the concepts introduced so far to these more general scenarios. We present explicit
derivations for the multiplicative noise CPD of Eq. (16) in Section 8.3.

8.1 General Framework

To cope with CPDs that use a multiplicative noise model, we first formalize the general form of a
CPD we consider. We then generalize the concept of the ideal parent to accommodate this general
form of distributions and state the approximation to the likelihood we make based on this new
definition. We will then show that our generalized ideal parent definition leads, as before, to a
natural similarity measure that includes our previous results as a special case.

Concretely, we consider conditional density distributions of the following general form

P(X | U) = q(X : g(α1u1[m], . . . ,αkuk[m] : θ),φ)

where g is the link function with parameters θ as before, and q is the “noise” distribution with
parameters φ (e.g., variance parameters). In the additive case of Eq. (3) we have q = N (X ;g,σ2).
In the multiplicative case of Eq. (16) we have q= N (X ;g,(gσ)2).

We now revisit our idea of the ideal parent. Recall that our definition of the ideal parent profile
"y was motivated by the goal of maximizing the likelihood of the child variable profile"x. However,
unlike the case of additive noise, in general and in the case of the multiplicative noise model, g is
not necessarily the mode of q. To accommodate this, we generalize our definition of an ideal parent:

Definition 8.1: Let D be a data set and let P(X | U) = q(X : g(U : θ),φ) be a CPD for X given its
parents U with parameters θ, α and φ, where both q and g are twice differentiable and g is invertible
with respect to each one of the parents U. The ideal parent Y of X is such that for each instance m,

∂q(x[m];g,φ)
∂g

∣∣∣∣
g=g(α1u1[m],...,αkuk[m],y[m]:θ)

= 0. (17)

That is, "y is the vector that makes g(u,"y) maximize the likelihood of the child variable at each
instance. Since ∂q

∂z = ∂q
∂g

∂g
∂z

∣∣∣
z=y

= 0, this definition also means that the ideal parent maximizes the
likelihood w.r.t. the values of a new parent. The above definition is quite general and allows for
a wide range of link functions and uni-modal noise models. We note that in the case where the
distribution is a simple Gaussian with any choice of g, this definition coincides with Definition 3.1.
As an example of a conditional form that does not fall into our framework, g = sin(∑iαiui) is not
only not invertible but also allows for infinitely many “ideal” parents. As we show below, this
more complex definition is useful as it will allow us to efficiently evaluate candidate parents for the
general CPDs we consider in this section.

The above new definition of the ideal parent motivates us to use a different approximation than
the one used in the case of non-linear CPDs with additive noise. Specifically, instead of simply
approximating g, we now approximate the likelihood directly around "y, using a second order ap-
proximation:

logP("x | u,αzz) ≈ logP("x | u,"y)+(αz"z−"y) · ∇αz!z logP("x | u,"z)
∣∣
αz!z=!y+

1
2
(αz"z−"y)TH(αz"z−"y)

(18)
where H is the Hessian matrix of logP("x | u,"z) at the point αz"z="y.

1819

ELIDAN, NACHMAN AND FRIEDMAN

8.2 Evaluating the benefit of a Candidate Parent

With the generalized definition of an ideal parent of Eq. (17) and the approximation chosen for the
likelihood function in Eq. (18) we can approximately evaluate the benefit of a candidate parent:

Theorem 8.2 Suppose that X has parents U with a set "α of scaling factors. Let Y be the ideal
parent as defined in Eq. (17), and Z be some candidate parent. Then the change in log-likelihood
of X in the data, when adding Z as a parent of X, while freezing all other parameters except the
scaling factor of Z, is approximately

C1("y,"z) ≈ logP("x | u,"y)−max
αZ

1
2
K(αz"z−"y,αz"z−"y)− logP("x | u)

= logP("x | u,"y)− 1
2
K("y,"y)+

1
2

(K("y,"z))2

K("z,"z)
− logP("x | u) (19)

where K(., .) is an inner product of two vectors defined as:

K("a,"b) =∑
m
a[m]b[m]

−1
qm

∂2qm
∂gm2

(
g′m

)2

and

gm = g(u[m],y[m] : θ)
qm = q(x[m] : gm,φ)

g′m =
∂g(u,y : θ)

∂y
|u[m],y[m] .

Before proving this result, we first consider its elements and how they relate to our previous results
of Theorem 3.2 and Theorem 7.1. The inner product K captures the deformation for the general
case: The factor (g′m)2 weighs each vector by the gradient of g, as explained in Section 7. The
new factor −1

qm
∂2qm
∂gm2

measures the sensitivity of qm to changes in gm for each instance. This factor
is always positive as a maximum point of qm is involved. Note that in the Gaussian noise models
we considered in the previous sections, this term is constant: 1

σ2 . In non-Gaussian models, this
sensitivity can vary between instances.

It is easy to see that the generalized definition of C1 coincides with our previous results. As
in the linear Gaussian case, the (approximate) difference in likelihood C1("y,"z) is expressed as a
function of some distance between the new parent αz"z and the ideal parent"y. This distance is then
deformed by a sample dependent weight similarly to the non-linear case discussed in Section 7. In
the case of a linear Gaussian CPD, we have g′m = 1, and so K("a,"b) = 1

σ2"a ·"b. All terms which do
not depend on"z cancel out in this case, resulting in our original definition for C1 in Eq. (7). For the
non-linear Gaussian with additive noise, we have K("a,"b) = 1

σ2 ("a◦g
′(y)) · ("b◦g′(y)), and the form

of Eq. (14) is recovered.
Importantly, we note that our new formulation is applicable to a wide range of link functions

and uni-modal noise models (with the minimal restrictions detailed above). The difference between
different choices simply manifest as difference in the form of the derivatives that appear in the kernel
function K, and in the additional logP terms in Eq. (19). Finally, we note that we cannot derive a
similarly general expression for C2, since it requires optimizing both σ and αz, and the solution to
this problem depends on the form of the distribution q.

1820

THE “IDEAL PARENT” ALGORITHM

For completeness, we now prove the result of Theorem 8.2.
Proof: The first term in the second order approximation of Eq. (18) vanishes since, by our definition,
∂q
∂z |αz!z=!y = 0, which implies also ∂ log(q)

∂z |αz!z=!y = 0. Using the chain rule, we derive the expression
for the Hessian:

Hm,n =
∂2 logP("x | u,"z)
∂αzz[m]∂αzz[n]

∣∣∣∣
αz!z=!y

= δmn
1
q2m

(
−

(
∂qm
∂gm

∂gm
∂y[m]

)2
+qm

{
∂2qm
∂gm2

(
∂gm
∂y[m]

)2
+
∂qm
∂gm

∂2gm
∂y[m]2

})
.

The Hessian matrix is always diagonal, since each term in the log-likelihood involves y[m] that
corresponds to a single sample m. After eliminating terms involving ∂q

∂g , the diagonal elements of
the Hessian simplify to:

Hm,m =
1
qm

∂2qm
∂gm2

(
g′m

)2

where g′m ≡ ∂gm
∂y[m] . With this simplification of the Hessian, the approximation of the log-likelihood

can be written as

logP("x | u,αz"z) ≈ logP("x | u,"y)+
1
2∑m

(αzz[m]− y[m])2

qm
∂2qm
∂gm2

(
g′m

)2
. (20)

The difference in the log-likelihood with and without a new parent z can now be immediately re-
trieved and equals to the second term of the right hand side of Eq. (20). Denoting this difference by
C1("y,"z) and replacing αz with its maximum likelihood estimator K(!y,!z)

K(!z,!z) , we get the desired result.

8.3 Multiplicative Noise CPD

We now complete the detailed derivation of the general framework we presented in the previous
section for the case of the multiplicative noise conditional density of Eq. (16). Written explicitly,
the CPD has the following form:

q(x : g,σ2) =
1√

2Πσ|g|
exp

(
− 1
2σ2

(
x
g
−1

)2)
.

To avoid singularity, we will restrict the values of g to be positive. The partial derivatives of qm are:

∂qm
∂gm

=
[
− 1
gm

+
1
σ2

(
x
gm

−1
)

x
g2m

]
qm

∂2qm
∂gm2

=
[
− 1
gm

+
1
σ2

(
x
gm

−1
)

x
g2m

]2
qm+

[
1
g2m

+
1
σ2

(
x
gm

−1
)
−2x
g3m

− 1
σ2

x2

g4m

]
qm.

By the definition of"y the first derivative is zero so that

− 1
gm

+
1
σ2

(
x
gm

−1
)

x
g2m

= 0 (21)

1821

ELIDAN, NACHMAN AND FRIEDMAN

which is equivalent to requiring that the following holds:

g(α1u1[m], . . . ,αkuk[m],"y[m] : θ) = x[m]
−1+

√
1+4σ2

2σ2
. (22)

Note that the negative solution is discarded due to the constraint g > 0. Also note that the link
function in this case is in fact, as can be expected, a scaled version of x[m]. We can now extract y[m]
as before by simply inverting gm.

The terms of the second derivative can now also be simplified:

∂2q
∂g2

=
[
1
g2

− 1
σ2

(
x
g
−1

)
2x
g3

− 1
σ2

x2

g4

]
q

= − 1
g2

[
1+

1
σ2

x2

g2

]
q

= − 1
g2
kσq

where the second and third equalities result from substituting Eq. (21) and Eq. (22), respectively,
and kσ is a positive constant function of σ. We can now express K in a dot product compact form

K("a,"b) = kσ
(
"a◦ g

′(y)
g(y)

)
·
(
"b◦ g

′(y)
g(y)

)

where g′(y)
g(y) is the vector whose mth component is

g′m
gm . Note that this instance specific weight is

similar to the one we used for the non-linear additive Gaussian case of Theorem 7.1. In this more
general setting, each instance m is additionally scaled by gm. This has an intuitive explanation in
the case of the multiplicative conditional density: the noise level is expected to go up with g and so
all samples are rescaled to the same noise level.

For completeness, we write the additional logP terms in the expression of Eq. (19) forC1 in the
case of the multiplicative conditional density:

logP("x | u,"y)− logP("x | u) = −∑ log(σ′g(u[m],y[m]))+∑ log(σg(u[m]))−
1
2σ′2∑(

x[m]
g(u[m],y[m])

−1)2+
1
2σ2∑(

x[m]
g(u[m])

−1)2

= −M log−1+
√
1+4σ′2
2σ′

−∑ logx[m]+∑ logσg(u[m])−

M
2σ′2

(
2σ′2

−1+
√
1+4σ′2

−1
)2

+
1
2σ2∑(

x[m]
g(u[m])

−1)2

where σ′ denotes the new variance parameter.

9. Experiments

We now examine the impact of the ideal parent method in two settings. In the first setting, we use
this method for pruning the number of potential moves that are evaluated by greedy hill climbing
structure search. We use this learning procedure to learn the structure over the observed or partially

1822

THE “IDEAL PARENT” ALGORITHM

observed variables. In the second setting, we use the ideal parent method as a way of introduc-
ing new hidden variables, and also as a guide to reduce the number of evaluations when learning
structure that involves hidden variables and observed ones, using a Structural EM search procedure.

9.1 Structure learning with Known Variables

In the first setting, we applied standard greedy hill climbing search (Greedy) and greedy hill climb-
ing supplemented by the ideal parent method as discussed in Section 4 (Ideal). In using the ideal
parent method, we used the C2 similarity measure described in Section 3 to rank candidate edge
additions and replacements, and then applied full scoring only to the top K ranking candidates per
variable.

We first want to evaluate the impact of the approximation we make on the quality of the model
learned. To do so, we start with a synthetic experiment where we know the true underlying network
structure. In this setting we can evaluate the magnitude of the performance cost that is the result of
the approximation we use. (We examine the speedup gain of our method onmore interesting real-life
examples below.) To make the synthetic experiment realistic, for the generating distribution we used
a network learned from real data (see below) with 44 variables. From this network we can generate
data sets of different sizes and apply our method with different values of K. Figure 5 compares
the ideal parent method and the standard greedy procedure for linear Gaussian CPDs (left column)
and sigmoid CPDs (right column). Using K = 5 is, as we expect, closer to the performance of the
standard greedy method both in terms of training set [(a),(e)] and test set [(b),(f)] performance than
K = 2. For linear Gaussian CPDs test performance is essentially the same for both methods. Using
sigmoid CPDs we can see a slight advantage for the standard greedy method. When considering the
percent of true edges recovered [(c),(g)], as before, the standard method shows some advantage over
the ideal method with K = 5. However, by looking at the total number of edges learned [(d),(h)],
we can see that the standard greedy method achieves this by using close to 50% more edges than
the original structure for sigmoid CPDs. Thus, a relatively small advantage in performance comes
at a high complexity price (and as we demonstrate below, at a significant speed cost).

We now examine the effect of the method on learning from real-life data sets. We base our data
sets on a study that measures the expression of the baker’s yeast genes in 173 experiments (Gasch
et al., 2000). In this study, researchers measured the expression of 6152 yeast genes in its response
to changes in the environmental conditions, resulting in a matrix of 173× 6152 measurements. In
the following, for practical reasons, we use two sets of genes. The first set consists of 639 genes
that participate in general metabolic processes (Met), and the second is a subset of the first with
354 genes which are specific to amino acid metabolism (AA). We choose these sets since part of
the response of the yeast to changes in its environment is in altering the activity levels of different
parts of its metabolism. For some of the experiments below, we focused on subsets of genes for
which there are no missing values, consisting of 89 and 44 genes, respectively. On these data sets
we can consider two tasks. In the first, we treat genes as variables and experiments as instances. The
learned networks indicate possible regulatory or functional connections between genes (Friedman
et al., 2000). A complementary task is to treat the 173 experiments as variables (Cond). In this case
the network encodes relationships between different conditions.

In Table 1 we summarize differences between the Greedy search and the Ideal search with K set
to 2 and 5, for the linear Gaussian CPDs as well as sigmoid CPDs. Since theC2 similarity is only a
lower bound of the BIC score difference, we expect the candidate ranking of the two to be different.

1823

ELIDAN, NACHMAN AND FRIEDMAN

100 1000

−1.2

−1.1

−1

Tr
ai
n

Greedy
Ideal K=2
Ideal K=5

100 1000

−0.6

−0.4

−0.2

0

Tr
ai
n

(a) (e)

100 1000−1.8

−1.6

−1.4

−1.2

−1

−0.8

Te
st

100 1000−1

−0.8

−0.6

−0.4

−0.2

0

Te
st

(b) (f)

100 10000

0.2

0.4

0.6

0.8

Re
ca
ll

100 10000

0.2

0.4

0.6

0.8

Re
ca
ll

(c) (g)

100 10000

0.5

1

1.5

To
ta
l

100 10000

0.5

1

1.5

To
ta
l

(d) (h)

Figure 5: Evaluation of Ideal search on synthetic data generated from a real-life like network with
44 variables. We compare Ideal search with K = 2 (dashed) and K = 5 (solid), against
the standard Greedy procedure (dotted). The figures show, as a function of the number
of instances (x-axis), for linear Gaussian CPDs: (a) average training log-likelihood per
instance per variable; (b) same for test; (c) fraction of true edges obtained in learned
structure; (d) total number of edges learned as fraction of true number of edges; (e)-(h)
same for sigmoid CPDs.

1824

THE “IDEAL PARENT” ALGORITHM

Greedy Ideal K = 2 vs Greedy Ideal K = 5 vs Greedy
Data set vars inst train test Δtrain Δtest edge move ev sp Δtrain Δtest edge move ev sp

Linear Gaussian with complete data
AA 44 173 -0.90 -1.07 -0.024 0.006 87.1 96.5 3.6 2 -0.008 0.007 94.9 96.5 9.3 2
AA Cond 173 44 -0.59 -1.56 -0.038 0.082 92.2 92.6 1.2 2 -0.009 0.029 96.9 98.2 2.9 2
Met 89 173 -0.79 -1.00 -0.033 -0.024 88.7 91.5 1.6 3 -0.013 -0.016 94.5 96.9 4.4 2
Met Cond 173 89 -0.59 -1.06 -0.035 -0.015 91.3 98.0 1.0 2 -0.007 -0.023 98.9 98.5 2.4 2

Linear Gaussian with missing values
AA 354 173 -0.13 -0.50 -0.101 -0.034 81.3 95.2 0.4 5 -0.048 -0.022 90.7 96.0 0.9 5
AA Cond 173 354 -0.20 -0.38 -0.066 -0.037 74.7 87.5 0.4 14 -0.033 -0.021 86.3 101.1 1.6 11

Sigmoid with complete data
AA 44 173 0.03 -0.12 -0.132 -0.065 49.7 59.4 2.0 38 -0.103 -0.046 60.4 77.6 6.1 18
AA Cond 173 44 -0.12 -0.81 -0.218 0.122 62.3 76.7 1.0 36 -0.150 0.103 73.7 79.4 2.3 21
Met 89 173 0.12 -0.08 -0.192 -0.084 47.9 58.3 0.9 65 -0.158 -0.059 56.6 69.8 2.6 29
Met Cond 173 89 0.22 -0.17 -0.207 -0.030 60.5 69.5 0.8 53 -0.156 -0.042 69.8 77.7 2.2 29

Table 1: Performance comparison of the Ideal parent search with K = 2, K = 5 and Greedy on real
data sets. vars - number of variables in the data set; inst - the number of instances in the
data set; train - average training set log-likelihood per instance per variable; test - same for
test set; Δtrain - average difference in training set log-likelihood per instance per variable;
Δtest - same for test set; edges - percent of edges learned by Ideal with respect to those
learned by Greedy; moves - percent of structure modifications taken during the search; ev
- percent of moves evaluated; sp - speedup of Ideal over greedy method. All numbers are
averages over 5 fold cross validation sets.

As most of the difference comes from freezing some of the parameters, a possible outcome is that
the Ideal search is less prone to over-fitting. Indeed, as we see, though the training set log-likelihood
in most cases is lower for Ideal search, the test set performance is only marginally different than
that of the standard greedy method, and often surpasses it.

Of particular interest is the tradeoff between accuracy and speed when using the ideal parent
method. In Figure 6 we examine this tradeoff in four of the data sets described above using linear
Gaussian and sigmoid CPDs. For both types of CPDs, the performance of the ideal parent method
approaches that of Greedy as K is increased. As we can expect, in both types of CPDs the ideal par-
ent method is faster even for K = 5. However, the effect on total run time is much more pronounced
when learning networks with non-linear CPDs. In this case, most of the computation is spent in
optimizing the parameters for scoring candidates. Indeed, careful examination of the number of
structural moves taken and the number of moves evaluated in Table 1, shows that the dramatic
speedup is mostly a result of the reduction in the number of candidates evaluated. Importantly,
this speedup in non-linear networks makes previously “intractable” real-life learning problems (like
gene regulation network inference) more accessible.

9.2 Learning Hidden Variables

In the second experimental setting, we examine the ability of our algorithm to learn structures that
involve hidden variables and introduce new ones during the search. In this setting, we focus on
two layered networks where the first layer consists of hidden variables, all of which are assumed to
be roots, and the second layer consists of observed variables. Each of the observed variables is a
leaf and can depend on one or more hidden variables. Learning such networks involves introducing

1825

ELIDAN, NACHMAN AND FRIEDMAN

0.1

0.2

1 2 3 4 5
K

te
st

 ΔΔ ΔΔ
-lo

g-
lik

el
ih

oo
d Amino

Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

0.1

0.2

1 2 3 4 5
K

te
st

 ΔΔ ΔΔ
-lo

g-
lik

el
ih

oo
d Amino

Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

0.1

0.2

1 2 3 4 5
K

1 2 3 4 5
K

te
st

 ΔΔ ΔΔ
-lo

g-
lik

el
ih

oo
d Amino

Metabolism
Conditions (AA)
Conditions (Met)

Amino
Metabolism
Conditions (AA)
Conditions (Met)

Amino
Metabolism
Conditions (AA)
Conditions (Met)

0

1 2 3 4 5
K

1 2 3 4 5
K

greedy

0

1

2

3

4

sp
ee
du
p

1 2 3 4 5
K

0

1

2

3

4

sp
ee
du
p

1 2 3 4 5
K

0

1

2

3

4

sp
ee
du
p

1 2 3 4 5
K

1 2 3 4 5
K

greedy

(a) Gaussian performance (b) Gaussian speedup

-0.1

0

0.1

te
st

 ΔΔ ΔΔ
-lo

g-
lik

el
ih

oo
d

0 5 10 15 20
K

-0.1

0

0.1

-0.1

0

0.1

te
st

 ΔΔ ΔΔ
-lo

g-
lik

el
ih

oo
d

0 5 10 15 20
K

0 5 10 15 20
K

greedy

20

60

100

sp
ee
du
p

0 5 10 15 20
K

20

60

100

sp
ee
du
p

0 5 10 15 20
K

20

60

100

20

60

100

sp
ee
du
p

0 5 10 15 20
K

0 5 10 15 20
K

(c) sigmoid performance (d) sigmoid speedup

Figure 6: Evaluation of Ideal search on real-life data using 5-fold cross validation. (a) average
difference in log-likelihood per instance on test data when learning with linear Gaussian
CPDs relative to the Greedy baseline (y-axis) vs. the number of ideal candidates for each
family K (x-axis). (b) Relative speedup over Greedy (y-axis) against K (x-axis). (c),(d)
same for sigmoid CPDs.

1826

THE “IDEAL PARENT” ALGORITHM

(a)

10 100-60

-40

-20

tra
in

 lo
g-

lik
el

ih
oo

d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

Greedy
Ideal K=2
Ideal K=5
Gold

10 100

-100

-60

-20

te
st

 lo
g-

lik
el

ih
oo

d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

10 100

-100

-60

-20

te
st

 lo
g-

lik
el

ih
oo

d

Instances

Greedy
Ideal K=2
Ideal K=5
Gold

Greedy
Ideal K=2
Ideal K=5
Gold

(b) (c)

Figure 7: Evaluation of performance in two-layer network experiments. (a) Gold structure with 141
which was curated by a biological expert and used to generate synthetic data; (b) average
log-likelihood per instance on training data (y-axis) for Greedy , Ideal search with K = 2
and Ideal search withK= 5, when learning with linear Gaussian CPDs against the number
of training samples (x-axis); (c) Same for test set.

different hidden variables, and determining for each observed variable which hidden variables it
depends on.

As in the case of standard structure learning, we first want to evaluate the impact of our approx-
imation on learning. To test this, we used a network topology that is curated (Nachman et al., 2004)
from biological literature for the regulation of cell-cycle genes in yeast. This network involves 7
hidden variables and 141 observed variables. We learned the parameters for the network from a cell
cycle gene expression data set (Spellman et al., 1998). From the learned network we then sampled
data sets of varying sizes, and tried to recreate the regulation structure using either greedy search or
ideal parent search. In both search procedures we introduce hidden variables in a gradual manner.
We start with a network where a single hidden variable is connected as the only parent to all ob-
served variables. After parameter optimization, we introduce another hidden variable - either as a
parent of all observed variables (in greedy search), or to members of the highest scoring cluster (in
ideal parent search, as explained in Section 5). We then let the structure search modify edges (sub-
ject to the two-layer constraints) until no beneficial moves are found, at which point we introduce

1827

ELIDAN, NACHMAN AND FRIEDMAN

max
parents5 2 5 2 5

0

0.1

0.2

0.3

Δ
te

st
 lo

g-
lo

ss
 /

in
st

an
ce

 /
va

ria
bl

e

2

Greedy

Full Ideal K=2
Greedy + Ideal new vars
Full Ideal K=2
Greedy + Ideal new vars
Full Ideal K=2
Greedy + Ideal new vars

AA Sigmoid AA Gaussian AA Cond Gaussian

Figure 8: Structure learning of bipartite networks where the parents are new hidden variables and
the children are the observed variables. The different data sets of the baker’s Yeast in-
clude: AA with 44 variables for both Gaussian and sigmoid Gaussian CPDs; AA Cond
with 173 variables and Gaussian CPDs. For each data set a structure with up to 2 or 5
parents was considered. Shown is the test log-likelihood per instance per variable relative
to the baseline of the standard greedy structure learning algorithm.

another hidden variable, and so on. The search terminates when it is no longer beneficial to add a
new variable.

Figure 7 shows the performance of the ideal parent search and the standard greedy procedure
as a function of the number of instances, for linear Gaussian CPDs. As can be seen, although
there are some differences in training set likelihood, the performance on test data is essentially the
same. Thus, as in the case of the yeast experiments considered above, there was no degradation of
performance due to the approximation made by our method.

We then considered the application of the algorithms to real-life data sets. Figure 8 shows the
test set results for several of the data sets of the baker’s yeast (Gasch et al., 2000) described above,
for both Gaussian and sigmoid Gaussian CPDs. The full ideal parent method (red ’x’) with K = 2
and the ideal method for adding new hidden variables is consistently better than the baseline greedy
procedure. To demonstrate that the improvement is in large part due to the guided method for adding
hidden variables we also ran the baseline greedy procedure for structure changes augmented with
the ideal method for adding new hidden variables (blue ’+’). As can be seen, the performance of
this method is typically slightly better than the full ideal method, since it does not approximate the
structural adaptation stage. In this setup, the only difference from the greedy baseline is the way

1828

THE “IDEAL PARENT” ALGORITHM

that new hidden variables are introduced. Thus, these results support our hypothesis that the ideal
method is able to introduce effective new hidden variables, that are preferable to a hidden variables
that are naively introduced into the network structure.

The superiority of the sigmoid Gaussian over the Gaussian model for the AA data set (in the
order of 1 bit per instance per variable) motivates us to pursue learning of models with non-linear
CPDs. We could not compare the different methods for the larger data sets as the greedy method
was several orders of magnitudes slower than our ideal parent method and did not complete runs
given several days of CPU time (in the linear Gaussian case the ideal parent method was roughly 5
times faster than the standard greedy approach). We believe that the ability of the ideal method to
avoid over-fitting will only increase its strength in these more challenging cases.

We also considered the application of our algorithm to the real-life cell-cycle gene expression
data described in the previous section with linear Gaussian CPDs. Although this data set contains
only 17 samples, it is of high interest from a biological perspective to try and infer from it as much as
possible on the structure of regulation. We performed leave-one-out cross validation and compared
the ideal parent method with K = 2 and K = 5 to the standard greedy method. To help avoid over-
fitting, we limited the number of hidden parents for each observed variable to 2. In terms of training
log-likelihood per instance per variable, the greedy method is better than the ideal method by 0.4
and 0.42 bits per instance, for K = 5 and K = 2, respectively. However, its test log-likelihood
performance is significantly worse as a result of high over-fitting of two particular instances, and
is worse by 0.72 bits per instance than the ideal method with K = 5 and by 0.88 bits per instance
than the ideal method with K = 2. As we have demonstrated in the synthetic example above, the
ability of the ideal method to avoid over-fitting via a guided search, does not come at the price of
diminished performance when data is more plentiful. When the observed variables were allowed to
have up to 5 parents, all methods demonstrated over-fitting, which for Greedy was far more severe.

10. Discussion and Future Work

In this work we set out to learn the structure of Bayesian networks with continuous variables. Our
contribution is twofold: First, we showed how to speed up structure search, particularly for non-
linear conditional probability distributions. This speedup is essential as it makes structure learning
feasible in many interesting real life problems. Second, we presented a principled way of introduc-
ing new hidden variables into the network structure. We used the concept of an ideal parent for both
of these tasks and demonstrated its benefits on both synthetic and real-life biological domains. In
particular, we showed that our method is able to effectively learn networks with hidden variables
that improve generalization performance. In addition, it allowed us to cope with domains where the
greedy method proved too time consuming.

Several works in recent years have tried to address the complexities involved in structure learn-
ing using different approaches. To name a few examples, Chickering (1996b) suggests searching the
smaller space of Bayesian network equivalence classes. Moore andWong (2003) suggest innovative
global search operators that completely sever and reinsert a variable into the network structure. They
take advantage of the fact that the set of children can be computed efficiently and use a branch and
bound technique for computing the parent set. Koivisto and Sood (2004) were the first to show how
the problem of exact structure learning can be made less than super-exponential by conditioning on
the ordering of variables and the use of dynamic programming. Singh and Moore (2005) propose a
different dynamic programming approach for learning the exact structure of Bayesian networks by

1829

ELIDAN, NACHMAN AND FRIEDMAN

considering an alternative recursive formulation. They compare the complexity of their approach
to that of Koivisto and Sood (2004) under different settings. Silander and Myllym (2006) build on
the same order based idea and propose a somewhat simpler algorithm that recursively builds the
network structure from the “sinks” of the optimal structure toward the roots. Teyssier and Koller
(2005) perform an intelligent order-based search that is not guaranteed to find the optimal structure
but significantly reduces the running time of the search procedure, and finds high scoring structures
in practice.

In contrast to these approaches that focus on the search strategy, our “Ideal Parent” approach
leverages on the parametric structure of the conditional distributions. This allows us to get a fast
approximation of the contribution of a search operator. In here, we applied this approach in conjunc-
tion with a greedy search algorithm. However, it can also be supplemented to many other search
procedures as a way of dramatically reducing the number of candidate moves that are carefully
evaluated.

Two works are of particular interest and relevance to ours. Della Pietra et al. (1997) suggest
an efficient method for incrementally inducing features of Markov random fields. To efficiently ap-
proximate the merit of candidate feature, they evaluate the improvement in likelihood when the only
parameter that can change is the one associated with the new feature. Thus, all other parameters of
the model are held fixed during the evaluation. For binary features, they find a closed-form solution
for the improvement. For more general features, they use non-linear optimization to perform the
evaluation. The idea of freezing some parameters in order to facilitate approximate but efficient
computations is also the basis for our development of the approximate score. The context of contin-
uous Bayesian networks, as well as the details of the likelihood functions involved in computations,
however, are quite different.

Another connection is to the “Sparse Candidate” procedure of Friedman et al. (1999), which
limits the number of candidate parents considered by the search procedure. While sharing the
motivation of our work, their pre-pruning of candidates does not take advantage of the form of the
conditional distribution nor does it try to approximate the benefit of a candidate directly. Instead,
they used statistical signals as a surrogate for the benefit of a candidate parent. Thus, these methods
are in fact orthogonal and it would be intriguing to see if the “Ideal Parent” method can help the
“Sparse Candidate” method during the pruning stage.

The parametric form of CPDs we examined here are specific instances of generalized linear
models (GLMs) (McCullagh and Nelder, 1989). This class of CPDs uses a function g that is applied
to the sum of its arguments, called the link function in the GLM literature. However, we can also
consider more complex functions, as long as they are well defined for any desired number of parents.
For example, in Nachman et al. (2004) models based on chemical reaction models are considered,
where the function g does not have a GLM form. An example of a two variable function of this type
is:

g(y1,y2 : θ) = θ
y1y2

(1+ y1)(1+ y2)
.

We also note that GLM literature deals extensively with different forms of noise. While we mainly
focus here on the case of additive Gaussian noise, and briefly addressed other noise models, the
ideas we propose here can be extended to many of these noise distributions.

Few works touched on the issue of when and how to add a hidden variable in the network
structure (e.g., Elidan et al., 2001; Elidan and Friedman, 2003; Martin and VanLehn, 1995; Zhang,
2004). Only some of these methods are potentially applicable to continuous variable networks, and

1830

THE “IDEAL PARENT” ALGORITHM

none have been adapted to this context. To our knowledge, this is the first method to address this
issue in a general context of continuous variable networks.

Many challenges remain. First, instead of scoring the top K candidate parents of each variable,
we could evaluate only the K most promising candidates over all possible structure modifications.
In doing so we could make use of the superiority of the C2 measure over the C1 measure, and
further improve the speed of our method, possibly by another order of magnitude. Second, the
“Ideal Parent” method can be combined as a plug-in for candidate selection with other innovative
search procedures. Third, we want to adapt our method for additional and more complex conditional
probability distributions (e.g., Nachman et al., 2004), and extend it to multi-modal distributions.
Fourth, we want to improve the approximation for adding new hidden variables in the non-linear
case. Finally, it might be possible to leverage on the connection to Generalized Linear Models for
handling more elaborate noise models.

Acknowledgments

We thank Shai Shwartz and the anonymous reviewers for comments on earlier versions of this
manuscript. This work was supported, in part, by grants from the Israeli Ministry of Science and
US-Israel Bi-national Foundation. I. Nachman and G. Elidan were also supported by the Horowitz
fellowship. N. Friedman was also supported in part by the Bauer Center for Genomics Research,
Harvard University.

References

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H. J. Lenz,
editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer-
Verlag, New York, 1996a.

D. M. Chickering. Learning equivalence classes of Bayesian network structures. In E. Horvitz and
F. Jensen, editors, Proc. Twelfth Conference on Uncertainty in Artificial Intelligence (UAI ’96),
pages 150–157, San Francisco, 1996b. Morgan Kaufmann.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, B 39:1–39, 1977.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, New
York, 1973.

G. Elidan and N. Friedman. The information bottleneck EM algorithm. In C. Meek and U. Kjærulff,
editors, Proc. Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI ’03), pages
200–208, San Francisco, 2003. Morgan Kaufmann.

G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based
approach. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 479–485, Cambridge, Mass., 2001. MIT Press.

1831

ELIDAN, NACHMAN AND FRIEDMAN

N. Friedman. Learning belief networks in the presence of missing values and hidden variables. In
D. Fisher, editor, Proc. Fourteenth International Conference on Machine Learning, pages 125–
133. Morgan Kaufmann, San Francisco, 1997.

N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression
data. Computational Biology, 7:601–620, 2000.

N. Friedman, I. Nachman, and D. Pe’er. Learning Bayesian network structure from massive data
sets: The ‘sparse candidate” algorithm. In K. Laskey and H. Prade, editors, Proc. Fifteenth
Conference on Uncertainty in Artificial Intelligence (UAI ’99), page 206–215, San Francisco,
1999.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein,
and P. O. Brown. Genomic expression program in the response of yeast cells to environmental
changes. Molecular Biology of the Cell, 11:4241–4257, 2000.

D. Geiger and D. Heckerman. Learning Gaussian networks. In R. López de Mantarás and D. Poole,
editors, Proc. Tenth Conference on Uncertainty in Artificial Intelligence (UAI ’94), pages 235–
243, San Francisco, 1994. Morgan Kaufmann.

F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Modern Heuristic Techniques for
Combinatorial Problems, Oxford, England, 1993. Blackwell Scientific Publishing.

M. I. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational approx-
imations methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models.
Kluwer, Dordrecht, Netherlands, 1998.

M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. Journal of
Machine Learning Research, 5:549–573, 2004.

S. L. Lauritzen and N. Wermuth. Graphical models for associations between variables, some of
which are qualitative and some quantitative. Annals of Statistics, 17:31–57, 1989.

J. Martin and K. VanLehn. Discrete factor analysis: Learning hidden variables in Bayesian net-
works. Technical report, Department of Computer Science, University of Pittsburgh, 1995.

P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1989.

A. Moore and W. Wong. Optimal reinsertion: A new search operator for accelerated and more
accurate Bayesian network structure learning. In T. Fawcett and N. Mishra, editors, Proceedings
of the 20th International Conference on Machine Learning (ICML ’03), pages 552–559, Menlo
Park, California, 2003.

K. Murphy and Y. Weiss. Loopy belief propagation for approximate inference: An empirical study.
In K. Laskey and H. Prade, editors, Proc. Fifteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI ’99), page 467–475, San Francisco, 1999. Morgan Kaufmann.

I. Nachman, A. Regev, and N. Friedman. Inferring quantitative models of regulatory networks from
expression data. Bioinformatics, 20(Suppl 1):S1248–1256, 2004.

1832

THE “IDEAL PARENT” ALGORITHM

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, H.P. Lehmann, and G.F.
Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge
base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine,
30:241–55, 1991.

T. Silander and P. Myllym. A simple approach for finding the globally optimal Bayesian network
structure. In Dechter and Richardson, editors, Proc. Twenty Second Conference on Uncertainty
in Artificial Intelligence (UAI ’06), San Francisco, 2006. Morgan Kaufmann.

A. Singh and A. Moore. Finding optimal Bayesian networks by dynamic programming. Technical
report, Carnegie Mellon University, 2005.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Bot-
stein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast
saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12):
3273–97, 1998.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning
Bayesian networks. In F. Bacchus and T. Jaakkola, editors, Proc. Twenty First Conference on
Uncertainty in Artificial Intelligence (UAI ’05), pages 584–590, San Francisco, 2005. Morgan
Kaufmann.

R. Parr U. Lerner and D. Koller. Bayesian fault detection and diagnosis in dynamic systems. In
Proc. of the Seventeenth National Conference on Artificial Intelligence (AAAI), pages 531–537,
2000.

J. Wilkinson. The Algebric Eigenvalue Problem. Claderon Press, Oxford, 1965.

N.L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning
Research, 5:697–723, 2004.

1833

Journal of Machine Learning Research 8 (2007) 1835-1865 Submitted 10/06; Revised 4/07; Published 8/07

Behavioral Shaping for Geometric Concepts

Manu Chhabra MCHHABRA@CS.ROCHESTER.EDU
Department of Computer Science
University of Rochester
Rochester, NY 14627, USA

Robert A. Jacobs ROBBIE@BCS.ROCHESTER.EDU
Department of Brain and Cognitive Sciences
University of Rochester
Rochester, NY 14627, USA

Daniel Štefankovič STEFANKO@CS.ROCHESTER.EDU
Department of Computer Science
University of Rochester
Rochester, NY 14627, USA

Editor:Manfred K. Warmuth

Abstract
In a search problem, an agent uses the membership oracle of a target concept to find a positive ex-
ample of the concept. In a shaped search problem the agent is aided by a sequence of increasingly
restrictive concepts leading to the target concept (analogous to behavioral shaping). The concepts
are given by membership oracles, and the agent has to find a positive example of the target concept
while minimizing the total number of oracle queries. We show that for the concept class of intervals
on the real line an agent using a bounded number of queries per oracle exists. In contrast, for the
concept class of unions of two intervals on the real line no agent with a bounded number of queries
per oracle exists. We then investigate the (amortized) number of queries per oracle needed for the
shaped search problem over other concept classes. We explore the following methods to obtain
efficient agents. For axis-parallel rectangles we use a bootstrapping technique to obtain gradually
better approximations of the target concept. We show that given rectangles R ⊆ A ⊆ Rd one can
obtain a rectangle A′ ⊇ R with vol(A′)/vol(R) ≤ 2, using only O(d ·vol(A)/vol(R)) random sam-
ples from A. For ellipsoids of bounded eccentricity in Rd we analyze a deterministic ray-shooting
process which uses a sequence of rays to get close to the centroid. Finally, we use algorithms
for generating random points in convex bodies (Dyer et al., 1991; Kannan et al., 1997) to give a
randomized agent for the concept class of convex bodies. In the final section, we explore connec-
tions between our bootstrapping method and active learning. Specifically, we use the bootstrapping
technique for axis-parallel rectangles to active learn axis-parallel rectangles under the uniform dis-
tribution in O(d ln(1/ε)) labeled samples.
Keywords: computational learning theory, behavioral shaping, active learning

1. Introduction

Computational models of learning are often inspired by human cognitive phenomena. For example,
the PAC model of Valiant (1984) is a model of our ability to learn concepts from positive and
negative examples generated at random by the world. Human learning, however, demonstrates a
richer variety of learning phenomena such as that of behavioral shaping. Behavioral shaping is a

c©2007 Manu Chhabra, Robert A. Jacobs and Daniel Štefankovič.

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

training procedure commonly used to teach complex behaviors. Using this procedure, a complex
task is taught to a learner in an incremental manner. The learner is initially rewarded for performing
an easy task that coarsely resembles the target task that the teacher wants the learner to perform.
Over time, the learner is rewarded for performing more difficult tasks that monotonically provide
better approximations to the target task. At the end of the training sequence, the learner is rewarded
only for performing the target task. Shaping was first proposed by B. F. Skinner in the 1930s
(Skinner, 1938). In addition to training humans and other organisms, behavioral shaping has also
been used in artificial intelligence applications such as those that arise in robotics or reinforcement
learning (Dorigo and Colombetti, 1994; Mataric, 1994; Randløv and Alstrøm, 1998; Konidaris and
Barto, 2006; Ng et al., 1999).

The goal of this paper is to mathematically formalize the notion of shaping, and to show that
shaping makes certain tasks easier to learn. We specifically study shaping in the context of search
problems (for a learning theoretic analysis of a similar search problem, see, e.g., Fine and Mansour,
2006). In a search problem, the task is to find one positive example of a concept given a membership
oracle of the concept using as few queries to the oracle as possible. If a shaping sequence, which is
a sequence of nested concepts, is available, it might be possible to solve the search problem with a
smaller number of oracle queries. When concepts are standard geometrical concepts like rectangles,
balls, ellipsoids, and convex bodies in high dimensions, we show efficient algorithms to solve the
search problem using a shaping sequence.

“Reward shaping” of Ng et al. (1999) and quasi-convex optimization are related to our work.
Ng et al. (1999) gave conditions under which “reward shaping” works in a reinforcement learning
setting. In their framework, shaping is a transformation of the reward function and the goal is to
formalize conditions under which this transformation preserves value of the underlying policies.
Our framework is different from Ng et al. (1999) in at least two ways. First, we have a sequence of
reward functions as compared to their one step reward transform. Second, our reward functions are
binary whereas they allow general, real valued rewards.

A weaker version of the shaped search problem in which the concepts are convex and all the
oracles are available to the agent simultaneously can be viewed as an instance of a quasi-convex
optimization problem. Also, we cannot apply the algorithms from this area since they usually
rely on an oracle (so called separation oracle) stronger than the membership oracle that we use.
What makes our setting different is that the oracles are available in a fixed order, and we only have
membership oracles. Our framework is motivated by behavioral shaping (Skinner, 1938), as well as
practical robotics (Dorigo and Colombetti, 1994).

Our work is similar in spirit to the idea of using a helpful teacher (Goldman and Kearns, 1991;
Goldman et al., 1993; Goldman and Mathias, 1993; Hegedűs, 1994). For example, Goldman and
Kearns (1991) considered a model where a helpful teacher chose examples to allow a learner to
uniquely identify any concept in a given concept class. Our model differs from Goldman and Kearns
(1991) in the following aspects. First, the teacher in Goldman and Kearns (1991) is “active” (it is
directly providing the learner with “good” examples), whereas in our model the burden of choosing
good queries is on the learner. Second, the learner in Goldman and Kearns (1991) is faced with a
more general task of identifying the concept, whereas our learner is solving a search problem.

The rest of the paper is organized as follows. In Section 2 we define the shaped search problem
and summarize the results of the paper. In Section 3 we illustrate the shaped search problem with
algorithms for the concept classes of intervals and axis-parallel rectangles. In Section 4 we use
a bootstrapping algorithm to give an improved algorithm for axis-parallel rectangles. Section 5

1836

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

explains and analyzes the center-point algorithm which is used in Section 6 to solve the shaped
search problem for bounded eccentricity ellipsoids. Section 7 uses the techniques on sampling
random points from a convex body to solve the problem for general convex bodies. In Section 8
we define the problem of one-sided active learning, and show that the bootstrapping algorithm
given in Section 4 can be used to active-learn the concept class of axis-parallel rectangles with
O(d ln(1/ε)) labeled samples. Finally, Section 9 wraps up the paper with a discussion and possible
future directions.

2. A Formal Model of Behavioral Shaping

A search problem is defined by a pair of sets (S,T) such that T ⊆ S (S is the starting set and T is
the target set). A search agent “knows” S and has to find a point y ∈ T . The set T will be given by a
membership oracle. The goal of the agent is to minimize the number of queries to the oracle.

Of course without any conditions on (S,T) the agent could be searching for a needle in a
haystack and require an unbounded number of queries. To make the problem reasonable we will as-
sume that S and T come from some concept class C (e. g., S,T could be intervals in R), and that the
volume vol(T) is not too small compared to the volume vol(S) (i. e., T is not a needle in a haystack
S).

Before formally defining a search problemwe need the following standard notions from learning
theory (see, e.g., Anthony and Biggs, 1992; Kearns and Vazirani, 1994). Let (X ,B) be a measurable
space and let vol be a measure on (X ,B). Let C ⊆ B . The set C is called a concept class and its
members are called concepts. We will assume that C comes with a representation scheme (see
Kearns and Vazirani, 1994, Chapter 2). Examples of concept classes that we study include intervals
in R, axis-parallel rectangles in Rd , ellipsoids in Rd , and convex bodies in Rd . We will restrict our
attention to the Lebesgue measure on Rd .

Definition 2.1 Let C be a concept class. A search problem is defined by a pair of concepts (S,T)
such that T ⊆ S and S,T ∈ C . The agent has a representation of S and has to find a point in T using
a membership oracle for T .

Note that for any concept class there is a natural “oblivious” randomized algorithm for the
search problem: query independent uniform random points from S until you find a point in T . The
expected number of queries of the algorithm is vol(S)/vol(T). For sufficiently complicated concept
classes (e. g., finite unions of intervals) the use of randomness might be inevitable—a deterministic
algorithm with bounded number of queries need not exist (the question of deterministic search is
related to the concept of hitting sets, see, e.g., Linial et al., 1993).

For concept classes we will consider one can find Ω(n) disjoint concepts, each of volume
Ω(1/n). The following observation implies that the trivial algorithm is the best possible (up to
a constant factor).

Observation 2.1 Suppose that there exist disjoint concepts T1, . . . ,Tn ⊆ S. Let i be uniformly ran-
dom from [n]. The expected (over the choice of i) number of queries made by any (randomized)
agent on (S,Ti) is Ω(n).

In a shaped search problem the agent’s search task will be aided by a shaping sequence, which
is a sequence of nested sets between the S and T . The sets in the shaping sequence will be gradually

1837

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

shrinking concepts from the underlying concept class C . The rate of shrinking will be controlled by
a parameter, denoted γ.

Definition 2.2 Let γ ∈ (0,1). Let C be a concept class and let (S,T) be a search problem over C .
A sequence of concepts S0 ⊇ S1 ⊇ ·· · ⊇ Sk is called a γ-shaping sequence if S0 = S, Sk = T , and
vol(St+1) ≥ γvol(St) for all t ∈ {0, . . . ,k−1}.

A search agent in a shaped search problem only has access to the membership oracles of
S1, . . . ,Sk. However, if the agent makes a query to St , it can no longer make a query to S j with
j < t. In other words, the oracles St are presented to the agent in k iterations, with the agent making
(zero or more) queries to the oracle St at iteration t. The agent successfully solves the shaped search
problem if at the end of the process it outputs x ∈ T . We assume that the agent knows the value of γ
and does not know the value of k. However, before the last iteration the agent is informed that it is
accessing the last oracle.

We will evaluate the performance of the agent by the amortized number of membership queries
per oracle (i. e., the total number of queries divided by k). We will also consider randomized agents,
which are zero-error probability (Las Vegas) algorithms (i. e., they are always successful). For a
randomized agent the performance is measured by the expected number of membership queries per
oracle, where the expectation is taken over the coin flips of the agent. This is formalized in the
following definition.

Definition 2.3 Let C be a concept class. Let A be a search agent. We say that the agent A solves
a γ-shaped search problem using q queries per oracle, if for every S,T ∈ C , every k, and every
γ-shaping sequence S0, . . . ,Sk ∈ C the total number of queries made by the agent is bounded by kq.
If the agent is randomized we require the expected total number of queries to be bounded by kq.

Note that for γ> γ′ any γ-shaping sequence is a γ′-shaping sequence. Thus as γ→ 1 the shaped
search problem becomes easier. We will study how γ affects the complexity of the shaped search
problem.

2.1 Our Results

In order to introduce the shaped search problem, we start with a positive and a negative result for
two simple concept classes (the proofs are in Section 3). First, we show that O(1/γ) queries per
oracle suffice to solve the γ-shaped search problem for the concept class of closed intervals in R.

Proposition 2.4 Let C be the concept class of closed intervals in R. There exists a deterministic
agent which for any γ uses O(1/γ) queries per oracle to solve γ-shaped search problem.

Next, we contrast the Proposition 2.4 by showing that for the class of “unions of two closed
intervals in R” there exists no agent that solves the γ-shaped search problem using bounded number
of queries per oracle.

Proposition 2.5 Let C be the concept class of unions of two closed intervals in R. Let γ ∈ (0,1).
For every (randomized) agent A and every number q there exists a search problem (S,T), k, and a
γ-shaping sequence S1, . . . ,Sk such that A makes more than q queries per oracle (in expectation).

1838

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

We understand the concept class of intervals completely as Proposition 2.4 can be strengthened
as follows.

Proposition 2.6 Let C be the concept class of closed intervals in R. Let f (γ) = 1/γ for γ ≤ 1/2,
and f (γ) = ln(1/γ) for γ > 1/2. There exists a deterministic agent which for any γ ∈ (0,1) uses
O(f (γ)) queries per oracle to solve γ-shaped search problem. On the other hand, for any γ ∈ (0,1),
any (randomized) agent makes at least Ω(f (γ)) queries per oracle.

The shaped search problem for axis-parallel rectangles in Rd turns out to be more complicated.
Here we do not understand the dependence of the complexity of the γ-shaped search problem on γ.
We present three algorithms; each algorithm works better than the other two for a certain range of
γ.

We say that a randomized agent is oblivious if for every oracle St the queries to St which lie in
St are independent and uniformly random in St .

Theorem 2.7 Let C be the concept class of axis-parallel rectangles in Rd .

1. For any γ there exists a randomized agent using O(1γ +(d+ ln 1γ) lnd) queries per oracle.

2. For any γ there exists an (oblivious) randomized agent using O(d/γ) queries per oracle.

3. For any constant γ> 1/2 there exists a deterministic agent using O(lnd) queries per oracle.

The following table compares the number of queries used by the algorithms for various values
of γ.

Alg. 1. Alg. 2. Alg. 3.
γ= 3/4 O(d lnd) O(d) O(lnd)
γ= 1/4 O(d lnd) O(d) N/A
γ= 1/ lnd O(d lnd) O(d lnd) N/A
γ= 1/d O(d lnd) O(d2) N/A

Note that the deterministic algorithm for part 3. uses less queries than the randomized algorithm
for part 2., but it only works in a very restricted range of γ. It relies on the following fact: the centroid
of an axis-parallel rectangle of volume 1 is contained in every axis-parallel sub-rectangle of volume
≥ 1/2. It would be interesting to know whether the logarithmic dependence on d could be extended
for constants γ≤ 1/2, or, perhaps, a lower bound could be shown.

Question 1 Are Ω(d) queries per oracle needed for γ< 1/2?

The simple agent for the part 1) of Theorem 2.7 is described in Section 3.
In Section 4 we introduce the concept of “bootstrap-learning algorithm”. A bootstrap-learning

algorithm, given an approximation A1 of an unknown concept C ∈ C and a membership oracle for
C, outputs a better approximation A2 of C. We show an efficient bootstrap-learning algorithm for
the concept class of axis-parallel rectangles and use it to prove part 2) of Theorem 2.7.

Part 3) of Theorem 2.7 is proved in Section 5. We show how an approximate center of an axis-
parallel rectangle can be maintained using only O(lnd) (amortized) queries per oracle. If γ is not
too small, the center of St will remain inside St+1 and can be “recalibrated”.

The results of Section 5 suggest that maintaining an approximate centroid of the St is a useful
approach for solving the shaped search problem. For a centrally symmetric convex body K the

1839

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

following process can be used to get close to a centroid of K: pick a line ! through the current
point, move the current point to the center of !∩K and repeat. If ! is uniformly random the process
converges to the centroid of K. It would be interesting to know what parameters influence the
convergence rate of this process.

Question 2 How many iterations of the random ray-shooting are needed to get ε-close to the cen-
troid of a (isotropic), centrally symmetric convex body K?

We will consider the following deterministic version of the ray-shooting approach: shoot the rays
in the axis directions e1, . . . ,ed , in a round-robin fashion.

Question 3 How many iterations of the deterministic round-robin ray-shooting are needed to get
ε-close to the centroid of a (isotropic), centrally symmetric convex body K?

In Section 6 we study a variant of the deterministic ray-shooting which moves to a weighted average
of the current point and the center of K ∩ !. We analyze the process for the class of ellipsoids of
bounded eccentricity. As a consequence we obtain:

Theorem 2.8 Let C be the concept class of ellipsoids with eccentricity bounded by L. Let γ> 1/2.
The γ-shaped search problem can be solved by a deterministic agent using O(L2 ·d3/2 lnd) queries
per ray-shooting oracle (a ray-shooting oracle returns the points of intersection of K with a line
through a point x ∈ K)

The requirement γ> 1/2 in Theorem 2.8 can be relaxed. Similarly, as in the axis-parallel rect-
angle case, we need a condition on the volume of a sub-ellipsoid of an ellipsoid E which guarantees
that the sub-ellipsoid contains the centroid of E. We do not determine this condition (which is a
function of L and d).

To prove Theorem 2.8 we need the following interesting technical result.

Lemma 2.9 Let v1, . . . ,vd ∈ Rd be orthogonal vectors. Let α ∈ (0,2) and L≥ 1. Let D be an d×d
diagonal matrix with diagonal entries from the interval [1/L,1]. Let

M(α) =
n

∏
i=1

(
I−α · Dviv

T
i D

vTi D2vi

)
.

Then
‖M(1/

√
d)‖22 ≤ 1−

1
5L2

√
d
.

Using randomwalks and approximating ellipsoids (Bertsimas and Vempala, 2004; Kannan et al.,
1997; Grötschel et al., 1988; Lovász, 1986) we can show that convexity makes the shaped search
problem solvable. We obtain the following result (a sketch of the proof is in Section 7):

Theorem 2.10 Let C be the concept class of compact convex bodies in Rd . For any γ ∈ (0,1)
there exists a randomized agent for the γ-shaped search problem using O(poly(d,1/γ)) queries per
oracle.

1840

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

3. Basic Results for Intervals and Axis-parallel Rectangles

Now we show that for intervals O(1/γ) queries per oracle are sufficient to solve the γ-shaped search
problem. For each St we will compute an interval [at ,bt] containing St such that the length of [at ,bt]
is at most three times longer than the length of St . By querying St+1 on a uniform set of O(1/γ)
points in [at ,bt] we will obtain [at+1,bt+1].

Proof of Proposition 2.4:
The agent will compute an interval approximating St for t = 0, . . . ,k. More precisely it will compute
at and bt such that St ⊆ [at ,bt] and vol(St) ≥ (bt − at)/3. Initially we have S = S0 =: [a0,b0] and
vol(S0) = (b0−a0) ≥ (b0−a0)/3.

Suppose that St ⊆ [at ,bt] and vol(St) ≥ (bt − at)/3. Using an affine transformation we can,
w.l.o.g., assume at = 0 and bt = 1. Thus vol(St) ≥ 1/3 and vol(St+1) ≥ γ/3.

Let Q0 = {0,1}, Q1 = {0,1/2,1}, . . . , Qi = { j/2i | j = 0, . . . ,2i}. The agent will query St+1 on
all points in Qi, i= 0,1, . . . , until it finds the smallest j such that |Q j ∩St+1| ≥ 2. Choose at+1 and
bt+1 such that

Q j ∩St+1 = {at+1+2− j, . . . ,bt+1−2− j}.

For this at+1,bt+1 we have St+1 ⊆ [at+1,bt+1] and vol(St+1) ≥ (bt+1−at+1)/3.
Note that if 2−i ≤ γ/6 then |Ai∩St+1| ≥ 2. By the minimality of j we have 2 j ≤ 12/γ and hence

the total number of queries per oracle is O(1/γ). !

Proof of Proposition 2.6:
First we show the upper bound of O(ln(1/γ)) for γ> 1/2. Let ! = ,− ln2

lnγ -. Note that γ
! ≥ 1/4. Now

we use the agent from Proposition 2.4 on oracles S0,S!,S2!, . . . , and we do not query the rest of the
oracles at all. The number of queries per oracle is O(1/!) = O(ln(1/γ)).

Next we show the lower bound of Ω(1/γ) for γ < 1/2. We take a shaping sequence of length
k= 1. Note that there exist .1/γ/ disjoint intervals of length γ in [0,1] and hence, by Observation 2.1,
the agent needs to make Ω(.1/γ/) queries (per oracle).

Finally, the lower bound of Ω(ln(1/γ)) will follow by an information-theoretic argument. As-
sume that the agent is deterministic. Fix an integer k. There exist Ω(1/γk) disjoint intervals of
length γk. For each of these intervals there exists a shaping sequence of length k ending with that
interval. We will randomly pick one of these shaping sequences and present it to the agent. The
agent, using Q queries, identifies which interval (out of the Ω(1/γk) intervals) we chose. This im-
plies E[Q] = Ω(k ln(1/γ)), and hence the number of queries per oracle is Ω(ln(1/γ)). The lower
bound for a randomized agent follows by Yao’s min-max lemma (see, e.g., Motwani and Raghavan,
1995, Chapter 2). !

For unions of two intervals the agent can be forced to make many queries per oracle. If one of
the intervals is large and one is small then the small interval can abruptly shrink. We will use this
to “hide” the target T . Then we will shrink the large interval until it disappears. Now the agent is
forced to find the hidden target T , which requires a large number of queries.

Proof of Proposition 2.5:
Let γ ∈ (0,1). Let n be the smallest positive integer such that (1+ γn)γ ≤ 1. Let ! be a positive
integer such that γ! < 1/2. Let T be a random interval of length γn+! in [0,γn]. Let S= [−1,1]. The

1841

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

γ-shaping sequence will be the following:

St =

{ [−1,0]∪ [0,γt] for t = 0, . . . ,n,
[−γt−n−1,0]∪T for t = n+1, . . . ,3n+ !+1,
T for t = 3n+ !+2.

Note that St is always a union of two intervals. In the first n+ 1 iterations, the right hand-side
interval is shrinking. When the right-hand side interval is sufficiently small we can replace it by the
“hidden” interval T . After that we shrink the left-hand side until we make it disappear.

For the sake of the lower bound argument, we will help the agent by telling it the general shape
of the shaping sequence, but we will keep the location of T secret. Now, w.l.o.g, we can assume
that the agent only queries points in [0,γn] on the oracle for T (because for all the other queries the
agent can figure the answer himself). By Observation 2.1 the agent needs Ω(1/γ!) queries to find a
point in T . Hence the number of queries per oracle is

Ω

(
1/γ!

3n+ !+2

)
.

Letting ! → ∞ we obtain that the number of queries per oracle is unbounded. !

Now we describe an agent for axis-parallel rectangles. Let At be a tight rectangle containing
St (i. e., a rectangle such that vol(At) ≤ C · vol(St) for some constant C). We will sample random
points in At until we get a point y inside St+1. Then we will shoot rays from y in the axis-parallel
directions to find the approximate boundary of St+1. From this we will obtain a tight rectangle At+1
containing St+1.

Proof of the part 1) of Theorem 2.7:
We will compute axis-parallel rectangles A0, . . . ,Ak such that St ⊆ At and vol(At) ≤ evol(St) (for
t = 0, . . . ,k). Clearly we can take A0 = S0.

Suppose that we have At such that St ⊆ At , and vol(At) ≤ evol(St). Using an affine trans-
formation we can, w.l.o.g, assume At = [0,1]d . Since the St form a γ-shaping sequence we have
vol(St+1) ≥ γ/e. We will sample random points from At , until we get a point x inside St+1. In
expectation we will need to query at most e/γ points to find x.

Now that we have x we will try to approximate St+1 in each dimension separately. We will find
the smallest j ≥ 0 such that x+ 2− je1 ∈ St+1, or x− 2− je1 ∈ St+1. Only O(− lnw1(St+1)) queries
are needed for this step (where w1(St+1) is the width of St+1 in the 1-st dimension).

Then using binary search on [0,21− j] we will find y such that x+ ye1 ∈ St+1 and x+ (y+
2− j−1/d)e1 1∈ St+1. This step uses only O(lnd) queries. Similarly we will find z ∈ [0,21− j] such
that x− ze1 ∈ St+1 and x− (z+2− j−1/d)e1 1∈ St+1. Note that

I1 := [x− (z+2− j−1/d),x+(y+2− j−1/d)],

contains the projection of St+1 into the 1-st dimension, and the the length of I1 is at most (1+
1/d)w1(S).

Analogously we compute the Ii for i= 1, . . . ,d. The total number of queries is

O(d lnd)+O

(
−

d

∑
i=1
lnw1(St+1)

)
= O

(
d lnd+ ln

1
γ

)
.

Let At+1 = I1×·· ·× Id . We have St+1 ⊆ At+1, and vol(At+1) ≤ (1+1/d)d ≤ e. !

1842

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

4. (α,β)-bootstrap Learning Algorithms

In this section we prove the part 2) of Theorem 2.7. We cast the proof in a general setting that we
call “bootstrap-learning algorithms”.

Definition 4.1 Let C , CA be concept classes. Let α> β≥ 1. An (α,β)-bootstrap learning algorithm
for C using CA takes as an input a representation of a concept A1 ∈ CA and an oracle for a concept
R ∈ C . The concepts A1 and R are guaranteed to satisfy R ⊆ A1 and vol(A1) ≤ α · vol(R). The
algorithm outputs a representation of a concept A2 ∈ CA such that R⊆ A2 and vol(A2) ≤ β ·vol(R).
The efficiency of the algorithm is measured by the worst-case (expected) number T of oracle queries
to R (i. e., we take the worst A1 and R from C).

If an efficient (α,β)-bootstrap learning algorithm exists for a concept class C then it can be used
for the shaped search problem as follows.

Lemma 4.2 Let C , CA be concept classes. Let α > β ≥ 1. Assume that there exists an (α,β)-
bootstrap learning algorithm for C using CA using T queries. Suppose that for every C ∈ C there
exists A ∈ CA such that C ⊆ A and vol(A) ≤ β · vol(C). Then there exists an agent which for any
γ≥ β/α solves the γ-shaped search problem (over C) using T queries per oracle.

Proof :
We will compute A0, . . . ,Ak ∈ CA such that St ⊆ At and vol(At) ≤ β · vol(St). By the assumption
of the lemma the first A0 exists. (The starting concept S in a shaped search problem is known in
advance and hence the agent can pre-compute A0.)

Suppose that we have At . Then St+1 ⊆ At , and vol(At) ≤ (β/γ)vol(St+1) ≤ αvol(St+1). Hence
using the (α,β) boot-strap algorithm we can find At+1, using only T queries. !

If one uses Lemma 4.2 to obtain an agent for the shaped search problem for C , one should
choose CA which allows for an efficient (α,β)-bootstrap algorithm. Later in this section we will
show that for axis-parallel rectangles one can take CA = C , and obtain an efficient (α,β)-bootstrap
algorithm. Are there concept classes for which it is advantageous to choose CA 1= C? More generally
one can ask:

Question 4 For given concept class C , and α > β ≥ 1, which concept classes CA allow for an
efficient (α,β)-bootstrap learning algorithm?

We will study the following algorithm for the (α,β)-bootstrap learning problem.

1843

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

input : a representation of A1 ∈ CA and an oracle for R ∈ C
assume : R⊆ A1 and vol(A1) ≤ α ·vol(R).
output : a representation of A2 ∈ CA, such that

R⊆ A2 and vol(A2) ≤ β ·vol(R).
S+ ← /0, S− ← /01
repeat2

pick a random point p ∈ A13
if p ∈ R then S+ ← S+ ∪{p} else S− ← S−∪{p} fi4
PossibleR ←{C ∈ C |S+ ⊆C ⊆ A1 \S−}5
v← the minimal volume of a concept in PossibleR6
A2 ← a concept of minimal volume in CA containing allC ∈ PossibleR7

until vol(A2) ≤ β · v8
output a representation of A29

Algorithm 1: Inner-Outer algorithm for (α,β)-bootstrap learning

Note that the set PossibleR contains R and hence R ⊆ A2, and v ≤ vol(R). Thus when the
algorithm terminates we have vol(A2) ≤ β · v≤ β ·vol(R). Thus we have the following observation.

Proposition 4.3 The Inner-Outer algorithm is an (α,β)-bootstrap learning algorithm.

Now we analyze the Inner-Outer algorithm for the concept class of axis-parallel rectangles with
CA = C . We will need the following technical results (the proofs are in the appendix).

Lemma 4.4 Let X1, . . . ,Xn be i.i.d. uniformly random in the interval [0,1]. Then

E
[
− ln

(
max
i
Xi−min

i
Xi

)]
=

2n−1
n(n−1) ≤ 2

n−1 ≤ 4
n
.

Lemma 4.5 Let K be from the binomial distribution B(n, p). Let X1, . . . ,XK be i.i.d. uniformly
random in the interval [0,1]. Then

E[min{1,X1, . . . ,XK}] =
1− (1− p)n+1

(n+1)p
≤ 1
np

.

Lemma 4.6 Let C be the set of axis-parallel rectangles in Rd . Let CA = C . The expected number
of oracle calls made by the Inner-Outer algorithm is bounded by 8+320dα/ lnβ.

As an immediate corollary we obtain:

Proof of the part 2) of Theorem 2.7:
Immediate from Lemma 4.6 and Lemma 4.2. !

Proof of Lemma 4.6:
W.l.o.g. we can assume A1 = [0,1]d . Let R = [a1,b1]× ·· ·× [ad,bd], where 0 ≤ ai ≤ bi ≤ 1, for
i= 1, . . . ,d.

For the purpose of the analysis of the Inner-Outer algorithm we will split the algorithm into two
phases of length n1 and n2, respectively. We will then show that with probability 1/4 the algorithm
stops after these two phases. From this it will follow that the expected number of samples used by
the algorithm is at most 4(n1+n2).

1844

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

I

0, 0 1, 0

1, 10, 1

R

C ′
i Ci

ai, 0 bi, 0

cic′i

Figure 1: Schematic drawing for the proof of Lemma 4.6.

In the first phase n1 i.i.d. random points from A1 are sampled. The expected number of points
that fall inside R is at least n1/α. By Chernoff bound with probability at least 3/4 we get at least
n1/(2α) points inside R. With probability at most 1/4 the algorithm “fails”.

From now on we assume that the algorithm did not “fail”, i. e., at least n1/(2α) points are inside
R. Let I be the smallest rectangle containing these points. We will choose n1 > 4α and hence, by
Lemma 4.4, the expected logarithm of the width of I in the i-th dimension satisfies

E
[
− ln wi(I)

bi−ai

]
≤ 8α
n1

. (1)

Summing the (1) for i ∈ [d] we obtain (using the linearity of expectation)

E
[
ln
vol(R)
vol(I)

]
≤ 8dα

n1
. (2)

Markov inequality applied to (2) yields that with probability at least 3/4 we have

ln
vol(R)
vol(I)

≤ 32dα
n1

. (3)

If (3) is not satisfied we say that the algorithm “failed”.
From now on we assume that (3) is true, i. e., the algorithm did not fail. Thus

vol(I) ≥ vol(R) · exp
(
−32dα

n1

)
. (4)

Let Ii be obtained from I by stretching the i-th dimension to [0,1] (for i ∈ [d]). Note that R cuts Ii
into three parts. Call the parts of Ii that are outside of R,Ci andC′

i (see Figure 1). Let ci be the width
ofCi in the i-th dimension, and c′i be the width ofC′

i in the i-th dimension.

1845

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

Now we sample n2 i.i.d. random points from A1. A point falls inside Ci with probability
vol(Ci) = civol(I)/(bi−ai). The expected distance of the point inCi closest to R, by Lemma 4.5, is
bounded by

ci ·
1

n2 · civol(I)/(bi−ai)
=

bi−ai
n2vol(I)

. (5)

Note that A2 determined by the closest points in the Ci and C′
i contains PossibleR. By (5) the

expected width of A2 in the i-th dimension satisfies E[wi(A2)] ≤ (bi− ai)(1+ 2/(n2vol(I))). By
Jensen’s inequality

E
[
ln
wi(A2)
bi−ai

]
≤ ln

(
1+

2
n2vol(I)

)
≤ 2
n2vol(I)

.

By the linearity of expectation

E
[
ln
vol(A2)
vol(R)

]
≤ 2d
n2vol(I)

.

By Markov inequality with probability at least 3/4 we have

ln
vol(A2)
vol(R)

≤ 8d
n2vol(I)

≤ 8dα
n2

, (6)

and hence
vol(R) ≥ vol(A2) · exp

(
−8dα

n2

)
. (7)

Again, if (6) is false we say that the algorithm “failed”. Note that the algorithm “failed” (in any of
the three possible ways) with probability at most 3/4. Thus with probability 1/4 we have that (4)
and (7) are true and hence

vol(A2) ≤ vol(I) · exp
(
8dα
n2

+
32dα
n1

)
.

For n1 = ,64dα/ lnβ- and n2 = ,16dα/ lnβ- the right hand side is bounded by β and hence the
algorithm will terminate.

Note that additional points in S+ and S− do not “hurt” the algorithm (removal of a point cannot
increase v, nor can it decrease vol(A2)). Thus if the algorithm does not terminate, the next run
of length n1+ n2 terminates with probability ≥ 1/4, etc. Hence in expectation at most 4(n1+ n2)
oracle queries suffice. !

5. Center-point Algorithm

In this section we show how an approximate center-point of a rectangle can be maintained using
only O(lnd) queries per oracle. As a corollary we obtain a proof of the part 3) of Theorem 2.7.

Given a vector v ∈ Rd , let Piv be the projection of v to the i-th dimension (i. e., the vector
obtained by zeroing out all the entries of v except the i-th coordinate). Let ∂S denote the boundary
of the S.

Definition 5.1 Let S be an axis-parallel rectangle in Rd . Let ε ∈ (0,1). Let x be a point in S and
let v ∈ Rd , v≥ 0. Let αi,βi ≥ 0 be determined by x+αi(Piv) ∈ ∂S and x−βi(Piv) ∈ ∂S, for i ∈ [d].
We say that v is an ε-approximate distance vector for (S,x) if 1− ε≤ αi ≤ 1 and 1− ε≤ βi ≤ 1 for
i ∈ [d]. We say that x is an ε-approximate center-point of S if there exists an ε-approximate distance
vector v for (S,x).

1846

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

Note that if v is an ε-approximate distance vector for (S,x) then we have
d

∏
i=1

(2vi) ≥
d

∏
i=1

((αi+βi)vi) = vol(S). (8)

If S′ ⊆ S and the volume of S′ is not much smaller than the volume of S then an approximate
center-point x of S should be contained in S′. The next lemma formalizes this intuition.

Lemma 5.2 Let S′ ⊆ S be axis-parallel rectangles. Assume that vol(S)/vol(S′) ≤ 2− 2ε. Let x ∈
S be an ε-approximate center-point of S. Then x ∈ S′. Moreover, for α′

i,β
′
i ≥ 0 determined by

x+α′
i(Piv) ∈ ∂S′ and x−β′i(Piv) ∈ ∂S′ we have α′

i+β′i ≥ 1, and α′
i ≥ ε/2, and β′i ≥ ε/2.

Now we give an algorithm which “recalibrates” an ε-approximate center-point. Note that the
first two steps of the algorithm rely on the fact that x ∈ S′ (which is guaranteed by Lemma 5.2).

input : x ∈ S, and an ε-approximate distance vector v for (S,x).
assume : S′ ⊆ S and vol(S) ≤ (2−2ε)vol(S′)
output : x′ ∈ S′, and an ε-approximate distance vector v′ for (S′,x′).
find δ+ > 0 such that x+(δ+ + ε/8)v (∈ S′ and x+δ+v ∈ S′1
find δ− > 0 such that x− (δ− + ε/8)v (∈ S′ and x−δ−v ∈ S′2
let δ=min{δ+,δ−}, let s= +1 if δ= δ+ and s= −1 otherwise3
if δ< 1− ε then4

find j ∈ [d] such that x+ s(δ+ ε/8)(Pjv) (∈ S′ and x+ sδ(Pjv) ∈ S′5
find α> 0 such that x+(α+ ε/8)(Pjv) (∈ S′, and x+α(Pjv) ∈ S′6
find β> 0 such that x− (β+ ε/8)(Pjv) (∈ S′, and x−β(Pjv) ∈ S′7
update x j ← x j + v j(α−β)/28
update v j ← (1+ ε/4)((α+β)/2)v j9
go to step 110

return x,v11

Algorithm 2: Center-point algorithm

Proof of Lemma 5.2:
Let v be an ε-approximate distance vector for (S,x). Suppose x 1∈ S′. Then there exists a coordinate
i ∈ [d] such that S′ lies on one side of the hyperplane {z ∈ Rd |zi = xi}. Thus the width of S′
in the i-th dimension satisfies wi(S′) ≤ vi. On the other hand wi(S) ≥ wi(S′) + (1− ε)vi. Hence
wi(S)/wi(S′) ≥ 2− ε which implies vol(S)/vol(S′) ≥ 2− ε, a contradiction. We proved x ∈ S′.

For any i ∈ [d], using αi,βi ≥ 1− ε, we obtain

2−2ε≥ vol(S)
vol(S′)

≥ αi+βi
α′
i+β′i

≥ 2−2ε
α′
i+β′i

,

and hence α′
i+β′i ≥ 1.

Similarly, for any i ∈ [d], using β′i ≤ βi ≤ 1, α′
i ≤ αi, we obtain

2−2ε≥ vol(S)
vol(S′)

≥ αi+βi
α′
i+β′i

≥ αi+βi
α′
i+βi

≥ αi+1
α′
i+1

≥ 2− ε
α′
i+1

.

This implies α′
i ≥ ε/2. The proof of β′i ≥ ε/2 is the same. !

By the assumptions on the input the αi, and βi for x,v,S are bounded by 1 from above. Hence
the αi and βi for x,v,S′ are bounded by 1 from above. Later we will show that during the execution
of the algorithm the αi and βi for x,v,S′ always remain bounded by 1 from above.

1847

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

When |δ| ≥ 1− ε on step 4 then x+(1− ε)v ∈ S′ and x− (1− ε)v ∈ S′, and hence the αi and βi
are bounded by 1− ε from below. Thus the final v is ε-approximate distance vector for (S′,x).

It remains to show that during the algorithm the αi and βi for x,v,S′ always remain bounded by
1 from above. Let x′j = x j + v j(α−β)/2 and v′j = (1+ ε/4)((α+β)/2)v j, i. e., x′j and v′j are the
new values assigned on lines 8 and 9. We have

x′j + v′j = x j + v j
(
α+

ε(α+β)
8

)
≥ x j + v j(α+ ε/8), (9)

and
x′j +(1− ε)v′j = x j + v j

(
α−β
2

+(1+ ε/4)(1− ε)
α+β
2

)
≤ x j +αv j. (10)

From (9) and (10) and our choice of α on line 6 it follows that on line 10 the value of α j for the new
x and v satisfies 1− ε≤ α j ≤ 1. Similar argument establishes 1− ε≤ β j ≤ 1. Note that

v′j
v j

= (1+ ε/4)
α+β
2

≤ (1+ ε/4)(1− ε/2) ≤ 1− ε/4. (11)

We will use (11) to bound the amortized number of steps we spend in our application of the center-
point algorithm.

Proof of the part 3) of Theorem 2.7:
W.l.o.g., assume S= S0 = [0,1]d . Let x(0) = v(0) = (1/2, . . . ,1/2). Note that v(0) is an ε-approximate
distance vector for (S0,x(0)). We will use the center-point algorithm to compute x(t),v(t) such that
v(t) is an ε-approximate distance vector for (St ,x(t)).

Before we start analyzing the algorithm let us emphasize that we defined “queries per oracle” to
be an “amortized” quantity (as opposed to a “worst-case” quantity). Thus it is fine if the algorithm
makes Θ(d) queries going from St to St+1, as long as the average number of queries per oracle is
O(lnd).

Now we analyze the number of queries per oracle. Let

Φt =
∏d
i=1(2v

(t)
i)

vol(St)
.

Note that Φ0 = 1, and, by (8), Φt ≥ 1 for every t = 0, . . . ,k.
From (11) it follows that every time the step on line 10 is executed, the value of Φt decreases

by a factor of (1− ε/4). The denominators can contribute a factor at most (1/γ)k to Φk ≥ 1. Thus
the step 10 is executed at most lnγk/ ln(1−ε/4) times. Therefore the steps 1-9 are executed at most
k(1+ lnγ/ ln(1− ε/4)) times. The steps 1,2,6,7 use a binary search on [0,1] with precision ε/8
and hence use O(ln1/ε) queries.

Now we will argue that step 5 can be implemented using O(lnd) queries using binary search.
Let v = v1+ v2, where the last .d/2/ coordinates of v1 are zero, and the first ,d/2- coordinates of
v2 are zero. We know that x+ sδv1 ∈ S′ and x+ sδv2 ∈ S′ (we used the fact that S′ is an axis-parallel
rectangle). We also know that x+ s(δ+ε/8)v1 1∈ S′ or x+ s(δ+ε/8)v2 1∈ S′. If x+ s(δ+ε/8)v1 1∈ S′
then we proceed with binary search on v1, otherwise we proceed with binary search on v2.

Thus the total number of queries is

O
((

ln
1
ε

+ lnd
)
k
(
1+

lnγ
ln(1− ε/4)

))
= O(k lnd),

1848

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

since γ< 1/2 is a constant, and we can take ε= (1/2− γ)/4. !

6. Bounded-Eccentricity Ellipsoids

For a bounded-eccentricity ellipsoid K the following process converges to the centroid of K: pick
a line ! through the current point, move the current point to the center of !∩K and repeat. We
analyze the process in the case when the lines ! are chosen in axis-parallel directions in a round-
robin fashion.

We say that an ellipsoid E has eccentricity bounded by L if the ratio of its axis is bounded by
L. Let A be a positive definite matrix with eigenvalues from [1/L2,1]. Let E be the ellipsoid given
by xTAx= 1 (note that E has eccentricity at most L). If the current point is x and the chosen line is
! = {x+βy |β ∈ R} then the midpoint of E ∩ ! is

x′ =
(
I− yyTA

yTAy

)
x.

The process described above moves from x to x′. A more cautious process would move somewhere
between x and x′. The point y= (1−α)x+αx′ is given by

y=
(
I−α

yyTA
yTAy

)
x.

Thus one d-step round of the cautious process takes point x to the point S(α)x, where

S(α) =
d

∏
i=1

(
I−α

eieTi A
Aii

)
= A−1/2

(
d

∏
i=1

(
I−α

A1/2eieTi A1/2

eTi Aei

))
A1/2.

We will consider the following quantity as a measure of “distance” from the centroid: ‖A1/2x‖22.
After the move we have

‖A1/2S(α)x‖22 =

∥∥∥∥∥

(
d

∏
i=1

(
I−α

A1/2eieTi A1/2

eTi Aei

))
(A1/2x)

∥∥∥∥∥

2

2

. (12)

Let A1/2 = VTDV , where V is orthogonal. Note that the entries of D are between 1/L and 1. Let
vi =Vei. Now we can apply Lemma 2.9 on (12), and obtain that for α= 1/

√
d we have

‖A1/2S(α)x‖22
‖A1/2x‖22

≤ 1− 1
5L2

√
d
. (13)

Now we use (13) to prove Theorem 2.8.
Proof of Theorem 2.8:
The agent will compute a sequence of points x0, . . . ,xk such that xt ∈ St .

Suppose that we have xt ∈ St . The ray-shooting process is invariant under translations and
uniform stretching and hence, w.l.o.g., we can assume that the centroid of St is at 0, and St =
{y |yTAy≤ 1}, where the eigenvalues of A are from [1/L2,1]. Let α= 1/

√
d. From (13) it follows

that if we apply the ray shooting process 5L2
√
d · c times we obtain a point z such that ‖A1/2z‖22 ≤

e−c. We choose c so that e−c/2 ≤ (γ−1/2)/2.

1849

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

Now we apply affine transformation such that St becomes a unit ball and z becomes a point at
distance at most e−c/2 from the center of St . Since

vol(St+1) ≥ γvol(St) ≥
(
1
2

+2e−c/2
)
vol(St),

it follows that z is inside St+1, and we can take xt+1 = z. !

Remark 1 Somewhat surprisingly the cautious process with α = 1/
√
d can get closer to the cen-

troid than the original process (i. e., the one with α= 1), see Observation A.3.

7. General Convex Bodies

In this section we show that the shaped search problem can be solved for general convex bodies. The
algorithm is a simple combination of known sophisticated algorithms (e. g., ball-walk algorithm, and
shallow-cut ellipsoid algorithm).

We start with an informal description of the algorithm. The agent will keep two pieces of
information:

1. a collection of independent nearly-uniform random points in St , and

2. a weak Löwner-John pair (E,E ′) of ellipsoids, E ⊆ St ⊆ E ′.

The random points in St will be so abundant that with high probability many of them will fall inside
St+1. In the unlikely event that only few (or none) of the points fall inside St+1 we will use E ′ to
generate further random points in St+1 (this will be very costly but unlikely).

Then we will use the random points in St+1 to find an affine transformation which brings St+1
into a near-isotropic position. As a consequence we will obtain a centering of St+1 and we can use
the shallow-cut ellipsoid algorithm (with just a membership oracle) to find a weak Löwner-John pair
of ellipsoids for St+1. Finally, we will use the ball-walk algorithm (see, e.g., Kannan et al., 1997) to
generate independent nearly-uniform random points inside St+1.

We will need the following definitions and results. As usual, B(c,r) denotes the ball with center
c and radius r.

Algorithms which deal with convex bodies given by membership oracles often require the body
to be sandwiched between balls, in the following precise sense.

Definition 7.1 A (r1,r2)-centered convex set is a convex set K ⊆ Rd together with a point c ∈ K
such that B(c,r1) ⊆ K ⊆ B(c,r2).

Not every convex body can be efficiently centered (e. g., if it is thin in some direction). However
when we allow affine transformations of balls (i. e., ellipsoids), every convex body can be efficiently
sandwiched. We will use the following relaxed notion of sandwiching.

Definition 7.2 A pair of ellipsoids (E,E ′) is called a weak Löwner-John pair for a convex body K,
if E ⊆ K ⊆ E ′, the centers of E and E ′ coincide, and E is obtained from E ′ by shrinking by a factor
of 1/((d+1)

√
d).

The following property is useful for understanding when an efficient centering is possible.

1850

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

Definition 7.3 A convex set K is in near-isotropic position if the eigenvalues of the covariance
matrix of the uniform distribution over K are from [1/2,3/2].

Our algorithm will need random samples from the uniform distribution over a convex body K.
Unfortunately, uniform distribution can be difficult to achieve. The total variation distance will be
used to measure the distance from uniformity.

Definition 7.4 The total variation distance between distributions π and µ is

dTV(π,µ) = sup
A⊆Ω

(π(A)−µ(A)).

We will say that a distribution µ is δ-nearly-uniform in K if the total variation between µ and the
uniform distribution on K is bounded by δ.

Some subroutines used in our algorithm require a centered convex body on their input. To be
able to use these subroutines we need to find an affine transformation which makes a centering
possible. Sufficiently many random points immediately will give such a transformation. The the-
orem below is a restatement of Corollary 11 in Bertsimas and Vempala (2004), which is based on
Bourgain (1999), Rudelson (1999) and Kannan et al. (1997).

Theorem 7.5 Using s = O((d lnd) ln2(1/δ)) independent samples from a δ-nearly-uniform distri-
bution in K, one can find an affine transformation A such that A(K) is in nearly-isotropic position,
with probability at least 1− sδ.

Once we have the convex body in a nearly isotropic position we immediately obtain a centering.
The following result is Corollary 5.2 (with ϑ= 1/4) in Kannan et al. (1997).

Theorem 7.6 Assume that K is in nearly isotropic position. Then

B(0,1/2) ⊆ K ⊆ B(0,2(d+1)).

Once the convex body K is centered we can use shallow-cut ellipsoid algorithm to sandwich
K between ellipsoids. The following is Theorem 2.4.1 in Lovász (1986) (combined with Theorem
2.2.14 in Lovász, 1986).

Theorem 7.7 Let K be a (r1,r2)-centered convex body given by a membership oracle. A weak
Löwner-John pair for K can be found in time polynomial in d and r2/r1.

Finally, we will need to be able to generate random points from convex bodies. We will use the
ball-walk algorithm (see Kannan et al., 1997, Theorem 2.2).

Theorem 7.8 Let K be a (r1,r2)-centered convex body. A random point from a distribution ε-close
to uniform can be found in time polynomial is d, r2/r1, and ln(1/ε).

Now we describe a Las Vegas algorithm for one step of the shaped search problem. The input
of the algorithm is a setW of d8/γ independent δ-nearly-uniform random set of points in St , and a
weak Löwner-John pair (E,E ′) for St . The algorithm has access to a membership oracle of St+1,
where St+1 ⊆ St and vol(St+1)≥ γvol(St). The output is a set of d7/γ independent δ-nearly-uniform

1851

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

random set of points in St+1, and a weak Löwner-John pair (F,F ′) for St+1. The algorithm runs in
expected polynomial time.

We will use following objects in the algorithm. Let Z ⊆ Rd be the 2d points in which B(0,1/2)
intersects the axis of Rd , i. e.,

Z = {(1/2,0, . . . ,0),(−1/2,0, . . . ,0), . . . ,(0, . . . ,0,−1/2),(0, . . . ,0,1/2)}.

Let r1 be the radius of the largest ball contained in the convex hull of Z (i. e., r1 = 1/
√
4d).

Finally, let δ= exp(−Θ(d2)).

W ′ ←W ∩St+11
Find an affine transformation A of Theorem 7.5, using points fromW ′. IfW ′ does not2
contain enough points, let A be the identity.
Let r2 be the radius of the smallest ball containing A(E ′).3

if Z is not inside A(St+1) or r2 > 4(d+1)
√
d then4

generate independent uniformly random points from E ′ until we obtain d6 random5
samples from St+1, letW ′ be the set of these new points. Go to step 2)

Use Theorem 7.7 to find a weak Löwner-John pair (F,F ′) for St+1, using centering6
B(0,r1) ⊆ A(St+1) ⊆ B(0,r2).
Use Theorem 7.8 to find d8/γ independent δ-nearly-uniform random points in St+1.7

Algorithm 3: One step in the shaped-search algorithm for general convex bodies.

Theorem 7.9 The algorithm 3 is correct, and its expected running-time is bounded by a polynomial
in d.

Proof :
Once we are on line 6 of the algorithm, we have

B(0,r1) ⊆ Z ⊆ A(St+1) ⊆ A(E ′) ⊆ B(0,r2),

and r2/r1 ≤ 8(d+ 1)d. Thus A(St+1) is centered and the shallow-cut ellipsoid algorithm finds a
weak Löwner-John pair (F,F ′) for St+1. Similarly the ball-walk algorithm gives δ-nearly-uniform
samples from St+1. It remains to analyze lines 1-5 of the algorithm.

We enter line 5 only if A(St+1) is not nearly-isotropic. This can happen for two reasons: the
number of points inW ′ is smaller than d6, or the algorithm of Theorem 7.5 fails. Both these events
have probability bounded by exp(−Ω(d2)). The cost per sample on line 5 is vol(E ′)/vol(St+1) =
exp(O(d lnd)). Hence the total contribution of line 5 to the total number of queries is O(1). !

8. Active Learning

One of the earliest works in which the framework allows the learner to choose examples is by
Eisenberg and Rivest (1990). In this work, the learner does not have access to unlabeled samples,
but is allowed to query the membership oracle with any instance of its choice. (see also Angluin,
1988; Bshouty and Eiron, 2003; Jackson, 1997, for a similar setting). They showed a negative result
stating that there are certain concept classes which are ”dense in themselves”, meaning that a small
number of queries (even if chosen by the learner) are not enough to determine the target concept

1852

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

well. This result gave rise to a further line of work, the query by committee algorithm of Freund
et al. (1997), in which the learner has access to an oracle of unlabeled samples also. Further, the
learner is allowed to selectively query labels of some of these samples generated from the unlabeled
oracle. Under this setting, it was shown that certain ”dense in themselves” classes, for example
homogeneous perceptrons under the uniform distribution, are efficiently learnable using a small
number of labeled queries. Much modern active learning work uses this framework of having an
unlabeled oracle and a membership oracle that can answer queries from examples generated from
the unlabeled oracle. For example, Dasgupta et al. (2005) showed again (using a simpler method)
that homogeneous perceptrons are learnable using onlyO∗(d ln(1/ε)) labeled queries. Several other
results are presented in Castro et al. (2006) and Dasgupta (2006). An exception to this framework is
the recent work on active sampling by Fine and Mansour (2006). In their task, the learner has access
to the oracle of a multi-valued function and has to find at least one instance of each example. Their
work is related to our work in at least two ways. First, like us, they do not want to learn the concept,
rather have just one positive example of the concept. Second, they allow the learner to choose its
own examples.

The concept class of rectangles has been popular in the machine learning literature as rectangles
are geometrically simple objects and also yield excellent results experimentally (Dietterich et al.,
1997). Several theoretical results also exist for rectangles. For example, Auer et al. (1998) give
an algorithm to PAC learn rectangles in O(d/ε) queries, which matches the lower bound up to a
multiplicative factor. Goldberg et al. (1994) give algorithms to learn the more complicated class of
union of rectangles.

In this section, we show that rectangles are active learnable by using a variant of the bootstrap
algorithm (Algorithm 1) in O(d ln(1/ε)) labeled queries. We adopt the standard active learning
framework of having an oracle that generates random samples and another oracle that can label
these samples on request. Note that our current bootstrap algorithm does not use this flexibility
and gets labeled samples uniformly at random from inside the outer body A1 (see Algorithm 1).
However, it clearly gives a (weak) upper bound to active learning the concept class of rectangles
in O(d/ε) labeled samples under the uniform distribution. In this section, we give a variant of the
bootstrapping algorithm and show how it can be repeatedly used to active learn rectangles using
both labeled and unlabeled oracles with only O(d ln(1/ε)) labeled queries. Our algorithm for active
learning rectangles is a one-sided active learning algorithm, that is, it outputs a hypothesis which is
a superset of the target concept. We now define one-sided active learning.

Definition 8.1 A concept class C is one-sided active learnable under the uniform distribution over
the instance space X if there is an algorithm, that for any concept c ∈ C and 0< ε< 1, gets O(1/ε)
samples from the uniform distribution on X and uses the membership oracle of c to labelO(ln(1/ε))
of these samples, and outputs a concept h such that c⊆ h, and P(h(x) 1= c(x)) < ε.

Observation 8.1 The concept class of axis-parallel rectangles inside the d-dimensional cube [0,1]d
is not one-sided active learnable.

Consider a rectangle with volume ε. Then we need, in expectation, O(1/ε) labeled samples
just to find one point inside the rectangle. Thus we are making exponentially more queries to the
membership oracle than desired. Note that this is going to be a problem in learning any concept
class which has concepts which have a small measure. For example, Dasgupta (2005) pointed
out that learning non-homogeneous perceptrons when X is a unit sphere requires Ω(1/ε) labeled

1853

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

samples. They overcame this problem by restricting the class to only homogeneous perceptrons
(passing through the center of the sphere).

In the same spirit, we assume that our concept class has rectangles which are larger than some
constant value and show that active learning is possible in this case.

Definition 8.2 The concept class C of big rectangles is a set of axis-parallel rectangles R such that
R⊂ [0,1]d and vol(R) > 1/2.

8.1 The Concept Class of Big Rectangles is One-sided Active Learnable

Throughout this section C denotes the concept class of axis-parallel rectangles. Note that the boot-
strapping algorithm (Algorithm 1) for C takes as input an outer rectangle A1 and two parameters
α and β such that vol(A1) < α · vol(R) and outputs a rectangle A2 such that vol(A2) < β · vol(R).
The algorithm samples O(dα/ lnβ) points from the membership oracle of R. Notice that the algo-
rithm actually constructs the minimal volume rectangle (call it B2) containing all positive samples
and guarantees that vol(A2) < β · vol(B2). We make use of this inner approximation in the active
learning algorithm.

input : A representation A1 ∈ C and B1 ∈ C . An oracle for R ∈ C . A sampler S which samples
uniformly at random points from A1. A number β> 1.

assume : B1 ⊆ R⊆ A1.
output : a representation of B2 ∈ C and A2 ∈ C , such that

B2 ⊆ R⊆ A2 and vol(A2) ≤ β ·vol(B2).
S+ ← /0, S− ← /01
repeat2

pick a random point p ∈ A1 using S;3
if p /∈ A1−B1 then goto step 34
if p ∈ R then S+ ← S+ ∪{p} else S− ← S−∪{p} fi5
PossibleR ←{C ∈ C |S+ ⊆C ⊆ A1 \S−}6
B2 ← the smallest axis-parallel rectangle containing S+7
A2 ← the axis-parallel rectangle of minimal volume containing allC ∈ PossibleR8

until vol(A2) ≤ β ·vol(B2)9
output a representation of A2 and B210

Algorithm 4: Modified Inner-Outer algorithm used for active learning

Lemma 8.3 Let α> β> 1. Let E be the expected number of membership-oracle calls of the modi-
fied Inner-outer algorithm on input B1 ⊆ R⊆ A1 and β.

1. If vol(A1) ≤ α ·vol(R) then E = O(dα/ lnβ).

2. If vol(A1) ≤ α ·vol(B1) then E = O(d(α−1)/ lnβ).

Proof :
By direct application of Lemma 4.6, the expected number of random points picked in step 3 of the
algorithms is bounded by 8+dα/ lnβ. This proves part 1.

For part 2., note the modification made in step 4 of algorithm. We only query points which lie
in the region between A1 and B1, thus ignoring at least 1/α fraction of the region A1 (as vol(A1) ≤
α · vol(B1)). Hence the expected number of queries to the membership oracle is (1− 1/α)(8+

1854

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

dα/ lnβ), which is O(1+ d(α− 1)/ lnβ) = O(d(α− 1)/ lnβ) (in the last containment we used
d(α−1)/ lnβ≥ d(α−1)/ lnα≥ d =Ω(1)). !

The algorithm above requires a sampler S that samples uniformly random points from A1. This
sampler can be easily obtained from the unlabeled sampler of the instance space X using rejection
sampling. This increases the number of samples needed by a constant factor, as vol(A1)≥ vol(R) >
1/2.

We now repeatedly apply this bootstrapping procedure to do active learning.

input : An oracle O to generate unlabeled samples from the instance space X = [0,1]d . The
membership oracle of an axis-pallalel rectangle R. A parameter ε> 0.

assume : vol(R) ≥ 1/2.
output : a representation of an axis-parallel rectangle A, such that

R⊆ A and vol(A) < (1+ ε)vol(R)

(A,B) ← output of Algorithm 4 with A1 = X , B1 = /0, and β= 1+ ε2#log2 1/ε$1
for i← *log2 1/ε+ to 1 do2

(A,B) ← output of Algorithm 4 with A1 = A, B1 = B, β= 1+ ε2i−13

output a representation of A4

Algorithm 5: Algorithm to do one-sided active learning

Theorem 8.4 The expected number membership-queries made by Algorithm 5 is bounded by
O(d ln(1/ε)).

Proof :
By Lemma 8.3, part 1., the number of membership queries at step 1. is bounded by O(d).

By Lemma 8.3, part 2., at each iteration the number membership queries by Algorithm 4 on step
3. is bounded by

O(d(1+2iε−1)/ ln(1+2i−1ε)) = O(d),

where in the last step we used the fact that ln(1+ x) ≥ x− x2/2 for x ≥ 0. The total number of
iterations is ,log2(1/ε)-. Hence the total number of calls to the membership oracle is O(d ln(1/ε)).
!

At the end of learning, vol(A) ≤ (1+ ε) · vol(R). Hence, vol(A)− vol(R) < ε · vol(R) < ε.
Further, R⊂ A. Hence, big rectangles are one-sided active learnable.

Note that a trivial algorithm to learn big rectangles would be to learn each face at a time. This
can be done by doing binary search starting from (1/2, . . .1/2). As there are d faces, this will take
O(d ln dε) labeled samples (since precision ε/d is required along each dimension).

9. Discussion and Future Work

In this paper, we introduced a new framework of learning using oracles of increasingly restrictive
concepts. Our framework has been inspired from the biological phenomenon of behavioral shaping
in which a target behavior is taught to a subject by teaching it successively better approximations
of the behavior, eventually converging to the target behavior. Analogous to behavioral shaping,
in a shaped search problem, the learner is given access to a sequence of membership oracles of
increasingly restrictive concepts and the learner is required to output one sample from the target
concept.

1855

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

We gave efficient algorithms to solve the shaped search problem for the concept class of inter-
vals, axis-parallel rectangles, bounded eccentricity ellipsoids, and general convex bodies. While we
have matching lower and upper bounds for the concept class of intervals, for other concept classes
we do not understand the complexity of the shaped search problem (i. e., our lower and upper bounds
do not match). The concept class of axis-parallel rectangles is a natural question to consider next.

Question 5 Let C be the concept class of axis-parallel rectangles in Rd . What is the complexity of
the shaped search problem?

The bootstrapping technique of Section 4 was useful for both the shaped search problem and
active learning for axis-parallel rectangles. Whether efficient bootstrapping algorithms exist for
other concept classes is an interesting problem.

Question 6 For which concept classes is bootstrapping possible?

Another technique that was useful in our setting was a deterministic ray shooting algorithm. By
keeping track of the centroid we were able to solve the shaped search problem for bounded eccen-
tricity ellipsoids. One can imagine that such an approach might work for any centrally symmetric
convex body.

Question 7 Let K be a centrally symmetric convex body given by a membership oracle. Can the
centroid of K be found by an efficient deterministic algorithm?

Our solution of the shaped search problem for general convex bodies samples random points
from convex bodies and hence heavily relies on randomization. Is the use of randomness inevitable?

Question 8 Let C be the concept class of (centrally symmetric) convex bodies in Rd . Does there
exist a deterministic agent for the γ-shaped search problem, using O(poly(d,1/γ)) queries per ora-
cle?

Another interesting direction of future work is to apply this model to active learning. Active
learning, in general, does not provide any advantage for concepts which have a “small volume”. For
example, it was observed in Dasgupta (2005) that when the instance space is a unit ball, the concept
class of non-homogeneous perceptrons is not active learnable (in the sense that any active learning
scheme requires a large number of labeled samples). This is because a perceptron, in general, can
pass through the sphere in such a way that it leaves a very small “cap” of the ball on one side, and
just sampling one example from this cap might require a large number of labeled samples. Our
shaping model can be seen as a way of directing search to such events of low probability. One
way to remedy this problem is to consider a sequence of perceptrons which divide the ball into in-
creasingly asymmetric parts and ultimately lead to the final perceptron. Whether non-homogeneous
perceptrons are learnable under this framework is an interesting direction.

As our model has been inspired from behavioral shaping, we restrict the oracles to be presented
in a temporal fashion. One could consider a framework in which all the oracles are present simul-
taneously and the agent can query any oracle at any time. This simultaneous oracle model can be
viewed as a special case of the “reward shaping” of Ng et al. (1999). Under what conditions are
these models equivalent?

1856

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

Acknowledgments

The authors thank to the anonymous referees for many helpful corrections, and suggestions.
The authors are listed in alphabetical order.

Appendix A.

In this section we prove Lemmas 4.4 and 4.5 (in Subsection A.1), and Lemma 2.9 (in Subsec-
tion A.2). Finally we comment on the optimality of Lemma 2.9 (in Subsection A.3).

A.1 Technical Results about Maxima and Minima of Random Variables

Proof of Lemma 4.4:
Let Y be the minimum and Z be the maximum of the Xi. For 0≤ y≤ z≤ 1, the density function of
(Y,Z) is

− ∂
∂y

∂
∂z

(z− y)n,

and hence
E[− ln(Z−Y)] =

Z 1

0

Z 1

y
ln(z− y)

∂
∂y

∂
∂z

(z− y)n dzdy=
2n−1
n(n−1) .

!

Proof of Lemma 4.5:
Conditioning on the value of K we obtain

E[min{1,X1, . . . ,XK}|K = k] =
Z 1

0
(1− x)

∂
∂x
xk dx=

1
k+1

,

and hence

E[min{1,X1, . . . ,XK}] =
n

∑
k=0

(
n
k

)
pk(1− p)n−k

1
k+1

=
1− (1− p)n+1

(n+1)p
.

!

A.2 Bounding the 2-norm of the Ray-shooting Matrix

In this section we prove Lemma 2.9. Our goal is to understand the square of the 2-norm of

M(α) =
n

∏
i=1

(
I−α · Dviv

T
i D

vTi D2vi

)

as a function of α (the 2-norm of M(α) measures how much closer to the centroid does a point get
in the ray-shooting algorithm of Theorem 2.8).

We can understand the value of ‖M(α)‖22 for α = 0 and α = 1 but this does not give us much
information about ‖M(α)‖22 for other values of α. In order to obtain this information, we are going
show ‖M(α)‖22 ≤ 1− L2α(2−α)/||G(α)||22, where the entries of G(α) are linear functions of α
(Equations 16 and 17). It will turn out that for G(α) we can understand ‖G(α)‖22 for α = 0 and

1857

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

α = 1. Now, since dependence of G(α) on α is much simpler than the dependence of M(α) on α,
we will be able to obtain an upper bound on ‖G(α)‖22 for values of α ∈ [0,1], which, in turn, will
imply an upper bound on ‖M(α)‖22.

Note that scaling the vi does not change M and hence we will, w.l.o.g., assume ‖vi‖2 = 1. Let
γi j = vTi D2v j. Let G(α) be the upper triangular d×d matrix defined by

Gi j =

{ √
γ j j for i= j,

(γi j/
√
γ j j) ·α for i< j,

0 otherwise.
(14)

For α ∈ (0,2) we let
Γ(α) = G(α)/

√
α(2−α). (15)

Let V be the d×d matrix with columns v1, . . . ,vd . To prove Lemma 2.9 we will need the following
two auxiliary results.

Lemma A.1 Let Γ= Γ(1/
√
d) be the matrix defined by (15) (with α= 1/

√
d). Then

‖Γ‖22 ≤ 5
√
d.

Lemma A.2 For M,D,V,Γ defined above ‖Mx‖22 = ‖x‖22−‖Γ−1VTDx‖22. Moreover

‖M‖22 = 1− 1
λmax(ΓTVTD−2VΓ)

, (16)

(where λmax(A) is the largest eigenvalue of A).

We postpone the proof of Lemma’s A.1 and A.2 after the proof of Lemma 2.9.
Proof of Lemma 2.9:
Since D−2 4 L2 · I we have

λmax(ΓTVTD−2VΓ) ≤ L2 ·λmax(ΓTVTIVΓ) = L2 ·λmax(ΓTΓ) = L2 · ‖Γ‖22. (17)

Now applying Lemma A.1 (with α= 1/
√
d) we get

λmax(ΓTVTD−2VΓ) ≤ 5L2
√
d.

Now, using Lemma A.2 we obtain the result. !

Proof of Lemma A.2:
Let Γk be the k× k top-left submatrix of Γ. Let Vk be the d× k matrix consisting of the first k
columns of V . Let

Mk =
k

∏
i=1

(
I−α · Dviv

T
i D

vTi D2vi

)
.

By induction on k we will show that for any x

‖Mkx‖22 = ‖x‖22−‖Γ−1k VTk Dx‖22. (18)

1858

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

For k = 1 we have

M1 = I−α
Dv1vT1D
vT1D2v1

, M1x= x−α
(vT1Dx)
vT1D2v1

Dv1, ‖M1x‖22 = ‖x‖22−α(2−α)
(
vT1Dx

)2

vT1D2v1
.

Moreover VT1 = vT1 , Γ
−2
1 = α(2−α)/(vT1D2v1), and hence

‖Γ−11 VT1 Dx‖22 =
α(2−α)
vT1D2v1

(vT1Dx)
2.

We showed that (18) holds for k = 1. Now we assume k > 1.
If vTkDx= 0 then (

I−α ·
DvkvTkD
vTkD2vk

)
x= x,

and hence Mk−1x = Mkx. Moreover the last entry of V Tk Dx is zero and hence ‖Γ
−1
k−1V

T
k−1Dx‖2 =

‖Γ−1k VTk Dx‖2. Thus (18) holds by the induction hypothesis.
Now we assume vTkDx 1= 0. W.l.o.g., we can assume vTkDx= 1. Let

x′ =
(
I−α ·

DvkvTkD
vTkD2vk

)
x= x−α · Dvk

γkk
. (19)

We have ‖x′‖22 = ‖x‖22−α(2−α)/γkk.
Let b=VTk Dx and b′ =VTk−1Dx

′. If we show

‖Γ−1k b‖22 =
α(2−α)

γkk
+‖Γ−1k−1b

′‖22 (20)

then

‖Mkx‖22 = ‖Mk−1x′‖22 = ‖x′‖22−‖Γ−1k−1b
′‖22 = ‖x‖22−

α(2−α)
γkk

−‖Γ−1k−1b
′‖22 = ‖x‖22−‖Γ−1k b‖,

and we are done. Thus it remains to show (20).
From (19) we have for i= 1, . . . ,k−1,

b′i = bi−α
γik
γkk

.

Let Z be the (k−1)× k matrix taking b to b′, i. e.,

Z =

{ 1 for i= j,
−α(γik/γkk) for j = k,
0 otherwise.

Let y= Γ−1k b and y′ = Γ−1k−1b
′. Note that y′ = Γ−1k−1ZΓky.

If the last coordinate of y is zero then the last coordinate of Γky is zero as well and hence Z acts
as identity on Γky. Thus

(
Γ−1k−1ZΓk

)
(y1, . . . ,yk−1,0)T = Γ−1k−1IΓk(y1, . . . ,yk−1,0)

T =

Γ−1k−1IΓk−1(y1, . . . ,yk−1)
T = (y1, . . . ,yk−1)T.

1859

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

Thus the left (k−1)× (k−1) submatrix of Γ−1
k−1ZΓk is the identity matrix.

For any i= 1, . . . ,k−1 we have

eTi ZΓkek =
(
eTi −α

γik
γkk

eTk

)
Γkek =

γik√
γkk

√
α/(2−α)−α

γik
γkk

√
γkk/

√
α(2−α) = 0.

Thus the last column of Γ−1
k−1ZΓk is zero. Hence

‖y′‖22 = ‖y‖22− y2k . (21)

Since y= Γ−1
k b, bk = 1, and Γk is upper triangular matrix we have that

yk = (Γ−1k)kk =
1

(Γk)kk
=

√
α(2−α)

γkk
.

Plugging yk into (21) we obtain (20). We completed the induction step and hence (18) is true for all
k = 1, . . . ,n. We proved the first part of the lemma.

To show the second part of the lemma we observe

‖M‖22 = max
‖x‖2=1

‖Mx‖22 = 1− min
‖x‖2=1

‖Γ−1VTDx‖22 = 1−λmin
(
D−1VΓ−TΓ−1VTD

)
.

Let A= Γ−1VTD= (D−1VΓ)−1. We have

λmin(ATA) = λmin(AAT) =
1

λmax(A−TA−1)
=

1
λmax(ΓTVTD−2VΓ)

.

!

Lemma A.3 Let A be an d×d symmetric matrix such that 04A4 I (i. e., A is positive semi-definite
and all its eigenvalues are ≤ 1). Then

d

∑
i=1

d

∑
j=1

A2i j
A j j

≤ d. (22)

Proof :
The eigenvalues of A are between 0 and 1 and hence we have A2 4 A. Thus

d

∑
i=1

A2i j = (A2) j j ≤ A j j. (23)

Dividing both sides of (23) by A j j and summing over j ∈ [d] we obtain the result. !

Consider G(1) defined by (14) with α= 1. We can bound ‖G(1)‖2F (the square of the Frobenius
norm) by (22) where we take A=V TDV = (γi j)di, j=1. Using ‖A‖2 ≤ ‖A‖F we obtain the following
bound.

Corollary A.4 Let G(1) be defined by (14) with α= 1. Then

‖G(1)‖2 ≤
√
d. (24)

1860

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

For α= 0 the matrix G is diagonal with all the diagonal entries ≤ 1. Hence we have:

Observation A.1 Let G(0) be defined by (14) with α= 0. Then

‖G(0)‖2 ≤ 1. (25)

Let F(α) = G(α)TG(α). Then

d
dα

F(0) =

{ γi j
√
γii/

√
γ j j if i< j,

γi j
√
γ j j/

√
γii if i> j,

0 if i= j.

Note that γii ≤ 1 for i ∈ [n]. Hence, using Lemma A.3 we obtain the following bound.

Observation A.2 ∥∥∥∥
d
dα

F(0)
∥∥∥∥
2

2
≤

∥∥∥∥
d
dα

F(0)
∥∥∥∥
2

F
≤ 2n. (26)

Now we can finally prove Lemma A.1.
Proof of Lemma A.1:
Let x be such that ‖x‖2 = 1. Let f (α) = xTG(α)TG(α)x. Note that f is a quadratic function of α.
Let

f (α) = aα2+bα+ c.

From (24), (25), (26) we get that
a+b+ c= f (1) ≤ d,

c= f (0) ≤ 1, and

|b| = | f ′(0)| ≤
√
2d.

Hence

f (1/
√
d) ≤ (d+

√
2d) ·

(
1√
d

)2
+
√
2d

1√
d

+1≤ 5.

Let α= 1/
√
d, and G= G(α). Since x was arbitrary we get

‖G‖22 = max
‖x‖2=1

xTGTGx≤ 5.

Finally,

‖Γ‖22 =
‖G‖22

α(2−α)
≤ 5

√
d.

!

1861

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

A.3 Optimality of Lemma 2.9

Now we show that Lemma 2.9 cannot be improved (up to a constant factor).
Let D be a diagonal matrix with D11 = 1 and Dii = ε for i= 2, . . . ,d. Let

v1 ∝ (
√
1/2,

√
ε, . . . ,

√
ε,

√
1/2),

and let v1, . . . ,vd be orthogonal. Let V have columns v1, . . . ,vd . Then VTD2V = (1− ε2)v1vT1 + ε2I.
From the definition (15) we immediately obtain

Γ= Γ(α) =
1√

α(2−α)

(
B+O(ε1/2)

)
,

where

Bi j =

{ √
1/2 if i= j = 1 or i= j = d,

α
√
1/2 if i= 1 and j ≥ 2,
0 otherwise.

A short calculation yields

ΓTVTD−2VΓ=
1

4α(2−α)
· 1
ε2

·
(
wwT+O(ε)

)
,

where w= (1,−α, . . . ,−α,α−1), and hence

λmax(ΓTVTD−2V) =
1
4ε2

(
(d−1)α2−2α+2

α(2−α)
+O(ε)

)

The minimum of (d−1)α2−2α+2
α(2−α) occurs at α= (−1+

√
2d−3)/(d−2). For this value of α we have

(d−1)α2−2α+2
α(2−α)

∼
√
d/8

as d→ ∞. Thus we have the following.

Observation A.3 For any α ∈ (0,2),

λmax(ΓTVTD−2V) "
√
d/8
4ε2

.

For α= 1
λmax(ΓTVTD−2V) ≈ d

4ε2
.

References

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

Martin Anthony and Norman Biggs. Computational Learning Theory: An Introduction. Cambridge
University Press, New York, NY, USA, 1992.

1862

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

Peter Auer, Philip M. Long, and Aravind Srinivasan. Approximating hyper-rectangles: Learning
and pseudorandom sets. Journal of Computer and System Sciences, 57(3):376–388, 1998.

Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Journal of
the ACM, 51(4):540–556, July 2004. doi: 10.1145/1008731.1008733.

Jean Bourgain. Random Points in Isotropic Convex Sets. Convex Geometric Analysis, pages 53–58.
Cambridge University Press, Cambridge, 1999.

Nader H. Bshouty and Nadav Eiron. Learning monotone DNF from a teacher that almost does not
answer membership queries. Journal of Machine Learning Research, 3:49–57, 2003.

Rui Castro, Rebecca Willett, and Robert Nowak. Faster rates in regression via active learning. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems
18, pages 179–186. MIT Press, Cambridge, MA, 2006.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 337–
344. MIT Press, Cambridge, MA, 2005.

Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Y. Weiss, B. Schölkopf,
and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 235–242.
MIT Press, Cambridge, MA, 2006.

Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-based active
learning. In Proceedings of the eighteenth Annual Conference on Learning Theory, pages 249–
263, 2005.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997. ISSN 0004-
3702.

Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through
learning. Artificial Intelligence, 71(2):321–370, 1994.

Martin Dyer, Alan Frieze, and Ravi Kannan. A random polynomial-time algorithm for approximat-
ing the volume of convex bodies. Journal of the ACM, 38(1):1–17, 1991.

Bonnie Eisenberg and Ronald L. Rivest. On the sample complexity of PAC-learning using random
and chosen examples. In Proceedings of the Third Annual Workshop on Computational Learning
Theory, pages 154–162, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

Shai Fine and Yishay Mansour. Active sampling for multiple output identification. In Proceedings
of the Nineteenth Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA, USA, June
2006, volume 4005 of Lecture Notes in Artificial Intelligence, pages 620–634. Springer, Berlin,
2006.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective sampling using the
query by committee algorithm. Machine Learning, 28(2-3):133–168, 1997.

1863

CHHABRA, JACOBS, AND ŠTEFANKOVIČ

Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Learning unions of boxes with mem-
bership and equivalence queries. In COLT ’94: Proceedings of the Seventh Annual Conference
on Computational Learning Theory, pages 198–207, New York, NY, USA, 1994. ACM Press.
ISBN 0-89791-655-7.

Sally A. Goldman and Michael J. Kearns. On the complexity of teaching. In COLT ’91: Proceed-
ings of the Fourth Annual Workshop on Computational Learning Theory, pages 303–314, San
Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc. ISBN 1-55860-213-5.

Sally A. Goldman and H. David Mathias. Teaching a smart learner. In COLT ’93: Proceedings of
the Sixth Annual Conference on Computational Learning Theory, pages 67–76, New York, NY,
USA, 1993. ACM Press. ISBN 0-89791-611-5.

Sally A. Goldman, Ronald L. Rivest, and Robert E. Schapire. Learning binary relations and total
orders. SIAM J. Comput., 22(5):1006–1034, 1993. ISSN 0097-5397.

Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag, Berlin, 1988.

Tibor Hegedűs. Combinatorial results on the complexity of teaching and learning. In MFCS ’94:
Proceedings of the 19th International Symposium on Mathematical Foundations of Computer
Science 1994, pages 393–402, London, UK, 1994. Springer-Verlag. ISBN 3-540-58338-6.

Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997. doi:
http://dx.doi.org/10.1006/jcss.1997.1533.

Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an O∗(n5) volume algo-
rithm for convex bodies. Random Structures and Algorithms, 11(1):1–50, 1997.

Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning Theory. MIT
Press, Cambridge, MA, 1994.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the Twenty-third International Conference on Machine Learning,
pages 489–496, New York, NY, USA, 2006. ACM Press.

Nati Linial, Michael Luby, Michael Saks, and David Zuckerman. Efficient construction of a small
hitting set for combinatorial rectangles in high dimension. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, pages 258–267, New York, NY, USA, 1993.
ACM Press.

László Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50 of CBMS-
NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1986.

Maja J. Mataric. Reward functions for accelerated learning. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning, pages 181–189, 1994.

1864

BEHAVIORAL SHAPING FOR GEOMETRIC CONCEPTS

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
Cambridge, 1995. ISBN 0-521-47465-5.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference onMachine Learning, pages 278–287, San Francisco, CA, USA, 1999.Morgan Kauf-
mann Publishers Inc.

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and
shaping. In Proceedings of the Fifteenth International Conference on Machine Learning, pages
463–471, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

Mark Rudelson. Random vectors in isotropic position. Journal of Functional Analysis, 164(1):
60–72, 1999.

Burrhus F. Skinner. The Behavior of Organisms. Appleton-Century-Crofts, New York, NY, USA,
1938.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

1865

Journal of Machine Learning Research 8 (2007) 1867-1891 Submitted 2/06; Revised 1/07; Published 8/07

Large Margin Semi-supervised Learning

Junhui Wang WANGJH@STAT.UMN.EDU
Xiaotong Shen XSHEN@STAT.UMN.EDU
School of Statistics
University of Minnesota
Minneapolis, MN 55455, USA

Editor: Tommi Jaakkola

Abstract
In classification, semi-supervised learning occurs when a large amount of unlabeled data is avail-
able with only a small number of labeled data. In such a situation, how to enhance predictability
of classification through unlabeled data is the focus. In this article, we introduce a novel large
margin semi-supervised learning methodology, using grouping information from unlabeled data,
together with the concept of margins, in a form of regularization controlling the interplay between
labeled and unlabeled data. Based on this methodology, we develop two specific machines in-
volving support vector machines and ψ-learning, denoted as SSVM and SPSI, through difference
convex programming. In addition, we estimate the generalization error using both labeled and
unlabeled data, for tuning regularizers. Finally, our theoretical and numerical analyses indicate
that the proposed methodology achieves the desired objective of delivering high performance in
generalization, particularly against some strong performers.
Keywords: generalization, grouping, sequential quadratic programming, support vectors

1. Introduction

In many classification problems, a large amount of unlabeled data is available, while it is costly to
obtain labeled data. In text categorization, particularly web-page classification, a machine is trained
with a small number of manually labeled texts (web-pages), as well as a huge amount of unlabeled
texts (web-pages), because manually labeling is impractical; compare with Joachims (1999). In
spam detection, a small group of identified e-mails, spam or non-spam, is used, in conjunction with
a large number of unidentified e-mails, to train a filter to flag incoming spam e-mails, compare
with Amini and Gallinari (2003). In face recognition, a classifier is trained to recognize faces with
scarce identified and enormous unidentified faces, compare with Balcan et al. (2005). In a situation
as such, one research problem is how to enhance accuracy of prediction in classification by using
both unlabeled and labeled data. The problem of this sort is referred to as semi-supervised learning,
which differs from a conventional “missing data” problem in that the size of unlabeled data greatly
exceeds that of labeled data, and missing occurs only in response. The central issue that this article
addresses is how to use information from unlabeled data to enhance predictability of classification.

In semi-supervised learning, a sample {Zi = (Xi,Yi)}nli=1 is observed with labeling Yi ∈ {−1,1},
in addition to an independent unlabeled sample {X j}nj=nl+1 with n= nl +nu, where Xk = (Xk1, · · · ,
Xkp); k = 1, · · · ,n is an p-dimensional input. Here the labeled sample is independently and iden-
tically distributed according to an unknown joint distribution P(x,y), and the unlabeled sample is

c©2007 Junhui Wang and Xiaotong Shen.

WANG AND SHEN

independently and identically distributed from distribution P(x) that may not be the marginal distri-
bution of P(x,y).

A number of semi-supervised learning methods have been proposed through some assumptions
relating P(x) to the conditional distribution P(Y = 1|X = x). These methods include, among others,
co-training (Blum and Mitchell, 1998), the EM method (Nigam, McCallum, Thrun and Mitchell,
1998), the bootstrap method (Collins and Singer, 1999), information-based regularization (Szummer
and Jaakkola, 2002), Bayesian network (Cozman, Cohen and Cirelo, 2003), Gaussian random fields
(Zhu, Ghahramani and Lafferty, 2003), manifold regularization (Belkin, Niyogi and Sindhwani,
2004), and discriminative-generative models (Ando and Zhang, 2004). Transductive SVM (TSVM;
Vapnik, 1998) uses the concept of margins.

Despite progress, many open problems remain. Essentially all existing methods make various
assumptions about the relationship between P(Y = 1|X = x) and P(x) in a way for an improvement
to occur when unlabeled data is used. Note that an improvement of classification may not be ex-
pected when simply imputing labels of X through an estimated P(Y = 1|X = x) from labeled data,
compare with Zhang and Oles (2000). In other words, the potential gain in classification stems
from an assumption, which is usually not verifiable or satisfiable in practice. As a consequence, any
departure from such an assumption is likely to degrade the “alleged” improvement, and may yield
worse performance than classification with labeled data alone.

The primary objective of this article is to develop a large margin semi-supervised learning
methodology to deliver high performance of classification by using unlabeled data. The method-
ology is designed to adapt to a variety of situations by identifying as opposed to specifying a rela-
tionship between labeled and unlabeled data from data. It yields an improvement when unlabeled
data can reconstruct the optimal classification boundary, and yields a no worse performance than its
supervised counterpart otherwise. This is in contrast to the existing methods.

Through three key ingredients, our objective is achieved, including (1) comparing all possible
grouping boundaries from unlabeled data for classification, (2) using labeled data to determine
label assignment for classification as well as a modification of the grouping boundary, and (3)
interplay between (1) and (2) through tuning to connect grouping to classification for seeking the
best classification boundary. These ingredients are integrated in a form of regularization involving
three regularizers, each controlling classification with labeled data, grouping with unlabeled data,
and interplay between them. Moreover, we introduce a tuning method using unlabeled data for
tuning the regularizers.

Through the proposed methodology and difference convex programming, we develop two spe-
cific machines based on support vector machines (SVM; Cortes and Vapnik, 1995) and ψ-learning
(Shen, Tseng, Zhang and Wong, 2003), denoted as SSVM and SPSI. Numerical analysis indicates
that SSVM and SPSI achieve the desired objective, particularly against TSVM and a graphical
method in simulated and benchmark examples. Moreover, a novel learning theory is developed to
quantify SPSI’s generalization error as a function of complexity of the class of candidate decision
functions, the sample sizes (nl,nu), and the regularizers. To our knowledge, this is the first attempt
to relate a classifier’s generalization error to (nl,nu) and regularizers in semisupervised learning.
This theory not only explains SPSI’s performance, but also supports our aforementioned discus-
sion concerning the interplay between grouping and classification, as evident from Section 5 that
SPSI can recover the optimal classification performance at a speed in nu because of grouping from
unlabeled data.

1868

LARGE MARGIN SEMI-SUPERVISED LEARNING

This article is organized in eight sections. Section 2 introduces the proposed semi-supervised
learning methodology. Section 3 treats non-convex minimization through difference convex pro-
gramming. Section 4 proposes a tuning methodology that uses both labeled and unlabeled data to
enhance of accuracy of estimation of the generalization error. Section 5 presents some numerical ex-
amples, followed by a novel statistical learning theory in Section 6. Section 7 contains a discussion,
and the appendix is devoted to technical proofs.

2. Methodology

In this section, we present our proposed margin-based semi-supervised learning method as well its
connection to other existing popular methodologies.

2.1 Proposed Methodology

We begin with our discussion in linear margin classification with labeled data (Xi,Yi)nli=1 alone.
Given a class of linear decision functions of the form f (x) = w̃Tf x+w f ,0 ≡ (1,xT)w f , a cost function
C∑nl

i=1L(yi f (xi))+J(f) is minimized with respect to f ∈F , a class of candidate decision functions,
to obtain the minimizer f̂ yielding a classifier Sign(f̂), where J(f) = ‖w̃ f ‖2/2 is the reciprocal of
the L2 geometric margin, and L(·) is a margin loss defined by functional margins zi = yi f (xi);
i= 1, · · · ,nl .

Different learning methodologies are defined by different margin losses. Margin losses include,
among others, the hinge loss L(z) = (1− z)+ for SVM with its variants L(z) = (1− z)q+ for q >
1; compare with Lin (2002); the ρ-hinge loss L(z) = (ρ− z)+ for nu-SVM (Schölkopf, Smola,
Williamson and Bartlett, 2000) with ρ > 0 to be optimized; the ψ-loss L(z) = ψ(z), with ψ(z) =
1−Sign(z) if z ≥ 1 or z < 0, and 2(1− z) otherwise, compare with Shen et al. (2003), the logistic
loss L(z) = log(1+e−z), compare with Zhu and Hastie (2005); the sigmoid loss L(z) = 1− tanh(cz);
compare with Mason, Baxter, Bartlett and Frean (2000). A margin loss L(z) is said to be a large
margin if L(z) is nonincreasing in z, which penalizes small margin values.

In order to extract useful information about classification from unlabeled data, we construct a
lossU(·) for a grouping decision function g(x) = (1,xT)wg≡ w̃Tg x+wg,0, with Sign(g(x)) indicating
grouping. Towards this end, we let U(z) = min{y=±1}L(yz) by minimizing y in L(·) to remove its
dependency of y. As shown in Lemma 1, U(z) = L(|z|), which is symmetric in z and indicates that
it can only determine the grouping boundary that occurs near in an area with low value ofU(z) but
provide no information regarding labeling.

While U can be used to extract the grouping boundary, it needs to yield the Bayes decision
function f ∗ = argmin f∈F EL(Y f (X)) in order for it to be useful for classification, where E is the
expectation with respect to (X ,Y). More specifically, it needs f ∗ = argming∈F EU(g(X)). How-
ever, it does not hold generally since argming∈F EU(g(X)) can be any g ∈ F satisfying |g(x)| ≥ 1.
Generally speaking, U gives no information about labeling Y . To overcome this difficulty, we reg-
ularize U and introduce our regularized loss for semi-supervised learning to induce a relationship
between classification f and grouping g:

S(f ,g;C) =C1L(y f (x))+C2U(g(x))+
C3
2
‖w f −wg‖2+

1
2
‖w̃g‖2, (1)

whereC= (C1,C2,C3) are non-negative regularizers, and ‖w f −wg‖2 = ‖w̃ f −w̃g‖2+(w f ,0−wg,0)2
is the usual L2-Euclidean norm in Rp+1. Whereas L(y f (x)) regularizes the contribution from labeled

1869

WANG AND SHEN

data,U(g(x)) controls the information extracted from unlabeled data, and ‖w f −wg‖2 penalizes the
disagreement between f and g, specifying a loose relationship between f and g. The interrelation
between f and g is illustrated in Figure 3. Note that in (1) the geometric margin 2

‖w̃ f ‖2 does not enter
as it is regularized implicitly through 2

‖w f−wg‖2 and
2

‖w̃g‖2 .
In nonlinear learning, a kernel K(·, ·) that maps from S×S to R 1 is usually introduced for flex-

ible representations: f (x) = (1,K(x,x1), · · · ,K(x,xn))w f and g(x) = (1,K(x,x1), · · · ,K(x,xn))wg
with w f = (w̃ f ,w f ,0) and wg = w̃g+wg,0. Then nonlinear surfaces separate instances of two classes,
implicitly defined by K(·, ·), where the reproducing kernel Hilbert spaces (RKHS) plays an impor-
tant role; compare with Wahba (1990) and Gu (2000). The forgoing treatment for the linear case is
applicable when the Euclidean inner product 〈xi,x j〉 is replaced by K(xi,x j). In this sense, the linear
case may be regarded as a special case of nonlinear learning.

Lemma 1 says that the regularized loss (1) allows U to yield precise information about the
Bayes decision function f ∗ when after tuning. Specifically,U targets at the Bayes decision function
in classification when C1 and C3 are large, and grouping can differ from classification at other C
values.

Lemma 1 For any large margin loss L(z), U(z) =miny∈{−1,1}L(yz) = L(|z|), where y= Sign(z) =
argminy∈{−1,1}L(yz) for any given z. Additionally,

(f ∗C,g∗C) = arg inf
f ,g∈F

ES(f ,g;C) → (f ∗, f ∗) as C1,C3 → ∞.

In the case that (f ∗C,g∗C) is not unique, we choose it as any minimizer of ES(f ,g;C).
Through (1), we propose our cost function for semi-supervised learning:

s(f ,g) =C1
nl
∑
i=1

L(yi f (xi))+C2
n

∑
j=nl+1

U(g(x j))+
C3
2
‖ f −g‖2+

1
2
‖g‖2−, (2)

where in the linear case, ‖g‖− = ‖w̃g‖ and ‖ f − g‖ = ‖w f −wg‖; in the nonlinear case ‖g‖2− =
w̃TgKw̃g, ‖ f −g‖2 = (w̃ f −w̃g)TK(w̃ f −w̃g)+(w̃ f ,0−w̃g,0)2 is the RKHS norm, with an n×nmatrix
K whose i jth element is K(xi,x j). Minimization of (2) with respect to (f ,g) yields an estimated
decision function f̂ thus classifier Sign(f̂). The constrained version of (2), after introducing slack
variables {ξk ≥ 0;k = 1, · · · ,n}, becomes

C1
nl
∑
i=1

ξi+C2
n

∑
j=nl+1

ξ j +
C3
2
‖ f −g‖2+

1
2
‖g‖2−, (3)

subject to ξi−L(yi f (xi)) ≥ 0; i = 1, · · · ,nl; ξ j−U(g(x j)) ≥ 0; j = nl +1, · · · ,n. Minimization of
(2) with respect to (f ,g), equivalently, minimization of (3) with respect to (f ,g,ξk;k = 1, · · · ,n)
subject to the constraints gives our estimated decision function (f̂ , ĝ), where f̂ is for classification.

Two specific machines SSVM and SPSI will be further developed in what follows. In (2), SSVM
uses L(z) = (1− z)+ andU(z) = (1−|z|)+, and SPSI uses L(z) = ψ(z) andU(z) = 2(1−|z|)+.

2.2 Connection Between SSVM and TSVM

To better understand the proposed methodology, we now explore the connection between SSVM
and TSVM. In specific, TSVM uses a cost function in the form of

C1
nl
∑
i=1

(1− yi f (xi))+ +C2
n

∑
j=nl+1

(1− y j f (x j))+ +
1
2
‖ f‖2−,

1870

LARGE MARGIN SEMI-SUPERVISED LEARNING

where minimization with respect to (y j : j = nl +1, · · · ,n; f) yields the estimated decision function
f̂ . It can be thought of as the limiting case of SSVM asC3 → ∞ forcing f = g in (2).
SSVM in (3) stems from grouping and interplay between grouping and classification, whereas

TSVM focuses on classification. Placing TSVM in the framework of SSVM, we see that SSVM
relaxes TSVM in that it allows grouping (g) and classification (f) to differ, whereas f ≡ g for TSVM.
Such a relaxation yields that |e(f̂ , f ∗)| = |GE(f̂)−GE(f ∗)| is bounded by |e(f̂ , ĝ)|+ |e(ĝ,g∗C)|+
|e(g∗C, f ∗)|, with |e(f̂ , ĝ)| controlled by C3, the estimation error |e(ĝ,g∗C)| controlled by C2n−1u and
the approximation error |e(g∗C, f ∗)| controlled byC1 andC3. As a result, all these error terms can be
reduced simultaneously with a suitable choice of (C1,C2,C3), thus delivering better generalization.
This aspect will be demonstrated by our theory in Section 6 and numerical analysis in Section 5. In
contrast, TSVM is unable to do so, and needs to increase the size of one error in order to reduce
the other error, and vice versa, compare with Wang, Shen and Pan (2007). This aspect will be also
confirmed by our numerical results.

The forgoing discussion concerning SSVM is applicable to (2) with a different large margin loss
L as well.

3. Non-convex Minimization Through Difference Convex Programming

Optimization in (2) involves non-convex minimization, because of non-convex U(z) and/or possi-
bly L(z) in z. On the basis of recent advances in global optimization, particularly difference convex
(DC) programming, we develop our minimization technique. Key to DC programming is decompo-
sition of our cost function into a difference of two convex functions, based on which iterative upper
approximations can be constructed to yield a sequence of solutions converging to a stationary point,
possibly an ε-global minimizer. This technique is called DC algorithms (DCA; An and Tao, 1997),
permitting a treatment of large-scale non-convex minimization.

To use DCA for SVM and ψ-learning in (2), we construct DC decompositions of the cost func-
tions of SPSI and SSVM sψ and sSVM in (2):

sψ = sψ1 − sψ2 ; sSVM = sSVM1 − sSVM2 ,

where L(z) = ψ(z) andU(z) = 2(1−|z|)+ for SPSI,

sψ1 = C1∑nl
i=1ψ1(yi f (xi))+C2∑n

j=nl+1 2U1(g(x j))+ C3
2 ‖ f −g‖2+ 1

2‖g‖
2
−,

sψ2 = C1∑nl
i=1ψ2(yi f (xi))+C2∑n

j=nl+1 2U2(g(x j));

and L(z) = (1− z)+ andU(z) = (1−|z|)+ for SSVM,

sSVM1 = C1∑nl
i=1(1− yi f (xi))+ +C2∑n

j=nl+1U1(g(x j))+ C3
2 ‖ f −g‖2+ 1

2‖g‖
2
−,

sSVM2 = C2∑n
j=nl+1U2(g(x j)).

These DC decompositions are obtained through DC decompositions of (1−|z|)+ =U1(z)−U2(z)
and ψ(z) = ψ1(z)−ψ2(z), whereU1 = (|z|−1)+,U2 = |z|−1, ψ1 = 2(1− z)+, and ψ2 = 2(−z)+.
The decompositions are displayed in Figure 1.

With these decompositions, we treat the nonconvex minimization in (2) by solving a sequence
of quadratic programming (QP) problems. Algorithm 1 solves (2) for SPSI and SSVM.
Algorithm 1: (Sequential QP)
Step 1. (Initialization) Set initial values f (0) = g(0) as the solution of SVM with labeled data alone,

1871

WANG AND SHEN

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

z

U
U1
U2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
1

2
3

4
5

z

ψ
ψ1
ψ2

Figure 1: The left panel is a plot ofU ,U1 andU2, for the DC decomposition ofU =U1−U2. Solid,
dotted and dashed lines representU ,U1 andU2, respectively. The right panel is a plot of
ψ, ψ1 and ψ2, for the DC decomposition of ψ= ψ1−ψ2. Solid, dotted and dashed lines
represent ψ, ψ1 and ψ2, respectively.

and an precision tolerance level ε> 0.
Step 2. (Iteration) At iteration k+ 1, compute (f (k+1),g(k+1)) by solving the corresponding dual
problems given in (4).
Step 3. (Stopping rule) Terminate when |s(f (k+1),g(k+1))− s(f (k),g(k))| ≤ ε.
Then the estimate (f̂ , ĝ) is the best solution among (f (l),g(l))k+1l=1 .

At iteration k+1, after omitting constants that are independent of (4), the primal problems are
required to solve

min
w f ,wg

sψ1 (f ,g)−〈(f ,g),∇sψ2 (f
(k),g(k))〉,

min
w f ,wg

sSVM1 (f ,g)−〈(f ,g),∇sSVM2 (f (k),g(k))〉.
(4)

Here ∇sSVM2 = (∇SVM
1 f ,∇SVM

2 f ,∇SVM
1g ,∇SVM

2g) is the gradient vector of sSVM2 with respect to (f ,g),
with ∇SVM

1g =C2∑n
j=nl+1∇U2(g(x j))x j, ∇

SVM
2g =C2∑n

j=nl+1∇U2(g(x j)), ∇
SVM
1 f = 0p, and ∇SVM

2 f = 0,
where ∇U2(z) = 1 if z > 0, and ∇U2(z) = −1 otherwise. Similarly, ∇sψ2 = (∇ψ

1 f ,∇
ψ
2 f ,∇

ψ
1g,∇

ψ
2g)

is the gradient vector of sψ2 with respect to (w f ,wg), with ∇ψ
1 f = C1∑nl

i=1∇ψ2(yi f (xi))yixi, ∇
ψ
2 f =

C1∑nl
i=1∇ψ2(yi f (xi))yi, ∇

ψ
1g = 2∇SVM

1g , and ∇ψ
2g = 2∇SVM

2g , where ∇ψ2(z) = 0 if z> 0 and ∇ψ2(z) =
−2 otherwise. By Karush-Kuhn-Tucker(KKT)’s condition, the primal problems in (4) are equivalent
to their dual forms, which are generally easier to work with and given in the Appendix C.

By Theorem 3 of Liu, Shen and Wong (2005), lim
k→∞

‖ f (k+1)− f (∞)‖ = 0 for some f (∞), and con-

vergence of Algorithm 1 is superlinear in that lim
k→∞

‖ f (k+1) − f (∞)‖/‖ f (k) − f (∞)‖ = 0 and

lim
k→∞

‖g(k+1) − g(∞)‖/‖g(k) − g(∞)‖ = 0, if there does not exist an instance x̃ such that f (∞)(x̃) =

g(∞)(x̃) = 0 with f (∞)(x) = (1,K(x,x1), · · · ,K(x,xn))w
(∞)
f and g(∞)(x) = (1,K(x,x1), · · · ,

K(x,xn))w
(∞)
g . Therefore, the number of iterations required for Algorithm 1 is o(log(1/ε)) to

achieve the precision ε> 0.

1872

LARGE MARGIN SEMI-SUPERVISED LEARNING

4. Tuning Involving Unlabeled Data

This section proposes a novel tuning method based on the concept of generalized degrees of freedom
(GDF) and the technique of data perturbation (Shen and Huang, 2006; Wang and Shen, 2006),
through both labeled and unlabeled data. This permits tuning of three regularizers C = (C1,C2,C3)
in (2) to achieve the optimal performance.

The generalization error (GE) of a classification function f is defined as GE(f) = P(Y f (X) <
0) = EI(Y += Sign(f (X))), where I(·) is the indicator function. The GE(f) usually depends on the
unknown truth, and needs to be estimated. Minimization of the estimated GE(f) with respect to the
range of the regularizers gives the optimal regularization parameters.

For tuning, write f̂ as f̂C, and write (X l,Y l) = (Xi,Yi)nli=1 and Xu = {X j}nj=nl+1. By Theorem 1
of Wang and Shen (2006), the optimal estimated GE(f̂C), after ignoring the terms independent of
f̂C, has the form of

EGE(f̂C)+
1
2nl

nl
∑
i=1
Cov(Yi,Sign(f̂C(Xi))|X l)+

1
4
D1(X l, f̂C). (5)

Here, EGE(f̂C)= 1
2nl ∑

nl
i=1(1−YiSign(f̂C(Xi))) is the training error, andD1(X l, f̂C)=E

(
E(,(X))−

1
nl ∑

nl
i=1,(Xi)|X l

)
with ,(X) = (E(Y |X)− Sign(f̂C(X)))2, where E(·|X) and E(·|X l) are condi-

tional expectations with respect to Y and Y l respectively. As illustrated in Wang and Shen (2006),
the estimated (5) based on GDF is optimal in the sense that it performs no worse than the method
of cross-validation and other tuning methods; see Efron (2004).

In (5), Cov(Yi,Sign(f̂C(Xi))|X l); i = 1 · · · ,nl and D1(X l, f̂C) need to be estimated. It appears
that Cov(Yi,Sign(f̂C(Xi))|X l) is estimated only through labeled data, for which we apply the data
perturbation technique ofWang and Shen (2006). On the other hand,D1(X l, f̂C) is estimated directly
through (X l,Y l) and Xu jointly.

Our method proceeds as follows. First generate pseudo data Y ∗
i by perturbing Yi:

Y ∗
i =

{
Yi with probability 1− τ,
Ỹi with probability τ, (6)

where 0 < τ < 1 is the size of perturbation, and (Ỹi + 1)/2 is sampled from a Bernoulli distribu-
tion with p̂(xi), an rough probability estimate of p(xi) = P(Y = 1|X = xi), which may be obtained
through the same classification method that defines f̂C or through logistic regression when it doesn’t
yield an estimated p(x), such as SVM and ψ-learning. The estimated covariance is proposed to be

Ĉov(Yi,Sign(f̂C(Xi))|X l) =
1

k(Yi, p̂(Xi))
Cov∗(Y ∗

i ,Sign(f̂ ∗C(Xi))|X l); i= 1, · · · ,nl, (7)

where k(Yi, p̂(Xi)) = τ+ τ(1− τ) ((Yi+1)/2−p̂(Xi))2
p̂(Xi)(1−p̂(Xi)) , and f

∗
C is an estimated decision function through

the same classification method trained through (Xi,Y ∗
i)nli=1.

To estimate D1, we express it as a difference between the true model error E(E(Y |X)−
Sign(f̂C(X)))2 and its empirical version n−1l ∑nl

i=1(E(Yi|Xi)−Sign(f̂C(Xi)))2, where the former can

1873

WANG AND SHEN

be estimated through (X l,Y l) and Xu. The estimated D1 becomes

D̂1(X l, f̂C) = E∗

(
1
nu

n

∑
j=nl+1

((2p̂(X j)−1)−Sign(f̂ ∗C(X j)))2−

1
nl

nl
∑
i=1

((2p̂(Xi)−1)−Sign(f̂ ∗C(Xi)))2
∣∣∣∣∣X

l

)
,

(8)

Generally, Ĉov in (7) and D̂1 in (8) can be always computed using a Monte Carlo (MC) ap-
proximation of Cov∗, E∗, when it is difficult to obtain their analytic forms. Specifically, when Y l is
perturbed D times, a MC approximation of Ĉov and D̂1 can be derived:

Ĉov(Yi,Sign(f̂C(Xi))|X l) ≈
1

D−1

D

∑
d=1

1
k(Yi, p̂(Xi))

Sign(f̂ ∗dC (Xi))(Y ∗d
i −Y ∗

i), (9)

D̂1(X l, f̂C) ≈ 1
D−1

D

∑
d=1

(
1
nu

n

∑
j=nl+1

((2p̂(X j)−1)−Sign(f̂ ∗dC (X j)))2−

1
nl

nl
∑
i=1

((2p̂(Xi)−1)−Sign(f̂ ∗dC (Xi)))2
)

,

where Y ∗d
i ;d = 1, · · · ,D are perturbed samples according to (6), Y ∗

i = 1
D ∑dY ∗d

i , and f̂ ∗dC is trained
through (Xi,Y ∗d

i)nli=1. Our proposed estimate ĜE becomes

ĜE(f̂C) = EGE(f̂C)+
1
2nl

nl
∑
i=1
Ĉov(Yi,Sign(f̂C(Xi))|X l)+

1
4
D̂1(X l, f̂C), (10)

By the law of large numbers, ĜE converges to (5) as D→ ∞. In practice, we recommend D to be
at least nl to ensure the precision of MC approximation and τ to be 0.5. In contrast to the estimated
GE with labeled data alone, the ĜE(f̂C) in (10) requires no perturbation of X when X u is available.
This permits more robust and computationally efficient estimation.

Minimization of (10) with respect toC yields the minimizer Ĉ, which is optimal in terms of GE
as suggested by Theorem 2, under similar technical assumptions as in Wang and Shen (2006).

(C.1): (Loss and risk) limnl→∞ supC |GE(f̂C)/E(GE(f̂C))−1| = 0 in probability.
(C.2): (Consistency of initial estimates) For almost all x, p̂i(x)→ pi(x), as nl →∞; i= 1, · · · ,nl .
(C.3): (Positivity) Assume that inf

C
E(GE(f̂C)) > 0.

Theorem 2 Under Conditions C.1-C.3, lim
nl ,nu→∞

(
lim
τ→0+

GE(f̂Ĉ)/ inf
C
GE(f̂C)

)
= 1.

Theorem 2 says the ideal optimal performance infCGE(f̂C) can be realized by GE(f̂Ĉ) when
τ→ 0+ and nl,nu → ∞ against any other tuning method.

1874

LARGE MARGIN SEMI-SUPERVISED LEARNING

5. Numerical Examples

This section examines effectiveness of SSVM and SPSI and compare them against SVM with la-
beled data alone, TSVM and a graphical method of Zhu, Ghahramani and Lafferty (2003), in both
simulated and benchmark examples. A test error, averaged over 100 independent replications, is
used to measure their performances.

For simulation comparison, we define the amount of improvement of a method over SVM with
labeled data alone as the percent of improvement in terms of the Bayesian regret,

(T (SVM)−T (Bayes))− (T (·)−T (Bayes))
T (SVM)−T (Bayes)

, (11)

where T (·) and T (Bayes) are the test error of any method and the Bayes error. This metric seems
to be sensible, which is against the baseline—the Bayes error T (Bayes), which is approximated by
the test error over a test sample of large size, say 105.

For benchmark comparison, we define the amount of improvement over SVM as

T (SVM)−T (·)
T (SVM)

, (12)

which underestimates the amount of improvement in absence of the Bayes rule.
Numerical analyses are performed in R2.1.1. For TSVM, SVMlight (Joachims, 1999) is used.

For the graphical method, a MATLAB code provided in Zhu, Ghahramani and Lafferty (2003) is
employed. In the linear case, K(s, t) = 〈s, t〉; in the Gaussian kernel case, K(s, t) = exp

(
− ‖s−t‖2

σ2

)
,

where σ2 is set to be p, a default value in the “svm” routine of R, to reduce computational cost for
tuning σ2.

5.1 Simulations and Benchmarks

Two simulated and three benchmark examples are examined. In each example, we perform a grid
search to minimize the test error of each classifier with respect to tuning parameters, in order to
eliminate the dependency of the classifier on these parameters. Specifically, one regularizer for
SVM and one tuning parameter σ in the Gaussian weight matrix for the graphical method, two
regularization regularizers for TSVM, and three regularizers for SSVM and SPSI are optimized
over [10−2,103]. For SSVM and SPSI, C is searched through a set of unbalanced grid points,
based on our small study of the relative importance among (C1,C2,C3). As suggested by Figure
2, C3 appears to be most crucial to ĜE(f̂C), whereas C2 is less important than (C1,C3), and C1
is only useful when its value is not too large. This leads to our unbalanced search over C, that
is, C1 ∈ {10−2,10−1,1,10,102}, C2 ∈ {10−2,1,102}, and C3 ∈ {10m/4;m = −8,−7, · · · ,12}. This
strategy seems reasonable as suggested by our simulation. Clearly, a more refined search is expected
to yield better performance for SSVM and SPSI.
Example 1: A random sample {(Xi1,Xi2,Yi); i = 1, · · · ,1000} is generated as follows. First,

1000 independent instances (Yi,Xi1,Xi2) are sampled according to (Yi+1)/2∼Bernoulli(0.5), Xi1∼
Normal(Yi,1), and Xi2 ∼ Normal(0,1). Second, 200 instances are randomly selected for training,
and the remaining 800 instances are retained for testing. Next, 190 unlabeled instances (Xi1,Xi2)
are obtained by removing labels from a randomly chosen subset of the training sample, whereas the
remaining 10 instances are treated as labeled data. The Bayes error is 0.162.

1875

WANG AND SHEN

C2

C1

G
E

C3

C2

G
E

C3

C1
G
E

Figure 2: Plot of ĜE(f̂C) as a function of (C1,C2,C3) for one random selected sample of the
WBC example. The top left, the top right and the bottom left are plots of ĜE(f̂C)
versus (C1,C2), (C2,C3) and (C3,C1), respectively. Here (C1,C2,C3) take values in set
{10−2+m/4;m= 0,1, · · · ,20}.

Example 2: A random sample {(Xi1,Xi2,Yi); i= 1, · · · ,1000} is generated. First, a random sam-
ple (Xi1,Xi2) of size 1000 is generated: Xi1 ∼ Normal(3cos(kiπ/2 + π/8),1), Xi2 ∼
Normal(3sin(kiπ/2+ π/8),4), with ki sampled uniformly from {1, · · · ,4}. Second, their labels
Yi; i = 1, · · · ,1000 are assigned: Yi = 1 if ki ∈ {1,4}, and −1 if ki ∈ {2,3}. As in Example 1, we
obtain 200 (10 labeled and 190 unlabeled) instances for training as well as 800 instances for testing.
The Bayes error is 0.089.

Benchmarks: Three benchmark examples are examined, including Wisconsin Breast Cancer
(WBC), Mushroom and Spam email, each available in the UCIMachine Learning Repository (Blake
and Merz, 1998). The WBC example concerns discrimination of a benign breast tissue from a
malignant tissue through 9 clinic diagnostic characteristics; the Mushroom example separates an
edible mushroom from a poisonous one through 22 biological records; the Spam email example
discriminates texts to identify spam emails through 57 frequency attributes such as frequencies of
particular words and characters. All these benchmarks are suited for linear and Gaussian kernel
semi-supervised learning (Blake and Merz, 1998).

Instances in theWBC andMushroom examples are randomly divided into halves with 10 labeled
and 190 unlabeled instances for training, and the remaining instances for testing. Instances in the
Spam email example are randomly divided into halves with 20 labeled and 580 unlabeled instances
for training, and the remaining instances for testing.

In each example, the smallest averaged test errors of SVM with labeled data alone, TSVM, the
graphical method and our proposed methods are reported in Tables 1 and 2.

As indicated in Tables 1-2, SPSI and SSVM outperform both SVM and TSVM in all cases,
and the graphical method in all examples except the Mushroom example. The amount of improve-
ment, however, varies over examples and types of classifiers. Specifically, we make the following
observations.

1876

LARGE MARGIN SEMI-SUPERVISED LEARNING

Data Method SVMl TSVM Graph SSVM SPSI SVMc
n×dim Improv. Improv. Improv. Improv.
Example 1 Linear .344(.0104) .249(.0134) .188(.0084) .184(.0084) .164(.0084)
1000×2 52.2% .232(.0108) 85.7% 87.9%

Gaussian .385(.0099) .267(.0132) 61.5% .201(.0072) .200(.0069) .196(.0015)
52.9% 82.5% 83.0%

Example 2 Linear .333(.0129) .222(.0128) .129(.0031) .128(.0031) .115(.0032)
1000×2 45.5% .213(.0114) 83.6% 84.0%

Gaussian .347(.0119) .258(.0157) 49.2% .175(.0092) .175(.0098) .151(.0021)
34.5% 66.7% 66.7%

Table 1: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI, over 100 pairs of
training and testing samples, in the simulated examples. Here Graph, SVMl and SVMc
denote performances of the graphical method, SVM with labeled data alone, and SVM
with complete data without missing. The amount of improvement is defined in (11), where
the Bayes error serves as a baseline for comparison.

Data Method SVMl TSVM Graph SSVM SPSI SVMc
n×dim Improv. Improv. Improv.
WBC Linear .053(.0071) .077(.0113) .032(.0025) .029(.0022) .027(.0020)
682×9 -45.3% .080(.0235) 39.6% 45.3%

Gaussian .047(.0038) .037(.0015) -70.2% .030(.0005) .030(.0005) .030(.0004)
21.3% 36.2% 36.2%

Mushroom Linear .232(.0135) .204(.0113) .186(.0095) .184(.0095) .041(.0018)
8124×22 12.1% .126(.0090) 19.8% 20.7%

Gaussian .217(.0135) .217(.0117) 41.9% .173(.0126) .164(.0123) .021(.0014)
0.0% 20.3% 24.4%

Email Linear .216(.0097) .227(.0120) .191(.0114) .189(.0107) .095(.0022)
4601×57 -5.09% .232(.0101) 11.6% 12.5%

Gaussian .226(.0108) .275(.0158) -7.41% .189(.0120) .189(.112) .099(.0018)
-21.7% 16.4% 16.4%

Table 2: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI, over 100 pairs of
training and testing samples, in the benchmark examples. The amount of improvement
is defined in (12), where the performance of SVM with labeled data alone serves as a
baseline for comparison in absence of the Bayes error.

• In the simulated examples, the improvements of SPSI and SSVM are from 66.9% to 87.9%
over SVM, while the improvements of TSVM and the graphical method are from 34.5% to
52.9% and 49.2% to 61.5%, over SVM.

• In the benchmark examples, the improvements of SPSI, SSVM, TSVM, and the graphical
method, over SVM, range from 19.8% to 45.3%, from -45.3% to 21.3%, and from -70.2% to
41.9%.

• It appears that the ψ-loss performs slightly better than the SVM hinge loss in almost all
examples.

1877

WANG AND SHEN

• SPSI and SSVM nearly reconstruct all relevant information about labeling in the two simu-
lated examples and the WBC example, when they are compared with SVM with full label
data. This suggests that room for further improvement in these cases is small.

To understand how SPSI and SSVM perform, we examine one randomly chosen realization in
Example 1 for SPSI. As displayed in Figure 3, SVM fails to provide an accurate estimate of the true
decision boundaries, because of the small size of labeled data. In contrast, the grouping boundaries
estimated by unlabeled covariates, almost recover the true decision boundaries for classification.
This, together with the information obtained from the labeled data regarding the sign of labeling,
results in much better estimated classification boundaries.

−2 −1 0 1 2

−2
−1

0
1

2

X1

X2

_

+

+
_

_

_

_
+

_

_

Semi−supervised
Classification
Partition
True

Figure 3: Illustration of SPSI in one randomly selected replication of Example 1. The solid, dashed,
dotted and dotted-dashed (vertical) lines represent our ψ-learning-based decision func-
tion, the SVM decision function with labeled data alone, the partition decision func-
tion defined by unlabeled data, and the true decision boundary for classification. Here
C1 = 0.1,C2 = 0.01 andC3 = 0.5.

5.2 Performance After Tuning

This section compares the performances of the six methods in Section 5.1 when tuning is done
using our proposed method in Section 4 and the training sample only. Particularly, SVM is tuned
using the method of Wang and Shen (2006) with labeled data alone, and SPSI, SSVM , TSVM
and the graphical method are tuned by minimizing the ĜE(f̂C) in (10) involving both labeled and
unlabeled data over a set of grid points in the same fashion as in Section 5.1. Performances of all
the methods are evaluated by a test error on an independent test sample. The averaged test errors of
these methods are summarized in Table 3.

As expected, SPSI and SSVM outperform both SVM with labeled data alone and TSVM in
all cases, and the graphical method in all examples except Mushroom, with improvements ranging
from 2.15% to 77.5% over SVM.

1878

LARGE MARGIN SEMI-SUPERVISED LEARNING

Data Method SVMl TSVM Graph SSVM SPSI SVMc
Improv. Improve. Improv. Improv.

Example 1 Linear .350(.0107) .281(.0153) .234(.0106) .233(.0106) .167(.0085)
36.7% .244(.0112) 61.7% 62.2%

Gaussian .395(.0101) .331(.0211) 56.4% .280(.0176) .273(.0177) .258(.0102)
27.5% 49.4% 52.4%

Example 2 Linear .338(.0146) .252(.0144) .148(.0104) .145(.0111) .118(.0084)
34.5% .227(.0129) 76.3% 77.5%

Gaussian .375(.0153) .303(.0196) 44.6% .248(.0167) .233(.175) .201(.0123)
25.2% 44.4% 49.7%

WBC Linear .060(.0081) .094(.0131) .045(.0044) .042(.0035) .037(.0027)
-56.7% .087(.0247) 25.0% 30.0%

Gaussian .051(.0039) .044(.0047) -70.6% .039(.0016) .039(.0018) .038(.0005)
13.7% 21.6% 21.6%

Mushroom Linear .241(.0141) .211(.0120) .209(.0108) .209(.0111) .053(.0037)
12.4% .137(.0101) 13.3% 13.3%

Gaussian .230(.0148) .232(.0140) 40.4% .219(.0156) .210(.0131) .036(.0045)
-0.87% 4.78% 8.69%

Email Linear .236(.0109) .241(.0128) .228(.0130) .224(.0125) .099(.0024)
-2.12% .240(.0117) 3.39% 5.08%

Gaussian .233(.0107) .296(.0136) -1.69% .227(.0130) .228(.0131) .123(.0056)
-27.0% 2.58% 2.15%

Table 3: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVM, the graphical method, SSVM and SPSI after tuning, over 100
pairs of training and testing samples, for the simulated and benchmark examples.

In conclusion, our proposed methodology achieves the desired objective of delivering high per-
formance and is highly competitive against the top performers in the literature, where the lossU(·)
plays a critical role in estimating decision boundaries for classification. It is also interesting to note
that TSVM obtained from SVMlight performs even worse than SVM with labeled data alone in the
WBC example for linear learning, and the Spam email example for both linear and Gaussian ker-
nel learning. One possible explanation is that SVMlight may not have some difficulty in reaching
good minimizers for TSVM. Moreover, the graphical method compares favorably against SVM and
TSVM, but its performance does not seem to be robust in different examples. This may be due to
the required Gaussian assumption.

6. Statistical Learning Theory

This section derives a finite-sample probability upper bound measuring the performance of SPSI
in terms of complexity of the class of candidate decision functions F , sample sizes (nl,nu) and
tuning parameter C. Specifically, the generalization performance of the SPSI decision function f̂C
is measured by the Bayesian regret e(f , f ∗) = GE(f)−GE(f ∗) ≥ 0 that is the difference between
the actual performance of f and the ideal performance defined by the Bayes rule f ∗. This yields
SPSI’s performance infC |e(f̂C, f ∗)| after tuning.

1879

WANG AND SHEN

6.1 Assumptions and Theorems

Our statistical learning theory involves risk minimization and the empirical process theory. The
reader may consult Shen and Wang (2006) for a discussion about a learning theory of this kind.

First we introduce some notations. Let (f ∗C,g∗C) = arg inf f ,g∈F ES(f ,g;C) is a minimizer for
surrogate risk ES(f ,g;C), as defined in Lemma 1. Let e f = e(f , f ∗) be the Bayesian regret for f
and eg = e(g,g∗C) be the corresponding version for g relative to g∗C. Denote byV f (X) = L(Y f (X))−
L(Y f ∗(X)) and Vg(X) = Ũ(g(X))− Ũ(g∗C(X)) be the differences between f and f ∗, and g and g∗C
with respect to surrogate loss L and regularized surrogate loss Ũ(g) =U(g)+ C3

2nuC2 ‖g− f ∗C‖2.
To quantify complexity of F , we define the L2-metric entropy with bracketing. Given any ε> 0,

denote {(f lm, f um)}Mm=1 as an ε-bracketing function set of F if for any f ∈ F , there exists an m such
that f lm ≤ f ≤ f um and ‖ f lm− f um‖2 ≤ ε;m = 1, · · · ,M, where ‖ · ‖2 is the usual L2 norm. Then the
L2-metric entropy with bracketing H(ε,F) is defined as the logarithm of the cardinality of smallest
ε-bracketing function set of F .

Three technical assumptions are formulated based upon local smoothness of L, complexity of
F as measured by the metric entropy, and a norm relationship.
Assumption A. (Local smoothness: Mean and variance relationship) For some some constants

0< αh < ∞, 0≤ βh < 2, a j > 0; j = 1,2,

sup
{h∈F : E(Vh(X))≤δ}

|eh| ≤ a1δαh , (13)

sup
{h∈F : E(Vh(X))≤δ}

Var(Vh(X)) ≤ a2δβh , (14)

for any small δ> 0 and h= f ,g.
Assumption A describes the local behavior of mean (eh)-and-variance (Var(Vh(X))) relationship.

In (13), Taylor’s expansion usually leads to αh = 1 when f and g can be parameterized. In (14), the
worst case is βh = 0 because max(|L(y f)|, |U(g)|) ≤ 2. In practice, values for αh and βh depend on
the distribution of (X ,Y).

Let J0 = max(J(g∗C),1) with J(g) = 1
2‖g‖

2
− the regularizer. Let Fl(k) = {L(y f)−L(y f ∗) : f ∈

F ,J(f)≤ k} and Fu(k) = {U(g)−U(g∗C) : g ∈ F ,J(g)≤ kJ0} be the regularized decision function
spaces for f ’s and g’s.
Assumption B. (Complexity) For some constants ai > 0; i= 3, · · · ,5 and εnv with v= l or u,

sup
k≥2

φv(εnv ,k) ≤ a5n
1/2
v , (15)

where φu(ε,k) =
R a1/23 T βg/2

u
a4Tu H1/2(w,Fu(k))dw/Tu with Tu = Tu(ε,C,k) = min(1,ε2/βg/2+

(nuC2)−1(k/2 − 1)J0), and φl(ε,k) =
R a1/23 T

β f /2
l

a4Tl H1/2(w,Fl(k))dw/Tl with Tl = Tl(ε,C,k) =
min(1,ε2/β f /2+(nlC1)−1(k/2−1)max(J(f ∗),1)).

Although Assumption B is always satisfied by some εnv , the smallest possible εnv from (15)
yields the best possible error rate, for given Fv and sample size nv. This is to say that the rate is
indeed governed by the complexity of Fv(k). An equation of this type, originated from the empirical
process theory, has been widely used in quantifying the error rates in function estimation, see, for
example, Shen and Wong (1994).

1880

LARGE MARGIN SEMI-SUPERVISED LEARNING

Assumption C. (Norm relationship) For some constant a6 > 0, ‖ f‖1 ≤ a6‖ f‖ for any f ∈ F ,
where ‖ · ‖1 is the usual L1-norm.

Assumption C specifies a norm relationship between norm ‖ · ‖ defined by a RKHS and ‖ · ‖1.
This is usually met when F is a RKHS, defined, for instance, by Gaussian and Sigmoid kernels,
compare with Adams (1975).

Theorem 3 (Finite-sample probability bound for SPSI) In addition to Assumptions A-C, assume
that nl ≤ nu. For the SPSI classifier Sign(f̂C), there exist constants a j > 0; j = 1,6,7,10,11, and
Jl > 0, Ju > 0 and B≥ 1 defined as in Lemma 5, such that

P
(
inf
C

|e(f̂C, f ∗)| ≥ a1sn
)
≤ 3.5exp(−a7nu((nuC∗

2)
−1J0)max(1,2−βg))+

6.5exp(−a10nl((nlC∗
1)

−1min(Jl,J(f ∗)))max(1,2−β f))+

6.5exp(−a11nu((nuC∗
2)

−1Ju)max(1,2−βg)),

where sn = min
(
δ
2α f
nl ,max(δ2αgnu , infC∈C |e(g∗C, f ∗)|)

)
, δnv = min(εnv ,1) with v = l,u, C∗ =

(C∗
1 ,C∗

2 ,C∗
3) = arg infC∈C |e(g∗C, f ∗)|), and C = {C : nlC1 ≥ 2δ−2nl max(Jl,J(f

∗),1),nuC2 ≥
2δ−2nu max(J0,2C3(2B+ J(f ∗C)+ J(g∗C))),C3 ≥ a26Bδ−4nu }.

Corollary 4 Under the assumptions of Theorem 3, as nu ≥ nl → ∞,

inf
C

|e(f̂C, f ∗)| = Op(sn), sn =min
(
δ
2α f
nl ,max(δ2αgnu , inf

C∈C
|e(g∗C, f ∗)|)

)
.

Theorem 3 provides a probability bound for the upper tail of |e(f̂C, f ∗)| for any finite (nl,nu).
Furthermore, Corollary 4 says that the Bayesian regret infC∈C |e(g∗C, f ∗)| for the SPSI classifier
Sign(f̂C) after tuning is of order of no larger than sn, when nu ≥ nl → ∞. Asymptotically, SPSI per-
forms no worse than its supervised counterpart in that infC |e(f̂C, f ∗)| = Op(δ

2α f
nl). Moreover, SPSI

can outperform its supervised counterpart in the sense that infC |e(f̂C, f ∗)| =Op(min(δ
2αg
nu ,δ

2α f
nl)) =

Op(δ
2αg
nu), when {g∗C :C ∈ C} provides a good approximation to the Bayes rule f ∗.
Remark: Theorem 3 and Corollary 4 continue to hold when the “global” entropy in (15) is

replaced by a “local” entropy, compare with Van De Geer (1993). Let Fl,ξ(k) = {L(y f)−L(y f ∗) :
f ∈ F ,J(f) ≤ k, |e(f , f ∗)| ≤ ξ} and Fu,ξ(k) = {U(g)−U(g∗C) : g ∈ F ,J(g) ≤ k, |e(g,g∗C)| ≤ ξ}
be the “local” entropy of Fl(k) and Fu(k). The proof requires only a slight modification. The local
entropy avoids a loss of lognu factor in the linear case, although it may not be useful in the nonlinear
case.

6.2 Theoretical Examples

We now apply the learning theory to one linear and one kernel learning examples to obtain the
generalization error rates for SPSI, as measured by the Bayesian regret. We will demonstrate that
the error in the linear case can be arbitrarily fast while that in the nonlinear case is fast. In either
case, SPSI’s performance is better than that of its supervised counterpart.
Linear learning: Consider linear classification where X = (X(1),X(2)) is sampled independently

according to the same probability density q(z) = 1
2(θ+1)|z|θ for z ∈ [−1,1] with θ ≥ 1. Given X ,

assign label Y to 1 if X(1) > 0 and −1 otherwise; then Y is chosen randomly to flip with constant

1881

WANG AND SHEN

probability τ for 0< τ< 1
2 . Here the true decision function ft(x) = x(1) yielding the vertical line as

the classification boundary.
In this case, the degree of smoothness of this problem is characterized by exponent θ> 0 in the

density q(z), which describes the level of difficulty of linear classification but may not be so in the
nonlinear case.

For classification, we minimize (2) over F , consisting of linear decision functions of form
f (x) = (1,x)Tw for w ∈ R 3 and x = (x(1),x(2)) ∈ R 2. To apply Corollary 4, we verify Assump-
tions A-C with detailed verification given in Appendix B. In fact, Assumption A follows from the
smoothness of E(Vh(X)) and Var(Vh(X)) with respect to h, where a local Taylor expansion yields
the degree of smoothness exponents α and β. Assumption B is automatically met, and the entropy
Equation (15) is solved for the smallest possible εnv satisfying it. Assumption C is always true
for RKHS. It then follows from Corollary 4 that infC |e(f̂C, f ∗)| = Op(n

−(θ+1)/2
u (lognu)(θ+1)/2) as

nu ≥ nl → ∞. This says that the optimal ideal performance of the Bayes rule is recovered by SPSI
at speed of n−(θ+1)/2

u (lognu)(θ+1)/2 as nu ≥ nl → ∞. This rate is arbitrarily fast as θ→ ∞.
Kernel learning: Consider, in the preceding case, kernel learning with a different candidate

decision function class defined by the Gaussian kernel. To specify F , we may embed a finite-
dimensional Gaussian kernel representation into an infinite-dimensional spaceF = {x∈R 2 : f (x)=
wTf φ(x) = ∑∞

k=0w f ,kφk(x) : w f = (w f ,0, · · ·)T ∈ R ∞} by the representation theorem of RKHS, com-
pare with Wahba (1990). Here 〈φ(x),φ(z)〉 = K(x,z) = exp(− ‖x−z‖2

2σ2).
To apply Corollary 4, we verify Assumptions A-C as before, with detailed verification given

in Appendix B. The function space F generated by the Gaussian kernel is rich enough to well
approximate the ideal performer Sign(E(Y |X)) (Steinwart, 2001), and yields the exponents α and
β in Assumption A with smoothness and Soblev’s inequality (Adams, 1975). Similarly, it follows
from Corollary 4 that infC |e(f̂C, f ∗)|=Op(min(n−1l (lognlJl)3,n

−1/2
u (lognuJu)3/2)) as nu ≥ nl →∞.

Therefore, the optimal ideal performance of the Bayes rule is recovered by SPSI at fast speed of
min(n−1l (lognlJl)3,n

−1/2
u (lognuJu)3/2) as nu ≥ nl → ∞.

7. Discussion

This article proposed a novel large margin semi-supervised learning methodology that is applicable
to a class of large margin classifiers. In contrast to most semi-supervised learning methods assuming
various dependencies between the marginal and conditional distributions, the proposed methodol-
ogy integrates labeled and unlabeled data through regularization to identify such dependencies for
enhancing classification. The theoretical and numerical results show that our methodology outper-
forms SVM and TSVM in situations when unlabeled data provides useful information, and performs
no worse when unlabeled data does not so. For tuning, further investigation of regularization paths
of our proposed methodology is useful as in Hastie, Rosset, Tibshirani and Zhu (2004), to reduce
computational cost.

Acknowledgments

This research is supported by NSF grants IIS-0328802 and DMS-0604394. We thank Wei Pan for
many constructive comments. We also thank three referees and the editor for helpful comments and
suggestions.

1882

LARGE MARGIN SEMI-SUPERVISED LEARNING

Appendix A. Technical Proofs

Proof of Theorem 2: The proof is similar to that of Theorem 2 of Wang and Shen (2006), and thus
is omitted.
Proof of Theorem 3: The proof uses a large deviation empirical technique for risk minimization.
Such a technique has been previously developed in function estimation as in Shen andWong (1994).
The proof proceeds in three steps. In Step 1, the tail probability of {eŨ(ĝC,g∗C) ≥ δ2nu} is bounded
through a large deviation probability inequality of Shen and Wong (1994). In Step 2, a tail prob-
ability bound of {|e(f̂C, f ∗)| ≥ δ2nu} is induced from Step 1 using a conversion formula between
eŨ(ĝC,g∗C) and |e(f̂C, f ∗)|. In Step 3, a probability upper bound for {|e(f̂C, f ∗)| ≥ δ2nl} is obtained
using the same treatment as above. The desired bound is obtained based on the bounds in Step 2
and Step 3.
Step 1: It follows from Lemma 5 that max(‖ f̂C‖2,‖ĝC‖2) ≤ B for a constant B ≥ 1, where

(f̂C, ĝC) is the minimizer of (2). Furthermore, ĝC defined in (2) can be written as ĝC =
argmin

g∈F

{
C2∑n

j=nl+1Ũ(g(x j))+ J(g)+ C3
2 (‖ f̂C−g‖2−‖ f ∗C−g‖2)

}
.

By the definition of ĝC, P(eŨ(ĝC,g∗C) ≥ δ2nu) is upper bounded by

P(J(ĝC) ≥ B)+P∗
(
sup
g∈N

n−1u
n

∑
j=nl+1

(Ũ(g∗C(x j))−Ũ(g(x j)))+λ(J(g∗C)− J(g))

+
λC3
2

(‖ f̂C−g∗C‖2−‖ f ∗C−g∗C‖2−‖ f̂C−g‖2+‖ f ∗C−g‖2) ≥ 0
)

≤ P(J(ĝC) ≥ B)+P∗
(
sup
g∈N

n−1u
n

∑
j=nl+1

(Ũ(g∗C(x j))−Ũ(g(x j)))+λ(J(g∗C)− J(g))

+λC3(2B+ J(f ∗C)+ J(g∗C)) ≥ 0
)
≡ P(J(ĝC) ≥ B)+ I,

where λ= (nuC2)−1, N = {g ∈ F ,J(g) ≤ B,eŨ(g,g∗C) ≥ δ2nu}, and P
∗ denotes the outer probability.

By Lemma , there exists constants a10,a11 > 0 such that P(J(ĝC)≥ B)≤ 6.5exp(−a10nl(nlC1)−1Jl)
+6.5exp(−a11nu(nuC2)−1Ju), where Jl and Ju are defined in Lemma 5.

To bound I, we introduce some notations. Define the scaled empirical process as Eu(Ũ(g∗C)−
Ũ(g)) = n−1u ∑n

j=nl+1
(
Ũ(g∗C(x j)) − Ũ(g(x j)) + λ(J(g∗C) − J(g))

)
− E(Ũ(g∗C(X j)) − Ũ(g(X j))+

λ(J(g∗C)− J(g))) = Eu(U(g∗C)−U(g)). Thus

I = P∗

(
sup
g∈N

Eu(U(g∗C)−U(g)) ≥

inf
g∈N

E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g))−λC3(2B+ J(f ∗C)+ J(g∗C))
)

.

Let As,t = {g ∈ F : 2s−1δ2nu ≤ eŨ(g,g∗C) < 2sδ2nu ,2
t−1J0 ≤ J(g) < 2tJ0}, and let As,0 = {g ∈ F :

2s−1δ2nu ≤ eŨ(g,g∗C) < 2sδ2nu ,J(g) < J0}; s, t = 1,2, · · · . Without loss of generality, we assume that
εnu < 1. Then it suffices to bound the corresponding probability over As,t ; s, t = 1,2, · · · . Toward
this end, we control the first and second moment of Ũ(g∗C(X))−Ũ(g(X)) over f ∈ As,t .

For the first moment, by assumption δ2nu ≥ 2λmax(J0,2C3(2B+ J(f ∗C)+ J(g∗C))),

inf
As,t
E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g)) ≥ 2s−1δ2nu +λ(2t−1−1)J0;s, t = 1,2, · · · ,

1883

WANG AND SHEN

inf
As,0

E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)− J(g)) ≥ (2s−1−1/2)δ2nu ≥ 2
s−2δ2nu ;s= 1,2, · · · .

Therefore, infAs,t E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)−J(g))−λC3(2B+J(f ∗C)+J(g∗C))≥M(s, t) =
2s−2δ2nu +λ(2t−1−1)J0, and infAs,0 E(Ũ(g(X))−Ũ(g∗C(X)))+λ(J(g∗C)−J(g))−λC3(2B+J(f ∗C)+
J(g∗C)) ≥M(s,0) = 2s−3δ2nu , for all s, t = 1,2, · · · .

For the second moment, by Assumptions A,

sup
As,t
Var(Ũ(g(X))−Ũ(g∗C(X))) ≤ sup

As,t
a2(eŨ(g,g∗C))βg ≤ a2(2sδ2nu +(2t−1)λJ0)βg

≤ a223βg(2s−2δ2nu +(2t−1−1)λJ0)βg ≤ a3M(s, t)βg = v2(s, t),

for and s, t = 1,2, · · · and some constant a3 > 0.
Now I ≤ I1 + I2 with I1 = ∑∞

s,t=1P∗(sup
As,t

Eu(U(g∗C)

−U(g)) ≥ M(s, t)); I2 = ∑∞
s=1P∗(sup

As,0
Eu(U(g∗C)−U(g)) ≥ M(s,0)). Next we bound I1 and I2

separately using Theorem 3 of Shen and Wong (1994). We now verify conditions (4.5)-(4.7)
there. To compute the metric entropy of {U(g)−U(g∗C) : g ∈ As,t} in (4.7) there, we note thatR v(s,t)
aM(s,t)H

1/2(w,Fu(2t))dw/M(s, t) is nonincreasing in s andM(s, t) and hence that

Z v(s,t)

aM(s,t)
H1/2(w,Fu(2t))dw/M(s, t) ≤

Z a1/23 M(1,t)βg/2

aM(1,t)
H1/2(w,Fu(2t))dw/M(1, t)

≤ φ(εnu ,2
t),

with a = 2a4ε. Assumption B implies (4.7) there with ε = 1/2 and some ai > 0; i = 3,4. Further-
more, M(s, t)/v2(s, t) ≤ 1/8 and T = 1 imply (4.6), and (4.7) implies (4.5). By Theorem 3 of Shen
and Wong (1994), for some constant 0< ζ< 1,

I1 ≤
∞

∑
s,t=1

3exp
(
− (1−ζ)nuM2(s, t)
2(4v2(s, t)+M(s, t)/3)

)
≤

∞

∑
s,t=1

3exp(−a7nu(M(s, t))max(1,2−βg))

≤
∞

∑
s,t=1

3exp(−a7nu(2s−1δ2nu +λ(2t−1−1)J0)max(1,2−βg))

≤ 3exp(−a7nu(λJ0)max(1,2−βg))/(1− exp(−a7nu(λJ0)max(1,2−βg)))2.

Similarly, I2 ≤ 3exp(−a7nu(λJ0)max(1,2−βg))/(1−exp(−a7nu(λJ0)max(1,2−βg)))2. Thus I ≤ I1+ I2 ≤
6exp(−a7nu((nuC2)−1J0)max(1,2−βg))/(1−exp(−a7nu((nuC2)−1J0)max(1,2−βg)))2, and I1/2 ≤ (2.5+
I1/2) exp(−a7nu((nuC2)−1J0)max(1,2−βg)). Thus P(eŨ(ĝC,g∗C) ≥ δ2nu) ≤ 3.5exp(−a7nu
((nuC2)−1J0)max(1,2−βg)) + 6.5exp(−a10nl((nlC1)−1Jl)max(1,2−β f))+
6.5exp(− a11nu((nuC2)−1Ju)max(1,2−β f)).
Step 2: By Lemma 5 and Assumption C, |eŨ(f̂C, ĝC)| ≤ E| f̂C(X)− ĝC(X)| ≤ a6‖ f̂C− ĝC‖ ≤

a6
√
B/C3 ≤ δ2nu when C3 ≥ a26Bδ

−4
nu . By Assumption A and the triangle inequality, |e(f̂C,g∗C)| ≤

a1(eŨ(f̂C,g∗C))αg ≤ a1(eŨ(ĝC,g∗C) + |eŨ(f̂C, ĝC)|)αg ≤ a1(eŨ(ĝC,g∗C) + δ2nu , implying that
P
(
|e(f̂C,g∗C)| ≥ a1(2δ2nu)

αg
)
≤P(eŨ(ĝC,g∗C)≥ δ2nu), ∀C∈ C . Then P

(
infC |e(f̂C, f ∗)| ≥ a1(2δ2nu)

αg +
infC∈C |e(g∗C, f ∗)|

)
≤ P(eŨ(ĝC∗ ,g∗C∗) ≥ δ2nu) ≤ 3.5exp(− a7nu((nuC∗

2)
−1J0)max(1,2−βg)) +

1884

LARGE MARGIN SEMI-SUPERVISED LEARNING

6.5exp(−a10nl((nlC∗
1)

−1Jl)max(1,2−β f)) + 6.5exp(−a11nu ((nuC∗
2)

−1Ju)max(1,2−βg)), where C∗ =
arg infC∈C |e(g∗C, f ∗)|.
Step 3: Note that f̂C = argmax f∈F {C1∑nl

i=1L(yi f (xi)) + 1
2‖ f‖

2
−} when C2 = 0 and C3 = ∞.

An application of the same treatment yields that P(infC e(f̂C, f ∗) ≥ a1δ2nl) ≤ P(infC eL(f̂C, f ∗) ≥
a1δ2nl) ≤ 3.5exp(−a10nl((nlC

∗
1)

−1J(f ∗))max(1,2−β f)) when nlC∗
1 ≥ 2δ−2nl max(J(f

∗),1). The desired
result follows.

Lemma 5 Under the assumptions of Theorem 3, for (f̂C, ĝC) as the minimizer of (2), there exists
constants B> 0, depending only on C1, such that

max(E(C3‖ f̂C− ĝC‖2+‖ĝC‖2),E‖ f̂C‖2,2C1) ≤ B.

Proof: It suffices to show E(C3‖ f̂C− ĝC‖2+‖ĝC‖2)≤B. Let W̃ (f ,g)= 1
C1 s(f ,g)=∑nl

i=1W̃l(yi f (xi))
+C2
C1 ∑

n
j=nl+1W̃u(g(x j)), where W̃l(f (xi)) = L(yi f (xi))+ C3

4nlC1 ‖ f −g‖
2, and W̃u(g(x j)) =U(g(x j))+

1
2nuC2 ‖g‖

2+ C3
4nuC2 ‖ f −g‖2. For convenience, write Jl(f ,g) = C3

4 ‖ f −g‖2, Ju(f ,g) = C3
4 ‖ f −g‖2+

1
2‖g‖

2
−, λl = (C1nl)−1, and λu = (C2nu)−1. We then define a new empirical process El,u(W̃ (f ,g)−

W̃ (f ∗C,g∗C)) = El(W̃l(f)−W̃l(f ∗C))+ C2nu
C1nl Eu(W̃u(g)−W̃u(g∗C)) as

1
nl

nl
∑
i=1

(
W̃l(f (xi))−W̃l(f ∗C(xi))−E(W̃l(f (Xi))−W̃l(f ∗C(Xi)))

)
+

C2nu
C1nl

1
nu

n

∑
i=nl+1

(
W̃u(g(x j))−W̃u(g∗C(xi))−E(W̃u(g(X j))−W̃u(g∗C(Xi)))

)
.

An application of the same argument as in the proof of Theorem 3 yields that for constants a8,a9> 0,
P(eW (f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2w) is upper bounded by

3.5exp(−a8nl((nlC1)−1Jl)max(1,2−β f))+3.5exp(−a9nu((nuC2)−1Ju)max(1,2−βg)),
provided that 2Jl ≤ nlC1δ̃2nl and 2Ju ≤ nuC2δ̃2nu , where eW (f ,g; f ∗C,g∗C) = eL(f , f ∗C) + C2

C1 eU(g,g∗C),
δ̃2w = δ̃2nl +

C2nu
C1nl δ̃

2
nu , Jl =max(Jl(f ∗C,g∗C),1) and Ju =max(Ju(f ∗C,g∗C),1).

Without loss of generality, assume min(Jl(f ∗C,g∗C),Ju(f ∗C,g∗C)) ≥ 1. Let J(f ,g) = Jl(f ,g) +
Ju(f ,g) and At = { f ,g∈F : eW (f ,g; f ∗C,g∗C)≤ δ̃2w,2t−1J(f ∗C,g∗C)≤ J(f ,g) < 2tJ(f ∗C,g∗C)}; t = 1, · · · .
Then, P

(
J(f̂C, ĝC) ≥ J(f ∗C,g∗C)

)
is upper bounded by

P(eW (f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2w)+
∞

∑
t=1

P∗

(
sup
At
El,u(W̃ (f ∗C,g∗C)−W̃ (f ,g)) ≥ E(W̃ (f ,g)−W̃ (f ∗C,g∗C))

)

≤ P(eW (f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2w)+
∞

∑
t=1

P∗

(
sup
At
El,u(W̃ (f ∗C,g∗C)−W̃ (f ,g)) ≥ (2t−1−1)λlJ(f ∗C,g∗C)+ δ̃2w

)

≤ P(eW (f̂C, ĝC; f ∗C,g∗C) ≥ δ̃2w)+
∞

∑
t=1

P∗

(
sup
At
El(W̃l(f ∗C)−W̃l(f)) ≥ (2t−1−1)λlJl + δ̃2nl

)
+

∞

∑
t=1

P∗

(
sup
At
Eu(W̃u(g∗C)−W̃u(g)) ≥ (2t−1−1)λuJu+ δ̃2nu

)
.

1885

WANG AND SHEN

An application of the same argument in the proof of Theorem 3 yields that for some constants
0< a10 ≤ a8 and 0< a11 ≤ a9 that P

(
J(f̂C, ĝC) ≥ J(f ∗C,g∗C)

)
is upper bounded by

P(eW (f ,g; f ∗C,g∗C) ≥ δ̃2w)+
∞

∑
t=1

(
3exp(−a11nl((nlC1)−1Jl(f ∗C,g∗C)2t−1)max(1,2−β f))+

3exp(−a12nu((nuC2)−1Ju(f ∗C,g∗C)2t−1)max(1,2−βg))
)

≤ 6.5exp(−a10nl((nlC1)−1Jl)max(1,2−β f))+6.5exp(−a11nu((nuC2)−1Ju)max(1,2−βg)).

Note that J(f̂C, ĝC) ≤ s(f̂ , ĝ) ≤ s(1,1) ≤ 2C1nl . There exists a constant B1 > 0 such that

E(C3‖ f̂C− ĝC‖2+‖ĝC‖2−) ≤ J(f ∗C,g∗C)+B1 ≤ 2C1+B1, (16)

since J(f ∗C,g∗C) ≤ ES(f ∗C,g∗C) ≤ ES(1,1) ≤ 2C1. It follows from the KKT condition and (16) that
E|wĝC,0| is bounded by a constant B2, depending only on C1. The desired result follows with a
choice of B= 2C1+B1+B22.

Lemma 6 (Metric entropy in Example 6.2.1) Under the assumptions there, for v= l or u,

H(ε,Fv,ξ(k)) ≤ O(log(ξ1/(θ+1)/ε)).

Proof: We first show the inequality for Fu,ξ(k). Suppose lines g(x) = 0 and g∗C(x) = 0 inter-
sect lines x(2) = ±1 with two points (ug,1),(vg,−1) and (ug∗C ,1),(vg∗C ,−1), respectively. Note
that e(g,g∗C) ≤ ξ implies P(Δ(g,g∗C)) ≤ ξ

1−2τ with Δ(g,g∗C) = {Sign(g(x)) += Sign(g∗C(x))}. Direct
calculation yields that P(Δ(g,g∗C)) ≥ 1

2max(|ug−ug∗C |, |vg− vg∗C |)
θ+1, max(|ug−ug∗C |, |vg− vg∗C |) ≤

a′
ξ1/(θ+1) for a constant a′

> 0. We then cover all possible (ug,1) and (vg,−1) with intervals
of length ε∗. The covering number for these possible points is no more than (2a′ξ1/(θ+1)/ε∗)2.
After these points are covered, we then connect the endpoints of the covering intervals to form
bracket planes l(x) = 0 and u(x) = 0 such that l ≤ g ≤ u, and ‖u− l‖2 ≤ ‖u− l‖∞ ≤ ε∗. Let
U l(g) = 2− 2max(|l±1|, |u±1|) and Uu(g) = 2− 2I(l(x)u(x) > 0)min(|l±1|, |u±1|), then U l(g) ≤
U(g)≤Uu(g) and ‖Uu(g)−U l(g)‖∞ ≤ 2‖|u− l‖∞ ≤ 2ε∗. With ε= 2ε∗, {(U l(g),Uu(g))} forms an
ε-bracketing set ofU(g). Therefore, the ε-covering number for Fu,ξ(k) is at most (4a′ξ1/(θ+1)/ε)2,
implying H(ε,Fu,ξ(k)) is upper bounded by O(log(ξ

1
θ+1 /ε)). Furthermore, it is similar to show

the inequality for Fl,ξ(k) since
(
2min(1,1−max(yl(x),yu(x))+),2min(1,1−min(yl(x),yu(x))+)

)

forms a bracket for L(y f (x)) when l ≤ f ≤ u.

Lemma 7 (Metric entropy in Example 6.2.2) Under the assumptions there, for v= l or u,

H(ε,Fv(k)) ≤ O((log(k/ε))3).

Proof: We first show the inequality for Fu(k). Suppose there exist ε-brackets (glm,gum)Mm=1 for some
M such that for any g ∈ F (k) = {g ∈ F : J(g)≤ k}, glm ≤ g≤ gum and ‖gum−glm‖∞ ≤ ε for some 1≤
m≤M. LetU l(g) = 2−2max(|glm,±1|, |gum,±1|) andUu(g) = 2−2I(glmgum > 0)min(|glm,±1|, |gum,±1|),
then U l(g) ≤ U(g) ≤ Uu(g) and ‖Uu(g)−U l(g)‖∞ ≤ 2‖gum− glm‖∞ ≤ 2ε. Therefore, (U l(g)−
U(g∗C),Uu(g)−U(g∗C)) forms a bracket of length 2ε forU(g)−U(g∗C). The desired inequality then
follows from the Example 4 in Zhou (2002) thatH∞(ε,F (k))≤O(log(k/ε)3) under the L∞−metric:
‖g‖∞ = supx∈R 2 |g(x)|. Furthermore, it is similar to show the inequality for Fl(k) as in Lemma 6.

1886

LARGE MARGIN SEMI-SUPERVISED LEARNING

Lemma 8 For any functions f , g and any constant ρ> 0,

E|Sign(f (X))−Sign(g(X))|I(| f (X)| ≥ ρ) ≤ 2ρ−1E| f (X)−g(X)|.

Proof: The left hand side is 2P(| f (X)| ≥ ρ,Sign(f (X)) += Sign(g(X))) ≤ 2P(| f (x)−g(x)| ≥ ρ) ≤
2ρ−1E| f (X)−g(X)| by Chebyshev’s inequality.

Appendix B. Verification of Assumptions A-C in the Theoretical Examples

Linear learning: Since (X(1),Y) is independent of X(2), ES(f ,g;C) = E(E(S(f ,g;C)|X(2))) ≥
ES(f̃ ∗C, g̃∗C;C) for any f ,g ∈ F , and (f̃ ∗C, g̃∗C) = argmin f̃ ,g̃∈F1 ES(f̃ , g̃;C) with F1 = {x(1) ∈ R :
f̃ (x) = (1,x(1))Tw : w ∈ R 2} ⊂ F . It then suffices to verify Assumptions A-C over F1 rather
than F . By Lemma 1, the approximation error infC∈C e(g̃∗C, f ∗) = 0. For (13), note that f ∗ mini-
mizes EL(Y f (X)) and g̃∗C minimizes EŨ(g̃) given f̃ ∗C . Direct computation, together with Taylor’s
expansion yields that E(Vh̃(X)) = (e0,e1)Γh̃(e0,e1)T for any function h̃ = (1,x(1))Twh̃ ∈ F1 with
wh̃ = wh̃∗ +(e0,e1)T , where h̃∗ = f ∗ or g̃∗C and Γh̃ is a positive definite matrix. Thus E(Vh̃(X)) ≥
λ1(e20 + e21) for constant λ1 > 0. Moreover, straightforward calculation yields that |eh̃| ≤ 1

2(1−
2τ)min(|wh̃∗,1|, |wh̃∗,1 + e1|)−(θ+1)|e0|θ+1 ≤ λ2(e20 + e21)(θ+1)/2 for some constant λ2 > 0, where
wh̃∗ = (wh̃∗,0,wh̃∗,1). A combination of these two inequalities leads to (13) with αh̃ = (θ+ 1)/2.
For (14), note that Var(Vh̃(X)) ≤ ‖h̃− h̃∗‖22 = e20+ e21EX2(1) ≤max(1,EX

2
(1))(e

2
0+ e21). This implies

(14) with βh̃ = 1. For Assumption B, by Lemma 6, H(ε,Fv,ε(k)) ≤ O(log(ε1/(θ+1))/ε) for any
given k, thus φv(ε,k) = a3(log(T

−θ/2(θ+1)
v))1/2/T 1/2v with Tv = Tv(ε,C,k). Hence supk≥2 φv(ε,k) ≤

O
(
(log(ε−θ/(θ+1)))1/2/ε

)
in (15). Solving (15), we obtain εnl = (lognlnl)1/2 when C1 ∼

J(f ∗)δ−2nl n
−1
l ∼ lognl and εnu = (lognunu)1/2 whenC2 ∼ J0δ−2nu n

−1
u ∼ lognu. Assumption C is fulfilled

because E(X2) < ∞. In conclusion, we obtain, by Corollary 4, that infC |e(f̂C, f ∗)| =
Op((n−1u lognu)(θ+1)/2). Surprisingly, this rate is arbitrarily fast as θ→ ∞.
Kernel learning: Similarly, we restrict our attention to F1 = {x ∈ R : f (x) = wTf φ̃(x) =

∑∞
k=0w f ,kφ̃k(x) : w f ∈ R ∞}, where 〈φ̃(x), φ̃(z)〉 = exp(− (x−z)2

2σ2).
For (13), note that F is rich for sufficiently large nl in that for any continuous function f , there

exists a f̃ ∈ F such that ‖ f − f̃‖∞ ≤ ε2nl , compare with Steinwart (2001). Then f ∗ = argmin f∈F
EL(Y f) implies ‖ f ∗ − Sign(E(Y |X))‖∞ ≤ ε2nl and |EL(Y f ∗)−GE(f ∗)| ≤ 2ε2nl . Consequently,
|e(f , f ∗)| ≤ E(V f (X)) + 2ε2nl and α f = 1. On the other hand, E(Vg(X)) ≥ −E|g− f ∗C| −E|g∗C −
f ∗C|+

C3
2nuC2 ‖g− f ∗C‖2−

C3
2 ‖g

∗
C− f ∗C‖2. Using the fact that (f ∗C,g∗C) is the minimizer of ES(f ,g;C),

we have C3
2 ‖g

∗
C− f ∗C‖2 ≤ ES(f ∗C,g∗C) ≤ ES(1,1) ≤ 2C1. By Sobolev’s inequality (Adams, 1975),

E|g∗C− f ∗C| ≤ λ3‖g∗C− f ∗C‖ ≤ λ3(4C1/C3)1/2 and E|g− f ∗C| ≤ λ3‖g− f ∗C‖, for some constant λ3 > 0.
Plugging these into the previous inequality, we have eŨ(g,g∗C) ≥ C3

2nuC2 ‖g− f ∗C‖2− λ3‖g− f ∗C‖−
2C1
nuC2 − λ3(4C1/C3)1/2. By choosing suitable C, we obtain 1

2‖g− f ∗C‖2− eŨ(g,g∗C)1/2‖g− f ∗C‖−
eŨ(g,g∗C) ≤ 0. Solving this inequality yields ‖g− f ∗C‖ ≤ (1+

√
5)eŨ(g,g∗C)1/2. Furthermore, by

Lemma 8 and Sobolev’s inequality, for sufficient small λ4 > 0, e(g,g∗C) ≤ E2λ−14 | f ∗C(X)−g(X)|+
2P(| f ∗C(X)| ≤ λ4)+ e(f ∗C,g∗C) ≤ 2λ−14 (1+

√
5)E(Vg(X))1/2+ 2P(| f ∗C(X)| ≤ λ4)+ e(f ∗C,g∗C). How-

ever, by Lemma 1, e(f ∗C,g∗C) → 0, and P(| f ∗C(X)| ≤ λ4) ≤ P(| f ∗(X)| − | f ∗(X)− f ∗C(X)| ≤ λ4) =
P(| f ∗(X)| ≤ | f ∗(X)− f ∗C(X)|+λ4) → 0, as C1,C2,C3 → ∞, because of linearity of f ∗. This yields
(13) with αg = 1/2. For (14), Var(L(Y f (X))− L(Y f ∗(X))) ≤ 2E(L(Y f (X))− L(Y f ∗(X)))2 =

1887

WANG AND SHEN

(w f −w f ∗)TΓ2(w f −w f ∗) where Γ2 is a positive definite matrix, and similar to Example 6.2.1,
E(Vf (X)) = (w f −w f ∗)Γh̃(w f −w f ∗)T since f ∗ minimizes E(L(Y f (X))). Therefore, there exists
a constant λ5 > 0 such that Var(L(Y f (X))− L(Y f ∗(X))) ≤ λ5E(Vf (X)). Also, Var(U(g(X))−
U(g∗C(X))) ≤ ‖g−g∗C‖22 ≤ 2(‖g− f ∗C‖2+‖g∗C− f ∗C‖2) ≤ 2((1+

√
3)2eŨ(g,g∗C)+ 4C1

C3) ≤ (8+2(1+√
3)2)E(Vg(X))), implying (14) with β f = βg = 1. For Assumption B, by Lemma 7, H(ε,Fv(k)) ≤

O((log(kJv/ε))3) for any given k. Similarly, we have εnl = (n−1l (lognlJl)3)1/2 when C1 ∼
J(f ∗)δ−2nl n

−1
l ∼ (lognlJl)−3 and εnu = (n−1u (lognuJu)3)1/2 whenC2 ∼ J0δ−2nu n

−1
u ∼ (lognuJu)−3. As-

sumption C is fulfilled with the Gaussian kernel.

Appendix C. The Dual Form of (5)

Let ∇ψ(k) = (∇ψ(k)
1 ,∇ψ(k)

2)T , ∇ψ(k)
1 =C1(∇ψ2(y1 f (k)(x1))y1, · · · ,∇ψ2(ynl f (k)(xnl))ynl) and ∇

ψ(k)
2 =

2C2(∇U2(g(k)(xnl+1)), · · · ,∇U2(g(k)(xn))). Further, let α = (α1, · · · ,αnl)T , β = (βnl+1, · · · ,βn)T ,
γ= (γnl+1, · · · ,γn)T , yα = (y1α1, · · · ,ynlαnl)T , and

Theorem 9 (ψ-learning) The dual problem of (4) with respect to (α,β,γ) is

max
α,β,γ

{
−

(
yα
β− γ

)T (
(1+ 1

C3)Kll + 1
C3 Il Klu

Kul Kuu

)(
yα
β− γ

)
+

(α− (β+ γ))T1n− (yα− (β− γ))T
(
K∇ψ(k) +

(
∇ψ(k)
1
0nu

))}
,

(17)

subject to
(
2
(

yα
γ−β

)
+∇ψ(k)

)T

1n = 0, 0n ≤ α≤C11n, 0n ≤ β, 0n ≤ γ, and 0n ≤ β+ γ≤C21n.

Proof of Theorem 9: For simplicity, we only prove the linear case as the nonlinear case is es-
sentially the same. The kth primal problem in (4), after introducing slack variable ξ, is equivalent
to min(w f ,wg,ξi,ξ j)C1∑

nl
i=1 ξi+C2∑n

j=nl+1 ξ j +
C3
2 ‖w f −wg‖2+ 1

2‖w̃g‖
2−〈w,∇sψ2 (f

(k),g(k))〉 subject
to constraints 2(1− yi(〈w f ,xi〉)) ≤ ξi, xi ≥ 0; i = 1, · · · ,nl , and 2(|〈wg,x j〉| − 1) ≤ ξ j, ξ j ≥ 0;
j = nl +1, · · · ,n.
To solve this minimization problem, the Lagrangian multipliers are employed to yield

L(w f ,wg,ξi,ξ j)

= C1
nl
∑
i=1

ξi+C2
n

∑
j=nl+1

ξ j +
C3
2
‖w f −wg‖2+

1
2
‖w̃g‖2−〈w,∇sψ2 (w

(k)
f ,w(k)

g)〉+

2
nl
∑
i=1

αi(1− yi(〈w f ,xi〉)−
ξi
2

)+2
n

∑
j=nl+1

β j(〈wg,x j〉−1−
ξ j
2

)−

2
n

∑
j=nl+1

γ j(〈wg,x j〉+1+
ξ j
2

)−
nl
∑
i=1

γiξi−
n

∑
j=nl+1

η jξ j, (18)

where αi ≥ 0; i = 1, · · · ,nl , β j ≥ 0, γ j ≥ 0, j = nl + 1, · · · ,n. Differentiate L with respect to
(w f ,wg,ξi,ξ j) and let the partial derivatives be zero, we obtain that ∂L

∂w̃ f
=C3(w̃ f −w̃g)−2∑nl

i=1αiyixi
−∇ψ(k)

1 f = 0, ∂L
∂w̃g = w̃g−C3(w̃ f − w̃g)−2∑n

j=nl+1(γ j−β j)x j−∇ψ(k)
1g = 0, ∂L

∂w f ,0
=C3(w f ,0−wg,0)−

1888

LARGE MARGIN SEMI-SUPERVISED LEARNING

2∑nl
i=1αiyi = 0, ∂L

∂wg,0 = −C3(w f ,0−wg,0)−2∑n
j=nl+1(γ j−β j)−∇ψ(k)

2g = 0, ∂L∂ξi =C1−αi− γi = 0,
and ∂L

∂ξ j
=C2−β j− γ j−η j = 0. Solving these equations yields that w̃∗

f = 2(1+C−1
3)∑nl

i=1αiyixi+

∑n
j=nl+1(γ j − β j)x j + (1+C−1

3)∇ψ(k)
1 f +∇ψ(k)

1g , w̃∗
g = 2∑nl

i=1αiyixi +∑n
j=nl+1(γ j − β j)x j +∇ψ(k)

1 f +

∇ψ(k)
1g , 2∑nl

i=1αiyi + 2∑
n
j=nl+1(γ j − β j) +∇ψ(k)

2 f +∇ψ(k)
2g = 0, αi + γi = C1; i = 1, · · · ,nl , and β j +

γ j +η j = 0; j = nl + 1, · · · ,n. Substituting w̃∗
f , w̃∗

g and these identities into (18), we obtain (17)
after ignoring all constant terms. To derive the corresponding constraints, note thatC1−αi−γi = 0,
γi ≥ 0 and αi ≥ 0 implies 0 ≤ αi ≤ C1, η j ≥ 0 and C2− β j − γ j −η j = 0 implies β j + γ j ≤ C2.
Furthermore, KKT’s condition requires that αi(1− yi(〈w f ,xi〉)− ξi) = 0, β j(〈wg,x j〉 − 1− ξ j),
γ j(〈wg,x j〉+1+ξ j) = 0, γiξi = 0, and η jξ j = 0. That is, ξi += 0 implies γi = 0 and αi =C1, and ξ j += 0
implies η j = 0 and β j + γ j =C2. Therefore, if 0< αi <C1, then ξi = 0 and 1− yi(〈w f ,xi〉) = 0, if
0< β j + γ j <C2, then ξ j = 0 and 〈wg,x j〉+1= 0 or 〈wg,x j〉−1= 0.

Write the solution of (17) as (α(k+1),β(k+1),γ(k+1)), which yields the solution of (4): w̃(k+1)
f =

2XT
(

(1+ 1
C3)yα

β− γ

)
+ ∇ψ(k)

(
(1+ 1

C3)1nl
1nu

)
, and w̃(k+1)

g = 2XT
(

yα
β− γ

)
+ ∇ψ(k)1n, and

(w(k+1)
f ,0 ,w(k+1)

g,0) satisfies KKT’s condition in that yi0(K(w̃(k+1)
f ,xi0) +w(k+1)

f ,0) = 1 for any i0 with
0 < αi0 < C1, and for any j0 with 0 < β j0 + γ j0 < C2, K(w̃(k+1)

g ,x j0) +w(k+1)
g,0 = 1 if β j0 > 0 or

K(w̃(k+1)
g ,x j0) + w(k+1)

g,0 = −1 if γ j0 > 0. Here K(w̃(k+1)
f ,xi0) = (1 + 1

C3)∑
nl
i=1(2α

(k+1)
i yi+

C1∇ψ2(f (k)(xi)))K(xi,xi0) + 2∑n
j=nl+1(γ

(k+1)
j − β(k+1)

j)K(x j,xi0) + 2C2∑n
j=nl+1∇U2(g

(k)(x j))
K(x j,xi0), and K(w̃(k+1)

g ,x j0) = ∑nl
i=1 2α

(k+1)
i yiK(xi,x j0) + ∑nl

i=1C1∇ψ2(f
(k)(xi))K(xi,x j0)+

2∑n
j=nl+1(γ

(k+1)
j − β(k+1)

j +C2∇U2(g(k)(x j)))K(x j,x j0). When KKT’s condition is not applicable
to determine (w(k+1)

f ,0 ,w(k+1)
g,0), that is, there does not exist an i such that 0< αi <C1 or an j such that

0< β j+ γ j <C2, we may compute (w(k+1)
f ,0 ,w(k+1)

g,0) through quadratic programming by substituting
(w̃(k)

f , w̃(k)
g) into (4).

Theorem 10 (SVM) The dual problem of (4) for SVM with respect to (α,β,γ) is the same as (17)
with (α,β,γ,yα) replaced by 1

2(α,β,γ,yα), and ∇ψ(k) replaced by ∇S(k) = (0, · · · ,0,
C2∇U2(g(k)(xnl+1)), · · · ,C2∇U2(g(k)(xn)))T . Here KKT’s condition remains the same.

Proof of Theorem 10: The proof is similar to that of Theorem 9, and thus is omitted.

References

R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

M. Amini, and P. Gallinari. Semi-supervised learning with an explicit label-error model for misclas-
sified data. In IJCAI 2003.

L. An and P. Tao. Solving a class of linearly constrained indefinite quadratic problems by D.C.
algorithms. J. of Global Optimization, 11:253-285, 1997.

R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and
unlabeled data. Technical Report RC23462, IBM T.J. Watson Research Center, 2004.

1889

WANG AND SHEN

M. Balcan, A. Blum, P. Choi, J. Lafferty, B. Pantano, M. Rwebangira and X. Zhu. Person identifi-
cation in webcam images: an application of semi-supervised learning. In ICML 2005.

P. L. Bartlett, M. I. Jordan and J. D. McAuliffe. Convexity, classification, and risk bounds. J. Amer.
Statist. Assoc., 19:138-156, 2006.

M. Belkin, P. Niyogi and V. Sindhwani. Manifold Regularization : A Geometric Framework for
Learning From Examples. Technical Report, Univ. of Chicago, Department of Computer Science,
TR-2004-06, 2004.

C. L. Blake and C. J. Merz. UCI repository of machine learning databases
[http://www.ics.ci.edu/∼mlearn/MLRepository.html]. University of California, Irvine, De-
partment of Information and Computer Science, 1998.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, 1998.

M. Collins and Y. Singer. Unsupervised models for named entity classification. In Empirical Meth-
ods in Natural Language Processing and Very Large Corpora, pages 100-110, 1999.

C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20:273-297, 1995.

F. G. Cozman, I. Cohen andM. C. Cirelo. Semi-supervised learning of mixture models and Bayesian
networks. In ICML 2003.

B. Efron. The estimation of prediction error: Covariance penalties and cross-validation.
J. Amer. Statist. Assoc., 99:619-632, 2004.

C. Gu. Multidimension smoothing with splines. In M.G. Schimek, editor, Smoothing and Regres-
sion: Approaches, Computation and Application, 2000.

T. Hastie, S. Rosset, R. Tibshirani and J. Zhu. The entire regularization path for the support vector
machine. J. of Machine Learning Research, 5: 1391-1415, 2004.

T. Joachims. Transductive inference for text classification using support vector machines. In ICML
1999.

Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge
Discovery, 6:259-275, 2002.

Y. Lin and L. D. Brown. Statistical properties of the method of regularization with periodic Gaussian
reproducing kernel . Ann. Statist., 32:1723-1743, 2004.

S. Liu, X. Shen and W. Wong. Computational development of ψ-learning. In SIAM 2005 Interna-
tional Data Mining Conference, pages 1-12, 2005.

Y. Liu and X. Shen. Multicategory ψ-learning. J. Amer. Statist. Assoc., 101:500-509, 2006.

P. Mason, L. Baxter, J. Bartlett and M. Frean. Boosting algorithms as gradient descent. In Advances
in Neural Information Processing Systems 12, pages 512-518. The MIT Press, 2000.

1890

LARGE MARGIN SEMI-SUPERVISED LEARNING

K. Nigam, A. McCallum, S. Thrun and T. Mitchell . Text classification from labeled and unlabeled
documents using EM. In AAAI 1998.

B. Schölkopf, A. Smola, R. Williamson and P. Bartlett. New support vector algorithms. Neural
Computation, 12:1207-1245, 2000.

X. Shen and W. Wong. Convergence rate of sieve estimates. Ann. Statist., 22:580-615, 1994.

X. Shen. On the method of penalization. Statist. Sinica, 8:337-357, 1998.

X. Shen and H. C. Huang. Optimal model assessment, selection and combination. J. Amer. Statist.
Assoc., 101:554-568, 2006.

X. Shen, G. C. Tseng, X. Zhang andW.Wong. On psi-learning. J. Amer. Statist. Assoc., 98:724-734,
2003.

X. Shen and L. Wang. Discussion of 2004 IMS Medallion Lecture: “Local Rademacher complexi-
ties and oracle inequalities in risk minimization”. Ann. Statist., in press.

I. Steinwart. On the influence of the kernel on the consistency of support vector machines. J. Ma-
chine Learning Research, 2:67-93, 2001.

M. Szummer and T. Jaakkola. Information regularization with partially labeled data. In NIPS 2003.

S. Van De Geer. Hellinger-consistency of certain nonparametric maximum likelihood estimators.
Ann. Statist., 21:14-44, 1993.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba. Spline models for observational data. Series in Applied Mathematics, Vol. 59, SIAM,
Philadelphia, 1990.

J. Wang and X. Shen. Estimation of generalization error: random and fixed inputs. Statist. Sinica,
16:569-588, 2006.

J. Wang, X. Shen and W. Pan. On transductive support vector machines. In Proc. of the Snowbird
Machine Learning Conference, in press.

T. Zhang and F. Oles. A probability analysis on the value of unlabeled data for classification prob-
lems. In ICML 2000.

D. Zhou. The covering number in learning theory. J. of Complexity, 18:739-767, 2002.

J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. J. Comp. Graph.
Statist., 14:185-205, 2005.

X. Zhu, Z. Ghahramani and J. Lafferty. Semi-supervised learning using gaussian fields and har-
monic functions. In ICML 2003.

X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods
for inductive and scalable semi-supervised learning. In ICML 2005.

1891

Journal of Machine Learning Research 8 (2007) 1893-1918 Submitted 11/06; Revised 4/07; Published 8/07

Fast Iterative Kernel Principal Component Analysis

Simon Günter SIMON.GUENTER@NICTA.COM.AU
Nicol N. Schraudolph NIC.SCHRAUDOLPH@NICTA.COM.AU
S.V.N. Vishwanathan SVN.VISHWANATHAN@NICTA.COM.AU
Research School of Information Sciences and Engineering
Australian National University –and–
Statistical Machine Learning Program
National ICT Australia, Locked Bag 8001
Canberra ACT 2601, Australia

Editor: Aapo Hyvarinen

Abstract
We develop gain adaptation methods that improve convergence of the kernel Hebbian algorithm
(KHA) for iterative kernel PCA (Kim et al., 2005). KHA has a scalar gain parameter which is
either held constant or decreased according to a predetermined annealing schedule, leading to slow
convergence. We accelerate it by incorporating the reciprocal of the current estimated eigenvalues
as part of a gain vector. An additional normalization term then allows us to eliminate a tuning
parameter in the annealing schedule. Finally we derive and apply stochastic meta-descent (SMD)
gain vector adaptation (Schraudolph, 1999, 2002) in reproducing kernel Hilbert space to further
speed up convergence. Experimental results on kernel PCA and spectral clustering of USPS digits,
motion capture and image denoising, and image super-resolution tasks confirm that our methods
converge substantially faster than conventional KHA. To demonstrate scalability, we perform kernel
PCA on the entire MNIST data set.
Keywords: step size adaptation, gain vector adaptation, stochastic meta-descent, kernel Hebbian
algorithm, online learning

1. Introduction

Principal components analysis (PCA) is a standard linear technique for dimensionality reduction.
Given a matrixX ∈Rn×l of l centered, n-dimensional observations, PCA performs an eigendecom-
position of the covariance matrixQ := XX". The r×nmatrixW whose rows are the eigenvectors
ofQ associated with the r ≤ n largest eigenvalues minimizes the least-squares reconstruction error

‖X −W"WX‖F , (1)

where ‖ · ‖F is the Frobenius norm.
As it takes O(n2l) time to compute Q and O(n3) time to eigendecompose it, PCA can be pro-

hibitively expensive for large amounts of high-dimensional data. Iterative methods exist that do
not compute Q explicitly, and thereby reduce the computational cost to O(rn) per iteration. They
assume that each individual observation x is drawn from a statistical distribution1, and the aim is
to maximize the variance of y := Wx, subject to some orthonormality constraints on the weight

1. It is customary to assume that the distribution is centered, that is, E[x] = 0.

c©2007 Simon Günter, Nicol N. Schraudolph and S.V.N. Vishwanathan.

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

matrix W . In particular, we obtain the so-called hierarchical PCA network if we assume that the
ith row of W must have unit norm and must be orthogonal to the jth row, where j = 1, . . . , i− 1
(Karhunen, 1994). By using Lagrange multipliers to incorporate the constraints into the objective,
we can rewrite the merit function J(W) succinctly as (Karhunen and Joutsensalo, 1994):

J(W) = E[x"W"Wx]+ 1
2 tr[Λ(WW"−I)], (2)

where the Lagrange multiplier matrixΛ is constrained to be lower triangular. Taking gradients with
respect toW and setting to zero yields

∂WJ(W) = E[Wx]x"+ΛW = 0. (3)

As a consequence of the KKT conditions (Boyd and Vandenberghe, 2004), at optimality

Λ(WW"−I) = 0. (4)

Right multiplying (3) byW ", using (4), and noting that Λ must be lower triangular yields

Λ = −lt(E [Wx]x"W") = −lt(E[y]y"), (5)

where lt(·) makes its argument lower triangular by zeroing all elements above the diagonal. Plug-
ging (5) into (3) and stochastically approximating the expectation E[y] with its instantaneous esti-
mate yt := Wtxt , where xt ∈ Rn is the observation at time t, yields

∂WtJ(W) = ytx
"
t − lt(yty"

t)Wt . (6)

Gradient ascent in (6) gives the generalized Hebbian algorithm (GHA) of Sanger (1989):

Wt+1 = Wt +ηt [ytx"
t − lt(yty"

t)Wt]. (7)

For an appropriate scalar gain, ηt , (7) will tend to converge to the principal component solution as
t → ∞; though its global convergence is not proven (Kim et al., 2005).

A closely related algorithm by Oja and Karhunen (1985, Section 5) omits the lt operator:

Wt+1 = Wt +ηt [ytx"
t −yty

"
t Wt]. (8)

This update is also motivated by maximizing the variance of Wx subject to orthonormality con-
straints onW. In contrast to GHA it requires the ith row ofW to be orthogonal to all other rows of
W, that is, that W be orthonormal. The resulting algorithm converges to an arbitrary orthonormal
basis—not necessarily the eigen-basis—for the subspace spanned by the first r eigenvectors.

One can do better than PCA in minimizing the reconstruction error (1) by allowing nonlin-
ear projections of the data into r dimensions. Unfortunately such approaches often pose difficult
nonlinear optimization problems. Kernel methods (Schölkopf and Smola, 2002) provide a way
to incorporate non-linearity without unduly complicating the optimization problem. Kernel PCA
(Schölkopf et al., 1998) performs an eigendecomposition on the kernel expansion of the data, an
l× l matrix. To reduce the attendant O(l2) space and O(l3) time complexity, Kim et al. (2005)
introduced the kernel Hebbian algorithm (KHA) by kernelizing GHA.

1894

FAST ITERATIVE KERNEL PCA

Both GHA and KHA are examples of stochastic approximation algorithms, whose iterative up-
dates employ individual observations in place of—but, in the limit, approximating—statistical prop-
erties of the entire data. By interleaving their updates with the passage through the data, stochastic
approximation algorithms can greatly outperform conventional methods on large, redundant data
sets, even though their convergence is comparatively slow.

Both GHA and KHA updates incorporate a scalar gain parameter ηt , which is either held fixed or
annealed according to some predefined schedule. Robbins and Monro (1951) were first to establish
conditions on the sequence of ηt that guarantee the convergence of many stochastic approximation
algorithms on stationary input. A widely used annealing schedule (Darken and Moody, 1992) that
obeys these conditions is

ηt =
τ

t+ τ
η0, (9)

where t denotes the iteration number, and η0,τ are positive tuning parameters. τ determines the
length of an initial search phase with near-constant gain (ηt ≈ η0 for t (τ), before the gain decays
asymptotically as τ/t (for t) τ) in the annealing phase (Darken and Moody, 1992). For non-
stationary inputs (e.g., in a online setting) Kim et al. (2005) suggest a small constant gain.

Here we propose the inclusion of a gain vector in the KHA, which provides each estimated
eigenvector with its individual gain parameter. In Section 3.1 we describe our KHA/et* algorithm,
which sets the gain for each eigenvector inversely proportional to its estimated eigenvalue, in ad-
dition to using (9) for annealing. Our KHA/et algorithm in Section 3.3 additionally multiplies the
gain vector by the length of the vector of estimated eigenvalues; this allows us to eliminate the τ
tuning parameter.

We then derive and apply the stochastic meta-descent (SMD) gain vector adaptation technique
(Schraudolph, 1999, 2002) to KHA/et* and KHA/et to further speed up their convergence. Our
resulting KHA-SMD* and KHA-SMD methods (Section 4.2) adapt gains in a reproducing kernel
Hilbert space (RKHS), as pioneered in the recent Online SVMD algorithm (Vishwanathan et al.,
2006). The application of SMD to the KHA is not trivial; a naive implementation would require
O(rl2) time per update. By incrementally maintaining and updating two auxiliary matrices we re-
duce this cost to O(rl). Our experiments in Section 5 show that the combination of preconditioning
by the estimated eigenvalues and SMD can yield much faster convergence than either technique
applied in isolation.

The following section summarizes the KHA, before we provide our eigenvalue-based gain mod-
ifications in Section 3. Section 4 describes SMD and its application to the KHA. We report the
results of our experiments with these algorithms in Section 5, then conclude with a discussion of
our findings.

2. Kernel Hebbian Algorithm

Kim et al. (2005) adapt Sanger’s (1989) GHA algorithm to work with data mapped into a reproduc-
ing kernel Hilbert space (RKHS) H via a feature map Φ : X → H (Schölkopf and Smola, 2002).
Here X is the input space, and H and Φ are implicitly defined by the kernel k : X ×X → H with
the property ∀x,x′ ∈ X : k(x,x′) = 〈Φ(x),Φ(x′)〉H , where 〈·, ·〉H denotes the inner product inH .
LetΦ denote the transposed data vector in feature space:

Φ := [Φ(x1),Φ(x2), . . . Φ(xl)]". (10)

1895

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

This assumes a fixed set of l observations whereas GHA relies on an infinite sequence of observa-
tions for convergence. Following Kim et al. (2005), we use an indexing function p : N → Zl which
concatenates random permutations of Zl to reconcile this discrepancy. Our implementations loop
through a fixed data set, permuting it anew before each pass.

PCA, GHA, and hence KHA all assume that the data is centered. Since the kernel which maps
the data into feature space does not necessarily preserve such centering, we must re-center the data
in feature space:

Φ′ := Φ−MΦ, (11)

where M denotes the l× l matrix with entries all equal to 1/l. This is achieved by replacing the
kernel matrix K := ΦΦ" (that is, [K]i j := k(xi,x j)) by its centered version

K ′ := Φ′Φ′" = (Φ−MΦ)(Φ−MΦ)"

= ΦΦ"−MΦΦ"−ΦΦ"M" +MΦΦ"M" (12)
= K −MK − (MK)" +MKM .

Since all rows ofMK are identical (as are all elements ofMKM) we can pre-calculate each row
in O(l2) time and store it in O(l) space to efficiently implement operations with the centered kernel.
The kernel centered on the training data is also used when testing the trained system on new data.

From kernel PCA (Schölkopf et al., 1998) it is known that the principal components must lie
in the span of the centered data in feature space; we can therefore express the GHA weight matrix
as Wt = AtΦ′, where A is an r× l matrix of expansion coefficients, and r the desired number of
principal components. The GHA weight update (7) thus becomes

At+1Φ′ = AtΦ′ + ηt [ytΦ′(xp(t))"− lt(yty"
t)AtΦ′], (13)

where lt(·) extracts the lower triangular part of its matrix argument (by setting all matrix elements
above the diagonal to zero), and

yt := WtΦ
′(xp(t)) = AtΦ′Φ′(xp(t)) = Atk

′
p(t), (14)

using k′
i to denote the ith column of the centered kernel matrix K ′. Since we have Φ′(xi)" =

e"
i Φ′, where ei is the unit vector in direction i, (13) can be rewritten solely in terms of expansion
coefficients as

At+1 = At + ηt [yte"
p(t)− lt(yty

"
t)At]. (15)

Introducing the update coefficient matrix

Γt := yte
"
p(t)− lt(yty

"
t)At (16)

we obtain the compact update rule

At+1 = At +ηtΓt . (17)

In their experiments, Kim et al. (2005) employed the KHA update (17) with a constant scalar gain
ηt = η0; they also proposed letting the gain decay as ηt = η0/t. Our implementation (which we
denote KHA/t) employs the more general (9) instead, from which an η0/(t+ 1) decay is obtained
by setting τ= 1, and a constant gain in the limit as τ→ ∞.

1896

FAST ITERATIVE KERNEL PCA

3. Gain Decay with Reciprocal Eigenvalues

Consider the term ytx"
t = Wtxtx"

t appearing on the right-hand side of the GHA update (7). At the
desired solution, the rows ofWt contain the principal components, that is, the leading eigenvectors
ofQ=XX". The elements of yt thus scale with the associated eigenvalues ofQ. Large differences
in eigenvalues can therefore lead to ill-conditioning (hence slow convergence) of the GHA; the same
holds for the KHA.

We counteract this problem by furnishing the KHA with a gain vector ηt ∈ Rr
+ that provides

each eigenvector estimate with its individual gain parameter; we will discuss how to set ηt below.
The update rule (17) thus becomes

At+1 = At +diag(ηt)Γt , (18)

where diag(·) maps a vector into a diagonal matrix.

3.1 The KHA/et* Algorithm

To improve the KHA’s convergence, we set ηt proportional to the reciprocal of the estimated eigen-
values. Let λt ∈Rr

+ denote the vector of eigenvalues associated with the current estimate of the first
r eigenvectors. Our KHA/et* algorithm sets the ith component of ηt to

[ηt]i =
1

[λt]i
τ

t+ τ
η0, (19)

with η0 and τ positive tuning parameters as in (9) before. Since we do not want the annealing phase
to start before we have seen all observations at least once, we tune τ in small integer multiples of
the data set size l.

KHA/et* thus conditions the KHA update by proportionately decreasing (increasing) the gain
(19) for rows ofAt associated with large (small) eigenvalues. A similar approach (with a simple 1/t
gain decay) was applied by Chen and Chang (1995) to GHA for neural network feature selection.

3.2 Calculating the Eigenvalues

The above update (19) requires the first r eigenvalues of K ′—but the KHA is an algorithm for
estimating these eigenvalues and their associated eigenvectors in the first place. The true eigenvalues
are therefore not available at run-time. Instead we use the eigenvalues associated with the KHA’s
current eigenvector estimate inAt , computed as

[λt]i =
‖K ′[At]"i∗‖2
‖[At]"i∗‖2

, (20)

where [At]i∗ denotes the ith row ofAt , and ‖·‖2 the 2-norm of a vector. This can be stated compactly
as

λt =

√
diag(AtK ′(AtK ′)")

diag(AtA"
t)

, (21)

where the division and square root operation are performed element-wise, and diag(·) applied to a
matrix extracts the vector of elements along the matrix diagonal.

1897

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

The main computational effort for calculating λt lies in computing AtK ′, which—if done
naively—is quite expensive: O(rl2). Fortunately it is not necessary to do this at every iteration,
since the eigenvalues evolve but gradually. We empirically found it sufficient to update λt and
ηt only once after each pass through the data, that is, every l iterations—see Figure 4. Finally,
Section 4.2 below introduces incremental updates (33) and (34) that reduce the cost of calculating
AtK ′ to O(rl).

3.3 The KHA/et Algorithm

The τ parameter of the KHA/et* update (19) above determines at what point in the iterative kernel
PCA we gradually shift from the initial search phase (with near-constant ηt) into the asymptotic
annealing phase (with ηt near-proportional to 1/t). It would be advantageous if this parameter
could be determined adaptively (Darken and Moody, 1992), obviating the manual tuning required
in KHA/et*.

One way to achieve this is to have some measure of progress counteract the gain decay: As
long as we are making rapid progress, we are in the search phase, and do not want to decrease the
gains; when progress stalls it is time to start annealing them. A suitable measure of progress is ‖λt‖,
the length of the vector of eigenvalues associated with our current estimate of the eigenvectors, as
calculated via (20) above. This quantity is maximized by the true eigenvectors; in the KHA it tends
to increase rapidly early on, then approach the maximum asymptotically.

Our KHA/et algorithm fixes the gain decay schedule of KHA/et* at τ = l, but multiplies the
gains by ‖λt‖:

[ηt]i =
‖λt‖
[λt]i

l
t+ l

η0. (22)

The rapid early growth of ‖λt‖ thus serves to counteract the gain decay until the leading eigenspace
has been identified. Asymptotically ‖λt‖ approaches its (constant) maximum, and so the gain decay
will ultimately dominate (22). This achieves an effect comparable to an “adaptive search then con-
verge” (ASTC) gain schedule (Darken and Moody, 1992) while eliminating the τ tuning parameter.
Since (19) and (22) can both be expressed as

[ηt]i =
η̂t

[λt]i
, (23)

for particular choices of η̂t , we can compare the gain vectors used by KHA/et* and KHA/et by
monitoring how they evolve the scalar η̂t ; this is shown in Figure 1 for all experiments reported
in Section 5. We see that although both algorithms ultimately anneal η̂t in a similar fashion, their
behavior early on is quite different: KHA/et keeps a lower initial gain roughly constant for a pro-
longed search phase, whereas KHA/et* (for the optimal choice of τ) starts decaying η̂t far earlier,
albeit from a higher starting value. In Section 5 we shall see how this affects the performance of the
two algorithms.

4. KHA with Stochastic Meta-Descent

While KHA/et* and KHA/et make reasonable assumptions about how the gains of a KHA update
should be scaled, further improvements are possible by adapting gains in response to the observed

1898

FAST ITERATIVE KERNEL PCA

USPS dot-product KPCA: USPS RBF KPCA: multipatch image KPCA:

image super-resolution: USPS spectral clustering: motion capture KPCA:

Figure 1: Comparison of gain η̂t (23) between KHA/et* and KHA/et in all applications reported in
Section 5, at individually optimal values of η0 and (for KHA/et*) τ.

history of parameter updates so as to optimize convergence. We briefly review gradient-based gain
adaptation methods, then derive and implement Schraudolph’s (1999; 2002) stochastic meta-descent
(SMD) algorithm for both KHA/et* and KHA/et, focusing on the scalar form of SMD that can be
used in an RKHS.

4.1 Scalar Stochastic Meta-Descent

Let V be a vector space, θ ∈V a parameter vector, and J :V → R the objective function which we
would like to optimize. We assume that J is twice differentiable almost everywhere. Denote by
Jt : V → R the stochastic approximation of the objective function at time t. Our goal is to find θ
such that Et [Jt(θ)] is minimized. We adapt θ via the stochastic gradient descent

θt+1 = θt − eρtgt , where gt = ∂θtJt(θt), (24)

using ∂θt as a shorthand for ∂
∂θ

∣∣∣
θ=θt

. Stochastic gradient descent is sensitive to the value of the
log-gain ρt ∈ R: If it is too small, (24) will take many iterations to converge; if it is too large, (24)
may diverge.

One solution is to adapt ρt by a simultaneous meta-level gradient descent. Thus we could seek to
minimize the value of the objective at the next iteration by adjusting ρt in proportion to the gradient

1899

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

∂ρtJt+1(θt+1). Using the chain rule and (24) we find

ρt+1 = ρt −µ∂ρtJt+1(θt+1)

= ρt −µ[∂θt+1Jt+1(θt+1)]
"∂ρtθt+1 (25)

= ρt +µeρtg"
t+1gt ,

where themeta-gain µ≥ 0 is a scalar tuning parameter. Intuitively, the gain adaptation (25) is driven
by the angle between successive gradient measurements: If it is less than 90◦, then g"

t+1gt > 0, and
ρt will be increased. Conversely, if the angle is more than 90◦ (oscillating gradient), then ρt will be
decreased because g"

t+1gt < 0. Thus (25) serves to decorrelate successive gradients, which leads to
improved convergence of (24).

One shortcoming of (25) is that the decorrelation occurs only across a single time step, mak-
ing the gain adaptation overly sensitive to spurious short-term correlations in the data. Stochastic
meta-descent (SMD; Schraudolph, 1999, 2002) addresses this issue by employing an exponentially
decaying trace of gradients across time:

ρt+1 = ρt −µ
t

∑
i=0

ξi∂ρt−iJt+1(θt+1)

= ρt −µ[∂θt+1Jt+1(θt+1)]
"

t

∑
i=0

ξi∂ρt−iθt+1 (26)

=: ρt −µg"
t+1vt+1,

where the vector vt+1 ∈V characterizes the dependence of θt+1 on its gain history over a time scale
governed by the decay factor 0≤ ξ≤ 1, a scalar tuning parameter.

To compute vt+1 efficiently, we expand θt+1 in terms of its recursive definition (24):

vt+1 :=
t

∑
i=0

ξi∂ρt−iθt+1

=
t

∑
i=0

ξi∂ρt−iθt −
t

∑
i=0

ξi∂ρt−i [e
ρtgt] (27)

≈ ξvt− eρt (gt +∂θtgt
t

∑
i=0

ξi∂ρt−iθt).

Here we have used ∂ρtθt = 0, and approximated

t

∑
i=1

ξi∂ρt−iρt ≈ 0, (28)

which amounts to stating that the log-gain adaptation must be in equilibrium on the time scale
determined by ξ. Noting that ∂θtgt is the Hessian Ht of Jt(θt), we arrive at the simple iterative
update

vt+1 = ξvt − eρt (gt +ξHtvt). (29)

Since the initial parameters θ0 do not depend on any gains, v0 = 0. Note that for ξ = 0 (29) and
(26) reduce to the single-step gain adaptation (25).

1900

FAST ITERATIVE KERNEL PCA

Computation of the Hessian-vector product Htvt would be expensive if done naively. For-
tunately, efficient methods exist to calculate this quantity directly without computing the Hessian
(Pearlmutter, 1994; Griewank, 2000; Schraudolph, 2002). In essence, these methods work by prop-
agating v as a differential (i.e., directional derivative) through the gradient computation:

dθt := vt ⇒ Htvt := dgt . (30)

In other words, if we set the differential dθt of the parameter vector to vt , then the resulting differ-
ential of the gradient gt (a function of θt) is the Hessian-vector product Htvt . We will see this at
work for the case of the KHA in (36) below.

4.2 SMD for KHA

The KHA update (18) can be viewed as r coupled updates in RKHS, one for each row of At , each
associated with a scalar gain. To apply SMD here we introduce an additional log-gain vector ρt ∈Rr

At+1 = At + ediag(ρt) diag(ηt)Γt . (31)

(The exponential of a diagonal matrix is obtained simply by exponentiating the individual diagonal
entries.) We are thus applying SMD to KHA/et, that is, to a gradient descent preconditioned by the
reciprocal estimated eigenvalues. SMD will happily work with such a preconditioner, and benefit
from it.

In an RKHS, SMD adapts a scalar log-gain whose update is driven by the inner product between
the gradient and a differential of the system parameters, all in the RKHS (Vishwanathan et al., 2006).
In the case of KHA, ΓtΦ′ can be interpreted as the gradient in the RKHS of the merit function (2)
maximized by KHA. Therefore SMD’s adaptation of ρt in (31) is driven by the diagonal entries
of 〈ΓtΦ′,BtΦ′〉H , where Bt := dAt denotes the r× l matrix of expansion coefficients for SMD’s
differential parameters, analogous to the v vector in Section 4.1:

ρt = ρt−1+µdiag(
〈
ΓtΦ′,BtΦ′〉

H)

= ρt−1+µdiag(ΓtΦ′Φ′"B"
t) (32)

= ρt−1+µdiag(ΓtK
′B"

t).

Naive computation of ΓtK ′ in (32) would cost O(rl2) time, which is prohibitively expensive for
large l. We can, however, reduce this cost to O(rl) by noting that (16) implies that

ΓtK
′ = yte

"
p(t)K

′− lt(yty"
t)AtK

′

= ytk
′"
p(t)− lt(yty

"
t)AtK

′, (33)

where the r× l matrixAtK ′ can be stored and updated incrementally via (31):

At+1K
′ = AtK

′ + ediag(ρt) diag(ηt)ΓtK
′. (34)

The initial computation of A1K ′ still costs O(rl2) in general but is affordable as it is performed
only once. Alternatively, the time complexity of this step can easily be reduced to O(rl) by making
A1 suitably sparse.

1901

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Finally, we apply SMD’s standard update (29) of the differential parameters:

Bt+1 = ξBt + ediag(ρt) diag(ηt)(Γt +ξdΓt). (35)

The differential dΓt of the gradient, analogous to dgt in (30), can be computed by applying the rules
of calculus:

dΓt = d[yte"
p(t)− lt(yty

"
t)At]

= (dAt)k′
p(t)e

"
p(t)− lt(yty

"
t)(dAt) − [dlt(yty"

t)]At (36)

= Btk
′
p(t)e

"
p(t)− lt(yty

"
t)Bt − lt(Btk

′
p(t)y

"
t +ytk

′"
p(t)B

"
t)At ,

using the fact that since k′ and e are both independent of A we have d(k′
p(t)e

"
p(t)) = 0. Inserting

(16) and (36) into (35) finally yields the update rule

Bt+1 = ξBt + ediag(ρt) diag(ηt)[(At+ξBt)k′
p(t)e

"
p(t) (37)

− lt(yty"
t)(At+ξBt) − ξ lt(Btk

′
p(t)y

"
t +ytk

′"
p(t)B

"
t)At].

In summary, our application of SMD to the KHA comprises Equations (32), (37), and (31), in that
order. Our approach allows us to incorporate a priori knowledge about suitable gains in ηt , which
SMD will then improve upon by using empirical information gathered along the update trajectory
to adaptively tune ρt .

Algorithm 1 shows KHA-SMD, the algorithm obtained by applying SMD to KHA/et in this
fashion. To obtain KHA-SMD*, the analogous algorithm applying SMD to KHA/et*, simply
change step 2(b) to use (19) instead of (22). To recover KHA/et resp. KHA/et* from Algorithm 1,
omit the steps marked with a single vertical bar. The double-barred steps do not have to be per-
formed on every iteration; omitting them entirely, along with the single-barred steps, recovers the
original KHA algorithm.

We list the worst-case time complexity of every step in terms of the number l and dimensionality
n of observations, and the number r of kernel principal components to extract. For r (n (as is
typical), the most expensive step in the iteration loop will be the computation of a row of the kernel
matrix in 2(c), required by all algorithms.

We initialize ρ0 to all ones,B1 to all zeroes, andA1 to an isotropic normal density with suitably
small variance. The resulting time complexity of O(rl2) of step 1(c) can easily be reduced to O(rl)
by initializingA1 sparsely in step 1(b). This leaves the centering of the kernel in step 1(a), required
by all algorithms, as the most expensive initialization step.

5. Experiments

We present two sets of experiments. In the first, we benchmark against the KHAwith a conventional
gain decay schedule (9), which we denote KHA/t, in a number of different settings: Performing ker-
nel PCA and spectral clustering on the well-known USPS data set (LeCun et al., 1989), replicating
image denoising and face image super-resolution experiments of Kim et al. (2005), and denoising
human motion capture data. For Kim et al.’s (2005) experiments we also compare to their original
KHA with the constant gain ηt = η0 they employed. A common feature of all these data sets is
that the kernel matrix can be stored in main memory, and the optimal reconstruction can thus be

1902

FAST ITERATIVE KERNEL PCA

Algorithm 1 KHA-SMD Eq.no. time complexity

1. Initialize:
(a) calculateMK,MKM O(l2)
(b) A1 ∼ N(0,(rl)−1I) O(rl)
(c) calculateA1K ′ O(rl2)
(d) ρ0 := [1 . . .1]",B1 := 0 O(rl)

2. Repeat for t = 1,2, . . .

(a) calculate λt (20) O(rl)
(b) calculate ηt (22) O(r)
(c) calculate k′

p(t) O(nl)
(d) calculate yt (14) O(rl)
(e) calculate Γt (16) O(rl)
(f) calculate ΓtK ′ (33) O(rl)
(g) update ρt−1 → ρt (32) O(rl)
(h) updateBt → Bt+1 (37) O(rl)
(i) updateAtK ′ → At+1K ′ (34) O(rl)
(j) updateAt → At+1 (31) O(rl)

1903

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Experiment Section σ τ1 τ2 η 1
0 η 2

0 η 3
0 µ4 µ5 ξ

USPS (dot-prod. kernel) 5.1.1 – 2l 4l .002 5 10−3 10−5 10−4 0.99
USPS (RBF kernel) 5.1.1 8 l 3l 1 5 0.2 0.05 0.1 0.99

Lena image denoising 5.1.2 1 l 4l 2 5 0.1 1 2 0.99
face super-resolution 5.1.3 1 l 4l 0.2 5 0.02 0.2 5 0.99

USPS spectral clustering 5.1.4 8 l l 200 10 50 20 103 0.99
motion capture KPCA 5.1.5

√
1.5 l 3l 2 5 0.1 0.1 1 0.99

1for KHA/t 2for KHA/et*, KHA/SMD* 3for KHA/et, KHA/SMD 4for KHA/SMD* 5for KHA/SMD

Table 1: Parameter settings for our experiments. Footnotes indicate parameters which were indi-
vidually tuned for each experiment and the given algorithm(s).

computed with a conventional eigensolver. In our second set of experiments we demonstrate scala-
bility by performing kernel PCA on 60000 digits from the MNIST data set (LeCun, 1998). Here the
kernel matrix cannot be stored in main memory of a standard PC, and hence one is forced to resort
to iterative methods.

5.1 Experiments on Small Data Sets

In these experiments the KHA and our enhanced variants are used to find the first r eigenvectors of
the centered kernel matrixK ′. To assess the quality of the solution, we reconstruct the kernel matrix
using the eigenvectors found by the iterative algorithms, and measure the reconstruction error

E(A) := ‖K ′− (AK ′)"AK ′‖F . (38)

Since the kernel matrix can be stored in memory, the optimal reconstruction error from r eigenvec-
tors, Emin := minAE(A), is computed with a conventional eigensolver. This allows us to report
reconstruction errors as excess errors relative to the optimal reconstruction, that is, E(A)/Emin−1.

To compare algorithms we plot the excess reconstruction error on a logarithmic scale after each
pass through the entire data set. This is a fair comparison since the overhead for KHA/et*, KHA/et,
and their SMD versions is negligible compared to the time required by the KHA base algorithm: The
most expensive operations—the initial centering of the kernel matrix, and the repeated calculation
of a row of it—are shared by all these algorithms.

Each non-SMD algorithm had η0 and (where applicable) τ manually tuned, by iterated hill-
climbing over η0 ∈{a·10b : a∈{1,2,5}, b∈{−3,−2,−1,0,1,2}} and τ∈{l,2l,3l,4l,5l,7l,10l,15l,
20l,30l,40l,50l}, for the lowest final reconstruction error in each experiment. The SMD versions
used the same values of η0 and τ as their corresponding non-SMD variant; for them we hand-tuned µ
(over the same set of values as η0), and set ξ= 0.99 a priori throughout. Thus KHA/t and KHA/et*
each had two parameters tuned specifically for them, the other algorithms one. Table 1 lists the
parameter settings for each experiment, with the individually tuned parameters indicated.

1904

FAST ITERATIVE KERNEL PCA

Figure 2: Excess relative reconstruction error of KHA variants for kernel PCA (16 eigenvectors)
on the USPS data, using a dot-product (left) resp. RBF (right) kernel. (On the left, the
curves for KHA/et* and KHA-SMD* virtually coincide.)

Figure 3: First ten eigenvectors (from left to right) found by KHA/et* for the dot-product (top row)
resp. RBF kernel (bottom row).

5.1.1 USPS DIGIT KPCA

Our first benchmark is to perform iterative kernel PCA on a subset of the well-known USPS data
set (LeCun et al., 1989)—namely, the first 100 samples of each digit—with two different kernel
functions: the dot-product kernel2

k(x,x′) = x"x′ (39)

and the RBF kernel

k(x,x′) = exp
(

(x−x′)"(x−x′)
2σ2

)
(40)

with σ = 8, the value used by Mika et al. (1999). We extract the first 16 eigenvectors of the kernel
matrix and plot the excess relative error in Figure 2. Although KHA/et and KHA/et* differ in their
transient behavior—the former performing better for the first 6 passes through the data, the latter
thereafter—their error after 200 passes is quite similar; both clearly outperform KHA/t. SMD is able

2. Kernel PCA with a dot-product kernel is equivalent to ordinary PCA in the input space.

1905

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 4: Comparison of excess relative reconstruction error of KHA variants estimating eigenval-
ues and updating gains every iteration (’i’) vs. once every pass (’p’) through the USPS
data, for RBF kernel PCA extracting 16 eigenvectors.

Figure 5: Lena image—original (left), noisy (center), and denoised by KHA-SMD (right).

to significantly improve the performance of KHA/et but not KHA/et*, and so KHA-SMD achieves
the best results on this task. These results hold for either choice of kernel. We show the first 10
eigenvectors obtained by KHA/et* for each kernel in Figure 3.

In Figure 4 we compare the performance of our algorithms, which estimate the eigenvalues
and update the gains only once after every pass through the data (’p’), against variants (’i’) which
do this after every iteration. Tuning parameters were re-optimized for the new variants, though
most optimal settings remained the same.3 Updating the estimated eigenvalues after every iteration,
though computationally expensive, is beneficial initially but does not seem to affect the quality of
the solution much in the long run; the minor differences that can be observed are attributable to
differences in parameter settings.

1906

FAST ITERATIVE KERNEL PCA

Figure 6: Excess relative reconstruction error of KHA variants in our replication of experiments
due to Kim et al. (2005). Left: multipatch image kernel PCA on a noisy Lena image;
Right: super-resolution of face images.

Figure 7: Reconstructed Lena image after (left to right) 1, 2, and 3 passes through the data set, for
KHA with constant gain ηt = 0.05 (top row) vs. KHA-SMD (bottom row).

5.1.2 MULTIPATCH IMAGE DENOISING

For our second benchmark we replicate the image denoising problem of Kim et al. (2005), the idea
being that noise can be removed from images by reconstructing image patches from their r leading
3. The exceptions were minor: τ= 4 (instead of τ= 3) for KHA/et* and KHA-SMD*, µ= 0.1 (instead of µ= 0.05) for
KHA-SMD*, and µ= 0.05 (instead of µ= 0.1) for KHA-SMD.

1907

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

eigenvectors. We divide the well-known Lena image (Munson, 1996) into four sub-images, from
which 11×11 pixel windows are sampled on a grid with two-pixel spacing to produce 3844 vectors
of 121 pixel intensity values each. Following Kim et al. (2005) we use an RBF kernel with σ = 1
to find the 20 best eigenvectors for each sub-image. Results averaged over the four sub-images are
plotted in Figure 6 (left), including the KHA with constant gain of ηt = 0.05 employed by Kim et al.
(2005) for comparison. The original, noisy, and denoised Lena images are shown in Figure 5.

KHA/t, while better than the conventional KHA with constant gain, is clearly not as effective as
our methods. Of these, KHA/et is outperformed by KHA/et* but benefits more from the addition
of SMD, so that the performance of KHA-SMD is almost comparable to KHA-SMD*. KHA-SMD
and KHA-SMD* achieved an excess reconstruction error that is over three orders of magnitude
better than the conventional KHA after 50 passes through the data.

Replicating Kim et al.’s (2005) 800 passes through the data with the constant-gain KHA we
obtain an excess relative reconstruction error of 5.64%, 500 times that of KHA-SMD after 50 passes.
The signal-to-noise ratio (SNR) of the reconstruction after 800 passes with constant gain is 13.46,4
comparable to the SNR of 13.49 achieved by KHA/et* in 50 passes.

To illustrate the large difference in early performance between conventional KHA and KHA-
SMD, we show the images reconstructed from either method after 1, 2, and 3 passes through the
data set in Figure 7. KHA-SMD delivers good-quality reconstructions very quickly, while those of
the conventional KHA are rather blurred.

We now investigate how the different components of KHA-SMD* affect its performance. The
overall gain used by KHA-SMD* comprises three factors: the scheduled gain decay over time (9),
the reciprocal of the current estimated eigenvalues, and the gain adapted by SMD. Let us denote
these three factors as t, e, and s, respectively, and explore which of their combinations make sense.
We clearly need either t or s to give us some form of gain decay, which e does not provide. This
means that in addition to the KHA/t (using only t), KHA/et* (t and e), and KHA-SMD* (t, e, and
s) algorithms, there are three more feasible variants: a) s alone, b) t and s, and c) e and s.

We compare the performance of these “anonymous” variants to that of KHA/t, KHA/et*, and
KHA-SMD* on the Lena image denoising problem. Parameters were tuned for each variant in-
dividually, yielding η0 = 0.5 and µ= 2 for variant s, η0 = 1 and µ= 2 for variant es, and τ = l,
η0 = 2, and µ= 1 for variant ts. Figure 8 (left) shows the excess relative error as a function of
the number of passes through the data. On its own, SMD (s) outperforms the scheduled gain de-
cay (t), but combining the two (ts) is better still. Introducing the reciprocal eigenvalues (e) further
improves performance in every context. In short, all three factors convey a significant benefit, both
individually and in combination. The “anonymous” variants represent intermediate forms between
the (poorly performing) KHA/t and KHA-SMD*, which combines all three factors to attain the best
results.

Next we examine the sensitivity of the KHA with SMD to the value of the meta-gain µ by
increasing µ∈ {a · 10b : a ∈ {1,2,5},b ∈ {−1,0,1}} until the algorithm diverges. Figure 8 (right)
plots the excess relative error of the s variant (SMD alone, black) and KHA-SMD* (light red) on the
Lena image denoising problem for the last three values of µ prior to divergence. In both cases the
largest non-divergent meta-gain (µ= 2 for s, µ= 1 for KHA-SMD*) yields the fastest convergence.
The differences are comparatively small though, illustrating that SMD is not overly sensitive to the

4. Kim et al. (2005) reported an SNR of 14.09; the discrepancy is due to different reconstruction methods.

1908

FAST ITERATIVE KERNEL PCA

Figure 8: Excess relative reconstruction error for multipatch image PCA on a noisy Lena image.
Left: comparison of original KHA variants (black) with those using other combinations
(light red) of gain decay (t), reciprocal eigenvalues (e), and SMD (s). Right: effect of
varying µ on the convergence of variant s (black) and KHA-SMD* (light red).

value of µ. This holds in particular for KHA-SMD*, where SMD is assisted by the other two factors,
t and e.

5.1.3 FACE IMAGE SUPER-RESOLUTION

We also replicate a face image super-resolution experiment of Kim et al. (2005). Here the eigenvec-
tors learned from a training set of high-resolution images are used to predict high-resolution detail
from low-resolution test images. The training set consists of 5000 face images of 10 different people
from the Yale face database B (Georghiades et al., 2001), down-sampled to 60×60 pixels. Testing
is done on 10 different images from the same database; the test images are first down-sampled to
20×20 pixels, then scaled back up to 60×60 by mapping each pixel to a 3×3 block of identical
pixel values. These are then projected into a 16-dimensional eigenspace learned from the training
set to predict the test images at the 60×60 pixel resolution.

Figure 6 (right) plots the excess relative reconstruction error of the different algorithms on this
task. KHA/t again produces better results than the KHA with constant gain but is ineffective com-
pared to our methods. KHA/et* again does better than KHA/et but benefits less from the addition
of SMD making SMD-KHA once more the best-performing method. After 50 passes through the
data, all our methods achieve an excess reconstruction error about three orders of magnitude better
than the conventional KHA, though KHA-SMD is substantially faster than the others at reaching
this level of performance. Figure 9 illustrates that the reconstructed face images after one pass
through the training data generally show better high-resolution detail for KHA-SMD than for the
conventional KHA with constant gain.

5.1.4 SPECTRAL CLUSTERING OF USPS DIGITS

Our next experiment uses the spectral clustering algorithm of Ng et al. (2002):

1909

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 9: Rows from top to bottom: Original face images (60× 60 pixels); sub-sampled images
(20× 20 pixels); super-resolution images produced by KHA after one pass through the
data set; likewise for KHA-SMD.

1910

FAST ITERATIVE KERNEL PCA

1. Define the normalized transition matrix P := D− 1
2KD− 1

2 , where K ∈ Rl×l is the kernel
matrix of the data, andD is a diagonal matrix with [D]ii = ∑ j[K]i j.

2. LetA ∈ Rr×l be the matrix whose rows correspond to the first r eigenvectors of P .

3. Normalize the columns of A to unit length, and map each input pattern to its corresponding
column inA.

4. Cluster the columns ofA into r clusters (using, for instance, k-means clustering), and assign
each pattern to the cluster its corresponding column vector belongs to.

We can obviously employ the KHA in Step 2 above. We evaluate our results in terms of the variation
of information (VI) metric (Meila, 2005): For a clustering algorithm c, let |c| denote the number of
clusters, and c(·) its cluster assignment function, that is, c(xi) = j iff c assigns pattern xi to cluster
j. Let Pc ∈ R|c| denote the probability vector whose jth component denotes the fraction of points
assigned to cluster j, and Hc the entropy associated with Pc:

Hc = −
|c|

∑
i=1

[Pc]i ln[Pc]i. (41)

Given two clustering algorithms c and c′ we define the confusion matrix P c′c ∈ R|c|×|c′| by

[Pc
′

c]km =
1
l
|{i|(c(xi) = k)∧ (c′(xi) = m)}|, (42)

where l is the number of patterns. The mutual information Ic′c associated with Pc
′

c is

Ic
′
c =

|c|

∑
i=1

|c′|

∑
j=1

[Pc
′

c]i j ln
[Pc′c]i j

[Pc]i[Pc′] j
. (43)

The VI metric is now defined as

VI= Hc+Hc′ −2Ic
′
c . (44)

Our experimental task consists of applying spectral clustering to all 7291 patterns of the USPS
data (LeCun et al., 1989), using 10 kernel principal components. We used a Gaussian kernel with
σ = 8 and k-means with k = 10 (the number of labels) for clustering the columns of A. The
clusterings obtained by our algorithms are compared to the clustering induced by the class labels. On
the USPS data, a VI of 4.54 corresponds to random grouping, while clustering in perfect accordance
with the class labels would give a VI of zero.

In Figure 10 (left) we plot the VI metric as a function of the number of passes through the data.
All our accelerated KHA variants converge towards an optimal clustering in less than 10 passes—in
fact, after around 7 passes their results are statistically indistinguishable from that obtained by using
an exact eigensolver (labeled ‘PCA’ in Figure 10, left). KHA/t, by contrast, needs about 30 passes
through the data to reach a similar level of performance.

The excess relative reconstruction errors—for spectral clustering, of the matrix P—plotted in
Figure 10 (right) confirm that our methods outperform KHA/t. They also show KHA/et* signifi-
cantly outperforming KHA/et, by about an order of magnitude. Again SMD is able to substantially
accelerate both KHA/et and KHA/et*. As usual the improvement is larger for the former, though in
this case not by quite enough to close the performance gap to the latter.

1911

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Figure 10: Quality of spectral clustering of the USPS data using an RBF kernel, as measured by
variation of information (left) and excess relative reconstruction error (right). Hori-
zontal ‘PCA’ line on the left marks the variation of information achieved by an exact
eigensolver.

Figure 11: Excess relative reconstruction error on human motion capture data.

5.1.5 HUMAN MOTION DENOISING

For our next experiment we employ the KHA to denoise a human walking motion trajectory from
the CMU motion capture database (http://mocap.cs.cmu.edu), converted to Cartesian coordi-
nates via Neil Lawrence’s matlab motion capture toolbox (http://www.dcs.shef.ac.uk/˜neil/
mocap/). The experimental setup is similar to that of Tangkuampien and Suter (2006): First zero-
mean Gaussian noise is added to the frames of the original motion, then KHA using 25 principal
components is used to denoise them. The noise is applied in “delta pose space,” where each body
part is represented by the normalized vector from its start to its end point, with a variance of 2
degrees for each of the two vector angles. The walking motion we consider has 343 frames, each
represented by a 90-dimensional vector specifying the spatial orientation of 30 body parts. The

1912

FAST ITERATIVE KERNEL PCA

Figure 12: Reconstruction of human motion capture data: One frame of the original data (left),
a superposition of this original and the noisy data (center), and a superposition of the
original and reconstructed (i.e., denoised) data (right).

motion is reconstructed in R3 via the KHA with an RBF kernel (σ =
√
1.5); the resulting excess

relative error is shown for various KHA variants in Figure 11.
As in the previous experiment, KHA/et* clearly outperforms KHA/et which in turn is better

than KHA/t. Again SMD is able to improve KHA/et to a much larger extent than KHA/et*, though
not enough to surpass the latter. KHA/et* reduces the noise variance by 87.5%; it is hard to visually
detect any difference between the denoised frames and the original ones—see Figure 12 for an
example.

5.2 Experiments on MNIST Data Set

The MNIST data set (LeCun, 1998) consists of 60000 handwritten digits, each 28× 28 pixels in
size. While kernel PCA has previously been applied to subsets of this data, to the best of our
knowledge nobody has attempted it on the entire data set—for obvious reasons: the full kernel
matrix has 3.6 ·109 entries, requiring over 7 GB of storage in single-precision floating-point format.
Storing this matrix in main memory is already a challenge, let alone computing its eigenvalues; it
thus makes sense to resort to iterative schemes.

We will perform a single pass through the MNIST data, attempting to find the first 50 eigen-
values of the centered kernel matrix. Since we run through the data just once, we will update the
estimated eigenvalues after each iteration rather than after every pass. Hitherto we have used the

1913

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

excess reconstruction error relative to the optimal reconstruction error to measure the performance
of the KHA. For MNIST this is no longer possible since existing eigensolvers cannot handle such a
large matrix. Instead we simply report the reconstruction error (38), which we can still compute—
albeit with a rather high time complexity, as it requires calculating all entries of the kernel matrix.

Since our algorithms are fairly robust with respect to the value of τ, we simply set τ = 0.05l a
priori, which corresponds to decreasing the gain by a factor of 20 during the first (and only) pass
through the data. In our previous experiments we observed that the best values of η0 and µ were
usually the largest ones for which the run did not diverge. We also found that when divergence
occurs, it tends to do so early and dramatically, making this event simple and inexpensive to detect.
Algorithm 2 exploits this to automatically tune a gain parameter (η0 resp. µ):

Algorithm 2 Auto-tune gain parameter x for KHA (any variant)

1. Compute (Algorithm 1, Step 1) and save initial KHA state;

2. x := 500;

3. While ∀i, j : is finite([At]i j):

Run KHA (Algorithm 1, Step 2) for 100 iterations;

4. x :=max
a,b

a ·10b : a ∈ {1,2,5},b ∈ Z,a ·10b < x;

5. restore initial KHA state and Goto Step 3.

Algorithm 2 starts with a parameter value so large (here: 500) as to surely cause divergence
(Step 2). It then runs the KHA (any variant) while testing the coefficient matrix At every 100
iterations for signs of divergence (Step 3). If any element of At becomes infinite or NaN (“not a
number”), the KHA has diverged; in this case the parameter value is lowered (Step 4) and the KHA
restarted (Step 5). In order to make these restarts efficient, we have precomputed and saved in Step
1 the initial state of the KHA—namely a row ofMK, an element ofMKM , the initial coefficient
matrix A1, and A1K ′. Once the parameter value is low enough to avoid divergence, Algorithm 2
runs the KHA to completion in Step 3.

We use Algorithm 2 to tune η0 for KHA/et and KHA/et*, and µ for KHA-SMD and KHA-
SMD*. For η0 the SMD variants use the same value as their respective non-SMD analogues. In our
experiments, divergence always occurred within the first 600 iterations (1% of the data), or not at all.
It is therefore possible to tune both η0 and µ for the SMD variants as follows: first run Algorithm 2
to tune η0 (with µ= 0) on a small fraction of the data, then run it a second time to tune µ (with the
previously obtained value for η0) on the entire data set.

Our experiments were performed on an AMD Athlon 2.4 GHz CPU with 2 GB main memory
and 512 kB cache, using a Python interface to PETSc (http://www-unix.mcs.anl.gov/petsc/
petsc-as/). For a fair comparison, all our algorithms use the same initial random matrix A1,
whose absolute reconstruction error is 33417. The reconstruction error after one pass through the
data is shown in Table 2; it is evident that all our algorithms significantly improve upon the perfor-
mance of KHA/t, with the SMD variants slightly ahead of their non-SMD analogues.

1914

FAST ITERATIVE KERNEL PCA

algorithm parameter rec. error tuning KHA time total time
KHA/t η0 = 5 508.42 20’ 33h 29’ 57h 17’
KHA/et* η0 = 50 363.09 13’ 41h 41’ 65h 22’
KHA-SMD* µ= 1 362.44 1h 9’ 53h 19’ 77h 57’
KHA/et η0 = 0.5 415.48 47’ 39h 26’ 63h 42’
KHA-SMD µ= 0.05 404.06 3h 59’ 64h 39’ 92h 07’

Table 2: Tuned parameter values (col. 2), reconstruction errors (col. 3), and runtimes for various
KHA variants on the MNIST data set. The total runtime (col. 6) is the sum of the times
required to: center the kernel (11h 13’), tune the parameter (col. 4), run the KHA (col. 5),
and calculate the reconstruction error (12h 16’).

Table 2 also reports the time spent in parameter tuning, the resulting tuned parameter values, the
time needed by each KHA variant for one pass through the data, and the total runtime (comprising
kernel centering, parameter tuning, KHA proper, and computing the reconstruction error). Our
KHA variants incur an overhead of 10–60% over the total runtime of KHA/t; the SMD variants are
the more expensive. In all cases less than 5% of the total runtime was spent on parameter tuning.

6. Discussion and Conclusion

We modified the kernel Hebbian algorithm (KHA) of Kim et al. (2005) by providing a separate gain
for each eigenvector estimate, and presented two methods, KHA/et* and KHA/et, which set those
gains inversely proportional to the current estimate of the eigenvalues. KHA/et has a normalization
term which allowed us to eliminate one of the free parameters of the gain decay scheme. Both
methods were then enhanced by applying stochastic meta-descent (SMD) to perform gain adaptation
in RKHS.

We compared our algorithms to the conventional approach of using KHA with constant gain,
resp.with a scheduled gain decay (KHA/t), in seven different experimental settings. All our methods
clearly outperformed the conventional approach in all our experiments. KHA/et* was superior to
KHA/et, at the cost of having an additional free parameter τ. Its parameters, however, proved
particularly easy to tune, with η0 = 5 and τ= 3l or 4l optimal in all but the spectral clustering and
MNIST experiments. This suggests that KHA/et* has good normalization properties and may well
be preferable to KHA/et.

SMD improved the performance of both KHA/et and KHA/et*, where the improvements for the
former were often larger than for the latter. This is not surprising per se, as it is naturally easier to
improve upon a good algorithm than an excellent one. However, the fact that KHA-SMD frequently
outperformed KHA-SMD* indicates that the interaction between KHA/et and SMD appears to be
more effective.

Principal component analysis (PCA) is an important tool for analysis, preprocessing, and mod-
eling of empirical data in a Euclidean space. Like other kernel methods, kernel PCA (Schölkopf
et al., 1998) generalizes this to arbitrary RKHS, including those defined on structured data. Tradi-
tionally, kernel methods require computation and storage of the entire kernel matrix. As the data sets
available for learning grow larger and larger, this is rapidly becoming infeasible. Recent advances
eliminate this requirement by repeatedly cycling through the data set, computing kernels on demand

1915

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

(e.g., Platt, 1999; Joachims, 1999; Zanni et al., 2006). This is done for kernel PCA by the KHA
(Kim et al., 2005), which as originally introduced suffers from slow convergence. The acceleration
techniques we have introduced here rectify this situation, and hence open the way for kernel PCA
to be applied to large data sets.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. A short version of
this paper was presented at the 2006 NIPS conference (Schraudolph et al., 2007). National ICT
Australia is funded by the Australian Government’s Department of Communications, Information
Technology and the Arts and the Australian Research Council through Backing Australia’s Ability
and the ICT Center of Excellence program. This work is supported by the IST Program of the
European Community, under the Pascal Network of Excellence, IST-2002-506778. Finally, we
would like to acknowledge Equations (8), (10), (11), (12), (15), (21), (27), (28), (39), (40), (41),
(42), (43), and (44) here, so that they are numbered.

References

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cam-
bridge, England, 2004.

Liang-Hwe Chen and Shyang Chang. An adaptive learning algorithm for principal component
analysis. IEEE Transaction on Neural Networks, 6(5):1255–1263, 1995.

Christian Darken and John E. Moody. Towards faster stochastic gradient search. In John E. Moody,
Stephen J. Hanson, and Richard Lippmann, editors, Advances in Neural Information Processing
Systems, volume 4, pages 1009–1016. Morgan Kaufmann Publishers, 1992.

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to many:
Illumination cone models for face recognition under variable lighting and pose. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 23(6):643–660, 2001. ISSN 0162-8828. doi:
http://doi.ieeecomputersociety.org/10.1109/34.927464.

Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. Frontiers in Applied Mathematics. SIAM, Philadelphia, 2000.

Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf, Chris J. C.
Burges, and Alex J. Smola, editors, Advances in Kernel Methods—Support Vector Learning,
pages 169–184, Cambridge, MA, 1999. MIT Press.

Juha Karhunen. Optimization criteria and nonlinear PCA neural networks. In IEEE World Congress
on Computational Intelligence, volume 2, pages 1241–1246, 1994.

Juha Karhunen and Jyrki Joutsensalo. Representation and separation of signals using nonlinear
PCA type learning. Neural Networks, 7(1):113–127, 1994.

1916

FAST ITERATIVE KERNEL PCA

Kwang In Kim, Matthias O. Franz, and Bernhard Schölkopf. Iterative kernel principal component
analysis for image modeling. IEEE Trans. Pattern Analysis and Machine Intelligence, 27(9):
1351–1366, 2005.

Yann LeCun. MNIST handwritten digit database, 1998. URL http://www.research.att.com/
˜yann/ocr/mnist/.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne E.
Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1:541–551, 1989.

Marina Meila. Comparing clusterings: An axiomatic view. In Proc. 22nd Intl. Conf. Machine
Learning (ICML), pages 577–584, New York, NY, USA, 2005. ACM Press.

Sebastian Mika, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Matthias Scholz, and
Gunnar Rätsch. Kernel PCA and de-noising in feature spaces. In Michael S. Kearns, Sara A.
Solla, and David A. Cohn, editors, Advances in Neural Information Processing Systems, vol-
ume 11, pages 536–542. MIT Press, 1999.

David C. Munson, Jr. A note on Lena. IEEE Trans. Image Processing, 5(1), 1996.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algo-
rithm. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors, Advances in
Neural Information Processing Systems, volume 14, 2002.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of Mathematical Analysis and Applications, 106(1):
69–84, February 1985.

Barak A. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1):147–160,
1994.

John Platt. Fast training of support vector machines using sequential minimal optimization. In
Bernhard Schölkopf, Chris J. C. Burges, and Alex J. Smola, editors, Advances in Kernel Meth-
ods—Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

Terrence D. Sanger. Optimal unsupervised learning in a single-layer linear feedforward network.
Neural Networks, 2:459–473, 1989.

Bernhard Schölkopf and Alex J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

Bernhard Schölkopf, Alex J. Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

Nicol N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738, 2002.

1917

GÜNTER, SCHRAUDOLPH AND VISHWANATHAN

Nicol N. Schraudolph. Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf.
Artificial Neural Networks, pages 569–574, Edinburgh, Scotland, 1999. IEE, London.

Nicol N. Schraudolph, Simon Günter, and S. V. N. Vishwanathan. Fast iterative kernel PCA. In
Bernhard Schölkopf, John Platt, and Thomas Hofmann, editors, Advances in Neural Information
Processing Systems, volume 19, Cambridge MA, June 2007. MIT Press.

Therdsak Tangkuampien and David Suter. Human motion de-noising via greedy kernel principal
component analysis filtering. In Proc. Intl. Conf. Pattern Recognition, 2006.

S. V. N. Vishwanathan, Nicol N. Schraudolph, and Alex J. Smola. Step size adaptation in reproduc-
ing kernel Hilbert space. Journal of Machine Learning Research, 7:1107–1133, June 2006.

Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large scale
support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:
1467–1492, July 2006.

1918

Journal of Machine Learning Research 8 (2007) 1919-1986 Submitted 8/06; Published 8/07

A Generalized Maximum Entropy Approach to Bregman
Co-clustering and Matrix Approximation

Arindam Banerjee BANERJEE@CS.UMN.EDU
Department of Computer Science and Engineering
University of Minnesota, Twin Cities
Minneapolis, MN, USA

Inderjit Dhillon INDERJIT@CS.UTEXAS.EDU
Department of Computer Sciences
University of Texas at Austin
Austin, TX, USA

Joydeep Ghosh GHOSH@ECE.UTEXAS.EDU
Department of Electrical and Computer Engineering
University of Texas at Austin
Austin, TX, USA

Srujana Merugu SRUJANA@YAHOO-INC.COM
Yahoo! Research
Santa Clara, CA, USA

Dharmendra S. Modha DMODHA@US.IBM.COM
IBM Almaden Research Center
San Jose, CA, USA

Editor: John Lafferty

Abstract

Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data matrix,
is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed wide success in
varied application domains such as text clustering, gene-microarray analysis, natural language pro-
cessing and image, speech and video analysis. In this paper, we introduce a partitional co-clustering
formulation that is driven by the search for a good matrix approximation—every co-clustering is
associated with an approximation of the original data matrix and the quality of co-clustering is
determined by the approximation error. We allow the approximation error to be measured using
a large class of loss functions called Bregman divergences that include squared Euclidean dis-
tance and KL-divergence as special cases. In addition, we permit multiple structurally different
co-clustering schemes that preserve various linear statistics of the original data matrix. To accom-
plish the above tasks, we introduce a new minimum Bregman information (MBI) principle that
simultaneously generalizes the maximum entropy and standard least squares principles, and leads
to a matrix approximation that is optimal among all generalized additive models in a certain natural
parameter space. Analysis based on this principle yields an elegant meta algorithm, special cases
of which include most previously known alternate minimization based clustering algorithms such
as kmeans and co-clustering algorithms such as information theoretic (Dhillon et al., 2003b) and
minimum sum-squared residue co-clustering (Cho et al., 2004). To demonstrate the generality and
flexibility of our co-clustering framework, we provide examples and empirical evidence on a vari-

c©2007 Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Srujana Merugu and Dharmendra Modha.

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

ety of problem domains and also describe novel co-clustering applications such as missing value
prediction and compression of categorical data matrices.
Keywords: co-clustering, matrix approximation, Bregman divergences, Bregman information,
maximum entropy

1. Introduction

Data naturally arises in the form of matrices in a multitude of machine learning and data mining
applications. Often, the data matrices that arise in real-world applications contain a large number of
rows and columns, and may be very sparse. Understanding the natural structure of such matrices is
a fundamental problem.

Clustering is an unsupervised learning technique that has been often used to discover the “latent
structure” of data matrices that describe a set of objects (rows) by their feature values (columns).
Typically, a clustering algorithm strives to group “similar” objects (or rows). A large number of
clustering algorithms such as kmeans, agglomerative clustering, and their variants have been thor-
oughly studied (Jain and Dubes, 1988; Ghosh, 2003). Often, clustering is preceded by a dimension-
ality reduction phase, such as feature selection where only a subset of the columns is retained. As
an alternative to feature selection, one can cluster the columns, and then represent each resulting
group of features by a single derived feature (Dhillon et al., 2003a).

A recent paper (Dhillon and Modha, 2001) dealing with the spherical kmeans algorithm for
clustering large, sparse document-termmatrices arising in text mining graphically demonstrates (see
Figures 13, 31, and 32 in the paper by Dhillon and Modha, 2001) that document clustering naturally
brings together similar words. Intuitively, documents are similar because they use similar words. A
natural question is whether it is possible to mathematically capture this relationship between rows
and columns. Furthermore, is it possible to exploit this relationship to a practical advantage? This
paper shows that both these questions can be answered in the affirmative in the context of clustering.

Co-clustering, also called bi-clustering (Hartigan, 1972; Cheng and Church, 2000), is the prob-
lem of simultaneously clustering rows and columns of a data matrix. Unlike clustering which seeks
similar rows or columns, co-clustering seeks “blocks” (or “co-clusters”) of rows and columns that
are inter-related. Co-clustering has recently received a lot of attention in several practical applica-
tions such as simultaneous clustering of documents and words in text mining (Dhillon et al., 2003b;
Gao et al., 2005; Takamura and Matsumoto, 2003), genes and experimental conditions in bioin-
formatics (Cheng and Church, 2000; Cho et al., 2004; Kluger et al., 2003), tokens and contexts in
natural language processing (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998), users
and movies in recommender systems (George and Merugu, 2005), etc.

Co-clustering is desirable over traditional “single-sided” clustering from a number of perspec-
tives:

1. Simultaneous grouping of row and column clusters is more informative and digestible. Co-
clustering provides compressed representations that are easily interpretable while preserving
most of the information contained in the original data, which makes it valuable to a large class
of statistical data analysis applications.

2. A row (or column) clustering can be thought of as dimensionality reduction along the rows
(or columns). Simultaneous clustering along rows and columns reduces dimensionality along
both axes, thus leading to a statistical problem with dramatically smaller number of param-

1920

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

eters and hence, a much more compact representation for subsequent analysis. Since co-
clustering incorporates row clustering information into column clustering and vice versa, one
can think of it as a “statistical regularization” technique that can yield better quality clusters
even if one is primarily interested in a single-sided clustering. The statistical regularization
effect of co-clustering is extremely important when dealing with large, sparse data matrices,
for example, those arising in text mining. A similar intuition can be drawn from subspace
clustering methods (Parsons et al., 2004), which only use a part of the full potential of the
co-clustering methodology.

3. As the size of data matrices increases, so does the need for scalable clustering algorithms.
Single-sided, geometric clustering algorithms such as kmeans and its variants have computa-
tion time proportional to mnk per iteration, where m is the number of rows, n is the number
of columns and k is the number of row clusters. Co-clustering algorithms based on a similar
iterative process, on the other hand, involve optimizing over a smaller number of parameters,
and can relax this dependence to O(mkl+nkl) where m,n and k are defined as before and l is
the number of column clusters. Since the number of row and column clusters is usually much
smaller than the original number of rows and columns, co-clustering can lead to substantial
reduction in the running time (see, for example, Dhillon et al. 2003b and Rohwer and Freitag
2004).

In summary, co-clustering is an exciting paradigm for unsupervised data analysis in that it is
more informative, has less parameters, is scalable, and is able to effectively intertwine row and
column information.

In this paper, we concentrate on partitional co-clustering (also called checkerboard bi-clustering
by Kluger et al., 2003) where all the rows and columns are partitioned into disjoint row and column
clusters respectively. We provide a general framework for addressing this problem that considerably
expands the scope and applicability of the co-clustering methodology. To appreciate this general-
ization, it is helpful to view partitional co-clustering as a lossy data compression problem where,
given a specified number of rows and column clusters, one attempts to retain as much information
as possible about the original data matrix in terms of statistics based on the co-clustering (Dhillon
et al., 2003b). The main idea is that a reconstruction based on co-clustering should result in the same
set of user-specified statistics as the original matrix. There are two key components in formulating
a co-clustering problem: (i) choosing a set of critical co-clustering-based statistics of the original
data matrix that need to be preserved, and (ii) selecting an appropriate measure to quantify the infor-
mation loss or the discrepancy between the original data matrix and the compressed representation
provided by the co-clustering. For example, in the work of Cheng and Church (2000), the row
and column averages of each co-cluster are preserved and the discrepancy between the original and
the compressed representation is measured in terms of the sum of element-wise squared deviation.
In contrast, information-theoretic co-clustering (ITCC) (Dhillon et al., 2003b), which is applicable
to data matrices representing joint probability distributions, preserves a different set of summary
statistics, that is, the row and column averages and the co-cluster averages. Further, the quality of
the compressed representation is measured in terms of the sum of element-wise I-divergence. In the
next subsection, we take a closer look at ITCC to provide a concrete motivating example.

1921

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

1.1 ITCC: A Motivating Example

Let X and Y be discrete random variables that take values in the sets {xu}, [u]m1 , and {yv}, [v]n1,
respectively, where [u]m1 denotes an index u running over {1, · · · ,m}. Information-theoretic co-
clustering provides a principled approach for simultaneously clustering the rows and columns of
the joint probability distribution p(X ,Y). In practice, the entries of this matrix may not be known
and are, instead, estimated from a contingency table or co-occurrence matrix. Let the row clusters
be denoted by {x̂g}, [g]k1 and the column clusters by {ŷh}, [h]l1. Let X̂ and Ŷ denote the clustered
random variables induced by X andY that range over the set of row and column clusters respectively.
A natural goal is to choose a co-clustering that preserves the maximum amount of “information”
in the original data. In particular, since the data corresponds to the joint probability distribution of
random variables X and Y , it is natural to preserve the mutual information between X and Y , or,
in other words, minimize the loss in mutual information due to the compression that results from
co-clustering. Thus, a suitable formulation is to solve the problem:

min
X̂ ,Ŷ

(I(X ;Y)− I(X̂ ;Ŷ)) , (1)

where I(X ;Y) is the mutual information between X and Y (Cover and Thomas, 1991). Dhillon et al.
(2003b) showed that

I(X ;Y)− I(X̂ ,Ŷ) = KL(p(X ,Y)||q(X ,Y)) , (2)
where q(X ,Y) is a distribution of the form

q(X ,Y) = p(X̂ ,Ŷ)p(X |X̂)p(Y |Ŷ) , (3)

andKL(·||·) denotes the Kullback-Leibler(KL) divergence, also known as relative entropy. Thus, the
search for the optimal co-clustering may be conducted by searching for the nearest approximation
q(X ,Y) that has the above form. Since p(X), p(Y) and p(X̂ ,Ŷ) are determined by m− 1, n− 1
and kl− 1 parameters respectively, with k+ l dependencies due to p(X̂) and p(Ŷ), for a given co-
clustering the distribution q(X ,Y) depends only on (kl+m+n−k− l−3) independent parameters,
which is much smaller than themn−1 parameters that determine a general joint distribution. Hence,
q(X ,Y) is a “low-complexity” or low-parameter matrix approximation of p(X ,Y).

The above viewpoint was developed by Dhillon et al. (2003b). We now present an alternate
viewpoint that will enable us to generalize our approach to arbitrary data matrices and general
distortion measures. The following lemma highlights a key maximum entropy property that makes
q(X ,Y) a “low-complexity” or low-parameter approximation.

Lemma 1 Given a fixed co-clustering, consider the set of joint distributions p′ that preserve the
row, column and co-cluster marginals of the input distribution p:

∑
x∈x̂
∑
y∈ŷ

p′(x,y) = p(x̂, ŷ) =∑
x∈x̂
∑
y∈ŷ

p(x,y), ∀x̂, ŷ, (4)

p′(x) = p(x), p′(y) = p(y), ∀x,y. (5)

Among all such distributions p′, the distribution q given in (3) has the maximum entropy, that is,
H(q(X ,Y)) ≥ H(p′(X ,Y)).

A proof of the above lemma is presented in Appendix A. What is the significance of the above
lemma? In the absence of any constraints, the uniform distribution, p0(X ,Y) = { 1

mn}, has the max-
imum entropy. If only row and column marginals are to be preserved, that is, (5) holds, then the

1922

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

product distribution p(X)p(Y) has maximum entropy (see Cover and Thomas, 1991, Problem 5,
Chapter 11). The above lemma states that among all distributions that preserve row, column, and co-
cluster marginals, that is, (4) and (5) hold, the maximum entropy distribution has the form in (3). The
maximum entropy characterization ensures that q(X ,Y) has a number of desirable properties. For
instance, given the row, column and co-cluster marginals, it is the unique distribution that satisfies
certain consistency criteria (Csiszár, 1991; Shore and Johnson, 1980). In Section 4, we also demon-
strate that it is the optimal approximation to the original distribution p in terms of KL-divergence
among all multiplicative combinations of the preserved marginals. It is important to note that the
maximum entropy characterization also implies that q is a low-complexity matrix approximation.1
In contrast, note that the input p(X ,Y) obviously satisfies the constraints in (4) and (5), but in gen-
eral, is determined by (mn−1) parameters and has lower entropy than q. Every co-clustering yields
a unique maximum entropy distribution. Thus, by (2) and Lemma 1, the co-clustering problem (1) is
equivalent to the problem of finding the nearest (in KL-divergence) maximum entropy distribution
that preserves the row, column and co-cluster marginals of the original distribution. The maximum
entropy property in Lemma 1 may be re-stated as KL(q||p0) ≤ KL(p′||p0), where p0 is the uniform
distribution. Thus, the maximum entropy principle is identical to the minimum relative entropy
principle where the relative entropy is measured with respect to p0.

The above formulation is applicable when the data matrix corresponds to an empirical joint
distribution. However, there are important situations when the data matrix cannot be interpreted in
this matter, for example the matrix may contain negative entries and/or a distortion measure other
than KL-divergence, such as the squared Euclidean distance might be more appropriate.

1.2 Key Contributions

The contributions of this paper can be summarized as follows:

• We introduce a partitional co-clustering formulation driven by a matrix approximation view-
point where the quality of co-clustering is characterized by the accuracy of an induced co-
clustering-based matrix approximation, measured in terms of a suitable distortion measure.
This formulation serves the dual purpose of (i) obtaining row and column clusterings that
optimize a well-defined global objective function, and (ii) providing a new class of desirable
matrix approximations.

• Our formulation is applicable to all Bregman divergences (Azoury andWarmuth, 2001; Baner-
jee et al., 2005b; Bregman, 1967; Censor and Zenios, 1998), which constitute a large class of
distortion measures including the most commonly used ones such as squared Euclidean dis-
tance, KL-divergence, Itakura-Saito distance, etc. The generalization to Bregman divergences
is useful due to a bijection between regular exponential families and a sub-class of Bregman
divergences called regular Bregman divergences (Banerjee et al., 2005b). This bijection re-
sult enables us to choose the appropriate Bregman divergence based on the underlying data
generation process or noise model. This, in turn, allows us to perform co-clustering on a wide
variety of data matrices.

• Our formulation allows multiple co-clustering schemes wherein the reconstruction of the orig-
inal matrix is based on different sets of linear summary statistics that one may be interested

1. The complexity here refers to the number of parameters required to construct a good approximation to the given
matrix. It does not refer to the expected communication complexity, as is usual in the context of Shannon entropy.

1923

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

in preserving. In particular, we focus on summary statistics that correspond to conditional
expectations over partitions that result from the rows, columns and co-clusterings. We es-
tablish that there are exactly six non-trivial co-clustering schemes. Each of these schemes
corresponds to a unique co-clustering basis, that is, combination of conditional expectations
over various partitions. Using a formal abstraction, we explicitly enumerate and analyze the
co-clustering problem for all the six bases. Existing partitional co-clustering algorithms (Cho
et al., 2004; Dhillon et al., 2003b) can then be seen as special cases of the abstraction, em-
ploying one of the six co-clustering bases. Three of the six bases we discuss have not been
used in the literature till date.

• Previous work on co-clustering assume that all the elements of the data matrix are equally
important, that is, have uniform measure. In contrast, we associate a probability measure
with the elements of the specified matrix and pose the co-clustering problem in terms of the
random variable that takes values among the matrix elements following this measure. Our
formulation based on random variables provides a natural mechanism for handling values
with differing levels of uncertainty and in particular, missing values, while retaining both the
analytical and algorithmic simplicity of the corresponding uniform-measure formulation.

• En route to formulating the Bregman co-clustering problem, we introduce the minimum Breg-
man information (MBI) principle that generalizes the well-knownmaximum entropy and stan-
dard least-squares principles to all Bregman loss functions. The co-clustering process is
guided by the search for the matrix approximation that has the minimum Bregman informa-
tion while preserving the specified co-clustering statistics.

• We provide an interpretation of the Bregman co-clustering problem in terms of minimizing
the loss in Bregman information due to co-clustering, which enables us to generalize the
viewpoint presented in information-theoretic co-clustering (Dhillon et al., 2003b).

• We develop an efficient meta co-clustering algorithm based on alternate minimization that is
guaranteed to achieve (local) optimality for all Bregman divergences. Many previously known
parametric clustering and co-clustering algorithms such as minimum sum-squared residue co-
clustering (Cho et al., 2004) and information-theoretic co-clustering (Dhillon et al., 2003b)
follow as special cases of our methodology.

• Lastly, we describe some novel applications of co-clustering such as predicting missing values
and compression of categorical data matrices, and also provide empirical results comparing
different co-clustering schemes for various application domains.

In summary, our results provide a sound theoretical framework for the analysis and design of
efficient co-clustering algorithms for data approximation and compression, and considerably expand
applicability of the co-clustering methodology.

1.3 Outline of the Paper and Notation

The rest of paper is organized as follows: We begin by reviewing preliminary definitions and de-
scribe the Bregman co-clustering problem at a conceptual level in Section 2. To present our co-
clustering framework, we proceed as follows. First, we describe and analyze block-average co-
clustering in Section 3, which is an important special case of our general formulation, in order

1924

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

to provide intuition about the main results. Then, in Section 4, we enumerate various possible
co-clustering bases corresponding to the summary statistics chosen to be preserved, and present
a general formulation that is applicable to all these bases. In Section 5, we analyze the general
Bregman co-clustering problem and propose a meta-algorithm that is applicable to all Bregman di-
vergences and all co-clustering bases. In Appendix E, we describe how the Bregman co-clustering
algorithm can be instantiated for various choices of Bregman divergence and co-clustering basis by
providing the exact update steps. Readers interested in a purely computational recipe can jump to
Apendix E. Empirical evidence on the benefits of co-clustering and preliminary experiments on
novel co-clustering applications are presented in Section 6. We discuss related work in Section 7
and conclude in Section 8.

A brief word about the notation: Sets such as {x1, · · · ,xn} are enumerated as {xi}ni=1 and an
index i running over the set {1, · · · ,n} is denoted by [i]n1. Random variables are denoted using upper
case letters, for example, Z. Matrices are denoted using upper case bold letters, for example, Z,
whereas the corresponding lower case letters zuv denote the matrix elements. Transpose of a matrix
Z is denoted by ZT . The effective domain of a function f is denoted by dom(f) and the inverse of a
function f , when well defined, is denoted by f (−1). The relative interior and boundary of a set S are
denoted by ri(S) and bd(S) respectively. Tables 15, 16 and 17 list the notation used in the paper.

2. Preliminaries

In this section, we discuss some important properties of Bregman divergences and also describe the
basic setup of our co-clustering framework.

2.1 Bregman Divergences and Bregman Information

We start by defining Bregman divergences (Bregman, 1967; Censor and Zenios, 1998), which form
a large class of well-behaved loss functions with a number of desirable properties.

Definition 1 Let φ be a real-valued convex function of Legendre type2 (Rockafellar, 1970; Banerjee
et al., 2005b) defined on the convex set S ≡ dom(φ) (⊆ Rd). The Bregman divergence dφ : S ×
ri(S) (→ R+ is defined as

dφ(z1,z2) = φ(z1)−φ(z2)−〈z1− z2,∇φ(z2)〉,

where ∇φ is the gradient of φ.

Example 1.A (I-Divergence) Given z ∈ R+, let φ(z) = z logz− z . For z1,z2 ∈ R+, dφ(z1,z2) =
z1 log(z1/z2)− (z1− z2) .

Example 2.A (Squared Euclidean Distance) Given z∈R, let φ(z)= z2. For z1,z2 ∈R, dφ(z1,z2)=
(z1− z2)2 .

Example 3.A (Itakura-Saito Distance) Given z∈R+, let φ(z)=− logz . For z1,z2 ∈R+, dφ(z1,z2)=
z1
z2 − log

(
z1
z2

)
−1 .

2. A proper, closed convex function φ is said to be of Legendre type if (i) int(dom(φ)) is non-empty, (ii) φ is strictly
convex and differentiable on int(dom(φ)), and (iii) ∀zb ∈ bd(dom(φ)), lim

z→zb
||∇φ(z)|| → ∞, where z ∈ dom(φ).

1925

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Given a Bregman divergence and a random variable, the uncertainty in the random variable
can be captured in terms of a useful concept called Bregman information (Banerjee et al., 2005b)
defined below.

Definition 2 For any Bregman divergence dφ : S × int(S) (→ R+ and any random variable Z ∼
w(z), z ∈ Z ⊆ S , the Bregman information of Z is defined as the expected Bregman divergence to
the expectation, that is,

Iφ(Z) = E[dφ(Z,E[Z])] .

Intuitively, this quantity is a measure of the “spread” or the “information” in the random variable.

Example 1.B (I-Divergence) Given a random variable Z ∼ w(z), z ∈ Z ⊆ R+, the Bregman infor-
mation corresponding to I-divergence is given by

Iφ(Z) = E[Z log(Z/E[Z])−Z+E[Z]] = E[Z log(Z/E[Z])] .

When w is the uniform measure and the support of Z (say Z) consists of joint probability values
of two other random variables X and Y , that is, Z = {p(xu,yv), [u]m1 , [v]n1}, then E[Z] = 1

mn , that is,
probability value corresponding to the uniform distribution p0(X ,Y). The Bregman information in
this case is given by

Iφ(Z) =
1
mn

m

∑
u=1

n

∑
v=1

p(xu,yv) log
(
p(xu,yv)
p0(xu,yv)

)
=

1
mn

KL(p||p0) = − 1
mn

H(p)+ constant,

where H(·) is the Shannon entropy.

Example 2.B (Squared Euclidean Distance) Given Z ∼ w(z), z ∈ Z ⊆ R, the Bregman informa-
tion corresponding to squared Euclidean distance is given by

Iφ(Z) = E[Z−E[Z]]2 ,

which is the variance of Z. When w is uniform and the support of Z, that is, Z consists of elements
in a matrix Z ∈ Rm×n, that is, Z = {zuv, [u]m1 , [v]n1}, then E[Z] = 1

mn ∑
m
u=1∑

n
v=1 zuv ≡ z̄. The Bregman

information in this case is given by

Iφ(Z) =
1
mn

m

∑
u=1

n

∑
v=1

(zuv− z̄)2 =
1
mn

m

∑
u=1

n

∑
v=1

z2uv− z̄2 =
1
mn

‖Z‖2F + constant,

that is, a linear function of the squared Frobenius norm of Z.

We note a useful property of Bregman information that will be extensively used in subsequent
sections. The property, formally stated below, shows that the Bregman information exactly equals
the difference between the two sides of Jensen’s inequality (Cover and Thomas, 1991).

Lemma 2 (Banerjee et al., 2005b) For any Bregman divergence dφ : S × ri(S) (→ R+ and ran-
dom variable Z ∼ w(z), z ∈ Z ⊆ S , the Bregman information Iφ(Z) = E[dφ(Z,E[Z])] = E[φ(Z)]−
φ(E[Z]).

Clearly, Bregman information is always non-negative. For a detailed list of other properties and
examples of Bregman divergences and Bregman information, the reader is referred to Banerjee
et al. (2005b) and Appendix B.

1926

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

2.2 Data Matrix

We focus on the problem of co-clustering a specifiedm×n data matrix Z. Let each entry of Z= [zuv]
take values in the convex set3 S = dom(φ), for example, S = R for φ(z) = z2 and S = R+ for
φ(z) = z logz− z. Hence, Z ∈ Sm×n. Observe that we are now admitting a much larger class of
matrices than those used in the co-clustering formulations of Cho et al. (2004) and Dhillon et al.
(2003b).

Given the data matrix Z, we consider a random variable Z, that takes values in Z following a
probability measure as described below. LetU be a random variable that takes values in {1, · · · ,m},
the set of row indices, and let V be a random variable that takes values in {1, · · · ,n}, the set of
column indices. Let (U,V) be distributed according to a probability measure w= {wuv : [u]m1 , [v]n1},
which is either pre-specified or set to be the uniform distribution.4 Let Z be a (U,V)-measurable
random variable that takes values in Z following w, that is, p(Z(u,v) = zuv) = wuv. Clearly, for a
given matrix Z, the random variable Z is a deterministic function of the random variable (U,V).
Throughout the paper, we assume the matrix Z and the measure w to be fixed so that taking con-
ditional expectations of the random variable Z is well defined. In pure numeric terms, such condi-
tional expectations are simply weighted row/column/block averages of the matrix Z according to the
weights w. The stochastic formalization enables a succinct way to analyze such weighted averages.

Example 1.C (I-Divergence) Let (X ,Y) ∼ p(X ,Y) be jointly distributed random variables with X
and Y taking values in {xu}, [u]m1 and {yv}, [v]n1 respectively. Then, p(X ,Y) can be written in the
form of the matrix Z = [zuv], [u]m1 , [v]n1, where zuv = p(xu,yv) is a deterministic function of u and v.
This example with a uniform measure w corresponds to the setting described in Section 2, Example
1.B (originally in the work of Dhillon et al., 2003b).

Example 2.C (Squared Euclidean Distance) Let Z ∈ Rm×n denote a data matrix whose elements
may assume positive, negative, or zero values and let w be a uniform measure. This example
corresponds to the co-clustering setting described by Cheng and Church (2000) and Cho et al.
(2004).

2.3 Bregman Co-clustering

We define a k× l partitional co-clustering as a pair of functions:

ρ : {1, · · · ,m} (→ {1, · · · ,k} ,

γ : {1, · · · ,n} (→ {1, · · · , l} .

Let Û and V̂ be random variables that take values in {1, · · · ,k} and {1, · · · , l} such that Û = ρ(U) and
V̂ = γ(V). Let Ẑ= [ẑuv] ∈ Sm×n be an approximation for the data matrix Z such that Ẑ depends only
upon a given co-clustering (ρ,γ) and certain summary statistics derived from the co-clustering. Let
Ẑ be a (U,V)-measurable random variable that takes values in this approximate matrix Ẑ following

3. S need not necessarily be a subset ofR. It is convenient to assume this for ease of exposition. In general, the elements
of the matrix Z can take values over any convex domain with a well-defined Bregman divergence. We give examples
of such settings in Section 6.

4. Associating a measure with the elements of a matrix is not common, but this construct allows us to deal with a wider
variety of situations including the modeling of matrices with missing values. Further, several quantities of interest,
such as row/column/block averages, can now be succinctly described in terms of conditional expectations.

1927

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

w, that is, p(Ẑ(U,V) = ẑuv) = wuv. Then the goodness of the underlying co-clustering can be
measured in terms of the expected distortion between Z and Ẑ, that is,

E[dφ(Z, Ẑ)] =
m

∑
u=1

n

∑
v=1

wuvdφ(zuv, ẑuv) = dΦw(Z, Ẑ), (6)

where Φw : Sm×n (→ R is a separable convex function induced on the matrices such that the Breg-
man divergence between any pair of matrices is the weighted sum of the element-wise Bregman
divergences corresponding to the convex function φ. From the matrix approximation viewpoint, the
above quantity is simply the weighted element-wise distortion between the given matrix Z and the
approximation Ẑ. The co-clustering problem is then to find (ρ,γ) such that (6) is minimized. To
carry out this plan, we need to make precise the connection between (ρ,γ) and Ẑ.

Example 1.D (I-Divergence) The Bregman co-clustering objective function (6) in this case is given
by E[dφ(Z, Ẑ)] = E[Z log(Z/Ẑ)−Z+ Ẑ].

Example 2.D (Squared Euclidean Distance) The Bregman co-clustering objective function (6) in
this case is given by E[dφ(Z, Ẑ)] = E[(Z− Ẑ)2].

The goodness of a co-clustering (ρ,γ) is determined by how well Ẑ (or the matrix Ẑ) approx-
imates Z (or the matrix Z). The crucial thing to note is that the construction of the approximation
Ẑ is based on the co-clustering (ρ,γ) and certain summary statistics of the original random vari-
able Z that one wants to preserve in the approximation. The summary statistics may be properties
of the co-clusters themselves, such as co-cluster marginals as in (4), and/or some other important
statistics of the data, such as row and column marginals as in (5). Note that Z is not accessible
while constructing Ẑ, since otherwise one could just set Ẑ = Z and get perfect reconstruction. The
special case when Ẑ is constructed only using the co-clustering (ρ,γ) and the co-cluster marginals
is important and easy to understand. Moreover, it is a straightforward generalization of one-sided
clustering schemes such as kmeans. Hence, we first investigate this special case in detail in the next
section. The general case, where additional summary information such as row/column marginals of
the original matrix are available, will be analyzed in Sections 4 and 5.

3. Block Average Co-clustering: A Special Case

In this section, we discuss the important special case of Bregman co-clustering where the summary
statistics are derived by aggregating along the co-clusters, that is, the summary statistics preserved
are just the co-cluster means. Hence, in this case, for a given co-clustering (ρ,γ), Ẑ has to be re-
constructed based only on the co-cluster means, or equivalently, the conditional expectation random
variable E[Z|Û ,V̂] where expectation is taken with respect to the measure w.5 The quality of the
co-clustering (ρ,γ) is determined by the approximation error between Z and Ẑ.

3.1 Minimum Bregman Information (MBI) Principle

In order to analyze the block co-clustering problem, we first focus on characterizing the approx-
imation random variable Ẑ given a fixed co-clustering (ρ,γ) and the resulting co-cluster means

5. Unless otherwise mentioned, the expectations in the rest of the paper are with respect to the probability measure w.

1928

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

{E[Z|û, v̂]}. While there can be many different ways to get an approximation Ẑ from the available
information, we consider a principled characterization based on the Bregman information of the
reconstruction Ẑ. In particular, we propose and use the minimum Bregman information principle
that can be shown to be a direct generalization of the maximum entropy as well as the least squares
principles.

In order to get the “best” approximation, we consider a special class of approximating random
variables Z′ based on the given co-clustering and the available information E[Z|Û ,V̂]. Let SA be
defined as

SA = {Z′|E[Z′|û, v̂] = E[Z|û, v̂], ∀[û]k1, [v̂]
l
1 } . (7)

It is reasonable to search for the best approximation in SA since any random variable Z ′ in this
class has the same co-cluster statistics as the original random variable Z. In other words, the cor-
responding reconstructed matrices preserve the co-cluster statistics of the original matrix, which is
desirable. Then, with respect to the set SA, we ask: What is the “best” random variable to select from
this set? We propose a new minimum Bregman information principle that recommends selecting a
random variable that has the minimum Bregman information subject to the linear constraints (7):

ẐA ≡ ẐA(ρ,γ) = argmin
Z′∈SA

Iφ(Z′). (8)

The basic philosophy behind the minimum Bregman information principle is that the “best”
approximation given certain information is one that does not make any extra assumptions over the
available information. Mathematically, the notion of no extra assumptions or maximal uncertainty
translates tominimum Bregman informationwhile the available information is provided by the linear
constraints that preserve the specified statistics.

As the following examples show, the widely used maximum entropy principle (Jaynes, 1957;
Cover and Thomas, 1991) and standard least squares principles (Csiszár, 1991) can be obtained as
special cases of the MBI principle.

Example 1.E From Example 1.B, we observe that the Bregman information of a random variable
Z following a uniform distribution over the joint probability values of two other random variables X
andY is given by− 1

mnH(p(X ,Y)) upto an additive constant, that is, it is negatively related to entropy
of the joint distribution of X and Y . Hence, minimizing the Bregman information is equivalent to
maximizing the entropy demonstrating that the maximum entropy principle is a special case of the
MBI principle corresponding to I-divergence.

Example 2.E From Example 2.B, we observe that the Bregman information of a random variable Z
following a uniform distribution over the elements of a matrixZ is given by 1

mn‖Z‖
2
F upto an additive

constant. Hence, minimizing the Bregman information in this case is equivalent to minimizing the
Frobenius norm of the matrix (L2 norm for a vector), which in turn implies that the standard least
squares principle is a special case of the MBI principle corresponding to squared error.

Now, we focus on getting a closed form solution of the minimum Bregman information prob-
lem. In the absence of any constraints, the minimum Bregman information solution corresponds
to a constant random variable. For the current situation, where we are constrained to preserve the
co-cluster means {E[Z|û, v̂]}, the following theorem shows that the best approximation ẐA simply
equals E[Z|Û ,V̂].

1929

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Theorem 1 The solution to (8) is unique and is given by

ẐA = E[Z|Û ,V̂].

Proof Let Z′ be any random variable in SA and let ẐA denote E[Z|Û ,V̂]. By definition,

Iφ(Z′)
(a)
= E[φ(Z′)]−φ(E[Z′])
= E[φ(Z′)]−EÛ ,V̂ [φ(E[Z′|Û ,V̂])]+EÛ ,V̂ [φ(E[Z′|Û ,V̂])]−φ(E[Z′])
(b)
= E[φ(Z′)]−EÛ ,V̂ [φ(E[Z′|Û ,V̂])]+EÛ ,V̂ [φ(ẐA)]−φ(EÛ ,V̂ [ẐA])
(c)
= EÛ ,V̂

[
EZ′|Û ,V̂ [φ(Z′)]−φ(E[Z′|Û ,V̂])

]
+ Iφ(ẐA)

(d)
≥ Iφ(ẐA),

where (a) and (c) follow from Lemma 2; (b) follows from the fact that E[Z ′|Û ,V̂] = E[Z|Û ,V̂] = ẐA
and EÛ ,V̂ [E[Z|Û ,V̂]] = EÛ ,V̂ [ẐA] = E[Z] = E[Z′]; and (d) follows from conditional Jensen’s inequal-
ity. In particular, since φ is convex, we have EZ′|Û ,V̂ [φ(Z′)] ≥ φ(E[Z′|Û ,V̂]).

Hence, ẐA has lower Bregman information than any random variable in SA. Further, ẐA ∈ SA,
that is, E[ẐA|Û ,V̂] = ẐA = E[Z|Û ,V̂]. Along with the strict convexity of φ, this ensures that ẐA =
E[Z|Û ,V̂] is the unique solution to (8).

