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Abstract
In this paper we propose a novel approach for ensemble construction based on the use of nonlinear
projections to achieve both accuracy and diversity of individual classifiers. The proposed approach
combines the philosophy of boosting, putting more effort on difficult instances, with the basis of
the random subspace method. Our main contribution is that instead of using a random subspace,
we construct a projection taking into account the instances which have posed most difficulties to
previous classifiers. In this way, consecutive nonlinear projections are created by a neural network
trained using only incorrectly classified instances. The feature subspace induced by the hidden layer
of this network is used as the input space to a new classifier. The method is compared with bagging
and boosting techniques, showing an improved performance on a large set of 44 problems from the
UCI Machine Learning Repository. An additional study showed that the proposed approach is less
sensitive to noise in the data than boosting methods.
Keywords: classifier ensembles, boosting, neural networks, nonlinear projections

1. Introduction

An ensemble of classifiers consists of a combination of different classifiers, homogeneous or het-
erogeneous, to jointly perform a classification task. Ensemble construction is one of the fields
of Artificial Intelligence that is receiving most research attention, mainly due to the significant
performance improvements over single classifiers that have been reported with ensemble methods
(Breiman, 1996a; Kohavi and Kunz, 1997; Bauer and Kohavi, 1999; Webb, 2000; Garcı́a-Pedrajas
et al., 2005).

A classification problem of K classes and n training observations consists of a set of instances
whose class membership is known. Let S = {(x1,y1),(x2,y2), . . .(xn,yn)} be a set of n training
samples where each instance xi belongs to a domain X . Each label is an integer from the set Y =
{1, . . . ,K}. A multiclass classifier is a function f : X → Y that maps an instance x ∈ X ⊂ D onto
an element of Y .

c©2007 Nicolás Garcı́a-Pedrajas, César Garcı́a-Osorio and Colin Fyfe.
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The task is to find a definition for the unknown function, f (x), given the set of training instances.
In a classifier ensemble framework we have a set of classifiers = {C1,C2, . . . ,Cm}, each classifier
performing a mapping of an instance vector x ∈ D onto the set of labels Y = {1, . . . ,K}. The
design of classifier ensembles must face two main tasks: constructing the individuals classifiers,
Ci, and developing a combination rule that finds a class label for x based on the outputs of the
classifiers {C1(x),C2(x), . . . ,Cm(x)}. This paper is devoted to the first problem, the combination of
the classifiers is being done with a simple majority voting scheme.

For more detailed descriptions of ensembles the reader is referred to other reviews: Dietterich
(2000b), Webb (2000), Dzeroski and Zenko (2004), Merz (1999), or Fern and Givan (2003).

Techniques using multiple models usually consist of two independent phases: model generation
and model combination (Merz, 1999). Most techniques are focused on obtaining a group of classi-
fiers which are as accurate as possible but which disagree as much as possible. These two objectives
are somewhat conflicting, since if the classifiers are more accurate, it is obvious that they must agree
more frequently. Many methods have been developed to enforce diversity on the classifiers that form
the ensemble (Dietterich, 2000c). Kuncheva (2001) identifies four fundamental approaches: (i) us-
ing different combination schemes, (ii) using different classifier models, (iii) using different feature
subsets, and (iv) using different training sets. Perhaps the last one is the most commonly used. The
algorithms in this last approach can be divided into two groups: algorithms that adaptively change
the distribution of the training set based on the performance of the previous classifiers, and algo-
rithms that do not adapt the distribution. Boosting methods are the most representative methods
of the first group. The most widely used boosting methods are ADABOOST (Freund and Schapire,
1996) and its numerous variants, and Arc-x4 (Breiman, 1998). They are based on adaptively in-
creasing the probability of sampling the instances that are not classified correctly by the previous
classifiers.

Bagging (Breiman, 1996b) is the most representative algorithm of the second group. Bagging
(after Bootstrap aggregating) just generates different bootstrap samples from the training set. Sev-
eral empirical studies have shown that ADABOOST is able to reduce both bias and variance compo-
nents of the error (Breiman, 1996c; Schapire et al., 1998; Bauer and Kohavi, 1999). On the other
hand, bagging seems to be more efficient in reducing bias than ADABOOST (Bauer and Kohavi,
1999).

Although these techniques are focused on obtaining as diverse classifiers as possible, without
deteriorating the accuracy of each classifier, Kuncheva and Whitaker (2003) failed to establish a
clear relationship between diversity and ensemble performance.

Boosting methods are the most popular techniques for constructing ensembles of classifiers. Its
popularity is mainly due to the success of ADABOOST. However, ADABOOST tends to perform
very well for some problems but can also perform very poorly on other problems. One of the
sources of the bad behaviour of ADABOOST is that although it is always able to construct diverse
ensembles, in some problems the individual classifiers tend to have large training errors (Dietterich,
2000a). Moreover, ADABOOST usually performs poorly on noisy problems (Bauer and Kohavi,
1999; Dietterich, 2000a).

Schapire and Singer (1999) identified two scenarios where ADABOOST is likely to fail:

1. When there is insufficient training data relative to the “complexity” of the base classifiers.

2. When the training errors of the base classifiers become too large too quickly.
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Sebban et al. (2002) proposed a stopping criterion for boosting algorithms, and there are other
variants (Schapire and Singer, 1999; Webb, 2000; Bshouty and Gavinsky, 2002; Eibl and Pfeiffer,
2005) that try to overcome the drawbacks of the method. Nevertheless, ADABOOST is still likely to
fail on noisy problems or when there is not much available data. Unfortunately, these two scenarios
are very common in real-world problems.

The margin (Mason et al., 2000) of a real-valued function f : X → on a training instance
(x,y) ∈ X × {−1,1} is defined as y f (x), so that if the sign is correct the margin is positive. The
size of the margin can be interpreted as an indication of the confidence of the classification. The
success of ADABOOST has been partially explained in terms of the “boosting” of the margins that
usually is achieved, however this is not the only important factor in its success. Several experiments
have shown that ADABOOST is able to perform better than algorithms that are more efficient than
ADABOOST in optimising the margins (Breiman, 1999; Grove and Schuurmans, 1998). There are
other attempts to explain the good performance of boosting (Rosset et al., 2004).

Alternatively, some works have focused on using different subsets of the inputs, that is, differ-
ent subspaces, to train the classifiers. Cherkauer (1996) trained an ensemble of classifiers which
consisted of 32 neural networks trained using 8 different subsets of input features together with 4
different network sizes. Chen et al. (1997) studied the use of different features for training multiple
classifiers in a framework of text-independent speaker recognition. Tumer and Ghosh (1996) used
a similar technique to classify sonar signals, but they found that removing just a few of the input
features hurts the performance of the classifiers so much that the resulting ensemble had a poor
performance.

As a matter of fact, it has been shown that this technique is capable of obtaining a good perfor-
mance only when the input features are highly redundant (Dietterich, 2000b). Ho (1998) proposed
a method for constructing a decision forest by randomly selecting subspaces from the original data
set, and reported very good results.

As an useful alternative, evolutionary computation has also been successfully applied to ensem-
ble construction. Zhou et al. (2002) used a genetic algorithm to obtain a subset of an ensemble of
classifiers that was able to outperform the ensemble using all the classifiers. Liu et al. (2000) used
the concept of negative correlation to improve the diversity of a population of classifiers. Garcı́a-
Pedrajas et al. (2005) developed a cooperative coevolutionary method for ensemble construction
with excellent results on classification problems. Ortiz-Boyer et al. (2005) used a real-coded ge-
netic algorithm to optimise the weights of each classifier within an ensemble.

In summary, the construction of ensembles aims to fulfil two different objectives: accuracy of
classifiers and diversity among them. These two objectives are partially in conflict, as the more
accurate the classifiers are the less diverse they must be. Among the different approaches presented
above, we can highlight the following techniques to enforce accuracy and diversity:

• Bagging methods sample the training data with replacement to obtain different sets to train
the classifiers.

• Boosting methods enforce accuracy and diversity by putting more emphasis on instances that
are misclassified by previous classifiers.

• Subspace methods encourage diversity by training the classifiers using different subsets of
input features or different projections of the original data.
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In our approach we combine the rationale of these previous approaches. On the one hand, the
use of different subspaces, or different projections, is capable of inducing diversity and produces
better ensembles. On the other hand, putting more emphasis on difficult instances, as boosting
methods do, obtains very good performance and is able to reduce both bias and variance of the
classifiers. Nevertheless, boosting is very sensitive to noise and does not usually perform well on
small data sets. As the weight of each instance for the training of the classifier depends on whether
it is correctly classified too much emphasis may be put on noisy instances or outliers. So, our
approach is based on combining the main ideas underlying boosting and random subspace methods,
namely:

• All the classifiers should receive all the training instances for learning, and all of them are
equally weighted. We are thus neither throwing away any instances which is something which
happens in bagging, or putting more emphasis on misclassified instances as in boosting.

• Each classifier uses a different nonlinear projection of the original data onto a space of the
same dimension. We are using this to create diversity within the training sets.

• Following the basic principles of boosting, each nonlinear projection is constructed in order
to make the classification of difficult instances easier.

This approach is able to incorporate the advantages of boosting without its main drawbacks.
The construction of the projection taking into account only instances that have been misclassified
by a previous classifier permits the new classifier to focus on difficult instances. Nevertheless, as
this classifier receives all the data, the sensitivity to noise and the effect of small data sets is greatly
reduced.

In this way, the method presented in this paper is a hybrid of approaches (iii) and (iv) identified
by Kuncheva (2001). It uses different feature spaces and only a subset of instances to construct
those spaces.

The problemwemust solve is how to construct a projection that favours the correct classification
of a subset of instances. This problem is solved by means of a neural network as is explained in
Section 2.

This paper is organised as follows: Section 2 explains in depth the proposed methodology; Sec-
tion 3 surveys some related work; Section 4 shows the experimental setup and the results obtained
with the proposed algorithm and several standard methods; Section 5 reports some further experi-
ments aimed at understanding the behaviour of the method; and Section 6 states the conclusions of
our work.

2. Constructing Nonlinear Projections

The problem of obtaining a useful projection is not trivial. Methods for projecting data are fo-
cused on the features of the input space, and do not take into account the labels of the instances.
Moreover, most of them are specifically useful for non-labelled data and aimed at data analysis.
Among the most widely used of these methods we can cite principal component analysis (PCA)
(Jolliffe, 1986), Kohonen’s self-organizing maps (Kohonen, 2001), and factor analysis (Gorsuch,
1983). Nevertheless, none of them is appropriate for our problem.

Our approach is based on the use of the projection carried out by the hidden layer of a multilayer
perceptron neural network when it is used for classification purposes. In order to get a useful
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projection, we must take into account the role of the hidden layer in a neural network. As stated in
Haykin (1999), p. 199:

Hidden neurons play a critical role in the operation of a multilayer perceptron with
back-propagation learning because they act as feature detectors. As the learning pro-
cess progresses, the hidden neurons begin to gradually “discover” the salient features
that characterise the training data. They do so by performing a nonlinear transforma-
tion on the input data into a new space called the hidden space, or feature space. In this
new space the classes of interest in a pattern-classification task, for example, may be
more easily separated from each other than in the original input space.

From this point of view, neural networks can be considered similar to basis function models
(Denison et al., 2002). These models assume that the function to be implemented, g, is made up of
a linear combination of basis functions and corresponding coefficients. Hence g can be written:

g(x) =
H

∑
i=1

βiBi(x), x ∈ X ⊂ D, (1)

where β = (β1, . . . ,βk)′ is the set of coefficients corresponding to basis functions B = (B1, . . . ,Bk).
Typically, the basis functions in (1) are nonlinear transformations. Neural networks can be consid-
ered another example of basis function models. Methodologically, there is a major separation in
the multilayer perceptron (MLP) approach, as the combination of the basis functions is not always
linear, as in (1), and subsequent sets of basis functions, represented by further hidden layers, can be
constructed.

Let us consider a feed-forward neural network with D inputs and a hidden layer with H nodes.
The hidden layer carries out a non linear projection of input vector x to a vector h where:

hi = f

(
D

∑
j=0

wi jx j

)
, x0 = 1.

As we have stated, each node performs a nonlinear projection of the input vector. So, h= f (x),
and the output layer obtains its output from vector h. In this context we can consider this projection
as a basis function, so Bi(x) = f

(
∑D
j=0wi jx j

)
, and the output of the network is:

y(x) = F

(
H

∑
i=1

βiBi(x)

)

where F is the transfer function of the output layer, and the βi represent the weights of the connec-
tions from the hidden layer to the output layer. This projection performed by the hidden layer of a
multi-layer perceptron distorts the data structure and inter-instance distances (Lerner et al., 1999) in
order to achieve a better classification.

So, the projection performed by the hidden layer focuses on making the classification of the
instances easier. Our approach to obtain a projection focused on making the classification of dif-
ficult instances easier consists of training a neural network with only the instances that have been
incorrectly classified by the previous classifier. The number of hidden nodes of the network is the
same as the number of input variables, so the hidden layer is performing a nonlinear projection into
a space of the same dimension as the input space. As the network has been trained only with a
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subset of the training instances, the projection performed by the hidden layer focuses on making the
classification of only this subset easier.

Once the network is trained, the projection implemented by the hidden layer is used to project
all the data set, and these projections are fed to the new classifier to be trained.1 Then, each classifier
performs its task using as input a feature space that is created to make the classification of difficult
instances easier.

This nethod can be used with any base classifier as the projection is made before training the
classifier and the obtained projected data can be used for any type of classifier. The complexity of
the classifiers is not increased, as the feature space into which the data is projected has the same
dimension as the original input space.

2.1 Nonlinear Projection Based Algorithm

The initialisation of the network is very important for the overall performance as it has been shown
that back-propagation is sensitive to initial conditions (Kolen and Pollack, 1991). For the initiali-
sation of the weights of the networks, we used the method suggested by LeCun et al. (1998) and
described in Haykin (1999). The weights are obtained from a uniform distribution within the inter-
val [−3/

√
D,3/

√
D], where D is the number of inputs to the node. In this way, we try to avoid large

initial values, that can saturate the transfer function and have a dramatic impact on the performance
of the network.

The proposed method for constructing classifier ensembles is shown in Algorithm 1. The pro-
posed algorithm has not incorporated any other ensemble construction method, that may improve
its performance, in order not to obscure its behaviour.

Algorithm 1: Nonlinear Boosting Projection algorithm.
Data : A training set S = {(x1,y1), . . . ,(xn,yn)}, a base learning algorithm, , and the

number of iterations T .
Result : The final classifier:

C∗(x) = argmaxy∈Y ∑t:C(x)=y 1.
1 C0 = (S)
for t = 1 to T −1 do

2 S′ ⊂ S, S′ = {xi ∈ S :Ct−1(xi) '= yi}.
3 Train network H with S′ and get projection P(x) implemented by the hidden layer of H.
4 Ct = (P(S))
end

We have named the algorithm Non-Linear “Boosting” Projection (NLBP) as the projections are
constructed using the basic idea of boosting methods. The source code, in C, used for the standard
and proposed methods is under GNU License and is freely available upon request to the authors.

Although we need to train an additional neural network for each new classifier of the ensemble,
except the first one, the additional complexity of this training process is diminished by the fact that
the projection network is trained using only the instances misclassified by the previous classifier.

1. To avoid confusion, we must remark that the network trained using the misclassified instances is not part of the
ensemble, and only the projection carried out by its hidden layer is used.
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We can illustrate how the method works with a toy example. Consider the simple case of a two-
dimensional space and the learning and testing sets shown in Figure 1. The figure shows how there
are two points in the training set that are, with a high probability, mislabelled noisy data. Using
these two data sets we run our algorithm and ADABOOST with an ensemble of 50 classifiers and a
neural network, a C4.5 tree and a support vector machine as base classifiers. The results are shown
in Table 1.
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Training set Test set

Figure 1: Training and testing data for a two-dimensional problem of two classes with two likely
mislabelled noisy instances

The example illustrates the differences of our method with boosting methods and how these
differences may constitute an advantage. After the initial classifier is trained, ADABOOST focus its
effort on classifying the two misclassified instances correctly. The result is that the learning error
drops eventually to 0, but the cost is overlearning the training data and poor generalisation. On the
other hand, our method tries to classify the misclassified instances but without allowing the classifier
to put too much effort on that task. The result is that the learning error is larger but the generalisation
ability is better. This is, of course, a toy problem only intended to illustrate the underlying ideas of
our method.

Base classifier Ensemble method
ADABOOST NLBP

Training Test Training Test
Neural network 0.0000 0.5000 0.2500 0.0000
Support vector machine 0.0000 0.2500 0.2500 0.0000
C4.5 0.0000 0.2500 0.1250 0.1250

Table 1: Summary of training and test error results for the toy problem with an ensemble of 50
classifiers.

3. Related Work

The use of different spaces for ensemble construction has been extensive in recent research. Ho
(1998) showed that the random subspace method was able to improve the generalisation error. The
random subspace method, rooted in the theory of stochastic discrimination (Kleinberg, 2000), has
common points with bagging, but instead of sampling instances it samples subspaces (Skurichina
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and Duin, 2001). The random subspace method has been successfully applied to different problems
(Munro et al., 2003; Hall et al., 2003).

Opitz (1999) developed accurate and diverse classifiers for an ensemble using ensemble feature
selection. In contrast to classical feature selection algorithms, that are focused on finding the best
feature subset for a given classifier, ensemble feature selection adds an additional objective of pro-
moting disagreement among the individual classifiers. Different strategies have been proposed to
ensemble feature selection, such as hill climbing (Kohavi, 1995; Cunningham and Carney, 2000),
a genetic algorithm (Opitz, 1999), and the heuristic method Ensemble Forward and Backward Se-
quential Selection (Aha and Bankert, 1995). A comparative study for medical diagnosis tasks is
carried out in Tsymbal et al. (2003).

Utsugi (2001) proposed an ensemble of independent factor analysers (Anderson, 1984). This
new statistical model assumes that each data point is generated by the sum of outputs of inde-
pendently activated factor analysers. A maximum likelihood (ML) estimation algorithm for the
parameters is derived using a Monte Carlo EM algorithm with a Gibbs sampler. The independent
factor analysers developed into feature detectors that resemble complex cells in mammalian visual
systems.

Yand et al. (2000) used mixtures of linear subspaces to create a classifier for face recognition.
Rodrı́guez et al. (2006) proposed a method based on applying PCA to subsets of inputs variables.
The method obtained very good results on a large set of real-world problems.

4. Experiments

In order to test the performance of our method on solving classification tasks, we need to compare
it with other widely used ensemble methods. In this section we try to make as fair a comparison as
possible. So, we have chosen three different base classifiers: a neural network, a C4.5 tree (Quinlan,
1993), and a support vector machine (SVM) (Cristianini and Shawe-Taylor, 2000) . The first two
have been widely used for ensemble construction in the literature. The last one has been shown
recently to achieve good results as a member of an ensemble (Kim et al., 2002; Diao et al., 2002),
although its stability might suggest that it is not a suitable base learner for constructing an ensemble.
For the SVM we used a Gaussian kernel and parametersC= 10.0 and γ= 0.1. We used the LIBSVM
library (Chang and Lin, 2001). For the neural network we used a standard multilayer perceptron
trained using a simple back-propagation algorithm (Rumelhart et al., 1986). The network has a
hidden layer of 25 nodes and hyperbolic tangent transfer function for the hidden layer and logistic
transfer function for the output layer. The network was trained for 100,000 iterations with a learning
coefficient η= 0.25 and a momentum coefficient α= 0.1. For C4.5 we used the available code by
the author of the algorithm. We must state that these parameters are rather standard and have not
been selected in any way to improve the performance of any of the methods.2

For all three base classifiers we performed experiments using bagging, Arc-x4, ADABOOST,
and MADABOOST (Domingo and Watanabe, 2000).

Before deciding upon bagging we tested its performance against wagging. Wagging is a variant
of bagging (Breiman, 1996a) that requires a learning algorithm that can use training instances with
different weights. Wagging assigns random weights to the instances of the training set instead of

2. It is obvious that these parameters might not be appropriate for all the data sets. Nevertheless, adjusting the parameters
for each data set and each base learner is computationally infeasible. Moreover, as the parameters are common for
all the methods, any weakness will be shared for all of them.
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resampling the training instances as in bagging. In our implementation the weights assigned to the
instances follow a Poisson distribution (Webb, 2000). In a preliminary set of experiments we com-
pared the performance of bagging and wagging, and found that bagging significantly outperformed
wagging, so in all the experiments we have used bagging.

We use the Arc-x4 (Breiman, 1998) implementation in Bauer and Kohavi (1999). The factor
(1+ e(x)4) that weights each instance is rather heuristic, and the value of 4 for the exponent was
experimentally obtained as optimal. These type of methods were named by Breiman (1998) Arcing
methods after “Adaptively resampling and combining”.

The ADABOOST algorithm is specifically designed for minimising the exponential loss func-
tion:

m

∑
i=1
exp(−yi fλ(xi)),

where:

fλ(xi) =
n

∑
j=1

λ jh j(xi).

One of the most interesting features of ADABOOST is that the test error continues to improve,
even when the learning error reaches 0 (Schapire et al., 1998). However, the marginal error reduction
produced by each new classifier tends to decrease. On average, each new classifier has less impact
on the test error than the previous members of the ensemble.

We use the ADABOOST version in Webb (2000). For ADABOOST it is required that the weak
learning algorithm, in our case each individual classifier, achieves an error strictly less than 0.5.
This cannot be guaranteed; especially when dealing with difficult multiclass problems. In our ex-
periments when this error is not achieved, we generate a bootstrap sample from the original set and
continue the algorithm assigning to that classifier a zero weight (Bauer and Kohavi, 1999; Zhou
et al., 2002).

For the three base learners we make a preliminary test to compare resampling and reweighting
versions of the boosting algorithms. For neural networks we found that reweighting performed
better than resampling; for C4.5 and SVM we found that resampling achieved better results. So,
in the experiments reported here for the standard methods we use reweighting for neural networks,
and resampling for C4.5 and SVMs.

For the case of a neural network as a base classifier we make some additional experiments to
improve the quality of the comparison. Firstly, instead of using standard ADABOOST, we used
ADABOOST.MH (Schapire and Singer, 1999, 2000). Moreover, we also used the algorithms GEN-
TLEBOOST (Friedman et al., 2000) and LOGITBOOST (Friedman et al., 2000).3 Secondly, the
hidden weights of the non-linear projection are also learned when using standard methods as an
additional layer of the network, in order to avoid any spurious advantage for the proposed method
derived from the use of the additional hidden layer represented by the non-linear projection.

All the ensembles are made up of 50 classifiers, regardless of the kind of base classifier. This
number is fairly common in the literature. Although desirable, fixing the number of classifiers on

3. These three algorithms modify the learning of the base classifier, so we cannot use them with C4.5 and SVMs as we
are using standard libraries for these two base classifiers.
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each ensemble taking into account either the problem or the type of base learner is computation-
ally unfeasible. Moreover, it is known (Zenobi and Cunningham, 2001) that the diversity and the
accuracy of the ensemble usually plateau at some size between 10 and 50 members. The standard
ensembles are also made up of 50 networks. Furthermore, for ADABOOST the error bound of the
training error is almost 0 after the addition of about 30 classifiers to the ensemble (Kuncheva, 2003),
so 50 is a widely used ensemble size.

4.1 Experimental Setup

For testing the validity of the proposed method we have selected 44 data sets from the UCI Machine
Learning Repository (Hettich et al., 1998). A summary of these data sets is shown in Table 2.

Three of the data sets were reduced to make them of a manageable size. For isolet and zip we
performed a principal component analysis and retained the first 34 and 50 principal components
respectively. For the letter data set we use a randomly selected subset of 5000 instances from the
whole set of 20000 instances.

In order to avoid confusion we will use the term “learning error” for referring to the error of a
classifier on the training set, and the term “test error” for the error of a classifier on the testing set. In
the literature, the terms “generalisation error” and “prediction error” are also common for referring
to the error on the test set. However, we believe that these two terms are more appropriate for the
probability of misclassifying a new sample, thus the generalisation error is the expected test error.

The experiments were conducted following the 5x2 cross-validation set-up (Dietterich, 1998).
We perform five replications of a two-fold cross-validation. In each replication the available data is
partitioned into two random equal-sized sets. Each learning algorithm is trained on one set at a time
and tested on the other set. The original test proposed by Dietterich suffers from low replicability,
so to test the differences between two algorithms we use the 5x2cv F test (Alpaydin, 1999).

This test has the following formulation. We have five replications, i = 1, . . . ,5, and two-folds,
j = 1,2, for each replication. p( j)

i is the difference between the error rates of the two classifiers
on fold j of replication i. The average on replication i is p̄i = (p(1)

i + p(2)
i )/2, and the estimated

variance is s2i = ((p(1)
i − p̄i)2+((p(2)

i − p̄i)2. Alpaydin (1999) proposed the test:

f =
∑5i=1∑

2
j=1

(
p( j)
i

)2

2∑5i=1 s2i
, (2)

that is approximately F distributed with 10 and 5 degrees of freedom. As a general rule we consider
a confidence level of 90%. The same 5x2cv partitions were used for all the reported experiments.

In all tables the error measure is E = 1
n ∑

n
i=1 ei, where ei is 1 if instance i is misclassified and

0 otherwise. In the following sections we report all the experiments performed with the proposed
method and all the data sets used for testing the method.

The source code, in C, used for the standard and proposed methods as well as the partitions of
the data sets, are freely available upon request to the authors.

4.2 Experimental Results

In the first set of experiments we tested our method against the standard ensemble methods. For a
neural network as base learner we used bagging, ADABOOST.MH, MADABOOST, LOGITBOOST,
GENTLEBOOST, and Arc-x4. Test error results are shown in Table 3. Tables 4 and 5 show the
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Data set Cases Classes Features Inputs
Continuous Binary Nominal

anneal 898 5 6 14 18 59
audio 226 24 – 61 8 93
autos 205 6 15 4 6 72
balance 625 3 4 – – 4
breast-cancer 286 2 9 – – 9
card 690 2 6 4 5 51
dermatology 366 6 1 1 32 34
ecoli 336 8 7 – – 7
gene 3175 3 – – 60 120
german 1000 2 6 3 11 61
glass 214 6 9 – – 9
glass-g2 163 2 9 – – 9
heart 270 2 6 1 6 13
heart-c 302 2 6 3 4 22
hepatitis 155 2 6 13 – 19
horse 364 3 13 2 5 58
ionosphere 351 2 33 1 – 34
iris 150 3 4 – – 4
isolet 7797 26 617 – – 34
labor 57 2 8 3 5 29
led24 200 10 – 24 – 24
letter 5000 26 16 – – 16
liver 345 2 6 – – 6
lrs 531 10 101 – – 101
lymph 148 4 – 9 6 38
optdigits 5620 10 64 – – 64
page-blocks 5473 5 10 – – 10
pendigits 10992 10 16 – – 16
phoneme 5404 2 5 – – 5
pima 768 2 8 – – 8
primary-tumor 339 22 – 14 3 23
promoters 106 2 – – 57 114
satimage 6435 6 36 – – 36
segment 2310 7 19 – – 19
sick 3772 7 2 20 2 33
sonar 208 2 60 – – 60
soybean 683 19 – 16 19 82
vehicle 846 4 18 – – 18
vote 435 2 – 16 – 16
vowel 990 11 10 – – 10
waveform 5000 3 40 – – 40
yeast 1484 10 8 – – 8
zip 9298 10 256 – – 50
zoo 101 7 1 15 – 16

Table 2: Summary of data sets. The Inputs column shows the number of inputs to the classifier as
it depends not only on the number of input features but also on their type.
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results using C4.5 and SVM respectively. As explained, with these two base learners we have used
bagging, ADABOOST, MADABOOST, and Arc-x4.

The results in Table 3 show that the proposed method is significantly better than the standard
methods for 17 data sets when compared with bagging, 20 with ADABOOST.MH, 19 with GENTLE-
BOOST, 16 with LOGITBOOST, 17 with MADABOOST and Arc-x4. It is worse than LOGITBOOST
in 1 data set and worse than MADABOOST in 2 data sets. The differences are not significant for the
other data sets.

Table 4 shows the test error of NLBP and the four standard methods for C4.5 tree as base
classifier. As a summary, NLBP is able to significantly improve bagging in 16 data sets, AdaBoost
in 13, MadaBoost in 17 and Arc-x4 in 14. It is significantly worse in 3, 5, 3, and 3 data sets
respectively. These results show a general advantage of our method. Nevertheless, the experiments
using C4.5 as base learner show the worst performance of NLBP. We think the reason is the fact that
C4.5 is a tree algorithm that best works with nominal and binary variables; the projection performed
by NLBP transform all variables into continuous variables, and that may have a negative effect
on C4.5 performance. However, even in this unfavourable scenario NLBP is able to outperform
classical methods.

The results in Table 5 show that, for a SVM as base classifier, the proposed method is signifi-
cantly better than bagging in 19 data sets, than ADABOOST in 23 data sets, than MADABOOST in
16 and than Arc-x4 in 21 data sets. NLBP is significantly worse than the standard methods only
once for bagging, MADABOOST, and Arc-x4, and never for ADABOOST. In general terms, the
performance of NLBP using a SVM as base classifier, is very good. We believe that the use of a
SVM is able to obtain the best of NLBP as the non-linear projections obtained by NLBP are able to
make the task of SVM easier.

As a summary, for all the three classifiers NLBP is able to obtain very good results, outper-
forming both bagging and boosting methods. Of most interest is its performance in some of the
most difficult problems, such as breast-cancer, hepatitis, horse, isolet, letter, liver, lymphography,
primary-tumor, sonar, and vowel.

5. Analysis of the Proposed Method

In the previous section we have shown that the nonlinear projection approach is very competitive
when compared with the standard methods of ensemble construction. In this section we present
additional experiments that try to gain some insight into how it works.

In a first set of experiments we investigate if the good behaviour of NLBP is due to any side
effect of the proposed algorithm or has its source in the idea of constructing nonlinear projections
using only difficult instances. Then, we review the κ-error diagrams and show the κ-error diagrams
of the standard and proposed methods. The behaviour of NLBP shown by κ-error diagrams suggests
a further study on the sensitivity to noise of the method; that study is performed for all the data sets
used in the previous experiments, and the three base classifiers.

5.1 Control Experiments

The first set of experiments of this section is focused on studying whether the basic contribution
of our method, that is, using the subset of misclassified instances to obtain a nonlinear projection
that makes subsequent classification easier, is responsible for the excellent results reported in the
previous section.
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Data Set NLBP Standard ensemble methods
Bagging AdaB.MH GentleB LogitB MadaB Arc-x4

anneal 0.0100 0.0114 0.0154 0.0091 0.0512✓ 0.0107 0.0103
audiology 0.2557 0.2495 0.2389 0.2531 0.2876 0.2557 0.2584
autos 0.3004 0.3198✓ 0.3277✓ 0.3257 0.3325 0.3276 0.3296
balance 0.0509 0.0602 0.0522 0.0525 0.0934✓ 0.0304✗ 0.0330
breast-c 0.3098 0.3168 0.3266 0.3224 0.2951 0.3406✓ 0.3056
card 0.1490 0.1498 0.1614 0.1780✓ 0.1553 0.1701✓ 0.1582
dermatology 0.0246 0.0268 0.0268 0.0295 0.0301 0.0284 0.0268
ecoli 0.1476 0.1494 0.1631✓ 0.1923✓ 0.1541 0.1583✓ 0.1637✓
gene 0.0979 0.1039 0.1026✓ 0.1049 0.1017✓ 0.1052 0.1015
german 0.2588 0.2620 0.2864✓ 0.2802 0.2646 0.2816✓ 0.2706✓
glass 0.3206 0.3206 0.3243 0.3327 0.3804✓ 0.3271 0.3299
glass-g2 0.2221 0.2257 0.2677✓ 0.2478 0.2626✓ 0.2551✓ 0.2454✓
heart 0.1985 0.2074 0.2096 0.2244✓ 0.1941 0.2185✓ 0.2215✓
heart-c 0.1762 0.1841 0.1974 0.2027 0.1835 0.2033✓ 0.1954
hepatitis 0.1795 0.2094✓ 0.2001 0.2064 0.1988 0.2090 0.2051
horse 0.3297 0.3363✓ 0.3533 0.3698✓ 0.3286 0.3560✓ 0.3489✓
ionosphere 0.0980 0.1304✓ 0.1418✓ 0.1435✓ 0.1424✓ 0.1418✓ 0.1481✓
iris 0.0440 0.0467 0.0493 0.0480 0.0480 0.0493 0.0454
isolet 0.0677 0.0890✓ 0.0918✓ 0.0806✓ 0.1079✓ 0.0773✓ 0.0886✓
labor 0.1084 0.1964✓ 0.1860✓ 0.1858✓ 0.0981 0.1894✓ 0.1930✓
led24 0.3730 0.3780 0.4040✓ 0.3910 0.3870 0.3880 0.3900
letter 0.2086 0.2631✓ 0.2524✓ 0.2194 0.2039✗ 0.2075 0.2490✓
liver 0.3084 0.3101 0.3350 0.3523✓ 0.3107 0.3246✓ 0.3107
lrs 0.1149 0.1085 0.1115 0.1100 0.1247 0.1108 0.1134
lymph 0.1635 0.1878 0.2149✓ 0.2135✓ 0.1878 0.2189 0.2176✓
optdigits 0.0190 0.0229✓ 0.0255✓ 0.0197 0.0225✓ 0.0218 0.0214✓
page-blocks 0.0328 0.0371✓ 0.0379✓ 0.0774✓ 0.0421 0.0332 0.0351✓
pendigits 0.0104 0.0136✓ 0.0142✓ 0.0168 0.0381✓ 0.0107 0.0131✓
phoneme 0.1936 0.2030 0.1943 0.2133 0.1756 0.1669✗ 0.2065
pima 0.2464 0.2500 0.2534 0.2943✓ 0.2448 0.2508 0.2451
primary-t 0.5870 0.5940 0.5911✓ 0.6253✓ 0.5805 0.5975 0.5976
promoters 0.1924 0.2302✓ 0.2321✓ 0.2302✓ 0.1906 0.2302✓ 0.2302✓
satimage 0.1061 0.1203✓ 0.1216✓ 0.1230✓ 0.1092 0.1141✓ 0.1193✓
segment 0.0332 0.0411✓ 0.0398 0.0561✓ 0.0594✓ 0.0376 0.0454
sick 0.0239 0.0251✓ 0.0262✓ 0.0557 0.0242✓ 0.0241 0.0280
sonar 0.2077 0.2536✓ 0.2644✓ 0.2683✓ 0.2461✓ 0.2644✓ 0.2673✓
soybean 0.0653 0.0679 0.0682 0.0670 0.1564✓ 0.0682 0.0682
vehicle 0.1849 0.1816 0.1983 0.2076 0.1965 0.1790 0.1884
vote 0.0487 0.0552 0.0593 0.0616✓ 0.0556 0.0607 0.0616
vowel 0.0731 0.1354✓ 0.0820 0.0697 0.2188✓ 0.1028✓ 0.0731
waveform 0.1373 0.1404 0.1440 0.1580✓ 0.1406 0.1434✓ 0.1443
yeast 0.4074 0.4123 0.4119 0.4824✓ 0.4316 0.4121 0.4189
zip 0.0147 0.0189✓ 0.0203✓ 0.0169 0.0163✓ 0.0175 0.0178✓
zoo 0.0494 0.0631 0.0611 0.0651 0.0812✓ 0.0632 0.0651
win/loss 17/0 20/0 19/0 16/1 17/2 17/0
✓/✗ significantly worse/better than NLBP method using F test.

Table 3: Summary of test error results for ensembles using a neural network as base learner and
5x2cv.
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Data Set NLBP Standard ensemble methods
Bagging AdaBoost MadaBoost Arc-x4

anneal 0.0154 0.0165 0.0085 0.0109 0.0109
audiology 0.2672 0.2858✓ 0.2434 0.2557 0.2425
autos 0.2907 0.3160 0.2624 0.2750 0.2653
balance 0.0685 0.1527✓ 0.2115✓ 0.1795✓ 0.2125✓
breast-cancer 0.2811 0.2902 0.3245✓ 0.3147✓ 0.3336✓
card 0.1591 0.1414 0.1449 0.1478 0.1507
dermatology 0.0273 0.0208 0.0323 0.0312 0.0361✓
ecoli 0.1530 0.1750 0.1738✓ 0.1756✓ 0.1720✓
gene 0.0983 0.0751✗ 0.0765✗ 0.0718✗ 0.0732✗
german 0.2520 0.2534 0.2712✓ 0.2626 0.2654✓
glass 0.3150 0.3140 0.3000 0.3028 0.3019
glass-g2 0.2198 0.1756✗ 0.1462✗ 0.1585 0.1609
heart 0.1859 0.1948 0.2052✓ 0.2133 0.2044
heart-c 0.1841 0.1927 0.2046✓ 0.2053✓ 0.2033
hepatitis 0.1821 0.2066✓ 0.2104 0.2118✓ 0.2013
horse 0.3258 0.3308 0.3308 0.3258 0.3242
ionosphere 0.0507 0.0815✓ 0.0763 0.0798✓ 0.0712
iris 0.0467 0.0480 0.0587 0.0573 0.0520
isolet 0.0670 0.2151✓ 0.1217✓ 0.1545✓ 0.1320✓
labor 0.0741 0.1227✓ 0.1049 0.1190 0.0978
led24 0.3940 0.3330 0.3680 0.3620 0.3730
letter 0.1128 0.2070✓ 0.1196 0.1426✓ 0.1243
liver 0.3246 0.3159 0.3252 0.3159 0.3194
lrs 0.1115 0.1454✓ 0.1398✓ 0.1481✓ 0.1428✓
lymphography 0.1838 0.1811 0.1838 0.1973 0.1905
optdigits 0.0193 0.0555✓ 0.0206 0.0312✓ 0.0242✓
page-blocks 0.0290 0.0285 0.0307 0.0303 0.0298
pendigits 0.0091 0.0271✓ 0.0090 0.0186✓ 0.0143✓
phoneme 0.1287 0.1378 0.1112✗ 0.1137✗ 0.1082✗
pima 0.2484 0.2440 0.2612 0.2516 0.2625
primary-tumor 0.5770 0.5705 0.5970 0.5781 0.5858
promoters 0.2189 0.1792 0.2038 0.1793 0.1736
satimage 0.0942 0.1152✓ 0.0912 0.0975 0.0931
segment 0.0304 0.0382 0.0233✗ 0.0339 0.0280
sick 0.0286 0.0163✗ 0.0139✗ 0.0156✗ 0.0151✗
sonar 0.1836 0.2471✓ 0.2462✓ 0.2385✓ 0.2433✓
soybean 0.0650 0.0764 0.0682 0.0747 0.0679
vehicle 0.2109 0.2650✓ 0.2440 0.2610✓ 0.2518
vote 0.0506 0.0469 0.0593 0.0620 0.0625
vowel 0.0786 0.1996✓ 0.1208✓ 0.1556✓ 0.1334✓
waveform 0.1387 0.1678✓ 0.1625✓ 0.1658✓ 0.1599✓
yeast 0.4051 0.4063 0.4348✓ 0.4116✓ 0.4239✓
zip 0.0163 0.0841✓ 0.0371✓ 0.0523✓ 0.0423✓
zoo 0.0848 0.0835 0.0672 0.0653 0.0673
win/loss 16/3 13/5 17/3 14/3
✓/✗ significantly worse/better than NLBP method using F test.

Table 4: Summary of test error results for ensembles using a C4.5 tree as base learner and 5x2cv.
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Data Set NLBP Standard ensemble methods
Bagging AdaBoost MadaBoost Arc-x4

anneal 0.0136 0.0508✓ 0.0267 0.0325✓ 0.0312✓
audiology 0.2522 0.2893✓ 0.2637 0.2540 0.2593
autos 0.2906 0.3179✓ 0.3064 0.3063 0.3034
balance 0.0426 0.0691✓ 0.0595 0.0624✓ 0.0502
breast-cancer 0.2930 0.3091 0.3790✓ 0.3448✓ 0.3630✓
card 0.1632 0.2162✓ 0.2409✓ 0.2238✓ 0.2377✓
dermatology 0.0246 0.0290 0.0312 0.0301 0.0317
ecoli 0.1512 0.1476 0.1976✓ 0.1482 0.1750✓
gene 0.0998 0.1168✓ 0.1162✓ 0.1207✓ 0.1225✓
german 0.2680 0.2992✓ 0.2914✓ 0.2916✓ 0.2946✓
glass 0.3234 0.3383 0.3411 0.3420✓ 0.3327
glass-g2 0.2098 0.2248 0.2196 0.2063 0.2210
heart 0.1844 0.1956✓ 0.2281✓ 0.2119✓ 0.2244✓
heart-c 0.1940 0.2126 0.2510✓ 0.2331✓ 0.2417✓
hepatitis 0.1847 0.1899 0.1948 0.1911 0.1936
horse 0.3440 0.3698✓ 0.3692 0.3648✓ 0.3654
ionosphere 0.0496 0.0547 0.0644 0.0581 0.0576
iris 0.0467 0.0413 0.0467 0.0413 0.0493
isolet 0.0682 0.1193✓ 0.0743 0.0938✓ 0.0794✓
labor 0.0875 0.1086 0.1293✓ 0.1119 0.1222✓
led24 0.3680 0.3950✓ 0.4330✓ 0.4090✓ 0.4310✓
letter 0.1016 0.1035✓ 0.1380✓ 0.0940✗ 0.1646✓
liver 0.3310 0.3159 0.3623✓ 0.3206 0.3333✓
lrs 0.1130 0.1172 0.1221 0.1232 0.1318
lymphography 0.1811 0.2797✓ 0.2595✓ 0.2568✓ 0.2486✓
optdigits 0.0162 0.0180 0.0226✓ 0.0200 0.0203✓
page-blocks 0.0347 0.0384✓ 0.0401✓ 0.0375 0.0382
pendigits 0.0060 0.0057 0.0067 0.0049 0.0053
phoneme 0.1769 0.1565 0.1574 0.1556 0.1585✗
pima 0.2372 0.2526 0.2953✓ 0.2505 0.2711✓
primary-tumor 0.5911 0.6365✓ 0.6371✓ 0.6289✓ 0.6318✓
promoters 0.2057 0.1943 0.2094 0.2113 0.2132
satimage 0.0888 0.0904 0.0929 0.0867 0.0933
segment 0.0413 0.0470✓ 0.0409 0.0426 0.0408
sick 0.0313 0.0355✓ 0.0343✓ 0.0339 0.0339✓
sonar 0.1615 0.2414✓ 0.2413✓ 0.2568✓ 0.2615✓
soybean 0.0659 0.0712 0.0732✓ 0.0685 0.0752
vehicle 0.1846 0.2213✓ 0.2314✓ 0.2194✓ 0.2234
vote 0.0446 0.0524 0.0570✓ 0.0510 0.0538
vowel 0.0467 0.0555 0.0448 0.0418 0.0434
waveform 0.1418 0.1530 0.1697✓ 0.1512 0.1624✓
yeast 0.4093 0.4160 0.4291✓ 0.4233 0.4443✓
zip 0.0182 0.0158✗ 0.0188 0.0170 0.0172
zoo 0.0533 0.0652 0.0455 0.0515 0.0575
win/loss 19/1 23/0 16/1 21/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 5: Summary of test error results ensembles with using a SVM as base learner and 5x2cv.
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The first experiment tests if the performance of the method is due to the use of different pro-
jections. It is known that the use of random subspaces is able to improve the performance of an
ensemble (Ho, 1998), and it is possible that the use of different projections of the original data, no
matter how they are obtained, could be the cause of the good performance of NLBP. So we have
trained the classifiers that make up the ensemble using a different nonlinear random projection for
each classifier. The random nonlinear projection is obtained using the same neural network used in
NLBP, but with the weights randomly initialised in the interval [−1,1] and no training.

The second experiment aims to establish if a similar performance can be obtained if we obtain
different nonlinear projections using all the instances of the training set instead of only the misclas-
sified instances. Thus, for this simulation, we apply Algorithm 1 but projection P(x) is constructed
using the whole training set, S, instead of the subset of instances incorrectly classified by the pre-
vious classifier, S′. The results of these two experiments for the three base classifiers are shown in
Table 6.

The table shows how NLBP is performing significantly better than the two control algorithms
for many problems. This experiment supports the approach of the proposed algorithm, ruling out
as a cause of its good performance the use of an additional layer of learning. For a neural network
NLBP is significantly better than a random projection in 16 data sets, and better than the projection
using all the instances in 20 data sets. Similar results are obtained for a C4.5 tree and a SVM.

5.2 κ - Error Diagrams

One way of understanding the behaviour of ensemble methods is by means of a κ-error diagram
(Margineantu and Dietterich, 1997; Dietterich, 2000a). These diagrams represent a point for each
pair of classifiers. The x coordinate is a measure of the diversity of the two classifiers known as κ
measure, the y coordinate is the average error of the two classifiers on the test data. The two values
are conflicting, as it is obvious that we cannot have both perfect and independent classifiers. The
κ-error diagram is the scatter plot of the points corresponding to all pairs of classifiers.

The κ measure is defined as follows: let us consider a problem with K classes, and let C be a
K×K matrix such thatCi j contains the number of instances assigned to class i by the first classifier
and to class j by the second classifier. Let us define:

Θ1 = ∑K
i=1Cii
n

,

and

Θ2 =
K

∑
i=1

(
K

∑
j=1

Ci j
n

×
K

∑
j=1

C ji

n

)
,

where n is the number of instances. Then, the κ statistic is defined:

κ=
Θ1−Θ2
1−Θ2

.

When the agreement of the two classifiers equals that expected by chance κ = 0; when they
agree on every instance κ = 1. Negative values mean a systematic disagreement between the two
classifier.
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Data Set Neural network C4.5 SVM
NLBP Random All NLBP Random All NLBP Random All

anneal 0.0100 0.0118 0.0096 0.0154 0.0294✓ 0.0136 0.0136 0.0243✓ 0.0089
audiology 0.2557 0.2734 0.2681 0.2672 0.3823✓ 0.2779 0.2522 0.4956✓ 0.2487
autos 0.3004 0.3111 0.3394✓ 0.2907 0.3404✓ 0.2994 0.2906 0.3765 0.2867
balance 0.0509 0.0995✓ 0.0851✓ 0.0685 0.1002✓ 0.0822 0.0426 0.1008✓ 0.0877✓
breast-c 0.3098 0.3371 0.3504✓ 0.2811 0.2727 0.3140✓ 0.2930 0.2769 0.3546✓
card 0.1490 0.1710✓ 0.1861✓ 0.1591 0.1704 0.1646 0.1632 0.1928✓ 0.1785✓
dermatol. 0.0246 0.0263 0.0301 0.0273 0.0306 0.0372✓ 0.0246 0.0306 0.0284
ecoli 0.1476 0.1363✓ 0.1512✓ 0.1530 0.1506 0.1655 0.1512 0.1512 0.1554
gene 0.0979 0.0996 0.1009✓ 0.0983 0.2363✓ 0.1253✓ 0.0998 0.3997✓ 0.1008
german 0.2588 0.2626✓ 0.2840✓ 0.2520 0.2592 0.2750✓ 0.2680 0.2686 0.2760
glass 0.3206 0.3383✓ 0.3393 0.3150 0.3299✓ 0.3421✓ 0.3234 0.3524✓ 0.3355✓
glass-g2 0.2221 0.2111 0.2417 0.2198 0.2444 0.2259 0.2098 0.2579✓ 0.2369✓
heart 0.1985 0.2007 0.2267✓ 0.1859 0.1748 0.2037 0.1844 0.1756 0.2348✓
heart-c 0.1762 0.2119 0.2245✓ 0.1841 0.1888 0.1927 0.1940 0.2033 0.2199✓
hepatitis 0.1795 0.1949 0.1987 0.1821 0.1820 0.2130 0.1847 0.1860 0.2013
horse 0.3297 0.3346 0.3632✓ 0.3258 0.3412 0.3302 0.3440 0.3527 0.3539
ionosph. 0.0980 0.1077✓ 0.1521✓ 0.0507 0.0524 0.1247✓ 0.0496 0.0518 0.1225✓
iris 0.0440 0.0427 0.0480 0.0467 0.0613✓ 0.0627✓ 0.0467 0.0453 0.0467
isolet 0.0677 0.1038✓ 0.0715 0.0670 0.2279✓ 0.0875✓ 0.0682 0.0734 0.0607✓
labor 0.1084 0.1223 0.1823✓ 0.0741 0.1127 0.1543 0.0875 0.0915 0.1575✓
led24 0.3730 0.4000 0.3970✓ 0.3940 0.4990✓ 0.3790 0.3680 0.4280✓ 0.3670
letter 0.2086 0.2692✓ 0.2328✓ 0.1128 0.2172✓ 0.1665✓ 0.1016 0.1094 0.1136✓
liver 0.3084 0.3066 0.3344 0.3246 0.3617 0.3554 0.3310 0.3438 0.3414
lrs 0.1149 0.1206 0.1206 0.1115 0.1341✓ 0.1255✓ 0.1130 0.1729✓ 0.1160
lymph. 0.1635 0.1730 0.2108✓ 0.1838 0.1824 0.2054 0.1811 0.1865 0.2081✓
optdigits 0.0190 0.0230✓ 0.0158 0.0193 0.0494✓ 0.0267✓ 0.0162 0.0179 0.0142
page-b 0.0328 0.0393✓ 0.0340 0.0290 0.0327✓ 0.0304 0.0347 0.0373 0.0329
pendigits 0.0104 0.0162✓ 0.0137✓ 0.0091 0.0133✓ 0.0132✓ 0.0060 0.0062 0.0075
phoneme 0.1936 0.2103 0.1707 0.1287 0.1554✓ 0.1552✓ 0.1769 0.2122✓ 0.1702
pima 0.2464 0.2396 0.2615 0.2484 0.2458 0.2518 0.2372 0.2354 0.2565✓
primary-t 0.5870 0.5846 0.5905 0.5770 0.5917 0.5793 0.5911 0.5823 0.5852
promoters 0.1924 0.2208 0.2283 0.2189 0.2434 0.2698✓ 0.2057 0.5283✓ 0.2245✓
satimage 0.1061 0.1154✓ 0.1142✓ 0.0942 0.1028 0.1032✓ 0.0888 0.0891 0.0975✓
segment 0.0332 0.0570✓ 0.0380✓ 0.0304 0.0459✓ 0.0311 0.0413 0.0609✓ 0.0369
sick 0.0239 0.0290✓ 0.0254 0.0286 0.0373✓ 0.0244✗ 0.0313 0.0320 0.0251✗
sonar 0.2077 0.2154 0.2558✓ 0.1836 0.1789 0.2654✓ 0.1615 0.1558 0.2577✓
soybean 0.0653 0.0641 0.0694 0.0650 0.0735 0.0662 0.0659 0.0861✓ 0.0682
vehicle 0.1849 0.1936 0.1835 0.2109 0.2624✓ 0.2059 0.1846 0.2196✓ 0.1870
vote 0.0487 0.0446 0.0570 0.0506 0.0510 0.0556 0.0446 0.0478 0.0570
vowel 0.0731 0.1669✓ 0.1810✓ 0.0786 0.0845 0.1069✓ 0.0467 0.1501✓ 0.1729✓
waveform 0.1373 0.1395 0.1407 0.1387 0.1604✓ 0.1451 0.1418 0.1550 0.1434
yeast 0.4074 0.4159 0.4119 0.4051 0.4074 0.4171✓ 0.4093 0.4102 0.4120
zip 0.0147 0.0215✓ 0.0148 0.0163 0.0818✓ 0.0212✓ 0.0182 0.0268✓ 0.0128✗
zoo 0.0494 0.0474 0.0611 0.0848 0.1027 0.0789 0.0533 0.0713✓ 0.0533
win/loss 16/0 20/0 20/0 19/1 17/0 17/2
✓/✗ significantly worse/better than NLBP method using F test.

Table 6: Control experiment for NLBP. Test error using a random non-linear projection, and a pro-
jection trained using all the instances.
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Figures 2, 3, and 4 show κ-error diagrams of the first partition for several data sets with four
standard methods and NLBP, and neural networks, C4.5, and SVMs as base classifiers, respectively.
These diagrams are fairly representative of the diagrams of all the data sets.

For all the three base classifiers we verify the usual behaviour of bagging and boosting methods.
Bagging provides diversity, but to a lesser degree than boosting. On the other hand, boosting’s
improvement of diversity has the side effect of deteriorating accuracy. NLBP behaviour is midway
between these two methods. It is able to improve diversity, but to a lesser degree than boosting,
without damaging accuracy as much as boosting. This behaviour suggests that the performance of
NLBP in noisy problems can be better than the performance of boosting methods. The next section
is devoted to studying the sensitivity to noise of NLBP, and tests that hypothesis.

5.3 Effect of Noise

Several researchers have reported that boosting methods, among them ADABOOST, degrade their
performance in the presence of noise. Dietterich (2000a) tested this effect introducing artificial
noise in the class labels of different data sets and confirmed this behaviour. In this section we study
the sensitivity of our method to noise.

To add noise to the class labels we follow the method of Dietterich (2000a). To add classification
noise at a rate r, we chose a fraction r of the instances and changed their class labels to be incorrect
choosing uniformly from the set of incorrect labels. We chose all the data sets and three rates of
noise, 5%, 10%, and 20%. With this three levels of noise we have performed the experiments using
the 5x2cv setup and NLBP, bagging and ADABOOST ensemble methods and compared the results
as the level of noise increases.

For the noise study we have used bagging and ADABOOST as the representative of the boosting
methods (for neural networks the used method is ADABOOST.MH as in the previous experiments).
Tables 7, 8, and 9 show the comparison of the three methods at noise levels 5%, 10%, and 20%, for
a neural network, a C4.5 tree and a SVM respectively. First of all, we can corroborate that tables
confirm that bagging is less affected by noise than boosting, as has been shown in several papers,
for example, (Dietterich, 2000a).

Table 7 shows the results for a neural network. For a noise level of 5% the results are not much
different from the results without noise for all the three methods. Bagging performs slightly worse
and ADABOOST.MH slightly better. It seems that for this low noise level the algorithms perform
as in the case without noise. For 10% of noise the performance of bagging improves, achieving a
win/loss record of 13/3 with NLBP, better than the record without noise, 17/0. On the other hand, the
performance of ADABOOST.MH drops to a win/loss record of 28/0 with NLBP. Here the sensibility
to noise of ADABOOST.MH is clearly evident.

The behaviour with a noise level of 20% is less clear. Bagging’s performance drops to a record
of 22/1 and ADABOOST.MH improves to 20/2. Two reasons can account for this behaviour: i) all
the algorithms are performing badly due to the large amount of noise, so the results have a higher
dependency on random factors, ii) the differences in the test error observed on the different partitions
can be very high, making the F test, that depends on the variance between the error within the same
partition (see Equation 2), less able to conclude that the differences are significant.
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Figure 2: κ-error diagram for the data sets using the five ensemble methods and a neural network
as base learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and
error value on vertical axis in the interval [0,1].
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Figure 3: κ-error diagram for the data sets using the five ensemble methods and a C4.5 tree as base
learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and error
value on vertical axis in the interval [0,1].
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Figure 4: κ-error diagram for the data sets using the five ensemble methods and a SVM as base
learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and error
value on vertical axis in the interval [0,1].
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Using C4.5 as base learner, Table 8, the results are much the same. For a noise level of 5% the
performance of the three algorithms is similar to the original one. When the noise level increases
to 10% the performance of ADABOOST degrades from a win/loss record of 13/5 (with no artificial
noise) to a record of 19/2. Bagging slightly worsens compared with NLBP, from a record of 16/3 to
20/6. When the noise level is 20% the effect is more marked for both algorithms, with a record of
18/3 for bagging and 25/1 for ADABOOST.

Table 9 shows a similar behaviour for the three algorithms when using a SVM but with some
differences. The performance of ADABOOST dramatically decreases with noise as in the previous
cases. For a SVM the negative effect of noise on ADABOOST is even more marked. But the case of
bagging is slightly different from the two previous classifiers. With a SVM bagging is less affected
by noise, even improving its compared performance with NLBP; for a noise level of 20% bagging
is worse than NLBP in only 11 data sets.

In summary, NLBP has the very desirable property of behaving, at least, as robustly as bagging
in the presence of noise. This is probably due to the fact that NLBP does not put so much emphasis
on incorrectly classified instances as boosting does. However, NLBP does use the incorrectly clas-
sified instances in determining the nonlinear representation of the input data which provides it with
a performance enhancement over bagging.

5.4 Effect of Ensemble Size

As we have stated, most previous work agrees that boosting methods are fairly resistant to over-
fitting. Additionally, there is also a general agreement that the most important gain of boosting
methods is given by the first few classifiers. These two arguments together support the use of an
ensemble of fixed size of 50 base classifiers as reasonable, and that it is not likely that the size of the
ensemble might contaminate the experimental results. Nevertheless, it is possible that for some of
the problems the ensemble may be either overfitting or underfitting the data. So, we have performed
an additional experiment where the size of the ensemble is obtained by a cross-validation strategy.
The experiment is carried out using ADABOOST and the proposed NLBP method.

The method for selecting the number of classifiers for each problem is the cross-validation strat-
egy presented in Zhang and Yu (2005). For each partition of each problem we perform a 5-fold
cross-validation to obtain the optimal size of the ensemble within the range of [10,100] classifiers.
That is, we divide the training set into five partitions and train the ensemble with four partitions and
test the error with the remaining one. This is repeated for each one of the five partitions, and the en-
semble size is obtained as the average size of the 5 runs. Then, the algorithm is run with this optimal
size of the ensemble and using the whole training set. As the size of the ensemble is estimated for
each partition, overfitting or underfitting is less likely to happen. Table 10 shows the results using
the three base classifiers of the previous experiments. The parameters of the experiments are the
same as the previous runs.

The first noticeable result shown in the table is that the errors of the algorithms using this method
are similar to the errors for ensembles of 50 classifiers. These results support the general belief that
boosting is quite resistant to overfitting. The results also show that NLBP is also hardly affected
by overfitting. The differences among NLBP and ADABOOST are similar to the obtained using 50
classifiers. The significant win/loss record, 21/2, 12/4, and 20/1 for neural network, C4.5 and SVM
as base classifiers respectively, is similar to the previous results using 50 classifiers: 20/0, 13/5, and
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Data Set 5% 10% 20%
NLBP Bagging Ada.MH NLBP Bagging Ada.MH NLBP Bagging Ada.MH

anneal 0.0764 0.0909 0.0679 0.1499 0.1254✗ 0.1664 0.2904 0.2490✗ 0.2608✗
audiology 0.3372 0.3186 0.3425 0.4027 0.4053 0.4372✓ 0.5566 0.5655 0.5796✓
autos 0.3851 0.4145✓ 0.3975✓ 0.4388 0.4278 0.4535 0.5639 0.5834✓ 0.5785
balance 0.1030 0.1082 0.1018 0.1530 0.1462 0.1923✓ 0.2954 0.2874 0.2928
breast-c 0.3301 0.3664✓ 0.3699✓ 0.3993 0.3993 0.4413✓ 0.4329 0.4273 0.4322
card 0.2148 0.2261 0.2128 0.2458 0.2299 0.2661✓ 0.3762 0.3588 0.3632✗
dermatol. 0.0989 0.1180✓ 0.1191 0.1628 0.1809✓ 0.2071✓ 0.2787 0.2874 0.3279✓
ecoli 0.1899 0.2554✓ 0.2196 0.2554 0.2643 0.3327✓ 0.2994 0.3042 0.3351✓
gene 0.1844 0.1631✗ 0.1608✗ 0.2079 0.2020 0.2328✓ 0.3305 0.3273 0.3395
german 0.2836 0.3142✓ 0.3170✓ 0.3156 0.3144 0.3436 0.3842 0.3876 0.4096✓
glass 0.3804 0.4037✓ 0.3823 0.4561 0.4458 0.4925✓ 0.4804 0.4953 0.5168✓
glass-g2 0.2564 0.2761 0.2699✓ 0.3375 0.3349 0.3769✓ 0.3242 0.3450 0.3254
heart 0.2600 0.2748✓ 0.2674 0.3407 0.3185 0.3829✓ 0.3741 0.3711 0.3689
heart-c 0.2497 0.2742✓ 0.2536 0.3199 0.3046 0.3351 0.4040 0.3815 0.3947
hepatitis 0.2232 0.2555✓ 0.2542✓ 0.2943 0.2957 0.3345✓ 0.3200 0.3355 0.3575✓
horse 0.3632 0.3918 0.3873 0.3973 0.4247✓ 0.4297 0.4764 0.4918 0.5165✓
ionosph. 0.1630 0.2268✓ 0.1857 0.2376 0.2194 0.2877✓ 0.3271 0.2986 0.3248
iris 0.0787 0.1040 0.0973 0.1173 0.1173 0.1773✓ 0.3080 0.3360✓ 0.3587✓
isolet 0.1107 0.1361✓ 0.1448✓ 0.1665 0.1912✓ 0.1893✓ 0.2671 0.3250✓ 0.3094✓
labor 0.0912 0.1541✓ 0.1860✓ 0.2355 0.3054✓ 0.2984 0.4457 0.4739✓ 0.4739✓
led24 0.4010 0.4440✓ 0.4390✓ 0.5110 0.5060 0.5240 0.5870 0.6020 0.6120✓
letter 0.1839 0.2394✓ 0.3168✓ 0.3045 0.3801✓ 0.3230✓ 0.4038 0.4936✓ 0.4922✓
liver 0.3501 0.3559 0.3414 0.3565 0.3443 0.3663 0.4249 0.4285 0.4354
lrs 0.1755 0.1869 0.1676 0.2140 0.2027 0.2249 0.3420 0.3529 0.3405
lymph. 0.2933 0.3378✓ 0.3473✓ 0.2933 0.3400✓ 0.3716✓ 0.4041 0.4554✓ 0.4581✓
optdigits 0.0711 0.0821✓ 0.0755✓ 0.1212 0.1252 0.1442✓ 0.2208 0.2673✓ 0.2304✓
page-b 0.0855 0.0842 0.0897✓ 0.1306 0.1410✓ 0.1334✓ 0.2335 0.2462✓ 0.2424
pendigits 0.0625 0.0654✓ 0.0660✓ 0.1135 0.1165✓ 0.1151✓ 0.2171 0.2488✓ 0.2219✓
phoneme 0.2259 0.2440✓ 0.2335✓ 0.2588 0.2748✓ 0.2558 0.3235 0.3561✓ 0.3409✓
pima 0.2719 0.2867 0.2899 0.3073 0.3089 0.3412✓ 0.3849 0.3849 0.3896
primary-t 0.6011 0.6212 0.6141 0.6513 0.6595 0.6708 0.7096 0.7356✓ 0.7203
promoters 0.2340 0.2472 0.2547 0.2547 0.2962 0.2887 0.4245 0.4472 0.4453
satimage 0.1521 0.1674✓ 0.1692✓ 0.1988 0.2106✓ 0.2128✓ 0.3009 0.3154✓ 0.3058✓
segment 0.0811 0.0905✓ 0.0876✓ 0.1322 0.1389 0.1431✓ 0.2390 0.2704✓ 0.2372
sick 0.0761 0.0792✓ 0.0745 0.1297 0.1257✗ 0.1418✓ 0.2313 0.2402✓ 0.2294
sonar 0.2433 0.3106 0.3558✓ 0.2914 0.3548✓ 0.3414✓ 0.3606 0.4010✓ 0.4125✓
soybean 0.1318 0.1488✓ 0.1280 0.1833 0.1719 0.1921 0.3101 0.3330✓ 0.2977
vehicle 0.2525 0.2648✓ 0.2624 0.2799 0.2730 0.3109✓ 0.3801 0.3965✓ 0.3868
vote 0.1195 0.1311 0.1140 0.1710 0.1766 0.2014 0.2427 0.2405 0.2519
vowel 0.2039 0.1756✗ 0.2146 0.2499 0.2572 0.2731 0.3432 0.4390✓ 0.3701✓
waveform 0.1808 0.1867 0.1822 0.2250 0.2233✗ 0.2475✓ 0.3102 0.3208✓ 0.3115
yeast 0.4412 0.4522 0.4473 0.4747 0.4771 0.4699 0.5220 0.5448✓ 0.5283
zip 0.0668 0.0769✓ 0.0698✓ 0.1207 0.1220✓ 0.1295✓ 0.2142 0.2374✓ 0.2199✓
zoo 0.1760 0.2278 0.1900 0.1642 0.1840✓ 0.1977✓ 0.2535 0.2813✓ 0.2773
win/loss 24/2 18/1 13/3 28/0 22/1 20/2
✓/✗ significantly worse/better than NLBP method using F test.

Table 7: Summary of test error results for ensembles with a neural network using 5x2cv with noise
levels of 5%, 10%, and 20%.
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Data Set 5% 10% 20%
NLBP Bagging AdaB NLBP Bagging AdaB NLBP Bagging AdaB

anneal 0.0722 0.0973✓ 0.0922 0.1399 0.1817✓ 0.1757✓ 0.2702 0.3156✓ 0.3200✓
audiology 0.3460 0.3027 0.3106 0.3717 0.3566✗ 0.3593✗ 0.5620 0.5195✗ 0.5204✗
autos 0.3871 0.3413✗ 0.3725 0.4214 0.3853 0.3911 0.5288 0.5307 0.5367
balance 0.1296 0.3567✓ 0.2586✓ 0.1718 0.2883✓ 0.3082✓ 0.3139 0.4198✓ 0.4292✓
breast-c 0.3014 0.3007 0.3469 0.3455 0.3881✓ 0.4028✓ 0.3993 0.4182 0.4392✓
card 0.2029 0.1893 0.1942 0.2371 0.2313 0.2386 0.3495 0.3551 0.3649
dermatol. 0.0891 0.1060 0.0951 0.1563 0.1836✓ 0.1776✓ 0.2311 0.2475✓ 0.2503✓
ecoli 0.1976 0.2125✓ 0.2167 0.2494 0.2923✓ 0.2976✓ 0.2881 0.3298✓ 0.3500✓
gene 0.1542 0.1312✗ 0.1451 0.2023 0.1746✗ 0.1996 0.3242 0.2905✗ 0.3227
german 0.2916 0.2912 0.2974 0.3126 0.3320 0.3292 0.3796 0.3904 0.4086✓
glass 0.3841 0.3710 0.3729 0.4393 0.4047 0.4112 0.4738 0.4467 0.4645
glass-g2 0.2627 0.2418 0.2455 0.3350 0.2982 0.3153 0.3316 0.3168 0.3608
heart 0.2445 0.2607 0.2652 0.2941 0.3200 0.3437✓ 0.3378 0.3667 0.3830
heart-c 0.2311 0.2583✓ 0.2583✓ 0.2921 0.3066 0.3175✓ 0.3536 0.3960✓ 0.3987
hepatitis 0.2259 0.2296 0.2308 0.3021 0.2763✗ 0.2983✗ 0.2956 0.3047 0.3073
horse 0.3637 0.3522 0.3610 0.3923 0.3995 0.4099 0.4698 0.5066 0.5094✓
ionosph. 0.1459 0.1305 0.1464 0.1715 0.1881 0.1898 0.2706 0.2957 0.3031
iris 0.1027 0.1094 0.1027 0.1147 0.1707✓ 0.1720✓ 0.3173 0.3560✓ 0.3667✓
isolet 0.1152 0.2102✓ 0.1706✓ 0.1646 0.2489✓ 0.2189✓ 0.2635 0.3215✓ 0.3202✓
labor 0.1050 0.1085 0.1117 0.1863 0.1898 0.1792 0.3576 0.3825 0.3785
led24 0.4350 0.4120 0.4150 0.5270 0.4850 0.4970 0.5860 0.5480 0.5610
letter 0.1645 0.2106✓ 0.1893✓ 0.2137 0.2499✓ 0.2502✓ 0.3222 0.3709✓ 0.3782✓
liver 0.3768 0.3698 0.3565 0.3843 0.3663 0.3722 0.4493 0.4337 0.4482
lrs 0.1737 0.1936 0.1959✓ 0.2098 0.2219✓ 0.2174 0.3081 0.3326 0.3296
lymph. 0.2838 0.2838 0.2865 0.2906 0.3203 0.3230 0.3460 0.3851✓ 0.4081✓
optdigits 0.0700 0.0873✓ 0.0716 0.1207 0.1352✓ 0.1244 0.2223 0.2310✓ 0.2311✓
page-b 0.0794 0.0842✓ 0.0849✓ 0.1311 0.1400✓ 0.1389✓ 0.2312 0.2528✓ 0.2526✓
pendigits 0.0588 0.0680✓ 0.0614✓ 0.1080 0.1167✓ 0.1154✓ 0.2118 0.2247✓ 0.2245✓
phoneme 0.2110 0.1814 0.1716✗ 0.2563 0.2075✗ 0.2245 0.3247 0.3007✗ 0.3340
pima 0.2794 0.2857 0.2927 0.3169 0.3372 0.3331 0.3818 0.3974 0.4083✓
primary-t 0.5941 0.6135 0.6064 0.6430 0.6519 0.6814 0.6902 0.7126 0.7338✓
promoters 0.2358 0.2113 0.1887 0.2793 0.2264✗ 0.2547 0.4151 0.4170 0.4170
satimage 0.1385 0.1476✓ 0.1391 0.1833 0.1903✓ 0.1860✓ 0.2849 0.2853 0.2864
segment 0.0820 0.0827 0.0887✓ 0.1345 0.1448✓ 0.1483✓ 0.2446 0.2549 0.2613✓
sick 0.0871 0.0674✗ 0.0720✗ 0.1422 0.1290✗ 0.1442 0.2387 0.2521 0.2818✓
sonar 0.3039 0.2692 0.2769 0.3433 0.3308 0.3260 0.3442 0.3577 0.3837✓
soybean 0.1256 0.1616✓ 0.1529 0.1754 0.2234✓ 0.2100✓ 0.3051 0.3640✓ 0.3643✓
vehicle 0.2645 0.3024✓ 0.3111✓ 0.2976 0.3303✓ 0.3343✓ 0.4047 0.4388✓ 0.4310
vote 0.1154 0.1310 0.1297 0.1697 0.1904✓ 0.1959 0.2349 0.2630✓ 0.2731✓
vowel 0.1758 0.2085✓ 0.1957 0.2244 0.2628✓ 0.2554✓ 0.3321 0.3667✓ 0.3675✓
waveform 0.1821 0.2028✓ 0.2045✓ 0.2260 0.2432✓ 0.2487✓ 0.3142 0.3292 0.3364✓
yeast 0.4464 0.4580 0.4625✓ 0.4791 0.4945 0.4988 0.5367 0.5566✓ 0.5616✓
zip 0.0676 0.1107✓ 0.0874✓ 0.1201 0.1596✓ 0.1404✓ 0.2171 0.2390✓ 0.2383✓
zoo 0.1859 0.1799 0.2016 0.1841 0.1702 0.2038 0.2653 0.2594 0.2713
win/loss 15/3 12/2 20/6 19/2 18/3 25/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 8: Summary of test error results for ensembles with a C4.5 tree using 5x2cv with noise levels
of 5%, 10%, and 20%.
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Data Set 5% 10% 20%
NLBP Bagging AdaB NLBP Bagging AdaB NLBP Bagging AdaB

anneal 0.0757 0.1031✓ 0.1238✓ 0.1635 0.1682 0.2007✓ 0.3114 0.3027 0.3575✓
audiology 0.3469 0.3522 0.5611✓ 0.5620 0.4265✗ 0.4310✗ 0.6691 0.5761✗ 0.6035
autos 0.3881 0.3803 0.4671✓ 0.4643 0.4262 0.4418 0.5630 0.5463 0.5727
balance 0.1088 0.1264✓ 0.1760✓ 0.1626 0.1680 0.2003✓ 0.3094 0.3146 0.3421✓
breast-c 0.3182 0.3602✓ 0.4147✓ 0.3727 0.3930✓ 0.4301✓ 0.4154 0.4273 0.4594
card 0.2180 0.2658✓ 0.3049✓ 0.2826 0.2907 0.3249✓ 0.3875 0.3899 0.4160✓
dermatol. 0.1011 0.0896 0.1465✓ 0.1667 0.1656 0.2197✓ 0.2574 0.2579 0.3344✓
ecoli 0.1887 0.1839 0.2732✓ 0.2476 0.2488 0.3226✓ 0.2792 0.2798 0.3607✓
gene 0.1857 0.2050✓ 0.3099✓ 0.3482 0.2584 0.2869 0.3244 0.3707✓ 0.4001✓
german 0.3000 0.3150✓ 0.3150 0.3242 0.3310✓ 0.3394 0.3780 0.3800 0.3872
glass 0.3729 0.3841 0.4028 0.4327 0.4439 0.4823 0.4682 0.4907✓ 0.5252✓
glass-g2 0.2651 0.2652 0.2565 0.3276 0.3117✗ 0.3351 0.3192 0.3266 0.3425
heart 0.2333 0.2459 0.2852✓ 0.2830 0.3104✓ 0.3622✓ 0.3452 0.3763 0.3978✓
heart-c 0.2537 0.2596✓ 0.3192✓ 0.2914 0.3033 0.3576✓ 0.3715 0.3854 0.4245✓
hepatitis 0.2194 0.2299 0.2284 0.2866 0.2724 0.2879 0.2866 0.3111 0.3278
horse 0.3709 0.3989✓ 0.3989 0.4116 0.4220 0.4160 0.4846 0.4808 0.4879
ionosph. 0.1026 0.1066 0.1391✓ 0.1738 0.1721 0.2165✓ 0.2684 0.2712 0.3253✓
iris 0.0746 0.0760 0.1013 0.1027 0.1040 0.1414 0.3133 0.3013 0.3347
isolet 0.1101 0.1675✓ 0.1721✓ 0.1839 0.2144✓ 0.2286✓ 0.2893 0.3163✓ 0.3375✓
labor 0.0979 0.0915 0.1224 0.2005 0.2246 0.2491✓ 0.3510 0.3791 0.4179✓
led24 0.4040 0.4270 0.4730✓ 0.5270 0.5120 0.5360 0.5910 0.5740 0.6010
letter 0.1859 0.1716✗ 0.2432 0.2399 0.2286 0.2683✓ 0.3507 0.3647✓ 0.4168✓
liver 0.3519 0.3478 0.3762 0.3629 0.3588 0.3890 0.4209 0.4238 0.4592✓
lrs 0.1752 0.1789 0.2079✓ 0.2554 0.2268 0.2931 0.3627 0.3439 0.4620
lymph. 0.2838 0.3392✓ 0.3176 0.2906 0.4054✓ 0.3325 0.3730 0.4297✓ 0.4216
optdigits 0.0730 0.0975✓ 0.1339✓ 0.1276 0.1736✓ 0.2368✓ 0.2453 0.2857✓ 0.3411✓
page-b 0.0865 0.0894 0.0919 0.1346 0.1495✓ 0.1388 0.2381 0.2598✓ 0.2396
pendigits 0.0605 0.0571✗ 0.0997✓ 0.1113 0.1092 0.1611✓ 0.2171 0.2176 0.2375✓
phoneme 0.2155 0.1988✗ 0.1990 0.2496 0.2333 0.2362 0.3171 0.3048 0.3086
pima 0.2755 0.2825 0.3253✓ 0.3047 0.3250 0.3664✓ 0.3750 0.3878 0.4255✓
primary-t 0.6094 0.6542✓ 0.6537✓ 0.6519 0.6955✓ 0.6955✓ 0.7209 0.7327 0.7339
promoters 0.2075 0.1981 0.2226 0.2528 0.2604 0.2812 0.4736 0.4208 0.4227
satimage 0.1500 0.1401✗ 0.1630✓ 0.1969 0.1877✗ 0.2244✓ 0.2947 0.2930 0.3498✓
segment 0.0915 0.0994✓ 0.1251✓ 0.1547 0.1545 0.1829✓ 0.2464 0.2563✓ 0.2856✓
sick 0.1037 0.0863✗ 0.1127✓ 0.1505 0.1439✗ 0.1785✓ 0.2424 0.2479 0.2969✓
sonar 0.2250 0.2914✓ 0.3240✓ 0.2798 0.3442✓ 0.3442✓ 0.3356 0.3846✓ 0.4010✓
soybean 0.1707 0.1423 0.1699 0.2264 0.1994 0.2407 0.3719 0.3327✗ 0.3857
vehicle 0.2456 0.2896✓ 0.3104✓ 0.2757 0.3187✓ 0.3612✓ 0.3913 0.4348✓ 0.4875✓
vote 0.1117 0.1196 0.1449✓ 0.1628 0.1825 0.1977 0.2290 0.2524 0.2763✓
vowel 0.1394 0.1366 0.1703✓ 0.1994 0.2077 0.2642✓ 0.3174 0.3123 0.3950✓
waveform 0.1955 0.1899 0.2118✓ 0.2379 0.2340 0.2436✓ 0.3178 0.3249 0.3295✓
yeast 0.4445 0.4507 0.4688✓ 0.4725 0.4873✓ 0.4965✓ 0.5217 0.5368 0.5040
zip 0.0752 0.0896✓ 0.1296✓ 0.1305 0.1445✓ 0.1801✓ 0.2276 0.2418✓ 0.2591✓
zoo 0.1701 0.1701 0.1743 0.1603 0.1603 0.1821 0.2358 0.2317 0.3031✓
win/loss 16/5 29/0 12/4 25/1 11/2 27/0
✓/✗ significantly worse/better than NLBP method using F test.

Table 9: Summary of test error results for ensembles with a SVM using 5x2cv with noise levels of
5%, 10%, and 20%.
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Data Set Neural network C4.5 SVM
NLBP ADABOOST.MH NLBP ADABOOST NLBP ADABOOST

anneal 0.0100 0.0100 0.0118 0.0102 0.0102 0.0278✓
audiology 0.2513 0.2611 0.2823 0.2504 0.2938 0.2779
autos 0.3082 0.3247✓ 0.2867 0.2633 0.2945 0.3121
balance 0.0544 0.0502 0.0803 0.2038✓ 0.0570 0.0614
breast-c 0.3336 0.3769✓ 0.2762 0.3189✓ 0.2944 0.3748✓
card 0.1487 0.1797✓ 0.1548 0.1551 0.1603 0.2392✓
dermatol. 0.0273 0.0268 0.0301 0.0317 0.0323 0.0361
ecoli 0.1607 0.2006✓ 0.1506 0.1768✓ 0.1542 0.1863✓
gene 0.0977 0.1036✓ 0.1295 0.0798✗ 0.1158 0.1208
german 0.2724 0.2868 0.2668 0.2740 0.2892 0.2968
glass 0.3327 0.3505 0.3252 0.3019 0.3187 0.3393✓
glass-g2 0.2197 0.2466✓ 0.2284 0.1841 0.2136 0.2858✓
heart 0.1963 0.2356✓ 0.1852 0.2208✓ 0.1845 0.2089✓
heart-c 0.1835 0.2238✓ 0.1801 0.2172✓ 0.1861 0.2043✓
hepatitis 0.2052 0.2156✓ 0.1936 0.2001 0.2001 0.2000
horse 0.3412 0.3725✓ 0.3297 0.3423 0.3330 0.3643✓
ionosph. 0.1282 0.1492✓ 0.0638 0.0792✓ 0.0980 0.0667
iris 0.0507 0.0454 0.0427 0.0534 0.0427 0.0493
isolet 0.0715 0.0673 0.0756 0.1258✓ 0.0649 0.1358✓
labor 0.1432 0.1541✓ 0.1192 0.1087 0.1468 0.2006✓
led24 0.3750 0.4130✓ 0.4300 0.3810 0.3850 0.4290✓
letter 0.1734 0.1893 0.1172 0.1236 0.1022 0.1006
liver 0.3217 0.3414✓ 0.3339 0.3327 0.3426 0.3518
lrs 0.1119 0.1266✓ 0.1179 0.1364✓ 0.1205 0.1251
lymph. 0.1757 0.2095✓ 0.1757 0.1878 0.1932 0.2662✓
optdigits 0.0204 0.0187 0.0241 0.0222 0.0222 0.0221
page-b 0.0339 0.0340 0.0317 0.0303 0.0333 0.0411✓
pendigits 0.0107 0.0064✗ 0.0090 0.0095 0.0059 0.0066
phoneme 0.1844 0.1614 0.1405 0.1096✗ 0.1712 0.1546
pima 0.2471 0.2695✓ 0.2482 0.2674 0.2375 0.2914✓
primary-t 0.5698 0.6064✓ 0.5822 0.5970 0.6141 0.6366
promoters 0.2094 0.2227 0.2264 0.2245 0.2302 0.2189
satimage 0.1067 0.1097✓ 0.0955 0.0938 0.0939 0.0965
segment 0.0433 0.0363 0.0382 0.0225✗ 0.0371 0.0410
sick 0.0465 0.0270 0.0399 0.0151✗ 0.0566 0.0344✗
sonar 0.2231 0.2519✓ 0.2202 0.2375 0.2087 0.2452✓
soybean 0.0656 0.0706 0.0679 0.0647 0.0688 0.0726
vehicle 0.2002 0.2017 0.2445 0.2513 0.2185 0.2307
vote 0.0529 0.0620 0.0556 0.0556 0.0483 0.0579
vowel 0.0972 0.0717✗ 0.0937 0.1301✓ 0.0576 0.0456
waveform 0.1361 0.1493✓ 0.1473 0.1685✓ 0.1481 0.1639✓
yeast 0.4186 0.4146 0.4054 0.4408✓ 0.4151 0.4320✓
zip 0.0153 0.0139 0.0206 0.0380✓ 0.0160 0.0188✓
zoo 0.0592 0.0592 0.0789 0.0713 0.0474 0.0903✓
win/loss 21/2 12/4 20/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 10: Summary of test error results for ensembles with a neural network, a C4.5 tree and a
SVM as base classifiers and the size of the ensemble obtained by cross-validation.
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23/0. We can say that the conclusions obtained using 50 classifiers also hold for the results obtained
estimating the size of the ensemble by cross-validation.

Table 11 shows the average size of the ensembles. The most interesting result is the fact that
most of the ensembles are in the interval between 20 and 30 classifiers. As we have stated, this
agrees with most previous work that found little gain in terms of error after about 25 classifiers had
been added. It is also interesting to note that, typically, both methods, NLBP and ADABOOST find
similar sizes of the ensemble.

6. Conclusions and Future Work

In this paper we have presented a new approach for ensemble construction based on nonlinear
projections of the original training instances. The projections are obtained by means of a neural
network and are aimed to make the classification of difficult instances easier. This idea is taken from
boosting methods, but in contrast with these methods our method does neither resample or weight
the instances in the training set. This avoids the drawbacks of either resampling/reweighting, such
as poor performance on small data sets and sensitivity to noise.

The only drawback of the proposed method is the necessity of training an additional neural
network each time a new classifier must be added to the ensemble. Nevertheless, this network is
only trained with the instances misclassified by the previous classifier, so the time needed for its
training is much reduced.

We have compared the performance of this method against the performance of bagging, Arc-
x4 and several boosting methods. The comparison was made using a fairly large set of real-world
problems. Our method showed very good results in terms of test error that clearly outperformed
bagging, Arc-x4, and different boosting algorithms. κ-error diagrams showed the ability of the
proposed algorithm to improve diversity among classifiers without dramatically affecting accuracy.
This improvement of performance has been assessed using ensembles of fixed size and ensembles
of variable size obtained by cross-validation.

Additional experiments have been made to test the sensitivity to noise of this approach. These
experiments have shown that NLBP is less sensitive to noise than boosting methods, and at least as
good as bagging.

We believe that this work opens a new and interesting approach to ensemble construction. Based
on the main idea of boosting, that is putting more effort into difficult instances, our approach tries
to make the classification of these instances easier without disregarding the instances correctly clas-
sified so far. The advantages of this approach have been highlighted by the results presented in this
paper. Moreover, an interesting research line opens in which we can devise alternative projection
methods that take into account the classification of a subset of instances.

Our future work is mainly directed towards two goals. Firstly, we are working on developing a
more theoretical view of our method, that may explain the good experimental results reported here.
Secondly, we have experienced some problems with the use of a neural network for the non-linear
projections, due to the facility with which the outputs of the hidden nodes of the network saturate,
making the projection less efficient. We are working on alternative supervised non-linear projection
that can improve the performance of the method.
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Data Set Neural network C4.5 SVM
NLBP ADABOOST.MH NLBP ADABOOST NLBP ADABOOST

anneal 16.9 16.8 20.0 18.9 17.4 19.3
audiology 17.7 19.4 25.5 20.5 18.2 14.1
autos 16.0 20.0 21.1 20.6 19.0 13.8
balance 21.6 20.7 21.6 23.0 23.0 21.5
breast-c 20.4 20.1 21.1 20.8 18.6 20.1
card 23.2 23.6 22.0 24.1 24.9 21.7
dermatol. 16.9 17.5 16.7 19.6 18.1 12.6
ecoli 20.5 20.8 20.5 21.9 19.7 20.0
gene 28.5 23.2 25.0 28.8 29.9 16.5
german 23.3 21.5 19.5 24.2 18.9 21.9
glass 18.5 20.1 21.0 22.8 18.0 22.3
glass-g2 19.8 21.5 20.8 22.1 19.6 15.1
heart 18.6 20.0 22.0 24.8 19.0 13.7
heart-c 21.4 22.1 20.8 22.5 19.0 14.6
hepatitis 18.7 18.9 19.6 21.2 18.3 20.5
horse 20.6 20.5 22.1 22.8 21.1 18.1
ionosph. 20.3 18.0 18.0 22.9 18.5 19.1
iris 15.5 16.2 16.8 17.1 15.5 16.7
isolet 28.5 27.9 46.0 49.2 15.7 11.3
labor 16.0 16.0 15.3 17.5 16.0 16.3
led24 20.0 16.4 24.0 17.9 17.5 12.8
letter 28.5 38.5 41.2 36.7 17.2 22.5
liver 23.3 21.0 18.5 23.5 16.0 22.0
lrs 19.0 18.9 19.2 23.0 19.5 13.7
lymph. 17.1 17.5 20.1 21.4 19.3 21.7
optdigits 24.4 26.2 30.5 35.4 15.9 14.8
page-b 23.4 21.6 23.0 21.9 21.0 20.4
pendigits 26.2 25.6 28.7 34.4 18.7 21.8
phoneme 20.0 25.2 21.5 31.9 17.0 22.3
pima 25.0 21.4 24.7 22.2 22.4 22.1
primary-t 21.0 10.8 13.9 11.3 11.4 10.4
promoters 16.5 17.0 16.0 22.1 14.0 12.8
satimage 23.3 26.4 26.6 33.4 16.4 20.2
segment 23.3 21.6 25.0 24.2 23.8 23.2
sick 15.5 22.4 19.7 23.8 15.0 20.6
sonar 19.5 19.2 22.0 23.6 22.0 14.3
soybean 20.1 20.6 18.0 22.1 20.7 14.6
vehicle 21.5 22.2 22.9 26.7 23.8 22.1
vote 18.4 18.6 17.9 20.5 19.5 19.6
vowel 24.0 25.0 27.9 30.7 22.8 22.1
waveform 23.0 25.5 28.4 33.9 16.8 17.1
yeast 22.6 24.5 29.0 22.0 22.3 21.9
zip 23.9 25.1 39.4 41.9 12.2 15.2
zoo 14.9 15.5 18.5 16.9 15.1 18.1

Table 11: Summary of sizes for ensembles with a neural network, a C4.5 tree and a SVM as base
classifiers and the size of the ensemble obtained by cross-validation.
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Abstract
Consider the problem of learning logistic-regression models for multiple classification tasks, where
the training data set for each task is not drawn from the same statistical distribution. In such a
multi-task learning (MTL) scenario, it is necessary to identify groups of similar tasks that should
be learned jointly. Relying on a Dirichlet process (DP) based statistical model to learn the extent
of similarity between classification tasks, we develop computationally efficient algorithms for two
different forms of the MTL problem. First, we consider a symmetric multi-task learning (SMTL)
situation in which classifiers for multiple tasks are learned jointly using a variational Bayesian
(VB) algorithm. Second, we consider an asymmetric multi-task learning (AMTL) formulation in
which the posterior density function from the SMTL model parameters (from previous tasks) is
used as a prior for a new task: this approach has the significant advantage of not requiring storage
and use of all previous data from prior tasks. The AMTL formulation is solved with a simple
Markov Chain Monte Carlo (MCMC) construction. Experimental results on two real life MTL
problems indicate that the proposed algorithms: (a) automatically identify subgroups of related
tasks whose training data appear to be drawn from similar distributions; and (b) are more accurate
than simpler approaches such as single-task learning, pooling of data across all tasks, and simplified
approximations to DP.
Keywords: classification, hierarchical Bayesian models, Dirichlet process

1. Introduction

A real world classification task can often be viewed as consisting of multiple correlated subtasks.
In remote sensing, for example, one may have multiple sets of data, each collected at a particular
geographical location; rather than designing individual classifiers for each of these sensing tasks,
it is desirable to share data across tasks to enhance overall sensing performance. This represents a
typical example of a general learning scenario called multi-task learning (MTL) (Caruana, 1997), or
learn to learn (Thrun and Pratt, 1998). In contrast to MTL, single-task learning (STL) refers to the
approach of learning one classification task at a time, only using the corresponding data set; often
STL assumes that the training samples are drawn independently from an identical distribution. MTL
is distinct from standard STL in two principal respects: (i) the tasks are not identical, thus simply
pooling them and treating them as a single task is not appropriate; and (ii) some of the classification
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tasks may be highly correlated (dependent on each other), but the strategy of isolating each task and
learning the corresponding classifier independently does not exploit the potential information one
may acquire from other classification tasks.

The fact that some of the classification tasks are correlated (dependent) implies that what is
learned from one task is transferable to another. By learning the classifiers in parallel under a
unified representation, the transferability of expertise between tasks is exploited to the benefit of all.
This expertise transfer is particularly important when we are provided with only a limited amount
of training data for learning each classifier. By exploiting data from related tasks, the training data
for each task is strengthened and the generalization of the resulting classifier-estimation algorithm
is improved.

1.1 Previous Work on MTL

Multi-task learning has been the focus of much interest in the machine learning community over the
last decade. Typical approaches to information transfer among tasks include: sharing hidden nodes
in neural networks (Baxter, 1995, 2000; Caruana, 1997); placing a common prior in hierarchical
Bayesian models (Yu et al., 2003, 2004, 2005; Zhang et al., 2006); sharing parameters of Gaussian
processes (Lawrence and Platt, 2004); learning the optimal distance metric for K-Nearest Neighbors
(Thrun and O’Sullivan, 1996); sharing a common structure on the predictor space (Ando and Zhang,
2005); and structured regularization in kernel methods (Evgeniou et al., 2005), among others.

In statistics, the problem of combining information from similar but independent experiments
has been studied under the category of meta-analysis (Glass, 1976) for a variety of applications
in medicine, psychology and education. Researchers collect data from experiments performed at
different sites or times—including information from related experiments published in literature—to
obtain an overall evaluation on the significance of an experimental effect. Therefore, meta-analysis
is also referred to as quantitative synthesis, or overview. The objective of multi-task learning is
different from that of meta analysis. Instead of giving an overall evaluation, our objective is to learn
multiple tasks jointly, either to improve the learning performance (i.e., classification accuracy) of
each individual task, or to boost the performance of a new task by transferring domain knowledge
learned from previously observed tasks. Despite the difference in objectives, many of the techniques
employed in the statistical literature on meta-analysis can be applied to multi-task learning as well.

1.1.1 DIRICHLET PROCESSES FOR NONPARAMETRIC HIERARCHICAL BAYESIAN MODELING

Hierarchical Bayesian modeling is one of the most important methods for meta analysis (Burr and
Doss., 2005; Dominici et al., 1997; Hoff, 2003; Müller et al., 2004; Mallick and Walker, 1997).
Hierarchical Bayesian models provide the flexibility to model both the individuality of tasks (ex-
periments), and the correlations between tasks. Statisticians refer to this approach as “borrowing
strength” across tasks. Usually the bottom layer of the hierarchy is individual models with task-
specific parameters. On the layer above, tasks are connected together via a common prior placed on
those parameters. The hierarchical model can achieve efficient information-sharing between tasks
for the following reason. Learning of the common prior is also a part of the training process, and
data from all tasks contribute to learning the common prior, thus making it possible to transfer
information between tasks (via sufficient statistics). Given the prior, individual models are learnt
independently. As a result, the estimation of a classifier (task) is affected by both its own training
data and by data from the other tasks related through the common prior.
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Often, the common prior in a hierarchical Bayesian model is specified in a parametric form with
unknown hyper-parameters, for example, a Gaussian distribution with unknown mean and variance.
Information is transferred between tasks by learning those hyper-parameters using data from all
tasks. However, it is preferable to also learn the functional form of the common prior from the data,
instead of being pre-defined. In this paper, we provide such a nonparametric hierarchical Bayesian
model for jointly learning multiple logistic regression classifiers. Such nonparametric approaches
are desirable because it is often difficult to know what the true distribution should be like, and an
inappropriate prior could be misleading. Further, the model parameters of individual tasks may have
high complexity, and therefore no appropriate parametric form can be found easily.

In the proposed nonparametric hierarchical Bayesian model, the common prior is drawn from
the Dirichlet process (DP). The advantage of applying the DP prior to hierarchical models has been
addressed in the statistics literature, see for example Mukhopadhyay and Gelfand (1997), Mallick
and Walker (1997) and Müller et al. (2004). Research on the Dirichlet process model goes back to
Ferguson (1973), who proved that there is positive (non-zero) probability that some sample function
of the DP will be as close as desired to any probability function defined on the same support set.
Therefore, the DP is rich enough to model the parameters of individual tasks with arbitrarily high
complexity, and flexible enough to fit them well without any assumption about the functional form
of the prior distribution.

1.1.2 IDENTIFYING THE EXTENT OF SIMILARITIES BETWEEN TASKS IN MTL

A common assumption in the previous literature on MTL work is that all tasks are (equally) related
to each other, but recently there have been a few investigations concerning the extent of relatedness
between tasks. An ideal MTL algorithm should be able to automatically identify similarities be-
tween tasks and only allow similar tasks to share data or information. Thrun and O’Sullivan (1996)
first presented a task-clustering algorithm with K-Nearest Neighbors. Bakker and Heskes (2003)
model the common prior in the hierarchical model as a mixture distribution, but two issues exist in
that work: (i) Extra “high-level” task characteristics, other than the features used for learning the
model parameters of individual tasks, are needed to decide the relative weights of mixture compo-
nents; and (ii) the number of mixtures is a pre-defined parameter. Both these issues are avoided
in the models presented here. Based only on the features and class labels, the proposed statistical
models automatically identify the similarities between the various tasks and adjust the complexity
of the model, that is, the number of task clusters, relying on the implicit nonparametric clustering
mechanism of the DP (see Sec. 2).

Before we proceed with the technical details, we clarify two issues about task-similarity. First,
we define two classification tasks as similar when the two classification boundaries are close, that is,
when the weight vectors of two classifiers are similar. Note that this is different from some previous
work such as Caruana (1997) where two tasks are defined to be similar if they use the same features
to make their decision.

Secondly, the property that the distributions drawn from a Dirichlet process are discrete with
probability one introduces questions, because it implies that we cluster identical tasks instead of
similar tasks. This may appear restricting, but for the following reasons this is not the case. We are
interested in the posterior distribution of the model parameters when we learn a model with Bayesian
methods. The posterior is decided by both the prior of the parameters and the data likelihood given
the parameters. If the DP prior is employed, the prior promotes clustering while the likelihood
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encourages the fitting of the parameters of individual classifiers to their own data. Therefore, the
model parameters learned for any task are the result of the tradeoff between sharing with other tasks
and retaining the individuality of the current task. This gives similar tasks the chance to share the
same model parameters.

As discussed above, the direct use of DP yields identical parameter estimates to similar tasks.
One may more generally wish to give similar (but not identical) parameters to similar tasks. This
may be accomplished by adding an additional layer of randomness, that is, modeling the prior of
the model parameters as a DP mixture (DPM) (Antoniak, 1974), which is a usual solution to the
discrete character of DP. We have compared the models with the DPM prior and the DP prior and
found that the former underperforms the latter in all our empirical experiments. We hypothesize
that this result is attributable to the increase in model complexity, since the DPM prior introduces
one more layer in the hierarchical model than the DP prior. Therefore, in this paper we only present
the approach of placing a DP prior on the the model parameters of individual tasks.

1.2 Novel Contributions of this Paper

We develop novel solutions to the following problems: (i) joint learning of multiple classification
tasks, which may differ in data statistics due to temporal, geographical or other variations; (ii) effi-
cient transfer of the information learned from (i) to a new observed task for the purpose of improving
the new task’s learning performance. For notational simplification, problem (i) is referred as SMTL
(symmetric multi-task learning) and problem (ii) as AMTL (asymmetric multi-task learning). Our
discussion is focused on classification tasks, although the proposed methods can be extended di-
rectly to regression problems.

The setting of the SMTL is similar to that used in meta analysis. Most meta-analysis work
considers only simple linear models for regression problems. Mukhopadhyay and Gelfand (1997)
and Ishwaran (2000) discuss the application of DP priors in the general framework of generalized
linear models (GLMs). They use the mixed random effects model to capture heterogeneity in the
population studied in an experiment. The fixed effects are modeled with a parametric prior while
the random effects are mixed over DP. Our work is closely related to their research, in that the
logistic regression model, which we use for classification, is a special case of GLMs. Yet, we
modify the model to suit the multi-task setting. First, we group the population by task and add
an additional constraint that each group share the same model. Second, we place a DP prior on
the whole vector of linear coefficients, including both fixed effects and random effects. The linear
coefficients of covariates in the logistic regression model correspond to the classifiers in linear
classification problems. For our problem, it is too limiting to consider only the variability in the
random effect, that is, the intercept of the classification boundary; the variability in the orientation
of the classification boundary should be considered as well.

The inference techniques employed here constitute a major difference between our SMTL part
and the work of Mukhopadhyay and Gelfand (1997) and Ishwaran (2000). Mukhopadhyay and
Gelfand (1997) use Gibbs sampling based on the Polya Urn representation of DP, while Ishwaran
(2000) develops a Gibbs sampler based on the truncated stick-breaking representation of DP. In the
work reported here, the proposed SMTL models are implemented with a deterministic inference
method, specifically variational Bayesian (VB) inference, avoiding the overfitting associated with
maximum-likelihood (ML) approximations while preserving computational efficiency.
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The AMTL problem addressed here is a natural extension of SMTL. In AMTL the compu-
tational burden is relatively small and thus a means of Monte Carlo integration with acceptance-
rejection is suggested to make predictions for the new task. We note that Yu et al. (2004) propose
a hierarchical Bayesian framework for information filtering, which similarly applies a DP prior on
individual user profiles. However, due to limitations of the approximate DP prior employed in Yu
et al. (2004), their approach differs from ours in two respects: (i) it cannot be used to improve the
classification performance of multiple tasks by learning them in parallel, that is, it is not a solution
to the SMTL problem; and (ii) in the AMTL case, their approach conducts an effective information
transfer to the new observed task only when the size of the training set is large in previous tasks.
These points are clarified further in Section 4.

1.3 Organization of the Paper

The remainder of this paper is organized as follows. Section 2 provides an introduction to the
Dirichlet process and its application to data clustering. The SMTL problem is addressed in Section
3, which describes the proposed Bayesian hierarchical framework and presents a variational infer-
ence algorithm. Section 4 develops an efficient method of information transfer for the AMTL case
and compares it with the method presented by Yu et al. (2004). Experimental results are reported in
Section 5, demonstrating the application of the proposed models to a landmine detection and an art
image retrieval problem. Section 6 concludes the work and outlines future directions.

2. Dirichlet Process

Assume the model parameters of individual tasks, denoted by w, are drawn from a common prior
distribution G. The distribution G itself is sampled from a Dirichlet process DP(α,G0), where
α is a positive scaling (innovation) parameter and G0 is a base distribution. The mathematical
representation of the DP model is

wm|G ∼ G,

G ∼ DP(α,G0).

where m= 1, . . . ,M forM tasks.
Integrating out G, the conditional distribution of wm, given observations of the other M− 1 w

values w−m = {w1, · · · ,wm−1,wm+1, · · · ,wM}, is

p(wm|w−m,α,G0) =
α

M−1+α
G0+

1
M−1+α

M

∑
j=1, j #=m

δw j , (1)

where δw j is the distribution concentrated at the single point w j.
Let w∗

k , k = 1, . . . ,K, denote the K distinct values among w1, . . . ,wM and n−m,k denote the num-
ber of w’s equal to w∗

k , excluding wm. Equation (1) can be rewritten as

p(wm|w−m,α,G0) =
α

M−1+α
G0+

1
M−1+α

K

∑
k=1

n−m,kδw∗
k
. (2)

Relevant observations concerning (2) are: (i) the Dirichlet process model has an implicit mech-
anism of clustering samples into groups, since a new sample prefers to join a group with a large
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population; (ii) the model is flexible, creating new clusters or merging existing clusters to fit the
observed data better; (iii) parameter α controls the probability of creating a new cluster, with larger
α yielding more clusters; (iv) in the limit as α→ ∞ there is a cluster for each w, and since w are
drawn from G0, limα→∞G= G0.

The Dirichlet Process has the following important properties:

1. E[G] =G0; the base distribution represents our prior knowledge or expectation concerningG.

2. p(G|w1, . . . ,wM,α,G0) = DP(α+M, α
M+αG0 + 1

M+α

M
∑
j=1

δw j); the posterior of G is still a

Dirichlet process with the updated base distribution α
M+αG0+ 1

M+α

M
∑
j=1

δw j , and a confidence

in this base distribution that is enhanced relative to the confidence in the original base distri-
bution G0, reflected in the increased parameter α→ α+M.

The lack of an explicit form of G is addressed with the stick-breaking view of the Dirichlet
process. Sethuraman (1994) introduces a constructive definition of the Dirichlet process, based upon
which Ishwaran and James (2001) characterize the DP priors with a stick-breaking representation

G=
∞

∑
k=1

πkδw∗
k
, (3)

where

πk = vk
k−1

∏
i=1

(1− vi).

For each k, vk is drawn from a Beta distribution Be(1,α);1 simultaneously another random variable
w∗
k is drawn independently from the base distribution G0; w∗

k and πk represents the location and
weight of the kth stick.

If vK is set to one instead of being drawn from the beta distribution, it yields a truncated approx-
imation to the Dirichlet process

G=
K

∑
k=1

πkδw∗
k
.

Ishwaran and James (2001) establish two theorems for selecting an appropriate truncation level,
leading to a model virtually indistinguishable from the infinite DP model; the truncated DP model
is computationally more efficient in practice.

3. Learning Multiple Classification Tasks Jointly (SMTL)

In this section we propose a Bayesian multi-task learning model for jointly estimating classifiers for
several data sets. The model automatically identifies relatedness by task clustering with nonparamet-
ric methods. A variational Bayesian (VB) approximation is used to learn the posterior distributions
of the model parameters.

1. Notation for distributions follows Robert and Casella (2004); this same notation is used in the rest of the paper.
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3.1 Mathematical Model

Consider M tasks, indexed as 1, · · · ,M. Let the data set of task m be Dm = {(xm,n,ym,n) : n =
1, · · · ,Nm}, where xm,n ∈ Rd , ym,n ∈ {0,1}, and (xm,n,ym,n) are drawn i.i.d. from the underlying
distribution of task m. For task m the conditional distribution of ym,n given xm,n is modeled via
logistic regression as,

p(ym,n|wm,xm,n) = σ(wTmxm,n)ym,n [1−σ(wTmxm,n)]1−ym,n (4)

where σ(x) = 1
1+exp(−x) and wm parameterizes the classifier for taskm. The goal is to learn {wm}

M
m=1

jointly, sharing information between tasks as appropriate, so that the resulting classifiers can accu-
rately predict class labels for new test samples for tasks m= 1, · · · ,M.

To complete the hierarchical model, we place a Dirichlet process prior on the parameters wm,
which based on the discussion in Section 2 implies clustering of the tasks. The base distribution
G0 is specified as a d-dimensional multivariate normal distribution Nd(µ,Σ). We define an indicator
variable cm = [cm,1, . . . ,cm,∞]T , which is an all-zero vector except that the kth entry is equal to one
if task m belongs to cluster k, using the infinite set of mixture components (clusters) reflected in
(3). The data can be seen as drawn from the following generative model, obtained by employing the
stick-breaking view of DP:

SMTL Model. Given the parameters α, µ and Σ,

1. Draw vk from the Beta distribution Be(1,α) and independently draw w∗
k from the base distri-

bution Nd(µ,Σ), k = 1, . . . ,∞.

2. πk = vk
k−1
∏
i=1

(1− vi), k = 1, . . . ,∞.

3. Draw the indicators (cm,1, . . . ,cm,∞) from a multinomial distribution M∞(1;π1, . . . ,π∞), m =
1, . . . ,M

4. wm =
∞
∏
k=1

(w∗
k)
cm,k , or in an equivalent form wm =

∞
∑
k=1

cm,kw∗
k , m= 1, . . . ,M.

5. Draw ym,n from a Binomial distribution B(1,σ(wTmxm,n)), m= 1, . . . ,M, n= 1, · · · ,Nm.

We refer to this as symmetric multi-task learning (SMTL) because all tasks are treated symmet-
rically; asymmetric multi-task learning (AMTL) is addressed in Section 4.

3.1.1 HYPER-PRIORS

In the SMTL model, α, µ and Σ are given parameters. The scaling parameter α often has a strong
impact on the number of clusters, as analyzed in Section 2. To make the algorithm more robust, it
is suggested by West et al. (1994) that α be integrated over a diffuse hyper-prior. This leads to a
modified SMTL model:

SMTL-1 Model. Given the parameters µ, Σ and hyper-parameters τ10, τ20,

• Draw α from a Gamma distribution Ga(τ10,τ20).

• Follow Step 1-5 in the SMTL model.
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Similarly, we are also interested in the effects of integrating µ and Σ, the parameters of the
base distribution, over a diffuse prior. For notational simplification, we use Λ, the precision matrix
of the base distribution, instead of the covariance matrix Σ, where Λ = Σ−1. We assume Λ is a
diagonal matrix with diagonal elements λ1, · · · ,λd . The conjugate prior for the mean and precision
of a normal distribution is a Normal-Gamma distribution. Hence, the SMTL-1 model can be further
modified as

SMTL-2 Model. Given the hyper-parameters τ10, τ20, γ10, γ20 and β0,

• Draw λ j from a Gamma distribution Ga(γ10,γ20), j = 1, ...,d.

• Draw µ from a Normal distribution Nd(0,(β0Λ)−1); draw α from a Gamma distribution
Ga(τ10,τ20).

• Follow Step 1-5 in the SMTL model.

The performance of the SMTL-1 and SMTL-2 models is analyzed in Section 5.1.1.

3.1.2 GRAPHICAL REPRESENTATION

Figure 1 shows a graphical representation of the SMTL models with the Dirichlet process prior; the
two SMTL models differ in the ancestor nodes of w∗

k .
In the graph, each node denotes a random variable in the model. The nodes for ym,n and xm,n

are shaded because they are observed data. An arrow indicates dependence between variables, that
is, the conditional distribution of a variable given its parents. The number, for example, M, at the
lower right corner of a box indicates the nodes in that box haveM iid copies.

The condition distributions between the variables are specified as follows· ym,n

p(ym,n|cm,{w∗
k}∞k=1,xm,n) =

∞
∏
k=1

{σ(w∗
k
T xm,n)ym,n [1−σ(w∗

k
T xm,n)]1−ym,n}cm,k ,

m= 1, . . . ,M, n= 1, · · · ,Nm.· cm
p(cm|{vk}∞k=1) = vcm,1

1
∞
∏
k=2

[vk
k−1
∏
i=1

(1− vi)]cm,k , m= 1, . . . ,M.

· vk
p(vk|α) = α(1− vk)α−1, k = 1, . . . ,∞,· α
p(α|τ10,τ20) = τ

τ10
20

Γ(τ10)
ατ10−1 exp(−τ20α), where Γ(·) is the Gamma function.

· w∗
k
· SMTL-1 Model:
p(w∗

k |µ,Σ) = (2π)− d
2 |Σ|− 1

2 exp(− 1
2(w

∗
k−µ)TΣ−1(w∗

k−µ)), k = 1, . . . ,∞.
· SMTL-2 Model:
p(w∗

k |µ,{λ j}dj=1) = (2π)− d
2 |Λ| 12 exp(− 1

2(w
∗
k−µ)TΛ(w∗

k−µ)), k = 1, . . . ,∞,
where Λ is a diagonal matrix with diagonal elements λ1, · · · ,λd .· µ,λ1, · · · ,λd (if the SMTL-2 Model is used)

p(µ,{λ j}dj=1|γ10,γ20,β0)

= (2π)− d
2 |β0Λ|

1
2 exp(−β0

2 µ
TΛµ) ·

d
∏
j=1

[ γ
γ10
20

Γ(γ10)
λγ10−1j exp(−γ20λ j)].
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(a) Graphical representation of the SMTL-1 model.
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(b) Graphical representation of the SMTL-2 model.

Figure 1: Graphical representation of the SMTL models with the Dirichlet process prior.

For simplicity, let Z denote the collection of latent variables andΦ denote the collection of given
parameters and hyper-parameters. For the SMTL-1 model, Z = {{cm}Mm=1,{vk}∞k=1,α,{w∗

k}∞k=1}
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and Φ = {τ10,τ20,µ,Σ}; for the SMTL-2 model, Z = {{cm}Mm=1,{vk}∞k=1,α,{w∗
k}∞k=1,µ,{λ j}dj=1}

and Φ= {τ10,τ20,γ10,γ20,β0}.

3.2 Variational Bayesian Inference

In the Bayesian approach, we are interested in p(Z|{Dm}Mm=1,Φ), the posterior distribution of the
latent variables given the observed data and hyper-parameters,

p(Z|{Dm}Mm=1,Φ) =
p({Dm}Mm=1|Z,Φ)p(Z|Φ)

p({Dm}Mm=1|Φ)
,

where p({Dm}Mm=1|Φ) =
R
p({Dm}Mm=1|Z,Φ)p(Z|Φ)dZ is the marginal distribution, and evaluation

of this integration is the principal computational challenge; the integral does not have an analytic
form in most cases. The Markov Chain Monte Carlo (MCMC) method is a powerful and popu-
lar simulation tool for Bayesian inference. To date most research on applications of the Dirichlet
process has been implemented with Gibbs sampling, an MCMC method (Escobar and West, 1995;
Ishwaran and James, 2001). However, slow speed and difficult-to-evaluate convergence of the DP
Gibbs sampler impede its application in many practical situations.

In this work, we employ a computationally efficient approach, mean-field variational Bayesian
(VB) inference (Ghahramani and Beal, 2001). The VB method approximates the true posterior
p(Z|{Dm}Mm=1,Φ) by a variational distribution q(Z). It converts computation of posteriors into
an optimization problem of minimizing the Kullback-Leibler (KL) distance between q(Z) and
p(Z|{Dm}Mm=1,Φ), which is equivalent to maximizing a lower bound of log p({Dm}Mm=1|Φ), the log
likelihood. To make the optimization problem tractable, it is assumed that the variational distribu-
tion q(Z) is sufficiently simple - fully factorized with each factorized component in the exponential
family. Under this assumption, an analytic solution of the optimal q(Z) can be obtained by taking
functional derivatives; refer to Ghahramani and Beal (2001) and Jordan et al. (1999) for more details
about VB.

3.2.1 LOCAL CONVEX BOUND

One difficulty of applying VB inference to the SMTLmodels is that the sigmoid function in (4) does
not lie within the conjugate-exponential family. We use a variational method based on bounding log
convex functions (Jaakkola and Jordan, 1997).

Consider the logistic regression model p(y|w,x) = σ(wT x)y[1−σ(wT x)]1−y. The prior distri-
bution of w is assumed to be normal with mean µ̃0 and variance Σ̃0. We want to estimate the
posterior distribution of w given the data (x,y). This does not have an analytic solution due to the
non-exponential property of the logistic regression function. Jaakkola and Jordan (1997) present a
method that uses an accurate variational transformation of p(y|w,x) as follows

p(y|w,x) ≥ σ(ξ)exp(
(2y−1)wT x−ξ

2
+ρ(ξ)(xTwwT x−ξ2)),

where ρ(ξ) =
1
2−σ(ξ)
2ξ and ξ is a variational parameter. The equality holds when ξ= ±wT x.

The posterior p(w|x,y, µ̃0, Σ̃0) remains the normal form with this variational approximation.
Given the variational parameter ξ, the mean µ̃ and variance Σ̃ of the normal distribution can be
computed as

Σ̃= (Σ̃−10 +2|ρ(ξ)|xxT )−1, µ̃= Σ̃[Σ̃−10 µ̃0+(y− 1
2
)x]. (5)

44



MULTI-TASK LEARNING FOR CLASSIFICATION WITH DIRICHLET PROCESS PRIORS

Note that we use the top script ˜ to avoid confusion with the usage of µ and Σ as the mean and
variance of the DP base distribution G0 in other sections of this paper.

Since the optimal value of ξ depends on w, an EM algorithm is devised in Jaakkola and Jordan
(1997) to optimize ξ. The E step updates µ̃ and Σ̃ following (5), given the estimate of ξ in the last
iteration; the M step computes the optimal value of ξ as

ξ2 = xT (Σ̃+ µ̃µ̃T )x.

This EM algorithm is assured to converge and has been verified to be fast and stable in Jaakkola and
Jordan (1997).

The variational method can give us a lower bound of the predictive likelihood as

p(y|x, µ̃0, Σ̃0) ≥ exp(logσ(ξ)− ξ
2
−ρ(ξ)ξ2− 1

2
µ̃T0 Σ̃

−1
0 µ̃0+

1
2
µ̃T Σ̃−1µ̃+

1
2
log

|Σ̃|
|Σ̃0|

). (6)

3.2.2 TRUNCATED VARIATIONAL DISTRIBUTION

Another difficulty that must be addressed is the computational complexity of the infinite stick-
breaking model. Following Blei and Jordan (2005), we employ a truncated stick-breaking represen-
tation for the variational distribution. It is worth noting that in the VB framework, the model is a
non-truncated full Dirichlet process while the variational distribution is truncated. Empirical results
on truncation level selection are given by Blei and Jordan (2005), but no theoretical criterion has
been developed in the VB framework up to now. In all the experiments presented here we set the
truncation level equal to the number of tasks. There is no loss of generality with this approach but
it is computationally expensive if there are a large number of tasks.

Let K denote the truncation level. In the SMTL-1 model, the factorized variational distribution
is specified as

q(Z) = [
M

∏
m=1

qcm(cm)] · [
K

∏
k=1

qvk(vk)] ·qα(α) · [(
K

∏
k=1

qw∗
k
(w∗

k)],

where

• qcm(cm) is a multinomial distribution,

cm ∼MK(1;φm,1, . . . ,φm,K),m= 1, . . . ,M.

• qvk(vk) is a Beta distribution

vk ∼ Be(ϕ1,k,ϕ2,k),k = 1, . . . ,K−1.

Note qvK (vK) = δ1(vK).

• qα(α) is a Gamma distribution
α∼ Ga(τ1,τ2).

• qw∗
k
(w∗

k) is a normal distribution,

w∗
k ∼ Nd(θk,Γk),k = 1, . . . ,K.
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Similarly, in the SMTL-2 model, the factorized variational distribution is specified as

q(Z) = [
M

∏
m=1

qcm(cm)] · [
K

∏
k=1

qvk(vk)] ·qα(α) · [(
K

∏
k=1

qw∗
k
(w∗

k)] ·qµ,{λ j}dj=1(µ,{λ j}
d
j=1).

where qcm(cm), qvk(vk), qα(α) and qw∗
k
(w∗

k) are the same as the specifications above.
The distribution qµ,{λ j}dj=1(µ,{λ j}

d
j=1) is Normal-Gamma,

(µ,{λ j}dj=1) ∼ Nd(η,(βΛ)−1)
d

∏
j=1

Ga(γ1 j,γ2 j). (7)

A coordinate ascent algorithm is developed for the SMTL model by applying the mean-field
method (Ghahramani and Beal, 2001). Each factor in the factorized variational distribution and ξ,
the variational parameter of the sigmoid function, are re-estimated iteratively conditioning on the
current estimate of all the others, assuring the lower bound of the log likelihood increases monoton-
ically until it converges. The re-estimation equations can be found in the Appendix.

3.3 Prediction for Test Samples

The prediction function for a new test sample xm,! is

p(ym,! = 1|cm,{w∗
k}Kk=1,xm,!) =

K

∑
k=1

cm,kσ(w∗
k
T xm,!). (8)

Integrating (8) over the variational distributions qw∗
k
(w∗

k) and qcm(cm) yields

p(ym,! = 1|{{φm,k}Kk=1}Mm=1,{θk}Kk=1,{Γk}Kk=1,xm,!)

=
K
∑
k=1

φm,k
R
σ(w∗

k
T xm,!)Nd(θk,Γk)dw∗

k .
(9)

The integral in (9) does not have an analytic form. The variational method described in Section
3.2.1 could give us a lower bound of the integral in the form of (6), if we apply the EM algorithm
by taking Nd(θk,Γk) as the prior of w∗

k and (xm,!,ym,! = 1) as the observation. However, we prefer
an accurate estimate of the integral instead of the lower bound of it. In addition, the iterative EM
algorithm might be inefficient in some applications that have a strict requirement to the testing
speed. Therefore, we use the approximate form of the integral in MacKay (1992)

Z
σ(w∗

k
T xm,!)Nd(θk,Γk)dw∗

k ≈ σ(
θTk xm,!√

1+ PI
8 xTm,!Γkxm,!

), (10)

where PI is the constant approximately 3.1416 (here PI is used instead of π to avoid confusion with
π used in the stick-breaking representation of the DP).

We design a simple experiment to empirically evaluate accuracy of the approximation. Assume
xm,! is a 1-dimensional vector. Let the value of θk be −10,−9.5, · · · ,10 and the value of Γk be
10−1,100,101 and 102. For any combination of the values of θk and Γk, we compare the average
error between the approximation and the true value of the integration over the range of xm,! from
−10 to 10 with an interval of 0.5. The “true” value of the integral is approximated by the MCMC
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Figure 2: The error between the approximation and the true value of the integral in (10), averaged
over the range of xm,! from −10 to 10 with an interval of 0.5.

method, that is, we randomly draw 104 samples of w∗
k from the normal distribution Nd(θk,Γk),

substitute the samples into the logistic function σ(w∗
k
T xm,!) and take the average of the function

values. The results are plotted in Fig. 2, which shows the approximation is rather accurate.
Substituting (10) into (9) yields the prediction function as

p(ym,! = 1|{{φm,k}Kk=1}Mm=1,{θk}Kk=1,{Γk}Kk=1,xm,!) ≈
K

∑
k=1

φm,kσ(
θTk xm,!√

1+ PI
8 xTm,!Γkxm,!

).

4. Information Transfer to a New Task (AMTL)

Assume the SMTL model has been applied toM tasks. Now assume a new taskM+1 is considered.
When learning task M+ 1 we wish to benefit from the information learned from the previous M
tasks. One option is to re-run the SMTL algorithm on all M+ 1 tasks, but this requires storage of
the data from all previous tasks and may be computationally prohibitive for real-time applications.
In fact, re-running SMTL on all tasks is in many situations not necessary, as the previous M tasks
may simply represent the history and re-estimating them is uninteresting. In these cases, we need
only concentrate on learning the new task, treating the previous M tasks as the background tasks,
from which relevant information is transferred to the new task. Such an approach provides us the
advantage of algorithmic efficiency, since we do not have to manipulate a bulk of data from the
past tasks. In this section, we develop an efficient method for fast learning of the new observed
task. Since taskM+1 is treated differently from tasks 1 thoughM, this is referred to as asymmetric
MTL, or AMTL.
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4.1 Prior Learned from Previous Tasks

From (2), we know that the conditional distribution of the classifier wM+1 given α, G0 and the other
M classifiers is

p(wM+1|w1, · · · ,wM,α,G0) =
α

M+α
G0+

1
M+α

K

∑
k=1

nkδw∗
k
, (11)

where nk =
M
∑
m=1

cm,k is the number of wm which are equal to w∗
k .

Assume the SMTL-1 model has been applied toM previous tasks and thus the variational distri-
butions qcm(cm), qα(α) and qw∗

k
(w∗

k) have been optimized. We have Eq[cm,k] = φm,k, Eq[α] = τ1
τ2
and

Eq[w∗
k ] = θk, where Eq is the expectation with respect to the variational distributions. Substituting

the expectations into (11) yields

p(wM+1|{{φm,k}Kk=1}Mm=1,{θk}Kk=1,τ1,τ2,G0) ≈
τ1
τ2

M+ τ1
τ2

G0+
1

M+ τ1
τ2

K

∑
k=1

n̄kδθk , (12)

where n̄k =
M
∑
m=1

φm,k. For future convenience, we define Ω= {{{φm,k}Kk=1}Mm=1,{θk}Kk=1,τ1,τ2}.
Equation (12) represents our belief about the classifier wM+1 before we actually see the data

DM+1. Therefore, by taking it as a prior for wM+1, information learned from previous tasks can
be transferred to the new task. The posterior of wM+1, after observing the data DM+1, is computed
according to the Bayes Theorem

p(wM+1|DM+1,Ω,G0) =
p(DM+1|wM+1)p(wM+1|Ω,G0)

p(DM+1|Ω,G0)
, (13)

where
p(DM+1|wM+1)

=
NM+1
∏
n=1

p(yM+1,n|wM+1,xM+1,n),

=
NM+1
∏
n=1

σ(wTM+1xM+1,n)yM+1,n [1−σ(wTM+1xM+1,n)]1−yM+1,n .

(14)

Note in Section 4 we limit the discussion on learning from previous tasks to the SMTL-1 model,
for which the parameters of G0 are given; the approach developed in this section can be extended to
the SMTL-2 model by substituting the expectations on the parameters of G0 into (12).

4.2 Sampling Posterior Using Metropolis-Hastings Algorithm

The posterior (13) does not have an analytic form because the prior (12) is a mixture of the base
distribution G0 with several point mass distributions, and the sigmoid function in the likelihood
function (14) is not conjugate to the prior. Considering that the computational burden is small in the
AMTL case (we only deal with data from task M+1), we appeal to MCMC methods and develop
a Metropolis-Hastings algorithm to draw samples from the posterior (Robert and Casella, 2004;
Neal, 1998). This algorithm is feasible in practice since it is a simple MCMC solution and the
computational cost is low.
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Metropolis-Hastings Algorithm

1. Draw a sample ẇ from (12).

2. Draw a candidate ŵ also from (12).

3. Compute the acceptance probability

a(ŵ, ẇ) =min[1, p(DM+1|ŵ)
p(DM+1|ẇ) ].

4. Set the new value of ẇ to ŵ with this probability; otherwise let the new value of ẇ be the same
as the old value.

5. Repeat Step 2-4 until the required number of samples, denoted by NSAM , are taken.

This yields an approximation to the posterior in (13)

p(wM+1|DM+1,Ω,G0) ≈
1

NSAM

NSAM
∑
i=1

δẇi .

4.3 Prediction Algorithm for Test Samples in New Task

Our goal is to learn wM+1 so that the resulting classifier can accurately predict the class label for a
new test sample xM+1,!. The prediction function is

p(yM+1,! = 1|xM+1,!,Ω,G0)
=

R
p(yM+1,! = 1|xM+1,!,wM+1)p(wM+1|DM+1,Ω,G0)dwM+1,

≈ 1
NSAM

NSAM
∑
i=1

p(yM+1,! = 1|xM+1,!, ẇi),

= 1
NSAM

NSAM
∑
i=1

σ
(
ẇTi xM+1,!

)
.

(15)

Hence, the entire learning procedure for a new task is
AMTL-1 Algorithm Given Ω and G0,

1. Compute the parameters in (12) - the prior learned from previousM tasks.

2. Draw samples ẇ1, · · · , ẇNSAM with the Metropolis-Hastings algorithm.

3. Predict for test samples using (15).

4.4 Comparison with Method of Yu et al. (2004)

Yu et al. (2004) present a hierarchical Bayesian framework for information filtering. Their purpose
is to find the right information item for an active user, utilizing both item content information and
an accumulated database of item ratings cast by a large set of users. The problem is modeled as
a classification problem by labeling the items a user likes “1” and “0” otherwise. The learning
situation is similar to our AMTL case, if each user is treated as a task. In Yu’s approach, a Dirichlet
process prior is learned from the database

p(wM+1|{Dm}Mm=1,α0,G0) =
α0

M+α0
G0+

1
M+α0

M

∑
m=1

ζmδŵm , (16)
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where α0 and G0 are pre-defined. They treat ŵm as the maximum a posteriori (MAP) estimate of
task m. The weights ζm are learned with an Expectation Maximization (EM) algorithm presented in
Yu et al. (2004, Section 3).

From the stick-breaking view of DP, the prior in (16) is an approximation to the standard DP,
in that the locations of sticks are fixed, at the classifiers learned from individual models, while the
weights are inferred with the EM algorithm. This approximation is inappropriate if the training
samples in each previous task are not sufficient, so that each task cannot learn an accurate classifier
by only using the corresponding user’s profile. In other words, it is not a good use of the information
in previous tasks.

Some other approximations are made in the prediction step of Yu’s approach, although they are
relatively trivial compared to the approximation to the DP prior mentioned above. For comparison,
we develop the second AMTL algorithm with the approximate DP prior.

AMTL-2 Algorithm Given ŵ1, · · · , ŵM, α0 and G0,

1. Optimize the weights ζm in (16) with the EM algorithm in Yu et al. (2004, Section 3).

2. Substitute (12) with (16), then draw samples ẇ1, · · · , ẇNSAM with the Metropolis-Hastings al-
gorithm.

3. Predict for test samples using (15).

Empirical comparisons of the two AMTL algorithms are reported in Section 5.1.2.

5. Experiments and Results Analysis

An empirical study of the proposed methods is conducted on two real applications: (i) a landmine
detection problem, and (ii) an art image retrieval problem.

5.1 Landmine Detection
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Figure 3: Number of landmines/clutter in each of the 29 data sets.
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Data from 29 tasks are collected from various landmine fields.2 Each object in a given data set
is represented by a 9-dimensional feature vector and the corresponding binary label (1 for landmine
and 0 for clutter). The feature vectors are extracted from radar images, concatenating four moment-
based features, three correlation-based features, one energy ratio feature and one spatial variance
feature. Figure 3 shows the number of landmines/clutter in each data set.

The landmine detection problem is modeled as a binary classification problem. The objective is
to learn a classifier from the labeled data, with the goal of providing an accurate prediction for an
unlabeled feature vector. We treat classification of each data set as a learning task and evaluate the
proposed SMTL and AMTL methods on this landmine detection problem.

Among these 29 data sets, 1-15 correspond to regions that are relatively highly foliated and 16-
29 correspond to regions that are bare earth or desert. Thus we expect that there are approximately
two clusters of tasks corresponding to two classes of ground surface conditions. We first evaluate
the SMTL models using data sets 1-10 and 16-24; next, for the AMTL setting, these data are treated
as previous tasks and data sets 11-15 and 25-29 are treated as new observed tasks.

5.1.1 SMTL

Data sets 1-10 and 16-24 are used for the SMTL experiment, so there are a total of 19 tasks. We ex-
amine the performance of four methods on accuracy of label prediction: (i) SMTL-1, (ii) SMTL-2,
(iii) the STL method—learn each classifier using the corresponding data set only—with the varia-
tional approach to logistic regression models in Section 3.2.1, and (iv) simply pooling the data in
all tasks and then learning a single classifier with the variational approach as for (iii).

The performance is measured by average AUC on 19 tasks, where AUC denotes area under the
Receiver Operation Characteristic (ROC) curve. A larger AUC value indicates a better classification
performance. To have a comprehensive evaluation, we test the algorithms with different sizes of
training sets. The number of training samples for every task is set as 20, 40, · · · , 300. For each
task, the training samples are randomly chosen from the corresponding data set and the remaining
samples are used for testing. Since the data have severely unbalanced labels, as shown in Fig. 3, we
have a special setting that assures there is at least one “1” and one “0” sample in the training set of
each task.

Hyper-parameter settings are as follows: (i) τ10 = 5e−2, τ20 = 5e−2, γ10 = 1e−2, γ20 = 1e−3 and
β0 = 1e−2, (ii) τ10 = 5e−2, τ20 = 5e−2, µ= 0 and Σ = 10I, (iii) and (iv) µ̃0 = 0 and Σ̃0 = 10I. We
also tested with other choices of hyper-parameters and found that the algorithms are not sensitive to
the hyper-parameter settings as long as the hyper-priors are rather diffuse.

We plot the results of 100 random runs in Fig. 4. The two SMTL methods generally outperform
the STL method and simple pooling. To gain insight into how the SMTL method identifies the
clustering structure of tasks, we calculate the between-task similarity matrix as follows: at a certain
setting of the size of training set (e.g., 20 training samples per task), for each random run, the SMTL
algorithm outputs the variational distribution qcm(cm) with the optimized variational parameters
{φm,k}Kk=1, where φm,k indicates the probability that task m belongs to cluster k, and then we take
k∗m = argmaxkφm,k as the membership of task m. The element at the ith row and jth column in
the between-task similarity matrix records number of occurrences, among 100 random runs, that
task i and task j are grouped into the same cluster. Fig. 5 shows the Hinton diagram (Hinton
and Sejnowski, 1986) for the between-task similarity matrices corresponding different experiment

2. The data are available at http://www.ee.duke.edu/∼lcarin/LandmineData.zip.
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Figure 4: Average AUC on 19 tasks in the landmine detection problem.

settings: (a)(c)(e) learned by using the SMTL-1 model with 20, 100 and 300 training samples per
task; (b)(d)(f) learned by using the SMTL-2 model with 20, 100 and 300 training samples per task.
In a Hinton diagram, the size of blocks is proportional to the value of the corresponding matrix
elements.

With the help of Fig. 5, we have the following analysis on the behavior of the curves in Fig. 4.

1. When very few training samples are available, for example, 20 per task, the STL method
performs poorly. The simple pooling method significantly improves the performance because
its effective training size is 18 times larger than that for each individual task. The training
samples are so few that although both SMTL methods find that all tasks are similar, they
cannot identify the extent of similarity between tasks (see (a) and (b) in Fig. 5). As a result,
they perform similar to the simple pooling method. The SMTL-2 performs slightly better due
to additional robustness introduced by integrating over the parameters of G0.

2. When there are a few training samples available, for example, 100 per task, the simple pooling
method does not improve further as more training samples are pooled together, because it
ignores the statistical differences between tasks. Both SMTL methods begin to learn the
clustering structure (see (c) and (d) in Fig. 5) and this leads to better performance than the
simple pooling. The clustering structure in (d) is more obvious than that in (c), therefore the
SMTL-2 method works slightly better than the SMTL-1 method.

3. When each task has many training samples, for example, 300 per task, both SMTL methods
identify the clustering structure (see (e) and (f) in Fig. 5). The number of training samples is
large enough for each task to learn well by itself, so the curve for the STL method approaches
the curves for the SMTL methods and exceeds the curve for the simple pooling. It is clear
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Figure 5: Hinton diagram for the between-task similarity matrix in the landmine detection problem,
(a)(c)(e) learned by using the SMTL-1 model with 20, 100 and 300 training samples per
task; (b)(d)(f) learned by using the SMTL-2 model with 20, 100 and 300 training samples
per task. In a Hinton diagram, the size of blocks is proportional to the value of the
corresponding matrix elements.
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in (e) and (f) that the 19 tasks are roughly grouped into two clusters, which agree with the
ground truth discussed above.

5.1.2 AMTL

In this experiment, the data sets used in Section 5.1.1 are treated as previous tasks and data sets
11-15 and 25-29 as the new observed tasks. We compare three approaches:

1. AMTL-1: First we apply the SMTL-1 model to those previous tasks and learn the variational
parameters Ω, and then run the AMTL-1 algorithm on each new task.

2. AMTL-2: First we apply the variational logistic regression approach in Section 3.2.1 to each
previous task and learn the individual classifiers ŵ1, . . . , ŵM, and then run the AMTL-2 algo-
rithm on each new task.

3. STL: Each new task learns by itself.

In the two AMTL methods, the mean and variance of the base distribution G0 are specified
as µ= 0 and Σ = 10I. The parameters τ1 and τ2 in the AMTL-1 model can be estimated from
previous tasks, while α0 in the AMTL-2 model is a predefined parameter, which represents a prior
belief about the relatedness between the new task and previous tasks. We have two settings: (i)
α0 = τ1

τ2
= 0, which represents a belief that the new task is closely related to previous tasks, and (ii)

α0 = τ1
τ2
, where τ1 and τ2 are estimated from previous tasks.

The performance of the three approaches is measured by the average AUC over the 10 new
tasks. Experimental results of 100 random runs are shown in Fig. 6. Two factors affecting learning
performance are considered: (i) number of training samples per previous task, used for learning the
prior of wM+1, and (ii) number of training samples per new task. The first factor is evaluated at 40,
160 and all samples in each previous task used for training, corresponding to (a)(b), (c)(d) and (e)(f)
in Fig. 6 respectively. The second factor is evaluated at 20, 40, · · · , 200 training samples in each
new task, plotted along the horizonal axis in each subplot of Fig. 6.

We have the following observations from Fig. 6:

1. In the case α0 = τ1
τ2

= 0 (see (a)(c)(e)), the prior belief is that the new task is closely related
previous tasks and the purpose of this setting is to focus on the comparison of information
transferability of the two AMTL approaches, given the ground truth that the new tasks are
quite similar to some of previous tasks. The AMTL-1 approach efficiently transfers informa-
tion from previous tasks to the new task. The SMTL method can learn an informative prior
for the new task, with only 40 training samples for each previous task (see (a) in Fig. 6). The
learning performance is slightly improved by using more training samples for each previous
task. The performance has almost no change as the number of training samples in the new
task increases, because we use the linear classier and thus the matching classifier can be found
with even only a pair of “1” and “0” labeled samples.

Information transferability of the AMTL-2 approach is weaker than the AMTL-1 approach,
due to the approximate DP prior (as analyzed in Section 4.4). As a result, the more training
samples in the new task, the more confused the algorithm is about which “stick” should be
the matching classifier. This explains why the curve for the AMTL-2 approach in (a) even
drops a little as the training samples in the new task increases. However, with a large set
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(b) α0 = τ1
τ2
, where τ1 and τ2 are estimated from previous

tasks; 40 training samples for each previous task.
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(c) α0 = τ1
τ2

= 0; 160 training samples for each previous
task.
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(d) α0 = τ1
τ2
, where τ1 and τ2 are estimated from previous

tasks; 160 training samples for each previous task.
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(e) α0 = τ1
τ2

= 0; all samples in previous tasks used for
training.
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(f) α0 = τ1
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, where τ1 and τ2 are estimated from previous

tasks; all samples in previous tasks used for training.

Figure 6: Average AUC on 10 new tasks in the landmine detection problem.
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of training samples in previous tasks, the AMTL-2 approach works slightly better than the
AMTL-1 approach (see (e)), because the former can tell the subtle difference between very
similar tasks, while the latter treats them as identical.

2. Next, we recover G0 by using the parameters τ1 and τ2 estimated from previous tasks in the
AMTL-1 model and setting α0 = τ1

τ2
in the AMTL-2 model (see (b)(d)(f)). That enables the

new task to discover a new classifier by itself as well as use those learned from previous
tasks. Information transferability of the AMTL-2 approach is weak when there are only a
few training samples for each previous task, as disussed above. In such a case, the AMTL-2
approach works just as the STL approach because the new task has to learn by itself (see (b)).
In contrast, the AMTL-1 approach benefits from previous tasks so that incorporation of G0
has a relatively small effect on its performance.

5.2 Art Image Retrieval

A web survey is built to collect user ratings on 642 paintings from 30 artists.3 A user chooses his
rating of an image from “like”,“dislike” or “not sure”. Every user may give ratings only on a subset
of all images. In total 203 user ratings are collected.

Our objective is to estimate a user’s preference on unrated images. We model this as a binary
classification problem. Each user corresponds to a classification task. The images he rates as “like”
are labeled “1”, “dislike” labeled “0” and the images with the rating “not sure” are not included.
The content of an image is described by a 275-dimensional (275-D) feature vector concatenating a
256-D correlagram, a 10-D Pyramid wavelet texture and 9-D first and second color moments.

The painting image data differ with the landmine data in two respects. First, the low-level
features of image content, for example, color and texture, are weak indicators of human preferences,
therefore the content of an image is less helpful than ratings on that image from other users with
similar interests. Second, because user preferences are very diverse, the clustering structure of tasks
is expected to be more complex than that of the landmine detection tasks.

We use the 68 users who rate more than 100 images for the SMTL experiment. Then we take
these as previous tasks and those 50 users who rate between 50 and 100 images are treated as new
tasks in the AMTL experiment.

5.2.1 SMTL

In the SMTL experiment, two methods are compared: (i) SMTL-1, and (ii) the single-task learning
(STL) method using the variational logistic regression approach in Section 3.2.1. The simple pool-
ing method is not feasible because different users may look at the same image and give different
ratings. The SMTL-2 model is also excluded, because the feature dimension (275) is high relative
to the number of training samples for each task, so that it is hard to get an accurate estimation on
the variational distribution of λ j in (7), which is the precision on each feature dimension.

Hyper-parameter settings are as follows: (i) τ10 = 5e−2, τ20 = 5e−2, µ= 0 and Σ = 10I, and
(ii) µ̃0 = 0 and Σ̃0 = 10I. Similar to the landmine experiments, the performance is measured by the
average AUC on all tasks and evaluated at 10, 20, 30, 40 or 50 randomly selected training samples
for each task. Figure 7 plots the results of 10 random runs.

3. The survey is online at http://honolulu.dbs.informatik.uni-muenchen.de:8080/paintings/index.jsp.
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Figure 7: Average AUC on 68 tasks in the art image retrieval problem.
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Figure 8: Number of clusters among 68 tasks in the art image retrieval problem.

As mentioned above, the tasks in the art image database are more diverse than those in the
landmine data sets. To get a clear view of this, we observe the number of clusters among 68 tasks
instead of the between-task similarity matrix. As in Section 5.1.1, we make a hard decision on
membership of each task, for each evaluation point and each random run, and then we obtain the
statistics of number of clusters among 68 tasks, which is shown in Fig. 8. When the training size
is small, the algorithm weakly finds the similarity between tasks and most of the tasks learn by
themselves, therefore the SMTL-1 method works similar to the single-task learning. As the number
of training samples increases, the clustering structure becomes more clear and information is shared
between the users/tasks with similar interests, leading to improvement in learning performance.

5.2.2 AMTL

We first apply the SMTL-1 method on the 68 tasks, using all data as training samples, to learn the
prior for a new classifier, then evaluate the performance of the AMTL-1 algorithm on 50 new tasks,
measured by the average AUC. The performance is compared to that of the STL approach, which
means learning by the new task itself. The number of samples drawn with the Metropolis-Hastings
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Figure 9: Average AUC on 50 new tasks in the art image retrieval problem.

algorithm in Section 4.2, NSAM, is set to be 1e3. The results of 10 random runs are shown in Fig. 9.
The curves indicate that the AMTL-1 approach outperforms the STL approach.

6. Conclusions and Future Work

A DP-based multi-task learning algorithm has been applied to the problem of designing logistic-
regression classifiers for multiple tasks, for cases in which there is the potential of enhancing
individual-task performance via appropriate sharing of inter-task data. Two overarching formu-
lations have been considered. In the symmetric multi-task learning (SMTL) formulation all of the
task-dependent classifiers are learned jointly. While this is a useful formulation in many cases, it
requires one to store all data across previous tasks. In many cases we may undertake a new task
and we would like this task to benefit from experience acquired from previous tasks, without having
to return to all data observed previously. This has motivated what we have termed an asymmetric
multi-task learning (AMTL) formulation. In addition to the overarching SMTL and AMTL for-
mulations, we have considered different forms of these algorithms based on how the DP priors are
handled.

MTL classification performance has been presented on two data sets: (i) a landmine sensing
problem based on measured data, and (ii) an art-preference database. Concerning (i), the MTL
formulation yielded a clear indication of how the data from the multiple tasks clustered into related
physical phenomena. For this data we know the task-dependent environmental conditions under
which the sensing was performed, and the task relatedness reflected in Hinton maps demonstrated
close agreement with physical expectations. This provides a powerful confirmation of the utility of
the DP formulation for a case in which “truth” is known, yielding confidence for new multi-task
data sets for which the DP formulation may be used to infer truth.

In the context of the DP formulation, we considered examples for which the innovation param-
eter and the parameters of the base distribution were fixed, while in a separate formulation prior
distributions were placed on these parameters (yielding a further layer in the Bayesian formula-

58



MULTI-TASK LEARNING FOR CLASSIFICATION WITH DIRICHLET PROCESS PRIORS

tion). For the examples presented here we found the performance of the latter formulation to be
slightly better than the former. We also compared the DP MTL formulation to several simpler
learning approaches: (i) single-task learning in which no data are shared, (ii) pooling in which all
data are shared indiscriminately, and (iii) a simplification to DP developed by Yu et al. (2004). For
the data considered, the DP-based MTL formulations developed here outperformed these simpler
approaches.

In future research we plan to extend the MTL approach to more-general settings. For exam-
ple, in the MTL classifier formulation it is assumed that labeled data are available for each of the
tasks. More realistically, labeled data may be available from previous tasks, but the new task un-
der investigation may only contain unlabeled data. Based on examining the relationship of the data
manifold of the new unlabeled data relative to the manifolds of the previous tasks, it may be possible
to ascertain which labeled data, from previous tasks, are relevant for the new unlabeled data under
test. In such a heterogeneous MTL setting, involving tasks characterized by labeled and unlabeled
data, it may be possible to label the new data under test (from the new task) without requiring any
associated labeled data.

In this context one may also consider an active-learning setting, in which labels are acquired
selectively from the new task of interest, such that after active learning all tasks have labeled data
and the MTL formulations presented here may be applied directly. In this context we note that
such an approach was examined in the course of the research presented here, with active learning
performed using query by committee (QBC) (McCallum and Nigam, 1998). For the data considered
in this paper, we found that as long as at least one label was acquired from each of the two labels (we
here considered binary labels), the MTL algorithm performed well. Consequently, while the QBC
results were good, even a random acquisition of labels yielded goodMTL performance, as long as at
least one (randomly acquired) label existed from each of the two labels. This suggests a significant
robustness of the MTL formulation, in its ability to use a small amount of labeled data for a given
task to still yield good task-dependent classification performance, by appropriately sharing labeled
data from other tasks. Nevertheless, this phenomenon is worth further examination, with other data
sets, to further examine the utility of active learning as applied to unlabeled data from a new task
(relative to simply using random sampling to determine which data to acquire labels on).
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Appendix A. Re-Estimation Equations in Coordinate Ascent Algorithm

For the SMTL-1 model, the re-estimation equations are as follows
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• qcm(cm):

sm,k =
Nm
∑
n=1

[−ρ(ξm,n)xTm,n(θkθTk +Γk)xm,n+(ym,n− 1
2)θ

T
k xm,n

+ log(σ(ξm,n))− 1
2ξm,n+ρ(ξm,n)ξ2m,n]

+1(k < K)[Ψ(ϕ1,k)−Ψ(ϕ1,k +ϕ2,k)]

+1(k > 1){
k−1
∑
i=1

[Ψ(ϕ2,i)−Ψ(ϕ1,i+ϕ2,i)]}

,

φm,k =
exp(sm,k)
K
∑
k=1
exp(sm,k)

,

m= 1, . . . ,M,k = 1, . . . ,K,

where Ψ(x) = d lnΓ(x)
dx ; Γ(x) is the Gamma function; 1(E) is equal to 1 if the logic expression

E is true and 0 otherwise.

• qvk(vk):

ϕ1,k = 1+
M

∑
m=1

φm,k,

ϕ2,k =
τ1
τ2

+
M

∑
m=1

K

∑
i=k+1

φm,i,

k = 1, . . . ,K−1.

• q(α):

τ1 = τ10+K−1,

τ2 = τ20−
K−1

∑
k=1

[Ψ(ϕ2,k)−Ψ(ϕ1,k +ϕ2,k)].

• qw∗
k
(w∗

k):

Γk = [Σ−1+2
M

∑
m=1

φm,k

Nm
∑
n=1

|ρ(ξm,n)|xm,nxTm,n]
−1,

θk = Γk[Σ−1µ+
M

∑
m=1

φm,k

Nm
∑
n=1

(ym,n−
1
2
)xm,n],

k = 1, . . . ,K. (17)

• ξm,n:

ξm,n =

√
K

∑
k=1

φm,kxTm,n(θkθTk +Γk)xm,n,

m= 1, . . . ,M,n= 1, . . . ,Nm.
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For the SMTL-2 model, we only need to modify (17) and add an update step for µ and λ1, · · · ,λd

• qw∗
k
(w∗

k):

Γk = [Δ+2
M

∑
m=1

φm,k

Nm
∑
n=1

|ρ(ξm,n)|xm,nxTm,n]
−1,

θk = Γk[Δη+
M

∑
m=1

φm,k

Nm
∑
n=1

(ym,n−
1
2
)xm,n],

k = 1, . . . ,K,

where Δ is a diagonal matrix with diagonal elements γ1,1
γ2,1

, . . . ,
γ1,d
γ2,d
.

• qµ,{λ j}dj=1(µ,{λ j}
d
j=1):

β= β0+K,

η=

K
∑
k=1

θk

β
,

γ1, j = γ10+
K
2

,

γ2, j = γ20+
1
2

K

∑
k=1

(θ2k, j +Γk, j)−
1
2
βη2j ,

j = 1, . . . ,d,

where θk, j denotes the jth element of the vector θk (same for η j), and Γk, j denotes the jth
diagonal element of the matrix Γk.
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Abstract
Center-based partitioning clustering algorithms rely on minimizing an appropriately formulated
objective function, and different formulations suggest different possible algorithms. In this paper,
we start with the standard nonconvex and nonsmooth formulation of the partitioning clustering
problem. We demonstrate that within this elementary formulation, convex analysis tools and op-
timization theory provide a unifying language and framework to design, analyze and extend hard
and soft center-based clustering algorithms, through a generic algorithm which retains the compu-
tational simplicity of the popular k-means scheme. We show that several well known and more
recent center-based clustering algorithms, which have been derived either heuristically, or/and have
emerged from intuitive analogies in physics, statistical techniques and information theoretic per-
spectives can be recovered as special cases of the proposed analysis and we streamline their rela-
tionships.
Keywords: clustering, k-means algorithm, convex analysis, support and asymptotic functions,
distance-like functions, Bregman and Csiszar divergences, nonlinear means, nonsmooth optimiza-
tion, smoothing algorithms, fixed point methods, deterministic annealing, expectation maximiza-
tion, information theory and entropy methods

1. Introduction

The clustering problem is to partition a given data set into similar subsets or clusters, so that ob-
jects/points in a cluster are more similar to each other than to points in another cluster. This is
one of the fundamental problem in unsupervised machine learning, and it arises in a wide scope
of applications such as astrophysics, medicine, information retrieval, and data mining to name just
a few. A closely related problem is the one of vector quantization, mainly developed in the field
of communication/information theory. The interdisciplinary nature of clustering is evident through
its vast literature which includes many clustering problem formulations, and even more algorithms.
For a survey on clustering approaches, see Jain et al. (1999), and for vector quantization the review
paper of Gray and Neuhoff (1998), and the references therein.

Basically, the two main approaches to clustering are hierarchical clustering and partitioning
clustering. In this paper we focus on partitioning clustering, where the number of clusters is known
in advance. Most well known partitioning clustering methods iteratively update the so-called cen-
troids or cluster centers, and as such, are often referred as center-based clustering methods. These
clustering methods are usually classified as: hard and soft, depending on the way data points are
assigned to clusters. Hard clustering produces a disjoint partition of the data, that is, a binary strat-
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egy is used so that each data point belongs exactly to one of the partitions. In that class, one of
the most celebrated and widely used hard clustering algorithm is the classical k-means algorithm,
which basic ingredients can already be traced back to an earlier work of Steinhaus (1956). The algo-
rithm has been derived in the statistical literature by Forgy (1965) and MacQueen (1967). Another
well known variant includes the Linear Vector Quantization (LVQ) algorithm of Lloyd (1982). Soft
clustering is a relaxation of the binary strategy used in hard clustering, and allows for overlapping
of the partitions. In that class, there exists a plethora of algorithms which will be shortly outlined
below.

1.1 Motivation

Finding a true optimal partition of a fixed number of sets in a given n-dimensional space is known to
be an NP-hard problem (Garey and Johnson, 1979), and thus is in general out of reach. As a result,
the current literature abounds in approximation algorithms for the partitioning clustering problem.

This paper is a theoretical study of center-based clustering methods from a continuous opti-
mization theory viewpoint. One of the most basic and well-known formulation of the partitioning
clustering problem consists of minimizing the sum of a finite collection of “min”-functions, which
is a nonsmooth and nonconvex optimization problem. Building on convex and nonlinear analysis
techniques, we present a generic way to design, analyze and extend center-based clustering algo-
rithms by replacing the nonsmooth clustering problem with a smooth optimization problem. The
general framework and formalism has the advantage to provide a rigorous analysis for center-based
clustering algorithms, as well as to reveal the underlying difficulties, and it paves the way for build-
ing new schemes. Moreover, as we shall see below, this provides a closure and unification to many
disparate approaches that have led to center-based algorithms which have been widely used in appli-
cations, for example, fuzzy k-means, deterministic annealing, clustering with general divergences,
and which are shown to be special cases of the proposed framework.

We give now a brief summary of some of the relevant works that have motivated the present
study. All current center-based algorithms seek to minimize a particular objective function with
an attempt to improve upon the standard k-means algorithm. The latter is very attractive due to
its computational simplicity. It begins with an initial guess of the centers (usually at random), and
consists of two main steps: the first is the cluster assignment, which assigns each data point to the
closest cluster center; the second step re-compute the cluster centers as a weighted arithmetic mean
of all points assigned to each cluster centers. The algorithm stops when there is no more changes in
the partitions, that is, cluster centers no longer move. The simplicity of the k-means has also a price,
and it is well known that besides the fact that it does not find an optimal partition, a fact which is
surely not too surprising given the alluded difficulty of the partitioning problem, the algorithm also
suffers from several drawbacks, for example, it is highly sensitive to initial choice of cluster centers,
it might produce empty clusters, it does not provide flexibility to model and measure the influence
of specific data types arising in different applications etc...All these difficulties have motivated the
search for “better quality” clustering algorithms that could possibly cope with the listed drawbacks.

To achieve this goal, various approaches and techniques have been advocated and a large body
of literature has emerged, in particular in the statistic, computer science and engineering research re-
lated disciplines, while in the continuous optimization community, clustering analysis has received
limited attention, with some of the early studies including for example Rao (1971) and Gordon and
Henderson (1977). One direction of research in optimization has been to consider heuristic exten-
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sions of the k-means algorithm for the classical minimum sum of squares clustering problem, and
which have been shown to be quite successful in practice. For instance, the work of Hansen and
Mladenovic (2001) suggests a new descent local search heuristic and reports experimental results
showing that it outperforms other known local search methods, quite substantially. A more recent
account of optimization approaches to clustering can be found in the excellent and extensive survey
paper of Bagirov et al. (2003), and references therein, which among various nonsmooth and global
optimization methods, includes the application of the discrete gradient method. The latter is a tech-
nique for local optimization that can escape from stationary points which are not local minimizers
(see also for instance the more recent work Bagirov and Ugon, 2005).

Another direction of research has been to consider objective functions involving proximity mea-
sures other than the usual squared Euclidean distance that is used in k-means. Indeed, different data
types arising in many applications have justified the search for more meaningful proximity mea-
sures that can better model a given data set. In hard clustering algorithms, several researchers have
considered such an approach to extend the k-means algorithm. To mention just a few of the re-
cent studies in that direction (see, for example, Modha and Spanger, 2003; Banerjee et al., 2005;
Teboulle et al., 2006), and the extensive relevant bibliography given in these papers.

More intensive research activities have focused on developing soft clustering algorithms. In
that context, the literature on iterative methods for clustering is wide, and includes a large num-
ber of works and approaches that have been motivated by different fields of applications, and often
use different tools and terminology. Many soft clustering algorithms have emerged and have been
developed from heuristic considerations, axiomatic approaches, or/and are based on statistical tech-
niques, physical analogies, and information theoretic perspectives. For example, well known soft
clustering methods include the Fuzzy k-means (FKM), (see, for example, Bezdek, 1981), the Ex-
pectation Maximization algorithm (EM), (see, for example, Duda et al., 2001), Maximum Entropy
Clustering Algorithms (MECA), (see, for example, Rose, 1998), the Deterministic Annealing (DA)
(Rose et al., 1990), and the closely related similar technique with the same name proposed by Ueda
and Nakano (1998). The latter technique is very useful in practice, see for instance its application
to documents clustering in the recent work of Elkan (2006). More recent and other soft clustering
methods include for example the work of Zhang et al. (1999) which proposes a clustering algorithm
called k-harmonic means, and which relies on optimizing an objective function defined as the har-
monic mean of the squared Euclidean distance from each data points to all centers. An extension of
this method has also been further developed in Hamerly and Elkan (2002). All the cited studies have
also reported many experimental results to demonstrate the potential benefits of modifying, and ex-
tending the aforementioned classes of center-based algorithms, and to show their promise, and/or
advantage over the standard k-means, as well as their relevance in several practical and real-life
application contexts.

1.2 Main Contributions

Motivated by all these works, this paper has three main goals: (a) to reveal the underlying mathe-
matical tools that explain and enables us to design, analyze and extend center-based clustering algo-
rithms, (b) to develop a generic iterative scheme that keeps the simplicity of the k-means, allows for
a rigorous analysis of center-based clustering methods, and reveals their potential advantages and
limitations; (c) to provide a closure and unification to a long list of disparate motivations and ap-

67



TEBOULLE

proaches that have been proposed for center-based clustering methods, and which as alluded above,
have been widely used in practice.

To achieve these goals, in this paper we develop a systematic and theoretical study of center-
based clustering methods from a continuous optimization theory perspective, which leads to a com-
mon language, and a unifying framework for building and analyzing a broad class of hard and soft
center-based clustering algorithms. This provides the basis for significantly extend the scope of
center-based partitioning clustering algorithms, to bridge the gap between previous works that were
relying on heuristics and experimental methods, and to bring new insights into their potential. The
proposed framework also shows that all current center-based algorithms are capable of handling
only the nonsmoothness difficulty inherent in the clustering problem, but do not provide a cure to
the nonconvexity difficulty which remains a challenging one.

A brief summary of our results and the organization of the paper is a follows. In Section 2 we
begin with the standard optimization formulation of the partitioning clustering problem that focuses
on the nonsmooth nonconvex optimization formulation in a finite dimensional Euclidean space. An
obvious key factor in modelling a clustering problem is the choice of the distance measure involved,
and which depends on the nature of the problem’s data. To handle this situation, we will consider
a broad concept of distance-like functions (Auslender and Teboulle, 2006), which extends (and in-
cludes) the usual quadratic Euclidean distance setting. We outline their basic properties, and give
two generic examples which include the useful and important Bregman and Csiszar based diver-
gences. In Section 3, we furnish the necessary background and known results from convex analysis,
with a particular focus on two central mathematical objects: support and asymptotic functions,
which will play a primary role in the forthcoming analysis of clustering problems. The connection
between support and asymptotic functions has been used in past optimization studies to develop
a general approach to smoothing nonsmooth optimization problems (Ben-Tal and Teboulle, 1989;
Auslender, 1999; Auslender and Teboulle, 2003). Building on these ideas, in Section 4 we first
describe an exact smoothingmechanism, which provides a very simple way to design and analyze a
wide class of center-based hard clustering algorithms. In turns, the support function formulation of
the clustering problem also provides the starting point for developing a new and general approximate
smoothing approach to clustering problems. This is achieved by combining the notion of asymptotic
functions with another fundamental mathematical object: the concept of nonlinear means of Hardy
et al. (1934). We study the relationships and properties of both concepts, and demonstrate that their
combination provides a natural and useful framework in the context of clustering. This enables us to
arrive at a unified approach for the formulation and rigorous analysis of soft center-based clustering
methods. Building on these results, and thanks to the specific form of the objective function one has
to minimize in the resulting smooth reformulation of the clustering problem, in Section 5 we intro-
duce a simple generic fixed point algorithm, analyze its properties and establish its convergence to
a stationary point. The generic algorithm is computationally as simple as the k-means method, and
thus appears suitable for practical purposes. Finally, in Section 6, we show that all the aforemen-
tioned hard and soft center-based clustering methods, which have been proposed in the literature
from different motivations and approaches can be realized as special cases of the proposed analysis,
and we streamline their relationships.
Notations. We use boldface notation for a finite collection of k vectors in a given finite dimensional
Euclidean space IRn, that is, IRkn ! x := (x1, . . . ,xk), with IRn ! xl := (xl1, . . .xln), l = 1, . . . ,k. The
inner product for two vectors u,v in IRn is denoted by uT v ≡ 〈u,v〉. For an open set S ⊂ IRn, the
notation S stands for the topological closure of S, and we also use the notation S,(S) to denote the k-
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fold Cartesian product S× . . .×S, (S× . . .×S). For any nonempty convex setC⊂ IRn, δC denotes the
indicator function ofC, intC (riS) its interior (relative interior). The convex hull of a setA is denoted
by convA . The set of vectors in IRn with nonnegative (positive, negative) components is denoted by
IRn+ (IRn++, IRn−−). For any function g defined on IRn, we also use the notation g(z) ≡ g(z1, . . . ,zn).

2. The Clustering Problem with General Distance-Like Functions

In this paper, we focus on the basic nonsmooth nonconvex optimization formulation of the partition-
ing clustering problem which uses a broad class of distance-like functions (proximity measures) that
replaces (and includes) the usual squared Euclidean norm. As we shall see later on in Sections 4 and
5, this formulation provides a source of explanations to design and analyze center-based clustering
iterative algorithms.

2.1 Nonsmooth Optimization Formulation of Clustering

Let A = {a1, . . . ,am} be a given set of points in the subset S of a finite dimensional Euclidean
space IRn, and let 1 < k < m be a fixed given number of clusters. The clustering problem consists
of partitioning the data A into k subsets {A1, . . . ,Ak}, called clusters. The common approach to
formulate the clustering problem is as follows. For each l = 1, . . . ,k, the cluster Al is represented by
its center (centroid) xl , and we want to determine k cluster centers {x1, . . .xk} such that the sum of
proximity measures from each point ai to a nearest cluster center xl is minimized. Suppose for the
moment that we are given a proximity measure d(·, ·) that satisfies the following basic properties:

d(u,v) ≥ 0, ∀(u,v) ∈ S and d(u,v) = 0 ⇐⇒ u= v.

We will call d(·, ·) a distance-like function, since we are not necessarily asking for d(·, ·) to be
symmetric or to satisfy the triangle inequality, (a more precise definition for d is given later in
§ 2.2). Then, the distance from each ai ∈ A to the closest cluster center is:

D(x,ai) = min
1≤l≤k

d(xl,ai).

The clustering problem seeks to minimize the average over the entire data set A . Thus, assigning
a positive weight νi to each D(x,ai), such that ∑m

i=1 νi = 1, (for example, each νi can be used to
model the relative importance of each point ai), the clustering problem consists of finding the set of
k centers {x1, . . . ,xk} that solves

(NS) min
x1,...,xk∈S

F(x1, . . . ,xk) :=
m

∑
i=1

νi min
1≤l≤k

d(xl,ai).

When the distance is the square of the Euclidean norm, that is, d(u,v) = ‖u−v‖2, and the average is
the special uniform case, that is, νi = m−1 for all i, this formulation can be traced back to the work
of Lloyd (1982) when related to vector quantization algorithms (Linde et al., 1980).

For k = 1, problem (NS) can either be analytically solved (e.g., when d is the quadratic norm)
or is just an easy convex problem, when the proximity measure d is given convex. Likewise, for
k = m, the (NS) problem is trivial, (i.e., each point is assigned to each cluster), while for k > m the
problem is infeasible. Thus, the interesting situation is when 1< k<m, for which the problem (NS)
is nonsmooth and nonconvex. Furthermore, the number of variables is n×k, and since n is typically
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very large, even with a moderate number of clusters k, the clustering problem yields a very large
scale optimization problem to be solved. Therefore, the clustering problem in this most elementary
formulation (i.e., where k, the number of clusters is known) combines three of the most difficult and
challenging characteristics one encounters in an optimization problem: nonsmooth, nonconvex and
large scale.

2.2 Clustering with General Distance-Like Functions

We introduce a broad class of distance-like functions d that is used to formulate the clustering
problem in its general form, and we provide two generic families of such distance-like functions
for clustering. To measure the proximity of two given vectors in some subset S of IRn, we consider
the following concept of distance-like functions, as defined in the recent work of Auslender and
Teboulle (2006). The later concept has been widely used in several optimization algorithms, and for
more details and results we refer the reader to that work and the references therein.

First, we need to recall some basic notations and definitions in convex analysis, (see, for exam-
ple, Rockafellar, 1970). For a convex function g : IRn → IR∪{+∞}, its effective domain is defined
by domg= {u | g(u) < +∞}, and the function is called proper if domg 0= /0, and g(u) > −∞, ∀u ∈
domg. For a proper, convex and lower semicontinuous function (lsc) g, (that is to say, that the epi-
graph of g is a closed set in IRn× IR) its subdifferential at x is defined by ∂g(x) = {γ ∈ IRn | g(z) ≥
g(x)+ 〈γ,z− x〉, ∀z ∈ IRn} and we set dom∂g = {x ∈ IRn | ∂g(x) 0= /0}. When g is differentiable,
the subdifferential set reduces to the singleton ∇g(x), the gradient of g at x. Equipped with these
notations, we define now the notion of distance-like function.

Definition 1 A function d : IRn× IRn → IR+ ∪{+∞} is called a distance-like function with respect
to an open nonempty convex set S⊂ IRn if for each y ∈ S it satisfies the following properties:
(d1) d(·,y) is proper, lsc, convex, and C2 on S with a positive definite symmetric matrix Hessian1
denoted by ∇2d(·,y);
(d2) domd(·,y) ⊂ S, and dom∂1d(·,y) = S where ∂1d(·,y) denotes the subgradient map of the
function d(·,y) with respect to the first variable;
(d3) d(·,y) is level bounded on IRn, that is, lim

‖u‖→∞
d(u,y) = +∞;

(d4) d(y,y) = 0, (which also implies that ∇1d(y,y) = 0, where ∇1d(·,y), is the gradient with
respect to the first variable.)

We denote by D(S) the family of functions d satisfying the premises of Definition 1. It should
be emphasized that the triangle inequality, and symmetry is not required in the definition of d, hence
the use of the “distance-like” terminology.

To understand the motivation behind the technical assumptions of Definition 1, and the forth-
coming mathematical developments given in Sections 4 and 5, let us already announce as an appe-
tizer, that the main (essentially the only one) computational step that will be needed in the generic
algorithmwe developed in this paper for solving the clustering problem (NS), reduces to the solution
of an optimization problem which admits the simple form:

min{
m

∑
i=1

γid(x,ai) | x ∈ S}, (1)

1. We recall that the positive definiteness of the Hessian matrix implies that d(·,y) is strictly convex.
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with some given γi > 0, i= 1, . . . ,m. The properties (d1), and (d3) are needed to guarantee the ex-
istence of a unique global minimizer x∗ to the optimization problem of the form (1), while property
(d2) plays the role of a ”barrier”, and enforces the optimal solution x∗ to be in the open set S, (see
Section 5.1, and Lemma 14 for details). Property (d4) is just for normalization of d.

The class D(S) has been chosen in our setup, since it is broad and includes two useful generic
families that produces a wide variety of distance-like functions which are discussed next. However,
it should be noticed that as long as we can guarantee the existence of a unique global minimizer
to problem (1), the use of other classes of distance-like functions is possible; this situation will be
further illustrated below in Example 3.

2.3 Generic Families of Distance-Like Functions

As special cases of the class D(S), we briefly recall two particularly useful generic families that
produce a wide variety of distance-like functions which have been already shown to be relevant for
clustering, see for instance the recent work of Teboulle et al. (2006), and references therein.
• Bregman Based Distances Type2 Originally proposed by Bregman (1967), this class of distances
have been widely extended and analyzed in several optimization contexts and methods by Censor
and his co-authors, (see, for example, Censor and Lent, 1981), and the more recent comprehensive
monograph of Censor and Zenios (1997).

Let ψ : IRn → IR∪ {+∞} be a proper, lsc, strictly convex function, with domψ ⊂ S, and such
that ψ is continuously differentiable on S := int(domψ). The Bregman based distance associated
with ψ is the function dψ : IRn× IRn → [0,+∞] defined by

dψ(x,y) :=
{

ψ(x)−ψ(y)−〈x− y,∇ψ(y)〉 if y ∈ S
+∞ otherwise.

Most interesting and useful Bregman based distances functions are separable, and can be generated
with the choice

ψ(x) =
n

∑
j=1

ω(x j), (2)

with ω being some appropriate scalar twice differentiable convex function with ω′′(·) > 0 on
int(domω).

Example 1 Typical choices for ω(·) include ω(t) = t2, t log t,− logt,−(1− t2)1/2 with domain
domω= IR, IR+, IR++, [−1,1], respectively. Substituting these functions in dψ, with ψ as defined in
(2), the first three choices yields respectively the squared Euclidean distance, the Kullback-Liebler
based relative entropy and the Burg based relative entropy (also called the Itakura Saito distance).
For more examples and details in the context of clustering, see Teboulle et al. (2006), and references
therein.

• ϕ-Divergence Based Distances Type. Originally introduced by Csiszar (1967) in the context of
information theory to provide a notion generalizing divergence between probability measures, (e.g.,
the Kullback-Liebler relative entropy). It has been considered for optimization and algorithmic
purposes by Teboulle (1987, 1992, 1997).

2. Another terminology is Bregman divergence. In this paper we will freely use/exchange both terminologies.
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Let ϕ : IR→ IR∪{+∞} be a proper, lsc, convex function such that domϕ⊂ IR+, dom∂ϕ= IR++,
and such that ϕ is C2, strictly convex, and nonnegative on IR++, with ϕ(1) = ϕ′(1) = 0. Then, the
ϕ-divergence based distance is defined by,

dϕ(x,y) :=
n

∑
j=1

y jϕ
(
x j
y j

)
,

and which by its definition is already separable.

Example 2 Typical examples for the ϕ-divergence, dϕ with S= IRn++, include

ϕ1(t) = − logt+ t−1, (Arithmetic Mean),
ϕ2(t) = t log t− t+1, (Geometric Mean),
ϕ3(t) = 2(

√
t−1)2, (Root Mean Square).

The names in parenthesis indicate the type of means that results by solving problem of the form
(1) in these cases, (Teboulle et al., 2006).

For the above choices, and other appropriate ψ or/and ϕ, and S, both functionals dψ,dϕ can be
shown to be in the class D(S) as defined in Definition 1.3 In particular, it can be easily seen that
d ≡ dψ or dϕ enjoy the required basic property of a distance-like function, namely one can verify
that:

∀(u,v) ∈ S×S d(u,v) ≥ 0 and d(u,v) = 0 iff u= v.

Moreover, note that the distance-like function dϕ is jointly convex on S×S, and hence in particular,
for any u ∈ S, the function v→ dϕ(u,v) is convex in its second argument, a property which is not
shared in general by the Bregman-based distance.

As previously noticed, symmetry is not requested in the definition of d, and as a result, as long
as we can guarantee the existence of a global minimizer for problem of the form (1), some of the
properties requested in Definition 1 with respect to the first argument, can be exchanged with respect
to the second argument, or even relaxed. This situation is further exemplified now.

Example 3 In a very recent paper, Banerjee et al. (2005) have proposed to use Bregman distance
for clustering by considering it as function with respect to its second argument (i.e., by changing
the order of the variables), and have derived an interesting and somewhat surprising result. More
precisely, consider problem (1) with

d(x,a) := dψ(a,x) := ψ(a)−ψ(x)−〈a− x,∇ψ(x)〉, ∀(a,x) ∈ S̄×S,

where S = int(domψ). In that case, in general, x→ dψ(a,x) is not necessarily convex,4 and hence
the corresponding problem (1) is nonconvex. Even though problem (1) is nonconvex, it has been
recently shown (Banerjee et al., 2005), that if a minimizer of (1) exists in S, then it is a global

3. Note that when no confusion occurs, and with some abuse of notations, throughout the paper, dϕ (dψ) always stands
for the ϕ-divergence (Bregman divergence).

4. Exceptions include the well known special cases, when the Bregman divergence is the squared Euclidean distance and
the relative entropy. Otherwise, the convexity of x→ dψ(a,x) is not warranted without imposing further conditions
on ψ, which unfortunately precludes the use of relevant or/and useful ψ for defining a Bregman divergence.
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minimizer, and is always the (weighted) arithmetic mean of the data. This can be seen as follows.
A very simple, but fundamental property satisfied by any Bregman distance, is the following three
point identity revealed in Chen and Teboulle (1993), (see Lemma 3.1 there), and which naturally
generalizes Pythagoras theorem. For any three points u,v∈ int(domψ) andw∈ domψ the following
identity holds true

dψ(w,v)−dψ(w,u) = dψ(u,v)+ 〈∇ψ(u)−∇ψ(v),w−u〉. (3)

Thanks to the identity (3), and the fact that dψ(·, ·) ≥ 0, one has for any i= 1, . . . ,m:

dψ(ai,x)−dψ(ai,z) = dψ(z,x)+ 〈∇ψ(z)−∇ψ(x),ai− z〉,
≥ 〈∇ψ(z)−∇ψ(x),ai− z〉.

Thus, multiplying the last inequality by γi > 0, and summing over i = 1, . . . ,m, it immediately
follows that with z := ∑n

i=1 γiai, the right hand side of the inequality vanishes, and hence

m

∑
i=1

γidψ(ai,x) ≥
m

∑
i=1

γidψ(ai,z), ∀x ∈ S,

showing that z ∈ S is the global minimizer of problem (1).

Note that it is also possible to consider other classes of distance-like functions, which are not
necessarily based on Bregman or/and ϕ divergences (as long as a unique global optimal solution of
(1) is warranted). An interesting recent study can be found for example, in the work of Modha and
Spanger (2003) which have considered convex-k-means clustering algorithms based on some other
proximity measures that are convex in the second argument.

Finally, note also that one could easily enrich the model (NS) by considering for example a more
general formulation that associates with each l a different distance dl ∈ D(Sl) (and which can be
useful in applications to accommodate different types of data, Modha and Spanger, 2003), so that
the more general model would consist of solving

min

{
m

∑
i=1

νi min
1≤l≤k

dl(xl,ai) | (x1, . . . ,xk) ∈ S1× · · ·×Sk

}
.

The analysis and theoretical results that we developed below also hold for such more general for-
mulations as well.

3. Convex Analysis Background: Support and Asymptotic Functions

The main approach in this paper is based on considering ways to replace the nonsmooth clustering
problem (NS) via a smooth optimization problem, and to study and derive a corresponding generic
algorithm solving the nonsmooth problem (NS) via its smoothed counterpart. To develop this ap-
proach, this section furnishes some of the key concepts and results of convex analysis that will be
used throughout this paper. For further details and proofs of the material presented in this section
(see for example Rockafellar 1970, Sections 12 and 13, and Auslender and Teboulle 2003, Chapter
2). Readers familiar with these concepts may skip directly to Section 4, perhaps after reading the
examples of the present section which provide motivation to the forthcoming developments.
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3.1 Support Functions

A fundamental concept for dealing with properties of closed convex sets is the concept of support
function. It allows to transfer properties about sets via functions, and as a result turns out to play a
central role in optimization problems and facilitate their analysis.

Definition 2 For any set C ⊂ IRk, the function σC : IRk → [−∞,+∞] defined by

σC(v) := sup{〈u,v〉 | u ∈C} , (4)

is called the support function of C.

Geometrically, the support function of a setC describes the closed half-spaces which containC,
namely

C ⊂ {u | 〈u,v〉 ≤ α} ⇐⇒ σC(v) ≤ α.

Note that the supremum in (4) may be finite or infinite; attained on C or not. If C = /0, we set
σC ≡−∞, while ifC 0= /0, one has σC > −∞ and σC(0) = 0.

For the forthcoming analysis, we consider the case when C is a closed convex set in IRk. The
support function can be computed for many interesting geometric convex setsC, (Rockafellar, 1970,
Section 13, p. 113). Let us give here two particularly interesting examples.

Example 4 Let C := B = {u ∈ IRk | ‖u‖ ≤ 1} be the unit Euclidean ball. Then, applying Cauchy-
Schwartz inequality, it is easy to verify that

σB(v) = ‖v‖,

that is, the Euclidean norm is the support function of the unit ball.

Example 5 LetC be the unit simplex in IRk, that is,

C := Δ= {u ∈ IRk |
k

∑
j=1

u j = 1,u j ≥ 0, j = 1, . . . ,k}.

Then, a simple computation shows that

σΔ(v) = sup{〈u,v〉 | u ∈ Δ} = max
1≤ j≤k

v j,

the supremum being attained on the compact set Δ, at {u∗l : l = 1, . . . ,k} given by:

u∗l =

{
1 if l = argmax

1≤ j≤k
v j

0 otherwise.

At this stage, and to motivate the reader for the forthcoming technical results and analysis, let
us already emphasize that support functions are essentially “built-in” for most optimization prob-
lems. More precisely, most smooth and nonsmooth optimization problems can be modelled via the
following generic abstract optimization model

inf{c0(u)+σY (c(u)) | c(u) ∈ domσY},
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where c(u) = (c1(u), . . . ,cm(u)) ∈ IRm, where all {ci}mi=0 are real valued on IRk, and Y ⊂ IRm is ad-
equately defined. The re-formulation of optimization problems via their support functions provides
an alternative way to view and tackle optimization problems by exploiting mathematical properties
of support functions, and this is the line of analysis that will be used here for the clustering prob-
lem. The following examples illustrate the support function formulations of some generic classes
of optimization problems. More details can be found in Auslender and Teboulle (2003, Chapter 2).

Example 6 (a) (Nonlinear programming). Consider the standard optimization problem

vNLP := inf{c0(u) | ci(u) ≤ 0, i= 1, . . . ,m, u ∈ IRk}.

Then, it is easy to see that with Y = IRm+, one has

vNLP = inf
u∈IRk

{c0(u)+ sup{〈y,c(u)〉 | y ∈ IRm+}} = inf
u∈IRk

{c0(u)+σIRm
+
(c(u))}.

Note that the first equation above is nothing else but the Lagrangian representation of (NLP), with
y ∈ IRm+ being the Lagrangian multiplier associated with the constraints.
(b) (lp-norm optimization problems). Consider the problem

vLP := inf{‖c(u)‖p, u ∈ IRk}, (p≥ 1),

where ‖z‖p := (∑m
i=1 |zi|p)1/p is the usual lp-norm of z ∈ IRm. Let Y be the lq-unit ball in IRm, that is,

Y := {y ∈ IRm ‖y‖q ≤ 1}, with p+q= pq.

Then, invoking Hölder inequality, it follows that σY (c(u)) = ‖c(u)‖p, and hence,

vLP = inf{σY (c(u)) | u ∈ IRk}.

(c) (Finite minimax problems). Consider the finite minimax problem

vMM := inf
u∈IRk

max
1≤i≤m

ci(u).

Then, using Example 5 with Y = Δ, the unit simplex in IRm, one obtains

vMM := inf{σY (c(u)) | u ∈ IRk}.

The above examples have illustrated the primary role of support functions in formulating opti-
mization problems. Our goal will be to exploit the special structure and further properties of support
functions for deriving useful equivalent reformulations of the clustering problem. The next result
recorded below in Theorem 4 reveals an important and relevant property of support functions.

First, let us recall that the support function of a given set C is intimately connected to the well-
known indicator of the set C, through another fundamental operation in convex analysis, which is
the conjugacy operation.

Definition 3 For any function g : IRk → IR∪ {+∞}, the convex conjugate of g is the function g∗ :
IRk → IR∪{+∞} defined by

g∗(z) = sup
y∈IRk

{〈y,z〉−g(y)} = sup
y∈ domg

{〈y,z〉−g(y)}.

In addition, if g is proper, lower semicontinuous (lsc) and convex on IRk, then so is its conjugate g∗,
and g∗∗ = g.
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Now, consider the indicator function ofC defined by

δC(u) =
{
0 if u ∈C
+∞ otherwise.

Then, using the definition of the support function, one has

σC(v) = sup
u∈C

〈u,v〉 = sup
u∈IRk

{〈u,v〉−δC(u)}.

Thus, we see that σC is nothing else but the conjugate of the indicator function δC, that is, σC = δ∗C.
Moreover, ifC is also closed convex, then

δ∗∗C = δC = σ∗C.

Therefore, the indicator function and the support function of a closed convex set are conjugate to
each other. In fact, the support function provides a remarkable one-to-one correspondence between
nonempty closed convex subsets of IRk and the class of positively homogeneous lsc proper convex
functions through the conjugacy operation.5 This result is formally cited below.

Theorem 4 (Rockafellar, 1970, Theorem 13.2). The functions which are the support functions of
non-empty convex sets are the lsc proper convex functions which are positively homogeneous.

3.2 Asymptotic Functions

We now look at the relationship between the support function and another important mathemati-
cal object, called the asymptotic function. For that purpose, we first need to define the notion of
asymptotic cone.6

The asymptotic cone of a nonempty convex set C ⊂ IRk is a convex cone containing the origin
defined by,

C∞ := {v ∈ IRk : v+C ⊂C}.

Geometrically, this means that the asymptotic convex cone C∞ includes the origin and consists
of all directions v ∈ IRk, such that for each u ∈ C, the halfline {u+ tv | t ≥ 0} is contained in C.
This notion is useful for dealing with unbounded sets, namely when we are concerned in specifying
directions in which a set is unbounded. For example, one can show that a nonempty closed convex
subset C of IRk is bounded if and only if C∞ = {0}. Here, we are interested in the behavior of
convex functions “in the large”, that is, in the way convex functions vary, as their argument move
along halflines in IRk. A convenient way to achieve this is through the notion of asymptotic function
which is just the asymptotic cone of the epigraph of that function. Intuitively speaking, the result
given below says that the asymptotic behavior of g along halflines depends only on the direction of
the halfline, and not on its location.

5. Recall that a function p is positively homogeneous on IRk if 0 ∈ dom p and p(tu) = t p(u) for all u ∈ IRk and all t > 0.
6. In the convex setting (i.e., when working with convex sets and convex functions, the asymptotic cone (function) is
often called recession cone (function). In fact for closed convex sets (functions), the two concepts coincide (Auslender
and Teboulle, 2003).
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Definition 5 Let g : IRk → IR∪{+∞} be a proper, convex and lower semicontinuous (lsc) function.
The asymptotic function g∞ of g is the function g∞ : IRk → IR defined by

epi (g∞) = (epig)∞,

where epig= {(x,r) ∈ IRk× IR : g(x) ≤ r}⊂ IRk+1 is the epigraph of g.

The next result shows that this definition makes sense, and collect some basic properties of the
asymptotic function g∞.

Proposition 6 (Rockafellar, 1970, Theorem 8.5) Let g : IRk → IR∪ {+∞}, be a proper, convex
function. Then its asymptotic function g∞ is a proper convex function on IRk that is positively
homogeneous with g∞(0) = 0. For any z ∈ IRk, one has

g∞(z) = sup{g(u+ z)−g(u) | u ∈ domg}.

Furthermore, if g is also assumed lsc on IRk, then g∞ is also lsc, and for any u ∈ domg and any
z ∈ IRk,

g∞(z) = sup
t>0

t−1[g(u+ tz)−g(u)] = lim
t→+∞

t−1[g(u+ tz)−g(u)].

In particular, one also has

g∞(z) = lim
s→0+

{
gs(z) := sg(s−1z)

}
, ∀ IRk ! z ∈ domg. (5)

The last property (5) is useful to compute asymptotic functions. To illustrate this, let us give a few
interesting examples (see, for example Example 2.5.1, page 51 in Auslender and Teboulle, 2003).

Example 7 In the following three examples, it can be verified that g(·) is a proper lsc convex
function on IRk, and thus we can use (5) to compute g∞(·).
(a) Let g(u) =

√
1+‖u‖2. Then, using (5) one has g∞(z) = ‖z‖.

(b) Let g(u) =∑k
j=1 eu j . Then one obtains g∞(z) = δIRk

−
, that is, the indicator of the negative orthant

in IRk.
(c) Let g(u) = log∑k

j=1 eu j . Then, g∞(z) =max1≤ j≤k z j.

To expand our ability of computing the asymptotic function g∞ of a given function g, it turns
out that it is often easier to work with the conjugate of g, which is always lsc, and therefore, by
Proposition 6 so is its asymptotic function. Since this asymptotic function is lsc, proper, posi-
tively homogeneous and convex, Theorem 4 guarantees that it must be the support function of some
nonempty closed convex set. The next convex analytic result shows that this set should be precisely
the effective domain of the conjugate g∗.

Proposition 7 (Rockafellar, 1970, Theorem 13.3) Let g : IRk → IR∪{+∞} be a proper convex and
lsc function, and let C = domg∗ be the effective domain of the conjugate g∗. Then, σC = g∞.

This last result connecting support and asymptotic functions, together with (5) in Proposition
6, provides the basis and motivation for developing a general approach to smoothing nonsmooth
optimization problems. This approach was introduced by Ben-Tal and Teboulle (1989), and for more
general results and details, the reader is refereed to Auslender (1999), and the recent monograph of
Auslender and Teboulle (2003). Building on these ideas, we now develop smoothing approaches to
the clustering problem.
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4. Smoothing Methodologies for Clustering

We first describe a very simple exact smoothing mechanism which provides a novel and simple way
to view and design all center-based hard clustering algorithms from an optimization perspective.
In turns, the support function formulation also provides the starting point for developing a new
and general smoothing approach for clustering problems, which is based on combining asymptotic
functions, and the fundamental notion of nonlinear means of Hardy et al. (1934). The resulting
smoothing approach lends to devise a simple generic algorithm, which computationally is as simple
as the popular k-means scheme, (see Section 5), and encompasses and extend most well known soft
clustering algorithms, see Section 6.

4.1 Exact Smoothing: The Support Function Approach and Hard Clustering

Given {a1, . . . ,am} in the subset S⊂ IRn, and a distance-like function d ∈ D(S), the general cluster-
ing problem as formulated in Section 2 through (NS) is to solve

min
x1,...,xk∈S

F(x1, . . . ,xk) ≡min
x∈S

F(x) :=
m

∑
i=1

νi min
1≤l≤k

d(xl,ai),

where we use the notation x = (x1, . . . ,xk), for the k× n dimensional vector x, and S ⊆ IRN , with
N := kn, for the k-fold Cartesian product of S.

In the context of the clustering problem, we now briefly show that the support function allows
to derive an equivalent smooth formulation of the clustering problem, and in fact provides the foun-
dation to the design and analysis of hard clustering algorithms. Fix any i ∈ {1, . . . ,m}, and let

di(x) := (d(x1,ai), . . . ,d(xk,ai)) ∈ IRk.

The nonsmooth term min1≤l≤k d(xl,ai) can be replaced by a smooth one, by using the support
function. Indeed, using Example 5, it follows that for any i= 1, . . . ,m,

min
1≤l≤k

d(xl,ai) = −σΔi(−di(x)) =min{〈wi,di(x)〉 : wi ∈ Δi}, (6)

where Δi is the unit simplex in IRk given by

Δi =

{
wi ∈ IRk |

k

∑
l=1

wil = 1,wil ≥ 0, l = 1, . . . ,k

}
,

and where wil is the ”membership” variables associated to cluster Al , which satisfies: w
i
l = 1 if the

point ai is closest to cluster Al , and wil = 0 otherwise. Thus, substituting (6) in (NS), it follows that
the nonsmooth clustering problem (NS) is equivalent to the exact smooth problem:

(ES) min
x1,...,xk∈S

min
w1,...,wm∈IRk

{
m

∑
i=1

νi
k

∑
l=1

wild(x
l,ai) | wi ∈ Δi, i= 1, . . . ,m

}
.

The smooth formulation (ES) explains precisely the mechanism of all well known, old and more
recent, hard center-based hard clustering algorithms. Indeed, applying the Gauss-Seidel (GS) mini-
mization algorithm to problem (ES), (which is also often called alternative minimization or coordi-
nate descent method, (see, for instance, Auslender, 1976; Bertsekas and Tsitsiklis, 1989; Bertsekas,
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99), that is, at each iteration, first minimize with respect to wi with xl fixed, then minimize with
respect to xl with the membership variable fixed, yields a general hard clustering algorithm with
distance-like functions, which for short is denoted (HCD). The algorithm HCD includes as spe-
cial cases, not only the popular k-means algorithm, but also many others hard clustering methods
mentioned in the introduction. In particular, it includes and extend the Bregman hard clustering
algorithm recently derived by Banerjee et al. (2005, Algorithm 1, p. 1715), which was introduced
and motivated from a completely different view point, relying on statistical and information theo-
retic arguments. To make the paper self-contained, the algorithm HCD has been discussed in some
details in the appendix.

4.2 Approximate Smoothing via Asymptotic Functions and Soft Clustering

The support function approach which has provided an exact smoothed reformulation of the non-
smooth problem (NS) and the corresponding generic hard clustering method HCD, lends itself to
another systematic way to obtain an approximate smoothed reformulation of the problem (NS),
which in turn will provide the basis for producing a generic soft clustering algorithm.

We have seen in §4.1, that the nonsmooth clustering problem (NS) is equivalent to the exact
smooth formulation (ES). Using (6), an equivalent representation of the clustering problem (ES)
can also be written as

(NS) min
x1,...,xk∈S

m

∑
i=1

−νiσΔi(−d(x1,ai), . . . ,−d(xk,ai))

where Δi := {wi ∈ IRk : eTwi = 1,wi ≥ 0}, i= 1, . . . ,m, and e≡ (1, . . .1) ∈ IRk.
Fix any i ∈ {1, . . . ,m}. Thanks to Proposition 7, we know that the support function of the set

Δi corresponds to an asymptotic convex function, say (gi)∞(·). From Proposition 6, this asymptotic
function can be approximated (cf. (5)) via:

gi∞(z) = lim
s→0+

{
gis(z) := sgi(s−1z)

}
, ∀ IRk ! z ∈ domgi, ∀i= 1, . . .m,

where gi is some given convex function, such that dom(gi)∗ = Δi. This naturally suggests to replace
the support function−σΔi(·) in (NS) by an approximate function gis(·), and thus to consider for each
s> 0, the following approximate problem for (NS):

(NS)s min
x1,...,xk∈S

m

∑
i=1

−νigis(−d(x1,ai), . . . ,−d(xk,ai)). (7)

Thus, with a function gis smooth enough, this approach leads to a generic smoothed approximate
reformulation of the nonsmooth problem (NS) which depends on the parameter s> 0 that plays the
role of a smoothing parameter.

A key question is then to find appropriate candidates for the function gi for the clustering prob-
lem. Answer to this question will be developed in the next two subsections. But first, let us illustrate
the above approach with an important example.

Example 8 (The Log-Sum Exponential Smoothing for Clustering) The Log-Sum exponential func-
tion is an important and very well known operation which has been widely used in optimization
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contexts, (Bertsekas, 1982; Ben-Tal and Teboulle, 1989). For the clustering problem, it will lead to
a family of important methods.

Consider a slight variant, and more general form of the function considered in Example 7(c)
given by

g(y) = log
k

∑
l=1
πleyl , (8)

where πl are some given weights, that is, πl ≥ 0, ∀l = 1, . . . ,k and ∑k
l=1πl = 1. This function is

convex on IRk, and from Example 7(c) one obtains 7

g∞(y) = lim
s→0

gs(y) = max
1≤l≤k

yl.

Thus, using (8), the clustering problem (NS) can be approximated by solving the smoothed problem
(NS)s which in this case reads:

(NS)s min
x1,...,xk∈S

Fs(x) := −s
m

∑
i=1

νi log

(
k

∑
l=1

πle−
d(xl ,ai)

s

)
.

When d is the squared Euclidean distance, (with νi = m−1,∀i, πl = k−1,∀l), the objective function
just derived from the proposed smoothing optimization approach, is in fact exactly the objective
function arising in some well known clustering methods, such as the so-called (EM)-algorithm for
normal mixtures, (Duda et al., 2001), and the deterministic annealing (Rose et al., 1990), which
were motivated by, and derived from, a statistical/probabilistic framework and statistical physics
analogies. Further, when d is a Bregman function, as given in Example 3, the approximation model
(NS)s yields precisely the Bregman soft clustering method recently derived by Banerjee et al. (2005)
from an information theory view point. This will be further discussed in Section 6.

As we shall see next, another natural way to smooth the clustering problem, and which later on
will reconcile with the asymptotic function approach, is by using the so-called concept of nonlinear
means.

4.3 Approximate Smoothing via Nonlinear Means

The concept of nonlinear means defined below, was introduced in 1934 by Hardy et al. (1934,
Chapter III) as a natural generalization of the well known power means, that is, the weighted lp-
norm of a positive vector z.

Definition 8 Let h : IR→ IR∪ {+∞} be a strictly increasing and convex function, and let h−1 be
its inverse, which is thus strictly increasing and concave. The nonlinear mean of k real numbers
z1, . . . ,zk associated to h is defined by

Gh(z) = h−1
(

k

∑
l=1

πlh(zl)

)
,

where πl are weights which are arbitrary positive numbers whose sum is one, that is, π ∈ ri(Δ).

7. In fact, one also has domg∗ = Δ, (see Lemma 18), and thus as promised by Proposition 7, σΔ = g∞.

80



A UNIFIED CONTINUOUS OPTIMIZATION FRAMEWORK TO CLUSTERING

In the rest of this paper we use the notation Δ+ for the relative interior of the simplex in IRk, that
is, Δ+ := {π ∈ IRk | ∑k

l=1πl = 1,π> 0}. As in Hardy et al. (1934, Chapter III, p. 66) we adopt the
convention that h−1(∞) = b, where b := sup{t | h(t) < ∞}.

More details and many results on nonlinear means can be found in Hardy et al. (1934, Chapter
III). At this juncture, it is interesting to note that Karayiannis (1999) has suggested an axiomatic
approach to re-formulate clustering objective functions that essentially leads him to rediscover the
notion of nonlinear means given in Hardy et al. (1934). This interesting axiomatic approach can
thus be further viewed as an additional supportive argument to the general smoothing optimization
approach we develop here.

The next simple result shows that the nonlinear mean does provide an approximation, more
precisely a lower bound for the maximum function max

1≤l≤k
zl .

Lemma 9 For each z ∈ IRk and any π ∈ Δ+ the following inequalities hold,

k

∑
l=1

πlzl ≤ Gh(z) ≤ max
1≤l≤k

zl. (9)

Proof. By the convexity of the function h one has

h

(
k

∑
l=1

πlzl

)
≤

k

∑
l=1

πlh(zl) ,

and since h−1 is increasing, this proves the left hand side inequality of (9). To prove the right hand

side of the inequality, note that since
k

∑
l=1

πlzl ≤ max
1≤l≤k

zl , and h is increasing, then

k

∑
l=1

πlh(zl) ≤ max
1≤l≤k

h(zl) = h
(
max
1≤l≤k

zl
)

,

and an application of h−1 to both sides of the inequality completes the proof.

Recall that our basic clustering problem (NS) consists of minimizing the objective function F
which can be rewritten as:

F(x) =
m

∑
i=1

νi min
1≤l≤k

d(xl,ai) = −
m

∑
i=1

νi max
1≤l≤k

{−d(xl,ai)}. (10)

Since d(·, ·) ≥ 0, to approximate maxl−d(xl,ai) we need only to consider nonlinear means with
domain containing the negative orthant IRk−.

Example 9 (Nonlinear Means on IRk−.) Consider the functions hi(t), i = 1,2,3 given respectively
by − log(−t),−t−1,−

√
−t with domain (−∞,0) for the first two, and (−∞,0] for the last one. The

corresponding nonlinear means Ghi are then respectively the weighted geometric, harmonic, and
square root mean of z ∈ IRk−−, for the first two choices of h, and of z ∈ IRk− for the last one, while if
z 0∈ IRk−− (z 0∈ IRk− for the last one), one has Gh(z) = 0.
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In view of the upper bound of Lemma 9, for each i, we can consider approximating the quantity
max1≤l≤k(−d(xl,ai)), by its nonlinear mean Gh, and hence the resulting objective F given in (10)
by an approximate objective given by:

F̂(x) = −
m

∑
i=1

νih−1
(

k

∑
l=1

πlh(−d(xl,ai))
)

. (11)

Let us illustrate this on two specific examples with some h as given in Example 9.

Example 10 (Harmonic Mean Approximation) Consider the function h2(t) = −t−1 from Example
9, with domh2 = intdomh2 = (−∞,0), that yields the harmonic mean Gh2 . Then, using h2 in (11),
to approximate F given in (10), one has to consider minimizing the approximate objective:

F̂(x) =
m

∑
i=1

νi

(
k

∑
i=1

πl
d(xl,ai)

)−1

.

This recovers and extends the approximate objective F̂(x), (with d(·, ·) the squared Euclidean dis-
tance, πl = k−1, ∀l, νi = m−1, ∀i), which was recently suggested by Zhang et al. (1999) from
heuristic and intuitive considerations, together with a corresponding k-harmonic means algorithm,
and some interesting numerical results. More recently, Hamerly and Elkan (2002) have further stud-
ied new variants of the k-harmonic means algorithm, and have experimentally shown its superiority
for finding clustering of high quality in low dimensions. However, no mathematical or/and con-
vergence analysis of the proposed algorithms have been provided in these works. It will be shown
later on, that the k-harmonic means algorithm can also be viewed as a particular realization of our
generic algorithm for which our convergence result can be applied, see Section 5.

Example 11 (Geometric Mean Approximation) Take the function h1(t) = − log(−t) given in Ex-
ample 9 with domh1 = intdomh1 = (−∞,0) that yields the geometric means Gh1 . Then, using (11),
we then obtain as an approximation of F , the resulting approximate objective:

F̂(x) =
m

∑
i=1

νi
k

∏
l=1

d(xl,ai)πl .

This example provides an apparently new approximate model for clustering, on which one can apply
the generic scheme developed in Section 5.

Now, we return to the Log-Sum exponential function described in Example 8. With the choice
h(t) = et , in Definition 8, the resulting nonlinear means Gh precisely recovers the convex Log-Sum
exponential function,

Gh(z) = log
k

∑
l=1

πlezl .

Therefore, since in that case Gh(·) is convex, Proposition 6 can be applied, and one has:

max
1≤l≤k

zl = lim
s→0

sGh(s−1z) = G∞
h (z),

where the later expression denotes the asymptotic function of the mean Gh(·).

82



A UNIFIED CONTINUOUS OPTIMIZATION FRAMEWORK TO CLUSTERING

Thus, this specific example shows that the objective function of the clustering problem (NS)
(cf. (10)), can be approximated either by a nonlinear (smooth) mean, or, by the corresponding
asymptotic function of Gh(·), provided the later can be well defined. This suggests an approach that
would combine nonlinear means and asymptotic functions to provide a generic smoothing model
which will approximate the original clustering problem (NS), and approach it in the limit, for a
broad class of smooth approximations. This can be achieved, provided we can characterize the class
of functions h for which Gh(·) remains convex. This is developed next.

4.4 Combining Asymptotic Functions and Convex Nonlinear Means

The mean Gh(·) being by definition the composition of a convex function with a concave one, is not
necessarily convex. Thus, defining its corresponding asymptotic function as given in Proposition
6 is not warranted. Furthermore, it turns out that the convexity of Gh(·) plays a crucial role in the
convergence proof of the forthcoming generic algorithm (see Section 5). Thus, it is important to
characterize the convexity of the nonlinear mean Gh(·). By specializing a general result proven in
Ben-Tal and Teboulle (1986, Theorem 2.1), we can identify a wide class of functions h for which
Gh(·) is convex.

In the sequel, for convenience we will often use the notation Ω := int(domh), and Ωk to denote
the k-fold Cartesian product of int(domh).

Lemma 10 Let h : IR→ IR∪ {+∞} be C3 on Ω, strictly increasing and convex, and let r(t) :=
−h′′(t)/h′(t). Then Gh(z) is convex on Ωk if and only if 1/r(t) is convex on Ω.

Proof. Define ξ(z) := ∑k
l=1πlh(zl), so that Gh(z) = h−1(ξ(z)). Then, Gh is convex if and only if it

satisfies the gradient inequality, that is, recalling that (h−1)′(·) > 0, this is equivalent to say,

h−1(ξ(y))−h−1(ξ(x))
(h−1)′(ξ(x))

≥
k

∑
l=1

πl(yl− xl)h′(xl), ∀x,y ∈Ωk. (12)

To prove that (12) holds true, define,

H(s, t) :=
h−1(s)−h−1(t)

(h−1)′(t)
.

Invoking Ben-Tal and Teboulle (1986, Lemma 1, p. 1449), one has H is concave in (s, t) if and
only if 1/r(t) is convex. To complete the proof it thus remains to show that the concavity of H
reduces to the validity of (12). Applying Jensen’s Inequality for the concave function H(·, ·) at
s := ξ(y), t := ξ(x), it follows that the function H is concave if and only if,

H(ξ(y),ξ(x)) ≥
k

∑
l=1

πlH(h(yl),h(xl)) =
k

∑
l=1

πl
(yl− xl)

(h−1)′(h(xl))
.

Therefore, using the relation h′
(
h−1(t)

)
= 1/(h−1)′(t) at t := h(xl), proves that the last inequality

is exactly (12).

Define the class of functions,

H :=
{
h ∈C3(Ω) | h′ > 0, h′′ > 0, and

1
r
is convex

}
.
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The class of functions H satisfying the condition 1/r(t) is convex is wide, (Ben-Tal and Teboulle,
1986). It includes in particular, all functions h such that 1/r(t) is a linear function, that is, 1/r(t) =
at+b, a,b ∈ IR.

Example 12 (Convex Nonlinear Means) It can be easily verified that the class of functions h ∈ H
satisfying 1/r(t) = at+b for some a,b ∈ IR includes in particular (with a= 0, b 0= 0) the function
h(t) = et/b, as well as, for example, the functions h with Ω≡ int(domh) = (−∞,δ), (δ≥ 0)) given
by
(i) h(t) = −(δ− t)p , p ∈ (0,1), (a= (p−1)−1, b= δ(1− p)−1).
(ii) h(t) = (δ− t)−p , p ∈ (0,+∞), (a= −(p+1)−1, b= δ(p+1)−1).
(iii) h(t) = − log(δ− t),(a= −1, b= δ).

Clearly these examples for h include and extend all the previous choices hi(t), i = 1,2,3 (cf.
Example 9), and generate accordingly corresponding convex nonlinear means Gh.

Equipped with Lemma 10, the concept of asymptotic nonlinear mean associated to a given
convex nonlinear mean Gh is now well defined through Proposition 6.

Definition 11 Let h ∈ H . For z ∈ IRk and π ∈ Δ+, the asymptotic nonlinear mean is defined by

G∞
h (z) = lim

s→0+
sh−1

(
k

∑
l=1

πlh
(zl
s

))
.

With a proof identical to that of Lemma 9 we immediately get the following result.

Lemma 12 If h ∈ H , then for each z ∈ IRk and any π ∈ Δ+ one has

k

∑
l=1

πlzl ≤ G∞
h (z) ≤ max

1≤l≤k
zl.

This last result, together with Definition 11, and the results developed in Section 4.2 (cf. (7)),
provide all the ingredients to combine nonlinear convex means as characterized in Lemma 10 with
asymptotic functions, and to formulate a broad class of smooth approximations to the clustering
problem (NS) as follows.

For any h ∈ H , any fixed s> 0, and any π ∈ Δ+, we approximate the nonsmooth objective F of
the original clustering problem (NS) by the smooth function:

Fs(x1, . . . ,xk) ≡ Fs(x) = −s
m

∑
i=1

νih−1
(

k

∑
l=1

πlh
(
−d(xl,ai)

s

))
.

In the rest of the paper, we focus on developing and analyzing a generic algorithm that minimizes
the smoothed approximate nonconvex function Fs(·).

Remark 13 Lemma 9 and Lemma 12 show that the nonlinear mean and its asymptotic version
always provides a lower bound for max

1≤i≤k
zi, and hence when applied to the function Fs it follows that

for any s> 0,
m

∑
i=1

νi

{
min
1≤l≤k

d(xl,ai)−
k

∑
l=1

πld(xl,ai)

}
≤ F(x)−Fs(x) ≤ 0. (13)
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The quality of the smooth approximation is somewhat hidden in the last inequality. Yet, it is im-
portant to note that the Log-Sum exponential mean generated via h(t) = et appears to be a sort of
optimal mean for approximating the finite max

1≤l≤k
zl function. Indeed, take for example νi = m−1, ∀i,

and πl = k−1, ∀k. In that case,

Fs(x) = s logk− s
m

m

∑
i=1

s log

(
k

∑
l=1

e
−d(xl ,ai)

s

)
:= s logk+Ls(x).

Then, the right inequality (13) produces the well known approximation result for Ls(·) (Bertsekas,
1982; Ben-Tal and Teboulle, 1989):

0≤ F(x)−Ls(x) ≤ sm logk,

showing that the Log-Sum exponential mean shares a unique type of uniform approximation, and
for whichG∞

h (z)≡ max
1≤i≤k

zi. More on this specific property of the Log-Sum exponential function will
be discussed in Section 6.

5. The Smooth k-Means Algorithm: Properties and Convergence

Building on the previously developed results, in this section we present a simple generic center-
based algorithm for soft clustering, that we call the Smooth k-means (SKM) algorithm, and we
study its convergence properties.

5.1 Motivation

Given d ∈ D(S), h ∈ H and any s > 0, to solve the clustering problem we consider a solution
method that solves the approximate smoothed minimization problem,

inf
{
Fs(x) | x ∈ S

}
, (14)

where

Fs(x) = −s
m

∑
i=1

νih−1
(

k

∑
l=1

πlh
(
−d(x

l,ai)
s

))
. (15)

This problem could be solved by some standard optimization algorithms, such as projected gra-
dient/Newton type methods, Lagrangian multipliers, etc. (see, for example, Bertsekas, 99). How-
ever, given that clustering problems are usually very large scale, we are interested to devise a simple
iterative scheme which does not require any sophisticated computations at each iteration, (e.g., Hes-
sian computations, matrix inversions, or/and line search techniques), which are usually needed in
the alluded standard optimization algorithms.

It turns out that the specific form of Fs lends itself to build a simple iterative scheme, by com-
bining the smoothing approach with successive approximations. The idea of such combination is
well known in the field of optimization, and can be traced back to the so-called Weiszfeld algorithm
derived in 1937 for solving some basic location theory problems (Weiszfeld, 1937). The Weiszfeld
algorithm has provided a fertile ground for many other algorithms and problems in a variety of re-
search areas, (see, for example, Ben-Tal et al., 1991; Brimberg and Love, 1993, and many of the
references cited therein).
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To motivate the generic algorithm SKM described below in §5.2, let us consider for the moment
the special case when S = IRN , with the distance like function between any two points u,v ∈ IRn
being the usual squared Euclidean distance d(u,v) = ‖u− v‖2.

The necessary local optimality condition for solving problem (14) in that case consists of finding
x ∈ IRN satisfying

∇Fs(x) = 0. (16)

Recall that we use the notation x = (x1, . . . ,xk) with xl ∈ IRn, l = 1, . . . ,k, and N = kn. We
denote by ∇lFs(x) the gradient of Fs(x) with respect to xl ∈ IRn. To express (16) in a compact
and informative way we also use the following notations. For any scalar s > 0, i = 1, . . . ,m and
l = 1, . . . ,k, let

δi(xl) := −s−1d(xl,ai), with δi(x) = (δi(x1), . . .δi(xk)) ∈Ωk, (17)

ρil(x) := πl
h′(δi(xl))

h′(Gh(δi(x)))
. (18)

With (17), since h′(·) > 0 and πl > 0,∀l, the functions ρil(·) are positive for every i, l. Now, using
the definition of Fs given in (15), we obtain for each l = 1, . . . ,k

∇lFs(x) = πl
m

∑
i=1

νi
(
h−1

)′
(

k

∑
l=1

πlh
(
−d(x

l,ai

s

))
·h′

(
−d(x

l,ai)
s

)
∇1d(xl,ai), (19)

where ∇1d(xl,ai) is the gradient of d with respect to the first variable xl . Using in (19) the relation

(h−1)′(t) =
1

h′ (h−1(t))
,

the definition of Gh(·), and (18), simple algebra shows that (16) reduces to

∇lFs(x) =
m

∑
i=1

νiρil(x)∇1d(xl,ai) = 0, l = 1, . . . ,k. (20)

Since for the moment, we assumed d(u,v) = ‖u−v‖2, then∇1d(u,v) = 2(u−v), and (20) simplifies
to

m

∑
i=1

νiρ
il(x)(xl−ai) = 0, l = 1, . . . ,k. (21)

Defining for each i= 1, . . . ,m, and l = 1, . . . ,k,

λil(x) := νiρil(x) ·
(

m

∑
j=1

ν jρ jl(x)

)−1

, (22)

one has λil(x) > 0, and∑m
i=1λ

il(x) = 1, and (21) reduces to

xl =
m

∑
i=1

λil(x)ai, l = 1, . . . ,k. (23)
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Formula (23) suggests that in order to find xl , we can consider the following fixed point iteration:
for t = 0,1, . . .,

xl(t+1) =
m

∑
i=1

λil(x(t))ai, l = 1, . . . ,k. (24)

The explicit formula for x(t+1) given in (24) has been achieved thanks to our ability to solve
the equation (20) for x, which in turns, follows from the linearity of the gradient map ∇1d(·, ·), for
the special case of the squared Euclidean distance. In fact, the fixed point iteration (24) obtained
from solving (20) reads equivalently as:

xl(t+1) = argmin
xl

{
m

∑
i=1

νiρ
il(x(t))d(xl,ai)

}
, l = 1, . . . ,k.

This provides the motivation for the extension given next, and which allows to handle the general
case with distance-like functions.

5.2 The SKM Algorithm

Mimicking the approach just outlined in the special case of the squared Euclidean distance, this
naturally suggests that for handling general distance-like function d ∈ D(S), one computes x(t+
1) = (x1(t+1), . . . ,xk(t+1)) by solving:

x(t+1) = argmin
x

{
m

∑
i=1

k

∑
l=1

νiρil(x(t))d(xl,ai)

}
≡ argmin

x∈S
As(x,x(t)),

where As : IRN×S→ IR+∪{+∞} is defined by

As(x,u) =
m

∑
i=1

k

∑
l=1

νiρil(u)d(xl,ai), (25)

and with {ρil(·)}i,l > 0 as defined in (18)) for some given h ∈ H , (As, depends on s> 0 through the
definition of ρil).

This leads us to propose the following simple generic family of iterative algorithms for solving
(14).
The SKM Algorithm. For given data points {a1, . . . ,am} ∈ S ⊂ IRn, pick a distance like function
d ∈ D(S), a function h ∈ H and fix s > 0. Set t = 0, choose x(0) ∈ S and generate iteratively the
sequence {x(t)}∞t=0 by solving:

x(t+1) = argmin
{
As(x,x(t)) | x ∈ S

}
,

until convergence.
The next result shows that the algorithm SKM is well defined.

Lemma 14 Let d ∈ D(S), h ∈ H and s> 0. For any fixed u ∈ S, consider the convex optimization
problem

(Pu) v(u) := inf{As(x,u) | x ∈ S},
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where As(x,u) is defined in (25). Then, the following statements hold:
(i) The optimal set X∗(u) of problem (Pu) is nonempty and compact.
(ii) There exists a unique minimizer y(u) := (y1(u), . . . ,yk(u)) ∈ S solving (Pu) and satisfying

m

∑
i=1

νiρ
il(u)∇1d(yl(u),ai) = 0, l = 1, . . . ,k. (26)

Proof. (i) For any fixed u ∈ S, and s> 0, let Φu(x) := As(x,u)+
k

∑
l=1

δ
(
xl|S

)
, where δ(·|S) denotes

the indicator of S. Then, by the definition of As(·,u) given in (25), and property (d2) in Definition
1, the minimization problem (Pu) can be written as

v(u) := inf{Φu(x) : x ∈ IRN}.

Since here v(u) is finite, recalling the definition of the distance-like function d (cf. Definition 1), it
follows by (d3) that Φu(·) is level bounded. Therefore with Φu(·) being a proper, lsc, and convex
function, it follows that the optimal set X ∗(u) of problem (Pu) is nonempty and compact, and hence
the existence of a minimizer is warranted.
(ii) The minimizer is unique thanks to the strict convexity of As(·,u) (which is implied from (d1) of
Definition 1, recalling that νi > 0 and ρil(·) > 0 for every i, l). From the optimality conditions, for
each y(u) ∈ X∗(u) we have 0 ∈ ∂Φu(y(u)), where ∂Φu stands for the subdifferential of Φu. Then,
applying Rockafellar (1970, Theorem 23.8), it follows that for each l = 1, . . . ,k the optimality of
y(u) yields

0 ∈
m

∑
i=1

νi∂1d(yl(u),ai)ρil(u)+NS(y
l(u)), (27)

where NS(yl(u)) stands for the normal cone8 to S at yl(u). Since by definition, νi > 0, ρil(u) >
0, ∀i, l, and since by (d2) of Definition 1, for each i ∈ [1,m], one has dom∂1d(·,ai) = S a nonempty
open convex set, it follows that y(u)∈ S, and NS(yl(u)) = {0}, and hence (27) reduces to the desired
equation (26).

The main computational step of the algorithm SKM consists of solving for xl(t+1) the equation

m

∑
i=1

νiρil(x(t))∇1d(xl(t+1),ai) = 0, l = 1, . . . ,k. (28)

As already mentioned (cf. §2.2), the class of distance-like functions which are separable includes
most interesting and useful examples based on Bregman divergences, while ϕ-divergences are by
definition given separable. More generally, let us consider now what will be called the class of
separable distance-like functions, with d defined by

d(x,y) =
n

∑
j=1

θ(x j,y j), (29)

8. For a closed convex set C ⊂ IRn, recall Rockafellar (1970) that the normal cone to C at x ∈C is defined by NC(x) =
∂δC(x) = {ν ∈ IRn | 〈ν,z− x〉 ≤ 0,∀z ∈C}.

88



A UNIFIED CONTINUOUS OPTIMIZATION FRAMEWORK TO CLUSTERING

where θ : IR× IR→ IR∪{+∞} satisfies the premises of Definition 1 (i.e., with S := I, and I being
an open interval). For such a separable d the equation (28) reduces to solving for each l = l, . . .k,
the simple scalar equation in the variable xlj(·):

m

∑
i=1

νiρ
il(x(t))θ′(xlj(t+1),aij) = 0, j = 1, . . . ,n, (30)

where θ′(·,aij) is the derivative with respect to the first argument. Both separable Bregman diver-
gences, and ϕ-divergences are then recovered as special cases of (29) with

θ(α,β) := ψ(α)−ψ(β)− (α−β)ψ′(β) and θ(α,β) := βϕ(
α
β

),

respectively, and with the appropriate scalar functions ψ,ϕ (cf. §2.2). Note that the equation (30)
can be solved analytically for xl(t+1) in the case of Bregman divergences, as well as for the case
of ϕ-divergences for many interesting choices of ϕ, see, for example, Example 2, and for more
examples and details, the recent work (Teboulle et al., 2006), and references therein.

Thanks to the strict monotonicity of θ′(·,aij) in its first variable (inherited from Definition 1),
we can establish for the class of separable distance-like functions defined in (29), the following
property of SKM, which simple proof is left to the reader.

Proposition 15 Let d ∈ D(S) be separable and let {x(t)}∞t=0 be the sequence generated by SKM.
Then, for each l = 1, . . . ,k, the iterates S ! xl(t+1), t = 0,1, . . . that solves (30), satisfy:

min
1≤i≤m

aij ≤ xlj(t+1) ≤ max
1≤i≤m

aij, j = 1, . . . ,n,

that is, the sequence {x(t)}∞t=0 lies in a bounded hypercube in S.

We end this section with two additional remarks on the computational aspects of SKM.
(a) The computational complexity of SKM is as simple as the standard k-means algorithm, which
makes SKM viable for large scale clustering problems, and allows to significantly extend the scope
of soft center-based iterative clustering methods.
(b) Although this paper is concerned with theoretical issues, it should also be noted that in a more
practical implementation of SKM, one could also start at t = 0 with a fixed positive value for
st and decrease iteratively the parameter st . For that purpose, various strategies from standard
optimization techniques, such as for example within penalty/barrier methods can be considered,
(see, for example, Bertsekas, 1982, 99). Yet, recall that any fixed s> 0 do provide an approximate
solution as well, as explained in §4.3, see, for example, Example 10.

5.3 Convergence Analysis

We are now in the position to state and prove the main convergence result for SKM. Note that the
key element in the proof strongly relies on the convexity result established in Lemma 10 for the
nonlinear means Gh(·).

Theorem 16 Let {x(t)}∞t=0 be the sequence generated by the SKM algorithm. Then,
(i) Fs(x(t+1)) < Fs(x(t)), for all x(t+1) 0= x(t).
(ii) Let d ∈ D(S) be separable. Then, the sequence {x(t)}∞t=0 is bounded and each limit point x ∈ S
of this sequence is a stationary point for Fs.
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Proof (i) By definition of the algorithm SKM and Lemma 14, x(t+1) ∈ S is the unique minimizer
solving x(t+1) = argmin

x
As(x,x(t)), and hence

As(x(t+1),x(t)) < As(x(t),x(t)), ∀ x(t+1) 0= x(t). (31)

Let

vilt := −s−1d(xl(t),ai) ∈Ω, i= 1, . . . ,m, l = 1, . . . ,k, (32)
and vit := (vi1t , . . . ,vikt ) ∈Ωk, i= 1, . . . ,m.

Then,

Fs(x(t)) = −s
m

∑
i=1

νih−1
(

k

∑
l=1

πlh(vilt )

)
= −s

m

∑
i=1

νiGh(vit). (33)

Since h ∈ H , s> 0 and νi > 0, then by Lemma 10, Gh(·) is convex on Ωk. Therefore, applying the
gradient inequality to the convex function Gh(·) one has:

Gh(z)−Gh(y) ≥ 〈z− y,∇Gh(y)〉, ∀y,z ∈Ωk. (34)

Using the points given by z := vit+1, and y := vit , and noting that the l-th component of the gradient
of Gh(·) is given by

(
∇Gh(vit)

)
l = πl

h′(vilt )
h′

(
Gh(vit)

) = ρil(x(t)), l = 1, . . . ,k,

(where the last equality follows from (18)), one obtains after substituting these expressions in (34),

Gh(vit)−Gh(vit+1) ≤
k

∑
l=1

νi
(
vilt − vilt+1

)
ρil(x(t)), i= 1, . . . ,m.

Multiplying by s> 0 the above inequality, summing over i= 1, . . . ,m, using (33) and (32) it follows
that for all x(t+1) 0= x(t),

Fs(x(t+1))−Fs(x(t)) ≤ s
m

∑
i=1

k

∑
l=1

νi(vilt − vilt+1)ρ
il(x(t)),

=
m

∑
i=1

k

∑
l=1

νid(xl(t+1),ai)ρil(x(t))−
m

∑
i=1

k

∑
l=1

νid(xl(t),ai)ρil(x(t)),

= As(x(t+1),x(t))−As(x(t),x(t)) < 0,

where the last inequality is from (31), and (i) is proved.
(ii) Let d ∈ D(S) be separable. Then, by Proposition 15, the sequence {x(t)}∞t=0 is bounded with
limit points in S. Thus, there exists x ∈ S and a convergent subsequence {x(t j)} to x, namely
lim
j→∞

x(t j) = x with lim j→∞ t j = +∞. Let x∗ ∈ S be a stationary point of Fs, then one has,

m

∑
i=1

νi∇1d((xl)∗,ai)ρil(x∗)) = 0, l = 1, . . . ,k. (35)
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We need to show that x= x∗. Thanks to Lemma 14(ii), and by definition of algorithm SKM, given
x(t) ∈ S, there exists a unique x(t+1) ∈ S which satisfies

m

∑
i=1

νi∇1d(xl(t+1),ai)ρil(x(t)) = 0, l = 1, . . . ,k. (36)

Let us denote the solution of (36) by xl(t+ 1) := T l(x(t)), l = 1, . . . ,k, and for any u ∈ S, set
T (u) :=

(
T 1(u), . . . ,T k(u)

)
. Since D(S) ! d(·,ai) is given C2 on S, with positive definite matrix

Hessian ∇21d(·,ai), and since νiρil(x(t)) > 0, then
m

∑
i=1

νi∇21d(·,ai)ρil(x(t)) is also a positive definite

matrix. Therefore, by invoking the implicit function theorem, it follows that T is continuous on S.
Now, by definition of SKM, using (36) and (35), in terms of T , it follows that:

x(t) = x∗ if and only if T (x(t)) = x(t). (37)

To complete the proof, we need to consider two cases. First, if for some t ≥ 0, x(t+1) = T (x(t)) =
x(t), then in that case the sequence repeats itself from that point, and one has x= x(t), which by (37)
implies that x= x∗. In the other case, with x(t+1) 0= x(t), by (i) one has for all t ≥ 0, Fs(x(t+1) <
Fs(x(t)). Therefore, the sequence {Fs(x(t)} is monotone decreasing, and since Fs(x) ≥ F(x) ≥ 0,
being also bounded below, it must converge to some limit, and it follows that,

lim
j→∞

[Fs(x(t j))−Fs(T (x(t j)))] = 0. (38)

Since T is continuous, one also have lim
j→∞

T (x(t j)) = T (x), and hence together with (38) we obtain

Fs(x) = Fs(T (x)). Therefore, by (i), the last equation implies that x = T (x), and hence by (37),
x= x∗.

Remark 17 It should be noted (as already explained in §2.3), that as long as a unique global min-
imizer of x → A(x,u) exists, and the continuity of the map T (·) on S can be ensured, a close
inspection of the proof reveals that the convergence result established in Theorem 16 could also be
used for other classes of distance-like functions, and in particular for the important class of Bregman
divergences considered by Banerjee et al. (2005), and discussed in Example 3.

6. Relations with Known Center-Based Clustering Algorithms and Extensions

The purpose of this section is not an intent to survey all the current existing approaches and center-
based clustering methods. Rather, our aim is to briefly demonstrate that many of the seemingly
different methods cited in the introduction, and which have emerged from various view points, can
be derived, analyzed and extended under the unified smoothing optimization approach we have
developed in this paper. This is now illustrated below, with a particular focus on the Deterministic
Annealing algorithm (DA) and its possible extensions.

Before proceeding, we recall our setting. As outlined in Section 2, there exists essentially two
equivalent ways to formulate the clustering problem: the nonsmooth formulation and its equivalent
exact smooth re-formulation, given respectively by

(NS) min{F(x) | x ∈ S} ⇐⇒ (SF) min
x,w

{
C1(x,w) | wi ∈ Δi

}
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where

F(x) =
m

∑
i=1

νi min
1≤l≤k

d(xl,ai); C1(x,w) :=
m

∑
i=1

k

∑
l=1

νiwild(x
l,ai),

and with w := (w1, . . .wm) ∈ Δ= Δ1× . . .×Δm.

6.1 The Fuzzy k-Means Algorithm (FKM)

This method (Bezdek, 1981) was originally devised to relax the solution of problem (SF), by intro-
ducing the objective function

Cβ(x,w) :=
m

∑
i=1

k

∑
l=1

νi(wil)
βd(xl,ai),

where β> 1 is the parameter that governs the “fuzzy partition” through w. Indeed, the nonlinearity
of the function w→ Cβ(x,w), (as opposed to the standard k-means objective which corresponds to
β= 1) yields a solution w which is not anymore of the binary type as in hard clustering, hence the
“fuzzy” terminology, (which also corresponds to the soft terminology). Applying the Gauss-Seidel
algorithm described in the appendix to problem (SF) with the objective Cβ(x,w) yields the FKM,
(see, for example, Duda et al., 2001, page. 528).

Alternatively, keeping x fixed, and minimizing with respect to w, that is, solving the strictly
convex problem in w:

w∗(x) = argmin{Cβ(x,w) | wi ∈ Δi, i= 1, . . . ,m},

one obtains the optimal solution

(wil)
∗(x) = d(xl,ai)

1
1−β

(
k

∑
j=1

d(x j,ai)
1
1−β

)−1

, i= 1, . . . ,m, l = 1, . . .k.

Plugging-in the optimal solution w∗(x) into the objective Cβ(x,w), an easy computation shows that
the remaining optimization problem to be solved in the variable x reduces to:

min






m

∑
i=1

νi

(
k

∑
l=1

d(xl,ai)
1
1−β

)1−β

| x ∈ S




 , (β> 1). (39)

Therefore, with the choice h(t) = (−t)1/(1−β) (which is in the class H , see Example 12) in the
definition of Fs(·) as given in (15), one obtains that with the particular choice πl = k−1,∀l, the
objective function (39), and hence the resulting FKM algorithm, are recovered as a special case of
the smoothing approach and of algorithm SKM, for which our convergence result applies for any
distance d ∈ D(S), thus also broadening the scope of FKM based method. Note that with the special
choice β= 2, the Harmonic Mean algorithm (cf. Example 10) is recovered.

6.2 The Deterministic Annealing (DA)

In Rose et al. (1990), building on statistical physics analogies, the authors have introduced the
Deterministic Annealing (DA) algorithm for clustering problems. In the recent work (Teboulle
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and Kogan, 2005) we already announced that DA can be derived and interpreted as a smoothing
optimization method. Indeed, the DA algorithm simply corresponds to the choice H ! h(t) =
et , in the nonlinear mean Gh, and when substituted in (15) yields to solve the smooth nonconvex
optimization problem:

min

{
−s

m

∑
i=1

νi log
k

∑
l=1

πle−d(x
l ,ai)/s | x ∈ S

}
, (40)

where the smoothing parameter s > 0 plays the role of the inverse temperature used in the DA
formulation (Rose et al., 1990). Thus, applying SKM to problem (40), we obtain the classical DA
algorithm whenever d(·, ·) is the usual squared Euclidean distance, as well as its extension with
d ∈ D(S).

The DA algorithm is thus also a smoothing optimization method. It has been claimed in the
literature (Rose et al., 1990; Ueda and Nakano, 1998; Rose, 1998), but, to the best of our knowledge,
not mathematically proven, that by suitably tuning the temperature, namely in our language, the
smoothing parameter, the DA can deliver “global” optimal solutions. However, our current analysis
demonstrates that only the nonsmoothness difficulty appears to be eliminated via the DA approach,
yet the nonconvexity difficulty remains. Nevertheless, deterministic annealing based algorithms
continue to be successfully used in practice (Elkan, 2006) and appear to share two particularly
interesting and unique features:
(i) As reported in several studies, the DA converges very quickly to“good” solutions (as compared
to the k-means algorithm).
(ii) The DA algorithm which is obtained from our framework with the special choice h(t) = et ,
is also a source of many other seemingly different methods, in particular when we consider its
extension with distance-like functions other than the usual squared Euclidean distance.

In view of the combined smoothing and successive approximation approach we have developed,
these two features are perhaps not too surprising in the following sense. The quick delivery of a rea-
sonable approximate solution relies on the gradient descent property of the SKM algorithm devel-
oped in Section 5, and hence of the DA algorithm in particular. Moreover, the Log-Sum exponential
function appears to be optimal in the sense we previously explained in Section 4 and in Remark 13.
Below, we further exemplify the point (ii) by briefly showing how the methods mentioned in the in-
troduction, such as, Maximum Entropy Clustering Algorithms (MECA), Expectation Maximization
(EM), and the Bregman soft clustering algorithm are essentially equivalent smoothing methods.

6.3 Deterministic Annealing, Entropy Methods and Information Theory

A remarkable mathematical property of the Log-Sum exponential function is that it is just the con-
jugate of the entropy function on the unit simplex, and vice-versa. More precisely, the following
result holds.

Lemma 18 For any given π ∈ Δ,

log
k

∑
l=1

πlezl =max
y∈Δ

{
〈y,z〉−

k

∑
l=1

yl log
yl
πl

}
,

where Δ= {y ∈ IRk : ∑k
l=1 yl = 1,y≥ 0}. Moreover, with g(z) = log∑k

l=1πlezl , one has

g∗(y) =
k

∑
l=1

yl log
yl
πl

, with domg∗ = Δ.
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Proof. By direct computation, or see for example Rockafellar (1970, p. 148).

Using the dual representation of the Log-Sum exponential function given in Lemma 18 into
the objective function of (40), some algebra shows that the smooth optimization problem (40) is
equivalent to:

min
x,w

{
C1(x,w)+ s

m

∑
i=1

k

∑
l=1

νiwil log
wil
πl

| wi ∈ Δi, i= 1, . . . ,m

}
. (41)

This equivalent reformulation of the smooth optimization model (40) allows to show connec-
tions with other approaches that we now discuss.

Problem (40) recovers the basic formulation of what is called in the literature Maximum En-
tropy Clustering Algorithms, (MECA) (Rose, 1998). Of course, this shows that maximum entropy
methods applied to the clustering problem, are thus a special case of our smoothing approach.

Furthermore, it is interesting to notice that in MECA models one usually assume that πl =
k−1,∀l = 1, . . .k., that is, a uniform distribution. We can enrich the model by considering πl as
weights (probabilities) associated to each cluster center l, and ask to find the “best” possible distri-
bution for π, namely for given (x,w) in problem (41), we need to solve:

min

{
−s∑

i=1
νi

k

∑
l=1

wil logπl | π ∈ Δ+

}
.

Clearly, the objective function in the later problem is convex in π, and a straightforward application
of Karush-Khun-Tucker (KKT) optimality conditions (Bertsekas, 99) to the latter problem yields
the optimal choice for π:

π∗l =
m

∑
i=1

νiwil, l = 1, . . .k. (42)

Another interpretation is to view MECA as follows. Going back to the formulation (SF), the
problem (41) can in fact be viewed from various angles via the classical penalty-barrier optimization
method, which is also a smoothing approach (Auslender, 1999), whereby the entropy is used to
penalize the simplex constraints on wi, and s would play the role of the penalty-barrier parameter.
Namely by defining,

E(w,π) :=
m

∑
i=1

k

∑
l=1

νiwil log
wil
πl

withw∈Δ, wherew := (w1, . . .wm), wi ∈ IRk, and Δ=Δ1× . . .×Δm, problem (41) can be viewed as
a family of penalized problems, with s> 0, being the penalty parameter for solving the constrained
problem:

min
x,w

{C1(x,w) | E(w,π) ≤ ε,w ∈ Δ},

where ε > 0, is preassigned. An interesting interpretation of the latter problem was described by
Rose (1998) as follows. The smoothing parameter s can be viewed as a Lagrange multiplier to an
entropy constraint which would measure the level of randomness in the following sense: the first
term in the objective of (41) is a predefined “expected distortion”, and thus we are trading “entropy”,
the second term in (41), for reduction in the distortion as s→ 0. Alternatively, problem (41) can
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also be seen directly related to the fundamental Shannon rate-distortion function (Berger, 1971).
Suppose the knowledge of the ”expected distortion” C1(x,w) is pre-assumed at a certain level, say
δ > 0, that is, one has C1(x,w) = ∑i,l νiwild(x

l,ai) ≤ δ. Fix any s > 0, say s = 1, and let π be as
given in (42). Then, for a fixed given x one has to solve,

R(δ) =min
w

{E(w,π) | C1(x,w) ≤ δ, w ∈ Δ} . (43)

Following information theory concepts (Thomas and Cover, 1991), a close inspection of the last
problem reveals that the objective function E(w,π) in (43) is the so-called average mutual infor-
mation functional, and the optimal value R(δ) of problem (43) is nothing else but the mathematical
description of the rate distortion function. The later problem is a convex optimization problem in
w (a probabilistic/soft assignment variable), that can be solved via the so-called Blahut-Arimoto
algorithm, (Berger, 1971), which is an iterative fixed point type convex dual optimization method.