For an alternative constructive proof of Theorem 1, please see Appendix C.
Besides being the MBI solution, ẐA has an additional important property that makes it the “best”

reconstruction. Although we focused on the set SA that contains all Z′ that preserve the known co-
cluster statistics, an alternative could have been to investigate the set SB that contains all determin-
istic functions of the available information E[Z|Û ,V̂], that is,

SB = {Z′′|Z′′ = f (E[Z|Û ,V̂])} , (9)

where f is an arbitrary (Û ,V̂)-measurable function. In SB, the optimal approximation ẐB is the one
that is closest to the true Z:

ẐB ≡ argmin
Z′′∈SB

E[dφ(Z,Z′′)] . (10)

In order to show a relationship between ẐA and ẐB, we start with the following lemma (Lemma 3),
which establishes the fact that the MBI solution ẐA allows a Pythagorean decomposition of the
expected divergence between any Z ′ ∈ SA and any Z′′ ∈ SB.6 Recall that SA consists of all random
variables that have the same co-cluster statistics as Z and SB consists of all measurable functions of
E[Z|Û ,V̂].

Lemma 3 For any Z′ ∈ SA as in (7), any Z′′ ∈ SB as in (9), and ẐA as in (8),

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′)].

6. The analysis using Pythagorean decomposition of Bregman divergences can be viewed as a special case of Bregman
duality analysis of Della Pietra et al. (2001). The advantage of our special case analysis is that it has rich semantics
relevant to the co-clustering setting, and the proofs are simpler than the general case proofs in Della Pietra et al.
(2001). See Section 4.4 for more details.

1930

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

A proof of the lemma is presented in Appendix C. Now, since ẐA = E[Z|Û ,V̂], and is hence a
function of E[Z|Û ,V̂], we have ẐA ∈ SB. As a result, from Lemma 3, we get the following projection
theorem, which states that the MBI solution ẐA is the “forward” Bregman projection of any element
of SA onto the set SB as well as the “backward” Bregman projection of any element of SB onto the
set SA.

Theorem 2 (Projection Theorem) For any Z ′ ∈ SA as in (7), any Z′′ ∈ SB as in (9), and ẐA as
in (8), we have,

(a) ẐA = argmin
Z′∈SA

E[dφ(Z′,Z′′)],

(b) ẐA = argmin
Z′′∈SB

E[dφ(Z′,Z′′)].

A proof of the theorem is presented in Appendix C. Since the original Z ∈ SA, we observe that
ẐA is the best approximation (by a backward Bregman projection) to Z in SB, implying ẐB = ẐA as
formally stated below.

Corollary 1 For ẐA and ẐB given by (8) and (10) respectively, we have

Ẑ ≡ ẐA = ẐB. (11)

The equivalence result is a precise mathematical quantification of the optimal approximation prop-
erty of theMBI solution for the special case where only E[Z|Û ,V̂] is available during reconstruction.
It shows that the best approximation in terms of expected Bregman divergence given the co-cluster
statistics is indeed the MBI solution that preserves those statistics.

3.2 Co-clustering Problem Formulation

Now that we have associated an approximation Ẑ with a given co-clustering (ρ,γ), we return to
the original Bregman co-clustering problem in (6). The goal is to obtain a co-clustering (ρ,γ)
such that the expected Bregman divergence between Z and the approximation Ẑ is minimized. So
far, we know that the best reconstruction Ẑ is the MBI solution and is expressed in closed form
by Theorem 1. The following lemma presents an alternative characterization of the co-clustering
objective function (6). It shows that the expected Bregman divergence to the approximation Ẑ is
exactly equal to the loss in Bregman information due to co-clustering.

Lemma 4 For any random variable Z and Ẑ as in (11),

E[dφ(Z, Ẑ)] = Iφ(Z)− Iφ(Ẑ) .

1931

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Proof By definition,

E[dφ(Z, Ẑ)] = E[φ(Z)−φ(Ẑ)−〈Z− Ẑ,∇φ(Ẑ)〉]
(a)
= E[φ(Z)]−E[φ(Ẑ)]−EÛ ,V̂ [〈E[Z|Û ,V̂]−E[Ẑ|Û ,V̂],∇φ(Ẑ)〉]
(b)
= E[φ(Z)]−E[φ(Ẑ)]
(c)
= E[φ(Z)]−φ(E[Z])−E[φ(Ẑ)]+φ(E[Ẑ])
(d)
= Iφ(Z)− Iφ(Ẑ),

where (a) follows from the fact that Ẑ and hence, ∇φ(Ẑ) is constant for fixed (Û ,V̂), (b) follows
since Ẑ ∈ SA, (c) follows since E[Z] = E[Ẑ] and (d) follows from Lemma 2.

Using Lemma 4, the original Bregman clustering problem in (6) can be posed as one of finding
the optimal co-clustering (ρ∗,γ∗) defined as follows:

(ρ∗,γ∗) = argmin
(ρ,γ)

E[dφ(Z, Ẑ)] = argmin
(ρ,γ)

[Iφ(Z)− Iφ(Ẑ)] = argmax
(ρ,γ)

Iφ(Ẑ) , (12)

since Iφ(Z) is a constant. Further, using the fact that Ẑ is the solution to the MBI problem, we have

(ρ∗,γ∗) = argmax
(ρ,γ)

min
Z′∈SA

Iφ(Z′) . (13)

Hence, the best co-clustering (ρ∗,γ∗) is the one that results in the matrix reconstruction correspond-
ing to the minimum approximation error, or equivalently, the one that solves the max-min problem
in (13).

3.3 Block Average Co-clustering Algorithm

In this section, we present an algorithm for block average co-clustering based on a useful decom-
position of the objective function (12), which gives a better insight on how to update either the row
clustering ρ or the column clustering γ.

3.3.1 A USEFUL DECOMPOSITION

From Theorem 1, it follows that for a given co-clustering (ρ,γ), the approximation Ẑ that achieves
the minimum Bregman information is given by ẑuv = E[Z|û, v̂], where û= ρ(u), v̂= γ(v). We denote
the co-cluster means corresponding to (ρ,γ) as µûv̂, that is, µûv̂ = E[Z|û, v̂]. Hence, the optimal
approximation Ẑ corresponding to (ρ,γ) is given by

ẑuv = µûv̂ = µρ(u)γ(v).

With this closed form for Ẑ, we have

E[dφ(Z, Ẑ)] = ∑
u,v
wuvdφ(zuv,µρ(u)γ(v))

=
k

∑
g=1

l

∑
h=1

∑
u:ρ(u)=g

∑
v:γ(v)=h

wuvdφ(zuv,µgh) . (14)

Note that (14) decomposes the objective function in terms of the row cluster assignment ρ(u) of
each row u and column cluster assignment γ(v) of each column v.

1932

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

3.3.2 UPDATING ROW AND COLUMN CLUSTERS

Since the decomposition (14) is additive over all the rows (or columns), we can update the current
cluster assignment of each row (or column) in order to decrease the objective function. For any
particular row u, the contribution to the overall objective function is determined by its current as-
signment ρ(u). Assuming ρ(u) = g, we can express the objective function (14) as the sum of row
contributions of the form

Ju(g) =
l

∑
h=1

∑
v:γ(v)=h

wuvdφ(zuv,µgh) . (15)

Note that the co-cluster means µgh remain unchanged during the update of the row (or column)
clustering.

The choice of row cluster assignment g exactly determines what set of l co-cluster means µgh
occur in (15). Hence, the best possible choice for the new row cluster assignment ρnew(u) is to pick
the value of g that has the minimum cost, that is,

ρnew(u) = argmin
g

Ju(g) = argmin
g

l

∑
h=1

∑
v:γ(v)=h

wuvdφ(zuv,µgh) . (16)

Since the terms corresponding to each row are additive in (14), the row assignment update in (16)
can be applied simultaneously to all rows to get the new row assignments ρnew(u), [u]n1. The new row
assignments effectively change the current approximation matrix Ẑ to a new matrix Z̃ρ1γ0 , which is
just a row-permuted version of Ẑ that achieves a lower cost, that is,

E[dφ(Z, Z̃ρ1γ0)] ≤ E[dφ(Z, Ẑ)] .

The decrease in the objective function value is due to the optimal greedy update in the row cluster
assignments. A similar approach can be applied to update the column cluster assignments in order
to obtain an even better approximation Z̃ρ1γ1 . Note that the current approximation can possibly be
further improved by another round of row clustering updates to get an approximation Z̃ρ2γ1 , where
the subscript in ρ (or γ) denotes the number of times the row (column) cluster assignment has been
updated. The same process can be repeated multiple times. For simplicity, we denote the final
assignments by (ρnew,γnew) and the approximation obtained from such reassignments as Z̃.

Once all row and column assignments have been updated, the new approximation matrix Z̃ need
not be the minimum Bregman information solution for the new co-clustering (ρnew,γnew). Hence,
one needs to recompute the new minimum Bregman solution Ẑnew corresponding to (ρnew,γnew).
The following lemma, proved in Appendix C, establishes that the updated Ẑnew is guaranteed to
either decrease the objective, or keep it unchanged. In fact, Ẑnew is the best approximation possible
based on the co-clustering (ρnew,γnew).

Lemma 5 Let Ẑnew be the minimum Bregman information solution corresponding to (ρnew,γnew).
Then,

E[dφ(Z, Ẑnew)] ≤ E[dφ(Z, Z̃)] .

1933

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Algorithm 1 Bregman Block Average Co-clustering (BBAC) Algorithm
Input: Matrix Z ⊆ Sm×n, probability measure w, Bregman divergence dφ : S × ri(S) #→ R+, num. of row
clusters l, num. of column clusters k.

Output: Block Co-clustering (ρ∗,γ∗) that (locally) optimizes the objective function in (12).
Method:

{Initialize ρ, γ }
Start with an arbitrary co-clustering (ρ,γ)
repeat

{Step A: Update Co-cluster Means}
for g= 1 to k do
for h= 1 to l do
µgh = ∑u:ρ(u)=g∑v:γ(v)=hwuvzuv

∑u:ρ(u)=g∑v:γ(v)=hwuv
end for

end for
{Step B: Update Row Clusters (ρ)}
for u= 1 to m do
ρ(u) = argmin

g∈{1,...,k}
∑lh=1∑v:γ(v)=hwuvdφ(zuv,µgh)

end for
{Step C: Update Column Clusters (γ)}
for v= 1 to n do
γ(v) = argmin

h∈{1,...,l}
∑kg=1∑u:ρ(u)=gwuvdφ(zuv,µgh)

end for
until convergence
return (ρ,γ)

3.3.3 THE ALGORITHM

The above analysis leads to a simple iterative algorithm for Bregman block average co-clustering
(BBAC in Algorithm 1). The algorithm starts with an arbitrary choice of co-clustering (ρ,γ). At every
iteration, either the row clustering ρ or the column clustering γ is updated in order to decrease the
objective function value in (12). In practice, one could run multiple iterations of such updates. After
the assignments have been updated for all rows and columns, the co-clustering means are updated,
which further decreases the objective. The process is repeated till convergence. Since the objective
decreases at every iteration, and the objective is lower bounded, the algorithm is guaranteed to
converge to a (local) minimum of the objective.

3.4 Block Average Co-clustering as Matrix Factorization

Since the MBI solution is always the co-cluster means, and the BBAC algorithm essentially alternates
between updating the row and column assignments, and updating the co-cluster means, the BBAC
algorithm is a direct generalization of the Bregman clustering algorithm (Banerjee et al., 2005b). As
we show below, the BBAC algorithm can also be viewed as solving a matrix factorization problem.

Let Z be the m× n matrix corresponding to the random variable Z and W ∈ Rm×n
+ denote the

matrix corresponding to a probability measure over the matrix elements. Let R ∈ {0,1}m×k and

1934

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

C ∈ {0,1}n×l denote the row and column cluster membership matrices, that is,

rug =

{
1 g= ρ(u),
0 otherwise,

cvh =

{
1 h= γ(v),
0 otherwise.

Further, let M be a k× l matrix corresponding to the co-cluster means, that is, expectations or
weighted averages of the matrix values over the co-clusters. Since the minimum Bregman informa-
tion solution for the block co-clustering case are the co-cluster averages, the reconstructed matrix Ẑ
can be expressed as the product RMCT . Therefore, the co-clustering problem is essentially reduces
to finding row assignment matrix R, column assignment matrix C such that the approximation error
dΦw(Z, Ẑ) is minimized where Ẑ = RMCT . The BBAC algorithm returns matrices R,M and C that
achieves a local minimum of the above objective function. When l = n, the BBAC algorithm reduces
to the Bregman clustering algorithm (Banerjee et al., 2005b) applied to rows of Z. In particular,
when the Bregman divergence is the squared Euclidean distance, we obtain the classical kmeans
algorithm.

3.5 General Formulation and Analysis: Warm Up

So far, we have studied in detail the important special case of block average co-clustering. In the
next section, we will formulate and analyze a more general class of co-clustering problems.

The differences between the various formulations will stem from the different summary statistics
used in the approximation Ẑ. For the block co-clustering case, Ẑ depended only on the co-cluster
means {E[Z|û, v̂]}. In Section 4, we shall consider the exhaustive list of summary statistics based
on which Ẑ can be reconstructed, and go on to propose a general case meta-algorithm with provable
properties in Section 5. The BBAC algorithm can then be seen as a special case of this meta-algorithm
obtained for a particular choice of summary statistics.

Before going into the formulation and analysis of the general case, we want to highlight the
results that are specific to block average co-clustering as well as the results that continue to hold in
the general case for any choice of summary statistics. We start with the results that hold only for
block average co-clustering and do not carry over to the general case.

1. For block average co-clustering, the MBI solution is the same for all Bregman divergences
(Theorem 1). However, in the general case, the solution generally depends on the choice
of the Bregman divergence. In fact, block average co-clustering is the only case when the
solution is independent of this choice.

2. In the general case, it is not possible to get a closed form MBI solution. In general, a convex
optimization problem has to be solved to find the solution; see Section 5.5 for some iterative
approaches for computing theMBI solution. We also provide exact solutions for the important
special cases where closed form solutions do exist.

3. For block co-clustering, the reconstruction from the minimum Bregman information solution
is also the best approximation of the original Z among all functions of the co-cluster means
(Corollary 1). This result holds only when the reconstruction is based on one set of summary
statistics, which was the co-cluster means in the block co-clustering case. More formally, the
result holds when the random variable is approximated based on a single sub-σ-algebra (see
Section 4.1). In general, multiple sets of summary statistics may need to be preserved and the
reconstruction will be based on multiple sub-σ-algebras.

1935

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

4. The matrix approximation obtained in the general case need not be expressible as a matrix
factorization in terms of the cluster membership matrices R and C. In fact, block average
co-clustering is the only formulation where such an interpretation is possible for all Bregman
divergences.

Finally, we focus on the results that continue to hold in the general case for arbitrary choices of
summary statistics:

1. Although there need not be a closed form solution to the minimum Bregman information
problem and the solution may depend on the choice of the Bregman divergence, some impor-
tant properties of the solution remain unchanged in the general case. In particular, the form
of the solution in terms of the Lagrange multipliers (see the constructive proof of Theorem 1
in Appendix C) remains unchanged.

2. The Pythagorean decomposition (Lemma 3) and the projection theorem (Theorem 2) associ-
ated with the sets SA and SB continues to hold for the general case, with SB defined as the set of
all generalized additive models of the various summary statistics in a transformed space (see
Section 4.4). For the block average co-clustering case, since we only preserve the co-cluster
means, the set SB turns out to be set of all functions of the co-cluster means. Further, the
MBI solution can be shown to be the best approximation to the original Z among this special
class of functions of the summary statistics SB generalizing the equivalence in Corollary 1.
The general result that we discuss in Section 4.4 provides an axiomatic justification of the
minimum Bregman information principle (Csiszár, 1991).

3. The loss in Bregman information result (Lemma 4) continues to hold.

4. Similar to Algorithm 1, we obtain an iterative algorithm for the general case where we alter-
nately optimize over the row cluster assignments, column cluster assignments and the MBI
solution. As in the block-average case, the co-clustering objective function allows an additive
decomposition over the rows and columns and the resulting meta-algorithm (Algorithm 2)
guarantees monotonic decrease of the objective function at every iteration.

4. Bregman Co-clustering: Formulation and Analysis

In this section, we formulate a general version of the Bregman co-clustering problem by abstracting
out the commonalities between various possible co-clustering schemes that arise due to constraints
that preserve different choices of summary statistics. To achieve this, we first define the notion of
a co-clustering basis in terms of the conditional expectation-based statistics that one might want to
preserve, and then enumerate all the possible co-clustering bases that may be of interest.

4.1 Co-clustering Bases

Let us fix a co-clustering (ρ,γ). Given the co-clustering, there are essentially four random variables
of interest: U , V , Û , and V̂ . To these, we add two random variables U /0 and V/0 corresponding to
the constant random variables over the rows and columns respectively, for easy enumeration. Let
Γ1 denote the set {U /0,V/0,Û ,V̂ ,U,V}. Our goal is to approximate the random variable Z using
(possibly multiple) conditional expectations of Z where the conditioning is done on one or more of

1936

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

the random variables in Γ1. Observe that choosing one or more random variables to condition on
is equivalent to choosing a sub-σ-algebra7 G of Z. We focus on approximating Z using conditional
expectations E[Z|G] since the conditional expectation E[Z|G] is the optimal approximation of the
true Z with respect to any Bregman divergence among all G-measurable functions (Banerjee et al.,
2005a).

Since duplication of information in the preserved conditional expectations does not lead to a
different approximation, we only focus on combinations of random variables from Γ1 that will
lead to a unique set of summary statistics. First, we observe that some of the random variables
in Γ1 are measurable with respect to some others. In other words, some random variables are just
“high resolution” versions of some others so that conditioning on certain sets of members of Γ1 is
equivalent to conditioning on the subset with respect to which the rest are measurable. For example,
E[Z|U,Û ,V/0,V̂] = E[Z|U,V̂], since Û isU-measurable, and V/0 is V̂ -measurable. In fact, due to the
natural ordering of the random variables {U /0,Û ,U} and {V/0,V̂ ,V} in terms of measurability, only
the row and column random variables of the highest granularity matter. Hence, there are only 9
unique sub-σ-algebras of Z based on which conditional expectations may be taken. We denote this
set by Γ2:

Γ2 = {{U/0,V/0},{U/0,V̂},{U/0,V},{Û ,V/0},{Û ,V̂},{Û ,V},{U,V/0},{U,V̂},{U,V}}.

Γ2 determines the set of all summary statistics that one maybe interested in preserving. A particular
choice of an element of Γ2, such as {Û ,V̂}, leads to an approximation scheme where the recon-
struction matrix preserves the corresponding summary statistics. For the choice of {Û ,V̂}, we get
the block average co-clustering discussed in Section 3 where the matrix approximation preserves all
co-cluster means.

Now, we focus on a much more general scenario where one may want to preserve possibly
more than one summary statistic. In fact, one could consider all possible subsets of Γ2. Of these,
some combinations of summary statistics are effectively equivalent, for example, {{Û ,V/0},{U/0,V̂},
{Û ,V̂}} and {{Û ,V̂}}, whereas some others are trivial and even independent of the co-clustering,
for example, {{U /0,V/0}} and {{U /0,V},{U,V/0}}. In this paper, we focus only on unique and non-
trivial combinations of elements of Γ2, that we call co-clustering bases and define them as follows:

Definition 3 8 A co-clustering basis C is a set of elements of Γ2, that is, an element of the power
set 2Γ2 , which satisfies the following two conditions:

(a) There exist G1,G2 ∈ C (with G1 possibly the same as G2) such that Û ∈ G1 and V̂ ∈ G2.

(b) There do not exist G1,G2 ∈ C , G1 /= G2 such that G2 is a sub-σ-algebra of G1.

In the above definition, condition (a) ensures that the approximation depends on the co-clustering
while condition (b) ensures that for any pair G1,G2, the conditional expectation E[Z|G2] cannot be
obtained from E[Z|G1]. The latter ensures that the approximation obtained using the basis C is not
identical to that obtained using C \G2.

7. A σ-algebra is a collection of sets that includes the empty-set and is closed w.r.t. complements, countable unions and
intersections. Further, G1 is a sub-σ-algebra of a σ-algebra G (or a G-measurable random variable) if G1 is itself a
σ-algebra and G1 ⊆ G .

8. Note that each element of Γ2 corresponds to a unique sub-σ-algebra of Z, and hence, we use identical notation for
the elements of the co-clustering bases and the corresponding sub-σ-algebras.

1937

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

The following theorem shows that there are only six possible co-clustering bases, each of which
leads to a distinct matrix approximation scheme.

Theorem 3 Given the random variable Z, there are only six distinct co-clustering bases that ap-
proximate Z using conditional expectations of Z given combinations of the row and column random
variables {U,V,Û ,V̂}. The six bases correspond to the sets

C1 = {{Û},{V̂}}, C2 = {{Û ,V̂}},
C3 = {{Û ,V̂},{U}}, C4 = {{Û ,V̂},{V}},

C5 = {{Û ,V̂},{U},{V}}, C6 = {{U,V̂},{Û ,V}}.

E[Z|U]
^

^
E[Z|V]

Reordered Z

(a) Basis C1

E[Z|U,V]
^ ^

Reordered Z

(b) Basis C2

E[Z|U,V]
^ ^

Reordered ZE[Z|U]

(c) Basis C3
E[Z|V]

E[Z|U,V]
^ ^

Reordered Z

(d) Basis C4

E[Z|U]

E[Z|V]

E[Z|U,V]
^ ^

Reordered Z

(e) Basis C5

Reordered Z

E[Z|U,V]

E[Z|U,V]

^

^

(f) Basis C6
Figure 1: Schematic diagram of the six co-clustering bases. In each case, the summary statistics

used for reconstruction (e.g., E[Z|Û] and E[Z|V̂]) are expectations taken over the corre-
sponding dotted regions (e.g., over all the columns and all the rows in the row cluster
determined by Û in case of E[Z|Û]).

1938

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Figure 1 contains a graphical representation of the various co-clustering bases. For example,
in Figure 1(a), the expectations along the row clusters (E[Z|Û]) and the column clusters (E[Z|V̂])
are the statistics used for reconstructing the original Z. From the table, we can see that the various
conditional expectations correspond to matrices of different sizes. We make use of this observation
later in Appendix E to obtain a computational recipe for the Bregman co-clustering problem. The
sets C1,C2,C5 and C6 are symmetric in the row and column random variables whereas C3 and C4
are not. Further, if we have access to {E[Z|G] : G ∈ Ci}, for some 1≤ i≤ 6, then we can compute
{E[Z|G] : G ∈ C j} for all 1 ≤ j ≤ i, i /= 4, j /= 3. In this sense, we say that the constraint set Ci
is more complex than C j for all j < i ≤ 6, i /= 4, j /= 3 as illustrated in Figure 2. From a practical
perspective, a more complex set of constraints allows us to retain more information about Z, but
obviously requires an increased number of parameters.

Our abstraction allows us to handle all the above schemes in a systematic way. Now, consider
a co-clustering basis C ∈ {Ci}6i=1 as the pertinent one. Given the choice of a particular basis, we
need to decide on the “best” reconstruction Ẑ for a given co-clustering (ρ,γ). Then the general co-
clustering problem will effectively reduce to one of finding an optimal co-clustering (ρ∗,γ∗) whose
reconstruction has the lowest approximation error with respect to the original Z.

C

C C

C

CC1 2

3

4

5 6

Figure 2: Relative complexity of the 6 co-clustering bases.

4.2 Minimum Bregman Information (MBI) Approximation

As in Section 3.1, for a given co-clustering (ρ,γ) and a given co-clustering basis C , we use the
MBI principle to obtain the “best” approximation Ẑ. Recall that for block average co-clustering,
the search for the MBI solution was restricted to all Z ′ that preserved the co-cluster means. For a
general co-clustering basis C , the search space has to be appropriately generalized (or restricted)
such that Z′ preserves all the summary statistics relevant to C . Let SA denote a class of random
variables such that every Z ′ in the class satisfies the following linear constraints, that is,

SA = {Z′|E[Z|G] = E[Z′|G], ∀G ∈ C}. (17)

The reader may wish to compare the above definition (17) to the more specific definition (7) that
is applicable in the case of block co-clustering. It can be readily seen that (7) follows by assuming
that the co-clustering basis C = {{Û ,V̂}}.

We now select the random variable ẐA ∈ SA that has the minimum Bregman information as the
“best” approximation, that is,

ẐA ≡ argmin
Z′∈SA

Iφ(Z′). (18)

1939

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Coclustering Lagrange multipliers Approximation ẐA
basis C

C1 Λ∗
Û = −wÛ log

(
E[Z|Û]
E[Z]

)
, Λ∗

V̂ = −wV̂ log
(
E[Z|V̂]
E[Z]

)
E[Z|Û]×E[Z|V̂]

E[Z]

C2 Λ∗
Û ,V̂ = −wÛ ,V̂ log

(
E[Z|Û ,V̂]
E[Z]

)
E[Z|Û ,V̂]

C3 Λ∗
Û ,V̂ = −wÛ ,V̂ log

(
E[Z|Û ,V̂]
E[Z]

)
, Λ∗

U = −wU log
(
E[Z|U]
E[Z|Û]

)
E[Z|Û ,V̂]×E[Z|U]

E[Z|Û]

C4 Λ∗
Û ,V̂ = −wÛ ,V̂ log

(
E[Z|Û ,V̂]
E[Z]

)
, Λ∗

V = −wV log
(
E[Z|V]
E[Z|V̂]

)
E[Z|Û ,V̂]×E[Z|V]

E[Z|V̂]

C5 Λ∗
Û ,V̂ = −wÛ ,V̂ log

(
E[Z|Û ,V̂]
E[Z]

)
E[Z|Û ,V̂]×E[Z|U]×E[Z|V]

E[Z|Û]×E[Z|V̂]

Λ∗
U = −wU log

(
E[Z|U]
E[Z|Û]

)
, Λ∗

V = −wV log
(
E[Z|V]
E[Z|V̂]

)

C6 Λ∗
Û ,V = −wÛ ,V log

(
E[Z|Û ,V]

(E[Z]E[Z|Û ,V̂])1/2

)
E[Z|U,V̂]×E[Z|Û ,V]

E[Z|Û ,V̂]

Λ∗
U,V̂ = −wU,V̂ log

(
E[Z|U,V̂]

(E[Z]E[Z|Û ,V̂])1/2

)

Table 1: MBI solution and optimal Lagrange multipliers for I-Divergence.

The following theorem characterizes the solution to the MBI problem (18).

Theorem 4 For any random variable Z and a specified co-clustering basis C = {Gr}sr=1, the solu-
tion ẐA to (18) is given by

∇φ(ẐA) = ∇φ(E[Z])−
s

∑
r=1

Λ∗
Gr

wGr

, (19)

where wGr is the measure corresponding to Gr and {Λ∗
Gr
}sr=1 are the optimal Lagrange multipliers

corresponding to the set of linear constraints:

E[Z′|Gr] = E[Z|Gr], [r]s1.

In the above theorem, note that every instantiation of the random variables {Gr}sr=1 determines
a single linear constraint and corresponds to uniquely determined scalar values for the optimal
Lagrange multipliers {Λ∗

Gr
}sr=1, that is, Λ∗

Gr
is a deterministic function of Gr. Similarly, for each

instantiation of Gr, wGr equals the total measure associated with that particular instantiation, for
example, wû,v̂ = ∑

u:ρ(u)=û,v:γ(v)=v̂
wuv. Further, the fact that φ is a strictly convex function ensures that

∇φ is a one-to-one function so that (19) uniquely determines the approximation ẐA. A proof of the
above theorem is given in Appendix D.

For easy reference, in Tables 1-2, we present the optimal Lagrange multipliers9 and the MBI
solutions for I-divergence and squared Euclidean distance for each of the six co-clustering bases.
Note that the approximation ẐA is itself a (U,V) measurable random variable and the elements of
the corresponding matrix approximation ẐA can be obtained by instantiating ẐA for specific choices
ofU andV . From Table 1, we observe that in case of I-divergence and original Z taking values over
the probabilities of a joint distribution p(X ,Y), the approximation ẐA for the co-clustering basis
C5 is given by E[Z|Û ,V̂]E[Z|U]E[Z|V]

E[Z|Û]E[Z|V̂] which reduces to q(X ,Y) = p(X)p(Y)p(X̂ ,Ŷ)
p(X̂)p(Ŷ) (same as (3)) since

the marginal over the various row, column and co-cluster partitions are directly proportional to the

9. The Lagrange dual L(Λ) of Bregman information is concave in Λ for all bases, but strictly concave only for C2.
Hence, the multipliers shown in Tables 1 and 2 are only one of the possible maximizers of L(Λ) (for all the cases
except C2).

1940

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Coclustering Lagrange multipliers Approximation ẐA
basis C

C1 Λ∗
Û = −2wÛ (E[Z|Û]−E[Z]), E[Z|Û]+E[Z|V̂]−E[Z]
Λ∗
V̂ = −2wÛ (E[Z|V̂]−E[Z])

C2 Λ∗
Û ,V̂ = −2wÛ ,V̂ (E[Z|Û ,V̂]−E[Z]) E[Z|Û ,V̂]

C3 Λ∗
Û ,V̂ = −2wÛ ,V̂ (E[Z|Û ,V̂]−E[Z]), E[Z|Û ,V̂]+E[Z|U]−E[Z|Û]
Λ∗
U = −2wU (E[Z|U]−E[Z|Û])

C4 Λ∗
Û ,V̂ = −2wÛ ,V̂ (E[Z|Û ,V̂]−E[Z]), E[Z|Û ,V̂]+E[Z|V]−E[Z|V̂]
Λ∗
V = −2wV (E[Z|V]−E[Z|V̂])

C5 Λ∗
Û ,V̂ = −2wÛ ,V̂ (E[Z|Û ,V̂]−E[Z]) E[Z|Û ,V̂]+E[Z|U]+E[Z|V]
Λ∗
U = −2wU (E[Z|U]−E[Z|Û]) −E[Z|Û]−E[Z|V̂]
Λ∗
V = −2wV (E[Z|V]−E[Z|V̂])

C6 Λ∗
Û ,V = −2wÛ ,V (E[Z|Û ,V]− E[Z]

2 − E[Z|Û ,V̂]
2) E[Z|U,V̂]+E[Z|Û ,V]−E[Z|Û ,V̂]

Λ∗
U,V̂ = −2wU,V̂ (E[Z|U,V̂]− E[Z]

2 − E[Z|Û ,V̂]
2)

Table 2: MBI solution and optimal Lagrange multipliers for Squared Euclidean distance.

corresponding conditional expectations of Z. Further, the fact that q(X ,Y) is the minimum Bregman
information solution for KL-divergence under certain constraints is equivalent to Lemma 1, which
shows that it is the maximum entropy distribution under those constraints.

4.3 Co-clustering Problem Formulation

The expected Bregman divergence between the given random variable Z and the minimum Bregman
information solution Ẑ provides us with an elegant way to quantify the goodness of a co-clustering.
This expected Bregman divergence is also exactly equal to the loss in Bregman information due
to co-clustering as the following lemma shows. This equivalence provides another nice interpreta-
tion for the Bregman co-clustering formulation while generalizing the viewpoint presented in the
information-theoretic co-clustering formulation (1) (originally Lemma 2.1 of Dhillon et al., 2003b).

Lemma 6 For any random variable Z,

E[dφ(Z, Ẑ)] = Iφ(Z)− Iφ(Ẑ),

where Ẑ = ẐA defined in (18).

We are now ready to define the generalized co-clustering problem.

Definition 4 Given k, l, a Bregman divergence dφ, a random variable Z following a non-negative
measure w over the data matrix Z ∈ Sm×n, and a co-clustering basis C , we wish to find a co-
clustering (ρ!,γ!) that minimizes:

(ρ!,γ!) = argmin
(ρ,γ)

E[dφ(Z, Ẑ)] = argmin
(ρ,γ)

(Iφ(Z)− Iφ(Ẑ)) = argmax
(ρ,γ)

Iφ(Ẑ) , (20)

where Ẑ = argmin
Z′∈SA

Iφ(Z′) as defined in (18).

1941

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

The general problem is NP-hard by a reduction from the kmeans problem. Hence, it is difficult to
obtain a globally optimal solution efficiently. However, in Section 5, we prove that it is possible to
come up with an iterative update scheme that (a) monotonically decreases the objective function,
and (b) converges to a local minimum of the problem.

Example 1.F (I-Divergence) Continuing from Example 1.C, the Bregman co-clustering objective
function is given by E[Z log(Z/Ẑ)− Z + Ẑ] = E[Z log(Z/Ẑ)] since E[Z] = E[Ẑ] where Ẑ is the
minimum Bregman information solution from Table 1. Note that for the co-clustering basis C5 and
Z based on a joint distribution p(X ,Y), this reduces to KL(p||q) where q is the joint distribution
corresponding to the minimum Bregman solution indicating that (1) follows as a special case of
(20).

Example 2.F (Squared Euclidean Distance) Continuing from Example 2.C, the Bregman
co-clustering objective function is E[(Z− Ẑ)2] where Ẑ is the minimum Bregman information so-
lution from Table 2. Note that for the co-clustering basis C6, this reduces to E[(Z−E[Z|U,V̂]−
E[Z|Û ,V]+E[Z|Û ,V̂])2], which is equivalent to the squared residue objective function used in Cho
et al. (2004) and Cheng and Church (2000).

4.4 Optimality of the MBI Solution

We now present an analysis of the optimality of the MBI solution as the “best” reconstruction of the
original matrix given the row and column clustering and the summary statistics corresponding to any
of the co-clustering bases. In Section 3, we showed that the minimumBregman information solution
is the best reconstruction among all measurable functions of the preserved summary statistics, that
is, conditional expectations with respect to the co-clusters (Theorem 2). In this section, we present
a generalization of that result, applicable to all the co-clustering bases discussed above.

Ideally, we would like to demonstrate that the MBI solution minimizes the approximation er-
ror with respect to the original matrix among all reconstructions that correspond to measurable
functions of the available summary statistics. However, this property is not true for a general
co-clustering basis since the optimal reconstruction depends on the structure of the original ma-
trix, which is not available during the reconstruction process. For example, if the original ma-
trix admits a perfect additive decomposition with respect to some coclustering basis, for example,
Z = E[Z|Û] + E[Z|V̂]− E[Z] for basis C1, then the “best” reconstruction among all measurable
functions of the conditional expectation statistics is given by this additive decomposition itself ir-
respective of the choice of the Bregman divergence. From Table 1, one can readily see that this
solution is different from the MBI solution for I-divergence and basis C1 and in fact, it is different
from the MBI solution for all Bregman divergences other than squared Euclidean distance. There-
fore, instead of seeking the optimal reconstruction from the class of all measurable functions of
the available summary statistics, we focus on a special class of approximations that correspond to
additive models over the summary statistics.

Let SB denote the set of all matrices Z ′′ whose inverse image under ∇φ can be written as an
additive model over the summary statistics, that is,

SB =

{
Z′′

∣∣∣∣∣Z
′′ = (∇φ)−1

(
s

∑
r=1

gr(E[Z|Gr])

)}
, (21)

1942

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

where {gr}sr=1 are arbitrary functions measurable with respect to {Gr}sr=1. Note that unlike SA,
the set SB explicitly depends on the choice of the convex function φ. The reader may wish to
compare (9) for block average co-clustering with (21). Since SB is defined in terms of arbitrary
measurable functions, when there is only one conditional expectation to be preserved as in the case
of block average co-clustering, SB turns out to be the set of all possible measurable functions of that
conditional expectation.

Interestingly, SB can be alternatively understood from the perspective of Lagrange duality for
Bregman divergences. Following Della Pietra et al. (2001), consider the Bregman projection prob-
lem of minimizing dφ(p,q0) over p ∈ Rd such that p lies in a linear subspace determined by π and
a set of features F = { f j, [j]J1}, that is, 〈p, f j〉 = 〈π, f j〉, [j]J1. The dual of the problem turns out to
be one of minimizing dφ(π,q) over q, where q belongs to the dual space determined by q0, feature
set F , and Lagrange multipliers λ. Della Pietra et al. (2001) give a complete characterization of the
dual space as a Legendre-Bregman projection family Q(q0,F) of approximations q. By generaliz-
ing their analysis, one can show that SB is the Legendre-Bregman projection family corresponding
to the set of linear constraints determined by SA. Therefore, the Bregman duality and projection
results of Della Pietra et al. (2001) also apply to our setting. Related analyses have appeared in the
literature in the context of incremental learning of generalized entropy functionals (Lafferty, 1999),
convergence analysis of boosting algorithms (Collins et al., 2000), and game theoretic interpreta-
tion of Bayesian decision theory (Grünwald and Dawid, 2004). However, we present our analysis
using co-clustering semantics for ease of exposition. Further, our analysis leads to simpler proofs
compared to the general setting of Della Pietra et al. (2001).

Example 1.G (I-Divergence) When φ(z) = z logz− z, the Legendre transformation or the gradient
mapping turns out to be log-transformation, that is, ∇φ(z) = logz so that addition in the natural
parameter space corresponds to multiplication in the original expectation parameter space and gen-
eralized additive models in the natural parameter space lead to generalized multiplicative models.
The set SB in this case can, therefore, be characterized as the set of all reconstructions correspond-
ing to generalized multiplicative models, or in other words, products of arbitrary functions of the
conditional expectations, that is,

SB =

{
Z′′

∣∣∣∣∣Z
′′ =

s

∏
r=1

gr(E[Z|Gr])

}
,

where {gr(·)}sr=1 are arbitrary functions measurable with respect to {Gr}sr=1.

Example 2.G (Squared Euclidean Distance) When φ(z) = z2, the Legendre transformation or the
gradient mapping is the identity transformation, that is, ∇φ(z) = z so that natural parameter space is
identical to the original space. Therefore, SB is just the set of all reconstructions corresponding to
generalized additive models, or in other words, additive combinations of arbitrary functions of the
conditional expectations, that is,

SB =

{
Z′′

∣∣∣∣∣Z
′′ =

s

∑
r=1

gr(E[Z|Gr])

}
,

where {gr(·)}sr=1 are arbitrary functions measurable with respect to {Gr}sr=1.

1943

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Among this class of reconstructions SB, let ẐB be the best approximation to Z in terms of Breg-
man divergence, that is,

ẐB = argmin
Z′′∈SB

E[dφ(Z,Z′′)] . (22)

As Corollary 2 below shows, the best reconstruction ẐB among all elements of SB is exactly identical
to ẐA, that is, the MBI solution among all elements of SA, which preserve the relevant conditional
expectations. In order to arrive at this result, we make use of a projection theorem (Theorem 5)
that characterizes the backward and forward Bregman projections of elements of SB onto the set SA
and vice versa. This projection theorem, in turn, readily follows from the observation (Lemma 7)
that the expected Bregman divergence between any Z ′ ∈ SA and any Z′′ ∈ SB follows a Pythagorean
decomposition involving the MBI solution ẐA, that is, it can be expressed as the sum of expected
Bregman divergences between the pairs (Z ′, ẐA), and (ẐA,Z′′).

Lemma 7 For any Z′ ∈ SA as in (17) and any Z ′′ ∈ SB as in (21) and ẐA as in (18)

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′)].

A proof of the above lemma is given in Appendix D.10 Using Lemma 7, we can now obtain the
following projection theorem, which states that the MBI solution is the forward Bregman projection
of any element of SA onto the set SB and the backward Bregman projection of any element of SB
onto the set SA.

Theorem 5 (Projection Theorem) For any Z ′ ∈ SA as in (17) and any Z ′′ ∈ SB as in (21) and ẐA
as in (18), the following two statements hold true:

(a) ẐA = argmin
Z′∈SA

E[dφ(Z′,Z′′)], ∀Z′′ ∈ SB,

(b) ẐA = argmin
Z′′∈SB

E[dφ(Z′,Z′′)], ∀Z′ ∈ SA.

Since the original Z is also an element of SA, we observe that ẐA is the forward Bregman projec-
tion of Z onto SB, which leads to the equivalence between ẐA and ẐB, which is the best reconstruction
in SB.

Corollary 2 For ẐA and ẐB given by (18) and (22), we have

ẐA = ẐB ≡ Ẑ .

Proof Follows from the definition of ẐB and the projection theorem (Theorem 5).
Corollary 2 gives a concrete justification for the use of the minimum Bregman information

solution as the best matrix reconstruction for a given co-clustering since it is the optimum approx-
imation among a large class of possible reconstructions obtained from the summary statistics. It is

10. The result can be derived by an application of Della Pietra et al. (2001, Proposition 3.2). We give a different proof,
appropriate for the co-clustering setting.

1944

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

straightforward to see that the corresponding result for block average co-clustering (Corollary 1) is
a special case of this result. This equivalence result is also closely related to Csiszar’s axiomatic
justification (Csiszár, 1991) of the least squares and maximum entropy principles for linear inverse
problems based on sum consistency and product consistency respectively. More specifically, the sum
and product consistency conditions along with certain regularity, locality and fixed point assump-
tions11 restrict the best reconstruction Ẑ to generalized additive and multiplicative combinations of
the observed linear functionals (i.e., conditional expectations in our case) respectively. Hence, the
best approximation Ẑ ∈ SB where SB is defined as in Examples 1.G and 2.G. On the other hand, the
constraint of preserving the observed linear functionals (i.e., conditional expectations) ensures that
Ẑ ∈ SA as well. Since SA

TSB = {Ẑ}, it follows that Ẑ is the MBI solution itself. In particular, the
best reconstruction satisfying sum consistency is the least squares solution while the one satisfying
product consistency is the maximum entropy solution.

Example 1.H (I-divergence) From Example 1.E, we observe that when φ(z) = z logz− z, the MBI
solution ẐA is identical to the maximum entropy solution that preserves the conditional expecta-
tions. Further from Example 1.G, we note that the set SB consists of generalized multiplicative
combinations of the conditional expectations. Hence, from the projection theorem, it follows that
the maximum entropy solution is the only generalized multiplicative solution that preserves the rel-
evant conditional expectations. It is also the best reconstruction of Z (or any other Z ′ ∈ SA) among
all multiplicative combinations of arbitrary functions of the conditional expectations.

Example 2.H (Squared Euclidean Distance) From Example 2.E, we observe that when φ(z) = z2,
the MBI solution ẐA is identical to the standard least squares solution that preserves the conditional
expectations. Further from Example 2.G, we note that the set SB consists of generalized additive
combinations of the conditional expectations. Hence, from the projection theorem, it follows that
the least squares solution is the only generalized additive solution that preserves the relevant condi-
tional expectations. It is also the best reconstruction of Z (or any other Z ′ ∈ SA) among all additive
combinations of arbitrary functions of the conditional expectations.

5. A Meta Algorithm

In this section, we shall develop an alternating minimization scheme for the general Bregman co-
clustering problem (20). Our scheme shall serve as a meta algorithm from which a number of
special cases (both previously known and unknown) can be derived.

Throughout this section, let us suppose that the underlying measure w, the Bregman divergence
dφ, the data matrix Z, number of row clusters k, number of column clusters l, and the co-clustering
basis C are specified and fixed.

5.1 Intuition and Plan of Attack

We first outline the essence of our meta algorithm.

Step 1: Start with an arbitrary row and column clustering, say, (ρ0,γ0). Set t = 0.

Step 2: Repeat either of the following steps till convergence:

11. Please refer to Csiszár (1991) for details.

1945

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Step 2A: With respect to co-clustering (ρt ,γt), compute the matrix approximation Ẑt by solv-
ing the MBI problem (18).

Step 2B: Hold the column clustering γt fixed, and find a better row co-clustering, say, ρt+1.
Set γt+1 = γt . Set t = t+1.

Step 2C: Hold the row clustering ρt+1 fixed, and find a better column co-clustering, say,
γt+1. Set ρt+1 = ρt . Set t = t+1.

We shall prove that this meta algorithm converges in a finite number of steps to a local minima.12
As is clear from the outline above, a key step in our algorithm will involve finding a solution of the
MBI problem (18). Further, since the number of possible row (or column) clusterings is exponential
in the number of rows (or columns), it is also essential to have an efficient means for determining
the best row (or column) clustering for a fixed choice of the column (or row) clustering and the MBI
solution. Fortunately for the co-clustering problem, the expected distortion measure that quantifies
the quality of a row (or column) clustering admits a separability property that allows independent
optimal updates of the cluster assignments of every row (or column). We discuss this property in
more detail below.

5.2 A Separability Property

We begin by considering the quality of a candidate row (or column) clustering ρ in Step 2B (or step
2C) for a fixed choice of column (or row) clustering and MBI solution parameters. Since our ob-
jective is to obtain an accurate reconstruction of the original matrix, a natural choice is to consider
the expected Bregman distortion between the original Z and a reconstruction Z̃ based on the row (or
column) clustering ρ while keeping everything else fixed. To characterize this reconstruction, we
employ the functional form for the MBI solution Ẑ given in Theorem 4. In general, the formula in
Theorem 4 provides a unique reconstruction Z̃ for any set of Lagrange multipliers Λ (not necessarily
optimal) and (ρ,γ), since ∇φ(·) is a monotonic, hence invertible, function (Azoury and Warmuth,
2001; Banerjee et al., 2005b). To underscore the dependence of Z̃ on the Lagrange multipliers, we
shall use the notation Z̃ = ζ(ρ,γ,Λ) = (∇φ)−1(∇φ(E[Z])−∑s

r=1ΛGr/wGr). The quality of a candi-
date row (or column) clustering can now be quantified in terms of the accuracy of the corresponding
Z̃ where the other two arguments, that is, the column (or row) clustering and Lagrange multipliers
are fixed. In particular, Ẑ = ζ(ρ,γ,Λ∗) is the approximation corresponding to the optimal Lagrange
multipliers Λ∗.

Given a set of (not necessarily optimal) Lagrange multipliers Λ, we now consider updating the
current co-cluster assignments (ρ,γ) in order to improve the current approximation Z̃ = ζ(ρ,γ,Λ).
Although Z̃ looks complex, the fact that ∇φ is a one-one invertible function ensures that each ele-
ment z̃uv in the matrix Z̃ corresponding to Z̃ depends only on (u,ρ(u),v,γ(v)) for a given Λ. Hence,
for any given Λ, there exists a function ξ such that the point-wise distortion dφ(zuv, z̃uv) can be ex-
pressed as ξ(u,ρ(u),v,γ(v)), that is, it depends only on the corresponding row/column and cluster
assignments. Since the expected distortion E[dφ(Z, Z̃)] is weighted sum of the point wise distortions,
it satisfies a nice separability property that allows the current row (or column) assignments to be effi-
ciently updated. In particular, for any given Λ, the expected distortion E[dφ(Z, Z̃)] can be expressed

12. In fact, any ordering of Steps 2B and 2C gives the same guarantees. Alternatively, one can run Steps 2A and 2C for
some iterations followed by Steps 2A and 2B. We will establish that each step can only improve the quality of the
current approximation. Hence, any ordering is sufficient to reach a local minimum.

1946

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

as the sum of contributions from the rows (or columns) where each row (or column) contribution
only depends on the row and its current cluster assignment. Note that this separability property
is similar to that of the kmeans objective function, which can be also be expressed as the sum of
terms corresponding to each point and its cluster assignment. As in the case of kmeans, the sepa-
rability property allows independent updates of the cluster assignments of every row (or column).
Further, for a fixed Λ and γ, since the total approximation error is the sum over the approximation
errors due to each row (or column) and its cluster assignment, greedy cluster assignments of the
individual rows result in a globally optimal row clustering ρ for the given Λ and γ. An equivalent
statement is true for column assignments for a given Λ and ρ. The following lemma formally states
this separability property. The proof simply follows from definitions, and is hence omitted.

Lemma 8 For a fixed co-clustering (ρ,γ) and a fixed set of (not necessarily optimal) Lagrange
multipliers Λ, and Z̃ = ζ(ρ,γ,Λ), we can write:

E[dφ(Z, Z̃)] = EU [EV |U [ξ(U,ρ(U),V,γ(V))]] = EV [EU |V [ξ(U,ρ(U),V,γ(V))]] ,

where ξ(U,ρ(U),V,γ(V)) = dφ(Z, Z̃).

5.3 Updating Row and Column Clusters

We will now present the details of our plan in Section 5.1. First, we will demonstrate how to update
row clustering (or column clustering) with respect to a fixed column clustering (or row cluster-
ing) and a fixed set of Lagrange multipliers. Then, we will find the optimal Lagrange multipliers
corresponding to the minimum Bregman solution of the updated co-clustering.

Suppose we are in Step 2A outlined in Section 5.1. Updating the row clustering keeping the
column clustering and the Lagrange multipliers fixed leads to a new value for the Bregman co-
clustering objective function. Now making use of the separability property in Lemma 8, we can
efficiently optimize the contribution of each row assignment to the overall objective function to
obtain the following row cluster update step.

Lemma 9 Let ρt+1 be defined as

ρt+1(u) = argmin
g:[g]k1

EV |u[ξ(u,g,V,γt(V))], [u]m1 ,

and let Z̃t = ζ(ρt+1,γt ,Λ∗t). Then,

E[dφ(Z, Z̃t]) ≤ E[dφ(Z, Ẑt)].

where Ẑt = ζ(ρt ,γt ,Λ∗t).

A similar argument applies to step 2B where we seek to update the column clustering keeping
the row clustering fixed.

Lemma 10 Let γt+1 be defined as

γt+1(v) = argmin
h:[h]l1

EU |v[ξ(U,ρt(U),v,h)] [v]n1,

1947

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

and let Z̃t = ζ(ρt ,γt+1,Λ∗t). Then,

E[dφ(Z, Z̃t)] ≤ E[dφ(Z, Ẑt)].

where Ẑt = ζ(ρt ,γt ,Λ∗t).

We now consider step 2C. So far, we have only considered updating the row (or column) as-
signments keeping the Lagrange multipliers fixed. After such updates, the approximation Z̃t =
ζ(ρt+1,γt+1,Λ∗t) is closer to the original matrix Z than the earlier minimum Bregman information
solution Ẑt , but the Lagrange multipliers Λ∗t are not optimal, in general. In other words, the approx-
imation Z̃t is not a minimum Bregman information solution. For the given co-clustering (ρt+1,γt+1),
let Λ∗t+1 be the optimal Lagrange multipliers for the corresponding minimum Bregman information
problem in (18). The corresponding matrix approximation Ẑt+1 = ζ(ρt+1,γt+1,Λ∗t+1) is a minimum
Bregman information solution. As the following lemma shows, this approximation is better than the
current approximation Z̃t .

Lemma 11 Let Ẑt+1 = ζ(ρt+1,γt+1,Λ∗t+1) be the minimum Bregman information solution corre-
sponding to (ρt+1,γt+1) with Λ∗t+1 being the optimal Lagrange multipliers for (18). Then,

E[dφ(Z, Ẑt+1) ≤ E[dφ(Z, Z̃t)],

where Z̃t = ζ(ρt+1,γt+1,Λ∗t).

Proof By definition,

E[dφ(Z, Ẑt+1)] = E[φ(Z)−φ(Ẑt+1)−〈Z− Ẑt+1,∇φ(Ẑt+1)〉]
(a)
= E[φ(Z)−φ(Ẑt+1)]
= E[dφ(Z, Z̃t)]−E[dφ(Ẑt+1, Z̃t)]−E[〈Z− Ẑt+1,∇φ(Z̃t)〉]
(b)
= E[dφ(Z, Z̃t)]−E[dφ(Ẑt+1, Z̃t)]
≤ E[dφ(Z, Z̃t)] ,

where (a) follows since Ẑt+1 belongs to both ΓA and ΓB so that taking conditional expectations over
E[Z|G],G ∈ C makes the last term zero and (b) follows since ∇φ(Z̃t) is a summation of terms in-
volving E[Z] and ΛGr , [r]s1, and E[Ẑt+1|Gr] = E[Z|Gr], thus making the last term vanish.

5.4 The Algorithm

The meta algorithm for generalized Bregman co-clustering (see Algorithm 2) is a concrete “im-
plementation” of our plan in Section 5.1. Comparing this algorithm with the solution for block
average co-clustering (Algorithm 1), one can readily see that both the algorithms are based on an
identical alternate minimization strategy and Algorithm 1 is in fact a special case of Algorithm 2
when the MBI solution corresponds to the co-cluster means. We now establish that our algorithm is
guaranteed to achieve local optimality.

1948

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Algorithm 2 Bregman Co-clustering Algorithm
Input: Matrix Z ⊆ Sm×n, probability measure w, Bregman divergence dφ : S× int(S) #→ R+, num. of row
clusters l, num. of column clusters k, co-clustering basis C .

Output: Co-clustering (ρ∗,γ∗) that (locally) optimize the objective function in (20).
Method:

{Initialize ρ, γ }
Start with an arbitrary co-clustering (ρ,γ)
repeat

{Step A: Update Minimum Bregman Information Solution (Λ∗)}
Λ∗ ← argmax

Λ
L(Λ) where L(·) is Lagrange dual of the MBI problem (18).

{Step B: Update Row Clusters (ρ)}
for u= 1 to m do
ρ(u) ← argmin

g:[g]k1

EV |u[ξ(u,g,V,γ(V))]

where ξ(U,ρ′(U),V,γ(V)) = dφ(Z, Z̃), Z̃ = ζ(ρ′,γ,Λ∗) for any ρ′
end for
{Step C: Update Column Clusters (γ)}
for v= 1 to n do
γ(v) ← argmin

h:[h]l1

EU |v[ξ(U,ρ(U),v,h)]

where ξ(U,ρ(U),V,γ′(V)) = dφ(Z, Z̃), Z̃ = ζ(ρ,γ′,Λ∗) for any γ′
end for

until convergence
return (ρ,γ)

Theorem 6 The general Bregman co-clustering algorithm (Algorithm 2) converges to a solution
that is locally optimal for the Bregman co-clustering problem (20), that is, the objective function
cannot be improved by changing either the row clustering, the column clustering or the Lagrange
multipliers.

Proof From Lemmas 9, 10, and 11, it follows that updating the row clustering ρ, the column cluster-
ing γ and the Lagrange multipliers Λ one at a time decreases the objective function of the Bregman
co-clustering problem. Hence, the Bregman co-clustering algorithm (Algorithm 2) which proceeds
by alternately updating ρ→ γ→ Λ monotonically decreases the Bregman co-clustering objective
function. Since the number of distinct co-clusterings is finite, the algorithm is guaranteed to con-
verge to a locally optimal solution.

Note that updating Λ is the same as obtaining the MBI solution. When the Bregman divergence
is I-divergence or squared deviation, the minimum Bregman information problem has an analytic
closed form solution as shown in Tables 1 and 2. Hence, it is straightforward to obtain the row and
column cluster update steps and implement these Bregman co-clustering algorithms. The resulting
algorithms involve computational effort that is linear per iteration in the size of the data and are
hence scalable. In general, the MBI problem has a unique solution since it involves a strictly convex
objective function and linear constraints. However, the solution need not have a closed form and has
to be obtained numerically using iterative projection algorithms, which in turn involves solving non-

1949

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

linear systems of equations. In the general case, the Bregman co-clustering algorithm will include
such iterative projection procedures as a sub-routine.

Details on several different instantiations of the meta-algorithm (using matrix notation) for cer-
tain specific choices of Bregman divergences and co-clustering bases are given in Appendix E. In
particular, exact algorithms for (i) basis C2 and all Bregman divergences, (ii) Euclidean distance and
all co-clustering bases, and (iii) I-divergence and all co-clustering bases have been worked out. The
MBI problem has a closed form solution in all of the above three cases. Further, as a representative
of the general case of arbitrary Bregman divergences and co-clustering bases, we show an instanti-
ation of the meta-algorithm to Itakura-Saito distance, for which the MBI problem does not have a
closed form solution.

5.5 Iterative Algorithms for the Minimum Bregman Information Problem

An important part of the Bregman co-clustering algorithm involves solving the MBI problem. While
there are closed form solutions for some important choices of Bregman divergences and summary
statistics, the general case leads to a convex programming problem and does not have a closed form
solution. In this section, we discuss two simple iterative algorithms to solve the MBI problem. The
first one is Bregman’s algorithm (Bregman, 1967; Censor and Zenios, 1998) and the second is an
iterative scaling method (Della Pietra et al., 2001).

Recall that the MBI solution Ẑ for a co-clustering basis C is given by

Ẑ = argmin
Z′|E[Z′|C]=E[Z|C], ∀C∈C

E[dφ(Z′,E[Z′])] .

For notational convenience, let z, z′ and z̄ denote vectorized versions of the original matrix Z, the
tentative solution matrix Z′, and a constant matrix consisting of the expectation E[Z] respectively.
Then z,z′ and z̄ are all vectors of dimension mn. Let A denote the c×mn matrix corresponding to
the linear constraints E[Z ′|G] = E[Z|G], ∀G ∈ C , where c is the total number of constraints, so that
the constraints can be written as Az′ = Az. The vectorized version ẑ of the MBI solution can now
be written as

ẑ = argmin
z′|Az′=Az

mn

∑
ι=1

wιdφ(z′ι, z̄ι). (23)

Since a convex combination of Bregman divergences is again a Bregman divergence, the objective
function in (23) can be readily expressed as the Bregman divergence between the vectors z′ and z̄
derived from the convex function φw(z′) = ∑mn

ι=1wιφ(z′ι), that is,

ẑ = argmin
z′|Az′=Az

dφw(z′, z̄).

Since φw is the convex function induced on the vectorized matrices by the original convex function
φ, we ignore this distinction and use φ to denote φw as well when it is clear that the function is being
applied to matrices.

5.5.1 BREGMAN’S ALGORITHM (BREGMAN, 1967)

Bregman’s algorithm requires that the initial guess z′0 belong to the set {z′|z′ ∈ int(dom(φ)), ∇φ(z′)=
ATx,x ∈ Rc}. The unconstrained global optimum z∗ belongs to this set since ∇φ(z∗) = 0 which is

1950

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

ATx for x= 0 ∈ Rc. Hence, we use z∗ as the initial guess, that is,

z′0 = z∗ . (24)

Subsequent iterative updates are obtained by solving the following set of equations:

∇φ(z′t+1) = ∇φ(z′t)+λATi , (25)
Ai z′t+1 = Ai z , (26)

where Ai is the ith row of A and λ ∈ R. The solution to the above set of equations can be considered
as the Bregman projection of the current tentative solution z′t onto the hyperplane {z′|Aiz′ = Aiz}.
Due to the strict convexity of φ, the update equations, under proper regularity conditions (Bregman,
1967), uniquely determine z′t+1 and λ. However, the equations are non-linear and one needs to use
appropriate numerical techniques to solve for z′t+1.

The update equations (25) and (26) are based on only one linear constraint. For convergence
to the optimum, the updates must touch upon all the constraints following a schedule known as
relaxation control (Bregman, 1967; Bauschke and Borowein, 1997). For simplicity, we consider up-
dates based on a cyclic ordering of the constraints, where all constraints are considered one after the
other. The cyclic ordering schedule is sufficient to guarantee convergence to the optimum solution,
although more general schedules are admissible (Bauschke and Borowein, 1997).

5.5.2 ITERATIVE SCALING (DELLA PIETRA ET AL., 2001)

We now discuss an auxiliary function-based iterative scaling method to solve the problem. The
method makes use of the Legendre-Bregman projection Lφ(z′t ,ATλ), which is the “backward”
Bregman projection of z′t onto the hyperplane determined by {z′|z′TATλ= zTATλ}, so that

z′t+1 = Lφ(z′,ATλ) = (∇φ)−1(∇φ(z′)+ATλ)
⇒ ∇φ(z′t+1) = ∇φ(z′)+ATλ . (27)

The similarity between the Legendre-Bregman projection as in (27) and the first update equation
(25) is due to the fact that both are Bregman projections of a point onto a hyperplane. However,
Bregman’s algorithm considers one constraint at a time, whereas iterative scaling works with all the
constraints simultaneously.

As before, we set the initial guess z′0 = z∗. Using the constraint matrixA, we selectN j ≥∑c
i=1Ai j

for j = 1, . . . ,mn. Then, the iterative update of the tentative solution is given by (27), where λ ∈ Rc

and each component λi satisfies

mn

∑
j=1

Ai j Lφ(z′t j, si jN jλi) = Aiz , (28)

where si j = sign(Ai j) and φ operates on the matrix elements.
As before, the system of equations (27) and (28) is non-linear and one needs to use proper

numerical methods to obtain the updates. However, there is an important difference between the
iterative scaling updates and the updates of Bregman’s algorithm. Since (28) is in terms of each
component of λ, one can obtain λ entirely from (28). This λ can then be used in (27) to get z′t+1. In
other words, analogous to the EM algorithm, iterative scaling allows one to alternate updates to λ

1951

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

and z′ till convergence. This is not possible in case of Bregman’s algorithmwhere both the equations
(25) and (26) have to be solved simultaneously. Note that both the algorithms require regularity
conditions to guarantee convergence. The reader is referred to the original papers (Bregman, 1967;
Della Pietra et al., 2001) for details.

6. Experiments

In recent years, co-clustering has been successfully applied to a number of application domains such
as text mining (Dhillon et al., 2003b; Gao et al., 2005; Takamura and Matsumoto, 2003), image and
video analysis (Zhong et al., 2004; Qiu, 2004; Guan et al., 2005; Cai et al., 2005), natural language
processing (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998), bio-informatics (Cheng
and Church, 2000; Cho et al., 2004; Kluger et al., 2003) as well as other applications (Carrasco
et al., 2003). In particular, there exist a number of empirical studies that illustrate the usefulness of
particular instances of the Bregman co-clustering framework that we describe in this paper. Hence,
instead of extensively evaluating our methodology on various application domains, we present a
brief summary of existing experimental results. Further, we present a comparative empirical study
of the different co-clustering bases as well as the divergences discussed in this paper. Finally,
we highlight new applications such as missing value prediction and co-clustering of matrices with
categorical elements.

6.1 Existing Applications and Results

In this section, we present a brief overview of some of the existing applications of co-clustering.

6.1.1 TEXT CLUSTERING

Text clustering is one of the first domains where a special case of the Bregman co-clustering al-
gorithm, namely the information-theoretic co-clustering algorithm based on I-divergence and basis
C5, has been successfully applied. The key task in text clustering is to identify document clusters.
Since most of the information in a document can be captured using a bag-of-words model, a con-
venient vector-space representation is in the form of word-document co-occurrence matrices with
documents corresponding to rows and words corresponding to columns. However, it is often dif-
ficult to obtain good document clusters by directly clustering the matrix rows due to the inherent
sparsity and high dimensionality (i.e., large number of words). Co-clustering, on the other hand, per-
forms an implicit dimensionality reduction by clustering the words and hence, is more effective and
efficient for identifying document clusters. Since word-document co-occurrence matrices can be in-
terpreted as estimates of unnormalized joint distribution, an appropriate choice for the loss function
is the I-divergence cost used by Dhillon et al. (2003b) and Takamura and Matsumoto (2003). Pre-
vious empirical evaluations on some of the popular text data sets (NG20 and CLASSIC3) (Dhillon
et al., 2003b) reveal that this choice of co-clustering algorithm provides performance comparable
to the best text-clustering algorithms while yielding superior results than single-sided information-
theoretic clustering. In particular, there is a significant improvement in the micro-averaged precision
values with respect to single-sided clustering; See Dhillon et al. (2003b) for more details.

1952

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

6.1.2 NATURAL LANGUAGE PROCESSING

Natural language processing is yet another domain where co-clustering has been widely employed
as a key intermediate technique for obtaining an informative partitioning of both the language to-
kens and contexts, which in turn facilitates improved performance on various tasks such as named-
entity recognition (Freitag, 2004), automatic construction of lexicon (Rohwer and Freitag, 2004)
and prepositional phrase attachment disambiguation (Li and Abe, 1998). In all these applications,
the relevant structural information in an unlabeled text corpus can be effectively captured in terms
of the distributional properties of appropriately defined language tokens with respect to the con-
texts in which they occur, for example, k-neighborhood of tokens on either side, verb preceding
the token, etc. Hence, one could expect improved performance by leveraging the token-context
co-occurrence matrices. However, for most natural language processing applications, the number
of tokens and contexts is extremely large, making it infeasible to directly employ computationally
intensive learning algorithms. Co-clustering alleviates this problem by producing a highly informa-
tive, but reduced cluster-based representation for both tokens and contexts, thus making it possible
to incorporate additional information from unlabeled text. As in the case of text clustering, the nor-
malized token-context co-occurrence matrices can be interpreted as a joint distribution and hence,
most of the co-clustering methods employed in natural processing applications are based on the
KL-divergence loss function, or equivalently, the loss in mutual information using co-clustering
basis C5. Empirical studies (Freitag, 2004; Rohwer and Freitag, 2004; Li and Abe, 1998) demon-
strate that the use of co-clustering as an intermediate step makes it straightforward to leverage the
additional information in unlabeled repositories and leads to substantial performance improvement
for a number of natural language processing applications with negligible manual supervision. In
particular, Freitag (2004) shows that including additional features based on co-clustering resulted
in better entity recognition accuracy (statistically significant for certain entity types) on the MUC 6
named entity data set, while Li and Abe (1998) demonstrate that predictive methods based on the
conditional probabilities derived from co-clustering noun and verb phrases provide better accuracy
than state-of-the-art rule-based methods on the prepositional phrase attachment task.

6.1.3 BIO-INFORMATICS

In recent years, co-clustering methods are being increasingly employed for analyzing biological
data as well, in particular for studying microarray data consisting of gene expression matrices where
rows corresponds to genes and columns correspond to experimental conditions. The fundamental
problem in this setting is to identify groups of similar genes and similar conditions based on their
expression levels. To address this problem, a number of co-clustering configurations (e.g., overlap-
ping, partitional) and loss functions based on additive and multiplicative models have been proposed
(Madeira and Oliveira, 2004). These methods have been shown to be quite effective for identifying
highly correlated genes and conditions. In particular, a special case of the Bregman co-clustering
(Cheng and Church, 2000; Cho et al., 2004) corresponding to squared loss function and basis C6 has
been shown to provide high quality co-clusters on biological data sets involving a variety of human
cancer data sets.

6.1.4 VIDEO/IMAGE/SPEECH CONTENT ANALYSIS

There have also been a number of interesting applications of co-clustering in areas such as video,
image and speech content analysis for performing unsupervised categorization of video segments

1953

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

(Zhong et al., 2004), images (Qiu, 2004; Guan et al., 2005) and auditory scenes (Cai et al., 2005).
Each of these settings involves two large sets of entities related to each other through co-occurrence
matrices—(i) auditory scenes and audio effects in case of speech content analysis, (ii) fixed length
video segments and prototype images for video content recognition, and (iii) images and low level
features in case of image recognition. Further, as in the case of text clustering, information-theoretic
co-clustering methods based on preserving mutual information effectively handle the sparsity and
high dimensionality problems to provide high quality categorization of the dual sets of entities.
Empirical results on auditory scene and image categorization show improved classification accuracy
as compared to single-sided clustering methods.

6.2 Choice of Bregman Divergence and Co-clustering Basis

We now empirically study the appropriateness of the choice of the Bregman divergence and the
co-clustering basis for specific tasks. When the choice of the Bregman divergence and the speci-
fied statistics capture the natural structure of the data, it is possible to obtain a more accurate low
parameter representation of the original data. To illustrate this idea, we perform co-clustering on
synthetic data matrices produced using certain generative models as well as on real-life matrices—
(i) word-document matrices encountered in text analysis, and (ii) user-movie rating matrices for
recommender systems.

6.2.1 SYNTHETIC DATA MATRICES

First, to study the dependence on the Bregman divergence, we generated multiple (10) sets of three
classes of artificial 50×50 matricesMEuc,MIdiv, andMIS, using generative models corresponding
to three different choices of Bregman divergences—squared Euclidean distance, I-divergence, and
Itakura-Saito distance. It can be shown that the appropriate generative models in this case respec-
tively correspond to mixtures of Gaussian, Poisson and exponential distributions centered at the
co-cluster means.13 In the generative model, we used 5 row clusters and 5 column clusters. The
means of each of the co-clusters were chosen to be identical (all positive values) for all the three
classes of matrices. Table 3 shows the results (averaged over 10 sets) of co-clustering these matrices
using the Bregman co-clustering algorithms corresponding to the basis C2 and the three choices of
Bregman divergence with k = l = 5. In each case, the co-clustering algorithms were run 10 times
and the reported quality corresponds to the best run in terms of the objective function. Since the
co-clustering objective functions based on the different divergences are not comparable and some-
times not even well-defined,14 we measure the co-clustering quality in terms of the average of the
normalized mutual information (Strehl and Ghosh, 2002) between the clustering and true class la-
bels over both the rows and the columns. The standard-deviations reported in the table correspond
to the deviations over multiple sets of matrices. From the table, it is clear that the co-clustering
quality (i.e., row and column clustering), as indicated by the normalized mutual information with
true labels, is better when the Bregman divergence used in the co-clustering algorithm matches that
of the generative model.

13. The reader is referred to Banerjee et al. (2005b) for a connection between Bregman divergences and exponential
family distributions. The data sets were generated based on extensions of the results obtained by Banerjee et al.
(2005b).

14. For example, I-divergence and Itakura-Saito costs are not defined for approximation matrices with negative values.

1954

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

NMI for Co-clustering
Matrix Squared Euclidean Distance I-divergence Itakura-Saito distance
MEuc 0.812±0.029 0.685±0.041 0.637±0.044
MIdiv 0.645±0.037 0.689±0.035 0.621±0.042
MIS 0.586±0.082 0.622±0.047 0.636±0.039

Table 3: Normalized mutual information (NMI) between the true labels and the clusters obtained
using different Bregman divergences, basis C2 and k = l = 5. Results indicate better per-
formance when the Bregman divergence matches the generative model.

Matrix C1 C2 C3 C4 C5 C6
M1 6.10±0.13 6.02±0.13 5.80±0.15 5.69±0.14 5.40±0.12 4.89±0.10
M2 22.62±1.81 6.32±0.94 6.15±0.91 6.16±0.95 5.99±0.89 5.12±0.23
M3 22.39±1.87 12.84±1.06 6.76±1.24 8.82±1.15 6.57±1.03 5.04±0.29
M4 23.28±1.93 12.98±1.11 8.87±1.04 6.19±0.98 6.42±0.96 5.08±0.31
M5 24.53±2.08 14.19±1.28 10.31±1.22 11.96±1.18 6.14±0.99 5.29±0.25
M6 44.41±2.75 33.34±1.79 29.18±2.05 31.26±1.99 25.74±1.26 5.01±0.33

Table 4: Approximation errors on synthetic matrices for different co-clustering bases using squared
Euclidean distance and k= l = 5. The results indicate that the performance saturates when
the complexity of the co-clustering basis matches that of the generative model.

In order to study how the approximation error depends on the choice of co-clustering basis,
we created multiple (10) sets of six 50× 50 data matrices, M1,M2, . . . , and M6 using generative
models based on the Gaussian family, but with increasing levels of complexity corresponding to the
various co-clustering bases. This was done by first obtaining the minimum Bregman information
approximations of an arbitrary 50×50 matrix corresponding to the various co-clustering bases and
then adding Gaussian noise to each of the approximations. We perform Bregman co-clustering
on each of these matrices using squared Euclidean distance and k = l = 5. Table 4 presents the
approximation error obtained for each of these matrices using the various co-clustering bases. From
the table, it is clear that for relatively simple matrices such asM1 andM2, reasonably low parameter
bases such as C1 or C2 suffice, whereas for more complex matrices such asM6, high parameter co-
clustering bases such as C6 are necessary. Figures 3 and 4 show images of the original data matrix
M2 and M6, and the reconstructions obtained using the different co-clustering bases. The figures
reinforce the observation we make from the table. In particular, in Figure 3, one can visually infer
that the reconstruction of the matrix M2 obtained using C2 is reasonably accurate and cannot be
improved much using more complex co-clustering bases whereas, in Figure 4, the reconstruction of
M6 obtained using C6 is significantly better than that obtained using the other co-clustering bases,
thus clearly demonstrating that the choice of co-clustering basis should match the generative model
in order to obtain an accurate approximation.

6.2.2 WORD-DOCUMENT MATRICES

As mentioned earlier, co-clustering has been successfully applied to text analysis (Dhillon et al.,
2003b). Since several results comparing specific co-clustering schemes to alternative text clustering
approaches have already been studied, we focus on the relative performance of the different co-
clustering bases introduced in this paper. We use the CLASSIC3 data set with 3891 documents
represented in the bag-of-words model with 4666 words. We fix the number of document clusters
to be three, which is the number of document classes in the data set. Figure 5 shows the relative
performance (averaged over 10 runs) of all the six co-clustering schemes for a varying number

1955

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Matrix M2

Basis C1 Basis C2 Basis C3

Basis C4 Basis C5 Basis C6

Figure 3: Co-clustering-based approximation of a simple 50× 50 matrix M2 using various co-
clustering bases, squared distortion and k = l = 5. While the matrix is too complex
for C1, all bases from C2 onwards get an accurate approximation. Note that all matrices
are shown with a consistent permutation (which the co-clustering finds) for easy visual
comparison.

Matrix M6

Basis C1 Basis C2 Basis C3

Basis C4 Basis C5 Basis C6

Figure 4: Co-clustering-based approximation of a 50× 50 matrix M6 using various co-clustering
bases, squared distortion and k = l = 5. Since the given matrix has a fairly complicated
structure, only C6 gets an accurate approximation. All other schemes have more errors,
with the simple bases (C1 and C2) having high errors. As before, the matrices are consis-
tently permuted for visualization. The co-clustering algorithm also finds this permutation.

of word clusters and for two Bregman divergences—squared Euclidean distance and I-divergence.
Performance is evaluated by the normalized mutual information of the document clusters with the
true labels of the documents (Strehl and Ghosh, 2002). As in many of the other experiments, we note
that co-clustering bases C2 and C5 are suitable for both divergences. In Figure 6, we compare the
performances of C2 and C5 for both divergences, using the spherical k-means (SPKmeans) algorithm

1956

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Word Clusters

No
rm

al
ize

d
M

ut
ua

l I
nf

or
m

at
io

n
(N

M
I)

Coclustering results on Classic3 (number of doc clusters=3)

Basis C1, Euc
Basis C2, Euc
Basis C3, Euc
Basis C4, Euc
Basis C5, Euc
Basis C6, Euc
Basis C1, Idiv
Basis C2, Idiv
Basis C3, Idiv
Basis C4, Idiv
Basis C5, Idiv
Basis C6, Idiv

Figure 5: Co-clustering results fromCLASSIC3—6 bases and 2 divergences. Bases C2−C5 perform
very well in getting back the hidden true labels. Basis C1 performs the worst as it has
access to minimal amount of information. Interestingly, basis C6, in spite of having the
maximal information, performs poorly according to NMI. Possibly C6 is overfitting, that
is, finding some additional structure in the data that goes beyond what is needed to get
the labels right. There is no significant difference between the two loss functions used.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Word Clusters

No
rm

al
ize

d
M

ut
ua

l I
nf

or
m

at
io

n
(N

M
I)

Coclustering results on Classic3 (number of doc clusters=3)

Basis C2, Euc
Basis C5, Euc
Basis C2, Idiv
Basis C5, Idiv
SPKMeans

Figure 6: Co-clustering on CLASSIC3—Bases C2 and C5 using squared Euclidean distance and I-
divergence compared with SPKmeans. The co-clustering results compare favorably to
SPKmeans.

(Dhillon and Modha, 2001) as a benchmark. We note that the co-clustering algorithms, in particular
the ones based on I-divergence, have very good performance for the entire range of word clusters.
Our results are in agreement with similar results reported in the literature (Dhillon et al., 2003b).

1957

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

0 1000 2000 3000 4000 5000 6000
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of parameters

Av
er

ag
e

Sq
ua

re
d

Er
ro

r

Basis C1
Basis C2
Basis C3
Basis C4
Basis C5
Basis C6

Figure 7: Approximation error (average squared error) on MovieLens data using squared Euclidean
distance-based co-clustering. As expected, the error decreases with increasing number of
parameters for all bases. For each basis, the number of parameters varies as a function of
the number of row and column clusters that the co-clustering algorithm uses.

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of parameters

Av
er

ag
e

I−
di

ve
rg

en
ce

Basis C1
Basis C2
Basis C3
Basis C4
Basis C5
Basis C6

Figure 8: Approximation error (average I-divergence) on MovieLens data using I-divergence-based
co-clustering. The error decreases with increasing number of parameters.

1958

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Bregman divergence k = l = 1 k = l = 2 k = l = 12 k = l = 32 k = l = 64 k = l = 75
Squared Euclidean distance 0.7004 0.6816 0.6048 0.5547 0.4451 0.4052

I-divergence 0.7006 0.6824 0.6029 0.5573 0.4492 0.4080

Table 5: Mean absolute error (MAE) for reconstructing MovieLens data (all values) using co-
clustering methods based on squared Euclidean distance and I-divergence and co-
clustering basis C5.

6.2.3 USER-MOVIE RATING MATRICES

The other real-life data domain that we studied is that of movie recommender systems. The data
matrices in this case consist of user ratings for various movies. For our experiments, we used the
MovieLens data set (GroupLens) consisting of 100,000 ratings in the range 0-5 corresponding to
943 users and 1682 movies. To figure out the appropriate divergence and co-clustering basis for
this data, we performed experiments using both squared Euclidean distance and I-divergence and
various co-clustering bases with varying number of row and column clusters. For each case, the co-
clustering was performed assuming uniform weights on the known ratings and zero weights for the
unknown ones. The known ratings were then reconstructed using the MBI principle. Figures 7 and 8
show how the approximation error varies with the number of parameters for different co-clustering
bases using squared Euclidean distance and I-divergence cost functions respectively. In the case
of squared Euclidean distance-based co-clustering, we observe that C2 provides the best accuracy
when an extremely low parameter approximation is required while C2-C5 are more suitable for
moderately low parameter sizes. In the case of I-divergence-based co-clustering, C5 is better than
the other bases over a wide range of parameter sizes. Further as Table 5 shows, both choices of
Bregman divergence, that is, squared Euclidean distance and I-divergence, seem to provide similar
performance in terms of the mean absolute error for C5.

6.3 Novel Applications of Bregman Co-clustering

We now briefly describe two novel applications of our Bregman co-clustering framework and illus-
trate these with specific real-life examples.

6.3.1 MISSING VALUE PREDICTION

Prediction of missing values is an important task encountered in a number of real-world domains
such as recommender systems, bioinformatics, etc. For our experiments, we consider a collaborative
filtering-based recommender system where the main task is to predict the preference of a given user
for a given item using known preferences of the other users. One of the earliest and most popular
approaches to solve this problem is by computing the Pearson correlation of each user with all other
users based on the known preferences and predict the unknown rating by proportionately combining
all the users’ ratings. Based on the observation that the known ratings correspond to elements in a
matrix and the missing ratings can be predicted using suitable low parameter approximations of the
ratings matrix, a number of other collaborative filtering approaches based on matrix approximation
methods such as SVD (Sarwar et al., 2000), and PLSI (Hofmann, 2004) have been proposed in
recent years.

Following the same general intuition, we propose a mathematically well-motivated solution
based on co-clustering. The main idea is to (i) assume that the ratings matrix has a low parameter
structure involving properties of user and item clusters, (ii) deduce the relevant parameters using the

1959

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

SVD NNMF CORR C2 C5
0.7721±0.0164 0.7636±0.0186 0.8214±0.0201 0.8733±0.197 0.7608±0.0211

Table 6: Mean absolute error on MovieLens data set for various collaborative filtering approaches.
Number of row and column clusters for co-clustering (based on squared Euclidean distance
and basis C5) and rank of SVD and NNMF is set to 5 and the number of neighbors in the
correlation method was set to 50.

available ratings so that the desired loss function is minimized, and (iii) use a matrix reconstruction
based on this structure for predicting the missing values. More specifically, in our co-clustering
approach, we assume a low parameter structure by using the MBI principle so that the parame-
ter learning can be readily performed using the Bregman co-clustering algorithm with a suitably
weighted loss function (weight is uniform for known ratings, 0 otherwise). The missing values are
then predicted using the reconstructed approximate matrix. Based on the results in Section 7.2.3,
we consider low parameter structures corresponding to the bases C2 and C5. In case of C2, the
use of the MBI principle implies that the user-item rating depends equals the average rating in the
co-cluster whereas in C5, the user-item rating is a combination of the user-bias, item-bias and the
average rating in the co-cluster.

For our experiments, we used the MovieLens data set (GroupLens) described earlier and the
results reported are averaged over multiple runs of five-fold cross-validation with 80% of ratings as
the training data and 20% of the ratings as the test data in each run.

Table 6 shows the mean absolute error (MAE) obtained using various existing collaborative
filtering approaches (Sarwar et al., 2000; Hofmann, 2004; Resnick et al., 1994) as well as the co-
clustering approach based on squared Euclidean distance. From the table, we note that the co-
clustering method based on C5 provides accuracy comparable to that of the SVD and NNMF-based
methods. The co-clustering approach also has significant benefits in terms of computational effort
as the training time is linear in the number of known ratings and the missing value prediction is a
constant time operation unlike in other approaches. The number of parameters in the compressed
representation is also much lower in the case of co-clustering as compared to SVD, NNMF and
correlation methods when the rank or neighborhood size is of the same order as the number of row
and column clusters.

6.3.2 CO-CLUSTERING CATEGORICAL DATA MATRICES

The second data analysis task we consider involves co-clustering data matrices consisting of cate-
gorical values from a finite set. Examples of such data include (i) market-basket data matrices with
users as rows and products as columns and the entries corresponding to preferred brands, and (ii)
genomic data matrices with rows corresponding to patients and columns corresponding to various
positions/loci of gene sequences (also referred to as single nucleotide polymorphisms) and matrix
entries indicating the occupying allele (usually only 4 possible alleles for each location) (Lin and
Altman, 2004). Though the matrix elements take a finite number of values, there is no natural order-
ing, which makes it impossible to directly map them to the set of realsR (except in the case of binary
valued data) in order to perform co-clustering as in the case of co-occurrence matrices. However, it
is straightforward to represent each of these categorical values using discrete distributions over the
set of all possible values. For example, when the matrix elements take values in {A,B,C,D}, then
A can be represented as the distribution [1,0,0,0] while B can be represented as [0,1,0,0] and so
on. With this representation, each element of the data matrix is a member of the r-simplex where

1960

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Num. clusters Co-clustering Code Summary Statistics Code Matrix Code Total
(Co-clustering Cost)

k = l = 1 0 32.4 4973.3±30.8 5005.7±30.8
k = l = 5 232.2 425.8±4.7 2695.4±47.6 3353.4±52.3
k = l = 50 564.4 5000 0 5564.4

Table 7: Description length (in bits) for encoding matrix information. Summary statistic code is the
number of bits for encoding the counts of the four possible values in each co-cluster given
the co-clustering whereas the matrix code is description length of the actual matrix given
the summary statistics and the co-clustering. Co-clustering was performed using relative
entropy cost function and basis C2.

r denotes the number of possible categorical values. Defining the domain S of the matrix elements
to be the r-simplex, we can now proceed to perform co-clustering on the categorical data matrix
by choosing an appropriate Bregman divergence over S and a suitable co-clustering basis. Since
elements of S correspond to probability distributions, a natural choice of distortion measure is the
relative entropy (or KL-divergence) over the r-simplex. The co-clustering objective function in this
case is given by

J(ρ,γ) =
m

∑
u=1

n

∑
v=1

KL(zuv||ẑuv)

where Z = [zuv] is the original matrix, Ẑ = [ẑuv] is the MBI solution based on the co-clustering,
and the elements zuv and ẑuv belong to the r-simplex. This co-clustering objective function is also
exactly equal to the minimum achievable description length (in bits) required for a lossless encoding
of the original matrix Z given the MBI solution Ẑ. Hence, assuming that the cost of describing
the co-clustering and the summary statistics depends only on the pre-specified number of row and
column clusters, the Bregman co-clustering algorithm corresponding to the relative entropy-based
cost function automatically seeks to find an optimal (minimum length) lossless code for the matrix.
A recent paper (Chakrabarti et al., 2004) follows a similar co-clustering based approach using binary
relative entropy and basis C2 for performing lossless coding of binary valued matrices.

To demonstrate the effectiveness of the co-clustering approach described above, we generated
10 artificial 50×50 matrices consisting of four categorical values {A,B,C,D}. For all the matrices,
we assumed generative models corresponding to multinomial distributions over {A,B,C,D} and co-
clustering basis C2 with k = l = 5. The elements in each co-cluster were generated using a single
multinomial distribution with a purity of about 0.8, that is, the most likely categorical value had
a probability of 0.8 with the rest all being equally likely with probability 0.067. Each of these
matrices was then co-clustered using the relative entropy-based cost function on a 4-simplex with
k= l = 5. Table 7 shows a comparison of the description lengths for various choices of k and l using
a three-step encoding protocol where we first encode the co-clustering, then the summary statistics,
that is, counts of {A,B,C,D} in each co-cluster, and finally the original matrix given the summary
statistics and the co-clustering.

For encoding the co-clustering, we employ a naive scheme that involves specifying the row and
column clusters for each row and column respectively. Since there are k row clusters and l column
clusters, the total number of bits required is given by m log2 k+ n log2 l, as shown in the second
column of Table 7. Given this co-clustering, we then proceed to encode the summary statistics,
that is, counts of {A,B,C,D}, corresponding to each co-cluster. First, we observe that for each
co-cluster, the four counts have to be non-negative integers that sum up to the total size of the

1961

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

particular co-cluster. Since the co-clustering already specifies the total size of all the co-clusters, it is
sufficient to specify any three of the four counts. Further, information about the count of a particular
categorical value reduces the number of possible choices for the rest of the counts. In particular, if
mû and nv̂ denote the number of rows and columns in row cluster û and column cluster v̂ respectively,
then the number of bits for encoding the first count (say that of A) is given by log2(1+mûnv̂) while
the cost for the second count (say that of B) is given by log2(1+mûnv̂−NA) where NA is the count
of A. Similarly, the encoding cost for the third count is given by log2(1+mûnv̂−NA−NB) where
NB denotes the count of B. Thus, the total number of bits for encoding the summary statistics in this
case is given by15

k

∑̂
u=1

l

∑̂
v=1

(log2(1+mûnv̂)+ log2(1+mûnv̂−NA)+ log2(1+mûnv̂−NA−NB)) .

The third column in Table 7 shows the above encoding cost for different choices of k and l. When
k= l = 50, the co-clusters are all singleton sets so that it is sufficient to specify the single categorical
value in each co-cluster. Since there are 4 possible values and mn co-clusters, the encoding cost in
this case equals 2mn= 5000 bits.

The final step is to specify the original matrix given the summary statistics and the co-clustering
and as mentioned earlier, the description length in this case is identical to the co-clustering objective
function, which is shown in the fourth column of Table 7. When k= l = 50, the description length is
zero since the summary statistics fully specify the original matrix. From the table, we observe that
with an optimal choice of row and column clusters, one can obtain an efficient lossless compression
of matrix consisting of finite categorical values. On examining the resulting co-clusters, we find
that most of them are quite homogeneous as well.

7. Related Work

We have discussed several related methods that have appeared in the literature throughout the pa-
per. We have also discussed existing as well as novel applications of co-clustering in Section 6.
In this section, we briefly review further connections and contrast our work to the existing litera-
ture. Our current work is related to several active areas of research, namely co-clustering, matrix
approximation, learning based on Bregman divergences and convex optimization. In particular, our
formulation of a general co-clustering problem was motivated by earlier work on co-clustering and
matrix approximation (Dhillon et al., 2003b).

Co-clustering has been a topic of much interest in the recent years because of its applications
to problems such as microarray analysis (Cheng and Church, 2000; Cho et al., 2004), natural lan-
guage processing (Li and Abe, 1998; Freitag, 2004; Rohwer and Freitag, 2004), recommender sys-
tems (Hofmann, 2004) and text, image and speech analysis (Dhillon et al., 2003b; Takamura and
Matsumoto, 2003; Qiu, 2004; Cai et al., 2005). Currently, there exist many formulations of the
co-clustering problem such as the hierarchical co-clustering model (Hartigan, 1972), the sequen-
tial bi-clustering model (Cheng and Church, 2000) that involves finding the best co-clusters one
at a time, and the spectral co-clustering model (Dhillon, 2001; Kluger et al., 2003) that involves
partitioning a bipartite graph with vertices corresponding to the rows and columns. The reader

15. It is possible to have a more efficient encoding scheme by choosing an ordering of the categorical values {A,B,C,D}
that is likely to lead to the lowest number of bits, but does not make a significant difference in the current experiment
as all the categorical values have nearly equal counts over the entire matrix.

1962

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

should refer to Madeira and Oliveira (2004) for an extensive survey on various co-clustering models
proposed in literature and their applications. Recently, there have also been other clustering for-
mulations (Bekkerman et al., 2005; Gao et al., 2005) that are closely connected to co-clustering,
but involve simultaneous clustering of multiple sets of related entities. In our current work, we
focus on the partitional co-clustering formulation, first introduced by Hartigan (1972), where the
objective is to partition the data matrix into k× l non-overlapping co-clusters where the quality of
co-clusters is determined in terms of an appropriate cost function. Recently, quite a few algorithms
(Cho et al., 2004; Dhillon et al., 2003b; Li and Abe, 1998; Li, 2005) have been proposed to address
the above partitional problem for various cost functions based on squared Euclidean distance and
I-divergence. One of the objectives of the current work is to generalize these algorithms to a large
set of loss functions based on Bregman divergences.

Partitional co-clustering can also be readily viewed as an efficient low parameter matrix ap-
proximation technique as each homogeneous co-cluster can be accurately approximated by a small
number of parameters. In fact, the flexibility to approximate a given data matrix in terms of a wide
range of loss functions subject to a large class of constraints makes the co-clustering methods more
widely applicable than traditional matrix approximation methods based on singular value decom-
position. In particular, classical singular value decomposition (SVD) (Papadimitriou et al., 1998)
based approaches to matrix approximation are quite often inappropriate for certain data matrices
such as co-occurrence and contingency tables as singular vectors can have negative entries and the
contributions of the component vectors in the approximation matrix are not localized. Both these
issues make the interpretation of SVD-based approximations difficult, which is necessary for data
mining purposes. To address these and related issues, techniques involving non-negativity con-
straints (Lee and Seung, 2001) using KL-divergence as the approximation loss function (Hofmann
and Puzicha, 1998; Lee and Seung, 2001) have been proposed. However, these approaches apply
to special types of matrices such as doubly stochastic and fully non-negative matrices. A general
formulation that is both interpretable and applicable to various classes of matrices is often necessary
for a number of real-life applications and the proposed Bregman co-clustering formulation attempts
to address this requirement.

Co-clustering involving constraints on conditional expectations gives rise to theoretically ele-
gant models with wide range of practical applicability since key summary statistics can be naturally
preserved. Several co-clustering algorithms (Dhillon et al., 2003b; Cho et al., 2004) that have been
proposed in the recent years can be derived from conditional expectation-based constraints. Condi-
tional expectation constrained co-clustering, along with its demonstrated connection to the widely
used maximum entropy principle (Jaynes, 1957; Cover and Thomas, 1991) and conditional inde-
pendence based models (Hofmann and Puzicha, 1998), provides a strong foundation for a unified
analysis and design of unsupervised learning algorithms.

Recent research (Azoury and Warmuth, 2001; Banerjee et al., 2005b) has shown that several
results involving the KL-divergence and the squared Euclidean distance are in fact based on certain
convexity properties and hence, generalize to all Bregman divergences. This intuition motivated
us to consider co-clustering based on Bregman divergences. Further, the similarities between the
maximum entropy and the least squares principles (Csiszár, 1991) prompted us to explore a more
general minimum Bregman information principle for all Bregman divergences.

It is important to note that most clustering and co-clustering techniques based on the alternate
minimization scheme can be obtained as special cases of the Bregman co-clustering algorithm. For
example, information-theoretic co-clustering (Dhillon et al., 2003b) corresponds to the case where

1963

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

the constraint set is C5 and the Bregman divergence is KL-divergence. Similarly, the minimum
sum-squared residue co-clustering algorithms (Cho et al., 2004) correspond to the cases where the
constraint sets are C2 and C6 respectively while the Bregman divergence is the squared Euclidean
distance. The one-sided Bregman clustering algorithms (Banerjee et al., 2005b) are also a special
case with l = n.

8. Discussion

In this paper, we have presented a general theory of partitional Bregman co-clustering. Our analysis
leads to a unified treatment of several known co-clustering methods that are being successfully used
in the literature. Further, the analysis gives rise to an entire class of new co-clustering algorithms
based on particular choices of the Bregman divergence and the set of summary statistics to be
preserved. We have provided a meta-algorithm for the general case, and have demonstrated how
to instantiate the algorithm for specific choices of divergences and statistics. There are several
potential benefits to our formulation and analysis:

• Since our co-clustering formulation allows loss functions corresponding to all Bregman diver-
gences, the technique now becomes applicable to practically all types of data matrices. The
particular choice of the divergence function can be determined by (i) the data type, for exam-
ple, if the data corresponds to joint probability distributions, relative entropy is an appropriate
choice as the divergence function; (ii) the appropriate noise model, for example, Euclidean
distance is appropriate for Gaussian noise, Itakura-Saito is appropriate for Poisson noise, etc.;
or (iii) domain knowledge/requirements, for example, sparsity of the original matrix can be
preserved using I-divergence.

• Our formulation allows approximation models of various complexities depending on the
statistics that are constrained to be preserved. There are two key advantages to this flexi-
bility. First, preserving summary statistics of the data may be crucial for some applications as
well as important for subsequent analysis. Since the statistics preserving property is intrinsic
to our approach, it is readily applicable to domains where summary statistics are important.
Second, the multiple sets of preserved statistics may enable discovery of different structural
patterns in the data.

• We have proposed and extensively used the minimum Bregman information (MBI) principle
as a generalization of the maximum entropy principle. Since the approximations obtained
from the MBI principle extend some of the desirable properties of the maximum entropy
models to settings where a Bregman divergence other than the relative entropy is more ap-
propriate, we get a new class of statistical modeling techniques that are applicable to more
general settings. The MBI principle has potential applications beyond the co-clustering ap-
proximations considered in this paper.

• While the central focus of this paper has been to obtain good co-clusterings using matrix
approximation error to evaluate goodness, as a by-product, we have obtained a general class
of fast matrix approximation techniques with several desirable properties. In particular, the
approximation techniques can work with general divergence functions and preserve desirable
statistical properties of the original data. The approximations are based on co-clustering, and
are expected to have different behavior from the spectral methods typically employed for

1964

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

matrix approximations. Further, since the methods are iterative and do not involve eigenvalue
computations, they are significantly faster than existing methods and hence, more appropriate
for large data matrices.

In this paper, our analysis of co-clustering has focused on data matrices that represent the re-
lationship between two entities. Many emerging application domains collect data on relationships
between multiple entities, which can be represented as a tensor. Our proposed co-clustering tech-
nique can be extended to this general setting involving tensors unlike other methods that are specific
to matrices. It will be worthwhile to investigate how the extensions of co-clustering to tensor data
perform compared to existing techniques. In particular, several practical problem domains have
known statistical dependency relationships between the several entities of interest. One of the key
challenges of an extension of co-clustering to such multi-entity relational domains is to come up
with efficient algorithms that take advantage of the statistical relationships and maintain succinct
representations of the entities and their relationships.

Acknowledgments

We would like to thank Hyuk Cho and the reviewers for their detailed comments and suggestions
that significantly improved the paper. We would like to thank John Lafferty and an anonymous
reviewer for pointing out the connection of our projection results to existing literature on Bregman
duality. The research was partly supported by NSF grants IIS-0307792, CCF-0431257, III-0713142,
NSF Career Award ACI-0093404, and NSF ITR award IIS-0325116.

Appendix A. Information Theoretic Co-clustering

Proof of Lemma 1 Let p′ be any distribution that satisfies (4) and (5), and let q be as in (3).
Consider

KL(p′||q) = ∑̂
x
∑̂
y
∑
x∈x̂
∑
y∈ŷ

p′(x,y) log
p′(x,y)
q(x,y)

= −H(p′)−∑
x̂
∑
ŷ
∑
x∈x̂
∑
y∈ŷ

p′(x,y)(log p(x̂, ŷ)+ log p(x|x̂)+ log p(y|ŷ))

= −H(p′)−∑
x̂
∑
ŷ
p(x̂, ŷ) log p(x̂, ŷ)−∑

x̂
∑
x∈x̂

p(x) log p(x|x̂)−∑
ŷ
∑
y∈ŷ

p(y) log p(y|ŷ)

= −H(p′)−∑
x̂
∑
ŷ
p(x̂, ŷ)

(

∑
x∈x̂

p(x|x̂)
)(

∑
y∈ŷ

p(y|ŷ)
)
log p(x̂, ŷ)

−∑
x̂
∑
x∈x̂

q(x) log p(x|x̂)−∑
ŷ
∑
y∈cy

q(y) log p(y|ŷ)

1965

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

= −H(p′)−∑
x̂
∑
ŷ
∑
x∈x̂
∑
y∈ŷ

p(x|x̂)p(x̂, ŷ)p(y|ŷ) log p(x̂, ŷ)

−∑
x̂
∑
x∈x̂

(

∑
ŷ
∑
y∈ŷ

q(x,y)

)
log p(x|x̂)−∑

ŷ
∑
y∈ŷ

(

∑
x̂
∑
x∈x̂

q(x,y)

)
log p(y|ŷ)

= −H(p′)−∑
x̂
∑
ŷ
∑
x∈x̂
∑
y∈ŷ

q(x,y) log(p(x̂, ŷ)p(x|x̂)p(y|ŷ))

= −H(p′)+H(q).

Since KL(p′||q) ≥ 0, we have H(q) ≥ H(p′).

Appendix B. Some Properties of Bregman Divergences

We present some useful properties of Bregman divergences and Bregman information that we use
in our analysis in the paper.

Lemma 12 (Bregman 1967; Censor and Zenios 1998) For any Bregman divergence dφ :
S× int(S) (→ R+ and z1 ∈ S and z2,z3 ∈ ri(S), the following three-point property holds:

dφ(z1,z3) = dφ(z1,z2)+dφ(z2,z3)+ 〈z1− z2,∇φ(z2)−∇φ(z3)〉 .

Theorem 7 (Banerjee et al. 2005a) For any Bregman divergence dφ : S× ri(S) (→ R+, random
variable Z ∼ w(z), z ∈ Z ⊆ S and sub-σ algebra G for Z, the conditional expectation E[Z|G] is
the optimal predictor of Z among all G measurable random variables in terms of Bregman diver-
gence, that is,

E[Z|G] = argmin
Z′∈G

dφ(Z,Z′) .

Lemma 13 (Banerjee et al. 2005b) For any Bregman divergence dφ : S× ri(S) (→ R+, random
variable Z ∼ w(z), z ∈ Z ⊆ S and any constant c ∈ int(S), the following decomposition holds:

E[dφ(Z,c)] = E[dφ(Z,E[Z])]+dφ(E[Z],c) .

Lemma 14 (Banerjee et al. 2005b) For any Bregman divergence dφ : S× ri(S) (→ R+ and random
variable Z ∼ w(z), z ∈ Z ⊆ S, the optimal constant predictor of Z in terms of Bregman divergence
is its expectation, that is,

E[Z] = argmin
c

E[dφ(Z,c)] .

1966

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Appendix C. Block Average Co-clustering

Proof of Theorem 1 Consider the Lagrangian J(Z ′,Λ) of the MBI problem:

J(Z′,Λ) = Iφ(Z′)+∑
û,v̂
λûv̂(E[Z′|û, v̂]−E[Z|û, v̂])

(a)
= E[φ(Z′)]−φ(E[Z′])+∑

û,v̂
λûv̂(E[Z′|û, v̂]−E[Z|û, v̂])

(b)
= E[φ(Z′)]−φ(E[Z])+∑̂

u,v̂
λûv̂(E[Z′|û, v̂]−E[Z|û, v̂]) ,

where λûv̂ is the Lagrange multiplier corresponding to the constraint E[Z ′|û, v̂]−E[Z|û, v̂] = 0 Fur-
ther, (a) follows from Lemma 2 and (b) follows since E[Z ′] = EÛ ,V̂ [E[Z′|Û ,V̂]] = E[Z].

Rewriting the Lagrangian in terms of matrix elements {{z′uv}mu=1}nv=1 corresponding to Z ′, we
obtain

J(Z′,Λ) =
m

∑
u=1

n

∑
v=1

wuv(φ(z′uv)−φ(z̄))+∑
û,v̂
λûv̂

1
wûv̂ ∑

u:ρ(u)=û
γ(v)=v̂

wuv(z′uv− zuv) , (29)

where wûv̂ = ∑u:ρ(u)=û,v:γ(v)=v̂wuv and z̄= ∑m
u=1∑

n
v=1wuvz′uv = ∑m

u=1∑
n
v=1wuvzuv.

To obtain the optimal solution ẐA, we consider the first order necessary conditions, that is, set
the partial derivatives with respect to the matrix elements and the Lagrange multipliers. Taking
partial derivatives with respect to λû,v̂, we obtain

1
wûv̂ ∑

u:ρ(u)=û
γ(v)=v̂

wuv(z′uv− zuv) = 0 ∀û, v̂, (30)

that is, E[Z|û, v̂] = E[Z′|û, v̂] for all [û]k1 and [v̂]l1.
Now, setting partial derivatives of (29) with respect to z′uv equal to 0, we get

wuv∇φ(z′uv)−wuv∇φ(z̄)+λûv̂
wuv
wûv̂

= 0 ,

where û = ρ(u) and v̂ = γ(v). Since wuv ∈ R+ and z̄ = E[Z] = E[Z′], the optimal solution Ẑ = ẐA
has the form

ẑuv = ∇φ(−1)
(
∇φ(E[Z])− λ∗ûv̂

wûv̂

)
, û= ρ(u), v̂= γ(v), (31)

where λ∗ûv̂ corresponds to the optimal Lagrange multiplier. Note that the right hand side is constant
for a given (û, v̂). Substituting (31) into (30) gives us

E[Z|û, v̂] = ∇φ(−1)
(
∇φ(E[Z])− λ∗ûv̂

wûv̂

)
.

Hence, the only solution satisfying the first order necessary conditions is ẑuv = E[Z|û, v̂], ∀u,v, that
is, ẐA = E[Z|Û ,V̂]. The existence and uniqueness of ẐA follow from the strict convexity of φ.

1967

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Proof of Lemma 3 Using the three point property (Lemma 12) and taking expectations, for any
Z′ ∈ SA and Z′′ ∈ SB, we have

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′)+E[〈Z′− ẐA,∇φ(ẐA)〉]−E[〈Z′− ẐA,∇φ(Z′′)〉] .

We now argue that the last two terms in the above expression vanish to give the desired result. From
Theorem 1, we note that ẐA = E[Z|Û ,V̂] so that

E[〈Z′− ẐA,∇φ(ẐA)] = EÛ ,V̂ [〈E[Z′|Û ,V̂]−E[ẐA|Û ,V̂],∇φ(ẐA)〉] = 0 ,

since ẐA is a constant given (Û ,V̂) and has the same co-cluster means as Z ′ ∈ SA.
To show that the last term E[〈Z ′− ẐA,∇φ(Z′′)〉] also vanishes, we note that for any Z ′′ ∈ SB,

∇φ(Z′′) = g(E[Z|Û ,V̂]) for some deterministic function g so that

E[〈Z′− ẐA,∇φ(Z′′)〉] = E[〈Z′− ẐA,g(E[Z|Û ,V̂])〉]
= EÛ ,V̂ [〈(E[Z′|Û ,V̂]−E[ẐA|Û ,V̂]),g(E[Z|Û ,V̂])〉] = 0 ,

since ẐA and Z′ both belong to SA and hence, have the same co-cluster means.

Proof of Theorem 2 From Lemma 7, we observe that for any Z ′ ∈ SA and Z′′ ∈ SB,

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′) .

Hence, for a given Z ′′ ∈ SB and any Z′ ∈ SA, E[dφ(Z′,Z′′)]≥ E[dφ(ẐA,Z′′)], with equality only when
Z′ = ẐA. Since ẐA ∈ SA, this implies that

ẐA = argmin
Z′∈SA

E[dφ(Z′,Z′′)], ∀Z′′ ∈ SB .

Similarly, for a given Z ′ ∈ SA and any Z′′ ∈ SA, E[dφ(Z′,Z′′)] ≥ E[dφ(Z′, ẐA)] with equality only
when Z′′ = ẐA. Since ẐA ∈ SB as well, we obtain the second part of the result, that is,

ẐA = argmin
Z′′∈SB

E[dφ(Z′,Z′′)], ∀Z′ ∈ SA .

Proof of Lemma 5 By definition,

E[dφ(Z, Ẑnew)] = E[φ(Z)−φ(Ẑnew)−〈Z− Ẑnew,∇φ(Ẑnew)〉]
(a)
= E[φ(Z)−φ(Ẑnew)]
= E[φ(Z)−φ(Z̃)−〈Z− Z̃,∇φ(Z̃)〉]−E[φ(Ẑnew)−φ(Z̃)−〈Z− Z̃,∇φ(Z̃)〉]
= E[dφ(Z, Z̃)]−E[dφ(Ẑnew, Z̃)]+E[〈Z− Ẑnew,∇φ(Z̃)〉]
(b)
= E[dφ(Z, Z̃)]−E[dφ(Ẑnew, Z̃)]
≤ E[dφ(Z, Z̃)] ,

where (a) follows since Ẑnew ∈ SA and Ẑnew ∈ SB so that taking conditional expectations over
E[Z|Û ,V̂] makes the last term zero and (b) follows since ∇φ(Z̃) remains unchanged given (Û ,V̂)
corresponding to Ẑnew, and E[Ẑnew|Û ,V̂] = E[Z|Û ,V̂], thus making the last term vanish.

1968

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Appendix D. Analysis of the General Case

Proof of Theorem 3 In order to identify the various matrix approximation schemes, we determine
the subsets C ⊆ Γ2 that satisfy conditions (a) and (b). First, observe that E[Z|U /0,V/0] = E[Z] and
E[Z|U,V] = Z. Since E[Z] = E[Z|U /0,V/0] can be obtained from every other conditional expectation
E[Z|C],C ∈ Γ2, and Z = E[Z|U,V] determines every other conditional expectation, condition (b)
implies that the pairs {U /0,V/0} and {U,V} cannot occur in combination with any other. As these
pairs do not contain Û or V̂ , we only need to consider combinations of the remaining members of
Γ2.

Further, we note that if there are two pairs G1,G2 ∈ C , G1 /= G2 such that Û ∈ G1 and Û ∈ G2,
then either E[Z|G1] subsumes E[Z|G2] or vice versa depending on the granularity of the column
random variables in G1 and G2. A similar observation holds for V̂ . Hence, condition (b) implies
that each non-trivial combination C ⊆ Γ2 should contain exactly one pair (possibly the same) that
contains Û and V̂ . Using the above observation, we enumerate the various possible cases as follows:

case 1: {Û ,V/0} ∈ C . C should also contain a pair containing V̂ , which can only be {U /0,V̂} since
every other eligible pair ∈ Γ2 uniquely determines {Û ,V/0} so that inclusion of any other pair
leads to a violation of condition (b). Therefore, the only possible combination in this case is
{{Û ,V/0},{U/0,V̂}}.

case 2: {Û ,V̂} ∈ C . Since condition (a) is already satisfied, we only need to identify the pairs in
Γ2 that can be included in C without violating condition (b), that is, pairs for which the
row random variable is of higher granularity than Û and the column random variable is of
lower granularity than V̂ or vice versa, which leads to two possibilities—{U,V/0} and {U/0,V}.
Hence, there are four combinations corresponding to the cases where we include neither of
the pairs, exactly one of the pairs and both of them, that is,

{{Û ,V̂}}, {{Û ,V̂},{U},{V}}, {{Û ,V̂},{U,V/0}}, and {{Û ,V̂},{U/0,V}}.

case 3: {Û ,V} ∈ C . C should also contain a pair containing V̂ , which can only be {U,V̂} since ev-
ery other eligible pair ∈ Γ2 is subsumed by {Û ,V}. Therefore, the only possible combination
in this case is {{Û ,V},{U,V̂}}.

Ignoring U /0 and V/0 since they are constant random variables and putting together all the different
possible bases, we obtain the desired result.

Proof of Theorem 4 Consider the Lagrangian J(Z ′,Λ) of the MBI problem:

J(Z′,Λ) = Iφ(Z′)+
s

∑
r=1

EGr

[
ΛGr

wGr
(E[Z′|Gr]−E[Z|Gr])

]

= E[φ(Z′)]−φ(E[Z′])+
s

∑
r=1

EGr

[
ΛGr

wGr
(E[Z′|Gr]−E[Z|Gr])

]
,

where ΛGr is a deterministic function of the random variable Gr and equals the appropriate La-
grange multiplier when Gr is specified. The Lagrange dual, L(Λ) = infZ′ J(Z′,Λ), is concave in Λ.
By maximizing the Lagrange dual, we get the optimal Lagrange multipliers, that is, Λ∗ = {Λ∗

Gr
} =

1969

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

argmaxΛL(Λ). Substituting Λ∗ into the first order necessary conditions corresponding to the mini-
mizer ẐA, we get

∇

(
E[φ(ẐA)]−φ(E[ẐA]) +

s

∑
r=1

EGr

[
Λ∗

Gr

wGr

(E[ẐA|Gr]−E[Z|Gr])

])
= 0,

=⇒ ∇φ(ẐA) = ∇φ(E[Z])−
s

∑
r=1

Λ∗
Gr

wGr

,
(32)

where wGr is the measure corresponding to Gr and E[ẐA] = E[Z]. Rearranging terms proves the first
part of the theorem. The existence and uniqueness of ẐA follow from the strict convexity of φ.

Proof of Lemma 6 From Theorem 4, we note that

Ẑ = (∇φ)(−1)

(
∇φ(E[Z])−

s

∑
r=1

Λ∗
Gr

wGr

)
,

where C = {Gr}sr=1 and Λ∗
Gr
are the optimal Lagrange multipliers corresponding to the constraints

E[Z|Gr] = E[Ẑ|Gr]. Now, by definition,

E[dφ(Z, Ẑ)] = E[φ(Z)−φ(Ẑ)−〈Z− Ẑ,∇φ(Ẑ)〉]

= E[φ(Z)−φ(Ẑ)]−E[〈Z− Ẑ,(∇φ(E[Z])−
s

∑
r=1

Λ∗
Gr

wGr

)〉]

= E[φ(Z)−φ(Ẑ)]−E[〈Z− Ẑ,∇φ(E[Z])〉]+
s

∑
r=1

E[〈Z− Ẑ,
Λ∗

Gr

wGr

〉]

(a)
= E[φ(Z)−φ(Ẑ)]+

s

∑
r=1

EGr [〈E[Z|Gr]−E[Ẑ|Gr],
Λ∗

Gr

wGr

〉]

(b)
= E[φ(Z)−φ(Ẑ)]
(c)
= E[φ(Z)−φ(E[Z])]−E[φ(Ẑ)−φ(E[Ẑ])]
(d)
= E[φ(Z)−φ(E[Z])−〈Z−E[Z],∇φ(E[Z])〉]

−E[φ(Ẑ)−φ(E[Ẑ])−〈Ẑ−E[Ẑ],∇φ(E[Ẑ])〉]
= Iφ(Z)− Iφ(Ẑ),

where (a) and (c) follow since E[Z] = E[Ẑ], (b) follows since E[Z|Gr] = E[Ẑ|Gr], ∀Gr ∈ C , and (d)
follows since E[〈Z−E[Z],∇φ(E[Z])〉] = 0 and E[〈Ẑ−E[Ẑ],∇φ(E[Ẑ])] = 0.

Proof of Lemma 7 Using the three point property (Lemma 12) and taking expectations, for any
Z′ ∈ SA and Z′′ ∈ SB, we have

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′)+E[〈Z′− ẐA,∇φ(ẐA)〉]−E[〈Z′− ẐA,∇φ(Z′′)〉] .

1970

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

We now argue that the last two terms in the expression vanish to give the desired result. Note that
since ẐA and Z′ ∈ SA, we have E[Z|Gr] = E[ẐA|Gr] = E[Z′|Gr], ∀Gr ∈ C . By (32),

E[〈Z′− ẐA,∇φ(ẐA)] = E[〈Z′− ẐA,(∇φ(E[Z])−
s

∑
r=1

Λ∗
Gr

wGr

)〉]

= 〈E[Z′− ẐA],∇φ(E[Z])〉−
s

∑
r=1

E[〈Z′− ẐA,
Λ∗

Gr

wGr

〉]

(a)
= −

s

∑
r=1

EGr [〈E[Z′|Gr]−E[ẐA|Gr],
Λ∗

Gr

wGr

〉] (b)
= 0 ,

where (a) follows since E[Z] = E[ZA] = E[Z′], and (b) follows since both Z ′ and ẐA satisfy the
constraints, E[Z|Gr] = E[ẐA|Gr], ∀Gr ∈ C .

To show that the last term E[〈Z ′− ẐA,∇φ(Z′′)] also vanishes, we use the fact that by definition
∇φ(Z′′) = ∑s

r=1 gr(E[Z|Gr]). Hence,

E[〈Z′− ẐA,∇φ(Z′′)〉] = E[〈Z′− ẐA,
s

∑
r=1

gr(E[Z|Gr])〉]

=
s

∑
r=1

E[〈Z′− ẐA,gr(E[Z|Gr])〉]

=
s

∑
r=1

EGr [〈E[Z′|Gr]−E[ẐA|Gr],gr(E[Z|Gr])〉] = 0 ,

since E[Z|Gr] = E[ẐA|Gr], ∀Gr ∈ C . That completes the proof.
Proof of Theorem 5 From Lemma 7, we observe that for any Z ′ ∈ SA and Z′′ ∈ SB,

E[dφ(Z′,Z′′)] = E[dφ(Z′, ẐA)]+E[dφ(ẐA,Z′′)] .

that is, it is additive in functions of the conditional expectations, that is,
Λ∗

Gr
wGr

in the natural parameter
space, which implies that ẐA ∈ SB as well. For a given Z′′ ∈ SB and any Z′ ∈ SA, E[dφ(Z′,Z′′)] ≥
E[dφ(ẐA,Z′′)], with equality only when Z ′ = ẐA, due to strict convexity of φ . Since ẐA ∈ SA, this
implies that

ẐA = argmin
Z′∈SA

E[dφ(Z′,Z′′)], ∀Z′′ ∈ SB .

Similarly, for a given Z ′ ∈ SA and any Z′′ ∈ SA, E[dφ(Z′,Z′′)]≥E[dφ(Z′, ẐA)]with equality only when
Z′′ = ẐA. By (32), we observe that ∇φ(ẐA) is an additive function of the conditional expectations,
which implies that ẐA ∈ SB. Thus, we obtain the second part of the result, that is,

ẐA = argmin
Z′′∈SB

dφ(Z′,Z′′), ∀Z′ ∈ SA .

Proof of Lemma 9 From Lemma 8, we have

E[dφ(Z, Z̃t)] = EU [EV |U [ξ(U,ρt+1(U),V,γt(V))]]
= EU [min

g:[g]k1
EV |U [ξ(U,g,V,γt(V))]]

≤ EU [EV |U [ξ(U,ρt(U),V,γ(V))]]

= E[dφ(Z, Ẑt)] .

1971

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Appendix E. A Recipe for Implementation

To instantiate the Bregman co-clustering meta-algorithm, two key ingredients need to be selected:
(a) the Bregman divergence suitable for a given data matrix, and (b) a co-clustering basis. The goal
of this section is to show how to translate the abstract meta algorithm in Section 5 into a concrete
and operational co-clustering recipe that is customized for the selected ingredients. We discuss four
such concrete recipes. The first three cases concern special cases that admit significant structural
and computational simplifications in the meta-algorithm and the last case concerns an example that
requires us to use the full power of the abstract framework.

The Bregman co-clustering algorithm (Algorithm 2) involves three main steps—(i) obtaining
the MBI solution (Section 5.5) or the optimal Lagrange multipliers, (ii) row assignment, and (iii)
column assignment. Of these three steps, the last two involve conceptually straightforward com-
parisons to determine the optimal row and column assignments at each stage whereas the first step
usually involves non-linear optimization and can be computationally expensive. Nonetheless, it
is possible to implement these steps in a computationally economical fashion. For certain special
cases, the MBI problem has a closed form solution, which eliminates the need for the MBI routine
and allows significant simplification of the overall co-clustering algorithm. In particular, there are
three cases for which such closed form exists:

Case A: When the co-clustering basis C is C2 and dφ is any Bregman divergence. Conceptually,
this case was covered in complete detail in Section 3, but we present additional operational
details in this section.

Case B: When dφ is squared Euclidean distance and C is any co-clustering basis in the set {Ci}6i=1 ,

Case C: When dφ is I-divergence and C is any co-clustering basis in the set {Ci}6i=1 .

For these special cases, the cost functions that determine the row and column assignments in steps
2B and 2C of the co-clustering algorithm (Algorithm 2) can be directly expressed in terms of the
co-clustering (ρ,γ) and the input matrix Z without any Lagrange multipliers and the computational
effort required to evaluate the cost is linear in the size of Z (i.e., number of non-zeros). For the
general case, the computation time per iteration for the co-clustering algorithm is still linear in the
size of Z, but the total time taken will depend on the number of iterations required to obtain the
MBI solution.

In order to describe the Bregman co-clustering algorithm for the special cases mentioned above,
we use a matrix notation that is more suitable for computation and exposition. From Theorem 1 and
Tables 1 and 2, we observe that the MBI solution for the three special cases mentioned above can be
expressed as a combination of conditional expectations of the random variable Z corresponding to
the input matrix. Since the computation of the MBI solution is an important task in the co-clustering
algorithm, we proceed by first expressing the various conditional expectations in matrix notation.
We use the symbols⊗ and2 respectively to denote element-wise multiplication (i.e., the Hadamard
product) and element-wise division between two matrices of the same size.

E.1 Matrix Representation of Conditional Expectations

Let Z∈ Sm×n denote the data matrix andW∈Rm×n
+ denote the matrix corresponding to a probability

measure over the matrix elements. Let R ∈ {0,1}m×k and C ∈ {0,1}n×l denote the row and column

1972

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

cluster membership matrices, that is,

rug =

{
1 g= ρ(u),
0 otherwise,

cvh =

{
1 h= γ(v),
0 otherwise.

In other words, the entry rug = 1 iff row u belongs to row cluster g and the entry cvh = 1 iff column
v belongs to column cluster h. Further, let Em and En denote m×1 and n×1 vectors consisting of
all ones. It should now be straightforward to see that elements in different partitions (e.g., rows or
row clusters) of the input matrix Z can be aggregated using the appropriate matrix multiplication
operations, from the ones listed below:

(a) Left multiplication by RT—Aggregation of the rows into row clusters

(b) Right multiplication by C—Aggregation of the columns into column clusters

(c) Left multiplication by ETm—Aggregation of all the rows into a single group

(d) Right multiplication by En—Aggregation of all the columns into a single group

To obtain the expected values along the various partitions instead of the sums, we need to per-
form an element-wise multiplication with the measure matrixW before aggregation and later follow
it up with an appropriate element-wise division. It is important to note here that the size of matrix
containing the expected values is equal to the number of corresponding partitions, which is usually
smaller than that of the original Z. Therefore, to create a m× n matrix such that the uvth element
reflects the expectation along the partition containing zuv, we need to replicate the expected values
for all members of the corresponding partitions, which can be achieved using the following matrix
multiplications:

(a) Left multiplication by R—Replication of the given (row) vectors corresponding to each row
cluster along all the constituent rows.

(b) Right multiplication by CT—Replication of the given (column) vectors corresponding to each
column cluster along all the constituent columns.

(c) Left multiplication by Em—Replication of a given (row) vector along all the rows.

(d) Right multiplication by ETn—Replication of a given (column) vector along all the columns

For example, the conditional expectation E[Z|Û ,V̂] involves partitioning along (Û ,V̂), that is,
both row and column clusters. Since there are k row clusters and l column clusters, there are
kl partitions (or co-clusters) and a conditional expectation value corresponding to each of these
partitions. To obtain these expectation values, we need to aggregate the rows into the row clusters
as well as the columns into column clusters. In particular, the conditional expectation values are
given by

E[Z|û, v̂] = z̄û,v̂ where Z̄Û ,V̂ =
(
RT (W⊗Z)C

)
2

(
RTWC

)
.

Though seemingly complicated, the above expression has a simple interpretation in terms of the ag-
gregation and replication operators described earlier. OperationW⊗Z has the effect of attenuating
each element zuv by its corresponding weight wuv. Left multiplication by RT aggregates the matrix

1973

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

E[Z|G] Z̄G size(Z̄G) Z f
G (m×n)

E[Z] (ETm(W⊗Z)En)((ETmWEn) 1×1 EmZ̄ETn
E[Z|U] ((W⊗Z)En)((WEn) m×1 Z̄UETn
E[Z|V] (ETm(W⊗Z))((ETmW) 1×n EmZ̄V
E[Z|Û] (RT (W⊗Z)En)((RTWEn) k×1 RZ̄ÛETn
E[Z|V̂] (ETm(W⊗Z)C)((ETmWC) 1× l EmZ̄V̂CT

E[Z|U,V̂] ((W⊗Z)C)((WC) m× l Z̄U,V̂CT

E[Z|Û ,V] (RT (W⊗Z))((RTW) k×n RZ̄Û ,V
E[Z|Û ,V̂] (RT (W⊗Z)C)((RTWC) k× l RZ̄Û ,V̂CT

E[Z|U,V] (W⊗Z)(W m×n Z̄U,V

Table 8: Conditional expectations in matrix notation.

along rows in the same row cluster across each column, and then right multiplication by C aggre-
gates this reduced matrix consisting of row cluster sums along columns in the same column cluster.
Thus, each element of RT (W⊗Z)C represents the sum along each co-cluster of the attenuated Z.
Similarly, the matrix RTWC contains the probability mass assigned to the different co-cluster byW
and the element-wise division results in k× l matrix whose ûv̂th entry is the expected value in ûv̂th
co-cluster.

To obtain a m× n full matrix Z f
Û ,V̂ such that z

f
uv = E[Z|ρ(u),γ(v)], we need to replicate the

co-cluster values along the rows and columns corresponding to the row and column clusters respec-
tively. Hence, the reconstructed matrix

Z f
Û ,V̂ = RZ̄Û ,V̂C

T = R
((
RT (W⊗Z)C

)
2

(
RTWC

))
CT .

Table 8 shows the matrices corresponding to the various conditional expectations. Note that the
number of independent parameters in Z f

G (in Table 8) is equal to that in Z̄G in spite of the difference
in the matrix sizes.

E.2 Bregman Co-clustering Algorithm for Special Cases

We will now consider the three special cases mentioned above and illustrate how the various steps
in the Bregman co-clustering algorithm can be instantiated.

E.2.1 CASE A: BASIS C2 AND ANY BREGMAN DIVERGENCE
1. Obtaining the MBI Solution. From Theorem 1, we note that the MBI solution for case A is

Ẑ = E[Z|Û ,V̂]. From Table 8, the corresponding MBI matrix Ẑ is given by Z f
Û ,V̂ =RZ̄Û ,V̂CT

where Z̄Û ,V̂ is computed as (RT (W⊗Z)C)2(RTWC). Since Ẑ is completely determined by
the smaller k× l matrix Z̄Û ,V̂ , we only compute and store the reduced matrix. Using the fact
that R and C are binary matrices, this computation can be performed efficiently using O(mn)
operations.

2. RowCluster Assignment Step. Given the parameters of theMBI solution and a fixed column
clustering determined by C, we want to find for each row, the row cluster assignment that
leads to the best approximation to the original matrix. In other words, we are searching for a

1974

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

row cluster membership matrix R′ that results in the most accurate reconstruction Z̃. For the
current case, this reconstructed matrix Z̃ takes the same functional form as the MBI solution
and is given by R′Z̄Û ,V̂CT where Z̄Û ,V̂ is based on the previous row clustering. From step 2B
of the Bregman co-clustering algorithm (Algorithm 2), the optimal row assignment for each
row u is given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u[dφ(Z, Z̃)] = argmin
g∈{1,··· ,k}

n

∑
v=1

wuvdφ(zuv, z̃uv), [u]m1 ,

(a)⇒ R∗ = argmin
R′

dΦw(Z, Z̃) = argmin
R′

dΦw(Z,R′Z̄Û ,V̂C
T),

(b)⇒ R∗ = argmin
R′

dΦw(ZrowRed ,R′Z̄Û ,V̂),

(c)⇒ ρ∗(u) = argmin
g∈{1,··· ,k}

l

∑
h=1

wuhdφ(zrowReduh , z̄gh), [u]m1 ,

where ZrowRed ≡ ((W⊗Z)C)2 (WC) and dΦw is the induced Bregman divergence that ap-
plies to matrices in S k×n.16 In the above, (a) and (c) follow from the definition of the row
cluster membership matrix, and (b) follows from the fact that minimizing the (weighted) av-
erage Bregman divergence from a set {xi}ni=1 to a fixed point a is equivalent to minimizing the
Bregman divergence between the (weighted) average of the set and a (Banerjee et al., 2005b).
Assuming the matrix ZrowRed is computed apriori, the row clustering only requires O(mkl)
operations as opposed to O(mkn) since for each row, we only compare the reduced rows (of
size 1× l) in ZrowRed with the k possible row cluster representatives.

3. Column Cluster Assignment Step. The column cluster assignment step is similar to that of
the previous row cluster assignment step and involves finding a column cluster membership
matrix C′ that results in the most accurate reconstruction Z̃ = RZ̄Û ,V̂C′T . From step 2C of
the Bregman co-clustering algorithm (Algorithm 2), the optimal column assignment for each
column v is given by

γ∗(v) = argmin
h∈{1,··· ,l}

EU |v[dφ(Z, Z̃)] = argmin
h∈{1,··· ,l}

m

∑
u=1

wuvdφ(zuv, z̃uv), [v]n1,

(a)⇒ C∗ = argmin
C′

dΦw(Z, Z̃) = argmin
C′

dΦw(Z,RZ̄Û ,V̂C
′T),

(b)⇒ C∗ = argmin
C′

dΦw(ZcolRed , Z̄Û ,V̂C
′T),

(c)⇒ γ∗(v) = argmin
h∈{1,··· ,l}

k

∑
g=1

wgvdφ(zcolRedgv , z̄gh), [v]n1,

where ZcolRed ≡ (RT (W⊗Z))2 (RTW), (a) and (c) follow from the definition of the column
cluster membership matrix, and (b) follows from the same reduction (Banerjee et al., 2005b)

16. Note that dΦw has been overloaded to denote the separable Bregman divergences induced from the original dφ and
the measure w that apply to matrices in Sm×n, S k×n and Sm×l .

1975

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

employed in the row cluster assignment step. As in the previous case, the column cluster-
ing involves a reduced number of distance computations and comparisons and in particular,
requires O(nkl) operations.

E.2.2 CASE B: SQUARED EUCLIDEAN DISTANCE

1. Obtaining the MBI Solution. For this case, the MBI solution Ẑ has a closed form for all
the six co-clustering bases in terms of the appropriate conditional expectations as shown in
Table 2. Using Table 8, we can exactly compute each of the relevant conditional expectations,
which requires O(mn) operations. Though we do not explicitly compute it, the MBI matrix
Ẑ (shown in Table 9) can be expressed in terms of the row clustering R, column clustering C
and these conditional expectations for any co-clustering basis.

2. Row Cluster Assignment Step. To obtain the row cluster assignment step, we observe that
the reconstructed matrix Z̃, which has the same form as Ẑ can be split into two additive
terms of which only one depends on the candidate row clustering. In particular, for the row
assignment step, the reconstructed matrix Z̃ based on a candidate row clustering R′ can be
written as

Z̃= Z̃rowConst +R′Z̃rowVar, (33)

where Z̃rowConst is an m× n matrix corresponding to the constant part of Z̃ and Z̃rowVar is
a k× n matrix corresponding to the variable part of Z̃. Table 10 provides the Z̃rowConst and
Z̃rowVar for the different co-clustering bases. From step 2B of Algorithm 2 and (33), the row
cluster update step for squared Euclidean distance is given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u[(Z− Z̃)2] = argmin
g∈{1,··· ,k}

n

∑
v=1

wuv(zuv− z̃uv)2, [u]m1 ,

⇒ R∗ = argmin
R′

||Z− Z̃||2w = argmin
R′

||Z− Z̃rowConst−R′Z̃rowVar||2w,

⇒ R∗ = argmin
R′

||Zrow−R′Z̃rowVar||2w,

⇒ ρ∗(u) = argmin
g∈{1,··· ,k}

n

∑
v=1

wuv(zrowuv − z̃rowVargv)2, [u]m1 ,

whereZrow =Z−Z̃rowConst and || · ||w is the weighted squared Euclidean distance. The optimal
row assignments can, therefore, be determined by finding the nearest row (among k possible
ones) in Z̃rowVar for each of the m rows in Zrow. The above row assignment step can be
readily instantiated for any specified co-clustering basis by choosing the appropriate matrices
Z̃rowConst and Z̃rowVar from Table 10.
For co-clustering bases {Ci}5i=1, it is possible to further optimize the above update step us-
ing the same observation as in case A, that is, minimizing the row update cost function
||Zrow−R′Z̃rowVar||2w is equivalent to minimizing the distortion between reduced versions of
these matrices, that is, ||ZrowRed−R′Z̃rowVRed ||2w whereZrowRed ≡ ((W⊗Zrow)C)2(WC) and
R′Z̃rowVRed ≡ ((W⊗(R′Z̃rowVar))C)2(WC). Though the expression for Z̃rowVRed looks com-
plicated, it can be simplified using the fact that Z̃rowVar can always be written as ACT +BETn
for some matrices A and B, which ensures that Z̃rowVRed = A+BETl , that is, independent of
R′. For all the five co-clustering bases, Z̃rowVRed is determined by the relevant conditional

1976

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Co-clustering basis C Ẑ (m×n)
C1 RZ̄ÛETn +EmZ̄V̂CT −EmZ̄ETn
C2 RZ̄Û ,V̂CT

C3 RZ̄Û ,V̂CT + Z̄UETn −RZ̄ÛETn
C4 RZ̄Û ,V̂CT +EmZ̄V −EmZ̄V̂CT

C5 RZ̄Û ,V̂CT + Z̄UETn −RZ̄ÛETn +EmZ̄V −EmZ̄V̂CT

C6 Z̄U,V̂CT +RZ̄Û ,V −RZ̄Û ,V̂CT

Table 9: MBI matrix for squared Euclidean distance.

Co-clustering
basis C Z̃rowConst (m×n) Z̃rowVar (k×n) Z̃rowVRed (k× l)

C1 EmZ̄V̂CT −EmZ̄ETn Z̄ÛETn Z̄ÛETl
C2 0 Z̄Û ,V̂CT Z̄Û ,V̂
C3 Z̄UETn Z̄Û ,V̂CT − Z̄ÛETn Z̄Û ,V̂ − Z̄ÛETl
C4 EmZ̄V −EmZ̄V̂CT Z̄Û ,V̂CT Z̄Û ,V̂
C5 Z̄UETn +EmZ̄V −EmZ̄V̂CT Z̄Û ,V̂CT − Z̄ÛETn Z̄Û ,V̂ − Z̄ÛETl
C6 Z̄U,V̂CT Z̄Û ,V − Z̄Û ,V̂CT n/a

Table 10: Row assignment update matrices for squared Euclidean distance.

expectations and can be looked up from Table 10. As a result of this optimization, the row
clustering step involves comparisons between smaller matrices and requires only O(mkl) op-
erations.

3. Column Cluster Assignment Step. The column assignment step employs a similar decom-
position of Z̃ in terms of the column clustering, that is, Z̃ = Z̃colConst + Z̃colVarC′T and the
optimal assignments are determined by

γ(v) = argmin
h∈{1,··· ,l}

m

∑
u=1

wuv(zcoluv − z̃colVaruh)2, [v]n1,

where Zcol ≡ Z− Z̃colConst and the matrices Z̃colConst and Z̃colVar can be obtained from Table
11. As in the case of row clustering, it is possible to further optimize the above update
step for co-clustering bases {Ci}5i=1 by computing ZcolRed ≡ (RT (W⊗Zcol))2 (RTW) and
comparing it with Z̃colVRedCT ≡ (RT (W⊗ (Z̃colVarCT)))2 (RTW), which can be obtained
from Table 11. Further, as in the previous step, the column clustering step only requires
O(nkl) operations similar to that in case A.

E.2.3 CASE C: I-DIVERGENCE

1. Obtaining the MBI Solution. As in the previous case, the MBI solution for case C has a
closed form for all the six co-clustering bases in terms of the appropriate conditional expec-
tations as shown in Table 1. Using Table 8, one can exactly compute each of the relevant
conditional expectations, which completely determine the MBI matrix Ẑ (shown in Table 12)
for a given row clustering R and column clustering C.

1977

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Co-clustering
basis C Z̃colConst (m×n) Z̃colVar (m× l) Z̃colVRed (k× l)

C1 RZ̄ÛETn −EmZ̄ETn EmZ̄V̂ EkZ̄V̂
C2 0 RZ̄Û ,V̂ Z̄Û ,V̂
C3 Z̄UETn −RZ̄ÛETn RZ̄Û ,V̂ Z̄Û ,V̂
C4 EmZ̄V RZ̄Û ,V̂ −EmZ̄V̂ Z̄Û ,V̂ −EkZ̄V̂
C5 Z̄UETn +EmZ̄V −RZ̄ÛETn RZ̄Û ,V̂ −EmZ̄V̂ Z̄Û ,V̂ −EkZ̄V̂
C6 RZ̄Û ,V Z̄U,V̂ −RZ̄Û ,V̂ n/a

Table 11: Column assignment update matrices for squared Euclidean distance.

2. Row Cluster Assignment Step. To obtain the row assignment steps for I-divergence, we
make use of the fact that the reconstructed matrix Z̃, can be decomposed as the Hadamard
product of two terms of which only one depends on the candidate row or column clustering.
In particular, the reconstructed matrix Z̃ can be expressed as

Z̃= (Z̃rowConst)⊗ (R′Z̃rowVar),

where Z̃rowConst is the constant factor and Z̃rowVar is the variable factor that depends on R′,
both of which can be looked up from Table 13.
From step 2B of Algorithm 2 and (33), the row cluster update step for I-divergence for [u]m1 is
given by

ρ∗(u) = argmin
g∈{1,··· ,k}

EV |u
[
Z log

(
Z
Z̃

)
−Z+ Z̃

]
,

= argmin
g∈{1,··· ,k}

n

∑
v=1

wuv
(
zuv log

(
zuv
z̃uv

)
− zuv+ z̃uv

)
,

= argmin
g∈{1,··· ,k}

n

∑
v=1

wuv
(
zuv log

(
zuv

z̃rowConstuv

)
− zuv

)

+
n

∑
v=1

wuv(z̃rowConstuv z̃rowVarρ′(u)v − zuv log(z̃rowVarρ′(u)v)),

(a)
= argmin

g∈{1,··· ,k}

n

∑
v=1

wuv
(
z̃rowConstuv z̃rowVarρ′(u)v − zuv log(z̃rowVarρ′(u)v)

)
,

where (a) follows since the first term in the cost function is independent of the row clustering.
As in case B, it is possible to optimize the row assignment step for the co-clustering bases
{Ci}5i=1 by minimizing a simplified row update cost function dΦw(ZrowRed , Z̃rowCRed⊗
R′Z̃rowVRed) based on equivalent reduced matrices instead of the original cost function
dΦw(Z, Z̃rowConst ⊗ R′Z̃rowVar) where ZrowRed ≡ ((W ⊗ Z)C) 2 (WC), ZrowCRed ≡
((W⊗ZrowConst)C)2(WC), and R′Z̃rowVRed ≡ ((W⊗(R′Z̃rowVar))C)2(WC). Further as in
the previous case, Z̃rowVRed can be simplified by noticing that Z̃rowVar in this case can be writ-
ten as ACT ⊗BETn for some matrices A and B, ensuring that Z̃rowVRed = A⊗ (BETl), that is,
independent of R′. Table 13 shows the matrix Z̃rowVRed for the different co-clustering bases.

1978

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Co-clustering basis C Ẑ (m×n)
C1 ((RZ̄ÛETn)⊗ (EmZ̄V̂CT))((EmZ̄ETn)
C2 RZ̄Û ,V̂CT

C3 ((RZ̄Û ,V̂CT)⊗ (Z̄UETn))((RZ̄ÛETn)
C4 ((RZ̄Û ,V̂CT)⊗ (EmZ̄V))((EmZ̄V̂CT)
C5 ((RZ̄Û ,V̂CT)⊗ (Z̄UETn)⊗ (EmZ̄V))(((RZ̄ÛETn)⊗ (EmZ̄V̂CT))
C6 ((Z̄U,V̂CT)⊗ (RZ̄Û ,V))((RZ̄Û ,V̂CT)

Table 12: MBI matrix for I-divergence.

Co-clustering
basis C Z̃rowConst (m×n) Z̃rowVar (k×n) Z̃rowVRed (k× l)

C1 (EmZ̄V̂CT)((EmZ̄ETn) Z̄ÛETn Z̄ÛETl
C2 Emn Z̄Û ,V̂CT Z̄Û ,V̂
C3 Z̄UETn (Z̄Û ,V̂CT)((Z̄ÛETn) (Z̄Û ,V̂)((Z̄ÛETl)
C4 (EmZ̄V)((EmZ̄V̂CT) Z̄Û ,V̂CT Z̄Û ,V̂
C5 ((Z̄UETn)⊗ (EmZ̄V))((EmZ̄V̂CT) (Z̄Û ,V̂CT)((Z̄ÛETn) (Z̄Û ,V̂)((Z̄ÛETl)
C6 Z̄U,V̂CT (Z̄Û ,V)((Z̄Û ,V̂CT) n/a

Table 13: Row assignment update matrices for I-divergence.

3. Column Cluster Assignment Step. The optimal column assignments can be obtained in
similar fashion by computing the matrices Z̃colConst and Z̃colVar shown in Table 14 and op-
timizing the part of the column update cost function that depends on the column clustering,
that is,

γ(v) = argmin
h∈{1,··· ,l}

n

∑
u=1

wuv
(
z̃colConstuv z̃colVaruh − zuv log(z̃colVaruh)

)
, [v]n1.

Further, as in the row clustering case, the column assignment step can be optimized further
for co-clustering bases {Ci}5i=1 by computing ZcolRed ≡ (RT (W⊗Z))2 (RTW), ZcolCRed ≡
(RT (W⊗ Z̃colConst))2 (RTW) and Z̃colVRedCT ≡ (RT (W⊗ (Z̃colVarCT)))2 (RTW), using
Table 14 and finding the column clustering C′ that optimizes the cost dΦw(ZcolRed , Z̃colCRed⊗
Z̃colVRedC). The computational time for these update steps is same as in the cases A and B.

E.2.4 CASE D: ANY BREGMAN DIVERGENCE AND CO-CLUSTERING BASIS

The proposed meta-algorithm can be instantiated for any Bregman divergence and co-clustering
basis. We now consider a particular example of the general case corresponding to Itakura-Saito
distance, which is the Bregman divergence corresponding to the convex function φ(z) = − log(z),
a uniform measure and the co-clustering basis C1. The example is a representative of the general
case, since no divergence/basis specific optimizations are possible in this case.

1. Obtaining the MBI Solution. For the general case involving a Bregman divergence other
than squared Euclidean distance and I-divergence and a co-clustering basis different from C2,
the MBI solution does not have a closed form, which makes it necessary to use a convex

1979

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Co-clustering
basis C Z̃colConst (m×n) Z̃colVar (m× l) Z̃colVRed (k× l)

C1 (RZ̄ÛETn)((EmZ̄ETn) EmZ̄V̂ EkZ̄V̂
C2 Emn RZ̄Û ,V̂ Z̄Û ,V̂
C3 (Z̄UETn)((RZ̄ÛETn) RZ̄Û ,V̂ Z̄Û ,V̂
C4 EmZ̄V (RZ̄Û ,V̂)((EmZ̄V̂) (Z̄Û ,V̂)((EkZ̄V̂)
C5 (Z̄UETn)⊗ (EmZ̄V)((RZ̄ÛETn) (RZ̄Û ,V̂)((EmZ̄V̂) (Z̄Û ,V̂)((EkZ̄V̂)
C6 RZ̄Û ,V (Z̄U,V̂)((RZ̄Û ,V̂) n/a

Table 14: Column assignment update matrices for I-divergence.

optimization algorithm (e.g., Bregman’s algorithm or Iterative Scaling algorithm). Further,
since the reconstructed Z̃ is defined in terms of the optimal Lagrange multipliers, we also
need to compute these Lagrange parameters from the MBI solution. For the example un-
der consideration, ∇φ(z) = − 1

z . Hence, using the notation in Section 5.5, the matrix A for
co-clustering basis C1 corresponds to a (k+ l)×mn membership matrix where the rows cor-
respond to the clusters (first k rows to row clusters and the next l rows to the column clusters)
and the columns correspond to the elements of the matrix Z (or the correspondingmn×1 vec-
tor z). Assuming Emn is mn×1 vector consisting of all ones, the update steps in Bregman’s
algorithm (Section 5.5.1) are, therefore, given by

Emn2 z′t+1 = Emn2 z′t +λiATi
Aizt+1 = Aiz,

where Ai is the ith row in A and λi ∈ R. These updates are cyclically repeated over all the
k+ l rows in A. On convergence, we get the MBI solution Ẑ (m× n matrix) as well as the
k×1 and 1× l matrices ΛÛ ,ΛV̂ containing the optimal Lagrange multipliers.

2. Row Cluster Assignment Step. To obtain the row cluster assignment step, we first recon-
struct Z̃ for a candidate co-clustering R′ using the Lagrange multipliers ΛÛ and ΛV̂ computed
in the previous step. More specifically, the reconstruction Z̃ is given by

Z̃= Emn2 (Z̄−R′ΛÛE
T
n −EmΛV̂C

T), (34)

that is, z̃uv = 1/(z̄−λρ′(u)−λγ(v)).
Using (34) the row update cost function reduces to

EV |u[dφ(Z, Z̃]

= EV |u[Z/Z̃− log(Z/Z̃)−1] =
n

∑
v=1

wuv(zuv/z̃uv− log(zuv/z̃uv)−1)

=
n

∑
v=1

wuv(zuv(z̄−λρ′(u)−λγ(v))− log(zuv)+ log(z̄−λρ′(u)−λγ(v))−1)

=
n

∑
v=1

wuv(zuv(z̄−λγ(v))− log(zuv)−1)+
n

∑
v=1

wuv(−zuvλρ′(u) + log(z̄−λρ′(u)−λγ(v))).

1980

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Since the first term is independent of the row clustering, it is sufficient to optimize only the
second term. Hence, the row assignment step is given by

ρ(u) = argmin
g∈{1,··· ,k}

n

∑
v=1

wuv(−zuvλg+ log(z̄−λg−λγ(v))), [u]m1 .

3. Column Cluster Assignment Step. The column assignment step can be similarly obtained
by substituting the appropriate reconstructed matrix Z̃ into the column update cost function
and optimizing the part that depends on the column clustering, that is,

γ(v) = argmin
h∈{1,··· ,l}

m

∑
u=1

wuv(−zuvλh+ log(z̄−λρ(u)−λh)), [v]n1.

Appendix F. Notation

Notation Usage Introduced in
X ,Y Random variables over {x1, . . . ,xm} and {y1, . . . ,yn} Sec 1.1
m,n Cardinality of support sets of X and Y Sec 1.1
u,v Indices over the sets {1, · · · ,m} and {1, · · · ,n} Sec 1.1
X̂ ,Ŷ Compressed/clustered versions of random variables X and Y Sec 1.1
k, l Number of row and column clusters Sec 1.1
g,h Indices over the sets {1, · · ·k} and {1, · · · , l} Sec 1.1
p(·) Given joint (and induced) distributions over X , Y , X̂ and Ŷ Sec 1.1
p′(·) Candidate joint (and induced) distributions over X , Y , X̂ and Ŷ Sec 1.1
q(·) Max. entropy joint (and induced) distributions over X , Y , X̂ and Ŷ Sec 1.1
p0(·) Uniform joint (and induced) distributions over X , Y , X̂ and Ŷ Sec 1.1
φ(·) Strictly convex, differentiable function of Legendre type Sec 2.1
dφ(·) Bregman divergence derived from φ Sec 2.1
S Effective domain of φ Sec 2.1
z,zi Elements of S Sec 2.1
Z Random variable taking values in S Sec 2.1
Z Support of Z Sec 2.1
w Probability measure associated with random variable Z Sec 2.1
Z Matrix ∈ Sm×n Sec 2.1

U,V Random variables over {1, . . . ,m} and {1, . . . ,n} Sec 2.2
ρ,γ Row and column cluster mapping Sec 2.3
Û ,V̂ Cluster random variables ρ(U) and γ(V) Sec 2.3
Ẑ Matrix approximation of Z (size m×n) Sec 2.3
Ẑ Random variable approximating Z Sec 2.3
Φw Convex function induced on matrix by φ Sec 2.3

Table 15: Notation used in the paper

1981

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

Notation Usage Introduced in
û, v̂ Indices representing ρ(u) and γ(v) Sec 3.1
SA Set of random variables preserving co-cluster means Sec 3.1
ẐA Minimum Bregman information solution Sec 3.1
Z′ Element of SA Sec 3.1
SB Set of random variables that are functions of co-cluster means Sec 3.1
ẐB Best approximation to Z in SB Sec 3.1
Z′′ Element of SB Sec 3.1
Ẑ Same as ẐA and ẐB Sec 3.1

(ρ∗,γ∗) Optimal row and column clustering Sec 3.2
µû,v̂ co-cluster mean E[Z|û, v̂] Sec 3.3
Ju(·) Contribution of uth row to the objective function Sec 3.3
ρt Row clustering in the tth iteration Sec 3.3
γt Column clustering in the tth iteration Sec 3.3
Ẑt MBI solution corresponding to (ρt ,γt) Sec 3.3
Z̃t Row permuted version of Ẑt according to ρt Sec 3.3
R Row assignment matrix (size m× k) Sec 3.4
C Column assignment matrix (size n× l) Sec 3.4
M Co-cluster mean matrix (size k× l) Sec 3.4
U/0 Constant random variable over rows Sec 4.1
V/0 Constant random variable over columns Sec 4.1
Γ1 Set of index random variables Sec 4.1
Γ2 Unique sub-σ-algebra of Z Sec 4.1

C ,Ci Co-clustering basis Sec 4.1
G ,Gi Sub-σ algebra corresponding to co-clustering basis Sec 4.1
s Total number of constraints in a co-clustering basis Sec 4.2
r Index over the set {1, · · ·s} Sec 4.2

Λ∗
Gr

,ΛGr (Optimal) Lagrange multipliers associated with Gr Sec 4.2
wGr Induced measure on Gr Sec 4.2
J(·) Lagrangian for the minimum Bregman information problem Sec 4.2
L(·) Lagrange dual of the Bregman information Sec 4.2
SA Set of random variables preserving summary statistics Sec 4.2
ẐA MBI solution in SA Sec 4.2
Z′ Element of SA Sec 4.2
ψ Legendre conjugate of φ Sec 4.4
Θ Domain of ψ Sec 4.4
θGr Random variables corresponding to E[Z|Gr] in Θ Sec 4.4
ΘB Set of generalized additive models of θGr in Θ space Sec 4.4
θ′′ Element of ΘB Sec 4.4
SB Set of generalized additive models of summary statistics in Θ space Sec 4.4
ẐB Best approximation to Z in SB Sec 4.4
Z′′ Element of SB Sec 4.4
gr(·) Arbitrary function of E[Z|Gr] and θGr Sec 4.4

Table 16: Notation used in the paper

1982

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

Notation Usage Introduced in
ζ(ρ,γ,Λ) Functional form of the min. Bregman information solution for (ρ,γ) Sec 5.2

with Lagrange multipliers Λ possibly instead of optimal Λ∗

ξ(U,ρ(U),V,γ(V)) Objective function E[dφ(Z, Z̃)] Sec 5.2
z, ẑ,z′ Vectorized versions of Z, Ẑ and Z′ respectively Sec 5.5
z̄ mn×1 vector with all values = E[Z] Sec 5.5
A Matrix corresponding to the linear conditional expectation constraints Sec 5.5
c Number of linear constraints (rows in A) Sec 5.5

Lφ Legendre-Bregman projection derived from φ Sec 5.5
λi,λ Lagrange multipliers corresponding to Ai and A resp. Sec 5.5
z′0 Initial choice of z′ Sec 5.5
si j Sign of Ai j Sec 5.5
N j Upper bound on L1 norm of jth column of A Sec 5.5
W m×n matrix corresponding to the measure w Sec E.1

Em (En) constant m×1 (n×1) vector consisting of all ones Sec E.1
Z̄G Matrix of conditional expectations over G Sec E.1
Z f

G m×n matrix expansion of Z̄G Sec E.1
Z̃ Matrix corresponding to Z̃ Sec E.2
ρ′,γ′ Candidate row and column clustering Sec E.2
R′,C′ Candidate row and column membership matrices Sec E.2
Z̃rowVar Variable part of Z̃ during row clustering (size k×n) Sec E.2
Z̃rowConst Constant part of Z̃ during row clustering (size m×n) Sec E.2
Zrow Constant matrix determining row-clustering (size m×n) Sec E.2
ZrowRed Reduced representation of Zrow (size m× l) Sec E.2
Z̃rowVRed Reduced representation of Z̃rowVar (size k× l) Sec E.2
Z̃colVar Variable part of Z̃ during column clustering (size m× l) Sec E.2
Z̃colConst Constant part of Z̃ during column clustering (size m×n) Sec E.2
Zcol Constant matrix determining column clustering (size m×n) Sec E.2
ZcolRed Reduced representation of Zcol (size k×n) Sec E.2
Z̃colVRed Reduced representation of Z̃colVar (size k× l) Sec E.2
Em×n m×n matrix consisting of all ones Sec E.2

Table 17: Notation used in the paper

References

K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the
exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

A. Banerjee, X. Guo, and H. Wang. On the optimality of conditional expectation as a Bregman
predictor. IEEE Transactions on Information Theory, 51(7):2664–2669, July 2005a.

A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. Journal
of Machine Learning Research, 6:1705–1749, 2005b.

H. H. Bauschke and J. M. Borowein. Legendre functions and the method of random Bregman
projections. Journal of Convex Analysis, 4(1):27–67, 1997.

1983

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

R. Bekkerman, R. El-Yaniv, and A. McCallum. Multi-way distributional clustering via pairwise
interactions. In Proceedings of the International Conference on Machine Learning (ICML), pages
41–48, 2005.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming. USSR Computational Mathematics and
Physics, 7:200–217, 1967.

R. Cai, L. Lu, and L. Cai. Unsupervised auditory scene categorization via key audio effects and
information-theoretic co-clustering. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP05), pages 1073–1076, 2005.

J. J. M. Carrasco, D. Fain, K. Lang, and L. Zhukov. Clustering of bipartite advertiser-keyword
graph. In Proceedings of the Workshop on Large Scale Clustering, ICDM, 2003.

Y. Censor and S. Zenios. Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, 1998.

D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-
associations. In Proceedings of the International Conference on Knowledge Discovery and Data
Mining (KDD), pages 79–88, 2004.

Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages 93–103, 2000.

H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering of gene ex-
pression data. In Proceedings of the 4th SIAM International Conference on Data Mining (SDM),
pages 114–125, 2004.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman distances.
In Proceedings of the 13th Annual Conference on Computational Learing Theory (COLT), pages
158–169, 2000.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear
inverse problems. The Annals of Statistics, 19:2032–2066, 1991.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxiliary functions for Bregman dis-
tances. Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon Uni-
versity, 2001.

I. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering algorithm
for text classification. Journal of Machine Learning Research, 3(4):1265–1287, 2003a.

I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering. In Proceedings of the
9th International Conference on Knowledge Discovery and Data Mining (KDD), pages 89–98,
2003b.

1984

BREGMAN CO-CLUSTERING AND MATRIX APPROXIMATION

I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In
Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining,
pages 269–274, 2001.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering.
Machine Learning, 42(1):143–175, January 2001.

D. Freitag. Trained named entity recognition using distributional clusters. In EMNLP, pages 262–
269, 2004.

B. Gao, T. Liu, X. Zheng, Q. Cheng, and W. Ma. Consistent bipartite graph co-partitioning for star-
structured high-order heterogeneous data co-clustering. In Proceedings of the 11th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 41–50, 2005.

T. George and S. Merugu. A scalable collaborative filtering framework based on co-clustering. In
Proceedings of the IEEE Conference on Data Mining, pages 625–628, 2005.

J. Ghosh. Scalable clustering. In Nong Ye, editor, The Handbook of Data Mining, pages 247–277.
Lawrence Erlbaum Assoc., 2003.

GroupLens. Movielens data set. http://www.cs.umn.edu/Research/GroupLens/data/ml-data.tar.gz.

P. D. Grünwald and A. Dawid. Game theory, maximum entropy, minimum discrepancy, and robust
Bayesian decision theory. Annals of Statistics, 32(4), 2004.

J. Guan, G. Qiu, and X. Y. Xue. Spectral images and features co-clustering with application to
content-based image retrieval. In IEEE Workshop on Multimedia Signal Processing, 2005.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Association,
67(337):123–129, 1972.

T. Hofmann. Latent semantic models for collaborative filtering. ACM Transactions on Information
Systems, 22(1):89–115, 2004.

T. Hofmann and J. Puzicha. Unsupervised learning from dyadic data. Technical Report ICSI TR-
98-042, International Computer Science Institute (ICSI), Berkeley, 1998.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey, 1988.

E. T. Jaynes. Information theory and statistical mechanics. Physical Reviews, 106:620–630, 1957.

Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: Coclus-
tering genes and conditions. Genome Research, 13(4):703–716, 2003.

J. Lafferty. Additive models, boosting, and inference for generalized divergences. In Proceedings
of the 13th Annual Conference on Computational Learing Theory (COLT), 1999.

D. L. Lee and S. Seung. Algorithms for non-negative matrix factorization. In Proceedings of
the 14th Annual Conference on Neural Information Processing Systems (NIPS), pages 556–562,
2001.

1985

BANERJEE, DHILLON, GHOSH, MERUGU AND MODHA

H. Li and N. Abe. Word clustering and disambiguation based on co-occurence data. In COLING-
ACL, pages 749–755, 1998.

T. Li. A general model for clustering binary data. In Proceedings of the 11th International Confer-
ence on Knowledge Discovery and Data Mining (KDD), pages 188–197, 2005.

Z. Lin and R.B. Altman. Finding haplotype tagging snps by use of principal components analysis.
The American Journal of Human Genetics, 75:850–861, 2004.

S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey.
IEEE Trans. Computational Biology and Bioinformatics, 1(1):24–45, 2004.

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A proba-
bilistic analysis. In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 159–168, 1998.

L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensinal data: A review. ACM
SIGKDD Explorations, 6(1):90–105, 2004.

G. Qiu. Image and feature co-clustering. In Proceedings of the International Conference on Pattern
Recognition, pages 991–994, 2004.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture
for Collaborative Filtering of Netnews. In Proceedings of the ACM Conference on CSCW, pages
175–186, 1994.

R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton University
Press, 1970.

R. Rohwer and D. Freitag. Towards full automation of lexicon construction. In Dan Moldovan and
Roxana Girju, editors, HLT-NAACL 2004: Workshop on Computational Lexical Semantics, pages
9–16, 2004.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recom-
mender systems–a case study. InWebKDD Workshop., 2000.

J. Shore and R. Johnson. Axiomatic derivation of the principle of maximum entropy and the princi-
ple of minimum cross entropy. IEEE Transactions on Information Theory, 26(1):26–37, 1980.

A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining partition-
ings. Journal of Machine Learning Research, 3(3):583–617, 2002.

H. Takamura and Y. Matsumoto. Co-clustering for text categorization. Information Processing
Society of Japan Journal, 2003.

H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition, pages 819–826, 2004.

1986

Journal of Machine Learning Research 8 (2007) 1987-2016 Submitted 12/06; Revised 7/07; Published 9/07

Truncating the Loop Series Expansion for Belief Propagation

Vicenç Gómez∗ VGOMEZ@IUA.UPF.EDU
Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra
Passeig de Circumval·lació 8, 08003 Barcelona, Spain

Joris M. Mooij J.MOOIJ@SCIENCE.RU.NL
Hilbert J. Kappen B.KAPPEN@SCIENCE.RU.NL
Department of Biophysics
Radboud University Nijmegen
6525 EZ Nijmegen, The Netherlands

Editor:Michael Jordan

Abstract
Recently, Chertkov and Chernyak (2006b) derived an exact expression for the partition sum (nor-
malization constant) corresponding to a graphical model, which is an expansion around the belief
propagation (BP) solution. By adding correction terms to the BP free energy, one for each “gener-
alized loop” in the factor graph, the exact partition sum is obtained. However, the usually enormous
number of generalized loops generally prohibits summation over all correction terms. In this arti-
cle we introduce truncated loop series BP (TLSBP), a particular way of truncating the loop series
of Chertkov & Chernyak by considering generalized loops as compositions of simple loops. We
analyze the performance of TLSBP in different scenarios, including the Ising model on square
grids and regular random graphs, and on PROMEDAS, a large probabilistic medical diagnostic
system. We show that TLSBP often improves upon the accuracy of the BP solution, at the expense
of increased computation time. We also show that the performance of TLSBP strongly depends on
the degree of interaction between the variables. For weak interactions, truncating the series leads
to significant improvements, whereas for strong interactions it can be ineffective, even if a high
number of terms is considered.
Keywords: belief propagation, loop calculus, approximate inference, partition function, Ising
grid, random regular graphs, medical diagnosis

1. Introduction

Belief propagation (Pearl, 1988; Murphy et al., 1999) is a popular inference method that yields exact
marginal probabilities on graphs without loops and can yield surprisingly accurate results on graphs
with loops. BP has been shown to outperform other methods in rather diverse and competitive
application areas, such as error correcting codes (Gallagher, 1963; McEliece et al., 1998), low
level vision (Freeman et al., 2000), combinatorial optimization (Mézard et al., 2002) and stereo
vision (Sun et al., 2005).

Associated to a probabilistic model is the partition sum, or normalization constant, from which
marginal probabilities can be obtained. Exact calculation of the partition function is only feasible

∗. Visiting Radboud University Nijmegen

c©2007 Vicenç Gómez, Joris M. Mooij and Hilbert J. Kappen.

GÓMEZ, MOOIJ, AND KAPPEN

for small problems, and there is considerable statistical physics literature devoted to the approxi-
mation of this quantity. Existing methods include stochastic Monte Carlo techniques (Potamianos
and Goutsias, 1997) or deterministic algorithms which provide lower bounds (Jordan et al., 1999;
Leisink and Kappen, 2001), upper bounds (Wainwright et al., 2005), or approximations (Yedidia
et al., 2005).

Recently, Chertkov and Chernyak (2006b) have presented a loop series expansion formula that
computes correction terms to the belief propagation approximation of the partition sum. The series
consists of a sum over all so-called generalized loops in the graph. When all loops are taken into
account, Chertkov & Chernyak show that the exact result is recovered. Since the number of gen-
eralized loops in a graphical model easily exceeds the number of configurations of the model, one
could argue that the method is of little practical value. However, if one could truncate the expansion
in some principled way, the method could provide an efficient improvement to BP.1

Most inference algorithms on loopy graphs can be viewed as generalizations of BP, where mes-
sages are propagated between regions of variables. For instance, the junction-tree algorithm (Lau-
ritzen and Spiegelhalter, 1988) which transforms the original graph in a region tree such that the
influence of all loops in the original graph is implicitly captured, and the exact result is obtained.
However, the complexity of this algorithm is exponential in time and space on the size of the largest
clique of the resulting join tree, or equivalently, on the tree-width of the original graph, a parameter
which measures the network complexity. Therefore, for graphs with high tree-width one is resorted
to approximate methods such as Monte Carlo sampling or generalized belief propagation (GBP)
(Yedidia et al., 2005), which captures the influence of short loops using regions which contain them.
One way to select valid regions is the cluster variation method (CVM) (Pelizzola, 2005). In general,
selecting a good set of regions is not an easy task, as described by Welling et al. (2005). Alterna-
tively, double-loop methods can be used (Heskes et al., 2003; Yuille, 2002) which are guaranteed to
converge, often at the cost of more computation time.

In this work we propose TLSBP, an algorithm to compute generalized loops in a graph which
are then used for the approximate computation of the partition sum and the single-node marginals.
The proposed algorithm is parametrized by two arguments which are used to prune the search for
generalized loops. For large enough values of these parameters, all generalized loops present in a
graph are retrieved and the exact result is obtained. One can then study how the error is progres-
sively corrected as more terms are considered in the series. For cases were exhaustive computation
of all loops is not feasible, the search can be pruned, and the result is a truncated approximation of
the exact solution. We focus mainly on problems where BP converges easily, without the need of
damping or double loop alternatives (Heskes et al., 2003; Yuille, 2002) to force convergence. It is
known that accuracy of the BP solution and convergence rate are negatively correlated. Through-
out the paper we show evidence that for those cases where BP has difficulties to converge, loop
corrections are of little use, since loops of all lengths tend to have contributions of similar order of
magnitude.

The paper is organized as follows. In Section 2 we briefly summarize the series expansion
method of Chertkov and Chernyak (2006b). In Section 3 we provide a formal characterization of
the different types of generalized loops that can be present in an arbitrary graph. This description
is relevant to understand the proposed algorithm described in Section 4. We present experimental
results in Section 5 for the Ising model on grids, regular random graphs and medical diagnosis.

1. Note that the number of generalized loops in a finite graph is finite, and strictly speaking, the term series denotes an
infinite sequence of terms. For clarity, we prefer to use the original terminology.

1988

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

Concerning grids and regular graphs, we show that the success of restricting the loop series ex-
pansion to a reduced quantity of loops depends on the type of interactions between the variables
in the network. For weak interactions, the largest correction terms come from the small elemen-
tary loops and therefore truncation of the series at some maximal loop length can be effective. For
strong interactions, loops of all lengths contribute significantly and truncation is of limited use. We
numerically show that when more loops are taken into account, the error of the partition sum de-
creases and when all loops are taken into account the method is correct up to machine precision. We
also apply the truncated loop expansion to a large probabilistic medical diagnostic decision support
system (Wiegerinck et al., 1999). The network has 2000 diagnoses and about 1000 findings and
is intractable for computation. However, for each patient case unobserved findings and irrelevant
diagnoses can be pruned from the network. This leaves a much smaller network that may or may not
be tractable depending on the set of clamped findings. For a number of patient cases, we compare
the BP approximation and the truncated loop correction. We show results and characterize when
the loop corrections significantly improve the accuracy of the BP solution. Finally, in Section 6 we
provide some concluding remarks.

2. BP and the Loop Series Expansion

Consider a probability model on a set of binary variables xi = ±1, i= 1, . . . ,n:

P(x) =
1
Z

m

∏
α=1

fα(xα), Z =∑
x

m

∏
α=1

fα(xα), (1)

where α = 1, . . . ,m labels interactions (factors) on subsets of variables xα, and Z is the partition
function, which sums over all possible states or variable configurations. Note that the only restric-
tion here is that variables are binary, since arbitrary factor nodes are allowed, as in Chertkov and
Chernyak (2006b).

The probability distribution in (1) can be directly expressed by means of a factor graph (Kschis-
chang et al., 2001), a bipartite graph where variable nodes i are connected to factor nodes α if and
only if xi is an argument of fα. Figure 3 (left) on page 1999 shows an example of a graph where
variable and factor nodes are indicated by circles and squares respectively.

For completeness, we now briefly summarize Pearl’s belief propagation (BP) (Pearl, 1988) and
define the Bethe free energy. If the graph is acyclic, BP iterates the following message update
equations, until a fixed point is reached:

variable i to factor α: µi→α(xi) = ∏
β$i\{α}

µβ→i(xi),

factor α to variable i: µα→i(xi) = ∑
xα\{i}

fα(xα) ∏
j∈α\{i}

µj→α(x j),

where i ∈ α denotes variables included in factor α, and α " i denotes factor indices α which have i
as argument. After the fixed point is reached, exact marginals and correlations associated with the
factors (“beliefs”) can be computed using:

bi(xi) ∝∏
α$i

µα→i(xi),

bα(xα) ∝ fα(xα)∏
i∈α

µi→α(xi),

1989

GÓMEZ, MOOIJ, AND KAPPEN

where ∝ indicates normalization so that beliefs sum to one.
For graphs with cycles the same update equations can be iterated (the algorithm is then called

loopy, or iterative, belief propagation), and one can still obtain very accurate approximations of the
beliefs. However, convergence is not guaranteed in these cases. For example, BP can get stuck in
limit cycles. An important step towards the understanding and characterization of the convergence
properties of BP came from the observation that fixed points of this algorithm correspond to sta-
tionary points of a particular function of the beliefs, known as the Bethe free energy (Yedidia et al.,
2000), which is defined as:

FBP =UBP−HBP, (2)

whereUBP is the Bethe average energy:

UBP = −
m

∑
α=1
∑
xα
bα(xα) log fα(xα),

and HBP is the Bethe approximate entropy:

HBP = −
m

∑
α=1
∑
xα
bα(xα) logbα(xα)+

n

∑
i=1

(di−1)∑
xi
bi(xi) logbi(xi), (3)

where di is the number of neighboring factor nodes of variable node i. The second term in (3)
ensures that every node in the graph is counted once (see Yedidia et al., 2005, for details). The BP
algorithm tries to minimize (2) and, for trees, the exact partition function can be obtained after the
fixed point has been reached, Z = exp(−FBP). However, for graphs with loops, FBP provides just an
approximation.

If one can calculate the exact partition function Z defined in Equation (1), one can also calculate
any marginal in the network. For instance, the marginal

Pi(xi) =
∂ logZ(θi)
∂θi(xi)

∣∣∣∣
θi→0

, where Z(θi) :=∑
x
eθixi

m

∏
α=1

fα(xα)

is the partition sum of the network, perturbed by an additional local field potential θi on variable xi.
Alternatively, one can compute different partition functions for different settings of the vari-

ables, and derive the marginals from ratios of them:

Pi(xi) =
Zxi

∑
x′i

Zx
′
i
, (4)

where Zxi indicates the partition function calculated from the same model conditioning on variable
i, that is, with variable i fixed (clamped) to value xi. Therefore, approximation errors in the compu-
tation of any marginal can be related to approximation errors in the computation of Z. We will thus
focus on the approximation of Z mainly, although marginal probabilities will be computed as well.

Of central interest in this work is the concept of generalized loop, which is defined in the fol-
lowing way:

Definition 1 A generalized loop in a graph G= 〈V,E〉 is any subgraph C = 〈V ′,E ′〉, V ′ ⊆V,E ′ ⊆
(V ′×V ′)∩E such that each node in V ′ has degree two or larger. The length (size) of a generalized
loop is its number of edges.

1990

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

For the rest of the paper, the terms loop and generalized loop are used interchangeably. The main
result of Chertkov and Chernyak (2006b) is the following. Let bα(xα),bi(xi) denote the beliefs
after the BP algorithm has been converged, and let ZBP = exp(−FBP) denote the corresponding
approximation to the partition sum, with FBP the value of the Bethe free energy evaluated at the BP
solution. Then ZBP is related to the exact partition sum Z as:

Z = ZBP

(
1+ ∑

C∈C
r(C)

)
, r(C) =∏

i∈C
µi(C)∏

α∈C
µα(C), (5)

where summation is over the set C of all generalized loops in the factor graph. Any term r(C) in
the series corresponds to a product with as many factors as nodes present in the loop. Each factor is
related to the beliefs at each variable node or factor node according to the following formulas:

µi(C) =
(1−mi)qi(C)−1+(−1)qi(C)(1+mi)qi(C)−1

2(1−m2i)qi(C)−1 , qi(C) = ∑
α∈C,α$i

1, (6)

µα(C) =∑
xα
bα(xα) ∏

i∈C,i∈α
(xi−mi), (7)

where mi = ∑xi bi(xi)xi = bi(+)−bi(−) is the expected value of xi computed in the BP approxima-
tion. Generally, terms r(C) can take positive or negative values. Even the same variable i may have
positive or negative subterms µi depending on the structure of the particular loop.

Expression (5) represents an exact and finite decomposition of the partition function with the
first term of the series being exactly represented by the BP solution. Note that, although the series
is finite, the number of generalized loops in the factor graph can be enormous and easily exceed the
number of configurations 2n. In these cases the loop series is less efficient than the most naive way
to compute Z exactly, namely by summing the contributions of all 2n configurations one by one.

On the other hand, it may be that restricting the sum in (5) to a subset of the total generalized
loops captures the most important corrections and may yield a significant improvement in com-
parison to the BP estimate. We therefore define the truncated form of the loop corrected partition
function as:

ZTLSBP = ZBP

(
1+ ∑

C∈C ′
r(C)

)
, (8)

where summation is over the subset C ′ ⊆ C obtained by Algorithm 2, which we will discuss in
Section 4. Approximations for the single-node marginals can then be obtained from (8), using the
method proposed in Equation (4):

b′i(xi) =
ZxiTLSBP
∑
x′i

Zx
′
i
TLSBP

. (9)

Because the the terms r(C) can have different signs, the approximation ZTLSBP is in general not a
bound of the exact Z, but just an approximation.

1991

GÓMEZ, MOOIJ, AND KAPPEN

3. Loop Characterization

In this section we characterize different types of generalized loops that can be present in a graph.
This classification is the basis of the algorithm described in the next section and also exemplifies
the different shapes a generalized loop can take. For clarity, we illustrate them by means of a factor
graph arranged in a square lattice with only pairwise interactions. However, definitions are not
restricted to this particular model and can be applied generally to any factor graph.

Definition 2 A simple (elementary) generalized loop (from now on simple loop) is defined as a
connected subgraph of the original graph where all nodes have exactly degree two.

This type of generalized loop coincides with the concept of simple circuit or simple cycle in graph
theory: a path which starts and ends at the same node with no repeated vertices except for the
start and end vertex. Figure 1a shows an example of a simple loop of size 8. On the contrary, in
Figure 1b we show an example of generalized loop which is not a simple loop, because three nodes
have degree larger than two.

We now define the union of two generalized loops, l1 = 〈V1,E1〉 and l2 = 〈V2,E2〉, as the gen-
eralized loop which results from taking the union of the vertices and the edges of l1 and l2, that is,
l′ = l1∪ l2 = 〈V1∪V2,E1∪E2〉. Note that the union of two simple loops is never a simple loop except
for the trivial case in which both loops are equal. Figure 1b shows an example of a generalized loop
which can be described as the union of three simple loops, each of size 8. The same example can
be also defined as the union of two overlapping simple loops, each of size 12.

Definition 3 A disconnected generalized loop, disconnected loop, is defined as a generalized loop
with more than one connected component.

Figure 1c shows an example of a disconnected loop composed of three simple loops. Note that
components are not restricted to be simple loops. Figure 1d illustrates this fact using an example
where one connected component (the left one) is not a simple loop.

Definition 4 A complex generalized loop, complex loop, is defined as a generalized loop which
cannot be expressed as the union of two or more different simple loops.

Figures 1e and 1f are examples of complex loops. Intuitively, they result after the connection of two
or more connected components of a disconnected loop.

Any generalized loop can be categorized according to these three different categories: a simple
loop cannot be a disconnected loop, neither a complex loop. On the other hand, since Definitions
3 and 4 are not mutually exclusive, a disconnected loop can be a complex loop and vice-versa,
and also there are generalized loops which are neither disconnected nor complex, for instance the
example of Figure 1b. An example of a disconnected loop which is not a complex loop is shown in
Figure 1c. An example of a complex loop which is not a disconnected loop is shown in Figure 1e.
Finally, an example of a complex loop which is also a disconnected loop is shown in Figure 1f.

We finish this characterization using a diagrammatic representation in Figure 2 which illustrates
the definitions. Usually, the smallest subset contains the simple loops and both disconnected loops
and complex loops have nonempty intersection. There is another subset of all generalized loops
which are neither simple, disconnected, nor complex.

1992

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

(d)

(e) (f)

(c)

(a) (b)

Figure 1: Examples of generalized loops in a factor graph with lattice structure. Variable nodes and
factor nodes are represented as squares and rhombus respectively. Generalized loops are
indicated using bold edges underlying the factor graph. (a) A simple loop. (b) A non-
simple loop which is neither a disconnected loop nor a complex loop. (c) A disconnected
loop of three components, each a simple loop. (d) A disconnected loop of two compo-
nents, the left one a non-simple loop. (e) A complex loop which is not a disconnected
loop. (f) A complex loop which is also a disconnected loop. (See text for definitions).

1993

GÓMEZ, MOOIJ, AND KAPPEN

simple

complex

disconnected

Figure 2: Diagrammatic representation of the different types of generalized loops present in any
graph. Sizes of the sets are just indicative and depend on the particular instance.

4. The Truncated Loop Series Algorithm

In this section we describe the TLSBP algorithm to compute generalized loops in a factor graph, and
use them to correct the BP solution. The algorithm is based on the principle that every generalized
loop can be decomposed in smaller loops. The general idea is to search first for a subset of the
simple loops and, after that, merge all of them iteratively until no new loops are produced. As
expected, a brute force search algorithm will only work for small instances. We therefore prune the
search using two different bounds as input arguments. Eventually, a high number of generalized
loops which presumably will account for the major contributions in the loops series expansion will
be obtained. We show that the algorithm is complete, or equivalently, that all generalized loops
are obtained by the proposed approach when the constraints expressed by the two arguments are
relaxed. Although exhaustive enumeration is of little interest for complex instances, it allows to
check the validity of (5) and to study the loop series expansion for simpler instances. The algorithm
is composed of three steps:

1. First, we remove recursively all the leaves of the original graph, until its 2-core is obtained.
This initial step has two main advantages. On the one hand, since some nodes are deleted,
the complexity of the problem is reduced. On the other hand, we can use the resulting graph
as a test for any possible improvement to the BP solution. Indeed, if the original graph did
not contain any loop then the null graph is obtained, the BP solution is exact on the original
graph, and the series expansion has only one term. On the other hand, if a nonempty graph
remains after this preprocessing, it will have loops and the BP solution can be improved using
the proposed approach.

2. After the graph is preprocessed, the second step searches for simple loops. The result of
this search will be the initial set of loops for the next step and will also provide a bound b
which will be used to truncate the search for new generalized loops. Finding circuits in a

1994

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

graph is a problem addressed for long (Tiernan, 1970; Tarjan, 1973; Johnson, 1975) whose
computational complexity grows exponentially with the length of the cycle (Johnson, 1975).
Nevertheless, we do not count all the simple loops but only a subset. Actually, to avoid
dependence on particular instances, we parametrize this search by a size S, which limits the
number of shortest simple loops to be considered. Once S simple loops have been found in
order of increasing length, the length of the largest simple loop is used as the bound b for the
remaining steps.

3. The third step of the algorithm consists of obtaining all non-simple loops that the set of S
simple loops can“generate”.

According to definition 4, complex loops can not be expressed as union of simple loops. To develop
a complete method, in the sense that all existing loops can be obtained, we define the operation
merge loops, which extends the simple union in such a way that complex loops are retrieved as well.
Given two generalized loops, l1, l2, merge loops returns a set of generalized loops. One can observe
that for each disconnected loop, a set of complex loops can be generated by connecting two (or
more) components of the disconnected loop. In other words, complex loops can be expressed as the
union of disjoint loops with a path connecting two vertices of different components. Therefore the
set computed by merge loops will have only one element l ′ = {l1∪ l2} if l1∪ l2 is not disconnected.
Otherwise, all the possible complex loops in which l1∪ l2 appears are included in the resulting set.

We use the following procedure to compute all complex loops associated to the disconnected
loop l′: we start at a vertex of a connected component of l ′ and perform depth-first-search (DFS)
until a vertex of a different component has been reached. At this point, the connecting path and
the reached component are added to the first component. Now the generalized loop has one less
connected component. This procedure is repeated again until the resulting generalized loop is not
disconnected, or equivalently, until all its vertices are members of the first connected component.
Iterating this search for each vertex every time two components are connected, and also for each
initial connected component, one obtains all the required complex loops.

Note that deciding whether l1∪ l2 is disconnected or not requires finding all connected compo-
nents of the resulting loop. Moreover, given a disconnected loop, the number of associated complex
loops can be enormous. In practice, the bound b obtained previously is used to reduce the number
of calculations. First, testing if the length of l1∪ l2 is larger than b can be done without computing
the connected components. Second, the DFS search for complex loops is limited using b, so very
large complex loops will not be retrieved.

However, restricting the DFS search for complex loops using the bound b could result in too
deep searches. Consider the worst case of merging the two shortest, non-overlapping, simple loops
which have size Ls. The maximum depth of the DFS search for complex loops is d = b− 2Ls.
Then the computational complexity of the merge loops operation depends exponentially on d. This
dependence is especially relevant when b>> Ls, for instance in cases where loops of many different
lengths exist. To overcome this problem we define another parameterM, the maximum depth of the
DFS search in the merge loops operation. For small values of M, the operation merge loops will
be fast but a few (if any) complex loops will be obtained. Conversely, for higher values of M the
operation merge loops will find more complex loops at the cost of more time.

Algorithm 1 in the previous page describes briefly the operation merge loops. It receives two
loops l1 and l2, and bounds b and M as arguments, and returns the set newloops which contains the

1995

GÓMEZ, MOOIJ, AND KAPPEN

Algorithm 1 merge loops
Arguments:

l1 = 〈V1,E1〉 loop,
l2 = 〈V2,E2〉 loop,
b maximal length of a loop,
M maximal depth of complex loops search,
G preprocessed factor graph

1: newloops← /0
2: if (|E1∪E2| ≤ b) then
3: C← Find connected components(l1∪ l2)
4: newloops←{l1∪ l2}
5: for all (ci ∈C) do
6: for all (vi ∈ ci) do
7: newloops← newloops∪Find complex loopsDFS(vi,ci,C,M,b,G)
8: end for
9: end for
10: end if
11: return newloops

loop resulting of the union of l1 and l2 plus all complex loops obtained in the DFS search bounded
by b andM.

Once the problem of expressing all generalized loops as compositions of simple loops has been
solved using the merge loops operation, we need to define an efficient procedure to merge them.
Note that, given S simple loops, a brute force approach tries all combinations of two, three, . . . up
to S−1 simple loops. Hence the total number is:

(
S
2

)
+

(
S
3

)
+ . . .+

(
S

S−1

)
= O(2S),

which is prohibitive. Nevertheless, we can avoid redundant combinations by merging pairs of loops
iteratively: in a first iteration, all pairs of simple loops are merged, which produces new generalized
loops. In a next iteration i, instead of performing all

(S
i
)
mergings, only the new generalized loops

obtained in iteration i−1 are merged with the initial set of simple loops. The process ends when no
new loops are found. Using this merging procedure, although the asymptotic cost is still exponential
in S, many redundant mergings are not considered.

Summarizing, the third step applies iteratively the merge loops operation until no new gener-
alized loops are obtained. After this step has finished, the final step computes the truncated loop
corrected partition function defined in Equation (8) using all the obtained generalized loops. We
describe the full procedure in Algorithm 2. Lines 2 and 4 correspond to the first and second steps
and lines 5−13 correspond to the third step.

To show that this process produces all the generalized loops we first assume that S is sufficiently
large to account for all the simple loops in the graph, and that M is larger or equal than the number
of edges of the graph. Now let C be a generalized loop. According to the definitions of Section 3,
either C can be expressed as a union of s simple loops, or C is a complex loop. In the first case, C
is clearly produced in the sth iteration. In the second case, let s′ denote the number of simple loops

1996

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

Algorithm 2 Algorithm TLSBP
Arguments:

S maximal number of simple loops,
M maximal depth of complex loops search,
G original factor graph

1: Run belief propagation algorithm over G
2: G′ ← Obtain the 2-core(G)
3: C ′ ← /0
4: if (¬empty(G′)) then
5: 〈sloops,b〉 ← Compute first S simple loops(G′)
6: 〈oldloops,newloops〉 ← 〈sloops, /0〉
7: C ′ ← sloops
8: while (¬empty(oldloops)) do
9: for all (l1 ∈ sloops) do
10: for all (l2 ∈ oldloops) do
11: newloops← newloops∪mergeLoops(l1, l2,b,M,G′)
12: end for
13: end for
14: oldloops← newloops
15: C ′ ← C ′∪newloops
16: end while
17: end if
18: return the result of expression (8) using C ′

which appear inC. ThenC is produced in iteration s′, during the DFS for complex loops within the
merging of one of the simple loops contained inC.

The obtained collection of loops can be used for the approximation of the singe node marginals
as well, as described in Equation (9). The method consists of clamping one variable i to all its
possible values (±1) and computing the corresponding approximations of the partition functions:
Zxi=+1
TLSBP and Z

xi=−1
TLSBP. This requires to run BP in each clamped network, and reuse the set of loops

replacing with zero those terms where the clamped variable appears. The computational complexity
of approximating all marginals using this approach is in general O(N ·L · d ·TBP), where L is the
number of found loops, d is the cardinality of the variables (two in our case), and TBP the average
time of BP to converge after clamping one variable. Usually, this task requires less computation
time than the search for loops.

As a final remark, we want to stress a more technical aspect related to the implementation. Note
that generalized loops can be expressed as the composition of other loops in many different ways.
In consequence, they all must be stored incrementally and the operation of checking if a loop has
been previously counted or not should be done efficiently. An appropriate way to implement this
fast look-up/insertion is to encode all loops in a string composed by the edge identifiers in some
order with a separator character between them. This identifier is used as a key to index an ordered
tree, or hash structure. In practice, a hash structure is only necessary if large amounts of loops need
to be stored. For the cases analyzed here, choosing a balanced tree instead of a hash table resulted
in a more efficient data structure.

1997

GÓMEZ, MOOIJ, AND KAPPEN

5. Experiments

In this section we show the performance of TLSBP in three different scenarios. First, we focus
on square lattices and study how loop corrections improve the BP solution as a function of the
interaction between variables and the size of the problem. Second, we study the performance of the
method in random regular graphs as a function of the degree between the nodes. Finally, we apply
the algorithm on a medical diagnosis bayesian network.

In all the experiments we show results for tractable instances, where the exact solution using
the junction tree (Lauritzen and Spiegelhalter, 1988) can be computed. Performance is evaluated
comparing the TLSBP error against the BP solution, and also against the cluster variation method
(CVM). Instead of using a generalized belief propagation algorithm (GBP) which usually requires
several trials to find the proper damping factor to converge, we use a double-loop implementation
which has convergence guarantees (Heskes et al., 2003). For this study we select as outer regions of
the CVM method all maximal factors together with all loops that consist up to four different vari-
ables. This choice represents a good trade-off between computation time required for convergence
and accuracy of the solution.

We report two different error measures. Concerning the partition function Z we compute:

ErrorZ′ =
∣∣∣∣
logZ′

logZ

∣∣∣∣ , (10)

where Z′ is the partition function corresponding to the method used: BP, TLSBP, or CVM. Error of
single-node marginals is measured using the maximum !∞ error, which is a reasonable quantity if
one is interested in worst-case scenarios:

Errorb = max
i=1,...,n
xi=±1

|Pi(xi)−bi(xi)|, (11)

were again bi(xi) are the single-node marginal approximations corresponding to the method used.
We use four different schemas for belief-updating of BP: (i) fixed and (ii) random sequential

updates, (iii) parallel (or synchronous) updates, and (iv) residual belief propagation (RBP), a re-
cent method proposed by Elidan et al. (2006). The latter method schedules the updates of the BP
messages heuristically by selecting the next message to be updated which has maximum residual, a
quantity defined as an upper bound on the distance of the current messages from the fixed point. In
general, we experienced that for some instances where the RBP method converged, the other update
schemas (fixed, random sequential and parallel updates) failed to converge.

In all schemas we interpret that a fixed point is reached at iteration t when the maximum absolute
value of the updates of all the messages from iteration t− 1 to t is smaller than a threshold ϑ. We
notice a large correlation between the order of magnitude of ϑ and the ratio between the BP and the
TLSBP errors. For this reason we used a very small value of the threshold, ϑ= 10−15.

5.1 Ising Grids

This model is defined on a grid where each variable, also called spin, takes binary values xi =
±1. A spin is coupled with its direct neighbors only, so that pairwise interactions f i j(xi,x j) =
exp(θi jxix j) are considered, parametrized by θi j. Every spin can be exposed to an external field
fi(xi) = exp(θixi), or single-node potential, parametrized by θi. Figure 3 (left) shows the factor

1998

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

graph associated to the 4x4 Ising grid, composed of 16 variables. The Ising grid model is often
used as a test-bed for inference algorithms. It is of great relevance in statistical physics, and has
applications in different areas such as image processing. In our context it also represents a challenge
since it has many loops. Good results in this model will likely translate into good results for less
loopy graphs.

Usually, two cases are differentiated according to the sign of the θi j parameters. For θi j > 0
coupled spins tend to be in the same state. This is known as the attractive, or “ferromagnetic”
setting. On the other hand, for mixed interactions, θi j can be either positive or negative, and this
setting is called “spin-glass” configuration. Concerning the external field, one can distinguish two
cases. For the case of nonzero fields, larger values of θi imply easier inference problems in general.
On the other hand, for θi = 0, there exist two phase transitions from easy inference problems (small
θi j) to more difficult ones (large θi j) depending on the type of pairwise couplings (see Mooij and
Kappen, 2005, for more details).

This experimental subsection is structured in three parts: First, we study a small 4x4 grid. We
then study the performance of the algorithm in a 10x10 grid, where complete enumeration of all
generalized loops is not feasible. Finally, we analyze the scalability of the method with problem
size.

The 4x4 Ising grid is complex enough to account for all types of generalized loops. It is the
smallest size where complex loops are present. At the same time, the problem is still tractable and
exhaustive enumeration of all the loops can be done.

We ran the TLSBP algorithm in this model with arguments S and M large enough to retrieve
all the loops. Also, the maximum length b was constrained to be 48, the total number of edges for
this model. After 4 iterations all generalized loops were obtained. The total number is 16371 from
which 213 are simple loops. The rest of generalized loops are classified as follows: 174 complex and

x1
p0

p1

p2

x2

p3

p4

p5

x3

p6

p7

p8

x4

p9

p10

x5

p11

p12

p13

x6
p14

p15

p16

x7

p17

p18

p19

x8

p20

p21

x9

p22

p23

p24

x10

p25

p26

p27

x11
p28

p29

p30

x12

p31

p32

x13

p33

p34

x14

p35

p36

x15

p37

p38

x16
p39

0 10 20 30 40 500

500

1000

1500

2000

2500

3000

loop length

#l
oo

ps

Ising 4x4 generalized loops

Figure 3: (left)A factor graph representing the 4x4 Ising grid. (right)Number of generalized loops
as a function of the length using the factor graph representation.

1999

GÓMEZ, MOOIJ, AND KAPPEN

disconnected loops, 1646 complex but non-disconnected loops, 604 non-complex but disconnected
loops, and 13734 neither complex nor disconnected loops.

Figure 3 (right) shows the histogram of all generalized loops for this small grid. Since we
use the factor graph representation the smallest loop has length 8. The largest generalized loop
includes all nodes and all edges of the preprocessed graph, and has length 48. The Poisson-like
shape of the histogram is a characteristic of this model and for larger instances we observed the
same tendency. Thus the analysis for this small model can be extrapolated to some extent to grids
with more variables.

To analyze how the error changes as more loops are considered it is useful to sort all the terms
r(C) by their absolute value in descending order such that |r(Ci)| ≥ |r(Ci+1)|. We then compute, for
each number of loops l = 1 . . .16371, the approximated partition function which accounts for the l
most important loops:

ZTLSBP(l) =ZBP

(
1+ ∑

i=1...l
r(Ci)

)
. (12)

From these values of the partition function we calculate the error measure indicated in Equa-
tion (11). Estimations of the single-node marginals were obtained using the clamping method,
and their corresponding error was calculated using Equation (10).

We now study how loop contributions change as a function of the coupling strength between the
variables. We ran several experiments using mixed interactions with θi j ∼ N (0,σ2) independently
for each factor node, and σ varying between 0.1 and 2. Single-node potentials were drawn according
to θi ∼ N (0,0.052). For small values of σ, interactions are weak and BP converges easily, whereas
for high values of σ variables are strongly coupled and BP has more difficulties, or does not converge
at all.

Figure 4 shows results of representative instances of three different interaction strengths. For
each instance we plot the partition function error (left column) together with errors of the single-
node marginals (middle column) and loop contributions as a function of the length (right column).
First, we can see that improvements of the partition sum correspond to improvements of the esti-
mates of marginal probabilities as well. Second, for weak couplings (σ= 0.1, first row) we can see
that truncating the series until a small number of loops (around 10) is enough to achieve machine
precision. In this case the errors of BP are most prominently due to small simple loops. As the
right column illustrates, loop contributions decrease exponentially with the size, and loops with the
same length correspond to very similar contributions. Larger loops give negligible contributions
and can thus be ignored by truncating the series. As interactions are strengthened, however, more
loops have to be considered to achieve maximum accuracy, and contributions show more variability
for a given length (see middle row). Also, oscillations of the error due to the different signs in loop
terms (caused by the mixed interactions) of the same order of magnitude become more frequent.
Eventually, for large couplings (σ ≥ 2), where BP often fails to converge, loops of all lengths give
significant contributions. In the bottom panels of Figure 4 we show an example of a ’difficult’ case
for which the BP result is not improved until more than 103 loop terms are summed. The observed
discontinuities in the error of the partition sum are caused by the fact that oscillations become more
pronounced, and corrections composed of negative terms ri(Ci) can result in negative values of the
partially corrected partition function, see Equation (12). This occurs for very strong interactions
only, and when a small fraction of the total number of loops is considered. In addition, as the right
column indicates, there is a shift of the main contributions towards the largest loops.

2000

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

Z

Coupling strength σ = 0.1

Error BP
Error TLSBP

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

m
ar

gi
na

ls

Coupling strength σ = 0.1

Error BP
Error TLSBP

0 10 20 30 40 50
10−100

10−50

100
Coupling strength σ = 0.1

Loop length

|r(
C)

|

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

Z

Coupling strength σ = 0.5

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

m
ar

gi
na

ls
Coupling strength σ = 0.5

0 10 20 30 40 50
10−40

10−30

10−20

10−10

100
Coupling strength σ = 0.5

Loop length

|r(
C)

|

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

Z

Coupling strength σ = 2

100 101 102 103 104
10−15

10−10

10−5

100

#loops

Er
ro

r i
n

m
ar

gi
na

ls

Coupling strength σ = 2

0 10 20 30 40 50
10−16

10−8

100

Coupling strength σ = 2

Loop length

|r(
C)

|

Figure 4: Cumulative error for the spin-glass 4x4 Ising grid for different interaction strengths,
see Equation (12). (left column) Error of Z. (middle column) Error of single-node
marginals. Dashed lines correspond to the BP error, and solid lines correspond to the
loop-corrected (TLSBP) error. (right column) Absolute values of all loop terms as a
function of the length of the corresponding loop.

After analyzing a small grid, we now address the case of the 10x10 Ising grid, where exhaustive
enumeration of all the loops is not computationally feasible. We test the algorithm in two scenarios:
for attractive interactions (ferromagnetic model) where pairwise interactions are parametrized as
θi j = |θ′i j|,θ′i j ∼ N (0,σ2), and also for the previous case of mixed interactions (spin-glass model).
Single-node potentials were chosen θi ∼ N (0.1,0.052) in both cases.

2001

GÓMEZ, MOOIJ, AND KAPPEN

0 0.5 1 1.5
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

σ

Er
ro

r i
n

Z

Attractive interactions

Error BP
Error TLSBP s = 10
Error TLSBP s = 100
Error TLSBP s = 1000
Error CVM

0 0.5 1 1.5
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

σ

Er
ro

r i
n

m
ar

gi
na

ls

Error BP
Error TLSBP s = 10
Error TLSBP s = 100
Error TLSBP s = 1000
Error CVM

Figure 5: TLSBP error for the 10x10 Ising grid with attractive interactions for different values of the
parameter S. (left) Error of the partition function. (right) Error of single-node marginals.

0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

σ

Er
ro

ri
in

 Z

Mixed interactions

Error BP
Error TLSBP s = 10
Error TLSBP s = 100
Error TLSBP s = 1000
Error CVM

0 0.2 0.4 0.6 0.8 1
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

σ

Er
ro

r i
n

m
ar

gi
na

ls

Error BP
Error TLSBP s = 10
Error TLSBP s = 100
Error TLSBP s = 1000
Error CVM

Figure 6: TLSBP error of the 10x10 Ising grid with mixed interactions for different values of the
parameter S. (left) Error of the partition function. (right) Error of single-node marginals.

2002

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

We show results in Figures 5 and 6 for three values of the parameter S = {10,100,1000} and
a fixed value of M = 10. For S = 10 and S = 100, only simple loops were obtained whereas for
S = 1000, a total of 44590 generalized loops was used to compute the truncated partition sum.
Results are averaged errors over 50 random instances. The selected loops were the same in all
instances. Although in both types of interactions the BP error (solid line with dots) is progressively
reduced as more loops are considered, the picture differs significantly between the two cases.

For the ferromagnetic case shown in Figure 5, we noticed that all loops have positive contribu-
tions, r(C) > 0. This is a consequence of this particular type of interactions, since all magnetizations
have the same sign at the BP fixed point, and also all nodes have an even number of neighbors. Con-
sequently, improvements in the BP result are monotonic as more loops are considered, and in this
case, the TLSBP can be considered as a lower bound of the exact solution. For the case of S= 1000,
the BP error is reduced substantially at nonzero σ, but around σ∼ 0.5, where the BP error reaches
a maximum, also the TLSBP improvement is minimal. From this maximum, the BP error decreases
again, and loop corrections tend to improve progressively the BP solution again as the coupling is
strengthened. We remark that improvements were obtained for all instances in the three cases.

Comparing with CVM, TLSBP is better for weak couplings and for S = 1000 only. This in-
dicates that for intermediate and strong couplings one would need more than the selected 44590
generalized loops to improve on the CVM result.

For the case of spin-glass interactions we report different behavior. From Figure 6 we see
again that for weak couplings the BP error is corrected substantially, but the improvement decreases
as the coupling strength is increased. Eventually, for σ ∼ 1 BP fails to converge in most of the
cases and also gives poor results. In these cases loop corrections are of little use, and there is no
actual difference in considering S = 1000 or S = 10. Moreover, because loop terms r(C) now can
have different signs, truncating the series can lead to worse results for S = 1000 than for S = 10.
Interestingly, the range where TLSBP performs better than CVM is slightly larger in this type of
interactions, TLSBP being better for σ< 0.5.

To end this subsection, we study how loop corrections scale with the number of nodes in the
graph. We only use spin-glass interactions, since it is a more difficult configuration than the ferro-
magnetic case, as previous experiments suggest. We compare the performance for weak couplings
(σ= 0.1), and strong couplings (σ= 0.5), where BP has difficulties to converge in large instances.
The number of variables N2 is increased for grids of size N×N until exact computation using the
junction tree algorithm is not feasible anymore.

Since the number of generalized loops grows very fast with the size of the grid, we choose
increasing values of S as well. We use values of S proportional to the number of variable nodes N 2
such that S = 10N2. This simple linear increment in S means that as N is increased, the proportion
of simple loops captured by TLSBP over the total existing number of simple loops decreases. It
is interesting to see how this affects the performance of TLSBP in terms of time complexity and
accuracy of the solution. For simplicity, M is fixed to zero, so no complex loops are considered.
Moreover, to facilitate the computational cost comparison, we only compute mergings of pairs of
simple loops. Actually, for large instances the latter choice does not modify the final set of loops,
since generalized loops which can only be expressed as compositions of three or more simple loops
are pruned using the bound b.

In Figure 7, the top panels show averaged results of the computational cost. The left plot in-
dicates the relation between the number of loops computed by TLSBP and the time required to
compute them. This relation can be fit accurately using a line which means that for this choice of

2003

GÓMEZ, MOOIJ, AND KAPPEN

0.5 1 1.5 2 2.5
x 105

2

4

6

8

10

loops

cp
u−

tim
e

TL
SB

P

x103(a)

cpu−time
Linear fit

16 49 100 169 256 361
100

101

102

103

104

#variables

cp
u−
tim

e

(b)

CVM weak
CVM strong
TLSBP
Junction−Tree

16 49 100 169 256 361

10−10

10−5

100
Weak interactions σ = 0.10

#variables

Er
ro

r i
n

Z

(c)

Error BP
Error TLSBP
Error CVM

16 49 100 169 256 361
10−6

10−4

10−2

100
Strong interactions σ = 0.50

#variables

Er
ro

r i
n

Z

(d)

Error BP
Error TLSBP
Error CVM

Figure 7: Scalability of the method in the Ising model. (a) Time complexity as a function of the pro-
duced number of generalized loops. (b) Relation between the time complexity of TLSBP
and CVM. Comparison of the error of the partition function between BP, TLSBP and
CVM as a function of the graph size for (c) weak interactions and (d) strong interactions.

parameters S andM, and considering only mergings of simple loops, the computational complexity
of the algorithm grows just linearly with the found loops. One has to keep in mind that the num-
ber of loops obtained using the TLSBP algorithm grows much faster, but much less than the total
number of existing loops in the model.

Figure 7b shows the CPU time consumed by CVM, TLSBP, and the junction tree algorithm.
In this case, since we only compute the partition function Z, the CPU time of TLSBP is constant
for both weak and strong couplings. On the contrary, CVM depends on the type of interactions.
For weak interactions, TLSBP is in general more efficient than CVM, although the scaling trend
is slightly better for CVM. For N = 19, CVM starts to be more efficient than TLSBP. For strong
interactions, CVM needs significantly more time to converge in all cases. If we compare the com-
putational cost of the exact method against TLSBP, we can see that the junction tree is very efficient
for networks with small N, and the best option in those cases. However, for N > 17, the junction
tree needs more computation time, and for N > 19, the tree-width of the resulting grids is too large.

2004

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

TLSBP memory requirements were considerably less in these cases, since loops can be stored ef-
ficiently using sets of chars. Also, we can see that the TLSBP scaling is better for this choice of
parameters than that of the exact method.

Bottom panels show the accuracy of the TLSBP solution. For weak couplings (bottom-left)
the BP error is always decreased significantly for this choice of parameters and the improvement
remains almost constant as N increases, meaning that, in this case the number of loops which con-
tribute most to the series expansion does not grow significantly with N. Interestingly, results are
always better than CVM for this regime.

For strong couplings (bottom-right) the picture changes. First, results differ more between in-
stances causing a less smooth curve. Second, the TLSBP error also increases with the problem size,
so improvements tend to decrease with N, even faster than the BP error increase. Eventually, for the
largest tractable instance the TLSBP improvement is still significant, about one order of magnitude.
Comparing against CVM, unlike in the weak coupling scenario, the TLSBP method does not seem
to perform better, and only for some cases TLSBP error is comparable to the CVM error on aver-
age. The accuracy of the TLSBP solution for these instances can be increased by considering larger
values of S andM, at the cost of more time.

5.2 Random Graphs

The previous experimental results were focused on the Ising grid which only considers pairwise
and singleton interactions in such a way that each node in the graph is at most linked with four
neighbors. Here we briefly analyze the performance of TLSBP applied on a more general case,
where interactions are less restricted.

We perform experiments on random graphs with regular topology, where each variable is cou-
pled randomly with d other variables using pairwise interactions parametrized by θi j ∼ N (0,σ2).
Single-node potentials were parametrized in this case by θi ∼ N (0,0.052). We study how loop cor-
rections improve the BP solution as a function of the degree d, and compare improvements against
the CVM. As in the previous subsection, for CVM we select the loops of four variables and all
maximal factors as outer clusters.

Note that the rate of increase in the number of loops with the degree d is even higher than with
the number of variables in the Ising model. Adding one more link to all the variables means adding
N more factor nodes to the factor graph. This raises the number of loops dramatically.

For this scenario, we use N = 20 variables and also increase S every time d is increased. We
simply start with S = 10 and use increments of 250 for each new d. M was set to 10, and all
possible mergings were computed. We analyze two scenarios, weak (σ= 0.1) and strong couplings
(σ= 0.5), and report averages over 60 random instances for each configuration. As Figure 9 (right)
indicates, for σ= 0.1 BP converged in all instances, whereas for σ= 0.5 BP convergence becomes
more difficult as we increase d.

Figure 8 (top) shows results for weak interactions. The TLSBP algorithm always corrects the
BP error, although as d increases, the improvement is progressively reduced. We also notice that
in all cases and methods the approximation of the partition function (left) is less accurate than
the approximation of the marginals (right). For d = 15, TLSBP improvements are still about one
order of magnitude for the partition function, and even better for the marginals. As in previous
experiments with square lattices, the TLSBP approach is generally better than CVM in the weak

2005

GÓMEZ, MOOIJ, AND KAPPEN

coupling regime. Here, it is also more stable, since for some dense networks the CVM error can be
very large, as we can see for d = 13 and d = 15.

For strong interactions (bottom panels), we see that differences between approximations of the
partition function and single-node marginals are more remarkable than in the previous case. The
BP partition function is corrected by TLSBP in more than half of the instances for all degrees (see
inset of Figure 8c, where we plot the fraction of instances where BP was corrected in those cases
that converged), although for higher degrees, the TLSBP corrections are small using this choice
of parameters. On the other hand, single-node BP marginals are corrected in almost all cases. In
contrast, the CVM approach with our selection of outer clusters does not perform better than TLSBP
in general. In particular, we see that CVM estimates of the partition function are very degraded

3 6 9 12 15
10−10

10−8

10−6

10−4

10−2

100

mean degree

Er
ro

r i
n

Z

Weak interactions σ = 0.1

(a)

Error BP
Error TLSBP
Error CVM

3 6 9 12 15
10−10

10−8

10−6

10−4

10−2

100

mean degree

Er
ro

r i
n

m
ar

gi
na

ls

Weak interactions σ = 0.1

(b)

Error BP
Error TLSBP
Error CVM

3 6 9 12 15
10−5

10−3

10−1

101

103

mean degree

Er
ro

r i
n

Z

Strong interactions σ = 0.5(c)

3 6 9 12 15
0

0.5

1

%
co
rre
ct
ed

3 6 9 12 15
10−5

10−3

10−1

101

mean degree

Er
ro

r i
n

m
ar

gi
na

ls

Strong interactions σ = 0.5(d)

3 6 9 12 15
0

0.5

1

%
co
rre
ct
ed

Figure 8: Results on random regular graphs. TLSBP and CVM errors as a function of the degree
d. Results are averages over 60 random instances. Errors in the partition function for
weak interactions (a), marginals for weak interactions (b), partition function for strong
interactions (c), and marginals for strong interactions (d). Insets show percentage of
instances where the BP error was corrected.

2006

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

5 10 15

102

104

106

mean degree

cp
u−

tim
e

cpu−time CVM
cpu−time TLSBP

3 6 9 12 15

0.25

0.5

0.75

1

mean degree

%
 B

P
co

nv
er

ge
d

weak interactions
strong interactions

Figure 9: Results on random regular graphs. (a) Computation time of TLSBP and CVM. In this
case, we averaged also all instances over all 60 weak and 60 strong interactions, since
costs were very similar in both cases. (b) Fraction of the instances were BP converged.
No convergence is reported when none of the four proposed schedules converged.

as networks become more dense. This unsatisfactory performance of CVM in the estimation of
the partition function is not as noticeable in the marginal estimates, where BP results are often
improved, although with much more variability than the TLSBP method. Interestingly, for those
few instances of dense networks for which BP converged, CVM estimates of the marginals were
very similar to TLSBP.

Finally, we compare computational costs in Figure 9 (left). CVM requires significantly more
time to converge than the time required by TLSBP searching for loops and calculating marginals. If
we analyze in detail how the TLSBP cost changes, we can notice different types of growth for d < 7
and for d ≥ 7. The reason behind these two scaling tendencies can be explained by the choice of
TLSBP parameters, and the bound b (the size of the largest simple loop). For d < 7, many simple
loops of different lengths are obtained. Consequently, the cost of the merging step grows fast, since
many loops with length smaller than b are produced. On the other hand, for d ≥ 7 simple loops
have similar lengths and, therefore, less combinations result in additional loops with length larger
than the bound b. Without bounding the length of the loops in the merging step, we would expect
the first scaling tendency (d < 7) also for values of d ≥ 7.

From these experiments we can conclude that TLSBP performance is generally better than CVM
in this domain. We should mention that alternative choices of regions would have lead to different
CVM results, but will probably not change this conclusion.

5.3 Medical Diagnosis

We now study the performance of TLSBP on a “real-world” example, the PROMEDAS medical
diagnostic network. The diagnostic model in PROMEDAS is based on a bayesian network. The
global architecture of this network is similar to QMR-DT (Shwe et al., 1991). It consists of a diag-
nosis layer that is connected to a layer with findings. In addition, there is a layer of variables, such
as age and gender, that may affect the prior probabilities of the diagnoses. Since these variables
are always clamped for each patient case, they merely change the prior disease probabilities and

2007

GÓMEZ, MOOIJ, AND KAPPEN

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23 x24

x25

x26

x27

x28

x29

x30

x31

x32

x33 x34

x35

x36

x37

x38

x39

x40

x41

x42

x43 x44

x45

x46

x47

x48

x49

x50

x51

x52

x53

x54

x55

x56

x57

x58
x59

x60

x61

x62

x63

x64

x65

x66

x67

x68

x69

x70

x71

x72 x73

x74

x75

x76

x77

x78x79

x80

x81

x82

x83

x84

x85x86x87

x88

x89

x90

x91

x92

x93

x94

x95

x96

x97

x98

x99

x100

x101

x102

x103
x104

x105

x106

x107

x108

x109

x110

x111

x112

x113
x114

x115

x116

x117
x118

x119

x120

x121

x122

x123

x124

x125

x126

x127

x128

x129

x130

x131
x132

x133

x134

x135

x136

x137

x138

x139

x140

x141

x142

x143

x144

x145

x146

x147

x148

x149
x150

x151

x152

x153

x154

x155

x156

x157

x158

x159

x160

x161

x162

x163

x164

x165

x166

x167

x168
x169 x170

x171

x172
x173

x174

x175

x176

x177

x178

x179

x180

x181

x182

x183

x184

x185

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21 p22

p23

p24

p25

p26

p27

p28

p29

p30

p31 p32

p33

p34

p35

p36

p37

p38

p39

p40

p41
p42

p43

p44

p45

p46

p47

p48

p49

p50

p51

p52

p53

p54

p55

p56

p57

p58
p59

p60

p61

p62
p63

p64

p65

p66

p67

p68

p69

p70
p71

p72

p73

p74

p75

p76

p77

p78

p79

p80

p81

p82

p83

p84

p85

p86
p87

p88
p89

p90

p91

p92

p93

p94

p95

p96

p97

p98

p99

p100

p101

p102

p103

p104

p105

p106

p107

p108

p109

p110

p111

p112 p113

p114p115

p116

p117

p118

p119

p120

p121

p122

p123

p124 p125

p126

p127

p128

p129

p130

p131

p132

p133

p134 p135

p136

p137

p138

p139

p140

p141

p142

p143

p144 p145

p146

p147

p148

p149

p150

p151

p152

p153

p154

p155

p156

p157

p158

p159

p160

p161

p162

p163

p164

p165

p166

p167

p168

p169

p170

p171

p172

p173
p174

p175

p176

p177

p178

p179p180

p181

p182

p183

p184

p185

x9

p1

p225

x10

p24

p226

x11

p2

p100

p117

p227

x12

p3

p26
p144

p171

p181
p228

x13

p4

p229

x14

p5

p230

x15

p6

p231

x16

p7

p37

p232

x17

p8
p101

p233

x18

p9

p40

p102

p234

x19

p10

p47

p103

p126

p150

p173
p189

p235

x20

p11

p75
p110

p236

x21

p12

p133

p237

x22

p13

p238

x23

p14

p239

x24

p15

p240
x25

p16

p114

p241

x26

p17

p92

p138

p167

p177

p242

x27

p18

p243x28
p19

p97

p244

x29

p20

p245

x30

p22

p246

x31

p247

x32

p23

p206

p248

x33

p25

p249

x34

p27

p250

x35

p28

p120

p182

p251

x36
p29

p252

x37
p30

p253

x38

p31

p254x39

p32

p255

x40

p33

p145

p256

x41

p34

p257x42

p35

p258

x43

p36

p259

x44

p38

p260

x45

p39

p261

x46

p41

p262

x47

p42

p263

x48

p43

p148

p187

p264

x49
p44

p265

x50

p45

p266

x51

p46

p267

x52

p48

p212

p268

x53

p49

p269

x54

p50

p270

x55

p51

p271

x56

p52

p272

x57

p53

p273

x58

p54

p274

x59

p55

p275

x60

p56

p104

p276

x61

p57

p277

x62

p58

p278

x63

p59

p279

x64
p60

p280

x65

p61

p105
p153

p281

x66

p62

p282

x67
p63

p283

x68
p64p284 x69

p65

p106

p285

x70
p66p286

x71

p67

p174

p287

x72

p68

p288

x73

p69

p157p289

x74

p70

p109
p129

p290

x75
p71

p130

p158

p175

p193

p291

x76

p72

p292

x77

p73

p159

p194

p293

x78
p74

p294
x79

p76

p295

x80

p77

p160 p296

x81

p78

p297x82

p79

p298

x83

p80

p134

p176

p299

x84

p81

p199p300

x85

p82

p112

p161

p301

x86
p83

p302

x87p84
p219

p303

x88

p85

p304

x89

p86

p305

x90

p87

p306

x91

p88

p307

x92

p89

p308

x93

p90

p309

x94

p91

p166

p203

p310

x95

p93

p311

x96

p94

p312

x97
p95

p313

x98

p96

p314

x99

p99

p315

x100

p316

x101 p107p317

x102

p108

p318

x103
p111

p319

x104

p113

p320

x105

p115

p321

x106

p118

p322

x107
p119

p323

x108

p121

p324

x109
p122

p172 p325

x110

p123

p326

x111

p124

p327

x112

p125

p188

p328

x113

p127

p329

x114

p128

p330

x115 p131
p331

x116 p132
p332

x117

p135

p333

x118

p136

p334

x119
p137

p335

x120

p139

p336x121

p140

p169

p179

p337
x122

p141

p338

x123

p142

p339

x124

p146

p340

x125

p147

p341

x126

p149

p342

x127

p151

p343

x128

p152

p344

x129

p154

p345

x130 p155p346

x131
p156

p347

x132

p162

p348

x133

p163

p349x134

p164

p350

x135

p165

p351

x136

p168

p352

x137

p178

p353

x138
p208

p354

x139

p183

p210

p355
x140

p184
p356

x141

p185

p357

x142

p186

p358
x143

p190

p359

x144

p191

p360

x145

p192

p361

x146p195
p362

x147p196

p363

x148

p197

p364

x149p198

p217

p365

x150

p200

p366

x151

p201

p367

x152

p202

p368

x153

p204

p369

x154
p370

x155
p207

p371

x156
p209

p372

x157

p211

p373

x158p213
p374

x159p214 p375

x160
p215

p376

x161

p216

p377

x162
p218

p378

x163

p220

p379

x164
p221

p380

x165
p222

p381

x166p223 p382

x167

p224

p383

x168

x169x170

x171

x172

x173

x174

x175

x176

x177

x178

x179

x180

x181

x182
x183

x184

x185

x186

x187

p0

x188

x189

x190

x191

x192 x193
x194

x195

x196

x197

x198

x199

x200
x201

x202

x203

x204

x205

x206

x207

x208

x209

x210

x211

x212

x213

x214

x215

x216

x217

x218

x219

x220

x221

x222

x223

x224

x225

x226

x227
x228

x229

x230

x231

x232

x233

x234

x235

x236

x237

x238

x239

x240

x241

x242

x243

x244

x245

x246

x247

x248

x249

x250

x251

x252
x253

x254

x255

x256

x257

x258

x259

x260

x261

x262

x263

p21

x264

x265

x266

x267

x268

x269
x270

x271

x272

x273

x274

x275

x276

x277

x278

x279

x280

p98

x281

x282

x283

x284

x285

x286

x287
x288

x289

x290

x291

x292

x293

x294

x295 x296

x297

x298
x299

x300

x301x302x303

x304

x305

x306

p116

x307

x308

x309

x310

x311

x312
x313

x314

x315

x316

x317

x318

x319

x320

x321

x322

x323

x324

x325

x326
x327

x328

x329

x330
x331

x332

p143

x333

x334

x335

x336

x337

x338

x339

x340

x341

p170

x342

x343

x344

x345

x346
x347

x348

x349

x350

x351

x352

x353

x354

x355

x356

x357

x358x359

x360

x361

x362

x363
x364

x365

p180

x366

x367

x368

x369

x370

x371

x372

x373

x374

x375

x376

x377

x378

x379

x380

x381

x382

x383

x384

p205

Figure 10: Examples of graph structures, corresponding to patient cases generated with one disease,
after removal of unclamped findings and irrelevant disease variables and the introduction
of dummy variables. Left and right graphs corresponds to an “easy” and a “difficult”
case respectively.

are irrelevant for our current considerations. Diagnoses (diseases) are modeled as a priori indepen-
dent binary variables causing a set of symptoms (findings) which constitute the bottom layer. The
PROMEDAS network currently consists of approximately 2000 diagnoses and 1000 findings.

The interaction between diagnoses and findings is modeled with a noisy-OR structure. The
conditional probability of the finding given the parents is modeled by n+ 1 numbers, n of which
represent the probabilities that the finding is caused by one of the diseases and one that the finding
is not caused by any of the parents.

The noisy-OR conditional probability tables with n parents can be naively stored in a table of
size 2n. This is problematic for the PROMEDAS networks since findings that are affected by more
than 30 diseases are not uncommon. We use efficient implementation of noisy-OR relations as
proposed by Takinawa and D’Ambrosio (1999) to reduce the size of these tables. The trick is to
introduce dummy variables s and to make use of the property

OR(x|y1,y2,y3) =∑
s
OR(x|y1,s)OR(s|y2,y3).

The interaction potentials on the right hand side involve at most three variables instead of the initial
four (left). Repeated application of this formula reduces all tables to three interactions maximally.

When a patient case is presented to PROMEDAS, a subset of the findings will be clamped and
the rest will be unclamped. If our goal is to compute the marginal probabilities of the diagnostic
variables only, the unclamped findings and the diagnoses that are not related to any of the clamped
findings can be summed out of the network as a preprocessing step. The clamped findings cause
an effective interaction between their parents. However, the noisy-OR structure is such that when

2008

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

the finding is clamped to a negative value, the effective interaction factorizes over its parents. Thus,
findings can be clamped to negative values without additional computation cost (Jaakkola and Jor-
dan, 1999).

The complexity of the problem now depends on the set of findings that is given as input. The
more findings are clamped to a positive value, the larger the remaining network of disease variables
and the more complex the inference task. Especially in cases where findings share more than one
common possible diagnosis, and consequently loops occur, the model can become complex. We
illustrate some of the graphs that result after pruning of unclamped findings and irrelevant diseases
and the introduction of dummy variables for some patient cases in Figure 10.

We use the PROMEDAS model to generate virtual patient data by first clamping one disease
variable to a positive value and then clamping a finding to its positive value with probability equal
to the conditional distribution of the findings given this positive disease. The union of all positive
findings thus obtained constitute one patient case. For each patient case, the corresponding truncated
graphical model is generated. Note that the number of disease nodes in this graph can be large and
hence loops can be present.

In this subsection, as well as comparing errors of single-node marginals obtained using TLSBP
against CVM, we also use another loop correction approach, loop corrected belief propagation
(LCBP) (Mooij and Kappen, 2007), which is based on the cavity method and also improves over BP
estimates. We use the following parameters for TLSBP: S= 100,M= 5, and no bound b. Again, we
apply the junction tree method to obtain exact marginals and compare the different errors. Figure
11 shows results for 146 different random instances.

We first analyze the TLSBP results compared with BP (Figure 11a). The region in light gray
color indicates TLSBP improvement over BP. The observed results vary strongly because of the
wide diversity of the particular instances, but we can basically differentiate two scenarios. The
first set of results include those instances where the BP error is corrected almost up to machine
precision. These patient cases correspond to graphs where exhaustive enumeration is tractable, and
TLSBP found almost all the generalized loops. These are the dots appearing in the bottom part
of Figure 11a, approximately 14% of the patient cases. Note that even for errors of the order of
10−2 the error was completely corrected. Apart from these results, we observe another group of
instances where the BP error was not completely corrected. These cases correspond to the upper
dots of Figure 11a. The results in these patient cases vary from no significant improvements to
improvements of four orders of magnitude.

Figure 11b shows the performance of CVM considering all maximal factors together with all
loops that consist up to four different variables as outer regions. We observe that, contrary to TLSBP,
CVM in this domain performs poorly. For only one instance the CVM result is significantly better
than BP. Moreover, the computation time required by CVM was much larger than TLSBP in all
instances (data not shown). These results can be complemented with the study developed by Mooij
and Kappen (2007), where it is shown that CVM does not perform significantly better for other
choices of regions.

Figure 11c shows results of LCBP, the approach presented in Mooij and Kappen (2007) on the
same set of instances. As in the case of TLSBP, LCBP significantly improves over BP. A comparison
between both approaches is illustrated in Figure 11d, where those instances where TLSBP is better
are marked in light gray color. For 41% of the cases TLSBP improves the LCBP results, sometimes
notably. TLSBP enhancements were made at the cost of more time, as Figure 12a suggest, where in
85% of the instances TLSBP needs more time.

2009

GÓMEZ, MOOIJ, AND KAPPEN

Error BP

Er
ro

r T
LS

BP

(a)

10−15 10−10 10−5 100
10−15

10−10

10−5

100

10−15 10−10 10−5 100
10−15

10−10

10−5

100

Error BP

Er
ro

r C
VM

(b)

10−15 10−10 10−5 100
10−15

10−10

10−5

100

Error BP

Er
ro

r L
CB

P

(c)

Error LCBP

Er
ro

r T
LS

BP

(d)

10−15 10−10 10−5 100
10−15

10−10

10−5

100

Figure 11: Results of 146 random patient cases with one disease. (a) TLSBP error versus BP error.
(b) CVM error versus BP error. (c) LCBP error versus BP error. and (d) LCBP error
versus TLSBP error.

To analyze the TLSBP results in more depth we plot the ratio between the error obtained by
TLSBP and the BP error versus the number of generalized loops found and the CPU time. From
Figure 12b we can deduce that cases where the BP error was most improved, often correspond to
graphs with a small number of generalized loops found, whereas instances with highest number
of loops considered have minor improvements. This is explained by the fact that some instances
which contained a few loops were easy to solve and thus the BP error was significantly reduced. An
example of one of those instances corresponds to the Figure 10 (left). On the contrary, there exist
very loopy instances where computing some terms was not useful, even if a large number of them
(more than one million) where considered. A typical instance of this type is shown in Figure 10
(right). The same argument is suggested by Figure 12c where CPU time is shown, which is often
proportional to the number of loops found.

2010

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

100 102 104 106
100

102

104

106

cpu−time LCBP

cp
u−

tim
e

TL
SB

P
(a)

100 103 106
10−15

10−10

10−5

100

num loops
Er

ro
r T

LS
BP

 /
Er

ro
r B

P

(b)

100 103 106
10−15

10−10

10−5

100

cpu−time TLSBP

Er
ro

r T
LS

BP
 /

Er
ro

r B
P

(c)

Figure 12: Results of applying TLSBP to 146 patient cases with one disease. (a) Relation between
computational cost needed by LCBP and TLSBP. (b) Ratio between TLSBP and BP
errors versus number of loops found. (c) Ratio between TLSBP and BP errors versus
computation time.

In general, we can conclude that although the BP error was corrected in most of the instances,
there were some cases in which TLSBP did not give significant improvements. Considering all
patient cases, the BP error was corrected in more than one order of magnitude for more than 30%
of the cases.

6. Discussion

We have presented TLSBP, an algorithm to compute corrections to the BP solution based on the
loop series expansion proposed by Chertkov and Chernyak (2006b). 2 In general, for cases where
all loops can be enumerated the method computes the exact solution efficiently. In contrast, if
exhaustive enumeration is not tractable, the BP error can be reduced significantly. The performance
of the algorithm does not depend directly on the size of the problem, but on how loopy the original
graph is, although for larger instances it is more likely that more loops are present.

We have also shown that the performance of TLSBP strongly depends on the degree of coupling
between the variables. For weak couplings, errors of BP are most prominently caused by small
simple loops and truncating the series is very useful, whereas for strongly coupled variables, loop
terms of different sizes tend to be of the same order of magnitude, and truncating the series can
be useless. For those difficult cases, BP convergence is also difficult, and magnetizations at the
fixed point tend to be close to extreme values, causing numerical difficulties in the calculation of
the loop expansion formulas. In general, we can conclude that the proposed approach is useful in
an intermediate regime, where BP results are not very accurate, but BP is still converging.

We have confirmed empirically that there is a correlation between the BP result and the potential
improvements using TLSBP. Those cases where the BP estimate is most corrected correspond often

2. The source code of the algorithm and a subset of the data sets used in the experimental section can be downloaded
from: http://www.cns.upf.edu/vicent/.

2011

GÓMEZ, MOOIJ, AND KAPPEN

to cases where the BP estimate is already accurate. Whether a given BP error is acceptable or not
depends on the inference task and the specific domain.

The proposed approach has been compared with CVM selecting loops of four variables and
maximal factors as outer clusters. For highly regular domains with translation invariance such as
square grids, CVM performs better than TLSBP in difficult instances (strong interactions). This
is not surprising, since CVM exploits the symmetries on the original graph. However, for other
domains such as random graphs, or medical diagnosis, TLSBP show comparable, or even better
results than CVM with our choice of clusters.

The TLSBP algorithm searches the graph without considering information accessible from the
BP solution, which is used to compute the loop corrections only as a final step. Therefore, it can be
regarded as a blind search procedure. We have also experimented with a more “heuristic” algorithm
where the search is guided in some principled way. Two modifications of the algorithm have been
done in that direction:

1. One approach consisted in modifying the third step in a way that, instead of applying blind
mergings, generalized loops which have larger contributions (largest |r(C)|) were merged
preferentially. In practice, this approach tended to check all combinations of small loops
which produced the same generalized loop, causing many redundant mergings. Moreover,
the cost of maintaining sorted the “best” generalized loops caused a significant increase in the
computational complexity. This approach did not produce more accurate results neither was
a more efficient approach.

2. Also, instead of pruning the DFS search for complex loops using the parameter M, we have
used the following strategy: we computed iteratively the partial term of the loop that is being
searched, such that at each DFS step one new term using Equations (6) and (7) is multiplied
with the current partial term. If at some point, the partial term was smaller than a certain
threshold λ, the DFS was pruned. This new parameter λ was then used instead of M and
result in an appropriate strategy for graphs with weak interactions. For cases where many
terms of the same order existed, a small change of λ caused very different execution times,
and often too deep searches. We concluded that using parameter M is a more suitable choice
in general.

TLSBP can be easily extended in other ways. For instance, as an anytime algorithm. In this
context, the partition sum or marginals can be computed incrementally as more generalized loops are
being produced. This allows to stop the algorithm at any step and presumably, the more time used,
the better the solution. The “improvement if allowed more time” can be a desirable property for
applications in approximate reasoning (Zilberstein, 1996). Another way to extend the approach is to
consider the search for loops as a compilation stage of the inference task, which can be done offline.
Once all loops are retrieved and stored, the inference task would require much less computational
cost to be performed.

During the development of this work another way of selecting generalized loops has been pro-
posed (Chertkov and Chernyak, 2006a) in the context of Low Density Parity Check codes. Their
approach tries to find only a few critical simple loops, related with dangerous noise configurations
that lead to Linear Programming decoding failure, and use them to modify the standard BP equa-
tions. Their method shows promising results for the LDPC domain, and can be applied to any
general graphical model as well, so it would be interesting to compare both approaches.

2012

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

There exists another type of loop correction methods that improves BP, which is quite different
from the approach discussed here (Montanari and Rizzo, 2005; Parisi and Slanina; Mooij et al.,
2007; Mooij and Kappen, 2007). Their argument is based on the cavity method. BP assumes that
in the absence of variable i, the distribution of its Markov blanket factorizes over the individual
variables. In fact, this assumption is only approximately true, due to the loops in the graph. The first
loop correction is obtained by considering the network with variable i removed and estimating the
correlations in the Markov blanket. This argument can be applied recursively, yielding the higher
order loop corrections. Whereas TLSBP computes exactly the corrections of a limited number
of loops, the cavity based approach computes approximately the corrections due to all loops. An
in-depth comparison of the efficiency and accuracy of these approaches should be made.

As a final remark, we mention the relation of the loop series expansion with a similar method
originated in statistical physics, namely, the high-temperature expansion for Ising models. This ex-
pansion of the partition function is similar to the one proposed by Chertkov and Chernyak (2006b),
in the sense that every term has also a direct diagrammatic representation on the graph, although
not in terms of generalized loops. Note however, that the loop expansion is relative to the BP result,
contrary to the high-temperature expansion. Another difference is that the high temperature expan-
sion is an expansion in a small parameter (the inverse temperature), whereas the loop expansion has
no such small parameter. Finally, another related approach is the walk-sum framework for inference
in certain Gaussian Markov Models (Malioutov et al., 2006), where means and covariances between
any two nodes of the graph have an interpretation in terms of an expansion of walks in the graph.
They also show that Gaussian loopy BP has a walk-sum interpretation, computing all walks for the
means but only a subset of walks for the variances.

Acknowledgments

We would like to thank the reviewers for their constructive suggestions that helped us to improve
the paper. We also acknowledge financial support from the Càtedra Telefònica Multimèdia, the
Interactive Collaborative Information Systems (ICIS) project (supported by the Dutch Ministry of
Economic Affairs, grant BSIK03024), and the Dutch Technology Foundation (STW). Finally, we
thank Bastian Wemmenhove for providing patient cases of the PROMEDAS medical system, and
Andreas Kaltenbrunner for useful suggestions.

References

M. Chertkov and V. Y. Chernyak. Loop calculus helps to improve belief propagation and linear pro-
gramming decodings of LDPC codes. In Invited Talk at the 44th Allerton Conference, September
2006a. URL http://www.arxiv.org/abs/cs/0609154.

M. Chertkov and V. Y. Chernyak. Loop series for discrete statistical models on graphs.
Journal of Statistical Mechanics: Theory and Experiment, 2006(06):P06009, 2006b. URL
http://arxiv.org/abs/cond-mat/0601487.

G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: Informed scheduling for asyn-
chronous message passing. In Proceedings of the 22nd Annual Conference on Uncertainty in
Artificial Intelligence (UAI-06), Boston, Massachussetts, July 2006. AUAI Press.

2013

GÓMEZ, MOOIJ, AND KAPPEN

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International
Journal of Computer Vision, 40(1):25–47, October 2000.

R. G. Gallagher. Low-density Parity Check Codes. MIT Press, 1963. ISBN 978-0262571777.

T. Heskes, K. Albers, and H. J. Kappen. Approximate inference and constrained optimization. In
Proceedings of the 19th Annual conference on Uncertainty in Artificial Intelligence (UAI-03),
pages 313–320, San Francisco, CA, 2003. Morgan Kaufmann Publishers.

T. Jaakkola and M. I. Jordan. Variational probabilistic inference and the QMR-DT network. Journal
of Artificial Intelligence Research, 10:291–322, 1999.

D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing,
4(1):77–84, 1975.

M. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. Saul. An introduction to variational methods
for graphical models. In Learning in Graphical Models, pages 105–161. Cambridge, MA: MIT
Press, 1999.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2):498–519, February 2001.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical society. Series
B-Methodological, 50(2):154–227, 1988.

M. A. R. Leisink and H. J. Kappen. A tighter bound for graphical models. Neural Computation, 13
(9):2149–2171, 2001. ISSN 0899-7667.

D. Malioutov, J. Johnson, and A. Willsky. Walk-sums and belief propagation in gaussian graphical
models. Journal of Machine Learning Research, 7(Oct):2031–2064, 2006.

R. McEliece, D. J. C. MacKay, and J. Cheng. Turbo decoding as an instance of Pearl’s belief
propagation algorithm. Journal on Selected Areas of Communication, 16(2):140–152, 1998.

M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of ran-
dom satisfiability problems. Science, 297(5582):812–815, August 2002. URL
http://www.sciencemag.org/cgi/content/abstract/297/5582/812.

A. Montanari and T. Rizzo. How to compute loop corrections to the Bethe approximation.
Journal of Statistical Mechanics: Theory and Experiment, 2005(10):P10011, 2005. URL
http://arxiv.org/abs/cond-mat/0506769.

J. M. Mooij and H. J. Kappen. On the properties of the Bethe approximation and loopy belief
propagation on binary networks. Journal of Statistical Mechanics: Theory and Experiment, 2005
(11):P11012, 2005.

J. M. Mooij and H. J. Kappen. Loop corrections for approximate inference on fac-
tor graphs. Journal of Machine Learning Research, 8(May):1113–1143, 2007. URL
http://arxiv.org/abs/cs/0612030.

2014

TRUNCATING THE LOOP SERIES EXPANSION FOR BP

J. M. Mooij, B. Wemmenhove, H. J. Kappen, and T. Rizzo. Loop corrected belief propagation.
In Proceedings of the 11th International Conference on Artificial Intelligence and Statistics
(AISTATS-07), 2007.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-99). Morgan Kaufmann Publishers, 1999.

J. Parisi and F. Slanina. Loop expansion around the Bethe-Peierls approximation for lattice
models. Journal of Statistical Mechanics: Theory and Experiment, 2006(02):L02003. URL
http://stacks.iop.org/1742-5468/2006/L02003.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, San Francisco, CA, 1988. ISBN 1558604790.

A. Pelizzola. Cluster variation method in statistical physics and probabilistic graphical models.
Journal of Physics A: Mathematical and General, 38(33):R309–R339(1), August 2005. URL
http://arxiv.org/abs/cond-mat/0508216.

G. Potamianos and J. Goutsias. Stochastic approximation algorithms for partition function esti-
mation of Gibbs random fields. IEEE Transactions on Information Theory, 43(6):1948–1965,
November 1997.

M. A. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J. Horvitz, H. P. Lehman, and G. F.
Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge
base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine,
30(4):241–55, October 1991.

J. Sun, Y. Li, S. B. Kang, and H. Y. Shum. Symmetric stereo matching for occlusion handling. In
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR-05), volume 2, pages 399–406, Washington, DC, USA, 2005. IEEE Com-
puter Society.

M. Takinawa and B. D’Ambrosio. Multiplicative factorization of noisy-MAX. In Proceedings of the
15th Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 622–30, San Francisco,
CA, 1999. Morgan Kaufmann.

R. E. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM Journal on Com-
puting, 2(3):211–216, 1973.

J. C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph. Communica-
tions of the ACM, 13(12):722–726, 1970.

M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log partition
function. IEEE Transactions on Information Theory, 51(7):2313–2335, July 2005.

M. Welling, T. Minka, and Y. W. Teh. Structured region graphs: Morphing EP into GBP. In
Proceedings of the 21th Annual Conference on Uncertainty in Artificial Intelligence (UAI-05),
page 609, Arlington, Virginia, 2005. AUAI Press.

2015

GÓMEZ, MOOIJ, AND KAPPEN

W. Wiegerinck, H. J. Kappen, E. W. M. T. ter Braak, W. J. P. P. Burg, M. J. Nijman, Y. L. O, and
J. P. Neijt. Approximate inference for medical diagnosis. Pattern Recognition Letters, 20(11):
1231–1239(9), 1999.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In T.K. Leen, T.G.
Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13 (NIPS-
00), pages 689–695, December 2000.

J. S. Yedidia, W. T. Freeman, Y. Weiss, and A. L. Yuille. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):
2282–2312, July 2005.

A. L. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent
alternatives to belief propagation. Neural Computation, 14(7):1691–1722, 2002. ISSN 0899-
7667.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine, 17(3):73–83 (1p.1/4),
1996. ISSN 0738–4602.

2016

Journal of Machine Learning Research 8 (2007) 2017-2045 Submitted 4/05; Revised 2/07; Published 9/07

Very Fast Online Learning of Highly Non Linear Problems

Aggelos Chariatis CHARIATISAD@DIAS.COM.GR
Alamanas 2
15125 Athens, Greece

Editor: Léon Bottou

Abstract
The experimental investigation on the efficient learning of highly non-linear problems by online
training, using ordinary feed forward neural networks and stochastic gradient descent on the errors
computed by back-propagation, gives evidence that the most crucial factors for efficient training are
the hidden units’ differentiation, the attenuation of the hidden units’ interference and the selective
attention on the parts of the problems where the approximation error remains high. In this report,
we present global and local selective attention techniques and a new hybrid activation function
that enables the hidden units to acquire individual receptive fields which may be global or local
depending on the problem’s local complexities. The presented techniques enable very efficient
training on complex classification problems with embedded subproblems.
Keywords: neural networks, online training, selective attention, activation functions, receptive
fields

1. Framework

Online supervised learning is in many cases the only practical way of learning. This includes sit-
uations where the problem size is very big, or situations where we have a non-recurring stream of
input vectors that are unavailable before training begins. We examine online supervised learning
using a particular class of adaptive models, the very popular feed forward neural networks, trained
with stochastic gradient descent on the errors computed by back-propagation.

In order to easily visualize the online training dynamics of highly complex non linear problems,
we are experimenting on 2:η:1 networks where the input is a point in a two dimensional image and
the output is the value of the pixel at the corresponding input position. This framework allows the
creation of very complex non-linear problems, just by hand-drawing the problem on a bitmap and
presenting it to the network. Most problems’ images in this report are 256× 256 pixels in size,
producing in total 65536 different samples each one.

Classification and regression problems can be modeled as black & white and gray scale images
respectively. In this report we only examine training on classification problems. However, since
mixed problems are possible, we are only interested on techniques that can be applied to both
classification and regression.

The target of this investigation is online training where the input is not known in advance, so
the input samples are treated as random and non-recurring vectors from the input space and are
discarded after being used. We select and train on random samples until the average classification
or RMS error is acceptable. Since both the number of training exemplars and the complexity of the
underlying function are assumed unknown, we require from our training mechanism to have “initial
state invariance” as a fundamental property. Thus we deliberately exclude from our arsenal any

c©2007 Aggelos Chariatis.

CHARIATIS

training techniques that require a schedule to be decided ahead of training. Ideally we would like
from the training mechanism to be totally invariant to the initial training parameters and network
state.

This report is organized as follows: Sections 2 and 3 describe techniques for global and local
selective attention. Section 4 is devoted to acceleration of training. In Section 5 we present exper-
imental results and in Section 6 we discuss the presented techniques and give some directions for
future research. Finally, Appendix A contains a description of the notations that have been used.
In Figure 1 you can see some examples of problems that can be learned very efficiently using the
techniques that are presented in the following sections.

(a) (b) (c) (d) (e)

Figure 1: Examples of complex non-linear problems that can be learned efficiently.

2. Global Selective Attention - Dynamic Training Set Evolution

Consider the two problems depicted in Figure 2. Clearly, both problems are of approximately equal
complexity, since they encapsulate the same image in a different scale and position within the input
space. We would like to have a mechanism that will make the network capable of learning both
problems at about the same speed.

(a) (b)

Figure 2: Approximately equal complexity problems.

Intuitively, the samples on the boundaries, which are the samples on positions with the highest
contrast, are those that determine the complexity of each problem. During training, these samples
have the property that they produce the highest errors. We thus need a method that will focus
attention on samples with high error relatively to the rest. Previous work on such global selective
attention has been published by many authors (Munro, 1987; Yu and Simmons, 1990; Bakker, 1992,
1993; Schapire, 1999; Zhong and Ghosh, 2000).

2018

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

Of particular interest are the various boosting algorithms, such as AdaBoost (Schapire, 1999),
which work by placing more emphasis on training samples that the system is currently getting
wrong. Unfortunately, the most successful of these algorithms require a predefined set of samples
on which training will be performed, something that is excluded from our scenario. Nevertheless,
in a less constrained scenario, boosting can be applied on top of our techniques as a meta-learning
algorithm, using our techniques as the base-learning algorithm.

A simple method that can provide such an adaptive selective attention mechanism, by keeping
an exponential trace of the average error in the training set, is described in Algorithm 1.

ē← 0
Repeat

Pick a random sample
Evaluate the error e for the sample
If e> 0.5 ē

ē← e α+ ē (1−α)
Train

End
Until a stopping criterion is satisfied

In this report’s context, error evaluation and train are defined as:
Error Evaluation: Computation of the output values by forward propagating the activations from the input
to the output layer for a single sample, plus computation of the output errors. The sample’s error e is set to
the quadratic mean (RMS) of the output units’ errors.
Train: Back-propagation of the output errors to the hidden layer and immediate weights’ adjustment.

Algorithm 1: The dynamic training set evolution algorithm.

The algorithm evaluates the errors of all samples, but trains only for samples with error greater
than half the average error of the current training set. Training is initially performed for all samples,
but gradually, it is concentrated on the samples at the problem’s boundaries. When the error for
these samples is reduced, other previously excluded samples enter the training set. Thus, samples
enter and leave the training set automatically, with a tendency to train on samples with high error.

The magnitude of the constant α that determines the time scale of the exponential trace is prob-
lem specific, but in all experiments in this report it was kept fixed to 10−4. The fraction of 0.5 was
determined experimentally to give a good balance between sample selectivity and training set size.
If it is close to 0 then we train for almost all samples. If it is close to 1 then we are at risk of making
the training set starve from samples. Of course, one can choose to vary it dynamically in order to
have a fixed percentage of samples in the training set, or, to not allow the training percentage to fall
below a pre-specified limit.

Figure 3 shows the training set evolution for the two-spirals problem (in Figure 1a) in various
training stages. The network topology was 2:64:1. You can see the training set forming gradually
and tracing the problem boundaries where the error is the highest.

One could argue that such a process may be very sensitive to outliers. Experiments have shown
that this does not happen. The algorithm does not try to recognize the outliers, but at least, adjusts
naturally by not allowing the training set size to shrink. So, at the presence of heavy noise, the
algorithm becomes ineffective, but does not introduce any additional harm. Figure 4 shows the two-

2019

CHARIATIS

10000-11840-93% 20000-25755-76% 40000-66656-41% 60000-142789-22% 90000-296659-18%

Figure 3: Training set evolution for the two-spirals problem. Under each image you can see the
stage of training in trains, error-evaluations and the percentage of samples for which training is
performed at the corresponding stage.

spirals problem distorted by dynamic noise and the corresponding training set after 90000 trains
with 64 hidden units. You can see that the algorithm tolerates noise by not allowing the training set
size to shrink. It is also interesting that at noise levels as high as 30% the algorithm can still exclude
large areas of the input space from training.

10%-42% 20%-62% 30%-75% 50%-93% 70%-99%

Figure 4: Top row shows the model with a visualization of the applied dynamic noise. Bottom row
shows the corresponding training sets after 90000 trains. Under each pair of images you can see the
percentage of noise distortion applied to the original input and the percentage of samples for which
training is performed.

3. Local Selective Attention - Receptive Fields

Having established a global method to focus attention on the important parts of a problem, we now
come to address the main issue, which is the network training. Let first discuss the roles of the
hidden and output layers in a feed forward neural network with a single hidden layer and without
shortcut input-to-output connections.

2020

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

The hidden layer is responsible for transforming a non linear input-to-output mapping, into a
non linear input-to-hidden layer mapping, that can be mapped linearly to the output.

The output layer is responsible for learning a linear hidden-to-output mapping (which is an easy
job), but most importantly, it must provide to the hidden layer error gradient information that will
be used for the error credit assignment problem. In this respect, it becomes apparent that all hidden
units should receive the most possibly accurate error information. That is why, we must train all
hidden to output connections and back propagate the error through all these connections.

This is not the case for the hidden layer. Consider, for a classification problem, how the hidden
units with sigmoidal activations partition the input space into sub areas. By adjusting the input-to-
hidden weights and biases, each hidden unit develops a hyperplane that bi-partitions the input space
in the most useful sense.

We would like to limit the number of hyperplanes in order to reduce the system’s available
degrees of freedom and obtain better generalization capabilities. At the same time, we would like
to thoroughly use them in order to optimize the input output approximation. This can be done
by arranging the hyperplanes to touch the problem’s boundaries at regular intervals dictated by
the boundary curvature, as it is shown in Figure 5a. Figure 5b, shows a suboptimal placement of
the hyperplanes which causes a waste of resources. Each hidden unit must be differentiated from
the others and ideally not interfere with the subproblems that the other units are trying to solve.
Suppose that two hidden units are governed by the same, or nearly the same, parameters. How can
we differentiate them? There are many possibilities.

(a) (b)

Figure 5: Optimal vs. suboptimal hyperplanes.

One could be, to just throw one unit away and make the output weight of the other equal to
the sum of the two original output weights. That would leave the function unchanged. However,
identifying these similar units during training is not easy computationally. In addition, we would
have to figure out a method that would compute the best initial placement for the hyperplane of the
new unit that would substitute the one that was thrown away.

Another possibility would be to add noise in the weight updates, gradually reduced with a sim-
ulated annealing schedule which should be decided before training begins. Unfortunately, the loss
of initial state invariance would complicate training for unknown complex non linear problems.

To our thinking, it is much better to embed constraints into the system, so that it will not be pos-
sible for two hidden units to develop the same hyperplane. Two computationally efficient techniques
to embed such constraints are described in sections 3.1 and 3.2.

Many other authors have also examined methods for local selective attention. For the related
discussions see Huang and Huang (1990), Ahmad and Omohundro (1990), Baluja and Pomerleau
(1995), Flake (1998), Duch et al. (1998), and Phillips and Noelle (2004).

2021

CHARIATIS

3.1 Fixed Cascaded Inhibitory Connections

A problem with the hidden units of conventional feed forward networks is that they are all fed with
the same inputs and back propagated errors and that they operate without knowing each other’s ex-
istence. So, nothing prevents them from behaving identically. This lack of communication between
hidden units has been addressed by researchers through hidden unit lateral connections. Agyepong
and Kothari (1997) use unidirectional lateral interconnections between adjacent hidden layer units,
claiming that these connections facilitate the controlled assignment of role and specialization of the
hidden units. Kothari and Ensley (1998) use Gaussian lateral connections which enable the hidden
decision boundaries to be global in nature but also be able to represent local structure. Numerous
neural network algorithms employ bidirectional lateral inhibitory connections in order to generate
competition between the hidden units. In an interesting variation described by Spratling and John-
son (2004), competition is provided by each hidden unit blocking its preferred inputs from activating
other units.

We use a single hidden layer where the hidden units are considered sequenced. Each hidden unit
is connected to all succeeding hidden units with a fixed connection with weight set to minus one.
The hidden units get differentiated, because they receive different inputs, they produce different
activations and they get back different error information. Another benefit is that they can generate
higher order feature detectors, that is, the resulting hidden hyperplanes are no longer strictly linear,
but they may also be curved. Considering the fixed value, -1 is used just to avoid a multiplication.
Values from -0.5 to -2 give good results as well.

As it is shown in Section 5.1.1, the fixed cascaded inhibitory connections are very effective at
reducing a problem’s asymptotic residual error. This should be attributed to both of their abilities,
to generate higher order feature detectors and to hasten the hidden units’ symmetry breaking.

These connections can be implemented very efficiently with just one subtraction per hidden
unit for both hidden activation and hidden error computation. In addition, the disturbance to the
parallelism of the backpropagation algorithm is minimal. Most operations on the hidden units can
still be done in parallel and only the final computations must be performed sequentially. We in-
clude the algorithms for the hidden activation and error computations as examples of sequential
implementations. These changes can be very easily incorporated into conventional neural network
code.

Hidden Activations Hidden Error Signals
δ← 0 δ← 0
For j← 1 . . .η For j← η . . .1

n j ← δ+!x · !w j e j ← δ+!r · !u j
h j ← f (n j) g j ← e j f ′(n j)
δ← δ−h j δ← δ−g j

End End

Algorithm 2: Hidden unit activation and error computation with Fixed Cascaded -1 Connections.

2022

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

3.2 Selective Training of the Hidden Units

The hidden units’ differentiation can be farther magnified if each unit is not trained on all samples,
but only on the samples for which it receives a high error.

We train all output units, but only the hidden units for which the error signal is higher than the
RMS of the error signals of all hidden units. Typically about 10% of the hidden units are trained on
each sample during early training and the percentage falls up to 2% when the network is close to
the solution.

This is intuitively justified by the observation that at the beginning of training the hidden units
are largely undifferentiated and receive high error signals from the whole input space. At the final
stage of training, the hidden hyperplanes’ linear soft decision boundaries are combined by the output
layer to define arbitrarily shaped decision boundaries. For µ input dimensions, from 1 up to µ units
can define an open sub-region and µ+ 1 units are enough to define a closed convex region. With
such high level constructs, each sample may be discriminated from the rest with very few hidden
units. These, are the units that receive the highest error signal for the sample.

Experiments on various problems have shown that training on a fraction of the hidden units is
always better (in respect to number of trains to convergence), than training all or just one hidden
unit. It seems that training only one hidden unit on each sample is not sufficient for some problems
(Thornton, 1992). Measurements for one of these experiments are reported in Section 5.1.1.

In addition to the convergence acceleration, the combined effect of training a fraction of the
hidden units on a fraction of the samples, gives big savings in CPU usage per sample as well. This
sparseness of training in respect to evaluation provides further opportunities for speedup as it is
discussed in Section 4.

3.3 Centering On The Input Space

It is a well known recommendation (Schraudolph, 1998a,b; LeCun et al., 1998) that the input values
should be normalized to have zero mean and unit standard deviation over each input dimension. This
is achieved by subtracting from each input value the mean and dividing by the standard deviation.

For some problems, like the one in Figure 2b, the center of the input space is not equal to
the center of the problem. When the input is not known in advance, the later must be computed
adaptively. Moreover, since the hidden units are trained on different input samples, we should
compute for each hidden unit its own mean and standard deviation over each input dimension.

For the connection between hidden unit j and input unit i we can adaptively compute the ap-
proximate mean m ji and standard deviation s ji over the inputs that train the hidden unit, using either
exponential traces:

m ji(t) ← β xi+(1−β) m ji(t−1),

q ji(t) ← β x2i +(1−β) q ji(t−1),

s ji(t) ← (q ji(t)−m ji
2
(t))

1/2,

or perturbated calculations:

m ji(t) ← m ji(t−1) +β (xi−m ji(t−1)),

v ji(t) ← v ji(t−1) +β
(
(xi−m ji(t)) (xi−m ji(t−1))− v ji(t−1)

)
,

2023

CHARIATIS

s ji(t) ← v ji
1/2
(t) ,

where β is a constant that determines the time scale of exponential averaging, vector!x holds the input
values, matrix Q holds the means of the squared input values and matrix V holds the variances.

The means and standard deviations of a hidden unit’s input connections are updated only when
the hidden unit is trained. The result of this treatment is that each hidden unit is centered on a
different part of the input space. This center is indirectly affected by the error that the inputs produce
on the hidden unit.

The magnitude of the constant β is problem specific, but in all experiments in this report it was
kept fixed to 10−3. This constant must be selected large enough, so that the centers will rapidly
move to their optimum locations, and small enough, so that the hidden units will see a relatively
static view of the input space and the gradient descent algorithm will not be confused. As the hidden
units jitter around their centers, we effectively train them on slightly shifted views of the input space,
something that can assist generalization. We get something analogous to training with jitter (Reed
et al., 1995), at no extra cost.

In Figure 6, the squares show where each hidden unit is centered. You can see that most are
centered on the problem boundaries at regular intervals. The crosses show the standard deviations.
On some directions the standard deviations are very small, which results in very high normalized
input values, causing the hidden units to act as threshold units at those directions. The sloped lines
show the hyperplane distance from center and the slope. These are computed for display purposes,
from their theoretical formulas for a conventional network, without considering the effect of the
cascaded connections.

For some units the hyperplanes shown are not exactly on the boundaries. This is because of the
fixed cascaded connections that cause the hidden units to be not exactly linear discriminants. In the
last picture you can see the decision surface of a hidden unit which is a bit curved and coincides
with the class boundary although its calculated hyperplane is not on the boundary.

An observant reader may also notice that the hyperplane distances from the centers are very
small, which implies that the corresponding biases are small as well. On the contrary, if all hid-
den units were centered on the center of the image, we would have the following problem. The
hyperplanes of some hidden units must be positioned on the outer parts of the image. For this to
happen, these units should develop large biases in respect to the weights. This would make their
activations to have small variances. These small variances might need to be compensated by large
output weights and biases, which would saturate the output units and in addition ill-condition the
problems.

One may wonder if the hidden biases are still necessary. Since the centers are individually set,
it may seem at first that they are not. However, the centers are not trained through error backprop-
agation, and the hyperplanes do not necessarily pass over them. The biases role is to drive the
hyperplanes to the correct location and thus pull the centers in the corresponding direction.

The individual centering of the hidden units based on the samples’ positions is feasible, because
we train only on samples with high errors and only the hidden units with high errors. By ignoring
the small errors, we effectively position the center of each hidden unit near the center of mass of the
high errors that it receives. However, this centering technique can still be used even if one chooses
to train on all samples and all hidden units. Then, the statistics interval should be differentiated for
each hidden unit and be recomputed for each sample relatively to the normalized absolute error that
each hidden unit receives. A way to do it is to set the effective statistics interval for hidden unit j

2024

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

Figure 6: Hidden unit centers, standard deviations, hyperplanes, global and local training sets and
a hidden unit’s output. The images were captured at the final stage of training, of the problem in
Figure 1a with 64 hidden units.

and sample s to:

β
|e j,s|
〈|e j|〉

where β is the global statistics interval, e j,s is the hidden unit’s backpropagated error for the sample
and 〈|e j|〉 is the mean of the absolute backpropagated errors that the hidden unit receives, measured
via an exponential trace. The denominator acts as a normalizer, which makes the hidden unit’s
mobility to be independent of the average magnitude of the errors.

Centering on other factors has been extensively investigated by Schraudolph (1998a,b). These
techniques can provide further convergence acceleration, but we chose not to use them because of
the additional computational overhead that they require.

3.4 A Hybrid Activation Function

As it is shown in Section 5, the aforementioned techniques enable successful training on some
difficult problems like those in Figures 1a and 1b. However, if the problem contains subproblems,
or put in another way, if the problem generates more than one cluster of high error density, the
centering mechanism does not manage to drive the hidden unit centers to the most suitable locations.
The centers are attracted by the larger subproblem or get stuck in areas between the subproblems,
as shown in Figure 7.

2025

CHARIATIS

Figure 7: Model, training set, and inadequate centering

We need a mechanism that can force a hidden unit to get out of balanced but suboptimal posi-
tions. It would be nice if this mechanism could also allow the centers to migrate to various points
in the input space as the need arises. It has been found that both of these requirements are fulfilled
by a new hybrid activation function.

Sigmoid activations have the property that they produce hyperplanes that separate the input
space globally. Our intention is to use a sigmoid like hidden activation function, because it can
provide global separability, and at the same time, reduce the activation value towards zero on inputs
which are not important to a hidden unit.

The Gaussian function is commonly used within radial basis function (RBF) neural networks
(Broomhead and Lowe, 1988). When this function is applied to the distance of a sample to the
unit’s center, it produces a local response which is stronger near the center. We can then enclose the
sigmoidal activation within a Gaussian envelope, by multiplying the activation with a value between
0 and 1, which is provided by applying the Gaussian function to the distance that is measured in the
normalized input space.

When the number of input dimensions is large, the distance metric that must be used is not an
obvious choice. Table 1 contains the distance metrics that we have considered. The most suitable
distance metric seems to depend on the distribution of the samples that train the hidden units.

√ µ
∑
i=1

x2i

√
1
µ

µ
∑
i=1

x2i
µ
∑
i=1

|xi| 1
µ

µ
∑
i=1

|xi| max
(
|xi|

)

Euclidean Euclidean Scaled Manhattan Manhattan Scaled Chebyshev

Table 1: Various distance metrics that have been considered for the hybrid activation function.

In particular, if the samples follow a uniform distribution over a hypercube, then the Euclidean
distance has the disturbing property that the average distance grows larger as the number of input
dimensions increases and consequently the corresponding average Gaussian response decreases to-
wards zero. As suggested by Hegland and Pestov (1999), we can make the average distance to
center independent of the input dimensions, by measuring it in the normalized input space and then
dividing it by the square root of the input’s dimensionality. The same problem occurs for the Man-
hattan distance which has been claimed to be a better metric in high dimensions (Aggarwal et al.,
2001). We can normalize this distance by dividing it by the input’s dimensionality. A problem that

2026

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

appears for both of the above rescaled distance metrics, is that for the samples that are near the axes
the distances will be very much attenuated and the corresponding Gaussian responses will be close
to one, something that will make the Gaussian envelopes ineffective.

A more suitable metric for this type of distributions is the Chebyshev metric whose average
magnitude is independent of the dimensions. However, for reasons analogous to those mentioned
above, this metric is not the most suitable if the distribution of the samples is spherical. In that case,
the Euclidean distance does not need any rescaling and is the most natural distance measure. We
can obtain spherical distributions by adaptively whitening them. As Plumbley (1993) and Laheld
and Cardoso (1994) independently proposed, the whitening matrix Z can be adaptively computed
as:

Zt+1 = Zt −λ
[
!zt!zt T − I

]
Zt

where λ is the learning rate parameter, !zt = Zt !xt is the whitened vector and !xt is the input vector.
However, we would need too many additional parameters to do it individually for each subset of
samples on which each hidden unit is trained.

For the above reasons (and because of lack of a justified alternative), in the implementation of
these techniques we typically use the Euclidean metric when the number of input dimensions is up to
three and the Chebyshev metric in all other cases. We have also replaced the usual tanh (sigmoidal)
and Gaussian (bell-like) functions, by similar functions which do not involve exponentials (Elliott,
1993).

For each hidden unit j we first compute the net-input n j to the hidden unit (that is, the weighted
distance of the sample to the hyperplane), as the inner product of normalized inputs and weights
plus the bias:

z ji =
xi−m ji

s ji
,

n j = !z j · !w j.

We then compute the sample’s distance d j to the center of the unit which is measured in the normal-
ized input space:

d j =
∥∥!z j

∥∥ .

Finally, we compute the activation h j as:

a j = Elliott(n j) =
n j

(1+
∣∣n j

∣∣)
,

b j = bell(d j) =
1

(1+d2j)
,

h j = a j b j.

Since d j is not a function of !w j, we treat b j as a constant for the calculation of the activation
derivative with respect to n j, which becomes:

∂h j
∂n j

= b j (1−
∣∣a j

∣∣)2.

2027

CHARIATIS

The hybrid activation function, which by definition may only be used for hidden units connected
to the input layer, enables these units to acquire selective attention capabilities on the input space.
Each hidden unit may have a global or local receptive field on each input dimension. The size
of this dimensional receptive field depends on the standard deviation which is computed for the
corresponding dimension.

This activation makes balanced positions between subproblems to be unstable. As soon as
the center is changed by a small amount, it will be attracted by the nearest subproblem. This is
because the unit’s activation and the corresponding error will be increased for samples towards the
nearest subproblem and decreased at the other direction. Hidden units can still be centered between
subproblems but only if their movement at either direction causes a large error for samples at the
opposite direction, that is, if they are absolutely necessary at their current position.

Additionally, if a unit is centered near a subproblem that produces low errors and the unit is
not necessary in that area, then it may migrate to other areas that still have high errors. This unit
center migration has been observed in all experiments on complex problems. This may be due to
the non-linear response of the bell function, and its long tails which keep the activation above zero
for all input samples.

Figure 8: Model, evaluation, training set, hidden unit centers and two hidden unit outputs showing
the effect of the hybrid activation function. The images were captured at the final stage of training,
of the problem in Figure 1d with 700 hidden units.

In Figure 8 you can see a complex problem with 9 clusters of high errors. The hidden units place
their centers on all clusters and are able to solve the problem. In the last two images, you can see the

2028

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

effect of the hybrid activation function which attenuates the activation at points far from the center
in respect to the standard deviation on each dimension. One unit develops a near circular local
receptive field and one other develops an elongated ellipsoidal receptive field. The later provides
almost global separation in the vertical direction and becomes a useful discriminant for two of the
subproblems.

One may find similarities between this hybrid activation function and the Square-MLP architec-
ture described by Flake (1998). The later, partially implements higher order neurons by duplicating
the number of input units and setting the new input values equal to the squares of the original in-
puts. This architecture enables the hidden units to form local features of various shapes, but not
the locally constrained sigmoid formed by our proposal. In contrast, the hybrid activation function
does not need any additional parameters beyond those that are already used for centering and it has
the additional benefit, which is realized by the local receptive fields in conjunction with the small
biases and the symmetric sigmoid, that the hidden activations will have a mean close to zero. As
discussed by Schraudolph (1998a,b) and LeCun et al. (1998), this is very beneficial for the output
layer training.

However, there is still room for improvement. As it was also observed by Flake (1998), the
orientations of the receptive field ellipses are always at the direction of one of the input axes. This
limitation is expected to hinder performance when training hidden units which have sloped hyper-
planes. Figure 9 shows a complex problem at the middle of training. Units with sloped hyperplanes
are trained on samples whose input values are highly correlated. This can slowdown learning by
itself, but in addition, the standard deviations cannot get sufficiently small and as a result the recep-
tive field cannot be sufficiently shrunk at the direction perpendicular to the hyperplane. As a result
the hidden unit’s activation unnecessarily interferes with the activations of nearby units.

Although it may be possible to address the correlation problem with a more sophisticated train-
ing method that uses second order gradient information, like Stochastic Meta Descent (Schraudolph,
1999, 2002), the orientations of the receptive fields will still be limited. In Section 6.2 we discuss
possible directions for further research that may circumvent this limitation.

Figure 9: Evaluation and global and local training sets during middle training for the problem in
Figure 1b. It can be seen that a hidden unit with a sloped hyperplane is trained on samples with
highly correlated input values. Samples that are separated by horizontal or vertical hyperplanes are
easier to be learned.

2029

CHARIATIS

4. Further Speedups

In this section we first describe an implementation technique that reduces the computational require-
ments of the error evaluation phase and then we give references to methods that have been proposed
by other authors for the acceleration of the training phase.

4.1 Evaluation Speedup

Two of the discussed techniques, training only for samples with high errors, and then, training
only the hidden units with high error, make the error-evaluation phase to be the most processing
demanding phase for the solution of a given problem. In addition, some other techniques, like board
game learning through temporal difference methods, require many evaluations to be performed
before each train. We can speedup evaluation by the following observation:

For many problems, only part of the input is changed on successive samples. For example, for
a backgammon program with 200 input units (with raw board data and not any additional features
encoded), very few inputs will change on successive positions. Even on two dimensional problems
such as images, we can arrange to train on samples selected by random changes on the X and Y
dimensions alternatively. This process of only resampling one coordinate at a time is also known
as “Gibbs sampling” and it nicely generalises to more than two coordinates (Geman and Geman,
1984).

Thus, we can keep in memory all intermediate results from the evaluation, and recalculate only
for the inputs that have changed. This implementation technique requires more storage, especially
for high dimensional inputs. Fortunately, storage is not an issue on modern hardware.

4.2 Training Speedup

Many authors have proposed methods for speeding-up online training by using second order gradi-
ent information in order to dynamically vary either the learning rate or the momentum (see LeCun
et al., 1993; Leen and Orr, 1993; Murata et al., 1996; Harmon and Baird, 1996; Orr and Leen, 1996;
Almeida et al., 1997; Amari, 1998; Schraudolph, 1998c, 1999, 2002; Graepel and Schraudolph,
2002).

As it is shown in the next section, our techniques enable standard stochastic gradient descent
with momentum to efficiently solve all the highly non-linear problems that have been investigated.
However, the additional speed up that an accelerating algorithm can give is a nice thing to have.
Moreover, these accelerating algorithms automatically reduce the learning rate when we are close
to a solution (by sensing the oscillations in the error gradient) something that we should do through
annealing if we wanted the best possible solution.

We use the Incremental Delta-Delta (IDD) accelerating algorithm (Harmon and Baird, 1996), an
incremental nonlinear extension to Jacobs’ (1988) Delta-Delta algorithm, because of its simplicity
and relatively small processing requirements. IDD computes an individual learning rate λ for each
weight w as:

λ(t) = eξ(t),

ξ(t+1) = ξ(t)+θ
Δw(t+1)
λ(t)

Δw(t),

where θ is the meta-learning rate which we typically set to 0.1.

2030

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

5. Experimental Results

In order to measure the effectiveness of the described techniques on various classes of problems,
we performed several experiments. Each experiment was replicated 10 times with different random
initial weights using matched random seeds and the means and standard deviations of the results
were plotted in the corresponding figures.

For the experiments we used a single hidden layer, the cross entropy error function, the logistic
or softmax activation function for the output units and the Elliott or hybrid activation function for
the hidden units. Output to hidden layer weights and biases were initialized to zero. Hidden to input
layer weights were initialized to random numbers from a normal distribution and then rescaled so
that the incoming weights to each hidden unit had norm unity. Hidden unit biases were initialized
to a uniform random number between zero and one.

The curves in the figures are labelled with a combination of the following letters which indicate
the techniques that were applied:

B – Adjust weights using stochastic gradient descent with momentum 0.9 and fixed learning rate
0.1/

√
c where c is the number of incoming connections to the unit.

A – Adjust weights using IDD with meta-learning rate 0.1 and initial learning rate
1/
√
c where c is as above.

L – Use fixed cascaded inhibitory connections as described in Section 3.1.

S – Skip weights adjustment for samples with low error as described in Section 2.

U – Skip weights adjustment for hidden units with low error as described in Section 3.2.

C – Use individual means and stdevs for each hidden to input connection as described in Section
3.3.

H – Use the hybrid activation function as described in Section 3.4.

For the ‘B’ training method we deliberately avoided an annealing schedule for the learning rate,
since this would destroy the initial state invariance of our techniques. Instead, we used a fixed small
learning rate which we compensated with a large momentum. For the ‘A’ method, we used a small
meta-learning rate, to avoid instabilities due to the high non-linearities of the examined problems.
It is important to note that for both training methods the learning parameters were fixed to the above
values and not optimized to each individual problem.

For the ‘C’ technique, the centers of the hidden units where initially set to the center of the input
space and the standard deviations were set to one third of the distance between the extreme values
of each dimension. When the technique was not used, a global preprocessing was applied which
normalized the input samples to have zero mean and unit standard deviation.

5.1 Two Input Dimensions

In this section we give experimental results for the class of problems that we have mainly examined,
that is, problems in two input and one output dimensions, for which we have dense and noiseless
training samples from the whole input space. In the figures, we measure the average classification
error in respect to the stage of training. The classification error was averaged via an exponential
trace with time scale 10−4.

2031

CHARIATIS

5.1.1 COMPARISON OF TECHNIQUE COMBINATIONS

For these experiments we used the two-spirals problem shown in Figures 1a, 3, 4 and 6. We chose
this problem as a non trivial representative of the class of problems that during early training gener-
ate a single cluster of high error density. The goal of this experiment is to measure the effectiveness
of various technique combinations and then to measure how well the best technique combination
scales with the size of the hidden layer.

Figures 10 and 11 show the average classification error in respect to the number of evaluated
samples and processing cycles respectively for 13 technique combinations. For these experiments
we used 64 hidden units. The standard deviations were not plotted in order to keep the figures
uncluttered. Figure 10 has also been split to Figures 12 and 13 in order to show the related error
bars.

Comparing the curves B vs. BL and BS vs. BLS on Figures 10 and 11, we can see that the
fixed cascaded inhibitory connections reduce the asymptotic residual error by more than half. This
also applies, but to a lesser degree, when we skip weight updates for hidden units with low errors
(B vs. BU, BS vs. BSU). When used in combination, we can see a speed-up of convergence but the
asymptotic error is only marginally further improved (BLU and BLSU).

In Figure 11, it can be seen that skipping samples with low errors can speed-up convergence and
reduce the asymptotic error as well (BLU vs. BLSU). This is a very intriguing result, in the sense
that it implies that the system can learn faster and better by throwing away information.

Both Figures 10 and 11 show the BLUCH curve to diverge. Considering the success of the
BLSUCH curve, we can imply that skipping samples is necessary for the hybrid activation. How-
ever, the real problem, which was found out by viewing the dynamics of training, is that the center-
ing mechanism does not work correctly when we train on all samples. A possible remedy may be to
modify the statistics interval which is used for centering, as it is described at the end of Section 3.3.

BLSUC vs. BLSU shows that centering further reduces the remaining asymptotic error to half
and converges much faster as well.

Comparing curve BLSUCH vs. BLSUC, we see that the hybrid activation function does better,
but only marginally. This was expected since this problem has a single region of interest, so the
ability of H to focus on multiple regions simultaneously is not exercised. This is the reason for the
additional experiments in Section 5.1.2.

BLSUCH and ALSUCH were the most successful technique combinations, with the later being
a little faster. Nevertheless, it is very impressive that standard stochastic gradient descent with
momentum can approach the best asymptotic error in less than a second, when using a modern 3.2
GHz processor.

Figure 14 shows the average classification error in respect to the number of evaluated samples,
for the ALSUCH technique combination and various hidden layer sizes. It can be seen that the
asymptotic error is almost inversely proportional to the number of hidden units. This is a good
indication that our techniques use the available resources efficiently. It is also interesting, that the
convergence rates to the corresponding asymptotic errors are quite fast and about the same for all
hidden layer sizes.

5.1.2 HYBRID VS. CONVENTIONAL ACTIVATION

For these experiments we used the two dimensional problem depicted in Figures 1c and 7. We
chose this problem as a representative of the class of problems that during early training generate

2032

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

B BS
BU BSU
BL BLS
BLU BLSU
BLUC BLSUC
BLUCH BLSUCH
ALSUCH

Figure 10: Average classification error vs. number of evaluated samples for various technique
combinations, while training the problem in Figure 1a with 64 hidden units. The standard deviations
have been omitted for clarity.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 1 2 3 4 5 6 7 8 9 10

B BS
BU BSU
BL BLS
BLU BLSU
BLUC BLSUC
BLUCH BLSUCH
ALSUCH

Figure 11: Average classification error vs. Intel IA32 CPU cycles in billions, for various technique
combinations, while training the problem in Figure 1a with 64 hidden units. The horizontal scale
also corresponds to seconds when run on a 1 GHz processor. The standard deviations have been
omitted for clarity.

2033

CHARIATIS

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

BS BSU
BLS BLSU
BLSUC BLSUCH
ALSUCH

Figure 12: Part of Figure 10 showing error bars for technique combinations which employ S.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

B BU
BL BLU
BLUC BLUCH

Figure 13: Part of Figure 10 showing error bars for technique combinations which do not employ S.

2034

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

0,00

0,05

0,10

0,15

0,20

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

32
48
64
96
128
256

Figure 14: Average classification error vs. number of evaluated samples for various hidden layer
sizes, while training the problem in Figure 1a with the ALSUCH technique combination.

0,00

0,01

0,02

0,03

0,04

0 300000 600000 900000 1200000 1500000 1800000 2100000 2400000 2700000 3000000

ALSUCH

ALSUC

Figure 15: Average classification error vs. number of evaluated samples for the ALSUCH and
ALSUC technique combinations, while training the problem in Figure 1c with 100 hidden units.
The dashed lines show the minimum and maximum observed values.

2035

CHARIATIS

small clusters of high error density of various sizes. For this kind of problems we typically obtain
very small residuals for the classification error, although the problem may not have been learned.
This is because we measure the error on the whole input space and for these problems most of the
input space is trivial to be learned. The problem’s complexities are confined in very small areas.
The dynamic training set evolution algorithm is able to locate these areas, but we need much more
sample presentations, since most of the samples are not used for training.

The goal of this experiment is to measure the effectiveness of the hybrid activation function at
coping with the varying sizes of the subproblems. For these experiments we used 100 hidden units.

Figure 15 shows that the ALSUCH technique, which employs the hybrid activation function,
reduced the asymptotic error to half in respect to the ALSUC technique. As all of the visual in-
spections revealed, one of which is reproduced in Figure 16, the difference in the residual errors of
the two curves is due to the insufficient approximation of the smaller subproblem by the ALSUC
technique.

Model ALSUCH ALSUC

Figure 16: ALSUCH vs. ALSUC approximations for a problem with two sub-problems.

5.2 Higher Input and Output Dimensions

In order to evaluate our techniques on a problem with higher input and output dimensions, we
selected a standard benchmark, the Letter recognition database from the UCI Machine Learning
Repository (Newman et al., 1998).

This database consists of 20000 samples that use 16 integer attributes to classify the 26 letters of
the English alphabet. This problem is characterized by a medium input dimensionality and a large
output dimensionality. The later, makes it a very challenging problem for any classifier.

This problem differs from those on which we have experimented so far, in that we do not have
the whole input space at our disposal for training. We must train on a limited number of samples
and then test the system’s generalization abilities on a separate test set. Although we have not taken
any special measures to assist generalization, the experimental results indicate that our techniques
have the inherent ability to generalize well, when given noiseless exemplars.

An observation that applies to this problem is that the IDD accelerated training method could not
do better than standard stochastic gradient descent with momentum. Thus, we report results using

2036

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

the BLSUCH technique combination which is computationally more efficient than the ALSUCH
technique.

For this experiment, which involves more than two output classes, we used the softmax activa-
tion function at the output layer.

Table 2 contains previously published results showing the classification accuracy of various
classifiers. The most successful of them were the AdaBoosted versions of the C4.5 decision-tree
algorithm and of a feed forward neural network with two hidden layers. Both classifier ensembles
required quite a lot of machines in order to achieve that high accuracy.

Classifier Test Error % Reference
Naive Bayesian classifier 25,3 Ting and Zheng (1999)
AdaBoost on Naive Bayesian classifier 24,1 Ting and Zheng (1999)
Holland-style adaptive classifier 17,3 Frey and Slate (1991)
C4.5 13,8 Freund and Schapire (1996)
AdaBoost on C4.5 (100 machines) 3,3 Freund and Schapire (1996)
AdaBoost on C4.5 (1000 machines) 3,1 Schapire et al. (1997)
CART 12,4 Breiman (1996)
AdaBoost on CART (50 machines) 3,4 Breiman (1996)
16-70-50-26 MLP (500 online epochs) 6,2 Schwenk and Bengio (1998)
AdaBoost on 16-70-50-26 MLP (20 machines) 2,0 Schwenk and Bengio (1998)
AdaBoost on 16-70-50-26 MLP (100 machines) 1,5 Schwenk and Bengio (2000)
Nearest Neighbor 4,3 Fogarty (1992)

Table 2: A compilation of previously reported best error rates on the test set for the UCI Letters
Recognition Database.

Figure 17 shows the average error reduction in respect to the number of online epochs, for
the BLSUCH technique combination and various hidden layer sizes. As suggested in the database’s
documentation, we used the first 16000 samples for training and for measuring the training accuracy
and the rest 4000 samples to measure the predictive accuracy. The solid and dashed curves show
the test and training set errors respectively. Similarly to ensemble methods, we can observe two
interesting phenomena which both seem to contradict the Occam’s razor principle.

The first observation is that the test error stabilizes or continues to slightly decrease even after
the training error has been zeroed. What is really happening is that the RMS error for the training
set (which is related to the confidence of classification) continues to decrease even after the clas-
sification error has been zeroed, something that is also beneficiary for the test set’s classification
error.

The second observation is that increasing the network’s capacity does not lead to over fitting.
Although the training set error can be zeroed with just 125 hidden units, increasing the number of
hidden units reduces the residual test error as well. We attribute this phenomenon to the conjecture
that the hidden units’ differentiation results in a smoother approximation (as suggested by Figure 5
and the related discussion).

Comparing our results with those in Table 2, we can also observe the following: The 16-125-26
MLP (5401 weights) reached a 4.6%misclassification error on average, which is 26% better than the
6.2% of the 16-70-50-26 MLP (6066 weights), despite the fact that it had fewer weights, a simpler

2037

CHARIATIS

0,00

0,05

0,10

0 10 20 30 40 50 60 70 80 90 100

125 TRAIN 125 TEST

250 TRAIN 250 TEST

500 TRAIN 500 TEST

1000 TRAIN 1000 TEST

TEST ERROR %

125 4.0 4.6
250 2.8 3.2
500 2.3 2.6
1000 2.1 2.4

UNITS MIN AVG at end

Figure 17: Average error reduction vs. number of online epochs for various hidden layer sizes, while
training on the UCI Letters Recognition Database with the BLSUCH technique combination. The
solid and dashed curves show the test and training set errors respectively. The standard deviations
for the training set errors have been omitted for clarity. The embedded table contains the minimum
observed errors across all trials and epochs, and the average errors across all trials at epoch 100.

architecture with one hidden layer only and it was trained for a far less number of online epochs. It
is indicative that the asymptotic residual classification error on the test set was reached in about 30
online epochs.

The 16-1000-26MLP (43026 weights) reached a 2.4%misclassification error on average, which
is the third best published result following the AdaBoosted 16-70-50-26 MLPs with 20 and 100
machines (121320 and 606600 weights respectively). The lowest observed classification error was
2.1% and was reached in one of the 10 runs at the 80th epoch. It must be stressed that the above
results were obtained without any optimization of the learning rate, without a learning rate annealing
schedule and within a by far shorter training time.

All MLPs with 250 hidden units and above, gave results which put them at the top of the list of
non-ensemble techniques and they even outperformed Adaboost on C4.5 with 100 machines.

Similarly to Figure 14, we also see that the convergence rates to the corresponding asymptotic
errors on the test set are quite fast and about the same for all hidden layer sizes.

6. Discussion and Future Research

We have presented global and local selective attention techniques that can help neural network train-
ing to concentrate on the difficult parts of complex non-linear problems. A new hybrid activation
function has also been presented that enables the hidden units to acquire individual receptive fields

2038

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

in the input space. These individual receptive fields may be global or local depending on the prob-
lem’s local complexities.

The success of the new activation function is due to the fact that it depends on two distances.
The first is the weighted distance of a sample to the hidden unit’s hyperplane. The second is the
distance to the hidden unit’s center. We need both distances and neither of them is sufficient. The
first helps us discriminate and the second helps us localize.

The dynamic training set evolution algorithm locates the sub-areas of the input space where the
problem resides. The fixed cascaded inhibitory connections and the selective training of a subset
of the hidden units on each sample, force the hidden units to get differentiated and attack different
subproblems. The individual centering of the hidden units at different points in the input space,
adaptively conditions the network to the problem’s local structures and enables each hidden unit
to solve a well-conditioned subproblem. In coordination with the above, the hidden units’ limited
receptive fields allow training to follow a divide and conquer paradigm where each hidden unit only
solves a local subproblem. The solutions to the subproblems are then combined by the output layer
to give a solution to the original problem.

In the reported experiments we initialized the hidden weights and biases so that the hidden hy-
perplanes would cover the whole input space at random positions and orientations. The initial norm
of the weights was also adjusted so that the net-input to each hidden unit would fall in the transition
between the linear and non-linear range of the activation function. These specific initializations
were necessary for standard backpropagation. On the contrary, we have found that the combined
techniques are insensitive to the initial weights and biases, as long as their values are small. We
have repeated the experiments with hidden biases set to zero and hidden weight norms set to 10−3
and the results where equivalent to those reported in Section 5. However, the choice of the best
initial learning rate is still problem specific.

An additional and important characteristic of these techniques is that training of the hidden
layer does not depend solely on gradient information. Gradient based techniques can only perform
local optimization by locating a local minimum of the error function when the system is already
at the basin of attraction of that minimum. Stochastic training has a potential of escaping from a
shallow basin, but only when the basin is not very wide. Once there, the system cannot escape
towards a different basin with a lower minimum. On the contrary, in our model some of the hidden
layer’s free parameters (the weights) are trained through gradient descent on the error, whereas
some other (the means and standard deviations) are “trained” from the statistical properties of the
back-propagated errors. Each hidden unit places its center near the center of mass of the error that
it receives and limits its visibility only to the area of the input space where it produces a significant
error. This model makes the hidden error landscape to constantly change. We conjecture that during
training, paths connecting the various error basins are continuously emerging and vanishing. As
a result the system can explore much more of the solution space. It is indicative that in all the
reported experiments, all trials converged to a solution with more or less the same residual error
irrespectively of the initial network state.

The combination of the presented techniques enables very fast training on complex classifica-
tion problems with embedded subproblems. By focusing on the problem’s details and efficiently
utilizing the available resources, they make feasible the solution of very difficult problems (like the
one in Figure 1e), provided that the adequate number of hidden units has been used. Although other
machine learning techniques can do the same, to our knowledge this is the first report that this can
be done using ordinary feed forward neural networks and backpropagation, in an online, adaptive

2039

CHARIATIS

and memory-less scenario, where the input exemplars are unknown before training and discarded
after being used.

In the following we discuss some areas that deserve further investigation.

6.1 Generalization and Regression

For the classes of problems that were investigated, we had noiseless exemplars and the whole input
space at our disposal for training, so there was no danger of overfitting. Thus, we did not use any
mechanism to assist generalization. This does not mean of course that the network just stored the
input output mapping, as a lookup table would do. By putting constraints on the positions and
orientations of the hidden unit hyperplanes and by limiting their receptive fields, we reduced the
system’s available degrees of freedom, and the network arranged its resources in a way to achieve
the best possible input-output mapping approximation.

The experiments on the Letter Recognition Database showed remarkable generalization capa-
bilities. However, when we train on noisy samples or when the number of training samples is small
in respect to the size and complexity of the input space, we have the danger of overfitting. It remains
to be examined how the described techniques are affected by methods that avoid overfitting, such
as, training with jitter, error regularization, target smoothing and sigmoid gain attenuation (Reed
et al., 1995). This consideration also applies to regression problems which usually require smoother
approximations. Although early experiments give evidence that the presented techniques can be
applied to regression problems as well, we feel that some smoothing technique must be included in
the training framework.

6.2 Receptive Fields Limited Orientations

As it was noted in Section 3.4, the orientations of the receptive field ellipses are limited to have the
direction of one of the input axes. This hinders training performance by not allowing the receptive
fields to be adequately shrunk at the direction perpendicular to the hyperplane. In addition, hidden
units with sloped hyperplanes are trained on highly correlated input values. These problems are
expected to be exaggerated in high dimensional input spaces.

We would cure both of these problems simultaneously, if we could individually transform the
input for each hidden unit through adaptive whitening, or, if we could present to each hidden unit a
rotated view of the input space, such that, one of the axes to be perpendicular to the hyperplane and
the rest to be parallel to the hyperplane. Unfortunately, both of the above transformations would
require too many additional parameters. An approximation (for 2 dimensional problems) that we
are currently investigating upon is the following:

For each input vector we compute K vectors rotated around the center of the input space with
successive angle increments equal to π/(2K). Our purpose is to obtain uniform rotations between 0
and π/4. Every a few hundred training steps, we reassign to each hidden unit the most appropriate
input representation and adjust the affected parameters (weights, means and stdevs). The results are
promising.

6.3 Dynamic Cascaded Inhibitory Connections

Regarding the fixed cascaded inhibitory connections, it must be examined whether it is better to
make the strength of the connections, dynamic. Minus one is OK when the weights are small. How-

2040

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

ever as the weights get larger, the inhibitory connections get less and less effective to differentiate
the hidden units. We can try to make them relative to each hidden unit’s average absolute net-input
or alternatively to make them trainable. It has been observed that increasing the strength of these
connections enables the hidden units to generate more curved discriminant functions, which is very
beneficiary for some problems.

6.4 Miscellaneous

More experiments need to be done, in order to evaluate the effectiveness of the hybrid activation
function on highly non-linear problems in many dimensions. High dimensional input spaces have
a multitude of disturbing properties in regard to distance and density metrics, which may affect the
hybrid activation in yet unknown ways.

Last, we must devise a training mechanism, that will be invariant to the initial learning rate and
that will vary automatically the number of hidden units as each problem requires.

Acknowledgments

I would like to thank all participants in my threads in usenet comp.ai.neural-nets, for their fruitful
comments on early presentations of the subjects in this report. Special thanks to Aleks Jakulin for
his support and ideas on further research that can make these results even better and to Greg Heath
for bringing to my attention the perturbated forms for the calculation of sliding window statistics.
I also thank the area editor Léon Bottou and the anonymous reviewers for their valuable comments
and for helping me to bring this report in shape for publication.

Appendix A. Notational Conventions

The following list contains the meanings of the symbols that have been used in this report. Symbols
with subscripts are used either as scalars or as vectors and matrices when the subscripts are omitted.
For example, w ji is a single weight, !w j is a weight vector andW is a weight matrix.

α – A constant that determines the time scale of the exponential trace of the average training-set
error within the dynamic training set evolution algorithm.

β – A constant that determines the time scale of the exponential trace of the input means and
standard deviations.

δ – An accumulator for the efficient implementation of the fixed cascaded inhibitory connections.

η – The number of hidden units.

µ – The number of input units.

f – The hidden units’ squashing function.

i – Index enumerating the input units.

j – Index enumerating the hidden units.

k – Index enumerating the output units.

2041

CHARIATIS

a j – The hidden unit’s activation computed from the sample’s weighted distance to the hidden
unit’s hyperplane.

b j – The hidden unit’s activation attenuation computed from the sample’s distance to the hidden
unit’s center.

d j – The sample’s distance to the hidden unit’s center.

e j – The hidden unit’s accumulated back propagated errors.

g j – The hidden unit’s error signal
(
f ′(n j) e j

)
.

h j – The hidden unit’s activation.

m ji – The mean of the values received by hidden unit j from input unit i.

n j – The net-input to the hidden unit.

q ji – The mean of the squared values received by hidden unit j from input unit i.

rk – The error of output unit k.

s ji – The standard deviation of the values received by hidden unit j from input unit i.

u jk – The weight of the connection from hidden unit j to output unit k.

v ji – The variance of the values received by hidden unit j from input unit i.

w ji – The weight of the connection from hidden unit j to input unit i.

xi – The value of input unit i.

z ji – The normalized input value received by hidden unit j from input unit i. It is currently com-
puted as the z-score of the input value. A better alternative would be to compute the vector !z j
by multiplying the input vector!x with a whitening matrix Z j.

References

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics
in high dimensional spaces. In J. Van den Bussche and V. Vianu, editors, Proceedings of the
8th International Conference on Database Theory (ICDT), volume 1973 of Lecture Notes in
Computer Science, pages 420–434. Springer, 2001.

K. Agyepong and R. Kothari. Controlling hidden layer capacity through lateral connections. Neural
Computation, 9(6):1381–1402, 1997.

S. Ahmad and S. Omohundro. A network for extracting the locations of point clusters using selective
attention. In Proceedings of the 12th Annual Conference of the Cognitive Science Society, MIT,
1990.

L. B. Almeida, T. Langlois, and J. D. Amaral. On-line step size adaptation. Technical Report INESC
RT07/97, INESC/IST, Rua Alves Redol 1000 Lisbon, Portugal, 1997.

2042

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276,
1998.

P. Bakker. Don’t care margins help backpropagation learn exceptions. In A. Adams and L. Sterling,
editors, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pages 139–
144, 1992.

P. Bakker. Exception learning by backpropagation: A new error function. In P. Leong and M. Jabri,
editors, Proceedings of the 4th Australian Conference on Neural Networks, pages 118–121, 1993.

S. Baluja and D. Pomerleau. Using the representation in a neural network’s hidden layer for task-
specific focus of attention. In IJCAI, pages 133–141, 1995.

L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department,
University of California, 1996.

D. S. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive networks. Com-
plex Systems, 2(3):321–355, 1988.

W. Duch, K. Grudzinski, and G. H. F. Diercksen. Minimal distance neural methods. In World
Congress of Computational Intelligence, pages 1299–1304, 1998.

D. L. Elliott. A better activation function for artificial neural networks. Technical Report TR 93-8,
The Institute for Systems Research, University of Maryland, College Park, MD, 1993.

G. W. Flake. Square unit augmented, radially extended, multilayer perceptrons. In G. B. Orr and
K. R. Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in
Computer Science, pages 145–163. Springer, 1998.

T. C. Fogarty. Technical note: First nearest neighbor classification on frey and slate’s letter recog-
nition problem. Machine Learning, 9(4):387–388, 1992.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148–
156, 1996.

P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6:161–182, 1991.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741, 1984.

T. Graepel and N. N. Schraudolph. Stable adaptive momentum for rapid online learning in nonlinear
systems. In J. R. Dorronsoro, editor, Proceedings of the International Conference on Artificial
Neural Networks (ICANN), volume 2415 of Lecture Notes in Computer Science, pages 450–455.
Springer, 2002.

M. Harmon and L. Baird. Multi-player residual advantage learning with general function approx-
imation. Technical Report WL-TR-1065, Wright Laboratory, Wright-Patterson Air Force Base,
OH 45433-6543, 1996.

2043

CHARIATIS

M. Hegland and V. Pestov. Additive models in high dimensions. Computing Research Repository
(CoRR), cs/9912020, 1999.

S. C. Huang and Y. F. Huang. Learning algorithms for perceptrons using back propagation with
selective updates. IEEE Control Systems Magazine, pages 56–61, April 1990.

R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural Networks, 1:
295–307, 1988.

R. Kothari and D. Ensley. Decision boundary and generalization performance of feed-forward
networks with gaussian lateral connections. In S. K. Rogers, D. B. Fogel, J. C. Bezdek, and
B. Bosacchi, editors, Applications and Science of Computational Intelligence, SPIE Proceedings,
volume 3390, pages 314–321, 1998.

B. Laheld and J. F. Cardoso. Adaptive source separation with uniform performance. In Proc.
EUSIPCO, pages 183–186, September 1994.

Y. LeCun, P. Simard, and B. Pearlmutter. Automatic learning rate maximization by on-line estima-
tion of the hessian’s eigenvectors. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in
Neural Information Processing Systems, volume 5, pages 156–163. Morgan Kaufmann Publish-
ers, San Mateo, CA, 1993.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mueller. Efficient backprop. In G. B. Orr and K.-R.
Müller, editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer
Science, pages 9–50. Springer, 1998.

T. K. Leen and G. B. Orr. Optimal stochastic search and adaptive momentum. In J. D. Cowan,
G. Tesauro, and J. Alspector, editors, Proceedings of the 7th NIPS Conference (NIPS), Advances
in Neural Information Processing Systems 6, pages 477–484. Morgan Kaufmann, 1993.

P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. In Proceedings of
the 9th Annual Conference of the Cognitive Science Society, Seattle, WA, pages 165–176, 1987.

N. Murata, K. Müller, A. Ziehe, and S. Amari. Adaptive on-line learning in changing environments.
In M. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems 9 (NIPS), pages 599–605. MIT Press, 1996.

D. J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases,
1998.

G. B. Orr and T. K. Leen. Using curvature information for fast stochastic search. In M. Mozer, M. I.
Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9 (NIPS),
pages 606–612. MIT Press, 1996.

J. L. Phillips and D. C. Noelle. Reinforcement learning of dimensional attention for categorization.
In Proceedings of the 26th Annual Meeting of the Cognitive Science Society, 2004.

M. Plumbley. A hebbian/anti-hebbian network which optimizes information capacity by orthonor-
malizing the principal subspace. In Proc. IEE Conf. on Artificial Neural Networks, Brighton, UK,
pages 86–90, 1993.

2044

VERY FAST ONLINE LEARNING OF HIGHLY NON LINEAR PROBLEMS

R. Reed, R.J. Marks, and S. Oh. Similarities of error regularization, sigmoid gain scaling, target
smoothing, and training with jitter. IEEE Transactions on Neural Networks, 6(3):529–538, 1995.

R. E. Schapire. A brief introduction to boosting. In T. Dean, editor, Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1401–1406. Morgan Kaufmann,
1999.

R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. In D. H. Fisher, editor, Proceedings of the 14th International
Conference on Machine Learning (ICML), pages 322–330. Morgan Kaufmann, 1997.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent. Neural
Computation, 14(7):1723–1738, 2002.

N. N. Schraudolph. Centering neural network gradient factors. In G. B. Orr and K. R. Müller, edi-
tors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science,
pages 207–226. Springer, 1998a.

N. N. Schraudolph. Accelerated gradient descent by factor-centering decomposition. Technical
Report IDSIA-33-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, 1998b.

N. N. Schraudolph. Online local gain adaptation for multi-layer perceptrons. Technical Report
IDSIA-09-98, Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Galleria 2, CH-6928
Manno, Switzerland, 1998c.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In ICANN, pages 569–574.
IEE, London, 1999.

H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8):1869–1887,
2000.

H. Schwenk and Y. Bengio. Training methods for adaptive boosting of neural networks for character
recognition. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in Neural Information
Processing Systems 10. MIT Press, Cambridge, MA, 1998.

M. W. Spratling and M. H. Johnson. Neural coding strategies and mechanisms of competition.
Cognitive Systems Research, 5(2):93–117, 2004.

C. Thornton. The howl effect in dynamic-network learning. In Proceedings of the International
Conference on Artificial Neural Networks, pages 211–214, 1992.

K. M. Ting and Z. Zheng. Improving the performance of boosting for naive bayesian classification.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 296–305, 1999.

Y. H. Yu and R. F. Simmons. Descending epsilon in back-propagation: A technique for better gen-
eralization. In Proceedings of the International Joint Conference on Neural Networks (IJCNN),
volume 3, pages 167–172, 1990.

S. Zhong and J. Ghosh. Decision boundary focused neural network classifier. In Intelligent Engi-
neering Systems Through Artificial Neural Networks (ANNIE). ASME Press, 2000.

2045

Journal of Machine Learning Research 8 (2007) 2047-2081 Submitted 9/05; Revised 11/06; Published 9/07

Unlabeled Compression Schemes for Maximum Classes∗

Dima Kuzmin DIMA@CSE.UCSC.EDU
Manfred K. Warmuth MANFRED@CSE.UCSC.EDU
Computer Science Department
University of California, Santa Cruz
1156 High Street
Santa Cruz, CA, 95064

Editor: John Shawe-Taylor

Abstract
Maximum concept classes of VC dimension d over n domain points have size

(n
≤d

)
, and this is

an upper bound on the size of any concept class of VC dimension d over n points. We give a
compression scheme for any maximum class that represents each concept by a subset of up to d
unlabeled domain points and has the property that for any sample of a concept in the class, the
representative of exactly one of the concepts consistent with the sample is a subset of the domain
of the sample. This allows us to compress any sample of a concept in the class to a subset of up
to d unlabeled sample points such that this subset represents a concept consistent with the entire
original sample. Unlike the previously known compression scheme for maximum classes (Floyd
and Warmuth, 1995) which compresses to labeled subsets of the sample of size equal d, our new
scheme is tight in the sense that the number of possible unlabeled compression sets of size at most
d equals the number of concepts in the class.
Keywords: compression schemes, VC dimension, maximum classes, one-inclusion graph

1. Introduction

Consider the following type of protocol between a learner and a teacher. Both agree on a domain
and a class of concepts (subsets of the domain). For instance, the domain could be the plane and a
concept the subset defined by an axis-parallel rectangle (see Figure 1). The teacher gives a set of
training examples (labeled domain points) to the learner. The labels of this set are consistent with a
concept (rectangle) that is hidden from the learner. The learner’s task is to predict the label of the
hidden concept on a new test point.

Intuitively, if the training and test points are drawn from some fixed distribution, then the la-
bels of the test point can be predicted accurately provided the number of training examples is large
enough. The sample size should grow with the inverse of the desired accuracy and with the com-
plexity or “dimension” of the concept class. The most basic notion of dimension in this context
is the Vapnik-Chervonenkis dimension. This dimension is the size d of the maximum cardinality
subset of domain points such that all 2d labeling patterns can be realized by a concept in the class.
The VC dimension of axis-parallel rectangles is 4, since it is possible to label any set of 4 points
in all possible ways as long as no point lies inside the orthogonal hull of the other 3 points (where

∗. Supported by NSF grant CCR CCR 9821087. Some work on this paper was done while the authors were visiting
National ICT Australia.

c©2007 Dima Kuzmin and Manfred K. Warmuth.

KUZMIN AND WARMUTH

++ +++
-

- --
- -

--

-
-

-

-

-
x+

+ ++
+hidden smallest test

Figure 1: An example set consistent with some axis-parallel rectangle. Also shown is the smallest
axis-parallel rectangle containing the subsample of circled points. This rectangle is con-
sistent with all examples and the set of circled points represents a consistent concept. The
hidden rectangle generating the data is dashed. “x” is the next test point.

the orthogonal hull is defined as the smallest rectangle containing the points); also for any 5 points,
at least one of the points lies inside the orthogonal hull containing the remaining 4 points and this
disallows at least one of the 25 patterns.

This paper deals with an alternate notion of dimension used in machine learning that is related
to compression (Littlestone and Warmuth, 1986). It stems from the observation that you can often
select a subset of the training examples to represent a hypothesis consistent with all training exam-
ples. For instance, in the case of rectangles, it is sufficient to keep only the uppermost, lowermost,
leftmost and rightmost positive point. There are up to 4 points in the subsample (since some of the
4 extreme points might coincide.) The orthogonal hull of the subsample will always be consistent
with the entire sample.

More generally, a compression scheme is defined by two mappings (Littlestone and Warmuth,
1986): one mapping samples of concepts in the class to subsamples, and the other one mapping the
resulting subsamples to hypotheses on the domain of the class. Compression schemes must have
the property that the subsample always represents a hypothesis consistent with the entire original
sample. However note that the reconstructed hypothesis doesn’t have to lie in the original concept
class. It only needs to be consistent with the original sample. The subsamples represent hypotheses
and are called representatives in this paper. A compression scheme can be viewed as a set of rep-
resentatives of hypotheses with the property that every sample of the class contains a representative
of a consistent hypothesis. The size of the compression scheme is the size of the largest represen-
tative, and the minimum size of a compression scheme for a class serves as an alternate measure of
complexity.

Note that in the case of rectangles we need to keep at most 4 points and 4 also is the Vapnik-
Chervonenkis dimension of that class. One of the most tantalizing conjectures in learning theory is
the following (Floyd and Warmuth, 1995; Warmuth, 2003): For any concept class of VC dimension
d, there is a compression scheme of size at most d.

2048

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

The size of the compression scheme also replaces the VC dimension in the PAC sample size
bounds (Littlestone and Warmuth, 1986; Floyd and Warmuth, 1995; Langford, 2005). However,
in the case of compression schemes, the proofs of these bounds are much simpler. There are
many practical algorithms based on compression schemes (e.g., Marchand and Shawe-Taylor, 2002,
2003). Also, any algorithm with a mistake boundM leads to a compression scheme of sizeM (Floyd
and Warmuth, 1995).

Let’s consider some more illustrative examples of compression schemes. Unions of up to k
intervals on the real line form a concept class of VC dimension 2k. We can compress a sample from
this class to the following set of points: the leftmost “+” point in the sample, the leftmost “−” point
to the right of the last selected point, the leftmost “+” further to the right of the last selected point,
and so forth; stop when there are no more points whose label is opposite to the last selected point. It
is easy to see that at most 2k points are kept when the original sample is consistent with a union of
k intervals. Also the labels of the entire original sample can be reconstructed from this subsample.
Note that in this case the labels of the subsample are always alternating starting with a “+”. Thus
these labels are redundant and the above scheme can be interpreted as compressing to unlabeled
subsamples of size at most the VC dimension 2k.

Support Vector Machines also lead to a simple labeled compression scheme for halfspaces (sets
of the form {x ∈ Rn :w ·x ≥ b}), because only the set of support vectors is needed to reconstruct
the hyperplane consistent with the original sample. Of course, the number of support vectors can be
quite big. However, it suffices to keep any set of essential support vectors and these sets have size
n+ 1, where n is the dimension of the feature space (von Luxburg et al., 2004). Not surprisingly,
n+1 is also the VC dimension of arbitrary halfspaces of dimension n. However, the labels of a set
of essential support vectors are not redundant and this provides an example of a labeled compression
scheme for halfspaces. There also exists a compression scheme for the same class that compresses
to at most n+ 1 unlabeled points (Ben-David and Litman, 1998). However this scheme is not
constructive.

The compression scheme conjecture is easily proven for intersection-closed concept classes
(Helmbold et al., 1992), which include the class of axis-parallel rectangles as a special case. More
importantly, the conjecture was shown to be true for maximum classes. A finite class of VC dimen-
sion d over n domain points is maximum if its size is equal to

(n
≤d

)
, which is the upper bound on

the size of any concept class of VC dimension d over n points. An infinite class of VC dimension d
is maximum if all restrictions to a finite subset of domain of size at least d are maximum classes of
dimension d.

Of the example concept classes discussed so far, the class of up to k intervals on the real line is
maximum. The class of halfspaces in Rn is not maximum, but it is in fact a union of two classes of
VC dimension n which are “almost maximum”: positive halfspaces and negative halfspaces (Floyd,
1989). Positive halfspaces are those that contain the “point” (∞,0, . . . ,0) and negative halfspaces are
those that contain (−∞,0, . . . ,0). Both classes of halfspaces are almost maximum in the sense that
the restriction to any set of points in general position always produces a maximum class. Finally,
the class of axis-parallel rectangles is not maximum since for any five points at least two labelings
are not realizable.

In Floyd and Warmuth (1995) it was shown that for all maximum classes there always exist
compression schemes that compress to exactly d labeled examples. In this paper, we give an alter-
nate compression scheme for finite maximum classes. Even though we do not resolve the conjecture
for arbitrary classes, we have uncovered a great deal of new combinatorics. Our new scheme com-

2049

KUZMIN AND WARMUTH

x1 x2 x3 x4 r(c)
c1 0 0 0 0 /0
c2 0 0 1 0 {x3}
c3 0 0 1 1 {x4}
c4 0 1 0 0 {x2}
c5 0 1 0 1 {x3,x4}
c6 0 1 1 0 {x2,x3}
c7 0 1 1 1 {x2,x4}
c8 1 0 0 0 {x1}
c9 1 0 1 0 {x1,x3}
c10 1 0 1 1 {x1,x4}
c11 1 1 0 0 {x1,x2}

Figure 2: Illustration of the unlabeled compression scheme for some maximum concept class. The
representatives for each concept are indicated in the right column and also as the under-
lined positions in each row. Suppose the sample is x3 = 1,x4 = 0. The set of concepts
consistent with that sample is {c2,c6,c9}. The representative of exactly one of these
concepts is entirely contained in the sample domain {x3,x4}. For our sample this repre-
sentative is {x3} which represents c2. So the compressed sample becomes {x3}.

presses any sample consistent with a concept to at most d unlabeled points from the sample. If m
is the size of the sample, then there are

(m
≤d

)
sets of points of size up to d. For maximum classes,

the number of different labelings induced on any set of size m is also
(m
≤d

)
. Thus our new scheme

is “tight”. In the previous labeled scheme, the number of possible representatives was much bigger
than the number of concepts.

The new unlabeled scheme also has many interesting combinatorial properties. Let us represent
finite classes as a binary table (see Figure 2) where the rows are concepts and the columns are all the
points in the domain. Our compression scheme represents concepts by subsets of size at most d and
for any k≤ d, the concepts represented by subsets of size up to k will form a maximum class of VC
dimension k. Our scheme compresses as follows: After receiving a set of examples, we first restrict
ourselves to concepts that are consistent with the sample. We then compress to a representative
of a consistent concept that is completely contained in the sample domain (see Figure 2). As our
main result we will prove that for our choice of representatives, for any sample there always will be
exactly one of the consistent concepts whose representative is completely contained in the sample
domain.

Our new unlabeled compression scheme is connected to a certain undirected graph, called the
one-inclusion graph, that characterizes the concept class on a set of example points (Haussler et al.,
1994): the vertices are the possible labelings of the example points and there is an edge between
two concepts if they disagree on a single point. The edges are naturally labeled by the differing
points (see Figure 4).

Any prediction algorithm can be used to orient the edges of the one-inclusion graphs as follows.
Assume we are given a labeling of some m points x1, . . . ,xm and an unlabeled test point x. If there
is still an ambiguity as to how x should be labeled, then this corresponds to an x-labeled edge in

2050

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

x1 x2 x3 x4
c1 0 0 1 0
c2 0 1 0 0
c3 0 1 1 0
c4 1 0 1 0
c5 1 1 0 0
c6 1 1 1 0
c7 0 0 1 1
c8 0 1 0 1
c9 1 0 0 0
c10 1 0 0 1

,

Figure 3: A maximal class of VCdim 2 with 10 concepts. Maximum concept classes of VCdim 2
have

(4
≤2

)
= 11 concepts (see Figure 2).

one-inclusion graph for the set {x1, . . . ,xm,x}. This edge connects the two possible extensions of
the labeling of x1, . . . ,xm to the test point x. If the algorithm predicts b, then orient the edge toward
the concept that labels x with bit b.

The vertices in the one-inclusion graph represent the possible labelings of {x1, . . . ,xm,x} pro-
duced by the target concepts and if the prediction is averaged over all permutations of the m+ 1
points, then the probability of predicting wrong is d

m+1 , where d is the out-degree of the target.
Therefore the canonical optimal algorithm predicts with an orientation of the one-inclusion graphs
that minimizes the maximum out-degree (Haussler et al., 1994; Li et al., 2002) and in Haussler et al.
(1994) it was shown that this outdegree is at most the VC dimension.

How is this all related to our new compression scheme for maximum classes? We show that for
any edge labeled with x, exactly one of the two representatives of the incident concepts contains the
point x. Thus by orienting the edges toward concept that does not have x, we immediately obtain
an orientation of the one-inclusion graphs in which all vertices have maximum outdegree at most d
(which is the best possible). Again such a d-orientation immediately leads to prediction algorithms
with a worst case expected mistake bound of d

m+1 , wherem is the sample size (Haussler et al., 1994),
and this bound is optimal1 (Li et al., 2002).

The conjecture whether there always exists a compression scheme of size at most the VC di-
mension remains open. For finite domains it clearly suffices to resolve the conjecture for maximal
classes (i.e., classes where adding any concept would increase the VC dimension). We do not know
of any natural example of a maximal concept class that is not maximum or closely related. However,
it is easy to find small artificial maximal classes (see Figure 3). We believe that much of the new
methodology developed in this paper for maximum classes will be useful in deciding the general
conjecture in the positive and think that in this paper we made considerable progress toward this
goal. In particular, we developed a refined recursive structure of finite concept classes and made
the connection to orientations of the one-inclusion graphs. Also, our scheme constructs a certain
unique matching that is interesting in its own right.

1. Predicting with a d-orientation of the one-inclusion graphs is also conjectured to lead to optimal algorithms in the
PAC model of learning (Warmuth, 2004).

2051

KUZMIN AND WARMUTH

Even though the unlabeled compression schemes for maximum classes are tight in some sense,
they are not unique. There is a strikingly simple “peeling algorithm” that always seems to produce
a valid unlabeled compression scheme for maximum classes: construct the one-inclusion graph for
the domain; iteratively peel off a lowest degree vertex and represent a concept c by the set of data
points incident to vertex c in the remaining graph when c was removed from the graph (see Figure
7 for an example run). However, we have no proof of correctness of this algorithm and the resulting
schemes do not have as much recursive structure as the ones produced by our recursive algorithm
for which we have correctness proof. For the small example given in Figure 2, both algorithms can
produce the same scheme.

1.1 Outline of the Paper

Some basic definitions are provided in Section 2. We then define unlabeled compression schemes
in Section 3 and characterize the properties of the representation mappings of such schemes and
their relation to the one-inclusion graph. In this section we also discuss the simple Min-Peeling Al-
gorithm in more detail. This algorithm always seems to provide an unlabeled compression scheme
even though we currently do not have a correctness proof for it. Section 4 discusses linear ar-
rangements, which are special maximum concept classes, and discuss how to interpret unlabeled
compression schemes for these classes. Next, in Section 5, we briefly summarize the old scheme
for maximum classes from Floyd and Warmuth (1995) which compresses to labeled subsamples,
whereas ours uses unlabeled ones. The core of the paper is in Section 6, where we give a recursive
algorithm for constructing an unlabeled compression scheme with a detailed proof of correctness.
Section 7 contains additional combinatorial lemmas about the structure of maximum classes and
unlabeled compression schemes. In Section 8, we discuss how to possibly extend various compres-
sion schemes for maximum classes to the more general case of maximal classes. We conclude in
Section 9 with a large number of combinatorial open problems that we have encountered in this
research.

2. Definitions

Let X be a domain, where we allow X = /0. A concept c is a mapping from X to {0,1}. We can also
view a concept c as a characteristic function of a subset of dom(c), that is, for any domain point
x∈ dom(c), c(x) = 1 iff x∈ c. A concept classC is a set of concepts with the same domain (denoted
as dom(C)). Such a class is represented by a binary table (see Figure 2), where the rows correspond
to concepts and the columns to points in dom(C).

Alternatively, C can be represented as a subgraph of the Boolean hypercube of dimension
|dom(C)|. Each dimension corresponds to a particular domain point, the vertices are the concepts in
C and two concepts are connected with an edge if they disagree on the label of a single point. This
graph is called the one-inclusion graph ofC (Haussler et al., 1994). Note that each edge is naturally
labeled by the single dimension/point on which the incident concepts disagree (see Figure 4). The
set of incident dimensions of a vertex c in a one-inclusion graph G is the set of dimensions labeling
the edges incident to c. We denote this set as IG(c). Its size equals the degree of c in G.

We denote the restriction of a concept c onto A ⊆ dom(c) as c|A. This concept has domain A
and labels that domain consistently with c. The restriction of an entire class is denoted asC|A. This
restriction is produced by simply removing all columns not in A from the table forC and collapsing

2052

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

0000

0010

0011

0100

0101 0110

0111

1000

1010

1011

1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

Figure 4: One-inclusion graph for the concept class from Figure 2. The concepts are the vertices
of the graph and edges are labeled with the single differing dimension. Each concept c
is given as a bit pattern and the set of underlined dimensions indicates its representative
r(c). Arrows show the d-orientation derived from the compression scheme.

2053

KUZMIN AND WARMUTH

x2 x3 x4
0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x2 x3 x4
0 0 0
0 1 0
0 1 1
1 0 0

C− x1 Cx1

x1 x2 x3 x4
0 1 0 1
0 1 1 0
0 1 1 1

tailx1(C)

Figure 5: The reduction, restriction and the tail of the concept class from Figure 2 wrt x1.

identical rows.2 Also the one-inclusion graph for the restriction C|A is now a subgraph of the
Boolean hypercube of dimension |A| instead of the full dimension |C|. We use c− x as shorthand
for c|(dom(C)!{x}) and letC−x denote {c−x|c ∈C} (produced by removing column x from the
table, see Figure 5). A sample of a concept c is any restriction c|A for some A⊆ dom(c).

The reductionCx of a concept classC wrt a dimension x∈ dom(C) consists of all those concepts
in C− x that have two possible extensions onto concepts in C. All such concepts correspond to an
edge labeled with x in the one-inclusion graph (see Figure 5). In summary, the class Cx is a subset
ofC− x that has the same reduced domain X−{x}.

The tail of concept class C on dimension x consists of all concepts that do not have an edge
labeled with x. Thus it corresponds to the subset of C− x that has a unique extension onto the full
domain. We denote the tail ofC on dimension x as tailx(C). The classC can therefore be partitioned
as 0Cx

!
∪ 1Cx

!
∪ tailx(C), where

!
∪ denotes the disjoint union and bCx consists of all concepts in Cx

extended with bit b in dimension x. Note that tails have the same domain as the original class,
whereas the reduction and restriction are classes that have a reduced domain.

A finite set of dimensions A ⊆ dom(C) is shattered by a concept class C if for any possible
labeling of A, the class C contains a concept consistent with that labeling (i.e., size(C|A) = 2|A|).3
The Vapnik-Chervonenkis dimension of a concept class C is the size of a maximum subset that is
shattered by that class (Vapnik, 1982). We denote this dimension as VCdim(C). Note that if |C|= 1,
then VCdim(C) = 0.4

In this paper we use the binomial coefficients
(n
d
)
, for integers n ≥ 0 and d, where

(n
d
)

= 0
for d > n or d < 0 and

(0
0
)

= 1. We make use of the following identity which holds for n > 0:(n
d
)

=
(n−1

d
)
+

(n−1
d−1

)
. Let

(n
≤d

)
be a shorthand for the binomial sums ∑d

i=0
(n
i
)
. Then we have a

similar identity for the binomial sums when n> 0:
(n
≤d

)
=

(n−1
≤d

)
+

(n−1
≤d−1

)
.

2. We define c| /0= /0. Note thatC| /0= { /0} ifC "= /0 and /0 otherwise.
3. The notations size(A) and |A| both denote the number of elements in set A.
4. VCdim({ /0}) = 0 and VCdim(/0) is defined to be −1.

2054

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

From Vapnik and Chervonenkis (1971) and Sauer (1972) we know that for all concept classes
with VC dimension d: |C| ≤

(|dom(C)|
≤d

)
(generally known as Sauer’s lemma). A concept classC with

VCdim(C) = d is called maximum (Welzl, 1987) if for all finite subsets Y of the domain dom(C),
size(C|Y) =

(|Y |
≤d

)
. IfC is a maximum class with d=VCdim(C), then ∀x∈ dom(C), the classesC−x

andCx are also maximum classes and have VC dimensions d and d−1, respectively (Welzl, 1987).
From this it follows that for finite domains, a concept classC is maximum iff size(C) =

(|dom(C)|
≤d

)
.

A concept class C is called maximal if adding any other concept to C will increase its VC
dimension. Any maximum class on a finite domain is also maximal (Welzl, 1987). However, there
exist finite maximal classes, which are not maximum (see Figure 3 for an example).

From now on we only consider finite classes. As our main result we construct an unlabeled
compression scheme for any finite maximum class. The existence of an unlabeled scheme for
infinite maximum classes then follows from a compactness theorem given in Ben-David and Litman
(1998). The proof of that theorem is, however, non-constructive.

3. Unlabeled Compression Scheme

Our unlabeled compression scheme for maximum classes represents the concepts as unlabeled sub-
sets of dom(C) of size at most d. For any c ∈ C we call r(c) its representative. Intuitively we
want concepts to disagree on their representatives. We say that two different concepts clash wrt r if
c|(r(c)∪ r(c′)) = c′|(r(c)∪ r(c′)).
Main definition: A representation mapping r of a maximum concept classC must have the follow-
ing two properties:

1. r is a bijection betweenC and (unlabeled) subsets of dom(C) of size at most VCdim(C) and

2. no two concepts inC clash wrt r.

The following lemma shows how the non-clashing requirement can be used to find a unique repre-
sentative for each sample.

Lemma 1 Let r be any bijection between a finite maximum concept class C of VC dimension d and
subsets of dom(C) of size at most d. Then the following two statements are equivalent:

1. No two concepts clash wrt r.

2. For all samples s of a concept from C, there is exactly one concept c ∈ C that is consistent
with s and r(c) ⊆ dom(s).

Based on this lemma it is easy to see that a representation mapping r for a maximum concept
class C defines a compression scheme as follows. For any sample s of C we compress s to the
unique representative r(c) such that c is consistent with s and r(c) ⊆ dom(s). Reconstruction is
even simpler, since r is bijective: if s is compressed to the set r(c), then we reconstruct to the
concept c. See Figure 2 for an example of how compression and reconstruction work.
Proof of Lemma 1

2⇒ 1 : Proof by contrapositive. Assume ¬1, that is, there ∃c,c′ ∈ C, c += c′ s.t. c|r(c)∪ r(c′) =
c′|r(c)∪ r(c′). Then let s = c|r(c)∪ r(c′). Clearly both c and c′ are consistent with s and
r(c),r(c′) ⊆ dom(s). This negates 2.

2055

KUZMIN AND WARMUTH

1⇒ 2 : At a high level, for any sample domain dom(s) there are as many representatives r(c) ⊆
dom(s) as there are different samples having that domain. The no clashing condition implies
that all concepts with representatives in dom(s) are different from each other on dom(s), thus
every sample has to get at least one representative.
For a more detailed proof assume ¬2, that is, there is a sample s for which there are either
zero or (at least) two consistent concepts c for which r(c)⊆ dom(s). If two concepts c,c′ ∈C
are consistent with s and r(c),r(c′) ⊆ dom(s), then c|r(c)∪ r(c′) = c′|r(c)∪ r(c′) (which is
¬1). If there is no concept c consistent with s for which r(c) ⊆ dom(s), then since

size(C|dom(s)) =
(
|dom(s)|

≤ d

)
= |{c : r(c) ⊆ dom(s)}| .

there must be another sample s′ with dom(s′) = dom(s) for which there are two such concepts.
So again ¬1 is implied. !

Once we have a valid representation mapping for some maximum concept classC, we can easily
derive a valid mapping for any restriction of the classC|A by compressing every restricted concept.
This is discussed in the following corollary.

Corollary 2 For any maximum class C and A ⊆ dom(C), if r is a representation mapping for C
then a representation mapping for C|A can be constructed as follows. For any c ∈C|A, let rA(c) be
the representative of the unique concept c′ ∈C, such that c′|A= c and r(c′) ⊆ A.

Proof The construction of the mapping forC|A essentially tells us to treat the concept c as a sample
fromC and to compress it. Thus we can apply Lemma 1 to see that rA(c)⊆ A is always uniquely de-
fined. Now we need to show that rA satisfies the conditions of the Main Definition. Since the repre-
sentatives rA(c) are subsets of A, the non-clashing property for the representationmapping rA forC|A
follows from the non-clashing condition for r forC. The bijection property follows from a counting
argument like the one used in the proof of Lemma 1, since size(C|A) = size({r(c) s.t. r(c) ⊆ A}).

The following lemmas and corollaries will be stated only for the concept classC itself. However,
in light of Corollary 2 they will also hold for all restrictionsC|A.

We first show that a representation mapping r for a maximum classes can be used to derive a
d-orientation for the one-inclusion graph of the class (i.e., an orientation of the edges such that the
outdegree of every vertex is at most d). As discussed in the introduction such orientations lead to a
prediction algorithm with a worst-case expected mistake bound of dt at trial t.

Lemma 3 For any representation mapping r of a maximum concept class C and the one-inclusion
graph of C, any edge c x— c′ in the graph has the property that its associated dimension x lies in
exactly one of the representatives r(c) or r(c′).

Proof Since c and c′ differ only on dimension x and c|r(c)∪ r(c′) += c′|r(c)∪ r(c′), x lies in at least
one of r(c),r(c′). Next we will show that x lies in exactly one.

We say an edge charges its incident concept if the dimension of the edge lies in the representative
of this concept. Every edge charges at least one of its incident concepts and each concept c can
receive at most |r(c)| charges. So the number of charges is lower bounded by the number of edges

2056

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

and upper bounded by the total size of all representations. We complete the proof of the lemma by
showing that the number of edges equals the total size of all representatives. This means that no
edge can charge both of its incident concepts and each point labeling an edge must lie in exactly
one of the representations of its incident concepts.

There are |Cx| edges labeled with dimension x in the one-inclusion graph for C. Since there
are n dimensions and Cx is always maximum and of dimension d−1, the total number of edges in
the graph is n

(n−1
≤d−1

)
, where n = |dom(C)|, d = VCdim(C). (This formula is also a special case of

Lemma 15.) The total size of all representatives is the same number because:

∑
c∈C

|r(c)| =
d

∑
i=0

i
(
n
i

)
= n

d

∑
i=1

(
n−1
i−1

)
= n

(
n−1

≤ d−1

)
.

The above lemma lets us orient the one-inclusion graphs for the class.

Corollary 4 For any representation mapping of maximum class C and the one-inclusion graph of
C, directing each edge away from the concept whose representative contains the dimension of the
edge creates a d-orientation of the one-inclusion graph for the class.

Proof The outdegree of every concept is equal to size of its representative, which is ≤ d.

The lemma also implies that the representatives of concepts are always subsets of the set of incident
dimensions in the one-inclusion graphs.

Corollary 5 Any representation mapping r of a maximum class C has the property that for any
concept c ∈C, its representative r(c) is a subset of the dimensions incident to c in the one-inclusion
graph for C.

Proof From the counting argument in the proof of Lemma 3 we see that for every x ∈ r(c) there
must exist an edge leaving c in the graph labeled with x.

3.1 The Min-Peeling Algorithm

As discussed at the end of the introduction, there is a simple algorithm that always seems to construct
a correct representation mapping for any maximum class. The algorithm iteratively removes any
lowest degree vertex from the one-inclusion graph for the remaining class and sets the representative
r(c) to the set of dimensions of the edges incident to c when c was removed from the graph. The
algorithm is formally stated in Figure 6. An illustration of several iterations of the algorithm is given
in Figure 7.

Unfortunately, we do not have a proof that this algorithm always produces a correct unlabeled
compression scheme for maximum classes. As one of the steps in the correctness proof we would
need the following: By iteratively removing the lowest degree vertex from a maximum class, we
never arrive at a subgraph whose lowest degree vertex has a degree larger than the VC dimension of
the remaining class. A natural conjecture is that any class of VC dimension d has a vertex of degree
at most d in its one-inclusion graph. However, an elegant counterexample to this conjecture was
constructed in Rubinstein et al. (2007a). Note that their counterexample is not a maximum class and

2057

KUZMIN AND WARMUTH

Min-Peeling Algorithm
Input: a finite maximum concept classC.
Output: a representation mapping r forC
Let G be the one-inclusion graph forC

WhileC += /0

1. Choose a minimum-degree vertex c among those inC
2. r(c) := set of dimension incident to c in the graph
3. Remove c from G andC

Figure 6: TheMin-Peeling Algorithm for constructing an unlabeled compression scheme for max-
imum classes.

thus it does not contradict the Min-Peeling Algorithm. Maximum classes and classes obtained by
peeling them appear to have a special structure that always ensures existence of a degree≤ d vertex,
where d is the VC dimension of the remaining class. However a complete proof of this statement
needs to be found.

The representation mappings produced by the Min-Peeling Algorithm have less structure than
the representation mappings produced by the Tail Matching Algorithm discussed in Section 6. In
particular, they do not necessarily satisfy the condition of Lemma 12, which states the subset of
concepts corresponding to representations of size up to k forms a maximum class of VC dimension k.
For the maximum class of Figure 2, both algorithms can produce the same representation mapping.

Also note how the Min-Peeling Algorithm immediately leads to a d-orientation of the one-
inclusion graph: as we peel away a vertex, its edges are naturally oriented away from the vertex
before the edges are removed. Since each vertex has degree at most d when it is peeled away, the
outdegree of each vertex will be at most d. Moreover, the resulting orientation of the one-inclusion
graph is acyclic because all edges are oriented from a vertex toward a vertex that is removed later.
In other words, the list of vertices produced by the Min-Peeling Algorithm is a topological ordering
of the oriented one-inclusion graph (see Figure 8). As we shall see later, the Tail Matching Algo-
rithm also produces a topological order of the graph. By Corollary 4, every representation mapping
induces a d-orientation of the one-inclusion graph. However we found examples where a valid
representation mapping for a maximum class induces a cyclic orientation (not shown).

4. Linear Arrangements

In this section we visualize many of our basic notations and unlabeled compression schemes for
simple linear arrangements, which are special maximum classes. An unlabeled compression scheme
for linear arrangements is also described in Ben-David and Litman (1998).

A linear arrangement is a collection of oriented hyperplanes inRd . The cells of the arrangement
are the concepts and the planes the dimensions of the concept class. The orientations of the planes

2058

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

0000

0010

0011

0100

0101 0110

0111

1000

1010

1011

1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

0101 - {x3, x4}

0000

0010

0011

0100

1|0101 0110

0111

1000

1010

1011

1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3
x4

x3

x2

x4

x2

0111 - {x2, x4}

0000

0010

0011

0100

1|0101 0110

2|0111

1000

1010

1011

1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

0110 - {x2, x3}

0000

0010

0011

0100

1|0101 3|0110

2|0111

1000

1010

1011

1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

1100 - {x1, x2}

0000

0010

0011

0100

1|0101 3|0110

2|0111

1000

1010

1011

4|1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

0100 - {x2}

0000

0010

0011

5|0100

1|0101 3|0110

2|0111

1000

1010

1011

4|1100

x3 x2 x1

x4
x1

x2 x1

x4

x3

x1

x3 x4

x3

x2

x4

x2

Figure 7: Illustration of a run of theMin-Peeling Algorithm. Each figure corresponds to an itera-
tion of the algorithm: the bold circle indicates the chosen concept to be removed and the
grey circles are the concepts that were removed previously. By completing the run, one
can produce the compression scheme given in Figure 2.

2059

KUZMIN AND WARMUTH

Figure 8: Topological order and d-orientation produced by a run of Min-Peeling Algorithm for
some maximum class.

x1

x3 x4

1010
1110

0110 0111 0101
1101

1000

1001

0001

1011
1111

x2

Figure 9: An example linear arrangement. The cells of the arrangement represent the concepts
and the planes the dimensions of the class. All cells on the upper side of a hyperplane
(indicated by an arrow) are labeled one in the corresponding dimension and the cells on
the lower side are labeled zero. Up to d hyperplanes bordering a cell are marked and
the set of dimensions of these marked planes forms the representative of the cell in the
unlabeled compression scheme.

are indicated by arrows (See Figure 9). All cells lying above the plane corresponding to dimension
x label x with one, and the cells below label x with zero. If the n planes are in general position
(any d hyperplanes have a unique point in common and any d+ 1 hyperplanes have no point in

2060

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

x1

x2
x3

1010
1110

0110 0111 0101
1101

1000

1001

0001

1011
1111

x4

Figure 10: RestrictionC−{x3,x4} of the linear arrangements concept class of Figure 9. The planes
x3 and x4 are grayed. Several cells of the full arrangement are combined into bigger
cells of the restricted arrangement. One of the subcells forming each big cell (circled)
has the property that all dimensions in its representative are still available (none of the
corresponding hyperplanes were grayed). The representative of this subcell represents
the big cell. For example the subcells 1110,1111,1101 form the larger cell for sample
(x1,1),(x2,1) and only 1111 (circled) is represented by a subset of non-grayed hyper-
planes: r(1111) = {x1}, and therefore the sample is compressed to {x1}.

common) then the arrangement is called simple. Such arrangements are maximum classes because
their VC dimension is min{n,d} and they have

(n
≤d

)
cells (Edelsbrunner, 1987). However not all

finite maximum classes are representable as linear arrangements (Floyd, 1989).
The vertices of the one-inclusion graph are the cells of the arrangement and edges connect

neighboring cells. A restriction C− x corresponds to removing the x plane from the arrangement.
Pairs of cells that border this plane are now combined to larger cells (an example of a double restric-
tion is given in Figure 10). Samples are combined cells produced by removing some hyperplanes.
The reduction Cx is the arrangement in the space of dimension d− 1 induced by the projection of
the remaining n−1 planes onto the x plane. The subclasses 1Cx and 0Cx correspond to the cells di-
rectly above or below the x plane, respectively. All cells not bordering the x plane form the subclass
tailx(C).

By Corollary 5, the representative of a concept in an unlabeled compression scheme is always
a subset of the incident dimensions (here the bordering hyperplanes) in the one-inclusion graph. So
we can indicate the representatives of each cell by marking the inside borders with the corresponding

2061

KUZMIN AND WARMUTH

neighbouring cells (See Figure 9). Each cell marks at most d bordering hyperplanes and no cell
marks the same set of hyperplanes. The no-clashing condition of our Main Definition means that
any two cells are on opposite sides of at least one hyperplane marked by one of the cells. Also by
Lemma 3, any boundary shared between any two cells is marked on exactly one side.

We now visualize how we compress a sample, that is, we restate the process described in Figure
2 for the special case of linear arrangements. Recall that a sample s corresponds to a combined
cell produced by removing the hyperplanes in dom(c) ! dom(s) where each of the original cells
corresponds to a concept consistent with the sample. One (and only one) of the original cells in
the combined cell that corresponds to the sample is marking only hyperplanes from the surviving
set dom(s) (circled in Figure 10). We compress the sample to that set of marked dimensions and
reconstruct based on the represented original cell. Note that if the selected original cell marks any
plane, then it must always be at the boundary of the combined cell, since cells in the middle do not
border any of the remaining hyperplanes.

It is interesting to observe how our algorithms construct representation mappings for linear
arrangements.

Conjecture 1. Sweeping the arrangement with a hyperplane that is not parallel to any plane in
the arrangement produces a compression scheme as follows: as soon as a cell is completely swept,
it marks the planes of all bordering currently live cells. The resulting sequential assignments of
representatives to concepts corresponds to a run of the Min-Peeling Algorithm.

In particular we conjecture that sweeping as prescribed iteratively completes minimum degree
cells.

The recursive Tail Matching Algorithm of Section 6 chooses some plane x and first finds a
compression scheme for the projection Cx of the linear arrangement onto the this plane. Each
projected cell from Cx corresponds to two cells, one from 0Cx and one from 1Cx. The algorithm
uses the scheme for Cx for all concepts in 0Cx, that is, all cells bordering the x plane from below.
The sibling cells in 1Cx right above the plane receive the same marks but also an additional mark
from the x plane. The recursive algorithm uses exactly d marks for all vertices in tailx(C) (the cells
not bordering the x plane). However, this assignment cannot be easily visualized.

Note that one of the planes has the property that the markings produced by the recursive algo-
rithm all lie on one side of the plane. We initially conjectured that there always exist representation
schemes that place the marks on the same side for all planes. However we found small counterex-
amples to this conjecture (not shown).

Simple linear arrangements are known to have the following property: the shortest path between
any two cells is always equal to the Hamming distance between the cells (Edelsbrunner, 1987).
Surprisingly, we were able to show in Lemma 14 that all maximum classes have this property.

5. Comparison with Old Scheme

In the unlabeled compression schemes introduced in this paper, each subset of up to d domain
points represents a unique concept in the class, and every sample of a concept contains exactly one
subset that represents a concept consistent with the sample. Before we show that there always exist
unlabeled compression schemes, we present the old compression scheme for maximum classes from
Floyd and Warmuth (1995) in a concise way that brings out the difference between both schemes.

2062

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

In the old scheme every set of exactly d labeled points represents a concept. Let u denote
such a set of d labeled points. By the properties of maximum classes, the reduction Cdom(u) is a
maximum class of VC dimension 0, that is, just a single concept on the domain dom(C)!dom(u).5
Augmenting this concept with any of the 2d labelings of dom(u), leads to a concept inC on the full
domain. Let cu denote the concept inC represented by the labeled set u in this way.

Note that there are 2d
(n
d
)
labeled subsets of size d when the domain size is n, and the number of

concepts in the maximum class C is
(n
≤d

)
. This means that some concepts have multiple represen-

tatives in the old scheme. In Figure 11 we give both compression schemes for the maximum class
used in the previous figures.

We first reason that every concept in C is represented by some labeled subset u of the domain
of size d. Since the one-inclusion graph forC is connected (see Gurvits, 1997, or Lemma 14 of this
paper), any concept c has an edge along some dimension x. Therefore, c− x lies in Cx. Inductively
we can find a labeled set v of size d− 1 that represents c− x in Cx. Now let u = v∪{(x,c(x))}.
Clearly, cu = c (sinceCdom(u) = (Cx)dom(v)).

We still need to show that for every sample s of C with at least d points, there is at least one
labeled subset u of size d that represents a concept consistent with the entire sample. Since the
restrictionC|dom(s) is a maximum class of VC dimension d, it follows from the previous paragraph
that there is a labeled subset u representing the concept s of C|dom(s). However, u also represents
a concept c in C. It suffices to show that u represents the same concept on dom(s) wrt both classes
C andC|dom(s).

Assume the concept for C labels some point x in dom(s)! dom(u) with 0 and the concept for
C|dom(s) labels this point with 1. Then from the construction of the representations forC it follows
that there are 2d concepts in C that label x with 0 and dom(u) in all possible ways. Similarly there
are 2d concepts in C|dom(s) labeling x with 1. The latter concepts extend to concepts in C and
therefore the d+1 points dom(u)∪{x} are shattered by classC, which is a contradiction.

6. Tail Matching Algorithm for Constructing an Unlabeled Compression Scheme

The unlabeled compression scheme for any maximum class can be found by the recursive algorithm
given in Figure 13. For any x ∈ dom(C), there are two “copies” of Cx in the original class, one
in which the concepts in Cx are extended in the x dimension with label 0 and one with extension
(x,1). This algorithm first finds a representation mapping r for Cx to subsets of size up to d−1 of
dom(C)! x. It then uses this mapping for the (x,0) extension and adds x to all the representatives
in the other extension. Finally, the algorithm completes r by finding the representatives for tailx(C)
via the subroutine given in Figure 14.

For correctness, it suffices to show that the constructed mapping satisfies both conditions of our
Main Definition. We begin with some additional definitions and a sequence of lemmas.

For a∈ {0,1} and c∈C−x, ac denotes a concept formed from c by extending it with (x,a). It is
usually clear from the context what the missing x dimension is. Similarly, aCx denotes the concept
class formed by extending all the concepts in Cx with (x,a). Each dimension x ∈ dom(C) can be
used to split classC into three disjoint sets: C = 0Cx

!
∪1Cx

!
∪ tailx(C).

5. Here Cdom(u) is just the consecutive reduction on all d dimensions in dom(u). The result of this operation does not
depend on the order of the reductions (Welzl, 1987).

2063

KUZMIN AND WARMUTH

x1 x2 x3 x4 Unlab. Labeled Representatives
0 0 0 0 /0 {(x1,0),(x2,0)},{(x1,0),(x3,0)},{(x2,0),(x3,0)}
0 0 1 0 {x3} {(x1,0),(x3,1)},{(x1,0),(x4,0)},{(x2,0),(x4,0)}

{(x2,0),(x3,1)}
0 0 1 1 {x4} {(x1,0),(x4,1)},{(x2,0),(x4,1)}
0 1 0 0 {x2} {(x1,0),(x2,1)},{(x2,1),(x3,0)},{(x3,0),(x4,0)}
1 0 0 0 {x1} {(x1,1),(x2,0)},{(x1,1),(x3,0)}
1 0 1 0 {x1,x3} {(x1,0),(x3,1)},{(x1,1),(x4,0)}
1 0 1 1 {x1,x4} {(x1,1),(x4,1)}
1 1 0 0 {x1,x2} {(x1,1),(x2,1)}
0 1 0 1 {x3,x4} {(x3,0),(x4,1)}
0 1 1 0 {x2,x3} {(x2,1),(x3,1)},{(x2,1),(x4,0)},{(x3,1),(x4,0)}
0 1 1 1 {x2,x4} {(x2,1),(x4,1)},{(x3,1),(x4,1)}

Figure 11: The new unlabeled compression scheme and the old labeled compression scheme for a
maximum class.

Unlabeled Labeled

Compression

Consider all concepts consistent
with the sample and choose the
concept whose representative lies
completely in the domain of the
sample. Compress to that repre-
sentative

Compress to any set of d labeled
points u in the sample such that the
single conceptCdom(u) is consistent
with the sample

Reconstruction Predict with the represented
concept

Predict with the single con-
cept in Cdom(u) that is ex-
tended with the examples
from u

of representatives:
(n
≤d

)
2d

(n
d
)

Figure 12: Comparison of the two compression schemes.

A forbidden labeling (Floyd and Warmuth, 1995) of a class C of VC dimension d is a labeled
set f of d+ 1 points in dom(C) that is not consistent with any concept in C. We first note that for
a maximum class of VC dimension d there is exactly one forbidden labeling f for each set of d+1
dimensions in dom(C). This is because the restriction C|dom(f) is maximum with dimension d
and its size is thus 2d+1− 1. Also if C = /0, then VCdim(C) = −1 and the empty set is the only
forbidden labeling.

Our Tail Matching Algorithm assigns all concepts in tailx(C) a forbidden labeling of the class
Cx of size (d−1)+1. Since c|r(c) is now a forbidden labeling forCx, clashes between the tailx(C)
and Cx are avoided. If n is the domain size of C, then the number of such forbidden labelings is
(n−1

d
)
. The class tailx(C) contains the same number of concepts, since C− x =Cx !

∪ (tailx(C)− x)

2064

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

andCx andC− x are maximum classes:

|tailx(C)| = |C− x|− |Cx| =
(
n−1
≤ d

)
−

(
n−1

≤ d−1

)
=

(
n−1
d

)
. (1)

We next show that every tail concept contains some forbidden labeling of Cx and each such
forbidden labeling occurs in at least one tail concept. Since any finite maximum class is maximal,
adding any concept increases the VC dimension. Adding any concept in tailx(C)−x toCx increases
the dimension ofCx to d. Therefore all concepts in tailx(C) contain at least one forbidden labeling of
Cx. Furthermore, sinceC−x shatters all sets of size d andC−x=Cx !

∪ (tailx(C)−x), all forbidden
labels ofCx appear in the tail.

We will now show that the Tail Subroutine actually constructs amatching between the forbidden
labelings of size d forCx and the tail concepts that contain them. This matching is unique (Theorem
10 below) and using these matched forbidden labelings as representatives avoids clashes between
tail concepts.

We begin by establishing a recursive structure for the tail (see Figure 15 for an example).

Lemma 6 LetC be a maximum class and x += y be two dimensions in dom(C). If we denote tailx(Cy)
as {ci : i ∈ I} and tailx(C− y) as {c j : j ∈ J} (where I∩ J = /0),6 then there exist bit values {ai : i ∈
I},{a j : j ∈ J} for the y dimension such that tailx(C) = {aici : i ∈ I}

!
∪{a jc j : j ∈ J}.

Proof First note that the sizes add up as they should (see Equation 1 for the tail size calculation):

|tailx(C)| =
(
n−1
d

)
=

(
n−2
d−1

)
+

(
n−2
d

)
= |tailx(Cy)|+ |tailx(C− y)|.

Next we will show that any concept in tailx(Cy) and tailx(C− y) can be mapped to a concept in
tailx(C) by extending it with a suitable y bit. We also have to account for the possibility that there
can be some concepts c ∈ tailx(Cy)∩ tailx(C− y). Concepts in the intersection will need to be
mapped back to two different concepts of tailx(C).

Consider some concept c ∈ tailx(Cy). Since c ∈Cy, both extensions 0c and 1c exist in C. (Note
that the first bit is the y position.) If at least one of the extensions lies in tailx(C), then we can choose
one of the extensions and map c to it. Assume that neither 0c and 1c lie in tailx(C). This means
that these concepts both have x edges to some concepts 0c′,1c′, respectively. But then c′ ∈Cy and
therefore (c,c′) forms an x edge inCy. Thus c /∈ tailx(Cy), which is a contradiction.

Now consider a concept c ∈ tailx(C−y). It might have one or two y extensions inC. Assume 0c
was an extension outside of the tailx(C). Then this extension has an x edge to some 0c′ and therefore
(c,c′) forms an x edge inC− y. It follows that all extensions of c will be in the tail.

Finally, we need to avoid mapping back to the same concept in tailx(C). This can only happen
for concepts in c ∈ tailx(Cy)∩ tailx(C− y). In this case 0c,1c ∈C, and by the previous paragraph,
both lie in tailx(C). So we can arbitrarily map c ∈ tailx(Cy) to 0c and c ∈ tailx(C− y) to 1c.

The next lemma shows that the order of the restriction and reduction operations is interchange-
able (see Figure 16 for an illustration).

6. Note that whileCy ⊆C−y, this does not imply that tailx(Cy)⊆ tailx(C−y), as the deletion of the concepts (C−y)!
Cy fromC− y can remove x edges as well, and thus introduce new tail concepts. See Figure 15 for an example.

2065

KUZMIN AND WARMUTH

Tail Matching Algorithm
Input: a maximum concept classC
Output: a representation mapping r forC
1. If VCdim(C) = 0 (i.e.,C contains only one concept c), then r(c) := /0.
Otherwise, pick any x ∈ dom(C) and recursively find a representation mapping r̃
forCx.
2. Expand r̃ to 0Cx∪1Cx:

∀c ∈Cx : r(c∪{x= 0}) := r̃(c) and r(c∪{x= 1}) := r̃(c)∪ x

3. Extend r to tailx(C) via the subroutine of Figure 14.

Figure 13: The recursive algorithm for constructing an unlabeled compression scheme for maxi-
mum classes.

Tail Subroutine
Input: a maximum concept classC, x ∈ dom(C)
Output: an assignment of representatives to tailx(C)

1. If VCdim(C) = 0 (i.e.,C = {c} = tailx(C)), then r(c) := /0.
If VCdim(C) = |dom(C)|, then tailx(C) = /0 and r := /0.
Otherwise, pick some y ∈ dom(C), y += x and recursively find representatives for
tailx(Cy) and tailx(C− y).
2. ∀c ∈ tailx(Cy)! tailx(C− y), find c′ ∈ tailx(C), s.t. c′− y = c, r(c′) := r(c)∪
{y}.
3. ∀c ∈ tailx(C− y)! tailx(Cy), find c′ ∈ tailx(C), s.t. c′− y= c, r(c′) := r(c).
4. ∀c ∈ tailx(Cy)∩ tailx(C− y), consider the concepts 0c,1c ∈ tailx(C). Let r1
be the representative for c from tailx(Cy) and r2 be the one from tailx(C− y).
Suppose, wlog, that 0c|r1∪{y} is a sample not consistent with any concept inCx.
Then r(0c) := r1∪{y}, r(1c) := r2.

Figure 14: The Tail Subroutine for finding tail representatives

Lemma 7 For any maximum class C and two dimensions x += y in dom(C), Cx− y= (C− y)x.

Proof We first show that Cx− y ⊆ (C− y)x. Take any c ∈Cx− y. By the definition of restriction,
there exists a bit ay such that ayc ∈ Cx. Since concepts in Cx always have two extensions in C, it

2066

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

x1 x3 x4
0 0 0
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1
0 0 1

x1 x3 x4
0 0 0
1 0 0
0 1 0
0 1 1

x1 x2 x3 x4
0 1 0 1 tailx1(C− x2)
0 1 1 0 tailx1(Cx2)
0 1 1 1 tailx1(Cx2)

C− x2 Cx2 tailx1(C)

Figure 15: Illustration of Lemma 6 which shows that tailx1(C) can be composed from tailx1(Cx2) and
tailx1(C− x2); class C is from Figure 2, tails in classes are separated by horizontal lines
and the last column for tailx1(C) indicates whether the concept comes from tailx1(Cx2)
or tailx1(C− x2).

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 1 1

0 0 0
0 1 0
0 1 1
1 0 0

0 0
1 0
1 1

C− x2 Cx1 Cx1 − x2 = (C− x2)x1

Figure 16: Illustration of Lemma 7 which shows that Cx1 − x2 = (C− x2)x1 : class C is given in
Figure 2.

follows that 0ayc,1ayc ∈C. By first restricting these two concepts in y and then reducing in x we
have 0c,1c ∈C− y and c ∈ (C− y)x, respectively.

Both (C−y)x andCx−y are maximum classes with the same domain size |dom(C)|−2 and the
same VC dimension. Therefore both have the same size, and since Cx− y ⊆ (C− y)x, they are in
fact equal.

Corollary 8 Any forbidden labeling of (C− y)x is also a forbidden labeling of Cx.

Proof By the previous lemma, the forbidden labelings of (C− y)x and Cx− y are the same. The
corollary now follows from the fact that the forbidden labelings of Cx− y are exactly all forbidden
labeling ofCx that do not contain y.

2067

KUZMIN AND WARMUTH

Lemma 9 If we have a forbidden labeling for Cxy of size d−1, then there exists a bit value for the
y dimension such that extending this forbidden labeling with this bit results in a forbidden labeling
of size d for Cx.

Proof We will establish a bijection between forbidden labelings of Cx of size d that contain y and
forbidden labelings of size d− 1 for Cxy. Since Cx is a maximum class of VC dimension d− 1, it
has

(n−1
d

)
forbidden labelings of size d, one for every set of d dimensions from dom(C)!x. Exactly(n−2

d−1
)
of these forbidden labelings contain y and this is also the total number of forbidden labelings

of size d−1 forCxy.
We map the forbidden labelings of size d for Cx that contain y to labelings of size d− 1 by

discarding the y dimension. Assume that a labeling constructed this way is not forbidden in Cxy.
Then by extending the concept that contains this labeling with both (y,0) and (y,1) back to Cx, we
will hit the original forbidden set, thus forming a contradiction.

It follows that every forbidden set is mapped to a different forbidden labeling and by the count-
ing argument above we see that all forbidden sets are covered. Thus the mapping is a bijection and
the inverse of this mapping proves the lemma.

Theorem 10 Let C be any maximum class C of VC dimension d and domain size n. For any x ∈
dom(C) we can construct a bipartite graph between the

(n−1
d

)
concepts in tailx(C) and the

(n−1
d

)

forbidden labelings of size d for Cx with an edge between a concept and a forbidden labeling if this
labeling is contained in the concept. All such graphs have a unique matching.

Proof The proof is an induction on n = |dom(C)| and d. More precisely, we induct on the pairs
(n,d) (where n≥ d) in lexicographic order. The minimal element of this order is (0,0).

Note that in the Tail Matching Algorithm 13 we actually stop when n = d, in which case we
have a complete hypercube with no tail and the matching is empty. Also for d = 0, there is a single
concept which is always in the tail and gets matched to the empty set.

Inductive hypothesis: For any maximum class C̃, such that (|dom(C̃|,VCdim(C̃)) < (n,d) the
statement of the theorem holds.

Inductive step. Let x,y ∈ dom(C) and x += y. By Lemma 6, we can compose tailx(C) from
tailx(Cy) and tailx(C−y). Since VCdim(Cx) = d−1 and |dom(C−x)|= n−1,7 then (n−1,d),(n−
1,d− 1) < (n,d) and we can use the inductive hypothesis for these classes and assume that the
desired matchings already exist for tailx(Cy) and tailx(C− y).

Now we need to combine these matchings to form a matching for tailx(C). See Figure 14 for a
description of this process. Concepts in tailx(C− y) are matched to forbidden labelings of (C− y)x
of size d. By Lemma 8, any forbidden labeling of (C− y)x is also a forbidden labeling of Cx. Thus
this part of the matching transfers to the appropriate part of tailx(C) without alterations. On the
other hand, tailx(Cy) is matched to labelings of size d− 1. We can make them labelings of size
d by adding some value for the y coordinate. Some care must be taken here. Lemma 9 tells us
that one of the two extensions will in fact have a forbidden labeling of size d (that includes the y
coordinate). In the case where just one of two possible extensions of a concept in tailx(Cy) is in the
tailx(C), there are no problems: the single concept will be the concept of Lemma 9, since the other
concept lies in Cx and thus does not contain any forbidden labelings. There is also the possibility

7. VCdim(C− x) = d, unless n= d, in which case it would obviously drop by one as well.

2068

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

that both extensions are in tailx(C). From the proof of Lemma 6 we see that this only happens to the
concepts that are in tailx(Cy)∩ tailx(C− y). Then, by Lemma 9, we can figure out which extension
corresponds to the forbidden labeling involving y and use that for the tailx(Cy) matching. The other
extension will correspond to the tailx(C− y) matching. Essentially, where before Lemma 6 told us
to map the intersection tailx(Cy)∩ tailx(C−y) back to tailx(C) by assigning a bit arbitrarily, we now
choose a bit in a specific way.

So far we have shown that the matching exists. We still need to verify its uniqueness. From any
matching for tailx(C) we will show how to construct matchings for tailx(C− y) and tailx(Cy) with
the property that two different matchings for tailx(C) will disagree with the constructed matchings
for either tailx(C− y) or tailx(Cy). Now, uniqueness follows by induction.

Consider any concept c in tailx(C), such that c− y ∈ tailx(Cy) ! tailx(C− y). Then c− y lies
in C− y, but not in tailx(C− y). Therefore c− y must belong to either 0(C− y)x or 1(C− y)x,
which means that this concept cannot contain a forbidden set for (C− y)x. We claim that any
forbidden set of c for Cx must contain y. Otherwise such a set would be forbidden for Cx − y,
which by Lemma 7 equals (C− y)x. By a similar argument, concepts c ∈ tailx(C), such that c− y ∈
tailx(C−y)! tailx(Cy) have to be matched to forbidden sets that do not contain y (since a forbidden
set of size d forCx that contains y, becomes a forbidden set of size d−1 forCxy just by removing y,
and condition c− y /∈ tailx(Cy) implies that c does not contain any such forbidden sets).

From these two facts it follows that if a concept in tailx(C) is matched to a forbidden set contain-
ing y, then c− y ∈ tailx(Cy), and if it is matched to a set not containing y, then c− y ∈ tailx(C− y).
We conclude that a matching for tailx(C) splits into a matching for tailx(C− y) and a matching for
tailx(Cy). This implies that if there are two matchings for all of tailx(C), then there are either two
matchings for tailx(C− y) or two matchings for tailx(Cy).

Theorem 11 The Tail Matching Algorithm of Figure 13 returns a representation mapping that sat-
isfies both conditions of the Main Definition.

Proof Proof by induction on d=VCdim(C). The base case is d= 0: this class has only one concept
which is represented by the empty set.

The algorithm recurses onCx and VCdim(Cx) = d−1. Thus we can assume that it has a correct
representation mapping forCx that uses sets of size at most d−1 for the representatives.

Bijection condition: The representation mapping for C is composed of a bijection between 1Cx

and all sets of size ≤ d containing x, a bijection between 0Cx and all sets of size < d that do not
contain x, and finally a bijection between tailx(C) sets of size equal d that do not contain x.

No clashes condition: By the inductive assumption there cannot be any clashes internally within
each of the subclasses 0Cx and 1Cx, respectively. Clashes between 0Cx and 1Cx cannot occur be-
cause such concepts are always differentiated on the x bit and x belongs to all representatives of
1Cx. By Theorem 10, we know that concepts in the tail are assigned to representatives that define
a forbidden labeling for Cx. Therefore, clashes between tailx(C) and 0Cx, 1Cx are avoided. Finally,
we need to argue that there cannot be any clashes internally within the tail. By Theorem 10, the
matching between concepts in tailx(C) and forbidden labeling of Cx is unique. So if this matching
resulted in a clash, that is, c1|r1∪ r2 = c2|r1∪ r2, then both c1 and c2 would contain the forbidden
labelings specified by representative r1 and r2. By swapping the assignment of forbidden labels be-
tween c1 and c2 (i.e., c1 is assigned to c1|r2 and c2 to c2|r1) we would create a new valid matching,

2069

KUZMIN AND WARMUTH

thus contradicting the uniqueness of the matching.

Note that by Corollary 4, the unlabeled compression scheme produced by our recursive algorithm
induces a d-orientation of the one-inclusion graph: orient each edge away from the concept that
contains the dimension of the edge in its representative. As was the case for the orientation pro-
duced by the Min-Peeling Algorithm, the resulting orientation is acyclic. As a matter of fact a
topological order can be constructed by ordering the concepts of C as follows: 0Cx,1Cx, tailx(C).
The concept within tailx(C) can be ordered arbitrarily and the concepts within 0Cx and 1Cx are
ordered recursively based on the topological order forCx.

7. Miscellaneous Lemmas

We conclude with some miscellaneous lemmas that highlight the combinatorics underlying the un-
labeled compression schemes for maximum classes. The first one shows that the representatives
constructed by our Tail Matching Algorithm induce a nesting of maximum classes. This is a special
property, because there are cases where the simpler Min-Peeling Algorithm produces a representa-
tion mapping that does not have this property (not shown).

Lemma 12 Let C be a maximum concept class with VC dimension d and let r be a representation
mapping forC produced by the Tail Matching Algorithm. For 0≤ k≤ d, letCk = {c∈C s. t. |r(c)| ≤
k}. Then Ck is a maximum concept class of VC dimension k.

Proof Proof by induction on d. Base case d = 0: the class has only one concept and the lemma
clearly holds.

The lemma trivially holds for k = 0 or k = d. Otherwise let x ∈ dom(C) be the first dimension
used in the recursion of the Tail Matching Algorithm and assume by induction that the lemma holds
for Cx. Consider which concepts in C belong to Ck. Clearly none of the concepts in tailx(C) lie in
Ck because their representatives are of size d > k. From the recursion of the algorithm it follows
that Ck = 0Cxk ∪ 1Cxk−1, that is, it consists of all concepts in 0Cx with representatives of size ≤ k in
the mapping forCx, plus all the concepts in 1Cx with representatives of size ≤ k−1 in the mapping
for Cx. By the inductive assumption, Cxk and C

x
k−1 are maximum classes with VC dimension k and

k−1, respectively. Furthermore, the definition ofCk implies thatCxk−1 ⊂Cxk .
Since |Ck| = |0Cxk |+ |1Cxk−1| =

(n−1
≤k

)
+

(n−1
≤k−1

)
=

(n
≤k

)
, the class Ck has the right size and

VCdim(Ck) ≥ k. We still need to show that Ck does not shatter any set of size k+1. Consider any
such set that does not contain x. This set would have to be shattered by Ck− x =Cxk ∪Cxk−1 =Cxk ,
which is impossible. Now consider any set A of size k+1 that does contain x. All the 1 values for
the x coordinate happen in the 1Cxk−1 part of Ck. Thus A! x must be shattered by Cxk−1 whose VC
dimension is again one too low.

We actually proved that the Ck produced by the representation mapping of the Tail Matching Al-
gorithm always satisfy the recurrence Ck = 0Cxk ∪ 1Cxk−1. On the other hand there are nestings of
maximum concept classes C0 ⊂ C1 ⊂ . . . ⊂ Cd = C, where Ck has VC dimension k, for which the
above recurrence does not hold (not shown).

Open Problem 1. We do not know whether for any nesting C0 ⊂C1 ⊂ . . . ⊂Cd =C of maximum
classes, where Ck has VC dimension k, there always exists a representation mapping that induces
this nesting.

2070

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

We now consider the connectivity of the one-inclusion graphs of maximum classes. It was
known previously that they are connected (Gurvits, 1997). We show in Lemma 14 that the length
of the shortest path between any two concepts in these graphs is always the Hamming distance
between the concepts. This property was previously known for the one-inclusion graphs of linear
arrangements, which are special maximum classes. The following technical lemma is necessary to
prove the property for arbitrary maximum classes.

We use IC(c) to denote the set of dimensions incident to c in the one-inclusion graph for C and
let E(C) denote the set of all edges of the graph.

Lemma 13 For any maximum class C and x ∈ dom(C), restricting wrt x does not change the sets
of incident dimensions of concepts in tailx(C), that is, ∀c ∈ tailx(C), IC(c) = IC−x(c− x).

Proof Let (c,c′) be any edge leaving a concept c ∈ tailx(C). By the definition of tailx(C), this edge
cannot be an x edge, and therefore c and c′ agree on x and (c− x,c′− x) is an edge in C− x. It
follows that IC(c) ⊆ IC−x(c− x) when c ∈ tailx(C).

If IC(c) is a strict subset of IC−x(c− x) for some c ∈ tailx(C), then the number of edges incident
to tailx(C)− x = (C− x)!Cx in C− x is larger than the number of edges incident to tailx(C) in C.
The first number is a difference between the sizes of edge sets of the two maximum classes C− x
andCx. Recall that ifC is maximum on domain of size n and has VC dimension d, then its edge set
E(C) has size n

(n−1
≤d−1

)
(see proof of Lemma 3 or Lemma 15). Thus the first number is

|E(C− x)|− |E(Cx)| = (n−1)
(

n−2
≤ d−1

)
− (n−1)

(
n−2

≤ d−2

)

= (n−1)
(
n−2
d−1

)
= d

(
n−1
d

)
.

Furthermore, the second number is the number of edges in C minus the number of intra edges
in 0Cx and 1Cx, respectively, minus the number of cross edges between 0Cx and 1Cx:

|E(C)|−2|E(Cx)|− |Cx| = n
(

n−1
≤ d−1

)
−2(n−1)

(
n−2

≤ d−2

)
−

(
n−1

≤ d−1

)

= (n−1)
((

n−1
≤ d−1

)
−2

(
n−2

≤ d−2

))

= (n−1)
((

n−2
≤ d−1

)
−

(
n−2

≤ d−2

))

= (n−1)
(
n−2
d−1

)
= d

(
n−1
d

)
.

Thus the two numbers are the same and we have a contradiction.

Lemma 14 In the one-inclusion graph for a maximum concept class C, the length of the shortest
path between any two concepts is equal to their Hamming distance.

Proof The proof will proceed by induction on |dom(C)|. The lemma trivially holds when |dom(C)|=
0 (i.e., C = /0). Let c1,c2 be any two concepts in a maximum class C of domain size n > 0 and let

2071

KUZMIN AND WARMUTH

x ∈ dom(C). SinceC−x is a maximum concept class with a reduced domain size, there is a shortest
path P between c1− x and c2− x in C− x of length equal their Hamming distance. The class C− x
is partitioned into Cx and tailx(C)− x. If ĉ1 is the first concept of P in Cx and ĉ2 the last, then by
induction on the maximum class Cx (also of reduced domain size), there is a shortest path between
ĉ1 and ĉ2 that only uses concepts ofCx. Thus we can assume that P begins and ends with a segment
in tailx(C)− x and has a segment of Cx concepts in the middle, where some of the three segments
may be empty.

We partition tailx(C) into tailx=0(C) and tailx=1(C). There are no edges between these two
sets because they would have to be x edges. There are also no edges between the restrictions
tailx=0(C)− x and tailx=1(C)− x of the two sets, because by Lemma 13 these edges would also
exist between the original sets tailx=0(C) and tailx=1(C). It follows that any segment of P from
tailx(C)− x must be from the same part of the tail. Also if the initial segment and final segment
of P are both non-empty and from different parts of the tail, then the middle Cx segment cannot be
empty.

We can now construct a shortest path P′ between c1 and c2 from the path P. If c1(x) = c2(x) then
we extend the concepts in P with x = c1(x) to obtain a path P′ between c1 and c2 in C of the same
length. Note that from the above discussion, all concepts in the beginning and ending tail segments
of P come from the part of the tailx(C) that label x with c1(x) = c2(x). Also for the middle segment
of P we have the freedom to use label c1(x).

If c1(x) += c2(x), then P must contain a concept c̃1 in Cx, because if all concepts in P lied in
tailx(C)− x then this would imply an edge between a concept in tailx=0(C)− x and a concept in
tailx=1(C)− x. We now construct a new path P′ in C of length |P|+ 1 which is one more than the
Hamming distance |P| between c1−x and c2−x: extend the concepts up to c̃1 in P with label c1(x)
on x; then cross to the sibling concept c̃2 which disagrees with c̃1 only on its x dimension; finally
extend the concepts in path P from c̃2 onward with label c2(x) on x.

We already know that the number of vertices and edges in the one-inclusion graph of a maximum
class of domain size n and VC dimension d is

(n
≤d

)
and n

(n−1
≤d−1

)
, respectively. Since vertices and

edges are hypercubes of dimension 0 and 1, respectively, these bounds are special cases of the below
lemma and corollary, where we bound the number of hypercubes of dimension r, for 0≤ r ≤ d.

Lemma 15 Let C be any class of domain size n and VC dimension d. Then the number of hy-
percubes of dimension 0 ≤ r ≤ d which are subgraphs of the one-inclusion graph for C is at most(n
r
)(n−r

≤d−r
)
.

Proof Pick any subset A⊆ dom(C) of size r. Recall thatCA consists of all concepts inC|(dom(C)−
A) with the property that all 2|A| extensions to the original domain dom(C) are in C. Thus any
concept in the reduced class CA defines a hypercube of dimension |A| which is a subgraph of the
original one-inclusion graph forC. Also from the definition ofCA it follows that all hypercubes that
are subgraphs using the dimension set A correspond to a concept in CA. Note that two hypercubes
from the same CA have no common concepts (vertices), but hypercubes from different restriction
sets of the same size may overlap on their vertex set but they are never identical.

From the above discussion it follows that the total number of hypercubes of dimension r is the
total size of allCA, where A has size r. Since the reductionsCA are classes of domain size n− r and
VC dimensions at most d− r, the inequalities of the lemma follow from Sauer’s lemma.

2072

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

Corollary 16 For maximum classes of domain size n and VC dimension d, all d+1 inequalities of
the previous lemma are tight. Also for any class C of domain size n and VC dimension d, if one of
the inequalities is tight, then C is maximum and they are all tight.

Proof For maximum classes we have that for any set A of size 0 ≤ r ≤ d, the reduction CA of C
is also a maximum class on domain size n− r and VC dimension d− r (Welzl, 1987; Floyd and
Warmuth, 1995). Therefore for maximum classes all inequalities are tight.

Observe that since |C| = |Cx|+ |C− x|, it follows that if Cx and C− x are maximum, then
|C| =

(n−1
≤d−1

)
+

(n−1
≤d

)
=

(n
≤d

)
andC is maximum as well.

If the inequality of the previous lemma is tight for some size r, then for all sets of this size, CA

is a maximum class of VC dimension n− r. We will show by the usual double induction on n and
d, that in this case C is maximum. Essentially, for Cx the inequality for size r−1 is tight, since for
all A containing x,CA = (Cx)(A!x). Furthermore, forC−x the inequality for size r is tight, since for
all A not containing x, (C− x)A ⊇CA− x andCA− x is maximum becauseCA is maximum.

If the following lemma could be proven for any concept class produced by peeling minimum
degree vertices off a maximum class, then this would be sufficient to prove the non-clashing condi-
tion for the representation map produced by the Min-Peeling Algorithm. However the current proof
only holds for maximum classes, which is the base case.

Lemma 17 In a maximum class C the labeling of the set of incident dimensions of any concept c
uniquely identifies the concept, that is:

∀c′ ∈C : c′ += c ⇔ c|IC(c) += c′|IC(c). (2)

Proof We employ an induction on |dom(C)|. The base case is |dom(C)| = VCdim(C). In this
case, C is a complete hypercube. Note that if IC(c) = dom(C), then c|IC(c) = c|dom(C) = c and
Equation (2) follows from the uniqueness of each concept. In the hypercube all concepts have this
property.

For the general case, if IC(c) += dom(C) pick x /∈ IC(c) for which c ∈ tailx(C). We have to show
that ∀c′ += c, c|IC(c) += c′|IC(c). Consider the maximum concept class C− x and its concept c− x.
Because of the reduced domain, we know by induction that

∀c′′ ∈C− x : c′′ += c− x ⇔ c− x|IC−x(c− x) += c′′|IC−x(c− x).

Since c′′ = c′ − x, for some c′ ∈ C, we can let quantification run over c′ ∈ C and the above is
equivalent to

∀c′ ∈C : c′− x += c− x ⇔ c− x|IC−x(c− x) += c′− x|IC−x(c− x).

Also since c∈ tailx(C) does not have an x edge, ∀c′ ∈C : c′−x += c−x is equivalent to ∀c′ ∈C : c′ +=
c and by Lemma 13, IC−x(c−x) = IC(c). This gives us the equivalent statement: ∀c′ ∈C : c′ += c ⇔
c− x|IC(c) += c′− x|IC(c). Finally, since x /∈ IC(c), c− x|IC(c) = c|IC(c) and c′− x|IC(c) = c′|IC(c),
giving us Equation (2).

2073

KUZMIN AND WARMUTH

x1 x2 x3 x4 r
0 0 0 0 /0
0 0 1 0 {x3}
0 1 0 0 {x2}
1 0 0 0 {x1}
0 1 1 0 {x2,x3}
1 0 1 0 {x1,x3}
1 1 0 0 {x1,x2}
0 1 1 1 {x1,x4}
1 0 1 1 {x2,x4}
1 1 0 1 {x3,x4}

1 1 1 1 {x4}

Table 1: A maximal class that does not have a compression scheme with a representation mapping
from sets of domain points of size at most VCdim(C) = 2 to concepts. However if we are
allow mappings to concepts in and outside of the class, then the no-clashing condiction
can still be satisfied and a valid scheme exists. In the given solution, {x4} represents 1111,
which is not a concept in the class.

Conjecture 2. The above lemma holds for all classes produced by iteratively peeling minimum
degree vertices off a maximum class.

8. Discussion of Possible Compression Schemes for Maximal Classes

This section discusses the possibility of proving the compression scheme conjecture in the general
case. Any finite or infinite concept class is called maximal if no concept can be added without
increasing the VC dimension. Any concept class can be embedded into a maximal class by adding
as many concepts to the class as possible until no new concept can be added without increasing the
VC dimension. Figure 3 presents an example of a maximal class. All finite maximum classes are
also maximal, but there are infinite maximum classes which are not maximal (Floyd and Warmuth,
1995). For the rest of this section maximal means: finite, maximal and not maximum.

A natural idea for constructing a compression scheme for any class is to embed that class into
some other class, for which a compression scheme is known. However adding any concepts to a
maximal class increases its VC dimension, so we would want an embedding that does not increase
the VC dimension too much. The question whether and how this can be done is an intriguing open
problem of its own.

The old labeled compression scheme for maximum classes cannot be extended to maximal
classes due to the nature of its mapping between representatives and represented concepts. The old
scheme compresses to a labeled set u of size VCdim(C) = d and u represents the single concept
in the d-fold reduction Cdom(u) extended with the d examples of u (See Section 5). In the case of

2074

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

x1 x2 x3 x4 r
0 0 1 1 {x1,x2},{x3,x4}
0 1 0 0 {x3}
0 1 0 1 {x2}
0 1 1 0 {x1}
1 0 0 0 {x2,x3}
1 0 0 1 {x1,x3}
1 0 1 0 {x1,x2}
1 1 0 0 {x1,x4}
1 1 0 1 {x2,x4}
1 1 1 0 {x3,x4}

Table 2: A maximal class that does have an unlabeled scheme where concepts in the class have
multiple representatives. The no-clashing holds for any representatives of different con-
cepts, and for all samples there is exactly one consistent concept with a representative in
the sample domain.

maximal classes, many d-fold reductions will be empty. Thus it is unclear, which concepts the
corresponding set of d labeled examples should represent. Essentially, the old scheme relied on
the fact that maximum classes are unions of hypercubes of dimension VCdim(C). Maximal classes
do not have this property. Their one-inclusion graphs can be disconnected. In particular, there are
maximal classes whose one-inclusion graph has several isolated vertices, that is, vertices with no
incident edges (not shown). Nevertheless, it may be possible to somehow cover maximal classes
with hypercubes of dimension d or slightly larger.

Now we consider the possibility of generalizing our new unlabeled compression scheme from
finite maximum classes to finite maximal ones. Recall that our scheme has the property that for any
sample from the class, there is exactly one representative contained within the domain of the sample
whose concept is consistent with the sample. Of particular importance in achieving this property
was the no-clashing condition for the representatives of concepts. The following lemma describes
the effect of having non-clashing representatives for arbitrary concept classes.

Lemma 18 Let r be any injection between a finite concept class C of VC dimension d and subsets
of dom(C) of size at most d. Then the following two statements are equivalent:

1. No two concepts clash wrt r.

2. For all samples s from C, there is at most one concept c ∈ C that is consistent with s and
r(c) ⊆ dom(s).

Proof If there are two concepts c and c′ that are consistent with s and r(c),r(c′) ⊆ dom(s), then
the concepts clash because c|r(c)∪ r(c′) = c′|r(c)∪ r(c′). Conversely, if two concepts c and c′
clash, then the sample c|r(c)∪ r(c′) is consistent with at least two concepts c and c′ that satisfy
r(c),r(c′) ⊆ dom(s).

2075

KUZMIN AND WARMUTH

Intuitively, the no-clashing condition causes the representatives to be spread out as much as possible
in an attempt to cover all the samples of concepts in the class. Lemma 18 says that there is at most
one representative whose concept is consistent with the sample. However we also need the at least
one condition, which assures that every sample can be compressed. For maximum classes, the latter
condition was assured by a counting argument: the number of concepts inC|dom(s) and the number
of subsets of size up to d in dom(s) is the same; also all such subsets must represent some concept
and the no-clashing condition assured that these concepts disagreed on dom(s). It follows that for
each sample, there is always at least one representative in its domain that represents a consistent
concept.

There are maximal concept classes of VC dimension d that shatter any set of size d (see Table
2). There are |C| representatives in total and this is less than the total number of subsets of size up
to d (since C is maximal but not maximum). Therefore, for some domain of size d, there are 2d
concepts but less than that many representatives over the domain.

Of course it makes sense to use all subsets of size up to d by assigning some concepts more
than one representative. Note that two representatives of the same concept always clash. However,
we still must avoid clashes between representatives of different concepts. A compression scheme
is valid if for any sample domain, the number of concepts on the domain equals the number of
concepts that have at least one representative inside the domain. There exists such a scheme with
multiple representatives for the maximal class of Table 2.

Unfortunately, Table 1 presents a maximal concept class that does not have an unlabeled com-
pression scheme of size equal the VC dimension with multiple representatives of concepts in the
class. We checked that for any assignment of multiple representatives to concepts in this class, there
is always some sample that cannot be compressed, that is, there is no representative of a consistent
concept in the sample domain. On the other hand, it is very easy to produce an unlabeled compres-
sion scheme for this class if we let some subsets of size at most d represent hypotheses outside of
the class. Note that in the example of Table 1, the no-clashing condition is satisfied not only for all
concept pairs, but also for the additional hypothesis and any concept in the class.

For the class of Table 1, there also is a compression scheme that maps labeled sets of size equal
d to just concepts in the class. We do not know whether such schemes exist for arbitrary finite
concept classes. However, there is an infinite maximum (but not maximal) concept class of VC
dimension one with the following property: there is no scheme when labeled points must represent
concepts in the class, but there is a scheme when labeled points can represent hypotheses outside
of the class (Eaton, 2005). Also, there is no unlabeled compression scheme for positive halfspaces
in R2 in which the compression sets (of size at most two) represent positive halfspaces (Neylon,
2006b).

As has become apparent, there are many variations of compression schemes. We now give a
unified notation for all these variations. A compression scheme for a concept class C is essentially
defined by a mapping f from representatives to hypotheses which are arbitrary subsets of dom(C).
Note that the direction of this mapping is opposite to the representation mapping r used for maxi-
mum classes.

To define the mapping f , we first choose a set R of representatives which are sets of labeled
and/or unlabeled sample points in dom(C). The mapping f maps R to hypotheses, which are arbi-
trary subsets of dom(C). Note that f is not required to be injective, allowing for multiple represen-
tatives of the same hypothesis. The size of the scheme is the maximum size of any set in R. The
mapping f produces a compression scheme as follows:

2076

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

• Compression. For any sample s of a concept inC, consider the set of all representatives r ∈ R
that lie in s and compress to any such r for which the hypothesis f (r) is consistent with the
sample s.

• Reconstruction. Use hypothesis f (r) to reconstruct the labels of the original sample s.

• Validity. Mapping f gives a valid compression scheme, if every sample of a concept inC can
be compressed as above.

The no-clashing condition seems to be useful to construct compression schemes for maximal
classes as well. However, as we shall see, many techniques for assuring this condition for maximum
classes are not applicable in the more general case. Recall that our Tail Matching Algorithm used
the forbidden sets of Cx to represent the concepts in tailx(C). This immediately prevented clashes
between tail concepts and the rest of the class. However, in maximal classes the number of tail
concepts can be larger than the number of forbidden sets of Cx. For example, in the maximal class
of Figure 3 all tails have size 4, but there are only 3=

(4−1
2

)
forbidden sets forCxi .

Of course, we can consider other splits ofC into two parts and use forbidden sets of one part as
representatives for the other. A natural idea is to split C into a concept class C′ of VC dimension
one lower thanC and a shell C!C′ of size at most

(n
d
)
, which is the number of forbidden sets when

the domain size is n. For maximum classes, such splits always exist (see Lemma 12), but we do not
know this for maximal classes. However, we found a particular maximal class (not shown) with a
split of the above form for which there are two concepts in the shell that contain only one forbidden
set and this set is the same. Thus, we have a single forbidden set available for representing two
concepts, and therefore using forbidden sets as representatives does not seem to work for maximal
classes.

The Min-Peeling Algorithm provided a simple way of constructing a scheme for maximum
classes. For maximal classes, this algorithm fails on simple examples. Part of the problem seems
to be that maximal classes have too few edges. Thus a potential idea is to add “virtual” edges to
maximal classes, so that a richer set of representatives is obtained. We hope to add edges so that the
representatives produced by the Min-Peeling Algorithm satisfy the no-clashing condition. Our tests
along these lines were inconclusive.

We conclude this section by discussing which lemmas of the previous sections still hold for
maximal classes. We have already discussed in this section how the no-clashing condition partially
carries over to maximal classes. For a maximum class C, both C− x and Cx are again maximum.
This recursion lies at the core of many of the techniques. Maximal classes can still be split as
C = 0Cx

!
∪ 1Cx

!
∪ tailx(C), but now Cx and C− x are not necessarily maximal and they do not have

specific sizes. Our Tail Matching Algorithm relied on a further decomposition of the class tailx(C)
given in Lemma 6: for any concept in tailx(C− y) or tailx(Cy), we can extend these concepts with
a y bit to concepts in tailx(C). These extensions also exist for maximal classes, but we cannot get
all concepts in tailx(C) this way. Finally, for maximal classes, the equality of Lemma 13 becomes a
subset relationship, that is, IC(c) ⊆ IC−x(c− x).

9. Conclusions and Combinatorial Open Problems

The main open problem of whether there always exist ompression schemes of size at most the
VC dimension still remains open. (For a general discussion of the allowable schemes see Section

2077

KUZMIN AND WARMUTH

5 10 15 20 25 30 35 400.5
1

1.5
2

2.5
3

domain size n

densit
y

d = 1d = 2d = 3
3

2

1

Figure 17: Density curves Dn
d (as a function of n) of the one-inclusion graphs of maximum classes

with VC dimension d = 1,2,3.

8.) In this paper we gave two algorithms for constructing an unlabeled compression scheme for
maximum classes. These schemes have many interesting combinatorial properties. We gave a
correctness proof for the recursive Tail Matching Algorithm, however the correctness of the simpler
Min-Peeling Algorithm still remains to be shown. We already gave a number of conjectures in
connection with the latter algorithm: Does sweeping a linear arrangement always correspond to
a run of the Min-Peeling Algorithm (Conjecture 4)? Does Lemma 17 hold for partially peeled
maximum classes (Conjecture 7)? Does any one-inclusion graph of VC dimension d that results
from peeling a maximum class always have a vertex of degree at most d? It is already known, that
general classes can have minimum degree larger than d (Rubinstein et al., 2007a).

In our empirical tests (not shown) we actually always found at least d+1 vertices of degree at
most d in maximum and peeled classes (instead of just one vertex). We were able to prove (not
shown) that maximum classes of VC dimension d have at least one vertex of degree d. However we
have not been able to prove that maximum classes have at least d+1 such vertices.

Notice that in connection with the last conjecture, the obvious counting arguments are off by a
factor of two: since the sum of vertex degrees is equal to twice the number of edges, the density
of any graph of minimum degree d has to be bigger than at least d

2 and not d. Thus there must
be something particular about maximum classes and their peelings that forces them to have a low
degree vertex. This is likely related to the fact that maximum classes are unions of hypercubes of
dimension d.

2078

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

The density of a graph is the ratio of the number of edges to the number of vertices. It is already
known that one-inclusion graphs of VC dimension d can have density at most d (Haussler et al.,
1994). For a maximum class of domain size n and VC dimension d this density can be expressed
as:

Dn
d =

n
(n−1
≤d−1

)
(n
≤d

) =
n∑d−1

i=0
i+1
n

(n
i+1

)
(n
≤d

) =
∑d
i=1 i

(n
i
)

(n
≤d

) ≤
d
(n
≤d

)
(n
≤d

) = d.

Figure 17 plots the density curves Dn
d as a function of the domain size n for various values of the

VC dimension d. These curves always start at d/2, which is the density of the complete hypercube
and limn→∞Dn

d = d.
We previously conjectured that maximum classes are the densest. This was recently proven in

Rubinstein et al. (2007b). Specifically, they show that any one-inclusion graph of domain size n and
VC dimension d has density at most Dn

d . This is an improvement on the previously known density
bound.

Our constructions for unlabeled compression schemes only apply to finite maximum classes
whereas the original labeled compression scheme for maximum classes is applicable for infinite
maximum classes as well. The existence of unlabeled compression schemes for infinite maxi-
mum classes of size equal to the VC dimension does follow from the compactness property of
compression schemes as shown in Ben-David and Litman (1998). That theorem is, however, a
non-constructive existence result and is therefore not completely satisfactory.

One of the most important natural infinite classes is the class of positive halfspaces (halfspaces
containing (∞,0, . . . ,0)). There are labeled compression schemes for this class that reconstruct
only with halfspaces (e.g., compressing to a set of essential support vectors, von Luxburg et al.,
2004). An unlabeled compression scheme is also known to exist (Ben-David and Litman, 1998)
(via a nonconstructive proof) but it would be interesting to find a simple constructive unlabeled
compression scheme for this class. Recall that the VC dimension of positive halfspaces in Rn is n.
For the case of n= 1,2, it is easy to find unlabeled compression schemes (not shown). However for
n= 2, it is necessary that the sets of size at most two represent hypotheses which are not halfspaces
(Neylon, 2006a).8

Open Problem 2. Find a constructive unlabeled compression scheme of size n for the class of
positive halfspaces in Rn.

One of the simplest ways to obtain compression schemes for arbitrary classes would be to embed
them into maximum classes and then use one of the existing algorithms.

Open Problem 3. For any concept class C, does there always exist a maximum class of VC
dimension at most a constant times larger than VCdim(C) that contains C as a subset?

8. The construction in Neylon (2006a) requires a set of points not in general position, but this requirement can be
removed (Neylon, 2006b). Moreover, it is possible to restrict the class of positive halfspaces to an everywhere dense
subset ofRn with the property that all finite subsets of this set are in general position (Neylon, 2006b). This restriction
is a natural infinite maximum class with no unlabeled compression scheme that reconstructs with halfspaces.

2079

KUZMIN AND WARMUTH

Acknowledgments

We thank Sally Floyd for her personal encouragement and brilliant insights, Sanjoy Dasgupta for
the discussions leading to Lemma 14, and Tyler Neylon for the discussion of unlabeled compression
schemes for positive halfspaces.

References

S. Ben-David and A. Litman. Combinatorial variability of Vapnik-Chervonenkis classes with ap-
plications to sample compression schemes. Discrete Applied Mathematics, 86:3 – 25, 1998.

F. Eaton. Private communication, 2005.

H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, Berlin, New York, 1987. ISBN 038713722X.

S. Floyd. Space-bounded learning and the Vapnik-Chervonenkis Dimension (Ph.D). PhD thesis,
U.C. Berkeley, December 1989. ICSI Tech Report TR-89-061.

S. Floyd and M. K. Warmuth. Sample compression, learnability, and the Vapnik-Chervonenkis
dimension. Machine Learning, 21(3):269–304, 1995.

L. Gurvits. Linear algebraic proofs of VC-dimension based inequalities. In Shai Ben-David, editor,
EuroCOLT ’97, Jerusalem, Israel, March 1997, pages 238–250. Springer Verlag, March 1997.

D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0,1} functions on randomly drawn
points. Inform. Comput., 115(2):248–292, 1994.

D. Helmbold, R. Sloan, and M. K. Warmuth. Learning integer lattices. SIAM J. Comput., 21(2):
240–266, 1992.

J. Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learning
Research, 6:273–306, 2005.

Y. Li, P. M. Long, and A. Srinivasan. The one-inclusion graph algorithm is near optimal for the
prediction model of learning. Transaction on Information Theory, 47(3):1257–1261, 2002.

N. Littlestone and M. K. Warmuth. Relating data compression and learnability. Unpublished
manuscript, obtainable at http://www.cse.ucsc.edu/˜manfred/pubs/T1.pdf, June 10 1986.

M. Marchand and J. Shawe-Taylor. The Decision List Machine. In Advances in Neural Information
Processing Systems 15, pages 921–928. MIT-Press, Cambridge, MA, USA, 2003.

M. Marchand and J. Shawe-Taylor. The Set Covering Machine. Journal of Machine Learning
Research, 3:723–746, 2002.

T. Neylon. Sparse Solutions to Linear Prediction Problems. PhD thesis, New York University,
Courant Institute of Mathematical Sciences, May 2006a.

T. Neylon. Private communication, 2006b.

2080

UNLABELED COMPRESSION SCHEMES FOR MAXIMUM CLASSES

B.I.P. Rubinstein, P. Bartlett, and J. H. Rubinstein. Shifting: One-inclusion mis-
take bounds and sample compression. Technical Report UCB/EECS-2007-
86, EECS Department, University of California, Berkeley, Jun 2007a. URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-86.html.

B.I.P. Rubinstein, P. L. Bartlett, and J. H. Rubinstein. Shifting, one-inclusion mistake bounds and
tight multiclass expected risk bounds. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19, pages 1193–1200. MIT Press, Cambridge, MA,
2007b.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13:145–147,
1972.

V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York,
1982.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probab. and its Applications, 16(2):264–280, 1971.

U. von Luxburg, O. Bousquet, and B. Schölkopf. A compression approach to support vector model
selection. Journal of Machine Learning Research, 5:293–323, April 2004.

M. K. Warmuth. Compressing to VC dimension many points. In Proceedings of the 16th Annual
Conference on Learning Theory (COLT 03), Washington D.C., USA, August 2003. Springer.
Open problem.

M. K. Warmuth. The optimal PAC algorithm. In Proceedings of the 17th Annual Conference on
Learning Theory (COLT 04), Banff, Canada, July 2004. Springer. Open problem.

E. Welzl. Complete range spaces. Unpublished notes, 1987.

2081

Journal of Machine Learning Research 8 (2007) 2083-2120 Submitted 5/07; Revised 8/07; Published 9/07

Refinable Kernels∗

Yuesheng Xu YXU06@SYR.EDU
Haizhang Zhang HZHANG12@SYR.EDU
Department of Mathematics
Syracuse University
Syracuse, NY 13244, USA

Editor: Bernhard Schölkopf

Abstract
Motivated by mathematical learning from training data, we introduce the notion of refinable ker-
nels. Various characterizations of refinable kernels are presented. The concept of refinable kernels
leads to the introduction of wavelet-like reproducing kernels. We also investigate a refinable kernel
that forms a Riesz basis. In particular, we characterize refinable translation invariant kernels, and
refinable kernels defined by refinable functions. This study leads to multiresolution analysis of
reproducing kernel Hilbert spaces.
Keywords: refinable kernels, refinable feature maps, wavelet-like reproducing kernels, dual ker-
nels, learning with kernels, reproducing kernel Hilbert spaces, Riesz bases

1. Introduction

The main purpose of this paper is to introduce the notion of refinable kernels, wavelet-like reproduc-
ing kernels and multiresolution analysis of a reproducing kernel Hilbert space. Before proceeding
to the motivation, it is worthwhile to know that there has been a large body of literature on similar
notions such as refinable functions (Cavaretta et al., 1991; Daubechies, 1992), multiresolution anal-
ysis of L2(R) (Mallat, 1989; Meyer, 1992) and kernels constructed by wavelet functions (Amato et
al., 2006; Rakotomamonjy and Canu, 2005; Rakotomamonjy et al., 2005). The connection of these
well-known notions with those to be presented will become clear as we proceed this study.

We first motivate the concept of refinable kernels by learning via a kernel. Let X be a prescribed
set which is called in the theory of learning an input space and is associated with an output space
Y ⊆ C. A typical learning task aims at inferring from a finite set of training data z := {(x j,y j) : j ∈
Nm}, where Nm := {1,2, . . . ,m}, a function f from X to Y so that f (x) gives a satisfactory output
of an input x ∈ X . A popular choice of f is a minimizer of a certain error functional. Specifically,
we let H be a given class of functions on X , Q : C×C → R+ be a loss function (Schölkopf and
Smola, 2002) measuring how well g fits the training data z, N : H → R+ be a controller of the
set of functions in H from which we choose f , and µ be a positive regularization parameter. The
function f may be chosen as

argmin
g∈H

∑
j∈Nm

Q(g(x j),y j)+µN (g). (1)

∗. Dedicated to Dr. Charles Micchelli’s 65th birthday for friendship and esteem.

c©2007 Yuesheng Xu and Haizhang Zhang.

XU AND ZHANG

The selection of the function classH is critical for the behavior of f and thus it deserves special
attention. In practice, H may be chosen through a kernel K on X , a function from X ×X to C such
that for all finite sets t := {t j : j ∈ Nn} ⊆ X the matrix

K[t] := [K(t j, tk) : j,k ∈ Nn] (2)

is hermitian and positive semi-definite (see, for example, Cucker and Smale, 2002; Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). The importance of kernels in
learning is that the function evaluation K(x,y) is able to measure the similarity of x,y ∈ X . A kernel
K on X corresponds to a Hilbert space

HK := span{K(·,y) : y ∈ X} (3)

of functions on X with an inner product determined by

(K(·,y),K(·,x))HK = K(x,y), x,y ∈ X . (4)

The space HK is a reproducing kernel Hilbert space (RKHS), that is, point evaluations are continu-
ous linear functionals onHK (Aronszajn, 1950). Moreover,HK is the only Hilbert space of functions
on X such that for all x ∈ X , we have that K(·,x) ∈ HK and

f (x) = (f ,K(·,x))HK , f ∈ HK . (5)

Due to Equation (5), K is often interpreted as the reproducing kernel of HK . A RKHS has exactly
one reproducing kernel (Aronszajn, 1950). To construct a learning function f :X→Y from the train-
ing data z, we start with a kernel K on X . Choose in (1)H := HK andN := ‖·‖2HK

, the square of the
norm on HK . In this case, the minimization problem in (1) reduces to a regularization in the RKHS,
which has received much attention in the literature (see, for example, Bousquet and Elisseeff, 2002;
Cucker and Smale, 2002; Micchelli and Pontil, 2005a,b; Mukherjee et al., 2006; Schölkopf and
Smola, 2002; Smale and Zhou, 2003; Steinwart and Scovel, 2005; Vapnik, 1998; Wahba, 1999;
Walder et al., 2006; Ying and Zhou, 2007; Zhang, 2004, and the references cited therein). In this
setting, the representer theorem in learning (see, for example, Kimeldorf and Wahba, 1971; Mic-
chelli and Pontil, 2004; Schölkopf et al., 2001; Schölkopf and Smola, 2002; Shawe-Taylor and
Cristianini, 2004; Walder et al., 2006) asserts that there exists c := [c j : j ∈ Nm]T ⊆ Cm, depending
on the training data z and the kernel K, such that the minimizer (1) is

f = ∑
j∈Nm

c jK(·,x j). (6)

The choice of kernels K is certainly one of the most important issues in the above learning
scheme via regularization. It is often based on the training data z currently available to us. However,
the old training data may be updated to z′ := {(x′j,y′j) : j ∈ Nm′} by adding to z more new samples
from X×Y . The kernels that we use should offer us a convenient way to update the kernel. In other
words, we are looking for kernels with the ability of learning dynamically expanding training data.
Specifically, we demand kernels K having the feature that there is a cheap way of updating K to a
new kernel K ′ such that HK ' HK′ . Here and throughout the paper, we make the convention that
whenever we writeW1 ' W2 for Hilbert spacesW1,W2, the inclusion is in the sense thatW1 ⊆ W2

2084

REFINABLE KERNELS

and for all u,v ∈ W1, (u,v)W1 = (u,v)W2 . The inclusion HK ' HK′ has a natural interpretation.
When we have a larger training data set z′, we may expect that the minimization

min
g∈HK′

∑
j∈Nm′

Q(g(x′j),y
′
j)+µ′‖g‖2HK′

, (7)

yields a better predictor f ′ than f . This becomes possible only if the new space HK′ includes HK
as a subspace. Moreover, we require the updating from K to K ′ to have the feature that computing
minimizer f ′ from (7) should be able to make use of the previously computed minimizer f from (1).
Moreover, when the representation (6) for f is available, we want to process it efficiently.

This motivates us to introduce the concept of refinable kernels. We shall study characterizations
of a refinable kernel, fundamental properties of refinable kernels and wavelet-like reproducing ker-
nels, and multiscale structures of a RKHS induced by refinable kernels. It is important to note that
the concept of wavelet-like reproducing kernels differs from that of “wavelet kernels” in Amato et
al. (2006), Rakotomamonjy and Canu (2005), and Rakotomamonjy et al. (2005). The earlier means
the kernels defined by the difference of kernels at two consecutive scales while the latter means
the kernels defined by a linear combination of dilations and translations of wavelet functions. This
paper is organized in seven sections. We present in Section 2 two characterizations of refinable
kernels. Section 3 is devoted to wavelet-like reproducing kernels and a multiscale decomposition
of the RKHS of a refinable kernel. In Section 4, we investigate refinable kernels of a Riesz type
and we also introduce the notion of a multiresolution analysis for a RKHS. As concrete examples of
refinable kernels, we formulate in Sections 5 and 6, respectively, conditions for translation invariant
kernels and kernels defined by a refinable function to be refinable. In Section 7, we have a brief
discussion of potential applications of refinable kernels and make a conclusion.

2. Characterizations of γ-Refinable Kernels

We define in this section γ-refinable kernels and present their characterizations. Let γ : X → X be
a given bijective mapping and let ι denote the identity mapping from X to itself. We introduce a
sequence of mappings from X to itself by recursions

γ−1 := γ−1, γ−n−1 := γ−1 ◦ γ−n, and γ0 := ι, γn := γ◦ γn−1, n ∈ N.

A kernel K on X is called γ-refinable if there exists a positive constant λ depending only on K and γ
such that

HK ' HK1 ,

where
K1(x,y) := λK (γ(x),γ(y)) , x,y ∈ X .

The constant λ is a normalization factor which ensures the inner product on HK identical to that on
HK1 . Examples of the mappings γ include the dilation mapping x→ 2x in Rd and in general, the
dilation mapping x→ Ax where A is an expanding matrix. We simply call the γ-refinable kernels in
this case refinable kernels.

Let K be a kernel on the input space X , and λ a positive constant. For any bijective mapping γ
and any n ∈ Z, we let

Kn(x,y) := λnK(γn(x),γn(y)), x,y ∈ X . (8)

We next identify the RKHS defined by Kn.

2085

XU AND ZHANG

Theorem 1 If K is a kernel on X, then for each n ∈ Z, the RKHS of kernel Kn is

HKn = { f ◦ γn : f ∈ HK} (9)

with inner product
(f ,g)HKn

:= λ−n(f ◦ γ−n,g◦ γ−n)HK , f ,g ∈ HKn . (10)

Proof It can be shown that Kn is a kernel on X . We set Hn := { f ◦ γn : f ∈ HK} and introduce an
inner product on Hn by

(f ,g)Hn := λ−n(f ◦ γ−n,g◦ γ−n)HK , f ,g ∈ Hn.

It is clear that Hn is a Hilbert space with this inner product. Note that for any x ∈ X , Kn(·,x) ∈ Hn
and for any f ∈ Hn, f ◦ γ−n ∈ HK . Hence, for f ∈ Hn, we obtain by (5) and the definition of the
inner product (·, ·)HKn

that for x ∈ X

f (x) = (f ◦ γ−n)(γn(x)) = (f ◦ γ−n,K(·,γn(x)))HK = λn(f ,K(γn(·),γn(x))Hn .

Combining this equation with the definition of the kernel Kn leads to f (x) = (f ,Kn(·,x))Hn , x ∈ X .
This implies that Kn is the reproducing kernel for Hn. By the unique correspondence between a
RKHS and its reproducing kernel, we conclude that HKn = Hn.

A direct consequence of Theorem 1 is that if K is a γ-refinable kernel then for each n ∈ Z, the
kernel Kn is γ-refinable. This result justifies the usage of the same mapping γ to update Kn to Kn+1
in (8) for each n ∈ Z.

Proposition 2 If the kernel K is γ-refinable, then for each n ∈ Z, Kn is γ-refinable. Conversely, if
for some n ∈ Z, Kn is γ-refinable, then K is γ-refinable.

Proof Suppose that K is γ-refinable. Then, we have that HK ' HK1 . Let f ∈ HKn . By Theorem 1,
we deduce that f ◦γ−n ∈HK 'HK1 , which implies that f ∈HKn+1 . In addition, Theorem 1, Equation
(10) and the γ-refinability of K ensure that for f ,g ∈ HKn ,

(f ,g)HKn
= λ−n(f ◦ γ−n,g◦ γ−n)HK = λ−n(f ◦ γ−n,g◦ γ−n)HK1

= λ−n−1(f ◦ γ−n−1,g◦ γ−n−1)HK = (f ,g)HKn+1
.

This confirms that Kn is γ-refinable.
Conversely, we suppose that Kn is γ-refinable for some n ∈ Z. Since

K(x,y) = λ−nKn(γ−n(x),γ−n(y)), x,y ∈ X ,

the arguments in the proof of the first statement of this proposition show that K is γ-refinable.

The next result follows immediately from the last proposition.

Corollary 3 If K is γ-refinable, then for all f ,g ∈ HK and n ∈ N, f ,g ∈ HKn and (f ,g)HKn
=

(f ,g)HK .

2086

REFINABLE KERNELS

We now present our first characterization of γ-refinable kernels.

Theorem 4 A kernel K is γ-refinable if and only if

K(γ−1(·),x) ∈ HK , for all x ∈ X (11)

and
(K(γ−1(·),y),K(γ−1(·),x))HK = λK(x,y), for all x,y ∈ X , (12)

where λ is the same constant in the definition of a γ-refinable kernel.

Proof By Proposition 2, K is γ-refinable if and only if

HK−1 ' HK . (13)

Suppose that K is γ-refinable. The definition of kernel K−1 leads to

K(γ−1(·),x) = λK−1(·,γ(x)) ∈ HK−1 , for x ∈ X ,

for some constant λ. This combined with relation (13) ensures the validity of (11). By (13), (10)
and (4), we obtain for all x,y ∈ X that

(K(γ−1(·),y),K(γ−1(·),x))HK = (K(γ−1(·),y),K(γ−1(·),x))HK−1

= λ(K(·,y),K(·,x))HK = λK(x,y),

which is Equation (12).
Conversely, we suppose that (11) holds and (12) is satisfied with some constant λ, and we prove

that inclusion relation (13) is valid. Let f ∈ HK . By (3), there exists a sequence

fn ∈ span{K(·,y) : y ∈ X}, n ∈ N

that converges to f in HK . Equation (11) implies that fn ◦ γ−1 ∈ HK , n ∈ N, and Equation (12)
implies for all m,n ∈ N that

‖ fm ◦ γ−1− fn ◦ γ−1‖HK = λ1/2‖ fm− fn‖HK .

Therefore, fn ◦ γ−1 is a Cauchy sequence in HK , whose limit is denoted by f−1. Recall that point
evaluations are continuous linear functionals on HK . An application of this fact yields that

f−1(x) = lim
n→∞

(fn ◦ γ−1)(x), x ∈ X . (14)

In the same manner, since fn converges to f in HK , we have for each x ∈ X that

(f ◦ γ−1)(x) = lim
n→∞

(fn ◦ γ−1)(x). (15)

We observe from (14) and (15) that f ◦ γ−1 = f−1. It is hence proved that f ◦ γ−1 ∈ HK for each
f ∈ HK . This combined with (9) shows that the elements of HK−1 are contained in HK . Finally, we
verify by (12) for each f ,g ∈ HK that

(f ◦ γ−1,g◦ γ−1)HK = (f−1,g−1)HK = lim
n→∞

(fn ◦ γ−1,gn ◦ γ−1)HK = λ lim
n→∞

(fn,gn)HK = λ(f ,g)HK .

2087

XU AND ZHANG

By the above equation and (10), the inner product on HK−1 coincides with the one on HK . We con-
clude that (13) holds true and complete the proof.

Another characterization of γ-refinable kernels K is in terms of a feature map for K. A function
Φ from X to a Hilbert space W is called a feature map for the kernel K if

K(x,y) = (Φ(x),Φ(y))W , x,y ∈ X . (16)

We call the Hilbert spaceW the feature space of K. It is known (Aronszajn, 1950) that K is a kernel
on X if and only if there exists a map Φ : X → W satisfying (16). In the next result, we identify the
RKHS HK in terms of a feature map Φ for K. To state the result, we denote by Φ(X) the image of
X under Φ, spanΦ(X) the closure of spanΦ(X) in W , and PΦ the orthogonal projection from W
onto spanΦ(X).

Lemma 5 Let K be a kernel having a representation (16) in terms of a feature map Φ from X to
W . Then HK = {(Φ(·),u)W : u ∈ W } with inner product

((Φ(·),u)W ,(Φ(·),v)W)HK = (PΦv,PΦu)W , u,v ∈ W . (17)

A proof of this result in the special case that K is aHilbert-Schmidt kernelwas provided in Opfer
(2006) (see Lemma 3.4, Theorem 3.5 therein). The proof works for the general case described in
Lemma 5. The result can also be found in Micchelli and Pontil (2005a). In the application of
Lemma 5, it is always convenient to assume that there holds

spanΦ(X) = W (18)

since otherwise W can be replaced by spanΦ(X). If (18) holds then for each f ∈ HK there exists
a unique u f ∈ W such that f = (Φ(·),u f)W . Moreover, one can see by Lemma 5 that the linear
transformation Γ from HK to W defined by

Γ f := u f (19)

is an isomorphism, that is, it is one-to-one, onto and satisfies ‖Γ f‖W = ‖ f‖HK , for f ∈ HK .
We call a feature mapΦ from X toW γ-refinable provided that there is a bounded linear operator

T on W such that
λ−1/2Φ◦ γ−1 = TΦ, (20)

where λ−1/2 plays the role of a normalization parameter. Throughout this paper, we mean that T is
a function from a Hilbert space W to itself whenever we say that T is an operator on W . Recall
that a linear operator A on W is isometric if for all u ∈ W , ‖Au‖W = ‖u‖W . One can see that A is
isometric if and only if A∗A is equal to the identity operator on W , where A∗ denotes the adjoint
operator of A.

We characterize a refinable kernel in terms of its feature map.

Theorem 6 Suppose that K is a kernel on X with a feature map Φ : X → W satisfying (18). Then
K is γ-refinable if and only if Φ is γ-refinable and the adjoint operator T ∗ of T in (20) is isometric.

2088

REFINABLE KERNELS

Proof Suppose that Φ is γ-refinable, that is, it satisfies (20) for some bounded operator T on W ,
and suppose that T ∗ is isometric. We first observe by (16) and (20) for each x ∈ X that

K(γ−1(·),x) = (Φ◦ γ−1(·),Φ(x))W = λ1/2(TΦ(·),Φ(x))W = λ1/2(Φ(·),T ∗Φ(x))W . (21)

Lemma 5 with the equation above yields that for each x ∈ X , K(γ−1(·),x) ∈ HK . Moreover, (18)
implies that PΦ is the identity operator on W . This fact, together with Equations (21) and (17)
ensures for all x,y ∈ X that

(K(γ−1(·),y),K(γ−1(·),x))HK = λ((Φ(·),T ∗Φ(y))W ,(Φ(·),T ∗Φ(x))W)HK = λ(T ∗Φ(x),T ∗Φ(y))W .

By hypothesis, TT ∗ is the identity. Hence, the right hand side of the above equation becomes
λ(Φ(x),Φ(y))W , which is equal to λK(x,y), since Φ is a feature map for K. That is, (12) holds. We
conclude by Theorem 4 that K is γ-refinable.

Conversely, suppose that K is γ-refinable, that is, HK−1 ' HK . We shall choose a bounded linear
operator T on W such that Φ satisfies (20) and T ∗ is isometric. By Theorem 1 and Lemma 5,
functions in HK−1 have the form (Φ ◦ γ−1(·),u)W , u ∈ W . The inclusion HK−1 ' HK implies that
for each u ∈ W there exists vu ∈ W such that

λ−1/2(Φ◦ γ−1(·),u)W = (Φ(·),vu)W . (22)

Equation (18) ensures that for each u ∈ W there is a unique vu ∈ W satisfying (22). Let A denote
the map u→ vu and observe that A is a linear operator on W . We shall prove that it is isometric.
Since by (16) for all x,y ∈ X

K−1(x,y) = λ−1K(γ−1(x),γ−1(y)) = λ−1(Φ(γ−1(x)),Φ(γ−1(y)))W ,

the map Φ−1 := λ−1/2Φ◦ γ−1 : X → W is a feature map for K−1. Since γ is a bijective map from X
to itself, PΦ−1 is also equal to the identity operator on W . Therefore, by Lemma 5, we have for all
u ∈ W that ∥∥∥λ−1/2(Φ◦ γ−1(·),u)W

∥∥∥
HK−1

= ‖u‖W . (23)

Likewise, condition (18) and Lemma 5 imply that

‖(Φ(·),vu)W ‖HK
= ‖vu‖W . (24)

In addition, by the relation HK−1 ' HK and (22), there holds
∥∥∥λ−1/2(Φ◦ γ−1(·),u)W

∥∥∥
HK−1

= ‖(Φ(·),vu)W ‖HK
. (25)

Combining Equations (23), (24) and (25) shows that A is isometric. By (22) we conclude for all
u ∈ W that

λ−1/2(Φ◦ γ−1(·),u)W = (Φ(·),Au)W = (A∗Φ(·),u)W .

We choose T := A∗ and observe from the above equation that (20) holds. Thus, Φ is γ-refinable and
T ∗ is isometric.

2089

XU AND ZHANG

3. Wavelet-like Reproducing Kernels

This section is devoted to developing a multiscale decomposition of the RKHS HK of a γ-refinable
kernel K. Specifically, we construct the nontrivial orthogonal complement of HKn in HKn+1 . In this
regard, an issue important to us is when HKn is a proper subspace of HKn+1 . Our first result concerns
this proper inclusion question. Let R (A) and N (A) denote the range and null space of an operator
A on W , respectively. We also denote for every V ⊆ W by V ⊥ the set of all elements in W that
are orthogonal to V .

Theorem 7 Suppose that K defined by (16) is γ-refinable and the feature mapΦ satisfies (18). Then
HK−1 is a proper subspace of HK if and only if the operator T in (20) is not injective. Moreover, if
HK−1 is a proper subspace of HK , then for all n ∈ Z, HKn is a proper subspace of HKn+1 .

Proof Since K is γ-refinable, by Theorem 6, the feature map Φ is γ-refinable and T ∗ is isometric.
Hence, by (20), functions in HK−1 are of the form

λ−1/2(Φ◦ γ−1(·),u)W = (TΦ(·),u)W = (Φ(·),T ∗u)W , u ∈ W . (26)

On the other hand, Lemma 5 ensures that functions in HK have the form

(Φ(·),u)W , u ∈ W . (27)

The isometry of T ∗ guarantees that R (T ∗) is a closed subspace of W . This fact, together with
Equations (26), (27) and the isomorphism Γ introduced in (19), implies that HK−1 is a proper sub-
space of HK if and only if R (T ∗) is a proper subspace of W . The relation R (T ∗)⊥ = N (T) (see,
Conway, 1990, page 35) proves that HK−1 is a proper subspace of HK if and only if N (T) *= {0}.
Hence, the first claim of this theorem is valid. The proof of the second statement is straightforward.

Theorem 7 allows us to construct the nontrivial orthogonal complement of HKn in HKn+1 . For
this purpose, we define

G := K1−K, and Gn(x,y) := λnG(γn(x),γn(y)), x,y ∈ X , n ∈ Z.

Theorem 8 Suppose that K is a γ-refinable kernel on X. Then the following statements hold:
(1) For each n ∈ Z, Gn is a kernel on X.
(2) There holds HGn ' HKn+1 , and HGn is the orthogonal complement of HKn in HKn+1 .
(3) For each n ∈ Z that

HGn = { f ◦ γn : f ∈ HG} (28)

and the inner product on HGn satisfies

(f ,g)HGn
= λ−n(f ◦ γ−n,g◦ γ−n)HG , f ,g ∈ HGn . (29)

Proof Since K is γ-refinable, we have by Proposition 2 that Kn is γ-refinable, namely, HKn ' HKn+1 .
LetWn be the orthogonal complement of HKn in HKn+1 . It is clear thatWn is a RKHS with the inner
product of HKn+1 . By a property of reproducing kernels (see, Aronszajn, 1950, page 345), the sum
of Kn and the kernel of Wn is equal to Kn+1. Therefore, G is the kernel of W0, and it is observed

2090

REFINABLE KERNELS

by (8) that the kernel of Wn is Gn. This proves (1) and (2). The result (3) follows directly from
Theorem 1.

A direct consequence of Theorem 8 (2) is that for all n ∈ Z and for all f ,g ∈ HGn ,

(f ,g)HGn
= (f ,g)HKn+1

.

Theorem 8 leads to the decomposition

HKn+1 = HKn ⊕HGn ,

where the notation A⊕B denotes the orthogonal direct sum of A and B. We call Gn the wavelet-like
reproducing kernels and in particular, G the initial wavelet-like kernel. It is clear that the initial
wavelet-like kernel G is nontrivial if and only if HK−1 is a proper subspace of HK . Repeatedly using
the above decomposition with n= −1, we have the decomposition for the RKHS

HK = HG−1 ⊕·· ·⊕HG−m ⊕HK−m , m≥ 1. (30)

One should notice the difference between wavelet-like reproducing kernels that we introduce here
and the “wavelet kernels” studied in Amato et al. (2006), Rakotomamonjy and Canu (2005), and
Rakotomamonjy et al. (2005). The latter are a class of Hilbert-Schmidt kernels defined as a super-
position of dilations and translations of a wavelet function.

We now consider the decomposition (30) when m→ ∞. To this end, we define the space

H−∞ :=
\

n∈Z
HKn

and we describe the space in the next theorem.

Theorem 9 Suppose that K defined by (16) is γ-refinable and the feature mapΦ satisfies (18). Then
the closed subspace H−∞ of HK has the form

H−∞ =
{

(Φ(·),u)W : u ∈
\

n∈N
R ((T ∗)n)

}
. (31)

Moreover, H−∞ = {0} if and only if

lim
n→∞

‖T nu‖W = 0, for all u ∈ W . (32)

Proof Since HKn , n≤ 0, are closed subspaces of HK , H−∞ is a closed subspace of HK . By (20), we
use induction to conclude for each n ∈ N that

λ−n/2(Φ◦ γ−n(·),u)W = (T nΦ(·),u)W = (Φ(·),(T ∗)nu)W , u ∈ W . (33)

By Theorem 1 and Equation (27), functions in HK−n are of the form λ−n/2(Φ ◦ γ−n(·),u)W . This
combined with (33) proves formula (31).

2091

XU AND ZHANG

It remains to prove the second statement. Since for each n ∈ N, (T ∗)n is isometric, R ((T ∗)n) is
a closed subspace of W . Therefore,

W−∞ :=
\

n∈N
R ((T ∗)n)

is a closed subspace of W . It suffices to show that W−∞ = {0} if and only if (32) holds. Suppose
that (32) is satisfied. Let v ∈ W−∞ and by the definition of W−∞, there exists for each n ∈ N a
vn ∈ W such that (T ∗)nvn = v. Since T ∗ is isometric, ‖vn‖W = ‖v‖W , which ensures that for each
u ∈ W and n ∈ N,

|(u,v)W | = |(u,(T ∗)nvn)W | = |(T nu,vn)W | ≤ ‖T nu‖W ‖vn‖W = ‖T nu‖W ‖v‖W .

Let n→∞ in the above inequality and by condition (32) we conclude that each u∈ W is orthogonal
to W−∞. Consequently, W−∞ contains only the zero element.

Conversely, we suppose that W−∞ = {0}. By the relation that

\

n∈N
R ((T ∗)n) =

([

n∈N
N (T n)

)⊥
, (34)

the union of N (T n), n ∈ N, is dense in W . Let u ∈ W . For each ε > 0 there exists an m ∈ N and
v ∈ N (Tm) such that ‖u− v‖W ≤ ε. For each operator A on W , its norm ‖A‖ is defined as

‖A‖ := sup{‖Aw‖W : w ∈ W , ‖w‖W = 1}.

An operator onW has the same norm as its adjoint (Conway, 1990). Since T ∗ is isometric, we have
‖T‖ = ‖T ∗‖ = 1. By the definition of the norm of an operator on W , there holds

‖Tw‖W ≤ ‖w‖W , w ∈ W ,

We get from the above equation for all n≥ m that T nv= 0 and

‖T nu‖W = ‖T nu−T nv‖W ≤ ‖u− v‖W ≤ ε.

This verifies (32) and completes the proof.

The decomposition (30) can now be extended to the decomposition

HK = (H−∞)
M

n∈N
HG−n . (35)

This decomposition gives a multiresolution analysis (Mallat, 1989; Meyer, 1992) of the RKHS HK ,
in terms of a sequence of orthogonal subspaces, each of which is a RKHS corresponding to the
wavelet-like kernels.

In passing, we make an additional remark on condition (32). It has a close relation with the
translation invariant subspaces in Hardy spaces (Beurling, 1949), which in turn has an important
application to the Bedrosian identity (Yu and Zhang, 2006). Under the assumption that the linear
span of the eigenelements of T is dense in W , the condition is equivalent to that all the eigenvalues
of T have the absolute value less than one (see Beurling, 1949, and the references therein).

To close this section, we prove a corollary of Theorem 7, which concerns the finite dimensional
feature space and presents an example of trivial refinable kernels, in the sense that its wavelet-like
kernel is the zero kernel.

2092

REFINABLE KERNELS

Corollary 10 If K defined by (16) is γ-refinable, the feature map Φ satisfies (18), and the feature
space W is finite dimensional, then HK−1 = HK .

Proof Since K is γ-refinable, by Theorem 6, T ∗ is isometric, or equivalently, TT ∗ is equal to the
identity operator onW . It follows that for every w∈ W , there holds w= T (T ∗w). Therefore, T is a
surjective operator on W . Since W is finite dimensional, T must be injective as well. By Theorem
7, there holds HK−1 = HK .

As an application of Corollary 10, we investigate the finite dot-product kernel (FitzGerald et al.,
1995). Set Z+ := N∪{0}, and An := {α := (α j : j ∈ Nd) ∈ Zd

+ : ∑ j∈Nd α j = n}, n ∈ Z+. It can be
seen that the kernel

K(x,y) := ∑
α∈An

cαxαyα, x,y ∈ Rd ,

is refinable on Rd , where cα, α ∈ An, are positive constants. A feature map Φ for this kernel is

Φ(x) := [
√
cαxα : α ∈ An] ∈ !2(An), x ∈ Rd

and the feature space !2(An) is of finite dimension. By Corollary 10, K is a trivial refinable kernel
on Rd in the sense that HK−1 = HK . Examples of nontrivial refinable kernels on Rd will be given in
Sections 5 and 6.

4. γ-Refinable Kernels of a Riesz Type

The study in this section is motivated by the representation (6), which indicates a need of a countable
subset X of X such that the linear span of KX := {K(·,x) : x ∈ X } is dense in HK . In practical
computations, it is also desirable to have a convenient and stable way of finding an approximation
f̃ ∈ spanKX of a function f ∈ HK . This leads to consideration of requiring KX to be a frame or a
Riesz basis for HK .

We recall the basic concept of frames and Riesz bases (cf., Daubechies, 1992; Duffin and Scha-
effer, 1952; Mallat, 1998; Young, 1980). Let J be an index set. A family of elements {ϕ j : j ∈ J} in
a Hilbert space W forms a frame if there exist 0< α≤ β< ∞ such that for all f ∈ W

α‖ f‖2W ≤∑
j∈J

|(f ,ϕ j)W |2 ≤ β‖ f‖2W . (36)

The constants α,β are called the frame bounds for {ϕ j : j ∈ J}. We call a frame {ϕ j : j ∈ J} a tight
frame when its two frame bounds are equal, that is, α = β. If, in addition to (36), {ϕ j : j ∈ J} is a
linearly independent set, we call it a Riesz basis for W . A Riesz basis {ϕ j : j ∈ J} is equivalent to
an orthonormal basis {ψ j : j ∈ J} for W , namely, there exists a bounded linear operator L on W
having a bounded inverse such that L(ψ j) = ϕ j, j ∈ J.

An arbitrary element in W can be expressed as a linear combination of a frame {ϕ j : j ∈ J} for
W . We denote by !2(J) the Hilbert space of the square summable sequences on J with the inner
product (c,d)!2(J) := ∑ j∈J c jd j. Define the frame operator F from W to !2(J) by setting for all
f ∈ W , (F f) j := (f ,ϕ j)W , for all j ∈ J. Then F∗F is a bounded positive self-adjoint operator on
W with a bounded inverse and

{
ϕ̃ j := (F∗F)−1ϕ j : j ∈ J

}

2093

XU AND ZHANG

is a frame for W . We shall refer to it as the dual frame of {ϕ j : j ∈ J} since we have for all f ∈ W

f =∑
j∈J

(f ,ϕ j)W ϕ̃ j =∑
j∈J

(f , ϕ̃ j)W ϕ j. (37)

When {ϕ j : j ∈ J} is a Riesz basis, one can see from (37) that (ϕ j, ϕ̃k)W = δ j,k, j,k ∈ J. We hence
say in this case that {ϕ j : j ∈ J} and {ϕ̃ j : j ∈ J} constitute a pair of biorthogonal bases for W .

Let Z := {z j : j ∈ J} ⊆ X be a countable set. For a kernel K on X , we are interested in the
conditions for which the set KZ := {K(·,z j) : j ∈ J} is a Riesz basis for HK . Let us begin with a
simple necessary and sufficient condition which follows directly from the reproducing property (5)
and the definition of a Riesz basis.

Proposition 11 The family KZ is a Riesz basis for HK with frame bounds 0 < α ≤ β < ∞ if and
only if for every finite subset X ⊆ Z, K[X] is nonsingular, and for all f ∈ HK

α‖ f‖2HK
≤∑

j∈J
| f (z j)|2 ≤ β‖ f‖2HK

.

We remark that Proposition 11 is closely related to the concept of universal kernels. If X is a
topological space, we call a kernel K on X a universal kernel if for all compact X ⊆ X , the linear
span of {K(·,y) : y ∈ X } is dense inC(X), the Banach space of continuous functions on X . Various
characterizations of universal kernels are studied in Micchelli et al. (2006). By a result of Zhou
(2003), universal kernels have the property that for all finite subsets x of X , K[x] is nonsingular.

We next present a characterization for KZ to be a Riesz basis for HK in terms of a uniqueness
set Z. We call X ⊆ X a uniqueness set for HK if there is not a nontrivial f ∈ HK that vanishes on X
(Micchelli et al., 2003, 2006). We shall also need the matrix

Λ := [K(z j,zk) : j,k ∈ J]. (38)

Note that each bounded operator A : !2(J) → !2(J) can be represented via a unique matrix [A j,k :
j,k ∈ J] as

(Ac) j := ∑
k∈J

A j,kck, c ∈ !2(J), j ∈ J.

For simplicity, we shall not distinguish a linear operator on !2(J) from its corresponding represen-
tation matrix. The matrix associated with the adjoint operator A ∗ of A is

(A∗) j,k := Ak, j, j,k ∈ J.

We also denote by AT and Ā the transpose and conjugate of a matrix A , respectively, namely,

(AT) j,k = Ak, j, (Ā) j,k = A j,k, j,k ∈ J.

Proposition 12 The family KZ forms a Riesz basis for HK if and only if Z is a uniqueness set for
HK and there exist 0< α≤ β< ∞ such that

α‖c‖2!2(J) ≤ (Λc,c)!2(J) ≤ β‖c‖2!2(J). (39)

2094

REFINABLE KERNELS

Proof The proof follows directly from the fact (see, for example, Young, 1980, page 32) that for
{ϕ j : j ∈ J} to be a Riesz basis for a Hilbert space W with frame bounds 0 < α ≤ β < ∞, it is
necessary and sufficient that its linear span is dense in W and for all c ∈ !2(J)

α‖c‖2!2(J) ≤
∥∥∥∥∑
j∈J
c jϕ j

∥∥∥∥
2

W
≤ β‖c‖2!2(J).

The third characterization is in terms of a feature map for the kernel K.

Theorem 13 Let K be given by (16). Then KZ is a Riesz basis for HK if and only if Φ(Z) is a Riesz
basis for spanΦ(X).

Proof We only discuss the case when (18) holds true, for the other can be handled in a similar way.
Since the operator Γ defined by (19) is an isomorphism from HK ontoW , KZ is a Riesz basis if and
only if Γ(KZ) is a Riesz basis for Γ(HK) = W . By (16) and the definition of Γ, Γ(KZ) = Φ(Z).
This completes the proof.

The following corollary is a direct consequence of Theorem 13.

Corollary 14 Let K be given by (16). If (18) holds then KZ is a Riesz basis for HK if and only if the
features Φ(Z) of Z is a Riesz basis for the feature space W .

For the simplicity of notations, we set

φn, j := λn/2K(γn(·),z j), (n, j) ∈ Z× J.

Note that φ0, j = K(·,z j), j ∈ J. In the following presentation, we shall adopt the convention that we
use m,n to denote integers and j,k, l to denote indices in J. The next result regards the sequence
φn, j being a Riesz basis for HKn . Since the proof is standard (cf., Daubechies, 1992), we omit the
details.

Proposition 15 Suppose that KZ is a Riesz basis for HK with frame bounds 0 < α ≤ β < ∞. Then
for each n ∈ Z, {φn, j : j ∈ J} is a Riesz basis for HKn with the same frame bounds α,β.

For the rest of this section we assume that KZ is a Riesz basis for HK . This assumption implies
that the linear operator S on HK defined by

S f :=∑
j∈J

f (z j)K(·,z j), f ∈ HK (40)

is bounded positive self-adjoint and so is its inverse operator S−1 onHK (see, for example, Daubechies,
1992, pages 58–59). Note that S is a special case of the operator F ∗F introduced at the beginning
of this section. A particular example of the operator S was studied in Smale and Zhou (2007) to
approximate integral operators.

2095

XU AND ZHANG

Proposition 16 Suppose that KZ is a Riesz basis for HK and let S be the operator on HK defined
by (40). Then the function

K̃(x,y) := (S−1K(·,y))(x), x,y ∈ X (41)

is a kernel on X and the corresponding RKHS is

HK̃ = { f : f ∈ HK} (42)

with inner product (f ,g)HK̃
:= (S f ,g)HK .

Proof Since for all x,y ∈ X

(S−1K(·,y))(x) = (S−1(K(·,y)),K(·,x))HK

and S−1 is positive self-adjoint, the function K̃ defined by (41) is a kernel on X . Clearly, W := { f :
f ∈ HK} with inner product (f ,g)W := (S f ,g)HK is a RKHS. We also observe by (5) and the fact
that S= S∗ for each f ∈ HK and x ∈ X that

f (x) = (f ,K(·,x))HK = (S f ,S−1(K(·,x)))HK = (f ,S−1(K(·,x)))W = (f , K̃(·,x))W ,

which implies that K̃ is the kernel of W . Consequently, we have (42).

We call K̃ defined by (41) the dual kernel of K. By the general theory of frames introduced at
the beginning of this section, the dual Riesz basis of KZ is

K̃Z := {K̃(·,z j) : j ∈ J}. (43)

To obtain an explicit expression of this dual basis, we need to understand the operator S−1. We shall
use notation Λ̃ for the inverse Λ−1 of matrix Λ defined by (38).

Theorem 17 If KZ is a Riesz basis for HK , then for each n ∈ Z, the dual Riesz basis {φ̃n, j : j ∈ J}
of {φn, j : j ∈ J} for HKn has the form

φ̃n, j =∑
k∈J

Λ̃k, jφn,k, j ∈ J (44)

and

S−1 f =∑
j∈J

(

∑
k∈J

Λ̃ j,k f (zk)

)(

∑
l∈J
Λ̃l, jK(·,zl)

)
, f ∈ HK . (45)

Proof Since KZ is a Riesz basis for HK , by Proposition 12, (39) holds for some positive constants
α,β. We hence have for all c ∈ !2(J) that (see, for example, Daubechies, 1992, page 58)

β−1‖c‖2!2(J) ≤ (Λ̃c,c)!2(J) ≤ α−1‖c‖2!2(J). (46)

Moreover, by Proposition 15, {φn, j : j ∈ J} is a Riesz basis forHKn . This combined with (46) shows
that φ̃n, j defined by (44) belong to HKn . By (10) and (5), we have for all j,k ∈ J that

(φ̃n, j,φn,k)HKn
= (φ̃0, j,K(·,zk))HK = φ̃0, j(zk) =∑

l∈J
Λ̃l, jK(zk,zl) =∑

l∈J
Λk,lΛ̃l, j = δ j,k,

2096

REFINABLE KERNELS

which shows that {φ̃n, j : j ∈ J} is the dual Riesz basis of {φn, j : j ∈ J} in HKn .
We next establish the representation (45) of S−1. It follows that for each f ∈ HK the function

(denoted by g) in the right hand side of (45) is in HK . Recalling the definition of matrix Λ̃, the
function g satisfies for j ∈ J that

g(z j) =∑
l∈J
Λ̃ j,l f (zl).

As a consequence, we have by the definition (40) of S for all k ∈ J that

(Sg)(zk) =∑
j∈J

(

∑
l∈J
Λ̃ j,l f (zl)

)
K(zk,z j) =∑

l∈J
f (zl)∑

j∈J
Λ̃ j,lΛk, j =∑

l∈J
f (zl)δk,l = f (zk).

Since, by Proposition 12, Z is a uniqueness set for HK , we have Sg= f .

We remark that the functions defined by Equation (44) satisfy

φ̃n, j = λn/2φ̃0, j ◦ γn, j ∈ J, n ∈ Z.

Another implication of Theorem 17 is that φ̃0, j, j ∈ J, are the interpolating functions on Z, that is,

φ̃0, j(zk) = δ j,k, j,k ∈ J.

For each n ∈ Z we introduce the sampling operator In,J by

(In,J f) j := λ−n/2 f (γ−n(z j)), j ∈ J, f ∈ HKn .

It is pointed out that a special case of I0,J has been introduced in Smale and Zhou (2007). A function
f ∈ HKn can be completely recovered from its sample In,J f , that is,

f =∑
j∈J

(Λ̃In,J f) jφn, j =∑
j∈J

(In,J f) jφ̃n, j. (47)

In particular, we have the representation for our original kernel K

K(x,y) = ∑
j,k∈J

K(x,z j)Λ̃ j,kK(zk,y), x,y ∈ X . (48)

The Riesz basis provides a characterization of γ-refinable kernels in terms of the sampling op-
erator, which we present next.

Theorem 18 Suppose that KZ is a Riesz basis for HK . Then K is γ-refinable if and only if

{I−1,Jφ0, j : j ∈ J} ⊆ !2(J), (49)

(Λ̃I−1,Jφ0, j, I−1,Jφ0,k)!2(J) = K(zk,z j), j,k ∈ J, (50)

and
φ−1, j =∑

k∈J
(Λ̃I−1,Jφ0, j)kK(·,zk), j ∈ J. (51)

2097

XU AND ZHANG

Proof Suppose that conditions (49), (50) and (51) hold true. For j,k∈ J, we set C j,k :=(Λ̃I−1,Jφ0, j)k.
By (49) and (46), [C j,k : k ∈ J] ∈ !2(J). Since KZ is a Riesz basis for HK , it follows from (51) that
φ−1, j ∈ HK , j ∈ J. Equations (50), (47) and (10) imply for all j,k ∈ J that

(φ−1, j,φ−1,k)HK = K(zk,z j) = (φ−1, j,φ−1,k)HK−1
. (52)

For each f ∈ HK−1 , we have by Proposition 15 a sequence fn ∈ span{φ−1, j : j ∈ J}, n ∈ N that
converges to f in HK−1 . By (52), there holds for each n ∈ N that fn ∈ HK and

(fn, fn)HK = (fn, fn)HK−1
. (53)

This means that fn is a Cauchy sequence in HK . There hence exists g ∈ HK that is the limit of fn in
HK . We get by (5) for each x ∈ X that

g(x) = (g,K(·,x))HK = lim
n→∞

(fn,K(·,x))HK = lim
n→∞

fn(x) = lim
n→∞

(fn,K−1(·,x))HK−1
= f (x).

Therefore, f ∈ HK , and by (53)

(f , f)HK−1
= lim

n→∞
(fn, fn)HK−1

= lim
n→∞

(fn, fn)HK = (g,g)HK = (f , f)HK .

We conclude that HK−1 ' HK , that is, K is γ-refinable.
Conversely, suppose that HK−1 ' HK . Then since KZ is a Riesz basis for HK with the dual basis

K̃Z defined by (43), we let n= 0 and f = φ−1, j in (47) to get that (49), (51) hold true. The inclusion
HK−1 ' HK also implies (52). Through a calculation, we notice that (50) is a consequence of (52).
The proof is complete.

In the rest of this section, we construct a frame for the RKHS HG of the wavelet-like kernel
G := K1−K.

Lemma 19 Suppose that K is γ-refinable and KZ is a Riesz basis for HK with frame bounds 0 <
α≤ β< ∞. Then

ψ0, j := λ−1/2G(·,γ−1(z j)), j ∈ J

form a frame for HG with the same frame bounds α,β.

Proof By the definition G= K1−K, we have that

ψ0, j = φ1, j−λ−1/2K(·,γ−1(z j)), j ∈ J.

Let f ∈ HG. Since f is orthogonal to HK in HK1 , we have for each j ∈ J that

(f ,ψ0, j)HG = (f ,ψ0, j)HK1
= (f ,φ1, j)HK1

,

where the first equality holds because of Theorem 8 (2). Applying Proposition 15 and ‖ f‖HG =
‖ f‖HK1

yields that {ψ0, j : j ∈ J} is a frame for HG with frame bounds α,β.

The frame for the RKHS HG is now translated to a frame for the RKHSs HGn .

2098

REFINABLE KERNELS

Proposition 20 Suppose that K is γ-refinable and KZ is a Riesz basis for HK with frame bounds
0< α≤ β<∞. Then for each n∈Z, ψn, j := λn/2ψ0, j ◦γn, j ∈ J form a frame for HGn with the same
frame bounds α,β. Furthermore, there holds

ψn, j = ∑
k∈J

D j,kφn+1,k, (54)

where
D j,k := δ j,k−λ−1∑

l∈J
Λ̃k,lK(γ−1(zl),γ−1(z j)). (55)

Proof Arguments similar to those in the proof of Proposition 15 with Lemma 19, equations (28)
and (29) prove the first claim of this proposition. For each n ∈ Z, by Theorem 17, {φ̃n+1,k : k ∈ J}
is the dual Riesz basis of {φn+1,k : k ∈ J} for HKn+1 . Since HGn ' HKn+1 , we obtain for each j ∈ J

ψn, j =∑
k∈J

(ψn, j, φ̃n+1,k)HKn+1
φn+1,k.

By (44) we confirm that (ψn, j, φ̃n+1,k)HKn+1
is equal to D j,k defined by (55), proving the result.

We next present the reconstruction of a function f ∈ HGn from its samples (f ,ψn, j)HGn
, j ∈ J.

To describe the reconstruction, we remark that for each (n, j) ∈ Z× J there holds

φn, j = ∑
k∈J

C j,kφn+1,k (56)

and
φ̃n, j =∑

k∈J
C̃ j,kφ̃n+1,k, (57)

where
C̃ j,k := λ−1/2∑

l∈J
Λ̃l, jK(γ−1(zk),zl).

For j,k ∈ J, we let
D̃ j,k := δ j,k−∑

l∈J
Cl, jC̃l,k.

Theorem 21 Suppose that K is γ-refinable and KZ is a Riesz basis for HK . For each n ∈ Z, the
functions

ψ̃n, j := φ̃n+1, j−∑
k∈J

Ck, jφ̃n,k, j ∈ J (58)

constitute a frame for HGn and have the representation

ψ̃n, j = ∑
k∈J

D̃ j,kφ̃n+1,k. (59)

Moreover, there holds for all f ∈ HGn that

f =∑
j∈J

(f , ψ̃n, j)HGn
ψn, j =∑

j∈J
(f ,ψn, j)HGn

ψ̃n, j. (60)

2099

XU AND ZHANG

Proof SinceK is γ-refinable, by Proposition 2,HKn 'HKn+1 . This together with Theorem 17 follows
that the functions ψ̃n, j defined by (58) are in HKn+1 . Moreover, it can be verified by (56) that they
are orthogonal to HKn . Therefore, {ψ̃n, j : j ∈ J} ⊆ HGn . Arguments similar to those in the proof of
Proposition 20 yield that ψ̃n, j, j ∈ J form a frame for HGn with the same frame bounds as those of
{φ̃0, j : j ∈ J} for HK . Equation (59) is obtained by substituting (57) into (58).

We next prove the first equality of (60). To this end, for any fixed f ∈ HGn we define

g :=∑
j∈J

(f , ψ̃n, j)HGn
ψn, j

and observe that g ∈ HGn . It can be verified that

g = ∑
j∈J

(f , φ̃n+1, j)HKn+1
ψn, j

= ∑
j∈J

(f , φ̃n+1, j)HKn+1
(φn+1, j−λ−(n+1)/2Kn(·,γ−n−1(z j)))

= f −λ−(n+1)/2∑
j∈J

(f , φ̃n+1, j)HKn+1
Kn(·,γ−n−1(z j)).

The above equation ensures that g− f ∈ HGn ∩HKn , which implies that g = f . Likewise, we may
prove the second equality of (60).

Suppose that K is a kernel on X and Kn, n∈Z, are defined by (8). The RKHSHK is said to have
a multiresolution analysis if

· · · ' HK−2 ' HK−1 ' HK ,
\

n∈N
HK−n = {0},

and KZ with a countable set Z := {z j : j ∈ J} ⊆ X is a Riesz basis for HK . The following theorem
characterizes a RKHS that has a multiresolution analysis.

Theorem 22 Let K be a kernel on an input space X with a feature mapΦ from X to a Hilbert space
W that satisfies (18). The RKHS HK has a multiresolution analysis if and only ifΦ is refinable, that
is, it satisfies (20) for some bounded linear operator T on W whose adjoint T ∗ is isometric, T has
the property (32) and there exists a countable subset Z of X such that Φ(Z) is a Riesz basis for W .

Proof The result of this theorem follows directly from Theorems 6, 9 and 13.

Suppose that HK has a multiresolution analysis. By (35), Lemma 19 and Proposition 20, we
have that

HK =
M

n∈N
HG−n

and λ(n−1)/2G(γn(·),γ−1(z j)), j ∈ J form a frame for HGn , n≤−1. The multiresolution analysis on
HK is hence generated by the wavelet-like kernel G.

To close this section, we present the decomposition and reconstruction algorithms. These al-
gorithms are analogues to the Mallat algorithms (cf., Mallat, 1989) in wavelet analysis. They are

2100

REFINABLE KERNELS

important for fast computation. With Equations (56), (57), (54) and (59), we now establish a recur-
sive scheme for the decomposition (30). For

f ∈
[

m≥0
HKm ,

we denote by Pn f the orthogonal projection of f onto HKn , for n≤ 0. We have that

Pn+1 f = Pn f +∑
j∈J

(f , ψ̃n, j)HGn
ψn, j = Pn f +∑

j∈J
(f ,ψn, j)HGn

ψ̃n, j, n≤−1.

We define four vectors

αn := [(f ,φn, j)HKn
: j ∈ J], α̃n := [(f , φ̃n, j)HKn

: j ∈ J],

βn := [(f ,ψn, j)HGn
: j ∈ J] and β̃n := [(f , ψ̃n, j)HGn

: j ∈ J].

By (47), the projection Pn f is completely described by αn or α̃n. Likewise, by (60), the difference
Pn+1 f −Pn f between two levels of consecutive projections is completely determined by βn or β̃n.
We introduce the matrix notations:

C := [C j,k : j,k ∈ J], C̃ := [C̃ j,k : j,k ∈ J], D := [D j,k : j,k ∈ J], D̃ := [D̃ j,k : j,k ∈ J].

Suppose that α0 is given and for each n ≤ −1 we then use C and D to decompose αn, n ≤ 0
recursively to obtain αn, βn

αn = C αn+1, βn = Dαn+1. (61)

Conversely, αn+1 can be reconstructed from αn and βn by using C̃ and D̃

αn+1 = C̃ T αn+ D̃T βn, n≤−1. (62)

Alternatively, the decomposition and reconstruction process can start from α̃0

α̃n = C̃ α̃n+1, β̃n = D̃ α̃n+1, α̃n+1 = C T α̃n+DT β̃n, n≤−1. (63)

Since {φ0, j : j ∈ J} and {φ̃0, j : j ∈ J} are Riesz bases for HK and Riesz bases are equivalent to
orthonormal bases,

{[(f ,φ0, j)HK : j ∈ J] : f ∈ HK} = {[(f , φ̃0, j)HK : j ∈ J] : f ∈ HK} = !2(J),

we have by (61), (62) and (63) that

C̃ TC + D̃TD = C T C̃ +DT D̃ = I, (64)

where I is the identity matrix. We say that C , C̃ ,D,D̃ form a perfect reconstruction system if they
satisfy (64).

2101

XU AND ZHANG

5. Refinable Translation Invariant Kernels

In this section, we consider refinable kernels with specializing our input space to Rd , d ∈ N, the
mapping γ to the dilation mapping x→ 2x in Rd and kernels to translation invariant kernels K on
Rd , that is, for all x,y,a ∈ Rd

K(x−a,y−a) = K(x,y).

In other words, the main purpose of this section is to characterize refinable translation invariant
kernels on Rd .

We need the notation of Fourier transform defined for f ∈ L1(Rd) as

f̂ (t) :=
1

(2π)d
Z

Rd
f (x)e−i(x,t)dx, t ∈ Rd ,

where (x, t) denotes the inner product of x, t in Rd . The Fourier transform f̂ of f ∈ Lp(Rd), 1< p≤
∞, is defined in the weak sense (Grafakos, 2004). If both f , f̂ belong to L1(Rd) then there holds

f (x) =
Z

Rd
f̂ (t)ei(x,t)dt, x ∈ Rd .

Clearly, K is translation invariant if and only if there exists a function k : Rd → C such that

K(x,y) = k(x− y), x,y ∈ Rd . (65)

Note that in this section k will always denote a function. It was established by Bochner (1959) that
if k is continuous on Rd then (65) defines a kernel if and only if there exists a finite positive Borel
measure µ on Rd such that

k(x) =
Z

Rd
ei(x,t)dµ(t), x ∈ Rd . (66)

We shall consider only measures µ that are absolutely continuous with respect to the Lebesgue
measure. This means that µ(A) = 0 whenever the Lebesgue measure |A| of a Borel subset A ⊆ Rd

is zero. By the Radon-Nikodym theorem (Rudin, 1987), µ in (66) is absolutely continuous with
respect to the Lebesgue measure if and only if k̂ is a nonnegative Lebesgue integrable function on
Rd .

Specifically, we shall characterize nonnegative k̂ ∈ L1(Rd) for which the kernel K given by

K(x,y) = k(x− y) =
Z

Rd
ei(x−y,t)k̂(t)dt, x,y ∈ Rd (67)

is refinable, that is, there holds
HK−1 ' HK . (68)

Note that in this section K j, j ∈ Z are defined through a positive constant λ as

K j(x,y) = λ jK(2 jx,2 jy), x,y ∈ Rd . (69)

We shall use j to denote integers while m,n, l to denote elements in Zd . We shall also discuss
conditions for KZd := {K(·,n) : n ∈ Zd} to be a Riesz basis for HK .

2102

REFINABLE KERNELS

We next identify a feature map for the kernel K. Let L2(Rd , k̂dt) be the space of Borel mea-
surable functions f : Rd → C such that

R
Rd | f (t)|2k̂(t)dt < ∞. It is a Hilbert space with the inner

product
(f ,g)L2(Rd ,k̂dt) :=

Z

Rd
f (t)g(t)k̂(t)dt.

We observe from (67) that

K(x,y) = (Φ(x),Φ(y))L2(Rd ,k̂dt), x,y ∈ Rd ,

where the feature map Φ : Rd → L2(Rd , k̂dt) is defined by Φ(x)(t) := ei(x,t), t ∈ Rd . It is clear that
spanΦ(Rd) is dense in L2(Rd , k̂dt). By Lemma 5, the functions in HK are of the form

fΦ := (Φ(·), f)L2(Rd ,k̂dt), f ∈ L2(Rd , k̂dt) (70)

and the inner product on HK is given by

(fΦ,gΦ)HK
= (g, f)L2(Rd ,k̂dt), f ,g ∈ L2(Rd , k̂dt). (71)

We now present a special result on characterization of refinable translation invariant kernels.
For this purpose, we set

Ω := {t ∈ Rd : k̂(t) > 0} (72)

and denote by χΩ the characteristic function of Ω. We remark that Ω is a Lebesgue measurable
subset of Rd .

Theorem 23 Let K be the translation invariant kernel given in (67) through a nonnegative k̂ ∈
L1(Rd) and let Ω be defined by (72). Then K is a refinable kernel on Rd if and only if

Ω⊆ 2Ω (73)

and
k̂ =

λ
2d
χΩk̂

(·
2

)
. (74)

Proof This proof is based on Theorem 4. Through a change of variables, we have for each y ∈ Rd

that
K

(x
2
,y

)
= 2d

Z

Rd
ei(x,t)e−i2(y,t)k̂(2t)dt, x ∈ Rd .

It follows by (70) that K(·
2 ,y) ∈ HK for each y ∈ Rd if and only if there exists a nonnegative g ∈

L2(Rd , k̂dt) such that
k̂(2·) = gk̂. (75)

Suppose that (75) is valid. Then it can be verified by the uniqueness of Fourier transforms, and (71)
that (

K
(·
2
,y

)
,K

(·
2
,x

))

HK
= λK(x,y), for all x,y ∈ Rd

if and only if
2dg2 k̂ = λk̂(2·). (76)

2103

XU AND ZHANG

Suppose that (73) and (74) are true. We then obtain by hypothesis (74) that equations (75) and (76)
hold true for g= λ

2d χΩ
2
, which, by (73), is contained in L2(Rd , k̂dt). Conversely, if (75) and (76) are

valid then (73) follows from (75), and (74) is a consequence of (73), (75) and (76).

In the next corollary, we prove special properties of a refinable translation invariant kernel.

Corollary 24 Let K be a refinable translation invariant kernel defined by (67). If k̂ is nontrivial,
then λ≥ 1 and if Ω= Ω

2 *= /0, then k̂(t) is not continuous at t = 0.

Proof Since K is refinable, by Theorem 23, Equations (73) and (74) hold. We then observe by (74)
that Z

Ω
k̂(t)dt = λ

Z

Ω
2

k̂(t)dt. (77)

The inclusion (73) and Equation (77) imply that there must hold λ≥ 1 since k̂ is nontrivial.
We next prove that k̂(t) is not continuous at t = 0. Assume to the contrary that k̂ is continuous

at t = 0 and Ω = Ω
2 *= /0. In this case, we first see from (77) that λ = 1 and then by (74) for each

t ∈Ω that

k̂(t) = lim
j→∞

k̂(2− jt)
2d j

= 0

because by hypothesis k̂(t) is continuous at t = 0. This contradicts the assumption that Ω *= /0.

As a consequence of this corollary, we have the following interesting observation. For an inclu-
sion relation of the RKHSs of Gaussian kernels, see Walder et al. (2007).

Corollary 25 The Gaussian kernels

Gσ(x,y) := exp
(
−σ‖x− y‖2

)
, x,y ∈ Rd , σ> 0,

where ‖x‖ := (x,x)1/2, are not refinable.

Proof Since the Gaussian kernels can be represented as

Gσ(x,y) =
1

(2π)d
Z

Rd

(π
σ

)d/2
ei(x−y,t)e−

‖t‖2
4σ dt,

and e−
‖·‖2
4σ , supported on the whole Rd , is clearly continuous at t = 0, by Corollary 24, they are not

refinable.

We now present a nontrivial refinable translation invariant kernel.

Corollary 26 For a,b,σ ≥ 0, let k̂ := ‖ · ‖σχ[−a,b]d . Then the kernel K defined by (67) with k̂ is
refinable with Ω= [−a,b]d \{0} and λ= 2σ+d .

2104

REFINABLE KERNELS

Proof It can be verified directly that k̂ satisfies condition (73) and (74) with Ω= [−a,b]d \{0} and
λ= 2σ+d . Hence, by Theorem 23, K is refinable.

We next characterize when HK−1 is a proper subspace of HK if K is a refinable translation
invariant kernel. For this purpose, we identify the feature map for such a K with

λ−1/2Φ
(·
2

)
= TΦ,

where
T f := λ−1/2 f

(·
2

)
χΩ, f ∈ L2(Rd , k̂dt). (78)

Theorem 27 Suppose that a kernel K defined by (67) is refinable on Rd and Ω is defined by (72).
Then HK−1 is a proper subspace of HK if and only if

|2Ω−Ω| > 0. (79)

If (79) holds true then λ> 1 and \

j∈Z
HK j = {0}. (80)

Proof Set f ∈ L2(Rd , k̂dt). We observe by (78) that T f = 0 if and only if f (x) = 0, a.e. x ∈ Ω
2 .

Therefore, N (T) is nontrivial if and only if (79) is true. The first statement of this theorem hence
follows from Theorem 7.

To prove the second statement, we suppose that (79) holds. We prove (80) by verifying condition
(32) in Theorem 9. To this end, we note by (78) for each j ∈ N that

T j f = λ−
j
2 f

(·
2 j

)
χΩ

and

k̂(2 j·) =
(
λ
2d

) j
k̂χ Ω

2 j
. (81)

The above two equations imply that

‖T j f‖2L2(Rd ,k̂dt) =
Z

Ω
2 j

| f (t)|2k̂(t)dt. (82)

We integrate both sides of (81) over Rd to get that

1
λ j

Z

Ω
k̂(t)dt =

Z

Ω
2 j

k̂(t)dt.

This with (79) implies that λ> 1. Hence,

lim
j→∞

Z

Ω
2 j

k̂(t)dt = 0,

which with (82) ensures that
lim
j→∞

‖T j f‖L2(Rd ,k̂dt) = 0,

2105

XU AND ZHANG

proving the result.

Let us turn to establishing conditions for KZd to be a Riesz basis for HK . We begin with a
technical lemma.

Lemma 28 The family KZd is a Riesz basis for HK if and only if EZd := {ei(n,t) : n ∈ Zd} is a Riesz
basis for L2(Rd , k̂dt).

Proof This lemma follows from Theorem 13 and the density of spanΦ(Rd) in L2(Rd, k̂dt).

Our next approach is based on the characterization of Riesz bases mentioned at the beginning of
the proof for Proposition 12. We shall use the property of Ω that for all Lebesgue measurable sets
A⊆Ω with |A| > 0 there exists a σ> 0 such that

∣∣{t ∈ A : k̂(t) ≥ σ}
∣∣ > 0.

Lemma 29 The linear span of EZd is dense in L2(Rd, k̂dt) if and only if

|Ω∩ (Ω+2nπ)| = 0, n ∈ Zd \{0}. (83)

Proof Suppose that there exists a nonzero n ∈ Zd such that |Ω∩ (Ω+2nπ)|> 0. For σ1 > 0, a ∈ R,
0< δ< π we set

A1 := {t : t ∈Ω∩ (Ω+2nπ), k̂(t) ≥ σ1}∩ [a,a+δ]d.

We can choose some σ1 > 0, a ∈ R such that A1 has nonzero Lebesgue measure. Since the set
A1− 2nπ is contained in Ω with |A1− 2nπ| = |A1| > 0, we can find a σ2 > 0 such that |A2| > 0,
where A2 := {t : t ∈ A1− 2nπ, k̂(t) ≥ σ2}. Set A := A2 + 2nπ, σ := min{σ1,σ2}. The set A so
constructed has the properties that |A| > 0, A∩ (A−2nπ) = /0 and k̂(t) ≥ σ, for t ∈ A∪ (A−2nπ).
Using this set, we define a function f ∈ L2(Rd , k̂dt) as

f (t) :=






−1, t ∈ A,
1, t ∈ A−2nπ,
0, otherwise.

For an arbitrary g ∈ E := spanEZd , we have that
Z

Rd
|g(t)− f (t)|2k̂(t)dt ≥

Z

A
|g(t)− f (t)|2k̂(t)dt+

Z

A−2nπ
|g(t)− f (t)|2k̂(t)dt

≥ σ
Z

A
(|g(t)+1|2+ |g(t)−1|2)dt ≥ σ|A|.

This shows that E would not be dense in L2(Rd , k̂dt) if (83) were invalid.
On the other hand, suppose that (83) is true. For n ∈ Zd , we define Ω̃n := (Ω−2nπ)∩ [0,2π]d

and observe that these sets satisfy the condition
[

{Ω̃n : n ∈ Zd} ⊆ [0,2π]d, |Ω̃n∩ Ω̃m| = 0, n *= m.

Let
ρ(t) :=

{
k̂(t+2nπ), t ∈ Ω̃n, n ∈ Zd ,

0, otherwise

2106

REFINABLE KERNELS

and for f ∈ L2(Rd , k̂dt) we introduce a new function g ∈ L2([0,2π]d,ρdt) by setting

g(t) :=
{

f (t+2nπ), t ∈ Ω̃n, n ∈ Zd ,
0, otherwise.

Since E is dense in L2([0,2π]d,ρdt), for each ε> 0 there exists f̃ ∈ E such that

‖g− f̃‖L2([0,2π]d ,ρdt) < ε.

Note that
‖ f − f̃‖L2(Rd ,k̂dt) = ‖g− f̃‖L2([0,2π]d ,ρdt).

Combining the two relations above proves the lemma.

We next present a necessary and sufficient condition for KZd to be a Riesz basis for HK if K is a
translation invariant kernel defined by (67) through a nonnegative k̂ ∈ L1(Rd).

Theorem 30 Let K be a translation invariant kernel defined by (67) through a nonnegative k̂ ∈
L1(Rd) and Ω be defined by (72). Then KZd is a Riesz basis for HK if and only if

∑
n∈Zd

χΩ(·+2nπ) = 1, a.e. (84)

and there exist 0< α≤ β< ∞ such that

α≤ k̂(t) ≤ β, a.e. t ∈Ω. (85)

Proof By Lemma 28, KZd is a Riesz basis for HK if and only if the linear span of EZd is dense in
L2(Rd , k̂dt), which is equivalent to (83) by Lemma 29,

∑
n∈Zd

cnei(n,t) ∈ L2(Rd , k̂dt), c ∈ !2(Zd) (86)

and for some constants 0< α≤ β< ∞

α(2π)d‖c‖2!2(Zd) ≤
∥∥∥∥ ∑
n∈Zd

cnei(n,t)
∥∥∥∥
2

L2(Rd ,k̂dt)
≤ β(2π)d‖c‖2!2(Zd), c ∈ !2(Zd). (87)

One can use arguments similar to those on pages 139–140 of Daubechies (1992) to show that rela-
tion (86) and inequality (87) hold true if and only if there exist 0< α≤ β< ∞ such that

α≤ ∑
n∈Zd

k̂(·+2nπ) ≤ β, a.e. (88)

The proof is completed by noting that (83) and (88) hold true if and only if (84) and (85) are satis-
fied.

Inequality (88) was established for a different purpose in Smale and Zhou (2004), where it was
proved that Λ := [K(m,n) : m,n ∈ Zd] satisfies (39) for J := Zd if and only if (88) holds true.

In the next theorem, we construct k̂ that satisfy conditions (73), (74), (84) and (85) to obtain a
refinable kernel K on Rd with KZd being a Riesz basis for HK .

2107

XU AND ZHANG

Theorem 31 Let K be defined by (67) where nonnegative k̂ ∈ L1(Rd) is continuous at 0. Then K is
refinable and KZd is a Riesz basis for HK if and only if λ= 2d and

k̂ = ηχΩ, a.e. (89)

where η is a positive constant, and Ω satisfies (73) and (84). Moreover, if (84) and (89) hold true
then functions

1
√
η(2π)d/2

K(·,n), n ∈ Zd (90)

form an orthonormal basis for HK .

Proof Suppose that λ = 2d , k̂ is given by (89) with a positive constant η, and Ω satisfies (73) and
(84). By Theorem 23, K defined by (67) is refinable, and by Theorem 30, KZd is a Riesz basis for
HK .

Conversely, we suppose that k̂ ∈ L1(Rd) is continuous at 0, K is refinable and KZd is a Riesz
basis for HK . These hypotheses imply that there hold (73), (74), (84) and (85). Choose η = k̂(0).
Repeatedly using Equation (74) with iterations, we have for all t ∈Ω that

k̂(t) =
(
λ
2d

) j
k̂
(t
2 j

)
, j ∈ N.

This formula with condition (85) ensures that λ= 2d . Equation (89) follows from the formula above,
(85) and the continuity of k̂ at 0. This completes the proof of the necessary and sufficient condition.

It remains to show that the functions defined by (90) form an orthonormal basis for HK . Since
(84) and (89) are true, we obtain by direct computation for all m,n ∈ Zd that

1
η(2π)d

(K(·,n),K(·,m))HK =
1

(2π)d
Z

Ω
ei(m−n,t)dt

=
1

(2π)d
Z

Rd
ei(m−n,t)χΩ(t)dt

=
1

(2π)d
Z

[0,2π]d
ei(m−n,t) ∑

l∈Zd

χΩ(·+2lπ)dt

=
1

(2π)d
Z

[0,2π]d
ei(m−n,t)dt = δm,n.

This proves that functions defined by (90) constitute an orthonormal basis forHK and completes the
proof.

By noting that (84) can be interpreted as that Ω+2nπ, n ∈ Zd , form a tiling of Rd , we construct
examples of refinable kernels K such that KZd are Riesz bases for HK . The readers are referred to
Grünbaum and Shephard (1989) for the subject of tiling. We describe our examples in the following
two corollaries.

Corollary 32 For a∈ [0,2π], letΩ := [−a,2π−a]d. Then the kernel K defined by (67) with k̂ having
the form (89) is a refinable kernel such that KZd is a Riesz basis for HK .

We remark that when a = π, k is the well-known sinc function. The result in the last corollary
can be extended.

2108

REFINABLE KERNELS

Corollary 33 Suppose that α and β are constants satisfying either π
2 ≤ α ≤ β ≤ 2π

3 or 2π3 ≤ α ≤
β≤ π. Let

Ω := ([−2π+α,−2π+β]∪ [−π,−β]∪ [−α,α]∪ [β,π]∪ [2π−β,2π−α])d . (91)

Then the kernel K defined by (67) with k̂ having the form (89) with η= 1 is a refinable kernel such
that KZd is a Riesz basis for HK . Moreover,

k(x) = ∏
j∈Nd

2sinαx j
x j

+ ∏
j∈Nd

4sin π−β2 x j
x j

cos
π+β
2

x j + ∏
j∈Nd

4sin β−α2 x j
x j

cos
α+β
2

x j, x ∈ Rd ,

where x j denotes the j-th component of x.

When both α and β in (91) are chosen as π, k is also reduced to the sinc function.

6. Refinable Kernels Defined by Refinable Functions

We present in this section a construction of refinable kernels via refinable functions. For a complete
reference of refinable functions, the readers are referred to Cavaretta et al. (1991) and Daubechies
(1992). As in the last section, we assume that the mapping γ has the form x→ 2x throughout this
section.

Let ϕ be a compactly supported continuous function on Rd that is refinable, namely, there exists
h := [hn : n ∈ Zd] such that

ϕ
(·
2

)
= ∑

n∈Zd

hnϕ(·−n). (92)

We always assume that ϕ is nontrivial, and the cardinality of {n : hn *= 0, n ∈ Zd} is finite by the
compact support of ϕ. Suppose further that we have an infinite matrix A satisfying for some positive
constants α,β that

α‖c‖2!2(Zd) ≤ (Ac,c)!2(Zd) ≤ β‖c‖2!2(Zd), c ∈ !2(Zd). (93)

The above inequality implies that A is a bounded positive self-adjoint operator on !2(Zd) and its
inverse A−1 is also bounded positive self-adjoint (see, for example, Daubechies, 1992, page 58).

Motivated by (48), associated with the matrix A we define our kernel K by

K(x,y) := (AΨ(x),Ψ(y))!2(Zd), x,y ∈ Rd , (94)

where Ψ is a mapping from Rd to !2(Zd) given by Ψ(x) := [ϕ(x−n) : n ∈ Zd], x ∈ Rd . Assuming
that A := [Am,n : m,n ∈ Zd], we have that

K(x,y) = ∑
m∈Zd

∑
n∈Zd

Am,nϕ(x−n)ϕ(y−m), x,y ∈ Rd . (95)

Kernels in the form
∑
n∈Zd

ψ(x−n)ψ(y−n) (96)

constructed by a refinable function ψ were considered in Opfer (2006), and kernels defined as a
superposition of frame elements in RKHS were discussed in Gao et al. (2001), Opfer (2006), and

2109

XU AND ZHANG

Rakotomamonjy and Canu (2005). When A is the identity infinite matrix I, we see that K defined
by (95) has the form (96) with ψ = ϕ. We are interested in the necessary and sufficient condition
for K to degenerate to the form (96) for some function ψ on Rd such that the series converges for
all x,y ∈ Rd . We need the following technical lemma, whose proof is standard and thus is omitted.

Lemma 34 The linear span of Ψ(Rd) is dense in !2(Zd), that is, Ψ(Rd)⊥ = {0}.

The next proposition shows that kernels in the form (95) are more general than those in the
degenerate form (96) and in general cannot be written in the degenerate form.

Proposition 35 Let A be an infinite matrix satisfying (93) and K be defined by (95) through a
compactly supported continuous function ϕ. Then K can be represented as (96) if and only if

Am,n = Am−n,0, m,n ∈ Zd . (97)

Proof Suppose that the kernel K defined by (95) has the form (96). It follows that for all x,y ∈ Rd

and for l ∈ Zd , K(x− l,y− l) = K(x,y). Using (95), we rewrite the above equation as

∑
m∈Zd

∑
n∈Zd

Am−l,n−lϕ(x−n)ϕ(y−n) = ∑
m∈Zd

∑
n∈Zd

Am,nϕ(x−n)ϕ(y−n).

By Lemma 34, we have for all m,n, l ∈ Zd that Am−l,n−l = Am,n. In this equation, letting l = n yields
(97).

Conversely, we suppose that (97) is satisfied. For n ∈ Zd , we set an := An,0 and observe that for
all c ∈ !2(Zd)

(Ac,c)!2(Zd) =
1

(2π)d
Z

[0,2π]d

(
∑
n∈Zd

anei(n,t)
)∣∣∣∣ ∑

n∈Zd

cnei(n,t)
∣∣∣∣
2
dt.

This with (93) implies that

α≤ ∑
n∈Zd

anei(n,t) ≤ β, a.e. t ∈ [0,2π]d,

where the constants α and β are the lower and upper bound in (93). Therefore, there exists b ∈
!2(Zd) such that

∑
n∈Zd

bnei(n,t) =
(
∑
n∈Zd

anei(n,t)
)1/2

, a.e. t ∈ [0,2π]d.

We then define the matrix B by setting Bm,n := bm−n,0, m,n ∈ Zd . Clearly, we have B = B∗ and
A= B2, which ensures that

K(x,y) = (BΨ(x),BΨ(y))!2(Zd), x,y ∈ Rd .

One can see that K can be rewritten as (96) with ψ := ∑m∈Zd B0,mϕ(·−m).

The main purpose of this section is to formulate conditions on h and A so that the kernel K in the
form (95) is refinable. Our discussions will be based on the following result concerning the RKHS
HK .

2110

REFINABLE KERNELS

Proposition 36 The RKHS of the kernel K defined by (94) is

HK := {cΨ := (Ψ(·),c)!2(Zd) : c ∈ !2(Zd)}

with inner product
(cΨ,dΨ)HK = (A−1d,c)!2(Zd), c,d ∈ !2(Zd).

Proof Since the operator A satisfies (93), there exists a bounded positive self-adjoint operator A1/2
on !2(Zd) such that A1/2A1/2 = A (see, Conway, 1990, ,page 240). It is observed that K has the
following feature map representation K(x,y) = (Φ(x),Φ(y))!2(Zd), x,y ∈ Rd , where

Φ := A1/2Ψ. (98)

The proposition now follows immediately from Lemmas 5 and 34.

Let λ be a fixed positive number and K j, j ∈ Z be defined as in (69). We shall give a charac-
terization for K to be refinable, that is, (68) holds. To this end, we introduce the infinite matrix H
associated with h as

Hm,n := hn−2m, m,n ∈ Zd . (99)

It can be seen by the generalizedMinkowski inequality that the matrixH induces a bounded operator
on !2(Zd). In fact, we have for each c ∈ !2(Zd) that

‖Hc‖!2(Zd) ≤
(
∑
n∈Zd

|hn|
)
‖c‖!2(Zd).

We next characterize refinable kernels in terms of matrices A and H.

Theorem 37 Suppose that ϕ is a nontrivial compactly supported refinable function satisfying (92).
Then the kernel K defined by (94) is refinable if and only if

HA−1H∗A= λI. (100)

Proof The function Φ : Rd → !2(Zd) defined by (98) is a feature map for K. We observe by (92)
that it satisfies a refinement equation

λ−1/2Φ
(·
2

)
= λ−1/2A1/2Ψ

(·
2

)
= λ−1/2A1/2HΨ= λ−1/2A1/2HA−1/2Φ,

where A−1/2 denotes the inverse of A1/2. Setting

T := λ−1/2A1/2HA−1/2, (101)

by Theorem 6, K is refinable if and only if T ∗ is isometric, or equivalently, TT ∗ = I. The proof is
complete by noting that equation TT ∗ = I has the form (100).

We need the following lemma to study the proper inclusion of HK−1 in HK .

2111

XU AND ZHANG

Lemma 38 Let [an : n∈Zd] be a nontrivial vector in !2(Zd) with a finite number of nonzero compo-
nents. Then the linear span of {ãm := [am−n : n ∈ Zd] : m ∈ Zd} is dense in !2(Zd), and ãm, m ∈ Zd

are linearly independent.

Proposition 39 Let ϕ be a nontrivial compactly supported continuous refinable function on Rd ,
A,h satisfy (93) and (100), and K be defined by (94). Then HK−1 is a proper subspace of HK .

Proof By Theorem 7, HK−1 is a proper subspace of HK if and only if the null space N (T) of
operator T defined by (101) contains nonzero elements in !2(Zd), which is equivalent to that

N (H) *= {0}. (102)

Set b̃m := [hn−m : n∈Zd], m∈Zd . Assume thatN (H) = {0}. This implies that span{b̃2m :m∈Zd}
is dense in !2(Zd). Choose l ∈ Zd \ 2Zd . Since [hn : n ∈ Zd] has a finite number of nonzero com-
ponents, b̃l can be represented as a finite linear combination of b̃2m, m ∈ Zd . However, Lemma 38
ensures that b̃m, m ∈ Zd are linearly independent. This contradiction implies the validity of (102).

When A and H commute, Equation (100) reduces to

HH∗ = λI. (103)

Through a scaling of the matrix H, one may consider HH∗ = I. This equation arose also in the
construction of orthonormal wavelets and it has been well understood in the one-dimensional case
(cf., Daubechies, 1992). For a special class of solutions h of (103) in the multidimensional case, see
Chen et al. (2003) and Chen et al. (2007). These h can be used to construct A and H satisfying (93)
and (100).

Proposition 40 Let h be a solution of (103). Then for each real number a ∈ R \ {±λ−1/2} the
matrix A defined by

A := ((I+aH)(I+aH∗))−1 (104)

satisfies (93) with α := (1+ |a|
√
λ)−2 and β := (1−|a|

√
λ)−2, and (100).

Proof For a ∈ R\{±λ−1/2} we set B := (I+aH)(I+aH∗). By direct computation, we obtain for
each c ∈ !2(Zd) that

(Bc,c)!2(Zd) = (1+a2λ)‖c‖2!2(Zd) +a((H+H∗)c,c)!2(Zd). (105)

Equation (103) leads to the estimates

‖Hc‖!2(Zd) ≤
√
λ‖c‖!2(Zd), and ‖H∗c‖!2(Zd) ≤

√
λ‖c‖!2(Zd).

Equation (105) with these two estimates implies that

(1−|a|
√
λ)2‖c‖2!2(Zd) ≤ (Bc,c)!2(Zd) ≤ (1+ |a|

√
λ)2‖c‖2!2(Zd).

The inverse operator A of B hence satisfies (93) with α := (1+ |a|
√
λ)−2 and β := (1−|a|

√
λ)−2.

2112

REFINABLE KERNELS

It remains to show that A satisfies Equation (100). It can be verified by (103) that the following
equation holds

H(I+aH)(I+aH∗)H∗ = λ(I+aH)(I+aH∗).

By the definition (104) of A, this is equivalent to the equation HA−1H∗ = λA−1, which confirms
that A satisfies (100).

The last proposition provides a class of refinable kernels given by (95) that never degenerate to
the form (96).

Proposition 41 Let h satisfy (103), where matrix H is defined by (99), and matrix A be of the form
(104) for some a ∈ R\{±λ−1/2}. If there exists at least one n ∈ Zd such that the real part Re(hn)
of hn is not zero then A satisfies (97) if and only if a= 0.

Proof If a= 0 then A= I satisfies (97). Let a ∈ R\{0,±λ−1/2}. One can see that A satisfies (97)
if and only if A−1 does. Since A−1 = (1+a2λ)I+a(H+H∗), it satisfies (97) only if H+H∗ does.
Choose n ∈ Zd such that Re(hn) *= 0. There exists an m ∈ Zd such that Re(hm) *= Re(hn) since
h ∈ !2(Zd). As a consequence, we have

(H+H∗)−m,−m = 2Re(hm) *= 2Re(hn) = (H+H∗)−n,−n.

This shows that H+H∗ does not satisfy (97). The proof is complete.

By Propositions 35 and 41, if h is a real vector in !2(Zd) satisfying (103) then for all a ∈
R\{0,±λ−1/2}, the refinable kernel K defined by (95) through A given in (104) can not be rewritten
as (96).

We now turn to an investigation of the intersection of HK j , for j ∈ Z, where K j are kernels
defined by (69).

Theorem 42 Suppose that ϕ is a nontrivial compactly supported continuous refinable function on
Rd , h satisfies (103), A satisfies (93) and (100), and K is defined by (94). Then (80) holds true if
and only if

hn *= 0, for at least one n ∈ Zd \2Zd . (106)

If (106) does not hold then
\

j∈Z
HK j = {(Ψ(·),c)!2(Zd) : c ∈ N (H)⊥}. (107)

Proof Let F̃ be the function from !2(Zd) to L2([0,2π]d) defined for c ∈ !2(Zd) by (F̃ c)(t) :=
∑n∈Zd cnei(n,t), t ∈ [0,2π]d . Set B := λ−1/2H, m0 := F̃ (λ−1/2h), and let {ν j : j ∈ N2d} ⊆ Zd denote
the set of extreme points of cube [0,1]d . By condition (32) in Theorem 9, (80) holds true if and only
if

lim
j→∞

‖T jc‖!2(Zd) = 0, for all c ∈ !2(Zd), (108)

where T is the operator defined by (101). Noting that T j = A1/2B jA−1/2, Equation (108) is equiva-
lent to the condition

lim
j→∞

(2π)−d/2‖F̃ (B jc)‖L2([0,2π]d) = lim
j→∞

‖B jc‖!2(Zd) = 0, for all c ∈ !2(Zd). (109)

2113

XU AND ZHANG

For each c ∈ !2(Zd), we define m1 := F̃ c. It can be verified by direct calculation that

F̃ (B jc)(t) =



 1
2d ∑j∈N2d

m0(−t−πν j)m1(t+πν j)







 1
2d ∑j∈N2d

m0(−t−πν j)




j−1

, t ∈ [0,2π]d.

Equation (103) can be rewritten in terms of m0 as

∑
j∈N2d

|m0(·+πν j)|2 = 2d . (110)

The Cauchy-Schwartz inequality with (110) ensures for all t ∈ [0,2π]d that
∣∣∣∣ ∑
j∈N2d

m0(t+πν j)
∣∣∣∣ ≤ 2

d , (111)

where the equality holds at a point t0 ∈ [0,2π]d if and only if

m0(t0+πν j) = a, j ∈ N2d for some a ∈ C with |a| = 1. (112)

If hn = 0 for each n ∈ Zd \ 2Zd then m0(·+ πν j) = m0 for all j ∈ N2d . This together with (110)
implies that (112) holds for all t0 ∈ [0,2π]d . Thus, the equality in (111) holds for all t ∈ [0,2π]d . We
now choose c such that m1 = m0(−·) and clearly for such a c (109) does not hold. Consequently,
(80) does not hold and this is equivalent to saying that (80) implies (106).

Conversely, suppose that (106) holds. By the fact that the zeros of a nontrivial real-analytic
function on Rd form a set of Lebesgue measure zero, the set of points t ∈ [0,2π]d for which the
equality in (111) holds has zero Lebesgue measure. Therefore, for a fixed c ∈ !2(Zd), F̃ (B jc) goes
to zero almost everywhere on [0,2π]d . Since

|F̃ (B jc)(t)| ≤
(
1
2d ∑j∈N2d

|m1(t+πν j)|2
)1/2

, t ∈ [0,2π]d,

Equation (109) holds true by the Lebesgue dominated convergence theorem. Thus, we conclude
that (80) holds.

Now, suppose that (106) does not hold. Note that c ∈ !2(Zd) is in the union of N (T j), j ∈ N if
and only if A−1/2c ∈ N (H). We use Theorem 7 and (34) to get that

\

j∈Z
HK j = {(A1/2Ψ(·),c)!2(Zd) : c ∈ (A1/2N (H))⊥}.

The above equation can be rewritten as (107).

We next present a characterization for KZd to be a Riesz basis for HK .

Theorem 43 Let K be defined by (94) through a matrix A satisfying (93) and a compactly supported
continuous function ϕ on Rd . Then KZd is a Riesz basis for HK if and only if the polynomial

q(t) := ∑
n∈Zd

ϕ(n)ei(n,t), t ∈ Rd (113)

has no zeros.

2114

REFINABLE KERNELS

Proof By Theorem 13 and condition (93), KZd is a Riesz basis forHK if and only if ϕ̃m := [ϕ(m−n) :
n ∈ Zd], for m ∈ Zd form a Riesz basis for !2(Zd). Lemma 38 states that ϕ̃m, m ∈ Zd are linearly
independent if there exists t ∈ Zd such that ϕ(t) *= 0. Therefore, {ϕ̃m : m ∈ Zd} is Riesz basis for
!2(Zd) if and only if there exist 0< α≤ β< ∞ such that for every c ∈ !2(Zd) there holds

α‖c‖2!2(Zd) ≤ ∑
m∈Zd

|(ϕ̃m,c)!2(Zd)|2 ≤ β‖c‖2!2(Zd). (114)

Since

∑
m∈Zd

|(ϕ̃m,c)!2(Zd)|2 =
1

(2π)d
Z

[0,2π]d

∣∣∣∣ ∑
n∈Zd

ϕ(n)ei(n,t)
∣∣∣∣
2∣∣∣∣ ∑
n∈Zd

cnei(n,t)
∣∣∣∣
2
dt,

Equation (114) holds for all c ∈ !2(Zd) if and only if α ≤ |q(t)|2 ≤ β, t ∈ [0,2π]d . The theorem
hence follows from the continuity of q on Rd .

We conclude this section by a result regarding a multiresolution analysis for HK .

Theorem 44 Let ϕ be a nontrivial compactly supported continuous refinable function on Rd , h
satisfy (103), A satisfy (93), and K be defined by (94). Then HK has a multiresolution analysis with
KZd being a Riesz basis for HK if and only if there holds (100), (106), and the polynomial (113) has
no zeros.

Proof This result is a direct consequence of Theorems 37, 42 and 43.

7. A Discussion of Applications and Conclusions

For the completeness of the paper, in this section we discuss how refinable kernels can be used to
efficiently update kernels for learning from increasing training data. Here we only use a simple
learning example to illustrate the main points. The general case requires further substantial research
and it will be reported on a different occasion.

In this special example, we assume that the input space X is R and that the initial training
data set is given by z := {(j,y j) : j ∈ Bm} ⊆ X ×Y , where we have set for each n ∈ N, Bn :=
{−n, . . . ,−1,0,1, . . . ,n}. Let K be a kernel on X and consider the loss function Q(p,q) := |p−q|2,
for p,q ∈ C. This loss function is important in practice (for example, in regularization networks
Evgeniou et al., 2000; Schölkopf and Smola, 2002; Vapnik, 1998). The predictor f from the training
data z is hence the minimizer of

min
g∈HK

∑
j∈Bm

|g(j)− y j|2+µ‖g‖2HK
,

where µ is a positive regularization parameter. The representer theorem (Kimeldorf and Wahba,
1971; Schölkopf et al., 2001; Schölkopf and Smola, 2002) ensures in this case that

f = ∑
j∈Bm

c jK(·, j). (115)

2115

XU AND ZHANG

Here, the vector c := [c j : j ∈ Bm]T satisfies the linear system

(µI2m+1+K[Bm])c= y, (116)

where In denotes the n×n identity matrix and y := [y j : j ∈ Bm]T .
Suppose that the initial training data set is updated to a new data set z′ := {(j/2,y′j) : j ∈ B2m}

where y′2 j = y j for j ∈ Bm. We divide x′ := B2m/2 into two disjoint subsets x′1 := Bm/2 and x′2 =
B2m/2\Bm/2, and y′ := {y′j : j ∈ B2m} into y′1 and y′2, accordingly. For convenience, we set x′2 :=
{x′2, j : j ∈ N2m}. If K is refinable on X = R then we update the kernel K to a new kernel K1 :=
λK(2·,2·). A new predictor f ′ is then obtained as the minimizer of

min
g∈HK1

∑
j∈B2m

|g(j/2)− y′j|2+µ′‖g‖2HK1
,

where µ′ is an updated regularization parameter. By the representer theorem, we have that

f ′ = ∑
j∈Bm

c′1, jK(·, j/2)+ ∑
j∈N2m

c′2, jK(·,x′2, j). (117)

The above vectors c′1 := [c′1, j : j ∈ Bm]T and c′2 := [c′2, j : j ∈ N2m]T satisfy the linear system
[
µ′I2m+1+K1[x′1] K1[x′1,x′2]

K1[x′2,x′1] µ′I2m+K1[x′2]

][
c′1
c′2

]
=

[
y′1
y′2

]
, (118)

where K1[x′1,x′2] := [K1(p,q) : p ∈ x′1,q ∈ x′2].
It can be easily seen that the computational advantages offered by the refinability of the kernel

include:

• Efficient updating the kernel. Kernels Kn in all scales can be efficiently updated from a
refinable kernel K.

• Improvement of the predictor. Since HK ' HK1 , the class of candidate functions for the
predictor is enlarged and the initial predictor f is in HK1 . Consequently, we can expect an
improvement in approximation quality from the initial predictor to the new predictor f ′.

• Efficiency in setting up the coefficient matrix. By refinability, we observe that the block
matrix K1[x′1] in (118) satisfies the relation

K1[x′1] = K1[Bm/2] = λK[Bm].

Therefore, the coefficient matrix of system (118) is an augmentation of that of system (116).
As a result, we do not need to recompute the entries in the block K1[x′1].

• Fast solving the linear system for the updated data set. Because of the special structure
in its coefficient matrix that results from the refinability of the kernel, the linear system can
be solved efficiently by a fast algorithm analogous to the multi-level (wavelet) method (cf.,
Chen et al., 2005, 2006a,b).

• Fast algorithms for processing the predictor. Since the predictor (115) or (117) is ex-
pressed as a linear combination of the kernel, when the kernel is refinable we can use the
(Mallat-type) decomposition and reconstruction algorithms developed in Section 4 to process
the predictor.

2116

REFINABLE KERNELS

Finally, we close this paper with the conclusion: Motivated by efficient mathematical learning,
we introduce the notion of refinable kernels and characterize various types of refinable kernels.
Examples of refinable kernels are presented. A special learning example illustrates that refinable
kernels should provide computational advantages for solving various learning problems. Important
examples of refinable kernels and their applications deserve further investigation.

Acknowledgments

Yuesheng Xu is supported in part by the US National Science Foundation under grants CCR-
0407476 and DMS-0712827, by National Aeronautics and Space Administration under Cooperative
Agreement NNX07AC37A, by the Natural Science Foundation of China under grants 10371122 and
10631080, and by the Education Ministry of the People’s Republic of China under the Changjiang
Scholar Chair Professorship Program through Sun Yat-sen University. He is also with the Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, P. R. China.
Haizhang Zhang is supported by Syracuse University under a Syracuse University Graduate Fel-
lowship.

References

U. Amato, A. Antoniadis and M. Pensky. Wavelet kernel penalized estimation for non-equispaced
design regression. Stat. Comput., 16: 37–55, 2006.

N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68: 337–404, 1950.

A. Beurling. On two problems concerning linear transformations in Hilbert space. Acta Math., 81:
239–255, 1949.

S. Bochner. Lectures on Fourier Integrals with an Author’s Supplement on Monotonic Functions,
Stieltjes Integrals, and Harmonic Analysis. Annals of Mathematics Studies 42, Princeton Univer-
sity Press, New Jersey, 1959.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research,
2: 499–526, 2002.

A. S. Cavaretta, W. Dahmen and C. A. Micchelli. Stationary subdivision. Mem. Amer. Math. Soc.,
93, no. 453, 1991.

Q. Chen, C. A. Micchelli, S. Peng and Y. Xu. Multivariate filters banks having a matrix factorization.
SIAM J. Matrix Anal. Appl., 25: 517-531, 2003.

Q. Chen, C. A. Micchelli and Y. Xu. On the matrix completion problem for multivariate filter bank
construction. Adv. Comput. Math., 26: 173–204, 2007.

Z. Chen, B. Wu and Y. Xu. Multilevel augmentation methods for solving operator equations. Numer.
Math. J. Chinese Univ., 14: 31–55, 2005.

Z. Chen, B. Wu and Y. Xu. Multilevel augmentation methods for differential equations. Adv. Com-
put. Math., 24: 213–238, 2006.

2117

XU AND ZHANG

Z. Chen, Y. Xu and H. Yang. A multilevel augmentation method for solving ill-posed operator
equations. Inverse Problems, 22: 155–174, 2006.

J. B. Conway. A Course in Functional Analysis. 2nd Edition, Springer-Verlag, New York, 1990.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math. Soc., 39:
1–49, 2002.

I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Math-
ematics 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc.,
72: 341–366, 1952.

T. Evgeniou, M. Pontil and T. Poggio. Regularization networks and support vector machines. Adv.
Comput. Math., 13: 1–50, 2000.

C. H. FitzGerald, C. A. Micchelli and A. Pinkus. Functions that preserve families of positive
semidefinite matrices. Linear Algebra Appl., 221: 83–102, 1995.

J. B. Gao, C. J. Harris and S. R. Gunn. On a class of support vector kernels based on frames in
function Hilbert spaces. Neural Comput., 13: 1975–1994, 2001.

L. Grafakos. Classical and Modern Fourier Analysis. Prentice Hall, New Jersey, 2004.

B. Grünbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman and Company, New York,
1989.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl.,
33: 82–95, 1971.

S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. Amer.
Math. Soc., 315: 69–87, 1989.

S. Mallat. AWavelet Tour of Signal Processing. 2nd Edition, Academic Press, San Diego, CA, 1998.

Y. Meyer.Wavelets and Operators. Cambridge University Press, Cambridge, 1992.

C. A. Micchelli and M. Pontil. A function representation for learning in Banach spaces. In Pro-
ceeding of the 17th Annual Conference on Learning Theory (COLT 04), pages 255–269, Banff,
Alberta, 2004.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine
Learning Research, 6: 1099–1125, 2005.

C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Comput., 17: 177–204,
2005.

C. A. Micchelli, Y. Xu and P. Ye. Cucker Smale learning theory in Besov spaces. In Advances in
Learning Theory: Methods, Models and Applications, pages 47–68, IOS Press, Amsterdam, The
Netherlands, 2003.

2118

REFINABLE KERNELS

C. A. Micchelli, Y. Xu and H. Zhang. Universal kernels. Journal of Machine Learning Research, 7:
2651–2667, 2006.

S. Mukherjee, P. Niyogi, T. Poggio and R. Rifkin. Learning theory: stability is sufficient for gener-
alization and necessary and sufficient for empirical risk minimization. Adv. Comput. Math., 25:
161–193, 2006.

R. Opfer. Multiscale kernels. Adv. Comput. Math., 25: 357–380, 2006.

R. Opfer. Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Appl. Com-
put. Harmon. Anal., 20: 357–374, 2006.

A. Rakotomamonjy and S. Canu. Frames, reproducing kernels, regularization and learning. Journal
of Machine Learning Research, 6: 1485–1515, 2005.

A. Rakotomamonjy, X. Mary and S. Canu. Non-parametric regression with wavelet kernels. Appl.
Stoch. Models Bus. Ind., 21: 153–163, 2005.

W. Rudin. Real and Complex Analysis. 3rd Edition, McGraw-Hill, New York, 1987.

B. Schölkopf, R. Herbrich and A. J. Smola. A generalized representer theorem. In Proceeding of the
14th Annual Conference on Computational Learning Theory and the 5th European Conference
on Computational Learning Theory, pages 416–426, Springer-Verlag, London, UK, 2001.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cambridge, Mass, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, 2004.

S. Smale and D. X. Zhou. Estimating the approximation error in learning theory. Anal. Appl., 1:
17–41, 2003.

S. Smale and D. X. Zhou. Shannon sampling and function reconstruction from point values. Bull.
Amer. Math. Soc., 41: 279–305, 2004.

S. Smale and D. X. Zhou. Learning theory estimates via integral operators and their approximations.
Constr. Approx., 26: 153–172, 2007.

I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. In Pro-
ceeding of the 18th Annual Conference on Learning Theory (COLT 05), pages 279–294, Berti-
noro, 2005.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV.
In Advances in Kernel Methods–Support Vector Learning, pages 69–86, MIT Press, Cambridge,
Mass, 1999.

C. Walder, K. I. Kim and B. Schölkopf. Sparse multiscale Gaussian process regression. Technical
Report No. TR-162, Max Planck Institute for Biological Cybernetics, 2007.

2119

XU AND ZHANG

C. Walder, B. Schölkopf and O. Chapelle. Implicit surface modelling with a globally regularised
basis of compact support. Computer Graphics Forum, 25: 635–644, 2006.

Y. Ying and D. X. Zhou. Learnability of Gaussians with flexible variances. Journal of Machine
Learning Research, 8: 249–276, 2007.

R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, New York, 1980.

B. Yu and H. Zhang. The Bedrosian identity and homogeneous semi-convolution equations. J. Inte-
gral Equations Appl., accepted, 2006.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization. Ann. Statis., 32: 56–85, 2004.

D. X. Zhou. Density problem and approximation error in learning theory. Preprint, 2003.

2120

Journal of Machine Learning Research 8 (2007) 2121-2123 Submitted 11/06; Revised 5/07; Published 9/07

A Complete Characterization of a Family of Solutions
to a Generalized Fisher Criterion

Marco Loog∗ LOOG@DIKU.DK
Datalogical Institute
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen Ø, Denmark

Editor:Marina Meila

Abstract
Recently, Ye (2005) suggested yet another optimization criterion for discriminant analysis and pro-
posed a characterization of the family of solutions to this objective. The characterization, however,
merely describes a part of the full solution set, that is, it is not complete and therefore not at all a
characterization. This correspondence first gives the correct characterization and afterwards com-
pares it to Ye’s.
Keywords: linear discriminant analysis, Fisher criterion, small sample, characterization

1. Classical and New Criteria

Given N feature vectors of dimensionality n, a linear reduction of dimensionality, based on classical
Fisher LDA, determines an n×d transformation matrix L that, for a given d < K, K the number of
classes, maximizes the so-called Fisher criterion: F(A) = tr((AtSWA)−1(AtSBA)) or, equivalently,
F0(A) = tr((AtSTA)−1(AtSBA)). Here, SB := ∑K

i=1 pi(mi−m)(mi−m)t, SW := ∑K
i=1 piSi, and

ST = SB +SW . The matrices SB, SW , and ST are the so-called between-class, pooled within-class,
and total covariance matrices. In addition, mi is the mean vector of class i, pi is the prior of class i,
and the overall meanm equals ∑k

i=1 pimi. Finally, Si is the covariance matrix of class i.
A solution to these optimization problems can be obtained by means of a generalized eigen-

value decomposition, which Fukunaga (1990) relates to a simultaneous diagonalization of the two
matrices involved (see also Campbell and Atchley, 1981). More common is it to apply a standard
eigenvalue decomposition to S−1T SB (or S

−1
W SB), resulting in an equivalent set of eigenvectors. The d

columns of the optimal solution L are simply taken to equal the d eigenvectors corresponding to the
d largest eigenvalues. It is known that this solution is not unique and the full class can be obtained
by multiplying L to the right with nonsingular d×d matrices (see Fukunaga, 1990).

Clearly, if the total covariance ST is singular, neither the generalized nor the standard eigenvalue
decomposition can be readily employed. Directly or indirectly, the problem is that the matrix inverse
S−1T does not exist, which is the typical situation when dealing with small samples. In an attempt to
overcome this problem, Ye (2005) introduced a different criterion that is defined as

F1(A) = tr((AtSTA)+(AtSBA)) , (1)

∗. Also at Nordic Bioscience Imaging, Hovegade 207, DK-2730 Herlev, Denmark.

c©2007 Marco Loog.

LOOG

where + denotes taking the Moore-Penrose generalized inverse of a matrix. Like for F0, an optimal
transform L is one that maximizes the objective F1. Again, this solution is not unique.

2. Correct Characterization

For the full characterization of the set of solutions to Equation (1), initially the problem is looked at
from a geometrical point of view (cf., Campbell and Atchley, 1981). It is assumed that the number
of samples N is smaller than or equal to the feature dimensionality n. In the undersampled case, it
is clear that all data variation occurs in an N−1-dimensional subspace of the original space.

To start with, a PCA of the data is carried out and the first N − 1 principal components are
rotated to the first N− 1 axes of the n-dimensional space by means of a rotation matrix R. This
matrix consists of all (normalized) eigenvectors of ST taken as its columns. After this rotation, new
total and between-class covariance matrices, S′T = RtSTR and S′B = RtSBR, are obtained. These
matrices can be partitioned as follows: S′T =

(
ΣT 0
0 0

)
and S′B =

(
ΣB 0
0 0

)
, where ΣT and ΣB are N−1×

N−1 covariance matrices and ΣT is nonsingular and diagonal by construction. The between-class
variation is obviously restricted to the N−1-dimensional subspace in which the total data variation
takes place, therefore a same partitioning of S′B is possible. However, the covariance submatrix
ΣB is not necessarily diagonal, neither does it have to be nonsingular. Basically, the PCA-based
rotation R converts the initial problem into a more convenient one, splitting up the original space in
an N−1-dimensional one in which “everything interesting” takes place and a remaining n−N+1-
dimensional subspace in which “nothing happens at all”.

Now consider F1 in this transformed space and take a general n× d transformation matrix A,
which is partitioned in a way similar to the covariance matrices, that is,

A=
(
X
Y

)
. (2)

Here, X is an N−1×d-matrix and Y is of size n−N+1×d. Taking this definition, the following
holds (cf., Ye, 2005):

F1(A) = tr((AtS′TA)+(AtS′BA)) = tr

(((
X
Y

)t(ΣT 0
0 0

)(
X
Y

))+ ((
X
Y

)t(ΣB 0
0 0

)(
X
Y

)))

=tr

((
XtΣTX 0
0 0

)+ (
XtΣBX 0
0 0

))
= tr

((
(XtΣTX)−1 0

0 0

)(
XtΣBX 0
0 0

))

= tr((XtΣTX)−1(XtΣBX)) = F0(X) .

From this it is immediate that a matrix A maximizes F1 if and only if the submatrix X maximizes
the original Fisher criterion in the lower-dimensional subspace. Moreover, if L is such a matrix
maximizing F1 in the PCA-transformed space, it is easy to check that R−1L = RtL provides a
solution to the original, general problem that has not been preprocessed by means of a PCA (see
also Fukunaga, 1990). A characterization of the complete family of solutions can now be given.

Let Λ ∈ RN−1×d be an optimal solution of F0(X) = tr((XtΣTX)−1(XtΣBX)). As already noted
in Section 1, the full set of solutions is given byF = {ΛZ∈RN−1×d |Z∈GLd(R)}, where GLd(R)
denotes the general linear group of d× d invertible matrices. The previous paragraph essentially
demonstrates that if X ∈ F , A in Equation (2) maximizes F1. The matrix Y can be chosen ad

2122

COMPLETE CHARACTERIZATION OF A FAMILY OF SOLUTIONS

libitum. Now, the latter provides the solution in the PCA-transformed space and to solve the general
problem we need to take the rotation back to the original space into account. All in all, this leads to
the following complete family of solutionsL , maximizing F1 in the original space:

L =
{
Rt

(
ΛZ
Y

)
∈ Rn×d

∣∣∣Z ∈ GLd(R),Y ∈ Rn−N+1×d
}

, (3)

where Λ= argmaxX tr((XtΣTX)−1(XtΣBX)) and Rt takes care of the rotation back.

3. Original Characterization

Though not noted by Ye (2005), his attempt to characterize the full set of solutions of Equation (1)
is based on a simultaneous diagonalization of the three covariance matrices SB, SW , and ST that is
similar to the ideas described by Campbell and Atchley (1981) and Fukunaga (1990). Moreover,
Golub and Van Loan (Theorem 8.7.1. 1996) can be readily applied to demonstrate that such si-
multaneous diagonalization is possible in the small sample setting. After the diagonalization step,
partitioned between-class, pooled within-class, and total covariance matrices are considered. This
partitioning is similar to the one employed in the previous section, which does not enforce matrices
to be diagonal however.

In the subsequent optimization step, the classical Fisher criterion is maximized basically in the
appropriate subspace, comparable to the approach described above, but in a mildly more involved
and concealed way. For this, matrices of the form Rt

(X
Y
)
are considered, consider Equations (2) and

(3). However, Y is simply the null matrix and the family of solutionsL ′ provided is limited to

L ′ =
{
Rt

(
ΛZ
0

)
∈ Rn×d

∣∣∣Z ∈ GLd(R)
}

.

Obviously, this is far from a complete characterization, especially when N− 1$ n which is, for
instance, typically the case for the data sets considered by Ye (2005).

Generally, the utility of a dimensionality reduction criterion, without additional constrains, de-
pends on the efficiency over the full set of solutions. As Ye (2005) only considers two very specific
instances from the large class of possibilities, it is unclear to what extent the new criterion really
provides an efficient way of performing a reduction of dimensionality.

References

N. A. Campbell andW. R. Atchley. The geometry of canonical variate analysis. Systematic Zoology,
30(3):268–280, 1981.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 1990.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, third
edition, 1996.

J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on under-
sampled problems. Journal of Machine Learning Research, 6:483–502, 2005.

2123

Journal of Machine Learning Research 8 (2007) 2125-2167 Submitted 11/06; Revised 4/07; Published 9/07

Transfer Learning via Inter-Task Mappings
for Temporal Difference Learning

Matthew E. Taylor MTAYLOR@CS.UTEXAS.EDU
Peter Stone PSTONE@CS.UTEXAS.EDU
Yaxin Liu YXLIU@CS.UTEXAS.EDU
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

Editor:Michael L. Littman

Abstract
Temporal difference (TD) learning (Sutton and Barto, 1998) has become a popular reinforcement
learning technique in recent years. TD methods, relying on function approximators to generalize
learning to novel situations, have had some experimental successes and have been shown to exhibit
some desirable properties in theory, but the most basic algorithms have often been found slow in
practice. This empirical result has motivated the development of many methods that speed up re-
inforcement learning by modifying a task for the learner or helping the learner better generalize to
novel situations. This article focuses on generalizing across tasks, thereby speeding up learning,
via a novel form of transfer using handcoded task relationships. We compare learning on a com-
plex task with three function approximators, a cerebellar model arithmetic computer (CMAC), an
artificial neural network (ANN), and a radial basis function (RBF), and empirically demonstrate
that directly transferring the action-value function can lead to a dramatic speedup in learning with
all three. Using transfer via inter-task mapping (TVITM), agents are able to learn one task and
then markedly reduce the time it takes to learn a more complex task. Our algorithms are fully
implemented and tested in the RoboCup soccer Keepaway domain.

This article contains and extends material published in two conference papers (Taylor and
Stone, 2005; Taylor et al., 2005).
Keywords: transfer learning, reinforcement learning, temporal difference methods, value function
approximation, inter-task mapping

1. Introduction

Machine learning has traditionally been limited to training and testing on the same distribution
of problem instances. However, humans are able to learn to perform well in complex tasks by
utilizing principles learned in previous tasks. Few current machine learning methods are able to
transfer knowledge between pairs of tasks, and none are able to transfer between a broad range of
tasks to the extent that humans are. This article presents a new method for transfer learning in the
reinforcement learning (RL) framework using temporal difference (TD) learning methods (Sutton
and Barto, 1998), whereby an agent can learn faster in a target task after training on a different,
typically less complex, source task.

TD learning methods have shown some success in many reinforcement learning tasks because of
their ability to learn where there is limited prior knowledge and minimal environmental feedback.

c©2007 Matthew E. Taylor, Peter Stone and Yaxin Liu.

TAYLOR, STONE AND LIU

However, the basic unenhanced TD algorithms, such as Q-Learning (Watkins, 1989) and Sarsa
(Rummery and Niranjan, 1994; Singh and Sutton, 1996), have been found slow to produce near-
optimal behaviors in practice. Many techniques exist (Selfridge et al., 1985; Colombetti and Dorigo,
1993; Asada et al., 1994) which attempt, with more or less success, to speed up the learning process.
Section 9 will discuss in depth how our transfer learning method differs from other existing methods
and can potentially be combined with them if desired.

In this article we introduce transfer via inter-task mapping (TVITM), whereby a TD learner
trained on one task with action-value functionRL can learn faster when training on another task with
related, but different, state and action spaces. TVITM thus enables faster TD learning in situations
where there are two or more similar tasks. This transfer formulation is analogous to a human
being told how a novel task is related to a known task, and then using this relation to decide how
to perform the novel task. The key technical challenge is mapping an action-value function—the
expected return or value of taking a particular action in a particular state—in one representation
to a meaningful action-value function in another, typically larger, representation. It is this transfer
functional which defines transfer in the TVITM framework.

In stochastic domains with continuous state spaces, agents will rarely (if ever) visit the same
state twice. It is therefore necessary for learning agents to use function approximation when esti-
mating the action-value function. Without some form of approximation, an agent would only be able
to predict a value for states that it had previously visited. In this work we are primarily concerned
with a different kind of generalization. Instead of finding similarities between different states, we
focus on exploiting similarities between different tasks.

The primary contribution of this article is an existence proof that there are domains in which it
is possible to construct a mapping between tasks and thereby speed up learning by transferring an
action-value function. This approach may seem counterintuitive initially: the action-value function
is the learned information which is directly tied to the particular task it was learned in. Neverthe-
less, we will demonstrate the efficacy of using TVITM to speed up learning in agents across tasks,
irrespective of the representation used by the function approximator. Three different function ap-
proximators (as defined in Section 4.3), a CMAC, an ANN, and an RBF, are used to learn a single
reinforcement learning problem. We will compare their effectiveness and demonstrate why TVITM
is promising for future transfer studies.

The remainder of this article is organized as follows. Section 2 formally defines TVITM. Sec-
tion 3 gives an overview of the tasks over which we quantitatively test our transfer method. Section 4
gives details of learning in our primary domain, robot soccer Keepaway. Section 5 describes how
we perform transfer in our selected tasks. Sections 6 and 7 present the results of our experiments.
Section 8 discusses some of their implications and future work. Section 9 details other related work
while contrasting our methods and Section 10 concludes.

2. Transfer via Inter-Task Mapping

TVITM is defined for value function reinforcement learners. Thus, to formally define how to use our
transfer method we first briefly review the general reinforcement learning framework that conforms
to the generally accepted notation forMarkov decision processes (MDP) (Puterman, 1994).

In an MDP, there is some set of possible perceptions of the current state of the world, S, and a
learner has an initial starting state, sinitial . An agent’s knowledge of the current state of its environ-
ment from observation, s ∈ S is a vector of k state variables, so that s = 〈x1,x2, . . . ,xk〉. There is a

2126

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

ρ

Environment

Agent

Environment

Agent

a s
Reward
r

Action State
source source source

Source Task Target Task

a s
Reward
r

Action State
target target target

Figure 1: ρ is a functional that transforms a state-action function Q from one task so that it is
applicable in a second task with different state and action spaces.

set of actions, A, which the agent can perform. The reward function, R : S $→ R, maps each state
of the environment to a single number which is the instantaneous reward achieved for reaching the
state. The transition function, T : S×A $→ S, takes a state and an action and returns the state of the
environment after the action is performed. If transitions are non-deterministic the transition function
is a probability distribution function. A learner is able to sense the current state, s, and typically
knows A and what state variables comprise S. However, it does not know R, how it is rewarded for
moving between states, or T , how actions move the agent between states.

A learner chooses which action to take in a given perceived environmental state by using a
policy, π : S $→ A. π is modified by the learner over time to improve performance, the expected
total reward accumulated, and it completely defines the behavior of the learner in an environment.
In the general case the policy can be stochastic. The success of an agent is determined by how
well it maximizes the total reward it receives in the long run while acting under some policy π. An
optimal policy, π∗, is a policy that maximizes the expectation of this value. Any reasonable learning
algorithm attempts to modify π over time so that the agent’s performance approaches that of π∗ in
the limit. Value function reinforcement learning relies on learning a value functionV : S $→R so that
the learner is able to estimate the total discounted reward that would be accumulated frommoving to
state s and then following the current policy π. In practice, the action-value function Q : S×A $→ R
is often learned, which frees the learner from having to explicitly model the transition function.
If the action-value function is optimal (i.e., Q = Q∗), π∗ can be followed by always selecting the
optimal action a, which is the action with the largest value of Q(s,a) in the current state.

In this article we consider the general case where the state features in the source and target
tasks are different (Ssource '= Starget), and/or the actions in the source and target tasks are different
(Asource '= Atarget). To use the learned action-value function from the source task Q(source, f inal) as the
initial action-value function for a TD learner in a target task, we must transform the action-value
function so that it can be directly applied to the new state and action space. This transformed action-

2127

TAYLOR, STONE AND LIU

value function may not provide immediate improvement over acting randomly in the target task, but
it should bias the learner so that it is able to learn the target task faster than if it were learning
without transfer.

A transfer functional ρ(Q) will allow us to apply a policy in a new task (see Figure 1). The
policy transform functional ρ needs to modify the action-value function so that it accepts Starget as
inputs and allows for Atarget to be outputs. A policy generally selects the action which is believed
to accumulate the largest expected total reward; the problem of transforming a policy between two
tasks therefore reduces to transforming the action-value function. Defining ρ to do this correctly is
the key technical challenge to enable general TVITM.

2.1 Constructing a Transfer Functional

Given an arbitrary pair of unknown tasks and no experience in the pair of tasks, one could not hope
to correctly define ρ, the transfer functional (for example, there are certainly pairs of tasks which
have no relationship and thus mastery in one task would not lead to improved performance in the
other). For our transfer method to succeed, not only must the two tasks be related, but we should
be able to characterize how they are related. We represent these relations as a pair of inter-task
mappings, denoted χX and χA . State variables in the target task are mapped via χX to the most
similar state variable in the source task:

χX (xi,target) = x j,source.

Similarly, χA maps each action in the target task to the most similar action in the source tasks:

χA(ai,target) = a j,source.

χX and χA , mappings from the target task to the source task, are used to construct ρ, a transfer
functional from the source task to the target task (see Figure 2). Note that χX and χA are defined only
once for a pair of tasks, while multiple ρs (one for each type of function approximator employed by
our learning agents), are constructed from this single pair of inter-task mappings. In this article we
take χX and χA as given; learning them autonomously is an important goal of future work.

TargetSource

Q’

S’S

Q

A A’
ρ

χ

χ

A

X

Figure 2: χX and χA are mappings from a target to a source task; ρ maps an action-value function
from a source to a target task.

Thus, given χX , χA , and a learned action-value function Qsource, we can create an initial action-
value function Qtarget . The details of ρ depend on the particular function approximators used in the
source and target task. In Sections 5.3 and 5.4 we construct three different ρ functionals from χX

and χA for the RoboCup Soccer Keepaway domain.

2128

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

It may seem counterintuitive that low-level action-value function information is able to speed
up learning across different tasks. Often transfer techniques attempt to abstract knowledge so that
it is applicable to more general tasks. For instance, an agent could be trained to balance a pole on
a cart and then be asked to balance a pair of poles on a cart. An example of abstract knowledge
in this domain would be things like “avoid hitting the end of the track,” “it is better to have the
pole near vertical,” etc. Instead of trying to transfer higher level information about a source task
into a target task, we instead focus on information contained in individual weights within function
approximators. In this example, such weights which would contain specific information such as
how fast to move the cart to the left when a pole was at a particular angle. Weights that encode
this type of low level knowledge are the most task-specific part of the learner’s knowledge, but it
is exactly these domain-dependant details that allow us to achieve significant speedups on similar
tasks.

2.2 Evaluation of Transfer

There are many possible ways to measure the effectiveness of transfer, including:

1. Asymptotic Performance: Measure the performance after convergence in the target task.

2. Initial Performance: Measure the initial performance in the target task.

3. Total Reward: Measure the total accumulated reward during training in the target task.

4. Area Ratio: Measure the area between the transfer and non-transfer learning curves.

5. Time-to-Threshold: Measure the time needed to reach a performance threshold in the target
task.

This section discusses these five different testing criteria and argues that the time-to-threshold metric
is most appropriate for evaluating TVITM in our experimental domain.

One could examine the asymptotic performance of a learned policy. Such a metric would com-
pare the average reward achieved after learning both with and without transfer. Leveraging source
task knowledge may allow a learner to reach a higher asymptote, but it may be difficult to tell
when the learner has converged, and convergence may take prohibitively long. Additionally, in
applications of reinforcement learning we are often interested in the time required, not simply the
performance of a learner with infinite time. Lastly, it is not uncommon for different learners to con-
verge to the same asymptotic performance on a given task, making them indistinguishable in terms
of the asymptotic performance metric.

A second measure of transfer is to look at the initial performance in a target task. Learned
source task knowledge may be able to improve initial target task performance relative to learning
the target task without transfer. While such an initial performance boost is appealing, we argue
in Section 6 that this goal may often be infeasible to achieve in practice. Further, because we are
primarily interested in the learning process of agents in pairs of tasks, it makes sense to concentrate
on the rate of learning in the target task.

A third possible measure is that of the total reward accumulated during training. By measuring
the total reward over some amount of training, we are able to quantify how much reward the agent
accumulates in a certain amount of time. Transfer may allow an agent to accumulate more reward in

2129

TAYLOR, STONE AND LIU

the target task when compared to the non-transfer case; better initial performance and faster learn-
ing would help agents achieve more on-line reward. TD methods are not guaranteed to converge
with function approximation and even when they do, learners do not always converge to the same
performance levels. If the time considered is long enough, a learning method which achieves very
fast learning will “lose” to a learning method which learns very slowly but eventually plateaus at a
slightly higher performance level. Thus this metric is most appropriate for tasks that have a defined
time limit for learning. However, it is more common to think of learning until some performance is
reached (if ever), rather than specifying the amount of time, computational complexity, or sample
complexity a priori.

A fourth measure of transfer efficacy is that of the ratio of the areas defined by two learning
curves. Consider two learning curves: one that uses transfer, and one that does not. Assuming that
the transfer learner is able to learn faster or reach a higher performance, the area under the transfer
curve will be greater than the area under the non-transfer curve. The ratio

r =
area under curve with transfer - area under curve without transfer

area under curve without transfer

gives us a metric for how much transfer improves learning. This metric is most appropriate if the
same eventual performance is achieved, or there is a predetermined time for the task. Otherwise
the ratio will directly depend on the length of time considered for the two curves. In the tasks we
consider, the learners that use transfer and the learners that learn without transfer do not always
plateau to the same performance, nor is there a defined task length.

Transfer
Training without Training after

Transfer Time
Total Training

Tr
ai

ni
ng

 T
im

e
Re

qu
ire

d

Tr
ai

ni
ng

 T
im

e
Re

qu
ire

d

Target Task Training Time Total Training Time

Transfer
Training without

Target Task Time (no Transfer)

Target Task Time (after Transfer)

Source Task Time

Figure 3: In this article we evaluate transfer by both considering the training time in the target task
(left) and by considering the total time spent training in both tasks (right).

For these reasons we use the time-to-threshold metric. After preliminary experiments are con-
ducted, thresholds for analysis are chosen such that all trials must learn for some amount of time
before reaching the performance threshold, and most trials are able to eventually reach the thresh-
old. We will show in Section 6 that given a Q(source, f inal), the training time for the learner in the
target task to reach some performance threshold decreases when initializing Q(target,initial) with
ρ(Q(source, f inal)). This criterion is relevant when the source task is given and is of interest in its
own right or if Q(source, f inal) can be used repeatedly to speed up multiple related tasks (see Figure 3).

2130

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

A stronger measure of success that we will also use is that the training time for both tasks using
TVITM is shorter than the training time to learn just the target task without transfer. This criterion is
relevant when the source task is created for the sole purpose of speeding up learning with transfer
and Q(source, f inal) is not reused.

3. Testbed Domains

This section introduces the Keepaway task, the testbed domain where we empirically evaluate our
transfer method, and use as a running example throughout the rest of the article. We also introduce
the Knight Joust, a task which we will later use as a supplemental source task from which to transfer
into Keepaway.

3.1 The Keepaway Task

RoboCup simulated soccer is well understood, as it has been the basis of multiple international
competitions and research challenges. The multiagent domain incorporates noisy sensors and actu-
ators, as well as enforcing a hidden state so that agents only have a partial world view at any given
time. While previous work has attempted to use machine learning to learn the full simulated soccer
problem (Andre and Teller, 1999; Riedmiller et al., 2001), the complexity and size of the problem
have so far proven intractable. However, many of the RoboCup subproblems have been isolated and
solved using machine learning techniques, including the task of playing Keepaway. By focusing
on the smaller task of Keepaway we are able to use reinforcement learning to learn an action-value
function for a more complex task, establish that TVITM provides considerable benefit, and hold the
required computational resources to manageable levels.

Since late 2002, the Keepaway task has been part of the official release of the open source
RoboCup Soccer Server used at RoboCup (starting with version 9.1.0). Agents in the simulator
(Noda et al., 1998) receive visual perceptions every 150 msec indicating the relative distance and
angle to visible objects in the world, such as the ball and other agents. They may execute a primitive,
parameterized action such as turn(angle), dash(power), or kick(power,angle) every 100msec.
Thus the agents must sense and act asynchronously. Random noise is injected into all sensations
and actions. Individual agents must be controlled by separate processes, with no inter-agent com-
munication permitted other than via the simulator itself, which enforces communication bandwidth
and range constraints. Full details of the simulator are presented in the server manual (Chen et al.,
2003).

When started in a special mode, the simulator enforces the rules of the Keepaway task, as
described below, instead of the rules of full soccer. In particular, the simulator places the players at
their initial positions at the start of each episode and ends an episode when the ball leaves the play
region or is taken away. In this mode, the simulator also informs the players when an episode has
ended and produces a log file with the duration of each episode.

Keepaway is a subproblem of RoboCup simulated soccer in which one team—the keepers—
attempts to maintain possession of the ball within a limited region while another team—the takers—
attempts to steal the ball or force it out of bounds, ending an episode. Whenever the takers take
possession or the ball leaves the region, the episode ends and the players are reset for another
episode (with the keepers being given possession of the ball again). Standard parameters of the task
include the size of the region, the number of keepers, and the number of takers. Other parameters
such as player speed, player kick speed, player vision capabilities, sensor noise, and actuator noise,

2131

TAYLOR, STONE AND LIU

are all adjustable. This paper will use standard settings with the exception of a set of experiments
in Section 7.1 that uses different kick speed actuators. Figure 4 shows a diagram of 3 keepers and 2
takers (3 vs. 2).1

b. dist(K1,K2)
c. dist(K1,K3)
d. dist(K1,T1)
e. dist(K1,T2)
f. dist(K2,C)
g. dist(K2.T1)
h. dist(K2,T2)
i. dist(K3,C)
j. dist(K3,T1)

l. dist(T1,C)
m. dist(T2,C)
n. ang(K2,K1,T1)
o. ang(K2,K1,T2)
p. ang(K3,K1,T1)
q. ang(K3,K1,T2)

Ball

K1
K2

T1

K3

a. dist(K1,C)
b

d

e
g

k. dist(K3,T2)

c
j

l
a

T2

ki

m

hf

Center of field

q n
o

p

Figure 4: This diagram depicts the distances and angles used to construct the 13 state variables used
for learning with 3 keepers and 2 takers. Relevant objects are the 5 players and the center
of the field, C. All 13 state variables are enumerated later in Table 1.

When Keepaway was introduced as a testbed (Stone and Sutton, 2002), a standard task was
defined. All our experiments are run on a code base derived from version 0.6 of the benchmark
Keepaway implementation2 (Stone et al., 2006) and the RoboCup Soccer Server version 9.4.5.

Our setup is similar to past research in Keepaway (Stone et al., 2005), which showed that Sarsa
with CMAC function approximation can learn well in this domain. On a 25m× 25m field, three
keepers are initially placed near three corners of the field and a ball is placed near one of the keepers.
The two takers are placed in the fourth corner. When the episode starts, the three keepers attempt
to keep control of the ball by passing among themselves and moving to open positions. The keeper
with the ball has the option to either pass the ball to one of its two teammates or to hold the ball.
In this task A = {hold, pass to closest teammate, pass to second closest teammate}. S is defined by
13 state variables, as shown in Figure 4. When a taker gains control of the ball or the ball is kicked
out of the field’s bounds the episode is finished. The reward to the learning algorithm is the number
of time steps the ball remains in play after an action is taken. After an episode ends, the next starts
with a random keeper placed near the ball.

3.2 Knight Joust

Knight Joust is a variation on a previously introduced task (Taylor and Stone, 2007) situated in the
grid world domain. In this task the player begins on one end of a 25m× 25m board, the opponent
begins on the other, and the players alternate moves. The player’s goal is to reach the opposite

1. Flash files illustrating the task are available at http://www.cs.utexas.edu/˜AustinVilla/sim/Keepaway/.
2. Released players are available at http://www.cs.utexas.edu/˜AustinVilla/sim/Keepaway/.

2132

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

E

N

W

S

Start

Goal

dist(P,O)

ang(West) ang (East)

Player

Opponent

Figure 5: Knight Joust: The player attempts to reach the goal end of a a 25 × 25 grid-world while
the opponent attempts to touch the player.

end of the board without being touched by the opponent (see Figure 5); the episode ends if the
player reaches the goal line or the opponent is on the same square as the player. The state space
is discretized into 1m squares and there is no noise in the perception. The player’s state variables
are composed of the distance from the player to the opponent, and two angles which describe how
much of the goal line is viewable by the player.

The player may deterministically move one square North or perform a knight’s jump where the
player moves one square North and two West or two East: A = {Forward, JumpW , JumpE}. The
opponent follows a fixed stochastic policy which allows it to move in any of the 8 directions. Given
the start state and size of the board, an opponent that acted optimally would always prevent the
player from reaching the goal line. In order to allow the player to reach the goal line with a learned
policy, we restrict the opponent’s motion so that 10% of the time, when it attempts to move East or
West, it fails. 20% of the time, when it attempts to move North, it fails (the opponent never fails
when it attempts to move South). These movement failure probabilities were selected after initial
experiments showed that this opponent policy generally prevented the player from reaching the goal
before training but allowed the player to reach the goal line with a high probability after learning
with Sarsa. The opponent’s policy is as follows:

2133

TAYLOR, STONE AND LIU

if opponent is E of player then
Move W with probability 0.9
else if opponent is W of player then
Move E with probability 0.9
if opponent is N of player then
Move S with probability 1.0
else if opponent is S of player then
Move N with probability 0.8

The player receives a reward of +20 every time it takes the forward action, 0 if either knight
jump action is taken, and an additional+20 upon reaching the goal line. The player uses Sarsa with
a Q-value table to learn in this task. While this task is quite different from Keepaway, there are some
similarities, such as favoring larger distances between player and opponent. This domain is much
simpler than Keepaway and an agent takes roughly 20 seconds of wall-clock time (roughly 50,000
episodes) to plateau in our Java-based simulation.

4. Learning Keepaway

TVITM aims to improve learning in the target task based on prior learning in the source, and therefore
a prerequisite is that both source and target tasks are learnable. In this section we outline how tasks
in the Keepaway domain are learned using Sarsa.

4.1 Sarsa

Sarsa is a TD method that learns to estimate the action-value function by backing up the received
rewards through time. Sarsa is an acronym for State Action Reward State Action, describing the
5-tuple needed to perform the update: (st ,at ,r,st+1,at+1), where st , at are the the agent’s current
state and action, r is the immediate reward the agent receives from the environment, and st+1, at+1
are the agent’s subsequent state and chosen action. After each action, action values are updated
according to the following rule:

Q(st ,at) ← (1−α)Q(st ,at)+α(r+Q(st+1,at+1)) (1)

where α is the learning rate. Note that if the task is non-episodic we need to include an extra
discount factor to weigh immediate rewards more heavily than future rewards.

Like other TD methods, Sarsa estimates the value of a given state-action pair by bootstrapping
off the estimates of other such pairs. In particular, the value of a given state-action pair (st ,at) can be
estimated as r+Q(st+1,at+1), which is the value of the subsequent state-action pair (st+1,at+1) plus
the immediate reward received during the transition. Sarsa’s update rule takes the old action-value
estimate Q(st ,at), and moves it incrementally closer towards this new estimate. The learning rate
parameter α controls the size of these increments. Ideally, these action-value estimates will become
more accurate over time and the agent’s policy will steadily improve.

4.2 Framing the RL Problem

As described by Stone et al. (2005), the Keepaway problem maps fairly directly onto the discrete-
time, episodic, reinforcement-learning framework. As a way of incorporating domain knowledge,

2134

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

the learners choose not from the simulator’s primitive actions but from a set of higher-level macro-
actions implemented as part of the player. These macro-actions can last more than one time step and
the keepers have opportunities to make decisions only when an on-going macro-action terminates.
To handle such situations, it is convenient to treat the problem as a semi-Markov decision process,
or SMDP (Puterman, 1994; Bradtke and Duff, 1995). The agents make decisions at discrete SMDP
time steps (when macro-actions are initiated and terminated).

The keepers learn in a constrained policy space: they have the freedom to decide which action
to take only when in possession of the ball. A keeper in possession may either hold the ball or
pass to one of its teammates. Therefore the number of actions from which the keeper with the ball
may choose is equal to the number of keepers in the task. Keepers not in possession of the ball are
required to execute the Receive macro-action in which the player who can reach the ball the fastest
goes to the ball and the remaining players follow a handcoded strategy to try to get open for a pass.

When training the keepers, the behavior of the takers is “hard-wired” and relatively simple. The
two takers that are closest to the ball go directly toward it. Note that a single keeper can hold the
ball indefinitely from a single taker by constantly keeping its body between the ball and the taker.
The remaining takers, if present, try to block open passing lanes.

The keepers learn which action to take when in possession of the ball by using episodic SMDP
Sarsa(λ) (Sutton and Barto, 1998), to learn their task.3 The episode consists of a sequence of states,
macro-actions, and rewards. We choose episode duration as the performance measure for this task:
the keepers attempt to maximize it while the the takers try to minimize it. Since we want the keepers
to maintain possession of the ball for as long as possible, the reward in the Keepaway task is simply
the number of time steps the ball remains in play after a macro-action is initiated. Learning attempts
to discover an optimal action-value function that maps state-action pairs to expected time steps until
the episode will end.

As more players are added to the task, Keepaway becomes harder for the keepers because the
field becomes more crowded. As more takers are added there are more players to block passing
lanes and chase down any errant passes. As more keepers are added, the keeper with the ball has
more passing options but the average pass distance is shorter. This reduced distance forces more
passes and often leads to more errors because of the noisy actuators and sensors. For this reason,
keepers in 4 vs. 3 (i.e., 4 keepers and 3 takers) take longer to learn an optimal control policy than in
3 vs. 2. The average episode length of the best policy for a constant field size also decreases when
adding an equal number of keepers and takers. The time needed to learn a policy with performance
roughly equal to a handcoded solution roughly doubles as each additional keeper and taker is added
(Stone et al., 2005). In our experiments we set the agents to have a 360◦ field of view. Although
agents do also learn with a more realistic 90◦ field of view, allowing the agents to see 360◦ speeds
up the rate of learning, enabling more experiments. Additionally, 360◦ vision also increases the
learned hold times in comparison to learning with the limited 90◦ vision.

For the purposes of this article, it is particularly important to note the state variables and ac-
tion possibilities used by the learners. The keepers’ states consist of distances and angles of the
keepers K1−Kn, the takers T1−Tm, and the center of the playing region C (see Figure 4 and Ta-
ble 1). Keepers and takers are ordered by increasing distance from the ball, leading to an indexical
representation. Note that as the number of keepers n and the number of takers m increase, the num-
ber of state variables also increases so that the more complex state can be fully described. S must

3. In previous experiments we found that setting λ= 0 produced the best learning results and “Sarsa(0)” is synonymous
with “Sarsa.”

2135

TAYLOR, STONE AND LIU

3 vs. 2 State Variables
State Variable Description
dist(K1,C) Distance from keeper with ball to center of field
dist(K1,K2) Distance from keeper with ball to closest teammate
dist(K1,K3) Distance from keeper with ball to second closest teammate
dist(K1,T1) Distance from keeper with ball to closest taker
dist(K1,T2) Distance from keeper with ball to second closest taker
dist(K2,C) Distance from closest teammate to center of field
dist(K3,C) Distance from second closest teammate to center of field
dist(T1,C) Distance from closest taker to center of field
dist(T2,C) Distance from second closest taker to center of field

Min(dist(K2,T1), dist(K2,T2) Distance from nearest teammate to its nearest taker
Min(dist(K3,T1), dist(K3,T2) Distance from second nearest teammate to its nearest taker

Min(ang(K2,K1,T1), Angle of passing lane from keeper with ball to
ang(K2,K1,T2) closest teammate

Min(ang(K3,K1,T1), Angle of passing lane from keeper with ball to
ang(K3,K1,T2) second closest teammate

Table 1: This table lists all state variables used for representing the state of 3 vs. 2 Keepaway. Note
that the state is ego-centric for the keeper with the ball and rotationally invariant.

change (e.g., there are more distances to players to account for) and |A| increases as there are more
teammates for the keeper with possession of the ball to pass to.

4.3 Function Approximation

Continuous state variables combined with noise necessitate some form of function approximation
for the action-value function: an agent will rarely visit the same state twice, with the possible
exception of an initial start state. In this article we use three distinct function approximators and
show that all are able to learn Keepaway, as well as use our transfer methodology (see Figure 6).
In one implementation, we use linear tile-coding function approximation, also known as a CMAC
(cerebellar model arithmetic computer), which has been successfully used in many reinforcement
learning systems (Albus, 1981), including past Keepaway research (Stone et al., 2005). A second
uses radial basis function approximation (RBF) (Sutton and Barto, 1998). The third implementation
uses artificial neural networks (ANN), another method for function approximation that has had some
notable past successes (Tesauro, 1994; Crites and Barto, 1996).

A CMAC takes arbitrary groups of continuous state variables and lays infinite, axis-parallel
tilings over them. Using this method we are able to discretize the continuous state space by using
tilings while maintaining the capability to generalize via multiple overlapping tilings. Increasing the
tile widths allows better generalization while increasing the number of tilings allows more accurate
representations of smaller details. The number of tiles and width of the tilings are handcoded: this
sets the center, ci, of each tile and dictates which state values will activate which tiles. The function
approximation is learned by changing how much each tile contributes to the output of the function
approximator. Thus, the output from the CMAC is the computed sum:

2136

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Figure 6: Function approximation is necessary for agents interacting with a continuous world. This
article examines three different function approximators for Keepaway but many different
methods could in principle be used by a transfer learner.

f̂ (x) =∑
i
wi fi(x) (2)

but only tiles which are activated by the current state feature contribute to the sum:

fi(x) =
{
1, if tile i is activated
0, otherwise.

By default, all the CMAC’s weights are initialized to zero. This approach to function approx-
imation in the RoboCup soccer domain has been detailed previously (Stone et al., 2005). We use
one-dimensional tilings so that each state variable is tiled independently, but the principles apply in
the n-dimensional case. For each variable, 32 tilings were overlaid, each offset from the others by
by 1

32 of a tile width. For each tiling, the current state activates a single tile. In 3 vs. 2, there are
32 tiles active for each state variable and 13×32 = 416 tiles activated in total. The tile widths are
defined so that the distance state features have a width of roughly 3.0 meters and tiles for angle state
features are roughly 10.0 degrees. In this work we do not vary these settings but set them to agree
with past work.

RBF function approximation is a generalization of the tile coding idea to continuous functions
(Sutton and Barto, 1998) and their application in Keepaway have been introduced elsewhere (Stone
et al., 2006). When considering a single state variable, an RBF approximator is a linear function
approximator:

f̂ (x) =∑
i
wi fi(x) (3)

where the basis functions have the form:

fi(x) = φ(|x− ci|) (4)

x is the value of the current state variable, ci is the center of feature i (which is unchanged from
the CMAC, Equation 2), and wi represents weights that can be modified over time by a learning
algorithm. Here we set the features to be evenly spaced Gaussian radial basis functions, where:

φ(x) = exp(− x2

2σ2
). (5)

2137

TAYLOR, STONE AND LIU

The σ parameter controls the width of the Gaussian function and therefore the amount of gener-
alization over the state space. We set σ to 0.25, which roughly spans the width of three CMAC
tiles, after running experiments with σ = 1.0,0.5,0.25 and observing that the learning rates were
not dramatically effected.

As we did with the CMAC, we again assume that the state variables are independent and thus
have one set of linearly tiled RBFs for each state variable. Similar to the CMAC implementation,
all state variables are tiled independently and there are 32 tilings for each state variable. The RBFs
in every tiling are spaced so that their centers correspond to the centers of CMAC tiles. We use
Equations 3-5 to calculate Q-values of a state s. Because σ specifies that the spread of a RBF is
roughly 3 CMAC tiles, each 3 vs. 2 state will thus be computed from approximately 3×13×32=
1248 weights in total. All weights wi are initially set to zero, but over time learning updates changes
the values of the weights so that the resulting Q-values more closely predict the true returns, as
specified by Equation 1.

The ANN function approximator similarly allows a learner to approximate the action-value
function, given a set of continuous, real valued, state variables. Each input to the ANN is set to the
value of a state variable and the output corresponds to an action. Activations of the output nodes
correspond to Q values. We use a fully-connected feedforward network with a single hidden layer
of 20 sigmoid units for all our tasks. The output layer nodes are linear and return the currently
predicted Q(s,a) for each action. Weights were initialized with uniformly random numbers chosen
from [0,1.0]. We had also tried initializing the weights uniformly to 0 and from [0,0.01], with little
effect on learning rates. This network topology was selected after testing 7 different sizes of hidden
layers, from 5 to 30 hidden units. Again, the learning rate did not seem to be strongly affected by
this parameter. The network is trained using standard backpropagation where the error signal to
modify weights is generated by the Sarsa algorithm, as with the other function approximators.

4.4 Learning 3 vs. 2 Keepaway

To learn 3 vs. 2 Keepaway as a source task for transfer, all weights in the CMAC and RBF function
approximators are initially set to zero; every initial state-action value is thus zero and our action-
value function is uniform. All weights and biases in the 13-20-3 feedforward ANN are set to small
random numbers to encourage faster backprop training (Mehrotra et al., 1997) but the initial action-
value is still nearly uniform. As training progresses, the weights of the function approximators are
changed by Sarsa so that the average hold time of the keepers increases.

In our experiments we set the learning rate, α, to be 0.1 for the CMAC function approximator,
as in previous experiments. α was 0.05, and 0.125 for the RBF and ANN function approximators,
respectively. These values were determined after trying approximately five different learning rates
for each function approximator. The exploration rate, ε, was set to 0.01 (1%) in all experiments and
λ was set to 0, which we selected to be consistent with past work (Stone et al., 2005).

4.5 Learning 4 vs. 3 Keepaway and 5 vs. 4 Keepaway without Transfer

Holding the field size constant we now add an additional keeper and an additional taker to generate
the 4 vs. 3 task. All three takers still start in a single corner. Three keepers start in each of the
other three corners and the fourth keeper begins an episode at the center of the field. R and T are
effectively unchanged from 3 vs. 2 Keepaway, but now A = {hold, pass to closest teammate, pass

2138

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

to second closest teammate, pass to third closest teammate}, and S is made up of 19 state variables
due to the added players.

It is also important to point out that the addition of an extra taker and keeper in 4 vs. 3 results
in a qualitative change in the task. In 3 vs. 2 both takers must go towards the ball as two takers are
needed to capture the ball from the keeper. However, the third taker is now free to roam the field and
attempt to intercept passes. This necessarily changes the keeper behavior as one teammate is often
blocked from receiving a pass by this new taker. Furthermore, adding a keeper in the center of the
field changes the start state significantly as now the keeper that starts with the ball has a teammate
that is closer to itself, but is also closer to the takers.

In order to quantify how fast an agent in 4 vs. 3 learns, we set a target performance of 10.0
seconds for ANN learners, while CMAC and RBF learners have a target of 11.5 seconds. These
threshold times are chosen so that learners are able to consistently attain the performance level
without transfer, but players using TVITM must also learn and do not initially perform above the
threshold. CMAC and RBF learners are able to learn better policies than the ANN learners and thus
have higher threshold values. When a group of four CMAC keepers has learned to hold the ball
from the three takers for an average of 11.5 seconds over 1,000 episodes we say that the keepers
have sufficiently learned the 4 vs. 3 task. Thus agents learn until the on-line reward of the keepers,
averaged over 1,000 episodes, with exploration, passes a set threshold.4 In 4 vs. 3, it takes a set of
four keepers using CMAC function approximators 30.8 simulator hours (roughly 15 hours of wall-
clock time, or 12,000 episodes) on average to learn to hold the ball for 11.5 seconds when training
without transfer. By comparison, in 3 vs. 2, it takes a set of three keepers using CMAC function
approximators 5.5 hours on average to learn to hold the ball for 11.5 seconds when training without
transfer.

The ANN used in 4 vs. 3 is a 19-20-4 feedforward network.5 The ANN learners do not learn as
quickly nor achieve as high a performance before learning plateaus and therefore we use a threshold
of 10.0 seconds. (After training four keepers using ANN function approximation without transfer
in 4 vs. 3 for over 80 hours, the average hold time was only 10.3 seconds.)

5 vs. 4 is harder than 4 vs. 3 for the same reasons that 4 vs. 3 is more difficult than 3 vs. 2. In
5 vs. 4 three keepers are again placed in three corners and the two remaining keepers are placed in
the middle of the 25m× 25m field. All four takers are placed in the fourth corner. There are now
five actions: {hold, pass to closest teammate, pass to second closest teammate, pass to third closest
teammate, pass to fourth closest teammate}, and 25 state variables. In 5 vs. 4, it takes a set of five
keepers using CMAC function approximators 59.9 hours (roughly 24,000 episodes) on average to
learn to hold the ball for 11.5 seconds when training without transfer. In this paper we investigate
the 5 vs. 4 problem only with the CMAC function approximator.

5. Transfer via Inter-Task Mapping in Keepaway

Having introduced our testbed domain and baseline learning approaches, we can now show how
TVITM is performed in Keepaway, utilizing terminology described in Section 2. Recall that TVITM

4. We begin each trial by following the initial policy for 1,000 episodes without learning (and therefore without counting
this time towards the learning time). This enables us to assign a well-defined initial performance when we begin
learning because there already exist 1,000 episodes to average over.

5. Again, other networks with different numbers of hidden units were tried, but the differences in learning times were
not significant.

2139

TAYLOR, STONE AND LIU

relies on a functional ρ that is able to transfer an action-value function from a source task into a
target task with different state and action spaces. ρ is built from the inter-task mappings χX and χA ,
and thus this section begins by defining these two mappings and then describing how they are used
to generate different ρs.

In the Keepaway domain, A and S are determined by the current Keepaway task and thus differ
from instance to instance. sinitial , R, and T , though formally different, are effectively constant across
tasks. When S and A change, sinitial , R, and T change by definition because they are functions
defined over S and A, but in practice R is always defined as +1 for every time step that the keepers
maintain possession, and sinitial and T are always defined by the RoboCup soccer simulation.

5.1 Defining χX and χA for 4 vs. 3 Keepaway and 3 vs. 2 Keepaway

In the Keepaway domain we are able to intuit the inter-task mappings between states and actions
in the two tasks based on our knowledge of the domain. Our choice for the mappings is supported
by empirical evidence in Section 6 showing that using these mappings do allow us to construct
transfer functions that successfully reduce training time. In general, the transform may not be so
straightforward, but experimenting in a domain where it is easily defined allows us to focus on
showing the benefits of transfer. This article demonstrates that transfer can be successful when a
mapping is available, while we leave it to future work to show how to best construct (or learn) such
a transform.

We define χA , the inter-task mapping between actions in the two tasks, by identifying actions
that have similar effects on the world state in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, the
action “Hold ball” is equivalent because this action has a similar effect on the world in both tasks.
Likewise, the action “Pass to closest keeper” is analogous in both tasks, as is “Pass to second closest
keeper.” We map the novel target action “Pass to third closest keeper” to “Pass to second closest
keeper” in the source task.

The state variable mapping, χX , is handled with a similar strategy. Each of the 19 state variables
in the 4 vs. 3 task is mapped to a similar state variable in the 3 vs. 2 task. For instance, “Distance
to closest keeper” is the same in both tasks. “Distance to second closest keeper” in the target task is
similar to “Distance to second closest keeper” in the source task. “Distance to third closest keeper”
in the target task is also mapped to “Distance to second closest keeper” in the source task. See
Table 2 for a full description of χX .

Now that χA and χX are defined, relating the state variables and actions in a target task to the
state variables and actions in a source task, we can use them to construct ρs for different internal
representations. The functionals will transfer the learned action-value function from the source task
into the target task. We denote these functionals as ρCMAC, ρRBF , and ρANN for the CMAC, RBF,
and ANN function approximators, respectively.

5.2 Defining χX and χA for 4 vs. 3 Keepaway and Knight Joust

The Knight Joust task is less similar to 4 vs. 3 Keepaway than 3 vs. 2 Keepaway is. There are
many fewer state variables, a less similar transition function, and a very different reward struc-
ture. However, we will show later that information from Knight Joust can significantly improve
the performance of Keepaway players because very basic information, such as that it is desirable to
maximize the distance to the opponent, will initially cause the players to perform better than acting
randomly.

2140

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Description of χX Mapping from 4 vs. 3 to 3 vs. 2
4 vs. 3 state variable 3 vs. 2 state variable
dist(K1,C) dist(K1,C)
dist(K1,K2) dist(K1,K2)
dist(K1,K3) dist(K1,K3)
dist(K1,K4) dist(K1,K3)
dist(K1,T1) dist(K1,T1)
dist(K1,T2) dist(K1,T2)
dist(K1,T3) dist(K1,T2)
dist(K2,C) dist(K2,C)
dist(K3,C) dist(K3,C)
dist(K4,C) dist(K3,C)
dist(T1,C) dist(T1,C)
dist(T2,C) dist(T2,C)
dist(T3,C) dist(T2,C)
Min(dist(K2,T1), dist(K2,T2), dist(K2,T3)) Min(dist(K2,T1), dist(K2,T2))
Min(dist(K3,T1), dist(K3,T2), dist(K3,T3)) Min(dist(K3,T1), dist(K3,T2))
Min(dist(K4,T1), dist(K4,T2), dist(K4,T3)) Min(dist(K3,T1), dist(K3,T2))
Min(ang(K2,K1,T1), ang(K2,K1,T2), Min(ang(K2,K1,T1), ang(K2,K1,T2))
ang(K2,K1,T3))
Min(ang(K3,K1,T1), ang(K3,K1,T2), Min(ang(K3,K1,T1), ang(K3,K1,T2))
ang(K3,K1,T3))
Min(ang(K4,K1,T1), ang(K4,K1,T2), Min(ang(K3,K1,T1), ang(K3,K1,T2))
ang(K4,K1,T3))

Table 2: This table describes the mapping between states in 4 vs. 3 to states in 3 vs. 2. The distance
between a and b is denoted as dist(a,b); the angle made by a, b, and c, where b is the
vertex, is denoted by ang(a,b,c); and values not present in 3 vs. 2 are in bold. Relevant
points are the center of the field C, keepers K1-K4, and takers T1-T3, where players are
ordered by increasing distance from the ball.

Table 3 describes the inter-task mappings used to transfer between Knight Joust and 4 vs. 3
Keepaway. Our hypothesis was that the Knight Joust player would learn to move North when pos-
sible and jump to the side when necessary, which could be similar to holding the ball in Keepaway
when possible and passing when necessary.

5.3 Constructing ρCMAC and ρRBF

The CMAC function approximator takes a state and an action and returns the expected long-term
reward. The learner can evaluate each possible action for the current state and then use π to choose
one. We construct a ρCMAC and use it so that when the learner considers a 4 vs. 3 action, the weights
for the activated tiles are not zero but instead are initialized by Q(3vs2, f inal). To accomplish this, we
copy weights learned in the source CMAC into weights in a newly initialized target CMAC, using
χX and χA . Algorithm 1 describes the process in detail.

2141

TAYLOR, STONE AND LIU

χX : 4 vs. 3 to Knight Joust
4 vs. 3 state variable Knight Joust state variable
dist(K1,T1) dist(P,O)
Min(ang(K2,K1,T1), ang(K2,K1,T2), ang(K2,K1,T3)) ang(West)
Min(ang(K3,K1,T1), ang(K3,K1,T2), ang(K3,K1,T3)) ang(East)
Min(ang(K4,K1,T1), ang(K4,K1,T2), ang(K4,K1,T3)) ang(East)
All other Keepaway variables ø

χA : 4 vs. 3 to Knight Joust
4 vs. 3 action Knight Joust action
Hold Ball Forward
Pass to closest teammate JumpW
Pass to second closest teammate JumpE
Pass to third closest teammate JumpE

Table 3: This table describes the mapping between state variables and actions from 4 vs. 3 to Knight
Joust. Note that the we have made Jump West in the Knight Joust correspond to passing
to K2 and Jump East correspond to passing to K3, but either is reasonable, as long as the
state variables and actions are consistent.

Note that this target CMAC will initially be unable to distinguish between some states and
actions because the inter-task mappings allow duplication of values. For instance, the weights
corresponding to the tiles that are activated for the “Pass to second closest teammate” in the source
task are copied into the weights for the tiles that are activated to evaluate the “Pass to second closest
teammate” action and the “Pass to third closest teammate” in the target task. The 4 vs. 3 agents are
initially unable to distinguish between these two actions. In other words, because the values for the
weights corresponding to the two 4 vs. 3 actions are the same,Q(4vs3,initial) will evaluate both actions
as having the same expected return. The 4 vs. 3 agents will therefore have to learn to differentiate
these two actions as they learn in the target task.

Algorithm 1 APPLICATION OF ρCMAC
1: for each non-zero weight, wi in the source CMAC do
2: xsource ← value of state variable corresponding to tile i
3: asource ← action corresponding to i
4: for each value xtarget such that χX (xtarget) = xsource do
5: for each value atarget such that χA(atarget) = asource do
6: j← the tile in the target CMAC activated by xtarget ,atarget
7: w j ← wi
8: wAverage ← average value of all non-zero weights in the target CMAC
9: for each weight w j in the target CMAC do
10: if w j = 0 then
11: w j ← wAverage

2142

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

As a final step (Algorithm 1, lines 8–11), any weights which have not been initialized by ρCMAC
are set to the average value of all initialized weights. The 3 vs. 2 training was likely not exhaustive
and therefore some weights which may be used in 4 vs. 3 would otherwise remain uninitialized.
Tiles which correspond to every value in the new 4 vs. 3 state vector have thus been initialized to
values determined via training in 3 vs. 2 and can therefore be considered in the computation. This
averaging effect is discussed further in Section 6 and has the effect of allowing agents in the target
task to learn faster.

ρRBF is constructed similarly to ρCMAC. The main difference between the RBF and CMAC
function approximators are how weights are summed together to produces values, but the weights
have similar structure in both function approximators. For a given state variable, a CMAC sums one
weight per tiling. An RBF differs in that it sums multiple weights for each tiling, where weights are
multiplied by the Gaussian function φ(x− ci). Thus when using ρRBF we copy weights following
the same schema as in ρCMAC in Algorithm 1.

5.4 Constructing ρANN

To construct a (fully connected, feedforward) neural network for the 4 vs. 3 target task, the 13-
20-3 network from 3 vs. 2 is first augmented by adding 6 inputs and 1 output node. The weights
connecting inputs 1–13 to the hidden nodes are copied over from the 13-20-3 network. Likewise,
the weights from hidden nodes to outputs 1–3 are copied over to the 19-20-4 network. Weights from
inputs 14-19 to the hidden nodes correspond to the new state variables and are copied over from the
analogous 3 vs. 2 state variable, according to χX . The weights from the hidden nodes to the novel
output are copied over from the analogous 3 vs. 2 action, according to χA . Every weight in the 19-
20-4 network is therefore set to an initial value based on the trained 13-20-3 network. Algorithm 2
describes this process in detail. We define the function ψ to map nodes in the two networks:

ψ(n) =






χX (n), if n is an input
χA(n), if n is an output
δ(n), if n is a hidden node

where a function δ represents the correspondence between these hidden nodes (δ(htarget) = hsource).
In our case the number of hidden nodes used are the same in both tasks. Therefore, in practice
ψ(“nth hidden node in the source network”) = “nth hidden node in the target network.”

Whereas ρCMAC and ρRBF copied many weights (hundreds or thousands, where increasing the
amount of 3 vs. 2 training will increase the number of learned non-zero weights), ρANN always
copies the same number of weights regardless of training. In fact, ρANN initializes only 140 new
weights (in addition to the 320 weights that existed in 3 vs. 2) in the 4 vs. 3 representation and is
therefore in some sense simpler than the other ρs.

Algorithm 2 APPLICATION OF ρANN
1: for each pair of nodes ni,n j in ANNtarget do
2: if link(ψ(ni),ψ(n j)) exists in ANNsource then
3: Set link(ni,n j) in ANNtarget to have weight of link(ψ(ni),ψ(n j)) in ANNsource

2143

TAYLOR, STONE AND LIU

5.5 Q-value Reuse

The three ρs previously introduced are specific to particular function approximators. In this section
we introduce a different approach, Q-value Reuse, to transfer between a source and target. Rather
than initialize a function approximator in the target task with values learned in the source task,
we instead reuse the entire learned source task’s Q-values. A copy of the source task’s function
approximator is retained so that it can calculate the source task’s Q-values for any state, action pair:
QsourceFA : S×A $→ R. When computing Q-values for the target task, we first map the target task
state and action to the source task’s state and action via the inter-task mappings. The computed
Q-value is a combination of the output of the source task’s saved function approximator and the
target task’s current function approximator:

Q(s,a) = QsourceFA(χX (s),χA(a))+QtargetFA(s,a)

Sarsa updates in the target task are computed as normal, but only the target function approximator’s
weights are eligible for updates. Note that if χX (s) or χA(a) were undefined for a certain s,a pair in
the target task, Q(s,a) would equal QtargetFA(s,a).

Q-value Reuse may be considered a type of reward shaping (Colombetti and Dorigo, 1993;
Mataric, 1994): we are able to directly use the expected rewards from the source task to bias the
learner in the target task. This method has two advantages. First, it is not function-approximator
specific, and could, in theory, be used to transfer between different function approximators as well
as between different tasks. Second, there is no initialization step needed between learning the two
tasks. However, drawbacks include an increased lookup time and larger memory requirements.
Such requirements will grow linearly in the number of transfer steps; while they are not substantial
with a single source task, they may become prohibitive when using multiple source tasks or when
performing doing multi-step transfer (such as shown later in Section 7.2).

6. Experimental Results: 3 vs. 2 Keepaway to 4 vs. 3 Keepaway

This section discusses the results of our transfer experiments between the 3 vs. 2 and 4 vs. 3 Keep-
away tasks using our two metrics, training time reduction in the target task and total training time
reduction. Section 6.1 shows the success of transfer when the 3 vs. 2 is used as a source task to learn
4 vs. 3. Section 6.2 includes additional analysis of these results. Section 6.3 demonstrates transfer
between 3 vs. 2 and 4 vs. 3 CMAC players using Q-value Reuse.

6.1 Transferring via ρ from 3 vs. 2 Keepaway into 4 vs. 3 Keepaway

Having constructed three ρs that transform the learned action-value functions, we can now set
Q(4vs3,initial) = ρ(Q(3vs2, f inal)) between Keepaway agents with CMAC, RBF, or ANN function ap-
proximation. We do not claim that these initial action-value functions are correct (and empirically
they are not), but instead that the constructed action-value functions allow the learners to more
quickly discover a better-performing policy.

In this section we show the results of learning 4 vs. 3 Keepaway, both without transfer and after
using TVITM with varying amounts of 3 vs. 2 training. Analyses of learning times required to reach

2144

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

CMAC Learning Results
3 vs. 2 Episodes Ave. 3 vs. 2 Time Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

0 0 30.84 30.84 4.72
10 0.03 24.99 25.02 4.23
50 0.12 19.51 19.63 3.65
100 0.25 17.71 17.96 4.70
250 0.67 16.98 17.65 4.82
500 1.44 17.74 19.18 4.16
1000 2.75 16.95 19.70 5.5
3000 9.67 9.12 18.79 2.73
6000 21.65 8.56 30.21 2.98

Table 4: Results showing that learning Keepaway with a CMAC and applying transfer via inter-
task mapping reduces training time (in simulator hours) for CMAC players. Minimum
learning times for reaching the 11.5 second threshold are bold. As source task training
time increases, the required target task training time decreases. The total training time is
minimized with a moderate amount of source task training.

threshold performance levels6 show that agents utilizing CMAC, RBF, and ANN function approxi-
mation are all able to learn faster in the target task by using ρCMAC, ρRBF , and ρANN , respectively.

Tables 4 and 5 show learning times to reach a threshold performance and verify that a CMAC, an
RBF, and an ANN successfully allow independent players to learn to hold the ball from opponents
when learning without transfer; agents utilizing these three function approximation methods are
able to successfully attain the 4 vs. 3 threshold performance.7

This result shows that a CMAC is more efficient than an ANN trained with backprop, another
obvious choice. We posit that this difference is due to the CMAC’s property of locality. When
a particular CMAC weight for one state variable is updated during training, the update affects the
output value of the CMAC for other nearby state variable values. The width of the CMAC tiles
determines the generalization effect and outside of this tile width, the change has no effect. Contrast
this with the non-locality of an ANN. Every weight is used for the calculation of an action-value
function, regardless of how close two inputs are in state space. Any update to a weight in the ANN
must necessarily change the final output of the network for every set of inputs. Therefore it may
take the ANN longer to settle into an effective configuration. Furthermore, the ANNs use many
fewer weights than the CMAC and RBF learners, which may have allowed for faster learning at the
cost of reduced performance of the final policy.

The RBF function approximator had the best performance of the three when learning without
transfer (i.e., the top row of each table). The RBF shares the CMAC’s locality benefits, but is also
able to generalize more smoothly due to the Gaussian summation of weights.

To test the effect of using transfer with a learned 3 vs. 2 action-value function, we train a set
of keepers for a number of 3 vs. 2 episodes, save the function approximator’s weights (Q(3vs2, f inal))

6. Our results hold for other threshold times as well, provided that the threshold is not initially reached without training
and that learning will enable the keepers’ performance to eventually cross the threshold.

7. All times reported in this article refer to simulator time, which is roughly twice that of the wall clock time. We only
report sample complexity and not computational complexity; the running time for our learning methods is negligible
compared to that of the RoboCup Soccer Server.

2145

TAYLOR, STONE AND LIU

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

Si
m

ul
at

or
 H

ou
rs

 to
 A

ch
ie

ve

Th
re

sh
ol

d
Pe

rfo
rm

an
ce

of 3 vs. 2 Episodes

CMAC Learning Results

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

Si
m

ul
at

or
 H

ou
rs

 to
 A

ch
ie

ve

Th
re

sh
ol

d
Pe

rfo
rm

an
ce

of 3 vs. 2 Episodes

CMAC Learning Results

 0

 5

 10

 15

 20

 25

 30

 10 100 1000

Si
m

ul
at

or
 H

ou
rs

 to
 A

ch
ie

ve

Th
re

sh
ol

d
Pe

rfo
rm

an
ce

of 3 vs. 2 Episodes

CMAC Learning Results

4 vs. 3 time

3 vs. 2 time

Baseline time: no transfer

Figure 7: A graph of Table 4 where the x-axis uses a logarithmic scale. The thin bars show the
amount of time spent training in the source task, the thick bars show the amount of time
spent training in the target task, and their sum represents the total time. The target task
training time is reduced as more time is spent training in the source task. The total time
is minimized when using a moderate amount of source task training.

from a random 3 vs. 2 keeper, and use the weights to initialize all four keepers8 in 4 vs. 3 so that
Q(4vs3,initial) ← ρ(Q(3vs2, f inal)). Then we train on the 4 vs. 3 Keepaway task until the average hold
time for 1,000 episodes is greater than some performance threshold. Recall that in section 4.5 we
specify a threshold of 11.5 seconds in the case of CMAC and RBF function approximators and 10.0
seconds for ANNs as neural network agents were unable to learn as effectively.

To determine if Keepaway players using CMAC function approximation can benefit from trans-
fer, we compare the time it takes agents to learn the target task after transferring from the source
task with the time it takes to learn the target task without transfer. The result tables show different
amounts of source task training time, where the minimal learning times are in bold. The top row
of each table represents learning the task without transfer and thus any column with transfer times
lower than the top row shows beneficial transfer. Our second goal of transfer would be met if the
total training time in both tasks with transfer was less than learning without transfer in the target
task. Table 4 reports the average time spent training in 4 vs. 3 with CMAC function approximation
to achieve an 11.5 second average hold time after different amounts of 3 vs. 2 training. Column two
reports the time spent training on 4 vs. 3 while the third column shows the total time to train 3 vs.
2 and 4 vs. 3. As can be seen from the table, spending time training in the simpler 3 vs. 2 domain
can cause the learning time for 4 vs. 3 to decrease. To overcome the high amounts of noise in our
evaluation we run at least 25 independent trials for each data point reported.

8. We do so under the hypothesis that the policy of a single keeper represents all of the keepers’ learned knowledge.
Though in theory the keepers could be learning different policies that interact well with one another, so far there is
no evidence that they do. One pressure against such specialization is that the keepers’ start positions are randomized.
There appears to be specialization when each keeper starts in the same location every episode.

2146

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

RBF and ANN Learning Results
of 3 vs. 2 Ave. RBF Ave. RBF Standard Ave. ANN Ave. ANN Standard
Episodes 4 vs. 3 Time Total Time Deviation 4 vs. 3 Time Total Time Deviation
0 19.52 19.52 6.03 33.08 33.08 16.14
10 18.99 19.01 6.88 19.28 19.31 9.37
50 19.22 19.36 5.27 22.24 22.39 11.13
100 18.00 18.27 5.59 23.73 24.04 9.47
250 18.00 18.72 7.57 22.80 23.60 12.42
500 16.56 18.12 5.94 19.12 20.73 8.81
1,000 14.30 17.63 3.34 16.99 20.19 9.53
3,000 14.48 26.34 5.71 17.18 27.19 10.68

Table 5: Results from learning Keepaway with different amounts of 3 vs. 2 training time (in simu-
lator hours) indicates that ρRBF and ρANN can reduce training time for RBF players (11.5
second threshold) and ANN players (10.0 second threshold). Minimum learning times for
each method are in bold.

The potential of TVITM is evident in Table 4 and Figure 7. To analyze these results, we conduct a
number of Student’s t-tests to determine if the differences between the distributions of learning times
for the different settings are significant. These tests confirm that the differences in the distributions
of 4 vs. 3 training times when using TVITM are statistically significant (p < 0.05) when compared
to training 4 vs. 3 without transfer. Not only is the time to train the 4 vs. 3 task decreased when
we first train on 3 vs. 2, but the total training time is less than the time to train 4 vs. 3 without
transfer. We can therefore conclude that in the Keepaway domain, training first on a simpler source
task can increase the rate of learning enough that the total training time is decreased when using a
CMAC function approximator. It is not obvious how to choose the amount of time to spend learning
the source task to minimize the total time and this an optimization will be left for future work (see
Section 8).

Analogous experiments for Keepaway players using RBF and neural network function approx-
imation are presented in Table 5. Again, successful transfer is demonstrated as both the transfer
agents’ target task training time and the transfer agent’s total training time are less than the time
required to learn the target task without transfer. All numbers reported are averaged over at least 25
independent trials; both 4 vs. 3 time and total time can be reduced with TVITM. For the RBF players,
all TVITM 4 vs. 3 results using at least 500 3 vs. 2 episodes show a statistically significant difference
from those that learn without transfer (p < 0.05), while the learning trials that used less than 500
source task episodes did not significantly reduce the target task training time. The difference in all
4 vs. 3 training times for the ANN players between using TVITM and training without transfer is
statistically significant (p< 0.05).

The RBF function approximator yielded the best learning rates for 3 vs. 2 Keepaway, followed
by the CMAC function approximator, and lastly the ANN trained with backpropagation. However,
TVITM provided the least percentage speedup to the RBF agents. One possible hypothesis is that
transfer is less useful to the best learners. One explanation is that if a particular representation is
poorly suited for a task, transfer may be able to provide proportionally more speedup because it is
that much further from an “optimal learner.” Nonetheless, while some function approximators get
more or less benefit from TVITM, it is clear that all three are able learn the target task faster with the

2147

TAYLOR, STONE AND LIU

Ablation Studies with ρCMAC
Transfer # of 3 vs. 2 Ave. 4 Standard
Functional Episodes vs. 3 Time Deviation
No Transfer 0 30.84 4.72
ρCMAC 100 17.71 4.70
ρCMAC 1000 16.95 5.5
ρCMAC 3000 9.12 2.73

ρCMAC, No Averaging 100 25.68 4.21
ρCMAC, No Averaging 3000 9.53 2.28
only averaging 100 19.06 6.85
only averaging 3000 10.26 2.42
ρCMAC, Ave Source 1000 15.67 4.31

Table 6: Results showing that transfer with the full ρCMAC outperforms using ρCMAC without the
final averaging step, using only the averaging step of ρCMAC, and when averaging weights
in the source task before transferring the weights.

technique, and that more training in the source task generally reduces the time needed to learn the
target task.

6.2 Understanding ρCMAC’s Benefit

To better understand how TVITM uses ρCMAC to reduce the required training time in the target task,
and to isolate the effects of its various components, this section details a number of supplemental
experiments.9

To help understand how ρCMAC enables transfer we isolate its two components. We first ablate
the functional so that the final averaging step (Algorithm 1, lines 8–11), which places the average
weight into all zero weights, is removed. We anticipated that the benefit from transfer would be
increasingly degraded, relative to using the actual ρCMAC, as fewer numbers of training episodes
in the source task were used. The resulting 4 vs. 3 training times were all shorter than training
without transfer, but longer than when the averaging step was incorporated. The relative benefit
of our ablated ρCMAC is greater after greater numbers of source task episodes; the averaging step
appears to have given initial values to weights in the state/action space that have never been visited
with low numbers of source episodes and thus imparts some bias in the target task even with very
little 3 vs. 2 training. Over time more of the state space in the source task is explored and thus our
ablated functional performs quite well. This result shows that the averaging step is most useful with
less source task training, but becomes less so as more source experience is accumulated (see Table 6
for result details).

If we perform only the averaging step from ρCMAC on learners trained in the target task, we can
determine how important this step is to our method’s effectiveness. Applying the averaging step

9. Informal experiments showed that the CMAC and RBF transfer results were qualitatively similar, which is reasonable
given the two function approximator’s many similarities. Thus we expect that the supplemental experiments in this
section would yield qualitatively similar results if we used RBFs rather than CMACs. While our results demonstrate
that all three function approximators can successfully transfer knowledge, we focus our supplementary experiments
on CMAC function approximation so that our transfer work can be directly comparable to previous work in Keep-
away, which also used CMACs (Stone et al., 2005).

2148

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Time required for CMAC 4 vs. 3 players to reach 11.5 sec. hold time
Initial CMAC weight Ave. Learning Time Standard Deviation

0 30.84 4.72
0.5 35.03 8.68
1.0 N/A N/A

Each weight randomly selected from
the uniform distribution from [0,1.0] 28.01 6.93

Table 7: 10 independent trials are averaged for different values for initial CMAC weights. None of
the trials with initial weights of 1.0 were able to reach the 11.5 threshold within 45 hours,
and thus are shown as N/A above.

causes the total training time to decrease below that of training 4 vs. 3 without transfer, but again
the training times are longer than running ρCMAC on weights trained in 3 vs. 2. This result confirms
that both parts of ρCMAC contribute to reducing 4 vs. 3 training time and that training on 3 vs. 2 is
more beneficial for reducing the required 4 vs. 3 training time than training on 4 vs. 3 and applying
ρCMAC (see Table 6 for result details).

The averaging step in ρCMAC is defined so that the average weight in the target CMAC overwrites
all zero-weights. We also conducted a set of 30 trials which modified ρCMAC so that the average
weight in the source CMAC is put into all zero-weights in the target CMAC, which is possible
when agents in the source task know that their saved weights will be used for TVITM. Table 6
shows that when the weights are averaged in the source task (ρCMAC, Ave Source) the performance is
not statistically different (p< 0.05 from TVITM when averaging in the target task (See Table 4).

To verify that the 4 vs. 3 CMAC players were benefiting from TVITM and not from having
non-zero initial weights, we initialized CMAC weights uniformly to 0.5 in one set of experiments,
1.0 uniformly in a second set of experiments, and then to random numbers uniformly distributed
from 0.0-1.0 in a third set of experiments. We do so under the assumption that 0.0, 0.5, and 1.0 are
all reasonable initial values for weights (although in practice 0.0 is most common). The learning
time was never statistically better than learning with weights initialized to zero, and in some experi-
ments the non-zero initial weights decreased the speed of learning. Haphazardly initializing CMAC
weights may hurt the learner but systematically setting them through TVITM is beneficial. Thus we
conclude that the benefit of transfer is not a byproduct of our initial setting of weights in the CMAC
(see Table 7 for result details).

To further test the sensitivity of the ρCMAC function, we change it in two different ways. We first
defined ρmodi f ied by modifying χA so that instead of mapping the novel target task action “Pass to
second third keeper” into the action “Pass to second closest keeper,” we instead map the novel action
into “Hold ball.” Now Q4vs3,initial will initially evaluate “pass to third closest keeper” and “hold
ball” as equivalent for all states. Second, we modify χA and χX so that state variables and actions
not present in 3 vs. 2 are not initialized in the target task. Using these new inter-task mappings, we
construct ρ3vs2, a functional which copies over information learned in 3 vs. 2 exactly but assigns the
average weight to all novel state variables and actions in 4 vs. 3.

When using this ρmodi f ied to initialize weights in 4 vs. 3, the total training time increased rel-
ative to the normal ρCMAC but still outperformed training without transfer. Similarly, ρ3vs2 is able
to outperform learning without transfer, but underperforms the full ρCMAC, particularly for higher
amounts of training in the source task.

2149

TAYLOR, STONE AND LIU

Testing Sub-optimal Inter-task Mappings
Transfer # of 3 vs. 2 Ave. 4 vs. 3 Standard
Functional Episodes Time Deviation
ρCMAC 100 17.71 4.70
ρCMAC 3000 9.12 2.73
ρmodi f ied 100 21.74 6.91
ρmodi f ied 3000 10.33 3.21
ρ3vs2 100 18.90 3.73
ρ3vs2 3000 12.00 5.38

Table 8: Results showing that transfer with the full ρCMAC outperforms using sub-optimal or incom-
plete inter-task mappings.

Choosing non-optimal inter-task mappings when constructing ρ seems to have a detrimental,
but not necessarily disastrous, effect on the training time. This result shows that the structure of ρ
is indeed important to the success of transfer (see Table 8 for result details).

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

Without Transfer

With Transfer

Figure 8: Representative learning curves, showing that transfer via inter-task mapping does not
significantly increase the performance of the initial policy in 4 vs. 3, but enables faster
learning by biasing the learner towards a productive part of the function approximator’s
weight space. Eight 4 vs. 3 learning curves without transfer are compared to eight learning
curves in 4 vs. 3 after transferring from 250 episodes of 3 vs. 2.

Interestingly, when the CMACs’ weights are loaded into the keepers in 4 vs. 3, the initial hold
times of the keepers do not differ significantly from those of keepers with uninitialized CMACs
(i.e., CMACs where all weights are initially set to zero). The information contained in the func-
tion approximators’ weights prime the 4 vs. 3 keepers to more quickly learn their task by biasing

2150

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 5 10 15 20 25 30 35 40

Ep
iso

de
 D

ur
at

io
n

(s
im

ua
to

r s
ec

on
ds

)

Training Time (simulator hours)

Example 4 vs. 3 Learning Curves

Without Transfer

With Transfer

Figure 9: The average performance from the learners in Figure 8 shows a clear benefit from using
transfer.

Initial Performance in 4 vs. 3 with CMAC Function Approximation
of 3 vs. 2 Episodes Ave. Performance (sec.) Standard Deviation

0 8.46 0.17
1000 8.92 1.48
6000 9.24 1.15

Table 9: This graph shows the difference in initial performance between 4 vs. 3 players with and
without transfer. 40 independent trials are averaged for each setting and the differences in
initial performance (i.e., initial episode lengths) are small. A Student’s t-test shows that
8.46 and 8.92 are not statistically different while 8.46 and 9.24 are (p< 0.05).

their search, even though the knowledge we transfer is of limited initial value. See Figure 8 for
representative learning curves and Table 9 for result details.10

TVITM relies on effectively reusing learned data in the target task. We hypothesized that suc-
cessfully leveraging this data may be effected by ε, Sarsa’s exploration parameter, which balances
exploration with exploitation. Recall that we had initially chosen an exploration rate of 0.01 (1%)
to be consistent with past research. Table 10 shows the results of learning 3 vs. 2 Keepaway with
ε= 0.01 for 1,000 episodes, utilizing ρCMAC, and then learning 4 vs. 3 Keepaway with various set-
tings for ε. The results show that of these 4 additional settings for ε, only ε = 0.05 is statistically
better than the default rate of 0.01. To further explore this last result we ran a series of 30 trials
of learning 4 vs. 3 from scratch with the value of ε = 0.05 and found that there was a significant
difference from learning 4 vs. 3 from scratch with ε = 0.01. Thus the speedup for this particular
setting of ε in transfer, relative to the default value, is explained by the increased learning speed

10. The more similar the source and target tasks are, the more of an immediate performance improvement we would ex-
pect to see. For example, in the degenerate case where the source and target task are identical, the initial performance
in the target task will be equivalent to the final performance in the source task. However, in such a situation, reducing
the total time—our more difficult transfer goal—would prove impossible.

2151

TAYLOR, STONE AND LIU

Varying the Exploration in 4 vs. 3
ε in 4 vs. 3 # 3 vs. 2 Episodes Ave. 4 vs. 3 Time Standard Deviation
0.001 1000 22.06 10.52
0.005 1000 19.22 8.31

0.01 (default) 1000 16.95 5.5
0.05 1000 12.84 2.55
0.1 1000 18.40 5.70

0.01 (default) 0 30.84 4.72
0.05 0 17.57 2.59

Table 10: The first five rows detail experiments where 3 vs. 2 is first learned with ε= 0.01 and then
transfer is used to speed up learning in 4 vs. 3. 30 independent trials are averaged for
each setting of ε in the target task. The last two rows show the results of learning 4 vs. 3
without transfer for two settings of ε. These results show that the amount of exploration
in the target task affects learning speed both with and without transfer.

without transfer. This experiment does suggest, however, that the previously determined value of
ε= 0.01 is not optimal for Sarsa with CMAC function approximation in the Keepaway domain.

From these supplemental results we conclude:

1. Both parts of ρCMAC—copying weights based on χX and χA , and the final averaging step—
contribute to the success of TVITM. The former gives more benefit after more training is
completed in the source task and the second helps when less knowledge is gained in the
source task before transfer.

2. Using ρCMAC is superior to weights initialized to zero (training without transfer), as well as
weights initialized to 0.5, 1.0 and [0,1.0], three other reasonable initial settings.

3. A suboptimal or incomplete transfer functional, such as ρmodi f ied and ρ3vs2, allows TVITM to
speed up learning, but not as much as the more correct ρCMAC.

4. Players initialized by TVITM in the source task do not initially outperform uninitialized play-
ers in the target task, but are able to learn faster.

6.3 Transferring via Q-value Reuse from 3 vs. 2 Keepaway into 4 vs. 3 Keepaway

In the previous sections we showed that TVITM was capable of transferring from 3 vs. 2 into 4 vs.
3 by using ρCMAC, ρRBF , and ρANN . In this section we use TVITM with Q-value Reuse (Section 5.5)
between CMAC players in 3 vs. 2 and 4 vs. 3. Recall that Q-value Reuse directly uses a learned
function approximator from the source task when calculating Q-values in the target task.

Table 11 shows the results of using Q-value Reuse. Each transfer experiment shows the average
of 30 independent trials. Both the 4 vs. 3 and total times are statistically different from learning
without transfer (p< 0.05, via Student’s t-tests). As when using ρCMAC for transfer (Table 4), more
3 vs. 2 episodes correspond to a decrease in the time required for 4 vs. 3 players to reach the 11.5
second threshold performance.

The reduction in transfer efficacy, relative to using ρCMAC, is due to the averaging step in ρCMAC.
As we showed in the previous section, this averaging step has an impact on the target task learning

2152

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Q-value Reuse between CMAC players
of 3 vs. 2 Ave. Ave. Standard
Episodes 4 vs. 3 Time Total Time Deviation

0 30.84 30.84 4.72
10 28.18 28.21 5.04
50 28.0 28.13 5.18
100 26.8 27.06 5.88
250 24.02 24.69 6.53
500 22.94 24.39 4.36
1,000 22.21 24.05 4.52
3,000 17.82 27.39 3.67

Table 11: Results from learning 3 vs. 2 with CMAC players for different numbers of episodes
and then utilizing the learned 3 vs. 2 CMAC directly while learning 4 vs. 3. Minimum
learning times for reaching the 11.5 second threshold are bold.

times. However, in Q-value Reuse we treat the source task function approximator as a “black
box” and thus do not permute its values, nor use it to set the initial values of the target task’s
function approximator. These results suggest that if the source and target function approximators
are different, Q-value Reuse may be appropriate. However, if memory is limited, running time is
critical, and/or multiple transfer steps are involved (such as transferring from 3 vs. 2 to 4 vs. 3, and
then from 4 vs. 3 to 5 vs. 4), then using a ρ is preferable.

7. Experimental Results: Different Transfer Tasks

In this section of the article we show that TVITM can work between a variety of different source/target
task pairs. Section 7.1 presents results of transfer between 3 vs. 2 and 4 vs. 3 agents with different
abilities. Section 7.2 demonstrates that transfer can also be used to reduce both target and total train-
ing time for 5 vs. 4 Keepaway, and gives some initial results for 6 vs. 5 Keepaway, demonstrating
that TVITM can scale to more complex tasks. Section 7.3 shows the results of transferring from two
variants of 3 vs. 2 into 4 vs. 3 to demonstrate how the relatedness of source and target tasks effect
the efficacy of TVITM. Lastly, Section 7.4 shows that TVITM can successfully transfer between the
Knight Joust task and 4 vs. 3, two tasks with very different characteristics.

7.1 3 vs. 2 Keepaway and 4 vs. 3 Keepaway with Differing Player Abilities

The results in Section 6.1 show that Q-values learned in 3 vs. 2 can be successfully used to speed
up learning in 4 vs. 3. In this section we test how robust TVITM is to changes in the agent’s abilities.
In addition to changing the number of players between the source and target tasks, other variations
such as the size of the field, wind, and player ability can be modified. It is a qualitatively different
challenge to use TVITM to speed up learning between two tasks where the agents’ actions have
different effects (i.e., T has beenmodified so that the actions are qualitatively different) in addition to
different state and action spaces. We choose to test the robustness of TVITM by changing the passing

2153

TAYLOR, STONE AND LIU

Learning Results with Different Actuators
of 3 vs. 2 3 vs. 2 3 vs. 2 Actuator Ave. 4 vs. 3 Standard 4 vs. 3 Actuator
Episodes Time Accurate? Time Deviation Accurate?

0 0 N/A 30.84 16.14 Yes
500 1.44 Yes 17.74 4.16 Yes
3000 9.67 Yes 9.12 2.73 Yes
0 0 N/A 54.15 6.13 No
500 1.23 No 37.3 9.24 No
3000 8.36 No 29.86 9.20 No
500 1.37 Yes 37.54 7.48 No
3000 9.45 Yes 24.17 5.54 No
500 1.3 No 18.46 3.93 Yes
3000 8.21 No 13.57 3.64 Yes

Table 12: Results showing transfer via inter-task mapping benefits CMAC players utilizing ρCMAC
with two kinds of actuators. These results demonstrate that transfer can succeed even
when actions in the source and target tasks are qualitatively different. The results in rows
1–3 are from Table 4.

actuators on some sets of agents so that the passes are less accurate.11 We show in this section that
TVITM speeds up learning, relative to learning without transfer, in the following scenarios:

1. Learning 4 vs. 3 with damaged passing actuators after transferring from 3 vs. 2 players with
damaged passing actuators.

2. Learning 4 vs. 3 with a normal passing actuators after transferring from 3 vs. 2 players with
damaged passing actuators.

3. Learning 4 vs. 3 with damaged passing actuators after transferring from 3 vs. 2 players with
normal passing actuators.

Accurate CMAC players learning without transfer in 4 vs. 3 take only 30.1 hours to reach the
threshold performance level (row 1 of Table 12). When we allow sets of CMAC keepers to learn 4
vs. 3 without transfer while using the less accurate pass mechanism, the average time to reach an
average performance of 11.5 seconds is 54.2 hours (row 4 of Table 12). We are also able to use
the same ρCMAC to speed up learning in the target task when both the target and source tasks have
inaccurate actuators (rows 5 and 6). These two results, as well as all other 4 vs. 3 transfer learning
times in this table, are statistically significant when compared to learning the relevant 4 vs. 3 task
without transfer (p< 0.05).

Now consider that we would like to learn the 4 vs. 3 target task with inaccurate passing, but that
we have already trained some 3 vs. 2 keepers that learned using an accurate pass action in the source
task. As we can see in the third group (i.e., rows 7 and 8) of Table 12, even though the players in
the source task have different actuators than in the target task, transfer is able to significantly speed
up learning compared to not using transfer.

11. Actuators are changed in the benchmark players by changing the pass action from the default “PassNormal” to
“PassFast” which increases the speed of the pass by 50%, reducing accuracy.

2154

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

This result confirms that the same ρ will allow TVITM to transfer between tasks where not only
have S and A changed, but the effect of the actions have also changed qualitatively. This situation is
of practical import as well, as many robotic systems experience gradual degradation in performance
over time due to wear and tear. If a set of robots with worn down actuators are available, they may
still be able to benefit from action-value function transfer of Q-values from learners that have fresh
actuators. Alternately, if a set of agents have learned a task and then later want to learn another task
but have damaged their actuators since learning the source task, transfer may still increase the speed
of learning.

We also perform the inverse experiment where agents in the source task have inaccurate actu-
ators and agents in the target task have normal actuators. We perform TVITM after 500 and 3,000
episodes of 3 vs. 2 with inaccurate passing to initialize the Q-values of agents in 4 vs. 3 with accurate
passing. The final two rows in Table 12 again shows using this transfer is a significant improvement
over learning without transfer. Thus a fielded agent with worn down actuators would be able to
successfully transfer its learned action-value function to agents whose actuators were undamaged.
Interestingly, transferring from source keepers that have accurate actuators is more effective than
transferring from source keepers that have inaccurate actuators both when the target task has accu-
rate actuators and when it has inaccurate actuators. We posit that this is because it is easier to learn
with accurate actuators, which means that more useful information exists to be transfered.

We first showed in Section 6 that transfer from 3 vs. 2 keepers with accurate pass actuators
to 4 vs. 3 keepers with accurate pass actuators was successful. In this subsection we demonstrate
that transfer works when actuators are inaccurate in both the source and target tasks. It also speeds
learning in the target task when transferring from inaccurate 3 vs. 2 players to accurate 4 vs. 3
players or from accurate 3 vs. 2 players to inaccurate 4 vs. 3 players.

Combined, our results show that TVITM is able to speed up learning in multiple target tasks with
different state and action spaces, and even when the agents have somewhat different actuators in the
two tasks.

7.2 Scaling up to Larger Keepaway Tasks

In this section we show that our method can also be used to speed up the 5 vs. 4 Keepaway task,
which provides evidence for scalability to larger tasks. The 5 vs. 4 task is more difficult than the 4
vs. 3 task, as discussed in Section 4.5. In addition to using 4 vs. 3 to speed up learning in 5 vs. 4,
we show that TVITM can be used twice to learn the 3 vs. 2, 4 vs. 3, and 5 vs. 4 tasks in succession.

Results in Table 13 show that TVITM scales to the 5 vs. 4 Keepaway task. In 5 vs. 4 we say that
the task has been learned when the 5 keepers are able to hold the ball for an average of 9.0 seconds
over 1,000 episodes. ρCMAC can be formulated by extending χX and χA so that they can transfer the
action-value function from 4 vs. 3 to 5 vs. 4, analogous to the way it transfers values from 3 vs. 2 to
4 vs. 3. These results are shown in rows 2 and 3 of Table 13.

χX and χA can also be formulated so that we can use TVITM to speed up 5 vs. 4 after learning 3
vs. 2. For instance, the the target task actions “Pass to Second Closest Teammate”, “Pass to Third
Closest Teammate”, and “Pass to Fourth Closest Teammate” are mapped to the source task action
“Pass to Second Closest Teammate.” Table 13, rows 4 and 5, show that this mapping formulation
is successful. In fact, there is more benefit than transferring from 4 vs. 3. We posit that this is due
to the fact that it is easier to learn more in the simpler target task and this outweighs the fact that it
is less related to 5 vs. 4 than to 4 vs. 3. Another way to understand this is that in a fixed amount of

2155

TAYLOR, STONE AND LIU

CMAC Learning Results in 5 vs. 4
of 3 vs. 2 # of 4 vs. 3 Ave. 5 vs. 4 Ave. Total Standard
Episodes Episodes Time Time Deviation

0 0 22.58 22.58 3.46
0 500 13.44 14.60 7.82
0 1000 9.66 12.02 4.50
500 0 6.76 8.18 1.90
1000 0 6.70 9.66 2.12
500 500 6.19 8.86 1.26

Table 13: Results showing that learning Keepaway with a CMAC and applying transfer via inter-
task mapping can reduce training time (in simulator hours) for CMAC in 5 vs. 4 with a
target performance of 9.0 seconds. All numbers are averaged over at least 25 independent
trials.

experience, players in 3 vs. 2 are able to update more weights than 4 vs. 3, measured as a percentage
of the total possible number of weights used in the task.

A final refinement is to use a two-step application of TVITM so that 3 vs. 2 runs first. This
learned action-value function is used as the initial action-value function in 4 vs. 3 after applying
ρCMAC, and after training the final 4 vs. 3 action-value function is used as the initial action-value
function for 5 vs. 4. Using this procedure (Table 13, bottom row) we find that the time to learn 5
vs. 4 is reduced to roughly 27% of learning without transfer. A t-test confirms that the differences
between all 5 vs. 4 training times shown are statistically significant (p < 0.05) when compared to
learning without transfer.

These results clearly show that TVITM allows 5 vs. 4 Keepaway to be learned faster after training
on 4 vs. 3 and/or 3 vs. 2. They also suggest that a multi-step process where tasks are made incre-
mentally more challenging may produce faster learning times than a single application of TVITM.
As a final result, a similar χX , χA , and ρCMAC can be constructed to significantly speed up learning
in 6 vs. 5 as well (which also takes place on a 25m×25m field), as shown in Table 14.

Transfer in 6 vs. 5 with CMAC Function Approximation
of 5 vs. 4 Episodes Ave. 6 vs. 5 Time Ave Total Time Standard Deviation

0 22.85 22.85 1.71
1000 9.38 11.53 2.38

Table 14: 10 independent trials are averaged for learning 6 vs. 5 with and without transfer from 5
vs. 4. The threshold performance time is 8.0 seconds. A Student’s t-test confirms that the
difference is statistically significant (p< 0.05).

7.3 Variants of 3 vs. 2 Keepaway for Transfer into 4 vs. 3 Keepaway

In this section we introduce two novel variants of the 3 vs. 2 Keepaway task to show how TVITM
with ρCMAC can fail to improve performance relative to learning without transfer.

We first modify 3 vs. 2 so that the reward is defined as +1 for each action, rather than +1 for
each timestep. Players in the 3 vs. 2 Flat Reward task can still learn to increase the average episode

2156

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

time. We hypothesized that the changes in reward structure would prevent TVITM from successfully
improving performance in the standard 4 vs. 3 task because of the different reward structure.

We next modify 3 vs. 2 so that the reward is defined to be -1 for each timestep. The task of
3 vs. 2 Giveaway is thus very different from Keepaway. Given the available actions, the optimal
action for players is for the player closest to the takers to hold the ball until the takers captures it.
We hypothesized that using TVITM from Giveaway to 4 vs. 3 Keepaway would produce negative
transfer, where the required target task training time is increased by using transfer.

Table 15 shows the results of using these two 3 vs. 2 source task variants and compares them to
using Keepaway as a source task and to learning without transfer. Transfer from the Flat Reward
tasks gives a benefit relative to learning without transfer, but not nearly as much as transferring
from 3 vs. 2 Keepaway. Students t-tests determine that transfer after 3,000 episodes of Giveaway is
significantly slower than learning without transfer.

Transfer into 4 vs. 3 with ρCMAC: different source tasks
Source Task # of 3 vs. 2 Episodes Ave. 4 vs. 3 Time Ave. Total Time Std. Dev.

none 0 30.84 30.84 4.72
Keepaway 1000 16.95 19.70 5.5
Keepaway 3000 9.12 18.79 2.73
Flat Reward 1000 25.11 27.62 6.31
Flat Reward 3000 19.42 28.03 8.62
Giveaway 1000 27.05 28.58 10.71
Giveaway 3000 32.94 37.10 8.96

Table 15: Results compare transferring from three different source tasks. Each line is an average
of 30 independent trials. The 3 vs. 2 Flat Reward task improves performance relative to
learning without transfer, but less than when transferring from Keepaway. The 3 vs. 2
Giveaway task can decrease 4 vs. 3 performance when it is used as a source task.

7.4 Transferring from Knight Joust to 4 vs. 3 Keepaway

In this section we show that TVITM can successfully transfer between the gridworld Knight Joust
task and 4 vs. 3 Keepaway. We use a variant of ρCMAC to transfer the learned weights, because
Knight Joust is learned with a tabular function approximator rather than a CMAC. This represen-
tation choice results in changes to the syntax of ρCMAC, as described in Algorithm 3. Note that
this new variant of the transfer functional is not necessitated by the novel target task and that if we
learned Knight Joust with a CMAC, the original ρCMAC would be sufficient for transfer between
Knight Joust and 4 vs. 3.

The results in Table 16 report the average of 30 independent trials. The 4 vs. 3 transfer times (in
simulator hours) are statistically different from learning without transfer (determined via Student’s
t-tests). Recall that the wall-clock time of the Knight Joust simulator is negligible and thus, in
practice, the 4 vs. 3 time is the same as the total time.

The reader will notice that the number of source task episodes used in these experiments is much
larger than other experiments in this paper. The reason for this is two-fold. First, we learn Knight
Joust with tabular function approximation, which is significantly slower to learn than a CMAC, for
instance, because there is no generalization. Secondly, because the wall-clock time requirements

2157

TAYLOR, STONE AND LIU

Algorithm 3 APPLICATION OF ρCMAC FROM TABULAR FUNCTION APPROXIMATION
1: nsource ← number of variables in source task
2: for each non-zero Q-value, qi in the source task’s Q-table do
3: asource ← action corresponding to qi
4: for each state variable, xsource, in source task do
5: for each value xtarget such that χX (xtarget) = xsource do
6: for each value atarget such that χA(atarget) = asource do
7: j← the tile in the target CMAC activated by xtarget ,atarget
8: w j ← (qi/nsource)
9: wAverage = average value of all non-zero weights in the target CMAC
10: for each weight w j in the target CMAC do
11: if w j = 0 then
12: w j ← wAverage

Transfer from Knight Joust into 4 vs. 3
of Knight Joust Episodes Ave. 4 vs. 3 Time Standard Deviation

0 30.84 4.72
25,000 24.24 16.18
50,000 18.90 13.20

Table 16: Results from using Knight Joust to speed up learning in 4 vs. 3 Keepaway. Knight Joust
is learned with Q-learning and tabular function approximation and Keepaway players
are learned using Sarsa with CMAC function approximation. Both transfer times are
significantly less than learning without transfer, as determined via Student’s t-tests (p <
0.05).

for this domain were so small, we felt justified in allowing the source task learners run until learning
plateaued (which takes roughly 50,000 episodes).

The main importance of these results is showing that TVITM can successfully transfer between
different tasks with very different dynamics. Keepaway has stochastic actions, is partially observ-
able, and uses a continuous state space. In contrast, Knight Joust has no stochasticity in the player’s
actions, is fully observable, and has a discrete state space.

8. Discussion and Future Work

We consider the research reported in this article to be a first step towards autonomous transfer
learning. In particular, the results presented in this article serve mainly as an existence proof that
TVITM can be effective for speeding up learning in a target task after training in a source task.
As such, it opens up the door for future research that is necessary to build it into a fully general
autonomous transfer method. Specifically,

1. Can χX and χA be learned?

2. When concerned with the total training time of both tasks, what is the optimal amount of
training time to spend in the source task?

2158

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

3. How can an agent determine if two tasks are related so that transfer will be able to impart
some advantage?

In this work we construct ρs for learners from a pair of χX , χA inter-task mappings for a given
pair of tasks. There has been initial progress in learning such mappings, as discussed in the next
section. In the future we intend to make this process more automatic or completely autonomous.

Another question that arises from this work is: if the ultimate goal is to learn the target task in
the minimal amount of time, how can one determine the optimal amount of training in the source
task automatically based on task characteristics? While it is clear from our results that spending
more time learning 3 vs. 2 often decreases the amount of time it takes to learn 4 vs. 3 Keepaway,
it is unclear how to determine the number of 3 vs. 2 episodes to use a priori when the goal is to
minimize overall training time. It is likely that such a calculation or heuristic will have to consider
the structure of the two tasks, how they are related, and the specifics of the ρ used.

A fundamental difficulty of transfer learning is determining whether and how two tasks are
similar. Here we only consider the case where the agents are directed to use previous experience to
speed up learning in a new task. In practice, it may be the case that the agent has no experience that
is relevant and the optimal approach is to simply learn the target task without transfer.

Consider the problem of learners that have trained in multiple tasks and have built up different
action-value functions for each of those tasks. When a new task is presented to the learners, they
must now decide from which task to perform the transfer. This situation is analogous to presenting
a human a solution to a problem and then ask how to solve a related problem. Research has shown
(Gick and Holyoak, 1980) that humans are not good at this type of analogy problem. For instance,
Gick and Holyoak presented subjects with a source task and a solution. When they later presented
a similar target task, most people were initially unable to solve the target problem. However, told
to use a strategy similar to that used for a past problem, 90% of the subjects were able to discover
the analogy and solve the target problem. It is likely that computerized learners will have similar
problems deciding if two tasks are related at all, particularly when agents have built up experience
on many different kinds of problems.

Our TVITM methodology relies on being able to find an inter-task mapping between similar
states and actions. The mapping should identify state variables and actions that have similar effects
on the long-term discounted reward. If, for instance, the Keepaway task were changed so that
instead of receiving a reward of +1 at every time step, you received a +10, the ρ could be trivially
modified so that all the weights were multiplied by 10. However, if the reward structure is more
significantly changed, to that of Giveaway for instance, ρ would need to be dramatically changed,
if it could be formulated at all.12

We hypothesize that the main requirement for TVITM to successfully transfer is that, on average,
at least one of the following is true:

1. The best learned actions in the source task, for a given state, be mapped to the best action in
the target task via the inter-task mappings.

2. The average Q-values learned for states are of the correct magnitude in the trained target
task’s function approximator.

12. The “obvious” solution of multiplying all weights by −1 would not work, for instance. In Keepaway a keeper
typically learns to hold the ball until a taker comes within roughly 6m. Thus, if all weights from this policy were
multiplied by−1, the keepers would continually pass the ball until a taker came within 6m. These Giveaway episodes
would last much longer than simply forcing the first keeper to the ball to always hold, which is very easily learned.

2159

TAYLOR, STONE AND LIU

The first condition will work to bias the learner so that the best actions in the target task are chosen
more often, even if these actions’ Q-values are incorrect. The second condition will make learning
faster because smaller adjustments to the function approximators’ weights will be needed to reach
their optimal values, even if the optimal actions are not initially chosen. In this work, an example of
the first condition being met is that a keeper learns to hold the ball in the source task until forced to
pass. Hold is often the correct action in both 3 vs. 2 and 4 vs. 3 when the takers are far away from
the ball. The second condition is also met between 3 vs. 2 and 4 vs. 3 by virtue of similar reward
structures and roughly similar episode lengths. If either of these conditions were not true, the
transfer functional we employed would have to account for the differences (or suffer from reduced
transfer efficacy).

It is important to recognize that domain knowledge contained in χX and χA is required to generate
an effective ρ. As our experiments show, simply copying weights without respecting the inter-task
mapping is not a viable method of transfer, as our function approximator representations necessarily
differ between the two tasks due to changes in S and A. Simply putting the average value of the 3
vs. 2 weights into the 4 vs. 3 function approximator does not give nearly as much benefit as using
a ρ which explicitly handles the different state and action values. Likewise, when we used ρmodi f ied
(introduced in Section 6.2), which copied the values for the weights corresponding to the some of
the state variables incorrectly, learning in 4 vs. 3 was significantly slower. These results suggest that
a ρ which is able to leverage inter-task similarities will outperform more simpleminded ρs.

In this work we have defined χX and χA so that the state variables and actions are mapped inde-
pendently. This formulation was sufficient for all the source task and target task pairs considered in
this work. However, there are likely tasks where these two mappings are intertwined. For instance,
it could be that the actions map differently depending on the agent’s current location in state space.
We would like to investigate how often such an interdependence would be beneficial, and how our
formulation could be enhanced to account for such added complexity.

It is almost certainly possible to find pairs of tasks for which no ρ exists, where transfer would
provide no benefit or even hinder learning. It is also possible to think of a pair of tasks for which
transferring knowledge should be able to provide a benefit but that an intuitive ρ that allows speedup
in learning cannot be found due to the complexity of the domain. This article focuses on providing
an existence proof: we show that we are able to construct ρs for the Keepaway domain and that
they provide significant benefits to learning. A main goal for our future research is to allow ρ to be
constructed automatically between a given pair of tasks, potentially by learning χX and χA .

9. Related Work

The concept of seeding a learned behavior with some initial simple behavior is not new. The psycho-
logical concept of shaping (Skinner, 1953) is well understood and many researchers have applied
the idea to machine learning as well as animal training. There have been approaches to simplifying
reinforcement learning by manipulating the transition function, the agent’s initial state, and/or the
reward function, as reviewed in the following paragraphs.

Past research confirms that if two tasks are closely related the learned policy from a source task
can be used to provide a good initial policy for a target task. For example, Selfridge et al. (1985)
showed that the 1-D pole balancing task could be made harder over time by shortening the length
of the pole and increasing its mass; when the learner was first trained on a longer and lighter pole
it learned to succeed faster in the harder task with different dynamics and transition function. This

2160

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

method thus changes the transition function T between pairs of tasks but leaves S, the velocity and
angle of the pole, and A, move right or move left, unmodified.

Learning from easy missions (Asada et al., 1994) allows a human to change the start state of the
learner, sinitial , making the task incrementally harder. Starting the learner near the exit of a maze and
gradually allowing the learner to start further and further from the goal is a demonstration of this.
This kind of direction allows the learner to spend less total time learning to perform the final task.
Our work differs from these two methods because we allow the modification of S and A between
tasks, rather than only T or sinitial .

Transfer of learning (Singh, 1992) applies specifically to temporally sequential subtasks. Using
compositional learning, a large task may be broken down into subtasks that are easier to learn and
have distinct beginning and termination conditions. However, the subtasks must all be very similar
in that they have the same state spaces, action spaces, and environment dynamics. The reward
functions R are allowed to differ. TVITM does not have the restriction that tasks must be divided
into subtasks with these characteristics and, again, we have the additional flexibility of changing S
and A between the source and target tasks.

Another successful idea, reward shaping (Colombetti and Dorigo, 1993; Mataric, 1994), also
contrasts with TVITM. In reward shaping, learners are given an artificial problem which will allow
the learner to train faster than if they had trained on the actual problem with different environmental
rewards, R. However, the policy that is learned is designed to work on the original task as well as
the artificial one. TVITM differs in intent in that we aim to transfer behaviors from existing, rele-
vant tasks which can have different state and action spaces, rather than creating artificial problems
which are easier for the agent to learn. In the RoboCup soccer domain, all the different Keepaway
tasks may occur during the full task of simulated soccer. For instance, there may be times when
three teammates on defense must keep the ball from two opponent forwards until another player
comes into passing range. We therefore argue that we train on useful tasks rather than just simpler
variations of a real task. Using TVITM, learners are able to take previously learned behaviors from
related tasks and apply that behavior to harder tasks that can have different state and action spaces.

While these four methods allow the learner to spend less total time training, they rely on mod-
ification of the transition function, the initial start state, or the reward function to create artificial
problems to train on. We contrast this with TVITM where we allow the state and/or action spaces to
change between actual tasks. This added flexibility permits TVITM to be applied to a wider range of
domains and tasks than the other aforementioned methods. Furthermore, TVITM does not preclude
the modification of the transition function, the start state, or the reward function and can therefore
be combined with other methods if desired.

In some problems where subtasks are clearly defined by state features, the subtasks can be
automatically identified (Drummond, 2002) and leveraged to increase learning rates. This method
is only directly applicable to tasks in which features clearly define subtasks. Furthermore, if the
shape of the various regions in the value function are too complex and the smoothness assumption
is violated too often, the algorithm to automatically detect subtasks will fail.

Learned subroutines have been successfully transfered in a hierarchical reinforcement learning
framework (Andre and Russell, 2002). By analyzing two tasks, subroutines may be identified which
can be directly reused in a target task that has a slightly modified state space. The learning rate for
the target task can be substantially increased by duplicating the local sub-policy. This work can be
thought of as another example in which ρ has been successfully constructed, but in a very different
way.

2161

TAYLOR, STONE AND LIU

Imitation is another technique which may transfer knowledge from one learner to another (Price
and Boutilier, 2003). However, there is the assumption that “the mentor and observer have similar
abilities” and thus may not be directly applicable when the number of dimensions of the state space
changes or the agents have a qualitatively different action set. Other research (Fern et al., 2004)
has shown that it is possible to learn policies for large-scale planning tasks that generalize across
different tasks in the same domain. Using this method, researchers are able to speed up learning
in different tasks without explicitly transferring any knowledge, as the policy is defined for the
planning domain rather than a specific task.

Another related approach (Guestrin et al., 2003) uses linear programming to determine value
functions for classes of similar agents. Rather than treating the different agents independently, all
agents in the same class use a single value function. The target task is assumed to have similar
transition functions and rewards for each class of agent. Thus the authors can directly insert the
class-based value subfunctions into agents in the new task, even though there are a different number
of objects (and thus different state and action spaces). Although no learning is performed in the
new world, the previously learned value functions may still perform better than a baseline hand-
coded strategy. However, as the authors themselves state, the technique will not perform well in
heterogeneous environments or domains with “strong and constant interactions between many ob-
jects (e.g., RoboCup).” Our work is further differentiated as we continue learning in the target task
after performing transfer. While the initial performance in the new domain may be increased after
loading learned action-value functions compared to learning without transfer, we have found that
the primary benefit is an increased learning rate.

The technique of autonomous shaping (Konidaris and Barto, 2006) may prove to be useful for
transfer learning, particularly in agents that have many sensors. In this work the authors show that
reward shaping may be learned on-line by the agent. If a later task has a similar reward structure and
actions, the learned reward shaping will help the agent initially have a much higher performance than
if it were learning without transfer. For instance, if a signal device (a beacon) is near the goal state,
the agent may learn a shaping reward that gives an internal reward for approaching the beacon even
if the environmental reward is zero. This work does not directly address how to handle novel actions
(specifically, actions which are not in the source task’s agent space). Additionally, while the authors
limit themselves to transfer between “reward-linked” tasks, no method is given for determining if a
sequence of tasks are reward-linked and a learned shaping function will not necessarily be useful in
a given target task.

Policies from different tasks can also be learned and then used to speed up the current task
(Fernandez and Veloso, 2006). This technique relies on having a set of tasks where S, A, and T are
constant, but the goal state moves. When the agent is placed in a new task, it can learn to either
exploit a past policy, exploit the policy that it is currently learning, or explore. This technique is
currently restrictive in that it requires S, A, and T to be unchanged between the set of tasks, that
there be one goal state, and that all rewards other than the goal state be zero. However, the idea of
building a library of policies may be a critical one for transfer learning. For instance, once an agent
has trained in multiple Keepaway tasks it would ideally be able to recall any of these policies if it
were placed in the same task or use the most similar of them to speed up the current task.

Automatically generated advice can also be used to speed up learning in transfer (Torrey et al.,
2005). This method allows a RL learner to build up a model for the source task and then extract
general advice. A human then provides a translation for this advice into the new task, similar to our
ρ. The modified advice is then used as constraints in a knowledge-based support vector regression

2162

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

method. Instead of setting the initial Q-values as in our work, the advice sets relative preferences for
different actions in different states and thus may work when the reward structure of the tasks change.
One apparent shortcoming of this work is that the initial performance and learning rate of the agents
is only slightly improved relative to learning without transfer, but the results suggest that advice
from one task may be able to help learn a second, related, task. It is also worth noting that while
we cannot directly compare the performance of our two methods because we have not implemented
the “Breakaway” domain, the relative speedup in learning from TVITM is much greater than that
obtained from automatically generating advice.

Wilson et al. (2007) take a different approach by showing that a prior may be transferred in a
hierarchical Bayesian reinforcement learning setting. In this work, the authors consider a multitask
setting where the goal is to be able to learn quickly on an MDP drawn from a fixed but unknown
distribution of MDPs. Learning on subsequent tasks shows a clear performance on a novel task
drawn from this distribution but no attempt is made to reduce the total training time.

This work has demonstrated that inter-task mappings can be used to transfer action-value func-
tions. Taylor et al. (2007) demonstrates that the same mappings can be used to transfer policies,
learned with a genetic algorithm, between tasks. Rules have also been successfully used (Taylor
and Stone, 2007) in conjunction with inter-task mappings as a way of transferring between tasks
that used different RL learning methods. Using such a translation mechanism allows, for instance,
transfer between a source task policy search learner and a value function target task learner.

There have also been recent advances in learning relationships between related RL tasks, a topic
beyond the scope of the current article. Liu and Stone (2006) define qualitative dynamic Bayes
networks which summarize the effect of actions on different state variables. After networks for the
source and target tasks are defined by hand, a graph mapping technique can be used to automatically
find inter-task mappings between the two tasks. Taylor et al. (2007) show that it is also possible to
learn both χA and χX by using a classification technique. To enable such a method, the method
must be provided task-independent objects which describe an object in a task with a set number of
state variables. This assumption is also leveraged in other work (Soni and Singh, 2006), but only
the state-feature mapping is learned (the action mapping χA is hand-coded). AtEase (Talvitie and
Singh, 2007) is an algorithm that generates a number of possible state-feature mappings and then
uses a multi-armed bandit approach to select the best mapping. However, the action mapping (χA)
is assumed, and learning is not allowed in the target task after an appropriate mapping is selected.

10. Conclusions

This article describes the implementation and results from learning Keepaway with Sarsa, a stan-
dard TDmethod, and three different function approximators. We introduce the transfer via inter-task
mapping method for speeding up reinforcement learning and give empirical evidence in the Keep-
away domain of its usefulness. Rather than utilizing abstract knowledge, this transfer method is
able to leverage the weights from function approximators specifying action-value functions, a very
task-specific form of knowledge. We first give formulations of how to define transfer functionals
for the different function approximators, or re-use learned weights via Q-value Reuse, from a single
pair of inter-task mappings. We proceed to show that agents using all three function approximation
methods can learn to reach a target performance faster in the target task. Additionally, we show that
the total training time can be reduced using TVITM when compared to simply learning the final task
without transfer.

2163

TAYLOR, STONE AND LIU

We give further evidence that TVITM is useful for speeding up learning by utilizing the 5 vs.
4 Keepaway task, which suggests that this method will scale up to even more complex problems.
We have shown that the TVITM method is robust to some changes in the transition function, such as
when the effectiveness of actuators in the two tasks differ. This flexibility may prove critical when
transferring behavior between agents situated in the real world, where environmental conditions
may cause sensors and actuators to have different behaviors at different times.

We introduce a novel variant of Knight Joust, a gridworld task, and demonstrate that transfer
between it and Keepaway is effective despite substantial qualitative differences in the two tasks. We
also show how transfer efficacy is reduced when the source task and target task are less related, such
as when using 3 vs. 2 Flat Reward or 3 vs. 2 Giveaway as source tasks.

When considered as a whole, the experiments presented in this article establish that TVITM can
be used successfully for transferring action-value functions between tasks and reducing training
time. This article therefore constitutes a first step towards a fully general and autonomous transfer
method within the RL framework.

Acknowledgments

We would like to thank Gregory Kuhlmann for his help with Keepaway experiments described in
this article, Cynthia Matuszek and Shimon Whiteson for useful discussions, and the anonymous
reviewers for their detailed and constructed comments. This research was supported in part by NSF
CAREER award IIS-0237699, NSF award EIA-0303609, and DARPA grant HR0011-04-1-0035.

References

James S. Albus. Brains, Behavior, and Robotics. Byte Books, Peterborough, NH, 1981.

David Andre and Stuart J. Russell. State abstraction for programmable reinforcement learning
agents. In Proc. of the Eighteenth National Conference on Artificial Intelligence, pages 119–125,
2002.

David Andre and Astro Teller. Evolving team Darwin United. In Minoru Asada and Hiroaki Kitano,
editors, RoboCup-98: Robot Soccer World Cup II, pages 346–351. Springer Verlag, Berlin, 1999.

Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. Vision-based behavior ac-
quisition for a shooting robot by using a reinforcement learning. In Proc. of IAPR/IEEEWorkshop
on Visual Behaviors-1994, pages 112–118, 1994.

Steven J. Bradtke and Michael O. Duff. Reinforcement learning methods for continuous-time
Markov decision problems. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neu-
ral Information Processing Systems, volume 7, pages 393–400, San Mateo, CA, 1995. Morgan
Kaufmann.

Mao Chen, Ehsan Foroughi, Fredrik Heintz, Spiros Kapetanakis, Kostas Kostiadis, Johan
Kummeneje, Itsuki Noda, Oliver Obst, Patrick Riley, Timo Steffens, Yi Wang, and Xiang Yin.
Users manual: RoboCup soccer server manual for soccer server version 7.07 and later, 2003.
Available at http://sourceforge.net/projects/sserver/.

2164

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Marco Colombetti and Marco Dorigo. Robot Shaping: Developing Situated Agents through Learn-
ing. Technical Report TR-92-040, International Computer Science Institute, Berkeley, CA, 1993.

Robert H. Crites and Andrew G. Barto. Improving elevator performance using reinforcement learn-
ing. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Informa-
tion Processing Systems 8, pages 1017–1023, Cambridge, MA, 1996. MIT Press.

Chris Drummond. Accelerating reinforcement learning by composing solutions of automatically
identified subtasks. Journal of Artificial Intelligence Research, 16:59–104, 2002.

Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy iteration with a policy language
bias. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

Fernando Fernandez and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning
agent. In Proceedings of the 5th International Conference on Autonomous Agents and Multiagent
Systems, pages 720–727, 2006.

Mary L. Gick and Keith J. Holyoak. Analogical problem-solving. Cognitive Psychology, 12:306–
355, 1980.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal Kanodia. Generalizing plans to new
environments in relational mdps. In International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, Mexico, August 2003.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd International Conference on Machine Learning, pages 489–
496, 2006.

Yaxin Liu and Peter Stone. Value-function-based transfer for reinforcement learning using structure
mapping. In Proceedings of the Twenty-First National Conference on Artificial Intelligence, pages
415–20, July 2006.

Maja J. Mataric. Reward functions for accelerated learning. In International Conference onMachine
Learning, pages 181–189, 1994.

Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Elements of Artificial Neural Networks.
MIT Press, Cambridge, MA, USA, 1997. ISBN 0-262-13328-8.

Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccer server: A tool for research
on multiagent systems. Applied Artificial Intelligence, 12:233–250, 1998.

Bob Price and Craig Boutilier. Accelerating reinforcement learning through implicit imitation.
Journal of Artificial Intelligence Research, 19:569–629, 2003.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1994. ISBN 0471619779.

2165

TAYLOR, STONE AND LIU

Martin Riedmiller, Author Merke, David Meier, Andreas Hoffman, Alex Sinner, Ortwin Thate, and
Ralf Ehrmann. Karlsruhe brainstormers—a reinforcement learning approach to robotic soccer.
In Peter Stone, Tucker Balch, and Gerhard Kraetszchmar, editors, RoboCup-2000: Robot Soccer
World Cup IV, pages 367–372. Springer Verlag, Berlin, 2001.

Gavin Rummery andMahesan Niranjan. On-line Q-learning using connectionist systems. Technical
Report CUED/F-INFENG-RT 116, Engineering Department, Cambridge University, 1994.

Oliver G. Selfridge, Richard S. Sutton, and Andrew G. Barto. Training and tracking in robotics.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pages 670–
672, 1985.

Satinder P. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Ma-
chine Learning, 8:323–339, 1992.

Satinder P. Singh and Richard S. Sutton. Reinforcement learning with replacing eligibility traces.
Machine Learning, 22:123–158, 1996.

Burrhus F. Skinner. Science and Human Behavior. Colliler-Macmillian, 1953. ISBN 0029290406.