6.4 The EM algorithm and Bregman Soft Clustering

The Expectation Maximization (EM) algorithm is a workhorse in statistical estimation problems
for learning mixtures of distributions, (see, for example, Duda et al., 2001). In a very recent paper,
Banerjee et al. (2005) have shown that there exists a bijective correspondence between regular ex-
ponential distributions and Bregman divergences. This result enables them to show (see, Banerjee
et al., 2005, Section 5), that the EM algorithm for learning mixtures of regular exponential family
distributions is in fact equivalent to Bregman soft clustering.

Without recourse to any probability/statistical arguments, we provide below, yet another inter-
pretation and realization of this result, by showing that it corresponds to a special case of our generic
scheme, with the special choices h(t) = et , and d(x,a) := dψ(a,x).

Fix any s> 0, say s= 1 in (40). Then, one has to solve the equivalent problem (after an obvious
change of sign to pass to maximization):

max
x

F (x,π) ≡max
{

m

∑
i=1

νi log
k

∑
l=1

πle−d(x
l ,ai) | x ∈ S

}
,

where π ∈ Δ+. Applying SKM, given π ∈ Δ+, and xl ∈ S we first need to compute:
The E-Step: compute “conditional probabilities” (cf. (18), and 22)):

ρil(x̄) := πle−d(x̄
l ,ai)

∑k
j=1π je−d(x̄

l ,ai)
. (44)

Now, the second step in SKM consists of solving

min
x∈S

{
m

∑
i=1

k

∑
l=1

νid(xl,ai)ρil(x̄)

}
,

which admits a unique global minimizer (cf. Example 3), and yields
The M-step:

xl = ∑m
i=1 νiρ

il(x̄)ai

∑m
j=1 ν jρ jl(x̄)

, l = 1, . . . ,k. (45)
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Now, if we assume that πl is also considered as a variable in the maximization of F (x,π), (e.g.,
πl gives the fraction of points representing optimal clusters l), then given x̄ ∈ S, one has to solve

max
π

F (x,π) ≡max
{

m

∑
i=1

νi log
k

∑
l=1

πle−d(x̄
l ,ai) | π ∈ Δ+

}
. (46)

It is easy to see that the objective function in problem (46) is a concave function in the variable π,
and hence a direct application of the KKT optimality conditions to this convex problem (maximizing
a concave objective subject to a simplex constraint) yields using the notations in (44), the global
optimal solution:

π∗l =
m

∑
i=1

νiρ
il(x̄), l = 1, . . . ,k. (47)

Therefore, with the equations (44), (45) and (47), we have recovered through a special realiza-
tion of SKM, the EM algorithm for learning mixtures model of exponential family distributions or
equivalently the Bregman soft clustering method, as recently derived in Banerjee et al. (2005) from
a completely different perspective.

6.5 Discussion

There exists many other related clustering algorithms not discussed here, that can be designed, ana-
lyzed and extended through our framework, and we refer the reader to the relevant cited references
throughout this paper and their bibliography therein. The above comparisons were just briefly out-
lined to demonstrate the fundamental and useful role that convex analysis and optimization theory
can play in the analysis and interpretation of iterative center-based clustering algorithms. As such,
the general framework we have proposed should be viewed as complementary to alternative formu-
lations and approaches. Indeed, it is also important to mention that for specific application domains
which often involve particular input data representation, such as in statistics and information theory,
alternative approaches and formulations should not be ignored, as they can at times provide ways
for better/new insights or/and solution methods. For example, in the problem of learning mixture
models, an alternative approach is via spectral projection techniques, which provide algorithms with
theoretical guarantee for learning mixtures of log-concave distributions (Kannan et al., 2005). An-
other example is the information bottleneck method (Tishby et al., 1999) which provides a useful
formalism and principle to extract relevant information in a given data set. The recent interest-
ing study (Banerjee et al., 2005) connecting Bregman clustering and lossy compression schemes
through an information theoretic formalism, and which allows for extending the information bottle-
neck method, further demonstrates the usefulness of considering alternative formulations.

7. Concluding Remarks

This paper is a theoretical contribution to clustering analysis, and has three messages. First, the pro-
posed optimization framework and formalism provides a systematic and simple way to design and
analyze a broad class of hard and soft center-based clustering algorithms, which retain the computa-
tional simplicity of the k-means algorithm. Secondly, the proposed formalism has provided a closure
and unification to a long list of disparate motivations and approaches that have been proposed for
center-based clustering methods. As discussed in the paper, many of these algorithms which have
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been widely used in applications are special cases of our analysis. Third, the common optimization
language and the fundamental tools we have used, which rely on the combination of convex asymp-
totic functions, nonlinear means and distance-like functions, and from which our generic scheme
has emerged, enables for a rigorous analysis of center-based clustering algorithms, have revealed
the advantages and limitations of such methods, and have provided the basis for significantly extend
the scope of partitioning clustering algorithms.

As a final remark, we hope that the current study will further stimulate the use and application of
convex analysis and optimization in data analysis. Indeed, there are several theoretical and practical
challenges that need to be met in future research works in clustering analysis. Let us mention just a
few questions that naturally emerged from the present analysis. As already pointed out throughout
this study, for a given specific data set to cluster, current experimental results indicate that with
the choice of the Euclidean squared distance, the deterministic annealing algorithm (based on the
log-exponential mean) and the harmonic k-means can produce better quality clustering (see, for
example, Rose, 1998; Ueda and Nakano, 1998; Zhang et al., 1999; Hamerly and Elkan, 2002; Elkan,
2006). Thus, future experimentation based on these methods, but using other proximity measures
that could model various data types, deserves to be considered. Furthermore, as pointed out by
a referee, it would be interesting to identify the “best” choice of the function h to be used in the
broader family of convex nonlinear means. Similarly, can we characterize the classes of functions
h or/and the classes distance-like functions d that would allow us to eliminate or/and control the
inherent nonconvexity difficulty which is present in the clustering problem? Can we rigorously
measure the quality of clustering produced by the generic scheme, or some other possible refined
variants, in terms of the problem data and the couple (h,d)? Even partial answers to such theoretical
questions would have a significant practical impact, and deserve further investigations.
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Appendix A.

In this appendix we briefly describe the basic mechanism of hard clustering center-based algorithms.

A.1 The Gauss-Seidel Algorithm-GSA

The Gauss-Seidel algorithm, also called coordinate descent or alternative optimization method, pro-
ceeds as follows to solve the generic minimization problem:

minmin{F(x,y) : x ∈ X ,y ∈ Y} .

• At iteration t, fix x(t) ∈ X , and minimize with respect to y the function F(x(t),y), to get y(t).

• Update x by minimizing F(x,y(t)) with respect to x.
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• Continue this process iteratively until some declared stopping criteria is satisfied.

Convergence of GSA to a stationary point can be established under suitable conditions on the prob-
lem’s data, (Auslender, 1976; Bertsekas, 99).

A.2 Hard Clustering with Distance-Like Functions

The popular k-means algorithm with d being the squared of the Euclidean distance, is nothing else
but the Gauss-Seidel method, when applied to the exact smooth formulation (ES) of the clustering
problem.

min
x,w

{
C1(x,w) =

m

∑
i=1

k

∑
l=1

νiwild(x
l,ai)

}
.

More generally, applying GSA on problem (ES) with distance-like functions d, we can obtain a
broad class of general Hard Clustering algorithms HCD. Note that the main computational step in
the genericHCD algorithm keeps the computational simplicity of the k-means algorithm, yet allows
for significantly expand the scope of hard clustering center-based methods.
Algorithm HCD–Hard Clustering with Distance-Like Functions

• Step 0-Initialization Set t = 0 and let {xl(0) : l = 1, . . . ,k} be the k initial centers in S. (These
can be picked randomly).

• Step 1-Cluster Assignment For i= 1, . . . ,m solve wi(t) = argmin
w∈Δi

k

∑
l=1

wld(xl(t),ai).

• Step 2-Update Cluster Centers For each l = 1, . . . ,k solve

(
x1(t+1), . . . ,xk(t+1)

)
= argmin

x1,...,xk

{
m

∑
i=1

k

∑
l=1

νiwil(t)d(x
l,ai)

}
.

• Step 3-Stopping Criteria Stop when some stopping criteria is satisfied, (e.g., x(t+1)= x(t)),
else set t ←− t+1 and goto Step 1.

Algorithm HCD clearly implies that the objective function of (ES) is nonincreasing at the suc-
cessive iterations. The resulting stationary point obtained by this procedure satisfies the Karush-
Khun-Tucker (KKT) necessary optimality conditions for problem (ES) (Bertsekas, 99).

The remarkable simplicity of algorithm HCD relies on the fact that Step 1 is trivially solved,
while step 2 can be solved analytically for a wide class of distances d. Indeed, at any given iteration
t, to solve Step 1, for all i = 1, . . . ,m, let l(i) = argmin

1≤l≤k
d(xl(t),ai). Then, an optimal wi is simply

given by

wil(i)(t) = 1, that is, when xl is the center closest to ai,and wil(t) = 0,∀l 0= l(i).

To solve step 2, noting that the objective is separable in each variable xl , it reduces to solve for each
xl:

xl(t+1) = argmin
x

{
m

∑
i=1

wil(i)(t)d(x,a
i)

}
.
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For the class d ∈ D(S), as well as for other distance-like functions as discussed in Section 2.2, this
problem admits a unique global optimal solution. Furthermore, for distance-like functions which
are given separable, this problem even reduces to solve a one dimensional optimization problem,
which can often be solved analytically for many examples (Teboulle et al., 2006). It is easy to see
that algorithm HCD includes as special cases, not only the popular k-means algorithm, but also
many others hard clustering methods mentioned in the introduction. In particular, it includes and
extend the Bregman hard clustering algorithm recently derived in Banerjee et al. (2005, Algorithm
1, page 1715).
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Abstract

The design of a minimum risk classifier based on data usually stems from the stationarity assump-
tion that the conditions during training and test are the same: the misclassification costs assumed
during training must be in agreement with real costs, and the same statistical process must have
generated both training and test data. Unfortunately, in real world applications, these assumptions
may not hold. This paper deals with the problem of training a classifier when prior probabilities
cannot be reliably induced from training data. Some strategies based on optimizing the worst pos-
sible case (conventional minimax) have been proposed previously in the literature, but they may
achieve a robust classification at the expense of a severe performance degradation. In this paper we
propose aminimax regret (minimax deviation) approach, that seeks to minimize the maximum devi-
ation from the performance of the optimal risk classifier. A neural-based minimax regret classifier
for general multi-class decision problems is presented. Experimental results show its robustness
and the advantages in relation to other approaches.

Keywords: classification, imprecise class distribution, minimax regret, minimax deviation, neural
networks

1. Introduction - Problem Motivation

In the general framework of learning from examples and specifically when dealing with uncertainty,
the robustness of the decision machine becomes a key issue. Most machine learning algorithms
are based on the assumption that the classifier will use data drawn from the same distribution as
the training data set. Unfortunately, for most practical applications (such as remote sensing, di-
rect marketing, fraud detection, information filtering, medical diagnosis or intrusion detection) the
target class distribution may not be accurately known during learning: for example, because the
cost of labelling data may be class-dependent or the prior probabilities are non-stationary. There-
fore, the data used to design the classifier (within the Bayesian context (see VanTrees, 1968), the
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prior probabilities and the misclassification costs) may be non representative of the underlying real
distributions.

If the ratio of training data corresponding to each class is not in agreement with real class
distributions, designing Bayes decision rules based on prior probabilities estimated from these data
will be suboptimal and can seriously affect the reliability and performance of the classifier.

A similar problem may arise if real misclassification costs are unknown during training. How-
ever, they are usually known by the end user, who can adapt the classifier decision rules to cost
changes without re-training the classifier. For this reason, our attention in this paper is mainly
focused on the problem of uncertainty in prior probabilities. Furthermore, being aware that class
distribution is seldom known (at least totally) in real world applications, a robust approach (as op-
posite to adaptive) that prevents severe performance degradation appears to be convenient for these
situations.

Besides other adaptive and robust approaches that address this problem (discussed in more detail
in Section 2.2) it is important to highlight those that handle the problem of uncertainty in priors by
following a robust minimax principle: minimize the maximum possible risk. Analytic foundations
of minimax classification are widely considered in the literature (see VanTrees, 1968; Moon and
Stirling, 2000; Duda et al., 2001, for instance) and a few algorithms to carry out minimax decisions
have been proposed. From computationally expensive ones such as estimating probability density
functions (Takimoto and Warmuth, 2000; Kim, 1996) or using methods from optimization (Polak,
1997) to simpler ones like neural network training algorithms (Guerrero-Curieses et al., 2004; Alaiz-
Rodriguez et al., 2005).

Minimax classifiers may, however, be seen as over-conservative since its goal is to optimize
the performance under the least favorable conditions. Consider, for instance, a direct marketing
campaign application carried out in order to maximize profits. Since optimal decisions rely on
the proportion of potential buyers and it is usually unknown in advance, our classification system
should take into account this uncertainty. Nevertheless, following a pure minimax strategy can lead
to solutions where minimizing the maximum loss implies considering there are no potential clients.
If it is the case, this minimax approach does not seem to be suitable for this kind of situation.

In this imprecise class distribution scenario, it can be noticed that the classifier performance may
be highly deviated from the optimal, that is, that of the classifier knowing actual priors. Minimizing
this gap (that is, the maximum possible deviation with respect to the optimal classifier) is the focus of
this paper. We seek for a system as robust as the conventional minimax approach but less pessimistic
at the same time. We will refer to it as aminimax deviation (orminimax regret) classifier. In contrast
to other robust and adaptive approaches, it can be used in general multiclass problems. Furthermore,
as shown in Guerrero-Curieses et al. (2004), minimax approaches can be used in combination with
the adaptive proposal by Saerens et al. (2002) to exploit its advantages.

This minimax regret approach has recently been applied in the context of parameter estimation
(Eldar et al., 2004; Eldar and Merhav, 2004) and a similar competitive strategy has been used in the
context of hypothesis testing (Feder and Merhav, 2002).

Under prior uncertainty, our solution provides an upper bound of the performance divergence
from the optimal classifier. We propose a simple learning rate scaling algorithm in order to train
a neural-based minimax deviation classifier. Although training can be based on minimizing any
objective function, we have chosen objective functions that provide estimates of the posterior prob-
abilities (see Cid-Sueiro and Figueiras-Vidal, 2001, for more details).
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This paper is organized as follows: the next section provides an overview of the problem as well
as some previous approaches to cope with it. Next, Section 3 states the fundamentals of minimax
classification together with a deeper analysis of the minimax regret approach proposed in this pa-
per. Section 4 presents a neural training algorithm to get a neural-based minimax regret classifier
under complete uncertainty. Moreover, practical situations with partial uncertainty in priors are also
discussed. A learning algorithm to solve them is provided in Section 5. In Section 6, some experi-
mental results show thatminimax regret classifiers outperform (in terms of maximum risk deviation)
classifiers trained on re-balanced data sets and those with the originally assumed priors. Finally, the
main conclusions are summarized in Section 7.

2. Problem Overview

Traditionally, supervised learning lies in the fact that training data and real data come from the same
(although unknown) statistical model. In order to carefully analyze to what extend classifier per-
formance depends on conditions such as class distribution or decision costs, learning and decision
theory principles are briefly revisited. Next, some previous approaches to deal with environment
imprecision are reviewed.

2.1 Learning and Making Optimal Decisions

Let S= {(xk,dk),k= 1, . . . ,K} denote a set of labelled samples where xk ∈RN is an observation fea-
ture vector and dk ∈UL = {u0, . . . ,uL−1} is the label vector. Class-i label ui is a unit L-dimensional
vector with components ui, j = δi j, with every component equal to 0, except the i-th component
which is equal to 1.

We assume a learning process that estimates parametersw of a non-linear mapping fw :RN → P
from the input space into probability space P = {p∈ [0,1]L|∑L−1

i=0 pi = 1}. The soft decision is given
by yk = fw(xk) ∈ P and the hard output of the classifier is denoted by d̂. Note that d and d̂ will be
used to distinguish the actual class from the predicted one, respectively.

Several costs (or benefits) associated with each possible decision are also defined: ci j denotes
the cost of deciding in favor of class i when the true class is j. Negative values represent benefits
(for instance, cii, which is the cost of correctly classifying a sample from class i could be negative
in some practical cases).

In general cost-sensitive classification problems, either misclassification costs ci j or cii costs can
take different values for each class. Thus, there are many applications where classification errors
lead to very different consequences (medical diagnosis, fault detection, credit risk analysis), what
implies misclassification costs ci j that may largely vary between them. In the same way, there are
also many domains where correct decision costs (or benefits) cii do not take the same value. For
instance, in targeted marketing applications (Zadrozny and Elkan, 2001), correctly identifying a
buyer implies some benefit while correctly classifying a non buyer means no income. The same
applies to medical diagnosis domains such as the gastric carcinoma problem studied in Güvenir
et al. (2004). In this case, the benefit of correct classification also depends on the class: the benefit
of correctly classifying an early stage tumor is higher than that of a later stage.

The expected risk (or loss) R is given by

R =
L−1

∑
j=0

L−1

∑
i=0

ci jP{d̂= ui|d= u j}Pj , (1)
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where P{d̂= ui|d= u j} with i #= j represent conditional error probabilities, and Pj = P{d= u j} is
the prior probability of class u j.

Defining the conditional risk of misclassifying samples from class u j as

R j =
L−1

∑
i=0

ci jP{d̂= ui|d= u j} ,

we can express risk (1) as

R=
L−1

∑
i=0

RiPi . (2)

It is well-known that the Bayes decision rule for the minimum risk is given by

d̂= arg min
ui

{
L−1

∑
j=0

ci jP{d= u j|x}} , (3)

where P{d= ui|x} is the a posteriori probability of class i given sample x.
The optimal decision rule depends on posterior probabilities and therefore, on the prior proba-

bilities and the likelihood.
In theory, as long as posterior probabilities (or likelihood and prior probabilities) are known, the

optimal decision in Eq. (3) can be expressed after a trivial manipulation as a function of the cost
differences between the costs (ci j− c j j) (Duda et al., 2001). This is the reason why c j j is usually
assumed to be zero and the value of the cost difference is directly assigned to ci j. When dealing
with practical applications, however, some authors (Zadrozny and Elkan, 2001; Güvenir et al., 2004)
have urged to use meaningful decision costs measured over a common baseline (and not necessarily
taking c j j = 0) in order to avoid mistakes that otherwise could be overlooked. For this reason and,
what is more important, the uncertainty class distribution problem addressed in this paper, decision
costs measured over a common baseline are considered. Furthermore, absolute values of decision
costs are relevant to the design of classifiers under the minimax regret approach.

2.2 Related Work: Dealing with Cost and Prior Uncertainty

Most proposals to address uncertainty in priors fall into the categories of adaptive and robust solu-
tions. While the aim of a robust solution is to avoid a classifier with very poor performance under
any conditions, an adaptive system pursues to fit the classifier parameters using more incoming data
or more precise information.

With an adaptive-oriented principle, Provost (2000) states that, once the classifier is trained
under specific class distributions and cost assumptions (not necessarily the operating conditions),
the selection of the optimal classifier for specific conditions is carried out by a correct placement
of the decision thresholds. In the same way, the approaches in Kelly et al. (1999) and Kubat et al.
(1998) consider that tuning the classifier parameters should be left to the end user, expecting that
class distributions and misclassification costs will be precisely known then.

Some graphical methods based on the ROC curve have been proposed in Adams and Hand
(1998) and Provost and Fawcett (2001) in order to compare the classifier performance under im-
precise class distributions and/or misclassification costs. The ROC convex hull method presented
in Provost and Fawcett (2001) (or the alternative representation proposed in Drummond and Holte
(2000)) allows the user to select potentially optimal classifiers, providing a flexible way to select
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them when precise information about priors or costs is available. Under imprecision, some classi-
fiers can be discarded but this does not necessarily provide a method to select the optimal classifier
between the possible ones and fit its parameters. Furthermore, due to its graphical character, these
methods are limited to binary classification problems.

Changes in prior probabilities have also been discussed by Saerens et al. (2002), who proposes a
method based on re-estimating the prior probabilities of real data in an unsupervised way and subse-
quently adjusting the outputs of the classifier according to the new a priori probabilities. Obviously,
the method requires enough unlabelled data being available for re-estimation.

As an alternative to adaptive schemes, several robust solutions have been proposed, as the re-
sampling methods, especially in domains where imbalanced classes come out (Kubat and Matwin,
1997; Lawrence et al., 1998; Chawla et al., 2002; Barandela et al., 2003). Either by undersampling
or oversampling, the common purpose is to balance artificially the training data set in order to get a
uniform class distribution, which is supposed to be the least biased towards any class and, thus, the
most robust against changes in class distributions.

The same approach is followed in cost sensitive domains, but with some subtle differences in
practice. It is well known that class priors and decision costs are intrinsically related. For instance,
different decision costs can be simulated by altering the priors and vice versa (see Ting, 2002, for
instance). Thus, when a uniform distribution is desired in a cost sensitive domain, but working
with cost insensitive decision machines, class priors are altered according to decision costs, what is
commonly referred as rebalancing.

The manipulation of the training data distribution has been applied to cost-sensitive learning in
two-class problems (Breiman et al., 1984) in the following way: basically, the class with higher
misclassification cost (suppose n times the lowest misclassification cost) is represented with n times
more examples than the other class. Besides random sampling strategies, other sampling-based re-
balancing schemes have been proposed to accomplish this task, like those considering closeness to
the boundaries between classes (Japkowicz and Stephen, 2002; Zhou and LiuJ, 2006) or the cost-
proportionate rejection sampling presented in Zadrozny et al. (2003). Extending the formulation
of this type of procedures to general multiclass problems with multiple (and possibly asymmetric)
inter-class misclassification costs appears to be a nontrivial task (Zadrozny et al., 2003; Zhou and
LiuJ, 2006), but some progress has been made recently with regard to this latter point (Abe et al.,
2004). Note, also, that many (although not all) of these rebalancing strategies are usually imple-
mented by oversampling and/or subsampling, that is, replicating examples (without adding any extra
information) and/or deleting them (which implies information loss).

3. Robust Classifiers Under Prior Uncertainty: Minimax Classifiers

Prior probability uncertainty can be coped from a robust point of view following a minimax derived
strategy. Minimax regret criterion is discussed in this section after presenting the conventional
minimax criterion.

Although our approach extends to general multi-class problems and the discussion is carried out
in that way, we will first illustrate, for the sake of clarity and simplicity, a binary situation.

3.1 Minimax Classifiers

As Eq. (3) shows, the minimum risk decisions depend on the misclassification costs, ci j, and the
posterior class probabilities and, thus, they depend on the prior probabilities, Pi. Different prior

107
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distributions (frequency for each class) give rise to different Bayes classifiers. Fig. 1 shows the
Bayes risk curve, RB(P1) versus class-1 prior probability for a binary classification problem.

PSfrag replacements

c11

R1

Minimax RF (Q1mM ,P1)

Standard RF (Q1,P1)

Minimax Deviation RF (Q1mMd ,P1)

RB(P1)

Ri
sk

Rbasis

0 Q1 Q1mM Q1mMd 1 P1

c00

R0

Figure 1: Risk vs. P1. Minimum risk curve and performance under prior changes for the standard,
minimax and minimax deviation classifier. RB(P1) stands for the optimal Bayes Risk
against P1. RF(Q1,P1) denotes the Risk of a standard classifier (Fixed decision rule opti-
mized for prior probabilitiesQ1 estimated in the training phase) against P1. RF(Q1mM,P1)
denotes the Risk of a minimax classifier (Fixed decision rule optimized for the minimax
probabilities Q1mM) against P1. RF(Q1mMd ,P1) denotes the Risk of a minimax deviation
classifier (Fixed decision rule optimized for the minimax deviation probabilities Q1mMd)
against P1.

If the prior probability distribution is unknown when the classifier is designed, or this distribu-
tion changes with time or from one environment to other, the mismatch between training and test
conditions can degrade significantly the classifier performance.

For instance, assume that Q= (Q0,Q1) is the vector with class-0 and class-1 prior probabilities
estimated in the training phase, respectively, and let RB(Q1) represent the minimum (Bayes) risk
attainable by any decision rule for these priors. Note, that, according to Eq. (2), for a given classifier,
the risk is a linear function of priors. Thus, risk RF(Q1,P1) associated to the (fixed) classifier
optimized for Q changes linearly with actual prior probabilities P1 and P0 = 1−P1, going from
(0,R0) to (1,R1) (the continuous line in Fig. 1), where R0 and R1 refer to the class conditional
risks for classes 0 and 1, respectively. Fig. 1 shows the impact of this change in priors and how
performance deviates from optimal.

Also, it can be shown (see VanTrees, 1968, for instance) that the minimum risk curve obtained
for each prior is convex and the risk function of a given classifier verifies RF(Q1,P1) ≥ RB(P1) with
a tangent point at P1 = Q1.
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The dashed line in Fig. 1 shows the performance of the minimax classifier, which minimizes the
maximum possible risk under the least favorable priors, thus providing the most robust solution, in
the sense that performance becomes independent from priors. From Fig. 1, it becomes clear that
the minimax classifier is optimal for prior probabilities P=QmM = (Q0mM,Q1mM) maximizing RB.
Thus, this strategy is equivalent to maximizing the minimum risk (Moon and Stirling, 2000; Duda
et al., 2001). We will refer to them as the minimax probabilities.

Fig. 1 also makes clear that although a minimax classifier is a robust solution to address the
imprecision in priors, it may become a somewhat pessimistic approach.

3.2 Minimax Deviation Classifiers

We propose an alternative classifier that, instead of minimizing the maximum risk, minimizes the
maximum deviation (regret) from the optimal Bayes classifier. In the following, we will refer to it
as the minimax deviation or minimax regret classifier.

A comparison betweenminimax andminimax deviation approaches is also shown in Fig. 1. This
latter case corresponds to a classifier trained on prior probabilities P=QmMd with performance as
a function of priors given by a line (a plane or hyperplane for three or more classes, respectively)
parallel to what we name, in the following, basis risk (Rbasis = c00(1−P1)+ c11P1).

Note that the maximum deviation (with respect to priors) of the classifier optimized for Q is
given by

D(Q) =max
P1

{RF(Q1,P1)−RB(P1)} =max{R0− c00,R1− c11} .

The inspection of Fig. 1 shows that the minimum of D (with respect to Q) is achieved when

R0− c00 = R1− c11 ,

which means that line RF(Q1,P1) is parallel to arc named Rbasis in the figure and tangent to RB
at Q1mMd . Therefore, the minimax regret classifier is also the Bayes solution with respect to the
least favorable priors (Q0mMd ,Q1mMd) (see Berger, 1985, for instance), which will be denoted as
minimax deviation probabilities.

Now, we extend the formulation to a general L-class problem.

Definition 1 Consider a L-class decision problem with costs ci j,0≤ i, j < L and c j j ≤ ci j, and let
Rw(P) be the risk of a decision machine with parameter vector w when prior class probabilities are
given by P= (P0, . . . ,PL−1). The deviation function is defined as

Dw(P) = Rw(P)−RB(P)

and the minimax deviation is defined as

DmMd = inf
w
max
P

{Dw(P)} . (4)

Note that the above definition assumes that the maximum exists. This is actually the case, since
Dw(P) is a linear function over a compact set, P . Note, also, that our definition includes the natural
assumption that c j j is never higher than ci j, meaning that making a decision error is always less
costly than taking the correct decision. This assumption is used in part of our theoretical analysis.

The algorithms proposed in this paper are based on the fact that the minimax deviation can be
computed without knowing RB
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Theorem 2 The minimax deviation is given by

DmMd = inf
w
max
P

{Dw(P)} ,

where
Dw(P) = Rw(P)−Rbasis(P) (5)

and

Rbasis(P) =
L−1

∑
j=0

c j jPj . (6)

Proof Note that, according to Eqs. (1) and (2), for any decision machine and any ui ∈ UL,

R(u j) = R j =
L−1

∑
i=0

ci jP{d̂= ui|d= u j}≥ c j j .

Since the bound is reached by the classifier deciding d̂ = u j for any observation x, we have
RB(u j) = c j j. Therefore, using Eq. (6), we find that, for any u ∈ UL,

RB(u) = Rbasis(u)

and, thus,
Dw(u) = Dw(u) .

Since Bayes minimum risk RB(P) is a convex function of priors and Rw(P) is linear, Dw(P) is
concave and, thus, it is maximum at some of the vertices in P (i.e., at some P= u ∈ UL). Thus,

max
P

{Dw(P)} = max
u∈UL

{Dw(u)} . (7)

Since the maximum difference between two hyperplanes defined over P is always at some
vertex, we can conclude that

max
P

{Dw(P)} = max
u∈UL

{Dw(u)} = max
u∈UL

{Dw(u)} . (8)

Combining Eqs. (4), (7) and (8), we get

DmMd = inf
w
max
P

{Dw(P)} .

Note that Rbasis represents the risk baseline of the ideal classifier with zero errors. Th. 2 shows
that the minimax regret can be computed as the minimax deviation to this ideal classifier. Note,
also, that if costs cii do not depend on i, Eq. (5) becomes equivalent (up to a constant) to the Bayes
risk and the minimax regret classifier becomes equivalent to the minimax classifier .

Another important result for the algorithms proposed in this paper is that, under some conditions
on the minimum risk, the minimum and maximum operators can be permuted. Although general
results on the permutability of minimum and maximum operators can be found in the literature (see
Polak, 1997, for instance), we provide here the proof for the specific case interesting to this paper.
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Theorem 3 Consider the minimum deviation function given by

Dmin(P) = inf
w
{Dw(P)} , (9)

where Dw(P) is the normalized deviation function given by Eq. (5), and let P∗ be the prior proba-
bility vector providing the maximum deviation,

P∗ = argmax
P

{
Dmin(P)

}
. (10)

If Dmin(P) is continuously differentiable at P = P∗, then the minimax deviation, DmMd , defined by
Eq. (4), is

DmMd = Dmin(P∗) =max
P
inf
w

{
Dw(P)

}
. (11)

Proof
For any classifier with parameter vector w, we can write,

max
P
Dw(P) ≥ Dw(P∗) ≥ Dmin(P∗)

and, thus,
inf
w
max
P
Dw(P) ≥ Dmin(P∗) . (12)

Therefore, Dmin(P∗) is a lower bound of the minimax regret.
Now we prove that Dmin(P∗) is also an upper bound. According to Eq. (9), for any ε> 0, there

exists a parameter vector wε such that

Dwε(P∗) ≤ Dmin(P∗)+ ε . (13)

By definition, for any P, Dmin(P) ≤ Dwε(P). Therefore, using Eq. (13), we can write

Dwε(P∗)−Dwε(P) ≤ Dmin(P∗)−Dmin(P)+ ε . (14)

Since Dmin(P) is continuously differentiable and (according to Eq. (10)) maximum at P∗, for any
ε′ > 0 there exists δ> 0 such that, for any P ∈ P with ‖P∗−P‖ ≤ δ we have

Dmin(P∗)−Dmin(P) ≤ ε′‖P∗−P‖ ≤ ε′δ . (15)

Let Pδ a prior such that ‖P∗−Pδ‖ = δ. Taking ε = ε′δ and combining Eqs. (14) and (15) we can
write

Dwε(P∗)−Dwε(Pδ) ≤ 2ε′δ .

Since the above condition is verified for any ε′ > 0 and any prior Pδ at distance δ from P, and taking
into account that Dwε(P) is a linear function of P, we conclude that the maximum slope of Dwε(P)
is bounded by 2ε′ and, thus, for any P ∈ P , we have

Dwε(P)−Dwε(P∗) ≤ 2ε′‖P−P∗‖ ≤ 2
√
2ε′ ,

(where we have used the fact that the maximum distance between two probability vectors is
√
2).

Therefore, we can write
max
P
Dwε(P) ≤ Dwε(P∗)+2

√
2ε′
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and, thus,
inf
w
max
P
Dw(P) ≤ Dwε(P∗)+2

√
2ε′ .

Finally, using Eq. (13) and taking into account that ε= ε′δ≤
√
2ε′ we get

inf
w
max
P
Dw(P) ≤ Dmin(P∗)+3

√
2ε′ . (16)

Since the above is true for any ε′ > 0 we conclude that Dmin(P∗) is also an upper bound of Dw.
Therefore, combining Eqs. (12) and (16), we conclude that

inf
w
max
P
Dw(P) = Dmin(P∗) ,

which completes the proof.

Note that the deviation function needs to be neither differentiable nor a continuous function of
w parameters.

If the minimum deviation function is not continuously differentiable at the minimax deviation
probability, P∗, the theorem cannot be applied. The reason is that, although there should exist at least
one classifier providing the minimum deviation at P = P∗, it or they could not provide a constant
deviation with respect to the prior probability. The situation can be illustrated with an example.

Let x ∈ R be given by p(x|d = 0) = 0.8N(x,σ)+ 0.2N(x− 2,σ) and p(x|d = 1) = 0.2N(x−
1,σ)+ 0.8N(x− 3,σ), where σ = 0.5 and N(x,σ) = (2πσ)−1/2 exp(−x2/(2σ2)), and consider the
set Φλ of classifiers given by a single threshold over x and decision

d̂ =
{
1 if x≥ λ
0 if x< λ.

Fig. 2 shows the distribution of both classes over x, and Fig. 3 shows, as a function of priors, the
minimum error probability (continuous line) that can be obtained using classifiers in Φλ. Note that
decision costs c00 = c11 = 0 and c01 = c10 = 1 have been considered for this illustrative problem.
An abrupt slope change is observed at the minimax deviation probability, for P{d = 1} = 1/2. For
this prior, there are two single threshold classifiers providing the minimum error probability, which
are given by thresholds λ1 and λ2 in Fig. 2. However, as shown in Fig. 3 neither of them provides a
risk that is constant in the prior. The minimax deviation classifier in Φλ, which has a threshold λ0,
does not attain minimum risk at the minimax deviation probability and, thus, cannot be obtained by
using Eq. (11).

For this example, the desired robust classifier should have a deviation function given by the
horizontal dotted line in Fig. 3. Fortunately, it can be obtained by combining the outputs of several
classifiers. For instance, let d̂1 and d̂2 the decisions of classifiers given by thresholds λ1 and λ2,
respectively. It is not difficult to see that the classifier selecting d̂1 and d̂2 at random (for each input
sample x) provides a robust classifier.

This procedure can be extended to the multiclass-case: consider a set of L classifiers with pa-
rameters wk, k = 0, . . . ,L−1, and consider the classifier such that, for any input sample x, makes a
decision equal to d̂k (i.e., the decision of classifier with parameters wk), with probability qk. It is not
difficult to show that the deviation function of this classifier is given by

D(P) =
L−1

∑
j=0

Pj

(
L−1

∑
k=0

qkD j(wk)

)
,

112



MINIMAX REGRET CLASSIFIER

−2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

Li
ke
lih
oo
ds

λ1 λ2λ0

Figure 2: The conditional data distributions for the one-dimensional example discussed in the text.
λ1 and λ2 are the thresholds providing the minimum risk at the minimax deviation prob-
ability. λ0 provides the minimax deviation classifier.

where D j(wk) = R j(wk)− c j j. In order to get a constant deviation function, probabilities qk should
be chosen in such a way that

L−1

∑
k=0

qkD j(wk) = D ,

where D is a constant. Solving these linear equations for qk, k = 0, . . . ,L− 1 (with the constraint
∑k qk = 1), the required probabilities can be found.

Note that, in order to build the non-deterministic classifier providing a constant deviation, a
set of L independent classifiers that are optimal at the minimax deviation prior should be found.
However, we go no further on the investigation of this special case for two main reasons:

• The situation does not seem to be common in practice. In our simulations, we have found that
the maximum of the minimum risk deviation always provided a response which is approxi-
mately parallel to Rbasis.

• In general, the abrupt change in the derivative may be a symptom that the classifier struc-
ture is not optimal for the data distribution. Instead of building a nondeterministic classifier,
increasing the classifier complexity should be more efficient.

Although the least favorable prior providing the minimax deviation can be computed in closed
form for some simple distributions, in general, it must be computed numerically. Moreover, we
assume here that the data distribution is not known, and must be learned from examples. Thus,
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Figure 3: Error probabilities as a function of prior probability of class 1 for the example in Fig. 2.
Thresholds λ1 and λ2 do not provide the minimax deviation classifier, which is obtained
for threshold λ0. However, the random combination of classifiers with thresholds λ1 and
λ2 (dotted line) provides a robust classifier with deviation lower than that of λ0.

we must incorporate the estimation of the least favorable prior in the learning process. Next, we
propose a training algorithm in order to get a minimax regret classifier based on neural networks.

4. Neural Robust Classifiers Under Complete Uncertainty

Note that, if QmMd is the probability vector providing the maximum in Eq. (11), that is,

QmMd = argmax
P

{
inf
w
{Dw(P)}

}
,

then we can write

DmMd = inf
w
{Dw(QmMd)} .

Therefore, the minimax deviation classifier can be estimated by training a classifier using prior in
QmMd . For this reason, QmMd will be called the minimax deviation prior (or least favorable prior).
Our proposed algorithms are based on an iterative process of estimating parameters w based on an
estimate of the minimax deviation prior, and re-estimating prior based on an estimate of network
weights. This is shown in the following.
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4.1 Updating Network Weights

Learning is based on minimizing some empirical estimate of the overall error function

E{C(y,d)} =
L−1

∑
i=0

P{d= ui}E{C(y,d)|d= ui} =
L−1

∑
i=0

PiCi ,

whereC(y,d) may be any error function andCi is the expected conditional error for class-i.
Selecting the appropriate error function (see Cid-Sueiro and Figueiras-Vidal, 2001, for in-

stance), learning rules can be designed providing a posteriori probability estimates (yi ≈ P{d =
ui|x}, where yi is the soft decision) and, thus, according to Eq. (3), the hard decision minimizing
the risk can be approximated by

d̂= arg min
i
{
L−1

∑
j=0

ci jy j} .

The overall empirical error function (cost function) used in learning for priors P̂= (P̂0, . . . , P̂L−1)
may be written as

Ĉ =
L−1

∑
i=0

P̂iĈi =
L−1

∑
i=0

P̂i
1
Ki

K

∑
k=1

dki Ĉ(yk,dk),

=
1
K

[
L−1

∑
i=0

(
P̂i

Ki/K

K

∑
k=1

dkiC(yk,dk)

)]
,

=
1
K

K

∑
k=1

[
L−1

∑
i=0

P̂i
P̂(0)
i

dki Ĉ(yk,dk)

]
, (17)

where P̂(0)
i =Ki/K is an initial estimate of class-i prior based on class frequencies in the training set

and P̂i is the current prior estimate.
Minimizing error function (17) by means of a stochastic gradient descent learning rule leads to

update the network weights at k-th iteration as

w(k+1) = w(k)−µ
(L−1

∑
i=0

P̂(n)
i

P̂(0)
i

dki ∇wC(yk,dk)
)
,

= w(k)−
(L−1

∑
i=0

µ(n)
i dki

)
∇wC(yk,dk) , (18)

where

µ(n)
i = µ

P̂(n)
i

P̂(0)
i

(19)

is a learning step scaled by the prior ratio. Note that di selects the appropriate µ
(n)
i according to

the pattern class membership. The classifier is trained without altering the original training data set
class distribution P̂(0)

i and therefore, without missing or duplicating information.
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4.2 Updating Prior Probabilities

Eq. (11) shows that the learning process should maximize (5) with respect to the prior probabilities.
The estimate of (5) can be computed as

̂̄Dw(P) = R̂w(P)−Rbasis(P) , (20)

where

R̂w(P) =
L−1

∑
j=0

R̂ jPj (21)

is the overall Bayes risk estimate and

R̂ j =
1
N j

L−1

∑
i=0

ci jNi j (22)

is the class- j conditional risk estimate where N j is the number of class u j patterns in the training
phase and Ni j is the number of samples from class u j assigned to ui.

In order to derive a learning rule to find an estimate P̂i satisfying constraints ∑L−1
i=0 P̂i = 1 and

0≤ P̂i ≤ 1, we will use auxiliary variables Bi such that

P̂i =
exp(Bi)

∑L−1
j=0 exp(B j)

. (23)

We maximize ̂̄Dw with respect to Bi. Applying the chain rule,

∂ ̂̄Dw
∂Bi

=
L−1

∑
j=0

∂ ̂̄Dw
∂P̂j

∂P̂j
∂Bi

,

and using Eqs. (20), (21) and (23), we get

∂ ̂̄Dw
∂Bi

=
L−1

∑
j=0

(R̂ j− c j j)P̂i(δi j− P̂j),

= P̂i

(
R̂i− cii−

L−1

∑
j=0

(R̂ jP̂j)+
L−1

∑
j=0

(c j jP̂j)

)
,

= P̂i
((
R̂i− cii

)
−

(
R̂w− R̂basis

))
,

= P̂iR̂di ,

where
R̂di = (R̂i− cii)− (R̂w− R̂basis) .

The learning rule for auxiliary variable Bi is

Bi(n+1) = B(n)
i +ρ

∂D̂w
∂Bi

,

= B(n)
i +ρP̂(n)

i R̂(n)
di , (24)
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where parameter ρ > 0 controls the rate of convergence. Using Eq. (23) and Eq. (24), the updated
learning rule for P̂i is

P̂(n+1)
i =

exp(B(n)
i )exp

(
ρP̂(n)

i R̂(n)
di

)

∑L−1
j=0

[
exp

(
B(n)
j

)
exp

(
ρP̂(n)

j R̂(n)
d j

)] ,

=
P̂(n)
i exp

(
ρP̂(n)

i R̂(n)
di

)

∑L−1
j=0

[
P̂(n)
j exp

(
ρP̂(n)

j R̂(n)
d j

)] . (25)

4.3 Training Algorithm for a Minimax Deviation Classifier

In the previous section, both the network weights updating rule (18) and the prior probability update
rule (25) have been derived. The algorithm resulting from the combination is shown as follows:
for n= 0 to Niterations−1 do
for k = 1 to K do

w(k+1) = w(k)−
(L−1

∑
i=0

µ(n)
i dki

)
∇wC(yk,dk)

end for
Estimate R̂(n), R̂(n)

i , i= 0, . . . ,L−1, according to (21) and (22)
Update minimax probability P̂(n+1)

i , i= 0, . . . ,L−1 according to (25) and compute µ(n+1)
i with

(19)
end for

5. Robust Classifiers Under Partial Uncertainty

Although in many practical situations prior probabilities may not be specified with precision, they
can be partially known. In this section we discuss how partial information about priors can be used
to improve the classifier performance in relation to a complete uncertainty situation.

From now on, let us consider that lower (or upper) bounds of the priors are known based on
previous experience. We will denote the lower and upper bounds of class-i prior probability as Pil
and Piu, respectively.

In order to illustrate this situation consider a binary classification problem where probability
lower bounds P0l and P1l are known. That is, P1 ∈ [P1l,1−P0l] where this interval represents the un-
certainty region. Let us denote by Γ= {P : 0≤ Pi ≤ 1, ∑L−1

i=0 Pi = 1,Pi ≥ Pil} the probability region
satisfying the imposed constraints. In the following, we will refer to Γ as the uncertainty region.

Now, the aim is to design a classifier that minimizes the maximum regret from the minimum
risk only inside the uncertainty region. This is depicted in Fig. 4(a), which shows that reducing the
uncertainty in priors allows to reduce deviation from the optimal classifier. This minimax regret
approach for the uncertainty region Γ is often called Γ-minimax regret. As discussed before, the
minimax deviation solution gives a Bayes solution with respect some priors denoted in the partial
uncertainty case as QΓ

mMd in Fig. 4(a), which is the least favorable distribution according to the
regret criterion.

117
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Figure 4: Minimax deviation classifier under partial uncertainty of prior probabilities:
(a)Γ-minMaxDev Classifier. (b) Modified cost function defined as RB(P)+ψ(P).

In contrast to the minimax regret criterion, note that a classical minimax classifier for the con-
sidered uncertainty region would minimize the worst-case risk. It would be a Bayes solution for the
prior where the minimum risk reaches its maximum and it could be denoted as QΓ

mM .
Notice, also, that these solutions will be the same if the risk for the vertex of Γ take the same

value (cΓii = k).

5.1 Neural Robust Classifiers Under Partial Uncertainty

Minimax search can be formulated as maximizing (with respect to priors) the minimum (with re-
spect to network parameters) of deviation function (5), as described in previous section, but subject
to some constraints

arg max
P

inf
w

{DΓ
w(P)} ,

s.t. Pi ≥ Pil, i= 0, . . . ,L−1
where DΓ

w = RΓw−RΓbasis. When uncertainty is global, this hyperplane is defined by the risk in the L
extreme cases with Pi = δik, that is, by the corresponding cii. However, with partial knowledge of
the prior probabilities, this hyperplane becomes defined by the risk in L points which are the vertex
given by the restrictions and with associated risk denoted by cΓj j.

Defining
l(Pi) =

1
1+ exp−τ(Pi−Pil)

, (26)

where τ controls the hardness of this restriction, the minimax problem can be re-formulated as

arg max
P

inf
w

{DΓ
w(P)}

s.t. l(Pi) ≥ 1/2, i= 0, . . . ,L−1.

Thus, this constrained optimization problem can be solved as a non-constrained problem by
considering an auxiliary function that incorporates the restriction as a barrier function

118



MINIMAX REGRET CLASSIFIER

arg max
P

inf
w

{DΓ
w(P)+Aψ(P)} ,

where ψ(Pi) = log(l(Pi)) and the constant A determines the contribution of the barrier function.
Fig. 4(b) shows the new risk function corresponding to the binary case previously depicted in

Fig. 4(a). Note that, it is the sum of the original RB(P) and the barrier function ψ(P).
As in Section 4.1, in order to derive the network weight learning rule, we need to compute

∂ψ̂
∂Bi

=
L−1

∑
j=0

∂ψ̂

∂P̂j

∂P̂j
∂Bi

,

= τP̂i
L−1

∑
k=0

(
1− l(P̂k)

)
(δik− P̂k),

= τP̂iψ̂di ,

where ψ̂di = ∑L−1
k=0 (1− l(P̂k))(δik− P̂k)

As τ increases, the constraints become harder around the specified bound.
The update learning rule for the auxiliary variable Bi at cycle n is

B(n+1)
i = Bi(n) +ρP̂(n)

i R̂Γ(n)
di +ρAτP̂(n)

i ψ̂(n)
di .

And therefore, using (23), the update learning rule for Pi is

P̂(n+1)
i =

P̂(n)
i exp

(
ρP̂(n)

i R̂Γ(n)
di

)
exp

(
ρAτP̂(n)

i ψ̂(n)
di

)

L−1

∑
j=0

{
P̂(n)
j exp

(
ρP̂(n)

j R̂Γ(n)
d j

)
exp

(
ρAτP̂(n)

j ψ̂(n)
d j

)} .

Note that if the upper bound is known instead of the lower bound, l(Pi) defined by (26) should
be replaced by u(Pi) = (1+ exp(τ(Pi−Piu)))−1 at the previous formulation.

The minimax constrained optimization problem has been tackled by considering a new objective
function defined by the sum of the original cost function and a barrier function. Studying the
convexity of this new function becomes important from the fact that a stationary point of this risk
curve is a global maximum.

Since the minimum risk curve (RB(P)) is a convex function of the priors (see VanTrees, 1968,
for details), if we verify the convexity of the barrier function, we can conclude that the function
defined by the sum of both of them is also convex.

This barrier function is convex in P if the Hessian matrix HR verifies PTHRP≤ 0
The Hessian matrix of the barrier function equals to a diagonal matrix Dr = diag(r) with all

negative diagonal entries ri = Aτ2(−l(Pi)(1− l(Pi))). As l(Pi) ∈ [0,1] and therefore, ri ≤ 0, it is
straightforward to see that

PTHRP = PTDrP,

=
L−1

∑
i=0

P2i ri ≤ 0 .

Since the barrier function is convex, the new objective function (defined by the sum of two
convex functions) is also convex.
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5.2 Extension to Other Learning Algorithms

The learning algorithm proposed in this paper is intended to train a minimax deviation classifier
based on neural networks with feedforward architecture. Actually, the learning algorithm we pro-
pose becomes a feasible solution for any learning process based on minimizing some empirical
estimate of an overall cost (error) function.

However, it is also applicable to a general classifier provided it is trained (in an iterative process)
for the estimated minimax deviation probabilities and the assumed decision costs. Specifically, in
this paper, scaling the learning rate allows to simulate different class distributions and the hard
decisions are made based on posterior probability estimates and decision costs. Furthermore, the
neural learning phase carried out in one iteration can be re-used for the next one, what allows
to reduce computational cost with respect to a complete optimization process on each iteration.
Apart from the general approach of completely training a classifier on each iteration and in order
to reduce its computational cost, specific solutions may be studied for different learning machines.
Nonetheless, it seems not feasible to readily achieve this improvement for classifiers like SVMs,
where support vectors for one solution may have nothing in common with the ones obtained in next
iteration and thus, making necessary to re-train the classifier in each iteration.

Another possible solution for any classifier that provides a posteriori probabilities estimates or
any score that can be converted into probabilities (for details on calibration methods see Wei et al.,
1999; Zadrozny and Elkan, 2002; Niculescu-Mizil and Caruana, 2005) is outlined here. In this
case, an iterative procedure able to estimate the minimax deviation probabilities and consequently
to adjust (without re-training) the outputs of the classifier could be studied. The general idea for this
approach is as follows: first, the new minimax deviation prior probabilities are estimated according
to (25) and then, posterior probabilities provided by the model are adjusted as follows (see Saerens
et al., 2002, for more details)

P(k){d= ui|x} =

P(k)
i

P(k−1)
i

P(k−1){d= ui|x}

L−1

∑
j=0

P(k)
j

P(k−1)
j

P(k−1){d= u j|x}

. (27)

The algorithm’s main structure is summarized as
for k = 1 to K do
Estimate R̂(k), R̂(k)

i , i= 0, . . . ,L−1, according to (21), (22) and decision costs ci j
Update minimax probability P̂(k+1)

i according to (25)
Adjust classifier outputs according to (27)

end for

The effectiveness of this method relies on the accuracy of the initial a posteriori probability
estimates. Studying in depth this approach and comparing different minimax deviation classifiers
(decision trees, SVMs, RBF networks, feedforward networks and committee machines) together
with different probability calibration methods appears as a challenging issue to be explored in future
work.
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6. Experimental Results

In this section, we first present the neural network architecture used in the experiments and illustrate
the proposed minimax deviation strategy on an artificial data set. Then, we apply it to several real-
world classification problems. Moreover, a comparison with other proposals such as the traditional
minimax and the common re-balancing approach is carried out.

6.1 Softmax-based Network

Although our algorithms can be applied to any classifier architecture, we have chosen a neural
network based on the softmax non-linearity with soft decisions given by

yi =
Mi

∑
j=1

yi j ,

with

yi j =
exp(wTi jx+wi j0)

∑L−1
k=0 ∑

Mk
l=1 exp(wTklx+wkl0)

,

where L stands for the number of classes,M j the number of softmax outputs used to compute y j and
wi j are weight vectors. We will refer to this network as a Generalized Softmax Perceptron(GSP).1
A simple network withM j = 2 is used in the experiments.

...SOFTMAX

n inputs / outputs

wj,kx1

x2

x3

xd

...

...

y1,1

y1,M1

yL,1

yL,ML

y1,...

yL,...

HARD
DECISION

Class i

y1

yL

Figure 5: GSP(Generalized Softmax Perceptron) Network

Fig. 5 corresponds to the neural network architecture used to classify the samples represented by
feature vector x. Learning consists of estimating network parameters w by means of the stochastic
gradient minimization of certain objective functions. In the experiments, we have considered the
Cross Entropy objective function given by

CE(y,d) = −
L

∑
i=1

di logyi .

The stochastic gradient learning rule for the GSP network is given by Eq. (18). Learning step
µ(k) decreases according to µ(k) = µ(0)

1+k/η , where k is the iteration number, µ(0) the initial learning
rate and η a decay factor.

1. Note that the GSP is similar to a two layer MLP with a single layer of weights and with coupled saturation function
(softmax), instead of sigmoidal units.
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The reason to illustrate this approach with a feedforward architecture is that, as mentioned in
Section 5.2, it allows to exploit (in the iterative learning process) the partially optimized solution
in current iteration for the next one. On the other hand, posterior probability estimation makes it
possible to apply the adaptive strategy based on prior re-estimation proposed by Saerens to the min-
imax deviation classifier, as long as a data set representative of the operation conditions is available.
Finally, the fact that intermediate outputs yi j of the GSP can be interpreted as subclass probabilities
may provide quite a natural way to cope with the unexplored problem of uncertainty in subclass
distributions as already pointed out by Webb and Ting (2005). Nonetheless, both architecture and
cost function issues are not the goal of this paper, but merely illustrative tools.

6.2 Artificial Data Set

To illustrate the minimax regret approach proposed in this paper both under complete and partial
uncertainty, an artificial data set with two classes (class u0 and class u1) has been created. Data ex-
amples are drawn from the normal distribution p(x|d= ui) =N(mi,σ2i ) with meanmi and standard
deviation σi. Mean values were set tom0 = 0,m1 = 2 and standard deviation to σ0 = σ1 =

√
2. A to-

tal of 4000 instances were generated with prior probabilities of class membership P{d= u0}= 0.93

and P{d= u1} = 0.07. The cost-benefit matrix
(
c00 c01
c10 c11

)
is given by

(
2 5
4 0

)
.

Initial learning rate was set to µ(0) = 0.3, decay factor to η= 2000 and training was ended after
80 cycles. Classifier assessment was carried out by following 10-fold cross-validation.

Two classifiers were trained, to be called a standard classifier and a minMaxDev classifier. The
former is built by considering that the estimated class prior information is precise and stationary
and the latter is the approach proposed in this paper to cope with uncertainty in priors. Thus, for the
standard classifier, its performance may deviate from the optimal risk in 3.39 when priors change
from training to test conditions. However, a minimax deviation classifier reduces this worst-case
difference from the optimal classifier to 0.77.

Now, we suppose that some information about priors is available (partial uncertainty). For
instance, we consider that the lower bound for prior probabilities P0 and P1 are known and set
to P0l = 0.55 and P1l = 0.05, respectively, so that the uncertainty region is Γ = {(P0,P1)|P0 ∈
[0.55,0.95],P1 ∈ [0.05,0.45]}.

A minimax deviation classifier can be derived for Γ (it will be called Γ-minMaxDev classi-
fier).The narrower Γ is, the closer the minimax deviation classifier performance is to the optimal.
For this particular case, under partially imprecise priors, the standard classifier may differ from
optimal (in Γ) in 0.83, while the use of the simple minMaxDev classifier designed under total prior
uncertainty conditions attains a maximum deviation of 0.53. However, the Γ-minMaxDev classifier
only differs from optimal in 0.24. These data are reported in Table 1 where both, experimental and
also theoretical results, are shown.

6.3 Real Databases

In this section we report experimental results obtained with several publicly available data sets.
From the UCI repository (Blake and Merz, 1998) the following benchmarks: German Credits, Aus-
tralian Credits, Insurance Company, DNA slice-junction, Page-blocks, Dermatology and Pen-digits.
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Classifier
Standard minMaxDev Γ-minMaxDev
Th/Exp Th/Exp Th/Exp

Maximum deviation from optimal
(complete uncertainty) 3.41/3.39 0.72/0.77 –
Maximum deviation from optimal in Γ
(partial uncertainty) 0.85/0.83 0.50/0.53 0.19/0.24

Table 1: A comparison between the standard classifier (build under stationary prior assumptions),
the minimax deviation classifier (minMaxDev) and the minimax deviation classifier under
partial uncertainty (Γ-minMaxDev) for an artificial data set

Database # Classes Class distribution # Attributes # Instances
German Credits (GCRE) 2 [0.70 0.30] 8 1000
Australian Credits (AUS) 2 [0.32 0.68] 14 690
Munich Credits (MCRE) 2 [0.30 0.70] 20 1000
Insurance Company (COIL) 2 [0.94 0.06] 85 9822
DNA Slice-junction (DNA) 3 [0.24 0.24 0.52] 180 3186
Page-blocks (PAG) 5 [0.90 0.06 0.01 0.01 0.02] 10 5473
Dermatology (DER) 6 [0.31 0.16 0.20 0.13 0.14 0.06] 34 366
Pen-digits (PEN) 10 [0.104 0.104 0.104 0.096 0.104

0.096 0.096 0.104 0.096 0.096]
16 10992

Table 2: Experimental Data sets

Other public data set used is Munich Credits from the Dept. of Statistics at the University of Mu-
nich.2

Data set description is summarized in Table 2, and cost-benefit matrices are shown in Table 3.
We have used the cost values that appear in Ikizler (2002) for those data sets in common. Otherwise,
for lack of an expert analyst, the cost values have been chosen by hand.

2. Data sets available at http://www.stat.uni-muenchen.de/service/datenarchiv/welcome e.html.

Insurance Company German, Australian, Munich Credits DNA
(
0 0
1 −17

) (
−1 5
0 0

) 


−1 2 3
2 −1 3
2 2 0





Page-Blocks Dermatology Pendigits




−1 1 1 1 1
2 0 1 1 1
2 1 0 1 1
2 1 1 0 1
2 1 1 1 0









−4 3 3 2 2 2
2 −3 3 2 1 3
3 3 −8 4 4 5
4 5 5 −10 5 2
3 1 4 3 −6 3
4 5 5 4 5 −10




ci j =

{
0 if i= j
1 Otherwise

Table 3: Cost-Benefit matrices for the experimental Data sets

123
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Maximum Risk Deviation from the optimal classifier
Standard Re-balanced Minimax Deviation Minimax

minMaxDev minMax

GCRE 0.70 0.80 (0.55 0.60) 0.99

ACRE 1.00 1.00 (0.76 0.86) 1.00

MCRE 0.91 0.77 (0.54 0.59) 0.99

COIL 2.78 0.99 (0.87 0.92) 16.32

DNA 0.34 0.53 (0.30 0.27 0.25) 1.14

PAG 0.62 0.26 (0.13 0.13 0.20 0.16 0.16) 0.86

DER 1.03 1.28 (0.67 0.78 0.51 0.48 0.54 0.60) 7.62

PEN 0.061 0.059
(0.024 0.025 0.023 0.026 0.023
0.028 0.019 0.021 0.022 0.029) 0.029

Table 4: Classifier Performance evaluated as Maximum Risk Deviation from the optimal classifier
for several real-world applications. Class-conditional risk deviations (Ri− cii) reported for
the minMaxDev classifier.

Experimental results for these data sets are shown in the following sections. The robustness of
different decision machines under complete uncertainty of prior probabilities is analyzed in Section
6.3.1. If uncertainty is only partial, a similar study and comparison with the previous approach
(complete uncertainty) is carried out in Section 6.3.2.

6.3.1 CLASSIFIER ROBUSTNESS UNDER COMPLETE UNCERTAINTY

We now study how different neural-based classifiers cope with worst-case situations in prior prob-
abilities. The maximum deviation from the optimal classifier (see Table 4) is reported for the pro-
posed minMaxDev strategy as well as for other alternative approaches: the one based on the as-
sumption of stationary priors (standard) and the common alternative of deriving the classifier from
an equally distributed data set (re-balanced). A comparison with the traditional minimax strategy
is also provided. Together with the previously mentioned value (maximum deviation or regret),
deviation for the L class-conditional extreme cases (Ri− cii) is also reported for the minMaxDev
classifier in Table 4. Results allow to verify that this solution is fairly close to the optimal one where
deviation is not dependent on priors and thus, class-conditional deviations take the same value.

Although the balanced class distribution to train the classifier can be obtained by means of
undersampling and/or oversampling, it is simulated by altering the learning rate used in the training

phase according to (19) as µi = µ
1/L
P̂(0)
i

, where 1/L represents the simulated probability, equal for

all classes.
Results evidence that the assumption of stationary priors may lead to significant deviations from

the optimal decision rule under “unexpected”, but rather realistic, prior changes. This deviation
may reach up to three times more than the robust minimax deviation strategy. Thus, for classifica-
tion problems like Page-blocks the maximum deviation from the optimal classifier is 0.62 for the
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Maximum Risk
Standard Re-balanced Minimax Deviation Minimax

minMaxDev minMax
GCRE 0.70 0.15 0.60 0.00

ACRE 0.01 0.02 0.86 -0.00

MCRE 0.05 0.20 0.59 0.00

COIL 0.76 0.99 0.86 0.02

DNA 0.34 0.53 0.25 0.13

PAG 0.62 0.26 0.20 0.10

DER -2.10 -1.68 -2.21 -2.38

PEN 0.061 0.059 0.029 0.029

Table 5: Classifier Performance measured as Maximum Risk for several real-world applications.

standard classifier while this reduces to 0.20 for the minMaxDev one. Likewise, for the Insurance
company(COIL) application the maximum deviation for the standard classifier is 2.78 compared
with 0.92 for the minMaxDev model. The remaining databases also show the same behavior as it is
presented in Table 4.

On the other hand, the use of a classifier inferred from a re-balanced data set does not necessarily
involve a decrease in the maximum deviation with respect to the standard classifier. In the same
way, the traditional minimax classifier does not protect against prior changes in terms of maximum
relative deviation from the minimum risk classifier.

However, if our criterion is more conservative and our aim is the minimization of the maximum
possible risk (not the minimization of the deviation), the traditional minimax classifier represents the
best option. It is shown in Table 5 where the maximum risk for the different classifiers is reported.
Positive values in this table indicate a cost while negative values represent a benefit. For instance,
for the Page-blocks application the minimax classifier assures a maximum risk of 0.10 while the
standard, re-balanced and minMaxDev classifiers reach values of 0.62, 0.26 and 0.20, respectively.
It can be noticed that for the Pen-digits data set, the minimax deviation and minimax approaches
attain the same results. The reason is that, for this problem, the Rbasis plane takes the same value (in
this case, zero) in the probability space.

6.3.2 CLASSIFIER ROBUSTNESS UNDER PARTIAL UNCERTAINTY

Unlike the previous section, we consider now that partial information about the class priors is avail-
able. The aim is to find a classifier that behaves well for a delimited and realistic range of priors
what constitutes an aid in reducing the maximum deviation from the optimal classifier. This situ-
ation can be treated as a constrained minimax regret strategy where the constraints represent any
extra information about prior probability value.

Experimental results for several situations of partial prior uncertainty are presented in this sec-
tion. We consider that lower bounds for the prior probabilities are available (see Table 6). In order
to get the Γ-minMaxDev classifier, the risk for the different vertex of the uncertainty domain needs
to be calculated. With them, the basis risk RΓbasis over which deviations are measured is derived.
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Lower bound for prior probabilities
Data Set P0l P1l P2l P3l P4l P5l P6l P7l P8l P9l
GCRE 0.40 0.25

ACRE 0.20 0.25

MCRE 0.20 0.25

COIL 0.15 0.03

DNA 0.10 0.10 0.25

PAG 0.22 0.02 0.00 0.01 0.02

DER 0.1 0.20 0.10 0.10 0.10 0.02

PEN 0.10 0.06 0.06 0.10 0.10 0.06 0.06 0.10 0.05 0.05

Table 6: Lower bounds for prior probabilities defining the uncertainty region, Γ region for the ex-
perimental data sets.

Maximum Risk Deviation in the uncertainty region
Standard Minimax Deviation Minimax Deviation with restriction

minMaxDev Γ-minMaxDev
GCRE 0.24 0.19 (0.10 0.09)

ACRE 0.03 0.64 (0.03 0.03)

MCRE 0.22 0.38 (0.13 0.10)

COIL 2.33 0.77 (0.17 0.11)

DNA 0.14 0.08 (0.07 0.07 0.06)

PAG 0.37 0.15 (0.10 0.08 0.08 0.05 0.04)

DER 0.08 0.05 (0.03 0.03 0.04 0.02 0.05 0.05)

PEN 0.013 0.007 (0.003 0.003 0.001 0.000 0.001
0.001 0.000 0.001 0.003 0.001)

Table 7: Classifier Performance under partial knowledge of prior probabilities measured as Maxi-
mum Risk Deviation for several real-world applications. Class-conditional risk deviations
(RΓi − cΓii) are reported for the Γ-minMaxDev classifier.

Maximum deviation from the optimal in Γ is reported for the Γ-minMaxDev classifier together
with the standard and the minMaxDev ones. For instance, the standard classifier for the Page-
blocks data set deviates from the optimal classifier, in the defined uncertainty region, up to 0.37,
while when complete uncertainty is assumed the maximum deviation is equal to 0.62.

In the same way, reducing the uncertainty also means a reduction in the maximum deviation
for minMaxDev classifier (trained without considering this partial knowledge). Thus, for Γ, this
classifier assures a deviation bound of 0.15. However, taking into account this partial information to
train a Γ-minMaxDev classifier allows to reduce the deviation for the worst-case conditions to 0.10.
It can be seen the same behavior for the other databases in Table 7.
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7. Conclusions

This work concerns the design of robust neural-based classifiers when the prior probabilities of the
classes are partially or completely unknown, even by the end user.

This problem of uncertainty in the class priors is often ignored in supervised classification, even
though it is a widespread situation in real world applications. As a result, the reliability of the
inducted classifier can be greatly affected as previously shown by the experiments.

To tackle this problem, we have proposed a novel minimax deviation strategy with the goal to
minimize the maximum deviation with respect to the optimal classifier.

A neural network training algorithm based on learning rate scaling has been developed. The
experimental results show that this minimax deviation (minMaxDev) classifier protects against prior
changes while other approaches like ignoring this uncertainty or use a balanced learning data set
may result in large differences in performance with respect to the minimum risk classifier. Also,
it has been shown that the conventional minimax classifier reduces the maximum possible risk
following a conservative attitude but at the expense of large worst-case differences from the optimal
classifier.

Furthermore, a constrained minimax deviation approach (Γ-minMaxDev) has been derived for
those situations where uncertainty is only partial. This may be seen as a general approach with some
particular cases: a) precise knowledge of prior probabilities and b) complete uncertainty about the
priors. In a) the region of uncertainty collapses to a point and we have the Bayes’ rule of minimum
risk and in b) the pure minimax deviation strategy comes up. While the first one may be criticized
for being quite unrealistic, the other may be seen rather pessimistic. The experimental results for
this proposed intermediate situation show that the Γ-minMaxDev classifier allows to reduce the
maximum deviation from the optimal and performs well over a range of prior probabilities.
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ALAIZ-RODRÍGUEZ, GUERRERO-CURIESES, AND CID-SUEIRO

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example
weighting. In Proceedings of the third IEEE International Conference on Data Mining, pages
435–442, 2003.

Z. H. Zhou and X. Y. LiuJ. Training cost-sensitive neural networks with methods addressing the
class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18(1):63–77,
January 2006.

130



Journal of Machine Learning Research 8 (2007) 131-154 Submitted 2/05; Revised 9/05; Published 1/07

Distances between Data Sets Based on Summary Statistics

Nikolaj Tatti NTATTI@CC.HUT.FI
HIIT Basic Research Unit
Laboratory of Computer and Information Science
Helsinki University of Technology, Finland

Editor: Dale Schuurmans

Abstract
The concepts of similarity and distance are crucial in data mining. We consider the problem of
defining the distance between two data sets by comparing summary statistics computed from the
data sets. The initial definition of our distance is based on geometrical notions of certain sets of
distributions. We show that this distance can be computed in cubic time and that it has several
intuitive properties. We also show that this distance is the unique Mahalanobis distance satisfying
certain assumptions. We also demonstrate that if we are dealing with binary data sets, then the
distance can be represented naturally by certain parity functions, and that it can be evaluated in
linear time. Our empirical tests with real world data show that the distance works well.
Keywords: data mining theory, complex data, binary data, itemsets

1. Introduction

In this paper we will consider the following problem: Given two data sets D1 and D2 of dimension
K, define a distance betweenD1 andD2. To be more precise, we consider the problem of defining the
distance between two multisets of transactions, each set sampled from its own unknown distribution.
We will define a dissimilarity measure between D1 and D2 and we will refer to this measure as CM
distance.

Generally speaking, the notion of dissimilarity between two objects is one of the most funda-
mental concepts in data mining. If one is able to retrieve a distance matrix from a set of objects,
then one is able to analyse data by using for example, clustering or visualisation techniques. Many
real world data collections may be naturally divided into several data sets. For example, if a data
collection consists of movies from different eras, then we may divide the movies into subcollec-
tions based on their release years. A distance between these data (sub)sets would provide means to
analyse them as single objects. Such an approach may ease the task of understanding complex data
collections.

Let us continue by considering the properties the CM distance should have. First of all, it should
be a metric. The motivation behind this requirement is that the metric theory is a well-known area
and metrics have many theoretical and practical virtues. Secondly, in our scenario the data sets have
statistical nature and the CM distance should take this into account. For example, consider that both
data sets are generated from the same distribution, then the CM distance should give small values
and approach 0 as the number of data points in the data sets increases. The third requirement is that
we should be able to evaluate the CM distance quickly. This requirement is crucial since we may
have high dimensional data sets with a vast amount of data points.

c©2007 Nikolaj Tatti.
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The CM distance will be based on summary statistics, features. Let us give a simple example:
Assume that we have data sets D1 = {A,B,A,A} and D2 = {A,B,C,B} and assume that the only
feature we are interested in is the proportion of A in the data sets. Then we can suggest the distance
between D1 and D2 to be |3/4−1/4| = 1/2. The CM distance is based on this idea; however,
there is a subtle difficulty: If we calculate several features, then should we take into account the
correlation of these features? We will do exactly that in defining the CM distance.

The rest of this paper is organised as follows. In Section 2 we give the definition of the CM
distance by using some geometrical interpretations. We also study the properties of the distance and
provide an alternative characterisation. In Section 3 we study the CM distance and binary data sets.
In Section 4 we discuss how the CM distance can be used with event sequences and in Section 5 we
comment about the feature selection. Section 6 is devoted for related work. The empirical tests are
represented in Section 7 and we conclude our work with the discussion in Section 8.

2. The Constrained Minimum Distance

In the following subsection we will define our distance using geometrical intuition and show that
the distance can be evaluated efficiently. In the second subsection we will discuss various properties
of the distance, and in the last subsection we will provide an alternative justification to the distance.
The aim of this justification is to provide more theoretical evidence for our distance.

2.1 The Definition

We begin by giving some basic definitions. By a data set D we mean a finite collection of samples
lying in some finite space Ω. The set Ω is called sample space, and from now on we will denote
this space by the letter Ω. The number of elements in Ω is denoted by |Ω|. The number of samples
in the data set D is denoted by |D|.

As we said in the introduction, our goal is not to define a distance directly on data sets but rather
through some statistics evaluated from the data sets. In order to do so, we define a feature function
S : Ω → RN to map a point in the sample space to a real vector. Throughout this section S will
indicate some given feature function and N will indicate the dimension of the range space of S. We
will also denote the ith component of S by Si. Note that if we have several feature functions, then we
can join them into one big feature function. A frequency θ ∈ RN of S taken with respect to a data
set D is the average of values of S taken over the data set, that is, θ= 1

|D| ∑ω∈D S(ω). We denote this
frequency by S (D).

Although we do not make any assumptions concerning the size of Ω, some of our choices are
motivated by thinking that |Ω| can be very large—so large that even the simplest operation, say,
enumerating all the elements inΩ, is not tractable. On the other hand, we assume that N is such that
an algorithm executable in, say, O(N3) time is feasible. In other words, we seek a distance whose
evaluation time does not depend of the size of Ω but rather of N.

Let P be the set of all distributions defined on Ω. Given a feature function S and a frequency θ
(calculated from some data set) we say that a distribution p∈P satisfies the frequency θ if Ep [S] = θ.
We also define a constrained set of distributions

C+ (S,θ) = {p ∈ P | Ep [S] = θ}
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to be the set of the distributions satisfying θ. The idea behind this is as follows: From a given
data set we calculate some statistics, and then we examine the distributions that can produce such
frequencies.

We interpret the sets P and C+ (S,θ) as geometrical objects. This is done by enumerating the
points inΩ, that is, we think thatΩ= {1,2, , . . . , |Ω|}. We can now represent each distribution p∈ P
by a vector u∈R|Ω| by setting ui = p(i). Clearly, P can be represented by the vectors in R|Ω| having
only non-negative elements and summing to one. In fact, P is a simplex in R|Ω|. Similarly, we can
give an alternative definition for C+ (S,θ) by saying

C+ (S,θ) =

{
u ∈ R|Ω| | ∑

i∈Ω
S(i)ui = θ,∑

i∈Ω
ui = 1,u≥ 0

}
. (1)

Let us now study the set C+ (S,θ). In order to do so, we define a constrained space

C (S,θ) =

{
u ∈ R|Ω| | ∑

i∈Ω
S(i)ui = θ,∑

i∈Ω
ui = 1

}
,

that is, we drop the last condition from Eq. 1. The set C+ (S,θ) is included in C (S,θ); the set
C+ (S,θ) consists of the non-negative vectors from C (S,θ). Note that the constraints defining
C (S,θ) are vector products. This implies that C (S,θ) is an affine space, and that, given two different
frequencies θ1 and θ2, the spaces C (S,θ1) and C (S,θ2) are parallel.

Example 1 Let us illustrate the discussion above with a simple example. Assume thatΩ= {A,B,C}.
We can then imagine the distributions as vectors in R3. The set P is the triangle having (1,0,0),
(0,1,0), and (0,0,1) as corner points (see Figure 1). Define a feature function S to be

S(ω) =
{
1 ω=C
0 ω %=C.

The frequency S (D) is the proportion of C in a data set D. Let D1 = (C,C,C,A) and D2 =
(C,A,B,A). Then S (D1) = 0.75 and S (D2) = 0.25. The spaces C (S,0.25) and C (S,0.75) are
parallel lines (see Figure 1). The distribution sets C+ (S,0.25) and C+ (S,0.75) are the segments of
the lines C (S,0.25) and C (S,0.75), respectively.

The idea of interpreting distributions as geometrical objects is not new. For example, a well-known
boolean query problem is solved by applying linear programming to the constrained sets of distri-
butions (Hailperin, 1965; Calders, 2003).

Let us revise some elementary Euclidean geometry: Assume that we are given two parallel affine
spaces A1 and A2. There is a natural way of measuring the distance between these two spaces. This
is done by taking the length of the shortest segment going from a point in A1 to a point in A2 (for
example see the illustration in Figure 1). We know that the segment has the shortest length if and
only if it is orthogonal with the affine spaces. We also know that if we select a point a1 ∈ A1 having
the shortest norm, and if we similarly select a2 ∈ A2, then the segment going from a1 to a2 has the
shortest length.

The preceding discussion and the fact that the constrained spaces are affine motivates us to
give the following definition: Assume that we are given two data sets, namely D1 and D2 and a
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(0, 1, 0)

C(S, 0.25)

C(S, 0.75)

C+(S, 0.25)

(0, 0, 1)

P

C+(S, 0.75)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

P
(1, 0, 0)

Figure 1: A geometrical interpretation of the distribution sets for |Ω| = 3. In the left figure, the
set P, that is, the set of all distributions, is a triangle. The constrained spaces C (S,0.25)
and C (S,0.75) are parallel lines and the distribution sets C+ (S,0.25) and C+ (S,0.75) are
segments of the constrained spaces. In the right figure we added a segment perpendic-
ular to the constraint spaces. This segment has the shortest length among the segments
connecting the constrained spaces.

feature function S. Let us shorten the notation C (S,S (Di)) by C (S,Di). We pick a vector from each
constrained space having the shortest norm

ui = argmin
u∈C (S,Di)

‖u‖2 , i= 1,2.

We define the distance between D1 and D2 to be

dCM (D1,D2 | S) =
√
|Ω|‖u1−u2‖2 . (2)

The reasons for having the factor
√
|Ω| will be given later. We will refer to this distance as Con-

strained Minimum (CM) distance. We should emphasise that u1 or u2 may have negative elements.
Thus the CM distance is not a distance between two distributions; it is rather a distance based on
the frequencies of a given feature function and is motivated by the geometrical interpretation of the
distribution sets.

The main reason why we define the CM distance using the constrained spaces C (S,Di) and
not the distribution sets C+ (S,Di) is that we can evaluate the CM distance efficiently. We discussed
earlier thatΩmay be very large so it is crucial that the evaluation time of a distance does not depend
on |Ω|. The following theorem says that the CM distance can be represented using the frequencies
and a covariance matrix

Cov [S] =
1
|Ω| ∑ω∈Ω

S(ω)S(ω)T −
(
1
|Ω| ∑ω∈Ω

S(ω)

)(
1
|Ω| ∑ω∈Ω

S(ω)

)T

.

Theorem 1 Assume that Cov [S] is invertible. For the CM distance between two data sets D1 and
D2 we have

dCM (D1,D2 | S)2 = (θ1−θ2)T Cov−1 [S] (θ1−θ2) ,

where θi = S (Di).
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The proofs for the theorems are given in Appendix.
The preceding theorem shows that we can evaluate the distance using the covariance matrix and

frequencies. If we assume that evaluating a single component of the feature function S is a unit
operation, then the frequencies can be calculated in O(N |D1|+N |D2|) time. The evaluation time
of the covariance matrix is O(|Ω|N2) but we assume that S is such that we know a closed form for
the covariance matrix (such cases will be discussed in Section 3), that is, we assume that we can
evaluate the covariance matrix in O(N2) time. Inverting the matrix takes O(N3) time and evaluating
the distance itself isO(N2) operation. Note that calculating frequencies and inverting the covariance
matrix needs to be done only once: for example, assume that we have k data sets, then calculating
the distances between every data set pair can be done in O

(
N∑k

i |Di|+N3+ k2N2
)
time.

Example 2 Let us evaluate the distance between the data sets given in Example 1 using both the
definition of the CM distance and Theorem 1. We see that the shortest vector in C (S,0.25) is
u1 =

( 3
8 ,
3
8 ,
1
4
)
. Similarly, the shortest vector in C (S,0.75) is u2 =

( 1
8 ,
1
8 ,
3
4
)
. Thus the CM distance

is equal to

dCM (D1,D2 | S) =
√
3‖u1−u2‖2 =

√
3
[
22

82
+
22

82
+
22

42

]1/2
=

3√
8
.

The covariance of S is equal to Cov [S] = 1
3 −

1
3
1
3 = 2

9 . Thus Theorem 1 gives us

dCM (D1,D2 | S) =

[
Cov−1 [S]

(
3
4
− 1
4

)2]1/2
=

[
9
2

(
2
4

)2]1/2
=

3√
8
.

From Theorem 1 we see a reason to have the factor
√
|Ω| in Eq. 2: Assume that we have two data

setsD1 andD2 and a feature function S. We define a new sample spaceΩ′ = {(ω,b) | ω ∈Ω,b= 0,1}
and transform the original data sets into new ones by settingD′

i = {(ω,0) | ω ∈ Di}. We also expand
S intoΩ′ by setting S′(ω,1) = S′(ω,0) = S(ω). Note that S(Di) = S′(D′

i) and that Cov [S] =Cov [S′]
so Theorem 1 says that the CM distance has not changed during this transformation. This is very
reasonable since we did not actually change anything essential: We simply added a bogus variable
into the sample space, and we ignored this variable during the feature extraction. The size of the
new sample space is |Ω′| = 2 |Ω|. This means that the difference ‖u1−u2‖2 in Eq. 2 is smaller by
the factor

√
2. The factor

√
|Ω| is needed to negate this effect.

2.2 Properties

We will now list some important properties of dCM (D1,D2 | S).

Theorem 2 dCM (D1,D2 | S) is a pseudo metric.

The following theorem says that adding external data set to the original data sets makes the
distance smaller which is very reasonable property.

Theorem 3 Assume three data sets D1, D2, and D3 over the same set of items. Assume further that
D1 and D2 have the same number of data points and let ε= |D3|

|D1|+|D3| . Then

dCM (D1∪D3,D2∪D3 | S) = (1− ε)dCM (D1,D2 | S) .
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Theorem 4 Let A be a M×N matrix and b a vector of length M. Define T (ω) = AS(ω)+ b. It
follows that dCM (D1,D2 | T ) ≤ dCM (D1,D2 | S) for any D1 and D2.

Corollary 5 Adding extra feature functions cannot decrease the distance.

Corollary 6 Let A be an invertible N ×N matrix and b a vector of length N. Define T (ω) =
AS(ω)+b. It follows that dCM (D1,D2 | T ) = dCM (D1,D2 | S) for any D1 and D2.

Corollary 6 has an interesting interpretation. Note that T (D) = AS (D) + b and that S (D) =
A−1 (T (D)−b). This means that if we know the frequencies S (D), then we can infer the frequencies
T (D) without a new data scan. Similarly, we can infer S (D) from T (D). We can interpret this
relation by thinking that S (D) and T (D) are merely different representations of the same feature
information. Corollary 6 says that the CM distance is equal for any such representation.

2.3 Alternative Characterisation of the CM Distance

We derived our distance using geometrical interpretation of the distribution sets. In this section
we will provide an alternative way for deriving the CM distance. Namely, we will show that if
some distance is of Mahalanobis type and satisfies some mild assumptions, then this distance is
proportional to the CM distance. The purpose of this theorem is to provide more theoretical evidence
to our distance.

We say that a distance d is of Mahalanobis type if

d (D1,D2 | S)2 = (θ1−θ2)TC(S)−1 (θ1−θ2) ,

where θ1 = S (D1) and θ2 = S (D2) andC(S)maps a feature function S to a symmetric N×N matrix.
Note that ifC(S) = Cov [S], then the distance d is the CM distance. We setM to be the collection of
all distances of Mahalanobis type. Can we justify the decision that we examine only the distances
included inM? One reason is that a distance belonging toM is guaranteed to be a metric. The most
important reason, however, is the fact that we can evaluate the distance belonging to M efficiently
(assuming, of course, that we can evaluateC(S)).

Let d ∈ M and assume that it satisfies two additional assumptions:
1. If A is an M×N matrix and b is a vector of length M and if we set T (ω) = AS(ω)+b, then
C(T ) = AC(S)AT .

2. Fix two points ω1 and ω2. Let σ : Ω→ Ω be a function swapping ω1 and ω2 and mapping
everything else to itself. DefineU(ω) = S(σ(ω)). Then d (σ(D1),σ(D2) |U) = d (D1,D2 | S).

The first assumption can be partially justified if we consider that A is an invertible square matrix. In
this case the assumption is identical to d (·, · | AS+b) = d (·, · | S). This is to say that the distance is
independent of the representation of the frequency information. This is similar to Corollary 6 given
in Section 2.2. We can construct a distance that would satisfy Assumption 1 in the invertible case
but fail in a general case. We consider such distances pathological and exclude them by making a
broader assumption. To justify Assumption 2 note that the frequencies have not changed, that is,
U (σ(D)) = S (D). Only the representation of single data points have changed. Our argument is that
the distance should be based on the frequencies and not on the values of the data points.
Theorem 7 Let d ∈M satisfying Assumptions 1 and 2. If C(S) is invertible, then there is a constant
c> 0, not depending on S, such that d (·, · | S) = cdCM (·, · | S).
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3. The CM distance and Binary Data Sets

In this section we will concentrate on the distances between binary data sets. We will consider
the CM distance based on itemset frequencies, a very popular statistics in the literature concerning
binary data mining. In the first subsection we will show that a more natural way of representing the
CM distance is to use parity frequencies. We also show that we can evaluate the distance in linear
time. In the second subsection we will provide more theoretical evidence why the CM distance is a
good distance between binary data sets.

3.1 The CM Distance and Itemsets

We begin this section by giving some definitions. We set the sample space Ω to be

Ω= {ω | ω= (ω1, . . . ,ωK) ,ωi = 0,1} ,

that is, Ω is the set of all binary vectors of length K. Note that |Ω| = 2K . It is custom that each
dimension in Ω is identified with some symbol. We do this by assigning the symbol ai to the ith
dimension. These symbols are called attributes or items. Thus when we speak of the attribute ai we
refer to the ith dimension. We denote the set of all items by A = {a1, . . . ,aK}. A non-empty subset
of A is called itemset.

A boolean formula S : Ω → {0,1} is a feature function mapping a binary vector to a binary
value. We are interested in two particular boolean formulae: Assume that we are given an itemset
B= {ai1 , . . . ,aiL}. We define a conjunction function SB to be

SB(ω) = ωi1 ∧ωi2 ∧ · · ·∧ωiK ,

that is, SB results 1 if and only if all the variables corresponding the itemset B are on. Given a
data set D the frequency SB(D) is called the frequency of the itemset B. Conjunction functions are
popular and there are a lot of studies in the literature concerning finding itemsets that have large
frequency (see e.g., Agrawal et al., 1993; Hand et al., 2001). We also define a parity function TB to
be

TB(ω) = ωi1 ⊕ωi2 ⊕ · · ·⊕ωiK ,

where ⊕ is the binary operator XOR. The function TB results 1 if and only if the number of active
variables included in B are odd.

A collection F of itemsets is said to be antimonotonic or downwardly closed if each non-empty
subset of an itemset included in F is also included in F . Given a collection of itemsets F =
{B1, . . . ,BN} we extend our definition of the conjunction function by setting SF = [SB1 , . . . ,SBN ]

T .
We also define TF = [TB1 , . . . ,TBN ]

T .
Assume that we are given an antimonotonic family F of itemsets. We can show that there is an

invertible matrix A such that TF = ASF . In other words, we can get the parity function TF from the
conjunction function TF by an invertible linear transformation. Corollary 6 now implies that

dCM (D1,D2 | SF ) = dCM (D1,D2 | TF ) , (3)

for any D1 and D2. The following lemma shows that the covariance matrix Cov [TF ] of the parity
function is very simple.
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Lemma 8 Let TF be a parity function for a family of itemsets F , then Cov [TF ] = 0.5I, that is, the
covariance matrix is a diagonal matrix having 0.5 at the diagonal.

Theorem 1, Lemma 8, and Eq. 3 imply that

dCM (D1,D2 | SF ) =
√
2‖θ1−θ2‖2 , (4)

where θ1 = TF (D1) and θ2 = TF (D2). This identity says that the CM distance can be calculated
in O(N) time (assuming that we know the frequencies θ1 and θ2). This is better than O(N3) time
implied by Theorem 1.

Example 3 Let I =
{{
a j

}
| j = 1 . . .K

}
be a family of itemsets having only one item. Note that

T{a j} = S{a j}. Eq. 4 implies that

dCM (D1,D2 | SI ) =
√
2‖θ1−θ2‖2 ,

where θ1 and θ2 consists of the marginal frequencies of each a j calculated from D1 and D2, re-
spectively. In this case the CM distance is simply the L2 distance between the marginal frequencies
of the individual attributes. The frequencies θ1 and θ2 resemble term frequencies (TF) used in text
mining (see e.g., Baldi et al., 2003).

Example 4 We consider now a case with a larger set of features. Our motivation for this is that
using only the feature functions SI is sometimes inadequate. For example, consider data sets with
two items having the same individual frequencies but different correlations. In this case the data
sets may look very different but according to our distance they are equal.

Let C = I ∪
{
a jak | j,k = 1 . . .K, j < k

}
be a family of itemsets such that each set contains

at most two items. The corresponding frequencies contain the individual means and the pair-
wise correlation for all items. Let Sa jak be the conjunction function for the itemset a jak. Let
γ jk = Sa jak (D1)− Sa jak (D2) be the difference between the correlation frequencies. Also, let γ j =
Sa j (D1)−Sa j (D2). Since

Ta jak = Sa j +Sak −2Sa jak
it follows from Eq. 4 that

dCM (D1,D2 | SC )2 = 2∑
j<k

(
γ j + γk−2γ jk

)2+2
K

∑
j=1

γ2j . (5)

3.2 Characterisation of the CM Distance for Itemsets

The identity given in Eq. 4 is somewhat surprising and seems less intuitive. A question arises:
why this distance is more natural than some other, say, a simple L2 distance between the itemset
frequencies. Certainly, parity functions are less intuitive than conjunction functions. One answer is
that the parity frequencies are decorrelated version of the traditional itemset frequencies.

However, we can clarify this situation from another point of view: Let A be the set of all
itemsets. Assume that we are given two data sets D1 and D2 and define empirical distributions p1
and p2 by setting

pi(ω) =
number of samples in Di equal to ω

|Di|
.
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The constrained spaces of SA are singular points containing only pi, that is, C (SA ,Di) = {pi}. This
implies that

dCM (D1,D2 | SA) =
√
2K ‖p1− p2‖2 . (6)

In other words, the CM distance is proportional to the L2 distance between the empirical distribu-
tions. This identity seems very reasonable. At least, it is more natural than, say, taking L2 distance
between the traditional itemset frequencies.

The identity in Eq. 6 holds only when we use the features SA . However, we can prove that a
distance of the Mahalanobis type satisfying the identity in Eq. 6 and some additional conditions is
equal to the CM distance. Let us explain this in more detail. We assume that we have a distance d
having the form

d (D1,D2 | SF )2 = (θ1−θ2)TC(SF )−1 (θ1−θ2) ,

where θ1 = SF (D1) and θ2 = SF (D2) and C(SF ) maps a conjunction function SF to a symmetric
N×N matrix. The distance d should satisfy the following mild assumptions.

1. Assume two antimonotonic families of itemsets F and H such that F ⊂ H . It follows that
d (·, · | SF ) ≤ d (·, · | SH ).

2. Adding extra dimensions (but not changing the features) does not change the distance.

The following theorem says that the assumptions and the identity in Eq. 6 are sufficient to prove
that d is actually the CM distance.

Theorem 9 Assume that a Mahalanobis distance d satisfies Assumptions 1 and 2. Assume also that
there is a constant c1 such that

d (D1,D2 | SA) = c1 ‖p1− p2‖2 .

Then it follows that for any antimonotonic family F we have

d (D1,D2 | SF ) = c2dCM (D1,D2 | SF ) ,

for some constant c2.

4. The CM distance and Event Sequences

In the previous section we discussed about the CM distance between the binary data sets. We will
use similar approach to define the CM distance between sequences.

An event sequence s is a finite sequence whose symbols belong to a finite alphabet Σ. We denote
the length of the event sequence s by |s|, and by s(i, j) we mean a subsequence starting from i and
ending at j. The subsequence s(i, j) is also known as window. A popular choice for statistics of
event sequences are episodes (Hand et al., 2001). A parallel episode is represented by a subset of
the alphabet Σ. A window of s satisfies a parallel episode if all the symbols given in the episode
occur in the window. Assume that we are given an integer k. LetW be a collection of windows of s
having the length k. A frequency of a parallel episode is the proportion of windows inW satisfying
the episode. We should point out that this mapping destroys the exact ordering of the sequence. On
the other hand, if some symbols occur often close to each other, then the episode consisting of these
symbols will have a high frequency.

139



TATTI

In order to apply the CM distance we will now describe how we can transform a sequence s to
a binary data set. Assume that we are given a window length k. We transform a window of length k
into a binary vector of length |Σ| by setting 1 if the corresponding symbol occurs in the window, and
0 otherwise. Let D be the collection of these binary vectors. We have now transformed the sequence
s to the binary data set D. Note that parallel episodes of s are represented by itemsets of D.

This transformation enables us to use the CM distance. Assume that we are given two sequences
s1 and s2, a collection of parallel episodes F , and a window length k. First, we transform the
sequences into data sets D1 and D2. We set the CM distance between the sequences s1 and s2 to be
dCM (D1,D2 | SF ).

5. Feature Selection

We will now discuss briefly about feature selection—a subject that we have taken for granted so far.
The CM distance depends on a feature function S. How can we choose a good set of features?

Assume for simplicity that we are dealing with binary data sets. Eq. 6 tells us that if we use
all itemsets, then the CM distance is L2 distance between empirical distributions. However, to get
a reliable empirical distribution we need an exponential number of data points. Hence we can use
only some subset of itemsets as features. The first approach is to make an expert choice without
seeing data. For example, we could decide that the feature function is SI , the means of the individual
attributes, or SC , the means of individual attributes and the pairwise correlation.

The other approach is to infer a feature function from the data sets. At first glimpse this seems
an application of feature selection. However, traditional feature selection fails: Let SI be the fea-
ture function representing the means of the individual attributes and let SA be the feature function
containing all itemsets. Let ω be a binary vector. Note that if we know SI (ω), then we can de-
duce SA(ω). This means that SI is aMarkov blanket (Pearl, 1988) for SA . Hence we cannot use the
Markov blanket approach to select features. The essential part is that the traditional feature selection
algorithms deal with the individual points. We try to select features for whole data sets.

Note that feature selection algorithms for singular points are based on training data, that is,
we have data points divided into clusters. In other words, when we are making traditional feature
selection we know which points are close and which are not. In order to make the same ideas work
for data sets we need to have similar information, that is, we need to know which data sets are close
to each other, and which are not. Such an information is rarely provided and hence we are forced to
seek some other approach.

We suggest a simple approach for selecting itemsets by assuming that frequently occurring
itemsets are interesting. Assume that we are given a collection of data sets Di and a threshold σ.
Let I be the itemsets of order one. We define F such that B ∈ F if and only if B ∈ I or that B is a
σ-frequent itemset for some Di.

6. Related Work

In this section we discuss some existing methods for comparing data sets and compare the evaluation
algorithms. The execution times are summarised in Table 1.
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Distance Time

CM distance (general case) O(NM+N2 |Ω|+N3)
CM distance (known cov. matrix) O(NM+N3)

CM distance (binary case) O(NM+N)
Set distances O(M3)

Kullback-Leibler O(NM+N |Ω|)
Fischer’s Information O(NM+N2 |D2|+N3)

Table 1: Comparison of the execution times of various distances. The numberM= |D1|+ |D2| is the
number of data points in total. The O(NM) term refers to the time needed to evaluate the
frequencies S (D1) and S (D2). Kullback-Leibler distance is solved using Iterative Scaling
algorithm in which one round has N steps and one step is executed in O(|Ω|) time.

6.1 Set Distances

One approach to define a data set distance is to use some natural distance between single data points
and apply some known set distance. Eiter and Mannila (1997) show that some data set distances
defined in this way can be evaluated in cubic time. However, this is too slow for us since we may
have a vast amount of data points. The other downsides are that these distances may not take into
account the statistical nature of data which may lead into problems.

6.2 Edit Distances

We discuss in Section 4 of using the CM distance for event sequences. Traditionally, edit dis-
tances are used for comparing event sequences. The most famous edit distance is Levenshtein dis-
tance (Levenshtein, 1966). However, edit distances do not take into account the statistical nature of
data. For example, assume that we have two sequences generated such that the events are sampled
from the uniform distribution independently of the previous event (a zero-order Markov chain). In
this case the CM distance is close to 0 whereas the edit distance may be large. Roughly put, the CM
distance measures the dissimilarity between the statistical characteristics whereas the edit distances
operate at the symbol level.

6.3 Minimum Discrimination Approach

There are many distances for distributions (see Baseville, 1989, for a nice review). From these
distances the CM distance resembles the statistical tests involved with Minimum Discrimination
Theorem (see Kullback, 1968; Csiszár, 1975). In this framework we are given a feature function
S and two data sets D1 and D2. From the set of distributions C+ (S,Di) we select a distribution
maximising the entropy and denote it by pMEi . The distance itself is the Kullback-Leibler divergence
between pME1 and pME2 . It has been empirically shown that pMEi represents well the distribution
from which Di is generated (see Mannila et al., 1999). The downsides are that this distance is not a
metric (it is not even symmetric), and that the evaluation time of the distance is infeasible: Solving
pMEi is NP-hard (Cooper, 1990). We can approximate the Kullback-Leibler distance by Fischer’s
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information, that is,

D
(
pME1 ‖pME2

)
≈ 1
2

(θ1−θ2)T Cov−1
[
S | pME2

]
(θ1−θ2) ,

where θi = S (Di) and Cov
[
S | pME2

]
is the covariance matrix of S taken with respect to pME2 (see

Kullback, 1968). This resembles greatly the equation in Theorem 1. However, in this case the
covariance matrix depends on data sets and thus generally this approximation is not a metric. In ad-
dition, we do not know pME2 and hence we cannot evaluate the covariance matrix. We can, however,
estimate the covariance matrix from D2, that is,

Cov
[
S | pME2

]
≈ 1

|D2| ∑ω∈D2
S(ω)S(ω)T − 1

|D2|2

[

∑
ω∈D2

S(ω)

][

∑
ω∈D2

S(ω)T
]

.

The execution time of this operation is O(N2 |D2|).

7. Empirical Tests

In this section we describe our experiments with the CM distance. We begin by examining the effect
of different feature functions. We continue studying the distance by applying clustering algorithms,
and finally we represent some interpretations to the results.

In many experiments we use a base distance dU defined as the L2 distance between the itemset
frequencies, that is,

dU (D1,D2 | S) =
√
2‖θ1−θ2‖2 , (7)

where θi are the itemset frequencies θi = S (Di). This type of distance was used in Hollmén et al.
(2003). Note that dU (D1,D2 | ind) = dCM (D1,D2 | ind), where ind is the feature set containing only
individual means.

7.1 Real World Data Sets

We examined the CM distance with several real world data sets and several feature sets. We had
7 data sets: Bible, a collection of 73 books from the Bible,1 Addresses, a collection of 55 inaugu-
ral addresses given by the presidents of the U.S.,2 Beatles, a set of lyrics from 13 studio albums
made by the Beatles, 20Newsgroups, a collection of 20 newsgroups,3 TopGenres, plot summaries
for top rated movies of 8 different genres, and TopDecades, plot summaries for top rated movies
from 8 different decades.4 20Newsgroups contained (in that order) 3 religion groups, 3 of poli-
tics, 5 of computers, 4 of science, 4 recreational, and misc.forsale. TopGenres consisted (in that
order) of Action, Adventure, SciFi, Drama, Crime, Horror, Comedy, and Romance. The decades for
TopDecades were 1930–2000. Our final data set, Abstract, was composed of abstracts describing
NSF awards from 1990–1999.5

1. The books were taken from http://www.gutenberg.org/etext/8300 on July 20, 2005.
2. The addresses were taken from http://www.bartleby.com/124/ on August 17, 2005.
3. The data set was taken from http://www.ai.mit.edu/~jrennie/20Newsgroups/, a site hosted by Jason Rennie,
on June 8, 2001.

4. The movie data sets were taken from http://www.imdb.com/Top/ on January 1, 2006.
5. The data set was taken from http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.data.html on January
13, 2006.
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Bible and Addresses were converted into binary data sets by taking subwindows of length 6
(see the discussion in Section 4). We reduced the number of attributes to 1000 by using the mutual
information gain. Beatles was preprocessed differently: We transformed each song to its binary
bag-of-words representation and selected 100 most informative words. In 20Newsgroups a trans-
action was a binary bag-of-words representation of a single article. Similarly, In TopGenres and
in TopDecades a transaction corresponded to a single plot summary. We reduced the number of
attributes in these three data sets to 200 by using the mutual information gain. In Abstract a data set
represented one year and a transaction was a bag-of-words representation of a single abstract. We
reduced the dimension of Abstract to 1000.

7.2 The Effect of Different Feature Functions

We begin our experiments by studying how the CM distance (and the base distance) changes as we
change features.

We used 3 different sets of features: ind, the independent means, cov, the independent means
along with the pairwise correlation, and freq, a family of frequent itemsets obtained by using APRI-
ORI (Agrawal et al., 1996). We adjusted the threshold so that freq contained 10K itemsets, where K
is the number of attributes.

We plotted the CM distances and the base distances as functions of dCM (ind). The results are
shown in Figure 2. Since the number of constraints varies, we normalised the distances by dividing
them with

√
N, where N is the number of constraints. In addition, we computed the correlation of

each pair of distances. These correlations are shown in Table 2.

dCM vs. dCM dU vs. dU dCM vs. dU
cov freq freq cov freq freq cov freq

Data set ind ind cov ind ind cov cov freq

20Newsgroups 0.996 0.725 0.733 0.902 0.760 0.941 0.874 0.571
Addresses 1.000 0.897 0.897 0.974 0.927 0.982 0.974 0.743

Bible 1.000 0.895 0.895 0.978 0.946 0.989 0.978 0.802
Beatles 0.982 0.764 0.780 0.951 0.858 0.855 0.920 0.827

TopGenres 0.996 0.817 0.833 0.916 0.776 0.934 0.927 0.931
TopDecades 0.998 0.735 0.744 0.897 0.551 0.682 0.895 0.346

Abstract 1.000 0.985 0.985 0.996 0.993 0.995 0.996 0.994
Total 0.998 0.702 0.709 0.934 0.894 0.938 0.910 0.607

Table 2: Correlations for various pairs of distances. A column represents a pair of distances and
a row represents a single data set. For example, the correlation between dCM (ind) and
dCM (cov) in 20Newsgroups is 0.996. The last row is the correlation obtained by using the
distances from all data sets simultaneously. Scatterplots for the columns 1–2 and 4–5 are
given in Fig. 2.

Our first observation from the results is that dCM (cov) resembles dCM (ind) whereas dCM ( f req)
produces somewhat different results.
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Figure 2: CM and base distances as functions of dCM (ind). A point represents a distance between
two data sets. The upper two figures contain the CM distances while the lower two contain
the base distance. The distances were normalised by dividing

√
N, where N is the number

of constraints. The corresponding correlations are given in Table 2. Note that x-axis in
the left (right) two figures are equivalent.

The correlations between dCM (cov) and dCM (ind) are stronger than the correlations between
dU (cov) and dU (ind). This can be explained by examining Eq. 5 in Example 4. If the dimension
is K, then the itemsets of size 1, according to Eq. 5, involve 1

2K(K− 1) +K times in computing
dCM (cov), whereas in computing dU (cov) they involve only K times. Hence, the itemsets of size 2
have smaller impact in dCM (cov) than in dU (cov).

On the other hand, the correlations between dCM ( f req) and dCM (ind) are weaker than the cor-
relations between dU ( f req) and dU (ind), implying that the itemsets of higher order have stronger
impact on the CM distance.

7.3 Clustering Experiments

In this section we continue our experiments by applying clustering algorithms to the distances. Our
goal is to compare the clusterings obtained from the CM distance to those obtained from the base
distance (given in Eq. 7).
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We used 3 different clustering algorithms: a hierarchical clustering with complete linkage, a
standard K-median, and a spectral algorithm by Ng et al. (2002). Since each algorithm takes a
number of clusters as an input parameter, we varied the number of clusters between 3 and 5. We
applied clustering algorithms to the distances dCM (cov), dCM ( f req), dU (cov), and dU ( f req), and
compare the clusterings obtained from dCM (cov) against the clusterings obtained from dU (cov), and
similarly compare the clusterings obtained from dCM ( f req) against the clusterings obtained from
dU ( f req).

We measured the performance using 3 different clustering indices: a ratio r of the mean of
the intra-cluster distances and the mean of the inter-cluster distances, Davies-Bouldin (DB) in-
dex (Davies and Bouldin, 1979), and Calinski-Harabasz (CH) index (Calinski and Harabasz, 1974).

The obtained results were studied in the following way: Given a data set and a performance
index, we calculated the number of algorithms in which dCM (cov) outperformed dU (cov). The
distances dCM ( f req) and dU ( f req)were handled similarly. The results are given in Table 3. We also
calculated the number of data sets in which dCM (cov) outperformed dU (cov), given an algorithm
and an index. These results are given in Table 4.

dCM (cov) vs. dU (cov) dCM ( f req) vs. dU ( f req)

Data set r DB CH r DB CH Total P

1. 20Newsgroups 0/9 2/9 7/9 8/9 5/9 9/9 31/54 0.22
2. Speeches 9/9 6/9 3/9 9/9 9/9 9/9 45/54 0.00
3. Bible 9/9 7/9 2/9 9/9 7/9 9/9 43/54 0.00
4. Beatles 0/9 3/9 6/9 0/9 1/9 0/9 10/54 0.00
5. TopGenres 0/9 4/9 5/9 0/9 1/9 0/9 10/54 0.00
6. TopDecades 3/9 7/9 2/9 7/9 7/9 9/9 35/54 0.02
7. Abstract 9/9 8/9 1/9 0/9 2/9 1/9 21/54 0.08

Total 30/63 37/63 26/63 33/63 32/63 37/63 195/378 0.50
P 0.61 0.13 0.13 0.61 0.80 0.13

Table 3: Summary of the performance results of the CM distance versus the base distance. A single
entry contains the number of clustering algorithm configurations (see Column 1 in Table 4)
in which the CM distance was better than the base distance. The P-value is the standard
Fisher’s sign test.

We see from Table 3 that the performance of CM distance against the base distance depends on
the data set. For example, the CM distance has tighter clusterings in Speeches, Bible, and TopDecade
whereas the base distance outperforms the CM distance in Beatles and TopGenre.

Table 4 suggests that the overall performance of the CM distance is as good as the base distance.
The CM distance obtains a better index 195 times out of 378. The statistical test suggests that this
is a tie. The same observation is true if we compare the distances algorithmic-wise or index-wise.

7.4 Distance Matrices

In this section we will investigate the CM distance matrices for real-world data sets. Our goal is to
demonstrate that the CM distance produces interesting and interpretable results.
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dCM (cov) vs. dU (cov) dCM ( f req) vs. dU ( f req)

Algorithm r DB CH r DB CH Total P

1. K-MED(3) 4/7 2/7 5/7 4/7 4/7 4/7 23/42 0.44
2. K-MED(4) 4/7 4/7 3/7 4/7 4/7 4/7 23/42 0.44
3. K-MED(5) 4/7 4/7 3/7 4/7 4/7 4/7 23/42 0.44
4. LINK(3) 3/7 4/7 3/7 2/7 3/7 4/7 19/42 0.44
5. LINK(4) 3/7 4/7 3/7 4/7 3/7 4/7 21/42 0.88
6. LINK(5) 3/7 3/7 4/7 4/7 2/7 4/7 20/42 0.64
7. SPECT(3) 3/7 6/7 1/7 3/7 4/7 4/7 21/42 0.88
8. SPECT(4) 3/7 4/7 3/7 4/7 4/7 4/7 22/42 0.64
9. SPECT(5) 3/7 6/7 1/7 4/7 4/7 5/7 23/42 0.44

Total 30/63 37/63 26/63 33/63 32/63 37/63 195/378 0.50
P 0.61 0.13 0.13 0.61 0.80 0.13

Table 4: Summary of the performance results of the CM distance versus the base distance. A single
entry contains the number of data sets (see Column 1 in Table 3) in which the CM distance
was better than the base distance. The P-value is the standard Fisher’s sign test.

We calculated the distance matrices using the feature sets ind, cov, and freq. The matrices are
given in Figures 4 and 3. In addition, we computed performance indices, a ratio of the mean of
the intra-cluster distances and the mean of the inter-cluster distances, for various clusterings and
compare these indices to the ones obtained from the base distances. The results are given in Table 5.

cov freq

Data Clustering ind dCM dU dCM dU
Bible Old Test. | New Test. 0.79 0.79 0.82 0.73 0.81

Old Test. | Gospels | Epistles 0.79 0.79 0.81 0.73 0.81
Addresses 1–32 | 33–55 0.79 0.80 0.85 0.70 0.84

1–11 | 12–22 | 23–33 | 34–44 | 45–55 0.83 0.83 0.87 0.75 0.87
Beatles 1,2,4–6 | 7–10,12–13 | 3 | 11 0.83 0.86 0.83 0.88 0.61

1,2,4,12,13 | 5–10 | 3 | 11 0.84 0.85 0.84 0.89 0.63
20Newsgroups Rel.,Pol. | Rest 0.76 0.77 0.67 0.56 0.62

Rel.,Pol. | Comp., misc | Rest 0.78 0.78 0.79 0.53 0.79
TopGenres Act.,Adv., SciFi | Rest 0.74 0.73 0.64 0.50 0.32
TopDecades 1930–1960 | 1970–2000 0.84 0.83 0.88 0.75 0.88

1930–1950 | 1960–2000 0.88 0.88 0.98 0.57 1.06

Table 5: Statistics of various interpretable clusterings. The proportions are the averages of the
intra-cluster distances divided by the averages of the inter-cluster distances. Hence small
fractions imply tight clusterings.
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Figure 3: Distance matrices for 20Newsgroups, TopGenres, TopDecades, and Abstract. In the first
column the feature set ind contains the independent means, in the second feature set cov
the pairwise correlation is added, and in the third column the feature set freq consists of
10K most frequent itemsets, where K is the number of attributes. Darker colours indicate
smaller distances.

We should stress that standard edit distances would not work in these data setups. For example,
the sequences have different lengths and hence Levenshtein distance cannot work.

The imperative observation is that, according to the CM distance, the data sets have structure.
We can also provide some interpretations to the results: In Bible we see a cluster starting from the

147



TATTI

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Bible, dCM (ind)
10 20 30 40 50 60 70

10

20

30

40

50

60

70

Bible, dCM (cov)
10 20 30 40 50 60 70

10

20

30

40

50

60

70

Bible, dCM ( f req)

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

Addresses, dCM (ind)
5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

Addresses, dCM (cov)
5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

Addresses, dCM ( f req)

2 4 6 8 10 12

2

4

6

8

10

12

Beatles, dCM (ind)
2 4 6 8 10 12

2

4

6

8

10

12

Beatles, dCM (cov)
2 4 6 8 10 12

2

4

6

8

10

12

Beatles, dCM ( f req)

Figure 4: Distance matrices for Bible, Addresses, and Beatles. In the first column the feature set ind
contains the independent means, in the second feature set cov the pairwise correlation is
added, and in the third column the feature set freq consists of 10K most frequent itemsets,
where K is the number of attributes. Darker colours indicate smaller distances.

46th book. The New Testament starts from the 47th book. An alternative clustering is obtained
by separating the Epistles, starting from the 52th book, from the Gospels. In Addresses we some
temporal dependence. Early speeches are different than the modern speeches. In Beatles we see
that the early albums are linked together and the last two albums are also linked together. The
third album, Help!, is peculiar. It is not linked to the early albums but rather to the later work.
One explanation may be that, unlike the other early albums, this album does not contain any cover
songs. In 20Newsgroups the groups of politics and of religions are close to each other and so are
the computer-related groups. The group misc.forsale is close to the computer-related groups. In
TopGenres Action and Adventure are close to each other. Also Comedy and Romance are linked. In
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TopDecades and in Abstract we see temporal behaviour. In Table 5 the CM distance outperforms
the base distance, except for Beatles and TopGenres.

8. Conclusions and Discussion

Our task was to find a versatile distance that has nice statistical properties and that can be evaluated
efficiently. The CM distance fulfils our goals. In theoretical sections we proved that this distance
takes properly into account the correlation between features, and that it is the only (Mahalanobis)
distance that does so. Even though our theoretical justifications are complex, the CM distance itself
is rather simple. In its simplest form, it is the L2 distance between the means of the individual
attributes. On the other hand, the CM distance has a surprising form when the features are itemsets.

In general, the computation time of the CM distance depends of the size of sample space that can
be exponentially large. Still, there are many types of feature functions for which the distance can
be solved. For instance, if the features are itemsets, then the distance can be solved in polynomial
time. In addition, if the itemsets form an antimonotonic family, then the distance can be solved in
linear time.

In empirical tests the CM distance implied that the used data sets have structure, as expected.
The performance of the CM distance compared to the base distance depended heavily on the data
set. We also showed that the feature sets ind and cov produced almost equivalent distances, whereas
using frequent itemsets produced very different distances.

Sophisticated feature selection methods were not compared in this paper. Instead, we either
decided explicitly the set of features or deduced them using APRIORI. We argued that we cannot use
the traditional approaches for selecting features of data sets, unless we are provided some additional
information.
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Appendix A.

In this section we will prove the theorems given in this paper.

A.1 Proof of Theorem 1

To simplify the notation denote S0(x) = 1, θ∗1 = [1,θ11, . . . ,θ1N ]T and θ∗2 = [1,θ21, . . . ,θ2N ]T . The
norm function restricted to the affine space has one minimum and it can be found using Lagrange
multipliers. Thus we can express the vectors ui in Eq. 2

ui j = λTi S( j),
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where j ∈Ω and λi is the column vector of length N+1 consisting of the corresponding Lagrange
multipliers. The distance is equal to

dCM (D1,D2 | S)2 = |Ω|‖u1−u2‖22 ,
= |Ω|∑

j∈Ω
(u1 j−u2 j)(u1 j−u2 j) ,

= |Ω|∑
j∈Ω

(u1 j−u2 j)
(
λT1 S( j)−λT2 S( j)

)
,

= |Ω|(λ1−λ2)T ∑
j∈Ω

(u1 j−u2 j)S( j),

= |Ω|(λ1−λ2)T (θ∗1−θ∗2) .

Since ui ∈ C (S,θi), the multipliers λi can be solved from the equation

θ∗i = ∑
j∈Ω

S( j)ui j = ∑
j∈Ω

S( j)λTi S( j) =

(

∑
j∈Ω

S( j)S( j)T
)
λi,

that is, θ∗i = Aλi, where A is an (N+1)× (N+1) matrix Axy = ∑ j Sx( j)Sy( j). It is straightforward
to prove that the existence of Cov−1 [S] implies that A is also invertible. Let B be an N×N matrix
formed from A−1 by removing the first row and the first column. We have

|Ω|‖u1−u2‖22 = |Ω|(θ∗1−θ∗2)
T A−1 (θ∗1−θ∗2) ,

= |Ω|(θ1−θ2)T B(θ1−θ2) .

The last equality is true since θ∗10 = θ∗20.
We need to prove that |Ω|B=Cov−1 [S]. Let [c;B] be the matrix obtained from A−1 by removing

the first row. Let γ = E [S] taken with respect to the uniform distribution. Since the first column of
A is equal to |Ω| [1,γ], it follows that c= −Bγ. From the identity

cxA(0,y) +
N

∑
z=1

B(x,z)A(z,y) = δxy

we have
N

∑
z=1

B(x,z)
(
A(z,y)−A(0,y)γz

)
=

N

∑
z=1

|Ω|B(x,z)

(
|Ω|−1A(z,y)− γyγz

)
= δxy.

Since |Ω|−1A(z,y)− γzγy is equal to the (z,y) entry of Cov [S], the theorem follows.

A.2 Proofs of Theorems given in Section 2.2

Proof [Theorem 2] The covariance matrix Cov [S] in Theorem 1 depends only on S and is positive
definite. Therefore, the CM distance is a Mahalanobis distance.

Proof [Theorem 3] Let θi = S(Di) for i = 1,2,3. The frequencies for D1 ∪D3 and D2 ∪D3 are
(1− ε)θ1+ εθ3 and (1− ε)θ2+ εθ3, respectively. The theorem follows from Theorem 1.

The following lemma proves Theorem 4.
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Lemma 10 Let A : RN → RM and define a function T (ω) = A(S(ω)). Let φ= T (D) and θ= S (D)
be the frequencies for some data set D. Assume further that there is no two data sets D1 and D2 such
that S (D1) = S (D2) and T (D1) %= T (D2). Then dCM (D1,D2 | T ) ≤ dCM (D1,D2 | S). The equality
holds if for a fixed φ the frequency θ is unique.

Before proving this lemma, let us explain why the uniqueness requirement is needed: Assume that
the sample space Ω consists of two-dimensional binary vectors, that is,

Ω= {(0,0) ,(1,0) ,(0,1) ,(1,1)} .

We set the features to be S(ω) = [ω1,ω2]T . Define a function T (x) = [ω1,ω2,ω1ω2]T =
[S1(ω),S2(ω),S1(ω)S2(ω)]T . Note that uniqueness assumption is now violated. Without this as-
sumption the lemma would imply that dCM (D1,D2 | T )≤ dCM (D1,D2 | S) which is in general false.
Proof Let θ1 = S (D1) and φ1 = T (D1). Pick u ∈ C (S,θ1). The frequency of S taken with the
respect to u is θ1 and because of the assumption the corresponding frequency of T is φ1. It follows
that C (S,θi) ⊆ C (T,φi). The theorem follows from the fact that the CM distance is the shortest
distance between the affine spaces C (S,θ1) and C (S,θ2).

A.3 Proof of Theorem 7

It suffices to prove that the matrixC(S) is proportional to the covariance matrix Cov [S]. The notation
δ(ω1 | ω2) used in the proof represents a feature function δ :Ω→ {0,1} which returns 1 if ω1 =ω2
and 0 otherwise.

Before proving the theorem we should point one technical detail. In general, C(S) may be
singular, especially in Assumption 1. In our proof we will show that C(S) ∝ Cov [S] and this does
not require C(S) to be invertible. However, if one wants to evaluate the distance d, then one must
assume thatC(S) is invertible.

Fix indices i and j such that i %= j. Let T (ω) = [Si(ω),S j(ω)]T . If follows from Assumption 1
that

C(T ) =
[
Cii(S) Ci j(S)
C ji(S) C j j(S)

]
.

This implies that Ci j(S) depends only on Si and S j. In other words, we can say Ci j(S) =Ci j(Si,S j).
Let ρ : {1, . . . ,N} → {1, . . . ,N} be some permutation function and define U(x) =[
Sρ(1)(x), . . . ,Sρ(N)(x)

]T . Assumption 1 implies that

Cρ(i)ρ( j)(S) =Ci j(U) =Ci j(Ui,U j) =Ci j(Sρ(i),Sρ( j)).

This is possible only if all non-diagonal entries ofC have the same form or, in other words,Ci j(S) =
Ci j(Si,S j) = C(Si,S j). Similarly, the diagonal entry Sii depends only on Si and all the diagonal
entries have the same form Cii(S) = C(Si). To see the connection between C(Si) and C(Si,S j) let
V (ω) = [Si(ω),Si(ω)]T and letW (ω) = [2Si(ω)]T . We can representW (ω) =V1(ω)+V2(ω). Now
Assumption 1 implies

4C(Si) =C(W ) =C(V11)+2C(V12,V21)+C(V22),
= 2C(Si)+2C(Si,Si)
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which shows that C(Si) = C(Si,Si). Fix S j and note that Assumption 1 implies that C(Si,S j) is a
linear function of Si. ThusC has a form

C(Si,S j) = ∑
ω∈Ω

Si(ω)h(S j,ω)

for some specific map h. Let α∈Ω. ThenC(δ(ω | α) ,S j) = h(S j,α) is a linear function of S j. Thus
C has a form

C(Si,S j) = ∑
ω1,ω2∈Ω

Si(ω1)S j(ω2)g(ω1,ω2)

for some specific g.
Let α, β, and γ be distinct points in Ω. An application of Assumption 2 shows that g(α,β) =

C(δ(ω | α) ,δ(ω | β)) = C(δ(ω | α) ,δ(ω | γ)) = g(α,γ). Thus g has a form g(ω1,ω2) =
aδ(ω1 | ω2)+b for some constants a and b.

To complete the proof note that Assumption 1 implies that C(S+ b) = C(S) which in turns
implies that ∑x g(ω1,ω2) = 0 for all y. Thus b= −a |Ω|−1. This leads us to

C(Si,S j) = ∑
ω1,ω2∈Ω

Si(ω1)S j(ω2)
(
aδ(ω1 | ω2)−a |Ω|−1

)
,

= a ∑
ω∈Ω

Si(ω)S j(ω)−a

(

∑
ω∈Ω

Si(ω)

)(

∑
ω∈Ω

|Ω|−1 S j(ω)

)
,

∝ E [SiS j]−E [Si]E [S j] ,

where the means are taken with respect to the uniform distribution. This identity proves the theorem.

A.4 Proof for Lemma 8

Let us prove that Cov [TF ] = 0.5I. Let A be an itemset. There are odd number of ones in A in exactly
half of the transactions. Hence, E

[
T 2A

]
= E [TA] = 0.5. Let B %= A be an itemset. We wish to have

TB(ω) = TA(ω) = 1. This means that ω must have odd number of ones in A and in B. Assume that
the number of ones in A∩B is even. This means that A−B and B−A have odd number of ones.
There is only a quarter of all the transactions that fulfil this condition. If A∩B is odd, then we must
an even number of ones in A−B and B−A. Again, there is only a quarter of all the transactions for
which this holds. This implies that E [TATB] = 0.25=E [TA]E [TB]. This proves that Cov [TF ] = 0.5I.

A.5 Proof of Theorem 9

Before proving this theorem let us rephrase it. First, note even though d (·, · | ·) is defined only on
the conjunction functions SF , we can operate with the parity function TF . As we stated before there
is an invertible matrix A such that TF = ASF . We can write the distance as

d (D1,D2 | SF )2 = (Aθ1−Aθ2)T
(
A−1)TC(SF )−1A−1 (Aθ1−Aθ2) .

Thus we define C(TF ) = AC(SF )AT . Note that the following lemma implies that the condition
stated in Theorem 9 is equivalent to C(TA) = cI, for some constant c. Theorem 9 is equivalent to
stating thatC(TF ) = cI.

The following lemma deals with some difficulties due the fact that the frequencies should arise
from some valid distributions

152



DISTANCES BETWEEN DATA SETS BASED ON SUMMARY STATISTICS

Lemma 11 Let A be the family of all itemsets. There exists ε> 0 such that for each real vector γ of
length 2K−1 that satisfies ‖γ‖2 < ε there exist distributions p and q such that γ= Ep [TA ]−Eq [TA ].

Proof To ease the notation, add T0(x) = 1 to TA and denote the end result by T ∗. We can consider T ∗

as a 2K×2K matrix, say A. Let p be a distribution and let u be the vector of length 2K representing
the distribution. Note that we have Au = Ep [T ∗]. We can show that A is invertible. Let U some
2K − 1 dimensional open ball of distributions. Since A is invertible, the set V ∗ = {Ax | x ∈U} is a
2K−1 dimensional open ellipsoid. Define also V by removing the first coordinate from the vectors
of V ∗. Note that the first coordinate of elements of V ∗ is equal to 1. This implies that V is also
a 2K − 1 dimensional open ellipsoid. Hence we can pick an open ball N(θ,ε) ⊂ V . The lemma
follows.

We are now ready to prove Theorem 9:
Abbreviate the matrix C(TF ) by C. We will first prove that the diagonal entries of C are equal

to c. Let A be the family of all itemsets. Select G ∈ F and define R = {H ∈ F | H ⊆ G}. As we
stated above,C(TA) = cI and Assumption 2 imply thatC(TR ) = cI. Assumption 1 implies that

d
(
·, · | SR

)2 ≤ d (·, · | SF )2 ≤ d (·, · | SA)2 . (8)

Select ε corresponding to Lemma 11 and let γA = [0, . . . ,ε/2, . . . ,0]T , that is, γA is a vector whose
entries are all 0 except the entry corresponding to G. Lemma 11 guarantees that there exist distri-
butions p and q such that d (p,q | SA)2 = c‖γA‖22. Let γF = Ep [TF ]−Eq [TF ] and γR = Ep

[
TR

]
−

Eq
[
TR

]
. Note that γR and γF has the same form as γA. It follows from Eq. 8 that

cε2/4≤CG,Gε
2/4≤ cε2/4,

whereCG,G is the diagonal entry ofC corresponding to G. It follows thatCG,G = c.
To complete the proof we need to show thatCG,H = 0 forG,H ∈ F ,G %=H. Assume thatCX ,Y %=

0 and let s be the sign of CG,H . Apply Lemma 11 again and select γA =
[0, . . . ,ε/4,0, . . . ,0,sε/4, . . . ,0]T , that is, γA has ε/4 and sε/4 in the entries corresponding to G
and H, respectively, and 0 elsewhere. The right side of Eq. 8 implies that

2cε2/16+2 |CG,H |ε2/16≤ 2cε2/16

which is a contradiction and it follows thatCG,H = 0. This completes the theorem.
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Abstract
We introduce standardised building blocks designed to be used with variational Bayesian learning.
The blocks include Gaussian variables, summation, multiplication, nonlinearity, and delay. A large
variety of latent variable models can be constructed from these blocks, including nonlinear and
variance models, which are lacking from most existing variational systems. The introduced blocks
are designed to fit together and to yield efficient update rules. Practical implementation of various
models is easy thanks to an associated software package which derives the learning formulas au-
tomatically once a specific model structure has been fixed. Variational Bayesian learning provides
a cost function which is used both for updating the variables of the model and for optimising the
model structure. All the computations can be carried out locally, resulting in linear computational
complexity. We present experimental results on several structures, including a new hierarchical
nonlinear model for variances and means. The test results demonstrate the good performance and
usefulness of the introduced method.
Keywords: latent variable models, variational Bayesian learning, graphical models, building
blocks, Bayesian modelling, local computation

1. Introduction

Various generative modelling approaches have provided powerful statistical learning methods for
neural networks and graphical models during the last years. Such methods aim at finding an ap-
propriate model which explains the internal structure or regularities found in the observations. It is
assumed that these regularities are caused by certain latent variables (also called factors, sources,
hidden variables, or hidden causes) which have generated the observed data through an unknown
mapping (Bishop, 1999). In unsupervised learning, the goal is to identify both the unknown latent
variables and generative mapping.

The expectation-maximisation (EM) algorithm (Dempster et al., 1977) has often been used for
learning latent variable models. The distribution for the latent variables is modelled, but the model
parameters are found using maximum likelihood or maximum a posteriori estimators. However,
with such point estimates, determination of the correct model order and overfitting are ubiquitous
and often difficult problems. Therefore, full Bayesian approaches making use of the complete poste-
rior distribution have recently gained a lot of attention. Exact treatment of the posterior distribution
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is intractable except in simple toy problems, and hence one must resort to suitable approximations.
So-called Laplace approximation (Tierney and Kadane, 1986; Swartz and Evans, 2000) employs a
Gaussian approximation around the peak of the posterior distribution. However, this method still
suffers from overfitting. In real-world problems, it often does not perform adequately, and has there-
fore largely given way for better alternatives. Among them, Markov Chain Monte Carlo (MCMC)
techniques (Gelfand and Smith, 1990; Geman and Geman, 1984; Swartz and Evans, 2000) are popu-
lar in supervised learning tasks, providing good estimation results. Unfortunately, the computational
load is high, which restricts the use of MCMC in large scale unsupervised learning problems where
the parameters and variables to be estimated are numerous. For instance, Rowe (2003) has a case
study in unsupervised learning from brain imaging data. He used MCMC for a scaled down toy
example but resorted to point estimates with real data.

Variational Bayesian learning (Wallace, 1990; Hinton and van Camp, 1993; Neal and Hinton,
1999; Waterhouse et al., 1996; Lappalainen and Miskin, 2000) (for an introduction, see Jordan
et al., 1999; MacKay, 2003) has gained increasing attention during the last years. This is because
it largely avoids overfitting (Honkela and Valpola, 2004), allows for estimation of the model order
and structure, and its computational load is reasonable compared to the MCMC methods. Vari-
ational Bayesian learning was first employed in supervised problems (Wallace, 1990; Hinton and
van Camp, 1993; MacKay, 1995; Barber and Bishop, 1998), but it has now become popular also
in unsupervised modelling. Recently, several authors have successfully applied such techniques to
linear factor analysis, independent component analysis (ICA) (Hyvärinen et al., 2001; Roberts and
Everson, 2001; Choudrey et al., 2000; Højen-Sørensen et al., 2002), and their various extensions.
These include linear independent factor analysis (Attias, 1999), several other extensions of the ba-
sic linear ICA model (Attias, 2001; Chan et al., 2001; Miskin and MacKay, 2001; Roberts et al.,
2004), mixture models and other graphical models (Attias, 2000; Beal and Ghahramani, 2003; Winn
and Bishop, 2005), as well as MLP networks for modelling nonlinear observation mappings (Lap-
palainen and Honkela, 2000; Hyvärinen et al., 2001) and nonlinear dynamics of the latent variables
(source signals) (Ilin et al., 2003; Valpola and Karhunen, 2002; Valpola et al., 2003b). Variational
Bayesian learning has also been applied to large discrete models (Murphy, 1999) such as sigmoid
belief networks (Jaakkola and Jordan, 1997), nonlinear belief networks (Frey and Hinton, 1999),
and hidden Markov models (MacKay, 1997).

In this paper, we introduce a small number of basic blocks for building latent variable models
which are learned using variational Bayesian learning. The blocks have been introduced earlier in
two conference papers (Valpola et al., 2001; Harva et al., 2005) and their applications in Valpola
et al. (2003c), Honkela et al. (2003), Honkela et al. (2005), Raiko et al. (2003), Raiko (2004), and
Raiko (2005). Valpola et al. (2004) studied hierarchical models for variance sources from signal
processing point of view. This paper is the first comprehensive presentation about the block frame-
work itself. Our approach is most suitable for unsupervised learning tasks which are considered in
this paper, but in principle at least, it could be applied to supervised learning, too. A wide variety of
factor analysis type latent variable models can be constructed by combining the basic blocks suit-
ably. Variational Bayesian learning then provides a cost function which can be used for updating the
variables as well as for optimising the model structure. The blocks are designed so as to fit together
and yield efficient update rules. By using a maximally factorial posterior approximation, all the
required computations can be performed locally. This results in linear computational complexity
as a function of the number of connections in the model. The Bayes Blocks software package by
Valpola et al. (2003a) is an open-source C++/Python implementation that can freely be downloaded.
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The basic building block is a Gaussian variable (node). It uses as its input values both mean and
variance. The other building blocks include addition and multiplication nodes, delay, and a Gaussian
variable followed by a nonlinearity. Several known model structures can be constructed using these
blocks. We also introduce some novel model structures by extending known linear structures using
nonlinearities and variance modelling. Examples will be presented later on in this paper.

The key idea behind developing these blocks is that after the connections between the blocks in
the chosen model have been fixed (that is, a particular model has been selected and specified), the
cost function and the updating rules needed in learning can be computed automatically. The user
does not need to understand the underlying mathematics since the derivations are done within the
software package. This allows for rapid prototyping. The Bayes Blocks can also be used to bring
different methods into a unified framework, by implementing a corresponding structure from blocks
and by using results of these methods for initialisation. Different methods can then be compared
directly using the cost function and perhaps combined to find even better models. Updates that
minimise a global cost function are guaranteed to converge, unlike algorithms such as loopy belief
propagation (Pearl, 1988), extended Kalman smoothing (Anderson and Moore, 1979), or expecta-
tion propagation (Minka, 2001).

Winn and Bishop (2005) have introduced a general purpose algorithm called variational mes-
sage passing. It resembles our framework in that it uses variational Bayesian learning and factorised
approximations. The VIBES framework allows for discrete variables but not nonlinearities or non-
stationary variance. The posterior approximation does not need to be fully factorised which leads
to a more accurate model. Optimisation proceeds by cycling through each factor and revising the
approximate posterior distribution. Messages that contain certain expectations over the posterior
approximation are sent through the network.

Beal and Ghahramani (2003); Ghahramani and Beal (2001), and Beal (2003) view variational
Bayesian learning as an extension to the EM algorithm. Their algorithms apply to combinations of
discrete and linear Gaussian models. In the experiments, the variational Bayesian model structure
selection outperformed the Bayesian information criterion (Schwarz, 1978) at relatively small com-
putational cost, while being more reliable than annealed importance sampling (Neal, 2001) even
with the number of samples so high that the computational cost is hundredfold.

Amajor difference of our approach compared to the related methods byWinn and Bishop (2005)
and by Beal and Ghahramani (2003) is that they concentrate mainly on situations where there is a
handy conjugate prior (Gelman et al., 1995) available. This restriction makes computations easier,
but on the other hand our blocks can be combined more freely, allowing richer model structures.
For instance, the modelling of variance in a way described in Section 5.1, would not be possible
using the gamma distribution for the precision parameter in the Gaussian node. The price we have
to pay for this advantage is that the minimum of the cost function must be found iteratively, while
it can be solved analytically when conjugate distributions are applied. The cost function can always
be evaluated analytically in the Bayes Blocks framework as well. Note that the different approaches
would fit together.

Similar graphical models can be learned with sampling based algorithms instead of variational
Bayesian learning. For instance, the BUGS software package by Spiegelhalter et al. (1995) uses
Gibbs sampling for Bayesian inference. It supports mixture models, nonlinearities, and nonstation-
ary variance. There are also many software packages concentrated on discrete Bayesian networks.
Notably, the Bayes Net toolbox by Murphy (2001) can be used for Bayesian learning and infer-
ence of many types of directed graphical models using several methods. It also includes decision-
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theoretic nodes. Hence it is in this sense more general than our work. A limitation of the Bayes net
toolbox (Murphy, 2001) is that it supports latent continuous nodes only with Gaussian or conditional
Gaussian distributions.

Autobayes (Gray et al., 2002) is a system that generates code for efficient implementations of
algorithms used in Bayes networks. Currently the algorithm schemas include EM, k-means, and
discrete model selection. This system does not yet support continuous hidden variables, nonlinear-
ities, variational methods, MCMC, or temporal models. One of the greatest strengths of the code
generation approach compared to a software library is the possibility of automatically optimising
the code using domain information.

In the independent component analysis (ICA, see textbook by Hyvärinen et al., 2001) commu-
nity, traditionally, the observation noise has not been modelled in any way. Even when it is mod-
elled, the noise variance is assumed to have a constant value which is estimated from the available
observations when required. However, more flexible variance models would be highly desirable in a
wide variety of situations. It is well-known that many real-world signals or data sets are nonstation-
ary, being roughly stationary on fairly short intervals only. Quite often the amplitude level of a signal
varies markedly as a function of time or position, which means that its variance is nonstationary.
Examples include financial data sets, speech signals, and natural images.

Recently, Parra, Spence, and Sajda (2001) have demonstrated that several higher-order statis-
tical properties of natural images and signals are well explained by a stochastic model in which
an otherwise stationary Gaussian process has a nonstationary variance. Variance models are also
useful in explaining volatility of financial time series and in detecting outliers in the data. On cer-
tain conditions the nonstationarity of variance makes it possible to perform blind source separation
(Hyvärinen et al., 2001; Pham and Cardoso, 2001).

Several authors have introduced hierarchical models related to those discussed in this paper.
These models use subspaces of dependent features instead of single feature components. This kind
of models have been proposed at least in context with independent component analysis (Cardoso,
1998; Hyvärinen and Hoyer, 2000b,a; Park and Lee, 2004), and topographic or self-organising maps
(Kohonen et al., 1997; Ghahramani and Hinton, 1998). A problem with these methods is that it is
difficult to learn the structure of the model or to compare different model structures.

The remainder of this paper is organised as follows. In the following section, we briefly present
basic concepts of variational Bayesian learning. In Section 3, we introduce the building blocks
(nodes), and in Section 4 we discuss variational Bayesian computations with them. In the next
section, we show examples of different types of models which can be constructed using the building
blocks. Section 6 deals with learning and potential problems related with it, and in Section 7 we
present experimental results on several structures given in Section 5. This is followed by a short
discussion as well as conclusions in the last section of the paper.

2. Variational Bayesian Learning

In Bayesian data analysis and estimation methods (Gelman et al., 1995),all the uncertain quantities
are modelled in terms of their joint probability density function (pdf). The key principle is to con-
struct the joint posterior pdf for all the unknown quantities in a model, given the data sample. This
posterior density contains all the relevant information on the unknown variables and parameters.

Denote by θ the set of all parameters for the modelH and other unknown variables that we wish
to estimate from a given data set X . The posterior probability density p(θ | X ,H ) of the parameters
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θ given the data X is obtained from Bayes rule1

p(θ | X ,H ) =
p(X | θ,H )p(θ | H )

p(X | H )
. (1)

Here p(X | θ,H ) is the likelihood of the parameters θ given the data X , p(θ | H ) is the prior pdf of
these parameters, and

p(X | H ) =
Z

θ
p(X | θ,H )p(θ | H )dθ

is a normalising term which is called the evidence. The evidence can be directly understood as
the marginal probability of the observed data X assuming the chosen model H . By evaluating the
evidences p(X | Hi) for different models Hi, one can therefore choose the model which describes
the observed data with the highest probability (See Valpola and Karhunen, 2002; Bishop, 1995;
MacKay, 2003, for a more complete discussion).

Variational Bayesian learning (Wallace, 1990; Hinton and van Camp, 1993; Neal and Hinton,
1999; Waterhouse et al., 1996; Barber and Bishop, 1998; Lappalainen and Miskin, 2000) is a fairly
recently introduced approximate fully Bayesian method, which has become popular. Its key idea
is to approximate the exact posterior distribution p(θ | X ,H ) by another distribution q(θ) that is
computationally easier to handle. The approximating distribution is usually chosen to be a product
of several independent distributions, one for each parameter or a set of similar parameters.

Variational Bayesian learning employs the Kullback-Leibler (KL) information (divergence) be-
tween two probability distributions q(v) and p(v). The KL information is defined by the cost func-
tion

JKL(q ‖ p) =
Z

v
q(v) ln

q(v)
p(v)

dv (2)

which measures the difference in the probability mass between the densities q(v) and p(v). Its
minimum value 0 is achieved when the densities q(v) and p(v) are the same.

The KL information is used to minimise the misfit between the actual posterior pdf p(θ | X ,H )
and its parametric approximation q(θ). However, the exact KL information JKL(q(θ) ‖ p(θ | X ,H ))
between these two densities does not yet yield a practical cost function, because the normalising
term p(X | H ) needed in computing p(θ | X ,H ) cannot usually be evaluated.

Therefore, the cost function used in variational Bayesian learning is defined (Hinton and van Camp,
1993; MacKay, 1995)

CKL = JKL(q(θ) ‖ p(θ | X ,H ))− ln p(X | H ). (3)

After slight manipulation, this yields

CKL =
Z

θ
q(θ) ln

q(θ)
p(X ,θ | H )

dθ (4)

which does not require p(X | H ) any more. The cost function CKL = Cq+Cp consists of two parts,
the negative entropy Cq and the expected energy Cp:

Cq = 〈lnq(θ)〉 =
Z

θ
q(θ) lnq(θ)dθ, (5)

1. The subscripts of all pdf’s are assumed to be the same as their arguments, and are omitted for keeping the notation
simpler.
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Figure 1: The dash-lined nodes and connections can be ignored while updating the shadowed node.
Left: In general, the whole Markov blanket needs to be considered. Right: A completely
factorial posterior approximation with no multiple computational paths leads to a decou-
pled problem. The nodes can be updated locally.

Cp =
〈
− ln p(X ,θ | H )

〉
= −

Z

θ
q(θ) ln p(X ,θ | H )dθ (6)

where the shorthand notation 〈·〉 denotes expectation with respect to the approximate pdf q(θ).
In addition, the cost function CKL provides a bound for the evidence p(X | H ). Since JKL(q ‖ p)

is always nonnegative, it follows directly from (3) that

CKL ≥− ln p(X | H ).

This shows that the negative of the cost function bounds the log-evidence from below.
It is worth noting that variational Bayesian ensemble learning can be derived from information-

theoretic minimum description length coding as well (Hinton and van Camp, 1993). Further con-
siderations on such arguments, helping to understand several common problems and certain aspects
of learning, have been presented in a recent paper (Honkela and Valpola, 2004).

The dependency structure between the parameters in our method is the same as in Bayesian
networks (Pearl, 1988; Bishop, 2006). Variables are seen as nodes of a graph. Each variable is
conditioned by its parents. The difficult part in the cost function is the expectation

〈
ln p(X ,θ | H )

〉

which is computed over the approximation q(θ) of the posterior pdf. The logarithm splits the prod-
uct of simple terms into a sum. If each of the simple terms can be computed in constant time, the
overall computational complexity is linear.

In general, the computation time is constant if the parents are independent in the posterior
pdf approximation q(θ). This condition is satisfied if the joint distribution of the parents in q(θ)
decouples into the product of the approximate distributions of the parents. That is, each term in q(θ)
depending on the parents depends only on one parent. The independence requirement is violated
if any variable receives inputs from a latent variable through multiple computational paths or from
two latent variables which are dependent in q(θ), having a non-factorisable joint distribution there.
Figure 1 illustrates the flow of information in the network in these two qualitatively different cases.

Our choice for q(θ) is a multivariate Gaussian density with a diagonal covariance matrix. Even
this crude approximation is adequate for finding the region where the mass of the actual posterior
density is concentrated. The mean values of the components of the Gaussian approximation provide
reasonably good point estimates of the corresponding parameters or variables, and the respective
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Figure 2: First subfigure from the left: The circle represents a Gaussian node corresponding to
the latent variable s conditioned by mean m and variance exp(−v). Second subfigure:
Addition and multiplication nodes are used to form an affine mapping from s to As+ a.
Third subfigure: A nonlinearity f is applied immediately after a Gaussian variable. The
rightmost subfigure: Delay operator delays a time-dependent signal by one time unit.

variances measure the reliability of these estimates. However, occasionally the diagonal Gaussian
approximation can be too crude. This problem has been considered in context with independent
component analysis in Ilin and Valpola (2003), giving means to remedy the situation.

Taking into account posterior dependencies makes the posterior pdf approximation q(θ) more
accurate, but also usually increases the computational load significantly. We have earlier consid-
ered networks with multiple computational paths in several papers, for example (Lappalainen and
Honkela, 2000; Valpola et al., 2002; Valpola and Karhunen, 2002; Valpola et al., 2003b). The com-
putational load of variational Bayesian learning then becomes roughly quadratically proportional
to the number of unknown variables in the MLP network model used in Lappalainen and Honkela
(2000), Valpola et al. (2003b), and Honkela and Valpola (2005).

The building blocks (nodes) introduced in this paper together with associated structural con-
straints provide effective means for combating the drawbacks mentioned above. Using them, up-
dating at each node takes place locally with no multiple paths. As a result, the computational load
scales linearly with the number of estimated quantities. The cost function and the learning formulas
for the unknown quantities to be estimated can be evaluated automatically once a specific model has
been selected, that is, after the connections between the blocks used in the model have been fixed.
This is a very important advantage of the proposed block approach.

3. Node Types

In this section, we present different types of nodes that can be easily combined together. Variational
Bayesian inference algorithm for the nodes is then discussed in Section 4.

In general, the building blocks can be divided into variable nodes, computation nodes, and
constants. Each variable node corresponds to a random variable, and it can be either observed or
hidden. In this paper we present only one type of variable node, the Gaussian node, but others can
be used in the same framework. The computation nodes are the addition node, the multiplication
node, a nonlinearity, and the delay node.

In the following, we shall refer to the inputs and outputs of the nodes. For a variable node, its
inputs are the parameters of the conditional distribution of the variable represented by that node,
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and its output is the value of the variable. For computation nodes, the output is a fixed function of
the inputs. The symbols used for various nodes are shown in Figure 2. Addition and multiplication
nodes are not included, since they are typically combined to represent the effect of a linear transfor-
mation, which has a symbol of its own. An output signal of a node can be used as input by zero or
more nodes that are called the children of that node. Constants are the only nodes that do not have
inputs. The output is a fixed value determined at creation of the node.

Nodes are often structured in vectors or matrices. Assume for example that we have a data
matrix X= [x(1),x(2), . . . ,x(T )], where t = 1,2, . . .T is called the time index of an n-dimensional
observation vector. Note that t does not have to correspond to time in the real world, it is just
the index of the data case. In the implementation, the nodes are either vectors so that the values
indexed by t (observations and latent variables) or scalars so that the values are constants w.r.t. t
(parameters). The data X would be represented with n vector nodes. A weight matrix A has to be
represented with scalar nodes only. A scalar node can be a parent of a vector node, but not a child
of a vector node in this sense. In figures and formulae, we use vectors and matrices more freely.

3.1 Gaussian Node

The Gaussian node is a variable node and the basic element in building hierarchical models. Figure 2
(leftmost subfigure) shows the schematic diagram of the Gaussian node. Its output is the value of
a Gaussian random variable s, which is conditioned by the inputs m and v. Denote generally by
N (x;mx,σ2x) the probability density function of a Gaussian random variable x having the mean mx
and variance σ2x . Then the conditional probability function (cpf) of the variable s is p(s | m,v) =
N (s;m,exp(−v)). As a generative model, the Gaussian node takes its mean input m and adds to it
Gaussian noise (or innovation) with variance exp(−v).

Variables can be latent or observed. Observing a variable means fixing its output s to the value
in the data. Section 4 is devoted to inferring the distribution over the latent variables given the
observed variables. Inferring the distribution over variables that are independent of t is also called
learning.

3.2 Computation Nodes

The addition and multiplication nodes are used for summing and multiplying variables. These stan-
dard mathematical operations are typically used to construct linear mappings between the variables.
This task is automated in the software, but in general, the nodes can be connected in other ways,
too. An addition node that has n inputs denoted by s1,s2, . . . ,sn, gives the sum of its inputs as the
output ∑n

i=1 si. Similarly, the output of a multiplication node is the product of its inputs ∏n
i=1 si.

A nonlinear computation node can be used for constructing nonlinear mappings between the
variable nodes. The nonlinearity

f (s) = exp(−s2) (7)

is chosen because the required expectations can be solved analytically for it. Another implemented
nonlinearity for which the computations can be carried out analytically is the cut function g(s) =
max(s,0). Other possible nonlinearities are discussed in Section 4.3.
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3.3 Delay Node

The delay operation can be used to model dynamics. The node operates on time-dependent signals.
It transforms the inputs s(1),s(2), . . . ,s(T ) into outputs s0,s(1),s(2), . . . ,s(T − 1) where s0 is a
scalar parameter that provides a starting distribution for the dynamical process. The symbol z−1
in the rightmost subfigure of Fig. 2 illustrating the delay node is the standard notation for the unit
delay in signal processing and temporal neural networks (Haykin, 1998). Models containing the
delay node are called dynamic, and the other models are called static.

4. Variational Bayesian Inference in Bayes Blocks

In this section we give equations needed for computation with the nodes introduced in Section 3.
Generally speaking, each node propagates to the forward direction a distribution of its output given
its inputs. In the backward direction, the dependency of the cost function (4) of the children on
the output of their parent is propagated. These two potentials are combined to form the posterior
distribution of each variable. There is a direct analogy to Bayes rule (1): the prior (forward) and the
likelihood (backward) are combined to form the posterior distribution. We will show later on that
the potentials in the two directions are fully determined by a few values, which consist of certain
expectations over the distribution in the forward direction, and of gradients of the cost function w.r.t.
the same expectations in the backward direction.

In the following, we discuss in more detail the properties of each node. Note that the delay node
does not actually process the signals, it just rewires them. Therefore no formulas are needed for its
associated the expectations and gradients.

4.1 Gaussian Node

Recall the Gaussian node in Section 3.1. The variance is parameterised using the exponential func-
tion as exp(−v). This is because then the mean 〈v〉 and expected exponential 〈expv〉 of the input v
suffice for evaluating the cost function, as will be shown shortly. Consequently the cost function can
be minimised using the gradients with respect to these expectations. The gradients are computed
backwards from the children nodes, but otherwise our learning method differs clearly from standard
back-propagation (e.g., Haykin, 1998).

Another important reason for using the parameterisation exp(−v) for the prior variance of a
Gaussian random variable s is that the posterior distribution of s then becomes approximately Gaus-
sian, provided that the prior mean m of s is Gaussian, too (see for example Section 7.1 or Lap-
palainen and Miskin, 2000). The conjugate prior distribution of the inverse of the prior variance of
a Gaussian random variable is the gamma distribution (Gelman et al., 1995).

p(x | µ,γ) = N
(
x | µ,γ−1

)
,

p(γ | a,b) = Gamma(γ | a,b) =
ba

Γ(a)
γa−1 exp(−bγ).

Using such gamma prior pdf causes the posterior distribution to be gamma, too, which is mathe-
matically convenient. However, the conjugate prior pdf of the second parameter b of the gamma
distribution is something quite intractable. Hence gamma distribution is not suitable for developing
hierarchical variance models. The logarithm of a gamma distributed variable is approximately Gaus-
sian distributed (Gelman et al., 1995), justifying the adopted parameterisation exp(−v). However,
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it should be noted that both the gamma and exp(−v) distributions are used as prior pdfs mainly
because they make the estimation of the posterior pdf mathematically tractable (Lappalainen and
Miskin, 2000); one cannot claim that either of these choices would be correct.

4.1.1 COST FUNCTION

Recall now that we are approximating the joint posterior pdf of the random variables s, m, and v
in a maximally factorial manner. It then decouples into the product of the individual distributions:
q(s,m,v) = q(s)q(m)q(v). Hence s, m, and v are assumed to be statistically independent a posteriori.
The posterior approximation q(s) of the Gaussian variable s is defined to be Gaussian with mean
s and variance s̃: q(s) = N (s;s, s̃). Using these, the part Cp of the Kullback-Leibler cost function
arising from the data, defined in Eq. (6), can be computed in closed form. For the Gaussian node of
Figure 2, the cost becomes

Cs,p = −〈ln p(s|m,v)〉

=
1
2

{
〈expv〉

[
(s−〈m〉)2+Var{m}+ s̃

]
−〈v〉+ ln2π

}
(8)

The derivation is presented in Appendix B of Valpola and Karhunen (2002) using slightly different
notation. For the observed variables, this is the only term arising from them to the cost function
CKL.

However, latent variables contribute to the cost function CKL also with the part Cq defined in Eq.
(5), resulting from the expectation 〈lnq(s)〉. This term is

Cs,q =
Z

s
q(s) lnq(s)ds= −1

2
[ln(2πs̃)+1]

which is the negative entropy of Gaussian variable with variance s̃. The parameters defining the
approximation q(s) of the posterior distribution of s, namely its mean s and variance s̃, are to be
optimised during learning.

The output of a latent Gaussian node trivially provides the mean and the variance: 〈s〉 = s and
Var{s} = s̃. The expected exponential can be easily shown to be (Lappalainen and Miskin, 2000;
Valpola and Karhunen, 2002)

〈exps〉 = exp(s+ s̃/2). (9)

The outputs of the nodes corresponding to the observations are known scalar values instead of
distributions. Therefore for these nodes 〈s〉 = s, Var{s} = 0, and 〈exps〉 = exps. An important
conclusion of the considerations presented this far is that the cost function of a Gaussian node
can be computed analytically in a closed form. This requires that the posterior approximation is
Gaussian and that the mean 〈m〉 and the variance Var{m} of the mean input m as well as the mean
〈v〉 and the expected exponential 〈expv〉 of the variance input v can be computed. To summarise,
we have shown that Gaussian nodes can be connected together and their costs can be evaluated
analytically.

We will later on use derivatives of the cost function with respect to some expectations of its
mean and variance parents m and v as messages from children to parents. They are derived directly
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from Eq. (8), taking the form

∂Cs,p
∂〈m〉 = 〈expv〉(〈m〉− s), (10)

∂Cs,p
∂Var{m} =

〈expv〉
2

, (11)

∂Cs,p
∂〈v〉 = −1

2
, (12)

∂Cs,p
∂〈expv〉 =

(s−〈m〉)2+Var{m}+ s̃
2

. (13)

4.1.2 UPDATING THE POSTERIOR DISTRIBUTION

The posterior distribution q(s) of a latent Gaussian node can be updated as follows.

1. The distribution q(s) affects the terms of the cost function Cs arising from the variable s itself,
namely Cs,p and Cs,q, as well as the Cp terms of the children of s, denoted by Cch(s),p. The
gradients of the cost Cch(s),p with respect to 〈s〉, Var{s}, and 〈exps〉 are computed according
to Equations (10–13).

2. The terms in Cp which depend on s and s̃ can be shown (see Appendix B.2) to be of the form
2

Cp = Cs,p+Cch(s),p =Ms+V [(s− scurrent)2+ s̃]+E 〈exps〉 , (14)

where

M =
∂Cp

∂s
, V =

∂Cp

∂s̃
, and E =

∂Cp

∂〈exps〉 .

3. The minimum of Cs = Cs,p+Cs,q+Cch(s),p is solved. This can be done analytically if E = 0,
corresponding to the case of so-called free-form solution (see Lappalainen and Miskin, 2000,
for details):

sopt = scurrent−
M
2V

, s̃opt =
1
2V

.

Otherwise the minimum is obtained iteratively. Iterative minimisation can be carried out
efficiently using Newton’s method for the posterior mean s and a fixed-point iteration for the
posterior variance s̃. The minimisation procedure is discussed in more detail in Appendix A.

4.2 Addition and Multiplication Nodes

Consider first the addition node. The mean, variance and expected exponential of the output of the
addition node can be evaluated in a straightforward way. Assuming that the inputs si are statistically

2. Note that constants are dropped out since they do not depend on s or s̃.
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independent, these expectations are respectively given by
〈

n

∑
i=1

si

〉
=

n

∑
i=1

〈si〉 , (15)

Var

{
n

∑
i=1

si

}
=

n

∑
i=1
Var{si} , (16)

〈
exp

(
n

∑
i=1

si

)〉
=

n

∏
i=1

〈expsi〉 . (17)

The proof has been given in Appendix B.1.
Consider then the multiplication node. Assuming independence between the inputs si, the mean

and the variance of the output take the form (see Appendix B.1)
〈

n

∏
i=1

si

〉
=

n

∏
i=1

〈si〉 , (18)

Var

{
n

∏
i=1

si

}
=

n

∏
i=1

[
〈si〉2+Var{si}

]
−

n

∏
i=1

〈si〉2 . (19)

For the multiplication node the expected exponential cannot be evaluated without knowing the exact
distribution of the inputs.

The formulas (15)–(19) are given for n inputs because of generality, but in practice we have
carried out the needed calculations pairwise. When using the general formula (19), the variance
might otherwise occasionally take a small negative value due to minor imprecisions appearing in
the computations. This problem does not arise in pairwise computations. Now, the propagation in
the forward direction is covered.

The form of the cost function propagating from children to parents is assumed to be of the form
(14). This is true even in the case, where there are addition and multiplication nodes in between
(see Appendix B.2 for proof). Therefore only the gradients of the cost function with respect to the
different expectations need to be propagated backwards to identify the whole cost function w.r.t. the
parent. The required formulas are obtained in a straightforward manner from Eqs. (15)–(19). The
gradients for the addition node are:

∂C
∂〈s1〉

=
∂C

∂〈s1+ s2〉
, (20)

∂C
∂Var{s1}

=
∂C

∂Var{s1+ s2}
, (21)

∂C
∂〈exps1〉

= 〈exps2〉
∂C

∂〈exp(s1+ s2)〉
. (22)

For the multiplication node, they become

∂C
∂〈s1〉

= 〈s2〉
∂C

∂〈s1s2〉
+2Var{s2}

∂C
∂Var{s1s2}

〈s1〉 , (23)

∂C
∂Var{s1}

=
(
〈s2〉2+Var{s2}

) ∂C
∂Var{s1s2}

. (24)
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As a conclusion, addition and multiplication nodes can be added between the Gaussian nodes whose
costs still retain the form (14). Proofs can be found in Appendices B.1 and B.2.

4.3 Nonlinearity Node

A serious problem arising here is that for most nonlinear functions it is impossible to compute the
required expectations analytically. Here we describe a particular nonlinearity in detail and discuss
the options for extending to other nonlinearities, for which the implementation is underway.

Ghahramani and Roweis have shown (1999) that for the nonlinear function f (s) = exp(−s2) in
Eq. (7), the mean and variance have analytical expressions, to be presented shortly, provided that it
has Gaussian input. In our graphical network structures this condition is fulfilled if we require that
the nonlinearity must be inserted immediately after a Gaussian node. The same type of exponential
function (7) is frequently used in standard radial-basis function networks (Bishop, 1995; Haykin,
1998; Ghahramani and Roweis, 1999), but in a different manner. There the exponential function
depends on the Euclidean distance from a centre point, while in our case it depends on the input
variable s directly.

The first and second moments of the function (7) with respect to the distribution q(s) are
(Ghahramani and Roweis, 1999)

〈 f (s)〉 = exp
(
− s2

2s̃+1

)
(2s̃+1)−

1
2 , (25)

〈
[ f (s)]2

〉
= exp

(
− 2s2

4s̃+1

)
(4s̃+1)−

1
2 . (26)

The formula (25) provides directly the mean 〈 f (s)〉, and the variance is obtained from (25) and
(26) by applying the familiar formula Var{ f (s)} =

〈
[ f (s)]2

〉
−〈 f (s)〉2. The expected exponential

〈exp f (s)〉 cannot be evaluated analytically, which limits somewhat the use of the nonlinear node.
The updating of the nonlinear node following directly a Gaussian node takes place similarly as

the updating of a plain Gaussian node. The gradients of Cp with respect to 〈 f (s)〉 and Var{ f (s)}
are evaluated assuming that they arise from a quadratic term. This assumption holds since the
nonlinearity can only propagate to the mean of Gaussian nodes. The update formulas are given in
Appendix C.

Another possibility is to use as the nonlinearity the error function f (s) =
R s
−∞ exp(−r2)dr, be-

cause its mean can be evaluated analytically and variance approximated from above (Frey and Hin-
ton, 1999). Increasing the variance increases the value of the cost function, too, and hence it suffices
to minimise the upper bound of the cost function for finding a good solution. Frey and Hinton (1999)
apply the error function in MLP (multilayer perceptron) networks (Bishop, 1995; Haykin, 1998) but
in a manner different from ours.

Finally, Murphy (1999) has applied the hyperbolic tangent function f (s) = tanh(s), approxi-
mating it iteratively with a Gaussian. Honkela and Valpola (2005) approximate the same sigmoidal
function with a Gauss-Hermite quadrature. This alternative could be considered here, too. A prob-
lem with it is, however, that the cost function (mean and variance) cannot be computed analytically.

4.4 Other Possible Nodes

One of the authors has recently implemented two new variable nodes (Harva, 2004; Harva et al.,
2005) into the Bayes Blocks software library. They are the mixture-of-Gaussians (MoG) node and
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Node type 〈·〉 Var{·} 〈exp ·〉
Gaussian node s s̃ (9)
Addition node (15) (16) (17)
Multiplication node (18) (19) -
Nonlinearity (25) (25),(26) -
Constant c 0 expc

Table 1: The forward messages or expectations that are provided by the output of different types
of nodes. The numbers in parentheses refer to defining equations. The multiplication and
nonlinearity cannot provide the expected exponential.

the rectified Gaussian node. MoG can be used to model any sufficiently well behaving distribution
(Bishop, 1995). In the independent factor analysis (IFA) method introduced in Attias (1999), a MoG
distribution was used for the sources, resulting in a probabilistic version of independent component
analysis (ICA) (Hyvärinen et al., 2001).

The second new node type, the rectified Gaussian variable, was introduced in Miskin and
MacKay (2001). By omitting negative values and retaining only positive ones of a variable which
is originally Gaussian distributed, this block allows modelling of variables having positive values
only. Such variables are commonplace for example in digital image processing, where the picture
elements (pixels) have always non-negative values. The cost functions and update rules of the MoG
and rectified Gaussian node have been derived by Harva (2004). We postpone a more detailed
discussion of these nodes to forthcoming papers to keep the length of this paper reasonable.

In the early conference paper (Valpola et al., 2001) where we introduced the blocks for the
first time, two more blocks were proposed for handling discrete models and variables. One of
them is a switch, which picks up its k-th continuous valued input signal as its output signal. The
other one is a discrete variable k, which has a soft-max prior derived from the continuous valued
input signals ci of the node. However, we have omitted these two nodes from the present paper,
because their performance has not turned out to be adequate. The reason might be that assuming
posterior independence of the auxiliary Gaussian variables is too rough and that the cost function
in the soft-max case could not be computed exactly. For instance, building a mixture-of-Gaussians
from discrete and Gaussian variables with switches is possible, but the construction loses out to a
specialised MoG node that makes fewer assumptions. Raiko (2005) uses the soft-max node without
switches.

Action and utility nodes (Pearl, 1988; Murphy, 2001) would extend the library into decision
theory and control. In addition to the messages about the variational Bayesian cost function, the
network would propagate messages about utility. Raiko and Tornio (2005) describe such a system
in a slightly different framework.

5. Combining the Nodes

The expectations provided by the outputs and required by the inputs of the different nodes are
summarised in Tables 1 and 2, respectively. One can see that the variance input of a Gaussian node
requires the expected exponential of the incoming signal. However, it cannot be computed for the
nonlinear and multiplication nodes. Hence all the nodes cannot be combined freely.
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Input type ∂C
∂〈·〉

∂C
∂Var{·}

∂C
∂〈exp ·〉

Mean of a Gaussian node (10) (11) 0
Variance of a Gaussian node (12) 0 (13)
Addendum (20) (21) (22)
Factor (23) (24) 0

Table 2: The backward messages or the gradients of the cost function w.r.t. certain expectations.
The numbers in parentheses refer to defining equations. The gradients of the Gaussian
node are derived from Eq. (8). The Gaussian node requires the corresponding expecta-
tions from its inputs, that is, 〈m〉, Var{m}, 〈v〉, and 〈expv〉. Addition and multiplication
nodes require the same type of input expectations that they are required to provide as
output. Communication of a nonlinearity with its Gaussian parent node is described in
Appendix C.

When connecting the nodes, the following restrictions must be taken into account:

1. In general, the network has to be a directed acyclic graph (DAG). The delay nodes are an
exception because the past values of any node can be the parents of any other nodes. This
violation is not a real one in the sense that if the structure were unfolded in time, the resulting
network would again be a DAG.

2. The nonlinearity must always be placed immediately after a Gaussian node. This is because
the output expectations, Equations (25) and (26), can be computed only for Gaussian inputs.
The nonlinearity also breaks the general form of the likelihood (14). This is handled by using
special update rules for the Gaussian followed by a nonlinearity (Appendix C).

3. The outputs of multiplication and nonlinear nodes cannot be used as variance inputs for the
Gaussian node. This is because the expected exponential cannot be evaluated for them. These
restrictions are evident from Tables 1 and 2.

4. There should be only one computational path from a latent variable to a variable. A compu-
tational path is a path that consists of computation nodes only. Otherwise, the independency
assumptions used in Equations (8) and (16)–(19) are violated and variational Bayesian learn-
ing becomes more complicated (recall Figure 1).

Figure 3 shows examples of model structures that break each of the restrictions in turn. The
software package includes a function that checks whether a given model structure is correct or not.
Note that the network may contain loops, that is, the underlying undirected network can be cyclic.
Note also that the second, third, and fourth restrictions can be circumvented by inserting mediating
Gaussian nodes. A mediating Gaussian node that is used as the variance input of another variable,
is called the variance source and it is discussed in the following.

5.1 Nonstationary Variance

In most currently used models, only the means of Gaussian nodes have hierarchical or dynamical
models. In many real-world situations the variance is not a constant either but it is more difficult to

169



RAIKO, VALPOLA, HARVA AND KARHUNEN

4.1. 2. 3.
Figure 3: Examples of illegal model structures violating each of the restriction described in the text

in turn.

m v m

v s(t) w u(t) s(t)

Figure 4: Left: The Gaussian variable s(t) has a a constant variance exp(−v) and mean m. Right:
A variance source is added for providing a non-constant variance input u(t) to the output
(source) signal s(t). The variance source u(t) has a prior mean v and prior variance
exp(−w).

model it. For modelling the variance, too, we use the variance source (Valpola et al., 2004) depicted
schematically in Figure 4. Variance source is a regular Gaussian node whose output u(t) is used as
the input variance of another Gaussian node. Variance source can convert prediction of the mean
into prediction of the variance, allowing to build hierarchical or dynamical models for the variance.

The output s(t) of a Gaussian node to which the variance source is attached (see the right sub-
figure of Fig. 4) has in general a super-Gaussian distribution. Such a distribution is typically charac-
terised by long tails and a high peak, and it is formally defined as having a positive value of kurtosis
(see Hyvärinen et al. (2001) for a detailed discussion). This property has been proved by Parra et al.
(2001) who showed that a nonstationary variance (amplitude) always increases the kurtosis. The
output signal s(t) of the stationary Gaussian variance source depicted in the left subfigure of Fig. 4
is naturally Gaussian distributed with zero kurtosis. The variance source is useful in modelling nat-
ural signals such as speech and images which are typically super-Gaussian, and also in modelling
outliers in the observations.
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Var{u(t)}=0
Var{u(t)}=1
Var{u(t)}=2

Figure 5: The distribution of s(t) is plotted when s(t)∼ N (0,exp[−u(t)]) and u(t)∼ N (0, ·). Note
that when Var{u(t)} = 0, the distribution of s(t) is Gaussian. This corresponds to the
right subfigure of Fig. 4 when m= v= 0 and exp(−w) = 0,1,2.

5.2 Linear Independent Factor Analysis

In many instances there exist several nodes which have quite similar role in the chosen structure.
Assuming that ith such node corresponds to a scalar variable yi, it is convenient to use the vector y =
(y1,y2, . . . ,yn)T to jointly denote all the corresponding scalar variables y1,y2, . . . ,yn. This notation
is used in Figures 6 and 7 later on. Hence we represent the scalar source nodes corresponding to the
variables si(t) using the source vector s(t), and the scalar nodes corresponding to the observations
xi(t) using the observation vector x(t).

The addition and multiplication nodes can be used for building an affine transformation

x(t) = As(t)+a+nx(t) (27)

from the Gaussian source nodes s(t) to the Gaussian observation nodes x(t). The vector a denotes
the bias and vector nx(t) denotes the zero-mean Gaussian noise in the Gaussian node x(t). This
model corresponds to standard linear factor analysis (FA) assuming that the sources si(t) are mutu-
ally uncorrelated; see for example, Hyvärinen et al. (2001).

If instead of Gaussianity it is assumed that each source si(t) has some non-Gaussian prior, the
model (27) describes linear independent factor analysis (IFA). Linear IFA was introduced by Attias
(1999), who used variational Bayesian learning for estimating the model except for some parts
which he estimated using the expectation-maximisation (EM) algorithm. Attias used a mixture-of-
Gaussians source model, but another option is to use the variance source to achieve a super-Gaussian
source model. Figure 6 depicts the model structures for linear factor analysis and independent factor
analysis.

5.3 A Hierarchical Variance Model

Figure 7 (right subfigure) presents a hierarchical model for the variance, and also shows how it
can be constructed by first learning simpler structures shown in the left and middle subfigures of
Fig. 7. This is necessary, because learning a hierarchical model having different types of nodes from
scratch in a completely unsupervised manner would be too demanding a task, ending quite probably
into an unsatisfactory local minimum.
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A

u(t) s(t)

x(t)

A

s(t)

x(t)

Figure 6: Model structures for linear factor analysis (FA) (left) and independent factor analysis
(IFA) (right).

The final rightmost variance model in Fig. 7 is somewhat involved in that it contains both non-
linearities and hierarchical modelling of variances. Before going into its mathematical details and
into the two simpler models in Fig. 7, we point out that we have considered in our earlier papers
related but simpler block models. In Valpola et al. (2003c), a hierarchical nonlinear model for the
data x(t) is discussed without modelling the variance. Such a model can be applied for example to
nonlinear ICA or blind source separation. Experimental results (Valpola et al., 2003c) show that this
block model performs adequately in the nonlinear BSS problem, even though the results are slightly
poorer than for our earlier computationally more demanding model (Lappalainen and Honkela,
2000; Valpola et al., 2003b; Honkela and Valpola, 2005) with multiple computational paths.

In another paper (Valpola et al., 2004), we have considered hierarchical modelling of variance
using the block approach without nonlinearities. Experimental results on biomedical MEG (mag-
netoencephalography) data demonstrate the usefulness of hierarchical modelling of variances and
existence of variance sources in real-world data.

Learning starts from the simple structure shown in the left subfigure of Fig. 7. There a variance
source is attached to each Gaussian observation node. The nodes represent vectors, with u1(t) being
the output vector of the variance source and x(t) the t th observation (data) vector. The vectors u1(t)
and x(t) have the same dimension, and each component of the variance vector u1(t) models the
variance of the respective component of the observation vector x(t).

Mathematically, this simple first model obeys the equations

x(t) = a1+nx(t), (28)
u1(t) = b1+nu1(t). (29)

Here the vectors a1 and b1 denote the constant means (bias terms) of the data vector x(t) and
the variance variable vector u1(t), respectively. The additive “noise” vector nx(t) determines the
variances of the components of x(t). It has a Gaussian distribution with a zero mean and variance
exp[−u1(t)]:

nx(t) ∼ N (0,exp[−u1(t)]). (30)

More precisely, the shorthand notation N (0,exp[−u1(t)]) means that each component of nx(t) is
Gaussian distributed with a zero mean and variance defined by the respective component of the
vector exp[−u1(t)]. The exponential function exp(·) is applied separately to each component of the
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Figure 7: Construction of a hierarchical variance model in stages from simpler models. Left: In the
beginning, a variance source is attached to each Gaussian observation node. The nodes
represent vectors. Middle: A layer of sources with variance sources attached to them is
added. They layers are connected through a nonlinearity and an affine mapping. Right:
Another layer is added on the top to form the final hierarchical variance model.

vector −u1(t). Similarly,
nu1(t) ∼ N (0,exp [−v1]) (31)

where the components of the vector v1 define the variances of the zero mean Gaussian variables
nu1(t).

Consider then the intermediate model shown in the middle subfigure of Fig. 7. In this second
learning stage, a layer of sources with variance sources attached to them is added. These sources are
represented by the source vector s2(t), and their variances are given by the respective components
of the variance vector u2(t) quite similarly as in the left subfigure. The (vector) node between the
source vector s2(t) and the variance vector u1(t) represents an affine transformation with a trans-
formation matrix A1 including a bias term. Hence the prior mean inputted to the Gaussian variance
source having the output u1(t) is of the form B1f(s2(t))+b1, where b1 is the bias vector, and f(·) is
a vector of componentwise nonlinear functions (7). Quite similarly, the vector node between s2(t)
and the observation vector x(t) yields as its output the affine transformation A1f(s2(t))+a1, where
a1 is a bias vector. This in turn provides the input prior mean to the Gaussian node modelling the
observation vector x(t).

The mathematical equations corresponding to the model represented graphically in the middle
subfigure of Fig. 7 are:

x(t) = A1f(s2(t))+a1+nx(t), (32)
u1(t) = B1f(s2(t))+b1+nu1(t), (33)
s2(t) = a2+ns2(t), (34)
u2(t) = b2+nu2(t). (35)
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Compared with the simplest model (28)–(29), one can observe that the source vector s2(t) of the
second (upper) layer and the associated variance vector u2(t) are of quite similar form, given in Eqs.
(34)–(35). The models (32)–(33) of the data vector x(t) and the associated variance vector u1(t) in
the first (bottom) layer differ from the simple first model (28)–(29) in that they contain additional
terms A1f(s2(t)) and B1f(s2(t)), respectively. In these terms, the nonlinear transformation f(s2(t))
of the source vector s2(t) coming from the upper layer have been multiplied by the linear mixing
matrices A1 and B1. All the “noise” terms nx(t), nu1(t), ns2(t), and nu2(t) in Eqs. (32)–(35) are
modelled by similar zero mean Gaussian distributions as in Eqs. (30) and (31).

In the last stage of learning, another layer is added on the top of the network shown in the
middle subfigure of Fig. 7. The resulting structure is shown in the right subfigure. The added new
layer is quite similar as the layer added in the second stage. The prior variances represented by
the vector u3(t) model the source vector s3(t), which is turn affects via the affine transformation
B2f(s3(t))+b2 to the mean of the mediating variance node u2(t). The source vector s3(t) provides
also the prior mean of the source s2(t) via the affine transformation A2f(s3(t))+a2.

The model equations (32)–(33) for the data vector x(t) and its associated variance vector u1(t)
remain the same as in the intermediate model shown graphically in the middle subfigure of Fig. 7.
Note that A1 and B1 are still updated. The model equations of the second and third layer sources
s2(t) and s3(t) as well as their respective variance vectors u2(t) and u3(t) in the rightmost subfigure
of Fig. 7 are given by

s2(t) = A2f(s3(t))+a2+ns2(t),
u2(t) = B2f(s3(t))+b2+nu2(t),
s3(t) = a3+ns3(t),
u3(t) = b3+nu3(t).

Again, the vectors a2, b2, a3, and b3 represent the constant means (biases) in their respective models,
and A2 and B2 are mixing matrices with matching dimensions. The vectors ns2(t), nu2(t), ns3(t),
and nu3(t) have similar zero mean Gaussian distributions as in Eqs. (30) and (31).

It should be noted that in the resulting network the number of scalar-valued nodes (size of the
layers) can be different for different layers. Additional layers could be appended in the samemanner.
The final network of the right subfigure in Fig. 7 uses variance nodes in building a hierarchical model
for both the means and variances. Without the variance sources the model would correspond to a
nonlinear model with latent variables in the hidden layer. As already mentioned, we have considered
such a nonlinear hierarchical model in Valpola et al. (2003c). Note that as latent variables of the
upper layer are connected to observations through multiple hidden nodes, having computation nodes
as hidden nodes would result in multiple computational paths. This type of structure was used in
Lappalainen and Honkela (2000), and it has a quadratic computational complexity as opposed to
linear one of the networks in Figure 7.

5.4 Linear Dynamic Models for the Sources and Variances

Sometimes it is useful to complement the linear factor analysis model

x(t) = As(t)+a+nx(t) (36)

with a recursive one-step prediction model for the source vector s(t):

s(t) = Bs(t−1)+b+ns(t). (37)
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Figure 8: Three model structures. A linear Gaussian state-space model (left); the same model com-
plemented with a super-Gaussian innovation process for the sources (middle); and a dy-
namic model for the variances of the sources which also have a recurrent dynamic model
(right).

The noise term ns(t) is called the innovation process. The dynamic model of the type (36), (37) is
used for example in Kalman filtering (Haykin, 1998, 2001), but other estimation algorithms can be
applied as well (Haykin, 1998). The left subfigure in Fig. 8 depicts the structure arising from Eqs.
(36) and (37), built from the blocks.

A straightforward extension is to use variance sources for the sources to make the innovation
process super-Gaussian. The variance signal u(t) characterises the innovation process of s(t), in
effect telling how much the signal differs from the predicted one but not in which direction it is
changing. The graphical model of this extension is depicted in the middle subfigure of Fig. 8.
The mathematical equations describing this model can be written in a similar manner as for the
hierarchical variance models in the previous subsection.

Another extension is to model the variance sources dynamically by using one-step recursive
prediction model for them:

u(t) = Cu(t−1)+ c+nu(t).

This model is depicted graphically in the rightmost subfigure of Fig. 8. In context with it, we use
the simplest possible identity dynamical mapping for s(t):

s(t) = s(t−1)+ns(t).

The latter two models introduced in this subsection will be tested experimentally later on in this
paper.

5.5 Hierarchical Priors

It is often desirable that the priors of the parameters should not be too restrictive. A common type of
a vague prior is the hierarchical prior (Gelman et al., 1995). For example the priors of the elements
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ai j of a mixing matrix A can be defined via the Gaussian distributions

p(ai j | vai ) = N (ai j;0,exp(−vai )),
p(vai | mva,vva) = N (vai ;mva,exp(−vva)) .

Finally, the priors of the quantities mva and vva have flat Gaussian distributions N (·;0,100)
(the constants depending on the scale of the data). When going up in the hierarchy, we use the same
distribution for each column of a matrix and for each component of a vector. On the top, the number
of required constant priors is small. Thus very little information is provided and needed a priori.
This kind of hierarchical priors are used in the experiments later on this paper.

6. Learning

Let us now discuss the overall learning procedure, describing also briefly how problems related with
learning can be handled.

6.1 Updating of the Network

The nodes of the network communicate with their parents and children by providing certain expec-
tations in the feedforward direction (from parents to children) and gradients of the cost function
with respect to the same expectations in the feedback direction (from children to parents). These
expectations and gradients are summarised in Tables 1 and 2.

The basic element for updating the network is the update of a single node assuming the rest
of the network fixed. For computation nodes this is simple: each time when a child node asks
for expectations and they are out of date, the computational node asks from its parents for their
expectations and updates its own ones. And vice versa: when parents ask for gradients and they
are out of date, the node asks from its children for the gradients and updates its own ones. These
updates have analytical formulas given in Section 4.

For a variable node to be updated, the input expectations and output gradients need to be up-
to-date. The posterior approximation q(s) can then be adjusted to minimise the cost function as
explained in Section 4. The minimisation is either analytical or iterative, depending on the situation.
Signals propagating outwards from the node (the output expectations and the input gradients) of a
variable node are functions of q(s) and are thus updated in the process. Each update is guaranteed
not to increase the cost function.

One sweep of updating means updating each node once. The order in which this is done is not
critical for the system to work. It would not be useful to update a variable twice without updating
some of its neighbours in between, but that does not happen with any ordering when updates are
done in sweeps. We have used an ordering where each variable node is updated only after all of its
descendants have been updated. Basically when a variable node is updated, its input gradients and
output expectations are labelled as outdated and they are updated only when another node asks for
that information.

It is possible to use different measures to improve the learning process. Measures for avoiding
local minima are described in the next subsection. Another enhancement can be used for speeding
up learning. The basic idea is that after some time, the parameters describing q(s) are changing
fairly linearly between consecutive sweeps. Therefore a line search in that direction provides faster
learning, as discussed in Honkela (2002); Honkela et al. (2003). We apply this line search only at
every tenth sweep for allowing the consecutive updates to become fairly linear again.
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Learning a model typically takes thousands of sweeps before convergence. The cost function
decreases monotonically after every update. Typically this decrease gets smaller with time, but not
always monotonically. Therefore care should be taken in selecting the stopping criterion. We have
chosen to stop the learning process when the decrease in the cost during the previous 200 sweeps is
lower than some predefined threshold.

6.2 Structural Learning and Local Minima

The chosen model has a pre-specified structure which, however, has some flexibility. The number
of nodes is not fixed in advance, but their optimal number is estimated using variational Bayesian
learning, and unnecessary connections can be pruned away.

A factorial posterior approximation, which is used in this paper, often leads to automatic prun-
ing of some of the connections in the model. When there is not enough data to estimate all the
parameters, some directions remain ill-determined. This causes the posterior distribution along
those directions to be roughly equal to the prior distribution. In variational Bayesian learning with a
factorial posterior approximation, the ill-determined directions tend to get aligned with the axes of
the parameter space because then the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance sparsely connected models, because
the learning algorithm automatically selects a small amount of well-determined parameters. But
at the early stages of learning, pruning can be harmful, because large parts of the model can get
pruned away before a sensible representation has been found. This corresponds to the situation
where the learning scheme ends up into a local minimum of the cost function (MacKay, 2001). A
posterior approximation which takes into account the posterior dependences has the advantage that
it has far less local minima than a factorial posterior approximation. It seems that Bayesian learning
algorithms which have linear time complexity cannot avoid local minima in general.

However, suitable choices of the model structure and countermeasures included in the learning
scheme can alleviate the problem greatly. We have used the following means for avoiding getting
stuck into local minima:

• Learning takes place in several stages, starting from simpler structures which are learned first
before proceeding to more complicated hierarchic structures. An example of this technique
was presented in Section 5.3.

• New parts of the network are initialised appropriately. One can use for instance principal
component analysis (PCA), independent component analysis (ICA), vector quantisation, or
kernel PCA (Honkela et al., 2004). The best option depends on the application. Often it is
useful to try different methods and select the one providing the smallest value of the cost
function for the learned model. There are two ways to handle initialisation: either to fix
the sources for a while and learn the weights of the model, or to fix the weights for a while
and learn the sources corresponding to the observations. The fixed variables can be released
gradually (Valpola et al., 2003c, Section 5.1).

• Automatic pruning is discouraged initially by omitting the term

2Var{s2}
∂C

∂Var{s1s2}
〈s1〉
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in the multiplication nodes (Eq. (23)). This effectively means that the mean of s1 is optimisti-
cally adjusted as if there were no uncertainty about s2. In this way the cost function may
increase at first due to overoptimism, but it may pay off later on by escaping early pruning.

• New sources si(t) (components of the source vector s(t) of a layer) are generated, and pruned
sources are removed from time to time.

• The activations of the sources are reset a few times. The sources are re-adjusted to their places
while keeping the mapping and other parameters fixed. This often helps if some of the sources
are stuck into a local minimum.

7. Experimental Results

The Bayes Blocks software (Valpola et al., 2003a) has been applied to several problems.
Valpola et al. (2004) considered several models of variance. The main application was the

analysis of MEG measurements from a human brain. In addition to features corresponding to brain
activity the data contained several artifacts such as muscle activity induced by the patient biting
his teeth. Linear ICA applied to the data was able to separate the original causes to some degree
but still many dependencies remained between the sources. Hence an additional layer of so-called
variance sources was used to find correlations between the variances of the innovation processes of
the ordinary sources. These were able to capture phenomena related to the biting artifact as well as
to rhythmic activity.

An astrophysical problem of separating young and old star populations from a set of elliptical
galaxy spectra was studied by one of the authors in Nolan et al. (2006). Since the observed quantities
were energies and thus positive and since the mixing process was also known to be positive, it was
necessary for the subsequent astrophysical analysis to be feasible to include these constraints to
the model as well. The standard technique of putting a positive prior on the sources was found
to have the unfortunate technical shortcoming of inducing sparsely distributed factors, which was
deemed inappropriate in that specific application. To get rid of the induced sparsity but to still
keep the positivity constraint, the nonnegativity was forced by rectification nonlinearities (Harva
and Kabán, 2007). In addition to finding an astrophysically meaningful factorisation, several other
specifications were needed to be met related to handling of missing values, measurements errors
and predictive capabilities of the model.

In Raiko (2005), a nonlinear model for relational data was applied to the analysis of the board
game Go. The difficult part of the game state evaluation is to determine which groups of stones are
likely to get captured. A model similar to the one that will be described in Section 7.2, was built for
features of pairs of groups, including the probability of getting captured. When a learned model is
applied to new game states, the estimates propagate through a network of such pairs. The structure
of the network is thus determined by the game state. The approach can be used for inference in
relational databases.

The following three sets of experiments are given as additional examples. The first one is a
difficult toy problem that illustrates hierarchy and variance modelling, the second one studies the
inference of missing values in speech spectra, and the third one has a dynamical model for image
sequences.
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Figure 9: Samples from the 1000 image patches used in the extended bars problem. The bars
include both standard and variance bars in horizontal and vertical directions. For instance,
the patch at the bottom left corner shows the activation of a standard horizontal bar above
the horizontal variance bar in the middle.

7.1 Bars Problem

The first experimental problem studied was testing of the hierarchical nonlinear variance model in
Figure 7 in an extension of the well-known bars problem (Dayan and Zemel, 1995). The data set
consisted of 1000 image patches each having 6× 6 pixels. They contained both horizontal and
vertical bars. In addition to the regular bars, the problem was extended to include horizontal and
vertical variance bars, characterised and manifested by their higher variance. Samples of the image
patches used are shown in Figure 9.

The data were generated by first choosing whether vertical, horizontal, both, or neither orienta-
tions were active, each with probability 1/4. Whenever an orientation is active, there is a probability
1/3 for a bar in each row or column to be active. For both orientations, there are 6 regular bars, one
for each row or column, and 3 variance bars which are 2 rows or columns wide. The intensities (grey
level values) of the bars were drawn from a normalised positive exponential distribution having the
pdf p(z) = exp(−z),z ≥ 0, p(z) = 0,z < 0. Regular bars are additive, and variance bars produce
additive Gaussian noise having the standard deviation of its intensity. Finally, Gaussian noise with
a standard deviation 0.1 was added to each pixel.

The network was built up following the stages shown in Figure 7. It was initialised with a single
layer with 36 nodes corresponding to the 36 dimensional data vector. The second layer of 30 nodes
was created at the sweep 20, and the third layer of 5 nodes at the sweep 100. After creating a layer
only its sources were updated for 10 sweeps, and pruning was discouraged for 50 sweeps. New
nodes were added twice, 3 to the second layer and 2 to the third layer, at sweeps 300 and 400.
After that, only the sources were updated for 5 sweeps, and pruning was again discouraged for 50
sweeps. The source activations were reset at the sweeps 500, 600 and 700, and only the sources
were updated for the next 40 sweeps. Dead nodes were removed every 20 sweeps. The multistage
training procedure was designed to avoid suboptimal local solutions, as discussed in Section 6.2.
Note that a large part of the presented procedure could be automated for application to any problem.

Figure 10 demonstrates that the algorithm finds a generative model that is quite similar to the
generation process. The two sources on the third layer correspond to the horizontal and vertical
orientations and the 18 sources on the second layer correspond to the bars. Each element of the
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weight matrices is depicted as a pixel with the appropriate grey level value in Fig. 10. The pixels
of A2 and B2 are ordered similarly as the patches of A1 and B1, that is, vertical bars on the left
and horizontal bars on the right. Regular bars, present in the mixing matrix A1, are reconstructed
accurately, but the variance bars in the mixing matrix B1 exhibit some noise. The grouping of
horizontal and vertical orientations is clearly visible in the mixing matrix A2. For instance, the first
patch in A2 has non-zero (black) weights to all the vertical features, that is, left side pixels in A2
activate sources corresponding to the left side patches in A1 and B1.

A2 (18×2) B2 (18×2)

A1 (36×18) B1 (36×18)

Figure 10: Results of the extended bars problem: Posterior means of the weight matrices after
learning. The sources of the second layer have been ordered for visualisation purposes
according to the weight (mixing) matrices A2 and B2. The elements of the matrices
have been depicted as pixels having corresponding grey level values. The 18 pixels in
the weight matrices A2 and B2 correspond to the 18 patches in the weight matrices A1
and B1.

A comparison experiment with a simplified learning procedure was run to demonstrate the im-
portance of local optima. The creation and pruning of layers were done as before, but other methods
for avoiding local minima (addition of nodes, discouraging pruning and resetting of sources) were
disabled. The resulting weights can be seen in Figure 11. This time the learning ends up in a subop-
timal local optimum of the cost function. One of the bars was not found (second horizontal bar from
the bottom), some were mixed up in a same source (most variance bars share a source with a regular
bar), fourth vertical bar from the left appears twice, and one of the sources just suppresses variance
everywhere. The resulting cost function (4) is worse by 5292 compared to the main experiment.
The ratio of the model evidences is thus roughly exp(5292).

Figure 12 illustrates the formation of the posterior distribution of a typical single variable. It is
the first component of the variance source u1(1) in the comparison experiment. The prior means
here the distribution given its parents (especially s2(1) and B1) and the likelihood means the po-
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Figure 11: Left: Cost function plotted against the number of learning sweeps. Solid curve is the
main experiment and the dashed curve is the comparison experiment. The peaks appear
when nodes are added. Right: The resulting weights in the comparison experiment are
plotted like in Figure 10.
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Figure 12: A typical example illustrating the posterior approximation of a variance source.

tential given its children (the first component of x(1)). Assuming the posteriors of other variables
accurate, we can plot the true posterior of this variable and compare it to the Gaussian posterior
approximation. Their difference is only 0.007 measured by Kullback-Leibler divergence.

7.2 Missing Values in Speech Spectra

In hierarchical nonlinear factor analysis (HNFA) (Valpola et al., 2003c), there are a number of layers
of Gaussian variables, the bottom-most layer corresponding to the data. There is a nonlinearity and
a linear mixture mapping from each layer to all the layers below it.

HNFA resembles the model structure in Section 5.3. The model structure is depicted in the left
subfigure of Fig. 13. Model equations are

h(t) = As(t)+a+nh(t),
x(t) = Bφ[h(t)]+Cs(t)+b+nx(t) ,
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Figure 13: Left: The model structure for hierarchical nonlinear factor analysis (HNFA). Right: Four
different experimental settings with the speech data used for measuring different prop-
erties of the algorithms.

where nh(t) and nx(t) are Gaussian noise terms and the nonlinearity φ(ξ) = exp(−ξ2) again operates
on each element of its argument vector separately. Note that we have included a short-cut mapping
C from sources to observations. This means that hidden nodes only need to model the deviations
from linearity.

HNFA is compared against three other methods. Factor analysis (FA) is a linear method de-
scribed in Section 5.2. It is a special case of HNFA where the dimensionality of h(t) is zero. Non-
linear factor analysis (NFA) (Lappalainen and Honkela, 2000; Honkela and Valpola, 2005) differs
from HNFA in that it does not use mediating variables h(t):

x(t) = B tanh[As(t)+a]+b+nx(t).

Note that NFA has multiple computational paths between s(t) and x(t), which leads to a higher
computational complexity compared to HNFA.

The self-organising map SOM (Kohonen, 2001) differs most from the other methods. A rect-
angular map has a number of map units with associated model vectors that are points in the data
space. Each data point is matched to the closest map unit. The model vectors of the best-matching
unit and its neighbours in the map are moved slightly towards the data point. See Kohonen (2001);
Haykin (1998) for details.

The data set consisted of speech spectrograms from several Finnish subjects. Short term spec-
tra were acquired by using Fourier transformation and their dimensionality was reduced to 30 by
triangular windowing with window centres uniformly spaced on the Mel scale. It is clear that a
dynamic source model would give better reconstructions, but in this case the temporal information
was left out to ease the comparison of the models. Half of the about 5000 samples were used as test
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Data with missing values Original data

HNFA reconstruction NFA reconstruction

FA reconstruction SOM reconstruction

Figure 14: Some speech data with and without missing values (Setting 1) and reconstructions by
HNFA and by comparison models.

data with some missing values. Missing values were set in four different ways to measure different
properties of the algorithms (right subfigure of Fig. 13):
1. 38 percent of the values are set to miss randomly in 4×4 patches. (Figure 14)
2. The data samples are randomly permuted before setting missing values in 4×4 patches as in
Setting 1.

3. 10 percent of the values are set to miss randomly independent of any neighbours. This is an
easier setting, since simple smoothing using nearby values would give fine reconstructions.

4. The data samples are permuted and 10 percent of the values are set to miss independently of
any neighbours.

With permutation, data samples from a single spoken word end up in both training and testing data.
This setting emphasises memorisation, while testing with new speech emphasises generalisation.
When values are missing one by one, they could be reconstructed quite well even by linear inter-
polation of their neighbours. Thus, this setting emphasises the models ability to work accurately in
high dimensions rather than its capability of modelling nonlinear effects.

We tried to optimise each method and in the following, we describe how we got the best results.
The self-organising map was run using the SOM Toolbox (Vesanto et al., 1999) with long learning
time, 2500 map units and random initialisations. In other methods, the optimisation was based on
minimising the cost function or its approximation. NFA was learned for 5000 sweeps through data
using a Matlab implementation. Varying number of sources were tried out and the best ones were
used as the result. The optimal number of sources was around 12 to 15 and the size used for the
hidden layer was 30. A large enough number should do, since the algorithm can effectively prune
out parts that are not needed.

In factor analysis (FA), the number of sources was 28. In hierarchical nonlinear factor analysis
(HNFA), the number of sources at the top layer was varied and the best runs according to the cost
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function were selected. In those runs, the size of the top layer varied from 6 to 12 and the size of
the middle layer, which is determined during learning, turned out to vary from 12 to 30. HNFA
was run for 5000 sweeps through data. Each experiment with NFA or HNFA took about 8 hours of
processor time, while FA and SOM were faster.

Several runs were conducted with different random initialisations but with the same data and the
same missing value pattern for each setting and for each method. The number of runs in each cell
is about 30 for HNFA, 4 for NFA and 20 for the SOM. FA always converges to the same solution.
The mean and the standard deviation of the mean square reconstruction error of missing values are:

FA HNFA NFA SOM
Setting 1 1.87 1.80±0.03 1.74±0.02 1.69±0.02
Setting 2 1.85 1.78±0.03 1.71±0.01 1.55±0.01
Setting 3 0.57 0.55± .005 0.56± .002 0.86±0.01
Setting 4 0.58 0.55± .008 0.58± .004 0.87±0.01

The order of results of the Setting 1 follow our expectations on the nonlinearity of the models.
The SOM with highest nonlinearity gives the best reconstructions, while NFA, HNFA and finally
FA follow in that order. Example reconstructions are shown in Figure 14. The results of HNFA vary
the most - there is potential to develop better learning schemes to find better solutions more often.
The sources h(t) of the hidden layer did not only emulate computation nodes, but they were also
active themselves. Avoiding this situation during learning could help to find more nonlinear and
thus perhaps better solutions.

In the Setting 2, due to the permutation, the test set contains vectors very similar to some in the
training set. Therefore, generalisation is not as important as in the Setting 1. The SOM is able to
memorise details corresponding to individual samples better due to its high number of parameters.
Compared to the Setting 1, SOM benefits a lot and makes clearly the best reconstructions, while the
others benefit only marginally.

The Settings 3 and 4, which require accurate expressive power in high dimensionality, turned
out not to differ from each other much. The basic SOM has only two intrinsic dimensions3 and
therefore it was clearly poorer in accuracy. Nonlinear effects were not important in these settings,
since HNFA and NFA were only marginally better than FA. HNFA was better than NFA perhaps
because it had more latent variables when counting both s(t) and h(t).

To conclude, HNFA lies between FA and NFA in performance. HNFA is applicable to high di-
mensional problems and the middle layer can model part of the nonlinearity without increasing the
computational complexity dramatically. FA is better than SOM when expressivity in high dimen-
sions is important, but SOM is better when nonlinear effects are more important. The extensions
of FA, NFA and HNFA, expectedly performed better than FA in each setting. It may be possible to
enhance the performance of NFA and HNFA by new learning schemes whereas especially FA is al-
ready at its limits. On the other hand, FA is best if low computational complexity is the determining
factor.

7.3 Variance Model of Image Sequences

In this section an experiment with a dynamical model for variances applied to image sequence
analysis is reported. The motivation behind modelling variances is that in many natural signals,

3. Higher dimensional SOMs become quickly intractable due to exponential number of parameters.
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there exists higher order dependencies which are well characterised by correlated variances of the
signals (Parra et al., 2001). Hence we postulate that we should be able to better catch the dynamics
of a video sequence by modelling the variances of the features instead of the features themselves.
This indeed is the case as will be shown.

The model considered can be summarised by the following set of equations:

x(t) ∼ N (As(t),diag(exp[−vx])),
s(t) ∼ N (s(t−1),diag(exp[−u(t)])),
u(t) ∼ N (Bu(t−1),diag(exp[−vu])).

We will use the acronym DynVar in referring to this model. The linear mapping A from sources
s(t) to observations x(t) is constrained to be sparse by assigning each source a circular region on the
image patch outside of which no connections are allowed. These regions are still highly overlapping.
The variances u(t) of the innovation process of the sources have a linear dynamical model. It should
be noted that modelling the variances of the sources in this manner is impossible if one is restricted
to use conjugate priors.

The sparsity of A is crucial as the computational complexity of the learning algorithm depends
on the number of connections from s(t) to x(t). The same goal could have been reached with a
different kind of approach as well. Instead of constraining the mapping to be sparse from the very
beginning of learning it could have been allowed to be full for a number of iterations and only
after that pruned based on the cost function as explained in Section 6.2. But as the basis for image
sequences tends to get sparse anyway, it is a waste of computational resources to wait while most
of the weights in the linear mapping tend to zero.

For comparison purposes, we postulate another model where the dynamical relations are sought
directly between the sources leading to the following model equations:

x(t) ∼ N (As(t),diag(exp[−vx])),
s(t) ∼ N (Bs(t−1),diag(exp[−vs])).

We shall refer to this model as DynSrc.
The data x(t) was a video image sequence (van Hateren and Ruderman, 1998) of dimensions

16×16×4000. That is, the data consisted of 4000 subsequent digital images of the size 16×16. A
part of the data set is shown in Figure 15.

Both models were learned by iterating the learning algorithm 2000 times at which stage a suffi-
cient convergence was attained. The first hint of the superiority of the DynVar model was provided
by the difference of the cost between the models which was 28 bits/frame (for the coding inter-
pretation, see Honkela and Valpola, 2004). To further evaluate the performance of the models,
we considered a simple prediction task where the next frame was predicted based on the previous
ones. The predictive distributions, p(x(t+ 1)|x(1), ...,x(t)), for the models can be approximately
computed based on the posterior approximation. The means of the predictive distributions are very
similar for both of the models. Figure 16 shows the means of the DynVar model for the same se-
quence as in Figure 15. The means themselves are not very interesting, since they mainly reflect
the situation in the previous frame. However, the DynVar model provides also a rich model for
the variances. The standard deviations of its predictive distribution are shown in Figure 17. White
stands for a large variance and black for a small one. Clearly, the model is able to increase the
predicted variance in the area of high motion activity and hence provide better predictions. We can
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offer quantitative support for this claim by computing the predictive perplexities for the models.
Predictive perplexity is widely used in language modelling and it is defined as

perplexity(t) = exp

{
− 1
256

256

∑
i=1
log p(xi(t+1)|x(1), ...,x(t))

}
.

The predictive perplexities for the same sequence as in Figure 15 are shown in Figure 18. Naturally
the predictions get worse when there is movement in the video. However, DynVar model is able to
handle it much better than the compared DynSrc model. The same difference can also be directly
read by comparing the cost functions (2).

The possible applications for a model of image sequences include video compression, motion
detection, early stages of computer vision, and making hypotheses on biological vision.

8. Discussion

One of the distinctive factors between different Bayesian approaches is the type of posterior approx-
imation. We have concentrated on large unsupervised learning tasks, where point estimates are too
prone to overfitting and sampling used in MCMCmethods and particle filters, is often too slow. The
problems tackled with particle filters in Doucet et al. (2001) vary from 1 to 10 in dimensionality,
whereas the latent space in Section 7.3 is 128 dimensional. The variational Bayesian learning seems
to provide a good compromise between point estimates and sampling methods.

Often the posterior distribution consists of clusters or solution modes. It depends on the pos-
terior approximation again, whether only one of the clusters, or all of them are modelled. In our
case, the expectation in JKL(q ‖ p) is taken over the approximate distribution q, which in practice
leads to modelling a single mode. In expectation propagation (Minka, 2001), the Kullback-Leibler
divergence is formed differently, leading to modelling of all the modes. Also, sampling is supposed
to take place in all the modes. For the purpose of finding a single good representative of the pos-
terior probability mass, the first approach should be better. In fact, the expectation over the true
posterior, also known as the Bayes estimate, is often degenerate due to symmetry. For instance in
factor analysis type models, the posterior is symmetric to the permutation of factors. The number
of permutations also gives a hint of the infeasibility of accurately modelling all the modes in a high-
dimensional problem. Perhaps it would be best to find one mode for the parameters, but all modes
for the time-dependent variables when feasible.

The variational Bayesian methods vary further depending on the posterior approximation. In
this paper, all variables are assumed to be independent a posteriori. We have chosen to model
individual distributions as Gaussians. Often different conjugate distributions are used instead, for
instance, the variance of a Gaussian variable is modelled with a Gamma distribution. Conjugate
distributions are accurate and in some sense practical, but by restricting to Gaussians, the nodes can
be connected more freely allowing for example hierarchical modelling of variances. It should be
noted that the effect of assuming independencies is far more significant compared to the effect of
approximations in modelling individual distributions.

The scope of this paper has been restricted to models which can be learned using purely local
computations. This is possible, if the parents of each node are independent a posteriori. This can
be accomplished by using a factorial posterior approximation and by not allowing multiple compu-
tational paths between variables. Purely local computations result in a computational complexity
that is linear w.r.t. the number of connections in the model. In small models, one could afford to
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Figure 15: A sequence of 80 frames from the data used in the experiment.

Figure 16: The means of the predictive distribution for the DynVar model.

187



RAIKO, VALPOLA, HARVA AND KARHUNEN

Figure 17: The standard deviations of the predictive distribution for the DynVar model.
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Figure 18: Predictive perplexities. Perplexity means that the model is as perplexed as if it were
choosing between perplexity(t) equally likely options. Low perplexity means high com-
pression.
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take all the dependencies into account. In larger models, it might be desirable to model posterior
dependencies within disjoint groups of variables, but to assume the groups statistically independent,
as is done by Winn and Bishop (2005).

According to our experience, almost maximally factorial posterior pdf approximation q(θ) suf-
fices in many cases. It seems that a good model structure is usually more important than a good
approximation of the posterior pdf of the model. Therefore the available computation time is of-
ten better invested in a larger model using a simple posterior approximation. In any case, density
estimates of continuous valued latent variables offer an important advantage over point estimates,
because they are robust against overfitting and provide a cost function suitable for learning model
structures. With variational Bayesian learning employing a factorial posterior pdf approximation
q(θ) the density estimates are almost as efficient as point estimates. Moreover, latent variable mod-
els often exhibit rotational and other invariances of which variational Bayesian learning can take
advantage by choosing a solution where the factorial approximation is most accurate.

The basic algorithm for learning and inference is based on updating a variable at a time while
keeping other variables fixed. It has the benefits of being completely local and guaranteed to con-
verge. A drawback is that the flow of information through time can be slow while performing
inference in a dynamical model. There are alternative inference algorithms, where updates are car-
ried out in forward and backward sweeps. These include particle smoothing (Doucet et al., 2001),
extended Kalman smoothing (Anderson and Moore, 1979), and expectation propagation (Minka,
2001). Raiko et al. (2006) propose an algorithm that combines guaranteed convergence with faster
flow of information in variational Bayesian inference that could be applied here as well. When
the model needs to be learned at the same time, one needs to iterate a lot anyway, so the varia-
tional Bayesian algorithm that makes small but consistent improvements at every sweep might be
preferable.

It is an important design choice that each node is updated while keeping the other nodes fixed.
If new node types are added later on, there is no need to change the global learning algorithm, but
it suffices to design an update rule for the new node type. Also, there is an option to update some
nodes more often than others. When different parameters are coupled and cyclic updating is slow,
it can be sped up by line search as described by Honkela et al. (2003). Note that all the updates
are done in order to minimise a global cost function, that is, a cost function over all the variables.
Expectation propagation (Minka, 2001) updates one approximation at a time, too. An important
difference is that there updates are done using a local cost function, that is, the local approximation
is fitted to the local true posterior assuming that the rest of the approximation is accurate. This is
the reason why expectation propagation may diverge.

Large nonlinear problems often have numerous suboptimal local solutions that should be avoided.
We have used many tricks to avoid them, as discussed in Section 6.2. It depends on the application
which tricks work best. It is an important aspect of future work to make the procedure as simple as
possible for the user.

9. Conclusions

In this paper, we have introduced standardised nodes (blocks) for constructing generative latent
variable models. These nodes include a Gaussian node, addition, multiplication, a nonlinearity
following directly a Gaussian node, and a delay node. The nodes have been designed so that they
fit together, allowing construction of many types of latent variable models, including both known
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and novel structures. Constructing new prototype models is rapid since the user does not need to
take care of the learning formulas. The nodes have been implemented in an open source software
package called the Bayes Blocks (Valpola et al., 2003a).

The models built from these blocks are taught using variational Bayesian (ensemble) learning.
This learning method essentially uses as its cost function the Kullback-Leibler information between
the true posterior density and its approximation. The cost function is used for updating the un-
known variables in the model, but it also allows optimisation of the number of nodes in the chosen
model type. By using a factorial posterior density approximation, all the required computations can
be carried out locally by propagating means, variances, and expected exponentials instead of full
distributions. In this way, one can achieve a linear computational complexity with respect to the
number of connections in the chosen model. However, initialisation to avoid premature pruning of
nodes and local minima require special attention in each application for achieving good results.

In this paper, we have tested the introduced method experimentally in three separate unsuper-
vised learning problems with different types of models. The results demonstrate the good perfor-
mance and usefulness of the method. First, hierarchical nonlinear factor analysis (HNFA) with
variance modelling was applied to an extension of the bars problem. The presented algorithm could
find a model that is essentially the same as the complicated way in which the data were generated.
Secondly, HNFA was used to reconstruct missing values in speech spectra. The results were con-
sistently better than with linear factor analysis, and were generally best in cases requiring accurate
representation in high dimensionality. The third experiment was carried out using real-world video
image data. We compared the linear dynamical model for the means and for the variances of the
sources. The results demonstrate that finding strong dependencies between different sources was
considerably easier when the variances were modelled, too.
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Appendix A. Updating q(s) for the Gaussian Node

Here we show how to minimise the function

C (m,v) =Mm+V [(m−m0)2+ v]+E exp(m+ v/2)− 1
2
lnv,

where M,V ,E, and m0 are scalar constants. A unique solution exists when V > 0 and E ≥ 0. This
problem occurs when a Gaussian posterior with mean m and variance v is fitted to a probability
distribution whose logarithm has both a quadratic and exponential part resulting fromGaussian prior
and log-Gamma likelihoods, respectively, and Kullback-Leibler divergence is used as the measure
of the misfit.

In the special case E = 0, the minimum of C (m,v) can be found analytically and it is m =
m0 − M

2V , v = 1
2V . In other cases where E > 0, minimisation is performed iteratively. At each
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iteration, one Newton iteration for the mean m and one fixed-point iteration for the variance v are
carried out as explained in more detail in the following.

A.1 Newton Iteration for the Mean m

The Newton iteration for m is obtained by

mi+1 = mi−
∂C (mi,vi)/∂mi

∂2C (mi,vi)/∂m2i

= mi−
M+2V (mi−m0)+E exp(m+ v/2)

2V +E exp(m+ v/2)
. (38)

The Newton iteration converges in one step if the second derivative remains constant. The step is
too short if the second derivative decreases and too long if the second derivative increases. For
stability, it is better to take too short than too long steps.

In this case, the second derivative always decreases if the mean m decreases and vice versa. For
stability it is therefore useful to restrict the growth of m because it is consistently over-estimated.

A.2 Fixed-Point Iteration for the Variance v

A simple fixed-point iteration rule is obtained for the variance v by solving the zero of the derivative:

0=
∂C (m,v)

∂v
=V +

E
2
exp(m+ v/2)− 1

2v
⇔

v=
1

2V +E exp(m+ v/2)
def= g(v),

vi+1 = g(vi). (39)

In general, fixed-point iterations are stable around the solution vopt if |g′(vopt)| < 1 and converge
best when the derivative g′(vopt) is near zero. In our case g′(vi) is always negative and can be less
than −1. In this case the solution can be an unstable fixed-point. This can be avoided by taking a
weighted average of (39) and a trivial iteration vi+1 = vi:

vi+1 =
ξ(vi)g(vi)+ vi
ξ(vi)+1

def= f (vi). (40)

The weight ξ should be such that the derivative of f is close to zero at the optimal solution vopt
which is achieved exactly when ξ(vopt) = −g′(vopt).

It holds

g′(v) = − (E/2)exp(m+ v/2)
[2V +E exp(m+ v/2)]2

= g2(v)
[
V − 1

2g(v)

]
= g(v)

[
Vg(v)− 1

2

]
⇒

g′(vopt) = vopt
[
Vvopt−

1
2

]
⇒ ξ(vopt) = vopt

[
1
2
−Vvopt

]
.

The last steps follow from the fact that vopt = g(vopt) and from the requirement that f ′(vopt) = 0. We
can assume that v is close to vopt and use

ξ(v) = v
[
1
2
−Vvopt

]
. (41)
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Note that the iteration (39) can only yield estimates with 0 < vi+1 < 1/2V which means that
ξ(vi+1) > 0. Therefore the use of ξ always shortens the step taken in (40). If the initial estimate
v0 > 1/2V , we can set it to v0 = 1/2V .

There is potential for a speedup by doing a joint Newton’s iteration on both m and v at the same
time. Another option would be to allow m to be updated more often than v.

A.3 Summary of the Updating Method for q(s)

1. Set v0 ←min(v0,1/2V ).

2. Iterate:

(a) Solve the new estimate of the mean m from Eq. (38) under the restriction that the maxi-
mum step is 4;

(b) Solve the new estimate of the variance v from Eqs. (41) and (40) under the restriction
that the maximum step is 4.

3. Stop the iteration after the corrections become small enough, being under some suitable pre-
defined threshold value.

Appendix B. Addition and Multiplication Nodes

Equations (15)–(19) for the addition and multiplication nodes are proven in the following section.
Only the Equation (15) applies in general, the others assume that the incoming signals are inde-
pendent a posteriori. That is, q(s1,s2, . . . ,sn) = q(s1)q(s2) . . .q(sn). Also the proof of the form of
the cost function mostly concerns propagation through addition and multiplication nodes, so it is
presented here. Finally, the formulas of propagating the gradients of the cost function w.r.t. the
expectations are derived.

B.1 Expectations

Equation (15) follows directly from the linearity of the expectation operation, or can be proven
analogously to the proof of Equation (18):

〈
n

∏
i=1

si

〉
=

Z (
n

∏
i=1

si

)
q(s1,s2, . . . ,sn)ds

=
Z n

∏
i=1

siq(si)ds=
n

∏
i=1

Z
siq(si)dsi =

n

∏
i=1

〈si〉 .

Equation (16) states that the variance of a sum of independent variables is the sum of their
variances. This fact can be found in basic probability theory books. It can be proven with simple
manipulation by using Equations (15) and (18).

Equation (17) can be proven by applying (18) to expsi:
〈
exp

(
n

∑
i=1

si

)〉
=

〈
n

∏
i=1
expsi

〉
=

n

∏
i=1

〈expsi〉 .
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Equation (19) can be proven by applying Equation (18) to both si and s2i :

Var

{
n

∏
i=1

si

}
=

〈(
n

∏
i=1

si

)2〉
−

〈
n

∏
j=1

s j

〉2

=

〈
n

∏
i=1

s2i

〉
−

(
n

∏
j=1

〈
s j

〉
)2

=
n

∏
i=1

〈
s2i

〉
−

n

∏
j=1

〈
s j

〉2 =
n

∏
i=1

[
〈si〉2+Var{si}

]
−

n

∏
j=1

〈
s j

〉2
.

B.2 Form of the Cost Function

The form of the part of the cost function that an output of a node affects is shown to be of the form

Cp =M 〈·〉+V [(〈·〉−〈·〉current)
2+Var{·}]+E 〈exp ·〉+C. (42)

where 〈·〉 denotes the expectation of the quantity in question. If the output is connected directly to
another variable, this can be seen from Eq. (8) by substituting

M = 〈expv〉(〈s〉current−〈m〉),

V =
1
2
〈expv〉 ,

E = 0,

C =
1
2

[
〈expv〉

(
Var{m}+ 〈m〉2−〈s〉2current

)
−〈v〉+ ln2π

]
.

If the output is connected to multiple variables, the sum of the affected costs is of the same form.
Now one has to prove that this form remains the same when the signals are fed through the addition
and multiplication nodes.4

If the cost function is of the predefined form (42) for the sum s1+ s2, it has the same form for
s1, when s2 is regarded as a constant. This can be shown using Eqs. (15), (16), and (17):

Cp =M 〈s1+ s2〉+V
[
(〈s1+ s2〉−〈s1+ s2〉current)

2+Var{s1+ s2}
]

+E 〈exp(s1+ s2)〉+C (43)

=M 〈s1〉+V
[
(〈s1〉−〈s1〉current)

2+Var{s1}
]

+(E 〈exps2〉)〈exps1〉+(C+M 〈s2〉+VVar{s2}) .

It can also be seen from (43) that when E = 0 for the sum s1+ s2, it is zero for the addend s1, that is
E ′ = E 〈exps2〉 = 0. This means that the outputs of product and nonlinear nodes can be fed through
addition nodes.

If the cost function is of the predefined form (42) with E = 0 for the product s1s2, it is similar
for the variable s1, when the variable s2 is regarded as a constant. This can be shown using Eqs. (18)

4. Note that delay node only rewires connections so it does not affect the formulas.

193



RAIKO, VALPOLA, HARVA AND KARHUNEN

and (19):

Cp =M 〈s1s2〉+V
[
(〈s1s2〉−〈s1s2〉current)

2+Var{s1s2}
]
+C

= (M 〈s2〉+2VVar{s2}〈s1〉current)〈s1〉

+
[
V

(
〈s2〉2+Var{s2}

)][
(〈s1〉−〈s1〉current)

2+Var{s1}
]

+
(
C−VVar{s2}〈s1〉2current

)
.

Appendix C. Updating q(s) for the Gaussian Node Followed by a Nonlinearity

A Gaussian variable has its own terms in the cost function and it affects the cost function of its
children. In case there is a nonlinearity attached to it, only the latter is changed. The cost function
of the children can be written in the form

Cch(s),p =M 〈 f (s)〉+V [(〈 f (s)〉−〈 f (s)〉current)
2+Var{ f (s)}]

where 〈 f (s)〉current stands for the expectation using the current posterior estimate q(s), andM and V
are constants.

The posterior q(s) = N (s;s, s̃) is updated to minimise the cost function. For s̃ we get a fixed
point iteration for the update candidate:

s̃new =

[
〈expv〉+

4V
(
1−2s2+2s̃

)
(〈 f (s)〉− M

2V )〈 f (s)〉
(2s̃+1)2

−
4V

(
1−4s2+4s̃

)〈
[ f (s)]2

〉

(4s̃+1)2

]−1

.

And for s we have an approximated Newton’s iteration update candidate

snew = s− s̃new

[
〈expv〉(s−〈m〉)+4Vs

(
(〈 f (s)〉− M

2V )〈 f (s)〉
2s̃+1

−
〈
[ f (s)]2

〉

4s̃+1

)]
.

These candidates guarantee a direction, in which the cost function decreases locally. As long as the
cost function is about to increase in value, the step size is halved. This guarantees the convergence
to a stable point.

Appendix D. Example Where Point Estimates Fail

The following example illustrates what can go wrong with point estimates. Three dimensional data
vectors x(t) are modelled with the linear factor analysis model x(t) = as(t)+n(t), using a scalar
source signal s(t) and a Gaussian noise vector n(t) with zero mean and parameterised variance
p(nk) = N (0,σ2k). Here a is a three-dimensional weight vector.

The problem is to estimate a and s(t) by maximising the likelihood p(x(t) | a,s(t)). The weight
vector a might get a value a = [1 0 0]T , while the source can just copy the values of the first
dimension of x(t), that is, s(t) = x1(t). When the reconstruction error or the noise term is evaluated:
n(t) = x(t)− as(t) = [0 x2(t) x3(t)]T , one can see that problems will arise with the first variance
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parameter σ21. The likelihood goes to infinity as σ21 goes to zero. The same applies to the posterior
density, since it is basically just the likelihood multiplied by a finite factor.

The found solution is completely useless and still, it is rated as infinitely good using point
estimates. These problems are typical for models with estimates of the noise level or products.
They can be sometimes avoided by fixing the noise level or using certain normalisations (Attias,
2001). When the noise model is nonstationary (see Section 5.1), the problem becomes even worse,
since the infinite likelihood appears if the any of the variances goes to zero.
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2003a. Available at http://www.cis.hut.fi/projects/bayes/software/.

H. Valpola, E. Oja, A. Ilin, A. Honkela, and J. Karhunen. Nonlinear blind source separation by vari-
ational Bayesian learning. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, E86-A(3):532–541, 2003b.
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Abstract
We show that, given data from a mixture of k well-separated spherical Gaussians in Rd , a simple
two-round variant of EM will, with high probability, learn the parameters of the Gaussians to near-
optimal precision, if the dimension is high (d ! lnk). We relate this to previous theoretical and
empirical work on the EM algorithm.
Keywords: expectation maximization, mixtures of Gaussians, clustering, unsupervised learning,
probabilistic analysis

1. Introduction

At present the expectation-maximization algorithm (Dempster, Laird, and Rubin, 1977; Wu, 1983)
is the method of choice for learning mixtures of Gaussians. A series of theoretical and experimental
studies over the past three decades have contributed to the collective intuition about this algorithm.
We will reinterpret some of these results in the context of a new performance guarantee.

In brief, EM is a hillclimbing algorithm which starts with some initial estimate of the Gaussian
mixture and then repeatedly changes this estimate so as to improve its likelihood, until it finally
converges to a local optimum of the search space. It is well known to practitioners that the quality
of the output can be influenced significantly by the manner in which EM is initialized. Another
source of variation is that in practice it is quite common to add or remove Gaussians during the
search process, according to various intuitively-motivated criteria.

Given the enormous importance of Gaussian mixture models in applied statistics and machine
learning, it is reasonable to wonder how good the EM algorithm is. Among other things, a rigorous
analysis of its performancemight shed light on some of the unresolved issues in its implementation—
for instance, initialization. It is in this spirit that we approach our analysis of EM.

A common form of theoretical study is worst-case analysis, which in this case would attempt
to bound how far EM can deviate from the optimal log-likelihood, or perhaps the optimal set of
mixture parameters. Such an analysis turns out to be trivial, because—as is well known—EM’s
output can be arbitrarily far from optimal for either of the two criteria above (we will see such an
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example in Section 2.3). Thus, this line of reasoning does not appear to yield any interesting insights
into the algorithm’s behavior.

In this paper, we perform what might be called a best-case analysis. We assume that the data
are the best EM could possibly hope for: i.i.d. samples from a mixture of spherical Gaussians in Rd

which are well separated from one another. At first glance, it seems that we are once again in danger
of getting a trivial result, namely that EM will succeed without a hiccup. But this is not the case. In
fact, we will see that even in this extremely optimistic setting, many common ways of initializing,
and subsequently running, EM will make it fail dramatically. On the other hand, if EM is run in a
particular manner which we specify, then within just two rounds, it will identify the correct mixture
parameters with near-perfect accuracy.

If the data is expected to have k clusters, it is common for practitioners to start EM with more
than k centers, and to later prune some of these extra centers. We present a simple example to
demonstrate exactly why this is necessary, and obtain an expression for the number of initial cen-
ters which should be used: at least 1

wmin lnk, where wmin is a lower bound on the smallest mixing
weight. The typical method of pruning is to remove Gaussian-estimates with very low mixing
weight (known as starved clusters). Our theoretical analysis shows that this is not enough, that
there is another type of Gaussian-estimate, easy to detect, which also needs to be pruned. Specif-
ically, it is possible (and frequently occurs in simulations) that two of EM’s Gaussian-estimates
share the same cluster, each with relatively high mixing weight. We present a very simple, provably
correct method of detecting this situation and correcting it.

It is widely recognized that a crucial issue in the performance of EM is the choice of initial
parameters. For the means, we use the popular technique of selecting them randomly from the data
set. This is shown to be adequate for the performance guarantee we derive. Our analysis also makes
it clear that it is vitally important to pick good initial estimates of the covariances, a subject which
has received somewhat less attention. We use an initializer whose origin we are unable to trace but
which is mentioned in Bishop’s text (1995).

Our analysis is focused on the case when the data are high-dimensional (d! lnk), and it brings
out some interesting qualitative differences from the low-dimensional case. In particular, it is com-
mon to think of EM as assigning “soft” cluster memberships in which each data point is not defini-
tively assigned to a single cluster but, rather, is split between clusters according to its relative prox-
imities to them. Moreover, this is sometimes quoted as a source of EM’s effectiveness—that these
soft memberships allow cluster boundaries to shift in a smooth and stable manner. In the optimistic
high-dimensional scenario we analyze, the behavior is quite different, in that cluster memberships
are effectively always “hard”. This is because the distances are so large that for any two clusters,
there is only a small part of the space in which there is any ambiguity of assignment, and it is
unlikely that data points would lie in these zones. Moreover, the phenomenon of smooth transi-
tions between clusterings is nonexistent. Instead, EM quickly snaps into one of several trajectories
(loosely defined), and thereafter heads to a nearby local optimum. Initialization is of supreme
importance—once EM has snapped into the wrong trajectory, all is lost.

1.1 Relation to Previous Work on EM

A standard criticism of EM is that it converges slowly. Simulations performed by Redner and
Walker (1984), and others, demonstrate this decisively for one-dimensional mixtures of two Gaus-
sians. It is also known that given data from a mixture of Gaussians, when EM gets close to the
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true solution, it exhibits first-order convergence (Titterington, Smith, and Makov, 1985). Roughly
speaking, the idea is this: given m data points from a mixture with parameters (means, covariances,
and mixing weights) θ∗, where m is very large, the likelihood has a local maximum at some set of
parameters θm close to θ∗. Let θ〈t〉 denote EM’s parameter-estimates at time t. It can be shown (cf.
Taylor expansion) that when θ〈t〉 is near θm,

‖θ〈t+1〉−θm‖ ≤ λ ·‖θ〈t〉−θm‖,

where λ ∈ [0,1) and ‖ ·‖ is some norm.1 If the Gaussians are closely packed then λ is close to one;
if they are very far from one another then λ is close to zero.

Xu and Jordan (1995) present theoretical results which mitigate some of the pessimism of first-
order convergence, particularly in the case of well-separated mixtures, and they note that moreover
near-optimal log-likelihood is typically reached in just a few iterations. We also argue in favor of
EM, but in a different way. We ask, how close does θ〈t〉 have to be to θm for slow convergence to
hold? Let D(θ1,θ2) denote the maximum Euclidean distance between the respective means of θ1
and θ2. For one-dimensional data, it can be seen quite easily from canonical experiments (Redner
and Walker, 1984) that convergence is slow even if D(θ〈t〉,θ∗) is large. However, our results suggest
that this no longer holds in higher dimension. For reasonably well-separated spherical Gaussians
in Rd (where separation is defined precisely in the next section), convergence is very fast until
D(θ〈t〉,θ∗) ≈ e−Ω(d). In fact, we can make EM attain this accuracy in just two rounds. The error
e−Ω(d) is so miniscule for large d that subsequent improvements are not especially important.

At a high level, previous analyses of EM have typically adopted an optimization-based view-
point: they have studied EM by studying the objective function (log-likelihood) that it is ostensibly
optimizing. A typical tool in this kind of analysis is to perform a Taylor expansion of the log-
likelihood in the vicinity of a local optimum, assuming the data are i.i.d. draws from a mixture of
Gaussians, and to thereby get insight into the speed at which EM is likely to move when it gets close
to this optimum. A major drawback of this approach is that it only addresses what happens close to
convergence. It cannot, for instance, give intuition about how to initialize EM, or about whether a
local optimum of high quality is attained.

In contrast, we perform a probabilistic analysis. We also assume that the data are i.i.d. draws
from a mixture of Gaussians, but we focus upon the actual algorithm and ignore the likelihood
function altogether. We ask, what will the algorithm do in step one, with high probability over the
choice of data? In step two? And so on. This enables us to address issues of initialization and global
optimality.

1.2 Results

Performance guarantees for clustering will inevitably involve some notion of the separation between
different clusters. There are at least two natural ways of defining this. Take for simplicity the case
of two d-dimensional Gaussians N(µ1, Id) and N(µ2, Id). If each coordinate (attribute) provides a
little bit of discriminative information between the two clusters, then on each coordinate µ1 and µ2
differ by at least some small amount, say δ. The L2 distance between µ1 and µ2 is then at least
δ
√
d. As further attributes are added, the distance between the centers grows, and the two clusters

become more clearly distinguishable from one another. This is the usual rationale for using high-
dimensional data: the higher the dimension, the easier (in an information-theoretic sense) clustering

1. This might not seem so bad, but contrast it with second-order convergence, in which ‖θ〈t+1〉−θm‖≤ λ ·‖θ〈t〉−θm‖2.
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should be. The only problem then, is whether there are algorithms which can efficiently exploit
the tradeoff between this high information content and the curse of dimensionality. This viewpoint
suggests that the Euclidean distance between the centers of d-dimensional clusters can reasonably
be measured in units of

√
d, and that it is most important to develop algorithms which work well

under the assumption that this distance is some constant times
√
d. On the other hand, it should

be pointed out that if ‖µ1−µ2‖ = δ
√
d for some constant δ > 0, then for large d the overlap in

probability mass between the two Gaussians is miniscule, exponentially small in d. Therefore, it
should not only be interesting but also possible to develop algorithms which work well when the L2
distance between centers of clusters is some constant, regardless of the dimension (as opposed to a
constant times

√
d).

Where does EM fall in this spectrum of separation? It lies somewhere in between: we show that
it works well when the distance between d-dimensional clusters is bigger than d1/4.

Our central performance guarantee requires that the clusters actually look spherical-Gaussian,
more specifically that the data points are drawn i.i.d. from some (unknown) mixture of spherical
Gaussians, which could potentially have different variances. We show that if the clusters are rea-
sonably well-separated (in the sense we just defined), and if the dimension d ! lnk then only two
rounds of EM are required to learn the mixture to within near-optimal precision, with high prob-
ability 1− k−Ω(1). Our measure of accuracy is the function D(·, ·) introduced above. The precise
statement of the theorem can be found in the next section, and applies not only to EM but also to
other similar schemes, including for instance some of the variants of EM and k-means introduced
by Kearns, Mansour, and Ng (1997).

Several recent papers have suggested alternative algorithms for learning the parameters of a
mixture of well-separated Gaussians (or other distributions with similar concentration properties),
given data drawn i.i.d. from that distribution. The first in this series, by Dasgupta (1999), requires
the Gaussians to be “sphere-like” and separated by a distance of Ω(

√
d). Arora and Kannan (2004)

handle more general Gaussians, and reduce the separation requirement to Ω(d1/4) in the spherical
case (as in this paper). Vempala and Wang (2004) use spectral projection to bring the separation
constraint for spherical Gaussians down to just Ω((k logd)1/4), where k is the number of clusters.
Vempala, Kannan, and Salmasian (2005) and Achlioptas and McSherry (2005) give extensions of
these latter results to ellipsoidal clusters. The last three results are especially relevant to the current
paper because the amount of intercluster separation we require can likely be substantially reduced
if spectral projection is used as a preprocessing step.

In the final section of the paper, we discuss a crucial issue: what features of our main assumption
(that the clusters are high-dimensional Gaussians) make our guarantees for EM possible? This
assumption is also the basis of the other theoretical results mentioned above, but can real data sets
reasonably be expected to satisfy it? If not, in what way can it usefully be relaxed?

2. Statement of Results

To motivate our model, we start by examining some properties of high-dimensional Gaussians.
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2.1 High-dimensional Gaussians

A spherical Gaussian N(µ,σ2Id) assigns to point x ∈ Rd the density

p(x) =
1

(2π)d/2σd
exp

(
−‖x−µ‖2

2σ2

)
,

‖ · ‖ being Euclidean distance. If X = (X1, . . . ,Xd) is randomly chosen from N(0,σ2Id) then its
coordinates are i.i.d. N(0,σ2) random variables. Each coordinate has expected squared value σ2
so E‖X‖2 = E(X21 + · · ·+X2d ) = σ2d. It then follows by a large deviation bound that ‖X‖2 will be
tightly concentrated around σ2d:

P(|‖X‖2−σ2d| > εσ2d) ≤ e−dε
2/8.

This bound and others like it will be proved in Section 3. It means that almost the entire probability
mass of N(0,σ2Id) lies in a thin shell at a radius of about σ

√
d from the origin. The density of the

Gaussian is highest at the origin; however, the surface area at distance r from the origin, 0 ≤ r ≤
σ
√
d, increases faster than the density at distance r decreases (Bishop, 1995, exercise 1.4).
It is natural therefore to think of a Gaussian N(µ,σ2Id) as having radius σ

√
d. We say two

Gaussians N(µ1,σ21Id),N(µ2,σ22Id) in Rd are c-separated if

‖µ1−µ2‖ ≥ cmax{σ1,σ2}
√
d,

that is, if they are c radii apart. A mixture of Gaussians is c-separated if the Gaussians in it are pair-
wise c-separated. In general we will let ci j denote the separation between the ith and jth Gaussians,
and c=mini&= j ci j. We can reasonably expect that the difficulty of learning a mixture of Gaussians
increases as c decreases.

A 2-separated mixture of Gaussians contains clusters with almost no overlap. For large d, this is
true even of a 1

100 -separated mixture, because for instance, the two balls B(0,
√
d) and B( 1

100
√
d,
√
d)

in Rd share only a tiny fraction of their volume. One useful way of thinking about a pair of c-
separated Gaussians is to imagine that on each coordinate their means differ by c. If c is small, then
the projection of the mixture onto any one coordinate will look unimodal. This might also be true of
a projection onto a few coordinates. But for large d, when all coordinates are considered together,
the distribution will cease to be unimodal. This is precisely the reason for using high-dimensional
data.

What values of c can be expected of real-world data sets? This will vary from case to case. As
an example, we analyzed a canonical data set consisting of handwritten digits collected by USPS.
Each digit is represented as a vector in [−1,1]256. We fit a mixture of ten (non-spherical) Gaussians
to this data set, by doing each digit separately, and found that it was 0.63-separated.

2.2 The EM algorithm

A mixture of k spherical Gaussians in Rd is specified by a set of mixing weights wi (which sum to
one and represent the proportions in which the various Gaussians are present) and by the individual
Gaussian means µi ∈ Rd and variances σ2i .

Given a data set S ∈ Rd , the EM algorithm works by first choosing starting values w〈0〉
i ,µ〈0〉i ,σ〈0〉i

for the parameters, and then updating them iteratively according to the following two steps (at time
t).
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E step Let τi ∼ N(µ〈t〉i ,σ〈t〉2i Id) denote the density of the ith Gaussian-estimate. For each data point
x ∈ S, and each 1≤ i≤ k, compute

p〈t+1〉i (x) =
w〈t〉
i τi(x)

∑ jw
〈t〉
j τ j(x)

,

the conditional probability that x comes from the ith Gaussian with respect to the current
estimated parameters.

M step Now update the various parameters in an intuitive way. Let m be the size of S.

w〈t+1〉
i =

1
m∑x∈S

p〈t+1〉i (x),

µ〈t+1〉i =
1

mw〈t+1〉
i

∑
x∈S

x p〈t+1〉i (x),

σ〈t+1〉2i =
1

mw〈t+1〉
i d

∑
x∈S

‖x−µ〈t+1〉i ‖2 p〈t+1〉i (x).