Vishal Soni and Satinder Singh. Using homomorphisms to transfer options across continuous rein-
forcement learning domains. In Proceedings of the Twenty First National Conference on Artificial
Intelligence, July 2006.

Peter Stone and Richard S. Sutton. Keepaway soccer: a machine learning testbed. In Andreas Birk,
Silvia Coradeschi, and Satoshi Tadokoro, editors, RoboCup-2001: Robot Soccer World Cup V,
volume 2377 of Lecture Notes in Artificial Intelligence, pages 214–223. Springer Verlag, Berlin,
2002.

Peter Stone, Richard S. Sutton, and Gregory Kuhlmann. Reinforcement learning for RoboCup-
soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

Peter Stone, Gregory Kuhlmann, Matthew E. Taylor, and Yaxin Liu. Keepaway soccer: From
machine learning testbed to benchmark. In Itsuki Noda, Adam Jacoff, Ansgar Bredenfeld, and
Yasutake Takahashi, editors, RoboCup-2005: Robot Soccer World Cup IX, volume 4020, pages
93–105. Springer Verlag, Berlin, 2006.

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.
ISBN 0262193981.

Erik Talvitie and Satinder Singh. An experts algorithm for transfer learning. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence, 2007.

Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based reinforcement learn-
ing. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
Michael Wooldridge, editors, The Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 53–59, New York, NY, July 2005. ACM Press.

Matthew E. Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. In Proceed-
ings of the Twenty-Fourth International Conference on Machine Learning, June 2007.

2166

TRANSFER LEARNING VIA INTER-TASK MAPPINGS

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Value functions for RL-based behavior transfer:
A comparative study. In Proceedings of the Twentieth National Conference on Artificial Intelli-
gence, July 2005.

Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task mappings in pol-
icy search reinforcement learning. In The Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, May 2007.

Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994.

Lisa Torrey, Trevor Walker, Jude Shavlik, and Richard Maclin. Using advice to transfer knowledge
acquired in one reinforcement learning task to another. In Proceedings of the Sixteenth European
Conference on Machine Learning, 2005.

Christopher J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cam-
bridge, UK, 1989.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In ICML ’07: Proceedings of the 24th international conference
on Machine learning, pages 1015–1022, New York, NY, USA, 2007. ACM Press.

2167

Journal of Machine Learning Research 8 (2007) 2169-2231 Submitted 6/06; Revised 3/07; Published 10/07

Proto-value Functions: A Laplacian Framework for Learning
Representation and Control in Markov Decision Processes

Sridhar Mahadevan MAHADEVA@CS.UMASS.EDU
Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USA

Mauro Maggioni MAURO.MAGGIONI@DUKE.EDU
Department of Mathematics and Computer Science
Duke University
Durham, NC 27708

Editor: Carlos Guestrin

Abstract

This paper introduces a novel spectral framework for solving Markov decision processes (MDPs)
by jointly learning representations and optimal policies. The major components of the framework
described in this paper include: (i) A general scheme for constructing representations or basis func-
tions by diagonalizing symmetric diffusion operators (ii) A specific instantiation of this approach
where global basis functions called proto-value functions (PVFs) are formed using the eigenvectors
of the graph Laplacian on an undirected graph formed from state transitions induced by the MDP
(iii) A three-phased procedure called representation policy iteration comprising of a sample collec-
tion phase, a representation learning phase that constructs basis functions from samples, and a final
parameter estimation phase that determines an (approximately) optimal policy within the (linear)
subspace spanned by the (current) basis functions. (iv) A specific instantiation of the RPI frame-
work using least-squares policy iteration (LSPI) as the parameter estimation method (v) Several
strategies for scaling the proposed approach to large discrete and continuous state spaces, including
the Nyström extension for out-of-sample interpolation of eigenfunctions, and the use of Kronecker
sum factorization to construct compact eigenfunctions in product spaces such as factored MDPs
(vi) Finally, a series of illustrative discrete and continuous control tasks, which both illustrate the
concepts and provide a benchmark for evaluating the proposed approach. Many challenges remain
to be addressed in scaling the proposed framework to large MDPs, and several elaboration of the
proposed framework are briefly summarized at the end.

Keywords: Markov decision processes, reinforcement learning, value function approximation,
manifold learning, spectral graph theory

1. Introduction

This paper introduces a novel spectral framework for solving Markov decision processes (MDPs)
(Puterman, 1994) where both the underlying representation or basis functions and (approximate)
optimal policies within the (linear) span of these basis functions are simultaneously learned. This
framework addresses a major open problem not addressed by much previous work in the field of
approximate dynamic programming (Bertsekas and Tsitsiklis, 1996) and reinforcement learning

c©2007 Sridhar Mahadevan and Mauro Maggioni.

MAHADEVAN AND MAGGIONI

(Sutton and Barto, 1998), where the set of “features” or basis functions mapping a state s to a
k-dimensional real vector φ(s) ∈ Rk is usually hand-engineered.

The overall framework can be summarized briefly as follows. The underlying task environment
is modeled as an MDP, where the system dynamics and reward function are typically assumed to
be unknown. An agent explores the underlying state space by carrying out actions using some
policy, say a random walk. Central to the proposed framework is the notion of a diffusion model
(Coifman et al., 2005a; Kondor and Lafferty, 2002): the agent constructs a (directed or undirected)
graph connecting states that are “nearby”. In the simplest setting, the diffusion model is defined by
the combinatorial graph Laplacian matrix L = D−W , whereW is a symmetrized weight matrix,
and D is a diagonal matrix whose entries are the row sums of W .1 Basis functions are derived
by diagonalizing the Laplacian matrix L, specifically by finding its “smoothest” eigenvectors that
correspond to the smallest eigenvalues. Eigenvectors capture large-scale temporal properties of a
transition process. In this sense, they are similar to value functions, which reflect the accumulation
of rewards over the long run. The similarity between value functions and the eigenvectors of the
graph Laplacian sometimes can be remarkable, leading to a highly compact encoding (measured in
terms of the number of basis functions needed to encode a value function). Laplacian basis functions
can be used in conjunction with a standard “black box” parameter estimation method, such as Q-
learning (Watkins, 1989) or least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003) to
find the best policy representable within the space of the chosen basis functions.

While the overall goal of learning representations is not new within the context of MDPs—
it has been addressed by Dayan (1993) and Drummond (2002) among others—our approach is
substantially different from previous work. The fundamental idea is to construct basis functions
for solving MDPs by diagonalizing symmetric diffusion operators on an empirically learned graph
representing the underlying state space. A diffusion model is intended to capture information flow
on a graph or amanifold.2 A simple diffusion model is a randomwalk on an undirected graph, where
the probability of transitioning from a vertex (state) to its neighbor is proportional to its degree, that
is Pr = D−1W (Chung, 1997). As we will see in Section 3, the combinatorial Laplacian operator L
defined in the previous paragraph is closely related spectrally to the random walk operator Pr. A key
advantage of diffusion models is their simplicity: it can be significantly easier to estimate a “weak”
diffusion model, such as the undirected random walk Pr or the combinatorial Laplacian L, than to
learn the true underlying transition matrix Pπ of a policy π.

The proposed framework can be viewed as automatically generating subspaces on which to
project the value function using spectral analysis of operators on graphs. This differs fundamen-
tally from many past attempts at basis function generation, for example tuning the parameters of
pre-defined basis functions (Menache et al., 2005; Kveton and Hauskrecht, 2006), dynamically al-
locating new parametric basis functions based on state space trajectories (Kretchmar and Anderson,
1999), or generating basis functions using the Bellman error in approximating a specific value func-
tion (Keller et al., 2006; Petrik, 2007; Parr et al., 2007; Patrascu et al., 2002). The main contribution

1. Section 9 describes how to generalize this simple diffusion model in several ways, including directed graphs where
the symmetrization is based on the Perron vector or the leading eigenvector associated with the largest eigenvalue
(Chung, 2005), state-action diffusion models where the vertices represent state-action pairs, and diffusion models for
temporally extended actions.

2. Intuitively, a manifold is a (finite or infinite) set that looks “locally Euclidean”, in that an invertible mapping can be
defined from a neighborhood around each element of the set to Rn. There are technical conditions that additionally
need to be satisfied for a manifold to be smooth, as explained in Lee (2003).

2170

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

of this paper is to show how to construct novel non-parametric basis functions whose shapes reflect
the geometry of the environment.

In this paper, basis functions are constructed from spectral analysis of diffusion operators where
the resulting representations are constructed without explicitly taking rewards into account. This
approach can be contrasted with recent approaches that explicitly use reward information to generate
basis functions (Keller et al., 2006; Petrik, 2007; Parr et al., 2007). There are clear advantages and
disadvantages to these two approaches. In the non-reward based approach, basis functions can
be more easily transferred across MDPs in situations where an agent is required to solve multiple
tasks defined on a common state (action) space. Furthermore, basis functions constructed using
spectral analysis reflect global geometric properties, such as bottlenecks and symmetries in state
spaces, that are invariant across multiple MDPs on the same state (action) space. Finally, in the
full control learning setting studied here, the agent does not initially know the true reward function
or transition dynamics, and building representations based on estimating these quantities introduces
another potential source of error. It is also nontrivial to learn accurate transition models, particularly
in continuous MDPs. However, in other settings such as planning, where the agent can be assumed
to have a completely accurate model, it is entirely natural and indeed beneficial to exploit reward or
transition dynamics in constructing basis functions. In particular, it is possible to design algorithms
for basis function generation with provable performance guarantees (Parr et al., 2007; Petrik, 2007),
although these theoretical results are at present applicable only to the more limited case of evaluating
a fixed policy. The proposed framework can in fact be easily extended to use reward information by
building reward-based diffusion models, as will be discussed in more detail in Section 9.

Since eigenvectors of the graph Laplacian form “global” basis functions whose support is the en-
tire state space, each eigenvector induces a real-valued mapping over the state space. Consequently,
we can view each eigenvector as a “proto-value” function (or PVF), and the set of PVFs form the
“building blocks” of all value functions on a state space (Mahadevan, 2005a). Of course, it is easy
to construct a complete orthonormal set of basis functions spanning all value functions on a graph:
the unit vectors themselves form such a basis, and indeed, any collection of |S| random vectors can
(with high probability) be orthonormalized so that they are of unit length and “perpendicular” to
each other. The challenge is to construct a compact basis set that is efficient at representing value
functions with as few basis functions as possible. Proto-value functions differ from these obvious
choices, or indeed other more common parametric choices such as radial basis functions (RBFs),
polynomial bases, or CMAC, in that they are associated with the spectrum of the Laplacian which
has an intimate relationship to the large-scale geometry of a state space. The eigenvectors of the
Laplacian also provide a systematic organization of the space of functions on a graph, with the
“smoothest” eigenvectors corresponding to the smallest eigenvalues (beginning with the constant
function associated with the zero eigenvalue). By projecting a given value function on the space
spanned by the eigenvectors of the graph Laplacian, the “spatial” content of a value function is
mapped into a “frequency” basis, a hallmark of classical “Fourier” analysis (Mallat, 1989).

It has long been recognized that traditional parametric function approximators may have diffi-
culty accurately modeling value functions due to nonlinearities in an MDP’s state space (Dayan,
1993). Figure 1 illustrates the problem with a simple example.3 In particular, as Dayan (1993) and
Drummond (2002) among others have noted, states close in Euclidean distance may have values that
are very far apart (e.g., two states on opposite sides of a wall in a spatial navigation task). While

3. Further details of this environment and similar variants are given in Section 2.1 and Section 4.2.

2171

MAHADEVAN AND MAGGIONI

there have been several attempts to fix the shortcomings of traditional function approximators to
address the inherent nonlinear nature of value functions, these approaches have lacked a sufficiently
comprehensive and broad theoretical framework (related work is discussed in more detail in Sec-
tion 8). We show that by rigorously formulating the problem of value function approximation as
approximating real-valued functions on a graph or manifold using a diffusion model, a more gen-
eral solution emerges that not only has broader applicability than these previous methods, but also
enables a novel framework called Representation Policy Iteration (RPI) (Mahadevan, 2005b) where
representation learning is interleaved with policy learning. The RPI framework consists of an outer
loop that learns basis functions from sample trajectories, and an inner loop that consists of a control
learner that finds improved policies.

Figure 2 shows a set of samples produced by doing a random walk in the inverted pendulum
task. In many continuous control tasks, there are often physical constraints that limit the “degrees
of freedom” to a lower-dimensional manifold, resulting in motion along highly constrained regions
of the state space. Instead of placing basis functions uniformly in all regions of the state space, the
proposed framework recovers the underlying manifold by building a graph based on the samples
collected over a period of exploratory activity. The basis functions are then computed by diagonal-
izing a diffusion operator (the Laplacian) on the space of functions on the graph, and are thereby
customized to the manifold represented by the state (action) space of a particular control task. In
discrete MDPs, such as Figure 1, the problem is one of compressing the space of (value) functions
R|S| (or R|S|×|A| for action-value functions). In continuous MDPs, such as Figure 2, the correspond-
ing problem is compressing the space of square-integrable functions on R2, denoted as L2(R2). In
short, the problem is one of dimensionality reduction not in the data space, but on the space of
functions on the data.4

Both the discrete MDP shown in Figure 1 and the continuous MDP shown in Figure 2 have “in-
accessible” regions of the state space, which can be exploited in focusing the function approximator
to accessible regions. Parametric approximators, as typically constructed, do not distinguish be-
tween accessible and inaccessible regions. Our approach goes beyond modeling just the reachable
state space, in that it also models the local non-uniformity of a given region. This non-uniform mod-
eling of the state space is facilitated by constructing a graph operator which models the local density
across regions. By constructing basis functions adapted to the non-uniform density and geometry of
the state space, our approach extracts significant topological information from trajectories. These
ideas are formalized in Section 3.

The additional power obtained from knowledge of the underlying state space graph or mani-
fold comes at a potentially significant cost: the manifold representation needs to be learned, and
furthermore, basis functions need to be computed from it. Although our paper demonstrates that
eigenvector-type basis functions resulting from a diffusion analysis of graph-based manifolds can
solve standard benchmark discrete and continuous MDPs, the problem of efficiently learning mani-
fold representations of arbitraryMDPs is beyond the scope of this introductory paper. We discuss a
number of outstanding research questions in Section 9 that need to be addressed in order to develop
a more complete solution.

One hallmark of Fourier analysis is that the basis functions are localized in frequency, but not
in time (or space). Hence, the eigenfunctions of the graph Laplacian are localized in frequency by
being associated with a specific eigenvalue λ, but their support is in general the whole graph. This

4. The graph Laplacian induces a smoothing prior on the space of functions of a graph that can formally be shown to
define a data-dependent reproducing kernel Hilbert space (Scholkopf and Smola, 2001).

2172

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

11

Total states = 100,"Wall" States = 47

G

Two−Room MDP using Unit Vector Bases

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
10

20

30

40

50

60

70

80

90

G

0
2

4
6

8
10

0
2

4
6

8
10
0

20

40

60

80

100

Optimal Value Function for Two−Room MDP

Figure 1: It is difficult to approximate nonlinear value functions using traditional parametric func-
tion approximators. Left: a “two-room” environment with 100 total states, divided into
57 accessible states (including one doorway state), and 43 inaccessible states represent-
ing exterior and interior walls (which are “one state” thick). Middle: a 2D view of the
optimal value function for the two-room grid MDP, where the agent is (only) rewarded
for reaching the state marked G by +100. Access to each room from the other is only
available through a central door, and this “bottleneck” results in a strongly nonlinear op-
timal value function. Right: a 3D plot of the optimal value function, where the axes are
reversed for clarity.

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

5
654 Sampled States from Inverted Pendulum Domain

Angle

A
ng

ul
ar

 V
el

oc
ity

Figure 2: Left: Samples from a series of random walks in an inverted pendulum task. Due to
physical constraints, the samples are largely confined to a narrow region. The proto-value
function framework presented in this paper empirically models the underlying manifold
in such continuous control tasks, and derives customized basis functions that exploit the
unique structure of such point-sets in Rn. Right: An approximation of the value function
learned by using PVFs.

2173

MAHADEVAN AND MAGGIONI

global characteristic raises a natural computational concern: can Laplacian bases be computed and
represented compactly in large discrete and continuous spaces?5 We will address this problem in
particular cases of interest: large factored spaces, such as grids, hypercubes, and tori, lead natu-
rally to product spaces for which the Laplacian bases can be constructed efficiently using tensor
products. For continuous domains, by combining low-rank approximations and the Nyström inter-
polation method, Laplacian bases can be constructed quite efficiently (Drineas and Mahoney, 2005).
Finally, a variety of other techniques can be used to sparsify Laplacian bases, including graph par-
titioning (Karypis and Kumar, 1999), matrix sparsification (Achlioptas et al., 2002), and automatic
Kronecker matrix factorization (Van Loan and Pitsianis, 1993). Other sources of information can
be additionally exploited to facilitate sparse basis construction. For example, work on hierarchical
reinforcement learning surveyed in Barto and Mahadevan (2003) studies special types of MDPs
called semi-Markov decision processes, where actions are temporally extended, and value functions
are decomposed using the hierarchical structure of a task. In Section 9, we discuss how to exploit
such additional knowledge in the construction of basis functions.

This research is related to recent work on manifold and spectral learning (Belkin and Niyogi,
2004; Coifman and Maggioni, 2006; Roweis and Saul, 2000; Tenenbaum et al., 2000). A major
difference is that our focus is on solving Markov decision processes. Value function approximation
in MDPs is related to regression on graphs (Niyogi et al., 2003) in that both concern approximation
of real-valued functions on the vertices of a graph. However, value function approximation is fun-
damentally different since target values are initially unknown and must be determined by solving
the Bellman equation, for example by iteratively finding a fixed point of the Bellman backup opera-
tor. Furthermore, the set of samples of the manifold is not given a priori, but is determined through
active exploration by the agent. Finally, in our work, basis functions can be constructed multiple
times by interleaving policy improvement and representation learning. This is in spirit similar to the
design of kernels adapted to regression or classification tasks (Szlam et al., 2006).

The rest of the paper is organized as follows. Section 2 gives a quick summary of the main
framework called Representation Policy Iteration (RPI) for jointly learning representations and
policies, and illustrates a simplified version of the overall algorithm on the small two-room dis-
crete MDP shown earlier in Figure 1. Section 3 motivates the use of the graph Laplacian from
several different points of view, including as a spectral approximation of transition matrices, as
well as inducing a smoothness regularization prior that respects the topology of the state space
through a data-dependent kernel. Section 4 describes a concrete instance of the RPI framework
using least-squares policy iteration (LSPI) (Lagoudakis and Parr, 2003) as the underlying control
learning method, and compares PVFs with two parametric bases—radial basis functions (RBFs)
and polynomials—on small discrete MDPs. Section 5 describes one approach to scaling proto-
value functions to large discrete product space MDPs, using the Kronecker sum matrix factorization
method to decompose the eigenspace of the combinatorial Laplacian. This section also compares
PVFs against RBFs on the Blockers task (Sallans and Hinton, 2004). Section 6 extends PVFs to con-
tinuous MDPs using the Nyström extension for interpolating eigenfunctions from sampled states to
novel states. A detailed evaluation of PVFs in continuous MDPs is given in Section 7, including

5. The global nature of Fourier bases have been exploited in other areas, for example they have led to significantly
improved algorithms for learning boolean functions (Jackson, 1995). Circuit designers have discovered fast algo-
rithms for converting state-based truth-table and decision diagram representations of boolean functions into Fourier
representations using the Hadamard transformation (Thornton et al., 2001). The eigenvectors of the graph Laplacian
on boolean hypercubes form the columns of the Hadamard matrix (Bernasconi, 1998).

2174

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

EXIT

SAMPLE

COLLECTION

POLICY

LEARNING

CONSTRUCTION

BASIS

Error tolerance

function
Similarity

Initial task specification

Figure 3: Flowchart of the unified approach to learning representation and behavior.

the inverted pendulum, the mountain car, and the Acrobot tasks (Sutton and Barto, 1998). Sec-
tion 8 contains a brief description of previous work. Section 9 discusses several ongoing extensions
of the proposed framework, including Kronecker product matrix factorization (Johns et al., 2007),
multiscale diffusion wavelet bases (Mahadevan and Maggioni, 2006), and more elaborate diffusion
models using directed graphs where actions are part of the representation (Johns and Mahadevan,
2007; Osentoski and Mahadevan, 2007).

2. Overview of The Framework

This section contains a brief summary of the overall framework, which we call Representation
Policy Iteration (RPI) (Mahadevan, 2005b).6 Figure 3 illustrates the overall framework. There
are three main components: sample collection, basis construction, and policy learning. Sample
collection requires a task specification, which comprises of a domain simulator (or alternatively a
physically embodied agent like a robot), and an initial policy. In the simplest case, the initial policy
can be a randomwalk, although it can also reflect a more informative hand-coded policy. The second
phase involves constructing the bases from the collected samples using a diffusion model, such as
an undirected (or directed) graph. This process involves finding the eigenvectors of a symmetrized
graph operator such as the graph Laplacian. The final phase involves estimating the “best” policy
representable in the span of the basis functions constructed (we are primarily restricting our attention
to linear architectures, where the value function is a weighted linear combination of the bases). The
entire process can then be iterated.

Figure 4 specifies a more detailed algorithmic view of the overall framework. In the sample
collection phase, an initial random walk (perhaps guided by an informed policy) is carried out to

6. The term “Representation Policy Iteration” is used to succinctly denote a class of algorithms that jointly learn basis
functions and policies. In this paper, we primarily use LSPI as the control learner, but in other work we have used
control learners such as Q(λ) (Osentoski and Mahadevan, 2007).

2175

MAHADEVAN AND MAGGIONI

obtain samples of the underlying manifold on the state space. The number of samples needed
is an empirical question which will be investigated in further detail in Section 5 and Section 6.
Given this set of samples, in the representation learning phase, an undirected (or directed) graph is
constructed in one of several ways: two states can be connected by a unit cost edge if they represent
temporally successive states; alternatively, a local distance measure such as k-nearest neighbor can
be used to connect states, which is particularly useful in the experiments on continuous domains
reported in Section 7. From the graph, proto-value functions are computed using one of the graph
operators discussed below, for example the combinatorial or normalized Laplacian. The smoothest
eigenvectors of the graph Laplacian (that is, associated with the smallest eigenvalues) are used to
form the suite of proto-value functions. The number of proto-value functions needed is a model
selection question, which will be empirically investigated in the experiments described later. The
encoding φ(s) : S→ Rk of a state is computed as the value of the k proto-value functions on that
state. To compute a state action encoding, a number of alternative strategies can be followed: the
figure shows the most straightforward method of simply replicating the length of the state encoding
by the number of actions and setting all the vector components to 0 except those associated with
the current action. More sophisticated schemes are possible (and necessary for continuous actions),
and will be discussed in Section 9.

At the outset, it is important to point out that the algorithm described in Figure 4 is one of many
possible designs that combine the learning of basis functions and policies. In particular, the RPI
framework is an iterative approach, which interleaves the two phases of generating basis functions
by sampling trajectories from policies, and then subsequently finding improved policies from the
augmented set of basis functions. It may be possible to design alternative frameworks where basis
functions are learned jointly with learning policies, by attempting to optimize some cumulative
measure of optimality. We discuss this issue in more depth in Section 9.

2.1 Sample Run of RPI on the Two-Room Environment

The result of running the algorithm is shown in Figure 5, which was obtained using the following
specific parameter choices.

• The state space of the two room MDP is as shown in Figure 1. There are 100 states totally,
of which 43 states are inaccessible since they represent interior and exterior walls. The re-
maining 57 states are divided into 1 doorway state and 56 interior room states. The agent
is rewarded by +100 for reaching state 89, which is the last accessible state in the bottom
right-hand corner of room 2. In the 3D value function plots shown in Figure 5, the axes are
reversed to make it easier to visualize the value function plot, making state 89 appear in the
top left (diagonally distant) corner.

• 3463 samples were collected using off-policy sampling from a random walk of 50 episodes,
each of length 100 (or terminating early when the goal state was reached).7 Four actions
(compass direction movements) were possible from each state. Action were stochastic. If a
movement was possible, it succeeded with probability 0.9. Otherwise, the agent remained in

7. Since the approximated value function shown in Figure 5 is the result of a specific set of random walk trajectories, the
results can vary over different runs depending on the number of times the only rewarding (goal) state was reached.
Section 4.2 contains more detailed experiments that measures the learned policy over multiple runs.

2176

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

RPI (πm,T,N,ε,k,O,µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation
// D: Initial set of samples

Sample Collection Phase

1. Off-policy or on-policy sampling: Collect a data set of samplesDm = {(si,ai,si+1,ri), . . .} by either
randomly choosing actions (off-policy) or using the supplied initial policy (on-policy) for a set of T
trials, each of maximum N steps (terminating earlier if it results in an absorbing goal state), and add
these transitions to the complete data set D .

2. (Optional) Subsampling step: Form a subset of samples Ds ⊆ D by some subsampling method
such as random subsampling or trajectory subsampling. For episodic tasks, optionally prune the
trajectories stored in Ds so that only those that reach the absorbing goal state are retained.

Representation Learning Phase

3. Build a diffusion model from the data in Ds. In the simplest case of discrete MDPs, construct an
undirected weighted graph G fromD by connecting state i to state j if the pair (i, j) form temporally
successive states ∈ S. Compute the operator O on graph G, for example the normalized Laplacian
L = D− 1

2 (D−W)D− 1
2 .

4. Compute the k smoothest eigenvectors of O on the graph G. Collect them as columns of the basis
function matrix Φ, a |S|×k matrix. The state action bases φ(s,a) can be generated from rows of this
matrix by duplicating the state bases φ(s) |A| times, and setting all the elements of this vector to 0
except for the ones corresponding to the chosen action.a

Control Learning Phase

5. Using a standard parameter estimation method (e.g., Q-learning or LSPI), find an ε-optimal policy π
that maximizes the action value function Qπ = Φwπ within the linear span of the bases Φ using the
training data in D .

6. Optional: Set the initial policy πm+1 to π and call RPI (πm+1,T,N,ε,k,O,µ,D).

a. In large continuous and discrete MDPs, the basis matrix Φ need not be explicitly formed and the features φ(s,a)
can be computed “on demand” as will be explained later.

Figure 4: This figure shows a generic algorithm for combining the learning of representation (or
basis functions) from spectral analysis of random walks, and estimation of policies within
their linear span. Elaborations of this framework will be studied in subsequent sections.

2177

MAHADEVAN AND MAGGIONI

the same state. When the agent reaches state 89, it receives a reward of 100, and is randomly
reset to an accessible interior state.

• An undirected graph was constructed from the sample transitions, where the weight matrixW
is simply the adjacency (0,1) matrix. The graph operator used was the normalized Laplacian
L = D− 1

2LD− 1
2 , where L= D−W is referred to as the combinatorial Laplacian (these graph

operators are described in more detail in Section 3).

• 20 eigenvectors corresponding to the smallest eigenvalues of L (duplicated 4 times, one set
for each action) are chosen as the columns of the state action basis matrix Φ. For example,
the first four eigenvectors are shown in Figure 5. These eigenvectors are orthonormal: they
are normalized to be of length 1 and are mutually perpendicular. Note how the eigenvectors
are sensitive to the geometric structure of the overall environment. For example, the second
eigenvector allows partitioning the two rooms since it is negative for all states in the first room,
and positive for states in the second room. The third eigenvector is non-constant over only
one of the rooms. The connection between the Laplacian and regularities such as symmetries
and bottlenecks is discussed in more detail in Section 3.6.

• The parameter estimation method used was least-squares policy iteration (LSPI), with γ= 0.8.
LSPI is described in more detail in Section 4.1.

• The optimal value function using unit vector bases and the approximation produced by 20
PVFs are compared using the 2D array format in Figure 6.

In the remainder of this paper, we will evaluate this framework in detail, providing some ra-
tionale for why the Laplacian bases are adept at approximating value functions, and demonstrating
how to scale the approach to large discrete MDPs as well as continuous MDPs.

3. Representation Learning by Diffusion Analysis

In this section, we discuss the graph Laplacian, specifically motivating its use as a way to construct
basis functions for MDPs. We begin with a brief introduction to MDPs, and then describe the spec-
tral analysis of a restricted class of MDPs where the transition matrix is diagonalizable. Although
this approach is difficult to implement for general MDPs, it provides some intuition into why eigen-
vectors are a useful way to approximate value functions. We then introduce the graph Laplacian
as a symmetric matrix, which acts as a surrogate for the true transition matrix, but which is easily
diagonalizable. It is possible to model non-symmetric actions and policies using more sophisticated
symmetrization procedures (Chung, 2005), and we postpone discussion of this extension to Sec-
tion 9. There are a number of other perspectives to view the graph Laplacian, namely as generating
a data-dependent reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola, 2001), as well as
a way to generate nonlinear embeddings of graphs. Although a full discussion of these perspectives
is beyond this paper, they are worth noting in order to gain deeper insight into the many remarkable
properties of the Laplacian.

3.1 Brief Overview of MDPs

A discrete Markov decision process (MDP)M = (S,A,Pass′ ,R
a
ss′) is defined by a finite set of discrete

states S, a finite set of actions A, a transition model Pass′ specifying the distribution over future states

2178

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0
5

10

0
5

10
0

0.2

0.4

LAPLACIAN BASIS FUNCTION 1

0
5

10

0
5

10
−0.5

0

0.5

LAPLACIAN BASIS FUNCTION 2

0
5

10

0
5

10
−0.5

0

0.5

LAPLACIAN BASIS FUNCTION 3

0
5

10

0
5

10
−0.5

0

0.5

LAPLACIAN BASIS FUNCTION 4

0
2

4
6

8
10

0
2

4
6

8
10
0

20

40

60

80

100

Optimal Value Function for Two−Room MDP

0
2

4
6

8
10

0
2

4
6

8
10
0

20

40

60

80

100

PVF Approximation in Two room MDP

Figure 5: Top: proto-value functions formed from the four “smoothest” eigenvectors of the normal-
ized graph Laplacian in a two-room MDP of 100 states. Bottom left: the optimal value
function for a 2 room MDP, repeated from Figure 1 for comparative purposes. Bottom
right: the approximation produced by the RPI algorithm using 20 proto-value functions,
computed as the eigenvectors of the normalized graph Laplacian on the adjacency graph.
The nonlinearity represented by the walls is clearly captured.

2179

MAHADEVAN AND MAGGIONI

Two−Room MDP using Unit Vector Bases

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
10

20

30

40

50

60

70

80

90

G

Two−Room MDP with PVFs

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
10

20

30

40

50

60

70

80

90

G

Figure 6: Left: the optimal value function for the two-room MDP using unit vector bases. Right:
approximation with 20 PVFs using the RPI algorithm.

s′ when an action a is performed in state s, and a corresponding reward model Rass′ specifying a
scalar cost or reward (Puterman, 1994). In continuous Markov decision processes, the set of states
⊆ Rd . Abstractly, a value function is a mapping S→ R or equivalently (in discrete MDPs) a vector
∈ R|S|. Given a policy π : S → A mapping states to actions, its corresponding value function V π

specifies the expected long-term discounted sum of rewards received by the agent in any given state
s when actions are chosen using the policy. Any optimal policy π∗ defines the same unique optimal
value function V ∗ which satisfies the nonlinear constraints

V
∗
(s) = T ∗(V ∗(s)) =max

a

(
Rsa+ γ∑

s′∈S
Pass′V

∗(s′)

)
,

where Rsa = ∑s′∈sPass′R
a
ss′ is the expected immediate reward. Value functions are mappings from

the state space to the expected long-term discounted sum of rewards received by following a fixed
(deterministic or stochastic) policy π. Here, T ∗ can be viewed as an operator on value functions, and
V ∗ represents the fixed point of the operator T ∗. The value function V π associated with following a
(deterministic) policy π can be defined as

V
π
(s) = T (V π(s)) = Rsπ(s) + γ∑

s′∈S
Pπ(s)ss′ V

π(s′).

Once again, T is an operator on value functions, whose fixed point is given by V π. Value
functions in an MDP can be viewed as the result of rewards “ diffusing” through the state space,
governed by the underlying system dynamics. Let Pπ represent an |S| × |S| transition matrix of a
(deterministic) policy π : S→ A mapping each state s ∈ S to a desired action a= π(s). Let Rπ be a
(column) vector of size |S| of rewards. The value function associated with policy π can be defined
using the Neumann series:

V π = (I− γPπ)−1Rπ =
(
I+ γPπ+ γ2(Pπ)2+ . . .

)
Rπ. (1)

2180

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

3.2 Approximation of Value Functions

It is obviously difficult to represent value functions exactly on large discrete state spaces, or in
continuous spaces. Consequently, there has been much study of approximation architectures for
representing value functions (Bertsekas and Tsitsiklis, 1996). Value functions generally exhibit two
key properties: they are typically smooth, and they reflect the underlying state space geometry. A
fundamental contribution of this paper is the use of an approximation architecture that exploits a
new notion of smoothness, not in the traditional sense of Euclidean space, but smoothness on the
state space graph. The notion of smooth functions on graphs can be formalized using the Sobolev
norm (Mahadevan and Maggioni, 2006). In addition, value functions usually reflect the geometry
of the environment (as illustrated in Figure 5). Smoothness derives from the fact that the value at a
given state V π(s) is always a function of values at “neighboring” states. Consequently, it is natural
to construct basis functions for approximating value functions that share these two properties.8

Let us define a set of basis functions FΦ = {φ1, . . . ,φk}, where each basis function represents
a “feature” φi : S→ R. The basis function matrix Φ is an |S| × k matrix, where each column is a
particular basis function evaluated over the state space, and each row is the set of all possible basis
functions evaluated on a particular state. Approximating a value function using the matrix Φ can be
viewed as projecting the value function onto the column space spanned by the basis functions φi,

V π ≈ V̂ π =Φwπ =∑
i
wπi φi .

Mathematically speaking, this problem can be rigorously formulated using the framework of best
approximation in inner product spaces (Deutsch, 2001). In fact, it is easy to show that the space
of value functions represents a Hilbert space, or a complete inner product space (Van Roy, 1998).
For simplicity, we focus on the simpler problem of approximating a fixed policy π, which defines a
Markov chain where ρπ represents its invariant (long-term) distribution. This distribution defines a
Hilbert space, where the inner product is given by

〈V1,V2〉π =∑
s∈S
V π
1 (s)V π

2 (s)ρπ(s).

The “length” or norm in this inner product space is defined as ‖V‖π =
√
〈V,V 〉π. Value function ap-

proximation can thus be formalized as a problem of best approximation in a Hilbert space (Deutsch,
2001). It is well known that if the basis functions φi are orthonormal (unit-length and mutually
perpendicular), the best approximation of the value function V π can be expressed by its projection
onto the space spanned by the basis functions, or more formally

V π ≈∑
i∈I
〈V π,φi〉π φi,

where I is the set of indices that define the basis set. In finite MDPs, the best approximation can be
characterized using the weighted least-squares projection matrix

Mπ
Φ =Φ(ΦTDρπΦ)−1ΦTDρπ ,

8. For low values of the discount factor γ, it is possible to construct highly non-smooth value functions, which decay
rapidly and are not influenced by nonlinearities in state space geometry. In many problems of interest, however, the
discount factor γ needs to be set close to 1 to learn a desirable policy.

2181

MAHADEVAN AND MAGGIONI

where Dρπ is a diagonal matrix whose entries represent the distribution ρπ. We know the Bellman
“backup” operator T defined above has a fixed pointV π = T (V π). Many standard parameter estima-
tion methods, including LSPI (Lagoudakis and Parr, 2003) and LSTD (Bradtke and Barto, 1996),
can be viewed as finding an approximate fixed point of the operator T

V̂ π =Φwπ =Mπ
φ (T (Φwπ)) .

It can be shown that the operator T is a contraction mapping, where

‖TV1−TV2‖π ≤ γ‖V1−V2‖π .

A natural question that arises is whether we can quantify the error in value function approximation
under a set of basis functions Fφ. Exploiting the contraction property of the operator T under the
norm defined by the weighted inner product, it can be shown that the “distance” between the true
value function V π and the fixed point V̂ π can be bounded in terms of the distance between V π and
its projection onto the space spanned by the basis functions (Van Roy, 1998):

‖V π−V̂ π‖π ≤
1

1−κ2
‖V π−Mπ

φV
π‖π ,

where κ is the contraction rate defined by Bellman operator T in conjunction with the weighted
least-squares projection.

The problem of value function approximation in control learning is significantly more difficult,
in that it involves finding an approximate fixed point of the initially unknown operator T ∗. One stan-
dard algorithm for control learning is approximate policy iteration (Bertsekas and Tsitsiklis, 1996),
which interleaves an approximate policy evaluation step of finding an approximation of the value
function V̂ πk associated with a given policy πk at stage k, with a policy improvement step of finding
the greedy policy associated with V̂ πk . Here, there are two sources of error introduced by approx-
imating the exact value function, and approximating the policy. We will describe a specific type
of approximate policy iteration method—the LSPI algorithm (Lagoudakis and Parr, 2003)—in Sec-
tion 4, which uses a least-squares approach to approximate the action-value function. An additional
problem in control learning is that the standard theoretical results for approximate policy iteration
are often expressed in terms of the maximum (normed) error, whereas approximation methods are
most naturally formulated as projections in a least-squared normed space. There continues to be
work on developing more useful weighted least-square bounds, although these currently assume the
policy is exactly representable (Munos, 2003, 2005). Also, it is possible to design approximation
methods that directly carry out max-norm projections using linear programming, although this work
usually assumes the transition dynamics is known (Guestrin et al., 2001),

Our approach to the problem of control learning involves finding a suitable set of basis func-
tions by diagonalizing a learned diffusion model from sample trajectories, and to use projections
in the Hilbert space defined by the diffusion model for policy evaluation and improvement. We
first introduce the Fourier approach of finding basis functions by diagonalization, and then describe
how diffusion models are used as a substitute for transition models. In Section 9, we will return
to discuss other approaches (Petrik, 2007; Parr et al., 2007), where the Bellman operator T is used
more directly in finding basis functions.

2182

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

3.3 Spectral Analysis of Transition Matrices

In this paper, the orthogonal basis functions are constructed in the Fourier tradition by diagonalizing
an operator (or matrix) and finding its eigenvectors. We motivate this approach by first assuming that
the eigenvectors are constructed directly from a (known) state transition matrix Pπ and show that if
the reward function Rπ is known, the eigenvectors can be selected nonlinearly based on expanding
the value function V π on the eigenvectors of the transition matrix. Petrik (2007) develops this
line of reasoning, assuming that Pπ and Rπ are both known, and that Pπ is diagonalizable. We
describe this perspective in more detail below as it provides a useful motivation for why we use
diagonalizable diffusion matrices instead. One subclass of diagonalizable transition matrices are
those corresponding to reversibleMarkov chains (which will turn out to be useful below). Although
transition matrices for general MDPs are not reversible, and their spectral analysis is more delicate,
it will still be a useful starting point to understand diffusion matrices such as the graph Laplacian.9
If the transition matrix Pπ is diagonalizable, there is a complete set of eigenvectorsΦπ = (φπ1, . . .φ

π
n)

that provides a change of basis in which the transition matrix Pπ is representable as a diagonal
matrix. For the sub-class of diagonalizable transition matrices represented by reversible Markov
chains, the transition matrix is not only diagonalizable, but there is also an orthonormal basis. In
other words, using a standard result from linear algebra, we have

Pπ =ΦπΛπ(Φπ)T ,

where Λπ is a diagonal matrix of eigenvalues. Another way to express the above property is to write
the transition matrix as a sum of projection matrices associated with each eigenvalue:

Pπ =
n

∑
i=1

λπi φ
π
i (φ

π
i)
T ,

where the eigenvectors φπi form a complete orthogonal basis (i.e., ‖ φπi ‖2= 1 and 〈φπi ,φπj 〉= 0, i += j).
It readily follows that powers of Pπ have the same eigenvectors, but the eigenvalues are raised to the
corresponding power (i.e., (Pπ)kφπi = (λπi)

kφπi). Since the basis matrix Φ spans all vectors on the
state space S, we can express the reward vector Rπ in terms of this basis as

Rπ =Φπαπ, (2)

where απ is a vector of scalar weights. For high powers of the transition matrix, the projection ma-
trices corresponding to the largest eigenvalues will dominate the expansion. Combining Equation 2

9. In Section 9, we discuss extensions to more general non-reversible MDPs.

2183

MAHADEVAN AND MAGGIONI

with the Neumann expansion in Equation 1, we get

V π =
∞

∑
i=0

(γPπ)iΦπαπ

=
∞

∑
i=0

n

∑
k=1

γi(Pπ)iφπkα
π
k

=
n

∑
k=1

∞

∑
i=0

γi(λπk)
iφπkα

π
k

=
n

∑
k=1

1
1− γλπk

φπkα
π
k

=
n

∑
k=1

βkφ
π
k ,

where we used the property that (Pπ)iφπj = (λπj)
iφπj . Essentially, the value functionV π is represented

as a linear combination of eigenvectors of the transition matrix. In order to provide the most effi-
cient approximation, we can truncate the summation by choosing some small number m< n of the
eigenvectors, preferably those for whom βk is large. Of course, since the reward function is not
known, it might be difficult to pick a priori those eigenvectors that result in the largest coefficients.
A simpler strategy instead is to focus on those eigenvectors for whom the coefficients 1

1−γλπk
are the

largest. In other words, we should pick the eigenvectors corresponding to the largest eigenvalues of
the transition matrix Pπ (since the spectral radius is 1, the eigenvalues closest to 1 will dominate the
smaller ones):

V π ≈
m

∑
k=1

1
1− γλπk

φπkα
π
k , (3)

where we assume the eigenvalues are ordered in non-increasing order, so λπ1 is the largest eigenvalue.
If the transition matrix Pπ and reward function Rπ are both known, one can of course construct basis
functions by diagonalizing Pπ and choosing eigenvectors “out-of-order” (that is, pick eigenvectors
with the largest βk coefficients above). Petrik (2007) shows a (somewhat pathological) example
where a linear spectral approach specified by Equation 3 does poorly when the reward vector is
chosen such that it is orthogonal to the first k basis functions. It is an empirical question whether
such pathological reward functions exhibit themselves in more natural situations. The repertoire of
discrete and continuous MDPs we study seem highly amenable to the linear spectral decomposition
approach. However, we discuss various approaches for augmenting PVFs with reward-sensitive
bases in Section 9.

The spectral approach of diagonalizing the transition matrix is problematic for several reasons.
One, the transition matrix Pπ cannot be assumed to be symmetric, in which case one has to deal
with complex eigenvalues (and eigenvectors). Second, we cannot assume that the transition matrix
is known. Of course, one can always use samples of the underlying MDP generated by exploration
to estimate the transition matrix, but the number of samples needed may be large. Finally, in con-
trol learning, the policy keeps changing, causing one to have to reestimate the transition matrix.
What one would ideally like to have is a surrogatemodel that is easier to estimate than a full transi-
tion matrix, is always diagonalizable, and results in smooth basis functions that capture large scale
geometry. Diffusion models serve to fulfill this role, as discuss next.

2184

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

7

1 2

3 4

5 6

7

Goal

1

6

2

3

5

4

Pr =





0 0.5 0.5 0 0 0 0
0.5 0 0 0.5 0 0 0
0.33 0 0 0.33 0.33 0 0

. . .





Figure 7: Top: A simple diffusion model given by an undirected unweighted graph connecting
each state to neighbors that are reachable using a single (reversible) action. Bottom:
first three rows of the random walk matrix Pr = D−1W . Pr is not symmetric, but it has
real eigenvalues and eigenvectors since it is spectrally related to the normalized graph
Laplacian.

3.4 From Transition Matrices to Diffusion Models

We now develop a line of analysis where a graph is induced from the state space of an MDP, by
sampling from a policy such as a randomwalk. Let us define a weighted graphG= (V,E,W), where
V is a finite set of vertices, andW is a weighted adjacency matrix withW (i, j) > 0 if (i, j)∈E, that is
it is possible to reach state i from j (or vice-versa) in a single step. A simple example of a diffusion
model on G is the random walk matrix Pr = D−1W . Figure 7 illustrates a random walk diffusion
model. Note the random walk matrix Pr =D−1W is not symmetric. However, it can be easily shown
that Pr defines a reversible Markov chain, which induces a Hilbert space with respect to the inner
product defined by the invariant distribution ρ:

〈 f ,g〉ρ = ∑
v∈V

f (i)g(i)ρ(i).

In addition, the matrix Pr can be shown to be self-adjoint (symmetric) with respect to the above
inner product, that is

〈Pr f ,g〉ρ = 〈 f ,Prg〉ρ.

Consequently, the matrix Pr can be shown to have real eigenvalues and orthonormal eigenvectors,
with respect to the above inner product.

The random walk matrix Pr =D−1W is called a diffusion model because given any function f on
the underlying graph G, the powers of Ptr f determine how quickly the random walk will “mix” and
converge to the long term distribution (Chung, 1997). It can be shown that the stationary distribution

2185

MAHADEVAN AND MAGGIONI

of a random walk on an undirected graph is given by ρ(v) = dv
vol(G) , where dv is the degree of vertex

v and the “volume” vol(G) =∑v∈G dv. Even though the random walk matrix Pr can be diagonalized,
for computational reasons, it turns out to be highly beneficial to find a symmetric matrix with a
closely related spectral structure. This is essentially the graph Laplacian matrix, which we now
describe in more detail.

3.5 The Graph Laplacian

For simplicity, assume the underlying state space is represented as an undirected graphG=(V,E,W),
whereV is the set of vertices, E is the set of edges where (u,v)∈ E denotes an undirected edge from
vertex u to vertex v. The more general case of directed graphs is discussed in Section 9.3. The com-
binatorial Laplacian L is defined as the operator L = D−W , where D is a diagonal matrix called
the valency matrix whose entries are row sums of the weight matrixW . The first three rows of the
combinatorial Laplacian matrix for the grid world MDP in Figure 7 is illustrated below, where we
assume a unit weight on each edge:

L=





2 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0
−1 0 3 −1 −1 0 0

. . .



 .

Comparing the above matrix with the random walk matrix in Figure 7, it may seem like the
two matrices have little in common. Surprisingly, we will show that there is indeed an intimate
connection between the random walk matrix and the Laplacian. The Laplacian has many attractive
spectral properties. It is both symmetric as well as positive semi-definite, and hence its eigenvalues
are not only all real, but also non-negative. It is useful to view the Laplacian as an operator on the
space of functions F :V → R on a graph. In particular, it can be easily shown that

L f (i) =∑
j∼i

(f (i)− f (j)),

that is the Laplacian acts as a difference operator. On a two-dimensional grid, the Laplacian can be
shown to essentially be a discretization of the continuous Laplace operator

∂2 f
∂x2

+
∂2 f
∂y2

,

where the partial derivatives are replaced by finite differences.
Another fundamental property of the graph Laplacian is that projections of functions on the

eigenspace of the Laplacian produce the smoothest global approximation respecting the underlying
graph topology. More precisely, let us define the inner product of two functions f and g on a graph
as 〈 f ,g〉 = ∑u f (u)g(u).10 Then, it is easy to show that

〈 f ,L f 〉 = ∑
u∼v

wuv(f (u)− f (v))2,

10. For simplicity, here we consider the unweighted inner product ignoring the invariant distribution ρ induced by a
random walk.

2186

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

where this so-called Dirichlet sum is over the (undirected) edges u ∼ v of the graph G, and wuv
denotes the weight on the edge. Note that each edge is counted only once in the sum. From the
standpoint of regularization, this property is crucial since it implies that rather than smoothing using
properties of the ambient Euclidean space, smoothing takes the underlying manifold (graph) into
account.

To make the connection between the randomwalk operator Pr introduced in the previous section,
and the Laplacian, we need to introduce the normalized Laplacian (Chung, 1997), which is defined
as

L = D− 1
2LD− 1

2 .

To see the connection between the normalized Laplacian and the random walk matrix Pr =
D−1W , note the following identities:

L = D− 1
2LD− 1

2 = I−D− 1
2WD− 1

2 ,

I−L = D− 1
2WD− 1

2 ,

D− 1
2 (I−L)D

1
2 = D−1W.

Hence, the random walk operator D−1W is similar to I−L , so both have the same eigenvalues,
and the eigenvectors of the randomwalk operator are the eigenvectors of I−L point-wise multiplied
by D− 1

2 . We can now provide a rationale for choosing the eigenvectors of the Laplacian as basis
functions. In particular, if λi is an eigenvalue of the random walk transition matrix Pr, then 1−λi is
the corresponding eigenvalue of L . Consequently, in the expansion given by Equation 3, we would
select the eigenvectors of the normalized graph Laplacian corresponding to the smallest eigenvalues.

The normalized Laplacian L also acts as a difference operator on a function f on a graph, that
is

L f (u) =
1√
du
∑
v∼u

(
f (u)√
du

− f (v)√
dv

)
wuv.

The difference between the combinatorial and normalized Laplacian is that the latter models the
degree of a vertex as a local measure. In Section 7, we provide an experimental evaluation of the
different graph operators for solving continuous MDPs.

Building on the Dirichlet sum above, a standard variational characterization of eigenvalues and
eigenvectors views them as the solution to a sequence of minimization problems. In particular,
the set of eigenvalues can be defined as the solution to a series of minimization problems using
the Rayleigh quotient (Chung, 1997). This provides a variational characterization of eigenvalues
using projections of an arbitrary function g : V → R onto the subspace Lg. The quotient gives the
eigenvalues and the functions satisfying orthonormality are the eigenfunctions:

〈g,Lg〉
〈g,g〉 =

〈g,D− 1
2LD− 1

2 g〉
〈g,g〉 = ∑u∼v(f (u)− f (v))2wuv

∑u f 2(u)du
,

where f ≡D− 1
2 g. The first eigenvalue is λ0 = 0, and is associated with the constant function f (u) =

1, which means the first eigenfunction go(u) =
√
D 1 (for an example of this eigenfunction, see top

left plot in Figure 5). The first eigenfunction (associated with eigenvalue 0) of the combinatorial
Laplacian is the constant function 1. The second eigenfunction is the infimum over all functions

2187

MAHADEVAN AND MAGGIONI

g : V → R that are perpendicular to go(u), which gives us a formula to compute the first non-zero
eigenvalue λ1, namely

λ1 = inf
f⊥

√
D1

∑u∼v(f (u)− f (v))2wuv
∑u f 2(u)du

.

The Rayleigh quotient for higher-order basis functions is similar: each function is perpendicular
to the subspace spanned by previous functions (see top four plots in Figure 5). In other words, the
eigenvectors of the graph Laplacian provide a systematic organization of the space of functions on
a graph that respects its topology.

3.6 Proto-Value Functions and Large-Scale Geometry

We now formalize the intuitive notion of why PVFs capture the large-scale geometry of a task
environment, such as its symmetries and bottlenecks. A full discussion of this topic is beyond the
scope of this paper, and we restrict our discussion here to one interesting property connected to
the automorphisms of a graph. Given a graph G = (V,E,W), an automorphism π of a graph is a
bijection π :V →V that leaves the weight matrix invariant. In other words, w(u,v) = w(π(u),π(v)).
An automorphism π can be also represented in matrix form by a permutation matrix Γ that commutes
with the weight matrix:

ΓW =WΓ.

An immediate consequence of this property is that automorphisms leave the valency, or degree
of a vertex, invariant, and consequently, the Laplacian is invariant under an automorphism. The set
of all automorphisms forms a non-Abelian group, in that the group operation is non-commutative.
Let x be an eigenvector of the combinatorial graph Laplacian L. Then, it is easy to show that Γx
must be an eigenvector as well for any automorphism Γ. This result follows because

LΓx= ΓLx= Γλx= λΓx.

A detailed graph-theoretic treatment of the connection between symmetries of a graph and its
spectral properties are provided in books on algebraic and spectral graph theory (Chung, 1997;
Cvetkovic et al., 1980, 1997). For example, it can be shown that if the permuted eigenvector Γx
is independent of the original eigenvector x, then the corresponding eigenvalue λ has geometric
multiplicity m > 1. More generally, it is possible to exploit the theory of linear representations of
groups to construct compact basis functions on symmetric graphs, which have found applications
in the study of complex molecules such as “buckyballs” (Chung and Sternberg, 1992). It is worth
pointing out that these ideas extend to continuous manifolds as well. The use of the Laplacian in
constructing representations that are invariant to group operations such as translation is a hallmark
of work in harmonic analysis (Gurarie, 1992).

Furthermore, considerable work in spectral graph theory as well as its applications in AI uses
the properties of the Fiedler eigenvector (the eigenvector associated with the smallest non-zero
eigenvalue), such as its sensitivity to bottlenecks, in order to find clusters in data or segment images
(Shi andMalik, 2000; Ng et al., 2002). To formally explain this, we briefly review spectral geometry.
The Cheeger constant hG of a graph G is defined as

2188

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

hG(S) =min
S

|E(S, S̃)|
min(vol S,vol S̃)

.

Here, S is a subset of vertices, S̃ is the complement of S, and E(S, S̃) denotes the set of all edges
(u,v) such that u ∈ S and v ∈ S̃. The volume of a subset S is defined as vol S = ∑x∈S dX . Consider
the problem of finding a subset S of states such that the edge boundary ∂S contains as few edges as
possible, where

∂S= {(u,v) ∈ E(G) : u ∈ S and v /∈ S}.

The relation between ∂S and the Cheeger constant is given by

|∂S| ≥ hG vol S.

In the two-room grid world task illustrated in Figure 1, the Cheeger constant is minimized by set-
ting S to be the states in the first room, since this will minimize the numerator E(S, S̃) and maximize
the denominator min(vol S,vol S̃). A remarkable inequality connects the Cheeger constant with the
spectrum of the graph Laplacian operator. This theorem underlies the reason why the eigenfunctions
associated with the second eigenvalue λ1 of the graph Laplacian captures the geometric structure of
environments, as illustrated in Figure 5.

Theorem 1 (Chung, 1997): Define λ1 to be the first (non-zero) eigenvalue of the normalized graph
Laplacian operator L on a graph G. Let hG denote the Cheeger constant of G. Then, we have
2hG ≥ λ1 >

h2G
2 .

In the context of MDPs, our work explores the construction of representations that similarly
exploit large-scale geometric features, such as symmetries and bottlenecks. In other words, we are
evaluating the hypothesis that such representations are useful in solving MDPs, given that topology-
sensitive representations have proven to be useful across a wide variety of problems both in machine
learning specifically as well as in science and engineering more generally.

4. Representation Policy Iteration

In this section, we begin the detailed algorithmic analysis of the application of proto-value functions
to solve Markov decision processes. We will describe a specific instantiation of the RPI framework
described previously, which comprises of an outer loop for learning basis functions and an inner
loop for estimating the optimal policy representable within the given set of basis functions. In
particular, we will use least-square policy iteration (LSPI) as the parameter estimation method. We
will analyze three variants of RPI, beginning with the most basic version in this section, and then
describing two extensions of RPI to continuous and factored state spaces in Section 5 and Section 6.

4.1 Least-Squares Approximation of Action Value Functions

The basics of Markov decision processes as well as value function approximation was briefly re-
viewed in Section 3. Here, we focus on action-value function approximation, and in particular,
describe the LSPI method (Lagoudakis and Parr, 2003). In action-value learning, the goal is to
approximate the true action-value function Qπ(s,a) for a policy π using a set of basis functions

2189

MAHADEVAN AND MAGGIONI

φ(s,a) that can be viewed as doing dimensionality reduction on the space of functions. The true
action value function Qπ(s,a) is a vector in a high dimensional space R|S|×|A|, and using the basis
functions amounts to reducing the dimension to Rk where k0 |S|× |A|. The approximated action
value is thus

Q̂π(s,a;w) =
k

∑
j=1

φ j(s,a)w j,

where the w j are weights or parameters that can be determined using a least-squares method. LetQπ

be a real (column) vector ∈ R|S|×|A|. φ(s,a) is a real vector of size k where each entry corresponds
to the basis function φ j(s,a) evaluated at the state action pair (s,a). The approximate action-value
function can be written as Q̂π = Φwπ, where wπ is a real column vector of length k and Φ is a
real matrix with |S| × |A| rows and k columns. Each row of Φ specifies all the basis functions
for a particular state action pair (s,a), and each column represents the value of a particular basis
function over all state action pairs. The least-squares fixed-point approximation tries to find a set
of weights wπ under which the projection of the backed up approximated Q-function TπQ̂π onto the
space spanned by the columns of Φ is a fixed point, namely

Q̂π =Φ(ΦTΦ)−1ΦT (TπQ̂π),

where Tπ is the Bellman backup operator. It can be shown (Lagoudakis and Parr, 2003) that the
resulting solution can be written in a weighted least-squares form as Awπ = b, where the A matrix is
given by

A=
(
ΦTDπ

ρ(Φ− γPπΦ)
)

,

and the b column vector is given by

b=ΦTDπ
ρR,

whereDπ
ρ is a diagonal matrix whose entries reflect varying “costs” for making approximation errors

on (s,a) pairs as a result of the nonuniform distribution ρπ(s,a) of visitation frequencies. A and b
can be estimated from a database of transitions collected from some source, for example, a random
walk. The A matrix and b vector can be estimated as the sum of many rank-one matrix summations
from a database of stored samples.

Ãt+1 = Ãt +φ(st ,at)
(
φ(st ,at)− γφ(s′t ,π(s

′
t))

)T
,

b̃t+1 = b̃t +φ(st ,at)rt ,

where (st ,at ,rt ,s′t) is the tth sample of experience from a trajectory generated by the agent (using
some random or guided policy). Once the matrix A and vector b have been constructed, the system
of equations Awπ = b can be solved for the weight vector wπ either by taking the inverse of A (if it
is of full rank) or by taking its pseudo-inverse (if A is rank-deficient). This defines a specific policy
since Q̂π =Φwπ. The process is then repeated, until convergence (which can be defined as when the
L2- normed difference between two successive weight vectors falls below a predefined threshold
ε). Note that in succeeding iterations, the A matrix will be different since the policy π has changed.
Figure 8 describes a specific instantiation of RPI, using LSPI as the control learning method.

2190

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

RPI (πm,T,N,ε,k,O,µ,D):

// πm: Policy at the beginning of trial m
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// µ: Parameter for basis adaptation

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. See Figure 4 on page 2177.

Control Learning Phase (LSPI)

3. Initialize w0 ∈ Rk to a random vector.

4. Repeat the following steps:

(a) Set i ← i+ 1. Using the stored transitions (st ,at ,s′t ,a′t ,rt) ∈ D , compute the matrix A and
vector b as follows:

Ãt+1 = Ãt +φ(st ,at)
(
φ(st ,at)− γφ(s′t ,π(st))

)T
.

b̃t+1 = b̃t +φ(st ,at)rt .

(b) Solve the linear system of equations Ãwi = b̃ using any standard method.a

(c) Optional basis adaptation step: Prune the basis matrix Φ by discarding basis functions
(columns) whose coefficients are smaller than µ.

(d) until ‖wi−wi+1‖2 ≤ ε.

5. Set πm+1(s) = argmaxa∈AQ̂i(s,a) where Q̂i = Φwi is the ε-optimal approximation to the optimal
value function within the linear span of basis functions Φ.

6. Optional: Repeat the above procedure by calling RPI (πm+1,T,N,ε,k,O,µ,D).

a. If A is of full rank, it can be inverted, otherwise if it is rank-deficient, the pseudo-inverse of A can be used. It is possi-
ble to avoid matrix inversion entirely by using the incremental Sherman-Woodbury-Morrison method (Lagoudakis
and Parr, 2003).

Figure 8: Pseudo-code of the representation policy iteration (RPI) using the least-squares policy
iteration (LSPI) fix-point method as the control learning component.

2191

MAHADEVAN AND MAGGIONI

4.2 Evaluating RPI on Simple Discrete MDPs

In this section, we evaluate the effectiveness of PVFs using small discrete MDPs such as the two-
room discrete MDP used above, before proceeding to investigate how to scale the framework to
larger discrete and continuous MDPs.11 PVFs are evaluated along a number of dimensions, includ-
ing the number of bases used, and its relative performance compared to parametric bases such as
polynomials and radial basis functions. In subsequent sections, we will probe the scalability of
PVFs on larger more challenging MDPs.

Two-room MDP: The two-room discrete MDP used here is a 100 state MDP, where the agent is
rewarded for reaching the top left-hand corner state in Room 2. As before, 57 states are reachable,
and the remaining states are exterior or interior wall states. The state space of this MDP was shown
earlier in Figure 1. Room 1 and Room 2 are both rectangular grids connected by a single door.
There are four (compass direction) actions, each succeeding with probability 0.9, otherwise leaving
the agent in the same state. The agent is rewarded by 100 for reaching the goal state (state 89), upon
which the agent is randomly reset back to some starting (accessible) state.

Number of Basis Functions: Figure 9 evaluates the learned policy by measuring the number of
steps to reach the goal, as a function of the number of training episodes, and as the number of basis
functions is varied (ranging from 10 to 35 for each of the four actions). The results are averaged
over 10 independent runs, where each run consisted of a set of training episodes of a maximum
length of 100 steps, where each episode was terminated if the agent reached the absorbing goal
state. Around 20 basis functions (per action) were sufficient to get close to optimal behavior, and
increasing the number of bases to 35 produced a marginal improvement. The variance across runs
is fairly small for 20 and 35 bases, but relatively large for smaller numbers of bases (not shown for
clarity). Figure 9 also compares the performance of PVFs with unit vector bases (table lookup),
showing that PVFs with 25 bases closely tracks the performance of unit vector bases on this task.
Note that we are measuring performance in terms of the number of steps to reach the goal, averaged
over a set of 10 runs. Other metrics could be plotted as well, such as the total discounted reward
received, which may be more natural. However, our point is simply to show that there are significant
differences in the quality of the policy learned by PVFs with that learned by the other parametric
approximators, and these differences are of such an order that they will clearly manifest themselves
regardless of the metric used.

Comparison with Parametric Bases: One important consideration in evaluating PVFs is how
they compare with standard parametric bases, such as radial basis functions and polynomials. As
Figure 1 suggests, parametric bases as conventionally formulated may have difficulty representing
highly nonlinear value functions in MDPs such as the two room task. Here, we test whether this
poor performance can be ameliorated by varying the number of basis functions used. Figure 9
evaluates the effectiveness of polynomial bases and radial basis functions in the two room MDP. In
polynomial bases, a state i is mapped to the vector φ(i) = (1, i, i2, . . . ik−1) for k basis functions—this
architecture was studied by (Koller and Parr, 2000; Lagoudakis and Parr, 2003).12 In RBFs, a state i

11. In Section 9, we describe more sophisticated diffusion models for grid-world tasks in the richer setting of semi-
Markov decision processes (SMDPs), using directed state-action graphs with temporally extended actions, such as
“exiting a room”, modeled with distal edges (Osentoski and Mahadevan, 2007).

12. The performance of polynomial bases gets worse for higher degrees, partly due to the numerical instability caused
by taking large powers of state indices.

2192

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

−20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160
Proto−Value Functions in Two Room Grid World

Number of training episodes

Av
er

ag
e

St
ep

s

10 Basis Functions
15 Basis Functions
20 Basis Functions
35 Basis Functions

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Number of training episodes

Av
er

ag
e

St
ep

s

PVFs vs. Unit Vector Bases in Two−Room Grid MDP
PVF
Exact

−20 0 20 40 60 80 100 120
0

50

100

150
Polynomial Bases in Two Room Grid World MDP

Number of training episodes

Av
er

ag
e

St
ep

s

Degree 20
Degree 10
Degree 4
Degree 2

−20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160
Radial Basis Functions in Two Room Grid World MDP

Number of training episodes

Av
er

ag
e

St
ep

s

21 Basis Functions
11 Basis Functions
34 Basis Functions

Figure 9: This experiment contrasts the performance of Laplacian PVFs (top left) with unit vector
bases (top right), handcoded polynomial basis functions (bottom left) and radial basis
functions (bottom right) on a 100 state two-room discrete MDP. Results are averaged
over 10 runs. The performance of PVFs (with 25 bases) closely matches that of unit
vector bases, and is considerably better than both polynomials and RBFs on this task.

is mapped to φ j(i) = exp−
(i− j)2

2σ2 , where j is the center of the RBF basis function. In the experiments
shown, the basis centers were placed equidistantly from each other along the 100 states. The results
show that both parametric bases under these conditions performed worse than PVFs in this task. 13

Additional Results: Figure 10 shows an experiment on a larger 15× 15 two-room MDP, with
the same dynamics and goal structure as the smaller 10×10 two-room MDP. In this environment,
there were a total of 225 states, with 157 of these being accessible interior states, and the remaining
68 representing “wall” states. Results are shown only for PVFs in this domain. The plotted result
is averaged over 10 independent learning runs. As the number of PVFs is increased, the variance
reduces and the performance significantly improves.

Figure 11 shows an additional experiment on a four-room MDP, where the agent is tasked to
reach the state marked G. Results are shown only for PVFs in this domain. The plotted result is

13. Our results do not contradict any theoretical findings regarding the generality of RBFs or systems of orthogonal
polynomials, since such results generally pertain to their asymptotic performance. Our evaluation of polynomials
and RBFs gauges their performance on particular parameter settings.

2193

MAHADEVAN AND MAGGIONI

0 5 10 15

0

2

4

6

8

10

12

14

16

Total States = 225, "Wall" states = 68

G

−20 0 20 40 60 80 100 120
0

50

100

150
Two−Room 15x15 MDP with PVFs

Number of training episodes

Av
er

ag
e

St
ep

s o
ve

r 1
0

Ru
ns

25 PVFs

50 PVFs

75 PVFs

Figure 10: This figure shows results on a larger 15× 15 two-room grid world MDP of 225 total
states. The dynamics are identical to the two-room MDP. The results shown are using
25−75 PVFs.

averaged over 10 independent learning runs. Here, the agent was trained on sample random walk
trajectories that terminated in goal state G.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

11

Total States = 100, "Wall" states = 47

G

0 20 40 60 80 100 120
0

10

20

30

40

50

60
Four Room MDP using PVFs

Number of training episodes

Av
er

ag
e

St
ep

s o
ve

r 1
0

Ru
ns

Figure 11: This figure shows results on a four-room grid world MDP of 100 total states. The dy-
namics are identical to the two-room MDP. The results shown are using 25 PVFs.

5. Scaling Proto-Value Functions: Product Spaces

Thus far, we have restricted our discussion of proto-value functions to small discrete MDPs. In this
and the next section, we explore the issue of scaling the Laplacian framework to larger discrete and
continuous domains. Computing and storing proto-value functions in large continuous or discrete
domains can be intractable: spectral analysis of the state space graph or diagonalization of the
policy transition matrix can be an infeasible eigenvector computation in large domains, even if the
matrices are inherently sparse. To address this scaling issue, we explore a number of approaches,

2194

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

from exploiting the large-scale regular structure of product spaces described in this section, to the
use of sparsification through sampling for continuous states described in the next section.

In this section, we describe a general framework for scaling proto-value functions to large fac-
tored discrete spaces using properties of product spaces, such as grids, cylinders, and tori. A crucial
property of the graph Laplacian is that its embeddings are highly regular for structured graphs (see
Figure 13). We will explain the reason for this property below, and how to exploit it to construct
compact encodings of Laplacian bases. We should also distinguish the approach described in this
section, which relies on an exact Kronecker decomposition of the Laplacian eigenspace in product
spaces, with the approximate Kronecker decomposition for arbitrary MDPs described in Section 9.
The approach described here is applicable only to MDPs where the state space can be represented
as the Kronecker sum of simpler state spaces (this notion will be defined more precisely below, but
it covers many standard MDPs like grids). More generally, the weight matrices for arbitrary MDPs
can also be factorized, although using the Kronecker product, where, however, the factorization is
an approximation (Van Loan and Pitsianis, 1993).

5.1 Product Spaces: Complex Graphs from Simple Ones

Building on the theory of graph spectra (Cvetkovic et al., 1980), we now describe a hierarchical
framework for efficiently computing and compactly storing proto-value functions. Many RL do-
mains lead to factored representations where the state space is generated as the Cartesian product of
the values of state variables (Boutilier et al., 1999). Consider a hypercube Markov decision process
with d dimensions, where each dimension can take on k values. The size of the resulting state space
is O(kd), and the size of each proto-value function is O(kd). Using the hierarchical framework pre-
sented below, the hypercube can be viewed as the Kronecker sum of d path or chain graphs, each of
whose transition matrix is of size (in the worst case)O(k2). Now, each factored proto-value function
can be stored in spaceO(dk2), and the cost of spectral analysis greatly reduces as well. Even greater
savings can be accrued since usually only a small number of basis functions are needed relative to
the size of a state space. We present detailed experimental results on a large factored multiagent
domain of > 106 states, where proto-value functions are constructed from diagonalizing Laplacian
matrices of size only 100× 100, a huge computational savings! Figure 12 illustrates the idea of
scaling proto-value functions to large product spaces.14

Following Cvetkovic et al. (1980), various compositional schemes can be defined for construct-
ing complex graphs from simpler graphs. We focus on compositions that involve the Kronecker
(or the tensor) sum of graphs. Let G1, . . . ,Gn be n undirected graphs whose corresponding vertex
and edge sets are specified as Gi = (Vi,Ei). The Kronecker sum graph G = G1⊕ . . .⊕Gn has the
vertex set V = V1× . . .Vn, and edge set E(u,v) = 1, where u = (u1, . . . ,un) and v = (v1, . . . ,vn), if
and only if uk is adjacent to vk for some uk,vk ∈Vk and all ui = vi, i += k. For example, the grid graph
illustrated in Figure 12 is the Kronecker sum of two path graphs; the hypercube is the Kronecker
sum of three or more path graphs.

The Kronecker sum graph can also be defined using operations on the component adjacency
matrices. If A1 is a (p,q) matrix and A2 is a (r,s) matrix, the Kronecker product matrix 15 A= A1⊗
A2 is a (pr,qs) matrix, where A(i, j) = A1(i, j)∗A2. In other words, each entry of A1 is replaced by

14. Even greater reduction in the size of PVFs can be realized by exploiting the group invariance property of Laplacian
operators, as described in Section 3.6. In particular, the graphs shown in Figure 12 have large automorphism groups,
which can be exploited in significantly reducing the size of the corresponding Laplacian eigenspaces.

15. The Kronecker product of two matrices is often also referred to as the tensor product in the literature (Chow, 1997).

2195

MAHADEVAN AND MAGGIONI

CIRCLE

TORUS

CYLINDER

GRID

HYPERCUBE

PATH

Figure 12: The spectrum and eigenspace of structured state spaces, including grids, hypercubes,
cylinders, and tori, can be efficiently computed from “building block” subgraphs, such
as paths and circles. Applied to MDPs, this hierarchical framework greatly reduces the
computational expense of computing and storing proto-value functions.

the product of that entry with the entire A2 matrix. The Kronecker sum of two graphs G= G1⊕G2
can be defined as the graph whose adjacency matrix is the Kronecker sum A = A1⊗ I2+A2⊗ I1,
where I1 and I2 are the identity matrices of size equal to number of rows (or columns) of A1 and A2,
respectively. The main result that we will exploit is that the eigenvectors of the Kronecker product
of two matrices can be expressed as the Kronecker products of the eigenvectors of the component
matrices. The following result is well-known in the literature (Graham, 1981).

Theorem 2 Let A and B be full rank square matrices of size r× r and s× s, respectively, whose
eigenvectors and eigenvalues can be written as

Aui = λiui, 1≤ i≤ r Bv j = µjv j, 1≤ j ≤ s.

Then, the eigenvalues and eigenvectors of the Kronecker product A⊗ B and Kronecker sum
A⊕B are given as

(A⊗B)(ui⊗ v j) = λiµj(ui⊗ v j)
(A⊕B)(ui⊗ v j) = (A⊗ Is+ Ir⊗B)(ui⊗ v j) = (λi+µj)(ui⊗ v j).

The proof of this theorem relies on the following identity regarding Kronecker products of ma-
trices: (A⊗B)(C⊗D) = (AC)⊗ (BD) for any set of matrices where the products AC and BD are
well defined. We denote the set of eigenvectors of an operator T by the notation X(T) and its spec-
trum by Σ(T). A standard result that follows from the above theorem shows that the combinatorial

2196

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

graph Laplacian of a Kronecker sum of two graphs can be computed from the Laplacian of each
subgraph.16

Theorem 3 If L1 = L(G1) and L2 = L(G2) are the combinatorial Laplacians of graphs G1 =
(V1,E1,W1) and G2 = (V2,E2,W2), then the spectral structure of the combinatorial Laplacian L(G)
of the Kronecker sum of these graphs G= G1⊕G2 can be computed as

(Σ(L),X(L)) = {λi+κ j, li⊗ k j}, 1≤ i≤ |V1|,1≤ j ≤ |V2|,

where λi is the ith eigenvalue of L1 with associated eigenvector li and κ j is the jth eigenvalue of L2
with associated eigenvector k j.

The proof is omitted, but fairly straightforward by exploiting the property that the Laplace op-
erator acts on a function by summing the difference of its value at a vertex with those at adjacent
vertices. Figure 13 illustrates this theorem, showing that the eigenvectors of the combinatorial
Laplacian produce a regular embedding of a grid in 2D as well as a cylinder in 3D. These figures
were generated as follows. For the grid shown on the left, the eigenvectors were generated as the
Kronecker product of the eigenvectors of the combinatorial Laplacian for two chains of size 10.
The figure shows the embedding of the grid graph where each state was embedded in R2 using the
second and third smallest eigenvector. For the cylinder on the right, the eigenvectors were generated
as the Kronecker product of the eigenvectors of the combinatorial Laplacian for a 10 state closed
chain and a 5 state open chain. The embedding of the cylinder shown on the right was produced
using the third and fourth eigenvector of the combinatorial Laplacian.

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Laplacian Embedding of a Cylinder

Figure 13: Left: this figure shows an embedding in R2 of a 10×10 grid world environment using
“low-frequency” (smoothest) eigenvectors of the combinatorial Laplacian, specifically
those corresponding to the second and third smallest eigenvalues. Right: the embedding
of a “cylinder” graph using two low-order eigenvectors (3rd and 4th) of the combinatorial
Laplacian. The cylinder graph is the Kronecker sum of a closed and open chain graph.

16. In contrast, the normalized Laplacian is not well-defined under sum, but has a well-defined semantics for the Kro-
necker or direct product of two graphs. The Kronecker product can also be used as a general method to approximate
any matrix by factorizing it into the product of smaller matrices. We discuss the use of this approach to scaling PVFs
in Section 9.

2197

MAHADEVAN AND MAGGIONI

For the combinatorial Laplacian, the constant vector 1 is an eigenvector with associated eigen-
value λ0 = 0. Since the eigenvalues of the Kronecker sum graph are the sums of the eigenvalues of
the individual graphs, 0 will be an eigenvalue of the Laplacian of the sum graph as well. Further-
more, for each eigenvector vi, the Kronecker product vi⊗ 1 will also be an eigenvector of the sum
graph. One consequence of these properties is that geometry is well preserved, so for example the
combinatorial Laplacian produces well-defined embeddings of structured spaces. Figure 13 shows
the embedding of a cylinder (Kronecker sum of a closed and open chain) under the combinatorial
Laplacian.

5.2 Factored Representation Policy Iteration for Structured Domains

We derive the update rule for a factored form of RPI (and LSPI) for structured domains when the
basis functions can be represented as Kronecker products of elementary basis functions on simpler
state spaces. Basis functions are column eigenvectors of the diagonalized representation of a graph
operator, whereas embeddings φ(s) are row vectors representing the first k basis functions evaluated
on state s. By exploiting the property that (A⊗B)T = AT ⊗BT , it follows that embeddings for
structured domains can be computed as the Kronecker products of embeddings for the constituent
state components. As a concrete example, a grid world domain of size m×n can be represented as
a graph G = Gm⊕Gn where Gm and Gn are path graphs of size m and n, respectively. The basis
functions for the entire grid world can be written as the Kronecker product φ(s) = φm(sr)⊗φn(sc),
where φm(sr) is the basis (eigen)vector derived from a path graph of size m (in particular, the row sr
corresponding to state s in the grid world), and φn(sc) is the basis (eigen)vector derived from a path
graph of size n (in particular, the column sc corresponding to state s in the grid world).

Extending this idea to state action pairs, the basis function φ(s,a) can written as eI(a)⊗ φ(s),
where eI(a) is the unit vector corresponding to the index of action a (e.g., action a1 corresponds
to e1 = [1,0, . . .]T). Actually, the full Kronecker product is not necessary if only a relatively small
number of basis functions are needed. For example, if 50 basis functions are to be used in a 10×
10× 10 hypercube, the full state embedding is a vector of size 1000, but only the first 50 terms
need to be computed. Such savings imply proto-value functions can be efficiently computed even
in very large structured domains. For a factored state space s = (s1, . . . ,sm), we use the notation si
to denote the value of the ith component. We can restate the update rules for factored RPI and LSPI
as follows:

Ãt+1 = Ãt +φ(st ,at)
(
φ(st ,at)− γφ(s′t ,π(s

′
t))

)T

= Ãt + eI(at)⊗∏
⊗
φi(sit)

×
(
eI(at)∏

⊗
φi(sit)− γeI(π(s′t))⊗∏

⊗
φi(s′t

i)

)T

.

The corresponding update equation for the reward component is:

b̃t+1 = b̃t +φ(st ,at)rt = b̃t + rteI(at)⊗∏
⊗
φi(sit).

5.3 Experimental Results

To illustrate the Kronecker factorization presented in the previous section, we begin with a simple
MDP. Figure 14 shows the results of using the factored RPI algorithm on a 10× 10 grid world

2198

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0
2

4
6

8
10

0

5

10
20

40

60

80

100

Optimal Value Function

0
2

4
6

8
10

0

5

10
40

50

60

70

80

90

100

Value Function Approximated using Factored Combinatorial Laplacian

Figure 14: Left: the exact value function on a 10× 10 grid world with a reward of +100 at the
center. Right: a factored (combinatorial) Laplacian approximation using basis functions
constructed by taking Kronecker products of basis functions for chain graphs (of length
corresponding to row and column sizes).

domain. There are four (compass direction) actions, each of which succeeds with probability 0.9.
Any “illegal” action (going “north” from the first row) leaves the agent in the same state. The only
reward of+100 is received for reaching the center of the grid. The discount factor was set at γ= 0.9.
If a “flat” approach was used, each basis function is a vector of size 100 and requires diagonalizing
a Laplacian matrix of size 100×100. The factored PVFs are computed as the Kronecker product of
the PVFs on a 10 node chain graph, which requires both significantly smaller space of size 10×k for
k basis functions, and much less computational effort (diagonalizing a Laplacian of size 10× 10).
These computational savings obviously magnify in larger grid world domains. In a grid world with
106 states, “flat” proto-value functions require k×106 space and time proportional to (106)3 to be
computed, whereas the factored basis functions only require space k×103 to store with much less
computational cost to find.

5.4 The Blocker Task

We now present a detailed study using a much larger factored multiagent domain called the “Block-
ers” task, which was first proposed by Sallans and Hinton (2004). This task, illustrated in Figure 15,
is a cooperative multiagent problem where a group of agents try to reach the top row of a grid, but
are prevented in doing so by “blocker” agents who move horizontally on the top row. If any agent
reaches the top row, the entire team is rewarded by +1; otherwise, each agent receives a negative
reward of −1 on each step. The agents always start randomly placed on the bottom row of the grid,
and the blockers are randomly placed on the top row. The blockers remain restricted to the top
row, executing a fixed strategy. The overall state space is the Cartesian product of the location of
each agent. Our experiments on the blocker domain include more difficult versions of the task not
studied in Sallans and Hinton (2004) specifically designed to test the scalability of the Kronecker
product bases to “irregular” grids whose topology deviates from a pure hypercube or toroid. In the

2199

MAHADEVAN AND MAGGIONI

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

123
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

123

Figure 15: Two versions of the blocker domain are shown, each generating a state space of > 106
states. Interior walls shown create an “irregular” factored MDP whose overall topology
can be viewed as a “perturbed” variant of a pure product of grids or cylinders (for the
“wrap-around” case).

first variant, shown on the left in Figure 15, horizontal interior walls extend out from the left and
right side walls between the second and third row. In the second variant, an additional interior wall
is added in the middle as shown on the right.17

The basis functions for the overall Blocker state space were computed as Kronecker products
of the basis functions over each agent’s state space. Each agent’s state space was modeled as a
grid (as in Figure 14) or a cylinder (for the “wrap-around” case). Since the presence of interior
walls obviously violates the pure product of cylinders or grids topology, each individual agent’s
state space was learned from a random walk. The overall basis functions were then constructed as
Kronecker products of Laplacian basis functions for each learned (irregular) state grid.

Figure 16 compares the performance of the factored Laplacian bases with a set of radial basis
functions (RBFs) for the first Blocker domain (shown on the left in Figure 15). The width of each
RBF was set at 2|Sa|k where |Sa| is the size of each individual agent’s grid, and k is the number
of RBFs used. The RBF centers were uniformly spaced. The results shown are averages over
10 learning runs. On each run, the learned policy is measured every 25 training episodes. Each
episode begins with a random walk of a maximum of 70 steps (terminating earlier if the top row
was reached). After every 25 such episodes, RPI is run on all the samples collected thus far. The
learned policy is then tested over 500 test episodes. The graphs plot the average number of steps
to reach the goal. The experiments were conducted on both “normal” grids (not shown) and “wrap
around” cylindrical grids. The results show that RBFs converge faster, but learn a worse policy.
The factored Laplacian bases converge slower than RBFs, but learn a substantially better policy.
Figure 16 also shows results for the second Blocker domain (shown on the right in Figure 15 with
both side and interior middle walls), comparing 100 factored Laplacian bases with a similar number
of RBFs. The results show a significant improvement in performance of the factored Laplacian
bases over RBFs.

In terms of both space and time, the factored approach greatly reduces the computational com-
plexity of finding and storing the Laplacian bases. A worst-case estimate of the size of the full
Laplacian matrix is O(|S|2). Diagonalizing a |S| × |S| symmetric matrix and finding k eigenvec-
tors requires time O(k|S|2) and O(k|S|) space. Instantiating these general estimates for the Blocker

17. In the Blocker domain, the interior walls are modeled as having “zero width”, and hence all 100 states in each grid
remain accessible, unlike the two-room environment.

2200

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

domain, let n refer to the number of rows and columns in each agent’s state space (n= 10 in our ex-
periments), and k refer to the number of basis functions (k= 100 in our experiments). Then, the size
of the state space is |S| = (n2)3, implying that the non-factored approach requires O(k(n2)3) space
andO(k(n6)2) time, whereas the factored approach requiresO(kn2) space andO(k(n2)2) time. Note
these are worse-case estimates. The Laplacian matrix is in fact highly sparse in the Blocker domain,
requiring far less than O(|S|2) space to be stored. In fact, even in such a deterministic MDP where
the Laplacian matrix can be stored in O(|S|) space, the non-factored approach will still take O(kn3)
space and O(kn6) time, whereas the factored approach takes O(kn) space and O(kn2) time.

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Results on 10x10 Blocker Domain with Middle and SideWalls

Number of training episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

RBF

Factored
Laplacian

0 100 200 300 400 500 600
0

5

10

15

20

25

30

Results on 10x10 Blocker Domain with Middle and SideWalls

Number of training episodes

A
ve

ra
g

e
S

te
p

s
to

 G
o

al

RBF

Factored
Laplacian

Figure 16: Comparison of factored (Laplacian) PVF basis functions with hand coded radial basis
functions (RBF) on a 10× 10 “wrap-around” grid with 3 agents and 2 blockers of >
106 states. Both approaches were tested using 100 basis functions. The plots show
performance of PVFs against RBFs on the two blocker domains in Figure 15.

6. Scaling Proto-Value Functions: Continuous Domains

Thus far, the construction of proto-value functions was restricted to discrete MDPs. We now show
how proto-value functions can be constructed for continuous MDPs, which present significant chal-
lenges not encountered in discrete state spaces. The eigenfunctions of the Laplacian can only be
computed and stored on sampled real-valued states, and hence must be interpolated to novel states.
We apply the Nyström interpolation method. While this approach has been studied previously in
kernel methods (Williams and Seeger, 2000) and spectral clustering (Belongie et al., 2002), our
work represents the first detailed study of the Nyström method for learning control, as well as a
detailed comparison of graph normalization methods (Mahadevan et al., 2006).

There is a rich and well-developed theory of the Laplace operator on manifolds, which we
can only briefly summarize here. The Laplace-Beltrami operator has been extensively studied in
the general setting of Riemannian manifolds (Rosenberg, 1997). Riemannian manifolds have been
actively studied recently in machine learning in several contexts, namely in the context of designing
new types of kernels for supervised machine learning (Lafferty and Lebanon, 2005) and faster policy
gradient methods using the natural Riemannian gradient on a space of parametric policies (Kakade,
2002; Bagnell and Schneider, 2003; Peters et al., 2003).

2201

MAHADEVAN AND MAGGIONI

The Laplacian on Riemannian manifolds and its eigenfunctions (Rosenberg, 1997), which form
an orthonormal basis for square-integrable functions on the manifold (Hodge’s theorem), generalize
Fourier analysis to manifolds. Historically, manifolds have been applied to many problems in AI,
for example configuration space planning in robotics, but these problems assume a model of the
manifold is known (Latombe, 1991; Lavalle, 2006), unlike here where only samples of a manifold
are given.

6.1 Nyström Extension

To learn policies on continuous MDPs, it is necessary to be able to extend eigenfunctions computed
on a set of points ∈ Rn to new unexplored points. We describe here the Nyström method, which can
be combined with iterative updates and randomized algorithms for low-rank approximations. The
Nyström method interpolates the value of eigenvectors computed on sample states to novel states,
and is an application of a classical method used in the numerical solution of integral equations
(Baker, 1977). The eigenfunction problem can be stated as

Z

D
K(x,y)φ(y)dy= λφ(x),∀x ∈ D, (4)

where D can be any domain, for example, R. Using the standard quadrature approximation, the
above integral can be written as

Z

D
K(x,y)φ(y)dy≈

n

∑
i=1

wik(x,si)φ̂(si), (5)

where wi are the quadrature weights, si are n selected sample points, and φ̂ is an approximation to
the true eigenfunction. Combining Equation 4 and Equation 5 gives us

n

∑
i=1

wik(x,si)φ̂(si) = λ̂φ̂(x).

By letting x denote any set of n points, for example the set of quadrature points si itself, the
kernel k(si,s j) becomes a symmetric matrix. This enables computing the approximate eigenfunction
at any new point as

φ̂m(x) =
1
λ̂

n

∑
i=1

wik(x,si)φ̂m(si). (6)

Let us instantiate Equation 6 in the context of the normalized Laplacian L = I−D− 1
2WD− 1

2 .
First, note that if λi is an eigenvalue of L , then 1−λi is the corresponding eigenvalue of the diffusion
matrix D− 1

2WD− 1
2 . Applying the the Nyström extension for computing the eigenfunctions of the

normalized Laplacian Lφi = λiφi, we get the equation

φi(x) =
1

1−λi
∑
y∼x

w(x,y)√
d(x)d(y)

φi(y),

where d(z) =∑y∼zw(z,y), and x is a new vertex in the graph. Note that the weights w(x,y) from the
new state x to its nearest neighbors y in the previously stored samples is determined at “run time”

2202

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

Figure 17: This figure illustrates the Nyström interpolation method for extending eigenfunctions
on samples to new states. Left: the 3rd eigenvector of the Laplacian plotted on a set
of samples (shown as filled dots) drawn from a random walk in the inverted pendulum
domain, as well as its Nyström interpolated values. Right: the Nyström interpolated
6th eigenvector illustrated the entire state space as well as on the actual samples (again
shown as filled dots).

using the same nearest neighbor weighting algorithm used to compute the original weight matrix
W . An extensive discussion of the Nyström method is given in Drineas and Mahoney (2005), and
more details of its application to learning control in MDPs are given in Mahadevan et al. (2006).

Figure 17 illustrates the basic idea. Note that the Nyström method does not require recalculating
eigenvectors—in essence, the embedding of a new state is computed by averaging over the already
computed embeddings of “nearby” states. In practice, significant speedups can be exploited by using
the following optimizations. We have empirically observed that roughly only 10% of the overall
samples needed for learning a good policy are necessary to construct basis functions. Once the bases
is defined over these sub-sampled states, the Nyström extended embeddings of the remaining 90%
of training samples needs to be calculated only once, and henceforth can be cached during repeated
runs of policy iteration. During testing, the Nyström embeddings of novel states encountered must
be computed, but since the eigenvectors are defined over a relatively small core set of sample states,
the extensions can be computed very efficiently using a fast nearest neighbor algorithm.18

6.2 Representation Policy Iteration for Continuous Domains

Figure 18 presents the modified RPI algorithm for continuous Markov decision processes. The core
of the algorithm remains the same as before, but there are important differences from the discrete
case. First, the proto-value functions are computed on a subsampled set of states, for two reasons:

18. In our experiments, we used the TSTOOLS MATLAB nearest neighbor package.

2203

MAHADEVAN AND MAGGIONI

RPI (πm,T,N,Z,ε,k,O,D):

// πm: Initial policy
// T : Number of initial random walk trials
// N: Maximum length of each trial
// ε : Convergence condition for policy iteration
// k: Number of proto-value basis functions to use
// O: Type of graph operator used
// D: Data set of transitions

Sample Collection Phase

1. See Figure 4 on page 2177.

Representation Learning Phase

2. Build an undirected weighted graph G from the set of subsampled transitions Ds ⊆ D using the
method described in Section 6.4 on graph construction from point sets ∈ Rn. Compute the operator
O on graph G as discussed in Section 6.4.

3. Compute the k “smoothest” eigenvectors of O on the sub-sampled graph Ds, and collect them as
columns of the basis function matrix Φ, a |Ds| × k matrix. The embedding of a state action pair
φ(s,a) where s ∈ Ds is given as ea⊗φ(s), where ea is the unit vector corresponding to action a, φ(s)
is the sth row of Φ, and ⊗ is the Kronecker product.

Control Learning Phase:

4. See Figure 8 on page 2191. For all transitions involving a state s /∈ Ds, its embedding is computed
using the Nyström extension described in Section 6.1.

5. Optional: Repeat the above procedure by calling RPI (πm+1,T,N,ε,k,O,µ,D).

Figure 18: Pseudo-code of the representation policy iteration algorithm for continuous MDPs.

the number of samples needed to compute the proto-value functions is much less than that needed to
learn a good policy using RPI, as the experiments in Section 7 reveal. In Figure 18, DZ denotes the
subsampled set of states. The choice of the subsampling method can make a significant difference,
as explained below. The second major difference is the use of the Nyström method to extend proto-
value functions from the samples stored inDZ to all the states visited during the initial random walk
(denoted D in Figure 18), as well as new states encountered during the testing of a learned policy.

6.3 Sampling from Point Sets ∈ Rn

One challenge in continuous MDPs is how to choose a subset of samples from which a graph can be
built and proto-value functions computed. The set of samples collected during the course of explo-
ration can be very large, and a much smaller set of samples is usually sufficient to learn proto-value
functions. Many ways of constructing a subsample from the overall sample can be devised. The
simplest method is of course to randomly subsample from the complete set, but this might not be
the most efficient way of using the samples. Figure 19 illustrates two methods for subsampling in

2204

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Original random walk:4441 states

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Random Subsampling: 800 states

−1.5 −1 −0.5 0 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Trajectory−based subsampling: 765 states

Figure 19: The problem of subsampling is illustrated in the mountain car domain. On the left is
shown the original states visited during a random walk. In the middle is the subsam-
pled data using a random subsampling algorithm. On the right is a trajectory based
subsampling method.

the mountain car domain, including random subsampling and trajectory-based subsampling. The
trajectory-based algorithm follows a greedy strategy: starting with the null set, add samples to the
subset that are not within a specified distance to any sample currently in the subset. A maximal
subset is returned when no more samples can be added. The trajectory-based method also tries to
retain “important” samples, such as goal states or states with high reward. Note that the random sub-
sampling method clearly loses important information about the trajectory, which is nicely retained
by the trajectory method.

More formally, the trajectory based subsampling algorithm works as follows. We define an ε-net
of points in S ′ to be a subset S ′′ such that no two points are closer than ε, and that for every point y
in S ′, there is a point in S ′′ which is not farther than ε from y. One can construct a (random) ε-net
in S ′ as follows. Pick x0 ∈ S ′ at random. By induction, for k ≥ 1 suppose x0,x1, . . . ,xk have been
picked so that the distance between any pair is larger than ε. If

Rk := S ′ \ (∪kl=1Bε(xl))

is empty, stop, otherwise pick a point xk+1 in Rk. By definition of Rk the distance between xk+1 and
any of the points x0, . . . ,xk is not smaller than ε. When this process stops, say after k∗ points have
been selected, for any y ∈ S ′ we can find a point in S ′′ not farther than ε, for otherwise y ∈ Rk∗ and
the process would not have stopped.

In the experiments reported in Section 7, where states are continuous vectors ∈ Rn, typically
< 10% of the transitions in the original set of random walks are necessary to learn an adequate set
of basis functions. For example, in the mountain car task, around 700 samples are sufficient to form
the basis functions, whereas usually> 7000 samples are needed to learn a close to optimal policy.19

19. In Section 9, we describe how Kronecker factorization can be used to significantly compress the size of the basis
matrices.

2205

MAHADEVAN AND MAGGIONI

6.4 Graph Construction from Point Sets ∈ Rn

Given a data set {xi} in Rn, we can associate different weighted graphs to this point set. There are
different choices of edges and for any such choice there is a choice of weights on the edges. In
the experiments below, the following construction was used. Edges were inserted between a pair of
states xi and x j if:

• x j is among the k nearest neighbors of xi, where k > 0 is a parameter.

Weights were assigned to the edges in the following way:

• W (i, j) = α(i)e−
||xi−x j ||2Rn

σ , where σ> 0 is a parameter, and α a weight function to be specified.

Observe that for undirected graphs, since x j can be among the K nearest neighbors of xi but xi
may not be among the K nearest neighbors of x j, the above construction will still yield asymmetric
weight matrices. We used an additional symmetrization step where we replaced the weight matrixW
constructed by the symmetricW +W T . If the states {xi} are drawn uniformly from a Riemannian
manifold, then it is shown in Belkin and Niyogi (2004) that the above construction, with α = 1,
approximates the continuous Laplace-Beltrami operator on the underlying manifold. If {xi} is not
drawn uniformly from the manifold, as it typically happens in MDPs when the space is explored
by an agent, it is shown in Lafon (2004) that a pre-processing normalization step can (must) be
performed that yields the weight function α, so that the above construction yields an approximation
to the Laplace-Beltrami operator. Various ways of normalizing the weight matrix were explored in
our experiments in Section 7. In particular, we compared the normalized Laplacian L = D− 1

2 (D−
W)D− 1

2 and the combinatorial Laplacian, L= D−W operators.

7. Fully Interleaved Representation and Policy Learning: Continuous MDPs

In this section, we present a detailed analysis of fully interleaved representation and policy learning
on continuous MDPs. By “fully interleaved”, we mean that the overall learning run is divided into
a set of discrete episodes of sample collection, basis construction, and policy learning. At the end
of each episode, a set of additional samples is collected using either a random walk (off-policy)
or the currently best performing policy (on-policy), and then basis functions are then recomputed
and a new policy is learned. In all the experiments below, the trajectory based method was used to
build the graph from which proto-value functions were learned. We discuss alternate approaches
for interleaving basis function generation and control learning in Section 9.

7.1 Three Control Tasks

We explored the effectiveness and stability of proto-value functions in three continuous domains—
the Acrobot task, the inverted pendulum task, and the mountain car task—that have long been
viewed as benchmarks in the field. These three domains are now described in more detail.

The Inverted Pendulum: The inverted pendulum problem requires balancing a pendulum of un-
known mass and length by applying force to the cart to which the pendulum is attached. We used
the implementation described in Lagoudakis and Parr (2003). The state space is defined by two
variables: θ, the vertical angle of the pendulum, and θ̇, the angular velocity of the pendulum. The
three actions are applying a force of -50, 0, or 50 Newtons. Uniform noise from -10 and 10 is added

2206

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

to the chosen action. State transitions are defined by the nonlinear dynamics of the system, and
depend upon the current state and the noisy control signal, u.

θ̈=
gsin(θ)−αmlθ̇2 sin(2θ)/2−αcos(θ)u

4l/3−αml cos2(θ)
,

where g is gravity, 9.8 m/s2, m is the mass of the pendulum, 2.0 kg, M is the mass of the cart, 8.0
kg, l is the length of the pendulum, .5 m, and α= 1/(m+M). The simulation time step is set to 0.1
seconds. The agent is given a reward of 0 as long as the absolute value of the angle of the pendulum
does not exceed π/2. If the angle is greater than this value the episode ends with a reward of -1.
The discount factor was set to 0.95. The maximum number of episodes the pendulum was allowed
to balance was fixed at 3000 steps. Each learned policy was evaluated 10 times.

Mountain Car: The goal of the mountain car task is to get a simulated car to the top of a hill
as quickly as possible (Sutton and Barto, 1998). The car does not have enough power to get there
immediately, and so must oscillate on the hill to build up the necessary momentum. This is a
minimum time problem, and thus the reward is -1 per step. The state space includes the position
and velocity of the car. There are three actions: full throttle forward (+1), full throttle reverse (-1),
and zero throttle (0). Its position, xt and velocity ẋt , are updated by

xt+1 = bound[xt + ẋt+1]

ẋt+1 = bound[ẋt +0.001at +−0.0025,cos(3xt)],

where the bound operation enforces−1.2≤ xt+1 ≤ 0.6 and−0.07≤ ẋt+1 ≤ 0.07. The episode ends
when the car successfully reaches the top of the mountain, defined as position xt >= 0.5. In our
experiments we allow a maximum of 500 steps, after which the task is terminated without success.
The discount factor was set to 0.99.

The Acrobot Task: The Acrobot task (Sutton and Barto, 1998) is a two-link under-actuated robot
that is an idealized model of a gymnast swinging on a highbar. The only action available is a torque
on the second joint, discretized to one of three values (positive, negative, and none). The reward
is −1 for all transitions leading up to the goal state. The detailed equations of motion are given
in Sutton and Barto (1998). The state space for the Acrobot is 4-dimensional. Each state is a 4-
tuple represented by (θ1, θ̇1,θ2, θ̇2). θ1 and θ2 represent the angle of the first and second links to
the vertical, respectively, and are naturally in the range (0,2π). θ̇1 and θ̇2 represent the angular
velocities of the two links. Notice that angles near 0 are actually very close to angles near 2π due to
the rotational symmetry in the state space.

Figure 20 plots the Acrobot state space projected onto the subspace spanned by the two joint an-
gles θ1 and θ2. This subspace is actually a torus. To approximate computing distances on the torus,
the original states were projected upwards to a higher dimensional state space ⊂ R6 by mapping
each angle θi to (sin(θi),cos(θi)). Thus, the overall state space is now (sin(θ1),cos(θ1), θ̇1,sin(θ2),
cos(θ2), θ̇2). The motivation for this remapping is that now Euclidean distances in this augmented
space better approximate local distances on the torus. In fact, ignoring the wrap-around nature of
the Acrobot state space by simply using a local Euclidean distance metric on the four-dimensional
state space results in significantly poorer performance. This example illustrates how overall global
knowledge of the state space, just like in the Blockers domain, is valuable in designing a better local

2207

MAHADEVAN AND MAGGIONI

raise tip above

θ1

θ2

Torque
applied here

this line

Figure 20: The state space of the Acrobot (shown on the left) exhibits rotational symmetries. The
figure on the right plots its projection onto the subspace of R2 spanned by the two joint
angles θ1 and θ2, which can be visualized as a torus. The angular velocities θ̇1 and
θ̇2 were set to 0 for this plot. The points shown on the torus are subsampled states
from a random walk. The colors indicate the value function, with red (darker) regions
representing states with higher values.

distance function for learning PVFs. This domain serves to reemphasize that basis construction is
dependent on a good choice of a local distance metric.

7.2 RPI with Off-Policy Sampling

In the first set of experiments, we used off-policy random walks in Step 1 of the sample collection
phase in the RPI algorithm since we wanted to compare the effects of different parameter choices
(graph operator, number of nearest neighbors, number of bases) using the same set of samples. In
Section 7.4 we will see that significantly better results were obtained using a modified form of on-
policy sampling. Table 1 summarizes the range of parameters over which the RPI algorithm was
tested in these domains. The results for the following experiments were (median) averaged over 30
runs. To avoid clutter, variances are shown only on selected plots.

As Table 1 reveals, the type of off-policy sample collection used in the experiments below
varied, from a long series of short random walks (inverted pendulum) to a short series of long
random walks (Acrobot). In particular, in the inverted pendulum, samples were collected using a
series of short random walks, typically of length < 20 before the episode terminated because the
pole was dropped. This simple strategy was sufficient to explore the underlying manifold. By
contrast, in the mountain car domain, longer random walks were needed to explore the manifold.
One reason for this difference is the nature of the underlying manifold: the samples in the inverted
pendulum are in a relatively narrow region around the 45 degree line. In contrast, the samples in the
mountain car domain are distributed across a wider region of the state space. Finally, in the Acrobot
domain, the random walks were very long, terminating when the goal state was reached.

2208

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

Another difference in sample collection in these domains was in initialization. In the inverted
pendulum and Acrobot domains, the initial state was always set the same, with the pole starting
from the vertical position at rest, or the arm at rest. In the mountain car domain, however, starting
the car from a position of rest at the bottom of the hill produced poorer results than starting from
the bottom with the velocities initialized randomly. The experiments reported below scaled the raw
state variables to make the dimensions of each variable more commensurate. The scaling used is
shown in Table 1.

While performance in all three domains is measured by the number of steps, note that for the
Acrobot and mountain car task, lower numbers indicate better performance since we are measuring
the steps to reach the goal. In the inverted pendulum, however, since we are measuring the number
of steps that the pole remained upright, higher numbers indicate better performance.

Local Distance Metric: In the first experiment, illustrated in Figure 21, the effect of varying the
local distance metric used in constructing the graph Laplacian was evaluated, from a low setting
of k = 10 nearest neighbors to a higher setting of k = 50 nearest neighbors. All the plots in the
figure show median-averaged plots over 30 learning runs. Variances are not shown to avoid clutter.
The effect of varying k was most pronounced in the inverted pendulum domain, with less tangible
results in the mountain car and Acrobot domains. Note that in the inverted pendulum domain, the
differences between k = 25 and k = 50 are negligible, and the corresponding runs tightly overlap.

Number of Basis Functions: Figure 22 varied the number of proto-value functions used. Here,
there were significant differences, and the results reveal a nonlinear relationship between the number
of PVFs used and the best performance. In the Acrobot task, the best results were obtained for 25
and 100 PVFs, and significantly poorer results for 50 PVFs. In the inverted pendulum domain,
10 PVFs was significantly better than using 30 PVFs, but was closely matched by using 60 PVFs.
Finally, in the mountain car domain, 30 PVFs produced the best results, followed by 50 PVFs and a
setting of 10 PVFs produced the worst results.

Type of Graph Operator: Figure 23 investigates the effect of varying the graph operator in the
three domains. The two operators compared were the normalized Laplacian L = I−D− 1

2WD− 1
2

and the combinatorial Laplacian L = D−W . In both the Acrobot and mountain car domains, the
normalized Laplacian operator produced significantly better results than the combinatorial Lapla-
cian. However, in the inverted pendulum domain, the combinatorial Laplacian was better than the
normalized Laplacian operator. These results suggest an interesting dependence between the graph
operator and the type of manifold. Note that in both the Acrobot and mountain car domains, the
manifold is significantly more spread out spatially than the inverted pendulum task.

7.3 RPI with On-Policy Sampling

As noted earlier, the performance of PVFs can be improved using a modified form of on-policy
sampling in Step 1 of the sample collection phase in the RPI algorithm. Specifically, we kept track
of the best-performing policy (in terms of the overall performance measure of the number of steps).
If the policy learned in the current round of RPI improved on the best-performing policy thus far,
samples were collected in the next iteration of RPI using the newly learned policy (which was then
viewed as the best performing policy in subsequent runs). Otherwise, samples were collected us-
ing an off-policy random walk. We also found that using shorter episodes of sample collection in
between rounds of representation construction and policy estimation also produced better results.

2209

MAHADEVAN AND MAGGIONI

0 10 20 30 40
0

50

100

150

200

Number of Episodes

N
um

be
r

of
 S

te
ps

Proto−value Functions in the Acrobot Domain

50 NN
25 NN
15 NN

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000
Proto−Value Functions in the Inverted Pendulum Domain

Number of Episodes

N
um

be
r o

f S
te

ps

50 NN
25 NN
10 NN

0 50 100 150 200 250
0

50

100

150

200

250

300

Number of Episodes

N
um

be
r o

f S
te

ps

Proto−Value Functions in the Mountain Car Domain

50 NN
25 NN
10 NN

Figure 21: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car domains
as a function of the number of nearest neighbors used to compute the graph Laplacian.
Results are median averages over 30 learning runs. In all three domains, the graph
operator used was the normalized Laplacian. For the Acrobot domain, the number of
PVFs was set at 100, whereas in the mountain car and inverted pendulum tasks, the
number of PVFs was set to 30.

2210

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0 10 20 30 40
0

50

100

150

200

Number of Episodes

N
um

be
r

of
 S

te
ps

Proto−Value Functions in the Acrobot Domain

100 PVFs
50 PVFs
25 PVFs

0 50 100 150
0

500

1000

1500

2000

2500

3000
Proto−Value Functions in the Inverted Pendulum Domain

Number of Episodes

N
um

be
r

of
 S

te
ps

50 PVFs
30 PVFs
10 PVFs

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450
Proto−Value Functions in the Mountain Car Domain

Number of Episodes

N
um

be
r o

f S
te

ps

50 PVFs
30 PVFs
10 PVFs

Figure 22: Performance of PVFs on the Acrobot, inverted pendulum, and mountain car domains as
a function of the number of basis functions. Results shown are median averages over
30 learning runs. In all three domains, the normalized Laplacian was used as the graph
operator. The number of nearest neighbors k= 25 in the Acrobot and inverted pendulum
domains, and k = 30 in the mountain car domain.

Figure 24 shows the results of these two modifications in the Acrobot domain, whereas Figure 25
and Figure 27 show the corresponding results from the inverted pendulum and mountain car do-
mains. Comparing these results with the corresponding off-policy results in Figure 21, Figure 22,
and Figure 23 shows significantly faster convergence of PVFs in all three domains.

7.4 Comparing PVFs with RBFs on Continuous MDPs

In this section, we compare the performance of PVFs with radial basis functions (RBFs), which are
a popular choice of basis functions for both discrete and continuous MDPS. We restrict our com-
parison of PVFs and RBFs in this section to the inverted pendulum and mountain car domains. To

2211

MAHADEVAN AND MAGGIONI

0 5 10 15 20 25 30 35 40
0

50

100

150

200

Number of Episodes

N
um

be
r o

f S
te

ps

Proto−Value Functions in the Acrobot Domain

Normalized Laplacian
Combinatorial Laplacian

0 50 100 150
0

500

1000

1500

2000

2500

3000
Proto−Value Functions in the Inverted Pendulum Domain

Number of Episodes

N
um

be
r

of
 S

te
ps

Normalized Laplacian
Combinatorial Laplacian

0 50 100 150 200 250 300
0

100

200

300

400

500
Proto−Value Functions in the Mountain Car Domain

Number of Episodes

N
um

be
r

of
 S

te
ps

Normalized Laplacian
Combinatorial Laplacian

Figure 23: Performance of PVFs in the Acrobot, inverted pendulum, and mountain car domains as
a function of the graph operator. Results shown are median averages over 30 learning
runs. In the Acrobot task, 100 PVFs were used, whereas 30 basis functions were used in
the mountain car task, and 10 basis functions were used in the inverted pendulum task.

choose a suitable set of parameters for RBFs, we initially relied on the values chosen in the pub-
lished study of LSPI for the inverted pendulum domain (Lagoudakis and Parr, 2003). However, we
found that by tuning the kernel widths, we were able to significantly improve the performance of
RBFs over that previously reported in their experiments. Table 2 shows the parameters of the RBF
used in the comparisons below. Generally speaking, the results demonstrate that PVFs are signifi-
cantly quicker to converge, by almost a factor of two in both the inverted pendulum and mountain
car domains. Asymptotically, both approaches to converge to the same result. We emphasize that
these comparisons are meant to be suggestive, and not definitive. For example, we did not fine tune
the centers of the RBF bases, or incorporate the scaling factors used in the experiments with PVFs.
Our goal here is to provide a reasonable set of benchmarks to compare PVFs against, commensurate
with that shown in earlier studies using such parametric approximators.

2212

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Number of Episodes

N
um

be
r o

f S
te

ps

Proto−Value Functions on Acrobot Domain

75 PVFs: On−Policy Sampling

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Number of Episodes

N
um

be
r o

f S
te

ps

Proto−Value Functions on Acrobot Domain

75 PVFs: On−Policy Sampling

Figure 24: Performance of PVFs with on-policy sampling in the Acrobot task. The plot on the left
shows the median average number of steps to goal averaged over 30 runs. The plot on
the right shows the variance, after scaling the y axis to magnify the plot.

Inverted Pendulum: We begin by comparing the performance of PVFs with a linear RBF ap-
proximation architecture for the inverted pendulum domain. Figure 25 plots the effect of varying
the kernel width for RBFs in the inverted pendulum domain (left plot). It is seen that the best results
are obtained for a kernel width σ= 0.25. We compare a varying number of RBF architectures with
using 15 PVFs in Figure 25 (right plot). PVFs converge significantly faster to the final goal of bal-
ancing the pendulum for 3000 steps: PVFs take 20 trials to converge, but RBFs take roughly twice
as long. Figure 26 plots the variance across 100 learning runs for both PVFs and RBFs, showing
that PVFs not only converge faster, but also have significantly less variance.

Mountain Car: As with the inverted pendulum, we were able to improve the performance of
RBFs by fine-tuning the kernel width, although the differences are less significant than in the in-
verted pendulum domain. Figure 27 plots the effect of varying the kernel width for RBFs using 13
basis functions in the mountain car domain (left plot). We also found increasing the number of RBF
basis functions above 13 worsened their performance. The figure also plots the best performing RBF
architecture (13 basis functions) compared with the PVF approach (25 basis functions). Given suf-
ficient training experience, both converge to approximately the same result, although PVFs seem to
converge to a slightly better result. However, as with the inverted pendulum results, PVFs converge
significantly quicker, and clearly outperform RBFs for smaller numbers of samples.

Figure 28 shows the variances over 30 runs for both PVFs and RBFs in the mountain car domain.
As in the inverted pendulum, we note that PVFs clearly converge more quickly to a more stable
performance than RBFs, although the differences are not as dramatic as in the inverted pendulum
domain.

2213

MAHADEVAN AND MAGGIONI

Parameter Inverted Pendulum Mountain Car Acrobot
Episodes T (20 to 160) (50 to 300) (5 to 40)

Episode Length N ≤ 20 ≤ 70 ≤ 800
Nearest neighbors ω {10,25,50} {10,25,50} {25, 50, 100 }
Number of PVFs k {10,30,60} {10,30,50} { 25, 50, 100 }
Graph Operator O (Norm., Comb.) (Norm., Comb.) (Norm., Comb.)

Scaling (3θ, θ̇) (x,3ẋ) (θ1,θ2,0.5θ̇1,0.3θ̇2)

Table 1: Parameter values (as defined in Figure 18) for Acrobot, inverted pendulum and mountain
car domains. Comb. and Norm. refer to the combinatorial and normalized Laplacian
operators.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

Number of Episodes

N
um

be
r

of
 S

te
ps

RBFs on Inverted Pendulum

RBFs=10, Sigma = 0.5
RBFs=10, Sigma = 1
RBFs=10, Sigma =0.25
RBFs=10, Sigma = 0.125

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Number of Episodes

N
um

be
r

of
 S

te
ps

PVFs vs RBFs on Inverted Pendulum Task

RBFs = 10
RBFs = 13
RBFs=17
PVFs=15

Figure 25: Left: The performance of a linear parametric RBF architecture is analyzed for vary-
ing kernel widths in the inverted pendulum domain. Right: A comparison of 15 PVFs
with several choices of RBFs on the inverted pendulum task, focusing on the initial 100
episodes averaged over 100 runs.

2214

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Number of Episodes

A
ve

ra
ge

 N
um

be
r

of
 S

te
ps

RBFs on Inverted Pendulum

RBFs

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

Number of Episodes

N
um

be
r

of
 S

te
ps

PVFs on the Inverted Pendlum Task

PVFs

Figure 26: This plot shows that PVFs (right) have significantly less variance compared to RBFs
(left) in the inverted pendulum task. Both plots show median-averaged number of steps
the pole was balanced over 100 learning runs.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500
Radial Basis Functions in Mountain Car Domain

Number of Episodes

A
ve

ra
ge

 S
te

ps

RBFs = 13, Sigma = 0.1
RBFs=13, Sigma = 0.5
RBFs=13, Sigma = 0.05

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

N
um

be
r

of
 S

te
ps

PVFs vs. RBFs in Mountain Car Domain

PVFs
RBFs

Figure 27: Left: The performance of a linear parametric RBF architecture is analyzed for varying
kernel widths in the mountain car domain. Right: A comparison of 25 PVFs and 13
RBFs on the mountain car task. Higher number of RBFs produced worse results.

2215

MAHADEVAN AND MAGGIONI

Number of RBFs Inverted Pendulum RBF Parameters
10 3 x-axis, 3 y-axis, σ= 1,0.5,0.25,0.125
13 4 x-axis, 3 y-axis, σ= 0.25
17 4 x-axis, 4 y-axis, σ= 0.25
Number of RBFs Mountain Car RBF Parameters
13 4 x-axis, 3 y-axis, σ= 0.5,0.1,0.05

Table 2: RBF parameter settings for inverted pendulum and mountain car experiments.

0 50 100 150 200 250
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

A
ve

ra
ge

 S
te

ps

RBFs on the Mountain Car Task

RBFs

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

Number of Episodes

N
um

be
r

of
 S

te
ps

PVFs in the Mountain Car Domain

PVFs

Figure 28: Left: The variance in performance of a linear parametric RBF architecture is analyzed
over 30 learning runs in the mountain car domain. Right: Variance across 30 runs for
PVFs in the mountain car task.

8. Related Work

In this section, we briefly review related work, beginning with methods for approximating value
functions, followed by a description of past research on representation learning, concluding with a
short summary of recent work on manifold and spectral learning.

8.1 Value Function Approximation

Value function approximation has been studied by many researchers. Bertsekas and Tsitsiklis (1996)
provide an authoritative review. Parametric approaches using linear architectures, such as radial ba-
sis functions (Lagoudakis and Parr, 2003), and nonlinear architectures, such as neural networks
(Tesauro, 1992), have been extensively explored. However, most approaches (with notable excep-
tions discussed below) are based on a fixed parametric architecture, and a parameter estimation
method is used to approximate value functions, such as temporal-difference learning (Sutton and
Barto, 1998; Tsitsiklis and Van Roy, 1997), least squares projection (Bradtke and Barto, 1996;
Boyan, 1999; Nedic and Bertsekas, 2003; Lagoudakis and Parr, 2003), and linear programming
(de Farias, 2003; Guestrin et al., 2003). There has also been significant work on non-parametric

2216

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

methods for approximating value functions, including nearest neighbor methods (Gordon, 1995) and
kernel density estimation (Ormoneit and Sen, 2002). Although our approach is also non-parametric,
it differs from kernel density estimation and nearest neighbor techniques by extracting a distance
measure through modeling the underlying graph or manifold. Non-parametric kernel methods based
on Hilbert spaces have also been applied to value function approximation, including support vector
machines (Dietterich and Wang, 2002) and Gaussian processes (Engel et al., 2003; Rasmussen and
Kuss, 2004). Note that in this approach, the kernel is largely hand-engineered, such as the Gaussian
kernel. Our approach can be viewed as extending this work using an automatically generated data-
dependent graph or diffusion kernel (Kondor and Vert, 2004). There are interesting connections
between the graph Laplacian matrix and covariance matrices (Ben-Chen and Gotsman, 2005).

8.2 Representation Learning

The problem of learning representations has a long history in AI. Amarel (1968) was an early pio-
neer, advocating the study of representation learning through global state space analysis. Amarel’s
ideas motivated much subsequent research on representation discovery (Subramanian, 1989; Utgoff
and Stracuzzi, 2002), and many methods for discovering global state space properties like “bottle-
necks” and “symmetries” have been studied (McGovern, 2002; Ravindran and Barto, 2003; Mannor
et al., 2004). However, this past research lacked a formal framework showing how the geometrical
analysis of a state space analysis can be transformed into representations for approximating value
functions, a hallmark of our approach.

There have been several attempts at overcoming the limitations of traditional function approxi-
mators, such as radial basis functions. In particular, it has been recognized that Euclidean smooth-
ing methods do not incorporate geometric constraints intrinsic to the environment: states close in
Euclidean distance may be far apart on the manifold. Dayan (1993) proposed the idea of building
successor representations. While this approach was restricted to policy evaluation in simple discrete
MDPs, and did not formally build on manifold or graph-theoretic concepts, the idea of construct-
ing representations that are faithful to the underlying dynamics of the MDP was a key motivation
underlying this work. Drummond (2002) also pointed out the nonlinearities that value functions
typically exhibit, and used techniques from computer vision to detect nonlinearities. Neither of
these studies formulated the problem of value function approximation as approximating functions
on a graph or manifold, and both were restricted to discrete MDPs. There have been several at-
tempts to dynamically allocate basis functions to regions of the state space based on the nonuniform
occupancy probability of visiting a region (e.g., Kretchmar and Anderson, 1999), but these meth-
ods do not construct the basis functions adaptively. Finally, there has also been research on finding
common structure among the set of value functions on a given state space, where only the goal lo-
cation is changed (Foster and Dayan, 2002), assuming a probabilistic generative (mixture) model of
a value function, and using maximum likelihood estimation techniques. Proto-value functions can
be viewed similarly as the building block of the set of value functions on a given state space, except
that they are constructed without the need to make such parametric assumptions.

8.3 Manifold and Spectral Learning

This research also builds on recent work on manifold and spectral learning, including diffusion maps
(Coifman et al., 2005a,b,c), ISOMAP (Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), and
Laplacian eigenmaps (Belkin and Niyogi, 2004; Jones et al., 2007). One major difference is that

2217

MAHADEVAN AND MAGGIONI

these methods have largely (but not exclusively) been applied to nonlinear dimensionality reduction
and semi-supervised learning on graphs, whereas our work focuses on approximating (real-valued)
value functions on graphs. Although related to regression on graphs (Niyogi et al., 2003), the
problem of value function approximation is fundamentally different: the set of target values is not
known a priori, but must be inferred through an iterative process of computing an approximate fixed
point of the Bellman backup operator, and projecting these iterates onto subspaces spanned by the
basis functions. Furthermore, value function approximation introduces new challenges not present
in supervised learning or dimensionality reduction: the set of samples is not specified a priori, but
must be collected through active exploration of the state space.

9. Discussion and Future Research

The fundamental contribution of this paper is an algorithmic framework called RPI that combines
the learning of representations (basis functions) and policies. RPI is based on some specific design
choices, and we have naturally restricted our description of the framework to the simplest settings.
The scope of RPI can easily be extended to more general situations. Many extensions of the frame-
work are being actively explored, and we briefly summarize these ongoing investigations.

9.1 Analysis of RPI and Variants

RPI is based on a two-phased procedure, where basis functions are learned from spectral analysis of
trajectories generated by simulating policies, and improved policies are found by a control learning
algorithm using the newly generated basis functions. Section 7 evaluated both the off-policy setting,
where basis functions were learned purely from random walks, as well as the on-policy setting,
where additional samples were generated from newly learned improved policies and combined with
the random-walk samples. In both approaches, a smaller subset of samples were extracted using a
subsampling method described in Section 6.3. Many questions remain to be addressed about the
specific properties of architectures like RPI as well as other related architectures that combine the
learning of representation and behavior. We summarize some key issues that need to be addressed
in future research:

• How can we modify the design of RPI, so that basis functions are learned simultaneously
with the learning of policies? Recent work on Bellman-error basis functions (Keller et al.,
2006; Petrik, 2007; Parr et al., 2007) suggests an alternative approach where basis functions
are learned in-situ during the policy evaluation phase itself, by explicitly modeling the error
in approximating the value function using the Bellman residual. In such approaches, the basis
functions generated are very sensitive to a specific reward function, whose shapes reflect the
error in approximating a given value function. Can such in-situ basis-function learners be
combined with offline approaches such as RPI, where basis functions are generated using a
more global analysis of the state space as a whole, to yield more robust provably optimal
control learners? For example, Petrik (2007) proposes combining reward-specific Krylov
bases with Laplacian bases as a way of integrating localized high-frequency reward-specific
bases with more global long-term eigenvector bases such as PVFs. We discuss below other
approaches for integrating local vs. global basis functions, such as diffusion wavelets.

• Is it possible to specify optimality metrics for basis function generation, similar to metrics
used in control learning such as maximizing the cumulative long-term discounted sum of

2218

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

rewards (or average reward)? How can the cost of learning basis functions be amortized over
multiple problems? Does this tradeoff suggest a way to balance the learning of reward-based
and reward-independent basis functions?

• What are the pros and cons of off-policy sampling vs. on-policy sampling in designing the
outer loop of RPI? For example, is it possible to construct problems where on-policy sampling
results in oscillation, as samples are increasingly generated from policies that visit increas-
ingly restricted portions of the state space? In the experiments in Section 7, newly generated
samples are combined with previously generated samples to avoid overfitting basis functions
to narrow regions of the state space, but this strategy may be computationally expensive in
large MDPs.

• Under what assumptions can RPI be shown to converge? It is clear from the experiments
presented in Section 7 that RPI converges extremely quickly in problems like the inverted
pendulum, whereas in other problems such as the mountain car or Acrobot, convergence
takes significantly longer. Can we characterize more formally conditions on the underlying
state (action) manifold under which RPI can be shown to reliably converge?

9.2 Combining Nonparametric Graph-based and Parametric Basis Functions

Proto-value functions are given information about the underlying state space manifold in terms of
the underlying graph that captures non-local smoothness, whereas parametric bases generally make
fairly broad uniformity assumptions about the underlying state space topology. It is reasonable
to try to combine the graph-based approach with parametric methods, such as RBFs, to combine
the advantages of the two approaches. For example, geodesic Gaussian kernels (Sugiyama et al.,
2007) are based on learning a graph of the underlying MDP from random walks, and using the
shortest path between any two states as the distance metric for a set of RBFs defined on the graph.
The Gaussian exponential term in the RBF approximator can be shown to be the solution of a
diffusion kernel (Kondor and Lafferty, 2002) or heat kernel (Chung, 1997) defined by a differential
equation, whose solution can be expressed as a matrix exponential function of the graph Laplacian.
Interestingly, matrix exponentials can serve as generators of manifold structures called Lie groups
(Baker, 2001), of which some interesting varieties are rotation and motion groups discussed in more
detail in Section 9.8. The Laplacian can also be viewed as an inverse covariance matrix (Ben-Chen
and Gotsman, 2005), defining a smoothing prior on the space of functions, which can be contrasted
with other priors such as Gaussian processes (Rasmussen and Kuss, 2004; Rasmussen andWilliams,
2006). It is possible to combine the graph Laplacian smoothness functional with other parametric
smoothing kernels using manifold regularization methods (Belkin et al., 2006).

9.3 Proto-Value Functions From Directed Graphs

In this paper, we constructed PVFs by diagonalizing a symmetric diffusion operator on an undirected
graph. This approach can be readily generalized to more elaborate diffusion models which capture
asymmetry of actions using directed graphs. In particular, PVFs can be constructed by diagonalizing
the directed graph Laplacian (Chung, 2005), which is defined as

LD = Dφ−
DφP+PTDφ

2
,

2219

MAHADEVAN AND MAGGIONI

where Dφ is a diagonal matrix whose entries are given by φ(v), the Perron vector or leading eigen-
vector associated with the spectral radius of the transition matrix P specifying the directed random
walk on G. For a strongly connected directed graph G, the Perron-Frobenius theorem can be ap-
plied to show that the transition matrix is irreducible and non-negative, and consequently the leading
eigenvector associated with the largest (real) eigenvalue must have all positive components φ(v) > 0.
In an initial study (Johns and Mahadevan, 2007), we have found that the directed graph Laplacian
can result in a significant improvement over the undirected Laplacian in some discrete and con-
tinuous MDPs. For example, in a modified two-room task where there are two “one-way” doors
leading from one room to the other, PVFs constructed from the directed Laplacian significantly out-
performed the non-directional PVFs constructed from undirected graphs for certain locations of the
goal state (e.g., near one of the one-way doors). Directed PVFs also appeared to yield improvements
in some continuous control tasks, such as the inverted pendulum.

9.4 Scaling PVFs by Kronecker Product Factorization

Proto-value functions can be made more compact using a variety of sparsification methods, some
of which have been explored in the literature on kernel methods. These include matrix sparsifica-
tion techniques (Achlioptas et al., 2002), low-rank approximation techniques (Frieze et al., 1998),
graph partitioning (Karypis and Kumar, 1999), and Kronecker product approximation (Van Loan
and Pitsianis, 1993). We discuss one specific approach that we have implemented for continuous
MDPs, and that has given us promising results (Johns et al., 2007). A random walk weight matrix
Pr = D−1W constructed through the methods specified above in Section 6 can be approximated by
a Kronecker product of two smaller stochastic matrices Pa and Pb, which minimizes the Frobenius
norm of the error:

f (Pa,Pb) =min(‖Pr−Pa⊗Pb‖F) .

We have implemented the approach specified in Van Loan and Pitsianis (1993) to construct two
smaller stochastic matrices whose Kronecker product approximates the original random walk ma-
trix Pr. 20 To ensure that the decomposed matrices are not only stochastic, but also diagonalizable,
which the Kronecker factorization procedure does not guarantee, we incorporate an additional step
using the Metropolis Hastings algorithm (Billera and Diaconis, 2001) to make the smaller matrices
Pa and Pb reversible. Then, the PVFs for the original random walk matrix Pr can be approximated
as the Kronecker product of the PVFs of the factorized smaller reversible matrices Pra and Prb (since
the smaller matrices are reversible, they can also be symmetrized using the normalized Laplacian,
which makes the numerical task of computing their eigenvectors much simpler). In an initial study
(Johns et al., 2007), we have been able to significantly reduce the size of the random walk weight
matrices for the inverted pendulum, mountain car, and the Acrobot tasks with modest loss in per-
formance compared to the full matrix. For example, in the Acrobot task, the original basis matrix
is compressed by a factor of 36 : 1, which resulted in a policy slightly worse than the original larger
basis matrix. One important point to emphasize is that the full basis matrix never needs to be stored

20. It is important to distinguish this approach from the Kronecker decomposition approach described in Section 5,
where the factorization was not an approximation, but an exact decomposition assuming the overall state space was a
product space. Here, the Kronecker factorization can be applied to arbitrary weight matrices, but the decomposition
is an approximation.

2220

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

or computed in constructing the state embeddings from the smaller matrices. The factorization can
be carried out recursively as well, leading to a further reduction in the size of the basis matrices.

9.5 Multiscale Diffusion Wavelet Bases

In this paper, proto-value functions were constructed by diagonalization, that is by finding eigenvec-
tors, of a symmetrized diffusion operator such as the Laplacian on an undirected graph. Formally,
such eigenvectors are essentially global Fourier bases and their properties have been extensively
studied in Euclidean spaces (Mallat, 1989). One well-known limitation of global Laplacian bases is
that they are poor at representing piecewise linear (value) functions. We have extended the approach
presented in this paper to construct multiscale diffusion bases, using the recently proposed diffusion
wavelet framework (Coifman and Maggioni, 2006; Bremer et al., 2006). Diffusion wavelets provide
an interesting alternative to global Fourier eigenfunctions for value function approximation, since
they encapsulate all the traditional advantages of wavelets (Mallat, 1989): basis functions have com-
pact support, and the representation is inherently hierarchical since it is based on multi-resolution
modeling of processes at different spatial and temporal scales. In Mahadevan and Maggioni (2006)
we compare the performance of diffusion wavelet bases and Laplacian bases on a variety of simple
MDPs. In Maggioni and Mahadevan (2006), we present an efficient direct method for policy evalu-
ation by using the multiscale diffusion bases to invert the Bellman matrix I− γPπ. We are currently
exploring faster methods of constructing multiscale diffusion wavelet bases.

9.6 Policy and Reward-Sensitive PVFs

In the PVF framework presented above, basis functions are constructed without taking rewards into
account. This restriction is not intrinsic to the approach, and reward or policy information when
available can easily be incorporated into the construction of PVFs. One recent approach studied in
Petrik (2007) assumes that the reward function Rπ and policy transition matrix Pπ are known, and
combines Laplacian PVF bases with Krlyov bases. This approach is restricted to policy evaluation,
which consists of solving the system of linear equations

(I− γPπ)V π = Rπ.

This equation is of the well-studied form Ax = b, and Krylov bases are used extensively in the
solution of such linear systems of equations. The Krylov space is defined as the space spanned by
the vectors

(
b Ab A2b . . .Am−1b

)
.

The use of Krylov bases to compress the belief space of a partially-observable Markov decision
process (POMDP) is investigated in Poupart and Boutilier (2003), which explores how to exploit the
factored representation of the transition dynamics specified by a dynamic Bayes net. As discussed
earlier, Keller et al. (2006) and Parr et al. (2007) both investigate constructing reward-sensitive basis
functions by explicitly estimating the error in approximating the value function using the Bellman
residual. These approaches can also be combined with Laplacian PVFs in several ways, for example
by combining low-frequency Laplacian bases with the more high-frequency reward-specific Krylov
bases, or by using the estimated Bellman residuals to set the weights of the graph.

2221

MAHADEVAN AND MAGGIONI

Amore direct way to incorporate reward-sensitive information into PVFs is to modify the weight
matrixW to take into account the gradient of the value function to be approximated. Formally, this
approach is similar to estimating a function by knowing not only its values at sample points, but
also its gradient. Of course, any errors in the estimation of such gradients will then be reflected
in the weight matrix, and such an approach is not also without some drawbacks. While making
bases sensitive to rewards can lead to superior results, if the reward function or policy is modified,
reward-sensitive basis functions would need to be re-learned. In comparison, reward-independent
bases may be more generally applicable across different tasks.

9.7 Learning State Action PVFs

In our paper, the basis functions φ(s) are originally defined over states, and then extended to state
action pairs φ(s,a) by duplicating the state embedding |A| times and “zeroing” out elements of the
state-action embedding corresponding to actions not taken. That is, φ(s,a) = φ(s)⊗ Ia where Ia
is a vector indicator function for action a (all elements of Ia are 0 except for the chosen action).
This construction is somewhat wasteful, especially in domains where the number of actions can
vary significantly from one state to another. We have recently implemented PVFs on state action
graphs, where vertices represent state action pairs. Thus, the pair (s,a) is connected by an edge to
the pair (s′,a′) if action a in state s resulted in state s′ from which action a′ was next attempted.
State action graphs are naturally highly directional, and we used the directed Laplacian to compute
basis functions over state action graphs. Our initial results (Osentoski and Mahadevan, 2007) show
that state action bases can significantly improve the performance of PVFs in discrete MDPs.

9.8 Group-Theoretic Methods for Constructing Proto-Value Functions

As we discussed earlier in Section 3.6, there is a long tradition in mathematics of constructing
representations that are invariant under a group operator, including Fourier and wavelet transforms
(Mallat, 1989). One interesting extension is to exploit the properties of linear (matrix) represen-
tations of groups to construct compact PVFs. In particular, many of the continuous MDPs we
studied, including the inverted pendulum and the Acrobot, define continuous manifolds that have
been extensively studied in mathematics (Baker, 2001) and robotics (Lavalle, 2006). In addition,
the product spaces described in Section 5 generate graphs with large automorphism groups, which
can be exploited in reducing the size of their associated Laplacian eigenspaces.

To make this more concrete, consider the set of points generated by a rotation of a rigid object
in R2. This manifold can be modeled as a Lie (matrix) group called SO(2), which stands for special
orthogonal group of order 2. This rotation group is defined by all orthogonal matrices whose deter-
minant is 1. Rotations and translations in R2 can be represented by another Lie group called SE(2)
(special Euclidean group). Finally, problems like the Acrobot task are instances of kinematic chains,
which can be modeled by products of SE(2) matrices. These groups generalize correspondingly to
higher dimensions. Note that SE(n) groups are non-Abelian because rotations do not commute with
translations—the order matters! A detailed overview of Fourier analysis on non-Abelian groups
is given in Chirikjian and Kyatkin (2001), with an emphasis on rotation and motion groups use-
ful in robotics. An interesting direction for future work is to exploit such group representations to
construct compact PVFs.

2222

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

9.9 Proto-Value Functions for Semi-Markov Decision Processes

Proto-value functions provide a way of constructing function approximators for hierarchical rein-
forcement learning (Barto and Mahadevan, 2003), as well as form a theoretical foundation for some
recent attempts to automate the learning of task structure in hierarchical reinforcement learning, by
discovering “symmetries” or “bottlenecks” (McGovern, 2002; Ravindran and Barto, 2003; Mannor
et al., 2004; Şimşek et al., 2005). In particular, Şimşek et al. (2005) use the second eigenvector of the
discrete graph Laplacian operator I−D−1W to find bottlenecks in (undirected) state space graphs.
Ravindran and Barto (2003) explore the use of group homomorphisms on state action spaces to
abstract semi-MDPs, which can be combined with PVFs as a way of solving large SMDPs.

Another direction that we have begun exploring is to construct PVFs for temporally extended
actions, such as “exiting a room”. These temporally extended actions result in longer “distal” edges
connecting non-adjacent vertices (such as the vertices corresponding to interior states in a roomwith
those representing the “door” state). Our initial results reported in Osentoski and Mahadevan (2007)
suggest that constructing PVFs over state-action graphs using these distal edges can significantly
improve the performance over PVFs constructed over state graphs with only primitive actions.

9.10 Theoretical Analysis

Theoretical guarantees on the efficiency of proto-value functions in approximating value functions
are being investigated. Some results follow immediately from the construction of proto-value func-
tions. For example, it can be shown easily that the approximation produced by projecting a given
function on a graph on the subspace spanned by the smallest k proto-value functions produces glob-
ally the smoothest approximation taking the graph or manifold into account (Mahadevan and Mag-
gioni, 2006). There are also classical results on the efficiency of Fourier bases for approximating
smooth functions in a Sobolev space (Mallat, 1989), which can be carried over to the discrete case
of graphs. Belkin and Niyogi (2005) and Hein et al. (2007) study the sampling conditions under
which the various graph Laplacians converge to the Laplace-Beltrami operator on the underlying
manifold. For example, Hein et al. (2007) show that under non-uniform sampling conditions, the
random walk Laplacian converges to a weighted Laplace-Beltrami operator. These results need to
be combined with exploration techniques to investigate the conditions under which these sampling
conditions can be met in the context of MDPs. We are also currently exploring the stability of the
subspaces defined by proto-value functions using the tools of matrix perturbation theory (Stewart
and Sun, 1990; Sato, 1995), which quantifies the degree to which small perturbations of (positive
definite) matrices lead to bounded changes in the spectrum and eigenspace as well.

9.11 Transfer Across Tasks

Proto-value functions are learned not from rewards, but from the topology of the underlying state
space (in the “off-policy” case). Consequently, they suggest a solution to the well-known problem
of transfer in reinforcement learning (Mahadevan, 1992; Sherstov and Stone, 2005). One key ad-
vantage of proto-value functions is that they provide a theoretically principled approach to transfer,
which respects the underlying state (action) space manifold. We have recently begun to investigate
a framework called proto-transfer learning to explore the transfer of learned representations from
one task to another (in contrast to transferring learned policies) (Ferguson and Mahadevan, 2006).

2223

MAHADEVAN AND MAGGIONI

10. Summary

This paper describes a novel spectral framework for learning both representation and control in
Markov decision processes, where basis functions called proto-value functions are constructed by
diagonalization of a symmetric diffusion operator learned from samples collected during a random
walk of the underlying state space. Proto-value functions can be defined in several ways: this pa-
per focused principally on using the graph Laplacian on undirected graphs. Eigenfunctions of the
graph Laplacian provide geometrically customized basis functions that capture large-scale proper-
ties such as bottlenecks and symmetries. Projections of a value function onto the eigenfunctions
of the graph Laplacian provide the globally smoothest approximation that respects the underlying
graph or manifold. A general algorithmic framework called representation policy iteration (RPI)
was presented consisting of three components: sample collection, basis function construction, and
control learning. A specific instance of RPI was described that uses the least-squares policy itera-
tion (LSPI) method as the underlying control learner. Several directions for scaling the approach
were described, including Kronecker sum matrix factorization for large factored MDPs, and sparse
sampling combined with the Nystrom̈ interpolation method for continuous MDPs. Detailed experi-
mental results were provided using benchmark discrete and continuous MDPs, which evaluated the
effectiveness of the proto-value function approach, and compared their performance to handcoded
parametric function approximators, such as polynomials and radial basis functions. Many exten-
sions of the proposed framework are possible, and a few promising directions were elaborated.

Acknowledgments

We are indebted to the anonymous reviewers and the action editor for their detailed comments on
an earlier draft of this paper. The first author would like to thank members of the PVF group—
Kimberly Ferguson, Jeff Johns, Vimal Mathew, Sarah Osentoski, Marek Petrik, Ilya Scheidwasser,
Andrew Stout, and Chang Wang—for their valuable input. We are also grateful to Kimberly Fer-
guson, Jeff Johns, and Sarah Osentoski for carrying out some of the experiments. We would like
to thank Andrew Barto and other members of the Autonomous Learning Laboratory for their feed-
back. Support for this research was provided in part by the National Science Foundation under
grants IIS-0534999 and DMS-0650413.

References

D. Achlioptas, F. McSherry, and B. Scholkopff. Sampling techniques for kernel methods. In Pro-
ceedings of the 14th International Conference on Neural Information Processing Systems (NIPS),
pages 335–342. MIT Press, 2002.

S. Amarel. On representations of problems of reasoning about actions. In Donald Michie, editor,
Machine Intelligence 3, volume 3, pages 131–171. Elsevier/North-Holland, 1968.

J. Bagnell and J. Schneider. Covariant policy search. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 1019–1024, 2003.

A. Baker. Matrix Groups: An Introduction to Lie Group Theory. Springer, 2001.

C. Baker. The Numerical Treatment of Integral Equations. Oxford: Clarendon Press, 1977.

2224

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event
Systems Journal, 13:41–77, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold meth-
ods. In Proceedings of the International Conference on Computational Learning Theory (COLT),
pages 486–500, 2005.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning,
56:209–239, 2004.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399–
2434, 2006.

S. Belongie, C. Fowlkes, F. Chung, and J. Malik. Spectral partitioning with indefinite kernels using
the Nyström extension. In Proceedings of the 7th European Conference on Computer vision,
pages 531–542, 2002.

M. Ben-Chen and C. Gotsman. On the optimality of spectral compression of mesh data. ACM
Transactions on Graphics, 24(1), 2005.

A. Bernasconi. Mathematical Techniques for Analysis of Boolean Functions. PhD thesis, University
of Pisa, 1998.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont, Mas-
sachusetts, 1996.

L. Billera and P. Diaconis. A geometric interpretation of the Metropolis-Hasting algorithm. Statis-
tical Science, 16:335–339, 2001.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence Research, 11:1–94, 1999.

J. A. Boyan. Least-squares temporal difference learning. In Proceedings of the 16th International
Conference on Machine Learning, pages 49–56. Morgan Kaufmann, San Francisco, CA, 1999.

S. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning. Machine
Learning, 22:33–57, 1996.

J. Bremer, R. Coifman, M.Maggioni, and A. Szlam. Diffusion wavelet packets. Applied and Com-
putational Harmonic Analysis, 21(1):95–112, July 2006.

G. Chirikjian and A. Kyatkin. Engineering Applications of Noncommutative Harmonic Analysis.
CRC Press, 2001.

T. Chow. The Q-spectrum and spanning trees of tensor products of bipartite graphs. Proceedings of
the American Mathematical Society, 125(11):3155–3161, 1997.

F. Chung. Spectral Graph Theory. Number 92 in CBMS Regional Conference Series in Mathemat-
ics. American Mathematical Society, 1997.

2225

MAHADEVAN AND MAGGIONI

F Chung. Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9
(1):1–19, April 2005.

F. Chung and S. Sternberg. Laplacian and vibrational spectra for homogeneous graphs. Journal of
Graph Theory, 16(6):605–627, 1992.

R. Coifman and M. Maggioni. Diffusion wavelets. Applied and Computational Harmonic Analysis,
21(1):53–94, July 2006.

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker. Geometric
diffusions as a tool for harmonic analysis and structure definition of data. part i: Diffusion maps.
Proceedings of National Academy of Science., 102(21):7426–7431, May 2005a.

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, Frederick Warner, and Steven Zucker.
Geometric diffusions as a tool for harmonic analysis and structure definition of data. part ii:
Multiscale methods. Proceedings of the National Academy of Science, 102(21):7432–7437, May
2005b.

R. Coifman, M. Maggioni, S. Zucker, and I. Kevrekidis. Geometric diffusions for the analysis of
data from sensor networks. Curr Opin Neurobiol, 15(5):576–84, October 2005c.

D. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application. Academic
Press, 1980.

D. Cvetkovic, P. Rowlinson, and S. Simic. Eigenspaces of Graphs. Cambridge University Press,
1997.

P. Dayan. Improving generalisation for temporal difference learning: The successor representation.
Neural Computation, 5:613–624, 1993.

D. de Farias. The linear programming approach to approximate dynamic programming. In Learning
and Approximate Dynamic Programming: Scaling up to the Real World. John Wiley and Sons,
2003.

F. Deutsch. Best Approximation In Inner Product Spaces. Canadian Mathematical Society, 2001.

T. Dietterich and X. Wang. Batch value function approximation using support vectors. In Proceed-
ings of Neural Information Processing Systems. MIT Press, 2002.

P Drineas and M W Mahoney. On the Nyström method for approximating a Gram matrix for
improved kernel-based learning. J. Machine Learning Research, 6:2153–2175, 2005.

C. Drummond. Accelerating reinforcement learning by composing solutions of automatically iden-
tified subtasks. Journal of AI Research, 16:59–104, 2002.

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach to tempo-
ral difference learning. In Proceedings of the 20th International Conference on Machine Learn-
ing, pages 154–161. AAAI Press, 2003.

2226

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

K. Ferguson and S. Mahadevan. Proto-transfer learning in Markov decision processes using spec-
tral methods. In International Conference on Machine Learning (ICML) Workshop on Transfer
Learning, 2006.

D. Foster and P. Dayan. Structure in the space of value functions. Machine Learning, 49:325–346,
2002.

A Frieze, R Kannan, and S Vempala. Fast Monte Carlo algorithms for finding low-rank approxima-
tions. In Proceedings of the 39th annual IEEE symposium on foundations of computer science,
pages 370–378, 1998.

G. Gordon. Stable function approximation in dynamic programming. Technical Report CMU-CS-
95-103, Department of Computer Science, Carnegie Mellon University, 1995.

A. Graham. Kronecker Products and Matrix Calculations: With Applications. Ellis Horwood, 1981.

C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored Markov decision processes.
In Proceedings of the 15th IJCAI, 2001.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for factored
MDPs. Journal of AI Research, 19:399–468, 2003.

D. Gurarie. Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representa-
tions and Laplacians. North-Holland, 1992.

M. Hein, J. Audibert, and U. von Luxburg. Graph Laplacians and their convergence on random
neighborhood graphs. Journal of Machine Learning Research, 8:1325–1368, 2007.

J. Jackson. The Harmonic Sieve: A Novel Application of Fourier Analysis to Machine Learning
Theory and Practice. PhD thesis, Carnegie-Mellon University, 1995.

J. Johns and S. Mahadevan. Constructing basis functions from directed graphs for value function
approximation. In Proceedings of the International Conference on Machine Learning (ICML),
pages 385–392. ACM Press, 2007.

J. Johns, S. Mahadevan, and C. Wang. Compact spectral bases for value function approximation us-
ing Kronecker factorization. In Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2007.

P. Jones, M.Maggioni, and R. Schul. Universal parametrizations via eigenfunctions of the Laplacian
and heat kernels. Submitted, 2007.

S. Kakade. A Natural Policy Gradient. In Proceedings of Neural Information Processing Systems.
MIT Press, 2002.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal of Scientific Computing, 20(1):359–392, 1999.

P. Keller, S. Mannor, and D Precup. Automatic basis function construction for approximate dynamic
programming and reinforcement learning. In Proceedings of the 22nd International Conference
on Machine Learning (ICML), pages 449–456. MIT Press, 2006.

2227

MAHADEVAN AND MAGGIONI

D. Koller and R. Parr. Policy iteration for factored MDPs. In Proceedings of the 16th Conference
on Uncertainty in AI, pages 326–334, 2000.

R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In Proceed-
ings of the 19th International Conference on Machine Learning, pages 315–322, 2002.

R. Kondor and R. Vert. Diffusion kernels. In Kernel Methods in Computational Biology. MIT Press,
2004.

R. Kretchmar and C. Anderson. Using temporal neighborhoods to adapt function approximators
in reinforcement learning. In International Work Conference on Artificial and Natural Neural
Networks, pages 488–496, 1999.

S. Kveton and M. Hauskrecht. Learning basis functions in hybrid domains. In Proceedings of the
Twentieth National Conference on Artificial Intelligence, 2006.

J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine Learning
Research, 6:129–163, 2005.

S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, Dept of Mathe-
matics & Applied Mathematics, 2004.

M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Research,
4:1107–1149, 2003.

J. C. Latombe. Robot Motion Planning. Kluwer Academic Press, 1991.

S. Lavalle. Planning Algorithms. Cambridge University Press, 2006.

J. M. Lee. Introduction to Smooth Manifolds. Springer, 2003.

M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale analysis of Markov
Diffusion Processes. In Proceedings of the 23rd international conference on Machine learning,
pages 601–608, New York, NY, USA, 2006. ACM Press.

S. Mahadevan. Proto-Value Functions: Developmental Reinforcement Learning. In Proceedings of
the International Conference on Machine Learning, pages 553–560, 2005a.

S. Mahadevan. Enhancing transfer in reinforcement learning by building stochastic models of robot
actions. In Proceedings of the Ninth International Conference on Machine Learning, Aberdeen,
Scotland, pages 290–299, 1992.

S. Mahadevan. Representation policy iteration. In Proceedings of the 21th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-05), pages 372–37. AUAI Press, 2005b.

S. Mahadevan and M. Maggioni. Value function approximation with Diffusion Wavelets and Lapla-
cian Eigenfunctions. In Proceedings of the Neural Information Processing Systems (NIPS). MIT
Press, 2006.

S. Mahadevan, M. Maggioni, K. Ferguson, and S. Osentoski. Learning representation and control in
continuous markov decision processes. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2006.

2228

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

S. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE
Trans. Pattern Anal. Mach. Intell., 11(7):674–693, 1989. ISSN 0162-8828.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement learning via
clustering. In International Conference on Machine Learning, 2004.

A. McGovern. Autonomous Discovery of Temporal Abstractions from Interactions with an Environ-
ment. PhD thesis, University of Massachusetts, Amherst, 2002.

N. Menache, N. Shimkin, and S. Mannor. Basis function adaptation in temporal difference rein-
forcement learning. Annals of Operations Research, 134:215–238, 2005.

R. Munos. Error bounds for approximate value iteration. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), pages 1006–1011, 2005.

R. Munos. Error bounds for approximate policy iteration. In Proceedings of the International
Conference on Machine Learning (ICML), pages 560–567, 2003.

A. Nedic and D. Bertsekas. Least-squares policy evaluation algorithms with linear function approx-
imation. Discrete Event Systems Journal, 13, 2003.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2002.

P. Niyogi, I. Matveeva, and M. Belkin. Regression and regularization on large graphs. Technical
report, University of Chicago, Nov. 2003.

D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine Learning, 49(2-3):161–
178, 2002.

S. Osentoski and S. Mahadevan. Learning State Action Basis Functions for Hierarchical Markov
Decison Processes. In Proceedings of the International Conference on Machine Learning
(ICML), pages 705–712, 2007.

R. Parr, C. Painter-Wakefiled, L. Li, and M. Littman. Analyzing feature generation for value
function approximation. In Proceedings of the International Conference on Machine Learning
(ICML), pages 737–744, 2007.

R. Patrascu, P. Poupart, D. Schuurmans, C. Boutilier, and C. Guestrin. Greedy Linear Value Func-
tion Approximation for Factored Markov Decision Processes. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), pages 285–291, 2002.

J. Peters, S. Vijaykumar, and S. Schaal. Reinforcement learning for humanoid robots. In Proceed-
ings of the Third IEEE-RAS International Conference on Humanoid Robots, 2003.

M. Petrik. An analysis of Laplacian methods for value function approximation in MDPs. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 2574–
2579, 2007.

P. Poupart and C. Boutilier. Value directed compression of POMDPs. In Proceedings of the Inter-
national Conference on Neural Information Processing Systems (NIPS), 2003.

2229

MAHADEVAN AND MAGGIONI

M. L. Puterman. Markov Decision Processes. Wiley Interscience, New York, USA, 1994.

C. Rasmussen and M. Kuss. Gaussian Processes in Reinforcement Learning. In Proceedings of the
International Conference on Neural Information Processing Systems, pages 751–759. MIT Press,
2004.

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

B. Ravindran and A. Barto. SMDP homomorphisms: An algebraic approach to abstraction in
Semi-Markov Decision Processes. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence, 2003.

S Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, 1997.

S. Roweis and L. Saul. Nonlinear dimensionality reduction by local linear embedding. Science,
290:2323–2326, 2000.

B. Sallans and G. Hinton. Reinforcement learning with factored states and actions. Journal of
Machine Learning Research, 5:1063–1088, 2004.

T. Sato. Perturbation Theory for Linear Operators. Springer, 1995.

B. Scholkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2001.

A. Sherstov and P. Stone. Improving action selection in Markov Decision Processes via knowledge
transfer. In Proceedings of the Twentieth National Conference on Artificial Intelligence, 2005.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE PAMI, 22:888–905, 2000.

O. Şimşek, A. Wolfe, and A. Barto. Identifying useful subgoals in reinforcement learning by local
graph partitioning. In Proceedings of the Twenty-Second International Conference on Machine
Learning, pages 816–823, 2005.

G. Stewart and J. Sun. Matrix Perturbation Theory. Academic Press, 1990.

D. Subramanian. A Theory of Justified Reformulations. Ph.D. Thesis, Stanford University, 1989.

M. Sugiyama, H. Hachiya, C. Towell, and S. Vijaykumar. Value function approximation on non-
linear manifolds for robot motor control. In Proceedings of the IEEE Conference on Robots and
Automation (ICRA), 2007.

R. Sutton and A. G. Barto. An Introduction to Reinforcement Learning. MIT Press, 1998.

A. Szlam, M. Maggioni, and R. Coifman. A general framework for adaptive regularization based
on diffusion processes on graphs. Technical Report YALE/DCS/TR1365, Yale Univ, July 2006.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290:2319–2323, 2000.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–278, 1992.

2230

LEARNING REPRESENTATION AND CONTROL IN MARKOV DECISION PROCESSES

M. Thornton, R. Drechsler, and D. Miller. Spectral Methods for VLSI Design. Kluwer Academic,
2001.

J. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxima-
tion. IEEE Transactions on Automatic Control, 42:674–690, 1997.

P. Utgoff and D. Stracuzzi. Many-layered learning. Neural Computation, 14:2497–2529, 2002.

C. Van Loan and N. Pitsianis. Approximation with Kronecker products. In Linear Algebra for Large
Scale and Real Time Applications, pages 293–314. Kluwer Publications, 1993.

B. Van Roy. Learning and Value Function Approximation in Complex Decision Processes. PhD
thesis, MIT, 1998.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, England,
1989.

C.Williams andM. Seeger. Using the Nyströmmethod to speed up kernel machines. In Proceedings
of the International Conference on Neural Information Processing Systems, pages 682–688, 2000.

2231

Journal of Machine Learning Research 8 (2007) 2233-2264 Submitted 9/06; Revised 9/07; Published 10/07

Online Learning of Multiple Tasks with a Shared Loss

Ofer Dekel OFERD@CS.HUJI.AC.IL
School of Computer Science and Engineering
The Hebrew University
Jerusalem, 91904, Israel

Philip M. Long PLONG@GOOGLE.COM
Yoram Singer SINGER@GOOGLE.COM
Google Inc.
1600 Amphitheater Parkway
Mountain View, CA 94043, USA

Editor: Peter Bartlett

Abstract
We study the problem of learning multiple tasks in parallel within the online learning framework.
On each online round, the algorithm receives an instance for each of the parallel tasks and responds
by predicting the label of each instance. We consider the case where the predictions made on each
round all contribute toward a common goal. The relationship between the various tasks is defined
by a global loss function, which evaluates the overall quality of the multiple predictions made on
each round. Specifically, each individual prediction is associated with its own loss value, and then
these multiple loss values are combined into a single number using the global loss function. We
focus on the case where the global loss function belongs to the family of absolute norms, and
present several online learning algorithms for the induced problem. We prove worst-case relative
loss bounds for all of our algorithms, and demonstrate the effectiveness of our approach on a large-
scale multiclass-multilabel text categorization problem.
Keywords: online learning, multitask learning, multiclass multilabel classiifcation, perceptron

1. Introduction

Multitask learning is the problem of learning several related problems in parallel. In this paper, we
discuss the multitask learning problem in the online learning context, and focus on the possibility
that the learning tasks contribute toward a common goal. Our hope is that we can benefit from
learning the tasks jointly, as opposed to learning each task independently.

For concreteness, we focus on the task of binary classification, and note that our algorithms
and analysis can be adapted to regression and multiclass problems using ideas in Crammer et al.
(2006). In the online multitask classification setting, we are faced with k separate online binary
classification problems, which are presented to us in parallel. The online learning process takes
place in a sequence of rounds. At the beginning of round t, the algorithm observes a set of k
instances, one for each of the binary classification problems. The algorithm predicts the binary label
of each of the k instances, and then receives the k correct labels. At this point, each of the algorithm’s
predictions is associated with a non-negative loss, and we use !t = (!t,1, . . . , !t,k) to denote the k-
coordinate vector whose elements are the individual loss values associated with the respective tasks.
Let L : Rk → R+ be a predetermined global loss function, which is used to combine the individual

c©2007 Ofer Dekel, Philip M. Long and Yoram Singer.

DEKEL, LONG AND SINGER

loss values into a single number, and define the global loss attained on round t to be L(!t). At
the end of this online round, the algorithm may use the k new labeled examples it has obtained to
improve its prediction mechanism for the rounds to come. The goal of the learning algorithm is to
suffer the smallest possible cumulative loss over the course of T rounds, ∑T

t=1L(!t).
The choice of the global loss function captures the overall consequences of the individual pre-

diction errors, and therefore how the algorithm should prioritize correcting errors. For example, if
L(!t) is defined to be ∑k

j=1 !t, j then the online algorithm is penalized equally for errors on each
of the tasks; this results in effectively treating the tasks independently. On the other hand, if
L(!t) = max j !t, j then the algorithm is only interested in the worst mistake made on each round.
We do not assume that the data sets of the various tasks are similar or otherwise related. Moreover,
the examples presented to the algorithm for each of the tasks may come from completely different
domains and may possess different characteristics. The multiple tasks are tied together by the way
we define the objective of our algorithm.

In this paper, we focus on the case where the global loss function is an absolute norm. A norm
‖ ·‖ is a function such that ‖v‖> 0 for all v #= 0, ‖0‖= 0, ‖λv‖= |λ|‖v‖ for all v and all λ ∈ R, and
which satisfies the triangle inequality. A norm is said to be absolute if ‖v‖ = ‖|v|‖ for all v, where
|v| is obtained by replacing each component of v with its absolute value. The most well-known
family of absolute norms is the family of p-norms (also called Lp norms), defined for all p≥ 1 by

‖v‖p =
(n

∑
j=1

|v j|p
)
1/p .

A special member of this family is the L∞ norm, which is defined to be the limit of the above when
p tends to infinity, and can be shown to equal max j |v j|. A less known family of absolute norms is
the family of r-max norms. For any integer r between 1 and k, the r-max norm of v ∈ Rk is the sum
of the absolute values of the r absolutely largest components of v. Formally, the r-max norm is

‖v‖r-max =
r

∑
j=1

|vπ(j)| where |vπ(1)| ≥ |vπ(2)| ≥ . . . ≥ |vπ(k)| . (1)

Note that both the L1 norm and L∞ norm are special cases of the r-max norm, as well as being
p-norms. Actually, the r-max norm can be viewed as a smooth interpolation between the L1 norm
and the L∞ norm, using Peetre’s K-method of norm interpolation (see Appendix A for details).

Since the global loss functions we consider in this paper are norms, the global loss equals zero
only if !t is itself the zero vector. Furthermore, decreasing any individual loss can only decrease
the global loss function. Therefore, the simplest solution to our multitask problem is to learn each
task individually, and minimize the global loss function implicitly. The natural question which is at
the heart of this paper is whether we can do better than this. Our answer to this question is based
on the following fundamental view of online learning. On every round, the online learning algo-
rithm balances a trade-off between retaining the information it has acquired on previous rounds and
modifying its hypothesis based on the new examples obtained on that round. Instead of balancing
this trade-off individually for each of the learning tasks, we can balance it jointly, for all of the
tasks. By doing so, we allow ourselves to make a big modification to one of the k hypotheses at the
expense of the others. This additional flexibility enables us to directly minimize the specific global
loss function we have chosen to use.

To motivate and demonstrate the practicality of our approach, we begin with a handful of con-
crete examples.

2234

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Multiclass Classification using the L∞ Norm Assume that we are faced with a multiclass classi-
fication problem, where the size of the label set is k. One way of solving this problem is by learning
k binary classifiers, where each classifier is trained to distinguish between one of the classes and
the rest of the classes. This approach is often called the one-vs-rest method. If all of the binary
classifiers make correct predictions, then one of these predictions should be positive and the rest
should be negative. If this is the case, we can correctly predict the corresponding multiclass label.
However, if one or more of the binary classifiers makes an incorrect prediction, we can no longer
guarantee the correctness of our multiclass prediction. In this sense, a single binary mistake on
round t is as bad as many binary mistakes on round t. Therefore, we should only care about the
worst binary prediction on round t, and we can do so by choosing the global loss to be ‖!t‖∞.

Another example where the L∞ norm comes in handy is the case where we are faced with a
multiclass problem where the number of labels is huge. Specifically, we would like the running
time and the space complexity of our algorithm to scale logarithmically with the number of labels.
Assume that the number of different labels is 2k, enumerate these labels from 0 to 2k − 1, and
consider the k-bit binary representation of each label. We can solve the multiclass problem by
training k binary classifiers, one for each bit in the binary representation of the label index. If all k
classifiers make correct predictions, then we have obtained the binary representation of the correct
multiclass label. As before, a single binary mistake is devastating to the multiclass classifier, and
the L∞ norm is the most appropriate means of combining the k individual losses into a global loss.

Vector-Valued Regression using the L2 Norm Let us deviate momentarily from the binary clas-
sification setting, and assume that we are faced with multiple regression problems. Specifically,
assume that our task is to predict the three-dimensional position of an object. Each of the three co-
ordinates is predicted using an individual regressor, and the regression loss for each task is simply
the absolute difference between the true and the predicted value on the respective axis. In this case,
the most appropriate choice of the global loss function is the L2 norm, which reduces the vector of
individual losses to the Euclidean distance between the true and predicted 3-D targets. (Note that
we take the actual Euclidean distance and not the squared Euclidean distance often minimized in
regression settings).

Error Correcting Output Codes and the r-max Norm Error Correcting Output Codes (ECOC)
is a technique for reducing a multiclass classification problem to multiple binary classification prob-
lems (Dietterich and Bakiri, 1995). The power of this technique lies in the fact that a correct mul-
ticlass prediction can be made even when a few of the binary predictions are wrong. The reduction
is represented by a code matrix M ∈ {−1,+1}s×k, where s is the number of multiclass labels and
k is the number of binary problems used to encode the original multiclass problem. Each row in M
represents one of the s multiclass labels, and each column induces one of the k binary classification
problems. Given a multiclass training set {(xi,yi)}mi=1, with labels yi ∈ {1, . . . ,s}, the binary prob-
lem induced by column j is to distinguish between the positive examples {(xi,yi :Myi, j = +1} and
negative examples {(xi,yi : Myi, j = −1}. When a new instance is observed, applying the k binary
classifiers to it gives a vector of binary predictions, ŷ = (ŷ1, . . . , ŷk) ∈ {−1,+1}k. We then predict
the multiclass label of this instance to be the index of the row inM which is closest to ŷ in Hamming
distance.

Define the code distance ofM, denoted by d(M), to be the minimal Hamming distance between
any two rows in M. It is straightforward to show that a correct multiclass prediction can be guaran-
teed as long as the number of binary mistakes made on this instance is less than d(M)/2. In other

2235

DEKEL, LONG AND SINGER

words, making d(M)/2 binary mistakes is as bad as making more binary mistakes. Let r= d(M)/2.
If the binary classifiers are trained in the online multitask setting, we should only be interested in
whether the r’th largest loss is less than 1, which would imply that a correct multiclass prediction
can be guaranteed. Regretfully, taking the r’th largest element of a vector (in absolute value) does
not constitute a norm and thus does not fit in our setting. However, the r-max norm, defined in
Equation (1), can serve as a good proxy.

In this paper, we present three families of online multitask algorithms. Each family includes
algorithms for every absolute norm. All of the algorithms presented in this paper follow the gen-
eral skeleton outlined in Figure 1. Specifically, all of our algorithms use linear threshold functions
as hypotheses and an additive update rule. The first two families are multitask extensions of the
Perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962), while the third family is closely related
to the Passive-Aggressive classification algorithm (Crammer et al., 2006). Incidentally, all of the
algorithms presented in this paper can be easily transformed into kernel methods. For each algo-
rithm, we prove a relative loss bound, namely, we show that the cumulative global loss attained by
the algorithm is comparable to the cumulative loss attained by any fixed set of k linear hypotheses,
even defined in hindsight.

Much previous work on theoretical and applied multitask learning has focused on how to take
advantage of similarities between the various tasks (Caruana, 1997; Heskes, 1998; Evgeniou et al.,
2005; Baxter, 2000; Ben-David and Schuller, 2003; Tsochantaridis et al., 2004); in contrast, we
do not assume that the tasks are in any way related. Instead, we consider how to take account of
shared consequences of errors. Kivinen and Warmuth (2001) generalized the notion of matching
loss (Helmbold et al., 1999) to multi-dimensional outputs. Their construction enables analysis of
algorithms that perform multi-dimensional regression by composing linear functions with a variety
of transfer functions. It is not obvious how to directly use their work to address the problems that
fall into our setting. An analysis of the L∞ norm of prediction errors is implicit in some past work of
Crammer and Singer (2001, 2003). The algorithms presented in Crammer and Singer (2001, 2003)
were devised for multiclass categorization with multiple predictors (one per class) and a single
instance. The present paper extends the multiclass prediction setting to a broader framework, and
tightens the analysis. In contrast to the multiclass prediction setting, the prediction tasks in our
setting are tied solely through a globally shared loss. When k, the number of multiple tasks, is set
to 1, two of the algorithms presented in this paper as well as the multiclass algorithms in Crammer
and Singer (2001, 2003) reduce to the PA-I algorithm, presented in Crammer et al. (2006). Last, we
would like to mention in passing that a few learning algorithms for ranking problems decompose the
ranking problem into a preference learning task over pairs of instances (see for instance Herbrich
et al., 2000; Chapelle and Harchaoui, 2005). The ranking losses employed by such algorithms are
typically defined as the sum over pair-based losses. Our setting generalizes such approaches for
ranking learning by employing a shared loss which is defined through a norm over the individual
pair-based losses.

This paper is organized as follows. In Section 2 we present our problem more formally and
prove a key lemma which facilitates the analysis of our algorithms. In Section 3 we present our
first family of algorithms, which works in the finite-horizon online setting. In Section 4 we extend
the first family of algorithms to the infinite-horizon online setting. Then, in Section 5 we present
our third family of algorithms, and show that it shares the analyses of both previous families. The
third family of algorithms requires solving a small optimization problem on each online round, and
is therefore called the implicit update family of algorithms. In Section 6 and Section 7 we describe

2236

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

input: norm ‖ · ‖

initialize: w1,1 = . . . = w1,k = (0, . . . ,0)

for t = 1,2, . . .

• receive xt,1, . . . ,xt,k
• predict sign(wt, j ·xt, j) [1≤ j ≤ k]

• receive yt,1, . . . ,yt,k
• calculate !t, j =

[
1− yt, jwt, j ·xt, j

]
+ [1≤ j ≤ k]

• suffer loss !t = ‖(!t,1, . . . , !t,n)‖

• update wt+1, j = wt, j + τt, jyt, jxt, j [1≤ j ≤ k]

Figure 1: A general skeleton for an online multitask classification algorithm. A concrete algorithm
is obtained by specifying the values of τt, j.

efficient algorithms for solving the implicit update in the case where the global loss is defined by
the L2 norm or the r-max norm. Experimental results are provided in Section 8 and we conclude the
paper in Section 9 with a short discussion.

2. Online Multitask Learning with Additive Updates

We begin by presenting the online multitask classification setting more formally. We are presented
with k online binary classification problems in parallel. The instances of each task are drawn from
separate instance domains, and for concreteness we assume that the instances of task j are all vectors
in Rn j . As stated in the previous section, online learning is performed in a sequence of rounds.
On round t, the algorithm observes k instances, (xt,1, . . . ,xt,k) ∈ Rn1 × . . .×Rnk . The algorithm
maintains k separate classifiers in its internal memory, one for each of the multiple tasks, which are
updated from round to round. Each of these classifiers is a margin-based linear predictor, defined
by a weight vector. We denote the weight vector used on round t to define the j’th predictor by wt, j
and note that wt, j ∈Rn j . The algorithm uses its classifiers to make k binary predictions, ŷt,1, . . . , ŷt,k,
where ŷt, j = sign(wt, j · xt, j). After making these predictions, the correct labels of the respective
tasks, yt,1, . . . ,yt,k, are revealed and each one of the predictions is evaluated. In this paper we focus
on the hinge-loss function as the means of penalizing incorrect predictions. Formally, the loss
associated with the j’th task is defined to be

!t, j =
[
1− yt, jwt, j ·xt, j

]
+ ,

where [a]+ = max{0,a}. As previously stated, the global loss is then defined to be ‖!t‖, where
‖ · ‖ is a predefined absolute norm. Finally, the algorithm applies an update to each of the online
hypotheses, and defines the vectors wt+1,1, . . . ,wt+1,k. All of the algorithms presented in this paper
use an additive update rule, and define wt+1, j to be wt, j + τt, jyt, jxt, j, where τt, j is a scalar. The
algorithms only differ from one another in the specific way in which τt, j is set. For convenience, we

2237

DEKEL, LONG AND SINGER

denote τt = (τt,1, . . . ,τt,k). The general skeleton followed by all of our online algorithms is given in
Figure 1.

A concept of key importance in this paper is the notion of dual norms (Horn and Johnson, 1985).
Any norm ‖ · ‖ defined on Rn, has a dual norm, also defined on Rn, denoted by ‖ · ‖∗ and given by

‖u‖∗ = max
v∈Rn

u ·v
‖v‖ = max

v∈Rn :‖v‖=1
u ·v . (2)

The dual of a p-norm is itself a p-norm, and specifically, the dual of ‖ ·‖p is ‖ ·‖q, where 1q + 1
p = 1.

The dual of ‖ · ‖∞ is ‖ · ‖1 and vice versa. In Appendix A we prove that the dual of ‖v‖r-max is

‖u‖∗r-max = max
{
‖u‖∞,

‖u‖1
r

}
. (3)

An important property of dual norms, which is an immediate consequence of Equation (2), is that
for any u,v ∈ Rn it holds that

u ·v ≤ ‖u‖∗ ‖v‖ . (4)

If ‖ · ‖ is a p-norm then the above is known as Hölder’s inequality, and specifically, if p = 2 it is
called the Cauchy-Schwartz inequality. Two additional properties which we rely on are that the dual
of the dual norm is the original norm (see for instance Horn and Johnson, 1985), and that the dual
of an absolute norm is also an absolute norm. As previously mentioned, to obtain concrete online
algorithms, all that remains is to define the update weights τt, j for each task on each round. The
different ways of setting τt, j discussed in this paper all share the following properties:

• boundedness: ∀ 1≤ t ≤ T ‖τt‖∗ ≤C for some predefined parameterC

• non-negativity: ∀ 1≤ t ≤ T, 1≤ j ≤ k τt, j ≥ 0

• conservativeness: ∀ 1≤ t ≤ T, 1≤ j ≤ k (!t, j = 0) ⇒ (τt, j = 0)

Even before specifying the exact value of τt, j, we can state and prove a powerful lemma which is
the crux of our analysis. This lemma will motivate and justify our specific choices of τt, j throughout
this paper.

Lemma 1 Let {(xt, j,yt, j)}1≤ j≤k
1≤t≤T be a sequence of T k-tuples of examples, where each xt, j ∈ Rn j ,

and each yt, j ∈ {−1,+1}. Let w!
1, . . . ,w!

k be arbitrary vectors where w!
j ∈ Rn j , and define the hinge

loss attained by w!
j on example (xt, j,yt, j) to be !!

t, j =
[
1− yt, jw!

j · xt, j
]
+. Let ‖ · ‖ be an arbitrary

norm and let ‖ · ‖∗ denote its dual. Assume we apply an algorithm of the form outlined in Figure 1
to this sequence of examples, where the update weights satisfy the boundedness, non-negativity and
conservativeness requirements. Then, for any C > 0 it holds that

T

∑
t=1

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
≤

k

∑
j=1

‖w!
j‖22 + 2C

T

∑
t=1

‖!!
t‖ .

Under the assumptions of this lemma, our algorithm competes with a set of fixed linear classifiers,
w!
1, . . . ,w!

k , which may even be defined in hindsight, after observing all of the inputs and their labels.
The right-hand side of the bound is the sum of two terms, a complexity term ∑k

j=1 ‖w!
j‖22 and a term

2238

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

which is proportional to the cumulative loss of our competitor, ∑T
t=1 ‖!!

t‖. The left hand side of the
bound is the term

T

∑
t=1

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
. (5)

This term plays a key role in the derivation of all three families of algorithms presented in the sequel.
Each choice of the update weights τt, j enables us to prove a different lower bound on Equation (5).
Comparing this lower bound with the upper bound in Lemma 1 gives us a loss bound for the respec-
tive algorithm. The proof of Lemma 1 is given below.

Proof Define Δt, j = ‖wt, j−w!
j‖22−‖wt+1, j−w!

j‖22. We prove the lemma by bounding∑T
t=1∑

k
j=1Δt, j

from above and from below. Beginning with the upper bound, we note that for each 1 ≤ j ≤ k,
∑T
t=1Δt, j is a telescopic sum which collapses to

T

∑
t=1

Δt, j = ‖w1, j−w!‖22−‖wT+1, j−w!‖22 .

Using the facts that w1, j = (0, . . . ,0) and ‖wT+1, j−w!‖22 ≥ 0 for all 1≤ j ≤ k, we conclude that
T

∑
t=1

k

∑
j=1

Δt, j ≤
k

∑
j=1

‖w!
j‖22 . (6)

Turning to the lower bound, we note that we can consider only non-zero summands which actually
contribute to the sum, namely Δt, j #= 0. Plugging the definition of wt+1, j into Δt, j, we get

Δt, j = ‖wt, j−w!
j‖22−‖wt, j + τt, jyt, jxt, j−w!

j‖22
= τt, j

(
−2yt, jwt, j ·xt, j− τt, j‖xt, j‖22+2yt, jw!

j ·xt, j
)

= τt, j
(
2(1− yt, jwt, j ·xt, j)− τt, j‖xt, j‖22−2(1− yt, jw!

j ·xt, j)
)

. (7)

Since our update is conservative, Δt, j #= 0 implies that !t, j = 1− yt, jwt, j ·xt, j. By definition, it also
holds that !!

t, j ≥ 1− yt, jw!
j · xt, j. Plugging these two facts into Equation (7) and using the fact that

τt, j is non-negative gives

Δt, j ≥ τt, j
(
2!t, j− τt, j‖xt, j‖22−2!!

t, j
)

.

Summing the above over 1≤ j ≤ k gives
k

∑
j=1

Δt, j ≥
k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
−2

k

∑
j=1

τt, j!
!
t, j . (8)

Using Equation (4) we know that ∑k
j=1 τt, j!

!
t, j ≤ ‖τt‖∗‖!!

t‖. From our assumption that ‖τt‖∗ ≤C, we
have that ∑k

j=1 τt, j!
!
t, j ≤C‖!!

t‖. Plugging this inequality into Equation (8) gives

k

∑
j=1

Δt, j ≥
k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
−2C‖!!

t‖ .

We conclude the proof by summing the above over 1≤ t ≤ T and comparing the result to the upper
bound in Equation (6).

2239

DEKEL, LONG AND SINGER

3. The Finite-Horizon Multitask Perceptron

In this section, we present our first family of online multitask classification algorithms, and prove a
relative loss bound for the members of this family. This family includes algorithms for any global
loss function defined through an absolute norm. These algorithms are finite-horizon online algo-
rithms, meaning that the number of online rounds, T , is known in advance and is given as a param-
eter to the algorithm. An analogous family of infinite-horizon algorithms is the topic of the next
section.

As previously noted, the Finite-Horizon Multitask Perceptron follows the general skeleton out-
lined in Figure 1. Given an absolute norm ‖ · ‖ and its dual ‖ · ‖∗, the multitask Perceptron sets τt, j
in Figure 1 to

τt = argmax
τ:‖τ‖∗≤C

τ· !t , (9)

whereC> 0 is a constant which is specified later in this section. There may exist multiple solutions
to the maximization problem above and at least one of these solutions induces a conservative update.
In other words, we may assume that the solution to Equation (9) is such that τt, j = 0 at every
coordinate j where !t, j = 0. To see that such a solution exists, take an arbitrary optimal solution τ
and let τ̂be defined by

τ̂ j =
{

τ j if !t, j #= 0
0 if !t, j = 0.

Clearly, τ· !t = τ̂· !t , whereas ‖τ̂‖∗ ≤ ‖τ‖∗ ≤ C. If the optimization problem in Equation (9) has
multiple solutions that induce conservative updates, assume that one is chosen arbitrarily.

An equivalent way of defining the solution to Equation (9) is by satisfying the equality τt · !t =
C‖!t‖. To see this equivalence, note that the dual of ‖ · ‖∗ is defined by Equation (2) to be

‖!‖∗∗ = max
τ:‖τ‖∗≤1

τ· ! .

However, since ‖ · ‖∗∗ is equivalent to ‖ · ‖ (see for instance Theorem 5.5.14 in Horn and Johnson,
1985), we get

‖!‖ = max
τ:‖τ‖∗≤1

τ· ! .

Using the linearity of ‖ · ‖∗, we conclude that ‖τ/C‖∗ = ‖τ‖∗/C for any C > 0, and therefore the
above becomes

C‖!‖ = max
τ:‖τ‖∗≤C

τ· ! .

We conclude that
τt · !t = C‖!t‖ (10)

holds if and only if τt is a maximizer of Equation (9).
When the global loss function is a p-norm, the following definition of τt solves Equation (9):

τt, j =
C! p−1t, j

‖!t‖p−1p
. (11)

When the global loss function is an r-max norm and π is a permutation such that !t,π(1) ≥ . . .≥ !t,π(k),
the following definition of τt is a solution to Equation (9):

τt, j =
{
C if !t, j > 0 and j ∈ {π(1), . . . ,π(r)}
0 otherwise. (12)

2240

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

1 1 6√2
√
2

L1 norm L2 norm L3 norm L∞ norm

Figure 2: The remoteness of a norm is the longest Euclidean length of any vector contained in the
norm’s unit ball. The longest vector in each of the two-dimensional unit balls above is
depicted with an arrow.

Note that when r= k, the r-max norm reduces to the L1 norm and the above becomes the well-known
update rule of the Perceptron algorithm (Rosenblatt, 1958; Novikoff, 1962). The correctness of the
definitions in Equation (11) and Equation (12) can be easily verified by observing that ‖τt‖∗ ≤ C
and that τt · !t =C‖!t‖ in both cases.

Before proving a loss bound for the multitask Perceptron, we must introduce another important
quantity. This quantity is the remoteness of a norm ‖ · ‖ defined on Rk, and is defined to be

ρ(‖ · ‖,k) = max
u∈Rk

‖u‖2
‖u‖ = max

u∈Rk:‖u‖≤1
‖u‖2 . (13)

Geometrically, the remoteness of ‖ ·‖ is simply the Euclidean length of the longest vector (again, in
the Euclidean sense) which is contained in the unit ball of ‖ · ‖. This definition is visually depicted
in Figure 2. As we show below, the remoteness of the dual norm, ρ(‖ · ‖∗,k), plays an important
role in determining the difficulty of using ‖ · ‖ as the global loss function.

For concreteness, we now calculate the remoteness of the duals of p-norms and of r-max norms.

Lemma 2 The remoteness of a p-norm ‖ · ‖q equals

ρ(‖ · ‖q,k) =

{
1 if 1≤ q≤ 2
k(12−

1
q) if 2< q

.

Before proving the lemma, we note that if ‖ · ‖p is a p-norm and ‖ · ‖q is its dual, then we can
combine Lemma 2 with the equality q= p

p−1 to obtain

ρ(‖ · ‖q,k) =

{
1 if 2≤ p
k(1p−

1
2) if 1≤ p< 2

.

This equivalent form is better suited to our needs. The proof of Lemma 2 is given below.

Proof If 2 ≤ p then 1 ≤ q ≤ 2, and the monotonicity of the p-norms implies that ‖v‖q ≥ ‖v‖2 for
all v ∈ Rk. Therefore ‖v‖2/‖v‖q ≤ 1 for all v ∈ Rk and thus ρ(‖ · ‖q,k) ≤ 1. On the other hand,

2241

DEKEL, LONG AND SINGER

setting v= (1,0, . . . ,0), we get ‖v‖q = ‖v‖2 and therefore ρ(‖ · ‖q,k) ≥ 1. Overall, we have shown
that ρ(‖ · ‖q,k) = 1.

Turning to the case where 1 ≤ p < 2, we note that q > 2. Let v be an arbitrary vector in Rk,
and define u= (v21, . . . ,v2k) and w= (1, . . . ,1). Noting that ‖ ·‖ q

2
and ‖ ·‖ q

q−2
are dual norms, we use

Hölder’s inequality to obtain
u ·w ≤ ‖u‖ q

2
‖w‖ q

q−2
.

The left-hand side above equals ‖v‖22, while the right-hand side above equals ‖v‖2q k
1− 2

q . There-
fore, ‖v‖22/‖v‖2q ≤ k1−

2
q and taking square-roots on both sides yields ‖v‖2/‖v‖q ≤ k

1
2−

1
q . Since

this inequality holds for all v ∈ Rk, we have shown that ρ(‖ · ‖q,k) ≤ k
1
2−

1
q . On the other hand,

setting v= (1, . . . ,1), we get ‖v‖2 = k
1
2−

1
q ‖v‖q. This proves that ρ(‖ · ‖q,k) ≥ k

1
2−

1
q , and therefore

ρ(‖ · ‖q,k) = k
1
2−

1
q .

Lemma 3 Let ‖ · ‖r-max be a r-max norm and let ‖ · ‖∗r-max be its dual. The remoteness of ‖ · ‖∗r-max
equals

√
r.

Proof Using Equation (13), the remoteness of ‖·‖∗r-max is defined to be the maximum value of ‖u‖2
subject to ‖u‖∗r-max ≤ 1. Recalling the definition of ‖ · ‖∗r-max from Equation (3), we can replace
this constraint with two constraints ‖u‖1 ≤ r and ‖u‖∞ ≤ 1. Moreover, since both the L1 norm and
the L∞ norm are absolute norms, we can also assume that u resides in the non-negative orthant.
Therefore, we have that 0 ≤ u j ≤ 1 for all 1 ≤ j ≤ k. From this we conclude that u2j ≤ u j for all
1 ≤ j ≤ k, and thus ‖u‖22 ≤ ‖u‖1 ≤ r. Hence, ‖u‖2 ≤

√
r and ρ(‖ · ‖∗r-max,k) ≤

√
r. On the other

hand, the vector

u =
(

r︷ ︸︸ ︷
1, . . . ,1,

k−r︷ ︸︸ ︷
0, . . . ,0

)

is contained in the unit ball of ‖ ·‖∗r-max, and its Euclidean length is
√
r. Therefore, we also have that

ρ(‖ · ‖∗r-max,k) ≥
√
r, and overall we get ρ(‖ · ‖∗r-max,k) =

√
r.

We are now ready to prove a loss bound for the Finite-Horizon Multitask Perceptron.

Theorem 4 Let {(xt, j,yt, j)}1≤ j≤k
1≤t≤T be a sequence of T k-tuples of examples, where each xt, j ∈ Rn j ,

‖xt, j‖2 ≤ R and each yt, j ∈ {−1,+1}. Let C be a positive constant and let ‖·‖ be an absolute norm.
Let w!

1, . . . ,w!
k be arbitrary vectors where w!

j ∈ Rn j , and define the hinge loss incurred by w!
j on

example (xt, j,yt, j) to be !!
t, j =

[
1− yt, jw!

j · xt, j
]
+. If we present this sequence to the finite-horizon

multitask Perceptron with the norm ‖ · ‖ and the aggressiveness parameter C, then,

T

∑
t=1

‖!t‖ ≤ 1
2C

k

∑
j=1

‖w!
j‖22 +

T

∑
t=1

‖!!
t‖ +

TR2Cρ2(‖ · ‖∗,k)
2

.

Proof The starting point of our analysis is Lemma 1. The choice of τt, j in Equation (9) is clearly
bounded by ‖τt‖∗ ≤C and conservative. It is also non-negative, due to the fact that ‖ · ‖∗ is an abso-
lute norm and that !t, j ≥ 0. Therefore, the definition of τt, j in Equation (9) meets the requirements

2242

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

of the lemma, and we have

T

∑
t=1

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
≤

k

∑
j=1

‖w!
j‖22 + 2C

T

∑
t=1

‖!!
t‖ .

Using Equation (10), we rewrite the left-hand side of the above as

2C
T

∑
t=1

‖!t‖−
T

∑
t=1

k

∑
j=1

τ2t, j‖xt, j‖22 . (14)

Using our assumption that ‖xt, j‖22 ≤ R2, we know that ∑k
j=1 τ

2
t, j‖xt, j‖22 ≤ (R‖τt‖2)2. Using the

definition of remoteness, we can upper bound this term by (R‖τt‖∗ρ(‖ · ‖∗,k))2. Finally, using our
upper bound on ‖τt‖∗ we can further bound this term by R2C2ρ2(‖ ·‖∗,k). Plugging this bound back
into Equation (14) gives

2C
T

∑
t=1

‖!t‖ − TR2C2ρ2(‖ · ‖∗,k) .

Overall, we have shown that

2C
T

∑
t=1

‖!t‖ − TR2C2ρ2(‖ · ‖∗,k) ≤
k

∑
j=1

‖w!
j‖22 + 2C

T

∑
t=1

‖!!
t‖ .

Dividing both sides of the above by 2C and rearranging terms gives the desired bound.

In its current form, the bound in Theorem 4 may seem insignificant, since its right-most term grows
linearly with the length of the input sequence, T . This term can be easily controlled by setting C to
a value on the order of 1/

√
T .

Corollary 5 Under the assumptions of Theorem 4, if C = 1/(
√
TR2), then

T

∑
t=1

‖!t‖ ≤
T

∑
t=1

‖!!
t‖ +

√
T
2

(
R2

k

∑
j=1

‖w!
j‖22 + ρ2(‖ · ‖∗,k)

)
.

This corollary bounds the global loss cumulated by our algorithm with the global loss obtained by
any fixed set of hypotheses, plus a term which grows sub-linearly in T . The significance of this term
depends on the magnitude of the constant

1
2

(
R2

k

∑
j=1

‖w!
j‖22 + ρ2(‖ · ‖∗,k)

)
.

Our algorithm uses C in its update procedure, and the value of C depends on
√
T . Therefore, the

algorithm is a finite horizon algorithm.
Dividing both sides of the inequality in Corollary 5 by T , we see that the average global loss

suffered by the multitask Perceptron is upper bounded by the average global loss of the best fixed
hypothesis ensemble plus a term that diminishes with T . Using game-theoretic terminology, we can
now say that the multitask Perceptron exhibits no-regret with respect to any global loss function
defined by an absolute norm. The same cannot be said for the naive alternative of learning each

2243

DEKEL, LONG AND SINGER

task independently using a separate single-task Perceptron. We show this by presenting a simple
counter-example. Specifically, we construct a concrete k-task problem with a specific global loss,
an arbitrarily long input sequence {(xt, j,yt, j)}1≤ j≤k

1≤t≤T , and fixed weight vectors u1, . . . ,uk to use for
comparison. We then prove that

k+1
2

T

∑
t=1

‖!!
t‖∞ ≤

T

∑
t=1

‖!̂t‖∞ , (15)

where !̂t is the vector of individual losses of the k independent single-task Perceptrons, and, as
before, !!

t is the vector of individual losses of u1, . . . ,uk respectively. This example demonstrates
that a claim along the lines of Corollary 5 cannot be proven for the set of independent single-task
Perceptrons.

First, we would like to emphasize that we are considering a version of the single-task Perceptron
that updates its hypothesis whenever it suffers a positive hinge-loss, and not only when it makes a
prediction mistake. Moreover, when an update is performed, the algorithm defines wt+1 = wt +
Cytxt , where C is a predefined constant. This version of the Perceptron is sometimes called the
aggressive Perceptron. If we were to use the simplest version of the Perceptron, which updates
its hypothesis only when a prediction mistake occurs, then finding a counter-example that achieves
Equation (15) would be trivial, without even using the distinction between single-task and multitask
Perceptron learning.

Also, we can assume without loss of generality that 1/C = o(T), since otherwise, even in the
case k = 1, simply repeating the same example over and over provides a counterexample.

Moving on to the counter-example itself, assume that our global loss is defined by the L∞ norm.
Let k be at least 2, assume that the instances of all k problems are two dimensional vectors, and
set u1 = . . . = uk = (1,1). Each of the single-task Perceptrons initializes its hypothesis to (0,0).
Assume that all of the labels in the input sequence are positive labels. For t = 0, we set x1,1 = . . . =
x1,k = (1,0). Each one of the independent Perceptrons suffers a positive individual loss and updates
its weight vector to (C,0). We continue presenting the same example for ,1/C- − 1 additional
rounds, which is precisely when all k weight vectors of the Perceptrons become equal to (α,0), with
α≥ 1. For instance, ifC = O(1/

√
T) then the vector (1,0) is presented O(

√
T) times. Meanwhile,

the fixed weight vectors u1, . . . ,uk suffer no loss at all.
Define t0 = ,1/C-, and note that the index of the next online round is t0 + 1. For each t in

t0+1, . . . , t0+ k, we set xt,t−t0 to (0,1) and xt, j to (1,0) for all j #= t− t0. On round t, the (t− t0)’th
Perceptron, whose weight vector is (α,0), suffers an individual loss of 1 and updates its weight
vector to (α,C). The remaining k−1 Perceptrons suffer no individual loss and do not modify their
weight vectors. Consequently, ‖!̂t‖∞ = 1 on each of these rounds. Once again, the fixed vectors
u1, . . . ,uk suffer no loss at all. On round t = t0+k+1, we set xt,1 = . . . = xt,k = (0,−1). As a result,
each of the Perceptrons suffers a hinge loss of 1+C and updates its weight vector back to (α,0).
SinceC is positive, we get ‖!̂t‖∞ ≥ 1. Meanwhile, ‖!!

t‖∞ = 2. We now have that

t0+k+1

∑
t=t0+1

‖!̂t‖∞ ≥ k+1 and
t0+k+1

∑
t=t0+1

‖!!
t‖∞ = 2 .

Furthermore, the weight vectors of the k single-task Perceptrons have returned to their values at the
end of round t0. Therefore, by repeating the input sequence from round t0+ 1 to round t0+ k+ 1
over and over again, we obtain Equation (15).

2244

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

This concludes the presentation of the counter-example thus showing that a set of independent
single-task Perceptrons does not attain no-regret with respect to the L∞ norm global loss. Similar
constructions can be given for other global loss functions. The exception is the L1 norm, which
naturally reduces the multitask Perceptron to k independent single-task Perceptrons.

4. An Extension to the Infinite Horizon Setting

In the previous section, we devised an algorithm which relied on prior knowledge of T , the input
sequence length. In this section, we adapt the update procedure from the previous section to the
infinite horizon setting, where T is not known in advance. Moreover, the bound we prove in this
section holds simultaneously for every prefix of the input sequence. This generalization comes at
a price; we can only prove an upper bound on ∑tmin{!t , !2t }, a quantity similar to the cumulative
global loss, but not the global loss per se.

To motivate our infinite-horizon algorithm, we take a closer look at the analysis of the finite-
horizon algorithm. In the proof of Theorem 4, we lower-bounded the term ∑k

j=1 2τt, j!t, j−τ2t, j‖xt, j‖22
by 2C‖!t‖−R2C2ρ2(‖ · ‖∗,k). The first term in this lower bound is proportional to the global loss
suffered on round t, and the second term is a constant. When ‖!t‖ is smaller than this constant, our
lower bound becomes negative. This suggests that the update step-size applied by the finite-horizon
Perceptron may have been too large, and that the update step may have overshot its target. As a
result, the new hypothesis may be inferior to the previous one. Nevertheless, over the course of T
rounds, our positive progress is guaranteed to overshadow our negative progress, and thus we are
able to prove Theorem 4. However, if we are interested in a bound which holds for every prefix of the
input sequence, we must ensure that every individual update makes positive progress. Concretely,
we derive an update for which ∑k

j=1 2τt, j!t, j − τ2t, j‖xt, j‖22 is guaranteed to be non-negative. The
vector τt remains in the same direction as before, but by setting its length more carefully, we enforce
an update step-size which is never excessively large.

We use ρ to abbreviate ρ(‖ · ‖∗,k) throughout this section. We replace the definition of τt in
Equation (9) with the following definition,

τt = argmax
τ:‖τ‖∗≤min

{
C, ‖!t ‖

R2ρ2

} τ· !t , (16)

where C > 0 is a user defined parameter and R > 0 is an upper bound on ‖xt, j‖2 for all 1 ≤ t ≤ T
and all 1 ≤ j ≤ k. As in the previous section, we assume that τt, j = 0 whenever !t, j = 0. As in
Equation (10), the solution to Equation (16) can be equivalently defined by the equation

τt · !t = min
{
C,

‖!t‖
R2ρ2

}
‖!t‖ . (17)

When the global loss function is a p-norm, the following definition of τt solves Equation (16):

τt, j =






" p−1t, j

R2ρ2‖"t‖p−2p
if ‖!t‖p ≤ R2Cρ2

C" p−1t, j

‖"t‖p−1p
if ‖!t‖p > R2Cρ2.

2245

DEKEL, LONG AND SINGER

When the global loss function is an r-max norm and π is a permutation such that !t,π(1) ≥ . . .≥ !t,π(k),
then the following definition of τt is a solution to Equation (16):

τt, j =






‖"t‖r-max
rR2 if !t, j > 0 and ‖!t‖r-max ≤ R2Cρ2 and j ∈ {π(1), . . . ,π(r)}

C if !t, j > 0 and ‖!t‖r-max > R2Cρ2 and j ∈ {π(1), . . . ,π(r)}

0 otherwise.

The correctness of both definitions of τt, j given above can be verified by observing that ‖τt‖∗ ≤
min{C, ‖"t‖

R2ρ2 } and that τt · !t = min{C, ‖"t‖
R2ρ2 }‖!t‖ in both cases. We now turn to proving an infinite-

horizon cumulative loss bound for our algorithm.

Theorem 6 Let {(xt, j,yt, j)}1≤ j≤k
t=1,2,... be a sequence of k-tuples of examples, where each xt, j ∈ Rn j ,

‖xt, j‖2 ≤ R and each yt, j ∈ {−1,+1}. Let C be a positive constant, let ‖ · ‖ be an absolute norm,
and let ρ be an abbreviation for ρ(‖ · ‖∗,k). Let w!

1, . . . ,w!
k be arbitrary vectors where w!

j ∈ Rn j ,
and define the hinge loss attained by w!

j on example (xt, j,yt, j) to be !!
t, j =

[
1− yt, jw!

j ·xt, j
]
+. If we

present this sequence to the explicit multitask algorithm with the norm ‖ · ‖ and the aggressiveness
parameter C, then for every T

1/(R2ρ2) ∑
t≤T :‖"t‖≤R2Cρ2

‖!t‖2 + C ∑
t≤T :‖"t‖>R2Cρ2

‖!t‖ ≤ 2C
T

∑
t=1

‖!!
t‖ +

k

∑
j=1

‖w!
j‖22 .

Proof The starting point of our analysis is again Lemma 1. The choice of τt, j in Equation (16) is
clearly bounded by ‖τt‖∗ ≤C and conservative. It is also non-negative, due to the fact that ‖ · ‖∗ is
absolute and that !t, j ≥ 0. Therefore, τt, j meets the requirements of Lemma 1, and we have

T

∑
t=1

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
≤

k

∑
j=1

‖w!
j‖22 + 2C

T

∑
t=1

‖!!
t‖ . (18)

We now prove our theorem by lower-bounding the left hand side of Equation (18) above. We analyze
two different cases. First, if ‖!t‖ ≤ R2Cρ2 then min{C,‖!t‖/(R2ρ2)}= ‖!t‖/(R2ρ2). Together with
Equation (17), this gives

2
k

∑
j=1

τt, j!t, j = 2‖τt‖∗ ‖!t‖ = 2
‖!t‖2

R2ρ2
. (19)

On the other hand, ∑k
j=1 τ

2
t, j‖xt, j‖22 can be bounded by ‖τt‖22R2. Using the definition of remoteness,

we bound this term by (‖τt‖∗)2R2ρ2. Using the fact that, ‖τt‖∗ ≤ ‖!t‖/(R2ρ2), we bound this term
by ‖!t‖2/(R2ρ2). Overall, we have shown that

k

∑
j=1

τ2t, j‖xt, j‖22 ≤ ‖!t‖2

R2ρ2
.

Subtracting both sides of the above inequality from the respective sides of Equation (19) gives

‖!t‖2

R2ρ2
≤

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
. (20)

2246

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Moving on to the second case, if ‖!t‖>R2Cρ2 then min{C,‖!t‖/(R2ρ2)}=C. Using Equation (17),
we have that

2
k

∑
j=1

τt, j!t, j = 2‖τt‖∗ ‖!t‖ = 2C‖!t‖ . (21)

As before, we can upper bound ∑k
j=1 τ

2
t, j‖xt, j‖22 by (‖τt‖∗)2R2ρ2. Using the fact that, ‖τt‖∗ ≤C we

can bound this term byC2R2ρ2. Finally, using our assumption that ‖!t‖ > R2Cρ2, we conclude that

k

∑
j=1

τ2t, j‖xt, j‖22 < C‖!t‖ .

Subtracting both sides of the above inequality from the respective sides of Equation (21) gives

C‖!t‖ ≤
k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
. (22)

Comparing the upper bound in Equation (18) with the lower bounds in Equation (20) and Equa-
tion (22) proves the theorem.

Corollary 7 Under the assumptions of Theorem 6, if C is set to be 1/(R2ρ2) then for every T ′ ≤ T
it holds that,

T ′

∑
t=1
min

{
‖!t‖2,‖!t‖

}
≤ 2

T ′

∑
t=1

‖!!
t‖ + R2ρ2

k

∑
j=1

‖w!
j‖22 .

As noted at the beginning of this section, we do not obtain a cumulative loss bound per se, but rather
at a bound on ∑tmin{!t , !2t }. However, this bound holds simultaneously for every prefix of the input
sequence, and the algorithm does not rely on knowledge of the input sequence length.

5. The Implicit Online Multitask Update

We now discuss a third family of online multitask algorithms, which leads to the strongest loss
bounds of the three families of algorithms presented in this paper. In contrast to the closed form
updates of the previous algorithms, the algorithms in this family require solving an optimization
problem on every round, and are therefore called implicit update algorithms. Although the imple-
mentation of specific members of this family may be more involved than the implementation of the
multitask Perceptron, we recommend using this family of algorithms in practice. On every round,
the set of hypotheses is updated according to the update rule:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk

1
2

k

∑
j=1

‖w j−wt, j‖22+C‖ξ‖ (23)

s.t. ∀ j w j ·xt, j ≥ 1−ξ j and ξ j ≥ 0.

This optimization problem captures the fundamental tradeoff inherent to online learning. On one
hand, the term ∑k

j=1 ‖w j−wt, j‖22 in the objective function above keeps the new set of hypotheses
close to the current set of hypotheses, so as to retain the information learned on previous rounds. On

2247

DEKEL, LONG AND SINGER

input: aggressiveness parameterC > 0, norm ‖ · ‖

initialize w1,1 = . . . = w1,k = (0, . . . ,0)

for t = 1,2, . . .

• receive xt,1, . . . ,xt,k
• predict sign(wt, j ·xt, j) [1≤ j ≤ k]

• receive yt,1, . . . ,yt,k
• suffer loss !t, j =

[
1− yt, jwt, j ·xt, j

]
+ [1≤ j ≤ k]

• update:

{wt+1,1, . . . ,wt+1,k} = argmin
w1,...,wk

1
2 ∑

k
j=1 ‖w j−wt, j‖22+C‖ξ‖

s.t. ∀ j w j ·xt, j ≥ 1−ξ j and ξ j ≥ 0

Figure 3: The implicit update algorithm

the other hand, the term ‖ξ‖ in the objective function, together with the constraints on ξ j, forces the
algorithm to make progress using the new examples obtained on this round. Different choices of the
global loss function lead to different definitions of this progress. The pseudo-code of the implicit
update algorithm is presented in Figure 3.

Our first task is to show that this update procedure follows the skeleton outlined in Figure 1, and
satisfies the requirements of Lemma 1. We do so by finding the dual of the optimization problem
given in Equation (23).

Lemma 8 Let ‖ · ‖ be a norm and let ‖ · ‖∗ be its dual. Then the online update defined in Equa-
tion (23) is equivalent to setting wt+1, j = wt, j + τt, jyt, jxt, j for all 1≤ j ≤ k, where

τt = argmax
τ

k

∑
j=1

(
2τ j!t, j− τ2j‖xt, j‖22

)

s.t. ‖τ‖∗ ≤C and ∀ j τ j ≥ 0 .

Moreover, this update is conservative.

Proof The update step in Equation (23) sets the vectors wt+1,1, . . . ,wt+1,k to be the solution to the
following constrained minimization problem:

min
w1,...,wk,ξ≥0

1
2

k

∑
j=1

‖w j−wt, j‖22 + C‖ξ‖

s.t. ∀ j yt, jw j ·xt, j ≥ 1−ξ j .

We begin by using the notion of strong duality to restate this optimization problem in an equivalent
form. The objective function above is convex and the constraints are both linear and feasible, there-
fore Slater’s condition (Boyd and Vandenberghe, 2004) holds, and the above problem is equivalent

2248

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

to
max
τ≥0

min
w1,...,wk,ξ≥0

L(τ,w1, . . . ,wk,ξ) ,

where L(τ,w1, . . . ,wk,ξ) is defined as follows:

1
2

k

∑
j=1

‖w j−wt, j‖22+C‖ξ‖+
k

∑
j=1

τ j (1− yt, jw j ·xt, j−ξ j) .

We can rewrite L as the sum of two terms, the first a function of τ and w1, . . . ,wk (denoted L1) and
the second a function of τ and ξ1, . . . ,ξk (denoted L2),

1
2

k

∑
j=1

‖w j−wt, j‖22+
k

∑
j=1

τ j(1− yt, jw j ·xt, j)
︸ ︷︷ ︸

L1(τ,w1,...,wk)

+ C‖ξ‖−
k

∑
j=1

τ jξ j

︸ ︷︷ ︸
L2(τ,ξ)

.

Using the notation defined above, our optimization problem becomes,

max
τ≥0

(
min
w1,...,wk

L1(τ,w1, . . . ,wk) + min
ξ≥0

L2(τ,ξ)
)

.

For any choice of τ, L1 is a convex function and we can find w1, . . . ,wk which minimize it by setting
all of its partial derivatives with respect to the elements of w1, . . . ,wk to zero. Namely,

∀ j, l 0 =
∂L1
∂w j,l

= w j,l−wt, j,l− τ jyt, jxt, j,l .

from the above we conclude that w j = wt, j + τ jyt, jxt, j for all 1≤ j ≤ k.
The next step is to show that the update is conservative. If !t, j = 0 then settingw j =wt, j satisfies

the constraint yt, jw j ·xt, j ≥ 1−ξ j with any choice of ξ j ≥ 0. Since choosing w j = wt, j minimizes
‖wt −wt, j‖22 and does not restrict our choice of any other variable, then it is optimal. The relation
between w j and τ j now implies that τ j = 0 whenever !t, j = 0).

Plugging our expression for w j into L1, we have that

min
w1,...,wk

L1(τ,w1, . . . ,wk) =
k

∑
j=1

τ j(1− yt, jwt, j ·xt, j) − 1
2

k

∑
j=1

τ2j‖xt, j‖ .

Since the update is conservative, it holds that τ j(1−yt, jwt, j ·xt, j) = τ j!t, j. Overall, we have reduced
our optimization problem to

τt = argmax
τ≥0

(
k

∑
j=1

(
τ j!t, j−

1
2
τ2j‖xt, j‖

)
+ min

ξ≥0
L2(τ,ξ)

)
.

We finally turn our attention to L2 and abbreviate B(τ) =minξ≥0L2(τ,ξ). We now claim that B is a
barrier function for the constraint ‖τ‖∗ ≤C, namely

B(τ) =
{

0 if ‖τ‖∗ ≤C
−∞ if ‖τ‖∗ >C .

2249

DEKEL, LONG AND SINGER

To see why this is true, recall that ‖τ‖∗ is defined to be

‖τ‖∗ = max
ε∈Rk

∑k
j=1 τ jε j
‖ε‖ .

First, let us consider the case where ‖τ‖∗ >C. In this case there exists a vector ε̄ for which

k

∑
j=1

τ jε̄ j−C‖ε̄‖ > 0 .

Denote the left hand side of the above by δ. We can assume w.l.o.g. that all the components of ε̄ are
non-negative since τ≥ 0. For any c≥ 0, we now have that

B(τ) = min
ξ≥0

L2(τ,ξ) ≤ L2(τ,cε̄) = − cδ .

Therefore, by taking c to infinity we get that B(τ) = −∞.
Turning to the case ‖τ‖∗ ≤ C, we have that ∑k

j=1 τ jξ j ≤ C‖ξ‖ for any choice of ξ, or in other
words, minξ≥0L2(τ,ξ) ≥ 0. However, this lower bound is attainable by setting ξ= 0. We conclude
that if ‖τ‖∗ ≤C then B(τ) = 0. The original optimization problem has reduced to the form

τt = argmax
τ≥0

(
k

∑
j=1

(
τ j!t, j−

1
2
τ2j‖xt, j‖

)
+ B(τ)

)
.

Clearly, the above is maximized in the domain where B(τ) = 0. Therefore, we replace the function
B with the constraint ‖τ‖∗ ≤C, and get

τt = argmax
τ≥0 : ‖τ‖∗≤C

k

∑
j=1

(
τ j!t, j−

1
2
τ2j‖xt, j‖

)
.

Lemma 5 proves that the implicit update essentially finds the value of τt that maximizes the left-
hand side of the bound in Lemma 1. This choice of τt produces the tightest loss bounds that can be
derived from Lemma 1. In this sense, the implicit update algorithm takes full advantage of our proof
technique. An immediate consequence of this observation is that the loss bounds of the multitask
Perceptron also hold for the implicit algorithm. More precisely, the bound in Theorem 4 (and
Corollary 5) holds not only for the multitask Perceptron, but also for the implicit update algorithm.
Equivalently, it can be shown that the bound in Theorem 6 (and Corollary 7) also holds for the
implicit update algorithm. We prove this formally below.

Theorem 9 The bound in Theorem 4 also holds for the implicit update algorithm.

Proof Let τ′t, j denote the weights defined by the multitask Perceptron in Equation (9) and let τt, j
denote the weights assigned by the implicit update algorithm. In the proof of Theorem 4, we showed
that,

2C‖!t‖−R2C2ρ2 ≤
k

∑
j=1

(
2τ′t, j!t, j− τ′t, j

2‖xt, j‖22
)

.

2250

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

According to Lemma 8, the weights τt, j maximize,

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
,

subject to the constraints ‖τt‖∗ ≤C and τt, j ≥ 0. Since the weights τ′t, j also satisfy these constraints,
it holds that,

k

∑
j=1

(
2τ′t, j!t, j− τ′2t, j‖xt, j‖22

)
≤

k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
.

Therefore, we conclude that

2C‖!t‖−R2C2ρ2 ≤
k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
. (24)

Since τt, j is bounded, non-negative, and conservative (due to Lemma 8), the right-hand side of the
above inequality is upper-bounded by Lemma 1. Comparing the bound in Equation (24) with the
bound in Lemma 1 proves the theorem.

In the remainder of this paper, we present efficient algorithms which solve the optimization problem
in Equation (23) for different choices of the global loss function.

6. Solving the Implicit Update for the L2 Norm

Consider the implicit update with the L2 norm, namely we are trying to solve

τt = argmax
τ≥0 : ‖τ‖2≤C

k

∑
j=1

(
τ j!t, j−

1
2
τ2j‖xt, j‖

)
.

The Lagrangian of this optimization problem is

L =
k

∑
j=1

(
2τt, j!t, j− τ2t, j‖xt, j‖22

)
−θ

(
k

∑
j=1

τ2t, j−C2
)

,

where θ is a non-negative Lagrange multiplier. The derivative of L with respect to each τt, j is,
2!t, j−2τt, j‖xt, j‖22−2θτt, j . Setting this derivative to zero, we get

τt, j =
!t, j

‖xt, j‖22+θ
.

The optimum of the unconstrained problem is attained by choosing τt, j = "t, j
‖xt, j‖22

for each j. If,
for this choice of τt , the constraint ∑k

j=1 τ
2
t, j ≤C2 does not hold, then θ must be greater than zero.

The KKT complementarity condition implies that in this case the constraint is binding, namely
∑k
j=1 τ

2
t, j =C2. In order to find θ, we must now solve the following equation:

k

∑
j=1

(
!t, j

‖xt, j‖22+θ

)2
=C2 . (25)

2251

DEKEL, LONG AND SINGER

The left hand side of the above is monotonically decreasing in θ. We also know that θ > 0. More-
over, setting

θ =
√
k‖!t‖∞
C

in the left-hand side of Equation (25) yields a value which is at leastC2, and therefore we conclude
that θ≤

√
k‖"t‖∞
C . These properties enable us to easily find θ using binary search.

In the special case where the norms of all the instances are equal, namely ‖xt,1‖22 = . . . =
‖xt,k‖22 = R2, Equation (25) gives θ = ‖"t‖2

C −R2, and therefore τt, j = C!t, j/‖!t‖2. The general
expression for τt, j in this case becomes

τt, j =






"t, j
R2 if ‖!t‖2 ≤ R2C
C"t, j
‖"t‖2 otherwise

.

Note that the above coincides with the definition of τt given by the Infinite Horizon Multitask Per-
ceptron for the L2 norm, as defined in Section 4.

7. Solving the Implicit Update for r-max Norms

We now present an efficient procedure for calculating the update in Equation (23), in the case where
the norm being used is the r-max norm. Lemma 8, together with (3), tells us that the update can be
calculated by solving the following constrained optimization problem:

τt = argmax
τ

k

∑
j=1

(
2τ j!t, j− τ2j‖xt, j‖22

)
(26)

s.t.
k

∑
j=1

τ j ≤Cr , ∀ j τ j ≤C , ∀ j τ j ≥ 0 .

After dividing the objective function by 2, the Lagrangian of this optimization problem is

k

∑
j=1

(
τ j!t, j−

1
2
τ2j‖xt, j‖22

)
+θ

(
Cr−

k

∑
j=1

τ j
)

+
k

∑
j=1

λ j(C− τ j)+
k

∑
j=1

β jτ j ,

where θ, the β j’s and the λ j’s are non-negative Lagrange multipliers. The derivative of L with
respect to each τ j is, !t, j− τ j‖xt, j‖22−θ−λ j +β j. All of these partial derivatives must equal zero
at the optimum, and therefore

∀ 1≤ j ≤ k τ j =
!t, j−θ−λ j +β j

‖xt, j‖22
. (27)

The KKT complementarity condition states that the following equalities hold at the optimum:

∀ 1≤ j ≤ k λ j(C− τ j) = 0 and β jτ j = 0 . (28)

We consider three different cases:

2252

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

1. Assume that !t, j−θ< 0. Since both τ j and λ j must be non-negative, then from the definition
of τ j in Equation (27) we learn that β j must be at least θ− !t, j. In other words, β j is positive.
Referring to the right-hand side of Equation (28), we conclude that τ j = 0.

2. Assume that 0≤ !t, j−θ≤C‖xt, j‖22. Summing the two equalities in Equation (28) and plug-
ging in the definition of τ j from Equation (27) results in,

λ j

(
C−

!t, j−θ

‖xt, j‖22

)
+β j

(
!t, j−θ

‖xt, j‖22

)
+

(β j−λ j)2

‖xt, j‖22
= 0 . (29)

Using our assumption that !t, j−θ ≥ 0, along with the requirement that β j ≥ 0, gives us that
β(!t, j − θ)/‖xt, j‖22 ≥ 0. Equivalently, using our assumption that !t, j − θ ≤ C‖xt, j‖22 along
with the requirement that λ j ≥ 0 results in λ

(
C− (!t, j + θ)/‖xt, j‖22

)
≥ 0. Plugging the last

two inequalities back into Equation (29) gives, (β j−λ j)2/‖xt, j‖22 ≤ 0. The only way that this
inequality can hold is if (β j−λ j) = 0. Thus, the definition of τ j in Equation (27) reduces to
τ j = "t, j−θ

‖xt, j‖22
.

3. Finally, assume that !t, j− θ > C‖xt, j‖22. Since τ j ≤ ‖τ‖∞ ≤ C and β j ≥ 0, then from Equa-
tion (27) we conclude that λ j is at least !t, j − θ−C‖xt, j‖22. In other words, λ j is positive.
Referring to the left-hand side of Equation (28), we conclude that (C− τ j) = 0, and τ j =C.

Overall, we have shown that there exists some θ ≥ 0 such that the optimal update weights take the
form

τt, j =






0 if !t, j−θ< 0
"t, j−θ
‖xt, j‖22

if 0≤ !t, j−θ≤C‖xt, j‖22
C if C‖xt, j‖22 < !t, j−θ

. (30)

That is, if the individual loss of task j is smaller than θ then no update is applied to the respective
classifier. If the loss is moderate then the size of the update step is proportional to the loss attained,
and inverse proportional to the squared norm of the respective instance. In any case, the size of the
update step cannot exceed the fixed upper limitC.

We are thus left with the problem of finding the value of θ in Equation (30) which yields the
update weights that maximize Equation (26). We denote this value by θ!. First note that if we
lift the constraint ∑k

j=1 τt, j ≤ rC then the maximum of Equation (26) is obtained by setting τt, j =
min{!t, j/‖xt, j‖22, C} for all j, which is equivalent to setting θ= 0 in Equation (30). Therefore, if

k

∑
j=1

min
{

!t, j
‖xt, j‖22

, C
}

≤ rC ,

the solution to Equation (26) is τt, j =min{!t, j/‖xt, j‖22, C} for all j. Thus, we can focus our attention
on the case where

k

∑
j=1

min
{

!t, j
‖xt, j‖22

, C
}

> rC .

In this case, θ! must be non-zero in order for the constraint ∑k
j=1 τ j ≤ rC to hold. Once again using

the KKT complementarity condition, it follows that ∑k
j=1 τt, j = rC. Now, for every value of θ, define

the following two sets of indices:

Ψ(θ) = {1≤ j ≤ k : 0< !t, j−θ} ,

2253

DEKEL, LONG AND SINGER

and
Φ(θ) = {1≤ j ≤ k : C‖xt, j‖22 < !t, j−θ} .

Let Ψ and Φ denote the sets Ψ(θ!) and Φ(θ!) respectively. The semantics of Ψ and Φ are readily
available from Equation (30): the set Ψ includes all indices j for which τ j > 0 in the optimal
solution, while Φ includes all indices j for which τ j is clipped at C in the optimal solution. If we
know the value of θ!, we can easily obtain the sets Ψ and Φ from their definitions above. However,
the converse is also true: if we are able to find the sets Ψ and Φ directly then we can use them to
calculate the exact value of θ!. Assuming we know Ψ and Φ, and using the fact that ∑k

j=1 τ j = rC,
we get

∑
j∈Ψ\Φ

!t, j−θ!

‖xt, j‖22
+ ∑

j∈Φ
C = rC .

Solving the above for θ! gives

θ! =
∑ j∈Ψ\Φ

"t, j
‖xt, j‖22

− rC+∑ j∈ΦC

∑ j∈Ψ\Φ
1

‖xt, j‖22

. (31)

We have thus reduced the optimization problem in Equation (26) to the problem of finding the sets
Ψ and Φ. Once we find Ψ and Φ, we can easily calculate θ! using Equation (31) and then obtain τt
using Equation (30). Luckily, Ψ and Φ are subsets of {1, . . . ,k} and can only be defined in a finite
number of ways. A straightforward and excessively inefficient solution is to enumerate over all
possible subsets of {1, . . . ,k} as candidates for Ψ and Φ, for each pair of candidate sets to compute
the corresponding values of θ and τ using Equation (31) and Equation (30) respectively and then
check if the obtained solution is consistent with our constraints (θ≥ 0, ∑ j τ j = rC and 0≤ τ j ≤C).
Of the candidates that turn out to be consistent, we choose the one which maximizes the objective
function in Equation (26). This approach is clearly infeasible even for reasonably small values of k.
We therefore describe a more efficient procedure for finding Ψ and Φ, whose computational cost is
only O(k log(k)).

Let us examine two losses !t,r and !t,s such that !t,r ≤ !t,s and there is no index j for which
!t,r < !t, j < !t,s. Then, all the sets Ψ(θ) for θ ∈ [!t,r, !t,s) are identical, and equal { j : !t, j ≥ !t,r}.
Therefore, there are at most k different choices for Ψ(θ), which can be easily computed by sorting
the losses. An analogous argument holds for the set Φ with respect to the values !t, j−C‖xt, j‖22.
Furthermore, to enumerate all admissible sets Ψ(θ) and Φ(θ) we need not examine their product
space. Instead, let q denote the vector obtained by sorting the union of the sets {!t, j}kj=1, {!t, j−
C‖xt, j‖22}kj=1, and {0} in ascending order. Extending the above rationale, the sets Ψ(θ) and Φ(θ)
are fixed for every θ ∈ [qi,qi+1). We can examine every possible pair of candidates Ψ(θ),Φ(θ) by
traversing the sorted vector q of critical values.

Concretely, defineΨ(q1) = {1, . . . ,k} andΦ(q1) = {1, . . . ,k}, and keep them sorted in memory.
Use these sets to define θ and τas described above, and check if the solution satisfies our constraints.
If so, return this value of τ as the update step for the r-max loss. Otherwise, move on to the next
value in q and evaluate the next pair of candidates. This procedure for choosing θ and τ implies
that if more than one solution satisfies the constraints, we will choose the one encountered first,
namely the one for which θ is the smallest. Indeed it can be verified that the smaller θ, the greater
the value of the objective function in Equation (26). Given the sets Ψ(qi) and Φ(qi), we can obtain
the sets Ψ(qi+1) and Φ(qi+1), and recalculate θ, by simply removing from Ψ(qi) every j for which

2254

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

!t, j < qi+1 and removing from Φ(qi) every j for which !t, j−C‖xt, j‖22 < qi+1 . This operation can
be done efficiently since the sets Ψ(qi) and Φ(qi) are sorted in memory.

8. Experiments with Text Classification

In this section, we demonstrate the effectiveness of the implicit multitask algorithm on large-scale
text categorization problems. Throughout this paper, we have argued that when faced with multiple
tasks in parallel, we can often do better than to learn each task individually. The goal of the first
two experiments is to demonstrate that this is indeed the case. The third experiment demonstrates
that the superiority of the implicit update algorithm, presented in Section 5, over the multitask
Perceptron, presented in Sections 3 and 4.

We used the Reuters Corpus Vol. 1, which is a collection of over 800K news articles collected
from the Reuters newswire over a period of 12 months, in 1996-1997. An average article contains
approximately 240 words, and the entire corpus contains over half a million distinct tokens (not
including numbers and dates). Each article is associated with one or more of 104 possible low-level
categories.1 On average, each article is associated with 1.5 low-level categories. The categorization
problem induced by this corpus is referred to as a multiclass-multilabel (MCML) problem, since
there are multiple possible classes (the 104 categories) and each article may assigned multiple la-
bels. Examples of categories that appear in the corpus are: WEATHER, MONEY MARKETS, and
UNEMPLOYMENT. The articles in the corpus are given in their original chronological order, and
our goal is to predict the label, or labels, associated with each newly presented article. Our first
experiment addresses this problem.

The Reuters corpus also defines 5 high-level meta-categories: CORPORATE/INDUSTRIAL, ECO-
NOMICS, GOVERNMENT/SOCIAL, MARKETS, and OTHER. About 20% of the articles in the corpus
are associated with more than one of the five meta-categories. After discarding this 20%, we are left
with over 600K documents, each with a single high-level label. This induces a 5-class single-label
classification problem. Our second experiment addresses this multiclass single-label problem.

We began by applying some mild preprocessing to the articles in the corpus, which included
removal of punctuation, numbers, dates, and stop-words, and a global conversion of the entire corpus
to lower-case. Then, each article was mapped to a real vector using a logarithmic bag-of-words
representation. Namely, the length of each vector equals the number of distinct tokens in the corpus,
and each coordinate represents one of these tokens. If a token appears s times in a given article, then
the respective coordinate in the vector is set to log2(1+ s).

8.1 Multiclass Multilabel Categorization

We trained a separate binary classifier for each of the 104 low-level classes, using the implicit
update algorithm presented in Section 5. Given an unseen article, each classifier predicts whether
its respective category applies to that article or not. We ran our algorithm using both the L1 norm
and the L∞ norm as the global loss function. In both cases, the user-defined parameter C was set to
10−3.

The performance of the entire classifier ensemble on each article was evaluated in two ways.
First, we examined whether the 104-classifier ensemble predicted the entire set of categories per-

1. The original corpus specifies 126 labels which are organized in a hierarchical tree-structure. Of these labels, 104
are low-level categories, which correspond to leaves in the tree. The remaining labels are meta-categories which
correspond to inner nodes in the tree.

2255

DEKEL, LONG AND SINGER

0 2 4 6 8
x 105

0.4

0.5

0.6

0.7

0.8

0.9

1

online rounds

∞
−e

rro
r r

at
e

 ∞−norm
 1−norm

0 2 4 6 8
x 105

0.005

0.01

0.015

0.02

online rounds

1−
er

ro
r r

at
e

 ∞−norm
 1−norm

Figure 4: The ∞-error (left) and 1-error (right) error-rates attained by the implicit multitask algo-
rithm using the L∞ norm (solid) and the L1 norm (dashed) global loss functions. Note
that the two plots are on a very different scale: the two lines on the left-hand plot differ
by approximately 3%, whereas the lines on the right-hand plot differ by approximately
0.05%.

fectly. An affirmative answer to this test implies that all 104 classifiers made correct predic-
tions simultaneously. Formally, let et be the vector in {0,1}104 such that et, j = 1 if and only if
yt, jwt, j · xt, j ≤ 0. In other words, et indicates which of the 104 binary classifiers made prediction
mistakes on round t. Now define the ∞-error suffered on round t as ‖et‖∞. Second, we assessed
the fraction of categories for which incorrect binary predictions were made. Formally, define the
1-error suffered on round t as ‖et‖1/104. Both measures of error are reasonable, and one should
be preferred over the other based on the specific requirements of the underlying application. Since
each coordinate of !t upper-bounds the respective coordinate in et , it holds that ‖et‖∞ ≤ ‖!t‖∞ and
that ‖et‖1 ≤ ‖!t‖1. Therefore, the L∞ norm update seems to be a more appropriate choice for min-
imizing the ∞-error, while the L1 norm update is the more appropriate choice for minimizing the
1-error. Our experiments confirm this intuitive argument.

The results of our experiments are summarized in Figure 4. The left-hand plot in the figure
shows the ∞-error-rate of the L∞ norm and L1 norm multitask updates, as the number of examples
grows from zero to 800K. The figure clearly shows that the L∞ norm algorithm does a better job
throughout the entire online learning process. The advantage of the L∞ norm algorithm diminishes
as more examples are observed.

The right-hand plot in Figure 4 compares the 1-error-rate of the two updates. In this case, the L∞
norm update initially takes the lead, but is quickly surpassed by the L1 norm update. The fact that
the L1 norm update ultimately gains the advantage coincides with our initial intuition. The reason
why the L∞ norm update outperforms the L1 norm update at first can also be easily explained. The
L1 norm update is quite aggressive, as it modifies every binary classifier that suffers a positive
individual loss on every round. Moreover, the L1 norm update enforces the constraint ‖τt‖∞ ≤ C.
On the other hand, the L∞ norm update is more cautious, since it enforces the stricter constraint
‖τt‖1 ≤C. The aggression of the L1 norm update causes its initial behavior to be somewhat erratic.

2256

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

0 5 10 150.11

0.115

0.12

0.125

0.13
m

ul
tic

la
ss

 e
rro

r r
at

e

r

10K examples

0 5 10 15
0.07

0.072

0.074

0.076

0.078

r

100K examples

0 5 10 15

0.05

0.051

0.052

r

600K examples

Figure 5: The multiclass error rate of the online ECOC-based classifier, using a 15 column code
matrix, with various r-max norms, after observing 10K, 100K, and 600K examples.

At first, many of the L1 norm updates actually move the classifier ensemble away from its target.
Inevitably, it takes the L1 norm classifier slightly longer to find its path.

8.2 Multiclass Meta-Categorization with ECOC and r-max Norms

Following one of the motivating examples given in the introduction, we used the ECOC method
(Dietterich and Bakiri, 1995) to reduce the 5 high-level meta-categories classification task from the
Reuters corpus to multiple binary classification tasks. We used the 5× 15 Hadamard code matrix,
defined as follows:

M =





+ + + + + + + + + + + + + + +
+ + + + + + + − − − − − − − −
+ + + − − − − + + + + − − − −
+ − − + + − − + + − − + + − −
− + − + − + − + − + − + − + −




.

This code matrix is derived by taking all 24 possible 5-coordinate columns with + in the first po-
sition, except for the all-plus column. This is the largest 5-row code matrix that does not induce
redundant or trivial binary classification problems. The distance between any two rows of the ma-
trix is 8, therefore this code is guaranteed to correct 4 binary prediction mistakes. We can determine
if more than 4 binary mistakes are made on round t by comparing the fifth largest element of !t
with 1. As mentioned in the introduction, taking the fifth largest loss does not constitute a norm,
and cannot be used as a global loss within our setting. However, a norm with a similar flavor is
the r-max norm, with r = 5. Our experiments show that it is actually advantageous to be slightly
over-cautious, by setting r to 3 or 4.

The results of our experiments are summarized in Figure 5. We trained 15 binary classifiers,
one per each column of M, using the implicit update algorithm presented in Section 5. We used
the r-max norm as the algorithm’s global loss function, with r set to every integer value between
1 and 15. For each example, all 15 binary classifiers made predictions, and M was used to decode
a multiclass prediction, as described in Dietterich and Bakiri (1995). A multiclass error occurs if
the predicted label differs from the true label. In Figure 5 we depict the average number of errors
that occurred after observing 10K, 100K, and 600K examples, for each value of r. We can see that

2257

DEKEL, LONG AND SINGER

0 2 4 6 8
x 105

0.4

0.5

0.6

0.7

0.8

online rounds

∞
−e

rro
r r

at
e

 ∞−norm perceptron
 ∞−norm implicit

0 2 4 6 8
x 105

0.005

0.01

0.015

0.02

0.025

online rounds

1−
er

ro
r r

at
e

 ∞−norm perceptron
 ∞−norm implicit

Figure 6: The ∞-error (left) and 1-error (right) attained by the multitask Perceptron (dashed) and
the implicit update algorithm (solid) when using the L∞ norm as a global loss function.

using either the L1 norm (r = 15) or the L∞ norm (r = 1) is suboptimal, and the best performance
is consistently reached by setting r to be slightly smaller than half the code distance. Although
the theoretically motivated choice of r = 5 is not the best, it still yields better results than the two
extreme choices, r = 1 and r = 15.

When we replaced the Hadamard code matrix with the One-vs-Rest code matrix, defined by
2I− 1 (where I is the 5× 5 identity matrix and 1 is the 5× 5 all-ones matrix) then the multiclass
error after observing 600K examples increases from 5% to around 8%. This justifies using the
ECOC method in the first place.

We conclude this experiment by noting that although setting r = 1 produces the largest number
of multiclass prediction mistakes, it still delivers the best performance if we evaluate the 15 classifier
ensemble using the ∞-error defined above.

8.3 The Implicit Update vs. the Multitask Perceptron

From a loss minimization standpoint, Theorem 9 proves that the implicit update, presented in Sec-
tion 5, is at least as good as the multitask Perceptron variants, presented in Secs. 3 and 4. The
following experiment demonstrates that the implicit update is also superior in practice.

We repeated the multitask multi-label experiment described in Section 8.1, using the multitask
Perceptron in place of the implicit update algorithm. The infinite horizon extension discussed in
Section 4 does not have a significant effect on empirical performance, so we consider only the finite
horizon version of the multitask Perceptron, described in Section 3.

When the global loss function is defined using the L1 norm, both the implicit update and the
multitask Perceptron update decouple to independent updates for each individual task. In this case,
both algorithms are very similar, their empirical performance is almost identical, and the comparison
between them is not very interesting. Therefore, we focus on a global loss defined by the L∞ norm.

A comparison between the performance of the implicit update and the multitask Perceptron
update, both using the L∞-norm loss, is given in Figure 6. The plot on the left-hand side of the
figure compares the two algorithms’ ∞-error-rate, and the plot on the right-hand side of the figure

2258

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

compares their 1-error-rate. The implicit algorithm holds a clear lead over the multitask Perceptron
with respect to both error measures, throughout the learning process. These results give empirical
validation to the formal comparison of the two algorithms.

9. Discussion

When faced with several online tasks in parallel, it is not always best to distribute the learning effort
evenly. In many cases, it may be beneficial to allocate more effort to tasks when they are seen to
play “key” roles. In this paper, we presented an online algorithmic framework that does precisely
that. The priority given to each task is governed by its relative performance and by the choice of a
global loss function.

We presented three families of algorithms, each of which includes an algorithm for every global
loss defined by an absolute norm. The first two families are illustrative and theoretically appeal-
ing. The third family of algorithms uses the most sophisticated update of the three, and is the one
recommended for practical use. We demonstrated the superior performance of the third family of
algorithms empirically.

We showed that, in the worst case, the finite horizon multitask Perceptron of Section 3 and
the implicit update algorithm of Section 5 both perform asymptotically as well as the best fixed
hypothesis ensemble. In other words, these algorithms are no-regret algorithms with respect to any
global loss function defined by an absolute norm. The same cannot be said for the naive alternative,
where we use multiple independent single-task learning algorithms to solve the multitask problem.
We also demonstrated the benefit of the multitask approach over the naive alternative on two large-
scale text categorization problems.

Throughout the paper, we assumed that the multiple online tasks are perfectly synchronized,
and that a complete k-tuple of examples is observed on every round. This is indeed the case in each
of the concrete examples described in the introduction and empirically tested in our experiments.
However, in other real-world situations, this may not be the case. Namely, there could occur situ-
ations where not all of the tasks are active on every single round. In other words, there may be a
subset of “dormant tasks” on each round. For example, say that we are operating an online store and
that we have multiple registered customers. Each product in our store is represented by a feature
vector, and we train an individual binary classifier for each of our customers. When costumer j
visits a product-page on our website, the respective classifier is used to predict whether that cus-
tomer intends to purchase the product or not. The prediction is then used to decide whether or not
to lure the customer away from that page. This setting induces a natural online multitask learning
problem. Moreover, only a fraction of the customers is online at any given moment. We consider
the tasks of those customers that are not online to be dormant or inactive tasks. At a first glance,
the inactive tasks setting may seem to be more complicated than the fully synchronized setting dis-
cussed throughout the paper. However, our algorithms and analysis accommodate this extension
quite naturally. We simply need to define !t, j = 0 for every inactive task and apply the multitask
update verbatim. Due to the conservativeness assumption, the hypotheses of the inactive tasks will
be left intact. Additionally, note that all of the norms discussed in this paper have the property that
‖v‖ = ‖v′‖, where v′ is the vector obtained by removing all of the zero entries from v. Therefore,
we can imagine that the length of the vector !t changes from round to round, and that the update on
each round is applied as if the tasks that are sleeping on that round never existed in the first place.
We would also like to note that, although our presentation focuses on multiple binary classifica-

2259

DEKEL, LONG AND SINGER

tion tasks, our algorithms and techniques can be adapted to other online learning problems as well.
Specifically, a multitask implicit update can be derived for regression and uniclass problems using
ideas from Crammer et al. (2006).

The next-step would be to extend our framework from absolute norms to general norms. For
example, the family of Mahalanobis norms, defined by ‖z‖2 = z+Pz (where P is a positive definite
matrix) includes norms that are not absolute but which could have interesting applications in our
setting. More generally, there exist meaningful global loss functions which are not norms at all.

Another interesting research direction would be to return to the roots of statistical multitask
learning, and to try to model generative similarities between the multiple tasks within the online
framework. In our work, we completely disregarded any relatedness between the multiple tasks, and
only considered the shared consequences of errors. In the game-theoretic spirit of online learning,
modeling these similarities would have to be done without making statistical assumptions on the
data source.

Appendix A. The K-Method of Norm Interpolation

In this section, we briefly survey Peetre’s K-method of norm interpolation. This method takes a
pair of norms and smoothly interpolates between them, producing a new family of norms which
can be used in our setting. An example of such an interpolation is the family of r-max norms,
previously mentioned in this paper. The main practical purpose of this section is to prove that the
dual of the r-max norm takes the form given in Equation (3). We do not present the K-method in
all its generality, but rather focus only on topics which are relevant to the online multitask learning
setting. The interested reader is referred to Bennett and Sharpley (1998) for a more detailed account
of interpolation theory.

We begin by presenting Peetre’s K-functional and J-functional, and proving that they induce
dual norms. Let ‖ ·‖p1 :Rk → R+ and ‖ ·‖p2 :Rk → R+ be two p-norms, and let ‖ ·‖q1 and ‖ ·‖q2 be
their respective duals. The K-functional with respect to p1 and p2, and with respect to the constant
α> 0, is defined as

‖v‖K(p1,p2,α) = min
w+z=v

(
‖w‖p1 +α‖z‖p2

)
.

The J-functional with respect to q1, q2, and with respect to the constant β> 0, is defined as

‖u‖J(q1,q2,β) = max
{
‖u‖q1 , β‖u‖q2

}
.

The J-functional is obviously a norm: positivity and linearity follow immediately from the fact that
‖ · ‖q1 and ‖ · ‖q2 posses these properties. The triangle inequality follows from

‖v+u‖J(q1,q2,β) = max
{
‖v+u‖q1 , β‖v+u‖q2

}

≤ max
{
‖v‖q1 +‖u‖q1 , β‖v‖q2 +β‖u‖q2

}

≤ max
{
‖v‖q1 , β‖v‖q2

}
+ max

{
‖u‖q1 , β‖u‖q2

}

= ‖v‖J(q1,q2,β) + ‖u‖J(q1,q2,β) .

Since the J-functional is defined with respect to two absolute norms, it too is an absolute norm.
Instead of explicitly proving that ‖ · ‖K(p1,p2,α) is also a norm, we prove that it is the dual of

‖ ·‖J(q1,q2,β) when α= 1/β. Since the dual of an absolute norm is itself an absolute norm, and since

2260

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

the dual of the dual norm is the original norm (Horn and Johnson, 1985), our proof implies that
‖ · ‖K(p1,p2,α) is indeed a norm, that it is absolute, and that its dual is ‖ · ‖J(q1,q2,1/α).

Theorem 10 Using the notation defined above,

‖ · ‖∗J(q1,q2,β) ≡ ‖ ·‖K(p1,p2,1/β) .

Proof We abbreviate ‖v‖J = ‖v‖J(q1,q2,β) and ‖v‖K = ‖v‖K(p1,p2,1/β) throughout the proof. First,
we show that ‖v‖∗J ≤ ‖v‖K for all v ∈ Rk. Let v,w and z be vectors in Rk such that v=w+z. Then
for any u ∈ Rk, we can use Hölder’s inequality to obtain

u ·v = u ·w + u · z
≤ ‖u‖q1‖w‖p1 + ‖u‖q2‖z‖p2 .

By definition, it holds that

‖u‖q1 ≤ ‖u‖J and ‖u‖q2 ≤
1
β
‖u‖J ,

and so
u ·v ≤

(
‖w‖p1 +

1
β
‖z‖p2

)
‖u‖J .

Since the only restriction on u,v,w and z is that v= w+ z, we can fix v, choose u to be the vector
which maximizes the left-hand side above subject to ‖u‖J ≤ 1, and choose w and z which minimize
the right-hand side above subject to v= w+ z. This results in

max
u∈Rk:‖u‖J≤1

u ·v ≤ min
w+z=v

(
‖w‖p1 +

1
β
‖z‖p2

)
.

The left-hand side above is the formal definition of ‖v‖∗J , the right-hand side is the definition of
‖v‖K , and we have proven that ‖v‖∗J ≤ ‖v‖K .

To prove the opposite direction, fix v and let u be the vector with ‖u‖J ≤ 1 which maximizes
u ·v. We now consider two cases. If ‖u‖q1 ≥ β‖u‖q2 then

‖v‖∗J = max
u:‖u‖q1≤1

u ·v .

Using the duality of ‖ · ‖q1 and ‖ · ‖p1 , the right hand-side above equals ‖v‖p1 . Since we can choose
w= v and z= 0, it certainly holds that

‖v‖p1 ≥ min
w+z=v

(
‖w‖p1 +

1
β
‖z‖p2

)
= ‖v‖K .

On the other hand, if ‖u‖q1 ≤ β‖u‖q2 then

‖v‖∗J =
1
β

max
u:‖u‖p2≤1

u ·v .

2261

DEKEL, LONG AND SINGER

Using the duality of ‖·‖q2 and ‖·‖p2 , the right hand-side above equals 1β‖v‖p2 . Since we can choose
w= 0 and z= v, it holds that

1
β
‖v‖p2 ≥ min

w+z=v

(
‖w‖p2 +

1
β
‖z‖p2

)
= ‖v‖K .

Overall, we have shown that ‖v‖∗J ≥ ‖v‖K .

The r-max norm discussed in the paper is an instance of the K-functional, and can be defined as

‖v‖r-max = ‖v‖K(1,∞,r) .

To see why this is true, let φ be the absolute value of the r’th absolutely largest coordinate in v. Now
define for each 1≤ j ≤ k

w j = sign(v j)max{0, |v j|−φ} and z j = sign(v j)min{|v j|,φ} .

Note that w+ z= v, and that
‖v‖r-max = ‖w‖1+ r‖z‖∞ .

This proves that ‖v‖r-max ≥ ‖v‖K(1,∞,r).
Turning to the opposite inequality, let π(1), . . . ,π(r) be the indices of the r absolutely largest

elements of v, and let w and z be vectors such that w+ z= v. We now have that

‖v‖r-max =
r

∑
j=1

|vπ(j)|

=
r

∑
j=1

|wπ(j) + zπ(j)|

≤
r

∑
j=1

|wπ(j)| +
r

∑
j=1

|zπ(j)|

≤
r

∑
j=1

|wπ(j)| + r max
j=1,...,r

|zπ(j)|

≤
k

∑
j=1

|w j| + r max
j=1,...,k

|z j| = ‖w‖1 + r‖z‖∞ .

The above holds for any w and z which sum to v, and specifically to those which minimize ‖w‖1+
r‖z‖∞. We conclude that ‖v‖r-max ≤ ‖v‖K(1,∞,r), and therefore ‖v‖r-max = ‖v‖K(1,∞,r).

Finally, we calculate an upper bound on the remoteness of ‖·‖J(q1,q2,β). This enables us to obtain
concrete loss bounds for interpolation norms from the theorems proven in this paper. Recall that

ρ(‖ · ‖J(q1,q2,β),k) = max
u∈Rk

‖u‖2
‖u‖J(q1,q2,β)

.

Using the definition of the J-functional, the above becomes

max
u∈Rk

min
{

‖u‖2
‖u‖q1

,
‖u‖2
β‖u‖q2

}
.

2262

ONLINE LEARNING OF MULTIPLE TASKS WITH A SHARED LOSS

Using the weak minimax theorem, we can upper-bound the above by

min
{
max
u∈Rk

‖u‖2
‖u‖q1

,max
u∈Rk

‖u‖2
β‖u‖q2

}
.

Once again using the definition of remoteness, the above can be rewritten as

min
{
ρ(‖ · ‖q1 ,k),

ρ(‖ · ‖q2 ,k)
β

}
.

Using Lemma 2, we can obtain an explicit upper bound on the remoteness of any interpolation of
p-norms.

References

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research, 12:
149–198, 2000.

S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In Proceedings
of the Sixteenth Annual Conference on Computational Learning Theory, 2003.

C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, 1998.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

O. Chapelle and Z. Harchaoui. A machine learning approach to conjoint analysis. In Advances in
Neural Information Processing Systems, volume 17, 2005.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Journal
of Machine Learning Research, 3:951–991, 2003.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, Mar 2006.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, 2:263–286, January 1995.

T. Evgeniou, C.Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of
Machine Learning Research, 6:615–637, 2005.

D. P. Helmbold, J. Kivinen, and M. Warmuth. Relative loss bounds for single neurons. IEEE
Transactions on Neural Networks, 10(6):1291–1304, 1999.

R. Herbrich, T. Graepel, and K. Obermayer. Large marging rank boundaries for ordinal regression.
In A. Smola, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers.
MIT Press, 2000.

2263

DEKEL, LONG AND SINGER

T. Heskes. Solving a huge number of silmilar tasks: A combination of multitask learning and
a hierarchical bayesian approach. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 233–241, 1998.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

J. Kivinen and M. Warmuth. Relative loss bounds for multidimensional regression problems. Jour-
nal of Machine Learning, 45(3):301–329, July 2001.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on the
Mathematical Theory of Automata, volume XII, pages 615–622, 1962.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing (MIT Press,
1988).).

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the Twenty-First International
Conference on Machine Learning, 2004.

2264

Journal of Machine Learning Research 8 (2007) 2265-2295 Submitted 6/06; Revised 5/07; Published 10/07

Euclidean Embedding of Co-occurrence Data

Amir Globerson∗ GAMIR@CSAIL.MIT.EDU
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

Gal Chechik∗ GAL@AI.STANFORD.EDU
Department of Computer Science
Stanford University
Stanford CA, 94306

Fernando Pereira PEREIRA@CIS.UPENN.EDU
Department of Computer and Information Science
University of Pennsylvania
Philadelphia PA, 19104

Naftali Tishby TISHBY@CS.HUJI.AC.IL
School of Computer Science and Engineering and
The Interdisciplinary Center for Neural Computation
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel

Editor: John Lafferty

Abstract
Embedding algorithms search for a low dimensional continuous representation of data, but most
algorithms only handle objects of a single type for which pairwise distances are specified. This
paper describes a method for embedding objects of different types, such as images and text, into a
single common Euclidean space, based on their co-occurrence statistics. The joint distributions are
modeled as exponentials of Euclidean distances in the low-dimensional embedding space, which
links the problem to convex optimization over positive semidefinite matrices. The local structure of
the embedding corresponds to the statistical correlations via random walks in the Euclidean space.
We quantify the performance of our method on two text data sets, and show that it consistently
and significantly outperforms standard methods of statistical correspondence modeling, such as
multidimensional scaling, IsoMap and correspondence analysis.
Keywords: embedding algorithms, manifold learning, exponential families, multidimensional
scaling, matrix factorization, semidefinite programming

1. Introduction

Embeddings of objects in a low-dimensional space are an important tool in unsupervised learning
and in preprocessing data for supervised learning algorithms. They are especially valuable for
exploratory data analysis and visualization by providing easily interpretable representations of the

∗. Both authors contributed equally. Gal Chechik’s current address is Google Inc., 1600 Amphitheatre Parkway, Moun-
tain View, CA, 94043.

c©2007 Amir Globerson, Gal Chechik, Fernando Pereira and Naftali Tishby.

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

relationships among objects. Most current embedding techniques build low dimensional mappings
that preserve certain relationships among objects. The methods differ in the relationships they
choose to preserve, which range from pairwise distances in multidimensional scaling (MDS) (Cox
and Cox, 1984) to neighborhood structure in locally linear embedding (Roweis and Saul, 2000) and
geodesic structure in IsoMap (Tenenbaum et al., 2000). All these methods operate on objects of a
single type endowed with a measure of similarity or dissimilarity.

However, embedding should not be confined to objects of a single type. Instead, it may involve
different types of objects provided that those types share semantic attributes. For instance, images
and words are syntactically very different, but they can be associated through their meanings. A joint
embedding of different object types could therefore be useful when instances are mapped based on
their semantic similarity. Once a joint embedding is achieved, it also naturally defines a measure
of similarity between objects of the same type. For instance, joint embedding of images and words
induces a distance measure between images that captures their semantic similarity.

Heterogeneous objects with a common similarity measure arise in many fields. For example,
modern Web pages contain varied data types including text, diagrams and images, and links to
other complex objects and multimedia. The objects of different types on a given page have often
related meanings, which is the reason they can be found together in the first place. In biology, genes
and their protein products are often characterized at multiple levels including mRNA expression
levels, structural protein domains, phylogenetic profiles and cellular location. All these can often
be related through common functional processes. These processes could be localized to a specific
cellular compartment, activate a given subset of genes, or use a subset of protein domains. In this
case the specific biological process provides a common “meaning” for several different types of
data.

A key difficulty in constructing joint embeddings of heterogeneous objects is to obtain a good
similarity measure. Embedding algorithms often use Euclidean distances in some feature space as
a measure of similarity. However, with heterogeneous object types, objects of different types may
have very different representations (such as categorical variables for some and continuous vectors
for others), making this approach infeasible.

The current paper addresses these problems by using object co-occurrence statistics as a source
of information about similarity. We name our method Co-occurrence Data Embedding, or CODE.
The key idea is that objects which co-occur frequently are likely to have related semantics. For ex-
ample, images of dogs are likely to be found in pages that contain words like {dog, canine, bark},
reflecting a common underlying semantic class. Co-occurrence data may be related to the geom-
etry of an underlying map in several ways. First, one can simply regard co-occurrence rates as
approximating pairwise distances, since rates are non-negative and can be used as input to standard
metric-based embedding algorithms. However, since co-occurrence rates do not satisfy metric con-
straints, interpreting them as distances is quite unnatural, leading to relatively poor results as shown
in our experiments.

Here we take a different approach that is more directly related to the statistical nature of the
co-occurrence data. We treat the observed object pairs as drawn from a joint distribution that is
determined by the underlying low-dimensional map. The distribution is constructed such that a pair
of objects that are embedded as two nearby points in the map have a higher statistical interaction than
a pair that is embedded as two distant points. Specifically, we transform distances into probabilities
in a way that decays exponentially with distance. This exponential form maps sums of distances

2266

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

into products of probabilities, supporting a generative interpretation of the model as a random walk
in the low-dimensional space.

Given empirical co-occurrence counts, we seek embeddings that maximize the likelihood of
the observed data. The log-likelihood in this case is a non-concave function, and we describe and
evaluate two approaches for maximizing it. One approach is to use a standard conjugate gradient
ascent algorithm to find a local optimum. Another approach is to approximate the likelihood max-
imization using a convex optimization problem, where a convex non-linear function is minimized
over the cone of semidefinite matrices. This relaxation is shown to yield similar empirical results to
the gradient based method.

We apply CODE to several heterogeneous embedding problems. First, we consider joint embed-
dings of two object types, namely words-documents and words-authors in data sets of documents.
We next show how CODE can be extended to jointly embed more than two objects, as demonstrated
by jointly embedding words, documents, and authors into a single map. We also obtain quantita-
tive measures of performance by testing the degree to which the embedding captures ground-truth
structures in the data. We use these measures to compare CODE to other embedding algorithms,
and find that it consistently and significantly outperforms other methods.

An earlier version of this work was described by Globerson et al. (2005).

2. Problem Formulation

Let X and Y be two categorical variables with finite cardinalities |X | and |Y |. We observe a set of
pairs {xi,yi}ni=1 drawn IID from the joint distribution of X and Y . The sample is summarized via
its empirical distribution1 p(x,y), which we wish to use for learning about the underlying unknown
joint distribution of X andY . In this paper, we consider models of the unknown distribution that rely
on a joint embedding of the two variables. Formally, this embedding is specified by two functions
φ : X → Rq and ψ : Y → Rq that map both categorical variables into the common low dimensional
space Rq, as illustrated in Figure 1.

The goal of a joint embedding is to find a geometry that reflects well the statistical relationship
between the variables. To do this, we model the observed pairs as a sample from the parametric
distribution p(x,y;φ,ψ), abbreviated p(x,y) when the parameters are clear from the context. Thus,
our models relate the probability p(x,y) of a pair (x,y) to the embedding locations φ(x) and ψ(y).

In this work, we focus on the special case in which the model distribution depends on the squared
Euclidean distance d2x,y between the embedding points φ(x) and ψ(y):

d2x,y = ‖φ(x)−ψ(y)‖2 =
q

∑
k=1

(φk(x)−ψk(y))2 .

Specifically, we consider models where the probability p(x,y) is proportional to e−d2x,y , up to addi-
tional factors described in detail below. This reflects the intuition that closer objects should co-occur
more frequently than distant objects. However, a major complication of embedding models is that
the embedding locations φ(x) and ψ(y) should be insensitive to the marginals p(x) = ∑y p(x,y) and
p(y) = ∑x p(x,y). To see why, consider a value x ∈ X with a low marginal probability p(x) % 1,
which implies a low p(x,y) for all y. In a model where p(x,y) is proportional to e−d2x,y this will force

1. The empirical distribution p(x,y) is proportional to the number of times the pair (x,y) was observed. The represen-
tations {(xi,yi)}ni=1 and p(x,y) are equivalent up to a multiplicative factor.

2267

GLOBERSON, CHECHIK, PEREIRA AND TISHBY


  


  


  

 




 






Figure 1: Embedding of X and Y into the same q-dimensional space. The embeddings functions
φ :X→Rq andψ :Y →Rq determine the position of each instance in the low-dimensional
space.

φ(x) to be far away from all ψ(y). Such an embedding would reflect the marginal of x rather than
its statistical relationship with all the other y values.

In what follows, we describe several methods to address this issue. Section 2.1 discusses sym-
metric models, and Section 2.2 conditional ones.

2.1 Symmetric Interaction Models

The goal of joint embedding is to have the geometry in the embedded space reflect the statistical
relationships between variables, rather than just their joint probability. Specifically, the location φ(x)
should be insensitive to the marginal p(x), which just reflects the chance of observing x rather than
the statistical relationship between x and different y values. To achieve this, we start by considering
the ratio

rp(x,y) =
p(x,y)
p(x)p(y)

, p(x) =∑
y
p(x,y) , p(y) =∑

x
p(x,y)

between the joint probability of x and y and the probability of observing that pair if the occurrences
of x and y were independent. This ratio is widely used in statistics and information theory, for
instance in the mutual information (Cover and Thomas, 1991), which is the expected value of the
log of this ratio: I(X ;Y) = ∑x,y p(x,y) log

p(x,y)
p(x)p(y) = ∑x,y p(x,y) logrp(x,y). When X and Y are

statistically independent, we have rp(x,y) = 1 for all (x,y), and for any marginal distributions p(x)
and p(y). Otherwise, high (low) values of rp(x,y) imply that the probability of p(x,y) is larger
(smaller) than the probability assuming independent variables.

Since rp(x,y) models statistical dependency, it is a natural choice to construct a model where
rp(x,y) is proportional to e−d

2
x,y . A first attempt at such a model is

p(x,y) =
1
Z
p(x)p(y)e−d

2
x,y , p(x) =∑

y
p(x,y) , p(y) =∑

x
p(x,y) , (1)

where Z is a normalization term (partition function). The key difficulty with this model is that
p(x) and p(y), which appear in the model, are dependent on p(x,y). Hence, some choices of d2x,y
lead to invalid models. As a result, one has to choose p(x), p(y) and d2x,y jointly such that the

2268

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

p(x,y) obtained is consistent with the given marginals p(x) and p(y). This significantly complicates
parameter estimation in such models, and we do not pursue them further here.2

To avoid the above difficulty, we use instead the ratio to the empirical marginals p(x) and p(y)

rp(x,y) =
p(x,y)
p(x)p(y)

, p(x) =∑
y
p(x,y) , p(y) =∑

x
p(x,y) .

This is a good approximation of rp when p(x), p(y) are close to p(x), p(y), which is a reasonable
assumption for the applications that we consider. Requiring r p(x,y) to be proportional to e−d

2
x,y , we

obtain the following model

pMM(x,y) ≡ 1
Z
p(x)p(y)e−d

2
x,y ∀x ∈ X ,∀y ∈ Y , (2)

where Z = ∑x,y p(x)p(y)e−d
2
x,y is a normalization term. The subscript MM reflects the fact that

the model contains the marginal factors p(x) and p(y). We use different subscripts to distin-
guish between the models that we consider (see Section 2.3). The distribution pMM(x,y) satisfies
rpMM(x,y) ∝ e−d

2
x,y , providing a direct relation between statistical dependencies and embedding dis-

tances. Note that pMM(x,y) has zero probability for any x or y that are not in the support of p(x)
or p(y) (that is, p(x) = 0 or p(y) = 0). This does not pose a problem because such values of X or
Y will not be included in the model to begin with, since we essentially cannot learn anything about
them when variables are purely categorical. When the X or Y objects have additional structure, it
may be possible to infer embeddings of unobserved values. This is discussed further in Section 9.

The model pMM(x) is symmetric with respect to the variables X and Y . The next section de-
scribes a model that breaks this symmetry by conditioning on one of the variables.

2.2 Conditional Models

A standard approach to avoid modeling marginal distributions is to use conditional distributions
instead of the joint distribution. In some cases, conditional models are a more plausible generating
mechanism for the data. For instance, a distribution of authors and words in their works is more
naturally modeled as first choosing an author according to some prior and then generating words
according to the author’s vocabulary preferences. In this case, we can use the embedding distances
d2x,y to model the conditional word generation process rather than the joint distribution of authors
and words.

The following equation defines a distance-based model for conditional co-occurrence probabil-
ities:

pCM(y|x) ≡ 1
Z(x)

p(y)e−d
2
x,y ∀x ∈ X ,∀y ∈ Y . (3)

Z(x) = ∑y p(y)e−d
2
x,y is a partition function for the given value x, and the subscript CM reflects the

fact that we are conditioning on X and multiplying by the marginal of Y . We can use pCM(y|x) and
the empirical marginal p(x) to define a joint model pCM(x,y) ≡ pCM(y|x)p(x) so that

pCM(x,y) =
1

Z(x)
p(x)p(y)e−d

2
x,y . (4)

2. Equation 1 bears some resemblance to copula based models (Nelsen, 1999) where joint distributions are modeled as
a product of marginals and interaction terms. However, copula models are typically based on continuous variables
with specific interaction terms, and thus do not resolve the difficulty mentioned above.

2269

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

This model satisfies the relation rpCM(x,y)∝ 1
Z(x)e

−d2x,y between statistical dependency and distance.
This implies that for a given x, the nearest neighbor ψ(y) of φ(x) corresponds to the y with the
largest dependency ratio rpCM(x,y).

A GENERATIVE PROCESS FOR CONDITIONAL MODELS

One advantage of using a probabilistic model to describe complex data is that the model may reflect
a mechanism for generating the data. To study such a mechanism here, we consider a simplified
conditional model

pCU(y|x) ≡ 1
Z(x)

e−d
2
x,y =

1
Z(x)

e−‖φ(x)−ψ(y)‖2 . (5)

We also define the corresponding joint model pCU(x,y) = pCU(y|x)p(x), as in Equation 4.
The model in Equation 5 states that for a given x, the probability of generating a given y is

proportional to e−d2x,y . To obtain a generative interpretation of this model, consider the case where
every point in the space Rq corresponds to ψ(y) for some y (that is, ψ is a surjective map). This
will only be possible if there is a one to one mapping between the variable Y and Rq, so for the
purpose of this section we assume that Y is not discrete. Sampling a pair (x,y) from pCU(x,y) then
corresponds to the following generative procedure:

• Sample a value of x from p(x).

• For this x, perform a random walk in the space Rq starting at the point φ(x) and terminating
after a fixed time T .3

• Denote the termination point of the random walk by z ∈ Rq.

• Return the value of y for which z= ψ(y).

The termination point of a random walk has a Gaussian distribution, with a mean given by the start-
ing point φ(x). The conditional distribution pCU(y|x) has exactly this Gaussian form, and therefore
the above process generates pairs according to the distribution pCU(x,y). This process only de-
scribes the generation of a single pair (xi,yi), and distinct pairs are assumed to be generated IID. It
will be interesting to consider models for generating sequences of pairs via one random walk.

A generative process for the model pCM in Equation 3 is less straightforward to obtain. Intu-
itively, it should correspond to a random walk that is weighted by some prior over Y . Thus, the
random walk should be less likely to terminate at points ψ(y) that correspond to low p(y). The
multiplicative interaction between the exponentiated distance and the prior makes it harder to define
a generative process in this case.

2.3 Alternative Models

The previous sections considered several models relating distributions to embeddings. The notation
we used for naming the models above is of the form pAB where A and B specify the treatment of the
X and Y marginals, respectively. The following values are possible for A and B:

• C : The variable is conditioned on.

3. Different choices of T will correspond to different constants multiplying d2x,y in Equation 5. We assume here that T
is chosen such that this constant is one.

2270

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

• M : The variable is not conditioned on, and its observed marginal appears in the distribution.

• U : The variable is not conditioned on, and its observed marginal does not appear in the
distribution.

This notation can be used to define models not considered above. Some examples, which we also
evaluate empirically in Section 8.5 are

pUU(x,y) ≡ 1
Z
e−d

2
x,y , (6)

pMC(x|y) ≡ 1
Z(y)

p(x)e−d
2
x,y ,

pUC(x|y) ≡ 1
Z(y)

e−d
2
x,y .

2.4 Choosing the “Right” Model

The models discussed in Sections 2.1-2.3 present different approaches to relating probabilities to
distances. They differ in their treatment of marginals, and in using distances to model either joint or
conditional distributions. They thus correspond to different assumptions about the data. For exam-
ple, conditional models assume an asymmetric generative model, where distances are related only
to conditional distributions. Symmetric models may be more appropriate when no such conditional
assumption is valid. We performed a quantitative comparison of all the above models on a task
of word-document embedding, as described in Section 8.5. Our results indicate that, as expected,
models that address both marginals (such as pCM or pMM), and that are therefore directly related
to the ratio rp(x,y), outperform models which do not address marginals. Although there are two
possible conditional models, conditioning on X or on Y , for the specific task studied in Section 8.5
one of the conditional models is more sensible as a generating mechanism, and indeed yielded better
results.

3. Learning the Model Parameters

We now turn to the task of learning the model parameters {φ(x),ψ(y)} from empirical data. In
what follows, we focus on the model pCM(x,y) in Equation 4. However, all our derivations are
easily applied to the other models in Section 2. Since we have a parametric model of a distribu-
tion, it is natural to look for the parameters that maximize the log-likelihood of the observed pairs
{(xi,yi)}ni=1. For a given set of observed pairs, the average log-likelihood is4

!(φ,ψ) =
1
n

n

∑
i=1
log pCM(xi,yi) .

The log-likelihood may equivalently be expressed in terms of the distribution p(x,y) since

!(φ,ψ) =∑
x,y
p(x,y) log pCM(x,y) .

4. For conditional models we can consider maximizing only the conditional log-likelihood 1
n ∑

n
i=1 log p(yi|xi). This is

equivalent to maximizing the joint log-likelihood for the model p(y|x)p(x), and we prefer to focus on joint likelihood
maximization so that a unified formulation is used for both joint and conditional models.

2271

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

As in other cases, maximizing the log-likelihood is also equivalent to minimizing the KL divergence
DKL between the empirical and the model distributions, since !(φ,ψ) equals DKL [p(x,y)|pCM(x,y)]
up to an additive constant.

The log-likelihood in our case is given by

!(φ,ψ) = ∑
x,y
p(x,y) log pCM(x,y)

= ∑
x,y
p(x,y)

(
−d2x,y− logZ(x)+ log p(x)+ log p(y))

)

= −∑
x,y
p(x,y)d2x,y−∑

x
p(x) logZ(x)+ const , (7)

where const = ∑y p(y) log p(y) +∑x p(x) log p(x) is a constant term that does not depend on the
parameters φ(x) and ψ(y).

Finding the optimal parameters now corresponds to solving the following optimization problem

(φ∗,ψ∗) = argmax
φ,ψ

!(φ,ψ) . (8)

The log-likelihood is composed of two terms. The first is (minus) the mean distance between x and
y. This will be maximized when all distances are zero. This trivial solution is avoided because of
the regularization term ∑x p(x) logZ(x), which acts to increase distances between x and y points.

To characterize the maxima of the log-likelihood we differentiate it with respect to the embed-
dings of individual objects (φ(x),ψ(y)), and obtain the following gradients

∂!(φ,ψ)
∂φ(x)

= 2p(x)
(
〈ψ(y)〉p(y|x)−〈ψ(y)〉pCM(y|x)

)
, ,

∂!(φ,ψ)
∂ψ(y)

= 2pCM(y)
(
ψ(y)−〈φ(x)〉pCM(x|y)

)
−2p(y)

(
ψ(y)−〈φ(x)〉p(x|y)

)
,

where pCM(y) = ∑x pCM(y|x)p(x) and pCM(x|y) = pCM(x,y)
pCM(y) .

Equating the φ(x) gradient to zero yields:

〈ψ(y)〉pCM(y|x) = 〈ψ(y)〉p(y|x) . (9)

If we fix ψ, this equation is formally similar to the one that arises in the solution of conditional
maximum entropy models (Berger et al., 1996). However, there is a crucial difference in that the
exponent of pCM(y|x) in conditional maximum entropy is linear in the parameters (φ in our nota-
tion), while in our model it also includes quadratic (norm) terms in the parameters. The effect of
Equation 9 can then be described informally as that of choosing φ(x) so that the expected value of
ψ under pCM(y|x) is the same as its empirical average, that is, placing the embedding of x closer to
the embeddings of those y values that have stronger statistical dependence with x.

The maximization problem of Equation 8 is not jointly convex in φ(x) and ψ(y) due to the
quadratic terms in d2xy.5 To find the local maximum of the log-likelihood with respect to both φ(x)
and ψ(y) for a given embedding dimension q, we use a conjugate gradient ascent algorithm with
random restarts.6 In Section 5 we describe a different approach to this optimization problem.

5. The log-likelihood is a convex function of φ(x) for a constant ψ(y), as noted in Iwata et al. (2005), but is not convex
in ψ(y) for a constant φ(x).

6. The code is provided online at http://ai.stanford.edu/˜gal/.

2272

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

4. Relation to Other Methods

In this section we discuss other methods for representing co-occurrence data via low dimensional
vectors, and study the relation between these methods and the CODE models.

4.1 Maximizing Correlations and Related Methods

Embedding the rows and columns of a contingency table into a low dimensional Euclidean space
was previously studied in the statistics literature. Fisher (1940) described a method for mapping
X and Y into scalars φ(x) and ψ(y) such that the correlation coefficient between φ(x) and ψ(y) is
maximized. The method of Correspondence Analysis (CA) generalizes Fisher’s method to non-
scalar mappings. More details about CA are given in Appendix A. Similar ideas have been applied
to more than two variables in the Gifi system (Michailidis and de Leeuw, 1998). All these methods
can be shown to be equivalent to the more widely known canonical correlation analysis (CCA)
procedure (Hotelling, 1935). In CCA one is given two continuous multivariate random variables X
and Y , and aims to find two sets of vectors, one for X and the other for Y , such that the correlations
between the projections of the variables onto these vectors are maximized. The optimal projections
for X and Y can be found by solving an eigenvalue problem. It can be shown (Hill, 1974) that if
one represents X and Y via indicator vectors, the CCA of these vectors (when replicated according
to their empirical frequencies) results in Fisher’s mapping and CA.

The objective of these correlation based methods is to maximize the correlation coefficient be-
tween the embeddings of X and Y . We now discuss their relation to our distance-based method.
First, the correlation coefficient is invariant under affine transformations and we can thus focus on
centered solutions with a unity covariance matrix solutions: 〈φ(X)〉= 0,〈ψ(Y)〉= 0 and Cov(φ(X))=
Cov(ψ(Y)) = I. In this case, the correlation coefficient is given by the following expression (we
focus on q= 1 for simplicity)

ρ(φ(x),ψ(y)) =∑
x,y
p(x,y)φ(x)ψ(y) = −1

2∑x,y
p(x,y)d2x,y+1 .

Maximizing the correlation is therefore equivalent to minimizing the mean distance across all pairs.
This clarifies the relation between CCA and our method: Both methods aim to minimize the average
distance between X and Y embeddings. However, CCA forces embeddings to be centered and
scaled, whereas our method introduces a global regularization term related to the partition function.

A kernel variant of CCA has been described in Lai and Fyfe (2000) and Bach and Jordan (2002),
where the input vectors X and Y are first mapped to a high dimensional space, where linear projec-
tion is carried out. This idea could possibly be used to obtain a kernel version of correspondence
analysis, although we are not aware of existing work in that direction.

Recently, Zhong et al. (2004) presented a co-embedding approach for detecting unusual activity
in video sequences. Their method also minimizes an averaged distance measure, but normalizes it
by the variance of the embedding to avoid trivial solutions.

4.2 Distance-Based Embeddings

Multidimensional scaling (MDS) is a well-known geometric embedding method (Cox and Cox,
1984), whose standard version applies to same-type objects with predefined distances. MDS em-
bedding of heterogeneous entities was studied in the context of modeling ranking data (Cox and

2273

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

Cox, 1984, Section 7.3). These models, however, focus on specific properties of ordinal data and
therefore result in optimization principles and algorithms different from our probabilistic interpre-
tation.

Relating Euclidean structure to probability distributions was previously discussed by Hinton
and Roweis (2003). They assume that distances between points in some X space are given, and
the exponent of these distances induces a distribution p(x = i|x = j) which is proportional to the
exponent of the distance between φ(i) and φ(j). This distribution is then approximated via an
exponent of distances in a low dimensional space. Our approach differs from theirs in that we treat
the joint embedding of two different spaces. Therefore, we do not assume a metric structure between
X and Y , but instead use co-occurrence data to learn such a structure. The two approaches become
similar when X = Y and the empirical data exactly obeys an exponential law as in Equation 3.

Iwata et al. (2005) recently introduced the Parametric Embedding (PE) method for visualizing
the output of supervised classifiers. They use the model of Equation 3 where Y is taken to be the
class label, and X is the input features. Their embedding thus illustrates which X values are close to
which classes, and how the different classes are inter-related. The approach presented here can be
viewed as a generalization of their approach to the unsupervised case, where X and Y are arbitrary
objects.

An interesting extension of locally linear embedding (Roweis and Saul, 2000) to heterogeneous
embedding was presented by Ham et al. (2003). Their method essentially forces the outputs of
two locally linear embeddings to be aligned such that corresponding pairs of objects are mapped to
similar points.

A Bayesian network approach to joint embedding was recently studied in Mei and Shelton
(2006) in the context of collaborative filtering.

4.3 Matrix Factorization Methods

The empirical joint distribution p(x,y) can be viewed as a matrix P of size |X |× |Y |. There is much
literature on finding low rank approximations of matrices, and specifically matrices that represent
distributions (Hofmann, 2001; Lee and Seung, 1999). Low rank approximations are often expressed
as a productUV T whereU and V are two matrices of size |X |×q and |Y |×q respectively.

In this context CODE can be viewed as a special type of low rank approximation of the matrix P.
Consider the symmetric model pUU in Equation 6, and the following matrix and vector definitions:7

• Let Φ be a matrix of size |X |×q where the ith row is φ(i). Let Ψ be a matrix of size |Y |×q
where the ith row is ψ(i).

• Define the column vector u(Φ) ∈ R|X | as the set of squared Euclidean norms of φ(i), so that
ui(φ) = ‖φ(i)‖2. Similarly define v(ψ) ∈ R|Y | as vi(ψ) = ‖ψ(i)‖2.

• Denote the k-dimensional column vector of all ones by 1k.

Using these definitions, the model pUU can then be written in matrix form as

logPUU = − logZ+2ΦΨT −u(Φ)1T|Y |−1|X |v(Ψ)T

where the optimal Φ and Ψ are found by minimizing the KL divergence between P and PUU .

7. We consider pUU for simplicity. Other models, such as pMM , have similar interpretations.

2274

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

The model for logPUU is in fact low-rank, since the rank of logPUU is at most q+2. However,
note that PUU itself will not necessarily have a low rank. Thus, CODE can be viewed as a low-
rank matrix factorization method, where the structure of the factorization is motivated by distances
between rows of Φ andΨ, and the quality of the approximation is measured via the KL divergence.

Many matrix factorization algorithms (such as Lee and Seung, 1999) use the term ΦΨT above,
but not the terms u(Φ) and v(Ψ). Another algorithm that uses only the ΦΨT term, but is more
closely related to CODE is the sufficient dimensionality reduction (SDR) method of Globerson and
Tishby (2003). SDR seeks a model

logPSDR = − logZ+ΦΨT +a1T|Y | +1|X |b
T

where a,b are vectors of dimension |X |, |Y | respectively. As in CODE, the parameters Φ,Ψ,a and
b are chosen to maximize the likelihood of the observed data.

The key difference between CODE and SDR lies in the terms u(Φ) and v(Ψ) which are non-
linear in Φ and Ψ. These arise from the geometric interpretation of CODE that relates distances
between embeddings to probabilities. SDR does not have such an interpretation. In fact, the SDR
model is invariant to the translation of either of the embedding maps (for instance, φ(x)), while
fixing the other map ψ(y). Such a transformation would completely change the distances d2x,y and is
clearly not an invariant property in the CODE models.

5. Semidefinite Representation

The CODE learning problem in Equation 8 is not jointly convex in the parameters φ and ψ. In this
section we present a convex relaxation of the learning problem. For a sufficiently high embedding
dimension this approximation is in fact exact, as we show next. For simplicity, we focus on the pCM
model, although similar derivations may be applied to the other models.

5.1 The Full Rank Case

Locally optimal CODE embeddings φ(x) and ψ(y)may be found using standard unconstrained opti-
mization techniques. However, the Euclidean distances used in the embedding space also allow us to
reformulate the problem as constrained convex optimization over the cone of positive semidefinite
(PSD) matrices (Boyd and Vandenberghe, 2004).

We begin by showing that for embeddings with dimension q= |X |+ |Y |, maximizing the CODE
likelihood (see Equation 8) is equivalent to minimizing a certain convex non-linear function over
PSD matrices. Consider the matrix A whose columns are all the embedded vectors φ(x) and ψ(y)

A≡ [φ(1), . . . ,φ(|X |),ψ(1), . . . ,ψ(|Y |)] .

Define the Gram matrix G as
G≡ ATA .

G is a matrix of the dot products between the coordinate vectors of the embedding, and is therefore
a symmetric PSD matrix of rank ≤ q. Conversely, any PSD matrix of rank ≤ q can be factorized as
ATA, where A is some embedding matrix of dimension q. Thus we can replace optimization over
matrices A with optimization over PSD matrices of rank ≤ q. Note also that the distance between
two columns in A is linearly related to the Gram matrix via d2xy = gxx + gyy− 2gxy, and thus the
embedding distances are linear functions of the elements of G.

2275

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

Since the log-likelihood function in Equation 7 depends only on the distances between points
in X and in Y , we can write it as a function of G only.8 In what follows, we focus on the negative
log-likelihood f (G) = −!(G)

f (G) =∑
x,y
p(x,y)(gxx+gyy−2gxy)+∑

x
p(x) log∑

y
p(y)e−(gxx+gyy−2gxy) .

The likelihood maximization problem can then be written in terms of constrained minimization
over the set of rank q positive semidefinite matrices9

minG f (G)
s.t. G, 0

rank(G) ≤ q .
(10)

Thus, the CODE log-likelihood maximization problem in Equation 8 is equivalent to minimizing a
nonlinear objective over the set of PSD matrices of a constrained rank.

When the embedding dimension is q = |X |+ |Y | the rank constraint is always satisfied and the
problem reduces to

minG f (G)
s.t. G, 0 .

(11)

The minimized function f (G) consists of two convex terms: The first term is a linear function of
G; the second term is a sum of log∑exp terms of an affine expression in G. The log∑exp function
is convex (Boyd and Vandenberghe, 2004, Section 4.5), and therefore the function f (G) is convex.
Moreover, the set of constraints is also convex since the set of PSD matrices is a convex cone (Boyd
and Vandenberghe, 2004). We conclude that when the embedding dimension is of size q= |X |+ |Y |
the optimization problem of Equation 11 is convex, and thus has no local minima.

5.1.1 ALGORITHMS

The convex optimization problem in Equation 11 can be viewed as a PSD constrained geometric
program.10 This is not a semidefinite program (SDP, see Vandenberghe and Boyd, 1996), since the
objective function in our case is non-linear and SDPs are defined as having both a linear objective
and linear constraints. As a result we cannot use standard SDP tools in the optimization. It seems
like such Geometric Program/PSD problems have not been dealt with in the optimization literature,
and it will be interesting to develop specialized algorithms for these cases.

The optimization problem in Equation 11 can however be solved using any general purpose con-
vex optimization method. Here we use the projected gradient algorithm (Bertsekas, 1976), a simple
method for constrained convex minimization. The algorithm takes small steps in the direction of
the negative objective gradient, followed by a Euclidean projection on the set of PSD matrices. This
projection is calculated by eliminating the contribution of all eigenvectors with negative eigenvalues
to the current matrix, similarly to the PSD projection algorithm of Xing et al. (2002). Pseudo-code
for this procedure is given in Figure 2.

In terms of complexity, the most time consuming part of the algorithm is the eigenvector calcu-
lation which is O((|X |+ |Y |)3) (Pan and Chen, 1999). This is reasonable when |X |+ |Y | is a few
thousands but becomes infeasible for much larger values of |X | and |Y |.
8. We ignore the constant additive terms.
9. The objective f (G) is minus the log-likelihood, which is why minimization is used.
10. A geometric program is a convex optimization problemwhere the objective and the constraints are log∑exp functions

of an affine function of the variables (Chiang, 2005).

2276

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

Input: Empirical distribution p(x,y). A step size ε.

Output: PSD matrix of size |X |+ |Y | that solves the optimization problem in Equation 11.

Initialize: Set G0 to the identity matrix of size |X |+ |Y |.

Iterate:

• Set Ĝt+1 = Gt − ε- f (Gt).

• Calculate the eigen-decomposition of Ĝt+1: Ĝt+1 = ∑k λkukuTk .

• Set Gt+1 = ∑kmax(λk,0)ukuTk .

Figure 2: A projected gradient algorithm for solving the optimization problem in Equation 11. To
speed up convergence we also use an Armijo rule (Bertsekas, 1976) to select the step size
ε at every iteration.

5.2 The Low-Dimensional Case

Embedding into a low dimension requires constraining the rank, but this is difficult since the prob-
lem in Equation 10 is not convex in the general case. One approach to obtaining low rank solutions
is to optimize over a full rank G and then project it into a lower dimension via spectral decomposi-
tion as in Weinberger and Saul (2006) or classical MDS. However, in the current problem, this was
found to be ineffective.

A more effective approach in our case is to regularize the objective by adding a term λTr(G),
for some constant λ > 0. This keeps the problem convex, since the trace is a linear function of G.
Furthermore, since the eigenvalues of G are non-negative, this term corresponds to !1 regularization
on the eigenvalues. Such regularization is likely to result in a sparse set of eigenvalues, and thus in
a low dimensional solution, and is indeed a commonly used trick in obtaining such solutions (Fazel
et al., 2001). This results in the following regularized problem

minG f (G)+λTr(G)
s.t. G, 0 .

(12)

Since the problem is still convex, we can again use a projected gradient algorithm as in Figure 2 for
the optimization. We only need to replace ∇ f (Gt) with λI+∇ f (Gt) where I is an identity matrix
of the same size as G.

Now suppose we are seeking a q dimensional embedding, where q< |X |+ |Y |. We would like to
use λ to obtain low dimensional solutions, but to choose the q dimensional solution with maximum
log-likelihood. This results in the PSD-CODE procedure described in Figure 3. This approach is
illustrated in Figure 4 for q= 2. The figure shows log-likelihood values of regularized PSD solutions
projected to two dimensions. The values of λ which achieve the optimal likelihood also result in
only two significant eigenvalues, showing that the regularization and projection procedure indeed
produces low dimensional solutions.

2277

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

PSD-CODE

Input: A set of regularization parameters {λi}ni=1, an embedding dimension q, and empir-
ical distribution p(x,y).

Output: A q dimensional embedding of X and Y

Algorithm

• For each value of λi:

– Use the projected gradient algorithm to solve the optimization problem in Equa-
tion 12 with regularization parameter λi. Denote the solution by G.

– Transform G into a rank q matrix Gq by keeping only the q eigenvectors with the
largest eigenvalues.

– Calculate the likelihood of the data under the model given by the matrix Gq. Denote
this likelihood by !i.

• Find the λi which maximizes !i, and return its corresponding embedding.

Figure 3: The PSD-CODE algorithm for finding a low dimensional embedding using PSD opti-
mization.

The PSD-CODE algorithm was applied to subsets of the databases described in Section 7 and
yielded similar results to those of the conjugate-gradient based algorithm. We believe that PSD
algorithms may turn out to be more efficient in cases where relatively high dimensional embeddings
are sought. Furthermore, with the PSD formulation it is easy to introduce additional constraints, for
example on distances between subsets of points (Weinberger and Saul, 2006). Section 6.1 considers
a model extension that could benefit from such a formulation.

6. Using Additional Co-occurrence Data

The methods described so far use a single co-occurrence table of two objects. However, in some
cases we may have access to additional information about (X ,Y) and possibly other variables. Be-
low we describe extensions of CODE to these settings.

6.1 Within-Variable Similarity Measures

The CODEmodels in Section 2 rely only on the co-occurrence of X andY but assume nothing about
similarity between two objects of the same type. Such a similarity measure may often be available
and could take several forms. One is a distance measure between objects in X . For example, if
x ∈ Rp we may take the Euclidean distance ‖xi−x j‖2 between two vectors xi,x j ∈ Rp as a measure
of similarity. This information may be combined with co-occurrence data either by requiring the

2278

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

−12 −10 −8 −6 −4 −2 0

Lo
g

Li
ke

lih
oo

d
log(λ)

Ei
ge
nv
al
ue
s

log(λ)
−10 −8 −6 −4 −2 0

Figure 4: Results for the PSD-CODE algorithm. Data is the 5× 4 contingency table in Greenacre
(1984) page 55. Top: The log-likelihood of the solution projected to two dimensions,
as a function of the regularization parameter λ. Bottom: The eigenvalues of the Gram
matrix obtained using the PSD algorithm for the corresponding λ values. It can be seen
that solutions with two dominant eigenvalues have higher likelihoods.

CODE map to agree with the given distances, or by adding a term which penalizes deviations from
them.

Similarities between two objects in X may also be given in the form of co-occurrence data.
For example, if X corresponds to words and Y corresponds to authors (see Section 7.1), we may
have access to joint statistics of words, such as bigram statistics, which give additional information
about which words should be mapped together. Alternatively, we may have access to data about
collaboration between authors, for example, what is the probability of two authors writing a paper
together. This in turn should affect the mapping of authors.

The above example can be formalized by considering two distributions p(x(1),x(2)) and p(y(1),y(2))
which describe the within-type object co-occurrence rates. One can then construct a CODE model
as in Equation 3 for p(x(1)|x(2))

p(x(1)|x(2)) =
p(x(1))
Z(x(1))

e−‖φ(x(1))−φ(x(2))‖2 .

Denote the log-likelihood for the above model by lx(φ), and the corresponding log-likelihood for
p(y(1)|y(2)) by !y(ψ). Then we can combine several likelihood terms by maximizing some weighted
combination !(φ,ψ)+λx!x(φ)+λy!y(ψ), where λx,λy ≥ 0 reflect the relative weight of each infor-
mation source.

2279

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

6.2 Embedding More than Two Variables

The notion of a common underlying semantic space is clearly not limited to two objects. For ex-
ample, texts, images and audio files may all have a similar meaning and we may therefore wish to
embed all three in a single space. One approach in this case could be to use joint co-occurrence
statistics p(x,y,z) for all three object types, and construct a geometric-probabilistic model for the
distribution p(x,y,z) using three embeddings φ(x),ψ(y) and ξ(z) (see Section 9 for further discus-
sion of this approach). However, in some cases obtaining joint counts over multiple objects may not
be easy. Here we describe a simple extension of CODE to the case where more than two variables
are considered, but empirical distributions are available only for pairs of variables.

To illustrate the approach, consider a case with k different variables X (1), . . . ,X (k) and an addi-
tional variable Y . Assume that we are given empirical joint distributions of Y with each of the X
variables p(x(1),y), . . . , p(x(k),y). It is now possible to consider a set of k CODEmodels p(x(i),y) for
i = 1, . . . ,k,11 where each X (i) will have an embedding φ(i)(x(i)) but all models will share the same
ψ(y) embedding. Given k non-negative weights w1, . . . ,wk that reflect the “relative importance” of
each X (i) we can consider the total weighted log-likelihood of the k models given by

!(φ(1), . . . ,φ(k),ψ) =∑
i
wi ∑

x(i),y
p(x(i),y) log p(x(i),y) .

Maximizing the above log-likelihood will effectively combine structures in all the input distributions
p(x(i),y). For example if Y = y often co-occurs with X (1) = x(1) and X (2) = x(2), likelihood will be
increased by setting ψ(y) to be close to both φ(1)(x(1)) and φ(2)(x(2)).

In the example above, it was assumed that only a single variable,Y , was shared between different
pairwise distributions. It is straightforward to apply the same approach when more variables are
shared: simply construct CODE models for all available pairwise distributions, and maximize their
weighted log-likelihood.

Section 7.2 shows how this approach is used to successfully embed three different objects,
namely authors, words, and documents in a database of scientific papers.

7. Applications

We demonstrate the performance of co-occurrence embedding on two real-world types of data. First,
we use documents from NIPS conferences to obtain documents-word and author-word embeddings.
These embeddings are used to visualize various structures in this complex corpus. We also use
the multiple co-occurrence approach in Section 6.2 to embed authors, words, and documents into a
single map. To provide quantitative assessment of the performance of our method, we apply it to
embed the document-word 20 Usenet newsgroups data set, and we use the embedding to predict the
class (newsgroup) for each document, which was not available when creating the embedding. Our
method consistently outperforms previous unsupervised methods evaluated on this task.

In most of the experiments we use the conditional based model of Equation 4, except in Sec-
tion 8.5 where the different models of Section 2 are compared.

11. This approach applies to all CODE models, such as pMM or pCM .

2280

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

7.1 Visualizing a Document Database: The NIPS Database

Embedding algorithms are often used to visualize structures in document databases (Hinton and
Roweis, 2003; Lin, 1997; Chalmers and Chitson, 1992). A common approach in these applica-
tions is to obtain some measure of similarity between objects of the same type such as words, and
approximate it with distances in the embedding space.

Here we used the database of all papers from the NIPS conference until 2003. The database was
based on an earlier database created by Roweis (2000), that included volumes 0-12 (until 1999).12
The most recent three volumes also contain an indicator of the document’s topic, for instance, AA
for Algorithms and Architectures, LT for Learning Theory, and NS for Neuroscience, as shown
in Figure 5.

We first used CODE to embed documents and words into R2. The results are shown in Figures
5 and 6. The empirical joint distribution was created as follows: for each document, the empirical
distribution p(word|doc) was the number of times a word appeared in the document, normalized to
one; this was then multiplied by a uniform prior p(doc) to obtain p(doc,word). The CODE model
we used was the conditional word-given-document model pCM(doc,word). As Figure 5 illustrates,
documents with similar topics tend to be mapped next to each other (for instance, AA near LT
and NS near VB), even though the topic labels were not available to the algorithm when learning
the embeddings. This shows that words in documents are good indicators of the topics, and that
CODE reveals these relations. Figure 6 shows the joint embedding of documents and words. It can
be seen that words indeed characterize the topics of their neighboring documents, so that the joint
embedding reflects the underlying structure of the data.

Next, we used the data to generate an authors-words matrix p(author,word) obtained from
counting the frequency with which a given author uses a given word. We could now embed authors
and words into R2, by using CODE to model words given authors pCM(author,word). Figure 7
demonstrates that authors are indeed mapped next to terms relevant to their work, and that authors
working on similar topics are mapped to nearby points. This illustrates how co-occurrence of words
and authors can be used to induce a metric on authors alone.

These examples show how CODE can be used to visualize the complex relations between doc-
uments, their authors, topics and keywords.

7.2 Embedding Multiple Objects: Words, Authors and Documents

Section 6.2 presented an extension of CODE to multiple variables. Here we demonstrate that ex-
tension in embedding three object types from the NIPS database: words, authors, and documents.
Section 7.1 showed embeddings of (author,word) and (doc,word). However, we may also con-
sider a joint embedding for the objects (author,word,doc), since there is a common semantic
space underlying all three. To generate such an embedding, we apply the scheme of Section 6.2
with Y ≡ word,X (1) ≡ doc and X (2) ≡ author. We use the two models pCM(author,word) and
pCM(doc,word), that is, two conditional models where the word variable is conditioned on the doc
or on the author variables. Recall that the embedding of the words is assumed to be the same in
both models. We seek an embedding of all three objects that maximizes the weighted sum of the
log-likelihood of these two models.

Different strategies may be used to weight the two log-likelihoods. One approach is to assign
them equal weight by normalizing each by the total number of joint assignments. This corresponds

12. The data is available online at http://ai.stanford.edu/˜gal/.

2281

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

AA − Algorithms & Architectures
NS − Neuroscience
BI − Brain Imaging
VS − Vision
VM − Vision (Machine)
VB − Vision (Biological)
LT − Learning Theory
CS − Cognitive Science & AI
IM − Implementations
AP − Applications
SP − Speech and Signal Processing
CN − Control & Reinforcement Learning
ET − Emerging Technologies

Figure 5: CODE embedding of 2483 documents and 2000 words from the NIPS database (the 2000
most frequent words, excluding the first 100, were used). Embedded documents from
NIPS 15-17 are shown, with colors indicating the topic of each document. The word
embeddings are not shown.

to choosing wi = 1
|X ||Y (i)| . For example, in this case the log-likelihood of pCM(author,word) will be

weighted by 1
|word||author| .

Figure 8 shows three insets of an embedding that uses the above weighting scheme.13 The insets
roughly correspond to those in Figure 6. However, here we have all three objects shown on the same
map. It can be seen that both authors and words that correspond to a given topic are mapped together
with documents about this topic.

It is interesting to study the sensitivity of the result to the choice of weights wi. To evaluate
this sensitivity, we introduce a quantitative measure of embedding quality: the authorship measure.
The database we generated also includes the Boolean variable isauthor(doc,author) that encodes
whether a given author wrote a given document. This information is not available to the CODE
algorithm and can be used to evaluate the documents-authors part of the authors-words-documents
embedding. Given an embedding, we find the k nearest authors to a given document and calculate
what fraction of the document’s authors is in this set. We then average this across all k and all
documents. Thus, for a document with three authors, this measure will be one if the three nearest
authors to the document are its actual authors.

We evaluate the above authorship measure for different values of wi to study the sensitivity of
the embedding quality to changing the weights. Figure 9 shows that for a very large range of wi
values the measure is roughly constant, and it degrades quickly only when close to zero weight is

13. The overall document embedding was similar to Figure 5 and is not shown here.

2282

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

(a) (b) (c)

bound

bayesian convergencesupport

regression

loss

classifiers
gamma

bounds

machinesbayes

risk

polynomial

nips

regularizationvariational

marginal

bootstrap

papers

response

cells

cell
activity
frequency

stimulus

temporal

motion

position

spatial

stimuli

receptive

eye
head

movement

channels
scene

movements

perception

recorded

eeg

formationdetector

dominance

receptor

rat

biol

policy

actions
agent

game
policies

documentsmdp

agents
rewards

dirichlet

Figure 6: Each panel shows in detail one of the rectangles in Figure 5, and includes both the em-
bedded documents and embedded words. (a) The border region between Algorithms and
Architectures (AA) and Learning Theory (LT), corresponding to the bottom rectangle in
Figure 5. (b) The border region between Neuroscience NS and Biological Vision (VB),
corresponding to the upper rectangle in Figure 5. (c)Control and Reinforcement Learning
(CN) region (left rectangle in Figure 5).

assigned to either of the two models. The stability with respect to wi was also verified visually;
embeddings were qualitatively similar for a wide range of weight values.

8. Quantitative Evaluation: The 20 Newsgroups Database

To obtain a quantitative evaluation of the effectiveness of our method, we apply it to a well controlled
information retrieval task. The task contains known classes which are not used during learning, but
are later used to evaluate the quality of the embedding.

8.1 The Data

We applied CODE to the widely studied 20 newsgroups corpus, consisting of 20 classes of 1000
documents each.14 This corpus was further pre-processed as described by Chechik and Tishby
(2003).15 We first removed the 100 most frequent words, and then selected the next k most fre-
quent words for different values of k (see below). The data was summarized as a count matrix
n(doc,word), which gives the count of each word in a document. To obtain an equal weight for
all documents, we normalized the sum of each row in n(doc,word) to one, and multiplied by 1

|doc| .
The resulting matrix is a joint distribution over the document and word variables, and is denoted by
p(doc,word).

8.2 Methods Compared

Several methods were compared with respect to both homogeneous and heterogeneous embeddings
of words and documents.

14. Available from http://kdd.ics.uci.edu.
15. Data set available from http://ai.stanford.edu/˜gal/.

2283

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

(a) (b)

pac
sv

regularized

shawe

rational

corollary

proposition

smola

dual

ranking hyperplane
generalisation

svms

vapnik

lemma norm

lambda

regularization

proof

kernels

machines

margin

loss

Shawe−Taylor Scholkopf

Opper
Meir

Bartlett
Vapnik

(c) (d)

bellman
vertex

player

plan

mdps

games

rewards

singh
agents

mdp

policies

planning

game

agent

actions

policy

Singh Thrun

Moore

Tesauro

Barto

Gordon

Sutton

Dietterich

conductance
pyramidal

iiii

neurosci
oscillatory

msec

retinal

ocular
dendritic

retina

inhibition

inhibitory
auditory

cortical

cortex

Koch

Mel

Li

Baird

Pouget

Bower

Figure 7: CODE embedding of 2000 words and 250 authors from the NIPS database (the 250 au-
thors with highest word counts were chosen; words were selected as in Figure 5). The
top left panel shows embeddings for authors (red crosses) and words (blue dots). Other
panels show embedded authors (only first 100 shown) and words for the areas specified
by rectangles (words in blue font, authors in red). They can be seen to correspond to
learning theory (b), control and reinforcement learning (c) and neuroscience (d).

• Co-Occurrence Data Embedding (CODE). Modeled the distribution of words and doc-
uments using the conditional word-given-document model pCM(doc,word) of Equation 4.
Models other than pCM are compared in Section 8.5.

• Correspondence Analysis (CA). Applied the CA method to the matrix p(doc,word). Ap-
pendix A gives a brief review of CA.

2284

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

(a) (b) (c)

multiclass

regularized

winnowsvr

proposition
hyperplane

svms

ranking

regularization
adaboost

lambda

kernels

margin

svm loss

Singer

Jaakkola

Shawe−Taylor

Sollich

Scholkopf

Vapnik

Hastie

Cristianini
Herbrich

Smola

Smola

Ng

Bousquet Elisseeff

hebb

orientations

mask
gabor

attentionaleyes

physiological

oriented

coherence

binocular
neurosci

cat

surround

saliency

receptor

retinal

cues
tuned

dominance

modulation

texture

disparity
lateral

tuningvision

stimuli

receptive

cortical

orientation

cortexeye

motion

spike

Sejnowski

Bialek

Zemel

Obermayer Becker

Pouget

Sahani

Rao

Wang
Goodhill

Lee

Edelman

Ruderman

pomdps

bellman

executionplan

nash

rewards

pomdp

player

games

agents

mdp

planningpolicies

game

actions

agent

Singh

Thrun
Tesauro
Sutton

Dietterich

Parr
Wang Kaelbling

Koenig

Sontag

Mansour

Figure 8: Embeddings of authors, words, and documents as described in Section 7.2. Words are
shown in black and authors in blue (author names are capitalized). Only documents with
known topics are shown. The representation of topics is as in Figure 5. We used 250
authors and 2000 words, chosen as in Figures 5 and 7. The three figures show insets of
the complete embedding, which roughly correspond to the insets in Figure 6. (a) The
border region between Algorithms and Architectures (AA) and Learning Theory (LT).
(b) The border region between Neuroscience NS and Biological Vision (VB). (c) Control
and Reinforcement Learning (CN) region.

• Singular value decomposition (SVD). Applied SVD to two count-basedmatrices: p(doc,word)
and log(p(doc,word)+1). Assume the SVD of a matrix P is given by P=USV T (where S is
diagonal with eigenvalues sorted in a decreasing order). Then the document embedding was
taken to be U

√
S. Embeddings of dimension q were given by the first q columns of U

√
S.

An embedding for words can be obtained in a similar manner, but was not used in the current
evaluation.

• Multidimensional scaling (MDS). MDS searches for an embedding of objects in a low di-
mensional space, based on a predefined set of pairwise distances (Cox and Cox, 1984). One
heuristic approach that is sometimes used for embedding co-occurrence data using standard
MDS is to calculate distances between row vectors of the co-occurrence matrix, which is
given by p(doc,word) here. This results in an embedding of the row objects (documents).
Column objects (words) can be embedded similarly, but there is no straightforward way of
embedding both simultaneously. Here we tested two similarity measures between row vec-
tors: The Euclidean distance, and the cosine of the angle between the vectors. MDS was
applied using the implementation in the MATLAB Statistical Toolbox.

• Isomap. Isomap first creates a graph by connecting each object to m of its neighbors, and
then uses distances of paths in the graph for embedding using MDS. We used the MATLAB
implementation provided by the Isomap authors (Tenenbaum et al., 2000), withm= 10, which
was the smallest value for which graphs were fully connected.

Of the above methods, only CA and CODE were used for joint embedding of words and docu-
ments. The other methods are not designed for joint embedding and were only used for embedding
documents alone.

2285

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

0 0.2 0.4 0.6 0.8 10.4

0.5

0.6

0.7

0.8

0.9

α

au
th
or
sh
ip
−m

ea
su
re

Figure 9: Evaluation of the authors-words-documents embedding for different likelihood weights.
The X axis is a number α such that the weight on the pCM(doc,word) log-likelihood is

α
|word||doc| and the weight on pCM(author,word) is 1−α

|author||doc| . The value α = 0.5 results
in equal weighting of the models after normalizing for size, and corresponds to the em-
bedding shown in Figure 8. The Y axis is the authorship measure reflecting the quality of
the joint document-author embedding.

All methods were also tested under several different normalization schemes, including TF/IDF
weighting, and no document normalization. Results were consistent across all normalization schemes.

8.3 Quality Measures for Homogeneous and Heterogeneous Embeddings

Quantitative evaluation of embedding algorithms is not straightforward, since a ground-truth em-
bedding is usually not well defined. Here we use the fact that documents are associated with class
labels to obtain quantitative measures.

For the homogeneous embedding of the document objects, we define a measure denoted by
doc-doc, which is designed to measure how well documents with identical labels are mapped to-
gether. For each embedded document, we measure the fraction of its neighbors that are from the
same newsgroup. This is repeated for all neighborhood sizes,16 and averaged over all documents
and sizes, resulting in the doc-docmeasure. The measure will have the value one for perfect embed-
dings where same topic documents are always closer than different topic documents. For a random
embedding, the measure has a value of 1/("newsgroups).

For the heterogeneous embedding of documents and words into a joint map, we defined a mea-
sure denoted by doc-word. For each document we look at its k nearest words and calculate their
probability under the document’s newsgroup.17 We then average this over all neighborhood sizes of
up to 100 words, and over all documents. It can be seen that the doc-word measure will be high if
documents are embedded near words that are common in their class. This implies that by looking
at the words close to a given document, one can infer the document’s topic. The doc-word measure

16. The maximum neighborhood size is the number of documents per topic.
17. This measure was normalized by the maximum probability of any k words under the given newsgroup, so that it

equals one in the optimal case.

2286

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

could only be evaluated for CODE and CA since these are the only methods that provided joint
embeddings.

8.4 Results

Figure 10 (top) illustrates the joint embedding obtained for the CODE model pCM(doc,word) when
embedding documents from three different newsgroups. It can be seen that documents in different
newsgroups are embedded in different regions. Furthermore, words that are indicative of a news-
group topic are mapped to the region corresponding to that newsgroup.

To obtain a quantitative estimate of homogeneous document embedding, we evaluated the doc-
doc measure for different embedding methods. Figure 11 shows the dependence of this measure
on neighborhood size and embedding dimensionality, for the different methods. It can be seen that
CODE is superior to the other methods across parameter values.

Table 1 summarizes the doc-doc measure results for all competing methods for seven different
subsets.

Newsgroup Sets CODE Isomap CA MDS-e MDS-c SVD SVD-l
comp.os.ms-windows.misc,
comp.sys.ibm.pc.hardware

68* 65 56 54 53 51 51

talk.politics.mideast,
talk.politics.misc

85* 83 66 45 73 52 52

alt.atheism, comp.graphics,
sci.crypt

66* 58 52 53 62 51 51

comp.graphics,
comp.os.ms-windows.misc

76 77* 55 55 53 56 56

sci.crypt, sci.electronics 84* 83 83 65 58 56 56
sci.crypt, sci.electronics,
sci.med

82* 77 76 51 53 40 50

sci.crypt, sci.electronics,
sci.med, sci.space

73* 65 58 29 50 31 44

Table 1: doc-docmeasure values (times 100) for embedding of seven newsgroups subsets. Average
over neighborhood sizes 1, . . . ,1000. Embedding dimension is q = 2. “MDS-e” stands
for Euclidean distance, “MDS-c” for cosine distance, “SVD-l” preprocesses the data with
log(count+1). The best method for each set is marked with an asterisk (*).

To compare performance across several subsets, and since different subsets have different in-
herent “hardness”, we define a normalized measure of purity that rescales the doc-doc measure
performance for each of the 7 tasks. Results are scaled such that the best performing measure in a
task has a normalized value of 1, and the one performing most poorly has a value of 0. As a result,
any method that achieves the best performance consistently would achieve a normalized score of
one. The normalized results are summarized in Figure 12a. CODE significantly outperforms other
methods and IsoMap comes second.

2287

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

Figure 10: Visualization of two dimensional embeddings of the 20 newsgroups data under
two different models. Three newsgroups are embedded: sci.crypt (red squares),
sci.electronics (green circles) and sci.med (blue xs). Top: The embed-
ding of documents and words using the conditional word-given-document model
pCM(doc,word). Words are shown in black dots. Representative words around
the median of each class are shown in black, with the marker shape corre-
sponding to the class. They are {sick,hospital,study,clinical,diseases} for med,
{signal,filter,circuits,distance,remote, logic, frequency,video} for electronics, and
{legitimate, license, federal,court} for crypt. Bottom: Embedding under the joint
model pMM(doc,word). Representative words were chosen visually to be near the cen-
ter of the arc corresponding to each class. Words are: {eat,AIDS,breast} for med,
{audio,noise,distance} for electronics, and {classified,secure,scicrypt} for crypt.

2288

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

(a) (b)

2 3 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1

dimension

do
c−

do
c

m
ea

su
re

CODE
IsoMap
CA
MDS
SVD (log)

1 10 100 1000
0.5

0.6

0.7

0.8

0.9

1

N nearest neighbors

do
c−

do
c

m
ea

su
re

CODE
IsoMap
CA
MDS
SVD (log)

Figure 11: Parametric dependence of the doc-doc measure for different algorithms. Embeddings
were obtained for the three newsgroups described in Figure 10. (a) doc-doc as a function
of embedding dimensions. Average over neighborhood sizes 1, . . . ,100. (b) doc-doc as
a function of neighborhood size. Embedding dimension is q= 2

The performance of the heterogeneous embedding of words and documents was evaluated using
the doc-word measure for the CA and CODE algorithms. Results for seven newsgroups are shown
in Figure 12b, and CODE is seen to significantly outperform CA.

Finally, we compared the performance of the gradient optimization algorithm to the PSD-CODE
method described in Section 5. Here we used a smaller data set because the number of the param-
eters in the PSD algorithm is quadratic in |X |+ |Y |. Results for both the doc-doc and doc-word
measures are shown in Figure 13, illustrating the effectiveness of the PSD algorithm, whose perfor-
mance is similar the to non-convex gradient optimization scheme, and is sometimes even better.

8.5 Comparison Between Different Distribution Models

Section 2 introduced a class of possible probabilistic models for heterogeneous embedding. Here
we compare the performance of these models on the 20 Newsgroup data set.

Figure 10 shows an embedding for the conditional model pCM in Equation 3 and for the sym-
metric model pMM. It can be seen that both models achieve a good embedding of both the relation
between documents (different classes mapped to different regions) and document-word relation
(words mapped near documents with relevant subjects). However, the pMM model tends to map the
documents to a circle. This can be explained by the fact that it also partially models the marginal
distribution of documents, which is uniform in this case.

A more quantitative evaluation is shown in Figure 14. The figure compares various CODEmod-
els with respect to the doc-doc and doc-word measures. While all models perform similarly on the
doc-doc measure, the doc-word measure is significantly higher for the two models pMM(doc,word)
and pCM(doc,word). These models incorporate the marginals over words, and directly model the
statistical dependence ratio rp(x,y), as explained in Section 2. The model pMC(doc,word) does

2289

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

(a) (b)

CODE IsoM CA MDS SVD 0

0.2

0.4

0.6

0.8

1

do
c−

do
c

m
ea

su
re

, m
ea

n
ov

er
 s

et
s

0

0.2

0.4

0.6

0.8

1

Newsgroup sets

do
c−

wo
rd

 m
ea

su
re

CODE

CA

Figure 12: (a) Normalized doc-doc measure (see text) averaged over 7 newsgroup sets. Embedding
dimension is q = 2. Sets are detailed in Table 1. Normalized doc-doc measure was
calculated by rescaling at each data set, such that the poorest algorithm has score 0 and
the best a score of 1. b The doc-word measure for the CODE and CA algorithms for the
seven newsgroup sets. Embedding dimension is q= 2.

(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Newgroup Sets

do
c−

do
c

m
ea

su
re

GRAD
PSD
CA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Newgroup Sets

do
c−

wo
rd

 m
ea

su
re

GRAD
PSD
CA

Figure 13: Comparison of the PSD-CODE algorithm with a gradient based maximization of the
CODE likelihood (denoted by GRAD) and the correspondence analysis (CA) method.
Both CODE methods used the pCM(doc,word) model. Results for q = 2 are shown for
five newsgroup pairs (given by rows 1,2,4,5 in Table 1). Here 500 words were chosen,
and 250 documents taken from each newsgroup. a. The doc-doc measure. b. The
doc-word measure.

2290

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

(a) (b)

UU MM CU UC CM MC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Model

do
c−

do
c

m
ea

su
re

UU MM CU UC CM MC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Model

do
c−

wo
rd

 m
ea

su
re

Figure 14: Comparison of different embedding models. Averaged results for the seven newsgroup
subsets are shown for the doc-doc (left figure) and doc-word (right figure) measures.
Model names are denoted by two letters (see Section 2.3), which reflect the treatment of
the document variable (first letter) and word variable (second letter). Thus, for example
CM indicates conditioning on the document variable, whereas MC indicates condition-
ing on the word variable.

not perform as well, presumably because it makes more sense to assume that the document is first
chosen, and then a word is chosen given the document, as in the pCM(doc,word) model.

9. Discussion

We presented a method for embedding objects of different types into the same low dimension Eu-
clidean space. This embedding can be used to reveal low dimensional structures when distance
measures between objects are unknown or cannot be defined. Furthermore, once the embedding is
performed, it induces a meaningful metric between objects of the same type. Such an approach may
be used, for example, for embedding images based on accompanying text, and derive the semantic
distance between images.

We showed that co-occurrence embedding relates statistical correlation to the local geometric
structure of one object type with respect to the other. Thus the local geometry may be used for
inferring properties of the data. An interesting open issue is the sensitivity of the solution to sample-
to-sample fluctuation in the empirical counts. One approach to the analysis of this problem could
be via the Fisher information matrix of the model.

The experimental results shown here focused mainly on the conditional based model of Equa-
tion 4. However, different models may be more suitable for data types that have no clear asymmetry.

An important question in embedding objects is whether the embedding is unique, namely, can
there be two different optimal configurations of points. This question is related to the rigidity and
uniqueness of graph embeddings, and in our particular case, complete bipartite graphs. A theorem
of Bolker and Roth (1980) asserts that embeddings of complete bipartite graphs with at least 5

2291

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

vertices on each side, are guaranteed to be rigid, that is they cannot be continuously transformed.
This suggests that the CODE embeddings for |X |, |Y | ≥ 5 are locally unique. However, a formal
proof is still needed.

Co-occurrence embedding does not have to be restricted to distributions over pairs of variables,
but can be extended to multivariate joint distributions. One such extension of CODE would be to
replace the dependence on the pairwise distance ‖φ(x)−ψ(x)‖ with a measure of average pairwise
distances between multiple objects. For example, given three variables X , Y , Z one can relate
p(x,y,z) to the average distance of φ(x),ψ(y),ξ(z) from their centroid 1

3 (φ(x)+ψ(y)+ξ(z)). The
method can also be augmented to use statistics of same-type objects when these are known, as
discussed in Section 6.1.

An interesting problem in many embedding algorithms is generalization to new values. Here
this would correspond to obtaining embeddings for values of X or Y such that p(x) = 0 or p(y) = 0,
for instance because a word did not appear in the sample documents. When variables are purely
categorical and there is no intrinsic similarity measure in either the X or Y domains, there is little
hope for generalizing to new values. However, in some cases the X or Y variables may have such
structure. For example, objects in X may be represented as vectors in Rp. This information can
help in generalizing embeddings, since if x1 is close to x2 in Rp it may be reasonable to assume
that φ(x1) should be close to φ(x2). One strategy for applying this intuition is to model φ(x) as a
continuous function of x, for instance a linear map Ax or a kernel-based map. Such an approach has
been previously used to extend embedding methods such as LLE to unseen points (Zhang, 2007).
This approach can also be used to extend CODE and it will be interesting to study it further. It is
however important to stress that in many cases no good metric is known for the input objects, and it
is a key advantage of CODE that it can produce meaningful embeddings in this setting.

These extensions and the results presented in this paper suggest that probability-based continu-
ous embeddings of categorical objects could be applied efficiently and provide accurate models for
complex high dimensional data.

Appendix A. A Short Review of Correspondence Analysis

Correspondence analysis (CA) is an exploratory data analysis method that embeds two variables X
and Y into a low dimensional space such that the embedding reflects their statistical dependence
(Greenacre, 1984). Statistical dependence is modeled by the ratio

q(x,y) =
p(x,y)− p(x)p(y)√

p(x)p(y)

Define the matrix Q such that Qxy = q(x,y). The CA algorithm computes an SVD of Q such that
Q =USV where S is diagonal and U,V are rectangular orthogonal matrices. We assume that the
diagonal of S is sorted in descending order. To obtain the low dimensional embeddings, one takes
the first q columns and rows of P−0.5

x S
√
U and P−0.5

y S
√
U respectively, where Px,Py are diagonal

matrices with p(x), p(y) on the diagonal. It can be seen that this procedure corresponds to a least
squares approximation of the matrix Q via a low dimensional decomposition. Thus, CA cannot be
viewed as a statistical model of p(x,y), but is rather an L2 approximation of empirically observed
correlation values.

The ratio q(x,y) is closely related to the chi-squared distance between distributions, and there
indeed exist interpretations (Greenacre, 1984) of CA which relate it to approximating this distance.

2292

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

Also, as mentioned in Section 4, it can be shown (Hill, 1974) that CA corresponds to Canonical
Correlation Analysis when X and Y are represented via indicator vectors. For example, X = 3 is
represented as a vector e ∈ R|X | such that e(3) = 1 and all other elements are zero.

References

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1–48, 2002.

A. L. Berger, S.A. Della Pietra, and V.J. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions
on Automatic Control, 21:174–184, 1976.

E.D. Bolker and B. Roth. When is a bipartite graph a rigid framework? Pacific Journal of Mathe-
matics, 90:27–44, 1980.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004.

M. Chalmers and P. Chitson. Bead: explorations in information visualization. In Proceedings of the
15th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 330–337. ACM Press, New York, NY, 1992.

G. Chechik and N. Tishby. Extracting relevant structures with side information. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
pages 857–864. MIT Press, Cambridge, MA, 2003.

M. Chiang. Geometric programming for communication systems. Foundations and Trends in Com-
munications and Information Theory, 2(1):1–154, 2005.

T.M. Cover and J.A Thomas. Elements of Information Theory. Wiley-Interscience, New York, 1991.

T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, London, 1984.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum
order system approximation. In Proceedings of the American Control Conference, volume 6,
pages 4734–4739. American Automatic Control Council, New York, 2001.

R.A. Fisher. The precision of discriminant functions. Annals of Eugenics, London, 10:422–429,
1940.

A. Globerson and N. Tishby. Sufficient dimensionality reduction. Journal of Machine Learning
Research, 3:1307–1331, 2003.

A. Globerson, G. Chechik, F. Pereira, and N.Tishby. Euclidean embedding of co-occurrence data. In
L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems
17, pages 497–504. MIT Press, Cambridge, MA, 2005.

M.J. Greenacre. Theory and Applications of Correspondence Analysis. Academic Press, London,
1984.

2293

GLOBERSON, CHECHIK, PEREIRA AND TISHBY

J.H. Ham, D.D. Lee, and L.K. Saul. Learning high dimensional correspondences with low dimen-
sional manifolds. In Proceedings of the 20th International Conference on Machine Learning.
Workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data
Mining, pages 34–41, 2003.

M.O. Hill. Correspondence analysis: A neglected multivariate method. Applied Statistics, 23(3):
340–354, 1974.

G. Hinton and S.T. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 833–840. MIT
Press, Cambridge, MA, 2003.

T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning,
42(1):177–196, 2001.

H. Hotelling. The most predictable criterion. Journal of Educational Psychology, 26:139–142,
1935.

T. Iwata, K. Saito, N. Ueda, S. Stromsten, T. Griffiths, and J. Tenenbaum. Parametric embedding
for class visualization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

P.L. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. In International Joint
Conference on Neural Networks, pages 365–378. IEEE Computer Society, Los Alamitos, CA,
2000.

D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.

X. Lin. Map displays for information retrieval. Journal of the American Society for Information
Science, 48(1):40–54, 1997.

G. Mei and C. R. Shelton. Visualization of collaborative data. In R. Dechter and T. Richardson,
editors, Proceedings of the Twenty-Second International Conference on Uncertainty in Artificial
Intelligence, pages 341–348. AUAI Press, Arlington, VA, 2006.

G. Michailidis and J. de Leeuw. The Gifi system of descriptive multivariate analysis. Statistical
Science, 13(4):307–336, 1998.

R. B. Nelsen. An Introduction to Copulas. Springer, New York, 1999.

V.Y. Pan and Z.Q. Chen. The complexity of the matrix eigenproblem. In Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, pages 507–516. ACM Press, New York,
NY, 1999.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

S.T. Roweis. NIPS 0-12 data. http://www.cs.toronto.edu/∼roweis/data.html, 2000.

2294

EUCLIDEAN EMBEDDING OF CO-OCCURRENCE DATA

J.B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323, 2000.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite pro-
gramming. International Journal of Computer Vision, 70(1):77–90, 2006.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with application to clustering
with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 505–512. MIT Press, Cambridge, MA, 2002.

S. Yan D. Xu B. Zhang H.J. Zhang. Graph embedding: a general framework for dimensionality
reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 40–51, 2007.

H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity in video. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 819–826. IEEE Computer
Society, Los-Alamitos, CA, 2004.

2295

Journal of Machine Learning Research 8 (2007) 2297-2345 Submitted 2/06; Revised 8/06; Published 10/07

Harnessing the Expertise of 70,000 Human Editors:
Knowledge-Based Feature Generation for Text Categorization∗

Evgeniy Gabrilovich† GABR@YAHOO-INC.COM
Shaul Markovitch SHAULM@CS.TECHNION.AC.IL
Department of Computer Science
Technion—Israel Institute of Technology
32000 Haifa, Israel

Editor: Andrew McCallum

Abstract
Most existing methods for text categorization employ induction algorithms that use the words ap-
pearing in the training documents as features. While they perform well in many categorization
tasks, these methods are inherently limited when faced with more complicated tasks where exter-
nal knowledge is essential. Recently, there have been efforts to augment these basic features with
external knowledge, including semi-supervised learning and transfer learning. In this work, we
present a new framework for automatic acquisition of world knowledge and methods for incorpo-
rating it into the text categorization process. Our approach enhances machine learning algorithms
with features generated from domain-specific and common-sense knowledge. This knowledge is
represented by ontologies that contain hundreds of thousands of concepts, further enriched through
controlled Web crawling. Prior to text categorization, a feature generator analyzes the documents
and maps them onto appropriate ontology concepts that augment the bag of words used in simple
supervised learning. Feature generation is accomplished through contextual analysis of document
text, thus implicitly performing word sense disambiguation. Coupled with the ability to generalize
concepts using the ontology, this approach addresses two significant problems in natural language
processing—synonymy and polysemy. Categorizing documents with the aid of knowledge-based
features leverages information that cannot be deduced from the training documents alone. We ap-
plied our methodology using the Open Directory Project, the largest existing Web directory built
by over 70,000 human editors. Experimental results over a range of data sets confirm improved
performance compared to the bag of words document representation.
Keywords: feature generation, text classification, background knowledge

1. Introduction

Text categorization deals with assigning category labels to textual documents. Categories come
from a fixed set of labels (possibly organized in a hierarchy) and each document may be assigned
one or more categories. Text categorization systems are useful in a wide variety of tasks, such as
routing news and e-mail to appropriate corporate desks, identifying junk email, or correctly handling
intelligence reports.

∗. A preliminary version of this paper appeared in the Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence (IJCAI), Edinburgh, UK, August 2005 (Gabrilovich and Markovitch, 2005).

†. Current address: Yahoo! Research, 2821 Mission College Blvd, Santa Clara, CA 95054, USA.

c©2007 Evgeniy Gabrilovich and Shaul Markovitch.

GABRILOVICH AND MARKOVITCH

The majority of existing text classification systems use various induction techniques, such as
support vector machines, k-nearest neighbor algorithm, and neural networks. The features com-
monly used are the individual words appearing in the training documents (while their order within
the document is ignored). The value of a feature for a particular document is usually its occurrence
frequency normalized by its occurrence frequency within the whole collection of documents. This
representation scheme treats each document as a bag of the words it contains, and is therefore known
as the bag of words (BOW) approach (Salton and McGill, 1983).

The bag of words method is very effective in easy to medium difficulty categorization tasks
where the category of a document can be identified by several easily distinguishable keywords.
There are, however, two major weaknesses to the BOW representation scheme that limit its useful-
ness for more demanding categorization tasks. The first one stems from representing a document as
a bag, thus ignoring the order of words appearance. This limits the possibility of handling structures
that are based on more than one word, and also limits the possibility of disambiguating words based
on their context.

The second weakness is the usage of only words that are explicitly mentioned in the training
documents, without any knowledge about them. Because this approach cannot generalize over
words, words in the testing document that never appeared in the training set are necessarily ignored.
Nor can synonymous words that appear infrequently in training documents be used to infer a more
general principle that covers several cases.

There have been a number of efforts to extend the basic BOW approach. Several studies
augmented the bag of words with n-grams (Caropreso et al., 2001; Peng and Shuurmans, 2003;
Mladenic, 1998b; Raskutti et al., 2001) or statistical language models (Peng et al., 2004). Others
used linguistically motivated features based on syntactic information, such as that available from
part-of-speech tagging or shallow parsing (Sable et al., 2002; Basili et al., 2000). Additional stud-
ies researched the use of word clustering (Baker and McCallum, 1998; Bekkerman, 2003; Dhillon
et al., 2003), as well as dimensionality reduction techniques such as LSA (Deerwester et al., 1990;
Hull, 1994; Zelikovitz and Hirsh, 2001; Cai and Hofmann, 2003).

More recently, there have been a number of efforts to add outside knowledge to supervised
machine learning techniques. Transfer learning approaches (Bennett et al., 2003; Do and Ng, 2005;
Sutton and McCallum, 1998; Raina et al., 2006) leverage information from different but related
learning tasks. Pseudo-relevance feedback (Ruthven and Lalmas, 2003) uses information from the
top-ranked documents, which are assumed to be relevant to the query; for example, characteristic
terms from such documents may be used for query expansion (Xu and Croft, 1996). Recent studies
on semi-supervised methods (Goldberg and Zhu, 2006; Ando and Zhang, 2005a,b; Blei et al., 2003;
Nigam et al., 2000; Joachims, 1999b) infer information from unlabeled data, which is often available
in much larger amounts than labeled data.

We argue that in order to perform text categorization well, the computer needs access to much
more extensive and deep knowledge. Over a decade ago, Lenat and Feigenbaum (1990) formulated
the knowledge principle, which postulated that “If a program is to perform a complex task well, it
must know a great deal about the world it operates in.” Text categorization is certainly a complex
task. While the basic approaches are able to identify commonalities between documents based on
word identity, and more advanced approaches can recognize synonyms, there are cases where iden-
tifying commonality between documents requires recognition of more elaborated semantic relations
between terms.

2298

KNOWLEDGE-BASED FEATURE GENERATION

For illustration, consider document #15264 in Reuters-21578, which is one of the most fre-
quently used data sets in text categorization research. This document discusses a joint mining
venture by a consortium of companies, and belongs to the category “copper.” However, this fairly
long document mentions only briefly that the aim of this venture is mining copper; rather, its main
focus is on the mutual share holdings of the companies involved (Teck Corporation, Cominco, and
Lornex Mining), as well as other mining activities of the consortium. Consequently, the three very
different text classifiers that we used (SVM, KNN and C4.5) failed to classify the document cor-
rectly. This comes as no surprise—“copper” is a fairly small category, and none of these companies,
nor the location of the venture (Highland Valley in British Columbia, Canada) is ever mentioned in
the training set for this category.

We argue that this need not be the case. When a Reuters editor originally handled this document,
she most likely knew quite a lot about the business of these companies, and easily assigned the
document to the category “copper.” It is this kind of knowledge that we would like machine learning
algorithms to have access to.

In this paper we introduce a method for enhancing machine learning algorithms with a large
volume of knowledge extracted from available human-generated repositories. Our method capital-
izes on the power of existing induction techniques while enriching the language of representation,
namely, exploring new feature spaces. Prior to text categorization, we employ a feature genera-
tor that uses common-sense and domain-specific knowledge to enrich the bag of words with new,
more informative and discriminating features. Feature generation is performed automatically, us-
ing machine-readable hierarchical repositories of knowledge. Many sources of world knowledge
have become available in recent years, thanks to rapid advances in information processing, and In-
ternet proliferation in particular. Examples of general purpose knowledge bases include the Open
Directory Project (ODP), Yahoo! Web Directory, and the Wikipedia encyclopedia.

It is interesting to juxtapose our method with above-mentioned alternative approaches that aug-
ment the training set of documents with external knowledge. Semi-supervised learning uses un-
labeled data to gather additional features beyond those originally available in the input. Transfer
learning involves pairs of related learning tasks, so that features constructed while solving one
problem can then also be used for solving another problem. On the other hand, the methods we
propose in this paper build new features using knowledge explicitly cataloged by humans, which
comes in the form of concepts that correspond to the nodes of the Open Directory.

In this paper we use the ODP as a source of background knowledge. The Open Directory
catalogs millions of Web sites in a rich hierarchy of 600,000 categories, and represents the col-
lective knowledge of over 70,000 volunteer editors. Thus, in the above example, the feature gen-
erator “knows” that the companies mentioned are in the mining business, and that Highland Val-
ley happens to host a copper mine. This information is available in Web pages that discuss the
companies and their operations, and are cataloged in corresponding ODP categories such as MIN-
ING AND DRILLING and METALS. Similarly, Web pages about Highland Valley are cataloged under
REGIONAL/NORTH AMERICA/CANADA/BRITISH COLUMBIA. To amass this information, we crawl
the URLs cataloged in the ODP, thus effectively multiplying the amount of knowledge available
many times over. Armed with this knowledge, the feature generator constructs new features that
denote these ODP categories, and adds them to the bag of words. The augmented feature space
provides text classifiers with a cornucopia of additional information. Indeed, our implementation
of the proposed methodology classifies this document correctly. It is essential to mention that this
entire scheme works automatically. Given an existing knowledge hierarchy (ODP in this case), the

2299

GABRILOVICH AND MARKOVITCH

feature generator examines documents and enriches their representation in a completely mechanical
way.

The contributions of this paper are threefold. First, we propose a framework and a collection
of algorithms that perform feature generation using very large-scale repositories of human knowl-
edge. Second, we propose a novel kind of contextual analysis performed during feature generation,
which views the document text as a sequence of local contexts, and performs implicit word sense
disambiguation. Finally, we describe a way to further enhance existing knowledge bases by several
orders of magnitude by crawling the World Wide Web. Performing feature generation using exter-
nal knowledge effectively capitalizes on human knowledge (as encoded by the editors of the Open
Directory), leveraging information that cannot be deduced solely from the texts being classified. As
we show in Section 5, our approach performs markedly better than the bag of words method.

We believe that this research is only one step towards computerized use of large-scale structured
repositories of human knowledge. In our future work, we plan to study possible uses of other
knowledge repositories in addition to the Open Directory. We also intend to apply the feature
generation methodology to additional natural language processing tasks, as well as to study its
applicability beyond text processing. It would also be very interesting to compare the results of the
feature generation methodology presented in this paper to other techniques that use unlabeled data,
such as semi-supervised and transfer learning; this comparison is also left to future work.

The rest of the paper is organized as follows. In Section 2 we analyze the limitations of the
BOW approach. Section 3 describes how our feature generation methodology uses repositories of
human knowledge to overcome these limitations. Section 4 instantiates this methodology with a
particular knowledge resource, the Open Directory Project. In Section 5 we report the results of
evaluating the proposed methodology empirically on a variety of test collections, and outline the
implementation details of our system. In Section 6 we discuss our methodology in the context of
prior work and related literature. Section 7 concludes the paper and outlines directions for future
research.

2. Problems in the Bag of Words Approach

Since the majority of existing text categorization systems employ the bag of words approach to
represent documents, we begin by analyzing typical problems and limitations of this method.

1. Words that appear in testing documents but not in training documents are completely ignored
by the basic BOW approach that does not use external data to compensate for such vocabulary
mismatch. Since the classification model is built with a subset of words that appear in the
training documents, words that do not appear there are excluded by definition. Lacking the
ability to analyze such words, the systemmay overlook important parts of the document being
classified.

Example: Document #15264 from Reuters-21578 described in the Introduction presents a
perfect example of this limitation. This document describes a copper-mining venture formed
by a group of companies, whose names are not mentioned even once in the training set, and
are thus ignored by the classification model.

2. Words that appear infrequently in the training set, or appear just once, are mostly ignored
even if they are essential for proper classification. It often happens that human annotators

2300

KNOWLEDGE-BASED FEATURE GENERATION

assign a document to a certain category based on some notion briefly mentioned in the docu-
ment. If the words that describe this notion do not appear with sufficient frequency elsewhere
in the training set, then the system will overlook the real reason for this document’s annota-
tion. Consequently, it will either come up with some spurious association between the actual
category and unrelated words or ignore this document as a training example altogether.

Example: Suppose we have a collection of pharmaceutical documents and are trying to learn
the concept of antibiotics. If a particular training document describes the results of a clinical
trial for a new antibiotic drug, and mentions it only by a brand name that does not appear
elsewhere in the training set, the system will likely miss an important piece of evidence.

3. The problem described in the previous item can manifest itself in a more extreme way. Sup-
pose we have a group of related words, where each word appears only a few times in the
collection, and few documents contain more than one word of the group. As a result, the
connection between these words remains implicit and cannot be learned without resorting to
external knowledge. External knowledge, however, allows us to determine that certain words
are related. Furthermore, we can use the generalization ability of hierarchical knowledge
organization to establish that the words correspond to specific instances of the same general
notion.

Example: Consider a collection of clinical narrative reports on administering various antibi-
otic drugs. Since such reports are circulated among medical professionals, they are likely to
refer to specific drugs by name, while omitting the knowledge already shared by the target
audience. Hence, the reports will likely not explain that each drug is actually an antibiotic. In
the absence of this vital piece of knowledge, the BOW approach can easily fail to learn the
notion shared by the reports.

Speaking more generally, we observe that a critical limitation of the BOW approach lies in its
ignorance of the connections between the words. Thus, even more difficult than the problem
described in the previous item, is the one where we have several related phrases or longer
contexts, while the connection between them is not stated in any single document.

Example: Consider again a collection of clinical reports, which are inherently rich in diverse
medical terminology. Often, each report describes the case of a single patient. Thus, with-
out extensive medical knowledge it would be nearly impossible to learn that Lown-Ganong-
Levine Syndrome and Wolff-Parkinson-White Syndrome are different kinds of arrhythmia,
while Crigler-Najjar Syndrome and Gilbert Syndrome are two kinds of liver diseases.

4. Because contextual adjacency of words is not taken into account by the BOW approach, word
sense disambiguation can only be performed at the level of entire documents, rather than at
much more linguistically plausible levels of a single sentence or paragraph.

Example: As an extreme example of this limitation, consider a document about the Jaguar
company establishing a conservation trust to protect its namesake animal
(http://www.jaguarusa.com/us/en/company/news events/archive/Jaguar Conser-
vation trust longcopy.htm). This fairly long document is devoted mainly to the preserva-
tion of wildlife, while briefly covering the history of the car manufacturer in its last paragraph.
Taken as a single bag of words, the document will likely be classified as strongly related to
jaguar the animal, while the cursory mention of Jaguar the company will likely be ignored.

2301

GABRILOVICH AND MARKOVITCH

Some of these limitations are due to data sparsity—after all, if we had infinite amounts of
text on every imaginable topic, the bag of words would perform much better. Many studies in
machine learning and natural language processing addressed the sparsity problem. Approaches
like smoothing (Chen and Goodman, 1996) allocate some probability mass for unseen events and
thus eliminate zero probabilities. These approaches facilitate methods that are sensitive to zero
probabilities (e.g., Naive Bayes), but essentially do not use any external knowledge. More elaborate
techniques such as transfer learning (Bennett et al., 2003; Do and Ng, 2005; Sutton and McCallum,
1998; Raina et al., 2006) and semi-supervised learning (Goldberg and Zhu, 2006; Ando and Zhang,
2005a,b; Blei et al., 2003; Nigam et al., 2000; Joachims, 1999b), leverage cooccurrence information
from similar learning tasks or from unlabeled data. Other studies that addressed the sparsity problem
include using the EM algorithm with unlabeled data (Nigam et al., 2006, 2000), latent semantic
kernels (Cristianini et al., 2002), transductive inference (Joachims, 1999b), and generalized vector
space model (Wong et al., 1985).

Humans avoid these limitations due to their extensive world knowledge, as well as their ability
to understand the words in context rather than just view them as an unordered bag. Our approach
that uses structured background knowledge is somewhat reminiscent of explanation-based learning
(Mitchell et al., 1986; Dejong and Mooney, 1986), where generalizations of previously seen ex-
amples are reused in future problem solving tasks, thus mimicking humans’ ability to learn from a
single example. Later in the paper we show how the above problems and limitations can be resolved
through the use of knowledge-based feature generation.

3. Feature Generation Methodology

Having presented the problems with the BOW approach in the previous section, we continue by
defining the guidelines for building a feature generation framework that will address and alleviate
these problems using repositories of human knowledge.

3.1 Overview

The proposed methodology allows principled and uniform integration of one or more sources of
external knowledge to construct new features. These knowledge sources define a collection of
concepts that are assigned to documents to qualify their text. In the preprocessing step, we build
a feature generator capable of representing documents in the space of these concepts. The feature
generator is then invoked prior to text categorization to assign each document with a number of
relevant concepts. Subsequently, these concepts give rise to a set of constructed features that provide
background knowledge about the document’s content. The constructed features can then be used
either in conjunction with or in place of the original bag of words. The resulting set undergoes
feature selection, and the most discriminative features are retained for document representation.
Finally, we use traditional text categorization techniques to learn a text categorizer in the new feature
space.

3.2 Requirements on Suitable Knowledge Repositories

We impose the following requirements on knowledge repositories for feature generation:

1. The repository contains a collection of concepts organized in a hierarchical tree structure,
where edges represent the “is-a” relationship. Each hierarchy node is labeled with a concept,

2302

KNOWLEDGE-BASED FEATURE GENERATION

which is more general than those of its children. Although in principle we could perform
feature generation with a flat set of concepts, using a hierarchical ontology allows us to per-
form powerful generalizations. Optionally, a concept may be accompanied by a brief textual
description.
Formally, let KR be a knowledge repository that contains concepts C = {c0, . . . ,cn}. Let c0
be the root node, which is more general than any other node. Let Parent(ci) be a function that
uniquely associates a node with its parent in the hierarchy, whereas Parent(c0) is undefined.
Let Children(ci) be a function that associates a node with a set of its children, where for leaf
nodesChildren(c j) = /0. When concept ci is more general than another concept c j, we denote
this by ci " c j; this happens when c j ∈Children∗(ci), whereChildren∗ denotes the recursive
application of the function (obviously, ∀ j > 0 : c0 " c j). If additional textual description is
available for a concept, it is denoted by Description(ci); otherwise this function returns an
empty set of words.

2. There is a collection of texts associated with each concept. The feature generator uses these
texts to learn the definition and scope of the concept, in order to be able to assign it to relevant
documents. We refer to these texts as textual objects, and denote the set of such objects
associated with concept ci as Ti = {ti,1, . . . , ti,mi}.

Let W be a set of words. Our goal is to build a mapping function f :W ∗ → 2C. We propose
building the mapping function using text categorization techniques. This is a very natural thing
to do, as text categorization is all about assigning documents or parts thereof to a predefined set of
categories (concepts in our case). One way to do so is to use a binary learning algorithm L(Pos,Neg)
to build a set of n binary classifiers, f1, . . . , fn, such that fi :W ∗ → {0,1}. This way, individual
classifiers are built using the chosen learning algorithm: fi = L(Ti,

S
1≤ j≤n, j $=iTj). Another way to

build such a mapping function is to devise a hierarchical text classifier that takes advantage of the
hierarchical organization of categories. In this paper, we use a simpler approach of building a single
classifier that simultaneously considers all categories for each input sequence of words.

We believe that the above requirements are not overly restrictive. Indeed, there are quite a few
sources of common-sense and domain-specific knowledge that satisfy these requirements. We list
below several notable examples.

• Internet directories such as the Yahoo Web Directory (http://dir.yahoo.com), the Open
Directory Project (http://www.dmoz.org) and the LookSmart directory
(http://search.looksmart.com/p/browse) catalog huge numbers of URLs organized in
an elaborate hierarchy. The Web sites pointed at by these URLs can be crawled to gather a
wealth of information about each directory node. Here each directory node defines a concept,
and crawling the Web sites cataloged under the node provides a collection of textual objects
for that node.

• The Medical Subject Headings (MeSH) taxonomy (MeSH, 2003), which defines over 18,000
categories and is cross-linked with the MEDLINE database of medical articles, is a notable
example of a domain-specific knowledge base. Here the hierarchy nodes again induce a set
of concepts. The MEDLINE links mean that MeSH nodes can be easily associated with
numerous scientific articles that are highly relevant to the scope of the node, yielding a set of
textual objects for that node.

2303

GABRILOVICH AND MARKOVITCH

• Other domain-specific hierarchies are also available, notably in the terminology-rich law do-
main, which includes the KeySearch taxonomy by WestLaw
(http://west.thomson.com/westlaw/keysearch) and the Web-based FindLaw hierarchy
(http://www.findlaw.com) (both of them cross-linked with material relevant for each node).

• The US Patent Classification (http://www.uspto.gov/go/classification) and the In-
ternational Patent Classification (http://www.wipo.int/classifications/ipc/en) are
exceptionally elaborate taxonomies, where each node is linked to relevant patents.

• The online Wikipedia encyclopedia (http://www.wikipedia.org) has a fairly shallow hi-
erarchy but its nodes contain very high-quality articles, which are mostly noise-free (except
for occasional spamming).

• In the brick-and-mortar world, library classification systems such as the Universal Decimal
Classification (UDC) (Mcilwaine, 2000), the Dewey Decimal Classification (Dewey et al.,
2003) or the Library of Congress Classification (Chan, 1999) provide hierarchical structur-
ing of human knowledge for classifying books. By the very virtue of their definition, each
hierarchy node can be associated with the text of books cataloged under the node.

In this work we use the ODP as our knowledge base, due to the easy accessibility of its struc-
ture and linked resources (cataloged Web sites). However, our methodology is general enough to
facilitate other knowledge repositories such as those listed above, and in our future work we intend
to explore their utility as well, focusing in particular on the MeSH hierarchy for domain-specific
feature generation. In a recent study (Gabrilovich and Markovitch, 2006), we used the Wikipedia
encyclopedia as a source of knowledge for feature generation.

A note on terminology is in order here. The most commonly used term for nodes of hierarchical
directories of knowledge is “category.” In text categorization, however, this term normally refers to
topical labels assigned to documents. To prevent possible confusion, we use the word “concept” to
refer to the former notion. We represent such concepts as vectors in a high-dimensional space of
“attributes.” Again, we avoid using the term “features,” which is reserved for denoting individual
entries of document vectors in text categorization per se.

3.3 Building a Feature Generator

The first step in our methodology is preprocessing, performed once for all future text categorization
tasks. We induce a hierarchical text classifier that maps pieces of text onto relevant knowledge con-
cepts, which later serve as generated features. The resulting classifier is called a feature generator
according to its true purpose in our scheme, as opposed to the text categorizer (or classifier) that we
build ultimately. The feature generator represents concepts as vectors of their most characteristic
words, which we call attributes (reserving the term features to denote the properties of documents
in text categorization).

The feature generator operates similarly to a regular text classifier—it first learns a classification
model in the space of concept attributes, and then identifies a set of concepts that are most appropri-
ate to describe the contents of the input document. Observe that the number of concepts to which the
feature generator classifies document text is huge, as suitable knowledge repositories may contain
tens and even hundreds of thousands of concepts. Few machine learning algorithms can efficiently

2304

KNOWLEDGE-BASED FEATURE GENERATION

handle so many different classes and about an order of magnitude more of training examples. Suit-
able candidates include the nearest neighbor and the Naive Bayes classifier (Duda and Hart, 1973),
as well as prototype formation methods such as Rocchio (Rocchio, 1971) or centroid-based (Han
and Karypis, 2000) classifiers. A radically different approach would avoid considering all exist-
ing concepts simultaneously, rather, it would work top-down into the hierarchy, identifying several
most suitable concepts at each level, as in the hierarchical text classifiers described in the literature
(Koller and Sahami, 1997; Dumais and Chen, 2000; Ruiz and Srinivasan, 2002).

3.3.1 ATTRIBUTE SELECTION

Prior to learning a text classifier that will act as a feature generator, we represent each concept as
an attribute vector. To this end, we pool together all the textual objects for the concept and all
of its descendants, and represent the accumulated description with a vector of words. Using all
encountered words as attributes is impractical because it yields a classification model that is too big,
and because this would inevitably increase the level of noise. The former consideration is essential
to allow fitting the induced model into computer memory. The latter consideration is particularly
important for Web-based knowledge repositories, which are inherently plagued with noise ranging
from intentional directory spamming to merely irrelevant information. To remedy the situation, we
perform attribute selection for each concept prior to learning the feature generator.

To this end, we use standard attribute selection techniques (Sebastiani, 2002) such as informa-
tion gain, and identify words that are most characteristic of a concept versus all other concepts.
This approach to attribute selection is reminiscent of the approaches described by Chakrabarti et al.
(1997) and by Koller and Sahami (1997). Let us denote by Di the collection of textual objects of ci
and its descendants, Di = {t j,k|ci " c j}, and by Di the collection of textual objects for all other con-
cepts, Di = {tl,k|ci &" cl}. Then, we can assess the discriminative capacity of each word w ∈Di with
respect to Di. It is essential to note that conventional attribute selection techniques select attributes
for ci from the entire lexicon, L= Di∪Di. In our case, however, we aim at selecting words that are
most characteristic for the concept, and therefore we limit the selection only to words that actually
appear in the textual objects for that concept, that is, Di.

Figure 1 shows the algorithm for building a feature generator. The algorithm uses a global
structure Text(ci) that accumulates textual objects for concept ci and all of its descendants (attributes
for the category are then selected from the words occurring in this pool). We manipulate Text(ci) as
an unordered bag of words. Attribute vectors for each category are stored in Vector(ci).

3.4 Contextual Feature Generation

Feature generation precedes text categorization, that is, before the induction algorithm is invoked to
build the text categorizer, the documents are fed to the feature generator.

Traditionally, feature generation uses the basic features supplied with the training instances to
construct more sophisticated features. In the case of text processing, however, important informa-
tion about word ordering will be lost if the traditional approach is applied to the bag of words.
Therefore, we argue that feature generation becomes much more powerful when it operates on the
raw document text. But should the generator always analyze the whole document as a single unit,
as do regular text classifiers?

2305

GABRILOVICH AND MARKOVITCH

Algorithm BUILDFEATUREGENERATOR
Compute attribute vectors for all concepts
BUILDVECTORS(c0)

Use an induction algorithm to train a feature generator FG
using the attribute vectors Vector(ci)
FG← InduceClassi f ier({Vector(ci)})
For feature generation efficiency, build an inverted index
InvIndex : w)→ {ci}, s.t. w ∈Vector(ci)

———————————————————————————————-
Algorithm BUILDVECTORS(ci)
Text(ci) = /0

Traverse the hierarchy bottom-up, collecting the textual objects
of the descendants of each category
For each child ∈Children(ci) do
BUILDVECTORS(child)
Text(ci) ← Text(ci)∪Text(child)

Now add the textual objects for the category itself
along with the optional description (if available)
Text(ci) ← Text(ci)∪{ti,1, . . . , ti,m}∪Description(ci)

Build the attribute vector by performing attribute selection
among the words of Text(ci)
Vector(ci) ← AttributeSelection(Text(ci))
Assign values to the selected attributes
Vector(ci) ← t f id f (Vector(ci))

Figure 1: Building a feature generator.

3.4.1 ANALYZING LOCAL CONTEXTS

We believe that considering the document as a single unit can often be misleading: its text might be
too diverse to be readily mapped to the right set of concepts, while notions mentioned only briefly
may be overlooked. Instead, we propose to partition the document into a series of non-overlapping
segments (called contexts), and then generate features at this finer level. Each context is classified
into a number of concepts in the knowledge base, and pooling these concepts together to describe
the entire document results in multi-faceted classification. This way, the resulting set of concepts
represents the various aspects or sub-topics covered by the document.

Potential candidates for such contexts are simple sequences of words, or more linguistically
motivated chunks such as sentences or paragraphs. The optimal resolution for document segmenta-
tion can be determined automatically using a validation set. We propose a more principled multi-
resolution approach that simultaneously partitions the document at several levels of linguistic ab-

2306

KNOWLEDGE-BASED FEATURE GENERATION

straction (windows of words, sentences, paragraphs, up to taking the entire document as one big
chunk), and performs feature generation at each of these levels. We rely on the subsequent feature
selection step (Section 3.4.2) to eliminate extraneous features, preserving only those that genuinely
characterize the document. Figure 2 presents the feature generation algorithm.

Algorithm FEATUREGENERATION(D)
LetCT be a series of contexts for D
CT ← words(D)∪ sentences(D)∪ paragraphs(D)∪{D}
Let F be a set of features generated for D
F ← /0
For each context ct ∈CT perform feature generation:
F ← F ∪FG(ct)

Represent D as BagO fWords(D)∪F

Figure 2: Performing feature generation for document D

In fact, the proposed approach tackles two important problems in natural language processing,
namely, synonymy (the ability of natural languages to express many notions in more than one way),
and polysemy (the property of natural language words to convey more than a single sense, while
certain words may have as many as dozens of different, sometimes unrelated senses). When in-
dividual contexts are classified, word sense disambiguation is implicitly performed, thus resolving
word polysemy to some degree. A context that contains one or more polysemous words is mapped
to the concepts that correspond to the sense shared by the context words. Thus, the correct sense of
each word is determined with the help of its neighbors. At the same time, enriching document repre-
sentation with high-level concepts and their generalizations addresses the problem of synonymy, as
the enhanced representation can easily recognize that two (or more) documents actually talk about
related issues, albeit using different vocabularies.

For each context, the feature generator yields a list of concepts ordered by their score, which
quantifies their appropriateness to the context. A number of top-scoring concepts are used to actually
generate features. For each of these concepts we generate one feature that represents the concept
itself, as well an additional group of features that represent ancestors of this concept in the hierarchy
of the knowledge repository.

3.4.2 FEATURE SELECTION

Using support vector machines in conjunction with bag of words, Joachims (1998) found that SVMs
are very robust even in the presence of numerous features. He further observed that the multitude of
features are indeed useful for text categorization. These findings were corroborated in more recent
studies (Rogati and Yang, 2002; Brank et al., 2002; Bekkerman, 2003) that observed either no im-
provement or even small degradation of SVM performance after feature selection.1 Consequently,
many later works using SVMs did not apply feature selection at all (Leopold and Kindermann, 2002;
Lewis et al., 2004).

1. Gabrilovich and Markovitch (2004) described a class of problems where feature selection from the bag of words
actually improves SVM performance.

2307

GABRILOVICH AND MARKOVITCH

This situation changes drastically as we augment the bag of words with generated features.
First, nearly any technique for automatic feature generation can easily generate huge numbers of
features, which will likely aggravate the “curse of dimensionality.” Furthermore, it is feature selec-
tion that allows the feature generator to be less than a perfect classifier. When some of the concepts
assigned to the document are correct, feature selection can identify them and seamlessly eliminate
the spurious ones. We further analyze the utility of feature selection in Section 5.7.

Note also that the categories to which the documents are categorized most likely correspond to
a mix of knowledge repository concepts rather than a single one. Therefore, as the feature generator
maps documents to a large set of related concepts, it is up to feature selection to retain only those
that are relevant to the particular categorization task in hand.

3.4.3 FEATURE VALUATION

In regular text categorization, each word occurrence in document text is initially counted as a unit,
and then feature valuation is performed, usually by subjecting these counts to TF.IDF weighting
(Salton and Buckley, 1988; Debole and Sebastiani, 2003). To augment the bag of words with
generated features and to use a single unified feature set, we need to assign weights to generated
features in a compatible manner.

Each generated feature is assigned the basic weight of 1, as in the single occurrence of a word in
the bag of words. However, this weight is further multiplied by the classification score produced for
each classified concept by the feature generator. This score quantifies the degree of affinity between
the concept and the context it was assigned to.

3.4.4 REVISITING THE RUNNING EXAMPLE

Let us revisit the example from Section 1, where we considered a document that belongs to the
“copper” category of Reuters-21578. Figure 3 illustrates the process of feature generation for this
example. While building the feature generator at the preprocessing stage, our system crawls the
Web sites cataloged under mining-related ODP concepts such as BUSINESS/MINING AND DRILLING,
SCIENCE/TECHNOLOGY/MINING and BUSINESS/INDUSTRIAL GOODS AND SERVICES/MATERIALS/
METALS. These include http://www.teckcominco.com and http://www.miningsurplus.com,
which belong to the (now merged) Teck Cominco company. The company’s prominence gives it
frequent mention in the Web sites we have crawled, and consequently the words “Teck” and “Com-
inco” are included in the set of attributes selected to represent the above concepts.

During feature generation, the document is segmented into a sequence of contexts The feature
generator analyzes these contexts and uses their words (e.g., “Teck” and “Cominco”) to map the doc-
ument to a number of mining-related concepts in the ODP (e.g., BUSINESS/MINING AND DRILLING).
These concepts, as well as their ancestors in the hierarchy, give rise to a set of generated features that
augment the bag of words. Observe that the training documents for the category “copper” under-
went similar processing when a text classifier was induced. Consequently, features based on these
concepts were selected during feature selection and retained in document vectors, thanks to their
high predictive capacity. It is due to these features that the document is now categorized correctly,
while without feature generation it consistently caused BOW classifiers to err.

2308

KNOWLEDGE-BASED FEATURE GENERATION

Business/Mining_and_Drilling

www.teckcominco.com

…

Attributes selected for this
concept: …, Teck, Cominco, …

“ … Cominco and
Teck's 22 pct-owned
Lornex agreed in
January 1986 to form
the joint venture,
merging their Highland
Valley operations …” Bag of Words

Generated features:
…, Metallurgy,
Metallic_Deposits
Mining_and_Drilling, … Feature

vector
Text

classifier

Web sites catalogued under
Business/Mining_and_Drilling

Figure 3: Feature generation example

4. Using the Open Directory for Feature Generation

We now instantiate the general methodology presented in Section 3 to use the Open Directory
project as a knowledge repository.

The Open Directory comprises a hierarchy of approximately 600,000 nodes that catalog over
4,000,000 Web sites, each represented by a URL, a title, and a brief summary of its contents. The
directory is organized as a tree where each node has a title (defined by its location within the direc-
tory, for example, COMPUTERS/ARTIFICIAL INTELLIGENCE), and about one-third of all nodes have
a short textual description. Every ODP node is associated with a collection of URLs to Web sites
cataloged under that node, while each URL has a title and a concise summary of the correspond-
ing Web site. The project constitutes an ongoing effort promoted by over 65,000 volunteer editors
around the globe, and is arguably the largest publicly available Web directory.2 Being the result
of pro bono work, the Open Directory has its share of drawbacks, such as non-uniform coverage,
duplicate subtrees in different branches of the hierarchy, and sometimes biased coverage due to pe-
culiar views of the editors in charge. At the same time, however, ODP embeds a colossal amount
of human knowledge in a wide variety of areas, covering even very specific scientific and technical
concepts.

2. Although the actual size of Yahoo! has not been publicly released in the recent years, it is estimated to be about half
the size of the Open Directory. This estimate is based on brute-force exhaustive crawling of the Yahoo! hierarchy.
See http://sewatch.com/reports/directories.html and http://www.geniac.net/odp for more details.

2309

GABRILOVICH AND MARKOVITCH

4.1 Multiplying Knowledge Through Web Crawling

We use the textual descriptions of ODP nodes and their URLs as training examples for learning the
feature generator. Although these descriptions alone constitute a sizeable amount of information,
we devised a way to increase the volume of training data by several orders of magnitude. We do
so by crawling the Web sites pointed at by all cataloged URLs, and obtain a small representative
sample of each site. Following the scheme introduced by Yang et al. (2002), each link cataloged in
the ODP is used to obtain a small representative sample of the target Web site. To this end, we crawl
each cataloged site in the BFS order, starting from the URL listed in the directory. A predefined
number of Web pages are downloaded, and then concatenated into a synthetic meta-document. This
meta-document, along with the site description listed in the directory, constitutes the textual object
for that site. Pooling together the meta-documents for all sites associated with an ODP node gives
us a wealth of additional information about it, which we use to enrich the node summary.

4.2 Noise Reduction and Attribute Selection

Using so much knowledge requires a host of filtering mechanisms that control the quality and utility
of the generated features. We now describe these mechanisms in detail. In what follows, we distin-
guish between structural noise, which is inherent to the ODP structure, and content noise, which is
found in the texts we obtain through crawling the cataloged URLs.

4.2.1 STRUCTURAL NOISE

However elaborate our knowledge repositories are, they necessarily contain concepts that are detri-
mental to feature generation. These include concepts too specific or situated too deep in the hier-
archy, or having too few textual objects to build a representative attribute vector. It is important to
observe, however, that whenever we pruned small categories, we assigned all their textual content
to their parents. Here again we benefit from the hierarchical organization of the directory, which
allows us to aggregate small fragments of specific knowledge at a higher conceptual level, where its
accumulated mass becomes sufficient to define a more general concept.

We identified the following potential sources of noise in the Open Directory:

1. The branch TOP/WORLD concentrates material in languages other than English. This entire
branch is therefore pruned.

2. Some top-level branches contain concepts that are hardly useful for subsequent text catego-
rization.

(a) TOP/NEWS is a very elaborate subtree devoted to listing numerous CNN stories on vari-
ous topics organized by date. The nodes of this subtree represent past dates, and do not
correspond to useful knowledge concepts.

(b) TOP/ADULT lists adult-oriented Web sites, and we believe that the concepts of this sub-
tree are of little use for general purpose text categorization.

(c) TOP/KIDS AND TEENS roughly duplicates the structure of the ODP but only lists re-
sources suitable for children.

All these branches are pruned as well.

2310

KNOWLEDGE-BASED FEATURE GENERATION

3. Overly small categories (usually situated very deep in the hierarchy) that only contain a hand-
ful of URLs, and therefore their scope cannot be learned reliably. We therefore eliminate
categories with fewer than 10 URLs or those situated below depth level 7 (the textual content
of pruned categories is assigned to their parents).

4. The TOP/REGIONAL branch contains approximately one third of the entire mass of the ODP
data, and is devoted to listing English language sites about various geographical regions of the
world. This branch is further divided into continents, countries and smaller localities, up to the
level of cities, towns and landmarks. However, the hierarchy does not stop at this level, and
for most localities it provides much more elaborate classification, similar to that of the higher
ODP levels. For example, under the path TOP/REGIONAL/NORTH AMERICA/UNITED STATES/
NEW YORK/LOCALITIES/N/NEW YORK CITY one finds further subdivisions such as
ARTS AND ENTERTAINMENT, BUSINESS AND ECONOMY, HEALTH, SHOPPING and
SOCIETY AND CULTURE. A similar set of categories duplicating higher-level distinctions
(TOP/ARTS, TOP/BUSINESS etc.) can be also found in the middle of this path at TOP/REGIONAL/
NORTH AMERICA/UNITED STATES/NEW YORK.
ODP classification principles3 prescribe that businesses that operate in a particular locality
(in this example, local to the State of New York or to New York City) should normally be
catalogued under the most specific applicable categories, while businesses with global reach
should be catalogued somewhere under TOP/BUSINESS; the rationale for choosing other cate-
gories (e.g., TOP/SOCIETY/... vs. TOP/REGIONAL/NORTH AMERICA/UNITED STATES/
NEW YORK/SOCIETY AND CULTURE is similar. However, we believe that when the ODP is
used as a knowledge repository to support text categorization, such fine-grained distinctions
(e.g., architect offices in Manhattan) are of little use. These categories only pollute the hier-
archy with numerous small nodes, each of which only has a small chance of being assigned
to any given context.
Therefore, we eliminate overly specific categories under TOP/REGIONAL by pruning all paths
at the level of geographical names. When the feature generator operates on a context describ-
ing a particular New York business, it will map the latter to the New York City node, as well
as to one or more appropriate nodes under TOP/BUSINESS.

5. Web spam, which comes in the form of URLs that are hardly authoritative or representative of
their host category, but are nonetheless included in the directory by a minority of unscrupulous
editors. We do not explicitly address the problem of spam here, as it lies beyond the scope of
our current study.

4.2.2 CONTENT NOISE

Texts harvested from the WWW are quite different from clean passages in formal written English,
and without adequate noise reduction crawled data may do more harm than good. To reduce content
noise we perform attribute selection as explained in Section 3.3.1. For example, Table 1 shows the
top 10 attributes selected for sample ODP concepts using information gain as the attribute selection
criterion. As we can see, the attributes selected for all the sample concepts are very intuitive and
plausible.

3. See http://dmoz.org/guidelines and http://dmoz.org/erz/index.html for general ODP editorial guide-
lines, and http://dmoz.org/Regional/faq.html for Regional-specific issues.

2311

GABRILOVICH AND MARKOVITCH

ODP concept Top 10 selected attributes
Top/Business/Financial Services finance, loan, mortgage, equity, insurance, lender, bank,

investment, transaction, payment
Top/Computers/Artificial Intelligence neural, artificial, algorithm, intelligence, AAAI,

Bayesian, probability, IEEE, cognitive, inference
Top/Health/Nutrition nutrition, diet, nutrient, vitamin, dietary, cholesterol,

carbohydrate, intake, protein, fat
Top/Home/Cooking recipe, sauce, ingredient, soup, salad, casserole, stew,

bake, butter, cook
Top/Recreation/Travel travel, itinerary, trip, destination, cruise, hotel, tour,

adventure, travelogue, departure
Top/Regional/Europe/Switzerland4 Switzerland, Swiss, Schweiz, und, Suiss, sie, CHF, der,

Zurich, Geneva
Top/Science science, research, scientific, biology, laboratory,

analysis, university, theory, study, scientist
Top/Shopping/Gifts gift, birthday, occasion, basket, card, shipping, baby,

keepsake, order, wedding
Top/Society/History war, history, military, army, civil, historian, soldier,

troop, politics, century
Top/Sports/Golf golf, golfer, tee, hole, fairway, tournament,

championship, clubhouse, PGA, par

Table 1: Examples of attribute selection using information gain

4.2.3 LEARNING THE FEATURE GENERATOR

In our current implementation, the feature generator works as a centroid-based classifier (Han and
Karypis, 2000), which represents each category as a centroid vector of the pool of textual objects
associated with it.5 Given a fragment of text supplied as input for feature generation, the classifier
represents it as an attribute vector in the same space. It then compares this vector to those of all
the concepts, and returns the desired number of best-matching ones. Attribute vectors are compared
using the cosine metric (Zobel and Moffat, 1998); the value of the metric is treated as the classifica-
tion score. A number of top-scoring concepts are retained for each input text as generated features.
The feature generator also performs generalization of these concepts, and constructs features from
the classified concepts per se as well as their ancestors in the hierarchy.

5. Empirical Evaluation

To evaluate the utility of knowledge-based feature generation, we implemented the proposedmethod-
ology using the Open Directory as a source of world knowledge. Throughout the experiments we
used an ODP snapshot as of April 2004. Crawling of URLs cataloged in the Open Directory was
performed over the period of April–August 2004.

4. Many crawledWeb pages under TOP/REGIONAL/EUROPE/SWITZERLAND contain non-English material, hence
words like “Schweiz” (German for Switzerland) and “der” (German masculine definite article), which survived stop
words removal that is only performed for English.

5. The centroid classifier offers a simple and efficient way to manage the multitude of concepts in the Open Directory;
additional machine learning techniques for learning the feature generator are mentioned in Section 3.3.

2312

KNOWLEDGE-BASED FEATURE GENERATION

5.1 Experimental Methodology

We used the following test collections to evaluate our methodology for feature generation:

1. Reuters-21578 (Reuters, 1997) is historically the most often used data set in text catego-
rization research. Following common practice, we used the ModApte split (9603 training,
3299 testing documents) and two category sets, 10 largest categories and 90 categories with
at least one training and testing example.

2. Reuters Corpus Volume I (RCV1) (Lewis et al., 2004), with over 800,000 documents and
three orthogonal category sets, presents a new challenge for text categorization. Since the
original RCV1 data contains a number of errors, we used the corrected version RCV1-v2
(Lewis et al., 2004, Section 4). To speed up experimentation, we used a subset of the corpus
with 17,808 training documents (dated August 20–27, 1996) and 5341 testing documents
(dated August 28–31, 1996). Following the scheme introduced by Brank et al. (2002), we
used 16 Topic and 16 Industry categories, which constitute a representative sample of the full
groups of 103 and 354 categories, respectively. We also randomly sampled the Topic and
Industry categories into 5 sets of 10 categories each. Table 8 (Appendix A) gives the full
definition of the category sets we used.

3. OHSUMED (Hersh et al., 1994) is a subset of the MEDLINE database, which contains
348,566 references to documents published in medical journals over the period of 1987–1991.
Each reference contains the publication title, and about two-thirds (233,445) also contain an
abstract. Each document is labeled with several MeSH (MeSH, 2003) categories. There are
over 14,000 distinct categories in the collection, with an average of 13 categories per docu-
ment. Following Joachims (1998), we used a subset of documents from 1991 that have ab-
stracts, taking the first 10,000 documents for training and the next 10,000 for testing. To limit
the number of categories for the experiments, we randomly generated 5 sets of 10 categories
each. Table 9 (Appendix A) gives the full definition of the category sets we used.

4. 20 Newsgroups (20NG) (Lang, 1995) is a well-balanced data set of 20 categories containing
1000 Usenet postings each.

5. Movie Reviews (Movies) (Pang et al., 2002) defines a sentiment classification task, where re-
views express either positive or negative opinion about the movies. The data set has 1400 doc-
uments in two categories (positive/negative).

We used support vector machines6 as our learning algorithm to build text categorizers, since
prior studies found SVMs to have the best performance for text categorization (Sebastiani, 2002;
Dumais et al., 1998; Yang and Liu, 1999). Following established practice, we use the precision-
recall break-even point (BEP) to measure text categorization performance. For the two Reuters data
sets we report both micro- and macro-averaged BEP, since their categories differ in size significantly.
Micro-averaged BEP operates at the document level and is primarily affected by categorization
performance on larger categories. On the other hand, macro-averaged BEP averages results for
individual categories, and thus small categories with few training examples have large impact on
the overall performance. For both Reuters data sets we used a fixed data split, and consequently

6. We used the SVMlight implementation (Joachims, 1999a).

2313

GABRILOVICH AND MARKOVITCH

used macro sign test (S-test) (Yang and Liu, 1999) to assess the statistical significance of differences
in classifier performance. For 20NG and Movies we performed 4-fold cross-validation, and used
paired t-test to assess the significance.

5.2 Implementation Details

In this section we describe the implementation details and design choices of our system.

5.2.1 CONSTRUCTING THE FEATURE GENERATOR

All ODP data is publicly available in machine-readable RDF format at http://rdf.dmoz.org. We
used the file structure.rdf.u8, which defines the hierarchical structure of the directory, as well
as provides category names and descriptions, and the file content.rdf.u8, which associates each
category with a list of URLs, each having a title and a concise summary of the corresponding Web
site. After pruning the TOP/WORLD branch, which contains non-English material, and TOP/ADULT
branch, which lists adult-oriented Web sites, we obtained a collection of over 400,000 concepts
and 2,800,000 URLs, organized in a very elaborate hierarchy with maximum depth of 13 levels
and median depth of 7. Further pruning of too small and deep categories, as well as pruning of
the TOP/REGIONAL subtree at the level of geographical names as explained in Section 4.2, reduced
the number of concepts to 63,000 (the number of URLs was not reduced, since the entire URL
population from pruned nodes is moved to their parents).

Textual descriptions of the concepts and URLs amounted to 436 Mb of text (68 Mb in concept
titles and descriptions, 368 Mb in URL titles and summaries). In order to increase available in-
formation for training the feature generator, we further populated the ODP hierarchy by crawling
all of its URLs, and taking the first 10 pages (in the BFS order) encountered at each site to cre-
ate a representative meta-document of that site. As an additional noise removal step, we discarded
meta-documents containing fewer than 5 distinct terms. This operation yielded 425 Gb worth of
HTML files. After eliminating all the markup and truncating overly long files at 50 Kb, we ended
up with 70 Gb of additional textual data. Compared to the original 436 Mb of text supplied with the
hierarchy, we obtained over a 150-fold increase in the amount of data.

Applying our methodology to a knowledge repository of this scale required an enormous en-
gineering effort. After tokenization and removal of stop words, numbers and mixed alphanumeric
strings (e.g., “Win2k” or “4Sale”), we obtained 20,800,000 distinct terms. Further elimination of
rare words (occurring in less than 5 documents) and applying the Porter stemming algorithm (Porter,
1980) resulted in a more manageable number of 2,900,000 distinct terms that were used to represent
ODP nodes as attribute vectors. Up to 1000 most informative attributes were selected for each ODP
node using the Document Frequency criterion (other commonly used feature selection techniques,
such as Information Gain, χ2 and Odds Ratio (Yang and Pedersen, 1997; Rogati and Yang, 2002;
Mladenic, 1998a), yielded slightly inferior results in text categorization).

In order to speed up consequent classification of document contexts, we also built an inverted
index that, given a word, provides a list of concepts that have it in their attribute vector (i.e., the
word has been selected for this concept).

When assigning weights to individual entries in attribute vectors, we took into consideration the
location of original word occurrences. For example, words that occurred in URL titles were assigned
higher weight than those in the descriptions. Words originating from the descriptions or meta-

2314

KNOWLEDGE-BASED FEATURE GENERATION

documents corresponding to links prioritized7 by the ODP editors were also assigned additional
weight. We completely ignored node descriptions since these are only available for about 40% of
the nodes, and even then the descriptions are rarely used to actually describe the corresponding
concept; in many cases they just contain instructions to the editors or explain what kinds of sites
should not be classified under the node.

The set of attribute vectors underwent TF.IDF weighting, and eventually served to build a
centroid-based feature generator.

5.2.2 USING THE FEATURE GENERATOR

We used the multi-resolution approach to feature generation, classifying document contexts at the
level of individual words, complete sentences, paragraphs, and finally the entire document.8 For
each context, features were generated from the 10 best-matching ODP concepts produced by the
feature generator, as well as for all of their ancestors.

5.2.3 TEXT CATEGORIZATION

We conducted the experiments using a text categorization platform of our own design and devel-
opment named H OGWARTS 9 (Davidov et al., 2004). We opted to build a comprehensive new
infrastructure for text categorization, as surprisingly few software tools are publicly available for re-
searchers, while those that are available allow only limited control over their operation. H OGWARTS
facilitates full-cycle text categorization including text preprocessing, feature extraction, construc-
tion, selection and valuation, followed by actual classification with cross-validation of experiments.
The system currently provides part-of-speech tagging (Brill, 1995), sentence boundary detection,
stemming (Porter, 1980), WordNet (Fellbaum, 1998) lookup, a variety of feature selection algo-
rithms, and TF.IDF feature weighting schemes. H OGWARTS has over 150 configurable parameters
that control its modus operandi in minute detail. H OGWARTS interfaces with SVM, KNN and C4.5
text categorization algorithms, and computes all standard measures of categorization performance.
H OGWARTS was designed with a particular emphasis on processing efficiency, and portably imple-
mented in the ANSI C++ programming language. The system has built-in loaders for Reuters-21578
(Reuters, 1997), RCV1 (Lewis et al., 2004), 20 Newsgroups (Lang, 1995), Movie Reviews (Pang
et al., 2002), and OHSUMED (Hersh et al., 1994), while additional data sets can be easily integrated
in a modular way.

In the preprocessing step, each document undergoes the following. Document text is first to-
kenized, and title words are replicated twice to emphasize their importance. Then, stop words,
numbers and mixed alphanumeric strings are removed, and the remaining words are stemmed. The
bag of words is next merged with the set of features generated for the document by analyzing its
contexts as explained in Section 3.4, and rare features occurring in fewer than 3 documents are
removed.

7. ODP editors can highlight especially prominent and important Web sites; sites marked as such appear at the top of
category listings and are emphasized with an asterisk (in RDF data files, the corresponding links are marked up with
a <priority> tag).

8. The 20NG data set is an exception, owing to its high level of intrinsic noise that renders identification of sentence
boundaries extremely unreliable, and causes word-level feature generation to produce too many spurious classifica-
tions. Consequently, for this data set we restrict the multi-resolution approach to individual paragraphs and the entire
document only.

9. Hogwarts School of Witchcraft and Wizardry is the educational institution attended by Harry Potter (Rowling, 1997).

2315

GABRILOVICH AND MARKOVITCH

Since earlier studies found that most BOW features are indeed useful for SVM text categoriza-
tion (Section 3.4.2), we take the bag of words in its entirety (with the exception of rare features
removed in the previous step). The generated features, however, undergo feature selection using the
information gain criterion. Finally, feature valuation is performed using the “ltc” TF.IDF function
(logarithmic term frequency and inverse document frequency, followed by cosine normalization)
(Salton and Buckley, 1988; Debole and Sebastiani, 2003).

5.3 Qualitative Analysis of Feature Generation

We now study the process of feature generation on a number of actual examples.

5.3.1 FEATURE GENERATION PER SE

In this section we demonstrate ODP-based feature generation for a number of sample sentences
taken from CNN and otherWeb sites. For each example, we discuss a number of highly relevant fea-
tures found among the top ten generated ones. Online Appendix A
(http://www.cs.technion.ac.il/̃ gabr/jmlr2006-online-appendix.html) gives all 10 clas-
sifications produced for each context (some of these classifications are less relevant, and are con-
sequently removed during feature selection, as explained in Section 3.4.2 and illustrated in Sec-
tion 5.3.3.

• Text: “Rumsfeld appeared with Gen. Richard Myers, chairman of the Joint Chiefs of Staff.”
Sample generated features:

– SOCIETY/ISSUES/GOVERNMENT OPERATIONS, SOCIETY/POLITICS—both Donald Rums-
feld and Richard Myers are senior government officers, hence the connection to govern-
ment operations and politics. Their names have been selected for these ODP concepts,
since they appear in manyWeb sites cataloged under them, such as the National Security
Archive at the George Washington University (http://www.gwu.edu/˜nsarchiv)and
the John F. Kennedy School of Government at Harvard University
(http://www.ksg.harvard.edu).

– SOCIETY/ISSUES/WARFARE AND CONFLICT/SPECIFIC CONFLICTS/IRAQ, SCIENCE/
TECHNOLOGY/MILITARY SCIENCE, SOCIETY/ISSUES/WARFARE AND CONFLICT/
WEAPONS—again, both persons mentioned were prominent during the Iraq campaign.

– SOCIETY/HISTORY/BY REGION/NORTH AMERICA/UNITED STATES/PRESIDENTS/
BUSH, GEORGE WALKER—Donald Rumsfeld serves as Secretary of Defense under Pres-
ident George W. Bush

– SOCIETY/POLITICS/CONSERVATISM—Rumsfeld is often seen as holding conservative
views on a variety of political issues.

• Text: “The new film follows Anakin’s descent into evil and lust for power.”
Sample generated features:

– ARTS/MOVIES/TITLES/STAR WARS MOVIES is the root of the ODP subtree devoted to
the “Star Wars” movie series. The word “Anakin” has been selected as an attribute
for this concept due to its numerous occurrences in the cataloged Web sites such as
http://www.theforce.net and http://www.starwars.com.

2316

KNOWLEDGE-BASED FEATURE GENERATION

– ARTS/PERFORMING ARTS/ACTING/ACTORS AND ACTRESSES/CHRISTENSEN, HAYDEN is
the actor who played Anakin Skywalker; this particular piece of information cannot be
inferred from the short input sentence without elaborate background knowledge.

• Text: “On a night when Dirk Nowitzki (34 points), Jerry Stackhouse (29), Josh Howard (19)
and Jason Terry (17) all came up big, he couldn’t match their offensive contributions.”

Sample generated features:

– SPORTS/BASKETBALL/PROFESSIONAL/NBA/DALLAS MAVERICKS—even though the sen-
tence mentions neither the particular sport nor the name of the team, the power of context
is at its best, immediately yielding the correct classification as the best-scoring generated
feature. The names of the players mentioned in the context occur often in the Web sites
cataloged under this concept, including such resources as www.nba.com/mavericks,
http://dallasbasketball.com and sports.yahoo.com/nba/teams/dal.

• Text: “Herceptin is a so-called targeted therapy because of its ability to attack diseased cells
and leave healthy ones alone.”

Sample generated features:

– HEALTH/CONDITIONS AND DISEASES/CANCER/BREAST, SOCIETY/ISSUES/HEALTH/
CONDITIONS AND DISEASES/CANCER/ALTERNATIVE TREATMENTS,
HEALTH/SUPPORT GROUPS/CONDITIONS AND DISEASES/CANCER provide relevant
additional information for Herceptin, a medication for breast cancer. The name of this
medicine has been selected for these concepts due to its occurrences in cataloged Web
sites such as www.breastcancer.org, www.hopkinsmedicine.org/ breastcenter
and cancer.gov/cancerinfo/wyntk/breast.

• Finally, we give an example of how the power of context can be used for word sense disam-
biguation. The following pair of sentences use the word “tie” in two different meanings—
once as a necktie and once as a kind of connection. Even though these sentences contain no
distinguishing proper names, the context of the polysemous words allows the feature genera-
tor to produce correct suggestions in both cases

Text: “Kinship with others is based either on blood ties or on marital ties.”
Sample generated features:

– SOCIETY/GENEALOGY

– HOME/FAMILY

– SOCIETY/RELATIONSHIPS

– SCIENCE/SOCIAL SCIENCES/SOCIOLOGY

Text: “Our tie shop includes plain solid colour ties, novelty ties, patterned silk ties, and
men’s bow ties.”

Sample generated features:

– SHOPPING/CLOTHING/MENS/NECKTIES

2317

GABRILOVICH AND MARKOVITCH

– SHOPPING/CLOTHING/ACCESSORIES/MENS

– BUSINESS/CONSUMER GOODS AND SERVICES/CLOTHING/ACCESSORIES/
TIES AND SCARVES

Evidently, many of the generated features could not have been accessed by conventional text
classification methods, since heavy use of world knowledge is required to deduce them.

5.3.2 ACTUAL TEXT CATEGORIZATION EXAMPLES UNDER A MAGNIFYING GLASS

Thanks to feature generation, our system correctly classifies the running example document #15264.
Let us consider additional testing examples from Reuters-21578 that are incorrectly categorized
by the BOW classifier. Document #16143 belongs to the category “money-fx” (money/foreign
exchange) and discusses the devaluation of the Kenyan shilling. Even though “money-fx” is one of
the 10 largest categories, the word “shilling” does not occur in its training documents even once.
However, the feature generator easily recognizes it as a kind of currency, and produces features such
as RECREATION/COLLECTING/PAPER MONEY and RECREATION/COLLECTING/COINS/WORLD COINS.
While analyzing document contexts it also uses other words such as “Central Bank of Kenya” and
“devaluation” to correctly map the document to ODP concepts SOCIETY/GOVERNMENT/FINANCE,
SCIENCE/SOCIAL SCIENCES/ECONOMICS and BUSINESS/FINANCIAL SERVICES/BANKING SERVICES.
Even though the behavior of the Kenyan shilling was never mentioned in the training set, these high-
level features were also constructed for many training examples, and consequently the document is
now classified correctly.

Similarly, document #18748 discusses Italy’s balance of payments and belongs to the cate-
gory “trade” (interpreted as an economic indicator), while the word “trade” itself does not occur
in this short document. However, when the feature generator considers document contexts dis-
cussing Italian deficit as reported by the Bank of Italy, it correctly maps them to concepts such as
SOCIETY/GOVERNMENT/FINANCE, SOCIETY/ISSUES/ECONOMIC/INTERNATIONAL/TRADE,
BUSINESS/INTERNATIONAL BUSINESS AND TRADE. These features, which were also generated for
training documents in this category (notably, document #271 on Japanese trade surplus, docu-
ment #312 on South Korea’s account surplus, document #354 on tariff cuts in Taiwan and docu-
ment #718 on U.S.-Canada trade pact), allow the document to be categorized correctly.

Let us also consider a few documents from the Movie Reviews data set that confuse the BOW
classifier (here we consider a training/testing split induced by one particular cross-validation fold).
Recall that this data set represents a sentiment classification task, where documents are classified ac-
cording to the sentiment of the review (positive or negative) rather than its topic. Document #19488
contains a negative review of Star Wars Episode 1, but at the word level it is difficult to judge its true
sentiment since positive and negative words are interspersed. For instance, the sentence “Anakin is
annoying and unlikeable, instead of cute and huggable as Lucas no doubt intended” contains two
words with positive connotation (“cute and huggable”) that counterbalance the two words with neg-
ative ones (“annoying and unlikeable”). However, given contexts like “The two leads are hideously
boring, static characters given little to do and too much time to do it,” the feature generator produces
features such as ARTS/MOVIES/REVIEWS/TOP LISTS/BAD FILMS. This ODP node catalogsWeb sites
devoted to reviews of bad movies, and the wording of this sample context looks similar to that used
in known negative reviews (as cataloged in the ODP). In fact, this particular feature is one of the
most informative ones generated for this data set, and it is also produced for contexts like “Next up

2318

KNOWLEDGE-BASED FEATURE GENERATION

ODP concept
1 BUSINESS/MINING AND DRILLING/MINERAL EXPLORATION AND EXTRACTION
2 BUSINESS/MINING AND DRILLING
3 BUSINESS/MINING AND DRILLING/MINERAL EXPLORATION AND EXTRACTION/

BASE METALS
4 SCIENCE/TECHNOLOGY/MINING

5 BUSINESS/MINING AND DRILLING/CONSULTING
6 BUSINESS/INVESTING/COMMODITIES, FUTURES/PRECIOUS METALS

7 SHOPPING
8 BUSINESS/MINING AND DRILLING/MINING EQUIPMENT
9 BUSINESS/INVESTING/COMMODITIES, FUTURES/PRECIOUS METALS/GOLD
10 SCIENCE/TECHNOLOGY/MINING/INVESTMENTS

Table 2: The top ten ODP concepts generated for the sentence “Cominco’s share of production was
43,000 short tons of copper, 340,000 ounces of silver and 800 ounces of gold.”

we have the dialogue, which is amusingly bad at its best, painful at its worst” and “What ensues is
a badly scripted and horribly directed 114 minutes of cinema hell,” both found in negative reviews.

As another example, consider document #15111, which contains a positive review of the movie
“Soldier.” This review, which constantly switches between criticizing and praising the film, easily
perplexes the BOW classifier. Interestingly, given the sentence “It is written by DavidWebb Peoples,
who penned the screenplay to the classic Blade Runner and the critically-acclaimed 12 Monkeys,”
the feature generator constructs the highly informative feature ARTS/MOVIES/REVIEWS/TOP LISTS/
GOOD FILMS. This is made possible by the references to known good films (“Blade Runner” and
“12 Monkeys”) that are listed in Web sites devoted to good films (http://www.filmsite.org and
http://us.imdb.com/top 250 films, for example). The same feature was also generated for a
number of training documents, and thus helps the classifier to categorize the document correctly.

5.3.3 THE IMPORTANCE OF FEATURE SELECTION

To understand the utility of feature selection, consider a sample sentence from our running exam-
ple, Reuters document #15264: “Cominco’s share of production was 43,000 short tons of cop-
per, 340,000 ounces of silver and 800 ounces of gold.” Table 2 gives the top ten ODP con-
cepts generated as features for this context. Most of the assigned concepts deal with mining
and drilling, and will eventually be useful features for document classification. However, the
concepts BUSINESS/INVESTING/ COMMODITIES, FUTURES/PRECIOUS METALS, SHOPPING and BUSI-
NESS/INVESTING/COMMODITIES, FUTURES/ PRECIOUS METALS/GOLD have been triggered by the
words “gold” and ”silver,” which are mentioned incidentally and do not describe the gist of the
document. Feature selection is therefore needed to eliminate features based on these extraneous
concepts.

As another example, consider the following sentence taken from the same document: “‘Com-
inco, 29.5 percent owned by a consortium led by Teck, is optimistic that the talks will soon be
concluded,’ spokesman Don Townson told Reuters,” along with its top ten classifications given in

2319

GABRILOVICH AND MARKOVITCH

ODP concept
1 BUSINESS/MINING AND DRILLING/MINERAL EXPLORATION AND EXTRACTION/

BASE METALS
2 BUSINESS/MINING AND DRILLING/MINERAL EXPLORATION AND EXTRACTION
3 BUSINESS/MINING AND DRILLING
4 BUSINESS/MINING AND DRILLING/CONSULTING
5 SOCIETY/ISSUES
6 REGIONAL/NORTH AMERICA/CANADA/BRITISH COLUMBIA/LOCALITIES/KIMBERLEY
7 SCIENCE/TECHNOLOGY/MINING

8 BUSINESS/MARKETING AND ADVERTISING/CONSULTING/SALES
9 REGIONAL/NORTH AMERICA/CANADA/QUEBEC/REGIONS/NORTHERN QUEBEC
10 SCIENCE/ENVIRONMENT/MINING

Table 3: The top ten ODP concepts generated for the sentence “‘Cominco, 29.5 percent owned by
a consortium led by Teck, is optimistic that the talks will soon be concluded,’ spokesman
Don Townson told Reuters.”

Table 3. Here, the concept SOCIETY/ISSUES is generated by the word “Reuters.” In turn, the con-
cept BUSINESS/MARKETING AND ADVERTISING/CONSULTING/SALES is triggered by the name of the
company spokesman, Don Townson. As it happens, a sales consulting company named “Townson &
Alexander Consulting Services” is catalogued under this concept. Based on the crawled content of
this site, the word “Townson” and other sales-related words in the context (e.g., “percent,” “owned,”
“optimistic,” and “consortium”) taken together yield this concept in the results. Again, this sales-
related concept is hardly useful for categorizing copper-related documents, and features based on it
would therefore not be selected.

5.4 The Effect of Feature Generation

We first demonstrate that the performance of basic text categorization in our implementation (col-
umn “Baseline” in Table 4) is consistent with the state of the art as reflected in other published
studies (all using SVM). On Reuters-21578, Dumais et al. (1998) achieved micro-BEP of 0.920 for
10 categories and 0.870 for all categories. On 20NG, Bekkerman (2003) obtained BEP of 0.856.
Pang et al. (2002) obtained accuracy of 0.829 on Movies. The minor variations in performance
are due to differences in data preprocessing in the different systems; for example, for the Movies
data set we worked with raw HTML files rather than with the official tokenized version, in order
to recover sentence and paragraph structure for contextual analysis. For RCV1 and OHSUMED,
direct comparison with published results is more difficult because we limited the category sets and
the date span of documents to speed up experimentation.

Table 4 shows the results of using feature generation for text categorization, with significant
improvements (p< 0.05) shown in bold. For both Reuters data sets, we consistently observed larger
improvements in macro-averaged BEP, which is dominated by categorization effectiveness on small
categories. This goes in line with our expectations that the contribution of external knowledge
should be especially prominent for categories with few training examples. As can be readily seen,

2320

KNOWLEDGE-BASED FEATURE GENERATION

Data set Baseline Feature Improvement
generation vs. baseline

micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP

Reuters-21578
10 categories 0.925 0.874 0.930 0.884 +0.5% +1.1%
90 categories 0.877 0.602 0.880 0.614 +0.3% +2.0%
RCV1
Industry-16 0.642 0.595 0.648 0.613 +0.9% +3.0%
Industry-10A 0.421 0.335 0.457 0.420 +8.6% +25.4%
Industry-10B 0.489 0.528 0.530 0.560 +8.4% +6.1%
Industry-10C 0.443 0.414 0.468 0.463 +5.6% +11.8%
Industry-10D 0.587 0.466 0.588 0.496 +0.2% +6.4%
Industry-10E 0.648 0.605 0.657 0.639 +1.4% +5.6%
Topic-16 0.836 0.591 0.840 0.660 +0.5% +11.7%
Topic-10A 0.796 0.587 0.803 0.692 +0.9% +17.9%
Topic-10B 0.716 0.618 0.727 0.655 +1.5% +6.0%
Topic-10C 0.687 0.604 0.694 0.618 +1.0% +2.3%
Topic-10D 0.829 0.673 0.836 0.687 +0.8% +2.1%
Topic-10E 0.758 0.742 0.762 0.756 +0.5% +1.9%
OHSUMED
OHSUMED-10A 0.518 0.417 0.537 0.479 +3.7% +14.9%
OHSUMED-10B 0.656 0.500 0.659 0.548 +0.5% +9.6%
OHSUMED-10C 0.539 0.505 0.547 0.540 +1.5% +6.9%
OHSUMED-10D 0.683 0.515 0.688 0.549 +0.7% +6.6%
OHSUMED-10E 0.442 0.542 0.452 0.573 +2.3% +5.7%
20NG 0.854 0.858 +0.5%
Movies 0.813 0.842 +3.6%

Table 4: Text categorization with and without feature generation

categorization performance was improved for all data sets, with notably high improvements for
Reuters RCV1, OHSUMED andMovies. We believe these results clearly demonstrate the advantage
of knowledge-based feature generation.

5.5 The Effect of Contextual Analysis

We now explore the various possibilities for defining document contexts for feature generation, that
is, chunks of document text that are classified onto the ODP to construct features. Figure 4 shows
how text categorization performance on the Movies data set changes for various contexts. The x-
axis measures context length in words, and the FG/words curve corresponds to applying the feature
generator to the context of that size. With these word-level contexts, maximum performance is
achieved when using pairs of words (x=2). The Baseline line represents text categorization without
feature generation. The FG/doc line shows what happens when the entire document is used as a sin-
gle context. In this case, the results are somewhat better than without feature generation (Baseline),
but are still inferior to the more fine-grained word-level contexts (FG/words). However, the best
performance by far is achieved with the multi-resolution approach (FG/multi), in which we use a

2321

GABRILOVICH AND MARKOVITCH

 0.81

 0.815

 0.82

 0.825

 0.83

 0.835

 0.84

 0.845

1 2 3 5 10 30 50 70 100 200 1000

Pr
ec

isi
on

-re
ca

ll B
EP

Context window length (words)

Baseline
FG/multi

FG/words
FG/doc

Figure 4: Varying context length (Movies)

series of linguistically motivated chunks of text, starting with individual words, and then generating
features from sentences, paragraphs, and finally the entire document.

5.6 The Effect of Knowledge Breadth

In the experiments reported in Section 5.4 we performed feature generation using the entire ODP.
It is interesting to observe, however, that four out of the five data sets we used have a fairly narrow
scope.10 Specifically, both Reuters data sets (Reuters-21578 and RCV1) contain predominantly
economic news and therefore match the scope of the TOP/BUSINESS branch of the ODP. Simi-
larly, Movie Reviews contains opinions about movies, and therefore fits the scope of TOP/ARTS.
OHSUMED contains medical documents, which can be modelled within the scope of TOP/HEALTH
and TOP/SCIENCE. In light of this, it could be expected that restricting the feature generator to a
particular ODP branch that corresponds to the scope of the test collection would result in much
better categorization accuracy due to the elimination of noise in “unused” ODP branches.

Experimental results (Table 5) disprove this hypothesis. As can be seen, in the absolute majority
of cases the improvement over the baseline is much smaller than when the entire ODP is used (cf.
Table 4). These findings show the superiority of wide general-purpose knowledge over its domain-
specific subsets.

5.7 The Utility of Feature Selection

Under the experimental settings defined in Section 5.2, feature generation constructed approxi-
mately 4–5 times as many features as are in the bag of words (after rare features that occurred in
less than 3 documents were removed). We conducted two experiments to understand the effect of
feature selection in conjunction with feature generation.

Since earlier studies found that feature selection from the bag of words impairs SVM perfor-
mance (Section 3.4.2), we first apply it only to the generated features and use the selected ones to
augment the (entire) bag of words. In Figures 5 and 6, the BOW line depicts the baseline perfor-

10. The 20 Newsgroups data set consists of 20 diverse categories, each of which corresponds to one or more ODP
branches.

2322

KNOWLEDGE-BASED FEATURE GENERATION

Data set Domain-specific ODP subset Full ODP
Subset micro macro micro macro
description BEP BEP BEP BEP

Reuters-21578 TOP/BUSINESS
10 categories +0.4% +0.6% +0.5% +1.1%
90 categories +0.1% +1.2% +0.3% +2.0%
RCV1 TOP/BUSINESS
Industry-16 +1.9% +2.2% +0.9% +3.0%
Topic-16 +0.5% +1.4% +0.5% +11.7%
OHSUMED TOP/HEALTH
OHSUMED-10A +2.1% +1.7% +3.7% +14.9%
OHSUMED-10B +0.2% +1.2% +0.5% +9.6%
OHSUMED-10C +1.7% +2.8% +1.5% +6.9%
OHSUMED-10D +0.3% +1.9% +0.7% +6.6%
OHSUMED-10E +2.7% +1.8% +2.3% +5.7%
OHSUMED TOP/HEALTH +

TOP/SCIENCE
OHSUMED-10A +5.4% +3.6% +3.7% +14.9%
OHSUMED-10B +0.3% +3.4% +0.5% +9.6%
OHSUMED-10C +0.6% +3.8% +1.5% +6.9%
OHSUMED-10D +0.9% +5.8% +0.7% +6.6%
OHSUMED-10E +1.6% +1.8% +2.3% +5.7%
Movies TOP/ARTS +2.6% +3.6%

Table 5: Text categorization with and without feature generation, when only a subset of ODP is
used

mance without generated features, while the BOW+GEN curve shows the performance of the bag
of words augmented with progressively larger fractions of generated features (sorted by information
gain). For both data sets, the performance peaks when only a small fraction of the generated features
are used, while retaining more generated features has a noticeable detrimental effect.

Our second experiment examined the performance of the generated features alone, without the
bag of words (GEN curve in Figures 5 and 6). For Movies, discarding the BOW features leads to
somewhat worse performance, but the decrease is far less significant than what could be expected—
using only the generated features we lose less than 3% in BEP compared with the BOW baseline.
For 20NG, a similar experiment sacrifices about 10% of the BOW performance, as this data set is
known to have a very diversified vocabulary, for which many studies found feature selection to be
particularly harmful. Similarly, for OHSUMED, using only the generated features sacrifices up to
15% in performance, reinforcing the value of precise medical terminology that is discarded in this
experiment. However, the situation is reversed for both Reuters data sets. For Reuters-21578, the
generated features alone yield a 0.3% improvement in micro- and macro-BEP for 10 categories,
while for 90 categories they only lose 0.3% in micro-BEP and 3.5% in macro-BEP compared with
the bag of words. For RCV1/Industry-16, disposing of the bag of words reduces BEP performance
by 1–3%. Surprisingly, for RCV1/Topic-16 (Figure 6) the generated features per se command a
10.8% improvement in macro-BEP, rivaling the performance of BOW+GEN, which gains only an-

2323

GABRILOVICH AND MARKOVITCH

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

0.005 0.01 0.05 0.1 0.2 0.5 0.75 1.0

Pr
ec

isi
on

-re
ca

ll B
EP

Fraction of generated features selected

BOW
BOW+GEN

GEN

Figure 5: Feature selection (Movies)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

0.005 0.01 0.05 0.1 0.2 0.5 0.75 1.0

Pr
ec

isi
on

-re
ca

ll B
EP

Fraction of generated features selected

BOW
BOW+GEN

GEN

Figure 6: Feature selection (RCV1/Topic-16)

other 1% (Table 4). We interpret these findings as further reinforcement that the generated features
improve the quality of the representation.

5.8 The Effect of Category Size

We saw in Section 5.4 that feature generation greatly improves text categorization for smaller cate-
gories, as can be evidenced in the greater improvements in macro-BEP. To explore this phenomenon
further, we depict in Figures 7 and 8 the relation between the category size and the improvement
due to feature generation for RCV1 (the number of categories in each bin appears in parentheses
above the bars). To this end, we pooled together the categories that comprised the individual sets
(10A–10E) in the Industry and Topic groups, respectively.

As we can readily see, smaller categories tend to benefit more from knowledge-based feature
generation. These graphs also explain the more substantial improvements observed for Industry
categories compared to Topic categories—as can be seen from the graphs, Topic categories are
larger than Industry categories, and the average size of Topic categories (among those we used in
this study) is almost 6 times larger than that of Industry categories.

2324

KNOWLEDGE-BASED FEATURE GENERATION

-5

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700

Av
er

ag
e

im
pr

ov
em

en
t (

in
 %

)

Category size (binned)

(28)
(9)

(7)

(0)

(4)

(0) (1) (0) (0) (0) (0) (0) (0) (1)

Figure 7: RCV1 (Industry): Average improvement versus category size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

im
pr

ov
em

en
t (

in
 %

)

Category size (binned)

(35)

(9)

(2)
(2)

(0)
(1)

(1)

Figure 8: RCV1 (Topic): Average improvement versus category size

2325

GABRILOVICH AND MARKOVITCH

5.9 The Effect of Feature Generation for Classifying Short Documents

We conjectured that knowledge-based feature generation might be particularly useful for classifying
short documents. To evaluate this hypothesis, we derived several data sets of short documents
based on the test collections listed in Section 5.1. Recall that about one-third of the references in
OHSUMED have titles but no abstract and can therefore be considered short documents “as-is.” We
used the same range of documents as in Section 5.1, but considered only those without abstracts.
This yielded 4,714 training and 5,404 testing documents. For all other data sets, we created a short
document from each original document by taking only the title of the latter (with the exception of
Movie Reviews, where documents do not have titles). It should be noted, however, that substituting
a title for the full document is a poor man’s way to obtain a collection of classified short documents.
When documents were first labeled with categories, the human labeller saw the document in its
entirety. In particular, a category might have been assigned to a document on the basis of some
facts mentioned in its body, even though the relevant facts may well be missing from the (short)
title. Thus, taking all the categories of the original documents to be “genuine” categories of the
title is often misleading. However, because we know of no publicly available test collections of
short documents, we decided to use the data sets constructed as explained above. Interestingly,
OHSUMED documents without abstracts have been classified as such by humans; working with the
OHSUMED-derived data set can thus be considered a “pure” experiment.

Table 6 presents the results of this experiment. As we can see, in the majority of cases (except
for RCV1 Topic category sets), feature generation leads to greater improvement on short documents
than on regular documents. Notably, the improvements are particularly high for OHSUMED, where
“pure” experimentation on short documents is possible (see above).

5.10 Processing Time

Using the ODP as a source of background knowledge requires additional computation. This extra
computation includes the (one-time) preprocessing step where the feature generator is built, as well
as the actual feature generation performed on documents prior to text categorization. The processing
times reported below were measured on a workstation with dual Xeon 2.2 GHz CPU and 2 Gb RAM
running the Microsoft Windows XP Professional operating system (Service Pack 1).

Parsing the ODP structure (file structure.rdf.u8) took 3 minutes. Parsing the list of ODP
URLs (file content.rdf.u8) required 3 hours, and parsing the crawled ODP data (meta-documents
collected from all cataloged URLs) required 2.6 days. Attribute selection for ODP concepts took
1.5 hours. The cumulative one-time expenditure for building the feature generator was therefore
just under 3 days (not counting the actual Web crawling that was performed beforehand).

We benchmarked feature generation in two scenarios—individual words and 10-word windows.
In the former case, the feature generator classified approximately 310 words per second, while
in the latter case it classified approximately 45 10-word windows per second (i.e., 450 words per
second).11 These times constitute the additional overhead required by feature generation compared
with regular text categorization. Table 7 lists the sizes of the test collections we experimented
with (see Section 5.1). To speed up experimentation, we used subsets of the entire RCV1 and
OHSUMED collections; these subsets comparable in size with 20 Newsgroups and Reuters-21578.

11. Classifying word windows is more efficient due to the sharing of data structures when processing the words in a
single context.

2326

KNOWLEDGE-BASED FEATURE GENERATION

DATA SET SHORT DOCUMENTS FULL DOCUMENTS
Baseline Feature Improvement Improvement

generation vs. baseline vs. baseline
micro macro micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578
10 categories 0.868 0.774 0.868 0.777 +0.0% +0.4% +0.5% +1.1%
90 categories 0.793 0.479 0.794 0.498 +0.1% +4.0% +0.3% +2.0%
RCV1
Industry-16 0.454 0.400 0.466 0.415 +2.6% +3.7% +0.9% +3.0%
Industry-10A 0.249 0.199 0.278 0.256 +11.6% +28.6% +8.6% +25.4%
Industry-10B 0.273 0.292 0.348 0.331 +27.5% +13.4% +8.4% +6.1%
Industry-10C 0.209 0.199 0.295 0.308 +41.1% +54.8% +5.6% +11.8%
Industry-10D 0.408 0.361 0.430 0.431 +5.4% +19.4% +0.2% +6.4%
Industry-10E 0.450 0.410 0.490 0.459 +8.9% +12.2% +1.4% +5.6%
Topic-16 0.763 0.529 0.763 0.534 +0.0% +0.9% +0.5% +11.7%
Topic-10A 0.718 0.507 0.720 0.510 +0.3% +0.6% +0.9% +17.9%
Topic-10B 0.647 0.560 0.644 0.560 -0.5% +0.0% +1.5% +6.0%
Topic-10C 0.551 0.471 0.561 0.475 +1.8% +0.8% +1.0% +2.3%
Topic-10D 0.729 0.535 0.730 0.553 +0.1% +3.4% +0.8% +2.1%
Topic-10E 0.643 0.636 0.656 0.646 +2.0% +1.6% +0.5% +1.9%
OHSUMED
OHSUMED-10A 0.302 0.221 0.357 0.253 +18.2% +14.5% +3.7% +14.9%
OHSUMED-10B 0.306 0.187 0.348 0.243 +13.7% +29.9% +0.5% +9.6%
OHSUMED-10C 0.441 0.296 0.494 0.362 +12.0% +22.3% +1.5% +6.9%
OHSUMED-10D 0.441 0.356 0.448 0.419 +1.6% +17.7% +0.7% +6.6%
OHSUMED-10E 0.164 0.206 0.211 0.269 +28.7% +30.6% +2.3% +5.7%
20NG 0.699 0.740 +5.9% +0.5%

Table 6: Text categorization of short documents with and without feature generation. (The im-
provement percentage in the two rightmost columns is computed relative to the baseline
shown in Table 4.)

2327

GABRILOVICH AND MARKOVITCH

Data set Number of documents Number of words12

20NG 19,997 5.5 million
Movies 1,400 0.95 million
Reuters-21578 21,902 2.8 milion
RCV1
- full 804,414 196 million
- used in this study 23,149 5.5 million
OHSUMED
- full 348,566 57 million
- used in this study 20,000 3.7 million

Table 7: Test collections sizes

In the light of the improvements in categorization accuracy that we report in Section 5.4, we
believe that the extra processing time is well compensated for. In operational text categorization
systems, documents rarely arrive in huge batches of hundreds of thousands at a time. For example,
the RCV1 data set contains all English-language news items published by Reuters over the period
of one year. Therefore, in practical settings, once the classification model has been trained, the
number of documents it needs to classify per time unit is much more reasonable, and can be easily
facilitated by our system.

6. Related Work

To date, quite a few attempts have been made to deviate from the orthodox bag of words paradigm,
usually with limited success. In particular, representations based on phrases (Lewis, 1992; Dumais
et al., 1998; Fuernkranz et al., 1998), named entities (Kumaran and Allan, 2004), and term clustering
(Lewis and Croft, 1990; Bekkerman, 2003) have been explored. However, none of these techniques
could possibly overcome the problem underlying the various examples we reviewed in this paper—
lack of world knowledge.

In mainstream information retrieval, query expansion techniques are used to augment queries
with additional terms. However, this approach does not enhance queries with high-level concepts be-
yond words or phrases (as this would require indexing the entire document collection accordingly).
It occasionally uses WordNet (Fellbaum, 1998) as a source of external knowledge, but queries are
more often enriched with individual words, which are chosen either through relevance feedback
(Mitra et al., 1998; Xu and Croft, 2000), or by consulting dictionaries and thesauri (Voorhees, 1994,
1998). Ballesteros and Croft (1997) studied query expansion with phrases in the context of cross-
lingual information retrieval.

Feature generation techniques were found useful in a variety of machine learning tasks
(Markovitch and Rosenstein, 2002; Fawcett, 1993; Matheus, 1991). These techniques search for
new features that describe the target concept better than the ones supplied with the training in-
stances. A number of proposed feature generation algorithms (Pagallo and Haussler, 1990; Matheus
and Rendell, 1989; Hu and Kibler, 1996; Murphy and Pazzani, 1991) led to significant improve-
ments in performance over a range of classification tasks. However, even though feature generation
is an established research area in machine learning, only a few works have applied it to text pro-

12. Measured using the ‘wc’ utility available on UNIX systems.

2328

KNOWLEDGE-BASED FEATURE GENERATION

cessing (Kudenko and Hirsh, 1998; Mikheev, 1999; Cohen, 2000). It is interesting to observe that
traditional machine learning data sets, such as those available from the UCI data repository (Blake
and Merz, 1998), are only available as feature vectors, while their feature set is essentially fixed.
Textual data, however, is almost always available in raw text format. Thus, in principle, possibilities
for feature generation are more plentiful and flexible.

Kudenko and Hirsh (1998) proposed a domain-independent feature generation algorithm that
uses Boolean features to test whether certain sub-sequences appear a minimum number of times.
They applied the algorithm to three toy problems in topic spotting and book passage categorization.
Mikheev (1999) used a feature collocation lattice as a feature generation engine within a maximum
entropy framework and applied it to document categorization, sentence boundary detection, and
part-of-speech tagging. This work used information about individual words, bigrams and trigrams
to prebuild the feature space. A set of feature cliques with the highest log-likelihood estimate was
then selected. Cohen (2000) researched the problem of automatically discovering features useful
for classification according to the given labels, given a set of labeled instances not accompanied
by a feature set. Problems of this kind occur, for example, when classifying names of musical
artists by music genres, or names of computer games by categories such as quest or action. The
paper proposed to collect relevant Web pages, and then define features based on words from HTML
headers that co-occur with the names to be classified. The fact that a word appears in an HTML
header usually signifies its importance, and hence potential usefulness, for classification. The author
also identified another source of features on the basis of their positions inside HTML documents,
where position is defined as a sequence of tags in the HTML parsing tree, between the root of the
tree and the name of interest. For example, if a name appears frequently in tables, this characteristic
may be defined as a feature.

Several studies performed feature construction using WordNet and other domain-specific dic-
tionaries (Scott, 1998; Urena-Lopez et al., 2001; Bloehdorn and Hotho, 2004; Wang et al., 2003).
Scott (1998) completely replaced a bag of words with a bag of synsets13. Urena-Lopez et al. (2001)
used WordNet in conjunction with Rocchio (Rocchio, 1971) and Widrow-Hoff (Lewis et al., 1996;
Widrow and Stearns, 1985, Ch. 6) linear classifiers to fine-tune the category vectors. Wang et al.
(2003) used Medical Subject Headings (MeSH) (MeSH, 2003) to replace the bag of words with
canonical medical terms; Bloehdorn and Hotho (2004) used a similar approach to augment Reuters-
21578 documents with WordNet synsets and OHSUMED medical documents with MeSH terms.

It should be noted, however, that WordNet was not originally designed to be a powerful knowl-
edge base, but rather a lexical database more suitable for peculiar lexicographers’ needs. Specifi-
cally, WordNet has the following drawbacks when used as a knowledge base for text categorization:

• WordNet has a fairly small coverage—for the test collections we used in this paper, up to
50% of their unique words are missing from WordNet. In particular, many proper names,
slang and domain-specific technical terms are not included in WordNet, which was designed
as a general-purpose dictionary.

• Additional information about synsets (beyond their identity) is very limited. This is because
WordNet implements a differential rather than constructive lexical semantics theory, so that
glosses that accompany the synsets are mainly designed to distinguish the synsets rather than
provide a definition of the sense or concept. Usage examples that occasionally constitute part

13. A synset is WordNet notion for a sense shared by a group of synonymous words.

2329

GABRILOVICH AND MARKOVITCH

of the gloss serve the same purpose. Without such auxiliary information, reliable word sense
disambiguation is almost impossible.

• WordNet was designed by professional linguists who are trained to recognize minute dif-
ferences in word senses. As a result, common words have far too many distinct senses to
be useful in information retrieval (Mihalcea, 2003); for example, the word “make” has as
many as 48 senses as a verb alone. Such fine-grained distinctions between synsets present an
additional difficulty for word sense disambiguation.

We illustrate these drawbacks on two specific examples in Appendix B, where we juxtapose
WordNet-based and ODP-based feature generation.

The methodology we propose in this paper does not suffer from the above shortcomings. Crawl-
ing all the Web sites cataloged in the Open Directory results in exceptionally wide word coverage.
Furthermore, the crawled texts provide a plethora of information about each ODP concept.

To the best of our knowledge, with the exception of the above WordNet studies, there have been
no attempts to date to automatically use large-scale repositories of structured background knowledge
for text categorization. An interesting approach to using non-structured background knowledge was
proposed by Zelikovitz and Hirsh (2000). This work uses a collection of unlabeled examples as
intermediaries in comparing testing examples with the training ones. Specifically, when an unknown
test instance does not appear to resemble any labeled training instances, unlabeled examples that
are similar to both may be used as “bridges.” Using this approach, it is possible to handle the
situation where the training and the test document have few or no words in common. The unlabeled
documents are used to define a cosine similarity metric, which is then used by the KNN algorithm
for actual text categorization. This approach, however, suffers from efficiency problems, as looking
for intermediaries to compare every two documents makes it necessary to explore a combinatorial
search space. In a subsequent paper, Zelikovitz and Hirsh (2001) proposed an alternative way
to use unlabeled documents as background knowledge. In this work, unlabeled texts are pooled
together with the training documents to compute a Latent Semantic Analysis (LSA) (Deerwester
et al., 1990) model. The resulting LSA metric then facilitates comparison of test documents to
training documents. The addition of unlabeled documents significantly increases the amount of data
on which word cooccurrence statistics is estimated, thus providing a solution to text categorization
problems where training data is particularly scarce.

The methodology described in this paper uses external knowledge explicitly cataloged by hu-
mans to enhance machine learning algorithms. There have also been other studies (notably, using
semi-supervised learning methodology) that augmented the bag of words approach to text catego-
rization with external knowledge distilled from unlabelled data (Goldberg and Zhu, 2006; Ando and
Zhang, 2005a,b; Blei et al., 2003; Nigam et al., 2000; Joachims, 1999b). Consequently, it would
be very interesting to compare the performance of these two approaches empirically. Intuitively,
some inferences, such as those described in Section 4, would be hard to make by using solely un-
structured data. On the other hand, unstructured data is more readily available, so it is possible that
semi-supervised methods can compensate for the lack of structure by increasing the volume of the
data. There are, however, non-trivial research questions regarding an appropriate setup for such a
comparison. For example, assuming our methodology is based on the ODP as described in this pa-
per, what corpus should be used by the semi-supervised learner? And if one of the methods shows
better performance, should it be attributed to the method or to the particular knowledge source being
used? We plan to investigate these and other related questions in our future work. In any case, it is

2330

KNOWLEDGE-BASED FEATURE GENERATION

most likely that each of the methods has its own strengths, and finding a way to combine them can
be a very interesting research direction.

While our approach relies on existing repositories of classified knowledge, there is a large body
of research on extracting facts through Web mining (Cafarella et al., 2005; Etzioni et al., 2004), so
it would be interesting to consider using such extracted facts to drastically increase the amount of
available knowledge, especially when measures are taken to ascertain correctness of the extracted
information (Downey et al., 2005).

In a recent study (Gabrilovich and Markovitch, 2007), we applied our methodology to the prob-
lem of computing semantic relatedness of words and texts, for which previous state of the art results
have been based on LSA. In that work we proposed Explicit Semantic Analysis (ESA), which rep-
resents fragments of text in the space of knowledge concepts defined in the Open Directory or in
Wikipedia. ESA uses the same basic feature generation methodology that we presented herein,
but represents texts in the space of all available concepts (discarding the bag of words altogether),
rather then augmenting the bag of words with a few top scoring concepts. Compared with the ex-
isting state of the art, using ESA results in substantial improvements in correlation of computed
relatedness scores with human judgments: from r = 0.56 to 0.75 for individual words and from
r = 0.60 to 0.72 for longer texts. These findings prove that the benefits of using distilled human
knowledge are much greater than merely using cooccurrence statistics gathered from a collection of
auxiliary unlabeled texts.

Our use of local contexts to facilitate fine-grained feature generation is reminiscent of the intra-
document dynamics analysis proposed by Gabrilovich et al. (2004) for characterization of news
article types. The latter work manipulated sliding contextual windows of the same size to make
their scores directly comparable. As we showed in Section 5.5, the multi-resolution approach,
which operates at several levels of linguistic abstraction, is superior to fixed-size windows for the
case of text categorization. Incidentally, the term “Local Context Analysis” is also used in an
entirely different branch of information retrieval. Xu and Croft (2000) used this term to refer to a
particular kind of query expansion, where a query is expanded in the context of top-ranked retrieved
documents.

In our methodology, we first learn a text classifier that maps local document contexts onto ODP
concepts, and then use this classifier for feature generation in other learning tasks. This frame-
work is clearly related to the area of transfer learning, where knowledge learned in one domain
is transferred to another domain. Some works in this area assume a set of related classification
tasks, and learn shared parameters. For example, Caruana (1997) trained one neural network for
several related classification tasks, such that nodes in the hidden level were useful across the tasks.
Jebara (2004) presented a method for feature and kernel selection across related tasks. Do and Ng
(2005) described a general way of using softmax regression for learning a parameter function from
a set of classification problems, so that the learned parameter function can then be used for future
learning tasks. Bennett et al. (2005) introduced a method for learning a meta-classifier over several
domains. The meta-classifier combines reliability indicators (Toyama and Horvitz, 2000) with the
base classifiers to improve their performance. Several studies in NLP (Sutton and McCallum, 1998;
Chang et al., 2006; Raina et al., 2007; Ando and Zhang, 2005a) and image classification (Wu and
Dietterich, 2004; Raina et al., 2007; Ando and Zhang, 2005a) used a cascade approach, where a
classifier trained on one task is used as a feature for another task. This type of transfer is the most
similar to ours, as we also use a very large set of such classifiers trained on the ODP as features in
other learning tasks.

2331

GABRILOVICH AND MARKOVITCH

7. Conclusions and Future Work

In this paper we proposed a feature generation methodology for text categorization. In order to
render machine learning algorithms with the common-sense and domain-specific knowledge of hu-
mans, we use large hierarchical knowledge repositories to build a feature generator. These knowl-
edge repositories, which have been manually crafted by human editors, provide a fully automatic
way to tap into the collective knowledge of tens of thousands of people. The feature generator ana-
lyzes documents prior to text categorization and augments the conventional bag of words represen-
tation with relevant concepts from the knowledge repository. The enriched representation contains
information that cannot be deduced from the document text alone.

In Section 2 we listed several limitations of the BOW approach, and in the subsequent sections
we showed how they are resolved by our methodology. In particular, external knowledge allows
us to reason about words that appear in the testing set but not in the training set. We can also
use hierarchically organized knowledge to make powerful generalizations, making it possible to
know that certain infrequent words belong to more general classes of words. Externally supplied
knowledge can also help in those cases when some information vital for classification is omitted
from training texts because it is assumed to be shared by the target readership.

We also described multi-resolution analysis, which examines the document text at several levels
of linguistic abstraction and performs feature generation at each level. When polysemous words are
considered in their native context, word sense disambiguation is implicit. Implicit disambiguation
allows the feature generator to cope with word synonymy and polysemy. Furthermore, when the
document text is processed at several levels of granularity, even briefly mentioned aspects can be
identified and used. These might easily have been overlooked if the document were processed as
one large chunk of text.

Empirical evaluation definitively confirmed that knowledge-based feature generation brings text
categorization to a new level of performance. Interestingly, the sheer breadth and depth of the ODP,
further boosted by crawling the URLs cataloged in the directory, brought about improvements both
in regular text categorization as well as in the (non-topical) sentiment classification task.

Given the domain-specific nature of some test collections, we also compared the utility of nar-
row domain-specific knowledge with that of larger amounts of information covering all branches of
knowledge. Perhaps surprisingly, we found that even for narrow-scope test collections, a wide cov-
erage knowledge base yielded substantially greater improvements than its domain-specific subsets.
This observation reinforces the breadth hypothesis, formulated by Lenat and Feigenbaum (1990),
that “to behave intelligently in unexpected situations, an agent must be capable of falling back on
increasingly general knowledge.”

We believe that this research only scratches the surface of what can be achieved with knowledge-
rich features. In our future work, we plan to investigate new algorithms for mapping document
contexts onto hierarchy concepts, as well as new techniques for selecting attributes that are most
characteristic of every concept. We intend to apply focused crawling to collect only relevant Web
pages when cataloged URLs are crawled; we also plan to apply page segmentation techniques to
eliminate noise from crawled pages (Yu et al., 2003). In addition to the ODP, we also plan to
make use of domain-specific hierarchical knowledge bases, such as the Medical Subject Headings
(MeSH).

In its present form, our method can inherently be applied only for improving representation of
textual documents. Indeed, to date we applied our feature generation methodology for improving the

2332

KNOWLEDGE-BASED FEATURE GENERATION

performance of text categorization. However, we believe our approach can also be applied beyond
mere text, as long as the objects to be manipulated are accompanied with some textual description.
As an example, consider a collection of medical records containing test results paired with narrative
reports. Performing feature generation from narrative reports is likely to produce pertinent concepts
that can be used for augmenting the original record. Indeed, prior studies (Hripcsak et al., 1995)
showed that natural language processing techniques can be used to extract vital information from
narrative reports in automated decision-support systems.

Finally, we conjecture that knowledge-based feature generation will also be useful for other in-
formation retrieval tasks beyond text categorization, and we intend to investigate this in our future
work. Specifically, we intend to apply feature generation to information search and word sense dis-
ambiguation. In the search scenario, we are studying ways to augment both the query and documents
in the collection with generated features. This way, documents will be indexed in the augmented
space of words plus concepts. In this respect, we are exploring possible use of relevance feedback
techniques (Ruthven and Lalmas, 2003) in order to augment the query with most useful generated
features. Current approaches to word sense disambiguation represent contexts that contain ambigu-
ous words using the bag of words augmented with part-of-speech information. To this end, we
believe representation of such contexts can be greatly improved if we use feature generation to map
such contexts into relevant knowledge concepts. Anecdotal evidence (such as the last example in
Section 5.3.1) implies our method has much promise for improving the state of the art in word sense
disambiguation.

Acknowledgments

We thank Lev Finkelstein and Alex Gontmakher for many helpful discussions. This research was
partially supported by the Technion’s Counter-Terrorism Competition and by the MUSCLE Net-
work of Excellence.

Appendix A. Definitions of Category Sets for RCV1 and OHSUMED

This Appendix gives the full definition of the category sets we used for RCV1 (Table 8) and
OHSUMED (Table 9).

2333

GABRILOVICH AND MARKOVITCH

Set name Categories comprising the set
Topic-16 e142, gobit, e132, c313, e121, godd, ghea, e13, c183, m143, gspo, c13, e21, gpol,

m14, c15
Topic-10A e31, c41, c151, c313, c31, m13, ecat, c14, c331, c33
Topic-10B m132, c173, g157, gwea, grel, c152, e311, c21, e211, c16
Topic-10C c34, c13, gtour, c311, g155, gdef, e21, genv, e131, c17
Topic-10D c23, c411, e13, gdis, c12, c181, gpro, c15, g15, c22
Topic-10E c172, e513, e12, ghea, c183, gdip, m143, gcrim, e11, gvio
Industry-16 i81402, i79020, i75000, i25700, i83100, i16100, i1300003, i14000, i3302021,

i8150206, i0100132, i65600, i3302003, i8150103, i3640010, i9741102
Industry-10A i47500, i5010022, i3302021, i46000, i42400, i45100, i32000, i81401, i24200, i77002
Industry-10B i25670, i61000, i81403, i34350, i1610109, i65600, i3302020, i25700, i47510,

i9741110
Industry-10C i25800, i41100, i42800, i16000, i24800, i02000, i34430, i36101, i24300, i83100
Industry-10D i1610107, i97400, i64800, i0100223, i48300, i81502, i34400, i82000, i42700, i81402
Industry-10E i33020, i82003, i34100, i66500, i1300014, i34531, i16100, i22450, i22100, i42900

Table 8: Definition of RCV1 category sets used in the experiments

Set name Categories comprising the set
(parentheses contain MeSH identifiers)

OHSUMED-10A B-Lymphocytes (D001402); Metabolism, Inborn Errors (D008661);
Creatinine (D003404); Hypersensitivity (D006967);
Bone Diseases, Metabolic (D001851); Fungi (D005658); New England (D009511);
Biliary Tract (D001659); Forecasting (D005544); Radiation (D011827)

OHSUMED-10B Thymus Gland (D013950); Insurance (D007341);
Historical Geographic Locations (D017516); Leukocytes (D007962);
Hemodynamics (D006439); Depression (D003863);
Clinical Competence (D002983);
Anti-Inflammatory Agents, Non-Steroidal (D000894);
Cytophotometry (D003592); Hydroxy Acids (D006880)

OHSUMED-10C Endothelium, Vascular (D004730); Contraceptives, Oral, Hormonal (D003278);
Acquired Immunodeficiency Syndrome (D000163);
Gram-Positive Bacteria (D006094); Diarrhea (D003967);
Embolism and Thrombosis (D016769); Health Behavior (D015438);
Molecular Probes (D015335); Bone Diseases, Developmental (D001848);
Referral and Consultation (D012017)

OHSUMED-10D Antineoplastic and Immunosuppressive Agents (D000973);
Receptors, Antigen, T-Cell (D011948); Government (D006076);
Arthritis, Rheumatoid (D001172); Animal Structures (D000825);
Bandages (D001458); Italy (D007558); Investigative Techniques (D008919);
Physical Sciences (D010811); Anthropology (D000883)

OHSUMED-10E HTLV-BLV Infections (D006800); Hemoglobinopathies (D006453);
Vulvar Diseases (D014845); Polycyclic Hydrocarbons, Aromatic (D011084);
Age Factors (D000367); Philosophy, Medical (D010686);
Antigens, CD4 (D015704); Computing Methodologies (D003205);
Islets of Langerhans (D007515); Regeneration (D012038)

Table 9: Definition of OHSUMED category sets used in the experiments

2334

KNOWLEDGE-BASED FEATURE GENERATION

Appendix B. Comparing Knowledge Sources for Feature Generation: ODP versus
WordNet

In Section 6 we surveyed the shortcomings of WordNet as a possible source for knowledge-based
feature generation. To demonstrate these shortcomings, we juxtapose WordNet-based and ODP-
based feature generation for two of sample sentences we examined in Section 5.3.1 (we repeat the
ODP context classifications for readers’ convenience). We used WordNet version 1.6 to look up
the words. In what follows, synsets are denoted with curly braces, and noun and verb synsets are
followed by their immediate hypernym (more general synset), if applicable.

• Text: “Rumsfeld appeared with Gen. Richard Myers, chairman of the Joint Chiefs of Staff.”
ODP classifications:

– SOCIETY/ISSUES/GOVERNMENT OPERATIONS
– SOCIETY/POLITICS
– SOCIETY/ISSUES/WARFARE AND CONFLICT/SPECIFIC CONFLICTS/IRAQ
– SCIENCE/TECHNOLOGY/ MILITARY SCIENCE
– SOCIETY/ISSUES/WARFARE AND CONFLICT/WEAPONS

– SOCIETY/HISTORY/BY REGION/NORTH AMERICA/UNITED STATES/PRESIDENTS/
BUSH, GEORGE WALKER

– SOCIETY/POLITICS/CONSERVATISM

WordNet :
{Rumsfeld} → { }; (word not present in WordNet)
{look, appear, seem} → {be}; {appear}; {appear, come out} → {happen, materialize};
{appear, seem} → {be}; {appear, come along}; {appear} → {perform, execute, do}
{Gen} → {information, info}
{Richard} → { }; (word not present in WordNet)
{Myers} → { }; (word not present in WordNet)
{president, chairman, chairwoman, chair, chairperson}→ {presiding officer}; {chair, chair-
man} → {head, lead}
{joint, articulation, articulatio} → {body part}; {joint} → {spot}; {articulation, join, joint,
juncture, junction} → {connection, connexion, link}; {roast, joint} → {cut, cut of meat};
{joint} → {junction, conjunction}; {joint, marijuana cigarette, reefer, stick} → {cigarette,
cigaret, coffin nail, butt, fag}
{joint} → {fit, go}; {joint, articulate} → {supply, provide, render, furnish}; {joint} →
{fasten, fix, secure}
{joint (vs. separate)}; {joint}
{head, chief, top dog} → {leader}; {foreman, chief, gaffer, honcho, boss} → {supervisor}
{staff} → {force, personnel}; {staff} → {stick}; {staff, faculty} → {body}; {staff} →
{symbol}; {staff, stave} → {musical notation}
{staff} → {provide, supply, ply, cater}

2335

GABRILOVICH AND MARKOVITCH

• Text: “Herceptin is a so-called targeted therapy because of its ability to attack diseased cells
and leave healthy ones alone.”

ODP classifications:

– HEALTH/CONDITIONS AND DISEASES/CANCER/BREAST

– SOCIETY/ISSUES/HEALTH/CONDITIONS AND DISEASES/CANCER/ALTERNATIVE TREATMENTS

– HEALTH/SUPPORT GROUPS/CONDITIONS AND DISEASES/CANCER

WordNet:
{Herceptin} → { }; (word not present in WordNet)
{alleged (prenominal), so-called, supposed} → {questionable (vs. unquestionable)}
{target, aim, place, direct, point} → {aim, take, train, take aim, direct}
{therapy} → {medical care, medical aid}
{ability} → {quality}
{ability, power} → {cognition, knowledge}
{attack, onslaught, onset, onrush} → {operation}; {attack} → {turn, play}; {fire, attack,
flak, blast} → {criticism, unfavorable judgment}; {approach, attack, plan of attack} → {
conceptualization, conceptualisation, formulation, formularizing, formularising}; {attack,
attempt} → {battery, assault, assault and battery}; {attack, tone-beginning} → {beginning,
start, commencement}; {attack} → {affliction}; {attack, assault} → {attention, attending};
{attack, assail} → {fight, struggle}; {attack, round, assail, lash out, snipe, assault} →
{criticize, criticise, pick apart}; {attack, aggress} → {act, move}; {assail, assault, set on,
attack}; {attack} → {begin, get, start out, start, set about, set out, commence}; {attack} →
{affect}
{assault (prenominal), attack (prenominal)} → {offensive (vs. defensive)};
{diseased, morbid, pathologic, pathological} → {unhealthy (vs. healthy)};
{cell} → {compartment}; {cell} → {entity, something}; {cell, electric cell} → {electrical
device}; {cell, cadre} → {political unit}; {cell, cubicle} → {room}; {cell, jail cell, prison
cell} → {room}
{leave, leave of absence} → {time off}; {leave} → {permission}; {farewell, leave, leave-
taking, parting} → {departure, going, going away, leaving};
{leave, go forth, go away}; (16 more verb senses omitted for brevity)
{healthy (vs. unhealthy)}; {healthy} → {sound (vs. unsound)}; {healthy, salubrious, good
for you (predicate)} → {wholesome (vs. unwholesome)}; {fit (vs. unfit), healthy} → {able,
able-bodied}; {healthy, intelligent, levelheaded, sound} → {reasonable (vs. unreasonable),
sensible};
{one, 1, I, ace, single, unity} → {digit}; {one} → {unit}
{alone (predicate)} → {unsocial (vs. social)}; {alone (predicate), lone (prenominal), lonely
(prenominal), solitary}→ {unaccompanied (vs. accompanied)}; {alone (predicate), only}→

2336

KNOWLEDGE-BASED FEATURE GENERATION

{exclusive (vs. inclusive)}; {alone (predicate), unique, unequaled, unequalled, unparalleled}
→ {incomparable (vs. comparable), uncomparable}

{entirely, exclusively, solely, alone, only}; {alone, unaccompanied}

Evidently, WordNet classifications are overly general and diverse because context words cannot
be properly disambiguated. Furthermore, owing to lack of proper names, WordNet cannot possi-
bly provide the wealth of information encoded in the Open Directory, which easily overcomes the
drawbacks of WordNet.

References

Rie Kubota Ando and Tong Zhang. Framework for learning predictive structures from multiple
tasks and unlabeled data. Journal of Machine Learning Research, pages 1817–1853, 2005a.

Rie Kubota Ando and Tong Zhang. A high-performance semi-supervised learning method for text
chunking. In Proceedings of the 43rd Annual Meeting of the ACL, pages 1–9, Ann Arbor, MI,
June 2005b.

Douglas Baker and Andrew K. McCallum. Distributional clustering of words for text classification.
In Bruce Croft, Alistair Moffat, Cornelis J. Van Rijsbergen, Ross Wilkinson, and Justin Zobel,
editors, Proceedings of the 21st ACM International Conference on Research and Development in
Information Retrieval, pages 96–103, Melbourne, AU, 1998. ACM Press, New York, US. URL
http://www.cs.cmu.edu/ mccallum/papers/clustering-sigir98.ps.gz.

Lisa Ballesteros and Bruce Croft. Phrasal translation and query expansion techniques for cross-
language information retrieval. In Proceedings of the 20th ACM International Conference on
Research and Development in Information Retrieval, pages 84–91, 1997.

Roberto Basili, AlessandroMoschitti, andMaria T. Pazienza. Language-sensitive text classification.
In Proceedings of RIAO-00, 6th International Conference “Recherche d’Information Assistee par
Ordinateur”, pages 331–343, Paris, France, 2000.

Ron Bekkerman. Distributional clustering of words for text categorization. Master’s thesis, Tech-
nion, 2003.

Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. Inductive transfer for text classification using
generalized reliability indicators. In Proceedings of the ICML-2003 Workshop on The Continuum
from Labeled to Unlabeled Data, 2003.

Paul N. Bennett, Susan T. Dumais, and Eric Horvitz. The combination of text classifiers using
reliability indicators. Information Retrieval, 8(1):67–100, 2005.

Cathy Blake and Christopher Merz. UCI Repository of machine learning databases, 1998.
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent direchlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

2337

GABRILOVICH AND MARKOVITCH

Stephan Bloehdorn and Andreas Hotho. Boosting for text classification with semantic features. In
Proceedings of the MSW 2004 Workshop at the 10th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 70–87, 2004.

Janez Brank, Marko Grobelnik, Natasa Milic-Frayling, and Dunia Mladenic. Interaction of feature
selection methods and linear classification models. InWorkshop on Text Learning held at ICML-
2002, 2002.

Eric Brill. Transformation-based error-driven learning and natural language processing: A case
study in part of speech tagging. Computational Linguistics, 21(4):543–565, 1995.

Michael Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Knowitnow: Fast, scalable
information extraction from the web. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Vancouver, Canada, October 2005.

Lijuan Cai and Thomas Hofmann. Text categorization by boosting automatically extracted con-
cepts. In Proceedings of the 26th International Conference on Research and Development in
Information Retrieval, pages 182–189, 2003.

Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebastiani. A learner-independent
evaluation of the usefulness of statistical phrases for automated text categorization.
In Amita G. Chin, editor, Text Databases and Document Management: Theory
and Practice, pages 78–102. Idea Group Publishing, Hershey, US, 2001. URL
http://faure.iei.pi.cnr.it/ fabrizio/Publications/TD01a/TD01a.pdf.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Soumen Chakrabarti, Byron Dom, Rakesh Agrawal, and Prabhakar Raghavan. Using taxonomy,
discriminants, and signatures for navigating in text databases. In Proceedings of the 23rd VLDB
Conference, pages 446–455, 1997.

Lois Mai Chan. A Guide to the Library of Congress Classification. Libraries Unlimited, 5th edition,
1999.

Ming-Wei Chang, Quang Do, and Dan Roth. Multilingual dependency parsing: A pipeline ap-
proach. In Recent Advances in Natural Language Processing, pages 195–204, 2006.

Stanley Chen and Joshua Goodman. A high-performance semi-supervised learning method for text
chunking. In Proceedings of the 34th Annual Meeting of the ACL, 1996.

William W. Cohen. Automatically extracting features for concept learning from the web. In Pro-
ceedings of the 17th International Conference on Machine Learning, 2000.

Nello Cristianini, John Shawe-Taylor, and Huma Lodhi. Latent semantic kernels. Journal of Intel-
ligent Information Systems, 18(2/3):127–152, 2002.

Dmitry Davidov, Evgeniy Gabrilovich, and Shaul Markovitch. Parameterized generation of labeled
datasets for text categorization based on a hierarchical directory. In Proceedings of the 27th
ACM International Conference on Research and Development in Information Retrieval, pages
250–257, 2004.

2338

KNOWLEDGE-BASED FEATURE GENERATION

Franca Debole and Fabrizio Sebastiani. Supervised term weighting for automated text categoriza-
tion. In Proceedings of SAC-03, 18th ACM Symposium on Applied Computing, pages 784–788,
2003.

Scott Deerwester, Susan Dumais, George Furnas, Thomas Landauer, and Richard Harshman. In-
dexing by latent semantic analysis. Journal of the American Society for Information Science, 41
(6):391–407, 1990.

Gerald Dejong and Raymond Mooney. Explanation-based learning: An alternative view. Machine
Learning, 1(2):145–176, 1986.

Melvil Dewey, Joan S. Mitchell, Julianne Beall, Giles Martin, Winton E. Matthews, and Gregory R.
New, editors. Dewey Decimal Classification and Relative Index. Online Computer Library Center
(OCLC), 22nd edition, 2003.

Inderjit Dhillon, SubramanyamMallela, and Rahul Kumar. A divisive information-theoretic feature
clustering algorithm for text classification. Journal of Machine Learning Research, 3:1265–1287,
March 2003. URL http://www.jmlr.org/papers/volume3/dhillon03a/dhillon03a.pdf.

Chuong Do and Andrew Ng. Transfer learning for text classification. In Proceedings of Neural
Information Processing Systems (NIPS), 2005.

Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilistic model of redundancy in
information extraction. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence, Edinburgh, Scotand, August 2005.

Richard Duda and Peter Hart. Pattern Classification and Scene Analysis. John Wiley and Sons,
1973.

Susan Dumais and Hao Chen. Hierarchical classification of web content. In Proceedings of the
23rd ACM International Conference on Research and Development in Information Retrieval,
pages 256–263, 2000.

Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive learning algorithms
and representations for text categorization. In Proceedings of the 7th ACM International Confer-
ence on Information and Knowledge Management, pages 148–155, 1998.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, DanielWeld, and Alexander Yates. Webscale information extraction in know-
itall (preliminary results). In Proceedings of the 13th International World Wide Web Conference
(WWW’04), New York, USA, May 2004. ACM Press.

Tom Fawcett. Feature Discovery for Problem Solving Systems. PhD thesis, UMass, May 1993.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cambridge,
MA, 1998.

Johannes Fuernkranz, Tom Mitchell, and Ellen Riloff. A case study in using linguistic phrases for
text categorization on the WWW. In Mehran Sahami, editor, Learning for Text Categorization:
Proceedings of the 1998 AAAI/ICML Workshop, pages 5–12. AAAI Press, Madison, Wisconsin,
1998.

2339

GABRILOVICH AND MARKOVITCH

Evgeniy Gabrilovich and Shaul Markovitch. Text categorization with many redundant features:
Using aggressive feature selection to make SVMs competitive with C4.5. In Proceedings of the
21st International Conference on Machine Learning, pages 321–328, 2004.

Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for text categorization using world
knowledge. In Proceedings of the 19th International Joint Conference on Artificial Intelligence,
pages 1048–1053, Edinburgh, Scotand, August 2005.

Evgeniy Gabrilovich and Shaul Markovitch. Overcoming the brittleness bottleneck using
Wikipedia: Enhancing text categorization with encyclopedic knowledge. In Proceedings of the
21st National Conference on Artificial Intelligence, pages 1301–1306, July 2006.

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pages 1606–1611, January 2007.

Evgeniy Gabrilovich, Susan Dumais, and Eric Horvitz. Newsjunkie: Providing personalized news-
feeds via analysis of information novelty. In Proceedings of the Thirteenth International World
Wide Web Conference (WWW2004), pages 482–490, New York, NY, May 2004. ACM Press.

Andrew Goldberg and Xiaojin Zhu. Seeing stars when there aren’t many stars: Graph-based semi-
supervised learning for sentiment categorization. In Workshop on Textgraphs: Graph-based Al-
gorithms for Natural Language Processing, HLT-NAACL 2006, 2006.

Eui-Hong (Sam) Han and George Karypis. Centroid-based document classification: Analysis and
experimental results. In Proceedings of the Fourth European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, September 2000.

William Hersh, Chris Buckley, T.J. Leone, and David Hickam. OHSUMED: An interactive retrieval
evaluation and new large test collection for research. In Proceedings of the 17th ACM Interna-
tional Conference on Research and Development in Information Retrieval, pages 192–201, 1994.

George Hripcsak, Carol Friedman, Philip O. Alderson, William DuMouchel, Stephen B. Johnson,
and Paul D. Clayton. Unlocking clinical data from narrative reports: a study of natural language
processing. Annals of Internal Medicine, 122(9):681–688, 1995.

Yuh-Jyh Hu and Dennis Kibler. A wrapper approach for constructive induction. In The Thirteenth
National Conference on Artificial Intelligence, pages 47–52, 1996.

David A. Hull. Improving text retrieval for the routing problem using latent semantic in-
dexing. In W. Bruce Croft and Cornelis J. Van Rijsbergen, editors, Proceedings of
the 17th ACM International Conference on Research and Development in Information Re-
trieval, pages 282–289, Dublin, Ireland, 1994. Springer Verlag, Heidelberg, Germany. URL
http://www.acm.org/pubs/articles/proceedings/ir/188490/p282-hull/p282-hull.pdf.

Tony Jebara. Multi-task feature and kernel selection for svms. In Proceedings of the Twenty-First
International Conference on Machine Learning, pages 55–63, 2004.

2340

KNOWLEDGE-BASED FEATURE GENERATION

Thorsten Joachims. Text categorization with support vector machines: Learning with many relevant
features. In Proceedings of the European Conference on Machine Learning, pages 137–142,
1998.

Thorsten Joachims. Making large-scale SVM learning practical. In B. Schoelkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods – Support Vector Learning, pages 169–184. The
MIT Press, 1999a.

Thorsten Joachims. Transductive inference for text classification using support vector machines. In
Proceedings of the 13th International Conference on Machine Learning, 1999b.

Daphne Koller and Mehran Sahami. Hierarchically classifying documents using very few words. In
Proceedings of the 14th International Conference on Machine Learning, pages 170–178, 1997.

Daniel Kudenko and Haym Hirsh. Feature generation for sequence categorization. In Proceedings
of the 15th Conference of the American Association for Artificial Intelligence, pages 733–738,
1998.

Giridhar Kumaran and James Allan. Text classification and named entities for new event detec-
tion. In Proceedings of the 27th ACM International Conference on Research and Development in
Information Retrieval, pages 297–304, 2004.

Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12th International
Conference on Machine Learning, pages 331–339, 1995.

Douglas Lenat and Edward Feigenbaum. On the thresholds of knowledge. Artificial Intelligence,
47:185–250, 1990.

Edda Leopold and Joerg Kindermann. Text categorization with support vector machines: How to
represent texts in input space. Machine Learning, 46:423–444, 2002.

David D. Lewis. An evaluation of phrasal and clustered representations on a text categorization
task. In Proceedings of the 15th ACM International Conference on Research and Development
in Information Retrieval, pages 37–50, 1992.

David D. Lewis and W. Bruce Croft. Term clustering of syntactic phrases. In Proceedings of
the 13th ACM International Conference on Research and Development in Information Retrieval,
pages 385–404, 1990.

David D. Lewis, Robert E. Schapire, James P. Callan, and Ron Papka. Training algorithms for
linear text classifiers. In Proceedings of the 19th ACM International Conference on Research and
Development in Information Retrieval, pages 298–306, 1996.

David D. Lewis, Yiming Yang, Tony Rose, and Fan Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

Shaul Markovitch and Danny Rosenstein. Feature generation using general constructor functions.
Machine Learning, 49(1):59–98, 2002.

2341

GABRILOVICH AND MARKOVITCH

Christopher J. Matheus. The need for constructive induction. In L.A. Birnbaum and G.C. Collins,
editors, Proceedings of the Eighth International Workshop on Machine Learning, pages 173–177,
1991.

Christopher J. Matheus and Larry A. Rendell. Constructive induction on decision trees. In Proceed-
ings of the 11th International Conference on Artificial Intelligence, pages 645–650, 1989.

Ia Mcilwaine. The Universal Decimal Classification: Guide to its Use. UDC Consortium, 2000.

MeSH. Medical subject headings (MeSH). National Library of Medicine, 2003.
http://www.nlm.nih.gov/mesh.

Rada Mihalcea. Turning wordnet into an information retrieval resource: Systematic polysemy and
conversion to hierarchical codes. International Journal of Pattern Recognition and Artificial
Intelligence (IJPRAI), 17(1):689–704, 2003.

Andrei Mikheev. Feature lattices and maximum entropy models. Information Retrieval, 1999.

Tom Mitchell, Richard Keller, and Smadar Kedar-Cabelli. Explanation-based generalization: A
unifying view. Machine Learning, 1(1):47–80, 1986.

Mandar Mitra, Amit Singhal, and Chris Buckley. Improving automatic query expansion. In Pro-
ceedings of the 21st ACM International Conference on Research and Development in Information
Retrieval, pages 206–214, 1998.

Dunja Mladenic. Feature subset selection in text learning. In Proceedings of ECML-98, 10th
European Conference on Machine Learning, pages 95–100, 1998a.

Dunja Mladenic. Turning Yahoo into an automatic web-page classifier. In Proceedings of 13th
European Conference on Artificial Intelligence, pages 473–474, 1998b.

Patrick M. Murphy and Michael J. Pazzani. ID2-of-3: Constructive induction of M-of-N concepts
for discriminators in decision trees. In Proceedings of the 8th International Conference on Ma-
chine Learning, pages 183–188. Morgan Kaufmann, 1991.

Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39(2-3):103–134, 2000.

Kamal Nigam, Andrew McCallum, and Tom Mitchell. Semi-supervised text classification using
EM. In Olivier Chapelle, Bernhard Schoelkopf, and Alexander Zien, editors, Semi-Supervised
Learning. MIT Press, Boston, MA, 2006.

Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning. Machine
Learning, 5(1):71–99, 1990. ISSN 0885-6125.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? Sentiment classification using
machine learning techniques. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 79–86, 2002.

2342

KNOWLEDGE-BASED FEATURE GENERATION

Fuchun Peng and Dale Shuurmans. Combining naive Bayes and n-gram language models for text
classification. In Proceedings of the 25th European Conference on Information Retrieval Re-
search (ECIR-03), pages 335–350, 2003.

Fuchun Peng, Dale Schuurmans, and Shaojun Wang. Augmenting naive Bayes classifiers with
statistical language models. Information Retrieval, 7(3-4):317–345, 2004.

Martin Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

Rajat Raina, Andrew Ng, and Daphne Koller. Constructing informative priors using transfer learn-
ing. In Proceedings of the 23rd International Conference on Machine Learning (ICML), Pitts-
burgh, PA, 2006.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught learning:
Transfer learning from unlabeled data. In ICML ’07: Proceedings of the 24th International
Conference on Machine learning, 2007.

Bhavani Raskutti, Herman Ferra, and Adam Kowalczyk. Second order features for maximizing text
classification performance. In L. De Raedt and P. Flach, editors, Proceedings of the European
Conference on Machine Learning (ECML), Lecture notes in Artificial Intelligence (LNAI) 2167,
pages 419–430. Springer-Verlag, 2001.

Reuters. Reuters-21578 text categorization test collection, Distribution 1.0. Reuters, 1997.
daviddlewis.com/resources/testcollections/reuters21578.

Joseph John Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval System:
Experiments in Automatic Document Processing, pages 313–323. Prentice Hall, 1971.

Monica Rogati and Yiming Yang. High-performing feature selection for text classification.
In Proceedings of the International Conference on Information and Knowledge Management
(CIKM’02), pages 659–661, 2002.

J.K. Rowling. Harry Potter and the Philosopher’s Stone. Bloomsbury, 1997.

Miguel E. Ruiz and Padmini Srinivasan. Hierarchical text categorization using neural networks.
Information Retrieval, 5:87–118, 2002.

Ian Ruthven and Mounia Lalmas. A survey on the use of relevance feedback for information access
systems. Knowledge Engineering Review, 18(2):95–145, 2003.

Carl Sable, Kathleen McKeown, and Kenneth W. Church. NLP found helpful (at least for one
text categorization task). In Conference on Empirical Methods in Natural Language Processing,
pages 172–179, 2002.

Gerard Salton and Chris Buckley. Term weighting approaches in automatic text retrieval. Informa-
tion Processing and Management, 24(5):513–523, 1988.

Gerard Salton and Michael McGill. An Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

2343

GABRILOVICH AND MARKOVITCH

Sam Scott. Feature engineering for a symbolic approach to text classification. Master’s thesis, U.
Ottawa, 1998.

Fabrizio Sebastiani. Machine learning in automated text catego-
rization. ACM Computing Surveys, 34(1):1–47, 2002. URL
http://faure.iei.pi.cnr.it/ fabrizio/Publications/ACMCS02.pdf.

Charles Sutton and Andrew McCallum. Composition of conditional random fields for transfer
learning. In Emprical Methods in Natural Language Processing (HLT/EMNLP), 1998.

Kentaro Toyama and Eric Horvitz. Bayesian modality fusion: Probabilistic integration of multiple
vision algorithms for head tracking. In Proceedings of the 4th Asian Conference on Computer
Vision, 2000.

Alfonso Urena-Lopez, Manuel Buenaga, and Jose M. Gomez. Integrating linguistic resources in
TC through WSD. Computers and the Humanities, 35:215–230, 2001.

Ellen M. Voorhees. Query expansion using lexical-semantic relations. In Proceedings of the 17th
International Conference on Research and Development in Information Retrieval, pages 61–69,
1994.

Ellen M. Voorhees. Using wordnet for text retrieval. In Christiane Fellbaum, editor, WordNet, an
Electronic Lexical Database. The MIT Press, 1998.

Bill B. Wang, R.I. McKay, Hussein A. Abbass, and Michael Barlow. A comparative study for
domain ontology guided feature extraction. In Proceedings of the 26th Australian Computer
Science Conference (ASCS-2003), pages 69–78, 2003.

Bernard Widrow and Samuel Stearns. Adaptive Signal Processing. Prentice Hall, 1985.

Michael Wong, Wojciech Ziarko, and Patrick C.N. Wong. Generalized vector spaces model in
information retrieval. In Proceedings of the 8th ACM International Conference on Research and
Development in Information Retrieval, pages 18–25, 1985.

Pengcheng Wu and Thomas G. Dietterich. Improving svm accuracy by training on auxiliary data
sources. In Proceedings of the Twenty-First International Conference on Machine Learning,
pages 871–878, New York, NY, USA, 2004. ACM Press.

Jinxi Xu and W. Bruce Croft. Query expansion using local and global document analysis. In
Proceedings of the 19th International Conference on Research and Development in Information
Retrieval, pages 4–11, 1996.

Jinxi Xu andW. Bruce Croft. Improving the effectiveness of information retrieval with local context
analysis. ACM Transactions on Information Systems, 18(1):79–112, 2000.

Yiming Yang and Xin Liu. A re-examination of text categorization methods. In Proceedings of the
22nd International Conference on Research and Development in Information Retrieval, pages
42–49, 1999.

Yiming Yang and Jan Pedersen. A comparative study on feature selection in text categorization. In
Proceedings of the 14th International Conference on Machine Learning, pages 412–420, 1997.

2344

KNOWLEDGE-BASED FEATURE GENERATION

Yiming Yang, Sean Slattery, and Rayid Ghani. A study of approaches to hypertext categorization.
Journal of Intelligent Information Systems, 18(2/3):219–241, 2002.

Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. Improving pseudo-relevance feedback in
web information retrieval using web page segmentation. In Proceedings of the 12th International
World Wide Web Conference (WWW’03), Budapest, Hungary, May 2003. ACM Press.

Sarah Zelikovitz and Haym Hirsh. Improving short-text classification using unlabeled background
knowledge to assess document similarity. In Proceedings of the 17th International Conference
on Machine Learning, pages 1183–1190, 2000.

Sarah Zelikovitz and Haym Hirsh. Using LSI for text classification in the presence of background
text. In Proceedings of the Conference on Information and Knowledge Management, pages 113–
118, 2001.

Justin Zobel and Alistair Moffat. Exploring the similarity space. ACM SIGIR Forum, 32(1):18–34,
1998.

2345

Journal of Machine Learning Research 8 (2007) 2347-2368 Submitted 12/06; Revised 7/07; Published 10/07

AdaBoost is Consistent

Peter L. Bartlett BARTLETT@STAT.BERKELEY.EDU
Department of Statistics and Computer Science Division
University of California
Berkeley, CA 94720-3860, USA

Mikhail Traskin MTRASKIN@STAT.BERKELEY.EDU
Department of Statistics
University of California
Berkeley, CA 94720-3860, USA

Editor: Yoav Freund

Abstract
The risk, or probability of error, of the classifier produced by the AdaBoost algorithm is investi-
gated. In particular, we consider the stopping strategy to be used in AdaBoost to achieve universal
consistency. We show that provided AdaBoost is stopped after n1−ε iterations—for sample size n
and ε ∈ (0,1)—the sequence of risks of the classifiers it produces approaches the Bayes risk.
Keywords: boosting, adaboost, consistency

1. Introduction

Boosting algorithms are an important recent development in classification. These algorithms belong
to a group of voting methods (see, for example, Schapire, 1990; Freund, 1995; Freund and Schapire,
1996, 1997; Breiman, 1996, 1998), that produce a classifier as a linear combination of base or weak
classifiers. While empirical studies show that boosting is one of the best off the shelf classifica-
tion algorithms (see Breiman, 1998) theoretical results do not give a complete explanation of their
effectiveness.

The first formulations of boosting by Schapire (1990), Freund (1995), and Freund and Schapire
(1996, 1997) considered boosting as an iterative algorithm that is run for a fixed number of iterations
and at every iteration it chooses one of the base classifiers, assigns a weight to it and eventually
outputs the classifier that is the weighted majority vote of the chosen classifiers. Later Breiman
(1997, 1998, 2004) pointed out that boosting is a gradient descent type algorithm (see also Friedman
et al., 2000; Mason et al., 2000).

Experimental results by Drucker and Cortes (1996), Quinlan (1996), Breiman (1998), Bauer
and Kohavi (1999) and Dietterich (2000) showed that boosting is a very effective method, that often
leads to a low test error. It was also noted that boosting continues to decrease test error long after the
sample error becomes zero: though it keeps adding more weak classifiers to the linear combination
of classifiers, the generalization error, perhaps surprisingly, usually does not increase. However
some of the experiments suggested that there might be problems, since boosting performed worse
than bagging in the presence of noise (Dietterich, 2000), and boosting concentrated not only on
the “hard” areas, but also on outliers and noise (Bauer and Kohavi, 1999). And indeed, some more
experiments, for example by Friedman et al. (2000), Grove and Schuurmans (1998) andMason et al.

c©2007 Peter L. Bartlett and Mikhail Traskin.

BARTLETT AND TRASKIN

(2000), see also Bickel et al. (2006), as well as some theoretical results (for example, Jiang, 2002)
showed that boosting, ran for an arbitrary large number of steps, overfits, though it takes a very long
time to do it.

Upper bounds on the risk of boosted classifiers were obtained, based on the fact that boosting
tends to maximize the margin of the training examples (Schapire et al., 1998; Koltchinskii and
Panchenko, 2002), but Breiman (1999) pointed out that margin-based bounds do not completely
explain the success of boosting methods. In particular, these results do not resolve the issue of
consistency: they do not explain under which conditions we may expect the risk to converge to the
Bayes risk. A recent work by Reyzin and Schapire (2006) shows that while maximization of the
margin is useful, it should not be done at the expense of the classifier complexity.

Breiman (2004) showed that under some assumptions on the underlying distribution “popula-
tion boosting” converges to the Bayes risk as the number of iterations goes to infinity. Since the
population version assumes infinite sample size, this does not imply a similar result for AdaBoost,
especially given results of Jiang (2002), that there are examples when AdaBoost has prediction error
asymptotically suboptimal at t = ∞ (t is the number of iterations).

Several authors have shown that modified versions of AdaBoost are consistent. These modifi-
cations include restricting the l1-norm of the combined classifier (Mannor et al., 2003; Blanchard
et al., 2003; Lugosi and Vayatis, 2004; Zhang, 2004) , and restricting the step size of the algo-
rithm (Zhang and Yu, 2005). Jiang (2004) analyses the unmodified boosting algorithm and proves
a process consistency property, under certain assumptions. Process consistency means that there
exists a sequence (tn) such that if AdaBoost with sample size n is stopped after tn iterations, its risk
approaches the Bayes risk. However Jiang also imposes strong conditions on the underlying distri-
bution: the distribution of X (the predictor) has to be absolutely continuous with respect to Lebesgue
measure and the function FB(X) = (1/2) ln(P(Y = 1|X)/P(Y = −1|X)) has to be continuous on X .
Also Jiang’s proof is not constructive and does not give any hint on when the algorithm should be
stopped. Bickel et al. (2006) prove a consistency result for AdaBoost, under the assumption that the
probability distribution is such that the steps taken by the algorithm are not too large. In this paper,
we study stopping rules that guarantee consistency. In particular, we are interested in AdaBoost, not
a modified version. Our main result (Corollary 9) demonstrates that a simple stopping rule suffices
for consistency: the number of iterations is a fixed function of the sample size. We assume only that
the class of base classifiers has finite VC-dimension, and that the span of this class is sufficiently
rich. Both assumptions are clearly necessary.

2. Notation

Here we describe the AdaBoost procedure formulated as a coordinate descent algorithm and intro-
duce definitions and notation. We consider a binary classification problem. We are given X , the
measurable (feature) space, and Y = {−1,1}, the set of (binary) labels. We are given a sample
Sn = {(Xi,Yi)}ni=1 of i.i.d. observations distributed as the random variable (X ,Y) ∼ P , where P is
an unknown distribution. Our goal is to construct a classifier gn : X → Y based on this sample. The
quality of the classifier gn is given by the misclassification probability

L(gn) = P(gn(X) $= Y |Sn).

Of course we want this probability to be as small as possible and close to the Bayes risk

L! = inf
g
L(g) = E(min{η(X),1−η(X)}),

2348

ADABOOST IS CONSISTENT

where the infimum is taken over all possible (measurable) classifiers and η(·) is a conditional prob-
ability

η(x) = P(Y = 1|X = x).

The infimum above is achieved by the Bayes classifier g!(x) = g(2η(x)−1), where

g(x) =
{

1 , x> 0,
−1 , x≤ 0.

We are going to produce a classifier as a linear combination of base classifiers inH = {h|h :X →
Y }. We shall assume that class H has a finite VC (Vapnik-Chervonenkis) dimension dVC(H) =
max

{
|S| : S⊆ X ,

∣∣H|S
∣∣ = 2|S|

}
.

AdaBoost works to find a combination f that minimizes the convex criterion

1
n

n

∑
i=1
exp(−Yi f (Xi)).

Many of our results are applicable to a broader family of such algorithms, where the function α '→
exp(−α) is replaced by another function ϕ. Thus, for a function ϕ :R→R+, we define the empirical
ϕ-risk and the ϕ-risk,

Rϕ,n(f) =
1
n

n

∑
i=1

ϕ(Yi f (Xi)) and Rϕ(f) = Eϕ(Y f (X)).

Clearly, the function ϕ needs to be appropriate for classification, in the sense that a measurable f
that minimizes Rϕ(f) should have minimal risk. This is equivalent (see Bartlett et al., 2006) to ϕ
satisfying the following condition (‘classification calibration’). For all 0≤ η≤ 1, η $= 1/2,

inf{ηϕ(α)+(1−η)ϕ(−α) : α(2η−1) ≤ 0} > inf{ηϕ(α)+(1−η)ϕ(−α) : α ∈ R}. (1)

We shall assume that ϕ satisfies (1).
Then the boosting procedure can be described as follows.

1. Set f0 ≡ 0. Choose number of iterations t.

2. For k = 1, . . . , t, set
fk = fk−1+αk−1hk−1,

where the following holds for some fixed γ ∈ (0,1] independent of k.

Rϕ,n(fk) ≤ γ inf
h∈H ,α∈R

Rϕ,n(fk−1+αh)+(1− γ)Rϕ,n(fk−1). (2)

We call αi the step size of the algorithm at step i.

3. Output g◦ ft as the final classifier.

The choice of γ < 1 in the above algorithm allows approximate minimization. Notice that the
original formulation of AdaBoost assumed exact minimization in (2), which corresponds to γ= 1.

2349

BARTLETT AND TRASKIN

We shall also use the convex hull of H scaled by λ≥ 0,

Fλ =

{
f

∣∣∣∣∣ f =
n

∑
i=1

λihi,n ∈ N∪{0},λi ≥ 0,
n

∑
i=1

λi = λ,hi ∈ H
}

as well as the set of k-combinations, k ∈ N, of functions in H

F k =

{
f

∣∣∣∣∣ f =
k

∑
i=1

λihi,λi ∈ R,hi ∈ H
}

.

We also need to define the l!-norm: for any f ∈ F

‖ f‖! = inf
{
∑ |αi|, f =∑αihi,hi ∈ H

}
.

Define the squashing function πl(·) to be

πl(x) =






l , x> l,
x , x ∈ [−l, l],

−l , x< −l.

Then the set of truncated functions is

πl ◦F =
{
f̃ | f̃ = πl(f), f ∈ F

}
.

The set of classifiers based on a class F is denoted by

g◦F = { f̃ | f̃ = g(f), f ∈ F }.

Define the derivative of an arbitrary function Q(·) in the direction of h as

Q′(f ;h) =
∂Q(f +λh)

∂λ

∣∣∣∣
λ=0

.

The second derivative Q′′(f ;h) is defined similarly.

3. Consistency of Boosting Procedure

In this section, we present the proof of the consistency of AdaBoost. We begin with an overview.
The usual approach to proving consistency involves a few key steps (see, for example, Bartlett

et al., 2004). The first is a comparison theorem, which shows that as the ϕ-risk Rϕ(fn) approaches R!
ϕ

(the infimum over measurable functions of Rϕ), L(fn) approaches L!. The classification calibration
condition (1) suffices for this (Bartlett et al., 2006). The second step is to show that the class of
functions is suitably rich so that there is some sequence of elements f̄n for which limn→∞Rϕ(f̄n) =
R!
ϕ. The third step is to show that the ϕ-risk of the estimate fn approaches that of the reference
sequence f̄n. For instance, for a method of sieves that minimizes the empirical ϕ-risk over a suitable
set Fn (which increases with the sample size n), one could define the reference sequence f̄n as the
minimizer of the ϕ-risk in Fn. Then, provided that the sets Fn grow suitably slowly with n, the
maximal deviation over Fn between empirical ϕ-risk and ϕ-risk would converge to zero. Such a
uniform convergence result would imply that the sequence fn has ϕ-risk converging to R!

ϕ.

2350

ADABOOST IS CONSISTENT

The key difficulty with this approach is that the concentration inequalities behind the uniform
convergence results are valid only for a suitably small class of suitably bounded functions. However
boosting in general and AdaBoost in particular may produce functions that cannot be appropriately
bounded. To circumvent this difficulty, we rely on the observation that, for the purposes of clas-
sification, we can replace the function f returned by AdaBoost by any function f ′ that satisfies
sign(f ′) = sign(f). Therefore we consider the clipped version πλ ◦ ft of the function returned by
AdaBoost after t iterations. This clipping ensures that the functions ft are suitably bounded. Fur-
thermore, the complexity of the clipped class (as measured by its pseudo-dimension—see Pollard,
1984) grows slowly with the stopping time t, so we can show that the ϕ-risk of a clipped function
is not much larger than its empirical ϕ-risk. Lemma 4 provides the necessary details. In order to
compare the empirical ϕ-risk of the clipped function to that of a suitable reference sequence f̄n, we
first use the fact that the empirical ϕ-risk of a clipped function πλ ◦ ft is not much larger than the
empirical ϕ-risk of ft .

The next step is to relate Rϕ,n(ft) to Rϕ,n(f̄n). The choice of a suitable sieve depends on what
can be shown about the progress of the algorithm. We consider an increasing sequence of l!-balls,
and define f̄n as the (near) minimizer of the ϕ-risk in the appropriate l!-ball. Theorems 6 and 8
show that as the stopping time increases, the empirical ϕ-risk of the function returned by AdaBoost
is not much larger than that of f̄n. Finally Hoeffding’s inequality shows that the empirical ϕ-risks of
the reference functions f̄n are close to their ϕ-risks. Combining all the pieces, the ϕ-risk of πλ ◦ ft
approaches R!

ϕ, provided the stopping time increases suitably slowly with the sample size. The
consistency of AdaBoost follows.

We now describe our assumptions. First, we shall impose the following condition.

Condition 1 Denseness. Let the distribution P and class H be such that

lim
λ→∞

inf
f∈Fλ

Rϕ(f) = R!
ϕ,

where R!
ϕ = infRϕ(f) over all measurable functions.

For many classesH , the above condition is satisfied for all possible distributions P . Lugosi and
Vayatis (2004, Lemma 1) discuss sufficient conditions for Condition 1. As an example of such a
class, we can take the class of indicators of all rectangles or the class of indicators of half-spaces
defined by hyperplanes or the class of binary trees with the number of terminal nodes equal to
d+1 (we consider trees with terminal nodes formed by successive univariate splits), where d is the
dimensionality of X (see Breiman, 2004).

The following set of conditions deals with uniform convergence and convergence of the boosting
algorithm. The main theorem (Theorem 1) shows that these, together with Condition 1, suffice for
consistency of the boosting procedure. Later in this section we show that the conditions are satisfied
by AdaBoost.

Condition 2 Let n be sample size. Let there exist non-negative sequences tn → ∞, ζn → ∞ and a
sequence { f̄n}∞n=1 of reference functions such that

Rϕ(f̄n) →
n→∞

R!,

and suppose that the following conditions are satisfied.

2351

BARTLETT AND TRASKIN

a. Uniform convergence of tn-combinations.

sup
f∈πζn◦F tn

|Rϕ(f)−Rϕ,n(f)|
a.s.→
n→∞

0. (3)

b. Convergence of empirical ϕ-risks for the sequence { f̄n}∞n=1.

max
{
0,Rϕ,n(f̄n)−Rϕ(f̄n)

} a.s.→
n→∞

0. (4)

c. Algorithmic convergence of tn-combinations.

max
{
0,Rϕ,n(ftn)−Rϕ,n(f̄n)

} a.s.→
n→∞

0. (5)

Now we state the main theorem.

Theorem 1 Assume ϕ is classification calibrated and convex. Assume, without loss of generality,
that for ϕλ = infx∈[−λ,λ]ϕ(x),

lim
λ→∞

ϕλ = inf
x∈(−∞,∞)

ϕ(x) = 0. (6)

Let Condition 2 be satisfied. Then the boosting procedure stopped at step tn returns a sequence of
classifiers ftn almost surely satisfying L(g(ftn)) → L! as n→ ∞.

Remark 2 Note that Condition (6) could be replaced by the mild condition that the function ϕ is
bounded below.

Proof For almost every outcome ω on the probability space (Ω,S ,P) we can define sequences
ε1n(ω) → 0, ε2n(ω) → 0 and ε3n(ω) → 0, such that for almost all ω the following inequalities are true.

Rϕ(πζn(ftn)) ≤ Rϕ,n(πζn(ftn))+ ε1n(ω) by (3)
≤ Rϕ,n(ftn)+ ε1n(ω)+ϕζn (7)
≤ Rϕ,n(f̄n)+ ε1n(ω)+ϕζn + ε2n(ω) by (5)
≤ Rϕ(f̄n)+ ε1n(ω)+ϕζn + ε2n(ω)+ ε3n(ω) by (4). (8)

Inequality (7) follows from the convexity of ϕ(·) (see Lemma 14 in Appendix E). By (6) and choice
of the sequence { f̄n}∞n=1 we have Rϕ(f̄n)→R! and ϕζn → 0. And from (8) follows Rϕ(πζn(ftn))→R!

a.s. Eventually we can use the result by Bartlett et al. (2006, Theorem 3) to conclude that

L(g(πζn(ftn)))
a.s.→L!.

But for ζn > 0 we have g(πζn(ftn)) = g(ftn), therefore

L(g(ftn))
a.s.→L!.

Hence, the boosting procedure is consistent if stopped after tn steps.

The almost sure formulation of Condition 2 does not provide explicit rates of convergence of
L(g(ftn)) to L!. However, a slightly stricter form of Condition 2, which allows these rates to be
calculated, is considered in Appendix A.

In the following sections, we show that Condition 2 can be satisfied for some choices of ϕ. We
shall treat parts (a)–(c) separately.

2352

ADABOOST IS CONSISTENT

3.1 Uniform Convergence of tn-Combinations

Here we show that Condition 2 (a) is satisfied for a variety of functions ϕ, and in particular for
exponential loss used in AdaBoost. We begin with a simple lemma (see Freund and Schapire, 1997,
Theorem 8 or Anthony and Bartlett, 1999, Theorem 6.1):

Lemma 3 For any t ∈ N if dVC(H) ≥ 2 the following holds:

dP(F t) ≤ 2(t+1)(dVC(H)+1) log2[2(t+1)/ ln2],

where dP(F t) is the pseudo-dimension of class F t .

The proof of consistency is based on the following result, which builds on the result by Koltchin-
skii and Panchenko (2002) and resembles a lemma due to Lugosi and Vayatis (2004, Lemma 2).

Lemma 4 For a continuous function ϕ define the Lipschitz constant

Lϕ,ζ = inf{L|L> 0, |ϕ(x)−ϕ(y)| ≤ L|x− y|,−ζ≤ x,y≤ ζ}

and maximum absolute value of ϕ(·) when argument is in [−ζ,ζ]

Mϕ,ζ = max
x∈[−ζ,ζ]

|ϕ(x)|.

Then for V = dVC(H), c= 24
R 1
0

√
ln 8eε2 dε and any n, ζ> 0 and t > 0,

E sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ cζLϕ,ζ

√
(V +1)(t+1) log2[2(t+1)/ ln2]

n
.

Also, for any δ> 0, with probability at least 1−δ,

sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ cζLϕ,ζ

√
(V +1)(t+1) log2[2(t+1)/ ln2]

n

+ Mϕ,ζ

√
ln(1/δ)
2n

. (9)

Proof The proof is given in Appendix B.

Now, if we choose ζ and δ as functions of n, such that ∑∞
n=1 δ

2(n) <∞ and right hand side of (9)
converges to 0 as n→∞, we can appeal to Borel-Cantelli lemma and conclude, that for such choice
of ζn and δn Condition 2 (a) holds.

Lemma 4, unlike Lemma 2 of Lugosi and Vayatis (2004), allows us to choose the number of
steps t, which describes the complexity of the linear combination of base functions, and this is
essential for the proof of the consistency. It is easy to see that for AdaBoost (i.e., ϕ(x) = e−x) we
can choose ζ= κ lnn and t = n1−ε with κ> 0, ε ∈ (0,1) and 2κ− ε< 0.

2353

BARTLETT AND TRASKIN

3.2 Convergence of Empirical ϕ-Risks for the Sequence { f̄n}∞n=1.

To show that Condition 2(b) is satisfied for a variety of loss functions we use Hoeffding’s inequality.

Theorem 5 Define the variation of a function ϕ on the interval [−a,a] (for a> 0) as

Vϕ,a = sup
x∈[−a,a]

ϕ(x)− inf
x∈[−a,a]

ϕ(x).

If a sequence { f̄n}∞n=1 satisfies the condition f̄n(x) ∈ [−λn,λn],∀x ∈ X , where λn > 0 is chosen so
that Vϕ,λn = o(

√
n/ lnn), then

max{0,Rϕ,n(f̄n)−Rϕ(f̄n)}
a.s.→
n→∞

0. (10)

Proof Since we restricted the range of f̄n to the interval [−λn,λn], we have, almost surely, ϕ(Y f̄n(X))∈
[a,b], where b−a≤Vϕ,λn . Therefore Hoeffding’s inequality guarantees that for all εn

P
(
Rϕ,n(f̄n)−Rϕ(f̄n) ≥ εn

)
≤ exp

(
−2nε2n/V 2ϕ,λn

)
= δn.

To prove the statement of the theorem we require εn = o(1) and ∑δn < ∞. Then we appeal to the
Borel-Cantelli lemma to conclude that (10) holds. These restrictions are satisfied if

V 2ϕ,λn = o
(n
lnn

)

and the statement of the theorem follows.

The choice of λn in the above theorem depends on the loss function ϕ. In the case of the
AdaBoost loss ϕ(x) = e−x we shall choose λn = κ lnn, where κ ∈ (0,1/2). One way to guarantee
that the functions f̄n satisfy condition f̄n(x) ∈ [−λn,λn],∀x ∈ X , is to choose f̄n ∈ Fλn .

3.3 Algorithmic Convergence of AdaBoost

So far we dealt with the statistical properties of the function we are minimizing; now we turn to
the algorithmic part. Here we show that Condition 2(c) is satisfied for the AdaBoost algorithm. We
need the following simple consequence of the proof of Bickel et al. (2006, Theorem 1).

Theorem 6 Let the function Q(f) be convex in f and twice differentiable in all directions h ∈ H .
Let Q! = limλ→∞ inf f∈Fλ

Q(f). Assume that ∀c1,c2, such that Q! < c1 < c2 < ∞,

0 < inf{Q′′(f ;h) : c1 < Q(f) < c2,h ∈ H }
≤ sup{Q′′(f ;h) : Q(f) < c2,h ∈ H } < ∞.

Also assume the following approximate minimization scheme for γ ∈ (0,1]. Define fk+1 = fk +
αk+1hk+1such that

Q(fk+1) ≤ γ inf
h∈H ,α∈R

Q(fk +αh)+(1− γ)Q(fk)

and
Q(fk+1) = inf

α∈R
Q(fk +αhk+1).

2354

ADABOOST IS CONSISTENT

Then for any reference function f̄ and the sequence of functions fm, produced by the boosting
algorithm, the following bound holds ∀m> 0 such that Q(fm) > Q(f̄).

Q(fm) ≤ Q(f̄)+

√
8B3(Q(f0)−Q(f̄))2

γ2β3

(
ln

!20+ c3m
!20

)− 1
2

, (11)

where !k =
∥∥ f̄ − fk

∥∥
!, c3 = 2(Q(f0)−Q(f̄))/β, β= inf{Q′′(f ;h) :Q(f̄) <Q(f) <Q(f0),h ∈ H },

B= sup{Q′′(f ;h) : Q(f) < Q(f0),h ∈ H }.

Proof The statement of the theorem is a version of a result implicit in the proof of (Bickel et al.,
2006, Theorem 1). The proof is given in Appendix C.

Remark 7 Results in Zhang and Yu (2005, e.g., Lemma 4.1) provide similar bounds under either an
assumption of a bounded step size of the boosting algorithm or a positive lower bound on Q′′(f ;h)
for all f ,h. Since we consider boosting algorithms with unrestricted step size, the only option would
be to assume a positive lower bound on the second derivative. While such an assumption is fine for
the quadratic loss ϕ(x) = x2, second derivative R′′

n(f ;h) of the empirical risk for the exponential
loss used by the AdaBoost algorithm can not be bounded from below by a positive constant in a
general case. Theorem 6 makes a mild assumption that second derivative is positive for all f such
that R(f) > R! (Rn(f) > R!

n) .

It is easy to see, that the theorem above applies to the AdaBoost algorithm, since there we first
choose the direction (base classifier) hi and then we compute the step size αi as

αi =
1
2
ln
1− εi
εi

=
1
2
ln
R(fi)−R′(fi;hi)
R(fi)+R′(fi;hi)

.

Now we only have to recall that this value of αi corresponds to exact minimization in the direction
hi.

From now on we are going to specialize to AdaBoost and use ϕ(x) = e−x. Hence we drop the
subscript ϕ in Rϕ,n and Rϕ and use Rn and R respectively.

Theorem 6 allows us to get an upper bound on the difference between the exp-risk of the function
output by AdaBoost and the exp-risk of the appropriate reference function. For brevity in the next
theorem we make an assumption R! > 0, though a similar result can be stated for R! = 0. For
completeness, the corresponding theorem is given in Appendix D.

Theorem 8 Assume R! > 0. Let tn be the number of steps we run AdaBoost. Let λn = κ lnn,
κ ∈ (0,1/2). Let a > 1 be an arbitrary fixed number. Let { f̄n}∞n=1 be a sequence of functions
such that f̄n ∈ Fλn . Then with probability at least 1− δn, where δn = exp

(
−2(R!)2n1−2κ/a2

)
, the

following holds

Rn(ftn) ≤ Rn(f̄n)+
2
√
2(1−R!(a−1)/a)
γ
(a−1

a R!
)3/2

(
ln
λ2n+2tn(a/(a−1)−R!)/R!

λ2n

)−1/2
.

Proof This theorem follows directly from Theorem 6. Because in AdaBoost

R′′
n(f ;h) =

1
n

n

∑
i=1

(−Yih(Xi))2e−Yi f (Xi) =
1
n

n

∑
i=1

e−Yi f (Xi) = Rn(f),

2355

BARTLETT AND TRASKIN

then all the conditions in Theorem 6 are satisfied as long as Rn(f̄n) > 0 (with Q(f) replaced by
Rn(f)) and in the Equation (11) we have B= Rn(f0) = 1, β≥ Rn(f̄n),

∥∥ f0− f̄n
∥∥

! ≤ λn. Since for t
such that Rn(ft) ≤ Rn(f̄n) the theorem is trivially true, we only have to notice that exp(Yi f̄n(Xi)) ∈
[0,nκ], hence Hoeffding’s inequality guarantees that

P

(
1
n

n

∑
i=1

eYi f̄n(Xi)−EeY f̄n(X) ≤−R!

a

)
≤ exp

(
−2(R!)2n1−2κ/a2

)
= δn,

where we choose and fix the constant a > 1 arbitrarily and independently of n and the sequence
{ f̄n}∞n=1. Therefore with probability at least 1−δn we bound empirical risk from below as Rn(f̄n)≥
R(f̄n)−R!/a ≥ R! −R!/a = R!(a− 1)/a, since R(f̄n) ≥ R!. Therefore β ≥ R!(a− 1)/a and the
result follows immediately from Equation (11) if we use the fact that R! > 0.

It is easy to see that choice of λn’s in the above theorem ensures that ∑∞
n=1 δn < ∞, therefore

Borel-Cantelli lemma guarantees that for tn → ∞ sufficiently fast (for example as O(nα) for α ∈
(0,1))

max{0,Rn(ftn)−Rn(f̄n)}
a.s.→
n→∞

0.

If in addition to the conditions of Theorem 8 we shall require that

R(f̄n) ≤ inf
f∈Fλn

R(f)+ εn,

for some εn → 0, then together with Condition 1 this will imply R(f̄n) → R∗ as n→ ∞ and Condi-
tion 2 (c) follows.

3.4 Consistency of AdaBoost

Having all the ingredients at hand, consistency of AdaBoost is a simple corollary of Theorem 1.

Corollary 9 Assume V = dVC(H) < ∞,

lim
λ→∞

inf
f∈Fλ

R(f) = R!

and tn = n1−ε for ε ∈ (0,1). Then AdaBoost stopped at step tn returns a sequence of classifiers
almost surely satisfying L(g(ftn)) → L!.

Proof First assume L! > 0. For the exponential loss function this implies R! > 0. As was suggested
after the proof of Lemma 4 we may choose ζn = κ lnn for 2κ− ε< 0 (which also implies κ< 1/2)
to satisfy Condition 2 (a). Recall that discussion after the proof of the Theorem 8 suggests choice
of the sequence { f̄n}∞n=1 of reference functions such that f̄n ∈ Fλn and

R(f̄n) ≤ inf
f∈Fλn

R(f)+ εn

for εn → 0 and λn = κ lnn with κ ∈ (0,1/2) to ensure that Condition 2 (c) holds. Eventually, as
it follows from the discussion after the proof of the Theorem 5, choice of the sequence { f̄n}∞n=1 to
satisfy Condition 2(c) also ensures that Condition 2(b) holds. Since function ϕ(x) = e−x is clearly

2356

ADABOOST IS CONSISTENT

classification calibrated and conditions of this Corollary assume Condition 1 then all the conditions
of Theorem 1 hold and consistency of the AdaBoost algorithm follows.

For L! = 0 the proof is similar, but we need to use Theorem 13 in Appendix D instead of Theo-
rem 8.

4. Discussion

We showed that AdaBoost is consistent if stopped sufficiently early, after tn iterations, for tn =
O(n1−ε) with ε ∈ (0,1). We do not know whether this number can be increased. Results by Jiang
(2002) imply that for some X and function class H the AdaBoost algorithm will achieve zero
training error after tn steps, where n2/tn = o(1) (see also work by Mannor and Meir (2001, Lemma
1) for an example of X = Rd and H = {linear classifiers}, for which perfect separation on the
training sample is guaranteed after 8n2 lnn iterations), hence if run for that many iterations, the
AdaBoost algorithm does not produce a consistent classifier. We do not know what happens in
between O(n1−ε) and O(n2 lnn). Lessening this gap is a subject of further research.

The AdaBoost algorithm, as well as other versions of the boosting procedure, replaces the 0−1
loss with a convex function ϕ to overcome algorithmic difficulties associated with the non-convex
optimization problem. In order to conclude that Rϕ(fn) → R!

ϕ implies L(g(fn)) → L! we want ϕ
to be classification calibrated and this requirement cannot be relaxed, as shown by Bartlett et al.
(2006).

The statistical part of the analysis, summarized in Lemma 4 and Theorem 5, works for quite
an arbitrary loss function ϕ. The only restriction imposed by Lemma 4 is that ϕ must be Lipschitz
on any compact set. This requirement is an artifact of our proof and is caused by the use of the
“contraction principle”. It can be relaxed in some cases: Shen et al. (2003) use the classification
calibrated loss function

ψ(x) =






2 , x< 0,
1− x , 0≤ x< 1,
0 , x≥ 1,

which is non-Lipschitz on any interval [−λ,λ], λ> 0.
The algorithmic part, presented by Theorems 6 and 8, concentrated on the analysis of the expo-

nential (AdaBoost) loss ϕ(x) = e−x. This approach also works for the quadratic loss ϕ(x) = (1−x)2.
Theorem 6 assumes that the second derivative R′′

ϕ(f ;h) is bounded from below by a positive con-
stant, possibly dependent on the value of Rϕ(f), as long as Rϕ(f) > R!

ϕ. This condition is clearly
satisfied for ϕ(x) = (1− x)2: R′′

ϕ(f ;h) ≡ 2 and we do not need an analog of Theorem 8; Theorem 6
suffices. Lemma 4 can be applied for the quadratic loss with Lϕ,λ = 2(1+λ) and Mϕ,λ = (1+λ)2.
We may choose tn,λn,ζn the same as for the exponential loss or set λn = n1/4−ϑ1 , ϑ1 ∈ (0,1/4),
ζn = nρ−ϑ2 , ϑ2 = (0,ρ), ρ=min(ε/2,1/4) to get the following analog of Corollary 9.

Corollary 10 Assume ϕ(x) = (1− x)2. Assume V = dVC(H) < ∞,

lim
λ→∞

inf
f∈Fλ

R(f) = R!

and tn = n1−ε for ε ∈ (0,1). Then boosting procedure stopped at step tn returns a sequence of
classifiers almost surely satisfying L(g(ftn)) → L!.

2357

BARTLETT AND TRASKIN

We cannot make analogous conclusion about other loss functions. For example for logit loss
ϕ(x) = ln(1+ e−x), Lemma 4 and Theorem 5 work, since Lϕ,λ = 1 and Mϕ,λ = ln(1+ eλ), hence
choosing tn,λn,ζn as for either the exponential or quadratic losses will work. The assumption of
the Theorem 6 also holds with R′′

ϕ,n(f ;h) ≥ Rϕ,n(f)/n, though the resulting inequality is trivial: the
factor 1/n in this bound precludes us from finding an analog of Theorem 8. A similar problem
arises in the case of the modified quadratic loss ϕ(x) = [max(1−x,0)]2, for which R′′

ϕ,n(f ;h)≥ 2/n.
Generally, any loss function with “really flat” regions may cause trouble. Another issue is the
very slow rate of convergence in Theorems 6 and 8. Hence further research intended either to
improve convergence rates or extend the applicability of these theorems to loss functions other than
exponential and quadratic is desirable.

Acknowledgments

This work was supported by the NSF under award DMS-0434383. The authors would like to thank
Peter Bickel for useful discussions, as well as Jean-Philippe Vert and two anonymous referees for
their comments and suggestions.

Appendix A. Rate of Convergence of L(g(ftn)) to L!

Here we formulate Condition 2 in a stricter form and prove consistency along with a rate of conver-
gence of the boosting procedure to the Bayes risk.

Condition 3 Let n be sample size. Let there exist non-negative sequences tn → ∞, ζn → ∞, δ jn → 0
such that ∑∞

i=1 δ
j
i <∞, j= 1,2,3, εkn → 0, k= 1,2,3, a sequence { f̄n}∞n=1 of reference functions such

that
Rϕ(f̄n) →

n→∞
R!,

and the following conditions hold.

a. Uniform convergence of tn-combinations.

P

(
sup

f∈πζn◦F tn
|Rϕ(f)−Rϕ,n(f)| > ε1n

)
< δ1n. (12)

b. Convergence of empirical ϕ-risks for the sequence { f̄n}∞n=1.

P
(
Rϕ,n(f̄n)−Rϕ(f̄n) > ε2n

)
< δ2n. (13)

c. Algorithmic convergence of tn-combinations.

P
(
Rϕ,n(ftn)−Rϕ,n(f̄n) > ε3n

)
< δ3n. (14)

Now we state the analog of Theorem 1.

2358

ADABOOST IS CONSISTENT

Theorem 11 Assume ϕ is classification calibrated and convex, and for ϕλ = infx∈[−λ,λ]ϕ(x) without
loss of generality assume

lim
λ→∞

ϕλ = inf
x∈(−∞,∞)

ϕ(x) = 0. (15)

Let Condition 3 be satisfied. Then the boosting procedure stopped at step tn returns a sequence of
classifiers ftn almost surely satisfying L(g(ftn)) → L! as n→ ∞.

Proof Consider the following sequence of inequalities.

Rϕ(πζn(ftn)) ≤ Rϕ,n(πζn(ftn))+ ε1n by (12) (16)
≤ Rϕ,n(ftn)+ ε1n+ϕζn
≤ Rϕ,n(f̄n)+ ε1n+ϕζn + ε3n by (14) (17)
≤ Rϕ(f̄n)+ ε1n+ϕζn + ε3n+ ε2n by (13). (18)

Inequalities (16), (18) and (17) hold with probability at least 1−δ1n, 1−δ2n and 1−δ3n respectively.
We assumed in Condition 3 that Rϕ(f̄n) → R! and (15) implies that ϕζn → 0 by the choice of the
sequence ζn. Now we appeal to the Borel-Cantelli lemma and arrive at Rϕ(πζn(ftn)) → R! a.s.
Eventually we can use Theorem 3 by Bartlett et al. (2006) to conclude that

L(g(πζn(ftn)))
a.s.→L!.

But for ζn > 0 we have g(πζn(ftn)) = g(ftn), therefore

L(g(ftn))
a.s.→L!.

Hence the boosting procedure is consistent if stopped after tn steps.

We could prove Theorem 11 by using the Borel-Cantelli lemma and appealing to Theorem 1,
but the above proof allows the following corollary on the rate of convergence.

Corollary 12 Let the conditions of Theorem 11 be satisfied. Then there exists a non-decreasing
function ψ, such that ψ(0) = 0, and with probability at least 1−δ1n−δ2n−δ3n

L(g(ftn))−L! ≤ ψ−1
(

(ε1n+ ε2n+ ε3n+ϕζn)+
(
inf
f∈Fλn

Rϕ−R!
ϕ

))
, (19)

where ψ−1 is the inverse of ψ.

Proof From Theorem 3 of Bartlett et al. (2006), if φ is convex we have that

ψ(θ) = φ(0)− inf
{
1+θ
2

φ(α)+
1−θ
2

φ(−α) : α ∈ R
}

,

and for any distribution and any measurable function f

L(g(f))−L! ≤ ψ−1 (Rϕ(f)−R!
ϕ

)
.

2359

BARTLETT AND TRASKIN

On the other hand,

Rϕ(f)−R!
ϕ =

(
Rϕ(f)− inf

f∈Fλn

Rϕ
)

+
(
inf
f∈Fλn

Rϕ−R!
ϕ

)
.

The proof of Theorem 11 shows that for function ftn with probability at least 1−δ1n−δ2n

Rϕ(ftn)− inf
f∈Fλn

Rϕ ≤ ε1n+ ε2n+ ε3n+ϕζn .

Putting all the components together we obtain (19).

The second term under ψ−1 in (19) is an approximation error and, in a general case, it may
decrease arbitrarily slowly. However, if it is known that it decreases sufficiently fast, the first term
becomes an issue. For example Corollary 9, even if the approximation error decreases sufficiently
fast, will give a convergence rate of the orderO

(
(lnn)− 1

4

)
. This follows from Example 1 by Bartlett

et al. (2006), where it is shown that for AdaBoost (exponential loss function)ψ−1(x)≤
√
2x, and the

fact that both ε1n and ε2n, as well as ϕζn , in Corollary 9 decrease at the rateO(n1−α) (in fact, α’s might
be different for all three of them), hence everything is dominated by ε3n, which is O

(
(lnn)− 1

2

)
.

Appendix B. Proof of Lemma 4

For convenience, we state the lemma once again.
Lemma 4 For a continuous function ϕ define the Lipschitz constant

Lϕ,ζ = inf{L|L> 0, |ϕ(x)−ϕ(y)| ≤ L|x− y|,−ζ≤ x,y≤ ζ}

and maximum absolute value of ϕ(·) when argument is in [−ζ,ζ]

Mϕ,ζ = max
x∈[−ζ,ζ]

|ϕ(x)|.

Then for V = dVC(H), c= 24
R 1
0

√
ln 8eε2 dε and any n, ζ> 0 and t > 0,

E sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ cζLϕ,ζ

√
(V +1)(t+1) log2[2(t+1)/ ln2]

n
.

Also, for any δ> 0, with probability at least 1−δ,

sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ cζLϕ,ζ

√
(V +1)(t+1) log2[2(t+1)/ ln2]

n

+ Mϕ,ζ

√
ln(1/δ)
2n

.

Proof The proof of this lemma is similar to the proof of Lugosi and Vayatis (2004, Lemma 2) in
that we begin with symmetrization followed by the application of the “contraction principle”. We
use symmetrization to get

E sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ 2E sup
f∈πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi(ϕ(−Yi f (Xi))−ϕ(0))

∣∣∣∣∣ ,

2360

ADABOOST IS CONSISTENT

where σi are i.i.d. with P(σi = 1) = P(σi = −1) = 1/2. Then we use the “contraction principle”
(see Ledoux and Talagrand, 1991, Theorem 4.12, pp. 112–113) with a function ψ(x) = (ϕ(x)−
ϕ(0))/Lϕ,ζ to get

E sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)| ≤ 4Lϕ,ζE sup
f∈πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

−σiYi f (Xi)

∣∣∣∣∣

= 4Lϕ,ζE sup
f∈πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ .

Next we proceed and find the supremum. Notice, that functions in πζ ◦F t are bounded and clipped
to absolute value equal ζ, therefore we can rescale πζ ◦F t by (2ζ)−1 and get

E sup
f∈πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ = 2ζE sup
f∈(2ζ)−1◦πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ .

Next, we use Dudley’s entropy integral (Dudley, 1999) to bound the right hand side above

E sup
f∈(2ζ)−1◦πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ ≤
12√
n

Z ∞

0

√
lnN (ε,(2ζ)−1 ◦πζ ◦F t ,L2(Pn))dε.

Since, for ε> 1, the covering number N is 1, the upper integration limit can be taken as 1, and we
can use Pollard’s bound (Pollard, 1990) for F ⊆ [0,1]X ,

N (ε,F,L2(P)) ≤ 2
(
4e
ε2

)dP(F)
,

where dP(F) is a pseudo-dimension, and obtain for c̃= 12
R 1
0

√
ln 8eε2 dε,

E sup
f∈(2ζ)−1◦πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ ≤ c̃

√
dP((2ζ)−1 ◦πζ ◦F t)

n
.

Also notice that constant c̃ does not depend on F t or ζ. Next, since (2ζ)−1 ◦πζ is non-decreasing,
we use the inequality dP((2ζ)−1 ◦πζ ◦F t) ≤ dP(F t) (for example, Anthony and Bartlett, 1999,
Theorem 11.3) to obtain

E sup
f∈(2ζ)−1◦πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ ≤ c
√
dP(F t)
n

.

And then, since Lemma 3 gives an upper-bound on the pseudo-dimension of the class F t , we have

E sup
f∈πζ◦F t

∣∣∣∣∣
1
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣ ≤ cζ
√

(V +1)(t+1) log2[2(t+1)/ ln2]
n

,

2361

BARTLETT AND TRASKIN

with the constant c above being independent of H , t and ζ. To prove the second statement we use
McDiarmid’s bounded difference inequality (Devroye et al., 1996, Theorem 9.2, p. 136), since for
all i ∈ {1, . . . ,n}

sup
(x j,y j)nj=1,(x

′
i,y′i)

∣∣∣∣∣ sup
f∈πζ◦F t

|Rϕ(f)−Rϕ,n(f)|− sup
f∈πζ◦F t

|Rϕ(f)−R′
ϕ,n(f)|

∣∣∣∣∣ ≤
Mϕ,ζ

n
,

where R′
ϕ,n(f) is obtained from Rϕ,n(f) by changing each pair (xi,yi) to an independent pair (x′i,y′i).

This completes the proof of the lemma.

Appendix C. Proof of Theorem 6

For convenience, we state the theorem once again.
Theorem 6 Let the function Q(f) be convex in f and twice differentiable in all directions h ∈ H .
Let Q! = limλ→∞ inf f∈Fλ

Q(f). Assume that ∀c1,c2, such that Q! < c1 < c2 < ∞,

0 < inf{Q′′(f ;h) : c1 < Q(f) < c2,h ∈ H }
≤ sup{Q′′(f ;h) : Q(f) < c2,h ∈ H } < ∞.

Also assume the following approximate minimization scheme for γ ∈ (0,1]. Define fk+1 = fk +
αk+1hk+1such that

Q(fk+1) ≤ γ inf
h∈H ,α∈R

Q(fk +αh)+(1− γ)Q(fk)

and
Q(fk+1) = inf

α∈R
Q(fk +αhk+1).

Then for any reference function f̄ and the sequence of functions fm, produced by the boosting
algorithm, the following bound holds ∀m> 0 such that Q(fm) > Q(f̄).

Q(fm) ≤ Q(f̄)+

√
8B3(Q(f0)−Q(f̄))2

γ2β3

(
ln

!20+ c3m
!20

)− 1
2

,

where !k =
∥∥ f̄ − fk

∥∥
!, c3 = 2(Q(f0)−Q(f̄))/β, β= inf{Q′′(f ;h) :Q(f̄) <Q(f) <Q(f0),h ∈ H },

B= sup{Q′′(f ;h) : Q(f) < Q(f0),h ∈ H }.

Proof The statement of the theorem is a version of a result implicit in the proof of Theorem 1
by Bickel et al. (2006). If for some m we have Q(fm) ≤ Q(f̄), then the theorem is trivially true
for all m′ ≥ m. Therefore, we are going to consider only the case when Q(fm) > Q(f̄). We shall
also assume Q(fm+1) ≥ Q(f̄) (the impact of this assumption will be discussed later). Define εm =
Q(fm)−Q(f̄). By convexity of Q(·),

|Q′(fm; fm− f̄)| ≥ εm. (20)

Let fm− f̄ = ∑α̃ih̃i, where α̃i and h̃i correspond to the best representation (with the l1-norm of α̃
equal the l!-norm). Then from (20) and linearity of the derivative we have

εm ≤
∣∣∑ α̃iQ′(fm; h̃i)

∣∣ ≤ sup
h∈H

|Q′(fm;h)|∑ |α̃i|,

2362

ADABOOST IS CONSISTENT

therefore
sup
h∈H

Q′(fm;h) ≥
εm∥∥ fm− f̄

∥∥
!

=
εm
!m

. (21)

Next,
Q(fm+αhm) = Q(fm)+αQ′(fm;hm)+

1
2
α2Q′′(f̃m;hm),

where f̃m = fm + α̃mhm, for α̃m ∈ [0,αm]. By assumption f̃m is on the path from fm to fm+1, and
we have assumed exact minimization in the given direction, hence fm+1 is the lowest point in the
direction hm starting from fm, so we have the following bounds

Q(f̄) < Q(fm+1) ≤ Q(f̃m) ≤ Q(fm) ≤ Q(f0).

Then by the definition of β, which depends on Q(f̄), we have

Q(fm+1) ≥ Q(fm)+ inf
α∈R

(αQ′(fm;hm)+
1
2
α2β) = Q(fm)− |Q′(fm;hm)|2

2β
. (22)

On the other hand,

Q(fm+αmhm) ≤ γ inf
h∈H ,α∈R

Q(fm+αh)+(1− γ)Q(fm)

≤ γ inf
h∈H ,α∈R

(
Q(fm)+αQ′(fm;h)+

1
2
α2B)

)
+(1− γ)Q(fm)

= Q(fm)− γ
suph∈H |Q′(fm;h)|2

2B
. (23)

Therefore, combining (22) and (23), we get

|Q′(fm;hm)| ≥ sup
h∈H

|Q′(fm;h)|
√
γβ
B

. (24)

Another Taylor expansion, this time around fm+1 (and we again use the fact that fm+1 is the mini-
mum on the path from fm), gives us

Q(fm) = Q(fm+1)+
1
2
α2mQ

′′(˜̃fm;hm), (25)

where ˜̃fm is some (other) function on the path from fm to fm+1. Therefore, if |αm|<
√
γ|Q′(fm;hm)|/B,

then
Q(fm)−Q(fm+1) <

γ|Q′(fm;hm)|2

2B
,

but by (23)

Q(fm)−Q(fm+1) ≥
γsuph∈H |Q′(fm;h)|2

2B
≥ γ|Q′(fm;hm)|2

2B
,

therefore we conclude, by combining (24) and (21), that

|αm| ≥
√
γ|Q′(fm;hm)|

B
≥ γ

√
βsuph∈H |Q′(fm;h)|

B3/2
≥ γεm

√
β

!mB3/2
. (26)

2363

BARTLETT AND TRASKIN

Using (25) we have

m

∑
i=0

α2i ≤
2
β

m

∑
i=0

(Q(fi)−Q(fi+1)) ≤
2
β
(Q(f0)−Q(f̄)). (27)

Recall that

∥∥ fm− f̄
∥∥

! ≤
∥∥ fm−1− f̄

∥∥
! + |αm−1| ≤

∥∥ f0− f̄
∥∥

! +
m−1

∑
i=0

|αi|

≤
∥∥ f0− f̄

∥∥
! +

√
m

(
m−1

∑
i=0

α2i

)1/2

,

therefore, combining with (27) and (26), since the sequence εi is decreasing,

2
β
(Q(f0)−Q(f̄)) ≥

m

∑
i=0

α2i

≥ γ2β
B3

m

∑
i=0

ε2i
!2i

≥ γ2β
B3

ε2m
m

∑
i=0

1
(

!0+
√
i
(
∑i−1
j=0α

2
j

)1/2)2

≥ γ2β
B3

ε2m
m

∑
i=0

1
(

!0+
√
i
(
2(Q(f0)−Q(f̄))

β

)1/2)2

≥ γ2β
2B3

ε2m
m

∑
i=0

1
!20+ 2(Q(f0)−Q(f̄))

β i
.

Since
m

∑
i=0

1
a+bi

≥
Z m+1

0

dx
a+bx

=
1
b
ln
a+b(m+1)

a
,

then
2
β
(Q(f0)−Q(f̄)) ≥ γ2β2

4B3(Q(f0)−Q(f̄))
ε2m ln

!20+ 2(Q(f0)−Q(f̄))
β (m+1)
!20

.

Therefore

εm ≤

√
8B3(Q(f0)−Q(f̄))2

γ2β3



ln
!20+ 2(Q(f0)−Q(f̄))

β (m+1)
!20




− 1
2

. (28)

The proof of the above inequality for index m works as long as Q(fm+1) ≥ Q(f̄). If f̄ is such that
Q(fm) ≥ Q(f̄) for all m, then we do not need to do anything else. However, if there exists m′ such
that Q(fm′) < Q(f̄) and Q(fm′−1) ≥ Q(f̄), then the above proof is not valid for index m′− 1. To
overcome this difficulty, we notice that Q(fm′−1) is bounded from above by Q(fm′−2), therefore
to get a bound that holds for all m (except for m = 0) we may use a bound for εm−1 to bound

2364

ADABOOST IS CONSISTENT

Q(fm)−Q(f̄) = εm: shift (decrease) the index m on the right hand side of (28) by one. This com-
pletes the proof of the theorem.

Appendix D. Zero Bayes Risk

Here we consider a modification of Theorem 8. In this case our assumptions imply that R! = 0,
and the proof presented above does not work. However for AdaBoost we can modify the proof
appropriately to show an adequate convergence rate.

Theorem 13 Assume R! = 0. Let tn be a number of steps we run AdaBoost. Let λn = κ ln lnn
for κ ∈ (0,1/6). Let εn = n−ν, for ν ∈ (0,1/2). Then with probability at least 1− δn, where
δn = exp

(
−2n1−2ν/(lnn)2κ

)
, for some constant C that depends on H and P but does not depend

on n, for n such that
C

(lnn)κ
>
2
nν

the following holds

Rn(ftn) ≤ Rn(f̄n)

+

√
16R3n(f0)|Rn(f0)−Rn(f̄n)|2(lnn)3κ

Cγ2

×
(
ln

(κ ln lnn)2+4|Rn(f0)−Rn(f̄n)|(lnn)κtn/C
(κ ln lnn)2

)−1/2
.

Proof For the exponential loss assumption R! = 0 is equivalent to L! = 0. It also implies that the
fastest decrease rate of the function τ : λ→ inf f∈Fλ

R(f) is O(e−λ). To see this, assume that for
some λ there exists f ∈ Fλ such that L(g(f)) = 0 (i.e., we have achieved perfect classification).
Clearly, for any a> 0

R(a f) = Ee−Ya f (X) = E
(
e−Y f (X)

)a
≥ (inf

x,y
e−y f (x))a.

Therefore, choose λn = κ ln lnn. Then inf f∈Fλn
R(f) ≥ C(lnn)−κ, where C depends on H and P ,

but does not depend on n. On the other hand Hoeffding’s inequality for f̄n ∈ Fλn guarantees that

P
(
R(f̄n)−Rn(f̄n) ≥ εn

)
≤ exp

(
−2nε2n/(lnn)2κ

)
= δn.

Choice of εn = n−ν for ν ∈ (0,1/2) ensures that δn → 0. This allows to conclude that with proba-
bility at least 1−δn empirical risk Rn(f̄n) can be lower bounded as

Rn(f̄n) ≥ R(f̄n)− εn

and for n large enough for
C

(lnn)κ
>
2
nν

2365

BARTLETT AND TRASKIN

to hold we get a lower bound on β in (11) of Theorem 6 as

β≥ C
2(lnn)κ

.

Since for f̄n such that Rn(f̄n) > Rn(f0) theorem trivially holds, we only have to plug Rn(f̄n) = 0,
B= Rn(f0) and β=C(lnn)κ/2 into (11) to get the statement of the theorem. Obviously, this bound
holds for R! > 0.

Appendix E.

Lemma 14 Let the function ϕ : R → R+∪{0} be convex. Then for any λ> 0

ϕ(πλ(x)) ≤ ϕ(x)+ inf
z∈[−λ,λ]

ϕ(z). (29)

Proof If x ∈ [−λ,λ] then the statement of the lemma is clearly true. Without loss of generality
assume x> λ; case x< −λ is similar. Then we have two possibilities.

1. ϕ(x) ≥ ϕ(λ) = ϕ(πλ(x)) and (29) is obvious.

2. ϕ(x) < ϕ(λ). Due to convexity, for any z< λ we have ϕ(z) > ϕ(λ), therefore

ϕ(πλ(x)) = ϕ(λ) ≤ ϕ(λ)+ϕ(x) = inf
z∈[−λ,λ]

ϕ(z)+ϕ(x).

The statement of the lemma is proven.

References

Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 1999.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Discussion of boosting papers. The
Annals of Statistics, 32(1):85–91, 2004.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138–156, 2006.

Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting and variants. Machine Learning, 36:105–139, 1999.

Peter J. Bickel, Ya’acov Ritov, and Alon Zakai. Some theory for generalized boosting algorithms.
Journal of Machine Learning Research, 7:705–732, May 2006.

Gilles Blanchard, Gábor Lugosi, and Nicolas Vayatis. On the rate of convergence of regularized
boosting classifiers. Journal of Machine Learning Research, 4:861–894, 2003.

2366

ADABOOST IS CONSISTENT

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman. Arcing the edge. Technical Report 486, Department of Statistics, University of
California, Berkeley, 1997.

Leo Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493–1517, 1999.
(Was Department of Statistics, U.C. Berkeley Technical Report 504, 1997).

Leo Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26(3):801–849, 1998.
(Was Department of Statistics, U.C. Berkeley Technical Report 460, 1996).

Leo Breiman. Population theory for predictor ensembles. The Annals of Statistics, 32(1):1–11,
2004. (See also Department of Statistics, U.C. Berkeley Technical Report 579, 2000).

Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

Thomas G. Dietterich. An experimental comparison of three methods for constructing ensembles of
decision trees: bagging, boosting, and randomization. Machine Learning, 40(2):139–158, 2000.

Harris Drucker and Corinna Cortes. Boosting decision trees. In D.S. Touretzky, M.C. Mozer, and
M.E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 479–485.
M.I.T. Press, 1996.

Richard M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, Cambridge,
MA, 1999.

Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:
256–285, 1995.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In 13th Interna-
tional Conference on Machine Learning, pages 148–156, San Francisco, 1996. Morgan Kaufman.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical
view of boosting. The Annals of Statistics, 28:337–407, 2000.

Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of learned
ensembles. In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages
692–699, Menlo Park, CA, 1998. AAAI Press.

Wenxin Jiang. On weak base hypotheses and their implications for boosting regression and classi-
fication. The Annals of Statistics, 30:51–73, 2002.

Wenxin Jiang. Process consistency for AdaBoost. The Annals of Statistics, 32(1):13–29, 2004.

Vladimir Koltchinskii and Dmitry Panchenko. Empirical margin distributions and bounding the
generalization error of combined classifiers. The Annals of Statistics, 30:1–50, 2002.

2367

BARTLETT AND TRASKIN

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces. Springer-Verlag, New York,
1991.

Gábor Lugosi and Nicolas Vayatis. On the Bayes-risk consistency of regularized boosting methods.
The Annals of Statistics, 32(1):30–55, 2004.

Shie Mannor and Ron Meir. Weak learners and improved rates of convergence in boosting. In
Advances in Neural Information Processing Systems, 13, pages 280–286, 2001.

Shie Mannor, Ron Meir, and Tong Zhang. Greedy algorithms for classification – consistency, con-
vergence rates, and adaptivity. Journal of Machine Learning Research, 4:713–742, 2003.

Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus Frean. Boosting algorithms as gradient
descent. In S.A. Solla, T.K. Leen, and K.-R. Muller, editors, Advances in Neural Information
Processing Systems, 12, pages 512–518. MIT Press, 2000.

David Pollard. Convergence of Stochastic Processes. Springer-Verlag, New York, 1984.

David Pollard. Empirical Processes: Theory and Applications. IMS, 1990.

J. Ross Quinlan. Bagging, boosting, and C4.5. In 13 AAAI Conference on Artificial Intelligence,
pages 725–730, Menlo Park, CA, 1996. AAAI Press.

Lev Reyzin and Robert E. Schapire. How boosting the margin can also boost classifier com-
plexity. In ICML ’06: Proceedings of the 23rd international conference on Machine learn-
ing, pages 753–760, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-383-2. doi:
http://doi.acm.org/10.1145/1143844.1143939.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.

Robert E. Schapire, Yoav Freund, Peter L. Bartlett, and Wee Sun Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics, 26:1651–1686,
1998.

Xiaotong Shen, George C. Tseng, Xuegong Zhang, and Wing H. Wong. On ψ-learning. Journal of
the American Statistical Association, 98(463):724–734, 2003.

Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk
minimization. The Annals of Statistics, 32(1):56–85, 2004.

Tong Zhang and Bin Yu. Boosting with early stopping: convergence and consistency. The Annals
of Statistics, 33:1538–1579, 2005.

2368

Journal of Machine Learning Research 8 (2007) 2369-2403 Submitted 4/07; Revised 8/07; Published 10/07

The On-Line Shortest Path Problem Under Partial Monitoring

András György GYA@SZIT.BME.HU
Machine Learning Research Group
Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende u. 13-17, Budapest, Hungary, H-1111

Tamás Linder LINDER@MAST.QUEENSU.CA
Department of Mathematics and Statistics
Queen’s University, Kingston, Ontario
Canada K7L 3N6

Gábor Lugosi GABOR.LUGOSI@GMAIL.COM
ICREA and Department of Economics
Universitat Pompeu Fabra
Ramon Trias Fargas 25-27
08005 Barcelona, Spain

György Ottucsák OTI@SZIT.BME.HU
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Magyar Tudósok Körútja 2.
Budapest, Hungary, H-1117

Editor: Leslie Pack Kaelbling

Abstract

The on-line shortest path problem is considered under various models of partial monitoring. Given
a weighted directed acyclic graph whose edge weights can change in an arbitrary (adversarial) way,
a decision maker has to choose in each round of a game a path between two distinguished vertices
such that the loss of the chosen path (defined as the sum of the weights of its composing edges)
be as small as possible. In a setting generalizing the multi-armed bandit problem, after choosing
a path, the decision maker learns only the weights of those edges that belong to the chosen path.
For this problem, an algorithm is given whose average cumulative loss in n rounds exceeds that
of the best path, matched off-line to the entire sequence of the edge weights, by a quantity that is
proportional to 1/

√
n and depends only polynomially on the number of edges of the graph. The

algorithm can be implemented with complexity that is linear in the number of rounds n (i.e., the
average complexity per round is constant) and in the number of edges. An extension to the so-called
label efficient setting is also given, in which the decision maker is informed about the weights of
the edges corresponding to the chosen path at a total of m" n time instances. Another extension
is shown where the decision maker competes against a time-varying path, a generalization of the
problem of tracking the best expert. A version of the multi-armed bandit setting for shortest path is
also discussed where the decision maker learns only the total weight of the chosen path but not the
weights of the individual edges on the path. Applications to routing in packet switched networks
along with simulation results are also presented.

Keywords: on-line learning, shortest path problem, multi-armed bandit problem

c©2007 András György, Tamás Linder, Gábor Lugosi and György Ottucsák.

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

1. Introduction

In a sequential decision problem, a decision maker (or forecaster) performs a sequence of actions.
After each action the decision maker suffers some loss, depending on the response (or state) of the
environment, and its goal is to minimize its cumulative loss over a certain period of time. In the
setting considered here, no probabilistic assumption is made on how the losses corresponding to
different actions are generated. In particular, the losses may depend on the previous actions of the
decision maker, whose goal is to perform well relative to a set of reference forecasters (the so-called
“experts”) for any possible behavior of the environment. More precisely, the aim of the decision
maker is to achieve asymptotically the same average (per round) loss as the best expert.

Research into this problem started in the 1950s (see, for example, Blackwell, 1956 and Hannan,
1957 for some of the basic results) and gained new life in the 1990s following the work of Vovk
(1990), Littlestone and Warmuth (1994), and Cesa-Bianchi et al. (1997). These results show that for
any bounded loss function, if the decision maker has access to the past losses of all experts, then it is
possible to construct on-line algorithms that perform, for any possible behavior of the environment,
almost as well as the best of N experts. More precisely, the per round cumulative loss of these
algorithms is at most as large as that of the best expert plus a quantity proportional to

√
lnN/n for

any bounded loss function, where n is the number of rounds in the decision game. The logarithmic
dependence on the number of experts makes it possible to obtain meaningful bounds even if the
pool of experts is very large.

In certain situations the decision maker has only limited knowledge about the losses of all pos-
sible actions. For example, it is often natural to assume that the decision maker gets to know only
the loss corresponding to the action it has made, and has no information about the loss it would
have suffered had it made a different decision. This setup is referred to as the multi-armed bandit
problem, and was considered, in the adversarial setting, by Auer et al. (2002) who gave an algorithm
whose normalized regret (the difference of the algorithm’s average loss and that of the best expert)
is upper bounded by a quantity which is proportional to

√
N lnN/n. Note that, compared to the

full information case described above where the losses of all possible actions are revealed to the
decision maker, there is an extra

√
N factor in the performance bound, which seriously limits the

usefulness of the bound if the number of experts is large.
Another interesting example for the limited information case is the so-called label efficient de-

cision problem (see Helmbold and Panizza, 1997) in which it is too costly to observe the state of
the environment, and so the decision maker can query the losses of all possible actions for only a
limited number of times. A recent result of Cesa-Bianchi, Lugosi, and Stoltz (2005) shows that in
this case, if the decision maker can query the losses m times during a period of length n, then it can
achieve O(

√
lnN/m) normalized regret relative to the best expert.

In many applications the set of experts has a certain structure that may be exploited to construct
efficient on-line decision algorithms. The construction of such algorithms has been of great interest
in computational learning theory. A partial list of works dealing with this problem includes Herbster
and Warmuth (1998), Vovk (1999), Bousquet and Warmuth (2002), Schapire and Helmbold (1997),
Takimoto and Warmuth (2003), Kalai and Vempala (2003) and György et al. (2004a,b, 2005a). For
a more complete survey, we refer to Cesa-Bianchi and Lugosi (2006, Chapter 5).

In this paper we study the on-line shortest path problem, a representative example of structured
expert classes that has received attention in the literature for its many applications, including, among
others, routing in communication networks; see, for example, Takimoto andWarmuth (2003), Awer-

2370

THE ON-LINE SHORTEST PATH PROBLEM

buch et al. (2005), or György and Ottucsák (2006), and adaptive quantizer design in zero-delay lossy
source coding; see, György et al. (2004a,b, 2005b). In this problem, a weighted directed (acyclic)
graph is given whose edge weights can change in an arbitrary manner, and the decision maker has
to pick in each round a path between two given vertices, such that the weight of this path (the sum
of the weights of its composing edges) be as small as possible.

Efficient solutions, with time and space complexity proportional to the number of edges rather
than to the number of paths (the latter typically being exponential in the number of edges), have been
given in the full information case, where in each round the weights of all the edges are revealed after
a path has been chosen; see, for example, Mohri (1998), Takimoto and Warmuth (2003), Kalai and
Vempala (2003), and György et al. (2005a).

In the bandit setting only the weights of the edges or just the sum of the weights of the edges
composing the chosen path are revealed to the decision maker. If one applies the general bandit
algorithm of Auer et al. (2002), the resulting bound will be too large to be of practical use because
of its square-root-type dependence on the number of paths N. On the other hand, using the special
graph structure in the problem, Awerbuch and Kleinberg (2004) and McMahan and Blum (2004)
managed to get rid of the exponential dependence on the number of edges in the performance bound.
They achieved this by extending the exponentially weighted average predictor and the follow-the-
perturbed-leader algorithm of Hannan (1957) to the generalization of the multi-armed bandit setting
for shortest paths, when only the sum of the weights of the edges is available for the algorithm.
However, the dependence of the bounds obtained in Awerbuch and Kleinberg (2004) and McMahan
and Blum (2004) on the number of rounds n is significantly worse than the O(1/

√
n) bound of Auer

et al. (2002). Awerbuch and Kleinberg (2004) consider the model of “non-oblivious” adversaries
for shortest path (i.e., the losses assigned to the edges can depend on the previous actions of the
forecaster) and prove an O(n−1/3) bound for the expected normalized regret. McMahan and Blum
(2004) give a simpler algorithm than in Awerbuch and Kleinberg (2004) however obtain a bound of
the order of O(n−1/4) for the expected regret.

In this paper we provide an extension of the bandit algorithm of Auer et al. (2002) unifying the
advantages of the above approaches, with a performance bound that is polynomial in the number
of edges, and converges to zero at the right O(1/

√
n) rate as the number of rounds increases. We

achieve this bound in a model which assumes that the losses of all edges on the path chosen by the
forecaster are available separately after making the decision. We also discuss the case (considered
by Awerbuch and Kleinberg, 2004 and McMahan and Blum, 2004) in which only the total loss
(i.e., the sum of the losses on the chosen path) is known to the decision maker. We exhibit a
simple algorithm which achieves an O(n−1/3) normalized regret with high probability against “non-
oblivious” adversary. In this case it remains an open problem to find an algorithm whose cumulative
loss is polynomial in the number of edges of the graph and decreases as O(n−1/2) with the number
of rounds. Throughout the paper we assume that the number of rounds n in the prediction game is
known in advance to the decision maker.

In Section 2 we formally define the on-line shortest path problem, which is extended to the
multi-armed bandit setting in Section 3. Our new algorithm for the shortest path problem in the
bandit setting is given in Section 4 together with its performance analysis. The algorithm is ex-
tended to solve the shortest path problem in a combined label efficient multi-armed bandit setting in
Section 5. Another extension, when the algorithm competes against a time-varying path is studied
in Section 6. An algorithm for the “restricted” multi-armed bandit setting (when only the sums

2371

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

of the losses of the edges are available) is given in Section 7. Simulation results are presented in
Section 8.

2. The Shortest Path Problem

Consider a network represented by a set of vertices connected by edges, and assume that we have to
send a stream of packets from a distinguished vertex, called source, to another distinguished vertex,
called destination. At each time slot a packet is sent along a chosen route connecting source and
destination. Depending on the traffic, each edge in the network may have a different delay, and
the total delay the packet suffers on the chosen route is the sum of delays of the edges composing
the route. The delays may change from one time slot to the next one in an arbitrary way, and
our goal is to find a way of choosing the route in each time slot such that the sum of the total
delays over time is not significantly more than that of the best fixed route in the network. This
adversarial version of the routing problem is most useful when the delays on the edges can change
dynamically, even depending on our previous routing decisions. This is the situation in the case
of ad-hoc networks, where the network topology can change rapidly, or in certain secure networks,
where the algorithm has to be prepared to handle denial of service attacks, that is, situations where
willingly malfunctioning vertices and links increase the delay; see, for example, Awerbuch et al.
(2005).

This problem can be cast naturally as a sequential decision problem in which each possible route
is represented by an action. However, the number of routes is typically exponentially large in the
number of edges, and therefore computationally efficient algorithms are called for. Two solutions
of different flavor have been proposed. One of them is based on a follow-the-perturbed-leader
forecaster, see Kalai and Vempala (2003), while the other is based on an efficient computation of
the exponentially weighted average forecaster, see, for example, Takimoto and Warmuth (2003).
Both solutions have different advantages and may be generalized in different directions.

To formalize the problem, consider a (finite) directed acyclic graph with a set of edges E =
{e1, . . . ,e|E|} and a set of vertices V . Thus, each edge e ∈ E is an ordered pair of vertices (v1,v2).
Let u and v be two distinguished vertices inV . A path from u to v is a sequence of edges e(1), . . . ,e(k)
such that e(1) = (u,v1), e(j) = (v j−1,v j) for all j = 2, . . . ,k− 1, and e(k) = (vk−1,v). Let P =
{i1, . . . , iN} denote the set of all such paths. For simplicity, we assume that every edge in E is on
some path from u to v and every vertex in V is an endpoint of an edge (see Figure 1 for examples).

PSfrag replacements
u

u

v

v

Figure 1: Two examples of directed acyclic graphs for the shortest path problem.

(a) (b)

2372

THE ON-LINE SHORTEST PATH PROBLEM

In each round t = 1, . . . ,n of the decision game, the decision maker chooses a path I t among all
paths from u to v. Then a loss !e,t ∈ [0,1] is assigned to each edge e ∈ E. We write e ∈ i if the edge
e ∈ E belongs to the path i ∈ P , and with a slight abuse of notation the loss of a path i at time slot t
is also represented by !i,t . Then !i,t is given as

!i,t =∑
e∈i

!e,t

and therefore the cumulative loss up to time t of each path i takes the additive form

Li,t =
t

∑
s=1

!i,s =∑
e∈i

t

∑
s=1

!e,s

where the inner sum on the right-hand side is the loss accumulated by edge e during the first t rounds
of the game. The cumulative loss of the algorithm is

L̂t =
t

∑
s=1

!Is,s =
t

∑
s=1
∑
e∈Is

!e,s .

It is well known that for a general loss sequence, the decision maker must be allowed to use
randomization to be able to approximate the performance of the best expert (see, e.g., Cesa-Bianchi
and Lugosi, 2006). Therefore, the path It is chosen randomly according to some distribution pt over
all paths from u to v. We study the normalized regret over n rounds of the game

1
n

(
L̂n−min

i∈P
Li,n
)

where the minimum is taken over all paths i from u to v.
For example, the exponentially weighted average forecaster (Vovk, 1990; Littlestone and War-

muth, 1994; Cesa-Bianchi et al., 1997), calculated over all possible paths, has regret

1
n

(
L̂n−min

i∈P
Li,n
)
≤ K

(√
lnN
2n

+

√
ln(1/δ)
2n

)

with probability at least 1−δ, where N is the total number of paths from u to v in the graph and K
is the length of the longest path.

3. The Multi-Armed Bandit Setting

In this section we discuss the “bandit” version of the shortest path problem. In this setup, which is
more realistic in many applications, the decision maker has only access to the losses corresponding
to the paths it has chosen. For example, in the routing problem this means that information is
available on the delay of the route the packet is sent on, and not on other routes in the network.

We distinguish between two types of bandit problems, both of which are natural generalizations
of the simple bandit problem to the shortest path problem. In the first variant, the decision maker
has access to the losses of those edges that are on the path it has chosen. That is, after choosing a
path It at time t, the value of the loss !e,t is revealed to the decision maker if and only if e ∈ It . We
study this case and its extensions in Sections 4, 5, and 6.

2373

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

The second variant is a more restricted version in which the loss of the chosen path is observed,
but no information is available on the individual losses of the edges belonging to the path. That is,
after choosing a path It at time t, only the value of the loss of the path !It ,t is revealed to the decision
maker. Further on we call this setting as the restricted bandit problem for shortest path. We consider
this restricted problem in Section 7.

Formally, the on-line shortest path problem in the multi-armed bandit setting is described as
follows: at each time instance t = 1, . . . ,n, the decision maker picks a path I t ∈ P from u to v.
Then the environment assigns loss !e,t ∈ [0,1] to each edge e ∈ E, and the decision maker suffers
loss !It ,t = ∑e∈It !e,t . In the unrestricted case the losses !e,t are revealed for all e ∈ It , while in the
restricted case only !It ,t is revealed. Note that in both cases !e,t may depend on I1, . . . , It−1, the
earlier choices of the decision maker.

For the basic multi-armed bandit problem, Auer et al. (2002) gave an algorithm, based on expo-
nential weighting with a biased estimate of the gains combined with uniform exploration. Applying
their algorithm to the on-line shortest path problem in the bandit setting results in a performance
that can be bounded, for any 0< δ< 1 and fixed time horizon n, with probability at least 1−δ, by

1
n

(
L̂n−min

i∈P
Li,n
)
≤ 11K

2

√
N ln(N/δ)

n
+
K lnN
2n

.

(The constants follow from a slightly improved version; see Cesa-Bianchi and Lugosi (2006).)
However, for the shortest path problem this bound is unacceptably large because, unlike in the

full information case, here the dependence on the number of all paths N is not merely logarithmic,
while N is typically exponentially large in the size of the graph (as in the two simple examples of
Figure 1). Note that this bound also holds for the restricted setting as only the total losses on the
paths are used. In order to achieve a bound that does not grow exponentially with the number of
edges of the graph, it is imperative to make use of the dependence structure of the losses of the
different actions (i.e., paths). Awerbuch and Kleinberg (2004) and McMahan and Blum (2004)
do this by extending low complexity predictors, such as the follow-the-perturbed-leader forecaster
(Hannan, 1957; Kalai and Vempala, 2003) to the restricted bandit setting. However, in both cases
the price to pay for the polynomial dependence on the number of edges is a worse dependence on
the length n of the game.

4. A Bandit Algorithm for Shortest Paths

In this section we describe a variant of the bandit algorithm of Auer et al. (2002) which achieves the
desired performance for the shortest path problem. The new algorithm uses the fact that when the
losses of the edges of the chosen path are revealed, then this also provides some information about
the losses of each path sharing common edges with the chosen path.

For each edge e ∈ E, and t = 1,2, . . ., introduce the gain ge,t = 1− !e,t , and for each path i ∈ P ,
let the gain be the sum of the gains of the edges on the path, that is,

gi,t =∑
e∈i
ge,t .

The conversion from losses to gains is done in order to facilitate the subsequent performance anal-
ysis. This has technical reasons. For the ordinary bandit problem the regret bounds of the order of
O(
√
n−1N logN) were proved based on gains by Auer et al. (2002) and it was only recently shown

2374

THE ON-LINE SHORTEST PATH PROBLEM

by Allenberg et al. (2006) and Auer and Ottucsák (2006) that it is possible to achieve the same type
of bound for an algorithm based on losses. However, we do not know how to convert the latter
algorithm into one that is efficiently computable for the shortest path problem.

To simplify the conversion, we assume that each path i ∈ P is of the same length K for some
K > 0. Note that although this assumption may seem to be restrictive at the first glance, from each
acyclic directed graph (V,E) one can construct a new graph by adding at most (K−2)(|V |−2)+1
vertices and edges (with constant weight zero) to the graph without modifying the weights of the
paths such that each path from u to v will be of length K, where K denotes the length of the longest
path of the original graph. If the number of edges is quadratic in the number of vertices, the size of
the graph is not increased substantially. We describe a simple algorithm to do this in the Appendix.

A main feature of the algorithm, shown in Figure 2, is that the gains are estimated for each edge
and not for each path. This modification results in an improved upper bound on the performance
with the number of edges in place of the number of paths. Moreover, using dynamic programming
as in Takimoto and Warmuth (2003), the algorithm can be computed efficiently. Another important
ingredient of the algorithm is that one needs to make sure that every edge is sampled sufficiently
often. To this end, we introduce a set C of covering paths with the property that for each edge
e ∈ E there is a path i ∈ C such that e ∈ i. Observe that one can always find such a covering set of
cardinality |C | ≤ |E|.

We note that the algorithm of Auer et al. (2002) is a special case of the algorithm below: For
any multi-armed bandit problem with N experts, one can define a graph with two vertices u and
v, and N directed edges from u to v with weights corresponding to the losses of the experts. The
solution of the shortest path problem in this case is equivalent to that of the original bandit problem
with choosing expert i if the corresponding edge is chosen. For this graph, our algorithm reduces to
the original algorithm of Auer et al. (2002).

Note that the algorithm can be efficiently implemented using dynamic programming, similarly
to Takimoto and Warmuth [28]. See the upcoming Theorem 2 for the formal statement.

The main result of the paper is the following performance bound for the shortest-path bandit
algorithm. It states that the normalized regret of the algorithm, after n rounds of play, is, roughly,
of the order of K

√
|E| lnN/n where |E| is the number of edges of the graph, K is the length of the

paths, and N is the total number of paths.

Theorem 1 For any δ ∈ (0,1) and parameters 0 ≤ γ < 1/2, 0 < β ≤ 1, and η > 0 satisfying
2ηK|C | ≤ γ, the performance of the algorithm defined above can be bounded, with probability
at least 1−δ, as

1
n

(
L̂n−min

i∈P
Li,n
)
≤ Kγ+2ηK2|C |+ K

nβ
ln
|E|
δ

+
lnN
nη

+ |E|β.

In particular, choosing β =
√

K
n|E| ln

|E|
δ , γ = 2ηK|C |, and η =

√
lnN

4nK2|C | yields for all

n≥max
{

K
|E| ln

|E|
δ ,4|C | lnN

}
,

1
n

(
L̂n−min

i∈P
Li,n
)
≤ 2
√
K
n

(
√
4K|C | lnN+

√
|E| ln |E|

δ

)
.

2375

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

Parameters: real numbers β> 0, 0< η,γ< 1.
Initialization: Set we,0 = 1 for each e ∈ E, wi,0 = 1 for each i ∈ P , andW 0 = N. For
each round t = 1,2, . . .
(a) Choose a path It at random according to the distribution pt on P , defined by

pi,t =

{
(1− γ)wi,t−1W t−1

+ γ
|C | if i ∈ C

(1− γ)wi,t−1W t−1
if i &∈ C .

(b) Compute the probability of choosing each edge e as

qe,t = ∑
i:e∈i

pi,t = (1− γ)∑i:e∈iwi,t−1
W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C | .

(c) Calculate the estimated gains

g′e,t =

{ge,t+β
qe,t if e ∈ It
β
qe,t otherwise.

(d) Compute the updated weights

we,t = we,t−1eηg
′
e,t

wi,t = ∏
e∈i
we,t = wi,t−1eηg

′
i,t

where g′i,t = ∑e∈i g′e,t , and the sum of the total weights of the paths

W t = ∑
i∈P

wi,t .

Figure 2: A bandit algorithm for shortest path problems

The proof of the theorem is based on the analysis of the original algorithm of Auer et al. (2002)
with necessary modifications required to transform parts of the argument from paths to edges, and
to use the connection between the gains of paths sharing common edges.

For the analysis we introduce some notation:

Gi,n =
n

∑
t=1

gi,t and G′
i,n =

n

∑
t=1

g′i,t

for each i ∈ P and
Ge,n =

n

∑
t=1

ge,t and G′
e,n =

n

∑
t=1

g′e,t

for each e ∈ E, and
Ĝn =

n

∑
t=1

gIt ,t .

Note that g′e,t , g′i,t , G′
e,n, and G′

i,n are random variables that depend on It .

2376

THE ON-LINE SHORTEST PATH PROBLEM

The following lemma, shows that the deviation of the true cumulative gain from the estimated
cumulative gain is of the order of

√
n. The proof is a modification of Cesa-Bianchi and Lugosi

(2006, Lemma 6.7).

Lemma 2 For any δ ∈ (0,1), 0≤ β< 1 and e ∈ E we have

P
[
Ge,n > G′

e,n+
1
β
ln
|E|
δ

]
≤ δ

|E| .

Proof Fix e ∈ E. For any u> 0 and c> 0, by the Chernoff bound we have

P[Ge,n > G′
e,n+u] ≤ e−cuEec(Ge,n−G′

e,n) . (1)

Letting u= ln(|E|/δ)/β and c= β, we get

e−cuEec(Ge,n−G′
e,n) = e− ln(|E|/δ)Eeβ(Ge,n−G′

e,n) =
δ
|E|Ee

β(Ge,n−G′
e,n) ,

so it suffices to prove that Eeβ(Ge,n−G′
e,n) ≤ 1 for all n. To this end, introduce

Zt = eβ(Ge,t−G
′
e,t) .

Below we show that Et [Zt]≤ Zt−1 for t ≥ 2 where Et denotes the conditional expectation E[·|I1, . . . ,
It−1] . Clearly,

Zt = Zt−1 exp
(
β

(
ge,t −

{e∈It}ge,t +β

qe,t

))
.

Taking conditional expectations, we obtain

Et [Zt]

= Zt−1Et

[
exp
(
β

(
ge,t −

{e∈It}ge,t +β

qe,t

))]

= Zt−1e
− β2

qe,t Et

[
exp
(
β

(
ge,t −

{e∈It}ge,t
qe,t

))]

≤ Zt−1e
− β2

qe,t Et

[
1+β

(
ge,t −

{e∈It}ge,t
qe,t

)
+β2
(
ge,t −

{e∈It}ge,t
qe,t

)2]
(2)

= Zt−1e
− β2

qe,t Et

[
1+β2

(
ge,t −

{e∈It}ge,t
qe,t

)2]
(3)

≤ Zt−1e
− β2

qe,t Et

[
1+β2

(
{e∈It}ge,t
qe,t

)2]

≤ Zt−1e
− β2

qe,t

(
1+

β2

qe,t

)

≤ Zt−1. (4)

Here (2) holds since β ≤ 1, ge,t − {e∈It }ge,t
qe,t ≤ 1 and ex ≤ 1+ x+ x2 for x ≤ 1. (3) follows from

Et

[
{e∈It }ge,t
qe,t

]
= ge,t . Finally, (4) holds by the inequality 1+ x ≤ ex. Taking expectations on both

2377

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

sides proves E[Zt] ≤ E[Zt−1]. A similar argument shows that E[Z1] ≤ 1, implying E[Zn] ≤ 1 as
desired. !

Proof of Theorem 1. As usual in the analysis of exponentially weighted average forecasters, we
start with bounding the quantity ln W n

W 0
. On the one hand, we have the lower bound

ln
W n

W 0
= ln∑

i∈P
eηG

′
i,n − lnN ≥ ηmax

i∈P
G′
i,n− lnN . (5)

To derive a suitable upper bound, first notice that the condition η ≤ γ
2K|C | implies ηg

′
i,t ≤ 1 for

all i and t, since

ηg′i,t = η∑
e∈i
g′e,t ≤ η∑

e∈i

1+β
qe,t

≤ ηK(1+β)|C |
γ

≤ 1

where the second inequality follows because qe,t ≥ γ/|C | for each e ∈ E.
Therefore, using the fact that ex ≤ 1+ x+ x2 for all x≤ 1, for all t = 1,2, . . . we have

ln
W t

W t−1
= ln∑

i∈P

wi,t−1
W t−1

eηg
′
i,t

= ln

(

∑
i∈P

pi,t − γ
|C | {i∈C}

1− γ
eηg

′
i,t

)
(6)

≤ ln

(

∑
i∈P

pi,t − γ
|C | {i∈C}

1− γ

(
1+ηg′i,t +η2g′2i,t

))

≤ ln

(
1+∑

i∈P

pi,t
1− γ

(
ηg′i,t +η2g′2i,t

))

≤ η
1− γ ∑i∈P

pi,tg′i,t +
η2

1− γ ∑i∈P
pi,tg′

2
i,t (7)

where (6) follows form the definition of pi,t , and (7) holds by the inequality ln(1+ x) ≤ x for all
x> −1.

Next we bound the sums in (7). On the one hand,

∑
i∈P

pi,tg′i,t = ∑
i∈P

pi,t∑
e∈i
g′e,t = ∑

e∈E
g′e,t ∑

i∈P :e∈i
pi,t

= ∑
e∈E

g′e,tqe,t = gIt ,t + |E|β.

2378

THE ON-LINE SHORTEST PATH PROBLEM

On the other hand,

∑
i∈P

pi,tg′
2
i,t = ∑

i∈P
pi,t

(

∑
e∈i
g′e,t

)2

≤ ∑
i∈P

pi,tK∑
e∈i
g′2e,t

= K ∑
e∈E

g′2e,t ∑
i∈P :e∈i

pi,t

= K ∑
e∈E

g′2e,tqe,t

= K ∑
e∈E

qe,tg′e,t
β+ {e∈It}ge,t

qe,t
≤ K(1+β)∑

e∈E
g′e,t

where the first inequality is due to the inequality between the arithmetic and quadratic mean, and
the second one holds because ge,t ≤ 1. Therefore,

ln
W t

W t−1
≤ η
1− γ

(gIt ,t + |E|β)+
η2K(1+β)
1− γ ∑

e∈E
g′e,t .

Summing for t = 1, . . . ,n, we obtain

ln
W n

W 0
≤ η

1− γ

(
Ĝn+n|E|β

)
+
η2K(1+β)
1− γ ∑

e∈E
G′
e,n

≤ η
1− γ

(
Ĝn+n|E|β

)
+
η2K(1+β)
1− γ

|C |max
i∈P

G′
i,n

where the second inequality follows since ∑e∈EG′
e,n ≤ ∑i∈C G′

i,n. Combining the upper bound with
the lower bound (5), we obtain

Ĝn ≥ (1− γ−ηK(1+β)|C |)max
i∈P

G′
i,n−

1− γ
η

lnN−n|E|β.

Now using Lemma 2 and applying the union bound, for any δ∈ (0,1)we have that, with probability
at least 1−δ,

Ĝn ≥ (1− γ−ηK(1+β)|C |)
(
max
i∈P

Gi,n−
K
β
ln
|E|
δ

)
− 1− γ

η
lnN−n|E|β ,

where we used 1− γ−ηK(1+β)|C | ≥ 0 which follows from the assumptions of the theorem.
Since Ĝn = Kn− L̂n and Gi,n = Kn−Li,n for all i ∈ P , we have

L̂n ≤ Kn(γ+η(1+β)K|C |)+(1− γ−η(1+β)K|C |)min
i∈P

Li,n

+(1− γ−η(1+β)K|C |) K
β
ln
|E|
δ

+
1− γ
η

lnN+n|E|β

2379

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

with probability at least 1−δ. This implies

L̂n−min
i∈P

Li,n ≤ Knγ+η(1+β)nK2|C |+ K
β
ln
|E|
δ

+
1− γ
η

lnN+n|E|β

≤ Knγ+2ηnK2|C |+ K
β
ln
|E|
δ

+
lnN
η

+n|E|β

with probability at least 1−δ, which is the first statement of the theorem. Setting

β=

√
K
n|E| ln

|E|
δ

and γ= 2ηK|C |

results in the inequality

L̂n−min
i∈P

Li,n ≤ 4ηnK2|C |+ lnN
η

+2
√
nK|E| ln |E|

δ

which holds with probability at least 1−δ if n≥ (K/|E|) ln(|E|/δ) (to ensure β≤ 1). Finally, setting

η=

√
lnN

4nK2|C |

yields the last statement of the theorem (n≥ 4lnN|C | is required to ensure γ≤ 1/2). !

Next we analyze the computational complexity of the algorithm. The next result shows that the
algorithm is feasible as its complexity is linear in the size (number of edges) of the graph.

Theorem 3 The proposed algorithm can be implemented efficiently with time complexity O(n|E|)
and space complexity O(|E|).

Proof The two complex steps of the algorithm are steps (a) and (b), both of which can be computed,
similarly to Takimoto and Warmuth (2003), using dynamic programming. To perform these steps
efficiently, first we order the vertices of the graph. Since we have an acyclic directed graph, its
vertices can be labeled (in O(|E|) time) from 1 to |V | such that u = 1, v = |V |, and if (v1,v2) ∈ E,
then v1 < v2. For any pair of vertices u1 < v1 let Pu1,v1 denote the set of paths from u1 to v1, and for
any vertex s ∈V , let

Ht(s) = ∑
i∈Ps,v

∏
e∈i
we,t

and
Ĥt(s) = ∑

i∈Pu,s
∏
e∈i
we,t .

Given the edge weights {we,t}, Ht(s) can be computed recursively for s = |V |−1, . . . ,1, and Ĥt(s)
can be computed recursively for s = 2, . . . , |V | in O(|E|) time (letting Ht(v) = Ĥt(u) = 1 by defi-
nition). In step (a), first one has to decide with probability γ whether I t is generated according to
the graph weights, or it is chosen uniformly from C . If It is to be drawn according to the graph
weights, it can be shown that its vertices can be chosen one by one such that if the first k vertices

2380

THE ON-LINE SHORTEST PATH PROBLEM

of It are v0 = u,v1, . . . ,vk−1, then the next vertex of It can be chosen to be any vk > vk−1, satis-
fying (vk−1,vk) ∈ E, with probability w(vk−1,vk),t−1Ht−1(vk)/Ht−1(vk−1). The other computationally
demanding step, namely step (b), can be performed easily by noting that for any edge (v1,v2),

q(v1,v2),t = (1− γ)
Ĥt−1(v1)w(v1,v2),t−1Ht−1(v2)

Ht−1(u)

+ γ
|{i ∈ C : (v1,v2) ∈ i}|

|C |

as desired. !

5. A Combination of the Label Efficient and Bandit Settings

In this section we investigate a combination of the multi-armed bandit and the label efficient prob-
lems. This means that the decision maker only has access to the losses of all the edges on the
chosen path upon request and the total number of requests must be bounded by a constant m. This
combination is motivated by some applications, in which feedback information is costly to obtain.

In the general label efficient decision problem, after taking an action, the decision maker has
the option to query the losses of all possible actions. For this problem, Cesa-Bianchi et al. (2005)
proved an upper bound on the normalized regret of order O(K

√
ln(4N/δ)/(m)) which holds with

probability at least 1−δ, where K is the length of the longest path in the graph.
Our model of the label-efficient bandit problem for shortest paths is motivated by an application

to a particular packet switched network model. This model, called the cognitive packet network,
was introduced by Gelenbe et al. (2004, 2001). In these networks a particular type of packets, called
smart packets, are used to explore the network (e.g., the delay of the chosen path). These packets
do not carry any useful data; they are merely used for exploring the network. The other type of
packets are the data packets, which do not collect any information about their paths. The task of
the decision maker is to send packets from the source to the destination over routes with minimum
average transmission delay (or packet loss). In this scenario, smart packets are used to query the
delay (or loss) of the chosen path. However, as these packets do not transport information, there
is a tradeoff between the number of queries and the usage of the network. If data packets are on
the average α times larger than smart packets (note that typically α' 1) and ε is the proportion
of time instances when smart packets are used to explore the network, then ε/(ε+α(1− ε)) is the
proportion of the bandwidth sacrificed for well informed routing decisions.

We study a combined algorithm which, at each time slot t, queries the loss of the chosen path
with probability ε (as in the solution of the label efficient problem proposed in Cesa-Bianchi et al.,
2005), and, similarly to the multi-armed bandit case, computes biased estimates g′i,t of the true gains
gi,t . Just as in the previous section, it is assumed that each path of the graph is of the same length K.

The algorithm differs from our bandit algorithm of the previous section only in step (c), which
is modified in the spirit of Cesa-Bianchi et al. (2005). The modified step is given in Figure 3.

The performance of the algorithm is analyzed in the next theorem, which can be viewed as a
combination of Theorem 1 in the preceding section and Theorem 2 of Cesa-Bianchi et al. (2005).

2381

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

(c’) Draw a Bernoulli random variable St with P(St = 1) = ε, and compute the esti-
mated gains

g′e,t =

{ge,t+β
εqe,t St if e ∈ It
β

εqe,t St if e /∈ It .

Figure 3: Modified step for the label efficient bandit algorithm for shortest paths

Theorem 4 For any δ ∈ (0,1), ε ∈ (0,1], parameters η =
√

ε lnN
4nK2|C | , γ = 2ηK|C |

ε ≤ 1/2, and β =
√

K
n|E|ε ln

2|E|
δ ≤ 1, and for all

n≥ 1
ε
max
{
K2 ln2(2|E|/δ)

|E| lnN ,
|E| ln(2|E|/δ)

K
,4|C | lnN

}

the performance of the algorithm defined above can be bounded, with probability at least 1−δ, as

1
n

(
L̂n−min

i∈P
Li,t
)

≤
√
K
nε

(
4
√
K|C | lnN+5

√
|E| ln 2|E|

δ
+
√
8K ln

2
δ

)
+
4K
3nε

ln
2N
δ

≤ 27K
2

√
|E| ln 2Nδ
nε

.

If ε is chosen as (m−
√
2m ln(1/δ))/n then, with probability at least 1−δ, the total number of

queries is bounded by m (Cesa-Bianchi and Lugosi, 2006, Lemma 6.1) and the performance bound
above is of the order of K

√
|E| ln(N/δ)/m.

Similarly to Theorem 1, we need a lemma which reveals the connection between the true and the
estimated cumulative losses. However, here we need a more careful analysis because the “shifting
term” β

εqe,t St , is a random variable.

Lemma 5 For any 0< δ< 1, 0< ε≤ 1, for any

n≥ 1
ε
max
{
K2 ln2(2|E|/δ)

|E| lnN ,
K ln(2|E|/δ)

|E|

}
,

parameters

2ηK|C |
ε

≤ γ, η=

√
ε lnN
4nK2|C | and β=

√
K

n|E|ε ln
2|E|
δ

≤ 1 ,

and e ∈ E, we have

P
[
Ge,n > G′

e,n+
4
βε
ln
2|E|
δ

]
≤ δ
2|E| .

2382

THE ON-LINE SHORTEST PATH PROBLEM

Proof Fix e ∈ E. Using (1) with u= 4
βε ln

2|E|
δ and c= βε

4 , it suffices to prove for all n that

E
[
ec(Ge,n−G

′
e,n)
]
≤ 1 .

Similarly to Lemma 2 we introduce Zt = ec(Ge,t−G
′
e,t) and we show that Z1, . . . ,Zn is a supermartin-

gale, that is Et [Zt] ≤ Zt−1 for t ≥ 2 where Et denotes E[·|(I1,S1), . . . ,(It−1,St−1)]. Taking condi-
tional expectations, we obtain

Et [Zt] = Zt−1Et

[
e
c
(
ge,t− {e∈It}St ge,t+Stβ

qe,t ε

)]

≤ Zt−1Et

[
1+ c

(
ge,t −

{e∈It}Stge,t +Stβ
qe,tε

)

+c2
(
ge,t −

{e∈It}Stge,t +Stβ
qe,tε

)2]
. (8)

Since

Et

[
ge,t −

{e∈It}Stge,t +Stβ
qe,tε

]
= − β

qe,t
and

Et

[(
ge,t −

{e∈It}Stge,t
qe,tε

)2]
≤ Et

[(
{e∈It}Stge,t
qe,tε

)2]
≤ 1
qe,tε

we get from (8) that

Et [Zt]

≤ Zt−1Et

[
1− cβ

qe,t
+

c2

qe,tε
+ c2
(2 {e∈It}Stge,tβ

q2e,tε2
− 2ge,tStβ

qe,tε
+

Stβ2

q2e,tε2

)]

≤ Zt−1
(
1+

c
qe,t

(
−β+

c
ε

+ cβ
(
2
ε

+
β
qe,tε

)))
. (9)

Since c= βε/4 we have

−β+
c
ε

+ cβ
(
2
ε

+
β
qe,tε

)
= −3β

4
+
β2ε
4

(
2
ε

+
β
qe,tε

)

= −3β
4

+
β2

2
+

β3

4qe,t

≤ −β
4

+
β3

4qe,t

≤ −β
4

+
β3|C |
4γ

(10)

≤ 0, (11)

2383

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

where (10) follows from qe,t ≥ γ
|C | and (11) holds since β≤ 1 and by

β2|C |
γ

≤ β2ε
2ηK

≤ 1 ,

and the last inequality is ensured by n≥ K2 ln2(2|E|/δ)
ε|E| lnN , the assumption of the lemma.

Combining (9) and (11) we get that Et [Zt] ≤ Zt−1. Taking expectations on both sides of the
inequality, we get E[Zt] ≤ E[Zt−1] and since E[Z1] ≤ 1, we obtain E[Zn] ≤ 1 as desired. !

Proof of Theorem 4. The proof of the theorem is a generalization of that of Theorem 1, and
follows the same lines with some extra technicalities to handle the effects of the modified step (c’).
Therefore, in the following we emphasize only the differences. First note that (5) and (7) also hold
in this case. Bounding the sums in (7), one obtains

∑
i∈P

pi,tg′i,t =
St
ε

(gIt ,t + |E|β)

and
∑
i∈P

pi,tg′
2
i,t ≤

1
ε
K(1+β)∑

e∈E
g′e,t .

Plugging these bounds into (7) and summing for t = 1, . . . ,n, we obtain

ln
W n

W 0
≤ η

1− γ

n

∑
t=1

St
ε

(gIt ,t + |E|β)+
η2K(1+β)

(1− γ)ε
|C |max

i∈P
G′
i,n .

Combining the upper bound with the lower bound (5), we obtain
n

∑
t=1

St
ε

(gIt ,t + |E|β) ≥
(
1−γ−ηK(1+β)|C |

ε

)
max
i∈P

G′
i,n−

lnN
η

. (12)

To relate the left-hand side of the above inequality to the real gain ∑n
t=1 gIt ,t , notice that

Xt =
St
ε

(gIt ,t + |E|β)− (gIt ,t + |E|β)

is a martingale difference sequence with respect to (I1,S1),(I2,S2), Now for all t = 1, . . . ,n, we
have the bound

E
[
X2t |(I1,S1), . . . ,(It−1,St−1)

]
≤ E

[
St
ε2

(gIt ,t + |E|β)2
∣∣∣∣(I1,S1), . . . ,(It−1,St−1)

]

≤ (K+ |E|β)2

ε

≤ 4K2

ε
def= σ2, (13)

where (13) holds by n≥ |E| ln(2|E|/δ)
Kε (to ensure β|E| ≤ K). We know that

Xt ∈
[
−2K,

(
1
ε
−1
)
2K
]

2384

THE ON-LINE SHORTEST PATH PROBLEM

for all t. Now apply Bernstein’s inequality for martingale differences (see Lemma 14 in the Ap-
pendix) to obtain

P
[

n

∑
t=1

Xt > u

]
≤ δ
2

, (14)

where

u=

√

2n
4K2
ε
ln
(
2
δ

)
+
4K
3ε
ln
(
2
δ

)
.

From (14) we get

P
[

n

∑
t=1

St
ε

(gIt ,t + |E|β) ≥ Ĝn+βn|E|+u

]
≤ δ
2

. (15)

Now Lemma 5, the union bound, and (15) combined with (12) yield, with probability at least
1−δ,

Ĝn ≥
(
1− γ− ηK(1+β)|C |

ε

)(
max
i∈P

Gi,n−
4K
βε
ln
2|E|
δ

)

− lnN
η

−βn|E|−u

since the coefficient of G′
i,n is greater than zero by the assumptions of the theorem.

Since Ĝn = Kn− L̂n and Gi,n = Kn−Li,n, we have

L̂n ≤
(
1− γ− K(1+β)η|C |

ε

)
min
i∈P

Li,n+Kn
(
γ+

K(1+β)η|C |
ε

)

+
(
1− γ− K(1+β)η|C |

ε

)
4K
βε
ln
2|E|
δ

+βn|E|+ lnN
η

+u

≤ min
i∈P

Li,n+Kn
(
γ+

K(1+β)η|C |
ε

)
+5βn|E|+ lnN

η
+u ,

where we used the fact that K
βε ln

2|E|
δ = βn|E|.

Substituting the value of β, η and γ, we have

L̂n−min
i∈P

Li,n ≤Kn
2Kη|C |

ε
+Kn

2Kη|C |
ε

+
lnN
η

+5βn|E|+u

≤4K
√
n|C | lnN

ε
+5
√
n|E|K ln(2|E|/δ)

ε
+u

≤
√
nK
ε

(
4
√
K|C | lnN+5

√
|E| ln(2|E|/δ)+

√
8K ln(2/δ)

)

+
4K
3ε
ln(2/δ)

as desired. !

2385

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

6. A Bandit Algorithm for Tracking the Shortest Path

Our goal in this section is to extend the bandit algorithm so that it is able to compete with time-
varying paths under small computational complexity. This is a variant of the problem known as
tracking the best expert; see, for example, Herbster and Warmuth (1998), Vovk (1999), Auer and
Warmuth (1998), Bousquet and Warmuth (2002) and Herbster and Warmuth (2001).

To describe the loss the decision maker is compared to, consider the following “m-partition”
prediction scheme: the sequence of paths is partitioned intom+1 contiguous segments, and on each
segment the scheme assigns exactly one of the N paths. Formally, an m-partition Part(n,m, t, i) of
the n paths is given by an m-tuple t = (t1, . . . , tm) such that t0 = 1 < t1 < · · · < tm < n+ 1 = tm+1,
and an (m+ 1)-vector i = (i0, . . . , im) where i j ∈ P . At each time instant t, t j ≤ t < t j+1, path i j is
used to predict the best path. The cumulative loss of a partition Part(n,m, t, i) is

L(Part(n,m, t, i)) =
m

∑
j=0

t j+1−1

∑
t=t j

!i j,t =
m

∑
j=0

t j+1−1

∑
t=t j

∑
e∈i j

!e,t .

The goal of the decision maker is to perform as well as the best time-varying path (partition),
that is, to keep the normalized regret

1
n

(
L̂n−mint,i L(Part(n,m, t, i))

)

as small as possible (with high probability) for all possible outcome sequences.
In the “classical” tracking problem there is a relatively small number of “base” experts and the

goal of the decision maker is to predict as well as the best “compound” expert (i.e., time-varying
expert). However in our case, base experts correspond to all paths of the graph between source and
destination whose number is typically exponentially large in the number of edges, and therefore
we cannot directly apply the computationally efficient methods for tracking the best expert. György
et al. (2005a) develop efficient algorithms for tracking the best expert for certain large and structured
classes of base experts, including the shortest path problem. The purpose of the following algorithm,
shown in Figure 4, is to extend the methods of György et al. (2005a) to the bandit setting when the
forecaster only observes the losses of the edges on the chosen path.

The following performance bounds shows that the normalized regret with respect to the best
time-varying path which is allowed to switch paths m times is roughly of the order of
K
√

(m/n)|C | lnN.

Theorem 6 For any δ ∈ (0,1) and parameters 0 ≤ γ < 1/2, α,β ∈ [0,1], and η > 0 satisfying
2ηK|C | ≤ γ, the performance of the algorithm defined above can be bounded, with probability at
least 1−δ, as

1
n

(
L̂n−mint,i L(Part(n,m, t, i))

)

≤ K (γ+η(1+β)K|C |)+
K(m+1)

nβ
ln
|E|(m+1)

δ

+β|E|+ 1
nη
ln
(

Nm+1

αm(1−α)n−m−1

)
.

2386

THE ON-LINE SHORTEST PATH PROBLEM

Parameters: real numbers β> 0, 0< η,γ< 1, 0≤ α≤ 1.
Initialization: Set we,0 = 1 for each e ∈ E, wi,0 = 1 for each i ∈ P , andW 0 = N. For
each round t = 1,2, . . .

(a) Choose a path It according to the distribution pt defined by

pi,t =

{
(1− γ)wi,t−1W t−1

+ γ
|C | if i ∈ C ;

(1− γ)wi,t−1W t−1
if i &∈ C .

(b) Compute the probability of choosing each edge e as

qe,t = ∑
i:e∈i

pi,t = (1− γ)∑i:e∈iwi,t−1
W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C | .

(c) Calculate the estimated gains

g′e,t =

{ge,t+β
qe,t if e ∈ It ;
β
qe,t otherwise.

(d) Compute the updated weights

vi,t = wi,t−1eηg
′
i,t

wi,t = (1−α)vi,t +
α
N
W t

where g′i,t = ∑e∈i g′e,t andW t is the sum of the total weights of the paths, that is,

W t = ∑
i∈P

vi,t = ∑
i∈P

wi,t .

Figure 4: A bandit algorithm for tracking shortest paths

In particular, choosing

β=

√
K(m+1)
n|E| ln

|E|(m+1)
δ

, γ= 2ηK|C |, α=
m

n−1 ,

and

η=

√
(m+1) lnN+m ln e(n−1)m

4nK2|C |

we have, for all n≥max
{
K(m+1)

|E| ln |E|(m+1)
δ ,4|C |D

}
,

1
n

(
L̂n−mint,i L(Part(n,m, t, i))

)
≤ 2
√
K
n

(
√
4K|C |D+

√
|E|(m+1) ln

|E|(m+1)
δ

)
,

2387

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

where

D= (m+1) lnN+m
(
1+ ln

n−1
m

)
.

The proof of the theorem is a combination of that of our Theorem 1 and Theorem 1 of György
et al. (2005a). We will need the following three lemmas.

Lemma 7 For any 1≤ t ≤ t ′ ≤ n and any i ∈ P ,

vi,t ′
wi,t−1

≥ eηG
′
i,[t,t′](1−α)t

′−t

where G′
i,[t,t ′] = ∑t

′
τ=t g′i,τ.

Proof The proof is a straightforward modification of the one in Herbster andWarmuth (1998). From
the definitions of vi,t and wi,t (see step (d) of the algorithm) it is clear that for any τ≥ 1,

wi,τ = (1−α)vi,τ+
α
N
W τ ≥ (1−α)eηg

′
i,τwi,τ−1 .

Applying this equation iteratively for τ = t, t+ 1, . . . , t ′− 1, and the definition of vi,t (step (d)) for
τ= t ′, we obtain

vi,t ′ = wi,t ′−1e
ηg′i,t′ ≥ eηg

′
i,t′
t ′−1

∏
τ=t

(
(1−α)eηg

′
i,τ
)
wi,t−1

= eηG
′
i,[t,t′](1−α)t

′−twi,t−1

which implies the statement of the lemma. !

Lemma 8 For any t ≥ 1 and i, j ∈ P , we have

wi,t
v j,t

≥ α
N

Proof By the definition of wi,t we have

wi,t = (1−α)vi,t +
α
N
W t ≥

α
N
W t ≥

α
N
v j,t .

This completes the proof of the lemma. !

The next lemma is a simple corollary of Lemma 2.

Lemma 9 For any δ ∈ (0,1), 0≤ β≤ 1, t ≥ 1 and e ∈ E we have

P
[
Ge,t > G′

e,t +
1
β
ln
|E|(m+1)

δ

]
≤ δ

|E|(m+1)
.

2388

THE ON-LINE SHORTEST PATH PROBLEM

Proof of Theorem 6. Again, we upper bound lnW n/W 0 the same way as in Theorem 1. Then we
get

ln
W n

W 0
≤ η

1− γ

(
Ĝn+n|E|β

)
+
η2K(1+β)
1− γ

|C |max
i∈P

G′
i,n . (16)

Let Part(n,m, t, i) be an arbitrary partition. Then the lower bound is obtained as

ln
W n

W 0
= ln∑

j∈P

w j,n

N
= ln∑

j∈P

v j,n
N

≥ ln vim,n

N

(recall that im denotes the path used in the last segment of the partition). Now vim,n can be rewritten
in the form of the following telescoping product

vim,n = wi0,t0−1
vi0,t1−1
wi0,t0−1

m

∏
j=1

(wi j,t j−1
vi j−1,t j−1

vi j,t j+1−1
wi j,t j−1

)
.

Therefore, applying Lemmas 7 and 8, we have

vim,n ≥ wi0,t0−1
(α
N

)m m

∏
j=0

(
(1−α)t j+1−1−t je

ηG′
i j ,[t j ,t j+1−1]

)

=
(α
N

)m
eηG

′(Part(n,m,t,i))(1−α)n−m−1.

Combining the lower bound with the upper bound (16), we have

ln
(
αm(1−α)n−m−1

Nm+1

)
+max

t,i
ηG′(Part(n,m, t, i))

≤ η
1−γ

(
Ĝn+n|E|β

)
+ η2K(1+β)

1−γ |C |maxi∈P G′
i,n ,

where we used the fact that Part(n,m, t, i) is an arbitrary partition. After rearranging and using
maxi∈P G′

i,n ≤maxt,iG′(Part(n,m, t, i)) we get

Ĝn ≥ (1− γ−ηK(1+β)|C |)max
t,i

G′(Part(n,m, t, i))

−n|E|β− 1− γ
η

ln
(

Nm+1

αm(1−α)n−m−1

)
.

Now since 1− γ−ηK(1+β)|C | ≥ 0, by the assumptions of the theorem and from Lemma 9 with
an application of the union bound we obtain that, with probability at least 1−δ,

Ĝn ≥(1− γ−ηK(1+β)|C |)
(
max
t,i

G(Part(n,m, t, i))− K(m+1)
β

ln
|E|(m+1)

δ

)

−n|E|β− 1− γ
η

ln
(

Nm+1

αm(1−α)n−m−1

)
.

2389

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

Since Ĝn = Kn− L̂n and G(Part(n,m, t, i)) = Kn−L(Part(n,m, t, i)), we have

L̂n ≤ (1− γ−ηK(1+β)|C |)min
t,i
L(Part(n,m, t, i))+Kn(γ+η(1+β)K|C |)

+(1− γ−η(1+β)K|C |) K(m+1)
β

ln
|E|(m+1)

δ
+n|E|β

+
1
η
ln
(

Nm+1

αm(1−α)n−m−1

)
.

This implies that, with probability at least 1−δ,

L̂n−mint,i L(Part(n,m, t, i))

≤ Kn(γ+η(1+β)K|C |)+
K(m+1)

β
ln
|E|(m+1)

δ

+n|E|β+
1
η
ln
(

Nm+1

αm(1−α)n−m−1

)
. (17)

To prove the second statement, let H(p) = −p ln p− (1− p) ln(1− p) and D(p ‖ q) = p ln p
q +

(1− p) ln 1−p1−q . Optimizing the value of α in the last term of (17) gives

1
η
ln
(

Nm+1

αm(1−α)n−m−1

)

=
1
η

(
(m+1) ln(N)+m ln

1
α

+(n−m−1) ln 1
1−α

)

=
1
η

(
(m+1) ln(N)+(n−1)(Db(α∗ ‖ α)+Hb(α∗))

)

where α∗ = m
n−1 . For α= α∗ we obtain

1
η
ln
(

Nm+1

αm(1−α)n−m−1

)

=
1
η

((m+1) ln(N)+(n−1)(Hb(α∗)))

=
1
η

((m+1) ln(N)+m ln((n−1)/m)

+(n−m−1) ln(1+m/(n−m−1)))

≤ 1
η

((m+1) ln(N)+m ln((n−1)/m)+m)

=
1
η

(
(m+1) ln(N)+m ln

e(n−1)
m

)
def=
1
η
D

where the inequality follows since ln(1+ x) ≤ x for x> 0. Therefore

L̂n−mint,i L(Part(n,m, t, i))

≤ Kn(γ+η(1+β)K|C |)+
K(m+1)

β
ln
|E|(m+1)

δ
+n|E|β+

1
η
D .

2390

THE ON-LINE SHORTEST PATH PROBLEM

which is the first statement of the theorem. Setting

β=

√
K(m+1)
n|E| ln

|E|(m+1)
δ

, γ= 2ηK|C |, and η=

√
D

4nK2|C |

results in the second statement of the theorem, that is,

L̂n−mint,i L(Part(n,m, t, i))

≤ 2
√
nK

(
√
4K|C |D+

√
|E|(m+1) ln

|E|(m+1)
δ

)
. !

For t = 1, choose I1 uniformly from the set P . For t ≥ 2,

(a) Draw a Bernoulli random variable Γt with P(Γt = 1) = γ.

(b) If Γt = 1, then choose It uniformly from C .

(c) If Γt = 0,

(c1) choose τt randomly according to the distribution

P{τt = t ′} =






(1−α)t−1Z1,t−1
W t−1

for t ′ = 1
α(1−α)t−t′W t′Zt′ ,t−1

NW t
for t ′ = 2, . . . , t

where Zt ′,t−1 = ∑i∈P e
ηG′

i,[t′ ,t−1] for t ′ = 1, . . . , t−1, and Zt,t−1 = N;
(c2) given τt = t ′, choose It randomly according to the probabilities

P{It = i|τt = t ′} =





e
ηG′i,[t′,t−1]

Zt′ ,t−1
for t ′ = 1, . . . , t−1

1
N for t ′ = t.

Figure 5: An alternative bandit algorithm for tracking shortest paths

Similarly to György et al. (2005a), the proposed algorithm has an alternative version, shown in
Figure 5, which is efficiently computable. With a slight modification of the proof of Theorem 2 in
György et al. (2005a), it can be shown that the alternative and the original algorithms are equivalent.
Moreover, in a way completely analogous to György et al. (2005a), in this alternative formulation of
the algorithm one can compute the probabilities the normalization factors Zt ′,t−1 efficiently, as the
baseline bandit algorithm for shortest paths has an O(n|E|) time complexity by Theorem 3. There-
fore the factorsW t and hence the probabilities P{It = i|τt = t ′} can also be computed efficiently as
in György et al. (2005a). In particular, it follows from Theorem 3 of György et al. (2005a) that the
time complexity of the alternative bandit algorithm for tracking the shortest path is O(n2|E|).

2391

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

7. An Algorithm for the Restricted Multi-Armed Bandit Problem

In this section we consider the situation where the decision maker receives information only about
the performance of the whole chosen path, but the individual edge losses are not available. That
is, the forecaster has access to the sum !It ,t of losses over the chosen path It but not to the losses
{!e,t}e∈It of the edges belonging to It .

This is the problem formulation considered by McMahan and Blum (2004) and Awerbuch and
Kleinberg (2004). McMahan and Blum provided a relatively simple algorithm whose regret is
at most of the order of n−1/4, while Awerbuch and Kleinberg gave a more complex algorithm to
achieve O(n−1/3) regret. In this section we combine the strengths of these papers, and propose a
simple algorithm with regret at most of the order of n−1/3. Moreover, our bound holds with high
probability, while the above-mentioned papers prove bounds for the expected regret only. The pro-
posed algorithm uses ideas very similar to those of McMahan and Blum (2004). The algorithm
alternates between choosing a path from a “basis” B to obtain unbiased estimates of the loss (explo-
ration step), and choosing a path according to exponential weighting based on these estimates.

A simple way to describe a path i ∈ P is a binary row vector with |E| components which are
indexed by the edges of the graph such that, for each e ∈ E, the eth entry of the vector is 1 if e ∈ i
and 0 otherwise. With a slight abuse of notation we will also denote by i the binary row vector
representing path i. In the previous sections, where the loss of each edge along the chosen path
is available to the decision maker, the complexity stemming from the large number of paths was
reduced by representing all information in terms of the edges, as the set of edges spans the set of
paths. That is, the vector corresponding to a given path can be expressed as the linear combination
of the unit vectors associated with the edges (the eth component of the unit vector representing edge
e is 1, while the other components are 0). While the losses corresponding to such a spanning set
are not observable in the restricted setting of this section, one can choose a subset of P that forms
a basis, that is, a collection of b paths which are linearly independent and each path in P can be
expressed as a linear combination of the paths in the basis. We denote by B the b× |E| matrix
whose rows b1, . . . ,bb represent the paths in the basis. Note that b is equal to the maximum number
of linearly independent vectors in {i : i ∈ P}, so b≤ |E|.

Let !(E)
t denote the (column) vector of the edge losses {!e,t}e∈E at time t, and let !(B)

t = (!b1,t , . . . ,
!bb,t)

T be a b-dimensional column vector whose components are the losses of the paths in the basis
B at time t. If α(i,B)

b1 , . . . ,α(i,B)
bb are the coefficients in the linear combination of the basis paths

expressing path i ∈ P , that is, i= ∑b
j=1α

(i,B)
b j b j, then the loss of path i ∈ P at time t is given by

!i,t = 〈i, !(E)
t 〉 =

b

∑
j=1

α(i,B)
b j 〈b j, !(E)

t 〉 =
b

∑
j=1

α(i,B)
b j !b j,t (18)

where 〈·, ·〉 denotes the standard inner product in R|E|. In the algorithm we obtain estimates !̃b j,t of
the losses of the basis paths and use (18) to estimate the loss of any i ∈ P as

!̃i,t =
b

∑
j=1

α(i,B)
b j !̃b j,t . (19)

It is algorithmically advantageous to calculate the estimated path losses !̃i,t from an intermediate
estimate of the individual edge losses. Let B+ denote the Moore-Penrose inverse of B defined by

2392

THE ON-LINE SHORTEST PATH PROBLEM

B+ = BT (BBT)−1, where BT denotes the transpose of B and BBT is invertible since the rows of B
are linearly independent. (Note that BB+ = Ib, the b×b identity matrix, and B+ = B−1 if b= |E|.)
Then letting !̃

(B)
t = (!̃b1,t , . . . , !̃bb,t)

T and

!̃
(E)
t = B+!̃

(B)
t

it is easy to see that !̃i,t in (19) can be obtained as !̃i,t = 〈i, !̃(E)
t 〉, or equivalently

!̃i,t =∑
e∈i

!̃e,t .

This form of the path losses allows for an efficient implementation of exponential weighting via
dynamic programming Takimoto and Warmuth (2003).

To analyze the algorithm we need an upper bound on the magnitude of the coefficients α(i,B)
b j .

For this, we invoke the definition of a barycentric spanner from Awerbuch and Kleinberg (2004):
the basis B is called aC-barycentric spanner if |α(i,B)

b j | ≤C for all i ∈ P and j = 1, . . . ,b. Awerbuch
and Kleinberg (2004) show that a 1-barycentric spanner exists if B is a square matrix (i.e., b= |E|)
and give a low-complexity algorithm which finds a C-barycentric spanner for C > 1. We use their
technique to show that a 1-barycentric spanner also exists in case of a non-square B, when the basis
is chosen to maximize the absolute value of the determinant of BBT . As before, b denotes the
maximum number of linearly independent vectors (paths) in P .

Lemma 10 For a directed acyclic graph, the set of paths P between two dedicated nodes has a 1-
barycentric spanner. Moreover, let B be a b×|E| matrix with rows from P such that det[BBT] &= 0.
If B− j,i is the matrix obtained from B by replacing its jth row by i ∈ P and

∣∣det
[
B− j,iBT− j,i

]∣∣≤C2
∣∣det
[
BBT
]∣∣ (20)

for all j = 1, . . . ,b and i ∈ P , then B is a C-barycentric spanner.

Proof Let B be a basis of P with rows b1, . . . ,bb ∈ P that maximizes |det[BBT]|. Then, for any
path i ∈ P , we have i = ∑b

j=1α
(i,B)
b j b j for some coefficients {α(i,B)

b j }. Now for the matrix B−1,i =
[iT ,(b2)T , . . . ,(bb)T]T we have

∣∣det
[
B−1,iBT−1,i

]∣∣

=
∣∣∣det
[
B−1,iiT ,B−1,i(b2)T ,B−1,i(b3)T , . . . ,B−1,i(bb)T

]∣∣∣

=

∣∣∣∣∣∣
det




(

b

∑
j=1

α(i,B)
b j B−1,ib j

)T
,B−1,i(b2)T ,B−1,i(b3)T , . . . ,B−1,i(bb)T





∣∣∣∣∣∣

=

∣∣∣∣∣

b

∑
j=1

α(i,B)
b j det

[
B−1,i(b j)T ,B−1,i(b2)T ,B−1,i(b3)T , . . . ,B−1,i(bb)T

]∣∣∣∣∣

= |α(i,B)
b1 |
∣∣det
[
B−1,iBT

]∣∣

=
(
α(i,B)
b1

)2 ∣∣det
[
BBT
]∣∣

2393

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

where last equality follows by the same argument the penultimate equality was obtained. Repeating
the same argument for B− j,i, j = 2, . . . ,b we obtain

∣∣det
[
B− j,iBT− j,i

]∣∣=
(
α(i,B)
b j

)2 ∣∣det
[
BBT
]∣∣ . (21)

Thus the maximal property of |det[BBT]| implies |α(i,B)
b j | ≤ 1 for all j = 1, . . . ,b. The second state-

ment follows trivially from (20) and (21). !

Awerbuch and Kleinberg (2004, Proposition 2.4) also present an iterative algorithm to find a
C-barycentric spanner if B is a square matrix. Their algorithm has two parts. First, starting from the
identity matrix, the algorithm replaces sequentially the rows of the matrix in each step by maximiz-
ing the determinant with respect to the given row. This is done by calling b times an optimization
oracle, to compute argmaxi∈P |det [B− j,i] | for j = 1,2, . . . ,b. In the second part the algorithm re-
places an arbitrarily row j of the matrix in each iteration with some i∈P if |det [B− j,i] |>C|det [B] |.
It is shown that the oracle is called in the second part O(b logC b) times forC > 1. In case B is not a
square matrix, the algorithm carries over if we have access to an alternative optimization oracle that
can compute argmaxi∈P |det[B− j,iBT− j,i]|: In the first b steps, all the rows of the matrix are replaced
(first part), then we can iteratively replace one row in each step, using the oracle, to maximize the
determinant |det[B− j,iBT− j,i]| in i until (20) is satisfied for all j and i. By Lemma 10, this results is
aC-barycentric spanner. Similarly to Awerbuch and Kleinberg (2004, Lemma 2.5), it can be shown
that the alternative optimization oracle is called O(b logC b) times forC > 1.

For simplicity (to avoid carrying the constant C), assume that we have a 2-barycentric spanner
B. Based on the ideas of label efficient prediction, the next algorithm, shown in Figure 6, gives a
simple solution to the restricted shortest path problem. The algorithm is very similar to that of the
algorithm in the label efficient case, but here we cannot estimate the edge losses directly. Therefore,
we query the loss of a (random) basis vector from time to time, and create unbiased estimates !̃b j,t
of the losses of basis paths !b j,t , which are then transformed into edge-loss estimates.

The performance of the algorithm is analyzed in the next theorem. The proof follows the ar-
gument of Cesa-Bianchi et al. (2005), but we also have to deal with some additional technical
difficulties. Note that in the theorem we do not assume that all paths between u and v have equal
length.

Theorem 11 Let K denote the length of the longest path in the graph. For any δ∈ (0,1), parameters
0< ε≤ 1

K and η> 0 satisfying η≤ ε2, and n≥ 8b
ε2 ln

4bN
δ , the performance of the algorithm defined

above can be bounded, with probability at least 1−δ, as

L̂n−min
i∈P

Li,n ≤ K



ηb
ε
Kn+

√
n
2
ln
4
δ

+nε+

√
2nε ln 4δ
K

+
16
3
b
√
2n
b
ε
ln
4bN
δ



+
lnN
η

In particular, choosing

ε=
(
Kb
n
ln
4bN
δ

)1/3
and η= ε2

we obtain
L̂n−min

i∈P
Li,n ≤ 9.1K2b(Kb ln(4bN/δ))1/3 n2/3 .

2394

THE ON-LINE SHORTEST PATH PROBLEM

Parameters: 0< ε,η≤ 1.
Initialization: Set we,0 = 1 for each e ∈ E, wi,0 = 1 for each i ∈ P , W 0 = N. Fix a
basis B, which is a 2-barycentric spanner. For each round t = 1,2, . . .

(a) Draw a Bernoulli random variable St such that P(St = 1) = ε;

(b) If St = 1, then choose the path It uniformly from the basis B. If St = 0, then
choose It according to the distribution {pi,t}, defined by

pi,t =
wi,t−1
W t−1

.

(c) Calculate the estimated loss of all edges according to

!̃
(E)
t = B+!̃

(B)
t ,

where !̃
(E)
t = {!̃(E)

e,t }e∈E , and !̃
(B)
t = (!̃(B)

b1,t , . . . , !̃
(B)
bb,t) is the vector of the estimated

losses
!̃b j,t =

St
ε

!b j,t {It=b j}b

for j = 1, . . . ,b.

(d) Compute the updated weights

we,t = we,t−1e−η!̃e,t ,

wi,t = ∏
e∈i
we,t = wi,t−1e−η∑e∈i !̃e,t ,

and the sum of the total weights of the paths

W t = ∑
i∈P

wi,t .

Figure 6: A bandit algorithm for the restricted shortest path problem

The theorem is proved using the following two lemmas. The first one is an easy consequence of
Bernstein’s inequality:

Lemma 12 Under the assumptions of Theorem 11, the probability that the algorithm queries the
basis more than nε+

√
2nε ln 4δ times is at most δ/4.

Using the estimated loss of a path i ∈ P given in (19), we can estimate the cumulative loss of i
up to time n as

L̃i,n =
n

∑
t=1

!̃i,t .

The next lemma demonstrates the quality of these estimates.

2395

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

Lemma 13 Let 0< δ< 1 and assume n≥ 8b
ε ln

4bN
δ . For any i∈P , with probability at least 1−δ/4,

n

∑
t=1
∑
i∈P

pi,t!i,t −
n

∑
t=1
∑
i∈P

pi,t !̃i,t ≤
8
3
b
√
2n
bK2

ε
ln
4b
δ

.

Furthermore, with probability at least 1−δ/(4N),

L̃i,n−Li,n ≤
8
3
b
√
2n
bK2

ε
ln
4bN
δ

.

ProofWe may write

n

∑
t=1
∑
i∈P

pi,t!i,t −
n

∑
t=1
∑
i∈P

pi,t !̃i,t =
n

∑
t=1
∑
i∈P

pi,t
b

∑
j=1

α(i,B)
b j

(
!b j,t − !̃b j,t

)

=
b

∑
j=1

n

∑
t=1

[

∑
i∈P

pi,tα
(i,B)
b j

(
!b j,t − !̃b j,t

)]

def=
b

∑
j=1

n

∑
t=1

Xb j,t . (22)

Note that for any b j, Xb j,t , t = 1,2, . . . is a martingale difference sequence with respect to (I t ,St),
t = 1,2, . . . as Et !̃b j,t = !b j,t . Also,

Et [X2b j,t] ≤
(

∑
i∈P

pi,tα
(i,B)
b j

)2
Et

[(
!̃b j,t

)2]
≤ ∑

i∈P
pi,t
(
α(i,B)
b j

)2 K2b
ε

≤ 4K
2b
ε

(23)

and

|Xb j,t | ≤

∣∣∣∣∣∑i∈P
pi,tα

(i,B)
b j

∣∣∣∣∣

∣∣∣!b j,t − !̃b j,t

∣∣∣≤ ∑
i∈P

pi,t
∣∣∣α(i,B)

b j

∣∣∣
Kb
ε

≤ 2Kb
ε

(24)

where the last inequalities in both cases follow from the fact that B is a 2-barycentric spanner. Then,
using Bernstein’s inequality for martingale differences (Lemma 14), we have, for any fixed b j,

P
[

n

∑
t=1

Xb j,t ≥
8
3

√
2n
bK2

ε
ln
4b
δ

]
≤ δ
4b

where we used (23), (24) and the assumption of the lemma on n. The proof of the first statement is
finished with an application of the union bound and its combination with (22).

For the second statement we use a similar argument, that is,

n

∑
t=1

(!̃i,t − !i,t) =
b

∑
j=1

α(i,B)
b j

n

∑
t=1

(!̃b j,t − !b j,t) ≤ ∑
j=1

∣∣∣α(i,B)
b j

∣∣∣

∣∣∣∣∣

n

∑
t=1

(!̃b j,t − !b j,t)

∣∣∣∣∣

≤ 2
b

∑
j=1

∣∣∣∣∣

n

∑
t=1

(!̃b j,t − !b j,t)

∣∣∣∣∣ . (25)

2396

THE ON-LINE SHORTEST PATH PROBLEM

Now applying Lemma 14 for a fixed b j we get

P
[

n

∑
t=1

(!̃b j,t − !b j,t) ≥
4
3

√
2n
K2b
ε
ln
4bN
δ

]
≤ δ
4bN

(26)

because of Et [(!̃b j,t − !b j,t)
2] ≤ K2b

ε and −K ≤ !̃b j,t − !b j,t ≤ K
(b
ε −1

)
. The proof is completed by

applying the union bound to (26) and combining the result with (25). !

Proof of Theorem 11. Similarly to earlier proofs, we follow the evolution of the term ln W n
W 0
. In the

same way as we obtained (5) and (7), we have

ln
W n

W 0
≥−ηmin

i∈P
L̃i,n− lnN

and

ln
W n

W 0
≤

n

∑
t=1

(
−η∑

i∈P
pi,t !̃i,t +

η2

2 ∑i∈P
pi,t !̃2i,t

)
.

Combining these bounds, we obtain

−min
i∈P

L̃i,n−
lnN
η

≤
n

∑
t=1

(
−∑
i∈P

pi,t !̃i,t +
η
2 ∑i∈P

pi,t !̃2i,t

)

≤
(
−1+

ηKb
ε

) n

∑
t=1
∑
i∈P

pi,t !̃i,t ,

because 0 ≤ !̃i,t ≤ 2Kb
ε . Applying the results of Lemma 13 and the union bound, we have, with

probability 1−δ/2,

−min
i∈P

Li,n−
8
3
b
√
2n
K2b
ε
ln
4bN
δ

≤
(
−1+

ηKb
ε

)(n

∑
t=1
∑
i∈P

pi,t!i,t −
8
3
b
√
2n
K2b
ε
ln
4b
δ

)
+
lnN
η

≤
(
−1+

ηKb
ε

) n

∑
t=1
∑
i∈P

pi,t!i,t +
8
3
b
√
2n
K2b
ε
ln
4b
δ

+
lnN
η

. (27)

Introduce the sets

Tn
def= {t : 1≤ t ≤ n and St = 0} and T n

def= {t : 1≤ t ≤ n and St = 1}

of “exploitation” and “exploration” steps, respectively. Then, by the Hoeffding-Azuma inequality
(Hoeffding, 1963) we obtain that, with probability at least 1−δ/4,

∑
t∈Tn
∑
i∈P

pi,t!i,t ≥ ∑
t∈Tn

!It ,t −
√

|Tn|K2
2

ln
4
δ

.

2397

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

Note that for the exploration steps t ∈ T n, as the algorithm plays according to a uniform distribution
instead of pi,t , we can only use the trivial lower bound zero on the losses, that is,

∑
t∈T n

∑
i∈P

pi,t!i,t ≥ ∑
t∈T n

!It ,t −K|T n| .

The last two inequalities imply

n

∑
t=1
∑
i∈P

pi,t!i,t ≥ L̂n−
√

|Tn|K2
2

ln
4
δ
−K|T n| . (28)

Then, by (27), (28) and Lemma 12 we obtain, with probability at least 1−δ,

L̂n−min
i∈P

Li,n

≤ K



ηb
ε
Kn+

√
n
2
ln
4
δ

+nε+

√
2nε ln 4δ
K

+
16
3
b
√
2n
b
ε
ln
4bN
δ



+
lnN
η

where we used L̂n ≤ Kn and |Tn| ≤ n. Substituting the values of ε and η gives

L̂n−min
i∈P

Li,n ≤ K2bnε+
1
4
Knε+Knε+

1
2
nε+

16
3
b
√
Knε+nε

≤ 9.1K2bnε

where we used
√

n
2 ln

4
δ ≤

1
4nε,
√
2nε ln 4δ ≤

1
2nε,
√
n bKε ln

4N
δ = nε, and lnNη ≤ nε (from the assump-

tions of the theorem). !

8. Simulation Results

To further investigate our new algorithms, we have conducted some simple simulations. As the main
motivation of this work is to improve earlier algorithms in case the number of paths is exponentially
large in the number of edges, we tested the algorithms on the small graph shown in Figure 1 (b),
which has one of the simplest structures with exponentially many (namely 2|E|/2) paths.

The losses on the edges were generated by a sequence of independent and uniform random
variables, with values from [0,1] on the upper edges, and from [0.32,1] on the lower edges, resulting
in a (long-term) optimal path consisting of the upper edges. We ran the tests for n = 10000 steps,
with confidence value δ = 0.001. To establish baseline performance, we also tested the EXP3
algorithm of Auer et al. (2002) (note that this algorithm does not need edge losses, only the loss
of the chosen path). For the version of our bandit algorithm that is informed of the individual
edge losses (edge-bandit), we used the simple 2-element cover set of the paths consisting of the
upper and lower edges, respectively (other 2-element cover sets give similar performance). For our
restricted shortest path algorithm (path-bandit) the basis {uuuuu,uuuul,uuull,uulll,ullll, lllll}was
used, where u (resp. l) in the kth position denotes the upper (resp. lower) edge connecting vk−1 and
vk. In this example the performance of the algorithm appeared to be independent of the actual choice
of the basis; however, in general we do not expect this behavior. Two versions of the algorithm of

2398

THE ON-LINE SHORTEST PATH PROBLEM

Awerbuch and Kleinberg (2004) were also simulated. With its original parameter setting (AwKl),
the algorithm did not perform well. However, after optimizing its parameters off-line (AwKl tuned),
substantially better performance was achieved. The normalized regret of the above algorithms,
averaged over 30 runs, as well as the regret of the fixed paths in the graph are shown in Figure 7.

 0

 0.5

 1

 1.5

 2

 0 2000 4000 6000 8000 10000

No
rm

al
ize

d
re

gr
et

Number of packets

edge-bandit
path-bandit

AwKl
AwKl tun

EXP3
bound for edge-bandit

Figure 7: Normalized regret of several algorithms for the shortest path problem. The gray dotted
lines show the normalized regret of fixed paths in the graph.

Although all algorithms showed better performance than the bound for the edge-bandit algo-
rithm, the latter showed the expected superior performance in the simulations. Furthermore, our
algorithm for the restricted shortest path problem outperformed Awerbuch and Kleinberg’s (AwKl)
algorithm, while being inferior to its off-line tuned version (AwKl tuned). It must be noted that sim-
ilar parameter optimization did not improve the performance of our path-bandit algorithm, which
showed robust behavior with respect to parameter tuning.

9. Conclusions
We considered different versions of the on-line shortest path problem with limited feedback. These
problems are motivated by realistic scenarios, such as routing in communication networks, where
the vertices do not have all the information about the state of the network. We have addressed the
problem in the adversarial setting where the edge losses may vary in an arbitrary way; in particular,
they may depend on previous routing decisions of the algorithm. Although this assumption may

2399

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

neglect natural correlation in the loss sequence, it suits applications in mobile ad-hoc networks,
where the network topology changes dynamically in time, and also in certain secure networks that
has to be able to handle denial of service attacks.

Efficient algorithms have been provided for the multi-armed bandit setting and in a combined
label efficient multi-armed bandit setting, provided the individual edge losses along the chosen
path are revealed to the algorithms. The normalized regrets of the algorithms, compared to the
performance of the best fixed path, converge to zero at an O(1/

√
n) rate as the time horizon n

grows to infinity, and increases only polynomially in the number of edges (and vertices) of the
graph. Earlier methods for the multi-armed bandit problem either do not have the right O(1/

√
n)

convergence rate, or their regret increase exponentially in the number of edges for typical graphs.
The algorithm has also been extended so that it can compete with time varying paths, that is, to
handle situations when the best path can change from time to time (for consistency, the number of
changes must be sublinear in n).

In the restricted version of the shortest path problem, where only the losses of the whole paths
are revealed, an algorithm with a worse O(n−1/3) normalized regret was provided. This algorithm
has comparable performance to that of the best earlier algorithm for this problem Awerbuch and
Kleinberg (2004), however, our algorithm is significantly simpler. Simulation results are also given
to assess the practical performance and compare it to the theoretical bounds as well as other com-
peting algorithms.

It should be noted that the results are not entirely satisfactory in the restricted version of the
problem, as it remains an open question whether the O(1/

√
n) regret can be achieved without the

exponential dependence on the size of the graph. Although we expect that this is the case, we have
not been able to construct an algorithm with such a proven performance bound.

Acknowledgments

This research was supported in part by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences, the Mobile Innovation Center of Hungary, by the Hungarian Scientific Re-
search Fund (OTKA F60787), by the Natural Sciences and Engineering Research Council (NSERC)
of Canada, by the Spanish Ministry of Science and Technology grant MTM2006-05650, by Fun-
dación BBVA, by the PASCAL Network of Excellence under EC grant no. 506778 and by the High
Speed Networks Laboratory, Department of Telecommunications and Media Informatics, Budapest
University of Technology and Economics. Parts of this paper have been presented at COLT’06.

Appendix A.

First we describe a simple algorithm that, given a directed acyclic graph (V,E) with a source vertex
u and destination vertex v, constructs a graph by adding at most (K− 2)(|V |− 2)+ 1 vertices and
edges (with constant weight zero) to the graph without modifying the weights of the paths between
u and v such that each path from u to v is of length K, where K denotes the length of the longest
path of the original graph.

Order the vertices vi, i = 1, . . . , |V | of the graph such that if (vi,v j) ∈ E then i < j. Replace
the destination vertex v = v|V | with a chain of K vertices v|V |,0, . . . ,v|V |,K−1 and vertices vi, i =
3, . . . , |V | − 1 with a chain of K− 1 vertices vi,0, . . . ,vi,K−2 such that in the chains the only edges

2400

THE ON-LINE SHORTEST PATH PROBLEM

are of the form (vi,k+1,vi,k) (for each possible value of k), and these edges are of constant weight
zero. Furthermore, if (vi,v j) ∈ E is such that the length of the longest path from vi (resp. v j) to the
destination is Ki (resp. K j), then this edge is replaced in the new graph by (vi,0,v j,K j−Ki−1) whose
weight equals that of the original at each time instant. (Note that here v1,0 = v1 = u and v2,0 = v2
and Ki < K j.) It is easy to see that each path from source to destination is of length K in the new
graph and the weights of the new paths are the same as those of the corresponding originals.

Next we recall a martingale inequality used in the proofs:

Lemma 14 (Bernstein’s inequality for martingale differences (Freedman, 1975).) Let X1, . . . ,Xn be
a martingale difference sequence such that Xt ∈ [a,b] with probability one (t = 1, . . . ,n). Assume
that, for all t,

E
[
X2t |Xt−1, . . . ,X1

]
≤ σ2 a.s.

Then, for all ε> 0,

P
{

n

∑
t=1

Xt > ε

}
≤ e

−ε2
2nσ2+2ε(b−a)/3

and therefore

P
{

n

∑
t=1

Xt >
√
2nσ2 lnδ−1+2lnδ−1(b−a)/3

}
≤ δ.

References

C. Allenberg, P. Auer, L. Györfi, and Gy. Ottucsák. Hannan consistency in on-line learning in case
of unbounded losses under partial monitoring. In Proceedings of 17th International Conference
on Algorithmic Learning Theory, ALT 2006, Lecture Notes in Computer Science 4264, pages
229–243, Barcelona, Spain, Oct. 2006.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The non-stochastic multi-armed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002.

P. Auer and M. Warmuth. Tracking the best disjunction. Machine Learning, 32(2):127–150, 1998.

P. Auer and Gy. Ottucsák. Bound on high-probability regret in loss-bandit game. Preprint, 2006.
http://www.szit.bme.hu/õti/green.pdf.

B. Awerbuch, D. Holmer, H. Rubens, and R. Kleinberg. Provably competitive adaptive routing. In
Proceedings of IEEE INFOCOM 2005, volume 1, pages 631–641, March 2005.

B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end feedback: Distributed learning
and geometric approaches. In Proceedings of the 36th Annual ACM Symposium on the Theory of
Computing, STOC 2004, pages 45–53, Chicago, IL, USA, Jun. 2004. ACM Press.

D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathemat-
ics, 6:1–8, 1956.

O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past posteriors. Journal
of Machine Learning Research, 3:363–396, Nov. 2002.

2401

GYÖRGY, LINDER, LUGOSI AND OTTUCSÁK

N. Cesa-Bianchi, Y. Freund, D. P. Helmbold, D. Haussler, R. Schapire, and M. K. Warmuth. How
to use expert advice. Journal of the ACM, 44(3):427–485, 1997.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
Cambridge, 2006.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient prediction. IEEE
Trans. Inform. Theory, IT-51:2152–2162, June 2005.

D.A. Freedman. On tail probabilities for martingales. Annals of Probability, 3:100–118, 1975.

E. Gelenbe, M. Gellman, R. Lent, P. Liu, and P. Su. Autonomous smart routing for network QoS. In
Proceedings of First International Conference on Autonomic Computing, pages 232–239, New
York, May 2004. IEEE Computer Society.

E. Gelenbe, R. Lent, and Z. Xhu. Measurement and performance of a cognitive packet network.
Journal of Computer Networks, 37:691–701, 2001.

A. György, T. Linder, and G. Lugosi. Efficient algorithms and minimax bounds for zero-delay lossy
source coding. IEEE Transactions on Signal Processing, 52:2337–2347, Aug. 2004a.

A. György, T. Linder, and G. Lugosi. A ”follow the perturbed leader”-type algorithm for zero-delay
quantization of individual sequences. In Proc. Data Compression Conference, pages 342–351,
Snowbird, UT, USA, Mar. 2004b.

A. György, T. Linder, and G. Lugosi. Tracking the best of many experts. In Proceedings of the 18th
Annual Conference on Learning Theory, COLT 2005, Lecture Notes in Computer Science 3559,
pages 204–216, Bertinoro, Italy, Jun. 2005a. Springer.

A. György, T. Linder, and G. Lugosi. Tracking the best quantizer. In Proceedings of the IEEE
International Symposium on Information Theory, pages 1163–1167, Adelaide, Australia, June-
July 2005b.

A. György and Gy. Ottucsák. Adaptive routing using expert advice. The Computer Journal, 49(2):
180–189, 2006.

J. Hannan. Approximation to Bayes risk in repeated plays. In M. Dresher, A. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume 3, pages 97–139. Princeton University
Press, 1957.

D.P. Helmbold and S. Panizza. Some label efficient learning results. In Proceedings of the 10th
Annual Conference on Computational Learning Theory, pages 218–230. ACM Press, 1997.

M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning, 32(2):151–178,
1998.

M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal of Machine Learning
Research, 1:281–309, 2001.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

2402

THE ON-LINE SHORTEST PATH PROBLEM

A. Kalai and S Vempala. Efficient algorithms for the online decision problem. In B. Schölkopf
and M. Warmuth, editors, Proceedings of the 16th Annual Conference on Learning Theory and
the 7th Kernel Workshop, COLT-Kernel 2003, Lecture Notes in Computer Science 2777, pages
26–40, New York, USA, Aug. 2003. Springer.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and Computa-
tion, 108:212–261, 1994.

H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an adap-
tive adversary. In Proceedings of the 17th Annual Conference on Learning Theory, COLT 2004,
Lecture Notes in Computer Science 3120, pages 109–123, Banff, Canada, Jul. 2004. Springer.

M. Mohri. General algebraic frameworks and algorithms for shortest distance problems. Technical
Report 981219-10TM, AT&T Labs Research, 1998.

R. E. Schapire and D. P. Helmbold. Predicting nearly as well as the best pruning of a decision tree.
Machine Learning, 27:51–68, 1997.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal of Machine
Learning Research, 4:773–818, 2003.

V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computational
Learning Theory, pages 372–383, Rochester, NY, Aug. 1990. Morgan Kaufmann.

V. Vovk. Derandomizing stochastic prediction strategies. Machine Learning, 35(3):247–282, Jun.
1999.

2403

Journal of Machine Learning Research 8 (2007) 2405-2441 Submitted 3/07; Published 10/07

The Locally Weighted Bag of Words Framework for Document
Representation

Guy Lebanon LEBANON@STAT.PURDUE.EDU
Yi Mao YMAO@ECE.PURDUE.EDU
Joshua Dillon JVDILLON@ECE.PURDUE.EDU
Department of Statistics and
School of Electrical and Computer Engineering
Purdue University - West Lafayette, IN, USA

Editor: Andrew McCallum

Abstract
The popular bag of words assumption represents a document as a histogram of word occurrences.
While computationally efficient, such a representation is unable to maintain any sequential infor-
mation. We present an effective sequential document representation that goes beyond the bag of
words representation and its n-gram extensions. This representation uses local smoothing to embed
documents as smooth curves in the multinomial simplex thereby preserving valuable sequential in-
formation. In contrast to bag of words or n-grams, the new representation is able to robustly capture
medium and long range sequential trends in the document. We discuss the representation and its
geometric properties and demonstrate its applicability for various text processing tasks.
Keywords: text processing, local smoothing

1. Introduction

Modeling text documents is an essential component in a wide variety of text processing applica-
tions, including the classification, segmentation, visualization and retrieval of text. A crucial part
of the modeling process is choosing an appropriate representation for documents. In this paper we
demonstrate a new representation that considers documents as smooth curves in the multinomial
simplex. The new representation goes beyond standard alternatives such as the bag of words and n-
grams and captures sequential content at a certain resolution determined by a given local smoothing
operator.

We consider documents as finite sequences of words

y= 〈y1, . . . ,yN〉 yi ∈V (1)

where V represents finite vocabulary which for simplicity is assumed to be a set of integers V =
{1, . . . , |V |} = {1, . . . ,V}. The slight abuse of notation of using V once as a set and once as an
integer will not cause confusion later on and serves to simplify the notation. Due to the categorical
or nominal nature of V , a document should be considered as a categorical valued time series. In
typical cases, we have 1<N$V which precludes using standard tools from categorical time series
analysis. Instead, the standard approach in text processing is to “vectorize” the data by keeping
track of occurrences of length-n word-patterns irrespective of where they appear in the document.
This approach, called the n-gram representation, has the benefit of embedding sequential documents

c©2007 Guy Lebanon, Yi Mao and Joshua Dillon.

LEBANON, MAO AND DILLON

in a Euclidean space RV n which is a convenient representation, albeit high dimensional, for many
machine learning and statistical models. The specific case of n= 1, also called bag of words or bow
representation, is perhaps the most frequent document representation due to its relative robustness
in sparse situations.

Formally, the n-gram approach represents a document y= 〈y1, . . . ,yN〉,yi ∈V as x∈RV n , defined
by

x(j1,..., jn) =
1

N−n+1

N−n+1

∑
i=1

δyi, j1δyi+1, j2 · · ·δyi+n−1, jn , (2)

where δa,b = 1 if a= b and 0 otherwise. In the case of 1-gram or bag of words the above represen-
tation reduces to

x j =
1
N

N

∑
i=1

δyi, j

which is simply the relative frequencies of different vocabulary words in the document.
A slightly more general outlook is to consider smoothed versions of (2) in order to avoid the oth-

erwise overwhelmingly sparse frequency vector (since N$V , only a small subset of the vocabulary
appears in any typical document). For example, a smoothed 1-gram representation is

x j =
1
Z

N

∑
i=1

(δyi, j + c), c≥ 0 (3)

where Z is a constant that ensures normalization ∑x j = 1. The smoothed representation (3) has a
Bayesian interpretation as a the maximum posterior estimate for a multinomial model with Dirichlet
prior and setting c = 0 in (3) reduces it to the standard word histogram or 1-gram. Recent com-
parative studies of various n-gram smoothing methods in the contexts of language modeling and
information retrieval may be found in Chen and Rosenfeld (2000) and Zhai and Lafferty (2001).

Conceptually, we may consider the n-gram representation for n = N in which case the full
original sequential information is maintained. In practice, however, n is typically chosen to be
much smaller than N, often taking the values 1, 2, or 3. In these cases, frequently occurring word
patterns are kept allowing some limited amount of word-sense disambiguation. On the other hand,
almost all of the sequential content, including medium and long range sequential trends and position
information is lost.

The paper’s main contribution is a new sequential representation called locally weighted bag of
words or lowbow. This representation, first introduced in Lebanon (2005), generalizes bag of words
by considering the collection of local word histograms throughout the document. In contrast to
n-grams, which keep track of frequently occurring patterns independent of their positions, lowbow
keeps track of changes in the word histogram as it sweeps through the document from beginning
to end. The collection of word histograms is equivalent to a smooth curve which facilitates the
differential analysis of the document’s sequential content. The use of bag of words rather than n-
grams with n > 1 is made here for simplicity purpose only. The entire lowbow framework may be
generalized to define locally weighted n-grams in a straightforward manner.

The next section presents a detailed explanation of the locally weighted bag of words frame-
work. Section 3 describes the mechanics of using the lowbow framework in document modeling.
Section 4 discusses the tradeoff in choosing the amount of temporal smoothing through a bias-
variance analysis and generalization error bounds. Section 5 outlines several experiments, followed

2406

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

by related work and discussion. Since our presentation makes frequent use of the geometry of the
multinomial simplex, which is not common knowledge in the machine learning community, we
provide a brief summary of it in Appendix A.

2. Locally Weighted Bag of Words

Asmentioned previously, the original word sequence (1) is categorical, high dimensional and sparse.
The smoothing method employed by the bag of words representation (3) is categorical in essence
rather than temporal since no time information is preserved. In contrast to (3) or its variants, tempo-
ral smoothing such as the one used in local regression or kernel density estimation (e.g., Wand and
Jones, 1995) is performed across a continuous temporal or spatial dimension. Temporal smoothing
has far greater potential than categorical smoothing since a word can be smoothed out to varying
degrees depending on the temporal difference between the two document positions. The main idea
behind the locally weighted bag of words framework is to use a local smoothing kernel to smooth
the original word sequence temporally. In other words, we borrow the presence of a word at a cer-
tain location in the document to a neighboring location but discount its contribution depending on
the temporal distance between the two locations.

Since temporal smoothing of words results in several words occupying one location we need to
consider the following broader definition of a document.

Definition 1 A document x of length N is a function x : {1, . . . ,N}×V → [0,1] such that

∑
j∈V

x(i, j) = 1 ∀i ∈ {1, . . . ,N}.

The set of documents (of all lengths) is denoted by X.

For a document x ∈ X the value x(i, j) represent the weight of the word j ∈ V at location i. Since
the weights sum to one at any location we can consider Definition 1 as providing a local word
histogram or distribution associated with each document position. The standard way to represent a
word sequence as a document in X is to have each location host the appropriate single word with
constant weight, which corresponds to the δc representation defined below with c= 0.

Definition 2 The standard representation δc(y)∈X, where c≥ 0, of a word sequence y= 〈y1, . . . ,yN〉
is

δc(y)(i, j) =

{
c

1+c|V | yi *= j
1+c
1+c|V | yi = j

. (4)

Equation (4) is consistent with Definition 1 since ∑ j∈V δc(y)(i, j) = 1+c|V |
1+c|V | = 1. The parameter c in

the above definition injects categorical smoothing as in (3) to avoid zero counts in the δc represen-
tation.

The standard representation δc assumes that each word in the sequence y= 〈y1, . . . ,yN〉 occupies
a single temporal location 1, . . . ,N. In general, however, Definition 1 lets several words occupy the
same location by smoothing the influence of words y j across different document positions. Doing
so is central in converting the discrete-time standard representation to a continuous representation
that is much more convenient for modeling and analysis.

2407

LEBANON, MAO AND DILLON

Definition 1 is problematic since according to it, two documents of different lengths are consid-
ered as fundamentally different objects. It is not clear, for example, how to compare two documents
x1 : {1, . . . ,N1}×V → [0,1], x2 : {1, . . . ,N2}×V → [0,1] of varying lengths N1 *= N2. To allow a
unified treatment and comparison of documents of arbitrary lengths we map the set {1, . . . ,N} to a
continuous canonical interval, which we arbitrarily choose to be [0,1].

Definition 3 A length-normalized document x is a function x : [0,1]×V → [0,1] such that

∑
j∈V

x(t, j) = 1, ∀t ∈ [0,1].

The set of length-normalized documents is denoted X′.

A simple way of converting a document x∈X to a length-normalized document x′ ∈X′ is expressed
by the length-normalization function defined below.

Definition 4 The length-normalization of a document x ∈ X of length N is the mapping

ϕ : X → X′ ϕ(x)(t, j) = x(+tN,, j)

where +r, is the smallest integer greater than or equal to r.

The length-normalization process abstracts away from the actual document length and focuses
on the sequential variations within the document relative to its length. In other words, we treat two
documents with similar sequential contents but different lengths in a similar fashion. For example
the two documents 〈y1,y2, . . . ,yN〉 and 〈y1,y1,y2,y2, . . . ,yN ,yN〉 or the more realistic example of a
news story and its summary would be mapped to the same length-normalized representation. The
assumption that the actual length does not matter and sequential trends should be considered relative
to the total length may not hold in some cases. We comment on this assumption further and on how
to relax it in Section 7.

We formally define bag of words as the integral of length-normalized documents with respect
to time. As we show later, this definition is equivalent to the popular definition of bag of words
expressed in Equation (3).

Definition 5 The bag of words or bow representation of a document y is ρ(ϕ(δc(y))) defined by

ρ : X′ → PV−1 where [ρ(x)] j =
Z 1

0
x(t, j)dt, (5)

and [·] j denotes the j-th component of a vector.

Above, PV−1 stands for the multinomial simplex

PV−1 =

{
θ ∈ RV : ∀i θi ≥ 0,

V

∑
j=1

θ j = 1

}

which is the subset of RV representing the set of all distributions onV events. The subscriptV −1 is
used in PV−1 rather thanV in order to reflect its intrinsic dimensionality. The simplex and its Fisher
or information geometry are a central part of this paper. Appendix A contains a brief overview of

2408

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1: Beta (left) and bounded Gaussian (right) smoothing kernels for µ= 0.2,0.3,0.4,0.5.

the necessary background and further details may be found in Kass and Voss (1997), Amari and
Nagaoka (2000) and Lebanon (2005). Note that the function ρ in Definition 5 is well defined since

∑
j∈V

[ρ(x)] j = ∑
j∈V

Z 1

0
x(t, j)dt =

Z 1

0
∑
j∈V

x(t, j)dt =
Z 1

0
1dt = 1 =⇒ ρ(x) ∈ PV−1.

A local alternative to the bag of words is obtained by integrating a length-normalized document
with respect to a non-uniform measure on [0,1]. In particular, integrating with respect to a measure
that is concentrated around a particular location µ∈ [0,1] provides a smoothed characterization of
the local word histogram. In accordance with the statistical literature of non-parametric smoothing
we refer to such a measure as a smoothing kernel. Formally, we define it as a function Kµ,σ : [0,1]→
R parameterized by a location parameter µ∈ [0,1] and a scale parameter σ ∈ (0,∞). The parameter
µ represents the (length-normalized) document location at which the measure is concentrated and σ
represents its spread or amount of smoothing. We further assume that Kµ,σ is smooth in t,µ and is
normalized, that is,

R 1
0 Kµ,σ(t)dt = 1.

One example of a smoothing kernel on [0,1] is the Gaussian pdf restricted to [0,1] and re-
normalized

Kµ,σ(x) =

{ N(x ;µ,σ)
Φ((1−µ)/σ)−Φ(−µ/σ) x ∈ [0,1]
0 x *∈ [0,1]

(6)

where N(x ;µ,σ) is the Gaussian pdf with mean µ and variance σ2 and Φ is the cdf of N(x ;0,1).
Another example is the beta distribution pdf

Kµ,σ(x) = Beta
(
x ; β

µ
σ

, β
1−µ
σ

)
(7)

where β is selected so that the two parameters of the beta distribution will be greater than 1. The
above beta pdf has expectation µ and variance that is increasing in the scale parameter σ. The
bounded Gaussian and beta kernels are illustrated in Figure 1.