2.3 The Main Issues

We now give a high-level description of some fundamental issues that arise in our analysis of EM,
and that dictate our key design decisions.

2.3.1 TIGHT CONCENTRATION OF INTERPOINT DISTANCES

In a high-dimensional spaceRd , the distances between data points—whether sampled from the same
Gaussian or from different Gaussians—are tightly concentrated around their expected values. In
particular, if the Gaussians happen to have the same variance σ2Id , and if the distances between their
centers are ! σd1/4, then the chance that two points from different Gaussians are closer together
than two points from the same Gaussian, is tiny, e−Ω(poly(d)). Therefore, an examination of interpoint
distances is enough to almost perfectly cluster the data. A variety of different algorithms will work
well under these circumstances, and EM is no exception.

What if the Gaussians have different variances σi? Once again, interpoint distances are close
to their expected values, but now a new complication is introduced. If a small-variance cluster B is
close to the center of a larger-variance cluster A, then it is quite possible for points x∈ A to be closer
to all of B than to any other point in A:

A
B

x

We expressly rule out this case by requiring the separation between any two clusters i and j to satisfy

‖µi−µj‖2 ≥ |σ2i −σ2j |d.
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2.3.2 INITIALIZATION

Suppose the true number of Gaussians, k, is known. Let S denote the entire data set, with Si being
the points drawn from the ith true Gaussian N(µi,σ2Id). A common way to initialize EM is to pick
l data points at random from S, and to use these as initial center-estimates µ〈0〉i . How large should l
be? It turns out that if these l points include at least one point from each Si, then EM can be made to
perform well. This suggests l = Ω(k lnk). Conversely, if the initial centers miss some Si, then EM
might perform poorly.

Here is a concrete example (Figure 1). Let d denote some high dimension, and place the k true
Gaussians N(µ1, Id), . . . ,N(µk, Id) side by side in a line, leaving a distance of at least 3

√
d between

consecutive Gaussians. Assign them equal mixing weights. As before let Si be the data points from
the ith Gaussian, and choose EM’s initial center-estimates from the data. Suppose the initial centers
contain nothing from S1, one point from S2, and at least one point from S3. The probability of this
event is at least some constant. Then no matter how long EM is run, it will assign just one Gaussian-
estimate to the first two true Gaussians. In the first round of EM, the point from S2 (call it µ

〈0〉
1 ) will

move between µ1 and µ2. It will stay there, right between the two true centers. None of the other
center-estimates µ〈t〉i will ever come closer to µ2; their distance from it is so large that their influence
is overwhelmed by that of µ〈t〉1 . This argument can be formalized easily using the large deviation
bounds that we will introduce in the next section.

!µ1 !µ2 ! µ3
! µ〈1〉2!µ〈1〉1 ! µ〈1〉3

!µ〈0〉2

!µ〈0〉3!µ〈0〉1

Figure 1: For this mixture, the positions of the center-estimates do not move much after the first
step of EM.

How about the initial choice of variance? In the case when the Gaussians have the same spher-
ical covariance, this is not all that important, except that a huge overestimate might cause slower
convergence. In the case when the Gaussians have different variances, however, the initial estimates
are crucially important, and so we will use a fairly precise estimator, a variant of which is mentioned
in Bishop’s text (1995).

2.3.3 AFTER THE FIRST ROUND OF EM

After one round of EM, the center-estimates are pruned to leave exactly one per true Gaussian. This
is accomplished in a simple manner. First, remove any center-estimates with very lowmixing weight
(this is often called “cluster starvation”). Any remaining center-estimate (originally chosen, say,
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Figure 2: The large circles are true clusters, while the dots (solid or hollow) are EM’s center-
estimates. Left: after initialization, we have at least one center-estimate per true cluster.
Right: After the first round of EM, each center-estimate has either been “starved” (shown
as hollow) or has moved closer to the corresponding true center.

from Si) has relatively high mixing weight, and we can show that as a result of the first EM iteration,
it will have moved close to µi (Figure 2). A trivial clustering heuristic, due to Gonzalez (1985), is
then good enough to select one center-estimate near each µi.

With exactly one center-estimate per (true) Gaussian, a second iteration of EM will accurately
retrieve the means, variances, and mixing weights. In fact the clustering of the data (the fractional
labels assigned by EM) will be almost perfect, that is to say, each fractional label will be close to
zero or one, and will in almost all cases correctly identify the generating Gaussian. Therefore further
iterations will not help much: these additional iterations will move the center-estimates around by
at most e−Ω(d).

2.4 A Two-round Variant of EM

Here is a summary of the modified algorithm, given m data points in Rd which have been generated
by a mixture of k Gaussians. The value of l will be specified later; for the time being it can be
thought of as O(k lnk).

Initialization Pick l data points at random as starting estimates µ〈0〉i for the Gaussian centers. As-
sign them identical mixing weights w〈0〉

i = 1
l . For initial estimates of the variances use

σ〈0〉2i =
1
2d

min
j &=i

‖µ〈0〉i −µ〈0〉j ‖2.

EM Run one round of EM. This yields modified estimates w〈1〉
i ,µ〈1〉i ,σ〈1〉i .

Pruning Remove all center-estimates whose mixing weights are below wT = 1
4l . Then, prune the

remaining center-estimates down to just k by using the following adaptation of an algorithm
of Gonzalez (1985):
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• Compute distances between center-estimates:

d(µ〈1〉i ,µ〈1〉j ) =
‖µ〈1〉i −µ〈1〉j ‖

σ〈1〉i +σ〈1〉j
.

• Choose one of these centers arbitrarily.
• Pick the remaining k− 1 iteratively as follows: pick the center farthest from the ones
picked so far. (The distance from a point x to a set S is miny∈S d(x,y).)

Call the resulting center-estimates µ̃〈1〉i (where 1 ≤ i ≤ k), and let σ̃〈1〉2i be the corresponding
variances. Set the mixing weights to w̃〈1〉

i = 1
k .

EM Run one more step of EM, starting at the {w̃〈1〉
i , µ̃〈1〉i , σ̃〈1〉i } parameters and yielding the final

estimates w〈2〉
i ,µ〈2〉i ,σ〈2〉i .

2.5 The Main Result

Now that the notation and algorithm have been introduced, we can state the main theorem.

Theorem 1 Say m data points are generated from a mixture of k Gaussians in Rd ,

w1N(µ1,σ21Id)+ · · ·+wkN(µk,σ2kId),

where the intercenter distances satisfy the inequality ‖µi−µj‖2 ≥ |σ2i −σ2j |d.
Define ci j to be the separation between the ith and jth Gaussians—that is, ‖µi−µj‖= ci jmax(σi,σ j)

√
d

— and c = mini&= j ci j to be the overall separation. Let Si denote the points from the ith Gaussian,
and let wmin =miniwi. For any δ> 0 and ε> 0, if

1. parameter l =Ω( 1
wmin ln

1
δwmin ),

2. dimension d =Ω(max(1,c−4) ln max(1,c
−4)

δwmin ),

3. number of samples m=Ω(lmax(1,c−2)),

4. separation c2d =Ω(ln 1
εwmin ),

then with probability at least 1− δ, the variant of EM described above will produce final center-
estimates which (appropriately permuted) satisfy

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+ εσi
√
d.

This theorem will be proved over the remainder of the paper, but a few words about it are in
order at this stage. First of all, the constants which have been left out of the theorem statement
are given in Section 4. Second, the best that can be hoped is that µ〈2〉i = mean(Si); therefore, the
final error bound on the center-estimates becomes very close to optimal as c2d increases. Third,
similarly strong bounds can be given for the final mixing weights and variances; see Theorem 17.
Finally, notice that the bounds require c! d−1/4; in other words, the distance between the centers
of Gaussians i and j must be!max(σi,σ j)d1/4.
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d dimension
k true number of clusters
wi,µi,σ2i true mixture parameters
σi j shorthand for max(σi,σ j)
wmin lower bound on the mixing weights: wi ≥ wmin
l number of clusters with which EM is started; l > k
w〈t〉
i ,µ〈t〉i ,σ〈t〉2i EM’s parameter-estimates at time t
p〈t〉i (x) EM’s soft-assignment (to point x, from cluster i) at time t
wT threshold used to prune “starved clusters”: wT = 1/4l
ci j separation between Gaussians i and j; ‖µi−µj‖ = ci jσi j

√
d

c overall separation, c=mini&= j ci j
S data points
Si data points sampled from the ith Gaussian
m number of data points
εo concentration of interpoint distances and dot products
Ci center-estimates from Si which survived the first round:

Ci = {µ〈1〉i′ : µ〈0〉i′ ∈ Si,w〈1〉
i′ ≥ wT}

d(µ〈1〉i ,µ〈1〉j ) weighted distance between centers, used by pruning procedure

Figure 3: Notation.

3. Concentration Properties of Gaussian Samples

Our analysis hinges crucially upon concentration effects: specifically, that interpoint distances and
means of subsets of points are likely to be close to their expected values.

The most basic such property is that the squared length of a point drawn from a high-dimensional
Gaussian is tightly concentrated. The proof of this well-known fact is repeated here for easy refer-
ence.

Lemma 2 Pick X from the distribution N(0, Id).

(a) (Very large deviations) For any λ≥ 1, we have P(‖X‖2 ≥ λd) ≤ (eλ−1−lnλ)−d/2.

(b) (Modest deviations) For any ε ∈ (0,1), we have P(|‖X‖2−d|≥ εd) ≤ 2e−dε2/8.

Proof. ‖X‖2 has a χ2 distribution with expectation d, variance 2d, and moment-generating function
φ(t) = Eet‖X‖2 = (1−2t)−d/2.

(a) By Markov’s inequality, for t ∈ [0, 12 ],

P
(
‖X‖2 ≥ λd

)
≤ φ(t)
etλd

;

the first assertion of the lemma follows by choosing t = 1
2(1−

1
λ).

(b) Fix any ε ∈ (0,1). Applying Markov’s inequality tells us that for any t ∈ [0, 12 ],

P(‖X‖2 ≥ (1+ ε)d) = P(et‖X‖
2 ≥ et(1+ε)d) ≤ φ(t)

et(1+ε)d
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and for any t ≥ 0,

P(‖X‖2 ≤ (1− ε)d) = P(e−t‖X‖
2 ≥ e−t(1−ε)d) ≤ φ(−t)et(1−ε)d.

Using t = ε
2(1+ε) in the first case and t =

ε
2(1−ε) in the second yields bounds e

−dε2/4(1+ε) and e−dε2/4,
respectively.

Lemma 2 immediately implies that the distance between two points from the mixture is sharply
concentrated around its conditional expected value. Here are the details.

Lemma 3 If X and Y are chosen independently from N(µi,σ2i Id) and N(µj,σ2jId) respectively, then
for any ε ∈ (0,1), the probability that ‖X−Y‖2 does not lie in the range

‖µi−µj‖2+(σ2i +σ2j)d(1± ε)±2‖µi−µj‖
√
σ2i +σ2j · εd

1/2

is at most 2e−ε2d/8+ e−ε2d/2.

Proof. The sum of independent normals is itself normal. Specifically,

X−Y d= N(µi−µj,(σ2i +σ2j)Id)
d= (µi−µj)+

√
σ2i +σ2j W,

whereW is a random variable with distribution N(0, Id). Therefore

‖X−Y‖2 d= ‖µi−µj‖2+(σ2i +σ2j)‖W‖2+2
√
σ2i +σ2j (µi−µj) ·W.

Lemma 2(b) gives a bound on ‖W‖2; for the last term we use

(µi−µj) ·W
d= ‖µi−µj‖ Z

where Z is standard normal and thus satisfies P(|Z| > εd1/2) ≤ e−ε2d/2 (Durrett, p.7).
Thus, for i.i.d. data from a high-dimensional mixture of spherical Gaussians, we have a very

good idea of how interpoint distances will be distributed. Similarly, we can bound the number of
points drawn from each Gaussian, and also the sizes of certain angles (dot products) formed by data
points and cluster centers. The following lemma will be used repeatedly in the analysis.

Lemma 4 (Bounds on interpoint distances and angles, and cluster sizes) Draw m data points
from a c-separated mixture of k spherical Gaussians with smallest mixing weight at least wmin.
Let σi j = max{σi,σ j} and write the separation between Gaussians as ‖µi−µj‖ = ci jσi j

√
d. Let

Si denote the points from the ith Gaussian. Pick any εo ∈ (0,1). Then, with probability at least
1− (m2+m)e−ε2od/8− ( 12m

2+ km+ km2)e−ε2od/2− ke−mwmin/8,

(a) for any x,y ∈ S j,
‖x− y‖2 = 2σ2jd(1± εo);

(b) for x ∈ Si,y ∈ S j, i *= j,

‖x− y‖2 = (σ2i +σ2j + c2i jσ
2
i j)d(1±2εo).
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(c) for any data point y ∈ S j,
‖y−µj‖2 = σ2jd(1± εo)

while for i *= j,
‖y−µi‖2 = (σ2j + c2i jσ

2
i j)d(1±2εo);

(d) For any 1≤ i, j,g≤ k and any x ∈ Si,y ∈ Sg,

|(x−µi) · (y−µj)|≤ σiεod ·
√

(σ2g+ c2jgσ2jg)(1+2εo).

(e) each |Si|≥ 1
2mwi.

Proof. Part (a) follows immediately from the previous lemma. For (b), we start with

‖x− y‖2 = (c2i jσ
2
i j +σ2i +σ2j)d± (σ2i +σ2j +2ci jσi j

√
σ2i +σ2j)εod

from the previous lemma and then simplify using 2ci jσi j
√
σ2i +σ2j ≤ c2i jσ2i j+σ2i +σ2j . For the third

claim, notice that y−µj
d= N(0,σ2jId), so we can bound ‖y−µj‖2 using Lemma 2. For the second

half of (c),
‖y−µi‖2 = ‖µi−µj‖2+‖y−µj‖2−2(µi−µj) · (y−µj).

As was done in the proof of Lemma 3, we can show that (µi−µj) ·(y−µj) has the same distribution
as ‖µi−µj‖ times a N(0,σ2j) random variable. Putting the pieces together, ‖y−µi‖2 = (c2i jσ2i j +
σ2j)d± (σ2j +2ci jσi jσ j)εod, finishing up with the inequality 2ci jσi jσ j ≤ c2i jσ2i j +σ2j .

For part (d), imagine that first y is chosen, then x. Since x−µi
d= N(0,σ2i Id), the component

of x−µi in the direction of y−µj (after y is fixed) has distribution N(0,σ2i ), and thus has absolute
value ≤ σiεod1/2 with probability at least 1− e−ε2od/2. Whereupon

|(x−µi) · (y−µj)| ≤ ‖y−µj‖σiεod1/2 ≤
√

(σ2g+ c2jgσ2jg)d(1+2εo) ·σiεod1/2.

Finally, (e) follows from the Chernoff bound; see, for instance, the appendix of Kearns and
Vazirani (1991):

P(|Si|≤ 1
2mwi) ≤ e−mwi/8.

Next, we turn to concentration properties of means of subsets of points. We’ll start by showing
that there is no large subset of Si whose average is far from µi.

Lemma 5 (Averages of subsets) Pick a set of n points randomly from N(0, Id). Choose any integer
1≤ t ≤ n. Then with probability at least 1− e−d/2, no subset of t or more of the points has mean of
norm greater than ε

√
d, where

ε=

√

6max
(
1
t
,
1
d
ln
ne
t

)
.
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Proof. First observe that it suffices to prove the statement for subsets of size exactly t.
Fix any set of t indices. The mean of the corresponding points, call it µ, is distributed according

to N(0, 1t Id)
d= t−1/2N(0, Id). In particular, E‖µ‖2 = d/t. Lemma 2 tells us that for any λ> 1,

P(‖µ‖2 > λ ·d/t) ≤ exp(−d(λ−1− lnλ)/2).

We will choose λ= tε2, where ε is defined in the lemma statement. This guarantees that λ≥ 6 and
thus 1+ lnλ≤ 1

2λ, whereupon

P(‖µ‖2 > ε2d) ≤ e−dλ/4 = e−dtε
2/4.

The number of possible choices of t indices is
(n
t
)
≤ (ne/t)t . Summing over these,

P(∃ subset of t points with ‖mean‖2 > ε2d) ≤
(ne
t

)t
e−dtε

2/4 ≤ e−dtε
2/12 ≤ e−d/2,

by the particular choice of ε.
This will enable us to show that if one of EM’s cluster-estimates overlaps substantially with

a true cluster Si, then the mean of the overlapping points will be close to µi. The only technical
difficulty is that EM has soft assignments for data points, and therefore we need to also deal with
weighted averages.

More generally, we consider the following problem: suppose you are allowed to distribute a
specific amount of weight over the elements of Si, where each element receives a weight between 0
and 1. What is the worst soft assignment of this kind, the one whose weighted average is furthest
from µi? It is not difficult to see that the worst assignment is a hard assignment, whereupon we can
apply the previous lemma.

Lemma 6 (Weighted averages) For any finite set of points S ⊂ Rd , with associated [0,1]-valued
weights {wx : x ∈ S}, there is a subset T ⊂ S such that

1. |T | = -∑x∈Swx.; and

2. ‖mean(T )‖ ≥ ‖weighted-mean(S)‖, that is,
∥∥∥∥∥
1
|T | ∑x∈T

x

∥∥∥∥∥ ≥
∥∥∥∥
∑x∈Swxx
∑x∈Swx

∥∥∥∥ .

Proof. Let µS denote the weighted mean of S. Order points x ∈ S by increasing x · µS, and let
T consist of the last -∑x∈Swx. points in this ordering. Then, the component of mean(T ) in the
direction of µS is least as large as that of any weighted mean of the points in which the weights are
in the range [0,1] and sum to ≥ -∑x∈Swx.. Letting µT = mean(T ), in particular µT ·µS ≥ µS ·µS =
‖µS‖2; and thus ‖µT‖2 is at least this large.

Remark In what follows we will assume that all the large deviation bounds of this section—
Lemmas 4, 5, and 6—hold for the particular sample S we have drawn, for some εo ∈ (0,1). For
Lemma 5, we will use t = 1

2mwT .
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From these various concentration properties, we see that points from the same Gaussian, say the
ith one, are at distance about

√
2σ2i d from each other while points from different Gaussians i *= j

are at distance about
√

(σ2i +σ2j + c2i jσ2i j)d from each other. These estimates are accurate to within
O(σi jd1/4). Therefore, in the case where all Gaussians have the same variance, it is sufficient to
have c2i jσ2i jd ! σ2i jd1/2—more simply, c ! d−1/4—for the interpoint distances to reveal enough
information for clustering. In particular, it should be possible to make EM work well. The general
case, in which the Gaussians have different variances, requires more careful treatment but yields the
same conclusion.

4. Conditions

Various parts of the analysis require assumptions on the sample size, dimensionality, and separation.
To simplify the exposition, we summarize these conditions up front.

(C1) ‖µi−µj‖2 ≥ |σ2i −σ2j |d for all i, j .

(C2) εo ≤ 1
96min(1,c

2).

(C3) d ≥ 864max(1,c−2) ln8el.

(C4) m≥ 6912lmax(1,c−2).

The constants are astronomical but are doubtless much larger than they need to be, as no attempt
has been made to optimize them. For (C2), recall that εo is the extent to which squared interpoint
distances are concentrated: by Lemma 4, these are all within a multiplicative factor 1±O(εo) of
their expected values.

We start by establishing properties of the initial choice of centers and variances.

5. Initialization

As we saw earlier, it is crucial that every cluster is represented in the initial center-estimates, and
that the variance-estimates are fairly accurate. We now confirm these conditions.

Lemma 7 (Properties of the initial parameters) If l > k and each wi ≥ wmin and condition (C1)
holds, then with probability at least 1− k(l+1)e−lwmin − ke−lwmin/12,
(a) every Gaussian is represented at least twice in the initial center-estimates;
(b) the ith Gaussian provides at most 32 lwi initial center-estimates, for all 1≤ i≤ k; and
(c) if the rth center-estimate is drawn from Si, then σ2i (1−2εo) ≤ σ〈0〉2r ≤ σ2i (1+ εo).

Proof. Assume the center-estimates are simply the first l (randomly chosen) data points. The
chance that these do not touch a particular Si at least twice is (1−wi)l + lwi(1−wi)l−1 ≤ (l+
1)(1−wmin)l ≤ (l+ 1)e−lwmin . Similarly, since the number of center-estimates chosen from Si has
expectation lwi, a Chernoff bound tells us that

P(there are more than 3
2 lwi initial centers from Si) ≤ e−lwi/12.
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For the bound on σ〈0〉
r , we have already established that there is at least one other center-estimate

from the same Si. If this is the closest center-estimate to µ
〈0〉
r , then by Lemma 4(a) the squared

distance between the two is 2σ2i d(1± εo). On the other hand, the closest center-estimate to µ
〈0〉
r

might be from some other cluster S j, in which case, by Lemma 4(b), the squared distance is at least
(σ2i +σ2j + c2i jσ2i j)d(1− 2εo) ≥ 2σ2i d(1− 2εo), since by (C1), c2i jσ2i j ≥ |σ2i −σ2j |. These two cases
give the upper and lower bounds on σ〈0〉2

r .

Remark All the theorems of the following sections are made under the additional hypothesis that
the high-probability events of Lemma 7 hold.

6. The First Round of EM

What happens during the first round of EM? The first thing we clarify is that although in principle
EM allows “soft” assignments in which each data point is fractionally distributed over various clus-
ters, in practice for large d every data point will give almost its entire weight to center-estimates
from one cluster. This is because in high dimension, the distances between clusters are so great that
there is just a very narrow region between two clusters where there is any ambiguity of assignment,
and the probability that points fall within this region is miniscule.

Lemma 8 (Soft assignments) Suppose µ〈0〉i′ ∈ Si and µ〈0〉j′ ∈ S j. If condition (C2) holds, then for any
data point x ∈ Si, the ratio between the probabilities assigned to x by Gaussian-estimates p

〈1〉
i′ and

p〈1〉j′ is
p〈1〉i′ (x)

p〈1〉j′ (x)
≥ exp

(
c2i jσ2i j
σ2j

· d
8

)
.

Proof. The following calculations make occasional use of Lemma 4, along with several inequalities
that exploit the bound (C2) on εo.

p〈1〉i′ (x)

p〈1〉j′ (x)
=

σ〈0〉dj′

σ〈0〉di′
exp





‖x−µ〈0〉j′ ‖2

2σ〈0〉2j′
−

‖x−µ〈0〉i′ ‖2

2σ〈0〉2i′






≥ exp

{
d
2
ln
σ2j(1−2εo)
σ2i (1+ εo)

+
(σ2i +σ2j + c2i jσ2i j)d · (1−2εo)

2σ2j(1+ εo)
− 2σ

2
i d(1+ εo)

2σ2i (1−2εo)

}

≥ exp

{
d

(
1
2
ln
σ2j
σ2i

(1−3εo)+
σ2i +σ2j + c2i jσ2i j

2σ2j
(1−3εo)−1−

7εo
2

)}

≥ exp

{
d

(
ln(1−3εo)+

c2i jσ2i j
2σ2j

(1−3εo)−5εo

)}
≥ exp

(
c2i jσ2i j
σ2j

· d
8

)
.

The second-last step uses ln(σ2j/σ2i )+ (σ2i /σ2j)(1−3εo) ≥ 1+ ln(1−3εo), which can be obtained
easily from the more familiar x≥ 1+ lnx.

In the case where all the Gaussians have the same variance, this lemma says that each data point
is given weight at most e−c2d/8 by any center-estimate from a different cluster. When the Gaus-
sians do not have the same variance, the lemma is even stronger. In particular, if there is a small
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cluster Si right near a large one, S j, we can conclude that center-estimates from the small cluster
assign weight at most e−c

2σ2jd/σ2i to points from the big cluster. We need this stronger bound in our
subsequent analysis: the two clusters could be at such different scales that a point from the large
cluster, because it has substantial norm, could significantly throw off the center-estimate from the
small cluster.

We are now in a position to assess what happens during the first round of EM. At the end of this
round, letC j denote the center-estimates originally from S j which have high mixing weight, that is,
C j = {µ〈1〉j′ : µ

〈0〉
j′ ∈ S j,w

〈1〉
j′ ≥ wT}. We will see that such center-estimates move quite a bit closer to

their respective true centers µj as a result of the first EM update.

Lemma 9 Under conditions (C2), (C3), and (C4), any “non-starved” center-estimate µ〈1〉i′ ∈Ci has

‖µ〈1〉i′ −µi‖ ≤
1
8
min(1,c)σi

√
d.

Proof. Bound ‖µ〈1〉i′ −µi‖ by the sum of two terms:

‖µ〈1〉i′ −µi‖ =

∥∥∥∥∥
∑x∈S p

〈1〉
i′ (x)(x−µi)

∑x∈S p
〈1〉
i′ (x)

∥∥∥∥∥

≤
‖∑x∈Si p

〈1〉
i′ (x)(x−µi)‖+‖∑x &∈Si p

〈1〉
i′ (x)(x−µi)‖

∑x∈S p
〈1〉
i′ (x)

≤
‖∑x∈Si p

〈1〉
i′ (x)(x−µi)‖

∑x∈Si p
〈1〉
i′ (x)

+
‖∑ j &=i∑x∈S j p

〈1〉
i′ (x)(x−µi)‖

∑x∈S p
〈1〉
i′ (x)

.

The first term can be bounded using Lemma 5, provided p〈1〉i′ (Si) is substantial. By Lemma 8, for
any x ∈ S j, j *= i, we have p〈1〉i′ (x) ≤ e−c

2
i jσ

2
i jd/8σ2i ≤ e−c2d/8. Thus

∑
x∈Si

p〈1〉i′ (x) ≥ ∑
x∈S

p〈1〉i′ (x)−∑
j &=i
∑
x∈S j

p〈1〉i′ (x) ≥ mwT −me−c
2d/8 ≥ 1

2mwT +1

using (C3) and (C4). Lemmas 5 and 6, together with (C4), then give

‖∑x∈Si p
〈1〉
i′ (x)(x−µi)‖

∑x∈Si p
〈1〉
i′ (x)

≤ σi
√
d ·

√

6max
(

2
mwT

,
1
d
ln
2e|Si|
mwT

)
≤ 1
12
min(1,c)σi

√
d.

For the second half of the ‖µ〈1〉i′ −µi‖ expression, we observe that for any x ∈ S j, j *= i, by Lemma 4
‖x−µi‖ ≤

√
(σ2j + c2i jσ2i j)d(1+2εo). Using the conditions on d and εo, this can be upper-bounded

by ec
2
i jσ

2
i jd/16σ2i σi

√
d. Thus p〈1〉i′ (x)‖x−µi‖ ≤ e−c2d/16σi

√
d, and

‖∑ j &=i∑x∈S j p
〈1〉
i′ (x)(x−µi)‖

∑x∈S p
〈1〉
i′ (x)

≤ 1
mwT ∑j &=i

∑
x∈S j

p〈1〉i′ (x)‖x−µi‖

≤ 1
wT

e−c
2d/16σi

√
d ≤ 1

24
min(1,c)σi

√
d,
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completing the proof.

We also need to analyze the variance-estimates. These started off excellent, and so we mostly
need to check that they don’t degrade too much during the first round of EM. The difficulty with the
usual formula for variance is that it involves terms of the form ‖x−µ〈1〉i ‖2, whereas we only have
tight concentration bounds for terms like ‖x−µi‖2. To cope with this, we first derive an alternative
expression for the variance.

Lemma 10 (Alternative formula for variance) For any i, and any choice of µ∈ Rd , the formula
for σ〈t〉2i can be rewritten thus:

σ〈t〉2i = ∑x p
〈t〉
i (x)‖x−µ〈t〉i ‖2

d∑x p
〈t〉
i (x)

= ∑x p
〈t〉
i (x)‖x−µ‖2

d∑x p
〈t〉
i (x)

− ‖µ−µ〈t〉i ‖2

d
.

Proof. Consider the distribution over S which assigns point x ∈ S a probability mass proportional
to p〈t〉i (x). Taking expectations over X drawn from this distribution, we have EX = µ〈t〉i , and for any
µ∈ Rd ,

E‖X−µ‖2 = E‖X‖2+‖µ‖2−2µ·EX = E‖X‖2+‖µ‖2−2µ·µ〈t〉i

and similarly

E‖X−µ〈t〉i ‖2 = E‖X‖2+‖µ〈t〉i ‖2−2µ〈t〉i ·EX = E‖X‖2−‖µ〈t〉i ‖2.

Subtracting,

E‖X−µ‖2−E‖X−µ〈t〉i ‖2 = ‖µ‖2−2µ·µ〈t〉i +‖µ〈t〉i ‖2 = ‖µ−µ〈t〉i ‖2,

which is a paraphrase of the lemma statement.

It is now simpler to bound the variances at the end of first round of EM.

Lemma 11 (Variance estimates in round one) Under conditions (C2), (C3), and (C4), for any
i′ ∈Ci,

σ2i

(
1− 3

64
min(1,c2)

)
≤ σ〈1〉2i′ ≤ σ2i

(
1+

1
32

)
.

Proof. By Lemma 10,

σ〈1〉2i′ =
∑x∈S p

〈1〉
i′ (x)‖x−µi‖2

d∑x∈S p
〈1〉
i′ (x)

−
‖µi−µ〈1〉i′ ‖2

d
.
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First let us lower-bound this, using Lemmas 4(c), 8, and 9.

σ〈1〉2i′ ≥ ∑x∈Si p
〈1〉
i′ (x)‖x−µi‖2

d∑x∈S p
〈1〉
i′ (x)

−
‖µi−µ〈1〉i′ ‖2

d

≥ ∑x∈Si p
〈1〉
i′ (x) ·σ2i d(1− εo)

d∑x∈S p
〈1〉
i′ (x)

− min(1,c
2)

64
σ2i

≥ σ2i (1− εo) ·
p〈1〉i′ (S)−∑ j &=i p

〈1〉
i′ (S j)

p〈1〉i′ (S)
− min(1,c

2)
64

σ2i

≥ σ2i (1− εo) ·
(
1− me−c2d/8

mwT

)
− min(1,c

2)
64

σ2i .

For the upper bound, we again use Lemmas 4(c) and 8, along with the conditions on d and εo, to
assert that for points x∈ S j, j *= i, we have p〈1〉i′ (x)‖x−µi‖2 ≤ e−c

2
i jσ

2
i jd/8σ2i (σ2j +c2i jσ2i j)d ·(1+2εo)≤

e−c2d/16σ2i d, and thus

σ〈1〉2i′ ≤
∑x∈Si p

〈1〉
i′ (x)‖x−µi‖2+∑ j &=i∑x∈S j p

〈1〉
i′ (x)‖x−µi‖2

d∑x∈S p
〈1〉
i′ (x)

≤ ∑x∈Si p
〈1〉
i′ (x) ·σ2i d(1+ εo)

dp〈1〉i′ (S)
+
∑ j &=i∑x∈S j e

−c2d/16σ2i d

dp〈1〉i′ (S)

≤ σ2i (1+ εo)+
me−c2d/16σ2i

mwT
.

The rest follows by substituting in conditions (C2) and (C3).
Remark Henceforth we will assume that the conclusions of Lemmas 9 and 11 hold.

7. Pruning

We now know each center-estimate in C j is accurate within 1
8min(1,c)σ j

√
d. A simple clustering

heuristic due to Gonzalez (1985), described in Section 2.4, is used to choose k points from ∪ jC j.

Lemma 12 Under condition (C3), the sets Ci obey the following properties.
(a) Each Ci is non-empty.
(b) There is a real value Δ> 0 such that if x∈Ci and y,z∈C j (i *= j) then d(y,z)≤Δ and d(x,y) >Δ.
(c) The pruning procedure identifies exactly one member of each Ci.

Proof. (a) From Lemmas 4 and 7 we know that |Si| ≥ 1
2mwi, and that at most

3
2 lwi initial center-

estimates are chosen from Si. It was seen in Lemma 9 that each point in Si gives weight at least
1− le−c2d/8 to center-estimates from Si. It follows that at the end of the first round of EM, at least
one of these center-estimates must have mixing weight at least

(12mwi)(1− le−c2d/8)
m · 32 lwi

=
1
3l

· (1− le−c
2d/8) ≥ 1

4l
= wT
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and thereforeCi cannot be empty.
(b) Pick µ〈1〉i′ ∈Ci and µ〈1〉j′ ,µ〈1〉j′′ ∈C j for any pair i *= j. Then, from Lemmas 9 and 11,

d(µ〈1〉j′ ,µ〈1〉j′′ ) =
‖µ〈1〉j′ −µ〈1〉j′′ ‖

σ〈1〉j′ +σ〈1〉j′′
<

2 · c8σ j
√
d

2 · 6164σ j
<

c
6
√
d.

Call this value Δ. Meanwhile,

d(µ〈1〉i′ ,µ〈1〉j′ ) =
‖µ〈1〉i′ −µ〈1〉j′ ‖

σ〈1〉i′ +σ〈1〉j′
>

ci jσi j
√
d− c

8σi
√
d− c

8σ j
√
d

33
32σi+

33
32σ j

≥
ci j · 12(σi+σ j)

√
d− c

8(σi+σ j)
√
d

33
32(σi+σ j)

≥ c
3
√
d,

strictly greater than Δ.
(c) There are k true clusters and the pruning procedure picks exactly k center-estimates. It will not
pick two from the same true cluster because these must be at distance≤ Δ from each other, whereas
there must be some untouched cluster containing a center-estimate at distance > Δ from all points
selected thus far.

8. The Second Round of EM

We now have one center-estimate µ〈1〉i per true cluster (for convenience permute their labels to match
the Si), each with mixing weight 1k and covariance σ

〈1〉2
i Id . Furthermore each µ

〈1〉
i is within distance

1
8min(1,c)σi

√
d of the corresponding true Gaussian center µi. Such favorable circumstances make

it easy to show that the subsequent round of EM achieves near-perfect clustering.
There is just one tricky issue. As in the first round, in order to bound EM’s soft assignments,

we’d like to assert that the distances ‖x− µ〈1〉i ‖2 are tightly concentrated around certain values.
What is different this time, however, is the statistical dependency between data points x and center-
estimates µ〈1〉i . To avoid having to manage this dependency, we instead recall that the µ

〈1〉
i are just

weighted averages of data points, and as far as possible, we rewrite expressions like ‖x−µ〈1〉i ‖2 as
weighted sums of expressions involving only data points, such as ‖x− y‖2 or x · y. There is one
particular kind of dot product which will be an especially useful building block, and we start by
analyzing it.

Lemma 13 Pick any 1≤ i, j ≤ k. Under conditions (C2) and (C3), for any x ∈ Si,

|(x−µi) · (µ〈1〉j −µj)|≤
3
2
εoσ

2
i jd.

Proof. We could use the fact that µ〈1〉j is reasonably close to µj, but this doesn’t give a very
good bound. Instead we notice that (x− µi) · (µ〈1〉j − µj) is a weighted average of terms of the
form (x−µi) · (y−µj), as y varies over S. When y ∈ S j, these dot products are small, as seen in
Lemma 4(d). And when y *∈ S j, the weight of the term is small.
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Specifically, suppose y ∈ Sg for g *= j. By Lemmas 4(d) and 8,

p〈1〉j (y) |(x−µi) · (y−µj)|≤ e−c
2
jgσ

2
jgd/8σ2j ·

√
(σ2g+ c2jgσ2jg)(1+2εo) ·σiεod.

By the conditions on d, this is at most e−c2d/16σiσ jεod. Hence

|(x−µi) · (µ〈1〉j −µj)| =
∣∣∣∣
∑y p

〈1〉
j (y)(x−µi) · (y−µj)

p〈1〉j (S)

∣∣∣∣

≤
∑y∈S j p

〈1〉
j (y)|(x−µi) · (y−µj)|

p〈1〉j (S j)
+
∑g&= j∑y∈Sg p

〈1〉
j (y)|(x−µi) · (y−µj)|

p〈1〉j (S)

≤ σiσ jεod
√
1+2εo+

1
mwT ∑g&= j

∑
y∈Sg

e−c
2d/16σiσ jεod

≤ εoσ
2
i jd ·

(
1+ εo+

1
wT

e−c
2d/16

)
.

Under (C2) and (C3), the term in parentheses is at most 3/2.
We now develop a counterpart of Lemma 8, a bound on how “soft” EM’s assignments can be.

Lemma 14 Under conditions (C1), (C2), and (C3), for any 1≤ i *= j ≤ k, and for any x ∈ Si,

p〈2〉i (x)

p〈2〉j (x)
≥ exp

(
c2i jσ2i jd
8σ2j

)
.

Proof. This is mostly a matter of confirming that ‖x−µ〈1〉i ‖,‖x−µ〈1〉j ‖,σ〈1〉i ,σ〈1〉j are not too far
from ‖x−µi‖,‖x−µj‖,σi,σ j. Making use of Lemmas 4(c), 9, and 13,

‖x−µ〈1〉i ‖2 = ‖x−µi‖2+‖µi−µ〈1〉i ‖2+2(x−µi) · (µi−µ〈1〉i )

≤ σ2i d(1+ εo)+
min(1,c2)

64
σ2i d+3εoσ2i d

≤ σ2i d
(
1+

1
16
min(1,c2)

)

In much the same vein,

‖x−µ〈1〉j ‖2 = ‖x−µj‖2+‖µj−µ〈1〉j ‖2+2((x−µi)+(µi−µj)) · (µj−µ〈1〉j )

≥ (σ2i + c2i jσ
2
i j)d(1−2εo)−3εoσ2i jd−2ci jσi jd1/2 ·

min(1,c)
8

σ jd1/2

≥ σ2i d
(
1− 1

48
min(1,c2)

)
+ c2i jσ

2
i jd

(
1− 29

96

)
.

Using these and the variance bound from Lemma 11, the rest follows in the same manner as
Lemma 8.

Henceforth, assume this condition holds true. The best we can now hope for is that each final
estimate µ〈2〉i is exactly the mean of Si. In fact, it will turn out that the error ‖µ〈2〉i −µi‖ is not too
different from ‖mean(Si)−µi‖.
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Lemma 15 Under conditions (C1)–(C4), for each i,

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+
5

wmin
e−c

2d/16σi
√
d.

Proof. As usual, we start by separating points in Si from those outside.

‖µ〈2〉i −µi‖ =

∥∥∥∥∥
∑x∈S p

〈2〉
i (x)(x−µi)

∑x∈S p
〈2〉
i (x)

∥∥∥∥∥

≤ 1
p〈2〉i (S)

∥∥∥∥∥∑x∈Si
p〈2〉i (x)(x−µi)

∥∥∥∥∥+
1

p〈2〉i (S)
∑
j &=i
∑
x∈S j

p〈2〉i (x)‖x−µi‖.

With Lemma 14 in hand, these two terms are straightforward to bound. For instance, we know that
for any x ∈ Si, p〈2〉i (x) ≥ 1− ke−c2d/8. Hence the first term is at most

1
p〈2〉i (S)

(∥∥∥∥∥∑x∈Si
(1− ke−c

2d/8)(x−µi)

∥∥∥∥∥+

∥∥∥∥∥∑x∈Si
(p〈2〉i (x)− (1− ke−c

2d/8))(x−µi)

∥∥∥∥∥

)

≤

∥∥∥∑x∈Si(1− ke−c2d/8)(x−µi)
∥∥∥

|Si| · (1− ke−c2d/8)
+

1
p〈2〉i (S)

∑
x∈Si

ke−c
2d/8‖x−µi‖

≤ ‖mean(Si)−µi‖+
|Si| · ke−c

2d/8

|Si| · (1− ke−c2d/8)
σi

√
d(1+2εo)

≤ ‖mean(Si)−µi‖+2ke−c
2d/8σi

√
d.

while the second term is

1
p〈2〉i (S)

∑
j &=i
∑
x∈S j

p〈2〉i (x)‖x−µi‖ ≤ 1
p〈2〉i (S)

∑
j &=i
∑
x∈S j

e−c
2
i jσ

2
i jd/8σ2i

√
(σ2j + c2i jσ2i j)(1+2εo)d

≤ 1
p〈2〉i (S)

∑
x &∈Si

e−c
2d/16σi

√
d

≤ m
|Si| · (1− ke−c2d/8)

e−c
2d/16σi

√
d ≤ 3

wi
e−c

2d/16σi
√
d.

For the very last bound we use |Si|≥ 1
2mwi (Lemma 4(e)).

Here’s a summary of everything we have so far.

Theorem 16 Suppose that l > k, that wi ≥ wmin for all i, and that conditions (C1)–(C4) hold.
With probability at least 1− 2m2e−ε2od/8− 2m2ke−ε2od/2− 2ke−lwmin/12− k(l+ 1)e−lwmin , the center-
estimates returned after two rounds of EM satisfy (for each i):

‖µ〈2〉i −µi‖ ≤ ‖mean(Si)−µi‖+
5

wmin
e−c

2d/16σi
√
d.

Choosing c2d ≥ 16ln 5
εwmin and εo = 1

96min(1,c
2) gives Theorem 1. We can also prove bounds

on the final mixing weights and variance.
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Theorem 17 To the results of Theorem 16 it can be added that if c2d ≥ 16ln 5
εwmin (for some ε> 0),

then for any i,
|Si|
m

· (1− ε) ≤ w〈2〉
i ≤ |Si|

m
+ ε

and

(1− ε)var(Si)−
‖µ〈2〉i −mean(Si)‖2

d
≤ σ〈2〉2i ≤ (1+ ε)var(Si)+ εσ2i +

ε‖µi−mean(Si)‖2

d

(where var(Si) is the empirical variance of cluster Si).

Proof. The bounds on w〈2〉
i come directly from writing

w〈2〉
i =

1
m∑x∈S

p〈2〉i (x) =
1
m

(

∑
x∈Si

p〈2〉i (x)+ ∑
x &∈Si

p〈2〉i (x)

)

and then using our old bounds p〈2〉i (x) ≥ 1− ke−c2d/8 for x ∈ Si and p
〈2〉
i (x) ≤ e−c2d/8 for x *∈ Si

(Lemma 14).
For the variance, we again exploit the alternative formulation of Lemma 10, but this time in a

slightly different way. Let µ=mean(Si).

σ〈2〉2i = ∑x∈S p
〈2〉
i ‖x−µ‖2

d p〈2〉i (S)
− ‖µ〈2〉i −µ‖2

d
.

Thus:

σ〈2〉2i ≥ ∑x∈Si(1− ke−c2d/8)‖x−µ‖2

d(|Si|+me−c2d/8)
− ‖µ〈2〉i −µ‖2

d

=
∑x∈Si ‖x−mean(Si)‖2

d|Si|
· 1− ke−c2d/8

1+me−c2d/8/|Si|
− ‖µ〈2〉i −µ‖2

d
,

the first term of which is recognizable as var(Si). Similarly,

σ〈2〉2i ≤ 1
d|Si|(1− ke−c2d/8)

{

∑
x∈Si

‖x−µ‖2+ ∑
x &∈Si

e−c
2d/8 ·2(‖x−µi‖2+‖µi−µ‖2)

}

≤ var(Si)
1− ke−c2d/8

+
2m

|Si|(1− ke−c2d/8)

(
e−c

2d/16σ2i + e−c
2d/8 ‖µi−µ‖2

d

)
,

from which the claim follows directly.

9. Concluding Remarks

This paper provides a principled basis for answering some important questions surrounding EM:
how many clusters should be used, how the parameters ought to be initialized, and how pruning
should be carried out. These results may be of interest to practitioners of EM.

But what about the claim that EM can be made to work in just two rounds? This requires what
we call the
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Strong Gaussian assumption. The data are i.i.d. samples from a true mixture of Gaus-
sians.

This assumption is the standard setting for other theoretical results about EM, but is it reasonable to
expect of real data sets? We recommend instead the

Weak Gaussian assumption. The data looks like it comes from a particular mixture
of Gaussians in the following sense: for any sphere in Rd , the fraction of the data that
falls in the sphere is the expected fraction under the mixture distribution, ±ε0, where
ε0 is some term corresponding to sampling error and will typically be proportional to
m−1/2, where m is the number of samples. Some other concept class of polynomial VC
dimension can be used in place of spheres.

The strong assumption immediately implies the weak assumption (with high probability) by a
large deviation bound, since the concept class of spheres inRd has VC dimension just d+1 (Dudley,
1979; Haussler, 1992). What kinds of conclusions can we draw from the strong assumption but
not the weak one? Here is an example: “if two data points are drawn from N(0, Id) then with
overwhelming probability they are separated by a distance of at least

√
d”. The weak assumption

does not support this; with just two samples, in fact, the sampling error is so high that it does not
allow us to draw any non-trivial conclusions at all.

It is often argued that the Gaussian is the most natural model of a cluster because of the central
limit theorem. However, central limit theorems, more specifically Berry-Esséen theorems (Feller,
1966), yield Gaussians in the sense of the weak assumption, not the strong one. For the same rea-
son, the weak Gaussian assumption arises naturally when we take random projections of mixtures
of product distributions (Diaconis and Freedman, 1984). Ideally therefore, we could provide per-
formance guarantees for EM under just this condition. It might be possible to extend our analysis
appropriately; for an example of what needs to be changed in the algorithm, consider that the weak
assumption allows

√
m data points to be placed arbitrarily in space, and therefore an outlier removal

procedure is probably necessary.
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Abstract
A large number of variants of the Perceptron algorithm have been proposed and partially evaluated
in recent work. One type of algorithm aims for noise tolerance by replacing the last hypothesis
of the perceptron with another hypothesis or a vote among hypotheses. Another type simply adds
a margin term to the perceptron in order to increase robustness and accuracy, as done in support
vector machines. A third type borrows further from support vector machines and constrains the
update function of the perceptron in ways that mimic soft-margin techniques. The performance
of these algorithms, and the potential for combining different techniques, has not been studied in
depth. This paper provides such an experimental study and reveals some interesting facts about the
algorithms. In particular the perceptron with margin is an effective method for tolerating noise and
stabilizing the algorithm. This is surprising since the margin in itself is not designed or used for
noise tolerance, and there are no known guarantees for such performance. In most cases, similar
performance is obtained by the voted-perceptron which has the advantage that it does not require
parameter selection. Techniques using soft margin ideas are run-time intensive and do not give
additional performance benefits. The results also highlight the difficulty with automatic parameter
selection which is required with some of these variants.
Keywords: perceptron algorithm, on-line learning, noise tolerance, kernel methods

1. Introduction

The success of support vector machines (SVM) (Boser et al., 1992; Cristianini and Shawe-Taylor,
2000) has led to increasing interest in the perceptron algorithm. Like SVM, the perceptron algorithm
has a linear threshold hypothesis and can be used with kernels, but unlike SVM, it is simple and
efficient. Interestingly, despite a large number of theoretical developments, there is no result that
explains why SVM performs better than perceptron, and similar convergence bounds exist for both
(Graepel et al., 2000; Cesa-Bianchi et al., 2004). In practice, SVM is often observed to perform
slightly better with significant cost in run time. Several on-line algorithms have been proposed
which iteratively construct large margin hypotheses in the feature space, and therefore combine
the advantages of large margin hypotheses with the efficiency of the perceptron algorithm. Other
variants adapt the on-line algorithms to work in a batch setting choosing a more robust hypothesis
to be used instead of the last hypothesis from the on-line session. There is no clear study in the
literature, however, that compares the performance of these variants or the possibility of combining
them to obtain further performance improvements. We believe that this is important since these
algorithms have already been used in applications with large data sets (e.g., Collins, 2002; Li et al.,
2002) and a better understanding of what works and when can have a direct implication for future
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use. This paper provides such an experimental study where we focus on noisy data and more
generally the “unrealizable case” where the data is simply not linearly separable. We chose some
of the basic variants and experimented with them to explore their performance both with hindsight
knowledge and in a statistically robust setting.

More concretely, we study two families of variants. The first explicitly uses the idea of hard and
soft margin from SVM. The basic perceptron algorithm is mistake driven, that is, it only updates
the hypothesis when it makes a mistake on the current example. The perceptron algorithm with
margin (Krauth and Mézard, 1987; Li et al., 2002) forces the hypothesis to have some margin by
making updates even when it does not make a mistake but where the margin is too small. Adding
to this idea, one can mimic soft-margin versions of support vector machines within the perceptron
algorithm that allow it to tolerate noisy data (e.g., Li et al., 2002; Kowalczyk et al., 2001). The
algorithms that arise from this idea constrain the update function of the perceptron and limit the
effect of any single example on the final hypothesis. A number of other variants in this family
exist in the literature. Each of these performs margin based updates and has other small differences
motivated by various considerations. We discuss these further in the concluding section of the paper.

The second family of variants tackles the use of on-line learning algorithms in a batch setting,
where one trains the algorithm on a data set and tests its performance on a separate test set. In
this case, since updates do not always improve the error rate of the hypothesis (e.g., in the noisy
setting), the final hypothesis from the on-line session may not be the best to use. In particular,
the longest survivor variant (Kearns et al., 1987; Gallant, 1990) picks the “best” hypothesis on the
sequential training set. The voted perceptron variant (Freund and Schapire, 1999) takes a vote
among hypotheses produced during training. Both of these have theoretical guarantees in the PAC
learning model (Valiant, 1984). Again, other variants exist in the literature which modify the notion
of “best” or the voting scheme among hypotheses and these are discussed in the concluding section
of the paper.

It is clear that each member of the first family can be combined with each member of the
second. In this paper we report on experiments with a large number of such variants that arise when
combining some of margin, soft margin, and on-line to batch conversions. In addition to real world
data, we used artificial data to check the performance in idealized situations across a spectrum of
data types.

The experiments lead to the following conclusions: First, the perceptron with margin is the most
successful variant. This is surprising since among the algorithms experimented with it is only one
not designed for noise tolerance. Second, the soft-margin variants on their own are weaker than
the perceptron with margin, and combining soft-margin with the regular margin variant does not
provide additional improvements.

The third conclusion is that in most cases the voted perceptron performs similarly to the per-
ceptron with margin. The voted perceptron has the advantage that it does not require parameter
selection (for the margin) that can be costly in terms of run time. Combining the two to get the
voted perceptron with margin has the potential for further improvements but this occasionally de-
grades performance. Finally, both the voted perceptron and the margin variant reduce the deviation
in accuracy in addition to improving the accuracy. This is an important property that adds to the
stability and robustness of the algorithms.

The rest of the paper is organized as follows. The next section reviews all the algorithms and our
basic settings for them. Section 3 describes the experimental evaluation. We performed two kinds of
experiments. In “parameter search” we report the best results obtained with any parameter setting.
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Input set of examples and their labels Z = ((x1,y1), . . . ,(xm,ym)) ∈ (Rn × {−1,1})m,
η, θInit, C

• Initialize w← 0n and θ← θInit

• for every training epoch:

• for every x j ∈ X :

– ŷ← sign(〈w,x j〉−θ)

– if (ŷ '= y j)
∗ w← w+ηy jx j
∗ θ← θ+ηy jC

Figure 1: The Basic Perceptron Algorithm

This helps set the scope and evaluate the potential of different algorithms to improve performance
and provides insight about their performance, but it does not give statistically reliable results. In
“parameter optimization” the algorithms automatically select the parameters and the performance
can be interpreted statistically. The concluding section further discusses the results and puts related
work in their context leading to directions for future work.

2. Algorithms

This section provides details of all the algorithms used in the experiments and our basic settings for
them.

2.1 The Perceptron Algorithm

The perceptron algorithm (Rosenblatt, 1958) takes as input a set of training examples in Rn with
labels in {−1,1}. Using a weight vector, w ∈ Rn, initialized to 0n, and a threshold, θ, it predicts the
label of each training example x to be y = sign(〈w,x〉−θ). The algorithm adjusts w and θ on each
misclassified example by an additive factor. The algorithm is summarized in Figure 1 following
the form by Cristianini and Shawe-Taylor (2000). Unlike Cristianini and Shawe-Taylor (2000), we
allow for a non-zero value of θInit and we allowC to be initialized to any value.

The “learning rate” η controls the extent to which w can change on a single update. Note that
if θ is initialized to 0 then η has no effect since sign(〈w,xi〉 − θ) = yi iff sign(η(〈w,xi〉 − θ)) =
yi. However, the initial choice of θ is important as it can be significant in early iterations of the
algorithm. Note also that there is only one “degree of freedom” between η and θInit since scaling
both by the same factor does not alter the result. So one could fix η= 1 and vary only θInit . But we
keep the general form for convenience.

When the data are linearly separable via some hyperplane (w,θ), the margin is defined as γ =
min1≤i≤m(yi(〈w,xi〉−θ)). When ‖w‖ = 1, γ is the minimum Euclidean distance of any point in the
data set to (w,θ). If the data are linearly separable, and θ is initialized to 0, the perceptron algorithm
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is guaranteed to converge in≤ (Rγ )
2 iterations (Novikoff, 1962; Cristianini and Shawe-Taylor, 2000),

where R=max1≤i≤m ‖xi‖.
In the case of non-separable data, the extent to which a data point fails to have margin γ via

the hyperplane w can be quantified by a slack variable ξi = max(0,γ− yi(〈w,xi〉+ θ)). Observe
that when ξi = 0, the example xi has margin at least γ via the hyperplane defined by (w,θ). The
perceptron is guaranteed to make no more than ( 2(R+D)

γ )2 mistakes on m examples, for any w,γ> 0

whereD=
√
∑m
i=1 ξ

2
i (Freund and Schapire, 1999; Shalev-Shwartz and Singer, 2005). Thus one can

expect some robustness to noise.
It is well known that the perceptron can be re-written in “dual form” whereby it can be used

with kernel functions (Cristianini and Shawe-Taylor, 2000). The dual form of the perceptron is
obtained by observing that the weight vector can be written as w = ∑m

i=1ηαiyixi where αi is the
number of mistakes that have been made on example i. Subsequently, a new example x j is classified
according to sign(SUM− θ) where SUM = ∑iηαiyi〈xi,x j〉. Replacing the inner product with a
kernel function yields the kernel perceptron. All the perceptron variants we discuss below have dual
form representations. However, the focus of this paper is on noise tolerance and this is independent
of the use of primal or dual forms and the use of kernels. We therefore present all the algorithms in
primal form.

2.2 The λ-trick

The λ-trick (Kowalczyk et al., 2001; Li et al., 2002) attempts to minimize the effect of noisy
examples during training similar to the L2 soft margin technique used with support vector ma-
chines (Cristianini and Shawe-Taylor, 2000). We classify example x j according to sign(SUM−θ)
where

SUM = 〈w,x j〉+ I jy jλ‖x j‖2 (1)

and where I j is an indicator variable such that

I j =
{
1 if x j was previously classified incorrectly
0 otherwise .

Thus during training, if a mistake has been made on x j then in future iterations we increase SUM
artificially by a factor of λ‖x j‖2 when classifying x j but not when classifying other examples. A
high value of λ can make the term y jλ‖x j‖2 dominate the sum and make sure that x j does not lead
to an update, so it is effectively ignored. In this way λ can prevent large number of updates on noisy
(as well as other) examples limiting their effect.

We note that this technique is typically presented using an additive λ instead of λ‖x j‖2. While
there is no fundamental difference, adding λ‖x j‖2 is more convenient in the experiments since it
allows us to use the same values of λ for all data sets (since the added term is scaled relative to the
data).

2.3 The α-bound

This variant is motivated by the L1 soft margin technique used with support vector machines (Cris-
tianini and Shawe-Taylor, 2000). The α-bound places a bound α on the number of mistakes the
algorithm can make on a particular example, such that when the algorithm makes a mistake on
some xi, it does not update w if more than α mistakes have already been made on xi. As in the case
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of the λ-trick, the idea behind this procedure is to limit the influence of any particular noisy exam-
ple on the hypothesis. Intuitively, a good setting for α is some fraction of the number of training
iterations. To see that, assume that the algorithm has made αmistakes on a particular noisy example
xk. In all subsequent training iterations, xk never forces an update, whereas the algorithm may con-
tinue to increase the influence of other non-noisy examples. If the ratio of non-noisy examples to
noisy examples is high enough the algorithm should be able to bound the effect of noisy examples
in the early training iterations while leaving sufficient un-bounded non-noisy examples to form a
good hypothesis in subsequent iterations. While this is a natural variant, we are not aware of any
experimental results using it. Note that in order for the α-bound to work effectively, the algorithm
must perform a high enough number of training iterations.

2.4 Perceptron Using Margins

The classical perceptron attempts to separate the data but has no guarantees on the separation mar-
gin obtained. The Perceptron Algorithm using Margins (PAM) (Krauth and Mézard, 1987) attempts
to establish such a margin, τ, during the training process. Following work on support vector ma-
chines (Boser et al., 1992; Cristianini and Shawe-Taylor, 2000) one may expect that providing the
perceptron with higher margin will add to the stability and accuracy of the hypothesis produced.

To establish the margin, instead of only updating on examples for which the classifier makes a
mistake, PAM updates on x j if

y j(SUM−θ) < τ

where SUM is as in Equation (1). Notice that this includes the case of a mistake where y j(SUM−
θ) < 0 and the case of correct classification with lowmargin when 0≤ y j(SUM−θ) < τ. In this way,
the algorithm “establishes” some minimal separation of the data. Notice that the weight vector w is
not normalized during the learning process and its norm can increase with updates. Therefore, the
constraint imposed by τ becomes less restrictive as learning progresses, and the normalized margin
is not τ. When the data are linearly separable and τ < γopt , PAM finds a separating hyperplane
with a margin that is guaranteed to be at least γopt τ√

8(ηR2+τ) , where γopt is the maximum possible
margin (Krauth and Mézard, 1987; Li et al., 2002).1

As above, it is convenient to make the margin parameter data set independent so we can use the
same values across data sets. To facilitate this we replace the above and update if

y j(SUM−θ) < τθInit

so that τ can be thought of as measured in units of θInit .
A variant of PAM exists in which a different value of τ is chosen for positive examples than

for negative examples (Li et al., 2002). This seems to be important when the class distribution is
skewed. We do not study that variant in this paper.

2.5 Longest Survivor and Voted Perceptron

The classical perceptron returns the last weight vector w, that is, the one obtained after all training
has been completed, but this may not always be useful especially if the data is noisy. This is a general
issue that has been studied in the context of using on-line algorithms that expect one example at a

1. Other variants (e.g., Gentile, 2001; Tsampouka and Shawe-Taylor, 2005; Shalev-Shwartz and Singer, 2005) do nor-
malize the weight vector and thus have better margin guarantees.
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time in a batch setting where a set of examples is given for training and one hypothesis is used at
the end to classify all future instances. Several variants exist that handle this issue. In particular
Kearns et al. (1987) show that longest survivor hypothesis, that is, the one who made the largest
number of correct predictions during training in the on-line setting, is a good choice in the sense
that one can provide guarantees on its performance in the PAC learning model (Valiant, 1984).
Several variations of this idea were independently proposed under the name of the pocket algorithm
and empirical evidence for their usefulness was provided (Gallant, 1990).

The voted perceptron (Freund and Schapire, 1999) assigns each vector a “vote” based on the
number of sequential correct classifications by that weight vector. Whenever an example is misclas-
sified, the voted perceptron records the number of correct classifications made since the previous
misclassification, assigns this number to the current weight vector’s vote, saves the current weight
vector, and then updates as normal. After training, all the saved vectors are used to classify future
examples and their classifications are combined using their votes. At first sight the voted-perceptron
seems to require expensive calculation for prediction. But as pointed out by Freund and Schapire
(1999), the output of the weight vector resulting from the first k mistakes can be calculated from the
output of the weight vector resulting from the first k−1 mistakes in constant time. So when using
the dual perceptron the prediction phase of the voted perceptron is not substantially more expensive
than the prediction phase of the classical perceptron, although it is more expensive in the primal
form.

When the data are linearly separable and given enough iterations, both these variants will con-
verge to a hypothesis that is very close to the simple perceptron algorithm. The last hypothesis will
predict correctly on all examples and indeed its vote will be the largest vote among all hypothe-
ses used. When the data are not linearly separable the quality of hypothesis may fluctuate during
training as noisy examples are encountered.

2.6 Algorithms Summary

Figure 2 summarizes the various algorithms and prediction strategies in primal form. The algorithms
have corresponding dual forms and kernelized versions that we address in the experimental sections.

2.7 Multi-Class Data

Some of the data sets we experiment with have more than two labels. For these we used a standard
solution as follows. For each label l, we train a classifier to separate examples labeled l (the positive
examples) from other examples (all of which become negative examples). This can be done on-line
where we train all the classifiers “in parallel”. During testing we calculate the weight given by each
classifier (before the sign function is applied) and choose the one maximizing the weight.

3. Experimental Evaluation

We ran two sets of experiments with the algorithms described above. In one set of experiments we
searched through a pre-determined set of values of τ, α, and λ by running each of the classical,
longest survivor, and voted perceptron using 10-fold cross-validation and parameterized by each
value of τ, α, and λ as well as each combination of τ×α and τ×λ. This first set of experiments is
called parameter search. The purpose of the parameter search experiments was to give us a com-
prehensive view of the effects of the various parameters. This can show whether a method has any
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TRAINING: Input set of examples and their labels
Z = ((x1,y1), . . . ,(xm,ym)) ∈ (Rn×{−1,1})m, θInit, η, C, α-bound, λ, τ

• Initialize α← 0m,k← 0,w0 ← 0n, tally← 0, best tally← 0, θ0 ← θInit ,θl.s. ← θInit

• for every training iteration

• for every z j ∈ Z:

– SUM← 〈wk,x j〉+ I(α j !=0) y jλ‖x j‖2

– Predict:

∗ if SUM < θk− τ then ŷ= −1
∗ else if SUM > θk + τ then ŷ= 1
∗ else ŷ= 0 // This forces an update

– if (ŷ )= y j) AND (α j < α-bound)
∗ wk+1 ← wk +ηy jx j
∗ α j ← α j +1
∗ Update ‘‘mistakes’’ data structure
∗ θk+1 ← θk +ηy jC
∗ votek+1 ← 0
∗ k← k+1
∗ tally← 0

– else if (ŷ= y j)
∗ votek ← votek +1
∗ tally← tally+1
∗ if (tally> best tally)

· best tally← tally
· wl.s. ← wk
· θl.s. ← θk

PREDICTION: To predict on a new example xm+1:

• CLASSICAL:

– SUM← 〈wk,xm+1〉
– ŷ← sign(SUM−θk)

• LONGEST SURVIVOR:

– SUM← 〈wl.s.,xm+1〉
– ŷ← sign(SUM−θl.s.)

• VOTED:

– for i← 1 to k

∗ SUM← 〈wi,xm+1〉
∗ ŷ← sign(SUM−θi)
∗ VOTES ← VOTES +votei ŷ

– ŷ f inal ← sign(VOTES)

Figure 2: Illustration of All Algorithm Variants
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chance of improving performance since the experiments give us hindsight knowledge. The exper-
iments can also show general patterns and trends in the parameter landscape again giving insight
into the performance of the methods. Notice that parameter search cannot be used to indicate good
values of parameters as this would be hand-tuning the algorithm based on the test data. However, it
can guide in developing methods for automatic selection of parameters.

In the second set of experiments, we used the same set of values as in the first experiment,
but using a method for automatic selection of parameters. In particular we used a “double cross
validation” where in each fold of the cross validation (1) one uses parameter search on the training
data only using another level of cross validation, (2) picks values of parameters based on this search,
(3) trains on the complete training set for the fold using these values, and (4) evaluates on the
test set. We refer to this second set of experiments as parameter optimization. This method is
expensive to run as it requires running all combinations of parameter values in each internal fold of
the outer cross validation. So if both validations use 10 folds then we run the algorithm 100 times
per parameter setting. This sets a strong limitation on the number of parameter variations that can
be tried. Nonetheless this is a rigorous method of parameter selection.

Both sets of experiments were run on randomly-generated artificial data and real-world data
from the University of California at Irvine (UCI) repository and other sources. The purpose of
the artificial data was to simulate an ideal environment that would accentuate the strengths and
weaknesses of each algorithm variant. The other data sets explore the extent to which this behavior
is exhibited in real world problems.

For further comparison, we also ran SVM on the data sets using the L1-norm soft margin and
L2-norm soft margin. We used SVM Light (Joachims, 1999) and only ran parameter search.

3.1 Data Set Selection and Generation

We have experimented with 10 real world data sets of varying size and 150 artificial data sets
composed of 600 examples each.

We first motivate the nature of artificial data used by discussing the following four idealized
scenarios. The simplest, type 1, is linearly separable data with very small margin. Type 2 is linearly
separable data with a larger, user-defined margin. For type 3 we first generate data as in type 1,
and then add random class noise by randomly reversing the labels of a given fraction of examples.
For type 4, we generate data as in type 2, and then add random class noise. One might expect
that the basic perceptron algorithm will do fine on type 1 data, the perceptron with margin will
do particularly well on type 2 data, that noise tolerant variants without margin will do well on
type 3, and that some combination of noise tolerant variant with margin will be best for type 4
data. However, our experiments show that the picture is more complex; preliminary experiments
confirmed that the expected behavior is observed, except that the perceptron with margin performed
well on data of type 3 as well, that is, when the “natural margin” was small and the data was not
separable due to noise. In the following, we report on experiments with artificial data where the
margin and noise levels are varied so we effectively span all four different types.

Concretely the data was generated as follows. We first specify parameters for number of fea-
tures, noise rate and the required margin size. Given these, each example xi is generated inde-
pendently and each attribute in an example is generated independently using an integer value in
the range [−10,10]. We generated the weight vector, w, by flipping a coin for each example and
adding it to the weight vector on a head. We chose θ as the average of 12 |〈w,xi〉| over all xi. We
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Name # features* # examples Baseline
Adult 105 32561 75.9
Breast-cancer-wisconsin 9 699 65.5
Bupa 6 345 58
USPS 256 9298 N/A
Wdbc 30 569 62.7
Crx 46 690 55.5
Ionosphere 34 351 64.4
Wpbc 33 198 76.3
sonar.all-data 60 208 53.4
MNIST 784 70,000 N/A
*after preprocessing

Table 1: UCI and Other Natural Data Set Characteristics

measured the actual margin of the examples with respect to the weight vector and then discarded
any examples xi such that |〈w,xi〉 − θ| < M ∗ θ where M is the margin parameter specified. For
the noisy settings, for each example we randomly switched the label with probability equal to the
desired noise rate. In the tables of results presented below, f stands for number of features, M
stands for the margin size, and N stands for the noise rate. We generated data sets with parame-
ters ( f ,M,N)∈ {50,200,500}×{0.05,0.1,0.25,0.5,0.75}×{0,0.05,0.1,0.15,0.25}, and for each
parameter setting we generated two data sets, for a total 150 data sets.

For real world data we first selected two-class data sets from the UCI Machine Learning Repos-
itory (Newman et al., 1998) that have been used in recent comparative studies or in recent papers
on linear classifiers (Cohen, 1995; Dietterich et al., 1996; Dietterich, 2000; Garg and Roth, 2003).
Since we require numerical attributes, any nominal attribute in these data sets was translated to a
set of binary attributes each being an indicator function for one of the values. Since all these data
sets have a relatively small number of examples we added three larger data sets to strengthen sta-
tistically our conclusions: “Adult” from UCI (Newman et al., 1998), and “MNIST2” and “USPS3,”
the 10-class character recognition data sets. Due to their size, however, for the “USPS,” “MNIST,”
and “Adult” data sets, there is no outer cross-validation in parameter optimization. For ease of
comparison to other published results, we use the 7291/2007 training/test split for “USPS”, and a
60000/10000 split for “MNIST”.

The data sets used and their characteristics after the nominal-to-binary feature transformation
are summarized in Table 1. The column labeled “Baseline” indicates the percentage of the majority
class.

3.2 Exploratory Experiments and General Setup

The algorithms described above have several parameters that can affect their performance dramati-
cally. In this paper we are particularly interested in studying the effect of parameters related to noise
tolerance, and therefore we fix the value of θInit , η,C, and the number of training iterations. Prior to

2. http://yann.lecun.com/exdb/mnist/.
3. http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html.
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Figure 3: Example Learning Curve for UCI Data Set

fixing these values, we ran preliminary experiments in which we varied these parameters. In addi-
tion we ran experiments where we normalized the example vectors. The results showed that while
the performance of the algorithms overall was different in these settings, the relationship between
the performance of individual algorithms seems to be stable across these variations.

We set θInit = avg(〈xi,xi〉), initializing the threshold at the same scale of inner products. Com-
bined with a choice of η = 0.1, this makes sure that a few iterations should be able to guaran-
tee that an example is classified correctly given no other changes to the hypothesis. We also set
C = avg(〈xi,xi〉) = θInit . This is similar to the version analyzed by Cristianini and Shawe-Taylor
(2000) except that we use the average instead of maximum norm. Using this setting we essentially
maintain θ in units of θInit .

As explained above, the number of iterations must be sufficiently high to allow the α parameter
to be effective, as well as to allow the weight vector to achieve some measure of stability. Typically
a small number of iterations is sufficient, and preliminary experiments illustrated by the curve in
Figure 3 showed that 100 iterations are more than enough to allow all the algorithms to converge to
a stable error rate. Therefore, except where noted below, we report results for 100 iterations.

For the large data sets, we reduced the number of training iterations and increased η accordingly
in order to run the experiments in a reasonable amount of time; for “Adult” we set η = 0.4 with
5 training iterations and for “MNIST” we set η = 1 with 1 training iteration. For “USPS,” we
used η= 0.1 and 100 iterations for parameter search, and η= 0.1 and 10 iterations for parameter
optimization.

The parameters of interest in our experiments are τ,α,λ that control the margin and soft margin
variants. Notice that we presented these so that their values can be fixed in a way that is data
set independent. We used values for τ ∈ {0,0.125,0.25,0.5,1,2,4}, α ∈ {∞,80,60,40,20,10,5},
and λ ∈ {0,0.125,0.25,0.5,1,2,4}. Notice that the values as listed from left to right vary from no
effect to a strong effect for each parameter. We ran parameter search and parameter optimization
over all of these values, as well as all combinations τ×λ and τ×α. Since parameter optimization
over combined values is particularly expensive we have also experimented with a variant that first
searches for a good τ value and then searches for a value of α (denoted τ→ α) and a variant that
does likewise with τ and λ (denoted τ→ λ).

We did not perform any experiments involving α on “MNIST” or “Adult” as their size required
too few iterations to justify any reasonable α-bound.
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V > C V > LS LS > C LS > V C > LS C > V V = LS = C
Noise = 0 0 0 0 0 0 0 30
Noise = 0.05 12 10 11 3 0 2 16
Noise = 0.1 15 15 14 3 3 3 12
Noise = 0.15 16 14 13 5 6 3 10
Noise = 0.25 16 12 13 8 7 4 10

Table 2: Noise Percentage vs. Dominance: V = Voted, C = Classical, LS = Longest Survivor

Finally we performed a comparison of the classical perceptron, the longest survivor and the
voted perceptron algorithms without the additional variants. Table 2 shows a comparison of the ac-
curacies obtained by the algorithms over the artificial data. We ignore actual values but only report
whether one algorithm gives higher accuracy or whether they tie (the variance in actual results is
quite large). One can see that with higher noise rate the voted perceptron and longest survivor im-
prove the performance over the base algorithm. Over all 150 artificial data sets, the voted perceptron
strictly improves performance over the classical perceptron in 59 cases, and ties or improves in 138
cases. Using the distribution over our artificial data sets one can calculate a simple weak statistical
test that supports the hypothesis that using the voted algorithm does not hurt accuracy, and can often
improve it.

Except where noted, all the results reported below give average accuracy in 10-fold cross-
validation experiments. To avoid any ordering effects of the data, the training set is randomly
permuted before running the experiments.

3.3 Parameter Search

The parameter search experiments reveal several interesting aspects. We observe that in general
the variants are indeed helpful on the artificial data since the performance increases substantially
from the basic version. The numerical results are shown in Tables 3 and 4 and discussed below.
Before showing these we discuss the effects of single parameters. Figure 4 plots the effect of
single parameters for several data sets. For the artificial data set shown, the accuracy is reasonably
well-behaved with respect to the parameters and good performance is obtained in a non negligible
region; this is typical of the results from the artificial data. Data obtained for the real world data
sets show somewhat different characteristics. In some data sets little improvement is obtained with
any variant or parameter setting. In others, improvement was obtained for some parameter values
but the regions were not as large implying that that automatic parameter selection may not be easy.
Nonetheless it appears that when improvement is possible, τ on it own was quite effective when
used with the classical perceptron. Notice that τ is consistently effective across all data sets; λ and
α do not help on all data sets and λ sometimes leads to a drop in performance. As one might expect,
our preliminary experiments also showed that very large values of τ harm performance significantly.
These are not shown in the graphs as we have limited the range of τ in the experiments.

Tables 3 and 4 summarize the results of parameter search experiments on the real world data
and some of the artificial data, respectively. For each data set and algorithm the tables give the best
accuracy that can be achieved with parameters in the range tested. This is useful as it can indicate
whether an algorithm has a potential for improvement, in that for some parameter setting it gives
good performance. In order to clarify the contribution of different parameters, each column with
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Figure 4: Parameter Search on Artificial and Real-world Data

parameters among τ,α,λ includes all values for the parameter except the non-active value. For
example, any accuracy obtained in the τ column is necessarily obtained with a value τ '= 0. The
column labeled “Nothing” shows results when all parameters are inactive.

Several things can be observed in the tables. Consider first the margin parameters. We can see
that τ is useful even in data sets with noise; this is obvious both in the noisy artificial data sets and in
the real-world data sets, all of which are inseparable in the native feature space. We can also see that
α and λ do improve performance in a number of cases. However, they are less effective in general
than τ, and do not provide additional improvement when combined with τ.

Looking next at the on-line to batch conversions we see that the differences between the basic
algorithm, the longest survivor and the voted perceptron are noticeable without margin based vari-
ants. For the artificial data sets this only holds for one group of data sets ( f = 50), the one with
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Baseline Nothing τ λ α τ×λ τ×α
breast-cancer-wisconsin Last 65.5 90.6 96.8 97.2 96.9 97.3 97.2

Longest 96.9 97.0 97.2 97.0 97.3 97.2
Voted 96.9 96.8 97.2 96.9 97.3 97.2

bupa Last 58 57.5 71.8 64.1 69.2 71.5 67.8
Longest 64.1 58.2 64.8 68.4 60.9 61.2
Voted 68.9 65.9 67.7 70.7 67.4 66.0

wdbc Last 62.7 92.4 93.2 92.8 93.3 93.9 92.6
Longest 92.4 93.2 92.6 92.4 92.8 92.8
Voted 92.3 92.0 93.2 92.4 93.2 92.4

crx Last 55.5 62.5 68.6 65.5 66.7 69.0 66.7
Longest 55.1 63.6 65.5 63.5 65.5 65.2
Voted 64.9 65.4 65.5 66.7 65.5 66.4

promoters Last 50 78.8 92.8 82.1 78.8 94.4 93.8
Longest 78.8 92.8 82.1 78.8 94.4 94.4
Voted 78.8 93.4 82.1 78.8 94.4 93.8

ionosphere Last 64.4 86.6 87.5 86.9 87.7 88.6 87.2
Longest 87.2 87.5 87.8 88.0 88.3 87.7
Voted 88.0 87.7 87.5 88.6 88.9 87.5

wpbc Last 76.3 77.3 76.4 80.6 76.9 79.0 76.4
Longest 77.2 76.4 77.4 78.5 76.9 76.4
Voted 78.8 76.4 80.6 77.4 78.5 76.4

sonar.all-data Last 53.4 71.9 74.6 72.5 77.1 75.8 79.1
Longest 75.3 77.1 73.3 77.2 77.7 78.7
Voted 75.1 77.2 73.8 77.1 78.7 77.7

USPS Last N/A 91.5 94.1 90.4 92.8 94.3 94.1
Longest N/A 86.9 93.9 90.4 92 93.9 93.9
Voted N/A 93.5 94.2 93.4 93.6 94.3 94.3

MNIST Last N/A 85.2 89.2 85.2 89.2
Longest N/A 81.7 88.6 81.7 88.6
Voted N/A 90.2 90.6 90.2 90.6

Table 3: Parameter Search on UCI and Other Data Sets

highest ratio of number of examples to number of features (12 : 1).4 The longest survivor seems less
stable and degrades performance in some cases.

Finally compare the τ variant with voted perceptron and their combination. For the artificial
data sets using τ alone (with last hypothesis) gives higher accuracy than using the voted perceptron
alone. For the real-world data sets this trend is less pronounced. Concerning their combination we
see that while τ always helps the last hypothesis, it only occasionally helps voted, and sometimes
hurts it.

Table 5 gives detailed results for parameter search over τ on the adult data set, where we also
parameterize the results by the number of examples in the training set. We see that voted perceptron
and the τ variant give similar performance on this data set as well. We also see that that in contrast

4. The results for data with f = {200,500} are omitted from the table. In these cases these was no difference between
the basic, longest and voted versions except when combining with other variants.
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Noise Pctg. (N) Nothing τ λ α τ×λ τ×α
Last, N = 0 95.4 97 95.6 96.1 96.8 97
Longest 95.4 96.6 95.6 95.9 97.3 96.8
Voted 95.4 96.6 95.4 96.1 96.8 97

Last, N = 0.05 81.7 89.4 87 89.5 89.7 89.9
Longest 86.6 89.7 87 89.3 89.9 89.9
Voted 87.5 89.4 87 89.5 89.7 90.2

Last, N = 0.1 77.8 84.6 81.9 85.1 84.9 85.8
Longest 77.2 84.9 81.9 85.1 84.6 85.5
Voted 81.6 84.9 81.9 85.1 84.9 85.6

Last, N = 0.15 71.2 81.6 79.9 80.6 81.6 81.7
Longest 72.9 80.7 79.9 79.2 80.7 81.7
Voted 75.6 81.6 79.9 80.6 82.1 81.6

Last, N = 0.25 59.9 70.7 68.2 70.7 71.1 71.1
Longest 65 70.7 68.2 70.1 70.4 70.6
Voted 68 70.4 69.4 70.7 70.6 71.1

Table 4: Parameter Search on Artificial Data Sets with f = 50 andM = 0.05

with the performance on the artificial data mentioned above, voted perceptron performs well even
with small training set size (and small ratio of examples to features).

The table adds another important observation about stability of the algorithms. Note that since
we report results for concrete values of τ we can measure the standard deviation in accuracy ob-
served. One can see that both the τ variant and the voted perceptron significantly reduce the variance
in results. The longest survivor does so most of the time but not always. The fact that the variants
lead to more stable results is also consistently true across the artificial and UCI data sets discussed
above and is an important feature of these algorithms.

Finally, recall that the average algorithm (Servedio, 1999), which updates exactly once on each
example, is known to tolerate classification noise for data distributed uniformly on the sphere and
where the threshold is zero. For comparison, we ran this algorithm on all the data reflected in the
tables above and it was not competitive. Cursory experiments to investigate the differences show
that, when the data has a zero threshold separator and when perceptron is run for just one iteration,
then (as reported in Servedio, 1999) the average algorithm performs better than basic perceptron.
However, the margin based perceptron performs better and this becomes more pronounced with
non-zero threshold and multiple iterations. Thus in some sense the perceptron variants are doing
something non-trivial that is beyond the scope of the simple average algorithm.

3.4 Parameter Optimization

We have run the parameter optimization on the real-world data sets and the artificial data sets.
Selected results are given in Tables 6 and 7. For these experiments we report average accuracy
across the outer cross-validation as well as a 95% T -confidence interval around these, as suggested
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# examples: 10 100 1000 5000 10000 20000
Accuracy Std. Dev.

τ= 0
Last 75.6 3.5 70.2 9.2 77.8 3.1 78.3 4.1 80.3 2.8 76.5 11.1
Longest 75.7 3.5 76.5 3.6 79.9 3.5 81.8 1.8 82.9 0.7 82.3 1.3
Voted 75.8 3.4 79.4 1.8 82.5 0.5 84 0.7 84.2 0.6 84.5 0.5
τ= 0.125
Last 72.7 4.6 73.3 8.9 79.7 3.7 80.8 2.7 82.7 1.4 80.4 3.9
Longest 73.1 4.6 76.6 3.9 81 2.1 81.1 2.4 81.8 1.5 82.1 1.7
Voted 74.1 4.4 79.6 1.4 82.7 0.5 83.9 0.7 84.2 0.6 84.3 0.4
τ= 0.25
Last 74.5 1.8 75.1 7.4 79.3 5.1 80.5 2.8 81.5 2.2 80.6 3.7
Longest 73.9 3.9 77.2 2.1 80.3 2.6 81.8 1.8 81.7 1.7 82.3 2.4
Voted 74.1 4.7 79.5 1.5 82.7 0.5 83.8 0.7 84.1 0.7 84.3 0.5
τ= 0.5
Last 71.8 6.3 75.5 1.9 80.4 3.4 82.6 1 82.7 1 82.8 1.5
Longest 74 5.7 77.2 7.5 80.4 2.3 82.1 1.6 82.5 1.6 80.8 2.9
Voted 73.6 5.6 78.3 0.8 82.6 0.6 83.7 0.7 84 0.7 84.2 0.5
τ= 1
Last 72.9 6.6 78.4 2.5 81.9 1.2 83 1.1 82.7 1.5 83.5 0.8
Longest 75.9 0.3 75.9 0.9 78.3 2.8 82.5 1.1 83 1 81.9 2.7
Voted 74.8 3.4 76.4 0.9 82.4 0.6 83.5 0.7 83.7 0.7 84.1 0.5
τ= 2
Last 75.5 1.2 75.8 2.6 82.4 0.4 83.2 0.9 82.8 1.2 83.6 0.8
Longest 70.7 15.6 75.9 0.9 77.8 2.7 81.4 2.9 82.5 2 81.9 2.8
Voted 70.7 15.6 76.4 1.8 81.8 1 83.2 0.7 83.5 0.6 83.8 0.6
τ= 4
Last 75.9 0.3 75.7 1.4 81.8 1 83.1 2.1 83.3 0.6 83.6 0.6
Longest 70.7 15.6 75.9 0.9 75.9 0.5 81.8 0.7 79.4 3.4 80.8 3.1
Voted 70.7 15.6 75.9 0.9 78.4 2.1 83 0.7 83.2 0.6 83.5 0.6

Table 5: Performance on “Adult” Data Set as a Function of Margin and Training Set Size

in Mitchell (1997).5 No confidence interval is given for “USPS,” “MNIST,” or “Adult,” as the outer
cross-validation loop is not performed.

In contrast with the tables for parameter search, columns of parameter variants in Tables 6 and 7
do include the inactive option. Hence the search in the τ column includes the value of τ= 0 as well.
This makes sense in the context of parameter optimization since the algorithm can choose between
different active values and the inactive value. Notice that the standard deviation in accuracies is high
on these data sets. This highlights the difficulty of parameter selection and algorithm comparison
and suggests that results from single split into training and test sets that appear in the literature may
not be reliable.

5. In more detail, we use the maximum likelihood estimate of the standard deviation σ, s=
√

1
k ∑i(yi− ȳ)2 where k is

the number of folds (here k = 10), yi is the accuracy estimate in each fold and ȳ is the average accuracy. We then
use the T confidence interval y ∈ ŷ± t(k−1),0.975

√
1

k(k−1) ∑(yi− ȳ)2. Notice that since t9,0.975 = 2.262 and k= 10 the
confidence interval is 0.754 of the standard deviation.
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Nothing τ λ α τ×α τ×λ τ→ α τ→ λ SVM L1 SVM L2
Breast-cancer-wisconsin

Last 90.6 +/- 2.3 95.2 +/- 2.1 95.2 +/- 3.1 94.7 +/- 3.3 95.3 +/- 2.6 96.3 +/- 2.1 95.1 +/- 2.3 96.9 +/- 1.3
Longest 96.9 +/- 1.2 96.8 +/- 1.7 97.2 +/- 1.4 96.3 +/- 1.9 96.8 +/- 1.6 97 +/- 1.6 96.8 +/- 1.7 96.9 +/- 1.8 96.8 +/- 2.2 96.7 +/- 1.7
Voted 96.9 +/- 1.3 96.8 +/- 1.4 97 +/- 1.4 96.6 +/- 1.6 97 +/- 1.6 97.2 +/- 1.4 96.8 +/- 1.4 96.9 +/- 1.5

Bupa
Last 57.5 +/- 7.8 69.8 +/- 6.5 61.5 +/- 6.3 68.9 +/- 4.1 69.9 +/- 5.7 69.8 +/- 5.8 69.8 +/- 6.5 70.9 +/- 5.9

Longest 64.1 +/- 7.1 64.1 +/- 7.1 64.1 +/- 6.6 65.3 +/- 4.3 65.3 +/- 4.3 64.1 +/- 6.6 65.3 +/- 4.3 64.1 +/- 6.6 66.5 +/- 8.6 63.2 +/- 5.2
Voted 68.9 +/- 5.8 68.9 +/- 5.8 67.5 +/- 6.4 68.9 +/- 6.3 68.9 +/- 6.3 67.5 +/- 6.2 68.9 +/- 6.3 67.2 +/- 6.0

Wdbc
Last 92.4 +/- 2.9 93 +/- 2.7 93.2 +/- 2.5 91.6 +/- 2.7 92.8 +/- 2.8 93.2 +/- 2.8 93 +/- 2.7 93.5 +/- 2.2

Longest 92.4 +/- 2.0 91.7 +/- 2.5 92.1 +/- 2.5 92.3 +/- 2.3 93.2 +/- 1.7 92.5 +/- 2.1 92.6 +/- 2.1 91.4 +/- 2.9 92.8 +/- 4.4 94.7 +/- 2.1
Voted 92.3 +/- 2.3 92.3 +/- 2.6 92.8 +/- 2.7 91.7 +/- 1.9 91.6 +/- 2.2 92.4 +/- 2.4 91.6 +/- 2.6 92.8 +/- 2.3

Crx
Last 62.5 +/- 5.1 68.7 +/- 2.9 64.5 +/- 4.1 65.8 +/- 4.1 68.1 +/- 3.5 68.7 +/- 2.2 68.7 +/- 2.9 67.8 +/- 2.8

Longest 55.1 +/- 7.3 60.4 +/- 6.5 62.6 +/- 4.8 62.6 +/- 4.4 64.5 +/- 4.9 60.9 +/- 5.7 62.9 +/- 4.6 59.4 +/- 6.7 76.6 +/- 13.7 65.9 +/- 22.8
Voted 64.9 +/- 4.0 64.2 +/- 2.7 65.4 +/- 3.2 66.2 +/- 3.8 66.4 +/- 3.7 64.9 +/- 2.6 65.7 +/- 3.3 64.3 +/- 3.1

Ionosphere
Last 86.6 +/- 3.8 87.2 +/- 3.4 86.3 +/- 3.5 85.7 +/- 4.8 86.9 +/- 3.4 86.9 +/- 2.6 86.6 +/- 3.0 86.6 +/- 2.6

Longest 87.2 +/- 3.8 86.9 +/- 2.6 87.8 +/- 3.6 87.5 +/- 3.5 86.9 +/- 4.0 87.2 +/- 3.2 86.9 +/- 3.4 87.7 +/- 2.9 87.1 +/- 7.1 86.9 +/- 4.2
Voted 88 +/- 3.7 86.3 +/- 4.3 86.6 +/- 3.5 87.7 +/- 3.2 87.5 +/- 3.2 87.7 +/- 3.1 86 +/- 4.9 86 +/- 3.9

Wpbc
Last 77.3 +/- 4.7 76.7 +/- 4.4 76.4 +/- 4.4 75.1 +/- 6.1 75.1 +/- 6.1 77 +/- 5.2 75.7 +/- 6.2 78.3 +/- 5.1

Longest 77.2 +/- 3.8 76.7 +/- 5.3 75.8 +/- 3.6 75.8 +/- 6.0 76.9 +/- 4.4 74.8 +/- 4.3 75.8 +/- 4.4 74.6 +/- 5.4 78.6 +/- 7.8 78.6 +/- 8.4
Voted 78.8 +/- 4.7 78.5 +/- 4.8 79 +/- 5.0 76.4 +/- 4.8 76.9 +/- 4.8 79 +/- 5.0 76.9 +/- 4.8 78.5 +/- 5.1

Sonar
Last 71.9 +/- 6.3 73.1 +/- 5.4 72.4 +/- 6.0 75.5 +/- 6.4 72.1 +/- 7.4 71.1 +/- 6.5 74.1 +/- 6.4 73.6 +/- 5.1

Longest 75.3 +/- 5.1 77.6 +/- 6.2 73.3 +/- 6.0 74.3 +/- 6.9 73.5 +/- 5.9 74.1 +/- 7.5 74 +/- 5.5 78.1 +/- 6.6 57.2 +/- 11.9 55 +/- 11.8
Voted 75.1 +/- 6.0 75.6 +/- 6.9 74.3 +/- 5.6 77.5 +/- 7.0 78.1 +/- 7.0 77.1 +/- 7.2 76.1 +/- 7.9 75.6 +/- 6.9

f=50,N=0.05,M=0.05
Last 81.7 +/- 6.5 87.7 +/- 6.1 84.6 +/- 6.6 87.2 +/- 5.2 88 +/- 5.2 89.4 +/- 4 89 +/- 4.6 89.5 +/- 4.2

Longest 86.6 +/- 4.3 88.2 +/- 4.2 85.6 +/- 4.7 87.3 +/- 6.1 89.4 +/- 4.5 88.2 +/- 3.9 89 +/- 5.4 88.8 +/- 3.6
Voted 87.5 +/- 3.3 88.8 +/- 4.8 86.3 +/- 3.9 88.3 +/- 4.2 88.2 +/- 4.9 88.8 +/- 4.8 88.7 +/- 4.9 88.8 +/- 4.8

Table
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Nothing τ λ τ×λ τ→ λ
USPS

Last 87.4 90.7 87.4 90.3 90.2
Longest 87.5 89.9 87.4 90.3 89.9
Voted 89.7 90.9 89.6 90.9 90.9

Adult
Last 81.9 83.9 83 83.8 83.8

Longest 83.4 83.4 83.4 83.6 83.4
Voted 84.4 84.2 84.4 84.3 84.3

MNIST
Last 85.6 87.1 85.5 87.1 87.1

Longest 79.8 86.8 79.8 86.8 86.8
Voted 88 88.4 88 88.4 88.4

USPS,degree 4 poly kernel
Last 92.9 93.6

Longest 91.6 92.9
Voted 92.7 93.2

MNIST,degree 4 poly kernel
Last 95.2 95.4

Longest 93.2 94.9
Voted 94.8 95

Table 7: Parameter Optimization Results for Large Data Sets

Table 6 shows improvement over the basic algorithm in all data sets where parameter search
suggested a potential for improvement, and no decrease in performance in the other cases, so the
parameter selection indeed picks good values. Both τ and the voted perceptron provide consis-
tent improvement over the classical perceptron; the longest survivor provides improvement over the
classical perceptron on its own, but a smaller one than voted or τ in most cases. Except for im-
provements over the classical perceptron, none of the differences between algorithms is significant
according to the T -intervals calculated. As observed above in parameter search, the variants with α
and λ offer improvements in some cases, but when they do, τ and voted almost always offer a better
improvement. Ignoring the intervals we also see that neither the τ variant nor the voted perceptron
dominates the other. Combining the two is sometimes better but may decrease performance in the
high variance cases.

For further comparison we also ran experiments with kernel based versions of the algorithms.
Typical results in the literature use higher degree polynomial kernel on the “MNIST” and “USPS”
data sets. Table 7 includes results using τ with a degree 4 polynomial kernel for these data sets. We
can see that for “MNIST” the variants make little difference in performance but that for “USPS” we
get small improvements and the usual pattern relating the variants is observed.

Finally, Table 6 also gives results for SVM. We have used SVMlight (Joachims, 1999) and ran
with several values for the constants controlling the soft margin. For L1 optimization the values
used for the “-c” switch in SVMLight are {10−5, 10−4, 10−3, . . .,104}. For the L2 optimization, we
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used the following values for λ: {10−4,10−3, . . . ,103}. The results for SVM are given for the best
parameters in a range of parameters tried. Thus these are parameter search values and essentially
give upper bounds on the performance of SVM on these data sets. As can be seen the perceptron
variants give similar accuracies and smaller variance and they are therefore an excellent alternative
for SVM.

4. Discussion and Conclusions

The paper provides an experimental evaluation of several noise tolerant variants of the perceptron
algorithm. The results are surprising since they suggest that the perceptron with margin is the most
successful variant although it is the only one not designed for noise tolerance. The voted percep-
tron has similar performance in most cases, and it has the advantage that no parameter selection
is required for it. The difference between voted and perceptron with margin are most noticeable
in the artificial data sets, and the two are indistinguishable in their performance on the UCI data.
The experiments also show that the soft-margin variants are generally weaker than voted or margin
based algorithm and they do not provide additional improvement in performance when combined
with these. Both the voted perceptron and the margin variant reduced the deviation in accuracy in
addition to improving the accuracy. This is an important property that adds to the stability of the al-
gorithms. Combining voted and perceptron with margin has the potential for further improvements
but can harm performance in high variance cases. In terms of run time, the voted perceptron does
not require parameter selection and can therefore be faster to train. On the other hand its test time
is slower especially if one runs the primal version of the algorithm.

Overall, the results suggest that a good tradeoff is obtained by fixing a small value of τ; this
gives significant improvements in performance without the training time penalty for parameter op-
timization or the penalty in test time for voting. In addition, since we have ruled out the use of the
soft margin α variant we no longer need to run the algorithms for a large number of iterations; on
the other hand, although on-line to batch conversion guarantees only hold for one iteration, experi-
mental evidence suggests that a small number of iterations is typically helpful and sufficient.

Our results also highlight the problems involved with parameter selection. The method of double
cross-validation is time intensive and our experiments for the large data sets were performed using
the primal form of the algorithms since the dual form is too slow. In practice, with a large data
set one can use a hold-out set for parameter selection so that run time is more manageable. In
any case, such results must be accompanied by estimates of the deviation to provide a meaningful
interpretation.

As mentioned in the introduction a number of variants that perform margin based updates exist
in the literature (Friess et al., 1998; Gentile, 2001; Li and Long, 2002; Crammer et al., 2005; Kivi-
nen et al., 2004; Shalev-Shwartz and Singer, 2005; Tsampouka and Shawe-Taylor, 2005). The algo-
rithms vary in some other details. Aggressive ROMMA (Li and Long, 2002) explicitly maximizes
the margin on the new example, relative to an approximation of the constraints from previous exam-
ples. NORMA (Kivinen et al., 2004) performs gradient descent on the soft margin risk resulting in
an algorithm that rescales the old weight vector before the additive update. The Passive-Aggressive
Algorithm (Crammer et al., 2005) adapts η on each example to guarantee it is immediately separa-
ble with margin (although update size is limited per noisy data). The Ballseptron (Shalev-Shwartz
and Singer, 2005) establishes a normalized margin and replaces margin updates with updates on
hypothetical examples on which a mistake would be made. ALMA (Gentile, 2001) renormalizes
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the weight vector so as to establish a normalized margin. ALMA is distinguished by tuning its pa-
rameters automatically during the on-line session, as well as having “p-norm variants” that can lead
to other tradeoffs improving performance, for example, when the target is sparse. The algorithms
of Tsampouka and Shawe-Taylor (2005) establish normalized margin by different normalization
schemes. Following Freund and Schapire (1999) most of these algorithms come with mistake bound
guarantees (or relative loss bounds) for the unrealizable case, that is, relative to the best hypothesis
in a comparison class. Curiously, identical or similar bounds hold for the basic perceptron algorithm
so that these results do not establish an advantage of the variants over the basic perceptron.

Another interesting algorithm, the Second Order Perceptron (Cesa-Bianchi et al., 2005), does
not perform margin updates but uses spectral properties of the data in the updates in a way that can
reduce mistakes in some cases.

Additional variants also exist for the on-line to batch conversions. Littlestone (1989) picks
the best hypothesis using cross validation on a separate validation set. The Pocket algorithm with
ratchet (Gallant, 1990) evaluates the hypotheses on the entire training set and picks the best, and
the scheme of Cesa-Bianchi et al. (2004) evaluates each hypothesis on the remainder of the training
set (after it made a mistake and is replaced) and adjusts for the different validation set sizes. The
results in Cesa-Bianchi et al. (2004) show that loss bounds for the on line setting can be translated to
error bounds in the batch setting even in the unrealizable case. Finally, experiments with aggressive
ROMMA (Li and Long, 2002; Li, 2000) have shown that adding a voted perceptron scheme can
harm performance, just as we observed for the margin perceptron. To avoid this, Li (2000) develops
a scheme that appears to work well where the voting is done on a tail of the sequence of hypotheses
which is chosen adaptively (see also Dekel and Singer, 2005, for more recent work).

Consider the noise tolerance guarantees for the unrealizable case. Ideally, one would want to
find a hypothesis whose error rate is only a small additive factor away from the error rate of the
best hypothesis in the class of hypotheses under consideration. This is captured by the agnostic
PAC learning model (Kearns et al., 1994). It may be worth pointing out here that, although we have
relative loss bounds for several variants and these can be translated to some error bounds in the
batch setting, the bounds are not sufficiently strong to provide significant guarantees in the agnostic
PAC model. So this remains a major open problem to be solved.

Seeing our experimental results in light of the discussion above there are several interesting
questions. The first is whether the more sophisticated versions of margin perceptron add significant
performance improvements. In particular it would be useful to know what normalization scheme
is useful in what contexts so they can be clearly applied. We have raised parameter tuning as an
important issue in terms of run time and the self tuning capacity of ALMA and related algorithms
seems promising as an effective solution. Given the failure of the simple longest survivor it would be
useful to evaluate the more robust versions of Gallant (1990) and Cesa-Bianchi et al. (2004). Notice,
however that these methods have a cost in training time. Alternatively, one could further investigate
the tail variants of the voting scheme (Li, 2000) or the “averaging” version of voting (Freund and
Schapire, 1999; Gentile, 2001), explaining when they work with different variants and why. Finally,
as mentioned above, to our knowledge there is no theoretical explanation to the fact that perceptron
with margin performs better than the basic perceptron in the presence of noise. Resolving this is an
important problem.
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Abstract
Gaussian kernels with flexible variances provide a rich family of Mercer kernels for learning algo-
rithms. We show that the union of the unit balls of reproducing kernel Hilbert spaces generated by
Gaussian kernels with flexible variances is a uniform Glivenko-Cantelli (uGC) class. This result
confirms a conjecture concerning learnability of Gaussian kernels and verifies the uniform con-
vergence of many learning algorithms involving Gaussians with changing variances. Rademacher
averages and empirical covering numbers are used to estimate sample errors of multi-kernel regu-
larization schemes associated with general loss functions. It is then shown that the regularization
error associated with the least square loss and the Gaussian kernels can be greatly improved when
flexible variances are allowed. Finally, for regularization schemes generated by Gaussian kernels
with flexible variances we present explicit learning rates for regression with least square loss and
classification with hinge loss.
Keywords: Gaussian kernel, flexible variances, learning theory, Glivenko-Cantelli class, regular-
ization scheme, empirical covering number

1. Introduction

Let X be a metric space in Rn and Y ⊆ R. In learning theory, we are interested in the approximation
of functions or function relations from samples. The functions are from an input space X to an output
spaceY , and samples are drawn according to a Borel probability measure ρ on the space Z := X×Y .
The target function fVρ that we want to learn or approximate is a minimizer (may not be unique) of

some error functional E( f ) =
Z

Z
V (y, f (x))dρ induced by a loss function V : Y ×Y → R+, that is,

fVρ = argmin
{

E( f ) : f is a measurable function from X to Y
}
. (1)

To define fVρ , we denote ρX as the marginal distribution of ρ on X and dρ(·|x) the conditional
distribution. Then the error can be written as E( f ) =

R
X

R
Y V (y, f (x))dρ(y|x)dρX(x), and we choose

fVρ to be a minimizer of the pointwise error: for almost every x ∈ X ,

fVρ (x) = argmin
t∈Y

Z

Y
V (y, t)dρ(y|x).

c©2007 Yiming Ying and Ding-Xuan Zhou.
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The idea of many learning algorithms is to approximate f Vρ or its generalizing ability (measured
by the error in terms of the loss V ) by minimizing the empirical error Ez( f ) = 1

m ∑
m
i=1V (yi, f (xi)),

or a penalized version, where z = {(xi,yi)}mi=1 is a set of samples drawn independently according
to ρ. The law of large numbers tells us that Ez( f ) → E( f ) in probability for a fixed function f .
This leads to the natural expectation that a minimizer fz of Ez over a set of functions G , called the
hypothesis space, would approximate a minimizer fG of E in G (whose error is close to that of fVρ
whenG is large): E( fz)→E( fG ) asm→∞. This approximation behaves well when the hypothesis
space G enjoys the uniform convergence property (see Vapnik, 1998; Alon et al., 1997).

Throughout the paper we choose Y to be a subset of R, the loss function V has an extended
domain V : Y ×R → R+, and fVρ (x) is defined to be a minimizer of mint∈R

R
Y V (y, t)dρ(y|x). In

particular, for the binary classification problem (Devroye et al., 1997), we take Y = {1,−1} and
V (y, t) = φ(yt) with φ : R → R+. For the hinge loss φ(yt) = max{1− yt,0} used in the support
vector machine for classification (Cortes and Vapnik, 1995), the target function f Vρ (x) = fc(x) is
called the Bayes rule defined as fc(x) = 1 for ρ(y= 1|x)≥ ρ(y=−1|x), and fc(x) =−1 otherwise.
In this case, the uniform convergence can be characterized by the finiteness of the VC-dimension of
G (see, e.g., Vapnik, 1998).

For the regression problem, we choose Y = R and V (y, t) = ψ(y− t) with ψ : R → R+. In
particular, for the least square loss ψ(y− t) = (y− t)2, fVρ (x) = fρ(x) =

R
Y ydρ(y|x) is the regression

function (induced by conditional means). WhenY is a closed interval onR, the uniform convergence
of real-valued function space G can be characterized by the property: for every ε> 0, there holds

lim
!→+∞

sup
µ
Pr

{
sup
m≥!

sup
f∈G

∣∣∣∣
1
m

m

∑
i=1

f (xi)−
Z

X
f (x)dµ

∣∣∣∣ > ε

}
= 0. (2)

Here Pr denotes the probability with respect to the samples x1,x2, . . ., independently drawn ac-
cording to a Borel probability distribution µ on X . The supremum is taken with respect to all
such probability distributions. Following Dudley et al. (1991), we say that G is uniform Glivenko-
Cantelli (uGC) if it satisfies the equality (2) for any ε > 0, which is equivalent to the finiteness of
Vγ-dimension for any γ> 0 (Alon et al., 1997), see Section 4.

In this paper, we restrict our attention to the uniform convergence of kernel-based learning
algorithms. A function K : X×X → R is called a reproducing kernel if it is symmetric and positive
semidefinite, that is, for any finite set of distinct points {x1, · · · ,x!}⊂Ω, the matrix (K(xi,x j))!

i, j=1
is positive semidefinite. If moreover, K is continuous, then we call such a reproducing kernel a
Mercer kernel. The reproducing kernel Hilbert space (RKHS) HK associated with the kernel K is
defined to be the completion of the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with
the reproducing property (Aronszajn, 1950)

f (x) = 〈 f ,Kx〉K , ∀x ∈ X , f ∈ HK . (3)

Learning algorithms considered here can be stated as minimization problems in HK . The re-
producing property (3) makes the minimization over HK be realized by an optimization procedure
in Rm. Consider the Tikhonov regularization scheme (Evgeniou et al., 2000) associated with the
kernel K, loss V and a regularization parameter λ> 0 defined as

f̃z,λ = arg min
f∈HK

{
1
m

m

∑
i=1
V (yi, f (xi))+λ‖ f‖2K

}
.
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The Representer Theorem (Schölkopf et al., 2001; Wahba, 1990) tells us f̃z,λ = ∑m
i=1 ciKxi with

(ci)mi=1 ∈ Rm. When V is convex with respect to the second variable, this leads to a convex opti-
mization problem in Rm. In particular, for the least square loss or the hinge loss, it is a convex
quadratic programming optimization problem which can handle large data settings. For discussions
on the error rates of these schemes, see, for example, Vapnik (1998); Zhang (2004); Steinwart and
Scovel (2005). This paper aims at Tikhonov regularization schemes associated with a set of kernels.

1.1 Multi-kernel Regularization Schemes

Multi-kernel regularization schemes have attracted attention recently due to applications in multi-
task learning (Evgeniou and Pontil, 2004; Lanckriet et al., 2004), mixture density estimation (Li
and Barron, 1999; Rakhlin et al., 2005), multi-kernel regularized classifiers (Chapelle et al., 2002;
Cristianini et al., 1998; Wu et al., 2007), and many others. These schemes involve a set of Mercer
kernels {Kσ}σ∈Σ with an index set Σ and take the following form with the regularization parameter
λ> 0

fz,λ := argmin
σ∈Σ

min
f∈HKσ

{
1
m

m

∑
i=1
V (yi, f (xi))+λ‖ f‖2Kσ

}
, (4)

where the loss function V (y, ·) is usually convex for any y ∈ Y.
Throughout the paper we assume the existence of a solution to the optimization problem (4).

This assumption is satisfied when Σ is a compact metric space and Kσ(x,y) is continuous with
respect to σ ∈ Σ for each fixed pair (x,y) ∈ X × X . See Wu et al. (2007). When Σ = (0,b] (a
noncompact index set) with 0< b< ∞, each Kσ is a Gaussian kernel and V is the least-square loss,
the existence will be verified in Appendix B under some conditions on the sample z.

When we consider the convergence of E( fz,λ) to E( fVρ ), we need to find the hypothesis space
for the uniform convergence here. Since fz,λ is the minimizer in (4), with a special choice f = 0 we
see that whenever fz,λ ∈ HKσ , the quantity λ‖ fz,λ‖2Kσ is bounded by

Ez( fz,λ)+λ‖ fz,λ‖2Kσ ≤ Ez(0)+0≤ 1
m

m

∑
i=1
V (yi,0) ≤ ‖V (y,0)‖L∞ρ (Z).

When ρ satisfies ‖V (y,0)‖L∞ρ (Z) ≤M < ∞ (a strong assumption for regression problems, excluding
Gaussian noise), we have ‖ fz,λ‖Kσ ≤

√
M/λ for all z ∈ Zm. This leads to the following hypothesis

set.

Definition 1 The normalized hypothesis set H associated with Mercer kernels {Kσ}σ∈Σ is defined
as

H = ∪σ∈Σ{ f ∈ HKσ : ‖ f‖Kσ ≤ 1}. (5)

The above analysis tells us that if ‖V (y,0)‖L∞ρ (Z) ≤M, then fz,λ ∈
√

M
λ H =

{√
M
λ f : f ∈ H

}

for almost every z∈ Zm. For the study of uniform convergence and error analysis on the multi-kernel
scheme (4), a basic question is whether H is uGC. This is the main question investigated in this
paper. The reproducing property of RKHS plays an essential role in our subsequent investigations.

The first purpose of this paper is to show that the uGC property of H is equivalent to that of a
smaller set consisting of fundamental functions from the RKHS.
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Theorem 2 Let {Kσ}σ∈Σ be a set of Mercer kernels on X with

κ := sup
σ∈Σ

sup
x∈X

√
Kσ(x,x) < ∞. (6)

Then the set H defined by (5) is uGC if and only if the normalized fundamental set

F = FΣ = {Kσ
x : σ ∈ Σ,x ∈ X} (7)

is uGC.

Theorem 2 will be proved in Section 3. The reproducing property (3) tells us that ‖Kσ
x ‖Kσ =√

Kσ(x,x) ≤ κ for any x ∈ X and σ ∈ Σ. Therefore, the normalized condition (6) on the kernels
{Kσ : σ ∈ Σ} is essential for 1κF ⊆ H (a scaling). Since F contains much less functions than H ,
checking the uGC property for F is potentially much simpler than that for H . We shall use this
idea to establish the learnability of Gaussian kernels with flexible variances.

1.2 uGC Property for Gaussians with Flexible Variances

The second purpose of this paper is to verify the learnability of Gaussian kernels with flexible
variances stated in the form of the following uGC property. The theorem will be proved in Section 4.

Theorem 3 Let n ∈ N and X be any subset of Rn. Let

Kσ(x,y) = exp
{
−

n

∑
i=1

(xi− yi)2

σ2i

}
for σ= (σ1, . . . ,σn) ∈ (0,+∞)n. (8)

Define H by (5) with Σ= (0,+∞)n. Then H is uGC.

Note that each kernel in (8) is, in a way, normalized: its C(X) norm is 1, ensuring the kernel to
be uniformly bounded by 1 and (6) to be satisfied with κ= 1.

When X is compact and the index set is restricted to be [a,+∞)n with a > 0, we know from
Theorem 3 in Zhou (2003) that for any s ∈ N, the set H defined by (5) is included in a ball ofCs(X)
with a finite radius. Hence, the closure of H in C(X) is compact. This belongs to the well-studied
case (Cucker and Smale, 2001; Cucker and Zhou, 2007) that the closure of the hypothesis space H
is compact, and thereby satisfies the uniform convergence condition.

When a = 0 and the index set becomes (0,∞)n, the closure is not compact any more. This
observation led the second author to raise the following open problem in Zhou (2003): if we denote

Kσ(x,y) = exp
{
− |x− y|2

σ2

}
, with σ> 0, (9)

is the function set

H0 = ∪σ>0

{
f (x) = ∑!

i=1 ciKσ(xi,x) : ∑!
i, j=1 ciKσ(xi,x j)c j ≤ 1,

xi ∈ [0,1]n, and ! ∈ N
} (10)

involving the Gaussian kernels (9) with isotropic variances uGC? Using Theorem 3, we know that
the answer to the question is positive.
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Theorem 4 Let X = [0,1]n and Kσ be given by (9). Define H0 by (10). Then H0 is uGC. It is
contained in the unit ball of C(X), but its closure in C(X) is not compact.

Proof The first statement follows from Theorem 3 and the fact that any subset of a uGC set is uGC.
Since each function f from H0 satisfies ‖ f‖C(X) ≤ 1, this set is contained in the unit ball of

C(X).
To see the last statement, we apply the Arzelá-Ascoli Theorem (see Yosida, 1980, P.85) which

asserts that a subset of C(X) has compact closure if and only if it is bounded and equicontinuous.
Take fσ(x) = Kσ(x,0) = exp{− |x|2

σ2 } ∈ H0 with σ ∈ (0,∞). For the neighborhood [0,ε)n of 0 with
ε> 0, we see that

sup
σ∈(0,∞)

sup
t∈[0,ε)n

| fσ(t)− fσ(0)| = sup
σ∈(0,∞)

∣∣∣∣exp{−
nε2

σ2
}−1

∣∣∣∣ = 1 .→ 0.

Therefore, the set of functionsH0 is not equicontinuous. By the Arzelá-Ascoli Theorem, the closure
of H0 is not compact.

The rest of the paper is organized as follows. In the next section we show the implications of the
above main theorems to the error analysis for the regularization scheme (4). In particular, we present
error rates of two examples involving Gaussian kernels with flexible variances. Sections 3 and 4 are
distributed to prove Theorem 2 and 3 respectively. In Sections 5 and 6 we develop error bounds for
the multi-kernel regularization scheme (4), especially for Gassian kernels with flexible variances.
This is the last purpose of this paper. We postpone the derivation of error rates for regression with
least square loss and classification with hinge loss to the end of this paper.

2. Applications to Error Analysis: Two Examples

The theorems in Section 1 give us qualitative results on the learnability of multi-kernel scheme (4).
They can be deepened, which yields quantitative error rates for E( fz,λ)−E( fVρ ). In particular,
we expect to derive explicit rates for multi-kernel regularized learning algorithms associated with
Gaussian kernels with flexible variances.

To see how E( fz,λ) approximate E( fVρ ), assume fz,λ ∈ HKσ for some σ ∈ Σ and choose some
σ′ ∈ Σ and fλ ∈ HKσ′ called a regularizing function (Smale and Zhou, 2004). Write

E( fz,λ)−E( fVρ ) =
{
{E( fz,λ)−Ez( fz,λ)}+{Ez( fλ)−E( fλ)}

}
−λ‖ fz,λ‖2Kσ

+
{

(Ez( fz,λ)+λ‖ fz,λ‖2Kσ)− (Ez( fλ)+λ‖ fλ‖2Kσ′ )
}

+
{

E( fλ)−E( fVρ )+λ‖ fλ‖2Kσ′

}
.

The definition (4) tells us that the middle term above is at most 0. The first term
{
{E( fz,λ)−

Ez( fz,λ)}+ {Ez( fλ)− E( fλ)}
}
is called the sample error. Its second part Ez( fλ)− E( fλ) =

1
m ∑

m
i=1 ξ(zi)−E(ξ) involving a single random variable ξ=V (y, f (x)) on Z can be easily estimated.

The last term called the regularization error is independent of the samples (Niyogi and Girosi,
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1996; Cucker and Smale, 2001; Smale and Zhou, 2003) and measures the approximation ability of
the multi-kernel space ∪σ∈ΣHKσ .

Definition 5 The regularization error associated with the regularizing function fλ ∈HKσ with σ∈Σ
is defined as

D(λ) = E( fλ)−E( fVρ )+λ‖ fλ‖2Kσ .

The regularization error of the system (4) is

D̃(λ) =min
σ∈Σ

min
f∈HKσ

{E( f )−E( fVρ )+λ‖ f‖2Kσ}, (11)

where fλ takes the special form

fλ = fVλ := argmin
σ∈Σ

min
f∈HKσ

{E( f )+λ‖ f‖2Kσ}. (12)

Thus we have the error decomposition:

E( fz,λ)−E( fVρ ) ≤
{
{E( fz,λ)−Ez( fz,λ)}+{Ez( fλ)−E( fλ)}

}
+D(λ). (13)

What is left for the error analysis is the term E( fz,λ)−Ez( fz,λ). It involves a set of random variables
ξz = V (y, fz,λ(x)) with z ∈ Zm. That is also the motivation to study the uniform convergence of H
(Vapnik, 1998).

By the error decomposition (13), the learning rate depends on trading off the sample error and
the regularization error. The decay of regularization error D̃(λ) relies on the regularity (smooth-
ness) of the target function fVρ for most commonly used loss functions which will be discussed in
Section 6. Sample error estimates depend on the capacity of the hypothesis space

√
M/λ H which

can be studied (see, e.g., Koltchinskii and Panchenko, 2002) by means of its covering numbers and
Rademacher complexity (see Section 5). However, it is not easy to estimate the Rademacher com-
plexity of

√
M/λ H . In Section 5 we provide an alternative way to estimate the sample error by

computing the Rademacher complexity of the fundamental set F .
Let us give two examples both involving the Gaussian kernels (8) with flexible variances to

illustrate the learning rates whose proofs will be given in Section 6.
The first example is regularized regression with the least square loss V (y, t) = (y− t)2. Here

Y = R. Then the multi-kernel least square regularized regression algorithm (4) associated with
Gaussian kernels (8) can be written as

fz,λ = argmin
σ∈Σ

min
f∈HKσ

{ 1
m

m

∑
i=1

(yi− f (xi))2+λ‖ f‖2Kσ

}
. (14)

By the special feature of the least square loss, the distance between fz,λ and the target function fρ is
often measured by the weighted L2 metric in L2ρX defined as ‖ f‖L2ρX = (

R
X | f (x)|2dρX)1/2. When ρX

is the Lebesgue measure, we denote the metric as ‖ f‖L2(X) in Example 1. Also, denote H s(X) to be
the Sobolev space (e.g., Stein, 1970) with index s> 0 on X .

For this multi-kernel algorithm, we have the following learning rates achieved by special choices
of the regularization parameter λ= λ(m).

254



LEARNABILITY OF GAUSSIANS

Example 1 Let X ⊆Rn be a domain with Lipschitz boundary. Define fz,λ by (14) with the Gaussians
(8). Assume fρ ∈ Hs(X) for s> 0 and |y|≤M0 almost surely.
(1) If n/2< s≤ n/2+2 then for any 0< ε< 2s−n, we have

E
[
‖ fz,λ− fρ‖2L2ρX (X)

]
= O

(
(logm)

1
2m− 2s−n−ε

4(4s−n−2ε)
)

by taking λ= m− 2s−ε
4(4s−n−2ε) .

(2) If X is bounded, ρX is the Lebesgue measure, and s≤ 2 then by choosing λ= m− 2s+n
4(4s+n) , we get

E
[
‖ fz,λ− fρ‖2L2(X)

]
= O

(
(logm)

1
2m− s

2(4s+n)
)
.

In the above example we are considering the function approximation (De Vito et al., 2005;
Smale and Zhou, 2005) on a domain of Rn, so the learning rate is poor if the dimension n is large.
However, in many situations, the input space X is a low-dimensional manifold embedded in the
large-dimensional space Rn. In such a situation, the learning rates may be greatly improved. This
will not be discussed in this paper because the discussion involves the function approximation on
Riemannian manifolds (see, e.g., Ye and Zhou, 2007), which is out of our scope here.

The second example is regularized classification with the hinge loss V (y, t) = (1− yt)+ :=
max{1− yt,0}. Here Y = {1,−1} and we are interested in functions C : X → Y called binary
classifiers which divide X into two classes. The target function is the Bayes rule fc.

The multi-kernel SVM regularized classification algorithm (4) associated with Gaussian kernels
(8) is defined to be a minimizer of the following optimization problem

fz,λ = argmin
σ∈Σ

min
f∈HKσ

{ 1
m

m

∑
i=1

(1− yi f (xi))+ +λ‖ f‖2Kσ

}
. (15)

Then the sign function sgn( fz,λ) is used as a classifier where sgn( f )(x) = 1 for f (x) ≥ 0 and
sgn( f )(x) = −1 otherwise.

The prediction power of classifiers is measured by the misclassification error. The misclassifi-
cation error for a classifier C : X → Y is defined to be

R (C ) := Pr{C (x) .= y} =
Z

X
P(y .= C (x)|x)dρX . (16)

The Bayes rule is the classifier which minimizes the misclassification error.
The error analysis of classification algorithms often aims at understanding the approximating

behaviors of the excess misclassification error

R (sgn( fz,λ))−R ( fc)

as the sample size m becomes large. Our learning rate for the hinge loss assumes a separable
condition which was introduced by Chen et al. (2004) as follows.

Definition 6 We say that ρ is separable by HΣ if there is some fsp ∈ HKσ with some σ∈ Σ such that
y fsp(x) > 0 almost surely. It has separation exponent θ ∈ (0,∞] if we can choose fsp and positive
constants Δ,cθ such that ‖ fsp‖Kσ = 1 and

ρX
{
x ∈ X : | fsp(x)| < Δt

}
≤ cθtθ, ∀t > 0. (17)
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Observe that condition (17) with θ= ∞ is equivalent to

ρX{x ∈ X : | fsp(x)| < γt} = 0, ∀ 0< t < 1.

That is, | fsp(x)| ≥ γ almost everywhere. Thus, separable distributions with separation exponent
θ= ∞ are exactly strictly separable distributions. Recall (Shawe-Taylor et al., 1998; Vapnik, 1998)
that ρ is said to be strictly separable with margin γ > 0 if ρ is separable together with the require-
ment y fsp(x) ≥ γ almost everywhere. The separation condition is different from the Tsybakov’s
noise condition (Tsybakov, 2004): the former involves a function fsp from HKσ and describes the
approximation of the RKHS (Chen et al., 2004), while the latter is about the distribution ρ only.

The learning rates for the multi-kernel SVM algorithm (15) can be stated as follows.

Example 2 Let fz,λ be defined by (15) with {Kσ} given by (8). If ρ is separable by HΣ with some
separation exponent θ> 0, then by choosing λ= m− 2+θ

2(2+3θ) , we have

E
[
R (sgn( fz,λ))−R ( fc)

]
= O

(
(logm)

1
2m− θ

2(2+3θ)
)
.

It is observed in applications that allowing flexible variances improves the learnability of Gaus-
sian kernels. As we shall see in Section 6 for the least square loss, when the regression function
fρ has Sobolev smoothness, the regularization error (11) associated with Gaussians with flexible
variances decays as O(λs) for some s> 0. This has also been confirmed theoretically by Steinwart
and Scovel (2005) for classification with the hinge loss, under some geometric noise condition for
the distribution. Such a decay is impossible for the regularization error associated with a single
Gaussian kernel, at least when ρX is the Lebesgue measure on X , as shown by Smale and Zhou
(2003). This demonstrates that learning algorithms using Gaussian kernels with flexible variances
have advantages for many applications.

Another way to obtain improved error rates is to take kernels changing with the sample size.
Kernels of this kind include polynomial kernels with changing degrees (Zhou and Jetter, 2006) and
Gaussian kernels with changing variances (Steinwart, 2001; Steinwart and Scovel, 2005). Though
the learning rates given by Steinwart and Scovel (2005) is comparable to those in Example 2, the
main difficulty there is a requirement of some information about the distribution ρ for the choice
of the kernel (similar to the choice of the regularization parameter according to some regularity
properties of ρ). Compared to that, when no information about ρ is available, the algorithm (4) still
produces the empirically optimal kernel from the kernel set, as part of the optimization problem.

3. Reducing the Hypothesis Set

In this section we show how the uGC property of the normalized hypothesis set can be reduced
to that of the normalized fundamental set, hence establish Theorem 2. For σ ∈ Σ, denote Hσ =
HKσ ,〈·, ·〉σ = 〈·, ·〉Kσ , and κσ = supx∈X

√
Kσ(x,x). Assume κσ < ∞.

Let µ be a Borel probability distribution on X . For {xi}mi=1 drawn according to µ, we denote
Em( f ) = 1

m ∑
m
i=1 f (xi) and E( f ) =

R
X f (x)dµ.

To prove Theorem 1, we need the following proposition about the function

Fσ(x) :=
Z

X
Kσ(x,y)dµ(y), x ∈ X . (18)
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Proposition 7 Let Kσ be a Mercer kernel on X and µ be a Borel probability distribution. Define
the function Fσ by (18). Then we have
(a) Fσ ∈ Hσ;
(b) 〈 f ,Fσ〉σ =

R
X f (y)dµ(y) for every f ∈ Hσ.

Proof Define a linear functional Tσ on Hσ as

Tσ( f ) =
Z

X
f (y)dµ(y).

Since µ is a Borel probability measure on X , we know by the reproducing property (3)

|Tσ( f )|≤
Z

X
|〈 f ,Kσ

y 〉σ|dµ(y) ≤ κσ‖ f‖σ, ∀ f ∈ Hσ.

This means Tσ is a bounded linear functional on the Hilbert space Hσ. By the Riesz Representation
Theorem of Hilbert spaces, we know that there exists a function gσ ∈ Hσ such that

Tσ( f ) = 〈 f ,gσ〉σ, ∀ f ∈ Hσ. (19)

In particular, for the function f = Kσ
x lying in Hσ with x being an arbitrarily fixed point in X , there

holds
Tσ(Kσ

x ) =
Z

X
Kσ
x (y)dµ(y) =

Z

X
Kσ(x,y)dµ(y) = 〈Kσ

x ,gσ〉σ = gσ(x).

This equals to Fσ(x) according to the definition (18). Hence Fσ(x) = gσ(x) for every x ∈ X . There-
fore Fσ = gσ ∈ Hσ which proves property (a). Property (b) is an immediate consequence of equality
(19) since gσ = Fσ.

Property (a) of Proposition 7 means that the integral and the inner product with Kσ
y can be

interchanged:
〈 f ,

Z

X
Kσ(·,y)dµ(y)〉σ =

Z

X
f (y)dµ(y) =

Z

X
〈 f ,Kσ

y 〉σdµ(y).

Lemma 8 Let Kσ be a Mercer kernel on X and µ be a Borel probability distribution. Denote
Gσ(x) = 1

m ∑
m
i=1Kσ(xi,x)−Fσ(x) for m ∈ N and x= (xi)mi=1 ∈ Xm. Then, the following statements

are true.
(a) Gσ ∈ Hσ and sup f∈Hσ,‖ f‖σ≤1|Em( f )−E( f )| = ‖Gσ‖σ.

(b) ‖Gσ‖σ ≤
√
2‖Gσ‖C(X) and ‖Gσ‖C(X) ≤ κσ‖Gσ‖σ.

Proof By property (a) of Proposition 7, Gσ = 1
m ∑

m
i=1Kσ

xi −Fσ ∈ Hσ. This in connection with (3)
and property (b) of Proposition 7 tells us that for any f ∈ Hσ,

Em( f )−E( f ) = 〈 f , 1
m

m

∑
i=1

Kσ
xi −Fσ〉σ = 〈 f ,Gσ〉σ.

Then
sup

f∈Hσ,‖ f‖σ≤1
|Em( f )−E( f )| = sup

f∈Hσ,‖ f‖σ≤1
|〈 f ,Gσ〉σ| = ‖Gσ‖σ.
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This proves the first statement.
To verify the second statement, we compute the norm ‖Gσ‖σ by the definition and property (b)

of Proposition 7. It yields

‖Gσ‖2σ =
1
m2

m

∑
i, j=1

Kσ(xi,x j)−
2
m

m

∑
i=1

Z

X
Kσ
xi(y)dµ(y)+

Z

X
Fσ(y)dµ(y).

But
R
X Kσ

xi(y)dµ(y) =
R
X Kσ(xi,y)dµ(y) = Fσ(xi). So we have

‖Gσ‖2σ = 1
m

m

∑
i=1

{
1
m

m

∑
j=1

Kσ(xi,x j)−Fσ(xi)
}

−
Z

X

{
1
m

m

∑
i=1

Kσ(xi,y)−Fσ(y)
}
dµ(y)

=
1
m

m

∑
i=1

Gσ(xi)−
Z

X
Gσ(y)dµ(y)

≤ 2sup
y∈X

|Gσ(y)| = 2‖Gσ‖C(X).

This gives the first inequality of the second statement.
The second inequality of the second statement follows directly from the reproducing property:

|Gσ(y)| = |〈Gσ,Kσ
y 〉σ|≤ ‖Gσ‖σ‖Kσ

y ‖σ ≤ κσ‖Gσ‖σ, ∀y ∈ X .

This completes the proof of the lemma.

Now we are ready to prove Theorem 2 stated in Section 1.
Proof of Theorem 2. Recall κ= supσ∈Σκσ and the definition (5) of the setH . By Part (a) of Lemma
8,

sup
f∈H

|Em( f )−E( f )| = sup
σ∈Σ

sup
f∈Hσ,‖ f‖σ≤1

|Em( f )−E( f )| = sup
σ∈Σ

‖Gσ‖σ.

On the other hand, since {Kσ
y : σ ∈ Σ,y ∈ X} is exactly the set F according to its definition (7), we

see that

sup
f∈F

|Em( f )−E( f )| = sup
σ∈Σ

sup
y∈X

∣∣∣
1
m

m

∑
i=1

Kσ
y (xi)−Fσ(y)

∣∣∣ = sup
σ∈Σ

‖Gσ‖C(X).

This in connection with Lemma 8 implies that for any ε> 0 and ! ∈ N, there holds
{
supm≥! sup f∈F |Em( f )−E( f )| > κε

}
⊆

{
supm≥! sup f∈H |Em( f )−E( f )| > ε

}

⊆
{
supm≥! sup f∈F |Em( f )−E( f )| > ε2

2

}
.

Therefore, H is uGC if and only if F is. This proves Theorem 2.
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4. Gaussian Kernels Provide uGC Hypothesis Sets

In this section we establish the uGC property of Gaussians with flexible variances stated in The-
orem 3. This will be done by verifying a criterion for uGC sets in terms of empirical covering
numbers given by Dudley et al. (1991). For 1 ≤ p < +∞ and x = (xi)mi=1 ∈ Xm, we denote the l p
empirical metric of two functions f ,g as

dx,p( f ,g) =
( 1
m

m

∑
i=1

| f (xi)−g(xi)|p
)1/p

and for p= ∞
dx,∞( f ,g) = max

1≤i≤m
| f (xi)−g(xi)|.

Definition 9 Let G be a set of functions on X, 1 ≤ p ≤ +∞ and x = (xi)mi=1 ∈ Xm. The empirical
covering number Np(G ,x,η) is defined to be the minimal integer N such that there are N functions
{g j}Nj=1 ⊂ G satisfying

min
1≤ j≤N

dx,p(g,g j) ≤ η, ∀g ∈ G .

The metric entropy of G is defined as

Hm,p(G ,η) = sup
x∈Xm

logNp(G ,x,η), m ∈ N,η> 0.

The following criterion was established by Dudley et al. (1991).

Lemma 10 A set G of functions from X to [0,1] is uGC if and only if for some 1≤ p≤ +∞, there
holds

lim
m→∞

Hm,p(G ,η)
m

= 0, ∀η> 0.

To continue, we need the following combinatorial dimensions.

Definition 11 Let G be a set of functions from X to [0,1]. We say that A ⊂ X is Vγ shattered (Pγ
shattered) by G if there is a number α ∈ R (a function s : A→ [0,1]) with the following property:
For every subset E of A there exists some function fE ∈ G such that fE(x)≤ α−γ ( fE(x)≤ s(x)−γ)
for every x ∈ A \E, and fE(x) ≥ α+ γ ( fE(x) ≥ s(x)+ γ) for every x ∈ E. The Vγ dimension of G ,
Vγ(G), (The Pγ dimension of G , Pγ(G),) is the maximal cardinality of a set A⊂ X that is Vγ shattered
(Pγ shattered) by G .

Based on Lemma 10, Alon et al. (1997) showed that G is uGC if and only if the Vγ dimension
or Pγ dimension of G is finite for every γ> 0.

In addition, we need the following relation between the dimensions and the empirical covering
numbers essentially proved by Alon et al. (1997). A complete proof is given in Appendix A.

Lemma 12 Let G be a set of functions from X to [0,1].

(a) Vγ(G) ≤ Pγ(G) ≤ ( 2γ +1)Vγ/2(G) for any γ> 0.
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(b) For every m ∈ N and 0< ε< 1, there holds

sup
x∈Xm

N∞(G ,x,ε) ≤ 2
(
4m
ε2

)1+d log( 2emε )
, d := Pε/4(G).

With the above preparations, we can prove Theorem 3. First, let us begin with the univariate
case.

Lemma 13 Let X be a subset of R and F be given by (7) with Kσ(x,y) = exp{− (x−y)2
σ2 } and

Σ= (0,+∞). Then Vγ(F ) ≤ 2 for every γ> 0.

Proof Suppose to the contrary that Vγ(F ) ≥ 3 for some γ > 0. It means that there is a set A =
{x1,x2,x3} ⊂ X with x1 < x2 < x3 which is Vγ-shattered by F . That is, there is some α ∈ R such
that for every E ⊆ A there exists some function fE ∈ F satisfying

{
fE(x) ≤ α− γ, for x ∈ A\E,
fE(x) ≥ α+ γ, for x ∈ E.

Take E = {x1,x3} ⊂ A. Then there is a function fE ∈ F such that fE(x2) ≤ α− γ and fE(x1),
fE(x3) ≥ α+ γ. The function fE can be represented as fE(x) = exp{− (x−y)2

σ2 } for some y ∈ X and
σ ∈ (0,∞). It can be extended to the whole real line with the same expression and we denote this
extended function as f̃E . The function f̃E has no local minimum on R. However, it is continuous
and satisfies

f̃E(x1) = fE(x1) > fE(x2) = f̃E(x2), f̃E(x3) = fE(x3) > fE(x2) = f̃E(x2).

So the minimum value of f̃E on the closed interval [x1,x3] is achieved on the open interval (x1,x3).
Consequently, f̃E has a local minimum on R, which is a contradiction.

Next, we prove Theorem 3 by Lemmas 10 and 13. Here the tensor product form of the functions
in the set F plays an essential role.
Proof of Theorem 3. By Theorem 2, we need to show that F is uGC. Consider another set of
functions on Rn defined as

F̃ = {Kσ
x = Kσ(x, ·) : σ ∈ Σ,x ∈ Rn}.

If F̃ is uGC as a set of functions from Rn to [0,1], then its restriction onto X is also uGC, which
would imply the uGC property of F . Therefore, it suffices to prove the uGC of F̃ .

Define sets of univariate functions as

F j =
{
e−(t−s j)2/σ2j : σ j ∈ (0,∞),s j ∈ R

}
, j = 1,2, . . . ,n.

Fix j ∈ {1,2, . . . ,n}. Consider the set F j of functions from R to [0,1]. Lemma 13 tells us that
Vγ(F j) ≤ 2 for every γ > 0. Applying Lemma 12 to G = F j of functions on R, we find that for
every 0< ε< 1, Pε/4(F j) ≤ 16

ε +2 and

sup
t∈Rm

N∞(F j, t,ε) ≤ N0 := 2
(
4m
ε2

)1+( 16ε +2) log( 2emε )
. (20)
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Now we apply (20) to estimate the empirical covering number of the set F̃ . To this end, let
0< ε< 1 and x= (xi)mi=1 where each point xi ∈ Rn can be expressed as a vector xi = (xi,1, . . . ,xi,n).
Let j ∈ {1,2, . . . ,n}. Consider t := (xi, j)mi=1 ∈ Rm. The bound (20) tells us that there are N0 pairs

{(σ j,!,s j,!)}N0
!=1 with σ j,! ∈ (0,∞) and s j,! ∈R representingN0 functions

{
g!(t) = e−(t−s j,!)2/σ2j,!

}N0

!=1
⊂ F j such that

min
1≤!≤N0

dt(g,g!) = min
1≤!≤N0

{
max
1≤i≤m

|g(xi, j)−g!(xi, j)|
}
≤ ε, ∀g ∈ F j.

That is, for any σ j ∈ (0,∞) and s j ∈ R, we can find some ! ∈ {1, . . . ,N0} satisfying
∣∣∣∣exp

{
−

(xi, j− s j)2

σ2j

}
− exp

{
−

(xi, j− s j,!)2

σ2j,!

}∣∣∣∣ ≤ ε, ∀i= 1, . . . ,m. (21)

Now we choose a set Fε of functions on Rn consisting of N n
0 functions

f!1,!2,...,!n(·) = exp
{
−

n

∑
j=1

(· j− s j,! j)2

σ2j,! j

}
, !1,!2, . . . ,!n ∈ {1,2, . . . ,N0}.

Each function f ∈ F̃ can be expressed as

f (xi) = exp
{
−

n

∑
j=1

(xi, j− s j)2

σ2j

}

with {σ j}nj=1 ⊂ (0,∞)n and {s j}nj=1 ⊂ Rn. We can choose some {! j}n!=1 ∈ {1, . . . ,N0}n satisfying
(21). Then

| f (xi)− f!1,!2,...,!n(xi)|≤
n

∑
p=1
exp

{
−

n

∑
j=p+1

(xi, j− s j)2

σ2j

}
ε≤ nε.

Thus, we have
dx,∞( f , f!1,!2,...,!n) = max

1≤i≤m
| f (xi)− f!1,!2,...,!n(xi)|≤ nε.

By the definition of empirical covering numbers, we have

N∞(F̃ ,x,nε) ≤ N n
0 = 2n

(
4m
ε2

)n+( 16ε +2)n log( 2emε )
.

Therefore, for any 0< ε< 1,

Hm,∞(F̃ ,nε) ≤ n log2+
(
n+

(
16
ε

+2
)
n log

(
2em
ε

))
log

4m
ε2

. (22)

Observe that N∞(F̃ ,x,ε) = 1 for any ε≥ 1. Hence Hm,∞(F̃ ,nε) = 0 for any ε≥ 1. Combining this
observation with (22) implies that

lim
m→∞

Hm,∞(F̃ ,nε)
m

= 0, for any ε> 0.

Hence F̃ is uGC by Lemma 10. This completes the proof of Theorem 3.
The proof of Theorem 3 actually gives estimates for the empirical covering number which can

be used to bound the sample error in (13) as we shall do in the following section.
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5. Error Bound by Rademacher Averages

In order to bound the error E( fz,σ)−E( fVρ ), we know from the error decomposition (13) that it is
sufficient to estimate the sample error and the regularization error. In particular, we will provide the
error bounds for the multi-kernel scheme (4) generated by Gaussians with flexible variances.

5.1 Sample Error Estimate

In this subsection we are mainly concerned about the sample error. The regularization error will be
discussed in the next subsection. The estimate of the sample error for the regularized multi-kernel
scheme (4) involves the hypothesis space

Hλ =
[

σ∈Σ

{
f ∈ HKσ : ‖ f‖Kσ ≤

√
M
λ

}
. (23)

Below, we show how to get sample error estimates by Rademacher complexities (Bartlett and
Mendelson, 2002; Koltchinskii, 2001; Koltchinskii and Panchenko, 2002) of the reduced hypothesis
space F defined by (7), which is potentially easier to compute than that of Hλ. Let’s first introduce
Rademacher average over a set of functions F on Ω.

Definition 14 Let µbe a probability measure onΩ and F be a class of uniformly bounded functions.
For every integer m, let

Rm(F) := EµEε

[ 1
m
sup
f∈F

∣∣∣
m

∑
i=1

εi f (zi)
∣∣∣
]

where {zi}mi=1 are independent random variables distributed according to µ and {εi}mi=1 are inde-
pendent Rademacher random variables, that is, P(εi = +1) = P(εi = −1) = 1/2.

Turn to the multi-kernel regularization scheme (4). If the loss function V (y, t) is convex with
respect to t, its left and right partial derivatives with respect to the second variable, denoted as
V ′
−(y, t),V ′

+(y, t) respectively for simplicity, exist for every y ∈ Y . Throughout this section, we
assume the loss function is admissible in the following sense.

Definition 15 We say that the loss function V : Y ×R → R+ is admissible (with respect to ρ) if it
is convex with respect to the second variable, M = ‖V (y,0)‖L∞ρ (Z) < +∞ and, for any λ > 0 there
holds

Cλ = sup
{
max(|V ′

−(y, t)|, |V ′
+(y, t)|) : y ∈ Y, |t|≤ κ

√
M
λ

}
< +∞. (24)

We also need the following lemma (Bartlett andMendelson, 2002; Ledoux and Talagrand, 1991)
summarizing some of the properties of Rademacher averages. A complete proof is given in Ap-
pendix A.

Lemma 16 Let F be a class of uniformly bounded real-valued functions on (Ω,µ) and m ∈ N.

(a) For every c ∈ R, Rm(cF) = |c|Rm(F), where cF = {c f : f ∈ F}.
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(b) If for each i ∈ {1, . . . ,m}, φi :R → R is a function with φi(0) = 0 having a Lipschitz constant ci,
then for any {xi}mi=1,

Eε

[
sup
f∈F

|
m

∑
i=1

εiφi( f (xi))|
]
≤ 2Eε

[
sup
f∈F

∣∣∣
m

∑
i=1

ciεi f (xi)|
]
.

The sample error analysis of multi-kernel regularization scheme (4) involves the Rademacher
complexity of the fundamental space F denoted by

Rm(F ) = EρXEε

[ 1
m
sup
f∈F

|
m

∑
i=1

εi f (xi)|
]
.

Lemma 17 Let Hλ be defined by (23), then

E
[
sup
f∈Hλ

|E( f )−Ez( f )|
]
≤ 4Cλ

√
M
λ

(
Rm(F )

)1/2
+
2M√
m

.

Proof Let Vλ be a set of functions on Z defined as

Vλ =
{
V (y, f (x)) : f ∈ Hλ

}
.

Using standard symmetrization arguments (e.g., Van der Vaart and Weller, 1996, Lemma 2.3.1), one
can see that

EρEε

[
sup
f∈Hλ

|E( f )−Ez( f )|
]
≤ 2EρEε

[
sup
f∈Hλ

1
m
|
m

∑
i=1

εiV (yi, f (xi))|
]
:= 2Rm(Vλ).

To handle Rm(Vλ), we apply Lemma 16. To this end, note that ‖ f‖∞ ≤ κ
√
M/λ for all f ∈ Hλ,

for fixed {yi}mi=1 ∈ Ym. If we define functions

φi(t) =






V (yi, t)−V (yi,0) when |t|≤ κ
√
M/λ

V (yi,κ
√
M/λ)−V (yi,0) when t ≥ κ

√
M/λ

V (yi,−κ
√
M/λ)−V (yi,0) when t ≤−κ

√
M/λ,

then φi(t) : R → R has the Lipschitz constant ci =Cλ and φi(0) = 0 for any i. Applying Lemma 16

to the space Hλ, then Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi, f (xi))
∣∣∣
]
is bounded by

Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiφi( f (xi))
∣∣∣
]
+Eε

[
sup
f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi,0)
∣∣∣
]

≤ 2Eε

[
sup f∈Hλ

|
m

∑
i=1
Cλεi f (xi)

∣∣∣
]
+

[
Eε

∣∣∣
m

∑
i=1

εiV (yi,0)
∣∣∣
2]1/2

= 2Cλ
√

M
λ Eε

[
sup f∈H |

m

∑
i=1

εi f (xi)|
]
+

(
Eε

[ m

∑
i, j=1

εiV (yi,0)V (y j,0)ε j
])1/2

.

It follows that

Eε

[
sup f∈Hλ

∣∣∣
m

∑
i=1

εiV (yi, f (xi))
∣∣∣
]

≤ 2Cλ
√

M
λ Eε

[
sup f∈H |

m

∑
i=1

εi f (xi)|
]

+M
√
m.

(25)
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For the first term on the right hand side of the above inequality, we use the reproducing property (3)
and obtain

sup f∈H |∑m
i=1 εi f (xi)| = supσ∈Σ sup f∈HKσ

‖ f‖Kσ≤1
|〈∑m

i=1 εiKσ
xi , f 〉Kσ | = supσ∈Σ

∥∥∥∥
m

∑
i=1

εiKσ
xi

∥∥∥∥
Kσ

=
[
supσ∈Σ∑m

i, j=1 εiKσ(xi,x j)ε j
]1/2

.

(26)

But by the definition of the fundamental set F , we know that

supσ∈Σ∑m
i, j=1 εiKσ(xi,x j)ε j ≤ msupσ∈Σ sups∈X |

m

∑
i=1

εiKσ(xi,s)|

= msup f∈F |
m

∑
i=1

εi f (xi)|.
(27)

Combining the estimates (25), (26), and (27) implies that

Rm(Vλ) ≤ 2Cλ
√

M
λ EρXEε

[
1
m sup f∈F |

m

∑
i=1

εi f (xi)|
]1/2

+
M√
m

≤ 2Cλ
√

M
λ

(
Rm(F )

)1/2
+ M√

m .

This finishes Lemma 17.

The following error bound for the multi-kernel scheme (4) is a straightforward consequence of
the sample error estimate and the error decomposition (13).

Theorem 18 Let V be admissible with Cλ given by (24). Define fz,λ by (4). Then we have

E
[
E( fz,λ)−E( fVρ )

]
≤ 4Cλ

√
M
λ

(
Rm(F )

)1/2
+
2M√
m

+ D̃(λ).

Proof By the error decomposition (13), a special choice f Vλ ∈ HKσ with some σ∈ Σ defined by (12)
gives us that

E( fz,λ)−E( fVρ ) ≤
{

E( fz,λ)−Ez( fz,λ)+Ez( fVλ )−E( fVλ )
}

+ D̃(λ).

Together with the fact E(Ez( fVλ )) = E( fVλ ) and fz,λ ∈ Hλ defined in (23), we know that

E
[

E( fz,λ)−Ez( fz,λ)+Ez( fVλ )−E( fVλ )
]
≤ E

[
sup
f∈Hλ

|E( f )−Ez( f )|
]

which in connection with Lemma 17 yields the desired estimate.

To estimate the Radmacher average Rm(F ) in Theorem 18, one can resort to the following
bound using the empirical l2 covering number, which is due to Dudley (1999); Van der Vaart and
Weller (1996).
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Lemma 19 Let F be a class of uniformly bounded functions. Then there exists an absolute constant
C such that, for any sample {xi}mi=1, there holds

1√
m

Eε

[
sup
f∈F

|
m

∑
i=1

εi f (xi)|
]
≤C

Z +∞

0

√
logN2(F,x,ε)dε.

Applying the estimate in the proof for Theorem 3, we can compute the Radmacher average
Rm(F ) for Gaussian kernels with flexible variances, and hence yields the subsequent error bound.

Theorem 20 Let X be a subset of Rn and V be admissible. Define fz,λ by (4) and the Gaussian
kernels by (8). Then we have

E
[
E( fz,λ)−E( fVρ )

]
≤Cλ

√
C′M
λ

( log2m
m

)1/4
+
2M√
m

+ D̃(λ), (28)

where C′ is a constant independent of m or λ.

Proof Recall the fundamental function set F defined by (7). Consider the larger set

F̃ = {Kσ
x = Kσ(x, ·) : σ ∈ Σ,x ∈ Rn}.

The estimate (22) tells us that for 0< ε< 1,

logN2(F̃ ,x,ε) ≤ logN∞(F̃ ,x,ε)
≤ n log2+

(
n+

(
16n
ε +2

)
n log

(
2enm
ε

))
log 4n2mε2 .

Since Kσ ≤ 1 for each σ ∈ Σ, we see that logN2(F̃ ,x,ε) = 0 for any ε ≥ 1. Applying Lemma 19,
we have

Rm(F̃ ) ≤C′′ log2m√
m

,

where C′′ is an absolute constant independent of m. The trivial fact Rm(F ) ≤ Rm(F̃ ) together with
Theorem 18 gives us the desired result.

In order to get explicit error rates, we see from Theorems 18 and 20 that what left is to estimate
the regularization error.

5.2 Regularization Error with Gaussians

In this subsection we exclusively focus on the multi-kernel regularization error (11) associated with
the least square loss and Gaussian kernels. We show that how the Fourier analysis (Stein, 1970)
can be applied to get the polynomial decay of the regularization error under Sobolev smoothness
condition on the regression function.

Before we go to the main point, it is worth briefly mentioning why the multi-kernel regulariza-
tion error can improve the error rates. To this end, note that, for the regularization error of a single
Gaussian kernel, it was proved by Smale and Zhou (2003) that the polynomial decay O(λs) for
some s > 0 is impossible under the Sobolev smoothness hypothesis on the regression function fρ.
Actually, it only decays logarithmically O((log(1/λ))−s) for some s> 0. Putting this logarithmical
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decay back into (28) and trading off λ and m, we notice that the error rate is unacceptably slow.
Below we show that the multi-kernel scheme (4) associated with the least square loss and Gaussian
kernels (9) with flexible isotropic variances can give regularization errors D̃(λ) of polynomial de-
cays O(λβ) for some β > 0, under the assumption of Sobolev smoothness on fρ. Combining this
polynomial decay with (28) can give rise to tighter bounds compared to the single kernel case.

To estimate the multi-kernel regularization error (11), we introduce some basic facts about
RKHS (Aronszajn, 1950). Let Ω be a domain (bounded or not) in Rn. Let σ > 0. Consider the
RKHS induced by the Gaussian kernel given in (9) as Kσ(x,y) = exp{− |x−y|2

σ2 } : Ω×Ω→ R. We
denote it as HKσ(Ω) with norm ‖ ·‖HKσ (Ω) for simplicity. Let Ω̃⊂Ω. By restricting the kernel Kσ to
Ω̃× Ω̃, it also induces an RKHS in Ω̃ denoted as HKσ(Ω̃). Then we know (Aronszajn, 1950) that

HKσ(Ω̃) =
{
g= f |Ω̃ : f ∈ HKσ(Ω)

}
(29)

with norm
‖g‖HKσ (Ω̃) = inf{‖ f‖HKσ (Ω) : f |Ω̃ = g}. (30)

Define the integral operator LK associated with a Mercer kernel K and a Borel measure µ on Ω
as

LK f (x) :=
Z

Ω
K(x, t) f (t)dµ(t), x ∈Ω, f ∈ L2µ(Ω).

If Ω is a compact domain in Rn, then LK is a positive, self-adjoint, compact operator and its range
lies inC(Ω). Take the square root L1/2K of LK , then

‖L1/2K f‖K = ‖ f‖L2µ(Ω) ∀ f ∈ L2µ(Ω). (31)

When Ω= Rn and µ is the Lebesgue measure, we define for σ> 0

f σ(x) = LKσ f (x) =
Z

Rn
Kσ(x,y) f (y)dy, x ∈ Rn, f ∈ L2(Rn).

As in Steinwart and Scovel (2005), we shall use these functions as approximations of fρ to estimate
the regularization error.

Lemma 21 Let f σ be defined for f ∈ L2(Rn) as above. Then f σ ∈ HKσ(Rn) and

‖ f σ‖HKσ (Rn) ≤ (
√
πσ)n/2‖ f‖L2(Rn). (32)

Proof We shall use notations and results on limits of reproducing kernels (see Theorem I in Sec-
tion 9 of Aronszajn (1950)).

Denote E j as the closed ball ofRn with radius j centered at zero. ThenRn =
S
j∈NE j. For j≤ j′

and f j′ ∈ HKσ(E j′), the properties (29) and (30) of the restriction of RKHS tell us that

f j′ |E j ∈ HKσ(E j) and ‖ f j′ |E j‖HKσ(E j)
≤ ‖ f j′‖HKσ (E j′ ).

In order to show that f σ ∈ HKσ(Rn) and (32) holds, by Theorem I in Section 9 of Aronszajn (1950)
it is sufficient to prove for fσ, j := f σ|E j that

fσ, j ∈ HKσ(E j) and liminf
j→∞

‖ fσ, j‖HKσ (E j) ≤ (
√
πσ)n/2‖ f‖L2(Rn). (33)
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To this end, for j ≤ j′, define

fσ, j, j′(x) :=
Z

E j′
Kσ(x,y) f (y)dy→ fσ, j(x) uniformly in C(E j). (34)

Then fσ, j, j′ ∈ HKσ(E j′) by (31) since f ∈ L2(E j′). Using (29) and (30) with Kσ, j′ := Kσ|E j′×E j′ , it
yields

‖ fσ, j, j′ |E j‖
2
HKσ (E j) ≤ ‖LKσ, j′ ( f |E j′ )‖

2
HKσ (E j′ )

. (35)

By (31), we have

‖LKσ, j′ ( f |E j′ )‖
2
HKσ (E j′ )

= ‖L1/2Kσ, j′
( f |E j′ )‖L2(E j′ ) = 〈LKσ, j′ ( f |E j′ ), f |E j′ 〉L2(E j′ )

≤ ‖LKσ, j′ ( f |E j′ )‖L2(E j′ )‖ f |E j′‖L2(E j′ ).
(36)

Note that for each x ∈ E j′ , there holds
R
E j′
Kσ(x, t)dt ≤

R
Rn Kσ(x, t)dt = (

√
πσ)n. We get by the

Schwarz inequality

‖LKσ, j′ f‖
2
L2(E j′ )

=
Z

E j′

∣∣∣∣
Z

E j′
Kσ(x, t) f (t)dt

∣∣∣∣
2
dx

≤
Z

E j′

{Z

E j′
Kσ(x, t)dt

}{Z

E j′
Kσ(x, t)| f (t)|2dt

}
dx

≤ (
√
πσ)n

Z

E j′
| f (t)|2

{Z

E j′
Kσ(x, t)dx

}
dt

≤ (
√
πσ)2n‖ f‖2L2(Rn).

Putting this estimate into (36), it follows from (35) that

‖ fσ, j, j′ |E j‖HKσ (E j) ≤ ‖LKσ, j′ ( f |E j′ )‖HKσ (E j′ ) ≤ (
√
πσ)n/2‖ f‖L2(Rn).

Since the fixed ball of HKσ(E j) with radius (
√
πσ)n/2‖ f‖L2(Rn) centered at zero is weakly compact,

there exists a subsequence { j′!}!∈N of { j′} such that

fσ, j, j′! |E j ⇀ f ∗ in HKσ(E j) as ! → ∞.

Therefore
‖ f ∗‖2HKσ (E j)

= lim!→∞〈 f ∗, fσ, j, j′! |E j〉HKσ (E j)

≤ ‖ f ∗‖HKσ (E j) liminf!→∞ ‖ fσ, j, j′! |E j‖HKσ (E j)

which tells us that

‖ f ∗‖HKσ (E j) ≤ liminf!→∞
‖ fσ, j, j′! |E j‖HKσ (E j) ≤ (

√
πσ)n/2‖ f‖L2(Rn). (37)

By the reproducing property (3), we also have, for each x ∈ E j

fσ, j, j′! |E j(x) = 〈 fσ, j, j′! |E j ,Kσ, j(x, ·)〉HKσ (E j) → 〈 f ∗,Kσ, j(x, ·)〉HKσ (E j) = f ∗(x)

which in connection with (34) gives us that

fσ, j = f ∗ ∈ HKσ(E j).

Together with (37) and (33), we know that Lemma 21 holds true.
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Proposition 22 Let X be a domain in Rn with Lipschitz boundary. Suppose fρ ∈ Hs(X) for some
s > 0. Consider the multi-kernel scheme (4) with the least square loss V (y, t) = (y− t)2 and the
Gaussian kernels (9) with Σ= (0,∞). Then, the following statements hold true.

(1) If n/2< s≤ n/2+2, then there holds

D̃(λ) ≤ inf
σ∈(0,∞)

inf
f∈HKσ

{
‖ f − fρ‖2C(X) +λ‖ f‖2Kσ

}
.

For any 0< ε< 2s−n, there exists a constant Cε,s,X such that

D̃(λ) ≤Cε,s,X‖ fρ‖2Hs(X) λ
2s−ε−n
2s−ε .

(2) If X is bounded, ρX is the Lebesgue measure on X and s ≤ 2, then there exists a constant
Cs,n,X independent of λ such that

D̃(λ) ≤Cs,n,X‖ fρ‖2Hs(X) λ
2s
2s+n . (38)

Proof For the least square loss, we have

E( f )−E( fρ) = ‖ f − fρ‖2L2ρX (X). (39)

Since X has a Lipschitz boundary, we know (Stein, 1970) that there exists an extension function
f̃ρ ∈ Hs(Rn) and an absolute constantCs,X such that

f̃ρ|X = fρ and ‖ f̃ρ‖Hs(Rn) ≤Cs,X‖ fρ‖Hs(X). (40)

Define the normalized kernel K̃σ = (
√
πσ)−nKσ. Let

f σρ (x) = (
√
πσ)−nLKσ( f̃ρ)(x) =

Z

Rn
K̃σ(x,y) f̃ρ(y)dy, x ∈ Rn.

Then we know that f σρ belongs to HKσ(Rn) by Lemma 21. Combined with the fact (29), it follows
that gσρ := f σρ |X ∈ HKσ(X). Take f = gσρ in the definition of the regularization error D̃(λ). We see
by (39) that

D̃(λ) ≤ inf
σ∈(0,∞)

{‖gσρ− fρ‖2L2ρX (X) +λ‖gσρ‖2Kσ}. (41)

By the relations (29) and (30) on the restriction of RKHS and Lemma 21, we see that

‖gσρ‖Kσ ≤ ‖ f σρ ‖HKσ (Rn) = (
√
πσ)−n‖LKσ f̃ρ‖HKσ (Rn) ≤ (

√
πσ)−n/2‖ f̃ρ‖L2(Rn).

Together with (40), it yields

‖gσρ‖Kσ ≤Cs,X(
√
πσ)−n/2‖ fρ‖Hs(X). (42)

To bound the right hand side of (41), we need the Fourier transform defined for f ∈ L1(Rn) as

f̂ (ξ) =
Z

Rn
f (x)e−ix·ξdx, ξ ∈ Rn.
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It has a natural extension to L2(Rn) satisfying ‖ f̂‖L2(Rn) = (2π)n/2‖ f‖L2(Rn) (the Plancherel for-
mula). The norm for functions in the Sobolev space H s(Rn) can be expressed as ‖ f‖Hs(Rn) =

(2π)−n/2(
Z

Rn
(1+ |ξ|2)s| f̂ (ξ)|2dξ)1/2. One nice property of the Fourier transform says that the

Fourier transform of the convolution f∗g(x) =
Z

Rn
f (x− y)g(y)dy equals f̂ (ξ)ĝ(ξ). It implies that

f̂ σρ (ξ) = e−σ2|ξ|2/4 ̂̃fρ(ξ) since the Fourier transform of the function (
√
πσ)−ne−|x|2/σ2 is e−σ2|ξ|2/4.

(1) For any marginal distribution ρX , there holds ‖ f‖L2ρX ≤ ‖ f‖C(X). Then the first inequality
follows from (39).

Since X ⊆ Rn and (n+ ε)/2 > n/2, we know that the Sobolev space H (n+ε)/2(Rn) can be em-
bedded into C(Rn)∩L∞(Rn), there exists a constant C′

ε,X such that ‖ f‖L∞(Rn) ≤C′
ε,X‖ f‖H(n+ε)/2(Rn).

It follows that
‖gσρ− fρ‖C(X) ≤ ‖ f σρ − f̃ρ‖L∞(Rn) ≤C′

ε,X‖ f σρ − f̃ρ‖H(n+ε)/2(Rn).

Write

‖ f σρ − f̃ρ‖2H(n+ε)/2(Rn) = (2π)−n
Z

Rn
(1+ |ξ|2)(n+ε)/2

∣∣∣∣(e
−σ2|ξ|2/4−1) ̂̃fρ(ξ)

∣∣∣∣
2
dξ.

Since s
2 −

n+ε
4 < 1, we have |e−σ2|ξ|2/4−1|≤ (σ2|ξ|2/4)

s
2−

n+ε
4 . Hence

‖ f σρ− f̃ρ‖2H(n+ε)/2(Rn) ≤
σ2s−(n+ε)

(2π)n

Z

Rn
(1+ |ξ|2)(n+ε)/2(|ξ|2)s−(n+ε)/2| ̂̃fρ(ξ)|2dξ

≤ σ2s−(n+ε)

(2π)n

Z

Rn
(1+ |ξ|2)s| ̂̃fρ(ξ)|2dξ= σ2s−(n+ε)‖ f̃ρ‖2Hs(Rn).

In connection with (40), this implies that

‖gσρ− fρ‖C(X) ≤C′
ε,Xσ

s−(n+ε)/2Cs,X‖ fρ‖Hs(X).

Combining with (42) and choosing σ= λ1/(2s−ε) this proves the first statement of the proposition.
(2) If X is bounded and ρX is the Lebesgue measure on X , then ‖gσρ− fρ‖2L2ρX

= ‖gσρ − fρ‖2L2(X)
and by the Plancherel formula,

‖gσρ− fρ‖2L2(X) ≤ ‖ f σρ − f̃ρ‖2L2(Rn) = (2π)−n
Z

Rn

∣∣∣∣(e
−σ2|ξ|2/4−1) ̂̃fρ(ξ)

∣∣∣∣
2
dξ.

Observe from the restriction s ≤ 2 that 1− e−t ≤ (1− e−t)s/2 ≤ ts/2 for t > 0. Applying this to
t = σ2|ξ|2/4 we obtain

‖gσρ− fρ‖2L2(X) ≤ σ2s
(2π)n4s

Z

Rn
|ξ|2s| ̂̃fρ(ξ)|2dξ

≤ σ2s‖ f̃ρ‖2Hs(Rn) ≤C2s,Xσ
2s‖ fρ‖2Hs(X),

where we have used (40) in the last inequality. Putting this estimate and (42) into (41) gives us the
second statement of the proposition corresponding to the choice σ= λ1/(2s+n).

Finally, we are able to derive error rates for the multi-kernel regularization scheme (4) associated
with Gaussian kernels (8) with flexible variances. This is done by putting the improved regulariza-
tion error bound in Proposition 22 into the total error bound in Theorem 20. We demonstrate the
approach for regression with least square loss and for classification with hinge loss.
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6. Error Rates with Gaussians

In this section we prove Examples 1 and 2. First, let us consider Example 1, that is, the case of the
least square regularized regression: Y = R. If |y|≤M0 almost surely, the least square loss V (y,s) =
(y− s)2 is admissible with respect to ρ and M = ‖V (y,0)‖L∞ρ (Z) ≤ M2

0 , Cλ ≤ 2M0(1+κ/
√
λ). By

Theorem 20 and the special property (39) of the loss function, we immediately get the following
result.

Proposition 23 Let V (y, t) = (y− t)2, X ⊆ Rn and {Kσ} be given by (8). Define fz,λ by (14). If
0< λ≤ 1, then there exists a constant C̃ independent of m,λ such that

E
[
‖ fz,λ− fρ‖2ρ

]
≤ C̃

( log2m
mλ4

)1/4
+ D̃(λ). (43)

Using this proposition, we can provide the proof of Example 1.
Proof of Example 1. Since the set (8) of Gaussian kernels with general variances σ= (σ1, . . . ,σn) ∈
(0,∞)n contains the set (9) of Gaussian kernels with isotropic variances, we see that

D̃(λ) ≤ inf
σ∈(0,∞)

inf
f∈HKσ

{
E( f )−E( fρ)+λ‖ f‖2Kσ

}
.

(1) When n/2< s≤ n/2+2 and 0< ε< 2s−n, we know from Proposition 22 that

D̃(λ) ≤Cε,s,X‖ fρ‖2L2ρX (X)λ
2s−ε−n
2s−ε .

Putting this into (43) and choosing λ= m− 2s−ε
4(4s−n−2ε) verifies the first error estimate in Example 1.

(2) If X is bounded, ρX is the Lebesgue measure on X , and s ≤ 2, we apply the bound (38) in
Proposition 22. Together with the above inequality, we know that

D̃(λ) ≤Cs,n,X‖ fρ‖2L2ρX (X)λ
2s
2s+n .

In connection with the error bound (43) we see that when λ = m− 2s+n
4(4s+n) , the error estimate in Part

(2) holds true.
Now we move on to establish Example 2 for the regularized classification with the hinge loss

V (y,s) = (1− ys)+. In this case we take Y = {1,−1}. It is easy to see that V is admissible with
M = 1 andCλ = 1. An important relation between the excess misclassification error and the excess
error was given by Zhang (2004) as

R (sgn( f ))−R ( fc) ≤ E( f )−E( fc), ∀ f : X → R.

Then the following result is an easy consequence of Theorem 20.

Proposition 24 Let Y = {1,−1}, V (y, t) = (1−yt)+, X ⊆Rn and {Kσ} be given by (8). Define fz,λ
by (15). If 0< λ≤ 1, then there exists a constant C′ independent of m,λ such that

E
[
R (sgn( fz,λ))−R ( fc)

]
≤

√
C′

λ

( log2m
m

)1/4
+ D̃(λ).
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We are in a position to prove Example 2 by Proposition 24.
Proof of Example 2. It was shown by Chen et al. (2004) that if ρ is separable with some exponent
θ > 0 then there exists some constant c′ such that D̃(λ) ≤ c′λ

θ
2+θ . Choosing λ = m− 2+θ

2(2+3θ) gives us
the desired result.
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Appendix A.

This appendix includes complete proofs of two lemmas which are essentially proved in Alon et al.
(1997); Ledoux and Talagrand (1991) with slightly different forms.
Proof of Lemma 12. Part (a) is an easy consequence of Lemma 2.4 in Alon et al. (1997).

Set d0 = min{m,d}. As in the proof of Lemma 3.5 of Alon et al. (1997), one can bound the
empirical covering number by packing numbers which can then be estimated by Lemma 3.3 in Alon
et al. (1997) as

sup
x∈Xm

N∞(G ,x,ε) ≤ 2
(
m

(2
ε

)2)logy+1
,

where

y=
d0
∑
i=1

( m
i

)(2
ε

)i
≤

(2
ε

)d0(em
d0

)d0
≤

(2em
ε

)d0
≤

(2em
ε

)d
.

This verifies Part (b).
Proof of Lemma 16. The first statement is immediate from the definition of Rademacher averages.

For the second statement, we use Theorem 4.12 in Ledoux and Talagrand (1991). It tells us the
following result: If T is a bounded subset of Rm, each function φi with the Lipschitz constant not
more than 1 satisfies φi(0) = 0, and a function G : R+ → R+ is convex and nondecreasing, then
there holds

EεG
(1
2
sup
t∈T

|
m

∑
i=1

εiφi(ti)|
)
≤ EεG

(
sup
t∈T

|
m

∑
i=1

εiti|
)
. (44)

Fixed {xi}mi=1. Then T := {(c1 f (x1), · · · ,cm f (xm)) : f ∈ F} is a bounded subset of Rm since F is
uniformly bounded. Applying (44) with G(u) = u and φ̃i(x) = φi(x/ci), we have

Eε

[
sup f∈F |

m

∑
i=1

εiφi( f (xi))|
]

= Eε

[
supt∈T |

m

∑
i=1

εiφ̃i(ti)|
]
≤ 2Eε

[
sup
t∈T

|
m

∑
i=1

εiti|
]

= 2Eε

[
sup f∈F

∣∣∣
m

∑
i=1

ciεi f (xi)|
]

which proves our second statement.
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Appendix B.

The arguments in this paper do not change much if we replace a minimizer of the optimization
problem (4) by an ε-minimizer f εz,λ ∈ HKσ (with some σ ∈ Σ) satisfying

1
m

m

∑
i=1
V (yi, f εz,λ(xi))+λ‖ f εz,λ‖

2
Kσ ≤min

σ∈Σ
min
f∈HKσ

{
1
m

m

∑
i=1
V (yi, f (xi))+λ‖ f‖2Kσ

}
+ ε.

The existence of an ε-minimizer for any given 0 < ε ≤ 1 can be seen in Wu et al. (2007) where
it was shown that min f∈HKσ

{ 1m ∑
m
i=1V (yi, f (xi))+λ‖ f‖2Kσ} is continuous as a function of σ ∈ Σ if

Kσ(x,x′) is continuous with respect to σ ∈ Σ for each fixed pair (x,x′) ∈ X×X .
In this appendix, we verify the existence for the scheme (4) involving the least-square loss and

Gaussians (9) with flexible variances under some mild conditions on the sample z. Note that the
shortest distance between pairs of distinct points from {x1, . . . ,xm} is achieved by some pair (xi1 ,xi2)
with i1 .= i2. The condition for our existence result is that such a minimizing pair is unique and the
sample values yi1 ,yi2 have the same sign. Since xi1 and xi2 are close, this assumption of having the
same sign for the sample values is reasonable.

Proposition 25 Let λ > 0, X be a compact subset of Rn and Kσ(x,y) = exp{− |x−y|2
σ2 } for x,y ∈ X.

Consider the scheme with 0< b< ∞

fz,λ := arg min
σ∈(0,b]

min
f∈HKσ

{
1
m

m

∑
i=1

( f (xi)− yi)2+λ‖ f‖2Kσ

}
. (45)

If we can find {i1 .= i2}⊂ {1, . . . ,m} such that

yi1yi2 > 0 and |xi1 − xi2 |≤ |xi− x j| for any {i .= j}⊂ {1, . . . ,m}

with equality valid only for (i, j) = (i1, i2) or (i2, i1), then the existence of a solution to (45) holds
true.

Proof For σ> 0 we denote

ez,λ(σ) = min
f∈HKσ

{
1
m

m

∑
i=1

( f (xi)− yi)2+λ‖ f‖2Kσ

}
.

The minimizer of this one-layer optimization problem exists, is unique, and can be expressed as
f σz,λ = ∑m

i=1 cσi Kσ
xi . The coefficient vector c

σ := (cσi )mi=1 is the solution of the linear system

([Kσ]x+mλIm)c= y

where y is the vector (yi)mi=1 and [Kσ]x is the m×m matrix (Kσ(xi,x j))mi, j=1. Each main diagonal
entry of [Kσ]x is 1. A simple computation yields 1

m ∑
m
i=1( f σz,λ(xi)− yi)2 = mλ2‖cσ‖2,‖ f σz,λ‖

2
Kσ =

(cσ)T [Kσ]xcσ and
ez,λ(σ) = λyT ([Kσ]x+mλIm)−1 y.

In the following, we will show that limσ→0 ez,λ(σ) is strictly larger than ez,λ(σ) for any σ ∈
(0,σ2] with some σ2 > 0. Thereby, the minimizer of ez,λ should be achieved at a positive number in
(0,b] since ez,λ(·) is a continuous function.
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Without loss of generality, we assume that i1 = 1, i2 = 2. Denote aσ = exp{− |x1−x2|2
σ2 }. We see

that aσ > 0 and limσ→0 aσ = 0. Our assumption on the distances |xi− x j|≥ |x1− x2| (i .= j) tells us
that the off-diagonal entries of [Kσ]x decays to 0 faster than aσ except for the two entries at (1,2)
and (2,1). That is,

[Kσ]x+mλIm = Aσ+aσBσ, Aσ :=




mλ+1 aσ 0
aσ mλ+1 0
0 0 (mλ+1)Im−2





and limσ→0Bσ = 0. The inverse of Aσ has a nice form

A−1
σ =





mλ+1
(mλ+1)2−a2σ

− aσ
(mλ+1)2−a2σ

0
− aσ

(mλ+1)2−a2σ
mλ+1

(mλ+1)2−a2σ
0

0 0 1
mλ+1 Im−2



 .

Recall that the norm of anm×mmatrix A is defined by ‖A‖= sup{‖Ax‖ : ‖x‖= 1}. If in addition, A
is symmetric, then ‖A‖ =max{|λi| : i= 1,2, . . . ,m} where {λi : i= 1,2, · · · ,m} are the eigenvalues
of A. Hence,

‖A−1
σ ‖ ≤ 1

mλ+1−aσ
≤ 1
mλ

.

Moreover, since limσ→0Bσ = 0, there exists 0< σ1 ≤ b such that

‖A−1/2
σ BσA

−1/2
σ ‖ ≤ 1 ∀0< σ≤ σ1.

Therefore, for any 0< σ≤ σ1 there holds

‖(I+aσA
−1/2
σ BσA

−1/2
σ )−1‖ ≤ 1

1−aσ
.

If we write ([Kσ]x+mλIm)−1 as A−1/2
σ (I+aσA

−1/2
σ BσA

−1/2
σ )−1A−1/2

σ , then

([Kσ]x+mλIm)−1−A−1
σ = −aσA−1/2

σ (I+aσA
−1/2
σ BσA

−1/2
σ )−1A−1/2

σ BσA−1
σ .

Consequently,

‖([Kσ]x+mλIm)−1−A−1
σ ‖ ≤ aσ

1−aσ

( 1
mλ

)2
‖Bσ‖.

This implies that

ez,λ(σ) ≤ λyTA−1
σ y+λ

aσ‖Bσ‖
1−aσ

( 1
mλ

)2
.

But
λyTA−1

σ y=
λ

mλ+1
‖y‖2+

λa2σ(y21+ y22)
(mλ+1)((mλ+1)2−a2σ)

− 2λaσy1y2
(mλ+1)2−a2σ

,

which means that ez,λ(σ)− λ
mλ+1‖y‖

2 is bounded by

λaσ
[ ‖Bσ‖
1−aσ

( 1
mλ

)2
+

aσ(y21+ y22)
(mλ+1)((mλ+1)2−a2σ)

− 2y1y2
(mλ+1)2−a2σ

]
.
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Using the properties that y1y2 > 0, limσ→0 aσ = 0 and limσ→0 ‖Bσ‖= 0 again, we know there exists
0< σ2 ≤ σ1 such that

ez,λ(σ) <
λ

mλ+1
‖y‖2, ∀0< σ≤ σ2.

We also observe that limσ→0[Kσ]x+mλIm = (mλ+1)Im. Hence

lim
σ→0

ez,λ(σ) =
λ

mλ+1
‖y‖2 > ez,λ(σ) ∀0< σ≤ σ2.

It means that the infimum in (45) cannot be achieved as σ→ 0. By the continuity of ez,λ(·), the ex-
istence of a solution to (45) follows from that of the optimization problem for σ lying in a compact
subset of (0,b] proved in Wu et al. (2007).

The above existence result largely depends on the least square loss and the assumption on the
data. It remains an open problem on how to prove the existence of the minimizer of the multi-kernel
scheme (4) associated with general loss functions and data.
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Abstract

We consider a natural framework of learning from correlated data, in which successive examples
used for learning are generated according to a random walk over the space of possible examples.
A recent paper by Bshouty et al. (2003) shows that the class of polynomial-size DNF formulas is
efficiently learnable in this random walk model; this result suggests that the Random Walk model
is more powerful than comparable standard models of learning from independent examples, in
which similarly efficient DNF learning algorithms are not known. We give strong evidence that
the Random Walk model is indeed more powerful than the standard model, by showing that if any
cryptographic one-way function exists (a universally held belief in cryptography), then there is a
class of functions that can be learned efficiently in the RandomWalk setting but not in the standard
setting where all examples are independent.

Keywords: random walks, uniform distribution learning, cryptographic hardness, correlated data,
PAC learning

1. Introduction

It is a commonly held belief in machine learning that having access to correlated data—for example,
having random data points that differ only slightly from each other—is advantageous for learning.
Thus it is a natural research goal to rigorously validate this belief from the vantage point of the
abilities and limitations of computationally efficient learning.

We study a natural model of learning from correlated data, by considering a framework in
which the learning algorithm has access to successive examples that are generated by a random
walk. We give strong evidence that learning is indeed easier, at least for some problems, in this
framework of correlated examples than in the standard framework in which no correlations exist
between successive examples.
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1.1 Background

In the well-known Probably Approximately Correct (PAC) learning model introduced by Valiant
(1984), a learning algorithm is given access to a source EXD(c) of labeled examples each of which
is drawn independently from a fixed probability distribution D over the space of possible instances.
The goal of the learning algorithm is to construct (with high probability) a high-accuracy hypothesis
for the target concept c with respect to D.

Aldous and Vazirani (1990) introduced and studied a variant of the PAC learning model in which
successive examples are generated according to a Markov process, that is, by taking a random walk
on an (exponentially large) graph. Subsequent work by Gamarnik (1999) extended this study to
infinite Markov chains and gave bounds on the sample complexity required for learning in terms of
the VC dimension and certain mixing properties of the underlying Markov chain. Neither Aldous
and Vazirani (1990) nor Gamarnik (1999) considered computational issues for learning algorithms
in the Random Walk framework.

In this paper we consider an elegant model of learning from RandomWalk examples that is well
suited for computational analyses. This model was introduced by Bartlett et al. (2002) and subse-
quently studied by Bshouty et al. (2003) and Roch (2006). In this framework (described in detail in
Section 2), successive examples for the learning algorithm are produced sequentially according to
an unbiased random walk on the Boolean hypercube {0,1}n. The PAC goal of constructing a high-
accuracy hypothesis for the target concept with high probability (where accuracy is measured with
respect to the stationary distribution of the random walk, that is, the uniform distribution on {0,1}n)
is unchanged. This is a natural way of augmenting the model of uniform distribution PAC learn-
ing over the Boolean hypercube (which has been extensively studied, see, for example, Blum et al.
1994; Bshouty et al. 1999; Bshouty and Tamon 1996; Jackson 1997; Jackson et al. 2002; Kharitonov
1993; Linial et al. 1993; Verbeurgt 1990 and references therein) with the ability to exploit correlated
data.

Bartlett et al. gave polynomial-time learning algorithms in this model for several concept classes
including Boolean threshold functions in which each weight is either 0 or 1, parities of two mono-
tone conjunctions over x1, . . . ,xn, and Disjunctive Normal Form (DNF) formulas with two terms.
These learning algorithms are proper, meaning that in each case the learning algorithm constructs a
hypothesis representation that belongs to the class being learned. Since proper learning algorithms
were not known for these concept classes in the standard uniform distribution model, this gave the
first evidence that having access to random walk examples rather than uniform independent exam-
ples might bestow a computational advantage.

More recently, Bshouty et al. (2003) gave a polynomial-time algorithm for learning the unre-
stricted class of all polynomial-size DNF formulas over {0,1}n in the Random Walk model. Since
no comparable polynomial-time algorithms are known in the standard uniform distribution model—
and their existence is a well-studied open question for which an affirmative answer would yield a
$1000 prize (see Blum, 2003)—this gives stronger evidence that the RandomWalk model is strictly
more powerful than the normal uniform distribution model. Thus, it is natural to now ask whether
the superiority of random walk learning over uniform distribution learning can be established under
some widely accepted hypothesis about efficient computation.

(Note that it is necessary to make some computational hardness assumption in order to separate
these two learning models. It is well known and easy to see that if P=NP, for instance, then the
concept class of all polynomial-size Boolean circuits would be efficiently learnable in both these
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models, as well as in far weaker models, by an algorithm that nondeterministically “guesses” a cir-
cuit and then checks consistency with a polynomial-size sample. Thus without some computational
hardness assumption, essentially all considerations about the computational complexity of learning
would become trivial.)

1.2 Our Results

In this work we give a separation, under a generic cryptographic hardness assumption, between the
RandomWalk model and the uniform distribution model. Our main result is a proof of the following
theorem:

Theorem 1 If any cryptographic one-way function exists, then there is a concept class over {0,1}n
that is PAC learnable in poly(n) time in the RandomWalk model but is not PAC learnable in poly(n)
time in the standard uniform distribution model.

We emphasize that the separation established by Theorem 1 is computational rather than information-
theoretic. It will be evident from our construction that the concept class of Theorem 1 has poly(n)
VC dimension, and thus the class can be learned using poly(n)many examples even in the distribution-
independent PAC learning model; the difficulty is in obtaining a polynomial-time algorithm.

We remind the reader that while the existence of any one-way function is a stronger assumption
than the assumption that P!=NP (since at this point it is conceivable that P!=NP but one-way func-
tions do not exist), it is an almost universally accepted assumption in cryptography and complexity
theory. (In particular, the existence of one-way functions is the weakest of the many assumptions
on which the entire field of public-key cryptography is predicated.) We also remind the reader that
all known representation-independent computational hardness results in learning theory (where any
efficiently evaluatable hypothesis representation is allowed for the learning algorithm, as is the case
in Theorem 1 above) rely on cryptographic hardness assumptions rather than complexity-theoretic
assumptions such as P!=NP.

The rest of the paper is structured as follows: Section 2 gives necessary definitions and back-
ground from cryptography and the basics of our random walk model. Section 3 gives a partial
separation, and in Section 4 we show how the construction from Section 3 can be used to achieve a
total separation and prove Theorem 1.

2. Preliminaries

We denote by [n] the set {1, . . . ,n}. For an n-bit string r ∈ {0,1}n and an index i ∈ [n], the i-th bit
of r is denoted r[i]. We write U to denote the uniform distribution on {0,1}n.

2.1 Learning Models

Recall that a concept class C =∪n∈NCn is a collection of Boolean functions where each f ∈ Cn maps
{0,1}n → {0,1}. A uniform example oracle for f is an oracle EXU( f ) which takes no inputs and,
when invoked, outputs a pair 〈x, f (x)〉 where x is drawn uniformly and independently from {0,1}n
at each invocation.

Definition 2 (PAC learning) A concept class C is uniform distribution PAC-learnable if there is an
algorithm A with the following property: for any n, any target concept f ∈ Cn, and any ε,δ> 0, if A
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is given access to oracle EXU( f ) then A runs for poly(n, 1ε ,
1
δ) time steps and with probability 1−δ

outputs a Boolean circuit h such that Prx∈U [h(x) != c(x)] ≤ ε.

In the (uniform) RandomWalk model studied in Bartlett et al. (2002) and Bshouty et al. (2003), a
random walk oracle is an oracle EXRW ( f ) which, at its first invocation, outputs an example 〈x, f (x)〉
where x is drawn uniformly at random from {0,1}n. Subsequent calls to EXRW ( f ) yield examples
generated according to a uniform random walk on the hypercube {0,1}n. That is, if x is the i-th
example, the i+1-st example is x′, where x′ is chosen by uniformly selecting one of the n bits of x
and flipping it.

Definition 3 (PAC learning in the RandomWalk model) A concept class C is said to be PAC-
learnable in the Random Walk model if there is an algorithm A that satisfies Definition 2 above but
with EXRW ( f ) in place of EXU( f ).

As in Bshouty et al. (2003), it is convenient for us to work with a slight variant of the Random
Walk oracle which is of equivalent power; we call this theUpdating RandomWalk oracle and denote
it by EXURW ( f ). If the last example generated by EXURW ( f ) was x∈ {0,1}n, the Updating Random
Walk oracle chooses a uniform index i ∈ [n], but instead of flipping the bit x[i] it replaces x[i] with
a uniform random bit from {0,1} (i.e., it flips the bit with probability 1/2 and leaves x unchanged
with probability 1/2) to obtain the new example x′. We say that such a step updates the i-th bit
position.

It is easy to simulate an Updating RandomWalk oracle using a RandomWalk oracle by, at each
time step, flipping a fair coin and with probability 1/2 returning the previous example and with
probability 1/2 requesting a new example. Similarly, it is easy to simulate a Random Walk oracle
using an Updating RandomWalk oracle by invoking the Updating RandomWalk oracle until it flips
a bit (the probability that this takes more than k invocations is at most 2−k). Thus any concept class
that is efficiently learnable from one oracle is also efficiently learnable from the other. We introduce
the Updating Random Walk oracle because it is easy to see (and well known) that the updating
random walk on the hypercube mixes rapidly. More precisely, we have the following fact which
will be useful later:

Fact 4 Let 〈x, f (x)〉 be a labeled example that is obtained from EXURW ( f ), and let 〈y, f (y)〉 be the
labeled example that EXURW ( f ) outputs n ln nδ draws later. Then with probability at least 1−δ, the
two strings x,y are uniformly and independently distributed over {0,1}n.

Proof Since it is clear that x and y are each uniformly distributed, the only thing to check for Fact 4
is independence. This follows since y will be independent of x if and only if all n bit positions are
updated in the n ln nδ draws between x and y. For each draw, the probability that a particular bit is
not updated is (1− 1

n). Thus after n ln
n
δ draws, the probability that any bit of r has not been updated

is at most n(1− 1
n)
n ln n

δ ≤ δ. This yields the fact.

Note that Fact 4 implies that any concept class C that is uniform distribution PAC-learnable is
also PAC-learnable in the Random Walk model, since we can obtain independent uniform random
examples in the Random Walk model with essentially just a Θ(n logn) slowdown.
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2.2 Background from Cryptography

We write Rn to denote the set of all 22
n Boolean functions from {0,1}n to {0,1}. We refer to a

function f chosen uniformly at random from Rn as a truly random function. We write D f to denote
a probabilistic polynomial-time (p.p.t.) algorithm D with black-box oracle access to the function f .

Informally, a one-way function is a function f : {0,1}n→ {0,1}n that is computable by a poly(n)
time algorithm but is hard to invert in the sense that no poly(n)-time algorithm can successfully com-
pute f−1 on a nonnegligible fraction of outputs of f . (See Goldreich 2001 for a detailed definition
and discussion of one-way functions.) In a celebrated result, Håstad et al. (1999) showed that if any
one-way function exists, then pseudorandom function families must exist as well.

Definition 5 A pseudorandom function family (Goldreich et al., 1986) is a collection of functions
{ fs : {0,1}|s| → {0,1}}s∈{0,1}∗ with the following two properties:

1. (efficient evaluation) there is a deterministic algorithm which, given an n-bit seed s and an
n-bit input x, runs in time poly(n) and outputs fs(x);

2. (pseudorandomness) for all polynomials Q, all p.p.t. oracle algorithms D, and all sufficiently
large n, we have that

∣∣∣∣ Prf∈Rn
[D f (1n) outputs 1]− Pr

s∈{0,1}n
[D fs(1n) outputs 1]

∣∣∣∣ <
1

Q(n)
.

The argument 1n indicates that the “distinguisher” algorithm D must run in poly(n) time steps
since its input is of length n. Intuitively, condition (2) above states that a pseudorandom function
cannot be distinguished from a truly random function by any polynomial-time algorithm that has
black-box access to the pseudorandom function with an inverse polynomial advantage over random
guessing.

3. A Partial Separation

We will first show the difficulties presented with an obvious separation, and then show a partial
separation that will be the building block of the full separation.

3.1 A First Attempt

It is clear that in the RandomWalk model a learning algorithm will get many pairs of examples that
are adjacent vertices of the Hamming cube {0,1}n, whereas this will not be the case for a learner in
the standard uniform distribution model (with high probability, a set of poly(n) many independent
uniform examples from {0,1}n will contain no pair of examples that have Hamming distance less
than n/2−O(

√
n logn)). Thus, in attempting to separate the random walk model from the standard

uniform distribution model, it is natural to try to construct a concept class using pseudorandom
functions fs but altered in such a way that seeing the value of the function on adjacent inputs gives
away information about the seed s.

One natural approach is the following: given a pseudorandom function family { fs : {0,1}k →
{0,1}}s∈{0,1}k , one could define a concept class of functions { f ′s : {0,1}k× {0,1}logk× {0,1} →
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{0,1}}s∈{0,1}k as follows (so n= k+ logk+1):

f ′s(x, i,b) =

{
fs(x) if b= 0,
fs(x)⊕ s[i] if b= 1,

where x is a k-bit string, i is a (logk)-bit string encoding an integer between 1 and k, and b is a single
bit. A learning algorithm in the Random Walk model will be able to obtain all bits s[1], . . . ,s[k] of
the seed s (by waiting for pairs of successive examples (x, i,b),(x, i,1− b) in which the final bit
b flips for all k possible values of i), and will thus be able to exactly identify the target concept.
However, even though a standard uniform distribution learner will not obtain any pair of inputs that
differ only in the final bit b, it is not clear how to show that no algorithm in the standard uniform
distribution model can learn the concept class to high accuracy. Such a proof would require one
to show that any polynomial-time uniform distribution learning algorithm could be used to “break”
the pseudorandom function family { fs}, and this seems difficult to do. (Intuitively, this difficulty
arises because the b = 1 case of the definition of f ′s “mixes” bits of the seed with the output of the
pseudorandom function, and because of this it is not clear how to simulate f ′s given black-box access
to fs for an unknown seed s.) Thus, we consider alternate constructions.

3.2 A Partial Separation

In this section we describe a concept class and prove that it has the following two properties: (1)
A randomly chosen concept from the class is indistinguishable from a truly random function to
any polynomial-time algorithm which has an EXU(·) oracle for the concept (and thus no such al-
gorithm can learn to accuracy ε= 1

2 −
1

poly(n) ); (2) However, a Random Walk algorithm with access
to EXRW (·) can learn any concept in the class to accuracy 3

4 . In the next section we will extend this
construction to fully separate the Random Walk model from the standard uniform model and thus
prove Theorem 1.

Our construction uses ideas from Section 3.1; as in the construction proposed there, the con-
cepts in our class will reveal information about the seed of a pseudorandom function to learning
algorithms that can obtain pairs of points with only the last bit flipped. However, each concept in
the class will now be defined by two pseudorandom functions rather than one; this will enable us to
prove that the class is indeed hard to learn in the uniform distribution model (but will also prevent a
Random Walk learning algorithm from learning to accuracy better than 3/4).

Let F be a family of pseudorandom functions { fr : {0,1}k → {0,1}}r∈{0,1}k . We construct a
concept class G = {gr,s : r,s ∈ {0,1}k}, where gr,s takes an n-bit input that we split into four parts
for convenience. As before, the first k bits x give the “actual” input to the function, while the other
parts determine the mode of function that will be applied.

gr,s(x, i,b,y) =






fs(x) if y= 0,b= 0,
fs(x)⊕ r[i] if y= 0,b= 1,
fr(x) if y= 1.

Here b and y are one bit and i is logk bits to indicate which bit of the seed r is exposed. Thus half
of the inputs to gr,s are labeled according to fr, and the other half are labeled according to either fs
or fs⊕ r[i] depending on the value of b.
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The following lemma establishes that G is not efficiently PAC-learnable under the uniform
distribution, by showing that a random function from G is indistinguishable from a truly random
function to any algorithm which only has EXU(·) access to the target concept. (A standard argument
shows that an efficient PAC learning algorithm can be used to obtain an efficient distinguisher simply
by running the learning algorithm and using its hypothesis to predict a fresh random example. Such
an approach must succeed with high probability for any function from the concept class by virtue
of the PAC criterion, but no algorithm that has seen only poly(n) many examples of a truly random
function can predict its outputs on fresh examples with probability nonnegligibly greater than 1

2 .)

Lemma 6 Fix any p.p.t. algorithm A. Let gr,s : {0,1}n → {0,1} be a function from G chosen by
selecting r and s uniformly at random from {0,1}k, where k satisfies n = k+ logk+ 2. Let f be a
truly random function. Then for any ε=Ω( 1

poly(n)), algorithm A cannot distinguish between having
oracle access to EXU(gr,s) versus oracle access to EXU( f ) with success probability greater than
1
2 + ε.

Proof The proof is by a hybrid argument. We will construct two intermediate functions, hr and
h′r. We will show that EXU(gr,s) is indistinguishable from EXU(hr), EXU(hr) from EXU(h′r), and
EXU(h′r) from EXU( f ). It will then follow that EXU(gr,s) is indistinguishable from EXU( f ).

Consider the function

hr(x, i,b,y) =






f (x) if y= 0,b= 0,
f (x)⊕ r[i] if y= 0,b= 1,
fr(x) if y= 1.

(1)

Here we have simply replaced fs with a truly random function. We claim that no p.p.t. algorithm
can distinguish oracle access to EXU(gr,s) from oracle access to EXU(hr); for if such a distinguisher
D existed, we could use it to obtain an algorithm D′ to distinguish a randomly chosen fs ∈ F from a
truly random function in the following way. D′ picks r at random from {0,1}k and runsD, answering
D’s queries to its oracle by choosing i,b and y at random, querying its own oracle to receive a bit
q, and outputting q when both y and b are 0, q⊕r[i] when y = 0 and b = 1, and fr(x) when y = 1.
It is easy to see that if D′’s oracle is for a truly random function f ∈ R then this process perfectly
simulates access to EXU(hr), and if D′’s oracle is for a randomly chosen fs ∈ F then this process
perfectly simulates access to EXU(gr,s) for r,s chosen uniformly at random.

We now consider the intermediate function

h′r(x, i,b,y) =

{
f (x) if y= 0,
fr(x) if y= 1,

and argue that no algorithm that makes only poly(n)many oracle calls can distinguish oracle access
to EXU(hr) from access to EXU(h′r) with non-negligible success probability. When y = 1 or both
y = 0 and b = 0, both hr and h′r will have the same output. Otherwise, if y = 0 and b = 1 we have
that hr(x, i,b,y) = f (x)⊕ ri whereas h′r(x, i,b,y) = f (x). Now, it is easy to see that an algorithm
with black-box query access to hr can easily distinguish hr from h′r (simply because flipping the
penultimate bit b will always cause the value of hr to flip but will only cause the value of h′r to
flip half of the time). But for an algorithm that only has oracle access to EXU(·), conditioned on
never receiving the same string x twice (a condition that fails to hold only with inverse exponential
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probability for any algorithm that makes poly(n) many oracle calls), it is easy to see that whether
the oracle is for hr or h′r, each output value that the algorithm sees on inputs with y = 0 and b = 1
will be a fresh independent uniform random bit. (This is simply because a random function f can
be viewed as tossing a coin to determine its output on each new input value, so no matter what r[i]
is, XORing it with f (x) yields a fresh independent uniform random bit.)

Finally, it follows from the definition of pseudorandomness that no p.p.t. algorithm can dis-
tinguish oracle access to EXU(h′r) from access to EXU( f ). We have thus shown that EXU(gr,s) is
indistinguishable from EXU(hr), EXU(hr) from EXU(h′r), and EXU(h′r) from EXU( f ). It follows
that EXU(gr,s) is indistinguishable from EXU( f ), and the proof is complete.

We now show that gr,s is learnable to accuracy 3
4 in the Random Walk model. The basic idea is

that each time bit b is flipped on an example (x, i,b,y) with y = 0, the value of r[i] is revealed, and
this happens for all i within poly(n) many steps.

Lemma 7 There is an algorithm A with the following property: for any δ> 0 and any concept gr,s ∈
G , if A is given access to a Random Walk oracle EXRW (gr,s) then A runs in time poly(n, log(1/δ))
and with probability at least 1−δ, algorithm A outputs an efficiently computable hypothesis h such
that PrU [h(x) != gr,s(x)] ≤ 1

4 .

Proof As described in Section 2, for convenience in this proof we will assume that we have an
Updating Random Walk oracle EXURW (gr,s).

We give an algorithm that, with probability 1− δ, learns all the bits of r. Once the learner has
obtained r she outputs the following (randomized) hypothesis h:

h(x, i,b,y) =

{
$ if y= 0,
fr(x) if y= 1,

where $ denotes a random coin toss at each invocation. Note that h incurs zero error relative to gr,s
on inputs that have y = 1, and has error rate exactly 1

2 on inputs that have y = 0. Thus the overall
error rate of h is exactly 1

4 .
We now show that with probability 1−δ (over the random examples received from EXURW (gr,s))

the learner can obtain all of r after receiving T =O(n2k ·log2(n/δ))many examples from EXURW (gr,s).
The learner does this by looking at pairs of successive examples; we show (Fact 10 below) that after
seeing t = O(nk · log(k/δ)) pairs, each of which is independent from all other pairs, we obtain all
of r with probability at least 1− δ

2 . To get t independent pairs of successive examples, we look at
blocks of t ′ =O(n log(tn/δ))many consecutive examples, and use only the first two examples from
each such block. By Fact 4 we have that for a given pair of consecutive blocks, with probability
at least 1− δ

2t the first example from the second block is random even given the pair of examples
from the first block. A union bound over the t blocks gives total failure probability at most δ

2 for
independence, and thus an overall failure probability of at most δ.

We have the following simple facts:

Fact 8 If the learner receives two consecutive examples w= (x, i,0,0),w′ = (x, i,1,0) and the cor-
responding labels gr,s(w),gr,s(w′), then the learner can obtain the bit r[i].
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Fact 9 For any j∈ [k], given a pair of consecutive examples from EXURW (gr,s), a learning algorithm
can obtain the value of r[ j] from this pair with probability at least 1

4kn .

Proof By Fact 8, if the first example is w= (x, i,b,y) with i= j, y= 0 and the following example
differs in the value of b, then the learner obtains r[ j]. The first example (like every example from
EXURW (gr,s)) is uniformly distributed and thus has i= j, y= 0 with probability 1

2k . The probability
that the next example from EXURW (gr,s) flips the value of b is 1

2n .

Fact 10 After receiving t = 4kn · log(k/δ′) independent pairs of consecutive examples as described
above, the learner can obtain all k bits of r with probability at least 1−δ′.

Proof For any j ∈ [k], the probability that r[ j] is not obtained from a given pair of consecutive
examples is at most (1− 1

4kn). Thus after seeing t independent pairs of consecutive examples, the
probability that any bit of r is not obtained is at most k(1− 1

4kn)
t . This yields the fact.

Thus the total number of calls to EXURW (gr,s) that are required is:

T = t · t ′ = O(nk log(k/δ)) ·O(n log(tn/δ)) = O(n2k log2(n/δ)).

Since k = O(n), Lemma 7 is proved.

4. A Full Separation

We would like to have a concept class for which a Random Walk learner can output an ε-accurate
hypothesis for any ε > 0. The drawback of our construction in Section 3.2 is that a Random Walk
learning algorithm can only achieve a particular fixed error rate ε= 1

4 . Intuitively, a Random Walk
learner cannot achieve accuracy better than 3

4 because on half of the inputs the concept’s value is
essentially determined by a pseudorandom function whose seed the Random Walk learner cannot
discover. It is not difficult to see that for any given ε = 1

poly(n) , by altering the parameters of the
construction we could obtain a concept class that a Random Walk algorithm can learn to accuracy
1−ε (and which would still be unlearnable for a standard uniform distribution algorithm). However,
this would give us a different concept class for each ε, whereas what we require is a single concept
class that can be learned to accuracy ε for each ε> 0.

In this section we present a new concept class G ′ and show that it achieves this goal. The idea
is to string together many copies of our function from Section 3.2 in a particular way. Instead of
depending on two seeds r,s, a concept in G ′ is defined using k seeds r1, . . . ,rk and k−1 subfunctions
gr1,r2 ,gr2,r3 , . . . ,grk−1,rk . These subfunctions are combined in a way that lets the learner learn more
and more of the seeds r1,r2, . . . , and thus learn to higher and higher accuracy, as she receives more
and more examples.

285



ELBAZ, LEE, SERVEDIO AND WAN

4.1 The Concept Class G ′

We now describe G ′ in detail. Each concept in G ′ is defined by k seeds r1, . . . ,rk, each of length k.
The concept g′r1,...,rk is defined by

g′r1,...,rk(x, i,b,y,z) =

{
grα(z),rα(z)+1(x, i,b,y) if α(z) ∈ {1, . . . ,k−1},
frk(x) if α(z) = k.

As in the previous section x is a k-bit string, i is a logk-bit string, and b and y are single bits. The
new input z is a (k−1)-bit string, and the value α(z) ∈ [k] is defined as the index of the leftmost bit
in z that is 1 (for example if z = 0010010111 then α(z) = 3); if z = 0k−1 then α(z) is defined to be
k. By this design, the subfunction gr j,r j+1 will be used on a 1/2 j fraction of the inputs to g′. Note
that g′ maps {0,1}n to {0,1} where n= 2k+ logk+1.

4.2 Uniform Distribution Algorithms Cannot Learn G ′

We first show that G ′ is not efficiently PAC-learnable under the uniform distribution. This is implied
by the following lemma:

Lemma 11 Fix any p.p.t. algorithm A. Let g′r1,...,rk : {0,1}
n → {0,1} be a function from G ′ chosen

by selecting r1, . . . ,rk uniformly at random from {0,1}k, where k satisfies n= 2k+ logk+1. Let f
be a truly random function. Then for any ε = Ω( 1

poly(n)), algorithm A cannot distinguish between
having access to EXU(g′r1,...,rk) versus access to EXU( f ) with success probability greater than 1

2 +ε.

Proof Again we use a hybrid argument. We define the concept classesH (!)= {hr1,...,r!; f : r1, . . . ,r! ∈
{0,1}k, f ∈ Rk} for 2 ≤ ! ≤ k. Each function hr1,...,r!; f takes the same n-bit input (x, i,b,y,z) as
g′r1,...,rk . The function hr1,...,r!; f is defined as follows:

hr1,...,r!; f (x, i,b,y,z) =

{
grα(z),rα(z)+1(x, i,b,y) if α(z) < !,

f (x) otherwise.

Here as before, the value α(z) ∈ [k] denotes the index of the leftmost bit of z that is one (and we
have α(z) = k if z= 0k−1).

We will consider functions that are chosen uniformly at random from H (!), that is, r1, . . . ,r!
are chosen randomly from {0,1}k and f is a truly random function from Rk. Using Lemma 6, it
is easy to see that for a distinguisher that is given only oracle access to EXU(·), a random function
from H (2) is indistinguishable from a truly random function from Rn. We will now show that,
for 2 ≤ ! < k, if a random function from H (!) is indistinguishable from a truly random function
then the same is true for H (! + 1). This will then imply that a random function from H (k) is
indistinguishable from a truly random function.

Let hr1,...,r!+1; f be taken randomly from H (! + 1) and f be a truly random function from Rn.
Suppose we had a distinguisher D that distinguishes between a random function from H (!+1) and
a truly random function from Rn with success probability 1

2 + ε, where ε = Ω( 1
poly(n)). Then we

can use D to obtain an algorithm D′ for distinguishing a randomly chosen fs ∈ F from a randomly
chosen function f ∈ Rk in the following way. D′ first picks strings r1, . . . ,r! at random from {0,1}k.
D′ then runs D, simulating its oracle in the following way. At each invocation, D′ draws a random
(x, i,b,y,z) and behaves as follows:
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• If α(z) < !, then D′ outputs 〈(x, i,b,y,z),grα(z),rα(z)+1(x, i,b,y)〉.

• If α(z)= !, thenD′ calls its oracle to obtain 〈x′,β〉. If y= b= 0 thenD′ outputs 〈(x′, i,b,y,z),β〉.
If y = 0 but b = 1 then D′ outputs 〈(x′, i,b,y,z),β⊕ r![i]〉. If y = 1 then D′ outputs
〈(x′, i,b,y,z), fr!(x)〉.

• If α(z) > !, D′ outputs the labeled example 〈(x, i,b,y,z),r(x)〉 where r(x) is a fresh random
bit for each x. (The pairs (x,r(x)) are stored, and if any k-bit string x is drawn twice—which
is exponentially unlikely in a sequence of poly(n) many draws—D′ uses the same bit r(x) as
before.)

It is straightforward to check that if D′’s oracle is EXU( fs) for a random fs ∈ F , then D′ simulates
an oracle EXU(hr1,...,r!+1; f ) for D, where hr1,...,r!+1; f is drawn uniformly fromH (!+1). On the other
hand, we claim that if D′’s oracle is EXU( f ) for a random f ∈ Rk, then D′ simulates an oracle
that is indistinguishable from EXU(hr1,...,r!; f ) for D, where hr1,...,r!; f is drawn uniformly from H (!).
Clearly the oracleD′ simulates is identical to EXU(hr1,...,r!; f ) for α(z) != !. For α(z) = !,D′ simulates
the function hr! as in Equation 1 in the proof of Lemma 6, which is indistinguishable from a truly
random function as proved in the lemma.

Thus the success probability of the distinguisher D′ is the same as the probability that D suc-
ceeds in distinguishing H (! + 1) from H (!). Recall that H (!) is indistinguishable from a truly
random function, and that D succeeds in distinguishingH (!+1) from a truly random function with
probability at least 12 +ε by assumption. This implies that D′ succeeds in distinguishing a randomly
chosen fs ∈ F from a randomly chosen function f ∈ Rk with probability at least 12 + ε− 1

ω(poly(n)) ,
but this contradicts the pseudorandomness of F .

Finally, we claim that for any p.p.t. algorithm, having oracle access to a random function from
H (k) is indistinguishable from having oracle access to a random function from G ′. To see this, note
that the functions hr1,...,r!; f and g′r1,...,r! differ only on inputs (x, i,b,y,z) that have α(z) = k, that is,
z= 0k−1 (on such inputs the function gr1,...,r! will output frk(x) whereas hr1,...,r!; f will output f (x)).
But such inputs are only a 1

2Ω(n) fraction of all possible inputs, so with overwhelmingly high proba-
bility a p.p.t. algorithm will never receive such an example.

4.3 RandomWalk Algorithms Can Learn G ′

The following lemma completes the proof of our main result, Theorem 1.

Lemma 12 There is an algorithm B with the following property: for any ε,δ > 0, and any con-
cept gr1,...,rk ∈ G ′, if B is given access to a Random Walk oracle EXRW (gr1,...,rk), then B runs in
time poly(n, log(1/δ),1/ε) and can with probability at least 1− δ output a hypothesis h such that
PrU [h(x) != gr1,...,rk(x)] ≤ ε.

Proof The proof is similar to that of Lemma 7. Again, for convenience we will assume that we
have an Updating Random Walk oracle EXURW (gr1,...,rk). Recall from Lemma 7 that there is an
algorithm A that can obtain the string r j with probability at least 1−δ′ given t ′ = O(nk · log(n/δ′))
independent pairs of successive random walk examples

(
〈w,gr j,r j+1(w)〉,〈w′,gr j,r j+1(w

′)〉
)
.
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Figure 1: Stages 1, 2 and 3 of Algorithm B. Each row represents the output values of g′r1,...,rk . After
stage j the algorithm “knows” r1, . . . ,r j and can achieve perfect accuracy on the shaded
region.

Algorithm B works in a sequence of v stages. In stage j, the algorithm simply tries to obtain t ′
independent example pairs for gr j,r j+1 and then uses Algorithm A. Assuming the algorithm succeeds
in each stage, after stage v algorithm B has obtained r1, . . . ,rv. It follows directly from the definition
of G ′ that given r1, . . . ,rv, Algorithm B can construct a hypothesis that has error at most 3

2v+2 (see
Figure 1) so we may take v= log 1ε +1 to obtain error at most ε. (Note that this implicitly assumes
that log 1ε +1 is at most k; we deal with the case log 1ε +1> k at the end of the proof.)

If the learner fails to obtain r1, . . . ,rv, then either:

1. Independence was not achieved between every pair of examples;

2. Algorithm B fails to acquire t ′ pairs of examples for gr j,r j+1 in some stage j; or

3. Algorithm B acquires t ′ pairs of examples for gr j,r j+1 but Algorithm A fails to obtain r j in
some stage j.

We choose the total number of examples so that each of these probabilities is bounded by δ/3
to achieve an overall failure probability of at most δ.

As will be clear from the analysis of cases (2) and (3) below, in total Algorithm B will use
4 · 2v+1t ′ pairs of examples in stages 1 through v, where t ′ will be bounded later. Each pair of
examples is obtained by using the first two examples from a block of s = O(n log(v · 2v+1t ′n/δ))
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many consecutive examples from the Updating Random Walk oracle. With this choice of s, the
same argument as in the proof of Lemma 7 shows that the total failure probability for independence
is at most δ3 .

We bound (2) assuming full independence between all pairs of examples. In stage j, Algorithm
B uses 4 · 2 jt ′ pairs of examples. Observe that each pair of examples has both examples from
gr j,r j+1 with probability at least 2−( j+1). By a Chernoff bound, the probability that less than t ′ of the
example pairs in stage j are from gr j,r j+1 is at most e−

t′
8 . Thus the overall probability of failure from

condition (2) is at most ve− t′
8 which is at most δ/3 for t ′ ≥ ln(3v/δ).

We bound (3) assuming full independence between all pairs of examples as well. In stage j, we
know by Fact 10 that after seeing t ′ =O(nk log(3vk/δ)) pairs of examples for gr j,r j+1 , the probability
of failing to obtain r j is at most δ/3v. Hence the overall failure probability from condition (3) is at
most δ3 .

We thus may take t ′ = O(nk log(3vk/δ)) and achieve an overall failure probability of δ for
obtaining r1, . . . ,rv. It follows that the overall number of examples required from the Updating
Random Walk oracle is poly(2v,n, log 1δ) = poly(n, 1ε , log

1
δ), which is what we required.

Finally, we observe that if log 1ε +1> k, since k = n
2 −O(logn) a poly( 1ε )-time algorithm may

run for, say, 22n time steps and thus build an explicit truth table for the function. Such a table can be
used to exactly identify each seed r1, . . . ,rk and output an exact representation of the target concept.
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Abstract
In a recently published paper in JMLR, Tsang et al. (2005) present an algorithm for SVM called
Core Vector Machines (CVM) and illustrate its performances through comparisons with other SVM
solvers. After reading the CVM paper we were surprised by some of the reported results. In order
to clarify the matter, we decided to reproduce some of the experiments. It turns out that to some
extent, our results contradict those reported. Reasons of these different behaviors are given through
the analysis of the stopping criterion.
Keywords: SVM, CVM, large scale, KKT gap, stopping condition, stopping criteria

1. Introduction

In a recently published paper in JMLR, Tsang et al. (2005) present an algorithm for SVM, called
CVM. In this paper, some illustration of the CVM performances, compared to others solvers are
shown. We have been interested in reproducing their results concerning the checkers problem be-
cause we knew that SimpleSVM (Vishwanathan et al., 2003) could handle such a problem more
efficiently than reported in the paper. Tsang et al. (2005, Figure 3, page 379) show that CVM’s
training time is independent of the sample size and obtains similar accuracies to the other SVM
solvers. We discuss those results through the analysis of the stopping criteria of the different solvers
and the effects of hyper-parameters.

Indeed in SVMs, there are hyper-parameters: the slack trade-off (C) and the stopping tolerance
(ε). For RBF kernels, the bandwidth (γ) is also an hyper-parameter and it can be estimated via
the distance between points from opposite classes (Tsang et al., 2005, page 376). It can also be
fixed using cross-validation. The slack trade-off is used to permit points to be misclassified. A
small value forC allows many points to be misclassified by the solution while large value or infinite
value forces the solution to classify well all the points (hard-margins). This hyper-parameter can be
chosen with cross-validation or using knowledge on the the problem. Those two hyper-parameters
are well-known and more details can be found in literature (Schölkopf and Smola, 2002). The
stopping tolerance is most often left as a default value in the solvers. It corresponds to the precision
required before stopping the algorithm and is strongly linked to the implementation. The value it
takes is close to zero and we point out in this paper that it is not the value by itself that is important
but the stopping criteria in which it is involved (Section 3).

c©2007 Gaëlle Loosli, Stéphane Canu.
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Coming back to the comparison of solvers, our first experiment (Section 2) shows how different
sets of hyper-parameters produce different behaviors for both CVM and SimpleSVM. We also give
results with libSVM (Chang and Lin, 2001a) for the sake of comparison since SMO (Platt, 1999)
is a standard in SVM resolution. Our results indicates that the choice of the hyper-parameters for
CVM does not only influence the training time but also greatly the performance (more than for the
other methods).

Section 3 aims at understanding what influences the most the CVM accuracy. We show that
CVM uses a stopping criterion which may induce complex tuning and unexpected results. We also
explore the behavior of CVM whenC varies compared to libSVM and SimpleSVM.

In Section 4, our second experiment points out that the choice of the magnitude of the hyper-
parameterC (which behaves as a regulator) is critical, more than the bandwidth for this problem. It
is interesting to notice that each method has modes that are favorable and modes that are not. The
last experiments enlightens those different modes.
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libSVM (C) SimpleSVM (Matlab) CVM (C) Coreset size of CVM
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Figure 1: Comparison between CVM, libSVM and SimpleSVM on the checkers problem. For all
figures, ∇ is for libSVM, o for SimpleSVM and+ for CVM. The three figures on the first
column show the results while trying to reproduce Figure 3 (page 379) from the paper
(C = 1000, γ = 0.37, cf. page 376, Section 6 and page 377, Section 6.1). The second
column shows results with a larger C (C = 100000 and γ = 0.37) and the last shows
results for C = 100000 and β = 1. Missing results are due to early termination because
of not enough memory and/or the too long training time.
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About the Reproducibility All experiments presented here can be reproduced with codes and
data set that are all published.

• CVM (Tsang et al., 2005) Version 1.1 (in C) downloaded from http://www.cs.ust.hk/
~ivor/cvm.html for Linux platform on the 3rd of April 2006.

• LibSVM (Chang and Lin, 2001a) We used the release contained in CVM (here we should
mention that a new version of libSVM exists (Fan et al., 2005), which would probably give
some better results).

• SimpleSVM (Vishwanathan et al., 2003; Loosli, 2004) We used version 2.3 available at
http://asi.insa-rouen.fr/~gloosli/coreVSsimple.html, written in Matlab.

• Data We have published the used data sets at http://asi.insa-rouen.fr/~gloosli/
coreVSsimple.html, in both formats for libSVM and SimpleSVM.

Note that all results presented here are obtained using a stopping tolerance ε = 10−6 as proposed
in the CVM paper. Moreover, from now and for the rest of the paper, SimpleSVM will refer to the
specific version implemented in the toolbox, as well as SMO will refer to the libSVM implementa-
tion.

2. Alternative Parameters For the Checkers

This section aims at verifying that SimpleSVM can treat one million points in problems like the
checkers with adapted hyper-parameters. On the way, we also see that this leads to better per-
formance than the one presented on Figure 3 page 379 of Tsang et al. (2005) and not only for
SimpleSVM.

2.1 Original Settings

We used the parameters described in their paper (γ = 0.37 and C = 1000), γ being fixed to this
value so the results can easily be reproduced (the setting of the paper relies on the average distance
of couples of points on the training set). Note that γ = 1/β corresponds to the hyper-parameters
directly given to the toolboxes - k(xi,x j) = exp

(
−γ(xi− x j)2

)
and that β is the notation used in the

studied paper. Results are presented on Figure 1, first column.

2.2 Others Settings

Our motivation is that the checkers is a separable problem. First, this should reduce the number of
support vectors and second, it should be possible to have a zero error in test. Thus we used in a
second time some other hyper-parameters : the couple γ = 0.37, C = 100000 on the one hand and
γ = 1 and C = 100000 on the second hand (found by cross-validation). Examples of results are
presented on Figure 1, second and third columns.1

1. It turns out that these results are representative of the behaviors of the algorithms on this problem for most of randomly
drawn training sets.
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2.3 Results

• For the given settings, we can see similar behaviors as the one presented in the paper concern-
ing training size, performance and speed. In particular, due to the large number of support
vectors required for this setting (graph (b), Figure 1), SimpleSVM cannot be run over 30,000
data points,

• the possibility to run SimpleSVM or CVM until 1 million points depends on the settings,

• both SimpleSVM and libSVM achieve a 0 testing error (which means to us that the settings
are more adapted) while CVM shows a really unstable behavior regarding testing error,

• for CVM, training time grows very fast for large values ofC, due to huge intermediate number
of active points (see Section 4), even if it still gives a sparse solution in the end,

• finally, the training error shows that CVM does not converge towards the solution for all
hyper-parameters.

3. Study of CVM

Because Figure 1 shows very different behaviors of the algorithms, we focus in this part on the
stopping criteria and on the role played by the different hyper-parameters. To do so we first compare
CVM and SimpleSVM algorithms and then we point out that stopping criteria are different and may
explain the results reported in Figure 1. We illustrate our claims on Figure 2 which shows that the
magnitude ofC is the key hyper-parameter to explore the different behaviors of the algorithms.

3.1 Algorithm

The algorithm presented in CVM uses MEB (Minimum Enclosing Balls) but can also be closely
related to decomposition methods (such as SimpleSVM). Both methods consist in two alternating
steps, one that defines groups of points and the other that computes the α (the Lagrangian multipliers
involved in the dual of the SVM, see Schölkopf and Smola, 2002). In order to make clear that CVM
and SimpleSVM are similar, we briefly explain those steps for each. Doing so we also enlighten
their differences. Then we give the two algorithms and specify where stopping conditions apply.

3.1.1 DEFINING THE GROUPS

CVM: divides the database between useless and useful points. The useful points are designated
as the coreset and correspond to all the points that are candidates to be support vectors. This set
can only grow since no removing step is done. Among the points of the coreset, not all are support
vectors in the end.

SimpleSVM: divides the database into three groups: Iw for the non bounded support vectors
(0 < αw < C), IC for the bounded points - misclassified or in the margins (αC = C) and I0 which
contains the non support vectors (α0 = 0).

3.1.2 FINDING THE α

CVM: solves the QP on the coreset only using SMO and thus obtains the α.
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SimpleSVM: solves an optimization problem such that the optimality condition leads to a linear
system. This linear system has αw as unknown.

3.1.3 ALGORITHMS

CVM: uses the following steps:

Algorithme 1 CVM algorithm
1: initialize ! two points in the coreset, the first center of the ball, the first radius (see the original
paper for details on the MEB)

2: if no point in the remaining points falls outside the ε-ball then
3: stop (with ε-tolerance) ! outer loop
4: end if
5: take the furthest point from the center of the current ball, add it to the core set
6: solve the QP problem on the points contained in the coreset (using SMO with warm start with
ε-tolerance) ! inner loop

7: update the ball (center and radius)
8: go to second step

Two things require computational efforts there: the distance computation involved in steps 2
and 5, and solving the QP in step 6. For the distance computation, the authors propose a heuristics
that consists of sampling 59 points instead of checking all the points, thus reducing greatly the time
required. Doing so they ensure at 95% that the furthest point among those 59 points is part of the 5%
of points the furthest from the center. For step 6, they use warm start feature of the SMO algorithm,
doing a rank-one update of the QP.

SimpleSVM: uses the following steps:

Algorithme 2 SimpleSVM algorithm
1: initialize ! two points in Iw, first values of αw
2: if no point in the remaining points is misclassified by the current solution then
3: stop (with ε-tolerance)
4: end if
5: take the furthest misclassified point from the frontier, add it to Iw
6: update the linear system and retrieve αw
7: if all 0< αw <C then
8: go to second step
9: else
10: remove violating point from Iw (put it in I0 or Ic depending on the constraint it violates) and

go to step 6
11: end if

Again, two things require computational efforts here: the classification involved in steps 2 and
5, and solving the linear system in step 6. For the classification, a heuristic is used that consists
of taking the first violator found (yet all the points are eventually checked hence insuring an exact
resolution). For step 6, a rank-one update is performed which is O(n2) instead of O(n3) for full
resolution.
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3.2 Stopping Criteria

We now consider the stopping criteria used in those algorithms. Indeed we have noted in the previ-
ous algorithms steps where a stopping criteria is involved (the ε-tolerance).

For the sake of clarity, we will also give details about the ν-SVM. Indeed, we will see that the
CVM stopping criterion is analog to the ν-SVM one.

Notations and definitions Let x be our data labeled with y. Let k(., .) be the kernel function. We
will denote α the vector of Lagrangian multipliers involved in the dual problem of SVMs.

K is the kernel, such that Ki j = yiy jk(xi,x j). As defined in Tsang et al. (2005, Eq. 17), K̃ is the
modified kernel, such that K̃i j = yiy jk(xi,x j)+yiy j+

δi j
C (δi j = 1 if i= j and 0 otherwise). K̃ is used

for the reformulation of the SVM as a MEB problem.
As defined in Tsang et al. (2005, page 370), K̃ = K̃ii = K+1+ 1

C with K = Kii (which is equal
to 1 for the RBF kernel).
1 stands for vectors of ones, 0 for vectors of zeros. All vectors are columns unless followed by

a prime.

C-SVM type (SimpleSVM and SMO) The stopping criterion commonly used in classical SVM
(C-SVM) is

min(Kα1−1) ≥−ε1.

The two implementations SimpleSVM and libSVM (the C-SVM version) use similar stopping cri-
teria, up to the biased term. This corresponds to the constraint of good classification. Here the
magnitude of α, influenced by C, slightly modifies the tightness of the stopping condition. For
SMO, a very strict stopping criteria causes a large number of iterations and slows down the training
speed. This is the reason why it is usually admitted that SMO should not be run with largeC values
(and this idea is often extended to SVM independently of the solver, which is a wrong shortcut).
On the other hand, SimpleSVM’s training speed is linked to the number of support vectors (there
is no direction search with a first order gradient to slow it down). For separable problems, large C
produces sparser solutions, so SimpleSVM is faster with largeC.

ν-SVM type In the ν-SVM setting (see Chen et al., 2005, for further details), the stopping criterion
is

min(Kα2−ρ21) ≥−ε2
where ρ2 corresponds to the margin (see Chang and Lin, 2001b, for derivations). In order to compare
this criterion to the previous one, it is possible to exhibit links between the two problems. Let say
that for a given problem and a given ε2, the ν-SVM optimal solution is α2 and ρ2. To obtain the
same solution using the C-SVM, one can use the following relations: C = 1/ρ2 (see Schölkopf and
Smola, 2002, p209, prop. 7.6) and ε1 = ε2/ρ2. The solution α1 obtained by the C-SVM can also be
compared to α2 since we know that 0≤ α2 ≤ 1 and 0≤ α1 ≤C. Thus there is α2 = α1/C. Thanks
to those relations it is possible to express the C-SVM stopping criterion with the ν-SVM terms by
setting

ε1 = ε2C =
ε2
ρ2

.

With a small ε2, a small margin found by the ν-SVM leads to a large C (for instance 1/ε2). The
equivalent C-SVM should run with ε1 = 1 which is very loose. Because of this scaling effect,
comparison should be careful.
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CVM CVM uses two overlapping loops. The outer one for the coreset selection and the inner one
to solve the QP problem on the coreset. Thus CVM require two stopping criteria, one per loop.

Let us first consider the inner loop, that is, points that are constituting the coreset. The related
multipliers α3 are found using SMO. However, as mentioned in Tsang et al. (2005, Equation 5), the
solved QP is similar to a ν-SVM problem. Hence the stopping condition is similar to the ν-SVM
stopping condition. The major difference between a ν-SVM and the inner loop of CVM is the use
of a modified kernel K̃ instead of K. The leading stopping criterion is the one of the outer loop.

The stopping criterion of the outer loop (equivalent to Eq. 25 of the paper) is:

min
(
(K̃α3)R −ρ31

)
≥−ε3K̃

where R indicates points that are outside the coreset. Note that if α3 is the CVM solution for
a given ε3, since 1′α3 = 1, the equivalent solution α1 given by a C-SVM is linked as follows :
α3 = α1/(1′α1). Moreover, setting ρ3 = 1/(1′α1), using those relations and expanding the kernel
expression give:

min
((

(K+yy′ + 1
C Id)α1

)
R −1

1′α1

)
≥−ε3(K+1+

1
C

). (1)

Here again thanks to those relations it is possible to express the C-SVM stopping criterion with the
outer CVM terms by taking

ε1 =
ε3(K+1+ 1

C )+
(
(yy′ + 1

C Id)α3
)
!

ρ3

where " denotes the indice of the point minimizing the left-hand side part of (1). We can observe a
similar scale effect to the one happening for ν-SVM.

Apart from the possibility to compare fairly to other solvers, let us study the behavior of CVM
depending onC or on the training set size.

• The modified kernel hides a non-negligible regularizing effect. Indeed 1/C is added to the
diagonal. Thus for smallC, the kernel becomes well conditioned. Hence we can expect CVM
to give better results with smallC.

• From its ν-SVM like form, it also gets stricter condition for small C. This strict condition
increases the number of steps and, as a side effect, the probability to check more points
outside the coreset when sampling the 59 points.

Overall, for a small C, CVM should be slower than SMO (since it repeats SMO) and give accurate
results.

• A largeC, on the contrary, does not influence the kernel conditioning anymore.

• From the form of the stopping criterion, the condition is looser.

• The inner stopping condition is loose too. The looser it is, the fewer support vectors it takes.
Overall, we can expect less accurate results for largeC.

As for the training set size, it plays on the scaling effect. The more points there are, the more
important this effect is. As a consequence, the previous tendencies depending onC are more visible
for large data sets. Finally, we would like to underline the fact that the stopping criterion for the
inner loop is not clearly defined. This analysis is simplified by admitting that the inner stopping
criterion is equivalent to the outer one.
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4. Experimental Results

We now propose experiments illustrating the previous analysis. We first make the training size
varies and thenC. For all the experiments, we use ε= 10−6.

Behavior of the algorithms when size is growing Figure 2 shows the results for experiments
where the training size is growing for various sets of hyper-parameters. We observe:

• for a givenC, results are similar in terms of training time, regardless of the kernel bandwidth,

• the best configuration for CVM is medium C regarding training time and small C regarding
accuracy,

• for smallC, CVM is the most accurate method (due to a regularization on the kernel),

• for largeC, CVM accuracy tends to decrease.

It is clear from this experiment that we face different behaviors depending on the hyper-parameters.
Each method has a favorable mode and those are not compatible. Since the bandwidth does not
influence the trends of the obtained curves, we will fix it and focus now on variations ofC.

Behavior of the algorithms when C is varying Figure 3 shows how the training changes de-
pending on the value of C for each studied algorithm. The same experiment is conducted for two
training sizes (10,000 points for the first column, 30,000 for the second), in order to point out that
the training size amplifies sensitivity of CVM to its hyper-parameters. Each experiment reports
the training time (top figure), the error rate (second figure), the number of support vectors and the
size of the coreset (third figure) and the proportion of support vectors in the coreset for CVM (last
figure),C ∈ [10−2,106].

small C SimpleSVM fails because of not enough memory, libSVM is the fastest (loose stopping
condition) and CVM the most accurate (regularized kernel). The coreset size corresponds almost
exactly to the number of support vectors, which means that the selection criterion is accurate.

large C SimpleSVM is faster than libSVM (penalized by strict stopping condition) and both are as
accurate. CVM gets large error rate and we see that the less the coreset set is related to the support
vectors, the less accurate the method is. The point that is not so clear is the reason why the coreset
grows that much and this is still to be explored.

5. Conclusion

In their conclusion, the authors claim that “experimentally, it [CVM] is as accurate as existing
SVM implementations”. We show that is not always true and furthermore that it may not converge
towards the solution.

Moreover we have shown that comparisons between CVM and usual SVM solvers should be
careful since the stopping criteria are different. We have illustrated this point as well as the effect
of magnitude of C on the training time. We have explained partly the behavior of CVM and shown
that their results may be misleading, yet it still requires further exploration (particularly regarding
the actual effects of the random sub-sampling).

As mentioned by Chang and Lin (2001b, conclusion), who are studying the ν-SVM (which has
a similar stopping condition to the CVM, that is, very sensitive to the α magnitude), we would need
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here an adaptive ε in order to avoid unstable behaviors but it can not be done easily. Furthermore,
one who uses SVM should be aware that each method has favorable and non favorable ranges of
hyper-parameters.

Finally, we acknowledge that a fast heuristic which achieves loose yet still acceptable accuracy
is interesting and useful for very large databases (by itself or as a starting point for more accurate
methods) but to use it with confidence, one has to know when the method is indeed accurate enough.
Hence CVM may benefit from being presented along with its limits.
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Abstract
We present a general decomposition algorithm that is uniformly applicable to every (suitably nor-
malized) instance of Convex Quadratic Optimization and efficiently approaches an optimal solu-
tion. The number of iterations required to be within ε of optimality grows linearly with 1/ε and
quadratically with the number m of variables. The working set selection can be performed in poly-
nomial time. If we restrict our considerations to instances of Convex Quadratic Optimization with
at most k0 equality constraints for some fixed constant k0 plus some so-called box-constraints (con-
ditions that hold for most variants of SVM-optimization), the working set is found in linear time.
Our analysis builds on a generalization of the concept of rate certifying pairs that was introduced
by Hush and Scovel. In order to extend their results to arbitrary instances of Convex Quadratic Op-
timization, we introduce the general notion of a rate certifying q-set. We improve on the results by
Hush and Scovel (2003) in several ways. First our result holds for Convex Quadratic Optimization
whereas the results by Hush and Scovel are specialized to SVM-optimization. Second, we achieve
a higher rate of convergence even for the special case of SVM-optimization (despite the generality
of our approach). Third, our analysis is technically simpler.

We prove furthermore that the strategy for working set selection which is based on rate certify-
ing sets coincides with a strategy which is based on a so-called “sparse witness of sub-optimality”.
Viewed from this perspective, our main result improves on convergence results by List and Si-
mon (2004) and Simon (2004) by providing convergence rates (and by holding under more general
conditions).
Keywords: convex quadratic optimization, decomposition algorithms, support vector machines

1. Introduction

Support vector machines (SVMs) introduced by Vapnik and co-workers (Boser et al., 1992; Vapnik,
1998) are a promising technique for classification, function approximation, and other key problems
in statistical learning theory. In this paper, we consider the optimization problems that are induced
by SVMs. These SVM-optimization problems (SVO) are special cases of Convex Quadratic Opti-
mization (CQO).

The difficulty of solving problems of this kind is the density of the matrix that represents the
“quadratic part” of the cost function. Thus, a prohibitive amount of memory is required to store
the matrix and traditional optimization algorithms (such as Newton, for example) cannot be directly
applied. Several authors have proposed (different variants of) a decomposition method to overcome
this difficulty (Osuna et al., 1997; Joachims, 1998; Platt, 1998; Saunders et al., 1998; Mangasarian
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and Musicant, 1999, 2000, 2001; Chang et al., 2000; Keerthi et al., 2000, 2001; Keerthi and Gilbert,
2002; Lin, 2001b, 2002a,b; Laskov, 2002; Chang and Lin, 2001; Hsu and Lin, 2002; Liao et al.,
2002; Hush and Scovel, 2003; List and Simon, 2004; List, 2004; Chen et al., 2005). Given an in-
stance of CQO, this method keeps track of a current feasible solution which is iteratively improved.
In each iteration the variable indices are split into a “working set” I⊆ {1, . . . ,m} and its complement
J= {1, . . . ,m}\I. Then, the simplified instance with the variables xi, i∈ I, is solved, thereby leaving
the values for the remaining variables x j, j ∈ J, unchanged. The success of the method depends in
a quite sensitive manner on the policy for the selection of the working set I (whose size is typically
much smaller than m). Ideally, the selection procedure should be computationally efficient and, at
the same time, effective in the sense that the resulting feasible solutions become cost-optimal in the
limit (with high speed of convergence).