2409

LEBANON, MAO AND DILLON

Definition 6 The locally weighted bag of words or lowbow representation of the word sequence y
is γ(y) = {γµ(y) : µ∈ [0,1]} where γµ(y) ∈ PV−1 is the local word histogram at µ defined by

[γµ(y)] j =
Z 1

0
ϕ(δc(y))(t, j) Kµ,σ(t)dt. (8)

Equation (8) indeed associates a document location with a local histogram or a point in the simplex
PV−1 since

∑
j∈V

[γµ(y)] j = ∑
j∈V

Z 1

0
ϕ(δc(y))(t, j)Kµ,σ(t)dt =

Z 1

0
Kµ,σ(t)∑

j∈V
ϕ(δc(y))(t, j)dt

=
Z 1

0
Kµ,σ(t) ·1dt = 1.

Geometrically, the lowbow representation of documents is equivalent to parameterized curves
in the simplex. The following theorem establishes the continuity and smoothness of these curves
which enables the use of differential geometry in the analysis of the lowbow representation and its
properties.

Theorem 1 The lowbow representation is a continuous and differentiable parameterized curve in
the simplex, in both the Euclidean and the Fisher geometry.

Proof We prove below only the continuity of the lowbow representation. The proof of differentia-
bility proceeds along similar lines. Fixing y, the mapping µ .→ γµ(y) maps [0,1] into the simplex
PV−1. Since Kµ,σ(t) is continuous on a compact region (µ, t)∈ [0,1]2, it is also uniformly continuous
and we have

lim
ε→0

|[γµ(y)] j− [γµ+ε(y)] j| = lim
ε→0

∣∣∣
Z 1

0
ϕ(δc(y))(t, j)Kµ,σ(t)−ϕ(δc(y))(t, j)Kµ+ε,σ(t)dt

∣∣∣

≤ lim
ε→0

Z 1

0
ϕ(δc(y))(t, j)|Kµ,σ(t)−Kµ+ε,σ(t)|dt

≤ lim
ε→0

sup
t∈[0,1]

|Kµ,σ(t)−Kµ+ε,σ(t)|
Z 1

0
ϕ(δc(y))(t, j)dt

= lim
ε→0

sup
t∈[0,1]

|Kµ,σ(t)−Kµ+ε,σ(t)| = 0.

As a result,

lim
ε→0

‖γµ(y)− γµ+ε(y)‖2 =
√
∑
j∈V

|[γµ(y)] j− [γµ+ε(y)] j|2 → 0

proving the continuity of γµ(y) in the Euclidean geometry. Continuity in the Fisher geometry fol-
lows since it shares the same topology as the Euclidean geometry.

It is important to note that the parameterized curve that corresponds to the lowbow representa-
tion consists of two parts: the geometric figure {γµ(y) : µ∈ [0,1]} ⊂ PV−1 and the parameterization
function µ .→ γµ(y) that ties the local histogram to a location µ in the normalized document. While

2410

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

it is easy to ignore the parameterization function when dealing with parameterized curves, one must
be aware that different lowbow representations may share similar geometric figures but possess dif-
ferent parameterization speeds. Thus it is important to keep track of the parameterization speed as
well as the geometric figure.

The geometric properties of the curve depend on the word sequence, the kernel shape and the
kernel scale parameter. The kernel scale parameter is especially important as it determines the
amount of temporal smoothing employed. As the following theorem shows, if σ→ ∞ the lowbow
curve degenerates into a single point corresponding to the bow representation. As a consequence
we view the popular bag of words representation (3) as a special case of the lowbow representation.

Theorem 2 Let Kµ,σ be a smoothing kernel such that when σ → ∞, Kµ,σ(x) is constant in µ,x.
Then for σ→ ∞, the lowbow curve γ(y) degenerates into a single point corresponding to the bow
representation of (3).

Proof Since the kernel is both constant and normalized over [0,1], we have Kµ,σ(t) = 1 for all
µ, t ∈ [0,1]. For all µ∈ [0,1],

[γµ(y)] j =
Z 1

0
ϕ(δc(y))(t, j)Kµ,σ(t)dt =

Z 1

0
ϕ(δc(y))(t, j)dt

=
N

∑
i=1

1
N

(
δyi, j

1+ c
1+ c|V | +(1−δyi, j)

c
1+ c|V |

)

∝
N

∑
i=1

δyi, j(1+ c)+(1−δyi, j)c ∝
N

∑
i=1

(δyi, j + c).

Intuitively, small σ will result in a simplicial curve that quickly moves between the different
corners of the simplex as the words y1,y2, . . . ,yN are encountered. The extreme case of σ → 0
represents a discontinuous curve equivalent to the original word sequence representation (1). It is
unlikely that either of the extreme cases σ→ ∞ or σ→ 0 will be an optimal choice from a mod-
eling perspective. By varying σ between 0 and ∞, the lowbow representation interpolates between
these two extreme cases and captures sequential detail at different resolutions. Selecting an appro-
priate scale 0< σ< ∞ we obtain a sequential resolution that captures sequential trends at a certain
resolution while smoothing away finer temporal details.

Figures 2-3 illustrate the curve resulting from the lowbow representation and its dependency
on the kernel scale parameter and the smoothing coefficient. Notice how the curve shrinks as σ
increases until it reaches the single point that is the bow model. Increasing c, on the other hand,
pushes the geometric figure towards the center of the simplex.

It is useful to have a quantitative characterization of the complexity of the lowbow representation
as a function of the chosen kernel and σ. To this end, the kernel’s complexity, defined below, serves
as a bound for variations in the lowbow curve.

2411

LEBANON, MAO AND DILLON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) σ= 0.1,c= 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ= 0.2,c= 0.005

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ= 0.1,c= 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ= 0.2,c= 1

Figure 2: The curve in P1 resulting from the lowbow representation of the word sequence 〈1 1
1 2 2 1 1 1 2 1 1〉. Since [γµ(y)]2 = 1− [γµ(y)]1 we visualize the curve by graphing
[γµ(y)]1 as a function of µ. The figures illustrate the differences as the scale parameter of
the Gaussian kernel σ increases from 0.1 to 0.2 (left vs. right column) and the smoothing
coefficient c varies from 0.005 to 1 (first vs. second row). Increasing the kernel scale
causes some local features to vanish, for example the second local minimum. In addition,
increasing σ shrinks the figure towards the single bow point (represented by the horizontal
line). Increasing the smoothing coefficient c causes the figure to stay away from the
boundary of the simplex and concentrate in the center. Since the curves are composed
of 100 dots, the distances between the dots indicate the parameterization speed of the
curves.

2412

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

(a) σ= 0.1,c= 0.005 (b) σ= 0.2,c= 0.005

(c) σ= 0.1,c= 1 (d) σ= 0.2,c= 1

Figure 3: The curve in P2 resulting from the lowbow representation of the word sequence 〈1 3 3
3 2 2 1 3 3〉. In this case P2 is visualized as a triangle in R2 (see Figure 15 for visu-
alizing P2). The figures illustrate the differences as the scale parameter of the Gaussian
kernel σ increases from 0.1 to 0.2 (left vs. right column) and the smoothing coefficient
c varies from 0.005 to 1 (first vs. second row). Increasing the kernel scale causes some
local features to vanish, for example the tail in the bottom left corner of P2. In addition,
increasing σ shrinks the figure towards the single bow point (represented by the triangle).
Increasing the smoothing coefficient c causes the figure to stay away from the boundary
of the simplex and concentrate in the center. Since the curves are composed of 100 dots,
the distances between the dots indicate the parameterization speed of the curves.

2413

LEBANON, MAO AND DILLON

Definition 7 Let Kµ,σ(t) be a kernel that is Lipschitz continuous1 in µ with a Lipschitz constant
CK(t). The kernel’s complexity is defined as

O(K) =
√
V

Z 1

0
CK(t)dt.

The theorem below proves that the lowbow curve is Lipschitz continuous with a Lipschitz constant
O(K), thus connecting the curve complexity with the shape and the scale of the kernel.

Theorem 3 The lowbow curve γ(y) satisfies

‖γµ(y)− γτ(y)‖2 ≤ |µ− τ| O(K), ∀µ,τ ∈ [0,1].

Proof

|[γµ(y)] j− [γτ(y)] j| ≤
Z 1

0
ϕ(δc(y))(t, j)|Kµ,σ(t)−Kτ,σ(t)|dt

≤
Z 1

0
|Kµ,σ(t)−Kτ,σ(t)|dt

≤|µ− τ|
Z 1

0
CK(t)dt

and so ‖γµ(y)− γτ(y)‖2 =
√
∑ j∈V |[γµ(y)] j− [γτ(y)] j|2 ≤ |µ− τ|O(K).

3. Modeling of Simplicial Curves

Modeling functional data such as lowbow curves is known in the statistics literature as functional
data analysis (e.g., Ramsay and Dalzell, 1991; Ramsay and Silverman, 2005). Previous work in
this area focused on low dimensional functional data such as one dimensional or two dimensional
curves. In this section we discuss some issues concerning generative and conditional modeling of
lowbow curves. Additional information regarding the practical use of lowbow curves in a number
of text processing tasks may be found in Section 5.

Geometrically, a lowbow curve is a point in an infinite product of simplices P[0,1]
V−1 that is nat-

urally equipped with the product topology and geometry of the individual simplices. In practice,
maintaining a continuous representation is often difficult and unnecessary. Sampling the path at rep-
resentative points µ1, . . . ,µl ∈ [0,1] provides a finite dimensional lowbow representation equivalent
to a point in the product space PlV−1. Thus, even though we proceed below to consider continuous
curves and infinite dimensional spaces P[0,1]

V−1, in practice we will typically discretize the curves and
replace integrals with appropriate summations.

Given a Riemannian metric g on the simplex, its product form

g′θ(u,v) =
Z 1

0
gθ(t)(u(t),v(t))dt

defines a corresponding metric on lowbow curves. As a result, geometric structures compatible
with the base metric g, such as distance or curvature, give rise to analogous product versions. For

1. A Lipschitz continuous function f satisfies | f (x)− f (y)| ≤C|x−y| for some constantC called the Lipschitz constant.

2414

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

example, the distance between lowbow representations of two word sequences γ(y),γ(z) ∈ P[0,1]
m is

the average distance between the corresponding time coordinates

d(γ(y),γ(z)) =
Z 1

0
d(γµ(y),γµ(z))dµ (9)

where d(γµ(y),γµ(z)) depends on the simplex geometry under consideration, e.g. Equation (21)
in the case of the Fisher geometry or d(γµ(y),γµ(z)) = ‖γµ(y)− γµ(z)‖2 in the case of Euclidean
geometry.

Using the integrated distance formula (9) we can easily adapt distance-based algorithms to the
lowbow representation. For example, k-nearest neighbor classifiers are adapted by replacing stan-
dard distances such as the Euclidean distance or cosine similarity with the integrated distance (9) or
its discretized version.

In contrast to the base distance on PV−1 which is used in the bow representation, the integrated
distance (9) captures local differences in text sequences. For example, it compares the beginning
of document y with the beginning of document z, the middle with the middle, and the end with the
end. While it may be argued that the above is not expected to always accurately model differences
between documents, it does hold in some cases. For example, news articles have a natural semantic
progression starting with a brief summary at the beginning and delving into more detail later on,
often in a chronological manner. Similarly, other documents such as web pages and emails share a
similar sequential structure. Section 5.3 provides some experimental support for this line of thought
and also describes some alternatives.

In a similar way, we can also apply kernel-based algorithms such as SVM to documents using
the lowbow representation by considering a kernel over P[0,1]

V−1. For example, the product geometry
may be used to define a product diffusion process whose kernel can conveniently capture local
relationships between documents. Assuming a base Fisher geometry we obtain the approximated
diffusion kernel

Kt(γ(y),γ(z)) ∝ exp



−1
t

(Z 1

0
arccos

(

∑
j∈V

√
[γµ(y)] j[γµ(z)] j

)
dµ

)2


 (10)

using the parametrix expansion described in Berger et al. (1971). We omit the details as they are
closely related to the derivations of Lafferty and Lebanon (2005). Alternative kernels can be ob-
tained using the mechanism of Hilbertian metrics developed by Christensen et al. (1984) and Hein
and Bousquet (2005).

The Fisher diffusion kernel of Lafferty and Lebanon (2005) achieves excellent performance in
standard text classification experiments. We show in Section 5 that its lowbow version (10) further
improves upon those results. In addition to classification, the lowbow diffusion kernel may prove
useful for other tasks such as dimensionality reduction using kernel PCA, support vector regression,
and semi-supervised learning.

The lowbow representation may also be used to construct generative models for text that gen-
eralize the naive Bayes or multinomial model. By estimating the probability p(y) associated with
a given text sequence y, such models serve an important role in machine translation, speech recog-
nition and information retrieval. In contrast to the multinomial model which ignores the sequential
progression in a document, lowbow curves γ may be considered as a semiparametric generative
model assigning the probability vector γµ to the generation of words around the document location
µN. Formally this amounts to the following process:

2415

LEBANON, MAO AND DILLON

Step 1 Draw a document length N from some distribution on positive integers.

Step 2 Generate the words y1, . . . ,yN according to

yi ∼Mult(θi1, . . . ,θiV) where θi j ∝
Z i/N

(i−1)/N
[γµ] j dµ.

The above model can also be used to describe situations in which the underlying document
distribution changes with time (e.g., Forman, 2006). Lebanon and Zhao (2007) describe a local
likelihood model that is essentially equivalent to the generative lowbow model described above. In
contrast to the model of Blei and Lafferty (2006) the lowbow generative model is not based on latent
topics and is inherently smooth.

The differential characteristics of the lowbow curve convey significant information and deserve
closer inspection. As pointed out by Ramsay and Silverman (2005), applying linear differential
operators Lα to functional data Lα f = ∑iαiDi f (where Di is the i-th derivative operator) often
reveals interesting features and properties that are normally difficult to detect. The simplest such
operator is the first derivative or velocity Dγµ = γ̇µ (defined by [γ̇µ] j = d[γµ] j/dµ) which reveals the
instantaneous direction of the curve at a certain time point as well as the current speed through its
norm ‖γ̇µ‖. More specifically, we can obtain a tangent vector field γ̇ along the curve that describes
sequential topic trends and their change. Higher order differential operators such as the curvature
reveal the amount of curve variation or deviation from a straight line. Integrating the norm of the
curvature tensor over µ∈ [0,1] provides a measure of the sequential topic complexity or variability
throughout the document. We demonstrate such differential operators and their use in visualization
and segmentation of documents in Section 5. Further details concerning differential operators and
their role in visualizing lowbow curves may be found in Mao et al. (2007).

In general, it is fair to say that modeling curves is more complicated than modeling points.
However, if done correctly it has the potential to capture information that otherwise would remain
undetected. Keeping in mind that we can control the amount of variability by changing σ, thereby
interpolating between 〈y1, . . . ,yN〉 and (3), we are able to effectively model sequential trends in
documents. The choice of σ controls the amount of smoothing and as in non-parametric density
estimation, an appropriate choice is crucial to the success of the model. This notion is explored in
greater detail in the next section.

4. Kernel Smoothing, Bias-Variance Tradeoff and Generalization Error Bounds

The choice of the kernel scale parameter σ or the amount of smoothing is essential for the success
of the lowbow framework. Choosing a σ that is too large would result in a function class that is rel-
atively weak and will not be able to express the desired sequential content. Choosing a σ that is too
small would result in a rich function class that is destined to overfit the available training set. This
central tradeoff has been analyzed in statistics through the bias and variance of the estimated pa-
rameters and in computational learning theory through generalization error bounds. In this section,
we discuss this tradeoff from both viewpoints. Further details concerning the statistical properties
of the lowbow estimator as a local likelihood model for streaming data may be found in Lebanon
and Zhao (2007). Practical aspects concerning the selection of σ appear in Section 5.

2416

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

4.1 Bias and Variance Tradeoff

We discuss the bias and variance of the lowbow model γ(y) as an estimator for an underlying semi-
parametric model {θt : t ∈ [0,1]} ⊂ PV−1 which we assume generated the observed document y.
The model assigns a local multinomial θt to different locations t and proceeds to generate the words
yi, i= 1, . . . ,N according to yi ∼iid θi/N . Note that the iid sampling assumption simply implies that
the sampling of the words from their respective multinomials are independent. It does not prevent
the assumption of a higher order structure, Markovian or otherwise, on the relationship between the
multinomials generating adjacent words θi/N ,θ(i+1)/N .

The bias and variance of the the lowbow estimator γ(y) = θ̂(y), reveal the expected tradeoff by
considering their dependence on the kernel scale σ. We start by writing the components of γ(y) = θ̂
as a weighted combination of the sampled words

θ̂µj =
Z 1

0
y(t, j)Kµ,σ(t)dt =

N

∑
i=1

y(i, j)
Z i/N

(i−1)/N
Kµ,σ(t)dt =∑

τ∈J
wµ−τy(µ− τ, j)

where y ∈X′, wi =
R i/N
(i−1)/N Kµ,σ(t)dt and J = {µ−N, . . . ,µ−1}. It is relatively simple to show that

θ̂µj is a consistent estimator of θµj under conditions that ensure the weight function w approaches
a delta function at µ as the number of samples goes to infinity (e.g., Wand and Jones, 1995). In
our case, the number of samples is fixed and is dictated by the number of words in the document.
However, despite the lack of an asymptotic trend N → ∞ we can still gain insight from analyzing
the dependency of the bias and variance of the lowbow estimator as a function of the kernel scale
parameter σ.

Using standard results concerning the expectation and variance of Bernoulli random variables
we have

bias(θ̂µj) = E(θ̂µj−θµj) =∑
τ∈J

wµ−τE(y(µ− τ, j))−θµj

=∑
τ∈J

wµ−τ(θµ−τ, j−θµj). (11)

Var(θ̂µj) = E(θ̂µj−E θ̂µj)2 = E

(

∑
τ∈J

wµ−τ(y(µ− τ, j)−θµ−τ, j)

)2

=∑
τ∈J
∑
τ′∈J

wµ−τwµ−τ′E(y(µ− τ, j)−θµ−τ)(y(µ− τ′, j)−θµ−τ′, j)

=∑
τ∈J

w2µ−τVar(y(µ− τ, j))

=∑
τ∈J

w2µ−τθµ−τ, j(1−θµ−τ, j). (12)

The bias term clearly depends on the weight vector w and on the rate of local changes in the true
parameter θµj. For a certain fixed model θ̂µj, the bias clearly decreases as the weight distribution
approaches a delta function at µ, that is, wi = 1 if i= µ and 0 otherwise. In fact, in the limiting case
of wi = δiµ, bias(θ̂µj) = 0 and Var(θ̂µj) = θµj(1− θµj). As the weight distribution becomes less
localized, the bias will increase (in the absolute value) and the variance will typically decrease due
to the shape of the function f (wi) = w2i for wi ∈ [0,1]. The precise characterization of the variance

2417

LEBANON, MAO AND DILLON

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

squared bias
variance
mse

Kernel Support L

Figure 4: Squared bias, variance and mean squared error of the lowbow estimator θ̂i j as a function
of a triangular kernel support, that is, L in (13). The curve was generated by averaging
over synthetic data θi j drawn from a bounded Wiener process on [0,1].

reduction depends on the model θµj and the functional form of the kernel. Figure 4 contains an
illustration of the squared bias, variance and mean squared error for the discretized triangular kernel

wi =
1
Z

(
1− 2

L
|i|

)
i= −L/2, . . . ,L/2 (13)

where L defines the kernel support and Z ensures normalization. In the figure, we used synthetic
data θi j, i = 1, . . . ,100 generated from a bounded Wiener process on [0,1] (i.e., a bounded random
walk with Gaussian increments). To avoid phenomena that correspond to a particular sample path
we averaged the bias and variance over 200 samples from the process.

The problem of selecting a particular weight vector w or kernel K for the lowbow estimator that
minimizes the mean squared error is related to the problem of bandwidth kernel selection in local
regression and density estimation. The simple estimate obtained from the plug-in rule for the bias
and variance (i.e., θµj .→ θ̂µj in Equations (11)-(12)) is usually not recommended due to the poor
estimation performance of plug-in rules (e.g., Cleveland and Loader, 1996). More sophisticated
estimates exist, including adaptive estimators that may select different bandwidths or kernels at
different points. An alternative approach, which we adopted in our experiments, is to use cross
validation or bootstrapping in the selection process.

4.2 Large Deviation Bounds and Covering Numbers

An alternative approach to bias-variance analysis is to characterize the kernel scale tradeoff through
the study of generalization error bounds. Such bounds use large deviation techniques to characterize

2418

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

the difference between the empirical risk or training error and the expected risk uniformly over a
class of functions L = { fα : α ∈ I}. These bounds are expressed probabilistically and usually take
the following form (Anthony and Bartlett, 1999)

P
(
sup
α∈I

|E p(L(fα(Z)))−E p̃(L(fα(Z)))| ≥ ε

)
≤C(L ,L,n,ε). (14)

Above, Z represents any sequence of n examples - either X in the unsupervised scenario or (X ,Y)
in the supervised scenario and E p,E p̃ represent the expectation over the sampling distribution and
the empirical distribution p̃(z) = 1

n ∑
n
i=1 δz,zi . L represents some loss function, for example classifi-

cation error rate and the function C measures the rate of uniform convergence of the empirical risk
E p̃(L(fα(Z))) to the true risk E p(L(fα(Z))) over the function class L= { fα : α ∈ I}.

To obtain a model with a small expected risk we need to balance the following two goals. On the
one hand, we need to minimize the empirical risk E p̃(L(α,Z)) since the expected risk is typically
close to the empirical risk (by the uniform law of large numbers). On the other hand, we need to
tighten the bound (14) by selecting a function class L that results in a small value of the function
C. This tradeoff, presented by Vapnik (1998) under the name structural risk minimization, is the
computational learning theory analog of the statistical bias-variance concept.

A lowbow representation with a small σ would lead to a low empirical risk since it results
in a richer and more accurate expression of the data. Increasing σ forms a lossy transformation
and hence leads to essential loss of data features and higher training error but would reduce C and
therefore also the bound on the expected error.

The most frequent way to boundC is through the use of the covering number which measures the
size of a function class (Dudley, 1984; Anthony and Bartlett, 1999). The covering number enables
several ways of determining the rate of uniform convergence C in (14), for example see Theorem 1
and 2 in Zhang (2002).

Definition 8 Let x = x1, . . . ,xn ∈ X be a set of observations and fα : X → R be a parameterized
function. The covering number in p-norm Np(f ,ε,(x1, . . . ,xn)) is the minimum number m of vectors
v1, . . . ,vm ∈ Rn for which

∀α ∃v j such that

(
1
n

n

∑
i=1

| fα(xi)− v ji|p
)1/p

≤ ε.

In other words, the set { fα(x) : α ∈ I} ⊂ Rn is covered by m ε-balls centered at v1, . . . ,vm.

Definition 9 The uniform covering number Np(f ,ε,n) is defined as

Np(f ,ε,n) = sup
x1,...,xn

Np(f ,ε,x1, . . . ,xn).

The covering numbers themselves are difficult to compute precisely and are usually bounded
themselves. Recent research results that bound the covering numbers for important function classes
such as neural networks, support vector machines, boosting and logistic regression may be found in
Williamson et al. (2001), Guo et al. (2002) and Zhang (2002). We focus on the covering number
bounds in Zhang (2002) for linear classifiers as they are relatively easy to express in terms of the
kernel scale parameter. The theorem and bounds below are expressed for continuous lowbow repre-
sentation and continuous linear classifiers. The same results hold with analogous proofs in the more
practical case of finite dimensional linear classifiers and discretized lowbow representations.

2419

LEBANON, MAO AND DILLON

Theorem 4 For the class of continuous linear classifiers L = { fα(γ(y)) : ‖α‖2 ≤ a} operating on
continuous lowbow representation

fα(γ(y)) = ∑
j∈V

Z 1

0
α j(µ)[γµ(y)] j dµ

we have the following bounds on the L2 and L∞ covering numbers

N2(L,ε,n) ≤ 2&a
2b2/ε2' log2(2n+1)

N∞(L,ε,n) ≤ 236(a2b2/ε2) log2(2&4ab/ε+2'n+1)

where b=min(1, |||Kσ|||2).

Above, α represents a vector of weight functions α= (α1, . . . ,αV),αi : [0,1]→ R that parameterize
linear operators on γ(y). The norm ‖α‖2 is defined as

√
∑ j

R
α2j(t)dt. Kσ is an operator on f :

[0,1] .→ [0,1] such that
(
Kσ f

)
(µ) =

R
Kµ,σ(t) f (t)dt. The induced 2-norm of the operator is (e.g.,

Horn and Johnson, 1990)

|||Kσ|||2 = sup
‖ f‖2=1

‖Kσ f‖2 = sup
‖ f‖2=1

√
Z (Z

Kµ,σ(t) f (t)dt
)2

dµ (15)

where ‖ f‖2 =
√R

f 2(t)dt.
Proof First note that the L2 norm of the lowbow representation can be bounded by the constant 1

‖γ(y)‖22 =∑
j∈V

Z 1

0
([γµ(y)] j)2 dµ= ∑

j∈V

Z 1

0

(Z 1

0
x(t, j)Kµ,σ(t)dt

)2
dµ

=∑
j∈V

Z 1

0

(ZZ

[0,1]2
x(t, j)x(t ′, j)Kµ,σ(t)Kµ,σ(t ′)dtdt ′

)
dµ

≤
ZZZ

[0,1]3

(

∑
j∈V

x2(t, j)

)1/2(

∑
j∈V

x2(t ′, j)

)1/2

Kµ,σ(t)Kµ,σ(t ′)dtdt ′dµ

≤
ZZZ

[0,1]3

(

∑
j∈V

x(t, j)

)1/2(

∑
j∈V

x(t ′, j)

)1/2

Kµ,σ(t)Kµ,σ(t ′)dtdt ′dµ

=
Z 1

0

(Z 1

0
Kµ,σ(t)dt

)2
dµ= 1.

Alternatively, an occasionally tighter bound that depends on the operator norm and therefore on the
kernel’s scale parameter is

‖γ(y)‖22 =∑
j∈V

Z 1

0
([γµ(y)] j)2dµ= ∑

j∈V

Z 1

0

(Z 1

0
Kµ,σ(t)x(t, j)dt

)2
dµ= ∑

j∈V
‖Kσx(·, j)‖22

≤∑
j∈V

|||Kσ|||22 ‖x(·, j)‖22 = |||Kσ|||22

(

∑
j∈V

‖x(·, j)‖22

)
≤ |||Kσ|||22

(

∑
j∈V

‖x(·, j)‖1

)

=|||Kσ|||22

(Z 1

0
∑
j∈V

x(t, j)dt

)
= |||Kσ|||22

2420

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

where the last two inequalities follow from the definition of the induced operator norm (Horn and
Johnson, 1990) and the fact that ‖x(·, j)‖22 =

R 1
0 x(t, j)2dt ≤

R 1
0 x(t, j)dt = ‖x(·, j)‖1.

The proof is concluded by plugging in the above bound into Corollary 3 and Theorem 4 of
Zhang (2002):

‖x‖2 ≤ b,‖w‖2 ≤ a ⇒ log2N2(L,ε,n) ≤ +a2b2/ε2, log2(2n+1), (16)

‖x‖2 ≤ b,‖w‖2 ≤ a ⇒ log2N∞(L,ε,n) ≤ 36a
2b2

ε2
log2(2+4ab/ε+2,n+1). (17)

Note that since the bounds in (16)-(17) do not depend on the dimensionality of the data x they hold
for any dimensionality, as well as in the limit of continuous data and continuous linear operators as
above.

The theorem above remains true (and actually it is closer to the original statements in Zhang,
2002) for discretized lowbow representation {γµ(y) : µ∈ T} where T is a finite set which reduces
the lowbow representation and α to a matrix form and discretize the linear operator 〈α,γ(y)〉 =
∑ j∈V ∑µ∈T α jµ[γµ(y)] j. The covering number bounds in Theorem 4 may be directly applied, using
either the continuous or the discretized versions, to bound the classification expected error rate for
linear classifiers such as support vector machines, Fisher’s linear discriminant, boosting, and logistic
regression. We do not reproduce these results here since active research in this area frequently
improves the precise form of the bound and the constants involved.

As the kernel scale parameter σ decreases, the kernel becomes less uniform thus increasing the
possible variability in the data representation ‖γ(y)‖22 and the covering number bound. In the case
of the bounded Gaussian kernel (6) we compute |||Kσ|||2 as a function of the kernel scale parameter
σ which is illustrated in Figure 5.

5. Experiments

In this section, we demonstrate lowbow’s applicability to several text processing tasks, including text
classification using nearest neighbor and support vector machines, text segmentation, and document
visualization. All experiments use real world data.

5.1 Text Classification using Nearest Neighbor

We start by examining lowbow and its properties in the context of text classification using a nearest
neighbor classifier. We report experimental results for the WebKB faculty vs. course task and the
Reuters-21578 top ten categories (1 vs. all) using the standard mod-apte training-testing split. In the
WebKB task we repeatedly sampled subsets for training and testing with equal positive and negative
examples. In the Reuters task we randomly sampled subsets of the mod-apte split for training and
testing data which resulted in unbalanced train and test sets containing more negative than positive
examples. Sampling training sets of different sizes from the mod-apte split enabled us to examine
the behavior of the classifiers as a function of the size of the training set.

The continuous quantities in the lowbow calculation were approximated by a discrete sample
of 5 equally spaced points in the interval [0,1] turning the integrals into simple sums. As a result,
the computational complexity associated with the lowbow representation is simply the number of
sampling points times the complexity of the corresponding bow classifier. Choosing 5 sampling

2421

LEBANON, MAO AND DILLON

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

σ

|||
K
σ
|||
2

Figure 5: |||Kσ|||2 for the bounded Gaussian kernel (6) as a function of the kernel scale parameter
σ. The continuous 2-norm definition in (15) is approximated by 5 equally spaced samples
for µ and 20 equally spaced samples for t.

points is rather arbitrary in our case and we did not find it critical to the nature of the experimental
results. Throughout the experiments we used the bounded Gaussian kernel (6) and computed several
alternatives for the kernel scale parameter σ and chose the best one. While not entirely realistic, this
setting enables us to examine lowbow’s behavior in the optimistic scenario of being able to find the
best scale parameter. The next section includes similar text classification experiments using SVM
that explore further the issue of automatically selecting the scale parameter σ.

Figure 6 (top) displays results for nearest neighbor classification using the Fisher geodesic dis-
tance on the WebKB data. The left graph is a standard train-set size vs. test set error rate comparing
the bow geodesic (lowbow with σ → ∞) (dashed) and the lowbow geodesic distance. The right
graph displays the dependency of the test set error rate on the scale parameter indicating an opti-
mal scale at around σ = 0.2 (for repeated samplings of 500 training examples). In both cases, the
performances of standard bow techniques such as tf cosine similarity or Euclidean distance were
significantly inferior (20-40% higher error rate) than the Fisher geodesic distances and as a result
are not displayed.

Figure 6 (bottom) displays test set error rates for the Reuters-21578 task. The 10 rows in the
table indicate the classification task of identifying each of the 10 most popular classes in the Reuters
collection. The columns represent varying training set sizes sampled from the mod-apte split. The
lowbow geodesic distance for an intermediate scale is denoted by err1 and for σ→ ∞ is denoted by
err2. Tf-cosine similarity and Euclidean distance for bow are denoted by err3 and err4.

The experiments indicate that lowbow geodesic clearly outperforms, for most values of σ, the
standard tf-cosine similarity and Euclidean distance for bow (represented by err3,err4). In addition
they also indicate that in general, the best scale parameter for lowbow is an intermediate one, rather
than the standard bow model σ→ ∞ thus validating the hypothesis that we can leverage sequential

2422

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

200 250 300 350 400 450 500
0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

t siz e

t s
e

t e
rr

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.095

0.1

0.105

0.11

0.115

0.12

0.125

or
r

Train Size = 100 Train Size = 200 Train Size = 400
class err1 err2 err3 err4 err1 err2 err3 err4 err1 err2 err3 err4
1 9.9 10.6 11.2 11.0 8.1 9.7 8.2 10.7 6.7 7.3 11.2 9.0
2 11.6 12.8 17.6 22.4 9.4 9.7 17.6 19.9 7.9 7.8 17.2 17.9
3 6.8 7.6 6.9 12.9 5.8 7.2 7.8 16.9 5.4 5.3 10.2 12.6
4 5.6 6.5 6.5 5.5 4.8 4.8 7.1 7.0 4.5 4.7 8.5 7.5
5 6.6 6.2 9.0 11.4 5.7 6.8 6.7 10.3 5.0 5.6 5.8 7.4
6 5.7 5.8 5.8 10.8 5.2 5.3 5.3 10.0 4.8 5.4 5.6 11.3
7 4.2 5.1 7.0 12.9 4.2 4.3 7.9 9.0 3.9 4.3 5.8 7.5
8 3.0 3.2 4.7 7.6 3.0 3.3 3.4 3.4 2.6 2.9 3.2 3.9
9 2.8 4.0 4.9 7.9 3.1 3.0 6.4 2.8 2.9 3.2 4.7 5.1
10 2.7 2.9 3.6 2.6 2.6 3.0 5.8 3.1 2.3 2.6 3.7 2.2

Figure 6: Experimental test set error rates for WebKB course vs. faculty task (top) and Reuters top
10 classes using samples from mod-apte split (bottom). err1 is obtained using the lowbow
geodesic distance with the optimal kernel scale. err2–err4 denote using geodesic distance,
tf-Cosine similarity and Euclidean distance for bow.

2423

LEBANON, MAO AND DILLON

information using the lowbow framework to improve on global bow models. The next section
describes similar experiments using SVM on the RCV1 data set which include automatic selection
of the scale parameter σ.

5.2 Text Classification using Support Vector Machine

We extended our WebKB and Reuters-21578 text classification experiments to the more recently
released and larger RCV1 data set (Lewis et al., 2004). In particular, we focused on the 1 vs. all
classification tasks for topics that correspond to leaf nodes in the topic hierarchy and contain no less
than 5000 documents. This results in a total of 43 topic codes displayed in Table 1. For further
description of the topic hierarchy of the RCV1 data set refer to Lewis et al. (2004).

In our experiments we examined the classification performance of SVM with the Fisher diffu-
sion kernel for bow (Lafferty and Lebanon, 2005) and its corresponding product version for lowbow
(10) (which reverts to the kernel of Lafferty and Lebanon (2005) for σ→∞). Our experiments vali-
date the findings in Lafferty and Lebanon (2005) which indicate a significantly poorer performance
for linear or RBF kernels. We therefore omit these results and concentrate on comparing the SVM
performance for the kernel (10) using various values of σ.

We report the classification performance of SVM using the kernel (10) for three different values
of σ: (i) σ→∞ represents the standard bow diffusion kernel of Lafferty and Lebanon (2005) (ii) σopt
represents the best performing scale parameter in terms of test set error rate, and (iii) σ̂opt represents
an automatically selected scale parameter based on minimizing the leave-one-out cross validation
(loocv) train-set error estimate computed by the SVM-light toolkit. In case of ties, we pick the σ
with the smallest value, thus favoring less local smoothing. The loocv estimate is computed at no
extra cost and is a convenient way to adaptively estimate σopt. In all of our experiments below we
ignore the role of the diffusion time t in (10) and simply try several different values and choose the
best one.

Table 1 reports the test set error rates and standard errors corresponding to the three scales
σ̂opt,σ→ ∞,σopt for the selected RCV1 1 vs. all classification tasks. Notice that in general, the
lowbow σ̂opt significantly outperforms the standard bow approach. The performance of σopt further
improves on that indicating that a more intelligent scale selection method could result in even lower
error rates. Table 1 is also displayed graphically in Figure 8 for σ̂opt and σ→∞. Figure 7 shows the
corresponding train set loocv error rates and standard errors.

In our experiments, the sampling of the train and test sets were balanced, with equal number
of positive and negative examples. Selections of the optimal σopt and the estimated σ̂opt were done
based on the following set of possible values {0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.5,0.6,0.7,0.8,0.9,
1,2,4,10,100}. In all the classification tasks, lowbow performs substantially better than bow. The
error bars indicate one standard deviation from the mean, and support experimentally the assertion
that lowbow has lower variance.

Figure 9 compares the performance of lowbow for σ̂opt, σ→ ∞, and σopt as a function of the
train set size (with the testing size being fixed as 200). As pointed out earlier, the performance of
σ̂opt is consistently better than bow with some room for improvement represented by the σopt.

5.3 Dynamic Time Warping of Lowbow Curves

As presented in the previous sections, the lowbow framework normalizes the time interval [1,N] to
[0,1] thus achieving an embedding of documents of varying lengths in P[0,1]

V−1. Proceeding with the

2424

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

σ̂opt σ→ ∞ (bow) σopt
C11 0.1021 ± 0.0122 0.1234 ± 0.0198 0.0755 ± 0.0071
C12 0.0519 ± 0.0099 0.0664 ± 0.0161 0.0324 ± 0.0072
C13 0.1316 ± 0.0156 0.1527 ± 0.0232 0.1008 ± 0.0088
C14 0.0359 ± 0.0070 0.0537 ± 0.0151 0.0190 ± 0.0050
C1511 0.0494 ± 0.0105 0.0636 ± 0.0163 0.0296 ± 0.0067
C152 0.0860 ± 0.0117 0.1129 ± 0.0239 0.0660 ± 0.0075
C171 0.0522 ± 0.0113 0.0662 ± 0.0185 0.0310 ± 0.0067
C172 0.0313 ± 0.0077 0.0491 ± 0.0134 0.0175 ± 0.0053
C174 0.0066 ± 0.0044 0.0138 ± 0.0080 0.0003 ± 0.0011
C181 0.0634 ± 0.0105 0.0879 ± 0.0174 0.0444 ± 0.0066
C183 0.0283 ± 0.0083 0.0400 ± 0.0135 0.0126 ± 0.0036
C21 0.1269 ± 0.0151 0.1541 ± 0.0298 0.0985 ± 0.0105
C22 0.0614 ± 0.0121 0.0839 ± 0.0235 0.0400 ± 0.0063
C24 0.1009 ± 0.0147 0.1192 ± 0.0267 0.0725 ± 0.0078
C312 0.0494 ± 0.0097 0.0684 ± 0.0176 0.0299 ± 0.0059
C411 0.0321 ± 0.0084 0.0456 ± 0.0109 0.0156 ± 0.0050
C42 0.0550 ± 0.0132 0.0745 ± 0.0211 0.0347 ± 0.0071
E11 0.0356 ± 0.0088 0.0489 ± 0.0174 0.0196 ± 0.0049
E131 0.0213 ± 0.0066 0.0320 ± 0.0115 0.0083 ± 0.0038
E211 0.0372 ± 0.0079 0.0526 ± 0.0151 0.0233 ± 0.0045
E212 0.0293 ± 0.0077 0.0441 ± 0.0142 0.0150 ± 0.0038
E512 0.0568 ± 0.0091 0.0694 ± 0.0186 0.0339 ± 0.0054
E71 0.0051 ± 0.0042 0.0106 ± 0.0084 0.0000 ± 0.0000
G154 0.0155 ± 0.0067 0.0238 ± 0.0127 0.0043 ± 0.0033
GCRIM 0.0533 ± 0.0111 0.0730 ± 0.0164 0.0315 ± 0.0059
GDEF 0.0373 ± 0.0106 0.0526 ± 0.0164 0.0221 ± 0.0047
GDIP 0.0485 ± 0.0112 0.0694 ± 0.0180 0.0309 ± 0.0058
GDIS 0.0306 ± 0.0065 0.0451 ± 0.0190 0.0145 ± 0.0052
GENV 0.0466 ± 0.0106 0.0626 ± 0.0155 0.0301 ± 0.0045
GHEA 0.0298 ± 0.0088 0.0406 ± 0.0154 0.0148 ± 0.0045
GJOB 0.0512 ± 0.0117 0.0628 ± 0.0169 0.0308 ± 0.0057
GPOL 0.0675 ± 0.0099 0.0800 ± 0.0178 0.0434 ± 0.0073
GPRO 0.0624 ± 0.0094 0.0800 ± 0.0204 0.0414 ± 0.0068
GSPO 0.0035 ± 0.0032 0.0095 ± 0.0068 0.0000 ± 0.0000
GVIO 0.0359 ± 0.0080 0.0483 ± 0.0136 0.0185 ± 0.0044
GVOTE 0.0274 ± 0.0076 0.0415 ± 0.0130 0.0126 ± 0.0045
M11 0.0395 ± 0.0099 0.0602 ± 0.0165 0.0213 ± 0.0055
M12 0.0366 ± 0.0096 0.0495 ± 0.0120 0.0200 ± 0.0051
M131 0.0343 ± 0.0087 0.0485 ± 0.0131 0.0184 ± 0.0054
M132 0.0300 ± 0.0085 0.0401 ± 0.0134 0.0141 ± 0.0042
M141 0.0236 ± 0.0070 0.0379 ± 0.0122 0.0106 ± 0.0044
M142 0.0181 ± 0.0061 0.0311 ± 0.0102 0.0065 ± 0.0036
M143 0.0200 ± 0.0067 0.0320 ± 0.0101 0.0076 ± 0.0038

Table 1: Mean and standard error of the test set error rate over 40 realizations of 200 testing and
500 training documents for RCV1 C, E, G, M categories that also appear in Figure 8. Best
achievable error rates for lowbow are also reported in the third column.

2425

LEBANON, MAO AND DILLON

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C1
1

C1
2

C1
3

C1
4

C1
51

1
C1

52
C1

71
C1

72
C1

74
C1

81
C1

83
C2

1
C2

2
C2

4
C3

12
C4

11
C4

2

σ →∞ (bow)

σ^opt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E1
1

E1
31

E2
11

E2
12

E5
12

E7
1

σ →∞ (bow)

σ^opt

0

0.02

0.04

0.06

0.08

0.1

0.12

G
15

4

G
CR

IM

G
D

EF

G
D

IP

G
D

IS

G
EN

V

G
H

EA

G
JO

B

G
PO

L

G
PR

O

G
SP

O

G
VI

O

G
VO

TE

σ →∞ (bow)

σ^opt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
11

M
12

M
13

1

M
13

2

M
14

1

M
14

2

M
14

3

σ →∞ (bow)

σ^opt

Figure 7: Mean and standard error of train set leave-one-out cross-validation (loocv) error rates.
Results are averaged over 40 realizations of 500 training documents with a balanced pos-
itive and negative sampling. Lowbow results correspond to σ̂opt.

2426

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C1
1

C1
2

C1
3

C1
4

C1
51

1
C1

52
C1

71
C1

72
C1

74
C1

81
C1

83 C2
1

C2
2

C2
4

C3
12

C4
11 C4

2

σ →∞ (bow)

σ^opt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E1
1

E1
31

E2
11

E2
12

E5
12 E7

1

σ →∞ (bow)

σ^opt

0

0.02

0.04

0.06

0.08

0.1

0.12

G
15

4

G
CR

IM

G
D

EF

G
D

IP

G
D

IS

G
EN

V

G
H

EA

G
JO

B

G
PO

L

G
PR

O

G
SP

O

G
VI

O

G
VO

TE

σ →∞ (bow)

σ^opt

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
11

M
12

M
13

1

M
13

2

M
14

1

M
14

2

M
14

3

σ →∞ (bow)

σ^opt

Figure 8: Mean and standard error of test set error rates. Results are averaged over 40 realizations of
500 training and 200 testing documents with a balanced positive and negative sampling.
Lowbow results correspond to σ̂opt. See Table 1 for associated values.

2427

LEBANON, MAO AND DILLON

100 150 200 250 300 350 400 450 500 550 600
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
C21

σ →∞ (bow)

σ^opt

σopt

train set size

te
st

 s
et

 e
rr

or
 ra

te

100 150 200 250 300 350 400 450 500 550 600
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
E211

σ →∞ (bow)

σ^opt

σopt

train set size

te
st

 s
et

 e
rr

or
 ra

te

100 150 200 250 300 350 400 450 500 550 600
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
GJOB

σ →∞ (bow)

σ^opt

σopt

train set size

te
st

 s
et

 e
rr

or
 ra

te

100 150 200 250 300 350 400 450 500 550 600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
M142

σ →∞ (bow)

σ^opt

σopt

train set size

te
st

 s
et

 e
rr

or
 ra

te

Figure 9: Test set error rate as a function of training size averaged over 40 realizations for RCV1
tasks C21, E211, GJOB and M142 (1 vs. all).

2428

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

assumption of a product geometry, lowbow representations corresponding to different documents
y,z relate to each other by comparing γµ(y) to γµ(z) for all µ∈ [0,1], for example as is the case in
the integrated distance

d(γ(y),γ(z)) =
Z 1

0
d(γµ(y),γµ(z))dµ. (18)

This seems reasonable if the two documents y,z share a sequential progression of a similar
rate, after normalizing for document length. However, such an assumption seems too restrictive in
general as documents of different nature such as news stories and personal webpages are unlikely to
posses such similar sequential progression. This assumption also seems untrue to a lesser extent for
two documents written by different authors who posses their own individual styles. Such cases can
be modeled by introducing time-warping or re-parameterization functions that match the individual
temporal domains of lowbow curves to a unique canonical parameterization. Before proceeding
to discuss such re-parameterization in the context of lowbow curves we briefly review their use in
speech recondition and functional data analysis.

In speech recognition such re-parameterization functions are used to align the time axes cor-
responding to two speech signals uttered by different individuals or by the same individual under
different circumstances. These techniques, commonly referred to as dynamic time warping (DTW)
(Sakoe and Chiba, 1978), define the distance between two signals s,r as

d(s,r) = min
ι1,ι2∈I

Z
d(s(ι1(t)),r(ι2(t)))dt (19)

where I represent the class of smooth monotonic increasing bijections ι : [0,1] → [0,1]. Using dy-
namic programming the discretized minimization problem corresponding to (19) can be efficiently
computed, resulting in the wide spread use of DTW in the speech recognition community.

Similarly, such time parameterization techniques have been studied in functional data analysis
under the name curve registration (Ramsay and Silverman, 2005). In contrast to dynamic time
warping, curve registration is usually performed by an iterative procedure aimed at aligning salient
features of the data and minimizing the post-alignment residual.

In contrast to the smoothness and monotonic nature of the re-parameterization class I in speech
recognition and functional data analysis, it seems reasonable to allow some amount of discontinuity
in lowbow re-parameterization. For example, while one document may posses a certain sequen-
tial progression, a second document may reverse the appearance of some of the sequential trends.
Adjusting the original DTW definition of the re-parameterization family I we obtain the following
modified characterization of the class of admissible re-parameterization.

Bijection Re-parameterization ι ∈ I are a bijection from [0,1] onto itself.

Piecewise smoothness The re-parameterization functions ι ∈ I are piecewise smooth and mono-
tonic, that is, given two partitions of [0,1] to sequences of disjoint intervals A1, . . . ,Ar with
∪A j = [0,1] and B1, . . . ,Br with ∪B j = [0,1] we have that for some permutation π over r
items, ι : A j → Bπ(j) is a smooth monotonic increasing bijection for all j = 1, . . . ,r.

The requirement above of piecewise continuity seems reasonable as it is natural to expect some
re-ordering among sections or paragraphs of similar documents. Using a combination of dynamic
programming similar to the one of Sakoe and Chiba (1978) and a variation of earth mover distance

2429

LEBANON, MAO AND DILLON

(Rubner et al., 2000) known as the Hungarian algorithm (Munkres, 1957), the minimization problem
(19) over the class I described above may be computed efficiently.

We conducted a series of experiments examining the benefit in introducing dynamic time warp-
ing or registration in text classification. Somewhat surprisingly, adding dynamic time warping or
registration to lowbow classification resulted in only a marginal modification of the distances and
consequently only a marginal improvement in classification performance. There are two reasons
for this relatively minor effect introduced by the dynamic time warping. First, the RCV1 corpus for
which these experiments were conducted consists of documents containing a fairly homogeneous
semantic structure and presentation. As such, the curves can reasonably be compared by using in-
tegrated distances or kernels without a need for re-parameterization. Second, the local smoothing
inherent in the lowbow representation makes it fairly robust to some amount of temporal misalign-
ment. In particular, by selecting the kernel scale parameter appropriately we are able to prevent
unfortunate effects due to different sequential parameterizations. Although surprising, this is in-
deed a positive result as it indicates that the lowbow representation is relatively robust to different
time parameterization, at least when applied to documents sharing similar structure such as news
stories in RCV1 corpus or webpages in the WebKB data set.

5.4 Text Segmentation

Text segmentation is the task of discovering topical boundaries inside documents, for example tran-
scribed news-wire data. In general, this task is hard to accomplish using low order n-gram infor-
mation. Most methods use a combination of longer range n-grams and other sequential features
such as trigger pairs. Our approach in this section is not to carefully construct a state-of-the-art text
segmentation system but rather to demonstrate the usefulness of the continuous lowbow representa-
tion in this context. More information on text segmentation and a recent exponential model-based
approach may be found in Beeferman et al. (1999).

The boundaries between different text segments, by definition, separate document parts contain-
ing different word distributions. In the context of lowbow curves, this would correspond to sudden
dramatic shifts in the curve location. Due to the continuity of the lowbow curves, such sudden
movements may be discovered by considering the gradient vector field γ̇µ along the lowbow curve.
In addition to containing predictive information that can be used in segmentation models, the gra-
dient enables effective visualization of the instantaneous change that is central to human-assisted
segmentation techniques.

To illustrate the role of the gradient γ̇µ(y) in segmentation we examine its behavior for a doc-
ument y containing clear and pre-determined segments. Following Beeferman et al. (1999), we
consider documents y created by concatenating news stories which resemble the continuous tran-
scription of news stories. We examine the behavior of the lowbow curve and its gradient for two
documents created in this fashion. The curves were sampled at 100 equally spaced points and
the gradient is approximated by the finite difference in word histograms localized at adjacent time
points. Generally speaking, for purpose of visualization the number of sampling points should be
proportional to the length of the document in order to accurately capture the change in the local
word histogram. This is different from the classification task which is not sensitive to the choice of
the number of samples and thus favors a small value in the interest of lowering the computational
complexity associated with classification.

2430

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 0

 0.2

 0.4

 0.6

 0.8

 1.0

PSfrag replacements
.20
.40 0 0.2 0.4 0.6 0.8 1

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

 0

 0.19

 0.41

 0.65

 0.75

 0.91

 PSfrag replacements
.20
.40

Figure 10: Velocity of the lowbow curve as a function of t. Left: five randomly sampled new stories of equal
size (σ= 0.08). Right: three successive RCV1 news articles of varying lengths (σ= 0.065).

The first document was created by concatenating five randomly sampled news stories from the
Wall Street Journal data set. To ensure that the different segments will be of equal length, we
removed the final portions of the longer stories thus creating predetermined segment borders at
µ= 0.2,0.4,0.6,0.8. The gradient norm ‖γ̇µ(y)‖2 of this document is displayed in the the left panel
of Figure 10. Notice how the 4 equally spaced internal segment borders (displayed by the numbered
circles in the figure), correspond almost precisely, to the local maxima of the gradient norm.

The second document, represents a more realistic scenario where the segments correspond to
successive news stories of varying lengths. We created it by randomly picking three successive
news articles from the RCV1 collection (document id: 18101, 18102 and 18103) and concatenating
them into a single document. The two internal segment borders occur at µ= 0.19 and µ= 0.41 (the
last story is obviously longer than the first two stories). The right panel of Figure 10 displays the
gradient norm ‖γ̇µ‖2 for the corresponding lowbow curve. The curve has five local maxima, with
the largest two local maxima corresponding almost precisely to the segment borders at µ= 0.19
and µ= 0.41. The three remaining local maxima correspond to internal segment boundaries within
the third story. Indeed, the third news story begins with discussion of London shares and German
stocks; it then switches to discuss French stocks at point µ= 0.65 before switching again at µ= 0.75
to talk about how the Bank of Japan’s quarterly corporate survey affects the foreign exchange. The
story moves on at µ= 0.95 to discuss statistics of today’s currencies and stock market. As with the
different news story boundaries, the internal segment boundaries of the third story closely match the
local maxima of the gradient norm.

The lowbow curve itself carries additional information beyond the gradient norm for segmenta-
tion purposes. Portions of the curve corresponding to different segments will typically contain dif-
ferent local word histograms and will therefore occupy different parts of the simplex. Sampling the
curve at an equally spaced time grid {µ1, . . . ,µk}⊂ [0,1] and clustering the points {γµ1(y), . . . ,γµk(y)}
reveals distinct segments as distinct clusters. A similar approach uses partial human feedback to
present to a user a low dimensional embedding of {γµ1(y), . . . ,γµk(y)} given his or her choice of the
scale parameter. The benefit in doing so is that it is typically much easier to visualize graphics than

2431

LEBANON, MAO AND DILLON

−0.15 −0.1 −0.05 0 0.05 0.1
−0.15

−0.1

−0.05

0

0.05

0.1

 0

 0.19

 0.41
 1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 0

 0.19

 0.41

 1.0

Figure 11: 2D embeddings of the lowbow curve representing the three successive RCV1 stories (see text
for more details) using PCA (left, σ= 0.02) and MDS (right, σ= 0.01).

text content. Such techniques for rapid document visualization and browsing are also illustrated in
the next section.

Figure 11 shows the 2D projection of the lowbow curve for the three concatenated RCV1 stories
mentioned above. To embed the high dimensional curve in two dimensions we used principal com-
ponent analysis (PCA) (left panel) and multidimensional scaling using the Fisher geodesic distance
(right). The blue crosses indicate the positions of the sampled points in the low dimensional em-
bedding while the red circles correspond to the segment boundaries of the three RCV1 documents.
In both figures, {γµ1(y), . . . ,γµk(y)} are naturally grouped into three clusters, indicating the presence
of three different segments. The distance between successive points near the segment boundaries is
relatively large which demonstrates the high speed of the lowbow curve at these points (compare it
with the gradient norm in right panel of Figure 10).

5.5 Text Visualization

We conclude the experiments with a text visualization demonstration based on the current journal
article. Visualizing this document has the added benefit that the reader is already familiar with the
text, hopefully having read it carefully thus far. Additional visualization applications of the lowbow
framework may be found in Mao et al. (2007).

The gradient norm ‖γ̇(t)‖2 of the lowbow curve of this paper is displayed in Figure 12. The
marks indicate the beginning of each section that are identified by numbers in parentheses, for
example, Section 2 begins at µ= 0.085. Almost all of the local maxima of the curve correspond
precisely to the section boundaries, with some interesting exceptions. For example, the global
maximum occurs near µ= 0.17 where we finish the lowbow definition (Definition 6) and start
proving its properties (Theorem 1). Interestingly, the gradient speed does not distinguish between
the two subsections concerning nearest neighbor and SVM classification experiments (µ= 0.61).
In performing the above experiment, the abstract, references and this subsection (Section 5.5) are
excluded from the generation of the lowbow curve and equations were replaced by special markers.

2432

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 0 (1)

 0.085 (2)

 0.235 (3)
 0.37 (4)

 0.46 (4.2)
 0.545 (5) 0.665 (5.3)

 0.77 (5.4)

 0.865 (6)

 0.955 (Appendix)

 1.0

 0.17

 0.61 (5.2)
 0.92 (7)

Figure 12: Velocity of the lowbow curve computed for this paper as a function of µ (σ = 0.04).
Abstract, references and Section 5.5 are excluded from curve generation. The marks
indicate the beginning of each section that are identified by numbers in parentheses, for
example, Section 2 begins at µ= 0.085.

Figure 13 depicts 2D projections of the lowbow curve corresponding to Sections 5.1–5.4 (sec-
tion boundaries occurring at µ= {0.2,0.38,0.72}) using PCA (left) and MDS (right) based on
Fisher geodesic distance. As previously demonstrated, the lowbow curve nicely reveals three clus-
ters corresponding to the different subsections with the exception of not distinguishing between the
nearest neighbor and SVM experiments. Using interactive graphics it is possible to extract more
information from the lowbow curves by examining the 3D PCA projection, displayed in Figure 14.
The dense clustering of the points at the beginning of the 2D curve is separated in the 3D figure,
however, there is no way to separate the crossing at the end of the curve in both 3D and 2D.

6. Related Work

The use of n-gram and bow has a long history in speech recognition, language modeling, informa-
tion retrieval and text classification. Recent monographs surveying these areas are Jelinek (1998),
Manning and Schutze (1999), and Baeza-Yates and Ribeiro-Neto (1999). In speech recognition and
language modeling n-grams are used typically with n= 1,2,3. In classification, on the other hand,
1-grams or bow are the preferred option. While some attempts have been made to use bi-grams and
tri-grams in classification as well as to incorporate richer representations, the bow representation is
still by far the most popular.

Comparisons of several statistical methods for text classification using the bow representation
may be found in Yang (1999). Joachims (2000) applies support vector machines to text classification
using various 1-gram representations. Zhang and Oles (2001) consider several regularized linear

2433

LEBANON, MAO AND DILLON

−0.06 −0.02 0.02 0.06 0.1
−0.06

−0.02

0.02

0.06

0.1

 0
 0.2

 0.38

 0.72

 1.0

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 0

 0.2

 0.38

 0.72

 1.0

Figure 13: 2D embeddings of the lowbow curve computed for Section 5.1–5.4 using PCA (left,
σ= 0.03) and MDS (right, σ= 0.02).

Figure 14: 3D embeddings of the lowbow curve computed for Section 5.1–5.4 using PCA (σ =
0.03). The numbers are µ×100.

2434

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

classifiers and Schapire and Singer (2000) experiment with AdaBoost. In general, most papers
use a representation that is based on the word histogram with L2 or L1 normalization, binary word
appearance events, or tfidf. The differences between the above representations tend to be minor and
there is no clear conclusion which precise representation works best. Once the representation has
been fixed, it is generally accepted that support vector machines with linear or rbf kernels result in
the state-of-the-art performance, with logistic regression slightly trailing behind.

A geometric point of view considering the bow representation as a point in the multinomial
simplex is expressed in Lebanon (2005) and Lafferty and Lebanon (2005). A recent overview of
the geometrical properties of probability spaces is provided in Kass (1989) and Amari and Nagaoka
(2000). The use of simplicial curves in text modeling is a relatively new approach but has been
previously considered by Gous (1998) and Hall and Hofmann (2000). However, in contrast to these
papers we represent a single document, rather than a corpus, as a curve in the simplex. The use of
the heat or diffusion kernel in machine learning appeared first in Kondor and Lafferty (2002) in the
context of graphs and later in Lafferty and Lebanon (2003) in the context of Riemannian manifolds.
Cuturi (2005) describes some related ideas that lead to a non-smooth multi-scale view of images.
These ideas were later expanded (Cuturi et al., 2007) to consider dynamic time warping which is
highly relevant to the problem of matching two lowbow curves.

Modeling functional data such as lowbow curves in statistics has been studied in the context
of functional data analysis. The recent monograph by Ramsay and Silverman (2005) provides an
interesting survey and advocates the use of continuous representations even for data that is normally
obtained in a discrete form. Wand and Jones (1995) and Loader (1999) provide a recent overview
of local smoothing in statistics which is closely related to the lowbow framework.

Document visualization solutions were generally considered for visualizing a corpus of doc-
uments rather than visualizing a single document. Typical approaches include dimensionality re-
duction of the bow representation using methods such as multi-dimensional scaling and PCA. For
examples see Fortuna et al. (2005) and Havre et al. (2002). IN-SPIRE is a document visualization
tool2 developed at Pacific Northwest National Lab that uses related ideas for corpus visualization.
Blei and Lafferty (2006) use a dynamic extension of latent Dirichlet allocation (Blei et al., 2003)
to explore and visualize temporal changes in a corpus of time-stamped documents. In contrast to
most of the studies mentioned above, we are concerned with the sequentially modeling of a single
document, rather than a corpus, at one or more sequential resolutions.

7. Discussion

The lowbow representation is a promising new direction in text modeling. By varying σ it inter-
polates between the standard word sequence representation 〈y1, . . . ,yN〉 and bow. In contrast to
n-gram, it captures topical trends and incorporates long range information. On the other hand, the
lowbow novelty is orthogonal to n-gram as it is possible to construct lowbow curves over n-gram
counts.

Under our current model, two different lowbow curves are compared in a point-wise manner.
When an attempt was made to register the curves by constructing a time warping function to syn-
chronize the two curves, little or no improvement was found. This is due partly to the nature of the
data and partly to the robustness of the lowbow representation being insensible to time-misalignment
by adapting the scale parameter.

2. IN-SPIRE can be found at http://in-spire.pnl.gov/.

2435

LEBANON, MAO AND DILLON

In this paper we have focused on analyzing lowbow curves at one particular scale σ. An alterna-
tive and potentially more powerful approach is to consider a family of lowbow curves corresponding
to a collection of scale parameters σ. The resulting family of curves constitute a multiresolution
representation of documents similar to the use of Gabor filters and wavelets in signal processing.
Exploring such sequential multiresolution representation and their relationship to wavelets should
be more closely examined.

The lowbow framework is aesthetically pleasing, and achieves good results both in terms of
numeric classification accuracy and in terms of presenting a convenient visual text representation
to a user. Using a smoothing kernel, it naturally interpolates between bow and complete sequential
information. In contrast to categorical smoothing methods employed by n-grams (such as back-off
and interpolation) lowbow employs temporal smoothing which is potentially more powerful due to
its ordinal nature. The correspondence with smooth curves in the simplex enables the use of a wide
array of tools from differential geometry and analysis that are otherwise unavailable to standard
discrete text representations.

Acknowledgments

The authors wish to thank Jeff Bilmes for his interesting comments regarding the lowbow represen-
tation, and the anonymous reviewers for their helpful suggestions. This work was supported in part
by NSF grant DMS-0604486.

Appendix A. The Multinomial Simplex and its Geometry

In this section, we present a brief description of the multinomial simplex and its information geom-
etry. Since the simplex is the space of bow representations, its geometry is crucial to the lowbow
representation. The brief description below uses some concepts from Riemannian geometry. For
additional information concerning the geometry of the simplex refer to Kass and Voss (1997), Amari
and Nagaoka (2000), or Lebanon (2005). Standard textbooks on differential and Riemannian geom-
etry are Spivak (1975), Lee (2002), and Boothby (2003).

The multinomial simplex Pm for m > 0 is the m-dimensional subset of Rm+1 of all probability
vectors or histograms over m+1 objects

Pm =

{
θ ∈ Rm+1 : ∀i θi ≥ 0,

m+1

∑
j=1

θ j = 1

}
.

Its connection to the multinomial distribution is that every θ ∈ Pm corresponds to a multinomial
distribution over m+1 items.

The simplex definition above includes the boundary of vectors with zero probabilities. In order
to formally consider the simplex as a differentiable manifold we need to remove that boundary and
consider only strictly positive probability vectors. A discussion concerning the positivity restriction
and its relative unimportance in practice may be found in Lafferty and Lebanon (2005).

The topological structure of Pm, which determines the notions of convergence and continuity,
is naturally inherited from the standard topological structure of the embedding space Rm+1. The
geometrical structure of Pm that determines the notions of distance, angle and curvature is deter-
mined by a local inner product gθ(·, ·),θ ∈ Pm, called the Riemannian metric. The most obvious

2436

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

Figure 15: The 2-simplex P2 may be visualized as a surface inR3 (left) or as a triangle inR2 (right).

choice, perhaps, is the standard Euclidean inner product gθ(u,v) = ∑uivi. However, such a choice
is problematic from several aspects (Lebanon, 2005). A more motivated choice for a local inner
product on the simplex is the Fisher information metric

gθ(u,v) =∑
i j
uiv jE pθ

(
∂ log pθ(x)

∂θi

∂ log pθ(x)
∂θ j

)

=
m+1

∑
i=1

uivi
θi

(20)

where pθ(x) above is the multinomial probability associated with the parameter θ. It can be shown
that the Fisher information metric is the only invariant metric under sufficient statistics transfor-
mations (Čencov, 1982; Campbell, 1986). In addition, various recent results motivate the Fisher
geometry from a practical perspective (Lafferty and Lebanon, 2005).

The inner product (20) defines the geometric properties of distance, angle and curvature on Pm in
a way that is quite different from the Euclidean inner product. The distance function d : Pm×Pm →
[0,π/2] corresponding to (20) is

d(θ,η) = arccos

(
m+1

∑
i=1

√
θiηi

)
θ,η ∈ Pm. (21)

The distance function (21) and the Euclidean distance function d(θ,η) =
√
∑(θi−ηi)2 resulting

from the inner product gθ(u,v) = ∑uivi on P2 are illustrated in Figures 15-16.
By determining geometric properties such as distance, the choice of metric for Pm is of di-

rect importance to the bow representation of documents and its modeling. For example, while the
Euclidean metric is homogeneous across the simplex, the Fisher metric (20) emphasizes the area
close to the boundary. In addressing the question of modeling the lowbow curves, the geometry
of the simplex plays a central role. It dictates notions such as the distance between two curves,

2437

LEBANON, MAO AND DILLON

Figure 16: Equal distance contours on P2 from the upper right edge (left column), the center (center
column), and lower right corner (right column). The distances are computed using the
Fisher information metric (top row) and the Euclidean metric (bottom row).

the instantaneous direction of a curve, and the curvature or complexity of a curve. Understanding
the relationship between these geometric notions and gθ is a necessary prerequisite for modeling
documents using the lowbow representation.

References

S.-I. Amari and H. Nagaoka. Methods of Information Geometry. American Mathematical Society,
2000.

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge Uni-
versity Press, 1999.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.

D. Beeferman, A. Berger, and J. D. Lafferty. Statistical models for text segmentation. Machine
Learning, 34(1-3):177–210, 1999.

M. Berger, P. Gauduchon, and E. Mazet. Le spectre d’une varieté Riemannienne. Lecture Notes in
Mathematics, Vol. 194, Springer-Verlag, 1971.

D. Blei and J. Lafferty. Dynamic topic models. In Proceedings of the Twenty-Third International
Conference on Machine Learning, pages 113–120, 2006.

2438

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

D. Blei, A. Ng, , and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic
Press, 2003.

L. L. Campbell. An extended Čencov characterization of the information metric. Proceedings of
the American Mathematical Society, 98(1):135–141, 1986.

N. N. Čencov. Statistical Decision Rules and Optimal Inference. American Mathematical Society,
1982.

S. Chen and R. Rosenfeld. A survey of smoothing techniques for ME models. IEEE Transactions
on Speech and Audio Processing, 8(1), 2000.

J. P. R. Christensen, C. Berg, and P. Ressel. Harmonic Analysis on Semi-Groups. Springer, 1984.

W. S. Cleveland and C. L. Loader. Statistical Theory and Computational Aspects of Smoothing,
chapter Smoothing by Local Regression: Principles and Methods, pages 10–49. Springer, 1996.

M. Cuturi. Learning from Structured Objects with Semigroup Kernels. PhD thesis, Ecole des Mines
de Paris, 2005.

M. Cuturi, J.-P, Vert, O. Birkenes, and T. Matsui. A kernel for time series based on global align-
ments. In Proc. of the 32nd IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 2, pages 413–416, 2007.

R. M. Dudley. A course on empirical processes. Lecture Notes in Mathematics, 1097:2–142, 1984.

G. Forman. Tackling concept drift by temporal inductive transfer. In Proc. of the ACM SIGIR
Conference, 2006.

B. Fortuna, M. Grobelnik, and D. Mladenic. Visualization of text document corpus. Informatica,
29(4):497–504, 2005.

A. Gous. Exponential and Spherical Subfamily Models. PhD thesis, Stanford University, 1998.

Y. Guo, P. L. Bartlett, J. Shawe-Taylor, and R. C. Williamson. Covering numbers for support vector
machines. IEEE Transaction on Information Theory, 48(1):239–250, 2002.

K. Hall and T. Hofmann. Learning curved multinomial subfamilies for natural language processing
and information retrieval. In Proc. of the 17th International Conference on Machine Learning,
pages 351–358, 2000.

S. Havre, E. Hetzler, P. Whitney, and L. Nowell. Themeriver: Visualizing thematic changes in large
document collections. IEEE Transactions on Visualization and Computer Graphics, 8(1):9–20,
2002.

M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures.
In Proceedings of AI and Statistics, pages 136–143, 2005.

2439

LEBANON, MAO AND DILLON

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1998.

T. Joachims. The Maximum Margin Approach to Learning Text Classifiers Methods, Theory and
Algorithms. PhD thesis, Dortmund University, 2000.

R. E. Kass. The geometry of asymptotic inference. Statistical Science, 4(3):188–234, 1989.

R. E. Kass and P. W. Voss. Geometrical Foundation of Asymptotic Inference. John Wiley & Sons,
1997.

R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceedings
of the 19th International Conference on Machine Learning, 2002.

J. Lafferty and G. Lebanon. Information diffusion kernels. In Advances in Neural Information
Processing, 15. MIT Press, 2003.

J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine Learning
Research, 6:129–163, January 2005.

G. Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD thesis, Carnegie Mellon
University, 2005.

G. Lebanon and Y. Zhao. Local likelihood modeling of the concept drift phenomenon. Technical
Report 07-10, Statistics Department, Purdue University, 2007.

J. M. Lee. Introduction to Smooth Manifolds. Springer, 2002.

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:361–397, 2004.

C. Loader. Local Regression and Likelihood. Springer, 1999.

C. D. Manning and H. Schutze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

Y. Mao, J. Dillon, and G. Lebanon. Sequential document visualization. IEEE Transactions on
Visualization and Computer Graphics, 13(6), 2007.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):32–38, 1957.

J. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, second edition, 2005.

J. O. Ramsay and C. J. Dalzell. Some tools for functional data analysis. Journal of the Royal
Statistical Society B, 53(3):539–572, 1991.

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval.
International Journal of Computer Vision, 40(2), 2000.

2440

THE LOCALLY WEIGHTED BAG OF WORDS FRAMEWORK

H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.
IEEE Trans. Acoust. Speech Signal Process, 26(1):43–49, 1978.

R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine
Learning, 39(2/3):135–168, 2000.

M. Spivak. A Comprehensive Introduction to Differential Geometry, volume 1-5. Publish or Perish,
1975.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman and Hall/CRC, 1995.

R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regularization
networks and support vector machines via entropy numbers of compact operators. IEEE Trans-
actions on Information Theory, 47(6):2516–2532, 2001.

Y. Yang. An evaluation of statistical approaches to text categorization. Journal of Information
Retrieval, 1(1/2):67–88, 1999.

Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models applied to
ad hoc information retrieval. In Proc. of ACM-SIGIR conference, 2001.

T. Zhang. Covering number bounds for certain regularized linear function classes. Journal of
Machine Learning Research, 2:527–550, 2002.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods.
Information Retrieval, 4:5–31, April 2001.

2441

Journal of Machine Learning Research 8 (2007) 2443-2466 Submitted 7/07; Published 10/07

The Need for Open Source Software in Machine Learning

Sören Sonnenburg∗ SOEREN.SONNENBURG@FIRST.FRAUNHOFER.DE
Fraunhofer Institute FIRST
Kekulestr. 7
12489 Berlin, Germany

Mikio L. Braun∗ MIKIO@CS.TU-BERLIN.DE
Technical University Berlin
Franklinstr. 28/29
10587 Berlin, Germany

Cheng Soon Ong∗ CHENGSOON.ONG@TUEBINGEN.MPG.DE
Friedrich Miescher Laboratory
Max Planck Society
Spemannstr. 39
72076 Tübingen, Germany

Samy Bengio BENGIO@GOOGLE.COM
Google
1600 Amphitheatre Pkwy, Building 47-171D
Mountain View, CA 94043, USA

Leon Bottou LEON@BOTTOU.ORG
NEC Laboratories America, Inc.
4 Independence Way Suite 200
Princeton NJ 08540 , USA

Geoffrey Holmes GEOFF@CS.WAIKATO.AC.NZ
Department of Computer Science
University of Waikato
Hamilton, New Zealand

Yann LeCun YANN@CS.NYU.EDU
New York University
715 Broadway
New York, NY 10003, USA

Klaus-Robert Müller KRM@CS.TU-BERLIN.DE
Technical University Berlin
Franklinstr. 28/29
10587 Berlin, Germany

Fernando Pereira PEREIRA@CIS.UPENN.EDU
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19104, USA

Carl Edward Rasmussen CER54@CAM.AC.UK
Department of Engineering
Trumpington Street
Cambridge, CB2 1PZ, United Kingdom

∗. The first three authors contributed equally.

c©2007 Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-
Robert Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal
Vincent, Jason Weston and Robert Williamson.

SONNENBURG, BRAUN, ONG, ET AL.

Gunnar Rätsch GUNNAR.RAETSCH@TUEBINGEN.MPG.DE
Friedrich Miescher Laboratory
Max Planck Society
Spemannstr. 39
72076 Tübingen, Germany

Bernhard Schölkopf BS@TUEBINGEN.MPG.DE
Max Planck Institute for Biological Cybernetics
Spemannstr. 38
72076 Tübingen, Germany

Alexander Smola ALEX.SMOLA@GMAIL.COM
Australian National University and NICTA
Canberra, ACT 0200, Australia

Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Université de Montréal
Dept. IRO, CP 6128, Succ. Centre-Ville
Montréal, Québec, Canada

Jason Weston JASONW@NEC-LABS.COM
NEC Laboratories America, Inc.
4 Independence Way Suite 200
Princeton NJ 08540 , USA

Robert C. Williamson BOB.WILLIAMSON@ANU.EDU.AU
Australian National University and NICTA
Canberra, ACT 0200, Australia

Editor: David Cohn

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building
large-scale real-world systems. At the same time, the field of machine learning has developed a
large body of powerful learning algorithms for diverse applications. However, the true potential of
these methods is not used, since existing implementations are not openly shared, resulting in soft-
ware with low usability, and weak interoperability. We argue that this situation can be significantly
improved by increasing incentives for researchers to publish their software under an open source
model. Additionally, we outline the problems authors are faced with when trying to publish algo-
rithmic implementations of machine learning methods. We believe that a resource of peer reviewed
software accompanied by short articles would be highly valuable to both the machine learning and
the general scientific community.
Keywords: machine learning, open source, reproducibility, creditability, algorithms, software

2444

MACHINE LEARNING OPEN SOURCE SOFTWARE

1. Introduction

The field of machine learning has been growing rapidly, producing a wide variety of learning algo-
rithms for different applications. The ultimate value of those algorithms is to a great extent judged
by their success in solving real-world problems. Therefore, algorithm replication and application to
new tasks are crucial to the progress of the field.

However, few machine learning researchers currently publish the software and/or source code
associated with their papers (Thimbleby, 2003). This contrasts for instance with the practices of the
bioinformatics community, where open source software has been the foundation of further research
(Strajich and Lapp, 2006). The lack of openly available algorithm implementations is a major ob-
stacle to scientific progress in and beyond our community.

We believe that open source sharing of machine learning software can play a very important
role in removing that obstacle. The open source model has many advantages which will lead to
better reproducibility of experimental results: quicker detection of errors, innovative applications,
and faster adoption of machine learning methods in other disciplines and in industry. However,
incentives for polishing and publishing software are at present lacking. Published software per se
does not have a standard, accepted means of citation in our field, and is thus invisible with respect
to impact measurement tools like citation statistics: at present the only way of referring to it is by
citing the paper which describes the theory associated with the code or alternatively by citing the
user’s manual which has been released in the form of some technical report, such as Benson et al.
(2004). To address this difficulty, we propose a method for formal publication of machine learning
software, similar to what the ACM Transactions on Mathematical Software provide for Numerical
Analysis.

This paper is structured as follows: First, we briefly explain the idea behind open source soft-
ware (Section 2). A widespread adoption of this publication model would have several positive
effects which we outline in Section 3. Next, we discuss current obstacles, and propose possible
changes in order to improve this situation (Section 4). Finally, we propose a new, separate, ongo-
ing track for machine learning open source software in JMLR (JMLR-MLOSS) in Section 5. We
provide an overview about open source licenses in Appendix A and guidelines for good machine
learning software in Appendix B.

2. Open Source and Science

If I have seen further it is by standing on the shoulders of giants.
—Sir Isaac Newton (1642–1727)

The basic idea of open source software is very simple; programmers or users can read, modify and
redistribute the source code of a piece of software (Gacek and Arief, 2004). While there are various
licenses of open source software (cf. Appendix A; Lin et al., 2006; Välimäki, 2005) they all share
a common ideal, which is to allow free exchange and use of information. The open source model
replaces central control with collaborative networks of contributors. Every contributor can build on
the work that has been done by others in the network, thus minimizing time spent “reinventing the
wheel”.

The Open Source Initiative (OSI)1 defines open source software as work that satisfies the criteria
spelled out in Table 1. These goals are very similar to the way research works (Bezroukov, 1999):

1. OSI can be found at http://www.opensource.org.

2445

http://www.opensource.org

SONNENBURG, BRAUN, ONG, ET AL.

1. Free redistribution
2. Source code
3. Derived works
4. Integrity of the author’s source code
5. No discrimination against persons or groups
6. No discrimination against fields of endeavor
7. Distribution of license
8. License must not be specific to a product
9. License must not restrict other software
10. License must be technology-neutral

Table 1: Attributes of Open Source Software from the Open Source Initative

researchers build upon work of other researchers to develop new methods, apply them to produce
new results, and publish all of this work, always citing relevant previous work. It is well documented
how the move to an “open science” or “open source” model in the Age of Enlightenment (Schaffner,
1994) greatly increased the efficiency of the experimental scientific method (Kronick, 1962) and
opened the way for the significant economic growth of the Industrial Revolution (Mokyr, 2005).

However, scientific publications are also not as free as one may think. Major journals are not
freely available to the general public since publishers limit access only to subscribers. A few pio-
neering journals such as the Journal of Machine Learning Research, the Journal of Artificial Intel-
ligence Research, or the Public Library of Science Journals have begun publishing in the so called
“open access” model.2 Open-access literature is digital, online, free of charge, and free of most
copyright and licensing restrictions. This model is enabled by low-cost distribution on the Internet,
which was economically impossible in the age of print. The “journal pricing crisis” in which jour-
nal subscription fees have risen four times faster than inflation since 1986, strongly motivated the
development of open access. In summary, open access (with certain limitations) removes price bar-
riers, for instance, subscription and licensing fees, and permission barriers, that is, most copyright
and licensing restrictions. An extensive overview and a time-line concerning this distribution model
which our brief summary is also based on, is available from the SPARC Open Access Newsletter.3
An open letter to the U.S. Congress, signed by 25 Nobel laureates, puts it succinctly:

Open access truly expands shared knowledge across scientific fields, it is the best path for accelerating multi-
disciplinary breakthroughs in research.4

—Open letter to the U.S. Congress, signed by 25 Nobel laureates, (August 26, 2004)

It is plausible that a similar boost could be expected from a more widespread adoption of open
source publication practices in the machine learning field, in which the software implementing the
methods would play a comparable role to the underlying theory in the advancement of science. To
achieve this, the supporting software and data should be distributed under a suitable open source
license along with the scientific paper. This is already common practice in some biomedical re-
search, where protocols and biological samples are frequently made publicly available. In the area

2. A list of open access journals is currently maintained at http://www.doaj.org.
3. The newsletter can be obtained from http://www.earlham.edu/˜peters/fos/.
4. The letter is available from http://www.public-domain.org/?q=node/60.

2446

http://www.public-domain.org/?q=node/60
http://www.doaj.org
http://www.earlham.edu/~peters/fos/

MACHINE LEARNING OPEN SOURCE SOFTWARE

of machine learning, this is still rarely the case. However, some freely available benchmark data
sets exist, for example, the UCI Repository,5 the Delve repository,6 the Caltech 101 data set7 or
Rätsch et al. (2001). Nonetheless, this small number of data sets has had a significant influence on
the progress in machine learning, since challenging (in their size or complexity) data collections
have helped to calibrate algorithms and to establish their relative merits. For instance, much of the
progress of the pattern recognition group at AT&T was tracked in terms of the performance of their
algorithms on the NIST and USPS data sets.

In Section 4, we will discuss possible reasons for the current situation in more depth. In the
rest of this section, we would like to clarify the notion of “open source” by addressing a common
misconception that opening the source makes commercial exploitation impossible. On the contrary,
open source software has created numerous new opportunities for businesses (Riehle, 2007). Also,
simply using an open source program on a day to day basis has little legal implications for a user
provided they comply with the terms of their license. Users are free to copy and distribute the
software as is. Most issues arise when users, playing the role of a developer, modify the software or
incorporate it in their own programs and distribute a modified product.

A variety of open source licenses exists, which protect different aspects of the software with
benefits for the initial developer or for developers creating derived work (Laurent, 2004). Therefore,
there is some flexibility in choosing the license according to the specific needs of the developer, or
employer. In the following we give suggestions on which license to choose for common scenarios.
This oversimplified description is targeted at developers who just want to “get the program out
there”.
1. A developer who wants to give away the source code in exchange for proper credit for deriva-
tive works, even closed-source ones, could choose the BSD license. A typical example for
this kind of developer would be a researcher who just wants to make his work available to the
public, but does not want to prevent inclusion into closed-source software, and also does not
rely on getting improvement back from the community. An example for a project using the
BSD license is FreeBSD, on which Apple’s operating system Mac OS X is partially based.

2. A developer who wants to give away the source code, is comfortable with his source being
incorporated into a closed-source product but still wants to receive bug-fixes and changes that
are necessary to his source when integrating the code could choose the GNU Lesser General
Public License (LGPL). This developer could be someone who wants to keep developing his
software, and by publishing his software basically invites the community to contribute to the
software. Using the software as-is in closed-source products is allowed. An example project
using this license is the GNU C library, used by nearly all programs on a linux system.

3. A developer who wants to give away the source code and make sure that his program stays
open source, that is, any extension (or integration) will require both the original and the
derived code to be released as open source, could choose the GNU General Public License
(GPL). Here, the developer could be a researcher who has further plans with his software
and wants to make sure that no closed-source product, not even one of his own if it includes
changes of external developers, is benefiting from his software. An example of this is the
GNU/Linux project.

5. This database is located at http://mlearn.ics.uci.edu/MLRepository.html.
6. The website is at http://www.cs.toronto.edu/˜delve/.
7. The data set is available at http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html.

2447

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html
http://mlearn.ics.uci.edu/MLRepository.html
http://www.cs.toronto.edu/~delve/

SONNENBURG, BRAUN, ONG, ET AL.

License Apache BSD/MIT GPL LGPL MPL/CDDL CPL/EPL
Closed source Yes Yes No Maybe Yes Yes
Commercial Yes Yes No Maybe Yes Yes
Modification release No No Yes Yes Yes Yes
Patent Yes No No No Yes Yes
Jurisdiction Silent Silent Silent Silent California New York
Freedom PR Free PR PR Free PR

Table 2: The rights of the developer to redistribute a modified product. A compari-
son of open source software licenses listed as “with strong communities” on
http://opensource.org/licenses/category. The main questions are: whether code
can be used in closed source projects (Closed source); whether a program that incorpo-
rates the code can be sold commercially (Commercial) without releasing the incorporating
program under the same license; whether the source code to modifications must be re-
leased (Modification release); whether it provides an explicit license of patents covering
the code (Patent); the legal jurisdiction the license falls under (Jurisdiction); freedom to
adapt licence terms (Freedom) (PR = Permission Required from license drafter). Apache:
License used by the Apache web server; BSD: License under which the BSD Unix vari-
ant is released; MIT: developed by the MIT; GPL/LGPL: (lesser) GNU General Public
License; MPL: License used by the Mozilla web browser; CDDL: Common Development
and Distribution License developed by Sun Microsystems based on the MPL; CPL: Com-
mon Public License published by IBM; EPL: Eclipse Public License used by the Eclipse
Foundation, derived from the CPL.

All of the open source licenses allow for derivative works (item two in Table 1). In addition it is
not possible to limit an open source product to a particular use, for example, to non-commercial or
academic use, as it conflicts with item six in Table 1. In a brief summary of common open source
licenses, Table 2 shows the rights of a developer to distribute a modified product. A more in-depth
discussion about licenses can be found in Appendix A. For more details and a comparison of the
various freedoms different licenses provide, see Lin et al. (2006).

Finally, note that the idea of “open source” is not limited to scientific publications and computer
software. Authors of other creative works may also want to openly distribute their work. This
has created a demand for “open source” type licenses applicable to other media, such as music or
images. One of the most prominent movements addressing this demand are the Creative Commons
(CC) licenses.8 The CC project was started in 2001 to supply the analog to open source for less
technical forms of expression (Coates, 2007) and extends to all kinds of media like text documents,
photographs, video and music. All CC licenses allow copying, distribution, and public performance
and display of the work without any license payments. However, CC common terms state that the
licenses do not interfere with fair use rights (such as citations, private use etc.), first sale or the
freedom of expression and it may restrict the use to, for instance, non-commercial purposes or that
no derivative works are allowed (Lin et al., 2006; Välimäki, 2005). It therefore conflicts with the
non-discrimination provision in the open source definition (Table 1). It should also be noted that in

8. The creative commons homepage is http://creativecommons.org/.

2448

http://creativecommons.org/
http://opensource.org/licenses/category

MACHINE LEARNING OPEN SOURCE SOFTWARE

principle anyone can submit a new license to the Open Source Initiative to be certified to comply
with the Open Source Definition. Creative Commons does not have such a process but was designed
top-down (Välimäki, 2005). Applied to the area of science, Creative Commons advocates not only
having open source methods, but also open source data and results. It should be noted that open
access journals like PLoS use a CC license, namely the Creative Commons Attribution License.9
The European Union supports a related project towards free exchange of scientific results and data
sets.10

3. Open Source in Machine Learning

This section of the paper aims to provide a brief overview of open source software and its relation-
ship to scientific activity, specifically machine learning. The reader may think that we are overly
positive about the benefits of open source, and do not discuss negative views. The truth is that it
is extremely difficult to obtain hard evidence on the debate between proprietary systems and open
source software.11 We argue from moral, ethical and social grounds that open source should be
the preferred software publication option for machine learning research and refer the reader to the
many advantages of the open source software development (Raymond, 2000). There are also a mul-
titude of advantages of sharing of data and resources, as promulgated in the open science approach
(Nature, 2005). Here, we focus on the specific advantages of open source software for machine
learning research, which combines the needs and requirements both of being a scientific endeavor,
as well as being a producer and consumer of software. They can be categorized into:

1. reproducibility of scientific results and fair comparison of algorithms;

2. uncovering problems;

3. building on existing resources (rather than re-implementing them);

4. access to scientific tools without cease;

5. combination of advances;

6. faster adoption of methods in different disciplines and in industry; and

7. collaborative emergence of standards.

We discuss these points in the following seven subsections.

3.1 Reproducibility and Fair Comparison of Methods

Reproducibility of experimental results is a cornerstone of science. In many areas of science it is
only when an experiment has been corroborated independently by another group of researchers that
it is generally accepted by the scientific community. It is often the case that experiments are quite
hard to reproduce exactly, and in many fields (e.g., medicine) people go to great lengths to try to

9. See for example http://www.plos.org/oa/definition.html.
10. The Digital Repository Infrastructure Vision for European Research located at

http://www.driver-repository.eu.
11. See Section 1.2 of http://www.dwheeler.com/oss_fs_why.html.

2449

http://www.dwheeler.com/oss_fs_why.html
http://www.plos.org/oa/definition.html
http://www.driver-repository.eu

SONNENBURG, BRAUN, ONG, ET AL.

ensure this. Reproducibility would be quite easy to achieve in machine learning simply by sharing
the full code used for experiments.

In the field of machine learning, numerical simulations are often used to provide experimental
validation and comparison of methods. Ideally, such a comparison between methods would be based
on a rigorous theoretical analysis. For various reasons however, it may not be possible to theoret-
ically analyze a particular machine learning algorithm or to analytically compute its performance
in contrast to another. As many methods seek to do well on some real-world problems where the
underlying (true) model is unknown, it is very difficult to measure performance in any other way
than empirically. In that sense, experiments play a different role than in the natural sciences, as for
example physics or chemistry, where experiments are used to better understand certain aspects of
nature, instead of algorithms constructed by humans. Nevertheless, the results of the experimental
validations are equally important, as these may for instance provide the evidence that a method out-
performs existing approaches (or not). Unfortunately, the current practice in the machine learning
community is extremely sloppy, as papers get accepted, which are not detailed enough to allow
replication.12 In the pre-internet era, one could perhaps have argued, that for complex algorithms
typically used in machine learning, describing every detail would be too lengthy for publication; but
nowadays, there would seem to be no such constraints, as supplementary material could be made
available online. Indeed, for many complex algorithms one can probably argue, that a clear and
well documented program is perhaps the most convenient way of documenting the full details of a
machine learning algorithm. So, it follows that an open source approach would be ideally suited to
this challenge.

A survey13 asking JMLR authors for the availability of the system they described in their JMLR
papers concluded that about a third specifically said their systems were unavailable for the reasons
discussed in Section 4.

My informal survey suggests some authors have a relaxed regard for scientific virtues: reproducibility,
testability, and availability of data, methods and programs—the openness and attention to detail that supports
other researchers. It’s a widespread problem in computer science generally. I’m guilty, too. We programmers
tend not to keep the equivalent of lab books, and reconstructing what we have done is often unnecessarily
hard. As I wrote elsewhere (see Thimbleby, 2003) there can be problems with publishing work that is not
rigorously supported. It is the computer science equivalent of fudging experimental data—whether this really
matters for the progress of science is another question.

—Harold Thimbleby, 2003

Reproducing numerical results in order to compare methods is not trivial, as it is often not pos-
sible to re-implement a method based only on the information contained in publications. Methods
often have a number of free parameters whose correct adjustment requires extensive experience with
the specific algorithm, data set, or both. In this context it should be noted that all steps involved in
data pre-processing are equally crucial in reproducing results.

The non-reproducibility of results is not merely a theoretical possibility. Consider the recent ex-
change of papers in this journal (Loosli and Canu, 2007; Tsang and Kwok, 2007). A comment has
been published in which the authors document that they could not reproduce the results of another
paper. The authors of the original paper defended their original results, blaming the differences

12. One may indeed go further, and ask whether such a practice lives up to the basic requirements of scientific work.
13. A summary is at http://www.uclic.ucl.ac.uk/harold/srf/jmlr.html.

2450

http://www.uclic.ucl.ac.uk/harold/srf/jmlr.html

MACHINE LEARNING OPEN SOURCE SOFTWARE

on the operating system used to perform the experiments. Needless to say, such a situation is un-
satisfactory. This example also reflects another benefit of making source code available: it allows
us to uncover hidden tricks that remain typically undocumented (Orr and Müller, 1998). The rea-
son a certain implementation of a machine learning method outperforms all other approaches with
similar algorithms may be due to a number of functions that have been tuned to specific machine
instructions.

Furthermore, instances of fraud or scientific misconduct can be more easily detected if all the
code required to perform the experiment is made available. Thus, making algorithms, including the
source code and data publicly available (such as the efforts mentioned in Section 2) significantly
enhances the reproducibility and the feasibility of (fair) comparisons.

3.2 Quicker Detection and Correction of Bugs

An important feature that has contributed much to the success of open source software is that with
the availability of the source code, it is much easier to spot and fix bugs in software. While not
everyone would be inclined (or able) to satisfactorily resolve a bug himself, everybody has the
possibility to inspect the source code, find the bug and submit a patch to the maintainers of the
project. This observation has been summarized as “Given enough eyeballs, all bugs are shallow”,
known as Linus’s Law (Raymond, 2000). Further, to paraphrase Al Viro,14 all software contains
bugs, be it open-source or proprietary. The only question is what can be done about a particular
instance of software failure, and that is where having the source matters.

3.3 Faster Scientific Progress by Reduced Cost for Re-implementation of Methods

Scientific progress always builds on existing publications and methods. The field of machine learn-
ing is no exception. However, re-implementing existing methods in order to test them, use them as
part of a larger project, or to extend them, is a large burden on the researcher. This is particularly
true for method oriented research. As already discussed above, publications often do not contain all
the information necessary to re-implement a method. The complexity of existing methods is often
so large that re-implementing its algorithms can require prohibitive effort.

As a consequence, work on such methods is often restricted to a few groups who already have
implementations, and newcomers to the field have to first redo the work of others. Alternatively,
such a situation can lead to ignoring existing competitors since implementations are not available,
and re-implementation seems infeasible. Therefore, the availability of open source implementations
can help speed up scientific progress significantly.

3.4 Long Term Availability and Support

For the individual researcher, open source may provide a means of ensuring that he will be able
to use his research even after changing his employer. Even the most generous institutions tend to
introduce delays before giving formal approval for code reuse after the researcher moves. This is,
however, harmful for both researcher and employer: obviously for the researcher since he loses
access to the tools he has been working with but also for the institution since the piece of code

14. This quotation can be obtained from the linux kernel mailinglist
http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/1344.html.

2451

http://www.ussg.iu.edu/hypermail/linux/kernel/0404.3/1344.html

SONNENBURG, BRAUN, ONG, ET AL.

in question becomes unsupported. By releasing code under an open source license the chances of
having long-term support are dramatically increased.

3.5 Combination of Advances

Scientific progress does not always occur as paradigm shifts (e.g., the emergence of Decision Trees,
Neural Networks, Kernel Methods, Boosting, and Graphical Models) but it is much more likely
to occur by incremental improvements over a given existing technique. Moreover, it is likely that
several such changes occur simultaneously once a given topic reaches the mainstream. While this
is, in principle, a good thing, it poses a rather unique problem: how to combine several of those
advances into one joint implementation.

As a case in point, consider progress in kernel methods. There is currently no piece of code
or even a publication which combines structured estimation, semiparametric methods, automatic
margin adjustment, different types of regularization, methods for dealing with missing variables,
methods for dealing with invariances, a large set of kernel functions, nonconvex approximations of
the loss, leave-one-out estimators, or transductive estimation. While each of these modifications are
well established and it is commonly accepted that they work, there is no publication indicating the
performance of a combination of more than three of the ten aforementioned methods.

This is more than just a simple nuisance: it is not clear at all whether the combination of all of
those “improvements” would really be beneficial and what their interactions might be. Do some of
these methods effectively solve the same problem and derive their gains from a common change in
the estimate? What are the computational limitations?

Without access to a common codebase and willingness of the community to improve upon it
it will be next to impossible to address this issue, since it is likely to be too difficult for a single
researcher to track and compare all modifications.

3.6 Faster Adoption in Machine Learning, Other Disciplines and Industry

Availability of high-quality open source implementations can ease adoption by other machine learn-
ing researchers, users in other disciplines and developers in industry for the following reasons:

1. Open source software can be used without cost in teaching.

2. If a method proves useful and its source code is available, it can be directly applied to related
real world problems in other fields or in industry.

In areas such as bioinformatics, the expertise to implement advanced machine learning methods
from scratch is often not available. While this situation might be perceived as desirable by some
to ensure that machine learning experts are sought by the industry, hiring machine learning ex-
perts will become more desirable for companies as the field gains prominence. In fact, one may
argue that it is the problem of automatic adjustment and deployment that machine learning theory
should be addressing by suitable means of model selection. Having access to an extensive ma-
chine learning toolkit will allow us to compare model selection techniques in realistic settings.15
Increased distribution of machine learning’s end-product, software, will lead to more success sto-
ries of its use within industrial applications. Publishing software as open source might also be the

15. See, for example, the NIPS’04 workshop on the (Ab)Use of Bounds
http://www.hunch.net/˜jl/conferences/abuse_of_bounds/abuse_of_bounds.html.

2452

http://www.hunch.net/~jl/conferences/abuse_of_bounds/abuse_of_bounds.html

MACHINE LEARNING OPEN SOURCE SOFTWARE

only means to reach wide-spread distribution of your software if you lack the logistic infrastruc-
ture of big companies like MicrosoftTM. In addition, the adoption of machine learning methods in
large-scale applications can have a very stimulating effect on the field itself, and lead to novel and
interesting challenges. It still requires an expert with deep understanding of the method to adjust it
to a particular application. There are also impressive precedents of open source software leading to
the creation of multi-billion dollar companies and industries.16

3.7 Collaborative Moves towards Better Interoperability

The diversity of machine learning forbids a single, mono-cultural software framework satisfying all
needs. However, even in areas where it is in principle feasible, most pieces of machine learning soft-
ware do not inter-operate very well, because of differences in interfaces, data abstractions and work
flows. Ultimately it would be desirable to agree to a set of standards which ensure, for example,
that data sets can be exchanged between machine learning tools, and that classification algorithms
can be interchanged seamlessly.

However, given the distributed nature of scientific work, it is unlikely that a centralized institu-
tion can be formed which develops such standards in a top-down manner. Now with the publication
of toolboxes according to an open source model, it becomes possible for individual projects to move
towards standardization in a collaborative, distributed manner.

This process has already begun, mostly with toolboxes incorporating other toolboxes or pro-
viding “glue” code to access functionality contained in other toolboxes. A typical example are the
libraries for learning support vector machines, such as LIBSVM (Chang and Lin, 2001), SVMLin
(Sindhwani and Keerthi, 2006), SVMTorch (Collobert and Bengio, 2001) and GPDT (Zanni et al.,
2006). A small sample of larger frameworks which provide access to (among other features) one or
more of these libraries include Elefant (Gawande et al., 2007), Orange (Demsar and Zupan, 2004),
PLearn (Vincent et al.), RapidMiner17, Shogun (Sonnenburg et al., 2006), Torch (Collobert et al.,
2002) and the Weka (Witten and Frank, 2005) toolboxes.

In the future, instead of the constant repetition of work, standards should emerge, pushed either
by library and/or toolbox developers, in order to make this integration much less difficult. A con-
sensus could also emerge via dialog in journal or community websites.18 Which standards will be
adopted will depend on the popularity of the individual toolboxes or libraries.

We conclude this section by summarizing the advantages described above in Table 3.

4. Current Obstacles to an Open Source Community

While there exist many advantages to publishing implementations according to the open source
model, this option is currently not taken often. We believe that there are six main reasons which
will be discussed in greater detail in the next sections.

16. Perhaps the oldest, dating from the early 1970s, is SPICE (Simulation Program with Integrated Circuit Emphasis)
(Wikipedia, 2007b), which has led to the foundation of Synopsys and Cadence Design Systems, and significantly
grew the whole Electronic Design Automation Industry.

17. Former YALE toolbox, available from http://www.rapidminer.com.
18. We propose to use http://mloss.org as the platform for machine learning open source software (MLOSS) to

openly discuss design decisions and to host and announce MLOSS.

2453

http://mloss.org
http://www.rapidminer.com

SONNENBURG, BRAUN, ONG, ET AL.

1. Reproducibility of scientific research is increased
2. Algorithms implemented in same framework facilitate fair comparisons
3. Problems can be uncovered much faster
4. Bug fixes and extensions from external sources
5. Methods are more quickly adopted by others
6. Efficient algorithms become available
7. Leverage existing resources to aid new research
8. Wider use leads to wider recognition
9. More complex machine learning algorithms can be developed
10. Accelerates research
11. Benefits newcomers and smaller research groups

Table 3: Eleven Advantages of Machine Learning Open Source Software

4.1 Publishing Software is Not Considered a Scientific Contribution

Some researchers may not consider the extra effort to create a usable piece of software out of ma-
chine learning methods to be science. However, machine learning is a synthetic discipline as well
as an analytic one, and certainly if it is science it is in Simon’s phrase, a “Science of the Artificial”
(Simon, 1969), in which artifacts, specifically implemented algorithms, is one of the major outputs.
In addition to the “pure” scientific pursuits, machine learning researchers also produce technolog-
ical outputs. As such, the discipline could be considered to be mathematical engineering. In any
case, as was pointed out in Section 3, the complexity of existing methods is growing such that re-
implementing algorithms can easily take months. Some argue that if you want to really understand
an algorithm and want to extend it—which is an important task for machine learning researchers—
you have to implement it from scratch and thus it is not beneficial to have the software available.
This is only partially true: one does not want to reimplement all the basic algorithms an advanced
method builds on, but simply understand the high-level steps. After all, one has to build upon ex-
isting libraries, as for example the standard or math library, the Basic Linear Algebra Subprograms
(BLAS) (Lawson et al., 1979), the Linear Algebra PACKage (LAPACK) (Anderson et al., 1999) to
be productive. Only few people would want to re-implement, or would be able to generate a high
quality implementation of, common sorting algorithms such as qsort, basic mathematical functions
such as sin, or linear algebra operations such as dgemm or dgesv.

4.2 Misconception—Opening the Source Conflicts with Commercial Interests

As already discussed in Section 2, there is a common misconception that opening the source makes
commercial use—licensing of commercial versions or use in industrial projects—impossible. It
may, however, prevent the creation of closed-source products that include external open-source
contributions. In reality, careful selection of a suitable open source license would satisfy the require-
ments of most researchers and their employer. For example, using the concept of dual licensing one
could release the source code to the public under a open source license with strong reciprocal obli-
gations (like the GNU GPL), and at the same time sell it commercially in a closed-source product.
In Appendix A we give a few hints for choosing an appropriate license.

2454

MACHINE LEARNING OPEN SOURCE SOFTWARE

4.3 The Incentive for Publishing Open Source Software is not High Enough

Unlike writing a journal article, releasing a piece of software is only the beginning. Maintaining
a software package, fixing bugs or writing further documentation requires time and commitment
from the developer, and this contribution is also rarely acknowledged. Open source programmers
often gain a good “reputation” among their peers, which in some situations may be worth more than
citations (Kelty, 2001; Franck, 1999). But scientific success, especially in research institutions, is
often determined by measures such as citation statistics. However, there exists no academic, widely
accepted platform to publish software. As a result, researchers tend to not acknowledge software
used in their published research, and the effort which has to be expended to turn a piece of code for
personal research into a software product that can be used, understood, and extended by others is not
sufficiently acknowledged. As just one example, a well-known structured classification method had
766 Google Scholar citations as of this writing, while the supporting software, which was released
with an open-source license but no peer-reviewed publication, has only 78 citations. In contrast,
published software descriptions for bioinformatics programs are cited in every published use of the
program: the published description of one version of BLAST had 20540 Google Scholar citations,
for instance.

4.4 Machine Learning Researchers are Not Good Programmers

While most machine-learning methods are implemented in some form, it does not follow that the
best machine learning researchers are the best programmers. Opening up “research quality” code
to the inspection and modification of others (who may be more skilled programmers) can certainly
help to improve the quality of the code base. On the other hand, the initial developers may be
reluctant to expose their programming practices to public criticism.

4.5 Sloppiness Hides Problems of Newly Proposed Methods and Eases Acceptance at
Conferences and Journals.

A certain degree of sloppiness may be advantageous to someone trying to promote a new method.
For example, many algorithms require the setting of parameters, decisions about convergence, and a
multitude of other things, and it is perhaps not unusual that researchers inadvertently “help their new
algorithms along”, by carefully making sure that “nothing goes wrong” during the application of a
method, and if something does go wrong, a suitable measure is taken, that is, reduction of a learning
rate, restart with a new random seed etc. Thus, being absolutely precise about the algorithm, could
help bring these issues to the surface, but this is currently only rarely done, presumably because such
details are thought of as secondary, and not really part of the idea of the algorithm. Therefore, at first
glance, making the source code for a particular machine learning paper public may seem counter-
productive for the researcher, as other researchers can more easily find problems with the proposed
method, and possibly even discredit the approach. The researcher may also lose a competitive
advantage because competing groups can also use the software. However, the same argument holds
for making research papers publicly available, and as discussed in Section 2 the move to an open
science in the Age of Enlightenment sped up scientific progress and boosted economic growth.
Therefore, the already altruistic behavior of publishing papers should be complemented by also
providing open source code as the same great benefits can be expected if many other researchers
follow this path and also distribute accompanying open source software.

2455

SONNENBURG, BRAUN, ONG, ET AL.

4.6 Tradition—Reviewers Pass Papers of Similar Quality

Finally, there seems to exist a tradition, which let’s people “get away” with less. When reviewers
examine a paper, they have other similar papers (they passed) in mind. They therefore pass papers
“for tradition”, although the papers could have become a lot more valuable, if reviewers required
that the source code of the algorithm had been provided.

These latter two issues are closely related to the question of how to design experiments in a
way which ensures the ability to make strong statistical claims about the outcomes of experiments.
One such attempt was made in the DELVE (Data for Evaluating Learning in Valid Experiments)
archive. However, this archive never gained much popularity, presumably because its data sets are
typically not very large, and it has proven to be difficult to reach statistically strong conclusions
using relatively small data sets.

5. Proposal

In summary, providing open source code would help the whole community in accelerating research.
Arguably, the best way to build an open source community of scientists in machine learning is
to promote open source software through the existing reward system based on citation of archival
sources (journals, conferences). Unfortunately, persuading people to publish the implementation
together with their research paper is a long-term process, exacerbated by a potentially conflicting
industrial interest. However, it is possible that a push in this direction could gather momentum, with
peer pressure doing the rest.

We would like to initiate this process by giving researchers the opportunity to publish their
machine learning open source software, thereby setting an example of how to deal with this kind of
publication media. The proposed new JMLR track on machine learning open source software with
review guidelines specially tailored to the needs of software is designed to serve that purpose.

We encourage submissions which are contributions related to implementations of non-trivial
machine learning algorithms, toolboxes or even languages for scientific computing. As with the
main JMLR papers, all published papers will be freely available online. The software must adhere
to a recognized open source license (http://www.opensource.org/licenses/). Submissions
should clearly indicate that they are intended for this special track in the cover letter of the submis-
sion.

Since we specifically want to honor the effort of turning a method into a highly usable piece
of software, prior publication of the method is admissible, as long as the software has not been
published elsewhere. As an inspiration we discuss in Appendix B basic software design principles
and more machine learning (toolbox) related ideas. In summary, preparing research software for
publication is a significant extra effort which should also be rewarded as such.

It is hoped that the open source track will motivate the machine learning community towards
open science, where open access publishing, open data standards and open source software foster
research progress.

5.1 Format

We invite submissions of descriptions of high quality machine learning open source software im-
plementations. Submissions should at least include:

2456

http://www.opensource.org/licenses/

MACHINE LEARNING OPEN SOURCE SOFTWARE

1. A cover letter stating that the submission is intended for the machine learning open source
software section, the open source license the software is released under, the web address of
the project, and the software version to be reviewed.

2. An up to four page description based on the JMLR format.

3. A zip or compressed tar-archive file containing the source code and documentation.

5.2 Review Criteria

The following guidelines would be used to review submissions. While ideally submissions should
satisfy all the criteria below, they are not necessary requirements. Some examples of acceptable
submissions which do not satisfy all criteria are: well designed open source toolboxes based on
MatlabTM; learning algorithms using commercial optimizers such as MOSEK or CPLEX as a back-
end; or a teaching tool which has poor computational performance due to its didactic implementa-
tion.

1. The quality of the four page description.

2. The novelty and breadth of the contribution.

3. The clarity of design.

4. The freedom of the code (lack of dependence on proprietary software).

5. The breadth of platforms it can be used on (should include an open-source operating system).

6. The quality of the user documentation (should enable new users to quickly apply the software
to other problems, including a tutorial and several non-trivial examples of how the software
can be used).

7. The quality of the developer documentation (should enable easy modification and extension
of the software, provide an API reference, provide unit testing routines).

8. The quality of comparison to previous (if any) related implementations, w.r.t. run-time, mem-
ory requirements, features, to explain that significant progress has been made.

After acceptance, the abstract including the link to the software project website, the four page de-
scription and the reviewed version of the software will be published on the JMLR-MLOSS website
http://www.jmlr.org/papers/mloss. The authors can then make sure that the software is ap-
propriately maintained and that the link to the project website is kept up-to-date.

6. Conclusion

We have argued that the adoption of the open source model of sharing information for implemen-
tations of machine learning software can be highly beneficial for the whole field. The open source
model has many advantages, such as improved reproducibility of experimental results, quicker de-
tection of errors, accelerated scientific progress, and faster adoption of machine learning methods
in other disciplines and in the industry. As the incentives for publishing open source software are

2457

http://www.jmlr.org/papers/mloss

SONNENBURG, BRAUN, ONG, ET AL.

currently insufficient, we outlined a platform for publishing software for machine learning. Addi-
tionally, we discussed desirable features of machine learning software which will ultimately lead to
highly usable, flexible and scalable software. We invite all machine learning researchers develop-
ing machine learning algorithms to submit to the new JMLR track for machine learning software.
Defining well-designed interfaces will prove crucial towards better interoperability, leading to a
community built suite of high-quality machine learning software.

Researchers in machine learning should not be content with writing small pieces of software for
personal use. If machine learning is to solve real scientific and technological problems, the commu-
nity needs to build on each others’ open source software tools. Hence, we believe that there is an
urgent need for machine learning open source software. Such software will fulfill several concurrent
roles: a better means for reproducing results; a mechanism for providing academic recognition for
quality software implementations; and acceleration of the research process by allowing the standing
on shoulders of others (not necessarily giants!).

Acknowledgments

The authors would like to acknowledge S.V.N. Vishwanathan, Torsten Werner and the attendees of
the NIPSWorkshop onMachine Learning Open Source Software 2006 for inspiring discussions. We
thank Andre Noll and Sebastian Schultheiß whose careful reading and insights have improved this
manuscript. We thank Evana Ushakoff for providing legal comments. We gratefully acknowledge
partial support from the PASCAL Network of Excellence (EU #506778). C. S. Ong is also with
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany and
K. R. Müller with the Fraunhofer Institute FIRST, Kekulestr. 7, 12489 Berlin, Germany.

Appendix A. Which License to Choose?

As discussed in Section 2, most issues regarding the use of open source software arise when one
wants to distribute a modified or derived product. In this section, we wish to discuss these issues in
more depth.

With the proliferation of open source software, various licenses have been put forward, confus-
ing a developer who just wants to release his program to the public. Whilst the choice of license
might be considered a boring legal/management detail, it is actually very important to get it right—
the choice of certain licenses may significantly limit the impact a piece of software may have.19
In this section we briefly summarize some pertinent questions below as a guideline to some of the
more popular licenses.20

The owner of the intellectual property present in the code (often the original author, but de-
pending on employment contract, sometimes the employer) owns the copyright of the work and can

19. For example if the SPICE software had been released under a GPL-like license, it is extremely unlikely that it would
have had the impact that it did, with multi-billion dollar companies being created on the basis of it because the value-
add the companies created could not have been protected, and thus there would be no competitive advantage. On the
other hand it is questionable whether the Linux kernel would have evolved into an open, full featured multi-platform
kernel with thousands of developers continuously contributing if it was BSD licensed.

20. Disclaimer: This does not constitute legal advice. Since licensing is a legal issue, and since employers usually have
an interest in the protection of what is usually their intellectual property, readers should always seek their own formal
legal advice.

2458

MACHINE LEARNING OPEN SOURCE SOFTWARE

thus dictate the license under which it is released (Webbink, 2003). Different licenses protect dif-
ferent aspects of the software with benefits for the initial developer or developers creating derived
work (Laurent, 2004). Significant licensing issues may arise when open source software (OSS) is
combined with proprietary code. Depending on the license, the resulting product may have to be
published as open source, including the formerly proprietary code. Licenses which demand that
subsequent modifications of the software be released under the same license are called “copyleft”
licenses Wikipedia (2007a), the most famous of which is the GNU General Public License (GPL).

For example, for developers creating derived works a BSD/MIT license is the most liberal, as
it allows a developer to incorporate the software in his own product, without open sourcing the
whole product later; and GPL is the most strict, trying to ensure that all subsequent derivatives of
the software also stay open. From the viewpoint of the original developer, this situation is reversed:
Using the BSD/MIT license, he may not benefit from patches with enhancements, while using the
GPL license ensures that derived work will stay open, making future enhancements available to
the original developer. Then there are the “in between” licenses, like Lesser GNU General Public

Figure 1: An illustration of open source licenses with respect to the rights for the initial developer
and the developer creating derived works.

License (LGPL), the Common Public License (CPL) and the Mozilla Public License (MPL) that
only require the changes to the code to be released. Hence the original author has access to any
future modifications (bug fixes or new features) of his or her particular piece of software. Figure 1
visually illustrates license interdependencies.

Note that one can release one’s own software under multiple licenses. This is referred to as dual
licensing and allows a developer to release his code to the public under the GPL and at the same time
sell it commercially in a closed-source product. However if one includes changes in a program that

2459

SONNENBURG, BRAUN, ONG, ET AL.

other developers have made contributions, the agreement of all contributors is required to change a
license (Laurent, 2004; Burnette, 2006; Fitzgerald and Bassett, 2003). A crude summary of some
of the simple distinctions between some OSS licenses is given in Table 2. It should be noted that a
simple table hides the complexity of some of the key issues (see below).

A.1 Some Complexities

As an illustration of some of the difficulties, let us consider the issue of conflicting open source
licenses and the issue of reciprocal obligations.

A.1.1 OPEN SOURCE LICENSES MAY CONFLICT

When releasing a program as “open source” it is not obvious that although the program is now “open
source” it still may have a license that conflicts with many other open source licenses. Licenses
may have mutually conflicting requirements, for example with respect to jurisdiction, or including
advertising clauses, such that one cannot legally combine the two programs into a new derived work
(simply using both programs is usually possible, though). The OSI currently lists 60 open source
licenses21 and the consequence of this license proliferation22 means that the simple inclusion BSD
⊂ LGPL ⊂ GPL as shown in Figure 1 does not hold for other licenses.23 For example the MPL and
CPL conflict with the most widely used licenses, which are the GPL (in use by about 70% of the
OSS programs) and the LGPL (about 10% spread), and may even conflict with each other Figure 2.
While this can be used to purposely generate conflicts, as a general rule, one should refrain from
doing so as it will make code exchange between open source projects impossible and may limit
distribution and thus success of a open source project. For a more in-depth discussion see Wheeler
(2007). Researchers aspiring to a wide developer audience for their software should consider GPL
compatible licenses,24 or select one with a strong community.25

Figure 2: Open Source Licenses may conflict with each other.

21. The OSI license list can be found at http://www.opensource.org/licenses/alphabetical.
22. The license proliferation committee report is available at http://opensource.org/osi3.0/proliferation-report.
23. Note that this only holds for the 3-clause BSD license. Also note that this is a one-way street, that is, BSD licensed

software cannot merge code from LGPL/GPL and LGPL cannot merge software from GPL projects
24. The Free Software Foundations GPL compatible license list is available at

http://www.gnu.org/philosophy/license-list.html
25. Licenses with a strong community are listed at http://opensource.org/licenses/category.

2460

http://opensource.org/licenses/category
http://www.opensource.org/licenses/alphabetical
http://opensource.org/osi3.0/proliferation-report
http://www.gnu.org/philosophy/license-list.html

MACHINE LEARNING OPEN SOURCE SOFTWARE

A.2 Reciprocal Obligations

Another issue is the one of reciprocal obligations: any modifications to a piece of open source
software may need to be available to the original authors. In the following, to give a hint of the
complexity, reciprocal obligations are discussed for the following licenses:

• LGPL – applies the concept of “derivative works”, which (confusingly) can include the com-
bined work resulting from linking a LGPL-licensed Library and a non-LGPL “work that uses
the Library”. Problematically, the LGPL requires for such combined works that the source
code of the “work that uses the Library” needs to be disclosed when the combined work is
distributed (LGPL section 2, third last paragraph). This is a substantial limitation to the utility
of the LGPL in enabling components to be further developed and distributed with proprietary
code. The LGPL also tries to make some fairly complex and unclear distinctions between
what constitutes a collective or derivative work to determine whether the LGPL attaches to
licensee-created works.

• MPL – does not apply the concept of “derivative works”, but talks instead of “modifications”
to (i.e., additions to or deletions from) the Original Code as comprising part of the Covered
Code (i.e., code to which the MPL applies). This makes the MPL more comprehensible to
(some) legal audiences, and therefore more certain from that perspective. However, it also
makes the MPL’s reciprocal obligation more limited. The MPL permits Covered Code to
be distributed within Larger Works in a combined work without the MPL attaching to the
non-MPL code (as long as the distributor continues to apply the MPL to the Covered Code
component of the Larger Work). This overcomes the over-inclusiveness aspect of the GPL
and LGPL, and makes the MPL more friendly towards developers who may wish to combine
MPL code with their own proprietary code that is not a “modification” of MPL code.

• CPL – like MPL, applies the concept of additions or changes from the original Contribu-
tion. However, the CPL arguably imposes more narrow reciprocity obligations than either
GPL/LGPL or MPL, because the CPL explicitly exempts the reciprocity obligations from
applying to a “separate module of software distributed in conjunction” with the original Con-
tribution that is not a “derivative work”. Put another way, the CPL reciprocity obligation only
attaches to additions to the original contribution that are “derivative works” but not separate
modules of software.

Appendix B. Guidelines for Good Machine Learning Software

Without claiming to be exhaustive, in this appendix we record some guidelines which, we believe,
would lead to high quality machine learning software.

B.1 Good Software Practices

There is a significant difference between a piece of code which is intended to be used privately
(either alone or within a small research group), and one which is intended to be made public and to
be used (or even extended) by external users. While a certain lack of organization, documentation,
and robustness can be tolerated when the software is used internally, it can make the software next
to useless for others. The old rule that software is primarily written for other humans, and not only

2461

SONNENBURG, BRAUN, ONG, ET AL.

for computers, is even more important when your audience is larger than colleagues with whom you
closely collaborate.

1. Software is useful and usable.
2. Software is documented.
3. Software is robust.
4. Software has well-defined interfaces.
5. Software uses existing interfaces and standards.
6. Software has well established (unit) testing routines.

Table 4: Six features of useful machine learning software

Good machine learning software should first of all be a good piece of software (Table 4). There
exist many books on software design. The inclined reader is referred to the books by Raymond
(2004) or Hunt and Thomas (2000) for further information. Just putting your research software on
your web-page will not be sufficient. One should follow general rules for developing open source
software (see also the discussion by Levesque, 2004, which highlights common failure modes for
open source software development):

• The software should be structured well and logically such that its usability is high.

• It should be documented well, such that you can learn to use the software quickly; for ex-
ample, in the form of a tutorial, a reference, and examples; ideally, also include developer’s
documentation which explains the software’s internals;

• It should be sufficiently robust, which means that it is as much as possible bug-free, but also
tolerates incorrect inputs as well as providing meaningful error messages instead of breaking
down silently.

• It should provide testing routines to verify automatically whether the code is correct. This
reduces the likelihood that modifications of the code introduces bugs.

In any case, the main goal should be to maximize the re-usability of your software. Therefore you
would want to make your software as flexible as possible such that it can deal with a large number
of different types of data. You would also want to clearly define the interface to your software such
that others can easily use it directly.

Ideally, the software also includes a number of unit tests. These are small programs which can
be run automatically and test the individual parts of the program for correctness. Unit tests are an
indispensable tool for ensuring that a small change does not introduce bugs which go unnoticed for
a long time. Such tests therefore facilitate modification of software greatly.

Apart from these considerations that apply to any software design, there are several requirements
that are specific to the domain of machine learning. Since these requirements are quite different
depending on whether you are writing high-quality implementations of a specific algorithm (for
example, support vector machines), or more general frameworks, we have split the discussion in
two sections discussing these two extremes.

2462

MACHINE LEARNING OPEN SOURCE SOFTWARE

B.2 Guidelines for Single Machine Learning Algorithms

Consider the case that a researcher has special expertise in implementing a certain class of machine
learning algorithms, and has developed, for example, a new implementation of support vector ma-
chines which is very efficient, or a clever implementation of a certain class of graphical models.
There should exist several ways of using the program, for example, stand-alone from the command
line, and as a library which can be linked to other programs. Reusing the interface of existing soft-
ware solving the same problem is also very useful. Then, the software can be used as a drop-in
replacement. If the algorithm can be practically applied to large data sets, it is desirable that the
available main memory is not the limiting factor, but if the algorithms are designed such that they
can also deal with data sets which reside on the hard disk, using the main memory as a cache. Fi-
nally, one should make sure that the software is able to read and write data formats in at least one
commonly used data exchange standard.

B.3 Guidelines for Larger Machine Learning Frameworks

A completely different kind of endeavor is to build a framework, or an environment, which can be
used for a large number of different machine learning tasks. Such a framework typically integrates a
number of existing more specialized machine learning algorithms, or low-level numerical libraries.

Since frameworks should be suited for a wide range of applications—potentially including
methods and data types which have not yet been invented—a clean design is particularly impor-
tant. One approach to achieve this is to decompose the framework into several small modules with
clearly defined interfaces so as to minimize the coupling between different parts of the framework.
Then, individual modules can be modified or extended more easily.

For example, a framework which deals with vectorial data and matrices, could also provide
access to a standard set of basic linear algebra routines, learning algorithms dealing with vectorial
data like support vector machines, or least squares regression, and routines to store and read these
standard data types. However, the interfaces between these components are sufficiently abstract that
it is possible to replace the linear algebra routines by more efficient ones without affecting the rest
of the framework.

But as machine learning deals with a large number of different kinds of data sets, frameworks
could also support other data types like strings, sequences, trees, graphs, sparse vectors, et cetera.
Likewise, tools for graphical models should allow for easy specification of the model, ability to save
states, a variety of approximate samplers and solvers, convergence monitors, and flexible nonpara-
metric message passing tools.

Beyond these basic features, the following methods would be nice to have: efficient optimization
solvers; access to classical statistical methods and probability distribution; a good visualization
library, that provides graphs of various kinds to help analyzing data and reporting results; various
classification and regression algorithms, also with extensions to one-class and multi-class; clustering
and structure learning algorithms; graphical models, and Bayesian inference, et cetera.

As clusters of machines become more and more affordable, it would be nice to provide simple
ways to parallelize parts of the algorithms. Often machine learning algorithms are easy to parallelize
and only the barrier of low-level parallel computing stops the designers from doing so. To achieve
this goal parallel libraries such as OpenMP and MPI could be used.

2463

SONNENBURG, BRAUN, ONG, ET AL.

References

Ed Anderson, Zhaojun Bai., Christian Bischof, Susan Blackford, James Demmel, Jack Dongarra.,
Jeremy Du Croz., Anne Greenbaum, Sven Hammarling, Alan McKenney, and Danny Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999. ISBN 0-89871-447-8 (paperback).

Steven J. Benson, Lois Curfman-McInnes, Jorge Moré, and Jason Sarich. TAO user manual (revi-
sion 1.8). Technical Report ANL/MCS-TM-242, Mathematics and Computer Science Division,
Argonne National Laboratory, 2004. http://www.mcs.anl.gov/tao.

Nikolai Bezroukov. Open source software development as a special type of aca-
demic research (critique of vulgar Raymondism). First Monday, 4(10), October 1999.
http://www.firstmonday.org/issues/issue4_10/bezroukov/index.html.

Ed Burnette. How to pick an open source license. http://blogs.zdnet.com/Burnette/?p=130
and http://blogs.zdnet.com/Burnette/?p=131, 2006.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Jessica Coates. Creative commons – the next generation: Cre-
ative commons licence use five years on. SCRIPT-ed, 4(1), 2007.
http://www.law.ed.ac.uk/ahrc/script-ed/vol4-1/coates.asp.

Ronan Collobert and Samy Bengio. SVMTorch: Support vector machines for large-scale regression
problems. Journal of Machine Learning Research, 1:143–160, 2001. ISSN 1533-7928.

Ronan Collobert, Samy Bengio, and J. Mariethoz. Torch: A modular machine learning software
library. Technical report, IDIAP, 2002. IDIAP-RR 02-46.

Janez. Demsar and Blaz. Zupan. Orange: From experimental machine learning to interactive data
mining, white paper http://www.ailab.si/orange. Technical report, Faculty of Computer
and Information Science, University of Ljubljana., 2004.

Brian Fitzgerald and Graham Bassett. Legal issues relating to free and open
source software. In Legal Issues Relating to Free and Open Source Soft-
ware, pages 11–36. Queensland University of Technology, School of Law, 2003.
http://www.law.qut.edu.au/files/open_source_book.pdf.

Georg Franck. Scientific communication – a vanity fair? Science, 286(5437):53–55, 1999.

Cristina Gacek and Budi Arief. The many meanings of open source. IEEE Software, 21(1):34–40,
2004.

Kishor Gawande, Christfried Webers, Alexander J. Smola, and S.V.N. Vishwanathan. ELEFANT:
A python machine learning toolbox. In SciPy Conference, 2007.

Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison-Wesley, 2000.

2464

http://www.law.qut.edu.au/files/open_source_book.pdf
http://www.mcs.anl.gov/tao
http://www.firstmonday.org/issues/issue4_10/bezroukov/index.html
http://blogs.zdnet.com/Burnette/?p=130
http://blogs.zdnet.com/Burnette/?p=131
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.law.ed.ac.uk/ahrc/script-ed/vol4-1/coates.asp
http://www.ailab.si/orange

MACHINE LEARNING OPEN SOURCE SOFTWARE

Christopher M. Kelty. Free software/free science. First Monday, 6(12), December 2001.
http://www.firstmonday.org/issues/issue6_12/kelty/index.html.

David A. Kronick. A history of scientific and technical periodicals: the origins and development of
the scientific and technological press, 1665-1790. Scarecrow Press, New York, 1962.

Andrew M. St. Laurent. Open Source & Free Software Licensing. O’Reilly Media, Inc, 2004.
http://www.oreilly.com/catalog/osfreesoft/book/.

Charles L. Lawson, Richard J. Hanson, David Kincaid, and Fred T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Soft., 5:308–323, 1979.

Michelle Levesque. Fundamental issues with open source software development. First Monday, 9
(4), April 2004. http://www.firstmonday.org/issues/issue9_4/levesque/index.html.

Yi-Hsuan Lin, Tung-Mei Ko, Tyng-Ruey Chuang, and Kwei-Jay Lin. Open source licenses and the
creative commons framework: License selection and comparison. Journal of Information Science
and Engineering, 22:1–17, 2006.

Gaëlle Loosli and Stéphane Canu. Comments on the “core vector machines: Fast SVM training on
very large data sets”. Journal of Machine Learning Research, 8:291–301, 2007.

Joel Mokyr. The intellectual origins of modern economic growth. The Journal of Economic History,
65(2):285–351, 2005.

Nature. Let data speak to data. Nature, 438(7068):531, 2005.

Open Source Initative. http://www.opensource.org/docs/osd.

Genevieve B. Orr and Klaus-Robert Müller, editors. Neural Networks: Tricks of the Trade, volume
1524 of Lecture Notes in Computer Science. Springer, 1998.

Gunnar Rätsch, Takashi Onoda, and Klaus-Robert Müller. Soft margins for
AdaBoost. Machine Learning, 42(3):287–320, 2001. Data is hosted at
http://ida.first.fraunhofer.de/projects/bench.

Eric S. Raymond. The cathedral & the bazaar. 2000. http://www.tuxedo.org/˜esr.

Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley, 2004.

Dirk Riehle. The economic motivation of open source software: Stakeholder perspectives. IEEE
Computer, 40(4):25–32, 2007.

Ann C. Schaffner. The future of scientific journals: Lessons from the past. Information Technology
and Libraries, 13(4):239–247, 1994.

Herbert A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, Massachusetts, first
edition, 1969.

Vikas Sindhwani and S. Sathiya. Keerthi. Large scale semi-supervised linear svms. In SIGIR ’06:
Proceedings of the 29th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 477–484, New York, NY, USA, 2006. ACM Press.

2465

http://www.tuxedo.org/~esr
http://www.firstmonday.org/issues/issue6_12/kelty/index.html
http://www.oreilly.com/catalog/osfreesoft/book/
http://www.firstmonday.org/issues/issue9_4/levesque/index.html
http://www.opensource.org/docs/osd
http://ida.first.fraunhofer.de/projects/bench

SONNENBURG, BRAUN, ONG, ET AL.

Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale multiple
kernel learning. Journal of Machine Learning Research, 7:1531–1565, July 2006.

Jason E. Strajich and Hilmar Lapp. Open source tools and toolkits for bioinformatics: significance,
and where are we? Briefings in Bioinformatics, 7(3):287–296, 2006.

Harold Thimbleby. Explaining code for publication. Software Practice and Experience, 33(10):
975–1001, 2003.

Ivor W. Tsang and James T. Kwok. Author’s reply to the “comments on the Core Vector Machines:
Fast SVM Training on Very Large Data Sets”. Journal of Machine Learning Research, 2007.
submitted.

Mikko Välimäki. The Rise of Open Source Licensing. Turre Publishing, 2005.

Pascal Vincent, Yoshua Bengio, and Nicolas Chapados. http://plearn.org.

Mark Webbink. Licensing and open source software. In Legal Issues Relating to Free and Open
Source Software, pages 1–11. Queensland University of Technology, School of Law, 2003.
http://www.law.qut.edu.au/files/open_source_book.pdf.

David A. Wheeler. Make your open source software GPL-compatible. or else.
http://www.dwheeler.com/essays/gpl-compatible.html, August 2007.

Wikipedia. Copyleft – Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Copyleft, 2007a. [Online; accessed 2-July-2007].

Wikipedia. SPICE –Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/SPICE,
2007b. [Online; accessed 29-June-2007].

Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, San Francisco, 2005. 2nd Edition.

Luca Zanni, Thomas Serafini, and Gaetano Zanghirati. Parallel software for training large scale
support vector machines on multiprocessor systems. Journal of Machine Learning Research, 7:
1467–1492, July 2006.

2466

http://en.wikipedia.org/wiki/SPICE
http://plearn.org
http://www.law.qut.edu.au/files/open_source_book.pdf
http://www.dwheeler.com/essays/gpl-compatible.html
http://en.wikipedia.org/wiki/Copyleft

Journal of Machine Learning Research 8 (2007) 2467-2495 Submitted 7/06; Revised 4/07; Published 10/07

On the Representer Theorem and
Equivalent Degrees of Freedom of SVR

Francesco Dinuzzo FRANCESCO.DINUZZO01@ATENEOPV.IT
Marta Neve MARTA.NEVE@UNIPV.IT
Giuseppe De Nicolao GIUSEPPE.DENICOLAO@UNIPV.IT
Dipartimento di Informatica e Sistemistica
Università di Pavia
Pavia, Italy

Ugo Pietro Gianazza GIANAZZA@IMATI.CNR.IT
Dipartimento di Matematica
Università di Pavia
Pavia, Italy

Editor: Ralf Herbrich

Abstract
Support Vector Regression (SVR) for discrete data is considered. An alternative formulation of
the representer theorem is derived. This result is based on the newly introduced notion of pseu-
doresidual and the use of subdifferential calculus. The representer theorem is exploited to analyze
the sensitivity properties of ε-insensitive SVR and introduce the notion of approximate degrees of
freedom. The degrees of freedom are shown to play a key role in the evaluation of the optimism,
that is the difference between the expected in-sample error and the expected empirical risk. In this
way, it is possible to define a Cp-like statistic that can be used for tuning the parameters of SVR.
The proposed tuning procedure is tested on a simulated benchmark problem and on a real world
problem (Boston Housing data set).
Keywords: statistical learning, reproducing kernel Hilbert spaces, support vector machines, rep-
resenter theorem, regularization theory

1. Introduction

Although Support Vector Machines are mainly used as classification algorithms, recent years have
witnessed a growing interest for their application to regression problems as well. Among the ad-
vantages of SVR (Support Vector Regression), there are the sparseness property and the robustness
against outliers.

The SVR estimator can be seen as the minimizer of a cost functional given by the sum of an
ε-insensitive loss function and a regularization penalty. As such, it is a particular case of a larger
class of kernel-based estimators that are obtained by applying regularization theory in Reproducing
Kernel Hilbert Spaces (RKHS). Under mild assumptions, the solution of these problems can be
written as a linear combination of kernel functions. This kind of result goes under the name of
representer theorem. The first result of this type was due to Kimeldorf and Wahba (1979) for
squared loss functions, see also Tikhonov and Arsenin (1977) for the application in the context of
inverse problems.

c©2007 Francesco Dinuzzo, Marta Neve, Ugo Pietro Gianazza and Giuseppe De Nicolao.

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

The representer theorem was further generalized to differentiable loss functions (Cox and O’
Sullivan, 1990; Poggio and Girosi, 1992) and even arbitrary monotonic ones (Schölkopf et al.,
2001). Another important issue is the quantitative characterization of the coefficients ai of the linear
combination. For squared losses it is well known that the coefficients are obtained as the solution
of a system of linear equations, see for example Wahba (1990) and Cucker and Smale (2001). An
explicit characterization of the coefficients as the solution of a system of algebraic equations is still
possible if the loss function is differentiable (Wahba, 1998). This result cannot be applied to ε-
insensitive SVR because the loss function is not differentiable. The usual computational approach
is to reformulate the original variational problem as a constrained minimization one whose dual
Lagrangian formulation boils down to a finite dimensional quadratic programming problem (Vapnik,
1995).

Some recent contributions have approached the nondifferentiability issue by resorting to subd-
ifferential calculus. More precisely, Steinwart (2003) has proven a quantitative representer theorem
that, without using the dual problem, characterizes the coefficients by means of inclusions, when
convex loss functions are considered. Various extensions can be found in De Vito et al. (2004). In
particular, besides providing an alternative simpler proof of the quantitative representer theorem,
De Vito and coworkers allow for the offset space and cover both regression and classification.

The contribution of the present paper is twofold. First of all, quantitative representation results
are worked out for convex loss functions. Then, these results are specialized to SVR in order to
study its sensitivity to data and develop a tuning method for its parameters.

Concerning the quantitative representation of the coefficients ai, the paper provides a simple
derivation of the quantitative representer theorem based on Fourier arguments (see Appendix A).
Another result is a new formulation of the quantitative representer theorem that replaces inclusions
with equations by using the newly introduced notion of pseudoresidual (Theorem 1). This result,
not only gives insight into the relation between data and coefficients, but also puts the basis for
the subsequent analysis of SVR properties. In particular, we give a complete characterization of
the sensitivity of SVR coefficients and predictions with respect to the output data. Past work has
focused on sensitivity with respect to the regularization parameter C, see for example Pontil and
Verri (1998) and Hastie et al. (2004). As a byproduct of the sensitivity analysis, the degrees of
freedom of SVR, defined as the trace of the sensitivity matrix, are found to be equal to the number
of marginal support vectors. This analysis is instrumental to the last issue dealt with in the paper,
that is the tuning of both the ε andC parameters of the SVR.

In the literature, the tuning of SVR has been addressed using various approaches. The interpre-
tation of SVR as a Bayesian estimator provides a conceptually elegant framework for reformulating
parameter tuning as a statistical estimation problem (Gao et al., 2002). The major drawback is the
necessity of assuming the validity of the statistical prior underlying the Bayesian interpretation of
SVR, an assumption that may not be appropriate in all cases.

As a matter of fact, the great majority of tuning approaches aims at the minimization of the
prediction error. A powerful, though computationally expensive solution is to resort to k-fold cross
validation. Alternatively, Chang and Lin (2005) strive for the minimization of an upper bound
of the leave-one-out absolute error. Other authors have discussed the choice of ε observing that,
asymptotically, the optimal ε depends linearly on the measurement error standard deviation (Smola
et al., 1998; Kwok and Tsang, 2003). Finally, Schölkopf et al. (2000) have proposed modified SVR
schemes that ease the tuning of the parameters.

2468

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

A tuning method based on the extension of the GCV criterion to SVR has been proposed by
Gunter and Zhu (2007).

In the present paper, a different approach is pursued which is based on the estimation of the
so-called in-sample prediction error (Hastie et al., 2001). See also Cherkassky and Ma (2003) and
Hastie et al. (2003) for a discussion on the merits and difficulties of this and other approaches
to model selection. Herein, it is shown how the optimism, that is the difference between the in-
sample prediction error and the expected empirical risk, depends on the sensitivity of the estimator
(Theorem 3). This result opens the way to the estimation of the in-sample prediction error as a
function of the measurement error variance and the degrees of freedom. This estimator can be seen
as an extension to SVR of the so-called Cp statistic, a well known criterion for linear model order
selection. A major advantage of the Cp statistic is that, differently from many other criteria, no
assumption is made on the correctness of the model.

The paper is organized as follows. After some preliminaries (Section 2), the major results
regarding the representation of the coefficients ai and the sensitivity analysis of SVR are derived in
Section 3, which ends with the definition of the degrees of freedom. The issue of parameter tuning
is treated in Section 4, where the estimation of the in-sample prediction error by means of a suitable
Cp statistic is addressed. Finally, the proposed parameter tuning procedure is illustrated in Section
5 by means of both a simulated problem and a real-world one. Some concluding remarks (Section
6) end the paper.

2. Preliminaries

Consider the problem of estimating the functional relationship existing between an input vector
x∈RN and the output y∈R given the training setD = {xi,yi} (i= 1,2, ..., !), where the input vectors
xi are all distinct. According to the Support Vector Regression approach, the function f̂ (x) :RN →R
solving the aforementioned problem belongs to a Reproducing Kernel Hilbert Space (RKHS)H and
minimizes the regularized risk:

f̂ = argmin
f∈H

H[f] = argmin
f∈H

(
C

!

∑
i=1
V (yi, f (xi))+

1
2
‖ f‖2H

)
. (1)

The parameter C controls the relative importance given to the empirical risk and the regulariza-
tion term ‖ f‖2H , and must be properly tuned in order to obtain good performance. Among the
possible convex loss functions V (quadratic, Laplace, etc) particular attention will be given to the
ε-insensitive one:

V (yi, f (xi)) =Vε(yi− f (xi)) =
{
0, | f (xi)− yi| ≤ ε
| f (xi)− yi|− ε, | f (xi)− yi| > ε.

(2)

Such a function is known to produce sparse solutions, meaning that they depend only on a small
number of training examples scattered in the input space. The positive scalar ε measures the extent
of the “dead zone” (that is the interval over which the loss function is zero) and should be either
fixed according to the desired resolution or tuned using an objective criterion.
The usual approach to the numerical computation of f̂ calls for the solution of the dual quadratic
programming problem, see for example Vapnik (1995). If the kernel is positive definite, the repre-
senter theorem states that the solution f̂ can be written as

2469

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

f̂ (x) =
!

∑
i=1

aiK(xi,x), (3)

where ai are suitable coefficients. If V is everywhere differentiable with respect to its second argu-
ment, it can be shown that

ai = −C∂2V (yi, f̂ (xi)),
where ∂2 denotes the partial derivative with respect to the second argument. Conversely, if V is a
general measurable function convex with respect to its second argument, it is necessary to resort
to subdifferential calculus (for a quick reference to the basic concepts of subdifferential calculus
the interested reader may usefully refer to Steinwart (2003) and De Vito et al. (2004)). See also
Borwein and Lewis (2000). In particular, Steinwart (2003) and De Vito et al. (2004) (Theorem 2)
have shown that

ai ∈ −C∂2V (yi, f̂ (xi)), (4)

where, now, ∂2 is the subdifferential with respect to the second argument. This result goes under
the name of quantitative representer theorem. Note that (4) is no longer an equation but just an
inclusion.

De Vito et al. (2004) studied also the so called continuous setting, that is measurements are
taken on a continuous set rather than being taken as discrete samples. In Appendix A, we provide
an alternative concise proof of the quantitative representer theorem based on Fourier arguments. The
analysis developed in the next section differs from the representation results by Steinwart (2003) and
De Vito et al. (2004) in that we show that the system of inclusions (4) can be replaced by a set of
equations.

3. Quantitative Representation and Sensitivity Analysis

Hereafter, it is assumed that the loss function is of the type

V (yi, f (xi)) =V (f (xi)− yi),

where V (·) is a convex function and is twice differentiable everywhere except in a finite number of
points γ j, j = 1, . . . ,N. In the following, D−(γ) and D+(γ) will denote the left and right derivative
of V (·) at γ:

D−(γ) = lim
h→0+

V (γ−h)−V (γ)
−h ,

D+(γ) = lim
h→0+

V (γ+h)−V (γ)
h

,

Letting I = {1,2, . . . , !}, define the pseudoresiduals as

ηi := yi−∑
j∈I
j %=i

a jK(xi,x j).

The following result holds

2470

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

Theorem 1 The coefficients ai, i = 1, . . . , !, that characterize the solution of problem (1), satisfy a
system of algebraic equations

ai = Si(ηi),

where Si(ηi) are monotone nondecreasing Lipschitz continuous functions. Moreover, when

ηi ∈
[
−

(
γ j +CK(xi,xi)D+(γ j)

)
,−

(
γ j +CK(xi,xi)D−(γ j)

)]
, j = 1, . . . ,N, (5)

the functions Si(ηi) are affine and given by

Si(ηi) =
ηi+ γ j
K(xi,xi)

.

Proof. By the definition of pseudoresidual,

f̂ (xi)− yi = aiK(xi,xi)−ηi. (6)

Then,

ai =
ηi+ f̂ (xi)− yi
K(xi,xi)

.

Now, there are two cases depending on whetherV (·) is twice differentiable at γ := f̂ (xi)−yi or not.
When γ &= γ j, j= 1, . . . ,N,V (γ) is twice differentiable and its subdifferential is single-valued so that
(4) yields

ai = −CV ′(f̂ (xi)− yi) = −CV ′(aiK(xi,xi)−ηi). (7)

Now, the Implicit Function Theorem can be used to prove that, locally, ai is a monotone nonde-
creasing Lipschitz continuous function of ηi. In fact, by deriving with respect to ηi,

∂ai
∂ηi

=
CV ′′(aiK(xi,xi)−ηi)

1+CK(xi,xi)V ′′(aiK(xi,xi)−ηi)
.

The denominator is always different from zero because, by convexity, V ′′ ≥ 0 whenever it exists.
Therefore, locally, ai is a differentiable function of ηi:

ai = S(ηi).

The function S(ηi) is monotone nondecreasing and has bounded derivative because

0≤ ∂ai
∂ηi

<
1

K(xi,xi)
. (8)

Now, let us consider the second case. When γ is fixed as γ = γ j for some j, V (·) is not twice
differentiable at γ. Then, from (6),

ai = Si(ηi) =
γ j +ηi
K(xi,xi)

, (9)

so that ai is an affine function of ηi in the interval

2471

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

I j := [ηLj ,η
R
j],

where

ηLj := −
(
γ j +CK(xi,xi)D+(γ j)

)
,

ηRj := −
(
γ j +CK(xi,xi)D−(γ j)

)
.

On the other hand, recalling the properties of the subdifferential of a convex function,

ai ∈
[
−CD+(γ j),−CD−(γ j)

]
. (10)

Hence, (5) follows from (9) and (10). Finally, since

∂ai
∂ηi

=
1

K(xi,xi)
> 0,

the functions Si(ηi) are locally monotone nondecreasing also in the second case. Combining this last
inequality with the bound (8) that holds in differentiability points, we conclude that the derivative
of Si(ηi) is bounded everywhere, possibly except for discontinuity points. Then, in order to prove
Lipschitz continuity it suffices to show that Si(ηi) is continuous.

We now conclude the proof showing that the set of discontinuity points is actually empty. In
this respect, the only points that must be analyzed are the boundaries of the intervals I j. In fact, in
the interior of I j, Si(ηi) is infinitely differentiable because it is affine, while, outside, it has the same
regularity of V ′(·). Hence, it suffices to prove continuity at the left boundary ηLj of I j. Consider (9)
and take the limit from the right:

lim
ηi→(ηLj)+

Si(ηi)
∣∣∣∣
ηi∈I j

= lim
ηi→(ηLj)+

γ j +ηi
K(xi,xi)

= −CD+(γ j).

Now, observe that, if ai tends to −CD+(γ j) from below, then ηi tends to ηLj from the left. Indeed,
taking the limit in (7) for ai →−CD+(γ j) from below, we obtain that f̂ (xi)−yi → γ j from the right
(recall that V ′(·) is nondecreasing). In turn,

lim
ai→(−CD+(γ j))−

ηi = lim
ai→(−CD+(γ j))−

(
yi− f̂ (xi)+aiK(xi,xi)

)

= −γ j−CD+(γ j)K(xi,xi) = ηLj

from the left. This proves the continuity of Si(ηi) at the left boundary ηLj of I j.
Hereafter, it will be assumed that V = Vε is the so-called ε-insensitive function. Hence, Vε is

not differentiable only at γ1 = −ε and γ2 = +ε. The subdifferential of the loss function has a rather
simple structure:

2472

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

C∂Vε(f̂ (xi)− yi) =






{−C} f̂ (xi)− yi < −ε,
[−C,0] f̂ (xi)− yi = −ε,
{0} −ε< f̂ (xi)− yi < ε,
[0,C] f̂ (xi)− yi = ε,
{C} f̂ (xi)− yi > ε.

For the subsequent derivation it is useful to define the following sets:

Iin = {i ∈ I : | f̂ (xi)− yi| < ε},
I+C = {i ∈ I : f̂ (xi)− yi > ε},
I−C = {i ∈ I : f̂ (xi)− yi < −ε},
I+M = {i ∈ I : f̂ (xi)− yi = ε},
I−M = {i ∈ I : f̂ (xi)− yi = −ε},
Iout = I+C ∪ I−C IM = I+M ∪ I−M.

Note that the set Iin identifies the data pairs {xi,yi} that belong to the so-called ε-tube, whereas Iout
identifies the data outside the tube. The indices belonging to IM correspond to data pairs lying on
the boundary of the ε-tube, also called marginal support vectors. The union of Iout and IM identifies
the so-called support vectors.
In view of Theorem 1, the next corollary follows.

Corollary 1 For the ε-insensitive loss function,

ai = Si(ηi) =






−C ηi ≤−(ε+CK(xi,xi)),
ηi+ε

K(xi,xi) −(ε+CK(xi,xi)) < ηi < −ε,
0 −ε≤ ηi ≤ ε,
ηi−ε

K(xi,xi) ε< ηi < (ε+CK(xi,xi)),
C ηi ≥ (ε+CK(xi,xi)).

Moreover,

• If i ∈ Iin, |ηi| ≤ ε.

• If i ∈ Iout , |ηi| ≥ ε+CK(xi,xi).

• If i ∈ IM, ε≤ |ηi| ≤ ε+CK(xi,xi).

Corollary 1, which is illustrated in Fig. 1, is now used to evaluate the sensitivity of SVR with respect
to the data.

Let m= #IM denote the number of marginal vectors. We can assume without loss of generality
that the indices I are ordered such that IM = {1, . . . ,m}, IM̄ := Iout ∪ Iin = {m+ 1, . . . , !}. Let the
matrix K := [K(xi,x j)] be partitioned as

K=
(
KMM KMM̄
KM̄M KM̄M̄

)
,

2473

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

!

"
!

!
!

!
!

!!

!
!

!
!

!
!!

Si

ηi−ε ε ε+CK(xi,xi)

−(ε+CK(xi,xi))

+C

−C

Figure 1: This function Si gives the dependency of the coefficient ai on the pseudoresidual ηi when
the ε-insensitive loss function is used.

whereKMM ∈Rm×m. It is also useful to partition the coefficient vector a = (a1, . . . ,a!)T as (aTM,aTM̄)T

and the data vector y = (y1, . . . ,y!)T as (yTM,yTM̄)T , where aM,yM ∈ Rm. Moreover, define

k(x) =




K(x,x1)

. . .
K(x,x!)



 .

Proposition 1 Assume that ηi &= ±ε and ηi &= ±(ε+CK(xi,xi)). Then,

∂ f̂
∂y

(x) = k(x)T
(
K−1
MM 0
0 0

)
.

Proof. First of all, by (3)

∂ f̂
∂yk

(x) =
!

∑
j=1

∂a j
∂yk

K(x,x j).

In view of Corollary 1 and the definition of pseudoresidual ηi,

∂ai
∂yk

= S′i(ηi)



δik−∑
j∈I
j %=i

∂a j
∂yk

K(xi,x j)



 ,∀i (11)

where

2474

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

S′i(ηi) =

{
0 i /∈ IM,

1
K(xi,xi) i ∈ IM

and δik is Kronecker’s delta. Hence, ∀i /∈ IM, ∀k,

∂ai
∂yk

= 0. (12)

On the other hand, ∀i ∈ IM, ∀k, (11) reads

∂ai
∂yk

=
1

K(xi,xi)



δik− ∑
j∈IM
j %=i

∂a j
∂yk

K(xi,x j)



 ,

whence

∑
j∈IM

∂a j
∂yk

K(xi,x j) = δik, ∀i ∈ IM,∀k ∈ I. (13)

Equations (12) and (13) can be written as

∂aM̄
∂y

= 0,

KMM
∂aM
∂y

=
(
I 0

)
.

Since the vectors xi are all distinct, KMM is a positive definite matrix and therefore

∂a
∂y

=
(
K−1
MM 0
0 0

)
,

from which the thesis follows.
For linear-in-parameter regression it is usual to define the degrees of freedom of the estimator

as the trace of the so-called “hat matrix,” that maps the vector of output data into the corresponding
predictions. Such degrees of freedom have a number of applications ranging from the computation
of confidence intervals to model validation and model order selection, see for example Hastie and
Tibshirani (1990) and Hastie et al. (2001).

Let ŷ= (ŷ1, . . . , ŷ!)T , where ŷi = f̂ (xi) denotes the SVR prediction at xi. The following Propo-
sition provides the degrees of freedom of SVR. For an alternative proof, based on the dual problem
formulation, see Gunter and Zhu (2007).

Proposition 2 Let the degrees of freedom of the SVR be defined as

q(D) := tr
(
∂ŷ
∂y

)
.

Then, under the assumption of Proposition 1, q(D) is equal to the number m of marginal support
vectors.

2475

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

Proof. If x= xi, the application of Proposition 1 yields

∂ŷ
∂y

=
(

I 0
KM̄MK−1

MM 0

)
, (14)

so that q(D) is just equal to m.

Remark 1 Note that the number m of marginal vectors can be evaluated by looking at the pseu-
doresiduals ηi. More precisely, the i-th observation yi is a marginal vector if

ε≤ |ηi| ≤ ε+CK(xi,xi).

Remark 2 The assumption on the value ηi made in Proposition 1 rules out the marginal support
vectors whose coefficient ai is either 0 or ±C. This corresponds to experimental data that under a
suitable infinitesimal perturbation leave the boundary of the ε-tube moving either inward (ai = 0) or
outward (ai =±C). For such “transition data” yi, the right and left derivatives ∂ŷi/∂yi are different,
so that the degrees of freedom would not be uniquely defined. Then, the degrees of freedom would
range from the minimum to the maximum value of tr (∂ŷ/∂y). Alternatively, one could assign 1/2
degree of freedom to each transition datum. Given that such pathological situation occurs on a
zero-measure set, they will be removed from the analysis without appreciable consequences.

4. Prediction Error Assessment viaCp Statistic

The goal of any regression method is to achieve good generalization performance. In this section,
an index will be derived that assesses the generalization capabilities of SVR. In turn, this index can
be used to tune the design parameters of the estimator.

In order to proceed, it is assumed that the training data are given by

yi = f 0(xi)+ vi, (15)

where f 0(x) is the “true function” to be estimated and the measurement error vector v= [v1 . . .v!]T
is such that E[v] = 0, Var[v] = diag(σ21 . . .σ2!). Note that f 0(xi) can be seen as the conditional
expectation of yi given xi (f 0(xi) = E[yi|xi]) and f 0(x) is also known as regression function.

In the following, the generalization performance will be measured in terms of the sum of squared
errors. A first type of error is the empirical risk

err :=
1
!
‖y− ŷ‖2.

This is not a valid measure of generalization because ŷ depends on y. Usually, the generalization
capabilities of the estimator are measured by the expected risk. Unfortunately, it is not easy to
assess the value of the expected risk without introducing assumptions on the nature of f 0(xi). As an
alternative, one can look for probabilistic upper bounds on the expected risk which may be, in some
cases, too loose for an optimal tuning of the SVR parameters. Hereafter, attention will be focused
on the so-called in-sample prediction error, that is the expected error associated with a new set of
data

ynewi = f 0(xi)+ vnewi ,

2476

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

where vnew has the same statistics as v but is independent of it. The in-sample prediction error, see
for example Hastie et al. (2001), is defined as

Errin := E
[
1
!
‖ynew− ŷ‖2

]
,

where the xi are fixed and the expected value is taken with respect to both the distribution of yi and
ynewi . A major motivation for using the in-sample prediction error is that, as shown below, it can be
assessed with good accuracy, without introducing undue assumptions on f 0(x).

Remark 3 Recalling the expression of the cost function (1) it would be tempting to use

ErrVin := E

[
1
!

!

∑
i=1
V (ynewi , ŷi)

]

as a measure of generalization performance. In particular, the parameters (C,ε) would be tuned so
as to minimize ErrVin. However, it is immediate to see that ErrVin = 0 for sufficiently large ε so that a
joint tuning of the two parameters is not possible. Conversely, as observed by Hastie et al. (2001),
the in-sample prediction error proves useful for model comparison and selection because, although
it underestimates the expected risk, in this context the relative size of the error is what matters,
see also Efron (1986). Note also that the use of SVR is not necessarily in contrast with square
loss minimization, insofar sparsity of the solution is an important feature. On these premises, in
the present paper the minimization of the quadratic in-sample prediction error Errin is pursued. A
similar choice has been made by Gunter and Zhu (2007) who derive a quadratic-type GCV criterion
for SVR.

The empirical and the in-sample prediction error are linked as stated in the following proposition,
see for example Hastie et al. (2001). Note that the expectations are taken over the training set.

Proposition 3 Define the ‘optimism’ as

op :=
2
!
E[ŷT v].

Then,

Errin = E[err]+op.

The index Errin can be approximated by

Êrrin = err+ ôp,

where ôp is an estimate of op. If ŷ is a linear function of y, and σ2i = σ2, ∀i, then the optimism can
be expressed as

op=
2qσ2

!
(16)

(note that in the linear case the degrees of freedom q do not depend on the training data y). In this
linear case, Êrrin is better known asCp statistic

2477

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

Cp = err+
2qσ2

!
. (17)

The purpose of the present section is to extend the Cp statistic to Support Vector Regression. The
following theorem highlights the relationship between the optimism and the sensitivities ∂hi/∂yi of
a generic estimator ŷ= h(y). Let us define y0 = [f 0(x1) . . . f 0(x!)]T .

Theorem 2 Assume that

(i) eq. (15) holds,

(ii) the errors vi are independent of each other,

(iii) the variances σ2i =Var[vi] are finite,

(iv) the estimator h(y) is such that for i= 1, . . . , !

lim
|yi|→∞

|hi(y)|
|yi|

= 0.

Then,

op=
2
!

!

∑
i=1

σ2i

Z

R!

∂hi
∂yi

(y)
!

∏
j %=i
p j(v j)φi(vi)dv,

where

φi(vi) =
1
σ2i

Z +∞

vi
spi(s)ds,

and pi(vi) denotes the probability density function of vi.
Moreover, if the errors vi are Gaussian,

op=
2
!

!

∑
i=1

σ2i E
[
∂hi
∂yi

(y)
]
. (18)

Proof. By definition,

op =
2
!
E[ŷT v] =

2
!

!

∑
i=1

E[hi(y)vi]

=
2
!

!

∑
i=1

Z

R!−1

!

∏
j %=i
p j(v j)

(Z

R
hi(y0+ v)vipi(vi)dvi

)
dv[−i],

where

dv[−i] =
!

∏
j %=i
dv j.

2478

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

Integration by parts of the inner integral yields
Z

R
hi(y0+ v)vipi(vi)dvi = σ2i

(Z

R

∂hi
∂vi

(y0+ v)φi(vi)dvi− [hi(y0+ v)φi(vi)]|+∞−∞

)
.

Now, we can show that the last term on the right hand side is zero. In fact, for positive vi we have

φi(vi) =
1
σ2i

Z +∞

vi
spi(s)ds=

1
σ2i

Z +∞

vi

s2pi(s)
s

ds≤ 1
σ2i vi

Z +∞

vi
s2pi(s)ds=

1
vi

.

For negative vi, observing that
R +∞
vi spi(s)ds= −

R vi
−∞ spi(s)ds (recall that E[vi] = 0), a similar argu-

ment yields |φi(vi)| ≤ 1
|vi| . In conclusions, we have that |φi(vi)| ≤

1
|vi| . Now, the sublinear growth of

the estimator (iv) gives

lim
|vi|→∞

|hi(y0+ v)φi(vi)| ≤ lim
|vi|→∞

|hi(y0+ v)|
|vi|

= 0.

Now, we have

∂hi
∂vi

(y0+ v) =
∂hi
∂yi

(y0+ v),

so that
Z

R
hi(y0+ v)vipi(vi)dvi = σ2i

Z

R

∂hi
∂yi

(y0+ v)φi(vi)dvi.

Then,

op =
2
!

!

∑
i=1

σ2i

Z

R!−1

!

∏
j %=i
p j(v j)

(Z

R

∂hi
∂yi

(y0+ v)φi(vi)dvi
)
dv[−i]

=
2
!

!

∑
i=1

σ2i

Z

R!

∂hi
∂yi

(y)
!

∏
j %=i
p j(v j)φi(vi)dv.

Finally, if the errors vi are Gaussian,

φi(vi) =
1
σ2i

Z +∞

vi

s√
2πσi

e
− s2
2σ2i ds= − 1√

2πσi
e
− s2
2σ2i

∣∣∣∣
+∞

vi
= pi(vi).

Therefore,

op=
2
!

!

∑
i=1

σ2i

Z

R!

∂hi
∂yi

(y)
!

∏
j %=i
p j(v j)φi(vi)dv=

2
!

!

∑
i=1

σ2i E
[
∂hi
∂yi

(y)
]

thus proving the thesis.

Remark 4 Although linear estimators do not fulfill assumption (iv), the thesis still holds. In fact,
recalling that for a linear estimator the degrees of freedom do not depend on y, expression (16) is
eventually recovered.

2479

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

Note that (18) was already known in the context of Stein’s unbiased risk estimators (Stein, 1981).
The next theorem derives a simple expression for the optimism of the SVR estimator in a somehow
ideal case (see assumption (v) below).

Theorem 3 Assume that

(i) eq. (15) holds,

(ii) the errors vi are independent of each other,

(iii) the variances σ2i =Var[vi] are finite,

(iv) C < +∞,

(v) the set IM of the marginal vectors does not depend on v.

Then, the optimism of the SVR is

opSVR =
2
! ∑i∈IM

σ2i .

Proof. The proof is based on Theorem 2, whose assumptions (i)-(iii) are obviously satisfied. Con-
cerning assumption (iv), consider a vector y and fix all its entries but the i-th one yi. Then, there
exists κi > 0 such that i ∈ Iout whenever |yi| > κi. Hence, for |yi| large enough, |hi(y)| is a finite
constant so that assumption (iv) of Theorem 2 is satisfied.

Now, observe that, for SVR, the derivatives ∂hi
∂yi are all equal to either 0 or 1, see (14). In

particular, ∂hi∂yi is different from zero if and only if i ∈ IM. Then, in view of assumption (v),

opSVR =
2
! ∑i∈IM

σ2i

Z

R!
∏
j∈I
j %=i

p j(v j)φi(vi)dv=
2
! ∑i∈IM

σ2i

Z

R
φi(vi)dvi

The thesis is proven by showing that the last integral equals one:

Z

R
φi(vi)dvi =

1
σ2i

Z +∞

−∞

Z +∞

vi
spi(s)dsdvi =

1
σ2i

Z +∞

−∞

Z +∞

1
v2i zpi(zvi)dzdvi

=
1
σ2i

Z +∞

1
z

Z +∞

−∞
v2i pi(zvi)dvidz=

1
σ2i

Z +∞

1

1
z2

Z +∞

−∞
w2pi(w)dwdz

=
Z +∞

1

dz
z2

= 1.

In practice, it is difficult to guarantee that assumption (v) is satisfied and, in general, it will not.
Nevertheless, if the noise variances σ2i are not too large, the result of Theorem 3 could still be used
to approximate the true optimism, as shown in the simulated experiment of Section 5.3. For the
sake of simplicity, let us consider the homoskedastic case σ2i = σ2, ∀i and define:

ôpSVR =
2mσ2

!
.

2480

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

This approximated optimism can be used to assess the in-sample error:

CSVRp = err+ ôpSVR. (19)

This last expression is in very close analogy with the linear case (17), provided that the model order
q is replaced by the number m of marginal vectors. Formula (19) provides a further justification for
the definition of approximate degrees of freedom given in Proposition 2.
Note that, in the Gaussian case, from Theorem 2 it follows that

opSVR =
2σ2

!

!

∑
i=1

E
[
∂hi
∂yi

(y)
]

=
2σ2

!
E [#IM] .

Therefore, ôpSVR is an unbiased estimate of the true optimism opSVR.

5. Numerical Examples

In this section the use of theCp statistic for tuning the SVR parameters (ε,C) is illustrated by means
of two numerical examples. Finally, a simulated experiment is used to assess the precision of the
optimism estimate ôpSVR as a function of the noise variance. The SVR solution was obtained by a
Finite Newton algorithm implemented in MatLab.

5.1 Simulated Data

The true function to be reconstructed is

f 0(x) = esin(8x), 0≤ x≤ 1.

The training data (xi,yi), i= 1, . . . , !, are generated as

yi = y0i + vi,

y0i = f 0(xi),

where the errors vi ∼ N(0,σ2) , σ2 = 0.09, are independently distributed and

xi =
i−1
!−1 ,

with ! = 64. In order to obtain a statistical assessment of the tuning procedure, n= 100 independent
data sets were generated according to the above model. A cubic B-spline kernel was adopted:

K(x,x′) = B3(x− x′).

The tuning of the parameters (ε,C) was carried out on a 30×30 equally spaced rectangular grid in
the region

0.05≤ ε≤ 0.5,

1≤ log10C ≤ 3.

2481

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

0.2
0.4

1

2

3

0.11

0.12

0.13

0.14

ε

A

log10C

Er
r in

ε

lo
g 1
0C

B

0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

0.2
0.4

1

2

3

0.11

0.12

0.13

0.14

ε

C

log10C

Av
er

ag
e

C p

ε
lo
g 1
0C

D

0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

Figure 2: Estimated Errin for the numerical example (Panels A and B) and averageCp over the 100
data sets (Panels C and D).

The choice of a logarithmically spaced C is in agreement with a common practice in Gaussian
Processes and Tikhonov regularization methods, see for example De Nicolao et al. (1997) and De
Nicolao et al. (2000).
First of all, the in-sample error Errin(ε,C) was computed as

Errin(ε,C) - σ2+
1
n!

n

∑
i=1

‖ŷ(i)(ε,C)− y0‖2,

where ŷ(i)(ε,C) is the estimate of the vector y0 obtained from the i-th data set. The function
Errin(ε,C) is shown in Fig. 2. The optimal pair (ε∗,C∗) minimizing Errin(ε,C) is given by
ε∗ = 0.22069,C∗ = 30.392, yielding Errin(ε∗,C∗) = 0.10413.
In order to asses the average performance of theCp statistic as an estimate of Errin, the SVR estimate
was calculated for each pair (ε,C) on the grid and for all the 100 data sets. In Fig. 2C the average
Cp over the data sets is plotted against C and ε. The corresponding contour plot is shown in Fig.
2D. The minimal C′

p = 0.10220 is obtained in correspondence with ε′ = 0.22069, C′ = 25.929.
From Fig. 2, it appears that, on the average, Cp provides a good estimate of Errin. Moreover,
Errin(ε′,C′) = 0.10436 is reasonably close to the optimal Errin(ε∗,C∗) = 0.10413.
In Fig. 3,Cp, Errin and E[err] are plotted againstC for ε= 0.25. The expected empirical risk E[err]
was estimated by averaging over the 100 data sets. Then, the optimism op was estimated as the

2482

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

101 102 103
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

log10C

Cp
Errin
op
E[err]

Figure 3: Decomposition of Errin into the sum of E[err] and op as a function of C for ε = 0.25.
Note that Errin is well approximated byCp.

difference between the estimates of Errin and E[err]. Also from this plot it is seen thatCp provides
an accurate approximation of Errin.
The real goal of a tuning procedure is obtaining a faithful reconstruction of the true function. A
quantitative measure of the predictive performance on a single data set is given by the RMSE (Root
Mean Square Error) defined as:

RMSE(i)(ε,C) =
1√
n
‖ŷ(i)(ε,C)− y0‖.

For each of the 100 data sets, the function f 0(x) was estimated using the pair (ε(i),C(i)) minimizing
the Cp statistic for the i-th data set. The average of such estimated functions is plotted in Fig. 4A
where also the true function f 0(x) is reported for comparison. In order to visualize the variability
of the estimates, pointwise ±2 standard deviations bands are plotted.
For the i-th data set the best possible tuning is

(ε̄(i),C̄(i)) = argmin
ε,C

RMSE(i)(ε,C).

2483

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

A

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

B

Figure 4: Average of the estimated functions over the 100 data sets: average (thick continuous) and
true function (dashed). The results have been obtained by SVR with Cp tuning (Panel A)
and SVR with best possible tuning (Panel B). In both cases, the ± 2 standard deviation
bands are reported (dotted black).

Obviously, this cannot be used in practice because y0 is unknown. Nevertheless, this ideal tuning is
interesting because it gives a lower bound on the best achievable performance.
For each of the 100 data sets, the function f 0(x) was estimated using the ideal tuning (ε(i),C(i)).
The average of such estimated functions with pointwise ±2 SD bands is plotted in Fig. 4B. The
comparison with Panel A of the same figure demonstrates that the predictive performance of theCp
tuning scheme is very close to the best achievable performance.

In Fig. 5 the histogram of RMSE (i)(ε(i),C(i)) (Panel A) is compared with the histogram of the
best achievable errors RMSE (i)(ε̄(i),C̄(i)) (Panel B). Finally, the application of theCp tuning scheme
is illustrated on the first data set. The value ofCp as a function of ε andC is reported in Fig. 6 A-B.
On the considered grid, the Cp statistic is minimized by ε(1) - 0.28, C(1) - 30.4, yielding Cp(ε(1),
C(1)) - 0.103418. For the sake of comparison, in Fig. 6 C-D the plot of RMSE (1)(ε,C) is given.
The best possible tuning for data set #1 is ε̄(1) - 0.28, C̄(1) - 25.93, yielding RMSE(1)(ε̄(1),C̄(1)) -
0.095357. Using the Cp tuning scheme, a very similar value is obtained: RMSE (1)(ε(1),C(1)) -
0.095727.

The SVR estimate corresponding to (ε(1),C(1)) is plotted in Fig. 7 together with the true func-
tion f 0(x). The SVR estimate corresponding to the best possible tuning (ε̄(1),C̄(1)) is plotted for

2484

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25
A

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25
B

Figure 5: Distribution of the RMSE over the 100 data sets using Cp tuning (Panel A) and the best
possible tuning (Panel B).

comparison. Taking into account the signal-to-noise ratio of the data it can be concluded that theCp
tuning scheme performs more than satisfactorily.

5.2 Boston Housing Data

To show the effectiveness on real-world data of the tuning procedure based on the Cp statistic, we
applied it to the Boston Housing data set from the UCI Repository. The data set consists of 516
instances with 12 input variables (including a binary one) and an output variable representing the
median housing values in suburbs of Boston.

The input variables were shifted and scaled to the unit hypercube, while the output variable was
first shifted to have zero mean and then scaled to fit into the interval [−1,1]. More precisely, letting
m j =mini xi, j andM j =maxi xi, j, the inputs xi, j were transformed into (xi, j−m j) /(M j−m j), while
the outputs yi were transformed into (yi− ȳ) / maxi |yi− ȳ|, where ȳ denotes the sample mean.

The data set was randomly split into two parts: 450 instances to be used for training and 56 for
testing. Pairs (ε,C) over a 20×20 uniform grid were considered with

0≤ ε≤ 0.3, 0≤ log10C ≤ 4.

For each pair (ε,C), the SVR fit solving (1)-(2) was evaluated using a Gaussian RBF kernel
with fixed bandwidth (2σ2kernel = 3.9). An estimate of the noise variance σ2 was obtained from

2485

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

0.2
0.4

1

2

3

0.11
0.12
0.13
0.14
0.15

ε

A

log10C

C p

ε

lo
gC

B

0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

0.2
0.4

1

2

3
0.1

0.12

0.14

ε

C

log10C

RM
SE

ε
lo
gC

D

0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

Figure 6: Data set #1: the statistic Cp as a function of ε and C (Panels A and B) and the RMSE
between the estimate and the true function (Panels C and D).

the residuals generated from a low-bias linear regression. For details on this procedure, see for
example Hastie and Tibshirani (1990), page 48, and Loader (1999), page 160. In particular, we
used regularized least squares with polynomial kernel of degree 2. The noise variance of the data
set was estimated as σ̂2 = 0.01 using the estimator

σ̂2 =
SSRL

!−2ν1+ν2
,

where SSRL is the sum of squared residuals using the linear estimator, ν1 = tr(H), ν2 = tr(HTH),
and H is the “hat matrix” of the linear estimator (that is the matrix such that ŷ = Hy). Then, the
following quantities were evaluated:

2486

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 7: Data set #1: True function (continuous), data (crosses), SVR estimate with Cp tuning
(thick continuous) and SVR with best possible tuning (dash-dot).

err =
1
!

!

∑
i=1

(
yi− f̂ (xi)

)2
,

ôpSVR =
2σ̂2m

!
,

CSVRp = err+ ôpSVR,

GCV SVR =
!2err

(!−m)2
.

The score GCV SVR was recently proposed as a tuning criterion by Gunter and Zhu (2007).
These quantities are plotted in Fig. 8 and Fig. 9 together with the 5-fold cross-validation score
whose computation is much heavier and the (quadratic) test error. In the contour plots of Fig. 9, the
position of the minimizers are also showed. It can be seen that Cp and GCV pick the same value
of ε and C. On the considered grid, the minimum value of the test error is 0.01628. The model
selected by Cp and GCV achieves a test error equal to 0.01670, while the model selected by 5-fold
cross-validation achieves 0.01742.

2487

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

0 0.1 0.2
0

2
4

0.01

0.02

0.03

ε

err

log10C 0 0.1 0.2
0

2
4

0.01

0.02

ε

ôpSV R

log10C

0 0.1 0.2
0

2
4

0.015
0.02
0.025
0.03

ε

CSV R
p

log10C 0 0.1 0.2
0

2
4

0.015
0.02
0.025
0.03
0.035

ε

5-CV

log10C

0 0.1 0.2
0

2
4

0.01

0.02

0.03

ε

GCV SV R

log10C 0 0.1 0.2
0

2
4

0.02
0.025
0.03
0.035

ε

Test Error

log10C

Figure 8: Boston Housing data: empirical risk (err), optimism estimate (ôpSVR),Cp statistic (CSVRp),
5-fold cross-validation score (5-CV), Generalized Cross Validation score (GCV SVR), and
mean square error on test data (Test Error).

2488

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

ε

lo
g 1

0
C

err

0 0.1 0.2 0.3
0

1

2

3

4

ε

lo
g 1

0
C

ôpSV R

0 0.1 0.2 0.3
0

1

2

3

4

ε

lo
g 1

0
C

CSV R
p

0 0.1 0.2 0.3
0

1

2

3

4

ε

lo
g 1

0
C

5-CV

0 0.1 0.2 0.3
0

1

2

3

4

ε

lo
g 1

0
C

GCV SV R

0 0.1 0.2 0.3
0

1

2

3

4

ε

lo
g 1

0
C

Test Error

0 0.1 0.2 0.3
0

1

2

3

4

Figure 9: Boston Housing data: contour plots of empirical risk (err), optimism estimate (ôpSVR),
Cp statistic (CSVRp), 5-fold cross-validation score (5-CV), Generalized Cross Validation
score (GCV SVR), and mean square error on test data (Test Error). In the plots of CSVR

p ,
5-CV and GCV SVR the minimizer position is marked. In the test error plot, the marks of
all minimizers are reported.

2489

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.2

0.4

0.6

0.8

1

1.2
ôp

S
V

R

σ

Figure 10: Simulated experiment: boxplots of the estimated optimism ôpSVR against different val-
ues of the noise standard deviation.

5.3 Dependence of ôpSVR on the Noise Variance

In order to investigate the dependence of the variability of ôpSVR on the noise variance, we ran a
simulated experiment. Specifically, we considered 41 standard deviations in the interval [0,1]:

σ j =
j−1
40

, j = 1, . . . ,41.

Next, for each σ j, 100 independent data sets were generated according to the model

yi = sinc(3xi)+ vi, vi ∼ N(0,σ2j),

xi =
2i−101
99

, i= 1, . . . ,100.

For each data set, the SVR was computed using the kernel

K(x,x′) = e−
|x−x′|
4

with the values of C and ε fixed to C = 100, ε = 0.1. For each data set, we evaluated ôpSVR =
2σ̂2m/!. In Fig. 10 the boxplots of ôpSVR are reported against the considered noise standard devi-

2490

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

ations (the “+” marks denote the outliers). As expected, both the mean and the variance of ôpSVR

increase with the noise variance.
Since, under Gaussian noise, ôpSVR is an unbiased estimator, the true optimism opSVR, which is not
reported in the plot, coincides with the expected value of ôpSVR. From Fig. 10 it appears that there
is a whole range of signal-to-noise ratios such that ôpSVR estimates opSVR with good precision.

6. Concluding Remarks

In this paper, a novel formulation of the quantitative representer theorem is derived for convex
loss functions. More precisely, using the newly introduced notion of pseudoresidual the inclusions
appearing in the previous formulations are replaced by equations. This result is exploited in order to
study the sensitivity of both the SVR coefficients and predictions with respect to the data. In view
of the sensitivity analysis, the degrees of freedom of SVR are defined as the number of marginal
support vectors. Such a definition is further justified by the role that the degrees of freedom play
in the assessment of the optimism, that is the difference between the in-sample prediction error and
the expected empirical risk. ACp statistic for SVR is defined and proposed as a criterion for tuning
both the parameters ε and C. The performance observed on both a simulated benchmark and a real
world problem appears more than satisfactory. Among the future developments one may mention
the extension of the results of the present paper to kernel based classifiers.

Acknowledgments

This research has been partially supported by the Italian Ministry of University and Research
through the FIRB Project “Learning theory and application” and the PRIN Project “New methods
and algorithms for identification and adaptive control of technological systems”.

Appendix A.

In this appendix, a Fourier series demonstration of the representer theorem is provided. The ratio-
nale is inspired by Evgeniou et al. (2000) who prove the representer theorem for differentiable loss
functions. Let us assume that the function K(x, t) is such that the bilinear formula holds:

K(x, t) =
+∞

∑
n=1

λnφn(x)φn(t),

where ∀n, λn > 0, and φn denote the n-th eigenvalue and eigenfunction of the operator

T f = (f ,K(x, t))L2 .

Then, K is positive definite and a generic function f ∈ L 2 admits the Fourier expansion

f (x) =
+∞

∑
n=1

cnφn(x). (20)

Now, we can build the RKHS H taking all the functions f such that ∑+∞
n=1

c2n
λn
is finite and defining

the inner product between the two functions u,v ∈ H , u= ∑+∞
n=1 anφn, v= ∑+∞

n=1 bnφn as

2491

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

(u,v)H =
+∞

∑
n=1

anbn
λn

,

so that the norm is

‖ f‖2H =
+∞

∑
n=1

c2n
λn

.

It is easy to check that the reproducing property holds

f (x) = (f (t),K(x, t))H ,

so thatK(x,y) is indeed the reproducing kernel ofH . In particular, the reproducing property implies
that the series (20) is, in fact, pointwise convergent.
In view of this, solving (1) is equivalent to minimizing the following functional with respect to the
coefficient sequence:

F[{cn}] =C
!

∑
i=1
V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+
1
2

+∞

∑
n=1

c2n
λn

.

Noting that the sequence {cn} belongs to !2(R), we can see that the functional F to be minimized
maps a subset of !2 into R. From the necessary condition for optimality, we have 0 ∈ ∂F , where
∂F denotes the subdifferential. Exploiting the linearity of the subdifferential with respect to sums
of convex functions and the fact that the second term is Gâteaux-differentiable, we obtain:

∂F =

{
C

!

∑
i=1

∂V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+
cn
λn

}
.

Now, let us recall the following result (see Prop. 5.7 of Ekeland and Temam (1974), where it is
given for the more general case of topological vector spaces):

Proposition 4 Let H , H ′ two Banach spaces, V a convex function from H into R∪{+∞}, and J a
continuous linear operator from H ′ into H . Assume that there is v′0 ∈ H ′ such that V is continuous
and finite at Jv′0. Then, for all v′ ∈ H ′

(∂V ◦ J)(v′) = J∗(∂V)(Jv′),

where J∗ :H → H ′ is the adjoint defined by

〈
v′,J∗v

〉
H ′ =

〈
Jv′,v

〉
H

for all v ∈ H and v′ ∈ H ′, where < ·, · >H stands for the duality pairing in the Banach space H .

Introducing the linear operators Ji : !2 → R

Ji({cn}) =
+∞

∑
n=1

cnφn(xi),

2492

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

we can write

∂V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
= ∂V (yi,Ji({cn})) .

Notice that the adjoint J∗i : R → !2(R) is given by J∗i (t) = {tφn(xi)}. In fact,

〈{cn},J∗i (t)〉!2 =
+∞

∑
n=1

cn(J∗i (t))n = t
+∞

∑
n=1

cnφn(xi) = 〈Ji({cn}), t〉R .

In view of Proposition 4,

∂F =

{
C

!

∑
i=1

φn(xi)∂2V

(
yi,

+∞

∑
n=1

cnφn(xi)

)
+
cn
λn

}

so that the condition 0 ∈ ∂F implies that the optimal sequence {ĉn} must satisfy

ĉn ∈ −
!

∑
i=1
C∂2V

(
yi, f̂ (xi)

)
λnφn(xi).

It is then possible to write

ĉn =
!

∑
i=1

aiλnφn(xi),

where

ai ∈ −C∂2V (yi, f̂ (xi)).

Finally, exploiting the bilinear formula for the reproducing kernel, we obtain

f̂ (x) =
+∞

∑
n=1

ĉnφn(x) =
!

∑
i=1

ai
+∞

∑
n=1

λnφn(xi)φn(x) =
!

∑
i=1

aiK(xi,x).

References

J. M. Borwein and A. J. Lewis. Convex Analisys and Nonlinear Optimization. Springer, 2000.

M. W. Chang and C. J. Lin. Leave-one-out bounds for support vector regression model selection.
Neural Computation, 17:1188–1222, 2005.

V. Cherkassky and Y. Ma. Comparison of model selection for regression. Neural Computation, 15:
1691–1714, 2003.

D. Cox and F. O’ Sullivan. Asymptotic analysis of penalized likelihood and related estimators.
Ann.Stat., 18:1676–1695, 1990.

F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of AMS, 39:1–49,
2001.

2493

DINUZZO, NEVE, GIANAZZA AND DE NICOLAO

G. De Nicolao, G. Sparacino, and C. Cobelli. Nonparametric input estimation in physiological
systems: Problems, methods, and case studies. Automatica, 33:851–870, 1997.

G. De Nicolao, G. Ferrari Trecate, and G. Sparacino. Fast spline smoothing via spectral factorization
concepts. Automatica, 36:1733–1739, 2000.

E. De Vito, L. Rosasco, A. Caponnetto, M. Piana, and A. Verri. Some properties of regularized
kernel methods. Journal of Machine Learning Research, 5:1363–1390, 2004.

B. Efron. How biased is the apparent error rate of a prediction rule? Journal of the American
Statistical Association, 81(394):461–470, 1986.

I. Ekeland and R. Temam. Analyse Convexe et Problémes Variationnels. Gauthier-Villards, Paris,
1974.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Advances in Computational Mathematics, 13:1–150, 2000.

J. B. Gao, S. R. Gunn, C. J. Harris, and M. Brown. A probabilistic framework for SVM regression
and error bar estimation. Machine Learning, 46:71–89, 2002.

L. Gunter and J. Zhu. Efficient computation and model selection for the support vector regression.
Neural Computation, 19:1633–1655, 2007.

T. J. Hastie and R. J. Tibshirani. Generalized additive models. In Monographs on Statistics and
Applied Probability, volume 43. Chapman and Hall, London, UK, 1990.

T. J. Hastie, R. J. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining,
Inference and Prediction. Springer, Canada, 2001.

T. J. Hastie, R. J. Tibshirani, and J. Friedman. Note on “Comparison of Model Selection for Re-
gression” by Vladimir Cherkassky and Yunqian Ma. Neural Computation, 15:1477–1480, 2003.

T. J. Hastie, S. Rosset, R. J. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

G. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation of stochastic pro-
cesses and smoothing by splines. Ann. Math. Stat., 41:495–502, 1979.

J. T. Kwok and I. W. Tsang. Linear dependency between ε and the input noise in ε-support vector
regression. IEEE Transactions On Neural Networks, XX, 2003.

C. Loader. Local Regression and Likehood. Statistics and Computing. Springer, 1999.

T. Poggio and F. Girosi. A theory of networks for approximation and learning. Foundation of Neural
Networks, page 91–106, 1992.

M. Pontil and A. Verri. Properties of support vector machines. Neural Computation, 10:955–974,
1998.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207–1245, 2000.

2494

REPRESENTER THEOREM AND DEGREES OF FREEDOM OF SVR

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. Neural Networks
and Computational Learning Theory, 81:416–426, 2001.

A. J. Smola, N. Murata, B. Schölkopf, and K. Muller. Asymptotically optimal choice of ε-loss for
support vector machines. In L. Niklasson, M. Boden, and T. Ziemke, editors, Proceedings of the
8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing,
pages 105–110, Berlin, 1998. Springer.

C. Stein. Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9:
1135–1151, 1981.

I. Steinwart. Sparseness of support vector machines. Journal of Machine Learning Research, 4:
1071–1105, 2003.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill Posed Problems. W. H. Winston, Washington,
D. C., 1977.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, NY, USA, 1995.

G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia, USA, 1990.

G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and randomized GACV.
Technical Report 984, Department of Statistics, University of Wisconsin, 1998.

2495

Journal of Machine Learning Research 8 (2007) 2497-2532 Submitted 5/06; Revised 10/06; Published 10/07

Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1
Using Cauchy Random Projections

Ping Li PINGLI@CORNELL.EDU
Department of Statistical Science
Faculty of Computing and Information Science
Cornell University
Ithaca, NY 14853, USA

Trevor J. Hastie HASTIE@STANFORD.EDU
Department of Statistics
Stanford University
Stanford, CA 94305, USA

Kenneth W. Church CHURCH@MICROSOFT.COM
Microsoft Research
Microsoft Corporation
Redmond, WA 98052, USA

Editor: Sam Roweis

Abstract
For1 dimension reduction in the l1 norm, the method of Cauchy random projections multiplies the
original data matrix A ∈ Rn×D with a random matrix R ∈ RD×k (k" D) whose entries are i.i.d.
samples of the standard Cauchy C(0,1). Because of the impossibility result, one can not hope to
recover the pairwise l1 distances in A from B = A×R ∈ Rn×k, using linear estimators without
incurring large errors. However, nonlinear estimators are still useful for certain applications in data
stream computations, information retrieval, learning, and data mining.

We study three types of nonlinear estimators: the sample median estimators, the geometric
mean estimators, and the maximum likelihood estimators (MLE). We derive tail bounds for the
geometric mean estimators and establish that k = O

(
logn
ε2

)
suffices with the constants explicitly

given. Asymptotically (as k → ∞), both the sample median and the geometric mean estimators
are about 80% efficient compared to the MLE. We analyze the moments of the MLE and propose
approximating its distribution of by an inverse Gaussian.
Keywords: dimension reduction, l1 norm, Johnson-Lindenstrauss (JL) lemma, Cauchy random
projections

1. Introduction

There has been considerable interest in the l1 norm in statistics and machine learning, as it is now
well-known that the l1 distance is far more robust than the l2 distance against “outliers” (Huber,
1981). It is sometimes a good practice to replace the l2 norm minimization with the l1 norm mini-
mization, for example, the Least Absolute Deviation (LAD) Boost (Friedman, 2001). Chapelle et al.
(1999) demonstrated that using the l1 (Laplacian) radial basis kernel produced better classification

1. A preliminary version appeared in COLT 2007 (Li et al., 2007b).

c©2007 Ping Li, Trevor J. Hastie and Kenneth W. Church.

LI, HASTIE AND CHURCH

results than the usual l2 (Gaussian) radial basis kernel, in their histogram-based image classification
project using support vector machines (SVM). Recently, it also becomes popular to use the l1 norm
for variable (feature) selection; success stories include LASSO (Tibshirani, 1996), LARS (Efron
et al., 2004) and 1-norm SVM (Zhu et al., 2003).

This paper focuses on dimension reduction in the l1 norm, in particular, on the method based on
Cauchy random projections, which is a special case of linear (stable) random projections (Johnson
and Schechtman, 1982; Indyk, 2000, 2006; Li, 2008).

The idea of linear random projections is to multiply the original data matrix A ∈ Rn×D with a
random projection matrix R ∈ RD×k, resulting in a projected matrix B = AR ∈ Rn×k. We would
like k to be as small as possible. If k"D, then it should be much more efficient to compute certain
summary statistics (e.g., pairwise distances) from B as opposed to A. Moreover, B may be small
enough to reside in physical memory while A is often too large to fit in the main memory.

The choice of the random projection matrix R depends on which norm we would like to work
with. For dimension reduction in lp (0 < p ≤ 2), it is common practice to construct R from i.i.d.
samples of p-stable distributions (Johnson and Schechtman, 1982; Indyk, 2000, 2006; Li, 2008). In
the stable distribution family (Zolotarev, 1986), normal is 2-stable and Cauchy is 1-stable. Thus,
we will call random projections for l2 and l1, normal random projections and Cauchy random pro-
jections, respectively.

In normal random projections (Vempala, 2004), we can estimate the original pairwise l2 dis-
tances in A directly using the corresponding l2 distances in B (up to a normalizing constant). Fur-
thermore, the Johnson-Lindenstrauss (JL) Lemma (Johnson and Lindenstrauss, 1984) provides the
performance guarantee. We will review normal random projections in more detail in Section 2.

For Cauchy random projections, however, one shall not use the l1 distance in B to approximate
the original l1 distance inA, as the Cauchy distribution does not even have a finite first moment. The
impossibility results (Brinkman and Charikar, 2003; Lee and Naor, 2004; Brinkman and Charikar,
2005) have proved that one can not hope to recover the l1 distance using linear projections and linear
estimators (e.g., sample mean), without incurring large errors. Fortunately, the impossibility results
do not rule out nonlinear estimators, which may be still useful in certain applications in data stream
computations, information retrieval, learning, and data mining.

In this paper, we study three types of nonlinear estimators: the sample median estimators, the
geometric mean estimators, and the maximum likelihood estimators (MLE). The sample median and
the geometric mean estimators are asymptotically (as k→ ∞) equivalent (i.e., both are about 80%
efficient as the MLE), but the latter is more accurate at small sample size k. Furthermore, we derive
explicit tail bounds for the geometric mean estimators and establish an analog of the JL Lemma for
dimension reduction in l1.

This analog of the JL Lemma for l1 is weaker than the classical JL Lemma for l2, as the geomet-
ric mean is not convex and hence is not a metric. Many efficient algorithms, such as some sub-linear
time (using super-linear memory) nearest neighbor algorithms (Shakhnarovich et al., 2005), rely on
metric properties (e.g., the triangle inequality). Nevertheless, nonlinear estimators may be still use-
ful in important scenarios.

• Estimating l1 distances online
The original data matrix A ∈ Rn×D requires O(nD) storage space; and hence it is often too
large for physical memory. The storage cost of materializing all pairwise distances is O(n2),
which may be also too large for the memory. For example, in information retrieval, n could
be the total number of word types or documents at Web scale. To avoid page faults, it may

2498

CAUCHY RANDOM PROJECTIONS

be more efficient to estimate the distances on the fly from the projected data matrix B in the
memory.

• Computing all pairwise l1 distances
In distance-based clustering, classification, and kernels (e.g., for SVM), we need to compute
all pairwise distances in A, at the cost of time O(n2D), which can be prohibitive, especially
when A does not fit in the memory. Using Cauchy random projections, the cost is reduced to
O(nDk+n2k).

• Linear scan nearest neighbor searching
Nearest neighbor searching is notorious for being inefficient, especially when the data matrix
A is too large for the memory. Searching for the nearest neighbors from the projected data
matrix B (which is in the memory) becomes much more efficient, even by linear scans. The
cost of searching for the nearest neighbor for one data point is reduced from O(nD) to O(nk).

• Data stream computations.
Massive data streams come from Internet routers, phone switches, atmospheric observations,
sensor networks, highway traffic, finance data, and more (Henzinger et al., 1999; Feigenbaum
et al., 1999; Indyk, 2000; Babcock et al., 2002; Cormode et al., 2002). Unlike in the traditional
databases, it is not common to store massive data streams; and hence the processing is often
done on the fly. In data stream computations, Cauchy random projections can be used for
(A): approximating the l1 frequency moments for individual streams; (B): approximating the
l1 differences between a pair of streams.

We briefly comment on random coordinate sampling, another strategy for dimension reduction.
One can randomly sample k columns from A ∈ Rn×D and estimate the summary statistics (includ-
ing l1 and l2 distances). Despite its simplicity, this strategy has two major drawbacks. First, in
heavy-tailed data, one may have to choose k very large in order to achieve a sufficient accuracy.
Second, large data sets are often highly sparse, for example, text data (Dhillon and Modha, 2001)
and market-basket data (Aggarwal and Wolf, 1999; Strehl and Ghosh, 2000). For sparse data, Li
and Church (2005, 2007); Li et al. (2007a) provided an alternative coordinate sampling strategy,
called Conditional Random Sampling (CRS). For non-sparse data, however, methods based on lin-
ear (stable) random projections are superior.

The rest of the paper is organized as follows. Section 2 reviews linear random projections.
Section 3 summarizes the main results for three types of nonlinear estimators. Section 4 presents
the sample median estimators. Section 5 concerns the geometric mean estimators. Section 6 is
devoted to the maximum likelihood estimators. Section 7 concludes the paper.

2. Introduction to Linear (Stable) Random Projections

We give a review on linear random projections, including normal and Cauchy random projections.
Denote the original data matrix by A ∈ Rn×D, that is, n data points in D dimensions. Let

{uTi }ni=1 ∈ RD be the ith row of A. Let R ∈ RD×k be a projection matrix and denote the entries of R
by {ri j}Di=1 kj=1. The projected data matrix B = AR ∈ Rn×k. Let {vTi }ni=1 ∈ Rk be the ith row of B,
that is, vi = RTui.

2499

LI, HASTIE AND CHURCH

For simplicity, we focus on the leading two rows, u1 and u2, in A, and the leading two rows, v1
and v2, in B. Define {x j}kj=1 to be

x j = v1, j− v2, j =
D

∑
i=1

ri j (u1,i−u2,i) , j = 1,2, ...,k.

If we sample ri j i.i.d. from a p-stable distribution (Zolotarev, 1986), then x j’s are also i.i.d. sam-
ples of a p-stable distribution with a different scale parameter. In the family of stable distributions,
normal (p= 2) and Cauchy (p= 1) are two important special cases.

2.1 Normal Random Projections

When ri j is sampled from the standard normal, that is, ri j ∼ N(0,1), i.i.d., then

x j = v1, j− v2, j =
D

∑
i=1

ri j (u1,i−u2,i) ∼ N

(
0,

D

∑
i=1

|u1,i−u2,i|2
)

, j = 1,2, ...,k,

because a weighted sum of normals is also normal.
Denote the squared l2 distance between u1 and u2 by

dl2 = ‖u1−u2‖22 =
D

∑
i=1

|u1,i−u2,i|2.

We can estimate dl2 from the sample squared l2 distance (i.e., sample mean):

d̂l2 =
1
k

k

∑
j=1

x2j .

Note that kd̂l2/dl2 follows a Chi-square distribution with k degrees of freedom, χ2k . Therefore, it
is easy to prove the following Lemma about the tail bounds:

Lemma 1

Pr(d̂l2 −dl2 ≥ εdl2) ≤ exp
(
−k
2

(ε− log(1+ ε))
)

= exp
(
−k ε

2

GR

)
, ε> 0,

Pr(d̂l2 −dl2 ≤−εdl2) ≤ exp
(
−k
2

(−ε− log(1− ε))
)

= exp
(
−k ε

2

GL

)
, 0< ε< 1,

where the constants

GR =
2ε2

ε− log(1+ ε)
≤ 4
1− 2

3ε
,

GL =
2ε2

−ε− log(1− ε)
≤ 4
1+ 2

3ε
≤ 4
1− 2

3ε
.

2500

CAUCHY RANDOM PROJECTIONS

Proof Using the standard Chernoff inequality (Chernoff, 1952),

Pr(d̂l2 −dl2 ≥ εdl2) =Pr
(
kd̂l2/dl2 ≥ k(1+ ε)

)

≤
E

(
exp(kd̂l2/dl2t)

)

exp((1+ ε)kt)
(t > 0)

=exp
(
−k
2

(log(1−2t)+2(1+ ε)t)
)

,

which is minimized at t = ε
2(1+ε) . Thus, for any ε> 0

Pr(d̂l2 −dl2 > εdl2) ≤ exp
(
−k
2

(ε− log(1+ ε))
)

.

We can similarly prove the other tail bound for Pr(d̂l2 −dl2 ≤−εdl2).

For convenience, sometimes we would like to write the tail bounds in a symmetric form

Pr
(∣∣d̂l2 −dl2

∣∣ ≥ εdl2
)
≤ 2exp

(
−kε

2

G

)
, 0< ε< 1,

and we know that it suffices to let G=max{GR,GL} ≤ 4
1− 2

3 ε
.

Since there are in total n(n−1)2 < n2
2 pairs among n data points, we would like to bound the tail

probabilities simultaneously for all pairs. By the Bonferroni union bound, it suffices if

n2

2
Pr

(∣∣d̂l2 −dl2
∣∣ ≥ εdl2

)
≤ δ,

that is, it suffices if

n2

2
2exp

(
−kε

2

G

)
≤ δ=⇒ k ≥ G

2logn− logδ
ε2

.

Therefore, we obtain one version of the Johnson-Lindenstrauss (JL) Lemma:

Lemma 2 If k ≥ G 2logn−logδ
ε2 , where G = 4

1− 2
3 ε
, then with probability at least 1− δ, the squared

l2 distance between any pair of data points (among n data points) can be approximated within a
1± ε factor (0 < ε < 1), using the squared l2 distance of the projected data after normal random
projections.

Many versions of the JL Lemma have been proved (Johnson and Lindenstrauss, 1984; Frankl
and Maehara, 1987; Indyk and Motwani, 1998; Arriaga and Vempala, 1999; Dasgupta and Gupta,
2003; Indyk, 2000, 2001; Achlioptas, 2003; Arriaga and Vempala, 2006; Ailon and Chazelle, 2006).

Note that we do not have to use ri j ∼ N(0,1) for dimension reduction in l2. For example, we
can sample ri j from the following sparse projection distribution:

ri j =
√
s×






1 with prob. 12s
0 with prob. 1− 1

s
−1 with prob. 12s

. (1)

2501

LI, HASTIE AND CHURCH

When 1≤ s≤ 3, Achlioptas (2001, 2003) proved the JL Lemma for the above sparse projection.
Recently, Li et al. (2006b) proposed very sparse random projections using s, 3 in (1), based on
two practical considerations:

• D should be very large, otherwise there would be no need for dimension reduction.

• The original l2 distance should make engineering sense, in that the second (or higher) mo-
ments should be bounded (otherwise various term-weighting schemes will be applied).

Based on these two practical assumptions, the projected data are asymptotically normal at a fast
rate of convergence when s=

√
D and the data have bounded third moments. Of course, very sparse

random projections do not have worst case performance guarantees.

2.2 Cauchy Random Projections

In Cauchy random projections, we sample ri j i.i.d. from the standard Cauchy distribution, that is,
ri j ∼C(0,1). By the 1-stability of Cauchy (Zolotarev, 1986), we know that

x j = v1, j− v2, j ∼C

(
0,

D

∑
i=1

|u1,i−u2,i|
)

.

That is, the projected differences x j = v1, j− v2, j are also Cauchy random variables with the scale
parameter being the l1 distance, d = |u1−u2| = ∑D

i=1 |u1,i−u2,i|, in the original space.
Recall that a Cauchy random variable z∼C(0,γ) has the density

f (z) =
γ
π

1
z2+ γ2

, γ> 0, −∞< z< ∞.

The easiest way to see the 1-stability is via the characteristic function,

E
(
exp(

√
−1z1t)

)
= exp(−γ|t|) ,

E

(
exp

(
√
−1t

D

∑
i=1

cizi

))
= exp

(
−γ

D

∑
i=1

|ci|t
)

,

for z1, z2, ..., zD, i.i.d. C(0,γ), and any constants c1, c2, ..., cD.
Therefore, in Cauchy random projections, the problem boils down to estimating the Cauchy

scale parameter ofC(0,d) from k i.i.d. samples x j ∼C(0,d). Unlike in normal random projections,
we can no longer estimate d from the sample mean (i.e., 1k ∑

k
j=1 |x j|) because E(x j) = ∞.

3. Main Results

Although the impossibility results (Lee and Naor, 2004; Brinkman and Charikar, 2005) have ruled
out accurate estimators that are also metrics, there is enough information to recover d from k samples
{x j}kj=1, with high accuracy.

We analyze three types of nonlinear estimators: the sample median estimators, the geometric
mean estimators, and the maximum likelihood estimators.

2502

CAUCHY RANDOM PROJECTIONS

3.1 The Sample Median Estimators

The sample median estimator,

d̂me =median(|x j|, j = 1,2, ...,k),

is simple and computationally convenient. We recommend the bias-corrected version:

d̂me,c =
d̂me
bme

,

where

bme =
Z 1

0

(2m+1)!
(m!)2

tan
(π
2
t
)(
t− t2

)m dt, k = 2m+1.

Here, for convenience, we only consider k = 2m+1, m = 1, 2, 3, ...
Some properties of d̂me,c:

• E
(
d̂me,c

)
= d, that is, d̂me,c is unbiased.

• When k ≥ 5, the variance of d̂me,c is

Var
(
d̂me,c

)
=d2




(m!)2

(2m+1)!

R 1
0 tan2

(
π
2 t

)(
t− t2

)m dt
(R 1
0 tan

(
π
2 t

)
(t− t2)m dt

)2 −1



 , k ≥ 5

=
π2

4k
d2+O

(
1
k2

)
.

• bme ≥ 1 and bme → 1 monotonically with increasing k.

3.2 The Geometric Mean Estimators

The geometric mean estimator

d̂gm =
k

∏
j=1

|x j|1/k

has tail bounds

Pr
(
d̂gm ≥ (1+ ε)d

)
≤UR,gm = exp

(
−k ε2

GR,gm

)
, ε> 0

Pr
(
d̂gm ≤ (1− ε)d

)
≤UL,gm = exp

(
−k ε2

GL,gm

)
, 0< ε< 1

where

GR,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1+ ε)

)2)+ 2
π tan−1

(2
π log(1+ ε)

)
log(1+ ε)

) ,

GL,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1− ε)

)2)+ 2
π tan−1

(2
π log(1− ε)

)
log(1− ε)

) .

2503

LI, HASTIE AND CHURCH

Moreover, for small ε, we obtain the following convenient approximations:

GR,gm =
π2

2

(
1+ ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
,

GL,gm =
π2

2

(
1− ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
.

Consequently, we establish an analog of the Johnson-Lindenstrauss (JL) Lemma for dimension
reduction in l1:

If k ≥ Ggm
(2logn−logδ)

ε2 , then with probability at least 1− δ, one can recover the original l1 dis-
tance between any pair of data points (among all n data points) within a 1± ε factor (0 < ε < 1),
using d̂gm. The constant Ggm can be specified from GR,gm and GL,gm: Ggm =max{GR,gm,GL,gm}.

To remove the bias and also reduce the variance, we recommend the bias-corrected geometric
mean estimator:

d̂gm,c = cosk
(π
2k

) k

∏
j=1

|x j|1/k,

which is unbiased and has variance

Var
(
d̂gm,c

)
= d2

(
cos2k

(
π
2k

)

cosk
(
π
k
) −1

)
=
π2

4
d2

k
+
π4

32
d2

k2
+O

(
1
k3

)
.

We also derive tail bounds for d̂gm,c:

Pr
(
d̂gm,c ≥ (1+ ε)d

)
≤UR,gm,c, ε> 0

Pr
(
d̂gm,c ≤ (1− ε)d

)
≤UL,gm,c, 0< ε< 1,

and show that, compared with d̂gm, the ratios of the tail bounds

ρR,k =
UR,gm,c

UR,gm
→ ρR,∞ =

1
(1+ ε)C1

exp
(
−π2

8
A1+

π
2
C1 tan

(
π2

2
A1

))
,

ρL,k =
UL,gm,c

UL,gm
→ ρL,∞ =

1
(1− ε)C2

exp
(
π2

8
A2−

π
2
C2 tan

(
π2

2
A2

))
,

as k→ ∞, where A1,C1, A2, andC2 are only functions of ε.

3.3 The Maximum Likelihood Estimators

Denoted by d̂MLE,c, the bias-corrected maximum likelihood estimator (MLE) is

d̂MLE,c = d̂MLE
(
1− 1

k

)
,

where d̂MLE solves a nonlinear MLE equation

− k
d̂MLE

+
k

∑
j=1

2d̂MLE
x2j + d̂2MLE

= 0.

Some properties of d̂MLE,c:

2504

CAUCHY RANDOM PROJECTIONS

• It is nearly unbiased, E
(
d̂MLE,c

)
= d+O

(1
k2

)
.

• Its asymptotic variance is

Var
(
d̂MLE,c

)
=
2d2

k
+
3d2

k2
+O

(
1
k3

)
,

that is, Var(d̂MLE,c)
Var(d̂me,c) → 8

π2 ,
Var(d̂MLE,c)
Var(d̂gm,c) → 8

π2 , as k→ ∞. (8π2 ≈ 80%)

• Its distribution can be accurately approximated by an inverse Gaussian, at least in the small
deviation range, which suggests the following approximate tail bound

Pr
(
|d̂MLE,c−d| ≥ εd

) ∼
≤ 2exp

(
−ε2/(1+ ε)
2
(2
k + 3

k2
)
)

, 0< ε< 1,

which is verified by simulations for the tail probability ≥ 10−10 range.

4. The Sample Median Estimators

Recall in Cauchy random projections, B=AR, we denote the leading two rows inA by u1, u2 ∈RD,
and the leading two rows in B by v1, v2 ∈ Rk. Our goal is to estimate the l1 distance d = |u1−u2| =
∑D
i=1 |u1,i−u2,i| from {x j}kj=1, x j = v1, j− v2, j ∼C(0,d), i.i.d.
A widely-used estimator in statistics is based on the sample inter-quantiles (Fama and Roll,

1968, 1971; McCulloch, 1986). For the symmetric Cauchy, the (absolute) sample median estimator

d̂me =median{|x j|, j = 1,2, ...,k}

is convenient because the population median of absolute Cauchy is exactly d (Indyk, 2006).
It is well-known in statistics that d̂me, is asymptotically unbiased and normal; see Lemma 3. For

small samples (e.g., k ≤ 20), however, d̂me is severely biased.

Lemma 3 The sample median estimator, d̂me, is asymptotically unbiased and normal

√
k
(
d̂me−d

) D=⇒ N
(
0,
π2

4
d2

)
.

When k = 2m+1, m = 1, 2, 3, ..., the rth moment of d̂me can be represented as

E
(
d̂me

)r = dr
(Z 1

0

(2m+1)!
(m!)2

tanr
(π
2
t
)(
t− t2

)m dt
)

, m≥ r (2)

If m< r, then E
(
d̂me

)r = ∞.
Proof Let f (z;d) and F(z;d) be the probability density and cumulative density respectively for
|C(0,d)|:

f (z;d) =
2d
π

1
z2+d2

, F(z;d) =
2
π
tan−1

(z
d

)
, z≥ 0.

2505

LI, HASTIE AND CHURCH

The inverse of F(z;d) is F−1 (q;d) = d tan
(
π
2q

)
. Here, we take q= 0.5, to consider the sample

median. By the asymptotic normality of sample quantiles (David, 1981, Theorem 9.2), we know that

√
k
(
d̂me−d

) D=⇒ N

(
0,

1
2
1
2(

f
(
d tan

(
π
2
1
2
)
;d

)
× tan

(
π
2
1
2
))2 =

π2

4
d2

)
,

that is, d̂me is asymptotically unbiased and normal with the variance Var
(
d̂me

)
= π2

4kd
2+O

(1
k2

)
.

For convenience, we assume k= 2m+1. Again, by properties of sample quantile (David, 1981,
Chapter 2.1), the probability density of d̂me is

fd̂me (z) =
(2m+1)!

(m!)2
(F(z;d)(1−F(z;d)))m f (z;d),

from which we can write down the rth moment of d̂me in (2), after some change of variables.

Once we know E
(
d̂me

)
, we can design an unbiased estimator as described in Lemma 4.

Lemma 4 The estimator,

d̂me,c =
d̂me
bme

,

is unbiased, that is, E
(
d̂me,c

)
= d, where the bias-correction factor bme is

bme =
E

(
d̂me

)

d
=

Z 1

0

(2m+1)!
(m!)2

tan
(π
2
t
)(
t− t2

)m dt, (k = 2m+1). (3)

The variance of d̂me,c is

Var
(
d̂me,c

)
= d2




(m!)2

(2m+1)!

R 1
0 tan2

(
π
2 t

)(
t− t2

)m dt
(R 1
0 tan

(
π
2 t

)
(t− t2)m dt

)2 −1



 , k = 2m+1≥ 5.

d̂gm,c and d̂gm are asymptotically equivalent, that is,

√
k
(
d̂me,c−d

) D=⇒ N
(
0,
π2

4
d2

)
.

The bias-correction factor bme is monotonically decreasing with increasing m, and

bme ≥ 1, lim
m→∞

bme = 1.

Proof Most of the results follow directly from Lemma 3. Here we only show bme decreases mono-
tonically and bme → 1 as m→ ∞.

Note that (2m+1)!
(m!)2

(
t− t2

)m, 0≤ t ≤ 1, is the probability density of a Beta distribution Beta(m+

1,m+1), whose rth moment is E(zr) = (2m+1)!(m+r)!
(2m+1+r)!m! .

2506

CAUCHY RANDOM PROJECTIONS

By Taylor expansions (Gradshteyn and Ryzhik, 1994, 1.411.6),

tan
(π
2
t
)

=
∞

∑
j=1

22 j
(
22 j−1

)

(2 j)!
|B2 j|

(π
2

)2 j−1
t2 j−1,

where B2 j is the Bernoulli number (Gradshteyn and Ryzhik, 1994, 9.61).
Therefore,

bme =
∞

∑
j=1

22 j
(
22 j−1

)

(2 j)!
|B2 j|

(π
2

)2 j−1 (2m+1)!(m+2 j−1)!
(2m+2 j)!m!

.

It is easy to show that (2m+1)!(m+2 j−1)!
(2m+2 j)!m! decreases monotonically with increasing m and it con-

verges to
(1
2
)2 j−1. Thus, bme also decreases monotonically with increasing m.

From the Taylor expansion of tan(t), we know that

bme →
∞

∑
j=1

22 j
(
22 j−1

)

(2 j)!
|B2 j|

(π
2

)2 j−1(1
2

)2 j−1
= tan

(
π
2
1
2

)
= 1.

It is well-known that bias-corrections are not always beneficial because of the bias-variance
trade-off phenomenon. In our case, because the correction factor bme≥ 1 always, the bias-correction
not only removes the bias of d̂me but also reduces the variance of d̂me.

The bias-correction factor bme can be numerically evaluated and tabulated, at least for small k.
Figure 1 plots bme as a function of k, indicating that d̂me is severely biased when k ≤ 20. When
k > 50, the bias becomes negligible.

0 5 10 15 20 25 30 35 40 45 501
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Sample size k

Bi
as

 c
or

re
ct

io
n

fa
ct

or

Figure 1: The bias correction factor, bme in (3), as a function of k = 2m+1. After k > 50, the bias
is negligible. Note that bme = ∞ when k = 1.

2507

LI, HASTIE AND CHURCH

5. The Geometric Mean Estimators

This section derives estimators based on the geometric mean, which are more accurate than the
sample median estimators. The geometric mean estimators allow us to derive tail bounds in ex-
plicit forms and (consequently) establish an analog of the Johnson-Lindenstrauss (JL) Lemma for
dimension reduction in the l1 norm.

Lemma 5 Assume x∼C(0,d). Then

E
(
|x|λ

)
=

dλ

cos(λπ/2)
, |λ| < 1.

Proof Using the integral table (Gradshteyn and Ryzhik, 1994, 3.221.1, page 337),

E
(
|x|λ

)
=
2d
π

Z ∞

0

yλ

y2+d2
dy=

dλ

π

Z ∞

0

y λ−12
y+1

dy=
dλ

cos(λπ/2)
.

From Lemma 5, by taking λ = 1
k , we obtain an unbiased estimator, d̂gm,c, based on the bias-

corrected geometric mean in the next lemma, which is proved in Appendix A.

Lemma 6

d̂gm,c = cosk
(π
2k

) k

∏
j=1

|x j|1/k, k > 1 (4)

is unbiased, with the variance (valid when k > 2)

Var
(
d̂gm,c

)
= d2

(
cos2k

(
π
2k

)

cosk
(
π
k
) −1

)
=
d2

k
π2

4
+
π4

32
d2

k2
+O

(
1
k3

)
.

The third and fourth central moments are

E
(
d̂gm,c−E

(
d̂gm,c

))3 =
3π4

16
d3

k2
+O

(
1
k3

)
,

E
(
d̂gm,c−E

(
d̂gm,c

))4 =
3π4

16
d4

k2
+O

(
1
k3

)
.

The higher (third or fourth) moments may be useful for approximating the distribution of d̂gm,c.
In Section 6, we will show how to approximate the distribution of the maximum likelihood estimator
by matching the first four moments (in the leading terms). We could apply the similar technique to
approximate d̂gm,c. Fortunately, we do not have to do so because we are able to derive the exact tail
bounds for d̂gm,c in Lemma 9.

Note that in (4), as k→ ∞, the bias-correction term converges to 1 quickly:

cosk
(π
2k

)
=

(
1− 1

2

(π
2k

)2
+ ...

)k
= 1− k

2

(π
2k

)2
+ ... = 1− π2

8
1
k

+ ... → 1.

2508

CAUCHY RANDOM PROJECTIONS

When k is not too small (e.g., k > 50), the geometric mean estimator without bias-correction,

d̂gm =
k

∏
j=1

|x j|1/k, k > 1,

gives similar results as d̂gm,c. As shown in Figure 2, the ratios of the mean square errors (MSE)

MSE
(
d̂gm

)

MSE
(
d̂gm,c

) =
1

cosk(π
k)

− 2
cosk(π

2k)
+1

cos2k(π
2k)

cosk(π
k)

−1
(5)

demonstrate that the two geometric mean estimators are similar when k > 50, in terms of the MSE.

3 10 20 30 40 50 60 70 80 90 1001

1.2

1.4

1.6

1.8

2

2.2

2.4
2.5

Sample size k

M
SE

 ra
tio

Figure 2: The ratios of the mean square errors (MSE) MSE(d̂gm)
MSE(d̂gm,c) in (5) indicate that the difference

between d̂gm and d̂gm,c becomes negligible when k > 50.

One advantage of d̂gm is the convenience for deriving tail bounds. Thus, before presenting
Lemma 9 for d̂gm,c, we prove tail bounds for d̂gm in Lemma 7 (proved in Appendix B).

Lemma 7

Pr
(
d̂gm ≥ (1+ ε)d

)
≤UR,gm = exp

(
−k ε2

GR,gm

)
, ε> 0

Pr
(
d̂gm ≤ (1− ε)d

)
≤UL,gm = exp

(
−k ε2

GL,gm

)
, 0< ε< 1

where

GR,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1+ ε)

)2)+ 2
π tan−1

(2
π log(1+ ε)

)
log(1+ ε)

) , (6)

GL,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1− ε)

)2)+ 2
π tan−1

(2
π log(1− ε)

)
log(1− ε)

) . (7)

2509

LI, HASTIE AND CHURCH

Moreover, for small ε, we have the following convenient approximations:

GR,gm =
π2

2

(
1+ ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
, (8)

GL,gm =
π2

2

(
1− ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
. (9)

Consequently, as ε→ 0+, we know

GR,gm → π2

2
, GL,gm → π2

2
.

Figure 3 plots the constants GR,gm and GL,gm in (6) and (7), along with their convenient approx-
imations (8) and (9). For GR,gm, the exact and approximate expressions are indistinguishable when
ε < 2. For GL,gm, the exact and approximate expressions are indistinguishable when ε < 0.7. The
plots also suggest that the approximations, (8) and (9), are upper bounds of the exact constants, (6)
and (7), respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
5
10
15
20
25
30
35
40
45
50

ε

G
R,
gm

Exact
Approx.

(a) GR,gm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

ε

G
L,
gm

Exact
Approx.

(b) GL,gm

Figure 3: We plot the constants GR,gm and GL,gm in (6) and (7), along with their convenient approx-
imations (8) and (9).

Consequently, Lemma 7 establishes an analog of the Johnson-Lindenstrauss (JL) Lemma for
dimension reduction in l1:

Lemma 8 If k≥Ggm
(2logn−logδ)

ε2 , then with probability at least 1−δ, one can recover the original l1
distance between any pair of data points (among all n data points) within a 1±ε factor (0< ε< 1),
using d̂gm. It suffices to specify the constant Ggm =max{GR,gm,GL,gm}.

Similarly, we derive tail bounds for the unbiased geometric mean estimator d̂gm,c, in Lemma 9,
which is proved in Appendix C.

2510

CAUCHY RANDOM PROJECTIONS

Lemma 9

Pr
(
d̂gm,c ≥ (1+ ε)d

)
≤UR,gm,c =

coskt∗1
(
π
2k

)

cosk
(
πt∗1
2k

)
(1+ ε)t∗1

, ε> 0

where

t∗1 =
2k
π
tan−1

((
log(1+ ε)− k logcos

(π
2k

)) 2
π

)
.

Pr
(
d̂gm,c ≤ (1− ε)d

)
≤UL,gm,c =

(1− ε)t∗2

cosk
(
πt∗2
2k

)
coskt∗2

(
π
2k

) , 0< ε< 1, k ≥ π2

8ε

where

t∗2 =
2k
π
tan−1

((
− log(1− ε)+ k logcos

(π
2k

)) 2
π

)
.

As k→ ∞, for any fixed ε, we have

ρR,k =
UR,gm,c

UR,gm
→ ρR,∞ =

1
(1+ ε)C1

exp
(
−π2

8
A1+

π
2
C1 tan

(
π2

2
A1

))
, (10)

ρL,k =
UL,gm,c

UL,gm
→ ρL,∞ =

1
(1− ε)C2

exp
(
π2

8
A2−

π
2
C2 tan

(
π2

2
A2

))
, (11)

where UR,gm and UL,gm are upper bounds for d̂gm as derived in Lemma 7, and

A1 =
2
π

(
tan−1

(
log(1+ ε)

2
π

))
, C1 =

1/2
1+

(
log(1+ ε) 2π

)2 ,

A2 =
2
π

(
tan−1

(
− log(1− ε)

2
π

))
, C2 =

1/2
1+

(
log(1− ε) 2π

)2 .

Figure 4 plots the tail bound ratios ρR,k and ρL,k as defined in Lemma 9, indicating that the
asymptotic expressions ρR,∞ and ρL,∞ are in fact very accurate even for small k (e.g., k = 10).

Figure 4 illustrates that introducing the bias-correction term in d̂gm,c reduces the right tail bound
but amplifies the left tail bound. Because the left tail bound is usually much smaller than the right
tail bound, we expect that overall the bias-correction should be beneficial, as shown in Figure 5,
which plots the overall ratio of tail bounds:

ρk =
UR,gm,c+UL,gm,c

UR,gm+UL,gm
=

coskt
∗
1 (π

2k)
cosk

(
πt∗1
2k

)
(1+ε)t

∗
1
+ (1−ε)t

∗
2

cosk
(
πt∗2
2k

)
coskt

∗
2 (π

2k)

exp
(
−k ε2

GR,gm

)
+ exp

(
−k ε2

GL,gm

) . (12)

Finally, Figure 6 compares d̂gm,c with the sample median estimators d̂me and d̂me,c, in terms of
the mean square errors. d̂gm,c is considerably more accurate than d̂me at small k. The bias correction
significantly reduces the mean square errors of d̂me.

2511

LI, HASTIE AND CHURCH

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50.4

0.5

0.6

0.7

0.8

0.9

1

ε

ρ R
,k

k=2
k=5

k=∞
10

(a) Right bound ratios ρR,k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

ε

ρ L
,k

10
5

k=2k=∞

(b) Left bound ratios ρL,k

Figure 4: Tail bound ratios ρR,k and ρL,k as defined in (10) and (11) for k = 2,5,10, along with the
asymptotic expressions ρR,∞ and ρL,∞. The dashed curves correspond to k = ∞.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ε

ρ k

k=2

k=5

k=10
k=100

Figure 5: The overall ratios of tail bounds, ρk as defined in (12) are almost always below one,
demonstrating that the bias-corrected estimator d̂gm,c may exhibit better overall tail be-
havior than the biased estimator d̂gm.

6. The Maximum Likelihood Estimators

This section analyzes the maximum likelihood estimators (MLE), which are asymptotically opti-
mum (in terms of the variance). In comparisons, the sample median and geometric mean estimators
are not optimum. Our contribution in this section includes the higher-order analysis for the bias and
moments and accurate closed-from approximations to the distribution of the MLE.

The method of maximum likelihood is widely used. For example, Li et al. (2006a) applied the
maximum likelihood method to normal random projections and provided an improved estimator of
the l2 distance by taking advantage of the marginal information.

2512

CAUCHY RANDOM PROJECTIONS

5 10 15 20 25 30 35 40 45 501
1.2
1.4
1.6
1.8

2
2.2
2.4

Sample size k

M
SE

 ra
tio

s

No correction
Bias−corrected

Figure 6: The ratios of the mean square errors (MSE), MSE(d̂me)
MSE(d̂gm,c)

and MSE(d̂me,c)
MSE(d̂gm,c)

, demonstrate that

the bias-corrected geometric mean estimator d̂gm,c is considerably more accurate than the
sample median estimator d̂me. The bias correction on d̂me considerably reduces the MSE.
Note that when k = 3, the ratios are ∞.

Recall our goal is to estimate d from k i.i.d. samples x j ∼C(0,d), j = 1,2, ...,k. The log joint
likelihood of {x j}kj=1 is

L(x1,x2, ...xk;d) = k log(d)− k log(π)−
k

∑
j=1
log(x2j +d2),

whose first and second derivatives (w.r.t. d) are

L′(d) =
k
d
−

k

∑
j=1

2d
x2j +d2

,

L′′(d) = − k
d2

−
k

∑
j=1

2x2j −2d2

(x2j +d2)2
= −L′(d)

d
−4

k

∑
j=1

x2j
(x2j +d2)2

.

The maximum likelihood estimator of d, denoted by d̂MLE , is the solution to L′(d) = 0, that is,

− k
d̂MLE

+
k

∑
j=1

2d̂MLE
x2j + d̂2MLE

= 0. (13)

Because L′′(d̂MLE) ≤ 0, d̂MLE indeed maximizes the joint likelihood and is the only solution to
the MLE equation (13). Solving (13) numerically is not difficult (e.g., a few iterations using the
Newton’s method). For a better accuracy, we recommend the following bias-corrected estimator:

d̂MLE,c = d̂MLE
(
1− 1

k

)
.

Lemma 10 concerns the asymptotic moments of d̂MLE and d̂MLE,c, proved in Appendix D.

2513

LI, HASTIE AND CHURCH

Lemma 10 Both d̂MLE and d̂MLE,c are asymptotically unbiased and normal. The first four moments
of d̂MLE are

E
(
d̂MLE −d

)
=
d
k

+O
(
1
k2

)

Var
(
d̂MLE

)
=
2d2

k
+
7d2

k2
+O

(
1
k3

)

E
(
d̂MLE −E(d̂MLE)

)3 =
12d3

k2
+O

(
1
k3

)

E
(
d̂MLE −E(d̂MLE)

)4 =
12d4

k2
+
222d4

k3
+O

(
1
k4

)
.

The first four moments of d̂MLE,c are

E
(
d̂MLE,c−d

)
= O

(
1
k2

)

Var
(
d̂MLE,c

)
=
2d2

k
+
3d2

k2
+O

(
1
k3

)

E
(
d̂MLE,c−E(d̂MLE,c)

)3 =
12d3

k2
+O

(
1
k3

)

E
(
d̂MLE,c−E(d̂MLE,c)

)4 =
12d4

k2
+
186d4

k3
+O

(
1
k4

)
.

The order O
(1
k
)
term of the variance, that is, 2d2k , is well-known (Haas et al., 1970). We derive

the bias-corrected estimator, d̂MLE,c, and the higher order moments using stochastic Taylor expan-
sions (Bartlett, 1953; Shenton and Bowman, 1963; Ferrari et al., 1996; Cysneiros et al., 2001).

We will propose an inverse Gaussian distribution to approximate the distribution of d̂MLE,c, by
matching the first four moments (at least in the leading terms).

6.1 A Numerical Example

The maximum likelihood estimators are tested on some Microsoft Web crawl data, a term-by-
document matrix with D = 216 Web pages. We conduct Cauchy random projections and estimate
the l1 distances between words. In this experiment, we compare the empirical and (asymptotic) the-
oretical moments, using one pair of words. Figure 7 illustrates that the bias correction is effective
and these (asymptotic) formulas for the first four moments of d̂MLE,c in Lemma 10 are accurate,
especially when k ≥ 20.

6.2 Approximate Distributions

Theoretical analysis on the exact distribution of a maximum likelihood estimator is difficult. It is
common practice to assume normality, which, however, is inaccurate.2 The Edgeworth expansion

2. The simple normal approximation can be improved by taking advantage of the conditional density on the ancillary
configuration statistic, based on the observations x1, x2, ..., xk (Fisher, 1934; Lawless, 1972; Hinkley, 1978).

2514

CAUCHY RANDOM PROJECTIONS

10 20 30 40 50 100−0.02
0

0.02
0.04
0.06
0.08
0.1
0.12

k

Bi
as

dMLE

dMLE,c

(a) E(d̂MLE −d)/d vs. E(d̂MLE,c−d)/d

10 20 30 40 50 1000

0.2

0.4

0.6

0.8

1

k

Va
ria
nc
e

Variance

(b)
(
E(d̂MLE,c−E(d̂MLE,c))2/d2

)1/2

10 20 30 40 50 1000

0.2

0.4

0.6

0.8

1

k

Th
ird

 m
om

en
t

Third
moment

(c)
(
E(d̂MLE,c−E(d̂MLE,c))3/d3

)1/3

10 20 30 40 50 1000

0.2

0.4

0.6

0.8

1

k

Fo
ur

th
 m

om
en

t

Fourth
moment

(d)
(
E(d̂MLE,c−E(d̂MLE,c))4/d4

)1/4

Figure 7: One pair of words are selected from a Microsoft term-by-document matrix with D =
216 Web pages. We conduct Cauchy random projections and estimate the l1 distance
between one pair of words using the maximum likelihood estimator d̂MLE and the bias-
corrected version d̂MLE,c. Panel (a) plots the biases of d̂MLE and d̂MLE,c, indicating that the
bias correction is effective. Panels (b), (c), and (d) plot the variance, third moment, and
fourth moment of d̂MLE,c, respectively. The dashed curves are the theoretical asymptotic
moments. When k ≥ 20, the theoretical asymptotic formulas for moments are accurate.

improves the normal approximation by matching higher moments (Feller, 1971; Bhattacharya and
Ghosh, 1978; Severini, 2000), which however, has some well-known drawbacks. The resultant ex-
pressions are quite sophisticated and are not accurate at the tails. It is possible that the approximate
probability has values below zero. Also, Edgeworth expansions consider the support to be (−∞,∞),
while d̂MLE,c is non-negative.

The saddle-point approximation (Jensen, 1995) in general improves Edgeworth expansions, of-
ten considerably. Unfortunately, we can not apply the saddle-point approximation in our case (at
least not directly), because it requires a bounded moment generating function.

We propose approximating the distributions of d̂MLE,c directly using some well-studied common
distributions. We will first consider a gamma distribution with the same first two (asymptotic)
moments of d̂MLE,c. That is, the gamma distribution will be asymptotically equivalent to the normal
approximation. While a normal has zero third central moment, a gamma has nonzero third central

2515

LI, HASTIE AND CHURCH

moment. This, to an extent, speeds up the rate of convergence. Another important reason why a
gamma is more accurate is because it has the same support as d̂MLE,c, that is, [0,∞).

We will furthermore consider a generalized gamma distribution, which allows us to match the
first three (asymptotic) moments of d̂MLE,c. Interestingly, in this case, the generalized gamma ap-
proximation turns out to be an inverse Gaussian distribution, which has a closed-form probability
density. More interestingly, this inverse Gaussian distribution also matches the fourth central mo-
ment of d̂MLE,c in the O

(1
k2

)
term and almost in the O

(1
k3

)
term. By simulations, the inverse

Gaussian approximation is highly accurate.
Note that, since we are interested in the very small (e.g., 10−10) tail probability range, O

(
k−3/2

)

is not too meaningful. For example, k−3/2 = 10−3 if k = 100. Therefore, we will have to rely on
simulations to assess the accuracy of the approximations. On the other hand, an upper bound may
hold exactly (verified by simulations) even if it is based on an approximate distribution.

As the related work, Li et al. (2006c) applied gamma and generalized gamma approximations
to model the performance measure distribution in some wireless communication channels using
random matrix theory and produced accurate results in evaluating the error probabilities.

6.2.1 THE GAMMA APPROXIMATION

The gamma approximation is an obvious improvement over the normal approximation.3 A gamma
distribution, G(α,β), has two parameters, α and β, which can be determined by matching the first
two (asymptotic) moments of d̂MLE,c. That is, we assume that d̂MLE,c ∼ G(α,β), with

αβ= d, αβ2 =
2d2

k
+
3d2

k2
, =⇒ α=

1
2
k + 3

k2
, β=

2d
k

+
3d
k2

.

Assuming a gamma distribution, it is easy to obtain the following Chernoff bounds:

Pr
(
d̂MLE,c ≥ (1+ ε)d

) ∼
≤ exp(−α(ε− log(1+ ε))) , ε> 0 (14)

Pr
(
d̂MLE,c ≤ (1− ε)d

) ∼
≤ exp(−α(−ε− log(1− ε))) , 0< ε< 1, (15)

where we use
∼
≤ to indicate that these inequalities are based on an approximate distribution.

Note that the distribution of d̂MLE/d (and hence d̂MLE,c/d) is only a function of k (Antle and
Bain, 1969; Haas et al., 1970). Therefore, we can evaluate the accuracy of the gamma approximation
by simulations with d = 1, as presented in Figure 8.

Figure 8(a) shows that both the gamma and normal approximations are fairly accurate when the
tail probability ≥ 10−2 ∼ 10−3; and the gamma approximation is obviously better.

Figure 8(b) compares the empirical tail probabilities with the gamma Chernoff upper bound
(14)+(15), indicating that these bounds are reliable, when the tail probability ≥ 10−5 ∼ 10−6.

6.2.2 THE INVERSE GAUSSIAN (GENERALIZED GAMMA) APPROXIMATION

The distribution of d̂MLE,c can be well approximated by an inverse Gaussian distribution, which is a
special case of the three-parameter generalized gamma distribution (Hougaard, 1986; Gerber, 1991;

3. Recall that, in normal random projections for dimension reduction in l2 (see Lemma 1), the resultant estimator of the
squared l2 distance has a Chi-squared distribution, which is a special case of gamma.

2516

CAUCHY RANDOM PROJECTIONS

0 0.2 0.4 0.6 0.8 110−10

10−8

10−6

10−4

10−2

100

ε

Ta
il p

ro
ba

bi
lity

Empirical
Gamma
Normal

k=400

k=200

k=100

k=50

k=20
k=10

k=50

(a)

0 0.2 0.4 0.6 0.8 110−10
10−8
10−6
10−4
10−2
100

ε

Ta
il p

ro
ba

bi
lity

Empirical
Gamma Bound

k=20
k=10

k=50

k=100

k=200

k=400

(b)

Figure 8: We consider k = 10, 20, 50, 100, 200, and 400. For each k, we simulate standard Cauchy
samples, from which we estimate the Cauchy parameter by the MLE d̂MLE,c and compute
the tail probabilities. Panel (a) compares the empirical tail probabilities (thick solid) with
the gamma tail probabilities (thin solid), indicating that the gamma distribution is better
than the normal (dashed) for approximating the distribution of d̂MLE,c. Panel (b) compares
the empirical tail probabilities with the gamma upper bound (14)+(15).

Li et al., 2006c), denoted by GG(α,β,η). Note that the usual gamma distribution is a special case
with η= 1.

If z∼ GG(α,β,η), then the first three moments are

E(z) = αβ, Var(z) = αβ2, E(z−E(z))3 = αβ3(1+η).

We can approximate the distribution of d̂MLE,c by matching the first three moments, that is,

αβ= d, αβ2 =
2d2

k
+
3d2

k2
, αβ3(1+η) =

12d3

k2
,

from which we obtain

α=
1

2
k + 3

k2
, β=

2d
k

+
3d
k2

, η= 2+O
(
1
k

)
. (16)

Taking only the leading term for η, the generalized gamma approximation of d̂MLE,c would be

GG

(
1

2
k + 3

k2
,
2d
k

+
3d
k2

,2

)
. (17)

In general, a generalized gamma distribution does not have a closed-form density function
although it always has a closed-from moment generating function. In our case, (17) is actu-
ally an inverse Gaussian (IG) distribution, which has a closed-form density function. Assuming
d̂MLE,c∼ IG(α,β), with parameters α and β defined in (16), the moment generating function (MGF),

2517

LI, HASTIE AND CHURCH

the probability density function (PDF), and cumulative density function (CDF) would be (Seshadri,
1993, Chapter 2) (Tweedie, 1957a,b)4

E
(
exp(d̂MLE,ct)

) ∼= exp
(
α

(
1− (1−2βt)1/2

))
,

fd̂MLE,c
(y) ∼=

α
√
β√
2π

y−
3
2 exp

(
−(y/β−α)2

2y/β

)
=

√
αd
2π

y−
3
2 exp

(
−(y−d)2

2yβ

)
,

Pr
(
d̂MLE,c ≤ y

) ∼=Φ




√
α2β
y

(
y
αβ

−1
)

+ e2αΦ



−

√
α2β
y

(
y
αβ

+1
)



=Φ

(√
αd
y

(y
d
−1

))
+ e2αΦ

(
−

√
αd
y

(y
d

+1
))

,

where Φ(.) is the standard normal CDF, that is, Φ(z) =
R z
−∞

1√
2πe

− t2
2 dt. Here we use ∼= to indicate

that these equalities are based on an approximate distribution.
Assuming d̂MLE,c ∼ IG(α,β), the fourth central moment should be

E
(
d̂MLE,c−E

(
d̂MLE,c

))4 ∼= 15αβ4+3
(
αβ2

)2

= 15d
(
2d
k

+
3d
k2

)3
+3

(
2d2

k
+
3d2

k2

)2

=
12d4

k2
+
156d4

k3
+O

(
1
k4

)
.

Lemma 10 has shown the true asymptotic fourth central moment:

E
(
d̂MLE,c−E

(
d̂MLE,c

))4 =
12d4

k2
+
186d4

k3
+O

(
1
k4

)
.

That is, the inverse Gaussian approximation matches not only the leading term, 12d4k2 , but also almost
the higher order term, 186d4k3 , of the true asymptotic fourth moment of d̂MLE,c.

Assuming d̂MLE,c ∼ IG(α,β), the tail probability of d̂MLE,c can be expressed as

Pr
(
d̂MLE,c ≥ (1+ ε)d

) ∼=Φ

(
−ε

√
α
1+ ε

)
− e2αΦ

(
−(2+ ε)

√
α
1+ ε

)
, ε> 0

Pr
(
d̂MLE,c ≤ (1− ε)d

) ∼=Φ

(
−ε

√
α
1− ε

)
+ e2αΦ

(
−(2− ε)

√
α
1− ε

)
, 0< ε< 1.

Assuming d̂MLE,c ∼ IG(α,β), it is easy to show the following Chernoff bounds:

Pr
(
d̂MLE,c ≥ (1+ ε)d

) ∼
≤ exp

(
− αε2

2(1+ ε)

)
, ε> 0 (18)

Pr
(
d̂MLE,c ≤ (1− ε)d

) ∼
≤ exp

(
− αε2

2(1− ε)

)
, 0< ε< 1. (19)

4. The inverse Gaussian distribution was first noted as the distribution of the first passage time of the Brownian motion
with a positive drift. It has many interesting properties such as infinitely divisibility. Two monographs (Chhikara and
Folks, 1989; Seshadri, 1993) are devoted entirely to the inverse Gaussian distributions. For a quick reference, one
can check http://mathworld.wolfram.com/InverseGaussianDistribution.html.

2518

CAUCHY RANDOM PROJECTIONS

To see (18), assume z∼ IG(α,β). Then, using the Chernoff inequality:

Pr(z≥ (1+ ε)d) ≤E(zt)exp(−(1+ ε)dt)

=exp
(
α

(
1− (1−2βt)1/2

)
− (1+ ε)dt

)
,

whose minimum is exp
(
− αε2
2(1+ε)

)
, attained at t =

(
1− 1

(1+ε)2

)
1
2β . We can similarly show (19).

Combining (18) and (19) yields a symmetric approximate bound

Pr
(∣∣d̂MLE,c−d

∣∣ ≥ εd
) ∼
≤ 2exp

(
−ε2/(1+ ε)
2
(2
k + 3

k2
)
)

, 0< ε< 1.

Figure 9 compares the inverse Gaussian approximation with the same simulations as presented
in Figure 8, indicating that the inverse Gaussian approximation is highly accurate. When the tail
probability ≥ 10−4 ∼ 10−6, we can treat the inverse Gaussian as the exact distribution of d̂MLE,c.
The Chernoff upper bounds for the inverse Gaussian are always reliable in our simulation range (the
tail probability ≥ 10−10).

0 0.2 0.4 0.6 0.8 110−10
10−8
10−6
10−4
10−2
100

ε

Ta
il p

ro
ba

bi
lity

Empirical
IG

k=10
k=20k=50

k=100

k=200

k=400

(a)

0 0.2 0.4 0.6 0.8 110−10
10−8
10−6
10−4
10−2
100

ε

Ta
il p

ro
ba

bi
lity

Empirical
IG Bound

k=200

k=100

k=50
k=20

k=10

k=400

(b)

Figure 9: We compare the inverse Gaussian approximation with the same simulations as presented
in Figure 8. Panel (a) compares the empirical tail probabilities with the inverse Gaussian
tail probabilities, indicating that the approximation is highly accurate. Panel (b) com-
pares the empirical tail probabilities with the inverse Gaussian upper bound (18)+(19).
The upper bounds are all above the corresponding empirical curves, indicating that our
proposed bounds are reliable at least in our simulation range.

7. Conclusion

In machine learning, it is well-known that the l1 distance is far more robust than the l2 distance
against “outliers.” Dimension reduction in the l1 norm, however, has been proved impossible if
we use linear random projections and linear estimators. In this study, we analyze three types of

2519

LI, HASTIE AND CHURCH

nonlinear estimators for Cauchy random projections: the sample median estimators, the geometric
mean estimators, and the maximum likelihood estimators. Our theoretical analysis has shown that
these nonlinear estimators can accurately recover the original l1 distance, even though none of them
can be a metric.

The sample median estimators and the geometric mean estimators are asymptotically equivalent
but the latter are more accurate at small sample size. We have derived explicit tail bounds for the
geometric mean estimators in exponential forms. Using these tail bounds, we have established an
analog of the Johnson-Lindenstrauss (JL) Lemma for dimension reduction in l1, which is weaker
than the classical JL Lemma for dimension reduction in l2.

We conduct theoretic analysis on themaximum likelihood estimators (MLE), which are “asymp-
totically optimum.” Both the sample median and geometric mean estimators are about 80% efficient
as the MLE. We propose approximating the distribution of the MLE by an inverse Gaussian, which
has the same support and matches the leading terms of the first four moments of the MLE. Approx-
imate tail bounds have been provided based on the inverse Gaussian approximation. Verified by
simulations, these approximate tail bounds hold at least in the ≥ 10−10 tail probability range.

Although these nonlinear estimators are not metrics, they are still useful for certain applications
in, for example, data stream computations, information retrieval, learning and data mining, when-
ever the goal is to compute the l1 distances efficiently using a small storage space in a single pass of
the data.

Li (2008) generalized the geometric mean estimators to the stable distribution family, for dimen-
sion reduction in the lp norm (0< p≤ 2). Li (2008) also proposed the harmonic mean estimator for
p→ 0+, which is far more accurate than the geometric mean estimator.5 In addition, Li (2007) sug-
gested very sparse stable random projections by replacing the stable distribution with a mixture of
a symmetric Pareto distribution and point mass at the origin, for considerably simplifying the sam-
pling procedure (to generate the projection matrix) and for achieving a significant cost reduction of
matrix multiplication operations.

The general method of linear (stable) random projections is an appealing paradigm for applica-
tions involving massive, high-dimensional, non-sparse, and heavy-tailed data. If there is prior infor-
mation that the data are highly sparse (e.g., text data), other alternative dimension reduction methods
may be more suitable; for example, the new technique called Conditional Random Sampling (CRS)
(Li and Church, 2005, 2007; Li et al., 2007a) was particularly designed for approximating distances
(and other summary statistics) in highly sparse data.

Acknowledgments

We thank Piotr Indyk, Assaf Naor, Art Owen, and Anand Vidyashankar. Ping Li was partially
supported by NSF Grant DMS-0505676 and Cornell University junior faculty startup fund. Trevor
Hastie was partially supported by NSF Grant DMS-0505676 and NIH Grant 2R01 CA 72028-07.

5. Stable random projections with very small p (p→ 0+) have been applied to approximating the Hamming distances
(Cormode et al., 2002, 2003) and the max-dominance norm (Cormode and Muthukrishnan, 2003).

2520

CAUCHY RANDOM PROJECTIONS

Appendix A. Proof of Lemma 6

Assume that x1, x2, ..., xk, are i.i.d. C(0,d). The estimator, d̂gm,c, expressed as

d̂gm,c = cosk
(π
2k

) k

∏
j=1

|x j|1/k,

is unbiased, because, from Lemma 5,

E
(
d̂gm,c

)
= cosk

(π
2k

) k

∏
j=1
E

(
|x j|1/k

)
= cosk

(π
2k

) k

∏
j=1

(
d1/k

cos
(
π
2k

)
)

= d.

The variance is

Var
(
d̂gm,c

)
= cos2k

(π
2k

) k

∏
j=1
E

(
|x j|2/k

)
−d2

= d2
(
cos2k

(
π
2k

)

cosk
(
π
k
) −1

)
=
π2

4
d2

k
+
π4

32
d2

k2
+O

(
1
k3

)
,

because

cos2k
(
π
2k

)

cosk
(
π
k
) =

(
1
2

+
1
2

(
1

cos(π/k)

))k

=
(
1+

1
4
π2

k2
+
5
48

π4

k4
+O

(
1
k6

))k

= 1+ k
(
1
4
π2

k2
+
5
48

π4

k4

)
+
k(k−1)
2

(
1
4
π2

k2
+
5
48

π4

k4

)2
+ ...

= 1+
π2

4
1
k

+
π4

32
1
k2

+O
(
1
k3

)
.

Some more algebra can similarly show the third and fourth central moments:

E
(
d̂gm,c−E

(
d̂gm,c

))3 =
3π4

16
d3

k2
+O

(
1
k3

)
,

E
(
d̂gm,c−E

(
d̂gm,c

))4 =
3π4

16
d4

k2
+O

(
1
k3

)
.

Appendix B. Proof of Lemma 7

We will use the Markov moment bound, because d̂gm,c does not have a moment generating function
(E

(
d̂gm,c

)t = ∞ if t ≥ k). In fact, even when the Chernoff bound is applicable, for any positive
random variable, the Markov moment bound is always sharper than the Chernoff bound (Philips
and Nelson, 1995; Lugosi, 2004).

By the Markov moment bound, for any ε> 0 and 0< t < k,

Pr
(
d̂gm ≥ (1+ ε)d

)
≤

E
(
d̂gm

)t

((1+ ε)d)t
=

1
cosk

(
πt
2k

)
(1+ ε)t

,

2521

LI, HASTIE AND CHURCH

whose minimum is attained at t = k 2π tan
−1 (2

π log(1+ ε)
)
. Thus

Pr
(
d̂gm ≥ (1+ ε)d

)

≤exp
(
−k

(
log

(
cos

(
tan−1

(
2
π
log(1+ ε)

)))
+
2
π
tan−1

(
2
π
log(1+ ε)

)
log(1+ ε)

))

=exp

(
−k

(
−1
2
log

(
1+

(
2
π
log(1+ ε)

)2)
+
2
π
tan−1

(
2
π
log(1+ ε)

)
log(1+ ε)

))

=exp
(
−k ε2

GR,gm

)
,

where

GR,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1+ ε)

)2)+ 2
π tan−1

(2
π log(1+ ε)

)
log(1+ ε)

) .

Again, by the Markov moment bound, for any 0< ε< 1,

Pr
(
d̂gm ≤ (1− ε)d

)
= Pr

(
1
d̂gm

≥ 1
(1− ε)d

)
≤

E
(
d̂gm

)−t

((1− ε)d)−t
=

(1− ε)t

cosk
(
πt
2k

) ,

whose minimum is attained at t = −k 2π tan
−1 (2

π log(1− ε)
)
. Thus

Pr
(
d̂gm ≤ (1− ε)d

)

≤exp
(
−k

(
log

(
cos

(
tan−1

(
2
π
log(1− ε)

)))
+
2
π
tan−1

(
2
π
log(1− ε)

)
log(1− ε)

))

=exp

(
−k

(
−1
2
log

(
1+

(
2
π
log(1− ε)

)2)
+
2
π
tan−1

(
2
π
log(1− ε)

)
log(1− ε)

))

=exp
(
−k ε2

GL,gm

)
,

where

GL,gm =
ε2(

− 1
2 log

(
1+

(2
π log(1− ε)

)2)+ 2
π tan−1

(2
π log(1− ε)

)
log(1− ε)

) .

Finally, we derive convenient approximations for GG,gm and GL,gm, for small ε (e.g., ε< 1).
Recall that, for |x| < 1, we have

log(1+ x) = x− x2

2
+
x3

3
− x4

4
+ ...

tan−1(x) = x− x3

3
+ ...

2522

CAUCHY RANDOM PROJECTIONS

Thus for small ε, we have

GR,gm

=
ε2(

− 1
2 log

(
1+

(2
π log(1+ ε)

)2)+ 2
π tan−1

(2
π log(1+ ε)

)
log(1+ ε)

)

=
ε2

− 1
2

((2
π log(1+ ε)

)2− 1
2
(2
π log(1+ ε)

)4+ ...
)

+ 2
π

(
2
π log(1+ ε)− 1

3
(2
π log(1+ ε)

)3+ ...
)
log(1+ ε)

=
π2
2 ε

2

log2(1+ ε)
(
1− 2

3π2 log
2(1+ ε)+ ...

) =
π2
2 ε

2
(
ε− ε2

2 + ε3
3 + ...

)2(
1− 2

3π2 ε
2+ ...

)

=
π2

2

(
1− ε

2
+
ε2

3
+ ...

)−2(
1− 2

3π2
ε2+ ...

)−1

=
π2

2

(
1+ ε− 2

3
ε2+

(−2)(−3)
2

(
− ε
2

+
ε2

3
+ ...

)2
+ ...

)(
1+

2
3π2

ε2+ ...

)

=
π2

2

(
1+ ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
.

Similarly, for small ε, we have

GL,gm

=
ε2(

− 1
2 log

(
1+

(2
π log(1− ε)

)2)+ 2
π tan−1

(2
π log(1− ε)

)
log(1− ε)

)

=
ε2

− 1
2

((2
π log(1− ε)

)2− 1
2
(2
π log(1− ε)

)4+ ...
)

+ 2
π

(
2
π log(1− ε)− 1

3
(2
π log(1− ε)

)3+ ...
)
log(1− ε)

=
π2
2 ε

2

log2(1− ε)
(
1− 2

3π2 log
2(1− ε)+ ...

) =
π2
2 ε

2
(
−ε− ε2

2 − ε3
3 + ...

)2(
1− 2

3π2 ε
2+ ...

)

=
π2

2

(
1+

ε
2

+
ε2

3
+ ...

)−2(
1− 2

3π2
ε2+ ...

)−1

=
π2

2

(
1− ε− 2

3
ε2+

(−2)(−3)
2

(
ε
2

+
ε2

3
+ ...

)2
+ ...

)(
1+

2
3π2

ε2+ ...

)

=
π2

2

(
1− ε+

(
1
12

+
2
3π2

)
ε2+ ...

)
.

Appendix C. Proof of Lemma 9

For any ε> 0 and 0< t < k, the Markov inequality says

Pr
(
d̂gm,c ≥ (1+ ε)d

)
≤
E

(
d̂gm,c

)t

(1+ ε)tdt
=

coskt
(
π
2k

)

cosk
(
πt
2k

)
(1+ ε)t

,

2523

LI, HASTIE AND CHURCH

which can be minimized by choosing the optimum t = t∗1 , where

t∗1 =
2k
π
tan−1

((
log(1+ ε)− k logcos

(π
2k

)) 2
π

)
.

We need to make sure that 0 ≤ t∗1 < k. t∗1 ≥ 0 because logcos(.) ≤ 0; and t∗1 < k because
tan−1(.) ≤ π

2 , with equality holding only when k→ ∞.
Now we show the other tail bound Pr

(
d̂gm,c ≤ (1− ε)d

)
. Let 0< t < k.

Pr
(
d̂gm,c ≤ (1− ε)d

)
=Pr

(
cos

(π
2k

)k k

∏
j=1

|x j|1/k ≤ (1− ε)d

)

=Pr

(
k

∏
j=1

|x j|−t/k ≥
(

(1− ε)d
cosk

(
π
2k

)
)−t)

≤
(

(1− ε)
cosk

(
π
2k

)
)t

1
cosk

(
πt
2k

) ,

which is minimized at t = t∗2

t∗2 =
2k
π
tan−1

((
− log(1− ε)+ k logcos

(π
2k

)) 2
π

)
,

provided k ≥ π2
8ε , otherwise t

∗
2 may be less than 0. To see this, in order for t∗2 ≥ 0, we must have

log(1− ε) ≤ k logcos
(π
2k

)
, i.e., 1− ε≤ cosk

(π
2k

)
.

Because

cosk
(π
2k

)
≥

(
1− 1

2

(π
2k

)2)k
≥ 1− π2

8k
,

it suffices if 1− ε≤ 1− π2
8k , that is, k ≥

π2
8ε .

Now we prove the asymptotic (as k→ ∞) expressions for the ratios of tail bounds, another way
to compare d̂gm and d̂gm,c.

First, we consider the right tail bounds. For large k, the optimal t = t∗1 can be approximated as

t∗1 =
2k
π
tan−1

((
log(1+ ε)− k logcos

(π
2k

)) 2
π

)

∼2k
π
tan−1

(
log(1+ ε)

2
π
− k

2
π
log

(
1− π2

8k2

))

∼2k
π
tan−1

(
log(1+ ε)

2
π

+
π
4k

)

∼2k
π

(
tan−1

(
log(1+ ε)

2
π

)
+

π
4k

1
1+

(
log(1+ ε) 2π

)2

)
(Taylor expansion)

∼2k
π

(
tan−1

(
log(1+ ε)

2
π

))
+

1/2
1+

(
log(1+ ε) 2π

)2

=kA1+C1,

2524

CAUCHY RANDOM PROJECTIONS

where

A1 =
2
π

(
tan−1

(
log(1+ ε)

2
π

))
, C1 =

1/2
1+

(
log(1+ ε) 2π

)2 .

Note that, in the asymptotic decomposition, t∗1 ∼ kA1+C1, the term kA1 is the optimal “t” in
proving the right tail bound for d̂gm. Thus to study the asymptotic ratio of the right tail bounds, we
only need to keep track of the additional terms in

coskt∗1
(
π
2k

)

cosk
(
πt∗1
2k

)
(1+ ε)t∗1

.

Because

coskt
∗
1
(π
2k

)
∼

(
1− π2

8k2

)k2A1+kC1
∼ exp

(
−π2

8
A1

)
,

and

cosk
(
πt∗1
2k

)
∼cosk

(
πA1
2

+
πC1
2k

)

∼cosk
(
πA1
2

)(
1− πC1

2k
tan

(π
2
A1

))k
(Taylor expansion)

∼cosk
(
πA1
2

)
exp

(
−πC1
2
tan

(π
2
A1

))
,

we know the ratio of the right tail bounds

ρR,k =

coskt
∗
1 (π

2k)
cosk

(
πt∗1
2k

)
(1+ε)t

∗
1

exp
(
−k ε2

GR,gm

) → ρR,∞ =
1

(1+ ε)C1
exp

(
−π2

8
A1+

π
2
C1 tan

(
π2

2
A1

))
.

Next, we consider the left tail bound. First, we obtain an asymptotic decomposition of t ∗2 :

t∗2 =
2k
π
tan−1

((
− log(1− ε)+ k logcos

(π
2k

)) 2
π

)

∼2k
π
tan−1

(
− log(1− ε)

2
π
− π
4k

)

∼2k
π

(
tan−1

(
− log(1− ε)

2
π

))
− 1/2
1+

(
log(1− ε) 2π

)2 (Taylor expansion)

=kA2−C2,

where

A2 =
2
π

(
tan−1

(
− log(1− ε)

2
π

))
, C2 =

1/2
1+

(
log(1− ε) 2π

)2 .

2525

LI, HASTIE AND CHURCH

Again, in the above asymptotic decomposition, t∗1 ∼ kA2−C2, the term kA2 is the optimal “t”
in proving the left tail bound for d̂gm. Thus to study the asymptotic ratio of the left tail bounds, we
only need to keep track of the additional terms in

(1− ε)t∗2
coskt∗2

(
π
2k

) 1

cosk
(
πt∗2
2k

) .

Because

coskt
∗
2
(π
2k

)
∼

(
1− π2

8k2

)k2A2−kC2
∼ exp

(
−π2

8
A2

)
,

and

cosk
(
πt∗2
2k

)
∼cosk

(
πA2
2

− πC2
2k

)

∼cosk
(
πA2
2

)(
1+

πC2
2k

tan
(π
2
A2

))k

∼cosk
(
πA2
2

)
exp

(
πC2
2
tan

(π
2
A2

))
,

we know the ratio of the left tail bounds

ρL,k =

(1−ε)t
∗
2

coskt
∗
2 (π

2k)
1

cosk
(
πt∗2
2k

)

exp
(
−k ε2

GL,gm

) → ρL,∞ =
1

(1− ε)C2
exp

(
π2

8
A2−

π
2
C2 tan

(
π2

2
A2

))
.

Appendix D. Proof of Lemma 10

Assume x∼C(0,d). The log likelihood l(x;d) and its first three derivatives are

l(x;d) = log(d)− log(π)− log(x2+d2),

l′(d) =
1
d
− 2d
x2+d2

,

l′′(d) = − 1
d2

− 2x2−2d2

(x2+d2)2
,

l′′′(d) =
2
d3

+
4d

(x2+d2)2
+
8d(x2−d2)
(x2+d2)3

.

The MLE d̂MLE is asymptotically normal with mean d and variance 1
kI(d) , where I(d), the ex-

pected Fisher Information, is

I= I(d) = E
(
−l′′(d)

)
=
1
d2

+2E
(

x2−d2

(x2+d2)2

)
=

1
2d2

,

2526

CAUCHY RANDOM PROJECTIONS

because

E
(

x2−d2

(x2+d2)2

)
=
d
π

Z ∞

−∞

x2−d2

(x2+d2)3
dx

=
d
π

Z π/2

−π/2

d2(tan2(t)−1)
d6/cos6(t)

d
cos2(t)

dt

=
1
d2π

Z π/2

−π/2
cos2(t)−2cos4(t)dt

=
1
d2π

(
π
2
−23

8
π

)
= − 1

4d2
.

Therefore, we obtain

Var
(
d̂MLE

)
=
2d2

k
+O

(
1
k2

)
.

General formulas for the bias and higher moments of the MLE are available in Bartlett (1953)
and Shenton and Bowman (1963). We need to evaluate the expressions in (Shenton and Bowman,
1963, 16a-16d), involving tedious algebra:

E
(
d̂MLE

)
= d− [12]

2kI2
+O

(
1
k2

)

Var
(
d̂MLE

)
=
1
kI

+
1
k2

(
−1
I
+

[14]− [122]− [13]
I3

+
3.5[12]2− [13]2

I4

)
+O

(
1
k3

)

E
(
d̂MLE −E

(
d̂MLE

))3 =
[13]−3[12]

k2I3
+O

(
1
k3

)

E
(
d̂MLE −E

(
d̂MLE

))4 =
3
k2I2

+
1
k3

(
− 9
I2

+
7[14]−6[122]−10[13]

I4

)

+
1
k3

(
−6[13]2−12[13][12]+45[12]2

I5

)
+O

(
1
k4

)
,

where, after re-formatting,

[12] = E(l′)3+E(l′l′′), [14] = E(l′)4, [122] = E(l′′(l′)2)+E(l′)4,
[13] = E(l′)4+3E(l′′(l′)2)+E(l′l′′′), [13] = E(l′)3.

We will neglect most of the algebra. To help readers verifying the results, the following formula
we derive may be useful:

E
(

1
x2+d2

)m
=
1×3×5× ...× (2m−1)
2×4×6× ...× (2m)

1
d2m

, m= 1,2,3, ...

Without giving the detail, we report

E
(
l′
)3 = 0, E

(
l′l′′

)
= −1

2
1
d3

, E
(
l′
)4 =

3
8
1
d4

,

E(l′′(l′)2) = −1
8
1
d4

, E
(
l′l′′′

)
=
3
4
1
d4

.

2527

LI, HASTIE AND CHURCH

Hence

[12] = −1
2
1
d3

, [14] =
3
8
1
d4

, [122] =
1
4
1
d4

, [13] =
3
4
1
d4

, [13] = 0.

Thus, we obtain

E
(
d̂MLE

)
= d+

d
k

+O
(
1
k2

)

Var
(
d̂MLE

)
=
2d2

k
+
7d2

k2
+O

(
1
k3

)

E
(
d̂MLE −E

(
d̂MLE

))3 =
12d3

k2
+O

(
1
k3

)

E
(
d̂MLE −E

(
d̂MLE

))4 =
12d4

k2
+
222d4

k3
+O

(
1
k4

)
.

Because d̂MLE has O
(1
k
)
bias, we recommend the bias-corrected estimator

d̂MLE,c = d̂MLE
(
1− 1

k

)
,

whose first four moments are, after some algebra,

E
(
d̂MLE,c

)
= d+O

(
1
k2

)

Var
(
d̂MLE,c

)
=
2d2

k
+
3d2

k2
+O

(
1
k3

)

E
(
d̂MLE,c−E

(
d̂MLE,c

))3 =
12d3

k2
+O

(
1
k3

)

E
(
d̂MLE,c−E

(
d̂MLE,c

))4 =
12d4

k2
+
186d4

k3
+O

(
1
k4

)
.

References

Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003.

Dimitris Achlioptas. Database-friendly random projections. In PODS, pages 274–281, Santa Bar-
bara, CA, 2001.

Charu C. Aggarwal and Joel L. Wolf. A new method for similarity indexing of market basket data.
In SIGMOD, pages 407–418, Philadelphia, PA, 1999.

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss
transform. In STOC, pages 557–563, Seattle, WA, 2006.

Charles Antle and Lee Bain. A property of maximum likelihood estimators of location and scale
parameters. SIAM Review, 11(2):251–253, 1969.

2528

CAUCHY RANDOM PROJECTIONS

Rosa Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random
projection. Machine Learning, 63(2):161–182, 2006.

Rosa Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and random
projection. In FOCS, pages 616–623, New York, 1999.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In PODS, pages 1–16, Madison, WI, 2002.

Maurice S. Bartlett. Approximate confidence intervals, II. Biometrika, 40(3/4):306–317, 1953.

Rabi N. Bhattacharya and Jayanta K. Ghosh. On the validity of the formal edgeworth expansion.
The Annals of Statistics, 6(2):434–451, 1978.

Bo Brinkman and Mose Charikar. On the impossibility of dimension reduction in l1. Journal of
ACM, 52(2):766–788, 2005.

Bo Brinkman and Mose Charikar. On the impossibility of dimension reduction in l1. In FOCS,
pages 514–523, Cambridge, MA, 2003.

Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik. Support vector machines for histogram-
based image classification. IEEE Trans. Neural Networks, 10(5):1055–1064, 1999.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, 23(4):493–507, 1952.

Raj S. Chhikara and J. Leroy Folks. The Inverse Gaussian Distribution: Theory, Methodology, and
Applications. Marcel Dekker, Inc, New York, 1989.

Graham Cormode and S. Muthukrishnan. Estimating dominance norms of multiple data streams.
In ESA, pages 148–160, 2003.

Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams using
hamming norms (how to zero in). In VLDB, pages 335–345, Hong Kong, China, 2002.

Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams using
hamming norms (how to zero in). IEEE Transactions on Knowledge and Data Engineering, 15
(3):529–540, 2003.

Francisco Jose De. A. Cysneiros, Sylvio Jose P. dos Santos, and Gass M. Cordeiro. Skewness and
kurtosis for maximum likelihood estimator in one-parameter exponential family models. Brazil-
ian Journal of Probability and Statistics, 15(1):85–105, 2001.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures and Algorithms, 22(1):60 – 65, 2003.

Herbert A. David. Order Statistics. John Wiley & Sons, Inc., New York, NY, second edition, 1981.

Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for large sparse text data
using clustering. Machine Learning, 42(1-2):143–175, 2001.

2529

LI, HASTIE AND CHURCH

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of Statistics, 32(2):407–499, 2004.

Eugene F. Fama and Richard Roll. Some properties of symmetric stable distributions. Journal of
the American Statistical Association, 63(323):817–836, 1968.

Eugene F. Fama and Richard Roll. Parameter estimates for symmetric stable distributions. Journal
of the American Statistical Association, 66(334):331–338, 1971.

Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An approximate
l1-difference algorithm for massive data streams. In FOCS, pages 501–511, New York, 1999.

William Feller. An Introduction to Probability Theory and Its Applications (Volume II). John Wiley
& Sons, New York, NY, second edition, 1971.

Silvia L. P. Ferrari, Denise A. Botter, Gauss M. Cordeiro, and Francisco Cribari-Neto. Second and
third order bias reduction for one-parameter family models. Stat. and Prob. Letters, 30:339–345,
1996.

Ronald A. Fisher. Two new properties of mathematical likelihood. Proceedings of the Royal Society
of London, 144(852):285–307, 1934.

Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the sphericity of some
graphs. Journal of Combinatorial Theory A, 44(3):355–362, 1987.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of
Statistics, 29(5):1189–1232, 2001.

Hans U. Gerber. From the generalized gamma to the generalized negative binomial distribution.
Insurance:Mathematics and Economics, 10(4):303–309, 1991.

Izrail S. Gradshteyn and Iosif M. Ryzhik. Table of Integrals, Series, and Products. Academic Press,
New York, fifth edition, 1994.

Gerald Haas, Lee Bain, and Charles Antle. Inferences for the Cauchy distribution based on maxi-
mum likelihood estimation. Biometrika, 57(2):403–408, 1970.

Monika R. Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on Data Streams.
American Mathematical Society, Boston, MA, USA, 1999.

David V. Hinkley. Likelihood inference about location and scale parameters. Biometrika, 65(2):
253–261, 1978.

Philip Hougaard. Survival models for heterogeneous populations derived from stable distributions.
Biometrika, 73(2):387–396, 1986.

Peter J. Huber. Robust Statistics. Wiley, New York, NY, 1981.

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream compu-
tation. Journal of ACM, 53(3):307–323, 2006.

2530

CAUCHY RANDOM PROJECTIONS

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computa-
tion. In FOCS, pages 189–197, Redondo Beach, CA, 2000.

Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In FOCS, pages
10–33, Las Vegas, NV, 2001.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, Dallas, TX, 1998.

Jens Ledet Jensen. Saddlepoint Approximations. Oxford University Press, New York, 1995.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mapping into Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

William B. Johnson and Gideon Schechtman. Embedding lp into l1. Acta. Math., 149:71–85, 1982.

Jerry F. Lawless. Conditional confidence interval procedures for the location and scale parameters
of the Cauchy and logistic distributions. Biometrika, 59(2):377–386, 1972.

James R. Lee and Assaf Naor. Embedding the diamond graph in lp and dimension reduction in l1.
Geometric And Functional Analysis, 14(4):745–747, 2004.

Ping Li. Very sparse stable random projections for dimension reduction in lα (0< α≤ 2) norm. In
KDD, San Jose, CA, 2007.

Ping Li. Estimators and tail bounds for dimension reduction in lα (0< α≤ 2) using stable random
projections. In SODA, 2008.

Ping Li and Kenneth W. Church. A sketch algorithm for estimating two-way and multi-way associ-
ations. Computational Linguistics, 33(3):305–354, 2007.

Ping Li and Kenneth W. Church. Using sketches to estimate associations. In HLT/EMNLP, pages
708–715, Vancouver, BC, Canada, 2005.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Improving random projections using marginal
information. In COLT, pages 635–649, Pittsburgh, PA, 2006a.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In KDD, pages
287–296, Philadelphia, PA, 2006b.

Ping Li, Debashis Paul, Ravi Narasimhan, and John Cioffi. On the distribution of SINR for the
MMSE MIMO receiver and performance analysis. IEEE Trans. Inform. Theory, 52(1):271–286,
2006c.

Ping Li, Kenneth W. Church, and Trevor J. Hastie. Conditional random sampling: A sketch-based
sampling technique for sparse data. In NIPS, pages 873–880, Vancouver, BC, Canada, 2007a.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Nonlinear estimators and tail bounds for dimen-
sional reduction in l1 using Cauchy random projections. In COLT, 2007b.

Gabor Lugosi. Concentration-of-measure inequalities. Lecture Notes, 2004.

2531

LI, HASTIE AND CHURCH

J. Huston McCulloch. Simple consistent estimators of stable distribution parameters. Communica-
tions on Statistics-Simulation, 15(4):1109–1136, 1986.

Thomas K. Philips and Randolph Nelson. The moment bound is tighter than Chernoff’s bound for
positive tail probabilities. The American Statistician, 49(2):175–178, 1995.

V. Seshadri. The Inverse Gaussian Distribution: A Case Study in Exponential Families. Oxford
University Press Inc., New York, 1993.

Thomas A. Severini. Likelihood Methods in Statistics. Oxford University Press, New York, 2000.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk, editors. Nearest-Neighbor Methods in
Learning and Vision, Theory and Practice. The MIT Press, Cambridge, MA, 2005.

Leonard. R. Shenton and Kimiko O. Bowman. Higher moments of a maximum-likelihood estimate.
Journal of Royal Statistical Society B, 25(2):305–317, 1963.

Alexander Strehl and Joydeep Ghosh. A scalable approach to balanced, high-dimensional clustering
of market-baskets. In HiPC, pages 525–536, Bangalore, India, 2000.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of Royal Statistical
Society B, 58(1):267–288, 1996.

Maurice C. K. Tweedie. Statistical properties of inverse Gaussian distributions. I. The Annals of
Mathematical Statistics, 28(2):362–377, 1957a.

Maurice C. K. Tweedie. Statistical properties of inverse Gaussian distributions. II. The Annals of
Mathematical Statistics, 28(3):696–705, 1957b.

Santosh Vempala. The Random Projection Method. American Mathematical Society, Providence,
RI, 2004.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 1-norm support vector machines. In
NIPS, Vancouver, BC, Canada, 2003.

Vladimir M. Zolotarev. One-dimensional Stable Distributions. American Mathematical Society,
Providence, RI, 1986.

2532

Journal of Machine Learning Research 8 (2007) 2533-2549 Submitted 3/06; Revised 5/07; Published 11/07

Revised Loss Bounds for the Set Covering Machine and
Sample-Compression Loss Bounds for Imbalanced Data

Zakria Hussain Z.HUSSAIN@CS.UCL.AC.UK
Centre for Computational Statistics and Machine Learning
University College London
London, UK, WC1E 6BT

François Laviolette FRANCOIS.LAVIOLETTE@IFT.ULAVAL.CA
Mario Marchand MARIO.MARCHAND@IFT.ULAVAL.CA
Départment IFT-GLO
Université Laval
Québec, Canada, G1V 0A6

John Shawe-Taylor JST@CS.UCL.AC.UK
Centre for Computational Statistics and Machine Learning
University College London
London, UK, WC1E 6BT

Spencer Charles Brubaker BRUBAKER@CC.GATECH.EDU
Matthew D. Mullin MDMULLIN@CC.GATECH.EDU
College of Computing
Georgia Institute of Technology
Atlanta, Georgia, 30332

Editor: Gábor Lugosi

Abstract
Marchand and Shawe-Taylor (2002) have proposed a loss bound for the set covering machine that
has the property to depend on the observed fraction of positive examples and on what the clas-
sifier achieves on the positive training examples. We show that this loss bound is incorrect. We
then propose a loss bound, valid for any sample-compression learning algorithm (including the set
covering machine), that depends on the observed fraction of positive examples and on what the
classifier achieves on them. We also compare numerically the loss bound proposed in this paper
with the incorrect bound, the original SCM bound and a recently proposed loss bound of Marchand
and Sokolova (2005) (which does not depend on the observed fraction of positive examples) and
show that the latter loss bounds can be substantially larger than the new bound in the presence of
imbalanced misclassifications.
Keywords: set covering machines, sample-compression, loss bounds

1. Introduction

One of the key objectives of learning theory is to identify classes of functions and associated learn-
ing algorithms that deliver hypotheses with good guarantees of test set performance for a range
of practical applications. Support vector machines (SVMs) have achieved this objective for prob-
lems for which classifiers with large margins can be identified. An alternative guiding principle for

c©2007 Zakria Hussain, François Laviolette, Mario Marchand, John Shawe-Taylor, Spencer Charles Brubaker and Matthew D. Mullin.

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

the selection of classifiers with guarantees of good generalization is to require some type of parsi-
mony in the form of the functions. Typically seeking parsimonious solutions reduces to an NP-hard
optimization, but an algorithm that delivers a good approximation to the optimal solution using a
greedy approach is the so-called set covering machine (SCM). This approach for producing very
sparse classifiers having good generalization was proposed by Marchand and Shawe-Taylor (2001).

A generalization error bound is an upper bound on the expected test set performance that holds
with high probability over the (random) choice of the training set. There are three ways in which
such a bound can assist a user of adaptive systems technology. Firstly, the existence of such a
bound justifying the form of a learning algorithm gives confidence in its reliability. This is the
primary role of SVM bounds in most applications. The second is to guide model selection through
setting regularization and hyperparameters to optimize the bound. The third is to give to users as a
measure of performance. Experiments with recent SVM bounds have begun to make progress with
the second goal, but it is fair to say that the third goal is still to be realized.

The situation with SCM bounds is that they are typically tighter and more reliable than those
derived for SVMs. The classifier output by the SCM is described by a small subset of the training
data called the compression set. By adapting the pioneering work of Littlestone andWarmuth (1986)
on sample-compression schemes, Marchand and Shawe-Taylor (2001) have been able to obtain a
loss bound that depends on the size (i.e., the number of examples) of the compression set of the SCM
classifier. More recently, Marchand and Sokolova (2005) have been able to obtain a tighter bound,
which applies to any sample-compression learning algorithm (including the SCM), by making use
of sample-compression-dependent sets of messages. None of these loss bounds, however, depend
on the observed fraction of positive examples in the training set and on the fraction of positive
examples used for the compression set of the final classifier. Consequently, these loss bounds are not
appropriate for identifying classifiers that perform well under frequently encountered distributions
where the examples of one class are much more abundant than the examples of the other class (the
class imbalance case) or when the loss suffered by misclassifying a positive example differs greatly
from the loss suffered by misclassifying a negative example (the asymmetrical loss case).

To obtain a loss bound that reflects more accurately the performance of classifiers trained on
imbalanced data sets, Marchand and Shawe-Taylor (2002) have proposed a SCM loss bound that
depends on the observed fraction of positive examples in the training set and on the fraction of
positive examples used for the compression set of the final classifier. However, we will show in
Section 3 that this bound is incorrect. We then propose, in Section 4, a loss bound which is valid
for any sample-compression learning algorithm (including the SCM) and that depends on the ob-
served fraction of positive examples and on what the classifier achieves on the positive training
examples. The proof of this new loss bound turns out to be much more involved than all other
sample-compression loss bounds that do not depend on the observed fraction of positive examples
(as in Marchand and Sokolova, 2005). Finally, for the SCM case, we compare numerically the loss
bound of Section 4 with the recently proposed loss bound of Marchand and Sokolova (2005) (which
does not depend on the observed fraction of positive examples) and show that the latter loss bound
can be substantially larger than the former in the presence of imbalanced misclassifications.

The novelty of this paper is that we correct a bound that was found to be wrong, but in doing so,
we derive a more general form that allows any learning algorithm, relying on sample compression
schemes, to be upper bounded. Separately bounding the positive and negative errors also gives rise
to a natural extension—namely asymmetric loss of sample compression risk bounds. In these cases,
we give a higher weight for misclassification of one class over the other, typically because it is far

2534

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

less frequent than the dominant class. An example is classification of news articles by topic, where
classification of all documents as not relevant will give good performance if we do not impose a
greater cost on the misclassification of a relevant document.

We begin our discussion with preliminary definitions and terminology that will be used through-
out the remainder of this paper.

2. Preliminary Definitions

Let the input space X be a set of n-dimensional vectors of Rn and let x be a member of X . We define
a feature as an arbitrary Boolean-valued function that maps X onto {0,1}.

Consider any set H = {hi}|H |
i=1 of Boolean-valued features hi. We will consider learning algo-

rithms that are given any such setH and return a small subset R ⊂ H of features. Given that subset
R , and an arbitrary input vector x, the output f (x) of the Set Covering Machine (SCM) is given by
the conjunction

f (x) =
^

i∈R
hi(x) .

The function f contains a conjunction of features hi that individually give outputs hi(x) of 0
or 1 to denote whether the input vector x belongs to class 0 or class 1, respectively. Therefore,
the function f outputs 0 or 1 according to a conjunction of features hi. A positive example will be
referred to as a P -example and a negative example as aN -example. Given a training set S= SP ∪SN
of examples, the set of positive training examples will be denoted by SP and the set of negative
training examples by SN .

Any learning algorithm that constructs a conjunction (such as the one above) can be transformed
into an algorithm constructing a disjunction just by exchanging the role of the positive and negative
examples. Hence, simply by reassigning the set of negative training examples to the set of positive
training examples (i.e., SP ← SN) and the set of positive training examples to the set of negative
training examples (i.e., SN ← SP) we can transform the algorithm into one that constructs a dis-
junction. However, for the remainder of the paper we will assume, without loss of generality, that
the SCM always produces a conjunction.

In this paper, we consider the case where H is the set of data-dependent balls.

Definition 1 For each training example xi with label yi ∈ {0,1} and (real-valued) radius ρ, we
define feature hi,ρ to be the following data-dependent ball centered on xi:

hi,ρ(x)
def= hρ(x,xi) =

{
yi if d(x,xi) < ρ
yi otherwise ,

where yi denotes the Boolean complement of yi and d(x,x′) denotes the distance between x and x′.
Training example xi will be called the ball center of hi,ρ.

To determine the radius ρ of ball hi,ρ, we will use another training example x j, called the ball
border of hi,ρ, such that ρ= d(x j,xi).

Hence, the set R ⊂ H of features used by the SCM gives us a set of ball centers and a set of ball
borders. The union of these two sets gives the compression set of the SCM. Following Littlestone
and Warmuth (1986) and Floyd and Warmuth (1995), the compression set is a small subset of the

2535

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

training set which identifies a classifier (here a SCM). The function that maps arbitrary compression
sets to classifiers is called the reconstruction function. We refine further these notions in Section 4.

We adopt the PAC model where it is assumed that each example (x,y) is drawn independently at
random according to a fixed (but unknown) distribution. In this paper, we consider the probabilities
of events taken separately over the P -examples and the N -examples. We will therefore denote by
P{a(x,y)

∣∣(x,y) ∈ P} the probability that predicate a is true on a random draw of an example (x,y),
given that this example is positive. Hence, the error probability of classifier f on P -examples and
on N -examples, that we call respectively the expected P -loss and the expected N -loss, are given
by

erP (f) def= P{ f (x) %= y
∣∣(x,y) ∈ P} ,

erN (f) def= P{ f (x) %= y
∣∣(x,y) ∈ N } .

Similarly, let êrP (f ,S) denote the number of examples in SP misclassified by f and let êrN (f ,S))
denote the number of examples in SN misclassified by f . Hence

êrP (f ,S) def= |{(x,y) ∈ SP : f (x) %= y}| ,

êrN (f ,S) def=
∣∣{(x,y) ∈ SN : f (x) %= y}

∣∣ .

Throughout this paper, the probability of occurrence of a positive example will be denoted by
pP . Similarly, pN will denote the probability of occurrence of a negative example. We will consider
the general case where the loss lP of misclassifying a positive example can differ from the loss lN
of misclassifying a negative example. We will denote by A(S) the classifier returned by the learning
algorithm A trained on a set S of examples. In this case, the expected loss E[l(A(S))] of classifier
A(S) is defined as

E[l(A(S))] def= lP · pP · erP [A(S)] + lN · pN · erN [A(S)] . (1)

3. Incorrect Bound

The Theorem 5 of Marchand and Shawe-Taylor (2002) gives the following loss bound for the SCM
with the symmetric loss case of lP = lN = 1.

Given the above definitions, let A be any learning algorithm that builds a SCM with data-
dependent balls with the constraint that the returned function A(S) always correctly classifies every
example in the compression set. Then, with probability 1−δ over all training sets S of m examples,

E[l(A(S))] ≤ 1− exp
{
− 1
m− cp−b− cn− kp− kn

(
lnB+ ln

1
δ0

)}
,

where

δ0
def=

(
π2

6

)−5
· ((cp+1)(cn+1)(b+1)(kp+1)(kn+1))−2 ·δ ,

B def=
(
mp

cp

)(
mp− cp

b

)(
mn

cn

)(
mp− cp−b

kp

)(
mn− cn
kn

)
,

2536

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

and where kp and kn are the number of misclassified positive and negative training examples by
classifier A(S). Similarly, cp and cn are the number of positive and negative ball centers contained
in classifier A(S) whereas b denotes the number of ball borders1 in classifier A(S). Finally mp and
mn denote the number of positive and negative examples in training set S.

Let us take the B expression only and look more closely at the number of ways of choosing the
errors on SP and SN : (

mp− cp−b
kp

)(
mn− cn
kn

)
.

The bound on the expected loss given above will be small only if each factor is small. However, each
factor can be small for a small number of training errors (desirable) or a large number of training
errors (undesirable). In particular, the product of these two factors will be small for a small value of
kn (say, kn = 0) and a large value of kp (say, kp = mp− cp−b). In this case, the denominator of the
bound given above will become

m− cp−b− cn− kp− kn = mn− cn ,

and will be large whenever mn (cn. Consequently, the bound given by Theorem 5 of Marchand
and Shawe-Taylor (2002) will be small for classifiers having a small compression set and making
a large number of errors on SP and a small number of errors on SN . Clearly, this is incorrect as it
implies a classifier with good generalization ability and so exposes an error in the proof. In order to
derive a loss bound where the issue of imbalanced misclassifications can be handled, the errors for
positive and negative examples must be bounded separately.

The error in the proof of Theorem 5 of Marchand and Shawe-Taylor (2002) occurs at the first
equality used in their Equation 3. This equality is tantamount to writing that for any fixed classifier
f :

P
{
S ∈ X : êr(f ,S) = 0

∣∣∣∣ |SP | = mp

}

= (1− erP (f))mp(1− erN (f))mn ×
(
m
mp

)
pmp

P (1− pP)mn (false) ,

where pP denotes the probability of occurrence of a P -example. However this last equation is false
since the probability on the left hand side is conditioned on the fact the |SP | = mp. Hence, we have
instead

P
{
S ∈ X : êr(f ,S) = 0

∣∣∣∣ |SP | = mp

}
= (1− erP)mp(1− erN)mn .

4. Sample-Compression Loss Bounds for Imbalanced Data

Recall that X denotes the input space. Let X = (X ×{0,1})m be the set of training sets of size m
with inputs from X . We consider any learning algorithm A having the property that, when trained
on a training set S ∈ X , A produces a classifier A(S) which can be identified solely by a subset Λ=
{ΛP ∪ΛN } ⊂ S, called the compression set, and a message string σ that represents some additional
information required to obtain a classifier. HereΛP represents a subset of positive examples andΛN

1. As explained in Marchand and Shawe-Taylor (2002), the ball borders are always positive examples.

2537

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

a subset of negative examples. More formally, this means that there exists a reconstruction function
Φ that produces a classifier f = Φ(Λ,σ) when given an arbitrary compression set Λ and message
string σ. We can thus consider that the learning algorithm A, trained on S, returns a compression set
Λ(S) and a message string σ(S). The classifier is then given by Φ(Λ(S),σ(S)).

For any training sample S and compression set Λ, consisting of a subset ΛP of positive examples
and a subset ΛN of negative examples, we use the notation Λ(S) = (ΛP (S),ΛN (S)). Any further
partitioning of the compression set Λ can be performed by the message string σ. For example, in
the set covering machine, σ specifies for each point in ΛP , whether it is a ball center or a ball border
(not already used as a center). As explained by Marchand and Shawe-Taylor (2002), this is the only
additional information required to obtain a SCM consistent with the compression set.

We will use dp to denote the number of examples present in ΛP . Similarly, dn will denote the
number of examples present in ΛN . To simplify the notation, we will use the mP and mN vectors
defined as

mP
def= (m,mp,mn,dp,dn,kp) ,

mN
def= (m,mp,mn,dp,dn,kn) , (2)

and

mP (S,A(S)) def=
(
|S|, |SP |, |SN |, |ΛP (S)|, |ΛN (S)|, êrP (A(S),S)

)
, (3)

mN (S,A(S)) def=
(
|S|, |SP |, |SN |, |ΛP (S)|, |ΛN (S)|, êrN (A(S),S)

)
. (4)

Hence, the predicate mP (S,A(S)) =mP means that |S| = m, |SP | = mp, |SN | = mn, |ΛP (S)| = dp,
|ΛN (S)| = dn, êrP (A(S),S) = kp. We use a similar definition for predicatemN (S,A(S)) =mN . We
will also use BP (mP) and BN (mN) defined as

BP (mP) def=
(
mp

dp

)(
mn

dn

)(
mp−dp
kp

)
,

BN (mN) def=
(
mp

dp

)(
mn

dn

)(
mn−dn
kn

)
.

The proposed loss bound will hold uniformly for all possible messages that can be chosen by
A. It will thus loosen as we increase the set M of possible messages that can be used. To obtain
a smaller loss bound, we will therefore permit M to be dependent on the compression set chosen
by A. In fact, the loss bound will depend on a prior distribution PΛ(σ) of message strings over the
set MΛ of possible messages that can be used with a compression set Λ. We will see that the only
condition that PΛ needs to satisfy is

∑
σ∈MΛ

PΛ(σ) ≤ 1 .

Consider, for example, the case of a SCM conjunction of balls. Given a compression set Λ =
(ΛP ,ΛN) of size (|ΛP |, |ΛN |) = (dp,dn), recall that each example in ΛN is a ball center whereas
each example in ΛP can either be a ball border or a ball center. Hence, to specify a classifier given
Λ, we only need to specify the examples in ΛP that are ball borders.2 This specification can be used

2. For a SCM making no error with Λ, we can pair each center with its border in the following way. For each negative
center, we choose the closest border. For each positive center, we choose the furthest border.

2538

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

with a message string containing two parts. The first part specifies the number b ∈ {0, . . . ,dp} of
ball borders in ΛP . The second part specifies which subset, among the set of

(dp
b
)
possible subsets, is

used for the set of ball borders. Consequently, if b(σ) denotes the number of ball borders specified
by message string σ, we can choose

PΛ(σ) = ζ(b(σ)) ·
(
dp
b(σ)

)−1
(SCM case) , (5)

where, for any non-negative integer b, we define

ζ(b) def=
6
π2

(b+1)−2 . (6)

Indeed, in this case, we clearly satisfy

∑
σ∈MΛ

PΛ(σ) =
dp

∑
b=0

ζ(b) ∑
σ:b(σ)=b

(
dp
b(σ)

)−1
≤ 1 .

The proposed loss bound will make use of the following functions:

εP (mP ,β) def= 1− exp
(
− 1
mp−dp− kp

[
ln(BP (mP))+ ln

1
β

])
, (7)

εN (mN ,β) def= 1− exp
(
− 1
mn−dn− kn

[
ln

(
BN (mN)

)
+ ln

1
β

])
. (8)

Theorem 2 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. For any prior distribution
PΛ of messages and for any δ ∈ (0,1]:

P
{
S ∈ X : erP [A(S)] ≤ εP

(
mP (S,A(S)),gP (S)δ

)}
≥ 1−δ ,

P
{
S ∈ X : erN [A(S)] ≤ εN

(
mN (S,A(S)),gN (S)δ

)}
≥ 1−δ ,

wheremP (S,A(S)) andmN (S,A(S)) are defined by Equation 3 and Equation 4, and

gP (S) def= ζ(dp(S)) ·ζ(dn(S)) ·ζ(kp(S)) ·PΛ(S)(σ(S)) , (9)

gN (S) def= ζ(dp(S)) ·ζ(dn(S)) ·ζ(kn(S)) ·PΛ(S)(σ(S)) . (10)

Note that Theorem 2 directly applies to the SCM when we use the distribution of messages
given by Equation 5.

Proof To prove Theorem 2, it suffice to upper bound by δ the following probability

P def= P
{
S ∈ X : erP [A(S)] ≥ ε

(
mP (S,A(S)),Λ(S),σ(S)

)}

= ∑
mP

P
{
S ∈ X : erP [A(S)] ≥ ε

(
mP ,Λ(S),σ(S)

)
,mP (S,A(S)) =mP

}
,

2539

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

where ε(mP ,Λ(S),σ(S)) denotes a risk bound on erP (A(S)) that depends (partly) on the compres-
sion set Λ(S) and the message string σ(S) returned by A(S). The summation overmP stands for

∑
mP

(·) def=
m

∑
mp=0

mp

∑
dp=0

m−mp

∑
dn=0

mp−dp

∑
kp=0

(·) .

Note that the summation over kp stops at mp−dp because, as we will see later in the proof, we can
upper bound the risk of a sample-compressed classifier only from the training errors it makes on the
examples that are not used for the compression set.

We will now use the notation i = (i1, . . . , id) for a sequence (or a vector) of strictly increasing
indices, 0< i1 < i2 < · · · < id ≤ m. Hence there are 2m distinct sequences i. We will also use |i| to
denote the length d of a sequence i. Such sequences (or vectors) of indices will be used to identify
subsets of S. For S ∈ X , we define Si as

Si
def=((xi1 ,yi1), . . . ,(xid ,yid)) .

Under the constraint that m(S,A(S)) = m, we will denote by ip any sequence (or vector) of
indices where each index points to an example of SP . We also use an equivalent definition for in.
If, for example, in = (2,3,6,9), then Sin will denote the set of examples consisting of the second,
third, sixth, and ninth N -example of S. Therefore, given a training set S and vectors ip and in, the
subset Sip,in will denote a compression set. We will also denote by Imp the set of all the 2mp possible
vectors ip under the constraint that |SP | = mp. We also use an equivalent definition for Imn . Using
these definitions, we will now upper bound P uniformly over all possible realizations of ip and in
under the constraintmP (S,A(S)) =mP . Thus

P ≤ ∑
mP

P
{
S ∈ X : ∃ip ∈ Imp ,∃in ∈ Imn ,∃σ ∈ MSip,in :

erP [Φ(Sip,in ,σ)] ≥ ε
(
mP ,Sip,in ,σ

)
,mP (S,A(S)) =mP

}

≤ ∑
mP

∑
ip∈Imp

∑
in∈Imn

P
{
S ∈ X : ∃σ ∈ MSip,in :

erP [Φ(Sip,in ,σ)] ≥ ε
(
mP ,Sip,in ,σ

)
,mP (S,A(S)) =mP

}
,

where Φ(Sip,in ,σ) denotes the classifier obtained once, S, ip, in, and σ have been fixed. The last
inequality comes from the union bound over all the possible choices of ip ∈ Imp and in ∈ Imn . Let

P′ def=P
{
S ∈ X : ∃σ ∈ MSip,in : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,mP (S,A(S)) =mP

}
.

We now make explicit how the positive and negative examples are interleaved in the training
sequence S by introducing a new variable b, which is a bit-string of length m such that Si is a
positive example if and only if bi = 1. Let Bmp denote the set of possible b vectors that we can have

2540

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

under the constraint that |SP | = mp. We then have

P′ = ∑
b∈Bmp

P
{
S ∈ X : ∃σ ∈ MSip,in : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

mP (S,A(S)) =mP | b(S) = b
}
P
{
S ∈ X : b(S) = b

}

= ∑
b∈Bmp

P
{
S ∈ X : ∃σ ∈ MSip,in : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

mP (S,A(S)) =mP | b(S) = b
}
pmp

P (1− pP)m−mp .

P′ ≤
(
m
mp

)
pmp

P (1− pP)m−mp sup
b∈Bmp

P
{
S ∈ X : ∃σ ∈ MSip,in :

erP [Φ(Sip,in ,σ)] ≥ ε
(
mP ,Sip,in ,σ

)
,mP (S,A(S)) =mP | b(S) = b

}
.

Under the condition b(S) = b, index vectors ip and in are now pointing to specific examples in
S. Consequently, under this condition, we can compute the above probability by first conditioning
on the compression set Sip,in and then performing the expectation over Sip,in . Hence

P
{
S ∈ X : (·)

∣∣∣∣b(S) = b
}

= ESip,in |bP
{
S ∈ X : (·)

∣∣∣∣b(S) = b,Sip,in
}

.

By applying the union bound over σ ∈ MSip,in , we obtain

P
{
S ∈ X : ∃σ ∈ MSip,in : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

mP (S,A(S)) =mP | b(S) = b,Sip,in
}

≤ ∑
σ∈MSip,in

P
{
S ∈ X : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

mP (S,A(S)) =mP | b(S) = b,Sip,in
}

.

We will now stratify this last probability by the set of possible errors that classifier Φ(Sip,in ,σ)
can perform on the training examples that are not in the compression set Sip,in . Note that we do not
force here the learner to produce a classifier that does not make errors on Sip,in . However, the set
of message strings needed by Φ to identify a classifier h might be larger when h can err on Sip,in .
To perform this stratification, let êr(f ,SP) be the vector of indices pointing to the examples of SP
that are misclassified by f . Moreover, let Imp(ip) denote the set of all vectors jp ∈ Imp for which no
index i ∈ jp is also in ip. In other words, for all ip ∈ Imp and all jp ∈ Imp(ip), we have jp∩ ip = /0.

2541

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

Therefore

P
{
S ∈ X : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,mP (S,A(S)) =mP | b(S) = b,Sip,in

}

= ∑
jp∈Imp (ip)

P
{
S ∈ X : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

êr[Φ(Sip,in ,σ),SP] = jp,mP (S,A(S)) =mP | b(S) = b,Sip,in
}

= ∑
jp∈Imp (ip)

P
{
S ∈ X : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

êr[Φ(Sip,in ,σ),SP] = jp | b(S) = b,Sip,in
}

,

where the last equality comes from the fact that the condition mP (S,A(S)) =mP is obsolete when
b(S) = b with fixed vectors ip, in, jp. Now, under the condition b(S) = b with a fixed compression
set Sip,in , this last probability is obtained for the random draws of the training examples that are not
in Sip,in . Consequently, this last probability is at most equal to the probability that a fixed classifier,
having erP ≥ ε(mP ,Sip,in ,σ), makes no errors on mp−dp− kp positive examples that are not in the
compression set Sip,in . Note that the probability space created by the conditioning specifies only the
positions of the positive examples but places no further restrictions on them. They can therefore be
viewed as independent draws from the distribution of positive examples. This makes it possible to
bound the probability of the event by the probability that mp− dp− kp independent draws are all
correctly classified. Hence, we have

P
{
S ∈ X : erP [Φ(Sip,in ,σ)] ≥ ε

(
mP ,Sip,in ,σ

)
,

êr[Φ(Sip,in ,σ),SP] = jp | b(S) = b,Sip,in
}

≤
(
1− ε(mP ,Sip,in ,σ)

)mp−dp−kp
.

By regrouping the previous results, we get

P ≤ ∑
mP

(
m
mp

)
pmp

P (1− pP)m−mp ∑
ip∈Imp

∑
in∈Imn

sup
b∈Bmp

ESip,in |b ∑
σ∈MSip,in

∑
jp∈Imp (ip)

(
1− ε(mP ,Sip,in ,σ)

)mp−dp−kp

=
m

∑
mp=0

(
m
mp

)
pmp

P (1− pP)m−mp
mp

∑
dp=0

(
mp

dp

)m−mp

∑
dn=0

(
mn

dn

)mp−dp

∑
kp=0

(
mp−dp
kp

)

sup
b∈Bmp

ESip,in |b ∑
σ∈MSip,in

(
1− ε(mP ,Sip,in ,σ)

)mp−dp−kp
.

2542

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

By using
(
1− ε(mP ,Sip,in ,σ)

)mp−dp−kp
= PSip,in (σ) · 1

BP (mP)
·ζ(kp) ·ζ(dn) ·ζ(dp) ·δ ,

we get P≤ δ as desired. Similarly, we have

P
{
S ∈ X : erN [A(S)] ≥ εN

(
mN (S,A(S)),gN (S)δ

)}
≤ δ ,

which completes the proof.

Remark 3 This theorem can be viewed in a standard asymptotic form by using the inequality 1−
exp(−x) ≤ x, for x ≥ 0. To see this, we simply need to substitute Equations 7 and 8 into each
probability given in Theorem 2 and weaken them with the above inequality. Doing so yields the
following bounds:

P
{
S ∈ X : erP [A(S)] ≤ 1

mp−dp− kp

[
ln(BP (mP))+ ln

1
gP (S)δ

]}
≥ 1−δ,

P
{
S ∈ X : erN [A(S)] ≤ 1

mn−dn− kn

[
ln

(
BN (mN)

)
+ ln

1
gN (S)δ

]}
≥ 1−δ .

However, each probability is separately bounding the error on the positive and negative examples
and so will not (in the final bound) hold with probability 1− δ but with probability 1− δ/4 (to
be shown) as the expected loss will rely on four bounds simultaneously holding true (i.e., from
Equation 1 we would like to upper bound erP [A(S)], erN [A(S)], pP and pN).

Now that we have a bound on both erP [A(S)] and erN [A(S)], to bound the expected loss
E[l(A(S))] of Equation 1 we now need to upper bound the probabilities pP and pN . For this task,
we could use a well-known approximation of the binomial tail such as the additive Hoeffding bound
or the multiplicative Chernoff bound. However, the Hoeffding bound is known to be very loose
when the the probability of interest (here pP and pN) is close to zero. Conversely, the multiplica-
tive Chernoff bound is known to be loose when the probability of interest is close to 1/2. In order
to obtain a tight loss bound for both balanced and imbalanced data sets, we have decided to use the
binomial distribution without any approximation.

Recall that the probability Bin(m,k, p) of having at most k successes among m Bernoulli trials,
each having probability of success p, is given by the binomial tail

Bin(m,k, p) def=
k

∑
i=0

(
m
i

)
pi(1− p)m−i .

Following Langford (2005), we now define the binomial tail inversion Bin(m,k,δ) as the largest
value of probability of success such that we still have a probability of at least δ of observing at most
k successes out of m Bernoulli trials. In other words,

Bin(m,k,δ) def= sup
{
p : Bin(m,k, p) ≥ δ

}
. (11)

2543

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

From this definition, it follows that Bin(m,mn,δ) is the smallest upper bound on pN , which holds
with probability at least 1−δ, over the random draws of m examples. Hence

P
{
S ∈ X : pN ≤ Bin

(
m,mn,δ

)}
≥ 1−δ .

From this bound (applied to both pP and pN), and from the previous theorem, the following predi-
cates hold simultaneously with probability 1−δ over the random draws of S:

erP [A(S)] ≤ εP
(
mP ,gP (S)

δ
4

)
,

erN [A(S)] ≤ εN

(
mN ,gN (S)

δ
4

)
,

pN ≤ Bin
(
m,mn,

δ
4

)
,

pP ≤ Bin
(
m,mp,

δ
4

)
,

wheremP =mP (S,A(S)) andmN =mN (S,A(S)). Consequently, we have the next theorem.

Theorem 4 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. With probability 1−δ over
the random draws of a training set S, we have

E[l(A(S))] ≤ lP ·Bin
(
m,mp,

δ
4

)
· εP

(
mP ,gP (S)

δ
4

)

+ lN ·Bin
(
m,mn,

δ
4

)
· εN

(
mN ,gN (S)

δ
4

)
,

wheremP =mP (S,A(S)) andmN =mN (S,A(S)) are defined by Equations 3 and 4.

We can now improve the loss bound given by Theorem 4 in the following way. Consider the
frequencies p̂P

def=mp/m and p̂N
def=mn/m. Let us simply denote by εP and εN some upper bounds on

erP [A(S)] and erP [A(S)]. Let us also denote by pP and pN some upper bounds on pP and pN . Let
us first assume that lN εN ≥ lP εP . Then we have

E[l(A(S))] ≤ pP lP εP + pN lN εN
= lP εP + pN (lN εN − lP εP)
≤ lP εP + pN (lN εN − lP εP)
= p̂P lP εP + p̂N lN εN +(pN − p̂N)(lN εN − lP εP) .

Likewise, if lP εP ≥ lN εN , we have

E[l(A(S))] ≤ p̂P lP εP + p̂N lN εN +(pP − p̂P)(lP εP − lN εN) .

Consequently, we have the following theorem.

2544

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

Theorem 5 Given the above definitions, let A be any learning algorithm having a reconstruction
function that maps compression sets and message strings to classifiers. For any real numbers a,b,c,
let

Ψ(a;b;c) def=
{
a · |c| if c≥ 0
b · |c| if c≤ 0 .

Then, with probability 1−δ over the random draws of a training set S, we have

E[l(A(S))] ≤ mp

m
· lP · εP

(
mP ,gP (S)

δ
4

)
+
mn

m
· lN · εN

(
mN ,gN (S)

δ
4

)

+Ψ

(
Bin

(
m,mp,

δ
4

)
− mp

m
; Bin

(
m,mn,

δ
4

)
− mn

m
;

lP εP
(
mP ,gP (S)

δ
4

)
− lN εN

(
mN ,gN (S)

δ
4

))
,

wheremP =mP (S,A(S)) andmN =mN (S,A(S)) are defined by Equations 3 and 4.

To compare the bound given by Theorem 5 with the bound given by Theorem 4, let us assume
that lN εN ≥ lP εP . Using our shorthand notation, the bound of Theorem 5 is given by

lP p̂P εP + lN p̂N εN +(pN − p̂N)(lN εN − lP εP) .

Whereas the bound of Theorem 4 is given by

lP pP εP + lN pN εN .

The bound of Theorem 4 minus the bound of Theorem 5 then gives

(lP pP εP + lN pN εN)− (lP p̂P εP + lN p̂N εN +(pN − p̂N)(lN εN − lP εP))
= (pP − p̂P)lP εP +(pN − p̂N)lN εN − (pN − p̂N)(lN εN − lP εP)
= (pP − p̂P + pN − p̂N)lP εP

= (pP + pN −1)lP εP .

Since lP εP > 0 and pP + pN > 1, we have an improvement using Theorem 5.

Example 1 If lP = lN = 1,δ= 0.05,m= 100,mp = 40,mn = 60,εP = 0.3,εN = 0.4, we get 0.439
for the bound of Theorem 4 and only 0.371 for the bound of Theorem 5. Hence, the bound of
Theorem 5 can be significantly better than the the bound of Theorem 4.

5. Discussion and Numerical Comparisons with Other Bounds

Let us first discuss the bounds that we have proposed and make explicit some of the details and
consequences. In general, risk bounds are simply upper bounds of the true error calculated from
the (overall) error achieved during training. There is no distinction made between the positive and
negative class. The results of the current paper are bounds on the error achieved separately on the
positive and negative examples. Hence, making the distinction between the two classes explicit.
Furthermore, the risk bound on one class depends on what the classifier achieves on the training

2545

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

examples of that class. Thus, making the bound more data-dependent then the usual bounds on the
true error. This strong data-dependence also allows the user to take into account the observed num-
ber of positive and negative examples in the training sample as well as the flexibility of specifying
different losses for each class. This is known as asymmetric loss and is not possible with the current
crop of sample-compression loss bounds.

Note also that the proposed bounds are data dependent bounds for which there are no corre-
sponding lower bounds. A small compression scheme is evidence of simplicity in the structure of
the classifier, but one that is related to the training distribution rather than a priori determined.

Any algorithm that uses a compression scheme can use the bounds that we have proposed and
take advantage of asymmetrical loss and cases of imbalanced data sets. However, the tightness of the
bound relies on the sparsity of the classifiers (e.g., the size of the compression set). Hence, it may
not be advantageous to use algorithms that do not possess levels of sparsity similar (or comparable)
to the SCM. This is one reason why we will provide a numerical comparison of various sample-
compression bounds for the case of the SCM.

In order to show the merits of our bound we must now compare numerically against more
common sample compression bounds and the bound found to be incorrect. In doing so we point
out when our bound can be smaller and when it can become larger. All the compared bounds are
specialized to the set covering machine compression scheme that uses data-dependent balls. Here
each ball is constructed from two data points—one that defines the center of the ball and another
that helps define the radius of the ball (known as the border point). Hence to build a classifier from
the compression set, we also need an informative message string to discriminate between the border
points and the centers.

Let us now discuss the experimental setup, including a list of all the bounds compared, and then
conclude with a review of the results.

5.1 Setup

From Example 1 of Section 4, it is clear that using Theorem 5 is more advantageous than Theorem 4.
Hence, all experiments will be conducted with the bound of Theorem 5. The first bound we compare
against is taken from the original set covering machine paper byMarchand and Shawe-Taylor (2001)
and is similar to the Littlestone and Warmuth (1986) bound but with more specialization for the
SCM compression set defined from the set of data-dependent balls. The second generalization error
bound is adapted from Marchand and Sokolova (2005) and is a slight modification of the Marchand
and Shawe-Taylor (2001) result. All these bounds will also be compared against the incorrect bound
given in Marchand and Shawe-Taylor (2002).

Please note that traditional sample compression bounds, such as that given by Theorem 6.1 of
Langford (2005), cannot be used with the set covering machine as it does not allow the inclusion of
any side information in the reconstruction of the classifier. The SCM, however, stores both the center
and border points in order to construct its hypotheses. This implies the need for side information
to discriminate between centers and border points, something that traditional sample compression
bounds do not cater for. Therefore, we cannot give numerical comparisons against these types of
bounds.

All generalization error bounds detailed below will make use of the following definitions: dn =
cn, dp = cp + b, d = dp + dn and k = kp + kn. For completeness, we give the definitions of all risk

2546

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

bounds not already stated and, to avoid repetition, we only give references to the bounds described
earlier.

• new bound (Theorem 5). When applied to the SCM, the new bound uses the distribution of
messages given by Equation 5 and Equations 6, 7, 8, 9, 10, and 11.

• incorrect bound (Theorem 5 of Marchand and Shawe-Taylor, 2002). This bound can also be
found in Section 3 of the current paper.

• MS01 bound (Theorem 5.2 of Marchand and Shawe-Taylor, 2001):

ε(m,d,cp,k,δ) = 1− exp
(

−1
m−2d− k

[
ln

(
m
2d

)
+ ln

(
2d
cp

)
+ ln

(
m−2d
k

)
+

ln
(
2m2d
δ

)])
.

• MS05 bound (Equation 10 of Marchand and Sokolova, 2005):

ε(m,d,dp,b,k,δ) = 1− exp
(

−1
m−d− k

[
ln

(
m
d

)
+ ln

(
m−d
k

)
+ ln

(
dp
b

)
+

ln
(

1
ζ(d)ζ(k)ζ(b)δ

)])
,

where ζ(a) is given by Equation 6.

5.2 Discussion of Results

The numerical comparisons of these four bounds (new bound, incorrect bound, MS01 bound and
MS05 bound) are shown in Figure 1 and Figure 2. Each plot contains the number of positive ex-
amples mp, the number of negative examples mn, the number of positive centers cp, the number of
negative centers cn and the number of borders b. The number of negative misclassifications kn was
fixed for all plots and these values can be found in the x-axis label (either 0 or 500). The number of
positive examples was varied and its quantity was set to those values given by the x-axis of the plot.
For example, in the left hand side plot of Figure 1, the number of negative misclassifications kn was
0 and the number of positive misclassifications kp varied from 1 to 2000. The y-axis give the bound
values achieved. Finally, the empirical error was also included in each plot—which is simply the
number of examples misclassified divided by the number of examples, that is, (kp+kn)/(mp+mn).

Figure 1 shows the case where the number of positive and negative examples is approximately
the same. We clearly see that the incorrect bound becomes erroneous when the number kp of errors
on the positive training examples approaches the total number mp of positive training examples. We
also see that the new bound is tighter than the MS01 and MS05 bounds when the kp differs greatly
from kn. However, the latter bound is slightly tighter than the new bound when kp = kn.

Figure 2 depicts the case where there is an imbalance in the data set (mn(mp), implying greater
possibility of imbalance in misclassifications. However, the behavior is similar as the one found in
Figure 1. Indeed, the MS01 and MS05 loss bounds are slightly smaller than the new bound when
kp/mp is similar to kn/mn, but the new bound becomes smaller when these two quantities greatly
differ. This is where the new bound is most advantageous—in the case when there is an imbalance
in misclassifications. As we would expect, the new bound is smaller when one class of examples is
more abundant than the other.

2547

HUSSAIN, LAVIOLETTE, MARCHAND, SHAWE-TAYLOR, BRUBAKER AND MULLIN

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of positive examples misclassified (kp > 0, kn = 0)

bo
un

d
va

lu
es

new bound
incorrect bound
MS05 bound
MS01 bound
empirical error

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of positive examples misclassified (kp > 0, kn = 500)

bo
un

d
va

lu
es

new bound
incorrect bound
MS05 bound
MS01 bound
empirical error

Figure 1: Bound values for the SCM when mp = 2020,mn = 1980,cp = 5,cn = 5,b= 10.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of positive examples misclassified (kp > 0, kn = 0)

bo
un

d
va

lu
es

new bound
incorrect bound
MS05 bound
MS01 bound
empirical error

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of positive examples misclassified (kp > 0, kn = 500)

bo
un

d
va

lu
es

new bound
incorrect bound
MS05 bound
MS01 bound
empirical error

Figure 2: Bound values for the SCM when mp = 1000,mn = 3000,cp = 5,cn = 5,b= 10.

2548

SAMPLE-COMPRESSION LOSS BOUNDS FOR IMBALANCED DATA

6. Conclusion

We have observed that the SCM loss bound proposed by Marchand and Shawe-Taylor (2002) is
incorrect and, in fact, becomes erroneous in the limit where the number of errors on the positive
training examples approaches the total number of positive training examples. We have then pro-
posed a new loss bound, valid for any sample-compression learning algorithm (including the SCM),
that depends on the observed fraction of positive examples and on what the classifier achieves on
them. This new bound captures the spirit of Marchand and Shawe-Taylor (2002) with very similar
tightness in the regimes in which the bound could hold. This is shown in numerical comparisons of
the loss bound proposed in this paper with all of the earlier bounds that can be applied to the SCM.

As mentioned above, an advantage of the bound is its ability to take into account the observed
number of positive examples in the training set in order to arrive at tighter estimates. It also has the
advantage of being applicable in cases where the loss function is asymmetrical for type I and type
II errors, a situation that is not uncommon in practical applications.

The tightness of the bounds derived for the set covering machine make it tempting to use them
to perform model selection as well as to consider integrating them more closely into the workings
of the algorithm. Both of these directions are the subject of ongoing research.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. This work was sup-
ported by NSERC Discovery grants 262067 and 122405 and, in part, by the IST Programme of the
European Community, under the PASCAL Network of Excellence, IST-2002-506778. This publi-
cation only reflects the authors’ views.

References

Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the Vapnik-
Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.

John Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learn-
ing Research, 6:273–306, 2005.

Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Technical
report, University of California Santa Cruz, Santa Cruz, CA, 1986.

Mario Marchand and John Shawe-Taylor. Learning with the set covering machine. Proceedings
of the Eighteenth International Conference on Machine Learning (ICML 2001), pages 345–352,
2001.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of Machine Learning
Reasearch, 3:723–746, 2002.

Mario Marchand and Marina Sokolova. Learning with decision lists of data-dependent features.
Journal of Machine Learning Reasearch, 6:427–451, 2005.

2549

Journal of Machine Learning Research 8 (2007) 2551-2594 Submitted 1/07; Revised 8/07; Published 11/07

VC Theory of Large Margin Multi-Category Classifiers

Yann Guermeur YANN.GUERMEUR@LORIA.FR
LORIA-CNRS
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy cedex, France

Editors: Isabelle Guyon and Amir Saffari

Abstract
In the context of discriminant analysis, Vapnik’s statistical learning theory has mainly been devel-
oped in three directions: the computation of dichotomies with binary-valued functions, the compu-
tation of dichotomies with real-valued functions, and the computation of polytomies with functions
taking their values in finite sets, typically the set of categories itself. The case of classes of vector-
valued functions used to compute polytomies has seldom been considered independently, which is
unsatisfactory, for three main reasons. First, this case encompasses the other ones. Second, it can-
not be treated appropriately through a naı̈ve extension of the results devoted to the computation of
dichotomies. Third, most of the classification problems met in practice involve multiple categories.

In this paper, a VC theory of large margin multi-category classifiers is introduced. Central in
this theory are generalized VC dimensions called the γ-Ψ-dimensions. First, a uniform convergence
bound on the risk of the classifiers of interest is derived. The capacity measure involved in this
bound is a covering number. This covering number can be upper bounded in terms of the γ-Ψ-
dimensions thanks to generalizations of Sauer’s lemma, as is illustrated in the specific case of
the scale-sensitive Natarajan dimension. A bound on this latter dimension is then computed for
the class of functions on which multi-class SVMs are based. This makes it possible to apply the
structural risk minimization inductive principle to those machines.
Keywords: multi-class discriminant analysis, large margin classifiers, uniform strong laws of large
numbers, generalized VC dimensions, multi-class SVMs, structural risk minimization inductive
principle, model selection

1. Introduction

One of the central domains of Vapnik’s statistical learning theory (Vapnik, 1998) is the theory of
bounds, which is at the origin of the structural risk minimization (SRM) inductive principle (Vapnik,
1982; Shawe-Taylor et al., 1998) and, as such, has not only a theoretical interest, but also a practical
one. This theory has been developed for pattern recognition, regression estimation and density esti-
mation. The first results in the field of discrimination, exposed in Vapnik and Chervonenkis (1971),
were dealing with the computation of dichotomies with binary-valued functions. Later on, several
studies were devoted to the case of multi-class [[1,Q]]-valued classifiers (Ben-David et al., 1995), and
large margin classifiers computing dichotomies (Alon et al., 1997; Bartlett, 1998;
Bartlett and Shawe-Taylor, 1999) (see also Bartlett et al., 1996, for the case of regression). How-
ever, the case of large margin classifiers computing polytomies (models taking their values in RQ)
has seldom been tackled independently, although it cannot be considered as a trivial extension of
the three former ones (Guermeur et al., 1999).

c©2007 Yann Guermeur.

GUERMEUR

In this paper, we unify two complementary and well established theories, the theory of large
margin (bi-class) classifiers and the theory of multi-class [[1,Q]]-valued classifiers, to lay the bases
of a simple theory of large margin multi-class classifiers. Central in the process is the specification
of a new class of generalized Vapnik-Chervonenkis (VC) dimensions, the γ-Ψ-dimensions. They
can be seen either as scale-sensitive extensions of the Ψ-dimensions (Ben-David et al., 1995), or
multivariate extensions of the fat-shattering dimension (Kearns and Schapire, 1994). An applica-
tion to the class of functions on which multi-class SVMs (M-SVMs) are based is provided. This
makes it possible to justify a posteriori the choice of their training criteria, which appear as imple-
mentations of the SRM inductive principle. This also gives birth to a model selection procedure of
low computational cost. The main stages of our study are summarized in Figure 1.

Multi−class extension

Theorem 4.1 in Vapnik (1998)Corollary 9 in Bartlett (1998)

Theorem 4.6 in
Bartlett and Shawe−Taylor (1999)

Multi−class radius−margin bound

Multi−class extension

Section 5

VC bound with a covering number

Generalized Sauer−Shelah lemma

Multi−class extension of Lemma 3.5

Lemma 3.5 in Alon et al. (1997) Psi−dim, Ben−David et al. (1995)

Section 3 Section 4

Section 6

Section 7

Theorem 22

Lemma 39

Theorem 40

Theorem 48

VC bound for M−SVMs

VC bound with an extended VC dim

Figure 1: Organigram of the results of the paper.

Although the theorems of this theoretical contribution take the form of guaranteed risks, our
aim is not to derive a tight bound on the risk, but rather to highlight the instructive features of the
unification, and some specificities of the multi-class case. In that sense, our work is similar in spirit
to the one exposed in Tewari and Bartlett (2007). We are all interested in the way a convergence can
happen in the multi-class case. They consider the problem from the point of view of the training
algorithm, whereas we focus on the capacity of the class of functions. In short, the new theory can be
derived by extending concepts and results from only three famous papers: Ben-David et al. (1995),
Alon et al. (1997) and Bartlett (1998), plus a fourth reference, Bartlett and Shawe-Taylor (1999), to

2552

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

treat specifically the case of M-SVMs. This derivation appears rather straightforward once one has
understood that different descriptors of the behaviour of the class of functions of interest are to be
taken into account at the different steps of the reasoning, and this calls for the application of two
different “margin operators” to this class. This phenomenon, a specificity of the multi-class case, is
most noticeable at the level of the generalized Sauer-Shelah lemma, where the transition between
the two operators is performed.

The organization of the paper is as follows. Section 2 introduces the notion of multi-class
margin and margin risk for multi-class discriminant models, as well as the capacity measure that
will appear in the confidence interval of the basic guaranteed risk, a covering number. Section 3 is
then devoted to the formulation of this risk and its discussion. The γ-Ψ-dimensions are introduced
in Section 4. The extension of Sauer’s lemma relating the covering number of interest to one of the
γ-Ψ-dimensions, the margin Natarajan dimension, is established in Section 5. Our master theorem,
a combination of the basic convergence result and the aforementioned lemma, is then exposed in
Section 6. Section 7 is devoted to the computation of a bound on the margin Natarajan dimension of
the architecture shared by all the M-SVMs. In Section 8, the synthesis of the results derived in the
preceding sections is performed, underlining the specificities of the multi-class case. This section
also highlights the usefulness of our uniform convergence result for model selection. At last, we
draw conclusions and outline our ongoing research in Section 9.

2. Margin Risk for Multi-Category Discriminant Models

In this section, the theoretical framework of the study is introduced. It is based on a notion of margin
generalizing to an arbitrary (but finite) number of categories the standard (bi-class) one.

2.1 Formalization of the Learning Problem

We consider the case of a Q-category pattern recognition problem, with 3 ≤ Q < ∞ (so that the
degenerate case of dichotomies is a priori excluded). A pattern is represented by its description
x ∈ X and the set of categories Y is identified with the set of indexes of the categories, [[1,Q]].
The link between patterns and categories is supposed to be of probabilistic nature. We make the
assumption that X , Y and the product space X ×Y are probability spaces, and X ×Y is endowed
with a probability measure P, fixed but unknown. The measure P completely characterizes the
problem of interest. In the PAC framework, this standard setting is known as probabilistic concept
learning (Kearns and Schapire, 1994). Hereafter, Z will designate the product space X ×Y , and
z= (x,y) its elements. Our goal is to find, in a given set G of functions g= (gk)1≤k≤Q from X into
RQ, a function classifying data in an optimal way. Let (X ,Y) be a random pair distributed according
to P. The function selection procedure, or training, makes use of a m-sample Dm = ((Xi,Yi))1≤i≤m
of independent copies of (X ,Y). It consists in trying to optimize over G a criterion, called the
(expected) risk, which is the expectation with respect to P of a given loss function. At this point,
the properties of the functions in G and the way they perform classification must be specified. They
are supposed to satisfy some measurability conditions that will appear implicitly in the sequel (see
Dudley, 1984, Chap. 10 for a detailed study of the question in a similar context), plus the constraint
∑Q
k=1 gk = 0 (the purpose of this constraint will appear later). g assigns x ∈ X to the category l if
and only if gl(x) > maxk #=l gk(x). In case of ex æquo, x is assigned to a dummy category denoted
by ∗. Let f be the decision function (from X into Y S

{∗}) associated with g. The criterion to be

2553

GUERMEUR

optimized is the probability of error P(f (X) %= Y). This calls for the choice of the following loss
function.

Definition 1 (Multi-Class loss) Let !, the multi-class loss function, be defined on Y ×RQ by:

∀(y,v) ∈ Y ×RQ, !(y,v) = 1l{vy≤maxk !=y vk}

where 1l is the indicator function, which takes the value 1 if its argument is true, and 0 otherwise.

! is simply the 0-1 loss in the multi-class setting. The expected risk of a function g is consequently
defined as follows.

Definition 2 (Expected risk) The expected risk of a function g ∈ G , R(g), is given by:

R(g) = E [!(Y,g(X))] =
Z

Z
1l{gy(x)≤maxk !=y gk(x)}dP(z).

The empirical risk is simply the estimate of the risk computed on the training sample.

Definition 3 (Empirical risk) The empirical risk of g ∈ G measured on a m-sample, Rm(g), is the
random variable given by:

Rm(g) =
1
m

m

∑
i=1
1l{gYi (Xi)≤maxk !=Yi gk(Xi)}.

When needed, the m-sample used will be specified, by writing for instance RDm(g) in place of
Rm(g). Let n ∈ N∗ = N\ {0} and let zn = ((xi,yi))1≤i≤n ∈ Zn. In the sequel, Rzn(g) will designate
the frequency of errors 1n ∑

n
i=1 1l{gyi (xi)≤maxk !=yi gk(xi)}.

2.2 Multi-Class Margin and Multi-Class Margin Risk

For the classes of vector-valued functions we are interested in, the two elements which are the most
important to assign a pattern to a category and to derive a level of confidence in this assignment
are the index of the highest output and the difference between this output and the second highest
one. This calls for the use of a measure different from the standard indicator function ! to assess the
quality of a discrimination. This measure can be built around a notion of multi-class margin which
has been studied independently by different groups of authors (see for instance Elisseeff et al., 1999;
Allwein et al., 2000). To define it, we first define an auxiliary function.

Definition 4 (FunctionM) Let M be the function from RQ× [[1,Q]] to R defined as:

∀(v,k) ∈ RQ× [[1,Q]] , M(v,k) =
1
2

(
vk−max

l #=k
vl
)

.

Let M(v, .) =max1≤k≤QM(v,k).

Definition 5 (Multi-Class margin) Let g be a function of a class G . Its margin on (x,y) ∈ X ×Y
is defined to be M (g(x),y).

To take this margin into account, the following operators are introduced:

2554

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Definition 6 (Δ operator) Define Δ as an operator on G such that:

Δ : G −→ ΔG ,
g)→ Δg= (Δgk)1≤k≤Q ,

∀x ∈ X , Δg(x) = (M (g(x),k))1≤k≤Q .

For the sake of simplicity, we write Δgk in place of (Δg)k. In the sequel, similar simplifications will
be performed implicitly with other operators.

Definition 7 (Δ∗ operator) Define Δ∗ as an operator on G such that:

Δ∗ : G −→ Δ∗G
g)→ Δ∗g= (Δ∗gk)1≤k≤Q

∀x ∈ X , Δ∗g(x) = (max(Δgk(x),−M (g(x), .)))1≤k≤Q .

Remark 8 If M (g(x), .) > 0, Δg(x) has a unique (strictly) positive component, otherwise it has
none. Let us consider the first case, and let k∗ = argmax1≤k≤QΔgk(x) = argmax1≤k≤Q gk(x)
(Δgk∗(x) =M (g(x), .)).

∀x ∈ X ,

{
if M (g(x), .) > 0, Δ∗g(x) = ((2δk,k∗ −1)Δgk∗(x))1≤k≤Q
if M (g(x), .) = 0, Δ∗g(x) = 0 .

where δ is the Kronecker symbol.

Example 1 Suppose that g(x) = (−0.1,0.6,−0.3,−0.2). Then
{

Δg(x) = (−0.35,0.35,−0.45,−0.4)
Δ∗g(x) = (−0.35,0.35,−0.35,−0.35) .

Before proceeding, it is useful to highlight the way those definitions relate to the bi-class case.
Let G̃ denote the class of real-valued functions implemented by a large margin bi-class classifier.
There is a one-to-one map from this class onto a class G as defined above. To each function g̃
in G̃ , a function g = (g1,g2) in G can be associated such that g1 = g̃ = −g2. This is precisely to
ensure the existence of this one-to-one map that the constraint ∑Q

k=1 gk = 0 has been introduced.
Then, Δg = Δ∗g = g = (g̃,−g̃). As a consequence, one can consider that when implementing a
large margin bi-class classifier, the functions effectively handled are the component functions Δg1
(or equivalently the component functions Δ∗g1). In the sequel, Δ# is used in place of Δ and Δ∗

in the formulas that hold true for both operators. Obviously, the first of these formulas is the one
connecting the risk of g with the behaviour of Δ#g.

Proposition 9 The risk of a function g of G can be expressed as:

R(g) = E
[
1l{Δ#gY (X)≤0}

]
.

2555

GUERMEUR

With these definitions at hand, the margin risk is defined as follows.

Definition 10 (Margin risk) Let γ ∈ R∗
+ = (0,∞). The risk with margin γ of a function g of G ,

Rγ(g), is defined as:
Rγ(g) = E

[
1l{Δ#gY (X)<γ}

]
.

The empirical risk with margin γ of g, Rγ,m(g) (or Rγ,Dm(g) if the sample needs to be specified), and
the frequency of errors with margin γ, Rγ,zn(g), are defined accordingly.

A consequence of the definition of the margin risk is the fact that knowing the exact behaviour
of the component functions Δ#gk below −γ and over γ is useless. On the contrary, one can take
benefit from working with classes of functions taking values in [−γ,γ]Q, which is compact, rather
than in RQ. This advantage will appear in the first place in Section 3, and then more clearly in
Section 5. Such a transform is achieved by application of the following piecewise-linear squashing
operator.

Definition 11 (πγ operator, Bartlett, 1998) For γ ∈ R∗
+, define πγ as an operator on G such that:

πγ : G −→ πγG ,
g)→ πγg=

(
πγgk

)
1≤k≤Q ,

∀x ∈ X , πγg(x) = (sign(gk(x)) ·min(|gk(x)|,γ))1≤k≤Q
where the sign function is defined by sign(t) = 1 if t ≥ 0, and sign(t) = −1 otherwise.

For γ ∈ R∗
+, let Δ#γ denote πγ ◦Δ# and Δ#γG =

{
Δ#γg : g ∈ G

}
.

The capacity measure that will appear in the basic guaranteed risk stated in Section 3 is a cov-
ering number. Its definition, and the definition of related concepts, is the subject of the following
section. Introductions to the basic notions of functional analysis used in this article can be found in
Carl and Stephani (1990), Devroye et al. (1996) and van der Vaart and Wellner (1996).

2.3 Capacity Measures: Covering and Packing Numbers

The notion of covering number is based on the notions of ε-cover and ε-net.

Definition 12 (ε-cover and ε-net, Kolmogorov and Tihomirov, 1961) Let (E,ρ) be a pseudo-
metric space. For e ∈ E and r ∈ R∗

+, let B(e,r) be the open ball of center e and radius r in E.
Let E ′ be a subset of E. For ε ∈ R∗

+, an ε-net of E ′ is a subset E ′ of E such that:

E ′ ⊂
[

e∈E ′

B(e,ε).

S
e∈E ′ B(e,ε) is then an ε-cover of E ′. E ′ is a proper ε-net of E ′ if it is included in E ′.

Definition 13 (Covering number, Kolmogorov and Tihomirov, 1961) Let (E,ρ) be a pseudo-
metric space. For ε ∈ R∗

+, if E ′ ⊂ E has an ε-net of finite cardinality, then its covering number
N (ε,E ′,ρ) is the smallest cardinality of its ε-nets. If there is no such finite net, then the covering
number is defined to be ∞. We denote N (p) (ε,E ′,ρ) the covering number obtained by considering
proper ε-nets only.

2556

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Hereafter, the pseudo-metric that will be used on the families of functions considered is the follow-
ing one:

Definition 14 (dxn pseudo-metric) Let n ∈ N∗. For a sequence xn = (xi)1≤i≤n ∈ X n, define the
pseudo-metric dxn on G as:

∀(g,g′) ∈ G2, dxn(g,g′) = max
1≤i≤n

∥∥g(xi)−g′(xi)
∥∥
∞ .

Definition 15 ∀n ∈ N∗, ∀ε ∈ R∗
+,

N (p) (ε,G ,n) = max
xn∈X n

N (p) (ε,G ,dxn) ,

the maximum being used in place of a supremum to highlight the fact that we implicitly make the
assumption that all the ε-nets considered are of finite cardinality.

There is a close connection between covering and packing properties of bounded subsets in pseudo-
metric spaces.

Definition 16 (ε-separation and packing number, Kolmogorov and Tihomirov, 1961) Let (E,ρ)
be a pseudo-metric space and ε ∈ R∗

+. A set E ′ ⊂ E is ε-separated if, for any distinct points e1 and
e2 in E ′, ρ(e1,e2) ≥ ε. The ε-packing number of E ′′ ⊂ E, M (ε,E ′′,ρ), is the maximal size of an
ε-separated subset of E ′′.

Definition 17 (Separation) For n ∈ N∗, let F be a class of functions on X taking their values in
[[−n,n]]Q and F |D its restriction to a subset D of X of finite cardinality. Two functions f and f ′ in
the class F |D are separated if they are 2-separated in the pseudo-metric dD , that is, if

max
x∈D

∥∥ f (x)− f ′(x)
∥∥
∞ ≥ 2.

Definition 18 (Pairwise separated set of functions) Let F ,D and F |D be defined as above. F |D
is pairwise separated if any two distinct functions of F |D are separated.

2.4 Additional Definitions

This section gathers definitions which will be used in the proof of our basic uniform convergence
result.

Definition 19 (G(γ,xn) and G(γ,Dn)) Let n ∈ N∗ and γ ∈ R∗
+. Let xn = (xi)1≤i≤n ∈ X n. Let us

consider any function (deterministic algorithm) fnet that takes as input γ, G , and xn, and returns a
subset of G such that its image by the operator Δ#γ is a proper γ/2-net of the set Δ#γG (in the pseudo-
metric dxn), and this net is of minimal cardinality, that is, of cardinality N (p) (γ/2,Δ#γG ,dxn

)
.

G(γ,xn) = fnet (γ,G ,xn) .

The random variable G(γ,Dn) is defined accordingly, by replacing in the definition of G(γ,xn) the
sequence xn with (Xi)1≤i≤n.

2557

GUERMEUR

Note that for the sake of simplicity, we use G(γ,Dn) in place of G
(
γ,(Xi)1≤i≤n

)
, although the latter

formulation is more precise.

Definition 20 (Swapping group T2n) For n ∈ N∗, let T2n be the “swapping” subgroup of S2n, the
symmetric group of degree 2n. T2n is the set of all permutations σ over [[1,2n]] that swap i and
n+ i for all i in some subset of [[1,n]]. Precisely, for all i in [[1,n]], (σ(i),σ(i+n)) is either equal to
(i, i+n) or to (i+n, i). The permutations σ are regarded as acting on coordinates. For z2n ∈Z2n and
σ ∈ T2n, let σ

(
z2n
)

=
((
xσ(i),yσ(i)

))
1≤i≤2n. T2n is endowed with a uniform probability distribution.

Definition 21 (Bernoulli/Rademacher sequence) For n∈N∗, aBernoulli or Rademacher sequence
is a sequence α= (αi)1≤i≤n of independent real random variables with P(αi =−1) = P(αi = 1) = 1

2
for all i.

3. Uniform Convergence of the Empirical Margin Risk

With the hypotheses and definitions of the previous section at hand, we prove the following uniform
convergence result.

3.1 Basic Uniform Convergence Result

Theorem 22 Let G be the class of functions that a large margin Q-category classifier on a domain
X can implement. Let Γ ∈ R∗

+ and δ ∈ (0,1). With probability at least 1−δ, for every value of γ in
(0,Γ], the risk of any function g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+

√
2
m

(
ln
(
2N (p)

(
γ/4,Δ#γG ,2m

))
+ ln

(
2Γ
γδ

))
+
1
m

.

The proof is given in Appendix B. This theorem can be seen as a multi-class extension of Corollary 9
in Bartlett (1998). Indeed, setting Q = 2 (and Γ = 1), we get a slightly improved version of this
corollary. The difference rests on the fact that in the first symmetrization, we took advantage of
an idea which is implicitly at the basis of Formula (4.28) in Vapnik (1998). This idea consists in
making use of Lemma 49. As a consequence, Theorem 22 can also be seen as a specification for
the case of large margin multi-category classifiers of Theorem 4.1 in Vapnik (1998).

3.2 Choice of the Margin Operator

Theorem 22 has been derived for both margin operators, Δ and Δ∗. The choice between them should
thus rest on the use which is done of the bound, that is, on the nature of the pathway followed to
bound from above the covering number of interest. This question, the nature of which is primarily
technical, will turn out to be of central importance in the following sections. At this point, we can
already notice that the Δ∗ operator provides less information on the behaviour of the function on
which it is applied than the Δ operator. Such a difference would appear as an advantage to derive a
generalization of Sauer’s lemma, and a drawback to compute an upper bound on the corresponding
generalized VC dimension. This suggests to implement a hybrid strategy, mixing results involving
Δ∗ with results involving Δ. This is precisely what will be done here.

2558

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

4. γ-Ψ-dimensions: the Generalized VC Dimensions of Large Margin
Multi-Category Classifiers

Several approaches can be applied to bound from above the covering number of interest for a given
class of functions G . The standard one, introduced in Vapnik and Chervonenkis (1971), consists in
involving in the process the VC dimension, or one of its extensions. If VC dimensions appear useful
in practice, their interest is primarily of theoretical nature. Indeed, they characterize learnability
in different settings (see for instance Alon et al., 1997). In this section, the γ-Ψ-dimensions are
introduced as the generalized VC dimensions suited for large margin multi-category classifiers.
They appear as syntheses of the Ψ-dimensions and the fat-shattering dimension (also known as the
γ-dimension). The pertinence of this specification will be established in Section 5.

The basic result relating a covering number (precisely the growth function) to the VC dimen-
sion is the Sauer-Shelah lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972; Shelah, 1972). As
stated in the introduction, extensions of the standard VC theory, which only deals with the compu-
tation of dichotomies with indicator functions, have mainly been proposed for large margin bi-class
discriminant models and multi-class discriminant models taking their values in finite sets. In both
cases, generalized Sauer-Shelah lemmas have been derived (see for instance Haussler and Long,
1995; Alon et al., 1997), which involve extended notions of VC dimension. For large margin
bi-class discriminant models, the generalization of the VC dimension which has given birth to
the richest set of theoretical results is a scale-sensitive variant called the fat-shattering dimension
(Kearns and Schapire, 1994). In the multi-class case, several alternative solutions were proposed by
different authors, such as the graph dimension (Dudley, 1987; Natarajan, 1989), or the Natarajan
dimension (Natarajan, 1989). It was proved in Ben-David et al. (1995) that most of these extensions
could be gathered in a general scheme, which makes it possible to derive necessary and sufficient
conditions for PAC learning (Valiant, 1984). In this scheme, they appear as special cases of Ψ-
dimensions.

We introduce scale-sensitive extensions of the Ψ-dimensions. The underlying idea is simple: in
the same way as scale-sensitive extensions of the VC dimension, such as the fat-shattering dimen-
sion, make it possible to study the generalization capabilities of bi-class discriminant models taking
their values in R, scale-sensitive extensions of the Ψ-dimensions should make it possible to study
the generalization capabilities of Q-class discriminant models taking their values in RQ.

4.1 Ψ-dimensions

Definition 23 (Ψ-dimensions, Ben-David et al., 1995) Let F be a class of functions on a set X
taking their values in the finite set [[1,Q]]. Let Ψ be a family of mappings ψ from [[1,Q]] into
{−1,1,∗}, where ∗ is thought of as a null element. A subset sX n = {xi : 1≤ i≤ n} of X is said
to be Ψ-shattered by F if there is a mapping ψn =

(
ψ(i))

1≤i≤n in Ψ
n such that for each vector vy in

{−1,1}n, there is a function fy in F satisfying

(
ψ(i) ◦ fy(xi)

)

1≤i≤n
= vy.

The Ψ-dimension of F , denoted by Ψ-dim(F), is the maximal cardinality of a subset of X Ψ-
shattered by F , if this cardinality is finite. If no such maximum exists, F is said to have infinite
Ψ-dimension.

2559

GUERMEUR

Remark 24 Let F and Ψ be defined as above. Extending the definition of the standard VC dimen-
sion, VC-dim, so that it applies to classes of functions taking values in {−1,1,∗}, which has no
incidence in practice, the following proposition holds true:

Ψ-dim(F) = VC-dim({(x,ψ))→ ψ◦ f (x) : f ∈ F ,ψ ∈Ψ}) .

In words, the idea common to all these dimensions is to introduce adequately chosen mappings
from [[1,Q]] into {−1,1,∗} so that the problem of the computation of the capacity measure boils
down to the computation of several standard VC dimensions. In that context, the motivation for the
choice of one particular dimension (setΨ) utterly rests on the possibility to derive two tight bounds:
a generalized Sauer-Shelah lemma and a bound on the dimension itself. The most frequently used
Ψ-dimension is the graph dimension.

Definition 25 (Graph dimension, Natarajan, 1989) Let F be a class of functions on a set X tak-
ing their values in [[1,Q]]. The graph dimension of F , G-dim(F), is the Ψ-dimension of F in the
specific case where Ψ= {ψk : 1≤ k ≤ Q}, such that ψk takes the value 1 if its argument is equal to
k, and the value−1 otherwise. Reformulated in the context of multi-class discriminant analysis, the
functions ψk are the indicator functions of the categories.

Obviously, this notion ofΨ-dimension is connected with one of the standard decomposition schemes
implemented to tackle multi-class problems with bi-class classifiers: the one-against-all method.
Another popular decomposition scheme is the one-against-one method. The corresponding Ψ-
dimension has been proposed by Natarajan.

Definition 26 (Natarajan dimension, Natarajan, 1989) Let F be a class of functions on a set X
taking their values in [[1,Q]]}. The Natarajan dimension of F , N-dim(F), is the Ψ-dimension of F
in the specific case whereΨ= {ψk,l : 1≤ k %= l ≤ Q}, such that ψk,l takes the value 1 if its argument
is equal to k, the value −1 if its argument is equal to l, and ∗ otherwise.

4.2 Margin Ψ-dimensions

Our scale-sensitive version of the concept of Ψ-dimension is devised so that the corresponding
dimensions can alternatively be seen as multivariate extensions of the fat-shattering dimension.

Definition 27 (Fat-shattering dimension, Kearns and Schapire, 1994) Let G be a class of real-
valued functions on a set X . For γ∈R∗

+, a subset sX n = {xi : 1≤ i≤ n} of X is said to be γ-shattered
by G if there is a vector vb = (bi) ∈ Rn such that, for each vector vy = (yi) in {−1,1}n, there is a
function gy in G satisfying

∀i ∈ [[1,n]] , yi (gy(xi)−bi) ≥ γ. (1)

The fat-shattering dimension with margin γ, or Pγ dimension, of the class G , Pγ-dim(G), is the max-
imal cardinality of a subset of X γ-shattered by G , if this cardinality is finite. If no such maximum
exists, G is said to have infinite Pγ dimension.

Let ∧ denote the conjunction of two events. With these definitions at hand, the Ψ-dimensions with
margin γ, or γ-Ψ-dimensions, are defined as follows:

2560

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Definition 28 (γ-Ψ-dimensions) Let G be a class of functions on a set X taking their values in
RQ. Let Ψ be a family of mappings ψ from [[1,Q]] into {−1,1,∗}. For γ ∈ R∗

+, a subset sX n =
{xi : 1≤ i≤ n} of X is said to be γ-Ψ-shattered (Ψ-shattered with margin γ) by Δ#G if there is a
mapping ψn =

(
ψ(i))

1≤i≤n in Ψ
n and a vector vb = (bi) in Rn such that, for each vector vy = (yi) in

{−1,1}n, there is a function gy in G satisfying

∀i ∈ [[1,n]] ,
{
if yi = 1, ∃k : ψ(i)(k) = 1 ∧ Δ#gy,k(xi)−bi ≥ γ
if yi = −1, ∃l : ψ(i)(l) = −1 ∧ Δ#gy,l(xi)+bi ≥ γ

. (2)

The γ-Ψ-dimension, or Ψ-dimension with margin γ, of Δ#G , denoted by Ψ-dim
(
Δ#G ,γ

)
, is the

maximal cardinality of a subset of X γ-Ψ-shattered by Δ#G , if this cardinality is finite. If no such
maximum exists, Δ#G is said to have infinite γ-Ψ-dimension.

From a theoretical point of view, the one-against-one decomposition method exhibits an advantage
over the one-against-all decomposition method: its use makes it easier to extend to the multi-class
case bi-class theorems, by application of the pigeonhole principle. Thus, the scale-sensitive Ψ-
dimension which will be involved in our generalized Sauer-Shelah lemma is the one extending the
Natarajan dimension. Given the definitions of the Natarajan dimension and the scale-sensitive Ψ-
dimensions, it can be formulated as:

Definition 29 (Natarajan dimension with margin γ) Let G be a class of functions on a set X tak-
ing their values in RQ. For γ ∈ R∗

+, a subset sX n = {xi : 1≤ i≤ n} of X is said to be γ-N-shattered
(N-shattered with margin γ) by Δ#G if there is a set

I(sX n) = {(i1(xi), i2(xi)) : 1≤ i≤ n}

of n couples of distinct indexes in [[1,Q]] and a vector vb = (bi) in Rn such that, for each vector
vy = (yi) in {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[1,n]] ,
{
if yi = 1, Δ#gy,i1(xi)(xi)−bi ≥ γ
if yi = −1, Δ#gy,i2(xi)(xi)+bi ≥ γ

.

TheNatarajan dimension with margin γ of the class Δ#G , N-dim
(
Δ#G ,γ

)
, is the maximal cardinality

of a subset of X γ-N-shattered by Δ#G , if this cardinality is finite. If no such maximum exists, Δ#G
is said to have infinite Natarajan dimension with margin γ.

4.3 Discussion

In the preceding section, we have given a formulation of the definition of the Natarajan dimension
which is inspired from the one in Ben-David et al. (1995) (the definition in Natarajan, 1989, does
not involve the ψk,l mappings). This formulation can be restricted by considering only the mappings
ψk,l such that k < l, instead of k %= l. This is possible due to the symmetrical roles played by the
indexes of categories i1(xi) and i2(xi) in the definition. As a consequence, the cardinality of the set
Ψ considered can be divided by 2 (reduced from Q(Q− 1) to

(Q
2
)
). This is useful indeed, since

many theorems dealing withΨ-dimensions involve the cardinality ofΨ (see for instance Theorem 7
in Ben-David et al., 1995). An equivalent simplification can be performed in the case of the margin
Natarajan dimension.

2561

GUERMEUR

Proposition 30 The definition of the Natarajan dimension with margin γ is not affected by the
introduction of the additional constraint: ∀i ∈ [[1,n]], i1(xi) < i2(xi).

Proof Let Gy be a subset of G of cardinality 2n such that Δ#Gy γ-N-shatters sX n with respect to
I(sX n) and vb. Let I′(sX n) be the set of n couples of indexes (i′1(xi), i′2(xi)) deduced from I(sX n) by
reordering its elements, that is,

∀i ∈ [[1,n]] ,
(
i′1(xi), i

′
2(xi)

)
= (min(i1(xi), i2(xi)) ,max(i1(xi), i2(xi))) .

Let vb′ = (b′i) be the vector of Rn deduced from vb as follows: ∀i ∈ [[1,n]], b′i = bi if (i′1(xi), i′2(xi)) =
(i1(xi), i2(xi)), b′i = −bi otherwise. We establish that Δ#Gy still γ-N-shatters sX n with respect to
I′(sX n) and vb′ . For any vector vy = (yi) of {−1,1}n, let gy′ be the function in Gy such that Δ#gy′
“contributes” to the γ-N-shattering of sX n with respect to I(sX n) and vb for a value of the binary vec-
tor equal to vy′ = (y′i), where y′i = yi if (i′1(xi), i′2(xi)) = (i1(xi), i2(xi)), y′i =−yi otherwise. According
to Definition 29,

∀i ∈ [[1,n]] ,
{
if y′i = 1, Δ#gy′,i1(xi)(xi)−bi ≥ γ
if y′i = −1, Δ#gy′,i2(xi)(xi)+bi ≥ γ

.

As a consequence, for the set of indexes i such that (i′1(xi), i′2(xi)) = (i1(xi), i2(xi)),
{
if yi = 1, Δ#gy′,i′1(xi)(xi)−b′i ≥ γ
if yi = −1, Δ#gy′,i′2(xi)(xi)+b′i ≥ γ

. (3)

Furthermore, for the set of indexes i such that (i′1(xi), i′2(xi)) = (i2(xi), i1(xi)),
{
if yi = −1, Δ#gy′,i′2(xi)(xi)+b′i ≥ γ
if yi = 1, Δ#gy′,i′1(xi)(xi)−b′i ≥ γ

.

This is exactly (3), which thus holds true for all values of i in [[1,n]] (whether the couple (i′1(xi), i′2(xi))
is equal to (i1(xi), i2(xi)) or equal to (i2(xi), i1(xi))). According to Definition 29, the function Δ#gy′
thus contributes to the γ-N-shattering of sX n with respect to I′(sX n) and vb′ for a value of the binary
vector equal to vy. But since the vector vy has been chosen arbitrarily in {−1,1}n, this implies that
Δ#Gy γ-N-shatters sX n with respect to I′(sX n) and vb′ , which, by construction of I ′(sX n), concludes
the proof.

In the sequel, we will sometimes make use of Proposition 30 implicitly. We now establish that the
γ-Ψ-dimensions are actually multivariate extensions of the fat-shattering dimension.

Proposition 31 Let G̃ be a class of real-valued functions on a set X . Let G be the corresponding
class of functions from X into R2. Then, for all positive value of γ,

Pγ-dim(G̃) =Ψ-dim(Δ#G ,γ).

Proof When Q = 2, one can consider that the set Ψ contains only two mappings, ψ+ and ψ−,
with ψ+(1) = 1, ψ+(2) = −1 and ψ−(1) = −1, ψ−(2) = 1 (adding other mappings, for instance
mappings taking the value ∗, would be useless since such mappings either do not take the value 1,
or do not take the value−1). Using the same line of reasoning as in the proof of Proposition 30, one

2562

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

can establish thatΨ can be restricted further to the singleton {ψ+}. As a consequence, (2) simplifies
into:

∀i ∈ [[1,n]] ,
{
if yi = 1, Δ#gy,1(xi)−bi ≥ γ
if yi = −1, Δ#gy,2(xi)+bi ≥ γ

. (4)

Since we have seen in Section 2.2 that Δ#g= (g̃,−g̃), (4) simplifies further into (1) (with g̃ in place
of g), which concludes the proof.

In both cases (fat-shattering dimension and margin Ψ-dimensions) the introduction of the vector of
“biases” vb could be seen as a simple computational trick, useful to derive the generalized Sauer-
Shelah lemma (establish a connection between the property of separation and the capacity to shatter
a set of points) at the expense of a more complex computation for the bound on the margin dimension
itself. This is partly the case indeed. However, in Section 7, we will see that these extra degrees of
freedom can be handled pretty easily.

5. Relating the Covering Number and the Margin Natarajan Dimension

This section is devoted to the formulation of an upper bound on the covering number of interest in
terms of the margin Natarajan dimension. Its main result is a generalization of the Sauer-Shelah
lemma given by Lemmas 38 and 39. Our basic uniform convergence result, Theorem 22, involves
the class of functions Δ#γG . However, in the preceding section, the scale-sensitive Ψ-dimensions
have been defined for Δ#G (although the extension to Δ#γG is straightforward). The reason for this
change, and the way it can be handled, is the subject of the following subsection.

5.1 Switching from Δ#γG to Δ#G

As stated in Section 2.2, the advantage of working with the class Δ#γG is obvious: the range of its
functions, [−γ,γ]Q, is optimal (the smallest range that does not affect the value of the margin risk).
The seamy side of things is that the nonlinearity introduced by the πγ operator is difficult to handle
when bounding a generalized VC dimension. Furthermore, there is no direct connection between
Ψ-dim

(
Δ#γG ,ε

)
andΨ-dim

(
Δ#G ,ε

)
. On the contrary, the transition can be performed very easily at

the level of the covering number, thanks to the following lemma.

Lemma 32 Let G be a class of functions from a domain X into RQ, let γ and ε be two positive real
numbers and let n ∈ N∗. Then,

N (p)(ε,Δ#γG ,n) ≤ N (p)(ε,Δ#G ,n).

Proof This property directly springs from the fact that πγ satisfies the Lipschitz condition with
constant 1. Thus, ∀(g,g′) ∈ G2, ∀x ∈ X , ∀(γ,ε) ∈

(
R∗

+
)2,

∥∥Δ#g(x)−Δ#g′(x)
∥∥
∞ < ε=⇒

∥∥Δ#γg(x)−Δ#γg
′(x)

∥∥
∞

< ε.

Since the computations leading to our generalized Sauer-Shelah lemma will require the functions in
Δ#G to have a bounded range, to compensate for the elimination of the πγ operator, from now on,
we make the hypothesis that there exists a positive real numberM such that the functions g, and by

2563

GUERMEUR

way of consequence the functions Δ#g, take their values in [−M,M]Q. Given this hypothesis, the
only values of the margin parameter γ corresponding to a nontrivial situation are those inferior or
equal to M. As a consequence, we also assume that the parameter Γ of Theorem 22 is set equal to
M. To formulate the main combinatorial result of this section, new concepts are to be defined. They
correspond to extensions of concepts introduced in Alon et al. (1997).

5.2 Definitions

Definition 33 (η-discretization operator) Let G be a class of functions from X into [−M,M]Q.
For η ∈ R∗

+, define the η-discretization as an operator on Δ#G such that:

(.)(η) : Δ#G −→
(
Δ#G

)(η)
,

Δ#g)→
(
Δ#g

)(η) =
((
Δ#gk

)(η)
)

1≤k≤Q
,

∀x ∈ X ,
(
Δ#g

)(η) (x) =

(
sign

(
Δ#gk(x)

)
·
⌊∣∣Δ#gk(x)

∣∣
η

⌋)

1≤k≤Q

where the function 0.1 is defined by ∀t ∈ R+, 0t1 =max{ j ∈ N : j ≤ t}.

Note that this definition is not a straightforward extension of the original one to the case of vector-
valued functions, since we had to relax the hypothesis of nonnegativity. Fortunately, this general-
ization does not raise any difficulty.

Definition 34 (Strong Natarajan dimension) Let G be a class of functions from X into [−M,M]Q

and let η ∈ (0,M]. A subset sX n = {xi : 1≤ i≤ n} of X is said to be strongly N-shattered by(
Δ#G

)(η) if there is a set
I(sX n) = {(i1(xi), i2(xi)) : 1≤ i≤ n}

of n couples of distinct indexes in [[1,Q]] and a vector vb = (bi) in
[[
−
⌊
M
η

⌋
+1,

⌊
M
η

⌋
−1

]]n
such

that, for each vector vy = (yi) in {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[1,n]] ,

{
if yi = 1,

(
Δ#gy,i1(xi)

)(η) (xi)−bi ≥ 1
if yi = −1,

(
Δ#gy,i2(xi)

)(η) (xi)+bi ≥ 1
.

The strong Natarajan dimension of the class
(
Δ#G

)(η), SN-dim
((
Δ#G

)(η)
)
, is the maximal car-

dinality of a subset of X strongly N-shattered by
(
Δ#G

)(η), if this cardinality is finite. If no such
maximum exists,

(
Δ#G

)(η) is said to have infinite strong Natarajan dimension.

Obviously, as in the case of the margin Natarajan dimension, the definition remains unchanged if
the additional constraint: ∀i ∈ [[1,n]], i1(xi) < i2(xi) is introduced.

2564

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

5.3 Relating Separation and Strong N-shattering

The Sauer-Shelah lemma and its generalizations rest on a simple idea: to establish a connection
between the property of separation of two functions and their capacity to “shatter” a singleton. This
connection is obvious in the case of binary-valued functions (more precisely functions taking values
in {−1,1}). Then, ∣∣ f (x)− f ′(x)

∣∣≥ 2⇐⇒ f (x) = − f ′(x)

and thus f and f ′ classify x in different categories. Things are more complicated is the case of
classifiers taking values in RQ. The corresponding result in that latter context is the following.

Lemma 35 Let G be a class of functions from X into [−M,M]Q and let η be a real number be-
longing to (0,M]. Let D be a subset of X of finite cardinality and let F and F ∗ be respectively
the restrictions of (ΔG)(η) and (Δ∗G)(η) to D . F and F ∗ are endowed with the pseudo-metric
dD . If two functions g and g′ in G are such that f ∗ = (Δ∗g)(η)

∣∣∣
D
and f ∗′ = (Δ∗g′)(η)

∣∣∣
D
are sepa-

rated, then there exists x in D such that
{
f = (Δg)(η)

∣∣∣
D

, f ′ = (Δg′)(η)
∣∣∣
D

}
strongly N-shatters the

singleton {x}. Suppose further, without loss of generality, that maxk f ∗k (x) ≥ maxk f ∗
′

k (x) and let
k0 = argmaxk f ∗k (x). Then there is at least one couple (I ({x}) ,vb) = ({(i1(x), i2(x))} ,(b0)) with
i1(x) = k0 and b0 = f ∗k0(x)−1 witnessing the strong N-shattering of {x} by { f , f

′}.

Proof We first demonstrate that k0 is well defined. Indeed, this is the case unless f ∗(x) = 0. But
f ∗(x) = 0 and maxk f ∗k (x) ≥maxk f ∗

′
k (x) implies that f ∗′(x) = 0, which is in contradiction with the

hypothesis
∥∥∥ f ∗(x)− f ∗′(x)

∥∥∥
∞
≥ 2. By definition of the operator Δ∗, there exists an index l0 different

from k0 such that f ′l0(x) = f ∗′l0 (x). l0 is simply the index of a component of g′(x) satisfying g′l0(x) =
maxk #=k0 g′k(x). By definition of k0 and b0, fk0(x)−b0 = f ∗k0(x)−b0 = 1. By construction, f ′l0(x)+
b0 = f ∗′l0 (x)+b0. Two cases must now be considered. If f ∗

′
l0 (x) =maxk f ∗

′
k (x), then f ∗′l0 (x) = 0=⇒

f ∗′(x) = 0=⇒ f ∗k0(x)≥ 2 (otherwise f
∗ and f ∗′ would not be separated). As a consequence, f ∗′l0 (x)+

f ∗k0(x) ≥ 2 and thus f
∗′
l0 (x)+b0 ≥ 1, which is equivalent to f ′l0(x)+b0 ≥ 1. If f ∗

′
l0 (x) %=maxk f ∗

′
k (x),

then f ∗′k0 (x) =maxk f ∗
′

k (x) and f ∗′l0 (x) = − f ∗′k0 (x). Necessarily, f
∗
k0(x)− f ∗′k0 (x) ≥ 2 (otherwise f

∗ and
f ∗′ would not be separated) and finally f ′l0(x) + b0 = f ∗k0(x)− f ∗′k0 (x)− 1 ≥ 1. Thus, the couple(
I ({x}) = {(k0, l0)} ,vb =

(
f ∗k0(x)−1

))
witnesses the strong N-shattering of {x} by { f , f ′}.

Lemma 35 will turn out to be of central importance in the sequel. We consider it as contributing
to characterize the specificity of the multi-class case, since it highlights the usefulness of the Δ∗

operator (whereas the usefulness of the Δ operator will appear in Section 7).

Remark 36 Lemma 35 cannot be stated with the operator Δ only.

Proof To prove this last assertion, it suffices to exhibit a counter example. Let G be a class of
functions from X into [−2,2]4 and g and g′ be two functions in G such that there exists D = {x}
satisfying g(x) = (1.4,−0.2,−0.2,−1.0) and g′(x) = (1.4,−0.2,−0.6,−0.6). Let η = 0.1. Us-
ing the same notations as above, we get f (x) = (8,−8,−8,−12), f ′(x) = (8,−8,−10,−10) and
f ∗(x) = f ∗′(x) = (8,−8,−8,−8). Although f and f ′ are separated, they do not strongly N-shatter

2565

GUERMEUR

{x}. Indeed, if it were the case, then according to Definition 34, there would be two different in-
dexes k0 and l0 in [[1,4]] such that fk0(x)+ f ′l0(x) ≥ 2, which is not the case.

In contrast with this negative result, the hypothesis
∥∥∥ f ∗(x)− f ∗′(x)

∥∥∥
∞
≥ 2 also implies that

{
f ∗, f ∗′

}

strongly N-shatters {x} (Lemma 35 could have been stated with the operator Δ∗ only). A tricky
thing must be borne in mind. If two pairs

(
g(1),g(2)) and

(
g(3),g(4)) of functions in G are such

that
(
f ∗(1)(x), f ∗(2)(x)

)
=
(
f ∗(3)(x), f ∗(4)(x)

)
, then if

∥∥ f ∗(1)(x)− f ∗(2)(x)
∥∥
∞ ≥ 2, {x} is strongly

N-shattered both by
{
f (1), f (2)

}
and by

{
f (3), f (4)

}
. However, those shatterings could require dif-

ferent witnesses (I ({x}) ,vb). More precisely, using the notations of Definition 34, given the cou-
ple

(
f ∗(1), f ∗(2)

)
, one can exhibit an index i1(x) and a bias b0 contributing to both shatterings (by{

f (1), f (2)
}
and by

{
f (3), f (4)

}
) but the last component of the witness, i2(x), must be chosen as a

function of the values taken by the functions f on x. It is thus a priori different for
{
f (1), f (2)

}
and

for
{
f (3), f (4)

}
.

We now prove the main combinatorial result at the basis of our generalization of the Sauer-
Shelah lemma, an extension of Lemma 3.3 in Alon et al. (1997).

5.4 Main Combinatorial Result

Lemma 37 Let G be a class of functions on X taking their values in [−M,M]Q and let η be a real
number belonging to (0,M]. Let D be a subset of X of finite cardinality |D| and let F and F ∗

be respectively the restrictions of (ΔG)(η) and (Δ∗G)(η) to D . F and F ∗ are endowed with the
pseudo-metric dD . Setting d = SN-dim(F) and q=

⌊
M
η

⌋
, the following bound holds true:

M (2,F ∗,dD) < 2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|))) (5)

where φ(d, |D|) = ∑d
i=1

(|D|
i
)((Q

2
)
(2q−1)

)i
.

Proof Let us say that the class F strongly N-shatters a triplet (sD , I(sD),vb) (for a nonempty
subset sD of D , a set of couples of indexes I(sD) and a vector of biases vb) if F strongly N-
shatters sD according to I(sD) and vb. For all integers l ≥ 2 and |D| ≥ 1, let t(l, |D|) denote the
maximum number t such that, for every set F ∗

l of l pairwise separated functions in F ∗, Fl ={
f ∈ F : f ∗ ∈ F ∗

l
}
strongly N-shatters at least t triplets (sD , I(sD),vb). If there is no subset of F ∗

of cardinality l pairwise separated, then t(l, |D|) is infinite.
The number of triplets (sD , I(sD),vb) that could be shattered and for which the cardinality of

sD does not exceed d ≥ 1 is less than ∑d
i=1

(|D|
i
)((Q

2
)
(2q−1)

)i
, since for sD of size i > 0, there

are strictly less than
((Q

2
)
(2q−1)

)i
possibilities to choose the couple (I(sD),vb). It follows that

t(l, |D|) ≥ φ(d, |D|) for some l implies t(l, |D|) = ∞. By definition of t(l, |D|), this means that
there is no subset of F ∗ of cardinality l pairwise separated (otherwise t(l, |D|) would be finite) and
finally, by definition of M (2,F ∗,dD), M (2,F ∗,dD) < l. Therefore, to finish the proof, it suffices
to show that, for all d ≥ 1 and |D| ≥ 1,

t
(
2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
, |D|

)
≥ φ(d, |D|). (6)

We claim that
t(2, |D|) ≥ 1 (7)

2566

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

for all |D| ≥ 1 and
t
(
2p |D| Q2(Q−1) q2, |D|

)
≥ 2t(2p, |D|−1) (8)

for all p≥ 1 and |D| ≥ 2.
The first part of the claim is a direct consequence of Lemma 35.
For the second part, first note that if no set of 2p |D| Q2(Q− 1) q2 pairwise separated func-

tions in F ∗ exists, then by definition t
(
2p |D| Q2(Q−1) q2, |D|

)
= ∞ and hence the claim holds.

Assume then that there is a set F ∗
0 of 2p |D| Q2(Q− 1) q2 pairwise separated functions in F ∗.

Split it arbitrarily into p |D| Q2(Q− 1) q2 pairs. For each pair
(
f ∗, f ∗′

)
, there exists a singleton

{x} ⊂ D strongly N-shattered by { f , f ′}. Once more, this is a direct consequence of Lemma 35.
By definition, a vector f ∗(x) has all components of equal magnitude. As a consequence, the
number of different values that it can take is equal to Qq+ 1. The numbers of different sets
of the form

{
f ∗(x), f ∗′(x)

}
such that

∥∥∥ f ∗(x)− f ∗′(x)
∥∥∥
∞
≥ 2 is bounded from above by 1

2(Qq+

1)(Qq− 1) < 1
2Q

2 q2. Thus, by the pigeonhole principle, switching the indexes in the couples
of functions if needed, for each procedure of this type, there exists x0 ∈ D such that at least(
2p |D| Q2(Q−1) q2

)
/
(
|D| Q2 q2

)
= 2p (Q− 1) of the resulting couples of functions take the

same value on x0, value satisfying
∥∥∥ f ∗ (x0)− f ∗′ (x0)

∥∥∥
∞
≥ 2. For all these pairs, the correspond-

ing sets { f , f ′} all shatter {x0} (shatter at least one triplet of the form ({x0} , I ({x0}) ,vb)). If
the components of the couples are reordered in such a way that all the couples are identical with
maxk f ∗k (x0) ≥maxk f ∗

′
k (x0), this result still holds if one imposes that the values of i1(x0) and b0 are

those considered in Lemma 35 (i1(x0) = argmaxk f ∗k (x0) and b0 = f ∗i1(x0)(x0)− 1). Once i1(x0) is
set, i2(x0) can take at most Q−1 different values. Thus, using once more the pigeonhole principle,
among those last couples of functions, there are (at least) 2p (Q−1)/(Q−1) = 2p of them such that
the quintuplet

(
x0, f ∗ (x0) , f ∗

′ (x0) , I ({x0}) ,vb
)
can be the same, that is, a single pair (I ({x0}) ,vb)

can witness the strong N-shattering of {x0} by all the sets { f , f ′}. To sum up, this means that there
are two subclasses of F ∗

0 of cardinality at least 2p, call them F ∗
+ and F ∗

− , and there are x0 ∈ D , two
vectors V0,+ and V0,− in [[−q,q]]Q such that ‖V0,+−V0,−‖∞ ≥ 2, (k0, l0) ∈ [[1,Q]]2 with k0 %= l0, and a
scalar b0 in [[−q+1,q−1]] such that:






∀ f ∗+ ∈ F ∗
+, f ∗+(x0) = V0,+

∀ f ∗− ∈ F ∗
−, f ∗−(x0) = V0,−

∀ f+ ∈ F+, f+,k0(x0) ≥ 1+b0
∀ f− ∈ F−, f−,l0(x0) ≥ 1−b0

where F+ =
{
f+ ∈ F : f ∗+ ∈ F ∗

+
}
and F− =

{
f− ∈ F : f ∗− ∈ F ∗

−
}
. Since the members of F ∗

+ are
pairwise separated on D but are all equal on x0, they are pairwise separated on D \ {x0}. The same
holds for the members of F ∗

− . Hence, by definition of the function t, F+ strongly N-shatters at
least t (2p, |D|−1) triplets (sD , I(sD),vb) with sD ⊆ D \{x0}, and the same holds for F−. Clearly,
F0 = { f ∈ F : f ∗ ∈ F ∗

0 } strongly N-shatters all triplets strongly N-shattered either by F+ or by
F−. Moreover, if the same triplet (sD , I(sD),vb) is strongly N-shattered both by F+ and by F−,
then F0 also strongly N-shatters the triplet ({x0}

S
sD ,{(k0, l0)}

S
I(sD), v̄b), where v̄b is deduced

from vb by adding one component corresponding to the point x0, component taking the value b0.
Indeed, the sets F+ and F− have been built precisely in that purpose. Suffice it to notice what
follows. Let (sD , I(sD),vb) be a triplet strongly N-shattered both by F+ and by F−. For the sake

2567

GUERMEUR

of simplicity, reordering the points in D if needed, we suppose that sD can be written as follows:
sD = {xi : 1≤ i≤ |sD |}. Then, for any vector vy = (yi) in {−1,1}|sD |, there exists (at least) one
function f+,y in F+ such that

∀i ∈ [[1, |sD |]] ,
{
if yi = 1, f+,y,i1(xi)(xi)−bi ≥ 1
if yi = −1, f+,y,i2(xi)(xi)+bi ≥ 1

and
f+,y,k0(x0)−b0 ≥ 1

and one function f−,y in F− such that

∀i ∈ [[1, |sD |]] ,
{
if yi = 1, f−,y,i1(xi)(xi)−bi ≥ 1
if yi = −1, f−,y,i2(xi)(xi)+bi ≥ 1

and
f−,y,l0(x0)+b0 ≥ 1.

Since, once more by construction, neither F+ nor F− strongly N-shatters {x0}
S
sD (whatever

the pair (I({x0}
S
sD), v̄b) may be), it follows that t

(
2p |D| Q2(Q−1) q2, |D|

)
≥ 2t(2p, |D|−1),

which is precisely (8).
For any integer number r satisfying 1≤ r < |D|, let

l = 2
(
Q2(Q−1) q2

)r
Πr−1
u=0(|D|−u).

Applying (8) iteratively and eventually (7), it appears that t(l, |D|) ≥ 2r. Since t is clearly nonde-
creasing in its first argument, and 2

(
|D| Q2(Q−1) q2

)r ≥ l, this implies

t
(
2
(
|D| Q2(Q−1) q2

)r
, |D|

)
≥ 2r.

We make use of this bound by considering separately the case where 5log2 (φ(d, |D|))6 < |D| and
the case where 5log2 (φ(d, |D|))6 ≥ |D|. In the first case, one can set r = 5log2 (φ(d, |D|))6. We
then get

t
(
2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
, |D|

)
≥ 2(log2(φ(d,|D|)))

and consequently

t
(
2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
, |D|

)
≥ 2log2(φ(d,|D|)) = φ(d, |D|)

which is precisely (6). If on the contrary 5log2 (φ(d, |D|))6 ≥ |D|, then

2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
> (Qq+1)|D| .

Since the number of distinct functions in F ∗ is bounded from above by (Qq+1)|D|, F ∗ cannot
contain a set of pairwise separated functions of cardinality larger than this number and hence, by
definition of t,

t
(
2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
, |D|

)
= ∞.

t
(
2
(
|D| Q2(Q−1) q2

)(log2(φ(d,|D|)))
, |D|

)
is consequently once more superior to φ(d, |D|), which

completes the proof of (6) and thus concludes the proof of the lemma.

Note that expressing Lemma 37 in the bi-class case (by setting Q = 2), one obtains almost exactly
the expression of Lemma 3.3 in Alon et al. (1997), keeping in mind that our functions and theirs do
not take their values in the same intervals.

2568

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

5.5 Generalized Sauer-Shelah Lemma

Our generalized Sauer-Shelah lemma appears as a direct consequence of Lemma 37.

Lemma 38 (Generalized Sauer-Shelah lemma) Let G be a class of functions from X into
[−M,M]Q. For every value of ε in (0,M] and every integer value of n satisfying n≥N-dim(ΔG ,ε/6),
the following bound is true:

N (p)(ε,Δ∗G ,n) < 2

(
n Q2(Q−1)

⌊
3M
ε

⌋2)(log2(φ(d,n)))

(9)

where d = N-dim(ΔG ,ε/6) and φ(d,n) = ∑d
i=1

(n
i
)((Q

2
)(
2
⌊3M

ε

⌋
−1

))i
.

Proof ∀xn ∈ X n, applying Lemma 56 (right-hand side inequality) to Δ∗G gives:

N (p) (ε,Δ∗G ,dxn) ≤ M (ε,Δ∗G ,dxn) .

Setting η= ε/3 in Proposition 2 of Lemma 57, one obtains:

N (p) (ε,Δ∗G ,dxn) ≤ M
(
2,(Δ∗G)(ε/3) ,dxn

)
. (10)

Let Dn denote the smallest subset of X including all the elements of xn (its cardinality is inferior or
equal to n since xn can contain multiple copies of some elements of X). We write (Δ∗G)(ε/3)

∣∣∣
Dn
to

designate the restriction of (Δ∗G)(ε/3) to Dn. Since

M
(
2,(Δ∗G)(ε/3) ,dxn

)
= M

(
2, (Δ∗G)(ε/3)

∣∣∣
Dn

,dxn
)

,

(10) implies:

N (p) (ε,Δ∗G ,dxn) ≤ M
(
2, (Δ∗G)(ε/3)

∣∣∣
Dn

,dxn
)

.

The packing numbers of (Δ∗G)(ε/3)
∣∣∣
Dn
can be bounded thanks to Lemma 37, by setting D = Dn,

using n as an upper bound on |D| (which is possible since the right-hand side of (5) is an increasing

function of |D|), q=
⌊
M
η

⌋
=
⌊ 3M

ε

⌋
and d = SN-dim

(
(ΔG)(ε/3)

∣∣∣
Dn

)
. Thus, we get:

N (p) (ε,Δ∗G ,dxn) < 2

(
n Q2(Q−1)

⌊
3M
ε

⌋2)(log2(φ(d,n)))

, (11)

with φ(d,n) = ∑d
i=1

(n
i
)((Q

2
)(
2
⌊ 3M

ε

⌋
−1

))i
. Since the right-hand side of (11) is a nondecreasing

function of d, one can replace d with an upper bound. By definition of (ΔG)(ε/3)
∣∣∣
Dn
,

SN-dim
(

(ΔG)(ε/3)
∣∣∣
Dn

)
≤ SN-dim

(
(ΔG)(ε/3)

)
.

2569

GUERMEUR

By application of Proposition 1 in Lemma 57,

SN-dim
(
(ΔG)(ε/3)

)
≤ N-dim(ΔG ,ε/6) .

Thus, (11) still holds if d is set equal to N-dim(ΔG ,ε/6). Taking the maximum of its left-hand side
over X n then concludes the proof.

To find an upper bound on φ(d,n), and thus derive a generalized Sauer-Shelah lemma easier to
handle than Lemma 38, it suffices to make use of Lemma 58 with K1 = d, K2 = n and K3 =(Q
2
)(
2
⌊ 3M

ε

⌋
−1

)
. This implies that

φ(d,n) <Φ

(
d,n,

(
Q
2

)(
2
⌊
3M
ε

⌋
−1

))
<

(
en
(Q
2
)(
2
⌊ 3M

ε

⌋
−1

)

d

)d

and consequently

log2 (φ(d,n)) < d log2

(
en
(Q
2
)(
2
⌊3M

ε

⌋
−1

)

d

)
.

Substituting the right-hand side of this inequality to its left-hand side in (9), we finally get our master
lemma.

Lemma 39 (Final formulation of the generalized Sauer-Shelah lemma) LetG be a class of func-
tions from X into [−M,M]Q. For every value of ε in (0,M] and every integer value of n satisfying
n≥ N-dim(ΔG ,ε/6), the following bound is true:

N (p)(ε,Δ∗G ,n) < 2

(
n Q2(Q−1)

⌊
3M
ε

⌋2)5d log2(en(Q2)(20 3Mε 1−1)/d)6

where d = N-dim(ΔG ,ε/6).

5.6 Discussion

To sum up, in this section, we have derived a bound on the covering number of interest in terms of
one of the γ-Ψ-dimensions, the margin Natarajan dimension. Obviously, such a generalized Sauer-
Shelah lemma can be derived in a similar way for other scale-sensitive extensions of aΨ-dimension,
such as the one corresponding to the graph dimension. The bound, by the way, is slightly easier to
establish in the latter case. It involves smaller constants. However, as was already pointed out
in Section 4.1, the choice of one particular variant of the VC dimension rests on the search for
an optimal compromise between two requirements that can be contradictory: the need for a tight
bound on the capacity measure in terms of the VC dimension, and the need for a tight bound on
the VC dimension itself. In Section 7, it will appear clearly that the connection of the Natarajan
dimension with the one-against-one decomposition method is a major advantage. Deriving a bound
on the margin Natarajan dimension of the M-SVMs can be performed very simply, by extending in a
straightforward way the reasoning of the proof of the standard bound on the fat-shattering dimension
of the perceptron (or pattern recognition SVM).

2570

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

6. Almost Sure Convergence Result

The combination of Theorem 22 and Lemma 39 (applied with ε= γ/4 and n= 2m) provides us with
our master theorem.

Theorem 40 Let G be the class of functions from X into [−M,M]Q that a large margin Q-category
classifier can implement. Let δ∈ (0,1). With probability at least 1−δ, for every value of γ in (0,M],
the risk of any function g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+
√√√√√√
2
m



ln



4
(
2m Q2(Q−1)

⌊
12M
γ

⌋2)
⌈
d log2

(
emQ(Q−1)

(
2
⌊
12M
γ

⌋
−1

)
/d

)⌉

+ ln
(
2M
γδ

)


+
1
m

where d = N-dim(ΔG ,γ/24).

With our notation, which designates by P and PDm respectively the probability measure character-
izing the classification problem of interest, and a probability over the m-sample Dm, Theorem 40
states a distribution-free bound corresponding to a one-sided convergence in probability of the form:

lim
m−→+∞

sup
P

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
= 0.

In fact, a stronger result can be obtained, since the convergence holds with probability 1.

Proposition 41 (Almost sure convergence)

lim
m−→+∞

sup
P

P
(
sup
n≥m

sup
g∈G

(
R(g)−Rγ,n(g)

)
> ε

)
= 0.

Proof For a class G of functions taking values in RQ and a given value of γ in R∗
+, we obtained the

following bound as a partial result in the proof of Theorem 22:

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
≤ 2N (p) (γ/2,Δ#γG ,2m

)
exp

(
−m
2

(
ε− 1

m

)2)
.

Under the restrictive assumption that the functions in G take their values in [−M,M]Q, Lemmas 32
and 39 can be applied to bound from above the covering number, which yields:

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
≤

4

(
2m Q2(Q−1)

⌊
6M
γ

⌋2)
⌈
d log2

(
emQ(Q−1)

(
2
⌊
6M
γ

⌋
−1

)
/d

)⌉

exp

(
−m
2

(
ε− 1

m

)2)
(12)

2571

GUERMEUR

where d = N-dim(ΔG ,γ/12). Let us denote by um the right-hand side of (12). Obviously,

∀ε> 0, 4

(
2m Q2(Q−1)

⌊
6M
γ

⌋2)
⌈
d log2

(
emQ(Q−1)

(
2
⌊
6M
γ

⌋
−1

)
/d

)⌉

= o
(
exp

(
mε2

4

))
.

As a consequence, um = o
(
exp

(
−mε2

4

))
. Since ∑∞

m=1 exp
(
−mε2

4

)
< ∞, by transitivity,

∞

∑
m=1

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
< ∞.

One may thus apply the Borel-Cantelli lemma (see for instance Theorem A.22. in Devroye et al.,
1996) and strengthen to almost sure convergence the convergence stated in Theorem 40.

7. Margin Natarajan Dimension of the Multi-Class SVMs

The theoretical results derived so far were dealing with general classes of functions G , from X into
RQ or [−M,M]Q, satisfying the mild conditions exposed in Section 2.1. In short, our aim was to
establish that for those classes, the γ-Ψ-dimensions characterize learnability in the same way as
the VC dimension, the fat-shattering dimension and the Ψ-dimensions characterize learnability for
classes of functions taking values respectively in {−1,1}, R and [[1,Q]]. From now on, we assess
the use of the γ-Ψ-dimensions to characterize and control the generalization capabilities of classes
of parametric functions. To that end, we focus on the main models of large margin multi-category
classifiers, the multi-class SVMs.

Support vector machines (SVMs) are learning systems which have been introduced by Vap-
nik and co-workers (Boser et al., 1992; Cortes and Vapnik, 1995) as nonlinear extensions of the
maximal margin hyperplane (Vapnik, 1982). Originally, they were designed to perform pattern
recognition (compute dichotomies). In this context, the principle on which they are based is very
simple. First, the examples are mapped into a high-dimensional Hilbert space called the feature
space thanks to a nonlinear transform, the feature map, usually denoted by Φ. Second, the max-
imal margin hyperplane is computed in that space, to separate the two categories. The problem
of performing multi-class discriminant analysis with SVMs was initially tackled through decom-
position schemes involving bi-class machines. Such possibilities as the one-against-all method
(Rifkin and Klautau, 2004), the one-against-one method (Fürnkranz, 2002) (a variant of which is the
DAGSVM of Platt et al., 2000), or those based on error correcting codes (ECOC) (Allwein et al.,
2000; Crammer and Singer, 2002) have thus been studied in depth during the last decade. Globally,
the multi-class SVMs have been proposed more recently. They are all obtained by combining a
multivariate affine model with the feature map Φ.

7.1 M-SVMs: Model and Function Selection

As in the bi-class case, the central element of a M-SVM is a symmetric positive semidefinite (Mer-
cer) kernel (Aronszajn, 1950). Such kernels correspond to positive type functions
(Berlinet and Thomas-Agnan, 2004). Let κ be a Mercer kernel on X and

(
Hκ,〈., .〉Hκ

)
the corre-

sponding reproducing kernel Hilbert space (RKHS) (Berlinet and Thomas-Agnan, 2004). Let Φ be

2572

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

any of the mappings on X satisfying:

∀(x,x′) ∈ X 2, κ(x,x′) = 〈Φ(x),Φ(x′)〉, (13)

where 〈., .〉 is the dot product of the !2 space. Let Φ(X) = {Φ(x) : x ∈ X } and let
(
EΦ(X),〈., .〉

)

be the Hilbert space spanned by Φ(X). According to the usual abuse of language, in the se-
quel, “the” feature space will designate any of the spaces EΦ(X). By definition of a RKHS, H =
((
Hκ,〈., .〉Hκ

)
+{1}

)Q is the class of functions h= (hk)1≤k≤Q of the form:

h(.) =

(
mk
∑
i=1

βikκ(xik, .)+bk

)

1≤k≤Q

where the xik are elements of X (the βik and bk are scalars) as well as the limits of these functions
when the sets {xik : 1≤ i≤ mk} become dense in X in the norm induced by the dot product (see for
instance Wahba, 1999). Due to (13), H can also be seen as a multivariate affine model on Φ(X).
Functions h can then be rewritten as:

h(.) = (〈wk, .〉+bk)1≤k≤Q

where the vectors wk are elements of EΦ(X). They are thus described by the pair (w,b) with w =
(wk)1≤k≤Q ∈EQΦ(X) and b= (bk)1≤k≤Q ∈RQ. Let H̄ stand for the product spaceHQ

κ whose functions
h̄= (〈wk, .〉)1≤k≤Q are seen as functions on Φ(X). Its norm ‖.‖H̄ is given by:

∀h̄ ∈ H̄ ,
∥∥h̄
∥∥

H̄ =

√√√√
Q

∑
k=1

‖wk‖2 = ‖w‖ ,

where ‖wk‖ =
√
〈wk,wk〉. H̄ also represents the restriction of H to the functions satisfying b= 0.

For convenience, EQΦ(X) is endowed with a second norm, ‖.‖∞. It is defined by ‖w‖∞ =max1≤k≤Q ‖wk‖.
With these definitions at hand, a generic definition of the M-SVMs can be formulated as follows.

Definition 42 (M-SVM) Let ((xi,yi))1≤i≤m ∈ (X × [[1,Q]])m. A Q-category M-SVM is a large mar-
gin discriminant model obtained by minimizing over the hyperplane ∑Q

k=1 hk = 0 of H an objective
function J of the form:

J (h) =
m

∑
i=1

!M-SVM (yi,h(xi))+λ‖w‖2 (14)

where the data fit component, used in place of the empirical (margin) risk, involves a loss function
!M-SVM which is convex.

In accordance with the notations of Section 2.2 and Section 4.3, in what follows, H̃ will designate
the (univariate) affine model corresponding to the bi-class SVMs. The different M-SVMs only differ
in the nature of the function !M-SVM. This one is systematically built around the standard hinge loss
of bi-class SVMs. This function, from H̃ ×X ×{−1,1} into R+, maps

(
h̃,x,y

)
to
(
1− yh̃(x)

)
+,

where (t)+ = max(0, t). Three main models of M-SVMs can be found in literature. The first one
in chronological order was introduced independently by Weston and Watkins (1998) and by Blanz
and Vapnik (Blanz, personal communication). It corresponds to a loss function !WW given by:

2573

GUERMEUR

!WW (y,h(x)) = ∑k #=y (1−hy(x)+hk(x))+. Then came the model of Crammer and Singer (2001),
model built around H̄ , one advantage of which consists in the fact that it requires one single slack
variable per training example. Its loss function is !CS

(
y, h̄(x)

)
=
(
1− h̄y(x)+maxk #=y h̄k(x)

)
+. The

last model to date is the one of Lee et al. (2004), where !LLW (y,h(x)) = ∑k #=y

(
hk(x)+ 1

Q−1

)

+
. Its

specificity is that asymptotically, it implements the optimal classification rule, that is, Bayes decision
rule. Indeed, this property of infinite-sample consistency is not shared by the two first M-SVMs, as
was shown by Zhang (2004) and Tewari and Bartlett (2007). For all three machines, a representer
theorem establishes that the function selected by the training procedure is of the form:

h(.) =

(
m

∑
i=1

βikκ(xi, .)+bk

)

1≤k≤Q

. (15)

The lines of reasoning highlighting the fact that a bi-class SVM is intrinsically a large margin clas-
sifier can be extended easily to the M-SVMs. This requires however to discuss the form taken by
the penalty component of the objective function. Indeed, the notion of multi-class margin given
by Definition 5 involves differences between outputs, which suggests to use such penalty terms as
maxk<l ‖wk−wl‖2 or ∑k<l ‖wk−wl‖2. However, this raises the difficulty that the function mini-
mizing (14) is then defined up to an additive constant. The solution is provided by the restriction
∑k hk = 0. Under this hypothesis, the equation ∑k<l ‖wk−wl‖2 =Q∑k ‖wk‖2 =Q‖w‖2 justifies the
use of ‖w‖2 as penalty term.

Our generalized Sauer-Shelah lemma, Lemma 39, holds for classes of functions with bounded
range (taking values in [−M,M]Q). We now introduce the standard hypotheses on X (Φ(X)) andH
which will allow us to formulate the upper bound on the margin Natarajan dimension of interest.

Hypotheses 43 To upper bound the capacity of a Q-category M-SVM, the following hypotheses and
constraints are introduced regarding its domain and its parameters:

1. Φ(X) is included in the ball of radius ΛΦ(X) about the origin in EΦ(X);

2. the vector w satisfies ‖w‖∞ ≤ Λw;

3. the vector b belongs to [−β,β]Q.

With these hypotheses at hand, Lemma 39 can be applied to the corresponding subset of H , by
settingM = ΛwΛΦ(X) +β.

7.2 Switching from Δ#H to Δ#H̄
The computation of an upper bound on the margin Natarajan dimension is easier when the model is
linear than when it is affine. Exactly as in the case of the transition from the class Δ#γG to the class
Δ#G (see Section 5.1), the corresponding change is easier to perform when working with covering
numbers. To that end, one can make use of the following lemma, the proof of which is inspired
from the proof of Lemma 2.4 in Alon et al. (1997).

Lemma 44 Let H be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43. Let H̄ be the subset of H corresponding to the functions satisfying b= 0. Let ε ∈ R∗

+

2574

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

and n ∈ N∗. Then

N (p)(ε,Δ#H ,n) ≤
(
2
⌈
β
ε

⌉
+1

)Q
N (p)(ε/2,Δ#H̄ ,n).

Proof Let B=
{
−β,−

(⌈
β
ε

⌉
−1

)
ε,−

(⌈
β
ε

⌉
−2

)
ε, . . . ,−2ε,−ε,0,ε,2ε, . . . ,

(⌈
β
ε

⌉
−2

)
ε,

(⌈
β
ε

⌉
−1

)
ε,β

}
.

By construction, BQ is a proper ε/2-net of [−β,β]Q in the !∞ norm. For xn ∈ X n, let Δ#H̄ (ε,xn)
be a proper ε/2-net of Δ#H̄ in the dxn pseudo-metric. We make the assumption that Δ#H̄ (ε,xn)
is of minimal cardinality, that is to say

∣∣∣Δ#H̄ (ε,xn)
∣∣∣ = N (p)(ε/2,Δ#H̄ ,dxn). Then, due to the

triangle inequality, Δ#H̄ (ε,xn)×BQ is a proper ε-net of Δ#H in the dxn pseudo-metric. Since the

cardinality of BQ is
(
2
⌈
β
ε

⌉
+1

)Q
, this ε-net is of cardinality

(
2
⌈
β
ε

⌉
+1

)Q
N (p)(ε/2,Δ#H̄ ,dxn).

As a consequence, N (p)(ε,Δ#H ,dxn) ≤
(
2
⌈
β
ε

⌉
+1

)Q
N (p)(ε/2,Δ#H̄ ,dxn). Taking the maximum

of both sides of this inequality over all the possible sequences xn in X n thus concludes the proof.

Note that, with little additional work, a tighter bound results from exploiting the restriction ∑k hk =
0.

7.3 Upper Bounding the Margin Natarajan Dimension of ΔH̄

In this section, we follow the sketch of the proof of Theorem 4.6 in Bartlett and Shawe-Taylor
(1999).

Lemma 45 Let H̄ be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43, and the additional constraint b = 0. Let ε ∈ R∗

+ and n ∈ N∗. If a subset sX n =
{xi : 1≤ i≤ n} of X is N-shattered with margin ε by ΔH̄ , then there exists a subset sX p of sX n of

cardinality p equal to
⌈

n
(Q2)

⌉
such that for every partition of sX p into two subsets s1 and s2, the

following bound holds true:

∥∥∥∥∥∑xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)

∥∥∥∥∥≥

⌈
n

(Q2)

⌉

Λw
ε. (16)

Proof Suppose that sX n = {xi : 1≤ i≤ n} is a subset of X N-shattered with margin ε by ΔH̄ . Let
(I(sX n),vb) witness this shattering. Thanks to Proposition 30, without loss of generality, we can
assume that I(sX n) satisfies the constraint: ∀i ∈ [[1,n]], i1(xi) < i2(xi). According to the pigeonhole
principle, there is at least one couple of indexes (k0, l0) with 1 ≤ k0 < l0 ≤ Q such that there are

at least p =
⌈

n
(Q2)

⌉
points in sX n for which the couple (i1(xi), i2(xi)) is (k0, l0). For the sake of

simplicity, the points in sX n are reordered in such a way that the p first of them exhibit this property.
The corresponding subset of sX n is denoted sX p . This means that for all vector vy = (yi) in {−1,1}n,

2575

GUERMEUR

there is a function h̄y in H̄ characterized by the vector wy = (wy,k)1≤k≤Q such that:

∀i ∈ [[1, p]] ,
{
if yi = 1, Δh̄y,k0(xi)−bi ≥ ε
if yi = −1, Δh̄y,l0(xi)+bi ≥ ε

. (17)

By definition of H̄ and the margin operator Δ, this is equivalent to:

∀i ∈ [[1, p]] ,
{
if yi = 1, 1

2 (〈wy,k0 ,Φ(xi)〉−maxk #=k0 〈wy,k,Φ(xi)〉)−bi ≥ ε
if yi = −1, 1

2 (〈wy,l0 ,Φ(xi)〉−maxk #=l0 〈wy,k,Φ(xi)〉)+bi ≥ ε

and thus implies

∀i ∈ [[1, p]] ,
{
if yi = 1, 1

2〈wy,k0 −wy,l0 ,Φ(xi)〉−bi ≥ ε
if yi = −1, 1

2〈wy,l0 −wy,k0 ,Φ(xi)〉+bi ≥ ε
. (18)

Consider now any partition of sX p into two subsets s1 and s2. Consider any vector vy in {−1,1}n
such that yi = 1 if xi ∈ s1 and yi = −1 if xi ∈ s2. It results from (18) that:

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1
Φ(xi)〉− ∑

xi∈s1
bi+

1
2
〈wy,l0 −wy,k0 , ∑

xi∈s2
Φ(xi)〉+ ∑

xi∈s2
bi ≥ |sX p |ε

which simplifies into

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)〉− ∑

xi∈s1
bi+ ∑

xi∈s2
bi ≥ pε.

Conversely, consider any vector vy such that yi = −1 if xi ∈ s1 and yi = 1 if xi ∈ s2. We have:

1
2
〈wy,l0 −wy,k0 , ∑

xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)〉+ ∑

xi∈s1
bi− ∑

xi∈s2
bi ≥ pε.

As a consequence, if ∑xi∈s1 bi−∑xi∈s2 bi ≥ 0, there is a function h̄y in H̄ such that

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)〉 ≥

⌈
n
(Q
2
)

⌉
ε (19)

whereas if ∑xi∈s1 bi−∑xi∈s2 bi < 0, there is another function h̄y in H̄ such that

1
2
〈wy,l0 −wy,k0 , ∑

xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)〉 ≥

⌈
n
(Q
2
)

⌉
ε. (20)

Applying the Cauchy-Schwarz inequality to (19) and (20) yields

1
2
‖wy,k0 −wy,l0‖

∥∥∥∥∥∑xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)

∥∥∥∥∥≥
⌈
n
(Q
2
)

⌉
ε,

which thus holds true irrespective of the value of ∑xi∈s1 bi−∑xi∈s2 bi. Finally, (16) directly springs
from this last bound, as a consequence of fact that the constraint ‖w‖∞ ≤ Λw implies
1/2max1≤k<l≤Q ‖wk−wl‖ ≤ Λw.

2576

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Remark 46 The proof of Lemma 45 does not hold any more if one uses the Δ∗ operator in place of
the Δ operator. Indeed, reformulating (17) with Δ∗ in place of Δ, one cannot derive (18) any more.
This is precisely the reason why it is specifically the Δ operator which appears in the hypotheses of
Lemma 45 and, by way of consequence, the final bound on the margin Natarajan dimension (see
Theorem 48 below).

Lemma 47 (Bartlett and Shawe-Taylor, 1999, Lemma 4.3) If Φ(X) is included in the ball of
radius ΛΦ(X) about the origin in EΦ(X), then for all n ∈ N∗, all subset sX n = {xi : 1≤ i≤ n} of X
can be partitioned into two subsets s1 and s2 satisfying

∥∥∥∥∥∑xi∈s1
Φ(xi)− ∑

xi∈s2
Φ(xi)

∥∥∥∥∥≤
√
nΛΦ(X). (21)

The following theorem is a direct consequence of Lemma 45 and Lemma 47.

Theorem 48 Let H̄ be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43, and the additional constraint b= 0. Then, for any positive real value ε, the following
bound holds true:

N-dim
(
ΔH̄ ,ε

)
≤
(
Q
2

)(
ΛwΛΦ(X)

ε

)2
. (22)

Proof Let sX n be a subset of X of cardinality n N-shattered with margin ε by ΔH̄ . According to

Lemma 45, there is at least a subset sX p of sX n of cardinality p =
⌈

n
(Q2)

⌉
satisfying (16) for all its

partitions into two subsets s1 and s2. Since, according to Lemma 47, there is at least one of these
partitions for which (21) holds true,

p
Λw

ε≤√
pΛΦ(X)

which implies that

p≤
(
ΛwΛΦ(X)

ε

)2
.

Since n≤
(Q
2
)
p, one finally obtains

n≤
(
Q
2

)(
ΛwΛΦ(X)

ε

)2

which concludes the proof.

7.4 Discussion

Proposition 31 states that in the bi-class case, there is only one γ-Ψ-dimension, which corresponds
to the fat-shattering dimension. Thus, it is satisfactory to notice that for Q= 2, (22) becomes

Pε-dim(Hκ) ≤
(
ΛwΛΦ(X)

ε

)2

2577

GUERMEUR

which is precisely the bound provided by Theorem 4.6 in Bartlett and Shawe-Taylor (1999) (see
also Remark 1 in Gurvits, 2001), that is, the tightest bound on the fat-shattering dimension of a lin-
ear classifier currently available. In the general case, Theorem 48 tells us that the margin Natarajan
dimension of a Q-category M-SVM can be bounded from above by a uniform bound on the fat-
shattering dimensions of its separating hyperplanes (defined by the equation 〈wk−wl,Φ(x)〉 = 0)
times the number of those hyperplanes,

(Q
2
)
. It must be borne in mind that this expression is directly

connected with the idea at the basis of the definition of the Ψ-dimensions (see the discussion in
Section 4.1), which is to simulate the implementation of a decomposition scheme, and take benefit
of this to make use of standard bi-class results. In the case of the Natarajan dimension, this scheme
corresponds to the one-against-one method. The terms

(Q
2
)
and ‖w‖∞ then appear in (22) as a con-

sequence of the fact that all the pairs of categories are considered independently one from the other
and play an utterly symmetrical part (we need a bound on 1/2max1≤k<l≤Q ‖wk−wl‖). Obviously,
a tighter bound should result from taking into account the fact that the

(Q
2
)
binary classifiers are not

independent, since they are based on a common set of Q vectors wk. Here appears once more the
need to derive original solutions for the multi-class case, instead of simple extensions of bi-class
results.

Deriving a nontrivial bound on N-dim
(
ΔH̄ ,ε

)
in terms of ‖w‖, that is, a tighter bound than

the one resulting from just replacing in the hypotheses of Theorem 48 ‖w‖∞ with ‖w‖, remains an
open problem. The fact that the norm used in the penalty term of the objective function (14) and the
one appearing in the upper bound on the margin Natarajan dimension are different is unsatisfactory.
The point is that, so far, no one has put forward a theoretical argument (guaranteed risk) to justify
the use of ‖w‖, whereas the use of ‖w‖∞ as penalty term, considered only in Guermeur (2002),
raises significant technical difficulties. Indeed, in that case, the convex programming problem cor-
responding to the training algorithm cannot be solved by means of Lagrangian duality any more,
since one cannot compute the gradient of the Lagrangian function with respect to the vectors wk. In
that sense, there remains a gap to fill between theory and practice.

8. γ-Ψ-dimensions and Implementation of the SRM Inductive Principle

In this section, we discuss the significance of the main results of the paper. We first summarize the
specificities of the multi-class case highlighted by their proofs, and then outline an application of
our bound on the risk of M-SVMs for model selection.

8.1 Characterization of Relevant Information

The main results of this article involve two distinct margin operators, Δ and Δ∗. Theorem 22, the
basic uniform convergence result on which all this study is based, holds true for both of them. How-
ever, we pointed out in Remark 36 the reason why the generalized Sauer-Shelah lemma (Lemmas 38
and 39) requires specifically the use of Δ∗. On the contrary, Remark 46 highlights the fact that the
proof of the bound on the margin Natarajan dimension of the M-SVMs, Theorem 48, makes use of
a specific property of Δ. Fortunately, the connection between the capacities of Δ∗G and ΔG is pro-
vided by Lemmas 35 and 37. These observations highlight the fact that the link between separation
and shattering capacity is more complex in the multi-class case than in the bi-class case (for which
we simply have Δ= Δ∗). At different steps of the reasoning, different pieces of information on the
behaviour of the functions of interest are needed. One must provide neither too many nor too few of

2578

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

them. It is a bit disappointing to notice that the computation of the bound on the margin Natarajan
dimension requires more information than simply the index of the highest output and the difference
between the two highest outputs, that is, what is relevant to determine both the classification per-
formed and the confidence one can have in the accuracy of this classification. This suggests that
some improvement could be made to our generalization of the standard bi-class results, regarding
for instance the choice of the functional pseudo-metric. However, it is difficult to figure out how
these changes could remain compatible with the whole line of reasoning leading to the bound on the
risk of the M-SVMs. Indeed, the choices we made to extend the VC theory to the case of large mar-
gin multi-category discriminant models and apply it to M-SVMs were primarily governed by one
concern: allowing a natural extension of the proof of Lemma 3.3 in Alon et al. (1997) and the proof
of Theorem 4.6 in Bartlett and Shawe-Taylor (1999) to the multi-class case. As a consequence, the
question could be now: can we develop our theory without making use of those two pillars of the
standard theory?

8.2 Application for Model Selection

When working with SVMs, performing model selection amounts to choosing the value of the “soft
margin parameter” C, the kernel κ and the values of its parameters. Cross-validation was initially
regarded as the method of choice to perform this task, although it exhibits some drawbacks, as
was first pointed out by Stone (1977). This strategy has induced many authors to derive upper
bounds on the leave-one-out error of SVMs (see Chapelle et al., 2002, for a survey). The most
widely used of them is probably the famous “radius-margin bound”, for which several multi-class
extensions have been proposed independently by Wang et al. (2005); Darcy and Guermeur (2005);
Monfrini and Guermeur (2007), as criteria for the choice of the values of the hyperparameters of
M-SVMs (or SVMs involved in decomposition schemes). Care was taken to the fact that they could
be differentiated with respect to those parameters, in order to make the optimization procedure
tractable.

With that difficulty in mind, it appears that model selection for SVMs, either bi-class or multi-
class, made a great stride when Hastie et al. (2004) introduced their algorithm fitting the entire path
of SVM solutions for every value ofC (see also Lee and Cui, 2006, for an algorithm dedicated to the
M-SVM of Lee and co-authors). Indeed, with this algorithm at hand, requirements in computational
time are drastically reduced, which makes it possible to use new criteria (tighter bounds on the risk)
for the selection of C. The idea is simple: starting with a small value of C, it suffices to follow the
path, that is, increase progressively the value ofC, and assess the bound at each step. Eventually, the
value selected is the one corresponding to the smallest value of the bound. This is precisely what was
done in Guermeur et al. (2005). In that paper, taking our inspiration from Williamson et al. (2000),
we used a bound on the generalization error of M-SVMs obtained as a function of a bound on
the entropy numbers of the evaluation operator. The corresponding experimental protocol provides
us with an easy way to assess the usefulness of our new bound for model selection. For a given
position in the path (a given value of C), all what has to be done is to optimize the guaranteed risk
with respect to the margin parameter γ. With the notation introduced in (15), the formula at the basis
of the computation of the upper bound on the margin Natarajan dimension is the following one:

∀(k, l) ∈ [[1,Q]]2 , ‖wk−wl‖2 =
m

∑
i=1

m

∑
j=1

(βik−βil)
(
β jk−β jl

)
κ(xi,x j)

2579

GUERMEUR

(obviously, one benefits from using in the computations 14maxk<l ‖wk−wl‖2 in place of its upper
bound ‖w‖2∞).

9. Conclusions and Ongoing Research

In this article, the standard theories of large margin bi-class classifiers and Q-class classifiers taking
values in [[1,Q]] have been unified to give birth to a VC theory of large margin multi-class classifiers.
This could be done in a straightforward way, by extending concepts and results from only four ref-
erences: Ben-David et al. (1995), Alon et al. (1997), Bartlett (1998), and Bartlett and Shawe-Taylor
(1999). The main difficulty was to identify the need to introduce two margin operators, Δ and Δ∗.
The generalized VC dimensions at the center of the new theory are the γ-Ψ-dimensions. They can
be seen either as scale-sensitive extensions of the Ψ-dimensions, or multivariate extensions of the
fat-shattering dimension. In particular, they characterize learnability for the classes of functions of
interest.

It is possible to select the most appropriate of these dimensions as a function of the model
studied. In the case of the multi-class SVMs, we have found the margin Natarajan dimension to
be the easiest to bound from above making use of standard results derived with the fat-shattering
dimension. As a consequence, all the M-SVMs proposed so far can now be evaluated in the uni-
fying framework of the implementation of the SRM inductive principle. Indeed, the main practi-
cal interest of guaranteed risks based on γ-Ψ-dimensions should regard the implementation of this
learning principle. They make it possible to characterize the variation of the capacity of large mar-
gin multi-category discriminant models based on classes of parametric functions with respect to the
constraints on their domain and parameters. An obvious application of this study is in model selec-
tion, for instance to choose the values of the “soft margin parameter” C and the kernel parameters
of M-SVMs.

Readers more interested in computing sample complexities than in the characterization of
Glivenko-Cantelli classes, capacity control or model selection, should be aware of the fact that
sharper bounds should result from using different sources of inspiration, although even in that case,
the lessons drawn from the present study should still prove useful. An obvious possibility is rep-
resented by new PAC-Bayes bounds (Ambroladze et al., 2007), or, to remain nearer to the present
study, new tools of concentration theory and empirical processes (Talagrand, 1995, 1996; Ledoux,
1996; Massart, 2000; Lugosi, 2004). They make it possible, for instance, to work with data depen-
dent capacity measures such as the empirical VC entropy. A great survey of the recent advances in
this field, especially focusing on Rademacher averages, is provided by Boucheron et al. (2005). Re-
garding more specifically pattern recognition SVMs, the results the extension of which appears most
promising are those reported in Bousquet (2002), Steinwart and Scovel (2005), and Blanchard et al.
(2007). Performing these multi-class extensions is the subject of an ongoing work.

Acknowledgments

This work was initiated with H. Paugam-Moisy and A. Elisseeff. The author would like to thank
the anonymous reviewers for their comments. It is also a pleasure to thank M. Sebag, P. Bartlett,
S. Kroon, R. Vert and M. Warmuth for instructive discussions and bibliographical help, as well as
E. Monfrini and F. Sur for carefully reading this manuscript.

2580

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Appendix A. Technical Lemmas

This appendix is devoted to technical lemmas that are at the basis of the proofs of the main theorems
of the paper.

Lemma 49 Jogdeo and Samuels, 1968, Theorem 3.2. Let T be a random variable described by
a binomial distribution with parameters n and p (T ↪→ B (n, p)). Then its median is either 0np1 or
0np1+1. Moreover, if np is an integer, the median is simply np.

Lemma 50 Let D2m = ((Xi,Yi))1≤i≤2m be a 2m-sample of independent copie of (X ,Y). Let Dm =
((Xi,Yi))1≤i≤m and D̃m =

((
X̃i,Ỹi

))
1≤i≤m = ((Xm+i,Ym+i))1≤i≤m. PDm is a probability over the sam-

ple Dm, and PD2m is a probability over D2m. The distribution of the random variable
supg∈G

(
R(g)−Rγ,Dm(g)

)
is connected with the distribution of the random variable

supg∈G
(
RD̃m(g)−Rγ,Dm(g)

)
by the inequality

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
≤ 2PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
.

Proof The proof of this lemma is inspired from the proof of Vapnik’s basic lemma in Vapnik (1998,
Section 4.5.1). For n ∈ N∗, let z2n = ((xi,yi))1≤i≤2n be an element of Z2n. In what follows, we will
use zn to designate its “first half”, whereas z̃n, will designate its “second half”. z̃n = ((x̃i, ỹi))1≤i≤n,
with (x̃i, ỹi) = (xn+i,yn+i). Since Dm and D̃m are supposed to be independent, by definition:

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
=

Z

Z2m
1l

[
sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]
dP2m(z2m),

and one can apply Fubini’s theorem for nonnegative measurable functions (see Rudin, 1987, Sec-
tion 8.8) to the product measure P2m, which gives:

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
=

Z

Zm
dPm(zm)

Z

Zm
1l

[
sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]
dPm(z̃m).

In the inner integral, zm is fixed. Let Q denote the following event:

Q =

{
zm = ((xi,yi))1≤i≤m ∈ Zm : sup

g∈G

(
R(g)−Rγ,zm(g)

)
> ε

}
.

Restricting the integration domain to Q gives

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
≥

2581

GUERMEUR

Z

Q
dPm(zm)

Z

Zm
1l

[
sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]
dPm(z̃m)

︸ ︷︷ ︸
I

. (23)

I is an integral which is calculated for a fixed zm satisfying

sup
g∈G

(
R(g)−Rγ,zm(g)

)
> ε.

Consequently, there exists a function g∗ in G such that

R(g∗)−Rγ,zm(g∗) ≥ ε.

By definition of g∗, the following inequality holds

I ≥
Z

Zm
1l
[
Rz̃m(g∗)−Rγ,zm(g∗) ≥ ε− 1

m

]
dPm(z̃m).

{
R(g∗)−Rγ,zm(g∗) ≥ ε
Rz̃m(g∗)−R(g∗) ≥− 1

m
=⇒ Rz̃m(g∗)−Rγ,zm(g∗) ≥ ε− 1

m
.

As a consequence

I ≥
Z

Zm
1l
[
Rz̃m(g∗)−R(g∗) ≥− 1

m

]
dPm(z̃m).

Furthermore
Z

Zm
1l
[
Rz̃m(g∗)−R(g∗) ≥− 1

m

]
dPm(z̃m) = PD̃m

(
mRD̃m(g

∗) ≥ mR(g∗)−1
)
. (24)

By definition of R(g∗) and RD̃m(g
∗), mRD̃m(g

∗) has a binomial distribution with parameters m and
R(g∗)

(
mRD̃m(g

∗) ↪→ B (m,R(g∗))
)
. To bound from below the right-hand side of (24), we make

use of a result on the median of random variables following a binomial distribution, Lemma 49.
According to this lemma, mR(g∗)−1 is inferior or equal to the median of mRD̃m(g

∗), and thus, by
definition of the median, the right-hand side of (24) is superior or equal to 1/2. By transitivity, I is
also greater that 1/2. Substituting this lower bound on I into (23) yields

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
≥ 1
2

Z

Q
dPm(zm)

or equivalently, by definition of Q :

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
≥ 1
2

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

which is the result announced.

2582

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

Lemma 51 The distribution of the random variable supg∈G
(
RD̃m(g)−Rγ,Dm(g)

)
is connected with

the distribution of the random variable maxg∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
by the inequality

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
≤

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
.

Proof ∀g ∈ G , ∀(xi,yi) ∈ z2m,
{

Δ#gyi(xi) ≤ 0
dx2m(Δ#γg,Δ#γg) < γ

2
=⇒ Δ#gyi(xi) <

γ
2
. (25)

Similarly, {
Δ#gyi(xi) < γ

2
dx2m(Δ#γg,Δ#γg) < γ

2
=⇒ Δ#gyi(xi) < γ. (26)

From (25) it results that if dx2m(Δ#γg,Δ#γg) < γ
2 , then

Rz̃m(g) ≤ Rγ/2,z̃m (g) .

Similarly, it results from (26) that if dx2m(Δ#γg,Δ#γg) < γ
2 , then

Rγ/2,zm (g) ≤ Rγ,zm(g).

To sum up, for all g in G , there exists g in G(γ,x2m) such that

Rz̃m(g)−Rγ,zm(g) ≤ Rγ/2,z̃m (g)−Rγ/2,zm (g)

and thus

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
=

Z

Z2m
1l

[
sup
g∈G

(
Rz̃m (g)−Rγ,zm (g)

)
≥ ε− 1

m

]
dP2m(z2m) ≤

Z

Z2m
1l

[
max

g∈G(γ,x2m)

(
Rγ/2,z̃m (g)−Rγ/2,zm (g)

)
≥ ε− 1

m

]
dP2m(z2m) =

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
.

2583

GUERMEUR

Lemma 52 Let S2m be a random variable described by the uniform distribution on T2m. Then

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
≤

max
z2m∈Z2m ∑

g∈G(γ,x2m)

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
.

Proof Since coordinate permutations preserve the product distribution P2m,

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)

is not affected by a permutation σ. One thus obtains:

∀σ ∈ T2m, PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
=

Z

Z2m
1l

[
max

g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]
dP2m(z2m).

Averaging the summand of the right-hand side over the whole set T2m gives:

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
=

1
|T2m| ∑σ∈T2m

Z

Z2m
1l

[
max

g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]
dP2m(z2m).

Since the cardinality of T2m is finite, summation and integration can be interchanged as follows:

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
=

Z

Z2m

1
|T2m| ∑σ∈T2m

1l

[
max

g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]
dP2m(z2m) =

Z

Z2m
PS2m

(
max

g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)
dP2m(z2m) ≤

max
z2m∈Z2m

PS2m

(
max

g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)
. (27)

By application of the union bound, the right-hand side of (27) can be bounded from above as follows:

max
z2m∈Z2m

PS2m

(
max

g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)
≤

2584

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

max
z2m∈Z2m ∑

g∈G(γ,x2m)

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
.

Lemma 53 (Hoeffding’s inequality, Hoeffding, 1963) For n ∈ N∗, let (Ti)1≤i≤n be a sequence of
n independent random variables with zero means and bounded ranges: ai ≤ Ti ≤ bi. Then, for all
η ∈ R∗

+,

P
(

n

∑
i=1

Ti ≥ η

)
≤ exp

(
−2η2

∑n
i=1 (bi−ai)2

)
.

Lemma 54 Let S2m be a random variable described by the uniform distribution on T2m. For all z2m
in Z2m and for all g in G

(
γ,x2m

)
,

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
≤ exp

(
−m
2

(
ε− 1

m

)2)
.

Proof To bound uniformly the probabilities PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m
)
, we ap-

peal to the classical law of large numbers. For any function g in G
(
γ,x2m

)
, let (ξi)1≤i≤m be the

sequence of losses
(
1l{Δ#gyi (xi)<γ/2}

)

1≤i≤m
(sequence of losses on zm) and

(
ξ̃i
)

1≤i≤m
the corre-

sponding sequence of losses on z̃m. Let α = (αi)1≤i≤m be a Rademacher sequence. The terms of
interest can then be rewritten as:

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
= Pα

(
1
m

m

∑
i=1

αi
(
ξ̃i−ξi

)
≥ ε− 1

m

)
. (28)

To bound from above the right-hand side of (28), Hoeffding’s inequality (Lemma 53) can be used.
Since the random variables αi

(
ξ̃i−ξi

)
take their values in [−1,1] (more precisely in [[−1,1]]), this

gives:

Pα

(
1
m

m

∑
i=1

αi
(
ξ̃i−ξi

)
≥ ε− 1

m

)
≤ exp

(
−m
2

(
ε− 1

m

)2)
.

Lemma 55 Kroon, 2003, Theorem 68 Let (Ω,B,P) be a probability space, let K ∈ R∗
+ and let

{E(α1,α2,δ) : 0< α1,α2 ≤ K, δ≤ 1}

be a set of events satisfying the following conditions:

1. for all 0< α≤ K and 0< δ≤ 1, P(E(α,α,δ)) ≤ δ;

2. for all 0< a< 1 and 0< δ≤ 1,
S
α∈(0,K]E(αa,α,δα(1−a)) is measurable;

2585

GUERMEUR

3. for all 0< α1 ≤ α≤ α2 ≤ K and 0< δ1 ≤ δ≤ 1, E(α1,α2,δ1) ⊆ E(α,α,δ).

Then for (a,δ) ∈ (0,1)× (0,1],

P



 [

α∈(0,K]

E
(
αa,α,

δα(1−a)
K

)

≤ δ.

Lemma 56 Kolmogorov and Tihomirov, 1961, Theorem IV For every pseudo-metric space (E,ρ),
every totally bounded subset E ′ of E and ε ∈ R∗

+,

M (2ε,E ′,ρ) ≤ N (p)(ε,E ′,ρ) ≤ M (ε,E ′,ρ).

Lemma 57 For any class G of functions on X taking their values in [−M,M]Q and for any real
number η in (0,M]:

1. for every real number ε satisfying 0< ε≤ η/2,

SN-dim
(
(ΔG)(η)

)
≤ N-dim(ΔG ,ε) ;

2. for every real number ε satisfying ε≥ 3η and every xn = (xi)1≤i≤n ∈ X n,

M (ε,Δ∗G ,dxn) ≤ M
(
2,(Δ∗G)(η) ,dxn

)
.

Proof To prove the first proposition, it is enough to establish that any set strongly N-shattered
by (ΔG)(η) is also N-shattered with margin η/2 by ΔG . If sX n , a subset of X of cardinality n,
is strongly N-shattered by (ΔG)(η), then according to Definition 34, there exists a set I(sX n) of n
couples of distinct indexes of categories and a vector vb in [[−0M/η1+1,0M/η1−1]]n such that for
every vector vy = (yi) ∈ {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[1,n]] ,

{
if yi = 1,

(
Δgy,i1(xi)

)(η) (xi)−bi ≥ 1
if yi = −1,

(
Δgy,i2(xi)

)(η) (xi)+bi ≥ 1
.

Thus, we are looking for a vector (b′i)1≤i≤n such that
(
Δgy,i1(xi)

)(η) (xi)−bi ≥ 1 =⇒ Δgy,i1(xi)(xi)−
b′i ≥ η/2 and

(
Δgy,i2(xi)

)(η) (xi)+ bi ≥ 1 =⇒ Δgy,i2(xi)(xi)+ b′i ≥ η/2. To that end, four cases must
be considered.

1) bi ≥ 0 and yi = 1
(
Δgy,i1(xi)

)(η) (xi) > 0=⇒ η
(
Δgy,i1(xi)

)(η) (xi) ≤ Δgy,i1(xi)(xi)

thus (
Δgy,i1(xi)

)(η) (xi)−bi ≥ 1=⇒ Δgy,i1(xi)(xi)−η(bi+1/2) ≥ η/2.

2) bi ≥ 0 and yi = −1
(
Δgy,i2(xi)

)(η) (xi)+bi ≥ 1=⇒ Δgy,i2(xi)(xi)+ηbi ≥ 0

2586

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

or equivalently
(
Δgy,i2(xi)

)(η) (xi)+bi ≥ 1=⇒ Δgy,i2(xi)(xi)+η(bi+1/2) ≥ η/2.

3) bi < 0 and yi = 1
(
Δgy,i1(xi)

)(η) (xi)−bi ≥ 1=⇒ Δgy,i1(xi)(xi)−ηbi ≥ 0

or equivalently
(
Δgy,i1(xi)

)(η) (xi)−bi ≥ 1=⇒ Δgy,i1(xi)(xi)−η(bi−1/2) ≥ η/2.

4) bi < 0 and yi = −1
(
Δgy,i2(xi)

)(η) (xi) > 0=⇒ η
(
Δgy,i2(xi)

)(η) (xi) ≤ Δgy,i2(xi)(xi)

thus (
Δgy,i2(xi)

)(η) (xi)+bi ≥ 1=⇒ Δgy,i2(xi)(xi)+η(bi−1/2) ≥ η/2.

To sum up, a satisfactory solution consists in setting b′i = η(bi+1/2) if bi ≥ 0 and b′i = η(bi−1/2)
otherwise. By definition, the set of functions Δgy, for vy in {−1,1}n, N-shatters sX n with margin
η/2, for a set of couples of indexes and a vector of “biases” respectively equal to I(sX n) and vb′ =
(b′i)1≤i≤n. As a consequence, any set strongly N-shattered by (ΔG)(η) is also N-shattered with
margin η/2 by ΔG , which is precisely our claim.

To prove the second proposition, let us first notice that:

∀(g,g′) ∈ G2, ∀x ∈ X , ∀k ∈ [[1,Q]] , ∀η ∈ (0,M],

∣∣Δ∗gk(x)−Δ∗g′k(x)
∣∣≥ 3η=⇒

∣∣∣(Δ∗gk)(η) (x)−
(
Δ∗g′k

)(η) (x)
∣∣∣≥ 2.

Indeed, without loss of generality, we can make the hypothesis that Δ∗gk(x) > Δ∗g′k(x). Then,
((
Δ∗g′k

)(η) (x)−1
)
η< Δ∗g′k(x) < Δ∗gk(x) <

(
(Δ∗gk)(η) (x)+1

)
η.

Thus (
(Δ∗gk)(η) (x)+1

)
η−

((
Δ∗g′k

)(η) (x)−1
)
η> 3η

and finally
(Δ∗gk)(η) (x)−

(
Δ∗g′k

)(η) (x) > 1,

from which the desired result springs directly, keeping in mind that the η-discretizations are integer
numbers

(
(Δ∗gk)(η) (x)−

(
Δ∗g′k

)(η) (x) > 1=⇒ (Δ∗gk)(η) (x)−
(
Δ∗g′k

)(η) (x) ≥ 2
)
.

Let sΔ∗G be a 3η-separated subset of Δ∗G in the pseudo-metric dxn . It results from the definition
of the pseudo-metric that:

∀
(
Δ∗g,Δ∗g′

)
∈ s2Δ∗G , dxn

(
Δ∗g,Δ∗g′

)
≥ 3η=⇒

max
1≤i≤n

∥∥Δ∗g(xi)−Δ∗g′(xi)
∥∥
∞ ≥ 3η=⇒

2587

GUERMEUR

max
1≤i≤n

∥∥∥(Δ∗g)(η) (xi)−
(
Δ∗g′

)(η) (xi)
∥∥∥
∞
≥ 2=⇒

dxn
(
(Δ∗gk)(η) ,

(
Δ∗g′k

)(η)
)
≥ 2.

We have thus proved the second proposition.

Note that a more interesting second proposition could have resulted from using a different definition
of the η-discretization. Indeed, setting

(
Δ#gk

)(η) (x) =
⌊
Δ#gk(x)

η

⌋
irrespective of the sign of Δ#gk(x),

one can easily establish that the following proposition, with a dependence between ε and η identical
to the one of Alon et al. (1997), holds true: for every ε≥ 2η and every xn ∈ X n, M (ε,Δ∗G ,dxn) ≤
M (2,(Δ∗G)(η) ,dxn). The reason for our choice is to get an additional useful property, namely:

∀η ∈ (0,M], Δ#gl(x) = −Δ#gk(x) =⇒
(
Δ#gl

)(η) (x) = −
(
Δ#gk

)(η) (x).

This property plays a central role in the derivation of our generalized Sauer-Shelah lemma (see for
instance the proofs of Lemmas 35 and 37).

Lemma 58 For all triplet (K1,K2,K3) of positive integers such that 1≤ K1 ≤ K2 and K3 ≥ 1, let

Φ(K1,K2,K3) =
K1
∑
i=0

(
K2
i

)
Ki
3.

The following bound is true:

Φ(K1,K2,K3) <

(
K2K3e
K1

)K1
,

where e is the base of the Neperian (or natural) logarithm.

Proof ∑K1
i=0

(K2
i
)
Ki
3 ≤ KK1

3 ∑K1
i=0

(K2
i
)
. By application of Theorem 13.3. in Devroye et al. (1996),

∑K1
i=0

(K2
i
)
can be bounded from above by

(
K2e
K1

)K1
, which concludes the proof.

Appendix B. Proof of Theorem 22

The proof is divided into several steps, following the structure proposed by Dudley (1978) and
Pollard (1984, chap. II), structure also described, with variants, in Devroye et al. (1996, Chap. 12),
Vapnik (1998, Chap. 4), Anthony and Bartlett (1999), and Schölkopf and Smola (2002, Chap. 5).

B.1 First Symmetrization

The first step is a symmetrization. The idea is to replace the true risk by an estimate computed on a
m-sample D̃m independent of Dm. This symmetrization corresponds to Lemma 50, and thus gives:

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
≤ 2PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
. (29)

Note that at this point, the standard pathway consists in applying a second symmetrization to get
rid of the “ghost sample” D̃m (see for example Pollard, 1984; Devroye et al., 1996). For the sake
of simplicity, we do not develop this possibility here. Instead, we apply another symmetrization, to
keep one single type of empirical measure of accuracy in the bound.

2588

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

B.2 Second Symmetrization

The second symmetrization, resulting from Lemma 51, corresponds to the following upper bound :

PD2m

(
sup
g∈G

(
RD̃m(g)−Rγ,Dm(g)

)
≥ ε− 1

m

)
≤

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
. (30)

It is useful for two reasons. First, it completes, in some sense, the first one, by replacing the
two different empirical measures of accuracy appearing in the right-hand side of (29) with two
independent copies of the same random variable. Second, it makes it possible to substitute, in the
forthcoming computations, the set G of possibly infinite cardinality with a subset of it of cardinality
no more thanN (p)(γ/2,Δ#γG ,2m). This is exploited in the next step of the proof, to apply a standard
union bound.

B.3 Maximal Inequality

To bound from above the right-hand side of (30) irrespective of P, and thus derive a distribution-free
result, we introduce an auxiliary step of randomization. Let S2m be a random variable described by
the uniform distribution on T2m. By application of Lemma 52,

PD2m

(
max

g∈G(γ,D2m)

(
Rγ/2,D̃m (g)−Rγ/2,Dm (g)

)
≥ ε− 1

m

)
≤

max
z2m∈Z2m ∑

g∈G(γ,x2m)

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
. (31)

B.4 Exponential Bound

Using Lemma 54, the probabilities in the right-hand side of (31) are bounded uniformly by
exp

(
−m
2
(
ε− 1

m
)2). As a consequence,

max
z2m∈Z2m ∑

g∈G(γ,x2m)

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
≤

max
x2m∈X 2m

∣∣G
(
γ,x2m

)∣∣exp
(
−m
2

(
ε− 1

m

)2)
.

According to Definitions 15 and 19, maxx2m∈X 2m
∣∣G
(
γ,x2m

)∣∣= N (p) (γ/2,Δ#γG ,2m
)
, and thus

max
z2m∈Z2m ∑

g∈G(γ,x2m)

PS2m
(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
≤

N (p) (γ/2,Δ#γG ,2m
)
exp

(
−m
2

(
ε− 1

m

)2)
. (32)

2589

GUERMEUR

The combination of (29), (30), (31), and (32) provides us with the following bound:

PDm

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)
≤ 2N (p) (γ/2,Δ#γG ,2m

)
exp

(
−m
2

(
ε− 1

m

)2)
. (33)

Setting the right-hand side of (33) to δ and solving for ε finally gives:

R(g) ≤ Rγ,m(g)+
√
2
m
(
ln
(
2N (p)

(
γ/2,Δ#γG ,2m

))
− ln(δ)

)
+
1
m

.

B.5 Uniform Bound Over the Margin Parameter γ

This last bound holds for a value of γ specified in advance. To make the bound useful, we would
like to be able to select γ after observation of the trained machine on the training set. This can be
done thanks to Lemma 55, extending Proposition 8 in Bartlett (1998), which allows us to produce a
result that stands uniformly for all values of the margin parameter γ in the interval (0,Γ]. To apply
Lemma 55 to the case of interest, let us define the function Θ as follows:

Θ(t,u) =
√
2
m
(
ln
(
2N (p)

(
t,Δ#γG ,2m

))
− ln(u)

)
.

One can readily verify that the measure PDm and the set of events E(α1,α2,δ) given by:

sup
g∈G

(R(g)−Rα2,Dm(g)) ≥Θ
(α1
2

,δ
)

+
1
m

satisfy the hypotheses of Lemma 55. Its application gives, for all choice of the couple (a,δ) in
(0,1)× (0,1],

PDm



 [

α∈(0,K]

(
sup
g∈G

(R(g)−Rα,Dm(g)) ≥Θ

(
αa
2

,
δα(1−a)

K

)
+
1
m

)

≤ δ.

Setting α= γ, K = Γ and choosing a= 1/2 yields to:

PDm



 [

γ∈(0,Γ]

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
≥Θ

(
γ
4
,
γδ
2Γ

)
+
1
m

)

≤ δ

and finally, by definition of Θ,

PDm



 [

γ∈(0,Γ]

(
sup
g∈G

(
R(g)−Rγ,Dm(g)

)
≥

√
2
m

(
ln
(
2N (p)

(
γ/4,Δ#γG ,2m

))
− ln

(
γδ
2Γ

))
+
1
m

)]
≤ δ,

which concludes the proof of Theorem 22.

2590

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

References

E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach for
margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimensions, uniform
convergence, and learnability. Journal of the ACM, 44(4):615–631, 1997.

A. Ambroladze, E. Parrado-Hernandez, and J. Shawe-Taylor. Tighter PAC-Bayes bounds. In Ad-
vances in Neural Information Processing Systems 19, 2007. (to appear).

M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, Cambridge, 1999.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,
68(3):337–404, 1950.

P.L. Bartlett. The sample complexity of pattern classification with neural networks: The size of
the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44(2):525–536, 1998.

P.L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other
pattern classifiers. In B. Schölkopf, C.J.C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, chapter 4, pages 43–54. The MIT Press, Cambridge, MA,
1999.

P.L. Bartlett, P.M. Long, and R.C. Williamson. Fat-shattering and the learnability of real-valued
functions. Journal of Computer and System Sciences, 52(3):434–452, 1996.

S. Ben-David, N. Cesa-Bianchi, D. Haussler, and P.M. Long. Characterizations of learnability for
classes of {0, . . . ,n}-valued functions. Journal of Computer and System Sciences, 50(1):74–86,
1995.

A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer Academic Publishers, Boston, 2004.

G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines.
The Annals of Statistics, 2007. (to appear).

B. Boser, I. Guyon, and V.N. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144–152,
1992.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some recent
advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied to the Analysis
of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

B. Carl and I. Stephani. Entropy, Compactness and the Approximation of Operators. Cambridge
University Press, Cambridge, 1990.

2591

GUERMEUR

O. Chapelle, V.N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for sup-
port vector machines. Machine Learning, 46(1):131–159, 2002.

C. Cortes and V.N. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

K. Crammer and Y. Singer. On the learnability and design of output codes for multiclass problems.
Machine Learning, 47(2):201–233, 2002.

Y. Darcy and Y. Guermeur. Radius-margin bound on the leave-one-out error of multi-class SVMs.
Technical Report RR-5780, INRIA, 2005.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

R.M. Dudley. Central limit theorems for empirical measures. The Annals of Probability, 6(6):
899–929, 1978.

R.M. Dudley. A course on empirical processes. In P.L. Hennequin, editor, Ecole d’Eté de Proba-
bilités de Saint-Flour XII - 1982, volume 1097 of Lecture Notes in Mathematics, pages 1–142.
Springer-Verlag, 1984.

R.M. Dudley. Universal Donsker classes and metric entropy. The Annals of Probability, 15(4):
1306–1326, 1987.

A. Elisseeff, Y. Guermeur, and H. Paugam-Moisy. Margin error and generalization capabilities
of multi-class discriminant models. Technical Report NC-TR-99-051-R, NeuroCOLT2, 1999.
(revised in 2001).

J. Fürnkranz. Round robin classification. Journal of Machine Learning Research, 2:721–747, 2002.

Y. Guermeur. Combining discriminant models with new multi-class SVMs. Pattern Analysis and
Applications, 5(2):168–179, 2002.

Y. Guermeur, A. Elisseeff, and H. Paugam-Moisy. Estimating the sample complexity of a multi-class
discriminant model. In International Conference on Artificial Neural Networks, pages 310–315.
IEE, 1999.

Y. Guermeur, M. Maumy, and F. Sur. Model selection for multi-class SVMs. In International
Symposium on Applied Stochastic Models and Data Analysis, pages 507–517, 2005.

L. Gurvits. A note on a scale-sensitive dimension of linear bounded functionals in Banach spaces.
Theoretical Computer Science, 261(1):81–90, 2001.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector
machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

D. Haussler and P.M. Long. A generalization of Sauer’s lemma. Journal of Combinatorial Theory,
Series A, 71(2):219–240, 1995.

2592

VC THEORY OF LARGE MARGIN MULTI-CATEGORY CLASSIFIERS

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

K. Jogdeo and S.M. Samuels. Monotone convergence of binomial probabilities and a generalization
of Ramanujan’s equation. The Annals of Mathematical Statistics, 39(4):1191–1195, 1968.

M.J. Kearns and R.E. Schapire. Efficient distribution-free learning of probabilistic concepts. Journal
of Computer and System Sciences, 48(3):464–497, 1994.

A.N. Kolmogorov and V.M. Tihomirov. ε-entropy and ε-capacity of sets in functional spaces. Amer-
ican Mathematical Society Translations, series 2, 17:277–364, 1961.

R.S. Kroon. Support vector machines, generalization bounds, and transduc-
tion. Master’s thesis, University of Stellenbosch, South Africa, December 2003.
http://www.cs.sun.ac.za/˜skroon/personal/pubs/kroon2003support.ps.

M. Ledoux. On Talagrand’s deviation inequalities for product measures. ESAIM: Probability and
Statistics, 1:63–87, 1996.

Y. Lee and Z. Cui. Characterizing the solution path of multicategory support vector machines.
Statistica Sinica, 16:391–409, 2006.

Y. Lee, Y. Lin, and G.Wahba. Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data. Journal of the American Statistical
Association, 99(465):67–81, 2004.

G. Lugosi. Concentration-of-measure inequalities. Lecture notes, Summer School on Machine
Learning at the Australian National University, Canberra, 2004.

P. Massart. Some applications of concentration inequalities to statistics. Annales de la Faculté des
Sciences de Toulouse, 9(2):245–303, 2000.

E. Monfrini and Y. Guermeur. A quadratic loss multi-class SVM. Technical report, LORIA, 2007.
(to appear).

B.K. Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989.

J.C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin DAGs for multiclass classification. In
Advances in Neural Information Processing Systems 12, pages 547–553, 2000.

D. Pollard. Convergence of Stochastic Processes. Springer-Verlag, New York, 1984.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5:101–141, 2004.

W. Rudin. Real and Complex Analysis. McGraw-Hill, New York, third edition, 1987.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory (A), 13:145–147,
1972.

B. Schölkopf and A.J. Smola. Learning with Kernels - Support Vector Machines, Regularization,
Optimization, and Beyond. The MIT Press, Cambridge, MA, 2002.

2593

GUERMEUR

J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural risk minimization over
data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):1926–1940, 1998.

S. Shelah. A combinatorial problem: Stability and order for models and theories in infinitary lan-
guages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

I. Steinwart and C. Scovel. Fast rates for support vector machines. In Proceedings of the eighteenth
annual Conference on Learning Theory, pages 279–294, 2005.

M. Stone. Asymptotics for and against cross-validation. Biometrika, 64(1):29–35, 1977.

M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publica-
tions mathématiques de l’I.H.E.S., 81:73–205, 1995.

M. Talagrand. A new look at independence. The Annals of Probability, 24(1):1–34, 1996.

A. Tewari and P.L. Bartlett. On the consistency of multiclass classification methods. Journal of
Machine Learning Research, 8:1007–1025, 2007.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes - With Applica-
tions to Statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996.

V.N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, New York,
1982.

V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, XVI(2):264–280, 1971.

G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV.
In B. Schölkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, chapter 6, pages 69–88. The MIT Press, Cambridge, MA, 1999.

L. Wang, P. Xue, and K.L. Chan. Generalized radius-margin bounds for model selection in multi-
class SVMs. Technical report, School of Electrical and Electronic Engineering, Nanyang Tech-
nological University, Singapore, 639798, 2005.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04,
Royal Holloway, University of London, Department of Computer Science, 1998.

R.C. Williamson, A.J. Smola, and B. Schölkopf. Entropy numbers of linear function classes. In
Proceedings of the Thirteenth Annual Workshop on Computational Learning Theory, pages 309–
319, 2000.

T. Zhang. Statistical analysis of some multi-category large margin classification methods. Journal
of Machine Learning Research, 5:1225–1251, 2004.

2594

Journal of Machine Learning Research 8 (2007) 2595-2628 Submitted 7/06; Revised 5/07; Published 11/07

Learning in Environments with Unknown Dynamics: Towards more
Robust Concept Learners

Marlon Núñez MNUNEZ@LCC.UMA.ES
Raúl Fidalgo RFM@LCC.UMA.ES
Rafael Morales MORALES@LCC.UMA.ES
Departamento de Lenguajes y Ciencias de la Computación
ETSI Informática. Campus Teatinos. Universidad de Málaga
29071 Málaga, Spain

Editor: Claude Sammut

Abstract
In the process of concept learning, target concepts may have portions with short-term changes,
other portions may support long-term changes, and yet others may not change at all. For this
reason several local windows need to be handled. We suggest facing this problem, which naturally
exists in the field of concept learning, by allocating windows which can adapt their size to portions
of the target concept. We propose an incremental decision tree that is updated with incoming
examples. Each leaf of the decision tree holds a time window and a local performance measure
as the main parameter to be controlled. When the performance of a leaf decreases, the size of its
local window is reduced. This learning algorithm, called OnlineTree2, automatically adjusts its
internal parameters in order to face the current dynamics of the data stream. Results show that it
is comparable to other batch algorithms when facing problems with no concept change, and it is
better than evaluated methods in its ability to deal with concept drift when dealing with problems in
which: concept change occurs at different speeds, noise may be present and, examples may arrive
from different areas of the problem domain (virtual drift).
Keywords: incremental algorithms, online learning, concept drift, decision trees, robust learners

1. Introduction

Target concepts to be learnt, which change over time, are often handled by time windows of fixed or
adaptive size on the training data (Widmer and Kubat, 1996; Klinkenberg and Renz, 1998; Klinken-
berg, 2004) or by weighing data or parts of the hypothesis (Taylor et al., 1997; Krizakova and Kubat,
1992; Klinkenberg, 2004).

In case of fixed windows, their size is a compromise between fast adaptability in phases with
short-term changes (small window) or good generalization in phases without concept change (large
window). The basic idea of adaptive window management is to adjust the window size to the current
rate of concept drift. In Section 3, we will illustrate how changes may affect only a portion of the
whole concept. For example, in problems related to user interests, Widyantoro et al. (1999) found
that for a user there will be some document categories of interest that change from day to day
depending on particular work interests, while there are other categories of interest which may not
change greatly because they fit in with a personal and/or professional profile.

On the other hand, when dealing with problems involving unknown dynamics (i.e., problems in
which any circumstances may occur, such as concept drift, changes in noise level, distribution of

c©2007 Marlon Núñez, Raúl Fidalgo and Rafael Morales.

NÚÑEZ, FIDALGO AND MORALES

examples varies, etc), it is desirable that algorithms are able to adapt their parameters to improve
learning (Potts and Sammut, 2005; Klinkenberg and Joachims, 2000). The adaptive capacity of
the internal parameters makes learning algorithms simpler to use when dealing with real problems,
where you can almost never guarantee that the dynamics of the problem will not change over time.

In order to tackle the aforementioned problems, the presented method, called OnlineTree2, is
able to deal with problems in which the target concept, or portions of it, do not change or change
at different speeds over time. This method incrementally learns a decision tree in which each leaf
maintains a local window, used to forget examples when a concept change has been detected. De-
pending on the dynamics of the problem, OnlineTree2 adapts the decision tree structure and adjusts
the local parameters with the aim of achieving more efficient learning in terms of: improving local
performance, optimizing the number of stored examples and reducing processing time. The method
may also face problems with a changing level of noise and/or virtual drift. Virtual drift occurs when
the distribution of the observed examples changes over time but the concept remains the same.

This paper is organized as follows: Section 2 summarizes the related work; Section 3 describes
what concept drift is and its different speeds; Section 4 explains the proposed algorithm; Section
5 presents experimentation results of OnlineTree2 and a set of algorithms on problems that may
change over time and involves different conditions; Section 6 describes future work; and, Section 7
presents conclusions.

2. Related Work

Maloof and Michalski (2000) suggested three possibilities for managing the memory model when
dealing with past training examples: No instance memory, in which the incremental learner re-
tains no examples in memory (VFDT by Domingos and Hulten, 2000, VFDTc by Gama et al.,
2003, CVFDT by Hulten et al., 2001, neural networks, Naı̈ve Bayes and support vector machines
are algorithms that follow this approach); Full instance memory, in which the method retains all
past training examples (the incremental algorithm ITI by Utgoff et al., 1997, and most of batch
algorithms, like C4.5 by Quinlan, 1993, and IBk by Aha et al., 1991, follow this approach); Par-
tial instance memory, in which the incremental learner retains some of the past training examples
that are within a window, mainly orientated to deal with concept drift. The window size may be
fixed or adaptive. AQ11-PM (Maloof and Michalski, 2004) uses a global window with fixed size,
FLORA (Widmer and Kubat, 1996), SVM-TC (Klinkenberg and Joachims, 2000) and DDM (Gama
et al., 2004a) use a global window with adaptive size. OnlineTree2 uses several local windows with
adaptive sizes.

Another interesting aspect is the management of the internal parameters for dealing with real ap-
plications. When facing problems in which concepts change over time, almost all learning systems
(e.g., FRANN by Kubat and Widmer, 1995, CVFDT, FLORA, AQ11-PM) require a prior establish-
ment of a series of parameters in order to treat a determined dynamic of the problem (e.g., to a noise
level, speed of change—explained in next section—and temporal distribution of the examples). Re-
cent research in the field of information retrieval (Klinkenberg and Joachims, 2000; Klinkenberg,
2004) (i.e., adaptive classification of documents) and machine learning (Núñez et al., 2005) have
found that these parameterizations may be inadequate, particularly in those problems where the
concepts obey certain subjectivity (user interests). Klinkenberg and Joachims (2000) maintain that
the dynamics of problems themselves may change over time making previous parameterization of
no use later for the same or for other new problems. They proposed a non-parameterized approach

2596

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

for handling a global time window. OnlineTree2 automatically adjusts its internal parameters to
face the changing dynamics of the problem.

A previous version of the proposed algorithm, called OnlineTree (Núñez et al., 2005), was
able to detect concept drift from small data sets (less than 200 examples) and manage noise level
in data, but it does not work when the data set has numerical features, a data stream is present,
change in noise levels appears and/or the problem contains virtual drift. OnlineTree2 corrects these
deficiencies, being able to deal with data streams containing unknown dynamics (that is, possible
concept drifts, changes in noise level, virtual drift, continuous or symbolic features and different
distribution of examples). Experimentation will show that OnlineTree2 achieves low error rates,
improves the number of stored examples and has a reduced processing time.

Before explaining the algorithm in detail, let us first illustrate the importance of detecting the
different speeds of change of the different concepts for an incremental learner.

3. Concept Drift Speeds

Concepts may change gradually or abruptly. Previous studies in the field of information retrieval
(Widyantoro et al., 1999) and data mining (Fan, 2004) have found that target concepts may change
with several speeds.

A problem with simultaneous target concepts that change at different speeds is illustrated in
Figure 1. The concepts + and – change over time, from time t1 to time t5. The concepts of times t1,
t2 and t3 drift gradually. Note that they maintain a + subconcept (a portion of the whole concept) at
the top of the two dimension domain and a – subconcept at the bottom, while the subconcept in the
middle changes gradually (or slowly; that is, long-term changes). At t4 there is an abrupt change (or
fast; that is, short-term change), given that no subconcept is kept.

Figure 1: Illustration of gradual and abrupt concept drift for concepts described by two attributes
(x1 and x2)

In order to learn concepts that change over time, current learners usually use a global window
of examples. Looking at Figure 1, if a learner has a small global window, let us say 1, it will react
to changes quickly, but it may forget those instances that have not been recently observed. If the
global window is large, stationary subconcepts may be learnt well, but inconsistent instances will be
accumulated for those subconcepts where changes have occurred. It is therefore of great importance
to discover an adequate window size for each subconcept.

2597

NÚÑEZ, FIDALGO AND MORALES

Some authors (Maloof andMichalski, 2004;Widmer and Kubat, 1996; Klinkenberg and Joachims,
2000; Gama et al., 2004a) propose a global adaptive window to face this problem, but these algo-
rithms do not function properly when various speeds of change are present in the concept. Widyan-
toro et al. (1999) uses two windows simultaneously, one for short-term changing concepts and
another for long-term changing concepts.

This problem, which naturally exists in the field of concept learning, could be overcome by
using several adaptive windows, one for each portion of the target concept. These windows are
able to adapt themselves to a rate of change. Since our proposal is an incremental decision tree
updated with incoming examples, each of its leaves monitors its related subconcept by holding a
local time window. As will be explained in Section 4, the size of these local windows shrinks or
grows depending on changes detected in subconcepts. This adapts learning to the dynamics of the
labelled data stream. The following section presents and describes the algorithm in detail.

4. Description of the OnlineTree2 Algorithm

OnlineTree2 is an algorithm for incremental induction of binary decision trees, which also supports
adaptability to gradual and abrupt concept drift, virtual drift, robustness to noise in data, and the
handling of symbolic and numeric attributes. This method develops a partial memory management;
that is to say, it selectively forgets examples and stores the remaining examples in a subset according
to local windows in the leaves of the tree. Depending on the dynamics of the problem OnlineTree2
expands or prunes subtrees and adjusts its internal parameters to improve the local performance
measure. This method is intended to be used under unknown dynamics, and thus it is able to
automatically adapt its parameters for each problem.

We consider data streams as sequences of examples labelled with a time stamp. An example is
described by attribute-value pairs and a class label. This means that the method is capable of dealing
with streams of examples in continuous (real) time. A consecutive index can also be used as time
label.

The pseudo-algorithm is presented in Table 1. In order to describe it, let us consider that we
have built a tree and that a new example from the data stream must be processed. Actions that are
carried out may be summarized in three stages: downward revision of statistics, treatment of a leaf
or a non coherent node, and upward updating of statistics.

Stage 1. Downward revision of statistics: OnlineTree2 moves the example down the tree. The
nodes are checked for coherence against its related subconcept when they are visited. A node
is coherent whenever its split contributes with the induction of the underlying concept. This
stage finishes when the algorithm reaches a non coherent node or a leaf.

Stage 2. Treatment of a leaf or a non coherent node:

(a) Non coherent node treatment: Once OnlineTree2 stops at a non coherent node, the al-
gorithm drops the example down to its corresponding leaf. Then, from the set of leaves
below the non coherent node, OnlineTree2 orders those leaves whose performance de-
creases to forget, reducing its windows. After that, the node is converted into a leaf with
the remaining examples in the set of leaves. Finally, and in order to adapt the pruned
node to its subconcept, an attempt to draw a new split is performed.

2598

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

Input: tree, example
Output: tree

OnlineTree2 Algorithm
IF node is not a leaf AND its split is useful THEN
Move example to the next node (recursive call)

}
Stage 1

ELSE
IF node is not a leaf THEN
Drop example down the node until reach a leaf and store in it
Adjust local windows in degraded leaves below node
Prune node
Update statistics in the pruned node
Try to expand the pruned node




(a)

ELSE –node is a leaf–
Store example in leaf
Update leaf statistics
IF leaf improves THEN
Try to expand leaf
IF leaf was not expanded THEN
Adjust local window in improved leaf

ENDIF
ELSE –leaf degrades–
Adjust local window in degraded leaf

ENDIF





(b)

ENDIF
RETURN node OR leaf






Stage 2

ENDIF
Update node statistics
RETURN node

}
Stage 3

Table 1: OnlineTree2 algorithm

(b) Leaf treatment: OnlineTree2 stores the example in the leaf and updates its statistics. If
the leaf improves its performance measure, the algorithm tries to create a new decision
node in order to better adapt to the subconcept. If it is not successful (i.e., no more
improvements may be made in this leaf with its examples) the algorithm checks the leaf
for stability, discarding old local examples in that case. If the leaf is not improving its
performance measure, then an attempt to reduce its window is performed.

Stage 3. Upward updating of statistics: Once stage two has finished, the algorithm starts a bottom-
up process, updating the statistics of each visited node.

In following sections, these three stages are explained in detail. For sake of reproducibility,
Appendix A contains the OnlineTree2 pseudocode, as well as details about variables and functions
used in it.

2599

NÚÑEZ, FIDALGO AND MORALES

4.1 Stage 1: Downward Revision of Statistics

This stage describes how an example is moved down the tree, checking the coherence of nodes it
finds in its path. The stage finish when a non coherent node is found or a leaf is reached.

We say a node is coherent when it brings something useful when inducing the subjacent sub-
concept of that node. To do this, we employ techniques that are widely used for pre-pruning in
the induction of decision trees (Esposito et al., 1997). Specifically, in order to know if a node is
coherent with a concept we use a χ2 hypothesis test (with a significance level of 0.05) between the
examples distribution of the node under analysis and the sum of the class distributions of its de-
scendant nodes (Quinlan, 1986). Therefore, at each node the class distribution of the examples that
are in the leaves below that node is updated. The objective is to confirm if each visited node brings
something statistically significant to the concept.

If the node is coherent to the current concept, the example is directed along the appropriate
branch depending on the value of the example for the splitting attribute in the node. When Online-
Tree2 finds a non-coherent node or arrives at a leaf, this stage finishes and the next one begins.

4.2 Stage 2: Treatment of a Leaf or a Non Coherent Node

This section explains the actions that are carried out to modify, if necessary, a leaf or a non- coherent
node. Following, we describe some preliminary concepts, as well as some local parameters to be
adjusted; finally, the contents of the phases will be presented in details.

4.2.1 PRELIMINARY CONCEPTS

Before describing the content of the stages, which make up this section, we need to introduce some
important concepts which will be used.

Performance

As said before, each leaf of the tree stores a quality measure. This is referred to as performance,
and it is used by OnlineTree2 to make decisions about expansion and forgetting examples. Perfor-
mance is calculated via the instantaneous accuracy of the leaf, that is, the ratio between examples
well-classified and total examples in the leaf.

This instantaneous measurement varies greatly under certain conditions, mainly when dealing
with noise and after the forgetting of several examples. Due to this high variability, instantaneous
accuracy alone is inappropriate to make decisions.

For this reason, we had used a smoothing formula in order to make robust decisions based on
instantaneous accuracy. Exponential smoothing is commonly used by control systems. For example,
it is implemented in the nodes of a network to measure the congestion in the node lines, which is
an important factor to take into account to make difficult decisions (e.g., to discard messages or
to retransmit messages) in high variability of traffic conditions. Exponential smoothing needs a
parameter to control the level of smoothness (α), that is, the importance of past history. The α
parameter has been widely studied by Nagle (1987) and other authors (Postel, 1981; Paxson and
Allman, 2000) in this environment, and a fix value of 78 is recommended for any dynamics and
problem condition.

By using exponential smoothing in a node, a weight is assigned to its instantaneous accuracy at
present time, while past history becomes less important (in an exponential way). We have decided

2600

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

to fix the same value for used by Nagle as default (α= 7
8), which has also been demonstrated in our

experimentation to be valid for several problem conditions. This allows having a robust measure in
order to make decisions and to quickly respond to changes in subconcepts.

So, the performance formula used by OnlineTree2 in each node is:

per f (t) =
7
8
per f (t−1)+

1
8
ia

where: perf(t) and perf(t-1) are the current and previous performance measure of the node, respec-
tively; and, ia is the instantaneous accuracy of the node.

A change in the tendency of performance determines the state of the leaf.

States

Using the above mentioned performance measure, OnlineTree2 employs a state diagram in each
leaf to find out if the leaf is in one of the following states:

• Degradation State: A leaf passes into this state when the performance worsens. This suggests
that a change in subconcept has occurred and the leaf must react accordingly. A window of
previous examples is generated, which is called local window in degradation state (explained
in Section 4.2.2). Older examples outside this window are forgotten.

• Improvement State: a leaf passes into this state when its performance improves. This means
that its subconcept is being learned adequately. In this state a local window is generated,
referred to as local window in improvement state (explained in Section 4.2.2), which has
been designed in such a way as to produce the forgetting of examples once the concept has
been adequately learned, discarding old examples for new ones.

4.2.2 LOCAL PARAMETERS TO BE ADJUSTED

The OnlineTree2 algorithm adjusts three local parameters in each leaf with the aim of achieving
more efficient learning in terms of: improving local performance, optimising the number of stored
examples and reducing processing time. These local parameters are: local window in degradation
state, local window in improvement state and local majority/expansion factor.

Local Window Size in Degradation State

When a leaf is in degradation state, it needs to adjust its window of examples to deal with
a possible concept change and so improve its performance. This section explains in detail the
mechanism to carry out the management of the local window size when the leaf is in this state.

Figure 2 shows how the performance of a leaf is updated with each example that arrives in
it. The leaf remains in Improvement State, accumulating examples, while the performance grows.
When the leaf performance starts to decline, the leaf enters in Degradation State noting the time
of that example as anomaly time (the moment at which a concept drift is suspected to occur) and
making a local window of examples to forget with the examples that are before that time (which
we called delayed window). While the performance declines, the degradation persists (it is noted as
anomaly persistence, that is, the number of examples arrived at the leaf after anomaly time) and a

2601

NÚÑEZ, FIDALGO AND MORALES

drop in performance can be calculated as the difference between the performance at anomaly time
and the performance at current time (drop of performance).

Figure 2: Illustration of the detection of a hypothesis anomaly and the delayed window at a leaf

Deterioration in the performance of a leaf reduces the size of the delayed window by a fraction.
If the deterioration persists, concept drift is more probable, and a greater fraction of window needs
to be discarded. In order to calculate the fraction of the delayed window to be forgotten we use the
following equation:

w f = pers ·dp

where: wf is the window fraction of the delayed window to be forgotten; pers is the anomaly
persistence; and, dp is the drop of performance from anomaly time.

Thus, the new size of the delayed window will be:

d f =
{
dw(1−w f) if w f < 1
0 otherwise

where: dw is the size of the delayed window; and, wf is the window fraction to be forgotten.
A reduction in size of the delayed window provokes the forgetting of older examples occurred

before its anomaly time. Examples that are after the anomaly time are presumed to belong to the
current concept and for that reason are maintained.

A special characteristic of the algorithm is that it treats the time in which the examples arrive
in a continuous manner, that is to say, the examples may arrive in an asynchronous manner (i.e., at
any time). This affects forgetting. Suppose that a burst of examples reached the leaf some time ago
and few examples of a new concept have reached the leaf recently. If a window fraction of 10%
must be discarded, our algorithm we would probably be left with only the most recent examples,
removing the older examples that belonged to the previous concept. Other methods (Hulten et al.,
2001; Maloof and Michalski, 2004; Widmer and Kubat, 1996; Gama et al., 2004a) eliminate older
examples according to their number; in the previous example, if these methods need to discard a
10% of the examples within the window, they would maintain some examples from the burst. This
means they could take longer to react to a concept drift.

2602

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

Local Window Size in Improvement State

When a leaf is in improvement state it may lose examples. This is due to the fact that a well-
constructed leaf with a high performance discards older examples on receiving new ones to avoid
excessive accumulation of examples.

Therefore we make use of a heuristic, that can be describe as: the number of examples in the
leaf should not be greater than the number of examples in its brother subtree, especially when the
performance of the leaf is high. The formula which permits this to be carried out is:

|Elea f | >
|Ebrother|
per flea f (t)

where: Elea f is the set of examples stored in the leaf, Ebrother is the set of examples contained in the
brother subtree of the leaf, and per flea f (t) is the current performance measure in the leaf.

As can be seen, when performance is low the boundary permits the leaf to accumulate examples
so that it can induct the concept with more data. If performance is high, the number of examples in
the brother node is taken into consideration to control the number of examples in the leaf.

When the tree is functioning well (i.e., every node has high performance), the number of ex-
amples beneath the two branches of any node, whether leaf or subtree, should be balanced. Any
imbalance results in an older example being forgotten by a leaf. Obviously the main objective here
is to optimize the number of examples stored when the concept has been adequately learned.

Local Expansion/Labelling Parameter

Most supervised learning methods use some parameters to decide when to stop learning or when
to make a decision. For example, C4.5 algorithm uses a majority threshold to label their leaves. This
is not appropriate for our model as we do not want the user to have to study the problem to configure
this kind of parameters of the algorithm. Something similar occurs with the expansion criteria. For
example, algorithms able to deal with data streams like VFDT, CVFDT and others (Gama et al.,
2004b; Gama and Medas, 2005), use Hoeffding bounds as expansion criteria (Hoeffding, 1963), but
it also contains many parameters that may be arbitrarily set by users.

As far as we know there is no theoretically supported criterion to decide when to stop growing a
tree, and which is capable of functioning without parameters. Therefore we make use of a heuristic
which can be resumed as follow: a leaf is labelled when its number of majority class examples is
greater than the number of examples of non-majority class in exponential factor; otherwise, Online-
Tree2 may try to expand that leaf. The experimentation, conducted using many different problems
of varying dynamics, led us to the conclusion that an exponential factor should be near to e. This
heuristic can be formalized as:

{
m< er , try to expand the leaf
otherwise , label the leaf

where: m is the number of examples with majority class in the leaf, and r is the rest of the examples
in that leaf, that is: the total number of examples in the leaf minus m.

Once presented the adjustable local parameters of OnlineTree2, stages 2a and 2b will be better
understood. For the sake of clarity, leaf treatment is explained first.

2603

NÚÑEZ, FIDALGO AND MORALES

4.2.3 STAGE 2B: LEAF TREATMENT

When OnlineTree2 finish the previous stage (downwards revision of statistics) in a leaf, the example
is stored in it and the algorithm updates local class distribution and local performance in that leaf.

At this point, OnlineTree2 will try to adjust the leaf to adapt better its related subconcept. The
action to be performed depends on the state of the leaf: if it is degradation, OnlineTree2 adjust its
local window to forget examples; otherwise, OnlineTree2 tries to expand the leaf. The latter is doing
depending on the expansion/labelling parameter described in previous section. When an expansion
is allowed, OnlineTree2 creates a subtree of only one level.

OnlineTree2 learns dichotomic trees from examples described by symbolic and numeric at-
tributes. Utgoff et al. (1997) comment that the binarized forms of attributes (e.g., D([Colour=
red])=true, false, D([Age40])=true, false) produce better results than the original multi-valued forms
(e.g., D(Colour)=red, blue, green, D(Age)=[0. . . 150]). In order to binarize the continuous attributes,
we use the clustering algorithm k-means (MacQueen, 1967) using the attribute values of the exam-
ples of the leaf we want to expand (Dougherty et al., 1995). The reason that we decided to use this
method is that a binary split is needed (k=2) and because 2-means has a linear complexity (O(n)),
while the dichotomic split used by C4.5 and ITI is loglinear (O(n · log(n))). To obtain the binary
decision attribute of the node, OnlineTree2 uses normalized information gain (Quinlan, 1986).

Before substituting the leaf, OnlineTree2 checks the new subtree for coherence, similar to the
way in which OnlineTree2 checks nodes in the previous stage. If the new subtree is coherent with
the current concept, it replaces the leaf. If not, the leaf is labelled with the majority class, and
OnlineTree2 adjusts the local window size in improvement state, as presented previously.

4.2.4 STAGE 2A: NON COHERENT NODE TREATMENT

If, after the first stage, the example has found an incoherent node with the current concept, that
node may be adjusted by either; pruning and labelling, or grafting a new subtree that replaces the
incoherent one.

First of all, OnlineTree2 stores the example in its corresponding leaf without revising nodes,
updating the performance of that leaf. Then, the local window size of each leaf in degradation state
below the non coherent node is adjusted as described in Section 4.2.2. After that, the remaining
examples are collected and a new leaf, labelled with the majority class of these examples, is created.
That leaf replaces the incoherent node. Finally an attempt to reconstruct the leaf is performed (as
seen in the previous section).

4.3 Stage 3: Upward Updating of Statistics

Once stage 2 has been completed, OnlineTree2 travels back to the root, taking advantage of recur-
sion used in Stage 1, updating statistics and performance of each visited node.

4.4 Complexity Issues

In order to calculate the complexity of our algorithm, we take into consideration different situations
that may occur.

In the case of an established concept and once a tree has been constructed that does not change
over time (no concept drifts arrive), the complexity in time of each example is calculated as the
cost of the example moving down the tree (i.e., O(log2(t), where t is the number of nodes in the

2604

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

tree), storing it on the leaf (i.e., O(1)) and using the returning mechanism of the recursion to update
statistics (i.e., O(log2(t))). In this case, we have O(2 · log2(t)+1) ≡ O(log2(t)).

If the new example provokes an adjustment of a subtree, the cost is higher. As before, the
example moves down the tree until it meets the leaf or the badly adjusted node. In any case, the
example is placed on its corresponding leaf (i.e.,O(log2(t)), where t represents the number of nodes
below the current node). Subsequently it collects all the leaves hanging from this node (i.e., O(t))
and readjusts its windows (i.e., O(l · f), where l is the number of leaves and f is the number of
examples that stay outside the window and must be forgotten). With the remaining examples, it
tries to reconstruct the new node using information gain (i.e., O(n · a · v), where n is the number
of examples, a is the number of attributes of the problem and v is the number of values in each
attribute). Finally, it updates the statistics of the ancestor nodes, taking advantage of the recursion
(i.e., O(log2(t))). In total we have O(2 · log2(t)+ t+(n · a · v)) ≡ O(n · a · v). As can be seen, the
highest complexity is from the calculation of information gain when OnlineTree2 needs to expand
a leaf.

As a whole, the complexity of our method is equivalent to that of other TDIDT incremental
methods; however OnlineTree2 can also deal with concept drift.

5. Experimentation

This section shows results of the proposed algorithm when facing different kinds of problems, from
classical (stationary) data sets to data streams with unknown dynamics.

To compare results, we have chosen several well-known algorithms based on different tech-
niques on machine learning and data mining: C4.5 and CVFDT are tree-based algorithms, the for-
mer is commonly used to treat problems without concept changes, the latter creates trees capable of
dealing with concept changes; IB-k is a nearest-neighbour classifier algorithm; SMO (Platt, 1998)
is a support vector machine based on a polynomial kernel; MLP is a multilayer perceptron based
algorithm; a Naı̈ve Bayes algorithm (Duda and Hart, 1973); and DDM, a meta algorithm which is
able to provide concept drift treatment to a base algorithm by controlling its online error rate (each
example is tested using the model before learning from it). We used a suite for data mining called
Weka (Witten and Frank, 2005) to obtain results with the algorithms describe above, except for
CVFDT, in which we used the implementation provided in the VFML toolkit (Hulten and Domin-
gos, 2003), and DDM in which we used our own implementation integrated in Weka. Otherwise
stated, defaults parameters for all methods are used on all the experiments.

The following experiments have been done on a 3 GHz machine with 2 GBytes of memory,
running GNU/Linux.

When using OnlineTree2, it is difficult to know when a false alarm regarding concept drift is
produced (i.e., the detection of a concept change when there is none), because information about
concept drift is distributed into the leaves of the tree. With this purpose, we define an external new
measure, called estimated rate of concept drift (ercd), which is calculated with the arrival of each
example:

ercdtree =
∑l∈Ldegraded

|El |
|Etree|wi

|Ldegraded |

where, Ldegraded is the set of degraded leaves in tree, Enode is the set of examples stored below a
node, and, w fl is the window fraction forgotten in leaf l. When this value is greater than a specified

2605

NÚÑEZ, FIDALGO AND MORALES

threshold (e.g., we use 10−4), we suppose that a concept drift is detected. This metric is not part of
the algorithm.

Throughout this section, low error levels and fast reaction to concept drift will show the rele-
vance of using a strategy based on local windows when dealing with problems with unknown dy-
namics. Experiments suggest a high level of adaptability of our algorithm when facing unforeseen
changes.

This section has been divided into two parts: Section 5.1 contains an analysis of how Online-
Tree2 behaves to different conditions in various concept drifting data streams as well as comparisons
with other algorithms; and Section 5.2 evaluates the performance of algorithms when facing with
real problems whose concepts do not change over time.

5.1 Experiments in Problems with Concept Changes

This section presents problems whose dynamics come in an unknown manner to show how On-
lineTree2 algorithm adapts to them automatically. To do so, we will present problems in which: a
hyperplane changes its position in the attribute space gradually and/or abruptly, noise in examples
can be increased/decreased, and the speed of the concept drift also changes. We are also interested
in evaluating the incidence of virtual drift in which the concept remains the same but the distribution
of the observed examples changes over time. Algorithms able to track concept drifts used to make
comparisons are: CVFDT, IB1 with a global fixed window and DDM with Naı̈ve Bayes as base
algorithm (abbreviated as DDM+NB). To work with CVFDT, a previous discretization of numeri-
cal attributes is needed. This was carried out dividing these variables into 5 bins. The rest of the
algorithms, including OnlineTree2, can deal with numerical attributes.

The rest of this section will be organized as follows. The incidence of noise and virtual drift
within the concept change is evaluated in Section 5.1.1, while Section 5.1.2 presents the perfor-
mance of the algorithms when facing a synthetic data stream involving unknown conditions, such
as different degrees of concept change, virtual drift and noise. Finally, Section 5.1.3 evaluates the
performance of the proposed algorithm dealing with a real problem where concept changes may
occur.

5.1.1 THE INCIDENCE OF NOISE AND VIRTUAL DRIFT WITHIN THE CONCEPT CHANGE

In this section, we use a well-known data set in the concept drift community that is useful to evaluate
and illustrate how an algorithm able to deal with concept drift should work. It is known as the SEA
data set and was proposed by Street and Kim (2001). It is easily understood, simply by imagining a
cross-section of a three-dimensional space. The examples are points in this space, and are labelled
depending on their position in respect to the stated plane (when the example is below that plane, it
is labelled as positive; otherwise it is labelled as negative). Following a number of examples the
plane is moved, changing the labels of the examples, and thus producing a change in concept. It is
hoped that algorithms capable of managing changes in concept can treat this data set.

The SEA data set can be described as follows: being xi, i ∈ {1,2,3}, variable with real domain
(xi ∈ [0,1]), an example is composed of the values of these three variables and is labelled according
to the actual concept. An example is labelled as positive when x1+ x2 < b, otherwise the example
would have a negative label. A change in concept takes place changing the value of variable b
(b ∈ 8,9,7,9.5). Examples are affected by noise at a level of 10% (that is, each example has a
probability of 10% of being labelled randomly).

2606

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

This data set can be considered as a stream of examples. Each training example occurs in a step
of time. The data set contains 50000 time steps and four concepts (each concept contains 12500
time steps). An independent set of 10000 test examples is used to evaluate the classifiers every
500 time steps. Examples in the test set are noise free and are labelled according to the concept
being evaluated. For each experiment based on this data set 30 runs are randomly generated which
evaluate the algorithms and calculate classification errors and the number of examples maintained in
our decision tree on each test point. On each test point a Wilcoxon hypothesis test (with significance
level at 0.05) was used to compare algorithms.

In Figure 3 the misclassification error of the algorithms on this data set is shown. The hori-
zontal axis represents time and the vertical axis represents the percentage of misclassification error
achieved. The discontinued vertical lines show the moment of each concept change.

Figure 3: Misclassification errors on SEA data set with 10% noise

When facing concept drift problems, error rate curves show a common behaviour: just after a
concept change, a sudden rise in the error rate occurs. This happens because models are evaluated
with examples from the new concept and they have not adapted yet. From this point on, the slope
of each algorithm is important because it shows their reaction capability when faced with changes
in concepts. It is desirable that once a concept change occurs, the classifier detects it and quickly
forgets a subset of examples and thus fit the new concept accordingly.

Results of IB1 using a global window, with fixed size of 12500 examples, show that reactions
to concept change are slow, as the algorithm must wait until the window has forgotten all examples
from a previous concept. For this experiment, once this occurs, error rates are at around 6.5% at the
end of each concept. With respect to algorithms using a global adaptive window size (CVFDT and
DDM+NB algorithms), reactions to concept drift are faster than the previous one, but insufficient
in third and fourth concepts. Nevertheless, results of both DDM+NB and CVFDT are adequate but
are also shown to be affected by noise.

In this data set, OnlineTree2 has a better overall performance than the rest of the algorithms
because it achieves low error rates at the end of each concept (having a significantly better error

2607

NÚÑEZ, FIDALGO AND MORALES

rate for the last three concepts), reacting quickly after each concept drift. This is due to the local
window strategy: OnlineTree2 detects persistent changes in subconcepts, reacting by forgetting
examples from them. The robustness to noise and adaptability to different levels of concept drifts of
our algorithm can be seen. Regarding false alarms, OnlineTree2 detects concept change when there
is none at the beginning of the experiment. This phenomenon is due to a lack of examples at that
moment.

Time and memory statistics were also collected. CVFDT proved the fastest algorithm in pro-
cessing the whole data set, followed by OnlineTree2 and DDM+NB. As expected, IB1 with a fixed
window of 12500 examples was the slowest algorithm. With respect to memory requirements, from
more to less, IB1 with a fixed window maintains 12500 examples in memory, OnlineTree2 needs to
store 4000 examples on average in a tree with about 60 leaves, while CVFDT stores a model with
about 80 leaves, and finally, DDM+NB needs to store about 500 examples after each concept drift
and statistics about each attribute with respect to class labels.

Change in Concept Accompanied by Change in Level of Noise

In the next experiment, the SEA data set is modified to have different noise level in each concept,
that is, level of noise changes with concept drift. Specifically, percentages of noise level at each
concept are: 20%, no noise, 40% and 10%, respectively. This will allow us to know if our algorithm
adapts to these conditions and the nature of its adaptation. Results are presented in Figure 4.

Figure 4: Misclassification error on SEA data set when the level of noise varies

The error curve of OnlineTree2 reveals factors related to noise level: if there is no noise in data
(second concept) it is reasonable to have a low error rate (about 1.25%), when noise is at 10% (last
concept) the error rate rises up to 2, if noise is 20% (first concept) error rate is about 2.5% and
finally, when noise is 40% (third concept) error rate goes to 4.25%. This is a desirable characteristic
because it demonstrates robustness. This is another advantage of making use of local adjustment of
parameters and local windows.

2608

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

This experiment shows that OnlineTree2 takes alarm about concept change at the beginning
of the first concept, as in the previous experiment. During the third concept it also detects some
concept drifts when there are none, because of the massive noise level within this concept (noise
level at 40%). In the second and fourth concepts there are no false alarms.

DDM+NB and CVFDT algorithms do not work in this way. Moreover, DDM+NB has surpris-
ingly good results for concepts with high rates of noise, but it is the worst when dealing with low
rates of noise. This might be because DDM has difficulties in distinguishing concept changes when
a previous concept has more noise level than the current concept. In the case of CVFDT, it is able
to detect concept drifts but its convergence speed is low and it hardly managed to reduce error rate
below 5%. As in the previous experiment, IB1 with global fixed window does not work well be-
cause it is sensitive to noise and it must wait until every example of the previous concept has been
forgotten.

In these conditions, OnlineTree2 has shown better adaptability than other algorithms evaluated,
reaching low error levels when dealing with concept changes and different levels of noise.

Noise, Virtual Drift and Concept Changes

When learning algorithms face real problems, examples do not arrive in a uniformmanner. They
usually show a part of the domain; moreover, they can change and come from another area but a
concept change is not made. This is called virtual drift. In the following paragraphs we extend the
original SEA data set definition to contain both concept drift and virtual drift.

The SEA data set is modified in such a way, that with each concept, two virtual drifts occur, and
so the concepts are divided into three equal parts. In the first third, the values of the attributes for
each example are uniformly distributed, in the second third they are distributed following a Normal
distribution, N(b/2, b/4), and in the last third they are once again distributed uniformly. This data
set also has 10% level of noise.

Figure 5 shows results from this experiment. CVFDT and DDM+NB are affected by this phe-
nomenon, detecting virtual drift as concept change, which implies degradation in its models. Con-
trary to these algorithms, IB1 with global fixed window and OnlineTree2 show a stable behaviour
along this data set, producing models similar to that obtained in the experiment without virtual drift
(see Figure 3). During this experiment, the number of false alarms detected by OnlineTree2 is the
same as in the experiment without concept drift. This robustness to virtual drift allows OnlineTree2
to have lower error rates than the compared algorithms (significantly lower in second and third
concepts).

5.1.2 THE INCIDENCE OF LEVEL OF CHANGE WITHIN THE CONCEPT CHANGE

In this section, we are interested in evaluating the performance of OnlineTree2 when dealing with
data streams with unknown dynamics; that is to say, data streams with noise, concept changes,
different speed of change, variable concept length, virtual drift, etc. In the following experiment
a synthetic data stream is presented where these characteristics are present. The aim is to test the
algorithm on a problem with situations as realistic as possible, and compare its results with ones
obtained by actual methods able to deal with concept drift.

The domain of this problem, based on the experiment presented by Hulten et al. (2001) and
Fan (2004), is defined by a ten dimensional space divided by a hyperplane. The examples are

2609

NÚÑEZ, FIDALGO AND MORALES

Figure 5: Misclassification error on SEA data set with virtual drift

points of this space labelled depending on the position within this hyperplane; if they are below the
hyperplane they are labelled as positive, otherwise they are labelled as negative. To calculate the
position of the hyperplane, the following equation is used: ∑d

i=1wixi = w0, where: d is the number
of dimensions (d = 10), wi are weights associated to each dimension (wi ∈ [0 . . .1]), w0 = 1

2 ∑
d
i=1wi,

and xi are values for each dimension.
This data stream is divided into two phases, depending on the type of concept change:

• Gradual change phase. The initial concept is formed by a hyperplane were five dimensions
are relevant in its calculation (wi = 1, i ∈ [1..5]), two dimensions are sincronized (x5 = x6),
and four attributes are irrelevant (w j = 0, j ∈ [5 . . .10]). This phase is composed of 16 dif-
ferent concepts (15 concept changes). Following each change the weight of one dimension
is reduced (Δwi = −0.2), producing a new concept easier to induce. Also, with the concept
change the level of noise (nl) is increased by f rac5015, thus the data stream starts without
noise and finishes this phase with 50% noise. The length of each concept is calculated by:
cl = 2500+w0 ·nl ·500.
Virtual drifts are added throughout this phase, the result of which is that the concentration of
examples, in certain areas, changes over time whilst maintaining the current concept. This
can create the impression that there is a concept change when in fact there is none. This time
virtual drift is produced each 1000 examples by changing the distribution of examples using
a Normal distribution (N(a, 0.5), where a = vdl ·wi and vdl ∈ [0.25,0.75] is the virtual drift
level) on each dimension. This results in a slight imbalance of positive examples from 75%
to 25%, and vice versa, every 50000 examples.

• Abrupt change phase. This phase starts using the last hyperplane made by the previous phase,
but exchanging the labelled zones, that is, that which was previously positive is now negative
and vice versa. This time there are five concept changes, each of them flip the labelled zones

2610

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

from its previous concept and reduces the noise by 10%. Examples are uniformly distributed.
The concept length is now calculated by: cl = 100000−5000 ·nc, where nc is the number of
changes performed in this phase.

During this data stream the model induced by each learning algorithm is available. To evaluate
the models, an independent set of examples is used. These test examples are noise free, have the
same distribution of training examples at that time and are labelled depending on the concept present
in each moment. Models are evaluated each 5000 training examples and at the end of each concept.
This experiment consist on 10 runs of this data set. On each test point a Wilcoxon hypothesis test
(with significance level at 0.05) has been used to compare algorithms.

In this study we are interested in measuring the performance of our algorithm and comparing it
with others under conditions that include wide variability: speed of concept change, noise level and
virtual drift. Results of error rate are presented in Figure 6.

Figure 6: Misclassification error on the hyperplane data stream

Analysis of Gradual Change Phase

As can be seen in Figure 6, CVFDT starts to face this data stream with the highest error level
of the algorithms tested. However after some examples, and in spite of its attribute discretization,
its performance increases until it reaches the DDM+NB error rate. This Naı̈ve Bayes based model
maintains its curve around an error rate of 10% throughout this phase.

OnlineTree2 starts with a similar error rate of that obtained with DDM+NB, but our algorithm
quickly improves the model, achieving (significantly) the lowest error rates of the experimenting

2611

NÚÑEZ, FIDALGO AND MORALES

algorithms from time step 300000 until the end of this phase. The reason for this result is that
OnlineTree2 adapts local windows and parameters of those leaves involved in gradual changes,
which indicates robustness to noise, virtual drift and different levels of gradual changes. Regarding
false alarms, OnlineTree2 detects concept drift when there is not due to massive noise in data a few
times at the end of this phase.

IB1, using a global window with 10000 examples of fixed size, starts as well as OnlineTree2,
but, as shown in previous experiments, because of this approach is not able to react to concept drift
and suffers sensitivity to noise and its error rate grows quickly, being the worst algorithm of those
evaluated. This algorithm was stopped at time step 220000, because its running time at this point
was more than two days.

Analysis of Abrupt Change Phase

Faced with these abrupt concept changes (beyond time step 550000), the best policy is to quickly
discard all examples from previous concepts and induce the new concept with fresh examples. As
can be seen in Figure 6, in each concept of this phase, OnlineTree2 has a fast convergence speed.
This is another advantage of the local drift detection, OnlineTree2 reacts better and faster to abrupt
concept drifts than those global drift detection methods evaluated, and can control the selective for-
getting of examples to reach high performance, independently of noise in data. With respect to the
error rate at the end of each concept, OnlineTree2 obtains (significantly) the best results. Within this
phase, the algorithm reacts to false alarms mainly when massive noise is present (first and second
concept of this phase). DDM+NB has also a great convergence speed, except in the first concept of
this phase. It seems to be sensitive to high rates of noise when dealing with abrupt concept changes.
CVFDT seems to be more stable, but with less convergence speed than previous methods.

Overall Measurements

CVFDT process this data stream using a model with about 1000 leaves. DDM+NB stores 40
numeric measures to maintain the model and an average of 20000 examples because of its global
adaptive window. IB1 with global window maintains 10000 examples as the model to update.
Finally, OnlineTree2 model has approximately 600 leaves and stores an average of 50000 examples
along this data set. Results from OnlineTree2 in this data stream (about 1.2 Million examples,
10 continuous attributes) shows that it is the best algorithm of those evaluated when dealing with
different and unknown conditions such as different speed of change, virtual drift and different noise
levels. Trees updated by the proposed algorithm are smaller than those created by CVFDT. In this
problem, CVFDT processes about 2000 examples per second, DDM+NB processes about 6000
examples per second, while OnlineTree2 processes about 30 examples per second.

5.1.3 CASE STUDY: THE ELECTRICITY MARKET DATA SET

This section evaluates some learning algorithms in a real data stream which involves unknown dy-
namics. The data used in this experiment, collected from the Australian New SouthWales Electricity
Market, was first described by Harries et al. (1998). In this market, the prices are not fixed and are
affected by demand and supply. The prices in this market are set every five minutes. Harries et al.
(1998) show the dependence between prices on short-term events such as weather fluctuations, the

2612

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

time evolution of the electricity market and adjacent areas to the one being analysed. This allowed
for a more elaborated management of the supply. The excess production of one region could be sold
on the adjacent region. A consequence of this expansion was a dampener of the extreme prices.
This data stream is presumed to have concept drift, noise and virtual drift.

The Elec2 data set contains 45312 instances. Each example of the data set refers to a period of
30 minutes, and they have 5 fields: the day of week, the time stamp, the NSW electricity demand,
the Vic electricity demand, the scheduled electricity transfer between states and the class label. The
class label identifies the change of the price related to a moving average in the last 24 hours. The
class level only reflects deviations of the price on a one day average and removes the impact of
longer term price trends. This data set is interesting as it is a real-world data set which involves
unknown dynamics, and it has been dealt with by other authors (Gama et al., 2004a).

Error rate is obtained by testing models from learning algorithms each week (i.e., each 336 ex-
amples). The test set is composed of examples from the following week; by having more examples
can results in an evaluation with examples from different concepts. As error rate varies a lot (be-
cause of the small test sets), Figure 7 shows an exponential smoothed version (with α = 7

8) of this
measure, which results in a clear graph. Of course, learning algorithms are not affected by doing
this. Algorithms used to make comparisons are CVFDT, DDM+NB and MLP (with parameteriza-
tion for on-line treatment1).

As can be seen in Figure 7, algorithms start with a similar error rate until time step 15000.
From this point on, OnlineTree2 improves its model obtaining the lowest error rate until the end of
the data stream. Also, from time step 20000, error rates from CVFDT and DDM+NB suggest that
they do not detect concept drift because MLP (an incremental method not able to deal with concept
drifting dynamics) error curve is below them. As this problem is suspected of having concept drift,
OnlineTree2 is able to adapt to possibly different rates of changes (it detects 15 concept drifts)
and/or noise in data.

5.2 Experimentation with Stationary Concepts

In this section, OnlineTree2 is evaluated with real problems that do not change over time. Table
2 shows a summary of twenty data sets used in this section that have been obtained from the UCI
Machine Learning Repository (Asuncion and Newman, 2007). In the case of missing values, these
are considered as another valid value (Quinlan, 1986). Performance of analysed algorithms is doc-
umented in terms of error rate, execution time, examples stored, and false alarms triggered. This
time, algorithms used to compare results with are: CVFDT, C4.5, IB1 (no window used), SMO,
MLP and Naı̈ve Bayes.

The experiment was designed based on that proposed by Dietterich (1998). It can be described
as follows: for each problem a) the examples are randomly distributed; b) a two fold cross validation
is carried out with each learning algorithm; c) the resulting values in each fold are noted. These
steps are repeated 5 times (producing a 5x2 CV), providing ten measurements for each algorithm
and data set. These results were analysed using the recently proposed method by Demšar (2006),
which focuses in comparing classifiers over multiple data sets.

The latter methodology assigns a rank to each algorithm on a data set, using its reported result
based on error rates. The average rank of each algorithm is then calculated. These average values

1. Parameters modified from Weka implementation are: N (number of epochs), set to 1 and V (number of examples to
validate), set to 0.

2613

NÚÑEZ, FIDALGO AND MORALES

Figure 7: Results on Electricity Market Data Set

are used to decide, with a non parametrical F test, if there is a significant difference between the
algorithms. If so, the critical difference measurement (CD) is calculated using the Nemenyi test.
Any difference larger than this CD when analysing a pair of algorithms confirms that they are
significantly different.

In Table 3, results on average error rate and standard deviation for each algorithm and data set
are shown, as well as their ranks. Tails in average errors are solved by assigning an average of their
ranks. NA error values for these measures were due to an algorithm taking more than one day to
evaluate one fold of the cross validation on a data set, and the assigned rank is the largest. At the
bottom of Table 3, the average of ranks for each algorithm is provided.

The Friedman test (with a significance level of 0.05) reveals that there are differences between
the algorithms. Thus, a Nemenyi test (with a significance level of 0.05) is performed. The CD value
for this experiment is 2.01. Figure 8 shows the critical difference diagram.

These results show that, for the data sets evaluated, there are two groups of algorithms that
are not significantly different. OnlineTree2 is in the group with better ranking, and outperforms
CVFDT. This demonstrates the effectiveness of Onlinetree2 in facing these kinds of problems.

On the other hand, in these experiments we observed that in the case of IB1, SMO and MLP, the
average execution time was many times larger than the one obtained by OnlineTree2. For the non-
incremental C4.5 algorithm, this time is nearly a half of OnlineTree2 execution time. Something
similar occurs with Naı̈ve Bayes. Neither C4.5 nor Naı̈ve Bayes are able to deal with concept

2614

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

Data Set Examples Classes Num. att. Symb. att.
Abalone 4177 21 7 1
Adult2 48842 2 8 7
Anneal2 898 6 9 29
Ann-thyroid 7200 3 6 15
Car 1728 4 0 6
Covertype 581012 7 10 44
Kr vs kv 28056 17 3 3
Letter 20000 26 16 0
Mushrooms2 8124 2 0 22
Nursery 12960 5 0 8
Optdigits 5620 10 64 0
Pendigit 10992 10 12 0
Segmentation 2310 7 19 0
Solar flares - 78 1066 2 10 0
Splice 3190 3 0 61
Tic-tac-toe 958 2 0 9
Vowel 990 11 10 0
Waveform 5000 3 21 0
Waveform-noise 5000 3 40 0
Yeast 1484 7 15 2

Table 2: Summary of characteristics of the evaluated data sets

Figure 8: The critical difference diagram shows two groups (bold lines) of classifiers which are not
significantly different

drifting environments. Execution time of CVFDT algorithmwas shorter than OnlineTree2 execution
time, but, as said before, it is significantly worse than our algorithm in these evaluations.

With respect to results of OnlineTree2 regarding number of drift detected, they shown that
the algorithm detects false alarms when the algorithm starts to process each data set, presumably

2. Data set with missing values.

2615

NÚÑEZ, FIDALGO AND MORALES

O
nlineTree2

N
aı̈ve

Bayes
SV
M

IB1
C
4.5

M
LP

C
V
FD
T

A
balone

79.36
±
0.60

(4)
76.78

±
1.42

(2)
75.54

±
0.55

(1)
80.2

±
0.84

(5)
78.9

±
0.75

(3)
83.67

±
2.91

(6)
83.79

±
0.72

(7)
A
dult

17.2
±
0.69

(4.5)
16.78

±
0.27

(3)
15.11

±
0.21

(2)
20.77

±
0.23

(7)
13.97

±
0.1

(1)
17.2

±
0.95

(4.5)
17.22

±
0.37

(6)
A
nneal

6.95
±
1.75

(2)
20.94

±
3.47

(5)
14.05

±
2.59

(4)
6.19

±
0.96

(1)
10.91

±
2.33

(3)
23.83

±
1.9

(6.5)
23.83

±
0.67

(6.5)
A
nn-thyroid

2.08
±
0.51

(2)
4.67

±
0.38

(3)
6.37

±
0.40

(4)
8.14

±
0.41

(7)
0.4

±
0.18

(1)
7.92

±
0.72

(6)
7.3

±
0.43

(5)
C
ar

7.93
±
2.59

(1)
16.24

±
1.45

(6)
8.16

±
1.00(2)

12.28
±
1.16

(3)
12.68

±
1.72

(4)
14.49

±
3.83

(5)
29.98

±
1.04

(7)
C
overtype

13.34
±
0.48

(2)
36.82

±
0.16

(5)
N
A
(6.5)

N
A
(6.5)

7.15
±
0.07

(1)
27.14

±
0.63

(3)
32.61

±
0.14

(4)
K
r
vskv

45.35
±
1.85

(2)
64.17

±
0.32

(5)
56.64

±
0.44

(4)
34.12

±
0.41

(1)
51.30

±
0.6

(3)
66.33

±
1.54

(6)
83.77

±
0.25

(7)
Letter

24.44
±
1.48

(4)
36.02

±
0.39

(5)
18.29

±
3.33

(3)
5.82

±
0.44

(1)
15.66

±
0.55

(2)
95.08

±
1.56

(6)
96.27

±
0.16

(7)
M
ushroom

s
0.68

±
0.42

(6)
4.81

±
0.36

(7)
0.09

±
0.22

(4)
0.02

±
0.05

(1.5)
0.02

±
0.06

(1.5)
0.22

±
0.08

(4)
0.59

±
0.12

(5)
N
ursery

4.14
±
0.76

(2)
9.77

±
0.58

(6)
7.17

±
0.24

(4)
3.84

±
0.33

(1)
4.62

±
0.32

(3)
8.78

±
0.57

(5)
14.76

±
2.16

(7)
O
ptdigits

23.04
±
2.08

(6)
8.94

±
0.49

(4)
1.95

±
0.34

(2)
1.69

±
0.18

(1)
11.31

±
0.72

(5)
6.11

±
0.54

(3)
89.14

±
4.49

(7)
Pendigit

8.15
±
0.78

(4)
14.26

±
0.33

(6)
2.31

±
0.16

(2)
0.8

±
0.11

(1)
4.83

±
0.46

(3)
14.12

±
0.89

(5)
90.01

±
0.18

(7)
Segm

entation
7.86

±
1.20

(3)
20.87

±
2.31

(5)
9.00

±
0.80

(4)
4.75

±
0.37

(2)
4.64

±
0.73

(1)
53.35

±
4.64

(6)
86.72

±
0.39

(7)
Solar

Flares-78
19.53

±
1.61

(5)
20.69

±
1.66

(6)
18.18

±
1.12

(1)
22.31

±
1.97

(7)
18.91

±
0.92

(4)
18.86

±
1.1

(2.5)
18.86

±
0.96

(2.5)
Splice

10.23
±
1.94

(5)
4.75

±
0.43

(1)
7.84

±
0.59

(4)
27.5

±
1.22

(6)
7.65

±
0.60

(3)
7.17

±
0.92

(2)
48.12

±
0.61

(7)
Tic-tac-toe

21.5
±
7.15

(4)
29.29

±
1.76

(5)
1.67

±
0.62

(1)
4.45

±
0.69

(2)
19.02

±
2.69

(3)
30.4

±
3.01

(6)
34.51

±
1.65

(7)
Vow

el
40.03

±
7.86

(3)
40.61

±
2.44

(4)
42.72

±
3.37

(5)
7.84

±
2.15

(1)
30.81

±
3.22

(2)
91.4

±
0.52

(6)
92.41

±
0.47

(7)
W
aveform

25.73
±
1.53

(6)
19.09

±
0.48

(3)
13.39

±
0.62

(1)
23.3

±
0.82

(4)
24.36

±
1.00

(5)
14.73

±
0.75

(2)
42.46

±
1.92

(7)
W
aveform

-noise
26.46

±
0.95

(5)
20.01

±
0.52

(3)
14.09

±
0.47

(1)
27.22

±
0.96

(6)
25.02

±
1.01

(4)
14.89

±
0.47

(2)
47.74

±
3.08

(7)
Yeast

49.97
±
2.22

(5)
43.57

±
1.02

(1)
45.30

±
1.42

(2)
49.38

±
1.05

(4)
46.33

±
1.73

(3)
69.87

±
1.71

(7)
68.80

±
1.00

(6)
R
anking

Sum
m
ary

3.78
4.25

2.83
3.4

2.78
4.68

6.3

Table
3:M

isclassification
rate

resultson
stationary

data
sets

2616

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

because of the low number of examples at that moment. Once several examples have been treated,
this metric does not detect any false alarms.

In this experiment, the performance of our method is similar to that of algorithms used in analy-
sis. However, it is important to note that, for each data set, the error rates achieved with OnlineTree2
have been obtained from trees which contain a reduced subset of the original data set (very small in
some cases), and it is several times faster than other algorithms. Furthermore, although our method
generates binary decision trees, we observed that it contains fewer leaves than the ones obtained by
CVFDT and C4.5 algorithms.

6. Limitations and Future Lines

As previously mentioned OnlineTree2 is an algorithm with partial memory management, therefore
its consumption of resources limits it to problems where a medium level processing capacity is avail-
able. For example, for a similar data stream of that used in Section 5.1.2, OnlineTree2 takes about
30 examples per second, while CVFDT processes about 2000 examples per second and DDM+NB
about 6000 examples per second. If the problem requires processing with few resources (i.e., em-
bedded systems, mobile phones, PDAs) and high-rate arrival of examples, this algorithm does not
prove adequate.

Even though computers over time will be faster and have more and more memory, we can
imagine a future line of investigation which would optimise the algorithm presented or reuse many
of the ideas for a new algorithm with a no-memory management. This can be appropriate when used
with equipment with limited resources. Following this line, we think that a good contribution should
be to give a more intelligent method for split numerical attributes without damage the complexity
showed in Section 4.4.

With the aim of improving the precision of this algorithm, although sacrificing representation
of knowledge, a Naı̈ve Bayes approach could be incorporated into the leaves as suggested by Gama
et al. (2003).

7. Conclusions

An incremental decision tree learning method has been presented which is able to learn chang-
ing concepts with the presence of noise and virtual drift in examples for problems with unknown
conditions.

Contrary to most of the current methods, OnlineTree2 uses local adaptive windows using a new
strategy which forgets examples as a result of the leaf reducing its window size when the local
performance decreases.

In general, OnlineTree2 is more robust to noise than current methods, as can be seen in the SEA
data set evaluation and with different levels of noise in the data stream presented in Section 5.1.2.
The proposed algorithm has less error rate at the end of each context than other methods studied in
problems with gradual and abrupt concept drift and noise.

This algorithm has presented a low sensibility to change in the distribution of examples of data
(virtual drift), as can be observed in Sections 5.1.1 and 5.1.2.

OnlineTree2s ability to adapt its internal parameters means it is able to face problems with
unknown conditions. Current learning methods from data streams require the careful selection
of the values of its user-defined parameters when faced with certain dynamics of the data stream;

2617

NÚÑEZ, FIDALGO AND MORALES

making use of such methods is complicated for the user because they should be adjusted as dynamic
of data stream changes.

Furthermore, if the studied dynamic changes over time, for example a change in distribution
or noise level, the performance of the algorithms which cannot adapt their parameters may be very
poor when dealing with new dynamics. For example IB1 with a large global fixed window could
be adequate for gradual concept changes, but it is not adequate for faster changes, and in the same
way IB1 with a small global fixed window is adequate for rapid changes and less adequate for very
gradual changes or even when there is no concept change. Therefore OnlineTree2 is more suitable
than current methods for problems with unknown dynamics with medium or high resource levels,
which require a continual functioning.

We think that the OnlineTree2 processing speed of dozens or hundreds of examples per second,
on an average personal computer, is sufficient for most applications. By using OnlineTree2, the user
does not need to known the details of the algorithm and does not have to carry out any parameter
configuration. On the other hand, we think that algorithms like CVFDT and DDM+NB are adequate
for problems with a known dynamics and a data stream of thousands of examples per second.

With the goal that learning algorithms will be used by a wider spectrum of systems and users, we
think that learning algorithms should be as simple to use as possible and that the models generated
should be understandable. This has been a principal motivation in the design and evaluation of the
OnlineTree2 algorithm. The way in which the knowledge is represented helps to understand both
the patterns discovered in each moment and the problem itself. We consider the adaptive capacity
of the internal parameters to be fundamental because it will allow them to deal with problems in
the real world where you can never guarantee that the dynamic of the problem will not change over
time.

Acknowledgments

The authors want to thank the editor and anonymous revisors for its useful comments and sugges-
tions. This work has been partially supported by the MOISES-TA project (TIN2005-08832-C03) of
the Ministry of Education and Science, Spain. The authors also thank Manuel Baena for provide us
with the functional implementation of DDM algorithm used in Section 5.

Appendix A. Detailed Description of OnlineTree2 Algorithm

The aim of this appendix is to make OnlineTree2 reproducible. To do so, the algorithm appearing
in Table 1 will be described in terms of functions and variables. Structural concepts for the decision
tree and functions used will be defined. Notation of regular expressions is used throughout this
appendix. In order to reference a variable of an object, we have used subscripts (e.g., timenode refers
to the time of the example).

The following section presents some definitions about information stored in nodes of the deci-
sion tree created and updated by OnlineTree2. Section A.2 describes the OnlineTree2 algorithm,
and details the functions used in it.

2618

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

A.1 Definitions

As seen in Section 4, OnlineTree2 needs to store some information in the decision tree to process
examples incrementally and efficiently. This section defines this information and identifies the place
where it is stored.

As stated in Section 4.2.1, every tree node has a state used to detect concept drifts.

Definition 1 (state)

state= (i/d, per f ,prev-perf,anom-time,anom-perf, pers)

where: i/d means either improvement state or degradation state, perf, prev-perf and anom-perf are
current, previous and anomaly performance measures, respectively; anom-time is the anomaly time
when the state enters in degradation state; and, pers counts how many examples arrived at the node
when it is in degradation state (from last anomaly time).

The following defines the information contained in tree nodes.

Definition 2 (info)
in f o= (cd,ecc,state)

where: cd = (class, f rec)+ is the class distribution of the examples passed through the node and not
forgotten (note that is the total number of this examples), ecc is the number of examples correctly
classified below the node, and state is the state of the node as defined above.

Once the information in a node has been defined, we treat tree nodes as decision nodes (d-node)
and leaf nodes (l-node).

Definition 3 (d-node)

d-node= (in f o,splitting-attribute,children)

where: info contains node information as defined above, splitting-attribute is the decision attribute
used to split with domainD(splitting-attribute) =V1,V2 and children= (V1,node1),(V2,node2)with
node1 and node2 as nodes associated with d-node.

Definition 4 (l-node)
l-node= (in f o,E)

where: info contains leaf information as defined above, and E is a FIFO structure containing the
examples stored in the leaf. Operations defined for E are: head(E), returns the first example added
to the queue; tail(E), returns the last example added to the queue; add(E, example), adds an example
to the tail of E; remove(E, i), removes i examples from the head of E; and, join(E1,E2, . . .) returns
a queue with the examples from E1,E2, . . . ordered by their time stamp. Note that the label of the
leaf can be calculated efficiently from cdl−node.

Definition 5 (node) A node can be a decision node (d-node) or a leaf node (l-node).

2619

NÚÑEZ, FIDALGO AND MORALES

OnlineTree2(node, example): node
IF not IsRevisable(node) THEN

OnlineTree2(NextNode(node, example), example)

}
Stage 1

ELSE
IF node is a d-node

Drop(node, example)
AdjustLocalWindowInDegradedLeaf (leaves(node))
Prune(node)
UpdatePerformance(node)
TryToReconstruct(node)




(a)

ELSE
UpdateLeaf (node, example)
IF staten is Improvement THEN

TryToReconstruct(node)
IF node is a d-node THEN

AdjustLocalWindowInImprovedLeaf (node)
ENDIF
ELSE
AdjustLocalWindowInDegradedLeaf (node)

ENDIF





(b)

ENDIF
RETURN node

ENDIF






Stage 2

UpdateNode(node, example)
RETURN node

}
Stage 3

Pseudocode 1: OnlineTree2 algorithm

Definition 6 (tree) A binary decision tree is a node.

Definition 7 (example)

example= ((at,v)a,class, time)

where: a is the number of attributes in the problem, (at,v)a are a attribute-value pairs describing
the example, class is the label and time is its time stamp.

A.2 OnlineTree2 Algorithm

Pseudocode 1 presents the OnlineTree2 pseudo-algorithm. As in Section 4, the pseudo-algorithm
has been described with three stages: downwards revision of statistics, treatment of a non coher-
ent node or leaf in the second stage, and finally, updating the information stored in visited nodes.
Following sections describe in details the functions of each stage.

2620

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

IsRevisable(node): boolean
RETURN not (node is a d-node ∧ χ2-test(cdnode,cdchildren))

Pseudocode 2: IsRevisable function

NextNode(d-node, example): node
value← value/(splitting-attribute,value) ∈ (at,val)ad−node
RETURN next-child / value ∈ A∧ (A,next-child) ∈ childrend−node

Pseudocode 3: NextNode procedure

A.2.1 DOWNWARDS REVISION OF STATISTICS

As discussed in Section 4.1, the first stage of the algorithm searches either a leaf or a node that does
not fit with current concept (non coherent node) in the path of current example from root to a leaf.
On each visited node, a call to IsRevisable function is performed (see Pseudocode 2).

It checks the node to be a leaf or for coherence with current concept by doing a χ2 test with a
significance level of 0.05 (Quinlan, 1986). If this test results in a coherent node, this procedure is
recursively performed with the next node depending on the value in the example for the splitting
attribute (by calling the NextNode function, see Pseudocode 3). If a leaf or a non coherent node is
reached, the stage ends and the next one starts.

A.2.2 TREATMENT OF A LEAF OR A NON COHERENT NODE

As stated above, this stage tries to adjust tree structure to the dynamics of current concept in the
data stream. It is divided into two parts, depending on the type of node returned by the first stage:
non coherent node treatment or leaf treatment.

Non Coherent Node Treatment

Once the example reaches a non coherent node, OnlineTree2 drops the example to the correct
leaf, which is updated accordingly, by calling the Drop procedure (see Pseudocode 4 and related
procedures: UpdateLeaf in Pseudocode 6, Store in Pseudocode 5, UpdateStatistics in Pseudocode
7 and UpdatePerformance in Pseudocode 8).

Drop(node, example)
IF node is a l-node THEN

UpdateLeaf (node, example)
ELSE

Drop(NextNode(node, example), example)
ENDIF

Pseudocode 4: Drop procedure

2621

NÚÑEZ, FIDALGO AND MORALES

Store(leaf, example)
add(Elea f ,example)

Pseudocode 5: Store procedure

UpdateLeaf (l-node, example)
Store(node, example)
UpdateStatistics(node, example)
UpdatePerformance(node, timeexample)

Pseudocode 6: UpdateLeaf procedure

UpdateStatistics(node, example)

Let cd f = (class, f req)∗ be the class distribution of forgotten examples after stage two.

cdnode =
{

(class, f req′)/(class, f req) ∈ cdnode∧ f req′ =
{

f req if class #= classexample
f req+1 if class= classexample

}

cdnode =
{

(class, f req′)/(class, f req) ∈ cdnode∧ f req′ =
{

f req if (class,∗) /∈ cd f
f req− f req f if (class, f req f) ∈ cd f

}

IF node is a l-node THEN
eccnode = max(freq / (class,freq) ∈ cdnode)

ELSE
eccnode = ∑(V,child)∈childrennode eccchild

ENDIF

Pseudocode 7: UpdateStatistics procedure

2622

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

UpdatePerformance(node, time)

Let ianode = eccnode/nenode the instantaneous accuracy of node, and α= 7/8 the factor used
for exponential smoothing

prev-per fnode ← per fnode
per fnode ← α · prev-per fnode+(1−α) · ianode
IF prev-per fnode ≤ per fnode THEN

statenode ← (i, per fnode, prev-per fnode,n/a,n/a,n/a)
ELSIF node is in Improvement State THEN

statenode ← (d, per fnode, prev-per fnode, time, prev-per fnode,0)
ELSE

statenode ← (d, per fnode, prev-per fnode,anom-timenode,anom-per fnode, persnode+1)
ENDIF

Pseudocode 8: UpdatePerformance procedure

AdjustLocalWindowInDegradedLeaf (leaves)
cd f orgotten ←(
FOR each l in leaves DO
IF l is in Degradation State THEN

dwl ← [timehead(El),anom-timel)
dpl ← (anom-per fl per fl)
f fl ←min(persl ·dpl,1)
lwl ← [timehead(El) + |dwl| · f fl, tail(El)]
f el ←{e f ∈ El/timee f /∈ lwl}
remove(El, | f el|)
cd f orgot ←{(classi, f reqi)∗/ f reqi = f reqi+ |{e ∈ f el/classi = label(e)}|}

ENDIF
ENDFOR

Pseudocode 9: AdjustLocalWindowInDegradedLeaf procedure

Then, each leaf below the non coherent node is ordered to forget examples (see AdjustLocalWin-
dowInDegradedLeaf procedure in Pseudocode 9); examples forgotten are noted to update statistics
of ascendant nodes in the next stage. After that, the node is converted into a leaf with the unforgotten
examples (see Pseudocode 10) and its metrics for forgetting examples are updated (see Pseudocode
8). Then a reconstruction of the pruned node is attempted (see Pseudocode 11) in order to make a
coherent node for the current concept.

Leaf Treatment

When the first stage ends in a leaf node, the example updates that leaf (see Pseudocode 6). If
the leaf is improving its performance, the algorithm tries to create a new decision node (see Pseu-

2623

NÚÑEZ, FIDALGO AND MORALES

Prune(node)
Enew ← join({El/l ∈ leaves(node)})
new-lea f ← create-l-node(Enew)
statenew−lea f ← statenode
swap(node,new-lea f)

Pseudocode 10: Prune procedure

TryToReconstruct(leaf)

Let create-decision-node: E → d-node, a function that returns a decision node with two leaves
as children using the gain ratio as splitting criteria (Quinlan, 1986) from a set of examples E.

max- f req= max({ f req/(class, f req) ∈ cdlea f })
total = nelea f
IF max- f req≤ etotal−max- f req THEN

node← create-d-node(Elea f)
IF not IsRevisable(node) THEN

swap(lea f ,node)
ENDIF

ENDIF

Pseudocode 11: TryToReconstruct procedure

2624

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

AdjustLocalWindowInImprovedLeaf (leaf)

Let brother a node such as the parent of leaf and brother is the same.

IF nelea f · per flea f > nebrother THEN
remove(Elea f ,1)

ENDIF

Pseudocode 12: AdjustLocalWindowInImprovedLeaf procedure

UpdateNode(d-node, example)
UpdateStatistics(d-node,example)
UpdatePer f ormance(d-node)

Pseudocode 13: UpdateNode procedure

docode 11). If there is no reconstruction, the algorithm tries to find out if the leaf has become stable,
deciding to forget the oldest example of the leaf in that case, by calling the AdjustLocalWindowIn-
ImprovedLeaf procedure (see Pseudocode 12).

If the leaf is not improving its performance, then an attempt to reduce its local window is per-
formed (see Pseudocode 9).

A.2.3 UPWARD UPDATING OF STATISTICS

Once stage two has finished, the algorithm starts a bottom-up process, updating the information of
each visited node by calling to the UpdateNode procedure (see Pseudocode 13).

References

David Aha, Dennis Kibler, and Marc Albert. Instance-based learning algorithms. Machine Learn-
ing, 6:37–66, 1991.

Arthur Asuncion and David J. Newman. UCI machine learning repository. http://www.ics.uci.edu/
mlearn/MLRepository.html, Irvine, CA: University of California, Department of Information and
Computer Science, 2007.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computation, 10(7):1895–1923, 1998.

Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Proceedings of the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 71–
80, 2000.

2625

NÚÑEZ, FIDALGO AND MORALES

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsupervised discretization of
continuous features. In Proceedings of the 20th International Conference on Machine Learning,
pages 194–202, 1995.

Richard Duda and Peter Hart. Pattern Classification and Scene Analysis. Wiley-Interscience, 1973.

Floriana Esposito, Donato Malerba, and Giovanni Semeraro. A comparative analysis of methods
for pruning decision trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19
(5):476–491, 1997.

Wei Fan. Systematic data selection to mine concept-drifting data streams. In Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
128–137, 2004.

JoÃo Gama and Pedro Medas. Learning decision trees from dynamic data streams. Journal of
Universal Computer Science, 11(8):1353–1366, 2005.

JoÃo Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detection. In
Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, pages 286–295, 2004a.

JoÃo Gama, Pedro Medas, and Pedro Rodrigues. Learning in dynamic environments: Decision
trees for data streams. Pattern Recognition in Information Systems, pages 149–158, 2004b.

JoÃo Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees for mining high-speed
data streams. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 523–528, 2003.

Michael Harries, Claude Sammut, and Kim Horn. Extracting hidden context. Machine Learning,
32(2):101–126, 1998.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

Geoff Hulten and Pedro Domingos. VFML – a toolkit for mining high-speed time-changing data
streams. http://www.cs.washington.edu/dm/vfml/, 2003.

Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In Pro-
ceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 97–106, 2001.

Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent
Data Analysis, 8(3):281–300, 2004.

Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with support vector machines. In
Proceedings of the 17th International Conference on Machine Learning, pages 487–494, 2000.

Ralf Klinkenberg and Ingrid Renz. Adaptive information filtering: Learning in the presence of con-
cept drifts. InWorkshop Notes of the ICML-98 on Workshop on Learning for Text Categorization,
pages 33–40, 1998.

2626

LEARNING IN ENVIRONMENTS WITH UNKNOWN DYNAMICS

Ivana Krizakova and Miroslav Kubat. FAVORIT: Concept formation with ageing of knowledge.
Pattern Recognition Letters, 13(1):19–25, 1992.

Miroslav Kubat and Gerhard Widmer. Adapting to drift in continuous domains (extended abstract).
In Proceedings of the 8th European Conference on Machine Learning, pages 307–310, 1995.

James B. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, volume 1,
pages 281–297, 1967.

Marcus A. Maloof and Ryszard S. Michalski. Selecting examples for partial memory learning.
Machine Learning, 41(1):27–52, 2000.

Marcus A. Maloof and Ryszard S. Michalski. Incremental learning with partial instance memory.
Artificial Intelligence, 154:95–126, 2004.

John Nagle. On packets switches with infinite storage. IEEE Transactions On Communications, 35
(4):435–438, 1987.

Marlon Núñez, Raúl Fidalgo, and Rafael Morales. On-line learning of decision trees in problems
with unknown dynamics. In Proceedings of the 4th Mexican International Conference on Artifi-
cial Intelligence, pages 443–453, 2005.

Vern Paxson andMark Allman. RFC-2988: Computing TCPs transmission timer. NetworkWorking
Group Requests for Comment, 2000.

John Platt. Fast training of support vector machines using sequential minimal optimization. Ad-
vances in Kernel Methods - Support Vector Learning, pages 185–208, 1998.

Jon Postel. RFC-793: TCP specification. ARPANETWorking Group Requests for Comment, DDN
Network Information Center, SRI International, 1981.

Duncan Potts and Claude Sammut. Incremental learning of linear model trees. Machine Learning,
61:5–48, 2005.

J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (SEA) for large-scale clas-
sification. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 377–382, 2001.

Charles Taylor, Gholamreza Nakhaeizadeh, and Carsten Lanquillon. Structural change and clas-
sification. In Workshop Notes of the ICML-97 Workshop on Dynamically Changing Domains:
Theory Revision and Context Dependence Issues, pages 67–78, 1997.

Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. Decision tree induction based on efficient
tree restructuring. Machine Learning, 29(1):5–44, 1997.

2627

NÚÑEZ, FIDALGO AND MORALES

GerhardWidmer andMiroslav Kubat. Learning in the presence of concept drift and hidden contexts.
Machine Learning, 23:69–101, 1996.

Dwi H. Widyantoro, Thomas R. Ioerger, and John Yen. An adaptive algorithm for learning changes
in user interests. In Proceedings of the 8th International Conference on Information and Knowl-
edge Management, pages 405–412, 1999.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005. (2nd Edition).

2628

Journal of Machine Learning Research 8 (2007) 2629-2669 Submitted 6/03; Revised 8/07; Published 11/07

Hierarchical Average Reward Reinforcement Learning

Mohammad Ghavamzadeh MGH@CS.UALBERTA.CA
Department of Computing Science
University of Alberta
Edmonton, AB T6G 2E8, CANADA

Sridhar Mahadevan MAHADEVA@CS.UMASS.EDU
Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4601, USA

Editor:Michael Littman

Abstract

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement learn-
ing (RL) to problems with large state and action spaces by using the task (or action) structure to
restrict the space of policies. Prior work in HRL including HAMs, options, MAXQ, and PHAMs
has been limited to the discrete-time discounted reward semi-Markov decision process (SMDP)
model. The average reward optimality criterion has been recognized to be more appropriate for a
wide class of continuing tasks than the discounted framework. Although average reward RL has
been studied for decades, prior work has been largely limited to flat policy representations.

In this paper, we develop a framework for HRL based on the average reward optimality cri-
terion. We investigate two formulations of HRL based on the average reward SMDP model, both
for discrete-time and continuous-time. These formulations correspond to two notions of optimality
that have been previously explored in HRL: hierarchical optimality and recursive optimality. We
present algorithms that learn to find hierarchically and recursively optimal average reward policies
under discrete-time and continuous-time average reward SMDP models.

We use two automated guided vehicle (AGV) scheduling tasks as experimental testbeds to
study the empirical performance of the proposed algorithms. The first problem is a relatively simple
AGV scheduling task, in which the hierarchically and recursively optimal policies are different.
We compare the proposed algorithms with three other HRL methods, including a hierarchically
optimal discounted reward algorithm and a recursively optimal discounted reward algorithm on
this problem. The second problem is a larger AGV scheduling task. We model this problem using
both discrete-time and continuous-time models. We use a hierarchical task decomposition in which
the hierarchically and recursively optimal policies are the same for this problem. We compare the
performance of the proposed algorithms with a hierarchically optimal discounted reward algorithm
and a recursively optimal discounted reward algorithm, as well as a non-hierarchical average reward
algorithm. The results show that the proposed hierarchical average reward algorithms converge to
the same performance as their discounted reward counterparts.

Keywords: semi-Markov decision processes, hierarchical reinforcement learning, average reward
reinforcement learning, hierarchical and recursive optimality

c©2007 Mohammad Ghavamzadeh and Sridhar Mahadevan.

GHAVAMZADEH AND MAHADEVAN

1. Introduction

Sequential decision making under uncertainty is a fundamental problem in artificial intelligence
(AI). Many sequential decision making problems can be modeled using theMarkov decision process
(MDP) formalism. A MDP (Howard, 1960; Puterman, 1994) models a system that we are interested
in controlling as being in some state at each time step. As a result of actions, the system moves
through some sequence of states and receives a sequence of rewards. The goal is to select actions
to maximize (minimize) some measure of long-term reward (cost), such as the expected discounted
sum of rewards (costs), or the expected average reward (cost).

Reinforcement learning (RL) is a machine learning framework for solving sequential decision-
making problems. Despite its successes in a number of different domains, including backgammon
(Tesauro, 1994), job-shop scheduling (Zhang and Dietterich, 1995), dynamic channel allocation
(Singh and Bertsekas, 1996), elevator scheduling (Crites and Barto, 1998), and helicopter flight
control (Ng et al., 2004), current RL methods do not scale well to high dimensional domains—they
can be slow to converge and require many training samples to be practical for many real-world
problems. This issue is known as the curse of dimensionality: the exponential growth of the number
of parameters to be learned with the size of any compact encoding of system state (Bellman, 1957).
Recent attempts to combat the curse of dimensionality have turned to principled ways of exploiting
abstraction in RL. This leads naturally to hierarchical control architectures and associated learning
algorithms.

Hierarchical reinforcement learning (HRL) is a general framework for scaling RL to problems
with large state spaces by using the task (or action) structure to restrict the space of policies. Hi-
erarchical decision making represents policies over fully or partially specified temporally extended
actions. Policies over temporally extended actions cannot be simply treated as single-step actions
over a coarser time scale, and therefore cannot be represented in the MDP framework since actions
take variable durations of time. Semi-Markov decision process (SMDP) (Howard, 1971; Puterman,
1994) is a well-known statistical framework for modeling temporally extended actions. Action du-
ration in a SMDP can depend on the transition that is made. The state of the system may change
continually between actions, unlike MDPs where state changes are only due to actions. Therefore,
SMDPs have become the main mathematical model underlying HRL methods.

Prior work in HRL including hierarchies of abstract machines (HAMs) (Parr, 1998), options
(Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs)
(Andre and Russell, 2001; Andre, 2003) has been limited to the discrete-time discounted reward
SMDP model. In these methods, policies are learned that maximize the long-term discounted sum
of rewards. On the other hand, the average reward optimality criterion has been shown to be more
appropriate for a wide class of continuing tasks than the well-studied discounted framework. A
primary goal of continuing tasks, including manufacturing, scheduling, queuing, and inventory con-
trol, is to find a gain-optimal policy that maximizes (minimizes) the long-run average reward (cost)
over time. Although average reward RL has been studied using both the discrete-time MDP model
(Schwartz, 1993; Mahadevan, 1996; Tadepalli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy,
1998) as well as the continuous-time SMDP model (Mahadevan et al., 1997b; Wang and Mahade-
van, 1999), prior work has been limited to flat policy representations. In addition to being an appro-
priate optimality criterion for continuing tasks, average reward optimality allows for more efficient
state abstraction in HRL than discounted reward optimality, as will be discussed in Section 5.

2630

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

In this paper, we extend previous work on HRL to the average reward setting, and investigate
two formulations of HRL based on average reward SMDPs. These two formulations correspond
to two notions of optimality in HRL: hierarchical optimality and recursive optimality (Dietterich,
2000). We extend the MAXQ hierarchical RL method (Dietterich, 2000) and introduce a HRL
framework for simultaneous learning of policies at multiple levels of a task hierarchy. We then use
this HRL framework to derive discrete-time and continuous-time algorithms that learn to find hier-
archically and recursively optimal average reward policies. In these algorithms, we assume that the
overall task (the root of the hierarchy) is continuing. Hierarchically optimal average reward RL
(HAR) algorithms find a hierarchical policy within the space of policies defined by the hierarchical
decomposition that maximizes the global gain. Recursively optimal average reward RL (RAR)
algorithms treat non-primitive subtasks as continuing average reward problems, where the goal at
each subtask is to maximize its gain given the policies of its children. We investigate the conditions
under which the policy learned by RAR algorithm at each subtask is independent of the context in
which it is executed and therefore can be reused by other hierarchies. We use two automated guided
vehicle (AGV) scheduling tasks as experimental testbeds to study the empirical performance of the
proposed algorithms. The first problem is a relatively simple AGV scheduling task, in which the
hierarchically and recursively optimal policies are different. We compare the proposed algorithms
with three other HRLmethods, including a hierarchically optimal discounted reward algorithm and a
recursively optimal discounted reward algorithm on this problem. The second problem is a relatively
larger AGV scheduling task. We model this problem using both discrete-time and continuous-time
models. We use a hierarchical task decomposition where the hierarchically and recursively optimal
policies are the same. We compare the performance of the proposed algorithms with a hierarchi-
cally optimal discounted reward algorithm and a recursively optimal discounted reward algorithm,
as well as a non-hierarchical average reward algorithm. The results show that the proposed hier-
archical average reward algorithms converge to the same performance as their discounted reward
counterparts.

The rest of this paper is organized as follows. Section 2 provides a brief overview of HRL. In
Section 3, we concisely describe discrete-time SMDPs, and discuss average reward optimality in
this model. Section 4 describes the HRL framework, which is used to develop the algorithms of this
paper. In Section 5, we extend the previous work on HRL to the average reward setting, and study
two formulations of HRL based on the average reward SMDP model. In Section 5.1, we present
discrete-time and continuous-time hierarchically optimal average reward RL (HAR) algorithms. In
Section 5.2, we investigate different methods to formulate subtasks in a recursively optimal hierar-
chical average reward RL setting, and present discrete-time and continuous-time recursively optimal
average reward RL (RAR) algorithms. We demonstrate the type of optimality achieved by HAR and
RAR algorithms as well as their empirical performance and convergence speed compared to other
algorithms using two AGV scheduling problems in Section 6. Section 7 summarizes the paper and
discusses some directions for future work. For convenience, a table of the symbols used in this
paper is given in Appendix A.

2. An Overview of Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a class of learning algorithms that share a common
approach to scaling up reinforcement learning (RL). The key principle underlying HRL is to de-
velop learning algorithms that do not need to learn policies from scratch, but instead reuse existing

2631

GHAVAMZADEH AND MAHADEVAN

policies for simpler subtasks. Subtasks form the basis of hierarchical specifications of action se-
quences because they can include other subtasks in their definitions. It is similar to the familiar
idea of subroutines from programming languages. A subroutine can call other subroutines as well
as execute primitive commands. A subtask as an open-loop control policy is inappropriate for most
interesting control purposes, especially the control of stochastic systems. HRL methods generalize
the subtask idea to closed-loop policies or, more precisely, closed-loop partial policies because they
are generally defined for a subset of the state space. The partial policies must also have well-defined
termination conditions. The partial policies with well-defined termination conditions are sometimes
called temporally extended actions. Work in HRL has followed three trends: focusing on subsets of
the state space in a divide and conquer approach (state space decomposition), grouping sequences
or sets of actions together (temporal abstraction), and ignoring differences between states based on
the context (state abstraction). Much of the work in HRL falls into several of these categories. Barto
and Mahadevan (2003) provide a more detailed introduction to HRL.

Mahadevan and Connell (1992) were among the first to systematically investigate the use of task
structure to accelerate RL. In their work, the robot was given a pre-specified task decomposition,
and learned a set of local policies instead of an entire global policy. Singh (1992) investigated
reinforcement learning using abstract actions of different temporal granularity using a hierarchy of
models with variable temporal resolution. Singh applied the mixture of experts framework as a
special-purpose task selection architecture to switch between abstract actions. Kaelbling (1993a,b)
investigated using subgoals to learn sub-policies. Dayan and Hinton (1993) describe Feudal RL,
a hierarchical technique which uses both temporal abstraction and state abstraction to recursively
partition the state space and the time scale from one level to the next.

One key limitation of all the above methods is that decisions in HRL are no longer made at
synchronous time steps, as is traditionally assumed in RL. Instead, agents make decisions intermit-
tently, where each epoch can be of variable length, such as when a distinguishing state is reached
(e.g., an intersection in a robot navigation task), or a subtask is completed (e.g., the elevator arrives
on the first floor). Fortunately, a well-known statistical model is available to treat variable length
actions: the semi-Markov decision process (SMDP) model (Howard, 1971; Puterman, 1994). In a
SMDP, state-transition dynamics is specified not only by the state where an action was taken, but
also by parameters specifying the length of time since the action was taken. Early work on the
SMDP model extended algorithms such as Q-learning to continuous-time (Bradtke and Duff, 1995;
Mahadevan et al., 1997b). The early work on SMDP was then expanded to include hierarchical
task models over fully or partially specified lower level subtasks, which led to developing powerful
HRL models such as hierarchies of abstract machines (HAMs) (Parr, 1998), options (Sutton et al.,
1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs (PHAMs) (Andre and
Russell, 2001; Andre, 2003).

In the options framework policies are defined over not just primitive actions, but over fully
specified lower-level policies. In the HAMs formulation, hierarchical learning could be achieved
even when the policies for lower-level subtasks were only partially specified. The MAXQ model
is one of the first methods to combine temporal abstraction with state abstraction. It provides a
more comprehensive framework for hierarchical learning where instead of policies for subtasks,
the learner is given pseudo-reward functions. Unlike options and HAMs, MAXQ does not rely
directly on reducing the entire problem to a single SMDP. Instead, a hierarchy of SMDPs is created
whose solutions can be learned simultaneously. The key feature of MAXQ is the decomposed
representation of the value function. The MAXQ method views each subtask as a separate SMDP,

2632

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

and thus represents the value of a state within that SMDP as composed of the reward for taking an
action at that state (which might be composed of many rewards along a trajectory through a subtask)
and the expected reward for completing the subtask. To isolate the subtask from the calling context,
MAXQ uses the notion of a pseudo-reward. At the terminal states of a subtask, the agent is rewarded
according to the pseudo-reward, which is set a priori by the designer, and does not depend on what
happens after leaving the current subtask. Each subtask can then be treated in isolation from the
rest of the problem with the caveat that the solutions learned are only recursively optimal. Each
action in the recursively optimal policy is optimal with respect to the subtask containing the action,
all descendant subtasks, and the pseudo-reward chosen by the designer of the system. Another
important contribution of MAXQ is the idea that state abstraction can be done separately on the
different components of the value function, which allows one to perform dynamic abstraction. We
describe the MAXQ framework and related concepts such as recursive optimality and value function
decomposition in Section 4. In the PHAMmodel, Andre and Russell extended HAMs and presented
an agent-design language for RL. Andre and Russell (2002) also addressed the issue of safe state
abstraction in their model. Their method yields state abstraction while maintaining hierarchical
optimality.

3. Discrete-time Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) (Howard, 1971; Puterman, 1994) extend the Markov
decision process (MDP) (Howard, 1971; Puterman, 1994) model by allowing actions that can take
multiple time steps to complete. Note that SMDPs do not theoretically provide additional expres-
sive power but they do provide a convenient formalism for temporal abstraction. The duration of
an action can depend on the transition that is made.1 The state of the system may change contin-
ually between actions unlike MDPs where state changes are only due to actions. Thus, SMDPs
have become the preferred language for modeling temporally extended actions (Mahadevan et al.,
1997a) and, as a result, the main mathematical model underlying hierarchical reinforcement learn-
ing (HRL).

A SMDP is defined as a five tuple 〈S ,A ,P ,R ,I 〉. All components are defined as in a MDP
except the transition probability function P and the reward function R . S is the set of states of
the world, A is the set of possible actions from which the agent may choose on at each decision
epoch, and I : S → [0,1] is the initial state distribution. The transition probability function P
now takes the duration of the actions into account. The transition probability function P : S ×
N×S ×A → [0,1] is a multi-step transition probability function (N is the set of natural numbers),
where P(s′,N|s,a) denotes the probability that action a will cause the system to transition from
state s to state s′ in N time steps. This transition is at decision epochs only. Basically, the SMDP
model represents snapshots of the system at decision points, whereas the so-called natural process
describes the evolution of the system over all times. If we marginalize P(s′,N|s,a) over N, we will
obtain F(s′|s,a) the transition probability for the embedded MDP. The term F(s′|s,a) denotes the
probability that the system occupies state s′ at the next decision epoch, given that the decision maker
chooses action a in state s at the current decision epoch. The key difference in the reward function
for SMDPs is that the rewards can accumulate over the entire duration of an action. As a result, the
reward in a SMDP for taking an action in a state depends on the evolution of the system during the
execution of the action. Formally, the reward in a SMDP is modeled as a function R : S ×A →R (R

1. Continuous-time SMDPs typically allow arbitrary continuous action durations.

2633

GHAVAMZADEH AND MAHADEVAN

is the set of real numbers), with r(s,a) representing the expected total reward between two decision
epochs, given that the system occupies state s at the first decision epoch and the agent chooses action
a. This expected reward contains all necessary information about the reward to analyze the SMDP
model. For each transition in a SMDP, the expected number of time steps until the next decision
epoch is defined as

y(s,a) = E[N|s,a] = ∑
N∈N

N ∑
s′∈S

P(s′,N|s,a).

The notion of policy and the various forms of optimality are the same for SMDPs as for MDPs.
In infinite-horizon SMDPs, the goal is to find a policy that maximizes either the expected discounted
reward or the average expected reward. We discuss the average reward optimality criterion for the
SMDP model in the next section.

3.1 Average Reward Semi-Markov Decision Processes

The theory of infinite-horizon SMDPs with the average reward optimality criterion is more complex
than that for discounted models (Howard, 1971; Puterman, 1994). The aim of average reward SMDP
algorithms is to compute policies that yield the highest average reward or gain. The average reward
or gain of a policy µ at state s, gµ(s), can be defined as the ratio of the expected total reward and the
expected total number of time steps of following policy µ starting at state s

gµ(s) = liminf
n→∞

E
[
∑n−1
t=0 r(st ,µ(st))|s0 = s,µ

]

E
[
∑n−1
t=0 Nt |s0 = s,µ

] .

In this equation, Nt is the total number of time steps until the next decision epoch, when agent takes
action µ(st) in state st .

A key observation that greatly simplifies the design of average reward algorithms is that for
unichain SMDPs,2 the gain of any policy is state independent, that is

gµ(s) = gµ = liminf
n→∞

E
[
∑n−1
t=0 r(st ,µ(st))|µ

]

E
[
∑n−1
t=0 Nt |µ

] , ∀s ∈ S . (1)

To simplify exposition, we consider only unichain SMDPs in this paper. When the state space of a
SMDP, S , is finite or countable, Equation 1 can be written as

gµ =
F̄µrµ

F̄µyµ
, (2)

where Fµ and F̄µ= limn→∞
1
n ∑

n−1
t=0 (F

µ)t are the transition probability matrix and the limiting matrix
of the embedded Markov chain for policy µ, respectively,3 and rµ and yµ are vectors with elements
r(s,µ(s)) and y(s,µ(s)), for all s ∈ S . Under the unichain assumption, F̄ has equal rows, and there-
fore the right hand side of Equation 2 is a vector with elements all equal to gµ.

2. In unichain SMDPs, the underlying Markov chain for every stationary policy has a single recurrent class, and a
(possibly empty) set of transient states.

3. The limiting matrix F̄ satisfies the equality F̄F = F̄ .

2634

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

In the average reward SMDP model, a policy µ is measured using a different value function,
namely the average-adjusted sum of rewards earned following that policy4

Hµ(s) = lim
n→∞

E

{
n−1

∑
t=0

[r(st ,µ(st))−gµy(st ,µ(st))] |s0 = s,µ

}
.

The term Hµ is usually referred to as the average-adjusted value function. Furthermore, the
average-adjusted value function satisfies the Bellman equation

Hµ(s) = r(s,µ(s))−gµy(s,µ(s))+ ∑
s′∈S ,N∈N

P(s′,N|s,µ(s))Hµ(s′).

Similarly, the average-adjusted action-value function for a policy µ, Lµ, is defined, and it satisfies
the Bellman equation

Lµ(s,a) = r(s,a)−gµy(s,a)+ ∑
s′∈S ,N∈N

P(s′,N|s,a)Lµ(s′,µ(s′)).

4. A Framework for Hierarchical Reinforcement Learning

In this section, we describe a general hierarchical reinforcement learning (HRL) framework for si-
multaneous learning of policies at multiple levels of a hierarchy. Our treatment builds upon existing
methods, including HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Di-
etterich, 2000), and PHAMs (Andre and Russell, 2002; Andre, 2003), and, in particular, uses the
MAXQ value function decomposition. We extend the MAXQ framework by including the three-
part value function decomposition (Andre and Russell, 2002) to guarantee hierarchical optimality,
as well as reward shaping (Ng et al., 1999) to reduce the burden of exploration. Rather than redun-
dantly explain MAXQ and then our hierarchical framework, we will present our model and note
throughout this section where the key pieces were inspired by or are directly related to MAXQ.
In the next section, we will extend this framework to the average reward model and present our
hierarchical average reward reinforcement learning algorithms.

4.1 Motivating Example

In the HRL framework, the designer of the system imposes a hierarchy on the problem to incorporate
domain knowledge and thereby reduces the size of the space that must be searched to find a good
policy. The designer recursively decomposes the overall task into a collection of subtasks that are
important for solving the problem.

Let us illustrate the main ideas using a simple search task shown in Figure 1. Consider the do-
main of an office-type environment (with rooms and connecting corridors), where a robot is assigned
the task of picking up trash from trash cans (T1 and T2) over an extended area and accumulating it
into one centralized trash bin (Dump). For simplicity, we assume that the robot can observe its true
location in the environment. The main subtasks in this problem are root (the whole trash-collection
task), collect trash at T1 and T2, navigate to T1, T2, and Dump. Each of these subtasks is defined
by a set of termination states. After defining subtasks, we must indicate, for each subtask, which

4. This limit assumes that all policies are aperiodic. For periodic policies, it changes to the Cesaro limit Hµ(s) =
limn→∞

1
n ∑

n−1
k=0E

{
∑kt=0 [r(st ,µ(st))−gµy(st ,µ(st))] |s0 = s,µ

}
(Puterman, 1994).

2635

GHAVAMZADEH AND MAHADEVAN

other subtasks or primitive actions it should employ to reach its goal. For example, navigate to T1,
T2, and Dump use three primitive actions find wall, align with wall, and follow wall. Collect trash
at T1 uses two subtasks, navigate to T1 and Dump, plus two primitive actions Put and Pick, and
so on. Similar to MAXQ, all of this information can be summarized by a directed acyclic graph
called task graph. The task graph for the trash-collection problem is shown in Figure 1. This hi-
erarchical model is able to support state abstraction (while the agent is moving toward the Dump,
the status of trash cans T1 and T2 is irrelevant and cannot affect this navigation process. Therefore,
the variables defining the status of trash cans T1 and T2 can be removed from the state space of
the navigate to Dump subtask), and subtask sharing (if the system could learn how to solve the
navigate to Dump subtask once, then the solution could be shared by both collect trash at T1 and
T2 subtasks.)

Collect Trash at T1 Collect Trash at T2

Navigate to T1 Pick PutNavigate to Dump Navigate to T2

Root

Find Wall Align with Wall Follow Wall

Room3

Corridor

A

Dump

T2

T1

Room1

Room2

A : Agent

Dump: Location for depositing all trash
T2: Location of another trash can
T1: Location of one trash can

Figure 1: A robot trash-collection task and its associated task graph.

Like HAMs (Parr, 1998), options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000),
and PHAMs (Andre and Russell, 2001; Andre, 2003), this framework also relies on the theory of
SMDPs. While SMDP theory provides the theoretical underpinnings of temporal abstraction by
modeling actions that take varying amounts of time, the SMDP model provides little in the way
of concrete representational guidance, which is critical from a computational point of view. In
particular, the SMDP model does not specify how tasks can be broken up into subtasks, how to
decompose value functions etc. We examine these issues next.

As in MAXQ, a task hierarchy such as the one illustrated above can be modeled by decompos-
ing the overall task MDPM , into a finite set of subtasks {M0,M1, . . . ,Mm−1},5 whereM0 is the root
task. SolvingM0 solves the entire MDP M .

Definition 1: Each non-primitive subtaskMi (Mi is not a primitive action) consists of five compo-
nents 〈Si, Ii,Ti,Ai,Ri〉:

5. m is the total number of subtasks in the hierarchy.

2636

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

• Si is the state space for subtaskMi. It is described by those state variables that are relevant to
subtaskMi. The range of a state variable describing Si might be a subset of its range in S (the
state space of MDP M).

• Ii ⊆ Si is the initiation set for subtaskMi. SubtaskMi can be initiated only in states belonging
to Ii.

• Ti ⊆ Si is the set of terminal states for subtask Mi. Subtask Mi terminates when it reaches
a state in Ti. A policy for subtask Mi can only be executed if the current state s belongs to
(Si−Ti).

• Ai is the set of actions that can be performed to achieve subtask Mi. These actions can be
either primitive actions from A (the set of primitive actions for MDPM), or they can be other
subtasks. Technically, Ai is a function of states, since it may differ from one state to another.
However, we will suppress this dependence in our notation.

• Ri is the reward structure inside subtaskMi and could be different from the reward function
of MDP M . Here, we use the idea of reward shaping (Ng et al., 1999) and define a more
general reward structure than MAXQ’s. Reward shaping is a method for guiding an agent
toward a solution without constraining the search space. Besides the reward of the overall
task MDP M , each subtask Mi can use additional rewards to guide its local learning. Addi-
tional rewards are only used inside each subtask and do not propagate to upper levels in the
hierarchy. If the reward structure inside a subtask is different from the reward function of the
overall task, we need to define two types of value functions for each subtask, internal value
function and external value function. Internal value function is defined based on both the
local reward structure of the subtask and the reward of the overall task, and only is used in
learning the subtask. On the other hand, external value function is defined only based on the
reward function of the overall task and is propagated to the higher levels in the hierarchy to
be used in learning the global policy. This reward structure for each subtask in our framework
is more general than the one in MAXQ, and of course, includes MAXQ’s pseudo-reward.6 !

Each primitive action a is a primitive subtask in this decomposition, such that a is always executable
and it terminates immediately after execution. From now on in this paper, we use subtask to refer to
non-primitive subtasks.

4.2 Policy Execution

If we have a policy for each subtask in a hierarchy, we can define a hierarchical policy for the
model.

Definition 2: A hierarchical policy µ is a set of policies, one policy for each subtask in the hierar-
chy: µ= {µ0, . . . ,µm−1}. !

6. The MAXQ pseudo-reward function is defined only for transitions to terminal states, and is zero for non-terminal
states.

2637

GHAVAMZADEH AND MAHADEVAN

The hierarchical policy is executed using a stack discipline, similar to ordinary programming
languages. Each subtask policy takes a state and returns the name of a primitive action to execute or
the name of a subtask to invoke. When a subtask is invoked, its name is pushed onto the Task-Stack
and its policy is executed until it enters one of its terminal states. When a subtask terminates, its
name is popped off the Task-Stack. If any subtask on the Task-Stack terminates, then all subtasks
below it are immediately aborted, and control returns to the subtask that had invoked the terminated
subtask. Hence, at any time, the root task is located at the bottom and the subtask which is currently
being executed is located at the top of the Task-Stack.

Under a hierarchical policy µ, we define a multi-step transition probability Pµi : Si×N× Si →
[0,1] for each subtaskMi in the hierarchy, where Pµi (s′,N|s) denotes the probability that hierarchical
policy µwill cause the system to transition from state s to state s′ in N primitive steps at subtaskMi.
We also define a multi-step abstract transition probability Fµ

i : Si×N×Si → [0,1] for each subtask
Mi under the hierarchical policy µ. The term Fµ

i (s′,N|s) denotes the N-step abstract transition
probability from state s to state s′ under hierarchical policy µ at subtask Mi, where N is the number
of actions taken by subtask Mi, not the number of primitive actions taken in this transition. In this
paper, we use the multi-step abstract transition probability Fµ

i to model state transition at the subtask
level, and the multi-step transition probability Pµi to model state transition at the level of primitive
actions. For N = 1, Fµi (s′,1|s) is the transition probability for the embedded MDP at subtask Mi.
We can write Fµi (s′,1|s) as Fµi (s′|s), and it can also be obtained by marginalizing Pµi (s′,N|s) over N
as described in Section 3.

4.3 Local versus Global Optimality

Using a hierarchy reduces the size of the space that must be searched to find a good policy. However,
a hierarchy constrains the space of possible policies so that it may not be possible to represent the
optimal policy or its value function, and hence make it impossible to learn the optimal policy. If we
cannot learn the optimal policy, the next best target would be to learn the best policy that is consis-
tent with the given hierarchy. Two notions of optimality have been explored in the previous work on
hierarchical reinforcement learning, hierarchical optimality and recursive optimality (Dietterich,
2000).

Definition 3: A hierarchically optimal policy for MDP M is a hierarchical policy which has the
best performance among all policies consistent with the given hierarchy. In other words, hierarchi-
cal optimality is a global optimum consistent with the given hierarchy. In this form of optimality,
the policy for each individual subtask is not necessarily locally optimal, but the policy for the entire
hierarchy is optimal. The HAMQ HRL algorithm (Parr, 1998) and the SMDP Q-learning algorithm
for a fixed set of options (Sutton et al., 1999; Precup, 2000) both converge to a hierarchically opti-
mal policy. !

Definition 4: Recursive optimality is a weaker but more flexible form of optimality which only
guarantees that the policy of each subtask is optimal given the policies of its children. It is an im-
portant and flexible form of optimality because it permits each subtask to learn a locally optimal
policy while ignoring the behavior of its ancestors in the hierarchy. This increases the opportunity
for subtask sharing and state abstraction. The MAXQ-Q HRL algorithm (Dietterich, 2000) con-

2638

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

verges to a recursively optimal policy. !

4.4 Value Function Definitions

For recursive optimality, the goal is to find a hierarchical policy µ= {µ0, . . . ,µm−1} such that for
each subtask Mi in the hierarchy, the expected cumulative reward of executing policy µi and the
policies of all descendants of Mi is maximized. In this case, the value function to be learned for
subtask Mi under hierarchical policy µmust contain only the reward received during the execution
of subtask Mi. We call this the projected value function after Dietterich (2000), and define it as
follows:

Definition 5: The projected value function of a hierarchical policy µon subtaskMi, denoted V̂ µ(i,s),
is the expected cumulative reward of executing policy µi and the policies of all descendants of Mi
starting in state s ∈ Si untilMi terminates. !

The expected cumulative reward outside a subtask is not a part of its projected value function. It
makes the projected value function of a subtask dependent only on the subtask and its descendants.

On the other hand, for hierarchical optimality, the goal is to find a hierarchical policy that max-
imizes the expected cumulative reward. In this case, the value function to be learned for subtask
Mi under hierarchical policy µmust contain the reward received during the execution of subtaskMi,
and the reward after subtaskMi terminates. We call this the hierarchical value function, following
Dietterich (2000). The hierarchical value function of a subtask includes the expected reward outside
the subtask and therefore depends on the subtask and all its ancestors up to the root of the hierar-
chy. In the case of hierarchical optimality, we need to consider the contents of the Task-Stack as an
additional part of the state space of the problem, since a subtask might be shared by multiple parents.

Definition 6: Ω is the space of possible values of the Task-Stack for hierarchy H . !

Let us define joint state space X = Ω× S for the hierarchy H as the cross product of the set
of the Task-Stack values Ω and the state space S . We also define a transition probability func-
tion of the Markov chain that results from flattening the hierarchy using the hierarchical policy µ,
mµ : X ×X → [0,1], where mµ(x′|x) denotes the probability that the hierarchical policy µwill cause
the system to transition from state x = (ω,s) to state x′ = (ω′,s′) at the level of primitive actions.
We will use this transition probability function in Section 5.1 to define global gain for a hierarchi-
cal policy. Finally, we define the hierarchical value function using the joint state space X as follows:

Definition 7: A hierarchical value function for subtask Mi in state x = (ω,s) under hierarchical
policy µ, denoted V µ(i,x), is the expected cumulative reward of following the hierarchical policy µ
starting in state s ∈ Si and Task-Stack ω. !

The current subtaskMi is a part of the Task-Stack ω and as a result is a part of the state x. So we
can exclude it from the hierarchical value function notation and write V µ(i,x) as V µ(x). However
for clarity, we use V µ(i,x) in the rest of this paper.

2639

GHAVAMZADEH AND MAHADEVAN

Theorem 1: Under a hierarchical policy µ, each subtaskMi can be modeled by a SMDP consisting
of components (Si,Ai,Pµi , R̄i), where R̄i(s,a) = V̂ µ(a,s) for all a ∈ Ai. !

This theorem is similar to Theorem 1 in Dietterich (2000). Using this theorem, we can define
a recursive optimal policy for MDP M with hierarchical decomposition {M0,M1, . . . ,Mm−1} as a
hierarchical policy µ= {µ0, . . . ,µm−1} such that for each subtaskMi, the corresponding policy µi is
optimal for the SMDP defined by the tuple (Si,Ai,Pµi , R̄i).

4.5 Value Function Decomposition

A value function decomposition splits the value of a state or a state-action pair into multiple ad-
ditive components. Modularity in the hierarchical structure of a task allows us to carry out this
decomposition along subtask boundaries. In this section, we first describe the two-part or MAXQ
decomposition proposed by Dietterich (2000), and then the three-part decomposition proposed by
Andre and Russell (2002). We use both decompositions in our hierarchical average reward frame-
work depending on the type of optimality (hierarchical or recursive) that we are interested in.

The two-part value function decomposition is at the center of the MAXQ method. The purpose
of this decomposition is to decompose the projected value function of the root task, V̂ µ(0,s), in
terms of the projected value functions of all the subtasks in the hierarchy. The projected value of
subtaskMi at state s under hierarchical policy µ can be written as

V̂ µ(i,s) = E

[
∞

∑
k=0

γkr(sk,ak)|s0 = s,µ

]
. (3)

Now, let us suppose that the first action chosen by µi is invoked and executed for a number of
primitive steps N and terminates in state s′ according to Pµi (s′,N|s). We can rewrite Equation 3 as

V̂ µ(i,s) = E

[
N−1

∑
k=0

γkr(sk,ak)+
∞

∑
k=N

γkr(sk,ak)|s0 = s,µ

]
. (4)

The first summation on the right-hand side of Equation 4 is the discounted sum of rewards for
executing subtask µi(s) starting in state s until it terminates. In other words, it is V̂ µ(µi(s),s), the
projected value function of the child task µi(s). The second term on the right-hand side of the
equation is the projected value of state s′ for the current task Mi, V̂ µ(i,s′), discounted by γN , where
s′ is the current state when subroutine µi(s) terminates and N is the number of transition steps from
state s to state s′. We can therefore write Equation 4 in the form of a Bellman equation:

V̂ µ(i,s) = V̂ µ(µi(s),s)+ ∑
N,s′∈Si

Pµi (s
′,N|s)γNV̂ µ(i,s′). (5)

Equation 5 can be restated for the projected action-value function as follows:

Q̂µ(i,s,a) = V̂ µ(a,s)+ ∑
N,s′∈Si

Pµi (s
′,N|s,a)γNQ̂µ(i,s′,µi(s′)).

The right-most term in this equation is the expected discounted cumulative reward of completing
subtask Mi after executing action a in state s. Dietterich called this term completion function and
denoted it by

Cµ(i,s,a) = ∑
N,s′∈Si

Pµi (s
′,N|s,a)γNQ̂µ(i,s′,µi(s′)). (6)

2640

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

With this definition, we can express the projected action-value function recursively as

Q̂µ(i,s,a) = V̂ µ(a,s)+Cµ(i,s,a), (7)

and we can rewrite the definition for projected value function as

V̂ µ(i,s) =
{
Q̂µ(i,s,µi(s)) ifMi is a non-primitive subtask,
r(s, i) ifMi is a primitive action.

(8)

Equations 6 to 8 are referred to as two-part value function decomposition equations for a hi-
erarchy under a hierarchical policy µ. These equations recursively decompose the projected value
function for the root into the projected value functions for the individual subtasks, M1, . . . ,Mm−1,
and the individual completion functionsCµ(j,s,a), j= 1, . . . ,m−1. The fundamental quantities that
must be stored to represent this value function decomposition are the C values for all non-primitive
subtasks and the V values for all primitive actions.7 The two-part value function decomposition is
summarized graphically in Figure 2. As mentioned in Section 4.4, since the expected reward after
execution of subtask Mi is not a component of the projected action-value function, the two-part
value function decomposition allows only for recursive optimality.

V(i,s)

V(a,s)

Part 1
Part 2

C(i,s,a)

s ’

Execution of Subtask i

s sI Ts

Execution of Action a

Figure 2: This figure shows the two-part decomposition for V̂ (i,s), the projected value function of
subtaskMi for the shaded state s. Each circle is a state of the SMDP visited by the agent.
Subtask Mi is initiated at state sI and terminates at state sT . The projected value function
V̂ (i,s) is broken into two parts: Part 1) the projected value function of subtask Ma for
state s, and Part 2) the completion function, the expected discounted cumulative reward
of completing subtaskMi after executing action a in state s.

Andre and Russell (2002) proposed a three-part value function decomposition to achieve hi-
erarchical optimality. They added a third component for the expected sum of rewards outside the
current subtask to the two-part value function decomposition. This decomposition decomposes the
hierarchical value function of each subtask into three parts. As shown in Figure 3, these three parts

7. The projected value function and value function are the same for a primitive action.

2641

GHAVAMZADEH AND MAHADEVAN

correspond to executing the current action (which might itself be a subtask), completing the rest
of the current subtask (so far is similar to the MAXQ decomposition), and all actions outside the
current subtask.

x=(,s)ω

V(a,s)

Part 1
Part 2

C(i,s,a)

Part 3

Execution of Subtask i

I Txx x ’

V(i,x)

Execution of Action a

Figure 3: This figure shows the three-part decomposition forV (i,x), the hierarchical value function
of subtaskMi for the shaded state x= (ω,s). Each circle is a state of the SMDP visited by
the agent. Subtask Mi is initiated at state xI and terminates at state xT . The hierarchical
value function V (i,x) is broken into three parts: Part 1) the projected value function of
subtaskMa for state s, Part 2) the completion function, the expected discounted cumula-
tive reward of completing subtask Mi after executing action a in state s, and Part 3) the
sum of all rewards after termination of subtaskMi.

5. Hierarchical Average Reward Reinforcement Learning

As described in Section 1, the average reward formulation is more appropriate for a wide class
of continuing tasks including manufacturing, scheduling, queuing, and inventory control than the
more well-studied discounted framework. Moreover, average reward optimality allows for more
efficient state abstraction in HRL than the discounted reward formulation. Consider the case that a
set of state variables Ya is irrelevant for the result distribution of action (subtask) Ma, when Ma is
executed under subtask Mi. It means that for all policies executed by Ma and its descendants, and
for all pairs of states s1 and s2 in Si (the state space of subtaskMi) that differ only in their values for
the state variables in Ya, we have

Pµi (s
′,N|s1,a) = Pµi (s

′,N|s2,a) , ∀s′ ∈ Si , ∀N ∈ N.

Dietterich (2000) first defined this condition and called it result distribution irrelevance. If this
condition is satisfied for subtask Ma, then the completion function values of its parent task Mi
can be represented compactly, that is, all states s ∈ Si that differ only in their values for the state
variables in Ya have the same completion function, and therefore their completion function values
can be represented only by one quantityCµ(i,s,a), defined by Equation 6.

2642

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

The definition of result distribution irrelevance can be weakened to eliminate N, the number of
steps. All that is needed is that for all pairs of states s1 and s2 in Si that differ only in the irrelevant
state variables, Fµi (s′|s1,a) = Fµi (s′|s2,a) for all s′ ∈ Si. Although the result distribution irrelevance
condition would rarely be satisfied, we often find cases where the weakened result distribution
irrelevance condition is true.

Under this revised definition, the compact representation of a completion function still holds
in the undiscounted case, but not in the discounted formulation. Consider, for example, the collect
trash at T1 subtask in the robot trash-collection problem described in Section 4.1. No matter what
location the robot has in state s, it will be at the Dump location when the collect trash at T1 subtask
terminates. Hence, the starting location is irrelevant to the resulting location of the robot, and
FµRoot(s′|s1,collect trash at T1) = FµRoot(s′|s2,collect trash at T1) for all states s1 and s2 in SRoot that
differ only in the robot’s location. However, if we were using discounted reward optimality, the
robot’s location would not be irrelevant, because the probability that the collect trash at T1 subtask
will terminate in N steps would depend on the location of the robot, which could differ in states
s1 and s2. Different values of N will produce different amounts of discounting in Equation 6, and
hence we cannot ignore the robot location when representing the completion function for the collect
trash at T1 subtask. When we use undiscounted optimality, such as average reward, we can use the
weakened result distribution irrelevance and still represent the completion function for the collect
trash at T1 subtask with only one quantity.

In this section, we extend previous work on hierarchical reinforcement learning (HRL) to the
average reward framework, and investigate two formulations of HRL based on the average reward
SMDP model. These two formulations correspond to two notions of optimality in HRL: hierar-
chical optimality and recursive optimality described in Section 4.3. We present discrete-time and
continuous-time algorithms to find hierarchically and recursively optimal average reward policies.
In these algorithms, we assume that the overall task (the root of the hierarchy) is continuing. In the
hierarchically optimal average reward RL (HAR) algorithms, the aim is to find a hierarchical
policy within the space of policies defined by the hierarchical decomposition that maximizes the
global gain (Ghavamzadeh and Mahadevan, 2002). In the recursively optimal average reward
RL (RAR) algorithms, we treat subtasks as continuing average reward problems, where the goal at
each subtask is to maximize its gain given the policies of its children (Ghavamzadeh and Mahade-
van, 2001). We investigate the conditions under which the policy learned by the RAR algorithm at
each subtask is independent of the context in which it is executed and therefore can be reused by
other hierarchies. In Section 6, we use two automated guided vehicle (AGV) scheduling tasks as
experimental testbeds to study the empirical performance of the proposed algorithms. We model the
second AGV task using both discrete-time and continuous-time models. We compare the perfor-
mance of our proposed algorithms with other HRL methods and a non-hierarchical average reward
RL algorithm in this problem.

5.1 Hierarchically Optimal Average Reward RL Algorithm

Given the basic concepts of the average reward SMDP model described in Section 3.1, the funda-
mental principles of HRL, and the HRL framework in Section 4, we now describe a hierarchically
optimal average reward RL formulation. Since we are interested in hierarchical optimality, we in-
clude the contents of the Task-Stack as a part of the state space of the problem. In this section, we

2643

GHAVAMZADEH AND MAHADEVAN

consider HRL problems for which the following assumptions hold.

Assumption 1 (Continuing Root Task): The root of the hierarchy is a continuing task, that is, the
root task continues without termination. !

Assumption 2: For every hierarchical policy µ, the Markov chain that results from flattening the hi-
erarchy using the hierarchical policy µ, represented by the transition probability matrix mµ (defined
in Section 4.4), has a single recurrent class and a (possibly empty) set of transient states. !

If Assumptions 1 and 2 hold, the gain8

gµ =

(
lim
n→∞

1
n

n−1

∑
t=0

(mµ)t
)
rµ = mµrµ (9)

is well defined for every hierarchical policy µ and does not depend on the initial state. In Equation
9, mµ is the limiting matrix of the Markov chain that results from flattening the hierarchy using
the hierarchical policy µ, and satisfies the equality mµmµ = mµ, and rµ is a vector with elements
r(x,µ(x)), for all x ∈ X . We call gµ the global gain under the hierarchical policy µ. The global gain,
gµ, is the gain of the Markov chain that results from flattening the hierarchy using the hierarchical
policy µ.

Here, we are interested in finding a hierarchical policy µ∗ that maximizes the global gain

gµ
∗ ≥ gµ, for all µ. (10)

We refer to a hierarchical policy µ∗ which satisfies Equation 10 as a hierarchically optimal average
reward policy, and to gµ∗ as the hierarchically optimal average reward or the hierarchically optimal
gain.

We replace the value and the action-value functions in the HRL framework of Section 4 with
the average-adjusted value and the average-adjusted action-value functions described in Section 3.1.
The hierarchical average-adjusted value function for hierarchical policy µ and subtask Mi, denoted
Hµ(i,x), is the average-adjusted sum of rewards earned by following hierarchical policy µ starting
in state x= (ω,s) untilMi terminates, plus the expected average-adjusted reward outside subtaskMi

Hµ(i,x) = lim
N→∞

E

{
N−1

∑
k=0

[rµ(xk,ak)−gµyµ(xk,ak)] |x0 = x,µ

}
. (11)

Here, the rewards are adjusted with gµ, the global gain under the hierarchical policy µ.
Now, let us suppose that the first action chosen by µi is executed for a number of primitive steps

N1 and terminates in state x1 = (ω,s1) according to multi-step transition probability Pµi (x1,N1|x,µi(x)),
and then subtask Mi itself executes for N2 steps at the level of subtask Mi (N2 is the number of
actions taken by subtaskMi, not the number of primitive actions) and terminates in state x2 = (ω,s2)
according to multi-step abstract transition probability Fµ

i (x2,N2|x1). We can rewrite Equation 11 in
the form of a Bellman equation as

8. Under the unichain assumption, mµ has equal rows. Therefore, the right hand side of Equation 9 is a vector with
elements all equal to gµ.

2644

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

Hµ(i,x) = rµi (x,µi(x))−gµyµi (x,µi(x))+
(12)

∑
N1,s1∈Si

Pµi (x1,N1|x,µi(x))
[
Ĥµ(i,x1)+ ∑

N2,s2∈Si
Fµi (x2,N2|x1)Hµ(Parent(i),(ω↗ i,s2))

]
,

where Ĥµ(i, .) is the projected average-adjusted value function of the hierarchical policy µ and sub-
task Mi, yµi (x,µi(x)) is the expected number of time steps until the next decision epoch of subtask
Mi after taking action µi(x) in state x and following the hierarchical policy µ afterward, and ω↗ i
is the content of the Task-Stack after popping subtask Mi off. Notice that Ĥ does not contain the
average-adjusted rewards outside the current subtask and should be distinguished from the hier-
archical average-adjusted value function H, which includes the sum of average-adjusted rewards
outside the current subtask.

Since rµi (x,µi(x)) is the expected reward between two decision epochs of subtaskMi, given that
the system occupies state x at the first decision epoch, and the agent chooses action µi(x), we have

rµi (x,µi(x)) = V̂µ(µi(x),(µi(x) ↘ ω,s)) = Ĥµ(µi(x),(µi(x) ↘ ω,s))+gµyµi (x,µi(x)),

where µi(x) ↘ ω is the content of the Task-Stack after pushing subtask µi(x) onto it. By replacing
rµi (x,µi(x)) from the above expression, Equation 12 can be written as

Hµ(i,x) = Ĥµ(µi(x),(µi(x) ↘ ω,s))+
(13)

∑
N1,s1∈Si

Pµi (x1,N1|x,µi(x))
[
Ĥµ(i,x1)+ ∑

N2,s2∈Si
Fµi (x2,N2|x1)Hµ(Parent(i),(ω↗ i,s2))

]
.

We can restate Equation 13 for hierarchical average-adjusted action-value function as

Lµ(i,x,a) = Ĥµ(a,(a↘ ω,s))+ ∑
N1,s1∈Si

Pµi (x1,N1|x,a)

(14)[
Ĥµ(i,x1)+ ∑

N2,s2∈Si
Fµi (x2,N2|x1)Lµ(Parent(i),(ω↗ i,s2),µparent(i)(ω↗ i,s2))

]
.

From Equation 14, we can rewrite the hierarchical average-adjusted action-value function L recur-
sively as

Lµ(i,x,a) = Ĥµ(a,(a↘ ω,s))+Cµ(i,x,a)+CEµ(i,x,a), (15)

where
Cµ(i,x,a) = ∑

N1,s1∈Si
Pµi (x1,N1|x,a)Ĥ

µ(i,x1), (16)

and

2645

GHAVAMZADEH AND MAHADEVAN

CEµ(i,x,a) = ∑
N1,s1∈Si

Pµi (x1,N1|x,a)

(17)[

∑
N2,s2∈Si

Fµi (x2,N2|x1)Lµ(Parent(i),(ω↗ i,s2),µparent(i)(ω↗ i,s2))

]
.

The term Cµ(i,x,a) is the expected average-adjusted reward of completing subtask Mi after execut-
ing action a in state x= (ω,s). We call this term completion function after Dietterich (2000). The
term CEµ(i,x,a) is the expected average-adjusted reward received after subtask Mi terminates. We
call this term external completion function after Andre and Russell (2002).

We can rewrite the definition of Ĥ as

Ĥµ(i,x) =
{
L̂µ(i,x,µi(x)) if Mi is a non-primitive subtask,
r(s, i)−gµ if Mi is a primitive action,

(18)

where L̂µ is the projected average-adjusted action-value function and can be written as

L̂µ(i,x,a) = Ĥµ(a,(a↘ ω,s))+Cµ(i,x,a). (19)

Equations 15 to 19 are the decomposition equations under a hierarchical policy µ. These equa-
tions recursively decompose the hierarchical average-adjusted value function for root, Hµ(0,x), into
the projected average-adjusted value functions Ĥµ for the individual subtasks,M1, . . . ,Mm−1, in the
hierarchy, the individual completion functions Cµ(i,x,a), i = 1, . . . ,m− 1, and the individual ex-
ternal completion functions CEµ(i,x,a), i = 1, . . . ,m− 1. The fundamental quantities that must be
stored to represent the hierarchical average-adjusted value function decomposition are the C and
the CE values for all non-primitive subtasks, the Ĥ values for all primitive actions, and the global
gain g. The decomposition equations can be used to obtain update equations for Ĥ, C, and CE in
this hierarchically optimal average reward model. Pseudo-code for the discrete-time hierarchically
optimal average reward RL (HAR) algorithm is shown in Algorithm 1. In this algorithm, primitive
subtasks update their projected average-adjusted value functions Ĥ (Line 5), while non-primitive
subtasks update both their completion functionsC (Line 17), and external completion functionsCE
(Lines 20 and 22). We store only one global gain g and update it after each non-random primitive
action (Line 7). In the update formula on Line 17, the projected average-adjusted value function
Ĥ(a∗,(a∗ ↘ ω,s′)) is the average-adjusted reward of executing action a∗ in state (a∗ ↘ ω,s′) and
is recursively calculated by subtask Ma∗ and its descendants using Equations 18 and 19. Notice
that the hierarchical average-adjusted action-value function L on Lines 15, 19, and 20 is recursively
evaluated using Equation 15.

This algorithm can be easily extended to continuous-time by changing the update formulas for
Ĥ and g on Lines 5 and 7 as

Ĥt+1(i,x)←[1−αt(i)]Ĥt(i,x)+αt(i) [k(s, i)+ r(s, i)τ(s, i)−gtτ(s, i)] ,

gt+1 =
rt+1
tt+1

=
rt + k(s, i)+ r(s, i)τ(s, i)

tt + τ(s, i)
,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed reward of
taking action Mi in state s, and r(s, i) is the reward rate for the time between state s and the next
state.

2646

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

Algorithm 1 : Discrete-time hierarchically optimal average reward RL (HAR) algorithm.
1: Function HAR(TaskMi, State x= (ω,s))
2: let Seq = {} be the sequence of states visited while executing subtaskMi
3: ifMi is a primitive action then
4: execute actionMi in state x= (ω,s), observe state x′ = (ω,s′) and reward r(s, i)
5: Ĥt+1(i,x) ← [1−αt(i)]Ĥt(i,x)+αt(i)[r(s, i)−gt]
6: ifMi and all its ancestors are non-random actions then
7: update the global gain gt+1 = rt+1

nt+1 = rt+r(s,i)
nt+1

8: end if
9: push state x1 = (ω↗ i,s) into the beginning of Seq
10: else
11: whileMi has not terminated do
12: choose action (subtask)Ma according to the current exploration policy µi(x)
13: let ChildSeq = HAR(Ma, (a ↘ ω,s)), where ChildSeq is the sequence of states visited

while executing subtaskMa
14: observe result state x′ = (ω,s′)
15: let a∗ = argmaxa′∈Ai(s′)Lt(i,x

′,a′)
16: for each x= (ω,s) in ChildSeq from the beginning do
17: Ct+1(i,x,a) ← [1−αt(i)]Ct(i,x,a)+αt(i)

[
Ĥt(a∗,(a∗ ↘ ω,s′))+Ct(i,x′,a∗)

]

18: if s′ ∈ Ti (s′ belongs to the set of terminal states of subtaskMi) then
19: a′′ = argmaxa′∈AParent(i) Lt(Parent(i),(ω↗ i,s′),a′)
20: CEt+1(i,x,a) ← [1−αt(i)]CEt(i,x,a)+αt(i)Lt(Parent(i),(ω↗ i,s′),a′′)
21: else
22: CEt+1(i,x,a) ← [1−αt(i)]CEt(i,x,a)+αt(i)CEt(i,x′,a∗)
23: end if
24: replace state x= (ω,s) with (ω↗ i,s) in the ChildSeq
25: end for
26: append ChildSeq onto the front of Seq
27: x= x′
28: end while
29: end if
30: return Seq
31: end HAR

5.2 Recursively Optimal Average Reward RL

In the previous section, we introduced discrete-time and continuous-time hierarchically optimal
average reward RL (HAR) algorithms. In HAR algorithms, we define only a global gain for the
entire hierarchy to guarantee hierarchical optimality for the overall task. HAR algorithms find a
hierarchical policy that has the highest global gain among all policies consistent with the given
hierarchy. However, there may exist subtasks where their policies must be locally suboptimal so
that the overall policy becomes optimal. Recursive optimality is a kind of local optimality in which
the policy at each node is optimal given the policies of its children (see Section 4.3). Thus, the goal
at root is to maximize its gain given the policies for its descendants. The reason seeking recursive
optimality rather than hierarchical optimality is that recursive optimality makes it possible to solve

2647

GHAVAMZADEH AND MAHADEVAN

each subtask without reference to the context in which it is executed, and therefore the learned
subtask can be reused by other hierarchies. This leaves open the question of what local optimality
criterion should be used for each subtask in a recursively optimal average reward RL setting.

One approach pursued by Seri and Tadepalli (2002) is to optimize subtasks using their expected
total average-adjusted reward with respect to the global gain. Seri and Tadepalli introduced a model-
based algorithm called hierarchical H-Learning (HH-Learning). For every subtask, this algorithm
learns the action model and maximizes the expected total average-adjusted reward with respect to
the global gain at each state. In this method, the projected average-adjusted value functions with
respect to the global gain satisfy the following equations:

Ĥµ(i,s) =






r(s, i)−gµ if Mi is a primitive action,

0 if s ∈ Ti (s is a terminal state of subtaskMi),

maxa∈Ai(s)[Ĥ
µ(a,s)+∑N,s′∈Si P

µ
i (s′,N|s,a)Ĥµ(i,s′)] otherwise.

(20)

The first term of the last part of Equation 20, Ĥµ(a,s), denotes the expected total average-adjusted
reward during the execution of subtaskMa (the projected average adjusted value function of subtask
Ma), and the second term denotes the expected total average-adjusted reward from then on until the
completion of subtask Mi (the completion function of subtask Mi after execution of subtask Ma).
Since the expected average-adjusted reward after execution of subtaskMi is not a component of the
average-adjusted value function of subtask Mi, this approach does not necessarily allow for hierar-
chical optimality, as we will show in the experiments of Section 6. Moreover, the policy learned
for each subtask using this approach is not context free, since each subtask maximizes its average-
adjusted reward with respect to the global gain. However, Seri and Tadepalli (2002) showed that
this method finds the hierarchically optimal average reward policy when the result distribution in-
variance condition holds.

Definition 8 (Result Distribution Invariance Condition): For all subtasks Mi and states s in the
hierarchy, the distribution of states reached after the execution of any subtaskMa (Ma is one ofMi’s
children) is independent of the policy µa of subtask Ma and the policies of Ma’s descendants, that
is, Pµi (s′|s,a) = Pi(s′|s,a). !

In other words, states reached after the execution of a subtask cannot be changed by altering the
policies of the subtask and its descendants. Note that the result distribution invariance condition
does not hold for every problem, and therefore HH-Learning is neither hierarchically nor recursively
optimal in general.

Another approach is to formulate subtasks as continuing average reward problems, where the
goal at each subtask is to maximize its gain given the policies of its children (Ghavamzadeh and
Mahadevan, 2001). We describe this approach in detail in Sections 5.2.1 and 5.2.2. In Section
5.2.3, we use this method to find recursively optimal average reward policies, and present discrete-
time and continuous-time recursively optimal average reward RL (RAR) algorithms. Finally, in
Section 5.2.4, we investigate the conditions under which the policy learned by RAR algorithm at
each subtask is independent of the context in which it is executed and therefore can be reused by
other hierarchies.

2648

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

5.2.1 ROOT TASK FORMULATION

In our recursively optimal average reward RL approach, we consider those problems for which As-
sumption 1 (Continuing Root Task) and the following assumption hold.

Assumption 3 (Root Task Recurrence): There exists a state s∗0 ∈ S0 such that, for every hierarchi-
cal policy µ and for every state s ∈ S0, we have9

|S0|

∑
N=1

Fµ0 (s∗0,N|s) > 0,

where Fµ0 is the multi-step abstract transition probability function of root under the hierarchical pol-
icy µ described in Section 4.2, and |S0| is the number of states in the state space of root. !

Assumption 3 is equivalent to assuming that the underlying Markov chain at root for every
hierarchical policy µ has a single recurrent class, and state s∗0 is a recurrent state. If Assumptions
1 and 3 hold, the gain at the root task under the hierarchical policy µ, gµ0, is well defined for every
hierarchical policy µ and does not depend on the initial state. When the state space at root is finite
or countable, the gain at root can be written as10

gµ0 =
F̄µ0r

µ
0

F̄µ0y
µ
0
,

where rµ0 and y
µ
0 are vectors with elements r

µ
0(s,µ0(s)) and y

µ
0(s,µ0(s)), for all s ∈ S0. rµ0(s,µ0(s))

and yµ0(s,µ0(s)) are the expected total reward and the expected number of time steps between
two decision epochs at root, given that the system occupies state s at the first decision epoch
and the agent chooses its actions according to the hierarchical policy µ. The terms F µ

0 and F̄
µ
0 =

limn→∞
1
n ∑

n−1
t=0 (F

µ
0)
t are the transition probability matrix and the limiting matrix of the embedded

Markov chain at root for hierarchical policy µ, respectively. The transition probability F µ
0 is ob-

tained by marginalizing the multi-step transition probability Pµ0 . The term Fµ0 (s′|s,µ0(s)) denotes
the probability that the SMDP at root occupies state s′ at the next decision epoch, given that the
agent chooses action µ0(s) in state s at the current decision epoch and follows the hierarchical pol-
icy µ.

5.2.2 SUBTASK FORMULATION

In Section 5.2.1, we described the average reward formulation for the root task of a hierarchical
decomposition. In this section, we illustrate how we formulate all other subtasks in a hierarchy as
average reward problems. From now on in this section, we use subtask to refer to non-primitive
subtasks in a hierarchy except root.

In HRL methods, we typically assume that every time a subtask Mi is executed, it starts at one
of its initial states (∈ Ii) and terminates at one of its terminal states (∈ Ti) after a finite number of
time steps. Therefore, we can make the following assumption for every subtaskMi in the hierarchy.

9. Notice that the root task is represented as subtask M0 in the HRL framework described in Section 4. Thus, we use
index 0 to represent components of the root task.

10. When the underlying Markov chain at root for every hierarchical policy µ has a single recurrent class, F̄µ0 has equal
rows, and the right hand side of the equation is a vector with elements all equal to gµ0.

2649

GHAVAMZADEH AND MAHADEVAN

Under this assumption, each subtask can be considered an episodic problem and each instantiation
of a subtask can be considered an episode.

Assumption 4 (Subtask Termination): There exists a dummy state s∗i such that, for every action
a ∈ Ai and every terminal state s ∈ Ti, we have

ri(s,a) = 0 and Pi(s∗i ,1|s,a) = 1

and for all hierarchical stationary policies µ and non-terminal states s ∈ (Si−Ti), we have

Fµi (s∗i ,1|s) = 0

and finally for all states s ∈ Si, we have

Fµi (s∗i , |Si||s) > 0

where Fµi is the multi-step abstract transition probability function of subtaskMi under the hierarchi-
cal policy µ described in Section 4.2, and |Si| is the number of states in the state space of subtask
Mi. !

Although subtasks are episodic problems, when the overall task (root of the hierarchy) is con-
tinuing as we assumed in this section (Assumption 1), they are executed an infinite number of times,
and therefore can be modeled as continuing problems using the model described in Figure 4. In this
model, each subtaskMi terminates at one of its terminal states s ∈ Ti. All terminal states transit with
probability 1 and reward 0 to a dummy state s∗i . Finally, the dummy state s∗i transits with reward
zero to one of the initial states (∈ Ii) of subtask Mi upon the next instantiation of Mi. These are
dummy transitions and do not add any time-step to the cycle of subtask Mi and therefore are not
taken into consideration when the average reward of subtaskMi is calculated. It is important for the
validity of the model to fix the value of dummy states to zero.

*s

Terminal States
n

. . .
1

...
...

1

n

Set of
Ti Initial States I i

Set of

r = 0 , I = In

r = 0 , I = I1

I + + I = 1

i

r = 0 , F = 1

r = 0 , F = 1

Figure 4: This figure shows how each subtask in a hierarchical decomposition of a continuing prob-
lem can be modeled as a continuing task.

2650

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

Under this model, for every hierarchical policy µ, we define a new SMDP for each subtask Mi
in the hierarchy with the following multi-step transition probabilities and rewards:

PµIi(s
′,N|s,µi(s)) =






Pµi (s′,N|s,µi(s)) s,s′ -= s∗i , ∀N ∈ N,
Ii(s′) s= s∗i , N = 1,
1 s′ = s∗i , s ∈ Ti , N = 1,
0 otherwise.

(21)

rµIi(s,µi(s)) =
{
rµi (s,µi(s)) s ∈ (Si−Ti),
0 s= s∗i or s ∈ Ti.

where Ii(s) is the probability that subtask Mi starts at state s ∈ Ii. The SMDP defined by Equation
21 has an embedded MDP with the following transition probability function:

FµIi (s
′|s,µi(s)) =






Fµi (s′|s,µi(s)) s,s′ -= s∗i ,
Ii(s′) s= s∗i ,
1 s′ = s∗i , s ∈ Ti,
0 s′ = s∗i , s ∈ (Si−Ti).

(22)

Lemma 1: Let Assumption 4 (Subtask Termination) hold. Then, for every Fµ
Ii and every state

s ∈ Si, we have ∑|Si|
N=1F

µ
Ii (s

∗
i ,N|s) > 0.11 !

Lemma 1 is equivalent to assuming that for every subtask Mi in the hierarchy, the underlying
Markov chain for every hierarchical policy µ has a single recurrent class and state s∗i is its recurrent
state. Under this model, the gain of subtask Mi under the hierarchical policy µ, gµi , is well defined
for every hierarchical policy µ and does not depend on the initial state. When the state space of
subtaskMi is finite or countable, the gain of subtaskMi can be written as12

gµi =
F̄µIir

µ
Ii

F̄µIiy
µ
Ii
,

where rµIi and y
µ
Ii are vectors with elements r

µ
Ii(s,µi(s)) and y

µ
Ii(s,µi(s)), for all s ∈ Si. rµIi(s,µi(s))

and yµIi(s,µi(s)) are the expected total reward and the expected number of time steps between two
decision epochs of the SMDP defined by Equation 21 at subtaskMi, given that the system occupies
state s at the first decision epoch and the agent chooses its actions according to hierarchical policy µ.
The term F̄µIi = limn→∞

1
n ∑

n−1
t=0 (F

µ
Ii)

t is the limiting matrix of the Markov chain defined by Equation
22 at subtaskMi.

5.2.3 A RECURSIVELY OPTIMAL AVERAGE REWARD RL ALGORITHM

In this section, we present discrete-time and continuous-time recursively optimal average reward
RL (RAR) algorithms using the formulation described in Sections 5.2.1 and 5.2.2. We consider

11. This lemma is a restatement of Lemma 5 on page 34 of Peter Marbach’s thesis (Marbach, 1998).
12. When the underlying Markov chain for every hierarchical policy µ at subtaskMi has a single recurrent class, F̄µIi has

equal rows, and thus the right hand side of the equation is a vector with elements all equal to gµi .

2651

GHAVAMZADEH AND MAHADEVAN

problems for which Assumptions 1, 3, and 4 (Continuing Root-Task, Root-Task Recurrence, and
Subtask Termination) hold, root is modeled as an average reward problem as described in Section
5.2.1, and every other non-primitive subtask in the hierarchy is modeled as an average reward prob-
lem using the model described in Section 5.2.2. Under these assumptions, the average reward for
every non-primitive subtask in the hierarchy including root is well defined for every hierarchical
policy and does not vary with initial state. Since we are interested in finding a recursively optimal
average reward policy, we do not need to include the contents of the Task-Stack as a part of the state
space of the problem. We also replace the projected value and action-value functions in the hierar-
chical model of Section 4 with the projected average-adjusted value and projected average-adjusted
action-value functions described in Section 3.1.

We show how the overall projected average-adjusted value function Ĥµ(0,s) is decomposed
into a collection of projected average-adjusted value functions of individual subtasks Ĥµ(i,s), i =
1, . . . ,m−1, in RAR algorithm. The projected average-adjusted value function of hierarchical pol-
icy µ at subtaskMi is the average-adjusted (with respect to the local gain gµi) sum of rewards earned
by following policy µi and the policies of all descendants of subtask Mi starting in state s until Mi
terminates. Now, let us suppose that the first action chosen by µi is executed for a number of primi-
tive steps N and terminates in state s′ according to multi-step transition probability Pµi (s′,N|s,µi(s)).
We can write the projected average-adjusted value function in the form of a Bellman equation as

Ĥµ(i,s) = rµi (s,µi(s))−gµi y
µ
i (s,µi(s))+ ∑

N,s′∈Si
Pµi (s

′,N|s,µi(s))Ĥµ(i,s′). (23)

Since rµi (s,µi(s)) is the expected total reward between two decision epochs of subtaskMi, given
that the system occupies state s at the first decision epoch, the agent chooses action µi(s), and the
number of time steps until the next decision epoch is defined by yµi (s,µi(s)), we have

rµi (s,µi(s)) =






V̂ µ(µi(s),s) = Ĥµ(µi(s),s)+gµµi(s)y
µ
i (s,µi(s))

if Mµi(s) is a non-primitive subtask,
V̂ µ(µi(s),s)

if Mµi(s) is a primitive action.

By replacing rµi (s,µi(s)) from the above expression, and the fact that yµi (s,µi(s)) equals 1 when
Mµi(s) is a primitive action, Equation 23 can be written as

Ĥµ(i,s) =






Ĥµ(µi(s),s)− (gµi −gµµi(s))y
µ
i (s,µi(s))+∑N,s′∈Si P

µ
i (s′,N|s,µi(s))Ĥµ(i,s′)

ifMµi(s) is a non-primitive subtask,

V̂µ(µi(s),s)−gµi +∑s′∈Si P
µ
i (s′|s,µi(s))Ĥµ(i,s′)

ifMµi(s) is a primitive action.

(24)

We can restate Equations 24 for the projected action-value function as follows:

2652

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

L̂µ(i,s,a) =






Ĥµ(a,s)− (gµi −gµa)yµi (s,a)+∑N,s′∈Si P
µ
i (s′,N|s,a)L̂µ(i,s′,µi(s′))

ifMa is a non-primitive subtask,

V̂µ(a,s)−gµi +∑s′∈Si P
µ
i (s′|s,a)L̂µ(i,s′,µi(s′))

ifMa is a primitive action.

(25)

By defining

Cµ(i,s,a) =






−(gµi −gµa)yµi (s,a)+∑N,s′∈Si P
µ
i (s′,N|s,a)L̂µ(i,s′,µi(s′))

ifMa is a non-primitive subtask,

−gµi +∑s′∈Si P
µ
i (s′|s,a)L̂µ(i,s′,µi(s′))

ifMa is a primitive action,

(26)

we can express the average-adjusted action-value function L̂µ recursively as

L̂µ(i,s,a) =
{
Ĥµ(a,s)+Cµ(i,s,a) if Ma is a non-primitive subtask,
V̂ µ(a,s)+Cµ(i,s,a) if Ma is a primitive action,

(27)

where
Ĥµ(i,s) = L̂µ(i,s,µi(s)). (28)

We callCµ(i,s,a) defined by Equation 26 completion function.
Equations 24 to 28 are the decomposition equations for the projected average-adjusted value

and projected average-adjusted action-value functions. They can be used to obtain update formulas
for Ĥ and C in this recursively optimal average reward model. Pseudo-code for the discrete-time
recursively optimal average reward RL (RAR) algorithm is shown in Algorithm 2. In this algorithm,
a gain is defined for every non-primitive subtask in the hierarchy and this gain is updated every time
a subtask is non-randomly chosen. Primitive subtasks store their projected value functions, and
update them using the equation on Line 5. Non-primitive subtasks store their completion functions
and gains, and update them using equations on Lines 17, 19, and 23. The projected average-adjusted
action-value function L̂ on Lines 12, 17, and 19 is recursively calculated using Equations 26 to 28.

This algorithm can be easily extended to continuous-time (Ghavamzadeh andMahadevan, 2001).
In continuous-time RAR algorithm, in addition to visited state and reward, we need to insert the ex-
ecution time of primitive actions τ into the sequence Seq. Therefore, N = N+1 on Line 15 of the
algorithm is changed to T = T + τ. We also need to change the update formulas for V̂ ,C, and gi on
Lines 5, 17, 19, and 23 as

V̂t+1(i,s)←[1−αt(i)]Ĥt(i,s)+αt(i) [k(s, i)+ r(s, i)τ(s, i)] ,

Ct+1(i,s,a) ← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)−gt(i)T],

Ct+1(i,s,a) ← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)− (gt(i)−gt(a))T],

2653

GHAVAMZADEH AND MAHADEVAN

Algorithm 2 : Discrete-time recursively optimal average reward RL (RAR) algorithm.
1: Function RAR(TaskMi, State s)
2: let Seq ={}be the sequence of (state visited, reward) while executing subtaskMi
3: ifMi is a primitive action then
4: execute actionMi in state s, observe state s′ and reward r(s, i)
5: V̂t+1(i,s) ← [1−αt(i)]V̂t(i,s)+αt(i)r(s, i)
6: push (state s, reward r(s, i)) into the beginning of Seq
7: else
8: whileMi has not terminated do
9: choose action (subtask)Ma according to the current exploration policy µi(s)
10: let ChildSeq= RAR(Ma, s), where ChildSeq is the sequence of (state visited, reward) while

executing subtaskMa
11: observe result state s′
12: let a∗ = argmaxa′∈Ai(s′) L̂t(i,s

′,a′)
13: let N = 0; ρ= 0;
14: for each (s, r) in ChildSeq from the beginning do
15: N = N+1; ρ= ρ+ r;
16: if a is a primitive action then
17: Ct+1(i,s,a) ← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)−gt(i)N]
18: else
19: Ct+1(i,s,a) ← [1−αt(i)]Ct(i,s,a)+αt(i)[L̂t(i,s′,a∗)− (gt(i)−gt(a))N]
20: end if
21: end for
22: if a and all its ancestors are non-random actions then
23: update the gain of subtaskMi gt+1(i) = rt+1(i)

nt+1(i) = rt(i)+ρ
nt(i)+N

24: end if
25: append ChildSeq onto the front of Seq
26: s= s′
27: end while
28: end if
29: return Seq
30: end RAR

gt+1(i) =
rt+1(i)
tt+1(i)

=
rt(i)+ρ
tt(i)+T

,

where τ(s, i) is the time elapsing between state s and the next state, k(s, i) is the fixed reward of
taking action Mi in state s, and r(s, i) is the reward rate for the time between state s and the next
state.

5.2.4 ANALYSIS OF THE RAR ALGORITHM

In this section, we study the optimality achieved by RAR algorithm. As described earlier, the
expected average-adjusted sum of rewards after execution of subtask Mi is not a component of the
average-adjusted value function of subtask Mi in RAR algorithm. Therefore, the algorithm fails to

2654

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

find a hierarchically optimal average reward policy in general, as was discussed in Seri and Tadepalli
(2002) and will be demonstrated in the experiments of Section 6.

To achieve recursive optimality, the policy learned for each subtask must be context free, that
is, each subtask should maximize its local gain given the policies of its descendants. In RAR al-
gorithm, although each subtask maximizes its local gain given the policies of its descendants, the
policy learned for each subtask is not necessarily context free, and as a result, the algorithm does not
find a recursively optimal average reward policy in general. The reason is, the local gain gi for each
subtask Mi does not depend only on the policies of its descendants. The local gain gi is the gain of
the SMDP defined by Equation 21 and therefore depends on the initial state distribution Ii(s). The
initial state distribution Ii(s), the probability of being in state s at the next instantiation of subtask
Mi, depends not only on the policies of subtaskMi and all its descendants, but also on the policies of
its ancestors. It makes the local gain gi learned by RAR algorithm context dependent. However, the
algorithm finds a recursively optimal average reward policy when the initial distribution invariance
(IDI) condition holds. Under the IDI condition, the policy learned by RAR algorithm at each subtask
is independent of the context in which it is executed and therefore can be reused by other hierarchies.

Definition 9 (Initial Distribution Invariance Condition): The initial state distribution for each
non-primitive subtask in the hierarchy is independent of the policies of its ancestors. !

In other words, the initial state distribution for each non-primitive subtask cannot be changed by
altering the policies of its ancestors. One special case that satisfies the IDI condition is when each
non-primitive subtask in the hierarchy has only one initiation state, |Ii| = 1, i= 1, . . . ,m−1, andMi
is a non-primitive subtask.

6. Experimental Results

The goal of this section is to show the type of optimality achieved by the hierarchically optimal
average reward RL (HAR) and the recursively optimal average reward RL (RAR) algorithms pro-
posed in Sections 5.1 and 5.2, as well as their performance and speed compared to other algorithms.
We describe two sets of experiments. In Section 6.1, we apply five HRL algorithms to a simple
discrete-time automated guided vehicle (AGV) scheduling problem. Since we use a hierarchical
task decomposition in which the hierarchically and recursively optimal policies are different for
this problem, our experimental results clearly demonstrate the difference between the optimality
achieved by these algorithms. Then, we turn to a relatively large AGV scheduling task in Section
6.2. We model this AGV scheduling task as discrete time and continuous-time problems. In the
discrete-time model, we compare the performance of HAR and RAR algorithms with a hierarchi-
cally optimal discounted reward algorithm and a recursively optimal discounted reward algorithm,
as well as a non-hierarchical (flat) average reward algorithm. In the continuous-time model, we
compare the performance of HAR and RAR algorithms with a recursively optimal discounted re-
ward algorithm. We do not use pseudo-reward or reward shaping in the experiments of this section.
The first problem is simple and can be solved easily without reward shaping. There are rewards
associated with the terminal states of the subtasks in the original MDP of the second problem.
Therefore, the agent can find out about the desirability of the terminal states upon completing the
subtasks, without using pseudo-reward or reward shaping.

2655

GHAVAMZADEH AND MAHADEVAN

6.1 A Simple AGV Scheduling Problem

In this section, we apply the discrete-time hierarchically optimal average reward RL (HAR) al-
gorithm described in Section 5.1, the discrete-time recursively optimal average reward RL (RAR)
algorithm described in Section 5.2, and HH-Learning, the algorithm proposed by Seri and Tadepalli
(2002), to a small AGV scheduling task. We also test MAXQ-Q, the recursively optimal discounted
reward HRL algorithm proposed by Dietterich (2000), and a hierarchically optimal discounted re-
ward RL algorithm (HDR) on this task. The HDR algorithm is an extension of MAXQ-Q using the
three-part value function decomposition (Andre and Russell, 2002) described in Section 4.5.

A simple AGV domain is depicted in Figure 5. In this domain there are two machines M1 and
M2 that produce parts to be delivered to the corresponding destination stations G1 and G2. Since
machines and destination stations are in two different rooms, the AGV has to pass one of the two
doors D1 and D2 every time it goes from one room to another. Part 1 is more important than part
2, therefore the AGV gets a reward of 20 when part 1 is delivered to destination G1 and a reward
of 1 when part 2 is delivered to destination G2. The AGV receives a reward of -1 for all other
actions. Note that within subtasks “Go to Machine” and “Go to Door”, the agent must choose
which machine to go to, and which door to pass through, respectively. This task is deterministic
and the state variables are AGV’s location and status (empty, carry part 1, carry part 2), which is a
total of 26×3= 78 states. In all experiments, we use the task graph shown in Figure 5 and set the
discount factor to 0.9 for the discounted reward algorithms. We tried several discounting factors and
γ= 0.9 yielded the best performance. Using this task graph, hierarchically and recursively optimal
policies are different. Since delivering part 1 has more reward than part 2, the hierarchically optimal
policy is one in which the AGV always serves machine M1. In the recursively optimal policy, the
AGV switches from serving machine M1 to serving machine M2 and vice versa. In this policy, the
AGV goes to machine M1, picks up a part of type 1, goes to goal G1 via door D1, drops the part
there, then passes through door D2, goes to machineM2, picks up a part of type 2, goes to goal G2
via door D2 and then switches again to machineM1 and so on so forth.

G2M1

M2

D2

D1

G1

Go to Machine Go to Door

Root

Go to Goal

North West South EastNorth NorthWest South SouthEast

M1: Machine 1 M2: Machine 2 D1: Door 1 D2: Door 2 G1: Goal 1 G2: Goal 2

Figure 5: A simple AGV scheduling task and its associated task graph. Note that within subtasks
“Go to Machine” and “Go to Door”, the AGV must choose which machine to go to, and
which door to pass through, respectively.

2656

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

Among the algorithms we applied to this task, the hierarchically optimal average reward RL
(HAR) and the hierarchically optimal discounted reward RL (HDR) algorithms find the hierarchi-
cally optimal policy, where the other algorithms only learn the recursively optimal policy. Figure
6 demonstrates the throughput of the system for the above algorithms. The hierarchically opti-
mal algorithms learn more slowly than the recursively optimal algorithms due to more parameters
to be learned. Since this problem is deterministic, the HH-Learning algorithm, which is the only
model-based RL algorithm used in this experiment, learns the model of the environment quickly,
and therefore converges much faster than the other algorithms. In this figure, the throughput
of the system is the number of parts deposited at destination stations weighted by their rewards
(part1× 20+ part2× 1) in 250 time steps. Each experiment was conducted twenty times and the
results were averaged.

0 1000 2000 3000 4000 5000
50

100

150

200

250

300

Time step since start of simulation

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

HAR
RAR
HDR
MAXQ−Q
HH−Learning

Figure 6: This figure shows that HDR and HAR algorithms (the two top curves) learn the hierarchi-
cally optimal policy while RAR, MAXQ-Q, and HH-Learning (the three bottom curves)
only find the recursively optimal policy for the small AGV scheduling task.

6.2 AGV Scheduling Problem (Discrete and Continuous Time Models)

In this section, we describe two sets of experiments on the AGV scheduling problem shown in Figure
7. M1 to M3 are workstations in this environment. Parts of type i have to be carried to the drop-off
station at workstation i (Di), and the assembled parts brought back from pick-up stations of work-
stations (Pi’s) to the warehouse. The AGV travel is unidirectional as the arrows show. The AGV
receives a reward of 20 when it picks up a part at the warehouse, delivers a part to a drop-off station,
picks up an assembled part from a pick-up station, or delivers an assembled part to the warehouse. It

2657

GHAVAMZADEH AND MAHADEVAN

also gets a reward of -5 when it attempts to execute Put1–Put3, Pick1–Pick3, Load1–Load3, Unload,
and Idle actions illegally. There is a reward of -1 for all other actions. We model this AGV schedul-
ing task using both discrete-time and continuous-time models. In the discrete-time model, we show
the performance of four HRL algorithms: hierarchically optimal average reward RL (HAR), re-
cursively optimal average reward RL (RAR), hierarchically optimal discounted reward RL (HDR),
and recursively optimal discounted reward RL (MAXQ-Q), as well as a non-hierarchical average
reward algorithm. In the continuous-time model, we compare the performance of HAR and RAR
algorithms with the continuous-time MAXQ-Q algorithm (Ghavamzadeh and Mahadevan, 2001).
We use the task graph shown in Figure 8 in both experiments. Using this task graph, hierarchical and
recursive optimal policies are the same, and therefore hierarchical and recursive optimal algorithms
should converge to the same performance.

P1

P2

P3

D1

D2

D3
Load

Unload

Assemblies

Parts

M1M3

M2

MachineM:
D:
P:

Drop off Buffer
Pick up Buffer

Warehouse

Figure 7: An AGV scheduling task. An AGV agent (not shown) carries raw materials and finished
parts between machines (M1–M3) and warehouse.

The state of the environment consists of the number of parts in the pick-up and drop-off sta-
tions of each machine and whether the warehouse contains parts of each of the three types. In
addition, the agent keeps track of its own location and status as a part of its state space. Thus, in
the flat case, the state space consists of 33 locations, 6 buffers of size 2, 7 possible states of the
AGV (carrying part1–part3, carrying assembly1–assembly3, empty), and 2 values for each part in
the warehouse, that is, 33× 36× 7× 23 = 1,347,192 states. Since there are 14 primitive actions
(Left, Forward, Right, Put1–Put3, Pick1–Pick3, Load1–Load3, Unload, Idle) in this problem, the
total number of parameters that must be learned (the size of the action-value function table) in the

2658

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

NavPut i : Navigation to Dropoff Station i
: Navigation to Pickup Station iNavPick i

DM i : Deliver Material to Station i
DA : Deliver Assembly from Station i i
NavLoad : Navigation to Loading Deck

NavUnload : Navigation to Unload Deck

Root

DA2DA1

Nav

Forward RightLeft

.

NavLoad

DM1 DM2

. . .UnloadNavUnload. . .Load NavPut Put NavPick Pick

Idle

11 1 2 2

Figure 8: Task graph for the AGV scheduling task.

flat case is 1,347,192×14= 18,860,688. State abstraction helps in reducing the state space con-
siderably. Only the relevant state variables are used while storing the value functions in each node
of the task graph. For example, for the 8 Navigation subtasks, only the location state variable is
relevant and each of these subtasks can be learned with only 33 values. Tables 1 and 2 show the
relevant state variables and the number of relevant states for non-primitive and primitive subtasks in
the AGV scheduling problem, respectively. These tables also contain the number of parameters that
must be stored by these subtasks, that is, completion function values, C, and external completion
function values, CE, for non-primitive subtasks, and V values for primitive actions. The number
of parameters that must be stored by a subtask is its number of relevant states times its number of
children. Using Tables 1 and 2, the total number of parameters that must be learned in hierarchi-
cally and recursively optimal algorithms for this problem are equal to 10,809,150 and 10,834,890,
respectively.13 Both these numbers are smaller than the number of parameters that must be learned
in the flat case. This state abstraction gives us a compact way of representing the value functions
and speeds up the hierarchical algorithms.

The discrete-time experimental results were generated with the following model parameters.
The inter-arrival time for parts at the warehouse is distributed according to a Poisson distribution.14
The percentage of Part1, Part2, and Part3 in the part-arrival process are 40, 35, and 25 respectively.
The time required for assembling the various parts are Gamma random variables.15 Since this
is a discrete-time model for the AGV problem, we round the time x generated by these Gamma
distributions to the nearest integer less than or equal to x. Table 3 shows the parameters of the

13. Note that in both recursively and hierarchically optimal algorithms, only one completion function needs to be defined
at the Root of the hierarchy.

14. A random variable x= 0,1,2, . . . is said to be a Poisson random variable with parameter λ> 0, if Pr(x= n) = e−λ λ
n

n! .
The mean and variance of the Poisson random variable x are both equal to λ.

15. A random variable x≥ 0 is said to have a Gamma distribution with parameters (κ,λ), κ,λ> 0, if its density function
is given by f (x) = λe−λx(λx)κ−1

Γ(κ) . The mean and variance of the Gamma random variable x are κ
λ and

κ
λ2 respectively.

2659

GHAVAMZADEH AND MAHADEVAN

Subtask Relevant States Num. of Relevant States Num. ofC (CE) Values
Root entire state space 33×36×7×23 = 1,347,192 1,347,192×7= 9,430,344
DMi AGV location, 33×7×3×2= 1,386 1,386×4= 5,544

AGV status,
status of input buffer i,
whether part i exists
in the warehouse

DAi AGV location, 33×7×3= 693 693×4= 2,772
AGV status,

status of output buffer i
Nav AGV location 33 33×3= 99

Table 1: This table shows the relevant state variables, the number of relevant states, and the number
of completion (external completion) function values C (CE) for non-primitive subtasks in
the AGV scheduling problem.

Subtask Relevant States Num. of Relevant States =
Num. of V Values

Left , Forward , Right AGV location 33
Puti , Picki AGV location, 33×7×3= 693

AGV status,
status of input/output buffer i

Loadi AGV location, 33×7×2= 462
AGV status,

whether part i exists
in the warehouse

Unload AGV location, 33×7= 231
AGV status

Idle entire state space 33×36×7×23 = 1,347,192

Table 2: This table shows the relevant state variables and the number of relevant states (which is
equal to the number of V values) for primitive actions in the AGV scheduling problem.

discrete-time model. In these experiments, we used discount factors 0.9 and 0.95 for the discounted
reward algorithms. Using the discount factor of 0.95 yielded a better performance.

Parameter Distribution Mean (steps) Var (steps)
Assembly Time for Part1 Gamma (κ= 180,λ= 3) 60 20
Assembly Time for Part2 Gamma (κ= 250,λ= 2.5) 100 40
Assembly Time for Part3 Gamma (κ= 288,λ= 2.4) 120 50
Inter-Arrival Time for Parts Poisson (λ= 80) 80 80

Table 3: Parameters of the Discrete-Time Model

The continuous-time experimental results were generated with the following model parameters.
The time required for execution of each primitive action is uniformly distributed. The inter-arrival
time for parts at the warehouse is distributed according to a Poisson distribution. The percentage of
Part1, Part2, and Part3 in the part-arrival process are 40, 35, and 25, respectively. The time required

2660

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

for assembling the various parts are Gamma random variables. Table 4 contains the parameters of
the continuous-time model.

Parameter Distribution Mean (sec) Var (sec)
Assembly Time for Part1 Gamma (κ= 180,λ= 3) 60 20
Assembly Time for Part2 Gamma (κ= 250,λ= 2.5) 100 40
Assembly Time for Part3 Gamma (κ= 288,λ= 2.4) 120 50
Inter-Arrival Time for Parts Poisson (λ= 80) 80 80

Execution Time for Primitive Actions Uniform (6< t < 14) 10 5.33

Table 4: Parameters of the Continuous-Time Model

Figure 9 compares the performance of the discrete-time hierarchically (HAR) and recursively
(RAR) optimal average reward algorithms with the performance of the discrete-time discounted re-
ward hierarchically (HDR) and recursively (MAXQ-Q) optimal algorithms on the AGV scheduling
problem. All these algorithms eventually converge to the same system performance. The hier-
archically optimal algorithms learn slower than the recursively optimal algorithms due to more
parameters to be learned. This figure also shows the performance of relative value iteration (RVI)
Q-learning (Abounadi et al., 2001), a non-hierarchical average reward RL algorithm. As shown in
this figure, RVI Q-learning does not converge to the optimal throughput after 105 time steps. Figure
10 shows the performance of RVI Q-learning for 3×106 time steps. The RVI Q-learning algorithm
converges to the optimal performance after over 2× 106 time steps, where the hierarchical algo-
rithms converge to this performance in less than 105 time steps as shown in Figure 9. The difference
in convergence speed between flat and hierarchical algorithms becomes more significant as we in-
crease the number of states. All the graphs in these figures are averaged over twenty runs, except
the RVI Q-learning graph, which is averaged over thirty runs.

With the inter-arrival time and assembly-time parameters used in this experiment, there are time
steps in which there is no part left in the warehouse. This is when the AGV must learn to take the
idle action and wait until new parts appear in the warehouse. At first, the AGV does not serve the
machines properly, and therefore parts are accumulated in the warehouse. As the AGV learns to
serve the machines, the system performance goes up until the parts accumulated in the warehouse
at the first learning steps are all processed. Then, the system performance goes down and eventually
converges to its optimal value. This is why in Figures 9 and 10, the performance of the algorithms
reaches a peak before it converges to its optimal value.

Figure 11 compares the performance of the continuous-time hierarchically (HAR) and recur-
sively (RAR) optimal average reward algorithms with the performance of continuous-time MAXQ-
Q, a continuous-time recursively optimal discounted reward RL algorithm, first presented by
Ghavamzadeh and Mahadevan (2001), on the AGV scheduling problem. All the algorithms con-
verge to the same system performance. The discounted reward algorithm, continuous-time MAXQ-
Q, learns faster than both the average reward algorithms, HAR and RAR. Moreover, the hierar-
chically optimal average reward algorithm (HAR) learns more slowly than the recursively optimal
average reward algorithm (RAR) due to more parameters to be learned. All the graphs in this figure
are averaged over fifty runs.

2661

GHAVAMZADEH AND MAHADEVAN

0 2 4 6 8 10
x 104

0

20

40

60

80

100

120

140

160

180

Time step since start of simulation

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Discrete−time HAR
Discrete−time HDR
Discrete−time RAR
Discrete−time MAXQ−Q
Discrete−time Non−Hierarchical AR (RVI Q−Learning)

Figure 9: This figure compares the performance of the discrete-time hierarchically (HAR) and re-
cursively (RAR) optimal average reward algorithms with the performance of the hier-
archically (HDR) and recursively (MAXQ-Q) optimal discounted reward algorithms on
the AGV scheduling problem. It also demonstrates the faster convergence of the hierar-
chical algorithms comparing to RVI Q-learning, a non-hierarchical average reward RL
algorithm.

7. Conclusions and Future Work

Hierarchical reinforcement learning (HRL) is a general framework for scaling reinforcement learn-
ing (RL) to problems with large state spaces by using task (or action) structure to restrict the space
of policies. Prior work in HRL, including hierarchies of abstract machines (HAMs) (Parr, 1998),
options (Sutton et al., 1999; Precup, 2000), MAXQ (Dietterich, 2000), and programmable HAMs
(PHAMs) (Andre and Russell, 2001; Andre, 2003), has been limited to the discrete-time discounted
reward semi-Markov decision process (SMDP) model. These methods aim to find policies that max-
imize the long-term discounted sum of rewards. On the other hand, the average reward optimality
criterion has been shown to be more appropriate for a wide class of continuing tasks than the more
well-studied discounted formulation. A primary goal of continuing tasks, including manufacturing,
scheduling, queuing, and inventory control, is to find policies that yield the highest expected payoff
per step. Moreover, average reward optimality allows for more efficient state abstraction in HRL
than the discounted reward optimality, as discussed in Section 5. Although average reward RL has
been studied using both the discrete-time MDP model (Schwartz, 1993; Mahadevan, 1996; Tade-
palli and Ok, 1996a,b, 1998; Marbach, 1998; Van-Roy, 1998) as well as the continuous-time SMDP

2662

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

0 0.5 1 1.5 2 2.5 3
x 106

0

50

100

150

200

Time step since start of simulation

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Discrete−time Non−Hierarchical AR (RVI Q−Learning)

Figure 10: This figure shows the performance of RVI Q-learning, a non-hierarchical average reward
algorithm, on the AGV scheduling problem. The RVI Q-learning algorithm converges to
the optimal performance after over 2×106 time steps, where the hierarchical algorithms
converge to this performance in less than 105 time steps as shown in Figure 9.

model (Mahadevan et al., 1997b; Wang and Mahadevan, 1999), prior work has been limited to flat
policy representations.

In this paper, we extended previous work on HRL to the average reward setting, and presented
new discrete-time and continuous-time hierarchically optimal average reward RL (HAR) and re-
cursively optimal average reward RL (RAR) algorithms. These algorithms are based on the average
reward SMDP model, and correspond to two notions of optimality in HRL: hierarchical optimality
and recursive optimality (Dietterich, 2000). The HAR algorithm searches the space of policies de-
fined by the hierarchical decomposition to find a hierarchical policy with maximum global gain (the
gain of the Markov chain that results from flattening the hierarchy using a hierarchical policy). In
the recursively optimal average reward RL setting, the formulation of learning algorithms directly
depends on the local optimality criterion used for each subtask in the hierarchy. The RAR algorithm
treats non-primitive subtasks as continuing average reward problems and solve them by maximizing
their local gain given the policies of their children. We demonstrated that the policy learned for each
subtask by the RAR algorithm is not necessarily context free, and as a result the algorithms do not
find a recursively optimal average reward policy in general. However, we showed that the RAR
algorithm finds a recursively optimal average reward policy when the initial distribution invariance
condition holds. We used two automated guided vehicle (AGV) scheduling tasks as experimental
testbeds to study the empirical performance of the proposed algorithms. The first problem is a rel-
atively simple AGV scheduling task, in which the hierarchically and recursively optimal policies

2663

GHAVAMZADEH AND MAHADEVAN

0 1 2 3 4 5
x 106

0

50

100

150

200

250

300

350

400

Time since start of simulation (sec)

Th
ro

ug
hp

ut
 o

f t
he

 s
ys

te
m

Continuous−time HAR
Continuous−time RAR
Continuous−time MAXQ−Q

Figure 11: This figure compares the performance of the continuous-time hierarchically (HAR)
and recursively (RAR) optimal average reward algorithms with the performance of
continuous-time MAXQ-Q, a continuous-time recursively optimal discounted reward
RL algorithm, on the AGV scheduling problem.

are different. We compared the proposed algorithms with three other HRL methods, including a
hierarchically optimal discounted reward algorithm and a recursively optimal discounted reward al-
gorithm on this problem. The results demonstrate the difference between the optimalities achieved
by these algorithms. The second problem is a relatively larger AGV scheduling task. We modeled
this problem using both discrete-time and continuous-time models. We used a hierarchical task
decomposition with which the hierarchically and recursively optimal policies are the same for this
problem. We compared the performance of the proposed algorithms with a hierarchically optimal
discounted reward algorithm and a recursively optimal discounted reward algorithm, as well as a flat
average reward algorithm in this problem. The results showed that the proposed hierarchical average
reward algorithms converge to the same performance as their discounted reward counterparts.