Our results and their relation to previous work: Hush and Scovel (2003) were concerned with
SVO. They introduced the notion of an “α-rate certifying pair” and showed that every decomposi-
tion algorithm for SVO that always inserts an α-rate certifying pair in its current working set comes
within ε of optimality after O(1/(εα2)) iterations. Building on a result by Chang et al. (2000),
they presented furthermore an algorithm that constructs an 1/m2-rate certifying pair in O(m logm)
steps.1 Combining these results, we see that the decomposition algorithm of Hush and Scovel for
problem SVO is within ε of optimality after O(m4/ε) iterations.
In this paper we present an extension of (and an improvement on) this result. We first define the
general notion of an α-rate certifying q-set and show (with a simplified analysis) that it basically
fits the same purpose for CQO as the α-rate certifying pair for SVO, where the number of iterations
needed to be within ε of optimality is proportional to q/(εα2). We present a general decomposition
algorithm that is uniformly applicable to every (suitably normalized) instance of CQO. Given an
instance with k equality constraints and m variables, it finds an 1/m-rate certifying (k+ 1)-set in
polynomial time.2 Combining these results, we are within ε of optimality after O(km2/ε) iterations
of our decomposition algorithm. The problem SVO (considered by Hush and Scovel) has only one
equality constraint. Plugging in k = 1 in our general result, we arrive at an upper bound on the
number of iterations that improves on the bound obtained by Hush and Scovel by factor m2. The
analysis of Hush and Scovel (2003) builds on an earlier analysis of conditional gradient algorithms
given by Dunn (1979). For this part of the analysis, we will present simpler arguments.
List and Simon (2004) suggested a strategy for working set selection that is based on a so-called
“sparse witnesses of sub-optimality”. They were able to prove that this strategy leads to feasible
solutions of minimum cost in the limit. To this end, they had to impose a technical restriction on the
cost function. Their result states the mere convergence without providing any convergence rates.
In this paper, we prove (by means of Linear Programming duality) that the strategy for working
set selection which is based on rate certifying sets coincides with the strategy of List and Simon
(2004). Viewed from this perspective, our main result improves on the convergence result by List
and Simon (2004) (and on a related result by Simon (2004)) by providing convergence rates (and
by holding under more general conditions).
There are some alternatives to the approach we follow here. A paper by Lin (2001a) seems to imply
the following quite strong result for SVO (although not stating it explicitly): decomposition algo-

1. Time bound O(m logm) can be improved to O(m) by using the method of Simon (2004).
2. Moreover, the algorithm can be implemented such as to find this set even in linear time when we restrict its application
to instances of CQO with at most k0 equality constraints for some fixed constant k0. If we restrict its application to
SVO, we may use the highly efficient method of Simon (2004).

304



GENERAL POLYNOMIAL TIME DECOMPOSITION ALGORITHMS

rithms following the approach of maximally KKT-violating pairs are within ε of optimality after
only O(log1/ε) iterations.3 However, the analysis is specialized to SVO. Furthermore it has to
assume strict convexity of the objective function and some non-degeneracy conditions. The con-
vergence rate is only given in terms of ε whereas the dependence on problem parameters (like, for
example, m) is not clarified.
Another algorithm (related to but different from decomposition algorithms) is SimpleSVM (Vish-
wanthan et al., 2003) which tries to iteratively include the support vectors in the working set. As-
suming strict convexity of the objective function, Vishwanthan et al. (2003) claim a linear conver-
gence of the method (but do neither give a complete proof nor exhibit the dependence on the various
parameters explicitly). The main difference between SimpleSVM and decomposition algorithms is
the size of the working set which can grow-up to the number of support vectors in the former case
and is kept constant in the latter. Note that the number of support vectors is particularly large on
noisy data.

2. Preliminaries

After fixing some notation (Section 2.1), we briefly recall the main result by Hush and Scovel (2003)
about SVO and rate certifying pairs (Section 2.2) and the main result by List and Simon (2004) about
CQO and sparse witnesses of sub-optimality (Section 2.3).

2.1 Notations and Basic Facts

We are mainly concerned with the problem “Convex Quadratic Optimization with box-constraints”.
It is denoted simply as CQO in this paper and is formally given as follows:

Definition 1 (CQO) An instance P of CQO is given by

min
x
f (x) =

1
2
x"Qx+w"x s.t. Ax= b, l ≤ x≤ r ,

where

• Q∈Rm×m is a symmetric positive semi-definite matrix over the reals and w∈Rm. That means
f (x) is a convex quadratic cost function in m scalar variables,

• A ∈ Rk×m and b ∈ Rk such that Ax= b represents k linear equality constraints,

• l,r ∈ Rm and l ≤ x≤ r is the short-notation for the “box-constraints”

∀i= 1, . . . ,m : li ≤ xi ≤ ri .

In this paper, we will sometimes express f (x′) by means of the Taylor-expansion around x:

f (x′) = f (x)+∇ f (x)"(x′− x)+
1
2
(x′− x)"Q(x′− x) ,

3. See the work of Chen et al. (2005, 2006) for a generalization of this result to similar but more general policies for
working set selection.
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where ∇ f (x) = Qx+w. This can be rewritten as follows:

f (x)− f (x′) = ∇ f (x)"(x− x′)− 1
2
(x− x′)"Q(x− x′) . (1)

Note that (x− x′)"Q(x− x′) ≥ 0 because Q is positive semi-definite.
In the sequel,

R(P ) = {x ∈ Rm| Ax= b, l ≤ x≤ r}

denotes the compact and convex set of feasible points for P . The well-known first-order optimality
condition for convex optimization (see, for example, Boyd and Vandenberghe, 2004) (valid for an
arbitrary convex cost function) states that x ∈ R(P ) is an optimal feasible solution iff

∀x′ ∈ R(P ) : ∇ f (x)"(x′− x) ≥ 0 .

We briefly note that any instance of the general convex quadratic optimization problem with cost
function f (x), linear equality constraints, linear inequality constraints (not necessarily in the form
of box-constraints) and a compact region of feasible points can be transformed into an equivalent
instance of CQO because we may convert the linear inequalities into linear equations by introducing
non-negative slack variables. By the compactness of the region of feasible points, we may also put
a suitable upper bound on each slack variable such that finally all linear inequalities take the form
of box-constraints.

We now define a subproblem of CQO, denoted as SVO in this paper, that is actually one of the
most well studied SVM-optimization problems:

Definition 2 (SVO) An instance P0 of SVO is given by

min
x
f (x) s.t. y"x= 0 , l ≤ x≤ r ,

where f (x), l,r are understood as in Definition 1 and y ∈ {−1,1}m is a vector whose components
represent binary classification labels.

The main difference between SVO and the general problem CQO is that SVO has only a single
equality constraint. Furthermore, this equality constraint is of a special form.

We are now prepared to introduce (informally) the notion of “decomposition algorithms”. A
decomposition algorithm for CQO with working sets of size at most q (where we allow that q
depends on k) proceeds iteratively as follows: given an instance P of CQO and a feasible solution
x∈ R(P ) (chosen arbitrarily in the beginning), a so-called working set I ⊆ {1, . . . ,m} of size at most
q is selected. Then x is updated by an optimal solution for the simplified instance with variables xi,
i ∈ I (leaving the values x j with j /∈ I unchanged). Decomposition algorithms for SVO are defined
analogously. The policy for working set selection is a critical issue that we discuss in the next
sections.

Notational Conventions:

• The parameters m,k, f ,A,y,b, l,r are consistently used in this paper as the components of an
instance of CQO or SVO. Similarly, parameter q (possibly dependent on k) always represents
the (maximal) size of the working set.
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• Lmax and Smax are two more parameters that we associate with an instance of CQO or SVO
(where Lmax depends also on q). Lmax denotes the largest among the eigenvalues of all the
principal (q× q)-sub-matrices of Q. Smax := max1≤i≤m(ri− li) denotes the maximum side
length of the box spanned by l and r.

• For a decomposition algorithm A , we denote the current feasible solution obtained after n
iterations by xn (such that x0 is the feasible solution A starts with4). x∗ always denotes an
optimal feasible solution such that

Δn := f (xn)− f (x∗) (2)

denotes the difference between the value of the current solution and the optimal value.

2.2 Rate Certifying Pairs

Let us consider problem SVO from Definition 2 along with a problem instance P0. Let x ∈ R(P0)
be a feasible solution and x∗ ∈ R(P0) an optimal feasible solution. In the sequel, we will often use
the following first-order approximation of the maximal distance (with regard to the value of the
objective function) between a given point x and any other feasible solution x′

σ(x) := sup
x′∈R(P0)

∇ f (x)"(x− x′) .

As already noted by Hush and Scovel (2003), the following holds:5

f (x)− f (x∗) ≤ ∇ f (x)"(x− x∗) ≤ σ(x) . (3)

In other words, f (x) is always within σ(x) of optimality. Note that σ(x∗) = 0 (which immediately
follows from the first-order optimality condition). Thus, σ(x) > 0 if and only if x is sub-optimal.

Since we are dealing with working sets whose size is bounded by a (small) parameter q, it is
natural to restrict the range of x′ to feasible solutions that differ from x in at most q coordinates. For
q= 2, this leads to the following definition:

σ(x|i1, i2) := sup
x′∈R(P0):x′i=xi for i(=i1,i2

∇ f (x)"(x− x′) .

The following notion is crucial: (i1, i2) is called an α-rate certifying pair for x if

σ(x|i1, i2) ≥ α( f (x)− f (x∗)) .

Let !α be a function in m with strictly positive values. An !α-rate certifying algorithm is a decom-
position algorithm for SVO that, for every m and every input instance P0 with m variables, always
includes an !α(m)-rate certifying pair in the current working set. As mentioned already in the intro-
duction, the main results by Hush and Scovel (2003) are as follows:

4. The problem of finding an initial feasible solution can be cast as an instance of Linear Programming. For an instance
of SVO, an initial guess usually is the zero vector.

5. The first inequality follows from (1) and the positive semi-definiteness of Q; the second-one is trivial.
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Theorem 3 (Hush and Scovel (2003)) 1. Let A be an !α-rate certifying algorithm. Consider
any instance P0 of SVO with, say, m variables. Let Lmax and Smax be the quantities associated
with P0.6 For sake of brevity, let α=!α(m). Then, A is within ε of optimality after

1+
2max{1,2S2max}

α

(
max{1,αΔ0/Lmax}Lmax

αε
−1

)
=

O
(
Lmax(1+Smax)2

α2ε
+
Δ0(1+Smax)2

αε

)

iterations.

2. For function !α given by !α(m) = 1/m2, there exists an !α-rate certifying algorithm. It con-
structs a working set (given P0 and a sub-optimal feasible solution x) in O(m logm) steps (or
in O(m) steps when the method of Simon (2004) is applied). Furthermore, it is within ε of
optimality after

O
(
Lmax(1+Smax)2m4

ε
+
Δ0(1+Smax)2m2

ε

)

iterations.

2.3 Sparse Witnesses of Sub-optimality

Consider the situation where we apply the decomposition method to a problem instance P of the
general problem CQO from Definition 1. As suggested by List and Simon (2004), the selection of
a working set can be guided by a function family (CI(x))I⊆{1,...,m} as follows:

Strict Rule: Given the current feasible solution x, choose the next working set I ⊆ {1, . . . ,m} of
size at most q such as to maximize CI(x).

Relaxed Rule: Given the current feasible solution x, choose the next working set I ⊆ {1, . . . ,m} of
size at most q such as to maximize CI(x) up to a factor of 0< ρ< 1.

List and Simon (2004) say that (CI(x)) is a q-sparse witness of sub-optimality if it satisfies the
following conditions:

(C1) For each I ⊆ {1, . . . ,m} such that |I|≤ q, CI(x) is continuous on R(P ).

(C2) If |I| ≤ q and x′ is an optimal solution for the subproblem induced by the current feasible
solution x and working set I, then CI(x′) = 0.

(C3) If x is not an optimal solution for P , then there exists an I ⊆ {1, . . . ,m} such that |I|≤ q and
CI(x) > 0.

The following is shown by List and Simon (2004) and Simon (2004):

1. The function family

CI(x) :=

inf
λ∈Rk

(

∑
i∈I

(xi− li)max{0,∇ f (x)i−A"
i λ}+(ri− xi)max{0,A"

i λ−∇ f (x)i}
)

(4)

6. See our notational conventions in Section 2 for a definition (where q= 2).
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is a q-sparse witness of sub-optimality provided that q ≥ k+ 1. Here, Ai denotes the i’th
column of A and A"

i its transpose.

2. The working set selection problem induced by the function family CI(x) from (4) is NP-
complete if we insist on the strict rule. But it is solvable in polynomial time if we follow the
relaxed rule with a constant 0< ρ< 1.

3. Let q ≥ k+ 1. Assume that Q ∈ Rm×m has positive definite sub-matrices QI,I for all sub-
sets I ⊆ {1, . . . ,m} of size at most q. If (CI(x)) is a q-sparse witness of sub-optimality and
the working set is always selected according to the relaxed rule, then the resulting feasible
solutions become cost-optimal in the limit.

Note that the latter convergence result holds especially for the family (CI(x)) from (4). However, it
merely states convergence without guaranteeing any convergence rate. Furthermore, it requires the
above assumption of positive definite sub-matrices QI,I . The results in the next section improve on
this as follows:

• They do provide a convergence rate.

• They do not require the technical assumption about positive definite sub-matrices of Q.

3. Rate Certifying Sets and the Main Theorem

We now turn our attention to the main results of this paper. In Section 3.1, we present the new notion
of rate certifying sets and state the main convergence theorem whose proof is given in Sections 3.2
and 3.3. In Section 3.4, we reveal the relation between rate certifying sets and sparse witnesses of
sub-optimality.

3.1 Rate Certifying Sets

The notion of rate certifying sets generalizes the notion of rate certifying pairs from Section 2.2.
The definition of σ(x) is easily extended to any instance P of CQO:

σ(x) := sup
x′∈R(P )

∇ f (x)"(x− x′) . (5)

Clearly, inequality (3) and the subsequent comments are still valid without any change. However,
since CQO deals with several equality constraints, one can in general not expect to find rate certify-
ing pairs. Instead, the following general definition for I ⊆ {1, . . . ,m} will prove useful:

σ(x|I) := sup
x′∈R(P ):x′i=xi for i/∈I

∇ f (x)"(x− x′) . (6)

I is called an α-rate certifying q-set if |I|≤ q and

σ(x|I) ≥ α( f (x)− f (x∗)) . (7)

I is called a strong α-rate certifying q-set (implying that it is an α-rate certifying q-set) if |I| ≤ q
and

σ(x|I) ≥ ασ(x) .
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Let !α be a function in m with strictly positive values and let !q be a function in k whose values are
strictly positive integers. A (strong) (!α,!q)-rate certifying algorithm is a decomposition algorithm
for CQO that, for everym,k and any problem instance P withm variables and k equality constraints,
includes a (strong) !α(m)-rate certifying !q(k)-set in the current working set. With these notations,
the following holds:

Theorem 4 1. Let A be an (!α,!q)-rate certifying algorithm. Consider an instance P of CQO
with, say, m variables and k equality constraints. For sake of brevity, let α=!α(m), q=!q(k),
and let Lmax,Smax be the quantities associated with P and q. Then, A is within ε of optimality
after ⌈

2qLmaxS2max
α2ε

⌉
+max

{
0,

⌈
2
α
ln

(
Δ0
ε

)⌉}
(8)

iterations. Moreover, if qLmaxS2max ≤ εα, then max{0,(2ln(Δ0/ε)/α)} iterations (the second
term in (8)) are enough.

2. For functions !α,!q given by !α(m) = 1/m and !q(k) = k+ 1, there exists a strong (!α,!q)-rate
certifying algorithm A .7 It constructs a working set (given P and a sub-optimal feasible
solution x) in polynomial time. Moreover, if we restrict its application to instances of CQO
with at most k0 equality constraints for some fixed constant k0, there is a linear time bound
for the construction of the working set.8

3. The algorithm A from the preceding statement is within ε of optimality after
⌈
2(k+1)m2LmaxS2max

ε

⌉
+max

{
0,

⌈
2m ln

(
Δ0
ε

)⌉}

iterations. Moreover, if (k+ 1)LmaxS2max ≤ ε/m, then max{0,(2m ln(Δ0/ε))} iterations are
enough.

Clearly, the third statement in Theorem 4 follows directly from the first two statements (which will
be proven in Subsections 3.2 and 3.3, respectively).

A few comments on Theorem 4 are in place here. One might be tempted to think that an (!α,!q)-
rate certifying algorithm decreases (an upper bound on) the distance between the current feasible
solution and the best feasible solution (with regard to the objective value) roughly by factor 1−α
(for α := !α(m)). If such a “contraction” took place, we would be within ε of optimality after
only O(log(1/ε)/α) iterations. This is however spurious thinking because the σ-function is not
concerned with this distance itself but rather with a first-order approximation of it. We will see in
the proof of Theorem 4 that a run of an (!α,!q)-rate certifying algorithm can be decomposed into two
phases. As long as the distance from the optimal value is large in comparison to (an upper bound
on) the second order terms (phase 1), a contraction by factor 1−α/2 takes place. However when we
come closer to the optimal value (phase 2), the effect of the neglected second order terms becomes
more significant and the convergence slows down (at least within our perhaps somewhat pessimistic
analysis). Phase 1 leads to the term max{0,(2ln(Δ0/ε)/α)} in (8) whereas phase 2 leads to the
term ((2qLmaxS2max)/(α2ε)).

7. As for the subproblem SVO and the special case q= 2, !α(m) = 1/m can be slightly improved to !α(m) = 1/(m−1)
and this is optimal (Hush et al., 2006).

8. If we restrict its application to instances of SVO, we may use the highly efficient method of Simon (2004).
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Note, that our analysis relies on the assumption, that the subproblem is solved exactly. As
we always deal with rational numbers in practice, the solution computed will only achieve the
optimum up to a certain precision ε. But as we can choose this ε arbitrarily small we will ignore
this complication.

3.2 Proof of the 1st Statement in Theorem 4

We will use the notation introduced in Theorem 4 and consider an arbitrary iteration of the (!α,!q)-
rate certifying algorithm A when it is applied on input P . To this end, let x denote a feasible but
sub-optimal solution, and let x∗ be an optimal feasible solution. Let I be the subset of the working
set that satisfies |I|≤ q and (7). Let x′ be a feasible solution that satisfies xi = x′i for every i /∈ I and

σ(x|I) = ∇ f (x)"(x− x′) = ∇ f (x)"d , (9)

where d = x− x′. Combining (7) with (9), we get

∇ f (x)"d ≥ α( f (x)− f (x∗)) = αΔ , (10)

where Δ = f (x)− f (x∗) ≥ 0. For some parameter 0 ≤ λ ≤ 1 (suitably chosen later), consider the
feasible solution

x′′ = x−λd

on the line segment between x and x′. Taylor-expansion around x allows to relate f (x) and f (x′′) as
follows:

f (x)− f (x′′) = λ∇ f (x)"d−λ2
1
2
d"Qd .

Note that x′′ (like x′) satisfies x′′i = xi for every i /∈ I. Thus, x′′ = x−λd is a feasible solution that
coincides with x outside the current working set. Thus, A (finding an optimal feasible solution that
coincides with x outside the working set) achieves in the next iteration a “cost reduction” of at least
f (x)− f (x′′).9 x′′ depends on the parameter 0≤ λ≤ 1. In the sequel, we tune parameter λ such as
to obtain a “large” cost reduction. To be on the safe side, we will however perform a “pessimistic
analysis” where we substitute worst case bounds for ∇ f (x)"d and d"Qd respectively. Clearly

max
0≤λ≤1

(
λ∇ f (x)"d−λ2

1
2
d"Qd

)
≥ max
0≤λ≤1

(
λB− 1

2
λ2B′

)

for any lower bound B on ∇ f (x)"d and any upper bound B′ on d"Qd. According to (10), αΔ can
serve as a lower bound on ∇ f (x)"d. It is easily seen that the following parameterU can serve as an
upper bound on d"Qd:

U := qLmaxS2max ≥ d"Qd . (11)

This immediately follows from the definition of Lmax and Smax and from the fact that d has at most
q non-zero components. We conclude from this discussion that, for every 0≤ λ≤ 1, A achieves in
the next iteration a cost reduction of at least

h(λ) := λαΔ− 1
2
λ2U .

9. “Achieving a cost reduction of a in the next iteration” means that the next iteration decreases the distance between
the value of the current feasible solution and the value of an optimal feasible solution by at least a.
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It is easily seen that function h(λ) is maximized by setting

λ :=
{

1 if Δ>U/α
αΔ/U if Δ≤U/α

.

Case 1 Δ>U/α. Then A achieves a cost reduction of at least

h(1) = αΔ− 1
2
U > αΔ/2 .

Thus the difference Δ= f (x)− f (x∗) will shrink after the next iteration to

Δ− α
2
Δ= Δ

(
1− α

2

)
,

or to a smaller value, which is a proper contraction.

Case 2 Δ≤U/α. Then A achieves a cost reduction of at least

h
(
αΔ
U

)
=
α2Δ2

2U
= γΔ2 ,

where
γ :=

α2

2U
. (12)

Thus, the difference Δ= f (x)− f (x∗) will shrink after the next iteration to

Δ− γΔ2

or to a smaller value.

Recall from (2) that the sequence (Δn)n≥0 keeps track of the difference between the value of the
current feasible solution and the value of an optimal solution. In view of the two cases described
above, our pessimistic analysis obviously runs through two phases:

Phase 1 As long as Δn >U/α, we calculate with a cost reduction of at least αΔn/2.

Phase 2 As soon as Δn ≤U/α, we calculate with a cost reduction of at least γΔ2n.

Let us first assume that ε <U/α (and postpone the case ε ≥U/α to the end of this subsection).
The number of iterations in phase 1 is not larger than the smallest n0 ≥ 0 that satisfies the second
inequality in

Δ0
(
1− α

2

)n0
< Δ0e−n0α/2 ≤ ε<

U
α

,

that is
n0 :=max

{
0,

⌈
2
α
ln

(
Δ0
ε

)⌉}
. (13)

In phase 2, (Δn)n≥n0 evolves according to

Δn+1 ≤ Δn− γΔ2n = Δn(1− γΔn) . (14)
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Recall that Δi = f (xi)− f (x∗) ≥ 0 for every i. As for the iterations considered in phase 2 within
our analysis, we can make the stronger (pessimistic) assumption Δi > 0.10 Following Dunn (1979),
we can therefore consider the reciprocals δn := 1/Δn. Note that (14) and Δn+1 > 0 imply that
0≤ γΔn < 1 and so for each n≥ n0 the following relation holds:

δn+1−δn ≥
1

Δn(1− γΔn)
− 1
Δn

=
γ

1− γΔn
≥ γ .

Therefore

δn = δn0 +
n−1

∑
j=n0

(δ j+1−δ j) ≥ γ(n−n0)

and consequently
Δn =

1
δn

≤ 1
γ(n−n0)

.

It follows that Δn ≤ ε after

n−n0 :=
⌈
1
γε

⌉

iterations in phase 2. Thus the total number of iterations in both phases needed to be within ε of
optimality is bounded by

n0+
⌈
1
γε

⌉
(12),(13)

≤
⌈
2U
α2ε

⌉
+max

{
0,

⌈
2
α
ln

(
Δ0
ε

)⌉}

iterations. Plugging in the definition ofU from (11), we obtain (8).
Let us now finally discuss the case U = qLmaxS2max ≤ εα. Since ε ≥ U/α, we come within ε of
optimality during phase 1. The number of iterations required for this is the smallest n0 that satisfies

Δ0
(
1− α

2

)n0
< Δ0e−n0α/2 ≤ ε .

Thus, we are within ε of optimality after

max
{
0,

⌈
2
α
ln

(
Δ0
ε

)⌉}

iterations. This completes the proof of the first statement in Theorem 4.

3.3 Proof of the 2nd Statement in Theorem 4

Before we present the proof, we recall some definitions and facts from the theory of Linear Pro-
gramming.11

An instance of Linear Programming is given by a linear target function c"x that has to be
minimized (or maximized) subject to some linear equality and inequality constraints. A vector that
satisfies the constraints is called a feasible solution. The instance is called feasible if it has a feasible
solution. It is called bounded if it has a finite optimal value. An instance of the form

max
x
c"x s.t. Ax= b , x≥ 0 ,

10. Otherwise phase 2 ends with an optimal solution even earlier.
11. See any standard text book about Combinatorial Optimization (for example Papadimitriou and Steiglitz, 1982).
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where b,c ∈ Rn and A ∈ Rm×n, m,n ∈ N, is said to be in standard form. We can assume that A has
rank m (after removal of redundant equations if necessary). An (m×m)-sub-matrix B of A formed
by m linearly independent columns of A, say Ai1 , . . . ,Aim , 1 ≤ i1 < · · · < im ≤ n, is called a basis.
The basic solution corresponding to B is obtained by setting xi = 0 for every i /∈ {i1, . . . , im} and
by setting xil equal to the l’th component of B−1b for l = 1, . . . ,m. Note that any basic solution
(corresponding to some basis) has at most m = rank(A) many nonzero components. If a basic
solution happens to be feasible, it is called a basic feasible solution. It is well-known that, for every
feasible and bounded instance of Linear Programming in standard form, there exists a basic feasible
solution that is optimal (among all feasible solutions).

We are now prepared for the proof of the second statement in Theorem 4. We start with a short
outline. Let x be a feasible but sub-optimal solution for P . We have to show that one can efficiently
construct a working set I such that |I|≤ k+1 and

σ(x|I) ≥ 1
m
σ(x) . (15)

To this end, we will proceed as follows. We consider auxiliary instances Px,P ′
x,P ′′

x of Linear Pro-
gramming (denoted as LP in the sequel). The optimal values for Px and P ′

x, are both shown to
coincide with σ(x). From P ′

x, we derive (basically by aggregating several equality constraints into
a single-one) the instance P ′′

x , whose optimal basic solution will represent a working set I of size at
most k+1. A comparison of the three problem instances will finally reveal that I satisfies (15).

We now move on to the technical implementation of this plan. Recall from (5) that

σ(x) = sup
x′∈R(P )

∇ f (x)"(x− x′) = ∇ f (x)"d ,

where d = x− x′. Thus σ(x) is the optimal value of the following instance Px of LP:

max
d
∇ f (x)"d s.t. Ad =!0, l ≤ x−d ≤ r .

We set
µ+ := x− l and µ− := r− x

and split d into positive and non-positive components d+ and d− respectively:

d = d+−d−, d+,d− ≥!0, ∀i= 1, . . . ,m : d+
i d

−
i = 0 . (16)

With these notations, σ(x) also coincides with the optimal value of the following instance P ′
x of LP:

max
d+,d−

(
∇ f (x)

−∇ f (x)

)"(
d+

d−

)

subject to

[A,−A]
(
d+

d−

)
= !0,

!0≤ d+ ≤ µ+ , !0≤ d− ≤ µ−.
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The third instance P ′′
x of LP that we consider has an additional slack variable ξ and is given as

follows:

max
d+,d−,ξ

(
∇ f (x)

−∇ f (x)

)"(
d+

d−

)

subject to

∀i= 1, . . . ,m : µ−i = 0⇒ d−i = 0 , µ+
i = 0⇒ d+

i = 0, (17)

[A,−A]
(
d+

d−

)
= !0,

∑
i:µ+

i >0

1
µ+
i
d+
i + ∑

i:µ−i >0

1
µ−i

d−i +ξ = 1,

d+,d− ≥!0 , ξ≥ 0.

We briefly note that we do not have to count the equality constraints in (17) because we may simply
remove the variables that are set to zero from the problem instance. Recall that matrix A represents
k equality constraints. Thus, P ′′

x is a linear program in standard form with k+1 equality constraints.
Its optimal basic feasible solution has therefore at most k+1 non-zero components. The following
observations (where d,d+,d− are related according to (16)) are easy to verify:

1. If
(
d+

d−

)
is a feasible solution for P ′

x with value p, then 1
m

(
d+

d−

)
is a feasible solution

for P ′′
x with value p/m.

2. If
(
d+

d−

)
is a feasible solution for P ′′

x with value p, then
(
d+

d−

)
is also a feasible solution

for P ′
x with value p.

Recall that σ(x) is the value of an optimal solution for P ′
x. We may conclude from our observations

that the value of an optimal solution for P ′′
x , say σ′(x), satisfies σ′(x) ≥ σ(x)/m. Now consider an

optimal basic feasible solution
(
d+

d−

)
for P ′′

x with value σ′(x). Let

I := {i ∈ {1, . . . ,m}| d+
i += 0 or d−i += 0} .

Clearly, |I|≤ k+1. Since d = d+−d− is a feasible solution for P (still with value σ′(x)) that differs
from x only in coordinates from I, we may conclude that

σ(x|I) ≥ σ′(x) ≥ 1
m
σ(x) .

In other words, working set I satisfies (15). The time required to compute I is dominated by the
time required to solve the linear program P ′′

x . This can be done in polynomial time. Since a linear
program with a constant number of variables (or a linear program in standard form with a constant
number of equality constraints12) can be solved in linear time (Megiddo, 1984), the proof for the
2nd statement of Theorem 4 is completed.

12. That means the dual linear program has constant number of variables.
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3.4 Relation between Certifying Sets and Sparse Witnesses of Sub-optimality

Before we come to the main issue of this section, we briefly recall some well-known definitions and
facts from the theory of Linear Programming (see Papadimitriou and Steiglitz, 1982, Definition 3.1
and Theorems 3.1 and 3.2).

For every (primal) instance of Linear Programming, one can construct the so-called dual in-
stance according to the following scheme:

primal dual

minx c"x maxλλ"b
a"i x= bi i ∈M —
a"i x≥ bi i ∈ M̄ λi ≥ 0
x j ≥ 0 j ∈ N λ"A j ≤ c j
— j ∈ N̄ λ"A j = c j

In this scheme, A ∈ Rm×n is a matrix with column vectors A1, . . . ,An and row vectors a"1 , . . . ,a"m ,
N ⊆ {1, . . . ,n} is the set of indices corresponding to primal variables that are constrained to be non-
negative, andM ⊆ {1, . . . ,m} is the set of indices corresponding to equality constraints (as opposed
to inequality constraints) in the primal. It is well known that the optimal values of the primal and
the dual coincide (assuming that the optimal values exist). Moreover, the dual of the dual coincides
with the primal.

Let us now return to the main issue of this section. Consider again the function σ(x|I) from (6)
and the functionCI(x) from (4). Here comes the main result of this section:

Lemma 5 σ(x|I) =CI(x).

Proof Given a subset I ⊂ {1, . . . ,m}, |I| = q, and a vector x ∈ Rm, we will write shortly xI ∈ Rq for
the vector consisting only of entries xi, i ∈ I. Recall that Ai ∈ Rk denotes the i-th column of matrix
A and write AI ∈ Rk×q for the matrix consisting of columns Ai such that i ∈ I.
An inspection of (6) reveals that σ(x|I) can equivalently be written as follows:

σ(x|I) = sup
d∈Rq

{ ∇ f (x)"I d | AId = 0, lI ≤ xI−d ≤ rI } .

This is an (obviously feasible and bounded) instance of Linear Programming with the following
inequality constraints (

Idq
− Idq

)
d ≤

(
xI− lI
rI− xI

)
,

where Idq ∈ Rq×q denotes the identity-matrix. According to LP-duality, σ(x|I) can also be viewed
as the minimum cost of the dual minimization problem:

σ(x|I) = inf
α,β∈Rq

λ∈Rk

{(
α
β

)"(
xI− lI
rI− xI

) ∣∣∣∣∣ A
"
I λ+α−β= ∇ f (x)I, α,β≥ 0

}
. (18)

It is easy to see that the optimal choice of α and β is as follows:

αi =max{0,∇ f (x)i−A"
i λ} and βi =max{0,A"

i λ−∇ f (x)i} .
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Plugging these settings into (18), we finally get

σ(x|I) =

inf
λ∈Rk ∑i∈I

(
(xi− li)max{0,∇ f (x)i−A"

i λ}+(ri− xi)max{0,A"
i λ−∇ f (x)i}

)

=CI(x) .

Lemma 5 is remarkable because the coincidence of the two functions was not known before and
their definitions originated from different motivations:

• CI(x) was designed such as to satisfy the axioms for sparse witnesses of sub-optimality.

• σ(x|I)was designed as a generalization of the corresponding function for rate certifying pairs.

Definition 6 (WSS) The problem “Working Set Selection for CQO”, denoted briefly as WSS(CQO),
is the following computational problem: given an instance of CQO (see Definition 1) augmented by
a feasible solution x and an upper bound q≥ k+1 on the size of the working set, find a working set
I∗ ⊆ {1, . . . ,n} that maximizes σ(x|I) subject to |I|≤ q.
An approximation algorithm for WSS(CQO) is called ρ-optimal13 if, for every instance of WSS(CQO),
it finds a working set I0 such that |I0|≤ q and σ(x|I0) ≥ ρmaxI:|I|≤qσ(x|I).
The corresponding notions for the subproblem WSS(SVO) are defined analogously.

Rate certifying algorithms and approximation algorithms for WSS(CQO) are closely related:

Corollary 7 The following holds for WSS(CQO):14

1. A strong (!α,k+1)-rate certifying algorithm can be viewed as an!α(m)-optimal approximation
algorithm for WSS(CQO).

2. An approximation algorithm for WSS(CQO) with performance ratio ρ can be viewed as a
strong (!α,k+1)-rate certifying algorithm where !α(m) = ρ/m.

Proof

1. A strong (!α,k+1)-rate certifying algorithm applied to an instance ofWSS(CQO) constructs a
working set I0 of size at most k+1 such that σ(x|I0)≥!α(m)σ(x). Clearly, σ(x)≥maxI:|I|≤qσ(x|I).
Thus, σ(x|I0) matches the optimal value up to factor !α(m).

2. An approximation algorithm for WSS(CQO) can be used as the procedure within a de-
composition algorithm that performs the working set selection. At every iteration, it is
applied to an instance of WSS(CQO) where q = k+ 1. It then constructs a working set
I0 such that |I0| ≤ q and σ(x|I0) ≥ ρmaxI:|I|≤k+1σ(x|I). We know from Theorem 4 that
maxI:|I|≤k+1σ(x|I) ≥ σ(x)/m. Thus σ(x|I0) matches the optimal value up to factor ρ/m.

13. Here, ρ may be a function in the input parameters.
14. The analogous statements for WSS(SVO) hold as well.
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Corollary 7 immediately implies that the strong (1/m,k+1)-rate certifying algorithm described
in Section 3.3 can be viewed as a 1/m-optimal approximation algorithm for WSS(CQO). This result
can however be strengthened:

Corollary 8 The strong (1/m,k+ 1)-rate certifying algorithm described in Section 3.3 can be
viewed as a 1/q-optimal approximation algorithm for WSS(CQO).

Proof We use again the notations (like, for example, P ′
x,P ′′

x ) that were introduced in Section 3.3.
Every instance of WSS(CQO) can be cast as an instance P ′

x,q resulting from an instance P ′
x by

adding the constraint that the total number of non-zero components in d+,d− is bounded by q. The
algorithm from Section 3.3 returns an optimal solution for the instance P ′′

x . The corollary is now an
immediate consequence of the following observations:

1. If
(
d+

d−

)
is a feasible solution for P ′

x,q with value p, then 1
q

(
d+

d−

)
is a feasible solution

for P ′′
x with value p/q.

2. If
(
d+

d−

)
is a basic feasible solution for P ′′

x with value p, then
(
d+

d−

)
is also a feasible

solution for P ′
x,q with value p.

Our results nicely strengthen (or complement) what was known before about working set selec-
tion w.r.t.CI(x):

• For general q−sparse witnesses CI(x) List and Simon (2004) have shown that the “strict rule”
of always selecting a working set I∗ that maximizes CI(x) subject to |I| ≤ q leads to cost-
optimal feasible solutions in the limit (but no convergence rate was provided). Simon (2004)
has shown a similar result for the “relaxed rule”. For the special case CI(x) =CI(x) Theorem 4
extends these mere convergence results by providing a convergence rate, sinceCI(x) = σ(x|I).

• Simon (2004) has shown that (a canonical combinatorial abstraction of) WSS(SVO) is NP-
complete, but admits a full polynomial time approximation scheme. According to Corollary 8,
the algorithm described in Section 3.3 is an approximation algorithm with performance ratio
1/m for the more general problem WSS(CQO).

4. Conclusions and Open Problems

We have presented an analysis of a decomposition algorithm that leads to the to-date strongest
theoretical performance guarantees within the “rate certifying pair” approach. Our analysis holds
uniformly for any instance of Convex Quadratic Optimization (with box-constraints) and certainly
covers most of the variants of SVM-optimization. Our results can be seen as an extension of (and
an improvement on) earlier work by Hush and Scovel (2003) about rate certifying pairs, and by List
and Simon (2004) and Simon (2004) about sparse witnesses of sub-optimality.
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As explained in the introduction already, there are competing approaches like, for example, the
approach based on maximally KKT-violating pairs or approaches based on an iterative inclusion of
support vectors. Recent experiments by Hush et al. (2006) indicate that

• the approach based on maximally KKT-violating pairs converges faster than the approach
based on rate certifying pairs,

• but a hybrid approach that makes a greedy choice among the maximally KKT-violating pair
and pairs that come up in the rate certifying pair approach is often superior.

At the time being, these experimental results are not supported by theoretical analysis. We leave the
task of providing a theoretical explanation for the empirically good performance of the hybrid ap-
proach (or even the original approach based on KKT-violating pairs) as an object of future research.
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Abstract
Learning vector quantization (LVQ) schemes constitute intuitive, powerful classification heuris-
tics with numerous successful applications but, so far, limited theoretical background. We study
LVQ rigorously within a simplifying model situation: two competing prototypes are trained from
a sequence of examples drawn from a mixture of Gaussians. Concepts from statistical physics
and the theory of on-line learning allow for an exact description of the training dynamics in high-
dimensional feature space. The analysis yields typical learning curves, convergence properties, and
achievable generalization abilities. This is also possible for heuristic training schemes which do not
relate to a cost function. We compare the performance of several algorithms, including Kohonen’s
LVQ1 and LVQ+/-, a limiting case of LVQ2.1. The former shows close to optimal performance,
while LVQ+/- displays divergent behavior. We investigate how early stopping can overcome this
difficulty. Furthermore, we study a crisp version of robust soft LVQ, which was recently derived
from a statistical formulation. Surprisingly, it exhibits relatively poor generalization. Performance
improves if a window for the selection of data is introduced; the resulting algorithm corresponds to
cost function based LVQ2. The dependence of these results on the model parameters, for example,
prior class probabilities, is investigated systematically, simulations confirm our analytical findings.
Keywords: prototype based classification, learning vector quantization, Winner-Takes-All algo-
rithms, on-line learning, competitive learning

1. Introduction

The term learning vector quantization (LVQ) has been coined for a family of algorithms which is
widely used in the classification of potentially high-dimensional data. Successful applications of
LVQ include such diverse problems like medical image or data analysis, fault detection in technical
systems, or the classification of satellite spectral data (Bojer et al., 2003; Kuncheva, 2004; Schleif
et al., 2006; Villmann et al., 2003). An up to date overview and extensive bibliography is available
at a repository which is maintained by the Neural Networks Research Centre, Helsinki (2002).

The popularity of the approach is due to several attractive features: LVQ procedures are easy to
implement and intuitively clear. This makes them particularly interesting for researchers and practi-
tioners outside the machine learning community who are searching for robust classification schemes

c©2007 Michael Biehl, Anarta Ghosh, and Barbara Hammer.
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without the black-box character of many neural methods. The classification of LVQ is based on a
distance measure, usually the Euclidean distance, which quantifies the similarity of given data with
so-called prototype or codebook vectors representing the classes. The prototypes are determined
in a training process from labeled example data and can be interpreted in a straightforward way
as they capture essential features of the data in the very same space. This is in contrast with, say,
adaptive weights in feedforward neural networks or support vector machines which do not allow
for immediate interpretation as easily since they are embedded in a different space or at atypical
borderline positions of the data instead of typical regions. Other very attractive features of LVQ are
the natural way in which it can be applied to multi-class problems and the fact that the complexity
of LVQ networks can be controlled during training according to the specific needs.

In general, several prototypes can be employed to represent one of the classes. In simple hard
or crisp schemes, a data or feature vector is assigned to the closest of all prototypes and the cor-
responding class. Extensions of this deterministic scheme to probabilistic soft assignments and
classification are straightforward but will not be considered here. Plausible training prescriptions
exist which mostly employ the concept of competitive learning and adaptation by means of Hebbian
terms. Prototypes are updated according to their distance from given example data. Thereby, given
a training pattern, the closest prototype vector or a set of closest vectors, the so-called winners are
identified. These vectors are then moved towards (away from) the data if their class label coincides
with (differs from) that of the example, respectively.

Both, training algorithms and the resulting classification schemes are fairly easy to implement
and fast. In practice, the computational effort of LVQ training usually scales linearly with the train-
ing set size, and that of classification depends only on the (fixed) number of prototypes and the input
dimensionality. Furthermore, training is incremental, such that the adaptation of a classifier to novel
data which becomes available after a first training phase is straightforward. Despite this simplicity,
LVQ is very powerful since every separating hypercurve can, in principle, be approximated by LVQ
networks with sufficiently many prototypes. Furthermore, recent variations of LVQ allow for the
incorporation of problem specific metrics or kernels which can be adapted during training such that
very few prototypes can model quite complex behavior (Hammer et al., 2005b,c).

However, the theoretical understanding of the convergence properties, stability, and achievable
generalization ability of many LVQ algorithms appears fairly limited. Many LVQ procedures, in-
cluding Kohonen’s original formulation (LVQ1) are based on heuristic arguments. A large variety
of modifications of the basic scheme have been suggested which aim at larger flexibility, faster con-
vergence or better approximation of Bayesian decision boundaries, such as LVQ2.1, LVQ3, OLVQ,
RSLVQ, or GLVQ (Kohonen, 1997, 1990; Pregenzer et al., 1996; Sato and Yamada, 1995). Clearly,
the ultimate goal of training is good generalization, that is, the correct classification of novel data
with high probability after training. However, the above mentioned algorithms differ considerably in
their learning dynamics, stability, and generalization performance, while the theoretical background
of this behavior is hardly understood.

Recently, a few attempts to put LVQ type algorithms on solid mathematical grounds have been
made. Remarkably, LVQ-type classifiers fall into the class of large-margin algorithms which allow
for dimensionality independent generalization bounds, as pointed out first by Crammer et al. (2003).
Here, the term margin refers to the so-called hypothesis margin of an LVQ classifier: the distance
the classification boundary, that is, the respective prototypes, can be moved without changing the
classification of the given data points. Similar bounds can also be derived for recent variants of
LVQ which substitute the standard Euclidean metric by an alternative adaptive choice involving
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relevance factors (Hammer et al., 2005a; Hammer and Villmann, 2002). Thus, LVQ type networks
seem promising candidates for the classification of high-dimensional data sets.

However, standard LVQ training does not directly aim at an optimization of the margin or even
an optimization of the classification error, usually. Rather, the learning algorithm is often purely
heuristically motivated and does not directly follow any learning objective or explicit cost function.
Apart from the fact that the quality of generalization in these methods is therefore not clear, often
dynamical problems such as divergence of the algorithms can be observed. An important example is
LVQ2.1 and similar strategies which can display divergent behavior unless a proper (also heuristic)
window rule is included in the update scheme. Few approaches try to cope with this problem
by explicitly grounding the update scheme on a cost function (see, for example, Bottou, 1991).
A prominent example has been proposed by Sato and Yamada (1995) together with a discussion
of the stability (Sato and Yamada, 1998), however, without considering the borders of receptive
fields. A generalization which allows the incorporation of more general metrics, accompanied by
an investigation of the borders, has been presented by Hammer and Villmann (2002) and Hammer
et al. (2005c). Recently, two models which provide a cost function by means of soft assignments
have been proposed by Seo et al. (2003) and Seo and Obermayer (2003). While the first method
does not possess a crisp limit, the second one does. However, only the cost function discussed by
Sato and Yamada (1995) and Hammer and Villmann (2002) is directly connected to the hypothesis
margin, as pointed out by Hammer et al. (2005a). For all these cost functions, the connection to
the classification error is not obvious. Thus, there is a clear need for a rigorous analysis of LVQ
type learning schemes which allows for a systematic judgement of their dynamical properties and
generalization ability.

In this work we discuss and employ a theoretical framework which makes possible the system-
atic investigation and comparison of LVQ training procedures. The analysis is performed for model
situations in which training uses a sequence of uncorrelated, randomized example data. In the the-
ory of such on-line learning processes, concepts known from statistical physics have been applied
with great success in the context of supervised and unsupervised learning. This includes perceptron
training, gradient based training of layered feedforward neural networks, and unsupervised cluster-
ing or principal component analysis (see Watkin et al., 1993; Biehl and Caticha, 2003; Saad, 1999;
Engel and van den Broeck, 2001, for additional references). Here, we transfer these methods to
LVQ type learning, and we are capable of presenting quite unexpected insights into the dynamical
behavior of several important learning schemes.

The essential ingredients of the approach are (1) the consideration of very large systems in the
so-called thermodynamic limit and (2) the performing of averages over the randomness or disor-
der contained in the data. A small number of characteristic quantities is sufficient to describe the
essential properties of very large systems. Under simplifying assumptions, the evolution of these
macroscopic order parameters is given by a system of deterministic coupled ordinary differential
equations (ODE) which describe the dynamics of on-line learning exactly in the thermodynamic
limit.

The formalism enables us to calculate, for instance, typical learning curves exactly within the
framework of model situations. We compare the generalization behavior of several LVQ algorithms.
Their asymptotic behavior in the limit of infinitely many examples is of particular relevance in this
context. We evaluate the achievable generalization error as a function of the prior frequencies of
classes and other model parameters. Thus, for the considered model situation, we can rigorously
compare the performance of LVQ-type learning schemes and identify the best training method.

325



BIEHL, GHOSH AND HAMMER

The paper is organized as follows: In the next section we introduce the model data and the
structure of the LVQ classifier. We also describe the considered training algorithms which include
Kohonen’s LVQ1 and a limit version of LVQ2.1 or LVQ-LR. We will use the term LVQ+/- for this
prescription and we consider it with and without an idealized early stopping procedure. Further-
more we study a crisp version of RSLVQ (Seo and Obermayer, 2003), which will be referred to as
learning from mistakes (LFM). Finally, we consider LFM-W, a variant of the latter which selects
data from a window close to the decision boundary and relates to the cost function based LVQ2 al-
gorithm (Kohonen et al., 1988; Bottou, 1991). In Section 3 we outline the mathematical treatment.
The formalism and its application to the above mentioned algorithms are detailed in Appendix A.
Relevant features of the learning curves, including the achievable generalization ability are dis-
cussed and compared for the different training prescriptions in Section 4. Finally, we summarize
our findings in Section 5 and conclude with a discussion of prospective projects and extensions of
our studies.

Some aspects of this work have been communicated previously, in much lesser detail, at the
Workshop on the Self-Organizing Map in Paris, 2005 (Ghosh et al., 2005).

2. The Model

In this paper we investigate the dynamics of different LVQ algorithms in the framework of a simpli-
fying model situation: High-dimensional data from a mixture of two overlapping Gaussian clusters
are presented to a system of two prototype vectors each of which represents one of the classes.
Whereas the model appears very much simplified in comparison with real world multi-class, multi-
prototype problems, it provides a setting in which it is well possible to study unexpected, essential,
and non-trivial features of the learning scenarios.

2.1 Prototype Vectors

We will investigate situations with only two prototype or codebook vectors wS ∈ RN . Here, the
subscript S = ±1 indicates which class of data the vector is supposed to represent. For the sake
of brevity we will frequently use the shorthand subscripts + or − for +1 and −1, respectively.
The classification as parameterized by the prototypes is based on Euclidean distances: Any given
input ξ ∈ RN will be assigned to the class of the closest prototype. In our model situation, the
classification result is S whenever | w+S−ξ |<| w−S−ξ |.

Note that, in principle, the simple LVQ classifier with only two prototypes could be replaced by
a linearly separable classification S = sign[wperc ·ξ − θperc] with perceptron weight vector wperc =
(w+−w−) and threshold θperc =

(
w2+−w2−

)
/2. Here, however, we are interested in the more com-

plex learning dynamics of independent codebook vectors as provided by LVQ algorithms. We will
demonstrate that our simple example scenario already displays highly non-trivial features and pro-
vides valuable insights in the more general training of several prototypes.

2.2 The Data

Throughout the following we consider random inputs which are generated according to a bimodal
distribution. We assume that vectors ξ ∈ RN are drawn independently according to the density

P(ξ) = ∑
σ=±1

pσP(ξ | σ) with P(ξ | σ) =
1

(2πvσ)N/2 exp
[
− 1
2vσ

(ξ−λBσ)2
]
. (1)

326



DYNAMICS AND GENERALIZATION ABILITY OF LVQ ALGORITHMS

-4 -2 0 2 4-4

-2

0

2

4

h+

h−

-2 0 2 4

-2

0

2

4

b+

b−

Figure 1: Data as generated according to the density (1) in N = 200 dimensions with prior weights
p− = 0.6, p+ = 0.4 and variances v− = 0.64,v+ = 1.44. Open (filled) circles represent
160(240) vectors ξ from clusters centered about orthonormal vectors λB+ (λB−) with
λ = 1, respectively. The left panel shows the projections h± = w± · ξ of the data on a
randomly chosen pair of orthogonal unit vectors w±. The right panel corresponds to the
projections b± = B± ·ξ, diamonds mark the position of the cluster centers.

The conditional densities P(ξ | σ=±1) correspond to isotropic Gaussian clusters with variances vσ
centered at λBσ. The cluster weights or prior probabilities pσ satisfy the condition p+ + p− = 1.
We assume the center vectors Bσ to be orthonormal, that is, B2+ = B2− = 1 and B+ ·B− = 0 in the
following. While the distance of the cluster centers is controlled by the model parameter λ= O(1),
the orthogonality condition fixes their position with respect to the origin. The target classification
is taken to coincide with the cluster label σ= ±1. Note that, due to the overlap of the clusters, the
task is obviously not linearly separable.

Statistical physics has been used earlier to analyse the generalization behavior of perceptron
type learning prescriptions in similar models. We refer to the work of Barkai et al. (1993) and
Meir (1995) for examples. The former considers learning from data in the limit of large separations
λ# v+,v−. The latter compares the off-line minimization of the training error with a maximum-
likelihood estimation of the cluster centers. The learning of a linearly separable rule which is defined
for clustered input data has been studied in the work of Marangi et al. (1995) and Riegler et al.
(1996). Here we are interested in the dynamics and generalization ability of LVQ-type learning
rules for non-separable data.

In the following we denote conditional averages over P(ξ | σ) by 〈· · ·〉σ whereas 〈· · ·〉 =
∑σ=±1 pσ 〈· · ·〉σ represents mean values with respect to the full density (1). According to Eq. (1),
the components ξ j are statistically independent quantities with variance vσ. For an input from clus-
ter σ we have, for instance,

〈
ξ j
〉
σ = λ(Bσ) j and hence

〈ξ2〉σ =
N

∑
j=1

〈
ξ2j
〉
σ

=
N

∑
j=1

(
vσ+

〈
ξ j
〉2
σ

)
= vσN+λ2

⇒ 〈ξ2〉 = (p+v+ + p−v−) N+λ2. (2)
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In the mathematical treatment we will exploit formally the thermodynamic limit N → ∞, corre-
sponding to very high-dimensional data and prototypes. Among other simplifying consequences
this allows, for instance, to neglect the term λ2 on the right hand side of Eq. (2).

The clusters overlap significantly and, moreover, their separation is along a single direction
(B+ −B−) in the N-dimensional input space. Figure 1 displays sample data in N = 200 dimen-
sions, generated according to a density of the form (1). While the clusters are clearly visible in the
plane spanned by B+ and B−, projections into a randomly chosen two-dimensional subspace do not
display the separation at all.

2.3 On-line Algorithms

We consider so-called on-line learning schemes in which a sequence of single example data {ξ µ,σµ}
is presented to the system. At each learning step, the update of prototype vectors is based only on
the current example. Consequently, an explicit storage of data in the learning system is avoided and
the computational effort per step is low compared to costly off-line or batch prescriptions.

In many practical situations examples are drawn from a given training set with possible multiple
presentations of the same data. Here, however, we will assume that at each time step µ = 1,2, . . . a
new, uncorrelated vector ξµ is generated independently according to the density (1). We will treat
incremental updates of the generic form

wµS = wµ−1S +ΔwµS with ΔwµS =
η
N
fS
[
dµ+,dµ−,σµ, . . .

] (
ξµ−wµ−1S

)
(3)

where the vector wµS denotes the prototype after presentation of µ examples and the constant learning
rate η is rescaled with the input dimension N.

Prototypes are always moved towards or away from the current input ξµ. The modulation func-
tion fS[. . .] in Eq. (3) defines the actual training algorithm and controls the sign and magnitude of
the update of vectors wS. In general, fS will depend on the prototype label S and the class label
σµ of the example; for convenience we denote the dependence on S as a subscript rather than as an
explicit argument. The modulation function can further depend on the squared Euclidean distances
of ξµ from the current positions of the prototypes:

dµS =
(
ξµ−wµ−1S

)2
.

Additional arguments of fS, for instance the lengths or relative positions of the vectors wµ−1S , could
be introduced easily.

The use of a different learning rate per class or even per prototype can be advantageous in
practice. This is expected, in particular, if the training data is highly unbalanced with respect to
the class membership of examples. Here, we restrict the analysis to using a unique value of η, for
simplicity. As we will see, the behavior of algorithms is qualitatively the same in large ranges of
prior weights p±.

In this work we study the performance of several on-line training prescriptions which can be
written in the form of Eq. (3):

a) LVQ1
Kohonen’s original formulation of learning vector quantization (Kohonen, 1995, 1997) ex-
tends the concept of unsupervised competitive learning in an intuitive way to a classification
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task. At each learning step, the prototype with minimal distance from the current example is
determined. Only this so-called winner is updated, hence the term winner-takes-all (WTA)
algorithms has been coined for this type of prescription. The winner is moved towards (away
from) the example input ξµ if prototype label and class membership of the data agree (differ),
respectively.
This plausible strategy realizes a compromise between (I) the representation of data by proto-
types with the same class label and (II) the identification of decision boundaries which clearly
separate the different classes.
LVQ1 for two prototypes is defined by Eq. (3) with the modulation function

fS[dµ+,dµ−,σµ] = Θ
(
dµ−S−dµ+S

)
Sσµ with Θ(x) =

{
1 if x> 0
0 else. (4)

Here, the Heaviside function singles out the winning prototype and the factor Sσµ = ±1
determines the sign of the update. Eq. (4) expands to f+ = Θ(dµ−−dµ+)σµ for the prototype
representing class S= +1 (or ‘+‘, for short). Correspondingly, it reads f− =−Θ(dµ+−dµ−)σµ

for prototype label S= −1.
Note that LVQ1 cannot be interpreted as a stochastic gradient descent procedure in a straight-
forward way. This is in contrast to unsupervised vector quantization (VQ), which disregards
labels completely and would reduce to the choice fS[. . .] = Θ

(
dµ−S−dµ+S

)
in our model situ-

ation (Biehl et al., 1997, 2005; Ghosh et al., 2005).

b) LVQ+/-
A popular modification of basic LVQ was also suggested by Kohonen (1997, 1990) and was
termed LVQ2.1. Originally it is based on heuristics and aims at a more efficient separation
of prototypes which represent different classes. Given a single example, the update concerns
two prototypes: (I) the closest among all codebook vectors which belong to the same class
as the data, and (II) the closest vector among the prototypes that represent a different class.
The so-called correct winner (I) is moved towards the data whereas the wrong winner (II) is
moved even farther away.
An important ingredient of LVQ2.1 is that the update is only performed if the example ξµ

falls into the vicinity of the current decision boundary. Variants have been suggested, such
as LVQ-LR (Seo and Obermayer, 2003), which differ in the way this selective window is
defined.
In order to obtain a first insight into this type of algorithm, we consider the unrestricted
version or, in other words, the limit of infinite window size. We will refer to this basic
prescription as LVQ+/-, in the following.
In our model with two prototypes only, the identification of the respective winners is redun-
dant and the prescription reduces to updating both vectors from each example. The modula-
tion function in Eq. (3) merely determines the sign of ΔwS according to the class label:

fS[σµ] = Sσµ = ±1. (5)

Algorithms like LVQ2.1 or LVQ-LR were suggested in order to improve the achieved gener-
alization ability in comparison with basic LVQ1. It is well known, however, that a suitable
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window size has to be chosen in order to avoid divergence and stability problems. We will
demonstrate for unrestricted LVQ+/- that these difficulties occur already in our simplifying
model scenario. Various strategies have been suggested in the literature to cope with this prob-
lem while keeping the basic form of the algorithm. Here, we will focus on a so-called early
stopping strategy, which aims at ending the learning process as soon as the generalization
ability begins to deteriorate due to the instability.

c) LFM
Recently, Seo and Obermayer suggested a cost function for LVQ which is based on likelihood
ratios (Seo and Obermayer, 2003). They derive the corresponding robust soft learning vector
quantization (RSLVQ) scheme which is supposed to overcome the above mentioned stability
problems of LVQ+/-. It has been demonstrated that RSLVQ has the potential to yield very
good generalization behavior in practical situations (Seo and Obermayer, 2003).
The crisp version of RSLVQ is particularly transparent: In the limiting case of deterministic
assignments an update analogous to LVQ+/- is performed only if the current configuration of
prototypes misclassifies the new example. If, on the contrary, the correct winner is indeed
the closest of all prototypes, the configuration is left unchanged. In analogy to perceptron
training (e.g., Watkin et al., 1993; Engel and van den Broeck, 2001), we use the term learning
from mistakes (LFM) for this prescription.
In our model scenario LFM is implemented by the choice

fS[dµ+,dµ−,σµ] = Θ
(
dµσµ−dµ−σµ

)
Sσµ. (6)

Here, the Heaviside function restricts the update to examples which are misclassified upon
presentation.

d) LFM-W
The LFM scheme (6) can also be obtained as a limiting case of Kohonen’s LVQ2 algorithm,
which includes a window rule for the selection of data (Kohonen et al., 1988). As shown
by Bottou (1991), this prescription can be interpreted as a stochastic gradient descent with
respect to a proper cost function.
As in LFM, an update of the correct winner wσµ and thewrong winner w−σµ is only performed
if the current classification is wrong, that is, dµ−σµ < dµσµ for an example from class σµ. Here,
however, the additional constraint

(ξµ−wσµ)
2−

(
ξµ−w−σµ

)2
< c

(
ξµ−w−σµ

)2 (7)

has to be satisfied, where c is a small positive number (Kohonen et al., 1988; Bottou, 1991).
Hence, the vector ξµ is only accepted for update if it is not too far away from the correct
winner. In other words, ξµ has to be misclassified and fall into a window in the vicinity of the
current decision boundary.
For the type of high-dimensional data we consider here, the window size c has to satisfy a
particular scaling to be meaningful. While the term (ξµ)2 = O(N) cancels on the left hand side
(l.h.s.) of Eq. (7), it dominates the r.h.s. in the limit N → ∞ and the condition is non-trivial
only if c= O(1/N). Hence, we introduce a rescaled parameter δ = c (ξµ)2 = O(1) and obtain
0< (dµσµ−dµ−σµ) < δ as the conditions for non-zero updates. The first one corresponds to the
misclassification of ξµ, the second implements the window selection in the limit N → ∞.
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We refer to this algorithm as LFM with window (LFM-W) in the following. It is represented
by the modulation function

fS[dµ+,dµ−,σµ] =
[
Θ
(
dµσµ−dµ−σµ

)
−Θ

(
dµσµ−dµ−σµ−δ

)]
Sσµ. (8)

Unrestricted LFM (6) is, of course, recovered in the limit of infinite window size δ→ ∞.

2.4 Relevance of the Model

Before we proceed with the mathematical analysis, we would like to put our model into perspective
and discuss its relevance.

Obviously, the learning scenario under consideration is very much simplifying and clear cut. It
represents perhaps the simplest non-trivial situation in which LVQ like learning should be applica-
ble. The presence of only one, spherically symmetric Gaussian cluster of data per class is certainly
far away from practical situations encountered in typical applications. The use of only two prototype
vectors is perfectly appropriate in such a scenario, and the problem of model selection is completely
avoided.

Nevertheless, our model represents an important aspect of more realistic multi-class multi-
prototype situations: the competition of the two prototypes which currently define the decision
boundary or a portion thereof. Note that many practical algorithms reduce to the modification of
only one or two prototype vectors in every single update step. Note furthermore that the model also
allows to investigate unsupervised vector quantization (VQ), which is equivalent to the competition
of two prototypes within the same class in our framework (see, for example, Biehl et al., 1997 and
Ghosh et al., 2004).

As we will demonstrate in the following, highly non-trivial properties of the considered training
algorithms will become apparent in the course of our analysis. While additional phenomena and
complications must be expected in more complex training scenarios, the effects observed here will
certainly persist and play an important role under more general circumstances.

Some of the training algorithms we consider are simplifying limit cases of prescriptions sug-
gested in the literature. For example, the above defined LFM algorithm can be interpreted as the
crisp limit of RSLVQ (Seo and Obermayer, 2003). Obviously, results for the former will not ap-
ply immediately to the latter. Nevertheless, we aim at a principled understanding of how certain
ingredients of an algorithm influence its learning dynamics and generalization behavior. The ulti-
mate goal is of course to exploit this understanding in the optimization of existing schemes and the
development of novel, efficient ones.

3. Mathematical Analysis

We apply the successful theory of on-line learning (see, for example, Biehl and Caticha, 2003; Engel
and van den Broeck, 2001; Saad, 1999, for reviews) to describe the dynamics of LVQ algorithms.
The mathematical treatment of our model is based on the assumption of high-dimensional data and
prototypes ξ,w± ∈ RN . The thermodynamic limit N → ∞ allows to apply concepts from statistical
physics in the following key steps which will be detailed below:

1. The original system including many degrees of freedom is characterized in terms of only a
few quantities, so-called macroscopic order parameters. For these, recursion relations can be
derived from the learning algorithm.
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2. Applying the central limit theorem enables us to perform an average over the random se-
quence of example data by means of Gaussian integrations.

3. Self-averaging properties of the order parameters allow to restrict the description to their
mean values. Fluctuations of the stochastic dynamics can be neglected in the limit N → ∞.

4. A continuous time limit leads to the description of the dynamics in terms of coupled, deter-
ministic ordinary differential equations (ODE) for the above mentioned order parameters.

5. The (numerical) integration of the ODE for given modulation function and initial conditions
yields the evolution of order parameters in the course of learning. From the latter one can
directly obtain the learning curve, that is, the generalization ability of the LVQ classifier as a
function of the number of example data.

3.1 Characteristic Quantities and Recursions

The selection of meaningful macroscopic quantities reflects, of course, the particular structure of
the model. After presentation of µ examples, the system is characterized by the high-dimensional
vectors wµ+,wµ− and their positions relative to the center vectors B+,B−. As we will demonstrate in
the following, a suitable set of order parameters is

RµSσ = wµS ·Bσ and Qµ
ST = wµS ·w

µ
T with σ,S,T ∈ {−1,+1}.

The self-overlaps Qµ
++,Qµ

−− and the symmetric cross-overlap Q
µ
+− =Qµ

−+ relate to the lengths and
relative angle between the prototype vectors, whereas the four quantities RµSσ specify their projec-
tions into the subspace spanned by {B+,B−}.

From the generic algorithm (3) we can directly derive recursion relations which specify the
change of order parameters upon presentation of example ξµ from cluster σµ:

RµSσ−Rµ−1Sσ
1/N

= η fS
(
Bσ ·ξµ−Rµ−1Sσ

)
,

Qµ
ST −Qµ−1

ST
1/N

= η fS
(
wµ−1T ·ξµ−Qµ−1

ST

)
+ η fT

(
wµ−1S ·ξµ−Qµ−1

ST

)

+η2 fS fT (ξµ)2/N. (9)

Here we use the shorthand fS for the modulation function of prototype S, omitting the arguments.

3.2 Average over Random Examples

For a large class of modulation functions, including the ones considered here, the current input ξµ

appears on the right hand side of Eq. (9) only through its length and the projections

hµS = wµ−1S ·ξµ and bµσ = Bσ ·ξµ. (10)

Note that also the Heaviside terms as they appear in the modulation functions, Eqs. (4,6,8), do not
depend on ξµ explicitly, for example:

Θ
(
dµ−−dµ+

)
= Θ

(
+2(hµ+−hµ−)−Qµ−1

++ +Qµ−1
−−

)
.
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When performing the average over the current example ξµ we first exploit Eq. (2) which yields

lim
N→∞

1
N
〈
(ξµ)2

〉
= (v+p+ + v−p−)

for all input vectors in the thermodynamic limit.
We assume that the new example input ξµ is uncorrelated with all previous data and, thus, also

with the current vectors wµ−1S . Therefore, the central limit theorem implies that the projections,
Eq. (10), become correlated Gaussian quantities for large N. Note that this observation does not
rely on the fact that the specific density (1) is a mixture of Gaussians itself. It holds whenever the
components of ξµ are statistically independent and have the same class conditional first and second
moments as in (1).

The joint Gaussian density P(hµ+,hµ−,bµ+,bµ−) is fully specified by first and second moments. As
shown in the appendix, for an input from cluster σ these read

〈
hµS
〉
σ = λRµ−1Sσ ,

〈
bµτ
〉
σ = λδSτ,

〈
hµSh

µ
T
〉
σ−

〈
hµS
〉
σ

〈
hµT
〉
σ = vσQµ−1

ST ,

〈
hµSb

µ
τ
〉
σ−

〈
hµS
〉
σ

〈
bµτ
〉
σ = vσRµ−1Sτ ,

〈
bµρb

µ
τ
〉
σ−

〈
bµρ
〉
σ

〈
bµτ
〉
σ = vσ δρτ (11)

where S,T,σ,ρ,τ ∈ {+1,−1} and δ... is the Kronecker-Delta. Hence, the density of hµ± and b
µ
± is

given in terms of the model parameters λ, p±,v± and the above defined set of order parameters in
the previous time step.

This important result enables us to perform an average of the recursion relations, Eq. (9), over
the latest example data in terms of Gaussian integrations. Moreover, the result can be expressed in
closed form in {Rµ−1Sσ ,Qµ−1

ST }. In the appendix we detail the calculation and give specific results for
the algorithms considered here.

3.3 Self-averaging Property

The thermodynamic limit has an additional simplifying consequence: Fluctuations of the quantities
{RµSσ,Q

µ
ST} decrease with increasing N and in fact vanish for N → ∞. Hence, a description in

terms of their mean values is sufficient. In the statistical physics of disordered systems the term
self-averaging is used for this property.

For a detailed mathematical discussion of self-averaging in on-line learning we refer to the work
of Reents and Urbanczik (1998). Here, we have confirmed this property empirically in Monte Carlo
simulations of the learning process by comparing results for various values of N, see Figure 2 (right
panel) and the discussion in Section 3.6.

Neglecting fluctuations allows us to interpret the averaged recursion relations directly as recur-
sions for the means of {RµSσ,Q

µ
ST} which coincide with their actual values in very large systems.

3.4 Continuous Learning Time

An essentially technical simplification is due to the fact that, for N → ∞, we can interpret the
differences on the left hand sides of Eq. (9) as derivatives with respect to the continuous learning
time

α = µ/N.
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Clearly, one would expect that the number of examples required for successful training should grow
linearly with the number of adjustable parameters in the system. Hence, the rescaling of µwith the
dimension of the feature and prototype space appears natural.

The resulting set of coupled ODE obtained from Eq. (9) is of the form

dRSτ
dα

= η (〈bτ fS〉 − RSτ 〈 fS〉) ,

dQST

dα
= η (〈hS fT +hT fS〉 − QST 〈 fS + fT 〉)

+η2 ∑
σ=±1

vσpσ 〈 fS fT 〉σ . (12)

The required averages and specific equations for the particular modulation functions considered
here are given in the Appendix, Sections A.3 and A.4. Note that the ODE for QST contain terms
proportional to η and η2 while dRSτ/dα is linear in the learning rate.

3.5 The Learning Curve

After working out the system of ODE for a specific modulation function, it can be integrated, at least
numerically. For given initial conditions {RSσ(0),QST (0)}, learning rate η, and model parameters
{p±,v±,λ} one obtains the typical evolution {RSσ(α),QST (α)}. This is the basis for analysing the
performance and convergence properties of various algorithms in the following.

Most frequently, we will consider prototypes that are initialized as independent random vec-
tors of squared length Q̂ with no prior knowledge about the cluster positions. In terms of order
parameters this implies in our model

Q++(0) = Q−−(0) = Q̂, Q+−(0) = 0 and RSσ(0) = 0 for all S,σ= ±1. (13)

Obviously, the precise initial positions of prototypes with respect to the cluster geometry can play
a crucial role for the learning dynamics. In the next section we will demonstrate that the outcome
of, for instance, LFM and LVQ+/- with early stopping can depend strongly on the initial positions
of prototypes. On the contrary, asymptotic properties of, for example, LVQ1 training will prove
independent of initialization in the limit of infinitely long training sequences within our model
situation.

After training, the success of learning can be quantified in terms of the generalization error,
that is, the probability for misclassifying novel, random data which did not appear in the training
sequence. Here we can consider the two contributions for misclassifying data from cluster σ= 1 or
σ= −1 separately:

ε = p+ ε+ + p− ε− with εσ = 〈Θ(d+σ−d−σ)〉σ . (14)

Exploiting the central limit theorem in the same fashion as above, one can work out the generaliza-
tion error as an explicit function of the order parameters. As detailed in the appendix, Section A.6,
one obtains for the above contributions ε±:

εσ = Φ

(
Qσσ−Q−σ−σ−2λ(Rσσ−R−σσ)
2√vσ

√
Q++−2Q+− +Q−−

)
where Φ(z) =

Z z

−∞
dx
e−x2/2√
2π

. (15)
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Figure 2: LVQ1 with λ= 2, v+ = 4,v− = 9, p+ = 0.8, and learning rate η= 1.0.
Left panel: Characteristic overlaps vs. α = µ/N. Solid lines display the result of inte-
grating the system of ODE for initial conditions as in Eq. (13) with Q̂ = 10−4. Symbols
represent Monte Carlo simulations for N = 100, on average over 100 independent runs.
Standard error bars would be smaller than the symbol size. Curves and symbols corre-
spond to: Q−− (∗), Q++ (♦), R−− (×), R++ (+), R+− (©), R−+ ("), and Q+− (-).
Right panel: Example for the self-averaging behavior of order parameters as observed
in Monte Carlo simulations for N = 8,16,32,64,128, and 256. Dots mark the observed
average value of R++(α= 10) vs. 1/N, bars represent the corresponding variance. Here,
the latter vanishes approximately like 1/N, while the mean values display no systematic
dependence on N for large enough systems. The horizontal line marks the theoretical
prediction for N → ∞.

By inserting {RSσ(α),QST (α)}we obtain the learning curve εg(α), that is, the typical generalization
error after on-line training with αN random examples. Here, we once more exploit the fact that the
order parameters and, thus, also εg are self-averaging, non-fluctuating quantities in the thermody-
namic limit N → ∞.

A classification scheme based on two prototypes is restricted to linear decision boundaries.
We will therefore compare the performance of LVQ algorithms with the best linear decision (bld)
boundary for given parameters p±,v±, and λ. For symmetry reasons it is given by a plane orthogonal
to (B+ −B−). It is straightforward to obtain the corresponding generalization error εbldg from Eqs.
(14,15) by appropriate parameterization of the plane and minimization of εg (Ghosh et al., 2004).

Note that the Bayes optimal classification of data from density (1) is, in general, given by a
non-linear decision boundary which contains the vectors ξ with p+P(ξ|+1) = p−P(ξ|−1) (Duda
et al., 2000). Only for v+ = v− it becomes a plane and LVQ with two prototypes could potentially
implement Bayes optimal generalization.
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3.6 Restrictions of the Analysis

While we have already discussed the relevance of our simplifying model scenario in Subsection 2.4,
we want to summarize here some restrictions of the mathematical analysis.

Perhaps, the consideration of the thermodynamic limit N → ∞ of infinite-dimensional feature
vectors appears to be the most severe limitation in the mathematical treatment. Together with the
assumption of statistically independent features ξµj , it facilitates the above explained steps of the
analysis, the evaluation of averages over random data being the most important one.

We find that our results describe very well the (mean) behavior of systems with a fairly small
number of input dimensions, yielding excellent agreement for N = 100 already. Fig. 2 (right panel)
shows a comparison of different system sizes and illustration of the above mentioned self-averaging
property. In other learning problems, the behavior of low-dimensional systems may differ signifi-
cantly from results obtained in the limit N → ∞, as fluctuations which were neglected here become
more important. As an example, we mention the symmetry breaking specialization of prototypes
in unsupervised VQ (Biehl et al., 1997). Here, however, the self-averaging behavior of order pa-
rameters is reflected by the fact that their variances vanish rapidly with N, approximately like 1/N,
see Figure 2 (right panel). At the same time, no systematic dependence of the means on the system
size is observed. Hence, our treatment yields an excellent approximation for systems of fairly small
dimension N, already: Deviations of observed and predicted values of characteristic overlaps are
expected to be on the order 1/

√
N. For analytic results concerning such finite size corrections in

on-line training see, for instance, Saad (1999) and references therein.
Performing averages over the randomness in the data yields typical properties of the system

in the considered model situations. This method is different in spirit and thus complements other
successful approaches in computational learning theory, where one aims at rigorous bounds on the
generalization error without making explicit assumptions about the learning scenario (for examples
in the context of LVQ, see Crammer et al., 2003; Hammer et al., 2005a). Such bounds are not
necessarily tight and can be quite far from the actual behavior observed in practical situations. On
the contrary, results obtained in the flavor of statistical physics analysis lack the mathematical rigor
of strict bounds and may be sensitive to details of the model assumptions, for example, the statistical
properties of the data. As an attractive feature, the approach provides information about the system
which goes beyond its generalization ability, such as the learning dynamics and the location of
prototypes.

For more detailed discussions of strengths and limitations of our approach we refer to the re-
views of, for example, Biehl and Caticha (2003), Watkin et al. (1993), and Engel and van den Broeck
(2001).

3.7 Relation to Statistical Physics

The relation to statistical physics is not crucial for what follows and may be considered a merely
technical point. Nevertheless, for the interested reader, we would like to make a few remarks in this
context.

The analogy is more important in the theory of batch or off-line learning. There, the cost func-
tion of training is interpreted as an energy and the analysis proceeds along the lines of equilibrium
statistical mechanics. For an introduction to these concepts we refer to, for example, Biehl and
Caticha (2003), Watkin et al. (1993), and Engel and van den Broeck (2001). Several ideas from
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this type of analysis do carry over to the investigation of on-line learning which addresses the non-
equilibrium dynamics of learning.

In many physical systems it is impossible, and indeed useless, to keep track of all microscopic
degrees of freedom. As an example, consider the positions and velocities of, say, N particles in a
gas. Similarly, a magnetic material will contain a number N of atoms each of which contributes
one elementary magnetic moment. As N gets very large, say, on the order 1023 in condensed matter
physics, microscopic details become less important and such systems are successfully described by
a fairly small number of macroscopic quantities or order parameters. In the above examples, it may
be sufficient to know volume and pressure of the gas or the total magnetization emerging from the
collaborative behavior of atoms. Mathematically speaking, so-called phase space integrals over all
degrees of freedom can be performed by means of a saddle point approximation forN→∞, reducing
the description to a low-dimensional one. Similarly, the high-dimensional phase space trajectories
of dynamical systems can be represented by the temporal evolution of a few macroscopic order
parameters. The same idea applies here as we describe the learning dynamics of 2N prototype
components in terms of a few characteristic overlaps and disregard their microscopic details.

An important branch of statistical physics deals with so-called disordered systems, where the
interacting degrees of freedom are embedded in a random environment. In the above example this
could mean that magnetic atoms are randomly placed within an otherwise non-magnetic material,
for instance. The correct analytic treatment of such systems requires sophisticated analytical tools
such as the famous replica trick , see Watkin et al. (1993) and Engel and van den Broeck (2001) and
references therein.

These tools have been developed in the context of disordered magnetic materials, indeed, and
have been put forward within the statistical physics of learning. In learning theory, the disorder
emerges from the random generation of training data. In off-line learning, the cost-function or
energy is defined for one specific set of data only and the generic, typical behavior is determined by
performing the disorder average over all possible training sets. This requires the above mentioned
replica method or approximation techniques which involve subtle mathematical difficulties, see
Watkin et al. (1993) and Engel and van den Broeck (2001).

The situation is slightly more favorable in the framework which we resort to here: In on-line
learning at each time step of the process, a novel random example is presented. As a consequence
the disorder average can be performed step by step in the more elementary fashion outlined above
(Biehl and Caticha, 2003; Engel and van den Broeck, 2001).

4. Results

In the following we present our results obtained along the lines of the treatment outlined in Sec.
3. We will compare the typical learning curves of LVQ+/-, an idealized early stopping procedure,
LFM, and LFM-W with those of LVQ1. The latter, original formulation of basic LVQ serves as a
reference each modification has to compete with.

We will put emphasis on the asymptotic behavior in the limit α→ ∞, that is, the generaliza-
tion error achieved from an arbitrarily large number of examples and its dependence on the model
parameters. This asymptotic behavior is of particular relevance for comparing different training
algorithms. It can be studied by analysing the stable fixed point configuration of the system of
ODE. Note that properties thereof will not depend on initialization or the position of cluster cen-
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Figure 3: LVQ1 for λ= 1.2,v+ = v− = 1, and p+ = 0.8, initialization as in Figure 2.
Left panel: Learning curves εg(α) for three different learning rates η= 0.2,1.0,2.0 (from
bottom to top at α= 200). Large η are favorable initially, whereas smaller η yield better
asymptotic generalization for α→ ∞. The inset shows the limiting behavior for η→ 0
and α→ ∞, that is, εg as a function of α̃= ηα.
Right panel: Trajectories of prototypes in the limit η→ 0,α→∞. Solid lines correspond
to the projections of prototypes into the plane spanned by λB+ and λB− (marked by open
circles). The dots correspond to the pairs of values {RS+,RS−} observed at α̃ = ηα =
2,4,6,8,10,12,14 in Monte Carlo simulations with η = 0.01 and N = 200, averaged
over 100 runs. Note that, because p+ > p−, w+ approaches its final position much faster
and in fact overshoots. The inset displays a close-up of the region around its stationary
location. The short solid line marks the asymptotic decision boundary as parameterized
by the prototypes, the short dashed line marks the best linear decision boundary. The
latter is very close to λB− for the pronounced dominance of the σ = +1 cluster with
p+ = 0.8.

ters relative to the origin. Asymptotic properties are controlled only by the distance of the centers
|λB+−λB−| =

√
2λ, the model parameters v±, p± and the learning rate η.

4.1 LVQ1

Figure 2 (left panel) displays the evolution of order parameters in the course of learning for an
example choice of the model parameters. Monte Carlo simulations for N = 100 already agree very
well with the (N→∞) theoretical prediction based on integrating the corresponding ODE, Eq. (34)
. We consider initialization of prototypes close to the origin, that is, relatively far from the region
of high density in our data model. Note that in a WTA algorithm the initial prototypes must not
coincide exactly, hence we choose random w±(0) with, for example, squared length Q++ =Q−− =
Q̂= 10−4 in Eq. (13).

The self-averaging property, see Section 3.3, is illustrated in Fig. 2 (right panel). In Monte Carlo
simulations one observes that averages of the order parameters over independent runs approach the
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theoretical prediction as N → ∞. At the same time, the corresponding variances vanish like 1/N
with increasing dimension.

The typical learning curve εg(α) is in the center of our interest. Figure 3 (left panel) displays
the behavior of LVQ1 for different learning rates in an example situation. The pronounced non-
monotonic behavior for smaller η clearly indicates that the prescription is suboptimal: For a range
of α, additional information leads to a loss of generalization ability. This effect is particularly
pronounced for highly unbalanced data with, say, p+ # p−. The results suggest a schedule which
employs large values of η initially and then decreases the learning rate with increasing α. This
aspect will be investigated in greater detail in a forthcoming project, here we consider only training
with constant η.

For LVQ1 we find that the stationary, asymptotic generalization error εstatg = εg(α → ∞) de-
creases with η→ 0 like

εstatg (η) = εlvq1g + O(η) for small η.

Here, εlvq1g denotes the best value achievable with LVQ1 for a given set of model parameters. This is
analogous to the behavior of stochastic gradient descent procedures like VQ, where the associated
cost function is minimized in the simultaneous limits of small learning rates η→ 0 and α→∞, such
that α̃= ηα→ ∞. In absence of a cost function we can still consider this limit. Terms proportional
to η2 can be neglected in the ODE, and the evolution in rescaled learning time α̃ becomes η-
independent. The inset of Fig. 3 (left panel) shows the limiting learning curve εg(α̃). It displays a
strong non-monotonic behavior for small α̃.

The right panel of Fig. 3 displays the trajectories of prototypes projected into the plane spanned
by B+ and B−. Note that, as could be expected from symmetry arguments, the (α→∞)-asymptotic
projections of prototypes into the B±-plane are along the axis connecting the cluster centers. More-
over, in the limit η → 0, their stationary position lies precisely in the plane and fluctuations or-
thogonal to B± vanish. This is signaled by the fact that the order parameters for α̃ → ∞ satisfy
QSS = R2S+ +R2S−, and Q+− = R++R−+ +R+−R−− which implies

wS(α̃→ ∞) = RS+B+ + RS−B− for S= ±1. (16)

Here we can conclude that the actual prototype vectors approach the above unique configuration,
asymptotically. Note that, in general, stationarity of the order parameters does not imply necessarily
that w± converge to points in N-dimensional space. For LVQ1 with η> 0 fluctuations in the space
orthogonal to {B+,B−} persist even for constant {RSσ,QST}.

Figure 3 (right) reveals further information about the learning process. When learning from
unbalanced data, for example, p+ > p− as in the example, the prototype representing the stronger
cluster will be updated more frequently and in fact overshoots, resulting in the non-monotonic
behavior of εg. The use of a different learning rate per class could correct this overshooting behavior
and recover the transient behavior for equal priors, qualitatively.

The asymptotic εlvq1g as achieved by LVQ1 is typically quite close to the potential optimum εbldg .
Figure 4 displays the asymptotic generalization error as a function of the prior p+ in two different
settings of the model. In the left panel v+ = v− whereas the right panel shows an example with
different cluster variances. In the completely symmetric situation with equal variances and balanced
priors, p+ = p−, the LVQ1 result coincides with the best linear decision boundary which is through
λ(B+ +B−)/2 for this setting. Whenever the cluster-variances are different, the symmetry about
p+ = 1/2 is lost but |εlvq1g − εbldg | = 0 for one particular (v+,v−)-dependent value of p+ ∈]0,1[.
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Figure 4: Achievable generalization error in the model with λ = 1 as a function of p+. In both
panels, the lowest, dotted curve represents εbldg , that is, the best linear classifier. Solid lines
mark the asymptotic εlvq1g of LVQ1, the dashed lines corresponds to εstopg as obtained from
an idealized early stopping scheme for LVQ+/- with prototypes initialized in the origin.
The far from optimal (α→ ∞)-asymptotic εl fmg result for LFM is marked by chain lines.
Left panel: The case of equal variances, v+ = v− = 1, εlvq1g and εstopg coincide for p+ =
1/2 where both are optimal.
Right panel: An example for unequal variances, v+ = 0.25,v− = 0.81. The result of
LVQ+/- with idealized early stopping is still optimal for equal priors, while εlvq1g = εbldg
in p+ ≈ 0.74 in this setting.

4.2 LVQ+/-

Here we report results concerning the divergent behavior displayed by the LVQ+/- prescription in
its basic form. We furthermore show how an appropriate early stopping procedure could overcome
this difficulty.

4.2.1 DIVERGENT BEHAVIOR

The structure of the ODE for LVQ+/-, fS = Sσµ, is particularly simple, see Appendix A.5. An-
alytic integration yields Eq. (37) for settings with p+ /= p−. In this generic case, the evolution
of {RSσ,QST} displays a strong divergent behavior: All quantities associated with the prototype
representing the weaker cluster display an exponential increase with α.

Figure 5 (left panel) shows an example for λ= 1, v+ = v− = 1, learning rate η= 0.5, and unbal-
anced priors p+ = 0.8, p− = 0.2. Here, order parameters which involvew−, that is, R−−,R−+,Q−−,Q+−,
diverge rapidly. On the contrary, quantities which relate only to w+, that is, R++,R+−,Q++, remain
finite and approach well-defined asymptotic values for α→ ∞.

This behavior is due to the fact that the wrong winner is always moved away from the current
data in LVQ+/- training. Clearly, this feature renders the learning dynamics unstable as soon as p+ /=
p−. Even in our simple model problem, repulsion will always dominate for one of the prototypes
and, like w− in our example, it will be moved arbitrarily far away from the cluster centers as α→∞.
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Figure 5: LVQ+/- with λ= 1,v+ = v− = 1, and p+ = 0.8.
Left panel: Characteristic overlaps vs. α for learning rate η= 0.5. Solid lines correspond
to the analytical solution Eq. (37) of the ODE for initialization w+(0) = w−(0) = 0.
Symbols represent Monte Carlo results for N = 100 on average over 100 runs. Standard
error bars would be smaller than the symbol size. Curves and symbols correspond to
Q−− (∗), Q++ (♦), R−− (×), R++ (+), R+− (©), R−+ ("), and Q+− (-).
Right panel: Learning curves εg(α) for three different rates η = 2.0,1.0, and 0.5 (from
left to right). The generalization error displays a pronounced minimum at intermediate
α and approaches the trivial value εg = min{p+, p−} asymptotically for α → ∞. The
inset shows the asymptotic behavior εg(α̃) in the simultaneous limit η→ 0, α→ ∞ with
rescaled α̃= ηα.

The divergent behavior is also apparent in Figure 6, which displays example trajectories of w±
in the limit η→ 0, projected into the B±-plane. The projections of prototypes follow straight lines,
approximately. Prototype w+, representing the stronger cluster in this case, approaches a stationary
position at the symmetry axis of the density (1). For w− the less frequent positive updates from the
weaker cluster σ= −1 cannot counterbalance the repulsion.

The resulting classification scheme for α→∞ is trivial: All data will be assigned to the class of
the stronger cluster. Hence, the asymptotic generalization error of unmodified LVQ+/- is given by
min{p+, p−} in our model, independent of the learning rate η. This can also be seen in the learning
curves displayed in Figure 5 (right panel).

Note that the behavior is qualitatively different for the singular case of balanced priors p+ =
p− = 1/2, see Eq. (38) in the appendix for the corresponding analytic solution of the ODE. First,
the increase of order parameters with α, which is exponential for p+ /= p−, becomes linear (RSσ)
or quadratic (QST ) in α for equal priors. Second, both prototypes move to infinity, that is, away
from the data, as α→ ∞. In a visualization of the learning dynamics in the spirit of Figure 6, the
trajectories become parallel to the symmetry axis as p+ = p−. It is interesting to note that, in spite
of this divergence, the corresponding decision boundary is optimal in the singular case of equal
priors.
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Figure 6: LVQ+/- and early stopping for different initializations in the limit η→ 0,α→ ∞.
Left panel: Projected trajectories for model parameters λ= 1.2, p+ = 0.8,v+ = v− = 1.
Cluster centers correspond to open circles, the short dotted line marks the best lin-
ear decision boundary. Solid (chain) lines show the trace of prototype w+ (w−), re-
spectively. Filled symbols display the position after early stopping in the minimum
of εg(α̃), short solid lines mark the projection of the respective decision boundaries.
Squares correspond to the positions obtained from w±(0) = 0 (a), full circles mark
the results for initialization (b) with an offset from the origin and the (B+,B−)-plane:
R++ = R−+ = 0,R+− = 0.5,R−− = 0.7,Q+− = 0,Q++ = 1.8,Q−− = 2.9. In both cases,
w+ approaches the same stationary position on the symmetry axis, while w− displays
divergent behavior as α̃ = ηα increases. Note that the decision boundary obtained by
early stopping in case (b) appears to be close to optimal in the projection. However, it
is tilted strongly in the remaining dimensions as indicated by the violation of condition
(16). Consequently, εstopg is higher for (b) than it is for initialization (a).
Right panel: Generalization error εstopg of idealized early stopping as a function of p+ for
λ= 1 and equal variances v+ = v− = 1. The dotted line corresponds to the best linear de-
cision boundary. The solid line marks the outcome of LVQ+/- with early stopping when
prototypes are initialized in the origin, case (a) in the left panel, which is also displayed in
Fig. 4. The dashed line represents the far from optimal εstopg for an example initialization
with an offset from the origin, case (b) in the left panel.

4.2.2 EARLY STOPPING

Several heuristic strategies have been suggested in the literature to cure the divergent behavior while
keeping the essential ingredients of LVQ+/-:

One possible measure that comes to mind immediately is to let the update of the wrong winner
depend explicitly on its distance dµ from the data. The divergence should be much weaker or even
seize, provided the magnitude of the update decreases fast enough with dµ or if it is cut off at a
maximum distance dmax.

Another popular strategy is to update only from data that falls into a window close to the cur-
rent decision boundary, that is, close to the midplane between the prototypes (Kohonen, 1997).
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Figure 7: Learning from mistakes (LFM)
Left panel: Projected prototype trajectories for LFM with η= 1 and all other parameters
as in Fig. 6 (left panel). The initial behavior for small α is similar to that of LVQ+/-.
Asymptotically, both prototypes approach stationary positions (solid dots) which are not
on the symmetry axis of the distribution (dashed line). Note that only the projections
of (w+ −w−) become parallel to λ(B+ −B−) as α→ ∞. While the actual w±(α→ ∞)
depend on η as discussed in the text, the asymptotic decision boundary (short solid line)
does not.
Right panel: εg(α) for LFM with model parameters λ= 3, p+ = 0.8,v+ = 4,v− = 9 and
learning rates η= 2.0,1.0, 0.5 (from left to right). All learning curves approach the same
η-independent asymptotic value εl fmg . Note the offset on the εg- axis.

Provided the decision boundary becomes similar to the Bayes optimal one in the course of learning,
examples ξ from this region would satisfy p+P(ξ|+ 1) ≈ p−P(ξ|− 1), then. In effect, the system
would be trained from balanced data, which significantly slows down the divergence, see the above
considerations for LVQ+/- with p+ = p−.

In principle, these strategies can also be studied within our framework by considering appro-
priate modifications of the modulation function, Eq. (5). Preliminary results indicate, however, that
both ideas improve convergence and generalization ability of LVQ+/- only to a very limited extent.
In addition, one or several parameters, for example, the cut-off distance dmax or the window size,
have to be carefully tuned to achieve the desired effect.

Moreover, both variants are generically outperformed by a conceptually simpler early stopping
strategy. The idea is to stop the learning process as soon as the divergent behavior starts to increase
the generalization error. This does not require the fine-tuning of additional parameters. However,
in any practical situation, one would have to monitor εg in a test set of data which is not used for
training.

Generic learning curves of LVQ+/-, see Figure 5, display a pronounced minimum before they
approach the trivial asymptotic value εg =min{p+, p−}. We are interested in the best generalization
error εstopg that could be achieved, in principle, by an idealized early stopping method. In contrast
to (α→ ∞)-asymptotic properties, the dynamics for intermediate α will depend on initialization,
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as discussed below. This concerns also the depth of the minimum, which can occur at rather small
α. For the cluster geometry considered here and initialization as given in Eq. (13), we find that the
lowest values of εg are indeed achieved for Q̂= 0. In this setting the effect of the first examples is a
very fast alignment of (w+ −w−) with the symmetry axis of the model density (1). Hence, we first
consider prototypes which are initialized precisely in the origin w+(0) = w−(0) = 0 and without
offset from the plane spanned by B+ and B−. We observe furthermore that the respective value of
εg in the minimum decreases with decreasing η. For the comparison with other algorithms we will
therefore resort to the simultaneous limit η→ 0,α→ ∞ as for LVQ1.

In our model, it is straightforward to obtain precisely the minimum of the limiting εg(α̃) from
the analytic solution, Eq. (37). The result εstopg is displayed as a function of p+ in Figure 4 for
two different choices of v+ and v−. In the case of equal variances v+ = v− we find that LVQ+/-
with early stopping is relatively close to the best possible εbldg . However, it is outperformed by the
asymptotic result of LVQ1 for all p+. Note that both algorithms yield the optimal classification
scheme in the singular case p+ = p− = 1/2 and v+ = v−.

For data with v+ /= v−, we find that εstopg > εlvq1g for small and large values of p+, see Figure 4
(right panel) for an example. In the case of balanced priors, the learning curve of LVQ+/- does not
display a minimum but approaches the optimal value εbldg quite rapidly. For cluster weights in an
interval around p+ = 1/2, the result of the early stopping procedure is superior to that of LVQ1.

It is important to note that our analysis refers to an idealized early stopping procedure based on
perfect knowledge of the current εg. On the contrary, the basic LVQ1 gives close to optimal per-
formance independent of initial conditions, without adjustment of parameters and without explicit
estimation of the generalization error.

Our results show that LVQ+/- with favorable initialization outperforms other algorithms with
respect to behavior for small α, that is, with respect to learning from small training sets. Note, for
instance, that the minima in the learning curve εg(α) as displayed in Fig. 5 can occur at very small α,
already. While LVQ1, for example, achieves better α→∞ asymptotic generalization, a comparison
of the learning curves shows that it is often inferior for small and intermediate values of α. A
systematic comparison is difficult, however, since the effect will depend strongly on the considered
initialization. Nevertheless, the use of LVQ+/- type updates in the early stages of training or for
limited availability of example data appears promising.

The crucial influence of the initialization is illustrated in Fig. 6. As an example, we consider
the initialization of prototypes with an offset from the origin and, more importantly, from the plane
spanned by the cluster centers. Again, learning curves display a minimum in the generalization er-
ror. However, the obtained best value of εstopg is far from optimal, as displayed in Fig. 6 (right panel).
Asymptotic properties of the considered algorithms are independent of initial settings and, hence,
represent generic behavior in the frame of our model situation. On the contrary, the above discussed
results for early stopping are highly sensitive with respect to initialization and demonstrate, at best,
the potential usefulness of the strategy.

4.3 Learning from Mistakes

In the following, results are presented for the LFM training algorithm with and without a selective
window.
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Figure 8: Learning from mistakes with window (LFM-W)
Left panel: Learning from equal variance clusters with v+ = v=−1, λ= 1, and learning
rate η= 1. Achieved (α→∞) asymptotic generalization error εl fm−wg as a function of p+
for different rescaled window sizes; from top to bottom: δ→ ∞ (solid line, LFM), δ= 6,
δ= 5, and δ= 0.25 (dotted lines). The lowest, dashed line marks the best possible εbldg .
Right panel: Asymptotic generalization error εl fm−wg as a function of the window size δ
for prior weight p+ = 0.6 and learning rate η = 1. The dashed line corresponds to data
with v+ = v− = 1 and λ = 1, the solid line refers to v+ = v− = 5 and λ = 2. Already
in symmetric settings, the location of the optimal window size depends strongly on the
properties of the data. Note the offset on the εg-axis.

4.3.1 LFM

The basic idea of the LFM procedure, cf. Section 2.3 (c), is reminiscent of many prescriptions for
perceptron training (e.g., Watkin et al., 1993; Engel and van den Broeck, 2001; Biehl and Caticha,
2003). An LVQ+/- type of update is performed only if the current configuration would misclassify
the example. Numerical integration of the corresponding ODE, Eq. (36), shows that LFM does not
display the divergent behavior of LVQ+/-.

In contrast to LVQ1 and LVQ+/-, the typical learning curves of LFM display a monotonic de-
crease of εg(α), see the right panel of Figure 7 for examples with three different learning rates. An
important feature is that the (α → ∞)-asymptotic generalization error of LFM learning does not
depend on η.

Figure 7 (left panel) shows example trajectories of the prototypes in the B±-plane. The behav-
ior for small α is similar to that of LVQ+/-: Prototypes move away from the origin in opposite
directions, initially. However, the attraction to (or repulsion from) the cluster centers becomes less
important in the course of learning. Emphasis is on correct classification of the data, the aspect of
cluster representation in the sense of VQ is essentially absent.

Eventually, the projections of the prototypes assume positions along a line which is parallel to
the symmetry axis λ(B+ −B−). However, the violation of condition (16) indicates that w+ and
w− themselves do not lie in the two-dimensional subspace spanned by the cluster centers. Here,
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the stationarity of order parameters and generalization error does not imply convergence of the
prototype vectors themselves. Even in the limit α→ ∞, they will fluctuate within the subspace of
RN×RN that is compatible with the asymptotic values of {RSσ,QST}.

Clearly, the precise trajectory and the final outcome of LFM depends on the initialization of
prototypes. It will determine, for instance, the relative position of w+ and w− parallel to the con-
nection of cluster centers. The actual asymptotic configuration of order parameters and prototypes
depends furthermore on the learning rate η. However, all these configurations share the same gen-
eralization error. The learning rate merely controls the magnitude of the fluctuations orthogonal to
{B+,B−} and the asymptotic distance of prototypes from the decision boundary. This corresponds
to the observation that the following combinations of order parameters become proportional to η in
the limit α→ ∞:

r+ = R++−R−+, r− = R−−−R+−, q= Q++−Q−−, δ=
√
Q++−2Q+− +Q−− (17)

which results in an η-independent asymptotic generalization error, Eqs. (14,15). This finding also
implies that the angle between (w+−w−) and (B+−B−)which is given by arccos

[
(r+ + r−)/(

√
2δ)

]

becomes independent of the learning rate for α→ ∞.
The quantity δ in (17) measures the distance |w+ −w−| and vanishes for η→ 0. Hence, the

prototypes will coincide and the consideration of this limit together with α→ ∞ is not useful in the
case of LFM.

The mathematical analysis of the stationary state reveals another interesting feature: One can
show that fixed point configurations of the system of ODE for LFM, Eq. (36), satisfy the necessary
condition

p+ ε+ = p− ε−.

That is, the two contributions to the total εg, Eqs. (14,15), become equal for α→ ∞. As a con-
sequence, LFM updates will be based on balanced data, asymptotically, as they are restricted to
misclassified examples.

While learning from mistakes appears to be a very plausible concept and cures the divergence of
LVQ+/-, the resulting asymptotic generalization ability εl fmg turns out rather poor. The chain lines in
Figure 4 mark εl fmg for two different model scenarios. Not only is LFM outperformed by the basic
LVQ1 and LVQ+/- with early stopping, for small and large values of p+ its generalization error can
even exceed the trivial value min{p+, p−}.

It is important to note that the above results apply only to the crisp (LFM) version of RSLVQ
(Seo and Obermayer, 2003). It is very well possible that truly soft schemes display a much better
generalization behavior in our model situation. In fact, it has been demonstrated that RSLVQ
performs significantly better than the crisp LFM and other LVQ algorithms in practical situations
(Seo and Obermayer, 2003).

4.3.2 LFM-W

Our analysis shows that the introduction of a window for the selection of data, as defined in Sec. 2.3
(d), bears the potential to improve the generalization behavior of LFM drastically. The mathematical
treatment is to a large extent analogous to that of the unrestricted LFM procedure, see Appendix A
for details.
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Qualitatively, the typical learning curves RSτ(α),QST (α) of LFM-W and the corresponding pro-
jected trajectories also resemble those of unrestricted LFM. Note, however, that the stationary gen-
eralization error εl fm−wg of LFM-W does depend on the learning rate η, in contrast to the results
displayed in Figure 7 (right panel) for LFM without window.

A detailed discussion of LFM-W will be presented elsewhere. Here, we focus on the role of
the window parameter δ. Figure 8 (right panel) displays the dependence of the (α→∞) asymptotic
εl fm−wg for constant learning rate η = 1.0 and example settings of the model parameters. For very
large δ, the suboptimal results of unrestricted LFM are recovered and also for δ→ 0 the performance
deteriorates. Evidently, an optimal choice of δ exists which yields the best generalization behavior,
given all other parameters. Note that the precise position of the optimum and the robustness with
respect to variation of δ depend strongly on the properties of the data.

We restrict ourselves to demonstrating that the performance can improve drastically in com-
parison with unrestricted LFM. Figure 8 (left panel), shows the stationary generalization error as a
function of the prior weight p+ for several (fixed) window sizes in an example setting. Note that
εl fm−wg for properly chosen values of δ is significantly lower than that for unrestricted LFM, that is,
δ→ ∞.

The evaluation of the truly optimal generalization error in the frame of our model is beyond
the scope of this publication. In a specific learning problem, that is, for a particular choice of λ,v±
and p± in our model, the training algorithm is to be optimized with respect to the two-dimensional
parameter space of η and δ. Such an optimization would be difficult to achieve in practical situations
and require sophisticated validation techniques.

5. Summary and Conclusion

We have rigorously investigated several basic LVQ algorithms: the original LVQ1, LVQ+/- with and
without early stopping, learning from mistakes (LFM), and LFM-W which includes an additional
window rule. The analysis is performed by means of the theory of on-line learning in a simple
though relevant model setting.

It can be seen that LVQ+/- usually displays a divergent behavior whereas LVQ1 and LFM pro-
cedures converge towards fixed positions of the order parameters. These findings correspond to
observations in practical situations.

The respective convergence speed depends on the learning rate in all cases. The same holds for
the quality of the resulting classifier for LVQ1, LVQ+/- with early stopping, and LFM-W. For LFM
without a selective window, on the contrary, the generalization ability of the stationary setting is
independent of the choice of the learning rate. It should be mentioned that the trajectories of the
prototypes need not be the shortest towards the final position and, often, initial overshooting as in
LVQ1 can be observed if the classes are not balanced.

Even more interesting than their dynamical behavior is the generalization ability achieved by
the algorithms. LVQ1 turns out to yield surprisingly good results, not very far from the optimum
achievable error for this class of problems.

The outcome of LVQ+/- with early stopping can be close to or even slightly better than the
α→ ∞ asymptotic performance of LVQ1. However, it depends strongly on initialization and the
detailed properties of the data. LVQ+/- like strategies appear particularly promising for the initial
phase of training or when only a very limited training set is available.
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The robustness of LFM as a crisp version of RSLVQ is clearly demonstrated by the fact that its
asymptotic behavior is not affected by the magnitude of the learning rate. However, quite unexpect-
edly, it shows rather poor generalization ability, which is even inferior to a trivial classification for
highly unbalanced data. We demonstrate that a proper selection of examples close to the current de-
cision boundary as in LFM-W can improve the generalization performance drastically. Presumably,
similar improvement could be achieved by employing RSLVQ with a soft assignment as suggested
by Seo and Obermayer (2003). In practical situations, both schemes would require the careful tun-
ing of a parameter, that is, the softness or window size, in order to achieve good generalization. We
will address the detailed analysis and optimization of LFM-W and RSLVQ in forthcoming studies.

A few of our results, for instance the instability of LVQ+/-, may appear plausible from elemen-
tary reasoning. Others are clearly far from obvious and demonstrate the usefulness of our systematic
approach. We show, in particular, the good generalization ability of the original LVQ1 learning rule.
It does not follow the gradient of a well-defined cost function but outperforms several alternative al-
gorithms. The relatively poor performance of the highly intuitive LFM training constitutes another
non-trivial insight obtained from our analysis.

Our model is currently restricted to two unimodal classes and two prototypes, a case in which
the mathematical analysis is feasible but which is far away from typical settings in practice. Nev-
ertheless, this investigation yields relevant insights into practical situations. One can expect that
an algorithm which does not yield a good generalization ability in this idealized scenario is also
inappropriate for more complex, practical applications. In this sense, the investigation provides a
meaningful testing ground for the success of learning algorithms.

Frequently, at most two prototypes are updated at a given time step also in larger LVQ networks.
Hence, such systems can be interpreted as a superposition of pairs of prototypes within classes and
at class borders. Within classes, a simple vector quantization takes place, a scenario which has been
investigated using the same framework (Biehl et al., 1997; Ghosh et al., 2004). At cluster borders,
the situation investigated in this article is relevant. However, the role of further, complicating effects
in the dynamics of the superposition of these simple subsystems has to be studied in forthcoming
projects. Also, the explicit extension of the theoretical framework to multi-class, multi-prototype
problems is feasible under simplifying assumptions. It is currently in the focus of our efforts.

Based on the formalism presented in this article, a variety of further research becomes possible.
Naturally, the consideration of alternative LVQ schemes is necessary. Learning rules which also
change the metric during training such as the one proposed by Hammer and Villmann (2002) seem
particularly interesting. However, it is not obvious how highly nonlinear adaptation schemes or
algorithms which single out specific data components can be treated within our theoretical frame-
work.

The ultimate goal of this work is the design of robust and reliable LVQ algorithms which provide
optimal generalization ability. One step into this direction would be the on-line optimization of
algorithm parameters, for example, the learning rate, based on the observed behavior in the course
of training. Note that this can be done systematically by means of an optimization of the learning
curve with respect to the learning rate in our setting. Even more promising, one can formally
optimize the actual update functions fS of the learning rule with respect to the generalization ability
gained per example. This should be possible along the lines of variational optimization as it has
been applied in the training of perceptrons or multilayered neural networks (e.g., Saad, 1999; Engel
and van den Broeck, 2001; Biehl and Caticha, 2003). An alternative could be the construction
of on-line prescriptions within a Bayesian framework, as it has been employed in the context of
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perceptron training (for further references consult: Saad, 1999). Even if practical implementations
turn out to be difficult, these investigations would help to identify the most important features of
successful algorithms. Hence, this line of research should strengthen the mathematical foundation
of LVQ training.

Appendix A. The Theoretical Framework

Here we outline key steps of the calculations referred to in the text. Important aspects of the formal-
ism were first used in the context of unsupervised vector quantization (Biehl et al., 1997). Some of
the calculations presented here were recently detailed in a Technical Report (Ghosh et al., 2004).

Throughout this appendix indices l,m,k,s,σ ∈ {±1} (or ± for short) represent the class labels
and cluster memberships. We also use the shorthand

Θs =Θ(d−s−d+s)

for the Heaviside function in LVQ1. We furthermore employ the notations

Θ̂o
σ =Θ(dσ−d−σ) and Θ̂δ

σ =Θ(dσ−d−σ−δ) (18)

for the complementary Heaviside function in LFM and the modified update of LFM-W, respectively.

A.1 Statistics of the Projections

To a large extent, our analysis is based on the observation that the projections h± = w± · ξ and
b± = B± ·ξ are correlated Gaussian random quantities for a vector ξ drawn from one of the clusters
contributing to the density (1). Where convenient, we will combine the projections into a four-
dimensional vector denoted as x= (h+,h−,b+,b−)T .

We will assume implicitly that ξ is statistically independent from the considered weight vectors
w±. This is obviously the case in our on-line prescription where the novel example ξµ is uncorrelated
with all previous data and hence with wµ−1± . For the sake of readability we omit indices µ in the
following.

The first and second conditional moments given in Eq. (11) are obtained from the following
elementary considerations.

First Moments
Exploiting the above mentioned statistical independence we can show immediately that

〈hl〉k = 〈wl ·ξ〉k = wl · 〈ξ〉k = wl · (λBk) = λRlk. (19)

Similarly we get for bl:

〈bl〉k = 〈Bl ·ξ〉k = Bl · 〈ξ〉k = Bl · (λBk) = λδlk, (20)

where δlk is the Kronecker delta and we exploit that B+ and B− are orthonormal. Now the condi-
tional means µk = 〈x〉k can be written as

µk=+1 = λ (R++,R−+,1,0)T and µk=−1 = λ (R+−,R−−,0,1)T . (21)
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Second Moments
In order to compute the conditional variance or covariance 〈hlhm〉k−〈hl〉k〈hm〉k we first consider
the average

〈hl hm〉k = 〈(wl ·ξ)(wm ·ξ)〉k =

〈(
N

∑
i=1

(wl)i(ξ)i

)(
N

∑
j=1

(wm) j(ξ) j

)〉

k

=

〈
N

∑
i=1

(wl)i(wm)i(ξ)i(ξ)i+
N

∑
i=1

N

∑
j=1, j $=i

(wl)i(wm) j(ξ)i(ξ) j

〉

k

=
N

∑
i=1

(wl)i(wm)i〈(ξ)i(ξ)i〉k +
N

∑
i=1

N

∑
j=1, j $=i

(wl)i(wm) j〈(ξ)i(ξ) j〉k

=
N

∑
i=1

(wl)i(wm)i[vk +λ2(Bk)i(Bk)i] +
N

∑
i=1

N

∑
j=1, j $=i

(wl)i(wm) jλ2(Bk)i(Bk) j

= vk
N

∑
i=1

(wl)i(wm)i+λ2
N

∑
i=1

(wl)i(wm)i(Bk)i(Bk)i

+λ2
N

∑
i=1

N

∑
j=1, j $=i

(wl)i(wm) j(Bk)i(Bk) j

= vkwl ·wm+λ2(wl ·Bk)(wm ·Bk) = vkQlm+λ2RlkRmk .

Here we have used that components of ξ from cluster k have variance vk and are independent. This
implies for all i, j ∈ {1, . . . ,N}:

〈(ξ)i (ξ)i〉k−〈(ξ)i〉k 〈(ξ)i〉k = vk ⇒ 〈(ξ)i (ξ)i〉k = vk + 〈(ξ)i〉k 〈(ξ)i〉k ,

and
〈
(ξ)i (ξ) j

〉
k = 〈(ξ)i〉k

〈
(ξ) j

〉
k for i /= j.

Finally, we obtain the conditional second moment

〈hl hm〉k−〈hl〉k〈hm〉k = vkQlm+λ2RlkRmk−λ2RlkRmk = vkQlm .

In an analogous way we get

〈blbm〉k−〈bl〉k〈bm〉k = vk δlm and 〈hlbm〉k−〈hl〉k〈bm〉k = vkRlm .

The above results are summarized in Eq. (11). The conditional covariance matrix of x can be
expressed explicitly in terms of the order parameters as follows:

Ck = vk





Q++ Q+− R++ R+−
Q+− Q−− R−+ R−−
R++ R−+ 1 0
R+− R−− 0 1



 .

The conditional density of x for data from class k is a Gaussian N(µk ,Ck) where µk is the conditional
mean vector, Eq. (21), andCk is given above.
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A.2 Form of the Differential Equations

Here, the differential equations for {Rsσ,Qst} are given for LVQ1, LVQ+/-, LFM, and LFM-W,
before Gaussian averages are performed.

A.2.1 LVQ1

In the case of the LVQ1 algorithm the generic form of the coupled system of ODE (Eq. (12)) yields
the following system:

dRlm
dα

= η

(
l
(
〈σbmΘl〉−〈σΘl〉Rlm

))
,

dQlm

dα
= η

(
l
(
〈σhmΘl〉−〈σΘl〉Qlm

)
+ m

(
〈σhlΘm〉−〈σΘm〉Qlm

)

+ η δlm ∑
σ=±1

vσpσ〈Θl〉σ

)
. (22)

A.2.2 LVQ+/-

In the case of LVQ+/- Eq. (12) results in the following system of coupled ODE:

dRlm
dα

= η l

(
〈σbm〉−〈σ〉Rlm

)
,

dQlm

dα
= η

(
l〈σhm〉− l〈σ〉Qlm+m〈σhl〉 −m〈σ〉Qlm+η l m ∑

σ=±1
pσvσ

)
. (23)

A.2.3 LFM

With the modulation function for LFM, Eq. (12), and using Θ̂o
σ from Eq. (18) we obtain

dRlm
dα

= η l

(
〈σbmΘ̂o

σ〉−〈σΘ̂o
σ〉Rlm

)
, (24)

dQlm

dα
= η

(
l〈σhmΘ̂o

σ〉− (l+m)〈σΘ̂o
σ〉Qlm+m〈σhlΘ̂o

σ〉 + l mη ∑
σ=±1

pσvσ〈Θ̂o
σ〉σ

)
.

A.2.4 LFM-W

For the modulation function of the LFM-W algorithm in Eq. (12) we obtain

dRlm
dα

= η l

(
〈σbm(Θ̂o

σ− Θ̂δ
σ)〉−〈σ(Θ̂o

σ− Θ̂δ
σ)〉Rlm

)
, (25)

dQlm

dα
= η

(
l〈σhm(Θ̂o

σ− Θ̂δ
σ)〉− (l+m)〈σ(Θ̂o

σ− Θ̂δ
σ)〉Qlm+m〈σhl(Θ̂o

σ− Θ̂δ
σ)〉

351



BIEHL, GHOSH AND HAMMER

+ l mη ∑
σ=±1

pσvσ〈(Θ̂o
σ− Θ̂δ

σ)〉σ

)
,

where Θ̂o
σ and Θ̂δ

σ are defined in Eq. (18). Note that for δ→ ∞ we recover Eqs. (24) for LFM as
limδ→∞ Θ̂δ = 0.

A.3 Gaussian Averages

In order to obtain the actual ODE for a given modulation function, averages over the joint density
P(h+,h−,b+,b−) are performed for LVQ1, LVQ+/-, and LFM.

A.3.1 LVQ+/-

The elementary averages in Eq. (23) are directly obtained from Eqs. (19,20) and read:

〈σbm〉 = ∑
σ=±1

σpσλδm,σ, 〈σhm〉 = ∑
σ=±1

σpσλRm,σ, 〈σ〉 = ∑
σ=±1

σpσ. (26)

A.3.2 LVQ1

In the systems of ODE presented in Eq. (22) we encounter Heaviside functions of the following
generic form:

Θs =Θ(αs.x−βs)

which gives Θs =Θ(d−s−d+s) =Θ(αs.x−βs) with

αs = (+2s,−2s,0,0)T and βs = (Q+s+s−Q−s−s) , (27)

Performing the averages in Eqs. (22) involves conditional means of the form

〈(x)nΘs〉k and 〈Θs〉k

where (x)n is the nth component of x= (h+1,h−1,b+1,b−1). We first address the term

〈(x)nΘs〉k =
(2π)−2

(det(Ck))
1
2

Z

R4
(x)nΘ(αs · x−βs) exp

(
−1
2

(
x−µk

)T
C−1
k

(
x−µk

))
dx

=
(2π)−2

(det(Ck))
1
2

Z

R4

(
x
′
+µk

)

n
Θ
(
αs · x

′
+αs ·µk−βs

)
exp

(
−1
2
x
′TC−1

k x
′
)
dx

′

with the substitution x′ = x−µk.
Let x′ =Ck

1
2 y, whereCk

1
2 is defined in the following way: Ck =Ck

1
2Ck

1
2 . SinceCk is a covariance

matrix, it is positive semidefinite and Ck
1
2 exists. Hence we have dx′ = det(C

1
2
k )dy= (det(Ck))

1
2 dy
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and
〈(x)nΘs〉k =

=
1

(2π)2
Z

R4
(C

1
2
k y)nΘ

(
αs ·C

1
2
k y+αs ·µk−βs

)
exp

(
−1
2
y2
)
dy+(µk)n〈Θs〉k

=
1

(2π)2
Z

R4

4

∑
j=1

(
(C

1
2
k )n j(y) j

)
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

)
exp

(
−1
2
y2
)
dy + (µk)n〈Θs〉k

= I+(µk)n〈Θs〉k (introducing the abbreviation I). (28)

Now consider the integrals contributing to I:

I j =
Z

R
(C

1
2
k )n j(y) jΘ

(
αs ·C

1
2
k y+αs ·µk−βs

)
exp

(
−1
2
(y)2j

)
d(y) j.

We can perform an integration by parts,
R
udv= uv−

R
vdu, with

u=Θ

(
αs ·C

1
2
k y+αs ·µk−βs

)
, v= (C

1
2
k )n j exp

(
−1
2
(y)2j

)

du=
∂

∂(y) j
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

)
d(y) j

dv= (−)(C
1
2
k )n j(y) j exp

(
−1
2
(y)2j

)
d(y) j, and obtain

I j = −
[
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

)
(C

1
2
k )n j exp

(
−1
2
(y)2j

)]∞

−∞︸ ︷︷ ︸
0

+

[Z

R
(C

1
2
k )n j

∂
∂(y) j

(
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

))
exp

(
−1
2
(y)2j

)
d(y) j

]

=
Z

R
(C

1
2
k )n j

∂
∂(y) j

(
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

))
exp

(
−1
2
(y)2j

)
d(y) j .

In total we get

I =
1

(2π)2
4

∑
j=1

(C
1
2
k )n j

Z

R4

∂
∂(y) j

(
Θ

(
αs ·C

1
2
k y+αs ·µk−βs

))
exp

(
−1
2
y2
)
dy

=
1

(2π)2
4

∑
j=1

(
(C

1
2
k )n j

4

∑
i=1

(αs)i(C
1
2
k )i, j

) Z

R4
δ

(
αsĊ

1
2
k y+αs ·µk−βs

)
exp

(
−1
2
y2
)
dy.

=
1

(2π)2
(Ckαs)n

Z

R4

(
δ

(
αs ·C

1
2
k y+αs ·µk−βs

))
exp

(
−1
2
y2
)
dy.
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In the last step we have used

∂
∂(y) j

Θ

(
αs ·C

1
2
k y+αs ·µk−βs

)
=

4

∑
i=1

(αs)i(C
1
2
k )i, jδ(αs ·C

1
2
k y+αs ·µk−βs)

with the Dirac delta-function δ(.).
Now, note that exp

[
− 1
2y
2]dy is a measure which is invariant under rotation of the coordinate

axes. We rotate the system in such a way that one of the axes, say ỹ, is aligned with the vectorC
1
2
k αs.

The remaining three coordinates can be integrated over and we get

I =
1√
2π

(Ckαs)n
Z

R
δ

(
‖C

1
2
k αs‖ỹ+αs ·µk−βs

)
exp

[
−1
2
ỹ2
]
dỹ .

We define
α̃sk = ‖C

1
2
k αs‖ =

√
αs ·Ckαs and β̃sk = αs ·µk−βs (29)

and obtain

I =
1√
2π

(Ckαs)n
Z

R
δ
(
α̃skỹ+ β̃sk

)
exp

[
−1
2
ỹ2
]
dỹ

=
(Ckαs)n√
2πα̃sk

Z

R
δ
(
z+ β̃sk

)
exp

[
−1
2

( z
α̃sk

)2]
dz (with z= αskỹ)

=
(Ckαs)n√
2πα̃sk

exp

[
−1
2

( β̃sk
α̃sk

)2
]

. (30)

Now we compute the remaining average in (28) in an analogous way and get

〈Θs〉k =
1√
2π

Z

R
Θ
(
α̃skỹ+ β̃sk

)
exp

[
−1
2
ỹ2
]
dỹ

=
1√
2π

β̃sk
α̃skZ

−∞

exp
[
−1
2
ỹ2
]
dỹ=Φ

(
β̃sk
α̃sk

)
with Φ(z) =

zZ

−∞

dx
e− x2

2
√
2π

. (31)

Finally we obtain the required average using (30) and (31) as follows:

〈(x)nΘs〉k =
(Ckαs)n√
2πα̃sk

exp

[
−1
2

( β̃sk
α̃sk

)2
]

+(µk)nΦ

(
β̃sk
α̃sk

)
. (32)

The quantities α̃sk and β̃sk are defined through Eq. (29) and (27) for LVQ1.

A.3.3 LFM AND LFM-W

In Eqs. (24,25) we have to evaluate conditional means of the form

〈(x)nΘ̂δ
s 〉k, 〈Θ̂δ

s 〉k with the special cases 〈(x)nΘ̂o
s 〉k, 〈Θ̂o

s 〉k.
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Here we use the notation

Θ̂δ
σ = Θ(dσ−d−σ−δ) = Θ(α̂σ.x− β̂δσ)

Θ̂o
σ = Θ(dσ−d−σ) =Θ(α̂σ.x− β̂oσ)

with α̂σ = (−2σ,+2σ,0,0)T , β̂δσ = −(Qσσ−Q−σ−σ−δ), and β̂oσ = −(Qσσ−Q−σ−σ).

The mathematical structure is completely analogous to the case of LVQ1 and we obtain the results

〈Θ̂δ
s 〉k = Φ

(
β̃δsk
α̂sk

)
and 〈(x)nΘ̂δ

s 〉k =
(Ckα̂s)n√
2πα̂sk

exp

[
−1
2

( β̃δsk
α̂sk

)2
]

+(µk)nΦ

(
β̃δsk
α̂sk

)
, (33)

as well as the corresponding special cases with δ= 0. Here, we have introduced

β̃δsk = α̂s ·µk− β̂δs , β̃osk = α̂s ·µk− β̂os , and α̂sk =
√
α̂s ·Ck α̂s.

A.4 Final Form of the Differential Equations

The full form of the ODE for LVQ1, LVQ+/-, and LFM is obtained after inserting the averages
given in the previous section.

A.4.1 LVQ1

For the LVQ1 algorithm, using (31) and (32), the system or ODE reads:

dRlm
dα

= η

[
l
(
∑

σ=±1
σpσ

[
(Cαl)nbm√
2πα̃lσ

exp
[
− 1
2

( β̃lσ
α̃lσ

)2]

+(µ
σ
)nbmΦ

( β̃lσ
α̃lσ

)]
− ∑

σ=±1
σpσΦ

( β̃lσ
α̃lσ

)
Rlm

)]
,

dQlm

dα
= η

(
l ∑
σ=±1

σpσ
[(Cαl)nhm√

2πα̃lσ
exp

[
− 1
2

( β̃lσ
α̃lσ

)2]
+(µ

σ
)nhmΦ

( β̃lσ
α̃lσ

)]

−l ∑
σ=±1

σpσ
[
Φ
( β̃lσ
α̃lσ

)
Qlm+m ∑

σ=±1
σpσ

[ (Cαl)nhl√
2πα̃mσ

exp
[
− 1
2

( β̃mσ
α̃mσ

)2]

+(µ
σ
)nhlΦ

( β̃mσ
α̃mσ

)]
−m ∑

σ=±1
σpσΦ

( β̃mσ
α̃mσ

)
Qlm

)

+δlmη2 ∑
σ=±1

σvσpσΦ
( β̃lσ
α̃lσ

)
. (34)

Here, we use the previously defined abbreviations, Eq. (29),

α̃sk =
√
αs ·Ckαs, β̃sk = αs ·µk−βs

with αs = (+2s,−2s,0,0)T and βs = (Q+s+s−Q−s−s).

Furthermore, nhm =
{
1 if m= 1
2 if m= −1 and nbm =

{
3 if m= 1
4 if m= −1 .
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A.4.2 LVQ+/-

Using the averages computed in (26) we get the final form of the system of ODE for the LVQ+/-
algorithm as follows:

dRlm
dα

= η l

(

∑
σ=±1

σpσλδm,σ− ∑
σ=±1

σpσRlm

)
,

dQlm

dα
= η

(
l ∑
σ=±1

σpσλRm,σ− l ∑
σ=±1

σpσQlm+m ∑
σ=±1

σpσλRl,σ

−m ∑
σ=±1

σpσQlm+η l m ∑
σ=±1

pσvσ

)
. (35)

A.4.3 LFM

The final form of the system of ODE reads with Eq. (33)

dRlm
dα

= η l

(

∑
σ=±1

σpσ
[(Cα̂σ)nbm√

2πα̂σσ
exp

[
− 1
2

( β̃oσσ
α̂σσ

)2]

+(µ
σ
)nbmΦ

( β̃oσσ
α̂σσ

)]
− ∑

σ=±1
σpσ

[
Φ
( β̃oσσ
α̂σσ

)]
Rlm

)
,

dQlm

dα
= η

(
l ∑
σ=±1

σpσ
[(Cα̂σ)nhm√

2πα̂σσ
exp

[
− 1
2

( β̃oσσ
α̂σσ

)2]
+(µ

σ
)nhmΦ

( β̃oσσ
α̂σσ

)]

−l ∑
σ=±1

σpσ
[
Φ
( β̃oσσ
α̂σσ

)]
Qlm+m ∑

σ=±1
σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1
2

( β̃oσσ
α̂σσ

)2]

+(µ
σ
)nhlΦ

( β̃oσσ
α̂σσ

)]
−m ∑

σ=±1
σpσ

[
Φ
( β̃oσσ
α̂σσ

)]
Qlm+ l mη ∑

σ=±1
vσpσΦ

( β̃oσσ
α̂σσ

))
.

(36)

Here we have to insert α̂sk =
√
α̂s ·Ckα̂s, β̃osk = α̂s ·µk− β̂os

with α̂σ = (−2σ,+2σ,0,0)T and β̂oσ = −(Q+σ+σ−Q−σ−σ).

Also, nhm =
{
1 if m= 1
2 if m= −1 and nbm =

{
3 if m= 1
4 if m= −1 .

A.4.4 LFM-W

The system of ODE for LFM-W, using Eq. (33), is given by

dRlm
dα

= η l

(

∑
σ=±1

σpσ
[(Cα̂σ)nbm√

2πα̂σσ
exp

[
− 1
2

( β̃oσσ
α̂σσ

)2]
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+(µ
σ
)nbmΦ

( β̃oσσ
α̂σσ

)]
− ∑

σ=±1
σpσ

[
Φ
( β̃oσσ
α̂σσ

)]
Rlm

)

−η l
(

∑
σ=±1

σpσ
[(Cα̂σ)nbm√

2πα̂σσ
exp

[
− 1
2

( β̃δσσ
α̂σσ

)2]

+(µ
σ
)nbmΦ

( β̃δσσ
α̂σσ

)]
− ∑

σ=±1
σpσ

[
Φ
( β̃δσσ
α̂σσ

)]
Rlm

)
,

dQlm

dα
= η

(
l ∑
σ=±1

σpσ
[(Cα̂σ)nhm√

2πα̂σσ
exp

[
− 1
2

( β̃oσσ
α̂σσ

)2]
+(µ

σ
)nhmΦ

( β̃oσσ
α̂σσ

)]

−l ∑
σ=±1

σpσ
[
Φ
( β̃oσσ
α̂σσ

)]
Qlm+m ∑

σ=±1
σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1
2

( β̃oσσ
α̂σσ

)2]

+(µ
σ
)nhlΦ

( β̃oσσ
α̂σσ

)]
−m ∑

σ=±1
σpσ

[
Φ
( β̃oσσ
α̂σσ

)]
Qlm+ l mη ∑

σ=±1
vσpσΦ

( β̃oσσ
α̃σσ

))

−η
(
l ∑
σ=±1

σpσ
[(Cα̂σ)nhm√

2πα̂σσ
exp

[
− 1
2

( β̃δσσ
α̂σσ

)2]
+(µ

σ
)nhmΦ

( β̃δσσ
α̂σσ

)]

−l ∑
σ=±1

σpσ
[
Φ
( β̃δσσ
α̂σσ

)]
Qlm+m ∑

σ=±1
σpσ

[(Cα̂σ)nhl√
2πα̂σσ

exp
[
− 1
2

( β̃δσσ
α̂σσ

)2]

+(µ
σ
)nhlΦ

( β̃δσσ
α̂σσ

)]
−m ∑

σ=±1
σpσ

[
Φ
( β̃δσσ
α̂σσ

)]
Qlm+ l mη ∑

σ=±1
vσpσΦ

( β̃δσσ
α̂σσ

))
.

Here again, we have to insert

α̂sk =
√
α̂s ·Ckαs, β̃δsk = α̂s ·µk− β̂δs , β̃osk = α̂s ·µk− β̂os

with α̂σ = (−2σ,+2σ,0,0)T , β̂δσ = −(Q+σ+σ−Q−σ−σ−δ), and β̂oσ = −(Q+σ+σ−Q−σ−σ).

As above, nhm =
{
1 if m= 1
2 if m= −1 and nbm =

{
3 if m= 1
4 if m= −1 .

A.5 Analytical Results for LVQ+/-

The system of ODE (35) can be integrated analytically and the solutions are presented below for
initialization of prototypes in the origin, that is, Rlm(0) = Qlm(0) = 0.
For convenience, we use the parameterization

p+ =
1+ p̂
2

, p− =
1− p̂
2

, with the bias p̂= (2p+−1) ∈ [−1,1].

In the generic case of unequal priors p̂ /= 0, one obtains

R++(α) = − 1
2 p̂

λ(1+ p̂)(e−αηp̂−1), R+−(α) =
1
2 p̂

λ(1− p̂)(e−αηp̂−1),

R−+(α) = − 1
2 p̂

λ(1+ p̂)(e+αηp̂−1), R−−(α) =
1
2 p̂

λ(1− p̂)(e+αηp̂−1),
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Q++(α) =
1
4 p̂2

e−2αη p̂
(
2(eαηp̂−1)2λ2 (1+ p̂2)+(e2αη p̂−1)η p̂ (v+(1+ p̂)+ v−(1− p̂))

)
,

Q+−(α) =
1
2 p̂2

e−αηp̂
(
− (eαηp̂−1)2λ2 (1+ p̂2)−αeαηp̂η2 p̂2 (v+(1+ p̂)+ v−(1− p̂))

)
,

Q−−(α) =
1
4 p̂2

(
2(eαηp̂−1)2λ2 (1+ p̂2)+(e2αη p̂−1)η p̂ (v+(1+ p̂)+ v−(1− p̂))

)
.

(37)

The special case of equal prior probabilities is obtained in the limit p̂→ 0:

Rlm(α) = l m
λη
2

α Qlm(α) = l m
1
2
η2(αλ2+ v+ + v−) α . (38)

A.6 The Generalization Error

Using (31) we can directly compute the generalization error as follows:

εg = ∑
k=±1

p−k〈Θk〉−k = ∑
k=±1

p−kΦ
( β̃k−k
α̃k−k

)

which yields Eqs. (14,15) in the text after inserting
α̃sk = ‖C

1
2
k αs‖ =

√
αs ·Ckαs, β̃sk = αs ·µk−βs .

with αs = (+2s,−2s,0,0)T and βs = (Q+s+s−Q−s−s).
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Abstract
While kernel canonical correlation analysis (CCA) has been applied in many contexts, the conver-
gence of finite sample estimates of the associated functions to their population counterparts has
not yet been established. This paper gives a mathematical proof of the statistical convergence of
kernel CCA, providing a theoretical justification for the method. The proof uses covariance opera-
tors defined on reproducing kernel Hilbert spaces, and analyzes the convergence of their empirical
estimates of finite rank to their population counterparts, which can have infinite rank. The result
also gives a sufficient condition for convergence on the regularization coefficient involved in kernel
CCA: this should decrease as n−1/3, where n is the number of data.
Keywords: canonical correlation analysis, kernel, consistency, regularization, Hilbert space

1. Introduction

Kernel methods (Cristianini and Shawe-Taylor, 2000; Schölkopf and Smola, 2002) have recently
been developed as a methodology for nonlinear data analysis with positive definite kernels. In
kernel methods, data are represented as functions or elements in reproducing kernel Hilbert spaces
(RKHS), which are associated with positive definite kernels. The application of various linear meth-
ods in these Hilbert spaces is possible due to the reproducing property, which makes computation
of inner product in the Hilbert spaces tractable. Many methods have been proposed as nonlinear
extensions of conventional linear methods, such as kernel principal component analysis (Schölkopf
et al., 1998), kernel Fisher discriminant analysis (Mika et al., 1999), and so on.

Kernel canonical correlation analysis (kernel CCA) was proposed (Akaho, 2001; Melzer et al.,
2001; Bach and Jordan, 2002) as a nonlinear extension of canonical correlation analysis with pos-
itive definite kernels. Given two random variables X and Y , kernel CCA aims at extracting the
information which is shared by the two random variables. More precisely, the purpose of kernel

c©2007 Kenji Fukumizu, Francis R. Bach and Arthur Gretton.
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CCA is to provide nonlinear mappings f (X) and g(Y ), where f and g belong to the respective
RKHS HX and HY , such that their correlation is maximized. Kernel CCA has been successfully
applied in practice for extracting nonlinear relations between variables in genomic data (Yamanishi
et al., 2003), fMRI brain images (Hardoon et al., 2004), chaotic time series (Suetani et al., 2006)
and independent component analysis (Bach and Jordan, 2002).

As in many statistical methods, the target functions defined in the population case are in practice
estimated from a finite sample. Thus, the convergence of the estimated functions to the population
functions with increasing sample size is very important to justify the method. Since the goal of
kernel CCA is to estimate a pair of functions, the convergence should be evaluated in an appropriate
functional norm; we thus need tools from functional analysis to characterize the type of conver-
gence.

The purpose of this paper is to rigorously prove the statistical consistency of kernel CCA. In
proving the consistency of kernel CCA, we show also the consistency of a pair of functions which
may be used as an alternative method for expressing the nonlinear dependence of two variables. The
latter method uses the eigenfunctions of a NOrmalized Cross-Covariance Operator, and we call it
NOCCO for short.

Both kernel CCA and NOCCO require a regularization coefficient, which is similar to Tikhonov
regularization (Groetsch, 1984), to enforce smoothness of the functions in the finite sample case
(thus avoiding a trivial solution) and to enable operator inversion; but the decay of this regularization
with increased sample size has not yet been established. The main theorems in this paper give a
sufficient condition on the decay of the regularization coefficient for the finite sample estimators to
converge to the desired functions in the population limit.

Another important issue in establishing convergence is an appropriate distance measure for func-
tions. For NOCCO, we obtain convergence in the norm of the associated RKHS. This result is very
strong: if the positive definite kernels are continuous and bounded, the norm is stronger than the
uniform norm in the space of continuous functions, and thus the estimated functions converge uni-
formly to the desired ones. For kernel CCA, we prove convergence in the L2 norm, which is a
standard distance measure for functions.

There are earlier studies relevant to the convergence of functional correlation analysis. Among
others, Breiman and Friedman (1985) propose alternating conditional expectation (ACE), an itera-
tive algorithm for functional CCA and more general regression, and demonstrate statistical consis-
tency of the algorithm for an infinite amount of data.

Most relevant to this paper are several studies on the consistency of CCA with positive definite
kernels, notably the work on nonlinear CCA for stochastic processes by Leurgans et al. (1993);
He et al. (2003), who also provide consistency results. An alternative approach is to study the
eigenfunctions of the cross-covariance operators, without normalising by the variance, as in the
constrained covariance (COCO, Gretton et al., 2005b). We will discuss the relation between our
results and these studies.

We begin our presentation in Section 2 with a review of kernel CCA and related methods, formu-
lating them in terms of cross-covariance operators, which are the basic tools to analyze correlation
in functional spaces. In Section 3, we describe the two main theorems, which respectively show
the convergence of kernel CCA and NOCCO. Section 4 contains numerical results to illustrate the
behavior of the methods. Section 5 is devoted to the proof of the main theorems. Some basic facts
from functional analysis and general lemmas are summarized in the Appendix.
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2. Kernel Canonical Correlation Analysis

In this section, we briefly review kernel CCA, following Bach and Jordan (2002), and reformulate
it with covariance operators on RKHS. For the detail of positive definite kernels and RKHS, see
Aronszajn (1950).

In this paper, a Hilbert space always means a separable Hilbert space, and an operator a linear
operator. The operator norm of a bounded operator T is denoted by ‖T‖ and defined as ‖T‖ =
sup‖ f‖=1 ‖T f‖. The null space and the range of an operator T :H1 → H2 are denoted by N (T ) and
R (T ), respectively; that is, N (T ) = { f ∈ H1 | T f = 0} and R (T ) = {T f ∈ H2 | f ∈ H1}.

Throughout this paper, (X ,BX ) and (Y ,BY ) are measurable spaces, and (HX ,kX ) and (HY ,kY )
are RKHS of functions on X and Y , respectively, with measurable positive definite kernels kX and
kY . We consider a random vector (X ,Y ) : Ω→ X ×Y with law PXY . The marginal distributions
of X and Y are denoted by PX and PY , respectively. It is always assumed that the positive definite
kernels satisfy

EX [kX (X ,X)] < ∞ and EY [kY (Y,Y )] < ∞. (1)

Note that under this assumption HX and HY are continuously included in L2(PX) and L2(PY ), re-
spectively, where L2(µ) denotes the Hilbert space of square integrable functions with respect to the
measure µ. This is easily verified by EX [ f (X)2] = EX [〈 f ,kX ( · ,X)〉2] ≤ EX [‖ f‖2HX

‖kX ( · ,X)‖2HX
] =

‖ f‖2HX
EX [kX (X ,X)] for f ∈ HX .

2.1 CCA in Reproducing Kernel Hilbert Spaces

Classical CCA (e.g., Greenacre, 1984) looks for linear mappings aTX and bTY that achieve maxi-
mum correlation. Kernel CCA extends this approach by looking for functions f ∈ HX and g ∈ HY
such that the random variables f (X) and g(Y ) have maximal correlation. More precisely, kernel
CCA solves the following problem:1

max
f∈HX ,g∈HY
f $=0,g$=0

Cov[ f (X),g(Y )]
Var[ f (X)]1/2Var[g(Y )]1/2

. (2)

The maximizing functions f and g are decided up to scale.
In practice, we have to estimate the desired function from a finite sample. Given an i.i.d. sample

(X1,Y1), . . . ,(Xn,Yn) from the distribution PXY , an empirical estimate of Eq. (2) is

max
f∈HX ,g∈HY
f $=0,g$=0

Ĉov[ f (X),g(Y )]
(
V̂ar[ f (X)]+ εn‖ f‖2HX

)1/2(V̂ar[g(Y )]+ εn‖g‖2HY

)1/2 , (3)

1. In Eq. (2) we assume Var[ f (X)] != 0 and Var[g(Y )] != 0. See Section 2.2 for discussion on conditions under which an
RKHS includes a function leading to null variance.
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ˆ ( )f X

( )ĝ Y

X

Y

ˆ ( )f X

( )ĝ Y

X

Y

Figure 1: An example of kernel CCA. A Gaussian RBF kernel k(x,y) = exp
(
− 1
2σ2 (x−y)2

)
is used

for both X and Y . Left: the original data. Center: derived functions f̂ (Xi) and ĝ(Yi).
Right: transformed data.

where

Ĉov[ f (X),g(Y )] =
1
n

n

∑
i=1

(
f (Xi)−

1
n

n

∑
j=1

f (X j)
)(
g(Yi)−

1
n

n

∑
j=1

g(Y j)
)
,

V̂ar[ f (X)] =
1
n

n

∑
i=1

(
f (Xi)−

1
n

n

∑
j=1

f (X j)
)2

,

V̂ar[g(Y )] =
1
n

n

∑
i=1

(
g(Yi)−

1
n∑

n
j=1g(Y j)

)2
,

and a positive constant εn is the regularization coefficient (Bach and Jordan, 2002). As we shall
see, the regularization terms εn‖ f‖2HX

and εn‖g‖2HY
make the problem well-formulated statistically,

enforce smoothness, and enable operator inversion, as in Tikhonov regularization (Groetsch, 1984).
For this smoothing effect, see also the discussion by Leurgans et al. (1993, Section 3).

Figure 1 shows the result of kernel CCA for a synthetic data set. The nonlinear mappings clarify
the strong dependency between X and Y . Note that the dependency of the original data cannot be
captured by classical CCA, because they have no linear correlation.

2.2 Cross-covariance Operators on RKHS

Kernel CCA and related methods can be formulated using cross-covariance operators, which make
the theoretical analysis easier. Cross-covariance operators have also been used to derive practical
methods for measuring the dependence of random variables (Fukumizu et al., 2004; Gretton et al.,
2005a). This subsection reviews the basic properties of cross-covariance operators. For more de-
tails, see Baker (1973), Fukumizu et al. (2004), and Gretton et al. (2005a). The cross-covariance
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operator2 of (X ,Y ) is an operator from HX to HY , which is defined by

〈g,ΣYX f 〉HY = EXY
[
( f (X)−EX [ f (X)])(g(Y )−EY [g(Y )])

]
(= Cov[ f (X),g(Y )])

for all f ∈HX and g∈HY . By regarding the right hand side as a linear functional on the direct prod-
uct HX ⊗HY , Riesz’s representation theorem (Reed and Simon, 1980, for example) guarantees the
existence and uniqueness of a bounded operator ΣYX . The cross-covariance operator expresses the
covariance between functions in the RKHS as a bilinear functional, and contains all the information
regarding the dependence of X and Y expressible by nonlinear functions in the RKHS.

Obviously, ΣYX = Σ∗XY , where T ∗ denotes the adjoint of an operator T . In particular, if Y
is equal to X , the self-adjoint operator ΣXX is called the covariance operator. Note that f ∈
N (ΣXX) if and only if VarX [ f (X)] = 0. The null space N (ΣXX) is equal to { f ∈ HX | f (X) =
constant almost surely}. Under the assumptions that X is a topological space with continuous ker-
nel kX and the support of PX is X , the null space N (ΣXX) is equal to HX ∩R, where R denotes the
constant functions. For the Gaussian RBF kernel k(x,y) = exp

(
− 1
2σ2 ‖x−y‖

2) defined on X ⊂Rm, it
is known (Steinwart et al., 2004) that if the interior of X is not empty, a nontrivial constant function
is not included in the RKHS; thus N (ΣXX) = {0} in such cases.

The mean element mX ∈ HX with respect to a random variable X is defined as

〈 f ,mX〉HX = EX [ f (X)] = EX [〈 f ,kX (·,X)〉HX ] (∀ f ∈ HX ). (4)

The existence and uniqueness of mX is proved again by Riesz’s representation theorem. Using the
mean elements, the cross-covariance operator ΣYX is rewritten

〈g,ΣYX f 〉HY = EXY [〈 f ,kX (·,X)−mX〉HX 〈kY (·,Y )−mY ,g〉HY ].

Let (X1,Y1), . . . ,(Xn,Yn) be i.i.d. random vectors on X ×Y with distribution PXY . The empir-
ical cross-covariance operator Σ̂(n)

YX is defined as the cross-covariance operator with the empirical
distribution 1

n ∑
n
i=1 δXiδYi . By definition, for any f ∈ HX and g ∈ HY , the operator Σ̂

(n)
YX gives the

empirical covariance as follows;

〈g, Σ̂(n)
YX f 〉HY

=
1
n

n

∑
i=1

〈
g,kY (·,Yi)−

1
n

n

∑
s=1

kY (·,Ys)
〉

HY

〈
kX (·,Xi)−

1
n

n

∑
t=1

kX (·,Xt), f
〉

HX

= Ĉov[ f (X),G(Y )].

Obviously, the rank of Σ̂(n)
YX is finite, because R (Σ̂(n)

YX) and N (Σ̂(n)
YX)⊥ are included in the linear hull

of {kY (·,Yi)− 1
n ∑

n
s=1 kY (·,Ys)}ni=1 and {kX (·,Xi)− 1

n ∑
n
t=1 kX (·,Xt)}ni=1, respectively.

Let QX and QY be the orthogonal projection which maps HX onto R (ΣXX) and HY onto
R (ΣYY ), respectively. It is known (Baker, 1973, Theorem 1) that ΣYX has a representation

ΣYX = Σ1/2YY VYXΣ
1/2
XX , (5)

where VYX : HX → HY is a unique bounded operator such that ‖VYX‖ ≤ 1 and VYX = QYVYXQX .
Note that the inverse of an operator may not exist in general, or may not be continuous if it exists.
We often write VYX by Σ

−1/2
YY ΣYXΣ

−1/2
XX , however, by abuse of notation, even when Σ−1/2

XX or Σ−1/2YY
are not appropriately defined as operators.
2. Cross-covariance operator have been defined for Banach spaces by Baker (1973). However, we confine our discussion
to RKHS.
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2.3 Representation of Kernel CCA and Related Methods with Cross-covariance Operators

With cross-covariance operators for (X ,Y ), the kernel CCA problem can be formulated as

sup
f∈HX ,g∈HY

〈g,ΣYX f 〉HY subject to

{
〈 f ,ΣXX f 〉HX = 1,
〈g,ΣYYg〉HY = 1.

As with classical CCA (Anderson, 2003, for example), the solution of the above kernel CCA prob-
lem is given by the eigenfunctions corresponding to the largest eigenvalue of the following general-
ized eigenproblem: {

ΣYX f = ρ1ΣYYg,
ΣXYg= ρ1ΣXX f .

(6)

For an i.i.d. sample (X1,Y1), . . . ,(Xn,Yn), the empirical estimator in Eq. (3) is

sup
f∈HX ,g∈HY

〈g, Σ̂(n)
YX f 〉HY subject to

{
〈 f ,(Σ̂(n)

XX + εnI) f 〉HX = 1,
〈g,(Σ̂(n)

YY + εnI)g〉HY = 1,

and Eq. (6) becomes {
Σ̂(n)
YX f = ρ̂(n)

1
(
Σ̂(n)
YY + εnI

)
g,

Σ̂(n)
XYg= ρ̂(n)

1
(
Σ̂(n)
XX + εnI

)
f .

(7)

Let us assume that the operator VYX given by Eq. (5) is compact,3 and let φ and ψ be the unit
eigenfunctions of VYX corresponding to the largest singular value;4 that is,

〈ψ,VYXφ〉HY = max
f∈HX ,g∈HY

‖ f‖HX =‖g‖HY
=1

〈g,VYX f 〉HY . (8)

Given that φ∈ R (ΣXX) and ψ∈ R (ΣYY ), it is easy to see from Eq. (6) that the solution of the kernel
CCA is given by the inverse images5

f = Σ−1/2XX φ, g= Σ−1/2YY ψ,

where f and g are determined up to an almost sure constant function. In the empirical case, let
φ̂n ∈ HX and ψ̂n ∈ HY be the unit eigenfunctions corresponding to the largest singular value of the
finite rank operator

V̂ (n)
YX :=

(
Σ̂(n)
YY + εnI

)−1/2
Σ̂(n)
YX

(
Σ̂(n)
XX + εnI

)−1/2
.

From Eq. (7), the empirical estimators f̂n and ĝn of kernel CCA are

f̂n = (Σ̂(n)
XX + εnI)−1/2φ̂n, ĝn = (Σ̂(n)

YY + εnI)−1/2ψ̂n.

3. See Appendix A for compact operators.
4. While we presume that the eigenspaces are one dimensional in this section, we can easily relax it to multidimensional
spaces by considering the eigenspaces corresponding to the largest eigenvalues. See the remarks after Theorem 2.

5. The operators Σ1/2XX and Σ
1/2
YY may not be invertible, but their inverses are well-defined up to an almost sure constant

function when applied to functions belonging to the respective ranges of Σ1/2XX and Σ
1/2
YY .
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The empirical operators and the estimators described above can be expressed using Gram ma-
trices, as is often done in kernel methods. The solutions f̂n and ĝn are exactly the same as those
given in Bach and Jordan (2002), as we confirm below. Let ui ∈ HX and vi ∈ HY (1 ≤ i ≤ n) be
functions defined by

ui = kX (·,Xi)−
1
n

n

∑
j=1

kX (·,X j), vi = kY (·,Yi)−
1
n

n

∑
j=1

kY (·,Yj).

Because R (Σ̂(n)
XX) and R (Σ̂(n)

YY ) are spanned by (ui)ni=1 and (vi)ni=1, respectively, the eigenfunctions
of V̂ (n)

YX are given by a linear combination of ui and vi. Letting φ = ∑n
i=1αiui and ψ = ∑n

i=1βivi,
direct calculation of 〈ψ,V̂ (n)

YX φ〉HY shows that the eigenfunctions φ̂n and ψ̂n of Σ̂
(n)
YX corresponding to

the largest singular value are given by the coefficients α̂ and β̂ that satisfy

max
α,β∈Rn

αTGXα=βTGYβ=1

βT
(
GY +nεnIn

)−1/2GYGX
(
GX +nεnIn

)−1/2
α,

where GX is the centered Gram matrix,

(GX)i j = kX (Xi,X j)−
1
n

n

∑
b=1

kX (Xi,Xb)−
1
n

n

∑
a=1

kX (Xa,X j)+
1
n2

n

∑
a=1

n

∑
b=1

kX (Xa,Xb),

with GY defined accordingly. The solution of the kernel CCA problem is

f̂n = (Σ̂(n)
XX + εnI)−1/2φ̂n =

n

∑
i=1

ξ̂iui, ĝn = (Σ̂(n)
YY + εnI)−1/2ψ̂n =

n

∑
i=1

ζ̂ivi,

where
ξ̂=

√
n(GX +nεnIn)−1/2α̂ and ζ̂=

√
n(GY +nεnIn)−1/2β̂.

Thus, the linear coefficients ξ̂ and ζ̂ are the solution of

max
ξ,ζ∈Rn

ξT (G2X+nεnGX )ξ=ζT (G2Y+nεnGY )ζ=n

ζTGYGXξ,

which is exactly the same as the one proposed by Bach and Jordan (2002). Bach and Jordan approx-
imate (G2X +nεnGX) by (GX + nεn

2 In)
2 for computational simplicity. Note that our theoretical results

in the next section still hold with this approximation, because this modification causes only higher
order changes in α̂ and β̂, which perturbs the empirical eigenfunctions φ̂n, ψ̂n, f̂n, and ĝn only in
higher order.

There are additional, related methods to extract nonlinear dependence of two random variables
with positive definite kernels. The Constrained Covariance (COCO, Gretton et al., 2005b) uses the
unit eigenfunctions of the cross-covariance operator ΣYX . Thus the solution of COCO is

max
f∈HX ,g∈HY

‖ f‖HX =‖g‖HY
=1

〈g,ΣYX f 〉HY = max
f∈HX ,g∈HY

‖ f‖HX =‖g‖HY
=1

Cov[ f (X),g(Y )].
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The consistency of COCO has been proved by Gretton et al. (2005a). Unlike kernel CCA, COCO
normalizes the covariance by the RKHS norms of f and g. Kernel CCA is a more direct nonlinear
extension of the ordinary CCA than COCO. COCO tends to find functions with large variance for
f (X) and g(Y ), which may not be the most correlated features. On the other hand, kernel CCA
may encounter situations where it finds functions with moderately large covariance but very small
variances for f (X) or g(Y ), since ΣXX and ΣYY can have arbitrarily small eigenvalues.

A possible compromise between these methods is to use φ and ψ in Eq. (8), and their estimates
φ̂n and ψ̂n. While the statistical meaning of this approach is not as direct as kernel CCA, it can
incorporate the normalization by ΣXX and ΣYY . We call this variant NOrmalized Cross-Covariance
Operator (NOCCO). We will establish the consistency of kernel CCA and NOCCO in the next
section, and give experimental comparisons of these methods in Section 4.

3. Main Theorems

First, the following theorem asserts the consistency of the estimator of NOCCO in the RKHS norm,
when the regularization parameter εn goes to zero slowly enough.

Theorem 1 Let (εn)∞n=1 be a sequence of positive numbers such that

lim
n→∞

εn = 0, lim
n→∞

n−1/3

εn
= 0. (9)

Assume VYX is a compact operator and the eigenspaces which attain the singular value problem

max
φ∈HX ,ψ∈HY

‖φ‖HX =‖ψ‖HY
=1

〈ψ,VYXφ〉HY

are one-dimensional. Let φ̂n and ψ̂n be the unit eigenfunctions for the largest singular value of V̂
(n)
YX .

Then,
|〈φ̂n,φ〉HX |→ 1, |〈ψ̂n,ψ〉HY |→ 1

in probability, as n goes to infinity.

The next main result shows the convergence of kernel CCA in the norm of L2(PX) and L2(PY ).

Theorem 2 Let (εn)∞n=1 be a sequence of positive numbers which satisfies Eq. (9). Assume that φ
and ψ are included in R (ΣXX) and R (ΣYY ), respectively, and that VYX is compact. Then,

∥∥( f̂n−EX [ f̂n(X)])− ( f −EX [ f (X)])
∥∥
L2(PX ) → 0

and ∥∥(ĝn−EY [ĝn(Y )])− (g−EY [g(Y )])
∥∥
L2(PY ) → 0

in probability, as n goes to infinity.

While in the above theorems we confine our attention to the first eigenfunctions, it is not difficult
to verify the convergence of eigenspaces corresponding to the m-th largest eigenvalue by extending
Lemma 10 in the Appendix. See also the remark after the lemma.
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The convergence of NOCCO in RKHS norm is a very strong result. If X and Y are topological
spaces, and if the kernels kX and kY are continuous and bounded, all the functions in HX and
HY are continuous and the RKHS norm is stronger than the uniform norm in C(X ) and C(Y ),
where C(Z) is the Banach space of all the continuous functions on a topological space Z with
the supremum norm. In fact, for any f ∈ HX , we have supx∈X | f (x)| = supx∈X |〈kX (·,x), f 〉HX | ≤
supx∈X (kX (x,x))1/2‖ f‖HX . In such cases, Theorem 1 implies φ̂n and ψ̂n converge uniformly to φ
and ψ, respectively. This uniform convergence is useful in practice, because in many applications
the function value at each point is important.

The above theorems assume the compactness of VYX , which requires that for any complete
orthonormal systems (CONS) {φi}∞i=1 of HX and {ψi}∞i=1 of HY , the correlation of Σ

−1/2
XX φi(X) and

Σ−1/2YY ψi(Y ) decay to zero as i→ ∞. This is not necessarily satisfied in general. A trivial example is
the case of variables with Y = X . In this case, VYX = I is not compact, and the problem in Theorem
1 is solved by an arbitrary function. In this situation, the kernel CCA problem in Theorem 2 does
not have solutions if ΣXX has arbitrarily small eigenvalues.

We give a useful sufficient condition that VYX is Hilbert-Schmidt, which necessarily implies
compactness. The condition is described in terms of mean square contingency, which is one of the
standard criteria to measure the dependency of two random variables (Rényi, 1970). It is known
(Buja, 1990) that the covariance operator considered on L2 is Hilbert-Schmidt if the mean square
contingency is finite. We modify the result to the case of the covariance operator on RKHS.

Assume that the measure spaces (X ,BX ) and (Y ,BY ) admit measures µX and µY , respectively,
and that PXY is absolutely continuous with respect to the product measure µX ×µY with a probability
density function pXY (x,y). Let ζ(x,y) be a function on X ×Y defined by

ζ(x,y) =
pXY (x,y)
pX(x)pY (y)

−1,

where pX(x) and pY (y) are the probability density functions of the marginal distributions PX and
PY , respectively. The mean square contingency C(X ,Y ) is defined by

C(X ,Y ) =
{Z Z

ζ(x,y)2dPXdPY
}1/2

.

It is easy to seeC(X ,Y ) = 0 if and only if X and Y are independent. Obviously we have

C(X ,Y )2 =
Z Z pXY (x,y)2

pX(x)pY (y)
dµX dµY −1=

Z
ζ(x,y)dPXY .

Thus, C(X ,Y )2 is an upper bound of the mutual information MI(X ,Y ) =
R
log pXY (x,y)

pX (x)pY (y)dPXY , be-
cause log(z+1) ≤ z for z> 0.

Theorem 3 Suppose that the measurable spaces (X ,BX ) and (Y ,BY ) have measures µX and µY ,
respectively, so that PXY is absolutely continuous with respect to the product measure µX ×µY with
a probability density function pXY (x,y). If the mean square contingency C(X ,Y ) is finite, that is, if

Z Z pXY (x,y)2

pX(x)pY (y)
dµX dµY < ∞,

then the operator VYX :HX → HY is Hilbert-Schmidt, and

‖VYX‖HS ≤C(X ,Y ) = ‖ζ‖L2(PX×PY ).
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The proof is given in Section 5. The assumption that the mean square contingency is finite is very
natural when we consider the dependence of two different random variables, as in the situation
where kernel CCA is applied. It is interesting to see that Breiman and Friedman (1985) also discuss
a similar condition for the existence of optimal functions for functional canonical correlation.

He et al. (2003) discuss the eigendecomposition of the operator VYX . They regard random pro-
cesses in L2 spaces as data. In our case, transforms of the original random variables, kX (·,X) and
kY (·,Y ), also induce processes in RKHS. He et al. (2003) give a condition for the eigendecomposi-
tion of VYX in terms of the eigendecomposition of the data processes, while our condition is a more
direct property of the original random variables.

Leurgans et al. (1993) discuss canonical correlation analysis on curves, which are represented
by stochastic processes on an interval, and use the Sobolev space of functions with square integrable
second derivative. Since this Sobolev space is an RKHS, their method is an example of kernel CCA
in a specific RKHS. They also prove the consistency of estimators under the condition n−1/2/εn→ 0.
Although the proof can be extended to a general RKHS, the convergence is measured by that of the
correlation, ∣∣〈 f̂n,ΣXX f 〉HX

∣∣
(
〈 f̂n,ΣXX f̂n〉HX

)1/2(〈 f ,ΣXX f 〉HX

)1/2 → 1.

Note that in the denominator the population covariance 〈 f̂n,ΣXX f̂n〉HX is used, which is not com-
putable in practice. The above convergence of correlation is weaker than the L2 convergence in
Theorem 2. In fact, since the desired eigenfunction f is normalized so that 〈 f ,ΣXX f 〉HX = 1, it
is easy to derive the above convergence of correlation from Theorem 2. On the other hand, the
convergence of correlation does not imply 〈( f̂n− f ),ΣXX( f̂n− f )〉HX . From the equality

〈( f̂n− f ),ΣXX( f̂n− f )〉HX =
(
〈 f̂n,ΣXX f̂n〉1/2HX

−〈 f ,ΣXX f 〉1/2HX

)2

+2
(
1−

〈 f̂n,ΣXX f 〉HX

‖Σ1/2XX f̂n‖HX ‖Σ
1/2
XX f‖HX

)
‖Σ1/2XX f̂n‖HX ‖Σ

1/2
XX f‖HX ,

we require the convergence 〈 f̂n,ΣXX f̂n〉HX → 〈 f ,ΣXX f 〉HX = 1 in order to guarantee the left hand
side converges to zero. With the normalization 〈 f̂n,(Σ̂(n)

XX + εnI) f̂n〉HX = 〈 f ,ΣXX f 〉HX = 1, however,
the convergence of 〈 f̂n,ΣXX f̂n〉HX is not clear. We use the stronger assumption n

−1/3/εn → 0 to
prove 〈( f̂n− f ),ΣXX( f̂n− f )〉HX → 0 in Theorem 2.

4. Numerical Simulations

In this section, we show results of numerical simulations for kernel CCA and related methods. We
use a synthetic data set for which the optimal nonlinear functions in the population kernel CCA
(Eq. (2)) are explicitly known, and demonstrate the convergence behavior for various values of εn.
For the quantitative evaluation of convergence, we consider only kernel CCA, because the exact
solutions for NOCCO or COCO in population are not known in closed form.

To generate our test data, we provide two univariate random variables X and Y for which the
true transforms f (X) and g(Y ) are highly linearly correlated for some f ∈ HX and g ∈ HY . We
generate a sample from PXY as follows: first, we sample Z1, . . . ,Zn uniformly on the unit interval
[0,1]. Next, we derive two i.i.d. linearly correlated random samplesUi andVi from these Zi. Finally,
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Figure 2: The plot of (RXi ,RYi ) of the data used in the experiment.

we transform these variables to radius data RXi and RYi by the inverse of the Gaussian function
exp(−aR2) for some a> 0. The explicit form of these relations are

Ui = Zi+0.06+ eXi , Vi = Zi+3+ eYi ,

RXi =
(
−4log(Ui/1.5)

)1/2
, RYi =

(
−4log(Vi/4.1)

)1/2
,

where eXi and eYi are independent noise following a zero-mean saturated Gaussian distribution so
that Ui and Vi are positive. See Figure 2 for an example data set. The samples Xi and Yi are
taken uniformly on the 2 dimensional circles with the radius RXi and RYi , respectively. Thus, the
maximum canonical correlation in population is attained by f (x) = 1.5exp(− 1

4‖x‖
2) and g(y) =

4.1exp(− 1
4‖y‖

2) up to scale and shift.
We perform kernel CCA, NOCCO, and COCO with Gaussian RBF kernel k(x,y) = exp(−‖x−

y‖2) on the data. Note that the true functions f and g for kernel CCA are included in RKHS with
this kernel. The graphs of resulting functions for X , the true function f (x), and the transformed data
are shown in Figure 3. We see that the functions obtained by Kernel CCA, NOCCO, and COCO
have a similar shape to f (x). Note that, because the data exist only around the area f (x) ≤ 1.0,
the estimation accuracy in the flat area including the origin is low. In the plots (e)-(g), kernel CCA
gives linearly correlated feature vectors, while NOCCO and COCO do not aim at obtaining linearly
correlated vectors. However, we see that these two methods also give the features that contain the
sufficient information on the dependency between X and Y .

Next, we conduct numerical simulations to verify the convergence rate of kernel CCA. Figure 4
shows the convergence to the true functions for various decay rates of the regularization coefficient
εn = 0.001× n−a with a = 0.1 ∼ 0.8. For the estimated functions f̂n and ĝn with the data sizes
n = 10, 25, 50, 75, 100, 250, 500, 750, and 1000, the L2(PX ) and L2(PY ) distances between the
estimated and true functions are evaluated by generating 10000 samples from the true distribution.
The curves show an average over 30 experiments with different random data. It should be noted that,
although the theoretical sufficient condition for convergence requires a slower order of εn than n−1/3,
faster orders give better convergence in these simulations. The convergence is best at a = 0.6, and
becomes worse for faster decay rates; the optimum rate likely depends on the statistical properties
of the data. It might therefore be interesting to find the best rate or best value of εn for the given
data, although this is beyond the scope of the present paper.
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Figure 3: The true function f (x) and the estimated functions based on 100 data points are shown
in (a)-(d). The plots of the transformed data ( f̂n(Xi), ĝn(Yi)) are given in (e)-(g). Note
that in (e)-(g) the clear linear correlation is seen in (e), only because it is the criterion
of the kernel CCA; the other two methods use different criterion, but still show strong
correlation.
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Figure 4: L2 distances between the true function and its estimate using kernel CCA. The regular-
ization parameter is εn = 0.001×n−a, where the decay rate a ranges from 0.1 to 0.8.

5. Proof of the Main Theorems

In this section, we prove the main theorems in Section 3.

5.1 Hilbert-Schmidt Norm of Covariance Operators

Preliminary to the proofs, in this subsection we show some results on the Hilbert-Schmidt norm of
cross-covariance operators. For convenience, we provide the definition and some basic properties
of Hilbert-Schmidt operators in the Appendix. See also Gretton et al. (2005a).

We begin with a brief introduction to random elements in a Hilbert space (Vakhania et al., 1987;
Baker, 1973). Let H be a Hilbert space equipped with Borel σ-field. A random element in the
Hilbert space H is a measurable map F : Ω→ H from a measurable space (Ω,S). Let H be an
RKHS on a measurable set X with a measurable positive definite kernel k. For a random variable X
in X , the map k(·,X) defines a random element in H .

A random element F in a Hilbert space H is said to have strong order p (0< p< ∞) if E‖F‖p
is finite. For a random element F of strong order one, the expectation of F is defined as the element
mF in H such that

〈mF ,g〉H = E[〈F,g〉H ]

holds for all g ∈ H . The existence and the uniqueness of the mean element is a consequence
of Riesz’s representation theorem. The expectation mF is denoted by E[F]. Then, the equality
〈E[F],g〉H = E[〈F,g〉H ] is justified, which means the expectation and the inner product are in-
terchangeable. If F and G have strong order two, E[|〈F,G〉H |] is finite. If further F and G are
independent, the relation

E[〈F,G〉H ] = 〈E[F],E[G]〉H (10)

holds.
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It is easy to see that the example F = k(·,X) in an RKHS H has strong order two, that is,
E[‖F‖2] < ∞, under the assumption E[k(X ,X)] < ∞. The expectation of k(·,X) is equal to mX in
Eq. (4) by definition. For two RKHS HX on X and HY on Y with kernels kX and kY , respectively,
under the conditions Eq. (1), the random element kX (·,X)kY (·,Y ) in the direct product HX ⊗HY
has strong order one.

The following lemma is straightforward from Lemma 1 in Gretton et al. (2005a) and Eq. (10).
See Appendix for definitions of the Hilbert-Schmidt operator and Hilbert-Schmidt norm.

Lemma 4 The cross-covariance operator ΣYX is a Hilbert-Schmidt operator, and its Hilbert-Schmidt
norm is given by

‖ΣYX‖2HS
= EYXEỸ X̃

[
〈kX (·,X)−mX ,kX (·, X̃)−mX〉HX 〈kY (·,Ỹ )−mY ,kY (·,Y )−mY 〉HY

]

=
∥∥EYX [(kX (·,X)−mX)(kY (·,Y )−mY )]

∥∥2
HX ⊗HY

where (X̃ ,Ỹ ) and (X ,Y ) are independently and identically distributed with distribution PXY .

From the facts HX ⊂ L2(PX) and HY ⊂ L2(PY ), the law of large numbers implies for each
f ∈ HX and g ∈ HY

lim
n→∞

〈g, Σ̂(n)
YX f 〉HY = 〈g,ΣYX f 〉HY

in probability. Moreover, the central limit theorem shows the above convergence is of order6

Op(n−1/2). The following lemma shows the tight uniform result that ‖Σ̂(n)
YX −ΣYX‖HS converges

to zero in the order of Op(n−1/2).

Lemma 5 ∥∥Σ̂(n)
YX −ΣYX

∥∥
HS = Op(n−1/2) (n→ ∞).

Proof Write for simplicity F = kX (·,X)−EX [kX (·,X)],G= kY (·,Y )−EY [kY (·,Y )], Fi = kX (·,Xi)−
EX [kX (·,X)], Gi = kY (·,Yi)−EY [kY (·,Y )], and F = HX ⊗HY . Then, F,F1, . . . ,Fn are i.i.d. random
elements in HX , and a similar fact holds for G,G1, . . . ,Gn. Lemma 4 implies

∥∥Σ̂(n)
YX

∥∥2
HS =

∥∥∥
1
n

n

∑
i=1

(
Fi−

1
n

n

∑
j=1

Fj
)(
Gi−

1
n

n

∑
j=1

G j

)∥∥∥
2

F
,

and the same argument as in the proof of the lemma yields

〈ΣYX , Σ̂(n)
YX〉HS =

〈
E[FG],

1
n

n

∑
i=1

(
Fi−

1
n

n

∑
j=1

Fj
)(
Gi−

1
n

n

∑
j=1

G j

)〉

F
.

From these equations, we have
∥∥Σ̂(n)

YX −ΣYX
∥∥2
HS =

∥∥ΣYX
∥∥2
HS−2

〈
ΣYX , Σ̂(n)

YX
〉
HS+

∥∥Σ̂(n)
YX

∥∥2
HS

=
∥∥∥
1
n

n

∑
i=1

(
Fi−

1
n

n

∑
j=1

Fj
)(
Gi−

1
n

n

∑
j=1

G j

)
−E[FG]

∥∥∥
2

F

=
∥∥∥
1
n

n

∑
i=1

FiGi−E[FG]−
(
2− 1

n

)(1
n

n

∑
i=1

Fi
)(1

n

n

∑
i=1

Gi

)∥∥∥
2

F
,

6. A random variable Zn is said to be of order Op(an) if for any ε > 0 there exists M > 0 such that supnPr(|Zn| >
Man) < ε. See, for example, van der Vaart (1998).
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which provides a bound

∥∥Σ̂(n)
YX −ΣYX

∥∥
HS ≤

∥∥∥
1
n

n

∑
i=1

FiGi−E[FG]
∥∥∥

F
+2

∥∥∥
(1
n

n

∑
i=1

Fi
)(1

n

n

∑
i=1

Gi

)∥∥∥
F

. (11)

Let Zi = FiGi−E[FG]. Since the variance of a sum of independent random variables is equal to
the sum of their variances, we obtain

E
∥∥∥
1
n

n

∑
i=1

Zi
∥∥∥
2

F
=
1
n
E‖Z1‖2F , (12)

which is of order O(1/n) because E‖Z1‖2F < ∞. From the inequality

E
∥∥∥
(1
n

n

∑
i=1

Fi
)(1

n

n

∑
i=1

Gi

)∥∥∥
F

= E
[∥∥∥
1
n

n

∑
i=1

Fi
∥∥∥

HX

∥∥∥
1
n

n

∑
i=1

Gi

∥∥∥
HY

]

≤
(
E

∥∥∥
1
n

n

∑
i=1

Fi
∥∥∥
2

HX

)1/2(
E

∥∥∥
1
n

n

∑
i=1

Gi

∥∥∥
2

HY

)1/2
,

in a similar way to Eq. (12), we have E
∥∥( 1

n ∑
n
i=1Fi

)( 1
n ∑

n
i=1Gi

)∥∥
F = O(1/n).

From Eq. (11), we have E
∥∥Σ̂(n)

YX −ΣYX
∥∥
HS = O(1/

√
n), and the proof is completed by Cheby-

shev’s inequality.

5.2 Preliminary Lemmas

For the proof of the main theorems, we show the empirical estimate V̂ (n)
YX converges in norm to

the normalized cross-covariance operator VYX = Σ−1/2YY ΣYXΣ
−1/2
XX for an appropriate order of the

regularization coefficient εn. We divide the task into two lemmas: the first evaluates the difference
between the empirical estimate V̂ (n)

YX and a regularized version of VYX , and the second asserts that
the regularized version converges to VYX if εn goes to zero at the appropriate rate.

Lemma 6 Let εn be a positive number such that εn → 0 (n → ∞). Then, for the i.i.d. sample
(X1,Y1), . . . ,(Xn,Yn), we have

∥∥V̂ (n)
YX − (ΣYY + εnI)−1/2ΣYX(ΣXX + εnI)−1/2

∥∥ = Op(ε
−3/2
n n−1/2).

Proof The operator in the left hand side is decomposed as

V̂ (n)
YX − (ΣYY + εnI)−1/2ΣYX(ΣXX + εnI)−1/2

=
{
(Σ̂(n)

YY + εnI)−1/2− (ΣYY + εnI)−1/2
}
Σ̂(n)
YX(Σ̂(n)

XX + εnI)−1/2

+(ΣYY + εnI)−1/2
{
Σ̂(n)
YX −ΣYX

}
(Σ̂(n)

XX + εnI)−1/2

+(ΣYY + εnI)−1/2ΣYX
{
(Σ̂(n)

XX + εnI)−1/2− (ΣXX + εnI)−1/2
}
. (13)

From the equality

A−1/2−B−1/2 = A−1/2(B3/2−A3/2
)
B−3/2+(A−B)B−3/2,
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the first term in the right hand side of Eq. (13) is equal to

{
(Σ̂(n)

YY + εnI)−1/2
{(
ΣYY + εnI

)3/2−
(
Σ̂(n)
YY + εnI

)3/2}+
(
Σ̂(n)
YY −ΣYY

)}

×
(
Σ̂(n)
YY + εnI

)−3/2
Σ̂(n)
YX(Σ̂(n)

XX + εnI)−1/2.

From
∥∥(Σ̂(n)

YY + εnI)−1/2
∥∥ ≤ 1√

εn
,
∥∥(
Σ̂(n)
YY + εnI

)−1/2
Σ̂(n)
YX

(
Σ̂(n)
XX + εnI

)−1/2∥∥ ≤ 1, and Lemma 8 in the
Appendix, the norm of the above operator is bounded from above by

1
εn

{ 3√
εn
max

{
‖ΣYY + εnI‖3/2,‖Σ̂(n)

YY + εnI‖3/2
}

+1
}
‖Σ̂(n)

YY −ΣYY‖.

A similar bound also applies to the third term of Eq. (13). An upper bound on the second term of
Eq. (13) is 1

εn
‖ΣYX − Σ̂(n)

YX‖. Thus, the proof is completed using ‖Σ̂
(n)
XX‖ = ‖ΣXX‖+op(1), ‖Σ̂(n)

YY‖ =
‖ΣYY‖+op(1), and Lemma 5.

In the next theorem, the compactness assumption on VYX plays an essential role.

Lemma 7 Assume VYX is compact. Then, for a sequence εn → 0,
∥∥(ΣYY + εnI)−1/2ΣYX(ΣXX + εnI)−1/2−VYX

∥∥ → 0 (n→ ∞).

Proof An upper bound of the left hand side of the assertion is given by

∥∥{
(ΣYY + εnI)−1/2−Σ−1/2YY

}
ΣYX(ΣXX + εnI)−1/2

∥∥

+
∥∥Σ−1/2YY ΣYX

{
(ΣXX + εnI)−1/2−Σ−1/2XX

}∥∥. (14)

The first term of Eq. (14) is upper bounded by
∥∥{

(ΣYY + εnI)−1/2Σ
1/2
YY − I

}
VYX

∥∥. (15)

Note that the range ofVYX is included in R (ΣYY ), as pointed out in Section 2.2. Let v be an arbitrary
element in R (VYX)∩R (ΣYY ). Then there exists u ∈ HY such that v = ΣYYu. Noting that ΣYY and
(ΣYY + εnI)1/2 are commutative, we have

∥∥{
(ΣYY + εnI)−1/2Σ

1/2
YY − I

}
v
∥∥

HY

=
∥∥{

(ΣYY + εnI)−1/2Σ
1/2
YY − I

}
ΣYYu

∥∥
HY

=
∥∥(ΣYY + εnI)−1/2Σ

1/2
YY

{
Σ1/2YY − (ΣYY + εnI)1/2

}
Σ1/2YY u

∥∥
HY

≤
∥∥Σ1/2YY − (ΣYY + εnI)1/2

∥∥∥∥Σ1/2YY u
∥∥

HY
.

Since ΣYY + εnI→ ΣYY in norm means (ΣYY + εnI)1/2 → Σ1/2YY in norm, the convergence

{
(ΣYY + εnI)−1/2Σ

1/2
YY − I

}
v → 0 (n→ ∞) (16)
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holds for all v ∈ R (VYX)∩R (ΣYY ). Because VYX is compact, Lemma 9 in the Appendix shows
Eq. (15) converges to zero. The convergence of the second term in Eq. (14) can be proved similarly.

Note that the assertion of the above theorem does not necessarily hold without the compactness
assumption. In fact, if Y = X and the RKHS is infinite dimensional,VYX = I is not compact, and the
norm in the left hand of the assertion is ‖ΣXX(ΣXX + εnI)−1− I‖. Since ΣXX has arbitrarily small
positive eigenvalues, it is easy to see that this norm is equal to one for all n.

5.3 Proof of the Main Theorems

We are now in a position to prove Theorems 1 and 2.
Proof of Theorem 1 From Lemmas 6 and 7, V̂ (n)

YX converges to VYX in norm. Because φ and ψ are
the eigenfunctions corresponding to the largest eigenvalue ofVYXVXY andVXYVYX , respectively, and
a similar fact holds for φ̂n and ψ̂n, the assertion is obtained by Lemma 10 in Appendix.

Proof of Theorem 2 We show only the convergence of f̂n. Without loss of generality, we can
assume φ̂n → φ in HX . The squared L2(PX) distance between f̂n−EX [ f̂n(X)] and f −EX [ f (X)] is
given by

∥∥Σ1/2XX ( f̂n− f )
∥∥2

HX
=

∥∥Σ1/2XX f̂n
∥∥2

HX
−2〈φ,Σ1/2XX f̂n〉HX +‖φ‖2HX

.

Thus, it suffices to show Σ1/2XX f̂n converges to φ ∈ HX in probability. We have

∥∥Σ1/2XX f̂n−φ
∥∥

HX
≤

∥∥Σ1/2XX
{(
Σ̂(n)
XX + εnI

)−1/2−
(
ΣXX + εnI

)−1/2}
φ̂n

∥∥
HX

+
∥∥Σ1/2XX

(
ΣXX + εnI

)−1/2(
φ̂n−φ

)∥∥
HX

+
∥∥Σ1/2XX

(
ΣXX + εnI

)−1/2
φ−φ

∥∥
HX

. (17)

Using the same argument as in the bound of the first term of Eq. (13), the first term in Eq. (17) is
shown to converge to zero. The second term obviously converges to zero. Using the assumption
φ ∈ R (ΣXX), the same argument as in the proof of Eq. (16) in Lemma 7 ensures the convergence of
the third term to zero, which completes the proof.

With the definition of mean square contingency, Theorem 3 can be proved as follows.
Proof of Theorem 3 Since under the assumptions EX [kX (X ,X)] <∞ and EY [kY (Y,Y )] <∞ the op-
erators ΣXX and ΣYY are compact and self-adjoint, there exist complete orthonormal systems {ϕi}∞i=1
and {ψi}∞i=1 for HX and HY , respectively, such that 〈ϕ j,ΣXXϕi〉HX = λiδi j and 〈ψ j,ΣYYψi〉HY =
νiδi j, where λi and νi are nonnegative eigenvalues and δi j is Kronecker’s delta. Let φ̃i = (ϕi−
EX [ϕi(X)])/

√
λi and ψ̃i = (ψi − EY [ψi(Y )])/

√
νi. It follows that (φ̃i, φ̃ j)L2(PX ) = δi j and

(ψ̃i, ψ̃ j)L2(PY ) = δi j, where (·, ·)L2(PX ) and (·, ·)L2(PY ) denote the inner product of L2(PX) and L2(PY ),
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respectively. We have
∞

∑
i, j=1

〈ψ j,Σ
−1/2
YY ΣYXΣ

−1/2
XX ϕi〉2HY

=
∞

∑
i, j=1

〈 ψi√
ν j

,ΣYX
ϕi√
λi

〉2
HY

=
∞

∑
i, j=1

EXY [φ̃i(X)ψ̃ j(Y )]2.

Note that we do not need to consider the eigenfunctions with respect to the zero eigenvalue in the
sum, because R (VYX) = R (ΣYY ) = N (ΣYY )⊥ and N (VYX) = N (ΣXX).

Since the set {φ̃iψ̃ j} is orthonormal in L2(PX ×PY ), we obtain

∞

∑
i, j=1

EXY [φ̃i(X)ψ̃ j(Y )]2 =
∞

∑
i, j=1

{Z Z pXY (x,y)
pX(x)pY (y)

φ̃i(x)ψ̃ j(y)dPXdPY
}2

≤ ‖ζ+1‖2L2(PX×PY ),

which is finite by assumption.

6. Concluding Remarks

We have established the statistical convergence of kernel CCA and NOCCO, showing that the finite
sample estimators of the relevant nonlinear mappings converge to the desired population functions.
This convergence is proved in the RKHS norm for NOCCO, and in the L2 norm for kernel CCA.
These results give a theoretical justification for using the empirical estimates of NOCCO and kernel
CCA in practice.

We have also derived a sufficient condition, n1/3εn → ∞, for the decay of the regularization
coefficient εn, which ensures the convergence described above. As Leurgans et al. (1993) suggest,
the order of the sufficient condition seems to depend on the functional norm used to determine
convergence. An interesting question is whether the theoretical order n1/3εn → ∞ can be improved
for convergence in the L2 or RKHS norm.

A result relevant to the convergence of kernel principal component analysis (KPCA) has recently
been obtained by Zwald and Blanchard (2006). They show a probabilistic upper bound on the
difference between the projectors onto the D-dimensional population eigenspaces and the empirical
eigenspaces. Since KPCA needs no inversion operation, the theoretical analysis is easier than for
kernel CCA. That said, it would be very interesting to consider the applicability of the methods
developed by Zwald and Blanchard (2006) to kernel CCA.

There are some practical problems that remain to be addressed when applying kernel CCA and
related methods. One of the problems is how to choose the regularization coefficient εn in practice.
As the numerical simulations in Section 4 show, the order n−1/3 is only a sufficient condition for
convergence in general cases, and the optimal εn to estimate the true functions may depend on
statistical properties of the given data, such as spectral distribution of Gram matrices. This problem
should be studied more in future to make the methods more applicable.

The choice of kernel is another important unsolved problem. The kernel defines the meaning of
”nonlinear correlation” through an assumed class of functions, and thus determines how to measure
the dependence structure of the data. If a parameterized family of kernels such as the Gaussian RBF
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kernel is provided, then cross-validation might be a reasonable method to select the best kernel (see
Leurgans et al., 1993), however this remains to be established.

One of the methods related to kernel CCA is independent component analysis (ICA), since Bach
and Jordan (2002) use kernel CCA in their kernel ICA algorithm. The theoretical results developed
in this paper will work as a basis for analyzing the properties of the kernel ICA algorithm; in par-
ticular, for demonstrating statistical consistency of the estimator. Since ICA estimates the demixing
matrix as a parameter, however, we need to consider covariance operators parameterized by this ma-
trix, and must discuss how convergence of the objective function depends on the parameter. It is not
a straightforward task to obtain consistency of kernel ICA from the results of this paper. Extending
our results to the parametric case is an interesting topic for future work.
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Appendix A. Basics from Functional Analysis

We briefly give definitions and basic properties of compact and Hilbert-Schmidt operators. For
complete references, see, for example, Reed and Simon (1980), Dunford and Schwartz (1963), and
Lax (2002), among others.

Let H1 and H2 be Hilbert spaces. A bounded operator T : H1 → H2 is called compact if for
every bounded sequence { fn} ⊂ H1 the image {T fn} has a subsequence which converges in H2.
By the Heine-Borel theorem, finite rank operators are necessarily compact. Among many useful
properties of compact operators, singular value decomposition is available. For a compact operator
T :H1 → H2, there exist N ∈ N∪{∞}, a non-increasing sequence of positive numbers {λi}Ni=1, and
(not necessarily complete) orthonormal systems {φi}Ni=1 ⊂ H1 and {ψi}Ni=1 ⊂ H2 such that

T =
N

∑
i=1

λi〈φi, ·〉H1ψi.

If N = ∞, then λi → 0 (i→ ∞) and the infinite series in the above equation converges in norm.
Let H1 and H2 be Hilbert spaces. A bounded operator T : H1 → H2 is called Hilbert-Schmidt

if ∑∞
i=1 ‖Tϕi‖2H2

< ∞ for a CONS {ϕi}∞i=1 of H1. It is known that this sum is independent of the
choice of a CONS. For two Hilbert-Schmidt operators T1 and T2, the Hilbert-Schmidt inner product
is defined by

〈T1,T2〉HS =
∞

∑
i=1

〈T1ϕi,T2ϕi〉H2 ,

with which the set of all Hilbert-Schmidt operators from H1 to H2 is a Hilbert space. The Hilbert-
Schmidt norm ‖T‖HS is defined by ‖T‖2HS = 〈T,T 〉HS = ∑∞

i=1 ‖Tϕi‖2H2
as usual. Obviously, for a
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Hilbert-Schmidt operator T , we have
‖T‖ ≤ ‖T‖HS.

Appendix B. Lemmas Used in the Proofs

We show three lemmas used in the proofs in Section 5. Although they may be basic facts, we show
the complete proofs for convenience.

Lemma 8 Suppose A and B are positive self-adjoint operators on a Hilbert space such that 0 ≤
A≤ λI and 0≤ B≤ λI hold for a positive constant λ. Then,

‖A3/2−B3/2‖ ≤ 3λ1/2‖A−B‖.

Proof Without loss of generality we can assume λ = 1. Define functions f and g on {z | |z| ≤ 1}
by f (z) = (1− z)3/2 and g(z) = (1− z)1/2. Let

f (z) =
∞

∑
n=1

bnzn and g(z) =
∞

∑
n=0

cnzn

be the power series expansions. They converge absolutely for |z|≤ 1. In fact, because direct differ-
entiation yields b0 = 1, b1 = − 3

2 , and bn > 0 for n≥ 2, the inequality
N

∑
n=0

|bn| = 1+
3
2

+
N

∑
n=2

bn = 1+
3
2

+ lim
x↑1

N

∑
n=2

bnxn

≤ 1+
3
2

+ lim
x↑1

{
f (x)−1+

3
2

}
= 3

shows the convergence of ∑∞
n=0 bnzn for |z| = 1. The bound ∑∞

n=0 |cn|≤ 2 can be proved similarly.
From 0≤ I−A, I−B≤ I, we have f (I−A) = A3/2, f (I−B) = B3/2, and thus,

‖A3/2−B3/2‖ =
∥∥∥

∞

∑
n=0

bn(I−A)n−
∞

∑
n=0

bn(I−B)n
∥∥∥ ≤

∞

∑
n=0

|bn|‖(I−A)n− (I−B)n‖.

It is easy to see ‖T n−Sn‖≤ n‖T−S‖ by induction for operators T and S with ‖T‖≤ 1 and ‖S‖≤ 1.
From f ′(z) = − 3

2g(z), the relation nbn = − 3
2cn holds for all n. Therefore, we obtain

‖A3/2−B3/2‖ ≤
∞

∑
n=0

n|bn|‖A−B‖ =
3
2

∞

∑
n=0

|cn|‖A−B‖ ≤ 3‖A−B‖.

The following lemma is a slight extension of Exercise 9, Section 21.2 in Lax (2002).

Lemma 9 Let H1 and H2 be Hilbert spaces, and H0 be a dense linear subspace of H2. Suppose An
and A are bounded operators on H2, and B is a compact operator from H1 to H2 such that

Anu→ Au

for all u ∈ H0, and
sup
n
‖An‖ ≤M

for some M > 0. Then AnB converges to AB in norm.
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Proof First, we prove that Anu→ Au holds for an arbitrary u ∈ H2. For any ε> 0, there is u0 ∈ H0
so that ‖u−u0‖H2 ≤ ε/(2(M+‖A‖)). For u0 ∈ H0, there is N ∈ N such that ‖Anu0−Au0‖H2 ≤ ε/2
for all n≥ N. Then for all n≥ N we have

‖Anu−Au‖H2 ≤ ‖An‖‖u−u0‖H2 +‖Anu0−Au0‖H2 +‖A‖‖u−u0‖H2 ≤ ε.

Next, assume that the operator norm ‖AnB−AB‖ does not converge to zero. Then there exist
δ> 0 and a subsequence (n′) such that ‖An′B−AB‖≥ 2δ. For each n′ there exists vn′ ∈ H1 such that
‖vn′‖H1 = 1 and ‖An′Bvn′ −ABvn′‖H2 ≥ δ. Let un′ = Bvn′ . Because B is compact and ‖vn′‖H1 = 1,
there is a subsequence un′′ and u∗ in H2 such that un′′ → u∗. We have

‖An′′un′′ −Aun′′‖H2

≤ ‖An′′(un′′ −u∗)‖H2 +‖(An′′ −A)u∗‖H2 +‖A(un′′ −u∗)‖H2

≤ (M+‖A‖)‖un′′ −u∗‖H2 +‖(An′′ −A)u∗‖H2 ,

which converges to zero as n′′ → ∞. This contradicts the choice of vn′ .

Lemma 10 Let A be a compact positive operator on a Hilbert spaceH , and An (n∈N) be bounded
positive operators on H such that An converges to A in norm. Assume that the eigenspace of A
corresponding to the largest eigenvalue is one-dimensional spanned by a unit eigenvector φ, and
the maximum of the spectrum of An is attained by a unit eigenvector fn. Then

|〈 fn,φ〉H |→ 1 (n→ ∞).

Proof Because A is compact and positive, the eigendecomposition

A=
∞

∑
i=1

ρiφi〈φi, ·〉H

holds, where ρ1 > ρ2 ≥ ρ3 ≥ · · ·≥ 0 are eigenvalues and {φi} is the corresponding eigenvectors so
that {φi} is the CONS of H .

Let δn = |〈 fn,φ1〉|. We have

〈 fn,A fn〉 = ρ1〈 fn,φ1〉2+
∞

∑
i=2

ρi〈φi, fn〉2

≤ ρ1〈 fn,φ1〉2+ρ2
(
1−〈 fn,φ1〉2

)
= ρ1δ2n+ρ2(1−δ2n).

On the other hand, the convergence

|〈 fn,A fn〉−〈φ1,Aφ1〉|≤ |〈 fn,A fn〉−〈 fn,An fn〉|+ |〈 fn,An fn〉−〈φ1,Aφ1〉|
≤ ‖A−An‖+

∣∣‖An‖−‖A‖
∣∣ → 0

implies that 〈 fn,A fn〉must converges to ρ1. These two facts, together with ρ1 > ρ2, result in δn→ 1.

Note that from the norm convergence QnAnQn → QAQ, where Qn and Q are the orthogonal
projections onto the orthogonal complements of φn and φ, respectively, we have convergence of the
eigenvector corresponding to the second eigenvalue. It is not difficult to obtain convergence of the
eigenspaces corresponding to the m-th eigenvalue in a similar way.
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Abstract
This paper presents a new class of matrix valued kernels that are ideally suited to learn vector
valued equivariant functions. Matrix valued kernels are a natural generalization of the common
notion of a kernel. We set the theoretical foundations of so called equivariant matrix valued kernels.
We work out several properties of equivariant kernels, we give an interpretation of their behavior
and show relations to scalar kernels. The notion of (ir)reducibility of group representations is
transferred into the framework of matrix valued kernels. At the end to two exemplary applications
are demonstrated. We design a non-linear rotation and translation equivariant filter for 2D-images
and propose an invariant object detector based on the generalized Hough transform.
Keywords: kernel methods, matrix kernels, equivariance, group integration, representation theory,
Hough transform, signal processing, Volterra series

1. Introduction

In the last decade kernel techniques have gained much attention in machine learning theory. There is
a large variety of problems which can be naturally formulated in a kernelized manner, ranging from
regression and classification problems, over feature transformation algorithms to coding schemes.
There is a large literature on this subject. We recommend Schoelkopf and Smola (2002) and Shawe-
Taylor and Cristianini (2004) and references therein.

The notion of a kernel as a kind of similarity between two given patterns can be naturally
generalized to matrix valued kernels. A matrix valued kernel can carry more information than only
similarity, like information about the relative pose or configuration of the two patterns. It is one
way to overcome the ’information bottleneck’ of the kernel matrix. First Burbea and Masani (1984)
studied the theory of vector-valued reproducing kernel Hilbert spaces leading to the notion of a
matrix (or operator) valued kernel. Amodei (1996) applied it for the solution of Partial Differential
Equations and more recently Micchelli and Pontil (2005) used it in the context of machine learning.

In this paper we introduce a new class of matrix valued kernels with a specific transformation
behavior. The new type of kernel is motivated by a vector valued regression problem. The function
to be learned is desired to be equivariant, meaning that group actions on the input space of the
function translate to corresponding group actions on the output space. To get an intuition: from
signal processing theory one is familiar with the notion of a ’time-invariant linear filter’. In our
words the term ’time-invariant’ means that the filter is equivariant to the group of time-shifts. More
exactly, the time-shift equivariance is expressed by the fact that the group-representations of time-
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shifts and the action of the filter (in this case a linear convolution) commute. Equivariance is of high
interest in signal-/image processing problems and geometrically related learning problems.

We give a constructive way to obtain kernels, whose linear combinations lead to equivariant
functions. These kernels are based on the concept of group integration. Group integration is widely
used for invariant feature extraction. For a introduction see Burkhardt and Siggelkow (2001). Re-
cently Haasdonk et al. (2005) used group integration to get invariance in kernel methods.

The paper is organized as follows: In Section 2 we give a first motivation for our kernels by
solving an equivariant regression problem. We give an illustrative interpretation of the kernels and
present an equivariant Representer Theorem, which justifies our lax motivation from the beginning.
Further we uncover a relation of our framework to Volterra theory. In Section 3 we give rules how
to construct matrix kernels out of matrix kernels and give constraints how to preserve equivariance.
Section 4 introduces the notion of irreducibility for kernels and show how the traces of matrix valued
kernels are related to scalar valued kernels. Two possible application of matrix valued kernels are
given in Section 5: a rotation equivariant non-linear filter and a rotation invariant object detector.
Finally, Section 6 gives a conclusion and an outlook for future direction of research and applications.

2. Group Integration Matrix Kernels

In this section we propose the basic approach. After some preliminaries we give a first motivation
for our idea. Then we give an interpretation of the proposed kernels and present an equivariant
Representer Theorem.

2.1 Preliminaries and Notation

We consider compact (including finite), linear, unimodular groups G . A group representation ρg is a
group homomorphism G !→ L(V ), where V is a finite dimensional Hilbert space usually called the
representation space. Sometimes we write gx meaning ρgx, where the patterns x ∈ V are always in
bold face. In the continuous case (G is a Lie group), the representation should also be continuous. In
this case one can show that any representation of the group is equivalent to an unitary representation.
For finite groups this statement also holds (for a proof see, for example, Lenz, 1990). So we can
restrict ourselves with no loss of generality to unitary group representation, that is, always ρg−1 =
ρ†g holds. We denote the Haar Integral (or Group Integral) by

R
G f (g) dg regardless whether we

deal with finite groups or continuous groups. Due to the unimodularity all reparametrizations are
possible. For further reading on these topics we recommend Lenz (1990), Gaal (1973), Nachbin
(1965), and Miller (1991); Schur (1968).

We want to learn functions f :X !→Y , where X ,Y are finite dimensional Hilbert spaces. Tensor-
or Kronecker products are denoted by ⊗. An equivariant function is a function fulfilling f(gx) =
gf(x). The group actions on X and Y can be chosen such that they apply to the current application
or problem. Inner products are denoted by 〈·|·〉X , where the subscript indicates in which space
the arguments are living. Due to the unitary group representation the inner product is invariant in
the sense 〈gx1|gx2〉X = 〈x1|x2〉X . A scalar valued kernel is a symmetric, positive definite function
k : X ×X !→ R fulfilling the Mercer property. More precisely, we use the term positive definite in
the sense of semi-positive definiteness. If strict positive definiteness is forced, we make this explicit.
We also assume invariance to group actions of G , that is, k(gx1,gx2) = k(x1,x2) for all g ∈ G . The
function space spanned by all vector-valued linear combination of kernel evaluations of k is called
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Zk (isomorphic to the vector-valued RKHS of k), where the vector-valued coefficients live in Y ,
that is, Zk = {f(x) = ∑i k(x,xi)ai | xi ∈ X , ai ∈ Y }.

We assume the reader is familiar with basics in kernel methods, tensor algebra and representa-
tion theory.

2.2 Motivation

Our goal is to learn functions f : X !→ Y from learning samples {(xi,yi)|i= 1..n} in an equivariant
manner, that is, the function has to satisfy f(gx) = gf(x) for all g ∈ G , while f(xi) = yi should be
fulfilled as accurate as possible.

Due to the Representer Theorem by Kimeldorf and Wahba (1971) minimizer in Zk of arbitrary
risk functionals are of the form

f(x) =
n

∑
i=1

k(x,xi)ai, (1)

where the ai ∈ Y are some vector valued coefficients, which have to be learned. To obtain an
equivariant behavior we pretend to present the training samples in all possible poses {(gxi,gyi)|i=
1..n, g ∈ G}. Since no pose g should be favored, the coefficients ai are not allowed to depend on g
explicitly, but they have to turn its pose according to the actions in the input space. And hence the
solution has to look like

f(x) =
Z

G

n

∑
i=1

k(x,gxi) gai dg, (2)

where the integral ranges over the whole group G . As desired the following lemma holds

Lemma 2.1 Every function of form (2) is an equivariant function with respect to G .

Proof Due to the invariance of the kernel we have

f(gx) =
Z

G
∑
i
k(x,g−1g′xi) g′ai dg′,

and using the unimodularity of G we reparametrize the integral by h= g−1g′ and obtain the desired
result

f(gx) =
Z

G
∑
i
k(x,hxi) ghai dh= gf(x),

using the linearity of the group representation.

So we have a constructive way to obtain equivariant functions. Since we can exchange summa-
tion with integration and the group action is linear we can rewrite (2) by

f(x) =
n

∑
i=1

(Z

G
k(x,gxi) ρg dg

)
ai,

where we can interpret the expression inside the brackets as a matrix valued kernel. First we want
to characterize its basic properties in the following
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Proposition 2.2 Let K : X ×X !→ L(Y ) for every x1,x2 ∈ X be defined by

K(x1,x2) =
Z

G
k(x1,gx2) ρg dg,

where ρg ∈ L(Y ) is a group representation and k is any symmetric, G-invariant function. The
following properties hold for a function above,

a) For every x1,x2 ∈ X and g,h ∈ G , we have that

K(gx1,hx2) = ρg K(x1,x2) ρ†h,

that is, K is equivariant in the first argument and anti-equivariant in the second, we say K is
equivariant.

b) It holds K(x1,x2) = K(x2,x1)†.

Proof To prove a) we just have to follow the reasoning in the proof of Lemma 2.1. For b) we use
the invariance and symmetry of k and the unimodularity of G and get

K(x1,x2) =
Z

G
k(g−1x1,x2) ρg dg=

Z

G
k(x2,gx1) ρg−1 dg= K(x2,x1)†,

as asserted.

There are basically two ways to introduce matrix valued kernels in almost the same manner as for
scalar-valued kernels. Following Aronszajn (1950) one can introduce a vector valued reproduc-
ing kernel Hilbert space (RKHS) and then implicitly assume that there exists a kind of evaluation
functional Kx in a certain Hilbert space of vector valued functions (for a more recent introduction
in the context of matrix valued kernels see Pontil and Micchelli (2004)). Basically the approach
is as follows: by the Riesz Lemma there is a Kx such that 〈y|f(x)〉Y = 〈Kxy|f〉, where the inner
product on the right hand side works in the Hilbert space of vector valued functions. As the upper
expression is linear in y one can define a linear operator in Y , the so called matrix valued kernel
K(x1,x2) ∈ L(Y ), by the following K(x1,x2)y := (Kx2y)(x1) equation.

A second possibility to introduce the notion of a matrix valued kernel is to demand the existence
of a feature mapping into a certain feature space. For example for scalar valued kernels this is
done by Shawe-Taylor and Cristianini (2004). For matrix valued kernels the feature space can be
identified as the tensor product space of linear mappings on Y times an arbitrary high dimensional
feature space.

Both, the RKHS approach and the feature space approach are equivalent due to a generalized
Mercer Theorem. We decided for the latter alternative. It is more appropriate for our purposes,
because we can explicitly access the structure of the induced feature space.

Definition 2.3 (Matrix Valued Kernel) A function K : X ×X !→ L(Y ) is called a matrix valued
kernel if there is a sesqui-linear form such that for all x1,x2 ∈ X

K(x1,x2) = 〈Ψ(x1)|Ψ(x2)〉H

holds, where Ψ is a mapping from X into a feature-space H = F ⊗L(Y ) with the property that for
all 0 (=Ψ ∈ H the matrix 〈Ψ|Ψ〉H ∈ L(Y ) is positive definite.
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The elements of the feature-space H can be imagined as L(Y )-valued or matrix-valued vectors,
just elements of F ⊗ L(Y ). Actually it carries the structure of a L(Y )-bimodule. A module is
a generalization of a vector space where the field elements are replaced by noncommutative ring
elements. For a bimodule right and left multiplication are defined (see, for example, R. G. Douglas,
1989). Additionally we have to define the adjoint for the ring-elements L(Y ), which simply turns
out to be the adjoint of the linear mapping. The connection of the feature space representation to the
RKHS of Aronszjan is simple. Similarly to the case of the scalar kernels, the evaluation functionals
Kx have to be associated with the elements Ψ(x) living in the feature space F ⊗ L(Y ). In the
RKHS the functions are represented by linear combinations ∑iKxiai; in the feature space the linear
combination takes the form ∑iΨ(xi)ai which is an element of F ⊗Y . The space F ⊗Y carries
the structure of a L(Y )-left module, because multiplication from the left by elements in L(Y ) is
allowed. Note that this a fundamental difference to scalar kernels. In the case of scalar kernels the
representation of functions and the evaluation functionals live in the same space. For matrix kernels
it is different. The evaluation functional are elements of a L(Y )-bimodule or explicitly F ⊗L(Y );
the functions are elements of the L(Y )-left module F ⊗Y .

Remark 2.4 In Definition 2.3 the matrix-valued inner product in H also induces a scalar inner
product by the trace tr(〈Ψ|Ψ′〉H ) and it indeed holds that tr(〈Ψ|Ψ〉H )≥ 0 for allΨ (= 0. Hence the
space H is naturally attached with a (semi-)norm ||Ψ|| =

√
tr(〈Ψ|Ψ〉H ).

Theorem 2.5 (GIM-kernels) If the function k is a scalar kernel, then the function K given in
Proposition 2.2 is a matrix valued kernel. We call this kernel a Group Integration Matrix kernel
or short GIM-kernel.

Proof To show this, we give the feature mapping Ψ by the use of the feature mapping Φ corre-
sponding to the scalar kernel k and show that the GIM-kernel can be written as a positive matrix
valued inner product in the new feature space H = F ⊗L(Y ). Let Ψ be given by

Ψ(x) =
1√
µ(G)

Z

G
Φ(gx)⊗ρg dg,

where µ(G) =
R

G dg is the volume of the group. The matrix valued inner product in H is given by
the rule

〈Φ1⊗ρ1|Φ2⊗ρ2〉H := ρ†1ρ2〈Φ1|Φ2〉F

and its linear extension, that is, it is a sesqui-linear mapping of type H ×H !→ L(Y ). And the so
defined product is indeed positive. Any Ψ ∈ H can be written as a sum (integral) of Kronecker
products Ψ= ∑iΦi⊗ρi. So for any Ψ ∈ H and any y ∈ Y we have

〈y|〈Ψ|Ψ〉H y〉Y = ∑
i, j
〈Φi|Φ j〉F 〈ρiy|ρ jy〉Y =∑

i, j
ki j〈ρiy|ρ jy〉Y =∑

i, j
ki j〈yi|y j〉Y ≥ 0

is positive, because the matrix ki j is positive definite by the Mercer property of k.
Using the above rule for the inner product we can compute

〈Ψ(x1)|Ψ(x2)〉H =
1

µ(G)

Z

G2

〈Φ(gx1)⊗ρg|Φ(hx2)⊗ρh〉H dg dh

=
1

µ(G)

Z

G2

〈Φ(gx1)|Φ(hx2)〉F ρg−1h dg dh.
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Inserting the scalar kernel k and reparametrizing by g′ = g−1h gives

〈Ψ(x1)|Ψ(x2)〉H =
1

µ(G)

Z

G2

k(x1,g′x2)ρg′ dg′ dh=
Z

G
k(x1,gx2)ρg dg= K(x1,x2)

which is the desired result.

2.3 Examples and Interpretation of Equivariant Kernels

To get more intuition how equivariant kernels, not necessarily GIM-kernels, behave, we want to
sketch how such kernels can be interpreted as estimates of the relative pose of two objects. First we
consider the probably most simple equivariant kernel, the complex hermitian inner product itself.
The group U(1) consists of all complex numbers of unit length. If we define the representation
of U(1) acting on the Cn by a simple scalar multiplication with a complex unit number, then the
ordinary inner product is obviously equivariant, that is

〈g1x1|g2x2〉 = 〈eiφ1x1|eiφ2x2〉 = eiφ1〈x1|x2〉e−iφ2 = g1〈x1|x2〉g†2.

The absolute value of 〈x1|x2〉 can be interpreted as some kind of similarity. But how one should
interpret the complex phase of 〈x1|x2〉? Therefore consider the distance J(φ) = ||x1− eiφx2|| for
different values of φ. It is easy to show that J is minimal if φ is chosen according to eiφ = 〈x1|x2〉

|〈x1|x2〉| .
Thus, the phase of the inner product carries information about the relative pose of the two objects.
Actually this result can be generalized for equivariant kernels. Assume that we want to align the
featuremaps Ψ(x1) and Ψ(x2) of an equivariant kernel optimally with respect to the group G , that
is, we try to minimize

J(g) = ||Ψ(x1)−Ψ(gx2)||2,

Reformulating the objective leads to maximizing the trace

J′(g) = tr(K(x1,x2)ρ†g+ρgK(x2,x1)),

Let us assume that the group representation is surjective, that is, for any unitary matrix there is a g∈
G such that ρg is identical to this matrix. Then we can use the Singular Value Decomposition (SVD)
of the kernel to get the optimal solution. Let K(x1,x2) = VΣW the SVD, then one can show that
ρg∗ =VW gives the optimal alignment, where J ′ takes J′(g∗) = 2tr(Σ) in the optimum. Interpreting
this result, we can say that the sum of the singular values of a equivariant kernel expresses the
similarity of the two given objects, while the unitary parts U and V contain information about the
relative pose of the objects. And in fact, if x1 = g′x2, then g∗ = g′ holds.

We want to demonstrate the proposed behavior with another example. Consider the finite group
of cyclic translations Cn acting on the n dimensional vector space X = Cn. The group elements
gk with k = 0, . . . ,n− 1 act on this space by [ρgkx]l := [x](l−k) mod n. This is just one particular
representation of Cn. Another representation for example acts by scalar multiplications ρ′gky :=
ei 2πn ky. Let us consider a linear GIM-kernel whose input space is X = Cn with the representation ρg
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and whose output space is Y = C with the representation ρ′g. One can choose Y one dimensional
because ρ′g just acts by scalar multiplications. The GIM-kernel K : X ×X !→ C is given by

K(x1,x2) =
n−1

∑
k=0

〈x1|ρgkx2〉 ei
2π
n k.

To interpret the behavior of K and understand with respect to which properties the objects are
aligned we consider the feature Ψ(x). Having a closer look the feature is nothing else than the
first coefficient of a discrete Fourier expansion of x. Thus, the kernel is just the product of the first
coefficients of object x1 with the complex conjugate coefficient of x2. Consequently, the unitary
part of the kernel, the complex phase, represents the relative phase of the first Fourier modes of
the objects. The alignment with respect to those is a very common procedure in image processing
applications to obtain complete invariant feature sets for the cyclic translation group Cn or other
abelian groups like the two dimensional rotations SO(2) (see, for example, Canterakis, 1986). The
considerations get more intricate when non-abelian groups are considered. For 3D rotations this
subject is discussed by Reisert and Burkhardt (2005) in more detail.

2.4 Equivariant Representer Theorem

In the beginning of this section we motivated our approach by pretending to present training patterns
in all possible poses, where the pose of a target is implicitly turned by letting the group act on
the regression coefficients. We did not clarify whether this is the optimal solution to obtain an
equivariant behavior. Are there other possible solutions which are more general but also equivariant?

It is easy to check that the subspace E ⊂ Zk of equivariant functions is a linear subspace. The
projection ΠE onto this subspace is given by

(ΠE f)(x) =
1

µ(G)

Z

G

g−1f(gx) dg. (3)

This projection operator is the core of the construction principle presented in this work. In classical
invariant theory this operator is also known as the Reynolds operator (Mumford et al., 1994).

Lemma 2.6 The projection ΠE of (1) admits the proposed representation given in (2).

Proof Applying the projection on (1) yields

(ΠE f)(x) =
1

µ(G)

Z

G

n

∑
i=1

k(gx,xi) g−1ai dg=
1

µ(G)

Z

G

n

∑
i=1

k(x,g−1xi) g−1ai dg

=
1

µ(G)

Z

G

n

∑
i=1

k(x,hxi)hai dh,

where we used the substitution h= g−1.

In fact, this projection is an unitary projection with respect to the naturally induced scalar prod-
uct in the feature space. Before stating this more precisely we show how vector valued functions

391



REISERT AND BURKHARDT

which are based on scalar kernels (as introduced in Eq. (1)) look in feature space. As already men-
tioned the evaluation functionals and the representations of the functions live in different spaces.
The function of form (1) has the following representation f(x) = 〈Φ(x)⊗ IY |Ψf〉H . The matrix
IY ∈ L(Y ) denotes the identity matrix on Y . The corresponding feature-space representation Ψf is
an element of the contracted feature-space F ⊗Y , a L(Y )-left-module. This is easy to see when
you think of F ⊗Y as vectors whose components itself are column vectors. These column vectors
only admit multiplication by matrices from the left as we know from ordinary matrix calculus. The
feature space representation of the function is obviously of the form Ψf = ∑iΦ(xi)⊗ai, where the
ai are vector-valued expansion coefficients. The naturally induced scalar-valued inner product in
this space is given by

〈Φ⊗a|Φ′⊗a′〉F ⊗Y = 〈Φ|Φ′〉F 〈a|a′〉Y . (4)

The projection operator ΠE as defined in Eq. (3) acts directly on the functions f. To show that
ΠE is unitary we must examine how it acts on the feature space representation. Therefore, we define
the group action on F ⊗Y

g(Φ(x)⊗a) :=Φ(g−1x)⊗ (g−1a). (5)

By the use of this we define a new operator Π̃E acting on F ⊗Y and show that it corresponds to
ΠE and that it is unitary with respect to the inner product given in Eq. (4).

Proposition 2.7 If Π̃E is given by

Π̃EΨf :=
1

µ(G)

Z

G
gΨf dg

then Π̃EΨf =ΨΠE f holds and Π̃E is a unitary projection.

Proof Let Ψf = ∑iΦ(xi)⊗ai and correspondingly f (x) = ∑n
i=1 k(x,xi)ai. Then

(ΠE f)(x) =
1

µ(G)

Z

G

n

∑
i=1

k(gx,xi) g−1ai dg=
1

µ(G)

Z

G

〈Φ(gx)⊗ρg|Ψf〉H

= 〈Φ(x)⊗ IY | 1
µ(G)

Z

G
gΨf〉H = 〈Φ(x)⊗ IY |Π̃EΨf〉H

this yields Π̃EΨf = ΨΠE f. The operator Π̃E is obviously a projection, because Π̃2E = Π̃E . The
unitarity is due to unimodularity of the group. It is easily proved by showing that Π̃E is hermitian
with respect to the inner product in Eq. (4).

In conclusion, due to the unitartity the projection Π̃E gives the best equivariant approximation of an
arbitrary function in Zk. The space of equivariant function E is nothing else than the space of fix
points with respect to the group action defined in Eq. (5), that isE = {Ψ∈F ⊗Y |∀g∈G : gΨ=Ψ}.

The proof of the following theorem is similar to the proof given in Schoelkopf and Smola (2002)
for the general Representer Theorem. Note that we allow coupling between the training samples.

Theorem 2.8 (Equivariant Representer Theorem) Let Ω : R+ !→ R be a strictly monotonically
increasing function and c : (X ×Y ×Y )n !→ R a loss function. Then each equivariant minimizer
f ∈ Zk of

R(f) = c(x1,y1, f(x1), ...,xn,yn, f(xn))+Ω(||f||2)
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is of the form

f(x) =
Z

G

n

∑
i=1

k(x,gxi) gai dg,

Proof We can decompose a function f ∈ Zk orthogonally (in the sense of the inner product given in
(4)) into a part in the span of

{Φ(xi)⊗y ∈ F ⊗Y |i= 1..n,y ∈ Y }

and its orthogonal complement;

f(x) = f||(x)+ f⊥(x).

We know by construction that f⊥(xi) = 0 for all i = 1..n. Every equivariant function in Zk is a
projection of the form ΠE f. Considering the projection of the decomposition

(ΠE f)(x) = (ΠE f||)(x)+(ΠE f⊥)(x)

we also know that the second term (ΠE f⊥)(xi) = 0 vanishes for all training samples. Thus the loss
function in R(ΠE f) stays unchanged if one neglects ΠE f⊥. By Lemma 2.6 we know that ΠE f|| is of
the proposed form

ΠE f|| =
Z

G

n

∑
i=1

k(x,gxi) gai dg.

Due to the orthogonality we also know

||ΠE f||2 = ||ΠE f||||2+ ||ΠE f⊥||2

and hence Ω(||ΠE f||2) ≥Ω(||ΠE f||||2). And thus for fixed values of ai we get R(ΠE f) ≥ R(ΠE f||),
so we have to choose ΠE f⊥ = 0 to minimize the objective. As this also has to hold for the solution,
the theorem holds.

Note that the above theorem makes only statements for vector valued function spaces induced
by a scalar kernel. There are also matrix valued kernels that are not based on a scalar kernels,
that is, GIM-kernels are not the only way to obtain equivariant kernels. In Section 4 we will work
out that one important class of equivariant kernels are GIM-kernels, namely those kernels whose
corresponding group representation is irreducible.

2.5 Non-Compact Groups and Relation to Volterra Filters

In this work we consider compact unimodular groups. This is indeed very restrictive. Demand-
ing that the functions f (g) = k(x1,gx2) are all functions of compact support, it seems possible to
generalize our theory for non-compact groups.

In signal-processing the group of time-shifts is elementary, which is actually a non-compact
unimodular group. Convolutions are known to be linear time-invariant mappings. In our terms
convolutions are equivariant to time-shifts. The so called Volterra series (Boyd et al., 1984) are
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generalized non-linear convolutions. The Volterra theory states that a nonlinear system, that maps
a function x defined on the time line on a function f in an equivariant manner, can be modeled as
infinite sums of multidimensional convolutions of increasing order

[f(x)]t = h0+
Z

g∈G

h1(g)[gx]t dg+
Z

g∈G

Z

g′∈G

h2(g,g′)[gx]t [g′x]t dgdg′ + ...,

where [x]t denotes the value of x at time t and G is the group of time-shifts. In fact, Volterra series
of degree n can be modeled with polynomial matrix kernels of degree n, that is, the scalar basis
kernel is k(x1,x2) = (1+ 〈x1|x2〉)n. In other words, the RKHS of the induced matrix kernel is the
space of n-th order Volterra series. Using the exponential kernel k(x1,x2) = eλ〈x1|x2〉 the RKHS is
actually the space of infinite degree Volterra series. For higher order polynomial kernels or even
exponential kernels a kernelization is quite useful, because the run-time is linear in the number of
training samples instead of proportional to the size of the induced feature space. There is already
work by Dodd and Harrison (2003) which proposes a similar kernelized version of Volterra theory,
but our theory is much more general. Our work tries to give a kernelized generalization of Volterra
theory for arbitrary unimodular groups from a machine learning point of view.

3. Constructing Kernels

Similar to scalar valued kernels there are also several building rules to obtain new matrix and scalar
valued kernels from existing ones. Most of them are similar to the scalar case, but there are also
’new’ ones. In particular, the rule for building a kernel out of two kernels by multiplying them splits
into two rules, either using the tensor product or the matrix product.

Proposition 3.1 (Closure Properties) Let K1 : X ×X !→ L(Y ) and K2 : X ×X !→ L(Y ′) be matrix
valued kernels and A ∈ L(V ,Y ) with full row-rank, then the following functions are kernels.

a) Let Y = Y ′. K(x1,x2) = K1(x1,x2)+K2(x1,x2)

b) K(x1,x2) = A†K1(x1,x2)A

c) K(x1,x2) = K1(x1,x2)⊗K2(x1,x2)

d) Let Y = Y ′. If for all x ∈ X , K1(x,x) and K2(x,x) commute, then the matrix product
K(x1,x2) = K1(x1,x2) K2(x1,x2) is a kernel.

e) K(x1,x2) = K1(x1,x2)†

f) k(x1,x2) = tr(K1(x1,x2))

Proof We omit proofs for a) and b) since the reasoning directly translates from the scalar case. To
show c) for matrix kernels we give the corresponding feature-maps in terms of the already known
feature-maps Ψ1,Ψ2 for kernel K1 and K2. From ordinary tensor calculus we know that

〈Ψ1⊗Ψ2|Ψ′
1⊗Ψ′

2〉K1⊗K2 = 〈Ψ1|Ψ′
1〉K1 ⊗〈Ψ2|Ψ′

2〉K2 ,
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so the new feature-map for the tensor-product kernel c) is obviously Ψ=Ψ1⊗Ψ2. The positivity
is also given, since the tensor product of two positive definite matrices is again positive definite. For
d) the feature-map is actually the same as for c), but we define a different inner product by

〈Ψ1⊗Ψ2|Ψ′
1⊗Ψ′

2〉K1K2 := 〈Ψ1|Ψ′
1〉K1〈Ψ2|Ψ′

2〉K2 ,

which extends uniquely to the whole space and is well defined. Since we assume that the diagonal
kernels K1(x,x) and K2(x,x) commute, the positive definiteness is also given, because the eigenval-
ues of the matrix product are just the products of the positive eigenvalues of its factors. The proof of
e) is trivial. For the proof of statement f), we only have to recall Remark 2.4, where we mentioned
that the trace of a positive matrix valued product is an ordinary positive scalar inner product.

Let us have a look how such rules can be applied to equivariant kernels and under what circum-
stances equivariance is preserved. Rule a) can be applied if K1 and K2 have the same transformation
behavior, meaning that the underlying group representations are identical. Rule b) preserves equiv-
ariance if the matrix A is unitary. One can see this by redefining the group representation on Y by
ρ′g = A†ρgA. Since ρ′g is again an unitary representation, K is an equivariant kernel. Rule c) can also
be used to construct equivariant kernels. Supposing an equivariant kernel K1 and an invariant scalar
kernel k in sense that k(x1,gx2) = k(x1,x2) for all g ∈ G , then rule c) implies that K = K1⊗k= K1k
is also a kernel and in fact equivariant. But how can we construct an invariant kernel k. The simplest
approach is to use invariant features, but our framework also offers two possibilities. A GIM-kernel
based on the trivial representation (just ρg = 1) is obviously invariant (this special case covers the
approach proposed by Haasdonk et al., 2005). Another possibility is to use rule d) and f) to obtain
an invariant kernel. But therefore we have to force the kernel to be normal, that is, the kernel K
must always commute with its transpose K†.

Lemma 3.2 If K is a normal equivariant kernel, then k = tr(K†K) is an invariant kernel in the
following sense k(x1,gx2) = k(g′x1,x2) = k(x1,x2) for all g,g′ ∈ G .

Proof Since K is normal K(x,x) commutes with its transpose and hence K†K is a kernel by rule d).
By rule f) we know that tr(K†K) is a kernel. The invariance of the trace

k(x1,gx2) = tr((Kρ†g)†Kρ†g) = tr(ρgK†Kρ†g) = tr(K†K) = k(x1,x2)

proves invariance of the kernel.

4. Irreducible Kernels

The question arises which representations should be used to construct GIM-kernels. There are many
possibilities, but we want to choose, of course, the most simple and computationally most efficient
ones. A matrix kernel which is diagonal seems to be the most appropriate; this means that the kernel
has to be diagonal for every pair of input patterns. If the kernel is diagonal the number of kernel
entries that has to be computed is just the dimension of the output space Y . But not every matrix
kernel can be written in diagonal form, maybe there is only a block diagonal form or even only a
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fully occupied matrix. To formalize this more precisely we introduce the notion of irreducibility
for matrix kernels, which should cover the intuition that a kernel cannot be decomposed in a more
simple, more diagonal kernel.

Definition 4.1 A kernel K(x1,x2) ∈ L(Y ) is reducible if there is a nonempty subspace W ⊂ Y ,
such that for every y ∈ W and for every x1,x2 ∈ X , we have K(x1,x2)y ∈ W , otherwise the kernel
is called irreducible.

This definition is very close to the notion of irreducibility for group representations. This notion
plays the central role in the harmonic analysis of groups (see Miller, 1991). A group representation
ρg ∈ L(V ) is called reducible if there exists a nonempty subspace W ⊂ V such that for all w ∈ W
also ρgw ∈ W . Then W is called a invariant subspace. If a representation is not reducible it is
called irreducible. For all abelian groups the irreducible representations are very simple and all one-
dimensional. They are just the complex numbers of unit length. Most of the readers may know them
as Fourier transformations. For example, for the group of two dimensional rotation SO(2), they are
just ρ(l)

g = eilφ. The invariant subspace on which ρ(l)
g is acting is just C, a one dimensional vector

space. Suppose a given function on the circle, then the lth component of the Fourier representation
of this function is exactly the representation space on which the representation ρ(l)

g is acting on.
For abelian groups the basis function on which the irreducible representation are working have the
same formal appearance as the irreducible representations itself which might be confusing. For
non-abelian groups it is different. Consider the group of three dimensional rotations SO(3). The
corresponding irreducible representations are the so called D-Wigner matrices which are not one
dimensional anymore. They are matrices of increasing size ρ(l)

g ∈C(2l+1)×(2l+1). They act obviously
on 2l+1 dimensional vector spaces. For a given function defined on a three-dimensional sphere the
expansion in the invariant subspaces is the so called Spherical Harmonic expansion which is also
sometimes called the Fourier representation of the 2-Sphere. One may call harmonic analysis the
generalization of Fourier theory to non-abelian groups.

If an equivariant kernel transforms by an irreducible representation, then it can be deduced that
also the kernel itself is irreducible. But the opposite direction is not true in general, otherwise any
equivariant kernel would be a GIM-kernel. We will later discuss this in more detail. But first two
basic properties.

Lemma 4.2 If the representation ρ of a strictly positive definite, equivariant kernel K is irreducible
then K is also irreducible.

Proof Assume thatK is reducible, then there is a subspaceW ⊂Y , such that y∈W ⇒K(x1,x2)y∈
W . Since ρ is irreducible, we can choose y ∈ W such that there exists a g with ρgy = w+w⊥ ∈
W ⊕W ⊥. But we also know that K(x1,g−1x2)y= K(x1,x2)ρgy ∈ W . In particular, we can choose
x1 = x2 = x. Due to the reducibility of K and the regularity (because of strictly pd) of K(x,x), we
know that 0 (= K(x,x)w⊥ ∈ W ⊥ and hence K(x,x)ρgy /∈ W . Contradiction!

Since we know from representation theory (Gaal, 1973) that any unitary representation can be
decomposed in a direct sum of irreducible representations we can make a similar statement for
kernels.
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Corollary 4.3 Any GIM-kernel K can be decomposed in a direct sum of irreducible GIM-kernels
associated with its irreducible representations.

Proof Let ρ be the representation of the GIM-kernel. Since any ρ can be decomposed in a direct
sum ρ= ρ(1)⊕ ...⊕ρ(n), we directly see that

K = K1⊕ ..⊕Kn,

where Kl(x1,x2) =
R

G k(x1,gx2)ρ
(l)
g dg. And the Kl are irreducible due to Lemma 4.2.

By the Peter-Weyl-Theorem (Gaal, 1973) we know that the entries of the irreducible representa-
tions of a compact group G form a basis for the space of square-integrable function on G . We also
know that the entries of the representations are orthogonal with respect to the canonical dot-product.
The following Lemma is based on that.

Lemma 4.4 If the representation ρ of an equivariant kernel K is irreducible then K is a GIM-kernel.

Proof We define the corresponding scalar kernel by

k =
n

µ(G)
tr(K),

where n is the dimensionality of the associated group representation. Then
Z

G
k(x1,gx2)ρgdg=

n
µ(G)

Z

G
tr(K(x1,x2)ρ†g)ρgdg.

By the orthogonality relations for irreducible group representations we know that

n
µ(G)

Z

G
tr(K(x1,x2)ρ†g)ρgdg= K(x1,x2).

It seems that we should concentrate on the irreducible representations of the considered group,
and this is indeed the canonical way. Any scalar kernel can be written in terms of its irreducible
GIM-kernel expansion.

Proposition 4.5 Let k be a scalar kernel, then

k(x1,x2) = tr(K(x1,x2)),

where K = K1⊕K2⊕ ... is the direct sum of its irreducible GIM-kernels as given in Corollary 4.3

Proof Due to the Peter-Weyl-Theorem we can expand the scalar kernel in terms of the irreducible
representation of G , where the expansion coefficients are by definition the corresponding GIM-
kernels.

k(x1,gx2) =
∞

∑
l=0
tr(Kl(x1,x2)(ρ

(l)
g )†)
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where Kl(x1,x2) =
R

G k(x1,gx2)ρ
(l)
g dg. And hence we have

k(x1,gx2) =
∞

∑
l=0
tr(Kl(x1,gx2)) = tr(K1(x1,gx2)⊕K2(x1,gx2)⊕ ...) = tr(K(x1,gx2)),

which proves the statement.

Hence we have a one-to-one correspondence between the scalar basis kernel k and the GIM-
kernels Kl formed by the irreducible group representations ρ

(l)
g . So we have for GIM-kernels always

the duality between the matrix- and scalar-valued kernels. For Non-GIM-kernels this one-to-one
correspondence does not hold.

4.1 Non GIM-kernels

There is another very simple way to construct equivariant kernels. For example assume that X = Y
then K(x1,x2) = |x1〉〈x2| is obviously an equivariant kernel. This kernel may be seen as the matrix-
valued analogon to the linear scalar-valued kernel k(x1,x2) = 〈x2|x1〉X and indeed k = tr(K) holds.
Note that it is in general not possible to reconstruct K from tr(K), this is only possible for GIM-
kernels by Proposition 4.5. Such a non GIM-kernel can be easily obtained by the construction
principle from above. But how to check whether a kernel is a GIM-kernel or not?

Corollary 4.6 Let K be an irreducible equivariant kernel and let its corresponding representation
be reducible, then K is not a GIM-kernel.

Proof Assume K is of GIM-type then by Corollary 4.3 it is reducible. Contradiction!

This statement is the counterpart to Lemma 4.4, which says that if the group-action is irreducible
we know that we have a GIM-kernel.

The simple kernel K(x1,x2) = |x1〉〈x2| is not of practical value, because regression functions
which are built out of it are always proportional their input. So one needs clever feature-maps to get
useful kernels.

4.2 Kernel Response for Symmetric Patterns

GIM-kernels provide an intrinsic mechanism to cope with symmetric patterns. A pattern x ∈ X is
called U-symmetric if there is a subgroup U of G such that for all u ∈ U we have ux = x. To
characterize the kernel response for such patterns we define a linear unitary projection on the space
of U-symmetric patterns as follows

πUx :=
1

µ(U)

Z

U
gx dg. (6)

The operator πU is a unitary projection due to the same arguments as used in the proof of Proposition
2.7. Using this operator we can state the following

Lemma 4.7 Let K be a GIM-kernel. If x1 is U1-symmetric and x2 is U2-symmetric then

K(x1,x2) = πU1K(x1,x2)πU2

holds.
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Proof Let G/U the quotient group. If x2 is U2-symmetric then

K(x1,x2) =
1

µ(G)

Z

G

k(x1,gx2)ρg dg=
1

µ(G)

Z

G/U2

Z

U2

k(x1,gux2)ρgu du dg

=
1

µ(G/U2)

Z

G/U2

k(x1,gx2) dg
(

1
µ(U2)

Z

U2
ρu du

)

︸ ︷︷ ︸
πU2

.

As πU is a projection and thus π2U = πU we can insert a πU2 in the last line from above for free
and reverse the whole computation an obtain K(x1,x2) = K(x1,x2)πU2 . If x1 is U1-symmetric the
reasoning is very similar. Due to the unimodularity of the group and its subgroups it is no problem
to exchange g and u in the last expression from the first line. Hence, we can use the same arguments
as for the πU2-symmetry.

Assume now we have a trained function f(x) composed as a linear combination of GIM-kernels.
What is the response of f(x) if x is U-symmetric. Due to Lemma 4.7 it is obvious that f(x) is also
U-symmetric and the symmetrization is obtained via the operator defined in Eq. (6). This behavior
is reasonable, because there is no reason why the output should violate the symmetry if the input
does not spend information beyond. For example, if the output space Y is a space of probability
distributions the idea of symmetrization via πU is a good idea. Because, if we are uncertain about
the original pose of an input object due to symmetry, we should vote for all possible outputs allowed
by the symmetry in a additive manner. And the operator πU actually works this way.

Now let us consider the opposite view. Suppose we want to build a function that maps a U-
symmetric input x0 to a not symmetric output y0, which is obviously an ill-posed problem. How
does the function behave? We are not able to make a general statement, because it depends on the
learning algorithm applied. But to get an intuition consider the function f(x) = K(x,x0)y0, which
essentially behaves as desired, if K(x,x)∝ IY . By Lemma 4.7 we know that f(x) = K(x,x0)(πUy0)
holds, thus the function behaves as if the desired output was symmetrized beforehand.

5. Applications

We show two application examples that basically can be described as image processing applications.
We present a rotation-equivariant filter, which can be used for example, for image restoration or
image enhancement. Thereby each pixel neighborhood is handled as one training instance, which
leads to an enormous number of training samples. Hence, we let the filter work in the featurespace
of a second-order matrix kernel. Secondly, we build a rotation equivariant object detector. Specific
interest points in the image are detected. Relative to local features around these interest points the
center of the object is learned. Of course ambiguities can occur. For example, relative to a corner
of a rectangle there are two possible centers of the rectangle (only for a square there is a unique
center). To cope with such ambiguities we learn the probability distribution that the center of the
object lies in a specific direction relative to the local features around the interest points.

399



REISERT AND BURKHARDT

for each pixel
in the Image

map in a rotation−
equivariant manner

project on
local basis

reconstruct
patch

assemble
Image

PSfrag replacements

xz

z

Image I Image F(I)

[xz]n ∑n[f(xz)]n[bz]n

Map in an equivariant manner

f

f(xz)

Figure 1: The workflow of the rotation equivariant filter for the example of image denoising.

5.1 Equivariant Kernels for 2D Rotations

In both experiments we want to learn functions f : X !→ X , where X is the space of functions
defined on the unit circle. The irreducible representations of 2D-rotations are einφ and the irreducible
subspaces correspond to the Fourier representation of the function. Hence in Fourier representation
the GIM-kernel is a diagonal kernel with entries

Kn(x1,x2) =
Z 2π

0
k(x1,gφx2)einφ dφ (7)

on the diagonal. Discrete approximations of this integral can be computed quickly by a Fast Fourier
Transform (FFT). Assuming k is a dot-product kernel k(〈x1|x2〉X ), then a kernel evaluation looks
as follows: Compute the cross-correlation c(φ) = 〈x1|gφx2〉X using the FFT, apply the nonlinearity
k(c(φ)) and transform it back into Fourier domain Kn =

R 2π
0 k(c(φ))einφ dφ. If the patterns are

already in Fourier domain, we need two FFT per kernel evaluation. This approach is used in the
second experiment.

The probably most simple non-linear scalar kernel is k(x1,x2) = 〈x1|x2〉2X . Using this kernel as
a scalar base kernel the matrix-valued feature space looks very simple. The feature map is given by

[Ψ(x)]nl ∝ [x]−l [x]l+n, (8)

where [x]l denotes lth component of the Fourier representation of x. The induced matrix valued
bilinear product in this space is the ordinary

Kn(x1,x2) =∑
l
[Ψ(x1)]nl [Ψ(x2)]∗nl.

hermitian inner product. We use a similar feature space representation in the first experiment.
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5.2 A Rotation Equivariant Filter for Images

For convenience we represent a 2D gray-value image I in the complex plane, where we denote the
gray value at point z ∈ C by Iz. The idea is to learn a rotation-equivariant function f : X !→ X , which
maps each neighborhood xz ∈ X of a pixel z onto a new neighborhood f(xz) ∈ X with properties
given by learning samples. The neighborhood is represented by projections on local basis functions
[bz]n = zne−λ|z|2 for n = 0, . . . ,N− 1. This basis is actually a orthogonal basis with respect to the
standard inner product. In Figure 1 the appearance of the basis is depicted. In particular, for each
pixel z′ the inner product

[xz′ ]n = 〈Iz−z′ |zne−λ|z|
2〉 = ∑

z∈[1,256]2
Iz−z′zne−λ|z|

2

of the image with the basis images is computed. As the basis images are only considerable different
from zero in a small neighborhood around the origin, the N expansion coefficients [xz′ ]n represent
the appearance of neighborhood of a pixel z. Actually the computation of the local basis expansion
is nothing else than a cross correlation of the image with the basis images, which can be expressed
as a convolution:

[xz]n = Iz ∗ [b−z]†n.

Here ∗ denotes the convolution operator. In Figure 1 the approach is depicted for an image denoising
application. The basis functions from above have the advantage that their transformation behavior
is the same as for functions defined on a circle, that is, [xz]n !→ [xz]neinφ for rotations around z.
The vector-components [f(xz)]n are also interpreted as expansion coefficients of the neighborhood
in this basis. Since the neighborhoods overlap we formulate one global function which maps the
whole image I on a new image

F(Iz) = ∑
n

[f(xz)]n ∗ [bz]n = f(xz) ∗ bz.

This function is translation- and rotation-equivariant, since f is rotation-equivariant and the convo-
lution is naturally translation-equivariant. The scalar basis kernel k for the GIM-kernel expansion
of f is chosen by

k(xz,x′z) = (1+ 〈xz|x′z〉X )2.

The corresponding feature-map is nearly the same as in (8). Given two images I src and Idest our goal
is to minimize the cost

∑
z∈[1,256]2

|Idestz −Fw(Isrcz )|2+ γ||w||2,

where w is the parameter vector yielding f(x) = 〈Ψ(x)|w〉H , where H is the feature space of the
above kernel. Hence Fw is linear in w since the convolution is a linear operation. The parameter γ is
a regularization parameter. The actual training procedure is a simple ridge regression scheme.

In our experiments we use images of size 2562. Note that each pixel-neighborhood is regarded
as one training sample. Due to the overlap of the neighborhoods the cost function couples train-
ing samples. The grayvalues of the images are scaled to [0,1]. The neighborhood of a pixel is
represented by N = 8 coefficients, where the width of the Gaussian is around 10 pixels. The corre-
sponding feature-space is of dimension N(N+ 1)/2+N = 44. As already mentioned the feature-
space dimension is much less than the number of training-samples (2562) and hence working in
feature-space is recommended.

401



REISERT AND BURKHARDT

Isrc Idest Itest F(Itest)

Figure 2: Results for the image transformation example. Images Isrc and Idest where used for train-
ing. Image Itest show the image for testing, the three connected should be separated.
F(Isrc) shows the image after application of the trained image transformation.

We conduct two experiments. First we train the filter to separate connected clusters of pixels.
The left two images in Figure 2 show the images Isrc, Idest used for training. As the equation system
is highly overdetermined the regularization parameter γ can be chosen very small. If the training
images are distorted by a small amount of independent Gaussian noise we can actually choose γ= 0.
In general we can conclude that the higher the regularization γ is the less effective is our filter, but
the more robust the filter is against additive noise. This is a well known behavior.

The right two images show a test image in its original appearance and after the application of
the trained filter. One can see that the filter actually works properly. Of course, some artifacts are
created. One can nicely see the equivariance of the filter. The behavior depends neither on the
orientation of the touching areas nor the absolute position. In fact, the filter may be interpreted as
a locally applied quadratic (because of the second-order polynomial kernel) Volterra filter. The test
image Itest was chosen such that common methods would not work properly. For example, if one
use a distance transform, the agglomerate would be divided in five instead three clusters, because
the distance transform gives five local maxima.

As a second experiment we trained the filter to perform a deconvolution. For training we used a
black disk on white background as target Idest and a blurred version as Isrc (blurred with a Gaussian
of width 2 percent of the image size). In Figure 3 a) we show a blurred image which has to be
sharpened (blurred with the same width as used for training). We compare our filter with an ordinary
Wiener filter for deconvolution (see, for example, Jain, 1989). Assuming decorrelated Gaussian
noise models, theWiener filter only depends on the signal-to-noise ratio, which controls the intensity
of the sharpening of the image. In our approach the regularization parameter γ plays a similar role
as the signal-to-noise ratio for the Wiener filter. We tuned the parameters such that the obtained
sharpness for both approaches are visually comparable. In Figure 3 b) we give the result obtained
by our method, in c) the result for the Wiener filter. Our method produces a more natural looking
image and more importantly it produces no over- and undershoots at the sharp edges like the Wiener
filter.

5.3 A Rotation Equivariant Object Detector

The goal of the object detector is to find a specific object in an image independently of its rotational
or translational pose. The proposed object detector may be seen as some kind of generalized hough
transform (see Ballard, 1981), where the lookup-table is is replaced by an equivariant function,
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sharpened with Wiener filter

blurred original sharpend with equivariant filter

Figure 3: Results for the image restoration example. The Wiener filter produces overshoot- and
undershoot-artifacts; this is a well known problem for inverse linear filters. Our non-
linear filter creates a fine and accurate edge while having the same sharpness as theWiener
filter. (have a look at these results in an electronic form, a printer may destroy the fine
differences)

which is learned from a shape template. It has also some similarities to the object recognition
system using the so called SIFT features (Lowe, 2004).

At first, stable interest points in the image have to be detected, for example, points of high
variation or something similar. Relative to these interest points the algorithm votes for a predefined
center of the object. Assume we want to detect rectangles in an image. Corners are an important and
stable feature of a rectangle. Relative to a corner of a rectangle we have obviously two hypotheses
for the putatively rectangle center. To cope with such multiple hypotheses in general we do not
make discrete votes but vote for all possible points with its corresponding probability that there
may be the center of the object. Our goal is to learn a mapping that maps features from the local
neighborhood of the interest points to a probability distribution for the object’s center. To detect the
center of the object independently of its rotational pose this mapping has to be rotation-equivariant.
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a) b) c) d)

Figure 4: Example for the rectangle. a) The rectangle with its four interest points and its center.
b) The response of the trained voting function p(x) for the lower left interest point (as
mentioned the distance to the center is not learned, only the direction). The function votes
for the center of the shown rectangle and for the center of a putatively rotated rectangle
by 90 degrees. c) an rotated version of the training object with additive Gaussian noise.
d) the superimposed responses of all four interest points. The maxima is obviously in the
center of the rectangle.

For simplicity we want to restrict ourselves to vote for points in the same specific direction with the
same probability or weight, that is, the output of the equivariant-mapping is a probability distribution
defined on the circle.

For the features we use the same projections on local basis-functions as in the previous exper-
iment. To find the interest points we search for local maxima of the absolute value |[xz]2|, which
basically gives responses for corner-like structures. To eliminate responses at edges, which are
rather unstable, we only take those local maxima whose values for the quotient |[xz]2|/|[xz]1| are
above a given threshold. Let x be a feature vector around some interest point and φ the angle to the
center of the object. We are interested to learn the conditional distribution p(φ|x) from training sam-
ples (φi,xi) belonging to the training object’s interest points. As we want to detect the objects in a
rotation invariant manner, the distribution has to fulfill rotation equivariance p(φ|gϕx) = p(φ+ϕ|x).
In Section 4 we worked out that it is advantageous to work with irreducible kernels. As already men-
tioned the irreducible kernels of the 2D-rotation group act on the Fourier representation of functions,
so we denote p(φ|x) by the vector p(x), where its components are the Fourier coefficients of p(φ|x)
in respect to φ. We denote the cutoff-frequency of the Fourier representation by N.

We do not rigorously model p as a probability distribution. Let eφ be the unit-pulse in Fourier
representation, then we minimize

∑
i
||eφi −p(xi)||2,

which is nothing else then the ordinary least-square regression scheme. But the solution basically
behaves as we want it to. To get an idea, consider again the rectangle example with its four corners
as interest points. If we neglect noise the local features xi of the corners are all the same xi = gϕix0
up to rotations gϕi of 0,90,180,270 degree. Then the equivariant least-square minimizer p(x0) is
proportional to the Fourier transformed histogram of the relative angles φi+ϕi. The reader should
have an antipicatory look at Figure 4 a) and b), where this is illustrated. One can see that p(x0) give
contributions for both possible corner directions.
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a) b)

Figure 5: Training image a) The only training leaf. The interest points for training are marked and
its corresponding direction to the center. b) The voting map for the training object. Black
means high probability for the center, white low probability.

The scalar basis kernel is chosen to be the Gaussian kernel k(x1,x2) = e−λ||x1−x2||2 . The diagonal
matrix kernel is approximated by using the FFT as depicted in Section 5.1. To get good approx-
imations we have to perform frequency padding. In the experiments we used a FFT of size 6N
(this is enough to compute a third-order polynomial kernel accurately). For accurate computation
of the exponential kernel an infinite size FT would be needed, but the experiments have shown that
an approximation is enough. The final learning procedure is very simple. We just have to solve N
linear equations of the form

Knan = bn n= 0, ...,N−1,

where the matrix entries of (Kn)i, j = Kn(xi,x j) are the approximations of Equation (7), and the
entries of the target are [bn]i = einφi .

In Figure 4 we illustrate results for the rectangle example. In a) the training example with its
four interest points is shown and b) shows the contribution of the voting function of the lower left
corner. The sinusoidal artifacts are stemming from the finite Fourier representation. In c) and d) we
applied our object detector to a rotated and noisy rectangle. The results are satisfying, the voting
function p(x) obviously behaves in an equivariant manner and is robust against small distortions.
To make a more realistic example, we train our object detector to find leaves on natural background.
In Figure 5 a) a segmented leaf for training is shown. We found by hand that 14 interest points
are relatively stable. Of course, this number, depends on the size of the Gaussian used for feature
computation (in our case the width is four percent of the image size, that is, rather large). After
training we applied the object detector on the train image itself, which is shown in Figure 5 b).
For each interest point we superimpose its contributions within a distance of about forty percent of
the image size. To get equal contribution from each point we normalize the output of our voting
function p(x)/||p(x)||. To show the stability and generalization ability of our object detector, we
applied it on a more complex image shown in Figure 6 a). The leaf is from the same species as the
training leaf but obviously different. The resulting voting map is shown in Figure 6 b), in fact, the
overall maximum is in the center of the leaf, but it seems that the maximum is relatively unstable
depending on the background. To improve the result, we modified the kernel. As explained in
Section 3 we can use Lemma 3.2 to compute an invariant kernel and modify our matrix kernel by
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a) b) c)

Figure 6: A test image of a leaf with background and small clutter. a) The testimage with the found
interest points. b) The voting map for test image with the simple matrix kernel. c) The
voting map achieved with the enhanced kernel for better selectivity.

K′ = K tr(K†K) to give it more selectivity to the features itself. In Figure 6 c) the voting map with
this enhanced kernel is shown, the maximum seems to be much more robust.

6. Conclusion and Outlook

We presented a new type of matrix valued kernel for learning equivariant functions. Several prop-
erties were shown and connections to representation theory were established. We showed with two
illustrative examples that the theory is applicable.

The usage in nonlinear signal and image processing are apparent. Problems like image denois-
ing, enhancement and image morphing can be tackled. Another simple task for the equivariant filter
would be to gaps in road networks.

The proposed object detector shows in spite of its simplicity a nice behavior and generaliza-
tion ability and should be worth to improve. Generalizations of our proposed experiments to 3D-
rotations are straightforward.

From a theoretical point an extension of our framework to non-compact groups would be satis-
fying. Another important challenge is to find sparse learning algorithms with an unitary invariant
loss functional. Unfortunately, the unitary extension of the ε-insensitive loss is not solvable via
quadratic programming anymore. A last important issue is the local nature of transformations. In
hand-written digit recognition invariance under rotations might turn a ”6” into a ”9”, while rota-
tions by 5 degrees are ok. A generalization of our theory using notions like approximate or partial
equivariance are necessary.
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Abstract
The standard by which binary classifiers are usually judged, misclassification error, assumes equal
costs of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile of the condi-
tional class probability function P[y= 1|x]. Boosted classification trees are known to perform quite
well for such problems. In this article we consider the use of standard, off-the-shelf boosting for
two more general problems: 1) classification with unequal costs or, equivalently, classification at
quantiles other than 1/2, and 2) estimation of the conditional class probability function P[y= 1|x].
We first examine whether the latter problem, estimation of P[y = 1|x], can be solved with Logit-
Boost, and with AdaBoost when combined with a natural link function. The answer is negative:
both approaches are often ineffective because they overfit P[y = 1|x] even though they perform
well as classifiers. A major negative point of the present article is the disconnect between class
probability estimation and classification.

Next we consider the practice of over/under-sampling of the two classes. We present an al-
gorithm that uses AdaBoost in conjunction with Over/Under-Sampling and Jittering of the data
(“JOUS-Boost”). This algorithm is simple, yet successful, and it preserves the advantage of rela-
tive protection against overfitting, but for arbitrary misclassification costs and, equivalently, arbi-
trary quantile boundaries. We then use collections of classifiers obtained from a grid of quantiles
to form estimators of class probabilities. The estimates of the class probabilities compare favorably
to those obtained by a variety of methods across both simulated and real data sets.
Keywords: boosting algorithms, LogitBoost, AdaBoost, class probability estimation, over-sampling,
under-sampling, stratification, data jittering

1. Introduction

Misclassification error is the standard by which binary classifiers are usually judged. This implicitly
assumes equal cost of misclassifying the two classes or, equivalently, classifying at the 1/2 quantile
of the conditional class probability function, or CCPF for short. By this standard, AdaBoost and
other boosting algorithms have demonstrated some of the lowest misclassification errors across a
wide range of applications. Furthermore, boosting algorithms are successful at minimizing mis-
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classification error in ways that are remarkably insensitive to the algorithm’s number of iterations.
However, for many problems, this is insufficient. Since misclassification error implicitly assumes
equal costs for each of the two classes, it is not always an appropriate standard. One is often in-
terested in classification with unequal costs, as in medical problems where a false negative is often
much more serious than a false positive. When costs are unequal a desirable classifier selects, for a
given feature vector x, the class label that minimizes the expected cost. Alternatively, classification
problems may be formulated not in terms of the differential costs of misclassification, but rather in
terms of a classifier’s ability to predict a quantile threshold, as in marketing when households with
an estimated take-rate higher than, say, 0.80 are slated for a campaign. In short, the problem of bi-
nary classification with unequal costs is equivalent to the problem of thresholding conditional class
probabilities at arbitrary quantiles. As a special case, one obtains the equivalence of an equal-cost
classifier and a median classifier that thresholds the conditional probability of both classes at 1/2.

A related problem is that of mapping a classifier to a base rate for the two classes other than
that for which the classifier was trained. For example, the training sample may have contained 10%
positives, but one is interested in a classifier that performs well when there are 50% positives. A
simple calculation shows that a change of base rate is equivalent to a change in the cost ratio and
also to a change of the quantile on the class probabilities. These connections are lucidly explained
by Elkan (2001), and we will recount them in Section 3.1 in a form suitable for our purposes.

The problem of classifying with arbitrary cost ratios and/or imbalanced base rates has been
addressed by a sizable literature. The problem of imbalance has been of particular interest in areas
such as text classification (Liu et al., 2002) and bankruptcy prediction (Foster and Stine, 2004) where
there often exist very few positives but a vast supply of negatives. One will then try to correct for this
imbalance. With respect to boosting, the literature dealing with unequal costs of misclassification
is small relative to the huge literature on boosting with respect to (equal) misclassification error.
Modifications to boosting and similar algorithms that have been suggested to handle this more
general problem include Slipper (Cohen and Singer, 1999), AdaCost (Fan et al., 1999), CSB1 and
CSB2 (Ting, 2000) and RareBoost (Joshi et al., 2001). These algorithms have demonstrated some
success over straightforward AdaBoost, but no single such algorithm stands out as the favorite.

1.1 Over/Under-Sampling

One general class of approaches (popular in the Computer Science community) for calibrating any
equal-loss classifier to handle the equivalent problems of unequal costs, arbitrary quantile thresh-
olds, and imbalanced base rates is the idea of over- and under-sampling (Chan and Stolfo, 1998;
Elkan, 2001; Estabrooks et al., 2004). In these schemes one typically over-samples the minority
class by sampling with replacement, and/or one under-samples the majority class by sampling with-
out replacement. Sampling with replacement is necessary when the class size is increased, whereas
sampling without replacement seems more natural when the class size is decreased. Note that
sampling with replacement is bound to produce ties in the sample, especially as the sampling rate
increases. An interesting variation of the idea is the Synthetic Minority Over-Sampling TEchnique
(“SMOTE”) by Chawla et al. (2002, 2003) which avoids ties in the over-sampled minority class by
moving the sampled predictor points toward neighbors in the minority class.

The necessity to break ties is an issue that is addressed in detail in Section 3 and also summarized
here. Ties can be a problem because classification methods may be driven more by the set of distinct
data points than the multiplicities of the tied data points. Changing multiplicities, which is what
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sampling with replacement does, will therefore have a smaller than expected effect. Thus changing
multiplicities should be accompanied by breaking the ties, as in SMOTE. There is evidence that
tie-breaking does not need to be sophisticated; random perturbations or “jittering” of the data points
in predictor space work surprisingly well. The effectiveness of this technique for AdaBoost is
demonstrated in this article.

1.2 Direct Estimation of the CCPF

A second general solution to the problem of classification at arbitrary quantile thresholds is by direct
estimation of conditional class probability functions. This is the traditional approach in statistics,
as exemplified by logistic regression. Given an estimate of the CCPF one can trivially achieve
classification at any arbitrary quantile by thresholding the estimated CCPF at that quantile.

If estimation of a CCPF solves the problem of classification for arbitrary costs, quantiles and
imbalances, it is natural to wonder why one bothers to solve the problem by any other means. Why
would there still be an interest in, for example, classifiers trained on over/under-sampled training
data? The reason for this has to do with the fact that finding a good classifier is a robust endeavor,
whereas estimation of a CCPF is a subtle business. The latter has to simultaneously contain the
information for good classification at all quantiles. By comparison, a classifier is usually described
by thresholding some score function at zero, but this function is quite arbitrary except for the re-
quirement to be on the proper side of zero often enough to produce few errors on test samples. This
robustness of the classification problem (observed in the literature) is often, but not always, due to
the crude nature of the criterion, namely, misclassification error.

Friedman et al. (2000) show that a stagewise approach to the minimization of an exponential
loss function by a linear combination of classification trees is algorithmically similar to AdaBoost.
In fact, these same authors (in Hastie et al., 2001, Section 10.2) attribute boosting’s success to this
similarity. This stagewise logistic regression view immediately led to two major developments.
First, by connecting AdaBoost to logistic regression, Friedman et al. (2000) and Hastie et al. (2001)
implied that one can apply a link function to the scores produced by AdaBoost to provide estimates
of the CCPF. Second, by minimizing different loss functions, these authors led the way to the
development of new boosting algorithms. In particular, in Friedman et al. (2000) we first encounter
LogitBoost, an algorithm which computes the CCPF directly by a stagewise minimization of log loss
on the training data. For the purposes of this paper we will focus on Logitboost; however, it should
be noted that other researchers have also developed modifications to AdaBoost for minimization of
log loss. One such algorithm is given by Duffy and Helmbold (1999). A similar algorithm is given
by Collins et al. (2000) which is motivated by viewing boosting as an optimization of Bregman
divergences.

We will give evidence that neither LogitBoost nor the application of the prescribed link to Ad-
aBoost are effective at estimating the CCPF. We will show that when AdaBoost has been run for
the large number of iterations required to produce a successful classifier (with respect to misclassi-
fication error), its scores have typically diverged to such a degree that putting them through a link
function produces values for the CCPF that cluster near 0 and 1. Hence, they are quite erratic as
CCPF estimates. The prevailing solution to this problem is regularization of the CCPF estimator.
Such regularization methods include the imposition of limits on the class of base learners (i.e., de-
cision stumps instead of trees), the refinement of the learning rate, or simply early stopping. This
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is not the approach we choose here, though. Instead, our aim is to use off-the-shelf boosting and
explore how its manifest success in classification can be carried over to CCPF estimation.

In order to illustrate boosting’s inability to estimate CCPF’s, we present simulations for which
AdaBoost is able to successfully lower the misclassification error for classification trees, but is un-
able to find the CCPF since its estimates get worse with each iteration of the algorithm. We conclude
that AdaBoost is successful at estimating classification boundaries even though its scores do not es-
timate conditional class probabilities. Further, we show that the same is true of LogitBoost, despite
the fact that estimation of conditional class probabilities is the motivation behind this algorithm. In
short, both of these approaches are often ineffective for CCPF estimation.

Because of the relative difficulty of CCPF estimation compared to classification, it will always
remain of interest to approach the latter problem directly. In fact, we take this argument as a li-
cense for travelling the opposite direction: we construct estimators of CCPF’s from collections of
classifiers computed from grids of quantiles. The precision of such estimators depends on the dense-
ness of the quantile grids, but in view of the natural sampling variability of CCPF estimators, the
granularity of the grid may need only compare with the noise level. Furthermore, if the primary
use of the CCPF estimator is thresholding for classification, then the proposed estimator will be
satisfactory for practical purposes if the grid contains all quantiles of actual interest. We show ex-
perimentally that over- and under-sampled estimates of the CCPF using AdaBoost, constructed in
this way, compare favorably with competing methods.

The evidence presented in this paper may seem to be at odds with the logistic regression view
of boosting. Certainly, from a practical point of view, this is true to some extent. Our experiments
suggest that boosted classification trees produce excellent estimates of class membership and are
surprisingly resistant to overfitting, while the same is not true of the values that the logistic re-
gression view of Friedman et al. (2000) would suggest are the estimates of the class probabilities.
However, a couple of other factors should be considered here. First, the Friedman et al. (2000) pa-
per is not the only research connecting logistic regression and boosting. For instance, Lebanon and
Lafferty (2001) present a very different view of this relationship. Our focus is only on probability
estimation using the Friedman et al. (2000) link functions. Secondly, good estimation of the CCPF
is not always necessary even for logistic regression itself. Logistic regression is just one of many
examples where the underlying model may not represent the true distribution of data well, but can
still be quite useful for prediction. Freund and Schapire (2004) discuss this point. They draw a
parallel to HMM’s for speech analysis and write, “nobody using HMM’s for speech analysis really
thinks that speech can be synthesized by these HMM’s.”

In the next section we present the argument that boosted classification trees combined with the
Friedman et al. (2000) link functions do not estimate conditional class probabilities. The boosting
algorithms we consider are standard, off-the-shelf techniques. It may be argued that some variations
of boosting employing extensive regularization (for example, Zhang and Yu 2005, Rosset et al. 2004
and Blanchard et al. 2003) or direct cost-optimization techniques can overcome this problem. We do
not consider these techniques in this paper for a number of reasons. A practical reason is that these
techniques are often considered not worth the trouble by many practitioners. This is especially
true when a simple effective alternative exists, as we will demonstrate. Further, the focus of the
paper is on how the off-the-shelf utility of boosting algorithms which greatly contributes to their
importance can be carried over to CCPF estimation in a straightforward manner. Regularization and
cost-optimization boosting algorithms are outside the scope of this paper.
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2. Boosted Classification Trees Do Not Estimate Conditional Class Probabilities

We now demonstrate, by means of simulations, how boosting with classification trees fails to es-
timate the CCPF while at the same time performing well in terms of the classification criterion,
namely, misclassification error.

We introduce customary notation. We are given training data x1, ...,xn and y1, ...,yn where each
xi is a d−dimensional vector of predictors and yi ∈ {−1,+1} is the associated observed class label.
To justify generalization, it is usually assumed that training data as well as any test data are iid
samples from some population of (x,y) pairs.

We will consider the two boosting algorithms LogitBoost (Friedman et al., 2000) and (discrete)
AdaBoost. AdaBoost (Freund and Schapire, 1996) is the most common implementation of boosting.
The algorithm is as follows. First let F0(xi) = 0 for all xi and initialize weights wi = 1/n for i =
1, ...,n. Then repeat the following for m from 1 toM:

• Fit the classifier gm to the training data using weights wi where gm maps each xi to -1 or 1.
• Compute the weighted error rate εm ≡ ∑n

i=1wiI{yi $= gm(xi)} and half its log-odds, αm ≡
1
2 log

1−εm
εm
.

• Let Fm = Fm−1+αmgm.
• Replace the weights wi with wi ≡ wie−αmgm(xi)yi and then renormalize by replacing each wi
by wi/(∑wi).

The final classifier is 1 if FM > 0 and -1 otherwise. It has been observed repeatedly that the
performance of the procedure, with respect to misclassification error, is quite insensitive to the
choice of M and tends to result in small error rates (relative to competing methods) across a wide
range of applications, especially in high dimensions. In many real examples, large values ofM work
very well.

Motivated by analogies between AdaBoost and additive logistic regression, Friedman et al.
(2000) proposed a connection between the score function Fm(x) and a logistic regression model.
They suggest that an estimate pm(x) of the CCPF p(x) can be obtained from Fm through an (essen-
tially) logistic link function:

pm(x) = pm(y= 1|x) =
1

1+ e−2Fm(x) . (1)

In fact, using this link function it can be shown that the “exponential loss” of AdaBoost can be
mapped to a scoring rule on the probabilities similar to a maximum likelihood criterion (Buja et al.,
2006). From this perspective, each iteration of boosting uses the current estimates of the probabili-
ties to minimize this criterion in a stagewise manner.

The view of boosting as a form of logistic regression and thus as an estimator of the CCPF
has given rise to much research since its publication. It has been the basis for recent work on
choosing stopping rules so as to not overfit probabilities (Dettling and Buhlmann, 2003) as well
as efforts to establish consistency using regularization (Bickel et al., 2006; Jiang, 2004; Lugosi and
Vayatis, 2004). Furthermore, in their seminal article, Friedman et al. (2000) introduced LogitBoost,
which directly minimizes the negative Bernoulli log-likelihood in a stagewise manner, instead of
the exponential loss of AdaBoost. This is the prevailing reason why LogitBoost is widely thought
to be a better estimator of the CCPF. LogitBoost is the second algorithm we will examine in our
simulations.

413



MEASE, WYNER AND BUJA

The statistical view that casts the outputs from boosting classification trees as estimates of the
CCPF poses no problem for the purpose of median classification. The symmetry of the chosen link
functions implies that thresholding pm at 1/2 amounts to thresholding Fm at 0. Used in this way,
boosting provides excellent classification rules that are quite insensitive to the number of iterations
M. However, as we will see in the following simulations, the idea that boosting classification trees
can be used to estimate conditional probabilities is questionable. While in most instances there is
little to no overfitting with respect to misclassification error (i.e., median estimation), with respect
to probability estimation overfitting is likely and often very pronounced. This sheds doubt on the
idea that the success of boosting is due to its similarity to logistic regression, and research motivated
by this connection, while insightful in its own right, is most likely mistaken if it claims to throw
light on boosting.

In all our experiments the base learners will be 8-node trees, as in Friedman et al. (2000), unless
otherwise noted. The two exceptions are one simulated data set for which we will consider stumps
in addition to 8-node trees for sake of comparison, and one large data set for which we use 210-
node trees. The AdaBoost algorithm we use is described above, and the classification trees are
constructed using the function “Rpart” in the R software package (http://www.r-project.org/). The
probabilities are obtained by mapping the resulting score Fm(x) through the link (1) to produce the
CCPF estimate pm(y = 1|x). We will refer to this procedure as P-AdaBoost. We will use Dettling
and Buhlmann’s (2003) implementation of LogitBoost with two minor modifications to the source
code to allow the function Rpart to fit 8-node decision trees instead of stumps.

2.1 A 2-dimensional Circle Model

For our first simulation, we consider the domain of X to be the square [0,50]2 and construct level
curves of p(x) to be concentric circles with center (25,25). We let

p(x) = p(y= 1|x) =






1 r(x) < 8
28−r(x)
20 8≤ r(x) ≤ 28

0 r(x) > 28

where r(x) is the distance from x to the point (25,25) in R2. We will call this the 2-Dimensional
Circle model.

The right panel of Figure 1 shows these probabilities for a hold-out sample that is a grid of 2500
evenly spaced points on [0,50]2. The points are color-coded such that the white region corresponds
to the subregion of the square where p(x) ≤ 0.1. The pink subregion is where 0.1 < p(x) ≤ 0.5,
the red subregion is where 0.5 < p(x) ≤ 0.9 and the black subregion is where p(x) > 0.9. For the
training data, we simulated n= 1000 iid observations with x uniform on [0,50]2 and the class label
y chosen according to p(y = 1|x) above. The training data is shown in the left panel of Figure 1
colored such that points are green plus signs when y= −1 and black plus signs when y= 1.

If the algorithms are stopped early enough, both P-AdaBoost and LogitBoost provide reasonably
accurate estimates of the CCPF. For example, we present in Figure 2 the resulting estimates of pm(x)
at m= 5 iterations. We use the same color coding as Figure 1. It is clear that both P-AdaBoost (left
panel of Figure 2) and LogitBoost (right panel of Figure 2) estimate conditional probabilities that
match the true probabilities (the right panel of Figure 1) fairly well. However, as the number of
iterations increases, both begin to overfit the probabilities. As m increases the resulting conditional
probabilities converge to zero and one for all x, and consequently the estimates of all quantiles
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Figure 1: Training data (left panel) and true probabilities (right panel) for the 2-Dimensional Circle
model with n= 1000.
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Figure 2: Estimated probabilities for P-AdaBoost (left panel) and LogitBoost (right panel) at 5
iterations.
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Figure 3: Estimated probabilities for P-AdaBoost (left panel) and LogitBoost (right panel) at 800
iterations.

converge to the estimate for the median. Figure 3 reveals the conditional probability estimates for
the hold-out sample at m = 800 iterations. At m = 800, the P-AdaBoost algorithm exhibits some
overfitting, as the white and black regions are larger than they should be. LogitBoost in contrast,
has overfit the data more severely at m = 800. For almost all x in the hold-out sample, its estimate
of the CCPF is either greater than 0.9 (black) or less than 0.1 (white). In fact, as m increases further
both P-AdaBoost and LogitBoost eventually produce estimates of the CCPF in which almost all
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probability estimates are near zero or one. Thus, these algorithms eventually provide a complete
overfit of the probabilities. In contrast, the estimate of the median remains relative stable as m
increases and is quite accurate.

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
10
0

20
0

30
0

40
0

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

80
0

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

60
0

10
00

14
00

Figure 4: Histograms of true probabilities (first plot) and estimated probabilities for P-AdaBoost
(second plot) and LogitBoost (third plot) at 800 iterations.

Overfitting the data, which is reflected in the divergence of the probability estimates to zero and
one by both P-AdaBoost and LogitBoost, is particularly pronounced in this example since many
of the true probabilities are actually quite far from zero and one. This is shown in Figure 4. The
left most panel is a histogram of the true CCPF over the 2500 randomly chosen points x that form
the hold-out sample. The middle and right most panels are the histograms of the estimated CCPF
for P-AdaBoost and LogitBoost respectively, again at 800 iterations, on the hold-out sample. It
is clear, in the case of LogitBoost, that for almost every x the estimated CCPF is greater than 0.9
or less than 0.1. In contrast, the true CCPF is much more spread out. The histogram of the esti-
mated probabilities for P-AdaBoost exhibits the same extremal clumping, although not as severely
as LogitBoost.

2.2 A 10-dimensional Model

Next we borrow a model first introduced in Friedman et al. (2000) that reveals the same pattern
of overfitting and the same divergence of the CCPF. This example demonstrates how overfitting is
possible in cases where the Bayes error rate is near or even equal to zero.

For the simulation, we sample n observations of the 10-dimensional vector x generated iid from
N10(0, I) (we call this the 10-Normmodel). The CCPF is again the conditional probability that y= 1
given x (which we denote p(x)) and is defined as follows:

log(
p(x)

1− p(x)
) = γ[1− x(1) + x(2)− x(3) + x(4)− x(5) + x(6)]

6

∑
j=1

x( j) (2)

where the superscripts denote the components of the vector. As γ increases the Bayes error rate
decreases. We begin with γ = 10, which mimics the simulation in Friedman et al. (2000) exactly.
With γ = 10 the Bayes error rate is only 3%. When γ = 0.5 the noise level in the model is higher
and the Bayes error rate climbs to 22%.

Since these simulations are in ten dimensions instead of two, it is difficult to display the over-
fitting of the probabilities graphically as in the previous example. Instead we consider some quan-
titative measures for the accuracy of probability estimates. There is no single, established method
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for measuring the performance of class probability estimators (see Zadrozny and Elkan (2001) for
a discussion). When simulating from models with known parameters, there are many choices. We
choose the following loss functions which all provide a penalty depending on the extent to which
the estimate of the probability p̂ diverges from the true probability p = p(x) on a hold-out sample
x∗1, ...,x∗n∗ .

• Squared Loss:
n∗

∑
i=1

[p(x∗i )− p̂(x∗i )]
2 (3)

• Log Loss:

−
n∗

∑
i=1

[p(x∗i ) log(p̂(x∗i ))− (1− p(x∗i )) log(1− p̂(x∗i ))] (4)

• Exponential Loss:

n∗

∑
i=1

[
p(x∗i )

√
1− p̂(x∗i )
p̂(x∗i )

+(1− p(x∗i ))

√
p̂(x∗i )

1− p̂(x∗i )

]
(5)

This last scoring function is the population analogue of the exponential loss of AdaBoost when
composed with the link (1) suggested by Friedman et al. (2000) as pointed out by Buja et al. (2006).
The log loss is the population version of the negative log likelihood of the Bernoulli model. For
the simulations we choose a hold-out sample with n∗ = 2500 drawn from the same distribution as
the training data. Note, however, that since both log loss and exponential loss are unbounded, we
threshold p̂ so that it always lies between 0.05 and 0.95 before computing these two loss functions.
This prevents a few conditional probability estimates that are close to zero or one from dominating
the loss. This truncation will become more important in Section 3.

The four plots in Figure 5 display the values of misclassification error, squared loss, log loss
and exponential loss averaged over the hold-out sample for the 10 dimensional normal (10-Norm)
model given by Equation (2) with n= 500 (and γ= 10). The large black dot at zero iterations is the
loss occurred by estimating all probabilities by the marginal sample proportion in the training data
or analogously by the majority class in the training data for misclassification error. P-AdaBoost is
represented by the black line and LogitBoost by the blue line. The red and green lines represent the
performance of JOUS-Boost, that is, AdaBoost combined with over/under-sampling and jittering,
as will be described in Sections 3 and 4. The graph for misclassification error depicts the trademark
features of boosting algorithms. There seems to be little or no overfitting and the error curve reflects
a general decreasing trend as more and more iterations are performed. The classifiers continue to
improve their performance on hold-out samples even as the number of iterations increase beyond
the number required to fit the training data perfectly (that is, to achieve zero misclassification error
on the training data). Friedman et al. (2000) also observed this trend; however, they did not examine
any measures of performance with respect to the probability estimation. From the other three plots
that graph the performance of the CCPF estimator, we can see that all three of the measures display a
generally increasing pattern, implying that both of the boosting algorithms overfit the probabilities,
even though they do not overfit with respect to out-of-sample misclassification error. Figure 6 shows
that this pattern becomes even more pronounced when the value of γ is decreased from 10 to 0.5,
which increases the Bayes error rate from 0.03 to 0.22.
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Figure 5: Misclassification error, squared loss, log loss and exponential loss for the 10-Norm model
with n = 500 and γ = 10. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes):
LogitBoost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost,
under-sampled.

The observed divergence of the probability estimates to extreme values is a consequence of
the fact that the span of the space of weak learners (8-node trees in this case) is rich enough to
separate the two classes completely. This is always the case when the algorithms use all possible
classification trees of a certain depth defined on the training data. As the training set grows, the
space of weak learners grows (since they are data defined), allowing every point in the training
set to be correctly classified. This effect holds even if the trees are restricted to a depth of 2 (so-
called stumps), although the number of iterations required is typically a lot larger. More discussion
of separation with boosting and a proof that boosted stumps will eventually separate all the data
(for the case of a single predictor) can be found in Jiang (2000). The only condition needed for
the separability is that at least one of the predictors assumes unique values for all points. For a
continuous predictor this will occur with probably one, but for the case of all categorical predictors
separation may not be possible.

As a consequence of this separability, as the number of boosting iterations increases, the scores
F(xi) for which yi = +1 tend towards +∞, and scores for which yi = −1 tend toward −∞. This
occurs because the exponential loss (or negative log likelihood in the case of LogitBoost) is mini-
mized at these limiting values. On hold-out samples we observe that when y= +1, boosting usually
returns a very large value for F , thus resulting in a correct classification when the threshold for F
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Figure 6: Misclassification error, squared loss, log loss and exponential loss for 10-norm model
with n = 500 and γ = 0.5. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes):
LogitBoost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost,
under-sampled.

is zero. The analogue is true for observations for which y = −1. The effectiveness of boosting for
classification problems is not in spite of this phenomenon, but rather due to it. The fact that the
absolute values of Fm grow without bound as m increases does not necessarily lead to an over-fit
with regard to misclassification error because the absolute value is irrelevant to a median-classifier;
only the sign matters.

If boosting is to be used as a probability estimator or a quantile classifier by thresholding at
a value other than zero (as prescribed by a link such as that of Equation (1)), then the absolute
value of Fm does matter. Boosting will eventually estimate p(x) by either 0 or 1. The specific form
of the monotonic link function is irrelevant, so long as it ascends from zero to one, because the
absolute value of Fm is largely a function of m rather than a reflection on the true class probability.
We illustrate this graphically by tracing the values of Fm for AdaBoost in our last simulation for
the points in the hold-out sample for which the true CCPF is between 0.7 and 0.8. Using the link
function in Equation (1) we can compute that the fitted values of Fm for these points should ideally
lie between 0.42 and 0.69. However, in Figure 7 we see that the median of Fm for the hold-out points
with true p between 0.7 and 0.8 has a general linear trend, and by m= 800 iterations is greater than
6, corresponding to a p(x) greater than 0.99999. Without the thresholding at 0.95 and 0.05 the
overfitting caused by such extreme probabilities would be even more pronounced than displayed in
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the plots. This unbounded linear growth of the score function Fm suggests that we can obtain any
estimate greater than 1/2 for the CCPF at these points by simply choosing the appropriate stopping
timeM. The link function is irrelevant.
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Figure 7: Median(Fm(x) : 0.7≤ p(x) ≤ 0.8)

As mentioned earlier, the realization that boosting often overfits the CCPF but not the median
value of the CCPF has many important implications. It brings into question whether it is right to
attribute the success of boosting to its similarity to logistic regression. Furthermore, the practical
work that has arisen from this theoretical view of boosting may be misguided. For instance, stop-
ping rules that are based on cross-validation using a maximum likelihood criterion are questionable.
In fact, Dettling and Buhlmann’s version of LogitBoost, which was modified for use in the previous
simulations, has the option of employing such a stopping rule. Interestingly the authors themselves
remark that for gene expression applications, the maximum likelihood criterion indicated that stop-
ping should be implemented for someM < 100, but they observe that early stopping does not seem
to provide any significant advantages for classification and “most often yields slightly worse results”
(Dettling and Buhlmann, 2003).

Before leaving this section we should point out that there do exist cases in which overfitting of
the CCPF does not appear to occur (at least not for m ≤ 800). As discussed above, the probability
estimates from boosting will necessarily eventually diverge to zero and one. This is true as long
as the space of weak learners is allowed to increase in complexity with the sample size. However,
the extent to which this divergence causes overfitting depends on the true probabilities and the size
of the training data. In fact, the original simulation by Friedman et al. (2000) used a large data set
(n = 5000) and γ = 10, implying a Bayes error rate of 0.03. With these values for the parameters,
there does not seem to be substantial overfitting of the probabilities (by m = 800). To see this,
consider the plots in Figure 8. The success in the problem can be attributed to the large sample
size, the moderate number of dimensions (10) and the low Bayes error rate (0.03). Because the
true probabilities are practically zero or one, the large number of training points in few dimensions
allows for very accurate estimation of the true CCPF values that happen to clump near zero and one.

2.3 Simulations under Greater Uncertainty

It is quite possible that overfitting of the CCPF occurs even with a large sample of training data,
namely, when either 1) the Bayes error is high, or 2) the number of dimensions is large, or 3) the
decision boundaries are very complex. In the 10-Norm model we can create an example with higher
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Figure 8: 10-Norm model with γ = 10 (Bayes error 0.03) and n = 5000. Black (Short Dashes):
P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-Boost, over-
sampled. Green (Solid): JOUS-Boost, under-sampled.

Bayes error by lowering γ. Figure 9 displays the results for the 10-Norm simulation with n= 5000
and γ = 0.5, corresponding to a Bayes error of 0.22. Here we see that LogitBoost clearly overfits
the probabilities, although P-AdaBoost does not, at least not by m= 800 iterations.

Figure 10 shows a simulation from the model

p(x) = 0.03+0.94 I
{

d

∑
j=1

x( j) > 0

}
(6)

in d = 1000 dimensions. We refer to this as the 1000-dim model. The Bayes error rate is 3%.
We chose a sample of size n = 5000. Note that both the sample size and the Bayes error rate
match those used in original simulation by Friedman et al. (2000) with the 10-Norm model. Our
experiments show that both P-AdaBoost and LogitBoost overfit the probabilities from the outset—
there is no early stopping point which improves the fit. In contrast, the rate of misclassification
drops continuously as the number of iterations increases, and there is no evidence of overfitting.
Once again, the behavior we observe conflicts with the logistic regression view of boosting.

In cases such as these, a natural question to ask is whether the overfitting with respect to the
probabilities might be avoided by choosing a weaker set of base learners, such as stumps instead
of the 8-node trees. In fact, the logistic regression view of boosting suggests stumps are particu-
larly attractive for a model in which the Bayes decision boundary is additive, as is the case for the
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1000-dim model considered in the previous paragraph. The reasoning is that since stumps involve
only single predictors, the boosted stumps in turn yield an additive model in the predictor space.
Discussion of this can be found in Hastie et al. (2001) on pages 323-324 and in Friedman et al.
(2000) on pages 360-361. Despite this, it can be observed in Figure 11 that using stumps does not
eliminate the overfitting problem for the 1000-dim simulation model in the previous paragraph. Just
as we observed in Figure 10 with the 8-node trees, the squared loss, log loss and exponential loss for
the stumps all begin increasing with the very first iteration and at no point during the 800 iterations
even match the majority vote classifier represented by the solid black dot at iteration zero. The use
of stumps instead of 8-node trees in this case slows the overfitting, but by no means produces a
useful algorithm for estimation of the CCPF. Further, the first plot in Figure 11 also reveals that the
resulting classification rule after 800 iterations is not quite as accurate as with the 8-node trees used
in Figure 10.
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Figure 9: 10-Norm model with γ = 0.5 (Bayes error 0.22) and n = 5000. Black (Short Dashes):
P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-Boost, over-
sampled. Green (Solid): JOUS-Boost, under-sampled.

Finally, from the realization that boosting does not provide reliable estimates of quantiles other
than the median, we conclude that there is a problem when attempting to use boosting for classifi-
cation if the misclassification costs of the two classes are unequal, or if the base rate of the training
data differs from that of the population of interest as discussed previously. In what follows we ad-
dress the question of how to use boosting to estimate quantiles other than the median in order to
provide solutions to these problems.
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Figure 10: 1000-dimmodel (Bayes error 0.03) with n= 5000. Black (Short Dashes): P-AdaBoost.
Blue (Long Dashes): LogitBoost. Green (Solid): JOUS-Boost, under-sampled.

3. Classification With Unequal Costs

Symmetric 0-1 loss is historically motivated by a supposition (previously common in AI, not in
statistics) that there always exists a “true” class label, that is, the class probability is either 0 or 1.
Hence the goal is always perfect classification, and 0-1 loss is a reasonable measure. In practice,
however, it is common to find situations where unequal loss is appropriate and cost-weighted Bayes
risk should be the target.

It is an elementary fact that minimizing loss with unequal costs is equivalent to estimating the
boundaries of conditional class-1 probabilities at thresholds other than 1/2. We outline the textbook
derivation, drawing intuition from the Pima Indians Diabetes Data of the UCI ML Database: Let
p(x) = P[Y = +1|x] and 1− p(x) = P[Y = −1|x] be the conditional probabilities of diabetes (+1)
and non-diabetes (−1), respectively, and assume the cost of misclassifying a diabetic is 1−c= 0.90
and the cost of misclassifying a non-diabetic is c = 0.10. (The benefit of scaling the costs to sum
to 1 will be obvious shortly.) The following consideration is conditional on an arbitrary but fixed
predictor vector x, hence we abbreviate p = p(x). The risk (=expected loss) of classifying as a
diabetic is (1− p)c and the risk of classifying as a non-diabetic is p(1− c). The cost-weighted
Bayes rule is then obtained by minimizing risk: Classify as diabetic when (1− p)c < p(1− c) or,
equivalently, c < p, here: 0.1 < p, which is what we wanted to show. It is a handy convention to
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Figure 11: 1000-dim model (Bayes error 0.03) with n= 5000 using stumps instead of 8-node trees.
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid):
JOUS-Boost, under-sampled.

scale costs so they add up to 1, and hence the cost c of misclassifying a negative (−1) equals the
optimal threshold q on the probability p(x) of a positive (+1).

The previous discussion implies the equivalence between the problem of classification with
unequal costs and what we call the problem of quantile classification, that is, estimation of the
region p(x) > q in which observations are classified as +1. Most classifiers by default (AdaBoost
included) assume equal costs, c= 1−c= 0.5, which implies that they aremedian-classifiers: p(x) >
q= 1/2.

3.1 Over/Under-Sampling

Since boosting algorithms are very good median classifiers, one solution is to leave the boosting
algorithm as is and instead tilt the data to force the q-quantile to become the median. Simple
over/under-sampling, also called stratification, can convert a median classifier into a q-classifier as
follows:

Over/under-sampled Classification:

1. Let N+1 and N−1 be the marginal counts of labels+1 and−1. Choose k+1,k−1 > 0 for which
k+1
k−1 = N+1

N−1
/ q
1−q .
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2. Select k+1 observations from the training set for which yi = 1 such that each observation has
the same chance of being selected.

3. Select k−1 observations for which yi = −1 such that each observation has the same chance of
being selected.

4. Obtain a median classifier from the combined sample of k+1+ k−1 points. Assume its output
is a score function Fm(x) such that Fm(x) > 0 estimates p(x) > 1/2.

5. Estimate x as having p(x) > q if Fm(x) > 0.

Note here that for k±1 < N±1 (i.e., under-sampling) the selection can be done by random sam-
pling with or without replacement, and for k±1 > N±1 (i.e., over-sampling) the selection can be
done either by sampling with replacement or by simply augmenting the data by adding replicate
observations.

For the reader’s convenience, we briefly give the justification for this re-weighting/re-sampling
scheme. It can be inferred from Elkan (2001). We work conveniently in terms of populations/distri-
butions as opposed to finite samples. Let X be the predictor random vector andY the binary response
random variable with values in {+1,−1}. Let further

p(x) = P[Y = +1|x ] ,

π = P[Y = +1] ,

f+1(x) = P[x |Y = +1] ,

f−1(x) = P[x |Y = −1] ,

which are, respectively, the conditional probability of Y = +1 given X = x, the unconditional prob-
ability of Y = +1, and the conditional densities of X = x given Y = +1 and Y = −1. The densities
f±1(x) describe the distributions of the two classes in predictor space. Now the joint distribution of
(X ,Y ) is given by

p(y= +1,x) = f+1(x)π , p(y= −1,x) = f−1(x)(1−π) ,

and hence the conditional distribution of Y = 1 given X = x is

p(x) =
f+1(x)π

f+1(x)π+ f−1(x)(1−π)
,

which is just Bayes theorem. Equivalently we have

p(x)
1− p(x)

=
f+1(x)π

f−1(x)(1−π)
,

or
p(x)

1− p(x)
/

π
1−π

=
f+1(x)
f−1(x)

. (7)

Now compare this situation with another one that differs only in the mix of class labels, call them π∗

and 1−π∗, as opposed to π and 1−π. Denote by p∗(x) the conditional probability of Y = 1 given
X = x under this new mix. From Equation (7) it is obvious that p(x) and p∗(x) are functions of each
other, best expressed in terms of odds:

p∗(x)
1− p∗(x)

=
p(x)

1− p(x)
· 1−π

π
· π∗

1−π∗
.
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Obviously thresholds q on p(x) and q∗ on p∗(x) transform the same way. If π/(1−π) is the original
unconditional ratio of class labels, we ask what ratio π∗/(1−π∗) we need for mapping the desired
q to q∗ = 1/2 or, equivalently, q/(1−q) to q∗/(1−q∗) = 1. The answer is given by the condition

1 =
q∗

1−q∗
=

q
1−q

· 1−π
π

· π∗

1−π∗
.

Solving for π∗/(1−π∗), the desired marginal ratio of class labels is

π∗

1−π∗
=

π
1−π

/
q

1−q
,

which justifies the algorithm above.

3.2 Difficulties With Over- and Under-Sampling

In principle, both the over- and under-sampled boosting algorithms should be effective q-classifiers
for applications in which standard boosting is an effective classifier. However, there are some diffi-
culties with each.

The problem with under-sampling is straightforward: a portion of data from the minority class is
not used and consequently the effective sample size is smaller than the actual number of instances in
the training data. For training data with a large number of observations, this may not be problematic.
However, for small data sets or cases in which the desired quantile is close to zero or one, this can
pose difficulties. In such cases, over-sampling may be preferable, although there have been attempts
at more elaborate under-sampling techniques which use all the data (Chan and Stolfo, 1998).

Over-sampling has a less obvious problem that is particular to boosting and tends to show up
after a large number of iterations. The algorithm is an effective q-classifier after a small number
of iterations; however, just as with estimating probabilities using the link function, as the number
of iterations increases it tends to revert to a median classifier (p(x) > 1/2). The reason for this
limiting behavior has to do with the fact that the augmented training set includes many replicates
of the same (x,y) pair. As boosting re-weights the training samples, the tied points all change their
weights jointly, and their multiplicity is invisible in the iterations because only the sum of their
weights is visible. In effect, boosting with over-sampled training data amounts to initializing the
weights to values other than 1/n, but nothing else. For increasing numbers of iterations, the effect
of the initial weights diminishes and disappears in the limit.

For illustration we return to the two-dimensional circle example using a sample size of n= 1000.
We will attempt to estimate the quantile q = 0.9 with over-sampled AdaBoost by augmenting the
training data with 8 more replicates of each xi for which yi = −1 (k+1 = N+1 and k−1 = 9N−1). The
left panel of Figure 12 shows the estimate of this quantile on the hold-out sample after 50 iterations.
It appears to be a reasonable estimate of the true quantile which the reader should recall is given
by the boundary of the red and black in the right panel of Figure 1. However, the middle panel of
Figure 12 shows the estimate for the same simulation after 1000 iterations. In this plot it is clear
that the circle has grown larger and has begun to revert back to a median classifier.

One solution to this problem is to add a small amount of random noise to the predictor x so that
the replicates are not duplicated. While this jittering does add undesirable noise to the estimates of
the level curves of the function p(x), the amount of noise needed to alleviate this problem is not
large and will only shift the boundary of the Bayes rule in the predictor space by a small amount.
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Figure 12: Estimates of the q= 0.90 quantile for the circle example. Left panel is m= 50, middle
panel is m= 1000, and right panel is jittering applied for m= 5000.

We have achieved good results by adding iid uniform (−νσ j,νσ j) noise to each of the d predictors
where σ j is the standard deviation for the jth predictor in the data set and ν is a tuning parameter
that can be chosen to optimize performance. Good values will depend on the size of the training
data, sample size, the number of dimensions, noise level, etc. Also, if desired one could consider
using more complex procedures to break ties, such as the “SMOTE” algorithm (Chawla et al., 2002,
2003) described before.

As mentioned earlier, we use the acronym “JOUS-Boost” for the combination of over/under-
sampling and jittering.

We note that for our procedure we only add noise to the values in the training data for which
over-sampling creates replication. For instance, to estimate the q= 0.9 quantile in the circle exam-
ple, the augmented data contains nine instances for every observation from the original training data
for which y = −1. To eight of these nine we add the iid noise and leave the ninth unchanged. No
noise is added to the observations for which y= +1, as none are replicated in the augmented data.
In this way the augmented data contains exactly one copy of the original training data.

The third panel in Figure 12 shows the estimate of q = 0.9 for this same simulation after m =
5000 iterations with the noise added as described using ν = 1/4. The algorithm still appears to be
estimating the q= 0.9 quantile even with this large number of iterations and even with the training
error on the augmented data set having been zero for the last 1000 of the 5000 total iterations. Note
that while the training data does contain a number of +1’s outside this grey circle (left panel of
Figure 1), the interpolation on these points is so extremely local that it affects only a very few points
in our hold-out sample. This gives insight into why boosting classification trees can be an effective
classifier in noisy environments despite fitting all the training data completely. From a probabilistic
point of view, the training data has zero measure with respect to the population. More discussion of
this phenomenon can be found in Mease and Wyner (2007).

4. From a q-Classifier to a Probability Estimator

We have discussed and illustrated how a median finder like AdaBoost can be converted to a q-
classifier by under-sampling or over-sampling and jittering the data. However, if estimation of the
CCPF is the end goal, it is still necessary to further convert the q-classifier to an estimator of the
conditional class probabilities. We next present a simple general algorithm to do just that. That is,
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the following procedure can be used to produce an actual estimate p̂(x) for the CCPF p(x) from a
range of q-classifiers.

First a quantization level δ > 2 is fixed. Next, q-classification is carried out on the data for a
range of quantiles q = 1/δ,2/δ, ...,1− 1/δ. For each q and every x this provides an estimate of
I{p(x) ≥ q} which we will denote as D̂q(x) ∈ {0,1}. While it is clear that I{p(x) ≥ q} is monoton-
ically decreasing in q, the estimates D̂q(x) will not generally be monotonic, especially when p(x)
is close to q. Thus, to produce an estimate of p(x) from the sequence of quantile-based estimates
D̂q(x), monotonicity of the level sets must be achieved by brute force. One solution is to begin with
the median D̂0.5(x). The algorithm is as follows.

• If D̂0.5(x) = 1 then let p̂(x) = min{q > 0.5 : D̂q(x) = 0}− 1
2δ . If no such q is found take

p̂(x) = 1− 1
2δ .

• If D̂0.5(x) = 0 then let p̂(x) = max{q < 0.5 : D̂q(x) = 1}+ 1
2δ . If no such q is found take

p̂(x) = 1
2δ .

5. Performance Comparisons

In this section we seek to quantitatively compare the CCPF estimation performance of JOUS-Boost
to some competing methods. The competing methods we will consider are LogitBoost, P-AdaBoost,
nearest neighbor 10, Random Forests and classification trees from Rpart. We will compare perfor-
mance on the simulated data sets presented earlier as well as four real data sets taken from the UCI
ML Database.

We note that the purpose of these comparisons is not to argue that we have derived a superior
method of estimating probabilities/quantiles using boosting. Rather, as discussed in Section 1.2, our
purpose is to illustrate that the overfitting of probability/quantile estimates for regular, off-the-shelf
boosting is not a problem inherent in boosting, but rather a consequence of believing that applying
a link function to the scores should be used to recover probabilities. Most of the difficulty with
probability/quantile estimation is solved by simply adopting the more modest view of boosting as a
classifier and relinquishing the view of boosting as a probability estimator. Our experiments reveal
that simple over- or under- sampling (which is the basis for our algorithm) solves the probabil-
ity/quantile overfitting problems and produces a competitive algorithm. If we were instead to make
an argument for the superiority of the algorithm, there are a large number of variations of boost-
ing, some of which were mentioned in Section 1, which we would need to consider as competitors.
These include direct cost-optimization boosting methods as well as regularizing boosting by slowing
the learning rate or restricting the flexibility of the weak learners as in the case of decision stumps
mentioned earlier.

5.1 Implementation Details

We will use the algorithm in Section 4 to produce an estimate of the CCPF from JOUS-Boost.
Specifically, we will apply this algorithm with δ = 10. Consequently our estimate p̂(x) for p(x) at
any x will be one of {0.05,0.15, ....,0.95}. This will of course involve performing AdaBoost on
nine artificial training data sets. For under-sampling we will create these data sets for each value
of q by sampling without replacement from the original training data using k+1 = (1− q)N+1 and
k−1 = qN−1 (rounded appropriately). The one exception is q = 0.5 for which we simply leave the
data unmodified, that is, k+1 =N+1 and k−1 =N−1. For over-sampling we will create these data sets
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by replicating observations in the training data using k+1 = δ(1−q)N+1 and k−1 = δqN−1, except
again in the case where q = 0.5 for which we use the original training data. For over-sampling
we will add noise as described earlier to any artificially replicated values. Note that one attractive
feature of this scheme is that for classification at the 1/2 quantile, the resulting probabilities by
construction give rise to a classification rule equivalent to that of AdaBoost on the original data.

To minimize disagreement between the nine quantile estimates we will restrict the sampling
such that any (artificial) data set with a smaller value of N+1 than that of a second (artificial) data set
must not contain any observations for y= +1 which are not also in the second data set. The same is
true for N−1 and y = −1. For example, the observations with y = −1 in the data set for estimating
q= 0.6 are a proper subset of those in the data set for q= 0.7. Also for the purposes of minimizing
the disagreement across the different values of q, when over-sampling we will “recycle” the noise
across the different values of q; any observation that appears with noise added to it in more than one
of these artificial data sets will have the same value for the noise added to it in all data sets.

The tuning parameter ν will be fixed at a value of 1 throughout the remainder of this article. We
have found this to be a fairly “medium” noise level. For the data sets we considered for which the
misclassification error and Bayes error are small, values of ν smaller than 1 work better. Likewise,
for the data sets for which the misclassification error or Bayes error are larger, values of ν larger than
1 work better. We choose not to tune this parameter so as to provide for a more fair comparison with
P-AdaBoost and LogitBoost; however, in practice tuning this parameter through cross-validation
would be desirable.

5.2 Simulated Data Sets

We begin by examining the performance for the five simulated data sets presented earlier. These
are the four simulations based on the 10-Norm model, first introduced by Friedman et al. (2000)
and defined in (2), and the 1000-dimensional simulation defined in (6). For each of these the over-
sampling and under-sampling algorithms using AdaBoost as described above are shown on the
corresponding plots in Section 2 by the red and green curves respectively.

The original simulation by Friedman et al. (2000) used n = 5000 and γ = 10. The plots in
Figure 8 display the misclassification error and our probability scoring functions averaged over the
hold-out sample. The under-sampled AdaBoost algorithm performs better than LogitBoost, which
exhibits overfitting around 200 iterations, but it does not perform as well as P-AdaBoost. The over-
sampled AdaBoost algorithm has the worst performance of the four; however, if the noise parameter
ν is set at a smaller value, its performance in this simulation is superior to that of the other three.
Again, the amount of noise ν should be regarded as a tuning parameter, but we have kept it fixed
throughout these experiments. Note that the fact that P-AdaBoost does not suffer from overfitting
in this simulation can be attributed to the low Bayes error, large sample size and moderate number
of dimensions as mentioned earlier.

In Figure 9 we saw that when γ was decreased to 0.5 the LogitBoost algorithm severely over-
fit the probabilities, but P-AdaBoost did not. The over- and under-sampled AdaBoost algorithms
perform well in this simulation with the under-sampled AdaBoost algorithm being comparable to
P-AdaBoost and over-sampling only slightly worse. Again, by using a smaller value for ν, the
over-sampled AdaBoost can be tuned to outperform the others in this simulation.

When the sample size is decreased from 5000 to 500 for this model, Figures 5 and 6 show that
both P-AdaBoost and LogitBoost overfit the probabilities more and more as the iterations are in-
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creased. However, the under- and over-sampled AdaBoost algorithms actually appear to asymptote
to their minima. They provide stable probability estimation regardless of the number of iterations,
mimicking the behavior of AdaBoost with respect to misclassification error as intended. Similar
behavior can be observed in the plots in Figure 10 for the 1000-dimensional example with respect
to under-sampling. Over-sampling was not performed for this simulation due to computational
limitations.

Tables 1-4 display misclassification error, squared loss, log loss and exponential loss for P-
AdaBoost and LogitBoost as well as the over- and under-sampled AdaBoost algorithms at m= 800
iterations. These tables also give the values for other competing methods for CCPF estimation:
CART, Random Forests and nearest neighbor 10. The implementation of CART is that of the default
classification tree grown by the function Rpart in R. Random Forests are also implemented in R
using the default settings. The Bayes column for misclassification gives the error for the hold-out
sample using the true (unknown) Bayes rule. All results are based on the same training and test sets
in each case. With P-AdaBoost and LogitBoost we continue to threshold all probability estimates
at 0.05 and 0.95 as before when computing log loss and exponential loss (but not squared loss).
This prevents the over- and under-sampled AdaBoost algorithms from gaining an unfair advantage
against overfitting due to their course quantization. We do not include JOUS-Boost in Table 1
because the classification rules for JOUS-Boost are equivalent to AdaBoost by definition.

From these tables it can be seen that the over-sampled and under-sampled AdaBoost algorithms
provide a competitive method for probability estimation for these simulations. Their results are
comparable to that of Random Forests and nearest neighbor 10 and superior to CART. They do not
suffer from the severe overfitting of P-AdaBoost and LogitBoost. Further, even better performance
may be achieved for over-sampling by allowing tuning of the parameter νwhich controls the amount
of noise added to the replicates.

5.3 Real Data Sets

We now consider the two real data sets “Sonar” and “Satimage”. Both of these are from the UCI
ML database and are used in the article by Friedman et al. (2000).

When using real data sets we can no longer use our scoring rules on the probabilities since
the true CCPF is unknown. Instead, we will substitute the value for the true class probabilities in

Simulation Logit- Random Nearest
Name AdaBoost Boost CART Forests Neighbor 10 Bayes

10-Norm(n=500, γ=10) 0.23 0.25 0.39 0.27 0.28 0.03
10-Norm(n=500, γ=0.5) 0.34 0.36 0.38 0.36 0.37 0.24
10-Norm(n=5000, γ=10) 0.10 0.12 0.31 0.16 0.19 0.03
10-Norm(n=5000, γ=0.5) 0.28 0.29 0.40 0.27 0.30 0.22

1000 Dimensions 0.34 0.35 0.50 0.37 0.44 0.03
Sonar 0.11 0.16 0.26 0.15 0.31 -

Sonar w/ Noise 0.22 0.27 0.35 0.21 0.36 -
Satimage 0.06 0.06 0.12 0.06 0.08 -

Small Satimage w/ Noise 0.21 0.20 0.21 0.18 0.18 -
German Credit 0.25 0.25 0.27 0.23 - -
Connect 4 0.22 0.22 0.34 0.24 - -

Table 1: Misclassification Error Comparison
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JOUS JOUS
Simulation (Over- (Under- Logit- Random Nearest
Name Sampling) Sampling) P-AdaBoost Boost CART Forests Neighbor 10

10-Norm(n=500, γ=10) 0.14 0.15 0.20 0.22 0.25 0.17 0.16
10-Norm(n=500, γ=0.5) 0.07 0.07 0.19 0.19 0.12 0.06 0.07
10-Norm(n=5000, γ=10) 0.09 0.06 0.05 0.07 0.19 0.11 0.12
10-Norm(n=5000, γ=0.5) 0.03 0.03 0.03 0.10 0.09 0.03 0.05

1000 Dimensions - 0.18 0.27 0.28 0.23 0.21 0.22
Sonar 0.08 - 0.11 0.16 0.21 0.13 0.20

Sonar w/ Noise 0.15 - 0.22 0.26 0.28 0.17 0.21
Satimage 0.06 0.08 0.06 0.05 0.10 0.05 0.05

Small Satimage w/ Noise 0.15 0.16 0.19 0.20 0.17 0.14 0.15
German Credit - 0.18 0.24 0.22 0.20 0.16 -
Connect 4 - 0.20 0.21 0.21 0.23 0.16 -

Table 2: Squared Loss Comparison

JOUS JOUS
Simulation (Over- (Under- Logit- Random Nearest
Name Sampling) Sampling) P-AdaBoost Boost CART Forests Neighbor 10

10-Norm(n=500, γ=10) 0.49 0.50 0.69 0.75 0.76 0.55 0.54
10-Norm(n=500, γ=0.5) 0.63 0.63 1.04 1.06 0.77 0.61 0.63
10-Norm(n=5000, γ=10) 0.38 0.29 0.25 0.33 0.61 0.43 0.43
10-Norm(n=5000, γ=0.5) 0.53 0.52 0.52 0.77 0.66 0.54 0.57

1000 Dimensions - 0.62 0.93 0.94 0.71 0.68 0.70
Sonar 0.26 - 0.36 0.51 0.65 0.41 0.56

Sonar w/ Noise 0.48 - 0.70 0.80 0.86 0.51 0.60
Satimage 0.21 0.29 0.22 0.21 0.35 0.19 0.19

Small Satimage w/ Noise 0.51 0.49 0.60 0.63 0.52 0.46 0.46
German Credit - 0.55 0.75 0.68 0.59 0.49 -
Connect 4 - 0.59 0.68 0.65 0.65 0.49 -

Table 3: Log Loss Comparison

JOUS JOUS
Simulation (Over- (Under- Logit- Random Nearest
Name Sampling) Sampling) P-AdaBoost Boost CART Forests Neighbor 10

10-Norm(n=500, γ=10) 0.78 0.79 1.12 1.20 1.10 0.85 0.84
10-Norm(n=500, γ=0.5) 0.95 0.94 1.61 1.63 1.12 0.92 0.93
10-Norm(n=5000, γ=10) 0.65 0.53 0.48 0.61 0.92 0.71 0.71
10-Norm(n=5000, γ=0.5) 0.82 0.80 0.80 1.20 0.97 0.83 0.86

1000 Dimensions - 0.92 1.43 1.43 1.02 0.99 1.01
Sonar 0.50 - 0.67 0.88 1.00 0.69 0.85

Sonar w/ Noise 0.79 - 1.14 1.26 1.28 0.81 0.90
Satimage 0.43 0.53 0.46 0.45 0.62 0.41 0.40

Small Satimage w/ Noise 0.85 0.79 0.99 1.03 0.82 0.76 0.77
German Credit - 0.86 1.19 1.08 0.90 0.78 -
Connect 4 - 0.89 1.11 1.06 0.96 0.78 -

Table 4: Exponential Loss Comparison
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Figure 13: Misclassification error, squared loss, log loss and exponential loss for Sonar. Black
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-
Boost, over-sampled.

the hold-out samples with the indicator of whether or not the observed class is one. That is, we
substitute the true probability function p(x) = P[Y = 1|x], which is unknown by 1{y= 1}, which is
observed. With this substitution we can evaluate the loss functions (Equations (3), (4) and (5)) as
before. Note that since all three of the scoring rules we are using are proper scoring rules (Savage,
1973) they are minimized in expectation as a function of p̂ by the true probability p even with this
substitution of the indicator for the probability.

The Sonar data set has 208 observations, d = 60 predictors and two classes. Since there is
no designated test sample, 10-fold cross validation was used. While Figure 13 reveals both P-
AdaBoost and LogitBoost have a general decreasing trend with respect to the probability scoring
rules (excepting the strange jump by LogitBoost right before m = 200), both algorithms clearly
could benefit from not estimating all probabilities with (essentially) zero and one as evidenced by the
superior performance of the over-sampled AdaBoost algorithm. The fact that both LogitBoost and
P-AdaBoost estimate all probabilities with values close to zero or one is reflected in the similarity of
their respective values for squared loss and misclassification error. We did not apply under-sampling
on this data set due to the small number of observations.

The negative effects of overfitting probabilities with P-AdaBoost and LogitBoost are amplified
if we consider artificially adding “label noise.” By label noise we mean that with some probability
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Figure 14: Misclassification error, squared loss, log loss and exponential loss for Sonar with noise.
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted):
JOUS-Boost, over-sampled.

q we randomly change the signs of the class labels in the data set. The plots in Figure 14 show the
results for label noise of q= 0.1 over the same ten fold resamples.

The Satimage data set has a designed training set with n= 4435 observations and a hold-out set
of n∗ = 2000 observations. There are d = 36 predictors. The data set has six classes labelled as 1, 2,
3, 4, 5 and 7. Since we are only dealing with two-class classification for the purposes of this article
we will take one class to be 1 and 7 and the other class to be 2, 3, 4 and 5.

The four plots in Figure 15 show misclassification error, squared loss, log loss and exponen-
tial loss averaged over the designated hold-out sample of n∗ = 2000 for over- and under- sampled
AdaBoost, LogitBoost and P-AdaBoost. Neither P-AdaBoost nor LogitBoost seem to increase as
a result of overfitting probabilities and perform similarly. Over-sampled AdaBoost performs only
slightly better than both P-AdaBoost and LogitBoost, while under-sampled AdaBoost is the worst
of the four, although it is still decreasing somewhat quickly at m= 800.

While P-AdaBoost and LogitBoost seem to perform well for probability estimation on the
Satimage data set, the negative effects of the overfitting can be seen by again adding 10% label
noise. Adding this noise severely diminishes the probability estimation of LogitBoost, although
P-AdaBoost still performs well (not shown). To see the impact of overfitting for P-AdaBoost in
this noisy environment it is sufficient to take a random sample of 1000 from the original 4435
(“Small Satimage”). The corresponding plots are given in Figure 16. Both under-sampling and
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Figure 15: Misclassification error, squared loss, log loss and exponential loss for Satimage. Black
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Red (Dotted): JOUS-
Boost, over-sampled. Green (Solid): JOUS-Boost, under-sampled.

over-sampling continue to perform well on this smaller data set, with under-sampling now being
superior to over-sampling with respect to log loss and exponential loss.

Tables 1-4 also give results at m= 800 iterations for the Sonar and Satimage data sets as well as
the modified versions considered. The JOUS-Boost algorithm outperforms CART, Random Forests
and nearest neighbor 10 on Sonar and is competitive for Satimage.

5.4 Data Sets with Categorical Predictors

Up until this point, we have considered data sets with only continuous predictors. To illustrate that
the overfitting in terms of CCPF estimation with P-AdaBoost and LogitBoost can still occur with
categorical predictors, we now turn our attention to two such data sets from the UCI ML database:
“German Credit” and “Connect 4”. The German Credit data set contains 1000 observations with
20 predictors, 13 of which are categorical and 7 of which are continuous. The Connect 4 data set
contains 67,557 observations with 42 predictors, all of which are categorical. This data set has three
classes so we merged the two classes “loss” and “draw” into a single class.

The results for these two data sets are displayed in Figures 17 and 18. The final results at
m= 800 iterations are also included in Tables 1-4. For German Credit, 10-fold cross validation was
used, while for Connect 4, the data was randomly split into 40,000 training observations and 27,557
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Figure 16: Misclassification error, squared loss, log loss and exponential loss for Small Satim-
age with noise. Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): Logit-
Boost. Red (Dotted): JOUS-Boost, over-sampled. Green (Solid): JOUS-Boost, under-
sampled.

test observations. Also, due to the large size of this data set, we used 210-node trees instead of
8-node trees, as this gave superior classification performance. We considered only under-sampling
for these two data sets. Over-sampling was not used because it is not obvious how to add noise to
categorical predictors.

As can be seen in Figures 17 and 18, both LogitBoost and P-AdaBoost exhibit substantial over-
fitting of the CCPF on these two data sets, while under-sampled AdaBoost shows only a relatively
small amount of overfitting for German Credit and no overfitting for Connect 4. In terms of perfor-
mance, Tables 1-4 show that under-sampled AdaBoost outperforms CART for both data sets, but
that Random Forests is most effective overall.

6. Concluding Remarks

Boosting algorithms such as AdaBoost are known to perform well for classification and are very
resistant to overfitting with respect to misclassification error, even though conditional class prob-
ability estimates eventually diverge to zero and one, implying complete overfit in terms of CCPF
estimation but not classification. With Friedman et al.’s (2000) analysis of boosting in mind, we al-
low that one may still choose to interpret boosting classification trees as additive logistic regression,
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Figure 17: Misclassification error, squared loss, log loss and exponential loss for German Credit.
Black (Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid):
JOUS-Boost, under-sampled.

with the understanding, however, that the probabilities may need to be drastically overfit to obtain
optimal classification. That is, when attempting classification, one may lose the connection with
conditional class probability estimation.

There remains the practical problem of classification in the presence of unequal misclassifica-
tion costs, or equivalently classification at quantiles other than 1/2, or yet equivalently classification
for future base rates that are different from those in the training sample. Viewing AdaBoost or Log-
itBoost as a form of logistic regression may suggest a practice that often leads to poor performance.
If one seeks a quantile other than the median and adopts this view of boosting algorithms, then one
must hope to stop the boosting process early enough that the absolute value of the score function is
not too large relative to the link function evaluated at the quantile of interest, but at the same time
late enough that the boosting process has had ample time to learn the truth. Even if such a stopping
time exists (we have shown examples where it does not), it may be difficult to find.

In contrast, the modest view that boosting produces only median classifiers suggests more ef-
fective modifications to the algorithm in order to obtain quantiles other than the median. One such
modification is based on over/under-sampling with a fix (jittering) to eliminate problems with ties
(here called JOUS-Boost). We have indicated that JOUS-Boost is often more successful through a
number of examples, including some used by Friedman et al. (2000).
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Figure 18: Misclassification error, squared loss, log loss and exponential loss for Connect 4. Black
(Short Dashes): P-AdaBoost. Blue (Long Dashes): LogitBoost. Green (Solid):
JOUS-Boost, under-sampled.

Finally, we have demonstrated that JOUS-Boost classifiers obtained for a grid of quantiles can
be combined to create class probability estimators that perform well with respect to probability
estimation.
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Abstract
Regularization is an approach to function learning that balances fit and smoothness. In practice,
we search for a function f with a finite representation f = ∑i ciφi(·). In most treatments, the ci
are the primary objects of study. We consider value regularization, constructing optimization prob-
lems in which the predicted values at the training points are the primary variables, and therefore
the central objects of study. Although this is a simple change, it has profound consequences. From
convex conjugacy and the theory of Fenchel duality, we derive separate optimality conditions for
the regularization and loss portions of the learning problem; this technique yields clean and short
derivations of standard algorithms. This framework is ideally suited to studying many other phe-
nomena at the intersection of learning theory and optimization. We obtain a value-based variant
of the representer theorem, which underscores the transductive nature of regularization in repro-
ducing kernel Hilbert spaces. We unify and extend previous results on learning kernel functions,
with very simple proofs. We analyze the use of unregularized bias terms in optimization problems,
and low-rank approximations to kernel matrices, obtaining new results in these areas. In summary,
the combination of value regularization and Fenchel duality are valuable tools for studying the
optimization problems in machine learning.
Keywords: kernel machines, duality, optimization, convex analysis, kernel learning

1. Introduction

Given a set of training data {(X1,Y1), . . . ,(Xn,Yn)}, the inductive supervised learning task is to learn
a function f that, given a new X value, will predict the associated Y value. A common framework
for solving this problem is Tikhonov regularization (Tikhonov and Arsenin, 1977):

inf
f∈F

{
n

∑
i=1

v( f (Xi),Yi)+
λ
2
Ω( f )

}
. (1)

In this general form, F is a space of functions from which f must be selected, and v( f (Xi),Yi)
is the loss, indicating the penalty we pay when we see Xi, predict f (Xi), and the true value is Yi. For
a large class of functions F , simply minimizing ∑n

i=1 v( f (Xi),Yi) directly is ill-posed and leads to
overfitting the training data. We restore well-posedness by introducing a regularization term Ω( f )

c©2007 Ryan M. Rifkin and Ross A. Lippert.
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that penalizes elements of f that are too “complex”. The regularization parameter, λ, controls the
tradeoff between finding a function of low complexity and fitting the training data.

A large amount of work (Wahba, 1990; Evgeniou et al., 2000) takes F to be a reproducing
kernel Hilbert space (RKHS) H (Aronszajn, 1950) induced by a kernel function k. In this situation,
we rewrite (1) as

inf
f∈H

{
n

∑
i=1

v( f (Xi),Yi)+
λ
2
|| f ||2k

}
, (2)

indicating that the regularization term is now the squared norm of the function in the RKHS.
Many common algorithms, including support vector machines for classification (Cortes and Vapnik,
1995) and regression (Vapnik, 1998), regularized least squares (Wahba, 1990; Poggio and Girosi,
1990; Rifkin, 2002), and kernel logistic regression (Jaakkola and Haussler, 1999) are instances of
Tikhonov regularization: different loss functions yield different algorithms.1

A consequence of the so-called representer theorem (Wahba, 1990; Schölkopf et al., 2001), is
that the minimizer of (2) will have the form

f (x) =
n

∑
i=1

cik(x,Xi). (3)

In other words, in an RKHS, a function f which minimizes (2) is a sum of kernel functions k(·,Xi)
over the data points. We solve a Tikhonov regularization (or, equivalently, train a predictor) by
finding the coefficients ci. Assuming that the loss function is convex, the minimization of (2) (or
(1)) is tractable.

Defining K as the n× n kernel matrix with Ki j = k(Xi,X j), the regularization penalty || f ||2k
becomes ctKc, the output at training point i is given by f (Xi) = ∑n

j=1 c jk(Xi,X j) = (Kc)i, and we
can rewrite (2) as

inf
c∈Rn

{
n

∑
i=1

v((Kc)i,Yi)+
λ
2
ctKc

}
. (4)

Regularizing in an RKHS is special in that it has a representer theorem: the optimal solution
in an infinite-dimensional space of functions is found by solving a finite dimensional minimization
problem. Although most other function space regularizers do not have similar properties, we may
consider other regularizers as modifications of (4): replacing ctKc with ctc, we obtain ridge re-
gression (Tikhonov and Arsenin, 1977), and replacing it with ∑n

i=1 |ci|, we obtain L1-regularization
(Zhu et al., 2003). In such cases, we are assuming that we are looking for a function of the form
(3) a priori. There is nothing wrong with this, but it should not be confused with the case of RKHS
regularization, where (3) arises naturally from a search for an optimizing function.

In general, an equation like (4) is used as the starting point for thinking algorithmically about
finding c. For example, in a standard development of support vector machines (Cristianini and
Shaw-Taylor, 2000; Rifkin, 2002), one starts with (4) instantiated with the SVM hinge loss
v( f (Xi),Yi) = (1−yi f (Xi))+, introducing slack variables ξi = v( f (Xi),Yi) and constraints to handle

1. Technically speaking, to derive an algorithm such as the classic SVM one also needs an unregularized bias term b:
this issue is discussed in detail later in the paper.
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the non-differentiability of the hinge loss at 0 as well as an unregularized bias term b, yielding a
quadratic program:2

min
c∈Rn,ξ∈Rn,b∈R

1
n ∑

n
i=1 ξi+λcTKc

subject to : Yi
(
∑n
j=1 c jk(Xi,X j)+b

)
≥ 1−ξi i= 1, . . . ,n

ξi ≥ 0 i= 1, . . . ,n.

This program is called the primal problem. In order to expose sparsity in the solution, the La-
grangian dual is taken, yielding the dual problem:

max
α∈Rn

∑n
i=1αi− 1

(2λ)2α
tdiag(Y )Kdiag(Y )α

subject to : ∑n
i=1Yiαi = 0
0≤ αi ≤ 1

n i= 1, . . . ,n.

It is then observed that the dual problem is easier to solve (because of its simpler constraint struc-
ture), and that solutions to the primal can be easily obtained from solutions to the dual.

We propose to take a different approach to Tikhonov regularization, that we believe to be more
fundamental. The approach rests on two ideas.

First, we consider the predicted values yi ≡ f (Xi) = (Kc)i to be the central objects of study, and
write our optimization problems in terms of y. In the case of RKHS regularization with a positive-
definite kernel, the matrix K is typically non-singular (Micchelli, 1986), 3 and we rewrite (4) as a
value regularization:

inf
y∈Rn

{
λ
2
ytK−1y+

n

∑
i=1

v(yi,Yi)

}
.

Although this is a simple transformation, the consequences are far-reaching. Looking at the rewrit-
ten problem, we notice that the kernel matrix K appears only in the regularization—it does not
appear in the loss term. This is intuitive, as the loss function (of course) cares only about the
predicted outputs, not what combination of kernel coefficients generated those predicted outputs.
Additionally, we see that the loss function decomposes into n separate single-point loss functions.
In contrast, if the ci are the primary variables, the loss at each data point is a function of the entire c
vector.

The benefits of value regularization are greatly amplified by the second central idea of this work:
instead of Lagrangian duality, we use Fenchel duality (Borwein and Lewis, 2000), a form of duality
that is well-matched to the problems of learning theory. Although we discuss Fenchel duality in
greater detail below, we present a brief overview here. Consider an optimization problem of the
form:

inf
y∈Rn

{ f (y)+g(y)}. (5)

2. Traditional derivations parametrize the loss function instead of the regularization, with a constantC = 1
2λ , but that is

a minor point.
3. Throughout this paper, when we work with an RKHS regularizer we will generally assume that the kernel function is
positive definite and the points are in general position, implying the existence of K−1. This assumption can be easily
relaxed using pseudoinverses, although the mathematics becomes somewhat more cumbersome.
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Fenchel duality defines a so-called Fenchel dual:

sup
z∈Rn

{− f ∗(z)−g∗(−z)}, (6)

where f ∗,g∗ are Fenchel-Legendre conjugates (definition 4) computed via auxiliary (and by design,
simpler) optimization problems on f and g separately. Convexity of f and g (and some topological
qualifications) ensure that the optimal objective values of (5) and (6) are equivalent, and that any
optimal y and z satisfy:

f (y)− ytz+ f ∗(z) = 0
g(y)+ ytz+g∗(−z) = 0.

Fenchel duality encompasses other notions of duality such as Lagrangian duality and seems to
be a natural concept to apply to regularization problems where f and g each arise from different
considerations—for supervised learning problems, one will come from regularization and the other
from empirical loss.

Elaborating on this idea, Fenchel duality gives us a separation of concerns which is not present
in the Lagrangian approach. The point of formulating an optimization problem such as a quadratic
program is ultimately to derive optimality conditions and algorithms for finding optimal solutions.
For convex optimization problems, all local optima are globally optimal, and we can formulate
a complete set of optimality conditions which the primal and dual solutions will simultaneously
satisfy. These are generally known as the Karush-Kuhn-Tucker (KKT) conditions (Bazaraa et al.,
1993).4 Fenchel duality makes it clear that the two functions f and g, or, in our case, the loss term
and the regularization, contribute individual local optimality conditions, and the total optimality
conditions for the overall problem are simply the union of the individual optimality conditions.
Put differently, using Fenchel duality, we can derive a table for nr regularizations and nl losses,
and immediately combine these to derive optimality conditions for nrnl learning problems. This
idea is obscured by the Lagrangian duality approach to deriving optimality conditions for learning
problems. As an example, for the common case of the RKHS regularizer 12y

tK−1y, we will find that
the primal-dual relationship is given by y = λ−1Kz. This condition is independent of the loss—it
shows up simultaneously in SVM, regularized least squares, and logistic regression.

Value regularization and Fenchel duality reinforce each other’s strengths. Because the kernel
affects only the regularization term and not the loss term, applying Fenchel duality to value regular-
ization yields extremely clean formulations. The major contribution of this paper is the combination
of value regularization and Fenchel duality in a framework that yields new insights into many of the
optimization problems that arise in learning theory.

We present, in Section 3, a primer on convex analysis and Fenchel duality, with emphasis on
the key ideas that are needed for learning theory. We believe that this section provides a sufficiently
self-contained summary of convex analysis to allow a machine learning researcher to apply our
framework to new problems.

In Section 4, we specialize the convex analysis results to Tikhonov value regularizations con-
sisting of the sum of a regularization and a loss term. Section 5 specializes the result further to the
RKHS case and obtains very simple derivations of well-known kernel machines.

Section 6 is concerned with value regularization in the context of L1 regularization, a regular-
ization with the explicit goal of obtaining sparsity in the finite representation. In Section 6.1, we

4. The complete KKT conditions for SVM can be found (among other places) in Rifkin (2002).
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briefly discuss 1-norm support vector machines, and emphasize a key distinction between RKHS
and other regularizations: in RKHS regularization, the ci, which are the expansion coefficients in
the finite representation of the learned function, and the zi, which are the dual variables associated
with the yi in the value regularization problem, are identifiable (z = λ−1c). This is a consequence
of the RKHS regularization, and does not hold for more general regularizations. In Section 6.2, we
present a simpler derivation of the relationship between support vector regression and sparse ap-
proximation, first discovered in Girosi (1998); essentially, the problems are duals, with the width of
the ε-tube in the support vector regression problem becoming the sparsity regularizer in the sparse
approximation problem.

In Section 7, we develop a new view of the representer theorem, in the context of value regular-
ization. The common wisdom about the representer theorem is that it guarantees that the solution
to an optimization problem in an (infinite-dimensional) function space has a finite representation as
an expansion of kernel functions around the training points. While this is certainly true, we gain
additional insights by considering an augmented problem in which the test points also appear in
the regularization, but not in the loss. In the augmented optimization problem the predicted out-
puts at the training points do not change, and the expansion coefficients at the test points vanish—a
representer theorem. This underscores the fact that for supervised learning in an RKHS, induction
and transduction are identical. In the context of transductive or semi-supervised algorithms, the
picture is more complex. There have been several recent articles that turn transductive algorithms
into semi-supervised algorithms via an appeal to the representer theorem. While this is formally
valid, the resulting transductive algorithm is not equivalent to the semi-supervised algorithm, and
the transductive algorithm is perhaps the more “natural” choice. Section 7.1 is devoted to a discus-
sion of this topic.

Recently, there has been interest in “learning the kernel”. In Section 8, we may view this as a
value regularization where the kernel matrix itself is an auxiliary parameter to be optimized. The
value-based formulation is ideal here, because the kernel appears only in the regularization term and
not in the loss term. We first derive a general result that gives optimality conditions for a general
convex penalty F(K) on the kernel matrix. Work to date has considered only the case where F is
0 for some set of semi-definite matrices, and infinite otherwise. Lanckriet et al. (2004) considers a
case where the kernel function is a linear combination of a finite set of kernels; we will see that a
minor modification to their formulation yields a representer theorem and an agreement of inductive
and transductive algorithms. Argyriou et al. (2005) work with a convex set generated by an infinite,
continuously parametrized set of kernel functions. We give proofs of their main results which are
shorter and simpler, and also more general, allowing arbitrary convex loss functions (Argyriou et al.
(2005) requires differentiability).

In Section 9, we show how infimal convolutions, a form of optimization relaxation (see Section
3.4) are useful in learning theory. We first explore the idea of “biased” regularizations, the best-
known example being the unregularized bias term b in the standard formulation of support vector
machines. We show that unregularized bias terms arise from infimal convolutions and that the
optimality conditions implied by bias terms are independent of both the particular loss function
and the particular regularization. For example, including an unregularized constant term b in any
Tikhonov optimization problem yields a constraint on the dual variables ∑zi = 0; this constraint
does not require a particular loss function, or even that we work in an RKHS. More generally, we
can include unregularized polynomial functions or even include an unregularized element of an
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arbitrary convex set. In Section 9.2, we see that the computation of leave-one-out values can also
be viewed as a biased regularization via infimal convolution.

In Section 10, we explore low rank kernel matrix approximations such as the Nyström ap-
proximation, which consists of picking a partition N ∪M of the data, and approximating K with

K̃ =
(
KNN KNM
KMN KNMK−1

MMKMN

)
. In Willams and Seeger (2000), the authors suggest using K̃ in place

of K. Several authors (Rifkin, 2002; Rasmusen andWilliams, 2006) have found empirically that this
works poorly, but that a closely related approach (the subset of regressors method) of constraining
ci to be zero for points not in the subset M works quite well. These two approaches are extremely
closely related mathematically. With value regularization and Fenchel duality, we explore in detail
the relation between these methods. The subset of regressors method is, in some sense, the “natu-
ral” algorithm arising from the low-rank matrix approximation, while the Nyström method makes
an unwarranted identification of the dual variables, z, and the coefficients of expansion in the finite
representation, c.

The framework presented here requires a moderate mathematical investment by the reader. For
this reason, we have organized the paper so that the material on convex analysis (Section 3) can be
digested in several chunks and give a roadmap (Figure 1) to illustrate which sections are accessible
using only a subset of Section 3. Additionally, in Section 3.5, we provide a cheat sheet of key ideas
from convex analysis, stated without their full qualifying conditions. Alternatively, readers may use
the roadmap to skip unnecessary review.

Fenchel duality will find many uses in machine learning theory. Very recently (while the present
paper was under review), Dudı́k and Schapire (2006) used Fenchel duality to explore maximum
entropy distribution estimation under constraints, and Altun and Smola (2006) explored relations
between divergence minimization and statistical inference. In summary, Fenchel duality is a pow-
erful way to look at the regularization problems that arise in learning theory. While it requires some
mathematical sophistication, the resulting formulations are elegant and yield new insights. We hope
that many people will find this approach useful.

2. Notation

A training set is a set of labelled points {(X1,Y1), . . . ,(Xn,Yn)}. We will sometimes use N to refer
to the set {x1, . . . ,xn}, and we may have an additional set of (unlabelled) points of size m called M
(e.g., N = {X1, . . . ,Xn} andM = {Xn+1, . . . ,Xn+m}).

Throughout this paper, Yi (capitalized) refers to given labels for training points. yi are variables
that we optimize over. In general, we can imagine that we are learning a function f , and yi = f (Xi),
but we generally think of optimizing the yi directly rather than using f as an intermediary.

Beginning in Section 3, we will frequently take Fenchel-Legendre conjugates and use z to denote
variables conjugate to y (i.e., we are using z to refer to “dual variables”). We will also sometimes
obtain functions of the form f (x) = ∑i cik(Xi,x) and exclusively use ci to refer to the expansion
coefficients in the finite representation of f .

We define ei to be the n-vector whose ith entry is 1 and whose other entries are zero: the ith
basis vector in the standard basis for Rn (n will always be clear from context). We define 1n to be a
vector of length n whose entries are all 1.

We use H to refer to affine (or hyperplane) functions, Hv,c(y) = vty− c. For any symmetric
positive semidefinite matrix, QA(y) = 1

2y
tAy. We write (y)+ =max{y,0}.
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and Support Functions

for RKHS
5.1 Optimality Conditions

of Kernel Matrices
10 Low−Rank Approximations

3.2 Fenchel Duality

9 Biased Regularizations

6 L1 Regularizations

8 Learning the Kernel

7 Representer Theorem

5.2 RKHS Regularization Examples

4 Tikhonov Regularization

3.1 Closed Convex Functions

Auxiliary Parameters
3.3 Functions with

3.4 Infimal Convolution, Indicator

Figure 1: A roadmap of this paper. The sections on convex analysis are in the left-hand column,
while the “applications” are in the right-hand column.

If S,S′ ⊂Rn and A∈Rm×n, then S+S′ = {y+y′ : y∈ S,y′ ∈ S′}, S−S′ = {y−y′ : y∈ S,y′ ∈ S′},
SS′ = {yy′ : y ∈ S,y′ ∈ S′}, and AS = {Ay : y ∈ S}. In particular, ARn is the column space of A.
We denote the topological interior of S ⊂ Rn by int(S). A cone is a set S with the property that
R≥0S⊂ S.

We write Bp ⊂ Rn where Bp = {y ∈ Rn : ||y||p ≤ 1} where || · ||p is the p-norm. We write A† for
the pseudoinverse of a matrix A.

3. Convex Analysis

In this section, we develop the necessary topics in convex analysis, including the needed elements
of Fenchel duality theory. All results in this section can be found in Borwein and Lewis (2000) and
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Rockafellar and Wets (2004), although in some cases we have substituted less general versions of
the results that are sufficient for our purposes, and in some cases we have elaborated (with proofs)
ideas that are introduced as exercises in these books.

3.1 Closed Convex Functions

Definition 1 Given a function f : Rn → [−∞,∞], the epigraph of f , epi f , is defined by

epi f = {(y,e) : e≥ f (y)}⊂ Rn×R.

We say f is closed or convex if epi f is closed, or convex.
We define dom f = {y ∈ Rn : f (y) < ∞}.
We say f is proper when dom f *= /0 and f > −∞ (i.e., ∀y, f (y) > −∞).

(Some texts consider f : Rn → (−∞,∞], whereupon f > −∞ is automatic.)
We will mostly be considering f which do not take the value −∞ (such functions are somewhat

pathological), in which case f being proper is equivalent to dom f *= /0. Allowing f to take the
value of ∞ merely allows some portions of epi f to have no projection onto Rn (dom f is that
projection). One way of viewing constrained minimization problems is as unconstrained problems
with an objective function that can take the value ∞. Indicator functions (introduced in Section
3.4) are a device for this purpose. We will not do arithmetic involving ∞ except where the result is
unambiguous (e.g., ∞+1= ∞).

The functions of primary interest to us are closed, convex, proper functions. We will call such a
function a ccp function.

Definition 2 Given f : Rn → (−∞,∞], we define the set argminy∈Rn f (y) as follows,

argmin
y∈Rn

f (y) =






Rn infy∈Rn f (y) = ∞
{y : f (y) = f0} infy∈Rn f (y) = f0 ∈ R

/0 infy∈Rn f (y) = −∞

with symmetrical definitions for argmax when needed.

If f is proper, then the first case cannot occur. The occurrence of the middle case (given f proper)
is equivalent to f being bounded from below. However, even in the second case, argminy f (y) may
still be empty.

The notion of a supporting hyperplane gives us a non-smooth generalization of the gradient,
called a subgradient.

Definition 3 (subgradients and subdifferentials) If f : Rn → (−∞,∞] is convex and y ∈ dom f ,
then φ ∈ Rn is a subgradient of f at y if it satisfies φtz≤ f (y+ z)− f (y) for all z ∈ Rn.

The set of all such φ is the subdifferential and denoted ∂ f (y). By convention, ∂ f (y) = /0 if
y /∈ dom f .

∂ f is a function (y→ ∂ f (y)) whose values are convex sets. If f is differentiable at y, then ∂ f (y)
contains a single point, the gradient, but not so if non-differentiable at y. It is possible for the
subdifferential of a convex function to be /0 when y∈ dom f (for example, f (y) =−√y has ∂ f (0) =
/0 even though f (0) = 0). However, ∂ f (y) *= /0 for y ∈ int(dom f ) (by Theorem 3.1.8 of Borwein
and Lewis, 2000).
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f (y0)

y0
− f ∗(z)

Hz, f ∗(z)(y) = zy− f ∗(z)

(y0, f (y0))

Figure 2: A graphical illustration of the Fenchel-Legendre conjugate.

3.2 Fenchel Duality

Central to Fenchel duality is the Fenchel-Legendre conjugate,

Definition 4 (Fenchel-Legendre conjugate) Given a function f : Rn → [−∞,∞], the Fenchel-
Legendre conjugate is

f ∗(z) = sup
y
{ytz− f (y)}. (7)

Table 1 lists a few general, easily derived conjugation identities.
For a convex function f of one variable, one can get a sense of what the conjugate and subgra-

dient look like by examining a graph of f (y). For a given y, one finds a point (y0, f (y0)) (on the
boundary of epi f ) such that epi f is supported at y0 by a line of the form Hz,c(y) = zy− c (i.e., z is
the slope of a tangent line of epi f at (y0, f (y0)) ). If such a supporting line exists, then f ∗(z) = c,
otherwise f ∗(z) = ∞. Because f is convex, at most one such supporting line can exist; if f is linear
in a neighborhood of y0 then Hz,c supports f at multiple points. Figure 2 illustrates the idea.
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f = g∗ g= f ∗ qualifiers
f (y) g(z)

h(y)+ c h∗(z)− c
h(y)−aty h∗(z+a)
ah(y) ah∗(z/a) a> 0

h(A−1y+b) h∗(Atz)−b · z A non-singular
1
2y

tAy 1
2z
tA−1z A symmetric positive definite

vty+b δ{v}(z)−b

Table 1: Some conjugates and properties of conjugation.

More generally, we can work in terms of affine functions and epigraphs. Equation 7 is equivalent
to

epi f ∗ =
\

y∈dom f

epi Hy, f (y).

Being an arbitrary intersection of closed and convex sets, epi f ∗ is closed and convex. Thus, f ∗ is
closed and convex even if f is neither. Additionally, for z ∈ dom f ∗, by (7), we have Hz, f ∗(z)(y) =
zty− f ∗(z) ≤ f (y) for all y, and hence,

epi f ⊂
\

z∈dom f ∗
epi Hz, f ∗(z),

holding with equality when f is closed and convex (Theorem 4.2.1 of Borwein and Lewis, 2000).

Theorem 5 (biconjugation) f : Rn → (−∞,∞] is closed and convex iff f ∗∗ = f .

In particular, conjugation is a bijection between ccp functions.
The supremum in (7) is attained if and only if Hz, f ∗(z)(y) = f (y) for some y. Thus, z ∈ ∂ f (y) is

equivalent to f (y) = ytz− f ∗(z) (Theorem 3.3.4 of Borwein and Lewis, 2000).

Theorem 6 (Fenchel-Young) Let f : Rn → (−∞,∞] be convex. ∀y,z ∈ Rn,

f (y)+ f ∗(z) ≥ ytz

with equality holding iff z ∈ ∂ f (y).

Combining the previous results, if f is closed and convex then z ∈ ∂ f (y) ⇔ y ∈ ∂ f ∗(z), and if
z ∈ int(dom f ∗) the supremum in (7) is attained.

Fenchel duality can be motivated from Theorem 6 by considering two functions simultaneously.
Given convex f ,g : Rn → (−∞,∞]

f (y)+ f ∗(z)− ytz ≥ 0 (8)
g(y)+g∗(−z)− yt(−z) ≥ 0. (9)

Summing the above inequalities and minimizing,

f (y)+g(y)+ f ∗(z)+g∗(−z) ≥ 0 (10)
inf
y
{ f (y)+g(y)}+ inf

z
{ f ∗(z)+g∗(−z)} ≥ 0. (11)
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If ∃y,z ∈ Rn such that (10) is an equality, then clearly (11) holds with equality as well and the
individual infima are attained. Moreover, (8) and (9) become equalities and thus z ∈ ∂ f (y) and
−z ∈ ∂g(y) (and y ∈ ∂ f ∗(z) and y ∈ ∂g∗(−z), if f ,g are ccp). We now quote the fundamental
theorem of Fenchel duality, which supplies sufficient conditions for (11) to hold and for either of
the infima to attain. Our statement is less general than Theorem 3.3.5 of Borwein and Lewis (2000),
but will serve for our purposes.

Theorem 7 (Fenchel duality) Let f ,g : Rn → (−∞,∞] be convex with f + g bounded below. If
0∈ int(dom f −dom g), then (11) is an equality and the infimum of infz{ f ∗(z)+g∗(−z)} is attained.

The topological sufficiency condition, 0 ∈ int(dom f −dom g), is stronger than dom f ∩dom g *= /0
(which is necessary for f +g to be proper) and weaker than dom f ∩ int(dom g) *= /0 or int(dom f )∩
dom g *= /0 (which is, in practice, easier to check).

Corollary 8 Let f ,g :Rn→ (−∞,∞] be ccp with f +g bounded below. If 0∈ int(dom f ∗+dom g∗),
then (11) is an equality and the infimum of infy{ f (y)+g(y)} is attained.

Proof We apply Theorem 7 to f ∗(z) and g∗(−z), noting that dom g∗(−z) = −dom g∗(z), and that
f +g bounded below implies f ∗(z)+g∗(−z) is bounded below, by Equation 11. This shows that

inf
z
{ f ∗(z)+g∗(−z)}+ inf

y
{ f ∗∗(y)+g∗∗(y)} ≥ 0

is an equality; applying Theorem 5 proves the result.
Combining the above two corollaries yields the following variant which we will later apply to learn-
ing problems.

Corollary 9 Let f ,g : Rn → (−∞,∞] be ccp with f +g bounded below. If 0 ∈ int(dom f −dom g)
or 0 ∈ int(dom f ∗ +dom g∗), then

inf
y,z

{ f (y)+g(y)+ f ∗(z)+g∗(−z)} = 0,

and all minimizers y,z satisfy the complementarity equations:

f (y)− ytz+ f ∗(z) = 0
g(y)+ ytz+g∗(−z) = 0.

Additionally, if 0 ∈ int(dom f −dom g) and 0 ∈ int(dom f ∗+dom g∗) then a minimizer (y,z) exists.

We are primarily interested in examples where f and g are ccp, both bounded below, and satisfy both
sufficiency conditions. In this case, we see that the minimality conditions of (11) are given by a pair
of coupled complementarity equations, each being dependent on only one of the two functions f
and g. In the simple case where f and g are both differentiable, these complementary equations are
nothing more than z=∇ f (y) and −z=∇g(y), which is clearly the minimality condition for f (y)+
g(y). The value of these relations is their generality to non-smooth functions. In our applications
to learning, we will be considering the above equations with the regularizer and the loss function
taking on the roles of f and g.
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3.3 Functions with Auxiliary Parameters

We are frequently interested in functions of the form h′(y) = infu h(y,u). If the infimum is attained
for all y where h′(y) is finite, then we say h′ is exact. We will study the properties of h′ through
those of h.

Lemma 10 If h : Rn×Rm → [−∞,∞] with h′(y) = infu h(y,u) then h′∗(z) = h∗(z,0).

Proof h∗(z,0) = supy,u{ytz−h(y,u)} = supy{ytz−h′(y)} = h′∗(z).
It is important to note that h(y,u) being convex in y for fixed u does not guarantee that h′ is convex.
If h is ccp then h′ is convex and dom h′ *= /0, however, this does not guarantee that h′ is exact, closed,
or that h′ > −∞ (i.e., that h′ is proper). We can obtain such guarantees by studying projections of
dom h∗ onto a subset of its variables.

Lemma 11 Let h : Rn×Rm → (−∞,∞] be ccp with h′(y) = infu h(y,u). If W = {w ∈ Rm : ∃z ∈
Rn,(z,w) ∈ dom h∗} then 0 ∈W ⇒∀y,h′(y) > −∞.

Proof ∃y,h′(y) = −∞⇒∀z,h∗(z,0) = ∞⇒ 0 /∈W .

Corollary 12 Let h,h′ be as in Lemma 11.

z ∈ ∂h′(y) and h′(y) = h(y,u) ⇔ (z,0) ∈ ∂h(y,u).

Proof If h′(y)−ytz+h′∗(z) = 0 and h′(y) = h(y,u) then h(y,u)−ytz+h∗(z,0) = 0 and thus (z,0) ∈
∂h(y,u). Conversely, if h(y,u)− ytz+h∗(z,0) = 0, since h(y,u) ≥ h′(y), we have 0 ≥ h′(y)− ytz+
h′∗(z). Thus h′(y)− ytz+h′∗(z) = 0 and h′(y) = h(y,u).

Lemma 13 Let h,h′ be as in Lemma 11. If 0 ∈ int(W ) then h′ is ccp and exact.

Proof For fixed y∈ dom h′, define gy(y′,u)=
{
0 y′ = y
∞ else . It is straightforward to see that g

∗
y(z,w)=

{
ytz w= 0
∞ else , and dom g∗y = Rn×{0}m. Hence, dom h∗ +dom g∗y = Rn×W , and Corollary 8 ap-

plies:

inf
u
h(y,u) = inf

d,u
{h(d,u)+gy(d,u)}

= − inf
z,w

{h∗(z,w)+g∗y(−z,−w)}

= − inf
z
{h∗(z,0)− ytz}

= sup
z
{ytz−h∗(z,0)}

= h′∗∗(y),

and there exists d,u which attain infd,u{h(d,u)+g(d,u)}, hence h(y,u) = h′(y) = h′∗∗(y).
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3.4 Infimal Convolution, Indicator and Support Functions

We introduce the notion of infimal convolution, an idea which will play a key role throughout this
work.

Definition 14 (infimal convolution) For f ,g : Rn → (−∞,∞], we define f !g : Rn → [−∞,∞], the
infimal convolution of f and g, by

( f !g)(y) = inf
y′
{ f (y− y′)+g(y′)}. (12)

We say f !g is exact if the infimum of (12) is attained whenever ( f !g)(y) is finite. If f !g is exact
and ( f !g)(y) is finite, we write ( f !g)(y) = f (y− y′)+g(y′), implicitly defining y′ as a minimizer
of (12). The following theorem relates optimality conditions for f and g to optimality conditions
for f !g.

Theorem 15 Let f ,g : Rn → (−∞,∞] be ccp.

• ( f !g)∗(z) = f ∗(z)+g∗(z). If 0 ∈ dom f ∗−dom g∗, then f !g> −∞.

• z ∈ ∂( f !g)(y) and ( f !g)(y) = f (y− y′)+g(y′) ⇔ z ∈ ∂ f (y− y′)∩∂g(y′).

• If 0 ∈ int(dom f ∗−dom g∗), then f !g= ( f ∗ +g∗)∗ and is exact (as well as ccp).

Proof Let h(y,y′) = f (y− y′)+g(y′). ( f !g)(y) = infy′ h(y,y′), hence f !g is convex. It is straight-
forward to show that h∗(z,z′) = f ∗(z)+g∗(z+ z′). Lastly, defineW = {z′ ∈ Rn : (z,z′) ∈ dom h∗}=
dom f ∗−dom g∗. With these results in place, we specialize the previous results.

The first claim is by Lemma 11 and the third by Lemma 13. The second is Corollary 12 with
the additional observation:

h(y,y′)− ytz+h∗(z,0) = 0
⇔ f (y− y′)+g(y′)− zt(y− y′ + y′)+ f ∗(z)+g∗(z) = 0

⇔
[
f (y− y′)− zt(y− y′)+ f ∗(z)

]
+

[
g(y′)− zt(y′)+g∗(z)

]
= 0

Since the two bracketed terms are non-negative (by Theorem 6), the last line is equivalent to
f (y− y′)− zt(y− y′)+ f ∗(z) = g(y′)− zt(y′)+g∗(z) = 0.

Many functions of interest can be expressed in terms of infimal convolutions of simpler func-
tions.

There are a number of useful auxiliary functions and sets one may define relative to a given set
C.

Definition 16 (indicator functions, support functions, and polarity) For any non-empty set C ⊂
Rn, the indicator function δC, the support function σC, and the polar of C, C◦ are given by

δC(y) =
{
0 y ∈C
∞ y /∈C

σC(y) = sup
z∈C

zty

C◦ = {z ∈ Rn : ∀y ∈C,ytz≤ 1}.
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Indicator functions allow us to work entirely with unconstrained functions—a problem of the
form “minimize f (y) subject to y ∈ C” becomes “minimize f (y) + δC(y).” The support function
σC(y) has a simple interpretation as the largest projection of any element ofC onto the line generated
by y. Indicator functions, support functions, and polars are closely related, as the following lemma
shows.

Lemma 17 Let C ⊂ Rn be non-empty. σC is ccp, δ∗C = σC, C◦ is closed and convex, and 0 ∈C◦.

Proof C non-empty implies σC(0) = 0, so σC is proper. Since epi σC =
T
y∈C epi Hy,0 and arbitrary

intersections of closed and convex sets are closed and convex, σC is ccp.
By definition, δ∗C(z) = supy{ytz−δC(y)} = supy∈C ytz= σC(z).
C◦ = {z ∈ Rn : σC(z) ≤ 1} is closed and convex, since it is the level set of a closed, convex

function, and σC(0) = 0 implies 0 ∈C◦.

IfC is closed, convex and non-empty, then δC is ccp, and Theorem 6 applies:

z ∈ ∂δC(y) ⇔ y ∈ ∂σC(z) ⇔ δC(y)− ytz+σC(z) = 0
⇔ y ∈C,∀y′ ∈C,zt(y′− y) ≤ 0.

IfC is a cone then σC = δC◦ , andC◦ = {z∈Rn : ∀y∈C,zty≤ 0}. IfC is a vector subspace (a special
case of a cone), thenC◦ =C⊥ = {z ∈ Rn : ∀y ∈C,zty= 0}.

Lemma 18 Let A,B⊂ Rn be closed, convex and non-empty.

δA+B = δA !δB σA+B = σA+σB
δA∩B = δA+δB σA∩B = σA !σB (if 0 ∈ int(A−B))
σA∪B = σA⊕B δ∗∗A∪B = δA⊕B

where A⊕B is the closure of the convex hull of A∪B.

Proof The identities for δA∩B, δA+B, and σA∪B are easily shown. The others are from conjugation,
(with σA∩B requiring Theorem 15, and hence the sufficiency condition).

A number of functions can be built up from support functions. For example, any norm can be
defined as the support function of a closed convex set (namely, the unit ball of the associated dual
norm). Table 2 contains common examples.

3.5 Summary

Figure 3 provides a concise summary of some of the most important ideas we have presented in this
section. In the summary, we ignore necessary technical conditions, but we emphasize that all the
applications of convex analysis in this paper refer to and demonstrate the relevant technical con-
ditions. We believe this summary will be useful, especially to readers unfamiliar with the abstract
theory of convex functions and conjugacy.

Keep in mind that if f and g are differentiable, much of the theory given here reduces to finding
a y such that ∇ f (y)+∇g(y) = 0. In a very real sense, the entire purpose of the development in this
section is to extend intuitions about the unconstrained optimization of differentiable functions to the
constrained and non-differentiable setting. This is crucial, as the only unconstrained differentiable
examples we are aware of in learning theory are regularized least squares and logistic regression.
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C σC(y)
λC,λ≥ 0 λσC(y)

AC σC(Aty)
Bp ||y|| p

p−1

Rn δ{0}(y)
Rn
≥0 δRn

≤0
(y)

[−1,1]n ∑i |yi|
[0,1]n ∑i(yi)+
K δK◦(y)

Table 2: Support functions for common convex sets. C and C′ are arbitrary non-empty closed con-
vex sets. K is an arbitrary non-empty closed convex cone. A is an arbitrary matrix.

Summary of Key Convex Analysis Concepts

• (Fenchel-Legendre Conjugate) f ∗(z) = supy {ytz− f (y)}.

• (Biconjugation) f ∗∗ = f .

• (Fenchel-Young Theorem) f (y)− ytz+ f ∗(z) ≥ 0, and z ∈ ∂ f (y) ⇔ y ∈ ∂ f ∗(z) ⇔ f (y)−
ytz+ f ∗(z) = 0.

• (Fenchel Duality) The minimizer of f (y)+g(y) satisfies

f (y)− ytz+ f ∗(z) = 0
g(y)+ ytz+g∗(−z) = 0

for some z which also minimizes f ∗(z)+g∗(−z).

• (Auxiliary Parameters: h′(y) = infu h(y,u)) h′∗(z) = h∗(z,0).

• (Infimal Convolutions: ( f !g)(y) = infy′ { f (y− y′)+g(y′)}) ( f !g)∗ = f ∗ +g∗.

• (Indicator and Support Functions) δC(y) =
{
0 y ∈C
∞ y /∈C , and σC(z) = supy∈C ytz. δ∗C = σC.

IfC is a vector space, δ∗C = δC⊥ .

Figure 3: Summary of key notions of convex conjugacy. In this figure, we assume that all nec-
essary technical conditions (convexity and closedness of functions, exactness of infimal
convolutions, etc.) are met; the technical conditions are given in full in the text. All
examples given in this paper satisfy the necessary technical conditions. Of course, when
considering new examples, the conditions must be checked.
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4. Tikhonov Regularization

We now specialize the general theory of Fenchel duality to the inductive learning scenario.

Definition 19 (loss functions and regularization) A loss function is any closed convex function
v : R → (∞,∞], which is bounded below and finite at 0.

A regularization is any closed convex function R : Rn → R≥0, such that R(0) = 0.

Typically, a loss function, vi, represents the penalty for a value mismatching some prescribed
value or set of values (e.g., vi(yi) = (yi−Yi)2), while a regularization represents a measure of non-
smoothness among a set of values y1, . . . ,yn.

Clearly, regularizations and loss functions are closed under addition. We can also show that the
conjugates of regularizations and loss functions are, respectively, regularizations and loss functions.
Lemma 20 If v is a loss function, then v∗ is a loss function. If R is a regularization, then R∗ is a
regularization.

Proof Since v∗ and R∗ are closed and convex, we need only show that v∗ is bounded below and finite
at 0 and that R∗(z) ≥ 0 with R∗(0) = 0.

v is bounded below, so v∗(0) =− infy v(y) is finite. v(0) =− infz v∗(z) is finite, so v∗ is bounded
below.

Since R(0) = − infzR∗(z) = 0, R∗ is non-negative and R∗(0) = − infyR(y) = 0.
As a consequence, regularizations and losses are closed under infimal convolution.

The following lemma shows that if the loss function can be decomposed over data points, then
its conjugate can likewise be decomposed.
Lemma 21 Let V :Rn→ (−∞,∞] be given byV (y) =∑n

i=1 vi(yi) for loss functions vi. ThenV ∗(z) =
∑n
i=1 v∗i (zi).

Proof A direct consequence of the definition,

V ∗(z) = sup
y

{
ytz−∑

i
vi(yi)

}

= ∑
i
sup
yi

{yizi− vi(yi)}

= ∑
i
v∗i (zi).

We are now able to state the main theorem that we will use to study regularization problems.
Theorem 22 (regression Fenchel duality) Let R : Rn → R≥0 be a regularization and V (y) =
∑n
i=1 vi(yi) for loss functions vi : R → R. If 0 ∈ int(dom R−dom V ) or 0 ∈ int(dom R∗ +dom V ∗)

then

inf
y,z

{R(y)+V (y)+R∗(z)+V ∗(−z)} = 0

with all minimizers y,z satisfying the complementarity equations:

R(y)− ytz+R∗(z) = 0 (13)
vi(yi)+ yizi+ v∗i (−zi) = 0. (14)

Additionally, if 0 ∈ int(dom R−dom V ) and 0 ∈ int(dom R∗ +dom V ∗) then a minimizer exists.
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loss dual loss optimality condition
v(y) v∗(−z) v(y)+ yz+ v∗(−z) = 0

f (Y − y) f ∗(z)− zY f (Y − y)+(Y − y)(−z)+ f ∗(z) = 0
f (1− yY ) f ∗

( z
Y
)
− z

Y f (1− yY )+(1− yY )−zY + f ∗
( z
Y
)

= 0
1
2y
2 1

2z
2 y+ z= 0

|y| δ[−1,1](z) |y|+ yz= 0,z ∈ [−1,1]
(y)+ δ[−1,0](z) (y)+ + yz= 0,z ∈ [−1,0]
1
2(y)

2
+ δR≤0(z)+ 1

2z
2 (y)+ + z= 0,z≤ 0

(|y|− ε)+ δ[−1,1](z)+ ε|z|
{
|y|≥ ε z+ sign(y) = 0
|y|≤ ε z ∈ [−1,1]

}

1
2(Y − y)2 1

2z
2− zY y+ z= Y

|Y − y| δ[−1,1](z)− zY |Y − y| = (Y − y)z,z ∈ [−1,1]
|1− yY | δ[−1,1]

( z
Y
)
− z

Y |1− yY | = (1− yY ) zY , zY ∈ [−1,1]
(1− yY )+ δ[0,1]

( z
Y
)
− z

Y (1− yY )+ = (1− yY ) zY , zY ∈ [0,1]
1
2(1− yY )2+ δR≥0

( z
Y
)
+ 1
2
z2
Y 2 −

z
Y (1− yY )+ = z

Y , zY ≥ 0

(|Y − y|− ε)+ δ[−1,1](z)+ ε|z|− zY
{
|Y − y|≥ ε z= sign(Y − y)
|Y − y|≤ ε z ∈ [−1,1]

}

log(1+ exp(−yY )) δ[0,1]
( z
Y
)
+ z

Y log
z
Y + 1= (1+ exp(−yY )) zY(

1− z
Y
)
log

(
1− z

Y
)

Table 3: A list of common loss functions and their local optimality conditions. Note that we are
considering v∗(−z), not v∗(z). Also note that some of the loss functions can be further
simplified under the assumption Y ∈ {−1,1}.

We identify the yi as values taken by the learned function, scored by vi, and the function values are
penalized by R(y). Equation 13 is a complementarity equation in 2n variables. Equation 14 is n
independent complementarity equations in 2 variables. If R and vi are differentiable these equations
are equivalent to z= ∇R(y) and −zi = d

dyvi(yi).

4.1 Loss Functions

Table 3 recapitulates many of the loss functions seen in practice. In this paper, we deal exclusively
with pointwise losses, so Table 3 is in terms of a single regression value y and a single training value
Y with subscripts omitted.

The derivations in Table 3 can all be obtained without much effort from identities and defini-
tions previously stated and earlier derivations in the table. It is helpful to observe that many loss
functions can be expressed in terms of infimal convolutions of simple functions. For example,
(y)+ = σ[0,1](y) = (| · |!δR≤0)(y) and (|y|− ε)+ = (| · |!δ[−ε,ε])(y).

It should be noted that these derivations can be checked graphically, since the losses are func-
tions of a single variable. For example, Figure 4 shows a graph of (1− y)+, the well-known
hinge loss, with supporting hyperplanes. From the figure, it is plain that the only supporting hy-
perplanes are those with slopes in the interval [−1,0], thus dom f ∗ = [−1,0], and that f ∗(y) = y
when y ∈ [−1,0].
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(1,0)

(0,1)

h(y) = 4(1− y)/5

h(y) = (1− y)/3

y

(1− y)+

Figure 4: The graph of (1− y)+ with a couple supporting hyperplanes.

4.2 Regularization Functions

By Lemma 20, if R1,R2 : Rn → [0,∞] are regularizations, then R1+R2 and R1 !R2 are, which gives
two ways of building more complicated regularizations out of simpler ones. The basic building
blocks of regularizations are indicator functions, support functions, and quadratic forms. The iden-
tities to keep in mind are σ∗

C = δC, Q∗
A = QA−1 for non-singular A, and R1 !R2 = (R∗

1+R∗
2)

∗ (with
appropriate conditions from Theorem 15).

We might think of sums of regularizations as adding further penalties on the regression values,
as R ≤ R+R′. On the other hand, infimal convolutions add slack, R ≥ R !R′. Since these two
operations are conjugates of each other, it is clear that any additional restriction in the primal results
in extra freedom in the dual and vice versa.

5. Regularization in Reproducing Kernel Hilbert Spaces

We now turn to our primary example, Tikhonov regularization in a reproducing kernel Hilbert space
(RKHS).
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reg. dual reg. optimality condition
R(y) R∗(z) R(y)− yz+R∗(−z) = 0

R1 !R2(y) R∗
1(z)+R∗

2(z) R1(y− y′)− (y− y′)tz+R∗
1(z) = R2(y′)− y′tz+R∗

2(z) = 0
R(Aty) R∗(A†z)+δARn(z) R(Aty)− ytz+R(A†z) = 0,z ∈ ARn

σC(y) δC(z) σC(z) = ytz,z ∈C
σC(Aty) δAC(z) σC(z) = ytz,z ∈C

QA(y) = 1
2y

tAy QA†(z)+δARn(z) z= Ay
||y||p δ||z||q≤1(z) ||y||p = ytz, ||z||q ≤ 1,( 1p + 1

q = 1)
||Aty||1 δA[−1,1]n(z) ||Aty||1 = ytz,z ∈ A[−1,1]n
1
2 ||y||

2
p

1
2 ||z||

2
q ||y||2p = ||z||2q = ytz,( 1p + 1

q = 1)

Table 4: Common regularization choices.

5.1 Optimality Conditions for RKHS Regularization

Recall that the “standard” approach in machine learning is to start with a Tikhonov regularization
problem over an RKHS (2), to invoke the representer theorem to show that the solution can be
expressed as a collection of coefficients (3), and to write optimization problems in terms of these
coefficients. We start with a mathematical program in terms of the yi, using a regularization QK−1

(with K symmetric, positive definite); in this framework, we are able to state general optimality
conditions and derive a very clean form of the representer theorem.

Specialized to the RKHS case, we are considering primal problems of the form

inf
y∈Rn

{
1
2
λytK−1y+V (y)

}
,

where we have made the target labels Yi implicit in V . The associated dual problem is

inf
z∈Rn

{
1
2
λ−1ztKz+V ∗(z)

}
.

Equation 13 specializes to

1
2
λytK−1y− ytz+

1
2
λ−1ztKz = 0

1
2
(y−λ−1Kz)t(λK−1y− z) = 0.

and thus we obtain the optimality conditions z = λK−1y (or y = λ−1Kz). This demonstrates that
whenever we are performing regularization in an RKHS, the optimal y values at the training points
can be obtained by multiplying the optimal dual variables z by λ−1K, for any convex loss function.

5.2 RKHS Regularization Examples

In RKHS regularization, we have a regularizer R(y) = λQK−1(y), with conjugate R∗(z) = λ−1QK(z),
and optimality conditions y = λ−1Kz. By incorporating a loss function, we can derive well-known
kernel machines.
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5.2.1 REGULARIZED LEAST SQUARES

The square loss is given by v(yi) = 1
2(Yi− yi)2. Although it is listed in Table 3, we derive the dual

loss here, for pedagogical purposes:

v∗(−z) = sup
y′
{−y′z− 1

2
(y′−Y )2}.

We see that v∗(−z) is quadratic in y′, and we can find the sup by taking the derivative:

∂v∗

∂y′
= −z+(Y − y′).

Setting the derivative to 0, we obtain y= Y − z, and substituting, we see that

v∗(−z) = −zY +
1
2
z2.

The optimality equation v(yi)+ yizi+ v∗(zi) reduces to y+ z= Y , so (13) and (14) become

yi+ zi = Yi
λ−1Kz = y.

Combined,

y+λK−1y= λ−1Kz+ z= Y,

leading to the standard regularized least squares formulation.

5.2.2 UNBIASED SVM

The support vector machine arises from the combination of RKHS regularization and the hinge loss
v(y) = (1− yY )+. The dual of the hinge loss, v∗(−z) = δ[0,1]( zY )− z

Y , is most easily derived using a
graphical approach (see Figure 4), but it can also be derived directly. Regularizing in an RKHS, we
have the primal and dual problems:

inf
y∈Rn

{
1
2
λytK−1y+∑

i
(1− yiYi)+

}

inf
z∈Rn

{
1
2
λ−1ztKz+∑

i

(
δ[0,1]

(
zi
Yi

)
− zi
Yi

)}
.

We see how the δ function in the dual loss provides the well-known “box constraints” in the SVM
dual.

Given v(y),v∗(−z), it is also straightforward to derive the optimality condition

(1− yY )+ = (1− yY )
z
Y

and
z
Y

∈ [0,1].
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A case analysis on the sign of (1− yY ) yields

(1− yiYi) < 0 ⇐⇒ zi
Yi

= 0

(1− yiYi) = 0 ⇐⇒ zi
Yi

∈ [0,1]

(1− yiYi) > 0 ⇐⇒ zi
Yi

= 1.

With the regularization condition y= λ−1Kz, we have derived the KKT conditions for the SVM. To
obtain a more “standard” formulation, we could introduce variables αi ≡ zi

Yi , c = λ−1z, eliminating
y from the system (in favor of z and α), and introducing a “regularization constant”C = 1

2λ .
In this section, we have derived an “unbiased” SVM. In practice, the SVM usually includes an

unregularized bias term b. We show how to handle the bias term b in Section 9.1.

6. L1 Regularizations

Tikhonov regularization in a reproducing kernel Hilbert space is the most common form of regu-
larization in practice, and has a number of mathematical properties which make it especially nice.
In particular, the representer theorem makes RKHS regularization essentially the only case where
we can start with a problem of optimizing an infinite-dimensional function in a function space, and
obtain a finite-dimensional representation.5 Nevertheless, other regularizations may be of interest.
In these cases, we are generally forced to assume a priori that the functions we are looking for are
coefficients in some finite dimensional space.

6.1 1-norm Support Vector Machines

As a consequence of the use of the hinge loss, support vector machines yield a sparse solution—
points which live outside the margin have c = z = 0. Nevertheless, because all points which are
errors or live inside the margin are support vectors, in noisy problems, one generally finds that
at least a constant fraction of the examples (lower-bounded by the Bayes error rate) are support
vectors. Instead of using RKHS regularization, we can a priori choose a finite-dimensional function
space of expansion coefficients of kernel functions around the training points y= ∑iK(x,xi)ci, and
regularize ||c||1. If we combine this idea with the hinge loss, we obtain the 1-norm support vector
machine (Zhu et al., 2003).

We consider R(y) = ||K−1y||1. If we use the hinge loss (or any other piecewise linear loss
function), the resulting mathematical optimization problem is a linear program. The dual regularizer
is R∗(z) = δK−1[−1,1]n(z). As usual, we can combine primal and dual regularizers with primal and
dual loss functions. Note that in these formulations, the formula c = λ−1z does not hold: if we
solved a problem in y and z, we would need to then solve c = K−1y to obtain c. In practice, we
expect that algorithms based directly on c are probably the most useful.

5. Kernel-based algorithms are made practical by two factors: the representer theorem for RKHS’s and kernels which
make kernel products (and therefore the representations) easy to compute. One can construct RKHS’s, for example,
via embeddings, where learning is not practical because of a computationally difficult feature map and inner product.
We thank a reviewer for pointing out this distinction.
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6.2 Sparse Approximation and Support Vector Regression

In Girosi (1998), an “equivalence” between a certain sparse approximation problem and a modified
form of SVM regression is developed. In slightly simplified form, the equivalence is quite easy to
derive.

We begin by considering the sparse approximation problem. We are given noiseless samples
{(X1,Y1), . . . ,(Xn,Yn)} from a target function f t which is assumed to live in an RKHS H . We will
find a function which is a coefficient expansion around the data points: f (x) = ∑iK(x,xi),ci. The
goal is to minimize the distance between f t and f (x) in the RKHS norm,6 while maintaining sparsity
of the coefficient representation c:

inf
c∈Rn

{
1
2
|| f t− f ||2H + ε||c||1

}
=
1
2
|| f t ||2H + inf

c∈Rn

{
1
2
ctKc−Y tc+ ε||c||1

}
.

where we used basic properties of RKHS and the assumption that f t(x) ∈ H to expand || f t− f ||2H .
Now we turn to a variant of support vector machine regression. A standard support vector

regression machine is obtained when we use a loss v(yi) = (|Yi−yi|−ε)+, linearly penalizing points
which lie outside a tube. Girosi instead considers a “hard margin” variant, where points are required
to lie inside the tube. His primal problem is:

inf
y∈Rn

{
λQK−1(y)+δ[−ε,ε]n(Y − y)

}
.

The dual to the “hard loss” v(yi) = δ[−ε,ε](Yi− yi) is given by

v∗(−zi) = sup
y′i
{−y′izi−δ[Yi−ε,Yi+ε](y

′
i)}

= max{−(Yi− ε)zi,−(Yi+ ε)zi}
= −Yizi+ ε|zi|.

Therefore, the dual problem is

inf
z∈Rn

{
λ−1QK(z)−Y tz+ ε||z||1

}
= λ · inf

z∈Rn

{
QK(λ−1z)−Y t(λ−1z)+ ε||λ−1z||1

}
.

We see that the sparse approximation variant and the support vector regression variant have optimal
values that differ by a constant 12 || f

t ||2H and a positive multiplier λ, with c = λ−1z. The sparsity
control parameter ε becomes the width of the allowed tube in the regression problem. This makes
sense: as we increase ε, we get more sparsity, but our predicted y values must become less tightly
constrained in order to achieve that sparsity.7

6. In earlier treatments of sparse decomposition (such as Chen et al., 1995) the goal was to minimize functional distance
in L2 rather than H ; this distance (of course) needed to be approximated empirically.

7. Girosi considered biased regularizations with a free constant b. In order to incorporate this, he was forced to make
additional assumptions on f t and K. While these assumptions gave a formal equivalence between the sparse problem
and the biased SVM regression quadratic program, we feel that the simplified version presented here illuminates the
essential equivalence much more clearly.
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7. Representer Theorem

We can generalize beyond the training points to talk about the predicted values at future points—our
own version of the representer theorem. We consider a scenario where we have n training points and
m additional unlabelled points and show how the y values at the unlabelled points can be determined
via kernel expansions around the training points.

We begin by relating arbitrary regularizations in higher and lower-dimensional spaces.

Lemma 23 Let R : Rn+m → (−∞,∞] be a regularization, and let R′ = infy2∈Rm R(y1,y2). If 0 ∈
int(dom R∗), then R′ is ccp and exact, R′ is a regularization, and R′∗(z1) = R∗(z1,0). Additionally,

y1 ∈ ∂R′∗(z1) and R′(y1) = R(y1,y2) ⇔ (y1,y2) ∈ ∂R∗(z1,0).

Proof By Lemmas 11 and 13, we have R′ being ccp and exact. Clearly, infy1 R′(y1) = R′(0) = 0.
The last claim comes from Corollary 12 and Theorem 6.

We specialize the lemma to the quadratic form regularizers associated with RKHS:

Corollary 24 Let K =
(
KNN KNM
KMN KMM

)
∈R(n+m)×(n+m) be symmetric positive definite where KNN ∈

Rn×n. For all y1 ∈ Rn,

inf
y2∈Rm

QK−1(y1,y2) = QK−1
NN

(y1), (15)

where the infimum is (uniquely) attained at y2 = KMNK−1
NNy1.

Proof Let R(y1,y2) =QK−1(y1,y2), and R′(y1) = infy2 R(y1,y2). R∗(z1,z2) =QK(z1,z2), thus dom R∗

= Rn+m and R′ is therefore closed and exact. R′∗(z1,0) = QK(z1,0) = QKNN (z1), so R′(y1) =

QK−1
NN

(y1), hence (15). Given y1, let z1 satisfy KNNz1 = y1. Then, y1 ∈ ∂R′∗(z1). Also,
(
y1
y2

)
∈

∂R∗(z1,0) iff y2 = KMNz1. By the last part of Lemma 23, y2 ∈ argminy2QK−1(y1,y2). Since z1 is
unique given y1, y2 is unique.

We are now able to prove an optimization-centered variant of the representer theorem.

Theorem 25 Let X1, . . . ,Xn, . . . ,Xn+m ∈ Rd with k : Rd ×Rd → R an symmetric positive definite
kernel function. Let K ∈ R(n+m)×(n+m) be defined by Ki j = k(Xi,X j) for 1≤ i, j ≤ n+m with KNN ∈
Rn×n the upper left submatrix of K.

For any function V : Rn → (−∞,∞],

inf
y∈Rn+m

{QK−1(y)+V (y1, . . . ,yn)} = inf
y′∈Rn

{
QK−1

NN
(y′)+V (y′)

}
,

where yi = y′i for 1≤ i≤ n and yi = ∑n
j=1 k(Xi,X j)c j with c= K−1

NNy′.

Proof Since the loss term V is independent of the last m components of y,

inf
y∈Rn+m

{QK−1(y)+V (y1, . . . ,yn)} = inf
y′∈Rn

{
inf

y′′∈Rm
QK−1(y′,y′′)+V (y′)

}

= inf
y′∈Rn

{
inf

y′′∈Rm
QK−1

NN
(y′)+V (y′)

}
,
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by Corollary 24.
Our variant of the representer theorem shows that any point yi which appears in the regularization
but not the loss term can be determined from an expansion of the kernel function about the train-
ing points. Thus, solving the n variable optimization problem simultaneously “solves” all n+m
optimization problems with any additional set of m lossless points. This was made possible by the
“subsetting” property of quadratic form regularizers, developed in Corollary 24.

An alternate way of thinking about this version of the representer theorem is that for regular-
ization in an RKHS, the inductive and transductive cases “match”: if we are given n training points
and m testing points in advance, we can either train the standard n point optimization problem and
use the coefficients c to compute the y values at the test points, or we can directly solve a larger
optimization problem in which the test points appear in the regularization but not in the loss.

In RKHS regularization, we define c≡K−1y= λ−1z; this is justified by the representer theorem.
We see that not only can we compute the values at test points, but the coefficients c have a direct
and simple relation to the dual variables z. As we will see in later sections, when we explore other
regularizations and kernel approximations, when we leave the RKHS setting, the simple relation
between c and z is severed.

It is worthwhile to put our result in the context of more “standard” forms of the representer
theorem. In its most general form (see Schölkopf et al. (2001) or Belkin et al. (2004) for proofs of
this statement with a slightly different notation and emphasis), the representer theorem states that
the optimal solution to an optimization problem of the form:

min
f∈H

{
λ|| f ||2K +F( f (X1), . . . , f (Xn))

}
, (16)

where F is an arbitrary functional that depends only on the values f takes at the Xi, will have a
solution of the form

f (x) =
n

∑
i=1

ciK(x,Xi), (17)

and that the infinite-dimensional problem of finding an optimal f ∈ H can be reduced to the finite-
dimensional problem of finding the optimal ci. Traditionally, F is taken to be a loss function over
labelled training points, but this is not required—for example, if the training set contains a mix of
labelled and unlabelled points, F may be the sum of a loss function over the labelled points and some
additional regularizer over the unlabelled points (see Belkin et al. (2004); Rahimi et al. (2005), and
also Section 7.1; note that in Theorem 25 we define V as arbitrary and do not require it to be a loss
function). The proof essentially proceeds by defining f to be a sum of kernel expansions (Equation
17) around the training points and a “remainder” which is orthogonal to these kernel expansions,
and then showing that the orthogonal remainder must be the zero function. In our development, it
is clear that solving

min
y∈Rn

{
ytK−1y+V (y)

}
, (18)

and defining y = Kc will find the optimal solution to (16) of the form (17). Any function in the
RKHS can be represented as a possibly infinite expansion of the form (17); Theorem 25 shows that
if we add any (finite) set of additional points to the representation, none of the predicted training
values change, and the expansion coefficients at the new points vanish. A simple limiting argument
allows us to extend to infinite sets of additional points, demonstrating that the solution to (16) can
be found by solving (18).
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7.1 Semi-supervised and Transductive Learning

In this section we discuss in detail the somewhat subtle relationships between semi-supervised,
transductive and inductive learning, quadratic regularizers, and the representer theorem.

In standard usage, inductive and semi-supervised learning are viewed as problems of taking a
training set (fully labelled for the inductive case, partially unlabelled for the semi-supervised case)
and learning a function that classifies new examples. In contrast, transductive learning is often
viewed as the problem of predicting the labels at unlabelled points, given the locations of those
points in advance. It must be understood that this distinction is somewhat artificial, based on notions
of what we consider a function. In particular, given any transductive algorithm A , we obtain a semi-
supervised algorithm for classifying new points by rerunning A with all points seen so far whenever
a prediction is needed. From this bird’s-eye view, all problems about “out of sample” extensions for
transductive algorithms (see for example Bengio et al. (2003)) vanish. This is a perfectly legitimate
semi-supervised algorithm, in that it provides a function for computing the values at new points;
however, because evaluating the function requires solving an optimization problem, many people
are uncomfortable with this algorithm. At the present time, it seems that it is common usage in the
machine learning community to accept predictive functions which are weighted sums of expansions
around a fixed basis as legitimate semi-supervised solutions, but to reject predictive functions which
require solving optimization problems as being merely transductive algorithms. This viewpoint is
in some sense arbitrary, but also reflects genuine computational concerns; for the remainder of this
section, we refer to transductive and inductive algorithms as the terms are commonly used.

Given an arbitrary transductive algorithm, it is possible to turn it into an inductive algorithm by
embedding the optimization in an RKHS. An excellent example is manifold regularization Belkin
and Niyogi (2003). As originally formulated, manifold regularization is defined only for points on
a graph, and is therefore a transductive algorithm. In Belkin et al. (2004), the authors construct an
inductive algorithm by considering the optimization problem:

min
y∈Rm+n

{
λ1ytK−1y+λ2ytLy+V (yN)

}
, (19)

where we have n labelled and m unlabelled points, yN are the predicted values at (just) the labelled
points, and L is the graph Laplacian of (all) the data. The term ytLy is an additional smoothness
penalty on the predicted values that respects the notion that we expect the data to live on or near
a low-dimensional manifold. By the standard representer theorem, solving the above optimization
is equivalent to finding a function with minimal sum of its RKHS norm and the “loss function”
λ2ytLy+V (yN). Similar extensions of straightforward RKHS regularizers with additional penalties
are known for time series (Rahimi et al., 2005) and structured prediction (Altun et al., 2005).8 In
fact, whenever the additional regularization term is a quadratic form QL, we can view the semi-
supervised algorithm as finding the optimal function in a data-dependent “warped” RKHS (see
Sindhwani et al. (2005) for details).

While we certainly agree that Problem 19 gives a finite-dimensional solution to an infinite-
dimensional problem, we question whether this problem is the “right” problem to solve. In particu-
lar, we consider two “strategies” for classifying new points:

8. We have not seen many examples in the machine learning literature of researchers treating the outputs y as the
predictive values. The above algorithms are generally phrased in terms of c, or sometimes in terms of f (x), with f (x)
viewed as dependent on c.

465



RIFKIN AND LIPPERT

• (Inductive) Solve Problem 19. Compute c via y=Kc, yielding a “function” f (x)=∑i ciK(x,xi).
Use f to predict values at new points.

• (Transductive)When presented with a new point, compute an augmented form of optimiza-
tion Problem 19 by adding the new point to the RKHS and additional regularization terms.
Predict the value at the new point as the associated optimal value in the augmented optimiza-
tion problem.

Given sufficient computational resources, we consider the transductive approach to be the “natural”
choice, in that it treats previous and future unlabelled points on an equal basis. The inductive al-
gorithm may be appropriate as a computationally more tractable substitute, but it is crucial to keep
in mind that we do not expect the inductive and transductive approaches to give the same answer.
This is in direct contrast to the case of standard RKHS supervised learning, where Theorem 25
shows that the inductive and transductive approaches give the same answer. For RKHS supervised
learning, unlabelled points do not contribute to the loss (we implicitly assume vi(yi) = 0 for unla-
belled points). On the other hand, when we consider a data-dependent smoothness functional over
unlabelled data, additional points give us additional information about this smoothness penalizer.
In the transductive semi-supervised case, adding the unlabelled point to the optimization problem
can change the predictions at previous points, both labelled and unlabelled. We will see another
example of this phenomenon in Section 8.

An alternate perspective on problems like Problem 19 is to think of the smoothness penalty
QL(y) as part of the regularizer, rather than part of the loss. From this viewpoint, we no longer have
a (data independent) RKHS regularizer, and so Theorem 25 does not apply.

8. Learning the Kernel

Standard RKHS regularization involves a fixed kernel function k and kernel matrix K. Recently,
there has been substantial interest in scenarios in which a kernel matrix or kernel function is learned
from the data, simultaneously with learning a prediction function. We first develop some very
general results on this case, and then show how these results can easily be used to obtain and
generalize results from the recent literature.

We consider a variant of Tikhonov regularization where the regularization term itself contains
parameters u ∈ Rp, which are optimized; we learn the regularization in tandem with the regression.
The primal becomes

inf
y,u

{
R(y,u)+∑

i
vi(y)

}
.

where R(y,u) is convex in y. Given the independence of the loss from u, we can move the u-infimum
inside

inf
y

{
inf
u
R(y,u)+∑

i
vi(y)

}

obtaining a new regularization R′(y) = infuR(y,u). We will assume through the remainder that
R(y,u) is ccp.
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By lemma 11, R′∗(z) =R∗(z,0). If R′ is exact then the optimality condition for the regularization
becomes

R(y,u)− ytz+R∗(z,0) = 0,

or, equivalently, (z,0) ∈ ∂R(y,u).
We now specialize to the RKHS case, and allow the entire kernel to play the role of the auxiliary

variables: R(y,K) = λQK−1(y)+F(K) for some closed convex F whose domain K is contained in
the n×n symmetric positive semidefinite matrices. Let A•B≡ ∑i, jAi jBi j and recall zzt •K = ztKz.
R is ccp and R∗(z,W ) = F∗ (

W + 1
2λ

−1zzt
)
which we can verify by Theorem 5, taking the conjugate

R∗(z,W ) = sup
y,K

{
ytz+K •W −λQK−1(y)−F(K)

}

= sup
K

{
sup
y
{ytz−λQK−1(y)}+K •W −F(K)

}

= sup
K

{
λ−1QK(z)+K •W −F(K)

}

= sup
K

{
K •

(
W +

1
2
λ−1zzt

)
−F(K)

}

= F∗
(
W +

1
2
λ−1zzt

)

and biconjugate,

sup
z,W

{
ytz+K •W −F∗

(
W +

1
2
λ−1zzt

)}
=

sup
z

{
ytz+ sup

W

{
K •W −F∗

(
W +

1
2
λ−1zzt

)}}
=

sup
z

{
ytz−K • 1

2
λ−1zzt

}
+F∗∗(K) =

sup
z

{
ytz−λ−1QK(z)

}
+F∗∗(K) =

λQK−1(y)+F(K) = R(y,K).

By Lemmas 11 and 13, R′∗ = F∗ ( 1
2λ

−1zzt
)
and R′ is closed and exact if ∀z ∈ Rn,zzt ∈ int(dom F∗).

If R′ is exact, the condition for optimality for the regularization (i.e., z ∈ ∂R′(y)) is

1
2
λytK−1y+F(K)− ytz+F∗

(
1
2
λ−1zzt

)
= 0

[
1
2
λytK−1y− ytz+

1
2
λ−1ztKz

]
+

[
F(K)− tr

(
1
2
λzztK

)
+F∗

(
1
2
λ−1zzt

)]
= 0.

Each of the two bracketed terms is non-negative, by Theorem 6; therefore they must both vanish.
Hence, y= λ−1Kz and 1

2λ
−1zzt ∈ ∂F(K), equivalently, K ∈ ∂F∗ ( 1

2λ
−1zzt

)
.

Given an RKHS regularizer, learning K and y simultaneously will be a convex problem as long
as F is closed and convex. However, in order to obtain a useful learning algorithm, the function
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F must provide a meaningful constraint on allowable kernels, and there must be a mechanism for
predicting values at new points. Abusing notation, let FN and FM be the versions of F that operate on
n×n and m×m matrices, respectively (we usually suppress this notation). Suppose that, whenever
m > n, we have the property that FN(A) = infK:KNN=AFM(K). In this case, it is straightforward to
see that adding additional “testing” points to the regularizer, but not the loss, will not change the
objective value, nor will it change the y values at the “training” points. This leads to a transductive
algorithm. Furthermore, if the minimizer in the inf is unique, we can use KN to determine KM given
the new x points, we will have a representer theorem, and the inductive and transductive cases will
be identical.

Lanckriet et al. (2004) consider a transductive scenario, where the training and testing points
are known in advance. They start with a finite set of kernels K1, . . . ,Kk (the Ki are over the training
and testing sets) and take F(K) = δKu,c(K), where

Ku,c ≡
{
K : K =∑

i
uiKi, tr(K) = c, K 3 0

}
.

(Lanckriet et al. (2004) frequently consider Ku+,c as well, where the u are constrained to be nonnega-
tive.) A primary concern in Lanckriet et al. (2004) is showing that when the SVM hinge loss is used,
the resulting optimizations can be phrased as semidefinite programming problems. They recognize
that it is important to “entangle” the training and testing kernel matrices—if we simply allowed K
to range over the entire semidefinite cone, for example, we would obtain kernel matrices which fit
the training data well and ignored the testing data. Using a finite combination of kernel matrices es-
sentially means that we are learning a kernel function parametrized by u, and applying this function
to both training and testing points. Because Lanckriet et al. (2004) constrain the trace of the entire
kernel matrix K, adding additional testing points can change the value at training points, and they
cannot easily and directly perform induction. If they had instead chosen to constrain the trace of the
kernel matrix over only the training points, or simply to constrain the sum of the ui, they could have
obtained a representer theorem, and there would have been agreement between their transductive
algorithm and the obvious inductive algorithm. Lanckriet et al. (2004) focus primarily on the SVM
hinge loss. In fact, any convex loss can be used, and the resulting optimization problem can be cast
as a semidefinite programming problem (Recht, 2006).

While Lanckriet et al. (2004) consider a finitely generated set of kernel matrices, Argyriou et al.
(2005) works with a convex set generated by an infinite, continuously parametrized set of kernel
functions, the primary example being Gaussian kernels with all bandwidths in some closed interval.
Argyriou et al. (2005) show that the optimal kernel function will have a “representation” in terms of
n+1 basic kernels. Because we have separated our concerns with the kernel function appearing only
in the regularization and not in the loss, we are able to give a very simple proof of their result. Given
a subset, K , of the n× n symmetric positive semidefinite matrices, we consider F(K) = δK ⊕(K),
where K ⊕ is the convex hull of K .

Lemma 26 Let z ∈ Rn and K ∈ K ⊕. There exists K̃ = ∑n+1
i=1 tiKi with ti ≥ 0 and ∑i ti = 1 such that

K̃z= Kz.

Proof Let Y = {K ′z : K′ ∈ K } and Y⊕ = {K′z : K′ ∈ K ⊕}. Clearly, Y⊕ is the convex hull of Y and
Kz∈Y⊕. By Carathéodory’s theorem (Rockafellar and Wets (2004), Theorem 2.29), ∃t ∈Rn+1, ti ≥
0,∑i ti = 1 such that Kz= ∑i tiyi with yi ∈ Y and hence yi = Kiz for some Ki ∈ K .

468



VALUE REGULARIZATION AND FENCHEL DUALITY

F∗ = σK ⊕ . Let us assume that K ⊕ is closed (compactness of K is sufficient but not necessary).
Under this assumption, F is ccp, and the optimality condition from the regularization term becomes

y= λ−1Kz and ztKz= σK ⊕(zzt),K ∈ K ⊕. (20)

Corollary 27 Let z ∈ Rn,K ∈ K ⊕ and K̃ ∈ K ⊕ be as in Lemma 26. If y,z,K satisfy (20) then y,z, K̃
do. Additionally, if ti > 0 then ztKiz= σK ⊕(zzt).

Proof The first claim comes directly from K̃z=Kz. The second claim comes from ztK̃z= σK ⊕(zzt)
and a standard argument.
Since K does not appear in the loss optimality conditions (which depend only on z and y), we see
that we can construct an optimal y, K, and z for the entire kernel learning problem where K is
a convex combination of at most n+ 1 “atoms” of K that solve the problem. Our result is both
substantially simpler than the result of Argyriou et al. (2005), and more general in that it applies
to arbitrary convex loss functions: Argyriou et al. (2005)’s argument was essentially a saddle point
argument which required differentiability of the loss.

Our work generalizes previous results in this field, in that we have shown that one may use
an arbitrary kernel penalizer F(K); previous work has used only δ functions. Exploring alternate
penalizers and developing algorithms is a topic for future work.

9. Regularizations and Bias

In this section, we consider relaxing primal regularizations by means of infimal convolutions. The
primary application is unregularized bias terms for kernel machines. In Section 9.1, we obtain very
general results for biased regularizations, independent of particular loss functions and even partic-
ular regularizers. In Section 9.2, we use similar techniques to analyze leave-one-out computations
for RKHS learning.

9.1 Learning with Bias

So far, we have considered regularization in an RKHS, deriving formulations of regularized least
squares and an unbiased version of the support vector machine. In practice, the SVM is generally
used with an unregularized bias term b (Poggio et al., 2001). This gives the regularization the
property that R(y+ b1n) = R(y)—constant shifts of the regression values are free. This can be
achieved by taking a base regularization such as R= λQK−1 and replacing it with R′ = λQK−1 !δ1nR
where 1n ∈ Rn is the vector of all 1s. In this case, we will see that the subgradient relation for the
regularization becomes

z ∈ ∂R′(y) ⇔
(
λ−1K 1n
1tn 0

)(
z
b

)
=

(
y
0

)
, (21)

which relates y to both z and the bias parameter b.
We examine biased regularizations more generally. Without loss of generality, we cast this

theorem in terms of an infimal convolution in the primal regularization, though by biconjugation,
this lemma applies symmetrically to the primal and dual.
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Lemma 28 (bias) Let C ⊂ Rn be a closed convex set containing 0. Let R : Rn → (−∞,∞] be ccp
where R′ = R!δC is exact. Then z ∈ ∂R′(y) iff ∃c ∈C such that

∀c′ ∈C,zt(c′− c) ≤ 0
R(y− c)− (y− c)tz+R∗(z) = 0. (22)

Proof By Theorem 15, z ∈ ∂R′(y) iff ∃c such that z ∈ ∂δC(c) and z ∈ ∂R(y− c). The first condition
is given by Equation 13, and the second condition is the generic condition of Theorem 6.
The first condition in Lemma 28 is a normality condition on z taking different forms depending on
the geometry of C. It states that the hyperplane given by Hz,σC(z)(y) = 0 is a supporting hyperplane
of C. For example, if the boundary of C were smooth, then this condition reduces to z being a
normal toC at c. IfC = B, then z= λc for some λ≥ 0.

If C is a vector subspace, then σC = δC⊥ , and (22) becomes the condition z ∈ C⊥ with c an
arbitrary element ofC. Thus, it seems worthwhile to specialize to the case of vector subspaces.

Corollary 29 Let V1 ⊂ V2 ⊂ Rn be vector subspaces. Let R : Rn → (−∞,∞] be ccp. Let R′ = R !
δV1 +δV2 . Then R′∗ = R∗ !δV⊥

2
+δV⊥

1
and (assuming exactness of the !’s) z∈ ∂R′(y) iff y∈V2,z∈V⊥

1
and z−a ∈ ∂R(y−b) for some a ∈V⊥

2 ,b ∈V1.

Proof Let R1 = R!δV1 and R2 = R1+δV2 . By Lemma 28,

z1 ∈ ∂R1(y1) ⇔ z1 ∈V⊥
1 and ∃b ∈V1 s.t. z1 ∈ ∂R1(y1−b)

z2 ∈ ∂R2(y2) ⇔ y2 ∈V2 and ∃a ∈V⊥
2 s.t. z2−a ∈ ∂R1(y2).

Thus,

z ∈ ∂R′∗(y) ⇔ y ∈V2 and ∃a ∈V⊥
2 s.t. z−a ∈V⊥

1

and ∃b ∈V1 s.t. z−a ∈ ∂R(y−b)
⇔ y ∈V2 and z ∈V⊥

1 and ∃a ∈V⊥
2 ,b ∈V1 s.t. z−a ∈ ∂R(y−b),

where the last line is due to V⊥
2 ⊂V⊥

1 .

Suppose we start with a regularization R, and we wish to allow a free constant bias in the y
values. Our primal problem is:

inf
y,b

{
R(y−b1n)+

n

∑
i=1

(1− yiYi)+

}
= inf

y

{
(R!δ1nR)(y)+

n

∑
i=1

(1− yiYi)+

}
.

In the dual, the regularization term becomes (R∗ + δ(1nR)⊥)(z). We see that the dual regularizer
z ∈ (1nR)⊥ can also be written as the constraint ∑zi = 0. We have shown that for any regularization
and loss function, allowing a free unregularized constant b in the y values induces a constraint
∑i zi = 0 in the dual problem. Nothing else changes: to obtain the standard “biased” SVM instead
of the unbiased SVM we derived in Section 5.2.2, we change the primal regularizer from QK−1

to QK−1 ! δ1nR, we change the dual regularizer from QK to QK + δ(1nR)⊥ , or, equivalently, we add
the constraint ∑i zi = 0 to the dual optimization problem. There is no need to take the entire dual
again—the loss function is unchanged, and in the Fenchel formulation, the regularization and loss
make separate contributions.
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In terms of Corollary 29, the standard constant bias is obtained by choosing V1 = 1nR,V2 = Rn,
and therefore a= 0 and R!δV1 +δV2 = R!δV1 . Assuming we are using an RKHS primal regularizer
QK−1 , then z ∈ ∂(QK−1 !δV1)(y−b) iff b ∈ 1nR and z ∈ ∂QK−1(y−b), or, equivalently, if (21) holds.

We can incorporate the same bias into regularized least squares. Recalling that the loss opti-
mality condition for RLS is y+ z= Y , we can eliminate either y or z from the optimality condition,
obtaining either a pure primal or pure dual formulation for the so-called least squares SVM (Suykens
et al., 2002).

(
λ−1K 1
1t 0

)(
Yi
b

)
=

(
I+λ−1K 1

1t 0

)(
y
0

)

(
I+λ−1K 1

1t 0

)(
z
b

)
=

(
Yi
0

)
,

Note that introducing biases via infimal convolutions with RKHS regularization preserves the
representer property:

Corollary 30 Let K =
(
KNN KNM
KMN KMM

)
∈R(n+m)×(n+m) be symmetric positive definite where KNN ∈

Rn×n. Let C ∈ Rn+m be a closed convex set containing 0, and let CN be the projection of C onto the
first N dimensions. For all y1 ∈ Rn,

inf
y2∈Rm

(QK−1 !δC)(y1,y2) = (QK−1
NN

!δCN )(y1),

where the minimizer is of the form y2 = KMNK−1
NN(y1− c1)+ c2 where (c1,c2) ∈C.

Proof

inf
y2∈Rm

(QK−1 !δC)(y1,y2) = inf
y2∈Rm

inf
(c1,c2)∈C

QK−1((y1,y2)− (c1,c2))

= inf
(c1,c2)∈C

inf
y2∈Rm

QK−1((y1,y2)− (c1,c2))

= inf
c1∈CN

inf
y′2∈Rm

QK−1(y1− c1,y′2)

= inf
c1∈CN

QK−1
NN

(y1− c1),

where the last equality is an application of Corollary 24 (the statement about y2 then follows since
that QK−1 !δC and QK−1

NN
!δCN are exact).

The minimizing y2 will be unique if a transversality condition holds: ∀(c1,c2),(c′1,c′2) ∈ C,c1 =
c′1 ⇒ c1 = c′2. For the standard constant-term bias, this is clear and the recovery of y2 reduces to
y2 = KMNK−1

NN(y1−1nb)+1mb.

9.2 Leave-one-out Computations

For small data sets, it is frequently of interest to do model selection via leave-one-out cross valida-
tion. Done naively, this involves solving n optimization problems, one for each size n−1 subset of
the data, and testing n−1 functions at the remaining points. In this section, we relate the solution
of the full problem (using all the data points) to the leave-one-out value.
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We consider an n+1 point data set, and define y= (y0,yN) ∈ Rn+1 in a regression problem with
losses vi(y) for 0≤ i≤ n. The “full” optimization problem, with an RKHS regularization, is

inf
y∈Rn+1

{
λQK−1(y)+

n

∑
i=0

vi(yi)

}
.

We now show how we can compute a “leave one out” score as the auxiliary variable of a biased
regularization of the form δC whereC = {(y0,0) ∈ Rn+1}. Consider the optimization,

inf
y∈Rn+1

{
λ(QK−1 !δC)(y)+

n

∑
i=0

vi(yi)

}
= inf

y∈Rn+1,β∈R

{
λQK−1(y−βe0)+

n

∑
i=0

vi(yi)

}
.

By Corollary 29, the right hand problem has the regularization optimality condition
(
λ−1K e0
et0 0

)(
z
β

)
=

(
y
0

)
,

Clearly, at optimality, z0 = 0 and y0 will assume a value with minimal loss: v0(y0) = infy v(y) ≡ v̄.
With z0 = 0, it is clear that the values z1, . . . ,zn and y1, . . . ,yn are an optimal solution to the restricted
problem obtained by simply discarding (X0,Y0), and that therefore, (λ−1Kz)0 is the value we would
obtain if we solved the restricted problem and computed the “test value” at X0. β is the leave-one-out
“error” y0− (λ−1Kz)0.

In the case of a square loss, the loss optimality conditions are z+y=Y , allowing us to eliminate
y,

(
I+λ−1K e0

et0 0

)(
z
β

)
=

(
Y
0

)
,

and solve for β, Defining G≡ I+λ−1K, we have

β =
et0G−1Y
et0G−1e0

,

the standard formula for RLS leave-one-out errors.

10. Low-rank Approximation of Kernel Matrices

Given n data points, the kernel matrix K is n by n. For large n, it is impractical to compute with
(or store) K. Consequently, there has been an interest in approximations to K. In this section,
we consider a class of low rank approximations to K obtained by considering a vector subspace
V0 ⊂ Rn, and defining K̃ as the lowest rank symmetric matrix such that K̃V0 = KV0. The primary
example is the well-known Nyström approximation (Baker, 1977). When the Nyström kernel matrix
approximation was first used in machine learning applications (Willams and Seeger, 2000), the
suggested approach was to simply replace K with K̃; we refer to this approach as the Nyström
method. We will show that the “natural” algorithm suggested by the Nyström approximation is in
fact the subset of regressors method (Poggio and Girosi, 1990; Luo and Wahba, 1997), as opposed
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to the Nyström method.9 In contrast, the Nyström method essentially makes an unwarranted (and
incorrect) assumption that the representer theorem, which directly connects the dual variables z and
the function expansion coefficients c in the standard RKHS case, still holds when we replace K with
K̃. Our observation is consonant with empirical reports (Rifkin, 2002; Rasmusen and Williams,
2006) that the subset of regressors algorithm tends to outperform the Nyström algorithm. We note
in passing that whereas previous algorithmic work with the Nyström approximation has mostly
focussed on Gaussian Process regression or regularized least-squares, our results are all independent
of the particular loss function chosen.

We first show that QK̃ has a simple characterization.

Lemma 31 Let K, K̃ ∈ Rn×n with K symmetric positive definite and K̃V0 = KV0 with rank(K̃) =
dimV0. Then QK̃ = QK !δ(KV0)⊥ .

Proof For all v ∈ V0 and n ∈ Null(K̃), 0 = ntK̃v = ntKv, thus, since rank(K̃) = dimV0, Null(K̃) =
(KV0)⊥ and V0∩ (KV0)⊥ = {0}.

Given v ∈V0,n ∈ (KV0)⊥,

QK(v+n) =
1
2
(v+n)tK(v+n)

= QK(v)+QK(n)
QK̃(v+n) = (v+n)tK̃(v+n)

=
1
2
vtK̃v=

1
2
vtKv= QK(v).

In comparison

(QK !δ(KV0)⊥)(v+n) = inf
w

{
QK(v+n−w)+δ(KV0)⊥(w)

}

= QK(v)+ inf
w∈(KV0)⊥

{QK(n−w)}

= QK(v).

Lemma 31 implies

inf
z

{
λ−1QK̃(z)+V ∗(−z)

}
= inf

z

{
λ−1(QK !δ(KV0)⊥)(z)+V ∗(−z)

}

= inf
z∈Rn,z′∈(KV0)⊥

{
λ−1QK(z− z′)+V ∗(−z)

}

= inf
z′′∈Rn

{
λ−1QK(z′′)+ inf

z′∈(KV0)⊥
V ∗(−z′′− z′)

}
. (23)

We see that giving the regularization a non-trivial nullspace ((KV0)⊥) is equivalent to allowing an
unregularized “bias” from that same space. Hence, we expect the resulting modified dual optimiza-
tion problem to have a lower value than the original dual.

9. To avoid confusion, we reiterate that the Nyström approximation is a low-rank approximation to K, denoted by K̃,
while the Nyström method is obtained by simply replacing K with K̃ in an algorithm such as regularized least squares.
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The modified primal problem, the Fenchel dual of (23), is

inf
y
{λQK−1(y)+δKV0(y)+V (y)} = inf

y∈KV0
{λQK−1(y)+V (y)} (24)

which is identical to the original optimization problem, but with a restricted domain, and hence a
higher value, in general. This is to be expected, as any pair of Fenchel duals have inversely related
infimal values. For the remainder of this section, the variables y and z refer, respectively to optimal
solutions to the modified primal (24) and dual (23) problems.

So far, we have considered an arbitrary subspaceV0. We now specialize to the Nyström approx-

imation, obtained by partitioning the data into two blocks N and M with K =
(
KNN KNM
KMN KMM

)
, and

taking V0 =
(
I
0

)
Rn, in which case

K̃ =
(
KNN KNM
KMN KMNK−1

NNKNM

)
=

(
I 0

KMNK−1
NN 0

)(
KNN KNM
KMN KMM

)
.

It is obvious that K̃V0 = KV0 and the expression on the right demonstrates that K̃ is rank n.

By Corollary 29, withV2 =K
(
I
0

)
Rn =

(
K−1

(
0
I

)
Rm

)⊥
andV1 = {0}, the complementarity

relation between y and z due to the regularization terms of the modified problems (24) and (23) is

(
z
0

)
= λ



 K−1 K−1
(
0
I

)

(0 I )K−1 0




(
y
α

)

or, equivalently, ∃r ∈ Rn such that

y = λ−1K
(
r
0

)
(25)

and

λ−1Kz = y+
(
0
α

)
(26)

λ−1K̃z = y, (27)

where (27) is obtained from (26) by multiplying the first equation on the left by
(

I 0
KMNK−1

NN 0

)

and observing that K̃
(
r
0

)
= K

(
r
0

)
by construction.

In standard Tikhonov regularization in an RKHS, the complementarity equation from the regu-
larization, y= λ−1Kz, and the representer theorem tells us that we can obtain an optimizing function
using c = λ−1z. Once we have replaced K with K̃, this connection no longer holds, and we must
decide how to generalize a minimizer of (23) or (24) into a function that can be used to predict
the values at future points. The Nyström method, suggested in Willams and Seeger (2000) is to
use the function fd(x) ≡ ∑n+m

i=1 λ
−1zik(x,Xi), essentially “pretending” that the connection between c
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and z is still valid. An alternate choice is to use r, yielding fp(x) ≡ ∑n
i=1λ

−1rik(x,Xi).10 By (26),
fp(Xi) = fd(Xi) when 1≤ i≤ n, while fd(Xi) = fp(Xi)+αi−n when n< i≤ n+m—the two regres-
sors are related, taking the same values at the first n points but generally different values on the last
m points.

By eliminating y for r in the modified primal problem (24), we see that f p is the solution of the
subset of regressors method, where we construct a function using only those coefficients associated
with points in N:

inf
y∈KV0

{λQK−1(y)+V (y)} = inf
r∈Rn

{
λ−1QKNN (r)+V

(
λ−1

(
KNN
KMN

)
r
)}

.

In this sense, we can see that the subset of regressors method is associated with the modified prob-
lems (24) and (23). Additionally, the function fp will recover the y values optimizing (24) at all
n+m training points. In contrast, if we use the Nyström method on the last m training points, we
will not recover the last m values—they will differ by α.

We have shown that the subset of regressors method corresponds in a natural way to the modified
primal and dual problems obtained by replacing K with the Nyström approximation K̃, whereas the
Nyström method makes the additional unwarranted assumption that it is still a good idea to construct
a function to classify future points using c = λ−1z. We can also derive an interesting relationship
between the functions fp and fd .

We first note that by (25), y and
(
0
α

)
are “K−1 orthogonal”: ytK−1

(
0
α

)
=

(
r
0

)t ( 0
α

)
= 0.

As a consequence, the quadratic form QK−1 “distributes” over y and
(
0
α

)
:

QK−1(λ−1Kz) = QK−1

(
y+

(
0
α

))

= QK−1(y)+ ytK−1
(
0
α

)
+QK−1

(
0
α

)

= QK−1(y)+QK−1

(
0
α

)
.

Furthermore, by (26),
(
0
α

)t
z =

(
0
α

)t ((
r
0

)
+λK−1

(
0
α

))

= λ

(
0
α

)t
K−1

(
0
α

)

= 2λQK−1

(
0
α

)
.

We now consider comparing the functions fd and fp. Recall that the values of fd at all training points
are equal to λ−1Kz while those of fp are y. Because y and z are optimal solutions to the modified

10. We chose the name fd and fp because the two functions seem to us “suggested” by the modified dual and primal
problems, respectively.
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primal and dual problems,−z∈ ∂V (y). Since−z is a subgradient ofV at y,V (y)−zt(y′−y)≤V (y′)

for all y′ ∈ Rn. Setting y′ = λ−1Kz, and noting that λ−1Kz− y=
(
0
α

)
, by (26), we have,

V (y)−V (y′) ≤ zt(y′− y) = zt
(
0
α

)
= 2λ

(
QK−1(λ−1Kz− y)

)

= 2λ
(
QK−1(y′)−QK−1(y)

)
= 2λQK−1

(
0
α

)
.

Recall that y was obtained by minimizing V (y) + λQK−1(y) over KV0. Comparing the function
values y and y′ of the regressors fp and fd respectively, we see that fd pays a higher regularization

cost as compared to fp, QK−1(y′)−QK−1(y) =QK−1

(
0
α

)
. Furthermore, the difference in loss at the

last m points in favor of fd is bounded by 2λ times this difference—it is not possible for fd to have
arbitrarily smaller loss. In practice, we often find that the Nyström method produces worse function
values at the m points than the subset of regressors does. This provides further evidence that the
subset of regressors method should be preferred to the Nyström method.

11. Discussion and Future Work

We have introduced a new framework for thinking about optimization in learning theory by com-
bining two key elements: Fenchel duality and value regularization. Fenchel duality allows us to
analyze the optimality conditions for regularization and loss terms separately, and combine these
optimality conditions to get complete optimality conditions for machine learning schemes. Value
regularization makes it easy to reason about optimization problems over training and testing points
simultaneously, and isolates the RKHS kernel to the regularization term. We have used the frame-
work to gain new insights into several topics in machine learning, including the representer theorem,
learning a kernel matrix, biased regularizations, and low-rank approximations to kernel matrices.
There remain several interesting open questions.

In Sections 7 and 8, we showed that both supervised learning in an RKHS and learning the ker-
nel matrix had a representer theorem that caused the inductive and natural transductive algorithms
to make the same prediction. It would be interesting to explore this idea further, characterizing
formally what sorts of conditions give rise to agreement between inductive and transductive algo-
rithms.

The framework developed in this article is specialized to the case where the predicted outputs
y are real-valued scalars. It is frequently of interest to make predictions on objects with more
structure: examples include multiclass classification, ranking, and classification of sequences. The
extension of the value regularization framework to these problems is in principle straightforward,
but many details remain to be worked out.

Finally, although this article has focussed on the analysis of existing schemes, one may ask
whether a value regularization perspective can lead to the development of new learning algorithms.
It seems unlikely that value regularization in an RKHS will lead directly to improved algorithms
(for example, a better SVM solver), because the inverse kernel matrix K−1 appearing in the primal
is a computationally inconvenient object. However, we might imagine designing regularizers for
which value-based optimization is computationally effective, such as a transductive algorithmwith a
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regularizer that directly imposes some non-RKHS smoothness over the input space. We are actively
working to design and implement such algorithms.
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Abstract
A novel relational learning approach that tightly integrates the naı̈ve Bayes learning scheme with
the inductive logic programming rule-learner FOIL is presented. In contrast to previous combina-
tions that have employed naı̈ve Bayes only for post-processing the rule sets, the presented approach
employs the naı̈ve Bayes criterion to guide its search directly. The proposed technique is imple-
mented in the NFOIL and TFOIL systems, which employ standard naı̈ve Bayes and tree augmented
naı̈ve Bayes models respectively. We show that these integrated approaches to probabilistic model
and rule learning outperform post-processing approaches. They also yield significantly more accu-
rate models than simple rule learning and are competitive with more sophisticated ILP systems.
Keywords: rule learning, naı̈ve Bayes, statistical relational learning, inductive logic programming

1. Introduction

The study of learning schemes that lie at the intersection of probabilistic and logic or relational
learning has received a lot of attention recently (De Raedt and Kersting, 2003; Getoor and Taskar,
2007). Whereas typical approaches upgrade existing probabilistic learning schemes to deal with
relational or logical data (such as Probabilistic Relational Models (Getoor et al., 2001) or Stochastic
Logic Programs (Muggleton, 1996)), we start from an inductive logic programming system and
extend it with a probabilistic model. More specifically, we start with the simplest approaches from
both domains, the inductive logic programming system FOIL (Quinlan, 1990) and naı̈ve Bayes, and
integrate them in the NFOIL system. As the strong independence assumption of naı̈ve Bayes can
be problematic in some domains, we furthermore investigate a generalization of naı̈ve Bayes known
as tree augmented naı̈ve Bayes in the TFOIL system. Indeed, this methodology could be extended
to learning full Bayesian networks; however, the advantage of combining such simple learning

∗. This is a significant extension of a paper that appeared in the Proceedings of the Twentieth National Conference on
Artificial Intelligence (Landwehr et al., 2005).
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schemes is that the resulting probabilistic logical or relational model is easier to understand and to
learn.

In relational learning or inductive logic programming, one typically induces a set of rules (so-
called clauses). The resulting rule-set then defines a disjunctive hypothesis, as an instance is clas-
sified as positive if it satisfies the conditions of one of the rules. On the other hand, a probabilistic
model defines a joint probability distribution over a class variable and a set of “attributes” or “fea-
tures”, and the type of model constrains the joint probability distributions that can be represented.
A straightforward but powerful idea to integrate these two approaches is to interpret the clauses or
rules as propositional “features” over which a joint probability distribution can be defined. Using
naı̈ve Bayes as the probabilistic model, this translates into the statement that “clauses are indepen-
dent”. This idea is not really new. It has been pursued by Pompe and Kononenko (1995) and Davis
et al. (2004). However, in these existing approaches for combining ILP and naı̈ve Bayes, one learns
the model in two separate steps. First, the features or clauses are generated (for example using an
existing inductive logic programming system such as ILP-R (Pompe and Kononenko, 1995)) and
then the probability estimates for the naı̈ve Bayes are determined. This actually corresponds to a
static propositionalization approach, where the propositionalized problem is learned using naı̈ve
Bayes.

We propose a different and novel approach, in which feature construction is tightly integrated
with naı̈ve Bayes. The advantage of such a dynamic propositionalization is that the criterion ac-
cording to which the features are generated is that of naı̈ve Bayes. Our intention in this paper is
to investigate how dynamic propositionalization compares to static propositionalization approaches
that use naı̈ve Bayes only to post-process the rule set. More precisely, we will investigate:

(Q1) Is there a gain in predictive accuracy of a dynamic propositionalization approach over its ILP
baseline?

(Q2) If so, is the gain of dynamic propositionalization over its baseline larger than the gain of static
propositionalization approaches?

(Q3) Can performance be improved by using a more expressive probabilistic model, such as tree
augmented naı̈ve Bayes?

(Q4) Is a dynamic propositionalization based on a simple rule learner competitive with advanced
ILP approaches?

(Q5) Relational naı̈ve Bayes methods such as 1BC2 (Flach and Lachiche, 2004) essentially employ
all clauses within a given language bias as features in a probabilistic model and thus perform
static propositionalization. Does dynamic propositionalization employ fewer features and
perform better than these approaches?

To answer Questions Q1–Q5, we present the NFOIL and TFOIL systems. The former is the
first system reported in the literature that tightly integrates feature construction and naı̈ve Bayes (De
Raedt and Kersting, 2004; Landwehr et al., 2005). It guides the structure search by the probabilis-
tic score of naı̈ve Bayes. This contrasts with static propositionalization approaches, in which the
criteria employed for feature generation and classification are different.

NFOIL essentially performs a covering search in which one feature (in the form of a clause) is
learned after the other, until adding further features does not yield improvements. The search heuris-
tic is based on class conditional likelihood and clauses are combined with naı̈ve Bayes. TFOIL is an

482
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extension of NFOIL that employs a tree augmented naı̈ve Bayes, that is, it relaxes the naı̈ve Bayes
assumption to allow additional probabilistic dependencies between clauses.

Recently, two other approaches that integrate the search for structural rules and a probabilistic
model have been proposed. For STRUCTURAL LOGISTIC REGRESSION (Popescul et al., 2003),
aggregated SQL queries are used as features in a logistic regression model. The authors propose an
integrated search algorithm; however, the higher computational cost of training a logistic regression
model allows for a limited search only. In the experimental evaluation, the implementation of
Structural Logistic Regression only searches for clauses with up to two literals, where the first
literal is fixed in advance. Furthermore, no experimental comparison to static propositionalization
approaches is provided. In 2005, Davis et al. presented the SAYU system, which also learns a set
of first-order rules that are combined in a probabilistic model. Clauses are selected according to
the area under the precision-recall curve. The parameters of the probabilistic model are estimated
to maximize the likelihood. Unlike naı̈ve Bayes and NFOIL, SAYU does not handle multi-class
problems (cf. the discussing of related work in Section 7).

The rest of the paper is organized as follows. Section 2 introduces some basic concepts from in-
ductive logic programming and the simple first-order rule learning algorithm FOIL. In Section 3, we
lift FOIL’s problem setting to the probabilistic case and introduce a combined probabilistic/logical
model for this setting. Section 4 shows how the NFOIL algorithm for learning such a model can
be obtained by modifying certain components of the FOIL algorithm. Section 5 discusses how to
extend the NFOIL algorithm to incorporate tree augmented naı̈ve Bayes, resulting in the TFOIL
system. In Section 6 we experimentally evaluate the proposed methods on benchmark data sets
from four different domains and specifically investigate how it compares to static propositionaliza-
tion approaches. Finally, we conclude and touch upon related work.

2. FOIL: First Order Inductive Learning

The problem that we tackle in this paper is a probabilistic formulation of the traditional inductive
logic programming (ILP) problem. In ILP, the goal is to induce first-order clausal hypotheses from
a relational description of a set of labeled examples and background knowledge. As an illustrating
example, consider the task of inducing a theory that distinguishes between mutagenic and non-
mutagenic chemical compounds based on the description of their structure (cf. the well-known
mutagenicity problem (Srinivasan et al., 1996)):

Example 1 Consider the following background theory B:

atom(189,d189 1,c,22,−0.11) bond(189,d189 1,d189 2,7)
atom(189,d189 2,c,22,−0.11) bond(189,d189 2,d189 3,7)
atom(189,d189 3,c,27,0.02) bond(189,d189 3,d189 4,7)
. . . . . .

atom(189,d189 26,o,40,−0.38) bond(189,d189 18,d189 26,2)

and the example mutagenic(189). A possible hypothesis for this domain is

mutagenic(X) ← atom(X ,A,o,40,C),bond(X ,B,A,2)
mutagenic(X) ← atom(X ,A,c,22,C),atom(X ,B,E,22,0.02),bond(X ,A,B,7)
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In the example, atom/5 and bond/4 are predicates (of arity 5 and 4 respectively) that identify
relations, numbers and lower-case strings like 189,c,d189 1 are constants that identify objects and
upper-case letters like X ,A,B,C are logical variables. Logical atoms are predicates together with
their arguments, for example bond(189,d189 1,d189 2,7). Definite clauses, such as

mutagenic(X) ← atom(X ,A,o,40,C),bond(X ,A,B,2),

consist of a head mutagenic(X) and a body atom(X ,A,o,40,C),bond(X ,A,B,2). The logical atoms
in the body are also called literals. Facts are definite clauses with an empty body, for example,
atom(189,d189 1,c,22,−0.11). A definite clause is called ground if it does not contain any vari-
ables. A hypothesis is a set of clauses. A hypothesis is said to entail an example given the back-
ground knowledge if the example is a logical consequence of the definite clauses in the hypothesis
and background knowledge. In the example, mutagenic(189) is entailed by the hypothesis given the
background knowledge.

(Probabilistic) inductive logic programming problems can be formalized in a general way as
follows (De Raedt and Kersting, 2004):

Given

• a background theory B, in the form of a set of definite clauses h← b1, · · · ,bn;

• a set of examples E, in the form of ground facts, classified into classesC;

• a language of clauses L , which specifies the clauses that are allowed in hypotheses;

• a covers(e,H,B) function, which returns the classification covers(e,H,B) of an example e,
w.r.t. a hypothesis H, and the background theory B;

• a score(E,H,B) function, which specifies the quality of the hypothesis H w.r.t. the data E
and the background theory;

Find
argmax

H⊂L
score(E,H,B) .

Traditional approaches to inductive logic programming (Muggleton and De Raedt, 1994) tackle
a concept-learning problem, in which there are typically two classes, and the goal is to find a com-
plete and consistent concept-description. This can be formalized within our framework by making
the following choices for covers and score:

• covers(e,H,B) = positive if B∪H |= e (i.e., e is entailed by B∪H);
otherwise, covers(e,H,B) = negative;

• score(E,H,B) = training set accuracy (or a related measure).

Using this definition of coverage, the hypothesis given in Example 1 covers the example
mutagenic(189) together with the background knowledge. This setting is incorporated in many
well-known inductive logic programming systems such as FOIL (Quinlan, 1990), GOLEM (Mug-
gleton and Feng, 1990), PROGOL (Muggleton, 1995) and TILDE (Blockeel and De Raedt, 1997).
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Algorithm 1 Generic FOIL algorithm.
Initialize H := /0
repeat
Initialize c := p(X1, · · · ,Xn) ←
repeat
for all c′ ∈ ρ(c) do
compute score(E,H ∪{c′},B)

end for
let c be the c′ ∈ ρ(c) with the best score

until stopping criterion
add c to H
E := update(E,H)

until stopping criterion
output H

FOIL, like many inductive logic programming systems, follows a greedy and incremental ap-
proach to induce a hypothesis. Such an algorithm is described in Algorithm 1. It repeatedly searches
for clauses that score well with respect to the data set and the current hypothesis and adds them to
the hypothesis. In the update function, the set of training examples can be updated after a clause has
been learned. In the inner loop, the algorithm greedily searches for a clause that scores well. To this
aim, it employs a general-to-specific hill-climbing search strategy. To generate the specializations of
the current clause c, a so-called refinement operator ρ under θ-subsumption is employed. A clause
c1 θ-subsumes a clause c2 if and only if there is a substitution θ such that c1θ ⊆ c2. A substitution
is a set {V1/t1, . . . ,Vl/tl} where theVi are different variables and the ti are terms, and the application
of the substitution replaces the variables V1, . . . ,Vl by the corresponding terms t1, . . . , tl . The most
general clause is p(X1, · · · ,Xn) ← where p/n is the predicate being learned and the Xi are different
variables. The refinement operator specializes the current clause h← b1, · · · ,bn. This is typically
realized by either adding a new literal l to the clause yielding h← b1, · · · ,bn, l or by applying a
substitution θ yielding hθ← b1θ, · · · ,bnθ.

This type of algorithm has been successfully applied to a wide variety of problems in inductive
logic programming. In classical FOIL, it is further simplified to a separate-and-conquer approach:
examples that are covered by a learned clause are removed from the training data, and the score of
a clause can be computed without respect to the current hypothesis; that is, score(E,H ∪ {c′},B)
simplifies to score(E,c′,B). Many different scoring functions and stopping criteria have been em-
ployed. The original FOIL algorithm uses information gain based on the number of positive and
negative tuples bound to clauses as the scoring function (Quinlan, 1990), and a stopping criterion
based on the minimum description length principle (Rissanen, 1978). MFOIL, a variant of FOIL
that was particularly designed to cope with noise in the training data, uses them-estimate for scoring
clauses and a significance-based stopping criterion (Lavrač and Džeroski, 1994).

3. Integrating Naı̈ve Bayes and FOIL: Problem Specification

Let us now discuss how to integrate the naı̈ve Bayes method in FOIL’s problem specification. This
will be realized by modifying the covers and score functions in the inductive logic programming
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setting. All other elements, such as the examples, background theory and language of clauses L
will—in principle—be untouched. However, the set of clauses defining a hypothesis is augmented
with a set of parameters that quantify the probabilistic model. For easy of exposition, we will first
discuss this for the case that the clauses are combined using naı̈ve Bayes, that is, the NFOIL system.
The extension to the tree-augmented naı̈ve Bayes model (TFOIL) will be presented in Section 5.

3.1 A Probabilistic covers Function

In the setting of learning from probabilistic entailment (De Raedt and Kersting, 2004), the notion of
coverage is replaced by a probability. We will use P to denote a probability distribution as in P(x),
and P to denote a probability value as in P(x), where x is a state of the random variable x.

The probabilistic covers relation is then defined as the likelihood of the example, conditioned
on the hypothesis and the background theory:

covers(e,H,B) = P(e | H,B), (1)

where B is defined as before and H = (HC,Hλ) is an augmented hypothesis, consisting of a clause
set HC and an associated probabilistic model Hλ. An example e is of the form p(X1, · · · ,Xn)θ= true
or p(X1, · · · ,Xn)θ= f alse. Abusing notation—when the context is clear—we will sometimes refer
to the example as θ, and say that the random variable p (class label) takes on the value pθ (true or
false) for example θ.

We now still need to define P(e | H,B). The key idea for realizing this is that we interpret the
clauses in H together with the example e as queries or features. More formally, let H contain a set
of clauses defining the predicate p. Then for each clause c of the form

p(X1, · · · ,Xn) ← b1, · · · ,bn

we view the query qc =← b1, · · · ,bn as a boolean feature or attribute. Applied to an example θ these
queries become instantiated, qcθ =← b1θ, · · · ,bnθ, and either succeed or fail in the background
theory B. As for the class label, we will say that qcθ is the observed (boolean) value of the random
variable qc.

Example 2 Assume that the background theory is given as in Example 1, and the query qc under
consideration is

← atom(X ,A,o,40,C),bond(X ,B,A,2)

For the example θ= {X/189}, the instantiated clause

← atom(189,A,o,40,C),bond(189,B,A,2)

succeeds in the background theory, so the boolean random variable qc takes on value qcθ = true
for this example.

The probabilistic model Hλ of H specifies a distribution over the random variables p and qc. The
observed (boolean) value of qc is qcθ. We now define

P(e | H,B) = Pλ(pθ|q1θ, · · · ,qkθ)

=
Pλ(q1θ, · · · ,qkθ|pθ) ·Pλ(pθ)

Pλ(q1θ, · · · ,qkθ)

486
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where HC = {q1, ...,qk} and Pλ(p,q1, ...,qk) is the distribution defined by Hλ.
Now it becomes possible to state the naı̈ve Bayes assumption

Pλ(q1, ...,qk|p) =∏
i
Pλ(qi|p)

and apply it to our covers function (Equation 1):

P(e | H,B) = ∏iPλ(qiθ|pθ) ·Pλ(pθ)
Pλ(q1θ, · · · ,qkθ)

.

At the same time, this equation specifies the parameters Hλ of the augmented model H, which
are the distributions Pλ(qi|p) and the prior class distribution Pλ(p) (note that Pλ(q1, ...,qk) can be
computed by summing out).

Example 3 Reconsider the mutagenicity example, and assume that the hypothesis is as sketched
before. Then the queries q1 and q2 are

mutagenic(X) ← atom(X ,A,o,40,C),bond(X ,B,A,2)
mutagenic(X) ← atom(X ,A,c,22,C),atom(X ,B,E,22,0.02),bond(X ,A,B,7)

and the target predicate p is “mutagenic(X)”. Now assume a naı̈ve Bayes model with probability
distributions Pλ(qi|p) given as

Pλ(p= t) = 0.6,
Pλ(q1 = t|p= t) = 0.7 , Pλ(q1 = t|p= f ) = 0.4,
Pλ(q2 = t|p= t) = 0.2 , Pλ(q2 = t|p= f ) = 0.1.

Summing out yields

Pλ(q1 = t,q2 = t) = 0.10, Pλ(q1 = t,q2 = f ) = 0.48,
Pλ(q1 = f ,q2 = t) = 0.06, Pλ(q1 = f ,q2 = f ) = 0.36

where t ( f ) denotes true ( f alse). For the positively labeled example θ= {X/189}, q1 succeeds and
q2 fails: pθ= true, q1θ= true, q2θ= f alse. Thus,

P(e | H,B) =
Pλ(q1θ|pθ) ·Pλ(q2θ|pθ) ·Pλ(pθ)

Pλ(q1θ,q2θ)
=
0.7 ·0.8 ·0.6

0.48
= 0.7.

3.2 The score Function

As scoring function, we employ the likelihood P(E | H,B) of the data given the model and the
background knowledge, and we assume also that the instances are independently and identically
distributed (i.i.d.). So, we want to find the hypothesis H that maximizes

P(E | H,B) =∏
e∈E

P(e|H,B) .

To evaluate a set of clauses HC in the generic FOIL algorithm, the scoring function has to be
changed accordingly, to

score(E,HC,B) = P(E | H,B)

where HC has been augmented with an optimal probabilistic model Hλ. This is discussed in more
detail in Section 4.
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3.3 Multi-Class Problems

Because we started from ILP, we have so far formulated the learning problem as a binary classifica-
tion task. In ILP, multiple classes are usually encoded with a predicate p(X ,C) whereC is an output
variable that is instantiated with a class ci ∈ {c1, ...,cm}. One hypothesis is then induced per class
using target predicate p(X ,ci). However, combining these hypothesis to classify new instances is
generally non-trivial, as conflict resolution strategies are needed to resolve conflicting predictions
from the individual hypotheses. The same holds for approaches that use ILP to generate a rule
set (Pompe and Kononenko, 1995; Davis et al., 2004) or an ILP technique such as bottom clauses
to generate candidate rules for selection (Davis et al., 2005).

On the other hand, probabilistic models such as (tree augmented) naı̈ve Bayes can deal with
multi-class problems very naturally: the binary class variable is simply replaced by a multi-valued
one. This directly carries over to the integrated model presented above. For a multi-class problem
with classes {c1, ...,cm}, the examples are of the form pθ = p(x,ci) and the random variable p in
the naı̈ve Bayes model takes on some value pθ ∈ {c1, ...,cm}. No conflict resolution strategies are
needed, as the naı̈ve Bayes model directly returns a class ci ∈ {c1, . . . ,cm}. Handling multi-class
problems is part of the NFOIL and TFOIL implementations and we report on experimental results
in Section 6.

4. Integrating Naı̈ve Bayes and FOIL: Learning

The goal of learning is to identify a hypothesisH that maximizes the score function. More formally,
the model space under consideration is

H = {(HC,Hλ)|HC ⊆ L ,Hλ ∈ MC}

whereMC is the space of all naı̈ve Bayes models over the clauses in HC. The optimization problem
is to find

H∗ = argmax
H

P(E | H,B)

= arg max
HC,Hλ

P(E | (HC,Hλ),B),

a hypothesis that jointly optimizes the clause set (structure) and probabilistic model (parameters
such as the Pλ(qi|p) appearing in Example 3). Roughly speaking, the existing approaches pursued
by Pompe and Kononenko (1995) and Davis et al. (2004) solve this task in a two-step process: First,
H∗
C is found (using a standard ILP system, and thus some deterministic score) and fixed; second,
the parameters for the fixed structure are optimized using a probabilistic score (usually, maximum
likelihood):

for all HC ∈ candidates(L) do
compute ilp-score(E,HC,B)

end for
H∗
C = argmaxHC ilp-score(E,HC,B)
find H∗

λ = argmaxHλ score(E,(H∗
C,Hλ),B)

As a consequence, it is unclear which score is being maximized at the global level.
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Amore principled way of solving such optimization problems relies on a nested approach: Eval-
uate structures HC which are each augmented with optimal parameters, and select the best structure
H∗
C. Thus, the task of structure selection involves augmenting a given structure with optimal param-
eters:

for all HC ∈ candidates(L) do
find H∗

λ = argmaxHλ score(E,(HC,Hλ),B)
score(HC) := score(E,(HC,H∗

λ),B)
end for
H∗
C = argmaxHC score(HC)

We will follow this more principled approach of guiding the search for the structure directly by
the probabilistic objective function. The rest of this section shows how this can be realized by
modifying the original search technique used in FOIL. This will first be presented for learning the
basic NFOIL model. An extension of the learning algorithm that accounts for the tree augmented
naı̈ve Bayes structure in TFOIL will be discussed in Section 5.

4.1 Adapting FOIL

Like FOIL, NFOIL searches a set of clauses greedily, and a single clause in a general-to-specific
manner using a refinement operator. The main difference in the search technique is that FOIL can
use a separate-and-conquer approach. Because the final model in FOIL is the disjunction of the
learned clauses (where every clause covers a certain subset of examples), it holds that

1. Examples that are already covered do not have to be considered when learning additional
clauses: update(E,H) = E \ covered(H) .

2. (Non-recursive) clauses already learned do not need to be considered when scoring additional
clauses: score(E,H ∪{c′},B) = score(E,{c′},B).

Here, score(E,{c′},B) is some accuracy-related measure such as information gain or them-estimate.
In NFOIL, such a separate-and-conquer approach is not possible because every clause can affect
the likelihood of all examples. Consequently, the NFOIL algorithm can be obtained from FOIL by
changing two components in the generic FOIL algorithm (see Algorithm 1):

1. The set of examples is not changed after learning a clause: update(E,H) = E.

2. An additional clause c′ has to be scored together with the current model:

score(E,HC∪{c′},B) = P(E | H ′,B)

where H ′ has clauses HC∪{c′} and optimal parameters H ′
λ.

We also have to modify the stopping criterion. The most basic stopping criterion for FOIL
stops when all positive examples are covered. This is replaced in NFOIL by stopping if the change
in score when adding a clause falls below a certain threshold. In general, this simple criterion
might lead to overfitting. We therefore also investigated post-pruning the learned hypothesis (see
Section 6). In the experiments, however, this basic stopping criterion worked surprisingly well.
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4.2 Parameter Estimation: An Approximation

To evaluate a set of clauses HC = {q1, ...,qk} by score(E,HC,B), one needs to solve the “inner”
optimization problem of finding optimal parameters Hλ for the naı̈ve Bayes model over the random
variables {q1, ...,qk}:

H∗
λ = argmax

Hλ
P(E | H,B)

= argmax
λ
∏
θ∈E

Pλ(pθ|q1θ, · · · ,qkθ)

= argmax
λ
∏
θ∈E

∏ jPλ(q jθ | pθ) ·Pλ(pθ)
Pλ(q1θ, ...,qkθ)

. (2)

However, these are the parameters maximizing the conditional likelihood of the observed class
labels given the model. Usually, naı̈ve Bayes (as a generative model) is trained to maximize the
likelihood

∏
θ∈E

Pλ(pθ,q1θ, ...,qkθ) = ∏
θ∈E

Pλ(pθ|q1θ, · · · ,qkθ) ·Pλ(q1θ, ...,qkθ) (3)

= ∏
θ∈E
∏
j
Pλ(q jθ | pθ) ·Pλ(pθ).

Maximum likelihood parameters can be computed easily by

Pλ(qi = qi|p= p) =
n(qi = qi,p= p)

n(p= p)

where n(X) are the counts, that is, the number of examples for which the query X succeeds. How-
ever, there is no closed-form solution for maximum conditional likelihood parameters, and relatively
slow iterative optimization algorithms have to be used.

Could we use the likelihood as defined by Equation (3) as the score? The problem is that this
term is dominated by Pλ(q1θ, ...,qkθ), the likelihood of the propositional data set that is obtained by
evaluating all features. This likelihood is easily maximized for very non-uniform distributions over
the features values. In fact, it can be maximized to 1 if all features are constant (always succeed or
always fail). Such features are of course completely uninformative with respect to predicting class
labels. In contrast, in Equation (2) the likelihood is corrected by the term Pλ(q1θ, ...,qkθ), and in
this way informative features are selected. Example 4 illustrates this situation for a single feature.
Note that in the setting of parameter estimation from propositional data this problem does not occur
as the distribution over the attribute values is determined by the (fixed) training data and cannot
be changed by the learning algorithm. However, similar considerations apply to feature selection
problems for (propositional) probabilistic models.

Example 4 Consider the following queries q1 and q2:

← true
← perfect-literal(X)

Query q1 succeeds on all examples. Assume that query q2 succeeds on all positive and no negative
examples, and that half of the examples are positive. Given maximum likelihood parameters, the
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models H1/H2 consisting of only q1/q2 actually have the same likelihood, while conditional likeli-
hood correctly favors H2:
For any example θ,

Pλ(pθ,q1θ) = Pλ(q1θ|pθ) ·Pλ(pθ) = 1 ·0.5= 0.5,
Pλ(pθ,q2θ) = Pλ(q2θ|pθ) ·Pλ(pθ) = 1 ·0.5= 0.5

as Pλ(q1θ|pθ) = Pλ(q2θ|pθ) = 1. On the other hand,

Pλ(pθ|q1θ) =
Pλ(q1θ|pθ) ·Pλ(pθ)

Pλ(q1θ)
=
1 ·0.5
1

= 0.5,

Pλ(pθ|q2θ) =
Pλ(q2θ|pθ) ·Pλ(pθ)

Pλ(q2θ)
=
1 ·0.5
0.5

= 1

as Pλ(q1θ) = 1 but Pλ(q2θ) = 0.5.

Furthermore, a similar problem has been noted by Grossman and Domingos (2004) when learn-
ing the structure of Bayesian networks. Here, likelihood maximization leads to over-connected
structures, a problem which is also solved by maximizing conditional likelihood. Because find-
ing maximum conditional likelihood parameters is computationally too expensive, Grossman and
Domingos propose a “mixed” approach: use conditional likelihood as score, but set parameters to
their maximum likelihood values (seen as an approximation to maximum conditional likelihood
values).

For NFOIL, we follow the same approach. Parameters are estimated to maximize the like-
lihood (Equation (3)), while the conditional likelihood, see Equation (2), is retained as score for
selecting the features. Assuming that the naı̈ve Bayes assumption is correct, the maximum likeli-
hood estimates of the parameters will approach the maximum conditional likelihood estimates as
the number of training examples goes to infinity. This is because the maximum likelihood estimate
Pλ(pθ,q1θ, ...,qkθ) approaches the true joint probability P(pθ,q1θ, ...,qkθ) which determines the
true conditional P(pθ|q1θ, ...,qkθ) that also maximizes the conditional likelihood (Friedman and
Goldszmidt, 1996).

This means that parameter estimates are easily obtained by counting, and computational costs
for evaluating a hypothesis are dominated by computing for each query the set of examples on
which it succeeds. Given this information, the computational cost of scoring a partial clause qk+1 in
NFOIL is O(C ·n) where C is the number of classes and n the number of examples. This assumes
appropriate caching mechanisms on the parameters of {q1, ...,qk} and on partial products of the
scoring function (Equation (2)). Thus, evaluating a clause in NFOIL involves basically the same
computational costs as scoring in FOIL. FOIL, however, profits from its separate-and-conquer
approach; the number of examples is reduced after each iteration. Furthermore, the actual runtime
depends on the path in the search space that is taken by the algorithm, which can be different
for NFOIL because it may learn different clauses. Nevertheless, the computational complexity of
NFOIL is roughly similar to that of FOIL.

5. TFOIL: Relaxing the Naı̈ve Bayes Assumption

The naı̈ve Bayes model employed in NFOIL corresponds to the strong assumption that the proba-
bility of an example satisfying one query is independent of its probability to satisfy another query,
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Algorithm 2 TFOIL algorithm.
Initialize H := /0
repeat
Initialize c := p(X1, · · · ,Xn) ←
repeat
for all c′ ∈ ρ(c) do
for all q ∈ H do
compute s(c′,q) = score(E,H ∪{c′},q→ c′,B)

end for
let pa(c′) be the q ∈ H with maximum s(c′,q)

end for
let c be the c′ ∈ ρ(c) with maximum s(c′, pa(c′))

until stopping criterion
add c with dependency pa(c′) → c′ to H

until stopping criterion
output H

given the class of the example:

Pλ(q1, ...,qk|p) =∏
i
Pλ(qi|p). (4)

Although it has been shown that naı̈ve Bayes can perform well in practice even if this assumption is
violated, better models can sometimes be constructed by relaxing this strict independence assump-
tion (Friedman and Goldszmidt, 1996). Tree augmented naı̈ve Bayes (TAN) models generalize
naı̈ve Bayes by allowing additional dependencies, but are still significantly more restrictive than
full Bayesian networks. The restriction compared to a full Bayesian network is that the additional
dependencies form a tree (i.e, every query node has at most one additional parent). This means
that the number of parameters of a TAN model is in O(#nodes) as compared to O(2#nodes) for a
full Bayesian network, and learning them is generally easier. In this section, we will discuss the
TFOIL algorithm, which extends the NFOIL algorithm presented above to employ tree augmented
naı̈ve Bayes. Under the TAN assumption, Equation 4 is relaxed to

Pλ(q1, ...,qk|p) =∏
i
Pλ(qi|p,qpa(i))

where qpa(i) is the additional parent of the node qi in the TAN model. In analogy to Section 3, the
covers function can be re-derived as

covers(E,H,B) =P(e | H,B)

=
∏iPλ(qiθ|pθ,qpa(i)θ) ·Pλ(pθ)

Pλ(q1θ, · · · ,qkθ)
.

Otherwise, the problem specification outlined in Section 3 directly carries over to TFOIL.
In contrast to NFOIL, learning a TFOIL model involves the additional task of selecting a TAN

structure over the random variables representing the logical queries. In general, TFOIL follows
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the same integrated search strategy as outlined for NFOIL in Section 4. However, when evaluat-
ing a set of clauses HC = {q1, ...,qk} in TFOIL, for every clause qi ∈ HC we have to decide on a
q j = qpa(i) ∈HC for which a dependency qpa(i) → qi is added. Of course, this could be accomplished
by running the standard TAN structure learning algorithm, which finds a maximum-likelihood struc-
ture in polynomial time (Friedman and Goldszmidt, 1996). However, the incremental way in which
a theory H is learned and query nodes are added to the probabilistic model suggests a faster, in-
cremental (though heuristic) way of learning the TAN structure. Rather than re-learning the TAN
graph from scratch every time a new candidate clause qi is scored, the subgraph over the existing
hypothesisH = {q1, ...,qi−1} is kept fixed, and all existing clauses q j ∈H are considered as possible
parents for the clause qi. Out of these candidate graph structures, the one maximizing score(E,H,B)
is chosen, that is, the maximum-likelihood extension of the existing graph on H.

This approach is outlined in Algorithm 2. The function score(E,H∪{c′},q→ c′,B) returns the
score of the TAN model over H ∪ {c′}, where q is the additional parent of c′. For every candidate
clause c′, the best parent pa(c′) is identified and the c′ with highest score is added to H with the
dependency pa(c′) → c′. Comparing Algorithm 2 with the NFOIL algorithm which follows the
template of Algorithm parent of a clause that is added to the model. The computational complexity
of scoring the (k+1)th clause qk+1 in TFOIL is O(C · k ·n), as all k existing clauses are considered
as possible parents.

6. Experiments

In the following two subsections, we will describe the data sets and algorithms used to experimen-
tally investigate the Questions Q1–Q5 posed in the introduction (cf. Section 1). Section 6.3 then
presents and discusses the results.

6.1 Data Sets

We conducted experiments on eight data sets from four domains. Three domains are binary classi-
fication tasks, and one is a multi-class problem. See Table 1 for an overview of the different data
sets.
Mutagenesis (Srinivasan et al., 1996) is a well-known domain for structure-activity relation

prediction. The problem is to classify compounds as mutagenic or not given their chemical structure
described in terms of atoms, bonds, atom charge, and information about atom and bond types that
have been generated by the molecular modeling package QUANTA. No additional numeric or hand-
crafted features of the compounds are used. The data set is divided into two sets: a regression
friendly (r.f.) set with 188 entries (125 positives, 63 negatives) and a regression unfriendly (r.u.) set
with 42 entries (13 positives and 29 negatives).

For Alzheimer (King et al., 1995), the aim is to compare 37 analogues of Tacrine, a drug
against Alzheimer’s disease, according to four desirable properties: inhibit amine re-uptake, low
toxicity, high acetyl cholinesterase inhibition, and good reversal of scopolamine-induced memory
deficiency. For any property, examples consist of pairs pos(X ,Y )/neg(X ,Y ) of two analogues indi-
cating that X is better/worse than Y w.r.t. the property. The relation is transitive and anti-symmetric
but not complete (for some pairs of compounds the result of the comparison could not be deter-
mined).

The DSSTox data set has been extracted from the EPA’s DSSTox NCTRER Database (Fang
et al., 2001). It contains structural information about a diverse set of 232 natural, synthetic and
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Data Set #Classes #Examples Majority Class #Relations
Mutagenesis r.f. 2 188 66.5% 4
Mutagenesis r.u. 2 42 69.1% 4
Alzheimer amine 2 686 50.0% 20
Alzheimer toxic 2 886 50.0% 20
Alzheimer acetyl 2 1326 50.0% 20
Alzheimer memory 2 642 50.0% 20
DSSTox 2 232 56.5% 3
Diterpene 23 1530 23.5% 17

Table 1: Data sets used in experiments.

environmental estrogens and classifications with regard to their binding activity for the estrogen
receptor. In our experiments, only structural information, that is, atom elements and bonds are
used. Additionally, we provided a relation linked(A1,A2,E,BT ) in the background knowledge that
represents that there is a bond of type BT from atom A1 to atom A2 and A2 is of element E. This
was done to reduce the lookahead problem for greedy search algorithms.

For Diterpene (Džeroski et al., 1998), the task is to identify the skeleton of diterpenoid com-
pounds, given their C-NMR spectra that include the multiplicities and the frequencies of the skeleton
atoms. Diterpenes are organic compounds of low molecular weight with a skeleton of 20 carbon
atoms. They are of interest because of their use as lead compounds in the search for new phar-
maceutical effectors. The data set contains information on 1530 diterpenes with known structure.
There are in total 23 classes. We use the version where both relational and propositional information
about the NMR spectra are available.

6.2 Algorithms and Methodology

We investigate the following learners:

• NFOIL
An implementation of the NFOIL algorithm as outlined in Section 4.1. Instead of a greedy
search a beam search with beam size k = 5 is performed. During the search for a clause,
the algorithm also keeps a set C∗ of the k best (partial) clauses found so far. If this set does
not change from one refinement level to the next, the search is stopped and the best element
c∈C∗ is returned. The search for additional clauses is stopped if the change in score between
two successive iterations is less than 0.1%. A hypothesis is limited to contain at most 25
clauses and a clause to contain at most 10 literals. As most other ILP systems, NFOIL allows
the specification of intensional background knowledge to be used in hypothesis. When clas-
sifying unseen examples, the class receiving the highest probability is returned (in particular,
the default classification threshold of 0.5 is used in the binary case).

• TFOIL
An implementation of the TFOIL algorithm as outlined in Section 5. The beam search and
stopping criterion are implemented as for NFOIL.
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• MFOIL
MFOIL (Lavrač and Džeroski, 1994) is a variant of FOIL also employing beam search and
different search heuristics. The beam size is set to k = 5, otherwise, default parameters are
used. Note that MFOIL, unlike the other systems considered, by default allows negated
literals in clauses.

• ALEPH
ALEPH is an advanced ILP System developed by Ashvin Srinivasan.1 It is based on the con-
cept of bottom clauses, which are maximally specific clauses covering a certain example. The
theory is then built from clauses that contain a subset of the literals found in a bottom clause.
We used this standard mode of ALEPH for the binary domainsMutagenesis, Alzheimer and
DSSTox. Additionally, ALEPH implements a tree learning algorithm, which we used for the
multi-class domain Diterpene. The maximum number of literals in a clause was set to 10
instead of the default 4. Otherwise, default settings are used except on DSSTox as explained
below.

• 1BC2
1BC2 is a naı̈ve Bayes classifier for structured data (Flach and Lachiche, 2004). 1BC2 was
run with a maximum number of 5 literals per clause, as larger values caused the system to
crash. The decision threshold was optimized based on a five fold cross validation.

It would also be interesting to compare against the MACCENT system (Dehaspe, 1997), as maxi-
mum entropy models and naı̈ve Bayes are somewhat related. Unfortunately, only an implementation
of a propositional version of MACCENT is available, which only handles data in attribute-value
(vector) format.2 This version is not directly applicable to the relational data sets used in our study.
We have therefore investigated a static propositionalization approach: frequent clauses were ex-
tracted from the relational data sets and then used as features in the propositional MACCENT
system. More precisely, we have used a variant of the frequent pattern miner WARMR (Dehaspe
et al., 1998), as WARMR patterns have shown to be effective propositionalization techniques on
similar benchmarks in inductive logic programming (Srinivasan et al., 1999). The variant used was
c-ARMR (De Raedt and Ramon, 2004), which allows to remove redundancies amongst the found
patterns by focusing on so-called free patterns. c-ARMRwas used to generate free frequent patterns
in the data with a frequency of at least 20%. However, results obtained using this technique were
on average not competitive with those of the other systems, and we decided not to include them.

To compare the different algorithms, we measure both accuracy and area under the ROC curve
(see Fawcett, 2003), denoted as AUC. Accuracy is determined by a 10-fold cross-validation on all
data sets except the smallMutagenesis r.u., where a leave-one-out cross validation is used instead.
ROC curves and AUC are determined from the cross-validation by pooling the rankings obtained
on the different test folds. All algorithms were run on the same splits into training/test set for every
fold. To test for significant differences in accuracy, a sampled paired t-test is applied to the results
of the different folds.
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Data Set TFOIL NFOIL MFOIL ALEPH 1BC2
Mutagenesis r.f. 79.7±13.0 75.4±12.3 76.6±6.7 69.7±11.9 82.4
Mutagenesis r.u. 83.3±37.7 78.6±41.5 71.4±45.7 85.7±35.4 76.2
Alzheimer amine 87.5±4.4 86.3±4.3 74.2±5.9•! 70.9±5.8•! 72.3
Alzheimer toxic 92.1±2.6 89.2±3.4 81.9±2.9•! 90.9±1.4 83.4
Alzheimer acetyl 82.8±3.8 81.2±5.2 75.2±2.5•! 73.9±3.4•! 73.4
Alzheimer memo. 80.4±5.3 " 72.9±4.3 • 60.9±4.6•! 69.2±5.3 • 68.8
DSSTox 78.5±8.9 78.0±9.1 70.4±15.4 52.1±11.2•! 64.7
Diterpene 90.9±2.1 90.8±3.1 – 85.0±3.6•! 81.9

Table 2: Cross-validated predictive accuracy results on all data sets. •/◦ indicates that TFOIL’s
mean is significantly higher/lower, and !/" that NFOIL’s mean is significantly
higher/lower (paired sampled t-test, p = 0.05). Bold numbers indicate the best result on
a data set. Note that the high variance on Mutagenesis r.u. is an artifact of the leave-
one-out cross-validation. For 1BC2, we do not test significance because the results on
Mutagenesis and Diterpene are taken from Flach and Lachiche (2004).

6.3 Results

Table 2 shows the accuracy results for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2 on all data
sets. There is no result for MFOIL on Diterpene as it cannot handle multi-class problems. Com-
paring the results for NFOIL/TFOIL and MFOIL, the experiments clearly show a gain for dynamic
propositionalization over the baseline ILP algorithm, giving an affirmative answer to Question Q1.

The comparison between NFOIL and its tree augmented extension TFOIL shows that—as in
the propositional case—relaxing the naı̈ve Bayes assumption can yield more accurate models in
some cases. TFOIL always gains some predictive accuracy, with gains ranging from very slight
(0.1 percentage points) to substantial (7.5 percentage points). Although only one of these gains
is significant according to a paired sampled t-test on the folds, a simple sign test on the results
of TFOIL and NFOIL (8/0) shows that TFOIL significantly outperforms NFOIL (p< 0.01). This
affirmatively answers QuestionQ3: performance can be improved by using a more expressive model
than naı̈ve Bayes. Furthermore, TFOIL significantly outperforms ALEPH on five data sets, and both
a sign test (7/1) and the average accuracy seem to favor TFOIL and NFOIL over ALEPH. This
shows that relatively simple dynamic propositionalization approaches are competitive with more
advanced ILP systems, giving an affirmative answer to Question Q4. The DSSTox domain seems
to be particularly hard for the ALEPH system. Using standard settings, ALEPH only accepts rules
if they cover no negative examples. In this case, for most folds it does not return any rules on the
DSSTox data set, and only reaches 43.1% accuracy. The result reported above was obtained by
setting the “noise” parameter to 10 (which means that a rule can cover up to 10 negative examples).
The minacc parameter was left at its default value of 0.

To complement the study of predictive accuracy presented above, we investigate the perfor-
mance of the probabilistic classifiers by means of ROC analysis. ROC curves evaluate how well
the probability estimates produced by classifiers can discriminate between positive and negative

1. More information on ALEPH can be found at http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph toc.html.
2. Luc Dehaspe, from personal communication.
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Data Set TFOIL NFOIL MFOIL ALEPH 1BC2
Mutagenesis r.f. 0.817 0.809 0.791 0.713 0.816
Mutagenesis r.u. 0.753 0.737 0.645 0.790 0.729
Alzheimer amine 0.945 0.937 0.747 0.708 0.793
Alzheimer toxic 0.983 0.965 0.821 0.912 0.925
Alzheimer acetyl 0.932 0.916 0.759 0.752 0.815
Alzheimer memory 0.913 0.824 0.608 0.696 0.744
DSSTox 0.789 0.760 0.668 0.567 0.636

Table 3: Area under the ROC curve for all binary data sets. Bold numbers indicate the best result
on a data set. Results for 1BC2 on Mutagenesis are taken from Flach and Lachiche
(2004). Rankings are pooled over the different folds of a 10-fold cross-validation, except
for Mutagenesis r.u. where a leave-one-out cross-validation is used instead.

examples (i.e., rank examples) without committing to a particular decision threshold. ROC curves
provide more detailed information about performance than accuracy estimates, for example with
regard to possible error trade-offs under variable misclassification costs (Provost et al., 1998). As
ROC curves are only well-defined for binary classification problems, we do not report results for the
multi-class data set Diterpene. For the ILP systems, ROC curves were produced by clause voting
as introduced by Davis et al. (2004). In clause voting, the threshold that is varied is the number of
clauses that have to cover an example before it is classified as positive (the default threshold being
one).

AUC results, shown in Table 3, generally confirm the results obtained by accuracy analy-
sis: TFOIL outperforms NFOIL across the board, and TFOIL/NFOIL generally produce better
rankings than the ILP methods and 1BC2. Note that in some cases dynamic propositionalization
achieves higher AUC scores than ILP systems even though it achieves lower accuracy (e.g., compar-
ing NFOIL and ALEPH on theAlzheimer toxic data set). To investigate this behavior in more detail,
ROC curves for the different methods on all binary data sets are shown. Figure 1 shows curves on
the relatively largeAlzheimer amine,Alzheimer toxic,Alzheimer acetyl andAlzheimermemory
data sets. Here, ROC curves clearly fall into two groups: for the ILP systems MFOIL and ALEPH,
the curve has one sharp angle and is otherwise mostly linear, while the curves for TFOIL, NFOIL
and 1BC2 are convex almost across the whole range of the threshold parameter. This means that for
the ILP systems there is one (namely, the default) decision threshold which offers a good trade-off
between true positives and false positives, but ranking below and above this point is relatively poor.
At the level of induced clauses, it indicates that clauses induced by the ILP systems are specific in
the sense that positive examples are typically covered by only one clause—if the decision threshold
in clause voting is set to more than one, the true positive rate drops rapidly. In contrast, ranking
performance for the dynamic propositionalization systems and 1BC2 is more stable, meaning that
these systems also offer good classification performance under varying misclassification costs (or,
equivalently, class skew). This indicates that dynamic propositionalization approaches can make
use of more diverse rule sets, which are helpful in ranking examples by providing additional in-
formation but would produce too many false-positive classifications if interpreted as a disjunctive
hypothesis. We will provide further evidence for this claim below.
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Figure 1: ROC curves on the Alzheimer amine, Alzheimer toxic, Alzheimer acetyl and Alzheimer
memory data sets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. Rankings are pooled
over the different folds of a 10-fold cross-validation.

Figure 2 shows ROC curves on the three smaller data sets included in our study. On Muta-
genesis r.f. and DSSTox, similar observations hold as noted above, although class separation is
generally poorer and curves behave less well. On the very smallMutagenesis r.u. data set ranking
performance is poor for all methods.
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Figure 2: ROC curves on the Mutagenesis regression friendly, Mutagenesis regression unfriendly
and DSSTox data sets for TFOIL, NFOIL, MFOIL, ALEPH and 1BC2. There is no curve
for 1BC2 on the Mutagenesis data sets because results are taken from Flach and Lachiche
(2004). Rankings are pooled over the different folds of a 10-fold cross-validation, except
for Mutagenesis r.u. where a leave-one-out cross-validation is used instead.
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MFOIL ALEPH
Data Set +NB +TAN +NB +TAN NFOIL/disjunctive
Mutagenesis r.f. ±0.0 • ±0.0 • ±0.0 ±0.0 −8.9•!
Mutagenesis r.u. ±0.0 +2.4 ±0.0 ±0.0 −47.6•!
Alzheimer amine −0.5•! ±0.0•! ±0.0•! ±0.0•! −36.3•!
Alzheimer toxic ±0.0•! +0.2•! ±0.0 ±0.0 −39.2•!
Alzheimer acetyl −0.4•! ±0.0•! ±0.0•! +0.1•! −31.2•!
Alzheimer memory ±0.0•! ±0.0•! ±0.0 • ±0.0 • −22.9•!
DSSTox +2.1 +1.7 +4.3•! +4.3•! −21.5•!
Diterpene – – ±0.0•! −0.3•! –

Table 4: Gain/loss in cross-validated predictive accuracy for the two-step methods
MFOIL+NB/TAN, ALEPH+NB/TAN and NFOIL/DISJUNCTIVE over their correspond-
ing baselines MFOIL, ALEPH and NFOIL. •/◦ indicates that TFOIL’s mean accuracy
is significantly higher/lower, and !/" that NFOIL’s mean accuracy is significantly
higher/lower (paired sampled t-test, p= 0.05).

To investigate Question Q2, that is, to compare dynamic and static propositionalization ap-
proaches, two additional experiments were performed:

1. Learning a naı̈ve Bayes or tree augmented naı̈ve Bayes model over a set of clauses using a
two-step approach: First, a set of rules is learned using MFOIL or ALEPH, and afterwards
a (tree augmented) naı̈ve Bayes model is built using these rules. This is a static proposi-
tionalization approach, where the propositionalized data is used as input for the probabilistic
learner. Question Q2 is whether these rules are less useful when combined with (tree aug-
mented) naı̈ve Bayes than the rules constructed by a dynamic propositionalization approach
(NFOIL/TFOIL). For the training of the TAN model we used the local score based TAN
implementation in WEKA 3.4.6 (Witten and Frank, 2000), which implements the learning
algorithm of Friedman and Goldszmidt (1996).

2. Using the rules learned by NFOIL as a disjunctive hypothesisQ: For this, every rule q learned
by NFOIL is evaluated on the training set. If it covers more positive than negative examples,
q is added to Q, otherwise not(q). The rule set Q is then evaluated as a disjunctive hypothesis
on the test data. This technique can only be used for binary classification problems.

Table 4 shows the result of these experiments. It displays the average gain/loss of the two-
step methods MFOIL+NB, ALEPH+NB and NFOIL/disjunctive over their corresponding baselines
MFOIL, ALEPH and NFOIL. Significantly higher/lower mean accuracies of a method as com-
pared to TFOIL/NFOIL are also indicated. On most data sets, applying naı̈ve Bayes as a method
for post-processing the learned rule set of MFOIL or ALEPH does not yield any improvement,
with the exception of small gains on the DSSTox and Mutagenesis r.u. data sets for MFOIL.
ALEPH+NB/TAN only improves on the original result of ALEPH on DSSTox by always predict-
ing the majority class. Furthermore, NFOIL/TFOIL significantly outperform MFOIL+NB and
MFOIL+TAN on the same data sets on which they significantly outperform MFOIL. In ROC space,
post-processing rules with (tree augmented) Naı̈ve Bayes can increase or decrease the performance
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MFOIL ALEPH
Data Set +NB +TAN +NB +TAN
Mutagenesis r.f. +0.045 +0.036 +0.011 −0.034
Mutagenesis r.u. −0.183 −0.183 −0.175 −0.063
Alzheimer amine +0.001 +0.007 −0.013 −0.012
Alzheimer toxic +0.003 +0.011 +0.006 +0.005
Alzheimer acetyl +0.002 −0.003 −0.006 −0.010
Alzheimer memory −0.010 −0.016 −0.010 −0.027
DSSTox +0.054 +0.048 −0.095 −0.099

Table 5: Gain/loss in area under ROC curve for the two-step methods MFOIL+NB/TAN and
ALEPH+NB/TAN over their corresponding baselines MFOIL and ALEPH. Rankings are
pooled over the different folds of a 10-fold cross-validation, except for Mutagenesis r.u.
where a leave-one-out cross-validation is used instead.

depending on the data set (Table 5). However, AUC scores of the static propositionalization ap-
proaches are on average much lower than those of dynamic propositionalization approaches.

Using the (possibly negated) rules learned by NFOIL as a disjunctive hypothesis strongly de-
grades performance. This is because NFOIL can make use of rules which have a very low accuracy
individually but still help as additional features in the naı̈ve Bayes. If these rules are used for dis-
junctive classification, they produce many false-positive classifications. In fact, on some domains
(e.g, Alzheimer) all examples in the test set are always classified as positive. This shows that
NFOIL uses significantly different rule sets to ILP approaches. Thus, we can answerQ2 as follows:

A dynamic propositionalization approach that selects rules based on the criterion of
the probabilistic model performs better than static propositionalization approaches that
post-process a rule set using a probabilistic learner. This is because dynamic propo-
sitionalization can make use of different/additional rules that are not considered by
traditional ILP systems as they would produce too many false-positive classifications.

It remains to answer Question Q5, that is, to compare dynamic propositionalization approaches to
relational naı̈ve Bayes methods such as 1BC2 in terms of accuracy and the number of features they
employ. With respect to predictive accuracy and AUC score, sign tests prefer TFOIL over 1BC2 (at
7/1 and 8/0, respectively). Theory complexity is hard to compare because of the different representa-
tions. For TFOIL/NFOIL and 1BC2, one complexity measure is the number of probability values
attached to clauses. There are #classes probability values attached to each clause in NFOILand
1BC2, and 2 · #classes in TFOIL (#classes denotes the number of classes). Additionally, we have
to specify the prior distribution over the class variable. The overall number of probability values
to be specified is thus of the order of O(#clauses), and it is sufficient to compare the number of
clauses. In the experiments, 1BC2 uses an order of magnitude more clauses than NFOIL. More
precisely, 1BC2 uses more than 400 (in some cases even more than 1000) clauses whereas NFOIL
is limited to using 25 clauses. This clearly shows that Q5 can be answered affirmatively as well.

We furthermore investigated whether the proposed dynamic propositionalization approach some-
times constructs too many clauses and overfits the training data, as the stopping criterion is based on
the training set score. We therefore tried post-pruning a learned hypothesis. Post-pruning is more
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Algorithm 3 Post-pruning a hypothesis learned by NFOIL.
Initialize H := NFOIL(E,B)
repeat
for all c ∈ H do
s(c) := cross-validate-accuracy(H \{c},E,B)

end for
c∗ := argmaxc∈H s(c)
H := H \{c∗}

until cross-validated accuracy decreases
output H

NFOIL NFOIL/pruning
Data Set Accuracy #clauses Accuracy #clauses
Mutagenesis r.f. 75.4±12.3 25.0 73.9±12.1 17.7
Mutagenesis r.u. 78.6±41.5 23.1 85.7±35.4 1.4
Alzheimer amine 86.3±4.3 24.7 85.0±4.5 20.1
Alzheimer toxic 89.2±3.4 22.4 87.8±3.6 16.6
Alzheimer acetyl 81.2±5.2 25.0 80.8±4.2 20.5
Alzheimer memory 72.9±4.3 24.9.5 74.5±4.3 20.4
DSSTox 78.0±9.1 15.4 79.3±9.7 4.5
Diterpene 90.8±3.1 25.0 90.7±3.1 23.4

Table 6: Cross-validated predicative accuracy results and average number of clauses in the final
model for NFOIL and NFOIL/pruning. Bold numbers indicate the best result on a data
set. The are no significant differences in mean accuracy between the two methods (paired
sampled t-test, p= 0.05).

easily realized for NFOIL than for TFOIL, as the additional TAN structure in the TFOIL model
prevents removal of rules which are parents of other rules. Rule post-pruning was carried out us-
ing the greedy algorithm outlined in Algorithm 3. The procedure cross-validate-accuracy(H,E,B)
cross-validates the naı̈ve Bayes model on the training data for a fixed set H of clauses and returns an
accuracy estimate. The algorithm greedily drops clauses from H as long as this does not decrease
the cross-validated accuracy estimate. Table 6 lists the accuracies of NFOIL and NFOIL/pruning
which incorporates this rule post-pruning algorithm. There is some gain in accuracy on the small
Mutagenesis r.u. and the DSSTox domain, although no differences in accuracy are significant at
the p= 0.05 level. On these two data sets the number of features is also greatly reduced, while few
or no features are pruned for the other data sets. To summarize, a clear overfitting behavior can not
be observed except possibly on the very smallMutagenesis r.u. data set.

We conclude that our experimental study affirmatively answers Questions Q1–Q5 posed in the
introduction. The dynamic propositionalization approaches NFOIL and TFOIL yield more accurate
models than simple ILP rule learning and static propositionalization approaches, and also compare
favorably to the first order naı̈ve Bayes system 1BC2 and one of the most advanced ILP systems,
namely Aleph.
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7. Related Work

The approaches that combine statistical learning with inductive logic programming techniques for
addressing classification can be divided into three categories.

A first class of techniques are static propositionalization approaches. They start by generat-
ing a set of first order features and then use these features as attributes in a probabilistic model.
Probabilistic models of different expressivity have been used, ranging from naı̈ve Bayes (Pompe
and Kononenko, 1995; Flach and Lachiche, 2004), to tree augmented naı̈ve Bayes or full Bayesian
networks as in Davis et al. (2004). The set of features is obtained either by taking all features
within a pre-defined language bias, as in the 1BC system (Flach and Lachiche, 2004), or by run-
ning a traditional ILP algorithm (Pompe and Kononenko, 1995; Davis et al., 2004). Furthermore,
aggregation-based feature construction methods such as RELAGGS (Krogel and Wrobel, 2001)
and ACORA (Perlich and Provost, 2006) that search a relational feature space using aggregation
operators fall into this group. In this class of techniques the feature construction and the statistical
learning steps are performed consecutively and independent of one another, whereas in NFOIL and
TFOIL they are tightly integrated. However, an initial step beyond static propositionalization has
been taken in the work by Pompe and Kononenko (1997), where rules generated by an ILP system
are post-processed by splitting and merging clauses in order to find a rule set that satisfies the naı̈ve
Bayes assumption.

A second class of techniques employs a rich probabilistic model such as a Probabilistic Rela-
tional Model (Getoor et al., 2001) or a higher-order probabilistic logic (Flach and Lachiche, 2004).
The logical component (and hence the features) of such a model are fixed, and only the parame-
ters are learned using statistical learning techniques. The work by Taskar et al. (2001) on using
Probabilistic Relational Models for clustering and classification of relational data, the Relational
Bayesian Classifier (Neville et al., 2003) and the 1BC2 system (Flach and Lachiche, 2004) fall into
this category. The difference compared to NFOIL and TFOIL is that this class of techniques does
not address structure learning or feature generation.

A third class of techniques (Popescul et al., 2003; Dehaspe, 1997) indeed tightly integrates the
inductive logic programming step with the statistical learning step in a dynamic propositionaliza-
tion approach. However, whereas the dynamic propositionalization methods presented in this paper
employ the simplest possible statistical model, namely naı̈ve Bayes, those approaches use more ad-
vanced (and hence computationally more expensive) statistical models such as logistic regression
and maximum entropy modeling, which does seem to limit the application potential. For instance,
Popescul et al. (2003) report that—in their experiments—they had to employ a depth limit of 2
when searching for features. The work on NFOIL and TFOIL is similar in spirit to these two ap-
proaches but is much more simple and therefore, we believe, also more appealing for the traditional
classification task considered in inductive logic programming.

Probably the most closely related approach to the methods presented in this paper is the SAYU
system (Davis et al., 2005). SAYU uses a “wrapper” approach where (partial) clauses generated by
the refinement search of an ILP system are proposed as features to a (tree augmented) naı̈ve Bayes,
and incorporated if they improve performance. This means that feature learning and naı̈ve Bayes
are tightly coupled as in our approach. However, in SAYU the scores for feature and parameter
selection are different, and the feature selection is based on a separate tuning set. The probabilistic
model is trained to maximize the likelihood on the training data, while clause selection is based
on the area under the precision-recall curve of the model on a separate tuning set. This contrasts
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with the approach of selecting features and parameters that jointly optimize a probabilistic score on
the training data used in NFOIL and TFOIL. Davis et al. (2005) also report that a tree-augmented
naı̈ve Bayes model in SAYU does not significantly outperform a naı̈ve Bayes, which contrasts with
the results obtained in this study. Furthermore, SAYU cannot handle multi-class problems, while
NFOIL and TFOIL handle them as naturally as naı̈ve Bayes does.

Finally, there is also the approach of Craven and Slattery (2001) who combine several naı̈ve
Bayes models with FOIL. The decisions of naı̈ve Bayes models are viewed as truth values of literals
occurring in clauses. This work can be regarded as the inverse of the approach presented in this paper
in that NFOIL/TFOIL employ naı̈ve Bayes on top of logic, whereas Craven and Slattery employ
naı̈ve Bayes as a predicate in the logical definitions.

8. Conclusions

We have introduced the NFOIL and TFOIL systems, two dynamic propositionalization approaches
that combine the simplest techniques from ILP and probabilistic learning. In an experimental study
on several benchmark data sets, the proposed approaches were compared to the ILP systems MFOIL
and ALEPH, static propositionalization approaches and the first-order naı̈ve Bayes system 1BC2.
Experimental results show that dynamic propositionalization is superior to static propositionaliza-
tion and simple rule learning. Despite their simplicity, the proposed approaches are also competitive
with the more advanced ILP system ALEPH. Moreover, our experiments indicate that the superior
performance of dynamic propositionalization approaches is due to the fact that they can make use of
more diverse rule sets than ILP systems. NFOIL and TFOIL are also particularly strong at ranking
examples (as measured by ROC analysis), a task in which standard ILP systems performed rather
poorly in our experiments.

Further exploring dynamic propositionalization as a way of combining (possibly more powerful)
statistical learners with ILP search techniques is an interesting direction for future work.
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S. Džeroski, editors, Proceedings of the Seventh International Workshop on Inductive Logic
Programming (ILP-1997), volume 1297 of Lecture Notes in Computer Science, pages 77–84.
Springer, 1997.

Mark Craven and Seán Slattery. Relational learning with statistical predicate invention: Better
models for hypertext. Machine Learning, 43(1–2):97–119, 2001.

504
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Abstract
We introduce a new model addressing feature selection from a large dictionary of variables that
can be computed from a signal or an image. Features are extracted according to an efficiency
criterion, on the basis of specified classification or recognition tasks. This is done by estimating
a probability distribution P on the complete dictionary, which distributes its mass over the more
efficient, or informative, components. We implement a stochastic gradient descent algorithm, using
the probability as a state variable and optimizing a multi-task goodness of fit criterion for classifiers
based on variable randomly chosen according to P. We then generate classifiers from the optimal
distribution of weights learned on the training set. The method is first tested on several pattern
recognition problems including face detection, handwritten digit recognition, spam classification
and micro-array analysis. We then compare our approach with other step-wise algorithms like
random forests or recursive feature elimination.
Keywords: stochastic learning algorithms, Robbins-Monro application, pattern recognition, clas-
sification algorithm, feature selection

1. Introduction

Most of the recent instances of pattern recognition problems (whether in computer vision, image un-
derstanding, biology, text interpretation, or spam detection) involve highly complex data sets with
a huge number of possible explanatory variables. For many reasons, this abundance of variables
significantly harms classification or recognition tasks. Weakly informative features act as artificial
noise in data and limit the accuracy of classification algorithms. Also, the variance of a statistical
model is typically an increasing function of the number of variables, whereas the bias is a decreasing
function of this same quantity (Bias-Variance dilemma discussed by Geman et al., 1992); reducing
the dimension of the feature space is necessary to infer reliable conclusions. There are efficiency
issues, too, since the speed of many classification algorithms is largely improved when the com-
plexity of the data is reduced. For instance, the complexity of the q-nearest neighbor algorithm
varies proportionally with the number of variables. In some cases, the application of classification
algorithms like Support Vector Machines (see Vapnik, 1998, 2000) or q-nearest neighbors on the
full feature space is not possible or realistic due to the time needed to apply the decision rule. Also,
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there are many applications for which detecting the pertinent explanatory variables is critical, and
as important as correctly performing classification tasks. This is the case, for example, in biology,
where describing the source of a pathological state is equally important to just detecting it (Guyon
et al., 2002; Golub et al., 1999).