There are a number of directions for future work. An immediate question that arises is prov-
ing the asymptotic convergence of the algorithms to hierarchically and recursively optimal policies.
These results should provide some theoretical validity to the proposed algorithms, in addition to
their empirical efficiency demonstrated in this paper. Studying other local optimality criteria for
subtasks in a hierarchy is an interesting problem that needs to be addressed. It helps to develop
more efficient recursively optimal average reward RL algorithms. It is also clear that our hierarchi-
cal average reward framework can be applied to many other manufacturing and robotics problems
besides the AGV task.

2664

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

Acknowledgments

We would like to thank Prasad Tadepalli, David Andre, Bernhard Hengst, and Balaraman Ravindran
for their comments. The computational experiments were carried out in Autonomous Agents Labo-
ratory in the Department of Computer Science and Engineering at Michigan State University under
the Defense Advanced Research Projects Agency, DARPA contract No. DAANO2-98-C-4025, and
in Autonomous Learning Laboratory in the Department of Computer Science at the University of
Massachusetts Amherst under NASA contract No. NAg-1445 #1. Support for this research was
also provided in part by the National Science Foundation under grants NSF IIS-0534999 and ECS
0218125. Part of this article was written while the first author was supported by iCORE Canada at
the Department of Computing Science at the University of Alberta.

Appendix A. Index of Symbols

Here we present a list of the symbols used in this paper to provide a handy reference.

Notation Definition
R set of real numbers
N set of natural numbers
E expected value
M a MDP model
S set of states of a SMDP
A set of actions of a SMDP
P multi-step transition probability function of a SMDP
R reward function of a SMDP

r(s,a) reward of taking action a in state s
I initial state distribution of a SMDP
µ a policy

µ(a|s) probability that policy µ selects action a in state s
µ∗ optimal policy
γ discount factor
α learning rate parameter
Vµ hierarchical value function of hierarchical policy µ
V̂µ projected value function of hierarchical policy µ
V ∗ optimal value function
Qµ hierarchical action-value function of hierarchical policy µ
Q̂µ projected action-value function of hierarchical policy µ
Q∗ optimal action-value function
gµ average reward or gain of policy µ
gµ global gain under hierarchical policy µ
gµi local gain of subtaskMi under hierarchical policy µ
g∗ optimal gain or gain of optimal policy
Hµ average-adjusted value function of policy µ
Hµ hierarchical average-adjusted value function of hierarchical policy µ
Ĥµ projected average-adjusted value function of hierarchical policy µ
H∗ optimal average-adjusted value function

2665

GHAVAMZADEH AND MAHADEVAN

Notation Definition
Lµ average-adjusted action-value function of policy µ
Lµ hierarchical average-adjusted action-value function of hierarchical policy µ
L̂µ projected average-adjusted action-value function of hierarchical policy µ
L∗ optimal average-adjusted action-value function

P(s′,N|s,a) probability that action a will cause the system to transition from
state s to state s′ in N time steps

F(s′|s,a) probability that a SMDP occupies state s′ at the next decision epoch
given that the agent takes action a in state s at the current decision epoch

Fµ transition probability matrix of the embedded Markov chain of a SMDP
for policy µ

F̄µ limiting matrix of the embedded Markov chain of a SMDP for policy µ
y(s,a) expected number of transition steps until the next decision epoch in a SMDP

H a hierarchy
Mi subtaskMi in a hierarchy
Si set of states for subtaskMi in a hierarchy
|Si| cardinality of set of states Si
Ai set of actions for subtaskMi in a hierarchy
Ri reward function for subtaskMi in a hierarchy
Ii initiation set for subtaskMi in a hierarchy
Ti termination set for subtaskMi in a hierarchy
µi a policy for subtaskMi in a hierarchy
µ a hierarchical policy
Pµi multi-step transition probability function of subtaskMi

Pµi (s′,N|s) probability that action µi(s) causes transition from state s to
state s′ in N primitive steps under hierarchical policy µ

Fµi multi-step abstract transition probability function of subtaskMi
Fµi (s′,N|s) probability of transition from state s to state s′ in N abstract actions

taken by subtaskMi under hierarchical policy µ
Fµi (s′,1|s) transition probability of the embedded Markov chain at subtaskMi under

hierarchical policy µ (same as Fµi (s′|s))
mµ transition probability function of the Markov chain that results from

flattening the hierarchy using the hierarchical policy µ
mµ(s′|s) probability that hierarchical policy µwill cause the system to transition

from state s to state s′ at the level of primitive actions
mµ transition probability matrix of the Markov chain that results from

flattening the hierarchy using the hierarchical policy µ
mµ limiting matrix of the Markov chain that results from flattening the

hierarchy using the hierarchical policy µ
Ω set of possible values for Task-Stack in a hierarchy

X =Ω×S joint state space of Task-Stack values and states in a hierarchy
x= (ω,s) joint state value x formed by Task-Stack value ω and state value s in a

hierarchy
ω↗ i popping subtaskMi off Task-Stack with content ω in a hierarchy
i↘ ω pushing subtaskMi onto Task-Stack with content ω in a hierarchy
Cµ completion function of hierarchical policy µ
CEµ external completion function of hierarchical policy µ

2666

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

References

J. Abounadi, D. P. Bertsekas, and V. S. Borkar. Learning algorithms for Markov decision processes
with average cost. SIAM Journal on Control and Optimization, 40:681–698, 2001.

D. Andre. Programmable Reinforcement Learning Agents. PhD thesis, University of California at
Berkeley, 2003.

D. Andre and S. J. Russell. Programmable reinforcement learning agents. In Proceedings of Ad-
vances in Neural Information Processing Systems 13, pages 1019–1025. MIT Press, 2001.

D. Andre and S. J. Russell. State abstraction for programmable reinforcement learning agents. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages 119–125,
2002.

A. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event
Systems (Special Issue on Reinforcement Learning), 13:41–77, 2003.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

S. Bradtke and M. Duff. Reinforcement learning methods for continuous-time Markov decision
problems. In Proceedings of Advances in Neural Information Processing Systems 7, pages 393–
400. MIT Press, 1995.

R. Crites and A. Barto. Elevator group control using multiple reinforcement learning agents. Ma-
chine Learning, 33:235–262, 1998.

P. Dayan and G. Hinton. Feudal reinforcement learning. In Proceedings of Advances in Neural
Information Processing Systems 5, pages 271–278, 1993.

T. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303, 2000.

M. Ghavamzadeh and S. Mahadevan. Continuous-time hierarchical reinforcement learning. In
Proceedings of the Eighteenth International Conference on Machine Learning, pages 186–193,
2001.

M. Ghavamzadeh and S.Mahadevan. Hierarchically optimal average reward reinforcement learning.
In Proceedings of the Nineteenth International Conference onMachine Learning, pages 195–202,
2002.

R. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

R. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Processes. John Wiley and
Sons., 1971.

L. Kaelbling. Hierarchical reinforcement learning: Preliminary results. In Proceedings of the Tenth
International Conference on Machine Learning, pages 167–173, 1993a.

L. Kaelbling. Learning to achieve goals. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, pages 1094–1098, 1993b.

2667

GHAVAMZADEH AND MAHADEVAN

S. Mahadevan. Average reward reinforcement learning: foundations, algorithms, and empirical
results. Machine Learning, 22:159–196, 1996.

S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using reinforce-
ment learning. Artificial Intelligence, 55(2-3):311–365, 1992.

S. Mahadevan, N. Khaleeli, and N. Marchalleck. Designing agent controllers using discrete-event
Markov models. In Proceedings of the AAAI Fall Symposium on Model-Directed Autonomous
Systems, 1997a.

S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi. Self-improving factory simulation using
continuous-time average reward reinforcement learning. In Proceedings of the Fourteenth Inter-
national Conference on Machine Learning, pages 182–190, 1997b.

P. Marbach. Simulated-Based Methods for Markov Decision Processes. PhD thesis, Massachusetts
Institute of Technology, 1998.

A. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and ap-
plication to reward shaping. In Proceedings of the Sixteenth International Conference onMachine
Learning, pages 278–287, 1999.

A. Ng, H. Kim, M. Jordan, and S. Sastry. Autonomous helicopter flight via reinforcement learning.
In Proceedings of Advances in Neural Information Processing Systems 16. MIT Press, 2004.

R. Parr. Hierarchical Control and Learning for Markov Decision Processes. PhD thesis, University
of California at Berkeley, 1998.

D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University of Mas-
sachusetts Amherst, 2000.

M. Puterman. Markov Decision Processes. Wiley Interscience, 1994.

A. Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In Proceed-
ings of the Tenth International Conference on Machine Learning, pages 298–305, 1993.

S. Seri and P. Tadepalli. Model-based hierarchical average-reward reinforcement learning. In Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pages 562–569, 2002.

S. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine
Learning, 8:323–339, 1992.

S. Singh and D. Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems. In Proceedings of Advances in Neural Information Processing Systems 9,
pages 974–980, 1996.

R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

P. Tadepalli and D. Ok. Scaling up average reward reinforcement learning by approximating the
domain models and the value function. In Proceedings of the Thirteenth International Conference
on Machine Learning, pages 471–479, 1996a.

2668

HIERARCHICAL AVERAGE REWARD REINFORCEMENT LEARNING

P. Tadepalli and D. Ok. Auto-exploratory average reward reinforcement learning. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence, pages 881–887, 1996b.

P. Tadepalli and D. Ok. Model-based average reward reinforcement learning. Artificial Intelligence,
100:177–224, 1998.

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neu-
ral Computation, 6:215–219, 1994.

B. Van-Roy. Learning and Value Function Approximation in Complex Decision Processes. PhD
thesis, Massachusetts Institute of Technology, 1998.

G. Wang and S. Mahadevan. Hierarchical optimization of policy-coupled semi-Markov decision
processes. In Proceedings of the Sixteenth International Conference on Machine Learning, pages
464–473, 1999.

W. Zhang and T. Dietterich. A reinforcement learning approach to job-shop scheduling. In Proceed-
ings of the Fourteenth International Joint Conference on Artificial Intelligence, pages 1114–1120,
1995.

2669

Journal of Machine Learning Research 8 (2007) 2671-2699 Submitted 11/06; Revised 2/07; Published 12/07

Ranking the Best Instances

Stéphan Clémençon CLEMENCO@ENST.FR
Département TSI Signal et Images - LTCI UMR GET/CNRS 5141
Ecole Nationale Supérieure des Télécommunications
37-39, rue Dareau
75014 Paris, France

Nicolas Vayatis VAYATIS@CMLA.ENS-CACHAN.FR
Centre de Mathématiques et de Leurs Applications - UMR CNRS 8536
Ecole Normale Supérieure de Cachan - UniverSud
61, avenue du Président Wilson
94 235 Cachan cedex, France

Editor: Yoram Singer

Abstract
We formulate a local form of the bipartite ranking problem where the goal is to focus on the best
instances. We propose a methodology based on the construction of real-valued scoring functions.
We study empirical risk minimization of dedicated statistics which involve empirical quantiles of
the scores. We first state the problem of finding the best instances which can be cast as a clas-
sification problem with mass constraint. Next, we develop special performance measures for the
local ranking problem which extend the Area Under an ROC Curve (AUC) criterion and describe
the optimal elements of these new criteria. We also highlight the fact that the goal of ranking the
best instances cannot be achieved in a stage-wise manner where first, the best instances would be
tentatively identified and then a standard AUC criterion could be applied. Eventually, we state
preliminary statistical results for the local ranking problem.
Keywords: ranking, ROC curve and AUC, empirical risk minimization, fast rates

1. Introduction

The first takes all the glory, the second takes nothing. In applications where ranking is at stake,
people often focus on the best instances. When scanning the results from a query on a search en-
gine, we rarely go beyond the one or two first pages on the screen. In the different context of credit
risk screening, credit establishments elaborate scoring rules as reliability indicators and their main
concern is to identify risky prospects especially among the top scores. In medical diagnosis, test
scores indicate the odds for a patient to be healthy given a series of measurements (age, blood pres-
sure, ...). There again a particular attention is given to the ”best” instances not to miss a possible
diseased patient among the highest scores. These various situations can be formulated in the setup
of bipartite ranking where one observes i.i.d. copies of a random pair (X ,Y) with X being an ob-
servation vector describing the instance (web page, debtor, patient) and Y a binary label assigning
to one population or the other (relevant vs. non relevant, good vs. bad, healthy vs. diseased). In
this problem, the goal is to rank the instances instead of simply classifying them. There is a grow-
ing literature on the ranking problem in the field of Machine Learning but most of it considers the
Area under the ROC Curve (also known as the AUC) criterion as a measure of performance of the

©2007 Stéphan Clémençon and Nicolas Vayatis.

CLÉMENÇON AND VAYATIS

ranking rule (Cortes and Mohri, 2004; Freund et al., 2003; Rudin et al., 2005; Agarwal et al., 2005).
In a previous work, we have mentioned that the bipartite ranking problem under the AUC crite-
rion could be interpreted as a classification problem with pairs of observations (Clémençon et al.,
2005). But the limit of this approach is that it weights uniformly the pairs of items which are badly
ranked. Therefore it does not permit to distinguish between ranking rules making the same number
of mistakes but in very different parts of the ROC curve. The AUC is indeed a global criterion
which does not allow to concentrate on the ”best” instances. Special performance measures, such
as the Discounted Cumulative Gain (DCG) criterion, have been introduced by practitioners in order
to weight instances according to their rank (Järvelin and Kekäläinen, 2000) but providing theory
for such criteria and developing empirical risk minimization strategies still is a very open issue.
Recent works by Rudin (2006), Cossock and Zhang (2006), and Li et al. (2007) reveal that there are
several possibilities when designing ranking algorithms with focus on the top-rated instances. In
the present paper, we focus on statistical aspects rather than algorithmic. We extend the results of
our previous work in Clémençon et al. (2005) and set theoretical grounds for the problem of local
ranking. The methodology we propose is based on the selection of a real-valued scoring function for
which we formulate appropriate performance measures generalizing the AUC criterion. We point
out that ranking the best instances is an involved task as it is a two-fold problem: (i) find the best
instances and (ii) provide a good ranking on these instances. The fact that these two goals cannot
be considered independently will be highlighted in the paper. Despite this observation, we will first
formulate the issue of finding the best instances which is to be understood as a toy problem for our
purpose. This problem corresponds to a binary classification problem with a mass constraint (where
the proportion u of +1 labels predicted by the classifiers is fixed) and it might present an interest
per se. The main complication here has to do with the necessity of performing quantile estimation
which affects the performance of statistical procedures. Our proof technique was inspired by the
former work of Koul (2002) in the context of R-estimation where similar statistics, known as linear
signed rank statistics, arise. By exploiting the structure of such statistics, we are able to establish
noise conditions in a similar way as in Clémençon et al. (To appear) where we had to deal with per-
formance criteria based onU-statistics. Under such conditions, we prove that rates of convergence
up to n−/ can be guaranteed for the empirical risk minimizer in the classification problem with
mass constraint. Another contribution of the paper lies in our study of the optimality issue for the
local ranking problem. We discuss how focusing on best instances affects the ROC curve and the
AUC criterion. We propose a family of possible performance measures for the problem of ranking
the best instances. In particular, we show that widespread ideas in the biostatistics literature about
the partial AUC (see Dodd and Pepe, 2003) turn out to be questionable with respect to optimality
considerations. We also point out that the empirical risks for local ranking are closely related to
generalized Wilcoxon statistics.

The rest of the paper is organized as follows. We first state the problem of finding the best
instances and study the performance of empirical risk minimization in this setup (Section 2). We
also explore the conditions on the distribution in order to recover fast rates of convergence. In
Section 3 we formulate performance measures for local ranking and provide extensions of the AUC
criterion. Eventually (Section 4), we state some preliminary statistical results on empirical risk
minimization of these new criteria.

2672

RANKING THE BEST INSTANCES

2. Finding the Best Instances

In the present section, we have a limited goal which is only to determine the best instances without
bothering with their order in the list. By considering this subproblem, we will identify the main
technical issues involved in the sequel. It also permits to introduce the main notations of the paper.

Just as in standard binary classification, we consider the pair of random variables (X ,Y)where X
is an observation vector in a measurable space X andY is a binary label in {−,+}. The distribution
of (X ,Y) can be described by the pair (µ,η) where µ is the marginal distribution of X and η is the
a posteriori distribution defined by η(x) = P {Y =  | X = x}, ∀x ∈ X . We define the rate of best
instances as the proportion of best instances to be considered and denote it by u ∈ (,). We
denote by Q(η, − u) the ( − u)-quantile of the random variable η(X). Then the set of best
instances at rate u is given by:

C∗
u

= {x ∈ X | η(x) ≥ Q(η,−u)} .

We mention two trivial properties of the setC∗
u
which will be important in the sequel:

• MASS CONSTRAINT: we have µ
(
C∗
u

)
= P

{
X ∈C∗

u

}
= u,

• INVARIANCE PROPERTY: as a functional of η, the set C∗
u
is invariant to strictly increasing

transforms of η.

The problem of finding a proportion u of the best instances boils down to the estimation of
the unknown set C∗

u
on the basis of empirical data. Before turning to the statistical analysis of the

problem, we first relate it to binary classification.

2.1 A Classification Problem with a Mass Constraint

A classifier is a measurable function g : X → {−,+} and its performance is measured by the
classification error L(g) = P {Y $= g(X)}. Let u ∈ (,) be fixed. Denote by g∗u

= IC∗
u

−  the
classifier predicting +1 on the set of best instancesC∗

u
and -1 on its complement. The next proposi-

tion shows that g∗u
is an optimal element for the problem of minimization of L(g) over the family

of classifiers g satisfying the mass constraint P {g(X) = } = u.

Proposition 1 For any classifier g : X → {−,+} such that g(x) = IC(x)− for some subset C
of X and µ(C) = P {g(X) = } = u, we have

L∗u
! L

(
g∗u

)
≤ L(g) .

Furthermore, we have

L∗u
= −Q(η,−u)+(−u)(Q(η,−u)−)−E(|η(X)−Q(η,−u)|) ,

and
L(g)−L

(
g∗u

)
= E

(
|η(X)−Q(η,−u)|IC∗

uΔC(X)
)
,

where Δ denotes the symmetric difference operation between two subsets of X .

2673

CLÉMENÇON AND VAYATIS

PROOF. For simplicity, we temporarily change the notation and set q=Q(η,−u). Then, for any
classifier g satisfying the constraint P {g(X) = } = u, we have

L(g) = E
(
(η(X)−q)I[g(X)=−]+(q−η(X))I[g(X)=+]

)
+(−u)q+(−q)u .

The statements of the proposition immediately follow.

There are several progresses in the field of classification theory where the aim is to introduce
constraints in the classification procedure or to adapt it to other problems. We relate our formulation
to other approaches in the following remarks.

Remark 2 (CONNECTION TO HYPOTHESIS TESTING). The implicit asymmetry in the problem due
to the emphasis on the best instances is reminiscent of the statistical theory of hypothesis testing.
We can formulate a test of simple hypothesis by taking the null assumption to be H : Y = −
and the alternative assumption being H : Y = +. We want to decide which hypothesis is true
given the observation X. Each classifier g provides a test statistic g(X). The performance of
the test is then described by its type I error α(g) = P {g(X) =  | Y = −} and its power β(g) =
P {g(X) =  | Y = +}. We point out that if the classifier g satisfies a mass constraint, then we can
relate the classification error with the type I error of the test defined by g through the relation:

L(g) = (− p)α(g)+ p−u

where p= P {Y = }, and similarly, we have: L(g) = p(−β(g))− p−u. Therefore, the optimal
classifier minimizes the type I error (maximizes the power) among all classifiers with the same mass
constraint. In some applications, it is more relevant to fix a constraint on the probability of a false
alarm (type I error) and maximize the power. This question is explored in a recent paper by Scott
(2005) (see also Scott and Nowak, 2005).

Remark 3 (CONNECTION WITH REGRESSION LEVEL SET ESTIMATION) We mention that the es-
timation of the level sets of the regression function has been studied in the statistics literature (Cav-
alier, 1997) (see also Tsybakov, 1997 and Willett and Nowak, 2006) as well as in the learning
literature, for instance in the context of anomaly detection (Steinwart et al., 2005; Scott and Daven-
port, 2006, to appear; Vert and Vert, 2006). In our framework of classification with mass constraint,
the threshold defining the level set involves the quantile of the random variable η(X).

Remark 4 (CONNECTION WITH THE MINIMUM VOLUME SET APPROACH) Although the point of
view adopted in this paper is very different, the problem described above may be formulated in the
framework ofminimum volume sets learning as considered in Scott and Nowak (2006). As a matter
of fact, the set C∗

u
may be viewed as the solution of the constrained optimization problem:

min
C

P {X ∈C | Y = −}

over the class of measurable sets C, subject to

P {X ∈C} ≥ u .

The main difference in our case comes from the fact that the constraint on the volume set has to be
estimated using the data while in Scott and Nowak (2006) it is computed from a known reference

2674

RANKING THE BEST INSTANCES

measure. We believe that learning methods for minimum volume set estimation may hopefully be
extended to our setting. A natural way to do it would consist in replacing conditional distribution
of X given Y = − by its empirical counterpart. This is beyond the scope of the present paper but
will be the subject of future investigation.

2.2 Empirical Risk Minimization

We now investigate the estimation of the set C∗
u
of best instances at rate u based on training data.

Suppose that we are given n i.i.d. copies (X,Y), · · · ,(Xn,Yn) of the pair (X ,Y). Since we have the
ranking problem in mind, our methodology will consist in building the candidate sets from a class
S of real-valued scoring functions s : X → R. Indeed, we consider sets of the form

Cs !Cs,u = {x ∈ X | s(x) ≥ Q(s,−u)} ,

where s is an element of S and Q(s,− u) is the (− u)-quantile of the random variable s(X).
Note that such sets satisfy the same properties ofC∗

u
with respect to mass constraint and invariance

to strictly increasing transforms of s.
From now on, we will take the simplified notation:

L(s) ! L(s,u) ! L(Cs) = P {Y · (s(X)−Q(s,−u)) < } .

A scoring function minimizing the quantity

Ln(s) =


n

n∑

i=

I{Yi · (s(Xi)−Q(s,−u)) < } .

is expected to approximately minimize the true error L(s), but the quantile depends on the unknown
distribution of X . In practice, one has to replaceQ(s,−u) by its empirical counterpart Q̂(s,−u)
which corresponds to the empirical quantile. We will thus consider, instead of Ln(s), the empirical
error:

L̂n(s) =


n

n∑

i=

I{Yi · (s(Xi)− Q̂(s,−u)) < } .

Note that L̂n(s) is a complicated statistic since the empirical quantile involves all the instances
X, . . . ,Xn. We also mention that L̂n(s) is a biased estimate of the classification error L(s) of the
classifier gs(x) = I{s(x) ≥ Q(s,−u)}−.

We introduce some more notations. Set, for all t ∈ R:

• Fs(t) = P {s(X) ≤ t}

• Gs(t) = P {s(X) ≤ t | Y = +}

• Hs(t) = P {s(X) ≤ t | Y = −} .

The functions Fs (respectively Gs, Hs) denote the cumulative distribution function (cdf) of s(X)
(respectively, given Y = , given Y = −). We recall that the definition of the quantiles of (the
distribution of) a random variable involves the notion of generalized inverse F− of a function F:

F−(z) = inf{t ∈ R | F(t) ≥ z} .

2675

CLÉMENÇON AND VAYATIS

Thus, we have, for all v ∈ (,):

Q(s,v) = F−
s (v) and Q̂(s,v) = F̂−

s (v)

where F̂s is the empirical cdf of s(X): F̂s(t) = 
n
∑n

i= I{s(Xi) ≤ t}, ∀t ∈ R.
Without loss of generality, we will assume that all scoring functions in S take their values in

(,λ) for some λ> . We now turn to study the performance of minimizers of L̂n(s) over a class S
of scoring functions defined by

ŝn = argmin
s∈S

L̂n(s).

Our first main result is an excess risk bound for the empirical risk minimizer ŝn over a class S
of uniformly bounded scoring functions. In the following theorem, we consider that the level sets
of scoring functions from the class S form a Vapnik-Chervonenkis (VC) class of sets.

Theorem 5 We assume that

(i) the class S is symmetric (that is, if s ∈ S then λ− s ∈ S) and is a VC major class of functions
with VC dimension V .

(ii) the family K = { Gs,Hs : s ∈ S } of cdfs satisfies the following property: any K ∈ K has left
and right derivatives, denoted by K ′

+ and K ′
−, and there exist strictly positive constants b, B

such that ∀(K, t) ∈ K × (,λ),

b≤
∣∣K ′

+(t)
∣∣ ≤ B and b≤

∣∣K ′
−(t)

∣∣ ≤ B .

For any δ> , we have, with probability larger than −δ,

L(ŝn)− inf
s∈S

L(s) ≤ c

√
V
n

+ c

√
ln(/δ)

n
,

for some positive constants c,c.

The following remarks provide some insights on conditions (i) and (ii) of the theorem.

Remark 6 (ON THE COMPLEXITY ASSUMPTION) On the terminology of major sets and major
classes, we refer to Dudley (1999). In the proof, we need to control empirical processes indexed by
sets of the form {x : s(x) ≥ t} or {x : s(x) ≤ t}. Condition (i) guarantees that these sets form a VC
class of sets.

Remark 7 (ON THE CHOICE OF THE CLASS S OF SCORING FUNCTIONS) In order to grasp the
meaning of condition (ii) of the theorem, we consider the one-dimensional case with real-valued
scoring functions. Assume that the distribution of the random variable Xi has a bounded density f
with respect to Lebesgue measure. Assume also that scoring functions s are differentiable except,
possibly, at a finite number of points, and derivatives are denoted by s ′. Denote by fs the density of
s(X). Let t ∈ (,λ) and denote by x, ..., xp the real roots of the equation s(x) = t. We can express
the density of s(X) thanks to the change-of-variable formula (see, for instance, Papoulis, 1965):

fs(t) =
f (x)
s ′(x)

+ . . .+
f (xp)
s ′(xp)

.

2676

RANKING THE BEST INSTANCES

Scoring functions

x

s(
x)

Figure 1: Typical example of a scoring function.

This shows that the scoring functions should not present neither flat nor steep parts. We can take
for instance, the class S to be the class of linear-by-parts functions with a finite number of local
extrema and with uniformly bounded left and right derivatives: ∀s∈ S , ∀x, m≤ s ′+(x)≤M and m≤
s ′−(x) ≤M for some strictly positive constants m, and M (see Figure 1). Note that any subinterval
of [,λ] has to be in the range of scoring functions s (if not, some elements of K will present a
plateau). In fact, the proof requires such a behavior only in the vicinity of the points corresponding
to the quantiles Q(s,−u) for all s ∈ S .

PROOF. Set v = −u. By a standard argument (see, for instance, Devroye et al., 1996), we have:

L(ŝn)− inf
s∈S

L(s) ≤ sup
s∈S

∣∣L̂n(s)−L(s)
∣∣

≤ sup
s∈S

∣∣L̂n(s)−Ln(s)
∣∣+sup

s∈S
|Ln(s)−L(s)| .

Note that the second term in the bound is an empirical process whose behavior is well-known.
In our case, assumption (i) implies that the class of sets {x : s(x) ≥ Q(s,v)} indexed by scoring
functions s has a VC dimension smaller than V . Hence, we have by a concentration argument
combined with a VC bound for the expectation of the supremum (see, for instance, Lugosi), for any
δ> , with probability larger than −δ,

sup
s∈S

|Ln(s)−L(s)| ≤ c
√
V
n

+ c ′
√
ln(/δ)

n

for universal constants c,c ′.
The novel part of the analysis lies in the control of the first term and we now show how to handle

it. Following the work of Koul (2002), we set the following notations:

M(s,v) = P
{
Y ·

(
s(X)−Q(s,v)

)
< 

}
,

2677

CLÉMENÇON AND VAYATIS

Un(s,v) =


n

n∑

i=

I{Yi ·
(
s(Xi)−Q(s,v)

)
< }−M(s,v) .

and note thatUn(s,v) is centered. In particular, we have:

Ln(s) =Un(s,v)+M(s,v) .

As Q(s,v) = F−
s (v), we have Q(s,Fs ◦ F̂−

s (v)) = F̂−
s (v) = Q̂(s,v) and then

L̂n(s) =Un(s,Fs ◦ F̂−
s (v))+M(s,Fs ◦ F̂−

s (v)) .

Note thatM(s,Fs◦F̂−
s (v))= P

{
Y ·

(
s(X)− Q̂(s,v)

)
<  | Dn

}
whereDn denotes the sample (X,Y), · · · ,(Xn,Yn).

We then have the following decomposition, for any s ∈ S and v ∈ (,):
∣∣L̂n(s)−Ln(s)

∣∣ ≤
∣∣Un(s,Fs ◦ F̂−

s (v))−Un(s,v)
∣∣+

∣∣M(s,Fs ◦ F̂−
s (v))−M(s,v)

∣∣ .

Recall the notation p= P {Y = }. SinceM(s,v) = (− p)(−Hs ◦F−
s (v))+ pGs ◦F−

s (v) and
Fs = pGs+(− p)Hs, the mapping v (→M(s,v) is Lipschitz by assumption (ii). Thus, there exists a
constant κ< ∞, depending only on p, b and B, such that:

∣∣M(s,Fs ◦ F̂−
s (v))−M(s,v)

∣∣ ≤ κ
∣∣Fs ◦ F̂−

s (v)− v
∣∣ .

Moreover, we have, for any s ∈ S :
∣∣Fs ◦ F̂−

s (v)− v
∣∣ ≤

∣∣Fs ◦ F̂−
s (v)− F̂s ◦ F̂−

s (v)
∣∣+

∣∣F̂s ◦ F̂−
s (v)− v

∣∣

≤ sup
t∈(,λ)

∣∣Fs(t)− F̂s(t)
∣∣+ 

n
.

Here again, we can use assumption (i) and a classical VC bound from Lugosi in order to control
the empirical process, with probability larger than −δ:

sup
(s,t)∈S×(,λ)

∣∣Fs(t)− F̂s(t)
∣∣ ≤ c

√
V
n

+ c ′
√
ln(/δ)

n

for some constants c,c ′.
It remains to control the term involving the processUn:

∣∣Un(s,Fs ◦ F̂−
s (v))−Un(s,v)

∣∣ ≤ sup
v∈(,)

|Un(s,v)−Un(s,v)| ≤  sup
v∈(,)

|Un(s,v)| .

Using that the class of sets of the form {x : s(x) ≥ Q(s,v)} for v ∈ (,) is included in the class
of sets of the form {x : s(x) ≥ t} where t ∈ (,λ), we then have

sup
v∈(,)

|Un(s,v)| ≤ sup
t∈(,λ)

∣∣∣∣∣


n

n∑

i=

I{Yi ·
(
s(Xi)− t

)
< }−P

{
Y ·

(
s(X)− t

)
< 

}
∣∣∣∣∣ ,

which leads again to an empirical process indexed by a VC class of sets and can be bounded as
before.

2678

RANKING THE BEST INSTANCES

2.3 Fast Rates of Convergence

We now propose to examine conditions leading to fast rates of convergence (faster than n−/). It
has been noticed (see Mammen and Tsybakov, 1999; Tsybakov, 2004; Massart and Nédélec, 2006)
that it is possible to derive such rates of convergence in the classification setup under additional
assumptions on the distribution. We propose here to adapt these assumptions for the problem of
classification with mass constraint.

Our concern here is to formulate the type of conditions which render the problem easier from
a statistical perspective. For this reason and to avoid technical issues, we will consider a quite
restrictive setup where it is assumed that:

• the class S of scoring functions is a finite class with N elements,

• an optimal scoring rule s∗ is contained in S .
We have found that the following additional conditions on the distribution and the class S allow

to derive fast rates of convergence for the excess risk in our problem.

(iii) There exist constants α ∈ (,) and D>  such that, for all t ≥ ,

P {|η(X)−Q(η,−u)| ≤ t} ≤ Dt
α

−α .

(iv) the family K = { Gs,Hs : s ∈ S } of cdfs satisfies the following property: for any s ∈ S , Gs
and Hs are twice differentiable at Q(s,−u) = F−

s (−u).

Note that condition (iii) simply extends the standard low noise assumption introduced by Tsy-
bakov (2004) (see also Boucheron et al., 2005, for an account on this) where the level 1/2 is replaced
by the (−u)-quantile of η(X). Condition (iv) is a technical requirement needed in order to derive
an approximation of the statistics involved in empirical risk minimization.

Remark 8 (CONSEQUENCE OF CONDITION (III)) We recall here the various equivalent formula-
tions of condition (iii) as they are described in Section 5.2 from the survey paper by Boucheron et al.
(2005). A slight variation in our setup is due to the presence of the quantile Q(η,− u) but we
can easily adapt the corresponding conditions. Hence, we have, under condition (iii), the variance
control, for any s ∈ S :

Var(I{Y $= ICs(X)−}− I{Y $= IC∗
u

(X)−}) ≤ c (L(s)−L∗u
)α ,

or, equivalently,
E

(
ICsΔC∗

u
(X)

)
≤ c (L(s)−L∗u

)α .

Recall that Ln(s) = 
n
∑n

i= I{Yi ·(s(Xi)−Q(s,−u)) < }. We point out that Ln(s) is not an empiri-
cal criterion since the quantile Q(s,−u) depends on the distribution. However, we can introduce
the minimizer of this functional:

sn = argmin
s∈S

Ln(s) ,

for which we can use the same argument as in the classification setup. We then have, by a standard
argument based on Bernstein’s inequality (which will be provided for completeness in the proof of
Theorem 10 below), with probability −δ,

L(sn)−L∗u
≤ c

(
log(N/δ)

n

) 
−α

.

2679

CLÉMENÇON AND VAYATIS

for some positive constant c. We will show below how to obtain a similar rate when the true quantile
Q(s,−u) is replaced by the empirical quantile Q̂(s,−u) in the criterion to be minimized.

We point out that conditions (ii) and (iii) are not completely independent. We offer the following
proposition which will be useful in the sequel.

Proposition 9 If (Gη,Hη) belongs to the class K fulfilling condition (ii), then Fη is Lipschitz and
condition (iii) is satisfied with α= /.

PROOF. We recall that Fη = pGη + ( − p)Hη and assume for simplicity that Gη and Hη are
differentiable. By condition (ii), we then have |F ′

η | = p|G ′
η| + ( − p)|H ′

η| ≤ pB+ ( − p)B = B.
Set q = Q(η,− u). Then, by the mean value theorem, there exists a constant c such that, for all
t ≥ :

P {|η(X)−q| ≤ t} = Fη(t+q)−Fη(−t+q) ≤ B(t+q−(−t+q)) = Bt .

We have proved that condition (iii) is fulfilled with D= B and α= /.

The novel part of the analysis below lies in the control of the bias induced by plugging the
empirical quantile Q̂(s,− u) in the risk functional. The next theorem shows that faster rates of
convergence up to the order of n−/ can be obtained under the previous assumptions.

Theorem 10 We assume that the class S of scoring functions is a finite class with N elements,
and that it contains an optimal scoring rule s∗. Moreover, we assume that conditions (i)-(iv) are
satisfied. We recall that ŝn = argmins∈S L̂n(s). Then, for any δ> , we have, with probability −δ:

L(ŝn)−L∗u
≤ c

(
log(N/δ)

n

) 


,

for some constant c.

Remark 11 (ON THE RATE n−/) This result highlights the fact that rates faster than the one ob-
tained in Theorem 5 can be obtained in this setup with additional regularity assumptions. However,
it is noteworthy that the standard low noise assumption (iii) is already contained, by Proposition
9, in assumption (ii) which is required in proving the typical n−/ rate. The consequence of this
observation is that there is no hope of getting rates up to n− unless assumption (ii) is weakened.

Remark 12 (ON THE ASSUMPTION s∗ ∈ S) This assumption is not important and can be removed.
For a neat argument, check the proof of Theorem 5 from Clémençon et al. (To appear) which uses a
result by Massart (2006).

The proof of the previous theorem is based on two arguments: the structure of linear signed rank
statistics and the variance control assumption. The situation is similar to the one we encountered
in Clémençon et al. (To appear) where we were dealing with U-statistics and we had to invoke
Hoeffding’s decomposition in order to grasp the behavior of the underlying U-processes. Here we
require a similar argument to describe the structure of the empirical risk functional L̂n(s) under
study. This statistic can be interpreted as a linear signed rank statistic and the key decomposition
has been used in the context of nonparametric hypotheses testing and R-estimation. We mainly

2680

RANKING THE BEST INSTANCES

refer to Hájek and Sidák (1967), Dupac and Hájek (1969), Koul (1970), and Koul and R.G. Staudte
(1972) for an account on rank statistics.

We now prepare for the proof by stating the main ideas in the next propositions, but first we
need to introduce some notations. Set:

∀v ∈ [,] , K(s,v) = E(Y I{s(X) ≤ Q(s,v)}) = pGs(Q(s,v))−(− p)Hs(Q(s,v)),

K̂n(s,v) =


n

n∑

i=

YiI{s(Xi) ≤ Q̂(s,v)} .

Then we can write:

L(s) = − p+K(s,−u),

L̂n(s) =
n−

n
+ K̂n(s,−u) ,

where n− =
∑n

i= I{Yi = −}.
We note that the statistic L̂n(s) is related to linear signed rank statistics.

Definition 13 (Linear signed rank statistic) Consider Z, . . . ,Zn an i.i.d. sample with distribution
F and a real-valued score generating function Φ. Denote by R+

i = rank(|Zi|) the rank of |Zi| in the
sample |Z|, . . . , |Zn|. Then the statistic

n∑

i=

Φ

(
R+
i

n+

)
sgn(Zi)

is a linear signed rank statistic.

Proposition 14 For fixed s and v, the statistic K̂n(s,v) is a linear signed rank statistic.

PROOF. Take Zi = Yis(Xi). The random variables Zi have their absolute value distributed according
to Fs and have the same sign as Yi. It is easy to see that the statistic K̂n(s,v) is a linear signed rank
statistic with score generating function Φ(x) = I[x≤v].

A decomposition of Hoeffding’s type for such statistics can be formulated. Set first:

Zn(s,v) =


n

n∑

i=

(
Yi−K ′(s,v)

)
I{s(Xi) ≤ Q(s,v)}−K(s,v)+ vK ′(s,v) ,

where K ′(s,v) denotes the derivative of the function v (→ K(s,v). Note that Zn(s,v) is a centered
random variable with variance:

σ(s,v) = v−K(s,v) + v(− v)K ′(s,v)−(− v)K ′(s,v)K(s,v) .

The next result is due to Koul (1970) and we provide an alternate proof in the Appendix.

2681

CLÉMENÇON AND VAYATIS

Proposition 15 Assume that condition (iv) holds. We have, for all s ∈ S and v ∈ [,]:

K̂n(s,v) = K(s,v)+Zn(s,v)+Λn(s) .

with
Λn(s) = OP(n−) as n→ ∞ .

This asymptotic expansion highlights the structure of the statistic L̂n(s) for fixed s:

L̂n(s) =
n−

n
+K(s,−u)+Zn(s,−u)+Λn(s) .

Once centered, the leading term Zn(s,−u) is an empirical average of i.i.d. random variables (of a
stochastic order of n−/) and the remainder term Λn(s) is of a stochastic order of n−. The nature of
the decomposition of L̂n(s) is certainly unexpected because the leading term contains an additional
derivative term given by K ′(s,−u)(v− I{s(Xi) ≤ Q(s,−u)}). The revelation of this fact is one
of the major contributions in the work of Koul (2002).

Now, in order to establish consistency and rates-of-convergence-type results, we need to fo-
cus only on the leading term which carries most of the statistical information, while the remainder
needs to be controlled uniformly over the candidate class S . As a consequence, the variance con-
trol assumption will only concern the variance of the kernel hs involved in the empirical average
Zn(s,−u) and defined as follows:

hs(Xi,Yi) =
(
Yi−K ′(s,v)

)
I{s(Xi) ≤ Q(s,v)}−K(s,v)+ vK ′(s,v) ,

We then have

Zn(s,v)−Zn(s∗,v) =


n

n∑

i=

(
hs(Xi,Yi)−hs∗(Xi,Yi)

)
.

Proposition 16 Fix v ∈ [,]. Assume that condition (iii) holds. Then, we have, for all s ∈ S :

Var
(
hs(Xi,Yi)−hs∗(Xi,Yi)

)
≤ c

(
L(s)−L(s∗)

)α
,

for some constant c.

PROOF. We first write that:

hs(Xi,Yi)−hs∗(Xi,Yi) = I+ II+ III+ IV +V

where
I = Yi

(
I{s(Xi) ≤ Q(s,v)}− I{s∗(Xi) ≤ Q(s∗,v)}

)
,

II = (K ′(s∗,v)−K ′(s,v)) I{s∗(Xi) ≤ Q(s∗,v)},

III = K ′(s,v)
(
I{s∗(Xi) ≤ Q(s∗,v)}− I{s(Xi) ≤ Q(s,v)}

)
,

IV = K(s∗,v)−K(s,v),

V = v (K ′(s,v)−K ′(s∗,v)) .

2682

RANKING THE BEST INSTANCES

By Cauchy-Schwarz inequality, we only need to show that the expected value of the square of
these quantities is smaller than (L(s)−L∗)α up to some multiplicative constant.

Note that, by definition of K, we have:

II = (L ′(s∗,v)−L ′(s,v)) I{s∗(Xi) ≤ Q(s∗,v)},

IV = L(s∗)−L(s),

V = v (L ′(s,v)−L ′(s∗,v))

where L ′(s,v) denotes the derivative of the function v (→ L(s,v). It is clear that, for any s, we
have L(s,v) = L(s∗,v) implies that L ′(s,v) = L ′(s∗,v) otherwise s∗ would not be an optimal scoring
function at some level v ′ in the vicinity of v. Therefore, since S is finite, there exists a constant c
such that

(L ′(s,v)−L ′(s∗,v)) ≤ c(L(s)−L∗)α

and then E
(
II

)
and E

(
V 

)
are bounded accordingly.

Moreover, we have:

E
(
I

)
≤ E

(
ICsΔCs∗ (X)

)

≤ c(L(s)−L(s∗))α

for some positive constant c, by assumption (iii).
Eventually, by assumption (ii), we have that K ′(s,v) is uniformly bounded and thus, the term

E
(
III

)
can be handled similarly.

Proof of Theorem 10. Set v = −u. First notice that ŝn = argmins∈S K̂n(s,−u). We then have

L(ŝn)−L(s∗) = K(ŝn,v)−K(s∗,v)

≤ K̂n(s∗,v)− K̂n(ŝn,v)−(K(s∗,v)−K(ŝn,v))

≤ Zn(s∗,v)−Zn(ŝn,v))+sup
s∈S

|Λn(s)|

where we used the decomposition of the linear signed rank statistic from Proposition 15 to obtain
the last inequality.

By Proposition 15, we know that the second term on the right hand side is of stochastic order n−

since the class S is of finite cardinality. It remains to control the leading term Zn(s∗,v)−Zn(ŝn,v).
At this point, we will use the same argument as in Section 5.2 from Boucheron et al. (2005).

Denote by C = sups,x,y |hs(x,y)| and by σ(s) = Var
(
hs(Xi,Yi)− hs∗(Xi,Yi)

)
. By Bernstein’s in-

equality for averages of upper bounded and centered random variables (see Devroye et al., 1996)
and the union bound, we have, with probability −δ, for all s ∈ S :

Zn(s∗,v)−Zn(s,v) ≤
√

σ(s) log(N/δ)
n

+
C log(N/δ)

n

2683

CLÉMENÇON AND VAYATIS

≤
√

c(L(s)−L∗)α log(N/δ)
n

+
C log(N/δ)

n

thanks to the variance control obtained in Proposition 16. Since this inequality holds for any s, it
holds in particular for s = ŝn. Therefore, we have obtained the following result, with probability
−δ:

L(ŝn)−L(s∗) ≤
√

c(L(ŝn)−L∗)α log(N/δ)
n

+
c ′ log(N/δ)

n

for some constants c, c ′. At the cost of increasing the multiplicative constant factor, we can get rid
of the second term and solve the inequality in the quantity L(ŝn)−L(s∗) to get

L(ŝn)−L(s∗) ≤ c
(
log(N/δ)

n

) 
−α

for some constant c. To end the proof, we plug the value of α = / following from Proposition 9.

3. Performance Measures for Local Ranking

Our main interest here is to develop a setup describing the problem of not only finding but also
ranking the best instances. In the sequel, we build on the results from Section 2 and also on our
previous work on the (global) ranking problem (Clémençon et al., To appear) in order to capture
some of the features of the local ranking problem. The present section is devoted to the construction
of performance measures reflecting the quality of ranking rules on a restricted set of instances.

3.1 ROC Curves and Optimality in the Local Ranking Problem

We consider the same statistical model as before with (X ,Y) being a pair of random variables over
X × {−,+} and we examine ranking rules resulting from real-valued scoring functions s : X →
(,λ). The reference tool for assessing the performance of a scoring function s in separating the
two populations (positive vs. negative labels) is the Receiver Operating Characteristic known as the
ROC curve (van Trees, 1968; Egan, 1975). If we take the notations Ḡs(z) = P {s(X) > z | Y = }
(true positive rate) and H̄s(z) = P {s(X) > z | Y = −} (false positive rate), we can define the ROC
curve, for any scoring function s, as the plot of the function:

z (→
(
H̄s(z), Ḡs(z)

)

for thresholds z ∈ (,λ), or equivalently as the plot of the function:

t (→ Ḡs ◦H−
s (− t)

for t ∈ (,). The optimal scoring function is the one whose ROC curve dominates all the others for
all z ∈ (,λ) (or t ∈ (,)) and such a function actually exists. Indeed, by recalling the hypothesis
testing framework in the classification model (see Remark 2) and using Neyman-Pearson’s Lemma,
it is easy to check that the ROC curve of the function η(x) = P {Y =  | X = x} dominates the ROC

2684

RANKING THE BEST INSTANCES

curve of any other scoring function. We point out that the ROC curve of a scoring function s is
invariant to strictly increasing transformations of s.

In our approach, for a given scoring function s, we focus on thresholds z corresponding to the
cut-off separating a proportion u ∈ (,) of top scored instances according to s from the rest. Recall
from Section 2 that the best instances according to s are the elements of the setCs,u = {x∈ X | s(x)≥
Q(s,−u)} where Q(s,−u) is the (−u)-quantile of s(X). We set the following notations:

α(s,u) = P {s(X) ≥ Q(s,−u) | Y = −} = H̄s ◦F−
s (−u),

β(s,u) = P {s(X) ≥ Q(s,−u) | Y = +} = Ḡs ◦F−
s (−u) .

We propose to re-parameterize the ROC curve with the proportion u ∈ (,) and then describe
it as the plot of the function:

u (→ (α(s,u),β(s,u)) ,

for each scoring function s. When focusing on the best instances at rate u, we only consider the
part of the ROC curve for values u ∈ (,u).

However attractive is the ROC curve as a graphical tool, it is not a practical one for developing
learning procedures achieving straightforward optimization. The most natural approach is to con-
sider risk functionals built after the ROC curve such as the Area Under an ROC Curve (known as
the AUC or AROC, see Hanley and McNeil, 1982). Our goals in this section are:

1. to extend the AUC criterion in order to focus on restricted parts of the ROC curve,

2. to describe the optimal elements with respect to this extended criterion.

We point out the fact that extending the AUC is not trivial. In order to focus on the best instances,
a natural idea is to truncate the AUC (as in the approach by Dodd and Pepe (2003)).

Definition 17 (Partial AUC) We define the partial AUC for a scoring function s and a rate u of
best instances as:

PARTAUC(s,u) =

∫α(s,u)


β(s,α)dα .

We conjecture that such a criterion is not appropriate for local ranking. If it was, then we should
have: ∀s,PARTAUC(s,u) ≤ PARTAUC(η,u), since the function η would provide the optimal
ranking. However, there is strong evidence that this is not true as shown by a simple geometric
argument which we describe below.

In order to represent the partial AUC of a scoring function s, we need to locate the cut-off point
given the constraint on the rate u of best instances. We notice that α(s,u) and β(s,u) are related by
a linear relation, for fixed u and p, when s varies:

u= pβ(s,u)+(− p)α(s,u)

where p = P {Y = }. We denote the line plot of this relation by D(u, p) and call it the control line
when u = u. Hence, the part of the ROC curve of a scoring function s corresponding to the best
instances at rate u is the part going from the origin (,) to the intersection with the control line
D(u, p). The partial AUC is then the area under this part of the ROC curve (it corresponds to the
shaded area in the left display of Figure 2).

2685

CLÉMENÇON AND VAYATIS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curve and partial AUC

false positive rate α

tru
e

po
sit

ive
 ra

te
 β

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curve and partial AUC

tru
e

po
sit

ive
 ra

te
 β

false positive rate α

Figure 2: ROC curves, control line D(u, p) and partial AUC at rate u of best instances.

The optimality of ηwith respect to the partial AUC can then be questioned. Indeed, the closer to
η the scoring function s is, the higher the ROC curve is, but at the same time the integration domain
shrinks (right display of Figure 2) so that the overall impact on the integral is not clear. Let us now
put things formally in the following lemma.

Lemma 18 For any scoring function s, we have for all u ∈ (,),

β(s,u) ≤ β(η,u),
α(s,u) ≥ α(η,u) .

Moreover, we have equality only for those s such that Cs,u =C∗
u
.

PROOF. We show the first inequality. By definition, we have:

β(s,u) = −Gs(Q(s,−u)) .

Observe that, for any scoring function s,

p(−Gs(Q(s,−u)) = P {Y = ,s(X) > Q(s,−u)}
= E(η(X)I{X ∈Cs,u}) .

We thus have

p(Gs(Q(s,−u)−Gη(Q(η,−u)) = E(η(X)(I{X ∈C∗
u}− I{X ∈Cs,u}))

= E(η(X)I{X /∈C∗
u}(I{X ∈C∗

u}− I{X ∈Cs,u}))

+E(η(X)I{X ∈C∗
u}(I{X ∈C∗

u}− I{X ∈Cs,u}))

≥ −E(Q(η,−u)I{X /∈C∗
u} I{X ∈Cs,u})

+E(Q(η,−u)I{X ∈C∗
u}(− I{X ∈Cs,u}))

2686

RANKING THE BEST INSTANCES

= Q(η,−u)(−u−+u) =  .

The second inequality simply follows from the identity below:

−u= pGs(Q(s,−u))+(− p)Hs(Q(s,−u)) .

The previous lemma will be important when describing the optimal rules for local ranking cri-
teria. But, at this point, we still do not know any nice criterion for the problem of ranking the
best instances. Before considering different heuristics for extending the AUC criterion in the next
subsections, we will proceed backwards and define our target, that is to say, the optimal scoring
functions for our problem.

Definition 19 (Class S ∗ of optimal scoring functions) The optimal scoring functions for ranking
the best instances at the rate u are defined as the members of the equivalence class (functions
defined up to the composition with a nondecreasing transformation) of scoring functions s∗ such
that:

s∗(x) =






η(x) if x ∈C∗
u

< inf
z∈C∗

u

η(z) if x /∈C∗
u

.

Such scoring functions fulfill the two properties of locating the best instances (indeed Cs∗,u =
C∗
u
) and ranking them as well as the regression function.
Under the light of Lemma 18, we will see that a wide collection of criteria with the set S ∗ as the

set of optimal elements could naturally be considered, depending on how one wants to weight the
two types of error −β(s,u) (type II error in the hypothesis testing framework) and α(s,u) (type I
error) according to the rate u ∈ [,u]. However, not all the criteria obtained in this manner can be
interpreted as generalizations of the AUC criterion for u = .

3.2 Generalization of the AUC Criterion

In Clémençon et al. (To appear), we have considered the ranking error of a scoring function s as
defined by:

R(s) = P{(Y −Y ′)(s(X)− s(X ′)) < } ,

where (X ′,Y ′) is an i.i.d. copy of the random pair (X ,Y).
Interestingly, it can be proved that minimizing the ranking error R(s) is equivalent to maximizing

the well-known AUC criterion. This is trivial once we write down the probabilistic interpretation
of the AUC:

AUC(s) = P
{
s(X) > s(X ′) | Y = , Y ′ = −

}
= −



p(− p)
R(s) .

We now propose a local version of the ranking error on a measurable setC ⊂ X :

R(s,C) = P
{
(s(X)− s(X ′))(Y −Y ′) < , (X ,X ′) ∈C

}
.

2687

CLÉMENÇON AND VAYATIS

On sets of the formC=Cs,u = {x∈X | s(x)≥Q(s,−u)}with mass equal to u, the local ranking
error will be denoted by R(s,u) ! R(s,Cs,u).

We will also consider the local analogue of the AUC criterion:

LOCAUC(s,u) = P
{
s(X) > s(X ′), s(X) ≥ Q(s,−u) | Y = ,Y ′ = −

}
.

This criterion obviously boils down to the standard criterion for u = . However, in the case
where u < , we will see that there is no equivalence between maximizing the LOCAUC criterion
and minimizing the local ranking error s (→ R(s,u). Indeed, the local ranking error is not a relevant
performance measure for finding the best instances. Minimizing it would solve the problem of
finding the instances that are the easiest to rank.

The following theorem states that optimal scoring functions s∗ in the set S ∗ maximize the LO-
CAUC criterion and that the latter may be decomposed as a sum of a ’power’ term and (the opposite
of) a local ranking error term.

Theorem 20 Let u ∈ (,). We have, for any scoring function s:

∀s∗ ∈ S ∗, LOCAUC(s,u) ≤ LOCAUC(s∗,u) .

Moreover, the following relation holds:

∀s, LOCAUC(s,u) = β(s,u)−


p(− p)
R(s,u) ,

where R(s,u) = R(s,Cs,u).

PROOF. We first introduce the notation for the Lebesgue-Stieltjes integral. Whenever ϕ is a cdf on
R and ψ is integrable, the integral

∫
ψ(z)dϕ(z) denotes the Lebesgue-Stieltjes integral (integration

with respect to the measure ν defined by ν[a,b) = ϕ(b)−ϕ(a) for any real numbers a < b). If ϕ
has a density with respect to the Lebesgue measure, then the integral can be written as a Lebesgue
integral:

∫
ψ(z)dϕ(z) =

∫
ψ(z)ϕ ′(z)dz. We shall use this convention repeatedly in the sequel. In

particular, if Z is a random variable with cdf given by FZ then we can write: E(Z) =
∫
z dFZ(z).

Now set v = −u. Observe first that, by conditioning on X , we have:

LOCAUC(s,u) = E
(
I{s(X) > s(X ′)} I{s(X) ≥ Q(s,v)} | Y = ,Y ′ = −

)

= E
(

I{s(X) ≥ Q(s,v)} E
(

I{s(X) > s(X ′)} | Y ′ = −,X
)

| Y = 
)

= E(Hs(s(X)) I{s(X) ≥ Q(s,v)} | Y = )

=

∫+∞

Q(s,v)
Hs(z) dGs(z) .

The last equality is obtained by using the fact that, conditionally on Y = , the random variable s(X)
has cdf Gs. We now use that pGs = Fs−(− p)Hs and we obtain:

pLOCAUC(s,u) =

∫+∞

Q(s,v)
Hs(z) dFs(z)−(− p)

∫+∞

Q(s,v)
Hs(z) dHs(z).

2688

RANKING THE BEST INSTANCES

Recall now that α(s,v) = H̄s ◦F−
s (− v) and make the change of variable − v= Fs(z)

∫+∞

Q(s,v)
Hs(z) dFs(z) =

∫ v


(−α(s,v)) dv .

The second term is computed by making the change of variable a= Hs(z) which leads to:
∫+∞

Q(s,v)
Hs(z) dHs(z) =

∫ 

−α(s,u)
a da .

We have obtained:

pLOCAUC(s,u) =

∫ v


(−α(s,v)) dv−

− p


(−(−α(s,v))) .

From Lemma 18, we have that, for any u∈ (,), the functional s (→α(s,u)) is minimized for s= η.
Hence, the first part of Theorem 20 is established.

Besides, integrating by parts, we get:
∫+∞

Q(s,v)
Hs(z) dGs(z) = [Hs(z)Gs(z)]+∞

Q(s,v)−

∫+∞

Q(s,v)
Gs(z) dHs(z).

The same change of variables as before leads to:
∫+∞

Q(s,v)
Gs(z) dHs(z) =

∫α(s,u)


(−β(s,α)) dα.

We then have another expression of the LOCAUC(s,u):

LOCAUC(s,u) =

∫α(s,u)


β(s,α)dα+β(s,u)(−α(s,u)) .

We develop further by expressing the product of α and β in terms of probability. Using the
independence of (X ,Y) and (X ′,Y ′), we obtain:

α(s,u)β(s,u) =


p(− p)
P

{
s(X)∧ s(X ′) > Q(s,v), Y = , Y ′ = −

}

= P
{
s(X) > s(X ′), s(X)∧ s(X) > Q(s,v) | Y = , Y ′ = −

}

+


p(− p)
P

{
s(X) < s(X ′), (X ,X ′) ∈C

s,u
, Y = , Y ′ = −

}

=

∫α(s,u)


β(s,α) dα+



p(− p)
R(s,u) .

Combining this with the previous formula leads to the second statement of the theorem.

2689

CLÉMENÇON AND VAYATIS

Remark 21 (TRUNCATING THE AUC) In the theorem, we obviously recover the relation between
the standard AUC criterion and the (global) ranking error when u = . Besides, by checking the
proof, one may relate the generalized AUC criterion to the partial AUC. As a matter of fact, we
have:

∀s , LOCAUC(s,u) = PARTAUC(s,u)+β(s,u)−α(s,u)β(s,u) .

The values α(s,u) and β(s,u) are the coordinates of the intersecting point between the ROC curve
of the scoring function s and the control line D(u, p). The theorem reveals that evaluating the local
performance of a scoring statistic s(X) by the truncated AUC as proposed in Dodd and Pepe (2003)
is highly arguable since the maximizer of the functional s (→ PARTAUC(s,u) is usually not in S ∗.

3.3 Generalized Wilcoxon Statistic

We now propose a different extension of the plain AUC criterion. Consider (X,Y), . . ., (Xn,Yn), n
i.i.d. copies of the random pair (X ,Y). The intuition relies on a well-known relationship between
Mann-Whitney and Wilcoxon statistics. Indeed, a natural empirical estimate of the AUC is the rate
of concording pairs:

ÂUC(s) =


n+n−

∑

≤i, j≤n
I{Yi = −,Y j = ,s(Xi) < s(X j)} ,

with n+ = n−n− =
∑n

i= I{Yi = +}.
It will be useful to have in mind the definition of a linear rank statistic.

Definition 22 (linear rank statistic) Consider Z, . . . ,Zn an i.i.d. sample with distribution F and
a real-valued score generating function Φ. Denote by Ri = rank(Zi) the rank of Zi in the sample
Z, . . . ,Zn. Then the statistic

n∑

i=

ciΦ
(

Ri
n+

)

is a linear rank statistic.

We refer to Hájek and Sidák (1967) and van de Vaart (1998) for basic results related to linear
rank statistics. In particular, we recall that, for fixed s, the Wilcoxon statistic Tn(s) is a linear
rank statistic for the sample s(X), . . . ,s(Xn), with random weights ci = I{Yi = }, score generating
function Φ(v) = v:

Tn(s) =
n∑

i=

I{Yi = }
rank(s(Xi))

n+
,

where rank(s(Xi)) denotes the rank of s(Xi) in the sample {s(X j), ≤ j ≤ n}. The following relation
is well-known:

n+n−

n+
ÂUC(s)+

n+(n++)


= Tn(s) .

Moreover, the statistic Tn(s)/n+ is an asymptotically normal estimate of

W (s) = E(Fs(s(X)) | Y = ) .

Note the theoretical counterpart of the previous relation may be written as

W (s) = (− p)AUC(s)+ p/ .

2690

RANKING THE BEST INSTANCES

Now, in order to take into account a proportion u of the highest ranks only, we introduce the
following quantity:

Definition 23 (W-ranking performance measure) Consider the criterion related to the score gen-
erating function Φu(v) = v I{v> −u}:

W (s,u) = E(Φu(Fs(s(X))) | Y = ) .

It will be called the W -ranking performance measure at rate u.

Note that the empirical counterpart ofW (s,u) is given by Tn(s,u)/n+, with

Tn(s,u) =
n∑

i=

I{Yi = } Φu

(
rank(s(Xi))

n+

)
.

Using the results from the previous subsection, we can easily check that the following theorem
holds.

Theorem 24 We have, for all s:

∀s∗ ∈ S ∗, W (s,u) ≤W (s∗,u) .

Furthermore, we have:

W (s,u) =
p

β(s,u)(−β(s,u))+(− p)LOCAUC(s,u) .

PROOF. We start by the definition ofW :

W (s,u) = E(Fs(s(X))I{Fs(s(X)) > −u} | Y = )

=

∫+∞

Q(s,−u)
Fs(z) dGs(z).

We recall that: Fs = pGs+(− p)Hs which leads to:

W (s,u) = p
∫+∞

Q(s,−u)
Gs(z) dGs(z)+(− p)

∫+∞

Q(s,−u)
Hs(z) dGs(z) .

The second term corresponds exactly to the LOCAUC. The first term is easily computed by a change
of variable b= Gs(z): ∫+∞

Q(s,−u)
Gs(z) dGs(z) =

∫ 

−β(s,u)
b db .

Elementary computations lead to the formula in the theorem. Moreover the application t (→ t(− t)
being nondecreasing for t ∈ (,), we have, from Lemma 18:

∀s∗ ∈ S ∗, β(s,u)(−β(s,u)) ≤ β(s∗,u)(−β(s∗,u)) .

We also use the optimality of s∗ for LOCAUC established in Theorem 20 to conclude the proof.

2691

CLÉMENÇON AND VAYATIS

Remark 25 (EVIDENCE AGAINST ’TWO-STEP’ STRATEGIES) It is noteworthy that not all com-
binations of β(s,u) (or α(s,u)) and R(s,u) lead to a criterion with S ∗ being the set of optimal
scoring functions. We have provided two non-trivial examples for which this is the case (Theorems
20 and 24). But, in general, this remark should prevent from considering ’naive’ two-step strategies
for solving the local ranking problem. By ’naive’ two-step strategies, we refer here to stagewise
strategies which would, first, compute an estimate Ĉ of the set containing the best instances, and
then, solve the ranking problem over Ĉ as described in Clémençon et al. (To appear). However, this
idea combined with a certain amount of iterativeness might be the key to the design of efficient algo-
rithms. In any case, we stress here the importance of making use of a global criterion, synthesizing
our double goal: finding and ranking the best instances.

Remark 26 (OTHER RANKING PERFORMANCE MEASURES) The ideas expressed above suggest
that several ranking criteria can be proposed. For instance, one can consider maximization of other
linear rank statistics with particular score generating functions Φ and there are many possible
choices which would emphasize the importance of the highest ranks. One of these choices isΦ(v) =
vp which corresponds to the p-norm push proposed by Rudin (2006) although the definition of
the ranks in her work is slightly different. The Discounted Cumulative Gain criterion, studied in
particular by Cossock and Zhang (2006) and Li et al. (2007), is of different nature and cannot be
represented in a similar way. Other extensions can be proposed in the spirit of the tail strength
measure from Taylor and Tibshirani (2006). The theoretical study of such criteria is still at an early
stage, especially for the last proposal. We also point out that with such extensions, probabilistic
interpretations and explicit connection to the AUC criterion seem to be lost.

4. Empirical Risk Minimization of the Local AUC Criterion

In the previous section, we have seen that there are various performance measures which can be
considered for the problem of ranking the best instances. In order to perform the statistical analysis,
we will favor the representations of LOCAUC andW which involve the classification error L(s,u)
and the local ranking error R(s,u). By combining Theorems 20 and 24, we can easily get:

p(− p)LOCAUC(s,u) = (− p)(p+u)−(− p)L(s,u)−R(s,u)

and
pW (s,u) =C(p,u)+

(
p+u


−

)
L(s,u)−




L(s,u)−R(s,u)

whereC(p,u) is a constant depending only on p and u.
We exploit the first expression and choose to study the minimization of the following criterion

for ranking the best instances:

M(s) !M(s,u) = R(s,u)+(− p)L(s,u) .

It is obvious that the elements of S ∗ are the optimal elements of the functional M(· ,u) and we
will now consider scoring functions obtained through empirical risk minimization of this criterion.

More precisely, given n i.i.d. copies (X,Y), . . . ,(Xn,Yn) of (X ,Y), we introduce the empirical
counterpart:

M̂n(s) ! M̂n(s,u) = R̂n(s)+
n−

n
L̂n(s),

2692

RANKING THE BEST INSTANCES

with n− =
∑n

i= I{Yi = −} and

R̂n(s) =


n(n−)

∑

i&=j

I{(s(Xi)− s(X j))(Yi−Yj) < , s(Xi)∧ s(X j) ≥ Q̂(s,−u)} .

Note that R̂n(s) is expected to be close to theU-statistic of degree two

Rn(s) =


n(n−)

∑

i&=j

ks((Xi,Yi),(X j,Yj)),

with symmetric kernel

ks((x,y),(x ′,y ′)) = I{(s(x)− s(x ′))(y− y ′) < , s(x)∧ s(x ′) ≥ Q(s,−u)} .

The statistic Rn(s) corresponds to an unbiased estimate of the local ranking error R(s,u). The
next result provides a standard error bound for the excess risk of the empirical risk minimizer over
a class S of scoring functions:

ŝn = argmin
s∈S

M̂n(s) .

Proposition 27 Assume that conditions (i)-(ii) of Theorem 2 are fulfilled. Then, there exist con-
stants c and c such that, for any δ> , we have:

M(ŝn)− inf
s∈S

M(s) ≤ c

√
V
n

+ c

√
ln(/δ)

n
with probability larger than −δ.

PROOF. (SKETCH) The proof combines the argument used in the proof of Theorem 5 with the
techniques used in establishing Proposition 2 in Clémençon et al. (2005).

M(ŝn)− inf
s∈S

M(s) ≤ 

(
sup
s∈S

∣∣R̂n(s)−Rn(s)
∣∣+ sup

s∈S
|R(s)−Rn(s)|

)

+(− p)
(
sup
s∈S

∣∣L̂n(s)−Ln(s)
∣∣+ sup

s∈S
|L(s)−Ln(s)|

)
+

∣∣∣
n+

n
− p

∣∣∣ .

The middle term may be bounded by applying the result stated in Theorem 5, while the last
one can be handled by using Bernstein’s exponential inequality for an average of Bernoulli random
variables. By combining Lemma 1 in Clémençon et al. (2005) with the Chernoff method, we can
deal with theU-process term sups∈S |R(s)−Rn(s)|. Finally, the term sups∈S

∣∣R̂n(s)−Rn(s)
∣∣ can also

be controlled by repeating the argument in the proof of Theorem 5. The only difference here is that
we have to consider theU-process term

sup
(s,t)

∣∣∣∣∣∣


n(n−)

∑

i&=j

{Ks,t((Xi,Yi),(X j,Yj))−E[Ks,t((X ,Y),(X ′,Y ′))]}

∣∣∣∣∣∣

with
Ks,t((x,y),(x ′,y ′)) = I{(s(x)− s(x ′))(y− y ′) > , s(x)∧ s(x ′) ≥ t} .

For deriving first-order results with such a process, we refer to the same type of argument as used
in Clémençon et al. (2005).

2693

CLÉMENÇON AND VAYATIS

Remark 28 (ABOUT THE POSSIBILITY OF DERIVING FAST RATES) By checking the proof sketch,
it turns out that sharper bounds may be achieved for the U-process term. Indeed, it is a simple
variation of our previous work in Clémençon et al. (2005) where we have used Hoeffding’s de-
composition in order to grasp the deep structure of the underlying statistic. Here we will need, in
addition, condition (iii) to hold for all u ∈ (,u]. Indeed, if we localize our low-noise assumption
from Clémençon et al. (2005), it takes the following form: there exist constants α ∈ (,) and B> 
such that, for all t ≥ , we have

∀x ∈C∗
u

, P {|η(X)−η(x)| ≤ t} ≤ Bt
α

−α .

It is easy to see that this is equivalent to condition (iii) for all u ∈ (,u]: there exist constants
α ∈ (,) and B>  such that, for all t ≥ , we have

∀u ∈ (,u], P {|η(X)−Q(η,−u)| ≤ t} ≤ Bt
α

−α .

However, in the present formulation where p is assumed to be unknown, it looks like this improve-
ment will be spoiled by the ’proportion term’ which will still be of the order of a O(n−/).

Remark 29 (ABOUT THE EXTENSION TO CONVEX RISK MINIMIZATION) An important topic in
classification theory is convex risk minimization. Understanding the connection between classifi-
cation error and its convex surrogates has permitted to understand the behavior of practical algo-
rithms such as boosting and SVM from a statistical perspective (see Boucheron et al., 2005 for
an account on this aspect and Bartlett et al., 2006 for state-of-the-art results). A natural question
which arises here is whether the consistency results on local ranking can be extended in this spirit.
Note that, if we do not focus on best instances and consider the whole AUC as a performance
criterion, it is straightforward to obtain consistency and universal rates of convergence for convex
risk minimization (as explained in Clémençon et al. (To appear)). In the case of local ranking as we
introduced it, this extension is less straightforward since the decision rule represented here by the
scoring function s appears under the empirical quantile Q̂(s,v) in the criterion. We refer to Rudin
(2006), Cossock and Zhang (2006) and Li et al. (2007) where convex risk minimization strategies in
the context of ranking are discussed.

5. Conclusion

In the present work, we have presented theoretical work on local ranking. In the first part of the
paper (Section 2), we considered a subproblem that we called the classification with mass constraint
problem. The scope was to establish and study an empirical risk minimization strategy for only
finding, and not ranking, the best instances. In this case, one attempts to minimize the classification
error over classifiers that contain a fixed proportion u of observations. This constraint leads to
empirical risk functionals which involve an empirical quantile indexed by the class of candidate
scoring functions and can be seen as linear signed rank statistics. We then provide a consistency
result and discuss the noise assumptions required to derive fast rates of convergence in this setup.
These assumptions require a limited regularity of the underlying distributions which prevents the
fast rate from dropping below the order of n−/. The second part of the paper (Section 3) is
dedicated to the introduction of new performance measures for local ranking related to the ROC
curve and the AUC criterion. We show that the AUC can be extended in several ways (partial AUC
and local AUC) but not all these extensions are tailored for the local ranking problem. In particular

2694

RANKING THE BEST INSTANCES

the naive extension known as the partial AUC is not appropriate and requires a correction term. We
also introduce the optimal scoring functions which should be considered as the target of any local
ranking method. We also discuss other extensions based on Wilcoxon statistics, the W -ranking
performance measure, for which optimal rules can also be recovered. In the last section of the
paper (Section 4), the problem of ranking the best instances is studied from a statistical perspective.
A consistency result is provided for empirical risk minimization of the W -ranking performance
measure.

Acknowledgments

We thank Stéphane Boucheron and Gábor Lugosi for their helpful remarks and encouragements.
We also gratefully thank both referees for their comments which helped us improve the clarity of
the paper.

Appendix A.

In this section, we provide the proof of Proposition 15.
PROOF. First, for all (s,v) ∈ S × (,) set

Vn(s,v) =


n

n∑

i=

YiI{s(Xi) ≤ Q(s,v)}−K(s,v) .

We have the following decomposition:

∀v ∈ [,] , K̂n(s,v)−K(s,v) =Vn(s,Fs ◦ F̂−
s (v))+K(s,Fs ◦ F̂−

s (v))−K(s,v) .

We shall first prove that

Vn(s,Fs ◦ F̂−
s (v)) =Vn(s,v)+OP(n−).

We denote by A(s,ε) the event
{∣∣Fs ◦ F̂−

s (v)− v
∣∣ < ε

}
. On the event A(s,ε), we have:

∣∣Vn(s,Fs ◦ F̂−
s (v))−Vn(s,v)

∣∣ ≤ sup
v : |v−v|<ε

|Vn(s,v)−Vn(s,v)| .

We bound the right hand side for fixed ε, by making use of an argument from van de Geer (2000).
First, we need to put things into the right format. Set:

Vn(s,v)−Vn(s,v) =


n

n∑

i=

(ui(s,v)−ui(s,v)) ,

where ui(s,v) = YiI{s(Xi) ≤ Q(s,v) < }−E(Y I{s(X) ≤ Q(s,v)}) for s ∈ S and v ∈ (,). We ob-
serve that

|ui(s,v)−ui(s,v)| ≤ di(v,v),

where
di(v,v) = I{s(Xi) ∈ [Q(s,v∧ v),Q(s,v∨ v)]}+ |v− v| .

2695

CLÉMENÇON AND VAYATIS

Denote by

d̂(v,v) =


n

n∑

i=

I{s(Xi) ∈ [Q(s,v∧ v),Q(s,v∨ v)]}+ |v− v| .

a distance over R. Set also:
R̂(ε) = sup

v : |v−v|<ε
d̂(v,v) .

and observe that

R̂(ε) =


n

n∑

i=

I{s(Xi) ∈ [Q(s,v − ε),Q(s,v + ε)]}+ ε .

We then have, by applying Lemma 8.5 from van de Geer (2000), for nt/R̂(ε) sufficiently large,

P
{

sup
v : |v−v|≤ε

|Vn(s,v)−Vn(s,v)| ≥ t
∣∣∣∣ X, . . . ,Xn

}
≤Cexp

{
−
cnt

R̂(ε)

}
,

for some positive constants c and C. It remains to integrate out and, for this purpose, we introduce
the event:

∀x>  , Δ(x) =
{
ε− x≤ R̂(ε) ≤ ε+ x

}
.

We then have:
E

(
exp

{
−
cnt

R̂(ε)

})
≤ exp

{
−

cnt

(ε+ x)

}
+P

{
Δ(x)

}
.

Now, we have, by Bernstein’s inequality:

P
{
Δ(x)

}
= P

{

n
B(n,ε)−ε> x

}
≤ exp

{
−

nx

ε

}

where we have used the notation B(n,ε) for a binomial (n,ε) random variable. We can take
x= O(t/

√
ε) and assume also x= o(ε) to get, for nt/ε large enough,

P
{

sup
v : |v−v|≤ε

|Vn(s,v)−Vn(s,v)| ≥ t

}
≤Cexp

{
−
cnt

ε

}
,

for some positive constants c and C. This can be reformulated, by writing that the following bound
holds, with probability larger than −δ/,

sup
v : |v−v|≤ε

|Vn(s,v)−Vn(s,v)| ≤ ε

√
log(C/δ)

nc
.

We recall that, by the triangle inequality and Dvoretsky-Kiefer-Wolfowitz theorem, if we take ε =

c
√

log(/δ)
n , we have P {A(s,ε)} ≥ − δ/. It follows that, with probability larger than − δ, we

have, for some constant κ:

∣∣Vn(s,Fs ◦ F̂−
s (v))−Vn(s,v)

∣∣ ≤ κ

(
log(/δ)

n

)
,

2696

RANKING THE BEST INSTANCES

for any s ∈ S . Now it remains to deal with the second term K(s,Fs ◦ F̂−
s (v))−K(s,v). Therefore,

by the differentiability assumption (iv), we have: ∀s ∈ S ,

sup
|v−v|≤δ

{K(s,v)−K(s,v)−(v− v)K ′(s,v)} = O(δ) , as δ→  .

Since |Fs ◦ F̂−
s (v))− v| = OP(n−/), we get that

K(s,Fs ◦ F̂−
s (v))−K(s,v) = K ′(s,v)(Fs ◦ F̂−

s (v)− v)+OP(n−) , as n→ ∞ .

Moreover, as
Fs ◦ F̂−

s (v)− v = −(F̂s ◦F−
s (v)− v)+OP(n−) ,

we finally obtain that

K(s,Fs ◦ F̂−
s (v))−K(s,v) = −K ′(s,v)(F̂s ◦F−

s (v)− v)+OP(n−) .

References

S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled, and D. Roth. Generalization bounds for the area
under the ROC curve. Journal of Machine Learning Research, 6:393–425, 2005.

P. Bartlett, M. Jordan, and J. McAuliffe. Convexity, classification, and risk bounds. Journal of the
American Statistical Association, 101(473):138–156, 2006.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of some recent
advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

L. Cavalier. Nonparametric estimation of regression level sets. Statistics, 29:131–160, 1997.

S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and scoring using empirical risk minimization.
In P. Auer and R. Meir, editors, Proceedings of COLT 2005, volume 3559 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2005.

S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and empirical risk minimization of U-statistics.
The Annals of Statistics, To appear.

C. Cortes and M. Mohri. Auc optimization vs. error rate minimization. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

D. Cossock and T. Zhang. Statistical analysis of Bayes optimal subset ranking. Technical report,
Yahoo! Research, 2006.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
1996.

2697

CLÉMENÇON AND VAYATIS

L. E. Dodd and M. S. Pepe. Partial AUC estimation and regression. Biometrics, 59(3):614–623,
2003.

R.M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.

V. Dupac and J. Hájek. Asymptotic normality of simple linear rank statistics under alternatives ii.
The Annals of Mathematical Statistics, (6):1992–2017, 1969.

J.P. Egan. Signal Detection Theory and ROC Analysis. Academic Press, 1975.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4, 2003.

J. Hájek and Z. Sidák. Theory of Rank Tests. Academic Press, 1967.

J.A. Hanley and J. McNeil. The meaning and use of the area under a ROC curve. Radiology, (143):
29–36, 1982.

K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In
N.J. Belkin, P . Ingwersen, , and M.-K. Leong, editors, Proceedings of the 23rd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval, pages
41–48, 2000.

H.L. Koul. Weighted Empirical Processes in Dynamic Nonlinear Models, volume 166 of Lecture
Notes in Statistics. Springer, 2nd edition, 2002.

H.L. Koul. Some convergence theorems for ranks and weighted empirical cumulatives. The Annals
of Mathematical Statistics, (41):1768–1773, 1970.

H.L. Koul and Jr. R.G. Staudte. Weak convergence of weighted empirical cumulatives based on
ranks. The Annals of Mathematical Statistics, (43):823–841, 1972.

P. Li, C. Burges, and Q. Wu. Learning to rank using classification and gradient boosting. Technical
report MSR-TR-2007-74, Microsoft Research, 2007.

G. Lugosi. Pattern classification and learning theory. In L. Györfi, editor, Principles of Nonpara-
metric Learning, pages 1–56.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. Annals of Statistics, 27(6):
1808–1829, 1999.

P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics.
Springer, 2006.

P. Massart and E. Nédélec. Risk bounds for statistical learning. Annals of Statistics, 34(5), 2006.

A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1965.

C. Rudin. Ranking with a P-Norm Push. In H.U. Simon and G. Lugosi, editors, Proceedings of
COLT 2006, volume 4005 of Lecture Notes in Computer Science, pages 589–604, 2006.

2698

RANKING THE BEST INSTANCES

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking and boosting meet in
the middle. In P. Auer and R. Meir, editors, Proceedings of COLT 2005, volume 3559 of Lecture
Notes in Computer Science, pages 63–78. Springer, 2005.

C. Scott. Performance measures for Neyman-Pearson classification. Technical report, Department
of Statistics, Rice University, 2005.

C. Scott and M. Davenport. Regression level set estimation via cost-sensitive classification. IEEE
Transactions on Signal Processing, 2006, to appear.

C. Scott and R. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Transactions on
Information Theory, 51(11):3806–3819, November 2005.

C. Scott and R. Nowak. Learning minimum volume sets. Journal of Machine Learning Research,
7:665–704, April 2006.

I. Steinwart, D. Hush, and C. Scovel. A classification framework for anomaly detection. Journal of
Machine Learning Research, 6:211–232, 2005.

J. Taylor and R. Tibshirani. A tail strength measure for assessing the overall univariate significance
in a dataset. Biostatistics, 7(2):167–181, 2006.

A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32(1):
135–166, 2004.

A. Tsybakov. On nonparametric estimation of density level sets. Annals of Statistics, 25(3):948–
969, 1997.

S. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.

A. van de Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

H.L. van Trees. Detection, Estimation, and Modulation Theory, Part I. John Wiley, 1968.

R. Vert and J.-P. Vert. Consistency and convergence rates of one-class SVMs and related algorithms.
Journal of Machine Learning Research, 7:817–854, May 2006.

R. Willett and R. Nowak. Minimax optimal level set estimation. Technical report, Rice University,
2006.

2699

Journal of Machine Learning Research 8 (2007) 2701-2726 Submitted 6/07; Revised 7/07; Published 12/07

Stagewise Lasso

Peng Zhao PENGZHAO@STAT.BERKELEY.EDU
Bin Yu BINYU@STAT.BERKELEY.EDU
Department of Statistics
University of Berkeley
367 Evans Hall
Berkeley, CA 94720-3860, USA

Editor: Saharon Rosset

Abstract
Many statistical machine learning algorithms minimize either an empirical loss function as in Ad-
aBoost, or a penalized empirical loss as in Lasso or SVM. A single regularization tuning parameter
controls the trade-off between fidelity to the data and generalizability, or equivalently between
bias and variance. When this tuning parameter changes, a regularization “path” of solutions to
the minimization problem is generated, and the whole path is needed to select a tuning parameter
to optimize the prediction or interpretation performance. Algorithms such as homotopy-Lasso or
LARS-Lasso and Forward Stagewise Fitting (FSF) (aka e-Boosting) are of great interest because
of their resulted sparse models for interpretation in addition to prediction.

In this paper, we propose the BLasso algorithm that ties the FSF (e-Boosting) algorithm with
the Lasso method that minimizes the L1 penalized L2 loss. BLasso is derived as a coordinate descent
method with a fixed stepsize applied to the general Lasso loss function (L1 penalized convex loss).
It consists of both a forward step and a backward step. The forward step is similar to e-Boosting
or FSF, but the backward step is new and revises the FSF (or e-Boosting) path to approximate
the Lasso path. In the cases of a finite number of base learners and a bounded Hessian of the loss
function, the BLasso path is shown to converge to the Lasso path when the stepsize goes to zero. For
cases with a larger number of base learners than the sample size and when the true model is sparse,
our simulations indicate that the BLasso model estimates are sparser than those from FSF with
comparable or slightly better prediction performance, and that the the discrete stepsize of BLasso
and FSF has an additional regularization effect in terms of prediction and sparsity. Moreover, we
introduce the Generalized BLasso algorithm to minimize a general convex loss penalized by a
general convex function. Since the (Generalized) BLasso relies only on differences not derivatives,
we conclude that it provides a class of simple and easy-to-implement algorithms for tracing the
regularization or solution paths of penalized minimization problems.
Keywords: backward step, boosting, convexity, Lasso, regularization path

1. Introduction

Many statistical machine learning algorithms minimize either an empirical loss function or a penal-
ized empirical loss, in a regression or a classification setting where covariate or predictor variables
are used to predict a response variable and i.i.d. samples of training data are available. For example,
in classification, both AdaBoost (Schapire, 1990; Freund, 1995; Freund and Schapire, 1996) and
SVM (Vapnik, 1995; Cristianini and Shawe-Taylor, 2002; Schölkopf and Smola, 2002) build linear
classification functions of basis functions of the covariates (predictors). Adaboost minimizes an

c©2007 Peng Zhao and Bin Yu.

ZHAO AND YU

exponential loss function of the margin, while SVM a penalized hinge loss function of the margin.
A single regularization tuning parameter, the number of iterations in AdaBoost and the smoothing
parameter in SVM, controls the bias-and-variance trade-off or whether the algorithm overfits or un-
derfits the data. When this tuning parameter changes, a regularization “path” of solutions to the
minimization problem is generated. These algorithms have been shown to achieve start-of-the-art
prediction performance. A tuning parameter value, or equivalently a point on the path of solutions, is
chosen to minimize the estimated prediction error over a proper test set or through cross-validation.
Hence it is necessary to have algorithms that can generate the path of solutions in an efficient man-
ner. Path following algorithms have also been devised in other statistical penalized minimization
problems such as the problems of information bottleneck Tishby et al. (1999) and information dis-
tortion Gedeon et al. (2002) where the loss and penalty functions are different from these discussed
in this paper. In fact, following the solution paths of numerical problems is the focus of homo-
topy, a sub-area in numerical analysis. Interested readers are referred to the book Allgower and
Georg (1980) (http://www.math.colostate.edu/emeriti/georg/AllgGeorgHNA.pdf) and references at
http://www.math.colostate.edu/emeriti/georg/georg.publications.html.

Among all the machine learning methods, those that produce sparse models are of great inter-
est because sparse models lend themselves more easily to interpretation and therefore preferred in
sciences and social sciences. Lasso (Tibshirani, 1996) is such a method. It minimizes the L2 loss
function with an L1 penalty on the parameters in a linear regression model. In signal processing it
is called Basis Pursuit (Chen and Donoho, 1994). The L1 penalty leads to sparse solutions, that is,
there are few predictors or basis functions with nonzero weights (among all possible choices). This
statement is proved asymptotically under various conditions by different authors (see, e.g., Knight
and Fu, 2000; Osborne et al., 2000a,b; Donoho et al., 2006; Donoho, 2006; Rosset et al., 2004;
Tropp, 2006; Zhao and Yu, 2006; Zou, 2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006).

Sparsity has also been observed in the models generated by Forward Stagewise Fitting (FSF)
or e-Boosting. FSF is a gradient descent procedure with more cautious steps than L2Boosting (i.e.,
the usual coordinatewise gradient descent method applied to the L2 loss) (Rosset et al., 2004; Hastie
et al., 2001; Efron et al., 2004). Moreover, these papers also study the similarities between FSF (e-
Boosting) with Lasso. This link between Lasso and e-Boosting or FSF is more formally described
for the linear regression case through the LARS algorithm (Least Angle Regression Efron et al.,
2004). It is also shown in Efron et al. (2004) that for special cases (such as orthogonal designs)
e-Boosting or FSF can approximate Lasso path infinitely close, but in general, it is unclear what
regularization criterion e-Boosting or FSF optimizes. As can be seen in our experiments (Figure 1
in Section 6.1), e-Boosting or FSF solutions can be significantly different from the Lasso solutions
in the case of strongly correlated predictors which are common in high-dimensional data prob-
lems. However, FSF is still used as an approximation to Lasso because it is often computationally
prohibitive to solve Lasso with general loss functions for many regularization parameters through
Quadratic Programming.

In this paper, we propose a new algorithm BLasso that connects Lasso with FSF or e-Boosting
(and the B in the name stands for this connection to boosting). BLasso generates approximately the
Lasso path in general situations for both regression and classification for L1 penalized convex loss
function. The motivation for BLasso is a critical observation that FSF or e-Boosting only works in a
forward fashion. It takes steps that reduce empirical loss the most regardless of the impact on model
complexity (or the L1 penalty). Hence it is not able to adjust earlier steps. Taking a coordinate
(difference) descent view point of the Lasso minimization with a fixed stepsize, we introduce an

2702

STAGEWISE LASSO

innovative “backward” step. This step uses the same minimization rule as the forward step to define
each fitting stage but with an extra rule to force the model complexity or L1 penalty to decrease.
By combining backward and forward steps, BLasso is able to go back and forth to approximate the
Lasso path correctly.

BLasso can be seen as a marriage between two families of successful methods. Computationally,
BLasso works similarly to e-Boosting and FSF. It isolates the sub-optimization problem at each
step from the whole process, that is, in the language of the Boosting literature, each base learner
is learned separately. This way BLasso can deal with different loss functions and large classes of
base learners like trees, wavelets and splines by fitting a base learner at each step and aggregating
the base learners as the algorithm progresses. Moreover, the solution path of BLasso can be shown
to converge to that of the Lasso, which uses explicit global L1 regularization for cases with a finite
number of base learners. In contrast, e-Boosting or FSF can be seen as local regularization in the
sense that at any iteration, FSF with a fixed small stepsize only searches over those models which
are one small step away from the current one in all possible directions corresponding to the base
learners or predictors (cf. Hastie et al., 2006, for a recent interpretation of the ε→ 0 case).

In particular, we make three contributions in this paper via BLasso. First, by introducing the
backward step we modify e-Boosting or FSF to follow the Lasso path and consequently generate
models that are sparser with equivalent or slightly better prediction performance in our simulations
(with true sparse models and more predictors than the sample size). Secondly, by showing conver-
gence of BLasso to the Lasso path, we further tighten the conceptual ties between e-Boosting or FSF
and Lasso that have been considered in previous works. Finally, since BLasso can be generalized to
deal with other convex penalties and does not use any derivatives of the Loss function or penalty, we
provide the Generalized BLasso algorithm as a simple and easy-to-implement off-the-shelf method
for approximating the regularization path for a general loss function and a general convex penalty.

We would like to note that, for the original Lasso problem, that is, the least squares problem (L2
loss) with an L1 penalty, algorithms that give the entire Lasso path have been established, namely,
the homotopy method by Osborne et al. (2000b) and the LARS algorithm by Efron et al. (2004).
For parametric least squares problems where the number of predictors is not large, these methods
are very efficient as their computational complexity is on the same order as a single Ordinary Least
Squares regression. For other problems such as classification and for nonparametric setups like
model fitting with trees, FSF or e-Boosting has been used as a tool for approximating the Lasso
path (Rosset et al., 2004). For such problems, BLasso operates in a similar fashion as FSF or e-
Boosting but, unlike FSF, BLasso can be shown to converge to the Lasso path quite generally when
the stepsize goes to zero.

The rest of the paper is organized as follows. In Section 2.1, the gradient view of Boosting is
provided and FSF (e-Boosting) is reviewed as a coordinatewise descent method with a fixed stepsize
on the L2 loss. In Section 2.2, the Lasso empirical minimization problem is reviewed. Section 3
introduces BLasso that is a coordinate descent algorithm with a fixed stepsize applied to the Lasso
minimization problem. Section 4 discusses the backward step and gives the intuition behind BLasso
and explains why FSF is unable to give the Lasso path. Section 5 introduces a Generalized BLasso
algorithm which deals with general convex penalties. In Section 6, results of experiments with
both simulated and real data are reported to demonstrate the attractiveness of BLasso. BLasso is
shown as a learning algorithm that gives sparse models and good prediction and as a simple plug-in
method for approximating the regularization path for different convex loss functions and penalties.
Moreover, we compare different choices of the stepsize and give evidence for the regularization

2703

ZHAO AND YU

effect of using moderate stepsizes. Finally, Section 7 is a discussion and a summary. In particular,
it comments on the computational complexity of BLasso, compares with the algorithm in Rosset
(2004), explores the possibility of BLasso for nonparametric learning problems, summarizes the
paper, and points to future directions.

2. Boosting, Forward Stagewise Fitting and the Lasso

Boosting was originally proposed as an iterative fitting procedure that builds up a model sequentially
using a weak or base learner and then carries out a weighted averaging (Schapire, 1990; Freund,
1995; Freund and Schapire, 1996). More recently, boosting has been interpreted as a gradient
descent algorithm on an empirical loss function. FSF or e-Boosting can be viewed as a gradient
descent with a fixed small stepsize at each stage and it produces solutions that are often close to
the Lasso solutions (path). We now give a brief gradient descent view of Boosting and of FSF
(e-Boosting), followed by a review of the Lasso minimization problem.

2.1 Boosting and Forward Stagewise Fitting

Given data Zi = (Yi,Xi)(i= 1, ...,n), where the univariate Y can be continuous (regression problem)
or discrete (classification problem), our task is to estimate the function F : Rd → R that minimizes
an expected loss

E[C(Y,F(X))], C(·, ·) : R×R→ R+.

The most prominent examples of the loss functionC(·, ·) include exponential loss (AdaBoost), logit
loss and L2 loss.

The family of F(·) being considered is the set of ensembles of “base learners”

D= {F : F(x) =∑
j
β jh j(x),x ∈ Rd ,β j ∈ R},

where the family of base learners can be very large or contain infinite members, for example, trees,
wavelets and splines.

Let β= (β1, ...β j, ...)T , we can re-parametrize the problem using

L(Z,β) :=C(Y,F(X)),

where the specification of F is hidden by L to make our notation simpler.
To find an estimate for β, we set up an empirical minimization problem:

β̂= argmin
β

n

∑
i=1

L(Zi;β).

Despite the fact that the empirical loss function is often convex in β, exact minimization is
usually a formidable task for a moderately rich function family of base learners and with such
function families the exact minimization leads to overfitted models. Because the family of base
learners is usually large, Boosting can be viewed as finding approximate solutions by applying
functional gradient descent. This gradient descent view has been recognized and studied by various
authors including Breiman (1998), Mason et al. (1999), Friedman et al. (2000), Friedman (2001)
and Buhlmann and Yu (2003). Precisely, boosting is a progressive procedure that iteratively builds
up the solution (and it is often stopped early to avoid overfitting):

2704

STAGEWISE LASSO

(ĵ, ĝ) = argmin
j,g

n

∑
i=1

L(Zi; β̂t +g1 j), (1)

β̂t+1 = β̂t + ĝ1 ĵ, (2)

where 1 j is the jth standard basis vector with all 0’s except for a 1 in the jth coordinate, and g ∈ R
is stepsize. In other words, Boosting favors the direction ĵ that reduces most the empirical loss and
ĝ is found through a line search. The well-known AdaBoost, LogitBoost and L2Boosting can all be
viewed as implementations of this strategy for different loss functions.

Forward Stagewise Fitting (FSF) (Efron et al., 2004) is a similar method for approximating the
minimization problem described by (1) with some additional regularization. FSF has also been
called e-Boosting for ε-Boosting as in Rosset et al. (2004). Instead of optimizing the stepsize as in
(2), FSF updates β̂t by a fixed stepsize ε as in Friedman (2001).

For general loss functions, FSF can be defined by removing the minimization over g in (1):

(ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L(Zi; β̂t + s1 j), (3)

β̂t+1 = β̂t + ŝ1 ĵ. (4)

This description looks different from the FSF described in Efron et al. (2004), but the underlying
mechanic of the algorithm remains unchanged (see Section 5). Initially all coefficients are zero. At
each successive step, a basis function or predictor or coordinate is selected that reduces most the
empirical loss. Its corresponding coefficient β ĵ is then incremented or decremented by a fixed
amount ε, while all other coefficients β j, j $= ĵ are left unchanged.

By taking small steps, FSF imposes some local regularization or shrinkage. A related approach
can be found in Zhang (2003) where a relaxed gradient descent method is used. After T < ∞
iterations, many of the estimated coefficients by FSF will be zero, namely those that have yet to be
incremented. The others will tend to have absolute values smaller than the unregularized solutions.
This shrinkage/sparsity property is reflected in the similarity between the solutions given by FSF
and Lasso which is reviewed next.

2.2 General Lasso

Let T (β) denote the L1 penalty of β = (β1, ...,β j, ...)T , that is, T (β) = ‖β‖1 = ∑ j |β j|, and Γ(β;λ)
denote the Lasso (least absolute shrinkage and selection operator) loss function

Γ(β;λ) =
n

∑
i=1

L(Zi;β)+λT (β).

The general Lasso estimate β̂= (β̂1, ..., β̂ j, ...)T is defined by

β̂λ =min
β
Γ(β;λ).

The parameter λ≥ 0 controls the amount of regularization applied to the estimate. Setting λ= 0
reverses the Lasso problem to minimizing the unregularized empirical loss. On the other hand, a

2705

ZHAO AND YU

very large λ will completely shrink β̂ to 0 thus leading to the empty or null model. In general,
moderate values of λ will cause shrinkage of the solutions towards 0, and some coefficients may
end up being exactly 0. This sparsity in Lasso solutions has been researched extensively in recent
years (e.g., Osborne et al., 2000a,b; Efron et al., 2004; Donoho et al., 2006; Donoho, 2006; Tropp,
2006; Rosset et al., 2004; Meinshausen and Bühlmann, 2005; Candes and Tao, 2007; Zhao and Yu,
2006; Zou, 2006; Wainwright, 2006; Meinshausen and Yu, 2006; Zhang and Huang, 2006). Sparsity
can also result from other penalties as in, for example, Fan and Li (2001).

Computation of the solution to the Lasso problem for a fixed λ has been studied for special
cases. Specifically, for least squares regression, it is a quadratic programming problem with linear
inequality constraints; for 1-norm SVM, it can be transformed into a linear programming problem.
But to get a model that performs well on future data, we need to select an appropriate value for the
tuning parameter λ. Very efficient algorithms have been proposed to give the entire regularization
path for the squared loss function (the homotopy method by Osborne et al. 2000b and similarly
LARS by Efron et al. 2004) and SVM (1-norm SVM by Zhu et al., 2003).

However, it remains open how to give the entire regularization path of the Lasso problem for
general convex loss function. FSF exists as a compromise since, like Boosting, it is a nonparamet-
ric learning algorithm that works with different loss functions and large numbers of base learners
(predictors) but it is local regularization and does not converge to the Lasso path in general. As can
be seen in Sec. 6.2, FSF has also less sparse solutions comparing to Lasso in our simulations.

Next we propose the BLasso algorithm which works in a computationally efficient fashion as
FSF. In contrast to FSF, BLasso converges to the Lasso path for general convex loss functions when
the stepsize goes to 0. This relationship between Lasso and BLasso leads to sparser solutions for
BLasso comparing to FSF with similar or slightly better prediction performance in our simulation
set-up with different choices of the stepsize.

3. The BLasso Algorithm

We first describe the BLasso algorithm (Algorithm 1). This algorithm has two related input param-
eters, a stepsize ε and a tolerance level ξ.

The tolerance level is needed only to avoid numerical instability when assessing changes of the
empirical loss function and should be set as small as possible while accommodating the numerical
accuracy of the implementation. (ξ is set to 10−6 in the implementation of the algorithm that used
in this paper.)

We will discuss forward and backward steps in depth in the next section. Immediately, the fol-
lowing properties can be proved for BLasso (see Appendix for the proof).

Lemma 1.

1. For any λ≥ 0, if there exist j and s with |s|= ε such that Γ(s1 j;λ)≤ Γ(0;λ), we have λ0 ≥ λ.

2. For any t, we have Γ(β̂t+1;λt) ≤ Γ(β̂t ;λt)−ξ.

3. For ξ ≥ 0 and any t such that λt+1 < λt , we have Γ(β̂t ± ε1 j;λt) > Γ(β̂t ;λt)− ξ for every j
and ‖β̂t+1‖1 = ‖β̂t‖1+ ε.

Lemma 1 (1) guarantees that it is safe for BLasso to start with an initial λ0 which is the largest
λ that would allow an ε step away from 0 (i.e., larger λ’s correspond to β̂λ = 0). Lemma 1 (2) says

2706

STAGEWISE LASSO

Algorithm 1 BLasso
Step 1 (initialization). Given data Zi = (Yi,Xi), i= 1, ...,n and a small stepsize constant ε> 0 and a
small tolerance parameter ξ> 0, take an initial forward step

(ĵ, ŝ ĵ) = arg min
j,s=±ε

n

∑
i=1

L(Zi;s1 j),

β̂0 = ŝ ĵ1 ĵ,

Then calculate the initial regularization parameter

λ0 =
1
ε
(
n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi; β̂0)).

Set the active index set I0A = { ĵ}. Set t = 0.
Step 2 (Backward and Forward steps). Find the “backward” step that leads to the minimal empirical
loss:

ĵ = argmin
j∈ItA

n

∑
i=1

L(Zi; β̂t + s j1 j) where s j = −sign(β̂tj)ε. (5)

Take the step if it leads to a decrease of moderate size ξ in the Lasso loss, otherwise force a forward
step (as (3), (4) in FSF) and relax λ if necessary:
If Γ(β̂t + ŝ ĵ1 ĵ;λt)−Γ(β̂t ,λt) ≤−ξ, then

β̂t+1 = β̂t + ŝ ĵ1 ĵ, λ
t+1 = λt .

Otherwise,

(ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L(Zi; β̂t + s1 j), (6)

β̂t+1 = β̂t + ŝ1 ĵ,

λt+1 = min[λt ,
1
ε
(
n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ)],

It+1A = ItA∪{ ĵ}.

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

that for each value of λ, BLasso performs coordinate descent until there is no descent step. Then,
by Lemma 1 (3), the value of λ is reduced and a forward step is forced. The stepsize ε controls
fineness of the grid BLasso runs on. The tolerance ξ controls how large a descend need to be made
for a backward step to be taken. It is needed to accommodate for numerical error and should be set
to be much smaller than ε to have a good approximation (see Proof of Theorem 1). In fact, we have
a convergence result for BLasso (detailed proof is included in the Appendix):

2707

ZHAO AND YU

Theorem 1. For a finite number of base learners and ξ = o(ε), if ∑L(Zi;β) is strongly convex
with bounded second derivatives in β then as ε→ 0, the BLasso path converges to the Lasso path
uniformly.

Note that Conjecture 2 of Rosset et al. (2004) follows from Theorem 1. This is because if all
the optimal coefficient paths are monotone, then BLasso will never take a backward step, so it will
be equivalent to e-Boosting.

Many popular loss functions, for example, squared loss, logistic loss, and negative log-likelihood
functions of exponential families are convex and twice differentiable, and they satisify the condi-
tions in Theorem 1. Moreover, from the proof of this theorem in the appendix, it is easy to see
that it suffices to have the conditions in the theorem satisfied over a bounded set of β. For the ex-
ponential loss, Lemma 1 implies that there is a finite λ0 < ∞ for every data set (Zi). Thus we can
restrict the proof of Theorem 1 to this bounded set of β to show the result for the exponential loss.
Other functions like the hinge loss (SVM) is continuous and convex but not differentiable. The
differentiability, however, is only necessary for the proof of Theorem 1. BLasso does not use any
gradient or higher order derivatives but only the differences of the loss function therefore remains
applicable to loss functions that are not differentiable or of which differentiation is too complex
or computationally expensive. It is theoretically possible that BLasso’s coordinate descent strategy
gets stuck at nondifferentiable points for functions like the hinge loss. However, as illustrated in our
third experiment, BLasso may still work for cases like 1-norm SVM empirically.

Theorem 1 does not cover nonparametric learning problems with an infinite number of base
learners either. In fact, for problems with large or infinite number of base learners, the minimization
in (6) is usually done approximately by functional gradient descent and a tolerance ξ > 0 needs to
be chosen to avoid oscillation between forward and backward steps caused by slow descending. We
discuss more on this topic in the discussion (Sec. 7).

4. The Backward Step

We now explain the motivation and working mechanic of BLasso. Observe that FSF only uses
“forward” steps, that is, it only takes steps that lead to a direct reduction of the empirical loss.
Comparing to classical model selection methods like Forward Selection and Backward Elimination,
Growing and Pruning of a classification tree, a “backward” counterpart is missing. Without the
backward step, when FSF picks up more irrelevant variables as compared to the Lasso path in
some cases (cf. Figure 1 in Section 6.2), it does not have a mechanism to remove them. As seen
below, this backward step naturally arises in BLasso because of our coordinate descent view of the
minimization of the Lasso loss. (Since ξ exists for numerical purpose only, it is assumed to be 0
thus excluded in the following theoretical discussion.)

For a given β $= 0 and λ> 0, consider the impact of a small ε> 0 change of β j to the Lasso loss
Γ(β;λ). For an |s| = ε,

Δ jΓ(Z;β) = (
n

∑
i=1

L(Zi;β+ s1 j)−
n

∑
i=1

L(Zi;β))+λ(T (β+ s1 j)−T (β))

:= Δ j(
n

∑
i=1

L(Zi;β))+λΔ jT (β).

Since T (β) is simply the L1 norm of β, ΔT (β) reduces to a simple form:

2708

STAGEWISE LASSO

Δ jT (β) = ‖β+ s1 j‖1−‖β‖1 = |β j + s|− |β j|
= ε · sign+(β j,s) (7)

= ε ·
{

1 if sβ j > 0 or β j = 0
-1 if sβ j < 0 .

Equation (7) shows that an ε step changes the penalty by a fixed ε in absolute value for any j.
That is, only the sign of the penalty change may vary. In the beginning of BLasso, all j directions
are leaving zero and hence changing the L1 penalty by the same positive amount λ ·ε. Therefore the
first step of BLasso is a forward step because minimizing Lasso loss is equivalent to minimizing the
L2 loss due to the same positive change of the L1 penalty. As the algorithm proceeds, some of the
penalty changes might become negative and minimizing the empirical loss is no longer equivalent to
minimizing the Lasso loss. In fact, except for special cases like orthogonal covariates (predictors),
the FSF steps might result in negative changes of the L1 penalty. In some of these situations, a step
that goes “backward” reduces the penalty with a small sacrifice in the empirical loss. In general, to
minimize the Lasso loss, one needs to go “back and forth” to trade off the penalty with the empirical
loss for different regularization parameters.

To be precise, for a given β̂, a backward step is such that:

Δβ̂= s j1 j, subject to β̂ j $= 0, sign(s) = −sign(β̂ j) and |s| = ε.

Making such a step will reduce the penalty by a fixed amount λ ·ε, but its impact on the empirical
loss can be different, therefore as in (5) we want:

ĵ = argmin
j

n

∑
i=1

L(Zi; β̂+ s j1 j) subject to β̂ j $= 0 and s j = −sign(β̂ j)ε,

that is, ĵ is selected such that the empirical loss after making the step is as small as possible.
While forward steps try to reduce the Lasso loss through minimizing the empirical loss, the

backward steps try to reduce the Lasso loss through minimizing the Lasso penalty. In summary, by
allowing the backward steps, we are able to work with the Lasso loss directly and take backward
steps to correct earlier forward steps that might have picked up irrelevant variables.

Since much of the discussion on the similarity and difference between FSF and Lasso is focused
on Least Squares problems (e.g., Efron et al., 2004; Hastie et al., 2001), we next examine the BLasso
algorithm in this case. It is straightforward to see that in LS problems both forward and backward
steps in BLasso are based only on the correlations between fitted residuals and the covariates (pre-
dictors). It follows that BLasso in this case reduces to finding the best direction in both forward and
backward steps by examining the inner-products, and then deciding whether to go forward or back-
ward based on the regularization parameter. This not only simplifies the minimization procedure
but also significantly reduces the computation complexity for a large number of observations since
the inner-product between ηt and X j can be updated by

(ηt+1)′X j = (ηt − sX ĵt)
′X j = (ηt)′X j− sX ′

ĵtX j, (8)

which takes only one operation if X ′
ĵtX j is precalculated. Therefore, when the number of base

learners is small, based on precalculated X ′X andY ′X , BLasso could use (8) to make its computation

2709

ZHAO AND YU

complexity independent from the number of observations. This nice property is not surprising as it
is also observed in established algorithms like LARS and Osborne’s homotopy method which are
specialized for LS problems.

In nonparametric situations, the number of base learners is large therefore the aforementioned
strategy becomes inefficient. BLasso has a natural extention to this case as follows: similar to boost-
ing, the forward step is carried out by a sub-optimization procedure such as fitting trees, smoothing
splines or stumps. For the backward step, only inner-products between base learners that have en-
tered the model need to be calculated. The inner products between these base learners and residuals
can be updated by (8). This makes the backward steps’ computation complexity proportional to the
number of base learners that are already chosen instead of the number of all possible base learners.
Therefore BLasso works not only for cases with large sample size but also for cases where a class
of large or infinite number of possible base learners is given.

As mentioned earlier, there are already established efficient algorithms for solving the least
square (L2) Lasso problem, for example, the homotopy method by Osborne et al. (2000b) and
LARS (Efron et al., 2004). These algorithms are very efficient for giving the exact Lasso paths
for parametric settings. For nonparametric learning problems with a large or an infinite number of
base learners, we believe BLasso is an attractive strategy for approximating the path of the Lasso,
as it shares the same computational strategy as Boosting which has proven itself successful in ap-
plications. Also, in cases where the Ordinary Least Square (OLS) method performs well, BLasso
can be modified to start from the OLS estimate, go backward and stop in a few iterations.

5. Generalized BLasso

As stated earlier, BLasso not only works for general convex loss functions, but also extends to
convex penalties other than the L1 penalty. For the Lasso problem, BLasso does a fixed stepsize
coordinate descent to minimize the penalized loss. Since the penalty has the special L1 norm and
(7) holds, a step’s impact on the penalty has a fixed size ε with either a positive or a negative
sign, and the coordinate descent takes form of “backward” and “forward” steps. This reduces the
minimization of the penalized loss function to unregularized minimizations of the loss function as in
(6) and (5). For general convex penalties, since a step on different coordinates does not necessarily
have the same impact on the penalty, one is forced to work with the penalized function directly.
Assume T (β): Rm → R is a convex penalty function. We next describe the Generalized BLasso
algorithm (Algorithm 2).

In the Generalized BLasso algorithm, explicit “forward” or “backward” steps are no longer seen.
However, the mechanism remains the same—minimize the penalized loss function for each λ, relax
the regularization by reducing λ through a “forward” step when the minimum of the loss function
for the current λ is reached.

6. Experiments

In this section, three experiments are carried out to illustrate the attractiveness of BLasso. The
first experiment runs BLasso under the classical Lasso setting on the diabetes data set (cf. Efron
et al., 2004) often used in studies of Lasso with an added artificial covariate variable to highlight the
difference between BLasso and FSF. This added covariate is strongly correlated with a couple of
the original covariates (predictors). In this case, BLasso is seen to produce a path almost exactly the

2710

STAGEWISE LASSO

Algorithm 2 Generalized BLasso
Step 1 (initialization). Given data Zi = (Yi,Xi), i = 1, ...,n and a fixed small stepsize ε > 0 and a
small tolerance parameter ξ≥ 0, take an initial forward step

(ĵ, ŝ ĵ) = arg min
j,s=±ε

n

∑
i=1

L(Zi;s1 j), β̂0 = ŝ ĵ1 ĵ.

Then calculate the corresponding regularization parameter

λ0 = ∑n
i=1L(Zi;0)−∑n

i=1L(Zi; β̂0)
T (β̂0)−T (0)

.

Set t = 0.
Step 2 (steepest descent on Lasso loss). Find the steepest coordinate descent direction on the penal-
ized loss:

(ĵ, ŝ ĵ) = arg min
j,s=±ε

Γ(β̂t + s1 j;λt).

Update β̂ if it reduces Lasso loss by at least a ξ amount, otherwise force β̂ to minimize L and
recalculate the regularization parameter:
If Γ(β̂t + ŝ ĵ1 ĵ;λt)−Γ(β̂t ,λt) < −ξ, then

β̂t+1 = β̂t + ŝ ĵ1 ĵ, λ
t+1 = λt .

Otherwise,

(ĵ, ŝ ĵ) = arg min
j,|s|=ε

n

∑
i=1

L(Zi; β̂t + s1 j),

β̂t+1 = β̂t + ŝ ĵ1 ĵ,

λt+1 = min[λt , ∑
n
i=1L(Zi; β̂t)−∑n

i=1L(Zi; β̂t+1)
T (β̂t+1)−T (β̂t)

].

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

same as the Lasso path which shrinks the added irrelevant variable back to zero, while FSF’s path
parts drastically from Lasso’s due to the added strongly correlated covariate and does not move it
back to zero.

In the second experiment, we compare the prediction and variable selection performance of FSF
and BLasso in a least squares regression simulation using a large number (p= 500>> n= 50) of
randomly correlated base learners to emulate the nonparametric learning scenario and when the true
model is sparse. The result shows, overall, BLasso gives sparser solutions than FSF and with similar
or slightly better predictions. And this holds for various stepsizes. Moreover, we find that when the
stepsize increases, there is a regularization effect in terms of both prediction and sparsity, for both
BLasso and FSF.

2711

ZHAO AND YU

The last experiment is to illustrate BLasso as an off-the-shelf method for computing the reg-
ularization path for general convex loss functions and general convex penalties. Two cases are
presented. The first case is bridge regression (Frank and Friedman, 1993) on diabetes data using
different Lγ (γ≥ 1) norms as penalties. The other is a simulated classification problem using 1-norm
SVM (Zhu et al., 2003) with the hinge loss.

6.1 L2 Regression with L1 Penalty (Classical Lasso)

The data set used in this experiment is the diabetes data set where n=442 diabetes patients were
measured on 10 baseline predictor variables X 1, ...,X10. A prediction model was desired for the
response variable Y , a quantitative measure of disease progression one year after baseline. We
add one additional predictor variable to make more visible the difference between FSF and Lasso
solutions. This added variable is

X11 = −X7+X8+5X9+ e,

where e is i.i.d. Gaussian noise (mean zero and variance 1/442). The following vector gives the
correlations of X11 with X1,X2, ...,X10:

(0.25 , 0.24 , 0.47 , 0.39 , 0.48 , 0.38 , −0.58 , 0.76 , 0.94 , 0.47).

The classical Lasso (L2 regression with L1 penalty) is applied to this data set with the added co-
variate. Location and scale transformations are made so that all the covariates or predictors are
standardized to have mean 0 and unit length, and the response has mean zero.

The penalized loss function has the form:

Γ(β;λ) =
n

∑
i=1

(Yi−Xiβ)2+λ‖β‖1.

The middle panel of Figure 1 shows the coefficient path plot for BLasso applied to the modified
diabetes data. Left (Lasso) and Middle (BLasso) panels are indistinguishable from each other. Both
FSF and BLasso pick up the added artificial and strongly correlated X 11 (the solid line) in the earlier
stages, but due to the greedy nature of FSF, it is not able to remove X 11 in the later stages thus every
parameter estimate is affected leading to significantly different solutions from Lasso.

The BLasso solutions were built up in 8700 steps (making the step size ε= 0.5 small so that the
coefficient paths are smooth), 840 of which were backward steps. In comparison, FSF took 7300
pure forward steps. BLasso’s backward steps concentrate mainly around the steps where FSF and
BLasso tend to differ.

6.2 Comparison of BLasso and Forward Stagewise Fitting by Simulation

In this experiment, we compare the model estimates generated by FSF and BLasso in a large
p(=500) and small n(=50) setting to mimic a nonparametric learning scenario where FSF and
BLasso are computationally attractive. In this least squares regression simulation, the design is
randomly generated as described below to guarantee a fair amount of correlation among the covari-
ates (predictors). Otherwise, if the design is close to orthogonal, the FSF and BLasso paths will be
too similar for this simulation to yield interesting results.

2712

STAGEWISE LASSO

Lasso BLasso FSF

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

t = ∑ |β̂ j| → t = ∑ |β̂ j| → t = ∑ |β̂ j| →

Figure 1: Regularization path plots, for the diabetes data set, of Lasso, BLasso and FSF: the curves
(or paths) of estimates β̂ j for 10 original and 1 added covariates (predictors), as the reg-
ularization is relaxed or t tends to infinity. The thick solid curves correspond to the 11th
added covariate. Left Panel: Lasso solution paths (produced using simplex search method
on the penalized empirical loss function for each λ) as a function of t = ‖β‖1. Middle
Panel: BLasso solution paths, which can be seen indistinguishable to the Lasso solutions.
Right Panel: FSF solution paths, which are different from Lasso and BLasso.

We first draw 5 covariance matrices Ci, i= 1, ..,5 from .95×Di+ .05Ip×p where Di is sampled
from Wishart(20, p) then normalized to have 1’s on diagonal. The Wishart distribution creates a
fair amount of correlation in Ci (average absolute value is about 0.18) between the covariates and
the added identity matrix guarantees Ci to be full rank. For each of the covariance matrix Ci, the
design X is then drawn independently from N(0,Ci) with n= 50.

The target variable Y is then computed as

Y = Xβ+ e,

where β1 to βq with q = 7 are drawn independently from N(0,1) and β8 to β500 are set to zero to
create a sparse model. e is the Gaussian noise vector with mean zero and variance 1. For each of
the 5 cases with differentCi, both BLasso and FSF are run using stepsizes ε= 1

5 ,
1
10 ,

1
20 ,

1
40 and

1
80 .

We also run Lasso which is listed as BLasso when ε= 0.
To compare the performances, we examine the solutions on the regularization paths that give the

smallest mean squared error ‖Xβ−X β̂‖2. The mean squared error (on log scale) of these solutions
are tabulated together with the number of nonzero estimates in each solution. All cases are run 50
times and the average results are reported in Table 1.

As can be seen from Table 1, since our true model is sparse, in almost all cases the BLasso
solutions are sparser and have similar prediction performances comparing to the FSF solutions with
the same stepsize. It is also interesting to note that, smaller stepsizes require more computation but
often give worse predictions and much less sparsity. We conjecture that there is also a regularization
effect caused by the discretization of the solution paths (more discussion in Section 8) and this effect
has also been observed by Gao et al. (2006) in a language ranking problem.

2713

ZHAO AND YU

Design ε= 1
5 ε= 1

10 ε= 1
20 ε= 1

40 ε= 1
80 Lasso (ε= 0)

C1 MSE BLasso 18.60 18.27 18.33 18.60 19.42 19.98
FSF 19.77 19.40 19.60 19.82 19.96

q̂ BLasso 15.38 20.08 21.76 21.44 20.50 21.86
FSF 18.32 24.00 27.28 30.48 32.14

C2 MSE BLasso 19.58 19.28 19.65 19.94 20.76 21.12
FSF 20.67 20.29 20.63 20.94 21.11

q̂ BLasso 14.80 18.92 20.18 21.22 20.52 21.82
FSF 18.34 21.90 25.70 28.80 29.38

C3 MSE BLasso 18.83 18.14 18.55 18.90 19.32 20.15
FSF 19.35 19.11 19.52 19.78 19.93

q̂ BLasso 15.22 19.10 19.92 20.02 19.52 21.08
FSF 15.38 19.72 23.30 25.88 27.30

C4 MSE BLasso 20.09 19.88 19.85 20.20 21.84 21.70
FSF 21.53 21.09 21.13 21.35 21.57

q̂ BLasso 15.76 20.82 22.20 22.42 21.12 22.24
FSF 18.90 24.64 30.38 32.02 34.16

C5 MSE BLasso 18.79 18.62 18.70 19.09 19.47 20.12
FSF 19.99 19.92 19.84 20.19 20.36

q̂ BLasso 15.58 19.16 21.26 21.92 22.18 22.76
FSF 17.10 23.24 28.24 30.94 32.84

Table 1: Comparison of FSF and BLasso in a simulated nonparametric regression setting. The log
of MSE and q̂ =# of nonzeros are reported for the oracle solutions on the regularization
paths. All results are averaged over 50 runs.

Design ε= 1
5 ε= 1

10 ε= 1
20 ε= 1

40 ε= 1
80

C1 MSE BLasso−Lasso -1.38 (0.37) -1.71 (0.23) -1.65 (0.21) -1.38 (0.21) -0.56 (0.35)
BLasso−FSF -1.17 (0.27) -1.13 (0.28) -1.27 (0.26) -1.22 (0.26) -0.54 (0.24)

q̂ BLasso−Lasso -6.48 (0.64) -1.78 (0.70) -0.10 (0.67) -0.42 (0.63) -1.36 (0.65)
BLasso−FSF -2.94 (0.89) -3.92 (1.22) -5.52 (1.26) -9.04 (1.43) -11.64 (1.64)

C2 MSE BLasso−Lasso -1.54 (0.37) -1.84 (0.29) -1.47 (0.26) -1.18 (0.25) -0.36 (0.45)
BLasso−FSF -1.09 (0.32) -1.01 (0.27) -0.98 (0.23) -1.00 (0.23) -0.35 (0.38)

q̂ BLasso−Lasso -7.02 (0.58) -2.90 (0.65) -1.64 (0.52) -0.60 (0.50) -1.30 (0.48)
BLasso−FSF -3.54 (0.99) -2.98 (0.88) -5.52 (1.09) -7.58 (1.31) -8.86 (1.41)

C3 MSE BLasso−Lasso -1.32 (0.35) -2.01 (0.36) -1.60 (0.33) -1.25 (0.32) -0.83 (0.32)
BLasso−FSF -0.53 (0.28) -0.97 (0.22) -0.97 (0.23) -0.88 (0.23) -0.62 (0.24)

q̂ BLasso−Lasso -5.86 (0.81) -1.98 (0.72) -1.16 (0.54) -1.06 (0.55) -1.56 (0.56)
BLasso−FSF -0.16 (0.78) -0.62 (0.87) -3.38 (1.05) -5.86 (0.97) -7.78 (1.08)

C4 MSE BLasso−Lasso -1.61 (0.45) -1.82 (0.33) -1.85 (0.33) -1.50 (0.33) 0.14 (0.66)
BLasso−FSF -1.44 (0.30) -1.20 (0.28) -1.28 (0.24) -1.15 (0.29) 0.27 (0.67)

q̂ BLasso−Lasso -6.48 (0.71) -1.42 (0.85) -0.04 (0.73) 0.18 (0.52) -1.12 (0.67)
BLasso−FSF -3.14 (0.92) -3.82 (1.16) -8.18 (1.12) -9.60 (1.35) -13.04 (1.68)

C5 MSE BLasso−Lasso -1.33 (0.38) -1.50 (0.26) -1.41 (0.26) -1.03 (0.22) -0.65 (0.22)
BLasso−FSF -1.20 (0.25) -1.30 (0.23) -1.14 (0.28) -1.10 (0.29) -0.89 (0.28)

q̂ BLasso−Lasso -7.18 (0.84) -3.60 (0.64) -1.50 (0.58) -0.84 (0.52) -0.58 (0.55)
BLasso−FSF -1.52 (0.88) -4.08 (1.10) -6.98 (1.08) -9.02 (1.21) -10.66 (1.50)

Table 2: Means and Standard Errors of the differences of MSE and q̂ between BLasso and Lasso,
and between Blasso and FSF in Table 1.

2714

STAGEWISE LASSO

2 4 6 8 10 12 14

0
20

40
60

80
10
0

BLasso
FSF
Lasso

2 4 6 8 10 12 14
0

20
40

60
80

10
0

BLasso
FSF
Lasso

Figure 2: Plots of in-sample Mean Squared Error (y-axis) versus ‖β‖1 (x-axis) for a typical realiza-
tion of the experiment (on run under C2 from Table 1). The step size is set to ε = 1

80 in
the left plot and ε= 1

5 in the right.

Table 2 gives a further analysis of the results in Table 1. It contains means and standard errors
of the differences of MSE and q̂, between BLasso and Lasso and between BLasso and FSF, for the
stepsizes given in Table 1. First of all, all the mean differences are negative and when compared with
their SE’s, the differences are also significant except for few cells for small stepsizes 1/40 and 1/80
(in the last two columns). This overwhelming pattern of significant negative difference suggests that,
for this simulation, BLasso is better than Lasso and FSF in terms of both prediction and sparsity
unless the stepsize is very small as in the last two columns. Moreover, for MSE the stepsize ε= 1/10
seems to bring the best improvement of BLasso over Lasso, and the improvement is pretty robust
against the choice of stepsize. On the other hand, the improvements of BLasso over FSF on MSE
are less then those of BLasso over Lasso because FSF has the same discrete stepsizes. Hence these
improvements reflect the gains only by the backward steps since FSF takes also forward steps. In
terms of q̂, the number of covariates selected, as expected, the larger the stepsize, the sparser the
BLasso model is relative to the Lasso model or the FSF model. The sparsity improvements over
Lasso are significant for all cells except for the last column with ε = 1/80. When compared with
FSF, the sparsity improvements are less and smaller (still significant). In terms of gains on both
MSE and sparsity and relative to both Lasso and FSF, stepsizes 1/10 and 1/20, that is, 0.1 or 0.05,
seem good overall choices for this simulation study.

2715

ZHAO AND YU

As suggested by one referee, we compare the Lasso empirical loss functions induced by BLasso,
FSF and Lasso (through LARS). Figure 2 shows plots of in-sample Mean Squared Error versus L1
norms of the coefficients taken from one typical run of the simulation conducted in this section. As
shown by the plots, the in-sample MSE from BLasso approximates the in-sample MSE from the
Lasso better than the FSF under both big and small step sizes. In particular, when the step size is
small, the BLasso path is almost indiscernible from the Lasso path. A final comment on Figure 2 is
in order. Although the in-sample MSE curve for BLasso in the right panel of Figure 2 does seem to
go up at the end of the plot, we can not extend the x-axis further to higher ||β||1 values because at
the stepsize ε= 1/5, the BLasso solution has achieved its L1 norm maximum around 14−15 – the
maximum of the x-axis on the right panel of Figure 2.

6.3 Generalized BLasso for Other Penalties and Nondifferentiable Loss Functions

First, to demonstrate Generalized BLasso for different penalties, we use the Bridge Regression
setting with the diabetes data set (without the added covariate in the first experiment). The Bridge
Regression (first proposed by Frank and Friedman 1993 and later more carefully discussed and
implemented by Fu 2001) is a generalization of the ridge regression (L2 penalty) and Lasso (L1
penalty). It considers a linear (L2) regression problem with Lγ penalty for γ ≥ 1 (to maintain the
convexity of the penalty function). The penalized loss function has the form:

Γ(β;λ) =
n

∑
i=1

(Yi−Xiβ)2+λ‖β‖γ,

where γ is the bridge parameter. The data used in this experiment are centered and rescaled as in the
first experiment.

Generalized BLasso successfully produced the paths for all 5 cases which are verified by point-
wise minimization using simplex method (γ= 1, γ= 1.1, γ= 4 and γ=max) or close form solutions
(γ = 2). It is interesting to notice the phase transition from the near-Lasso to the Lasso as the so-
lution paths are similar but only Lasso has sparsity. Also, as γ grows larger, estimates for different
β j tend to have more similar sizes and in the extreme γ = ∞ there is a “branching” phenomenon—
the estimates stay together in the beginning and branch out into different directions as the path
progresses.

To demonstrate the Generalized BLasso algorithm for classification using an nondifferentiable
loss function with a L1 penalty function, we look at binary classification with the hinge loss. As in
Zhu et al. (2003), we generate n=50 training data points in each of two classes. The first class has
two standard normal independent inputs X 1 and X2 and class label Y = −1. The second class also
has two standard normal independent inputs, but conditioned on 4.5 ≤ (X 1)2+(X2)2 ≤ 8 and has
class label Y = 1. We wish to find a classification rule from the training data. so that when given a
new input, we can assign a label from {1,−1} to it.

1-norm SVM (Zhu et al., 2003) is used to estimate β:

(β̂0,β) = argmin
β0,β

n

∑
i=1

(1−Yi(β0+
m

∑
j=1

β jh j(Xi)))+ +λ
5

∑
j=1

|β j|,

where hi ∈ D are basis functions and λ is the regularization parameter. The dictionary of basis
functions is D= {

√
2X1,

√
2X2,

√
2X1X2,(X1)2,(X2)2}. Notice that β0 is left unregularized so the

penalty function is not the L1 penalty.

2716

STAGEWISE LASSO

γ= 1 γ= 1.1 γ= 2 γ= 4 γ= ∞

600 1800 3000 600 1800 3000 600 1800 3000 600 1800 3000 100 400 700

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1
−1

0

1

Figure 3: Upper Panel: Solution paths produced by BLasso for different bridge parameters, on the
diabetes data set. From left to right: Lasso (γ = 1), near-Lasso (γ = 1.1), Ridge (γ = 2),
over-Ridge (γ= 4), max (γ= ∞). The Y -axis is the parameter estimate and has the range
[−800,800]. The X-axis for each of the left 4 plots is ∑i |βi|, the one for the 5th plot is
max(|βi|) because ∑i |βi| is unsuitable. Lower Panel: The corresponding penalty equal
contours for |β1|γ+ |β2|γ = 1.

2717

ZHAO AND YU

Regularization Path Data

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

t = ∑5j=1 |β̂ j| →

Figure 4: Estimates of 1-norm SVM coefficients β̂ j, j=1,2,...,5, for the simulated two-class classi-
fication data. Left Panel: BLasso solutions as a function of t = ∑5j=1 |β̂ j|. Right Panel:
Scatter plot of the data points with labels: ’+’ for y= −1; ’o’ for y= 1.

The fitted model is

f̂ (x) = β̂0+
m

∑
j=1

β̂ jh j(x),

and the classification rule is given by sign(f̂ (x)).
Since the loss function is not differentiable, we do not have a theoretical guarantee that BLasso

works. Nonetheless the solution path produced by Generalized BLasso has the same sparsity and
piecewise linearity as the 1-norm SVM solutions shown in Zhu et al. (2003). It takes General-
ized BLasso 490 iterations to generate the solutions. The covariates enter the regression equation
sequentially as t increase, in the following order: the two quadratic terms first, followed by the
interaction term then the two linear terms. As 1-norm SVM in Zhu et al. (2003), BLasso correctly
picked up the quadratic terms early. That come up much later are the interaction term and linear
terms that are not in the true model. In other words, BLasso results are in good agreement with Zhu
et al.’s 1-norm SVM results and we regard this as a confirmation for BLasso’s effectiveness in this
nondifferentiable example.

7. Discussion and Concluding Remarks

As seen from our simulations under sparse true models, BLasso generates sparser solutions with
similar or slightly better predictions relative to Lasso and FSF. The behavior relative to Lasso is due
to the discrete stepsize of BLasso, while the behavior relative to FSF is partially explained by its
convergence to the Lasso path as the stepsize goes to 0. We believe that the generalized version

2718

STAGEWISE LASSO

0500100015002000

0

200

400

λ

Figure 5: Estimates of regression coefficients β̂3 for the diabetes data set. Solutions are plotted as
functions of λ. Dotted Line: Estimates using stepsize ε = 0.05. Solid Line: Estimates
using stepsize ε= 10. Dash-dot Line: Estimates using stepsize ε= 50.

is also effective as an off-the-shelf algorithm for the general convex penalized loss minimization
problems.

Computationally, BLasso takes roughly O(1/ε) steps to produce the whole path. Depending on
the actual loss function, base learners and minimization method used in each step, the actual compu-
tation complexity varies. As shown in the simulations, choosing a smaller stepsize gives a smoother
solution path but it does not guarantee a better prediction. Actually, for the particular simulation
set-up in Sec. 6.2, moderate stepsizes gave better results both in terms of MSE and sparsity. It is
worth noting that the BLasso coefficient estimates are pretty close to the Lasso solutions even for
relatively large stepsizes.

For the diabetes data, using a moderate stepsize ε = 0.05, the solution path can not be distin-
guished from the exact regularization path. Moreover, even when the stepsize is as large as ε = 10
and ε= 50, the solutions are still good approximations.

BLasso has only one stepsize parameter (with the exception of the numerical tolerance ξ which
is implementation specific but not necessarily a user parameter). This parameter controls both how
close BLasso approximates the minimization coefficients for each λ and how close two adjacent λ on
the regularization path are placed. As can be seen from Figure 5, a smaller stepsize leads to a closer
approximation to the solutions and also finer grids for λ. We argue that, if λ is sampled on a coarse
grid we should not spend computational power on finding a much more accurate approximation of
the coefficients for each λ. Instead, the available computational power spent on these two coupled
tasks should be balanced. BLasso’s 1-parameter setup automatically balances these two aspects of
the approximation which is graphically expressed by the staircase shape of the solution paths.

Another algorithm similar to Generalized BLasso was developed independently by Rosset (2004).
There, starting from λ= 0, a solution is generated by taking a small Newton-Raphson step for each
λ, then λ is increased by a fixed amount. The algorithm assumes twice-differentiability of both

2719

ZHAO AND YU

loss function and penalty function and involves calculation of the Hessian matrix which could be
heavy-duty computationally when the number p of covariates is not small. In comparison, BLasso
uses only the differences of the loss function and involves only basic operations and does not require
advanced mathematical knowledge of the loss function or penalty. It can also be used a simple plug-
in method for dealing with other convex penalties. Hence BLasso is easy to program and allows
testing of different loss and penalty functions. Admittedly, this ease of implementation can cost
computation time in large p situations.

BLasso’s stepsize is defined in the original parameter space which makes the solutions evenly
spread in β’s space rather than in λ. In general, since λ is approximately the reciprocal of size of the
penalty, as a fitted model grows larger and λ becomes smaller, changing λ by a fixed amount makes
the algorithm in Rosset (2004) move too fast in the β space. On the other hand, when the model is
close to empty and the penalty function is very small, λ is very large, but the algorithm still uses the
same small steps thus computation is spent to generate solutions that are too close to each other.

As we discussed for the least squares problem, BLasso may also be computationally attractive
for dealing with nonparametric learning problems with a large or an infinite number of base learners.
This is mainly due to two facts. First, the forward step, as in Boosting, is a sub-optimization
problem by itself and Boosting’s functional gradient descend strategy applies. For example, in the
case of classification with trees, one can use the classification margin or the logistic loss function
as the loss function and use a reweighting procedure to find the appropriate tree at each step (for
details see, e.g., Breiman, 1998; Friedman et al., 2000). In the case of regression with the L2 loss
function, the minimization as in (6) is equivalent to refitting the residuals as we described in the
last section. The second fact is that, when using an iterative procedure like BLasso, we usually stop
early to avoid overfitting and to get a sparse model. And even if the algorithm is kept running, it
usually reaches a close-to-perfect fit without too many iterations. Therefore, the backward step’s
computation complexity is limited because it only involves base learners that are already included
from previous steps.

There is, however, a difference in the BLasso algorithm between the case with a small number of
base learners and that with a large or an infinite number of base learners. For the finite case, BLasso
avoids oscillation by requiring a backward step to be strictly descending and relax λ whenever no
descending step is available. Hence BLasso never reaches the same solution more than once and the
tolerance constant ξ can be set to 0 or a very small number to accommodate the program’s numerical
accuracy. In the nonparametric learning case, a different kind of oscillation can occur when BLasso
keeps going back and force in different directions but only improving the penalized loss function by
a diminishing amount, therefore a positive tolerance ξ is mandatory. As suggested by the proof of
Theorem 1, we suggest choosing ξ= o(ε) to warrant a good approximation to the Lasso path.

One direction for future research is to apply BLasso in an online or time series setting. Since
BLasso has both forward and backward steps, we believe that an adaptive online learning algorithm
can be devised based BLasso so that it goes back and forth to track the best regularization parameter
and the corresponding model.

We end with a summary of our main contributions:

1. By combining both forward and backward steps, the BLasso algorithm is constructed to min-
imize an L1 penalized convex loss function. While it maintains the simplicity and flexibility
of e-Boosting (or Forward Stagewise Fitting), BLasso efficiently approximate the Lasso so-

2720

STAGEWISE LASSO

lutions for general loss functions and large classes of base learners. This can be proven
rigorously for a finite number of base learners under some assumptions.

2. The backward steps introduced in this paper are critical for producing the Lasso path. Without
them, the FSF algorithm in general does not produce Lasso solutions, especially when the
base learners are strongly correlated as in cases where the number of base learners is larger
than the number of observations. As a result, FSF loses some of the sparsity provided by
Lasso and might also suffer in prediction performance as suggested by our simulations.

3. We generalized BLasso as a simple, easy-to-implement, plug-in method for approximating
the regularization path for other convex penalties.

4. Discussions based on intuition and simulation results are made on the regularization effect of
using stepsizes that are not very small.

Last but not least, matlab codes by Guilherme V. Rocha for BLasso in the case of L2 loss and L1
penalty can be downloaded at
http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

Acknowledgments

Yu would like to gratefully acknowledge the partial supports from NSF grants FD01-12731 and
CCR-0106656 and ARO grant DAAD19-01-1-0643, and theMiller Research Professorship in Spring
2004 from the Miller Institute at University of California at Berkeley. We thank Dr. Chris Holmes
and Mr. Guilherme V. Rocha for their very helpful comments and discussions on the paper. Fi-
nally, we would like to thank three referees and the action editor for their thoughtful and detailed
comments on an earlier version of the paper.

Appendix A. Proofs

Proof (Lemma 1)
1. It is assumed that there exist λ and j with |s| = ε such that

Γ(s1 j;λ) ≤ Γ(0;λ).

Then we have
n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi;s1 j) ≥ λT (s1 j)−λT (0).

Therefore

λ ≤ 1
ε
{
n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi;s1 j)}

≤ 1
ε
{
n

∑
i=1

L(Zi;0)− min
j′,|s|=ε

n

∑
i=1

L(Zi;s1 j′)}

=
1
ε
{
n

∑
i=1

L(Zi;0)−
n

∑
i=1

L(Zi; β̂0)}

= λ0.

2721

ZHAO AND YU

2. Since a backward step is only taken when Γ(β̂t+1;λt) < Γ(β̂t ;λt)− ξ and λt+1 = λt , so we
only need to consider forward steps. When a forward step is forced, if Γ(β̂t+1;λt+1) >
Γ(β̂t ;λt+1)−ξ, then

n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ< λt+1T (β̂t+1)−λt+1T (β̂t).

Hence
1
ε
{
n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ} < λt+1,

which contradicts the algorithm.

3. Since λt+1 < λt and λ can not be relaxed by a backward step, we immediately have ‖β̂t+1‖1 =
‖β̂t‖1+ ε. Then from

λt+1 =
1
ε
{
n

∑
i=1

L(Zi; β̂t)−
n

∑
i=1

L(Zi; β̂t+1)−ξ},

we get
Γ(β̂t ;λt+1)−ξ= Γ(β̂t+1;λt+1).

Add (λt−λt+1)‖β̂t‖1 to both sides, and recall T (β̂t+1) = ‖β̂t+1‖1 > |β̂t‖1 = T (β̂t), we get

Γ(β̂t ;λt)−ξ < Γ(β̂t+1;λt)
= min

j′,|s|=ε
Γ(β̂t + s1 j′ ;λt)

≤ Γ(β̂t ± ε1 j;λt)

for all j.

Proof (Theorem 1)
Theorem 3.1 claims that “the BLasso path converges to the Lasso path uniformly” for ∑L(Z;β)

that is strongly convex with bounded second derivatives in β. The strong convexity and bounded
second derivatives imply the Hessian w.r.t. β satisfies

mI + ∇2∑L+MI,

for positive constantsM ≥ m> 0. Using these notations, we will show that for any t s.t. λt+1 > λt ,
we have

‖β̂t −β∗(λt)‖2 ≤ (
M
m
ε+

ξ
ε
2
m

)
√
p, (9)

where β∗(λt) ∈ Rp is the Lasso estimate with a regularization parameter λt .
The proof of (9) relies on the following inequalities for strongly convex functions, some of

which can be found in Boyd and Vandenberghe (2004). First, because of the strong convexity, we
have

∑L(Z;β∗(λt)) ≥∑L(Z; β̂t)+∇∑L(Z; β̂t)T (β∗(λt)− β̂t)+
m
2
‖β∗(λt)− β̂t‖22.

2722

STAGEWISE LASSO

The L1 penalty function is also convex although not strictly convex nor differentiable at 0, but
we have

‖β∗(λt)‖1 ≥ ‖β̂t‖1+δT (β∗(λt)− β̂t)

hold for any p-dimensional vector δ with δi the i’th entry of sign(β̂t)T for the nonzero entries and
|δi| ≤ 1 otherwise.

Putting both inequalities together, we have

Γ(β∗(λt);λt) ≥ Γ(β̂t ;λt)+(∇∑L(Z; β̂t)+λtδ)T (β∗(λt)− β̂t)+
m
2
‖β∗(λt)− β̂t‖22. (10)

Using Equation (10), we can bound the L2 distance between β∗(λt) and β̂t by applying Cauchy-
Schwartz to get

Γ(β∗(λt);λt) ≥ Γ(β̂t ;λt)−‖∇∑L(Z; β̂t)+λtδ‖2‖β∗(λt)− β̂t‖2+
m
2
‖β∗(λt)− β̂t‖22.

Since Γ(β∗(λt);λt) ≤ Γ(β̂t ;λt), we have

‖β∗(λt)− β̂t‖2 ≤
2
m
‖∇∑L(Z; β̂t)+λtδ‖2. (11)

By statement (3) of Lemma 1, for β̂tj $= 0, we have

∑L(Z; β̂t± εsign(β̂tj)1 j)±λtε≥∑L(Z; β̂t)−ξ. (12)

At the same time, by the bounded Hessian assumption, we have

∑L(Z; β̂t± εsign(β̂tj)1 j) ≤∑L(Z; β̂t)± ε∇∑L(Z; β̂t)T sign(β̂tj)1 j +
M
2
ε2. (13)

Connect these two inequalities, we have

∓ε× (∇∑L(Z; β̂t)T1 jsign(β̂tj)+λt) ≤
M
2
ε2+ξ,

therefore
|(∇∑L(Z; β̂t)T1 jsign(β̂tj)+λt)| ≤

M
2
ε+

ξ
ε
. (14)

Similarly, for β̂tj = 0, instead of (12), we have

∑L(Z; β̂t± εsign(β̂tj)1 j)+λtε≥∑L(Z; β̂t)−ξ.

Combine with (13), we have

|∇∑L(Z; β̂t)T1 j|−λt ≤
M
2
ε+

ξ
ε
.

For j such that β̂tj = 0, we choose δ j appropriately and combine with (14) so that the right hand side
of (11) is controlled by √p× 2

m × (M2 ε+ ξ
ε). This way we obtain (9).

2723

ZHAO AND YU

References

E.L. Allgower and K. Georg. Homotopy methods for approximating several solutions to nonlinear
systems of equations. In W. Forster, editor, Numerical solution of highly nonlinear problems,
pages 253–270. North-Holland, 1980.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801–824, 1998.

P. Buhlmann and B. Yu. Boosting with the l2 loss: regression and classification. Journal of American
Statistical Association, 98, 2003.

E. Candes and T. Tao. The danzig selector: Statistical estimation when p is much larger than n.
Annals of Statistics (to appear), 2007.

S. Chen and D. Donoho. Basis pursuit. Technical report, Department of Statistics, Stanford Univer-
sity, 1994.

N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines and other kernel-
based learning methods. Cambridge University Press, 2002.

D. Donoho. For most large undetermined system of linear equatnions the minimal l1-norm near-
solution approximates the sparsest solution. Communications on Pure and Applied Mathematics,
59(6):797–829, 2006.

D. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in
the presence of noise. IEEE Trans. Information Theory, 52(1):6–18, 2006.

B. Efron, T. Hastie, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407–499,
2004.

J. Fan and R.Z. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of American Statistical Association, 96(456):1348–1360, 2001.

I. Frank and J. Friedman. A statistical view od some chemometrics regression tools. Technometrics,
35:109–148, 1993.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:
256–285, 1995.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In Machine Learning:
Proc. Thirteenth International Conference, pages 148–156. Morgan Kauffman, San Francisco,
1996.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Annal of Statistics,
29:1189–1232, 2001.

J.H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Annal of Statistics, 28:337–407, 2000.

2724

STAGEWISE LASSO

W.J. Fu. Penalized regression: The bridge versus the lasso. Journal of Computational and Graphical
Statistics, 7(3):397–416, 2001.

J. Gao, H. Suzuki, and B. Yu. Approximate lasso methods for language modeling. Proceedings of
the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the
ACL, Sydney, pages 225–232, 2006.

T. Gedeon, A. E. Parker, and A. G. Dimitrov. Information distortion and neural coding. Canadian
Applied Mathematics Quarterly, 2002.

T. Hastie, Tibshirani, R., and J.H. Friedman. The Elements of Statistical Learning: Data Mining,
Inference and Prediction. Springer Verlag, 2001.

T. Hastie, J. Taylor, R. Tibshirani, and G. Walther. Forward stagewise regression and the monotone
lasso. Technical report, Department of Statistics, Stanford University, 2006.

K. Knight and W. J. Fu. Asymptotics for lasso-type estimators. Annals of Statistics, 28:1356–1378,
2000.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Functional gradient techniques for combining hy-
potheses. Advance in Large Margin Classifiers, 1999.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.
Annals of Statistics, 34:1436–1462, 2005.

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional
data. Annals of Statistics (to appear), 2006.

M.R. Osborne, B. Presnell, and B.A. Turlach. A new approach to variable selection in least squares
problems. Journal of Numerical Analysis, 20(3):389–403, 2000a.

M.R. Osborne, B. Presnell, and B.A. Turlach. On the lasso and its dual. Journal of Computational
and Graphical Statistics, 9(2):319–337, 2000b.

S. Rosset. Tracking curved regularized optimization solution paths. NIPS, 2004.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

R.E. Schapire. The strength of weak learnability. Journal of Machine Learning, 5(2):1997–2027,
1990.

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization and beyond. MIT Press, 2002.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58(1):267–288, 1996.

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In The 37th annual
Allerton Conference on Communication, Control and Computing, 1999.

2725

ZHAO AND YU

J.A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE
Trans. Information Theory, 52(3):1030 –1051, 2006.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using !1-
constrained quadratic programming. Technical Report 709, Statistics Department, UC Berkeley,
2006.

C.-H. Zhang and J. Huang. The sparsity and bias of the lasso selection in high dimensional linear
regression. Annals of Statistics (to appear), 2006.

T. Zhang. Sequentiall greedy approximation for certain convex optimization problems. IEEE Trans.
on Information Theory, 49(3):682–691, 2003.

P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning Research,
7 (Nov):2541–2563, 2006.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Advances in Neural
Information Processing Systems, 16, 2003.

H. Zou. The adaptive lasso and its oracle properties. Journal of American Statistical Association,
101:1418–1429, 2006.

2726

Journal of Machine Learning Research 8 (2007) 2727-2754 Submitted 1/07; Revised 7/07; Published 12/07

A New Probabilistic Approach in Rank Regression with Optimal
Bayesian Partitioning

Carine Hue CARINE.HUE@GMAIL.COM
Marc Boullé MARC.BOULLE@ORANGE-FTGROUP.COM
France Telecom R&D
2, avenue Pierre Marzin
22307 Lannion cedex, France

Editors: Isabelle Guyon and Amir Saffari

Abstract

In this paper, we consider the supervised learning task which consists in predicting the normalized
rank of a numerical variable. We introduce a novel probabilistic approach to estimate the posterior
distribution of the target rank conditionally to the predictors. We turn this learning task into a model
selection problem. For that, we define a 2D partitioning family obtained by discretizing numerical
variables and grouping categorical ones and we derive an analytical criterion to select the partition
with the highest posterior probability. We show how these partitions can be used to build univariate
predictors and multivariate ones under a naive Bayes assumption.

We also propose a new evaluation criterion for probabilistic rank estimators. Based on the
logarithmic score, we show that such criterion presents the advantage to be minored, which is not
the case of the logarithmic score computed for probabilistic value estimator.

A first set of experimentations on synthetic data shows the good properties of the proposed
criterion and of our partitioning approach. A second set of experimentations on real data shows
competitive performance of the univariate and selective naive Bayes rank estimators projected on
the value range compared to methods submitted to a recent challenge on probabilistic metric re-
gression tasks.

Our approach is applicable for all regression problems with categorical or numerical predictors.
It is particularly interesting for those with a high number of predictors as it automatically detects
the variables which contain predictive information. It builds pertinent predictors of the normalized
rank of the numerical target from one or several predictors. As the criteria selection is regularized
by the presence of a prior and a posterior term, it does not suffer from overfitting.

Keywords: rank regression, probabilistic approach, 2D partitioning, non parametric estimation,
Bayesian model selection

1. Introduction

In this introduction, we precise the supervised learning task we address in this paper, that is the rank
regression. We then show the interest of probabilistic learning approaches compared to deterministic
ones. Finally, we outline our contribution which aims at selecting a probabilistic predictive model
for the rank of a numerical target with a nonparametric Bayesian approach.

c©2007 Carine Hue and Marc Boullé.

HUE AND BOULLÉ

1.1 Value, Ordinal and Rank Regression

In supervised learning, classification tasks, where the target variable is categorical, are usually dis-
tinguished from regression tasks, where it is numerical. A less known task is the case where the
target variable is ordinal, usually called ordinal regression (see Chu and Ghahramani, 2005, for a
state of the art). In this case, there is a total order between the target values but no distance infor-
mation. The practical problems studied in the machine learning community consider a low number
of distinct integer ranks, roughly 5 or 10, fixed before the learning. The aim is then to predict the
right quintile or decile an example belongs to. The algorithms are generally evaluated with the mean
zero-one error or with the mean absolute error obtained by considering the ordinal scales as consec-
utive integers. Among the proposed methods, the principle of empirical risk minimization with a
loss function measuring the probability of misclassification is applied by Herbrich et al. (2000), an
online algorithm based on the perceptron algorithm is proposed in the work of Crammer and Singer
(2001), support vector machines are used by Shashua and Levin (2002) and Chu and Keerthi (2005)
and Gaussian processes by Chu and Ghahramani (2005).

The choice of a low number of distinct ranks is generally motivated by simplicity reasons.
However, this predefined target discretization can separate values which form a pertinent prediction
interval.

In this paper, we address rank regression tasks. More precisely, for a given numerical target
variable, we aim at computing an estimator of its rank. During the estimation procedure we never
take into account the distance between instances but only their order. Several reasons have guided
that choice. First, considering ranks rather than values is a classical way to obtain models more
robust to outliers and to heteroscedasticity. In linear regression for example, an estimator based on
the centered ranks in the minimization of the least squared equation is proposed in the approach
of Hettmansperger and McKean (1998). Secondly in some applications, predicting the rank of a
target variable is more interesting than predicting its intrinsic value. For instance in information
retrieval, some search engines use numerical scores to rank web pages but the score value has no
other usefulness.

1.2 Deterministic and Probabilistic Regression

Whatever the learning task, the simpler approach is determinist in so far as its outputs is determin-
istic: the majority class in classification, the mean rank in ordinal regression and the conditional
mean in metric regression. These punctual predictors turn out to be inefficient as soon as confidence
intervals or prediction of extreme values are needed. In this context, quantile regression or density
estimation aims at estimating the predictive density more accurately. Such a probabilistic approach
is very useful as soon as the predictive model is used for decision-making. For instance, mod-
elling predictive uncertainty is still an active research domain and has been the subject of two recent
challenges: the evaluating predictive uncertainty challenge supported by the PASCAL network of
excellence in 2004-2005 and the predictive uncertainty in environmental modelling competition
(organized by Cawley et al., 2006).

Quantile regression consists in estimating some quantiles of the predictive law. For a real α
in [0,1], the conditional quantile qα(x) is defined as the lowest real value such that the conditional
cumulative distribution is higher than α. Quantile regression can be formulated as a minimiza-
tion problem. Starting from that, different methods have been proposed according to the form
assumed for the quantile function: the minimization problem is solved with splines in the approach

2728

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

of Koenker (2005), with kernel functions in the work of Takeuchi et al. (2006) and neural networks
in the work of White (1991). The approach proposed by Chaudhuri et al. (1994); Chaudhuri and
Loh (2002) mixes a tree partitioning of the predictors space and a local polynomial assumption.
Random forests have been extended to conditional quantile estimation in the work of Meinshausen
(2006). For all these approaches, the reals α are known in advance and usually in a small number,
and the estimation of each quantile is done and evaluated independently from the others.

Conditional density estimation aims at giving for any couple (x,y) an estimator of the predictive
density p(y|x). The parametric approaches assume that the predictive density belongs to a fixed
parametric family and then reduce the density estimation problem to the estimation of a parameter
vector. The non parametric approaches do not assume any fixed parametric form for the predictive
density and are generally based on two ingredients: first, the estimator is computed on each point
by using data contained in a point neighbourhood; then, an assumption is done on the local form
of the estimator. Very popular, kernel methods weight the contribution of the data by convolut-
ing the empirical law with a kernel density. The form and the width of the kernel remain tuning
parameters. Once a neighbourhood is defined, methods differ on the estimator form: the local poly-
nomial approach includes constant, linear and polynomial estimator (see Fan et al., 1996). Splines
can also be used. Such a probabilistic approach has already been proposed in ordinal regression in
the parametric context of the Gaussian processes with a Bayesian approach (see Chu and Keerthi,
2005).

1.3 Our Contribution

In this paper, we consider regression tasks, where the unknown target variable is numerical. Instead
of looking for an estimator of the value of the target variable, we aim at building an estimator of the
normalized rank (between 0 and 1) of this variable. Our second objective is to propose an evaluation
criterion for these rank probabilistic estimators.

First, we propose a non parametric Bayesian method to build a probabilistic estimator speci-
fied by a set of quantiles of the rank cumulative distribution function. Unlike quantile regression
approach, the choice of the quantiles is not made before the learning but is determined during this
step. Moreover, in the case of several predictor variables, the multivariate estimator is obtained as
a combination of univariate estimators under a naive Bayes assumption. Each univariate estimator
is obtained from a 2D partition of the space (predictor, target) assuming that the rank density is
constant on each cell of the partition. The optimal 2D partition is searched according to a model
selection approach.

Secondly, we propose and evaluate a new criterion to evaluate probabilistic regression methods
by comparing the rank predictive density and the true insertion rank of all test instances.

This paper is organized as follows: in the second section, we first describe the 2D-partitioning
for numerical predictors. Compared to our previous work introduced in a conference paper (see
Boullé and Hue, 2006), the approach is much more detailed, the selection criteria is completely
explicited and we propose an estimator of the rank predictive density. We also propose the 2D-
partitioning for categorical predictors that has never been published before.

In the third section we first expose how we can build a univariate estimator of the rank predictive
density from each 2D partition. Using the naive Bayes assumption of conditional independence of
the predictors, we then describe how to obtain multivariate predictors, with and without variable
selection.

2729

HUE AND BOULLÉ

The fourth section focuses on the important topic of the evaluation of such rank regression
models. We first give a brief overview of classical scores used in supervised learning. We then
propose to use one of them, the logarithmic score, for rank probabilistic estimators without the
shortcomings noted for probabilistic estimators based on values.

The last section is devoted to experimental evaluation. We begin with experiments on synthetic
data to demonstrate on the one hand the relevance of the proposed evaluation criterion and on the
other hand the performance of the 2D partitionings. We pursue with experimentations on real data
sets to show the performance of the univariate and multivariate predictors. We end by a comparison
of our approach with alternative methods proposed in a recent challenge dedicated to probabilistic
metric regression.

2. A 2D-Partitioning Method for Probabilistic Regression

The 2D-partitioning method we present here comes from the extension of the so-called MODL
approach to regression tasks. This approach has first been proposed for classification tasks in the
work of Boullé (2005) and Boullé (2006).

For regression tasks, we present in the sequel two 2D partitioningmethods depending on whether
the considered predictor is numerical or categorical.

For numerical predictors, the 2D partition is the grid resulting from the discretization of both
target and predictor. For categorical predictors, the 2D partition is the grid resulting from the dis-
cretization of the numerical target and from the grouping of the categorical predictor.

2.1 The 2D Discretization for Probabilistic Regression with Numerical Predictor

1 2 3 4 5 6 7

4.
5

5.
5

6.
5

7.
5

Petal Length

Se
pa

l L
en

gt
h

Figure 1: Scatter-plot of the iris data set of Fisher (1936) considered for a regression problem with
the petal length variable as predictor and the sepal length variable as target.

In order to illustrate the regression problem with numerical predictor, we present in Figure 1 the
scatter-plot of the iris data set considered for a regression problem with the petal length variable as
predictor and the sepal length variable as target. The figure shows that iris plants with petal length
below 2 cm always have a sepal length below 6 cm. We propose to exhibit the predictive information
of the petal length variable by discretizing both the predictor and the target variables. For instance,
the grid with six cells presented on the left of Figure 2 indicates that:

2730

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

1 2 3 4 5 6 7

4.
5

5.
5

6.
5

7.
5

Petal Length

Se
pa

l L
en

gt
h

1 2 3 4 5 6 7

4.
5

5.
5

6.
5

7.
5

Petal Length

Se
pa

l L
en

gt
h

Figure 2: Two discretization grids with 6 or 96 cells, describing the correlation between the petal
length and sepal length variables of the Iris data set.

- for a petal length lower than 3 cm, 100% of the training instances have a petal length higher
than 6 cm;

- for a petal length between 3 and 5 cm, the two sepal length intervals are equiprobable (53%
and 47%);

- for a petal length higher than 5 cm, 90% of the instances have a sepal length higher than 6 cm.
The 96 cells grid presented on the right of Figure 2 seems more accurate but may be less robust.

These two examples illustrate that a compromise has to be found between the quality of the corre-
lation information and the generalization ability, on the basis of the grain level of the discretization
grid.

The issue is to describe the predictive distribution of the rank of the target value given the rank
of the predictor value.

Let us now formalize this approach using a Bayesian model selection approach.

Definition 1 A regression 2D discretization model is defined by:

1. a number of intervals for the target and predictor variables;

2. a partition of the predictor variable specified on the ranks of the predictor values;

3. for each predictor interval, the repartition of the instances among the target intervals specified
by the instance counts locally to each predictor interval.

Notations

N : the number of training instances

I : the number of predictor intervals

J : the number of target intervals

Ni. : the number of instances in the predictor interval i

N. j : the number of instances in the target interval j

2731

HUE AND BOULLÉ

Ni j : the number of instances in the grid cell associated to predictor interval i and the target
interval j.

A regression 2D discretization model is then entirely characterized by the parameters{
I,J,{Ni.}1≤i≤I ,

{
Ni j

}
1≤i≤I,1≤ j≤J

}
. The number of instances N. j can be deduced by adding the

Ni j for each predictor interval, according to N. j = ∑I
i=1Ni j.

We now want to select the best model M given the available data, that is the most likely model
given the data. Adopting a Bayesian approach, it comes to maximize :

p(M|D) =
p(M)p(D|M)

p(D)
.

The data distribution p(D) being constant whatever the modelM, it comes to maximize p(M)p(D|M)
which can be written:

p(M)p(D|M) = p(I,J)p({Ni.}|I,J)p({Ni j}|I,J,{Ni.})p(D|M).

We then add the restriction that the searched model is such that the conditional target distributions
are independent. This assumption is first consistent with the objective to obtain a partition that
discriminates distinct conditional distributions. Moreover, mathematically speaking, it enables to
write the last factors in the precedent equation as products over the predictor intervals. It also
reduces the complexity of the associated optimization algorithm.

Denoting by Di the subset of D restricted to the interval i, one obtains:

p(M)p(D|M) = p(I,J)p({Ni.}|I,J)
I

∏
i=1

p({Ni j}|I,J,{Ni.})
I

∏
i=1

p(Di|M).

To be able to evaluate a given model, we have to choose a prior distribution for the model param-
eters and a likelihood function. In Definition 2, we formalize our choices by using the assumption
independence and proposing a uniform distribution at each stage of the prior parameter structure
and of the likelihood function.

Definition 2 The prior for the parameters of a regression 2D discretization model and the likelihood
function of the data given a model are chosen hierarchically and uniformly at each level:

1. the numbers of intervals I and J are independent from each other, and uniformly distributed
between 1 and N,

2. for a given number of predictor intervals I, every set of intervals is equiprobable,

3. for a given predictor interval, every distribution of the instances on the target intervals is
equiprobable,

4. the distributions of the target intervals on each predictor interval are independent from each
other,

5. for a given target interval, every distribution of the rank of the target values is equiprobable.

Taking the negative log of the probabilities, this provides the evaluation criterion given in the fol-
lowing theorem:

2732

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

Theorem 3 A 2D-discretization model distributed according to a uniform hierarchical prior is
Bayes optimal if its evaluation according to the following the criteria is minimal

c(M) = − log(p(M))− log(p(D/M))

= 2logN+ log
(
N+ I−1
I−1

)
+

I

∑
i=1
log

(
Ni. + J−1
J−1

)

+
I

∑
i=1
log

Ni.!
Ni1!Ni2! . . .NiJ!

+
J

∑
j=1
logN. j!.

(1)

The first hypothesis introduced in Definition 2 gives that p(I,J) = p(I)p(J) = 1
N
1
N .

The second hypothesis is that all the divisions into I intervals are equiprobable for a given I.
Computing the probability of one set of intervals turns into the combinatorial evaluation of the
number of possible interval sets. Dividing the predictor values into I intervals is equivalent to
decompose the number N as the sum of the Ni. frequencies of the intervals. Using combinatorics,
we can prove that this number of choices is equal to

(N+I−1
I−1

)
. Using the equiprobability assumption,

one finally obtains:

P({Ni.}|I) =
1

(N+I−1
I−1

) .

The third hypothesis assumes that, for a given interval i of size Ni., every distribution of the
instances on the J target intervals are equiprobable. It remains to specify the parameters of a multi-
nomial distribution of Ni. instance over J values. Using combinatorics again, one obtains

P
(
{Ni j}|I,{Ni.}

)
=

1
(Ni.+J−1

J−1
) .

The prior terms being explicited, it remains to evaluate the likelihood on each predictor interval,
that is the probability to observe the data restricted to each interval knowing the multinomial distri-
bution model on each interval. The number of ways to observe Ni. instances distributed according to
such multinomial law is given by Ni.!

Ni1!Ni2!...NiJ! . To finish, according to the last hypothesis, for a given
target interval, every distribution of the ranks of the target values are equiprobable which leads to
the last terms.

By taking negative logarithms, one obtains the above Formula (1).!
To provide a first intuition, we can compute that for I = J = 1 the criterion value is 2 log(N)+

log(N!) (about 615 for N = 150) and for I = J = N it gives 2 log(N)+ log
(
2N−1
N−1

)
+N log(N)

(about 966 for N = 150). This means that a discretization with one cell is always more likely that a
2D discretization with N2 elementary cells.

We adopt a simple heuristic to optimize this criterion. We start with an initial random model
and alternate the optimization on the predictor and target variables. For a given target distribution
with fixed J <

√
(N) and N. j, we optimize the discretization of the predictor variable to determine

the values of I, Ni and Ni j. Then, for this predictor discretization, we optimize the discretization of
the target variable to determine new values of J, N. j and Ni j. The process is iterated until conver-
gence, which usually takes between two and three steps in practice. The univariate discretization
optimizations are performed using the MODL discretization algorithm. This process is repeated

2733

HUE AND BOULLÉ

several times, starting from different random initial solutions. The best solution is returned by the
algorithm as described in Algorithm 1.

Each 1D-discretization is implemented according to a bottom-up greedy heuristic followed by
a post-optimisation whose time complexity is in N log(N) times the size of the fixed partition. This
algorithm complexity is mainly obtained by using the criteria additivity for 1D discretization (see
Boullé, 2006). Imposing a maximum iteration number P= 10 for instance, the worst case complex-
ity is bounded by PN

√
(N)log(N) without decreasing the quality of the search algorithm. Despite

Algorithm 1 Optimization of a MODL 2D-discretization for regression tasks
Ensure: M∗;c(M∗) ≤ c(M) {Final solution with minimal cost}
1: for m= 1, . . . ,10 do
2: {Initialize with a random partition}
3: M← a random partition of size

√
(N)

4: while improved do
5: {Univariate optimal 1D-discretization of predictor variable X :}
6: freeze the univariate partition of target variable Y
7: M← call univariate optimal 1D-discretization (M) for predictor variable X
8: {Univariate optimal 1D-discretization of target variable Y :}
9: freeze the univariate partition of predictor variable X
10: M← call univariate optimal 1D-discretization (M) for target variable Y
11: end while
12: if c(M) ≤ c(M∗) then
13: M∗ ←M
14: end if
15: end for

the fact that this optimization algorithm discretizes alternatively the predictor and target variables,
it is important to notice that the criterion in (1) is not symmetrical in I and J. In other words, for
a given target discretization, the criterion to minimize is not identical to the criterion to minimize
given a predictor discretization.

The evaluation criterion c(M) given in Formula (1) is related to the probability that a regression
2D discretization model M explains the target variable. In previous work (see Boullé and Hue,
2006), we propose to use it to build a relevance criterion for the predictor variables in a regression
problem. The predictor variables can be sorted by decreasing probability of explaining the target
variable. In order to provide a normalized indicator, we consider the following transformation of c:

g(M) = 1− c(M)
c(M /0)

, (2)

where M /0 is the null model with only one interval for the predictor and target variables. This can
be interpreted as a compression gain, since negative log of probabilities are no other than coding
lengths (see Shannon, 1948). The compression gain g(M) holds its values between 0 and 1, since
the null model is always considered in our optimization algorithm. It has value 0 for the null model
and is maximal when the best possible explanation of the target ranks conditionally to the predictor
ranks is achieved.

Our method is non parametric both in the statistical and algorithmic sense: no statistical hypoth-
esis needs to be done on the data distribution (like Gaussianity for instance) and, as the criterion is

2734

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

regularized, there is no parameter to tune before minimizing it. This strong point enables to consider
large data sets.

To our knowledge, few other works address the problem of discretization for regression prob-
lems. Nevertheless, we can cite a three-step approach proposed in the approach of Ludl andWidmer
(2000): they first propose an equal width pre-discretization of the continuous predictors. These pre-
discretizations are next projected onto the target values. A postprocessing consists in merging the
split points found according to an algorithm inspired by edge detection concepts. The drawbacks of
such an algorithm are the unsupervised way the predictor pre-discretizations are led and the tuning
of the merging parameter needed in the postprocessing step.

2.2 The 2D Discretization-Grouping for Probabilistic Regression with Categorical Predictor

age

fre
qu
en
cy

Federal−gov

20 40 60 80

0
50

10
0

15
0

20
0

age

fre
qu
en
cy

20 40 60 80

0
10
0

20
0

30
0

40
0

50
0

Local−gov

age

fre
qu
en
cy

16 18 20 22 24 26 28 30

0
1

2
3

4
5

6

Never−worked

age

fre
qu
en
cy

20 40 60 80

0
10
00

20
00

30
00

40
00

50
00

Private

age

fre
qu
en
cy

20 30 40 50 60 70 80

0
50

10
0

15
0

20
0

25
0

Self−emp−inc

age

fre
qu
en
cy

20 40 60 80

0
10
0

20
0

30
0

40
0

50
0

Self−emp−not−inc

age

fre
qu
en
cy

20 30 40 50 60 70 80

0
50

10
0

15
0

20
0

25
0

30
0

State−gov

age

fre
qu
en
cy

10 20 30 40 50 60 70 80

0
1

2
3

4
5

6
7

Without−pay

Figure 3: Equal-width histograms of the age variable according to each level of the workclass factor

In order to illustrate the regression problem with a categorical predictor, we present in Figure
3 the equal-width empirical histograms of the target age variable for each value of the predictor
workclass variable from the 48842 instances of the adult data set from the UCI repository (see
D.J. Newman and Merz, 1998). The workclass variable clearly influences the distribution of the
age variable. The four values Federal-gov, Local-gov, Self-emp-inc and Self-emp-not-inc lead to
similar histograms with a maximum for the 40− 45 interval. The Private value gives a distinct
histogram with a maximum for the 20− 25 interval and the Stat-gov value leads to an histogram
between theses two groups. The frequencies of the Never-worked and Without-pay values seems
too low to constitute significant groups.

An example of discretization/grouping is shown for this data set on Figure 4 with 3 groups and 7
age brackets. Let us now formalize this approach using the MODL approach to explain how optimal
Discretization/Grouping can be obtained.

Definition 4 A regression discretization/grouping model is defined by:

2735

HUE AND BOULLÉ

de
ns
ity

17 31.5 53.5 900.
00
0

0.
01
0

0.
02
0

0.
03
0

Never−worked/Private

de
ns
ity

17 31.5 53.5 900.
00
0

0.
01
0

0.
02
0

Fed−gov/Loc−gov/State−gov

de
ns
ity

17 31.5 53.5 900.
00
0

0.
01
0

0.
02
0

S−e−l/S−e−n−i/Without−pay

Figure 4: Histograms of the age variable for three groups of the workclass factor

1. a number of intervals for the target variable and a number of groups for the predictor vari-
able;

2. a partition of the predictor variable in a finite number of groups;

3. for each predictor group, the repartition of the instances among the target intervals specified
by the instance counts locally to each predictor group.

Notations

N : the number of training instances

V : the number of predictor values

I : the number of predictor groups

J : the number of target intervals

ι(ν) : the group index the ν value belongs to

Ni. : the number of instances in the predictor group i

N. j : the number of instances in the target interval j

Ni j : the number of instances in the grid cell associated to predictor group i and the target
interval j.

A regression discretization/grouping model is then entirely characterized by the parameters{
I,J,{ι(ν)}1≤i≤V ,

{
Ni j

}
1≤i≤I,1≤ j≤J

}
. The number of instances N. j can be deduced by adding the

Ni j for each predictor group.
We adopt the following uniform hierarchical prior for the parameters of regression discretiza-

tion/grouping models:

Definition 5 The prior for the parameters of a regression discretization/grouping model is chosen
hierarchically and uniformly at each level:

2736

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

1. the number of groups I is uniformly distributed between 1 and V ,

2. the numbers of intervals J is independent from the number of groups, and uniformly dis-
tributed between 1 and N,

3. for a given number of groups I, every partition of the predictor values into I groups is
equiprobable,

4. for a given predictor group, every distribution of the instances on the target intervals is
equiprobable,

5. the distributions of the target intervals on each predictor group are independent from each
other,

6. for a given target interval, every distribution of the rank of the target values is equiprobable.

The definition of the regression discretization/grouping model space and its prior distribution leads
to the evaluation criterion given in Formula (3) for a discretization/grouping modelM:

c(M) = log(V)+ log(N)+ logB(V, I)+
I

∑
i=1
log

(
Ni. + J−1
J−1

)

+
I

∑
i=1
log

Ni.!
Ni,1!Ni,2! . . .Ni,J!

+
J

∑
j=1
logN. j!,

(3)

where B(V, I) is the number of ways to partitionV values into I groups (possibly empty). For I =V ,
B(V, I) corresponds to the Bell number. In general, B(V, I) can be written as a sum of Stirling
numbers of the second kind S(V, i) (number of ways to partition a set of V values into i nonempty
subsets) (see Abramowitz and Stegun, 1970):

B(V, I) =
I

∑
i=1

S(V, i).

This criterion can be deduced from the grouping criterion in classification (see Boullé, 2005) and
the 2D discretization criterion in regression presented in the previous section.

3. From 2D Partitioning to Rank Predictive Cumulative Distribution Estimate

In this section we expose how we can build a univariate estimator of the rank predictive density
from each 2D partition and how to obtain multivariate predictors under the naive Bayes assumption.

3.1 From Values to Normalized Training Ranks and Vice-Versa

As seen in the precedent section, the MODL partitions are defined only with the ranks of the training
instances and not with their values. Given NT numerical training values DT = (yT1 , . . . ,yTNT), the NT
ranked values are noted yT(1), . . . ,y

T
(NT) once the training values have been sorted.

A partition of the NT ranked instances defined by J numbers N1, . . . ,NJ such that ∑J
j=1N j = NT

is associated to a partition of the values as follows: we define J−1 boundaries b1, . . . ,bJ−1 by b j =

2737

HUE AND BOULLÉ

! !

y(1) y(NT)y(N1)

b1 =
y(N1)+y(N1)+1

2 bJ−1

N1 NJ

−∞ +∞

Figure 5: Value partition from the partition frequencies: for example, the upper bound of the first
interval containing N1 instances is the mean of the last value of this interval and of the
first value of the second interval.

yT(β j)+y
T
(β j+1)

2 where β j =∑
j
l=1Nl and the J value partition intervals are]−∞,b1[, [b1,b2[, . . . , [bJ−1,+∞[.

For a numerical value, its rank interval index is equal to its value interval index. This value partition
from the partition frequencies is illustrated in Fig 5.

As presented in the introduction, ordinal regression aims at predicting an ordinal variable which
takes a finite number of ordered values, most of the time already known in advance. In our case, we
aim at giving a finer grain prediction by considering the set of theNT possible ranks of a training data
set of size NT . In order to manipulate normalized values in [0,1], we consider the NT elementary
equal-width rank intervals of [0,1] denoted by Ten for n= 1, . . . ,NT and equal to Te1 = [0, 1

NT [,Te2 =
[1NT , 2

NT [, . . . ,TeNT = [NT−1NT ,1]. These intervals are centered on the normalized ranks RDT (yT(n)) =
1
2NT + n

NT of the training instances obtained by projection on [0,1] of the rank of yT(n) among D
T .

This normalization is illustrated in Fig 6.

! ! !

y(NT)

• •• •
1
2NT + 1

NT
1
2NT + 2

NT

NT−1
NT0 11

NT

y(1) y(2)

Figure 6: From sorted values to normalized ranks: for example, the normalized rank related to the
first value yT(1) is RDT (y

T
(1)) = 1

2NT + 1
NT , which is the center of the first elementary interval

Te1 = [0, 1
NT [.

In practice, there may be equal values in DT . In this case, we affect the averaged rank to the
concerned instances. For a new value y unseen during training, we define its rank RDT (y) as the
average of the normalized ranks of yT(n1) and y

T
(n2) such that y

T
(n1) ≤ y < yT(n2). The integers n1 and

n2 may not be consecutive if one of them is associated with several equal values. In the rest of the
paper, we use either ranks or values depending on the context.

2738

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

We now detail how to build an estimate of the predictive cumulative distribution function of
the target standardized rank from a univariate MODL 2D discretization in a first section and from
multiple univariate partitionings in a second section.

3.2 Univariate Case

We illustrate the construction of the univariate estimator from the 2D partitioning on a synthetic
data set proposed during the recent predictive uncertainty in environmental modelling competition
(see Cawley et al., 2006). This data set, called synthetic, contains NT = 384 training instances and
one numerical predictor. The scatter plot and the optimal MODL partition are presented in Figure 7.
The optimal MODL rank intervals are denoted Pi for i= 1, . . . ,7 for predictor and Tj, j= 1, . . . ,5 for
the target. The first and the last rank intervals are of the form [0, k f /NT [and [kl/NT , 1] respectively
and the other intervals are of the form [k1/NT , k2/NT [. The value interval bounds x1, . . . ,x6 and
y1, . . . ,y4 are obtained by projecting the frequencies partition on the value partition as described in
3.1. For the predictor component x of a new instance whose rank range is Pi(x), the number of















       





     







P1 P2 P3 P4 P5 P6 P7 Total
T5 1 0 0 6 5 0 0 12
T4 4 68 5 2 9 0 0 88
T3 38 5 26 32 24 0 0 125
T2 9 0 6 33 15 21 0 84
T1 0 0 0 34 4 9 28 75
Total 52 73 37 107 57 30 28 384

Figure 7: Scatter plot, 2D partitioning and numbers of the MODL grid for the synthetic data set.

examples in each grid cell give us an estimator of the probability that the target standardized rank
belongs to a given range Tj:

PModl (RDT (y) ∈ Tj | RDT (x) ∈ Pi(x)) =
Ni j
Ni.

.

Assuming that the conditional rank density is constant over each rank interval, the probabilities of
the elementary intervals Ten for n= 1, . . . ,NT are given by:

PModl (RDT (y) ∈ Ten | RDT (x) ∈ Pi(x)) =
Ni j
Ni.N. j

for j such that Ten ⊂ Tj. (4)

We obtain an estimate of the nth NT -quantile n/NT of the conditional cumulative distribution for
n= 1, . . . ,NT by summing these elementary probabilities.

The MODL estimators are plotted for each of the seven rank predictor ranges on Figure 8 for the
synthetic data set. The marks on the x−axis correspond to the normalized target ranks of the bound-
aries training instances exhibited by the target partition: 75

384 ≈ 0.19,
75+84
384 ≈ 0.41, 75+84+125384 ≈ 0.74

and 75+84+125+88
384 ≈ 0.97 which correspond to the projection of the value bounds y1, y2, y3 and y4

2739

HUE AND BOULLÉ

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x1)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x2)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x3)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x4)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x5)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x6)

rg(y)
0.00 0.41 0.740.

0
0.
4

0.
8

estimated F(rg(y)|x<x7)

Figure 8: MODL estimators of the conditional univariate standardized rank cumulative distribution
for the seven predictor rank ranges.

on the normalized ranks. The shape differences illustrate the seven distinct zones characterized by
the MODL optimal partition.

In the case of categorical predictors, the rank predictive cumulative distribution estimator can
be obtained in the same way by replacing the predictor intervals by predictor groups.

3.3 Multivariate Case

In the case of several predictors (K with K > 1), a first approach is to build an estimator under the
naive Bayesian assumption that the predictors are independent given the target. Let x= (x1, . . . ,xK)
be the coordinates of a new instance in the predictors space and Pkik(x) the discretization interval
(or group of values) to which belongs each component xk and RkDT (x) its rank. Under the naive
Bayesian assumption, the elementary probability can be written :

P
(
RDT (y) ∈ Ten | (R1DT (x), . . . ,R

K
DT (x)) ∈ (P1i1(x), . . . ,P

K
iK (x))

)

∝ P(RDT (y) ∈ Ten)
K

∏
k=1

P
(
RkDT (x) ∈ P

k
ik(x)|RDT (y) ∈ Ten

)

= P(RDT (y) ∈ Ten)
K

∏
k=1

P(RDT (y) ∈ Ten|RkDT (x) ∈ P
k
ik(x))P(RkDT (x) ∈ P

k
ik(x))

P(RDT (y) ∈ Ten)
.

(5)

This last expression can be estimated with the instance numbers in the 2D grid cells. The first factor
P(RDT (y)∈ Ten) can be estimated by the empirical probability 1/NT . Each factor of the product can
be computed from the numbers of the 2D partitioning of the target and of the kth predictor, denoted
(Ik,Jk,Nk

ik.,N
k
ik jk) :

P(RDT (y) ∈ Ten|RkDT (x) ∈ P
k
ik(x)) =

Nk
ik jk

Nk
ik.N

k
. jk
according to (4).

2740

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

P(RkDT (x) ∈ P
k
ik(x)) =

Nk
ik.
NT

and P(RDT (y) ∈ Ten) =
1
NT

.

Each factor reduces to the fraction
Nk
ik jk
Nk

. jk
and the elementary probabilities in Formula 5 reduce to

1
NT ∏

K
k=1

Nk
ik jk
Nk

. jk
.

However, the independence hypothesis assumed in the naive Bayes predictor is usually violated
for real data sets. In this case, estimates of the conditional probabilities are deteriorated as already
noticed in the work of Frank et al. (1998). For classification tasks, variable selection has been
employed to build selective naive Bayes classifiers. This procedure reduces the strong bias of the
naive independence assumption. The objective is to search among all the subsets of variables,
in order to find the best possible classifier, compliant with the naive Bayes assumption. Several
selection criteria have been tested, such as the accuracy criterion (see Langley and Sage, 1994), the
area under receiver operating characteristic (ROC) curve (see Provost et al., 1998) or the posterior
probability of the model given the data proposed in the work of Boullé (2007). In this last case, the
posterior probability is written as the sum of the prior probability of the model and of the likelihood
of the data given the model. The prior is chosen such that each specific small subset of variables
has a greater probability than each specific large subset of variables in order to favour small models.
For a given subset of variables, the likelihood is computed using the naive Bayes assumption.

We propose here to build selective naive Bayes rank predictors using a MAP approach as in
Boullé (2007). The extension to rank regression tasks is straightforward: the prior law remains
unchanged and, for a given subset of variables, the likelihood of the ranks of the instances are
computed assuming the naive Bayes assumption according to (5).

To summarize this section, we have exposed how the 2D partitionings give us estimators of
quantiles of the univariate or multivariate rank cdf. The choice of the estimated quantiles are given
by the univariate partitionings. Let us see, in the next section, on which criterion such probabilistic
rank models can be evaluated.

4. Performance Evaluation for Probabilistic Rank Regression

For deterministic predictive models, performance evaluation consists in evaluating the distance be-
tween the predicted class or value and the true class or value. Depending on the metric used, several
performance measures can be used such as the mean absolute error or the mean squared error.

For probabilistic predictive models, performance evaluation consists in comparing the true value
or class with an estimate of its conditional cumulative distribution function (cdf) or an estimate of
its conditional probability density function (pdf). It is measured through a score function which can
be negatively oriented (large values imply poor performance) or positively oriented (large values
imply high performance). A score function is said to be proper if its expectation is maximized (or
minimized) for the true predictive distribution. It is said strictly proper if this optimum is unique.

Among the strictly proper scoring functions, the two more commonly used are the logarithmic
and the quadratic scores (see Gneiting and Raftery, 2004). They take different forms depending on
the learning task. In the sequel, we first describe the quadratic and the logarithmic scores and their
use in classification and regression. We then present an interesting way to build the logarithmic
score function from ranks rather than from values.

2741

HUE AND BOULLÉ

4.1 Performance Evaluation for Probabilistic Classification and Regression

The quadratic score is called the Brier score for binary classification (see Brier, 1950). For classifi-
cation with a finite number of ordered classes j = 1, . . . ,J (ordinal regression), the discrete ranked
probability score, DRPS, has been proposed in the work of Epstein (1969):

SDRPS(p̂,(x,y)) = 1− 1
I−1

J

∑
j=1

(P̂(Y ≤ j | x)−1{Y≥ j}(y))2.

Its extension to the continuous case (metric regression) is the continuous ranked probability score,
CRPS (see Matheson and Winkler, 1976):

SCRPS(p̂,(x,y)) = −
Z +∞

−∞
(P̂(Y ≤ u | x)−1{Y≥u}(y))2du.

The CRPS is a bounded global score which manipulates the cumulative distribution function. Its
main disadvantage is that it is generally not a closed form. Nevertheless, a closed form has been de-
rived in the Gaussian case and in the case of ensemble prediction systems where the cdf is piecewise
constant (see Hersbach, 2000).

The logarithmic score is commonly called the ignorance score for classification and has been
introduced in the work of Good (1952). For value regression it is called the negative log-likelihood
(NLL) or negative log predictive density (NLPD). It takes the negative logarithm of the posterior
class probabilities for classification and of the predictive density for regression:

SNLPD(p̂,(x,y)) = − log(p̂(y|x)). (6)

The NLPD is a local score as it only depends on the predictive density on the example. It is clearly
negatively oriented.

Practically, for regression, this criterion requires the definition of the probability density func-
tion on any point. If the target distribution is described by a sample, its pdf is not defined. A
common choice to specify such predictive distribution is to describe the cdf by a set of N quantiles
of the form:

αx(n) = P̂(y< qx(n) | x) for n= 1, . . . ,N.

Moreover, assuming that the cdf is constant on each interval [qx(n);qx(n+ 1)[, one obtains the
following expression for the logarithmic score:

SNLPD(p̂({qx(n)}),(x,y)) = − log
(
αx(ny)−αx(ny−1)
qx(ny)−qx(ny−1)

)
, (7)

where qx(ny − 1) ≤ y < qx(ny) and p̂({qx(n)}) designs the estimator specified by the quantiles
{qx(n)}.

Such as defined in Equation (6), the NLPD presents the main drawback not to be minored: the
more the density is peaked around the sample values, the smaller the score values. It is not a
problem in classification as the posterior probabilities are bounded but, for regression, it encourages
dishonest predictions concentrated around some specific values, as noticed in recent challenges (see
Kohonen and Suomela, 2005). In order to achieve a fair evaluation, if the predictive density is
expressed as a set of quantiles as exposed before, a last resort is to impose a minimum width for

2742

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

scoring rule quadratic score logarithmic score
binary classification Brier score Ignorance score
ordinal regression DRPS
value regression CRPS NLPD

Table 1: Quadratic and logarithmic scores for performance evaluation of probabilistic predictive
models

the intervals [qx(n−1);qx(n)[. Anyway, such a score function contributes to confusing performance
prediction since arbitrary small values can be obtained fortunately.

The two scores mentioned above are presented in Table 1.
Let now study what happens if we compute the logarithmic score for the rank predictive density

rather than for the value predictive density.

4.2 A Robust Logarithmic Score Defined on the Rank Predictive Density

Given a training data set set DT = (xTn ,yTn)n=1,...,NT , we assume that we have at our disposal a
rank probabilistic estimator specified for any given x by the NT estimated quantiles αx(n) for
n= 1, . . . ,NT of the standardized rank cumulative distribution function:

αx(n) = P̂(RDT (y) <
n
NT

|x) for n= 1, . . . ,NT .

We can immediately see that this assumption is not restrictive: knowing the values associated to the
ranks, each value estimator gives us an estimator of the cdf on the NT target normalized ranks of the
training data set. If we denote by y(n) the nth target value of DT , we have :

αx(n) = P̂(RDT (y) <
n
NT

|x) = P̂(y<
y(n) + y(n+1)

2
|x). (8)

By appropriate integration of the cdf, each value estimator specified by N given quantiles gives us
the NT quantiles estimates defined in (8).

Let us come back to the evaluation of such a rank probabilistic estimator with the logarith-
mic score function. It consists in comparing it with the standardized insertion rank RDT (y) of the
true value y among the training data set DT . We propose to estimate the predictive density on the
insertion rank by the ratio:

p̂(RDT (y)|x) ≈
P̂(RDT (y) ∈ Teny | x)

1/NT
,

where Teny is the elementary interval to which the insertion rank RDT (y) belongs.
This approximation enables us to define the Negative Log Rank Predictive Density as follows:

Definition 6 Let a training data set set DT = (xTn ,yTn)n=1,...,NT and αx(n) for n = 1, . . . ,NT some
estimates of the NT quantiles of the standardized rank cumulative distribution function:

αx(n) = P̂(RDT (y) <
n
NT

|x) for n= 1, . . . ,NT .

2743

HUE AND BOULLÉ

Rank predictive distribution specification: Let DT = (xTn ,yTn)n=1,...,NT be a training data
set with Y a numerical target and X = (X 1, . . . ,XK) K numerical or categorical predictors.
For any given x, the rank predictive distribution is specified by the NT quantiles of the
rank cdf:

αx(n) = P̂(RDT (y) <
n
NT

| x) for n= 1, . . . ,NT .

Rank predictive distribution evaluation: Let DV = (xVn ,yVn)n=1,...,NV be a validation data
set. Compute the logarithmic score of the rank predictive distribution on data set DV as

NLRPD= − 1
NV

NV
∑
n=1
log

αx
V
n (ny)−αx

V
n (ny−1)

1/NT
,

where RDT (yv), the standardized insertion rank of the true value yVn among the training
data set DT , is included in the elementary interval Teny .

Table 2: Summary of the proposed approach for probabilistic standardized rank regression and its
evaluation.

The score function for the negative log rank predictive density is then defined by:

SNLRPD(P̂(NT),(x,y)) = − log
P̂(RDT (y) ∈ Teny | x)

1/NT
= − log(αx(ny)−αx(ny−1))− log(NT),

(9)

where P̂(NT) is the rank predictive density estimator specified by the quantiles { n
NT }. We now

present two interesting properties of the NLRPD.

Theorem 7 In absence of predictive information the NLRPD is equal to zero.

Without any predictive information, the probability that the insertion rank of a new instance belongs
to a given interval is simply equal to 1/NT . By construction, we have then for the uniform predictor
P̂uni f (NT):

SNLRPD(P̂uni f (NT),(x,y)) = − log1= 0.

!
Moreover, unlike the NLPD score, this score function on ranks has the great advantage to be

minored as it is precised in the following property:

Theorem 8 Given a training data set set DT of size NT , the NLRPD score function is minored by
− log(NT).

This bound is directly obtained by considering that the difference αx(ny)−αx(ny− 1) belongs to
]0;1].!

By construction, the proposed NLRPD score is then bounded. However, it depends on the
training data set through its size. We will see in next section its relative insensitivity to this size.

2744

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

Let us now examine the link between the score function on ranks and the score function on
values. Using the expression (7) with the NT −1 quantiles b1 = y(1)+y(2)

2 , b2 = y(2)+y(3)
2 , . . ., bNT−1 =

y(NT−1)+y(NT)
2 , we obtain the relation :

SNLRPD(P̂(NT),(x,y)) = SNLPD(p̂({bny}),(x,y))− log(NT)− log(bny −bny−1).

As precised at the beginning of the section, the NLRPD score function can be used by converting
any value predictive density estimator to rank predictive density estimator specified or using the
above relation between NLRPD and NLPD score functions.

The framework of our approach is summarized in Table 2.

5. Experimental Evaluation

We first present experiments about the criteria proposed in the precedent section. Then, we focus
on the quality of the 2D-partitioning with experiments on synthetic data. We finish by experiments
with the univariate and multivariate predictors presented on five real data sets.

5.1 Experiments on the NLRPD

We focus here on the properties of the proposed criterion, the NLRPD. We consider the data gener-
ated according to the following heteroscedastic model (used for the synthetic data set of the predic-
tive uncertainty in environmental modeling competition):

{
xn ∼U[0π]

yn ∼ N
(
sin

(5x
2
)
sin

(3x
2
)
, 1
100 + 1

4
(
1− sin

(5x
2
))2)

This data set has been used in Section 3 to describe the building of the rank conditional densities.
Knowing the true cdf of the synthetic data set, we can compute the true NLRPD by using the true
probabilities instead of their estimates in (9).

The contentious aspect of the NLRPD is that it depends on the training data set size. The
objective of this experiment is then to study the sensitivity of the NLRPDwith respect to the training
size in a first time and to the validation data set size in a second time. For that, we have generated
m = 100 training data sets of size NT = 2n for n = 1, . . . ,12. The true NLRPD has been computed
given each of the m∗12 training quantile vectors for a test data set of size NV = 1000 and another
one of size NV = 10000. The mean NLRPD over the m training data sets is plotted versus the
training data set size NT on left of Figure 9 for NV = 1000 and on right for NV = 10000.

First, this plot shows a threshold around a training data set size of NT = 100 instances. Below
this threshold, the true NLRPD decreases when the training set size increases. Above this threshold,
the optimal NLRPD seems insensitive to the training set size. Secondly, we can notice that both
curves for NV = 1000 and NV = 10000 are very similar. This allows us to think the NLRPD is not
very sensitive to the test data set size. To confirm this fact, we have fixed a training data set of size
384 and we have computed the true NLRPD for m = 100 test data sets of size NV = 1024. The
standard-deviation obtained is around 3%. Our criterion looks robust with respect to the training
and validation data set size.

5.2 Experiments on the 2D-Partitioning

In this section, we focus on the quality of the 2D-partitioning with three experiments.

2745

HUE AND BOULLÉ

Training set size

Av
er

ag
ed

 N
LR

PD
 +

/−
sd

2 4 8 16 32 64 128 512 2048

−1
.0

−0
.5

0.
0

0.
5

●

●

mean NLRPD
mean +/− sd

Training set size

Av
er

ag
ed

 N
LR

PD
 +

/−
sd

2 4 8 16 32 64 128 512 2048

−1
.0

−0
.5

0.
0

0.
5

●

●

mean NLRPD
mean +/− sd

Figure 9: Mean NLRPD over m = 100 training data sets of size NT = 2n, n = 1, . . . ,12 and for a
validation data set of size NV = 1000 on the left and NV = 10000 on the right.

A strong point of the MODL approach is that it does not presuppose the existence of a relation
between the predictor and the target variables. In the case of numerical predictors, the absence of
relevant information should conduct to elementary 2D-partitions consisting of one single cell. To
check the quality of the MODL 2D discretizations, we test it on several noise pattern data sets: we
generate 105 training data sets of size equal to 2n for n= 2, . . . ,10, for which the predictor and target
variables are generated independently according to a uniform law in [0,1]. As the predictor variable
contains in fact no relevant information to predict the target variable, we expect that the number of
predictor intervals I and of target intervals J would be equal to one. Mean target interval number
versus the data set size is plotted in Figure 10. For the two smallest sizes 4 and 8, the number of
target intervals is always equal to one as there are not enough instances to constitute any pattern.
For larger sample sizes, the number of intervals is sometimes equal to two with an exponential
decreasing frequency after a peakly increasing for sizes 16 and 32. In the worst case for NT = 32,
some predictive information is wrongly detected in 0.8% of the realizations and it falls to 0.2% for
NT = 128 and 0.006% for NT = 1024. The absence of predictive information is then almost always
detected.

Secondly we test the capacity of our method to detect predictive information contained in a
noisy XOR pattern. A XOR pattern is obtained by generating a predictor variable uniformly in [0,1]
and the target variable uniformly in [0,0.5] if the predictor variable is less than 0.5 and uniformly in
[0.5,1] otherwise. In this case, the expected partition is the one with I = J = 2 intervals which splits
the predictor and the target variable on 0.5. Some noise instances generated as in the previous noise
pattern are added to constitute what we call a noisy XOR pattern. We can study the robustness of
the discretization to noise. In Figure 11, the mean number of target intervals on 100 samples are
plotted versus the data set size for noise rates varying from 0 to 1 by 0.2.

Each curve shows a sharp threshold above which the pattern is correctly detected. First, a XOR
pattern without noise is correctly detected from NT = 16. The resultat is similar for low noise rate

2746

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

5 10 20 50 100 200 500 1000

1.
00

0
1.

00
2

1.
00

4
1.

00
6

1.
00

8

Dataset size

Av
er

ag
ed

 in
te

rv
al

 n
um

be
r

I
J

Figure 10: Mean target and predictor interval numbers for 100000 noise pattern data sets of size 4
to 1024

5 10 50 100 500 5000

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Sample size

Av
er

ag
ed

 ta
rg

et
 in

te
rv

al
 n

um
be

r

0
0.2
0.4
0.6
0.8
1

Figure 11: Mean target interval number for 100 noisy XOR pattern data sets of size 4 to 5096 for
noise rate = 0,0.2,0.4,0.6,0.8,1.

equal to 0.2. This threshold increases with the noise rate and reachs respectively 128, 256 and 1024
for a rate equal to 0.4, 0.6 and 0.8. Our discretization is then robust to noise rate.

2747

HUE AND BOULLÉ

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

y

Figure 12: Optimal MODL 2D-partition for data on a noisy circle.

Thirdly, we test the capacity of our method to detect multimodality. For that we generate 300
instances on a noisy circle as showed in Figure 12. The density of y conditionally to x is bimodal for
most values of x. As there is no assumption in the MODL approach about the form of the conditional
distribution, the 2D-partitioning can produce multimodal conditional densities. For the noisy circle
data set, the optimal MODL 2D-partition plotted in Figure 12 clearly shows the two modes of the
law.

5.3 Experiments on Real Data Sets

In this section, we test the estimators proposed in Section 3 on real data . We have chosen the
following five regression data sets, detailed in Table 3:

• SO2, precip and temp, available from the predictive uncertainty competition website
(http://theoval.cmp.uea.ac.uk/competition/).

• Adult and housing (Boston), available from the UCI machine learning repository
(http://www.ics.uci.edu/ mlearn/MLSummary.html);

Data Set SO2 Precip Temp Adult Housing
Numerical predictors 27 106 106 6 13
Categorical predictors 0 0 0 7 0
Number of patterns 22956 10546 10675 48842 506

Table 3: Summary of the dimensions of five data sets chosen to evaluate the probabilistic rank
predictive density estimators.

For each data set, we have performed a five-fold cross validation for the three following estimators:

2748

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

SO2 Level I J Precip Level I J Temp Level I J
V7 0.01467 9 7 V3 0.01986 5 6 V102 0.1234 13 14
V25 0.00993 7 6 V35 0.01858 5 6 V104 0.1095 12 13
V27 0.009658 7 7 V4 0.01823 5 6 V101 0.1069 13 12
V2 0.009483 6 28 V81 0.01729 4 6 V103 0.1039 12 13
V26 0.008302 6 7 V69 0.01716 4 7 V100 0.06891 9 12
V1 0.003991 5 127 V36 0.01674 4 7 V98 0.06288 9 10
V11 0.001366 5 5 V82 0.01653 4 6 V106 0.05691 8 8
V8 0.0009511 3 4 V70 0.01633 4 6 V99 0.05614 8 9
V12 0.0008027 4 3 V57 0.01632 4 6 V97 0.05566 9 10
V18 0.0007759 3 4 V45 0.01629 4 6 V6 0.03347 7 7

Adult Level I J Housing Level I J
marital-status 0.0244 11 6 LSTAT 0.0945 5 5
relationship 0.01936 12 5 RM 0.06378 5 5
hours-per-week 0.009682 10 6 NOX 0.04466 5 5
education 0.009164 10 9 INDUS 0.04350 3 5
education-num 0.009016 9 9 PTRATIO 0.03779 5 4
class 0.006555 10 2 CRIM 0.03451 4 5
occupation 0.003556 7 7 TAX 0.03352 4 5
workclass 0.002672 6 5 AGE 0.03208 4 3
capital-gain 0.002257 4 18 DIS 0.02929 5 3
sex 0.0007349 3 2 RAD 0.01977 3 2

Table 4: Compression gains (levels) and size (I,J) of the 2D partitions for the ten most informative
variables of the 1-fold of the five data sets.

• the univariate estimator built with the most MODL informative variable;

• the multivariate estimator built under the naive Bayes assumption with all the predictor vari-
ables (NB);

• the multivariate estimator built under the naive Bayes assumption with the best selected subset
of predictor variables (SNB).

For each fold, the estimators are built from the optimal MODL 2D-discretizations for each couple
(predictor,target). The compression gain (or level) defined in (2) enables us to rank the predic-
tors. For illustration, Table 4 presents the level and the size (I,J) of the 2D partitions for the best
predictors, for the first training set of each data set.

Each estimator is evaluated with the NLRPD criteria proposed in the previous section. Table 5
presents the mean and standard-deviation of the NLRPD for each data set and each estimator.

First, we can see the poor performance of the naive Bayes estimator which exploits all the uni-
variate predictors: for all data sets except for the adult data set, the NLRPD for the NB estimator
is positive that is to say it performs not as good as the predictor built without any predictive infor-
mation. This phenomenon is due to the violation of the naive Bayes assumption. For example, in

2749

HUE AND BOULLÉ

Univariate SNB NB
SO2 -0.136 +/- 0.003 -0.162 +/- 0.0076 0.24 +/- 0.036
Precip -0.165 +/- 0.005 -0.220 +/- 0.023 9.0 +/- 1.36
Temp -1.018 +/- 0.012 -1.046 +/- 0.0173 5.46 +/- 0.99
Adult -0.237+/- 0.0048 -0.378+/- 0.03 -0.287 +/- 0.029
Housing -0.393+/- 0.128 -0.26 +/- 0.26 0.849+/- 0.49

Table 5: Mean and standard-deviation of the NLRPD for the 3 predictors and the five real data sets.

the case of the temp data set, Figure 13 presents the scatter plot of the two most informative vari-
ables. The very high linear correlation clearly deteriorates the naive Bayes predictor based on these
variables.

−4 −3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

V102

V1
04

Figure 13: Scatter plot of the two most informative variables for the temp data set.

The second point from these results is the relative good performance of the univariate predictor.
For the SO2, precip and temp data sets, it performs nearly as well as the SNB, which selects around
five predictors, even if the NLRPD mean for the SNB is significantly lower than for the univariate
predictor according to a Student’s t-test. These three data sets seem a bit specific in the sense that
the most informative variable contains a lot of the predictive information. The good 2D partitioning
quality enables to build a very performant univariate predictor. For the adult data set, the SNB,
which selects around 9 predictors, performs better than the NB which performs better than the
Univariate predictor. The predictive information is shared by several variables and the selection
procedure enables to eliminate redundant predictors like education and education-num, or marital-
status and relationship. For the housing data set, the univariate predictor performs as well as the
SNB which selects around five predictors. The variance of the results is important which certainly
explains that the equality hypothesis of the means is not rejected according to a Student t-test. It

2750

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

NLPD on test set SO2 Precip Temp
Organizer’s method 4.25 (1st) -0.509 (1st) 0.053 (2nd)
Best submitted method 4.37 (3th) -0.279 (3th) 0.034 (1st)
MODL SNB 4.31 (2nd) -0.437 (2nd) 0.259 (8th)
MODL Univariate 4.33 (2nd) -0.361 (2nd) 0.284 (8th)
Reference method 4.5 (4th) -0.177 (4th) 1.30 (9th)

Table 6: NLPD values for each test data set for the univariate estimator using the best MODL
predictor (MODL univariate), the selective naive Bayes predictor (MODL SNB), the best
method in competition, the organizer’s submission and the reference method. The ranking
of each method is between brackets after each NLPD value.

may seem surprising that the univariate sometimes performs better than the SNB. The reason may
be that the selection procedure in the SNB assumes that the univariate predictors are perfect and
focuses on the choice of the number of variables. In other words, the uncertainty of the univariate
predictive model is not taken into account at this stage. It also suggests that the SNB predictor
could be improved. Contrary to the classification case, the target partition is different for each
predictor considered. This aspect could be taken into account in the selection of the predictors.
Model averaging could also improve our multivariate predictors.

The objective of our last experiment is to compare our approach with other regression methods.
To our knowledge, there is no alternative rank regression method available in the literature. We
therefore compare it to value predictive density estimators. Such estimators being still an active
subject of research, we decide to compare our approach to the methods proposed very recently
in the predictive uncertainty in environmental modelling competition organized in 2006 by Gavin
Cawley. Since these methods are hard to re-implement and tune, we project our rank estimator to a
value estimator and we compare them with the NLPD criteria. Knowing the values associated to the
ranks, each rank estimator gives us an estimator of the cdf on the NT target values of the training
data set using (8). To compute the predictive pdf on any point from the conditional quantiles, we
adopt the same assumptions as those used in the challenge, that is that the pdf is assumed uniform
between two successive values and that the distribution tails are exponential.1

As our approach is implicitly regularized and needs no tuning parameter, we use the training and
validation data sets to compute the optimal 2D partitionings. Given the poor performance of the NB
in the previous experiments, we only train the univariate and the SNB predictors. Table 6 indicates
the NLPD on the test data set for these two MODL estimators, the best method in competition
and the reference method which computes the empirical estimator of the marginal law p(y). For
the three data sets, the MODL estimators are better than the reference method, that is far from
being the case for all submitted methods. Secondly, we observe good performance for the MODL
estimators, in particular for the SO2 and Precip data sets where the SNB estimator is at the front
after the organizer’s method. The good performance of the univariate predictor demonstrates the
2D partitioning quality despite the use of the ranks and not of the values for this step. Moreover, the
SNB estimator is always better than the univariate estimator. This proves the presence of additional
information and the interest of the selection procedure.

1. For that we affect an ε= 1/2N probability mass at each tail.

2751

HUE AND BOULLÉ

6. Conclusion

We have first proposed a non parametric Bayesian approach for the estimation of the conditional
distribution of the normalized rank of a numerical target. Our approach is based on an optimal
2D partitioning of each couple (target, predictor). These partitionings are used to build univariate
estimators and multivariate ones under the naive Bayesian assumption of predictors conditional
independence, with and without variable selection.

Our approach is applicable for all regression problems with categorical or numerical predictors.
It is particularly interesting for those with a high number of predictors as it automatically detects
the variables which contain predictive information. As the criteria selection is regularized by the
presence of a prior and a posterior term, it does not suffer from overfitting.

Secondly we have proposed a new criterion to evaluate a probabilistic estimator of the rank
predictive density. It uses the logarithmic score and presents the main advantage to be minored
contrary to the logarithmic score computed for probabilistic estimators of the target value. As a
value estimator can be projected on a rank estimator, this criterion provides a reliable evaluation
criterion for all probabilistic regression estimators on values or on ranks.

Experiments on synthetic data sets show the validity of the proposed evaluation criterion and
the quality of the 2D partitioning. Experiments on real data sets show the failure of the naive Bayes
but the potential of the selective naive Bayes estimator. A comparison with methods proposed in
a recent challenge dedicated to probabilistic metric regression methods evaluates the competitivity
of our approach after the projection of our rank estimators on the value range. The very good
performance of our best univariate and selective naive Bayes estimators encourages us to work in
the future to improve the SNB approach and to evaluate the potential benefit of model averaging.

Acknowledgments

We are grateful to the editor and the anonymous reviewers for their useful comments.

References

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover Publications Inc.,
New York, 1970.

M. Boullé. A Bayes optimal approach for partitioning the values of categorical attributes. Journal
of Machine Learning Research, 2005.

M. Boullé. MODL: A Bayes optimal discretization method for continuous attributes. Machine
Learning, 65(1):131–165, 2006.

M. Boullé. Compression-based averaging of selective naive Bayes classifiers. Journal of Machine
Learning Research, To appear, 2007.

M. Boullé and C. Hue. Optimal Bayesian 2d-discretization for variable ranking in regression. In
Ninth International Conference on Discovery Science (DS 2006), 2006.

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review,
78(1):1–3, 1950.

2752

PROBABILISTIC RANK REGRESSION WITH BAYESIAN PARTITIONING

G.C. Cawley, M.R. Haylock, and S.R. Dorling. Predictive uncertainty in environmental modelling.
In 2006 International Joint Conference on Neural Networks, pages 11096–11103, 2006.

P. Chaudhuri and W.-Y. Loh. Nonparametric estimation of conditional quantiles using quantile
regression trees. Bernouilli, 8, 2002.

P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao. Piecewise-polynomial regression trees. Statis-
tica Sinica, 4, 1994.

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Journal of Machine Learn-
ing Research, 6:1019–1041, 2005.

W. Chu and S. Keerthi. New approaches to support vector ordinal regression. In ICML ’05: Pro-
ceedings of the 22nd international conference on Machine Learning, 2005.

K. Crammer and Y. Singer. Pranking with ranking. In Proceedings of the Fourteenth Annual
Conference on Neural Information Processing Systems (NIPS), 2001.

C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine learning databases,
1998. URL http://www.ics.uci.edu/∼mlearn/MLRepository.html.

E. S. Epstein. A scoring system for probability forecasts of ranked categories. Journal of Applied
Meteorology, 8:985–987, December 1969.

J. Fan, Q. Yao, and H. Tong. Estimation of conditional densities and sensitivity measures in nonlin-
ear dynamical systems. Biometrika, 83:189–196, 1996.

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annual Eugenics, 7, 1936.

E. Frank, L. Trigg, G. Holmes, and I. Witten. Naive Bayes for regression, 1998. URL
citeseer.ist.psu.edu/article/frank98naive.html. Working Paper 98/15. Hamilton,
NZ: Waikato University, Department of Computer Science.

T. Gneiting and A. Raftery. Strictly proper scoring rules, prediction and estimation. Technical
report, Department of Statistics, University of Washington, 2004.

I. Good. Rational decisions. Journal of the Royal Statistical Society, 14(1):107–114, 1952.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression,
chapter 7, pages 115–132. 2000.

H. Hersbach. Decomposition of the Continuous Ranked Probability Score for ensemble prediction
systems. Weather and Forecasting, 15(5):559–570, 2000.

T. P. Hettmansperger and J. W. McKean. Robust Nonparametric Statistical Methods. Arnold,
London, 1998.

R. Koenker. Quantile Regression. Econometric Society Monograph Series. Cambridge University
Press, 2005.

2753

HUE AND BOULLÉ

J. Kohonen and J. Suomela. Lessons learned in the challenge: making predictions and scoring
them. In Revised Selected Papers of the 1st PASCAL Machine Learning Challenges Workshop
(MLCW, Southampton, UK, April 2005), Lecture Notes in Artificial Intelligence 3944, pages 95–
116, 2005.

P. Langley and S. Sage. Induction of selective Bayesian classifiers. In In Proceedings of
the Tenth Conference on Uncertainty in Artificial Intelligence, pages 399–406, 1994. URL
citeseer.ist.psu.edu/langley94induction.html.

M.-C. Ludl and G. Widmer. Relative unsupervised discretization for regression problems. In
Eleventh European Conference on Machine Learning (ECML-2000), pages 246–254, 2000.

J. Matheson and R. Winkler. Scoring rules for continuous probability distributions. Management
Sci., 22:1087–1096, 1976.

N. Meinshausen. Quantile regression forests. Journal of Machine Learning Research, 7:983–999,
2006.

F. Provost, T. Fawcett, and R. Kohavi. The case against accuracy estimation for comparing induction
algorithms. In In Proc. Fifteenth Intl. Conf. Machine Learning, pages 445–453, 1998. URL
citeseer.ist.psu.edu/provost97case.html.

C.E. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, 1948.

A. Shashua and A. Levin. Ranking with large margin principles : two approaches. In Proceedings
of the Fiveteenth Annual Conference on Neural Information Processing Systems (NIPS), 2002.

I. Takeuchi, Q.V. Le, T.D. Sears, and Smola A.J. Nonparametric quantile estimation. Journal of
Machine Learning Research, 7:1231–1264, 2006.

H White. Nonparametric estimation of conditional quantiles using neural networks. In Proceedings
of the 1991 Interface Conference, 1991.

2754

Journal of Machine Learning Research 8 (2007) 2755-2790 Submitted 11/05; Revised 6/07; Published 12/07

Dynamic Weighted Majority: An Ensemble Method
for Drifting Concepts∗

J. Zico Kolter KOLTER@CS.STANFORD.EDU
Department of Computer Science
Stanford University
Stanford, CA 94305-9025, USA

Marcus A. Maloof† MALOOF@CS.GEORGETOWN.EDU
Department of Computer Science
Georgetown University
Washington, DC 20057-1232, USA

Editor: Dale Schuurmans

Abstract
We present an ensemble method for concept drift that dynamically creates and removes weighted
experts in response to changes in performance. The method, dynamic weighted majority (DWM),
uses four mechanisms to cope with concept drift: It trains online learners of the ensemble, it weights
those learners based on their performance, it removes them, also based on their performance, and it
adds new experts based on the global performance of the ensemble. After an extensive evaluation—
consisting of five experiments, eight learners, and thirty data sets that varied in type of target con-
cept, size, presence of noise, and the like—we concluded that DWM outperformed other learners
that only incrementally learn concept descriptions, that maintain and use previously encountered
examples, and that employ an unweighted, fixed-size ensemble of experts.
Keywords: concept learning, online learning, ensemble methods, concept drift

1. Introduction

In this paper, we describe an ensemble method designed expressly for tracking concept drift (Kolter
and Maloof, 2003). Ours is an extension of the weighted majority algorithm (Littlestone and War-
muth, 1994), which also tracks drifting concepts (Blum, 1997), but our algorithm, dynamic weighted
majority (DWM), adds and removes base learners or experts in response to global and local perfor-
mance. As a result, DWM is better able to respond in non-stationary environments.

Informally, concept drift occurs when a set of examples has legitimate class labels at one time
and has different legitimate labels at another time. Naturally, over some time scale, the set of
examples and the change they undergo must produce a measurable effect on a learner’s performance.
Concept drift is present in many applications, such as intrusion detection (Lane and Brodley, 1998)

∗. Based on “DynamicWeightedMajority: A new ensemble method for tracking concept drift”, by Jeremy Z. Kolter and
Marcus A. Maloof, which appeared in the Proceedings of the Third IEEE International Conference on Data Mining.
c© 2003 IEEE.

†. Corresponding author

c©2007 J. Zico Kolter and Marcus A. Maloof.

KOLTER AND MALOOF

and credit card fraud detection (Wang et al., 2003). Indeed, tracking concept drift is important for
any application involving models of human behavior.

In previous work, we evaluated DWM using two synthetic data sets, the STAGGER concepts
(Schlimmer and Granger, 1986) and the SEA concepts (Street and Kim, 2001), achieving the best
published results (Kolter and Maloof, 2003). Using the STAGGER concepts, we also made a di-
rect comparison to Blum’s (1997) implementation of weighted majority (Littlestone and Warmuth,
1994).

Here, we present additional results for the STAGGER data set by making a direct comparison to
our implementation of the STAGGER learning system (Schlimmer and Granger, 1986) and to a series
of rule learners for concept drift that use the AQ algorithm: AQ-PM (Maloof and Michalski, 2000),
AQ11-PM (Maloof and Michalski, 2004), and AQ11-PM+WAH (Maloof, 2003). We also present
results for two real-world data sets. The first is the CAP data set (Mitchell et al., 1994), which
Blum (1997) used to evaluate his implementation of weighted majority. The second is a data set for
electricity pricing, which Harries (1999) used to evaluate Splice2. Finally, we include results for
twenty-six UCI data sets (Asuncion and Newman, 2007) because we were interested in evaluating
DWM’s performance on static concepts.

Overall, results suggest that a weighted ensemble of incremental learners tracks drifting con-
cepts better than learners that simply modify concept descriptions, that store and learn from exam-
ples encountered previously, and that use an unweighted ensemble of experts. Although DWM has
no advantage over a single base learner for static concepts, results from 26 UCI data sets show that,
overall, DWM performs no worse than a single base learner.

We cite two main contributions of this work. First, we present a general algorithm for using any
online learning algorithm for problems with concept drift. Second, we present results of an extensive
empirical study characterizing DWM’s performance along several dimensions: with different base
learners, with well-studied data sets, with class noise, with static concepts, and with respect to
learners appearing previously in the literature.

The organization of the paper is as follows. In the next section, we survey work on the problem
of concept drift, on ensemble methods, and at the intersection: work on ensemble methods for con-
cept drift. In Section 3, we describe dynamic weighted majority, an ensemble method for tracking
concept drift. In Section 4, we present the results of our empirical study. Section 5 concludes the
paper, and it is here that we discuss directions for future research.

2. Background and Related Work

Dynamic weighted majority is an ensemble method designed expressly for concept drift. For many
years, research on ensemble methods and research on methods for concept drift have intermingled
little. However, within the last few years, researchers have proposed several ensemble methods
for tracking concept drift. In the next three sections, we survey relevant work on the problem of
tracking concept drift, on ensemble methods, and on ensemble methods for tracking concept drift.

2.1 Concept Drift

Concept drift (Schlimmer and Granger, 1986; Maloof, 2005) is an online learning task in which
concepts change or drift over time. For example, with a professor’s e-mail classification system, the
concept of an important e-mail will change with semesters and with conference deadlines. Concepts
may change suddenly or gradually, and if we view concepts as shapes in a representation space, then

2756

DYNAMIC WEIGHTED MAJORITY

they can change their shape, size, and location. In concrete terms, concept drift occurs when the
class labels of a set of examples change over time. Researchers have used both real (e.g., Harries
and Horn, 1995; Blum, 1997; Lane and Brodley, 1998; Harries, 1999; Black and Hickey, 2002;
Gramacy et al., 2003; Wang et al., 2003; Gama et al., 2004; Delany et al., 2005; Gama et al., 2005;
Scholz and Klinkenberg, 2005; Tsymbal et al., 2005) and synthetic (e.g., Schlimmer and Granger,
1986; Widmer and Kubat, 1996; Maloof and Michalski, 2000; Hulten et al., 2001; Street and Kim,
2001; Kolter and Maloof, 2003; Klinkenberg, 2004; Maloof and Michalski, 2004; Gama et al.,
2005; Kolter and Maloof, 2005; Scholz and Klinkenberg, 2005) data sets as inspiration for and the
evaluation of a variety of methods for tracking concept drift. There has also been theoretical work
on this problem (e.g., Helmbold and Long, 1991; Kuh et al., 1991; Helmbold and Long, 1994; Auer
and Warmuth, 1998; Mesterharm, 2003; Monteleoni and Jaakkola, 2004; Kolter and Maloof, 2005),
but a thorough survey of this work is beyond the scope of the paper.

STAGGER (Schlimmer and Granger, 1986) was the first system designed to cope with concept
drift. It uses a distributed concept description consisting of class nodes linked to attribute-value
nodes by probabilistic arcs. Two probabilities associated with each arc represent necessity and
sufficiency, and are updated based on a psychological theory of association learning (Rescorla,
1968). In addition to adjusting these probabilities when new training examples arrive, STAGGER
can also add nodes corresponding to new classes and new features. To better cope with concept
drift, STAGGER may decay its probabilities over time. Empirical results on a synthetic data set,
now known as the STAGGER concepts, show the method acquiring three changing target concepts in
succession. The STAGGER concepts have been a centerpiece of numerous evaluations (Widmer and
Kubat, 1996; Widmer, 1997; Maloof and Michalski, 2000; Kolter and Maloof, 2003; Maloof and
Michalski, 2004; Kolter and Maloof, 2005), and we discuss them further in Section 4.1.

Concept versioning (Klenner and Hahn, 1994) is a method for coping with gradual or evolu-
tionary concept drift. It uses a frame representation and copes with such drift by either adjusting
current concept descriptions or creating a new version of these descriptions. The system creates a
new version when an instance’s attribute values and ranges present in current concept descriptions
are dissimilar, based on a measure that accounts for both quantitative (e.g., value differences) and
qualitative (e.g., increasing trend) information. Empirical results, based on 124 examples of com-
puters sold between 1987 and 1993, suggest that the system acquired three versions of concepts
based on machines’ clock frequency and memory size.

The FLORA systems (Widmer and Kubat, 1996) track concept drift by maintaining a sequence of
examples over a dynamically adjusted window of time and using them to induce and refine three sets
of rules: rules covering the positive examples, rules covering the negative examples, and potential
rules that are, at present, too general. Examples entering and leaving the window cause FLORA to
refine rules, to move them from one set to another, or to delete them. FLORA2 uses just these basic
mechanisms, whereas FLORA3 is an extension that handles recurring contexts. FLORA4 extends
FLORA3 with mechanisms for coping with noise, similar to those present in IB3 (Aha et al., 1991).
On the STAGGER concepts, the method generally performed well in terms of slope and asymptote
after concepts changed. (We further analyze these results in Section 4.1.)

Although not expressly designed for concept drift, the MetaL(B) and MetaL(IB) systems (Wid-
mer, 1997) use meta-learning with naive Bayes and instance-based learning, respectively, to cope
with reoccurring contexts. For example, the concept of warm is different in the summer than in the
winter. In this scenario, season or average temperature is a contextual attribute that identifies the

2757

KOLTER AND MALOOF

relevant concept of warm. As an agent moves from one season to the next, it uses the contextual
variable to better focus the base algorithm on those features relevant for learning and prediction.

Meta-learning mechanisms identify contextual attributes by maintaining co-occurrence and fre-
quency counts over the learner’s entire history and over a fixed window of time. Using a χ2 test,
the meta-learning algorithm identifies contextual features and those predictive features relevant for
the given context. The base learner then uses the predictive features of the contextually relevant
examples in the current window to form new concept descriptions. By adding a contextual variable
to the STAGGER concepts (Schlimmer and Granger, 1986), experimental results using predictive
accuracy suggest that the meta-learners were able use contextual features to acquire target concepts
better than and more quickly than did the base learners alone. When compared to FLORA4 (Widmer
and Kubat, 1996), which retrieves previously learned concept descriptions when contexts reoccur,
MetaL(B) often performed better in terms of slope and asymptote, even though it relearned new
concept descriptions rather than retrieving and modifying old ones.

Lane and Brodley (1998) investigated methods for concept drift in one-class learning problems
(i.e., anomaly detection). For an intrusion detection domain, they used instance-based learning in
which instances were fixed-length sequences of UNIX commands. As a user enters new commands,
the system calculates a measure of similarity between the current instance and past instances. They
investigated two methods for coping with concept drift. One fits a line to the sequence of similarity
measures in a window and uses its direction and magnitude to adjust the decision threshold. A
second uses the slope of the line to determine if there is a stable or changing trend and inserts new
examples into a user profile only if the trend is changing. Both methods proved useful in striking the
delicate balance between learning a user’s changing behavior and detecting anomalous behavior.

CD3 (Black and Hickey, 1999) uses ID3 (Quinlan, 1986) to learn online from batches of training
data. The method maintains a collection of examples from the stream, all annotated with a time
stamp of current. It annotates examples in a new training batch with a stamp of new. For static
concepts, the time stamp is an irrelevant attribute, but if drift occurs, then the time stamp will
appear in induced trees. Moreover, one can use its position in the tree as an indicator of how much
drift may have occurred—the more relevant the time stamp, the higher it will appear in the tree, and
the more drift that has occurred. After pruning, the method produces a set of valid and invalid rules
by enumerating paths in the tree with new and current time stamps, respectively. Rule conditions
containing a time stamp are then removed.

The performance element uses the valid rules for prediction, and the method uses the invalid
rules to remove outdated examples from its store. However, depending on parameter settings, if
both an invalid and a valid rule cover a stored example, then the method removes the example.
Results from an empirical study involving synthetic data and varying amounts of class noise suggest
that CD3 copes with revolutionary and evolutionary concept drift better than—in terms of slope and
asymptote—ID3 learning from only the most recent batch and better than ID3 learning from all
previously encountered batches.

CD4 (Hickey and Black, 2000) extends CD3 by letting time stamps for a batch be numeric,
although the method no longer uses invalid rules to remove stored examples. CD5 (Hickey and
Black, 2000) extends CD4 by assigning numeric time stamps to individual examples, rather than to
batches. In an empirical study with synthetic data and evolutionary and revolutionary changes in
target concepts, all three systems performed comparably.

In subsequent work, Black and Hickey (2002) applied CD3 to twenty-seven months of customer-
call data and were able to detect concept drift based on the number and height of time stamps in the

2758

DYNAMIC WEIGHTED MAJORITY

induced decision trees. Indeed, during one period, the time stamp was the most relevant attribute
and at the root of the decision tree.

Syed et al. (1999) present an online algorithm for training support vector machines (Boser et al.,
1992). The method adds previously obtained support vectors to the new training set and then builds
another machine. When compared to a batch algorithm, the online method performed comparable
on several UCI data sets (Asuncion and Newman, 2007). The authors pointed to drops and recoveries
in predictive accuracy during the incremental runs as evidence that SVMs can handle drift.

The presence of drops and recoveries are necessary for detecting concept drift, but they are not
sufficient. The drops in predictive accuracy could have been due to sampling, and in general, it
may be difficult to determine if a learner is coping with concept drift or is simply acquiring more
information about a static concept. This type of concept drift has been called virtual concept drift,
as opposed to real concept drift (Klinkenberg and Joachims, 2000). Indeed, the data sets included
in the evaluation (e.g., monks, sonar, and mushroom) are not typically regarded as having concepts
that drift.

Kelly et al. (1999) define population drift as being “related to” concept drift, noting that the
term concept drift has no single meaning. They define population drift as change in the problem’s
probability distribution. Such changes can occur in the prior, conditional, and posterior distribu-
tions, and using artificial data, they analyze the impact on performance of changes to each of these
distributions.

The term concept drift has been applied to different phenomena, such as drops and recoveries
in performance during online learning (Syed et al., 1999). However, in concrete terms, the term has
historically meant that the class labels of instances change over time, established in the first paper on
concept drift (Schlimmer and Granger, 1986). Such change corresponds to change in the posterior
distribution and in the conditional distribution. However, the prior distribution may not change, and
changes in the conditional distribution will not necessarily mean that concept drift has occurred.

Klinkenberg and Joachims (2000) used a support vector machine to size windows for concept
drift. Rather than tuning parameters for an adaptive windowing heuristic (c.f. Widmer and Kubat,
1996), the algorithm sizes the window by minimizing generalization error on new examples. Upon
receiving a new batch of examples, the method generates support vector machines with various sizes
of windows using previously encountered batches of training examples, and selects the window
size that minimizes the ξα-estimate, an approximation to the leave-one-out or jackknife estimator
(Hinkley, 1983). Experimental results on a manually constructed data set derived from 2,608 news
documents suggest that exhaustively searching for a window’s size was better, in terms of slope and
asymptote of predictive accuracy, than a window of fixed size. Results from subsequent experiments
indicate that selecting examples in batches or using an adaptive window yielded higher precision and
recall than did weighting examples based on their age or their fit to the current model (Klinkenberg,
2004).

The AQ-PM systems (Maloof andMichalski, 2000, 2004;Maloof, 2003), like the FLORA systems
(Widmer and Kubat, 1996), induce rules and use partial instance memory (PM) to maintain a subset
of the examples from the input stream. However, rather than selecting a sequence, the AQ-PM
systems select those examples that lie on the boundaries of concept descriptions, thus they store
examples that are important but that do not necessarily reoccur in the stream. AQ-PM (Maloof and
Michalski, 2000) uses the AQ algorithm (Michalski, 1969), a batch learning algorithm, to form
rules by simply reapplying the algorithm when new examples arrive. It stores examples for a fixed
period of time. AQ11-PM and GEM-PM are incremental versions that use the AQ11 (Michalski

2759

KOLTER AND MALOOF

and Larson, 1983) and GEM (Reinke and Michalski, 1988) algorithms, respectively, to form rules.
Finally, AQ11-PM+WAH is an extension of AQ11-PM that uses Widmer and Kubat’s (1996) window
adjustment heuristic (WAH) to dynamically size the window of time over which examples are kept.
The STAGGER concepts were the centerpiece in the evaluation of all of these systems.

The Concept-adapting Very Fast Decision Tree (CVFDT) learner (Hulten et al., 2001) extends
VFDT (Domingos and Hulten, 2000) by adding mechanisms for handling concept drift. VFDT grows
a decision tree only from its leaf nodes, so there is no restructuring of the tree (cf. sc iti, Utgoff et al.,
1997). The method maintains a decision tree and maintains counts of attribute values for classes in
each leaf node. New examples propagate through the tree to a leaf node with the algorithm updating
the counts. If the propagated examples and the examples used to form a leaf node are not of the
same class, then the method uses a splitting criterion and the Hoeffding (1963) bound to determine
if the node should be split.

CVFDT extends VFDT by maintaining at each node in the tree a list of alternate subtrees and
attribute-value counts for each class. Like VFDT, new examples propagate through the tree to a leaf
node, but they also propagate through all of the alternate subtrees along this path. Periodically, the
method forgets examples, and if an alternate subtree is more accurate than the current one, it swaps
them. Empirical results on a synthetic data set consisting of a rotating hyperplane, five million
training examples, and drift every 50,000 time steps, suggest that CVFDT produced smaller, more
accurate trees than did VFDT.

2.2 Ensemble Methods

Ensemble methods maintain a collection of learners and combine their decisions to make an overall
decision. Generally, an algorithm applied multiple times to the same data set will produce identical
classifiers that make the same decisions, so for ensemble methods to work, there must be some
mechanism to produce different classifiers. This is accomplished by either altering the training data
or the learners in the collection.

Bagging (Breiman, 1996) is one of the simplest ensemble methods. It entails producing a set
of bootstrapped data sets from the original training data. This involves sampling with replacement
from the training data and producing multiple data sets of the same size. Once formed, a learning
method produces a classifier from each bootstrapped data set. During performance, the method
predicts based on a majority vote of the predictions of the individual classifiers.

Weighted majority (Littlestone and Warmuth, 1994), instead of using altered training sets, relies
on a collection of different classifiers, often referred to as “experts.” Each expert begins with a
weight of one, which is decreased (e.g., halved) whenever an expert predicts incorrectly. To make
an overall prediction, the method takes a weighted vote of the expert predictions, and predicts the
class with the most weight. Winnow is a similar algorithm, but also increases the weights of experts
that predict correctly (Littlestone, 1991).

Boosting (Freund and Schapire, 1996) is a method that generates a series of weighted classi-
fiers. It iteratively weights training examples based on how well a classifier predicts them, and in
turn, weighting the classifier based on the weights of the examples used to construct it. During
performance, each classifier in the ensemble returns a prediction for an instance, and then the global
method predicts based on a weighted-majority vote. This method constructs classifiers specialized
at predicting examples in specific parts of the representation space. Arcing (Breiman, 1998) is
similar to boosting, but uses a different weighting scheme and predicts with a majority vote.

2760

DYNAMIC WEIGHTED MAJORITY

Stacked generalization or stacking (Wolpert, 1992), like weighted majority, is an ensemble
method for combining the decisions of different types of learners. However, stacking uses the
predictions of the base learners to form training examples for a meta-learner. Stacking begins by
partitioning the original examples into three sets: training, validation, and testing. The method
trains the base learners using the training data and then applies the resulting classifiers to the ex-
amples in the validation set. Using the predictions of the examples as features and their original
class labels, it forms a new training set, which it uses to train the meta-learner. After training the
meta-learner with these examples, performance entails presenting an instance to the base classifiers,
using their predictions as input to the meta-classifier. The method’s overall prediction is that of the
meta-classifier.

There have been numerous studies of ensemble methods (e.g., Hansen and Salamon, 1990;
Woods et al., 1997; Quinlan, 1996; Zheng, 1998; Opitz and Maclin, 1999; Bauer and Kohavi, 1999;
Maclin and Opitz, 1997; Dietterich, 2000; Zhou et al., 2002; Chawla et al., 2004), and we cannot
survey them all. Generally, this research suggests that ensemble methods outperform single classi-
fiers on many standard data sets (Opitz and Maclin, 1999). Boosting is generally better than bagging
(Bauer and Kohavi, 1999; Opitz and Maclin, 1999; Dietterich, 2000), although bagging seems more
robust to noise than is boosting (Dietterich, 2000). Analysis suggests that ensemble methods work
by reducing bias, variance, or both (Breiman, 1998; Bauer and Kohavi, 1999; Zhou et al., 2002).

Popular ensemble methods, such as bagging and boosting, are off-line algorithms, but re-
searchers have developed online ensemble methods. Winnow (Littlestone, 1988) and weighted
majority (Littlestone and Warmuth, 1994) fall into this category, as do Blum’s (1997) versions of
these algorithms.

Online AdaBoost (Fan et al., 1999), when a new batch of examples arrives, weights the examples
and then re-weights the ensemble’s classifiers based on their performance on the new examples. The
method then builds a new classifier from the new, weighted examples. For efficiency, the method
retains only the k most recent classifiers.

Online arcing (Fern and Givan, 2003) uses incremental base learners and incrementally updates
their voting weights. When a new training instance arrives, for each classifier in the ensemble, the
method first increases the classifier’s voting weight by one if the classifier correctly classifies the
new instance. The method then computes an instance weight for the classifier based on the number
of other classifiers in the ensemble that misclassify the instance. Finally, an incremental learning
function uses the instance and the weight to refine the classifier. The method may use a weighted or
unweighted voting scheme to classify an instance.

2.3 Ensemble Methods for Concept Drift

Ensemble methods for concept drift share many similarities with the online and off-line methods
discussed in the previous section. However, methods for concept drift must take into account the
temporal nature of the data stream, for a set of examples may have certain class labels at time t and
others at time t ′.

Clearly, ensemble methods for concept drift must process a stream of data. Some researchers
have used repeated applications of off-line learning algorithms to process batches of training exam-
ples (Maloof and Michalski, 2000; Street and Kim, 2001; Wang et al., 2003; Scholz and Klinken-
berg, 2005). Others have used incremental algorithms (Blum, 1997; Kolter and Maloof, 2003;
Maloof and Michalski, 2004; Kolter and Maloof, 2005).

2761

KOLTER AND MALOOF

Any method for coping with changing concepts must have mechanisms for refining or removing
knowledge of past target concepts. To achieve these effects, one ensemble method for concept drift
builds two ensembles and selects the best performing one for subsequent processing (Scholz and
Klinkenberg, 2006). Other methods replace poorly performing members of the ensemble (Street
and Kim, 2001; Fan, 2004), decrease the effect these members have on the overall prediction (Blum,
1997; Scholz and Klinkenberg, 2006), or both (Kolter and Maloof, 2003; Wang et al., 2003; Kolter
and Maloof, 2005).

Blum’s (1997) implementation of the weighted majority algorithm (Littlestone and Warmuth,
1994) uses as experts pairs of features coupled with a history of the most recent class labels from
the training set appearing with those features. When a new instance arrives, the expert for a given
pair of features predicts based on a majority vote of the labels of past observations. The global
algorithm predicts based on a weighted-majority vote of the expert predictions and decreases the
weight of any expert that predicts incorrectly. Each expert then stores the correct prediction in its
history.

Blum (1997) also investigated triples of features as experts and a variant of winnow (Littlestone,
1988) that lets experts abstain if their features are not present in an instance. On a calendar schedul-
ing task, which we describe further in Section 4.3, these methods were able to track a professor’s
preferences for scheduling meetings across semester boundaries.

The Streaming Ensemble Algorithm (SEA) maintains a fixed-size collection of classifiers, each
built from a batch of training examples (Street and Kim, 2001). When a new batch of examples
arrives, SEA uses C4.5 (Quinlan, 1993) to build a decision tree. If there is space, SEA adds the new
classifier to the ensemble. Otherwise, if the new classifier outperforms a classifier in the ensemble,
SEA replaces it with the new one. Performance is measured on the current batch of examples.
Overall, SEA predicts based on a majority vote of the predictions of the classifiers in the ensemble.
An evaluation using a synthetic data set generated from shifting a hyperplane revealed that the
method was able to acquire a series of four changing target concepts with accuracy of about 92%.
We discuss this data set further in Section 4.2.

Herbster and Warmuth (1998) consider a setting in which an online learner is trained over sev-
eral concepts and has access to n experts (which are fixed prediction strategies). They present an
algorithm that performs almost as well as the best expert on each concept individually, paying an
additional penalty of logn on each concept. Bousquet and Warmuth (2002) extend this setting to
one where the best expert always comes from a smaller pool of m" n experts. Here they show
that the learner can pay a logm rather than a logn penalty on each concept, plus a one-time cost of
log

(n
m
)
to identify the best m experts.

The Accuracy-weighted Ensemble (AWE) also maintains a fixed-size collection of classifiers
built from batches of training examples, but this method weights each classifier based on its perfor-
mance on the most recent batch (Wang et al., 2003). If there is space in the ensemble, then AWE adds
the new weighted classifier. Otherwise, it keeps only the top k weighted classifiers. AWE predicts
based on a weighted-majority vote of the predictions of the ensemble’s classifiers. The evaluation
of this method involved a synthetic data set generated from a rotating hyperplane and a data set for
credit card fraud detection. Although the evaluation consisted of many experimental conditions,
such as how the problem’s dimension affects error rate of the ensemble classifier, it did not include
measuring the system’s performance over time and over changing target concepts.

Kolter and Maloof (2005) present AddExp, an algorithm for additive expert ensembles. It is
similar to dynamic weighted majority, but unlike DWM, AddExp submits to formal analysis due

2762

DYNAMIC WEIGHTED MAJORITY

to differences in their weighting schemes. DWM sets the weight of a new expert to one, whereas
AddExp sets a new expert’s weight to the total weight of the ensemble times some parameter γ ∈
(0,1). In addition to empirical results, the authors present worst-case bounds for the algorithm’s
loss and number of mistakes, proving that AddExp performs almost as well as the best-performing
expert. They also describe two pruning methods for limiting the number of experts maintained; one
is useful in practice, the other gives formal guarantees on the number of experts that AddExp will
create.

3. DWM: An Ensemble Method for Concept Drift

Dynamic weighted majority maintains a weighted pool of experts or base learners. It adds and
removes experts based on the global algorithm’s performance. If the global algorithm makes a
mistake, then DWM adds an expert. If an expert makes a mistake, then DWM reduces its weight.
If, in spite of multiple training episodes, an expert performs poorly, as indicated by a sufficiently
low weight, then DWM removes it from the ensemble. This method is general, and in principle, one
could use any online learning algorithm as a base learner. One could also use different types of base
learners, although one would also have to implement control policies to determine what base learner
to add.

The formal algorithm for DWM appears in Figure 1. The algorithm maintains a set of m experts,
E, each with a weight, wi for i = 1, . . . ,m. Input to the algorithm is n training examples, each
consisting of a feature vector and a class label. The parameters also include the number of classes
(c) and β, a multiplicative factor that DWM uses to decrease an expert’s weight when it predicts
incorrectly. A typical value for β is 0.5. The parameter θ is a threshold for removing poorly
performing experts. If an expert’s weight falls below this threshold, then DWM removes it from the
ensemble. Finally, the parameter p determines how often DWM creates and removes experts. We
found this parameter useful and necessary for large or noisy problems, which we discuss further in
Section 4.2. In the following discussion, we assume p= 1.

DWM begins by creating an ensemble containing a single learner with a weight of one (lines 1–3
of Figure 1). Initially, this learner could predict a default class, or it could predict using previous
experience, background knowledge, or both. DWM then takes a single example (or perhaps a set of
examples) from the stream and presents it to the single learner to classify (line 7). If the learner’s
prediction is wrong (line 8), then DWM decreases the learner’s weight by multiplying it by β (line 9).
Since there is one expert in the ensemble, its prediction is DWM’s global prediction (lines 12 and
24). If DWM’s global prediction is incorrect (line 16), then it creates a new learner with a weight of
one (lines 17–19). DWM then trains the experts in the ensemble on the new example (line 23). After
training, DWM outputs its global prediction (line 24).

When there are multiple learners, DWM obtains a classification from each member of the ensem-
ble (lines 6 and 7). If one’s prediction is incorrect, then DWM decreases its weight (lines 8 and 9).
Regardless of the correctness of the prediction, DWM uses each learner’s prediction and its weight
to compute a weighted sum for each class (line 10). The class with the most weight is set as the
global prediction (line 12).

Since DWM always decreases the weights of experts, it normalizes the weights by scaling them
uniformly so that, after the transformation, the maximum weight is one (line 14). This prevents
newly added experts from dominating predictions. DWM also removes poorly performing experts
by removing those with a weight less than the threshold θ (line 15), although it will not remove the

2763

KOLTER AND MALOOF

Dynamic-Weighted-Majority ({!x,y}1n,c,β,θ, p)

{!x,y}1n: training data, feature vector and class label
c ∈ N∗: number of classes, c≥ 2
β: factor for decreasing weights, 0≤ β< 1
θ: threshold for deleting experts
p: period between expert removal, creation, and weight update
{e,w}1m: set of experts and their weights
Λ,λ ∈ {1, . . . ,c}: global and local predictions
!σ ∈ Rc: sum of weighted predictions for each class

1. m← 1
2. em ← Create-New-Expert()
3. wm ← 1
4. for i← 1, . . . ,n // Loop over examples
5. !σ← 0
6. for j← 1, . . . ,m // Loop over experts
7. λ← Classify(e j,!xi)
8. if (λ '= yi and i mod p= 0)
9. w j ← βw j
10. σλ ← σλ+w j
11. end;
12. Λ← argmax jσ j
13. if (i mod p= 0)
14. w← Normalize-Weights(w)
15. {e,w}← Remove-Experts({e,w},θ)
16. if (Λ '= yi)
17. m← m+1
18. em ← Create-New-Expert()
19. wm ← 1
20. end;
21. end;
22. for j← 1, . . . ,m
23. e j ← Train(e j,!xi,yi)
24. output Λ

end;
end.

Figure 1: Algorithm for dynamic weighted majority (DWM), after Kolter and Maloof (2005).

2764

DYNAMIC WEIGHTED MAJORITY

last expert in the ensemble. As mentioned previously, if the global prediction is incorrect (line 16),
DWM adds a new expert to the ensemble with a weight of one (lines 17–19). Finally, after using
the new example to train each learner in the ensemble (lines 22 and 23), DWM outputs the global
prediction, which is the weighted vote of the expert predictions (line 24).

As mentioned previously, the parameter p lets DWM better cope with many or noisy examples.
p defines the period over which DWM will not update learners’ weights (line 8) and will not remove
or create experts (line 13). During this period, however, DWM still trains the learners (lines 22 and
23).

DWM is a general algorithm for coping with concept drift. One can use any online learning
algorithm as the base learner. To date, we have evaluated two such algorithms, naive Bayes and
Incremental Tree Inducer, and we describe these versions in the next two sections.

3.1 DWM-NB

DWM-NB uses an incremental version of naive Bayes as the base learner. For this study, we used the
implementation from WEKA (Witten and Frank, 2005), which stores for nominal attributes a count
for each class and for each attribute value given the class. The count is simply the number of times
each class or attribute value appears in the training set, and so the learning element increments the
appropriate counts when processing a new example. The performance element uses these counts to
compute estimates of the prior probability of each class, P(Ci), and the conditional probability of
each attribute value given the class, P(v j|C j). It then operates under the assumption that attributes
are conditionally independent and uses Bayes’ rule to predict the most probable class:

C = argmax
Ci

P(Ci)∏
j
P(v j|Ci) .

For numeric attributes, it stores the sum of an attribute’s values and the sum of the squared values.
Given a value, v j,

P(v j|Ci) =
1

σi j
√
2π

e−(v j−µi j)2/2σ2i j ,

where µi j is the average of the jth attribute’s values for the ith class, and σi j is their standard
deviation. The performance element computes these values from the stored sums.

3.2 DWM-ITI

DWM-ITI uses as a base learner an incremental algorithm for inducing decision trees, called Incre-
mental Tree Inducer, or ITI (Utgoff et al., 1997). ITI uses as its concept description a decision tree
with only binary tests. (Note that we can represent multi-valued attributes with a binary tree by
treating each value as a binary attribute.) A decision tree is a rooted tree with internal nodes corre-
sponding to attributes. Edges correspond to attribute values. For numeric attributes, there are two
edges corresponding to a cut-point: one edge for values above the cut-point, the other for values less
than or equal to the cut-point. The external nodes of the decision tree correspond to class labels.
To facilitate incremental learning, external nodes also store examples, while the internal nodes of
ITI’s decision trees store frequency counts for symbolic attributes and a list of observed values for
numeric attributes.

2765

KOLTER AND MALOOF

Like standard decision tree algorithms, given an observation, the performance element uses the
observation’s attributes and their values to traverse from the root node to an external node. It predicts
the class label stored in the node.

ITI updates a tree by propagating a new example to a leaf node. During the descent, the al-
gorithm updates the information stored at each node—counts or values—and upon reaching a leaf
node, determines if the tree should be extended by converting the leaf node to a decision node. A
secondary process examines whether the tests at each node are most appropriate, and if not, restruc-
tures the tree accordingly.

As one can imagine, for large problems, storing all examples at leaf nodes and restructuring
decision trees can be costly, especially when maintaining an ensemble of such trees. While we
were judicious when applying DWM-ITI to large problems, as we see in the next section, where we
discuss our experimental study, the learner performed well in spite of these potential costs.

4. Empirical Study and Results

In this section, we present experimental results for DWM-NB and DWM-ITI. We conducted five
evaluations. The first, most extensive evaluation involved the STAGGER concepts (Schlimmer and
Granger, 1986), a standard benchmark for evaluating how learners cope with drifting concepts. In
this evaluation, we compared the performance of DWM-NB and DWM-ITI

1. to best- and worst-case base learners,

2. to our implementation of STAGGER (Schlimmer, 1987),

3. to AQ-PM (Maloof andMichalski, 2000), AQ11-PM (Maloof andMichalski, 2004), and AQ11-
PM+WAH (Maloof, 2003), and

4. to Blum’s (1997) implementation of weighted majority.

To the best of our knowledge, ours are the only results for Blum’s algorithm on the STAGGER
concepts.

In an effort to determine how our method scales to larger problems involving concept drift, our
second evaluation consisted of testing DWM-NB using the SEA concepts (Street and Kim, 2001),
a problem recently proposed in the data mining community. For the third evaluation, we applied
DWM-NB to the CAP data set, a calendar scheduling task (Mitchell et al., 1994). Blum (1997) used
this problem to evaluate weighted majority and winnow. For the fourth, we evaluated DWM-NB on
the task of predicting the price of electricity in New South Wales, Australia, between May 1997 and
December 1999, a problem originally introduced by Harries (1999).

Finally, although it is clear that DWM should have no advantage over a single learner when
acquiring static concepts, for the sake of completeness, we evaluated DWM-NB on twenty-six data
sets from the UCI Repository (Asuncion and Newman, 2007). The intent of this evaluation was to
show that, on static concepts, DWM performs no worse than a single base learner.

4.1 The STAGGER Concepts

The STAGGER concepts (Schlimmer and Granger, 1986) comprise a standard benchmark for eval-
uating a learner’s performance in the presence of concept drift. Each example consists of three at-
tribute values: color ∈ {green, blue, red }, shape ∈ {triangle, circle, rectangle}, and size ∈ {small,

2766

DYNAMIC WEIGHTED MAJORITY

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

S M L
T
C
R

C
T

R

C
R

T

Size

Red

Green

Blue

ShapeColor

Target Target Target
concept concept concept

t = 1 . . .40. t = 41 . . .80. t = 81 . . .120.

Figure 2: Visualization of the STAGGER Concepts (Maloof and Michalski, 2000). c© 2000 Kluwer
Academic Publishers. Used with permission.

medium, large}. The presentation of training examples lasts for 120 time steps, and at each time
step, the learner receives one example. For the first 40 time steps, the target concept is color =
red ∧ size = small. During the next 40 time steps, the target concept is color = green ∨ shape =
circle. Finally, during the last 40 time steps, the target concept is size = medium ∨ size = large. A
visualization of these concepts appears in Figure 2.

To evaluate the learner, at each time step, one randomly generates 100 examples of the current
target concept, presents these to the performance element, and computes the percent correctly pre-
dicted. In our experiments, we repeated this procedure 50 times and averaged the accuracies over
these runs. We also computed 95% confidence intervals.

We set the weighted-majority learners—DWM-NB, DWM-ITI, and Blum’s (1997) with pairs of
features as experts—to halve an expert’s weight when it made a mistake (i.e., β= 0.5). For Blum’s
weighted majority, each expert maintained a history of only its last prediction (i.e., k = 1), under
the assumption that this setting would provide the most reactivity to concept drift. For DWM, we set
it to update its weights and create and remove experts every time step (i.e., p = 1). The algorithm
removed experts when their weights fell below 0.01 (i.e., θ = 0.01). Pilot studies indicated that
these were the near-optimal settings for p and k; varying β affected performance little; the selected
value for θ did not affect accuracy, but did reduce considerably the number of experts.

For the sake of comparison, in addition to these algorithms, we also evaluated naive Bayes, ITI,
naive Bayes with perfect forgetting, and ITI with perfect forgetting. The “standard” or “traditional”
implementations of naive Bayes and ITI provided a worst-case evaluation, since these systems have
not been designed to cope with concept drift and learn from all examples in the stream regardless
of changes to the target concept. The implementations with perfect forgetting, which is the same as
training the methods on each target concept individually, provided a best-case evaluation, since the
systems were never burdened with examples or concept descriptions from previous target concepts.

The left graph of Figure 3 shows the results for DWM-NB on the STAGGER concepts. As ex-
pected, naive Bayes with perfect forgetting performed the best on all three concepts, while naive
Bayes without forgetting performed the worst. DWM-NB performed almost as well as naive Bayes
with perfect forgetting, which converged more quickly to the target concept. Nonetheless, by time

2767

KOLTER AND MALOOF

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

DWM-NB
NB w/ Perfect Forgetting

Naive Bayes
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Time Step (t)
 20 40 60 80 100 120 0

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

ITI

DWM−ITI
ITI w/ Perfect Forgetting

Figure 3: Predictive accuracy with 95% confidence intervals for DWM on the STAGGER concepts
(Kolter and Maloof, 2003). Left: DWM-NB. Right: DWM-ITI. c© 2003 IEEE Press. Used
with permission.

 7

 6

 5

 4

 3

 2

 1
 20 40 60 80 100 120 0

DWM−ITI
DWM−NB

Ex
pe

rt
Co

un
t

Time Step (t)

Figure 4: Number of experts maintained with 95% confidence intervals for DWM-NB and DWM-ITI
on the STAGGER concepts (Kolter and Maloof, 2003). c© 2003 IEEE Press. Used with
permission.

step 40 for all three target concepts, DWM-NB performed almost as well as naive Bayes with perfect
forgetting.

DWM-ITI performed similarly, as shown in the right graph of Figure 3, achieving accuracies
nearly as high as ITI with perfect forgetting. DWM-ITI converged more quickly than did DWM-
NB to the second and third target concepts, but if we compare the plots for naive Bayes and ITI
with perfect forgetting, we see that ITI converged more quickly to these target concepts than did
naive Bayes. Thus, the faster convergence is due to differences in the base learners rather than to
something inherent to DWM.

In Figure 4, we present the average number of experts each system maintained over the fifty
runs. On average, DWM-ITI maintained fewer experts than did DWM-NB, and we attribute this to the
fact that ITI performed better on the individual concepts than did naive Bayes. Since naive Bayes

2768

DYNAMIC WEIGHTED MAJORITY

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

DWM-ITI
AQ-PM

AQ11
 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

DWM-ITI
AQ11-PM

AQ11-PM+WAH

Figure 5: Predictive accuracy with 95% confidence intervals on the STAGGER concepts. Left:
DWM-ITI, AQ-PM, and AQ11. Right: DWM-ITI, AQ11-PM, and AQ11-PM+WAH.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

DWM-ITI
DWM-NB

STAGGER
 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

DWM-ITI
DWM-NB

Blum’s Weighted Majority

Figure 6: Predictive accuracy with 95% confidence intervals on the STAGGER concepts. Left:
DWM-ITI, DWM-NB, and STAGGER. Right: DWM-ITI, DWM-NB, and Blum’s weighted
majority (Kolter and Maloof, 2003). c© 2003 IEEE Press. Used with permission.

made more mistakes than did ITI, DWM-NB created more experts than did DWM-ITI. We can also
see in the figure that the rates of removing experts were roughly the same for both learners.

The left graph of Figure 5 compares the performance of DWM-ITI to that of AQ-PM (Maloof
and Michalski, 2000) and AQ11 (Michalski and Larson, 1983). DWM-ITI and AQ-PM performed
similarly on the first target concept, but DWM-ITI significantly outperformed AQ-PM on the second
and third concepts, again, in terms of asymptote and slope. AQ11, although not designed to cope
with concept drift, outperformed DWM-ITI in terms of asymptote on the first concept and in terms
of slope on the third, but on the second concept, performed significantly worse than did DWM-ITI.

The right graph of Figure 5 compares the performance of DWM-ITI to that of AQ11-PM (Maloof
and Michalski, 2004) and AQ11-PM+WAH (Maloof, 2003). DWM-ITI did not perform as well as
these other learners on the first target concept, performed comparably on the second, and converged
more quickly on the third.

2769

KOLTER AND MALOOF

The left graph of Figure 6 compares the performance of our learners to that of our implemen-
tation of STAGGER (Schlimmer, 1987). Comparing to both DWM learners, STAGGER’s performance
was only slightly better on the first target concept, notably worse on the second, and comparable on
the third.

Finally, the right diagram of Figure 6 shows the results from the experiment involving Blum’s
(1997) implementation of weighted majority, the implementation that uses pairs of features as ex-
perts. This learner outperformed DWM-NB and DWM-ITI on the first target concept, performed
slightly worse on the second, and performed considerably worse on the third.

With respect to complexity of the experts themselves, the STAGGER concepts consist of three
attributes, each taking one of three possible values. Therefore, this implementation of weighted ma-
jority maintained 27 experts throughout the presentation of examples, as compared to the maximum
of six that DWM-NB maintained. Granted, pairs of features and their recent predictions are much
simpler than the decision trees that ITI produced, but naive Bayes was quite efficient, maintaining
twenty-one integers for each expert. There were occasions when Blum’s weighted majority used
less memory than did DWM-NB, but we anticipate that using more sophisticated classifiers, such as
naive Bayes, instead of all combinations of pairs of features, will lead to scalable algorithms.

We focus our analysis on DWM-ITI, since it performed better than did DWM-NB on this problem.
Researchers have built several systems for coping with concept drift and have evaluated many of
them on the STAGGER concepts. FLORA2 (Widmer and Kubat, 1996) is a prime example, and on
the first target concept, DWM-ITI did not perform as well as did FLORA2. However, on the second
and third target concepts, DWM-ITI performed notably better than did FLORA2, not only in terms of
asymptote, but also in terms of slope.

DWM-ITI outperformed AQ-PM (Maloof and Michalski, 2000), which had difficulty acquiring
the second and third concepts (see Figure 5). AQ-PM maintains examples over a fixed window of
time and, at each time step, relearns concepts from these and new examples. In this experiment,
when the concept changed from the first to the second, the examples of the first concept remaining
in this window prevented AQ-PM from adjusting quickly to the second. Decreasing the size of this
window improved accuracy on the second concept, but negatively affected performance on the third.

Compared to DWM-ITI, AQ11 performed poorly on the second concept, but performed excep-
tionally well on the third concept. Our analysis suggests that its poor performance on the second
concept was because of AQ11’s expressive language for representing concepts. Notice that all of
its rules achieved 100% on the first concept (see Figure 5, left). However, AQ11 produced twelve
different rules for the first concept over the fifty runs. Some rules were similar, but others were
quite different. AQ11 modifies its rules using only new examples, and in some cases, was able to
transform rules for the first concept into rules with high accuracy on the second. Indeed, when we
trained AQ11 only on examples of the second concept, it achieved 97%. However, in some trials,
AQ11 was unable to make the required transformation and failed to learn adequately the second
concept. We contend that if AQ11 produced simpler rules, provided that they were the right ones,
it would have performed much better on the second concept. Indeed, it is well known that simpler
models often perform better than do more complex ones.

AQ11-PM (Maloof and Michalski, 2004) and AQ11-PM+WAH (Maloof, 2003) performed com-
parably to DWM-ITI (see Figure 5), although DWM-ITI did appear to outperform the AQ learners on
the third concept, especially in the later time steps. Although tangential, it is interesting to contrast
the performances of AQ11 and AQ11-PM. The only difference between these two learners is that
AQ11-PM maintains a fixed window of thirty examples that have appeared on the boundaries of

2770

DYNAMIC WEIGHTED MAJORITY

concept descriptions. When new examples arrive, AQ11-PM learns incrementally from these new
examples and those present in the window. Although the presence of these examples may have
decreased AQ11’s (i.e., AQ11-PM’s) performance on the third concept, their presence notably im-
proved its performance on the second concept. If our hypothesis is correct—that AQ11 would have
performed better had it produced simpler models—the examples held in the window may have con-
strained AQ11 such that it produced simpler models. Put another way, the examples in the window
reduced the instability of the learner. We found this discovery intriguing and plan to investigate it
in future work.

STAGGER (Schlimmer and Granger, 1986) performed comparably to DWM-ITI on the first and
third target concepts, but did not perform as well as DWM-ITI on the second target concept. (See
Figure 6, left.) Generally, acquiring the second concept after learning the first is the hardest task, as
the second concept is almost a reversal of the first; the two concepts share only one positive example.
Acquiring the third concept after acquiring the second is easier because the two concepts share a
greater number of positive examples. Performing well on the second concept therefore requires
quickly disposing of knowledge and perhaps examples of the first target concept. A learningmethod,
such as STAGGER, that only refines concept descriptions will have more difficulty responding to
concept drift, as compared to an ensemble method, such as DWM, that both refines existing concept
descriptions and creates new ones.

Comparing DWM-ITI to Blum’s weighted majority, DWM-ITI outperformed it on the STAGGER
concepts. However, our analysis suggests that the difference in performance is due to the experts,
rather than to the global algorithms. Recall that Blum’s weighted majority uses as experts pairs of
features with a brief history of past predictions. For the STAGGER concepts, pairs of features are
useful for acquiring the first target concept (see Figure 2), which is conjunctive. Indeed, pairs of
features are two-term conjunctions. However, the second and third concepts are disjunctive, and
these are difficult to represent using only weighted pairs of features. As a result, on the STAGGER
concepts, Blum’s weighted majority did not perform as well as DWM.

Overall, we concluded that DWM-ITI outperformed these other learners in terms of accuracy,
both in slope and asymptote. In reaching this conclusion, we gave little weight to performance on
the first concept, since most learners can acquire it easily and doing so requires no mechanisms
for coping with drift. On the second and third concepts, with the exception of AQ11, DWM-ITI
performed as well or better than did the other learners. And while AQ11 outperformed DWM-ITI in
terms of slope on the third concept, this does not mitigate AQ11’s poor performance on the second.

We attribute the performance of DWM-ITI to the training of multiple experts on different se-
quences of examples. (Weighting experts also contributed, and we will discuss this topic in detail
shortly.) Assume a learner incrementally modifies its concept descriptions as new examples arrive.
When the target concept changes, if the new one is disjoint, then the best policy to learn new de-
scriptions, rather than modifying existing ones. This makes intuitive sense, since the learner does
not have to first unlearn the old concept, and results from this and other empirical studies support
this assertion (Maloof and Michalski, 2000, 2004). Unfortunately, target concepts are not always
disjoint, it is difficult to determine precisely when concepts change, and it is challenging to identify
which concept descriptions (or parts of concept descriptions) apply to new target concepts. DWM ad-
dresses these problems by incrementally updating existing descriptions and, in parallel, by learning
new concept descriptions.

2771

KOLTER AND MALOOF

 70

 75

 80

 85

 90

 95

 100

 0 12500 25000 37500 50000

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

Naive Bayes
NB w/ Perfect Forgetting

DWM-NB

Time Step (t)
 50000 37500 25000 12500 0

 0

 10

 20

 30

 40

 50

Ex
pe

rt
Co

un
t

DWM−NB, 10% Class Noise
DWM−NB, No Noise

Figure 7: Performance with 95% confidence intervals of DWM-NB on the SEA concepts with 10%
class noise (Kolter and Maloof, 2003). Left: Predictive accuracy. Right: Number of
experts maintained. c© 2003 IEEE Press. Used with permission.

4.2 Performance on a Larger Data Set with Concept Drift

To determine how well DWM-NB performs on larger problems involving concept drift, we evaluated
it using a synthetic problem recently proposed in the data mining community (Street and Kim,
2001). This problem, which we call the “SEA concepts”, consists of three attributes, xi ∈ R such
that 0.0 ≤ xi ≤ 10.0. The target concept is x1 + x2 ≤ b, where b ∈ {7,8,9,9.5}. Thus, x3 is an
irrelevant attribute.

The presentation of training examples lasts for 50,000 time steps. For the first fourth (i.e.,
12,500 time steps), the target concept is with b = 8. For the second, b = 9; the third, b = 7; and
the fourth, b= 9.5. For each of these four periods, we randomly generated a training set consisting
of 12,500 examples. In one experimental condition, we added 10% class noise; in another, we did
not, and this latter condition served as our control. We also randomly generated 2,500 examples
for testing. At each time step, we presented each method with one example, tested the resulting
concept descriptions using the examples in the test set, and computed the percent correct. We
repeated this procedure ten times, averaging accuracy over these runs. We also computed 95%
confidence intervals.

On this problem, we evaluated DWM-NB, naive Bayes, and naive Bayes with perfect forgetting.
We set DWM-NB to halve the expert weights (i.e., β= 0.5) and to update these weights and to create
and remove experts every fifty time steps (i.e., p= 50). We set the algorithm to remove experts with
weights less than 0.01 (i.e., θ= 0.01).

In the left graph of Figure 7, we see the predictive accuracies for DWM-NB, naive Bayes, and
naive Bayes with perfect forgetting on the SEA concepts with 10% class noise. As with the STAGGER
concepts, naive Bayes performed the worst, since it had no direct method of removing outdated
concept descriptions. Naive Bayes with perfect forgetting performed the best and represents the
best possible performance for this implementation on this problem. Crucially, DWM-NB achieved
accuracies nearly equal to those achieved by naive Bayes with perfect forgetting.

Finally, the right graph of Figure 7 shows the number of experts that DWM-NBmaintained during
the runs with and without class noise. Recall that DWM creates an expert when it misclassifies an

2772

DYNAMIC WEIGHTED MAJORITY

 75

 80

 85

 90

 95

 100

 0 12500 25000 37500 50000
Pr

ed
ic

tiv
e

A
cc

ur
ac

y
(%

)

Time Step (t)

DWM-NB
DWM-NB, m = 5

DWM-NB, m = 10

Figure 8: Predictive accuracy with 95% confidence intervals for DWM-NB on the SEA concepts with
10% class noise. The number of experts was capped at five and at ten and compared to
DWM-NB with no limit on the number of experts created.

example. In the noisy condition, since 10% of the examples had been relabeled, DWM-NB made
more mistakes and therefore created more experts than it did in the condition without noise.

As mentioned previously, DWM has the potential for creating a large number of experts, espe-
cially in noisy domains, since it creates a new expert every time the global prediction is incorrect.
(The parameter p can help mitigate this effect.) A large number of experts obviously impacts mem-
ory utilization, and, depending on the complexity of the base learners, could also affect learning and
performance time, since DWM trains and queries each expert in the ensemble when a new example
arrives. An obvious scheme when resources are constrained is to limit the number of experts that
DWM maintains.

To investigate this strategy’s effect on DWM’s performance, we produced a version of the algo-
rithm that always keeps the k best performing experts. That is, after reaching the point where there
are k experts in the ensemble, when DWM adds a new expert, it removes the expert with the lowest
weight. In this version of DWM, we set the threshold for removing experts to zero, which guaranteed
that experts were removed only if they were the weakest member of the ensemble of k experts.

We ran this modified version on the SEA concepts, capping the number of experts at five and at
ten. We present these results in Figure 8. As one can see, for this problem, restricting the number
of experts did not appreciably impact performance. Indeed, DWM-NB with five experts performed
almost as well as the original algorithm that placed no limit on the number of experts created.

Comparing our results for the SEA concepts to those reported by Street and Kim (2001), DWM-
NB outperformed SEA on all four target concepts. On the first concept, performance was similar
in terms of slope, but not in terms of asymptote, and on subsequent concepts, DWM-NB converged
more quickly to the target concepts and did so with higher accuracy. For example, on concepts 2–4,
just prior to the point at which concepts changed, SEA achieved accuracies in the 90–94% range,
while DWM-NB’s were in the 96–98% range.

We suspect this is most likely due to SEA’s unweighted voting procedure and its method of
creating and removing new classifiers. Recall that the method trains a new classifier on a fixed
number of examples. If the new classifier improves the global performance of the ensemble, then it

2773

KOLTER AND MALOOF

is added, provided the ensemble does not contain a maximum number of classifiers; otherwise, SEA
replaces a poorly performing classifier in the ensemble with the new classifier.

However, if every classifier in the ensemble has been trained on a given target concept, and the
concept changes to one that is disjoint, then SEA must replace at least half of the classifiers in the
ensemble before accuracy on the new target concept will surpass that on the old. For instance, if the
ensemble consists of 20 classifiers, and each learns from a fixed set of 500 examples, then it would
take at least 5,000 additional training examples before the ensemble contained a majority number
of classifiers trained on the new concept.

In contrast, DWM under similar circumstances requires only 1,500 examples. Assume p= 500,
the ensemble consists of 20 fully trained classifiers, all with a weight of one, and the new concept
is disjoint from the previous one. When an example of this new concept arrives, all 20 classifiers
will predict incorrectly, DWM will reduce their weights to 0.5—since the global prediction is also
incorrect—and it will create a new classifier with a weight of one. It will then process the next 499
examples.

Assume another example arrives. The original 20 experts will again misclassify the example,
and the new expert will predict correctly. Since the weighted prediction of the twenty will be greater
than that of the one, the global prediction will be incorrect, the algorithm will reduce the weights
of the twenty to 0.25, and it will again create a new expert with a weight of one. DWM will again
process 499 examples.

Assume a similar sequence of events occurs: another example arrives, the original twenty mis-
classify it, and the two new ones predict correctly. The weighted-majority vote of the original twenty
will still be greater than that of the new experts (i.e., 20(0.25) > 2(1)), so DWM will decrease the
weight of the original twenty to 0.125, create a new expert, and process the next 499 examples.
However, at this point, the three new classifiers trained on the target concept will be able to overrule
the predictions of the original twenty, since 3(1) > 20(0.125). Crucially, DWM will reach this state
after processing only 1,500 examples.

Granted, this analysis of SEA and DWM does not take into account the convergence of the base
learners, and as such, it is a best-case analysis. The actual number of examples required may be
greater for both to converge to a new target concept, but the relative proportion of examples should
be similar. This analysis also holds if we assume that DWM replaces experts, rather than creating
new ones. Generally, ensemble methods with weighting mechanisms, like those present in DWM,
will converge more quickly to target concepts (i.e., require fewer examples) than will methods that
replace unweighted learners in the ensemble.

Regarding the number of experts that DWM maintained, we used a simple heuristic that added a
new expert whenever the global prediction was incorrect, which intuitively, should be problematic
for noisy domains. However, on the SEA concepts, while DWM-NB maintained as many as 40
experts at, say, time step 37,500, it maintained only 22 experts on average over the 10 runs, which
is similar to the 20–25 that SEA reportedly stored (Street and Kim, 2001).

If the number of experts were to reach impractical levels, then DWM could simply stop creating
experts after obtaining acceptable accuracy; training would continue. Plus, we could easily dis-
tribute the training of experts to processors of a network or of a course-grained parallel machine.
And as the results pictured in Figure 8 demonstrate, we can limit the number of experts that DWM
maintains with potentially little effect on accuracy.

One could argue that better performance of DWM-NB is due to differences between the base
learners. SEA was an ensemble of C4.5 classifiers (Quinlan, 1993), while DWM-NB, of course, used

2774

DYNAMIC WEIGHTED MAJORITY

naive Bayes as the base learner. We refuted this hypothesis by running both base learners on each
of the four target concepts. Both achieved comparable accuracies on each concept. For example, on
the first target concept, C4.5 achieved 99% accuracy and naive Bayes achieved 98%. Since these
learners performed similarly, we concluded that our positive results on this problem were due not to
the superiority of the base learner, but to the mechanisms that create, weight, and remove experts.

We did not evaluate DWM-ITI on the SEA concepts, since ITI maintains all training examples
and all observed values for continuous attributes, and this would have led to impractical memory
requirements. However, this does not exclude the possibility of using DWM on large data sets with a
decision-tree learner as the base algorithm. For instance, we could use ITI, but implement schemes
to index stored training examples, which would reduce memory requirements. We could also use
a decision-tree learner that does not store examples, such as ID4 (Schlimmer and Fisher, 1986) or
VFDT (Domingos and Hulten, 2000).

4.3 Calendar Scheduling Domain

The Calendar Apprentice (CAP) predicts user preferences for scheduling meetings in an academic
institution (Mitchell et al., 1994). The task is to predict a user’s preference for a meeting’s location,
duration, starting time, and day of the week. The data set consists of 34 features—such as the
type of meeting, the purpose of the meeting, the type of attendees, and whether the meeting occurs
during lunchtime—with intersecting subsets of these features for each prediction task. There are 12
features for location, 11 for duration, 15 for start time, and 16 for day of week. Although data are
available for two users, we used the 1,685 examples of the preferences for User 1 (Tom Mitchell).

For this experiment, we evaluated naive Bayes and DWM-NB. However, unlike previous designs,
in which we tested the resulting classifiers using a test set, in this design, we measured performance
on the next example (i.e., the next meeting to be scheduled). For this application, when another
user proposes a meeting, the Calendar Apprentice predicts, say, the meeting’s location, and the user
either accepts or rejects the recommendation. The learner then uses this feedback to update its
model of the user’s preferences.

Table 1 shows the average performance of naive Bayes and DWM-NB for the calendar schedul-
ing task. With the exception of predicting the preferred day of week for meetings, DWM-NB outper-
formed naive Bayes. Over the four prediction tasks, DWM-NB outperformed naive Bayes. As one
can see, increasing the parameter p, which governs how often DWM updates its experts, generally
decreased DWM’s performance. Figure 9 shows accuracy versus the number of examples for the two
learners on the four prediction tasks. According to Blum (1997), the sharp decreases in accuracy
roughly correspond to the boundaries of semesters.

On this problem, Blum (1997) reported that, over the four prediction tasks, the CAP system
averaged 53% and weighted majority with pairs of features averaged 57%. (Other algorithms in this
study, such as winnow, performed even better.) DWM-NB averaged about 55%, which was better
than the original CAP system, which used a decision tree to predict, but it was not better than Blum’s
weighted majority.

However, our analysis of this data set suggests that, again, these differences in performance were
due to the base learners rather than to the global algorithms. Because of their complexity, we were
not able to analyze the CAP concepts in the same manner that we analyzed the STAGGER concepts.
We were nonetheless able to determine that pairs (and triples) of features were better suited to the
prediction tasks than were all of the features. It is well known that naive Bayes can be sensitive to

2775

KOLTER AND MALOOF

DWM-NB
Prediction Task Naive Bayes p= 1 p= 10 p= 50
Location 62.14 65.69 65.16 62.43
Duration 62.37 64.44 64.62 63.03
Start Time 32.40 38.10 37.39 34.96
Day of Week 51.22 51.16 49.13 51.34
Average 52.03 54.85 54.07 52.84

Table 1: Percent correct of naive Bayes and DWM-NB on the CAP data set, using 1,685 examples
for User 1. The variance of 1,685 Bernoulli trials is 0.0144%.

Location Duration

 30

 40

 50

 60

 70

 80

 90

 100

 0 300 600 900 1200 1500 1800

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

DWM-NB, p = 1
Naive Bayes

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 300 600 900 1200 1500 1800

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

DWM-NB, p = 10
Naive Bayes

Day of Week Start Time

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200 1500 1800

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

DWM-NB, p = 1
Naive Bayes

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200 1500 1800

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

DWM-NB, p = 50
Naive Bayes

Figure 9: Accuracy on four calendar scheduling tasks for DWM-NB and naive Bayes. Measures are
averages of the previous 100 predictions.

2776

DYNAMIC WEIGHTED MAJORITY

 50

 60

 70

 80

 90

 100

 0 10000 20000 30000 40000 50000

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Time Step (t)

Naive Bayes
DWM-NB, p = 1

 14
 16
 18
 20
 22
 24
 26
 28
 30

 0 10000 20000 30000 40000 50000

N
um

be
r o

f E
xp

er
ts

Time Step (t)

Figure 10: Performance of DWM-NB on the electricity pricing task. Measures are averages of the
previous 2,352 predictions. Left: Predictive accuracy. Right: Number of experts main-
tained.

conditionally-dependent attributes, and we suspect that this is why Blum’s (1997) implementation
of weighted majority outperformed DWM-NB on this problem.

Since Blum’s implementation forms concept descriptions consisting of weighted pairs of at-
tribute values, we reasoned that conditionally-dependent attributes would have less affect on its per-
formance than they would on naive Bayes’. Indeed, experts that predict based on pairs of attribute
values should benefit from conditionally-dependent attributes. Furthermore, since the weighting
scheme identifies sets of predictive pairs of attribute values, it should do so regardless of condi-
tional dependence among those attributes.

4.4 Electricity Pricing Domain

As a second evaluation on a real-world problem, we selected the domain of electricity pricing (Har-
ries, 1999; Gama et al., 2004). Harries (1999) obtained this data set from TransGrid, the electricity
supplier in New South Wales, Australia. It consists of 45,312 instances collected at 30-minute in-
tervals between 7 May 1996 and 5 December 1998.1 Each instance consists of five attributes and a
class label of either up or down. There are two attributes for time: day of week, which is an integer
in [1,7], and period of day, which is an integer in [1,48] (since there are 48 thirty-minute periods in
one day). The remaining three attributes are numeric and measure current demand: the demand in
New South Wales, the demand in Victoria, and the amount of electricity scheduled for transfer be-
tween the two states. The task is to use the attribute values to predict whether the price of electricity
will go up or down.

Since predicting the price of electricity is an online task, we processed the examples in temporal
order—the order they appeared in the data set. For each example, we first obtained predictions from
DWM-NB and from naive Bayes, and then trained each learner on the example. (This is the same
experimental design we followed for the calendar scheduling task.) As before, we set DWM to halve
expert weights (β = 0.5), to update each time step (p = 1), and to remove an expert if its weight
falls below 0.01 (θ= 0.01).

Overall, naive Bayes averaged 62.32% and DWM-NB averaged 80.75%, maintaining an average
of 22 experts. For reference, Harries (1999) used an online version of C4.5 (Quinlan, 1993) that

1. Our data set corresponds to the Elec2-3 data set (Harries, 1999).

2777

KOLTER AND MALOOF

built a decision tree from examples in a sliding window and then classified examples in the following
week, reporting accuracies for various window sizes between 66% and 67.7%.

In Figure 10, we present performance curves for accuracy and for the number of experts that
DWM maintained. To produce these curves, we averaged the raw performance metrics over a one-
week period (i.e., 2,352 observations).

As a data set derived from real-world phenomenon, we cannot know definitively if or when
concept drift occurred. Nonetheless, DWM does appear to have been more robust to change present
in the samples than was naive Bayes. One example is the period surrounding time step 10,000.
Naive Bayes’ predictive accuracy fluctuates during this period, but DWM’s remains nearly constant,
on average.

Most illustrative is naive Bayes’ sudden drop of roughly 12% in accuracy between time steps
35,000 and 37,000. DWM’s accuracy decreased slightly and steadily during this period, but there
was no comparable sudden decrease in performance.

The number of experts that DWM maintained fluctuated considerably between 1 and 90, but
with an overall average of 22 experts. In terms of the weekly average, shown in the right graph of
Figure 10, the average size of the ensemble never exceeded 29 experts, which we found encouraging
for a problem with 45,312 examples.

4.5 Evaluation on Static Concepts

Finally, we evaluated DWM-NB on 26 data sets from the UCI Repository (Asuncion and Newman,
2007). It is clear that, for static concepts, there is nothing inherent to the DWM algorithm that would
make it more advantageous than a single learner. However, it is important to establish that DWM
performs no worse than a single learner. Therefore, we selected data sets that varied in the number
of classes, the number of examples, the types of attributes, and the number of missing values.

For each data set, we randomly selected 10% of the examples for testing.2 We presented each
example of the remaining 90% to naive Bayes and to DWM-NB with three settings of the parameter
p: 1, 10, and 50. After each presentation, we evaluated the resulting concept descriptions on the
examples in the testing set. We repeated this procedure ten times, averaging percent correct over
these runs and computing 95% confidence intervals.

The results, presented in Appendix A, demonstrate that DWM-NB performed no worse than naive
Bayes, the single base learner. As one can see in Table 2, naive Bayes outperformed DWM-NB on
most of the tasks (16 of 26), but many of these differences are within 0.5%. For the tasks on which
DWM-NB outperformed naive Bayes, many of the differences in performance were also within this
range. Overall, the average difference in performance is +0.35%—in DWM’s favor—and so we
concluded that, on these data sets, DWM-NB performed no worse than a single instance of naive
Bayes.

In Figures 11–13, we present the learning curves for this experiment. For legibility, we did not
include the curves for DWM-NB with p= 1. Limiting DWM-NB to ten experts reduced performance
only slightly, and we omitted these results for brevity.

2. For data sets with predetermined training and testing sets, we used all available examples to create a single file of
examples and proceeded as described.

2778

DYNAMIC WEIGHTED MAJORITY

5. Concluding Remarks

Tracking concept drift is important for many applications. Clearly, with learners for drifting con-
cepts, there is a balance between learning that is completely reactive (e.g., predicting based only on
the last example) and learning that is completely unreactive (e.g., predicting based on all encoun-
tered examples). If a learner knew when concepts had changed, it could discard its old descriptions
and start learning anew. However, this may not always lead to optimum performance on a task be-
cause there may be knowledge of the old concept useful for acquiring the new concept. If the learner
could appropriately leverage its relevant old knowledge, then performance on the new concept may
be better, if not in terms of asymptote, then perhaps in terms of slope.

In this paper, we presented an ensemble method based on the weighted majority algorithm (Lit-
tlestone and Warmuth, 1994). Our method, dynamic weighted majority, creates and removes base
algorithms in response to changes in performance, which makes it well suited for problems involv-
ing concept drift. We described two implementations of DWM, one with naive Bayes as the base
learner, the other with ITI (Utgoff et al., 1997). On the problems we considered, a weighted ensem-
ble of learners with mechanisms to add and remove experts in response to changes in performance
provided a better response to concept drift than did other learners, especially those that relied on
only incremental learning (i.e., STAGGER and AQ11), on the maintenance of previously encountered
examples (i.e., FLORA2 and the AQ-PM systems), or on an ensemble of unweighted learners (i.e.,
SEA).

Using the STAGGER concepts, we evaluated DWM-NB and DWM-ITI our implementation of
STAGGER, Blum’s implementation of weighted majority, and four rule learners based on the AQ
algorithm. To determine performance on a larger problem, we evaluated DWM-NB on the SEA con-
cepts. Results on these problems, when compared to other methods, suggest that DWM maintained
a comparable number of experts, but achieved higher predictive accuracies and converged to those
accuracies more quickly. Indeed, to the best of our knowledge, these are the best overall results
reported for these problems.

DWM, on a calendar scheduling task, outperformed the CAP system and performed comparably
to Blum’s weighted majority. On an electricity pricing domain, DWM outperformed a single base
learner and an online version of C4.5 (Harries, 1999). Finally, on several problems with static
concepts, DWM performed as well as a single base learner.

In future work, we plan to investigate more sophisticated heuristics for creating new experts:
Rather than creating an expert when the global prediction is wrong, perhaps DWM should take into
account the expert’s age or its history of predictions. We would also like to investigate another
decision-tree learner as the base algorithm, one that does not maintain encountered examples and
that does not periodically restructure its tree; VFDT (Domingos and Hulten, 2000) is a likely candi-
date.

Although removing experts of low weight yielded positive results for the problems we consid-
ered in this study, it would be beneficial to investigate mechanisms for explicitly handling noise,
such as those present in IB3 (Aha et al., 1991), or for determining when examples are likely to be
from a different target concept, such as those based on the Hoeffding (1963) bounds present in VFDT
(Domingos and Hulten, 2000) and CVFDT (Hulten et al., 2001).

Finally, the most intriguing prospect for future work is to explore the relationship between a
learner’s stability and its skill at coping with drifting concepts. Equally interesting is how certain
mechanisms, such as learning from previously encountered examples in addition to new ones, af-

2779

KOLTER AND MALOOF

fects a learner’s stability and its ability to cope in non-stationary environments. We anticipate that
these investigations will lead to general, robust, and scalable ensemble methods for tracking concept
drift.

Acknowledgments

The authors thank Dale Schuurmans, William Headden, and the anonymous reviewers for helpful
comments on earlier drafts of the manuscript. We thank Avrim Blum and Paul Utgoff for releasing
their respective systems to the research community. We also thank João Gama for providing the
data set for electricity pricing, and Michael Harries for its original distribution. This research was
conducted in the Department of Computer Science at Georgetown University. The work was sup-
ported in part by the National Institute of Standards and Technology under grant 60NANB2D0013
and by GUROP, the Georgetown Undergraduate Research Opportunities Program. The authors are
listed in alphabetical order.

Appendix A. Performance of DWM-NB on Selected UCI Data Sets

To establish DWM’s performance on static concepts, we applied DWM-NB to twenty-six data sets
from the UCI Repository (Asuncion and Newman, 2007). For each data set, we randomly selected
10% of the examples as a testing set, and used the remaining 90% for training. We presented
a single training example to naive Bayes and to DWM-NB, and evaluated the resulting classifiers
on the examples in the testing set, measuring percent correct. We proceeded in this manner until
processing all of the training examples. We then repeated this procedure nine more times for a
total of ten applications, after which we averaged the measures of performance and computed 95%
confidence intervals. Table 2 lists these results. Although DWM-NB did not outperform naive Bayes,
as expected, it also performed no worse. Over these twenty-six data sets, the average difference in
performance is +0.35%. Figures 11–13 contain learning curves for these data sets.

2780

DYNAMIC WEIGHTED MAJORITY

DWM-NB
Data Set NB p= 1 p= 10 p= 50 Δ%
balance-scale 90.27±0.13 90.19±0.18 89.75±0.43 89.82±0.36 −0.08
breast-cancer 72.60±0.37 70.62±1.42 72.60±0.62 72.88±0.30 +0.28
breast-w 95.99±0.04 95.98±0.07 95.93±0.25 95.98±0.05 −0.01
colic 78.33±0.24 76.24±3.06 79.29±1.05 79.23±0.69 +0.96
credit-a 77.73±0.17 76.52±3.63 78.70±0.67 77.99±0.24 +0.97
credit-g 74.97±0.30 67.56±2.46 73.62±0.96 74.18±0.41 −0.79
diabetes 75.37±0.21 69.94±2.34 74.71±0.84 75.51±0.38 +0.14
glass 46.18±1.36 45.56±3.46 47.05±2.51 47.97±0.85 +1.79
heart-h 83.89±0.42 82.97±1.06 83.17±0.74 83.51±0.62 −0.38
heart-statlog 84.11±0.46 82.89±1.20 83.63±0.57 84.11±0.48 0.00
hepatitis 83.07±0.55 82.60±2.33 84.07±0.76 82.68±0.75 +1.00
hypothyroid 95.37±0.06 95.64±0.33 95.62±0.23 95.38±0.28 +0.27
ionosphere 88.29±0.41 87.60±3.24 88.26±0.72 87.81±0.62 −0.03
kr-vs-kp 87.78±0.09 78.50±7.69 86.65±1.03 87.15±0.41 −0.63
labor 90.67±0.61 89.40±1.33 89.27±0.96 90.33±1.00 −0.34
lymph 77.34±1.87 74.81±1.87 75.50±2.18 76.74±2.65 −0.60
mushroom 95.75±0.03 94.81±1.18 95.00±0.33 95.25±0.19 −0.50
primary-tumor 48.62±0.63 36.76±6.45 44.25±1.94 46.81±1.52 −1.81
segment 79.72±0.13 73.94±11.46 80.32±0.60 80.38±0.37 +0.66
sick 92.71±0.07 94.44±0.32 93.16±0.69 92.32±0.84 +1.73
soybean 92.78±0.15 92.76±0.15 92.50±0.27 90.03±2.14 −0.02
splice 95.37±0.06 95.37±0.06 95.31±0.14 95.23±0.24 0.00
vehicle 45.51±0.28 42.51±2.87 46.33±1.82 44.44±0.81 +0.82
vote 90.09±0.11 89.83±0.25 89.88±0.36 89.91±0.26 −0.18
vowel 63.04±0.81 49.07±10.16 58.60±3.05 61.01±1.92 −2.03
zoo 88.27±0.20 87.97±0.36 87.07±0.90 87.56±0.86 −0.30

Table 2: Performance of naive Bayes (NB) and DWM-NB on twenty-six selected UCI data sets.
DWM-NB created experts every p examples. Measures are percent correct with 95% con-
fidence intervals. Maximum accuracies are typeset in boldface; however, note that many
of the differences are not statistically significant. The final column shows the difference in
percentage between naive Bayes and the best performing DWM classifier.

2781

KOLTER AND MALOOF

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

balance-scale

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 62
 64
 66
 68
 70
 72
 74

 0 50 100 150 200 250 300

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

breast-cancer

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 70
 75
 80
 85
 90
 95

 100

 0 100 200 300 400 500 600 700

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

breast-w

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 50
 55
 60
 65
 70
 75
 80
 85

 0 50 100 150 200 250 300 350

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

colic

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 55

 60

 65

 70

 75

 80

 0 100 200 300 400 500 600 700

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

credit-a

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 56

 60

 64

 68

 72

 76

 0 100 200 300 400 500 600 700 800 900

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

credit-g

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 50
 55
 60
 65
 70
 75
 80

 0 100 200 300 400 500 600 700

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

diabetes

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 20
 25
 30
 35
 40
 45
 50
 55

 0 20 40 60 80 100 120 140 160 180 200

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

glass

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 55
 60
 65
 70
 75
 80
 85

 0 50 100 150 200 250 300

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

heart-h

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 50
 55
 60
 65
 70
 75
 80
 85

 0 50 100 150 200 250

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

heart-statlog

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

Figure 11: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, balance-scale to heart-statlog.

2782

DYNAMIC WEIGHTED MAJORITY

 60

 65

 70

 75

 80

 85

 0 20 40 60 80 100 120 140

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

hepatitis

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 91
 92
 93
 94
 95
 96
 97

 0 500 1000 1500 2000 2500 3000 3500

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

hypothyroid

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

ionosphere

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 65

 70

 75

 80

 85

 90

 0 500 1000 1500 2000 2500 3000

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

kr-vs-kp

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

labor

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 45
 50
 55
 60
 65
 70
 75
 80

 0 20 40 60 80 100 120 140

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

lymph

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 88
 89
 90
 91
 92
 93
 94
 95
 96

 0 1000 2000 3000 4000 5000 6000 7000 8000

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

mushroom

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 15
 20
 25
 30
 35
 40
 45
 50

 0 50 100 150 200 250 300 350

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

primary-tumor

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

Figure 12: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, hepatitis to primary-tumor.

2783

KOLTER AND MALOOF

 30
 40
 50
 60
 70
 80
 90

 0 500 1000 1500 2000 2500

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

segment

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 87
 88
 89
 90
 91
 92
 93
 94
 95
 96

 0 500 1000 1500 2000 2500 3000 3500

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

sick

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

soybean

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0 500 1000 1500 2000 2500 3000

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

splice

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

vehicle

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 83
 84
 85
 86
 87
 88
 89
 90
 91

 0 50 100 150 200 250 300 350 400

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

vote

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 10
 20
 30
 40
 50
 60
 70

 0 100 200 300 400 500 600 700 800 900

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

vowel

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50 60 70 80 90

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

Number of Examples

zoo

Naive Bayes
DWM-NB, p = 10
DWM-NB, p = 50

Figure 13: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, segment to zoo.

2784

DYNAMIC WEIGHTED MAJORITY

References

D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine Learning, 6:
37–66, 1991.

A. Asuncion and D. J. Newman. UCI Machine Learning Repository. Web site, Department of
Information and Computer Sciences, University of California, Irvine, http://www.ics.uci.
edu/˜mlearn/MLRepository.html, 2007.

P. Auer and M. K. Warmuth. Tracking the best disjunction. Machine Learning, 32(2):127–150,
1998.

B. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting, and variants. Machine Learning, 36(1–2):105–139, 1999.

M. M. Black and R. J. Hickey. Maintaining the performance of a learned classifier under concept
drift. Intelligent Data Analysis, 3(6):453–474, 1999.

M. M. Black and R. J. Hickey. Classification of customer call data in the presence of concept
drift and noise. In Soft-Ware 2002: Computing in an Imperfect World, volume 2311 of Lecture
Notes in Computer Science, pages 74–87. Springer, Berlin, 2002. First International Conference,
Soft-Ware 2002, Belfast, Northern Ireland, April 8–10, 2002. Proceedings.

A. Blum. Empirical support for Winnow and Weighted-Majority algorithms: Results on a calendar
scheduling domain. Machine Learning, 26:5–23, 1997.

B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fourth Workshop on Computational Learning Theory, pages 144–152. ACM
Press, New York, NY, 1992.

O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past posteriors. Journal
of Machine Learning Research, 3:363–396, 2002.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learning ensembles from bites: A
scalable and accurate approach. Journal of Machine Learning Research, 5:421–451, 2004.

S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for tracking
concept drift in spam filtering. Knowledge-Based Systems, 18(4–5):187–195, 2005.

T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of
decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2):139–158, 2000.

P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 71–80.
ACM Press, New York, NY, 2000.

2785

KOLTER AND MALOOF

W. Fan. StreamMiner: A classifier ensemble-based engine to mine concept-drifting data streams.
In Proceedings of the Thirtieth International Conference on Very Large Data Bases, pages 1257–
1260. Morgan Kaufmann, San Francisco, CA, 2004.

W. Fan, S. J. Stolfo, and J. Zhang. The application of AdaBoost for distributed, scalable and on-line
learning. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 362–366. ACM Press, New York, NY, 1999.

A. Fern and R. Givan. Online ensemble learning: An empirical study. Machine Learning, 53:
71–109, 2003.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings of the
Thirteenth International Conference on Machine Learning, pages 148–156. Morgan Kaufmann,
San Francisco, CA, 1996.

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with drift detection. In Advances
in Artificial Intelligence, volume 3171 of Lecture Notes in Computer Science, pages 286–295.
Springer, Berlin, 2004. Seventeenth Brazilian Symposium on Artificial Intelligence, SBIA-2004,
São Luis, Maranhõ, Brazil, September 29–October 1, 2004, Proceedings.

J. Gama, P. Medas, and P. Rodrigues. Learning decision trees from dynamic data streams. In
Proceedings of the 2005 ACM Symposium on Applied Computing (SAC-2005), pages 573–577.
ACM Press, New York, NY, 2005.

R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari. Adaptive caching by refetching. In Ad-
vances in Neural Information Processing Systems 15, pages 1465–1472. MIT Press, Cambridge,
MA, 2003.

L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001, 1990.

M. Harries. Splice-2 Comparative Evaluation: Electricity Pricing. Technical Report UNSW-CSE-
TR-9905, Artificial Intelligence Group, School of Computer Science and Engineering, The Uni-
versity of New South Wales, Sidney, Australia, July 1999.

M. Harries and K. Horn. Detecting concept drift in financial time series prediction using sym-
bolic machine learning. In Proceedings of the Eighth Australian Joint Conference on Artificial
Intelligence, pages 91–98. World Scientific, Singapore, 1995.

D. P. Helmbold and P. M. Long. Tracking drifting concepts using random examples. In L. G. Valiant
and M. K. Warmuth, editors, Proceedings of the Fourth Annual Workshop on Computational
Learning Theory (COLT’91), pages 13–23. Morgan Kaufmann, San Francisco, CA, 1991.

D. P. Helmbold and P. M. Long. Tracking drifting concepts by minimising disagreements. Machine
Learning, 14:27–45, 1994.

M. Herbster and M. K. Warmuth. Tracking the best expert. Machine Learning, 32:151–178, 1998.

2786

DYNAMIC WEIGHTED MAJORITY

R. J. Hickey and M. M. Black. Refined time stamps for concept drift detection during mining for
classification rules. In Temporal, Spatial, and Spatio-Temporal Data Mining, volume 2007 of
Lecture Notes in Artificial Intelligence, pages 20–30. Springer, Berlin, 2000. First International
Workshop, TSDM 2000, Lyon, France, September 2000, Revised papers.

D. Hinkley. Jackknife methods. In S. Kotz, N. L. Johnson, and C. B. Read, editors, Encyclopedia
of Statistical Sciences, volume 4, pages 280–287. John Wiley & Sons, New York, NY, 1983.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In Proceedings of
the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 97–106. ACM Press, New York, NY, 2001.

M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of changing populations on classifier
performance. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 367–371. ACM Press, New York, NY, 1999.

M. Klenner and U. Hahn. Concept versioning: A methodology for tracking evolutionary concept
drift in dynamic concept systems. In Proceedings of the Eleventh European Conference on Arti-
ficial Intelligence, pages 473–477. John Wiley & Sons, London, 1994.

R. Klinkenberg and T. Joachims. Detecting concept drift with support vector machines. In Proceed-
ings of the Seventeenth International Conference on Machine Learning, pages 487–494. Morgan
Kaufmann, San Francisco, CA, 2000.

Ralf Klinkenberg. Learning drifting concepts: Example selection vs. example weighting. Intelligent
Data Analysis, 8(3):281–300, 2004. Special Issue on Incremental Learning Systems Capable of
Dealing with Concept Drift.

J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A new ensemble method for tracking
concept drift. In Proceedings of the Third IEEE International Conference on Data Mining, pages
123–130. IEEE Press, Los Alamitos, CA, 2003.

J. Z. Kolter and M. A. Maloof. Using additive expert ensembles to cope with concept drift. In
Proceedings of the Twenty-second International Conference on Machine Learning, pages 449–
456. ACM Press, New York, NY, 2005.

A. Kuh, T. Petsche, and R. L. Rivest. Learning time-varying concepts. In Advances in Neural
Information Processing Systems 3, pages 183–189. Morgan Kaufmann, San Francisco, CA, 1991.

T. Lane and C. E. Brodley. Approaches to online learning and concept drift for user identifica-
tion in computer security. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 259–263. AAAI Press, Menlo Park, CA, 1998.

N. Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning using Win-
now. In Proceedings of the Fourth Annual Workshop on Computational Learning Theory, pages
147–156. Morgan Kaufmann, San Francisco, CA, 1991.

2787

KOLTER AND MALOOF

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

N. Littlestone and M. K. Warmuth. The Weighted Majority algorithm. Information and Computa-
tion, 108:212–261, 1994.

R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence, pages 546–551. AAAI Press, Menlo
Park, CA, 1997.

M. A. Maloof. Concept drift. In J. Wang, editor, Encyclopedia of Data Warehousing and Mining,
pages 202–206. Information Science Publishing, Hershey, PA, 2005.

M. A. Maloof. Incremental rule learning with partial instance memory for changing concepts. In
Proceedings of the International Joint Conference on Neural Networks, pages 2764–2769. IEEE
Press, Los Alamitos, CA, 2003.

M. A. Maloof and R. S. Michalski. Incremental learning with partial instance memory. Artificial
Intelligence, 154:95–126, 2004.

M. A. Maloof and R. S. Michalski. Selecting examples for partial memory learning. Machine
Learning, 41:27–52, 2000.

C. Mesterharm. Tracking linear-threshold concepts with Winnow. Journal of Machine Learning
Research, 4:819–838, 2003.

R. S. Michalski. On the quasi-minimal solution of the general covering problem. In Proceedings of
the Fifth International Symposium on Information Processing, volume A3, pages 125–128. 1969.

R. S. Michalski and J. B. Larson. Incremental Generation of VL1 Hypotheses: The Underlying
Methodology and the Description of Program AQ11. Technical Report UIUCDCS-F-83-905,
Department of Computer Science, University of Illinois, Urbana, 1983.

T. M. Mitchell, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Experience with a learning
personal assistant. Communications of the ACM, 37(7):80–91, July 1994.

C. Monteleoni and T. S. Jaakkola. Online learning of non-stationary sequences. In Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal of Artificial
Intelligence Research, 11:169–198, 1999.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco, CA,
1993.

J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 725–730. AAAI Press, Menlo Park, CA, 1996.

J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

2788

DYNAMIC WEIGHTED MAJORITY

R. E. Reinke and R. S. Michalski. Incremental learning of concept descriptions: A method and
experimental results. In J. E. Hayes, D. Michie, and J. Richards, editors, Machine Intelligence
11, pages 263–288. Clarendon Press, Oxford, 1988.

R. A. Rescorla. Probability of shock in the presence and absence of CS in fear conditioning. Journal
of Comparative and Physiological Psychology, 66:1–5, 1968.

J. C. Schlimmer. Concept Acquisition through Representational Adjustment. PhD thesis, Depart-
ment of Information and Computer Science, University of California, Irvine, 1987.

J. C. Schlimmer and D. Fisher. A case study of incremental concept induction. In Proceedings
of the Fifth National Conference on Artificial Intelligence, pages 496–501. AAAI Press, Menlo
Park, CA, 1986.

J. C. Schlimmer and R. H. Granger. Beyond incremental processing: Tracking concept drift. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages 502–507. AAAI
Press, Menlo Park, CA, 1986.

M. Scholz and R. Klinkenberg. Boosting Classifiers for Drifting Concepts. Technical report, Collab-
orative Research Center on the Reduction of Complexity for Multivariate Data Structures (SFB
475), University of Dortmund, Dortmund, Germany, January 2006.

M. Scholz and R. Klinkenberg. An ensemble classifier for drifting concepts. In J. Aguilar and
J. Gama, editors, Proceedings of the Second International Workshop on Knowledge Discovery in
Data Streams, pages 53–64. http://www.liacc.up.pt/˜jgama/IWKDDS/, 2005. Held at the
16th European Conference on Machine Learning (ECML) and European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD), ECML/PKDD-2005.

W. N. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale classification. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 377–382. ACM Press, New York, NY, 2001.

N. A. Syed, H. Liu, and K. K. Sung. Handling concept drifts in incremental learning with sup-
port vector machines. In Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 272–276. ACM Press, New York, NY, 1999.

A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Dynamic Integration of Classifiers
for Tracking Concept Drift in Antibiotic Resistance Data. Technical Report TCD-CS-2005-26,
Trinity College Dublin, Dublin, Ireland, February 2005.

P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient tree
restructuring. Machine Learning, 29:5–44, 1997.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble
classifiers. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 226–235. ACM Press, New York, NY, 2003.

G. Widmer. Tracking context changes through meta-learning. Machine Learning, 27:259–286,
1997.

2789

KOLTER AND MALOOF

G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23:69–101, 1996.

I. H.Witten and E. Frank. DataMining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, CA, 2nd edition, 2005.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local
accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):
405–410, 1997.

Z. Zheng. Naive Bayesian classifier committees. In Proceedings of the Tenth European Conference
on Machine Learning, pages 196–207. Springer, Berlin, 1998.

Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all.
Artificial Intelligence, 137(1–2):239–263, 2002.

2790