Feature selection methods are classically separated into two classes. The first approach (filter
methods) uses statistical properties of the variables to filter out poorly informative variables. This
is done before applying any classification algorithm. For instance, singular value decomposition
or independent component analysis of Jutten and Hérault (1991) remain popular methods to limit
the dimension of signals, but these two methods do not always yield relevant selection of variables.
In Bins and Draper (2001), superpositions of several efficient filters has been proposed to remove
irrelevant and redundant features, and the use of a combinatorial feature selection algorithm has
provided results achieving high reduction of dimensions (more than 80 % of features are removed)
preserving good accuracy of classification algorithms on real life problems of image processing.
Xing et al. (2001) have proposed a mixture model and afterwards an information gain criterion and
a Markov Blanket Filtering method to reach very low dimensions. They next apply classification
algorithms based on Gaussian classifier and Logistic Regression to get very accurate models with
few variables on the standard database studied in Golub et al. (1999). The heuristic of Markov
Blanket Filtering has been likewise competitive in feature selection for video application in Liu and
Render (2003).

The second approach (wrapper methods) is computationally demanding, but often is more accu-
rate. A wrapper algorithm explores the space of features subsets to optimize the induction algorithm
that uses the subset for classification. These methods based on penalization face a combinatorial
challenge when the set of variables has no specific order and when the search must be done over
its subsets since many problems related to feature extraction have been shown to be NP-hard (Blum
and Rivest, 1992). Therefore, automatic feature space construction and variable selection from a
large set has become an active research area. For instance, in Fleuret and Geman (2001), Amit and
Geman (1999), and Breiman (2001) the authors successively build tree-structured classifiers con-
sidering statistical properties like correlations or empirical probabilities in order to achieve good
discriminant properties . In a recent work of Fleuret (2004), the author suggests to use mutual
information to recursively select features and obtain performance as good as that obtained with a
boosting algorithm (Friedman et al., 2000) with fewer variables. Weston et al. (2000) and Chapelle
et al. (2002) construct another recursive selection method to optimize generalization ability with
a gradient descent algorithm on the margin of Support Vector classifiers. Another effective ap-
proach is the Automatic Relevance Determination (ARD) used in MacKay (1992) which introduce
a learning hierarchical prior over weights in a Bayesian Network, the weights connected to irrelevant
features are automatically penalized which reduces their influence near zero. At last, an interesting
work of Cohen et al. (2005) use an hybrid wrapper and filter approach to reach highly accurate and
selective results. They consider an empirical loss function as a Shapley value and perform an itera-
tive ranking method combined with backward elimination and forward selection. This last work is
not so far from the ideas we develop in this paper.

In this paper, we provide an algorithm which attributes a weight to each feature, in relation with
their importance for the classification task. The whole set of weights is optimized by a learning
algorithm based on a training set. This weighting technique is not so new in the context of feature
selection since it has been used in Sun and Li (2006). In our work, these weights result in an
estimated probability distribution over features. This estimated probability will also be used to
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generate randomized classifiers, where the randomization is made on the variables rather than on
the training set, an idea introduced by Amit and Geman (1997), and formalized by Breiman (2001).
The selection algorithm and the randomized classifier will be tested on a series of examples.

The article is organized as follows. In Section 2, we describe our feature extraction model and
the related optimization problem. Next, in Sections 3 and 4, we define stochastic algorithms which
solve the optimization problem and discuss its convergence properties. In Section 5, we provide
several applications of our method, first with synthetic data, then on image classification, spam de-
tection and on microarray analysis. Section 6 is the conclusion and addresses future developments.

2. Feature Extraction Model

We start with some notations.

2.1 Primary Notation

We follow the general framework of supervised statistical pattern recognition: the input signal,
belonging to some set I , is modeled as a realization of a random variable, from which several
computable quantities are accessible, forming a complete set of variables (or tests, or features)
denoted F = {δ1, . . .δ|F |}. This set is assumed to be finite, although |F | can be a very large
number, and our goal is to select the most useful variables. We denote δ(I) the complete set of
features extracted from an input signal I.

A classification task is then specified by a finite partition C = {C1, . . .CN} of I ; the goal is to
predict the class from the observation δ(I). For such a partition C and I ∈ I , we write C (I) for the
classCi to which I belongs, which is assumed to be deterministic.

2.2 Classification Algorithm

We assume that a classification algorithm, denoted A, is available, for both training and testing. We
assume that A can be adapted to a subset ω⊂ F of active variables and to a specific classification
task C . (There may be some restriction on C associated to A, for example, support vector machines
are essentially designed for binary (two-class) problems.) In training mode, A uses a database to
build an optimal classifier Aω,C : I → C , such that Aω,C (I) only depends on ω(I). We shall drop
the subscript C when there is no ambiguity concerning the classification problem C . The test mode
simply consists in the application of Aω on a given signal.

We will work with a randomized version of A, for which the randomization is with respect to
the set of variables ω (see Amit and Geman, 1997; Breiman, 2001, 1998). In the training phase, this
works as follows: first extract a collection {ω(1), . . . ,ω(n)} of subsets of F , and build the classifiers
Aω(1) , . . . ,Aω(n) . Then, perform classification in test phase using a majority rule for these n clas-
sifiers. This final algorithm will be denoted ĀC = Ā(ω(1), . . . ,ω(n),C ). It is run with fixed ω(i)’s,
which are obtained during learning.

Note that in this paper, we are not designing the classification algorithm, A, for which we use
existing procedures; rather, we focus on the extraction mechanism creating the random subsets of
F . This randomization process depends on the way variables are sampled from F , and we will
see that the design of a suitable probability on F for this purpose can significantly improve the
classification rates. This probability therefore comes as a new parameter and will be learned from
the training set.
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Figure 1 summarizes the algorithm in test phase.
Input signal of I I ∈ I

|F |-dimensional vector

Computation of ω(1)(I), . . . ,ω(n)(I)

Resulting individual decisions: Aω(1)(I), . . . ,Aω(n)(I)

Combination of individual decisions Ā(I)

Figure 1: Global algorithm in test phase.

2.3 Measuring the Performance of the Algorithm A

The algorithm A provides a different classifier Aω for each choice of a subset ω ⊂ F . We let q be
the classification error: q(ω,C ) = P(Aω(I) $= C (I)), which will be estimated by

q!(ω,C ) = P̂(Aω(I) $= C (I)) (1)

where P̂ is the empirical probability on the training set.
We shall consider two particular cases for a given A.

• Multi-class algorithm: assume that A is naturally adapted to multi-class problems (like a q-
nearest neighbor, or random forest classifier). We then let g(ω) = q!(ω,C ) as defined above.

• Two-class algorithms: this applies to algorithms like support vector machines, which are
designed for binary classification problems. We use the idea of the one-against-all method:
denote by Ci the binary partition {Ci, I \Ci}. We then denote:

g(ω) =
1
N

N

∑
i=1

q!(ω,Ci)

which is the average classification rate of the one vs. all classifiers. This “one against all
strategy” can easily be replaced by others, like methods using error correcting output codes
(see Dietterich and Bakiri, 1995).

2.4 A Computational Amendment

The computation q!(ω,C ), as defined in Equation (1), requires training a new classification algo-
rithm with variables restricted to ω, and estimating the empirical error; this can be rather costly with
large data set (this has to be repeated at each of the steps of the learning algorithm).
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Because of this, we use a slightly different evaluation of the error. In the algorithm, each time
an evaluation of q!(ω,C ) is needed, we use the following procedure (T being a fixed integer and
Ttrain will be the training set):

1. Sample a subset T1 of size T (with replacements) from the training set.

2. Learn the classification algorithm on the basis of ω and T1.

3. Sample, with the same procedure, a subset T2 from the training set, and define q̂(T1,T2)
(ω,C )

to be the empirical error of the classifier learned via T1 on T2.

Since T1 and T2 are independent, we will use q̂(ω,C ) defined by

q̂(ω,C ) = E(T1 ,T2)

[
q̂(T1,T2)

(ω,C )
]

to quantify the efficiency of the subset ω, where the expectation is computed over all the samples
T1,T2 of signals taken from the training set of size T . It is also clear that defining such a cost
function contributes in avoiding overfitting in the selection of variables. For the multiclass problem,
we define

ĝT1,T2(ω) =
1
N

N

∑
i=1

q̂(T1,T2)
(ω,Ci)

and we replace the previous expression of g by the one below:

g(ω) = ET1,T2
[
ĝT1,T2(ω)

]
.

This modified function g will be used later in combination with a stochastic algorithm which
will replace the expectation over the training and validation subsets by empirical averages. The
selection of smaller training and validation sets for the evaluation of ĝT1,T2 then represents a huge
reduction of computer time. The selection of the size of T1 and T2 depends on the size of the original
training set and of the chosen learning machine. It has so far been selected by hand.

In the rest of our paper, the notation E
ξ
[.] will refer to the expectation using ξ as the integration

variable.

2.5 Weighting the Feature Space

To select a group a variables which are most relevant for the classification task one can think first of
a hard selection method, that is, search ω such that

q̂(ω,C ) = argmin
ω∈F |ω|

q̂(ω,C ).

But sampling all possible subsets (ω covers F |ω|) may be untractable since |F | can be thousands
and |ω| ten or hundreds.

We address this with a soft selection procedure that attributes weights to the features F .
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2.6 Feature Extraction Procedure

Consider a probability distribution P on the set of features F . For an integer k, the distribution P⊗k

corresponds to k independent trials with distribution P. We define the cost function E by

E(P) = EP⊗kg(ω) = ∑
ω∈F k

g(ω)P⊗k(ω). (2)

Our goal is to minimize this averaged error rate with respect to the selection parameter, which is
the probability distribution P. The relevant features will then be the set of variables δ∈ F for which
P(δ) is large. The global (iterative) procedure that we propose for estimating P is summarized in
Figure 2.

I ∈ I Set F

Feature sampling using P: ω

Classification A on ω(I )

Computing the mean performance g(ω) on the training set

Parameters’ selection feedback

Figure 2: Scheme of the procedure for learning the probability P.

Remark: We use P here as a control parameter: we first make a random selection of features before
setting the learning algorithm. It is thus natural to optimize our way to select features from F and
formalize it as a probability distribution on F . The number of sampled features (k) is a hyper-
parameter of the method. Although we have set it by hand in our experiments, it can be estimated
by cross-validation during learning.

3. Search Algorithms

We describe in this section three algorithmic options to minimize the energy E with respect to
the probability P. This requires computing the gradient of E , and dealing with the constraints
implied by the fact that P must be a probability distribution. These constraints are summarized in
the following notation.

We denote by SF the set of all probability measures on F : a vector P of R|F | belongs to SF if

∑
δ∈F

P(δ) = 1 (3)

and
∀δ ∈ F P(δ) ≥ 0. (4)

We also denote HF the hyperplane in R|F | which contains SF , defined by (3).

514



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

We define the projections of an element of R|F | onto the closed convex sets SF and HF . Let
πSF (x) be the closest point of x ∈ R|F | in SF

πSF (x) = arg min
y∈SF

{
‖y− x‖22

}

and similarly

πHF (x) = arg min
y∈HF

{
‖y− x‖22

}
= x− 1

|F | ∑δ∈F
x(δ).

The latter expression comes from the fact that the orthogonal projection of a vector x onto a hyper-
plane is x−〈x,N〉N where N is the unit normal to the hyperplane. For HF , N is the vector with all
coordinates equal to 1/

√
|F |.

Our first option will be to use projected gradient descent to minimize E , taking only constraint
(3) into account. This implies solving the gradient descent equation

dPt
dt

= −πHF (∇E(Pt)) (5)

which is well-defined as long as Pt ∈ SF . We will also refer to the discretized form of (5),

Pn+1 = Pn− εnπHF (∇E(Pn)) (6)

with positive (εn)n∈N. Again, this equation can be implemented as long as Pn ∈ SF . We will later
propose two new strategies to deal with the positivity constraint (4), the first one using the change
of variables P +→ logP, and the second being a constrained optimization algorithm, that we will
implement as a constrained stochastic diffusion on SF .

3.1 Computation of the Gradient

However, returning to (5), our first task is to compute the gradient of the energy. We first do it in the
standard case of the Euclidean metric on SF , that is we compute ∇PE(δ) = ∂E/∂P(δ). For ω ∈ F k

and δ ∈ F , denote byC(ω,δ) the number of occurrences of δ in ω:

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}| .

C(ω, .) is then the |F |-dimensional vector composed by the set of values C(ω,δ),δ ∈ F . Then, a
straightforward computation gives:

Proposition 1 If P is any point of SF , then

∀δ ∈ F ∇PE(δ) = ∑
ω∈F k

C(ω,δ)P⊗k(ω)
P(δ)

g(ω). (7)

Consequently, the expanded version of (6) is

Pn+1(δ) = Pn(δ)− εn ∑
ω∈F k

P⊗k(ω)g(ω)

(
C(ω,δ)

P(δ)
− 1

|F | ∑µ∈ω
C(ω,µ)

P(µ)

)
. (8)

515



GADAT AND YOUNES

In the case when P(δ) = 0, then, necessarilyC(ω,δ) = 0 and the termC(ω,δ)/P(δ) is by convention
equal to 0.

The positivity constraint is not taken in account here, but this can be dealt with, as described in
the next section, by switching to an exponential parameterization. It is also be possible to design
a constrained optimization algorithm, exploring the faces of the simplex when needed, but this is
a rather complex procedure, which is harder to conciliate with the stochastic approximations we
will describe in Section 4. This approach will in fact be computationally easier to handle with a
constrained stochastic diffusion algorithm, as described in Section 3.3.

3.2 Exponential Parameterization and Riemannian Gradient

Define y(δ) = logP(δ) and

Y =

{
y= (y(δ),δ ∈ F ) | ∑

δ∈F
ey(δ) = 1

}

which is in one-to-one correspondence with SF (allowing for the choice y(δ) = −∞). Define

Ẽ(y) = E(P) = ∑
ω∈F k

ey(ω1)+···+y(ωk)g(ω).

Then, we have:

Proposition 2 The gradient of E with respect to these new variables is given by:

∇yẼ(δ) = ∑
ω∈F k

ey(ω1)+···+y(ωk)C(ω,δ)g(ω). (9)

We can interpret this gradient on the variables y as a gradient on the variables P with a Rieman-
nian metric

〈u,v〉P = ∑
δ∈F

u(δ)v(δ)/P(δ).

The geometry of the space SF with this metric D has the property that the boundary points ∂SF are
at infinite distance from any point into the interior of SF .

Denoting ∇̃ for the gradient with respect to this metric, we have in fact, with y= logP:

∇̃PE(δ) = ∇yẼ = ∑
ω∈F k

P⊗k(ω)C(ω,δ)g(ω).

To handle the unit sum constraint, we need to project this gradient on the tangent space to Y at
point y. Denoting this projection by πy, we have

πy(w) = w−〈w|ey〉/‖ey‖2

where ey is the vector with coordinates ey(δ). This yields the evolution equation in the y variables

dyt(δ)
dt

= −∇yt Ẽ(δ)+κteyt(δ), (10)
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where

κt =

(

∑
δ′∈F

∇yt Ẽ(δ′)eyt(δ
′)

)
/

(

∑
δ′∈F

e2yt(δ
′)

)

does not depend on δ.
The associated evolution equation for P becomes

dPt(δ)
dt

= −Pt(δ)
(
∇̃PtE(δ)−κtPt(δ)

)
. (11)

Consider now a discrete time approximation of (11), under the form

Pn+1(δ) =
Pn(δ)
Kn

e−εn(∇̃PnE(δ)−κnPn(δ)) (12)

where the newly introduced constant Kn ensures that the probabilities sum to 1. This provides an
alternative scheme of gradient descent on E which has the advantage of satisfying the positivity
constraints (4) by construction.

• Start with P0 = UF +−→ y0 = logP0 ,

• Until convergence: Compute Pn+1 from Equation (12).

Remark: In terms of yn, (12) yields

yn+1(δ) = yn(δ)− εn
(
∇̃PnE(δ)−κnPn(δ)

)
− logKn .

The definition of the constant Kn implies that

Kn = ∑
δ∈F

Pne−εn(∇̃PnE(δ)−κnPn(δ)).

We can write a second order expansion of the above expression to deduce that

Kn = ∑
δ∈F

Pn(δ)− εnPn(δ)
(
∇̃PnE(δ)−κnPn(δ)

)
+Anε2n = 1+Anε2n

since, by definition of κn:
∑
δ∈F

Pn(δ)(∇̃PnE(δ)−κnPn(δ)) = 0.

Consequently, there exists a constant B which depends on k and max(εn) such that, for all n,
| logKn|≤ Bε2n.

3.3 Constrained Diffusion

The algorithm (8) can be combined with reprojection steps to provide a consistent procedure. We
implement this using a stochastic diffusion process constrained to the simplex SF . The associated
stochastic differential equation is

dPt = −∇PtEdt+
√
σdWt +dZt
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where E is the cost function introduced in (2), σ is a positive non-degenerate matrix on HF and dZt
is a stochastic process which accounts for the jumps which appear when a reprojection is needed.
In other words, d|Zt | is positive if and only if Pt hits the boundary ∂SF of our simplex.

The rigorous construction of such a process is linked to the theory of Skorokhod maps, and
can be found in works of Dupuis and Ishii (1991) and Dupuis and Ramanan (1999). Existence and
uniqueness are true under general geometric conditions which are satisfied here.

4. Stochastic Approximations

The evaluation of ∇E in the previous algorithms requires summing the efficiency measures g(ω)
over all ω in F k. This is, as already discussed, an untractable sum. This however can be handled
using a stochastic approximation, as described in the next section.

4.1 Stochastic Gradient Descent

We first recall general facts on stochastic approximation algorithms.

4.1.1 APPLYING THE ODE METHOD

Stochastic approximations can be seen as noisy discretizations of deterministic ODE’s (see Ben-
veniste et al., 1990; Benaı̈m, 2000; Duflo, 1996). They are generally expressed under the form

Xn+1 = Xn+ εnF(Xn,ξn+1)+ ε2nηn (13)

where Xn is the current state of the process, ξn+1 a random perturbation, and ηn a secondary error
term. If the distribution of ξn+1 only depends on the current value of Xn (Robbins-Monro case),
then one defines an average drift X +→ G(X) by

G(X) = E
ξ
[F(X ,ξ)]

and the Equation (13) can be shown to evolve similarly to the ODE Ẋ = G(X), in the sense that the
trajectories coincide when (εn)n∈N goes to 0 (a more precise statement is given in Section 4.1.4).

4.1.2 APPROXIMATION TERMS

To implement our gradient descent equations in this framework, we therefore need to identify two
random variables dn or d̃n such that

E [dn] = πHF [∇PnE ] and E
[
d̃n

]
= πyn

[
∇ynẼ

]
. (14)

This would yield the stochastic algorithm:

Pn+1 = Pn− εndn or Pn+1 = Pn
e−εnd̃n
Kn

.

¿From (7), we have:

∇PE(δ) = Eω

[
C(ω,δ)g(ω)

P(δ)

]
.

518



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

Using the linearity of the projection πHF , we get

πHF (∇E(P))(δ) = Eω

[
πHF

(
C(ω, .)g(ω)

P(.)

)
(δ)

]
.

Consequently, following (14), it is natural to define the approximation term of the gradient
descent (5) by:

dn = πHF

(C(ωn, .)q̂T n
1 ,T n

2
(ωn,C )

Pn(.)

)
(15)

where the set of k features ωn is a random variable extracted from F with law P⊗k
n and T n

1 ,T n
2 are

independently sampled into the training set T .
In a similar way, we can compute the approximation term of the gradient descent based on (9)

since
∇yẼ(δ) = Eω [g(ω)C(ω,δ)]

yielding
d̃n = πyn

(
C(ωn, .)q̂T n

1 ,T n
2
(ωn,C ))

)

where πy is the projection on the tangent space T Y to the sub-manifold Y at point y, and ωn is a
random variable extracted from F with the law P⊗k

n .
By construction, we therefore have the proposition

Proposition 3 The mean effect of random variables dn and d̃n is the global gradient descent, in
other words:

E [dn] = πHF (∇E(Pn))

and
E [d̃n] = πyn

(
∇Ẽ(yn)

)
.

4.1.3 LEARNING THE PROBABILITY MAP (Pn)n∈N

We now make explicit the learning algorithms for Equations (5) and (10). We recall the definition
of

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}|

where δ is a given feature and ω a given feature subset of length k which is an hyperparameter (see
bottom of page 6). q̂T1,T2(ω,C ), which is the empirical classification error on T2 for a classifier
trained on T1 using features in ω.
• Euclidean gradient (Figure 3):

• Riemannian Gradient: For the Riemannian case, we have to give few modifications for the update
step (Figure 4).

The mechanism of the two former algorithms summarized by Figures 3,4 can be intuitively
explained looking carefully at the update step. For instance, in the first case, at step n, one can see
that for all features of δ ∈ ωn, we substract from Pn(δ) amount proportional to the error performed
with ω and inversely proportional to Pn(δ) although for other features out of ωn, weights are a
little bit increased. Consequently, worst features with poor error of classification will be severely
decreased, particularly when they are suspected to be bad (small weight Pn).
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Let F = (δ1, . . .δ|F |), integers µ,T and a real number α (stoping criterion)
n= 0: define P0 to be the uniform distribution UF on F .
While

∣∣Pn−&n/µ'−Pn
∣∣
∞

> α and Pn ≥ 0:
Extract ωn with replacement from F k with respect to P⊗k

n .
Extract T n

1 and T n
2 of size T with uniform independent samples over Ttrain.

Compute q̂T n
1 ,T n

2
(ωn,C )and the drift vector dn where

dn(δ) = q̂T n
1 ,T n

2
(ωn,C )

(
C(ωn,δ)

Pn(δ)
− ∑

µ∈ωn

C(ωn,µ)
|F |Pn(µ)

)
.

Update Pn+1 with Pn+1 = Pn− εn.dn.
n +→ n+1.

Figure 3: Euclidean gradient Algorithm.

RemarkWe provide the Euclidean gradient algorithm, which is subject to failure (one weight might
become nonpositive) because it may converge for some applications, and in these cases, is much
faster than the exponential formulation.

4.1.4 CONVERGENCE OF THE APPROXIMATION SCHEME

This more technical section can be skipped without harming the understanding of the rest of the
paper. We here rapidly describe in which sense the stochastic approximations we have designed
converge to their homologous ODE’s. This is a well-known fact, especially in the Robbins-Monro
case that we consider here, and the reader may refer to works of Benveniste et al. (1990); Duflo
(1996); Kushner and Yin (2003), for more details. We follow the terminology employed in the
approach of Benaim (1996).

Fix a finite dimensional open set E. A differential flow (t,x) +→ φt(x) is a time-indexed family of
diffeomorphisms satisfying the semi-group condition φt+h = φh ◦φt and φ0 = Id; φt(x) is typically
given as the solution of a differential equation dy

dt = G(y), at time t, with initial condition y(0) = x.
Asymptotic pseudotrajectories of a differential flow are defined as follows:

Let F = (δ1, . . .δ|F |), integers µ,T and a real number α (stoping criterion)
n= 0: define P0 to be the uniform distribution UF on F .
While

∣∣Pn−&n/µ'−Pn
∣∣
∞

> α:
Extract ωn from F k with respect to P⊗k

n .
Extract T n

1 and T n
2 of size T with uniform independent samples over Ttrain.

Compute q̂T n
1 ,T n

2
(ωn,C ).

Update Pn+1 with:

Pn+1(δ) =
Pn(δ)e

−εn(C(ωn,δ)q̂T n
1 ,T n

2
(ωn,C )+κnPn(δ))

Kn
with

κn =
(
∑δ′∈ωnC(ωn,δ′)Pn(δ′)

)
/(

(
∑δ′∈F Pn(δ′)2

)

and Kn is a normalization constant.
n +→ n+1

Figure 4: Riemannian gradient Algorithm.
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Definition 4 A map X :R+ +−→ E is an asymptotic pseudotrajectory of the flow φ if, for all positive
numbers T

lim
t (→∞

sup
0≤h≤T

‖X(t+h)−φh(X(t))‖ = 0.

In other words, the tails of the trajectory X asymptotically coincides, within any finite horizon T ,
with the flow trajectories.

Consider algorithms of the form

Xn+1 = Xn+ εnF(Xn,ξn+1)+ ε2nηn+1

with Xn ∈E, ξn+1 a first order perturbation (such that the conditional distribution knowing all present
and past variables only depends on Xn), and ηn a secondary noise process. The variable Xn can be
linearly interpolated into a time-continuous process as follows: define τn =

n
∑
k=1

εk and Xτn = Xn; then

let Xt be linear and continuous between τn and τn+1, for n≥ 0.
Consider the mean ODE

dx
dt

= G(x) = E
ξ
[F(X ,ξ)|X = x]

and its associated flow φ. Then, under mild conditions on F and ηn, and under the assumption that
∑
n>0

ε1+αn < ∞ for some α> 0, the linearly interpolated process Xt is an asymptotic pseudotrajectory

of φ. We will consequently choose εn = ε/(n+C) where ε and C are positive constants fixed
at start of our algorithms. We can here apply this result with Xn = yn, ξn+1 = (ωn,T n

1 ,T n
2 ) and

ηn+1 = logKn/ε2n for which all the required conditions are satisfied since for the Euclidean case,
when ωn ∼ P⊗k

n and (T1,T2) ∼ U⊗2T
T :

Eωn [F(Pn,ωn)] = Eωn,T1 ,T2
[dn(ωn,T1,T2)]

= Eωn,T1 ,T2

[
πHF

(
C(ωn, .)q̂T1,T2(ωn,C )

Pn(.)

)]

= Eωn

[
πHF

(
C(ωn, .)ET1,T2

[
q̂T1,T2(ωn,C )

]

Pn(.)

)]

= Eωn

[
πHF

(
C(ωn, .)q̂(ωn,C )

Pn(.)

)]

Eωn [F(Pn,ωn)] = πHF (∇E(Pn)) .

4.2 Numerical Simulation of the Diffusion Model

We use again (15) for the approximation of the gradient of E . The theoretical basis for the conver-
gence of this type of approximation can be found in Buche and Kushner (2001) and Kushner and
Yin (2003), for example. A detailed convergence proof is provided in Gadat (2004).

This results in the following numerical scheme. We recall the definition of

C(ω,δ) = |{i ∈ {1, . . .k} | ωi = δ}|
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and of q̂T1,T2(ω,C ),which is the empirical classification error on T2 for a classifier trained on T1
using features in ω.

Let F = (δ1, . . .δ|F |), an integer
n= 0: define P0 to be the uniform distribution UF on F .
Iterate the loop:

Extract ωn from F k with respect to P⊗k
n .

Extract T n
1 and T n

2 of size T with uniform independent samples over Ttrain.
Compute q̂T n

1 ,T n
2
(ωn,C ).

Compute the intermediate state Qn (may be out of SF ):

Qn = Pn− εn
C(ωn, .)q̂T n

1 ,T n
2
(ωn)

Pn
+
√
εn
√
σdξn

where dξn is a centered normal |F | dimensional vector.
Project Qn on SF to obtain Pn+1:

Pn+1 = πSF (Qn) = Qn+dzn.
n +→ n+1.

Figure 5: Constrained diffusion.

4.3 Projection on SF

The natural projection on SF can be computed in a finite number of steps as follows.

1. Define X0 = X , if X0 does not belong to the hyperplane HF , project first X0 to HF :

X1 = πHF (X0).

2. – If X k belongs to SF , stop the recursion.
– Else, call Jk the set of integers i such that X k

i ≤ 0 and define X k+1 by

∀i ∈ Jk Xk+1i = 0.

∀i /∈ Jk Xk+1i = Xki +
1

|F |− |Jk|

(
1− ∑

j/∈Jk
Xkj

)
.

One can show that the former recursion stops in at most |F | steps (see Gadat, 2004, chap. 4).

5. Experiments

This section provides a series of experimental results using the previous algorithms. Table 1 briefly
summarizes the parameters of the several experiments performed.

5.1 Simple Examples

We start with a simple, but illustrative, small dimensional example.
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Data Set Dim. A Classes Training Set Test Set
Synthetic 100 N.N. 3 500 100
IRIS 4 CART 3 100 50
Faces 1926 SVM 2 7000 23000
SPAM 54 N.N. 2 3450 1151
USPS 2418 SVM 10 7291 2007

Leukemia 3859 SVM 2 72 /0
ARCENE 10000 SVM 2 100 100
GISETTE 5000 SVM 2 6000 1000
DEXTER 20000 SVM 2 300 300

DOROTHEA 100000 SVM 2 800 350
MADELON 500 N.N. 2 2000 600

Table 1: Characteristics of the data sets used in experiments.

5.1.1 SYNTHETIC EXAMPLE

Data We consider |F | = 100 ternary variables and 3 classes (similar results can be obtained with
more classes and variables). We let I = {−1;0;1} f and the feature δi(I) simply be the ith coordinate
of I ∈ I . Let G be a subset of F . We define the probability distribution µ( ;G) in I to be the one
for which all δ in F are independent, δ(I) follows a uniform distribution on {−1;0;1} if δ $∈ G
and δ(I) = 1 if δ ∈ G . We model each class by a mixture of such distributions, including a small
proportion of noise. More precisely, for a classCi, i= 1,2,3, we define

µi(I) =
q
3

(
µ(I;F 1

i )+µ(I;F 2
i )+µ(I;F 3

i )
)
+(1−q)µ(I; /0)

with q= 0.9 and

F 1
1 = {δ1;δ3;δ5;δ7}, F 2

1 = {δ1;δ5}, F 3
1 = {δ3;δ7},

F 1
2 = {δ2;δ4;δ6;δ8}, F 2

2 = {δ2;δ4}, F 3
2 = {δ6;δ8},

F 1
3 = {δ1;δ4;δ8;δ9}, F 2

3 = {δ1;δ8}, F 3
3 = {δ4;δ9}.

In other words, these synthetic data are generated with almost deterministic values on some vari-
ables (which depends on the class the sample belongs to) and with a uniform noise elsewhere. We
expect our learning algorithm to put large weights on features in F j

i and ignore the other ones. The
algorithm A we use in this case is an M nearest neighbour classification algorithm, with distance
given by

d(I1, I2) = ∑
δ∈ω

χδ(I1)#=δ(I2) .

This toy example is interesting because it is possible to compute the exact gradient of E for
small values of M and k = |ω|. Thus, we can compare the stochastic gradient algorithms with
the exact gradient algorithm and evaluate the speed of decay of E . Moreover, one can see in the
construction of our signals that some features are relevant with several classes (reusables features),
some features are important only for one class and others are simply noise on the input. This will
permit to evaluate the model of ”frequency of goodness” used by OFW.
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Figure 6: Note that the left and right figures are drawn on different scales. Left: Exact gradient
descent (full line) vs. stochastic exponential gradient descent (dashed line) classification
rates on the training set. Right: Stochastic Euclidean gradient descent (full line) vs.
stochastic exponential gradient descent (dashed line) classification rates on the training
set.

Results We provide in Figure 6 the evolution of the mean error E on our training set set against
the computation time for exact and stochastic exponential gradient descent algorithms. The exact
algorithm is faster but is quickly captured in a local minimum although exponential stochastic de-
scent avoids more traps. Also shown in Figure 6, is the fact that the stochastic Euclidean method
achieved better results faster than the exponential stochastic approach and avoided more traps than
the exponential algorithm to reach lower error rates.

Note that Figure 6 (and similar plots in subsequent experiments) is drawn for the comparison of
the numerical procedures that have been designed to minimize the training set errors. This does not
relate to the generalization error of the final classifier, which is evaluated on test sets.

Finally, Figure 7 shows that the efficiency of the stochastic gradient descent and of the reflected
diffusion are almost similar in our synthetic example. This has in fact always been so in our exper-
iments: the diffusion is slightly better than the gradient when the latter converges. For this reason,
we will only compare the exponential gradient and the diffusion in the experiments which follow.
Finally, we summarize this instructive synthetic experiments in Figure 8. Remark that in this toy
example; the exact gradient descent and the Euclidean stochastic gradient (first algorithm of Section
4.1.3) are almost equivalent.

In Figure 9, we provide the probabilities of the first 15 features in function of k = |ω|. (The
graylevel is proportional to the probability obtained at the limit).

Interpretation We observe that the features which are preferably selected are those which lie in
several subspaces F j

i , and which bring information for at least two classes. These are reusable
features, the knowledge of which being very precious information for the understanding of pattern
recognition problems. This result can be compared to selection methods based on information
theory. One simple method is to select the variables which provide the most information to the
class, and therefore minimize the conditional entropy (see Cover and Thomas, 1991) of the class
given each variable. In this example, this conditional entropy is 1.009 for features contained in
none of the sets F j

i , 0.852 for those contained in only one set and approximatively 0.856 for those
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Figure 7: Stochastic Euclidean gradient descent (dashed line) vs. reflected diffusion (full line) clas-
sification rate on the training set.

contained in two of these sets. This implies that this information-based criterion would correctly
discard the non-informative variables, but fail to discriminate between the last two groups.

Remark finally that the features selected by OFW after the reusables ones are still relevant for
the classification task.

5.1.2 IRIS DATABASE

We use in this section the famous Fisher’s IRIS database where data are described by the 4 variables:
“Sepal Length”, “Sepal Width”, “Petal Length” and “Petal Width”. Even though our framework is
to select features in a large dictionary of variables, it will be interesting to look at the behavior
of our algorithm on IRIS since results about feature selection are already known on this classical
example. We use here a Classification and Regression Tree (CART) using the Gini index. We
extract 2 variables at each step of the algorithm, 100 samples out of 150 are used to train our feature
weighting procedure. The Figures 10 and 11 describe the behavior of our algorithms (with and
without the noise term).

We remark here that for each one of our two approaches, we approximately get the entire weight
on the last two variables “ Petal Length” (70%) and “Petal Width” (30%). This result is consistent
with the selection performed by CART on this database since we obtain similar results as seen in
Figure 12. Moreover, a selection based on the Fisher score reaches the same results for this very
simple and low dimensional example.

The classification on Test Set is improved selecting two features (with OFW as Fisher Scoring)
since we obtain an error rate of 2.6% although without any selection, CART provides an error rate
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Figure 8: Comparison of the mean error rate computed on the test set with the 4 exact or stochastics
gradient descents.

F δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 . . .
|ω| = 2
|ω| = 3
|ω| = 4

Figure 9: Probability histogram for several values of |ω|.

of 4%. In this small low dimensional example, OFW quickly converges to the optimal weight and
we obtain a ranking coherent with the selection performed by Fisher Score or CART.

5.2 Real Classification Problems

We now address real pattern recognition problems. We also compare our results with other algo-
rithms: no selection method, Fisher scoring method, Recursive Feature Elimination method (RFE)
of Guyon et al. (2002), L0-Norm for linear support vector machines of Weston et al. (2003) and
Random Forests (RF) of Breiman (2001). We used for these algorithms Matlab implementations
provided by the Spider package for RFE and L0-SVM;1 and the random forest package of Leo
Breiman.2 In our experiments, we arbitrarily fixed the number of features per classifier (to 100
for the Faces, Handwritten Digits and Leukemia data and to 15 for the email database). It would
be possible to also optimize it, through cross-validation, for example, once the optimal P has been

1. This package is available at http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html.
2. Codes are available on http://www.stat.berkeley.edu/users/breiman/RandomForests.

526



A STOCHASTIC ALGORITHM FOR FEATURE SELECTION IN PATTERN RECOGNITION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

Di
st

rib
ut

io
n 

of
 P

Iterates n

Petal Length
Petal Wigth

Sepal Width
Sepal Length

Figure 10: Evolution with n of the distribution on the 4 variables using a stochastic Euclidean al-
gorithm.
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Figure 11: Evolution with n of the distribution on the 4 variables using a stochastic Euclidean dif-
fusion algorithm.

computed (running this optimization online, while also estimating P would be too computationally
intensive). We have remarked in our experiments that the estimation of P was fairly robust to to
variations of the number of features extracted at each step (k in our notation). In particular, taking k
too large does not help much.
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|

Petal.Length< 2.45

Petal.Width< 1.75

Petal.Length>=2.45

Petal.Width>=1.75

setosa    
50/50/50

setosa    
50/0/0

versicolor
0/50/50

versicolor
0/49/5

virginica 
0/1/45

 

Figure 12: Complete classification tree of IRIS generated from recursive partitioning (CART im-
plementation is using the rpart library of R).

5.2.1 FACE DETECTION

Experimental framework We use in this section the face database from MIT, which contains
19× 19 gray level images; samples extracted from the database are represented in Figure 13. The
database contains almost 7000 images to train and more than 23000 images to test.

The features in F are binary edge detectors, as developed in works of Amit and Geman (1999);
Fleuret and Geman (2001). This feature space has been shown to be efficient for classification in
visual processing. We therefore have as many variables and dimensions as we have possible edge
detectors on images. We perform among the whole set of these edge detectors a preprocessing step
described in Fleuret and Geman (2001). We then obtain 1926 binary features, each one defined by
its orientation, vagueness and localisation.

The classification algorithm A which is used here is an optimized version of Linear Support
Vector Machines developed by Joachims and Klinkenberg (2000); Joachims (2002) (with linear
kernel).

Results We first show the improvement of the mean performance of our extraction method, learned
on the training set, and computed on the test set, from a random uniform sampling of features (Fig-
ure 14).
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Figure 13: Sample of images taken from MIT database.
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Figure 14: Left: Evolution with k of the average classification error of faces recognition on the
test set using a uniform law (dashed line) and P∞ (full line), learned with a stochastic
gradient method with exponential parameterization. Right: same comparison, for the
constrained diffusion algorithm.

Our feature extraction method based on learning the distribution P improves significantly the
classification rate, particularly for weak classifiers (k = 20 or 30 for example) as shown in Figure
14. We remark again that the constrained diffusion performs better than the stochastic exponential
gradient. We achieve a 1.6% error rate after learning with a reflected diffusion, or 1.7% with a
stochastic exponential gradient (2% before learning). The analysis of the most likely features (which
are the most weighted variables) is also interesting, and occurs in meaningful positions, as shown
in Figure 15.

Figure 16 shows a comparison of the efficiency (computed on the test set) of Fisher, RFE, L0-
SVM and our weighting procedure to select features; besides we have shown the performance of A
without any selection and the best performance of Random Forests (as an asymptote).

We observe that our method is here less efficient with a small number of features (for 20 features
selected, we obtain 7.3% while RFE and L0 selections get 4% and 3.2% of misclassification rate).
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Figure 15: Representation of the main edge detectors after learning.
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Figure 16: Efficiency of several feature extractions methods for the faces database test set.

However, for a larger set of features, our weighting method is more effective than other methods
since we obtained 1.6% of misclassification for 100 features selected (2.7% for L0 selection and
3.6% for RFE).
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The comparison with the Random Forest algorithm is more difficult to estimate: one tree
achieves 2.4% error but the length of this tree is more than 1000 and this error rate is obtained
by the 3 former algorithms using only 200 features. The final best performance on this database is
obtained using Random Forests with 1000 trees. We obtain then a misclassification rate of 0.9%.

5.2.2 SPAM CLASSIFICATION

Experimental framework This example uses a text database available at D.J. Newman and Merz
(1998), which contains emails received by a research engineer from the HP labs, and divided into
SPAM and non SPAM categories. The features here are the rates of appearance of some keywords
(from a list of 57) in each text. As the problem is quite simple using the last 3 features of the
previous list, we choose to remove these 3 variables (which depends on the number of capital letters
in an email), we start consequently with a list of 54 features. We use here a 4-nearest neighbor
algorithm and we extract 15 features at each step. The database is composed by 4601 messages and
we use 75% of the email database to learn our probability P∞, representing our extraction method
while the 25% samples of data is left to form the test set.
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Figure 17: Time evolution of the energy E1 for the spam/email classification D.J. Newman and
Merz (1998) computed on the test set, using a stochastic gradient descent with an expo-
nential parameterization (left) and with a constrained diffusion (right).

Results We plot the average error on the test set in Figure 17. On our test set, the method based on
the exponential parameterization achieves better results than those obtained by reflected diffusion
which is slower because of our Brownian noise. The weighting method is here again efficient in
improving the performances of the Nearest Neighbor algorithm.

Moreover, we can analyze the words selected by our probability P∞. In the next table, two
columns provide the features that are mainly selected. We achieve in a different way similar results
to those noticed in Hastie et al. (2001) regarding the ranking importance of the words used for spam
detection.

The words which are useful for spam recognition (left columns) are not surprising (“business”,
“remove”, “receive” or “free” are highly weighted). More interesting are the words selected in the
right column; these words are here useful to enable a personal email detection. Personal informa-
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Words favored for SPAM Frequency Words favored for NON SPAM Frequency
remove 8.8% cs 5.4%
business 8.7% 857 4.6%

[ 6% 415 4.4%
report 5.9% project 4.3%
receive 5.6% table 4.2%
internet 4.4% conference 4.2%
free 4.1% lab 3.9%
people 3.7% labs 3.2%
000 3.6% edu 2.8%
direct 2.3% 650 2.7%
! 1.2% 85 2.5%
$ 1% george 1.6%

Figure 18: Words mostly selected by P∞ (exponential gradient learning procedure) for the
spam/email classification.

tions like phone numbers (“650”, “857”) or first name (“george”) are here favored to detect real
email messages. The database did not provide access to the original messages, but the importance
of the phone numbers or first name is certainly due to the fact that many non-spam messages are
replies to previous messages outgoing from the mailbox, and would generally repeat the original
sender’s signature, including its first name, address and phone number.

We compare next the performances obtained by our method with RFE, RF and L0-SVM. Figure
19 show relative efficiency of these algorithms on the spam database.

Without any selection, the linear SVM has more than 15% error rate while each one of the
former feature selection algorithms achieve better results using barely 5 words. The best algorithm
is here the L0-SVMmethod, while the performance of our weighting method (7.47%with 20 words)
is located between RFE (11.1% with 20 words) and L0-SVM (4.47% with 20 words). In addition,
RF high performance is obtained using a small forest of 5 trees (not as deep as in the example of
faces recognition) and we obtain with this algorithm 7.24% of misclassification rate using trees of
size varying from 50 to 60 binary tests.

5.2.3 HANDWRITTEN NUMBER RECOGNITION

Experimental framework A classical benchmark for pattern recognition algorithms is the classi-
fication of handwritten numbers. We have tested our algorithm on the USPS database (Hastie et al.,
2001; Schölkopf and Smola, 2002): each image is a segment from a ZIP code isolating a single digit.
The 7291 images of the training set and 2007 of the test set are 16× 16 eight-bit grayscale maps,
with intensity between 0 and 255. We use the same feature set, F , as in the faces example. We
obtain a feature space F of 2418 edge detectors with one precise orientation, location and blurring
parameter. The classification algorithm A we used is here again a linear support vector machine.

Results Since our reference wrapper algorithms (RFE and L0-SVM) are restricted to 2 class prob-
lems, we present only results obtained on this database with the algorithm A which is a SVM based
on the “one versus all” idea.
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Figure 19: Efficiency of several feature extractions methods on the test set for the SPAM database.

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
Image I

Figure 20: Sample of images taken from the USPS database.

The improvement of the detection rate is also similar to the previous example, as shown in Figure
21. We first plot the mean classification error rate before and after learning the probability map P.
These rates are obtained by averaging g(ω) over samples of features uniformly distributed on F in
the first case, and distributed according to P in the second case. These numbers are computed on
training data and therefore serve for evaluation of the efficiency of the algorithm in improving the
energy function from E1(UF ) to E1(P∞). Figure 21 provides the variation of the mean error rate in
function of the number of features k used in each ω. The ratio between the two errors (before and
after learning) rates, is around 90% independently on the value of k.

Figure 22 provides the result of the classification algorithm (using the voting procedure) on
the test set. The majority vote is based on 10 binary SVM-classifiers on each binary classification
problem Ci vs. I \Ci. The features are extracted first with the uniform distribution UF on F , then
using the final P∞.

The learning procedure significantly improves the performance of the classification algorithms.
The final average error rate on the USPS database is about 3.2% for 10 elementary classifiers per
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Figure 21: Mean error rate over the training set USPS for k varying from 40 to 100, before (dashed
line) and after (full line) a stochastic gradient learning based on exponential parameter-
ization (left) and constrained diffusion (right).
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Figure 22: Evolution with k of the mean error of classification on the test set, extraction based
on random uniform selection (dashed line) and P∞ selection (full line) for USPS data,
learning computed with stochastic gradient using exponential parameterization (left) and
constrained diffusion (right).

class Ci, with 100 binary features per elementary classifier. The performance is not as good as
the one obtained by the tangent distance method of Simard and LeCun (1998) (2.7% error rate of
classification), but we here use very simple (edge) features. And the result is better, for example,
than linear or polynomial Support Vector Machines (8.9% and 4% error rate) computed without any
selection and than sigmoid kernels (4.1%) (see Schölkopf et al., 1995) with a reduced complexity
(measured, for example by the needed amount of memory).

Since the features we consider can be computed at every location in the image, it is interesting
to visualize where the selection has occurred. This is plotted in Figure 23, for the four types of
edges we consider (horizontal, vertical and two diagonal), with grey levels proportional to the value
of P∞ for each feature.
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Horizontal edges Vertical edges Diagonal edges “+π/4” Diagonal edges “−π/4”

Figure 23: Representation of the selected features after a stochastic exponential gradient learning
for USPS digits. Greyscales are proportional to weights of features

5.2.4 GENE SELECTION FOR LEUKEMIA AML-ALL RECOGNITION

Experimental framework We carry on our experiments with feature selection and classification
for microarray data. We have used the Leukemia Database AML-ALL of Golub et al. (1999). We
have a very small number of samples (72 signals) described by a very large number of genes. We
run a preselection method to obtain the database used by Deb and Reddy (2003) that contains 3859
genes.3 Our algorithm A is here a linear support vector machines. As we face a numerical problem
with few samples on each class (AML and ALL), we decide to benchmark each of the algorithms
we have tested using a 10-fold cross validation method.
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Figure 24: Evolution of the mean energy E computed by the constrained diffusion method on the
training set with time for k = 100.

3. Data Set is available on http://www.lsp.ups-tlse.fr/Fp/Gadat/leukemia.txt.
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Results Figure 24 shows the efficiency of our method of weighting features in reducing the mean
error E on the training set. We remark that with random uniform selection of 100 features, linear
support vector machines obtain a poor rate larger than 15% while learning P∞, we achieve a mean
error rate less than 1%.

We now compare our result to RFE, RF and L0-SVM using the 10-fold cross validation method.
Figure 25 illustrates this comparison between these former algorithms. In this example, we obtain

Figure 25: Efficiency of several feature extractions methods for the Leukemia database. Perfor-
mances are computed using 10 CV.

better results without any selection, but in fact the classification of one linear SVM does not permit
to rank features by importance effect on the classification task. We note here again that our weight-
ing method is less effective for short size subsets (5 genes) while our method is competitive with
larger subsets (20-25 genes). Here again, we note that L0-SVM outperforms RFE (like in the SPAM
study Section 5.2.2). Finally, the Random Forest algorithm obtains results which are very irregular
in connection with the number of trees as one can see in Figure 26.

5.2.5 FEATURE SELECTION CHALLENGE

We conclude our experiments with results on the Feature Selection Challenge described in Guyon
et al. (2004).4 Data sets cover a large field of the feature selection problem since examples are

4. Data sets are available on http://www.nipsfsc.ecs.soton.ac.uk/datasets/.
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Figure 26: Error bars of Random Forests in connection with the number of trees used computed by
cross-validation.

taken in several areas (Microarray data, Digit classification, Synthetic examples, Text recognition
and Drug discovery). Results are provided using the Balanced Error Rate (BER) obtained on the
validation set rather than the classical error rate.

We first performed a direct Optimal Feature Weighting algorithm on theses data sets without
any feature preselection using a linear SVM for our base classifier A. For four of the five data sets
(DEXTER, DOROTHEA, GISETTE andMADELON) the numerical performances of the algorithm
are significantly improved if a variable preselection is performed before running it. This preselection
was based on the Fisher Score:

Fi =
(x1i − xi)2+(x2i − xi)2

1
n1−1

n1
∑
k=1

(x1k,i− x1i )
2+

1
n2−1

n2
∑
k=1

(x2k,i− x2i )
2
.

Here n1 and n2 are the numbers of samples of the training set of classes 1 and 2, x1i ,x2i and xi assign
the mean of feature i on class 1, 2 and over the whole training set. We preselect the features with
Fisher Score higher than 0.01.

We then perform our Optimal Feature Weighting algorithm with the new set of features obtained
by the Fisher preselection using for A a support vector machine with linear kernel. Figure 27 show
the decreasing evolution of the mean BER on the training set for each data sets of the feature
selection challenge. One instantaneously can see that OFW is much more efficient on GISETTE
or ARCENE than on other data sets since the evolution of mean BER is faster and have a larger
amplitude.

For computational efficiency, our weight distribution P is learned using a linear SVM for the
basic algorithm, A. Once this is done, an optimal nonlinear SVM is used for the final classification
(the parameters of the kernel of this final SVM being estimated via cross-validation). We select
the number of features used for the classification on the validation set on the basis of a 10-fold
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Figure 27: Evolution with iterations n of the Balanced Error Rate on the training set.

cross validation procedure on the training set. Table 2 summarizes results obtained by our OFW
algorithm and, Linear SVM,5 and others algorithms of feature selection (Transductive SVM of Wu
and Li (2006), combined filter methods with svm as F+SVM of Chen and Lin (2006) and FS+SVM
of Lal et al. (2006), G-flip of Gilad-Bachrach et al. (2004), Information-Based Feature Selection
of Lee et al. (2006), and analysis of redundancy and relevance (FCBF) of Yu and Liu (2004)). We
select these methods since they are meta algorithms (as OFW method) whose aim is to optimize the
feature subset entry of standard algorithms. These results are those obtained on the Validation Set
since most of the papers previously cited do not report results on the Test Set. One can show that
most of these methods outperform the performance of SVM without any selection.

5. Reader can refer at http://www.nipsfsc.ecs.soton.ac.uk/results for other results obtained by feature selection procedure
or different classification algorithms.
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Fisher criterion is numerically effective and can exhibit very reduced sets of features, but using
it alone provides performances that are below those reported in Table 2. FS+SVM and F+SVM, like
all filter approaches, are equally effective and perform quite well, but requires the estimation of sev-
eral thresholds, and suffer from lack of theoretical optimization background. The G-flip algorithm
is to find a growing sequence of features that successively maximize the margin of the classifier.
The main idea is consequently not so far from the OFW approach, even though we pick up a new
feature subset at each iteration. Results are comparable with OFW and authors obtained generaliza-
tion error bounds. The Transductive SVM incorporates a local optimization on the training set for a
cost function related to the performances of SVM, and updates a parameter defined on each feature
using coefficients of the hyperplanes constructed at each step. This approach has the drawback of
high computation cost, can fail in the local optimization step and requires to tune many parameters,
but obtains interesting results and suggests further developments on model selection. FCBF, which
does not intend directly to increase the accuracy of any classifier as a wrapper algorithm, selects the
features by identifying the redundancy between features and relevance analysis of variables. The
resulting algorithms (FCBF-NBC and FCBF-C4.5) obtains very good results and is numerically
simple to handle. However, this approach does not provide any theoretical measure of efficiency
selection with respect to the accuracy of classification.

Our method is competitive on all data sets but DOROTHEA. The OFW algorithm is particularly
good on the GISETTE data set. Moreover, we outperform most of methods based on a filter + svm
approach.

Table 3 provides our results on the Test Set as well as the results of the best challenge par-
ticipants. Looking at BER, best results of the challenge outperforms our OFW approach, but this
comparison seems unfair since best entries are classification algorithm rather than features selection
algorithm (most of features are kept to treat the data) and the difference of BER is not statistically
significantly different except for the DOROTHEA database. We add moreover recent results on
these 5 data sets obtained by quite simple filter methods Guyon et al. (2006) that reach remarkable
BER results.

6. Discussion and Conclusion

We first start with a detailed comparison of the several results obtained during the experimental
section.

6.1 Discussion

¿From the previous empirical study, we can conclude that OFW can dramatically reduce the dimen-
sion of the feature space while preserving the accuracy of classification and even enhance it in many
cases. We observe likewise that we obtain results comparable to those of reference algorithms like
RFE or RF. In most cases, the learning process of P∞ is numerically easy to handle with our method
and the results on test set are convincing. Besides the accuracy of classifier, another interesting
advantage of OFW is the stability of the subsets which are selected when we run several bootstrap
version of our algorithm. Further works could include numerical comparisons on the stability of
several algorithms using for instance a bootstrap average of Hamming distances as it is performed
in Dune et al. (2002).

Nevertheless, in some rare cases (DEXTER or DOROTHEA), learning the optimal weights
is more complicated: in the case of DEXTER database, we can guess from Figure 27 that our
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Figure 28: Performances of several algorithms on the Validation Set of the FSC. Zero bar corre-
spond to missing values.

stochastic algorithm has been temporarily trapped in a neighborhood of a local minimum of our
energy E . Even if the OFW has succeeded in escaping the local minimum after a while, this
still reduces drastically the convergence speed and the final performance of classification on the
validation set. In the case of DOROTHEA, the results of SVM are quite irregular according to
subsets selected along time (see Figure 27) and the final performance, as all methods based on
SVM classifiers noticed in Table 2, is not as good as other reported for OFW (see best BER of the
challenge in Table 3 obtained without using any SVM as final classifier). At last, results obtained
by OFW are a little bit worse than those obtained by filtering techniques of Guyon et al. (2006) (see
Table 3) that perform efficient feature selection. Note also that all the results obtained require larger
feature subsets than OFW and use a larger amount of probes in the set of selected features. To make
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Figure 29: Performances of several algorithms on the Validation Set of the FSC. Zero bar corre-
spond to missing values.

a comparison of their efficiency, we compute the subsets obtained by these filtering methods with
the number of features used for OFW. These results are reported in the last line of Table 3. One can
see that filter methods obtained poorer performances with a reduced number of features, one can
note that on the DOROTHEA data set, the SVM completely miss one of the two unbalanced class
and obtained bad results.

Another point of interest is the fraction of probes finally selected by each methods. Probes are
artificial features added at random in each data set with statistical distributions similar to the one
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Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
BER of SVM 17.86 7.33 33.98 2.10 40.17
BER of OFW 11.04 5.67 8.53 1.1 6.83

BER of Fisher + SVM 31.42 12.63 21.84 7.38 17.4
% features selected (3.80) (1.43) (0.01) (6.54) (2.80)
BER of TSVM 14.2 5.33 10.63 2 10.83

% features selected (100) (29.47) (0.5) (15) (2.60)
BER of F+SVM 21.43 8 21.38 1.8 13
% features selected (6.66) (1.04) (0.445) (18.2) (2.80)
BER of G-flip 12.66 7.61

% features selected (0.76) (3.60)
BER of FS+SVM 12.76 3.3 16.34 1.3 11.22
% features selected (47) (18.6) (1) (34) (4)
BER of IBFS 18.41 14.60 15.26 2.74 38.5

% features selected (1.85) (5.09) (0.77) (9.30) (2.40)
BER of FCBF+NBC 7 10 2.5
% features selected (0.24) (0.17) (0.5)
BER of FCBF+C4.5 17 16.3 7.8
% features selected (0.24) (0.17) (0.5)

Table 2: Performances of OFW and other meta algorithms on the Validation Set of the FSC, BER
are given in percentage. The best results are in bold characters. The second line compares
OFW with the simple Fisher scoring method with the same amount of features and show
the error bars obtained by OFW.

Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
BER of OFW 11.54 4.8 14.43 1.35 6.78
% features (3.80) (1.31) (0.04) (8.18) (3.2)

Best Challenge BER 13.3 3.9 8.7 1.3 7.2
(100) (1.52) (100) (100) (100)

Guyon et al. (2006) 10.48 3.25 9.3 0.98 6.22
(14) (22.5) (0.7) (15.68) (4)

BER of Filters 14.21 4.8 41.33 4.54 7.33
(3.80) (1.31) (0.04) (8.18) (3.2)

Table 3: Performances of OFW on the Test Set of the FSC, BER are given in percentage.

Data Set ARCENE DEXTER DOROTHEA GISETTE MADELON
Probes of OFW 0.79 19.47 2.56 0 0

Probes of Best entry 30 12.87 50 50 96
Guyon et al. (2006) 0.36 55.38 22.14 49.23 0

Probes of Filters methods 7.63 54.58 33.33 45.97 0

Table 4: Fractions of probes selected by OFW and other algorithms on the FSC, fractions are given
in percentage.
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of some real features, but these probes do not carry any information on the class labels of signals.
Thus, a good feature selection algorithm should obtained a small fraction of probes on the final
selection. We show in Table 4 the fraction of probes obtained by the methods cited in Table 3. One
can remark that OFW is particularly effective to reduce the amount of probes of any data sets (see
GISETTE for instance).

Better results of OFW have been obtained for two special cases of databases which are microar-
ray data (ARCENE and Leukemia) and image recognition data (USPS, GISETTE and Faces). SVM
initially performs well on this data sets, but OFW significantly improve the performance without
any selection.

More generally, OFW seems to behave well and to boost accuracy of algorithms A that have
initial performance that vary smoothly with respect to small changes in the feature set. Even if our
learning procedure is computed in a very large dimensional training set, recent work have shown
that in the context of classification, bootstrap approaches (as it is done in OFW) do not introduce a
supplementary important bias (Singhi and Liu, 2006) and it is equally what we can conclude in our
case.

In the first synthetic example, one can make the important remark that reusable features are
mainly favored by OFW. The algorithm classes those which are relevant, but not reusable in a
second group. This point looks favorable to our model of ”frequency of use”.

Our approach does not address the issue of redundancy (two similar features would most likely
receive the same weight). Some ideas in how to take this into account are sketched in the concluding
section.

6.2 Computational Considerations

We have performed our experiments using a C++ compiler with a 2.2 GHz 1 Go RAM processor
pentium IV PC on a Debian system. The learning time of OFW mostly depends on the initial
number of variables in the feature space and the step of our stochastic scheme; for the Leukemia
database which contains 3859 genes, learning took about one hour.

However, OFW can be easily implemented with parallel techniques since at each step of the
stochastic procedure, one can test several subsets of the feature set still using the same update
formula of Pn. Moreover, we remark that it can be effective for the calculation time to first filter out
very irrelevant features (selected for instance by a Fisher Score) and run the OFW procedure.

Another option would be to use algorithm A simpler than SVM, CART or NN, based on basic
statistical tools as likelihood or mutual information whilst performing a final decision with SVM
for instance.

6.3 Conclusion, Future Work

Our approach introduces a mathematical model to formalize the search for optimal features. Our
selection of features is done by learning a probability distribution on the original feature set, based
on a gradient descent of an energy E within the simplex SF .

The numerical results show that the performance is significantly improved over an initial rule in
which features are simply uniformly distributed. Our Optimal Feature Weighting method is more-
over competitive in comparison with other feature selection algorithms and leads to an algorithm
which does not depend on the nature of the classifier A which is used, whereas, for instance, RFE
or L0-SVM are only based on SVM.
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Our future work will enable the feature space F to be also modified during the algorithm, by
allowing for combination rules, creation and deletion of tests, involving a hybrid evolution in the
set of probability measures and in the feature space. This will be implemented as a generalization
of our constrained diffusion algorithm to include jumps in the underlying feature space.

Another development would be to speed up the learning procedure using stochastic algorithm
techniques to handle even larger databases without using a combination of filter and wrapper method.
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Abstract
The paper introduces LOGAN-H —a system for learning first-order function-free Horn expressions
from interpretations. The system is based on an algorithm that learns by asking questions and that
was proved correct in previous work. The current paper shows how the algorithm can be imple-
mented in a practical system, and introduces a new algorithm based on it that avoids interaction and
learns from examples only. The LOGAN-H system implements these algorithms and adds several
facilities and optimizations that allow efficient applications in a wide range of problems. As one of
the important ingredients, the system includes several fast procedures for solving the subsumption
problem, an NP-complete problem that needs to be solved many times during the learning process.
We describe qualitative and quantitative experiments in several domains. The experiments demon-
strate that the system can deal with varied problems, large amounts of data, and that it achieves
good classification accuracy.
Keywords: inductive logic programming, subsumption, bottom-up learning, learning with queries

1. Introduction

The field of Inductive Logic Programming (ILP) deals with the theory and the practice of generating
first order logic rules from data. ILP has established a core set of methods and systems that have
proved useful in a variety of applications (Muggleton and DeRaedt, 1994; Bratko and Muggleton,
1995). As in much of the work on propositional rule learning, ILP systems that learn rules can be
divided into bottom up methods and top down methods. The latter typically start with an empty
rule and grow the rule condition by adding one proposition at a time. Bottom up methods start
with a “most specific” rule and iteratively generalize it, for example by dropping propositions from
the condition. There are examples of bottom up systems in the early days of ILP: for example, the
GOLEM system (Muggleton and Feng, 1992) used relative least general generalization (Plotkin,
1970, 1971) within a bottom up search to find a hypothesis consistent with the data. Related gen-
eralization operators were also used by Muggleton and Buntine (1992). On the other hand, much
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of the research following this (Quinlan, 1990; Muggleton, 1995; De Raedt and Van Laer, 1995;
Blockeel and De Raedt, 1998) used top down search methods to find useful hypotheses.1 This pa-
per introduces the system LOGAN-H (Logical Analysis for Horn expressions) that implements a
bottom up learning algorithm.

The system comes in two main modes. In batch mode the system performs the standard su-
pervised learning task, taking a set of labeled examples as input and returning a hypothesis. In
interactive mode the system learns by asking questions. The questions are the Equivalence Queries
and Membership Queries (Angluin, 1988) that have been widely studied in computational learning
theory, and in particular also in the context of ILP (Arimura, 1997; Reddy and Tadepalli, 1998;
Krishna Rao and Sattar, 1998; Khardon, 1999b,a; Arias and Khardon, 2002).

1.1 A Motivating Example: Learning from Graphs

We introduce the problem and some of the algorithmic ideas through a simple example in the context
of learning from labeled graphs where both nodes and edges may have labels. In fact this is one of
the applications of learning from interpretations where the atom-bond relations of a molecule can
be seen as such a graph and this framework has proved useful for predicting certain properties of
molecules.

In the following, node labels are marked by n1,n2, . . ., edge labels are e1,e2, . . . and we apply
them to nodes or pairs of nodes appropriately. Consider a class of graphs that is characterized by
the following rules:

R1 = ∀x1,x2,x3,x4,
e1(x1,x2),e1(x2,x3),e2(x3,x4),e2(x4,x1) → e1(x1,x3),

R2 = ∀x1,x2,x3,x4,
n1(x1),n1(x2),n2(x3),n3(x4),e1(x1,x2),e1(x1,x3),e1(x1,x4) → e2(x2,x3).

Both rules imply the existence of an edge with a particular label if some subgraph exists in the
graph. Consider the following graphs, also illustrated in Figure 1, that may be part of the data:

(g1) = e1(1,2),e1(2,3),e2(3,4),e2(4,1),e1(1,3),e1(3,5),e2(4,5).
(g2) = e1(1,2),e1(2,3),e1(3,4).
(g3) = e1(1,2),e1(2,3),e2(3,4),e2(4,1),e1(2,5),e1(5,6),e1(6,3),e2(1,2),e1(2,4).
(g4) = e1(1,2),e1(2,3),e2(3,4),e2(4,1),e1(3,5),e1(4,5),e2(1,2),e2(2,3).
(g5) = n1(1),n1(2),n2(3),n3(4),e1(1,2),e1(1,3),e1(1,4),e1(2,5),e1(3,6),e1(5,6),e1(6,4).

It is easy to see that g1 and g2 satisfy the constraints given by the rules. We call such graphs
positive examples. The graphs g3 and g4 violate the first rule and g5 violates the second rule. We call
such graphs negative examples. Now given a data set of such graphs how can we go about inferring
the underlying rules? In the following we ignore the question of identifying the conclusions of rules
and illustrate some of the basic ideas and steps used in our algorithm.

1. Some exceptions exist. STILL (Sebag and Rouveirol, 2000) uses a disjunctive version space approach which means
that it has clauses based on examples but it does not generalize them explicitly. The system of Bianchetti et al. (2002)
uses bottom up search with some ad hoc heuristics to solve the challenge problems of Giordana et al. (2003).
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Figure 1: Representation of graphs g1 to g5. Solid lines represent e1(·, ·) edges, dotted lines rep-
resent e2(·, ·) edges. Solidly filled nodes represent n1(·) nodes, checked nodes represent
n2(·) nodes, and nodes filled with diagonal lines represent n3(·) nodes.

Consider taking one negative example, say g3 and trying to extract information from it. If we
could discover that only 4 nodes are required to “make it negative” and these nodes are 1, 2, 3, 4
then we could get a smaller graph to work with and use that as a pattern for our rule condition. In
particular projecting g3 onto the nodes 1, 2, 3, 4 gives

(g3min) = e1(1,2),e1(2,3),e2(3,4),e2(4,1),e2(1,2),e1(2,4).

To discover this “minimized” version of g3 we can drop one node from the graph and then try to
find out whether that node was irrelevant, that is, whether the resulting pattern is still a negative
graph. If we are allowed to ask questions then we can do this directly. Otherwise, we use a heuristic
to evaluate this question using the data set. Iterating this procedure of dropping an object gives us a
minimized negative graph. Below, we call this the minimization procedure.

Now consider taking two examples, say g3 and g4 and trying to extract information from them.
Again the structure of examples has important implications. If we could discover that only 4 nodes
are required for both examples, and that in both cases these are nodes 1, 2, 3, 4, we can focus on the
shared structure in the two graphs. In this case we get

(g3,4) = e1(1,2),e1(2,3),e2(3,4),e2(4,1),e2(1,2).
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so the pattern is even closer to the rule than the one in g3min . Notice that the numbering of the
nodes violating the rule in the two graphs will not always coincide. Therefore, in general renaming
or “aligning” of the violating nodes will be necessary and our algorithm must search for such an
alignment. Again we must verify that the resulting pattern still captures one of our rules. For
example if we tried this operation using g3 and g5 we will not find any common relevant core since
they violate different rules and do not have a shared rule structure. However, if we succeed in finding
a common structure then we can make substantial progress toward finding good rules. Below we
call this the pairing procedure since it pairs and aligns two examples.

Our algorithm uses minimization and pairing as well as some other ideas in a way that guar-
antees finding a consistent hypothesis. Bounds for the hypothesis size and the complexity of the
algorithm are given by Khardon (1999b) for the case that the algorithm can ask questions and get
correct answers for them. In the case answers to the questions are estimated from the data we can
provide similar bounds under somewhat strong assumptions on the data set. As our experiments
show, the algorithm performs well on a range of problems.

1.2 General Properties of the System

Some of the properties of LOGAN-H were illustrated above. The system learns in the model of
learning from interpretations (De Raedt and Dzeroski, 1994; De Raedt and Van Laer, 1995; Block-
eel and De Raedt, 1998) where each example is an interpretation, also called a first order structure in
logic terminology (Chang and Keisler, 1990). Roughly, an interpretation is the description of some
scenario. Interpretations have a domain which consists of a set of objects, and a list of relations
between objects in its domain that are “true” or hold in the particular scenario they describe. The
system learns function free Horn rules meaning that it learns over relational data but all arguments
of predicates are universally quantified variables. We do not allow for function symbols or constants
in the rules.

The system solves the so-called multi-predicate learning problem, that is, it can learn multiple
rules and different rules can have different conclusions. The hypothesis of the system may include
recursive clauses where the same predicate appears both in the condition of the rule and in the
conclusion (obviously with different arguments). In the previous example, R1 is a recursive rule but
R2 is not.

In contrast with most systems, LOGAN-H learns all the rules simultaneously rather than learning
one rule at a time (cf. Bratko, 1999). The system uses bottom up generalization in this process. In
terms of rule refinement, the system can be seen as performing large refinement steps. That is, a rule
structure is changed in large chunks rather than one proposition at a time. Again this is in contrast
with many approaches that try to take minimal refinements of rules in the process of learning.

As mentioned above the system can run in two modes: interactive where the algorithm asks
questions in the process of learning, and batch where standard supervised learning is performed.
The learning algorithms in both modes are based on the algorithm of Khardon (1999b) where it was
shown that function-free Horn expressions are learnable from equivalence and membership queries.
The interactive mode algorithm essentially uses this algorithm but adds several features to make the
system more efficient. The batch mode algorithm uses the idea of simulation and can be thought of
as trying to answer the queries of the interactive algorithm by appealing to the data set it is given as
input.
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Efficiency considerations are important in any ILP system and in particular in bottom up learn-
ing, since these systems tend to start with larger and more complex clauses thus requiring more
resources in the beginning. The system includes several techniques that speed up run time. Perhaps
the most important is the use of fast implementations for subsumption, an NP-Complete match-
ing problem that needs to be solved many times in our algorithm. The paper introduces two new
methods for this problem, in addition to using the DJANGO algorithm (Maloberti and Sebag, 2004)
which is based on constraint satisfaction techniques. One of the new methods modifies DJANGO to
use a different representation of the subsumption problem and requires slightly different constraint
satisfaction algorithms. The other method manipulates partial substitutions as tables and iteratively
applies joins to the tables to find a solution.

The system incorporates further useful facilities. These include a module for pruning rules,
a standard technique that may improve accuracy of learned rules. Another module is used for
discretizing real valued arguments. This increases the applicability since many data sets have some
numerical aspects. Both of these use known ideas but they raise interesting issues that have not
been discussed in the literature, mainly since they are relevant for bottom up learners but not for top
down learners.

1.3 Experimental Results

We have experimented with both modes of the system and challenging learning problems. The paper
reports on qualitative experiments illustrating the performance of the system on list manipulation
procedures (15-clause program including standard procedures) and a toy grammar learning problem.
The grammar problem introduces the use of background information to qualify grammar rules that
may be of independent interest for other settings.

We also describe quantitative experiments with several ILP benchmarks. In particular, the per-
formance of the system is demonstrated and compared to other systems in three domains: the Bon-
gard domain (De Raedt and Van Laer, 1995), the KRK-illegal domain (Quinlan, 1990), and the
Mutagenesis domain (Srinivasan et al., 1994). The results show that our system is competitive with
previous approaches, both in terms of run time and classification accuracy, while applying a com-
pletely different algorithmic approach. This suggests that bottom up approaches can indeed be used
in large applications.

The experiments also demonstrate that the different subsumption algorithms are effective on a
range of problems but no one dominates the others with LOGAN-H. Further experiments evaluating
the subsumption methods on their own show that our modified DJANGO method is a promising
approach when hard subsumption problems need to be solved.

1.4 Summary and Organization

The main contribution of the paper is introducing the LOGAN-H system with its learning algorithms
and implementation heuristics. The system is a bottom up ILP system using ideas from learning the-
ory in its algorithms. The paper demonstrates through various experiments that the system and its
algorithms provide an interesting alternative to top down learning which is the common approach
in ILP. The paper also makes a contribution to the study of efficient subsumption algorithms. We
develop some new subsumption algorithms and evaluate them both in the context of machine learn-
ing and independently. One of the new methods, called DJANGOPRIMAL below, seems particularly
promising when hard subsumption problems need to be solved.
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The paper is organized as follows. Section 2 formalizes the learning setting and problem. Sec-
tion 3 describes our learning algorithm and its different variants. Section 4 describes three sub-
sumption engines that our system uses. Section 5 describes extensive experiments that demonstrate
the validity of our method and of the subsumption procedures. Finally, in the appendix the reader
can find multiple details on several implementation improvements and heuristics used to optimize
the system.

2. Notation and Problem Settings

We start with some basic notation from logic and logic programming as used in the paper. For a
general introduction to these topics see Chang and Keisler (1990) and Lloyd (1987). We assume
that the learner is given its “vocabulary” in advance. Formally this is a fixed signature, a set of
predicates each with its associated arity. The expressions we consider do not allow any constants
or other function symbols so only variables can be used as arguments to predicates. An atom is a
predicate with an appropriate list of arguments. A Horn clause (sometimes called a Horn rule or
just a rule) is an expression C = (∧n∈Nn) → P, where N is a set of atoms and P is an atom. In
the examples that follow we assume a signature with two predicates p() and q() both of arity 2.
For example, c1 = ∀x1,∀x2,∀x3, [p(x1,x2)∧ p(x2,x3) → p(x1,x3)] is a clause in the language. In
this paper all variables in the clause are universally quantified and we often omit the quantifiers in
expressions. The conjunction on the left of the implication is called the condition (also antecedent)
of the rule and P is called the conclusion (also consequent). Clauses may have empty consequents.
A universally quantified function-free Horn expression is a conjunction of Horn clauses. The goal
of our learning algorithms is to learn such expressions.

An expression is given a truth value relative to an interpretation of the symbols in the signature.
An interpretation lists a domain of elements and the truth values of predicates over them. For
example, the interpretation

e1 = ([1,2,3], [p(1,2), p(2,3), p(3,1),q(1,3)])

has domain [1,2,3]; by convention, the four atoms listed are true in the interpretation and other
atoms are false. The size of an interpretation is the number of atoms true in it, so that size(e1) =
4. The interpretation e1 falsifies (we sometimes also say violates) the clause above. To see this,
substitute {1/x1,2/x2,3/x3}). On the other hand

e2 = ([a,b,c,d], [p(a,b), p(b,c), p(a,c), p(a,d),q(a,c)])

satisfies the clause. We use standard notation e1 $|= c1 and e2 |= c1 for these facts.
Throughout the paper we use the following notation. The clause set [s,c] (where c $= /0) rep-

resents the conjunction of clauses
V
b∈c(s→ b). If c is empty then no clause is represented and

[s, /0] is in this sense “illegal”. As mentioned above, Horn clauses in general do allow for “empty
consequents”. For example, a disjunction (A∨B) is often described as (A∧B→ !). Our system
can handle such consequents but we do so by explicitly representing a predicate false with arity
0 which is false in all interpretations. Thus, the clause above will be represented in our system as
[[A,B], [false]].
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2.1 The Model: Learning from Interpretations

Learning from interpretations has seen growing interest in recent years (De Raedt and Dzeroski,
1994; De Raedt and Van Laer, 1995; Blockeel and De Raedt, 1998; Blockeel et al., 1999; Stolle
et al., 2005). Unlike the standard ILP setting, where examples are atoms, examples in this frame-
work are interpretations. As mentioned above we consider two settings for the learner.

The batch learning algorithm performs the standard supervised learning task: given a set of
positive and negative examples it produces a Horn expression as its output. In this paper we mea-
sure algorithm performance by testing the hypothesis on an unseen test set, but we also mention
theoretical guarantees for the algorithms implied by previous work.

The interactive learning algorithm requires an interface capturing Angluin’s (1988) model of
learning from equivalence queries (EQ) and membership queries (MQ). In this model we assume
that a target expression—the true expression classifying the examples—exists and denote it by T .
An EQ asks about the correctness of the current hypothesis. With an EQ the learner presents a
hypothesis H (a Horn expression) and, in case H is not correct, receives a counter-example, positive
for T and negative for H or vice versa. With a MQ, the learner presents an example (an interpreta-
tion) and is told in reply whether it is positive or negative for T . The learner asks such queries until
H is equivalent to T and the answer to EQ is “yes”.

3. The Learning Algorithms

We first describe the main procedures used by the learning algorithms and then describe the inter-
active and batch algorithms.

3.1 Basic Operations

Candidate clauses: For an interpretation I, the “relational candidates” (Khardon, 1999b)
rel-cands(I) is the set of potential clauses all sharing the same antecedent and violated by I. The
set rel-cands(I) is calculated in two steps. The first step results in a set of clauses [s,c] such
that s (the antecedent) is the conjunction of all atoms true in I and c (the conclusions) is the
set of all atoms (over the domain of I) which are false in I. This clause set is such that all ar-
guments to the predicates are domain elements of I. For example when applied to the example
e3 = ([1,2], [p(1,2), p(2,2),q(2,1)]) this gives

[s,c] = [[p(1,2), p(2,2),q(2,1)], [p(1,1), p(2,1),q(1,1),q(1,2),q(2,2)]].

While domain elements are not constants in the language and we do not allow constants in the rules
we slightly abuse normal terminology and call this intermediate form a ground clause set. We then
replace each domain element with a distinct variable to get

rel-cands(I) = variabilize([s,c]) = [s′,c′]

where variabilize() replaces every domain elements with a distinct variable. For example, the clause
set rel-cands(e3) includes among others the clauses [p(x1,x2)∧ p(x2,x2)∧ q(x2,x1) → p(x2,x1)],
and [p(x1,x2)∧ p(x2,x2)∧q(x2,x1) → q(x1,x1)], where all variables are universally quantified.

Note that there is a one to one correspondence between a ground clause set [s,c] and its variabi-
lized version. In the following we often use [s,c]with the implicit understanding that the appropriate
version is used.
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Dropping objects: This operation can be applied to an interpretation or a clause set. When dropping
an object (domain element) from an interpretation we remove the element from the domain and all
atoms referring to it from the extensions of predicates. Thus if we remove object 2 from e1 =
([1,2,3], [p(1,2), p(2,3), p(3,1),q(1,3)]) we get e′1 = ([1,3], [p(3,1),q(1,3)]). When removing an
object from a clause set [s,c] we remove all atoms referring to it from s and c. For example when
dropping object 1 from the clause

[s,c] = [[p(1,2), p(2,2),q(2,1)], [p(1,1), p(2,1),q(1,1),q(1,2),q(2,2)]]

we get [s′,c′] = [[p(2,2)], [q(2,2)]].

Minimization for Interactive Algorithm: Given a negative example I the algorithm iterates over
domain elements. In each iteration it drops a domain element and asks a MQ to get the label
of the resulting interpretation. If the label is negative the algorithm continues with the smaller
example; otherwise it retains the previous example. The minimization ensures that the example
is still negative and the domain of the example is not unnecessarily large. We refer to this as
minimize-objects(I).

Clearly, the order by which objects are considered for removing can affect the resulting hypoth-
esis. The theoretical guarantees for the interactive algorithm discussed below hold regardless of the
order but the performance of the batch algorithm can be affected dramatically. The current system
does not try to optimize this and simply drops objects in the order they are encountered in example
descriptions.

Removing Wrong Conclusions: Consider a clause set [s,c] in the hypothesis, say as initially gen-
erated by rel-cands, and consider a conclusion p ∈ c that is wrong for s. We can identify such a
conclusion if we see a positive example I such that I $|= [s→ p]. Notice that since I is positive it
does not violate any correct rule and since it does violate [s→ p] this rule must be wrong. In such
a case we can remove p from c to get a better clause set [s,c \ p]. In this way we can eventually
remove all wrong conclusions and retain only correct ones.

Pairing: The pairing operation combines two clause sets [sa,ca] and [sb,cb] to create a new clause
set [sp,cp]. It is closely related to the LGG operation of Plotkin (1970) but it avoids the exponential
growth in size of the resulting clause after several applications of the operation. When pairing,
we use an injective mapping from the smaller domain to the larger one. The system first pairs the
antecedents by taking the intersection under the injective mapping to produce a new antecedent J.
The resulting clause set is [sp,cp] = [J,(ca∩ cb)∪ (sa \ J)]. To illustrate this, the following example
shows the two original clauses, a mapping and the resulting values of J and [sp,cp].

• [sa,ca] = [[p(1,2), p(2,3), p(3,1),q(1,3)], [p(2,2),q(3,1)]].

• [sb,cb] = [[p(a,b), p(b,c), p(a,c), p(a,d),q(a,c)], [q(c,a)]].

• The mapping {1/a,2/b,3/c}.

• J = [p(1,2), p(2,3),q(1,3)].

• [sp,cp] = [[p(1,2), p(2,3),q(1,3)], [q(3,1), p(3,1)].
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Note that the pairing operation is not symmetric. The clause set [sp,cp] obtained by the pairing
can be more general than the original clause sets [sa,ca] and [sb,cb] since sp is contained in both
sa and sb (under the injective mapping) and it thus subsumes both sa and sb. Hence, the pairing
operation can be intuitively viewed as a generalization of both participating clause sets. However,
since we modify the consequent, by dropping some atoms and adding other atoms (from sa \J), this
is not a pure generalization operation.

Note that since a pairing uses an injective mapping of objects we can use domain element names
from either of the interpretations in the pairing. While this does not change the meaning of the clause
sets this fact is used in the system to improve efficiency. This point is discussed further below.

The reasoning behind the definition of the consequent in the pairing operation is as follows.
Consider a clause set [s,c \ p] where a wrong conclusion p has already been removed. Now when
we pair this clause set with another one the antecedent will be a subset of s and surely p will still
be wrong. So we do not want to reintroduce such conclusions after pairing. The atoms that are
removed from s while pairing have not yet been tested as conclusions for s and they are therefore
added as potentially correct conclusions in the result.

3.2 The Interactive Algorithm

The interactive algorithm is basically the algorithm A2 from Khardon (1999b). The algorithm is
summarized in Table 1 where T denotes the target expression. Intuitively, the algorithm generates
clauses from examples by using rel-cands(). It then uses dropping of domain elements and pairing
in order to get rid of irrelevant parts of these clauses.

The algorithm maintains a sequence S of ground clause sets and the hypothesis is generated
via the variabilize(·) operation. Once the hypothesis H is formed from S the algorithm asks an
equivalence question: is H the correct expression? This is the main iteration structure which is
repeated until the answer “yes” is obtained. On a positive counter-example (I is positive but I $|=H),
wrong clauses (s.t. I $|=C) are removed from H as explained above.

On a negative counter-example (I is negative but I |= H), the algorithm first minimizes the
number of objects in the counter-example using I ′ = minimize-ob jects(I). This is followed by
generating a clause set [s,c] = rel-cands(I ′).

The algorithm then tries to find a “useful” pairing of [s,c] with one of the clause sets [si,ci] in
S. A useful pairing [sp,cp] is such that sp is a negative example also satisfying that sp is smaller
than si, where size is measured by the number of atoms in the set. The search is done by trying all
possible matchings of objects in the corresponding clause sets and asking membership queries. The
clause sets in S are tested in increasing order and the first [si,ci] for which this happens is replaced
with the resulting pairing. The size constraint guarantees that measurable progress is made with
each replacement. In case no such pairing is found for any of the [si,ci], the minimized clause set
[s,c] is added to S as the last element. Note that the order of elements in S is used in choosing the
first [si,ci] to be replaced, and in adding the counter-example as the last element. These are crucial
for the correctness of the algorithm.

Note that the algorithm enumerates matchings and corresponding pairings of clauses. As in
the case of minimization the order of pairings considered can make a difference to the resulting
hypothesis but the current system does not attempt to optimize this and uses some arbitrary order
that is easy to calculate.

The interactive algorithm was previously analyzed and it has the following guarantees:
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1. Initialize S to be the empty sequence.

2. Repeat until H ≡ T :

(a) Let H = variabilize(S).
(b) Ask an equivalence query to get a counter-example I in case H $≡ T .
(c) On a positive counter-example I (s.t. I |= T ):

Remove wrong clauses (s.t. I $|=C) from H.
(d) On a negative counter-example I (s.t. I $|= T ):

i. I′ = minimize-objects(I).
ii. [s,c] = rel-cands(I ′).
iii. For i= 1 to m (where S= ([s1,c1], . . . , [sm,cm]))

For every pairing [J,(ci∩ c)∪ (si \ J)] of [si,ci] and [s,c]
If J’s size is smaller than si’s size
and J $|= T (ask membership query) then
A. Replace [si,ci] with [J,(ci∩ c)∪ (si \ J)].
B. Quit loop (Go to Step 2a) .

iv. If no [si,ci] was replaced then add [s,c] as the last element of S.

Table 1: The Interactive Algorithm.

Theorem 1 (see Corollary 2 in Khardon (1999b)) Assume there is a target expression T with m
clauses each having at most k variables and that equivalence and membership queries are an-
swered correctly according to T . Let p be the number of predicates in the signature, a the maximum
arity and n the maximum number of objects in any negative counter-example provided to equiv-
alence queries in the process of learning. Then the interactive algorithm will stop and produce
a hypothesis equivalent to T with O(mpkakk) clauses after O(mpkakk) equivalence queries and
O((n+m2)pkak3k) membership queries.

3.3 The Batch Algorithm

The batch algorithm is based on the observation2 that we can answer the interactive algorithm’s
questions using a given set of examples E.

Simulating equivalence queries is easy and is in fact well known. Given hypothesis H we
evaluate H on all examples in E. If it misclassifies any example we have found a counter-example.
Otherwise we found a consistent hypothesis. This procedure has statistical justification based in
PAC learning theory (Angluin, 1988; Blumer et al., 1987). Essentially if we use a fresh sample for
every query then with high probability a consistent hypothesis is good. If we use a single sample
then by Occam’s razor any short hypothesis is good.

For membership queries we use the following fact:

2. Similar observations were made by Kautz et al. (1995) and Dechter and Pearl (1992) with respect to the propositional
algorithm of Angluin et al. (1992).
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Lemma 2 (See Lemma 11 and 12 in Khardon 1999b) Let T be a function free Horn expression
and I an interpretation over the same alphabet. Then I $|= T if and only if for someC ∈ rel-cands(I),
T |=C.

Now, we can simulate the test T |=C by evaluating C on all positive examples in E. If we find
a positive example e such that e $|=C then T $|=C. Otherwise we assume that T |=C and hence that
I $|= T .

A straightforward application will use the lemma directly whenever the algorithm asks a mem-
bership query (this is in fact algorithmA4 of Khardon, 1999b). However, a more careful look reveals
that queries will be repeated many times. Moreover, with large data sets, it is useful to reduce the
number of passes over the data. We therefore optimize the procedure as described below.

The one-pass procedure: Given a clause set [s,c] the procedure one-pass tests clauses in [s,c]
against all positive examples in E. The basic observation is that if a positive example can be matched
to the antecedent but one of the consequents is false in the example under this matching then this
consequent is wrong. For each positive example e, the procedure one-pass removes all wrong
consequents identified by e from c. If c is empty at any point then we know that no atom is implied
by s, that is, there are no correct consequents. Therefore the evaluation process is stopped and the
procedure returns [s, /0] to indicate that this is the case.3 At the end of one-pass, each consequent is
correct w.r.t. the data set.

This operation is at the heart of the algorithm since the hypothesis and candidate clause sets
are repeatedly evaluated against the data set. Two points are worth noting here. First, once we
match the antecedent we can test all the consequents simultaneously so it is better to keep clause
sets together rather than split them into individual clauses. Second, notice that since we must verify
that consequents are correct, it is not enough to find just one substitution from an example to the
antecedent. Rather we must check all such substitutions before declaring that some consequents are
not contradicted. This issue affects the implementation and we discuss it further below.

Minimization: The minimization procedure acting on a clause set [s,c] assumes the input clause
set has already been validated by one-pass. It then iteratively tries to drop domain elements. In each
iteration, it drops an object to get [s′,c′] and runs one-pass on [s′,c′] to get [s′′,c′′]. If c′′ is not empty
it continues with it to the next iteration (assigning [s,c]← [s′′,c′′]); otherwise it continues with [s,c].
The final result of this process is [s,c] in which all consequents are correct w.r.t. E.

The above simulation in one-pass avoids repeated queries that result from direct use of the
lemma as well as guaranteeing that no positive counter-examples are ever found since they are used
before clauses are put into the hypothesis. This simplifies the description of the algorithm which is
summarized in Table 2.

3.4 Discussion of Batch Algorithm

The analysis of the interactive algorithm can be used to give some guarantees for the batch algorithm
as well. In particular it is clear that all counter-examples used are correct since they are in the data
set. If we can guarantee in addition that all membership queries implicit in one-pass are answered
correctly then the batch algorithm can be seen as performing some run of the interactive algorithm
and bounds on queries and hypothesis size translate as well.

3. Recall from above that the “empty consequent” is explicitly represented by false and if this is a correct consequent
it will not be removed.
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1. Initialize S to be the empty sequence.

2. Repeat until H is correct on all examples in E.

(a) Let H = variabilize(S).
(b) If H misclassifies I (I is negative but I |= H):

i. [s,c] = one-pass(rel-cands(I)).
ii. [s,c] = minimize-objects([s,c]).
iii. For i= 1 to m (where S= ([s1,c1], . . . , [sm,cm]))

For every pairing [J,(ci∩ c)∪ (si \ J)] of [si,ci] and [s,c]
If J’s size is smaller than si’s size then
let [s′,c′] = one-pass([J,(ci∩ c)∪ (si \ J)]).
If c′ is not empty then
A. Replace [si,ci] with [s′,c′].
B. Quit loop (Go to Step 2a)

iv. If no [si,ci] was replaced then add [s,c] as the last element of S.

Table 2: The Batch Algorithm.

Recall that all of the membership queries asked by the interactive algorithm are sub-structures of
negative examples. Consider a “complete” data set in the sense that every sub-structure of a negative
example in the data set is also included in the data set. In this case the answer to a membership
query on interpretation J exists explicitly in the data set. Similarly, the call to one-pass returns at
least one conclusion (c′ is not empty) if and only if a correct conclusion exists. In fact, a slightly
weaker condition is also sufficient. We say that a data set is relational complete for target T if
sub-structures of negative examples that are positive for T have a “representative” in the data where
I′ is a representative of I if it is isomorphic to I. Clearly such a data set provides exactly the same
answer as a corresponding complete data set. We therefore have the following result:

Theorem 3 Consider any data set which is relational complete for target T where T has m clauses
each having at most k variables. Let p be the number of predicates in the signature, a the maximum
arity and n the maximum number of objects in any negative example in the data set. Then the batch
algorithm will stop and produce a hypothesis consistent with the data with O(mpkakk) clauses.

Notice that the bound on hypothesis size does not depend on the number of examples but only
on parameters of the target. If the data set is not complete the algorithm will still find a consistent
hypothesis if one exists but the hypothesis may be large. While this notion of completeness is a
strong condition to require, it can serve as a rough guide for data preparation and evaluating whether
the algorithm is likely to work well for a given application. In some of the experiments below using
artificial domains we generated the data in a way that is likely to include sub-structures of examples
in other examples and indeed this led to good performance in these experiments.

The use of a data set to simulate queries raises a subtle aspect concerning time complexity.
Assume the target expression T exists and that it uses at most k variables in each clause. It is
shown in Khardon (1999b) that in such a case the minimization procedure outputs an interpretation
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with at most k domain elements. As a result any clause C produced by the interactive algorithm
has at most k variables which in turn guarantees that we can test whether I |= C in time O(nk)
where I has n domain elements. However, for the batch algorithm we must simulate membership
queries for the minimization process itself. When doing this we generate clauses with as many
variables as there are domain elements in I, which may lead to the complexity of one-pass growing
with nn if examples typically have n domain elements. Moreover, as mentioned above we must
enumerate all substitutions between a rule and positive examples in order to test whether we can
remove conclusions. This is a serious consideration that might slow down the batch system in
practice. It is therefore crucial for our system to have efficient procedures to test subsumption and
enumerate matching. Several such methods are described below.

The same point also suggests that for some data sets the batch algorithm may overfit the data.
In particular if we do not have sufficient positive examples to contradict wrong conclusions then
we may drop the wrong objects in the process of minimization. As a result the rules generated
may have a low correlation with the label. Since our algorithm depends on the order of examples,
one way to reduce this effect is to sort the set of examples according to size. This is useful since
smaller negative examples make less demands on the richness of the data set with respect to the
one-pass procedure. If small examples contain seeds for all rules then this sidesteps the problem.
In addition, sorting the examples by size helps reduce run time since the rules generated from the
small examples have less variables, a property that generally implies faster subsumption tests. In
the experiments described below we have sorted examples in this manner.

At this point it is interesting to compare the batch algorithm to the one used by the GOLEM
system (Muggleton and Feng, 1992). The appendix discusses the relation between the so-called
“normal ILP setting” used in GOLEM and the setting of learning from interpretations used by
LOGAN-H. It suffices here to say that some manipulation allows us to work on the same problems.
GOLEM uses bottom up learning by calculating the relative least general generalization (RLGG)
of clauses. In our setting this corresponds to taking cross products of interpretations instead of
pairings. This is incorporated in a greedy search that iteratively generalizes one of the clauses
in its hypothesis by combining a new example with the clause. Thus the general structure of the
algorithms is pretty similar. The main differences are that (1) we use pairings in order to get small
clauses in the hypothesis whereas GOLEM uses the RLGG, that (2) pairing is aimed at learning
multiple conclusions simultaneously thus moving atoms from antecedent to consequent, that (3)
LOGAN-H uses the minimization procedure, and that (4) GOLEM greedily chooses the clause
with maximum cover for combining clauses whereas LOGAN-H’s choice is based on ordering the
hypothesis clauses as suggested by the theoretical analysis.

3.5 Other Practical Considerations

The batch algorithm as described above includes all the main ideas but it may be hard to apply
in some cases. The appendix gives details of heuristics implemented in the system that extend its
applicability. In particular the system can handle noisy data (where no consistent hypothesis exists),
handle numerical attributes through discretization, and use rule pruning. In addition the appendix
describes several techniques that considerably improve run time. Aside from these, the most crucial
run time issue is the subsumption test which we discuss next.
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x1 x2 x3 x4
a b
a c
a d
b a
d c

x1 x2 x3 x4
a b
b a

x1 x2 x3 x4
a b b
a b c
a b d
b a a

x1 x2 x3 x4
a b b a
a b d c
b a a b
b a a c
b a a d

Table 3: Example of Table Based Subsumption.

4. Efficient Subsumption Tests

The one-pass procedure must enumerate all substitutions that embed a clause in an example.4 This
problem is NP-Hard and hence we cannot expect a solution that is always efficient. Here we describe
three different procedures that are shown to perform well in different settings; our system can work
with any of these. This may be useful in other contexts as well.

4.1 Table Based Subsumption

While backtracking search (as done in Prolog) can find all substitutions without substantial space
overhead, the time overhead can be very large. Our system implements an alternative approach that
constructs all substitutions simultaneously and stores them in memory. The systemmaintains a table
of instantiations for each predicate in the examples. To compute all substitutions between an exam-
ple and a clause the system repeatedly performs joins of these tables (in the database sense) to get a
table of all substitutions. We first initialize to an empty table of substitutions. Then for each predi-
cate in the clause we pull the appropriate table from the example, and perform a join which matches
the variables already instantiated in our intermediate table. Thus if the predicate in the clause does
not introduce new variables the table size cannot grow. Otherwise the table can grow and repeated
joins can lead to large tables. This approach is similar to the matching procedure of Di Mauro et al.
(2003) and was developed independently; we discuss the similarities and differences in more detail
below. To illustrate the method consider evaluating the clause p(x1,x2), p(x2,x1), p(x1,x3), p(x3,x4)
on an example with extension [p(a,b), p(a,c), p(a,d), p(b,a), p(d,c)]. Then applying the joins
from left to right we get partial substitution tables given in Table 3 (from left to right). Notice how
the first application simply copies the table from the extension of the predicate in the example. The
first join reduces the size of the intermediate table. The next join expands both lines. The last join
drops the row with a b c but expands other rows so that overall the table expands.

The code incorporates some heuristics to speed up computation. For example we check that
each variable has at least one substitution common to all its instances in the clause. Otherwise we
know that there is no substitution matching the clause to the examples. We also sort predicates in an
example by their table size so that we first perform joins of small tables. We have also experimented
with a module that performs lookahead to pick a join that produces the smallest table in the next
step. This can substantially reduce the memory requirements and thus run time but on the other hand
introduces overhead for the lookahead. Finally, taking inspiration from DJANGO (see description

4. It may be worth clarifying here that this is the standard subsumption problem and we do not require different variables
to be matched to different objects. The one to one restriction appears in the analysis of Khardon (1999b) but is not
part of the algorithm or its hypothesis.
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below) we have also implemented a form of arc-consistency for the tables. In this case we first
compute joins of table pairs and project them back onto the original variables. This removes rows
that are clearly inconsistent from the tables. This is repeated until all tables are pairwise consistent
and then the tables method is started as before.

One can easily construct examples where the table in intermediate steps is larger than the mem-
ory capacity of the computer, even if the final table is small. In this case the matching procedure
will fail. This indeed occurs in practice and we have observed such large table sizes in the Mutage-
nesis domain (Srinivasan et al., 1994) as well as the artificial challenge problems of Giordana et al.
(2003).

4.2 Randomized Table Based Subsumption

If lookahead is still not sufficient or too slow we can resort to randomized subsumption tests. Instead
of finding all substitutions we try to sample from the set of legal substitutions. This is done in the
following manner: if the size of the intermediate table grows beyond a threshold parameter TH
(controlled by the user), then we throw away a random subset of the rows before continuing with
the join operations. In this way we are not performing a completely random choice over possible
substitutions. Instead we are informing the choice by our intermediate table. The absolute limit
to the size of intermediate tables is TH×16. If a join would produce a larger table we arbitrarily
trim the table when it reaches this capacity, and then follow with the random selection. In addition
the system uses random restarts to improve confidence as well as allowing more substitutions to be
found. This can be controlled by the user through a parameter R.

4.3 Subsumption Based on Constraint Satisfaction Algorithms

The idea of using constraint satisfaction algorithms to solve subsumption problems has been inves-
tigated in Maloberti and Sebag (2004), where a very effective system DJANGO is developed. The
DJANGO system was originally designed to find a single solution for the subsumption problem but
this can be easily extended to give all solutions through backtracking. In the following we describe
the ideas behind the original system that we refer to as DJANGODUAL as well as introduce a new
method we call DJANGOPRIMAL that uses similar techniques but a different representation.
A Constraint Satisfaction Problem (CSP) (Tsang, 1993) is defined by a triplet 〈V ,D,C 〉 such that:

V is a set of variables;

D is a set of domains, each domain DV associates a set of admissible values to a variable V ∈ V .
The function dom(V ) returns the domain associated to the variable V .

C is a set of constraints, each constraintC ∈ C involves a tuple 〈S,R〉 such that :

S is a subset of V , denoted scope of a constraint. The function vars(C) returns the variables
in the scope ofC, that is, vars(C) = S.

R is a set of tuples, denoted relations of a constraint, each tuple is a set of simultaneously
admissible values for each variable in S. The function rel(C) returns the relations asso-
ciated to the constraintC.

A constraint C is satisfied by an assignment of values to variables if and only if the corresponding
tuple of assignments to vars(C) is in rel(C). A CSP is satisfiable iff it admits a solution, assigning
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to each variableV ∈ V a value v ∈ dom(V ) such that all constraints are satisfied. The arity of a CSP
is the maximum number of variables in any constraint.

To illustrate how constraint satisfaction can be used consider the following subsumption prob-
lem where the clause isCl and the example is Ex:

Cl : p(X0,X1),q(X0,X2,X3),r(X0),
Ex : p(a0,a1), p(a1,a2),q(a0,a2,a3),q(a0,a1,a3),r(a0).

This problem can be trivially transformed into a CSP problem such that:

• The set of variables V is equivalent to the set of variables ofCl; {X0,X1, X2, X3};

• All domains are the same and are equivalent to the set of objects in Ex, D= {a0,a1,a2, a3};

• Each literal li inCl is transformed into a constraintCi such that:

– the scope Si ofCi corresponds to the set of variables of li;
– the relation Ri ofCi includes all variable tuples from instances of li’s predicate in Ex.

Therefore, there are three constraints C1, C2 and C3 in our example, which respectively ac-
count for the literals r(X0), p(X0,X1) and q(X0,X2,X3), such that:

S1 = {X0} and R1 = {〈a0〉},
S2 = {X0,X1} and R2 = {〈a0,a1〉,〈a1,a2〉},
S3 = {X0,X2,X3} and R3 = {〈a0,a2,a3〉,〈a0,a1,a3〉}.

Thus, finding an assignment for all variables of this CSP which satisfy all the constraints, is
equivalent to finding a substitution θ such that Cθ⊆ Ex.

In order to distinguish this representation from others, this CSP is called the Primal representa-
tion.

Since an n-ary CSP can always be transformed into a binary CSP, that is, a CSP such that all
constraints involve at most 2 variables, most algorithms in CSP are restricted to binary CSPs. Thus,
in order to simplify the implementation of DJANGODUAL, a transformation named dualization was
used. To avoid confusion we call variables in the dual representation Δ-variables. Dualization
encapsulates each constraint of the primal CSP into a Δ-variable, and a constraint is added in the
dual CSP between each pair of Δ-variables which shares at least one variable.

Therefore, the problem of the previous example is transformed into a dual CSP, where:

• Each literal l in C gives rise to a dual variable Δl . Therefore, V = {Δr,Δp,Δq}. If more than
one literal has the same predicate symbol p, Δ-variables are denoted {Δp.1,Δp.2, . . . ,Δp.n}.

• Each domain of a Δ-variable Δl is equivalent to the set of literals in Ex with the same pred-
icate symbol as l, dom(Δr) = {r(a0)}, dom(Δp) = {p(a0,a1), p(a1,a2)} and dom(Δq) =
{q(a0,a2,a3),q(a0, a1, a3)}.

• A constraint is created for each pair of literals which share at least one variable in C . The
relation Ri contains all pairs of literals in Ex in which the corresponding primal variables are
given the same values (so they are compatible). Since X0 is shared by all the literals, there are
three constraintsC1,C2 andC3 in our example, where:
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S1 = {Δr,Δp}, R1 = {〈r(a0), p(a0,a1)〉},
S2 = {Δr,Δq}, R2 = {〈r(a0),q(a0,a2,a3)〉,〈r(a0),q(a0,a1, a3)〉},
S3 = {Δp,Δq}, R3 = {〈p(a0,a1),q(a0,a2,a3)〉,〈p(a0,a1),q(a0,a1,a3)〉}.

In the particular case of multiple occurrences of a variable in the same literal, a unary constraint
is created in order to check that all literals in the domain also have the same term in corresponding
positions.

Dualization performs n×(n−1)
2 comparisons of literals, where n is the number of literals in C .

Each comparison of literals involves a2 tests of equivalence between variables, where a is the max-
imal arity of the predicates. Thus, building a dual CSP from a clause is obviously a polynomial
transformation. It does however incur an overhead before starting to solve the subsumption problem
and can represent an important part of the execution time in case of easy instances of subsumption
problems.

It has been shown (Chen, 2000) that polynomially solvable instances of Primal CSPs may re-
quire exponential time in the Dual representation, and vice versa. The system of Maloberti and Se-
bag (2004) uses the dual representation and we therefore refer to it as DJANGODUAL. LOGAN-H
includes both options and in particular we have implemented a new solver using the primal repre-
sentation, which we call DJANGOPRIMAL. Despite the different representations, both versions use
a similar method to solve the subsumption problem, using arc-consistency and following with depth
first search with dynamic variable ordering. However, due to the fact that the primal representation
has non binary constraints, simpler heuristics are used in DJANGOPRIMAL. Some implementation
details and the differences between the two methods are described in the appendix.

4.4 Discussion of Subsumption Methods

The main difference between the table based method and the DJANGO methods is that all substi-
tutions are calculated simultaneously in the table method and by backtracking search in DJANGO.
This has major implications for run time. In cases where the tables are applicable and where the
intermediate tables are small the tables can save a substantial amount of overhead. On the other
hand the tables can get too large to handle. Even when tables are of moderate size, memory copy-
ing operations when handling joins can be costly so we are introducing another overhead. Within
LOGAN-H the backtracking approach can benefit when we have many substitutions of which only
a few are needed to remove all consequents from a clause set.

Di Mauro et al. (2003) have previously introduced a table based method for subsumption tests
(although our system was developed independently). The main difference between the two ap-
proaches is that their method tries to optimize space by compressing table entries. Essentially, their
tables try to compress multiple substitutions into a single line. This can be done whenever variables
have independent constraints. Therefore, one may expect their method to do better in terms of space
when tables are large, but possibly at the cost of run time to compress and decompress the substi-
tutions. In contrast, our randomized method attempts to save both time and space but this is at the
cost of completeness.

The table-based subsumption method incorporates aspects from both the primal and dual repre-
sentation of DJANGO. The way partial substitutions are represented as tables is similar to the dual
variables and the method can be seen as reducing the number of dual variables through the join
operations. The test that guarantees that each variable has at least one potential value to match is
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related to arc-consistency in the primal representation since it works by reducing domains of primal
variables. On the other hand the arc-consistency improvement is done over the tables, that is in the
dual representation.

Finally, calculating the dual form representation of the subsumption problem incurs some over-
head that can be noticeable if the subsumption problems themselves are quickly solved. Since in
LOGAN-H we have many subsumption tests with the same example or the same clause these can
be avoided with additional caching. This gives a substantial improvement for the overall run time
of LOGAN-H when using DJANGODUAL.

Other systems have developed different methods to reduce the computational cost of subsump-
tion tests. Blockeel et al. (2000) and Blockeel et al. (2002) propose the use of query packs. Query
packs make the evaluation of a set of hypotheses against a clause more efficient. A query-pack
structures a set of hypotheses in a tree where each node is a set of literals, hypotheses with com-
mon parts have a common path to the root. Therefore, common parts are evaluated only once for
all the hypotheses instead of once for each hypothesis. The query-packs can drastically improve
performance, particularly with top-down algorithms, since they usually create new hypotheses by
adding new literals to a candidate hypothesis, which is therefore common to all new hypotheses.
Santos Costa et al. (2003) propose the combined use of several transformations based on additional
information on the variable types to speed up subsumption. This additional information allows to
recursively decompose the clause into independent parts up to the instantiation of “grounded vari-
ables”. These techniques are orthogonal to ours so that it may be possible to incorporate them for
further performance improvement.

5. Experimental Evaluation

The ideas described above have been implemented in two different systems. The first one, ini-
tially reported in Khardon (2000), implements the interactive and batch algorithms in the Prolog
language but does not include discretization, pruning or special subsumption engines. The second
implementation, recently reported in Arias and Khardon (2004), was done using the C language and
implements only the batch algorithm but otherwise includes all the techniques described above.

In this section we describe several experiments using the system and its subsumption engines.
The experiments are designed to test and demonstrate several issues. First, they exemplify the scope
and type of applications that may be appropriate. Second, they demonstrate that LOGAN-H can
give state of the art performance on relational learning problems, and that it results in very strong
hypotheses when the data has some similarity to being “complete” in the sense discussed above.
Third, the experiments evaluate the contribution of different speedup techniques in the system.
Fourth, the experiments evaluate the performance of different subsumption engines both within the
learning system and independently.

The experiments are as follows. We first illustrate the scope and limitation of interactive algo-
rithm on the task of learning complex list manipulation programs. We then discuss a toy grammar
learning problem showing that the batch algorithm can be applied to this potentially hard problem
using carefully selected data. We then describe a set of quantitative experiments in three bench-
mark ILP domains: the Bongard domain (De Raedt and Van Laer, 1995), the KRK-illegal domain
(Quinlan, 1990), and the Mutagenesis domain (Srinivasan et al., 1994). The experiments illustrate
applicability in terms of scalability and accuracy of the learned hypotheses as well as providing a
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comparison with other systems. They also demonstrate that different subsumption engines may lead
to faster execution in different problems.

We also compare the subsumption methods in an experiment based on the Phase Transition phe-
nomenon similar to the experiments performed by Maloberti and Sebag (2004). These experiments
show that DJANGOPRIMAL is very effective and may perform better than the other two approaches
if hard subsumption problems around the phase transition region need to be solved.

5.1 Experiments with LOGAN-H

This section describes our experiments with LOGAN-H in the 5 domains as outlined above.

5.1.1 LEARNING LIST MANIPULATION PROGRAMS

To facilitate experiments using the interactive mode, we have implemented an “automatic-user
mode” where (another part of) the system is told the expression to be learned (the target T ). The
algorithm’s questions are answered automatically using T . Since implication for function-free Horn
expressions is decidable this can be done reliably. In particular, Lemma 13 in Khardon (1999b) pro-
vides an algorithm that can test implication and construct counter-examples to equivalence queries.
Membership queries can be evaluated on T . We note that this setup is generous to our system
since counter-examples produced by the implemented “automatic user mode” are in some sense the
smallest possible counter-examples.

Using this mode we ran the interactive algorithm to learn a 15-clause program including a
collection of standard list manipulation procedures. The program includes: 2 clauses defining
list(L), 2 clauses defining member(I,L), 2 clauses defining append(L1,L2,L3), 2 clauses defin-
ing reverse(L1,L2), 3 clauses defining delete(L1, I,L2), 3 clauses defining replace(L1, I1, I2,L2),
and 1 clause defining insert(L1, I,L2) (via delete() and cons()). The definitions have been appropri-
ately flattened so as to use function free expressions. All these clauses for all predicates are learned
simultaneously. The Prolog system required 35 equivalence queries, 455 membership queries and
about 8 minutes (running Sicstus Prolog on a Linux platform using a Pentium 2/366MHz processor)
to recover the set of clauses exactly.5 This result is interesting since it shows that one can learn a
complex program defining multiple predicates in interactive mode with a moderate number of ques-
tions. However, the number of questions is probably too large for a program development setting
where a human will answer the questions. It would be interesting to explore the scope for such use
in a real setting.

5.1.2 A TOY GRAMMAR LEARNING PROBLEM

Consider the problem of learning a grammar for English from examples of parsed sentences. In
principle, this can be done by learning a Prolog parsing program. In order to test this idea we
generated examples for the following grammar, which is a small modification of one described by
Pereira and Shieber (1987).

s(H2,P0,P) :- np(H1,P0,P1),vp(H2,P1,P),number(H1,X),number(H2,X).
np(H,P0,P) :- det(HD,P0,P1),n(H,P1, P),number(HD,X),number(H,X).
np(H,P0,P) :- det(HD,P0,P1),n(H,P1, P2),rel(H2,P2,P),number(H,X),

5. This formalization is not range-restricted so we did not use the restriction to live pairings given in the appendix.
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number(H2,X),number(HD,X).
np(H,P0,P) :- pn(H,P0,P).
vp(H,P0,P) :- tv(H,P0,P1),np(_,P1,P).
vp(H,P0,P) :- iv(H,P0,P).
rel(H,P0,P) :- relw(_,P0,P1),vp(H,P1,P,L1).

Note that the program corresponds to a chart parser where we identify a “location parameter”
at beginning and end of a sentence as well as between every two words, and true atoms correspond
to edges in the chart parse. Atoms also carry “head” information for each phrase and this is used to
decide on number agreement. The grammar allows for recursive sub-phrases. A positive example
for this program is a sentence together with its chart parse, that is, all atoms that are true for this sen-
tence. The base relations identifying properties of words, det(),n(), pn(), iv(), tv(),relw(),number(),
are assumed to be readable from a database or simply listed in the examples.

We note that the grammar learning problem as formalized here is interesting only if external
properties such as number() are used. Otherwise, one can read-off the grammar rules from the
structure of the parse tree. It is precisely because such information is important for the grammar but
normally not supplied in parsed corpora that this setup may be useful. Of course, it is not always
known which properties are the ones crucial for correctness of the rules as this implies that the
grammar is fully specified. In order to model this aspect in our toy problem we included all the
relations above and in addition a spurious property of words confprop() (for “confuse property”)
whose values were selected arbitrarily. For example a chart parse of the sentence “sara writes a
program that runs” is represented using the positive example:

([sara,writes,a,program,that,runs,alpha,beta,singular,0,1,2,3,4,5,6],
[s(writes,0,4), s(writes,0,6),
np(sara,0,1), np(program,2,4), np(program,2,6),
vp(writes,1,4), vp(runs,5,6), vp(writes,1,6),
rel(runs,4,6), pn(sara,0,1), n(program,3,4), iv(runs,5,6),
tv(writes,1,2), det(a,2,3), relw(that,4,5),
number(runs,singular), number(program,singular), number(a,singular),
number(writes,singular), number(sara,singular),
confprop(runs,beta), confprop(program,alpha),
confprop(writes,beta),confprop(sara,alpha)

]).

Note that one can generate negative examples from the above by removing implied atoms of
s(),np(),vp(),rel() from the interpretation. It may be worth emphasizing here that negative ex-
amples are not non-grammatical sentences but rather partially parsed strings. Similarly, a non-
grammatical sequence of words can contribute a positive example if all parse information for it is
included. For example “joe joe” can contribute the positive example

([joe,0,1,2,alpha,singular],
[pn(joe,0,1), pn(joe,1,2), np(joe,0,1), np(joe,1,2),
number(joe,singular),confprop(joe,alpha)

]).

or a negative one such as
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([joe,0,1,2,alpha,singular],
[pn(joe,0,1), pn(joe,1,2), np(joe,0,1),
number(joe,singular),confprop(joe,alpha)

]).

A simple analysis of the learning algorithm and problem setup shows that we must use non-
grammatical sentences as well as grammatical ones and we have done this in the experiments. For
example, if all examples have agreement in number, the algorithm has no way of finding out whether
the number() atoms in an example can be dropped or not since nothing would contradict dropping
them.

A final issue to consider is that for the batch algorithm to work correctly we need to include
positive sub-structures in the data set. While it is not possible to take all sub-structures we approx-
imated this by taking all continuous substrings. Given a sentence with k words, we generated from
it all O(k2) substrings, and from each we generated positive and negative examples as described
above.

We ran two experiments with this setup. In the first we hand picked 11 grammatical sentences
and 8 non-grammatical ones that “exercise” all rules in the grammar. With the arrangement above
this produced 133 positive examples and 351 negative examples. The batch algorithm recovered an
exact copy of the grammar, making 12 equivalence queries and 88 calls to one-pass.

In the second experiment we produced all grammatical sentences with “limited depth” restrict-
ing arguments of tv() to be pn() and allowing only iv() in relative clauses. This was done simply
in order to restrict the number of sentences, resulting in 120 sentences and 386 sub-sentences. We
generated 614 additional random strings to get 1000 base strings. These together generated 1000
positive examples and 2397 negative examples. With this setup the batch algorithm found a hypoth-
esis consistent with all the examples, using 12 equivalence queries and 81 calls to one-pass. The
hypothesis included all correct grammar rules plus 2 wrong rules. This is interesting as it shows
that, although some examples are covered by wrong rules, other examples reintroduced seeds for
the correct rules and then succeeded in recovering the rules.

The experiments demonstrate that it is possible to apply our algorithms to problems of this type
even though the setup and source of examples is not clear from the outset. They also show that it
may be possible to apply our system (or other ILP systems) to some NLP problems but that data
preparation will be an important issue in such an application.

5.1.3 BONGARD PROBLEMS

The Bongard domain is an artificial domain that was introduced with the ICL system (De Raedt
and Van Laer, 1995) to test systems that learn from interpretations. In this domain an example is a
“picture” composed of objects of various shapes (triangle, circle or square), triangles have a config-
uration (up or down) and each object has a color (black or white). Each picture has several objects
(the number is not fixed) and some objects are inside other objects. For our experiments we gen-
erated random examples, where each parameter in each example was chosen uniformly at random.
In particular we used between 2 and 6 objects, the shape color and configuration were chosen uni-
formly at random, and each object is inside some other object with probability 0.5 where the target
was chosen uniformly at random among “previous” objects to avoid cycles. Note that since we use
a function free representation the domain size in examples is larger than the number of objects (to
include: up, down, black, white). As in the previous experiment, this mode of data generation has
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Target Clauses Atoms Variables
I 2 4 2
II 2 6 4
III 2 9 6
IV 10 9 6

Table 4: Complexity of Targets.

System Target 200 500 1000 2000 3000 Majority Class
LOGAN-H I 99.7 100 100 100 100 64.4
LOGAN-H II 97.6 99.4 99.9 99.9 100 77.8
LOGAN-H III 90.8 97.2 99.3 99.9 99.9 90.2
LOGAN-H IV 85.9 92.8 96.8 98.4 98.9 84.7
ICL IV 85.2 88.6 89.1 90.2 90.9 84.7

Table 5: Performance summary in average percentage accuracy.

some similarity to the “closure” property of data sets that guarantees good performance with our
algorithm.

In order to label examples we arbitrarily picked 4 target Horn expressions of various complex-
ities. Table 4 gives an indication of target complexities. The first 3 targets have 2 clauses each but
vary in the number of atoms in the antecedent and the fourth one has 10 clauses of the larger kind
making the problem more challenging. The numbers of atoms and variables are meant as a rough
indication as they vary slightly between clauses. To illustrate the complexity of the targets, one of
the clauses in target IV is

circle(X) in(X ,Y ) in(Y,Z) color(Y,B)
color(Z,W ) black(B) white(W ) in(Z,U) → triangle(Y )

We ran the batch algorithm on several sample sizes. Table 5 summarizes the accuracy of learned
expressions as a function of the size of the training set (200 to 3000) when tested on classifying an
independent set of 3000 examples. Each entry is an average of 10 independent runs where a fresh
set of random examples is used in each run. The last column in the table gives the majority class
percentage.

Clearly, the algorithm is performing very well on this problem setup. Note that the baseline is
quite high, but even in terms of relative error the performance is good. We also see a reasonable
learning curve obtained for the more challenging problems. Notice that for target I the task is not
too hard since it is not unlikely that we get a random example matching the antecedent of a rule
exactly (so that discovering the clause is easy) but for the larger targets this is not the case. We have
also run experiments with up to 10 shapes per example with similar performance.

To put these experiments in perspective we applied the systems ICL (De Raedt and Van Laer,
1995) and Tilde (Blockeel and De Raedt, 1998) to the same data. Exploratory experiments suggested
that ICL performs better on these targets so we focus on ICL. We ran ICL to learn a Horn CNF and
otherwise with default parameters. ICL uses a scheme of declarative bias to restrict its search space.

570



LEARNING HORN EXPRESSIONS WITH LOGAN-H

With a general pattern implying little bias, success was limited. We thus used a bias allowing up to
4 shapes and identifying the relation between con f ig and up, down and similarly color and black,
white. Interestingly, for ICL the change in performance from target I to IV was less drastic than
in LOGAN-H. This may well be due to the fact that LOGAN-H builds antecedents directly from
examples. The last line in Table 5 gives the performance of ICL on target IV. As can be seen our
system performs better than ICL on this problem.

We ran the Prolog implementation (using compiled code in Sicstus Prolog) and the new C
implementation on the same hardware and observed a speedup of over 400-fold when using the
tables method or DJANGODUAL and a speedup of 320 when using DJANGOPRIMAL. Recall that
the number of objects in the examples is relatively small for this experiment. For larger examples
as in the experiments that follow the improvement is even more dramatic as the Prolog code cannot
complete a run and the C code is still pretty fast.

5.1.4 ILLEGAL POSITIONS IN CHESS

Our next experiment is in the domain of the chess endgame White King and Rook vs. Black King.
The task is to predict whether a given board configuration represented by the 6 coordinates of the
three chess pieces is illegal or not. This learning problem has been studied by several authors
(Muggleton et al., 1989; Quinlan, 1990). The data set includes a training set of 10000 examples and
a test set of the same size.

We use the predicate position(a,b,c,d,e,f) to denote that the White King is in position
(a,b) on the chess board, the White Rook is in position (c,d), and the Black King in position (e,f).
Additionally, the predicates “less-than” lt(x,y) and “adjacent” adj(x,y) denote the relative po-
sitions of rows and columns on the board. Note that there is an interesting question as how best
to capture examples in interpretations. In “all background mode” we include all lt and adj predi-
cates in the interpretation. In the “relevant background mode” we only include those atoms directly
relating objects appearing in the position atom.

We illustrate the difference with the following example. Consider the configuration “White
King is in position (7,6), White Rook is in position (5,0), Black King is in position (4,1)” which is
illegal. In “all background mode” we use the following interpretation:
[position(7, 6, 5, 0, 4, 1),
lt(0,1), lt(0,2), .. ,lt(0,7),
lt(1,2), lt(1,3), .. ,lt(1,7),
...
lt(5,6),lt(5,7),
lt(6,7),
adj(0,1),adj(1,2), .. ,adj(6,7),
adj(7,6),adj(6,5), .. ,adj(1,0)]-

When considering the “relevant background mode”, we include in the examples instantiations
of lt and adj whose arguments appear in the position atom directly:
[position(7, 6, 5, 0, 4, 1),
lt(4,5),lt(4,7),lt(5,7),adj(4,5),adj(5,4),
lt(0,1),lt(0,6),lt(1,6),adj(0,1),adj(1,0)]-

Table 6 includes results of running our system in both modes. We trained LOGAN-H on samples
with various sizes chosen randomly among the 10000 available. We report accuracies that result
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25 50 75 100 200 500 1000 2000 3000
Relevant background mode:
LOGAN-H before pruning 75.49 88.43 93.01 94.08 97.18 99.54 99.79 99.92 99.96
LOGAN-H after pruning 86.52 90.92 94.19 95.52 98.41 99.65 99.79 99.87 99.96
All background mode:
LOGAN-H before pruning 67.18 71.08 75.71 78.94 85.56 94.06 98.10 99.38 99.56
LOGAN-H after pruning 79.01 81.65 83.17 82.82 86.02 93.67 96.24 98.10 98.66
FOIL (Quinlan, 1990) 92.50 99.40

Table 6: Performance summary for KRK-illegal data set in average percentage accuracy

Subsumption Engine runtime in s. accuracy actual table size
DJANGODUAL 40.27 98.10% n/a
DJANGOPRIMAL 78.74 98.10% n/a
Tables 136.43 98.10% 130928
Tables ARC Consistency 92.47 98.10% 109760
Lookahead 191.50 98.10% 33530
No cache 503.92 98.10% 130928
Rand. TH=1 3804.52 33.61% 16
Rand. TH=10 178.69 33.61% 160
Rand. TH=100 58.41 72.04% 1600
Rand. TH=1000 126.48 98.10% 16000

Table 7: Runtime comparison for subsumption tests on KRK-illegal data set

from averaging among 10 runs over an independent test set of 10000 examples. Results are reported
before and after pruning where pruning is done using the training set (as discussed in the appendix).
Several facts can be observed in the table. First, we get good learning curves with accuracies
improving with training set size. Second, the results obtained are competitive with results reported
for FOIL (Quinlan, 1990). Third, relevant background knowledge seems to make the task easier.
Fourth, pruning considerably improves performance on this data set especially for small training
sets.

This domain is also a good case to illustrate the various subsumption tests in our system. Note
that since we put the position predicate in the antecedent, the consequent is nullary so iterative
subsumption tests are likely to be faster. The comparison is given for the “all background mode”
with 1000 training examples. Table 7 gives accuracy and run time (on Linux running with Pentium
IV 2.80 GHz) for various subsumption settings averaged over 10 independent runs. For randomized
runs TH is the threshold of table size after which sampling is used. As can be seen DJANGODUAL is
faster than DJANGOPRIMAL in this domain and both are faster than the tables method. Adding arc-
consistency to the tables method improves both space requirements and run time. The lookahead
table method incurs some overhead and results in slower execution on this domain, however it
saves space considerably (see third column of Table 7). The caching mechanism described in the
appendix gives a significant reduction in run time. Running the randomized test with very small
tables (TH=1) clearly leads to overfitting, and in this case increases run time considerably mainly
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Method Avg. accuracy
Equal Frequency best split

atom-charge=25 lumo=8 logp=30 89.41%
Equal Frequency automatic selection 83.62%

Information Gain 82.25%

Table 8: Accuracy results on the Mutagenesis domain.

due do the large number of rules induced. On the other hand with larger table sizes (TH=1000) the
randomized method does very well and reproduces the deterministic results.

5.1.5 MUTAGENESIS

The Mutagenesis data set is a structure-activity prediction task for molecules introduced by Srini-
vasan et al. (1994). The data set consists of 188 compounds, labeled as active or inactive depending
on their level of mutagenic activity. The task is to predict whether a given molecule is active or
not based on the first-order description of the molecule. This data set has been partitioned into
10 subsets for 10-fold cross validation estimates and has been used in this form in many studies
(Srinivasan et al., 1994; Sebag and Rouveirol, 2000; De Raedt and Van Laer, 1995). For the sake of
comparison we use the same partitions as well. Each example is represented as a set of first-order
atoms that reflect the atom-bond relations of the compounds as well as some interesting global nu-
merical chemical properties and some elementary chemical concepts such as aromatic rings, nitro
groups, etc. Concretely, we use all the information corresponding to the background level B3 of
Srinivasan et al. (1995). Notice that the original data is given in the normal ILP setting and hence
we transformed it according to the interpretations setting as explained in the appendix. In addition,
since constants are meaningful in this data set, for example whether an atom is a carbon or oxygen,
we use a flattened version of the data where we add a predicate for each such constant.

This example representation uses continuous attributes: atom-charge, lumo and logp and
hence discretization is needed. We report on experiments with the equal frequencymethod (Dougherty
et al., 1995) and the information gain (IG) method (Fayyad and Irani, 1993) which are discussed
in more detail in the appendix. The IG method decides on the number of bins automatically. The
equal frequency method requires the number of bins as input. To get reliable results we used double
cross validation performing automatic parameter selection over the following range of value: for
atom-charge {5,15,25,35,45} for lumo {4,6,8,10,20,30,80} and for logp {4,6,8,10,30,50}.
For reference we also report the best result that can be obtained in hindsight by searching for good
partitions using the test set.

Table 8 summarizes some of the accuracies obtained. As can be seen the overoptimistic “best”
results give pretty high accuracy. The automatic selection methods perform quite well giving
83.62% and the IG method comes close with 82.25%.

Our result compares well to other ILP systems: Progol (Srinivasan et al., 1994) reports a total
accuracy of 83% with B3 and 88% with B4; STILL (Sebag and Rouveirol, 2000) reports results in
the range 85%–88% on B3 depending on the values of various tuning parameters, ICL (De Raedt
and Van Laer, 1995) reports an accuracy of 84% and finally Laer et al. (1996) report that FOIL
(Quinlan, 1990) achieves an accuracy of 83%.
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Subsumption Engine runtime accuracy
DJANGODUAL 3.48 sec. 89.41%
DJANGOPRIMAL 0.82 sec. 89.41%
Rand. TH=1 R=1 0.74 sec. 88.88%
Rand. TH=10 R=1 0.93 sec. 90.46%
Rand. TH=100 R=1 3.01 sec. 90.46%
Rand. TH=1 R=10 0.91 sec. 90.46%
Rand. TH=1 R=100 2.92 sec. 89.93%
Rand. TH=10 R=100 9219.68 sec. 89.93%

Table 9: Runtime comparison for subsumption tests on Mutagenesis data set.

We have also run experiments comparing run time with the different subsumption engines. For
this domain, deterministic table-based subsumption was not possible, not even with lookahead and
arc-consistency since the table size grew beyond memory capacity of our computer. However, both
modes of DJANGO are very efficient on this domain. For these runs we used the equal frequency
discretization method with atom-charge= 25, lumo= 8 and logp= 30 that gave top-scoring accu-
racy as described above. Table 9 gives average run time (on Linux running with a 2.80 GHz Xeon
processor) per fold as well as the average accuracy obtained. One can observe that DJANGOPRIMAL
is faster than DJANGODUAL and that even with small parameters the randomized methods do very
well. An inspection of the hypothesis to the deterministic runs shows that they are very similar.

5.2 Subsumption and Phase Transition

The previous experiments have demonstrated that different subsumption engines may lead to faster
performance in different domains. In this section we further compare the different algorithms but
purely on subsumption problems, that is, not in the context of learning. Previous work (Giordana
and Saitta, 2000) has shown that one can parameterize subsumption problems so that there is a sharp
transition between regions where most problems have a solution and regions where most problems
do not have a solution. This is known as the phase transition phenomenon, and it has been used
to evaluate subsumption and learning algorithms (Giordana and Saitta, 2000; Giordana et al., 2003;
Maloberti and Sebag, 2004).

For these experiments, a set of clauses and a set of examples are generated using four parame-
ters:

n The number of variables in each clause, which is set to 12;

m The number of literals in each clause, which varies in [12,50];

N The number of literals built on each predicate symbol in each example, that is, the size of
each domain in dual representation, which is set to 50;

L The number of constants in each example, that is, the size of each domain in primal represen-
tation, which varies in [12,50].
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Figure 2: Percentage of subsumption tests satisfied on 50× 50 pairs (C ,Ex), where C is a clause
uniformly generated with n = 12 variables and m literals (m in [12,50]), and Ex is an
example uniformly generated with N = 50 literals built on each one of the m predicate
symbols in C , and L constants (L in [12,50]).

All m literals in a generated clause C are built on distinct binary predicate symbols and clause
C is connected, that is, all n variables are linked. The latter requirement prevents the subsumption
problem from being decomposable into simpler problems.

Each generated example Ex is a conjunction of ground literals. Each literal in Ex is built on
a predicate symbol occurring in C (other literals are irrelevant to the subsumption problem). The
number of literals in Ex per predicate symbol, N, is constant, thus all domains of the literals of C
have the same size, and each example contains N×m literals. For each pair of values of 〈m,L〉, 50
clauses and 50 examples are generated, each clause is tested against all examples. Run times are
measured on an Athlon 900 MHz with 512MB of memory.6

As shown in Figure 2, the probability for C to subsume Ex abruptly drops from 100% to 0%
in a very narrow region. This region is called Phase Transition, and is particularly important for
the subsumption problem, since computationally hard problems are located in this region. This
phenomenon can be observed in Figure 3 (A) representing the average computational costs for
DJANGODUAL. Figure 3 (B) shows the average execution times for DJANGOPRIMAL. The Phase

6. The experiments performed here are slightly different from the ones in Maloberti and Sebag (2004). First, the
computational cost of the transformation to the dual representation is also measured here. This is important in the
context of a system that dynamically builds clauses and tests subsumption for them. Although the cost of dualization
is generally moderate, it can be significant in some experiments so it must be included in the execution time. Second,
settings used in former experiments were: N = 100, n= 10, L and m in [10,50]. In the dual representation, the worst
case complexity is Nm, while in primal representation it is Ln. Therefore, N = 100 is too large compared to L, and
n= 10 is too small compared to m. It is difficult to change these settings because a slight variation can shift the phase
transition to be outside of reasonable ranges of values. Thus, we reduced N to 50 and adjusted n to 12. L and m
have been set to [12,50] in order to keep the property of non-decomposability of C . Finally, in Maloberti and Sebag
(2004), 100 clauses and 100 examples were generated, each clause was tested against one example.
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(A) (B)

Figure 3: Subsumption cost(m,L) in seconds for (A) DJANGODUAL and (B) DJANGOPRIMAL av-
eraged over 50×50 pairs (C ,Ex). A reduction in running time of a factor of 7 is observed
in DJANGOPRIMAL compared to Meta-DJANGO (notice difference in scale of the time
axis).

Transition phenomenon is also apparent, however DJANGOPRIMAL is 7 times faster than DJANGO-
DUAL on average, despite the simpler versions of algorithms used in DJANGOPRIMAL.

The table based methods are less well suited for the problems in this test suite. The deterministic
table methods ran out of memory and could not be used. The randomized methods give a tradeoff
between run time and accuracy but they perform worse than DJANGO.

For example, the randomized tables method with TH= 1 and R= 1 is very fast with an average
execution time between 0.37s and 0.54s. However, almost no solution can be found, even in the
region of the test with a very high satisfiability. Therefore, as shown in Figure 4 (A), its error rate is
close the percentage of satisfiability.

As shown in Figure 5 (A), the randomized tables method with TH= 10 and R= 10 is slower than
DJANGO, and its average cost does not rely on the phase transition. On the other hand, Figure 5 (B)
shows that its error rate is very high in the phase transition region, while it is now very low in the
region with high satisfiability.

Finally, it is worth recalling the table method of Di Mauro et al. (2003) and the experimental
results reported for it in Di Mauro et al. (2003) and Maloberti and Suzuki (2004) for simple sub-
sumption as well as for enumerating all solutions. Both papers report that the table method does
solve the challenge problems, so indeed it avoids some of the space problems incurred with our
deterministic version. But both papers indicate that DJANGO is at least an order of magnitude faster
and often much more, where the relation in run times depend on whether the problems are in the
phase transition, over constrained region or under constrained region. These observations seem to
agree with our comparisons of the table based and DJANGO methods.

To summarize, the subsumption experiments suggest that in general the DJANGO methods are
more robust than the table based methods and that DJANGOPRIMAL is a promising alternative.
However, these results must be interpreted with caution, since in these experiments the tables meth-
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(A) (B)

Figure 4: (A) Percentage of wrong subsumption tests for randomized tables method on 50×50 pairs
(C ,Ex), with TH= 1 and R= 1. (B) Percentage of satisfiable subsumption tests. Notice
that the table based method with such low valued parameters is not able to discover any
subsumption substitution, and hence the error rate corresponds to the satisfiability rate of
the subsumption problem suite.

(A) (B)

Figure 5: (A) Subsumption cost(m,L) and (B) error percentage for randomized tables method with
TH= 10 and R= 10 averaged over 50×50 pairs (C ,Ex).

ods look for all solutions while DJANGOPRIMAL and DJANGO only search for a single solution.
Moreover, the settings chosen are probably better for the primal representation and other parame-
ters, such as arity of literals, must also be investigated. In the context of LOGAN-H, the success
of the table methods may be explained by the fact that the algorithm starts with long clauses and
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makes them shorter in the process. Thus it starts in the over constrained region and moves toward
the phase transition and then possibly the under constrained region. Since tables perform well in the
over constrained region and boundary to the phase transition they can do well overall. DJANGOPRI-
MAL was also faster in some of the experiments with LOGAN-H. Therefore, further optimization
of DJANGOPRIMAL and adding randomized facilities to DJANGO are natural directions to improve
the system.

6. Conclusion

The paper introduced the system LOGAN-H implementing new algorithms for learning function
free Horn expressions. The system is based on algorithms proved correct in Khardon (1999b) but
includes various improvements in terms of efficiency as well as a new batch algorithm that learns
from examples only. The batch algorithm can be seen as performing a refinement search over multi-
clause hypotheses. The main difference from other systems is that our algorithm is using a bottom up
search and that it is using large refinement steps in this process. We demonstrated through qualitative
and quantitative experiments that the system performs well in several benchmark ILP tasks. Thus
our system gives competitive performance on a range of tasks while taking a completely different
algorithmic approach, a property that is attractive when exploring new problems and applications.

The paper also introduced new algorithms for solving the subsumption problem and evaluated
their performance. The table based methods give competitive performance within LOGAN-H and
DJANGOPRIMAL is a promising new approach where hard subsumption problems in the phase
transition region are solved.

As illustrated using the Bongard domain, LOGAN-H is particularly well suited to domains
where sub-structures of examples in the data set are likely to be in the data set as well. On the
other hand, for problems with a small number of examples where each example has a large number
of objects and dramatically different structure our system is likely to overfit since there is little
evidence for useful minimization steps. Indeed we found this to be the case for the the artificial
challenge problems of Giordana et al. (2003) where our system outputs a large number of rules
and gets low accuracy. This suggests that skipping the minimization step may lead to improved
performance in such cases if pairings reduce clause size considerably. Initial experiments with this
are as yet inconclusive.

Our system demonstrates that using large refinement steps with a bottom up search can be
an effective inference method. As discussed above, bottom up search suffers from two aspects:
subsumption tests are more costly than in top down approaches, and overfitting may occur in small
data sets with large examples. On the other hand, it is not clear how large refinement steps or
insights gained by using LGG can be used in a top down system. One interesting idea in this
direction is given in the system of Bianchetti et al. (2002). Here repeated pairing-like operations are
performed without evaluating the accuracy until a syntactic condition is met (this is specialized for
the challenge problems of Giordana et al. (2003)) to produce a short clause. This clause is then used
as a seed for a small step refinement search that evaluates clauses as usual. Finding similar ideas
that work without using special properties of the domain is an interesting direction for future work.

Finally, it would be interesting to explore real world applications of the interactive algorithm.
The work on the robot scientist project (King et al., 2004) provides one such possibility. This work
uses a chemistry lab robot to perform experiments on assays to aid in the process of learning. The
lab experiments are very similar to the membership queries used by our algorithm, however queries
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may be limited to chemicals that can be synthesized by the system. Thus such an application will
require adapting our algorithm to use only appropriate queries.
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Appendix A. Further Details on Implementation and Applicability

The appendix gives additional details on important implementation issues leading to speedup and
wider applicability of the system. In addition we give a discussion of using our learning from
interpretations system on data given in the normal ILP setting.

A.1 Noisy Data Sets

Many real life data sets are “noisy”, in the sense that there is no Horn expression hypothesis that is
consistent with all the data. In this case the batch algorithm described above is not well defined since
it assumes in step 2(b) that at least one potential consequent is correct and is therefore not removed
in one-pass. However, if the data set is inconsistent it is possible that all potential consequents are
removed. If this happens our system simply marks the counter-example as inconsistent and ignores
it in future tests.

A related problem occurs when we use randomized subsumption tests. Here since the subsump-
tion test is incomplete we may not notice that a rule in the hypothesis is violated by a negative
example. As a result the algorithm may see the same negative counter-example multiple times.
Note that since pairings move atoms from antecedent to conclusion the same counter-example may
be encountered more than once even under normal conditions. To handle this, the system uses a
small constant (5 in the experiments) to bound the number of times an example may be used as a
counter-example. If this bound is exceeded the negative example is ignored in future tests.

A.2 Caching

The algorithms described above may produce repeated calls to one-pass with the same antecedent
since pairings of one clause set with several others may result in the same clause set. Thus it makes
sense to cache the results of one-pass. Notice that there is a tradeoff in the choice of what to cache.
If we try to cache a universally quantified expression then matching it requires a subsumption test
which is expensive. We therefore opted to cache a ground syntactic version of the clause. For both
algorithms the system caches interpretations rather than clauses or clause sets (the s part of [s,c]).
In fact, for the batch algorithm we only need to cache positive interpretations—if a clause set [s, /0]
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was returned by one-pass then s does not imply any of the possible consequents and therefore it
is a positive interpretation. Thus any new call to one-pass with s can be skipped. To achieve fast
caching while increasing the chances of cache hits, the system caches and compares a normalized
representation of the interpretation by sorting predicate and atom names. This is matched with the
fact that pairing keeps object names of existing clause sets in the hypothesis. Thus the same object
names and ordering of these are likely to cause cache hits. Caching can reduce or increase run time
of the system, depending on the data set, the cost for subsumption for examples in the data set, and
the rate of cache hits.

A.3 Live Pairings

The system also includes an optimization that reduces the number of pairings that are tested without
compromising correctness. Recall that the algorithm has to test all injective mappings between the
domains of two interpretations. We say that a mapping is live if every paired 2-object appears in
the extension of at least one atom in the antecedent of the pairing. One can show that if the target
expression is range restricted (that is, all variables in the consequent appear in the antecedent)
then testing live mappings is sufficient. For example, consider pairing the examples [sa,ca] =
[[p(1,2), p(2,3)], [q(2,2),q(3,1)]] and [sb,cb] = [[p(a,b), p(b,c), p(a,d)], [q(d,d),q(c,a)]]. Then
the mapping {1/a,2/b,3/c} gives the pairing [[p(1,2), p(2,3)], [q(3,1)]] which is live. On the
other hand the mapping {1/a,2/d,3/c} gives the pairing [[p(1,2)], [p(2,3),q(2,2),q(3,1)]] and
when forcing range restricted form we get [[p(1,2)], [q(2,2)]]. This pairing is not live since 3/c
does not appear in it. So, this pairing can be ignored. Technically, due to range restricted form, it is
enough to check this only on the antecedent part. For efficiency, instead of generating all injective
matchings and filtering irrelevant ones, one can first collect a set of potential matched objects-pairs
and generate matchings from these.

A.4 Discretization of Real-Valued Arguments

The system includes a capability for handling numerical data by means of discretization. This is
standard in machine learning systems but several aspects are peculiar to the relational setting and to
bottom up learning.

Notice first that unlike attribute-value data there may be more than one occurrence of the same
type of value in the same example, in different arguments of a predicate, different instances of the
same predicate or different predicates. To capture this we first divide the numerical attributes into
“logical groups” by annotating the data set. For example the rows of a chess board will belong to
the same group regardless of the predicate and argument in which they appear. The system can then
determine the threshold values and possibly the number of bins to divide values into. For exam-
ple, discretizing the logp attribute in the Mutagenesis domain with 4 thresholds (5 ranges), a value
between threshold 1 and threshold 2 will yield: [logp(logp val.02), logp val>00(logp val.02),
logp val>01(logp val.02), logp val<02(logp val.02), logp val<03(logp val.02), ...]. Notice
that we are using both ≥ and ≤ predicates so that the hypothesis can encode intervals of values.
Also, we use predicate names that explicitly encode thresholds numbers, for example, logp val>00
or logp val<02.

Several approaches to discretization choosing the number of bins and the boundaries have been
proposed in the literature (Fayyad and Irani, 1993; Dougherty et al., 1995; Blockeel and De Raedt,
1997). Our experiments use the following two approaches. The equal frequency approach requires
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the number of bins as input and it assigns the boundaries by giving each bin the same number of
occurrences of values. To select the number of bins automatically one must use some version of
cross validation. The Information Gain (IG) approach introduced by Fayyad and Irani (1993) uses
the information gain criterion to split the range of values using a decision tree (Quinlan, 1993) and
stops splitting using a minimum description length measure. For relational data the IG method must
be refined since more than one value of the same type may appear in the same example. This was
already addressed by Blockeel and De Raedt (1998) where values were weighted according to the
number of times they appear in the examples. However, Blockeel and De Raedt (1998) set the
number of bins by hand since IG provided too few regions. In our experiments we use the original
criterion.

An interesting aspect arises when using discretization which highlights the way our system
works and potential limitations. Recall that the system starts with an example and essentially
turns objects into variables in the maximally specific clause set. It then evaluates this clause on
other examples. Since we do not expect examples to be identical or very close, the above relies
on the universal quantification to allow matching one structure into another. However, the effect
of discretization is to ground the value of the discretized object. For example, if we discretized
the logp attribute from above and variabilize we get logp(X) logp val>00(X) logp val>01(X)
logp val<02(X) logp val<03(X). Thus unless we drop some of the boundary constraints this limits
matching examples to have a value in the same bin. We are therefore losing the power of universal
quantification. As a result fewer positive examples will match in the early stages of the minimization
process, less consequents will be removed, and the system may be led to overfitting by dropping
the wrong objects. Thus while including all possible boundaries gives maximum flexibility in the
hypothesis language this may not be desirable due to the danger of overfitting.

This point is illustrated by the following experiment discretizing values in the KRK domain.
In this domain given an example’s predicate position(x1,x2,y1,y2,z1,z2), we consider the
three values corresponding to columns (x1,y1,z1) as the same logical attribute and therefore we
discretize them together. Similarly, we discretize the values of (x2,y2,z2) together. Versions of
adj() for both column and row values are used. Since in this domain the number of bins and the
boundaries for discretization are obvious we used the equal frequency method with the appropriate
number of bins. As can be seen in Table 10 good accuracy is maintained with discretization but the
learning curve is much slower than the non discretized version presented earlier. Another interesting
point is that now “relevant background mode” performs much worse than “all background mode”.
In hindsight one can see that this is a result of the grounding effect of discretization. With “relevant
backgroundmode” the discretization threshold predicates and the adjacent predicates are different in
every example. Since the examples are essentially ground we expect less matches between different
examples and thus the system is likely to overfit. With “all background mode” these predicates do
not constrain the matching of examples.

A.5 Pruning Rules

The system performs bottom up search and may stop with relatively long rules if the data is not
sufficiently rich (that is, we do not have enough negative examples) to warrant further refinement
of the rules. Pruning allows us to drop additional parts of rules. The system can perform a greedy
reduced error pruning (Mitchell, 1997) using a validation data set. For each atom in the rule the
system evaluates whether the removal of the atom increases the error on the validation set. If not,
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25 50 75 100 200 500 1000 2000 3000
Relevant background mode 43.32 43.70 45.05 44.60 52.39 72.26 84.80 90.30 92.17
All background mode 67.27 72.69 75.15 78.00 82.68 88.60 91.03 91.81 92.01

Table 10: Performance summary for KRK-illegal data set with discretization in average percentage
accuracy.

the atom can be removed. While it is natural to allow an increase in error using a tradeoff against
the length of the hypothesis in an MDL fashion, we have not yet experimented with this possibility.

Notice that unlike top down systems we can perform this pruning on the training set and do not
necessarily need a separate validation set. In a top down system one grows the rules until they are
consistent with the data. Thus, any pruning will lead to an increase in training set error. On the
other hand in a bottom up system, pruning acts like the main stage of the algorithm in that it further
generalizes the rules. In some sense, pruning on the training set allows us to move from a most
specific hypothesis to a most general hypothesis that matches the data. Both training set pruning
and validation set pruning are possible with our system.

A.6 Restricting Legal Conclusions

Our algorithm allows any predicate and instantiation to serve as a conclusion in a clause. However,
when applying to a real data set we may know (or want to set up) that some predicates serve as rule
conclusions and others do not. This is simply implemented in the rel-cands operation. This feature
is useful both for applicability and in reducing run time that would be needed to generate, evaluate
and remove rules with wrong conclusions.

A.7 Applicability to Data from Normal ILP Setting

In the normal ILP setting (Muggleton and DeRaedt, 1994) one is given a database as background
knowledge and examples are simple atoms. We transform these into a set of interpretations as
follows (see also De Raedt, 1997; Khardon, 1999b). The background knowledge in the normal
ILP setting can be typically partitioned into different subsets such that each subset affects a single
example only. A similar effect is achieved for intensional background knowledge in the Progol
system (Muggleton, 1995) by using mode declarations to limit antecedent structure. Given example
b, we will denote BK(b) as the set of atoms in the background knowledge that is relevant to b. In
the normal ILP setting we have to find a theory T s.t. BK(b)∪T |= b if b is a positive example, and
BK(b)∪T $|= b if b is negative. Equivalently, T must be such that T |= BK(b) → b if b is positive
and T $|= BK(b) → b if b is negative.

If b is a positive example in the standard ILP setting then we can construct an interpretation
I = ([V ], [BK(b)]) where V is the set of objects appearing in BK(b), and label I as negative. When
LOGAN-H finds the negative interpretation I, it constructs the set [s,c] = rel-cands(I) from it
(notice that b is among the conclusions considered in this set), and then runs one-pass to figure
out which consequents among the candidates are actually correct. Adding another interpretation
I′ = ([V ], [BK(b)∪{b}]) labeled positive guarantees that all other consequents are dropped. Notice
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that in order for this to be consistent with the target concept, we have to assume that the antecedent
BK(b) only implies b.

If b is a negative example in the standard ILP setting, we construct an interpretation I =
([V ], [BK(b)]), where V is the set of variables appearing in BK(b), and label it positive. Notice
that if the system ever considers the clause BK(b) → b as a candidate, one-pass will find the posi-
tive interpretation I and will drop b, as desired. In fact, one-pass will return [BK(b), /0] for any input
clause set [BK(b),c] since it will drop all consequents in c that are not included in BK(b) (including
false), thus precluding clause BK(b) → b from ever being included in any hypothesis. This again
assumes that no consequent can be implied by BK(b).

Several ILP domains are formalized using a consequent of arity 1 where the argument is an
object that identifies the example in the background knowledge. In this case, since we separate the
examples into interpretations we do not need example identifiers and we get a consequent of arity 0.
For learning with a single possible consequent of arity 0 our transformation can be simplified in that
the extra positive example I ′ = ([V ], [BK(b)∪{b}]) is not needed since there are no other potential
consequents. Thus we translate every positive example into a negative interpretation example and
vice versa. As an example, suppose that in the normal ILP setting, the clause p(a,b)∧ p(b,c) →
q() is labeled positive and the clause p(a,b) → q() is labeled negative. Then, the transformed
data set contains: ([a,b,c], [p(a,b), p(b,c)])− and ([a,b], [p(a,b)])+. Notice that in this case the
assumptions made regarding other consequents in the general transformation are not needed.

In the case of zero arity consequents, the check whether a given clause C is satisfied by some
interpretation I can be considerably simplified. Instead of checking all substitutions it suffices to
check for existence of some substitution, since any such substitution will remove the single nullary
consequent. As a result subsumption procedures that enumerate solutions one by one can quit
early, after the first substitution, and are likely to be faster in this case. In addition, note that the
pairing operation never moves new atoms into the consequent and is therefore a pure generalization
operation.

A.8 Algorithmic Details on DJANGO

This section provides some of the details on the algorithms used in DJANGOPRIMAL and DJAN-
GODUAL and the difference between them. Both versions first build the domain of the variables
applying a node-consistency procedure. Node-consistency removes from variable domains all val-
ues that do not satisfy unary constraints. Unary constraints are created when a variable has multiple
occurrences in a literal.

Both methods continue by checking for arc-consistency. Arc consistency means that we re-
move from the domains all values which are not supported. A value is consistent with respect to a
constraint, if there exists a value in the domains of all other variables of a constraint such that the
constraint is satisfied. A value is supported if it is consistent for all constraints involving this vari-
able. Obviously, a value not supported cannot be assigned to a variable, since a constraint will not
be satisfied. DJANGODUAL uses a standard algorithm of arc-consistency named AC3 (Mackworth,
1977), which maintains a queue of all constraints that must be checked. The queue is initially full,
and if a value is removed from a domain, all other constraints involving the variable are added to
the queue. The algorithm checks and removes all elements in the queue until it is empty. AC3 is not
optimal since it can check the same constraint more than once, however it has good average execu-
tion times. DJANGOPRIMAL uses a version of AC3 adapted to n-ary CSPs, named CN (Mackworth,
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1977) or GAC3, for General Arc Consistency. Finally both methods perform a depth-first search
using lookahead strategy; a partial solution is incrementally built assigning a value to one variable
at a time. The variable is selected using Dynamic Variable Ordering (DVO); for each variable the
size of its domain is divided by the number of constraints involving it, the variable with the minimal
ratio is selected. This heuristic follows the First Fail Principle that tries to reduce the search tree
by causing failure earlier during the search. All values inconsistent with this partial solution are
removed from the domains of the variables not yet assigned. Three different strategies are used to
propagate the effects of the last assignment:

Forward Checking (FC) only checks variables connected to the last assigned variable.

Maintaining Arc Consistency (MAC), also called Full Arc Consistency, extends FC by checking
arc-consistency on adjacent variables if a value has been removed from their domain.

Forward Checking Singleton extends FC by also checking all constraints involving a domain con-
taining a single value. Checking such constraint is cheaper than full arc consistency and can
reach to a failure sooner than simple FC.

DJANGOPRIMAL uses FC, while DJANGODUAL uses a more sophisticated strategy, named
Meta-DJANGO, which selects FC or MAC according to a measure, denoted κ (Gent et al., 1996),
estimating the position of the problem relatively to the Phase Transition (Giordana and Saitta, 2000).
Instances in the under-constrained region use FC, while instances in the phase transition and the over
constrained regions use MAC.

In addition to the techniques above DJANGODUAL uses the idea of signatures to further prune
the search. A signature captures the idea that when we map a literal in a clause onto a literal in
the example all the neighborhood of the first literal must exist in the example as well. By encoding
neighborhoods of literals which are Δ-variables in the dual representation we can prune the domain
in similarity to arc-consistency. The details of this heuristic are given inMaloberti and Sebag (2004).
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Johan Björkegren JOHAN.BJORKEGREN@KI.SE
The Computational Medicine Group, Center for Molecular Medicine
Department of Medicine
Karolinska Institutet, Karolinska University Hospital Solna
SE-171 76 Stockholm, Sweden

Jesper Tegnér JESPERT@IFM.LIU.SE
Division of Computational Biology, Department of Physics, Chemistry and Biology
The Institute of Technology
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Abstract
We analyze two different feature selection problems: finding a minimal feature set optimal for
classification (MINIMAL-OPTIMAL) vs. finding all features relevant to the target variable (ALL-
RELEVANT). The latter problem is motivated by recent applications within bioinformatics, partic-
ularly gene expression analysis. For both problems, we identify classes of data distributions for
which there exist consistent, polynomial-time algorithms. We also prove that ALL-RELEVANT is
much harder than MINIMAL-OPTIMAL and propose two consistent, polynomial-time algorithms.
We argue that the distribution classes considered are reasonable in many practical cases, so that our
results simplify feature selection in a wide range of machine learning tasks.
Keywords: learning theory, relevance, classification, Markov blanket, bioinformatics

1. Introduction

Feature selection (FS) is the process of reducing input data dimension. By reducing dimensionality,
FS attempts to solve two important problems: facilitate learning (inducing) accurate classifiers, and
discover the most ”interesting” features, which may provide for better understanding of the problem
itself (Guyon and Elisseeff, 2003).

The first problem has been extensively studied in pattern recognition research. More specifi-
cally, the objective here is to learn an optimal classifier using a minimal number of features; we
refer to this as the MINIMAL-OPTIMAL problem. Unfortunately, MINIMAL-OPTIMAL is in general
intractable even asymptotically (in the large-sample limit), since there exist data distributions for
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which every feature subset must be tested to guarantee optimality (Cover and van Campenhout,
1977). Therefore it is common to resort to suboptimal methods. In this paper, we take a different
approach to solving MINIMAL-OPTIMAL: we restrict the problem to the class of strictly positive
data distributions, and prove that within this class, the problem is in fact polynomial in the number
of features. In particular, we prove that a simple backward-elimination algorithm is asymptotically
optimal. We then demonstrate that due to measurement noise, most data distributions encountered
in practical applications are strictly positive, so that our result is widely applicable.

The second problem is less well known, but has recently received much interest in the bioin-
formatics field, for example in gene expression analysis (Golub et al., 1999). As we will explain
in Section 4, researchers in this field are primarily interested in identifying all features (genes) that
are somehow related to the target variable, which may be a biological state such as ”healthy” vs.
”diseased” (Slonim, 2002; Golub et al., 1999). This defines the ALL-RELEVANT problem. We prove
that this problem is much harder than MINIMAL-OPTIMAL; it is asymptotically intractable even for
strictly positive distributions. We therefore consider a more restricted but still reasonable data dis-
tribution class, and propose two polynomial algorithms for ALL-RELEVANT which we prove to be
asymptotically optimal within that class.

2. Preliminaries

In this section we review some concepts needed for our later developments. Throughout, we will
assume a binary classification model where training examples (x(i),y(i)), i= 1, . . . , l are independent
samples from the random variables (X ,Y ) with density f (x,y), where X = (X1, . . . ,Xn) ∈ Rn is
a sample vector and Y ∈ {−1,+1} is a sample label. Capital Xi denote random variables, while
lowercase symbols xi denote observations. We will often treat the data vector X as a set of variables,
and use the notation Ri = X \ {Xi} for the set of all features except Xi. Domains of variables are
denoted by calligraphic symbols X . We will present the theory for continuous X , but all results are
straightforward to adapt to the discrete case. Probability density functions (continuous variables) or
probability mass functions (discrete variables) are denoted f (x) and p(x), respectively. Probability
of events are denotes by capital P, for example, P(Y = 1/2).

2.1 Distribution Classes

In the typical approach to FS, one attempts to find heuristic, suboptimal solutions while considering
all possible data distributions f (x,y). In contrast, we will restrict the feature selection problem to
certain classes of data distributions in order to obtain optimal solutions. Throughout, we will limit
ourselves to the following class.

Definition 1 The class of strictly positive data distributions consists of the f (x,y) that satisfies (i)
f (x) > 0 almost everywhere (in the Lebesgue measure) and (ii) P(p(y|X) = 1/2) = 0.

Note we do not require f (x,y) > 0, which would be more restrictive. The criterion (i) states that a set
in X has nonzero probability iff it has nonzero Lebesgue measure, while (ii) states that the optimal
decision boundary has zero measure. These conditions are mainly needed to ensure uniqueness of
the Bayes classifier (see below). It is reasonable to assume that this class covers the great majority
of practical pattern recognition problems, since most data originates in physical measurements of
some kind and is inevitably corrupted by noise. For example, consider the additive Gaussian noise

590



CONSISTENT FEATURE SELECTION IN POLYNOMIAL TIME

Figure 1: The distribution classes used. P, strictly positive; PC, strictly positive satisfying the com-
position property; PCWT, strictly positive satisfying composition and weak transitivity;
PD, strictly positive and DAG-faithful. Arrows show classes where the various algorithms
(right) are proved to be consistent.

model
X = x0+ ε, ε∼ N(0,σ).

Since the noise component ε is strictly positive over the domain of X , we immediately obtain f (x) >
0. A similar argument holds for binary data with Bernoulli noise, and indeed for any additive noise
model with f (ε) > 0. In general, the strictly positive restriction is considered reasonable whenever
there is uncertainty about the data (Pearl, 1988). Note that the f (x) > 0 criterion by definition
only concerns the actual domain X . If the data distribution is known to be constrained for physical
reasons to some compact set such as 0 < X < 1, then naturally f (x) > 0 need not hold outside
that set. Typical problems violating f (x) > 0 involve noise-free data, such as inference of logic
propositions (Valiant, 1984).

In Section 4, we will consider the more narrow classes of strictly positive distributions (P) that
also satisfy the composition property (PC), and those in PC that additionally satisfies the weak
transitivity property (PCWT). See Appendix B for details on these properties. Although these re-
strictions are more severe than f (x) > 0, these classes still allow for many realistic models. For ex-
ample, the jointly Gaussian distributions are known to be PCWT (Studený, 2004). Also, the strictly
positive and DAG-faithful distributions (PD) are contained in PCWT (Theorem 24, Appendix B).
However, we hold that the PCWT class is more realistic than PD, since PCWT distributions will
remain PCWT when a subset of the features are marginalized out (that is, are not observed), while
PD distributions may not (Chickering and Meek, 2002).1 This is an important argument in favor of
PCWT, as in many practical cases we cannot possibly measure all variables. An important example
of this is gene expression data, which is commonly modelled by PD distributions (Friedman, 2004).
However, it is frequently the case that not all genes can be measured, so that PCWT is a more realis-
tic model class. Of course, these arguments also apply to the larger PC class. Figure 1 summarizes
the relations between the distribution classes discussed in this section.

1. The paper by Chickering and Meek (2002) proves that the composition property is preserved under marginalization.
A similar proof for the weak transitivity property can be found in Peña et al. (2006).
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2.2 Classifiers, Risk and Optimality

A classifier is defined as a function g(x) :X $→Y , predicting a category y for each observed example
x. The ”goodness” of a classifier is measured as follows.

Definition 2 (risk) The risk R(g) of a classifier g is

R(g) = P(g(X) &= Y ) = ∑
y∈Y

p(y)
Z

X
1{g(x)#=y} f (x|y)dx, (1)

where 1{·} is the set indicator function.

For a given distribution f (x,y), an (optimal) Bayes classifier is one that minimizes R(g). It is easy
to show that the classifier g∗ that maximizes the posterior probability,

g∗(x) =
{

+1, P(Y = 1|x) ≥ 1/2
−1, otherwise , (2)

is optimal (Devroye et al., 1996). For strictly positive distributions, g∗(x) is also unique, except
on zero-measure subsets of X (above, the arbitrary choice of g∗(x) = +1 at the decision boundary
p(y|x) = 1/2 is such a zero-measure set). This uniqueness is important for our results, so for
completeness we provide a proof in Appendix A (Lemma 19). From now on, we speak of the
optimal classifier g∗ for a given f .

2.3 Feature Relevance Measures

Much of the theory of feature selection is centered around various definitions of feature relevance.
Unfortunately, many authors use the term ”relevant” casually and without a clear definition, which
has caused much confusion on this topic. Defining relevance is not trivial, and there are many
proposed definitions capturing different aspects of the concept; see for example Bell and Wang
(2000) for a recent survey. The definitions considered in this paper are rooted in the well-known
concept of (probabilistic) conditional independence (Pearl, 1988, sec. 2.1).

Definition 3 (conditional independence) A variable Xi is conditionally independent of a variable
Y given (conditioned on) the set of variables S⊂ X iff it holds that

P
(
p(Y |Xi,S) = p(Y |S)

)
= 1.

This is denoted Y ⊥ Xi|S.

In the above, the P(. . .) = 1 is a technical requirement allowing us to ignore pathological cases
where the posterior differs on zero-measure sets. Conditional independence is a measure of ir-
relevance, but it is difficult to use as an operational definition since this measure depends on the
conditioning set S. For example, a given feature Xi can be conditionally independent of Y given
S = /0 (referred to as marginal independence), but still be dependent for some S &= /0. The well-
known XOR problem is an example of this. Two well-known relevance definitions coping with this
problem were proposed by John et al. (1994).

Definition 4 (strong and weak relevance) A feature Xi is strongly relevant to Y iff Y &⊥Xi|Ri. A
feature Xi is weakly relevant to Y iff it is not strongly relevant, but satisfies Y &⊥Xi|S for some set
S⊂ Ri.
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Informally, a strongly relevant feature carries information about Y that cannot be obtained from any
other feature. A weakly relevant feature also carries information about Y , but this information is
”redundant”—it can also be obtained from other features. Using these definitions, relevance and
irrelevance of a feature to a target variable Y are defined as

Definition 5 (relevance) A feature Xi is relevant to Y iff it is strongly relevant or weakly relevant to
Y. A feature Xi is irrelevant to Y iff it is not relevant to Y.

Finally, we will need the following definition of relevance with respect to a classifier.

Definition 6 A feature Xi is relevant to a classifier g iff

P(g(Xi,Ri) &= g(X ′
i ,Ri)) > 0,

where Xi,X ′
i are independent and identically distributed.

This definition states that in order to be considered ”relevant” to g, a feature X must influence the
value of g(x) with non-zero probability. It is a probabilistic version of that given by Blum and
Langley (1997). Note that here, Xi and X ′

i are independent samplings of the feature Xi; hence their
distributions are identical and determined by the data distribution f (x,y). In the next section, we
examine the relation between this concept and the relevance measures in Definition 4.

3. The Minimal-Optimal Problem

In practise, the data distribution is of course unknown, and a classifier must be induced from the
training data Dl = {(x(i),y(i))}li=1 by an inducer, defined as a function I : (X ×Y )l $→ G , where
G is some space of functions. We say that an inducer is consistent if the induced classifier I(Dl)
converges in probability to g∗ as the sample size l tends to infinity,

I(Dl) P−→ g∗.

Consistency is a reasonable necessary criterion for a sound inducer, and has been verified for a wide
variety of algorithms (Devroye et al., 1996). Provided that the inducer used is consistent, we can
address the feature selection problem asymptotically by studying the Bayes classifier. We therefore
define the optimal feature set as follows.

Definition 7 The MINIMAL-OPTIMAL feature set S∗ is defined as the set of features relevant to the
Bayes classifier g∗ (in the sense of Definition 6).

Clearly, S∗ depends only on the data distribution, and is the minimal feature set that allows for
optimal classification; hence its name. Since g∗ is unique for strictly positive distributions (Lemma
19), it follows directly from Definition 6 that S∗ is then also unique. Our first theorem provides an
important link between the MINIMAL-OPTIMAL set and the concept of strong relevance.

Theorem 8 For any strictly positive distribution f (x,y), the MINIMAL-OPTIMAL set S∗ contains
only strongly relevant features.
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Figure 2: A: The example density f (x2i−1,x2i) given by (4). Here, X1 is strongly relevant and X2
weakly relevant. Arrow and dashed line indicates the optimal separating hyperplane. B:
The risk functional R(g) for a linear SVM trained on all relevant features (filled boxes)
vs. on strongly relevant features only (open boxes), for the 10-dimensional distribution
(4). Average and standard deviation over 20 runs are plotted against increasing sample
size. The Bayes risk (dashed line) is R(g∗) = 0.035.

Proof Since f is strictly positive, g∗ is unique by Lemma 19 (Appendix A). Consider any feature
Xi relevant to g∗, so that P(g∗(Xi,Ri) &= g∗(X ′

i ,Ri)) > 0 by Definition 6. From the form (2) of the
Bayes classifier, we find that

g∗(xi,ri) &= g∗(x′i,ri) ⇒ p(y|xi,ri) &= p(y|x′i,ri) (3)

everywhere except possibly on the decision surface {x : p(y|x) = 1/2}. But this set has zero proba-
bility due to assumption (ii) of Definition 1. Therefore,

P(p(Y |Xi,Ri) &= p(Y |X ′
i ,Ri)) ≥ P(g∗(Xi,Ri) &= g∗(X ′

i ,Ri)) > 0.

By Lemma 20 this is equivalent to P(p(Y |Xi,Ri) = p(Y |Ri)) < 1, which is the same as Y &⊥ Xi|Ri.
Hence, Xi is strongly relevant.

Note that uniqueness of g∗ is required here: if there would exist a different Bayes classifier g′, the
implication (3) would not hold. Theorem 8 is important because it asserts that we may safely ignore
weakly relevant features, conditioned on the assumption f (x) > 0. This leads to more efficient
(polynomial-time) algorithms for finding S∗ for such problems. We will explore this consequence
in Section 3.3.

An example illustrating Theorem 8 is given in Figure 2. Here, f is a 10-dimensional Gaussian
mixture

f (x1, . . . ,x10,y) ∝
5

∏
i=1

e−
9
8 ((x2i−1−y)

2+(x2i−1−x2i)2). (4)

Figure 2A shows the joint distribution of (X2i−1,X2i) (all such pairs are identically distributed). Note
that, although the shape of the distribution in Figure 2 suggests that both features are relevant to Y ,
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it is easy to verify directly from (4) that X2,X4, . . . ,X10 are weakly relevant: considering for example
the pair (X1,X2), we have

p(y|x1,x2) =
f (x1,x2,y)
f (x1,x2)

=
[
1+ exp

{
−9
8
((x1+ y)2− (x1− y)2)

}]−1

=
[
1+ exp

{
−9x1y

2

}]−1

which depends only on x1, so X2 is weakly relevant. The Bayes classifier is easy to derive from the
condition p(y|x) > 1/2 (Equation 2) and turns out to be g∗(x) = sgn(x1+ x3+ x5+ x7+ x9), so that
S∗ = {1,3,5,7,9} as expected.

For any consistent inducer I, Theorem 8 can be treated as an approximation for finite (but suffi-
ciently large) samples. If this approximation is fair, we expect that adding weakly relevant features
will degrade the performance of I, since the Bayes risk must be constant while the design cost must
increase (Jain and Waller, 1978). To illustrate this, we chose I to be a linear, soft-margin support
vector machine (SVM) (Cortes and Vapnik, 1995) and induced SVM classifiers from training data
sampled from the density (4), with sample sizes l = 10,20, . . . ,100. Figure 2B shows the risk of
g = I(Dl) and gS∗ = IS∗(Dl

S∗) (here and in what follows we take gS∗ , IS∗ , and Dl
S∗ to mean classi-

fiers/inducers/data using only the features in S∗). The SVM regularization parameter C was chosen
by optimization over a range 10−2, . . . ,102; in each case, the optimal value was found to be 102. We
found that IS∗ does outperform I, as expected. The risk functional R(g) was calculated by numerical
integration of Equation (1) for each SVM hyperplane g and averaged over 20 training data sets.
Clearly, adding the weakly relevant features increases risk in this example.

As the following example illustrates, the converse of Theorem 8 is false: there exist strictly
positive distributions where even strongly relevant features are not relevant to the Bayes classifier.

Example 1 Let X = [0,1],Y = {−1,+1}, f (x) > 0 and p(y=1|x) = x/2. Here X is clearly strongly
relevant. Yet, X is not relevant to the Bayes classifier, since we have p(y= 1|x) < 1/2 almost
everywhere (except at x= 1). We find that g∗(x) = −1 and R(g∗) = P(Y =1).

Clearly, this situation occurs whenever a strongly relevant feature Xi affects the value of the posterior
p(y|x) but not the Bayes classifier g∗ (because the change in p(y|x) is not large enough to alter the
decision of g∗(x)). In this sense, relevance to the Bayes classifier is stronger than strong relevance.

3.1 Related Work

The relevance concepts treated above have been studied by several authors. In particular, the relation
between the optimal feature set and strong vs. weak relevance was treated in the pioneering study
by Kohavi and John (1997), who concluded from motivating examples that ”(i) all strongly relevant
features and (ii) some of the weakly relevant ones are needed by the Bayes classifier”. As we have
seen in Example 1, part (i) of this statement is not correct in general. Part (ii) is true in general, but
Theorem 8 shows that this is not the case for the class of strictly positive f , and therefore it is rarely
true in practise.

A recent study by Yu and Liu (2004) examines the role of weakly relevant features in more
detail and subdivides these further into redundant and non-redundant weakly relevant features, of
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which the latter is deemed to be important for the Bayes classifier. However, Yu & Liu consider
arbitrary distributions; for strictly positive distributions however, it is easy to see that all weakly
relevant features are also ”redundant” in their terminology, so that their distinction is not useful in
this case.

3.2 Connections with Soft Classification

A result similar to Theorem 8 have recently been obtained for the case of soft (probabilistic) clas-
sification (Hardin et al., 2004; Tsamardinos and Aliferis, 2003). In soft classification, the objective
is to learn the posterior p(y|x) instead of g∗(x). By Definition 6, the features relevant to the optimal
soft classifier p(y|x) satisfies

P(p(Y |Xi,Ri) &= p(Y |X ′
i ,Ri)) > 0

which is equivalent to P(p(Y |Xi,Ri) &= p(Y |Ri)) > 0 by Lemma 20. Thus, the features relevant to
p(y|x) are exactly the strongly relevant ones, so the situation in Example 1 does not occur here.

When learning soft classifiers from data, a feature set commonly encountered is the Markov
boundary of the class variable, defined as the minimal feature set required to predict the posterior.
Intuitively, this is the soft classification analogue of MINIMAL-OPTIMAL. The following theorem
given by Pearl (1988, pp. 97) shows that this set is well-defined for strictly positive distributions.2

Theorem 9 (Markov boundary) For any strictly positive distribution f (x,y), there exists a unique
minimal set M ⊆ X satisfying Y ⊥ X \M|M. This minimal set is called the Markov boundary of the
variable Y (with respect to X) and denoted M(Y |X).

Tsamardinos & Aliferis recently proved that for the PD distribution class (see Figure 1), the Markov
boundary coincides with the set of strongly relevant features (Tsamardinos and Aliferis, 2003).
However, as explained in Section 2.1, the PD class is too narrow for many practical applications.
Below, we generalize their result to any positive distribution to make it more generally applicable.

Theorem 10 For any strictly positive distribution f (x,y), a feature Xi is strongly relevant if and
only if it is in the Markov boundary M =M(Y |X) of Y .

Proof First, assume that Xi is strongly relevant. Then Y &⊥Xi|Ri, which implies M &⊆ Ri, so Xi ∈M.
Conversely, fix any Xi ∈M and let M′ =M \{Xi}. If Xi is not strongly relevant, then Y ⊥Xi|Ri, and
by the definition of the Markov boundary, Y ⊥X \M|M. We may rewrite this as

{
Y ⊥Xi|M′∪X \M

Y ⊥X \M|M′∪{Xi}.

The intersection property (Theorem 25, Appendix B) now implies Y ⊥X \M ′|M′. Hence, M′ is a
Markov blanket smaller thanM, a contradiction. We conclude that Xi is strongly relevant.

The feature set relations established at this point for strictly positive distributions are summarized
in Figure 3.

2. Pearl (1988) gives a proof assuming f (x,y) > 0. However, it is straightforward to relax this assumption to f (x) > 0
in our case, since we only consider Markov boundaries of Y . See Theorem 25 and corollary 26 in Appendix B.
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Irrelevant features

weakly
relevant
features

strongly relevant
features

=
markov blanket

=
features relevant

to the posterior p(y|x)

minimal-optimal set all-relevant set =
 strongly + weakly
 relevant features

Figure 3: The identified relations between feature sets for strictly positive distributions. The circle
represents all features. The dotted line (MINIMAL-OPTIMAL) denotes a subset, while the
solid lines denote a partition into disjoint sets.

3.3 Consistent Polynomial Algorithms

By limiting the class of distributions, we have simplified the problem to the extent that weakly
relevant features can be safely ignored. In this section, we show that this simplification leads to
polynomial-time feature selection (FS) algorithms. A FS algorithm can be viewed as a function
Φ(Dl) : (X ×Y )l $→ 2X , where 2X denotes the power-set of X . For finite samples, the optimal Φ
depends on the unknown data distribution f and the inducer I (Tsamardinos and Aliferis, 2003).
Asymptotically however, we may use consistency as a reasonable necessary criterion for a ”cor-
rect” algorithm. In analogue with consistency of inducers, we define a FS algorithm Φ(Dl) to be
consistent if it converges in probability to the MINIMAL-OPTIMAL set,

Φ(Dl) P−→ S∗.

Conveniently, consistency of Φ depends only on the data distribution f . Next, we propose a
polynomial-time FS algorithm and show that it is consistent for any strictly positive f . As before,
feature sets used as subscripts denote quantities using only those features.

Theorem 11 Take any strictly positive distribution f (x,y) and let ĉ(Dl
S) be a real-valued criterion

function such that, for every feature subset S,

ĉ(Dl
S)

P−→ c(S), (5)

where c(S) depends only on the distribution f (x,y) and satisfies

c(S) < c(S′) ⇐⇒ R(g∗S) < R(g∗S′). (6)

Then the feature selection method

Φ(Dl) = {i : ĉ(Dl
Ri) > ĉ(Dl)+ ε}

where ε ∈ (0,η) with η=mini∈S∗(c(Ri)− c(X)), is consistent.
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Proof Since f is strictly positive, S∗ is unique by Lemma 19. By Definition 7 and the assumption
(6) it holds that Xi ∈ S∗ iff c(X) < c(Ri). First consider the case Xi ∈ S∗. Fix an ε ∈ (0,η) and let
ε′ =min{(η− ε)/2,ε/2}. Choose any δ> 0. By (5) there exist an l0 such that for all l > l0,

P
(
max
S

|ĉ(Dl
S)− c(S)| > ε′

)
≤ δ/2n

Note that since the power-set 2X is finite, taking the maxima above is always possible even though
(5) requires only point-wise convergence for each S. Therefore the events (i) ĉ(Dl

X) < c(X)+ε′ and
(ii) ĉ(Dl

Ri) > c(Ri)− ε′ both have probability at least 1− δ/2n. Subtracting the inequality (i) from
(ii) yields

ĉ(Dl
Ri)− ĉ(Dl

X) > c(Ri)− c(X)−2ε′

≥ c(Ri)− c(X)− (η− ε) ≥ ε.

Thus, for every l > l0,

P(Xi ∈Φ(Dl)) = P(ĉ(Dl
Ri)− ĉ(Dl

X) > ε)

≥ P
(
ĉ(Dl

X) < c(X)+ ε′ ∧ ĉ(Dl
Ri) > c(Ri)− ε′

)

≥ P
(
ĉ(Dl

X) < c(X)+ ε′
)

+P
(
ĉ(Dl

Ri) > c(Ri)− ε′
)
−1

≥ 1−δ/n.

For the converse case Xi &∈ S∗, note that since c(X) = c(Ri),

P(Xi ∈Φ(Dl)) = P
(
ĉ(Dl

Ri)− ĉ(Dl
X) > ε

)

≤ P(|ĉ(Dl
Ri)− c(Ri)|+ |c(X)− ĉ(Dl

X)| > ε)

≤ P
(
|ĉ(Dl

Ri)− c(Ri)| >
ε
2
∨ |c(X)− ĉ(Dl

X)| > ε
2

)

≤ P
(
|ĉ(Dl

Ri)− c(Ri)| > ε′
)

+P
(
|c(X)− ĉ(Dl

X)| > ε′
)
≤ δ/n

where in the last line we have used ε′ ≤ ε/2. Putting the pieces together, we obtain

P(Φ(Dl) = S∗) = P(Φ(Dl) ⊇ S∗ ∧ Φ(Dl) ⊆ S∗)
= P(∀i ∈ S∗ : Xi ∈Φ(Dl) ∧ ∀i &∈ S∗ : Xi &∈Φ(Dl))
≥ |S∗|(1−δ/n)+(n− |S∗|)(1−δ/n)− (n−1) = 1−δ.

Since δ was arbitrary, the required convergence follows.

The requirement to choose an ε < η may seem problematic, since in practise η depends on the
true distribution f (x,y) and hence is unobservable. For convergence purposes, this can be remedied
by choosing a sequence ε = ε(l) → 0, so that ε < η will become satisfied eventually. In practise,
the parameter ε controls the trade-off between precision and recall; a small ε gives high recall but
low precision, and vice versa. If it is possible to estimate the distribution of ĉ, one might attempt
to choose ε so as to control precision as recall as desired. However, this is a difficult issue where
further research is necessary.
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The algorithm Φ evaluates the criterion ĉ precisely n times, so it is clearly polynomial in n
provided that ĉ is. The theorem applies to both filter and wrapper methods, which differ only in the
choice of ĉ(Dl

S) (Kohavi and John, 1997). To apply the theorem in a particular case, we need only
verify that the requirements (5) and (6) hold. For example, let I be the k-NN rule with training data
Dl/2 = {(X1,Y1), . . . ,(Xl/2,Yl/2)} and let R̂ be the usual empirical risk estimate on the remaining
samples {(Xl/2+1,Yl/2+1), . . . ,(Xl,Yl)}. Provided k is properly chosen, this inducer is known to be
universally consistent,

P(R(IS(D
l/2
S ))−R(g∗S) > ε) ≤ 2e−lε2/(144γ2S)

where γS depends on |S| but not on l (Devroye et al., 1996, pp. 170). Next, with a test set of size
l/2, the empirical risk estimate satisfies

∀g : P(|R̂(g)−R(g)| > ε) ≤ 2e−lε2

(Devroye et al., 1996, pp. 123). We choose ĉ(Dl
S) = R̂(IS(D

l/2
S )) and c(S) = R(g∗S), so that (6) is

immediate. Further, this ĉ(Dl
S) satisfies

P
(
|ĉ(Dl

S)− c(S)| > ε
)

= P
(
|R̂(IS(D

l/2
S ))−R(g∗S)| > ε

)

≤ P
(
|R̂(IS(D

l/2
S ))−R(IS(D

l/2
S ))|+ |R(IS(D

l/2
S ))−R(g∗S)| > ε

)

≤ P
(
|R̂(IS(D

l/2
S ))−R(IS(D

l/2
S ))| > ε

2

)
+P

(
|R(IS(D

l/2
S ))−R(g∗S)| >

ε
2

)

≤ 2e−lε2/4+2e−lε
2/(576γ2S) → 0

for every S as required by (5), and is polynomial in n. Therefore this choice defines a polynomial-
time, consistent wrapper algorithm Φ. Note that we need only verify the point-wise convergence
(5) for any given ĉ(S), which makes the application of the theorem somewhat easier. Similarly,
other consistent inducers and consistent risk estimators could be used, for example support vector
machines (Steinwart, 2002) and the cross-validation error estimate (Devroye et al., 1996, chap. 24).

The FS method Φ described in Theorem 11 is essentially a backward-elimination algorithm.
With slight modifications, the above shows that many popular FS methods that implement variants
of backward-search, for example Recursive Feature Elimination (Guyon et al., 2002), are in fact
consistent. This provides important evidence of the soundness of these algorithms.

In contrast, forward-search algorithms are not consistent even for strictly positive f . Starting a
with feature set S, forward-search would find the feature set S′ = S∪{Xi} (that is, add feature Xi) iff
ĉ(Dl

S′) < ĉ(Dl
S). But it may happen that R(g∗S′) ≮ R(g∗S) even though S′ is contained in S∗. Therefore,

forward-search may miss features in S∗. The ”noisy XOR problem” (Guyon and Elisseeff, 2003,
pp. 1116) is an example of a strictly positive distribution with this property.

A simple example illustrating Theorem 11 is shown in Figure 4. We implemented the feature se-
lection methodΦ defined in the theorem, and again used the data density f from Equation (4). Also
here, we employed a linear SVM as inducer. We used the leave-one-out error estimate (Devroye
et al., 1996) as R̂. As sample size increases, we find that the fraction of strongly relevant features
selected approaches 1, confirming that Φ(Dl) P−→ S∗. Again, this emphasizes that asymptotic results
can serve as good approximations for reasonably large sample sizes.

The algorithm Φ is primarily intended as a constructive proof of the fact that polynomial and
consistent algorithms exist; we do not contend that it is optimal in practical situations. Nevertheless,
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NILSSON, PEÑA, BJÖRKEGREN AND TEGNÉR

         









  
 

 

Figure 4: A feature selection example on a 10-dimensional density with 5 strongly and 5 weakly
relevant features (Equation 4). Averaged results of 50 runs are plotted for samples sizes
20, . . . ,200. Error bars denote standard deviations.

Data set l×n No FS Φε=0 RELIEF FCBF
Breast cancer 569×30 8 9(7) 69(8) 62(2)
Ionosphere 351×34 11 9(14) 16(26) 14(5)
Liver disorder 345×6 36 39(5) −(0) 43(2)
E.Coli 336×7 36 20(5) 43(1) 57(1)
P.I. Diabetes 768×8 33 36(7) 35(1) 35(1)
Spambase 4601×57 12 17(39) 25(26) 40(4)

Table 1: Feature selection on UCI data sets. Test error rates are given in %, number of features
selected in parentheses. Significant differences from the classifier without feature selection
(”No FS”) are underscored (McNemar’s test, p = 0.05). l denotes number of samples, n
number of features.
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we conducted some experiments using Φ on a set of well-known data sets from the UCI machine
learning repository (Newman et al., 1998) to demonstrate empirically that weakly relevant features
do not contribute to classifier accuracy. We used a 5-NN classifier together with a 10-fold cross-
validation error estimate for the criterion function ĉ. For each case we estimated the final accuracy
by holding out a test set of 100 examples. Statistical significance was evaluated using McNemar’s
test (Dietterich, 1998). We set ε = 0 in this test, as we were not particularly concerned about false
positives. For comparison we also tried the RELIEF algorithm (Kira. and Rendell, 1992) and the
FBCF algorithm by Yu and Liu (2004), both of which are based on the conjecture that weakly
relevant features may be needed. We found that Φ never increased test error significantly compared
to the full data set, and significantly improved the accuracy in one case (Table 1). The FCBF and
Relief algorithms significantly increased the test error in five cases. Overall, these methods selected
very few features (in one case, RELIEF selected no features at all) using the default thresholds
recommended by the original papers (for FCBF, γ= n/ logn and for RELIEF, θ= 0, in the notation
of each respective paper; these correspond to the ε parameter of the Φ algorithm).

In the case of the P.I. Diabetes set, Φ seems to select redundant features, which at first might
seem to contradict our theory. This may happen for two reasons. First, at ε = 0, the Φ algorithm
is inclined to to include false positives (redundant features) rather than risk any false negatives.
Second, it is possible that some of these features are truly in S∗, even though the reduction in
classification error is too small to be visible on a small test set.

Theorem 10 also has implications for algorithmic complexity in the case of soft classification.
To find the Markov boundary, one need now only test each Xi for strong relevance, that is, for the
conditional independence Y ⊥ Xi|XRi . This procedure is clearly consistent and can be implemented
in polynomial time. It is not very practical though, since these tests have very limited statistical
power for large n due to the large conditioning sets Ri. However, realistic solutions have recently
been devised for more narrow distribution classes such as PC, yielding polynomial and consistent
algorithms (Peña et al., 2005; Tsamardinos and Aliferis, 2003).

4. The All-Relevant Problem

Recently, feature selection has received much attention in the field of bioinformatics, in particular
in gene expression data analysis. Although classification accuracy is an important objective also in
this field, many researchers are more interested in the ”biological significance” of features (genes)
that depend on the target variable Y (Slonim, 2002). As a rule, biological significance means that
a gene is causally involved in the biological process of interest. It is imperative to understand that
this biological significance is very different from that in Definition 5. Clearly, genes may be useful
for predicting Y without being causally related, and may therefore be irrelevant to the biologist.

Typically, feature selection is performed to optimize classification performance (that is, one
attempts to solve MINIMAL-OPTIMAL), and the features chosen are then examined for biological
significance (Golub et al., 1999; Guyon et al., 2002). Unfortunately, this strategy ignores the dis-
tinction between biological significance and prediction. The features in S∗ are typically those with
good signal-to-noise ratio (that is, those very predictive of the class), but these need not be more
biologically significant than other features dependent on Y . For example, a biologically very im-
portant class of genes called transcription factors are often present in very small amounts and are
therefore difficult to detect with microarrays, leading to poor signal-to-noise ratios (Holland, 2002).
Yet, these genes are often implicated in for example cancer development (Darnell, 2002).
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Therefore, it is desirable to identify all genes relevant to the target variable, rather than the set
S∗, which may be more determined by technical factors than by biological significance. Hence, we
suggest that the following feature set should be found and examined.

Definition 12 For a given data distribution, the ALL-RELEVANT feature set SA is the set of features
relevant to Y in the sense of Definition 5.

To the best of our knowledge, this problem has not been studied. We will demonstrate that because
SA includes weakly relevant features (Figure 3), the ALL-RELEVANT problem is much harder than
MINIMAL-OPTIMAL. In fact, the problem of determining whether a single feature Xi is weakly
relevant requires exhaustive search over all 2n subsets of X , even if we restrict ourselves to strictly
positive distributions.

Theorem 13 For a given feature Xi and for every S ⊆ Ri, there exists a strictly positive f (x,y)
satisfying

Y &⊥Xi|S ∧ ∀S′ &= S : Y ⊥ Xi|S′. (7)

Proof Without loss of generalization we may take i= n and S = X1, . . .Xk, k = |S|. Let S∪{Xk+1}
be distributed as a k+1-dimensional Gaussian mixture

f (s,xk+1|y) =
1

|My| ∑µ∈My

N(s,xk+1|µ,Σ),

My = {µ∈ {1,0}k+1 : µ1⊕ · · ·⊕µk+1 = (y+1)/2},

where⊕ is the XOR operator (My is well-defined since⊕ is associative and commutative). This dis-
tribution is a multivariate generalization of the ”noisy XOR problem” (Guyon and Elisseeff, 2003).
It is obtained by placing Gaussian densities centered at the corners of a k+ 1-dimensional hyper-
cube given by the sets My, for y = ±1. It is easy to see that this gives Y &⊥Xk+1|S and Y ⊥Xk+1|S′
if S′ ⊂ S. Next, let Xi+1 = Xi+ ε for k < i < n, where ε is some strictly positive noise distribution.
Then it holds that Y &⊥Xi|S for k< i< n, and in particular Y &⊥Xn|S. But it is also clear that Y⊥Xn|S′
for S′ ⊃ S, since every such S′ contain a better predictor Xi,k < i < n of Y . Taken together, this is
equivalent to (7), and f is strictly positive.

This theorem asserts that the conditioning set that satisfies the relation Y &⊥Xi|S may be com-
pletely arbitrary. Therefore, no search method other than exhaustively examining all sets S can
possibly determine whether Xi is weakly relevant. Since ALL-RELEVANT requires that we deter-
mine this for every Xi, the following corollary is immediate.

Corollary 14 The all-relevant problem requires exhaustive subset search.

Exhaustive subset search is widely regarded as an intractable problem, and no polynomial algo-
rithm is known to exist. This fact is illustrative in comparison with Theorem 8; MINIMAL-OPTIMAL
is tractable for strictly positive distributions precisely because S∗ does not include weakly relevant
features.

Since the restriction to strictly positive distributions is not sufficient to render ALL-RELEVANT
tractable, we must look for additional constraints. In the following sections we propose two different
polynomial-time algorithms for finding SA, and prove their consistency.
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Algorithm 1: Recursive independence test (RIT)
Input: target node Y , features X
Let S= /0;
foreach Xi ∈ X do
if Xi &⊥Y | /0 then

S= S∪{Xi};
end

end
foreach Xi ∈ S do

S= S∪RIT(Xi,X \S);
end
return S

4.1 Recursive Independence Test

A simple, intuitive method for solving ALL-RELEVANT is to test features pairwise for marginal
dependencies: first test each feature against Y , then test each feature against every variable found
to be dependent on Y , and so on, until no more dependencies are found (Algorithm 1). We refer to
this algorithm as Recursive Independence Testing (RIT). We now prove that the RIT algorithm is
consistent (converges to SA) for PCWT distributions, provided that the test used is consistent.

Theorem 15 For any PCWT distribution, let R denote the set of variables Xk ∈ X for which there
exists a sequence Zm1 = {Z1, . . . ,Zm} between Z1 = Y and Zm = Xk such that Zi &⊥ Zi+1| /0, i =
1, . . . ,m−1. Then R= SA.

Proof Let I = X \R and fix any Xk ∈ I. Since Y ⊥Xk| /0 and Xi⊥Xk| /0 for any Xi ∈ R, we have
{Y}∪R⊥I| /0 by the composition property. Then Y⊥Xk|S for any S⊂ X \{Xk,Y} by the weak union
and decomposition properties, so Xk is irrelevant; hence, SA ⊆ R.

For the converse, fix any Xk ∈ R and let Zm1 = {Z1, . . . ,Zm} be a shortest sequence between
Z1 = Y and Zm = Xk such that Zi &⊥Zi+1| /0 for i = 1, . . . ,m− 1. Then we must have Zi⊥Z j| /0 for
j > i+ 1, or else a shorter sequence would exist. We will prove that Z1 &⊥Zm|Zm−12 for any such
shortest sequence, by induction over the sequence length. The case m = 2 is trivial. Consider the
case m= p. Assume as the induction hypothesis that, for any i, j < p and any chain Z i+ j

i of length
j, it holds that Zi &⊥Zi+ j|Zi+ j−1

i+1 . By the construction of the sequence Zm1 it also holds that

Z1⊥Zi| /0, 3≤ i≤ m =⇒ Z1⊥Zi3| /0 (8)
(composition)

=⇒ Z1⊥Zi|Zi−13 . (9)
(weak union)

Now assume to the contrary that Z1⊥Zp|Zp−12 . Together with (9), weak transitivity implies

Z1⊥Z2|Zp−13 ∨ Z2⊥Zp|Zp−13 .

The latter alternative contradicts the induction hypothesis. The former together with (8) implies
Z1⊥Zp−12 | /0 by contraction, which implies Z1⊥Z2| /0 by decomposition. This is also a contradiction;
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Algorithm 2: Recursive Markov Boundary (RMB)
Input: target node Y , data X , visited nodes V
Let S=M(Y |X), the Markov blanket of Y in X ;
foreach Xi ∈ S\V do

S= S∪RMB(Y,X \{Xi},V );
V =V ∪S

end
return S

hence Z1 &⊥ Zp|Zp−12 , which completes the induction step. Thus Xk is relevant and R ⊆ SA. The
theorem follows.

Corollary 16 For any PCWT distribution and any consistent marginal independence test, the RIT
algorithm is consistent.

Proof Since the test is consistent, the RIT algorithmwill discover every sequence Zm1 = {Z1, . . . ,Zm}
between Z1 = Y and Zm = Xk with probability 1 as l → ∞. Consistency follows from Theorem 15.

Since the RIT algorithm makes up to n= |X | tests for each element of R found, in total RIT will
evaluate no more than n|R| tests. Thus, for small R the number of tests is approximately linear in n,
although the worst-case complexity is quadratic.

There are many possible alternatives as to what independence test to use. A popular choice
in Bayesian networks literature is Fisher’s Z-test, which tests for linear correlations and is consis-
tent within the family of jointly Gaussian distributions (Kalisch and Bühlmann, 2005). Typically,
for discrete Y a different test is needed for testing Y ⊥Xi| /0 than for testing Xi⊥X j. A reason-
able choice is Student’s t-test, which is consistent for jointly Gaussian distributions (Casella and
Berger, 2002). More general independence tests can be obtained by considering correlations in
kernel Hilbert spaces, as described by Gretton et al. (2005).

4.2 Recursive Markov Boundary

In this section we propose a second algorithm for ALL-RELEVANT called Recursive Markov Bound-
ary (RMB), based on a given consistent estimator of Markov boundaries of Y . Briefly, the RMB
algorithm first estimates M(Y |X), then estimates M(Y |X \ {Xi}) for each Xi ∈ M(Y |X), and so on
recursively until no more nodes are found (Algorithm 2). For efficiency, we also keep track of pre-
viously visited nodes V to avoid visiting the same nodes several times. We start the algorithm with
RMB(Y,X ,V = /0). A contrived example of the RMB algorithm for a PD distribution is given in
Figure 5.

Next, we prove that also the RMB algorithm is consistent for any PCWT distribution, assuming
that we are using a consistent estimator of Markov boundaries (see below). The proof makes use of
the following concept.
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Definition 17 An independence map (I-map) over a set of features X = {X1, . . . ,Xn} is an undi-
rected graph G over X satisfying

R⊥GS|T =⇒ R⊥S|T
where R,S,T are disjoint subsets of X and⊥ G denotes vertex separation in the graph G, that is,
R⊥GS|T holds iff every path in G between R and S contains at least one Xi ∈ T . An I-map is minimal
if no subgraph G′ of G (over the same nodes X) is an I-map.

Note that we only consider the minimal I-map over the features X (not over X ∪{Y}), since in this
case, the minimal I-map is unique for any strictly positive distribution (Pearl, 1988).

Theorem 18 For any PCWT distribution such that a given estimator M(Y |S) of the Markov bound-
ary of Y with respect to a feature set S is consistent for every S⊆X, the RMB algorithm is consistent.

Proof For every S ⊆ X , the marginal distribution over S,Y is strictly positive, and therefore every
Markov boundary M(Y |S) is unique by corollary 26 (Appendix B). Let G be the minimal I-map
over the features X , and let M1 = M(X |Y ). Fix an Xk in SA. If Xk ∈M1, we know that Xk is found
by RMB. Otherwise, by Lemma 22, there exists a shortest path Zm1 in G between some Z1 ∈M1 and
Zm = Xk. We prove by induction over m that RMB visits every such path. The case m= 1 is trivial.
Let the induction hypothesis be that Zp is visited. For Zp+1, Lemma 22 implies Y &⊥Zp+1|X \Zp+11 .
Since Zp is visited, RMB will also visit all nodes inMp+1 =M(Y |X \Zp1 ). However,Mp+1 contains
Zp+1, because it contains all Xi satisfying Y &⊥Xi|X \Zp1 \{Xi} by Theorem 10.

It is easy to see from algorithm 2 that the RMB algorithm requires computing |SA| Markov
blankets. We might attempt to speed it up by marginalizing out several nodes at once, but in that
case we cannot guarantee consistency. A general algorithm for estimating Markov boundaries is
given by Peña et al. (2005). This estimator is consistent in the PC class, so it follows that RMB is
consistent in PCWT in this case (see Figure 1).

At first sight, RMB may seem more computationally intensive that RIT. However, since the
Markov boundary is closely related to S∗ (see Section 3.2), we anticipate that RMB may be imple-
mented using existing FS methods. In particular, for distribution classes where the Markov bound-
ary coincides with the MINIMAL-OPTIMAL set S∗, one may computeM(Y |X) using any FS method
that consistently estimates S∗. For example, this property holds for the well-known class of jointly
Gaussian distributions f (x|y) = N(x|yµ,Σ) with p(y) = 1/2. To see this, note that the posterior and
Bayes classifier are given by

p(y|x) =
[
1+ exp{−2yµTΣ−1x}

]−1
,

g∗(x) = sgn(µTΣ−1x).

Clearly, both g∗(x) and p(y|x) are constant with respect to an xi iff (µTΣ−1)i = 0. Thus, in this
case S∗ equals the Markov boundary. SVM-based FS methods are one attractive option, as there
exist efficient optimization methods for re-computation of the SVM solution after marginalization
(Keerthi, 2002).

4.3 Related Work

We have not been able to find any previous work directly aimed at solving the ALL-RELEVANT
problem. It is related to inference of graphical probability models: for the PD distributions class,
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Figure 5: A contrieved example of the RMB algorithm for a PD distribution faithful to the DAG
shown in black arrows. Numbers denote the relevant features, Y denotes the target vari-
able. As in Theorem 18, Mi denotes Markov boundaries and Zi denotes marginalized
nodes. Note that the marginal distributions from step 2 onwards may not be PD, so ab-
sence of arrows should not be interpreted as independencies.

ALL-RELEVANT can be solved by inferring a Bayesian network and then taking SA to be the con-
nected component of Y in that network. However, this is less efficient than our approach, since
Bayesian network inference is asymptotically NP-hard, even in the very restricted PD class (Chick-
ering et al., 2004). Certainly, such a strategy seems inefficient as it attempts to ”solve a harder
problem as an intermediate step” (by inferring a detailed model of the data distribution merely to
find the set SA), thus violating Vapnik’s famous principle (Vapnik, 2000, pp. 39).

On the other hand, several methods have been proposed for solving MINIMAL-OPTIMAL that
in fact attempt to find all relevant features, since they do not assume f > 0 and therefore cannot
rule out the weakly relevant ones. These include FOCUS (Almuallim and Dietterich, 1991), which
considers the special case of binary X and noise-free labels; RELIEF (Kira. and Rendell, 1992),
a well-known approximate procedure based on nearest-neighbors; Markov blanket filtering (Koller
and Sahami, 1996; Yu and Liu, 2004), which considers the special case of marginal dependencies
(and is therefore fundamentally different from RMB, despite the similar name). All known methods
are either approximate or have exponential time-complexity.

5. Conclusion

In this paper, we have explored an alternative approach to the feature selection (FS) problem: in-
stead of designing suboptimal methods for the intractable full problem, we propose consistent and
efficient (polynomial-time) methods for a restricted data distribution class. We find that a very mild
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restriction to strictly positive distributions is sufficient for the MINIMAL-OPTIMAL problem to be
tractable (Figure 1). Therefore, we conclude that it is tractable in most practical settings.

We have also identified a different feature selection problem, that of discovering all relevant fea-
tures (ALL-RELEVANT). This problem is much harder than MINIMAL-OPTIMAL, and has hitherto
received little attention in the machine learning field. With the advent of major new applications
in the bioinformatics field, where identifying features per se is often a more important goal than
building accurate predictors, we anticipate that ALL-RELEVANT will become a very important re-
search problem in the future. We have herein provided a first analysis, proved that the problem
is intractable even for strictly positive distributions, and proposed two consistent, polynomial-time
algorithms for more restricted classes (Figure 1). We hope that these results will inspire further
research in this novel and exciting direction.
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Appendix A. Lemmas

For completeness, we here give a proof of the uniqueness of the Bayes classifier for strictly positive
distributions.

Lemma 19 For any strictly positive distribution f (x,y), the Bayes classifier g∗ is unique in the
sense that, for every classifier g, it holds that R(g) = R(g∗) iff the Lebesgue measure of {x : g(x) &=
g∗(x)} is zero.

Proof By Theorem 2.2 of Devroye et al. (1996), the risk of any classifier g can be written as

R(g) = R(g∗)+
Z

X

∣∣∣∣maxy p(y|x)− 1
2

∣∣∣∣1{g(x)#=g∗(x)} f (x)dx.

By property (ii) of Definition 1, we have maxy p(y|x) &= 1/2 almost everywhere. Thus, the integral
is zero iff the Lebesgue measure of {x : g(x) &= g∗(x)} is zero.

Lemma 20 For any conditional distribution p(y|x), it holds that

P(p(Y |Xi,Ri)= p(Y |X ′
i ,Ri)) = 1 ⇐⇒ P(p(Y |Xi,Ri)= p(Y |Ri)) = 1

provided that Xi,X ′
i are independent and identically distributed.
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Proof Assume that the left-hand side holds. Then we must have

P(p(Y |Xi,Ri) = p0) = 1

for some p0 constant with respect to Xi. But

p(y|ri) =
f (ri,y)
f (ri)

=
R

Xi p(y|x) f (x)R
Xi f (x)

=
p0

R
Xi f (x)R

Xi f (x)
= p0

with probability 1, which implies the right-hand side. The converse is trivial.

The following lemmas are needed for the correctness proof for the RMB algorithm.

Lemma 21 Let f (x) be any PCWT distribution, so that a unique undirected minimal I-map G of
f exists. Then, for any shortest path Zm1 = {Z1, . . .Zm} between Z1 and Zm in G, it holds that
Z1 &⊥Zm|X \Zm1 .

Proof The proof is by induction. For m= 2, the lemma follows immediately from the definition of
the minimal I-map (Pearl, 1988). Also, it holds that

Zi &⊥Zi+1|X \{Zi,Zi+1} (10)
Zi⊥Z j|X \{Zi,Z j}, j > i+1. (11)

Take any distinct Zi+1i ,Zk and assume that Zi⊥ Zi+1|X \ {Zi,Zi+1,Zk}. Then Zi⊥ {Zi+1,Zk}|X \
{Zi,Zi+1,Zk} by contraction with (11), and therefore Zi⊥Zi+1|X \ {Zi,Zi+1} by weak union. This
contradicts (10), so we conclude that

Zi &⊥Zi+1|X \{Zi,Zi+1,Zk}. (12)

Next, take any sequence Z i+2i . Applying (12), we obtain Zi &⊥ Zi+1|X \ Zi+2i and Zi+1 &⊥ Zi+2|X \
Zi+2i . Using weak transitivity implies either Zi &⊥Zi+2|X \Zi+2i or Zi &⊥Zi+2|X \{Zi,Zi+2}. The latter
alternative contradicts (11), so we conclude

Zi &⊥Zi+2|X \Zi+2i . (13)

Finally, take any Zi,Z j,Zk such that neither Zi,Z j nor Z j,Zk are consecutive in the path Zm1 . Using
(11) with intersection (Theorem 25) and decomposition (Theorem 23), we find

Zi⊥Z j|X \{Zi,Z j}
Z j⊥Zk|X \{Z j,Zk}

}
=⇒ Zi⊥Z j|X \{Zi,Z j,Zk}. (14)

Equations (12),(13) and (14) show that the properties (10) and (11) hold also for the shortened path
Z′1, . . . ,Z′m−1 given by Z′

1 = Z1 and Z′i = Zi+1,2 ≤ i < m (removing Z2). The lemma follows from
(10) by induction.

Lemma 22 For any PCWT distribution f (x,y), a feature Xk is relevant iff there exists a path
Zm1 = {Z1, . . .Zm} in the minimal I-map of f (x) between some Z1 ∈ M = M(Y |X) and Zm = Xk.
In particular, for such a path it holds that Y &⊥Zm|X \Zm1 .
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Proof If Zm ∈ M (that is, m = 1), the lemma is trivial. Consider any Zm /∈ M. First, assume that
there exists no path Zm1 . Then Zm⊥M|S for any S ⊆ X \M \ {Zm} by Lemma 21. Fix such an S.
Since Zm⊥Y |M ∪ S, contraction and weak union gives Zm⊥M|{Y}∪ S. Again using Zm⊥M|S,
weak transitivity gives

Zm⊥Y |S ∨ Y ⊥M|S.

The latter alternative is clearly false; we conclude Zm⊥Y |S. Next, fix any S′ ⊆M. By decomposi-
tion, Zm⊥M|S =⇒ Zm⊥S′|S. Combining with the above result, by the composition property

Zm⊥S′|S
Zm⊥Y |S

}
=⇒ Zm⊥{Y}∪S′|S.

Finally, weak union gives Zm⊥Y |S∪S′. Since S∪S′ is any subset of X \{Zm}, we conclude that Zm
is irrelevant.

For the converse, assume that there exists a path Zm1 . By Lemma 21, we have Z1 &⊥Zm|X \Zm1 .
Also, since Z1 ∈ M and Zm2 ∩M = /0, it holds that Y &⊥Z1|S for any S that contains M \ {Z1}. In
particular, take S= X \Zm1 . Weak transitivity then gives

Z1 &⊥Zm|X \Zm1
Y &⊥Z1|X \Zm1

}
=⇒ Zm &⊥Y |X \Zm1 ∨ Zm &⊥Y |X \Zm2 .

But the latter alternative is false, since X \ Zm2 contains M by assumption. We conclude that
Zm &⊥Y |X \Zm1 and that Zm is relevant.

Appendix B. Distribution Classes and Properties

The following two theorems are given by Pearl (1988) and concern any probability distribution.

Theorem 23 Let R,S,T,U denote any disjoint subsets of variables. Any probability distribution
satisfies the following properties:

Symmetry: S⊥T |R =⇒ T ⊥S|R
Decomposition: S⊥T ∪U |R =⇒ S⊥T |R
Weak union: S⊥T ∪U |R =⇒ S⊥T |R∪U
Contraction: S⊥T |R∪U ∧ S⊥U |R =⇒ S⊥T ∪U |R

Theorem 24 Let R,S,T,U denote any disjoint subsets of variables and let γ denote a single vari-
able. Any DAG-faithful probability distribution satisfies the following properties:

Composition: S⊥T |R ∧ S⊥U |R =⇒ S⊥ T ∪U |R
Weak transitivity: S⊥T |R ∧ S⊥T |R∪ γ =⇒ S⊥ γ|R ∨ γ⊥ T |R

The next theorem is a slight modification of that found in Pearl (1988), adapted to our classifi-
cation setting and our Definition 1.
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Theorem 25 Let R,S,T be disjoint subsets of X and let Y be the target variable. Any strictly
positive distribution f (x,y) satisfies the intersection property

Y ⊥ R|(S∪T ) ∧ Y ⊥ T |(S∪R) ⇒ Y ⊥ (R∪T )|S.

Proof Using Y ⊥ R|(S∪T ) we find

f (r,s, t,y) = p(y|r,s, t) f (r,s, t)
= p(y|s, t) f (r,s, t).

Similarly, from Y ⊥ T |(S∪R) we find that f (r,s, t,y) = p(y|s,r) f (r,s, t). Because f (r,s, t) > 0, it
follows that p(y|s,r) = p(y|s, t). Therefore both of these probabilities must be constant w.r.t. R and
T , that is,

p(y|s, t) = p(y|s,r) = p(y|s).

Hence, Y ⊥ R|S and Y ⊥ T |S holds. The intersection property follows by contraction.

Corollary 26 For any strictly positive distribution f (x,y), the Markov boundary M(Y |X) is unique.

Proof Let S be the set of all Markov blankets of Y , S = {T ⊆ X : Y ⊥X \T |T}. Let T1, T2 be any
two Markov blankets in S. By Theorem 25 the intersection property holds, so with T ′ = T1∩T2 we
obtain {

Y ⊥X \T1|T ′∪ (T1 \T ′)
Y ⊥X \T2|T ′∪ (T2 \T ′) =⇒ Y ⊥X \T ′|T ′

Hence T ′ is a Markov blanket of Y . Continuing in this fashion for all members of S, we obtain the
uniqueM(Y |X) = T1∩T2∩ · · ·∩T|S|.
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Abstract
We consider the PC-algorithm (Spirtes et al., 2000) for estimating the skeleton and equivalence
class of a very high-dimensional directed acyclic graph (DAG) with corresponding Gaussian dis-
tribution. The PC-algorithm is computationally feasible and often very fast for sparse problems
with many nodes (variables), and it has the attractive property to automatically achieve high com-
putational efficiency as a function of sparseness of the true underlying DAG. We prove uniform
consistency of the algorithm for very high-dimensional, sparse DAGs where the number of nodes
is allowed to quickly grow with sample size n, as fast as O(na) for any 0< a< ∞. The sparseness
assumption is rather minimal requiring only that the neighborhoods in the DAG are of lower order
than sample size n. We also demonstrate the PC-algorithm for simulated data.
Keywords: asymptotic consistency, DAG, graphical model, PC-algorithm, skeleton

1. Introduction

Graphical models are a popular probabilistic tool to analyze and visualize conditional independence
relationships between random variables (see Edwards, 2000; Lauritzen, 1996; Neapolitan, 2004).
Major building blocks of the models are nodes, which represent random variables and edges, which
encode conditional dependence relations of the enclosing vertices. The structure of conditional
independence among the random variables can be explored using the Markov properties.

Of particular current interest are directed acyclic graphs (DAGs), containing directed rather than
undirected edges, which restrict in a sense the conditional dependence relations. These graphs can
be interpreted by applying the directed Markov property (see Lauritzen, 1996). When ignoring the
directions of a DAG, we get the skeleton of a DAG. In general, it is different from the conditional
independence graph (CIG), see Section 2.1. (Thus, estimation methods for directed graphs cannot be
easily borrowed from approaches for undirected CIGs.) As we will see in Section 2.1, the skeleton
can be interpreted easily and thus yields interesting insights into the dependence structure of the
data.

Estimation of a DAG from data is difficult and computationally non-trivial due to the enormous
size of the space of DAGs: the number of possible DAGs is super-exponential in the number of
nodes (see Robinson, 1973). Nevertheless, there are quite successful search-and-score methods
for problems where the number of nodes is small or moderate. For example, the search space
may be restricted to trees as in MWST (Maximum Weight Spanning Trees; see Chow and Liu,
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1968; Heckerman et al., 1995), or a greedy search is employed. The greedy DAG search can be
improved by exploiting probabilistic equivalence relations, and the search space can be reduced
from individual DAGs to equivalence classes, as proposed in GES (Greedy Equivalent Search, see
Chickering, 2002a). Although this method seems quite promising when having few or a moderate
number of nodes, it is limited by the fact that the space of equivalence classes is conjectured to grow
super-exponentially in the nodes as well (Gillispie and Perlman, 2001). Bayesian approaches for
DAGs, which are computationally very intensive, include Spiegelhalter et al. (1993) and Heckerman
et al. (1995).

An interesting alternative to greedy or structurally restricted approaches is the PC-algorithm
(after its authors, Peter and Clark) from Spirtes et al. (2000). It starts from a complete, undirected
graph and deletes recursively edges based on conditional independence decisions. This yields an
undirected graph which can then be partially directed and further extended to represent the under-
lying DAG (see later). The PC-algorithm runs in the worst case in exponential time (as a function
of the number of nodes), but if the true underlying DAG is sparse, which is often a reasonable
assumption, this reduces to a polynomial runtime.

In the past, interesting hybrid methods have been developed. Very recently, Tsamardinos et al.
(2006) proposed a computationally very competitive algorithm. We also refer to their paper for a
quite exhaustive numerical comparison study among a wide range of algorithms.

We focus in this paper on estimating the equivalence class and the skeleton of DAGs (corre-
sponding to multivariate Gaussian distributions) in the high-dimensional context, that is, the number
of nodes p may be much larger than sample size n. We prove that the PC-algorithm consistently es-
timates the equivalence class and the skeleton of an underlying sparse DAG, as sample size n→ ∞,
even if p= pn = O(na) (0≤ a< ∞) is allowed to grow very quickly as a function of n.

Our implementation of the PC-algorithm is surprisingly fast, as illustrated in Section 4.5, and it
allows us to estimate a sparse DAG even if p is in the thousands. For the high-dimensional setting
with p# n, sparsity of the underlying DAG is crucial for statistical consistency and computational
feasibility. Our analysis seems to be the first establishing a provable correct algorithm (in an asymp-
totic sense) for high-dimensional DAGs which is computationally feasible.

The question of consistency of a class of methods including the PC algorithm has been treated
in Spirtes et al. (2000) and Robins et al. (2003) in the context of causal inference. They show
that, assuming only faithfulness (explained in Section 2), uniform consistency cannot be achieved,
but pointwise consistency can. In this paper, we extend this in two ways: We provide a set of
assumptions which renders the PC-algorithm to be uniformly consistent. More importantly, we
show that consistency holds even as the number of nodes and neighbors increases and the size of the
smallest non-zero partial correlations decrease as a function of the sample size. Stricter assumptions
than the faithfulness condition that render uniform consistency possible have been also proposed in
Zhang and Spirtes (2003). A rather general discussion on how many samples are needed to learn
the correct structure of a Bayesian Network can be found in Zuk et al. (2006).

The problem of finding the equivalence class of a DAG has a substantial overlap with the prob-
lem of feature selection: If the equivalence class is found, the Markov Blanket of any variable (node)
can be read of easily. Given a set of nodes V and suppose that M is the Markov Blanket of node X ,
then X is conditionally independent of V\M given M. Thus, M contains all and only the relevant
features for X . In recent years, many other approaches to feature selection have been developed for
high dimensions. See for example Goldenberg and Moore (2004) for an approach dealing with very
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high dimensions or Ng (1998) for a rather general approach dealing with bounds for generalization
errors.

2. Finding the Equivalence Class of a DAG

In this section, we first present the main concepts. Then, we give a detailed description of the
PC-algorithm.

2.1 Definitions and Preliminaries

A graphG= (V,E) consists of a set of nodes or verticesV = {1, . . . , p} and a set of edges E ⊆V×V ,
that is, the edge set is a subset of ordered pairs of distinct nodes. In our setting, the set of nodes
corresponds to the components of a random vector X ∈ Rp. An edge (i, j) ∈ E is called directed if
(i, j) ∈ E but ( j, i) /∈ E; we then use the notation i→ j. If both (i, j) ∈ E and ( j, i) ∈ E, the edge
is called undirected; we then use the notation i− j. A directed acyclic graph (DAG) is a graph G
where all edges are directed and not containing any cycle.

If there is a directed edge i→ j, node i is said to be a parent of node j. The set of parents of
node j is denoted by pa( j). The adjacency set of a node j in graph G, denoted by ad j(G, j), are
all nodes i which are directly connected to j by an edge (directed or undirected). The elements of
ad j(G, j) are also called neighbors of or adjacent to j.

A probability distribution P on Rp is said to be faithful with respect to a graph G if conditional
independencies of the distribution can be inferred from so-called d-separation in the graph G and
vice-versa. More precisely: consider a random vector X ∼ P. Faithfulness of P with respect to G
means: for any i, j ∈V with i )= j and any set s⊆V ,

X(i) and X( j) are conditionally independent given {X(r); r ∈ s}
⇔ node i and node j are d-separated by the set s.

The notion of d-separation can be defined via moral graphs; details are described in Lauritzen (1996,
Prop. 3.25). We remark here that faithfulness is ruling out some classes of probability distributions.
An example of a non-faithful distribution is given in Spirtes et al. (2000, Chapter 3.5.2). On the other
hand, non-faithful distributions of the multivariate normal family (which we will limit ourselves to)
form a Lebesgue null-set in the space of distributions associated with a DAG G, see Meek (1995a).

The skeleton of a DAG G is the undirected graph obtained from G by substituting undirected
edges for directed edges. A v-structure in a DAG G is an ordered triple of nodes (i, j,k) such that G
contains the directed edges i→ j and k→ j, and i and k are not adjacent in G.

It is well known that for a probability distribution Pwhich is generated from a DAGG, there is a
whole equivalence class of DAGs with corresponding distribution P (see Chickering, 2002a, Section
2.2 ). Even when having infinitely many observations, we cannot distinguish among the different
DAGs of an equivalence class. Using a result from Verma and Pearl (1990), we can characterize
equivalent classes more precisely: Two DAGs are equivalent if and only if they have the same
skeleton and the same v-structures.

A common tool for visualizing equivalence classes of DAGs are completed partially directed
acyclic graphs (CPDAG). A partially directed acyclic graph (PDAG) is a graph where some edges
are directed and some are undirected and one cannot trace a cycle by following the direction of
directed edges and any direction for undirected edges. Equivalence among PDAGs or of PDAGs
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and DAGs can be decided as for DAGs by inspecting the skeletons and v-structures. A PDAG is
completed, if (1) every directed edge exists also in every DAG belonging to the equivalence class
of the DAG and (2) for every undirected edge i− j there exists a DAG with i→ j and a DAG with
i← j in the equivalence class.

CPDAGs encode all independence informations contained in the corresponding equivalence
class. It was shown in Chickering (2002b) that two CPDAGs are identical if and only if they repre-
sent the same equivalence class, that is, they represent a equivalence class uniquely.

Although the main goal is to identify the CPDAG, the skeleton itself already contains interesting
information. In particular, if P is faithful with respect to a DAG G,

there is an edge between nodes i and j in the skeleton of DAG G
⇔ for all s⊆V \{i, j}, X(i) and X( j) are conditionally dependent

given {X(r); r ∈ s}, (1)

(Spirtes et al., 2000, Th. 3.4). This implies that if P is faithful with respect to a DAG G, the skeleton
of the DAG G is a subset (or equal) to the conditional independence graph (CIG) corresponding
to P. (The reason is that an edge in a CIG requires only conditional dependence given the set
V \ {i, j}). More importantly, every edge in the skeleton indicates some strong dependence which
cannot be explained away by accounting for other variables. We think, that this property is of value
for exploratory analysis.

As we will see later in more detail, estimating the CPDAG consists of two main parts (which will
naturally structure our analysis): (1) Estimation of the skeleton and (2) partial orientation of edges.
All statistical inference is done in the first part, while the second is just application of deterministic
rules on the results of the first part. Therefore, we will put much more emphasis on the analysis of
the first part. If the first part is done correctly, the second will never fail. If, however, there occur
errors in the first part, the second part will be more sensitive to it, since it depends on the inferential
results of part (1) in greater detail. Therefore, when dealing with a high-dimensional setting (large
p, small n), the CPDAG is harder to recover than the skeleton. Moreover, the interpretation of
the CPDAG depends much more on the global correctness of the graph. The interpretation of the
skeleton, on the other hand, depends only on a local region and is thus more reliable.

We conclude that, if the true underlying probability mechanisms are generated from a DAG,
finding the CPDAG is the main goal. The skeleton itself oftentimes already provides interesting
insights, and in a high-dimensional setting it might be interesting to use the undirected skeleton
as an alternative target to the CPDAG when finding a useful approximation of the CPDAG seems
hopeless.

As mentioned before, we will in the following describe two main steps. First, we will discuss
the part of the PC-algorithm that leads to the skeleton. Afterwards we will complete the algorithm
by discussing the extensions for finding the CPDAG. We will use the same format when discussing
theoretical properties of the PC-algorithm.

2.2 The PC-algorithm for Finding the Skeleton

A naive strategy for finding the skeleton would be to check conditional independencies given all
subsets s ⊆ V \ {i, j} (see Formula 1), that is, all partial correlations in the case of multivariate
normal distributions as first suggested by Verma and J.Pearl (1991). This would become computa-
tionally infeasible and statistically ill-posed for p larger than sample size. A much better approach
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is used by the PC-algorithm which is able to exploit sparseness of the graph. More precisely, we
apply the part of the PC-algorithm that identifies the undirected edges of the DAG.

2.2.1 POPULATION VERSION FOR THE SKELETON

In the population version of the PC-algorithm, we assume that perfect knowledge about all necessary
conditional independence relations is available. We refer here to the PC-algorithm what others call
the first part of the PC-algorithm; the other part is described in Algorithm 2 in Section 2.3.

Algorithm 1 The PCpop-algorithm
1: INPUT: Vertex Set V , Conditional Independence Information
2: OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the skeleton
afterwards)

3: Form the complete undirected graph C̃ on the vertex set V.
4: ! = −1; C = C̃
5: repeat
6: ! = !+1
7: repeat
8: Select a (new) ordered pair of nodes i, j that are adjacent inC such that |ad j(C, i)\{ j}|≥ !
9: repeat
10: Choose (new) k⊆ ad j(C, i)\{ j} with |k| = !.
11: if i and j are conditionally independent given k then
12: Delete edge i, j
13: Denote this new graph byC
14: Save k in S(i, j) and S( j, i)
15: end if
16: until edge i, j is deleted or all k⊆ ad j(C, i)\{ j} with |k| = ! have been chosen
17: until all ordered pairs of adjacent variables i and j such that |ad j(C, i) \ { j}| ≥ ! and k ⊆

ad j(C, i)\{ j} with |k| = ! have been tested for conditional independence
18: until for each ordered pair of adjacent nodes i, j: |ad j(C, i)\{ j}| < !.

The (first part of the) PC-algorithm is given in Algorithm 1. The maximal value of ! in Algo-
rithm 1 is denoted by

mreach = maximal reached value of !. (2)

The value of mreach depends on the underlying distribution.
A proof that this algorithm produces the correct skeleton can be easily deduced from Theorem

5.1 in Spirtes et al. (2000). We summarize the result as follows.

Proposition 1 Consider a DAG G and assume that the distribution P is faithful to G. Denote the
maximal number of neighbors by q=max1≤ j≤p |ad j(G, j)|. Then, the PCpop-algorithm constructs
the true skeleton of the DAG. Moreover, for the reached level: mreach ∈ {q−1,q}.

A proof is given in Section A.
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2.2.2 SAMPLE VERSION FOR THE SKELETON

For finite samples, we need to estimate conditional independencies. We limit ourselves to the Gaus-
sian case, where all nodes correspond to random variables with a multivariate normal distribution.
Furthermore, we assume faithful models, which means that the conditional independence relations
correspond to d-separations (and so can be read off the graph) and vice versa; see Section 2.1.

In the Gaussian case, conditional independencies can be inferred from partial correlations.

Proposition 2 Assume that the distribution P of the random vector X is multivariate normal. For
i )= j ∈ {1, . . . , p}, k ⊆ {1, . . . , p}\{i, j}, denote by ρi, j|k the partial correlation between X(i) and
X( j) given {X(r); r ∈ k}. Then, ρi, j|k = 0 if and only if X(i) and X( j) are conditionally independent
given {X(r); r ∈ k}.

Proof: The claim is an elementary property of the multivariate normal distribution, see Lauritzen
(1996, Prop. 5.2.). !

We can thus estimate partial correlations to obtain estimates of conditional independencies. The
sample partial correlation ρ̂i, j|k can be calculated via regression, inversion of parts of the covariance
matrix or recursively by using the following identity: for some h ∈ k,

ρi, j|k =
ρi, j|k\h−ρi,h|k\hρ j,h|k\h√
(1−ρ2i,h|k\h)(1−ρ2j,h|k\h)

.

In the following, we will concentrate on the recursive approach. For testing whether a partial corre-
lation is zero or not, we apply Fisher’s z-transform

Z(i, j|k) =
1
2
log

(1+ ρ̂i, j|k
1− ρ̂i, j|k

)
. (3)

Classical decision theory yields then the following rule when using the significance level α. Reject
the null-hypothesis H0(i, j|k) : ρi, j|k = 0 against the two-sided alternative HA(i, j|k) : ρi, j|k )= 0 if√
n− |k|−3|Z(i, j|k)| >Φ−1(1−α/2), where Φ(·) denotes the cdf of N (0,1).
The sample version of the PC-algorithm is almost identical to the population version in Section

2.2.1.

The PC-algorithm

Run the PCpop(m)-algorithm as described in Section 2.2.1 but replace in line 11 of Algorithm
1 the if-statement by
if

√
n− |k|−3|Z(i, j|k)|≤Φ−1(1−α/2) then.

The algorithm yields a data-dependent value m̂reach,n which is the sample version of (2).
The only tuning parameter of the PC-algorithm is α, which is the significance level for testing

partial correlations. See Section 4 for further discussion.
As we will see below in Section 3, the algorithm is asymptotically consistent even if p is much

larger than n but the DAG is sparse.
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2.3 Extending the Skeleton to the Equivalence Class

While finding the skeleton as in Algorithm 1, we recorded the separation sets that made edges drop
out in the variable denoted by S. This was not necessary for finding the skeleton itself, but will be
essential for extending the skeleton to the equivalence class. In Algorithm 2 we describe the work
of Pearl (2000, p.50f) to extend the skeleton to a CPDAG belonging to the equivalence class of the
underlying DAG.

Algorithm 2 Extending the skeleton to a CPDAG
INPUT: Skeleton Gskel , separation sets S
OUTPUT: CPDAG G
for all pairs of nonadjacent variables i, j with common neighbour k do
if k /∈ S(i, j) then
Replace i− k− j in Gskel by i→ k← j

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated application
of the following three rules:
R1 Orient j− k into j→ k whenever there is an arrow i→ j such that i and k are nonadjacent.
R2 Orient i− j into i→ j whenever there is a chain i→ k→ j.
R3 Orient i− j into i→ j whenever there are two chains i− k→ j and i− l → j such that k and
l are nonadjacent.
R4 Orient i− j into i→ j whenever there are two chains i−k→ l and k→ l→ j such that k and
l are nonadjacent.

The output of Algorithm 2 is a CPDAG, which was first proved by Meek (1995b).

3. Consistency for High-Dimensional Data

As in Section 2, we will first deal with the problem of finding the skeleton. Consecutively, we will
extend the result to finding the CPDAG.

3.1 Finding the Skeleton

We will show that the PC-algorithm from Section 2.2.2 is asymptotically consistent for the skeleton
of a DAG, even if p is much larger than n but the DAG is sparse. We assume that the data are
realizations of i.i.d. random vectors X1, . . . ,Xn with Xi ∈ Rp from a DAG G with corresponding
distribution P. To capture high-dimensional behavior, we will let the dimension grow as a function
of sample size: thus, p= pn and also the DAGG=Gn and the distribution P= Pn. Our assumptions
are as follows.

(A1) The distribution Pn is multivariate Gaussian and faithful to the DAG Gn for all n.

(A2) The dimension pn = O(na) for some 0≤ a< ∞.

(A3) The maximal number of neighbors in the DAG Gn is denoted by
qn =max1≤ j≤pn |ad j(G, j)|, with qn = O(n1−b) for some 0< b≤ 1.
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(A4) The partial correlations betweenX(i) andX( j) given {X(r);r∈k} for some set k⊆ {1, . . . , pn}\
{i, j} are denoted by ρn;i, j|k. Their absolute values are bounded from below and above:

inf{|ρi, j|k|; i, j,k with ρi, j|k )= 0}≥ cn, c−1n = O(nd),
for some 0< d < b/2,

sup
n;i, j,k

|ρi, j|k|≤M < 1,

where 0< b≤ 1 is as in (A3).

Assumption (A1) is an often used assumption in graphical modeling, although it does restrict
the class of possible probability distributions (see also third paragraph of Section 2.1); (A2) al-
lows for an arbitrary polynomial growth of dimension as a function of sample size, that is, high-
dimensionality; (A3) is a sparseness assumption and (A4) is a regularity condition. Assumptions
(A3) and (A4) are rather minimal: note that with b= 1 in (A3), for example fixed qn = q < ∞, the
partial correlations can decay as n−1/2+ε for any 0< ε≤ 1/2. If the dimension p is fixed (with fixed
DAG G and fixed distribution P), (A2) and (A3) hold and (A1) and the second part of (A4) remain
as the only conditions. Recently, for undirected graphs the Lasso has been proposed as a computa-
tionally efficient algorithm for estimating high-dimensional conditional independence graphs where
the growth in dimensionality is as in (A2) (see Meinshausen and Bühlmann, 2006). However, the
Lasso approach can be inconsistent, even with fixed dimension p, as discussed in detail in Zhao and
Yu (2006).

Theorem 1 Assume (A1)-(A4). Denote by Ĝskel,n(αn) the estimate from the (first part of the) PC-
algorithm in Section 2.2.2 and by Gskel,n the true skeleton from the DAG Gn. Then, there exists
αn → 0 (n→ ∞), see below, such that

IP[Ĝskel,n(αn) = Gskel,n]
= 1−O(exp(−Cn1−2d)) → 1 (n→ ∞) for some 0<C < ∞,

where d > 0 is as in (A4).

A proof is given in the Section A. A choice for the value of the significance level is αn =
2(1−Φ(n1/2cn/2)) which depends on the unknown lower bound of partial correlations in (A4).

3.2 Extending the Skeleton to the Equivalence Class

As mentioned before, all inference is done while finding the skeleton. If this part is completed
perfectly, that is, if there was no error while testing conditional independencies (it is not enough to
assume that the skeleton was estimated correctly), the second part will never fail (see Meek, 1995b).
Therefore, we easily obtain:

Theorem 2 Assume (A1)-(A4). Denote by ĜCPDAG(αn) the estimate from the entire PC-algorithm
in Section 2.2.2 and 2.3 and by GCPDAG the true CPDAG from the DAG G. Then, there exists
αn → 0 (n→ ∞), see below, such that

IP[ĜCPDAG(αn) = GCPDAG]
= 1−O(exp(−Cn1−2d)) → 1 (n→ ∞) for some 0<C < ∞,

where d > 0 is as in (A4).
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A proof, consisting of one short argument, is given in the Section A. As for Theorem 1, we can
choose αn = 2(1−Φ(n1/2cn/2)).

By inspecting the proofs of Theorem 1 and Theorem 2, one can derive explicit error bounds
for the error probabilities. Roughly speaking, this bounding function is the product of a linearly
increasing and an exponentially decreasing term (in n). The bound is loose but for completeness,
we present it in the Appendix.

4. Numerical Examples

We analyze the PC-algorithm for finding the skeleton and the CPDAG using various simulated
data sets. The numerical results have been obtained using the R-package pcalg. For an extensive
numerical comparison study of different algorithms, we refer to Tsamardinos et al. (2006).

4.1 Simulating Data

In this section, we analyze the PC-algorithm for the skeleton using simulated data. In order to
simulate data, we first construct an adjacency matrix A as follows:

1. Fix an ordering of the variables.

2. Fill the adjacency matrix A with zeros.

3. Replace every matrix entry in the lower triangle (below the diagonal) by independent realiza-
tions of Bernoulli(s) random variables with success probability s where 0 < s < 1. We will
call s the sparseness of the model.

4. Replace each entry with a 1 in the adjacency matrix by independent realizations of a
Uniform([0.1,1]) random variable.

This then yields a matrix A whose entries are zero or in the range [0.1,1]. The corresponding DAG
draws a directed edge from node i to node j if i< j and A ji )= 0. The DAGs (and skeletons thereof)
that are created in this way have the following property: IE[Ni] = s(p− 1), where Ni is the number
of neighbors of a node i.

Thus, a low sparseness parameter s implies few neighbors and vice-versa. The matrix A will be
used to generate the data as follows. The value of the random variable X (1), corresponding to the
first node, is given by

ε(1) ∼ N(0,1),
X (1) = ε(1),

and the values of the next random variables (corresponding to the next nodes) can be computed
recursively as

ε(i) ∼ N(0,1),

X (i) =
i−1

∑
k=1

AikX (k) + ε(i) (i= 2, . . . , p),

where all ε(1), . . . ,ε(p) are independent.
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4.2 Choice of Significance Level

In Section 3 we provided a value of the significance level αn = 2(1−Φ(n1/2cn/2)). Unfortunately,
this value is not constructive, since it depends on the unknown lower bound of partial correlations in
(A4). To get a feeling for good values of the significance level in the domain of realistic parameter
settings, we fitted a wide range of parameter settings and compared the quality of fit for different
significance levels.

Assessing the quality of fit is not quite straightforward, since one has to examine simultaneously
both the true positive rate (TPR) and false positive rate (FPR) for a meaningful comparison. We fol-
low an approach suggested by Tsamardinos et al. (2006) and use the Structural Hamming Distance
(SHD). Roughly speaking, this counts the number of edge insertions, deletions and flips in order
to transfer the estimated CPDAG into the correct CPDAG. Thus, a large SHD indicates a poor fit,
while a small SHD indicates a good fit.

We fitted 40 replicates to all combinations of

• α ∈ {0.00005,0.0001,0.0005,0.001,0.005,0.01,0.05,0.1} ,

• p ∈ {7,15,40,70,100} ,

• n ∈ {30,100,300,1000,3000,10000,30000} ,

• E[N] ∈ {2,5} ,

(where E[N] is the average neighborhood size) and evaluated the SHD. Each value of α was used 40
times on each of the 70 possible parameter settings, and we then computed the average SHD over
the 70 parameter settings.

The result is shown in Figure 1. One can see that the average SHD achieves a minimum in the
region around α = 0.005 and α = 0.01. For higher or lower significance levels, the average SHD
increases; the increase for bigger significance levels is much more pronounced. We analyzed the
results of the simulation (see Figure 1) using pairwise Wilcoxon-Tests and Bonferroni correction. It
turns out that α = 0.005 and α = 0.01 yield significantly lower average SHD than the other values
of α. In contrast, there is no significant difference between α = 0.005 and α = 0.001 (without
Bonferroni correction). Of course, if n was of different order of magnitude, a reasonable α should
be a function of n with α= αn → 0 (n→ ∞).

4.3 Performance for Different Parameter Settings

In this section, we give an overview over the performance in terms of the true positive rate (TPR)
and false positive rate (FPR) for the skeleton and the SHD for the CPDAG. In order to keep the
overview at a manageable size, we restrict the significance level to α = 0.01. This was one of
the two settings minimizing the average SHD as described in the previous section. The remaining
parameters will be chosen as follows:

• p ∈ {7,40,100} ,

• n ∈ {30,100,300,1000,3000,10000,30000} ,

• E[N] ∈ {2,5} .
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Figure 1: Average Structural Hamming Distance (ave SHD) with 95% confidence intervals. For
each value of α, the average SHD was averaged over 70 parameter settings using 40
replicates each. One can see that the average SHD is minimized for significance levels
between α= 0.005 and α= 0.01.

The overview is given in Figure 2. As expected, the fit for a dense graph (triangles; E[N] = 5)
is worse than the fit for a sparse graph (circles; E[N] = 2). While the TPR and the SHD show a
clear tendency with increasing sample size, the behavior of FPR is not so clear. The latter seems
surprising at first sight but is due to the fact that we used the same α= 0.01 for all n.

4.4 Properties in High-Dimensional Setting

In this section, we study the behaviour of the error rates in a high-dimensional setting. The number
of variables increases exponentially, the number of samples increases linearly and the expected
neighborhood size increases sub-linearly. By inspecting the theory, we would expect the error rates
to stay constant or even decrease. Table 1 shows the parameter setting of a small numerical study
addressing this question. Note that p increases exponentially, n increases linearly and the expected
neighborhood size E[N] = 0.2

√
n increases sub-linearly. We used α= 0.05 and the results are based

on 20 simulation runs.

Figure 3 shows boxplots of the TPR and the FPR over 20 replicates of this study. One can easily
see that the TPR increases and the FPR decreases with sample size, although the number of p= pn
grows fast and E[N] grows slowly with n. This confirms our theory very clearly.

We should note, that while the number of neighbors to a given variable may be growing almost
as fast as n, so that the number of neighbors is increasing with sample size, the percentage of
true among all possible edges is going down with n. So in one sense, the sparsity in terms of
percentage of true edges of the DAGs is decreasing, and in another sense the sparsity in terms of the
neighborhood size is increasing with n.
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Figure 2: Performance of the PC-algorithm for different parameter settings, showing the mean of
TPR, FPR and SHD together with 95% confidence intervals. The triangles represent
parameter settings where E[N] = 5, while the circles represent parameter settings where
E[N] = 2.

p n E[N] TPR FPR
9 50 1.4 0.61 (0.03) 0.023 (0.005)
27 100 2.0 0.70 (0.02) 0.011 (0.001)
81 150 2.4 0.753 (0.007) 0.0065 (0.0003)
243 200 2.8 0.774 (0.004) 0.0040 (0.0001)
729 250 3.2 0.794 (0.004) 0.0022 (0.00004)
2187 300 3.5 0.805 (0.002) 0.0012 (0.00002)

Table 1: The number of variables p increases exponentially, the sample size n increases linearly
and the expected neighborhood size E[N] increases sub-linearly. As supported by theory,
the TPR increases and the FPR decreases in this setting. The results are based on using
α= 0.05, 20 simulation runs, and standard deviations are given in brackets.
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Figure 3: While the number of variables p increases exponentially, the sample size n increases lin-
early and the expected neighborhood size E[N] increases sub-linearly, the TPR increases
and the FPR decreases. See Table 1 for a more detailed specification of the parameters.

4.5 Computational Complexity

Our theoretical framework in Section 3 allows for large values of p. The computational complexity
of the PC-algorithm is difficult to evaluate exactly, but the worst case is bounded by

O(pm̂reach) which is with high probability bounded by O(pq) (4)

as a function of dimensionality p; here, q is the maximal size of the neighborhoods as described in
assumption (A3) in Section 3. We note that the bound may be very loose for many distributions.
Thus, for the worst case where the complexity bound is achieved, the algorithm is computationally
feasible if q is small, say q≤ 3, even if p is large. For non-worst cases, however, we can still do the
computations for much larger values of q and fairly dense graphs, for example some nodes j having
neighborhoods of size up to |ad j(G, j)| = 30.

We provide a small example of the processor time for estimating a CPDAG by using the PC-
algorithm. The runtime analysis was done on an AMD Athlon 64 X2 Dual Core Processor 5000+
with 2.6 GHz and 4 GB RAM running on Linux and using R 2.4.1. The number of variables varied
between p= 10 and p= 1000 while the number of samples was fixed at n= 1000. The sparseness
was either E[N] = 2 or E[N] = 8. For each parameter setting, 10 replicates were used. In each case,
the significance level used in the PC-algorithm was α= 0.01. The average processor time together
with its standard deviation for estimating both the skeleton and the CPDAG is given in Table 2.
Graphs of p = 1000 nodes and 8 neighbors on average could be estimated in about 25 minutes,
while networks with up to p = 100 nodes could be estimated in about a second. The additional
time spent for finding the CPDAG from the skeleton is comparable for both neighborhood sizes and
varies between a couple to almost 100 percent of the time needed to estimate the skeleton. The
percentage tends to decrease with increasing number of variables.

Figure 4 gives a graphical impression of the results of this example. The sparse graphs (solid
line with circles) were estimated faster than the dense graphs. While the line for the dense graph
is very straight, the line for the sparse graphs has a positive curvature. Note, that this is a log-log
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plot; therefore, the slope of the lines indicates the exponent of polynomial growth. In this case,
both curves follow very roughly a line with slope two indicating quadratic growth. The positive
curvature of the solid line would indicate exponential growth; theory tells us, that this is not possible.
One possible explanation for the positive curvature is the fact, that with increasing p, the maximal
neighborhood size (which was not controlled in the simulation) is likely to increase. This would
gradually increase the exponent in the polynomial growth of the upper bound in Formula (4), thus
yielding a positive curvature.

p E[N] Ĝskel ĜCPDAG
10 2 0.037 (0.004) 0.072 (0.005)
10 8 0.093 (0.005) 0.124 (0.006)
30 2 0.15 (0.02) 0.23 (0.02)
30 8 0.84 (0.05) 0.93 (0.05)
50 2 0.33 (0.01) 0.48 (0.02)
50 8 2.2 (0.06) 2.4 (0.06)
100 2 1.03 (0.05) 1.49 (0.05)
100 8 8.9 (0.3) 9.4 (0.27)
300 2 8.3 (0.1) 13.8 (0.13)
300 8 89 (3) 95 (3)
1000 2 116 (0.5) 262 (0.8)
1000 8 1300 (60) 1445 (59)

Table 2: The average processor time (Athl. 64, 2.6 GHz, 4 GB) for estimating the skeleton (Ĝskel)
or the CPDAG (ĜCPDAG) for different DAGs in seconds, with standard errors in brackets.
We used α= 0.01 and sample size n= 1000.

5. R-Package pcalg

The R-package pcalg can be used to estimate from data the underlying skeleton or equivalence class
of a DAG. To use this package, the statistics software R needs to be installed. Both R and the R-
package pcalg are available free of charge at http://www.r-project.org. For low-dimensional
problems (but not for p in the hundreds or thousands), there are a number of other implementations
of the PC-algorithm that are also worth mentioning:

• Hugin at http://www.hugin.com .

• Murphy’s Bayes Network toolbox at http://bnt.sourceforge.net .

• Tetrad IV at http://www.phil.cmu.edu/projects/tetrad .

In the following, we show an example of how to generate a random DAG, draw samples and infer
from data the skeleton and the equivalence class of the original DAG using the R-package pcalg.
The line width of the edges in the resulting skeleton and CPDAG can be adjusted to correspond to
the reliability of the estimated dependencies. (The line width is proportional to the smallest value
of

√
n− |k|−3 Z(i, j,k) causing an edge, see also 3. Therefore, thick lines are reliable).
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Figure 4: Average processor time over 10 runs together with 95% confidence intervals. Triangles
correspond to dense (E[N] = 8), circles to sparse (E[N] = 2) underlying DAGs. We used
α= 0.01 and sample size n= 1000.

library(pcalg)
## define parameters
p <- 10 # number of random variables
n <- 10000 # number of samples
s <- 0.4 # sparsness of the graph

For simulating data as described in Section 4.1:

## generate random data
set.seed(42)
g <- randomDAG(p,s) # generate a random DAG
d <- rmvDAG(n,g) # generate random samples

Then we estimate the underlying skeleton by using the function pcAlgo and extend the skeleton to
the CPDAG by using the function udag2cpdag.

gSkel <-
pcAlgo(d,alpha=0.05) # estimate of the skeleton

gCPDAG <-
udag2cpdag(gSkel)

The CPDAG can also be estimated directly using

gCPDAG <-
pcAlgo(d,alpha=0.05, directed=TRUE) # estimate of the CPDAG

The results can be easily plotted using the following commands:
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Figure 5: Plots generated using the R-package pcalg as described in Section 5. (a) The true DAG.
(b) The estimated skeleton using the R-function pcAlgo with α = 0.05 and n = 10000.
Line width encodes the reliability (z-values) of the dependence estimates (thick lines are
reliable). (c) The estimated CPDAG using the R-function udag2cpdag. Double-headed
arrows indicate undirected edges.

plot(g)
plot(gSkel,zvalue.lwd=TRUE)
plot(gCPDAG,zvalue.lwd=TRUE)

The original DAG is shown in Figure 5(a). The estimated skeleton and the estimated CPDAG are
shown in Figure 5(b) and Figure 5(c), respectively. Note the differing line width, which indicates
the reliability (z-values as in Formula 3) of the involved statistical tests (thick lines are reliable).

6. Conclusions

We show that the PC-algorithm is asymptotically consistent for the equivalence class of the DAG
(represented by the CPDAG) and its skeleton with corresponding very high-dimensional, sparse
Gaussian distribution. Moreover, the PC-algorithm is computationally feasible for such high-dimen-
sional, sparse problems. Putting these two facts together, the PC-algorithm is established as a
method (so far the only one) which is computationally feasible and provably correct, in the sense
of uniform consistency, for high-dimensional DAGs. Sparsity, in terms of the maximal size of the
neighborhoods of the true underlying DAG, is crucial for statistical consistency (assumption (A3)
and Theorems 1 and 2) and for computational feasibility with at most a polynomial complexity (see
Formula 4) as a function of dimensionality.

We emphasize that the skeleton of a DAG oftentimes provides interesting insights, and in a high-
dimensional setting it is quite sensible to use the undirected skeleton as a simpler but more realistic
target rather than the entire CPDAG. Software for the PC-algorithm is available as explained in
Section 5.
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Appendix A. Proofs

In the following, we give the proofs of all our theorems.

A.1 Proof of Proposition 1

Consider X with distribution P. Since P is faithful to the DAG G, conditional independence of X(i)

and X( j) given {X(r); r ∈ k} (k ⊆ V \ {i, j}) is equivalent to d-separation of nodes i and j given
the set k (see Spirtes et al., 2000, Th. 3.3). Thus, the population PCpop-algorithm as formulated
in Section 2.2.1 coincides with the one from Spirtes et al. (2000) which is using the concept of
d-separation, and the first claim about correctness of the skeleton follows from Spirtes et al. (2000,
Th. 5.1., Ch. 13).

The second claim about the value of mreach can be proved as follows. First, due to the definition
of the PCpop-algorithm and the fact that it constructs the correct skeleton, mreach ≤ q. We now
argue that mreach ≥ q−1. Suppose the contrary. Then, mreach ≤ q−2: we could then continue with
a further iteration in the algorithm since mreach + 1 ≤ q− 1 and there is at least one node j with
neighborhood-size |ad j(G, j)| = q: that is, the reached stopping level would be at least q−1 which
is a contradiction to mreach ≤ q−2. !

A.2 Analysis of the PC-Algorithm

When analyzing the consistency of the PC-algorithm, the convergence properties of partial correla-
tions turn out to be crucial. Therefore, we first concentrate on partial correlations and then shift our
focus to the analysis of the PC-algorithm.

A.2.1 ANALYSIS OF PARTIAL CORRELATIONS

We first establish uniform consistency of estimated partial correlations. Denote by ρ̂i, j and ρi, j
the sample and population correlation between X(i) and X( j). Likewise, ρ̂i, j|k and ρi, j|k denote
the sample and population partial correlation between X(i) and X( j) given {X(r);r ∈ k}, where
k⊆ {1, . . . , pn}\{i, j}.

Many partial correlations (and non-partial correlations) are tested for being zero during the run
of the PC(mn)-algorithm. For a fixed ordered pair of nodes i, j, the conditioning sets are elements of

Kmn
i, j = {k⊆ {1, . . . , pn}\{i, j} : |k|≤ mn}

whose cardinality is bounded by

|Kmn
i, j |≤ Bpmnn for some 0< B< ∞. (5)
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Lemma 1 Assume (A1) (without requiring faithfulness) and supn,i$= j |ρn;i, j|≤M < 1 (compare with
(A4)). Then, for any 0< γ≤ 2,

sup
i, j,k∈Kmn

i, j

IP[|ρ̂n;i, j−ρn;i, j| > γ] ≤C1(n−2)exp
(

(n−4) log(4− γ2

4+ γ2
)
)

,

for some constant 0<C1 < ∞ depending on M only.

Proof: We make substantial use of Hotelling (1953)’s work. Denote by fn(ρ̂,ρ) the probability
density function of the sample correlation ρ̂= ρ̂n+1;i, j based on n+1 observations and by ρ= ρn+1;i, j
the population correlation. (It is notationally easier to work with sample size n+1; and we just use
the abbreviated notations with ρ̂ and ρ). For 0< γ≤ 2,

IP[|ρ̂−ρ| > γ] = IP[ρ̂< ρ− γ]+ IP[ρ̂> ρ+ γ].

It can be shown, that fn(r,ρ) = fn(−r,−ρ), see Hotelling (1953, p.201). This symmetry implies,

IPρ[ρ̂< ρ− γ] = IPρ̃[ρ̂> ρ̃+ γ] with ρ̃= −ρ. (6)

Thus, it suffices to show that IP[ρ̂> ρ+ γ] = IPρ[ρ̂> ρ+ γ] decays exponentially in n, uniformly for
all ρ.

It has been shown (Hotelling, 1953, p.201, Formula (29)), that for −1< ρ< 1,

IP[ρ̂> ρ+ γ] ≤ (n−1)Γ(n)√
2πΓ(n+ 1

2)
M0(ρ+ γ)(1+

2
1− |ρ|) (7)

with

M0(ρ+ γ) =
Z 1

ρ+γ
(1−ρ2)

n
2 (1− x2)

n−3
2 (1−ρx)−n+

1
2 dx

=
Z 1

ρ+γ
(1−ρ2)

ñ+3
2 (1− x2)

ñ
2 (1−ρx)−ñ−

5
2 dx (using ñ= n−3)

≤ (1−ρ2)
3
2

(1− |ρ|) 52

Z 1

ρ+γ
(
√
1−ρ2

√
1− x2

1−ρx
)ñdx

≤ (1−ρ2)
3
2

(1− |ρ|) 52
2 max
ρ+γ≤x≤1

(
√
1−ρ2

√
1− x2

1−ρx
)ñ. (8)

We will show now that gρ(x) =
√
1−ρ2

√
1−x2

1−ρx < 1 for all ρ+ γ ≤ x ≤ 1 and −1 < ρ < 1 (in fact,
ρ≤ 1− γ due to the first restriction). Consider

sup
−1<ρ<1;ρ+γ≤x≤1

gρ(x) = sup
−1<ρ≤1−γ

√
1−ρ2

√
1− (ρ+ γ)2

1−ρ(ρ+ γ)

=

√
1− γ2

4

√
1− γ2

4

1− (−γ2 )( γ2)
=
4− γ2

4+ γ2
< 1 for all 0< γ≤ 2. (9)
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Therefore, for −1 < −M ≤ ρ ≤ M < 1 (see assumption (A4)) and using Formulas (7)-(9) to-
gether with the fact that Γ(n)

Γ(n+ 1
2 )
≤ const. with respect to n, we have

IP[ρ̂> ρ+ γ]

≤ (n−1)Γ(n)√
2πΓ(n+ 1

2)
(1−ρ2)

3
2

(1− |ρ|) 52
2(
4− γ2

4+ γ2
)ñ(1+

2
1− |ρ|)

≤ (n−1)Γ(n)√
2πΓ(n+ 1

2)
1

(1−M)
5
2
2(
4− γ2

4+ γ2
)ñ(1+

2
1−M

) ≤

≤ C1(n−1)(
4− γ2

4+ γ2
)ñ =C1(n−1)exp((n−3) log(

4− γ2

4+ γ2
)),

where 0 < C1 < ∞ depends on M only, but not on ρ or γ. By invoking Formula (6), the proof is
complete (note that the proof assumed sample size n+1). !

Lemma 1 can be easily extended to partial correlations, as shown by Fisher (1924), using pro-
jections for Gaussian distributions.

Lemma 2 (Fisher, 1924)
Assume (A1) (without requiring faithfulness). If the cumulative distribution function of ρ̂n;i, j is
denoted by F(·|n,ρn;i, j), then the cdf of the sample partial correlation ρ̂n;i, j|k with |k| = m < n−1
is F [·|n−m,ρn;i, j|k]. That is, the effective sample size is reduced by m.

A proof can be found in Fisher (1924); see also Anderson (1984). !
Lemma 1 and 2 yield then the following.

Corollary 1 Assume (the first part of) (A1) and (the upper bound in) (A4). Then, for any γ> 0,

sup
i, j,k∈Kmn

i, j

IP[|ρ̂n;i, j|k−ρn;i, j|k| > γ]

≤ C1(n−2−mn)exp
(

(n−4−mn) log(
4− γ2

4+ γ2
)
)

,

for some constant 0<C1 < ∞ depending on M from (A4) only.

The PC-algorithm is testing partial correlations after the z-transform g(ρ)= 0.5log((1+ρ)/(1−
ρ)). Denote by Zn;i, j|k = g(ρ̂n;i, j|k) and by zn;i, j|k = g(ρn;i, j|k).

Lemma 3 Assume the conditions from Corollary 1. Then, for any γ> 0,

sup
i, j,k∈Kmn

i, j

IP[|Zn;i, j|k− zn;i, j|k| > γ]

≤ O(n−mn)
(
exp((n−4−mn) log(

4− (γ/L)2

4+(γ/L)2
))+ exp(−C2(n−mn))

)

for some constant 0<C2 < ∞ and L= 1/(1− (1+M)2/4).
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Proof: A Taylor expansion of the z-transform g(ρ) = 0.5log((1+ρ)/(1−ρ)) yields:

Zn;i, j|k− zn;i, j|k = g′(ρ̃n;i, j|k)(ρ̂n;i, j|k−ρn;i, j|k), (10)

where |ρ̃n;i, j|k−ρn;i, j|k| ≤ |ρ̂n;i, j|k−ρn;i, j|k|. Moreover, g′(ρ) = 1/(1−ρ2). By applying Corollary
1 with γ= κ= (1−M)/2 we have

sup
i, j,k∈Kmn

i, j

IP[|ρ̃n;i, j|k−ρn;i, j|k|≤ κ]

> 1−C1(n−2−mn)exp(−C2(n−mn)). (11)

Since

g′(ρ̃n;i, j|k) =
1

1− ρ̃2n;i, j|k
=

1
1− (ρn;i, j|k+(ρ̃n;i, j|k−ρn;i, j|k))2

≤ 1
1− (M+κ)2

if |ρ̃n;i, j|k−ρn;i, j|k|≤ κ,

where we also invoke (the second part of) assumption (A4) for the last inequality. Therefore, since
κ= (1−M)/2 yielding 1/(1− (M+κ)2) = L, and using Formula (11), we get

sup
i, j,k∈Kmn

i, j

IP[|g′(ρ̃n;i, j|k)|≤ L]

≥ 1−C1(n−2−mn)exp(−C2(n−mn)). (12)

Since |g′(ρ)|≥ 1 for all ρ, we obtain with Formula (10):

sup
i, j,k∈Kmn

i, j

IP[|Zn;i, j|k− zn;i, j|k| > γ] (13)

≤ sup
i, j,k∈Kmn

i, j

IP[|g′(ρ̃n;i, j|k)| > L]+ sup
i, j,k∈Kmn

i, j

IP[|ρ̂n;i, j|k−ρn;i, j|k| > γ/L].

Formula (13) follows from elementary probability calculations: for two random variables U,V
with |U |≥ 1 (|U | corresponding to |g′(ρ̃)| and |V | to the difference |ρ̂−ρ|),

IP[|UV | > γ] = IP[|UV | > γ, |U | > L]+ IP[|UV | > γ,1≤ |U |≤ L]
≤ IP[|U | > L]+ IP[|V | > γ/L].

The statement then follows from Formulas (13), (12) and Corollary 1. !

A.2.2 PROOF OF THEOREM 1

For the analysis of the PC-algorithm, it is useful to consider a more general version as shown in
Algorithm 3.

The PC-algorithm in Section 2.2.1 equals the PCpop(mreach)-algorithm . There is the obvious
sample version, the PC(m)-algorithm, and the PC-algorithm in Section 2.2.2 is then same as the
PC(m̂reach)-algorithm, where m̂reach is the sample version of Formula (2).

The population version PCpop(mn)-algorithm when stopped at level mn =mreach,n constructs the
true skeleton according to Proposition 1. Moreover, the PCpop(m)-algorithm remains to be correct
when using m≥mreach,n. The following Lemma extends this result to the sample PC(m)-algorithm.
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Algorithm 3 The PCpop(m)-algorithm
INPUT: Stopping level m, Vertex Set V , Conditional Independence Information
OUTPUT: Estimated skeleton C, separation sets S (only needed when directing the skeleton
afterwards)
Form the complete undirected graph C̃ on the vertex set V.
! = −1; C = C̃
repeat

! = !+1
repeat
Select a (new) ordered pair of nodes i, j that are adjacent inC such that |ad j(C, i)\{ j}|≥ !
repeat
Choose (new) k⊆ ad j(C, i)\{ j} with |k| = !.
if i and j are conditionally independent given k then
Delete edge i, j
Denote this new graph byC.
Save k in S(i, j) and S( j, i)

end if
until edge i, j is deleted or all k⊆ ad j(C, i)\{ j} with |k| = ! have been chosen

until all ordered pairs of adjacent variables i and j such that |ad j(C, i) \ { j}| ≥ ! and k ⊆
ad j(C, i)\{ j} with |k| = ! have been tested for conditional independence

until ! = m or for each ordered pair of adjacent nodes i, j: |ad j(C, i)\{ j}| < !.

Lemma 4 Assume (A1), (A2), (A3) where 0 < b ≤ 1 and (A4) where 0 < d < b/2. Denote by
Ĝskel,n(αn,mn) the estimate from the PC(mn)-algorithm in Section 2.2.2 and by Gskel,n the true
skeleton from the DAG Gn. Moreover, denote by mreach,n the value described in (2). Then, for
mn ≥ mreach,n, mn = O(n1−b) (n→ ∞), there exists αn → 0 (n→ ∞) such that

IP[Ĝskel,n(αn,mn) = Gskel,n]
= 1−O(exp(−Cn1−2d)) → 1 (n→ ∞) for some 0<C < ∞.

Proof: An error occurs in the sample PC-algorithm if there is a pair of nodes i, j and a con-
ditioning set k ∈ Kmn

i, j (although the algorithm is typically only going through a random subset of
Kmn
i, j ) where an error event Ei, j|k occurs; Ei, j,k denotes that “an error occurred when testing partial
correlation for zero at nodes i, j with conditioning set k”. Thus,

IP[an error occurs in the PC(mn)-algorithm]
≤ P[

[

i, j,k∈Kmn
i j

Ei, j|k] ≤ O(pmn+2n ) sup
i, j,k∈Kmn

i j

IP[Ei, j|k], (14)

using that the cardinality of the set |{i, j,k ∈ Kmn
i j }| = O(pmn+2n ), see also Formula 5. Now

Ei, j|k = E Ii, j|k∪E
II
i, j|k, (15)

where

type I error E Ii, j|k :
√
n− |k|−3|Zi, j|k| >Φ−1(1−α/2) and zi, j|k = 0,

type II error E IIi, j|k :
√
n− |k|−3|Zi, j|k|≤Φ−1(1−α/2) and zi, j|k )= 0.
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Choose α= αn = 2(1−Φ(n1/2cn/2)), where cn is from (A4). Then,

sup
i, j,k∈Kmn

i, j

IP[E Ii, j|k] = sup
i, j,k∈Kmn

i, j

IP[|Zi, j|k− zi, j|k| > (n/(n− |k|−3))1/2cn/2]

≤ O(n−mn)exp(−C3(n−mn)c2n), (16)

for some 0<C3 < ∞ using Lemma 3 and the fact that log( 4−δ24+δ2 ) ∼−δ2/2 as δ→ 0. Furthermore,
with the choice of α= αn above,

sup
i, j,k∈Kmn

i, j

IP[E IIi, j|k] = sup
i, j,k∈Kmn

i, j

IP[|Zi, j|k|≤
√
n/(n− |k|−3)cn/2]

≤ sup
i, j,k∈Kmn

i, j

IP[|Zi, j|k− zi, j|k| > cn(1−
√
n/(n− |k|−3)/2)],

because infi, j;k∈Kmn
i, j
|zi, j|k|≥ cn since |g(ρ)|≥ |ρ| for all ρ and using assumption (A4). By invoking

Lemma 3 we then obtain:

sup
i, j,k∈Kmn

i, j

IP[E IIi, j|k] ≤ O(n−mn)exp(−C4(n−mn)c2n) (17)

for some 0<C4 < ∞. Now, by Formulas (14)-(17) we get

IP[an error occurs in the PC(mn)-algorithm]
≤ O(pmn+2n (n−mm)exp(−C5(n−mn)c2n))
≤ O(na(mn+2)+1 exp(−C5(n−mn)n−2d))

= O
(
exp

(
a(mn+2) log(n)+ log(n)−C5(n1−2d−mnn−2d)

))
= o(1),

because n1−2d dominates all other terms in the argument of the exp-function due to the assumption
in (A4) that d < b/2. This completes the proof. !

Lemma 4 leaves some flexibility for choosing mn. The PC-algorithm yields a data-dependent
reached stopping level m̂reach,n, that is, the sample version of (2).

Lemma 5 Assume (A1)-(A4). Then,

IP[m̂reach,n = mreach,n] = 1−O(exp(−Cn1−2d)) → 1 (n→ ∞)
for some 0<C < ∞,

where d > 0 is as in (A4).

Proof: Consider the population algorithm PCpop(m): the reached stopping level satisfiesmreach ∈
{qn− 1,qn}, see Proposition 1. The sample PC(mn)-algorithm with stopping level in the range
of mreach ≤ mn = O(n1−b), coincides with the population version on a set A having probability
P[A] = 1−O(exp(−Cn1−2d)), see the last formula in the proof of Lemma 4. Hence, on the set A,
m̂reach,n = mreach ∈ {qn−1,qn}. The claim then follows from Lemma 4. !

Lemma 4 and 5 together complete the proof of Theorem 1.
Because there are faithful distributions which require mn =mreach,n ∈ {qn−1,qn} for consistent

estimation with the PC(m)-algorithm, Lemma 5 indicates that the PC-algorithm, stopping at m̂reach,n,
yields with high probability the smallest m = mn which is universally consistent for all faithful
distributions.
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A.2.3 PROOF OF THEOREM 2

As mentioned in Section 2.3, due to the result of Meek (1995b), it is sufficient to estimate the correct
skeleton and separation sets. The proof of Theorem 1 also covers the issue of choosing the correct
separation sets S, that is, the probability of estimating the correct sets S goes to one as n → ∞.
Hence, the proof of Theorem 2 is completed.

Appendix B. Bound for error probability of PC-algorithm

M and c are the upper and lower bounds for partial correlations, as defined in Section 3.1. p is
the number of variables, q is the maximal size of neighbors, n is the sample size. The significance
level is chosen as suggested in the proofs, that is, α= 2(1−Φ(n1/2c/2)). By closely inspecting the
proofs, one can derive the following upper bound for the error probability of the PC-algorithm:

IP[Ĝ )= G] ≤ pq+2C1(n−1−q)(exp(−C2(n−q))+ exp((n−4−q) f (L,
c
2
)))

where L= 1
1−(1+M)2/4 ,C1 = 1+2/(1−M)

(1−M)5/2 ,C2 = − log( 16−(1−M)2
16+(1−M)2 ) and f (x,y) = log( 4−(y/x)2

4+(y/x)2 ).
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Abstract

We propose a method for the classification of more than two classes, from high-dimensional fea-
tures. Our approach is to build a binary decision tree in a top-down manner, using the optimal
margin classifier at each split. We implement an exact greedy algorithm for this task, and compare
its performance to less greedy procedures based on clustering of the matrix of pairwise margins.
We compare the performance of the “margin tree” to the closely related “all-pairs” (one versus one)
support vector machine, and nearest centroids on a number of cancer microarray data sets. We also
develop a simple method for feature selection. We find that the margin tree has accuracy that is
competitive with other methods and offers additional interpretability in its putative grouping of the
classes.

Keywords: maximum margin classifier, support vector machine, decision tree, CART

1. Introduction

We consider the problem of classifying objects into two or more classes, from a set of features. Our
main application area is the classification of cancer patient samples from gene expression measure-
ments.

When the number of classes K is greater than two, maximum margin classifiers do not gen-
eralize easily. Various approaches have been suggested, some based on the two-class classifier
(“one-versus-all” and “one-versus one’ or “all pairs’), and others modifying the support vector loss
function to deal directly with more than two classes (Weston and Watkins, 1999; Lee et al., 2004;
Rosset et al., 2005). These latter proposals have a nice generalization of the maximum margin
property of the two class support vector classifier. Statnikov et al. (2004) contains a comparison of
different support vector approaches to classification from microarray gene expression cancer data
sets. While these methods can produce accurate predictions, they lack interpretability. In particular,
with a large number of classes, the investigator may want not only a classifier but also a meaningful
organization of the classes.

In this paper we propose a tree-based maximum margin classifier. Figure 1 illustrates our idea.
There are three classes and two features, as shown in the top left panel. We seek the line that
partitions the classes into two groups, that has the maximum margin. (The margin is the minimum
distance to the decision line among all of the data points.)

c©2007 Robert Tibshirani and Trevor Hastie.
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The best line is shown in the top right panel, splitting class 1 from classes 2 and 3. We then
focus just on classes 2 and 3, and their maximum margin classifier is shown in the bottom left. The
overall top-down classifier is summarized by the binary tree shown in the bottom right panel.

We employ strategies like this for larger numbers of classes, producing a binary decision tree
with a maximum margin classifier at each junction in the tree.

In Section 2 we give details of the margin tree classifier. Section 3 shows the application of
the margin tree to a number of cancer microarray data sets. For construction of the tree, all of the
classifiers in the margin tree use all of the features (genes). In Section 4 we discuss approaches to
feature selection. Finally in Section 5 we have some further comments and a discussion of related
work in the literature.

2. The Margin Tree Classifier

Denote the gene expression profiles by x j = (x1 j,x2 j, . . .xp j) for j = 1,2, . . .N samples falling into
one of K classes. The features (genes) are indexed by i= 1,2, . . . p.

Consider first the case of K = 2 classes, C1 and C2. The class outcome is denoted by y j =
±1. The maximum margin classifier is defined by the constant β0 and the weight vector β with
components ∑iβ

2
i = 1 that maximizes the gap between the classes, or the “margin”. Formally,

(β0,β) = argmax(C)
where y j(β0+∑

i
βixi j) ≥C ∀ j.

The achieved marginM = 2 ·C. In the examples of this paper, p>N so that all classes are separable
andM > 0. We have some discussion of the non-separable case in Section 5.

Now suppose we have K > 2 classes. We consider three different strategies for constructing the
tree. These use different criteria for deciding on the best partition of the classes into two groups at
each juncture. Having settled on the partition, we use the maximum margin classifier between the
two groups of classes, for future predictions.

Let M( j,k) be the maximum margin between classes j and k. Also, let G1,G2 be groups of
classes, and let M(G1,G2) denote the maximum margin between the groups. That is, M(G1,G2) is
the maximum margin between two hyper-classes: all classes in G1 and all classes in G2. Finally,
denote a partition by P= {G1,G2}.

Then we consider three approaches for splitting a node in the decision tree:

(a) Greedy: maximizeM(G1,G2) over all partitions P.

(b) Single linkage: Find the partition P yielding the largest marginM0 so that minM( j1, j2) ≤M0
for j1, j2 ∈ Gk,k = 1,2 and minM( j1, j2) ≥M for j1 ∈ G1, j2 ∈ G2.

(c) Complete linkage: Find the partition P yielding the largest marginM0 so that maxM( j1, j2) ≤
M0 for j1, j2 ∈ Gk,k = 1,2 and maxM( j1, j2) ≥M0 for j1 ∈ G1, j2 ∈ G2.

The greedy method finds the partition that maximizes the resulting margin over all possible
partitions. Although this may seem prohibitive to compute for a large number of classes, we derive
an exact, reasonably fast algorithm for this approach (details below).

The second and third methods require some explanation. They are derived from the bottom up
(as opposed to top-down) clustering methods. Each one requires just the

(K
2
)
margin classifiers for
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Figure 1: Simple illustration of a margin tree. There are three classes shown in the top left panel.
The largest margin is between class 1 and (2,3), with the optimal classifier shown on the
top right. Then we separate class 2 from 3, in the bottom left. These top-down splits are
summarized in the margin tree in the bottom right.
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each pair of classes. Single linkage clustering successively merges groups based on the minimum
distance between any pair of items in each of the group. Complete linkage clustering does the same,
but using the maximum distance. Now having built a clustering tree bottom-up, we can interpret
each split in the tree in a top-down manner, and that is how criteria (b) and (c) above were derived.
In particular it is easy to see that the single and complete linkage problems are solved by single and
complete linkage agglomerative clustering, respectively, applied to the margin matrix M( j1, j2).
Note that we are applying single or complete linkage clustering to the classes of objects C j, while
one usually applies clustering to individual objects.

The greedy method focuses on the form of the final classifier, and tries to optimize that classifi-
cation at each stage. Note that the greedy method cares only about the distance between classes in
the different partitions, and not about the distance between classes within the same partition. Both
the single linkage and complete linkage methods take into account both the between and within
partition distances. We will also see in the next section that the complete linkage method can be
viewed as an approximation to the greedy search.

Figure 2 shows a toy example that illustrates the difference between the greedy and complete
linkage algorithms. There are six classes with circular distributions. The greedy algorithm splits
off group 1,2, and 3 in succession, and then splits off 4,5,6 as a group. This is summarized in the
bottom left panel. The complete linkage algorithm in the bottom right panel instead groups 1,2 and
3 together and 4,5, and 6 together. The complete linkage tree is more balanced and hence may be
more useful biologically.

In the experiments in this paper we find that:

• All three methods produce about the same test set accuracy, and about the same as the all-pairs
maximum margin classifier.

• The complete linkage approach gives more balanced trees, that may be more interpretable that
those from the other two methods; the single linkage and greedy methods tend to produce long
stringy trees that usually split off one class at a time at each branch. The complete linkage
method is also considerably faster to compute than the greedy method.

Thus the complete linkage margin tree emerges as our method of choice. It requires computation of(K
2
)
support vector classifiers for each pair of classes for the complete linkage clustering and then

for the final tree, one computation of a support vector classifier for each node in the tree (at most K
and typically ≈ log2(K) classifiers.)

2.1 An Exact Algorithm for the Greedy Criterion

A key fact is

M(G1,G2) ≤min{M( j1, j2), j1 ∈ G1, j2 ∈ G2}. (1)

That is, the margin between two groups of classes is less than or equal to the smallest margin
between any pair of classes, one chosen from each group.

Now suppose we seek a partition Pwith marginM. Rather than enumerate all possible partitions
(and their associated maximummargin classifiers), we can speed up the computation by constructing
the complete linkage clustering tree, and collapsing all nodes at heightM. We know that all classes
in any collapsed node must be on the same side of the decision plane, since each class has margin
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Figure 2: A toy example illustrating the difference between the greedy and complete linkage algo-
rithms. There are six classes with circular distributions (top panel). The greedy algorithm
splits off groups 1,2, and 3 in succession, and then splits off 4,5,6 as a group. This is sum-
marized in the bottom left panel. The complete linkage algorithm (bottom right panel)
instead groups 1,2 and 3 together, and 4,5, and 6 together. For example, the margin be-
tween classes 1 and 2 is 0.0296, while that between 3 and 4 is less: 0.0256. The height in
each plot is the margin corresponding to each join.

at leastM with every other class in that node. Hence we need only consider partitions that keep the
collapsed nodes intact.

We summarize the algorithm below:

Exact computation of the best greedy split

1. Construct the complete linkage clustering tree based on the margin matrixM( j1, j2).

2. Starting with all classes at the top of the tree, find the partition of each individual class versus
the rest, and also the partition that produces two classes in the complete linkage tree (that
is, make a horizontal cut in the tree to produce two classes). Let M0 be the largest margin
achieved amongst all of these competitors.
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3. Cut the complete linkage tree at heightM0, and collapse all nodes at that height.

4. Consider all partitions of all classes that keep the collapsed nodes intact, and choose the one
that gives maximal margin M̂.

This procedure finds the partition of the classes that yields the maximum margin. We then apply
this procedure in a top-down recursive manner, until the entire margin tree is grown.

This algorithm is exact in that it finds the best split at each node in the top-down tree building
process. This is because the best greedy split must be among the candidates considered in step 4,
since as mentioned above, all classes in a collapsed node must be on the same side of the decision
plane. But it is not exact in a global sense, that is, it does not find the best tree among all possible
trees.

Note that if approximation (1) is an equality, then the complete linkage tree is itself the greedy
margin classifier solution. This follows because M̂ =M0 in the above algorithm.

As an example, consider the problem in Figure 2. We cut the complete linkage tree to produce
two nodes (5,4,6) and (1,2,3). We compute the achieved margin for this split and also the margin for
partitions (1) vs. (2,3,4,5,6), (2) vs. (1,3,4,5,6) etc. We find that the largest margin corresponds to
(1) vs. (2,3,4,5,6), and so this becomes the first split in the greedy tree. We then repeat this process
on the daughter subtrees: in this case, just (2,3,4,5,6). Thus we consider (2) vs. (3,4,5,6) , (3) vs
(2,4,5,6) etc, as well as the complete linkage split (2,3) vs (4,5,6). The largest margin is achieved
by the latter, so me make that split and continue the process.

2.2 Example: 14 Cancer Microarray Data

As an example, we consider the microarray cancer data of Ramaswamy et al. (2001): there are
16,063 genes and 198 samples in 14 classes. The authors provide training and test sets of size 144
and 54 respectively.

The margin trees are shown in Figure 3. The length of each (non-terminal) arm corresponds
to the margin that is achieved by the classifier at that split. The final classifiers yielded 18, 18
and 19 errors, respectively on the test set. By comparison, the all-pairs support-vector classifier
yielded 20 errors and the nearest centroid classifier had 35 errors. Nearest centroid classification
(e.g., Tibshirani et al., 2001) computes the standardized mean feature vector in each class, and then
assigns a test sample to the class with the closest centroid. Later we do a more comprehensive
comparison of all of these methods. We note that the greedy and single linkage margin tree are
“stringy”, with each partition separating off just one class in most cases. The complete linkage tree
is more balanced, producing some potentially useful subgroupings of the cancer classes.

In this example, full enumeration of the partitions at each node would have required computation
of 16,382 two class maximummargin classifiers. The exact greedy algorithm required only 485 such
classifiers. In general the cost savings can vary, depending on the height M0 of the initial cut in the
complete linkage tree.

Figure 4 displays the margins that were achieved by each method at their collection of splits.
We see that the complete method gives larger margins than the other methods. The largest margin
achieved is about 49,000, corresponding to the split between class CNS and Collerectal and so on..
This is larger than the margin between Leukemia and the rest at the top of the greedy tree. This
shows that the greediness of the exact algorithm can hurt its overall performance in finding large
margin splits.
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Figure 3: Margin trees for the 14-tumor cancer data of Ramaswamy et al. (2001)
.
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Figure 4: 14 tumor cancer data: margins achieved by each method over the collection of splits. The
number of points represented in each boxplot is the number of splits in the corresponding
tree.

SVM(All pairs) MT(Greedy) MT(Single) MT(Complete)
SVM(All pairs) 0 10 11 10
MT(Greedy) 10 0 7 2
MT(Single) 11 7 0 9
MT(Complete) 10 2 9 0

Table 1: Number of disagreements on the test set, for different margin tree-building methods.

Table 1 shows the number of times each classifier disagreed on the test set. The number of
disagreements is quite large. However the methods got almost all of the same test cases correct
(over 90% overlap), and the disagreements occur almost entirely for test cases in which all methods
got the prediction wrong.

Figure 5 shows the test errors at each node of the complete linkage tree, for the 14 tumor data
set.

3. Application to Other Cancer Microarray Data Sets

We applied the methods described earlier to the seven microarray cancer data sets shown in Table
2. In each case we randomly sampled 2/3rds of the data to form a training set, and the balance
of the data became the test set. The sampling was done in a stratified way to retain balance of the
class sizes. This entire process was repeated 50 times, and the mean and standard errors of the
test set misclassification rates are shown in Table 3. The nearest centroid method is as described in
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Figure 5: Test errors for the 14 tumor data set using the complete linkage approach. Error rates at
each decision junction is shown: notice that the errors tend to increase farther down the
tree.

Tibshirani et al. (2001) and uses no shrinkage for feature selection: we discuss feature selection in
Section 4. We see that for problems involving more than 4 or 5 classes, the one-versus-one support
vector classifier and the margin tree methods sometimes offer an advantage over nearest centroids.
The margin tree methods are all very similar to each other and the one-versus-one support vector
classifier.
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Name # Classes # Samples # Features Source
Brain 5 22 5597 Pomeroy et al. (2002)
Lymphoma 3 62 4026 Alizadeh et al. (2000)
Small round blue cell tumors 4 63 2308 Khan et al. (2001)
Stanford 14 261 4718 Munagala et al. (2004)
9 tumors 9 60 5726 Staunton et al. (2001)
11 tumors 11 174 12,533 Su et al. (2001)
14 tumors 14 198 16063 Ramaswamy et al. (2001)

Table 2: Summary of data sets for comparative study
.

Data set Nearest centroids SVM (OVO) MT(Single) MT(Complete) MT(Greedy)
Brain 0.236(0.026) 0.207(0.022) 0.229(0.018) 0.229(0.021) 0.221(0.017)
Lymphoma 0.010(0.006) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
SRBCT 0.065(0.020) 0.011(0.011) 0.014(0.014) 0.014(0.014) 0.014(0.014)
Stanford 0.075(0.006) 0.063(0.006) 0.070(0.005) 0.079(0.007) 0.072(0.005)
9 tumors 0.478(0.009) 0.507(0.014) 0.526(0.013) 0.522(0.014) 0.545(0.014)
11 tumors 0.139(0.006) 0.110(0.005) 0.106(0.005) 0.106(0.005) 0.110(0.005)
14 tumors 0.493(0.007) 0.345(0.006) 0.318(0.007) 0.322(0.007) 0.315(0.007)

Table 3: Mean test error rates (standard errors) over 50 simulations, from various cancer microarray
data sets. SVM (OVO) is the support vector machine, using the one-versus-one approach;
each pairwise classifier uses a large value for the cost parameter, to yield the maximal
margin classifier; MT are the margin tree methods, with different tree-building strategies.

4. Feature Selection

The classifiers at each junction of the margin tree each use all of the features (genes). For in-
terpretability it would be clearly beneficial to reduce the set of genes to a smaller set, if one can
improve, or at least not significantly worsen, its accuracy. How one does this depends on the goal.

The investigator probably wants to know which genes have the largest contribution in each
classifier. For this purpose, we rank each gene by the absolute value of its coefficient β̂ j. Then to
form a reduced classifier, we simply set to zero the first nk coefficients at split k in the margin tree.
We call this “hard-thresholding”.

How do we choose nk? It is not all clear that nk should be the same for each tree split. For
example we might be able to use fewer genes near the top of the tree, where the margins between
the classes is largest.

Our strategy is as follows. We compute reduced classifiers at each tree split, for a range of
values of nk, and for each, the proportion of the full margin achieved by the classifier. Then we use
a common value α for the margin proportion throughout the tree. This strategy allows the classifiers
at different parts of the tree to use different number of genes. In real applications, we use tenfold
cross-validation to estimate the best value for α.

Figure 6 shows the result of applying hard thresholding to the 14-class cancer data. The plot
shows the test error as the margin proportion α is varied. The average number of genes at each of
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Figure 6: 14 tumor data set: Test errors for reduced numbers of genes.

the 13 tree junctions is shown along the horizontal axis. We see that average number of genes can
be reduced from about 16,000 to about 2,000 without too much loss of accuracy. But beyond that,
the test error increases.

Figure 7 shows a more successful application of the feature selection procedure. The figure
shows the result for one training/test split of the 11 class data (12,533 genes) described earlier. With
no feature selection the margin tree (left panel) achieves 4/61 errors, the same as the one-versus one
support vector machine. Hard-thresholding (middle panel) also yields 4 errors, with an average of
just 167 genes per split. The margin proportion is shown at the top of the plot. The right panel shows
the number of genes used as a function of the height of the split in the tree, for margin proportion
0.6.

The feature selection procedure described above is simple and computationally fast. Note that
having identified a set of features to be removed, we simply set their coefficients β̂i to zero. For
reasons of speed and interpretability, we do not recompute the maximum margin classifier in the
subspace of the remaining features (we do however recompute the classifier cutpoint, equal to mid-
point between the classes). How much do we lose in this approximation? For the top and bottom
splits in the tree of Figure 7, Figure 8 shows the margins achieved by the maximummargin classifier
(black points) and the approximation (blue points) as the numbers of genes is reduced. The approx-
imation gives margins remarkably close to the optimal margin until the number of genes drop below
100. Also shown in the figure are the margins achieved by recursive feature elimination (RFE)
(Guyon et al., 2002). This is a full backward stepwise procedure, in which successive coefficients
are dropped and the optimal margin classifier for the remaining features is recomputed. We see that
RFE offers only a small advantage, when the number of genes becomes quite small.
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Figure 7: Results for 11 tumor data set. The left panel shows the margin tree using complete link-
age; the test errors from hard-thresholding are shown in the middle, with the margin
proportion α indicated along the top of the plot; for the tree using α= 0.6, the right panel
shows the resulting number of genes at each split in the tree, as a function of the height
of that split.

4.1 Results on Real Data Sets

Table 4 shows the results of applying the margin tree classifier (complete linkage) with feature
selection, on the data sets described earlier. Tenfold cross-validation was used to choose the margin
fraction parameter α, and both CV error and test set error are reported in the table. Also shown are
results for nearest shrunken centroids (Tibshirani et al., 2001), using cross-validation to choose the
shrinkage parameter. This method starts with centroids for each class, and then shrinks them towards
the overall centroid by soft-thresholding. We see that (a) hard thresholding generally improves upon
the error rate of the full margin tree; (b) margin trees outperform nearest shrunken centroids on the
whole, but not in every case. In some cases, the number of genes used has dropped substantially;
to get smaller number of genes one could look more closely at the cross-validation curve, to check
how quickly it was rising.

If two genes are correlated and both contribute too the classifier, they might both remain in the
model, under the above scheme. One the other hand, if there is a set of many highly correlated
genes that contribute, their coefficients will be diluted and they might all be removed.

Hence it might be desirable to to select among the genes in a more aggressive fashion. There are
a number of approaches one might try here, for example the recursive feature elimination of Guyon
et al. (2002), mentioned above. One could also try the L1-norm support-vector machine (see, for
example, Zhu et al., 2003), but this is also quite slow to compute. Another approach would be to
apply the lasso (Tibshirani, 1997). All of these methods would be worth trying; however they also
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Figure 8: Results for the 11 tumor data set: margins achieved by the maximum margin classifier
using simple hard thresholding without recomputing the weights (black points), with re-
computation (blue points) and recursive feature elimination (red points). Top panel refers
to the top split in the margin tree; bottom panel refers to the bottom split.

suffer from interpretability issues. In particular, the best classifier with say 50 genes might have
only a few genes in common with the best classifier with 100 genes. The hard thresholding method
described above does not suffer from this drawback. It gives a single ranked list of weights for all
genes, for the classifier at each node of the tree.
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Nearest shrunken centroids Margin tree with selection
CV errors Test errors # genes used CV errors Test errors # genes/split

Brain 0.192(0.024) 0.276(0.04) 260(119.3) 0.264(0.011) 0.176(0.02) 483.3(194.3)
Lymphoma 0.022(0.002) 0.005(0.005) 3463.4(126.4) 0.000(0.000) 0.01(0.006) 408.5(145.0)
SRBCT 0.00(0.00) 0.014(0.009) 44.7(6.9) 0.004(0.002) 0.010(0.007) 5.08(8.6)
Stanford 0.064(0.005) 0.080(0.012) 4420.1(254.6) 0.064(0.006) 0.076(0.007) 1518(532.4)
9 tumors 0.381(0.008) 0.400(0.016) 1163.4(527.2) 0.503(0.019) 0.476(0.022) 2678.1(847.1)
11 tumors 0.125(0.004) 0.156(0.009) 4857.8(1685.9) 0.111(0.008) 0.110(0.012) 2720.5(1523.9)
14 tumors 0.397(0.007) 0.400(0.018) 3928.5(1392.8) 0.327(0.01) 0.311(0.015) 7563.8(1990.1)

Table 4: CV and test error rates for nearest shrunken centroids and margin trees with feature se-
lection by simple hard thresholding. The rightmost column reports the average number of
genes used at each split in the tree.

5. Discussion

The margin-tree method proposed here seems well suited to high-dimensional problems with more
than two classes. It has prediction accuracy competitive with multiclass support vector machines
and nearest centroid methods, and provides a hierarchical grouping of the classes.

All of the classifiers considered here use a linear kernel, that is, they use the original input
features. The construction of margin tree could also be done using other kernels, using the support
vector machine framework. The greedy algorithm and linkage algorithms will work without change.
However in the p>N case considered in this paper, a linear SVM can separate the data, so the utility
of a non-linear kernel is not clear. And importantly, the ability to select features would be lost with
a non-linear SVM.

We have restricted attention to the case p>N in which the classes are separable by a hyperplane.
When p<N and the classes may not be separable, our approach can be modified to work in principle
but may not perform well in practice. The nodes of the clustering tree will be impure, that is contain
observations from more than one class. Hence a larger tree—one with more leaves than there are
classes—might be needed to effectively classify the observations.

In addition to the papers on the multiclass support vector classifier mentioned earlier, there is
other work related to our paper. The decision tree methods of Breiman et al. (1984) (“CART”) and
Quinlan (1993) use top-down splitting to form a binary tree, but use other criteria (different from the
margin) for splitting. With p& N, splits on individual predictors can get unwieldy and exhibit high
variance. The use of linear combination splits is closer to our approach, but again it is not designed
for large numbers of predictors. It does not produce a partition of the classes but rather operates on
individual observations.

Closely related to CART’s linear combination splits is the FACT approach of Loh and Vanichse-
takul (1988) and the followup work of Kim and Loh (2001). These use Fisher’s linear discriminant
function to make multi-way splits of each node of the tree. While linear discriminants might per-
form similarly to the support vector classifier, the latter has the maximum margin property which
we have exploited in this paper.

Probably the closest paper to our work is that of Vural and Dy (2004), who use a top-down
binary tree approach. They use K-means clustering of the class means to divide the points in two
groups at each node, before applying a support vector classifier. Bennett and Blue (1997) investigate
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decision trees with support vector classifiers at the node, but do not discuss adaptive construction of
the tree topology. Park and Hastie (2005) propose hierarchical classification methods using nearest
centroid classifiers at each node. They use clustering methods to find the topology of the tree, and
their paper has some ideas in common with this one. In fact, the mixture model used for each
merged node gives a decision boundary that is similar to the support vector classifier. However the
maximummargin classifier used here seems more natural and the overall performance of the margin
tree is better.
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Abstract

Recent work on graphical models for relational data has demonstrated significant improvements in
classification and inference when models represent the dependencies among instances. Despite its
use in conventional statistical models, the assumption of instance independence is contradicted by
most relational data sets. For example, in citation data there are dependencies among the topics of a
paper’s references, and in genomic data there are dependencies among the functions of interacting
proteins. In this paper, we present relational dependency networks (RDNs), graphical models that
are capable of expressing and reasoning with such dependencies in a relational setting. We discuss
RDNs in the context of relational Bayes networks and relational Markov networks and outline the
relative strengths of RDNs—namely, the ability to represent cyclic dependencies, simple methods
for parameter estimation, and efficient structure learning techniques. The strengths of RDNs are
due to the use of pseudolikelihood learning techniques, which estimate an efficient approximation
of the full joint distribution. We present learned RDNs for a number of real-world data sets and eval-
uate the models in a prediction context, showing that RDNs identify and exploit cyclic relational
dependencies to achieve significant performance gains over conventional conditional models. In
addition, we use synthetic data to explore model performance under various relational data char-
acteristics, showing that RDN learning and inference techniques are accurate over a wide range of
conditions.

Keywords: relational learning, probabilistic relational models, knowledge discovery, graphical
models, dependency networks, pseudolikelihood estimation

1. Introduction

Many data sets routinely captured by organizations are relational in nature, yet until recently most
machine learning research focused on “flattened” propositional data. Instances in propositional data
record the characteristics of homogeneous and statistically independent objects; instances in rela-
tional data record the characteristics of heterogeneous objects and the relations among those objects.
Examples of relational data include citation graphs, the World Wide Web, genomic structures, fraud
detection data, epidemiology data, and data on interrelated people, places, and events extracted from
text documents.

c©2007 Jennifer Neville and David Jensen.
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The presence of autocorrelation provides a strong motivation for using relational techniques for
learning and inference. Autocorrelation is a statistical dependency between the values of the same
variable on related entities and is a nearly ubiquitous characteristic of relational data sets (Jensen
and Neville, 2002). For example, hyperlinked web pages are more likely to share the same topic
than randomly selected pages. More formally, we define relational autocorrelation with respect to
an attributed graph G = (V,E), where each node v ∈ V represents an object and each edge e ∈ E
represents a binary relation. Autocorrelation is measured for a set of instance pairs PR related
through paths of length l in a set of edges ER: PR = {(vi,v j) : eik1 ,ek1k2 , ...,ekl j ∈ ER}, where ER =
{ei j} ⊆ E. It is the correlation between the values of a variable X on the instance pairs (vi.x,v j.x)
such that (vi,v j) ∈ PR. Recent analyses of relational data sets have reported autocorrelation in the
following variables:

• Topics of hyperlinked web pages (Chakrabarti et al., 1998; Taskar et al., 2002),

• Industry categorization of corporations that share board members (Neville and Jensen, 2000),

• Fraud status of cellular customers who call common numbers (Fawcett and Provost, 1997;
Cortes et al., 2001),

• Topics of coreferent scientific papers (Taskar et al., 2001; Neville and Jensen, 2003),

• Functions of colocated proteins in a cell (Neville and Jensen, 2002),

• Box-office receipts of movies made by the same studio (Jensen and Neville, 2002),

• Industry categorization of corporations that co-occur in news stories (Bernstein et al., 2003),

• Tuberculosis infection among people in close contact (Getoor et al., 2001), and

• Product/service adoption among customers in close communication (Domingos and Richard-
son, 2001; Hill et al., 2006).

When relational data exhibit autocorrelation there is a unique opportunity to improve model
performance because inferences about one object can inform inferences about related objects. In-
deed, recent work in relational domains has shown that collective inference over an entire data set
results in more accurate predictions than conditional inference for each instance independently (e.g.,
Chakrabarti et al., 1998; Neville and Jensen, 2000; Lu and Getoor, 2003), and that the gains over
conditional models increase as autocorrelation increases (Jensen et al., 2004).

Joint relational models are able to exploit autocorrelation by estimating a joint probability distri-
bution over an entire relational data set and collectively inferring the labels of related instances. Re-
cent research has produced several novel types of graphical models for estimating joint probability
distributions for relational data that consist of non-independent and heterogeneous instances (e.g.,
Getoor et al., 2001; Taskar et al., 2002). We will refer to these models as probabilistic relational
models (PRMs).1 PRMs extend traditional graphical models such as Bayesian networks to relational

1. Several previous papers (e.g., Friedman et al., 1999; Getoor et al., 2001) use the term probabilistic relational model
to refer to a specific model that is now often called a relational Bayesian network [Koller, personal communication].
In this paper, we use PRM in its more recent and general sense.
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domains, removing the assumption of independent and identically distributed instances that under-
lies conventional learning techniques.2 PRMs have been successfully evaluated in several domains,
including the World Wide Web, genomic data, and scientific literature.

Directed PRMs, such as relational Bayes networks3 (RBNs) (Getoor et al., 2001), can model au-
tocorrelation dependencies if they are structured in a manner that respects the acyclicity constraint
of the model. While domain knowledge can sometimes be used to structure the autocorrelation
dependencies in an acyclic manner, often an acyclic ordering is unknown or does not exist. For ex-
ample, in genetic pedigree analysis there is autocorrelation among the genes of relatives (Lauritzen
and Sheehan, 2003). In this domain, the casual relationship is from ancestor to descendent so we
can use the temporal parent-child relationship to structure the dependencies in an acyclic manner
(i.e., parents’ genes will never be influenced by the genes of their children). However, given a set
of hyperlinked web pages, there is little information to use to determine the causal direction of the
dependency between their topics. In this case, we can only represent the autocorrelation between
two web pages as an undirected correlation. The acyclicity constraint of directed PRMs precludes
the learning of arbitrary autocorrelation dependencies and thus severely limits the applicability of
these models in relational domains.4

Undirected PRMs, such as relational Markov networks (RMNs) (Taskar et al., 2002), can rep-
resent and reason with arbitrary forms of autocorrelation. However, research on these models has
focused primarily on parameter estimation and inference procedures. Current implementations of
RMNs do not select features—model structure must be pre-specified by the user. While, in prin-
ciple, it is possible for RMN techniques to learn cyclic autocorrelation dependencies, inefficient
parameter estimation makes this difficult in practice. Because parameter estimation requires multi-
ple rounds of inference over the entire data set, it is impractical to incorporate it as a subcomponent
of feature selection. Recent work on conditional random fields for sequence analysis includes a
feature selection algorithm (McCallum, 2003) that could be extended for RMNs. However, the
algorithm abandons estimation of the full joint distribution and uses pseudolikelihood estimation,
which makes the approach tractable but removes some of the advantages of reasoning with the full
joint distribution.

In this paper, we outline relational dependency networks (RDNs),5 an extension of dependency
networks (Heckerman et al., 2000) for relational data. RDNs can represent and reason with the
cyclic dependencies required to express and exploit autocorrelation during collective inference.
In this regard, they share certain advantages of RMNs and other undirected models of relational
data (Chakrabarti et al., 1998; Domingos and Richardson, 2001; Richardson and Domingos, 2006).
To our knowledge, RDNs are the first PRM capable of learning cyclic autocorrelation dependen-
cies. RDNs also offer a relatively simple method for structure learning and parameter estimation,
which results in models that are easier to understand and interpret. In this regard, they share cer-
tain advantages of RBNs and other directed models (Sanghai et al., 2003; Heckerman et al., 2004).

2. Another class of joint models extend conventional logic programming models to support probabilistic reasoning in
first-order logic environments (Kersting and Raedt, 2002; Richardson and Domingos, 2006). We refer to these models
as probabilistic logic models (PLMs). See Section 5.2 for more detail.

3. We use the term relational Bayesian network to refer to Bayesian networks that have been upgraded to model re-
lational databases. The term has also been used by Jaeger (1997) to refer to Bayesian networks where the nodes
correspond to relations and their values represent possible interpretations of those relations in a specific domain.

4. The limitation is due to the PRMmodeling approach (see Section 3.1), which ties parameters across items of the same
type and can produce cycles in the rolled out inference graph. This issue is discussed in more detail in Section 5.1.

5. This paper continues our previous work on RDNs (Neville and Jensen, 2004).
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The primary distinction between RDNs and other existing PRMs is that RDNs are an approximate
model. RDNs approximate the full joint distribution and thus are not guaranteed to specify a con-
sistent probability distribution. The quality of the approximation will be determined by the data
available for learning—if the models are learned from large data sets, and combined with Monte
Carlo inference techniques, the approximation should be sufficiently accurate.

We start by reviewing the details of dependency networks for propositional data. Then we
describe the general characteristics of PRMs and outline the specifics of RDN learning and inference
procedures. We evaluate RDN learning and inference on synthetic data sets, showing that RDN
learning is accurate for large to moderate-sized data sets and that RDN inference is comparable,
or superior, to RMN inference over a range of data conditions. In addition, we evaluate RDNs on
five real-world data sets, presenting learned RDNs for subjective evaluation. Of particular note,
all the real-world data sets exhibit multiple autocorrelation dependencies that were automatically
discovered by the RDN learning algorithm. We evaluate the learned models in a prediction context,
where only a single attribute is unobserved, and show that the models outperform conventional
conditional models on all five tasks. Finally, we review related work and conclude with a discussion
of future directions.

2. Dependency Networks

Graphical models represent a joint distribution over a set of variables. The primary distinction be-
tween Bayesian networks, Markov networks, and dependency networks (DNs) is that dependency
networks are an approximate representation. DNs approximate the joint distribution with a set of
conditional probability distributions (CPDs) that are learned independently. This approach to learn-
ing results in significant efficiency gains over exact models. However, because the CPDs are learned
independently, DNs are not guaranteed to specify a consistent6 joint distribution, where each CPD
can be derived from the joint distribution using the rules of probability. This limits the applicability
of exact inference techniques. In addition, the correlational DN representation precludes DNs from
being used to infer causal relationships. Nevertheless, DNs can encode predictive relationships (i.e.,
dependence and independence) and Gibbs sampling inference techniques (e.g., Neal, 1993) can be
used to recover a full joint distribution, regardless of the consistency of the local CPDs. We begin
by reviewing traditional graphical models and then outline the details of dependency networks in
this context.

Consider the set of variables X = (X1, ...,Xn) over which we would like to model the joint
distribution p(x) = p(x1, ...,xn). We use upper case letters to refer to random variables and lower
case letters to refer to an assignment of values to the variables.

A Bayesian network for X uses a directed acyclic graph G = (V,E) and a set of conditional
probability distributions P to represent the joint distribution over X. Each node v ∈ V corresponds
to an Xi ∈ X. The edges of the graph encode dependencies among the variables and can be used
to infer conditional independence among variables using notions of d-separation. The parents of
node Xi, denoted PAi, are the set of v j ∈ V such that (v j,vi) ∈ E. The set P contains a conditional
probability distribution for each variable given its parents, p(xi|pai). The acyclicity constraint on G
ensures that the CPDs in P factor the joint distribution into the formula below. A directed graph is
acyclic if there is no directed path that starts and ends at the same variable. More specifically, there

6. In this paper, we use the term consistent to refer to the consistency of the individual CPDs (as Heckerman et al.,
2000), rather than the asymptotic properties of a statistical estimator.
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can be no self-loops from a variable to itself. Given (G,P), the joint probability for a set of values
x is computed with the formula:

p(x) =
n

∏
i=1

p(xi|pai).

A Markov network for X uses an undirected graph U = (V,E) and a set of potential functions
Φ to represent the joint distribution over X. Again, each node v ∈ V corresponds to an Xi ∈ X and
the edges of the graph encode conditional independence assumptions. However, with undirected
graphs, conditional independence can be inferred using simple graph separation. Let C(U) be the
set of cliques in the graph U . Then each clique c ∈ C(U) is associated with a set of variables Xc
and a clique potential φc(xc) which is a non-negative function over the possible values for xc. Given
(U,Φ), the joint probability for a set of values x is computed with the formula:

p(x) =
1
Z

c

∏
i=1

φi(xci),

where Z = ∑X∏
c
i=1 φi(xci) is a normalizing constant, which sums over all possible instantiations of

x to ensure that p(x) is a true probability distribution.

2.1 DN Representation

Dependency networks are an alternative form of graphical model that approximates the full joint
distribution with a set of conditional probability distributions that are each learned independently.
A DN encodes probabilistic relationships among a set of variables X in a manner that combines
characteristics of both undirected and directed graphical models. Dependencies among variables
are represented with a directed graph G = (V,E), where conditional independence is interpreted
using graph separation, as with undirected models. However, as with directed models, dependencies
are quantified with a set of conditional probability distributions P. Each node vi ∈ V corresponds
to an Xi ∈ X and is associated with a probability distribution conditioned on the other variables,
P(vi) = p(xi|x− {xi}). The parents of node i are the set of variables that render Xi conditionally
independent of the other variables (p(xi|pai) = p(xi|x− {xi})), and G contains a directed edge
from each parent node v j to each child node vi ((v j,vi) ∈ E iff X j ∈ pai). The CPDs in P do not
necessarily factor the joint distribution so we cannot compute the joint probability for a set of values
x directly. However, given G and P, a joint distribution can be recovered through Gibbs sampling
(see Section 3.4 for details). From the joint distribution, we can extract any probabilities of interest.

For example, the DN in Figure 1 models the set of variables: X = {X1,X2,X3,X4,X5}. Each
node is conditionally independent of the other nodes in the graph given its immediate neighbors
(e.g., X1 is conditionally independent of {X2,X4} given {X3,X5}). Each node contains a CPD,
which specifies a probability distribution over its possible values, given the values of its parents.

2.2 DN Learning

Both the structure and parameters of DNs are determined through learning the local CPDs. The
DN learning algorithm learns a separate distribution for each variable Xi, conditioned on the other
variables in the data (i.e., X−{Xi}). Any conditional learner can be used for this task (e.g., logistic
regression, decision trees). The CPD is included in the model as P(vi) and the variables selected by
the conditional learner form the parents of Xi (e.g., if p(xi|{x−xi}) =αx j+βxk then PAi = {x j,xk}).
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Figure 1: Example dependency network.

The parents are then reflected in the edges of G appropriately. If the conditional learner is not
selective (i.e., the algorithm does not select a subset of the features), the DN will be fully connected
(i.e., PAi = x−{xi}). In order to build understandable DNs, it is desirable to use a selective learner
that will learn CPDs that use a subset of all available variables.

2.3 DN Inference

Although the DN approach to structure learning is simple and efficient, it can result in an inconsis-
tent network, both structurally and numerically. In other words, there may be no joint distribution
from which each of the CPDs can be obtained using the rules of probability. Learning the CPDs in-
dependently with a selective conditional learner can result in a network that contains a directed edge
from Xi to X j, but not from X j to Xi. This is a structural inconsistency—Xi and X j are dependent but
X j is not represented in the CPD for Xi. In addition, learning the CPDs independently from finite
samples may result in numerical inconsistencies in the parameter estimates. If this is the case, the
joint distribution derived numerically from the CPDs will not sum to one. However, when a DN is
inconsistent, approximate inference techniques can still be used to estimate a full joint distribution
and extract probabilities of interest. Gibbs sampling can be used to recover a full joint distribution,
regardless of the consistency of the local CPDs, provided that each Xi is discrete and its CPD is
positive (Heckerman et al., 2000). In practice, Heckerman et al. (2000) show that DNs are nearly
consistent if learned from large data sets because the data serve a coordinating function to ensure
some degree of consistency among the CPDs.

3. Relational Dependency Networks

Several characteristics of DNs are particularly desirable for modeling relational data. First, learning
a collection of conditional models offers significant efficiency gains over learning a full joint model.
This is generally true, but it is even more pertinent to relational settings where the feature space is
very large. Second, networks that are easy to interpret and understand aid analysts’ assessment of
the utility of the relational information. Third, the ability to represent cycles in a network facilitates
reasoning with autocorrelation, a common characteristic of relational data. In addition, whereas
the need for approximate inference is a disadvantage of DNs for propositional data, due to the
complexity of relational model graphs in practice, all PRMs use approximate inference.

Relational dependency networks extend DNs to work with relational data in much the same way
that RBNs extend Bayesian networks and RMNs extend Markov networks.7 These extensions take

7. See Section 5.1 for a more detailed description of RBNs and RMNs.
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a graphical model formalism and upgrade (Kersting, 2003) it to a first-order logic representation
with an entity-relationship model. We start by describing the general characteristics of probabilistic
relational models and then discuss the details of RDNs in this context.

3.1 Probabilistic Relational Models

PRMs represent a joint probability distribution over the attributes of a relational data set. When
modeling propositional data with a graphical model, there is a single graph G that comprises the
model. In contrast, there are three graphs associated with models of relational data: the data graph
GD, the model graph GM , and the inference graph GI . These correspond to the skeleton, model, and
ground graph as outlined in Heckerman et al. (2004).

First, the relational data set is represented as a typed, attributed data graph GD = (VD,ED). For
example, consider the data graph in Figure 2a. The nodes VD represent objects in the data (e.g.,
authors, papers) and the edges ED represent relations among the objects (e.g., author-of, cites).8
Each node vi ∈ VD and edge e j ∈ ED is associated with a type, T (vi) = tvi and T (e j) = te j (e.g.,
paper, cited-by). Each item9 type t ∈ T has a number of associated attributes Xt = (X t1, ...,X tm) (e.g.,
topic, year). Consequently, each object vi and link e j is associated with a set of attribute values
determined by their type, Xtvivi = (X tvivi1, ...,X

tvi
vim) and X

tej
ej = (X

te j
e j1, ...,X

te j
e jm′). A PRM represents a

joint distribution over the values of the attributes in the data graph, x = {xtvivi : vi ∈ V s.t. T (vi) =
tvi}∪{x

tej
ej : e j ∈ E s.t. T (e j) = te j}.

AuthoredBy

AuthoredBy

Figure 2: Example (a) data graph and (b) model graph.

Next, the dependencies among attributes are represented in the model graph GM = (VM,EM).
Attributes of an item can depend probabilistically on other attributes of the same item, as well as
on attributes of other related objects or links in GD. For example, the topic of a paper may be
influenced by attributes of the authors that wrote the paper. The relations in GD are used to limit
the search for possible statistical dependencies, thus they constrain the set of edges that can appear
in GM . However, note that a relationship between two objects in GD does not necessarily imply a
probabilistic dependence between their attributes in GM.

Instead of defining the dependency structure over attributes of specific objects, PRMs define a
generic dependency structure at the level of item types. Each node v ∈ VM corresponds to an X tk,

8. We use rectangles to represent objects, circles to represent random variables, dashed lines to represent relations, and
solid lines to represent probabilistic dependencies.

9. We use the generic term “item” to refer to objects or links.

659



NEVILLE AND JENSEN

where t ∈ T ∧ X tk ∈ Xt. The set of attributes Xtk = (X tik : (vi ∈ V ∨ ei ∈ E) ∧ T (i) = t) is tied
together and modeled as a single variable. This approach of typing items and tying parameters
across items of the same type is an essential component of PRM learning. It enables generalization
from a single instance (i.e., one data graph) by decomposing the data graph into multiple examples
of each item type (e.g., all paper objects), and building a joint model of dependencies between and
among attributes of each type.

As in conventional graphical models, each node is associated with a probability distribution
conditioned on the other variables. Parents of X t

k are either: (1) other attributes associated with
items of type tk (e.g., paper topic depends on paper type), or (2) attributes associated with items of
type t j where items t j are related to items tk inGD (e.g., paper topic depends on author rank). For the
latter type of dependency, if the relation between tk and t j is one-to-many, the parent consists of a set
of attribute values (e.g., author ranks). In this situation, current PRMs use aggregation functions to
generalize across heterogeneous attributes sets (e.g., one paper may have two authors while another
may have five). Aggregation functions are used to either map sets of values into single values, or to
combine a set of probability distributions into a single distribution.

Consider the RDN model graph GM in Figure 2b.10 It models the data in Figure 2a, which
has two object types: paper and author. In GM , each item type is represented by a plate, and each
attribute of each item type is represented as a node. Edges characterize the dependencies among the
attributes at the type level. The representation uses a modified plate notation. Dependencies among
attributes of the same object are represented by arcs within a rectangle; arcs that cross rectangle
boundaries represent dependencies among attributes of related objects, with edge labels indicating
the underlying relations. For example, monthi depends on typei, while avgrank j depends on the
typek and topick for all papers k written by author j in GD.

There is a nearly limitless range of dependencies that could be considered by algorithms for
learning PRMs. In propositional data, learners model a fixed set of attributes intrinsic to each
object. In contrast, in relational data, learners must decide how much to model (i.e., how much of
the relational neighborhood around an item can influence the probability distribution of an item’s
attributes). For example, a paper’s topic may depend of the topics of other papers written by its
authors—but what about the topics of the references in those papers or the topics of other papers
written by coauthors of those papers? Two common approaches to limiting search in the space
of relational dependencies are: (1) exhaustive search of all dependencies within a fixed-distance
neighborhood in GD (e.g., attributes of items up to k links away), or (2) greedy iterative-deepening
search, expanding the search in GD in directions where the dependencies improve the likelihood.

Finally, during inference, a PRM uses a model graph GM and a data graph GD to instantiate an
inference graph GI = (VI,VE) in a process sometimes called “roll out.” The roll out procedure used
by PRMs to produce GI is nearly identical to the process used to instantiate sequence models such
as hidden Markov models. GI represents the probabilistic dependencies among all the variables in
a single test set (here GD is usually different from G ′

D used for training). The structure of GI is
determined by both GD and GM—each item-attribute pair in GD gets a separate, local copy of the
appropriate CPD from GM. The relations in GD determine the way that GM is rolled out to form GI .
PRMs can produce inference graphs with wide variation in overall and local structure because the
structure of GI is determined by the specific data graph, which typically has non-uniform structure.
For example, Figure 3 shows the model from Figure 2b rolled out over the data set in Figure 2a.

10. For clarity, we omit cyclic autocorrelation dependencies in this example. See Section 4.2 for more complex model
graphs.
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Notice that there are a variable number of authors per paper. This illustrates why current PRMs
use aggregation in their CPDs—for example, the CPD for paper-type must be able to deal with a
variable number of author ranks.

Figure 3: Example inference graph.

3.2 RDN Representation

Relational dependency networks encode probabilistic relationships in a similar manner to DNs,
extending the representation to a relational setting. RDNs use a directed model graph GM with a
set of conditional probability distributions P. Each node vi ∈ VM corresponds to an X tk ∈ Xt, t ∈ T
and is associated with a conditional distribution p(xtk | paxtk). Figure 2b illustrates an example RDN
model graph for the data graph in Figure 2a. The graphical representation illustrates the qualitative
component (GD) of the RDN—it does not depict the quantitative component (P) of the model, which
consists of CPDs that use aggregation functions. Although conditional independence is inferred
using an undirected view of the graph, directed edges are useful for representing the set of variables
in each CPD. For example, in Figure 2b the CPD for year contains topic but the CPD for topic does
not contain year. This represents any inconsistencies that result from the RDN learning technique.

A consistent RDN specifies a joint probability distribution p(x) over the attribute values of a
relational data set from which each CPD ∈ P can be derived using the rules of probability. There
is a direct correspondence between consistent RDNs and relational Markov networks. It is similar
to the correspondence between consistent DNs and Markov networks (Heckerman et al., 2000), but
the correspondence is defined with respect to the template model graphs GM andUM.

Theorem 1 The set of positive distributions that can be encoded by a consistent RDN (GM,P) is
equal to the set of positive distributions that can be encoded by an RMN (UM,Φ) provided (1)
GM =UM , and (2) P and Φ use the same aggregation functions.

Proof Let p be a positive distribution defined by an RMN (UM,Φ) for GD. First, we construct
a Markov network with tied clique potentials by rolling out the RMN inference graph UI over the
data graph GD. By Theorem 1 of Heckerman et al. (2000), which uses the Hammersley-Clifford
theorem (Besag, 1974), there is a corresponding dependency network that represents the same dis-
tribution p as the Markov network UI . Since the conditional probability distribution for each oc-
currence of an attribute k of a given type t (i.e., ∀i (vi ∈ VD ∨ ei ∈ ED) ∧ T (i) = t p(xtik|x)) is
derived from the Markov network, we know that the resulting CPDs will be identical—the nodes
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adjacent to each occurrence are equivalent by definition, thus by the global Markov property the
derived CPDs will be identical. From this dependency network we can construct a consistent RDN
(GM,P) by first setting GM =UM . Next, we compute from UI the CPDs for the attributes of each
item type: p(xtk|x−{xtk}) for t ∈ T,X tk ∈Xt. To derive the CPDs for P, the CPDs must use the same
aggregation functions as the potentials in Φ. Since the adjacencies in the RDN model graph are the
same as those in the RMN model graph, and there is a correspondence between the rolled out DN
and MN, the distribution encoded by the RDN is p.

Next let p be a positive distribution defined by an RDN (GM,P) for GD. First, we construct a
dependency network with tied CPDs by rolling out the RDN inference graph GI over the data graph
GD. Again, by Theorem 1 of Heckerman et al. (2000), there is a correspondingMarkov network that
represents the same distribution p as the dependency network GI . Of the valid Markov networks
representing p, there will exist a network where the potentials are tied across occurrences of the
same clique template (i.e., ∀ci ∈ C φC(xC)). This follows from the first part of the proof, which
shows that each RMN with tied clique potentials can be transformed to an RDN with tied CPDs.
From this Markov network we can construct an RMN (UM,Φ) by setting UM = GM and grouping
the set of clique template potentials in Φ. Since the adjacencies in the RMN model graph are the
same as those in the RDN model graph, and since there is a correspondence between the rolled out
MN and DN, the distribution encoded by the RMN is p.

This proof shows an exact correspondence between consistent RDNs and RMNs. We cannot
show the same correspondence for general RDNs. However, we will show in Section 3.4 that Gibbs
sampling can be used to extract a unique joint distribution, regardless of the consistency of the
model.

3.3 RDN Learning

Learning a PRM consists of two tasks: learning the dependency structure among the attributes of
each object type, and estimating the parameters of the local probability models for an attribute
given its parents. Relatively efficient techniques exist for learning both the structure and param-
eters of RBNs. However, these techniques exploit the requirement that the CPDs factor the full
distribution—a requirement that imposes acyclicity constraints on the model and precludes the
learning of arbitrary autocorrelation dependencies. On the other hand, it is possible for RMN
techniques to learn cyclic autocorrelation dependencies in principle. However, inefficiencies due
to calculating the normalizing constant Z in undirected models make this difficult in practice. Cal-
culation of Z requires a summation over all possible states x. When modeling the joint distribution
of propositional data, the number of states is exponential in the number of attributes (i.e., O(2m)).
When modeling the joint distribution of relational data, the number of states is exponential in the
number of attributes and the number of instances. If there are N objects, each with m attributes,
then the total number of states is O(2Nm). For any reasonable-size data set, a single calculation
of Z is an enormous computational burden. Feature selection generally requires repeated parameter
estimation while measuring the change in likelihood affected by each attribute, which would require
recalculation of Z on each iteration.

The RDN learning algorithm uses a more efficient alternative—estimating the set of condi-
tional distributions independently rather than jointly. This approach is based on pseudolikelihood
techniques (Besag, 1975), which were developed for modeling spatial data sets with similar auto-
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correlation dependencies. The pseudolikelihood for data graph GD is computed as a product over
the item types t, the attributes of that type X t , and the items of that type v,e:

PL(GD;θ) =∏
t∈T

∏
X ti ∈Xt

∏
v:T (v)=t

p(xtvi|paxtvi ;θ) ∏
e:T (e)=t

p(xtei|paxtei ;θ). (1)

On the surface, Equation 1 may appear similar to a likelihood that specifies a joint distribution
of an RBN. However, the CPDs in the RDN pseudolikelihood are not required to factor the joint
distribution of GD. More specifically, when we consider the variable X t

vi, we condition on the
values of the parents PAX tvi regardless of whether the estimation of CPDs for variables in PAX tvi was
conditioned on X tvi. The parents of X tvi may include other variables on the same item (e.g., X t

vi′ such
that i′ (= i), the same variable on related items (e.g., X t

v′i such that v
′ (= v), or other variables on

related items (e.g., X t ′v′i′ such that v
′ (= v and i′ (= i).

Pseudolikelihood estimation avoids the complexities of estimating Z and the requirement of
acyclicity. Instead of optimizing the log-likelihood of the full joint distribution, we optimize the
pseudo-loglikelihood. The contribution for each variable is conditioned on all other attribute values
in the data, thus we can maximize the pseudo-loglikelihood for each variable independently:

log PL(GD;θ) = ∑
t∈T

∑
X ti ∈X t

∑
v:T (v)=t

log p(xtvi|paxtvi ;θ)+ ∑
e:T (e)=t

log p(xtei|paxtei ;θ).

In addition, this approach can make use of existing techniques for learning conditional probability
distributions of relational data such as first-order Bayesian classifiers (Flach and Lachiche, 1999),
structural logistic regression (Popescul et al., 2003), or ACORA (Perlich and Provost, 2003).

Maximizing the pseudolikelihood function gives the maximum pseudolikelihood estimate
(MPLE) of θ. To estimate the parameters we need to solve the following pseudolikelihood equation:

∂
∂θ
PL(GD;θ) = 0. (2)

With this approach we lose the asymptotic efficiency properties of maximum likelihood esti-
mators. However, under some general conditions the asymptotic properties of the MPLE can be
established. In particular, in the limit as sample size grows, the MPLE will be an unbiased estimate
of the true parameter θ0 and it will be normally distributed. Geman and Graffine (1987) established
the first proof of the properties of maximum pseudolikelihood estimators of fully observed data.
Gidas (1986) gives an alternative proof and Comets (1992) establishes a more general proof that
does not require a finite state space x or stationarity of the true distribution Pθ0 .

Theorem 2 Assume the following regularity conditions11 are satisfied for an RDN:

1. The model is identifiable (i.e., if θ (= θ′, then PL(GD;θ) (= PL(GD;θ′)).

2. The distributions PL(GD;θ) have common support and are differentiable with respect to θ.

3. The parameter space Ω contains an open set ω of which the true parameter θ0 is an interior
point.

11. These are the standard regularity conditions (e.g., Casella and Berger, 2002) used to prove asymptotic properties of
estimators, which are satisfied in most reasonable problems.

663



NEVILLE AND JENSEN

In addition, assume the pseudolikelihood equation (Equation 2) has a unique solution in Ω almost
surely as |GD| → ∞. Then, provided that GD is of bounded degree, the MPLE θ̃ converges in
probability to the true value θ0 as |GD|→ ∞.

Proof Provided the size of the RDN does not grow as the size of the data set grows (i.e., |P| re-
mains constant as |GD|→∞) and GD is of bounded degree, then previous proofs apply. We provide
the intuition for the proof here and refer the reader to Comets (1992), White (1994), and Lehmann
and Casella (1998) for details. Let θ̃ be the maximum pseudolikelihood estimate that maximizes
PL(GD;θ). As |GD|→∞, the data will consist of all possible data configurations for each CPD ∈ P
(assuming bounded degree structure in GD). As such, the pseudolikelihood function will converge
to its expectation, PL(GD;θ)→ E(PL(GD;θ)). The expectation is maximized by the true parameter
θ0 because the expectation is taken with respect to all possible data configurations. Therefore as
|GD|→ ∞, the MPLE converges to the true parameter (i.e., θ̃−θ0 → 0).

The RDN learning algorithm is similar to the DN learning algorithm, except we use a relational
probability estimation algorithm to learn the set of conditional models, maximizing pseudolikeli-
hood for each variable separately. The algorithm input consists of: (1) GD: a relational data graph,
(2) R: a conditional relational learner, and (3) Qt: a set of queries12 that specify the relational
neighborhood considered in R for each type T .

Table 1 outlines the learning algorithm in pseudocode. The algorithm cycles over each attribute
of each item type and learns a separate CPD, conditioned on the other values in the training data.
We discuss details of the subcomponents (querying and relational learners) in the sections below.

The asymptotic complexity of RDN learning is O(|X| · |PAX | ·N), where |X| is the number of
CPDs to be estimated, |PAX | is the number of attributes and N is the number of instances, used
to estimate the CPD for X .13 Quantifying the asymptotic complexity of RBN and RMN learning
is difficult due to the use of heuristic search and numerical optimization techniques. RBN learning
requires multiple rounds of parameter estimation during the algorithm’s heuristic search through the
model space, and each round of parameter estimation has the same complexity as RDN learning,
thus RBN learning will generally require more time. For RMN learning, there is no closed-form
parameter estimation technique. Instead the models are trained using conjugate gradient, where each
iteration requires approximate inference over the unrolled Markov network. In general this RMN
nested loop of optimization and approximation will require more time to learn than an RBN (Taskar
et al., 2002). Therefore, given equivalent search spaces, RMN learning is generally more complex
than RBN learning, and RBN learning is generally more complex than RDN learning.

3.3.1 QUERIES

In our implementation, we use queries to specify the relational neighborhoods that will be con-
sidered by the conditional learner R. The queries’ structures define a typing over instances in the
database. Subgraphs are extracted from a larger graph database using the visual query language
QGraph (Blau et al., 2001). Queries allow for variation in the number and types of objects and links
that form the subgraphs and return collections of all matching subgraphs from the database.

12. Our implementation employs a set of user-specified queries to limit the search space considered during learning.
However, a simple depth limit (e.g., ≤ 2 links away in the data graph) can be used to limit the search space as well.

13. This assumes the complexity of the relational learner R is O(|PAX | ·N), which is true for the two relational learners
considered in this paper.
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Learn RDN (GD,R,Qt):
P← /0
For each t ∈ T :
For each X tk ∈ Xt:
Use R to learn a CPD for X tk given the attributes in the relational
neighborhood defined by Qt .
P← P ∪ CPDX tk

Use P to form GM.

Table 1: RDN learning algorithm.

























































 



Figure 4: (a) Example QGraph query: Textual annotations specify match conditions on attribute
values; numerical annotations (e.g., [0..]) specify constraints on the cardinality of
matched objects (e.g., zero or more authors), and (b) matching subgraph.

For example, consider the query in Figure 4a.14 The query specifies match criteria for a target
item (paper) and its local relational neighborhood (authors and references). The example query
matches all research papers that were published in 1995 and returns for each paper a subgraph that
includes all authors and references associated with the paper. Note the constraint on paper ID in the
lower left corner—this ensures that the target paper does not match as a reference in the resulting
subgraphs. Figure 4b shows a hypothetical match to this query: a paper with two authors and seven
references.

The query defines a typing over the objects of the database (e.g., people that have authored a
paper are categorized as authors) and specifies the relevant relational context for the target item
type in the model. For example, given this query the learner R would model the distribution of a
paper’s attributes given the attributes of the paper itself and the attributes of its related authors and
references. The queries are a means of restricting model search. Instead of setting a simple depth
limit on the extent of the search, the analyst has a more flexible means with which to limit the search
(e.g., we can consider other papers written by the paper’s authors but not other authors of the paper’s
references).

14. We have modified QGraph’s visual representation to conform to our convention of using rectangles to represent
objects and dashed lines to represent relations.

665



NEVILLE AND JENSEN

3.3.2 CONDITIONAL RELATIONAL LEARNERS

The conditional relational learner R is used for both parameter estimation and structure learning in
RDNs. The variables selected by R are reflected in the edges of GM appropriately. If R selects all of
the available attributes, the RDN will be fully connected.

In principle, any conditional relational learner can be used as a subcomponent to learn the indi-
vidual CPDs provided that it can closely approximate CPDs consistent with the joint distribution. In
this paper, we discuss the use of two different conditional models—relational Bayesian classifiers
(RBCs) (Neville et al., 2003b) and relational probability trees (RPTs) (Neville et al., 2003a).
Relational Bayesian Classifiers
RBCs extend Bayesian classifiers to a relational setting. RBCs treat heterogeneous relational sub-
graphs as a homogenous set of attribute multisets. For example, when considering the references
of a single paper, the publication dates of those references form multisets of varying size (e.g.,
{1995, 1995, 1996}, {1975, 1986, 1998, 1998}). The RBC assumes each value of a multiset is
independently drawn from the same multinomial distribution.15 This approach is designed to mir-
ror the independence assumption of the naive Bayesian classifier. In addition to the conventional
assumption of attribute independence, the RBC also assumes attribute value independence within
each multiset.

For a given item type t ∈ T , the query scope specifies the set of item types TR that form the
relevant relational neighborhood for t. Note that TR does not necessarily contain all item types
in the database and the query may also dynamically introduce new types in the returned view of
the database (e.g., papers → papers and references). For example, in Figure 4a, t = paper and
TR = {paper,author,re f erence,authoro f ,cites}. To estimate the CPD for attribute X on items t
(e.g., paper topic), the RBC considers all the attributes associated with the types in TR. RBCs are
non-selective models, thus all attributes are included as parents:

p(x|pax) ∝ ∏
t ′∈TR

∏
X t′i ∈X t

′
∏

v∈TR(x)
p(xt

′
vi|x) p(x).

Relational Probability Trees
RPTs are selective models that extend classification trees to a relational setting. RPTs also treat het-
erogeneous relational subgraphs as a set of attribute multisets, but instead of modeling the multisets
as independent values drawn from a multinomial, the RPT algorithm uses aggregation functions to
map a set of values into a single feature value. For example, when considering the publication dates
on references of a research paper, the RPT could construct a feature that tests whether the average
publication date was after 1995. Figure 5 provides an example RPT learned on citation data.

The RPT algorithm automatically constructs and searches over aggregated relational features to
model the distribution of the target variable X on items of type t. The algorithm constructs features
from the attributes associated with the types TR specified in the query for t. The algorithm considers
four classes of aggregation functions to group multiset values: mode, count, proportion, and degree
(i.e., the number of values in the multiset). For discrete attributes, the algorithm constructs features
for all unique values of an attribute. For continuous attributes, the algorithm constructs features for
a number of different discretizations, binning the values by frequency (e.g., year > 1992). Count,
proportion, and degree features consider a number of different thresholds (e.g., proportion(A) >
10%). All experiments reported herein considered 10 thresholds and discretizations per feature.

15. Alternative constructions are possible but prior work (Neville et al., 2003b) has shown this approach achieves superior
performance over a wide range of conditions.
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Figure 5: Example RPT to predict machine-learning paper topic.

The RPT algorithm uses recursive greedy partitioning, splitting on the feature that maximizes
the correlation between the feature and the class. Feature scores are calculated using the chi-square
statistic and the algorithm uses pre-pruning in the form of a p-value cutoff and a depth cutoff to limit
tree size and overfitting. All experiments reported herein used p-value cutoff=0.05/|attributes|,
depth cutoff=7. Although the objective function does not optimize pseudolikelihood directly, prob-
ability estimation trees can be used effectively to approximate CPDs consistent with the underlying
joint distribution (Heckerman et al., 2000).

The RPT learning algorithm adjusts for biases towards particular features due to degree disparity
and autocorrelation in relational data (Jensen and Neville, 2002, 2003). We have shown that RPTs
build significantly smaller trees than other conditional models and achieve equivalent, or better,
performance (Neville et al., 2003a). These characteristics of RPTs are crucial for learning under-
standable RDNs and have a direct impact on inference efficiency because smaller trees limit the size
of the final inference graph.

3.4 RDN Inference

The RDN inference graph GI is potentially much larger than the original data graph. To model the
full joint distribution there must be a separate node (and CPD) for each attribute value in GD. To
construct GI , the set of template CPDs in P is rolled out over the test-set data graph. Each item-
attribute pair gets a separate, local copy of the appropriate CPD. Consequently, the total number of
nodes in the inference graph will be ∑v∈VD |XT(v)|+∑e∈ED |XT(e)|. Roll out facilitates generalization
across data graphs of varying size—we can learn the CPD templates from one data graph and apply
the model to a second data graph with a different number of objects by rolling out more CPD copies.
This approach is analogous to other graphical models that tie distributions across the network and
roll out copies of model templates (e.g., hidden Markov models, conditional random fields (Lafferty
et al., 2001)).

We use Gibbs samplers for inference in RDNs. This refers to a procedure where a random
ordering of the variables is selected; each variable is initialized to an arbitrary value; and then each
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variable is visited (repeatedly) in order, where its value is resampled according to its conditional
distribution. Gibbs sampling can be used to extract a unique joint distribution, regardless of the
consistency of the model.

Theorem 3 The procedure of a Gibbs sampler applied to an RDN (G,P), where each Xi is discrete
and each local distribution in P is positive, defines a Markov chain with a unique stationary joint
distribution π̃ for X that can be reached from any initial state of the chain.

Proof The proof that Gibbs sampling can be used to estimate the joint distribution of a dependency
network (Heckerman et al., 2000) applies to rolled out RDNs as well. We restate the proof here for
completeness.

Let xt be the sample of x after the t th iteration of the Gibbs sampler. The sequence x1,x2, ... can
be viewed as samples drawn from a homogeneous Markov chain with transition matrix P̃, where
P̃i j = p(xt+1 = j|xt = i). The matrix P̃ is the product P̃1 · P̃2 · ... · P̃n, where P̃k is the local transition
matrix describing the resampling of X k according to the local distribution of p(xk|pak). The positiv-
ity of the local distributions guarantees the positivity of P̃. The positivity of P̃ in turn guarantees that
the Markov chain is irreducible and aperiodic. Consequently there exists a unique joint distribution
that is stationary with respect to P̃, and this stationary distribution can be reached from any starting
point.

This shows that a Gibbs sampling procedure can be used with an RDN to recover samples from
a unique stationary distribution π̃, but how close will this distribution be to the true distribution
π? Small perturbations in the local CPDs could propagate in the Gibbs sampling procedure to pro-
duce large deviations in the stationary distribution. Heckerman et al. (2000) provide some initial
theoretical analysis that suggests that Markov chains with good convergence properties will be in-
sensitive to deviations in the transition matrix. This implies that when Gibbs sampling is effective
(i.e., converges), then π̃ will be close to π and the RDN will be a close approximation to the full
joint distribution.

Table 2 outlines the inference algorithm. To estimate a joint distribution, we start by rolling out
the model GM onto the target data set GD and forming the inference graph GI . The values of all
unobserved variables are initialized to values drawn from prior distributions, which we estimate em-
pirically from the training set. Gibbs sampling then iteratively relabels each unobserved variable by
drawing from its local conditional distribution, given the current state of the rest of the graph. After
a sufficient number of iterations (burn in), the values will be drawn from a stationary distribution
and we can use the samples to estimate probabilities of interest.

For prediction tasks, we are often interested in the marginal probabilities associated with a single
variable X (e.g., paper topic). Although Gibbs sampling may be a relatively inefficient approach to
estimating the probability associated with a joint assignment of values of X (e.g., when |X | is large),
it is often reasonably fast to use Gibbs sampling to estimate the marginal probabilities for each X .

There are many implementation issues that can improve the estimates obtained from a Gibbs
sampling chain, such as length of burn-in and number of samples. For the experiments reported
in this paper, we used fixed-length chains of 2000 samples (each iteration re-labels every value
sequentially) with burn-in set at 100. Empirical inspection indicated that the majority of chains had
converged by 500 samples. Section 4.1 includes convergence graphs for synthetic data experiments.
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Infer RDN (GD,GM,P, iter,burnin):

GI(VI,EI) ← ( /0, /0) \\ form GI from GD and GM
For each t ∈ T in GM:
For each X tk ∈ Xt in GM:
For each vi ∈VD s.t. T (vi) = t and ei ∈ ED s.t. T (ei) = t:

VI ←VI ∪ {X tik}
For each vi ∈VD s.t. T (vi) = t and ei ∈ ED s.t. T (ei) = t:
For each v j ∈VD s.t. Xv j ∈ paX tik and each e j ∈ ED s.t. Xe j ∈ paX tik :

EI ← EI ∪ {ei j}

For each v ∈VI : \\ initialize Gibbs sampling
Randomly initialize xv to value drawn from prior distribution p(xv)

S← /0 \\ Gibbs sampling procedure
Choose a random ordering over VI
For i ∈ iter:
For each v ∈VI , in random order:
Resample x′v from p(xv|x−{xv})
xv ← x′v
If i> burnin:

S← S ∪ {x}:
Use samples S to estimate probabilities of interest

Table 2: RDN inference algorithm.

4. Experiments

The experiments in this section demonstrate the utility of RDNs as a joint model of relational data.
First, we use synthetic data to assess the impact of training-set size and autocorrelation on RDN
learning and inference, showing that accurate models can be learned with reasonable data set sizes
and that the model is robust to varying levels of autocorrelation. In addition, to assess the quality
of the RDN approximation for inference, we compare RDNs to RMNs, showing that RDNs achieve
equivalent or better performance over a range of data sets. Next, we learn RDNs of five real-world
data sets to illustrate the types of domain knowledge that the models discover automatically. In
addition, we evaluate RDNs in a prediction context, where only a single attribute is unobserved in
the test set, and report significant performance gains compared to two conditional models.

4.1 Synthetic Data Experiments

To explore the effects of training-set size and autocorrelation on RDN learning and inference, we
generated homogeneous data graphs with an autocorrelated class label and linkage due to an under-
lying (hidden) group structure. Each object has four boolean attributes: X1, X2, X3, and X4. We used
the following generative process for a data set with NO objects and NG groups:
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For each object i, 1≤ i≤ NO:
Choose a group gi uniformly from the range [1,NG].

For each object j, 1≤ j ≤ NO:
For each object k, j < k ≤ NO:

Choose whether the two objects are linked from p(E|G j =Gk), a Bernoulli
probability conditioned on whether the two objects are in the same group.

For each object i, 1≤ i≤ NO:
Randomly initialize the values of X= {X1,X2,X3,X4} from a uniform prior dis-
tribution.

Update the values ofXwith 500 iterations of Gibbs sampling using RDN∗, a manually
specified model.16

The data generation procedure for X uses a manually specified model where X1 is autocor-
related (through objects one link away), X2 depends on X1, and the other two attribute have no
dependencies. To generate data with autocorrelated X1 values, we used conditional models for
p(X1|X1R,X2,X3,X4). RPT0.5 refers to the RPT CPD that is used to generate data with autocor-
relation levels of 0.5. RBC0.5 refers to the analogous RBC CPD. Appendix A contains detailed
specifications of these models. Unless otherwise specified, the experiments use the settings below:

NO = 250,

NG =
NO
10

,

p(E|G j=Gk) = {p(E=1|G j=Gk) = 0.50; p(E=1|G j (=Gk) =
1
NO

},

RDN∗ =: [ p(X1|X1R,X2,X3,X4) = p(X1|X1R,X2) = RPT0.5 or RBC0.5;
p(X2|X1) = {p(X2=1|X1=1) = p(X2=0|X1=0) = 0.75};
p(X3 = 1) = p(X4 = 1) = 0.50 ].

4.1.1 RDN LEARNING

The first set of synthetic experiments examines the effectiveness of the RDN learning algorithm.
We learned CPDs for X1 using the intrinsic attributes of the object (X2,X3,X4) as well as the class
label of directly related objects (X1R). We also learned CPDs for each attribute (X2,X3,X4) using the
class label (X1). This mimics the structure of the true model used for data generation (i.e., RDN∗).

We compared two different learned RDNs: RDNRBC uses RBCs for the component learner R;
RDNRPT uses RPTs for R. The RPT performs feature selection, which may result in structural
inconsistencies in the learned RDN. The RBC does not use feature selection so any deviation from
the true model is due to parameter inconsistencies alone. Note that the two models do not consider
identical feature spaces so we can only roughly assess the impact of feature selection by comparing
RDNRBC and RDNRPT results.

Theoretical analysis indicates that, in the limit, the true parameters will maximize the pseu-
dolikelihood function. This indicates that the pseudolikelihood function, evaluated at the learned

16. We will use a star (i.e., RDN∗) to denote manually-specified RDNs.
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parameters, will be no greater than the pseudolikelihood of the true model (on average). To evalu-
ate the quality of the RDN parameter estimates, we calculated the pseudolikelihood of the test-set
data using both the true models (RDN∗

RPT , RDN∗
RBC) and the learned models (RDNRPT , RDNRBC). If

the pseudolikelihood given the learned parameters approaches the pseudolikelihood given the true
parameters, then we can conclude that parameter estimation is successful. We also measured the
standard error of the pseudolikelihood estimate for a single test-set using learned models from 10
different training sets. This illustrates the amount of variance due to parameter estimation.

Figure 6 graphs the pseudo-loglikelihood of learned models as a function of training-set size for
three levels of autocorrelation. Training-set size was varied at the levels {50,100,250,
500,1000,5000}. We varied p(X1|X1R,X2) to generate data with approximate levels of autocorre-
lation corresponding to {0.25,0.50,0.75}. At each training set size (and autocorrelation level), we
generated 10 test sets. For each test set, we generated 10 training sets and learned RDNs. Using
each learned model, we measured the pseudolikelihood of the test set (size 250) and averaged the
results over the 10 models. We plot the mean pseudolikelihood for both the learned models and
the true models. The top row reports experiments with data generated from an RDN∗

RPT , where we
learned an RDNRPT . The bottom row reports experiments with data generated from an RDN∗

RBC,
where we learned an RDNRBC.
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Figure 6: Evaluation of RDN learning.

These experiments show that the learned RDNRPT is a good approximation to the true model by
the time training-set size reaches 500, and that RDN learning is robust with respect to varying levels
of autocorrelation.
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There appears to be little difference between the RDNRPT and RDNRBC when autocorrelation is
low, but otherwise the RDNRBC needs significantly more data to estimate the parameters accurately.
One possible source of error is variance due to lack of selectivity in the RDNRBC, which necessitates
the estimation of a greater number of parameters. However, there is little improvement even when
we increase the size of the training sets to 10,000 objects. Furthermore, the discrepancy between
the estimated model and the true model is greatest when autocorrelation is moderate. This indicates
that the inaccuracies may be due to the naive Bayes independence assumption and its tendency to
produce biased probability estimates (Zadrozny and Elkan, 2001).

4.1.2 RDN INFERENCE

The second set of synthetic experiments evaluates the RDN inference procedure in a prediction
context, where only a single attribute is unobserved in the test set. We generated data with the
RDN∗

RPT and RDN∗
RBC as described above and learned models for X1 using the intrinsic attributes

of the object (X2,X3,X4) as well as the class label and the attributes of directly related objects
(X1R,X2R,X3R,X4R). At each autocorrelation level, we generated 10 training sets (size 500) to learn
the models. For each training set, we generated 10 test sets (size 250) and used the learned models
to infer marginal probabilities for X1 on the test set instances. To evaluate the predictions, we report
area under the ROC curve (AUC).17 These experiments used the same levels of autocorrelation
outlined above.

We compare the performance of four types of models. First, we measure the performance of
RPTs and RBCs. These are conditional models that reason about each instance independently and
do not use the class labels of related instances. Second, we measure the performance of learned
RDNs: RDNRBC and RDNRPT . For RDN inference, we used fixed-length Gibbs chains of 2000 sam-
ples with burn-in of 100. Third, we measure performance of the learned RDNs while allowing the
true labels of related instances to be used during inference. This demonstrates the level of perfor-
mance possible if the RDNs could infer the true labels of related instances with perfect accuracy.
We refer to these as ceiling models: RDNceil

RBC and RDNceil
RPT . Fourth, we measure the performance of

two RMNs described below.
The first RMN is non-selective. We construct features from all the attributes available to the

RDNs, defining clique templates for each pairwise combination of class label value and attribute
value. More specifically, the available attributes consist of the intrinsic attributes of objects, and
both the class label and attributes of directly related objects. The second RMN, which we refer to
as RMNSel , is a hybrid selective model—clique templates are only specified for the set of attributes
selected by the RDN during learning. For both models, we used maximum-a-posteriori parameter
estimation to estimate the feature weights, using conjugate gradient with zero-mean Gaussian priors,
and a uniform prior variance of 5.18 For RMN inference, we used loopy belief propagation (Murphy
et al., 1999).

We do not compare directly to RBNs because their acyclicity constraint prevents them from
representing the autocorrelation dependencies in this domain. Instead, we include the performance
of conditional models, which also cannot represent the autocorrelation of X1. Although RBNs and
conditional models cannot represent the autocorrelation directly, they can exploit the autocorre-
lation indirectly by using the observed attributes of related instances. For example, if there is a

17. Squared-loss results are qualitatively similar to the AUC results reported in Figure 7.
18. We experimented with a range of priors; this parameter setting produced the best empirical results.
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correlation between the words on a webpage and its topic, and the topics of hyperlinked pages are
autocorrelated, then the models can exploit autocorrelation dependencies by modeling the contents
of a webpage’s neighboring pages. Recent work has shown that collective models (e.g., RDNs) are
a low-variance means of reducing bias through direct modeling of the autocorrelation dependen-
cies (Jensen et al., 2004). Models that exploit autocorrelation dependencies indirectly by modeling
the observed attributes of related instances, experience a dramatic increase in variance as the number
of observed attributes increases.

During inference we varied the number of known class labels in the test set, measuring perfor-
mance on the remaining unlabeled instances. This serves to illustrate model performance as the
amount of information seeding the inference process increases. We expect performance to be sim-
ilar when other information seeds the inference process—for example, when some labels can be
inferred from intrinsic attributes, or when weak predictions about many related instances serve to
constrain the system. Figure 7 graphs AUC results for each model as the proportion of known class
labels is varied.

Figure 7: Evaluation of RDN inference.

The data for the first set of experiments (top row) were generated with an RDN∗
RPT . In all

configurations, RDNRPT performance is equivalent, or better than, RPT performance. This indicates
that even modest levels of autocorrelation can be exploited to improve predictions using an RDNRPT .
RDNRPT performance is indistinguishable from that of RDNceil

RPT except when autocorrelation is high
and there are no labels to seed inference. In this situation, the predictive attribute values (i.e., X2) are
the only information available to constrain the system during inference so the model cannot fully
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exploit the autocorrelation dependencies. When there is no information to anchor the predictions,
there is an identifiability problem—symmetric labelings that are highly autocorrelated, but with
opposite values, appear equally likely. In situations where there is little seed information (either
attributes or class labels), identifiability problems can increase variance and bias RDN performance
towards random.

When there is low or moderate autocorrelation, RDNRPT performance is significantly higher
than both RMNs. In these situations, poor RMN performance is likely due to a mismatch in feature
space with the data generation model—if the RMN features cannot represent the data dependencies
that are generated with aggregated features, the inferred probabilities will be biased. When there
is high autocorrelation, RDNRPT performance is indistinguishable from RMN, except when there
are no labels to seed inference—the same situation where RDNRPT fails to meet its ceiling. When
autocorrelation is high, the mismatch in feature space is not a problem. In this situation most
neighbors share similar attribute values, thus the RMN features are able to accurately capture the
data dependencies.

The data for the second set of experiments (bottom row) were generated with an RDN∗
RBC. The

RDNRBC feature space is roughly comparable to the RMN because the RDNRBC uses multinomials to
model individual neighbor attribute values. On these data, RDNRBC performance is superior to RMN
performance only when there is low autocorrelation. RMNSel uses fewer features than RMN and it
has superior performance on the data with low autocorrelation, indicating that the RMN learning
algorithm may be overfitting the feature weights and producing biased probability estimates. We
experimented with a range of priors to limit the impact of weight overfitting, but the effect remained
consistent.

RDNRBC performance is superior to RBC performance only when there is moderate to high au-
tocorrelation and sufficient seed information. When autocorrelation is low, the RBC is comparable
to both the RDNceil

RBC and the RDNRBC. Even when autocorrelation is moderate or high, RBC perfor-
mance is still relatively high. Since the RBC is low-variance and there are only four attributes in our
data sets, it is not surprising that the RBC is able to exploit autocorrelation to improve performance.
What is more surprising is that RDNRBC requires substantially more seed information than RDNRPT
in order to reach ceiling performance. This indicates that our choice of model should take test-set
characteristics (e.g., number of known labels) into consideration.

To investigate Gibbs sampling convergence, we tracked AUC throughout the RDN Gibbs sam-
pling procedure. Figure 8 demonstrates AUC convergence on each inference task described above.
We selected a single learned model at random from each task and report convergence from the trials
corresponding to five different test sets. AUC improves very quickly, often leveling off within the
first 250 iterations. This shows that the approximate inference techniques employed by the RDN
may be quite efficient to use in practice. However, when autocorrelation is high, longer chains may
be necessary to ensure convergence. There are only two chains that show a substantial increase
in performance after 500 iterations and both occur in highly autocorrelated data sets. Also, the
RDNRBC chains exhibit significantly more variance than the RDNRPT chains, particularly when au-
tocorrelation is high. This may indicate that the use of longer Gibbs chains, or an approach that
averages predictions obtained from multiple random restarts, would improve performance.
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Figure 8: Gibbs convergence rates for five different trials of RDNRPT (top row) and RDNRBC (bot-
tom row).

4.2 Empirical Data Experiments

We learned RDNs for five real-world relational data sets. Figure 9 depicts the objects and relations
in each data set. Section 4.2.1 illustrates the types of domain knowledge that can be learned with
the selective RDNRPT . Section 4.2.2 evaluates both the RDNRPT and the RDNRBC in a prediction
context, where the values of a single attribute are unobserved.

The first data set is drawn from Cora, a database of computer science research papers extracted
automatically from the web using machine learning techniques (McCallum et al., 1999). We se-
lected the set of 4,330 machine-learning papers along with associated authors, cited papers, and
journals. The resulting collection contains approximately 13,000 objects and 26,000 links. For
classification, we sampled the 1669 papers published between 1993 and 1998.

The second data set (Gene) is a relational data set containing information about the yeast genome
at the gene and the protein level.19 The data set contains information about 1,243 genes and 1,734
interactions among their associated proteins.

The third data set is drawn from the Internet Movie Database (IMDb).20 We collected a sample
of 1,382 movies released in the United States between 1996 and 2001, with their associated actors,
directors, and studios. In total, this sample contains approximately 42,000 objects and 61,000 links.

19. See http://www.cs.wisc.edu/∼dpage/kddcup2001/.
20. See http://www.imdb.com.
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Figure 9: Data schemas for (a) Cora, (b) Gene, (c) IMDb, (d) NASD, and (e) WebkKB.

The fourth data set is from the National Association of Securities Dealers (NASD) (Neville et al.,
2005). It is drawn from NASD’s Central Registration Depository (CRD c©) system, which contains
data on approximately 3.4 million securities brokers, 360,000 branches, 25,000 firms, and 550,000
disclosure events. Disclosures record disciplinary information on brokers, including information on
civil judicial actions, customer complaints, and termination actions. Our analysis was restricted to
small and moderate-size firms with fewer than 15 brokers, each of whom has an approved NASD
registration. We selected a set of approximately 10,000 brokers who were active in the years 1997-
2001, along with 12,000 associated branches, firms, and disclosures.

The fifth data set was collected by the WebKB Project (Craven et al., 1998). The data comprise
3,877 web pages from four computer science departments. The web pages have been manually
labeled with the categories course, faculty, staff, student, research project, or other. The collection
contains approximately 8,000 hyperlinks among the pages.

4.2.1 RDN MODELS

The RDNs in Figures 10-14 continue with the RDN representation introduced in Figure 2b. Each
item type is represented by a separate plate. An arc from x to y indicates the presence of one or more
features of x in the conditional model learned for y. Arcs inside a plate represent dependencies
among the attributes of a single object. Arcs crossing plate boundaries represent dependencies
among attributes of related objects, with edge labels indicating the underlying relations. When the
dependency is on attributes of objects more than a single link away, the arc is labeled with a small
rectangle to indicate the intervening related-object type. For example, in Figure 10 paper topic is
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influenced by the topics of other papers written by the paper’s authors, so the arc is labeled with two
AuthoredBy relations and a small A rectangle indicating an Author object.

In addition to dependencies among attribute values, relational learners may also learn depen-
dencies between the structure of relations (edges in GD) and attribute values. Degree relationships
are represented by a small black circle in the corner of each plate—arcs from this circle indicate a
dependency between the number of related objects and an attribute value of an object. For example,
in Figure 10 author rank is influenced by the number of paper written by the author.

For each data set, we learned an RDNRPT with queries that included all neighbors up to two
links away in the data graph. For example in Cora, when learning an RPT of a paper attribute,
we considered the attributes of associated authors and journals, as well as papers related to those
objects.

On the Cora data, we learned an RDN for seven attributes. Author rank records ordering in paper
authorship (e.g., first author, second author). Paper type records category information (e.g., PhD
thesis, technical report); topic records content information (e.g., genetic algorithms, reinforcement
learning); year and month record publication dates. Journal name-prefix records the first four title
letters (e.g., IEEE, SIAM); book-role records type information (e.g., workshop, conference).

Figure 10 shows the resulting RDN. The RDN learning algorithm selected 12 of the 139 de-
pendencies considered for inclusion in the model. Four of the attributes—author rank, paper topic,
paper type, and paper year—exhibit autocorrelation dependencies. In particular, the topic of a paper
depends not only on the topics of other papers that it cites, but also on the topics of other papers
written by the authors. This model is a good reflection of our domain knowledge about machine
learning papers.

Paper Journal/
Book

Author

CitesCites
AuthoredBy AuthoredBy

AuthoredBy AuthoredBy
Cites

AuthoredBy AuthoredBy

AuthoredBy

AuthoredBy

AuthoredBy

AuthoredBy
AppearsIn

AppearsIn

AppearsIn

Figure 10: RDN for the Cora data set.

Exploiting these types of autocorrelation dependencies has been shown to significantly im-
prove classification accuracy of RMNs compared to RBNs, which cannot model cyclic dependen-
cies (Taskar et al., 2002). However, to exploit autocorrelation, RMNs must be instantiated with
the appropriate clique templates—to date there is no RMN algorithm for learning autocorrelation
dependencies. RDNs are the first PRM capable of learning cyclic autocorrelation dependencies.

The Gene data contain attributes associated with both objects and links (i.e., interactions). We
learned an RDN for seven attributes. Gene function records activities of the proteins encoded by
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the genes; location records each protein’s localization in the cell; phenotype records characteristics
of individuals with a mutation in the gene/protein; class records the protein type (e.g., transcription
factor, protease); essential records whether the gene is crucial to an organism’s survival. Interaction
expression records the correlation between gene expression patterns for pairs of interacting genes;
type records interaction characteristics (e.g., genetic, physical).

Figure 11 shows the resulting RDN. The RDN learning algorithm selected 19 of the 77 de-
pendencies considered for inclusion in the model. In these data, all the gene attributes exhibit
autocorrelation—this is strong evidence that there are regularities among the genes whose proteins
interact in the cell.

Gene








   Interaction









InteractsWith

InteractsWith

InteractsWith InteractsWith

InteractsWith InteractsWith

Figure 11: RDN for the Gene data set.

On the IMDb data, we learned an RDN for ten discrete attributes. First-movie-year records the
date of the first movie made by a director or studio; has-award records whether a director or actor
has won an Academy award; in-US records whether a studio is located in the US; receipts records
whether a movie made more than $2 million in the opening weekend box office; genre records a
movie’s type (e.g., drama, comedy); hsx-rating records an actor’s value on the Hollywood Stock
Exchange (www.hsx.com); birth-year and gender record demographic information.

Figure 12 shows the resulting RDN. The RDN learning algorithm selected 29 of the 170 depen-
dencies considered for inclusion in the model. Again we see that four of the attributes exhibit
autocorrelation. Movie receipts and genre each exhibit a number of autocorrelation dependen-
cies (through actors, directors, and studios), which illustrates the group structure of the Hollywood
movie industry.

On the NASD data, we learned an RDN for eleven attributes. Firm size records the number
of employed stockbrokers each year; layoffs records the number of terminations each year. On-
watchlist records whether a firm or broker is under heightened supervision. Broker is-problem
and problem-in-past record whether a broker is, or has been, involved in serious misconduct; has-
business records whether a broker owns a business on the side. Disclosure type and year record
category (e.g., customer complaint) and date information regarding disciplinary events (filed on
brokers). Region and area record location information about branches.
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Figure 12: RDN for the IMDb data set.

Figure 13 shows the resulting RDN. The RDN learning algorithm selected 32 of the 160 de-
pendencies considered for inclusion in the model. Again we see that four of the attributes exhibit
autocorrelation. Subjective inspection by NASD analysts indicates that the RDN had automati-
cally uncovered statistical relationships that confirm the intuition of domain experts. These include
temporal autocorrelation of risk (past problems are indicators of future problems) and relational au-
tocorrelation of risk among brokers at the same branch—indeed, fraud and malfeasance are usually
social phenomena, communicated and encouraged by the presence of other individuals who also
wish to commit fraud (Cortes et al., 2001). Importantly, this evaluation was facilitated by the inter-
pretability of the RDN—experts are more likely to trust, and make regular use of, models they can
understand.

On the WebKB data, we learned an RDN for four attributes. School records page location (e.g.,
Cornell, Washington); label records page type (e.g., student, course); URL-server records the first
portion of the server name following www (e.g., cs, engr); URL-text records the name of the first
directory in the URL path (e.g., UTCS, department). Figure 14 shows the resulting RDN. The RDN
learning algorithm selected 9 of the 52 dependencies considered for inclusion in the model. All of
the attributes exhibit autocorrelation in the WebKB data.

4.2.2 PREDICTION

We evaluated RDNs on prediction tasks in order to assess (1) whether autocorrelation dependencies
among instances can be used to improve model accuracy, and (2) whether the RDNs, using Gibbs
sampling, can effectively infer labels for a network of instances. To do this, we compared the same
four classes of models used in Section 4.1: conditional models, RDNs, ceiling RDNs, and RMNs.

We used the following prediction tasks: movie receipts for IMDb, paper topic for Cora, page
label for WebKB, gene location for Gene, and broker is-problem for NASD. For each data set, we
used queries that included all neighbors up to two links away in the data graph to learn RDNRBC and
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Figure 13: RDN for the NASD data set (1999).
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Figure 14: RDN for the WebKB data set.

RDNRPT models. Recall that the RDNRBC uses the entire set of attributes in the resulting subgraphs
and the RDNRPT performs feature selection over the attribute set.

Figure 15 shows AUC results for the first three model types on the five prediction tasks. (We
discuss RMN results below.) Figure 15a graphs the results of the RDNRPT , compared to the RPT
conditional model. Figure 15b graphs the results of the RDNRBC, compared to the RBC conditional
model.

The graphs show AUC for the most prevalent class, averaged over a number of training/test
splits. For Cora, IMDb, and NASD, we used temporal sampling where we learned models on one
year of data and applied the models to the subsequent year. There were four temporal samples for
IMDb and NASD, and five for Cora. For WebKB we used cross-validation by department, learning
on three departments and testing on pages from the fourth, held-out department. For Gene there
was no clear sampling choice, so we used ten-fold cross validation on random samples of genes.
When there were links between the test and training sets, the class labels of the training set were
made available to the RDNs and RMNs for use during inference. We used two-tailed, paired t-tests
to assess the significance of the AUC results obtained from the trials. The t-tests compare the RDN
results to the conditional and ceiling models, with a null hypothesis of no difference in the AUC.
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Figure 15: AUC results for (a) RDNRPT and RPT, and (b) RDNRBC and RBC. Asterisks denote
model performance that is significantly different (p< 0.10) from RDNRPT and RDNRBC.

When using the RPT as the conditional learner (Figure 15a), RDN performance is superior to
RPT performance on all tasks. The difference is statistically significant for three of the five tasks.
This indicates that autocorrelation is both present in the data and identified by the RDNs. As men-
tioned previously, the RPT can sometimes use the observed attributes of related items to effectively
reason with autocorrelation dependencies. However, in some cases the observed attributes contain
little information about the class labels of related instances. This is the case for Cora—RPT per-
formance is close to random because no other attributes influence paper topic (see Figure 10). On
all tasks, the RDNs achieve comparable performance to the ceiling models. This indicates that the
RDN achieved the same level of performance as if it had access to the true labels of related objects.
We note, however, that the ceiling model only represents a probabilistic ceiling—the RDN may
perform better if an incorrect prediction for one object improves inferences about related objects.
Indeed, on a number of the data sets, RDN performance is slightly higher than that of the ceiling
model.

Similarly, when using the RBC as the conditional learner (Figure 15b), the performance of
RDNs is superior to the RBCs on all but one task and statistically significant for two of the tasks.
Notably, on the WebKB data RDN performance is worse than that of the RBC. However, the ceiling
performance is significantly higher than RBC. This indicates that autocorrelation dependencies are
identified by the RDN but the model is unable to exploit those dependencies during Gibbs sam-
pling. This effect is due to the amount of information available to seed the inference process. There
is sparse information in the attributes other than page label, and because the departments are nearly
disjoint, there are few labeled instances before inference. This leaves the RDN with little infor-
mation to anchor its predictions, which results in marginal predictions closer to random. Similar
behavior appeared in the synthetic data experiments, indicating that the RDNRBC may need more
information to seed the inference process.
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Num RDN Num selected Num RMN Num RMNSel
attributes RDN attributes features features

Cora 22 2.0 1029 98.0
Gene 19 3.1 3640 606.0
IMDb 15 5.0 234 90.5
NASD 16 5.7 526 341.5
WebKB 34 5.0 2478 270.0

Table 3: Number of attributes/features used by RDNs and RMNs.

The RDNRBC achieves comparable performance to the ceiling models on only two of the five
tasks. This may be another indication that RDNs combined with a non-selective conditional learner
(e.g., RBCs) will experience increased variance during the Gibbs sampling process, and thus they
may need more seed information during inference to achieve the near-ceiling performance. We
should note that although the RDNRBC does not significantly outperform the RDNRPT on any of the
tasks, the RDNCeilRBC is significantly higher than RDNCeilRPT for Cora and IMDb. This indicates that,
when there is enough seed information, the RDNRBC may achieve significant performance gains
over the RDNRPT .

Due to time and memory constraints, we were unable to learn RMNs for all but two of the real-
data experiments. Table 3 reports information for each data set—the number of attributes available
to the RDNs, the average number of attributes selected by the RDNs, and the number of features
constructed by the RMN and the RMNSel . Recall that the RMN constructs its features from all the
attributes available to the RDN and the RMNSel constructs its features from the attributes selected
by the RDN. Due to the size of the feature spaces considered by the non-selective RMN, we were
unable learn models for any of the data sets. We were able to successfully learn an RMNSel for
the Cora and IMDb data sets. The average AUC of the RMNSel was 74.4% for Cora and 60.9%
for IMDb. This is far below the RDN results reported in Figure 15. Note that previous RMN
results (Taskar et al., 2002) report accuracy of the most likely labeling for the entire data set. In
contrast, we are evaluating AUC of the marginal probabilities for each instance (inferred jointly).
This may indicate that RMN inference will produce biased (marginal) probability estimates when
run in a “loopy” relational network, due to overfitting the clique weights. When skewed weights are
applied to collectively infer the labels throughout the test set, the inference process may converge to
extreme labelings (e.g., all positive labels in some regions of the graph, all negative labels in other
regions), which would bias probability estimates for many of the instances.

5. Related Work

There are three types of statistical relational models relevant to RDNs: probabilistic relational mod-
els, probabilistic logic models, and collective inference models. We discuss each of these below.

5.1 Probabilistic Relational Models

Probabilistic relational models are one class of models for density estimation in relational data sets.
Examples of PRMs include relational Bayesian networks and relational Markov networks.
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As outlined in Section 3.1, learning and inference in PRMs involve a data graph GD, a model
graph GM, and an inference graph GI . All PRMs model data that can be represented as a graph
(i.e., GD). PRMs use different approximation techniques for inference in GI (e.g., Gibbs sampling,
loopy belief propagation), but they all use a similar process for rolling out an inference graph GI .
Consequently, PRMs differ primarily with respect to the representation of the model graph GM and
how that model is learned.

An RBN for X uses a directed model graph GM = (VM,EM) and a set of conditional probability
distributions P to represent a joint distribution over X. Each node v ∈ VM corresponds to an X tk ∈
X. The set P contains a conditional probability distribution for each variable given its parents,
p(xtk|paxtk). Given (GM,P), the joint probability for a set of values x is computed as a product over
the item types T , the attributes of that type X t , and the items of that type v,e:

p(x) =∏
t∈T

∏
X ti ∈X t

∏
v:T (v)=t

p(xtvi|paxtvi) ∏
e:T (e)=t

p(xtei|paxtei).

The RBN learning algorithm (Getoor et al., 2001) for the most part uses standard Bayesian
network techniques for parameter estimation and structure learning. One notable exception is that
the learning algorithm must check for “legal” structures that are guaranteed to be acyclic when
rolled out for inference on arbitrary data graphs. In addition, instead of exhaustive search of the
space of relational dependencies, the structure learning algorithm uses greedy iterative-deepening,
expanding the search in directions where the dependencies improve the likelihood.

The strengths of RBNs include understandable knowledge representations and efficient learn-
ing techniques. For relational tasks, with a huge space of possible dependencies, selective models
are easier to interpret and understand than non-selectivemodels. Closed-form parameter estimation
techniques allow for efficient structure learning (i.e., feature selection). Also, because reasoning
with relational models requires more space and computational resources, efficient learning tech-
niques make relational modeling both practical and feasible.

The directed acyclic graph structure is the underlying reason for the efficiency of RBN learning.
As mentioned in Section 1, the acyclicity requirement precludes the learning of arbitrary autocor-
relation dependencies and limits the applicability of these models in relational domains. The PRM
representation, which ties parameters across items of the same type, makes it difficult for RBNs to
represent autocorrelation dependencies. Because autocorrelation is a dependency among the value
of the same variable on linked items of the same type, the CPDs that represent autocorrelation will
produce cycles in the rolled out inference graph. For example, when modeling the autocorrelation
among the topics of two hyperlinked web pages P1 and P2, the CPD for the topic of P1 will have
the topic of P2 as a parent and vice versa. In general, unless there is causal knowledge of how to
structure the order of autocorrelation dependencies (e.g., parents’ genes will never be influenced by
the genes of their children), it is impossible to tie the parameters and still guarantee an acyclic graph
after roll out. Note that this is not a problem for undirected models such as RMNs or RDNs. Thus,
RDNs enjoy the strengths of RBNs (namely, understandable knowledge representation and efficient
learning) without being constrained by an acyclicity requirement.

An RMN for X uses a undirected model graphUM = (VM,EM) and a set of potential functionsΦ
to represent a joint distribution over X. Again each node v ∈VM corresponds to an X tk ∈ X. RMNs
use relational clique templates CT to specify the ways in which cliques are defined inUM . Cliques
templates are defined over a set of item types, a boolean constraint on how the types must relate to
each other in the data graph, and a set of attributes to consider on the matching items. Let C(CT )
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be the set of cliques in the graphUM that match a specific clique templateC ∈CT . As with Markov
networks, each clique c ∈ C(CT ) is associated with a set of variables Xc and a clique potential
φc(xc). Given (UM,Φ), the joint probability for a set of values x is computed as a product over the
clique templates inCT and the matches to the clique template c:

p(x) =
1
Z ∏
Ci∈CT

∏
c j∈C(Ci)

φc j(xc j).

The RMN learning algorithm (Taskar et al., 2002) uses maximum-a-posteriori parameter estima-
tion with Gaussian priors, modifying Markov network learning techniques. The algorithm assumes
that the clique templates are pre-specified and thus does not search for the best structure. Because
the user supplies a set of relational dependencies to consider (i.e., clique templates), it simply opti-
mizes the potential functions for the specified templates.

RMNs are not hampered by an acyclicity constraint, so they can represent and reason with
arbitrary forms of autocorrelation. This is particularly important for reasoning in relational data
sets where autocorrelation dependencies are nearly ubiquitous and often cannot be structured in an
acyclic manner. However, the tradeoff for this increased representational capability is a decrease in
learning efficiency. Instead of closed-form parameter estimation, RMNs are trained with conjugate
gradient methods, where each iteration requires a round of inference. In large cyclic relational infer-
ence graphs, the cost of inference is prohibitively expensive—in particular, without approximations
to increase efficiency, feature selection is intractable.

Similar to the comparison with RBNs, RDNs enjoy the strengths of RMNs but not their weak-
nesses. More specifically, RDNs are able to reason with arbitrary forms of autocorrelation without
being limited by efficiency concerns during learning. In fact, the pseudolikelihood estimation tech-
nique used by RDNs has been used recently to make feature selection tractable for conditional
random fields (McCallum, 2003) and Markov logic networks (Kok and Domingos, 2005).

5.2 Probabilistic Logic Models

A second class of models for density estimation consists of extensions to conventional logic pro-
gramming that support probabilistic reasoning in first-order logic environments. We will refer to
this class of models as probabilistic logic models (PLMs). Examples of PLMs include Bayesian
logic programs (Kersting and Raedt, 2002) and Markov logic networks (Richardson and Domingos,
2006).

PLMs represent a joint probability distribution over the ground atoms of a first-order knowledge
base. The first-order knowledge base contains a set of first-order formulae, and the PLM associates
a set of weights/probabilities with each of the formulae. Combined with a set of constants represent-
ing objects in the domain, PLMs specify a probability distribution over possible truth assignments
to ground atoms of the first-order formulae. Learning a PLM consists of two tasks: generating the
relevant first-order clauses, and estimating the weights/probabilities associated with each clause.

Within this class of models, Markov logic networks (MLNs) are most similar in nature to RDNs.
In MLNs, each node is a grounding of a predicate in a first-order knowledge base, and features
correspond to first-order formulae and their truth values. An MLN, unrolled over a set of objects in
the domain, specifies an undirected Markov network. In this sense, they share the same strengths
and weaknesses as RMNs—they are capable of representing cyclic autocorrelation relationships but
suffer from decreased efficiency if full joint estimation is used during learning.
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Recent work on structure learning for MLNs (Kok and Domingos, 2005) has investigated the use
of pseudolikelihood to increase learning efficiency. The MLN structure learning algorithm restricts
the search space by limiting the number of distinct variables in a clause, and then uses beam search,
with a weighted pseudolikelihood scoring function, to find the best clauses to add to the network.

Although both RDNs and MLNs use pseudolikelihood techniques to learn model structures effi-
ciently, they each employ a different representational formalism. In particular, MLNs use weighted
logic formulae while RDNs use aggregate features in CPDs. Our future work will investigate the
performance tradeoffs between RDN and MLN representations when combined with pseudolikeli-
hood estimation.

5.3 Collective Inference

Collective inference models exploit autocorrelation dependencies in a network of objects to improve
predictions. Joint relational models, such as those discussed above, are able to exploit autocorre-
lation to improve predictions by estimating joint probability distributions over the entire graph and
collectively inferring the labels of related instances.

An alternative approach to collective inference combines local individual classification models
(e.g., RBCs) with a joint inference procedure (e.g., relaxation labeling). Examples of this technique
include iterative classification (Neville and Jensen, 2000), link-based classification (Lu and Getoor,
2003), and probabilistic relational neighbor models (Macskassy and Provost, 2003, 2004). These
approaches to collective inference were developed in an ad hoc procedural fashion, motivated by the
observation that they appear to work well in practice. RDNs formalize this approach in a principled
framework—learning models locally (maximizing pseudolikelihood) and combining them with a
global inference procedure (Gibbs sampling) to recover a full joint distribution. In this work we
have demonstrated that autocorrelation is the reason behind improved performance in collective
inference (see Jensen et al., 2004, for more detail) and explored the situations under which we can
expect this type of approximation to perform well.

6. Discussion and Future Work

In this paper, we presented relational dependency networks, a new form of probabilistic relational
model. We showed the RDN learning algorithm to be a relatively simple method for learning the
structure and parameters of a probabilistic graphical model. In addition, RDNs allow us to exploit
existing techniques for learning conditional probability distributions of relational data sets. Here we
have chosen to exploit our prior work on RPTs, which construct parsimonious models of relational
data, and RBCs, which are simple and surprisingly effective non-selective models. We expect the
general properties of RDNs to be retained if other approaches to learning conditional probability
distributions are used, given that those approaches learn accurate local models.

The primary advantage of RDNs is the ability to efficiently learn and reason with autocorrela-
tion. Autocorrelation is a nearly ubiquitous phenomenon in relational data sets and the resulting
dependencies are often cyclic in nature. If a data set exhibits autocorrelation, an RDN can learn
the associated dependencies and then exploit those dependencies to improve overall inferences by
collectively inferring values for the entire set of instances simultaneously. The real and synthetic
data experiments in this paper show that collective inference with RDNs can offer significant im-
provement over conditional approaches when autocorrelation is present in the data. Except in rare
cases, the performance of RDNs approaches the performance that would be possible if all the class
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labels of related instances were known. Furthermore, our experiments show that inference with
RDNs is comparable, or superior, to RMN inference over a range of conditions, which indicates
that pseudolikelihood estimation can be used effectively to learn an approximation of the full joint
distribution.

We also presented learned RDNs for a number of real-world relational domains, demonstrating
another strength of RDNs—their understandable and intuitive knowledge representation. Compre-
hensible models are a cornerstone of the knowledge discovery process, which seeks to identify
novel and interesting patterns in large data sets. Domain experts are more willing to trust, and make
regular use of, understandable models—particularly when the induced models are used to support
additional reasoning. Understandable models also aid analysts’ assessment of the utility of the ad-
ditional relational information, potentially reducing the cost of information gathering and storage
and the need for data transfer among organizations—increasing the practicality and feasibility of
relational modeling.

Future work will compare RDNs to Markov logic networks in order to evaluate the performance
tradeoffs for using pseudolikelihood approximations with different relational representations. Also,
because our analysis indicates that each model reacts differently to the amount of seed information
and level of autocorrelation, future work will attempt to quantify these effects on performance more
formally. In particular, we are developing a bias/variance framework to decompose model errors
into components of both the learning and inference processes (Neville and Jensen, 2006). Conven-
tional bias/variance analysis is a useful tool for investigating the performance of machine learning
algorithms, but it decomposes loss into errors due to aspects of the learning process alone. In re-
lational and network applications, the collective inference process introduces an additional source
of error—both through the use of approximate inference algorithms and through variation in the
availability of test set information. Our framework can be used to evaluate hypotheses regarding the
mechanisms behind poor model performance (e.g., identifiability problems increase RDN variance)
and investigate algorithmic modifications designed to improve model performance.
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Appendix A. Synthetic Data Generation Models

We detail the manually specified conditional models used in Section 4.1. Specifically, there are
three RBC and three RPT models. Each one is designed to generate data with low, medium, or high
levels of autocorrelation (0.25, 0.50, 0.75).
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RBC := p(X1|X1R,X2) ∝∏
R
p(X1R|X1) · p(X2|X1).

RBC0.25 : p(X1R|X1) := p(X1R=1|X1=1) = p(X1R=0|X1=0) = 0.5625,
p(X2|X1) := p(X2=1|X1=1) = p(X2=0|X1=0) = 0.75.

RBC0.50 : p(X1R|X1) := p(X1R=1|X1=1) = p(X1R=0|X1=0) = 0.6250,
p(X2|X1) := p(X2=1|X1=1) = p(X2=0|X1=0) = 0.75.

RBC0.75 : p(X1R|X1) := p(X1R=1|X1=1) = p(X1R=0|X1=0) = 0.6875
p(X2|X1) := p(X2=1|X1=1) = p(X2=0|X1=0) = 0.75.

Figure 16: RPT0.25 model used for synthetic data generation with low autocorrelation.
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Figure 17: RPT0.50 model used for synthetic data generation with medium autocorrelation.

Figure 18: RPT0.75 model used for synthetic data generation with high autocorrelation levels.
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Abstract
In sequence modeling, we often wish to represent complex interaction between labels, such as when
performing multiple, cascaded labeling tasks on the same sequence, or when long-range dependen-
cies exist. We present dynamic conditional random fields (DCRFs), a generalization of linear-chain
conditional random fields (CRFs) in which each time slice contains a set of state variables and
edges—a distributed state representation as in dynamic Bayesian networks (DBNs)—and param-
eters are tied across slices. Since exact inference can be intractable in such models, we perform
approximate inference using several schedules for belief propagation, including tree-based repa-
rameterization (TRP). On a natural-language chunking task, we show that a DCRF performs better
than a series of linear-chain CRFs, achieving comparable performance using only half the training
data. In addition to maximum conditional likelihood, we present two alternative approaches for
training DCRFs: marginal likelihood training, for when we are primarily interested in predicting
only a subset of the variables, and cascaded training, for when we have a distinct data set for
each state variable, as in transfer learning. We evaluate marginal training and cascaded training on
both synthetic data and real-world text data, finding that marginal training can improve accuracy
when uncertainty exists over the latent variables, and that for transfer learning, a DCRF trained in
a cascaded fashion performs better than a linear-chain CRF that predicts the final task directly.
Keywords: conditional random fields, graphical models, sequence labeling

1. Introduction

The problem of labeling and segmenting sequences of observations arises in many different areas,
including bioinformatics, music modeling, computational linguistics, speech recognition, and in-
formation extraction. Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa, 1989; Murphy,
2002) are a popular method for probabilistic sequence modeling, because they exploit structure
in the problem to compactly represent distributions over multiple state variables. Hidden Markov
Models (HMMs), an important special case of DBNs, are a classical method for speech recognition
(Rabiner, 1989) and part-of-speech tagging (Manning and Schütze, 1999). More complex DBNs
have been used for applications as diverse as robot navigation (Theocharous et al., 2001), audio-
visual speech recognition (Nefian et al., 2002), activity recognition (Bui et al., 2002), information

∗. Current affiliation: Massachusetts Institute of Technology, Cambridge, MA 02139, USA

c©2007 Charles Sutton, Andrew McCallum and Khashayar Rohanimanesh.



SUTTON, MCCALLUM AND ROHANIMANESH

extraction (Skounakis et al., 2003; Peshkin and Pfeffer, 2003), and automatic speech recognition
(Bilmes, 2003).

DBNs are typically trained to maximize the joint probability distribution p(y,x) of a set of
observation sequences x and labels y. However, when the task does not require the ability to generate
x, such as in segmenting and labeling, modeling the joint distribution is a waste of modeling effort.
Furthermore, generative models often must make problematic independence assumptions among
the observed nodes in order to achieve tractability. In modeling natural language, for example,
we may wish to use features of a word such as its identity, capitalization, prefixes and suffixes,
neighboring words, membership in domain-specific lexicons, and category in semantic databases
like WordNet—features which have complex interdependencies. Generative models that represent
these interdependencies are in general intractable; but omitting such features or modeling them as
independent has been shown to hurt accuracy (McCallum et al., 2000).

A solution to this problem is to model instead the conditional probability distribution p(y|x).
The random vector x can include arbitrary, non-independent, domain-specific feature variables. Be-
cause the model is conditional, the dependencies among the features in x do not need to be explicitly
represented. Conditionally-trained models have been shown to perform better than generatively-
trained models on many tasks, including document classification (Taskar et al., 2002), part-of-
speech tagging (Ratnaparkhi, 1996), extraction of data from tables (Pinto et al., 2003), segmentation
of FAQ lists (McCallum et al., 2000), and noun-phrase segmentation (Sha and Pereira, 2003).

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are undi-
rected graphical models of the conditional distribution p(y|x). Early work on CRFs focused on
the linear-chain structure (depicted in Figure 1) in which a first-order Markov assumption is made
among labels. This model structure is analogous to conditionally-trained HMMs, and has efficient
exact inference algorithms. Often, however, we wish to represent more complex interaction between
labels—for example, when longer-range dependencies exist between labels, when the state can be
naturally represented as a vector of variables, or when performing multiple cascaded labeling tasks
on the same input sequence.

In this paper, we introduce dynamic CRFs (DCRFs), which are a generalization of linear-chain
CRFs that repeat structure and parameters over a sequence of state vectors. This allows us to both
represent distributed hidden state and complex interaction among labels, as in DBNs, and to use
rich, overlapping feature sets, as in conditional models. For example, the factorial structure in
Figure 1(b), which we call a factorial CRF (FCRF), includes links between cotemporal labels, ex-
plicitly modeling limited probabilistic dependencies between two different label sequences. Other
types of DCRFs can model higher-order Markov dependence between labels (Figure 2), or incorpo-
rate a fixed-size memory. For example, a DCRF for part-of-speech tagging could include for each
word a hidden state that is true if any previous word has been tagged as a verb.

Any DCRF with multiple state variables can be collapsed into a linear-chain CRF whose state
space is the cross-product of the outcomes of the original state variables. However, such a linear-
chain CRF needs exponentially many parameters in the number of variables. Like DBNs, DCRFs
represent the joint distribution with fewer parameters by exploiting conditional independence rela-
tions.

In natural-language processing, DCRFs are especially attractive because they are a probabilis-
tic generalization of cascaded, weighted finite-state transducers (Mohri et al., 2002). In general,
many sequence-processing problems are traditionally solved by chaining errorful subtasks, such as
chains of finite state transducers. In such an approach, however, errors early in processing nearly
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always cascade through the chain, causing errors in the final output. This problem can be solved
by jointly representing the subtasks in a single graphical model, both explicitly representing their
dependence, and preserving uncertainty between them. DCRFs can represent dependence between
subtasks solved using finite-state transducers, such as phonological and morphological analysis,
POS tagging, shallow parsing, and information extraction.

More specifically, in information extraction and data mining, McCallum and Jensen (2003)
argue that the same kind of probabilistic unification can potentially be useful, because in many
cases, we wish to mine a database that has been extracted from raw text. A unified probabilistic
model for extraction and mining can allow data mining to take into account the uncertainty in the
extraction, and allow extraction to benefit from emerging patterns produced by data mining. The
applications here, in which DCRFs are used to jointly perform multiple sequence labeling tasks, can
be viewed as an initial step toward that goal.

In this paper, we evaluate DCRFs on several natural-language processing tasks. First, a factorial
CRF that learns to jointly predict parts of speech and segment noun phrases performs better than
cascaded models that perform the two tasks in sequence. Also, we compare several schedules
for belief propagation, showing that although exact inference is feasible, on this task approximate
inference has lower total training time with no loss in testing accuracy.

In addition to conditional maximum likelihood training, we present two alternative training
methods for DCRFs: marginal training and cascaded training. First, in some situations, we are
primarily interested in predicting a few output variables y, and the other output variables w are
included only to help in modeling y. For example, part-of-speech labels are usually never interesting
in themselves, but rather are used to aid prediction of some higher level task. Training to maximize
the joint conditional likelihood p(y,w|x) may then be inappropriate, because it may be forced to
trade off accuracy among the y, which we are primarily interested in, to obtain higher accuracy
among w, which we do not care about. For such situations, we explore the idea of training a
DCRF by the marginal likelihood log p(y|x) = log∑w p(y,w|x). On a natural-language chunking
task, marginal training leads to a slight but not significant increase in accuracy on y. We explain
this unexpected result by further exploration on synthetic data, where we find that marginal training
tends to improve performance most when the model has large uncertainty among the y labels, which
is not the case in the chunking task.

Second, in other situations, a single fully-labeled data set is not available, and instead the outputs
are partitioned into sets (y0,y1, . . . ,y!), and we have one data set D0 labeled for y0, another data set
D1 labeled for y1, and so on. For example, this can be the case in transfer learning, in which
we wish to use previous learning problems (that is, y0,y1, . . . ,y!−1) to improve performance on a
new task y!. To train a DCRF without a single fully-labeled training set, we propose a cascaded
training procedure, in which first we train a CRF p0 to predict y0 on D0, then we annotate D1 with
the most likely prediction from p0, then we train a CRF p1 on p(y1|y0,x), and finally, at test time,
perform inference jointly in the resulting DCRF. Compared to other work in transfer learning, an
interesting aspect of this approach is that the model includes no shared latent structure between
subtasks; rather, the probabilistic dependence between tasks is modeled directly. On a benchmark
information extraction task, we show that a DCRF trained in a cascaded fashion performs better
than a linear-chain CRF on the target task.

The rest of the paper is structured as follows. In Section 2, we describe the general framework
of CRFs. Then, in Section 3, we define DCRFs, and explain methods for approximate inference and
parameter estimation, including exact conditional maximum likelihood (Section 3.3.1), approximate
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Figure 1: Graphical representation of (a) linear-chain CRF, and (b) factorial CRF. Although the
hidden nodes can depend on observations at any time step, for clarity we have shown
links only to observations at the same time step.

parameter estimation using BP (Section 3.3.2), and cascaded parameter estimation (Section 3.3.3).
Then, in Section 3.4, we describe inference and parameter estimation in marginal DCRFs. In Sec-
tion 4, we present the experimental results, including evaluation of factorial CRFs on noun-phrase
chunking (Section 4.1), comparison of BP schedules in FCRFs (Section 4.2), evaluation of marginal
DCRFs on both the chunking data and synthetic data (Section 4.3), and cascaded training of DCRFs
for transfer learning (Section 4.4). Finally, in Section 5 and Section 6, we present related work and
conclude.

2. Conditional Random Fields (CRFs)

Conditional random fields (CRFs) (Lafferty et al., 2001; Sutton and McCallum, 2006) are condi-
tional probability distributions that factorize according to an undirected model. CRFs are defined as
follows. Let y be a set of output variables that we wish to predict, and x be a set of input variables
that are observed. For example, in natural language processing, x may be a sequence of words
x = {xt} for t = 1, . . . ,T and y = {yt} a sequence of labels. Let G be a factor graph over y and x
with factors C = {Φc(yc,xc)}, where xc is the set of input variables that are arguments to the local
function Φc, and similarly for yc. A conditional random field is a conditional distribution pΛ that
factorizes as

pΛ(y|x) =
1

Z(x)∏c∈C
Φc(yc,xc),

where Z(x) = ∑y∏c∈CΦc(yc,xc) is a normalization factor over all state sequences for the sequence
x. We assume the potentials factorize according to a set of features { fk}, as

Φc(yc,xc) = exp

(

∑
k
λk fk(yc,xc)

)
,

so that the family of distributions {pΛ} is an exponential family. In this paper, we shall assume
that the features are given and fixed. The model parameters are a set of real weights Λ= {λk}, one
weight for each feature.

Many previous applications use the linear-chain CRF, in which a first-order Markov assump-
tion is made on the hidden variables. A graphical model for this is shown in Figure 1. In this case,
the cliques of the conditional model are the nodes and edges, so that there are feature functions
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Figure 2: Examples of DCRFs. The dashed lines indicate the boundary between time steps. The
input variables x are not shown.

fk(yt−1,yt ,x, t) for each label transition. (Here we write the feature functions as potentially depend-
ing on the entire input sequence.) Feature functions can be arbitrary. For example, a feature function
fk(yt−1,yt ,x, t) could be a binary test that has value 1 if and only if yt−1 has the label “adjective”, yt
has the label “proper noun”, and xt begins with a capital letter.

3. Dynamic CRFs

In this section, we define dynamic CRFs (Section 3.1) and describe methods for inference (Sec-
tion 3.2) and parameter estimation (Section 3.3).

3.1 Model Representation

A dynamic CRF (DCRF) is a conditional distribution that factorizes according to an undirected
graphical model whose structure and parameters are repeated over a sequence. As with a DBN, a
DCRF can be specified by a template that gives the graphical structure, features, and weights for
two time slices, which can then be unrolled given an input x. The same set of features and weights is
used at each sequence position, so that the parameters are tied across the network. Several example
templates are given in Figure 2.

Now we give a formal description of the unrolling process. Let y= {y1 . . .yT} be a sequence of
random vectors yi = (yi1 . . .yim),where yi is the state vector at time i, and yi j is the value of variable j
at time i. To give the likelihood equation for arbitrary DCRFs, we require a way to describe a clique
in the unrolled graph independent of its position in the sequence. For this purpose we introduce the
concept of a clique index. Given a time t, we can denote any variable yi j in y by two integers: its
index j in the state vector yi, and its time offset Δt = i− t. We will call a set c = {(Δt, j)} of such
pairs a clique index, which denotes a set of variables yt,c by yt,c ≡ {yt+Δt, j |(Δt, j)∈c}. That is, yt,c
is the set of variables in the unrolled version of clique index c at time t.

Now we can formally define DCRFs:

Definition 1 Let C be a set of clique indices, F = { fk(yt,c,x, t)} be a set of feature functions and
Λ= {λk} be a set of real-valued weights. Then the distribution p is a dynamic conditional random
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field if and only if

p(y|x) =
1

Z(x)∏t ∏c∈C
exp

(

∑
k
λk fk(yt,c,x, t)

)

where Z(x) = ∑y∏t∏c∈C exp(∑k λk fk(yt,c,x, t)) is the partition function.

Although we define a DCRF has having the same set of features for all of its cliques, in practice we
choose each feature function fk so that it is non-zero only on cliques with some particular index ck.
Thus, we will sometimes think of each clique index has having its own set of features and weights,
and speak of fk and λk as having an associated clique index ck.

DCRFs generalize not only linear-chain CRFs, but more complicated structures as well. For
example, in this paper, we use a factorial CRF (FCRF), which has linear chains of labels, with
connections between cotemporal labels. We name these after factorial HMMs (Ghahramani and
Jordan, 1997). Figure 1(b) shows an unrolled factorial CRF. Consider an FCRF with L chains,
where Y!,t is the variable in chain ! at time t. The clique indices for this DCRF are of the form
{(0,!),(1,!)} for each of the within-chain edges and {(0,!),(0,!+ 1)} for each of the between-
chain edges. The FCRF p defines a distribution over output variables as:

p(y|x) =
1

Z(x)

(
T−1

∏
t=1

L

∏
!=1

Φ!(y!,t ,y!,t+1,x, t)

)(
T

∏
t=1

L−1

∏
!=1

Ψ!(y!,t ,y!+1,t ,x, t)

)
,

where {Φ!} are the factors over the within-chain edges, {Ψ!} are the factors over the between-
chain edges, and Z(x) is the partition function. The factors are modeled using the features { fk} and
weights {λk} of G as:

Φ!(y!,t ,y!,t+1,x, t) = exp

{

∑
k
λk fk(y!,t ,y!,t+1,x, t)

}
,

Ψ!(y!,t ,y!+1,t ,x, t) = exp

{

∑
k
λk fk(y!,t ,y!+1,t ,x, t)

}
.

More complicated structures are also possible, such as second-order CRFs, and hierarchical
CRFs, which are moralized versions of the hierarchical HMMs of Fine et al. (1998).1 As in DBNs,
this factorized structure can use many fewer parameters than the cross-product state space: even the
two-level FCRF we discuss below uses less than an eighth of the parameters of the corresponding
cross-product CRF.

3.2 Inference in DCRFs

Inference in a DCRF can be done using any inference algorithm for undirected models. For an unla-
beled sequence x, we typically wish to solve two inference problems: (a) computing the marginals
p(yt,c|x) over all cliques yt,c, and (b) computing the Viterbi decoding y∗ = argmaxy p(y|x). The
Viterbi decoding can be used to label a new sequence, and marginal computation is used for param-
eter estimation (Section 3.3).

If the number of states is not large, the simplest approach is to form a linear chain whose output
space is the cross-product of the original DCRF outputs, and then perform forward-backward. In

1. Hierarchical HMMs were shown to be DBNs by Murphy and Paskin (2001).
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other words, a DCRF can always be viewed as a linear-chain CRF whose feature functions take
a special form, analogous to the relationship between generative DBNs and HMMs. The cross-
product space is often very large, however, in which case this approach is infeasible. Alternatively,
one can perform exact inference by applying the junction tree algorithm to the unrolled DCRF, or by
using the special-purpose inference algorithms that have been designed for DBNs (Murphy, 2002),
which can avoid storing the full unrolled graph.

In complex DCRFs, though, exact inference can still be expensive, making approximate meth-
ods necessary. Furthermore, because marginal computation is needed during training, inference
must be efficient so that we can use large training sets even if there are many labels. The largest
experiment reported here required computing pairwise marginals in 866,792 different graphical
models: one for each training example in each iteration of a convex optimization algorithm. In the
remainder of the section, we describe approximate inference using loopy belief propagation (BP).

Although belief propagation is exact only in certain special cases, in practice it has been a
successful approximate method for general graphical models (Murphy et al., 1999; Aji et al., 1998).
For simplicity, we describe BP for a pairwise CRF with factors {Φ(xu,xv)}, but the algorithm can
be generalized to arbitrary factor graphs. Belief propagation algorithms iteratively update a vector
m= (mu(xv)) of messages between pairs of vertices xu and xv. The update from xu to xv is given by:

mu(xv) ←∑
xu
Φ(xu,xv) ∏

xt %=xv
mt(xu), (1)

where Φ(xu,xv) is the potential on the edge (xu,xv). Performing this update for one edge (xu,xv) in
one direction is called sending a message from xu to xv. Given a message vector m, approximate
marginals are computed as

p(xu,xv) ← κΦ(xu,xv) ∏
xt %=xv

mt(xu) ∏
xw %=xu

mw(xv),

where κ is a normalization constant.
At each iteration of belief propagation, messages can be sent in any order, and choosing a good

schedule can affect how quickly the algorithm converges. We describe two schedules for belief
propagation: tree-based and random. The tree-based schedule, also known as tree reparameter-
ization (TRP) (Wainwright et al., 2001; Wainwright, 2002), propagates messages along a set of
cross-cutting spanning trees of the original graph. At each iteration of TRP, a spanning tree T (i) ∈ ϒ
is selected, and messages are sent in both directions along every edge in T (i), which amounts to
exact inference on T (i). In general, trees may be selected from any set ϒ= {T } as long as the trees
in ϒ cover the edge set of the original graph. In practice, we select trees randomly, but we select
first edges that have never been used in any previous iteration.

The random schedule simply sends messages across all edges in random order. To improve
convergence, we arbitrarily order each edge ei = (si, ti) and send all messages msi(ti) before any
messages mti(si). Note that for a graph with V nodes and E edges, TRP sends O(V ) messages per
BP iteration, while the random schedule sends O(E) messages.

An alternative to schedule is a synchronous schedule, in which conceptually all messages are
sent at the same time. In the tree-based and random schedules, once a message is updated, its
new values are immediately available for other messages. In the synchronous schedule, on the
other hand, when computing a message m( j)

u (xv) at iteration j of BP, the previous message values
m( j−1)
t (xu) are always used, even if an updated value m

( j)
t (xu) has been computed. We do not report
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results from the synchronous schedule in this paper, because preliminary experiments indicated that
it requires many more iterations to converge than the other schedules.

Finally, dynamic schedules for BP (Elidan et al., 2006), which depend on the current message
values during inference, have recently been shown to converge significantly faster than TRP on
sufficiently difficult graphs, and may be preferable to TRP on certain DCRFs. We do not consider
them in this paper, however.

To perform Viterbi decoding, we use the same propagation algorithms, except that the summa-
tion in Equation (1) is replaced by maximization.

3.3 Parameter Estimation in DCRFs

In this section, we discuss exact parameter estimation (Section 3.3.1) and approximate parameter
estimation using belief propagation (Section 3.3.2). Also, we introduce a novel approximate training
procedure called cascaded training (Section 3.3.3).

3.3.1 EXACT PARAMETER ESTIMATION

The parameter estimation problem is to find a set of parameters Λ = {λk} given training data D =
{x(i),y(i)}Ni=1. More specifically, we optimize the conditional log-likelihood

L(Λ) =∑
i
log pΛ(y(i) | x(i)).

The derivative of this with respect to a parameter λk associated with clique index c is

∂L
∂λk

=∑
i
∑
t
fk(y

(i)
t,c ,x(i), t)

−∑
i
∑
t
∑
yt,c
pΛ(yt,c | x(i)) fk(yt,c,x(i), t).

(2)

where y (i)
t,c is the assignment to yt,c in y(i), and yt,c ranges over assignments to the clique c. Observe

that it is the factor pΛ(yt,c | x(i)) that requires us to compute marginal probabilities in the unrolled
DCRF.

To reduce overfitting, we define a prior p(Λ) over parameters, and optimize log p(Λ|D) =
L(Λ)+ log p(Λ). We use a spherical Gaussian prior with mean µ= 0 and covariance matrix Σ=σ2I,
so that the gradient becomes

∂p(Λ|D)
∂λk

=
∂L
∂λk

− λk
σ2

.

This corresponds to optimizing L(Λ) using !2 regularization. Other priors are possible, for example,
an exponential prior, which corresponds to regularizing L(Λ) by an !1 norm.

The function log p(Λ|D) is convex, and can be optimized by any number of techniques, as in
other maximum-entropy models (Lafferty et al., 2001; Berger et al., 1996). For example, New-
ton’s method achieves fast convergence, but requires computing the Hessian, which is expensive
both because computing the individual second derivatives is expensive, and because the Hessian
is of size K2, where K is the number of parameters. Typically in text applications, the number of
parameters can be anywhere from the tens of thousands to the millions, so that maintaining a full
K×K matrix is infeasible. Instead, we use quasi-Newton methods, which iteratively maintain an
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approximation to the Hessian using only the gradient. But standard quasi-Newton methods, such as
BFGS, also approximate the Hessian by a full K×K matrix, which is too large. Therefore, we use
a limited-memory version of BFGS, called L-BFGS (Nocedal and Wright, 1999), which approxi-
mates the Hessian in such a way that the full K×K matrix is never calculated explicitly. L-BFGS
has previously been shown to outperform other optimization algorithms for linear-chain CRFs (Sha
and Pereira, 2003; Malouf, 2002; Wallach, 2002). In particular, iterative scaling algorithms such as
GIS and IIS have been shown to be much slower than gradient-based algorithms such as L-BFGS
or preconditioned conjugate gradient.

All of the methods we have described are batch methods, meaning that they examine all of the
training data before making a gradient update. Recently, stochastic gradient methods, which make
gradient updates based on small subsets of the data, have been shown to converge significantly
faster for linear-chain CRFs (Vishwanathan et al., 2006). It is likely that stochastic gradient methods
would perform similarly well for DCRFs, but we do not use them in the experiments reported here.

The discussion above was for the fully-observed case, where the training data include observed
values for all variables in the model. If some nodes are unobserved, the optimization problem
becomes more difficult, because the log likelihood is no longer convex in general. We describe this
case in Section 3.4.1.

3.3.2 APPROXIMATE PARAMETER ESTIMATION USING BP

For models in which exact inference is infeasible, we use approximate inference during training. In
Section 3.2, we discussed inference in DCRFs. In this section, we discuss additional issues that arise
when using BP during training. First, to simplify notation in this section, we will write a DCRF as
p(y|x) = Z(x)−1∏t∏cψt,c(yt,c), where each factor in the unrolled DCRF is defined as

ψt,c(yt,c) = exp

{

∑
k
λk fk(yt,c,x, t)

}
.

That is, we drop the dependence of the factors {ψt,c} on x.
For approximate parameter estimation, the basic procedure is to optimize using the gradient (2)

as described in the last section, but instead of running an exact inference algorithm on each training
example to obtain marginal distributions pΛ(yt,c | x(i)), we run BP on each training instance to
obtain approximate factor beliefs bt,c(yt,c) for each clique yt,c and approximate node beliefs bs(ys)
for each output variable s.

Now, although BP provides approximate marginal distributions that allow calculating the gra-
dient, there is still the issue of how to calculate an approximate likelihood. In particular, we need
an approximate objective function whose gradient is equal to the approximate gradient we have just
described. We use the approximate likelihood

!̂(Λ;{b}) =∑
i
log

[
∏t∏c bt,c(y

(i)
t,c)

∏s bs(y
(i)
s )ds−1

]
, (3)

where s ranges over output variables (that is, components of y), and ds is the degree of s (that is,
the number of factors ψc,t that depend on the variable s). In other words, we approximate the joint
likelihood by the product over each clique’s approximate belief, dividing by the node beliefs to
avoid overcounting. In the remainder of this section, we justify this choice.
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BP can be viewed as attempting to solve an optimization problem over possible choices of
marginal distributions, for a particular cost function called the Bethe free energy. More techni-
cally, it has been shown that fixed points of BP are stationary points of the Bethe free energy (for
more details, see Yedidia et al., 2005), when minimized over locally-consistent beliefs. The Bethe
energy is an approximation to another cost function, which Yedidia et al. call the Helmholtz free
energy. Since the minimum Helmhotlz energy is exactly − logZ(x), we approximate − logZ(x) by
the minimizing value of the Bethe energy, that is:

!BETHE(Λ) =∑
i
∑
t
∑
c
logψt,c(yt,c)+∑

i
min
{b}

FBETHE(b), (4)

where FBETHE is the Bethe free energy, which is defined as

FBETHE(b) =∑
t
∑
c
∑
yt,c
bt,c(yt,c) log

bt,c(yt,c)
ψt,c(yt,c)

−∑
s
(ds−1)∑

xs
bs(ys) logbs(ys).

So approximate training with BP can be viewed as solving a saddlepoint problem of maximizing
!BETHE with respect to the model parameters and minimizing with respect to the beliefs bt,c(yt,c).
Approximate training using BP is just coordinate ascent: BP optimizes !BETHE with respect to b for
fixed Λ; and a step along the gradient (2) optimizes !BETHE with respect to Λ for fixed b. Taking
the partial derivative of (4) with respect to a weight λk, we obtain the gradient (2) with marginal
distributions replaced by beliefs, as desired.

To justify the approximate likelihood (3), we note that the Bethe free energy can be written a
dual form, in which the variables are interpreted as log messages rather than beliefs. Details of this
are presented by Minka (2001a, 2005). Substituting the Bethe dual problem into (4) and simplifying
yields (3).

3.3.3 CASCADED PARAMETER ESTIMATION

Joint maximum likelihood training assumes that we have access to data in which we have observed
all of the variables. Sometimes this is not the case. One example is transfer learning, which is
the general problem of using previous learning problems that a system has seen to aid its learning
of new, related tasks. Usually in transfer learning, we have one data set labeled with the old task
variables and one with the new task variables, but no data that is jointly labeled. In this section, we
describe a cascaded parameter estimation procedure that can be applied when the data is not fully
labeled.

For a factorial CRF with N levels, the basic idea is to train each level separately as if it were a
linear-chain CRF, using the single-best prediction of the previous level as a feature. At the end, each
set of individually-trained weights defines a pair of factors, which are simply multiplied together
to form the full FCRF. The cascaded procedure is described formally in Algorithm 1. In this de-
scription, the two clique indices for each level ! of the FCRF are denoted by cW! for the within-level
cliques, with features f W!,k(y

!
t ,y!t+1,x, t) and weights ΛW

! ; and another index c
P
! for the between-level

cliques, with features f P!,k(y!t ,y
!−1
t ,x, t) and weights ΛP

!.
For simplicity, we have presented cascaded training for factorial CRFs, but it can be generalized

to other DCRF structures, as long as the DCRF templates can be partitioned in a way that respects
the available labels. In Section 4.4, we evaluate cascaded training on a transfer learning problem.
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Algorithm 1 Cascaded training for Factorial CRFs
1: Train a linear-chain CRF on log p(y0|x), yielding weights ΛW

0 .
2: for all levels ! do
3: Compute Viterbi labeling y∗!−1 = argmaxy!−1 p(y!−1|y∗!−2,x) for each training instance i.
4: Train a linear-chain CRF to maximize log p(y!|y∗!−1,x), yielding weights ΛW

! and Λ
P
!.

5: end for
6: return factorial CRF defined as

p(y|x) ∝
N

∏
!=0

T

∏
t=1

ΨW(y!t ,y
!
t+1,x, t)ΨP(y!t ,y

!−1
t ,x, t)

where

ΨW(y!t ,y
!
t+1,x, t) = exp{∑

k
λWk,! f

W
!,k(y

!
t ,y

!
t+1,x, t)},

ΨP(y!t ,y
!−1
t ,x, t) = exp{∑

k
λPk,! f

P
!,k(y

!
t ,y

!−1
t ,x, t)}.

t T
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Figure 3: Graphical representation of factorial CRF for the joint noun phrase chunking and part-
of-speech tagging problem, where the chain y represents the NP labels, and the chain w
represents the POS labels.

3.4 Marginal DCRFs

In some applications, we are primarily interested in a few main variables, and other auxiliary vari-
ables are included in the model simply to aid in predicting the main variables. For example, in the
chunking model of Section 4.1, the task is to predict the boundaries of noun phrases, and we are
interested in predicting part-of-speech tags only insofar as they help to do this. In such applications,
training by maximizing the joint likelihood might be inappropriate, because it might be forced to
trade off modeling the main variables against modeling the other variables. This motivates the fol-
lowing idea: rather than modeling all of the variables jointly given the input, we can model the
main variables only, marginalizing out the auxiliary variables. The idea is to let the model focus
its effort on modeling the main variables, while retaining the useful information from the other
variables. In this section, we discuss this model class, which we call the marginal DCRF. First, in
Section 3.4.1, we define the model class and describe maximum likelihood parameter estimation.
Then, in Section 3.4.2, we discuss inference in marginal DCRFs.
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3.4.1 MARGINAL DCRFS, AND PARAMETER ESTIMATION

First, we define the marginal DCRF model.

Definition 2 A distribution p is a marginal DCRF over random vectors (y,w) given inputs x if it
can be written as:

pΛ(y|x) =∑
w
pΛ(y,w|x),

where pΛ(y,w|x) is a DCRF.

Parameter estimation proceeds by optimizing the log likelihood

L(Λ) =∑
i
log pΛ(y(i)|x(i)) =∑

i
log∑

w
pΛ(y(i),w|x(i)). (5)

Intuitively, this objective function concentrates on the conditional likelihood over the variables
y, possibly sacrificing accuracy on the variables w. Indeed, this objective function ignores any
observations of w in the training set. We can take these observations into account in some partial
way by careful choice of initialization, as we describe in Section 4.3.

The derivative of (5) with respect to a parameter λk associated with a clique index c is:

∂L(Λ)
∂λk

=∑
i
∑
t
∑̃
wt,c

p(w̃t,c|y(i),x(i)) fk(y
(i)
t,c, w̃t,c,x

(i)
t,c)−

∑
i
∑
t
∑

ỹt,c,w̃t,c
p(ỹt,c, w̃t,c|x(i)) fk(ỹt,c, w̃t,c,x(i)), (6)

where y(i)
t,c is the subset of the training vector y(i) that occurs in clique c instantiated at time t; the

summation over ỹt,c ranges over all assignments to clique c; and wt,c and w̃t,c are defined similarly.
Also, to reduce overfitting, we include a prior on parameters, as in Section 3.3.

Another way to understand the gradient is as follows. For any function f (λ), we have

∂ f
∂λ

= f (λ)
∂ log f
∂λ

,

which can be seen by applying the chain rule to log f and rearranging. Applying this to the marginal
likelihood !(Λ) = log∑w p(y,w|x), we get

∂!
∂λk

=
1

∑w p(y,w|x)∑w
∂
∂λk

[
p(y,w|x)

]

=
1

p(y|x)∑w
p(y,w|x) ∂

∂λk

[
log p(y,w|x)

]

=∑
w
p(w|y,x) ∂

∂λk

[
log p(y,w|x)

]
,

which is the expectation of the fully-observed gradient over all the unobserved variables. Substitut-
ing the expression (2) for the fully-observed gradient yields (6).

The marginal likelihood (5) can be maximized numerically using standard techniques. In the ex-
periments below, we use a quasi-Newton method, just as we do in the fully-observed case, but other
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Figure 4: Graphical representation of factorial CRF for the joint noun phrase chunking and part
of speech labeling problem, demonstrating the process for computing the probability
p(w|y(i),x(i)).

optimization algorithms can be used, such as expectation maximization and its variants. Unfortu-
nately, unlike the fully-observed case, the penalized likelihood for marginal DCRFs is not convex
in general. Thus standard optimization techniques are guaranteed to find only a local maximum, the
quality of which depends on where in parameter space the optimizer is initialized. In Section 4.3,
we evaluate an approach for finding a good starting point.

3.4.2 INFERENCE IN MARGINAL DCRFS

In this section, we discuss how to compute the model probabilities required by the marginal DCRF
gradient. The solutions are very similar to those for DCRFs. The gradient in Equation (6) requires
computing two kinds of marginal probabilities. First, the marginal probabilities p(ỹt,c, w̃t,c|x(i)) in
the second term can be computed by standard inference algorithms, just as in Section 3.2. Second,
the other kind of marginal probabilities are of the form p(w̃t,c|y(i),x(i)), used in the first term on
the right hand side of Equation (6). We do this by performing inference in a clamped model, in
which y is fixed to its observed values (shown in Figure 4). More specifically, to form the clamped
model for a training instance {x(i),y(i),w(i)}, we instantiate yt nodes (nodes associated with the
noun phrase labels) from y(i). This eliminates the edges that are solely between yt nodes, and hence
p(w|y(i),x(i)) can be computed efficiently using any inference algorithm. Finally, to compute the
actual likelihood (5), we can pick an arbitrary assignment w′ and compute the likelihood p(y|x) =
p(y,w′|x)/p(w′|y,x).

For decoding in marginal DCRFs, we wish to find the most likely label sequence for only the y
variables, that is:

y∗ = argmax
y

p(y|x)

= argmax
y ∑w

p(y,w|x).
(7)

To solve this maximization problem, we present an approximate algorithm that is a mixture of
the max-product and sum-product BP algorithms. Basically, nodes that are marginalized out (in our
example, nodes associated with the POS labels) send sum-product messages, and nodes that are not
marginalized out (in our example, nodes associated with the NP labels) send max-product messages.
These updates are summarized in Algorithm 2.
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Algorithm 2MAP algorithm for marginal FCRF
1 If u is a marginalized node, perform: mu(xv) ← ∑xu{Φ(xu,xv)∏xt %=xvmt(xu)}.
2 If u is not a marginalized node, perform: mu(xv) ←maxxu{Φ(xu,xv)∏xt %=xvmt(xu)}.
3 For all nodes perform: p(xu,xv) ← κΦ(xu,xv)∏xt %=xvmt(xu)∏xw %=xumw(xv).
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Figure 5: Performance of FCRFs and cascaded approaches on noun-phrase chunking, averaged
over five repetitions. The error bars on FCRF and CRF+CRF indicate the range of the
repetitions.

Finally, an important point is that part of the reason that the marginal maximization in (7) is
possible in our setting is because of our choice of w. In the application considered here, w is a
single chain of a two-chain FCRF, so that the marginal p(y|x) is likewise the marginal of a single
chain, which can be approximated by BP in a natural way. In a more difficult case—for example,
if the variables y are disconnected, spread throughout the model, and highly correlated—further
approximation would be necessary.

4. Experiments

We present experiments comparing factorial CRFs to other approaches on noun-phrase chunking
(Sang and Buchholz, 2000). Also, we compare different schedules of loopy belief propagation in
factorial CRFs.

4.1 FCRFs for Noun-Phrase Chunking

Automatically finding the base noun phrases in a sentence can be viewed as a sequence labeling
task by labeling each word as either BEGIN-PHRASE, INSIDE-PHRASE, or OTHER (Ramshaw and
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Size CRF+CRF Brill+CRF FCRF
223 86.23 93.12
447 90.44 95.43

POS accuracy 670 92.33 N/A 96.34
894 93.56 96.85
2234 96.18 97.87
8936 98.28 98.92
223 81.92 89.19
447 86.58 91.85

Joint accuracy 670 88.68 N/A 92.86
894 90.06 93.60
2234 93.00 94.90
8936 95.56 96.48
223 83.84 86.02 86.03
447 86.87 88.56 88.59

NP F1 670 88.19 89.65 89.64
894 89.21 90.31 90.55
2234 91.07 91.90 92.02
8936 93.10 93.33 93.87

Table 1: Comparison of performance of cascaded models and FCRFs on simultaneous noun-phrase
chunking and POS tagging. The column Size lists the number of sentences used in training.
The row CRF+CRF lists results from cascaded CRFs, and Brill+CRF lists results from a
linear-chain CRF given POS tags from the Brill tagger. The FCRF always outperforms
CRF+CRF, and given sufficient training data outperforms Brill+CRF. With small amounts
of training data, Brill+CRF and the FCRF perform comparably, but the Brill tagger was
trained on over 40,000 sentences, including some in the CoNLL 2000 test set.

Marcus, 1995). The task is typically performed by an initial pass of part-of-speech tagging, but then
it can be difficult to recover from errors by the tagger. In this section, we address this problem by
performing part-of-speech tagging and noun-phrase segmentation jointly in a single factorial CRF.

Our data comes from the CoNLL 2000 shared task (Sang and Buchholz, 2000), and consists
of sentences from the Wall Street Journal annotated by the Penn Treebank project (Marcus et al.,
1993). We consider each sentence to be a training instance, with single words as tokens. The data
are divided into a standard training set of 8936 sentences and a test set of 2012 sentences. There are
45 different POS labels, and the three NP labels.2

We compare a factorial CRF to two cascaded approaches, which we call CRF+CRF and Brill+
CRF. CRF+CRF uses one linear-chain CRF to predict POS labels, and another linear-chain CRF
to predict NP labels, using as a feature the Viterbi POS labeling from the first CRF. Brill+CRF
predicts NP labels using the POS labels provided from the Brill tagger, which we expect to be more
accurate than those from our CRF, because the Brill tagger was trained on over four times more
data, including sentences from the CoNLL 2000 test set.

The factorial CRF uses the graph structure in Figure 1(b), with one chain modeling the part-of-
speech process and the other modeling the noun-phrase process. We use L-BFGS to optimize the

2. The source code used for this experiment is available at http://mallet.cs.umass.edu/index.php/GRMM.
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wt−δ = w
wt matches [A-Z][a-z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt matches .*[0-9].*
wt appears in list of first names,
last names, company names, days,
months, or geographic entities

wt is contained in a lexicon of words
with POS T (from Brill tagger)

Tt = T
qk(x, t+δ) for all k and δ ∈ [−3,3]

Table 2: Input features qk(x, t) for the CoNLL data. In the above wt is the word at position t, Tt is
the POS tag at position t, w ranges over all words in the training data, and T ranges over
all part-of-speech tags.

posterior p(Λ|D), and TRP to compute the marginal probabilities required by ∂L/∂λk. Based on
past experience with linear-chain CRFs, we use the prior variance σ2 = 10 for all models.

We factorize our features as fk(yt,c,x, t) = pk(yt,c)qk(x, t) where pk(yt,c) is a binary function on
the assignment, and qk(x, t) is a function solely of the input string. Table 2 shows the features we
use. All three approaches use the same features, with the obvious exception that the FCRF and the
first stage of CRF+CRF do not use the POS features Tt = T .

Performance on noun-phrase chunking is summarized in Table 1. As usual, we measure per-
formance on chunking by precision, the percentage of returned phrases that are correct; recall, the
percentage of correct phrases that were returned; and their harmonic mean F1. In addition, we also
report accuracy on POS labels,3 and joint accuracy on (POS, NP) pairs. Joint accuracy is simply the
number of sequence positions for which all labels were correct.

Each row in Table 1 is the average of five different random subsets of the training data, except
for row 8936, which is run on the single official CoNLL training set. All conditions used the same
2012 sentences in the official test set.

On the full training set, FCRFs perform better on NP chunking than either of the cascaded
approaches, including Brill+POS. The Brill tagger (Brill, 1994) is an established part-of-speech
tagger whose training set is not only over four times bigger than the CoNLL 2000 data set, but
also includes the WSJ corpus from which the CoNLL 2000 test set was derived. The Brill tagger
is 97% accurate on the CoNLL data. Also, note that the FCRF—which predicts both noun-phrase
boundaries and POS—is more accurate than a linear-chain CRF which predicts only part of speech.
Our explanation for this is that the NP chain captures long-run dependencies among the POS labels.
The POS-only accuracy is listed under CRF+CRF in Table 1.

3. To simulate the effects of a cascaded architecture, the POS labels in the CoNLL-2000 training and test sets were
automatically generated by the Brill tagger. Thus, POS accuracy measures agreement with the Brill tagger, not
agreement with human judgements.
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Method Time (hr) NP F1 LBFGS iter
µ s µ s µ

Random (3) 15.67 2.90 88.57 0.54 63.6
Tree (3) 13.85 11.6 88.02 0.55 32.6
Tree (∞) 13.57 3.03 88.67 0.57 65.8
Random (∞) 13.25 1.51 88.60 0.53 76.0
Exact 20.49 1.97 88.63 0.53 73.6

Table 3: Comparison of F1 performance on the chunking task by inference algorithm. The columns
labeled µ give the mean over five repetitions, and s the sample standard deviation. Ap-
proximate inference methods have labeling accuracy very similar to exact inference with
lower total training time. The differences in training time between Tree (∞) and Ex-
act and between Random (∞) and Exact are statistically significant by a paired t-test
(d f = 4; p< 0.005).

On smaller training subsets, the FCRF outperforms CRF+CRF and performs comparably to
Brill+CRF. For all the training subset sizes, the difference between CRF+CRF and the FCRF is
statistically significant by a two-sample t-test (p< 0.002). In fact, there was no subset of the data on
which CRF+CRF performed better than the FCRF. The variation over the randomly selected training
subsets is small—the standard deviation over the five repetitions has mean 0.39—indicating that the
observed improvement is not due to chance. Performance and variance on noun-phrase chunking is
shown in Figure 5.

On this data set, several systems are statistically tied for best performance. Kudo andMatsumoto
(2001) report an F1 of 94.39 using a combination of voting support vector machines. Sha and
Pereira (2003) give a linear-chain CRF that achieves an F1 of 94.38, using a second-order Markov
assumption, and including bigram and trigram POS tags as features. An FCRF imposes a first-order
Markov assumption over labels, and represents dependencies only between cotemporal POS and
NP label, not POS bigrams or trigrams. Thus, Sha and Pereira’s results suggest that more richly-
structured DCRFs could achieve better performance than an FCRF.

Other DCRF structures can be applied to many different language tasks, including informa-
tion extraction. Peshkin and Pfeffer (2003) apply a generative DBN to extraction from seminar
announcements (Frietag and McCallum, 1999), attaining improved results, especially in extracting
locations and speakers, by adding a factor to remember the identity of the last non-background label.

4.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and require many marginal computations during
training, inference is critical to efficient training with many labels and large data sets. In this section,
we compare different inference methods both on training time and labeling accuracy of the final
model.

Because exact inference is feasible for a two-chain FCRF, this provides a good case to test
whether the final classification accuracy suffers when approximate methods are used to calculate
the gradient. Also, we can compare different methods for approximate inference with respect to
speed and accuracy.
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We train factorial CRFs on the noun-phrase chunking task described in the last section. We
compute the gradient using exact inference and approximate belief propagation using both random
and tree-based schedules, as described in Section 3.2. Algorithms are considered to have converged
when no message changes by more than 10−3. In these experiments, we observe that the approxi-
mate BP algorithms always converge, although this is not guaranteed in general. We train on five
random subsets of 5% of the training data, and the same five subsets are used in each condition. All
experiments were performed on a 2.8 GHz Intel Xeon with 4 GB of memory.

In an attempt to reduce the training time, we also examine early stopping of BP. For each
message-passing schedule, we compare terminating belief propagation on convergence (Random(∞)
and Tree(∞) in Table 3), to terminating after three iterations (Random (3) and Tree (3)). In all cases,
we run BFGS to convergence. To be clear, training as a whole is a two-loop process: in the outer
loop, BFGS updates the parameters to increase the likelihood, and in the inner loop, belief prop-
agation passes messages to compute beliefs which are used to approximate the gradient. In these
experiments, we examine early stopping in the inner loop, not the outer loop.

Thus, early-stopping of BP need not lead to faster training time overall. Of course each call
the inner loop of training becomes faster with early stopping. However, early stopping of BP can
interact badly with the outer loop, because it makes the gradients less accurate. If the gradient is
too inaccurate, then the outer loop will require many more iterations, resulting in greater training
time overall, even though the time per gradient computation is lower. Another hazard is that no
maximizing step may be possible along the approximate gradient, even if one is possible along the
true gradient. When that happens, the gradient descent algorithm terminates prematurely, leading to
decreased performance.

Table 3 shows the average F1 score and total training times of DCRFs trained by the different
inference methods. Unexpectedly, letting the belief propagation algorithms run to convergence led
to lower training time than the early cutoff. For example, even though Random(3) averaged 427
sec per gradient computation compared to 571 sec for Random(∞), Random(∞) took less total time
to train, because Random(∞) needed an average of 83.6 gradient computations per training run,
compared to 133.2 for Random(3).

As for final classification performance, the various approximate methods and exact inference
perform similarly, except that Tree(3) has lower final performance because maximization ended
prematurely, averaging only 32.6 maximizer iterations. The variance in F1 over the subsets, al-
though not large, is much larger than the F1 difference between the inference algorithms.

Previous work (Wainwright, 2002) has shown that TRP converges faster than synchronous be-
lief propagation, that is, with Jacobi updates. Both the schedules discussed in Section 3.2 use
asynchronous Gauss-Seidel updates. We emphasize that the graphical models in these experiments
are always pairs of coupled chains. On more complicated models, or with a different choice of span-
ning trees, tree-based updates could outperform random asynchronous updates. Also, in complex
models, the difference in classification accuracy between exact and approximate inference could be
larger, but then exact inference is likely to be intractable.

In summary, we draw three conclusions about belief propagation on this particular model. First,
using approximate inference instead of exact inference leads to lower overall training time with no
loss in accuracy. Indeed, the two-level FCRFs that we consider here appear to have been particularly
easy cases for BP, because we observed little difficulty with convergence. Second, there is little dif-
ference between a random tree schedule and a completely random schedule for belief propagation.
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Initial model Precision Recall Accuracy F1
Joint FCRF Random 0.431 0.420 0.710 0.425

Random 0.470 0.430 0.730 0.450
1-Joint 0.470 0.430 0.730 0.450
5-Joint 0.460 0.418 0.726 0.440
10-Joint 0.460 0.418 0.730 0.440

Marginal FCRF 15-Joint 0.454 0.415 0.725 0.434
20-Joint 0.460 0.423 0.730 0.440
25-Joint 0.453 0.408 0.725 0.430
Final-Joint 0.477 0.404 0.723 0.437

Table 4: NP chunking results comparing marginal FCRF and jointly trained FCRF performance
using a data set consisting of 21 training instances and 195 testing instances.

Third, running belief propagation to convergence leads both to increased classification accuracy and
lower overall training time than an early cutoff.

4.3 Experiments with Marginal FCRFs

In this section we apply marginal DCRFs (Section 3.4) to the CoNLL 2000 shared task data set
(Sang and Buchholz, 2000), and to synthetic data.

4.3.1 NOUN-PHRASE CHUNKING

In Section 4.1 we presented experiments using FCRFs for the noun-phrase segmentation problem.
In this section we apply marginal FCRFs to the same problem, where we wish to predict the noun-
phrase labels and marginalize out the part-of-speech labels.

Because the marginal likelihood is not a convex function of the model parameters, our choice
of initialization can affect the quality of the learned model. In order to partly capture the usefulness
of the part-of-speech labels in the data, we initialize the marginal FCRF from a joint FCRF at
some intermediate stages of training. We train an FCRF using the joint likelihood from a random
initialization, saving the model parameters after each iteration of BFGS. Then we use each of those
saved parameter settings as an initialization for marginal training; we call this n-joint initialization,
where n is the number of BFGS steps on the joint likelihood used for the initializer. We compare
this to initializing from a fully-trained joint FCRF (Final-Joint) and and to initializing from random
parameters. We use two different-sized subsets of the CoNLL 2000 data. The first subset contains
21 training instances and 195 testing instances (Table 4). The second contains 447 training instances
and 2012 testing instances (Table 5).

Based on the results shown in Tables 4 and 5, the best performance using the small data set
is attained when the marginal FCRF is trained by the joint FCRF model trained for 1 iterations
which improves the F1 by 0.5%. The best performance using the large data set is attained when
the marginal FCRF is trained by the joint FCRF model trained for 90 iterations which improves
the F1 by 0.3%. The difference between the marginal FCRF and the joint FCRF is not statistically
significant, however.

711



SUTTON, MCCALLUM AND ROHANIMANESH

Initial model Precision Recall Accuracy F1
Joint FCRF Random 0.819 0.803 0.913 0.811

Random 0.814 0.800 0.910 0.806
1-Joint 0.810 0.800 0.910 0.810
5-Joint 0.810 0.800 0.909 0.806
20-Joint 0.810 0.782 0.907 0.795
30-Joint 0.820 0.791 0.908 0.804

Marginal FCRF 50-Joint 0.820 0.800 0.913 0.808
70-Joint 0.820 0.800 0.913 0.810
80-Joint 0.827 0.800 0.920 0.813
90-Joint 0.827 0.800 0.920 0.814
Final-Joint 0.825 0.797 0.913 0.811

Table 5: NP chunking results comparing marginal FCRF and jointly trained FCRF performance
using a data set consisting of 447 training instances and 2012 testing instances.
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Figure 6: Graphical representation of the DBN used for generating synthetic data.

4.3.2 SYNTHETIC DATA

In this section we discuss a set of experiments with synthetic data that further highlights the dif-
ferences between joint and marginal DCRFs. In this set of experiments we generate synthetic data
using randomly chosen generative models that all share the graphical structure shown in Figure 6.
All variables take on discrete values from a finite domain of cardinality five. The parameters (hor-
izontal and vertical transition probability matrices, and also the observation model) are randomly
selected from a uniform Dirichlet distribution with parameter µ= 0.5. We then sample each model
to generate a set of 200 training sequences and 400 testing sequences, each of length 20.

For each synthetic training set, we train both a joint FCRF with the graphical structure shown
in Figure 3 and a marginal FCRF initialized by the final parameters of the joint FCRF. Figure 7
compares the accuracy of the marginal FCRFs to the joint FCRFs over the different training and test
sets. It can be observed when the joint FCRF performs poorly, then the marginal FCRF on average
performs better. In some cases the prediction accuracy of the marginal FCRF is significantly better
than the prediction accuracy of the joint FCRF.

712



DYNAMIC CONDITIONAL RANDOM FIELDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

M
ar

gi
na

l A
cc

ur
ac

y

Joint Accuracy

 

Figure 7: Accuracy of the marginal FCRF versus accuracy of the joint FCRF over the factor Y.
Each point represents a training and testing set generated from a different randomly-
selected generative model with structure shown in Figure 6.

If the joint FCRF performs well, however, the marginal FCRF tends to yield the same prediction
accuracy. We conjecture that when we have learned a good joint FCRF model given a set of training
sequences, the marginally trained FCRF initialized by the joint FCRF does not offer improvement
in accuracy. However, when the joint FCRF performs poorly, we can train a marginal FCRF that is
likely to outperform the joint FCRF.

In order to further study this phenomenon, we measure the entropy of the model distribution,
the idea being that when the model is very accurate, it has little uncertainty over the latent variables,
so modeling the marginal directly is unlikely to make a difference. To measure the uncertainty over
output labels, we use a per-timestep entropy measure, that is, ∑i∑tH(p(yt |x(i))), where as before i
ranges over test instances, and t over sequence positions. Figure 8 shows the plot of the accuracy of
the joint FCRF versus its per-timestep entropy. As the per-timestep entropy of the model increases,
the accuracy decreases. This suggests that the per-timestep entropy can serve as a surrogate measure
to decide which problems are most appropriate for marginal training.

Figure 9 plots the ratio of the the marginal FCRF accuracy to the joint FCRF accuracy, as a
function of the per-timestep entropy of the joint FCRF. We observe that for joint FCRF models
with a smaller entropy measure, this ratio is close to one which means that both joint FCRF and
marginal FCRF perform almost the same. However, for joint FCRF models with high entropy,
this ratio increases on average, meaning that the marginal FCRF is outperforming the joint FCRF.
This suggests that the per-timestep entropy of the jointly trained model provides some indication of
whether marginal training may be expected to improve performance.
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Figure 8: Accuracy of the joint FCRF as a function of the mean per-timestep entropy,
E(H(p(yt |x))), averaged over all time steps t, and all testing sequences x(i), of the joint
FCRF.
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Figure 9: Ratio of the accuracy of the marginal FCRF accuracy to the the joint FCRF accuracy, as
a function of the mean per-timestep entropy of the joint FCRF.

4.4 Cascaded Training for Transfer Learning

In this section, we consider an application of DCRFs to transfer learning, both as an additional
application of DCRFs, and as an evaluation of the cascaded training procedure described in Sec-
tion 3.3.3. The task is to extract the details of an academic seminar—including its starting time,
ending time, location, and speaker—from an email announcement. The data is a collection of 485
e-mail messages announcing seminars at Carnegie Mellon University, gathered by Freitag (1998),
and has been the subject of much previous work using a wide variety of learning methods. Despite
all this work, however, the best reported systems have precision and recall on speaker names and lo-
cations of only about 75%—too low to use in a practical system. This task is so challenging because
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wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,
last names, honorifics, etc.

wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
Tt = T
qk(x, t+δ) for all k and δ ∈ [−4,4]

Table 6: Input features qk(x, t) for the seminars data. In the above wt is the word at position t, Tt
is the POS tag at position t, w ranges over all words in the training data, and T ranges
over all Penn Treebank part-of-speech tags. The “appears to be” features are based on
hand-designed regular expressions that can span several tokens.

System stime etime location speaker overall
WHISK Soderland (1999) 92.6 86.1 66.6 18.3 65.9
SRV Freitag (1998) 98.5 77.9 72.7 56.3 76.4
HMM Frietag and McCallum (1999) 98.5 62.1 78.6 76.6 78.9
RAPIER Califf and Mooney (1999) 95.9 94.6 73.4 53.1 79.3
SNOW-IE Roth and Wen-tau Yih (2001) 99.6 96.3 75.2 73.8 86.2
(LP)2 Ciravegna (2001) 99.0 95.5 75.0 77.6 86.8
CRF (no transfer) This paper 99.1 97.3 81.0 73.7 87.8
FCRF (cascaded) This paper 99.2 96.0 84.3 74.2 88.4
FCRF (joint) This paper 99.1 96.0 85.3 76.3 89.2

Table 7: Comparison of F1 performance on the seminars data. Joint decoding performs significantly
better than cascaded decoding. The overall column is the mean of the other four. (This
table was adapted from Peshkin and Pfeffer (2003).)

the messages are written by many different people, who each have different ways of presenting the
announcement information.

Because the task includes finding locations and person names, the output of a named-entity
tagger is a useful feature. It is not a perfectly indicative feature, however, because many other
kinds of person names appear in seminar announcements—for example, names of faculty hosts,
departmental secretaries, and sponsors of lecture series. For example, the token Host: indicates
strongly that what follows is a person name, but that person is not the seminar’s speaker.

Even so, named-entity predictions do improve performance on this task. Therefore, we wish
to do transfer learning from the named-entity task to the seminar announcement task. We do not
have data that is labeled for both named-entity and seminar fields, so we use the cascaded training
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Figure 10: Learning curves for the seminars data set on the speaker field, averaged over 10-fold
cross validation. Joint training performs equivalently to cascaded decoding with 25%
more data.

procedure in Section 3.3.3. We are interested in two comparisons: (a) between the FCRF trained
to incorporate transfer and a comparable linear-chain CRF, and (b) at test time, between cascaded
decoding or joint decoding. By cascaded decoding, we mean an analogous procedure to cascaded
training, in which the maximum-value assignment to the first level of the DCRF is computed without
reference to the second level, then this assignment is clamped and decoding proceeds in the second
level only. By joint decoding, we mean standard max-product inference in the full FCRF. We might
expect joint decoding to perform better because of helpful feedback between the tasks: Information
from the seminar-field predictions can improve named-entity predictions, which in turn improve the
seminar-field predictions.

We use the predictions from a CRF named-entity tagger that we train on the standard CoNLL
2003 English data set. The CoNLL 2003 data set consists of newswire articles from Reuters labeled
as either people, locations, organizations, or miscellaneous entities. It is much larger than the semi-
nar announcements data set. While the named-entity data contains 203,621 tokens for training, the
seminar announcements data set contains only slightly over 60,000 training tokens.

Previous work on the seminars data has used a one-field-per-document evaluation. That is, for
each field, the CRF selects a single field value from its Viterbi path, and this extraction is counted as
correct if it exactly matches any of the true field mentions in the document. We compute precision
and recall following this convention, and report their harmonic mean F1. As in the previous work,
we use 10-fold cross validation with a 50/50 training/test split. We use a spherical Gaussian prior
on parameters with variance σ2 = 0.5.

We evaluate whether joint decoding with cascaded training performs better than cascaded train-
ing and decoding. Table 7 compares cascaded and joint decoding for CRFs with other previous
results from the literature.4 The features we use are listed in Table 6. Although previous work has

4. We omit one relevant paper (Peshkin and Pfeffer, 2003) because its evaluation method differs from all the other
previous work.
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used very different feature sets from ours, all of our models use exactly the same features, including
the no-transfer CRF baseline.

On the most challenging fields, location and speaker, cascaded transfer is more accurate than
no transfer at all, and joint decoding is more accurate than cascaded decoding. In particular, for
speaker, we see an error reduction of 8% by using joint decoding over cascaded. The difference
in F1 between cascaded and joint decoding is statistically significant for speaker (paired t-test; p
= 0.017) but only marginally significant for location (p = 0.067). Our results are competitive with
previous work; for example, on location, the CRF is more accurate than any of the existing systems,
and the CRF has the highest overall performance, that is, averaged over all fields, than the previously
reported systems.

Figure 10 shows the difference in performance between joint and cascaded decoding as a func-
tion of training set size. Cascaded decoding with the full training set of 242 emails performs equiv-
alently to joint decoding on only 181 training instances, a 25% reduction in the training set.

Examining the trained models, we can observe errors made by the general-purpose named entity
tagger, and how they can be corrected by considering the seminars labels. In newswire text, long
runs of capitalized words are rare, often indicating the name of an entity. In email announcements,
runs of capitalized words are common in formatted text blocks like:

Location: Baker Hall
Host: Michael Erdmann

In this type of situation, the general named entity tagger often mistakes Host: for the name of an
entity, especially because the word preceding Host is also capitalized. On one of the cross-validated
testing sets, of 80 occurrences of the word Host:, the named-entity tagger labels 52 as some kind of
entity. When joint decoding is used, however, only 20 occurrences are labeled as entities. Recall that
in both of these settings, training is performed in exactly the same way; the only difference is that
joint decoding takes into account information about the seminar labels when choosing named-entity
labels. This is an example of how domain-specific information from the main task can improve
performance on a more standard, general-purpose subtask.

5. Related Work

Since the original work on conditional random fields (Lafferty et al., 2001), there has been much
interest in training discriminative models with more general graphical structures. One of the first
such applications was relational Markov networks (Taskar et al., 2002), which were first applied to
collective classification of Web pages. There has also been interest in grid-structured loopy CRFs
for computer vision (He et al., 2004; Kumar and Hebert, 2003), in which jointly-trained Markov
random fields are a classical technique. Another type of structured problem which has seen some
attention in the literature is discriminative learning of distributions over context-free parse trees, in
which training has done done using max-margin methods (Taskar et al., 2004b; McDonald et al.,
2005) and perceptron-like methods (Viola and Narasimhan, 2005).

The marginal DCRF is an example of a CRFwith latent variables, a model class that has received
some recent attention. Recent examples of latent variable CRFs include Quattoni et al. (2005), in
which the latent variables label parts of an object in an image, and McCallum et al. (2005), in which
the latent structure is an alignment of two sequences. The training techniques described here here
can be applied more generally to latent-variable CRFs. Alternatively, latent-variable CRFs can be
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trained using EM (McCallum et al., 2005), which is described in general in Sutton and McCallum
(2006). Latent-variable CRFs are closely related to neural networks, and many training techniques
from that literature can be applied here.

Currently, the most popular alternative approaches to training structured discriminative models
are maximum-margin training (Taskar et al., 2004a; Altun et al., 2003), and perceptron training
(Collins, 2002), which has been especially popular in NLP because of its ease of implementation.

The factorial CRF that we present here should not be confused with the factorial Markov random
fields that have been proposed in the computer vision community (Kim and Zabih, 2002). In that
model, each of the factors is a grid, rather than a chain, and they interact through a directed model,
as in a factorial HMM.

The DCRF application to transfer learning in Section 4.4 is reminiscent of stacking (Wolpert,
1992). The most notable difference is that because the levels are decoded jointly, information from
later levels can affect the decisions made about earlier ones.

Finally, some results presented here have appeared in earlier conference versions, in particular
the results on noun-phrase chunking (Sutton et al., 2004) and transfer learning (Sutton and McCal-
lum, 2005).

6. Conclusions

Dynamic CRFs are conditionally-trained undirected sequence models with repeated graphical struc-
ture and tied parameters. They combine the best of both conditional random fields and the widely
successful dynamic Bayesian networks (DBNs). DCRFs address difficulties both of DBNs, by eas-
ily incorporating arbitrary overlapping input features, and of previous conditional models, by allow-
ing more complex dependence between labels. Inference in DCRFs can be done using approximate
methods, and training can be done by maximum a posteriori estimation.

Empirically, we have shown that factorial CRFs can be used to jointly perform several labeling
tasks at once, sharing information between them. Such a joint model performs better than a model
that does the individual labeling tasks sequentially, and has potentially many practical implications,
because cascaded models are ubiquitous in NLP. Also, we have shown that using approximate in-
ference leads to lower total training time with no loss in accuracy.

In future research, we plan to explore other inference methods to make training more efficient,
including expectation propagation (Minka, 2001b), contrastive divergence (Hinton, 2002) and vari-
ational approximations. Finally, investigating other DCRF structures, such as hierarchical CRFs and
DCRFs with memory of previous labels, could lead to applications into many of the tasks to which
DBNs have been applied, including object recognition, speech processing, and bioinformatics.
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fields for image labelling. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14:1771–1800, 2002.

Junhwan Kim and Ramin Zabih. Factorial Markov random fields. In European Conference on
Computer Vision (ECCV), pages 321–334, 2002.

Taku Kudo and Yuji Matsumoto. Chunking with support vector machines. In Conference of the
North American Chapter of the Association for Computation Linguistics (NAACL), 2001.

Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial dependencies in nat-
ural images. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in
Neural Information Processing Systems (NIPS) 16. MIT Press, Cambridge, MA, 2003.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. International Conference on Machine
Learning (ICML), 2001.

Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In Dan
Roth and Antal van den Bosch, editors, Conference on Natural Language Learning (CoNLL),
pages 49–55, 2002.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, MA, 1999.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

Andrew McCallum and David Jensen. A note on the unification of information extraction and
data mining using conditional-probability, relational models. In IJCAI’03 Workshop on Learning
Statistical Models from Relational Data, 2003.

Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum entropy Markov models for
information extraction and segmentation. In International Conference on Machine Learning
(ICML), pages 591–598. Morgan Kaufmann, San Francisco, CA, 2000.

Andrew McCallum, Kedar Bellare, and Fernando Pereira. A conditional random field for
discriminatively-trained finite-state string edit distance. In Conference on Uncertainty in AI
(UAI), 2005.

Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of depen-
dency parsers. In Proceedings of the Annual Meeting of the ACL, pages 91–98, 2005.

720



DYNAMIC CONDITIONAL RANDOM FIELDS

Thomas P. Minka. The EP energy function and minimization schemes. http://research.
microsoft.com/˜minka/papers/ep/minka-ep-energy.pdf, 2001a.

Tom Minka. Divergence measures and message passing. Technical Report MSR-TR-2005-173,
Microsoft Research, 2005.

Tom Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, 2001b.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in speech
recognition. Computer Speech and Language, 16(1):69–88, 2002.

Kevin Murphy and Mark A. Paskin. Linear time inference in hierarchical HMMs. In Advances in
Neural Information Processing Systems (NIPS), 2001.

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD
thesis, U.C. Berkeley, July 2002.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In Conference on Uncertainty in Artificial Intelligence (UAI),
pages 467–475, 1999.

Ara V. Nefian, Luhong Liang, Xiaobo Pi, Liu Xiaoxiang, Crusoe Mao, and Kevin Murphy. A cou-
pled HMM for audio-visual speech recognition. In IEEE Int’l Conference on Acoustics, Speech
and Signal Processing, pages 2013–2016, 2002.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.
ISBN 0-387-98793-2.

Leonid Peshkin and Avi Pfeffer. Bayesian information extraction network. In International Joint
Conference on Artificial Intelligence (IJCAI), 2003.

David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction using conditional
random fields. In Proceedings of the ACM SIGIR, 2003.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for object recog-
nition. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Informa-
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Abstract
In numerous domains it is useful to represent a single example by the set of the local features
or parts that comprise it. However, this representation poses a challenge to many conventional
machine learning techniques, since sets may vary in cardinality and elements lack a meaningful
ordering. Kernel methods can learn complex functions, but a kernel over unordered set inputs must
somehow solve for correspondences—generally a computationally expensive task that becomes
impractical for large set sizes. We present a new fast kernel function called the pyramid match
that measures partial match similarity in time linear in the number of features. The pyramid match
maps unordered feature sets to multi-resolution histograms and computes a weighted histogram
intersection in order to find implicit correspondences based on the finest resolution histogram cell
where a matched pair first appears. We show the pyramid match yields a Mercer kernel, and
we prove bounds on its error relative to the optimal partial matching cost. We demonstrate our
algorithm on both classification and regression tasks, including object recognition, 3-D human
pose inference, and time of publication estimation for documents, and we show that the proposed
method is accurate and significantly more efficient than current approaches.
Keywords: kernel, sets of features, histogram intersection, multi-resolution histogram pyramid,
approximate matching, object recognition

1. Introduction

In a variety of domains, it is often natural and meaningful to represent a data object with a collection
of its parts or component features. For instance, in computer vision, an image may be described by
local features extracted from patches around salient interest points, or a shape may be described
by local descriptors defined at edge pixels. Likewise, in natural language processing, documents
or topics may be represented by sets or bags of words; in computational biology, a disease may
be characterized by sets of gene-expression data from multiple patients. In such cases, one set of
feature vectors denotes a single instance of a particular class of interest (an object, shape, document,
etc.). The number of features per example varies, and within a single instance the component
features may have no inherent ordering.

Classification and regression with these sets (or bags) of features is challenging. Kernel-based
learning methods are appealing for their generalization ability and efficiency, however conventional
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Figure 1: The pyramid match intersects histogram pyramids formed over sets of features, approx-
imating the optimal correspondences between the sets’ features. For example, vectors
describing the appearance or shape within local image patches can be used to form a fea-
ture set for each image; the pyramid match approximates the similarity according to a
partial matching in that feature space. (The feature space can be any local description of
a data object, images or otherwise; for images the features typically will not be the spatial
image coordinates.)

kernels are designed to operate on fixed-length vector inputs, where each dimension corresponds to
a particular global attribute for that instance; the commonly used general-purpose kernels defined on
ℜn inputs are not applicable in the space of vector sets. Existing kernel-based approaches specially
designed for matching sets of features generally require either solving for explicit correspondences
between features (which is computationally costly and prohibits the use of large inputs) or fitting
a particular parametric distribution to each set (which makes restrictive assumptions about the data
and can also be computationally expensive).

In this work we present the pyramid match kernel—a new kernel function over unordered fea-
ture sets that allows them to be used effectively and efficiently in kernel-based learning methods.
Each feature set is mapped to a multi-resolution histogram that preserves the individual features’
distinctness at the finest level. The histogram pyramids are then compared using a weighted his-
togram intersection computation, which we show defines an implicit correspondence based on the
finest resolution histogram cell where a matched pair first appears (see Figure 1).

The similarity measured by the pyramid match approximates the similarity measured by the
optimal correspondences between feature sets of unequal cardinality (i.e., the partial matching that
optimally maps points in the lower cardinality set to some subset of the points in the larger set,
such that the sum of the distances between matched points is minimized). Our kernel is extremely
efficient and can be computed in time that is linear in the sets’ cardinality. We show that the kernel
function is positive-definite, meaning that it is appropriate to use with learning methods that guar-
antee convergence to a unique optimum only for positive-definite kernels (e.g., the support vector
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machine). We also provide theoretical approximation bounds for the pyramid match cost relative to
the optimal partial matching cost.

Because it does not penalize the presence of superfluous data points, the proposed kernel is
robust to clutter. As we will show, this translates into the ability to handle common issues faced in
vision tasks like object recognition or pose estimation: unsegmented images, poor segmentations,
varying backgrounds, and occlusions. The kernel also respects the co-occurrence relations inherent
in the input sets: rather than matching features in a set individually, ignoring potential dependencies
conveyed by features within one set, our similarity measure captures the features’ joint statistics.

Other approaches to this problem have recently been proposed (Wallraven et al. 2003; Lyu 2005;
Boughhorbel et al. 2004; Kondor and Jebara 2003; Wolf and Shashua 2003; Moreno et al. 2003;
Shashua and Hazan 2005; Cuturi and Vert 2005; Boughorbel et al. 2005;
Lafferty and Lebanon 2002), but unfortunately each suffers from some number of the following
drawbacks: computational complexities that make large feature set sizes infeasible; limitations to
parametric distributions which may not adequately describe the data; kernels that are not positive-
definite; limitations to sets of equal size; and failure to account for dependencies within feature
sets.

Our method addresses each of these issues, resulting in a kernel appropriate for comparing un-
ordered, variable-sized feature sets within any existing kernel-based learning paradigm. We demon-
strate our algorithm in a variety of classification and regression tasks: object recognition from sets
of image patch features, 3-D human pose inference from sets of local contour features from monoc-
ular silhouettes, and documents’ time of publication estimation from bags of local latent semantic
features. The results show that the proposed approach achieves an accuracy that is comparable to or
better than that of state-of-the-art techniques, while requiring significantly less computation time.

2. Related Work

In this section, we review relevant work on learning with sets of features, using kernels and support
vector machines (SVMs) for recognition, and multi-resolution image representations.

Kernel-based learning algorithms, which include SVMs, kernel PCA, and Gaussian Processes,
have become well-established tools that are useful in a variety of contexts, including discriminative
classification, regression, density estimation, and clustering (Shawe-Taylor and Cristianini, 2004;
Vapnik, 1998; Rasmussen and Williams, 2006). However, conventional kernels (such as the Gaus-
sian RBF or polynomial) are designed to operate on ℜn vector inputs, where each vector entry
corresponds to a particular global attribute for that instance. As a result, initial approaches us-
ing SVMs for recognition were forced to rely on global image features—ordered features of equal
length measured from the image as a whole, such as color or grayscale histograms or vectors of
raw pixel data (Chapelle et al., 1999; Roobaert and Hulle, 1999; Odone et al., 2005). Such global
representations are known to be sensitive to real-world imaging conditions, such as occlusions, pose
changes, or image noise.

Recent work has shown that local features invariant to common image transformations (e.g.,
SIFT, Lowe, 2004) are a powerful representation for recognition, because the features can be re-
liably detected and matched across instances of the same object or scene under different view-
points, poses, or lighting conditions. Most approaches, however, perform recognition with local fea-
ture representations using nearest-neighbor (e.g., Belongie et al., 2002; Grauman and Darrell, 2004;
Sivic and Zisserman, 2003; Berg et al., 2005) or voting-based classifiers followed by an alignment
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step (e.g., Lowe, 2004; Mikolajczyk and Schmid, 2001); both may be impractical for large training
sets, since their classification times increase with the number of training examples. A support vec-
tor classifier or regressor, on the other hand, identifies a sparse subset of the training examples (the
support vectors) to delineate a decision boundary or approximate a function of interest.

In order to more fully leverage existing kernel-based learning tools for situations where the
data cannot be naturally represented by a Euclidean vector space—such as graphs, strings, or
trees—researchers have developed specialized similarity measures (Gartner, 2003). In fact, due
to the increasing prevalence of data that is best represented by sets of local features, several re-
searchers have recently designed kernel functions that can handle unordered sets as input (Lyu 2005;
Kondor and Jebara 2003; Wolf and Shashua 2003; Shashua and Hazan 2005;
Boughhorbel et al. 2004; Boughorbel et al. 2005; Wallraven et al. 2003; Cuturi and Vert 2005;
Moreno et al. 2003; Lafferty and Lebanon 2002). Nonetheless, current approaches are either pro-
hibitively computationally expensive, are forced to make assumptions regarding the parametric form
of the features, discard information by replacing inputs with prototypical features, ignore important
co-occurrence information by considering features independently, are not positive-definite, and (or)
are limited to sets of equal size. In addition, none have shown the ability to learn a real-valued
function from sets of features; results have only been shown for classification tasks. See Figure 2
for a concise comparison of the approaches.

Approaches which fit a parametric model to feature sets in order to compare their distributions
(Kondor and Jebara, 2003; Moreno et al., 2003; Cuturi and Vert, 2005; Lafferty and Lebanon, 2002)
can be computationally costly and have limited applicability, since they assume both that features
within a set will conform to the chosen distribution, and that sets will be adequately large enough to
extract an accurate estimate of the distribution’s parameters. These assumptions are violated regu-
larly by real data, which will often exhibit complex variations within a single bag of features (e.g.,
patches from an image), and will produce wide ranges of cardinalities per instance (e.g., titles of
documents have just a few word features). Our method instead takes a non-parametric, “model-free”
approach, representing sets of features directly with multi-dimensional, multi-resolution histograms.

Kernel methods that use explicit correspondences between two sets’ features search one set for
the best matching feature for each member in the other, and then define set similarity as a func-
tion over those component similarity values (Wallraven et al., 2003; Lyu, 2005; Boughhorbel et al.,
2004; Boughorbel et al., 2005). These methods have complexities that are quadratic in the number
of features, hindering usage for kernel-based learning when feature sets are large. The “intermedi-
ate” matching kernel of Boughorbel et al. (2005) has a quadratic run-time if the number of proto-
types p = O(m). That is reduced if p is set so that p < m; however, the authors note that higher
values of p yield more accurate results. Furthermore, matching each input feature independently
ignores useful information about intra-set dependencies. In contrast, our kernel captures the joint
statistics of co-occurring features by matching them concurrently as a set.

In the method of Wolf and Shashua (2003), similarity is measured in terms of the principal angle
between the linear subspaces spanned by two sets’ vector elements; the kernel has a cubic complex-
ity and is only positive-definite for sets of equal cardinality. In the work of Shashua and Hazan
(2005), an algebraic kernel is used to combine similarities given by local (vector-based) kernels,
with the weighting chosen to reflect whether the features are in alignment (ordered). When set
cardinalities vary, inputs are padded with zeros so as to form equal-size matrices; results are only
shown for a classification task with input sets whose features’ ordering is known.
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Captures Positive- Handles unequal
Method Complexity co-occurrences definite Non-parametric cardinalities
Match O(dm2) x x

Exponent match O(dm2) x x x
Greedy match O(dm2) x x x
Principal angles O(dm3) x x
Intermediate O(dpm) x x x
Bhattacharyya’s O(dm3) x x x
KL-divergence O(dm2) x x
Pyramid match O(dm logD) x x x x

Figure 2: Comparing the properties of kernel approaches to matching unordered sets. “Match”
refers to the kernel of Wallraven et al. (2003), “Exponent match” is the kernel of
Lyu (2005), “Greedy match” is from Boughhorbel et al. (2004), “Principal angles”
is from Wolf and Shashua (2003), “Intermediate” is from Boughorbel et al. (2005),
“Bhattacharyya’s” is from Kondor and Jebara (2003), and “KL-divergence” is from
Moreno et al. (2003). “Pyramid match” refers to the proposed kernel. Each method’s
computational cost is for computing a single kernel value. d is vector dimension, m is
maximum set cardinality, p is the number of prototype features used by Boughorbel et al.
(2005), and D is the value of the maximal feature range.

Several computer vision researchers have transformed the set of real-valued feature vectors com-
ing from one image into a single flat histogram that counts the frequency of occurrence of some num-
ber of pre-defined (quantized) feature prototypes. In this way the quantized feature space provides
a visual vocabulary or bag-of-words vector representation which can be used in conjunction with
some vector-based kernels or similarity measures. This type of representation was explored for tex-
ture recognition using nearest-neighbors (Leung and Malik, 2001; Hayman et al., 2004), and more
recently has been shown for classification of object categories using SVMs, Naı̈ve Bayes classifiers,
and a probabilistic Latent Semantic Analysis framework (Csurka et al., 2004; Willamowski et al.,
2004; Sivic et al., 2005).

The bag-of-words is appealing because it allows existing vector-based methods to be applied
and can describe the overall distribution of features in an image. However, this representation
faces the substantial challenge of generating an appropriately descriptive quantization of the fea-
ture space. Bin boundary issues have been shown to create matching problems for flat histograms
(Rubner et al., 2000), and though the right size of a vocabulary for a given data set can be crit-
ical to recognition performance (Csurka et al., 2004; Grauman and Darrell, 2004) it must still be
determined empirically. Generating the vocabulary from large amounts of data is generally compu-
tationally costly, and it is not clear whether a generic or universal feature quantization is more or less
effective than data set-dependent vocabularies. Finally, unlike the approach we develop here, ex-
isting bag-of-words techniques can only compare entire images to one another, do not allow partial
matchings, and cannot be used to extract correspondences telling which features match to which. In
our experiments we find that the pyramid match outperforms the bag-of-words approach for object
category recognition on a challenging data set (see Section 9).
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An alternative approach to discriminative classification when dealing with unordered set data is
to designate prototypical examples from each class, and then represent examples by a vector giving
their distances to each prototype; standard algorithms that handle vectors in a Euclidean space are
then applicable. Zhang and Malik (2003) build such a classifier for handwritten digits, and use the
shape context distance of Belongie et al. (2002) as the measure of similarity. Shan et al. also explore
a representation based on distances to prototypes in order to avoid feature matching when recogniz-
ing vehicles (Shan et al., 2005). The issues faced by such a prototype-based method are determining
which examples should serve as prototypes, choosing how many there should be, and updating the
prototypes properly when new types of data are encountered. The method of Holub et al. (2005a)
uses a hybrid generative-discriminative approach for object recognition, combining the Fisher ker-
nel (Jaakkola and Haussler, 1999) and a probabilistic constellation model.

Our feature representation is based on a multi-resolution histogram, or pyramid, which is com-
puted by binning data points into discrete regions of increasingly larger size. Single-level histograms
have been used in various visual recognition systems, one of the first being that of Swain and Ballard
(1991), where the intersection of global color histograms was used to compare images. Pyra-
mids have been shown to be a useful representation in a wide variety of image processing tasks,
from image coding (Burt and Adelson, 1983), to optical flow (Anandan, 1987), to texture modeling
(Malik and Perona, 1990). See work by Hadjidemetriou et al. (2004) for a summary.

In the method of Indyk and Thaper (2003), multi-resolution histograms are compared with L1
distance to approximate a least-cost matching of equal-mass global color histograms for nearest
neighbor image retrievals. This work inspired our use of a similar representation for point sets
and to consider counting matches within histograms. However, in contrast Indyk and Thaper’s
approach, our method builds a discriminative classifier or regressor over sets of local features, and
it allows inputs to have unequal cardinalities. Most importantly, it enables partial matchings, which
is important in practice for handling clutter and unsegmented images. In addition, we show that our
approximate matching forms a valid Mercer kernel and explore its use for kernel-based learning for
various applications.

In this work we develop a new kernel function that efficiently handles inputs that are unordered
sets of varying sizes. We show how the pyramid match kernel may be used in conjunction with
existing kernel-based learning algorithms to successfully learn decision boundaries or real-valued
functions from the multi-set representation. Ours is the first work to show the histogram pyramid’s
connection to the optimal partial matching when used with a hierarchical weighted histogram inter-
section similarity measure. 1

3. Approach

The main contribution of this work is a new kernel function based on implicit correspondences that
enables discriminative classification and regression for unordered, variable-sized sets of vectors.
The kernel is provably positive-definite. The main advantages of our algorithm are its efficiency,
its use of the joint statistics of co-occurring features, and its resistance to clutter or “superfluous”

1. We first introduced the pyramid match kernel for the purpose of discriminative object recognition in a recent con-
ference paper (Grauman and Darrell, 2005). This paper builds on that initial work: here we also demonstrate its
utility for regression, give results on additional new data sets (one of which is non-vision), provide a more in-depth
description of the kernel, and prove bounds on the error of the pyramid match relative to the optimal partial matching
cost.
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data points. The basic idea of our method is to map sets of features to multi-resolution histograms,
and then compare the histograms with a weighted histogram intersection measure in order to ap-
proximate the similarity of the best partial matching between the feature sets. We call the proposed
matching kernel the pyramid match kernel because input sets are converted to multi-resolution his-
tograms.

3.1 Preliminaries

We consider a feature space F of d-dimensional vectors. The point sets (or multi-sets, since dupli-
cations of features may occur within a single set) we match will come from the input space S, which
contains sets of feature vectors drawn from F :

S=
{
X|X= {x1, . . . ,xm}

}
,

where each feature is a d-dimensional vector, xi ∈ F ⊆ ℜd , and m = |X|. Note that the point
dimension d is fixed for all features in F , but the value of m may vary across instances in S. The
values of elements in vectors in F have a maximal range D, and the minimum inter-vector distance
between unique points is 1, which may be enforced by scaling the data to some precision and
truncating to integer values.

In this work we want to efficiently approximate the optimal partial matching. A partial matching
between two point sets is an assignment that maps all points in the smaller set to some subset of the
points in the larger (or equally-sized) set. Given point sets X and Y, where m = |X|, n = |Y|, and
m≤ n, a partial matching

M (X,Y;π) = {(x1,yπ1), . . . ,(xm,yπm)}

pairs each point in X to some unique point in Y according to the permutation of indices specified
by π = [π1, . . . ,πm], 1 ≤ πi ≤ n, where πi specifies which point yπi ∈ Y is matched to xi ∈ X, for
1≤ i≤ m. The cost of a partial matching is the sum of the distances between matched points:

C (M (X,Y;π)) = ∑
xi∈X

||xi−yπi ||1.

The optimal partial matching M (X,Y;π∗) uses the assignment π∗ that minimizes this cost:

π∗ = argmin
π

C (M (X,Y;π)) . (1)

In order to form a kernel function based on correspondences, we are interested in evaluating
partial matching similarity, where similarity is measured in terms of inverse distance or cost. The
similarity S (M (X,Y;π)) of a partial matching is the sum of the inverse distances between matched
points:

S (M (X,Y;π)) = ∑
xi∈X

1
||xi−yπi ||1+1

,

where the distance in the denominator is incremented by 1 to avoid division by zero. We define the
optimal partial matching similarity score to be the similarity resulting from the same matching that
minimizes the cost (Eqn. 1).
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3.2 The Pyramid Match Algorithm

The pyramid match approximation uses a multi-dimensional, multi-resolution histogram pyramid
to partition the feature space into increasingly larger regions. At the finest resolution level in the
pyramid, the partitions (bins) are very small; at successive levels they continue to grow in size until
the point where a single partition encompasses the entire feature space. At some level along this
gradation in bin sizes, any two points from any two point sets will begin to share a bin, and when
they do, they are considered matched. The pyramid allows us to extract a matching score without
computing distances between any of the points in the input sets—when points sharing a bin are
counted as matched, the size of that bin indicates the farthest distance any two points in it could be
from one another.

Each feature set is mapped to a multi-resolution histogram that preserves the individual features’
distinctness at the finest level. The histogram pyramids are then compared using a weighted his-
togram intersection computation, which we show defines an implicit partial correspondence based
on the finest resolution histogram cell where a matched pair first appears. The computation time of
both the pyramids themselves as well as the weighted intersection is linear in the number of features.

The feature extraction function Ψ for an input set X is defined as:

Ψ(X) = [H0(X), . . . ,HL−1(X)], (2)

where X ∈ S, L = %log2D&+ 1, Hi(X) is a histogram vector formed over points in X using d-
dimensional bins of side length 2i, and Hi(X) has a dimension ri =

(D
2i

)d . In other words, Ψ(X) is
a histogram pyramid, where each subsequent component histogram has bins that double in size (in
all d dimensions) compared to the previous one. The bins in the finest-level histogram H0 are small
enough that each unique d-dimensional data point from features in F falls into its own bin, and then
the bin size increases until all points in F fall into a single bin at level L−1.2

The pyramid match PΔ measures similarity (or dissimilarity) between point sets based on im-
plicit correspondences found within this multi-resolution histogram space. The similarity between
two input sets Y and Z is defined as the weighted sum of the number of feature matchings found at
each level of the pyramid formed by Ψ:

PΔ (Ψ(Y),Ψ(Z)) =
L−1

∑
i=0

wiNi, (3)

where Ni signifies the number of newly matched pairs at level i, and wi is a weight for matches
formed at level i (and will be defined below). A new match is defined as a pair of features that were
not in correspondence at any finer resolution level.

The matching approximation implicitly finds correspondences between point sets, if we con-
sider two points matched once they fall into the same histogram bin, starting at the finest resolution
level where each unique point is guaranteed to be in its own bin. The correspondences are implicit in
that matches are counted and weighted according to their strength, but the specific pairwise links be-
tween points need not be individually enumerated. The matching is a hierarchical process: vectors
not found to correspond at a fine resolution have the opportunity to be matched at coarser resolu-
tions. For example, in Figure 3, there are two points matched at the finest scale, two new matches at

2. To enable accurate pyramid matching even with high-dimensional feature spaces, we have developed a variant where
the pyramid bin structure depends on the distribution of the data (Grauman and Darrell, 2007).
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Figure 3: The pyramid match (PΔ) determines a partial correspondence by matching points once
they fall into the same histogram bin. In this example, two 1-D feature sets are used
to form two histogram pyramids. Each row corresponds to a pyramid level. In (a), the
set Y is on the left side, and the set Z is on the right. (Points are distributed along the
vertical axis, and these same points are repeated at each level.) Light dotted lines are bin
boundaries, bold dashed lines indicate a new pair matched at this level, and bold solid
lines indicate a match already formed at a finer resolution level. In (b) multi-resolution
histograms are shown, with bin counts along the horizontal axis. In (c) the intersection
pyramids between the histograms in (b) are shown. PΔ uses these intersection counts to
measure how many new matches occurred at each level. Here, Ii = I (Hi(Y),Hi(Z)) =
2,4,5 across levels, and therefore the number of new matches found at each level are
Ni = 2,2,1. (I−1 = 0 by definition.) The sum over Ni, weighted by wi = 1, 12 ,

1
4 , gives the

pyramid match similarity.

the medium scale, and one at the coarsest scale. PΔ’s output value reflects the overall similarity of
the matching: each newly matched pair at level i contributes a value wi that is proportional to how
similar two points matching at that level must be, as determined by the bin size.

To calculate Ni, the pyramid match makes use of a histogram intersection function I , which
measures the “overlap” between two histograms’ bin counts:

I (A,B) =
r

∑
j=1
min

(
A( j),B( j)

)
,

where A and B are histograms with r bins, and A( j) denotes the count of the jth bin of A.
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Histogram intersection effectively counts the number of points in two sets that match at a given
quantization level, that is, fall into the same bin. To calculate the number of newly matched pairs
Ni induced at level i, it is sufficient to compute the difference between successive histogram levels’
intersections:

Ni = I (Hi(Y),Hi(Z))− I (Hi−1(Y),Hi−1(Z)) , (4)

where Hi refers to the ith component histogram generated by Ψ in Eqn. 2. Note that the measure is
not searching explicitly for similar points—it never computes distances between the vectors in each
set. Instead, it simply uses the change in intersection values at each histogram level to count the
matches as they occur. In addition, due to the subtraction in Eqn. 4, the output score will reflect an
underlying matching that is one-to-one.

The sum in Eqn. 3 starts with index i = 0 because by the definition of F , the same points
that could match at level 0 can match at (a hypothetical) level −1. Therefore we can start col-
lecting new match counts at level 0, and define level −1 to be a base case with no intersections:
I (H−1(Y),H−1(Z)) = 0. All matches formed at level 0 are new.

The number of new matches found at each level in the pyramid is weighted according to the size
of that histogram’s bins: to measure similarity, matches made within larger bins are weighted less
than those found in smaller bins. Specifically, we make a geometric bound of the distance between
any two points sharing a particular bin; in terms of L1 cost, two points in the same bin can only
be as far from one another as the sum of the lengths of the bin’s sides. At level i in a pyramid,
this length is equal to d2i. Thus, the number of new matches induced at level i is weighted by
wi = 1

d2i to reflect the (worst-case) similarity of points matched at that level. Intuitively, this means
that similarity between vectors (features in Y and Z) at a finer resolution—where features are more
distinct—is rewarded more heavily than similarity between vectors at a coarser level.3 Moreover,
as we show in Section 6, this particular setting of the weights enables us to prove theoretical error
bounds for the pyramid match cost.

From Eqns. 3 and 4, we define the (un-normalized) pyramid match:

P̃Δ (Ψ(Y),Ψ(Z)) =
L−1

∑
i=0

wi
(

I (Hi(Y),Hi(Z))− I (Hi−1(Y),Hi−1(Z))
)
, (5)

where Y,Z ∈ S, and Hi(Y) and Hi(Z) refer to the ith histogram in Ψ(Y) and Ψ(Z), respectively.
We normalize this value by the product of each input’s self-similarity to avoid favoring larger input
sets, arriving at the final kernel value PΔ (P,Q) = 1√

C P̃Δ (P,Q), whereC = P̃Δ (P,P) P̃Δ (Q,Q).
In order to alleviate quantization effects that may arise due to the discrete histogram bins, we

combine the kernel values resulting from multiple (T ) pyramid matches formed under different
multi-resolution histograms with randomly shifted bins. Each dimension of each of the T pyramids
is shifted by an amount chosen uniformly at random from [0,D]. This yields T feature mappings
Ψ1, . . . ,ΨT that are applied as in Eqn. 2 to map an input set X to T multi-resolution histograms:
[Ψ1(X), . . . ,ΨT (X)]. For inputsY andZ, the combined kernel value is then ∑T

j=1PΔ (Ψ j(Y),Ψ j(Z)).
To further refine a pyramid match, multiple pyramids with unique initial (finest level) bin sizes

may be used. The set of unique bin sizes produced throughout a pyramid determines the range

3. This is if the pyramid match is a kernel measuring similarity; an inverse weighting scheme is applied if the pyramid
match is used to measure cost. To use the matching as a cost function, weights are set as the distance estimates
(wi = d2i); to use as a similarity measure, weights are set as (some function of) the inverse of the distance estimates
(wi ∝ 1

d2i ).
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of distances at which features will be considered for possible matchings. With bin sizes doubling
in size at every level of a pyramid, this means that the range of distances considered will rapidly
increase until the full diameter of the feature space is covered. However, by incorporating multiple
pyramids with unique initial bin sizes, we can boost that range of distances to include more diverse
gradations. This is accomplished by setting the side length for each histogram Hi(X) to f2i, where
f is the side length at the finest resolution (in the above definition, f = 1). For example, say D= 32,
so L = 6. Then the set of distances considered with f = 1 are {1,2,4,8,16,32}; adding a second
pyramid with f = 3 increases this set to also consider the distances {3,6,12,24}. The outputs from
pyramids with multiple starting side lengths are combined in the same way that the outputs from
pyramids with multiple translations are combined.

In fact, the rationale for considering multiple random shifts of the pyramid grids is not only to
satisfy the intuitive need to reduce quantization effects caused by bin placements; it also allows us
to theoretically measure how probable it is (in the expectation) that any two points will be separated
by a bin boundary, as we describe below in Section 6.

3.3 Partial Match Correspondences

The pyramid match allows input sets to have unequal cardinalities, and therefore it enables partial
matchings, where the points of the smaller set are mapped to some subset of the points in the
larger set. Dissimilarity is only judged on the most similar part of the empirical distributions, and
superfluous data points from the larger set are entirely ignored; the result is a robust similarity
measure that accommodates inputs expected to contain extraneous vector entries. This is a common
situation when recognizing objects in images, due for instance to background variations, clutter,
or changes in object pose that cause different subsets of features to be visible. As a kernel, the
proposed matching measure is equipped to handle unsegmented or poorly segmented examples, as
we will demonstrate in Section 9.

Since the pyramid match defines correspondences across entire sets simultaneously, it inherently
accounts for the distribution of features occurring in one set. In contrast, previous approaches
have used each feature in a set to independently index into the second set; this ignores possibly
useful information that is inherent in the co-occurrence of a set of distinctive features, and it fails
to distinguish between instances where an object has varying numbers of similar features since
multiple features may be matched to a single feature in the other set (Wallraven et al., 2003; Lyu,
2005; Boughorbel et al., 2005; Lowe, 2004; Mikolajczyk and Schmid, 2001; Tuytelaars and Gool,
1999; Shaffalitzky and Zisserman, 2002).

4. Efficiency

A key aspect of this method is that we obtain a measure of matching quality between two point sets
without computing pairwise distances between their features—an O(m2) savings over sub-optimal
greedy matchings. Instead, we exploit the fact that the points’ placement in the pyramid reflects
their distance from one another in the feature space.

The time required to compute the L-level histogram pyramidΨ(X) for an input set with m= |X|
d-dimensional features isO(dzL), where z=max(m,k) and k is the maximum histogram index value
in a single dimension. For a histogram at level i, k ≤ D

2i , so at any level, k ≤ D. (Typically m > k.)
The bin coordinates corresponding to nonzero histogram entries for each of the L = %log2D&+ 1
quantization levels are computed directly during a scan of the m input vectors; these entries are
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sorted by the bin indices and the bin counts for all entries with the same index are summed to form
one entry. This sorting requires only O(dm+dk) time using the radix-sort algorithm with counting
sort, a linear time sorting algorithm that is applicable to the integer bin indices Cormen et al. (1990).
The histogram pyramid that results is high-dimensional, but very sparse, with only O(mL) nonzero
entries that need to be stored.

The computational complexity of PΔ is O(dmL), since computing the intersection values for
histograms that have been sorted by bin index requires time linear in the number of nonzero entries
(not the number of actual bins). With sorted bin index lists, we obtain the intersection value by
running one pointer down each of the two lists; one pointer may not advance until the other is
incremented down to an index at least as high as the other, or else the end of its list. Then, whenever
the two lists share a nonzero index, the intersection count is incremented by the minimum bin count
between the two. If one list has a nonzero count for some bin index but the other has no entry
for that index, the minimum count is 0, so no update is needed. In the applications we explore in
our experiments, typical values of the variables affecting complexity are as follows: 5 ≤ d ≤ 12,
300≤ m≤ 3000, and D≈ 250, which yields L= 9.

Generating multiple pyramid matches with randomly shifted grids scales the complexity by T ,
the constant number of shifts. (Typically we will use 1 ≤ T ≤ 3.) All together, the complexity
of computing both the pyramids and kernel or cost values is O(TdmL). In contrast, the optimal
matching requires O(dm3) time, which severely limits the practicality of large input sizes. Refer to
Figure 2 for complexity comparisons with existing set kernels.

5. Satisfying Mercer’s Condition

Kernel-based learning algorithms are founded on the idea of embedding data into a Euclidean space,
and then seeking linear relations among the embedded data (Shawe-Taylor and Cristianini, 2004;
Vapnik, 1998). For example, a support vector machine (SVM) finds the optimal separating hyper-
plane between two classes in an embedded space (also referred to as the feature space). A kernel
function K : X × X → ℜ serves to map pairs of data objects in an input space X to their inner
product in the embedding space E, thereby evaluating the similarities between all data objects and
determining their relative positions. Linear relations are sought in the embedded space, but the
learned function may still be non-linear in the input space, depending on the choice of a feature
mapping function Φ : X → E.

Only positive semi-definite kernels guarantee an optimal solution to kernel-based algorithms
based on convex optimization, which includes SVMs. According to Mercer’s theorem, a kernel K
is positive semi-definite if and only if there exists a mapping Φ such that

K(xi,x j) = 〈Φ(xi),Φ(x j)〉, ∀xi,x j ∈ X ,

where 〈·, ·〉 denotes a scalar dot product. This insures that the kernel corresponds to an inner product
in some feature space, where kernel methods can search for linear relationships
(Shawe-Taylor and Cristianini, 2004).

Proposition 1

The pyramid match yields a Mercer kernel.
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Proof:

Histogram intersection on single resolution histograms over multi-dimensional data was shown
to be a positive-definite function by Odone et al. (2005). That is, the intersection I (H(Y),H(Z)) is a
Mercer kernel. The proof shows that there is an explicit feature mapping after which the intersection
is an inner product. Specifically, the mapping V encodes an r-bin histogram H as a p-dimensional
binary vector, p= m× r, where m is the total number of points in the histogram:

V (H) =




H(1)

︷ ︸︸ ︷
1, . . . ,1,

m−H(1)
︷ ︸︸ ︷
0, . . . ,0︸ ︷︷ ︸

first bin

, . . . ,

H(r)
︷ ︸︸ ︷
1, . . . ,1,

m−H(r)
︷ ︸︸ ︷
0, . . . ,0︸ ︷︷ ︸

last bin



 .

The inner product between the binary strings output fromV is equivalent to the original histograms’
intersection value (Odone et al., 2005). If m varies across examples, the above holds by setting
p=M× r, where M is the maximum size of any input. Note that this binary encoding only serves
to prove positive-definiteness and is never computed explicitly.

Using this proof and the closure properties of valid kernel functions, we can show that the
pyramid match is a Mercer kernel. The definition given in Eqn. 5 is algebraically equivalent to

P̃Δ (Ψ(Y),Ψ(Z)) = wL−1 I (HL−1(Y),HL−1(Z))+
L−2

∑
i=0

(wi−wi+1) I (Hi(Y),Hi(Z)) ,

since I (H−1(Y),H−1(Z)) = 0 by definition. Given that Mercer kernels are closed under both addi-
tion and scaling by a positive constant (Shawe-Taylor and Cristianini, 2004), the above form shows
that the pyramid match kernel is positive semi-definite for any weighting scheme where wi ≥ wi+1.
In other words, if we can insure that the weights decrease for coarser pyramid levels, then the pyra-
mid match will sum over positively weighted positive-definite kernels, yielding another positive-
definite kernel. Using the weights wi = 1

d2i , we do maintain this property. The sum combining the
outputs from multiple pyramid matches under different random bin translations likewise remains
Mercer. Therefore, the pyramid match is valid for use as a kernel in any existing learning methods
that require Mercer kernels.

6. Approximation Error Bounds

In this section we show theoretical approximation bounds on the cost measured by the pyramid
match relative to the cost measured by the optimal partial matching defined in Section 3.1. Re-
call the cost (as opposed to similarity) is measured by setting wi = d2i in Eqn. 5. In earlier work,
Indyk and Thaper (2003) provided bounds for a multi-resolution histogram embedding’s approxi-
mation of the optimal bijective matching between inputs with equal cardinality. Some of the main
ideas of the proofs below are similar, but they have been adapted and extended to show the expected
error bounds for partial matchings, where input sets can have variable numbers of features, and
some features do not affect the matching cost.

Proposition 2

For any two point sets X,Y where |X|≤ |Y|, we have

C (M (X,Y;π∗)) ≤ PΔ (X,Y) .

737



GRAUMAN AND DARRELL

Proof:

Consider a matching induced by pairing points within the same cells of each histogram Hi. The cost
induced by matching two points within a bin having d sides that are each of length 2i is at most d2i
under the L1 ground distance.

There are no pairings induced by the histograms at level −1, so I (H−1(X),H−1(Y)) = 0. At
level 0 there are I (H0(X),H0(Y)) pairs of points that can be matched together within the same
bins of H0, which induces a cost no more than d I (H0(X),H0(Y)). Then I (H1(X),H1(Y))−
I (H0(X),H0(Y)) new pairs of points are matched at level 1, which induces a cost no more than
2d [I (H1(X),H1(Y))− I (H0(X),H0(Y))], and so on.

In general, histogram Hi induces cost d2i [I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y))]. Summing
the costs induced by all levels, we have:

C (M (X,Y;π∗)) ≤
L−1

∑
i=0

d2i
(

I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y))
)

≤ PΔ(X,Y),

where wi = d2i in Eqn. 5.

Proposition 3

There is a constant C such that for any two point sets X and Y, where |X| ≤ |Y|, if the histogram
bin boundaries are shifted randomly in the same way when computing Ψ(X) and Ψ(Y), then the
expected value of the pyramid match cost is bounded:

E[PΔ(X,Y)] ≤
(
C ·d logD+d

)
C (M (X,Y;π∗)).

Proof:

To write the pyramid match in terms of counts of unmatched points in the implicit partial matching,
we define the directed distance between two histograms formed from point sets X and Y:

D (H(X),H(Y)) =
r

∑
j=1

D j

(
H(X)( j),H(Y)( j)

)
, where

D j(a,b) =
{
a−b, if a> b

0, otherwise.

The directed distance D(Hi(X),Hi(Y)) counts the number of unmatched points at resolution level
i. Note that D (H−1(X),H−1(Y)) = |X| and D (HL−1(X),HL−1(Y)) = 0 by definition. The directed
distance value decreases with i, as bins are increasing in size and more implicit matches are made.
The change in the directed distance across levels is the decrease in the count of unmatched points
from one level to the next, and therefore also serves to count the number of new matches formed at
level i:

I (Hi(X),Hi(Y))− I (Hi−1(X),Hi−1(Y)) = D(Hi−1(X),Hi−1(Y))−D(Hi(X),Hi(Y)).
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In terms of the directed distance, the pyramid match cost is

PΔ (X,Y) =
L−1

∑
i=0

d2i
(

D (Hi−1(X),Hi−1(Y))−D (Hi(X),Hi(Y))
)

= dD (H−1(X),H−1(Y))+
L−2

∑
i=0

d2i D (Hi(X),Hi(Y))

= d|X|+
L−2

∑
i=0

d2i D (Hi(X),Hi(Y)) .

The expected value of the pyramid match cost is then

E [PΔ (X,Y)] = d|X|+
L−2

∑
i=0

d2i E [D (Hi(X),Hi(Y))] . (6)

The optimal partial matching M (X,Y;π∗) =
{
(x1,yπ∗1), . . . ,(xm,yπ∗m)

}
implies a graph whose

nodes are those points in the input sets X and Y that participate in the matching (i.e., all points in
X and a subset from Y), and whose edges connect the matched pairs (xi,yπi), for 1 ≤ i ≤ |X|. Let
n j be the number of edges in this graph that have lengths in the range [d2 j−1,d2 j). A bound on the
optimal partial matching may then be expressed as:

∑
j
n j d2 j−1 ≤ C (M (X,Y;π∗)) , or

∑
j
n j d2 j ≤ 2 C (M (X,Y;π∗)) , (7)

since for every j, all n j edges must be of length at least d2 j−1.
The directed distanceD counts at a given resolution howmany points from setX are unmatched.

Any edge in the optimal matching graph that is left “uncut” by the bin boundaries in histogram Hi
contributes nothing toD (Hi(X),Hi(Y)). Any edge that is “cut” by the histogram contributes at most
1 to D (Hi(X),Hi(Y)). Therefore, the expected value of the directed distance at a given resolution
is bounded by:

E [D (Hi(X),Hi(Y))] ≤∑
j
E [Ti j] , (8)

where Ti j is the number of edges in the optimal matching having lengths in the range [d2 j−1,d2 j)
that are cut by Hi.

The probability Pr(cut(x,y); i) that an edge for (x,y) in the optimal matching is cut by the
histogram grid Hi is bounded by ||x−y||1

2i . This can be seen by considering the probability of a bin
boundary cutting an edge in any one of the d dimensions, taking into account that the bin boundaries
are shifted independently in each dimension. An edge with length ||x− y||1 > d2i is certainly cut
by the histogram grid at Hi. An edge with length ||x−y||1 ≤ d2i may be cut in any dimension. In
this case, the probability of a cut in dimension k for points x= [x1, . . . ,xd] ,y= [y1, . . . ,yd] is |xk−yk|

2i ,
for 1≤ k≤ d. The probability of a cut from Hi occurring in some dimension is then bounded by the
sum of these probabilities:

Pr(cut(x,y); i) ≤
d

∑
k=1

|xk− yk|
2i

≤ ||x−y||1
2i

.

739



GRAUMAN AND DARRELL

This provides an upper bound on the expected number of edges in the optimal matching that are
cut at level i:

E [Ti j] ≤ n j
d2 j

2i
,

since by definition d2 j is the maximum distance between any pair of matched points counted by n j.
Now with Eqns. 7 and 8 we have a bound for the expected directed distance at a certain resolu-

tion level:
E [D (Hi(X),Hi(Y))] ≤ 1

2i ∑j
n j d2 j ≤

1
2i
2 C (M (X,Y;π∗)) .

Relating this to the expected value of the pyramid match cost in Eqn. 6, we have

E [PΔ (X,Y)] ≤ d|X|+
L−2

∑
i=0

d2i
(
1
2i
2 C (M (X,Y;π∗))

)

≤ d|X|+2d (L−1) C (M (X,Y;π∗))
≤ d|X|+2d logD C (M (X,Y;π∗)) (9)

since L= %log2D&+1.
As described in Section 3.1, points in sets X and Y are comprised of integer entries, insuring

that the minimum inter-feature distance between unique points is 1. We also know that for the sake
of measuring matching cost, X and Y are disjoint sets: X∩Y = /0; if there are any identical points
in the two sets, we can consider them as discarded (in pairs) to produce strictly disjoint sets, since
identical points contribute nothing to the matching cost. Since X,Y⊆ [D]d and X∩Y= /0, we have
|X|≤ C (M (X,Y;π∗)). That is, each edge in the optimal matching must have a length of at least 1,
making the number of points in the smaller set a lower bound on the cost of the optimal matching
for any two sets. With this bound and Eqn. 9, we have the following bound on the expected pyramid
match cost error

E [PΔ (X,Y)] ≤ d C (M (X,Y;π∗))+2d logD C (M (X,Y;π∗))

≤
(
2d logD+d

)
C (M (X,Y;π∗))

≤
(
C ·d logD+d

)
C (M (X,Y;π∗)).

7. Classification and Regression with the Pyramid Match

We train support vector machines and support vector regressors (SVRs) to perform classification
and regression with the pyramid match kernel. An SVM or SVR is trained by specifying the matrix
of kernel values between all pairs of training examples. The kernel’s similarity values determine
the examples’ relative positions in an embedded space, and quadratic programming is used to find
the optimal separating hyperplane or function between the two classes in this space. Because the
pyramid match kernel is positive-definite we are guaranteed to find a unique optimal solution.

We have found that the pyramid match kernel can produce kernel matrices with dominant diag-
onals, particularly as the dimension of the features in the sets increases. The reason for this is that
as the dimension of the points increases, there are a greater number of finer-resolution histogram
levels in the pyramid where two input sets will have few shared bins. Once the quantization level is
coarse enough, two sets will start having significant histogram intersection values. However, these
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intersections will receive lower weights due to the 1
d2i weighting scheme, which by construction

accurately reflects the maximal distance between points falling into the same bin at level i. On the
other hand, an input set compared against itself will result in large histogram intersection values
at each level—specifically intersection values equal to the number of points in the set, which after
normalization generates a diagonal entry of one.

The danger of having a kernel matrix diagonal that is significantly larger than the off-diagonal
entries is that the examples appear nearly orthogonal in the feature space, in some cases causing
an SVM or SVR to essentially “memorize” the data and impairing its sparsity and generalization
ability (Shawe-Taylor and Cristianini, 2004). Nonetheless, we are able to work around this issue by
modifying the initial kernel matrix in such a way that reduces its dynamic range, while preserving
its positive-definiteness. We use the functional calculus transformation suggested in Weston et al.
(2002): a subpolynomial kernel is applied to the original kernel values, followed by an empirical
kernel mapping that embeds the distance measure into a feature space. Thus, when necessary to
reduce diagonal dominance, first kernel values Ki j generated by PΔ are updated to Ki j ← Ki j

p,
0 < p < 1. Then the kernel matrix K is replaced with KKT to obtain the empirical feature map
Φe(y) = [K(y,x1), . . . ,K(y,xN)]T forN training examples. As in Weston et al. (2002), the parameter
p is chosen with cross-validation. This post-processing of the kernel matrix is not always necessary;
both the dimension of the points as well as the specific structure of a given data set will determine
how large the initial kernel matrix diagonal is.

8. Empirical Quality of Approximate Partial Matchings

The approximation bounds we can show are actually significantly weaker than what we observe in
practice. In this section, we empirically evaluate the approximation quality of the pyramid match,
and make a direct comparison between our partial matching approximation and the L1 embedding
of Indyk and Thaper (2003).

We conducted experiments to evaluate how close the correspondences implicitly measured by
the pyramid match are to the true optimal correspondences—thematching that results in the minimal
summed cost between corresponding points. In order to work with realistic data but still have control
over the sizes of the sets and the amount of clutter features, we established synthetic “category”
models. Each model is comprised of some fixed number m′ of parts, and each part has a Gaussian
model that generates its d-dimensional appearance vector (in the spirit of the “constellation model”
used by Fergus et al., 2003, and others). Given these category models, we can then add clutter
features, adjust noise parameters, and so on, simulating in a controlled manner the variations that
occur with the sets of image patches extracted from an actual object. The appearance of the clutter
features is determined by selecting a random vector from a uniform distribution on the same range
of values as the model features.

We generated two data sets, one with equally-sized sets, and one with variable-sized sets. Every
point set was drawn from one of two synthetic category models, with m′ = 35 and d = 2. For the
first data set, 50 point sets containing only the m′ model features were sampled from both of the
two category models, for a total of 100 equally-sized point sets. For the other data set, the model
feature sets were merged with a randomly generated numberC of “extra” clutter features, for a total
of 100 point sets with m′ +C features each, with C selected uniformly at random from [0,100]. We
compared the pyramid match’s outputs to those produced by the optimal partial matching obtained
via a linear programming solution to the transportation problem (Rubner et al., 2000), as well as
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those produced by an L1 approximation (Indyk and Thaper, 2003). For both of the data sets, we
computed the pairwise set-to-set distances using each of these three measures.

If an approximate measure is approximating the optimal matching well, we should find the
ranking induced by that approximation to be highly correlated with the ranking produced by the
optimal matching for the same data. In other words, the point sets should be sorted similarly by
either method. We can display results in two ways to evaluate if this is true: 1) by plotting the actual
costs computed by the optimal and approximate method, and 2) by plotting the rankings induced
by the optimal and approximate method. Spearman’s rank correlation coefficient R provides a good
quantitative measure to evaluate the ranking consistency:

R= 1− 6∑N
i=1(i− r̂(i))2

N(N2−1) ,

where i is the rank value in the true order and r̂(i) is the corresponding rank assigned in the approx-
imate ordering, for each of the N corresponding ordinal values assigned by the two measures.

Figure 4 displays both types of plots for the two data sets: the top row (a) displays plots corre-
sponding to the data set with equally-sized sets, that is, for the bijective matching problem, while
the bottom row (b) displays plots corresponding to the data set with variable-sized sets, that is, for
the partial matching problem.

The two plots in the lefthand column show the normalized output costs from 10,000 pairwise
set-to-set comparisons computed by the optimal matching (black), the pyramid match with the num-
ber of random shifts T = 3 (red circles), and the L1 approximation, also with T = 3 (green x’s). Note
that in these figures we plot cost (so the pyramid match weights are set to wi = d2i), and for dis-
play purposes the costs have been normalized by the maximum cost produced for each measure
to produce values between [0,1]. The cost values are sorted according to the optimal measure’s
magnitudes for visualization purposes. The raw values produced by the approximate measures will
always overestimate the cost; normalizing by the maximum cost value simply allows us to view
them against the optimal measure on the same scale.

The two plots in the righthand column display the rankings for each approximation plotted
against the optimal rankings. The black diagonals in these plots denote the optimal performance,
where the approximate rankings would be identical to the optimal ones. The R values displayed in
the legends refer to the Spearman rank correlation scores for each approximation in that experiment;
higher Spearman correlations have points clustered more tightly along this diagonal.

Both approximations compute equivalent costs and rankings for the bijective matching case,
as indicated by Figure 4 (a). This is an expected outcome, since the L1 distance over histograms is
directly related to histogram intersection if those histograms have equal masses (Swain and Ballard,
1991), as they do for the bijective matching test:

I (H(Y),H(Z)) = m− 1
2
||H(Y)−H(Z)||L1 , if m= |Y| = |Z|.

The structure along the diagonal in the top right plot reflects the fact that two types (categories) of
point sets were present in the data, causing items of the same category to block together when they
are sorted by matching cost. The square-shaped cluster in the upper right portions of the plots show
that while the approximate measures do not distinguish between all examples within a category
precisely the way the optimal measure does, they do both consider all items within one category to
be most distant from an example drawn from the other category. Similarly, there are discontinuities
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Figure 4: Pyramid match and L1 embedding comparison on (a) bijective matchings with equally-
sized sets and (b) partial matchings with variably-sized sets. When all input sets are the
same size, the pyramid match and the L1 embedding give equivalent results. However, the
pyramid match also approximates the optimal correspond ences for input sets of unequal
cardinalities and allows partial matches. (This figure is best viewed in color.)
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Figure 5: Example images from the ETH-80 objects database. Five images from each of the eight
object classes (apple, cow, dog, pear, car, cup, horse, and tomato) are shown here.

in the left plot of part (a) due to distance clusters caused by drawing point sets from two distinct
category models.

However, for the partial matching case (Figure 4 (b)), the L1 approximation fails because it can
handle only sets with equal cardinalities and requires all points to match to something. In contrast,
the pyramid match can also approximate the partial matching for the unequal cardinality case: its
matchings continue to follow the optimal matching’s trend since it does not penalize outliers, as
evidenced by the clustered points along the diagonal in the bottom right ranking quality plot. We
have performed this same experiment using data generated from a uniform random point model,
and the outcome was similar.

9. Discriminative Classification using Sets of Local Features

In this section we report on object recognition experiments using SVMs and provide baseline com-
parisons to other methods. We use the SVM implementation provided in the LIBSVM library
(Chang and Lin, 2001) and train one-versus-all classifiers in order to perform multi-class classifica-
tion.

Local affine- or scale-invariant feature descriptors extracted from a sparse set of interest points in
an image have been shown to be an effective, compact representation (e.g., Lowe 2004;
Mikolajczyk and Schmid 2001). This is a good context in which to test the pyramid match ker-
nel, since such local features have no inherent ordering, and it is expected that the number of fea-
tures will vary across examples. Given two sets of local image features, the pyramid match kernel
(PMK) value reflects how well the image parts match under a one-to-one correspondence. Since the
matching is partial, not all parts must have a match for the similarity to be strong.

In the following we experiment with two publicly available databases and demonstrate that
our method achieves better or comparable object recognition performance at a significantly lower
computational cost than other state-of-the-art approaches. All pyramid match run-times reported
below include the time needed to compute both the pyramids and the weighted intersections, and
were measured on 2.4 GHz processors with 2 GB of memory.
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9.1 ETH-80 Data Set

A performance evaluation given by Eichhorn and Chapelle (2004) compares the set kernels de-
veloped by Kondor and Jebara (2003), Wolf and Shashua (2003), and Wallraven et al. (2003) in the
context of an object categorization task using images from the publicly available ETH-80 database.4
The experiment uses eight object classes, with 10 unique objects and five widely separated views of
each, for a total of 400 images (see Figure 5). A Harris detector is used to find interest points in each
image, and various local descriptors (SIFT features, Lowe 2004; JETs, Schmid and Mohr 1997; and
raw image patches) are used to compose the feature sets. A one-versus-all SVM classifier is trained
for each kernel type, and performance is measured via cross-validation, where all five views of an
object are held out at once. Since no instances of a test object are ever present in the training set,
this is a categorization task (as opposed to recognition of the same specific object).

The experiments show the polynomial-time “match kernel” (Wallraven et al., 2003) and Bhat-
tacharyya kernel (Kondor and Jebara, 2003) performing best, with a classification rate of 74% using
on average 40 SIFT features per image (Eichhorn and Chapelle, 2004). Using 120 interest points,
the Bhattacharyya kernel achieves 85% accuracy. However, the study also concluded that the cubic
complexity of the method made it impractical to use the desired number of features.

We evaluated the pyramid match kernel on this same subset of the ETH-80 database under the
conditions provided in Eichhorn and Chapelle (2004), and it achieved a recognition rate of 83%
using PCA-SIFT features (Ke and Sukthankar, 2004) from all Harris-detected interest points (aver-
ages 153 points per image) and T = 8. Restricting the input sets to an average of 40 interest points
yields a recognition rate of 73%. Thus the pyramid match kernel (PMK) performs comparably to
the others at their best for this data set, but is much more efficient than those tested above, requiring
time only linear in the number of features.

In fact, the ability of a kernel to handle large numbers of features can be critical to its success.
An interest operator may be tuned to select only the most salient features, but in our experiments
we found that recognition rates always benefited from having larger numbers of features per image
with which to judge similarity. The plots in Figure 6 depict the run-time versus recognition accuracy
of the pyramid match kernel as compared to the match kernel (Wallraven et al., 2003), which has
O(dm2) complexity. The match kernel computes kernel values by averaging over the distances
between every point in one set and its nearest point in the other set. These are results from our own
implementation of the match kernel. Each point in the figure represents one experiment, and both
kernels were run with the exact same PCA-SIFT feature sets. The saliency threshold of the Harris
interest operator was adjusted to generate varying numbers of features, thus trading off accuracy
versus run-time. With no filtering of the Harris detector output (i.e., with a threshold of 0), there is
on average 153 features per set. To extract an average of 256 features per set we used no interest
operator and sampled features densely and uniformly from the images. Computing a kernel matrix
for the same data with the two kernels yields nearly identical accuracy (left plot), but the pyramid
match is significantly faster (center plot). Allowing the same amount of training time for both
methods, the pyramid match produces much better recognition results (right plot).

9.2 Caltech-101 Data Set

We also tested our method with a challenging database of 101 object categories developed at Cal-
tech, called the Caltech-101 (Fei-Fei et al., 2004). The creators of this database obtained the images

4. http://www.vision.ethz.ch/projects/categorization/.
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Figure 6: Both the pyramid match kernel and the match kernel of Wallraven et al. yield comparable
recognition accuracy for input sets of the same size (left plot). Both benefit from using
richer (larger) image descriptions. However, while the time required to learn object cat-
egories with the quadratic-time match kernel grows quickly with the input size, the time
required by the linear-time pyramid match remains very efficient (center plot). Allowing
the same run-time, the pyramid match kernel produces better recognition rates than the
match kernel (right plot). Recognition accuracy is measured as the mean rate of correct
predictions per class.

using Google Image Search, and many of the images contain a significant amount of intra-class ap-
pearance variation (see Figure 7). The Caltech-101 is currently the largest benchmark recognition
data set (in terms of number of categories) available, and as such it has been the subject of many
recent recognition experiments in the field. There are 8677 images in the data set, with between 31
to 800 images for each of the 101 categories.

For this data set, the pyramid match operated on sets of SIFT features projected to d = 10
dimensions using PCA, with each appearance descriptor concatenated with its corresponding posi-
tional feature (image position normalized by image dimensions). The features were extracted on a
uniform grid at every 8 pixels in the images, that is, no interest operator was applied. The regions
extracted for the SIFT descriptor were about 16 pixels in diameter, and each set had on average
m= 1140 features. We trained the algorithm using unsegmented images. Since the pyramid match
seeks a strong correspondence with some subset of the images’ features, it explicitly accounts for
unsegmented, cluttered data. Classification was again done with a one-vs-all SVM, and we set the
number of grid shifts T = 1, and summed over kernels corresponding to pyramids with finest side
lengths of 5,7, and 9. Note that some images were rotated by the creators of the database, causing
some triangular artifacts in the corners of some images; this is how the images are provided to any
user.

As a baseline, we also experimented with the bag-of-words representation and an RBF kernel:
K(x,y) = exp(−||x−y||/σ) for bag-of-words histograms x and y. We used hierarchical k-means
to cluster a corpus of two million example features from the Caltech-101 data set to form each
vocabulary, and we experimented with both L2 and the Mahalanobis distance as the basis for the
clustering; classification results were similar with either distance. Generating a vocabulary took
about five hours, and computing a kernel matrix required about one half hour. We experimented
with a large number of parameters, and the dotted red line in Figure 8 (a) reflects the very best
results we could obtain over any parameter setting for this technique. Specifically, the number of
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Figure 7: Example images from the Caltech-101 database. Three images are shown for each of 27
of the 101 categories.

feature prototypes (“words”) was tested at values ranging from 1000 to 100,000 (2200 was best);
the kernel’s σ parameter was tested from values of 500 to 10,000 (1000 was best).

Figure 8 (a) shows the multi-class category recognition results using the PMK (red solid line)
alongside the corresponding results for a bag-of-words baseline approach (blue dotted line). The
recognition scores are given for varying numbers of training set sizes, ranging from one to 30 ex-
amples per class. For each training set size, the mean and standard deviation of the pyramid match
accuracy over 10 runs is shown, where for each run we randomly select the training examples and
use all the remaining database images as test examples. All recognition rates have been normalized
according to the number of novel test images per class; that is, the mean recognition rate per class
is the average normalized score for all 101 categories. Using only one training example per class,
the pyramid match achieves an average recognition rate per class of 18%. Note that chance per-
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formance with any number of training examples would be just 1%. Using 15 examples (a standard
point of comparison), the pyramid match achieves an average recognition rate per class of 50%.
Experiments comparing the recognition accuracy of the pyramid match kernel to an optimal partial
matching kernel reveal that very little loss in accuracy is traded for speedup factors of several orders
of magnitude (Grauman, 2006, , pages 118-121).

Over all the parameter configurations we tested, the best performance we could achieve with
the bag-of-words on this data set is substantially poorer than that of the pyramid match, as seen in
Figure 8 (a). In addition, the bag-of-word approach’s accuracy was fairly sensitive to the parameter
settings; for instance, over all the parameters we tested, the mean accuracy for 15 training examples
per class varied from 28% to 37%. This indicates the difficulty of establishing an optimal flat
quantization of the feature space for recognition, and also suggests that the partial matching ability
of the pyramid match is beneficial for tolerating outlier features without skewing the matching cost.

Figure 8 (b) shows all published results on this data set as a function of time since the data
was released, including the PMK and results published more recently by other authors (Holub et al.
2005b; Serre et al. 2007; Wolf et al. 2006; Wang et al. 2006; Berg et al. 2005; Berg 2005;
Fei-Fei et al. 2004; Mutch and Lowe 2006; Lazebnik et al. 2006; Zhang et al. 2006; Frome et al.
2007). From this comparison we can see that even with its extreme computational efficiency, the
pyramid match kernel achieves results that are competitive with the state-of-the-art. We have pre-
viously obtained 50% accuracy on average (0.9% standard deviation) when using the standard 15
training examples per category (Grauman and Darrell, 2006). In addition, the PMK with sets of
spatial features yields very good accuracy on this data set: 56.4% for 15 training examples per class
(Lazebnik et al., 2006). These results are based on a special case of the pyramid match, where mul-
tiple pyramid match kernels computed on spatial features are summed over a number of quantized
appearance feature channels. This is among the very best accuracy rates reported to-date on the data
set, and about three percentage points below the most accurate result of 60% obtained recently by
Frome et al. (2007), which compares images using a discriminative local distance function.

Figure 8 (c) shows the recognition accuracy of various methods as a function of computation
time, measured in terms of the time required to train a classifier (left plot) and the time required
to classify a novel example (right plot). We collected these time estimates directly from the au-
thors, and every response we received is plotted here. (So not every method represented in (b) is
represented in (c) due to a lack of information on computation times.) For both plots in part (c),
computation time is measured excluding the time required to extract image features for all methods.
For display purposes, in the left plot, we plot the square root of the training time; nearest-neighbor
classifiers such as the method of Berg et al. require no training time beyond feature extraction. In
the right plot, we plot the log of the classification time estimates to reflect the relative complexities
in terms of orders of magnitude. This figure illustrates the PMK’s clear practical cost advantages.
Pyramid matching any two examples requires just 0.0001 s on this data set, and classifying a novel
example requires a fraction of a second; in contrast, many other techniques require on the order of
a minute to classify a single example, and yield varying accuracies relative to the PMK.

Pyramid match comparisons require only O(mL) time for the result of 50% accuracy. For the
spatial pyramid match result of 56.4% accuracy obtained by Lazebnik et al. (2006) there is an ad-
ditional one-time O(mk) cost of assigning each of a set’s features to one of the k pre-established
quantized appearance features; however, once a point set has been mapped to its prototypes, they
need not be re-computed to match against additional sets.
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Figure 8: Recognition results on the Caltech-101 data set. Plot (a) shows the mean and standard
deviation for the recognition accuracy using the pyramid match kernel (red solid line)
and a bag-of-words baseline (blue dotted line) when given varying numbers of training
examples per class, over 10 runs with randomly selected training examples. These are
recognition rates that have been normalized according to the number of test examples
per class. Plot (b) shows all published results on the same Caltech-101 data set over
time since the database’s release. Each recognition rate on this plot represents the mean
accuracy per class when using 15 training examples per class. Grauman & Darrell refers
to our PMK results using appearance descriptors, and Lazebnik et al. report results using
a PMK applied to 2D spatial features in each channel of quantized appearance. The two
plots in (c) show the accuracy of various methods as a function of their computational
costs, in terms of average training (left, square root scale) and testing times (right, log
scale), again when each method uses 15 training examples per class. All times exclude
the cost of computing the various image features employed.
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10. Learning a Function over Sets of Features

In the following experiments we demonstrate the pyramid match applied to two regression prob-
lems: time of publication inference from a collection of research papers, and articulated pose es-
timation from monocular silhouettes. We again use the SVR implementation of Chang and Lin
(2001). In these experiments we use an ε-insensitive loss function in order to obtain solutions that
are defined in terms of a small subset of the training examples, and which provide good generaliza-
tion ability. For all experiments, the SVR parametersC and ε were chosen using cross-validation.

10.1 Estimating a Document’s Time of Publication

We have applied our method to learn a function that maps a bag of local latent semantic features
extracted from a research paper (written in a specific field) to an estimate of the paper’s year of
publication. While much work has been done using bag-of-words representations and latent seman-
tic concept models for text classification and information retrieval, we are not aware of previous
work showing bags of local semantic features, nor demonstrating direct regression on documents to
estimate their publication times.

The bag-of-words model is a widely used representation in text processing in which each doc-
ument is represented by a vector giving the frequencies of words that occur in it, and it has been
used in kernel methods (Shawe-Taylor and Cristianini, 2004). The well-known limitation of such a
model, however, is that it encodes nothing about the semantic relationships between words. Each
word is treated as an isolated entity, ignoring the fact that distinct words may share degrees of se-
mantic equivalency (e.g., synonyms), or may have different connotations in different contexts (e.g.,
homonymy). Researchers have therefore adopted latent semantic indexing (LSI) (Deerwester et al.,
1990) to instill semantic cues into the basic bag-of-words representation. LSI projects data onto
a subspace determined using singular value decomposition (SVD) to represent document-term fre-
quency vectors in a lower-dimensional space where semantic relations are better preserved. Gener-
ally the subspace for LSI is learned from document vectors that give the frequency of occurrence for
each given word (e.g., Cristianini et al., 2002), which means each document is mapped to a point in
a “semantic space” where documents with correlated word frequencies are related.

However, requiring a document to map to a single point in this space assumes that inputs have
no clutter (e.g., extra words caused from OCR errors, or text inserted from a webpage ad), and that
each document can be represented as a linear combination of the document-level concepts recovered
by LSI. Instead, we propose treating documents as bags of word meanings by learning the subspace
for LSI from term vectors, which record the frequency with which a word occurs in each given
document in a training corpus. Each document is then a bag of local semantic features, and two
documents are compared with the partial matching implied by the pyramid match kernel, that is, in
terms of how well (some subset) of the LSI term-space projections can be put into correspondence.
Note that standard kernels (e.g., linear, RBF, polynomial) cannot be used with the bag of word
meanings representation, since it represents each word with a real-valued vector. Additionally, our
method makes it possible to learn a latent semantic space from narrower contexts than entire docu-
ments (e.g., paragraphs or sentences) and then represent documents by their component features in
this space.

750



THE PYRAMID MATCH KERNEL

0

1

2

3

4

5

6

7

8

BOW LSI DOC BOWM PMK

Time of publication inference errors
Er

ro
r (

ye
ar

s/
vo

lu
m

es
)

0 50 100 150 200 250 300
1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002
Time of publication predictions

Ye
ar

Test example
 

 

true target
BOWM PMK prediction

Figure 9: Inferring the time of publication for papers from 13 volumes of NIPS proceedings. Box-
plots (left) compare errors produced by three methods with a support vector regressor:
bag-of-words (BOW) and latent semantic document-vectors (LSI DOC) with linear ker-
nels, and “bag of word meanings” with the pyramid match kernel (BOWM PMK). Lines
in center of boxes denote median value, top and bottom of boxes denote upper and lower
quartile values, dashed lines show the extent of the rest of the errors. The plot on the right
shows the true targets and corresponding predictions made by the pyramid match method
(BOWM PMK).

We have experimented with a database containing 13 volumes of Neural Information Processing
Systems (NIPS) proceedings—a total of 1,740 documents, available online.5 For each paper, we
extracted the text from the abstract up to (but not including) the references section. While authors’
names and bibliography information would likely be good indicators of publication time, they were
excluded from the bags of features because we want our method to learn a function indicating topic
trends over time, as opposed to a look-up table of dates and names. We applied standard steps
to pre-process the text data. Suffixes were removed from words using the Porter stemmer (Porter,
1980), and the WordNet set of stop-list words were removed. Finally, co-occurrence matrices were
weighted using term frequency-inverse document frequency (tf-idf ) to normalize for text lengths
and distill the most informative words.

Figure 9 shows results for regressing directly on the year of publication for a NIPS paper using
the classic bag-of-words approach (BOW), a standard approach applying LSI at the document level
(LSI DOC) (Cristianini et al., 2002), and our method with bags of word meanings (BOWM PMK).
All methods were trained with the same randomly selected subset of the data (1393 examples) and
tested with the remaining 347 examples. Our approach with bags of word meanings performs the
best, with a median error of 1.6 years. The PMK values took on average 0.002 seconds to compute.
Using a paired difference T-test with α= 0.01, we found the difference in performance between our
approach and the two existing methods to be statistically significant.

5. http://www.cs.toronto.edu/ roweis/data.html.
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Figure 10: A training example generated with graphics software is composed of a silhouette and its
corresponding 3-D pose, as represented by the 3-D positions of 15 joint positions.

10.2 Inferring 3-D Pose from Shape Features

In this set of experiments, we use regression with the pyramid match kernel to directly learn the
mapping between monocular silhouette images of humans and the corresponding articulated 3-
D body pose. Many vision researchers have addressed the difficult problem of articulated pose
estimation; recent approaches have attempted to directly learn the relationship between images and
3-D pose (Agarwal and Triggs, 2004; Shakhnarovich et al., 2003; Grauman et al., 2003). Like these
techniques, we learn a function that maps observable image features to 3-D poses.

However, whereas ordered, fixed-length feature sets are required in the methods of Grauman et al.
(2003) and Shakhnarovich et al. (2003) (i.e., points are extracted in sequence around the contour,
or features are taken from fixed image windows), our method accepts unordered features and inputs
that may vary in size. This is a critical difference: images will naturally have varying numbers of
features (due to occlusions, clutter, translations, shape deformations, viewpoint changes, etc.), and
a robust global ordering among features within a single view may not be possible in the presence of
viewpoint and pose variations. In the pose estimation method of Agarwal and Triggs (2004) a bag-
of-words representation is used: local features are mapped to pre-established prototypes, and every
image is represented by a frequency vector counting the number of times each prototype occurred.
A relevance vector machine is then trained using these vectors with a Gaussian kernel. While this
representation allows unordered features, it can be sensitive to clutter, as we will show below.

As a training set, we used 3,040 images of realistic synthetic images of pedestrians generated
using the graphics package POSER. Each image was rendered from a humanoid model with ran-
domly adjusted anatomical shape parameters walking in a randomly selected direction. For each
image, both the silhouette and the 3-D locations of 15 landmarks on the model’s skeleton corre-
sponding to selected anatomical joints were recorded (see Figure 10). Regressors are trained with
silhouette inputs and produce 3-D joint position outputs. Once regressors have been trained with
the synthetic data, we can use them to perform regression with either additional synthetic examples
(for which we have ground truth poses), or with real image data (for which we can only evaluate
predicted poses qualitatively).

We represent each silhouette with a set of local contour descriptors. At each contour point,
we extract a shape context histogram (Belongie et al., 2002), which bins nearby edge pixels into
a log-polar histogram, thereby encoding local shape. For each shape context histogram, we used
12 angular and five radial bins with a fixed scale to capture only local points relative to each edge
point. To form a more compact descriptor, we used low-dimensional PCA projections (d = 5) of
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(b) Noisy synthetic test examples

Figure 11: Pose inference results. The top row (a) gives a quantitative evaluation of performance
on synthetic data with ground truth. The boxplots compare the error distributions for
the pyramid match kernel (PMK) and an RBF kernel over prototype frequency vectors
(VQ-RBF). Errors are measured by the distance between the 15 true and inferred joint
positions. Results for two test sets are shown: a set of novel, clean silhouettes (left plot),
and a set with randomly generated clutter or extra foreground blobs (right plot). The
bottom row (b) shows example poses inferred by our method from synthetic cluttered
silhouettes. In each, the true pose (solid black) is overlayed with the estimate (dotted
blue). These examples contain average case errors.

the initial 60-D shape context histogram features. Thus each silhouette shape is represented by
an unordered set of shape context subspace features, and each set varies in size due to the varying
number of contour points per image. Note that although this representation does not contain explicit
spatial constraints, the overlap between neighboring shape context histograms provides an implicit
encoding of how the features should be related spatially.

The number of contour points (and thus features) per image varied from m = 405 to m = 878.
The multi-resolution histograms used by the pyramid match contained ten resolution levels, as de-
termined by the diameter of the features in the training examples, and each contained on average
2644 non-empty bins. Computing a PMK value required about 0.002 seconds. For each dimension
of the pose targets, we trained an ε-insensitive SVR using the pyramid match kernel matrix between
the training examples. Each SVR had on average 308 support vectors.
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Figure 12: Pose inference on real images.

As a baseline, we also implemented a method that uses frequency vectors over feature prototypes
to represent each image (using Agarwal and Triggs, 2004, as a guideline). To obtain bag-of-words
histograms, vector quantization (VQ) is performed on the shape context subspace features found in
the training set to establish a set of 100 prototype features. Then all of the features detected in a
new image are mapped to a 1-D frequency histogram over these prototypes using soft voting with
Gaussian weights. A Gaussian RBF kernel is then applied, with γ chosen based on the maximum
inter-feature distance. In the following we will refer to this baseline as VQ-RBF.

For a novel test set of 300 POSER-generated silhouettes, the pose inferred by our method had a
median error of 4.9 cm per joint position. For the same test set, VQ-RBF obtained a slightly worse
median error of 6.8 cm (see Figure 11). Using a paired difference T-test with α= 0.001, we found
the difference in performance between the two methods to be statistically significant.

The silhouette contours produced with POSER are of course very “clean”, that is, the shapes are
perfectly segmented since they were formed by directly projecting the CG body. While it is reason-
able to train a model with this well-segmented data, we can expect real-world examples to exhibit
poorer foreground-background segmentations due to occlusions, clutter, shadows, or backgrounds
that look similar to the foreground object. Therefore, we altered the silhouettes for a separate test
set of 300 examples to introduce clutter and occlusions; starting with a POSER silhouette, we gen-
erated one to eight random blob regions in the image for which the foreground/background labels
were swapped. The blobs’ positions, sizes, and shapes were generated randomly. The result is a test
set that attempts to mimic real-world occlusions and clutter, yielding imperfect contours for which
estimating pose is more challenging (see Figure 11).

On the cluttered test set, our method inferred poses with a median error of 8.0 cm per joint, while
VQ-RBF had a median error of 14.1 cm (see Figure 11). Again, using a paired difference T-test,
we found the difference in performance to be statistically significant: with 99.99% confidence, the
pyramid match yields average errors that are smaller than those of VQ-RBF by amounts between
4.5 and 5.2 cm per joint.

This experiment demonstrates the pyramid match kernel’s robustness to superfluous features
in an input. The blobs added to the cluttered test set introduced extra contour features to the sil-
houettes, and they altered parts of the true contour in cases where they overlapped with the real
silhouette. The VQ-RBF distance over prototype frequency vectors (bags-of-words) essentially pe-
nalizes any features that have no “match” in a support vector training example’s set of features. In
contrast, the pyramid match’s partial matching rewards similarity only for the features placed into
correspondence, and ignores extraneous clutter features. This is an important advantage for many
vision applications, where segmentation errors, viewpoint changes, or image noise will often affect
which features (and how many) are detected.

754



THE PYRAMID MATCH KERNEL

Finally, we applied our method to a test set of real images of various subjects walking through
a scene. A basic background subtraction method was used, which resulted in rough segmentations;
body parts are frequently truncated in the silhouettes where the background is not highly textured, or
else parts are inaccurately distended due to common segmentation problems from shadows. Ground
truth poses are not available for this test set, but Figure 12 shows some example output poses inferred
by our method.

11. Conclusions

We have developed a new efficient kernel function that handles unordered sets of features, and
we have shown its suitability for both discriminative classification and regression. The pyramid
match kernel approximates the optimal partial matching by computing a weighted intersection over
multi-resolution histograms, and it requires time only linear in the number of features. The kernel is
robust to clutter since it does not penalize the presence of extra features, it respects the co-occurrence
statistics inherent in the input sets, and it is provably positive-definite. We have applied our kernel
to a variety of tasks—object recognition, pose estimation, and time of publication inference—and
have demonstrated our method’s advantages over other state-of-the-art techniques. Source code for
the pyramid match kernel is available at http://people.csail.mit.edu/jjl/libpmk/.

Recently we have developed a method to generate data-dependent pyramid partitions, which
yield more accurate matching results in high-dimensional feature spaces (Grauman and Darrell,
2007). In ongoing work we are considering alternative weighting schemes on the bins for the pyra-
mid match, and developing methods for sub-linear time approximate similarity search over partial
correspondences.
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Abstract
In binary classification problems it is common for the two classes to be imbalanced: one case is
very rare compared to the other. In this paper we consider the infinitely imbalanced case where one
class has a finite sample size and the other class’s sample size grows without bound. For logistic
regression, the infinitely imbalanced case often has a useful solution. Under mild conditions, the
intercept diverges as expected, but the rest of the coefficient vector approaches a non trivial and
useful limit. That limit can be expressed in terms of exponential tilting and is the minimum of
a convex objective function. The limiting form of logistic regression suggests a computational
shortcut for fraud detection problems.
Keywords: classification, drug discovery, fraud detection, rare events, unbalanced data

1. Introduction

In many applications of logistic regression one of the two classes is extremely rare. In political
science, the occurrence of wars, coups, vetos and the decisions of citizens to run for office have
been modelled as rare events; see King and Zeng (2001). Bolton and Hand (2002) consider fraud
detection, and Zhu et al. (2005) look at drug discovery. In other examples the rare event might
correspond to people with a rare disease, customer conversions at an e-commerce web site, or false
positives among a set of emails marked as spam.

We will let Y ∈ {0,1} denote a random response with the observed value of Y being y = 1 in
the rare case and y= 0 in the common case. We will suppose that the number of observations with
y = 0 is so large that we have a satisfactory representation of the distribution of predictors in that
setting. Then we explore the limit as the number of y = 0 cases tends to infinity while the number
of observed cases with y = 1 remains fixed. It is no surprise that the intercept term in the logistic
regression typically tends to −∞ in this limit. The other coefficients can however tend to a useful
limit.

The main result (Theorem 8 below) is that under reasonable conditions, the intercept term tends
to −∞ like − log(N) plus a constant, while the limiting logistic regression coefficient β = β(N)
satisfies

x̄=
R
ex′βxdF0(x)R
ex′β dF0(x)

(1)

c©2007 Art B. Owen.
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where F0 is the distribution of X given Y = 0 and x̄ is the average of the sample xi values for which
y= 1. The limiting solution is the exponential tilt required to bring the population mean of X given
Y = 0 onto the sample mean of X given Y = 1.

When F0 is the N(µ0,Σ0) distribution for finite nonsingular Σ0 then

lim
N→∞

β(N) = Σ−10 (x̄−µ0). (2)

Equation (2) reminds one of a well known derivation for logistic regression. If the conditional
distribution of X given that Y = y is N(µy,Σ) then the coefficient of X in logistic regression is
Σ−1(µ1−µ0). Equation (2) however holds without assuming that the covariance of X is the same
for Y = 0 and Y = 1, or even that X is Gaussian given that Y = 1.

The outline of the paper is as follows. Section 2 gives three numerical examples that illustrate the
limiting behavior of β. One is a positive result in which we see β approaching the value computed
from (2). The other two examples are negative results where (1) does not hold. Each negative case
illustrates the failure of an assumption of Theorem 8. In one case there is no nontrivial estimate of β
at any N > 0 while in the other β diverges as N → ∞. Section 3 formally introduces the notation of
this paper. It outlines the results of Silvapulle (1981) who completely characterizes the conditions
under which unique logistic regression estimates exist in the finite sample case. The infinite sample
case differs importantly and requires further conditions. A stronger overlap condition is needed
between the two X distributions. Also, the distribution of X given Y = 0 must not have tails that are
too heavy, an issue that cannot arise in finite samples from Rd . Section 4 proves the results in this
paper. A surprising consequence of Equation (1) is that the x values when y= 1 only appear through
their average x̄. Section 5 shows that for the drug discovery example of Zhu et al. (2005), we can
replace all data points with y = 1 by a single one at (x̄,1) with minimal effect on the estimated
coefficient, apart from the intercept term. Section 6 discusses how these results can be used in
deciding which unlabelled data points to label, and it shows how the infinitely imbalanced setting
may lead to computational savings.

We conclude this introduction by relating the present work to the literature on imbalanced data.
The English word “unbalanced” seems to be more popular, at least on web pages, than is “imbal-
anced”. But the latter term has been adopted for this special setting in two recent workshops: AAAI
2000 and ICML 2003, respectively Japkowicz (2000) and Chawla et al. (2003). An extensive survey
of the area is given by Chawla et al. (2004). In that literature much attention is paid to undersam-
pling methods in which some of the available cases with Y = 0 are either randomly or strategically
removed to alleviate the imbalance. Another approach is oversampling in which additional, possibly
synthetic, cases are generated with Y = 1. It is also clear that prediction accuracy will be very good
for a trivial method that always predicts y= 0 and so one needs to take care about misclassification
cost ratios and prior probability ratios.

2. Numerical Examples

For illustration, suppose that when Y = 0 that X ∼ N(0,1) and that we have one single obser-
vation with y = 1 and it has x = 1. To study this case we use logistic regression on (xi,yi) =
(Φ−1((i− 1/2)/N),0) for i = 1, . . . ,N and (xN+1,yN+1) = (1,1). Here Φ is the cumulative dis-
tribution function (CDF) of the N(0,1) distribution. As N increases the problem becomes more
imbalanced and the N points used produce an ever better approximation to the normal distribution.
Taking stratified Xi reduces inessential variation in the computation making the convergence pattern
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N α Neα β
10 −3.19 0.4126 1.5746
100 −5.15 0.5787 1.0706

1,000 −7.42 0.6019 1.0108
10,000 −9.71 0.6058 1.0017
100,000 −12.01 0.6064 1.0003

Table 1: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X ∼ N(0,1) and one observation with
Y = 1 and X = 1.

clearer. Some resulting values are shown in Table 1. From this table it seems clear that as N → ∞,
the intercept term is diverging like − log(N) while the coefficient of X is approaching the value
1 that we would get from Equation (2). Theorem 8 below shows that such is indeed the limiting
behavior.

Next we repeat the computation replacing Φ by the CDF of the standard Cauchy distribution
with density 1/(π(1+ x2)). The results are shown in Table 2. Here it is clear that β→ 0 as N → ∞
and α appears to behave like a constant minus log(N). It is not surprising that β→ 0 in this limit.
The Cauchy distribution has tails far heavier than the logistic distribution. If β %= 0 then the log
likelihood (4) that we introduce in Section 3 is −∞. The likelihood is maximized at β = 0 and
α= − log(N+1). We get slightly different values in Table 2 because the uniform distribution over
N Cauchy quantiles that we use has lighter tails than the actual Cauchy distribution it approaches.
The heavy tails of the Cauchy distribution make it fail a condition of Theorem 8. The finite sample
setting does not need a tail condition on the distribution of X , beyond an assumption that all observed
values are finite.

In the next example we use the U(0,1) distribution for X given Y = 0. This time we use n= 2
points with y= 1. One has x= 1/2 and the other has x= 2. The results are shown in Table 3. Once
again the value β does not appear to be converging to a limit. It cannot be due to heavy tails, because
theU(0,1) distribution has bounded support. On further thought, we see that x̄ = 5/4. There is no
possible way for an exponential tilt like (1) to reweight the U(0,1) distribution to have mean 5/4.
This example also fails one of the conditions of Theorem 8. We need the point x̄ to be surrounded
by the distribution of X given Y = 0 as defined in Section 3. Such a requirement is stronger than

N α Neα β Neβ
10 −2.36 0.94100 0.1222260 1.2222
100 −4.60 0.99524 0.0097523 0.9752

1,000 −6.90 0.99953 0.0009537 0.9536
10,000 −9.21 0.99995 0.0000952 0.9515
100,000 −11.51 0.99999 0.0000095 0.9513

Table 2: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X from the standard Cauchy distribu-
tion, and one observation with Y = 1 and X = 1.
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N α Neα β eβ/N
10 −3.82 0.2184 2.85 1.74
100 −7.13 0.0804 4.19 0.66

1,000 −10.71 0.0223 5.82 0.34
10,000 −14.52 0.0050 7.62 0.20
100,000 −18.49 0.0009 9.54 0.14

Table 3: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X ∼U(0,1) and two observations with
Y = 1, one with X = 1/2, the other with X = 2.

what is needed in the finite sample setting. Empirically eα and eβ both appear to follow a power
law in N but we do not investigate this further, focusing instead on the case where β approaches a
non-trivial limit.

3. Notation

The data are (x,y) pairs where x ∈ Rd and y ∈ {0,1}. There are n observations with y = 1 and N
with y= 0. The difference in case serves to remind us that n& N. The values of x when y= 1 are
x11, . . . ,x1n. The values of x when y= 0 are x01, . . . ,x0N . Singly subscripted values xi represent x1i.
Sometimes we use n1 for n and n0 for N.

The logistic regression model is Pr(Y = 1 | X = x) = eα+x′β/(1+eα+x′β) for α ∈ R and β ∈ Rd .
The log-likelihood in logistic regression is

n

∑
i=1

{
α+ x′1iβ− log(1+ eα+x′1iβ)

}
−

N

∑
i=1
log(1+ eα+x′0iβ). (3)

We suppose that a good approximation can be found for the conditional distribution of X given
that Y = 0, as seems reasonable when N is very large. For continuously distributed X we might
then replace the second sum in (3) by N

R
log(1+ exp(1+ eα+x′β) f0(x)dx where f0 is a probability

density function. Because some or all of the components of X might be discrete we work instead
with a distribution function F0 for X given that Y = 0.

With a bit of foresight we also center the logistic regression around the average x̄= ∑n
i=1 xi/n of

the predictor values for cases with Y = 1. Then the log likelihood we work with simplifies to

!(α,β) = nα−
n

∑
i=1
log(1+ eα+(xi−x̄)′β)−N

Z
log(1+ eα+(x−x̄)′β)dF0(x) (4)

where the nα term arises as ∑n
i=1α+(xi− x̄)′β.

When the centered log likelihood ! has an MLE (α̂0, β̂) we can recover the MLE of the uncen-
tered log likelihood easily: β̂ remains unchanged while α̂ in the uncentered version is α̂0− x̄′β̂. The
numerical examples in Section 2 used uncentered logistic regression.

Here we study the maximizer (α̂, β̂) of (4) in the limit as N→∞ with n and x1, . . . ,xn held fixed.
It is reasonable to suppose that α̂→ −∞ in this limit. Indeed we anticipate eα̂ should be O(1/N)
since the proportion of observations with y= 1 in the data is n/(N+n) .= n/N. What is interesting
and important is that β̂ does not necessarily diverge.
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3.1 Silvapulle’s Results

It is well known that the MLE in the usual logistic regression setting can fail to be finite when the x
values where y= 1 are linearly separable from those where y= 0.

The existence and uniqueness of MLE’s for linear logistic regression has been completely char-
acterized by Silvapulle (1981). He works in terms of binary regression through the origin. To
employ an intercept, one uses the usual device of adjoining a predictor component that is always
equal to 1.

For y= 1 let z1i = (1,x′1i)′ for i= 1, . . . ,n1 and for y= 0 let z0i = (1,x′0i)′ for i= 1, . . . ,n0. Let
θ = (α,β′)′. Then the logistic regression model has Pr(Y = 1 | X = x) = exp(z′θ)/(1+ exp(z′θ))
where of course z= z(x) = (1,x′)′. Silvapulle (1981) employs two convex cones:

C j =

{
n j

∑
i=1

k ji z ji | k ji > 0

}
, j ∈ {0,1}.

Theorem 1 For data as described above, assume that the n0+n1 by d+1 matrix with rows taken
from z ji for j = 0,1 and i = 1, . . . ,n j has rank d+ 1. If C0 ∩C1 %= /0 then a unique finite logistic
regression MLE θ̂= (α̂, β̂′) exists. If however C0∩C1 = /0 then no MLE exists.

Proof: This result follows from clause (iii) of the Theorem on page 311 of Silvapulle (1981). !
Silvapulle (1981) has more general results. Theorem 1 also holds when the logistic CDF G(t) =

exp(t)/(1+ exp(t)) is replaced by the standard normal one (for probit analysis) or by the U(0,1)
CDF. Any CDF G for which both − logG(t) and − log(1−G(t)) are convex, and for which G(t) is
strictly increasing when 0 < G(t) < 1 obeys the same theorem. The CDF G cannot be the Cauchy
CDF, because the Cauchy CDF fails the convexity conditions.

The cone intersections may seem unnatural. A more readily interpretable condition is that the
relative interior (as explained below) of the convex hull of the x’s for y= 0 intersects that for y= 1.
That is H0∩H1 %= /0 where

H j =

{
n j

∑
i=1

λ ji x ji | λ ji > 0,
n j

∑
i=1

λ ji = 1

}
.

When the x ji span Rd then H j is the interior of the convex hull of x ji. When x ji lie in a lower
dimensional affine subspace of Rd then the interior of their convex hull is the empty set. However
the interior with respect to that subspace, called the relative interior, and denoted H j above is not
empty. In the extreme where x ji = x j1 for i = 1, . . . ,n j, then the desired relative interior of the
convex hull of x j1, . . . ,x jn j is simply {x j1}.

Lemma 2 In the notation above H0∩H1 %= /0 if and only if C0∩C1 %= /0.

Proof: Suppose that x0 ∈ H0 ∩H1. Then z0 = (1,x′0)′ ∈ C0 ∩C1. Conversely suppose that z0 ∈
C0∩C1. Then we may write

z0 =
n0
∑
i=1

k0i
(
1
x0i

)
=

n1
∑
i=1

k1i
(
1
x1i

)
,

where each k ji > 0. From the first component of z0 we find a common positive value for ∑n0
i=1 k0i

and ∑n1
i=1 k1i. Let K denote that value, and put λ ji = k ji/K for j = 0,1 and i = 1, . . . ,n j. Then

x0 = ∑n0
i=1λ0ix0i = ∑n1

i=1λ1ix1i ∈ H0∩H1. !
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3.2 Overlap Conditions

In light of Silvapulle’s results we expect that we will need to assume some overlap between the data
x1, . . . ,xn from the 1s and the distribution F0 of X given Y = 0 in order to get a nontrivial result. The
setting here with N → ∞ is different and requires a stronger, but still very weak, overlap condition.
In describing this condition, we let Ω= {ω ∈ Rd | ω′ω= 1} be the unit sphere in Rd .

Definition 3 The distribution F on Rd has the point x∗ surrounded if
Z

(x−x∗)′ω>ε
dF(x) > δ (5)

holds for some ε> 0, some δ> 0 and all ω ∈Ω.

We will make use of two simple immediate consequences of (5). If F has the point x∗ sur-
rounded, then there exist η and γ satisfying

inf
ω∈Ω

Z

(x−x∗)′ω≥0
dF(x) ≥ η> 0 (6)

and

inf
ω∈Ω

Z
[(x− x∗)′ω]+ dF(x) ≥ γ> 0 (7)

where Z+ = max(Z,0) is the positive part of Z. For example we can take η = δ in (6) and γ = εδ
in (7). Notice that F cannot surround any point if F concentrates in a low dimensional affine subset
of Rd . This implies that having at least one point surrounded by F0 will be enough to avoid rank
deficiency.

In Theorem 1 it follows from Lemma 2 that we only need there to be some point x∗ that is
surrounded by both F̂0 and F̂1 where F̂j is the empirical distribution of x j1, . . . ,x jn j . If such x exists,
we get a unique finite MLE. (Recall that Theorem 1 assumes full rank for the predictors.)

In the infinitely imbalanced setting we expect that F0 will ordinarily surround every single one
of x1, . . . ,xn. We do not need F0 to surround them all but it is not enough to just have some point x∗
exist that is surrounded by both F0 and F̂1. We need to assume that F0 surrounds x̄. We do not need
to assume that F̂1 surrounds x̄, a condition that fails when the xi are confined to an affine subset of
Rd as they necessarily are for n< d.

There is an interesting case in which F0 can fail to surround x̄. The predictor X may contain
a component that is itself an imbalanced binary variable, and that component might never take the
value 1 in the y= 1 sample. Then x̄ is right on the boundary of the support of F0 and we cannot be
sure of a finite β in either the finite sample case or the infinitely imbalanced case.

3.3 Technical Lemmas

The first technical lemma below is used to get some bounds. The second one establishes existence
of a finite MLE when N < ∞.

Lemma 4 For α,z ∈ R,

eα+z ≥ log(1+ eα+z) ≥ [log(1+ eα)+ zeα/(1+ eα)]+
≥ [zeα/(1+ eα)]+ = z+ eα/(1+ eα).

(8)
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Proof: For the leftmost inequality, apply x ≥ log(1+ x) to x = eα+z. For the others, the func-
tion h(z) = log(1+ eα+z) is convex and positive. Therefore h(z) ≥ [h(0)+ zh′(0)]+ ≥ [zh′(0)]+ =
z+h′(0). !

Lemma 5 Let n ≥ 1 and x1, . . . ,xn ∈ Rd be given, and assume that the distribution F0 surrounds
x̄ = ∑n

i=1 xi/n and that 0 < N < ∞. Then the log likelihood !(α,β) given by (4) has a unique finite
maximizer (α̂, β̂).

Proof: The log likelihood ! is strictly concave in (α,β). It either has a unique finite maximizer or
it grows forever along some ray {(λα0,λβ0) | 0≤ λ<∞}⊂ Rd+1. By following such a ray back to
where it intersects a small cylinder around the origin we may assume that either 0≤ |α0| < ε/2 and
β′0β0 = 1, where ε is the constant in Definition 3, or that 0< |α0| < ε/2 and β0 = 0. We will show
that ∂!(λα0,λβ0)/∂λ is always strictly negative, ruling out infinite growth and thus establishing a
unique finite maximizer.

For β0 = 0 and α0 > 0 we find limλ→∞ ∂!(λα0,λβ0)/∂λ = −Nα0 < 0. For β0 = 0 and α0 < 0
we find limλ→∞ ∂!(λα0,λβ0)/∂λ= nα0 < 0.

Now suppose β′0β0 = 1 and |α0| < ε/2. Using nα0 = ∑n
i=1α0+(xi− x̄)′β0, we find

lim
λ→∞

∂
∂λ

!(λα0,λβ0) = ∑
i:α0+(xi−x̄)′β0<0

α0+(xi− x̄)′β0

−N
Z

α0+(x−x̄)′β0>0
α0+(x− x̄)′β0 dF0(x).

(9)

The sum in (9) is either 0 or is negative and the integral is either 0 or is positive. For the integral to
be 0 we must have (x− x̄)′β0 ≤−α0 with probability one for x∼ F0. But this is impossible because
F0 has x̄ surrounded. !

4. Main Results

Lemma 6 below shows that, as anticipated, eα̂ is typically O(1/N) as N → ∞. Specifically, we find
a bound B= 2n/η< ∞ for which limsupN→∞Neα̂ < B.

Lemma 6 Under the conditions of Lemma 5, let α̂ and β̂ maximize ! of (4). Let η satisfy (6). Then
for N ≥ 2n/η we have eα̂ ≤ 2n/(Nη).

Proof: Let β be any point in Rd . Write eα = A/N for 0< A< ∞. Then

∂
∂α

! = n−
n

∑
i=1

AN−1e(xi−x̄)′β

1+AN−1e(xi−x̄)′β
−N

Z AN−1e(x−x̄)′β

1+AN−1e(x−x̄)′β
dF0(x)

≤ n−A
Z

(x−x̄)′β≥0

e(x−x̄)′β

1+AN−1e(x−x̄)′β
dF0(x)

≤ n− Aη
1+A/N

.
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Now suppose thatN≥ 2n/η and that eα > 2n/(Nη), that is A> 2n/η. Then ∂!/∂α< 0. Because
! is concave this negative partial derivative implies that

argmax
α

!(α,β) < log(2n/η)− log(N). (10)

Because β was arbitrary (10) holds for all β ∈ Rd . Lemma 5 implies that β̂ is finite, and so (10)
applies for β= β̂. !

Lemma 7 Under the conditions of Lemma 5, let α̂ and β̂maximize ! of (4). Then limsupN→∞ ‖β̂‖<
∞.

Proof: Let eα = A/N for A> 0 and let β ∈ Rd . Pick γ to satisfy (7). Then

!(α,0)− !(α,β)

= −(n+N) log(1+ eα)+
n

∑
i=1
log(1+ eα+(xi−x̄)′β)

+N
Z
log(1+ eα+(x−x̄)′β)dF0(x)

> −(n+N)eα+N
eα

1+ eα
Z

(x−x̄)′β≥0
(x− x̄)′βdF0(x)

≥−(n+N)
A
N

+A
‖β‖γ
1+A/N

after applying two inequalities from (8) and making some simplifications. If follows that !(α,β) <
!(α,0) whenever ‖β‖ ≥ γ−1(1+A/N)(1+ n/N). For large enough N we have ‖β̂‖ ≤ 2/γ, using
Lemma 6 to control A. !

As illustrated in Section 2, infinitely imbalanced logistic regression will be degenerate if F0 has
tails that are too heavy. We assume that

Z
ex

′β(1+‖x‖)dF0(x) < ∞, ∀β ∈ Rd . (11)

Condition (11) is satisfied by distributions with bounded support and by light tailed distributions
such as the multivariate normal distribution.

Theorem 8 Let n ≥ 1 and x1, . . . ,xn ∈ Rd be fixed and suppose that F0 satisfies the tail condi-
tion (11) and surrounds x̄ = ∑n

i=1 xi/n as described at (5). Then the maximizer (α̂, β̂) of ! given
by (4) satisfies

lim
N→∞

R
ex′β̂ xdF0(x)

R
ex′β̂ dF0(x)

= x̄.

Proof: Setting ∂!/∂β= 0, dividing by Neα̂−x̄′β̂ and rearranging terms, gives

Z (x− x̄)ex′β̂

1+ eα̂+(x−x̄)′β̂
dF0(x) = − 1

N

n

∑
i=1

ex′iβ̂(xi− x̄)
1+ eα̂+(xi−x̄)′β̂

. (12)
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Method α β1 β2 β3 β4 β5 β6
Original −3.707 4.629 4.807 0.398 0.594 0.170 0.130
Single y= 1 −10.116 4.623 4.984 0.397 0.595 0.193 0.182
x1 j = x̄ −3.701 4.765 5.136 0.410 0.614 0.204 0.190
SE 0.041 0.696 0.851 0.040 0.130 0.299 0.413

Table 4: This table shows logistic regression coefficients for the chemical compound data set de-
scribed in the text. The top row shows ordinary logistic regression coefficients. The second
row shows the coefficients when the cases with y= 1 are deleted and replaced by a single
point (x̄,1). The third row shows the coefficients when all 608 cases with y = 1 are re-
placed by (x̄,1). The fourth row shows standard errors for the ordinary logistic regression
coefficients in the top row.

As N→∞ the right side of (12) vanishes because ‖β̂‖ is bounded as N→∞ by Lemma 7. Therefore
the MLEs satisfy

lim
N→∞

R
xex′β̂[1+ eα̂+(x−x̄)′β̂]−1 dF0(x)

R
ex′β̂[1+ eα̂+(x−x̄)′β̂]−1 dF0(x)

= x̄. (13)

The denominator of (13) is at most
R
ex′β̂dF0(x) and is at least

Z
ex

′β̂(1− eα̂+(x−x̄)′β̂)dF0(x) →
Z
ex

′β̂dF0(x)

as N→∞ because α→−∞ and
R
e2x′β̂dF0(x) <∞ by the tail condition (11). Therefore the denom-

inator of (13) has the same limit as
R
ex′β̂ dF0(x) as N → ∞. Similarly the numerator has the same

limit as
R
ex′β̂xdF0(x). The limit for the denominator is finite and nonzero, and so the result follows.

!

5. Illustration

It is perhaps surprising that in the N → ∞ limit, the logistic regression depends on x1, . . . ,xn only
through x̄. The precise configuration of those n points in Rd becomes unimportant. We could rotate
them about x̄, or replace each of them by x̄, or even replace them by one single point at x̄ with Y = 1
and still get the same β̂ in the N → ∞ limit.

To investigate whether this effect can hold in finite data sets, we look at an example from Zhu
et al. (2005). They study a data set with 29,812 chemical compounds on which 6 predictor variables
were measured. Compounds were rated as active (Y = 1) or inactive (Y = 0) and only 608 of the
compounds were active.

Table 4 shows the logistic regression coefficients for this data, as well as what happens to them
when we replace the 608 data points (x,y) with y = 1 by a single point at (x̄,1), or by 608 points
equal to (x̄,1). In a centered logistic regression the point (x̄,1) becomes (x̄− x̄,1) = (0, . . . ,0,1) ∈
Rd+1.

The intercept changes a lot when we reduce the rare cases from 608 to 1 but otherwise the
coefficients do not change importantly. Interestingly the single point version has a β vector closer
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to the original logistic regression than has the version with 608 points at (x̄,1). The differences in β
are quite small compared to the sampling uncertainty. We would reach the same conclusions about
which predictors are most important in all three cases.

The linear predictor α̂+ β̂′(x− x̄)was computed using the coefficients from each of these models
(taking care to use the original xi’s not the versions set to x̄.) The correlation between the linear
predictor from logistic regression to that fit with all xi = x̄ is 0.999881. The correlation between the
linear predictor from logistic regression to that fit with just one (x̄,1) data point is still higher, at
0.999888. The two altered linear predictors have correlation 0.999998. Not surprisingly any two of
these linear predictors plot as a virtual straight line. There will be no important differences in ROC
curves, precision and recall curves or other performance measures among these three fits.

6. Discussion

This paper has focussed on establishing the limit of β̂ as N→∞. This section presents some context
and motivation. Section 6.1 shows these findings lead to greater understanding of how logistic
regression works or fails and how to improve it. Section 6.2 shows how even after passing to the
limit the resulting model makes some useful predictions. Section 6.3 illustrates the special case of
F0 that is Gaussian or a mixture of Gaussians. Section 6.4 describes how using infinitely imbalanced
logistic regression may lead to cost savings in fraud detection settings.

6.1 Insight Into Logistic Regression

In the infinitely imbalanced limit, logistic regression only uses the y = 1 data points through their
average feature vector x̄. This limiting behavior is a property of logistic regression, not of any
particular data set. It holds equally well in those problems for which logistic regression works badly
as it does in problems where the Bayes rule is a logistic regression.

In the illustrative example we got almost the same logistic regression after replacing all the rare
cases by a single point at x̄. We would not expect this property for learning methods in general. For
example classification trees such as those fit by CART (Breiman et al., 1984) will ordinarily change
a lot if all of the Y = 1 cases are replaced by one or more points (x̄,1).

Logistic regression only has d parameters apart from the intercept, so it is clear that it cannot
be as flexible as some other machine learning methods. But knowing that those parameters are
very strongly tied to the d components of x̄ gives us insight into how logistic regression works on
imbalanced problems. It is reasonable to expect better results from logistic regression when the x1i
are in a single tight cluster near x̄ than when there are outliers, or when the x1i points are in two well
separated clusters in different directions from the bulk of F0.

The insight also suggests things to do. For example when we detect outliers among the x1i,
shrinking them towards x̄, or removing them should improve performance. When we detect sharp
clusters among x1i then we might fit one logistic regression per cluster, separating that cluster from
the x0i’s, and predict for new points by pooling the cluster specific results. Even an O(n2) clustering
algorithm may be inexpensive in the N - n setting.

6.2 Nontrivial Limiting Predictions

In the infinitely imbalanced limit with N → ∞ we often find that β̂ converges to a finite limit while
α̂→ −∞. This limit gives Pr(Y = 1 | X = x) → 0 for all x and so it gives trivial probabilities for
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prediction purposes. But we are often interested in probability ratios with nontrivial limits such as:

Pr(Ỹ = 1 | X = x̃)
Pr(Y = 1 | X = x)

→ e(x̃−x)
′β.

For example if we are presented with a number of cases of potential fraud to investigate and have
limited resources then we can rank them by x′β and investigate as many of the most likely ones as
time or other costs allow.

Because this rank is derived from a probability ratio we can also take into account the monetary
or other measured value of the cases. If the values of uncovering fraud in the two cases are v and
ṽ, respectively, then we might prefer to investigate the former when vex′β > ṽex̃′β. If the costs of
investigation are c and c̃ then we might prefer the former when vex′β/c> ṽex̃′β/c̃.

In active learning problems one must choose which data to gather. There are several kinds of
active learning, as described in Tong (2001). The interventional setting is very similar to statisti-
cal experimental design. For example, Cohn et al. (1996) describe how to select training data for
feedforward neural networks. In the selective setting, the investigator has a mix of labelled cases
(both x and y known) and unlabelled cases (x known but y unknown), and must choose which of the
unlabelled cases to get a label for. For example the label y might indicate whether a human expert
says that a document with feature vector x is on a specific topic. In a rare event setting, finding the
cases most likely to have y = 1 is a reasonable proxy for finding the most informative cases, and
one could then allocate a large part of the labelling budget to cases with high values of x′β.

6.3 Gaussian Mixtures F0
When F0 is a nonsingular Gaussian distribution then as remarked in the introduction, β→ Σ−1

0 (x̄−
µ0). The effective sample size of an imbalanced data set is often considered to be simply the number
of rare outcomes. The formula for β depends on the data only through x̄, which as an average of n
observations clearly has effective sample size of n. In the limit where N → ∞ first and then n→ ∞
we get β→ Σ−10 (µ1−µ0) where µj = E(X |Y = j). A confidence ellipsoid for µ1 translates directly
into one for β.

Gaussian mixture models are a flexible and widely used method for approximating distributions.
They have the further advantage for the present problem that exponential tilts of Gaussian mixtures
are also Gaussian mixtures. The result is a convenient expression to be solved for β.

Suppose that

F0 =
K

∑
k=1

λkN(µk,Σk)

where λk > 0 and ∑K
k=1λk = 1. If at least one of the Σk has full rank then F0 will surround the point

x̄. Then the limiting β is defined through

x̄= ∑K
k=1λk(µk +Σkβ)eβ

′µk+β′Σkβ/2

∑K
k=1λkeβ

′µk+β′Σkβ/2
,

so that β is the solution to

0=
K

∑
k=1

λk(µk +Σkβ− x̄)eβ
′µk+β′Σkβ/2. (14)

Solving Equation (14) for β is cast as a convex optimization in Section 6.4.
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6.4 Computational Costs

The exponential tilting solution to (1) is the value β for which
R
(x− x̄)ex′β dF0(x) = 0. That solution

is more conveniently expressed as the root of

g(β) ≡
Z

(x− x̄)e(x−x̄)
′β dF0(x) = 0. (15)

Equation (15) is the gradient with respect to β of

f (β) =
Z
e(x−x̄)

′β dF0(x),

which has Hessian
H(β) =

Z
(x− x̄)(x− x̄)′e(x−x̄)

′β dF0(x).

The tilting problem (1) can be solved by finding the root of (15) which is in turn equivalent to the
minimization of the convex function f .

When F0 is modeled as a mixture F0 of Gaussians the objective function, gradient, and Hessian
needed for optimization have a simple form. They are,

f (β) =
K

∑
k=1

λkeβ
′(µk−x̄)+β′Σkβ/2,

g(β) =
K

∑
k=1

λk(µ̃k(β)− x̄)eβ
′(µk−x̄)+β′Σkβ/2, where,

µ̃k(β) ≡ µk +Σkβ, and,

H(β) =
K

∑
k=1

λk
(
Σk +(µ̃k(β)− x̄)(µ̃k(β)− x̄)′

)
eβ

′(µk−x̄)+β′Σkβ/2.

The cost of solving (14) or (15) by an algorithm based on Newton’s method takes O(d3) com-
putation per iteration. By contrast, each step in iteratively reweighted least squares fitting of logistic
regression takes O((n+N)d2) work. Even if one downsamples the data set, perhaps keeping only
N = 5n randomly chosen examples from the Y = 0 cases, the work of an iteration is O(nd2). The
one time cost to fit a mixture of Gaussians includes costs of order Nd2 to form covariance matrix
estimates, or O(nd2) if one has downsampled. But after the first iteration there can be substantial
computational savings for solving (15) instead of doing logistic regression, when n/d is large.

When there is one common class and there are numerous rare classes, such as types of fraud
or different targets against which a drug might be active, then the cost of approximating F0 can be
shared over the set of uncommon classes.

In fraud detection problems we might expect that the distribution F0 for legitimate data points is
slowly changing while the patterns in the fraudulent points change rapidly in response to improved
detection. In such a setting we get a computational saving by fitting an approximation to F0 once,
or at long time intervals, and then computing many different β(∞) vectors. These vectors can be for
different known types of fraud, for fraud over shorter time intervals, or even individual fraud cases.
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Abstract
One of the nice properties of kernel classifiers such as SVMs is that they often produce sparse so-
lutions. However, the decision functions of these classifiers cannot always be used to estimate the
conditional probability of the class label. We investigate the relationship between these two prop-
erties and show that these are intimately related: sparseness does not occur when the conditional
probabilities can be unambiguously estimated. We consider a family of convex loss functions and
derive sharp asymptotic results for the fraction of data that becomes support vectors. This enables
us to characterize the exact trade-off between sparseness and the ability to estimate conditional
probabilities for these loss functions.
Keywords: kernel methods, support vector machines, sparseness, estimating conditional proba-
bilities

1. Introduction

Consider the following familiar setting of a binary classification problem. A sequence T = ((x1,y1),
. . . ,(xn,yn)) of i.i.d. pairs is drawn from a probability distribution over X ×Y where X ⊆Rd and Y
is the set of labels (which we assume is {+1,−1} for convenience). The goal is to use the training
set T to predict the label of a new observation x ∈ X . A common way to approach the problem is
to use the training set to construct a decision function fT : X → R and output sign( fT (x)) as the
predicted label of x.

In this paper, we consider classifiers based on an optimization problem of the form:

fT,λ = argmin
f∈H

λ‖ f‖2H +
1
n

n

∑
i=1

φ(yi f (xi)). (1)

Here, H is a reproducing kernel Hilbert space (RKHS) of some kernel k, λ > 0 is a regularization
parameter and φ : R → [0,∞) is a convex loss function. Since optimization problems based on the
non-convex function 0-1 loss t '→ I(t≤0) (where I(·) is the indicator function) are computationally
intractable, use of convex loss functions is often seen as using upper bounds on the 0-1 loss to make
the problem computationally easier. Although computational tractability is one of the goals we have
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in mind while designing classifiers, it is not the only one. We would like to compare different convex
loss functions based on their statistical and other useful properties. Conditions ensuring Bayes-risk
consistency of classifiers using convex loss functions have already been established (Bartlett et al.,
2004; Lugosi and Vayatis, 2004; Steinwart, 2005; Zhang, 2004). It has been observed that different
cost functions have different properties and it is important to choose a loss function judiciously
(e.g., see Wahba, 2002). In order to understand the relative merits of different loss functions, it is
important to consider these properties and investigate the extent to which different loss functions
exhibit them. It may turn out (as it does below) that different properties are in conflict with each
other. In that case, knowing the trade-off allows one to make an informed choice while choosing a
loss function for the classification task at hand.

One of the properties we focus on is the ability to estimate the conditional probability of the
class label η(x) = P(Y = +1|X = x). Under some conditions on the loss function and the sequence
of regularization parameters λn, the solutions of (1) converge (in probability) to a function F ∗

φ (η(x))
which is set valued in general (Steinwart, 2003). As long as we can uniquely identify η(x) based
on a value in F∗

φ (η(x)), we can hope to estimate conditional probabilities using fT,λn(x), at least
asymptotically. Choice of the loss function is crucial to this property. For example, the L2-SVM
(which uses the loss function t '→ (max{0,1− t})2) is much better than L1-SVM (which uses t '→
max{0,1− t}) in terms of asymptotically estimating conditional probabilities.

Another criterion is the sparseness of solutions of (1). It is well known that any solution fT,λ of
(1) can be represented as

fT,λ(x) =
n

∑
i=1

α∗
i k(x,xi) . (2)

The observations xi for which the coefficients α∗
i are non-zero are called support vectors. The rest of

the observations have no effect on the value of the decision function. Having fewer support vectors
leads to faster evaluation of the decision function. Bounds on the number of support vectors are
therefore useful to know. Steinwart’s recent work (Steinwart, 2004) has shown that for the L1-SVM
and a suitable kernel, the asymptotic fraction of support vectors is twice the Bayes-risk. Thus, L1-
SVMs can be expected to produce sparse solutions. It was also shown that L2-SVMs will typically
not produce sparse solutions.

We are interested in how sparseness relates to the ability to estimate conditional probabilities.
What we mentioned about L1 and L2-SVMs leads to several questions. Do we always lose sparse-
ness by being able to estimate conditional probabilities? Is it possible to characterize the exact
trade-off between the asymptotic fraction of support vectors and the ability to estimate conditional
probabilities? If sparseness is indeed lost when we are able to fully estimate conditional probabili-
ties, we may want to estimate conditional probabilities only in an interval, say (0.05,0.95), if that
helps recover sparseness. Estimating η for x’s that have η(x) ≥ 0.95 may not be too crucial for
our prediction task. How can we design loss functions which enable us to estimate probabilities in
sub-intervals of [0,1] while preserving as much sparseness as possible?

This paper attempts to answer these questions. We show that if one wants to estimate conditional
probabilities in an interval (1− γ0,γ0) for some γ0 ∈ (1/2,1), then sparseness is lost on that interval
in the sense that the asymptotic fraction of data that become support vectors is lower bounded by
ExG(η(x)) where G(η) = 1 throughout the interval (1− γ0,γ0). Moreover, one cannot recover
sparseness by giving up the ability to estimate conditional probabilities in some sub-interval of
(1−γ0,γ0). The only way to do that is to decrease γ0 thereby shortening the interval (1−γ0,γ0). We
also derive sharp bounds on the asymptotic number of support vectors for a family of loss functions
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L2−SVM

L1−SVM
−1

1

10

1

L1−SVM

L2−SVM

1/ 2 10

Figure 1: Plots of F∗
φ (left) and G (right) for a loss function which is a convex combination of the

L1 and L2-SVM loss functions. Dashed lines represent the corresponding plots for the
original loss functions.

of the form:
φ(t) = h((t0− t)+), t0 > 0

where t+ denotes max{0, t} and h is a continuously differentiable convex function such that h′(0)≥
0. Each loss function in the family allows one to estimate probabilities in the interval (1−γ0,γ0) for
some value of γ0. The asymptotic fraction of support vectors is then ExG(η(x)), where η '→ G(η)
is a function that increases linearly from 0 to 1 as η goes from 0 to 1− γ0. For example, if φ(t) =
1
3((1− t)+)2+ 2

3(1− t)+ then conditional probabilities can be estimated in (1/4,3/4) and G(η) = 1
for η ∈ (1/4,3/4) (see Fig. 1).

2. Notation and Known Results

Let P be the probability distribution over X ×Y and let T ∈ (X ×Y )n be a training set. Let EP(·)
denote expectations taken with respect to the distribution P. Similarly, let Ex(·) denote expectations
taken with respect to the marginal distribution on X . Let η(x) be P(Y = +1|X = x). For a decision
function f : X → R, define its risk as

RP( f ) = EPI(y f (x)≤0) .

The Bayes-risk RP = inf{RP( f ) : f measurable} is the least possible risk. Given a loss function φ,
define the φ-risk of f by

Rφ,P( f ) = EPφ(y f (x)) .

The optimal φ-risk Rφ,P = inf{Rφ,P( f ) : f measurable} is the least achievable φ-risk. When the
expectations in the definitions of RP( f ) and Rφ,P( f ) are taken with respect to the empirical measure
corresponding to T , we get the empirical risk RT ( f ) and the empirical φ-risk Rφ,T ( f ) respectively.
Conditioning on x, we can write the φ-risk as

Rφ,P( f ) = Ex[E(φ(y f (x)|x)]
= Ex[η(x)φ( f (x))+(1−η(x))φ(− f (x))]
= Ex[C(η(x), f (x))] .
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Here, we have definedC(η, t) = ηφ(t)+(1−η)φ(−t). To minimize the φ-risk, we have to minimize
C(η, ·) for each η ∈ [0,1]. So, define the set valued function F ∗

φ by

F∗
φ (η) = {t :C(η, t) =min

s∈R̄
C(η,s)}

where R̄ is the set of extended reals R∪ {−∞,∞}. Any measurable selection f ∗ of F∗
φ actually

minimizes the φ-risk. The function F∗
φ is plotted for three choices of φ in Fig. 1. From the definitions

of C(η, t) and F∗
φ (η), it is easy to see that F∗

φ (η) = −F∗
φ (1−η). Steinwart (2003) also proves that

η '→ F∗
φ (η) is a monotone operator. This means that if η1 > η2, t1 ∈ F∗

φ (η1) and t2 ∈ F∗
φ (η2) then

t1 ≥ t2.
A convex loss function is called classification calibrated if the following two conditions hold:

η<
1
2
⇒ F∗

φ (η) ⊂ [−∞,0) and η>
1
2
⇒ F∗

φ (η) ⊂ (0,+∞] .

A necessary and sufficient condition for a convex φ to be classification calibrated is that φ′(0) exists
and is negative (Bartlett et al., 2004). If φ is classification calibrated then it is guaranteed that for
any sequence fn such that Rφ,P( fn) → Rφ,P, we have RP( fn) → RP. Thus, classification calibrated
loss functions are good in the sense that minimizing the φ-risk leads to classifiers that have risks
approaching the Bayes-risk. Note, however, that in the optimization problem (1), we are minimizing
the regularized φ-risk

Rregφ,T,λ = λ‖ f‖2H +Rφ,T .

Steinwart (2005) has shown that if one uses a classification calibrated convex loss function, a
universal kernel (one whose RKHS is dense in the space of continuous functions over X ) and a
sequence of regularization parameters such that λn → 0 sufficiently slowly, then Rφ,P( fT,λn)→ Rφ,P.
In another paper (Steinwart, 2003), he proves that this is sufficient to ensure the convergence in
probability of fT,λn to F∗

φ (η(·)). That is, for all ε> 0

Px({x ∈ X : ρ( fT,λn(x),F
∗
φ (η(x))) ≥ ε}) → 0. (3)

The function ρ(t,B) is just the distance from t to the point in B which is closest to t. The definition
given by Steinwart (2003) is more complicated because one has to handle the case when B∩R = /0.
We will ensure in our proofs that F∗

φ is not a singleton set just containing +∞ or −∞.
Since fT,λn converges to F∗

φ (η(·)), the plots in Fig. 1 suggest that the L2-SVM decision func-
tion can be used to estimate conditional probabilities in the whole range [0,1] while it not possible
to use the L1-SVM decision function to estimate conditional probabilities in any interval. How-
ever, the L1-SVM is better if one considers the asymptotic fraction of support vectors. Under
some conditions on the kernel and the regularization sequence, Steinwart proved that the fraction
is Ex[2min(η(x),1−η(x))], which also happens to be the optimal φ-risk for the hinge loss func-
tion. For L2-SVM, he showed that the asymptotic fraction is Px({x ∈ X : 0 < η(x) < 1}), which
is the probability of the set where noise occurs. Observe that we can write the fraction of support
vectors as Ex[G(η(x))] where G(η) = 2min{η,1−η} for the hinge loss and G(η) = I(η/∈{0,1}) for
the squared hinge loss. We will see below that these two are extreme cases. In general, there are
loss functions which allow one to estimate probabilities in an interval centered at 1/2 and for which
G(η) = 1 only on that interval.
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Steinwart (2003) also derived a general lower bound on the asymptotic number of support vec-
tors in terms of the probability of the set

S= {(x,y) ∈ Xcont ×Y : 0 /∈ ∂φ(yF∗
φ (η(x)))} .

Here, Xcont = {x ∈ X : Px({x}) = 0} and ∂φ denotes the subdifferential of φ. In the simple case
of a function of one variable ∂φ(x) = [φ′−(x),φ′+(x)], where φ′− and φ′+ are the left and right hand
derivatives of φ (which always exist for convex functions). If Xcont = X , one can write P(S) as

P(S) = EP[I(0/∈∂φ(yF∗
φ (η(x)))]

= Ex[η(x)I(0/∈∂φ(F∗
φ (η(x)))) +(1−η(x))I(0/∈∂φ(−F∗

φ (η(x))))]

= ExG(η(x)) .

(4)

For the last step, we simply defined

G(η) = ηI(0/∈∂φ(F∗
φ (η))) +(1−η)I(0/∈∂φ(−F∗

φ (η))) . (5)

3. Preliminary Results

We will consider only classification calibrated convex loss functions. Since φ is classification cali-
brated we know that φ′(0) < 0. Define t0 as

t0 = inf{t : 0 ∈ ∂φ(t)}

with the convention that inf /0= ∞. Because φ′(0) < 0 and subdifferentials of a convex function are
monotonically decreasing, we must have t0 > 0. However, it may be that t0 = ∞. The following
lemma says that sparse solutions cannot be expected if that is the case.

Lemma 1 If t0 = ∞, then G(η) = 1 for η ∈ [0,1].

Proof t0 = ∞ implies that for all t, 0 /∈ ∂φ(t). Using (5), we get G(η) = η.1+(1−η).1= 1.

Thus, for losses like the exponential loss t '→ exp(−t), the bound (4) says that the fraction of support
vectors approaches 1 asymptotically. Since we are interested in loss functions that lead to sparse
solutions, let us assume that

(A1) t0 < ∞ .

Although not immediate from the definition, a continuity argument involving the one-sided deriva-
tives gives us 0 ∈ ∂φ(t0).

We now proceed to investigate the general form of the function η '→ F ∗
φ (η). Before we begin,

we make another assumption about the number of points in the interval (−t0, t0) where the function
φ fails to be differentiable. Define the set

D= {t ∈ (0, t0) : either φ′(t) or φ′(−t) does not exist } .

We assume that
(A2) |D| < ∞ .
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Note that, since φ is convex, we know that D can be at most countably infinite. Let t1 > t2 > .. . > tL
be the set D sorted in decreasing order. We have t0 > t1 and tL > 0. Set β0 = 1 and define

βl =
1

1+ φ′+(tl)
φ′−(−tl)

, 1≤ l ≤ L ,

γl =
1

1+ φ′−(tl)
φ′+(−tl)

, 0≤ l ≤ L .

With the possible exception of φ′−(t0) (which can be zero), all one-sided derivatives appearing in the
definitions above are negative. For s< t, we have φ′−(s) ≤ φ′+(s) ≤ φ′−(t) ≤ φ′+(t). Using this fact,
we get

1
2
≤ γL ≤ βL ≤ . . . ≤ γ1 ≤ β1 ≤ γ0 ≤ β0 = 1 .

Since tl ∈ D for 1≤ l ≤ L, at least one of the inequalities, φ′−(tl) < φ′+(tl) or φ′−(−tl) < φ′+(−tl), is
strict. So γl < βl for 1≤ l ≤ L and we get

1
2
≤ γL < βL ≤ . . . ≤ γ1 < β1 ≤ γ0 ≤ β0 = 1 .

Using the observation that F∗
φ (1−η) = −F∗

φ (η), we restrict ourselves to examining the behavior of
F∗
φ (η) on an interval containing [1/2,1].

Theorem 2 Let φ be a classification calibrated convex loss function satisfying assumptions (A1)
and (A2). Then the following statements hold true.

1. For 0≤ l ≤ L and for η ∈ (γl,βl), F∗
φ (η) = {tl}.

2. If I is one of the (possibly degenerate) intervals [βl,γl−1], 1 ≤ l ≤ L, then there exists a
continuous non-decreasing function gI mapping [tl, tl−1] onto I such that, for η ∈ I,

F∗
φ (η) = g−1I (η) ,

where g−1I (η) = {t : gI(t) = η}.

3. The above also holds for the (possibly degenerate) interval I = [1− γL,γL] but here the func-
tion gI maps [−tL, tL] onto I.

4. F∗
φ (1) is either [t0, t ′], for some t ′ ≥ t0, or [t0,∞).

Proof (Part 1) Denoting the subdifferential with respect to the second argument by ∂2, we have

∂2C(η, tl) = η∂φ(tl)− (1−η)∂φ(−tl)
= [ηφ′−(tl)− (1−η)φ′+(−tl),ηφ′+(tl)− (1−η)φ′−(−tl)] .

For γl < η< βl , we have

ηφ′−(tl)− (1−η)φ′+(−tl) < 0< ηφ′+(tl)− (1−η)φ′−(−tl) ,
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and so tl is the unique minimizer ofC(η, ·).
(Part 2) Let I = [βl,γl−1]. Note that for t ∈ (tl, tl−1), both φ′(t) and φ′(−t) are defined. Being

derivatives of a convex function, they are continuous. So we define, for t ∈ (tl, tl−1),

gI(t) =
1

1+ φ′(t)
φ′(−t)

.

Convexity also implies that gI(t) is monotonically increasing. In fact, it will be strictly increasing
if one of φ(t) and φ(−t) is strictly convex. However, if both φ(t) and φ(−t) are linear on some
open interval, gI(t) will be constant over that interval. Define gI(tl) = βl and gI(tl−1) = γl−1. Since
limt↓tl φ

′(t) = φ′+(tl) and limt↓tl φ
′(−t) = φ′−(−tl) (e.g., see Rockafellar, 1970, Chap. 24), we have

limt↓tl gI(t) = βl = gI(tl). Similarly, limt↑tl−1 gI(t) = γl−1 = gI(tl−1). So, we have defined a con-
tinuous monotonically increasing function on [βl,γl−1] onto [tl, tl−1]. If t ∈ (tl, tl−1) then, for any
η,

t ∈ F∗
φ (η) iff ηφ′(t)+(1−η)φ′(−t) = 0

iff
1

1+ φ′(t)
φ′(−t)

= η

iff gI(t) = η

iff t ∈ g−1I (η) .

It remains to handle tl and tl−1. For η ∈ I, tl ∈ F∗
φ (η) iff η = βl . Since gI(tl) = βl , we also have

tl ∈ g−1I (η) iff η= βl . Arguing similarly for tl−1, for η ∈ I, tl ∈ F∗
φ (η) iff η= γl−1. Since gI(tl−1) =

γl−1, we also have tl−1 ∈ g−1I (η) iff η= γl−1.
(Part 3) Once we observe that both φ′(t) and φ′(−t) exist for t ∈ (−tL, tL), the proof proceeds as

in part 2.
(Part 4) Let t ′ = sup{t : 0 ∈ ∂φ(t)}. If the set in question is unbounded, then 0 ∈ ∂φ(t) for all

t ≥ t0 and so F∗
φ (1) = [t,∞). If the set is bounded above then the supremum t ′ is well defined. The

t’s which minimizeC(1, ·) = φ(t) are then precisely those in the interval [t0, t ′].

The above theorem says a couple of interesting things about the relationship between φ and F ∗
φ .

Points of non-differentiability of φ lead to the function F ∗
φ being constant on certain intervals. On

an interval I where F∗
φ is not constant, there exists a function gI such that given t ∈ F∗

φ (η), one
can recover η by the relation η = gI(t). We can express this by saying that F∗

φ (η) is invertible on
intervals that correspond to differentiable portions of φ(t) and φ(−t) (see Fig. 2 for an example).

Theorem 3 Let φ be an classification calibrated convex loss function satisfying assumptions (A1)
and (A2). Then, for G(η) as defined in (5), we have

G(η) =

{
1 η ∈ (1− γ0,γ0) ,

min{η,1−η} η ∈ [0,1− γ0]∪ [γ0,1] ,
(6)

where γ0 = φ′+(−t0)/(φ′+(−t0)+φ′−(t0)).
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D

η '→ F∗
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Figure 2: The loss function (left) is composed of two linear parts (I & III) and a quadratic part (II).
The function F∗

φ (right) is constant on the regions marked B and D correponding to the 2
points of non-differentiability, viz. t0, t1. The vertical part C is due to φ being linear on
the intervals [−t0,−t1] and [t1, t0]. Region A arises due to the quadratic part of the loss
function.

Proof If η ∈ [γ0,1], Theorem 2 tells us that t0 ∈ F∗
φ (η) and hence 0 ∈ ∂φ(F∗

φ (η)). If η < 1− γ0,
monotonicity of F∗

φ (η) implies that F∗
φ (η) ⊆ (−∞, t0). Since t0 = inf{t : 0 ∈ ∂φ(t)}, 0 /∈ ∂φ(F∗

φ (η))
for η ∈ [0,γ0). Thus, we can write I(0/∈∂φ(F∗

φ (η))) as I(η/∈[γ0,1]). Also I(0/∈∂φ(−F∗
φ (η)) = I(0/∈∂φ(F∗

φ (1−η)).
Plugging this in (5), we get

G(η) = ηI(η/∈[γ0,1]) +(1−η)I(1−η/∈[γ0,1])

= ηI(η/∈[γ0,1]) +(1−η)I(η/∈[0,1−γ0]) .

Since γ0 ≥ 1/2, we can write G(η) in the form given above.

Corollary 4 If η1 ∈ (0,1) is such that F∗
φ (η1)∩F∗

φ (η)= /0 for η .=η1, then G(η)= 1 on [min{η1,1−
η1},max{η1,1−η1}].

Proof Theorem 1, part 1 tells us that such an η1 cannot lie in [0,1− γ0]∪ [γ0,1]. Rest follows from
Theorem 3.

The preceding theorem and corollary have important implications. First, we can hope to have sparse-
ness only for values of η ∈ [0,1− γ0]∪ [γ0,1]. Second, we cannot estimate conditional probabilities
in these two intervals because F∗

φ (·) is not invertible there. Third, any loss function for which F ∗
φ (·)

is invertible, say at η1 < 1/2, will necessarily not have sparseness on the interval [η1,1−η1].
Note that for the case of L1 and L2-SVM, γ0 is 1/2 and 1 respectively. For these two classifiers,

the lower bounds ExG(η(x)) obtained after plugging in γ0 in (6) are the ones proved initially (Stein-
wart, 2003). For the L1-SVM, the bound was later significantly improved (Steinwart, 2004). This
suggests that ExG(η(x)) might be a loose lower bound in general. In the next section we will show,
by deriving a sharp asymptotic result, that the bound is indeed loose for a family of loss functions.

4. Asymptotic Fraction of Support Vectors

We will consider convex loss functions of the form

φ(t) = h((t0− t)+) . (7)
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The function h is assumed to be continuously differentiable and convex. We also assume h′(0) > 0.
The convexity of φ requires that h′(0) be non-negative. The reason we rule out h′(0) = 0 is that
γ0 = 1 in that case and Theorem 3 already tells us we will not have any sparseness. So, in this
section we are not interested in loss functions that are differentiable everywhere. In other words,
our assumption is that the loss function is constant for all t ≥ t0 and is continuously differentiable to
the left of t0. Further, the only discontinuity in the derivative is at t0. Without loss of generality, we
may assume that h(0) = 0 because the solutions to (1) do not change if we add or subtract a constant
from φ. Note that we obtain the hinge loss if we set h(t) = t. We now derive the dual of (1) for our
choice of the loss function.

4.1 Dual Formulation

For a convex loss function φ(t) = h((t0− t)+), consider the optimization problem:

argmin
w

λ‖w‖2+
1
n

n

∑
i=1

φ(yiwT xi) .

Make the substitution ξi = t0− yiwT xi to get

argmin
w

λ‖w‖2+
1
n

n

∑
i=1

φ(t0−ξi) (8)

subject to ξi = t0− yiwT xi for all i .

Introducing Lagrange multipliers, we get the Lagrangian:

L (w,ξ,α) = λ‖w‖2+
1
n

n

∑
i=1

φ(t0−ξi)+
n

∑
i=1

αi(t0− yiwT xi−ξi) .

Minimizing this with respect to the primal variables w and ξi’s, gives us

w =
1
2λ

n

∑
i=1

αiyixi ,

αi ∈ −∂φ(t0−ξi)/n .

For the specific form of φ that we are working with, we have

−∂φ(t0−ξi)/n=






{h′(ξi)/n} ξi > 0 ,

[0,h′(0)/n] ξi = 0 ,

{0} ξi < 0 .

(9)

Let (w∗,ξ∗i ) be a solution of (8). Then we have

λ‖w∗‖2 = λ(w∗)T
(
1
2λ

n

∑
i=1

α∗
i yixi

)

=
1
2

n

∑
i=1

α∗
i yi(w

∗)T xi =
1
2

n

∑
i=1

α∗
i (t0−ξ∗i ) .

(10)
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4.2 Result About Asymptotic Fraction of Support Vectors and Its Proof

Recall that a kernel is called universal if its RKHS is dense in the space of continuous functions
over X . Suppose the kernel k is universal and analytic. This ensures that any function in the RKHS
H of k is analytic. Following Steinwart (2004), we call a probability distribution P non-trivial (with
respect to φ) if

Rφ,P < inf
b∈R

Rφ,P(b) .

We also define the P-version of the optimization problem (1):

fP,λ = argmin
f∈H

λ‖ f‖2H +EPφ(y f (x)) .

Further, suppose that K = sup{
√
k(x,x) : x ∈ X } is finite. Fix a loss function of the form (7). Let G

be the function defined as

G(η) =






η/(1− γ0) 0≤ η≤ 1− γ0 ,

1 1− γ0 < η< γ0 ,

(1−η)/(1− γ0) γ0 ≤ η≤ 1 ,

where γ0 = h′(2t0)/(h′(0)+h′(2t0)). Note that this definition is different from the one given in (5).
Since φ is differentiable on (−t0, t0), Theorem 2, part 2 implies that F∗

φ is invertible on (1−
γ0,γ0). Thus, one can estimate conditional probabilities in the interval (1− γ0,γ0). Let #SV ( fT,λ)
denote the number of support vectors in the solution (2):

#SV ( fT,λ) = |{i : α∗
i .= 0}| .

The next theorem says that the fraction of support vectors converges to the expectation ExG(η(x))
in probability.

Theorem 5 Let H be the RKHS of an analytic and universal kernel on Rd . Further, let X ⊂ Rd be
a closed ball and P be a probability measure on X ×{±1} such that Px has a density with respect
to the Lebesgue measure on X and P is non-trivial. Suppose sup{

√
k(x,x) : x ∈ X } < ∞. Then for

a classifier based on (1), which uses a loss function of the form (7), and a regularization sequence
which tends to 0 sufficiently slowly, we have

#SV ( fT,λn)
n

→ ExG(η(x))

in probability.

Proof Let us fix an ε> 0. The proof will proceed in four steps of which the last two simply involve
relating empirical averages to expectations.

Step 1. In this step we show that fP,λn(x) is not too close to ±t0 for most values of x. We also
ensure that fT,λn(x) is sufficiently close to fP,λn(x) provided λn → 0 slowly. Since fP,λ is an analytic
function, for any constant c, we have

Px({x ∈ X : fP,λ(x) = c}) > 0 ⇒ f (x) = c Px-a.s. (11)
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Assume that Px({x ∈ X : fP,λ(x) = t0}) > 0. By (11), we get Px({x ∈ X : fP,λ(x) = t0}) = 1. But
for small enough λ, fP,λ .= t0 since Rφ,P( fP,λ) → Rφ,P and Rφ,P(t0) .= Rφ,P by the non-triviality of P.
Therefore, assume that for all sufficiently large n, we have

Px({x ∈ X : fP,λn(x) = t0}) = 0 .

Repeating the reasoning for −t0 gives us

Px({x ∈ X :
∣∣ fP,λn(x)− t0

∣∣ ≤ δ}) ↓ 0 as δ ↓ 0 ,

Px({x ∈ X :
∣∣ fP,λn(x)+ t0

∣∣ ≤ δ}) ↓ 0 as δ ↓ 0 .

Define the set Aδ(λ) = {x ∈ X :
∣∣ fP,λ(x)− t0

∣∣ ≤ δ or
∣∣ fP,λ(x)+ t0

∣∣ ≤ δ}. For small enough λ and for
all ε′ > 0, there exists δ> 0 such that Px(Aδ(λ)) ≤ ε′. Therefore, we can define

δ(λ) =
1
2
sup{δ> 0 : Px(Aδ(λ)) ≤ ε} .

Let m(λ) = inf{δ(λ′) : λ′ ≥ λ} be a decreasing version of δ(λ). Using Proposition 33 from Stein-
wart (2003) with ε = m(λn)/K, we conclude that for a sequence λn → 0 sufficiently slowly, the
probability of a training set T such that

‖ fT,λn − fP,λn‖ < m(λn)/K (12)

converges to 1 as n→ ∞. It is important to note that we can draw this conclusion because m(λ) > 0
for λ > 0 (See proof of Theorem 3.5 in Steinwart, 2004). We now relate the ∞-norm of an f to its
2-norm.

f (x) = 〈k(x, ·), f (·)〉 ≤ ‖k(x, ·)‖‖ f‖
=

√
〈k(x, ·),k(x, ·)〉‖ f‖

=
√
k(x,x)‖ f‖ ≤ K‖ f‖ .

(13)

Thus, (12) gives us
‖ fT,λn − fP,λn‖∞ < m(λn) . (14)

Step 2. In the second step, we relate the fraction of support vectors to an empirical average.
Suppose that, in addition to (14), our training set T satisfies

λn‖ fT,λn‖
2+Rφ,P( fT,λn) ≤ Rφ,P+ ε , (15)

∣∣{i : xi ∈ Aδ(λn)}
∣∣ ≤ 2εn . (16)

The probability of such a T also converges to 1. For (15), see the proof of Theorem 3.5 in Steinwart
(2005). Since Px(Aδ(λn)) ≤ ε, (16) follows from Hoeffding’s inequality. By definition of Rφ,P, we
have Rφ,P ≤ Rφ,P( fT,λn). Thus, (15) gives us λn‖ fT,λn‖2 ≤ ε. Now we use (10) to get

∣∣∣∣∣

n

∑
i=1

α∗
i t0−

n

∑
i=1

α∗
i ξ

∗
i

∣∣∣∣∣ ≤ 2ε . (17)
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Define three disjoint sets: A= {i : ξ∗i < 0}, B= {i : ξ∗i = 0} andC= {i : ξ∗i > 0}. We now show that B
contains few elements. If xi is such that i ∈ B then ξ∗i = 0 and we have yi fT,λn(xi) = t0⇒ fT,λn(xi) =
±t0. On the other hand, if xi /∈ Aδ(λn) then min{| fP,λn(xi)− t0|, | fP,λn(xi) + t0|} > δ(λn) ≥ m(λn),
and hence, by (14), fT,λn(xi) .= ±t0. Thus we can have at most 2εn elements in the set B by (16).
Equation (9) gives us a bound on α∗

i for i ∈ B and therefore
∣∣∣∣∣∑i∈B

α∗
i t0

∣∣∣∣∣ ≤ 2εn×h′(0)t0/n= 2h′(0)t0ε . (18)

Using (9), we get αi = 0 for i ∈ A. By definition of B, ξ∗i = 0 for i ∈ B. Therefore, (17) and (18)
give us ∣∣∣∣∣∑i∈C

α∗
i t0−∑

i∈C
α∗
i ξ

∗
i

∣∣∣∣∣ ≤ 2(1+h′(0)t0)ε= c1ε .

where c1 = 2(1+h′(0)t0) is just a constant. We use (9) once again to write α∗
i as h′(ξ∗i )/n for i ∈C:

∣∣∣∣∣
1
n∑i∈C

h′(ξ∗i )t0−
1
n∑i∈C

h′(ξ∗i )ξ
∗
i

∣∣∣∣∣ < c1ε . (19)

Denote the cardinality of the sets B andC byNB andNC respectively. Then we haveNC≤ #SV ( fT,λn)≤
NC +NB. But we showed that NB ≤ 2εn and therefore

NC
n

≤
#SV ( fT,λn)

n
≤ NC

n
+2ε . (20)

Observe that (ξ∗i )+ = 0 for i ∈ A∪B and (ξ∗i )+ = ξ∗i for i ∈C. Thus, we can extend the sums in (19)
to the whole training set.

∣∣∣∣∣
1
n

n

∑
i=1

h′((ξ∗i )+)t0− (n−NC)
h′(0)t0
n

− 1
n

n

∑
i=1

h′((ξ∗i )+)(ξ∗i )+

∣∣∣∣∣ < c1ε .

Now let c2 = c1/h′(0)t0 and rearrange the above sum to get
∣∣∣∣∣
NC
n

− 1
n

n

∑
i=1

(
1− h′((ξ∗i )+)t0−h′((ξ∗i )+)(ξ∗i )+

h′(0)t0

)∣∣∣∣∣ ≤ c2ε . (21)

Define g(t) as

g(t) = 1− h′((t0− t)+)t0−h′((t0− t)+)(t0− t)+

h′(0)t0
.

Now (21) can be written as ∣∣∣∣
NC
n

−ETg(y fT,λn(x))
∣∣∣∣ ≤ c2ε . (22)
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Step 3. We will now show that the empirical average of g(y fT,λn(x)) is close to its expectation.
We can bound the norm of fT,λn as follows. The optimum value for the objective function in (1) is
upper bounded by the value it attains at f = 0. Therefore,

λn‖ fT,λn‖
2+Rφ,T ( fT,λn) ≤ λn.02+Rφ,T (0) = φ(0) = h(t0)

which, together with (13), implies that

‖ fT,λn‖ ≤

√
h(t0)
λn

, (23)

‖ fT,λn‖∞ ≤ K

√
h(t0)
λn

.

Let Fλn be the class of functions with norm bounded by
√
h(t0)/λn. The covering number in 2-norm

of the class satisfies (see, for example, Definition 1 and Corollary 3 in Zhang (2002)):

N2(Fλn ,ε,n) ≤ e
Kh(t0)
λnε2

log(2n+1)
. (24)

Define Lg(λn) as

Lg(λn) = sup





|g(t)−g(t ′)|

|t− t ′| : t, t ′ ∈



−K

√
h(t0)
λn

,+K

√
h(t0)
λn



 , t .= t ′



 . (25)

Let Gλn = {(x,y) '→ g(y f (x)) : f ∈ Fλn}. We can express the covering numbers of this class in terms
of those of Fλn (see, for example, Lemma 14.13 on p. 206 in Anthony and Bartlett (1999)):

N2(Gλn ,ε,n) ≤ N2(Fλn ,ε/Lg(λn),n) . (26)

Now, using a result of Pollard (see Pollard, 1984, Section II.6, p. 30) and the fact that 1-norm
covering numbers are bounded above by 2-norm covering numbers, we get

Pn
(
T ∈ (X ×Y )n : sup

g̃∈Gλn

|ET g̃(x,y)−EPg̃(x,y)| > ε

)

≤ 8N2(Gλn ,ε/8,n)e
−nε2λn/512L2g(λn)K2h(t0) .

The estimates (24) and (26) imply that if

nλ2n
L4g(λn) log(2n+1)

→ ∞ as n→ ∞

then the probability of a training set which satisfies
∣∣ETg(y fT,λn(x))−EPg(y fT,λn(x))

∣∣ ≤ ε (27)

tends to 1 as n→ ∞.
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Step 4. The last step in the proof is to show that EPg(y fT,λn(x)) is close to ExG(η(x)) for large
enough n. Write EPg(y fT,λn(x)) as

EPg(y fT,λn(x)) = Ex[η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x))] .

Note that if t∗ ∈ F∗
φ (η) then

ηg(t∗)+(1−η)g(−t∗) = G(η) . (28)
Let us verify this for three separate cases. First, when η∈ (0,1−γ0]∪ [γ0,1) the only possible values
for t∗ are t0 or −t0 (by Theorem 2, Part 1). Since, g(t0) = 0 and g(−t0) = 1/(1− γ0) the equality
holds. Second, when η = 1 (the argument for η = 0 is similar), the left hand side is g(t ∗). In this
case t∗ ≥ t0, but the definition of g implies that g(t) = 0 for all t ≥ t0. Since G(1) = 0, the equality
holds in this case too. Lastly, for η ∈ (γ0,1− γ0) we have

ηg(t∗)+(1−η)g(−t∗) = 1− t∗

t0h′(0)
(
ηh′(t0− t∗)− (1−η)h′(t0+ t∗)

)
.

Since t∗ minimizes ηh(t0− t)+(1−η)h(t0+ t) and h is differentiable, we have ηh′(t0− t∗)− (1−
η)h′(t0+ t∗) = 0. Thus, we have verified (28) for all η ∈ [0,1].

Define the sets En = {x ∈ X : ρ( fT,λn(x),F
∗
φ (η(x)) ≥ ε}. We have Px(En) → 0 by (3). We now

bound the difference between the two quantities of interest.
∣∣EPg(y fT,λn(x))−ExG(η(x))

∣∣

=
∣∣Ex[η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x))]−ExG(η(x))

∣∣

≤ Ex
∣∣η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x))−G(η(x))

∣∣

= I1+ I2 ≤ |I1|+ |I2|

(29)

where the integrals I1 and I2 are

I1 =
Z

En
η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x))−G(η(x))dPx ,

I2 =
Z

X \En
η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x))−G(η(x))dPx .

Using (23) and (25) we bound |g(± fT,λn(x))| by g(0)+Lg(λn)K
√
h′(t0)/λn. Since g(0) = 1 and

|G(η)|≤ 1, we have

|I1|≤



1+g(0)+Lg(λn)K

√
h′(t0)
λn



Px(En) .

If λn → 0 slowly enough so that Lg(λn)Px(En)/
√
λn → 0, then for large n, |I1| ≤ ε. To bound |I2|,

observe that for x ∈ X \En, we can find a t∗ ∈ F∗
φ (η(x)), such that | fT,λn(x)− t∗|≤ ε. Therefore,

η(x)g( fT,λn(x))+(1−η(x))g(− fT,λn(x)) = η(x)g(t∗)+(1−η(x))g(−t∗)+Δ .

where |Δ|≤ c3ε and the constant c3 does not depend on λn. Using (28), we can now bound |I2|:
|I2|≤ c3ε(1−Px(En)) ≤ c3ε .

We now use (29) to get
∣∣EPg(y fT,λn(x))−ExG(η(x))

∣∣ ≤ (c3+1)ε . (30)

Finally, combining (20), (22), (27) and (30) proves the theorem.
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5. Conclusion

We saw that the decision functions obtained using minimization of regularized empirical φ-risk
approach F∗

φ (η(·)). It is not possible to preserve sparseness on intervals where F ∗
φ (·) is invertible.

For the regions outside that interval, sparseness is maintained to some extent. For many convex loss
functions, the general lower bounds known previously turned out to be quite loose.

But that leaves open the possibility that the previously known lower bounds are actually achiev-
able by some loss function lying outside the class of loss functions we considered. However, we
conjecture that it is not possible. Note that the right hand side of Theorem 5 only depends on the
left derivative of the loss function at t0 and the right derivative at−t0. The derivatives at other points
do not affect the asymptotic number of support vectors. This suggests that the assumption of the
differentiability of φ before the point where it attains its minimum can be relaxed. It may be that
results on the continuity of solution sets of convex optimization problems can be applied here (e.g.,
see Fiacco, 1983).
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Abstract

Rankboost has been shown to be an effective algorithm for combining ranks. However, its abil-
ity to generalize well and not overfit is directly related to the choice of weak learner, in the sense
that regularization of the rank function is due to the regularization properties of its weak learners.
We present a regularization property called consistency in preference and confidence that mathe-
matically translates into monotonic concavity, and describe a new weak ranking learner (MWGR)
that generates ranking functions with this property. In experiments combining ranks from multiple
face recognition algorithms and an experiment combining text information retrieval systems, rank
functions using MWGR proved superior to binary weak learners.

Keywords: rankboost, ranking, convex/concave, regularization

1. Ranking Problems

A ranking problem is a learning problem that involves ranks as the inputs, the outputs or both. An
example where ranks are used as inputs is a collaborative filtering application where people are
asked to rank movies according to their preferences. In such an application the ranks assigned by
different people are combined to generate recommendations. Another type of problem in which
ranks are used as inputs are meta-search problems, where the ranks of multiple search engines are
combined (Dwork et al., 2001). However, the inputs to a ranking problem are not always ranks.
An object recognition ranking problem (Kittler and Roli, 2000) may receive as inputs a graphical
representation and output a ranking of the possible objects, sorted by likelihood.

The outputs of a ranking problemmay also be ranks. For example, in combining multiple search
engines the output are ranks which are a synthesis of the ranks from the individual search engines.
A similar meta-recognition problem is the combination of the outputs of multiple face- recognition
systems to improve the accuracy of detecting the correct face. While the inputs and outputs of this
problem are ranks, the outputs can be simplified to only return the most likely candidate. Another
example where the outputs do not need to be complete ranks could be an information retrieval
combination task. In such a task the inputs might be ranks of sets of documents with respect to
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a particular query by different experts. Again, the outputs could be the complete ranks, or more
simply a designation for each document of whether it is relevant or not to the particular query.

2. Rankboost

The rankboost algorithm (Freund et al., 2003) tries to address this variety in ranking problems by
maintaining generality in how it regards its inputs and how it applies different loss functions to
outputs. The rankboost algorithm works on instances which are the discrete items (e.g., movies
or faces) that either are ranked as input or are to be ranked as output. To allow a general input
mechanism, the inputs to rankboost are called the ranking features of an instance, specified as f j(x)
which is the j-th ranking feature of instance x.

While this generality in how inputs are handled is potentially powerful, in the original rankboost
paper as well as in this paper, only the case where the inputs are different rankings of the instances
is considered. Thus, in this paper, the inputs to rankboost are constituent ranks, denoted as f1 . . . fn,
where f j (x′) < f j (x′′) implies that instance x′ has a better rank than instance x′′ under ranking f j.
For example, in some of the experiments we present, each f j is the ranking result of a particular
face recognition algorithm.

The output of rankboost is a new ranking function, H(x), which defines a linear ordering on the
instances, that is, H (x′) < H (x′′) iff x′ has a better rank than x′′. In rankboost

H(x) =
T

∑
t=1

wtht(x), (1)

a weighted sum of weak ranking learners, where the ht(x)’s are relatively simple learned functions
of the constituent rankings.

To address the variety in possible loss functions of the outputs, in rankboost the desirable prop-
erties for the output loss function are specified with a favor function, Φ : X ×X → R, where X
is the space of instances (note that this function has been renamed from “preference function” to
avoid confusion with the use of preference in this paper in Section 4). Here Φ(x′,x′′) > 0 means
that x′′ should be better ranked than x′ for a given query. It is an anti-symmetric function, that is,
Φ(x′,x′′) = −Φ(x′′,x′) and Φ(x,x) = 0, which avoids loops where two instances should both be
ranked better than the other. Also Φ(x′,x′′) = 0 when there is no favor in how two instances should
be relatively ranked. For example, as described in Section 6.1, for the face recognition combination
problem described above the favor function can be used to specify that the correct identity should
be given a better rank than all other identities, while zeroing all other entries in the favor function,
giving no favor in how incorrect identities are ranked between them. In a similar fashion for the
information retrieval combination task mentioned above, the favor function can be specified such
that all relevant documents should be better ranked than irrelevant documents, without specifying
favor for the ordering between relevant documents and the ordering between irrelevant documents
(Section 7.1).

Rankboost is shown in Algorithm 1 as described in Freund et al. (2003). It uses the favor
function to specify an initial weight function over instance pair orderings:

D
(
x′,x′′

)
= c ·max

(
0,Φ

(
x′,x′′

))
, (2)

where c =
[
∑x′,x′′max(0,Φ(x′,x′′))

]−1. The algorithm itself is very similar to adaboost (Freund
and Schapire, 1996). At each iteration the algorithm selects the weak learner that best maximizes a

792



CONCAVE LEARNERS FOR RANKBOOST

Algorithm 1 rankboost algorithm for generating a ranking function.
Input: constituent ranks, a favor function, and a class of weak learners with outputs between 0
and 1 and an appropriate training algorithm.
Output: ranking function H(x) (Eq. 1)
Initialize D(1) = D (Eq. 2)
for t = 1 . . .T do
Find weak learner, ht , that maximizes r(h) = ∑x′,x′′D(t)(x′,x′′)(h(x′)−h(x′′)) (Eq. 4).
Choose wt = 0.5ln((1+ r(ht))/(1− r(ht))) . (Eq. 5)
Update:
D(t+1) (x′,x′′) = D(t) (x′,x′′)exp(wt (ht (x′)−ht (x′′)))

/
Zt

where Zt is chosen to make ∑x′,x′′D(t+1)(x′,x′′) = 1
end for

rank function’s utility, r(h), (Eq. 4). It then assigns it a weight in proportion to its performance and
adds the weighted weak learner to the ranking function, H(x). After which the weight function D
is adjusted to reflect the impact of the weak learner. Freund et al. (2003) prove that the rankboost
algorithm iteratively minimizes the ranking loss function, a measure of the quantity of misranked
pairs:

∑
x′,x′′

D
(
x′,x′′

)
I
[
H

(
x′

)
≤ H

(
x′′

)]

where I is the indicator function (1 if true, 0 otherwise) and H(x) is a ranking function output by
rankboost. The rankboost paper (Freund et al., 2003) uses binary weak learners of the following
functional form:

h(x) =






1 i f f j(x) > θ,
0 i f f j(x) ≤ θ,
qde f i f f j(x)unde f ined.

(3)

Each binary weak learner, h, operates on a single f j (ranking feature), giving a binary output of
0 or 1 depending on whether the instance’s rank is smaller than a learned parameter, θ. Note that
function h(x) in (3), which is dependent on only one f j(x) with a fixed j, is monotonic increasing
but not convex or concave. If there is no rank for the instance then it returns a prespecified qde f
value.

3. Rankboost, the Weak Learner and Regularization

While rankboost inherits the accuracy of adaboost and has been shown to be very successful in
practice, in two important ways it is very different from adaboost and similar classifier leveraging
algorithms (Meir and Ratsch, 2003). The first is the choice of the weak learner, h. In adaboost the
weak learner is expected to minimize the weighted empirical classification error:

N

∑
i=1

d(t)(i)I [yi %= h(zi)] ,

where yi is the class label, I is the indicator function and d(t) is a weighting over training samples.
This is a standard function to minimize in classification with many possible types of algorithms to
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choose from as possible weak learners. In contrast the weak ranking learner for rankboost (with
outputs in [0,1]) needs to maximize the following rank utility function:

r = r(h) = ∑
x′,x′′

D(t)(x′,x′′)(h(x′)−h(x′′)), (4)

where D(t) is the weight function over pairs of instances. As Eq. 4 contains the term h(x′)−h(x′′),
short of linear learners this equation can not be concave in h or easily approximated by a concave
function. Therefore the weak learner needs to be optimized either by heuristics or by brute force,
which limits the choice of h. It is not surprising that the original rankboost paper only included one
type of weak learner, a binary threshold function (Eq. 3) that was tuned using brute force.

The second difference between rankboost and adaboost also concerns the weak ranking learner.
One feature of boosting that has sparked a great deal of interesting research is the algorithm’s
ability to avoid overfitting for low noise classification problems (with modifications to higher noise
problems), see Meir and Ratsch (2003) for a survey. In contrast for rankboost it is only by limiting
the type of underlying weak learners that overfitting is avoided. In their paper, Freund et al. (2003)
show that not using weak ranking learners with cumulative positive coefficients leads to overfitting
and poor performance quite quickly. Therefore, choosing a weak learner that regularizes the ranking
function, the output of rankboost, is very important for achieving accuracy and avoiding overfitting.

It is clear from the above discussion that the choice of a weak ranking learner for rankboost is
important and non trivial. First, the learner must be efficiently tunable with respect to Eq. 4, typically
limiting its complexity. Second, the learner itself must demonstrate regularization properties that
are appropriate for ranking functions.

In this paper we present a new weak ranking learner that enforces consistency in preference and
confidence for the ranking function by being monotonic and concave. We start with a discussion of
these regularization properties, theoretically justify them, and show what they mean in terms of the
final ranking function. Then we present a new learner, Minimum Weighted Group Ranks (MWGR),
that satisfies these properties and can be readily learned. This learner is tested and compared with
the binary learner of rankboost on combining multiple face recognition systems from the FERET
study (Phillips et al., 2000) and on an information retrieval combination task from TREC (Voorhees
and Harman, 2001).

4. Regularizing Ranking Functions with Consistency in Preference and Confidence

In this paper, as Freund et al. (2003), we consider ranking functions H(x) which depend on x
only through the values of the ranking features, y j = f j(x), for that instance, so that H(x) =
G( f1(x), . . . , fn(x)), for certain functions G(y1, . . . , yn) = G(y). Here, we assume that the f j(x) is
an actual rank assigned to an instance, x, by the j-th ranker. Note that if the original data are numer-
ical scores then they can easily be converted to rankings. Freund et al. (2003) make a strong case
for conversion of raw measures to relative orderings (rankings) over combining measures directly,
arguing that it is more general and avoids the semantics of particular measures.

As the y j’s are ranks instead of points in a general space, care should be taken as to the functional
form of G. A great deal of literature in social choice theory (Arrow, 1951) revolves around the
properties of various rank combination strategies that try to achieve fair rankings. In this machine
learning case our motivations are different. Fairness is not the goal; the goal is to improve the
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accuracy or performance of the ranking function. Thus, regularization, by functionally constraining
G, is used to confer information on how to interpret ranks in order to ultimately improve accuracy.

Freund et al. (2003) imposed the regularization principle of monotonicity on the ranking func-
tion. Monotonicity encompasses a belief that for individual features a smaller rank is always con-
sidered better than a bigger rank. It means that for every two rank vectors, a and b, if a j ≤ b j, j =
1, . . . ,n thenG(a)≤G(b).Monotonicity was enforced by requiring that the coefficients, wt in Eq. 1,
combining the binary weak learners (Eq. 3) were cumulatively positive. As shown by Freund et al.
(2003), without enforcing monotonicity the rankboost algorithm quickly overfits.

In this section we present another regularization principle, consistency in preference and confi-
dence (which includes monotonicity). A ranking function with this regularization property should
be consistent in its preference for the individual rankers and also in how it captures their confidence.
The following example illustrates these two concepts.

4.1 Grocer Example

A grocer needs to make 2 decisions, to decide between stocking oat bran vs. granola and to decide
between stocking turnips vs. radishes. The grocer asks her consultants to express their opinion
about stocking each item, and based on their responses makes her 2 decisions.

First of all, in either problem, the grocer will adopt the opinion of her consultants if they all
agree with each other, that is, they all prefer granola over oat bran in the first problem.

Lets assume the grocer considered the first problem and chose granola over oat bran. What this
implies is that the grocer adopted the opinions of the consultants that preferred granola over oat
bran.

Now consider the turnips vs. radishes decision. Lets say that the same consultants that liked
granola more also liked radishes more (and the same ones that like oat bran more like turnips more).
Also, for this decision the radish lovers actually feel more confident in their choice than they did for
granola, while the turnip lovers are more unsure than they were for oat bran.

Then for this second choice, if the grocer is consistent in her method of combining the opinions
of her consultants, we would expect her to pick radishes over the turnips. In addition, we would
expect her to be more confident in this second decision as a reflection of the consultants relative
confidence. The above properties of preference and confidence imply that preference should be
applied consistently across different problems and confidence should reflect the relative confidences
of the individual consultants.

4.2 The General Principle of Consistency in Preference and Confidence

To generalize the above grocer’s problem consider the problem of combining the opinions of a panel
of consultants on several multiple-choice decision problems. Suppose for each decision problem
each consultant provides his preference as one of the possible choices and a qualitative measure
of the confidence level for his preference. The consistency principle in preference and confidence
holds if the combiner always agrees with at least one of the consultants in each decision problem
and that the following condition holds for any pair of decision problems.

Definition 1. Consistency principle for a pair of decision problems: Suppose that for the first
decision problem, the combiner adopts the preference of a subset A of consultants in the sense that
A is the (non empty) set of all consultants whose preference is identical to that of the combiner.
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Suppose that for the second decision problem, the preference of the consultants in A is again iden-
tical. Suppose further that compared with the confidence level for the first decision problem, each
consultant in A has higher or the same confidence level for his preference in the second problem,
while each consultant with a different preference than A for the second problem has lower or the
same confidence level. Then, the preference of the combiner for the second problem is identical to
that of the consultants in A, and the confidence level of the combiner for the second problem is at
least as high as his confidence level for the first problem.

Let B be the set of consultants whose preferences are different from that of the combiner in the
first decision problem, that is, B = Ac. If some members of B switch sides or have no preference
in the second problem, the combiner would be even more confident about the adoption of the pref-
erence of A in the second problem regardless of the confidence of those who switch sides. Thus,
Definition 1 requires only those against the preference of A in the second problem (necessarily a
subset of B since members of A act in unison in both problems) to have lower or equal confidence
in the second problem, instead of all members of B. This is taken into consideration in Theorem 1
below.

Note that while preference for individual consultants is specified within each decision problem,
two decision problems are needed to compare the qualitative measure of confidence. However,
comparison of confidence is not always possible (it is a partial ordering). In particular, the level
of confidence between different experts may not be comparable, and the levels of confidence of a
given expert (or the combiner) for different decision problems are not always comparable.

4.3 Confidence for Ranks and Ranking Functions

In order to apply consistency to rank combination we need to specify what we mean by more or
less confidence. For ranks we make the assumption that a constant change of ranks requires more
confidence for low ranks than high ranks. For example, we would expect the difference between
ranks of 1 and 3 to represent a more significant distinction on the part of a ranker than would
for example the difference between ranks 34 and 36 which may be almost arbitrarily assigned.
Specifically we make the following definition:

Definition 2. Preference and confidence for univariate rank values For any pair of rank values
{r,r′} ⊂ R with r < r′, by monotonicity r is preferred. For any two pairs of rank values {r,r′} and
{r′′,r′′′} with r < r′ and r′′ ≤ r′′′, the confidence level for {r,r′}is higher than that of {r′′,r′′′} if

r ≤ r′′, r′′′− r′′ ≤ r′− r

with at least one inequality. The pair{r,r′}provides no preference if r = r′. Likewise, if either
r′− r = r′′′− r′′ = 0 or r′′− r = r′′′− r′ = 0, the two pairs {r,r′} and {r′′,r′′′}are defined to have
the same level of confidence.

In this definition confidence between pairs of ranks can only be compared if the pair with the
lowest rank has a gap at least as large as the other pair. Thus, we are actually comparing two
numbers, that is, we are doing a vector comparison. As such, this comparison does not cover all
pairs of ranks and applies only a partial ordering on rank pairs. As a regularization principle, a
partial ordering is desirable since it does not overly constrain the ranking function and allows for
flexibility.
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As the rank function, G, is a univariate function, we apply the same definitions of preference
and confidence to it. That is, for a ranking function G and for any fixed rank vectors, y and y′,
the preferred rank vector is the one with smaller G, that is, y is preferred iff G(y) < G(y′). For
confidence again we need to consider pairs of rank vectors, {y,y′} and {y′′,y′′′}, with G(y)≤G(y′)
and G(y′′) ≤G(y′′′). If G(y) ≤G(y′′) and G(y′)−G(y) ≥G(y′′′)−G(y′′) then we say that the first
decision, between yand y′, shows equal or more confidence than the second decision between y′′
and y′′′.

This numerical method of capturing confidence and preference in ranks, y, and ranking func-
tions, G, allows us to apply Definition 1. Specifically, for a pair of binary decisions the confidence
of a consistent ranking function increases for the second decision if in the second decision the confi-
dence of the agreeing rank values are comparable and increase and the confidence of the disagreeing
rank values are comparable and decrease, with the exception of those that switched sides.

4.4 Three-Point Consistency in Preference and Confidence for Combining Ranks

As described, the consistency property is over two binary decision problems. In this section we
consider ranking functions, G, that have consistency in preference and confidence for all pairs of
binary decision problems involving three rank vectors y, y′ and y′′. We show that such functions
have specific mathematical properties under this three-point consistency principle in preference and
confidence for ranks..

Theorem 1: For a ranking function G whose domain is convex, three-point consistency in prefer-
ence and confidence holds for G iff G(y) is nondecreasing in individual components of y and
is jointly concave in y.

Proof of Necessity: Assume that the ranking function G exhibits three-point consistency in pref-
erence and confidence for any three rank vectors.

If y≤ y′ component wise, then the individual components of y all agree in their preference to y,
so that G(y) ≤ G(y′) by the consistency of G in preference. This implies the monotonicity of G in
y.

We pick three points y, y− a and y+ a, such that all points are rank vectors. Consider the
pair of binary comparison problems, y vs. y+a and y−a vs. y. Assume that G(y) < G(y+ a).
These three points are comparable by Definition 2 (r′′′− r′′ = r′− r for all components in the rank
vectors). Since the agreeing rankers, A =

{
j
∣∣y j < y j +a j

}
, in the y vs. y+a comparison are

greater than in the y−a vs. y comparison, and the disagreeing ranks, outside A, are smaller, then by
the consistency of the combiner in preference and confidence (definition 1), G(y− a) ≤ G(y) and
G(y)−G(y−a) ≥ G(y+a)−G(y).

A function G is concave in a convex domain iff 2G(y) ≥ G(y− a) +G(y+ a), for every y
and a with y± a in its domain. To verify this inequality for a particular y and a, we must have
G(y+a) > G(y), G(y−a) > G(y) or the third case of G(y) ≥max{G(y+a),G(y−a)}. We have
already proven that the consistency properties of preference and confidence imply G(y)−G(y−
a)≥G(y+a)−G(y) in the first case. By symmetry this requirement also must hold for−a, so that
G(y)−G(y+ a) ≥ G(y− a)−G(y) in the second case. This completes the necessity part of the
proof since 2G(y) ≥ G(y−a)+G(y+a) automatically holds in the third case.

Proof of Sufficiency: Assume the ranking function G is nondecreasing in individual components
of y and jointly concave in y. We need to prove consistency in preference and confidence for a pair
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Figure 1: Consider two decision problems in two dimensions involving three points, y, y′ and y′′,
where the first decision problem is to choose between y and y′ and the second problem
is to choose between y and y′′. The cases where we expect consistency in preference
and confidence (Definitions 1 and 2) can be enumerated by the result of the first decision
problem and relative location of y′′. The darker gray box is the location where B has
lesser or equal confidence in the second problem, and the lighter gray box is where B
switches sides.

of decision problems involving three rank vectors y, y′ and y′′. Without loss of generality, suppose
that the first problem is to choose between y and y′ and the second problem is to choose between
y and y′′. We break the proof up by the results of the comparison between y vs. y′and the relative
location of the third ranking vector y′′ that satisfies the preference and confidence requirements. If
G(y) =G(y′) =G(y′′), the combiner has equal confidence in the two decision problems by definition
2, so that the consistency principle holds automatically. Thus, we only need to consider the cases
where G(y) %= G(y′). Figure 1 illustrates three of these cases two dimensionally, where there is a
single agreeing component A, the y-axis, and a single disagreeing component B, the x-axis.

Let A be the set of agreeing indices, A=
{
j : sgn(y′j− y j) = sgn(G(y′)−G(y)) %= 0

}
, and B=

Ac the set of disagreeing indices. We use the notation yA = (y j, j ∈ A) to describe corresponding
subvectors. Also, when used, vector inequalities are component wise.

Case 1: G(y) < G(y′) and yA ≤ y′′A
In the first decision problem, as G agrees with A and disagrees with B

yA < y′A, yB ≥ y′B.

We also know that A %= /0 since otherwise y≥ y′and therefore by monotonicity G(y)≥G(y′), which
is a contradiction.

For the second decision problem we consider the values of y′′ which are consistent with the
confidence assumption (Definitions 1 and 2), that is, agreeing with more confidence along the A
indices and disagreeing with less confidence or switching sides along the B indices. As yA ≤ y′′A ,
either by the confidence relationship or by switching sides (see Figure 1) these y′′ values satisfy

y′′A−yA ≥ y′A−yA, yB−y′′B ≤ yB−y′B
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which implies y′ ≤ y′′, and therefore G(y′)≤G(y′′) by monotonicity. Thus, G(y) <G(y′)≤G(y′′),
which implies that in the second decision problem of choosing between y and y′′, the preference of
G is the same as that of A (i.e., y since yA ≤ y′′A) and the confidence of G is at least as high as the
first decision problem.

Case 2: G(y) < G(y′) and yA ≥ y′′A
Since in this case yA ≥ y′′A, then either by the confidence relationship or by switching sides y′′
satisfies

yA−y′′A ≥ y′A−yA, y′′B−yB ≤ yB−y′B.

This implies that y′ +y′′ ≤ 2y, which means that

G(y′)+G(y′′) ≤ 2G
((
y′ +y′′

)
/2

)
≤ 2G(y)

by the concavity and monotonicity of G. Thus, G(y)−G(y′′) ≥ G(y′)−G(y) and since G(y′) >
G(y), we have that G(y)−G(y′′) > 0 and thus G(y) > G(y′′). Therefore we see that the preference
in G for the two decision problems is the same as A (with y in the first problem and with y′′ in the
second problem) and the confidence is no smaller for the second comparison.

Case 3: G(y) > G(y′) and yA ≤ y′′A
Since y′ is preferred in the first decision problem we have

yA > y′A, yB ≤ y′B.

For the confidence assumption to hold, that is, greater confidence for A in the second problem
(Definition 2), the smaller ranks in the second problem have to be smaller than the smaller ranks in
the first problem. But with yA ≥ y′A and yA ≤ y′′A that can only be if yA = y′A, which leads to y≤ y′,
and by monotonicity implies G(y) ≤ G(y′). However that is a contradiction to G(y) > G(y′), and
therefore this is not a viable case for comparing confidence.

Case 4: G(y) > G(y′) and yA ≥ y′′A
Since in this case yA ≥ y′′A, then either by the confidence relationship or by switching sides y′′
satisfies

yA−y′′A ≥ y′A−yA, y′′B−yB ≤ yB−y′B,

which means that y′′ ≤ y′. Thus, by the monotonicity of G, G(y′′) ≤G(y′). Since G(y′) <G(y) the
preference in the second decision problem is also with A (i.e., y′′) and the confidence is at least as
high as the first decision problem.

4.5 Applying Regularization to Rankboost

It follows from the above theorem that to have consistency in preference and confidence we desire
ranking functions that are monotonic and concave. In rankboost H(x) = ∑wtht(x) (Eq. 1). To
make H an increasing and concave function of constituent rankings y j = f j(x) we need to constrain
the weak ranking learners. If the learners themselves are monotonically increasing and concave
functions of y j, then linearly combining them with positive weights will give an H that is also an
increasing and concave function of y j.
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In this paper, we apply the “third method” (Freund et al., 2003) to setting a wt weight value.
That is, weak learners are selected on their ability to maximize r from Eq. 4 and then

wt = 0.5ln((1+ rmax)/(1− rmax)) . (5)

Therefore, using monotonic and concave weak learners we select only ones that rankboost gives a
positive r value to, which renders a positive wt weight. If no r values are positive the rankboost
algorithm stops.

We mention that a ranking function can be construed as the negative of a score function, that is,
G(y) = −S(y). For score functions these regularization properties become monotonically decreas-
ing, and convex (Melnik et al., 2004).

5. MinimumWeighted Group Ranks

The functional structure of the new learner we propose is

h(y) =min{γ1y1, . . . , γnyn, 1} , (6)

where y = (y1, . . . , yn) = ( f1(x), . . . , fn(x)) the vector of ranking features, and the γ j are learned
positive coefficients. Note that the function’s range is in [0,1] due to the 1 term in the min function.

Using rankings as our features, the learner function (Eq. 6) is monotonically increasing. It is
also a concave function in y. Thus if these learners are linearly combined with positive weights, the
resulting ranking function, H, will have three-point consistency in confidence and preference.

To gain some intuition, the functional form of the learner is related to the Highest Rank com-
bination method (Ho, 1992) that assigns combined ranks as the best rank each class receives from
any ranker. This is a confidence based approach, as Highest Rank bets on the classifier that is most
confident, the one giving the best rank. As such, a single learner can potentially be error prone.
But as we combine many of these learners during boosting, it becomes more powerful, allowing the
confidence of different classifiers to be weighed with preference for their potential accuracy.

5.1 Learning

At each boosting iteration, rather than selecting from all possible weak learners of form (Eq. 6),
we limit our choices by building new weak learners out of the ones that have been previously
trained. Let F = { f1(x), . . . , fn(x)} be the set of ranking features. Recall that in rankboost H(x) =
∑t wtht(x), where ht(x) =min

{
γ(t)1 f1(x), . . . , γ

(t)
n fn(x), 1

}
and γ(t)j are learned coefficients. We set

H̃t =
{
h̃(x)

∣∣∣h̃(x) =min
{
γ(s)1 f1(x), . . . , γ

(s)
n fn(x)

}
, s≤ t

}

and select ht+1(x) from weak learners of the form

hnew(x) =min
{
αh̃(x), β f (x), 1

}
(7)

with h̃(x) ∈ H̃t and f (x) ∈ F . This learner can be rewritten in the form of Eq. 6 with the γ(t+1)j

derived from the learned α, β, h̃(x) and f (x). Thus, at each iteration we look at combinations of
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the features and existing learners. As discussed in the next section, we can either consider all such
combinations, or use a heuristic selection strategy.

We propose to optimize α and β separately, in stages. That is, given a value for one of the
variables we optimize the other. As α and β are symmetric we show how to optimize β given α.

We need to find a value of β that maximizes r in Eq. 4. Freund et al. (2003) pointed out that this
equation can be rewritten as:

r = ∑
x′,x′′

D(t)(x′,x′′)(h(x′)−h(x′′))

= ∑
x
π(x)h(x)

where π(x) = ∑x′
(
D(t) (x′,x)−D(t) (x,x′)

)
. Given the form of Eq. 7 we can write r as a function of

β,

r (β) = ∑
β f j(x)≤min(αh̃(x),1)

(β f (x)−1)π(x) +

∑
αh̃(x)<min(β f (x),1)

(
αh̃(x)−1

)
π(x). (8)

Since ∑xπ(x) = 0, the sum for the third case where 1 is the maximum enters Eq. 8 as the -1 in the
two sums. This function is a piecewise linear spline in β, with knots at the locations where β f (x) =
min

(
αh̃(x),1

)
. The interior extrema (minima and maxima) of piecewise linear splines occur at

their knot locations, as these are the only locations where their one-sided derivatives can change.
Furthermore, r(0) = ∑xπ(x) = 0 and r(β) is a constant for sufficiently large β. Therefore to maxi-
mize Eq. 8 we only need to consider the knots, βs that satisfy

β=
min

(
αh̃(x),1

)

f (x)
, (9)

where x is from the training data. Note that by this formula all βs are positive, maintaining the
regularization constraints.

Rather than calculating (Eq. 8) separately for every value of β satisfying Eq. 9, we can use the
structure of the equation to efficiently update r for consecutive values of β. Let B= {βl} be the set
of all βs satisfying Eq. 9 for their corresponding xl’s (|B|≤ I), where β1 ≤ β2 ≤ · · ·≤ β|B|. Breaking
up the sum into its components

O(βl) = ∑
β f (x)≤min(αh̃(x),1)

π(x),

P(βl) = ∑
β f (x)≤min(αh̃(x),1)

f j(x)π(x),

Q(βl) = ∑
αh̃(x)<min(β f (x),1)

π(x),

R(βl) = ∑
αh̃(x)<min(β f (x),1)

αh̃(x)π(x), (10)
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we can write Eq. 8 as r(βl) = βlP(βl)−O(βl)+R(βl)−Q(βl). Now, as the βs are in order, the
functions in Eq. 10 are easily updated. LetW = I

(
αh̃(x j) < 1

)
, then

O(βl+1) = O(βl)−π(xl),
P(βl+1) = P(βl)− f (xl)π(xl),
Q(βl+1) = Q(βl)+Wπ(xl),
R(βl+1) = R(βl)+Wαh̃(xl)π(xl).

Combining these formulas gives algorithm 2 for optimizing β.

Algorithm 2 Algorithm for optimizing β

Given α, h̃(x) ∈ H̃t , f (x) ∈ F and the training instances.
For all x’s generate and sort the set of candidate βs, B, such that β1 ≤ β2 ≤ · · · ≤ β|B| and βl =
min(αh̃(xl),1)

f (xl) .

O= ∑xl π(xl)
P= ∑xl f (xl)π(xl)
Q= 0
R= 0
rbest = 0
for j = 1 . . . |B| do
r = βlP−O+R−Q
if r > rbest then
rbest = r

end if
O= O−π(xl), P= P− f (xl)π(xl)
if αh̃(xl) < 1 then
Q= Q+π(xl), R= R+αh̃(xl)π(xl)

end if
end for

5.2 Heuristics for Learner Selection

If at each boosting iteration we select from all combinations of h̃(x) and f (x) we end up with an
O(T 2) algorithm, where T is the number of iterations. However, we can sacrifice accuracy for
speed by only evaluating and selecting from a fixed sized pool of previously trained learners h̃(x)
and features f (x), where at each iteration the pool is randomly chosen from the full H̃t and F .

To improve performance, instead of using a uniform sampling distribution we can apply a
heuristic to focus the distribution on combinations with better potential. As Eq. 8 is composed
of two sums, for r to be large the terms f (x)π(x) and h̃(x)π(x) need to be large. We can consider
s f =∑x f (x)π(x) and sh =∑x h̃(x)π(x) as indicators of how well these components work with π(x).
Thus, we might expect larger r values to occur when these two score values are larger. Of course,
we are discounting interactions, which is the reason for the combination.

Using these score values, we can order all h̃(x) and f (x) separately, and sample such that learners
and features with better scores are more likely to be selected. We opted for a polynomial weighting
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Figure 2: These plots show convergence of training error for 3 values of the heuristic selection
pressure value p. These plots are averages over 10 runs and are typical of the other
training data sets as well. As can be seen the heuristic improves the convergence rate of
the training error.

method. Thus, for example, all f ∈ F are sorted by their score and are assigned a number based on
the rank of these scores,(maxrank− rank)/maxrank, that gives each f an equally sized bin in the
range 0 and 1. Given a random number ξ∼U(0,1), we calculate ξpand select the f that corresponds
to the bin this number falls into. Here p < 1 can be construed as a selection pressure, where bins
corresponding to higher scores are more likely to be selected. Figure 2 demonstrates the effect of
different values of the p parameter in one of our experiments.

6. Face Recognition Experiments

We present experiments on the combination of face recognizers, comparing the binary learner with
the MWGR learner. Given an image of a face, a face recognizer assigns a similarity score to each
of the faces it is trained to recognize. These scores give a linear order or ranking to the gallery of
faces. Different face recognition algorithms have different performance characteristics. Thus, we
explore how combining the outputs of multiple face recognizers can improve recognition accuracy.

6.1 Algorithm Methods

We consider a data set I of face images (queries) to train on. For each query image, i in I, we need to
rank all u ∈U faces in the gallery. In rankboost the favor function, Φ, that specifies output loss, is a
function of the query and the item to be ranked. Therefore, the notational convention is to combine
the query, i, and the item to be ranked, u, as an instance, x≡ (i,u). As such, f j(x) = f j((i,u)) is the
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Figure 3: This plot is typical of the convergence behavior of rankboost with MWGR on the FERET
data. Both training and test errors tended to converge within 10-30 iterations of boosting
with no significant post-convergence divergence.

rank assigned to identity u for query image i by recognition algorithm j. As there is only one correct
identity, we only care about the ranking of the one correct identity for each query. We set the favor
function as stated by Freund et al. (2003) for this type of output loss. Let u∗ be the the correct identity
for training image i, thenΦ((i,u) ,(i,u∗)) = +1 andΦ((i,u∗) ,(i,u)) =−1 for all u %= u∗, setting all
remaining elements of Φ(x′,x′′) = 0. That is, the correct identity of a query image is given positive
favor compared to all other identities for that image, while all other rankings, including interactions
between training images, are given zero favor. Note that since there is no favor interaction between
queries (different i’s); Φ(x′,x′′) is effectively a function of 3 variables, (i,u′,u′′).

Both weak learners were trained for 100 iterations, giving them ample time to converge. See
Figure 3 for an illustration of convergence times. The binary learner was trained as specified by Fre-
und et al. (2003). At each iteration the MWGR learner was selected from a pool of candidate com-
binations of f (x) and h̃(x), with a selection pressure of p = 0.5. For each candidate, first β was
optimized with α = 1, then α was optimized using the optimized β. The candidate with the most
positive r value was always selected. This is summarized in algorithm 3.

6.2 Experimental Setup

FERET (Phillips et al., 2000) was a government sponsored program for the evaluation of face recog-
nition algorithms. In this program commercial and academic algorithms were evaluated on their
ability to differentiate between 1,196 individuals. The test consisted of different data sets of varying
difficulty, for a total of 3,816 different images. The data sets, in order of perceived difficulty, are:
the fafb data set of 1,195 images which consists of pictures taken the same day with different facial
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Algorithm 3 Algorithm for selecting learner from pool.
Given poolsize and selection pressure.
Calculate s f j and sh for all rank features and existing learners.
for p= 1 . . . poolsize do
Generate d f ∼U(0,1) and dh ∼U(0,1)
Select which h=min

(
αh̃(x), β f (x), 1

)
to try, using s f j , sh, u f , uh.

Setting α= 1, optimize β (algorithm 2)
Keeping the optimized β, optimize α (algorithm 2)
Get r of learner with this α,β
if r > 0 and r > rbest then
rbest = r, hbest = h, h̃best =min

(
αh̃(x), β f (x)

)

end if
end for
ht = hbest, H̃t+1 = H̃t ∪

{
h̃best

}

expressions; the fafc data set of 194 images that contains pictures taken with different cameras and
lighting conditions; the dup I data set of 488 images that has duplicate pictures taken within a year
of the initial photo; and the most difficult, the dup II data set of 234 images which contains duplicate
pictures taken more than a year later. Note that in our experiments we separate the images of dup II
from the dup I data set, unlike the FERET study where dup II was also a subset of dup I.

The FERET study evaluated 10 baseline and proprietary face recognition algorithms. The base-
line algorithms consisted of a correlation-based method and a number of eigenfaces (principle com-
ponents) methods that differ in the internal metric they use. Of the proprietary algorithms, most
were from different academic institutions and one was commercial. Of the 10 algorithms we se-
lected three dominant algorithms. From the baseline algorithms we chose to use the ANM algo-
rithm which uses a Mahalanobis distance variation on angular distances for eigenfaces (Moon and
Phillips, 2001). While this algorithm’s performance is not distinctive, within the class of baseline
algorithms it was strong. Moreover, in accuracy with respect to average rank of the correct class on
the dup I data set it demonstrated superior performance to all other algorithms. The other two algo-
rithms we used were the University of Maryland’s 1997 test submission (UMD) and the University
of Southern California’s 1997 test submission (USC). These algorithms clearly outperformed the
other algorithms. UMD is based on a discriminant analysis of eigenfaces (Zhao et al., 1998), and
USC is an elastic bunch graph matching approach (Wiskott et al., 1997).

The outputs of the 10 face recognizers on the four FERET data sets, fafb, fafc, dup I and dup II
were the data for the experiments. Thus, we never had access to the actual classifiers, only to data
on how they ranked the different faces in these data sets.

We conducted experiments based on homogeneous and heterogeneous data sets, testing the
efficiency and robustness (adaptivity) of the MWGR procedure. For the homogeneous case we took
all 4 FERET data sets and randomly shuffled them together. We call this the homogeneous data set
as both the training and testing data are selected from the same combined pool. On this combined
data set we did 4-fold cross validation. For each fold 75% of the data was used for training and the
rest for testing. We combined the results of all four runs together for evaluation purposes.
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For the heterogeneous case, in each experiment one of the FERET data sets was selected as a
training set and another data set was selected for testing. This gave 12 experiments (not including
training and testing on the same data set) per group of face recognizers, where we get combinations
of training on easy data sets and testing on hard data sets, training on hard and testing on easy data
sets, and training and testing on hard data sets. To reduce noise in our experiments the training ranks
were truncated at 150, and outliers were removed.

In face recognition and other classification applications usually only the top ranks are important.
Thus, in evaluating the results we focused on the top 30 ranks. All ranks returned by a boosted
combiner for the correct class above 30 were truncated to 30.

In evaluating the performance of the combiners not all the test data are equally useful. We
consider the following two cases as non informative. When the two best face recognizers, UMD
and USC both give the correct class a rank of 1 there is very little reason for the combined rank to
be different. Also when both the binary-learner-based combiner and the MWGR-based combiner
give the correct class a rank greater than the truncation value (30) it makes little sense to compare
between the combiners. The testing data was filtered to remove these cases, and the results are
presented without them.

Before presenting the results, it should be said that rankboost with both learner types gives
ranking functions that significantly outperform all the individual face recognition algorithms. In
addition, in our tests both learners also clearly outperformed other standard rank combination meth-
ods, such as the Borda count, highest rank and logistic regression (Ho et al., 1992).

We present two sets of experiments—the combination of the 3 selected classifiers (ANM, UMD
and USC) and the combination of all 10 classifiers. These are qualitatively different tasks. In
combining 3, we seek to capitalize on the unique strengths of each classifier. In combining 10,
we are introducing classifiers which may be correlated and classifiers which are comparably much
noisier. The size of the pool was 6 when we combined 3 classifiers and 20 when combining all 10
classifiers.

For all experiments we measure the average rank of the correct class for both learners:

A=
1
N

N

∑
i=1
min{Rank (x∗i ) ,30} ,

where Rank (x∗i ) is the rank of the correct class for query i, and the sum is over all useful test
queries, as described above. The average rank difference between the learners is calculated to show
the improvement in performance. To evaluate the significance of the improvement we ran paired
one-sided t-tests and evaluated the significance of the p-value (a value less than 0.05 is significant).
In addition we show the standard deviation of the rank difference.

6.3 Results

In the experiments with the homogeneous data sets, combining all classifiers gives an improvement
in the average rank of the correct class of 0.296 for MWGR, with a standard deviation of 3.9, a
paired t-test statistic of 1.76 and p-value of 0.039, where combining the ANM, UMD and USC
classifiers gives an average rank improvement of 0.1 for MWGR, with standard deviation of 3.6, a
paired t-test statistic of 0.68 and p-value of 0.24.

Table 2 contains the results for combining the 3 classifiers in the experiments with heteroge-
neous data sets (compare the combiner results in columns bin mean and mwgr mean with the aver-
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dup i dup ii fafb fafc
ANM 9.52 18.14 10.88 19.71
ARL 16.85 16.96 8.94 28.02
EFAVG 15.02 20.61 14.43 26.17
EFML1 18.23 22.21 16.23 17.39
EFML2 15.85 20.33 12.21 19.78
EXCA 11.9 16.28 11.67 20.30
MSU 17.64 23.44 6.81 14.27
RUT 17.87 16.48 12.93 22.79
UMD 13.21 13.74 4.57 8.96
USC 12.44 6.85 5.84 5.17

Table 1: The best average rank of the correct class on the different data sets for all constituent face
recognition systems.

age rank of the correct class for all constituent classifiers in Table 1). The diff mean column contains
the improvement of MWGR over the binary learner in terms of average rank of the correct class. Of
the 12 experiments, we see an improvement in 10 cases. Six of those 10 have significant p-values.
The two no improvement experiments do not have significant p-values. Table 3 contains the results
for combining all 10 classifiers. Of the 12 experiments, we see an improvement for MWGR in 11
cases. Eight or nine of those 11 have significant p-values. The one no improvement experiment
does not have a significant p-value. It is interesting to note that we do not seem to see overfitting
when increasing the number of constituents. In some case we see improvement, in others we see
slight degradation, but all in all the combiner seems resilient to the noise of adding less informative
constituents.

All sets of experiments, homogeneous data, heterogeneous data sets, combining 3 select recog-
nizers and combining all 10 recognizers at once yielded significant improvements in accuracy, as is
visible in the change in the average rank of the correct class and the significance of the statistical
tests.

7. Information Retrieval Experiments

The annual Text REtrieval Conference (TREC) generates high-quality retrieval results of different
systems on different retrieval tasks (Voorhees and Harman, 2001). We use the result data sets of
the TREC-2001 web ad hoc task that uses actual web queries taken from web logs. This task has
been used in other rank fusion experiments (Renda and Straccia, 2003). As did Renda and Straccia
(2003) we combine the results of the following top 12 systems: iit01m, ok10wtnd1, csiro0mwal,
flabxtd, UniNEn7d, fub01be2, hum01tdlx, JuruFull, kuadhoc, ricMM, jscbtawtl4, apl10wd.

Similar to other TREC information retrieval tasks, the TREC-2001 ad hoc task consists of 50
queries. For each query a list of relevant documents is supplied. Each system returns an ordered list
of 1,000 documents for each query. The fusion goal is to combine these 12 individual lists into one
list of 1,000 documents, which hopefully has greater precision than the individual systems. For the
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test train bin mwgr diff diff pval
set set mean mean mean std
dup i dup ii 7.19 5.96 1.22 5.22 .7e-4
dup i fafb 7.36 6.21 1.14 5.15 .001
dup i fafc 8.31 6.27 2.04 5.51 .1e-6
dup ii dup i 5.25 5.38 -.12 4.0 .658
dup ii fafb 5.15 4.4 0.74 4.61 .018
dup ii fafc 5.19 4.95 0.23 5.1 .275
fafb dup i 2.62 2.22 0.39 3.09 .115
fafb dup ii 3.38 2.60 0.78 3.79 .029
fafb fafc 2.60 2.28 0.32 2.81 .142
fafc dup i 2.85 2.78 0.06 3.33 .424
fafc dup ii 2.40 2.43 -.03 2.27 .537
fafc fafb 2.56 2.03 0.52 2.57 .028

Table 2: Results of combining the ANM, UMD, and USC classifiers using individual FERET data
sets.

test train bin mwgr diff diff pval
set set mean mean mean std
dup i dup ii 6.73 5.89 0.84 4.79 .009
dup i fafb 8.06 7.09 0.96 6.01 .014
dup i fafc 6.68 4.87 1.81 5.24 .5e-6
dup ii dup i 5.75 5.67 0.08 4.61 .408
dup ii fafb 6.24 5.47 0.76 4.22 .009
dup ii fafc 5.86 5.31 0.55 4.87 .074
fafb dup i 2.67 2.07 0.59 2.97 .033
fafb dup ii 3.56 2.45 1.11 4.51 .012
fafb fafc 2.68 2.17 0.51 2.03 .01
fafc dup i 3.36 2.51 0.85 3.23 .007
fafc dup ii 3.17 2.95 0.22 3.95 .3
fafc fafb 2.22 2.23 -0.01 2.08 .52

Table 3: Results of combining all 10 classifiers using individual FERET data sets.

50 queries of the TREC-2001 ad hoc task, the number of relevant documents that intersect with the
union of system results range between 662 and 2664.

7.1 Methods

In the information retrieval task the favor function needs to show favor for relevant documents while
disregarding other documents. Thus, we can set the favor function similarly to the way it was set in

808



CONCAVE LEARNERS FOR RANKBOOST

JuruFull UniNEn7d apl10wd csiro0mwa1 flabxtd fub01be2
0.759 0.763 0.735 0.721 0.741 0.734

hum01tdlx iit01m jscbtawt14 kuadhoc2001 ok10wtnd1 ricMM
0.760 0.762 0.761 0.727 0.745 0.765

Table 4: Normalized mean average precision for each constituent.

the face recognition classification task. Consider a data set with I queries to train on. For each query,
i in I, we need to rank all u ∈U documents. An instance in this case is a pair, x ≡ (i,u). For each
u∗a relevant document and u an irrelevant document for query i, we set Φ((i,u) ,(i,u∗)) = +1 and
Φ((i,u∗) ,(i,u)) =−1, setting all remaining elements ofΦ(x0,x1) = 0. Thus, all relevant documents
are given a positive favor with respect to irrelevant documents, while all other rankings, including
interactions between relevant documents and interactions between irrelevant documents are given
zero favor.

As the task has only 50 queries, rather than separating the data into train and test, we opted
to do a cross validation performance evaluation. We use 5-fold cross validation on the normalized
mean average precisionmeasure (Salton and McGill, 1983), a standard IR measure which accounts
for the precision (quantity of correct documents retrieved) and their rank position in the list. It is
described by the following equation:

AveP= ∑N
r=1 (Prec(r)× rel(r))

number o f relevant documents

where r is the rank, N is the number of documents retrieved, rel() is a binary function of the
relevance of the document at rank r,and Prec is the precision ( [number of relevant documents
retrieved] / [number of documents retrieved]) at a given cut-off rank. It is clear that higher values of
AveP are better. Note that for purposes of normalization we assigned unretrieved relevant documents
a constant rank.

As the binary and MWGR weak learners had significantly different convergence properties on
this task (see Figure 4) MWGR was trained for 100 iterations and the binary learner for 300 iter-
ations. As in the FERET experiments, MWGR was optimized using algorithm 3, with a selection
pressure of p= 0.5.

7.2 Results

As seen in Figure 4, the MWGR learner converges in significantly less iterations than the binary
learner. This could possibly be attributed to the fact that the MWGR is a more complex function
that can incorporate the rankings of multiple classifiers in each learner. Also the MWGR function
is not tuned to particular rank cutoffs, whereas the binary learner is, so the MWGR can better
accommodate the variety in the 1000 ranks being considered.

The normalized mean average precision for the MWGR after 100 iterations was 0.8537 and it
was 0.8508 for the binary learner after 300 iterations. Compare these results with the precision of
the constituents in Table 4. Both weak learners had a performance rate of change of approximately
3∗10−5 on their final iteration (better for MWGR). A paired t-test on the cross validation results of
the two learners gives a statistically significant p-value of 0.007 in favor of MWGR.
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Figure 4: The cross validation mean average precision score of the two weak learners, MWGR and
binary, as a function of boosting iteration number.

8. Discussion

The question of how to combine ordinal data has become an active focus of research in machine
learning, as applications in pattern recognition, information retrieval and other domains have come
to the forefront. A particular question of importance is how can the structure of ranks be correctly
exploited to maximize performance. The semi parametric nature of rankboost offers the possibil-
ity to generate arbitrarily flexible ranking functions. But as observed this flexibility comes at a
cost of significant overfitting without further regularization. Freund et al. (2003) demonstrate that
successful generalization only occurs when the resulting ranking functions are constrained to be
monotonic. This constraint can be thought of as a regularization that incorporates prior knowledge
on the interpretation of ranks and as such, how they can be combined.

We present a regularization framework based on the concept of consistency in confidence and
preference. Ranking functions with this property show a consistency in how they treat the preference
and relative confidence exhibited by constituents. We prove that under a natural interpretation of
preference and confidence for ranks, this consistency property of the combiner is equivalent to
monotonicity and concavity of its ranking function.

We enhance rankboost by designing a weak ranking learner that exhibits consistency in prefer-
ence and confidence. A computational advantage of this weak learner, called minimum weighted
group ranks (MWGR) is that its parameters can be individually optimized readily with respect to
the rankboost criteria, allowing it to be tested on real-world data.

In our first experiments we compare the original rankboost binary weak learner with MWGR on
a task of combining the output of multiple face recognition algorithms from the FERET study. We
conducted experiments on homogeneous data, testing the intrinsic efficiency of the MWGR proce-
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dure. We also conducted experiments on heterogeneous data, testing the robustness or adaptivity of
the procedure. In almost all cases we see that MWGR shows improved performance compared with
the binary weak learner, whether combining three or all of the face recognizers, confirming the util-
ity of this monotonic and concave learner. Our second experiment was on an Information Retrieval
task taken from the TREC conference. In this task we see MWGR converges in significantly less
iterations and generates statistically significant improved performance.

Final Words

Ofer Melnik and Cun-Hui Zhang are very saddened that our colleague and friend Yehuda Vardi
passed away before he could give this paper his final stamp of approval. He was very enthusiastic
about this research and would have been very pleased to see it come to fruition.
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Appendix A.

In this paper we showed how three-point consistency in preference and confidence implies concave
and monotonic ranking functions. For two decision problems involving two pairs of rank vectors,
the four-point consistency property implies the following constraints for a ranking function






G(y) < G(y′)
y′B−yB ≤ 0< y′A−yA
zA ≤ yA, y′A−yA ≤ z′A− zA ⇒ G(z′)−G(z) > G(y′)−G(y)
yB ≤ zB, zB− z′B ≤ yB−y′B

(11)

where y and y′ are the rank vectors from the first decision problem and z and z′ are the rank vectors
from the second decision problem.

Unlike the three-point case, the four-point consistency property does not imply a clearly rec-
ognizable functional form for the ranking function. What we can say about it though is that as the
constraints are linear, in the same way that concavity and monotonicity in the weak learner con-
ferred the same properties to the ranking function, a weak learner that satisfies Eq. 11 will also
confer those properties to the ranking function that uses it with positive weights.
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Abstract
Many classification tasks require estimation of output class probabilities for use as confidence
scores or for inference integrated with other models. Probability estimates derived from large mar-
gin classifiers such as support vector machines (SVMs) are often unreliable. We extend SVM large
margin classification to GiniSVM maximum entropy multi-class probability regression. GiniSVM
combines a quadratic (Gini-Simpson) entropy based agnostic model with a kernel based similar-
ity model. A form of Huber loss in the GiniSVM primal formulation elucidates a connection
to robust estimation, further corroborated by the impulsive noise filtering property of the reverse
water-filling procedure to arrive at normalized classification margins. The GiniSVM normalized
classification margins directly provide estimates of class conditional probabilities, approximating
kernel logistic regression (KLR) but at reduced computational cost. As with other SVMs,GiniSVM
produces a sparse kernel expansion and is trained by solving a quadratic program under linear con-
straints. GiniSVM training is efficiently implemented by sequential minimum optimization or by
growth transformation on probability functions. Results on synthetic and benchmark data, includ-
ing speaker verification and face detection data, show improved classification performance and
increased tolerance to imprecision over soft-margin SVM and KLR.
Keywords: support vector machines, large margin classifiers, kernel regression, probabilistic
models, quadratic entropy, Gini index, growth transformation

1. Introduction

Support vector machines (SVMs) have gained much popularity in the machine learning community
as versatile tools for classification and regression from sparse data (Boser et al., 1992; Vapnik, 1995;
Burges, 1998; Schölkopf et al., 1998). The foundations of SVMs are rooted in statistical learning
theory (Vapnik, 1995) with also connections to regularization theory (Girosi et al., 1995; Pontil
and Verri, 1998a). The principle of structural risk minimization provides bounds on generalization
performance which make SVMs well suited for applications with sparse training data (Joachims,
1997; Oren et al., 1997; Pontil and Verri, 1998b).

Several classification problems in machine learning require estimation of multi-class output
probabilities. Besides their use as confidence scores in classification, the class probability estimates

c©2007 Shantanu Chakrabartty and Gert Cauwenberghs.
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can also be used in combination with other probabilistic models such as hidden Markov models for
inference across graphs. For instance text-independent speaker verification systems require normal-
ized classifier scores to be integrated over several speech frames in an utterance (Auckenthaler et
al., 2000) to arrive at global acceptance/rejection scores. Even though SVMs have been success-
fully applied for the task of speaker verification (Schmidt and Gish, 1996; Gu and Thomas, 2001),
the cumulative scores generated by SVMs are susceptible to corruption by impulse noise, which
increases false acceptance rate.

Multi-class extensions to SVM classification have been formulated, based on ‘one vs. all’ (We-
ston and Watkins, 1998; Crammer and Singer, 2000) or ‘one vs. one’ (Schölkopf et al., 1998; Di-
etterich and Bakiri, 1995; Allewin et al., 2000; Hsu and Lin, 2002) methods. In its general setting
multi-class SVMs generate unnormalized and biased estimates of class conditional probabilities
(Platt, 1999a). Calibration and moderation methods have been proposed to arrive at class prob-
ability estimates from the trained SVM classifier (Kwok, 1999; Platt, 1999a). For instance Platt
(1999a) applied sigmoidal regression to the output of an SVM and showed a performance compa-
rable to regularized maximum likelihood kernel methods (Jaakkola and Haussler, 1999; Zhu and
Hastie, 2002). Vapnik has proposed a probability regression technique based on mixture of cosine
functions (Vapnik, 1995), where the coefficients of the cosine expansion minimize a regularized
function. A drawback of these methods is their difficulty in embedding other inference models
like graphical models where re-estimation of SVM parameters can be naturally performed. Kernel
logistic regression (KLR) (Jaakkola and Haussler, 1999) provides such a framework to estimate
probabilities and can be easily embedded into graphical models with its parameters estimated us-
ing an expectation-maximization (EM) like procedure (Jordan and Jacobs, 1994). However, one of
the disadvantages of KLR is that the kernel expansion is non-sparse in the data making regression
infeasible for large classification problems. A Bayesian learning framework using relevance de-
termination on linear models more general than kernel regression (Tipping, 2001) produces a very
sparse expansion but involves significant computation during training that does not scale well to
very large data. Recently sparse Gaussian process based methods have been reported (Lawrence
et al., 2003), that alleviate scalability problems of relevance determination through use of greedy
optimization techniques.

The purpose of this paper is to describe a unifying framework for SVM based classification
that directly produces probability scores. Previous work in this area used Shannon entropy in a
large margin framework (Jebara, 2001) which led directly to KLR and hence inherited its potential
disadvantages of non-sparsity. One of the important contributions of the paper is exploration of
links between maximum entropy based learning techniques and large margin classifiers with exten-
sions to quadratic based impurity functions. Within this framework the paper introduces the Gini
Support Vector Machine (GiniSVM) (Chakrabartty and Cauwenberghs, 2002), a large margin clas-
sifier based on a quadratic entropy formulation combined with kernel based quadratic distance. At
the core of GiniSVM is a margin normalization procedure that moderates the output of the classi-
fier. Training GiniSVM entails solving a quadratic programming problem analogous to soft-margin
SVM. We also present algorithms for training GiniSVM classifiers with multiplicative updates, and
by growth transformation on polynomial objective functions.

The paper is organized as follows: Section 2 introduces a supervised discriminative frame-
work for obtaining classifiers that produce conditional probability scores. Section 4 introduces
GiniSVM and derives its normalization properties based on a reverse water-filling algorithm. Sec-
tion 5 presents algorithms for GiniSVM training based on conventional sequential minimum opti-
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mization (SMO) and a novel multiplicative update algorithm. Section 6 compares the performance
of GiniSVM for benchmark UCI databases, a face detection and a text-independent speaker verifi-
cation task. Section 7 provides concluding remarks with future directions.

2. Generalized Maximum Entropy Based Supervised Learning

In the framework of supervised learning, the learner is provided with a training set of feature vectors
T ⊂X : T = {xi}, i= 1, ..,N drawn independently from a fixed distribution P(x),x∈X . The formu-
lation presented here assumes a countable set X even though it generalizes to uncountable sets. Also
provided to the learner is a set of soft (or possibly hard) labels that represent conditional probability
measures yik = P(Ck|xi) defined over a discrete set of classes Ck,k = 1, ..,M. The labels therefore
are normalized and satisfy ∑M

k=1 yik = 1. The aim of the learner is to choose a finite set of regression
functions P= {Pk(x)},k= 1, ..,M that accurately predict the true conditional probabilities P(Ck|x).
For this purpose the learner uses a distance metric DQ : RM×RM → R that embeds prior knowledge
about the topology of the feature space. Since the prior labels yik are available only for the training
set, the learner also defines an agnostic (non-informative) distance metric DI : RM×RM → R which
does not assume any knowledge of the training set. The embedded agnostic prior is consistent with
maximum entropy principles (Jaynes, 1957; Pietra and Pietra, 1993) and enforces smoothness con-
straints on the the function Pk(x) by avoiding solutions that over-fit to the training set. Estimating
the probability functions P= {Pk(x)} entails a training procedure involving minimization of a joint
distance metric and is given by

min
P
G(P) =min

P
[DQ(Y,P)+ γDI(P,U)]. (1)

Here Y : R|T |×RM is a matrix of prior labels yik, i= 1, ..,N, k = 1, ..,M, andU denotes a uniform
distribution given by Uk(x) = 1/M, ∀k = 1, ..,M. γ > 0 is a hyper-parameter that determines a
trade-off between the prior and agnostic distance metrics. Minimizing the cost function (1) leads to
a solution P that is not only close to a prior distribution with respect to the distance metric DQ(., .)
but is also close to the non-informative (agnostic) uniform distributionU . In addition, the maximum
entropy framework (Pietra and Pietra, 1993) allows to impose linear constraints on the optimization
problem (1) based on cumulative statistics defined on the training set. One linear constraint equates
the frequency of occurrence of a class k = 1, ..,M under the distribution P to an equivalent measure
under the prior distribution yik. This first constraint can be written to express equivalence between
average estimated probabilities and empirical frequencies for each class over the training set

N

∑
i=1

Pk(xi) =
N

∑
i=1

yik, k = 1, . . .M (2)

under the assumption that all features x ∈ X are equally likely. A second set of linear constraints
expresses boundary and normalization conditions for valid probability distributions

Pk(x) ≥ 0, k = 1, . . .M, (3)
M

∑
k=1

Pk(xi) = 1 (4)

where the additional inequality constraint Pk(x) ≤ 1, k = 1, . . .M is subsumed by the normalizing
equality constraint.

815



CHAKRABARTTY AND CAUWENBERGHS

DQ(Y,P)
DI(P,U) U

Y

P

(a)

DI(P,U)
U

Y P

(b)

DI(P,U)
U

Y

P
DQ(Y,P)

(c)

Figure 1: Generalized framework for maximum entropy probability regression. (a): Solution P lies
in the constraint space shown as a sphere such that the total distance to the distribution Y
andU is minimized. (b): Solution for γ= 0, where P coincides with Y . (c): Solution for
γ→ ∞, projectingU onto the constraint space.

Pictorially the solution to the optimization problem (1) is shown in Figure 1. For illustration
purposes the linear constraints (2), (3) and (4) are represented by the shaded circle. The distance
DQ(Y,P) determines the proximity of distribution P to a prior empirical distribution Y . DI(P,U) is a
distance that defines an agnostic model when any prior knowledge about prior distribution is absent.
This framework is similar to the maximum entropy approach (Jaynes, 1957; Pietra and Pietra, 1993;
Jebara, 2001). The possible solutions to minimizing the cost function (1) with constraints (2)-(4) are
shown in Figure 1 where the solution P lies within or at the boundary of the constraint space. Note
that the constraint space also includes the prior distribution Y . Under non-degenerate conditions the
agnosticU distribution will lie outside the constraint space. The value of the hyper-parameter γ> 0
influences the location of the solution P with respect to the prior Y and agnostic U distributions.
As we will see further below, the parameters also determine the sparsity and generalization perfor-
mance of classifiers defined by parameters P. As shown in Figure 1, for γ = 0, the solution is the
prior distribution Y and thus over-fits to the training set. For the case when γ→ ∞, the solution is
equivalent to maximum entropy, which is the projection ofU on the constraint space.

The solution to the optimization (1) is obtained by first order Karush-Kuhn-Tucker (KKT) con-
ditions (Bertsekas, 1995) with respect to the probability functions P= {Pk(x)} and is given by

γ
∂DI(P,U)
∂Pk(x)

= −∂DQ(Y,P)
∂Pk(x)

+bk− z(x)+βk(x). (5)

Here bk represent Lagrange multipliers corresponding to frequency constraints (2), βk(x) ≥ 0 are
Lagrange multipliers for the inequality constraints (3), and Lagrange multipliers z(x) correspond to
the normalization constraint (4). For the sake of simplicity we will assume a form of DI(P,U) that
can be decomposed into independent, identically distributed (i.i.d.) components as

DI(P,U) =
M

∑
k=1
∑
x∈T

Ψ(Pk(x),Uk(x)), (6)

whereΨ :R×R→R is a concave function. The first order condition (5) can be written as a Legendre
transform (Rockefeller, 1970) with respect to Ψ(.) as

Pk(x) = ∇Ψ−1
(
1
γ

[
−∂DQ(Y,P)

∂Pk(x)
+bk− z(x)+βk(x)

])
. (7)
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where∇Ψ−1(.) denotes the Legendre transform with respect to Pk(x) for the bivariate functionΨ(.).
The Legendre transformation is commonly used in the dual formulation of support vector machines
and other kernel machines (Vapnik, 1995; Schölkopf and Smola, 2001), and we refer to ∇Ψ−1(.) as
the dual potential function. Note that ∇Ψ−1(.) is monotonic due to the concavity of Ψ(.).

Several choices exist for the prior distance metric DQ(., .). A popular metric is a quadratic
distance extensively used in kernel methods (Schölkopf et al., 1998) and as covariance functions in
Bayesian methods (Jordan and Jacobs, 1994). In its general form the quadratic distance between
two conditional distributions P̂= {P̂k(x)} and P= {Pk(x)} is given by

DQ(P̂,P) =
C
2

M

∑
k=1

∑
x,v∈T

K(x,v)
[
P̂k(x)−Pk(x)

][
P̂k(v)−Pk(v)

]
. (8)

Here K : RM × RM → R represents a symmetric, positive definite kernel satisfying the Mercer’s
criterion,1 such as a Gaussian radial basis function or a polynomial spline (Schölkopf et al., 1998;
Wahba, 1998). The distance DQ(., .) embeds prior knowledge induced by the kernel K(x,v) and
therefore quantifies a topology of a metric space for points x,v ∈ X .

For the quadratic formDQ(., .) given by Equation (8) the first order conditions (7) can be written
as

Pk(x) = ∇Ψ−1
(
1
γ
[ fk(x)− z(x)+βk(x)]

)
(9)

where

fk(x) =
N

∑
i=1

λikK(xi,x)+bk

with inference parameters
λik =C[yik−Pk(xi)].

The Lagrange parameter function βk(x) in Equation (9) needs to ensure that the probability scores
Pk(x) ≥ 0 ∀x ∈ X according to (3), and the Lagrange parameter function z(x) needs to ensure
normalized probabilities ∑M

k=1Pk(x) = 1 according to (4).
The set of inference parameters Λ = {λik}, i = 1, ..,N, k = 1, ..,M is obtained by solving (1)

over the training set T . Expressing the general form (6) for the agnostic distance DI(P,U) and the
quadratic distance (8) for the prior distance DQ(Y,P) in terms of the inference parameters λik in the
cost function (1) leads to a dual formulation Hd

Hd =
M

∑
k=1

[
1
2C

N

∑
i=1

N

∑
j=1

λikQi jλ
j
k + γ

N

∑
i=1

Ψ(yik−λik/C)

]
(10)

where Qi j = K(xi,x j) denote elements of the kernel matrix Q. Like the primal (1), minimization of
the dual Hd is subject to linear constraints (2)-(4) rewritten in terms of the inference parameters as

M

∑
k=1

λik = 0, i= 1, . . .N,

N

∑
i=1

λik = 0, k = 1, . . .M, (11)

λik ≤ Cyik.

1. K(x,v) =Φ(x) ·Φ(v). The map Φ(·) need not be computed explicitly, as it only appears in inner-product form.
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3. Kernel Logistic Regression

For a frame of reference in the comparison between different formulations of cost functions, the
optimization framework given by the dual (10) subject to constraints (11) is first applied to kernel
logistic regression (KLR) (Jaakkola and Haussler, 1999), with agnostic distance

DI(P,U) =
M

∑
k=1
∑
x∈T

Pk(x) log
Pk(x)
Uik

=
M

∑
k=1
∑
x∈T

Pk(x) logPk(x)+ cst (12)

derived from the Kullback-Leibler (KL) divergenceΨKL(P,U) = P log(P/U) for a uniform agnostic
distribution Uik ≡ 1/M. The constant term cst = N logM in (12) drops in the minimization and is
subsequently ignored. The probability function according to (9) is then given by

Pk(x) = exp
(
1
γ
[ fk(x)− z(x)+βk(x)]

)
. (13)

By property of exp(.), Pk(x) ≥ 0 ∀x ∈ X , and so the Lagrange multiplier βk(x) in (13) is arbitrary
and can be eliminated, βk(x) ≡ 0. The other Lagrange multiplier z(x) in (13) is determined by
expressing the normalization condition ∑M

k=1Pk(x) = 1 which leads to a logistic model

Pk(x) = exp

(
1
γ
fk(x))/

M

∑
p=1
exp(

1
γ
fp(x)

)
. (14)

Substituting the KL distance ΨKL(., .) for Ψ(., .) in the general form (10) directly leads to the dual
cost function

He =
M

∑
k=1

[
1
2C

N

∑
i=1

N

∑
j=1

λikQi jλ
j
k + γ

N

∑
i=1

(yik−λik/C) log(yik−λik/C)

]
(15)

subject to the dual constraints (11).

3.1 KLR Primal Reformulation

The dual (15) derived from the general maximum entropy form (1) is identical to the dual formu-
lation of another, closely related primal cost function for kernel logistic regression as formulated
in Jaakkola and Haussler (1999). The purpose of this section is to establish the equivalence with a
connection to large margin kernel machines and their interpretation in feature space (Schölkopf and
Smola, 2001).

Expressing the kernel function K(x,v) = Φ(x) ·Φ(v) as an inner-product in a transformed fea-
ture space Φ(.), the decision functions fk(x) are linked to a set ofM hyperplanes

fk(x) =
N

∑
i=1

λik K(xi,x)+bk (16)

=
N

∑
i=1

λik Φ(xi) ·Φ(x)+bk (17)

= wk ·Φ(x)+bk
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where wk = ∑N
i=1λ

i
kΦ(xi) represent the parameters of the hyperplanes. The following proposition

links the kernel logistic regression dual (15) with its equivalent primal formulation (Jaakkola and
Haussler, 1999).

Proposition I: The kernel logistic regression objective function (15) is the dual derived from a
primal objective function with regularized loss function

Le =
M

∑
k=1

1
2
|wk|2+C

N

∑
i=1

M

∑
k=1

yik log
yik

Pk(xi)

= ∑
k=1

1
2
|wk|2−C

N

∑
i=1

[
M

∑
k=1

yik fk(xi)− log(e f1(xi) + ...+ e fM(xi))] . (18)

where additional constant terms in (18) have been ignored and a unity value for γ has been assumed
in the probability model (14). The proof of the proposition is provided in Appendix A.

The primal uses the Kullback-Leibler (KL) divergenceΨKL(P,U) = P log(P/U) between distri-
butions yik and Pk(xi) as loss function in the regularized form (18) (Wahba, 1998; Zhu and Hastie,
2002). One of the disadvantages of the kernel logistic dual is that the KL divergence distance metric
strongly penalizes solutions far away from the agnostic distributionU , leading to a non-sparse ker-
nel expansion. A sparser kernel expansion is obtained in soft-margin support vector machines for
classification. A Gini form of entropy as agnostic distance metric provides the connection between
support vector machines and probability regression, studied next.

4. GiniSVM and Margin Normalization

Instead of KL divergence, a natural choice for an agnostic distance metric DI is a quadratic form
of entropy similar to the quadratic form of the prior distance metric DQ. A Gini quadratic form of
entropy, or impurity function, has been used extensively in natural language processing for growing
decision trees (Breiman et al., 1984). TheGini quadratic entropy forms the basis of theGini-support
vector machine (GiniSVM) for probability regression (Chakrabartty and Cauwenberghs, 2002).

The Gini quadratic form of entropyΨGini(P,U) = 1
2(P−U)2 with uniform agnostic distribution

Uik ≡ 1/M leads to an agnostic distance metric

DI(P,U) =
1
2

M

∑
k=1
∑
x∈T

(Pk(x)−Uik)2

=
1
2

M

∑
k=1
∑
x∈T

Pk(x)2+ cst

where the constant term cst = −N/2M drops in the minimization. Substituting the Gini distance
ΨGini(., .) for Ψ(., .) in the general form (10) leads to the dual GiniSVM cost function

Hg =
M

∑
k=1

[
1
2C

N

∑
i=1

N

∑
j=1

λikQi jλ
j
k +

γ
2

N

∑
i=1

(yik−λik/C)2
]

(19)

under constraints (11).
In contrast to the KL distance in the KLR dual (15), the quadratic distance in the GiniSVM

dual (19) allows sparse kernel expansions, where several of the inference parameters λik are driven
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Figure 2: Illustration of reverse water-filling procedure. The level z is adjusted as to maintain the
net fi in excess of z (shaded area) at γ.

to zero by the inequality constraints in (11) corresponding to a majority of labels for which yik = 0.
Even sparser kernel expansions could be obtained with soft-margin support vector machines for
classification, owing to its slightly different quadratic cost function under linear constraints which
further favors sparsity. More significantly, GiniSVM produces conditional probability estimates
that are based on maximum entropy (1). The probability estimates themselves could be sparse, with
Pk(x) = 0 for a number of classes k depending on γ and x, as we show next.

4.1 Margin Normalization and Reverse Waterfilling

The quadratic entropy form of ΨGini(., .) leads to a linear Legendre transform ∇Ψ−1(.) and thus a
linear, rather than exponential, form of the conditional probability estimates Pk(x) = 1/γ/[ fk(x)−
z(x)+βk(x)],k= 1, ..,M. To ensure positive probabilities according to constraints (3), the Lagrange
parameters βk(x) produce rectified linear probability estimates

Pk(x) =
1
γ
[ fk(x)− z(x)]+ (20)

where [x]+ = max(x,0) denotes a hinge function. The remaining Lagrange parameter z(x) is de-
termined through a subtractive normalization procedure which solves for the normalization con-
straint (4)

M

∑
k=1

[ fk(x)− z(x)]+ = γ. (21)

The conditions (20) and (21) are jointly satisfied by applying a reverse water-filling algorithm com-
monly found in communication systems (Cover and Thomas, 1991), listed in Algorithm 1 and illus-
trated in Figure 2. The algorithm recursively computes the normalization factor z(x) such that the
net balance of class confidence levels fk(x) in excess of z(x) equals γ.

We refer to the procedure solving for z(x) given confidence scores fk(x) in (21) as margin
normalization, because of similarities between the normalization parameter γ and the margin of
multi-class soft-margin support vector machines (Weston and Watkins, 1998). Unlike the divisive
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Algorithm 1 Reverse water-filling procedure to compute normalization parameter z
Require: Set of confidence values { fk(x)},k = 1, ..,M.
Ensure: z= 0,N = 1,T = 0
a= max{ fk(x)}
{s}← { fk(x)}−{a}
while T < γ & N <M do
b= max{s}
T ← T +N(a−b)
a← b
{s}← {s}−{b}
N ← N+1

end while
z← b+N(γ−T )

normalization (14) of probabilities in kernel logistic regression, the subtractive margin normal-
ization (20)-(21) in GiniSVM offers several distinct properties in connection with margin based
classifiers:

Monotonicity: Let fk(x),k = 1, ..,M a set of GiniSVM decision functions satisfying the reverse
water-filling conditions ∑M

k=1[ fk(x)− z1(x)]+ = γ1 and ∑M
k=1[ fk(x)− z2(x)]+ = γ2. If γ1 ≥ γ2 > 0,

then z1(x) ≤ z2(x).
Proof: The two reverse water-filling conditions lead to

M

∑
k=1

([ fk(x)− z1(x)]+− [ fk(x)− z2(x)]+) = γ1− γ2 > 0.

The convexity of the hinge function [a−b]+ ≥ [a]+− [b]+;a,b ∈ R leads to

[z2(x)− z1(x)]+ ≥ (γ1− γ2)/M > 0

which is equivalent to z2(x) > z1(x).

Sparsity: The effect of rectification (20) in the subtractive normalization (21) is to produce a
number 0 ≤ m < M of classes k1, . . .km ∈ {1, . . .M} with zero probabilities Pk j(z) = 0, for which
the normalization level z(x) exceeds the confidence level fk j(x). As a direct consequence of the
monotonicity property, decreasing the margin parameter γ leads to a larger number m of classes
with zero probabilities. Therefore the margin parameter γ directly controls the sparsity m of the
probability estimates, assigning the probability mass to a smaller fraction of more confident classes
with larger fk(x) as γ is decreased. Besides the dependence on γ, the number of zero probability
classes m depends on the actual values of fk(x), and hence on the inputs x.

Margin: In the limit γ→ 0, the normalization factor z(x) → maxk fk(x). Thus as γ→ 0, margin
normalization acts as ‘winner-take-all’, m → M− 1, and strongly favors the highest class score.
Based on this principle a multi-class probability margin can be defined based on the multi-class
decision functions fk(x) as fk(x) = z(x)+ γ. The effect of the hyper-parameter γ can be seen on
a synthetic three-class classification problem and is shown in Figure 3. The hyper-parameter γ
determines the smoothness of the decision boundary and controls the location of the margin (shown
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Figure 3: Equal probability contour plots for a three-class problem with the GiniSVM solution
obtained for (a) γ= 8 and (b) γ= 0.08.

by ’white’ region). Similar to soft-margin SVM the location of the margin determines the sparsity
of the GiniSVM solution. This is illustrated in Figure 3(a)-(b). Shades in the figure represent equal
probability contours, and the extent of ’white’ regions around the decision boundaries illustrates
the margin of separation. It can be seen from Figure 3(a)-(b) that reduction in γ has the effect of
increasing the size of the margin, and thereby controls the sparsity of the GiniSVM solution.

Robustness: The subtractive margin normalization (20) and (21) is inherently robust to impulsive
noise, since components fk(z) in the kernel expansion smaller than a threshold z(x) (at most a
margin γ below the largest value) do not contribute to the output.2 In a physical implementation of
margin decoding, adjusting the level γ according to the noise floor leads to significant improvements
in decoding performance (Chakrabartty and Cauwenberghs, 2004). The robustness properties of
GiniSVM in relation to the threshold γ are further analyzed in Section 4.4.

4.2 GiniSVM Primal Reformulation

In this section we derive an equivalent primal reformulation of the GiniSVM dual (19), analogous
to the derivation in Section 3.1. As for the multi-class logistic primal (18), decision functions for
classes k = 1, ..,M are expressed in terms of a set of M hyperplanes fk(x) = wk˙Φ(x)+ bk. Given
a set of training vectors xi ∈ R D, i = 1, ..,N and its corresponding prior probability distributions
yik ∈ R : yik ≥ 0;∑M

k=1 yik = 1, GiniSVM in its primal reformulation of minimizes a regularization
factor proportional to the L2 norm of the weight vectorswk,k= 1, ..,M and a quadratic loss function

2. The subtractive normalization is insensitive only to negative impulsive noise in fk(z). Typically, a choice of kernel
indicating a match rather than a mismatch in feature space will avoid positive impulsive noise, since random error is
much more likely to activate further mismatch rather than an accidental match.
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lg according to

Lg =
1
2

M

∑
k=1

|wk|2+
N

∑
i=1

M

∑
k=1

lg(wk,bk,zi) (22)

with loss function lg(xi) for each training vector xi given by

lg(xi) =
γC
2

(
yik−

1
γ
[ fk(xi)− zi]+

)2
,

and where zi, i= 1, . . .N are free parameters entering the minimization of Lg, along with the hyper-
plane parameters wk and bk, k = 1, . . .M.

Proposition II: Denote the solution to the minimization of Lg as

(w∗
k ,b

∗
k ,z

∗
i ) = argminwk,bk,ziLg,

then

1. Pk(xi) = 1
γ [ f

∗
k (xi)− z∗i ]+ with f ∗k (xi) = w∗

k · xi + b∗k for a given data xi is a valid condi-
tional probability measure over classes k ∈ 1, ..,M, where zi performs the normalization
∑M
k=1Pk(xi) = 1.

2. The dual cost function corresponding to the primal cost function (22) is theGiniSVMdual (19).

The proof of the proposition is given in Appendix B.

4.3 Binary GiniSVM and Quadratic SVM

In one case of interest the multi-class GiniSVM solution simplifies to a binary class problem, where
the learner is provided with binary labels yi ∈ {−1,+1} representing class membership of a feature
vector xi ∈ T . Binary GiniSVM entails regression of a single probability P+1(x) = 1−P−1(x) as a
function of a single margin variable f (x) = 1

2( f+1(x)− f−1(x)). Elimination of the normalization
parameter z from the binary version of (20) constrained by (21) yields

P+1(x) =
[
f (x)
γ

+
1
2

]1

0
(23)

where [.]10 denotes a limiter function confining the probability to the [0,1] interval, [a]10 = [a]+− [a−
1]+. With the kernel expansion of f (x) expressed in reduced form3

f (x) =
N

∑
i=1

λiyiK(xi,x)+b, (24)

the GiniSVM dual objective function (19) and linear constraints (11) reduce to

Hb =min
λi

1
C

[
N

∑
i=1

N

∑
j=1

λiλ jyiy jK(xi,x j)−
N

∑
i=1

G(λi)

]
(25)

3. This choice of kernel expansion is consistent with binary soft-margin SVM and binary KLR, with identical dual
formulation under constraints, and with the only difference in the form of the dual potential function G(λ) (26).
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Figure 4: Graphical illustration of the relation between binary GiniSVM dual potential function G,
inference parameters λi, probability estimates Pi, and primal loss function lg.

under constraints
M

∑
i=1

λiyi = 0,

0≤ λi ≤C

with dual potential function

G(λ) = γC
λ
C

(1− λ
C

). (26)

The derivation is given in Appendix C.
Figure 4 graphically illustrates the relationship between the binary GiniSVM dual potential

functionG, inference parameters λi, probability estimates Pi, and primal reformulation loss function
lg. The dual potential is linked to the probability estimate through the Legendre transform ∇Ψ−1(.)
as described by Equations (5)-(7). Since the dual potential function is symmetric Ψ(P+1) =Ψ(1−
P+1) = Ψ(P−1), it follows that the Legendre transform ∇Ψ−1(.) is antisymmetric and hence the
probability estimates are centered around the discrimination boundary, P+1( f (x))= 1−P+1(− f (x))
consistent with the functional form (23). Symmetry in the dual potential function thus leads to
unbiased probability estimates that are centered around the discrimination boundary, P+1 = P−1 =
1/2 for f (x) = 0.

The Legendre transform also links the dual potential function to the primal reformulation cost
function. Note the relationship between the parameter γ scaling the dual potential function, and
the location of the margin in the loss function and probability estimate indicated by M in Figure 4.
Hence the parameter γ can be seen both to control the strength of the agnostic metric DI , and to
control a measure of margin in the probability regression. The regularization parameter C also
scales the dual potential function, but controls regularization by scaling the primal loss function by
the same factorC without affecting margin, as in soft-margin SVM classification.
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Figure 5: Primal and dual formulation of logistic regression, GiniSVM regression and soft-margin
SVM classification. (a): Loss function in the primal formulation. (b): Potential function
in the dual formulation. The GiniSVM loss function and potential function closely ap-
proximate those for logistic regression, while offering the sparseness of soft-margin SVM
classification. C = 1, and γ= 8log2 for GiniSVM and γ= 1 for logistic regression.

A direct comparison can be made between the binary GiniSVM formulation and other binary
classifiers by inspecting differences in their potential functions G(u), shown in Figure 5(b). The
GiniSVM potential function is symmetric around the center of the agnostic, uniform distribution
U = 1/2 where it reaches its maximum. The center corresponds to the origin of the margin variable
yi f (xi) in Figure 5(a) which represents the separating hyperplane. Figure 5(b) also shows the binary
KLR dual potential function given by Shannon’s binary entropy (Jaakkola and Haussler, 1999)

G(λ) = γC
(
λ
C
log(

λ
C

)+(1− λ
C

) log(1− λ
C

)
)

.

Like GiniSVM, the binary KLR dual potential function is symmetric with respect to the separating
hyperplane in Figure 5(a), and hence also produces unbiased estimates of conditional probabilities.
In contrast, the soft-margin SVM potential function G(λ) = λ is asymmetric with respect to the
separating hyperplane and produces biased or skewed conditional probability estimates. The binary
GiniSVM dual bears similarity to the quadratic SVM dual (Schölkopf et al., 1998), but the quadratic
SVM lacks the symmetry of the potential function around the separating hyperplane.

4.4 Relation to Robust Estimation and Logistic Regression

The GiniSVM dual (19) relates to the kernel logistic regression dual (15) through a lower-bound
on Shannon entropy. Using the inequality logx ≤ x−1,x ≥ 0, the Shannon entropy term Ge(P) =
−∑M

k=1Pk logPk is everywhere larger than the Gini entropy Ge(P)≥ 1−∑ikP2ik. This is illustrated in
Figure 5(b) which compares the potential functions for KLR and GiniSVM in the binary case. Both
expressions of entropy reach their maximum for a uniform distribution, P = 1

2 . It can be shown
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that the solution obtained by minimizing the GiniSVM dual Hg in Equation (19) is an over-estimate
of the solution obtained by minimizing kernel logistic dual He given by Equation (15). In fact we
found that initial iterations decreasing the cost Hg also resulted in a decrease of He with deviations
evident only near convergence. Thus the GiniSVM dual Hg can also be used for approximately
solving the kernel logistic dual He.

The loss function corresponding to binary GiniSVM can be visualized through Figure 5(a) and
compared with other primals. For binary-class GiniSVM, ‘margin’ is visualized as the extent over
which data points are asymptotically normally distributed. Using the notation for asymptotic nor-
mality in Huber (1964), the distribution of distance z from one side of the margin for data of one
class4 is modeled by

F(z) = (1− ε)N (z,σ)+ εH (z)

where N (.,σ) represents a normal distribution with zero mean and standard deviation σ, H (.) is
the unknown symmetrical contaminating distribution, and 0 ≤ ε ≤ 1. H (.) could, for instance,
represent impulsive noise contributing outliers to the distribution.

Huber (1964) showed that for this general form of F(z) the most robust estimator achieving
minimum asymptotic variance minimizes the following loss function:

g(z) =

{
1
2
z2
σ2 ; |z|≤ kσ

k |z|σ − 1
2σk

2 ; |z| > kσ
(27)

where in general the parameter k depends on ε. For GiniSVM, the distribution F(z) for each class
is assumed one-sided (z ≤ 0). In particular, the Huber loss function g(z) in (27) reduces to the
binary GiniSVM loss function lg(y f (x)), shown in Figure 4, for z≤ 0 with z= y f (x)−γ/2, kσ= γ,
and k/σ = C. Therefore the parameter γ in GiniSVM can be interpreted as a noise margin in the
Huber formulation, consistent with its interpretation as noise threshold in the reverse water-filling
procedure for margin normalization. As with soft-margin SVM, points that lie beyond the margin
(z > 0) are assumed correctly classified, and do not enter the loss function (g(z) ≡ 0). The binary
GiniSVM loss function is a special case of Huber loss used in quadratic SVMs (Schölkopf et al.,
1998) which directly generates normalized scores from the margin variable f (x).

5. GiniSVM Training Algorithm

GiniSVM training entails solving a quadratic optimization problem for which several standard pack-
ages and algorithms are available (Platt, 1999b; Cauwenberghs and Poggio, 2001; Osuna et al.,
1997). Most of these methods exploit the underlying structure in the classification problem to in-
corporate heuristics that considerably speed up the convergence of the training algorithm. In this
section we describe two algorithms for optimizing GiniSVM dual function (19). The first algorithm
uses a decomposition algorithm called sequential minimal optimization. The second algorithm uses
the polynomial nature of the dual resulting into a novel multiplicative update algorithm based on
growth transformation on probabilities.

4. The distributions for the two classes are assumed symmetrical, with margin on opposite sides, and distance z in
opposite directions.
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5.1 Sequential Minimal Optimization

Sequential minimal optimization (Platt, 1999b) is an extreme case of a decomposition based quadratic
program solver, where a smallest set of inference parameters is chosen each iteration, and optimized
subject to the linear constraints. The advantage of SMO is that it can be efficiently implemented
without resorting to QP packages, and it scales to very large data sets. In the case of the GiniSVM
dual function (19), at least four inference parameters need to be chosen to satisfy two sets of equality
constraints (11). A randomized version of SMO algorithm is described in Algorithm 2.

Algorithm 2 Randomized SMO algorithm
Require: Training data xi, i= 1, ..,N and labels yik, i= 1, ..,N,k= 1, ..,M
Ensure: Let λik = 0 for i= 1, ..,N,k= 1, ..,M.
repeat
• Randomly choose a set of four inference parameters λ11,λ12,λ21 and λ22.
• Update λ11,λ12,λ21 and λ22 such that the dual (19) is minimized subject to constraints (11).

until convergence

The derivation of the SMO update rule based on the choice of inference parameters is given in
Appendix D. Instead of random selection of working sets of inference parameters, heuristics based
on the structure of the classification problem can be used to speed up convergence (Platt, 1999b;
Keerthi et al., 2001). Standard QP algorithmic methods for SVM training such as caching and
shrinking besides chunking (Joachims, 1998) can be applied to further speed up convergence of
SMO training.

5.2 Growth Transformation on Generalized Polynomial Dual

In lieu of the inference parameters defined as λik =C[yik−Pk(xi)], the GiniSVM dual in (19) can be
expressed in terms of probabilities Pik = Pk(xi) as

H =
C
2

M

∑
k=1

[
N

∑
i=1

N

∑
j=1

Qi j [yik−Pik]
[
y jk−Pjk

]
+
γ
2

N

∑
i=1

P2ik

]
(28)

with linearity constraints (3) and (4) to ensure valid probabilities, Pik ≥ 0,∀i,k and ∑M
k=1Pik = 1,∀i.

For the remainder of the derivation the additional equality constraint (2) corresponding to the bias
term bwill be relaxed. Artifacts due to absence of the bias b can reduced by properly pre-processing
and centering the training data or by incorporating an additional input dimension in the kernel func-
tion. The optimization function (28) is a non-homogeneous polynomial with normalized probability
variables Pik,∀i and with possibly negative coefficients. We can directly apply results from Baum
and Sell (1968) and Gopalakrishnan et al. (1991) to optimize the dual (28).

Theorem 2 (Gopalakrishnan et al.) Let H({Pik}) a polynomial of degree d in variables Pik
in the domain D : Pik ≥ 0,∑qi

k=1Pik = 1, i= 1, ..,N,k = 1, ..,qi such that ∑qi
k=1Pik

∂H
∂Pik (Pik)/ += 0 ∀i.

Define an iterative map according to the following recursion

P̂ik ←
Pik( ∂H∂Pik (Pik)+Γ)

∑
qi
k=1Pik(

∂H
∂Pik (Pik)+Γ)

(29)

827



CHAKRABARTTY AND CAUWENBERGHS

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

 X

P 1
( X

)

Gini
KLR
SVM
Bayes

Figure 6: Probability estimates generated by GiniSVM, KLR and a calibrated soft-margin SVM for
one-dimensional synthetic training data.

where Γ ≥ Sd(N+ 1)d−1 with S being the smallest coefficient of the polynomial H({Pik}). Then
{P̂ik} ∈ D and H({P̂ik}) > H({Pik}).

The result can be applied for minimizing the polynomial dual corresponding to Equation (29).
Let P0ik = 1/M the initial value of the probability distribution for all i,k, and assume the kernel
matrix be bounded such that |Qi j|≤Qmax,∀i, j. Also, let Pmik the value of the probability distribution
at mth iteration then

Pm+1
ik ← Pmikδ

m
ik/

M

∑
k=1

Pmikδ
m
ik

where

δmik =C
N

∑
j=1

Qi j [Pmik − yik]+ γPmik +Γ

and Γ = C (N+ 1) Qmax. At each update the cost function (28) decreases, and the procedure is
repeated till convergence. Due to the multiplicative nature of the update some distribution variables
Pik can never reach unity or zero; however, in practice it approaches the limits within given margins
of precision similar to other implementations of SVM training algorithms. As with other SVM
optimization techniques, the speed of large margin growth transformation can be enhanced by using
caching and shrinking (Joachims, 1998), as values of the distribution Pik close to unity or zero almost
do not change.
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Figure 7: Comparison between conditional Bayes probability estimates and scores generated by
GiniSVM for 10-dimensional synthetic data with (a) γ= 0.8 and (b) γ= 0.08.

6. Experiments and Results

The first set of experiments were designed to characterize the probability scores generated by
GiniSVM for synthetic data. Figure 6 compares the scores generated by GiniSVM, KLR and
soft-margin SVM for a synthetic binary classification problem. The one dimensional training data
corresponding to two classes were generated using a bimodal Gaussian distribution. A histogram
generated by data points randomly sampling the distribution is shown in Figure 6 and the locations
of 500 data points used for training are denoted by ‘+’ along y = 1 and y = 0. For the soft-margin
SVM the scores were normalized using Platt’s calibration procedure (Platt, 1999a). The Figure 6
shows that the scores generated by KLR, GiniSVM and calibrated soft-margin SVM are similar and
approximate the sampled distribution which approximates the Bayesian optimum solution. It can be
seen that calibrated soft-margin SVM scores do not approximate the true conditional distribution at
the boundary of the distribution and would require additional parameterization for producing better
estimates.

Figures 7(b) and (c) compare GiniSVM scores with sampled conditional scores (Bayes esti-
mates) for synthetic data in 10 dimensions. The data were generated from a multi-variate Gaussian
distribution, out of which 100 data points were chosen for training. Figures 7(a) and (b) demon-
strate a monotonic relationship between GiniSVM scores and Bayes estimate of class conditional
probabilities. The sigmoidal relationship trend shown in the scatter plot 7(a) for γ= 0.8 is attributed
to linear approximation of the logistic model (14) by subtractive normalization model (20).

The performance ofGiniSVM based classifier was evaluated on three benchmark UCI databases
and compared with a baseline one-vs-all soft-margin SVM classification method
(Weston and Watkins, 1998; Crammer and Singer, 2000). Table 1 summarizes the results obtained
for the GiniSVM classifier. Data sets are labeled with attributes as (N,D,M) where N denotes its
total size, D denotes the dimension of the input vector and M denotes the total number of classes.
All training data were normalized between [−1,1] and a 10-fold cross validation procedure was
used to obtain average classification error rate and average number of support vectors. A Gaussian
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Iris Ecoli Glass
(150,3,4) (336,8,7) (214,6,13)

(γ,C) Err(%) nsv(%) (γ,C) Err(%) nsv(%) (γ,C) Err(%) nsv(%)
(0.8, 0.5) 3.2±2 40±1.6 (0.8,1) 14±3 60±5 (0.8,1) 30±4.7 95±1.2
(0.8, 5) 4.0±2 19±2.2 (0.8,10) 15±1.8 62±7 (0.8,10) 29±3 89±1.5
(0.08, 5) 4.8±2 14±3 (0.08,1) 12.7±2.7 63±7 (0.08,10) 32±6 82±2.6

Baseline one-vs-all SVM
(C = 4) 3.4±3 18±1 (C = 10) 14±4 61±6 ( C = 5) 30±2 81±3

Table 1: Performance of GiniSVM classifier on UCI database.

kernel K(x,y) = exp(− 1
2σ2 (x− y)

T (x− y)) was chosen for all experiments. The kernel parameter
σ and the regularization parameter C were chosen based on the performance of the baseline SVM
on a held-out set. The same kernel parameter was used for training GiniSVM classifiers. Table 1
shows the error rate (indicated by Err) and the number of support/error vectors (indicated by nsv)
obtained for different sets of hyper-parameters γ and C. The results indicate that the classification
performance of the GiniSVM based system is comparable to the baseline one-vs-all SVM system.
The results also illustrate the effect of γ on the sparseness of the solution which increases as γ→ 0,
as explained using the generalized dual framework in Section 4.

6.1 Face Detection and Effects of Parameter Mismatch

The advantage of GiniSVM over conventional soft-margin SVM is demonstrated by performing
sensitivity analysis on the kernel expansion at completion of training. For this experiment a face
detection task was chosen. The classifiers were trained using the face detection database available
through CBCL at MIT (Alvira and Rifkin, 2001) and their performance was evaluated on the stan-
dard CMU-MIT test set (Rowley et al., 1998). Training of the classifier was performed by utilizing
floating point precision arithmetic, whereas evaluation was performed after quantizing the support
vectors and inference parameters to 8,6 and 4 bits, and adding 1 LSB of uniform random noise.
For this experiment the parameterC was determined by optimizing the performance of the classifier
on a held-out data set. Receiver operating characteristics (ROC) were obtained by evaluating the
performance of the mismatched classifier on the test set. Figure 8 compares ROC curves for the
classifier trained with soft-margin SVM, vs. another trained identically with GiniSVM for a 2nd
order polynomial kernel. The results indicate that GiniSVM solution is more robust to mismatch
and precision errors in the inference parameters. In fact for this data set, the GiniSVM solution
quantized to 1 bit is more robust than an equivalent soft-margin SVM solution quantized to 4 bits.

6.2 Speaker Verification Experiments

The benefit of normalized scores generated by GiniSVM is demonstrated for the task of text-
independent speaker verification. The task entails verifying a particular speaker from possible
imposters without any knowledge of the text spoken. A conventional approach uses a classifier
to generate scores based on individual speech frames. The scores are integrated over the duration
of the utterance and compared against a threshold to accept or reject the speaker. A YOHO speaker
verification database was chosen for training and testing the speaker verification system. The YOHO
database consists of sets of 4 combination lock phrases spoken by 168 speakers. For each utterance
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Figure 8: ROC obtained for a face detection system trained with (a): soft-margin SVM and (b):
GiniSVM training algorithm, for a 2nd order polynomial kernel.

contiguous 25ms speech samples were extracted and Mel-frequency cepstral coefficient (MFCC)
features were extracted. The MFCC feature extraction procedure has been extensively studied in
the literature and details can be found in Rabiner and Juang (1993). A 39-dimensional feature vec-
tor was formed by concatenating the total energy in the speech frame, along with the Δ and Δ−Δ
MFCC coefficients.

For training, 100 speakers (speaker ID: 101-200) were chosen from the YOHO database and
MFCC features were extracted for all speech frames corresponding to each speaker. To reduce the
total number of training points, a K-means clustering was performed for each speaker to obtain 1000
cluster points for the correct speaker, and 100 cluster points for each imposter speaker. For each
speaker (101-200), this procedure was repeated to obtain a training set of 10,900 MFCC vectors.
Classifiers specific to each speaker were trained using a GiniSVM toolkit
(http://bach.ece.jhu.edu/svm/ginisvm). For testing utterances corresponding to 100 speakers were
chosen from the YOHO test set. Confidence scores generated by GiniSVM for each speech frame
were integrated over the duration of the utterance to obtain the final cumulative score. Thus each
speech frame is treated to be independent and their scores are integrated together without taking
into account any time-based correlations.

Figure 9 compares the ROC obtained by a soft-margin SVM based system with a GiniSVM
based verification system trained for one speaker (id: 148). The speaker with worst verification
performance among all was selected. Figure 9 shows that a GiniSVM based system exhibits bet-
ter verification performance compared to an equivalent soft-margin SVM. For each ROC (one per
speaker) an equal error rate (EER) parameter was computed. The EER metric is widely used for
quantifying performance of a biometric system and is defined as the error rate at which total false
positive rate is equal to false rejection rate. Thus, the lower the EER, the more robust is the perfor-
mance of a biometric system. For this experiments EERs corresponding to each speaker verification
system (101-200) were averaged to obtain an equivalent system EER. For a soft-margin SVM and
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Figure 9: Comparison of ROC obtained for a speaker verification system based on soft-margin
SVM and GiniSVM classification for speaker id: 148.

KLR, the average EER was computed to be equal to 0.36% and 0.35%, where as the EER for a
GiniSVM based system was found to 0.28%. This demonstrates that the normalization procedure
used by GiniSVM improves the accuracy of a text-independent speaker verification system. The
verification results are also comparable with other reported results on the YOHO data set (Campbell
et al., 2002).

7. Conclusions and Extensions

We introduced a general, maximum entropy based framework for constructing multi-class support
vector machines that generate normalized scores. In particular, GiniSVM produces direct estimates
of conditional probabilities that approximate kernel logistic regression (KLR) at reduced com-
putational cost, incurring quadratic programming under linear constraints as with standard SVM
training. Unlike a baseline soft-margin SVM based system with calibrated probabilities, GiniSVM
produces unbiased probability estimates owing to symmetry in the agnostic distance metric in the
maximum entropy formulation. The probability estimates are sparse, where the number of non-zero
probabilities is controlled by a single parameter γ, which acts as a margin in the normalization of
probability scores. The margin parameter γ is distinct from the regularization parameter C also
found in soft-margin SVM and KLR, even though both C and γ weigh the agnostic metric relative
to the prior metric in the maximum entropy primal cost function.

For efficient implementation of GiniSVM training, we presented a modified sequential mini-
mum optimization (SMO) algorithm, and a multiplicative update algorithm based on growth trans-
formation on probability functions in the dual. The performance of GiniSVM probability regression
and classification was evaluated on benchmark UCI databases in comparison with KLR and soft-
margin SVM. Results on face detection database indicated that the solution obtained by GiniSVM
training is more robust to mismatch in inference parameters, offering advantages in efficient, re-
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duced precision implementation of SVMs. GiniSVM also successfully trained on a task of text-
independent speaker verification, by integrating normalized probability scores over time. GiniSVM
further extends to forward decoding kernel machines for trainable dynamic probabilistic inference
on graphs (Chakrabartty and Cauwenberghs, 2002).

The maximum entropy framework for large-margin kernel probability regression introduced
for GiniSVM is general and can be extended to other classification and regression tasks based on
polynomial entropy. Of particular interest are formulations that use symmetric potential functions
like the Gini quadratic entropy function.
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Appendix A. Kernel Logistic Regression Primal and Dual Formulation

Proof of Proposition I: Define Le as the regularized log-likelihood/cross entropy for kernel logistic
regression (Wahba, 1998; Zhu and Hastie, 2002)

Le =
M

∑
k=1

1
2
||wk||2−C

N

∑
i=1

[
M

∑
k=1

yik fk(xi)− log(e f1(xi) + ...+ e fM(xi))] . (30)

First order conditions with respect to parameters wk and bk in fk(x) = wk.x+bk yield

wk = C
N

∑
i=1

[yik−
e fk(xi)

∑M
p e fp(xi)

] xi,

0 = C
N

∑
n

[yik−
e fk(xi)

∑M
p e fp(xi)

] . (31)

Denote

λnk =C[yik−
e fk(xi)

∑M
p e fp(xi)

] (32)

in the first-order conditions (31) to arrive at the kernel expansion (17) with linear constraint

fk(x) = ∑
n
λnkK(xi,x)+bk, (33)

0 = ∑
n
λnk .

Note also that ∑M
k=1λ

n
k = 0 by construction.

Legendre transformation of the primal objective function (30) in wk and bk leads to a dual
formulation directly in terms of the coefficients λnk (Jaakkola and Haussler, 1999). Define zn =
log(∑M

p e fp(xi)), and Qi j = K(xi,x j). Then (32) and (33) transform to

∑
l
Qnlλ

l
k− log[ynk−λnk/C]+bk− zn = 0
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which correspond to first-order conditions of the convex dual functional

He =
M

∑
k=1

[
1
2

N

∑
n

N

∑
l
λnkQnlλ

l
k +C

N

∑
n

(ynk−λnk/C) log(ynk−λnk/C)]

under constraints

∑
n
λnk = 0, (34)

∑
k
λnk = 0, (35)

λnk ≤ Cynk

where bk and zn serve as Lagrange parameters for the equality constraints (34) and (35).

Appendix B. GiniSVM Primal and Dual Formulation

Proof of Proposition II: The hinge function [.]+ can be appropriately modeled by introducing slack
variables µik ≥ 0 into the loss function such that

Lg(wk,bk,zi) = min
µik≥0

1
2∑k

|wk|2+
γC
2 ∑ik

(yik−
1
γ
[ fk(xi)− zi+µik])2+∑

ik
ηikµik

The first order conditions corresponding to the variables wk,bk,zi,µik are given by

∂F/∂wk = wk−C
N

∑
i=1

(
yik−

1
γ
[ fk(xi)− zi+µik]

)
xi = 0, (36)

∂F/∂bk = C
N

∑
i=1

(
yik−

1
γ
[ fk(xi)− zi+µik]

)
= 0, (37)

∂F/∂zi = C∑
k

(
yik−

1
γ
[ fk(xi)− zi+µik]

)
= 0 (38)

∂F/∂µik = ηik−
1
γ
[ fk(xi)− zi+µik] = 0 (39)

where ηik are the Lagrange multipliers corresponding to the inequality conditions µik ≥ 0. The
complementary slackness criterion (Bertsekas, 1995) for these constraints gives ηik ≥ 0 and ηikµik =
0 which along with criterion (39) gives

1
γ
[ fk(xi)− zi+µik] =

1
γ
[ fk(xi)− zi]+ ≥ 0 (40)

and, according to (38),

∑
k

1
γ
[ fk(xi)− zi]+ = 1

which proves the first part of the proposition.
To prove the second part of the proposition let

λik =Cyik−
1
γ
[ fk(xi)− zi+µik]). (41)
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Criteria (37), (38) and (40) lead to the constraints (11). Substitution in (36) yields an expansion of
wk which re-substituted in the primal yields the dual first-order condition

∑
j
Qi jλ

j
k +bk− zi+µik− γ(yik−λik/C) = 0.

Along with constraints (11) the corresponding dual reduces to the GiniSVM dual Hg (19), which
completes proof of the proposition.

Appendix C. Binary GiniSVM Dual Formulation

For a binary GiniSVM the dual cost function (19) becomes

Hg =
1
2C∑i j

λi+1λ
j
+1Qi j +

1
2C∑i j

λi−1λ
j
−1Qi j +

γ
2∑i

(yi,+1−λi+1/C)2+
γ
2∑i

(yi,−1−λi−1/C)2 (42)

and the constraints (11) are written as

λi−1 = −λi+1, (43)
N

∑
i=1

λi−1 =
N

∑
i=1

λi+1 = 0, (44)

λi+1 ≤Cyi,+1, (45)
λi−1 ≤Cyi,−1. (46)

Let λi = yiλi+1 where yi = (2yi,+1− 1). Then f (x) = 1
2( f+1(x)− f−1(x)) reduces to the kernel

expansion (24) with b = 1
2(b+1−b−1). For binary labels yi = ±1 the equality and inequality con-

straints (43)-(46) simplify to

N

∑
i=1

λiyi = 0,

0≤ λi ≤C.

Further substitution of λi+1 = yiλi, λi−1 = −yiλi, yi,+1 = 1
2(1+ yi) and yi,−1 = 1

2(1− yi) into the
binary GiniSVM dual cost function (42)

Hg =
1
C∑i j

λiλ jyiy jQi j− γ
N

∑
i=1

((
1
2

)2
−

(
1
2
− λi

C

)2)

which is equivalent to the form Hb (25).

Appendix D. GiniSVM Sequential Minimum Optimization

The following extends the original SMO algorithm (Platt, 1999b) from binary soft-margin SVM to
multi-class GiniSVM.

Let λi∗k ∈ C be a set of parameters in the constraint space C given by (11). Each iteration a
set of four inference parameters, indexed by class identifiers k1,k2 and data identifiers i1, i2, are
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jointly updated. Without loss of generality the parameters of this working set will be referred to as
λ1∗1 ,λ1∗2 ,λ2∗1 and λ2∗2 , where the indices correspond to k1,k2 and i1, i2. The aim of an SMO update
is to find a new estimate of these coefficients λ11,λ12,λ21 and λ22 such that the new set of coefficients
affect a net decrease in the objective function Hg (19), while still satisfying constraintsC (11). This
is ensured by

λ11+λ12 = ζ1 = λ1∗1 +λ1∗2
λ11+λ21 = ξ1 = λ1∗1 +λ2∗1
λ12+λ22 = ξ2 = λ1∗2 +λ2∗2
λ22+λ21 = ζ2 = λ2∗2 +λ2∗1 .

Only three of the above equalities need to be satisfied as the fourth one is automatically satisfied.
Decomposing the GiniSVM dual in terms of these four coefficients leads to

H =
1
2
Q11(λ11)

2+Q12λ11λ
2
1+

1
2
Q22(λ21)

2+λ11 ∑
j &=1,2

Q1 jλ j1+λ21 ∑
j &=1,2

Q2 jλ j1

+
1
2
Q11(λ12)

2+Q12λ12λ
2
2+

1
2
Q22(λ22)

2+λ12 ∑
j &=1,2

Q1 jλ j2+λ22 ∑
j &=1,2

Q2 jλ j2

+ γC(y11−λ11/C)2+ γC(y21−λ21/C)2+ γC(y12−λ12/C)2+ γC(y22−λ22/C)2.

Substituting

λ12 = ζ1−λ11,

λ21 = ξ1−λ11,

λ22 = ξ2−ζ1+λ11

and using the first order condition ∂H/∂λ11 = 0, optimal values for λ1∗1 are found as

λ1∗1 = λ11+(g12+g21−g11−g22)/2η (47)

where
glm = −2γylm+∑

j
Ql jλ

j
m+2γ/Cλlm

and
η= Q11+Q22−2Q12+4γ/C.

At each step of the update (47) the GiniSVM dual function decreases, and repeated sampling of
the four-point working set over the training set ensures proper convergence to the true minimum,
barring degeneracies in the cost function. At convergence the parameters bk,k= 1, ..,M are obtained
by solving a set of overcomplete equations for data points that lie in the interior of the boundary
constraints λik <Cyik. For the interior points denoted by its training index i the following condition
is satisfied

bk− zi+gik = 0

which is over-complete in parameters bk,k = 1, ..,M and zi, i = 1, .., I, where I denotes the total
number of training points within the interior of the constraints.
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Abstract
While the model parameters of a kernel machine are typically given by the solution of a convex op-
timisation problem, with a single global optimum, the selection of good values for the regularisation
and kernel parameters is much less straightforward. Fortunately the leave-one-out cross-validation
procedure can be performed or a least approximated very efficiently in closed form for a wide vari-
ety of kernel learning methods, providing a convenient means for model selection. Leave-one-out
cross-validation based estimates of performance, however, generally exhibit a relatively high vari-
ance and are therefore prone to over-fitting. In this paper, we investigate the novel use of Bayesian
regularisation at the second level of inference, adding a regularisation term to the model selection
criterion corresponding to a prior over the hyper-parameter values, where the additional regulari-
sation parameters are integrated out analytically. Results obtained on a suite of thirteen real-world
and synthetic benchmark data sets clearly demonstrate the benefit of this approach.
Keywords: model selection, kernel methods, Bayesian regularisation

1. Introduction

Leave-one-out cross-validation (Lachenbruch andMickey, 1968; Luntz and Brailovsky, 1969; Stone,
1974) provides the basis for computationally efficient model selection strategies for a variety of ker-
nel learning methods, including the Support Vector Machine (SVM) (Cortes and Vapnik, 1995;
Chapelle et al., 2002), Gaussian Process (GP) (Rasmussen and Williams, 2006; Sundararajan and
Keerthi, 2001), Least-Squares Support Vector Machine (LS-SVM) (Suykens and Vandewalle, 1999;
Cawley and Talbot, 2004), Kernel Fisher Discriminant (KFD) analysis (Mika et al., 1999; Caw-
ley and Talbot, 2003; Saadi et al., 2004; Bo et al., 2006) and Kernel Logistic Regression (KLR)
(Keerthi et al., 2005; Cawley and Talbot, 2007). These methods have proved highly successful
for kernel machines having only a small number of hyper-parameters to optimise, as demonstrated
by the set of models achieving the best average score in the WCCI-2006 performance prediction
challenge1 (Cawley, 2006; Guyon et al., 2006). Unfortunately, while leave-one-out cross-validation
estimators have been shown to be almost unbiased (Luntz and Brailovsky, 1969), they are known
to exhibit a relatively high variance (e.g., Kohavi, 1995). A kernel with many hyper-parameters, for
instance those used in Automatic Relevance Determination (ARD) (e.g., Rasmussen and Williams,
2006) or feature scaling methods (Chapelle et al., 2002; Bo et al., 2006), may provide sufficient

1. See http://www.modelselect.inf.ethz.ch/index.php.

c©2007 Gavin Cawley and Nicola Talbot.
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degrees of freedom to over-fit leave-one-out cross-validation based model selection criteria, result-
ing in performance inferior to that obtained using a less flexible kernel function. In this paper, we
investigate the novel use of regularisation (Tikhonov and Arsenin, 1977) of the hyper-parameters
in model selection in order to ameliorate the effects of the high variance of leave-one-out cross-
validation based selection criteria, and so improve predictive performance. The regularisation term
corresponds to a zero-mean Gaussian prior over the values of the kernel parameters, representing a
preference for smooth kernel functions, and hence a relatively simple classifier. The regularisation
parameters introduced in this step are integrated out analytically in the style of Buntine andWeigend
(1991), to provide a Bayesian model selection criterion that can be optimised in a straightforward
manner via, for example, scaled conjugate gradient descent (Williams, 1991).

The paper is structured as follows: The remainder of this section provides a brief overview of
the least-squares support vector machine, including the use of leave-one-out cross-validation based
model selection procedures, given in sufficient detail to ensure the reproducibility of the results.
Section 2 describes the use of Bayesian regularisation to prevent over-fitting at the second level
of inference, that is, model selection. Section 3 presents results obtained over a suite of thirteen
benchmark data sets, which demonstrate the utility of this approach. Section 4 provides discussion
of the results and suggests directions for further research. Finally, the work is summarised and
directions for further work are outlined in Section 5.

1.1 Least Squares Support Vector Machine

In the remainder of this section, we provide a brief overview of the least-squares support vector
machine (Suykens and Vandewalle, 1999) used as the testbed for the investigation of the role of
regularisation in the model selection process described in this study. Given training data,

D = {(xi, yi)}!
i=1 , where xi ∈ X ⊂ Rd and yi ∈ {−1,+1},

we seek to construct a linear discriminant, f (x) = φ(x) ·w+ b, in a feature space, F , defined by
a fixed transformation of the input space, φ : X → F . The parameters of the linear discriminant,
(w, b), are given by the minimiser of a regularised (Tikhonov and Arsenin, 1977) least-squares
training criterion,

L=
1
2
‖w‖2+

1
2µ

!

∑
i=1

[yi−φ(xi) ·w−b]2 , (1)

where µ is a regularisation parameter controlling the bias-variance trade-off (Geman et al., 1992).
Rather than specify the feature space directly, it is instead induced by a kernel function,K :X ×X →
R, which evaluates the inner-product between the projections of the data onto the feature space, F ,
that is, K (x,x′) = φ(x) · φ(x′). The interpretation of an inner-product in a fixed feature space is
valid for any Mercer kernel (Mercer, 1909), for which the Gram matrix, K = [ki j = K (xi,x j)]!i, j=1
is positive semi-definite, that is,

aTKa≥ 0, ∀ a ∈ R!, a )= 0.

The Gram matrix effectively encodes the spatial relationships between the projections of the data in
the feature space, F . A linear model can thus be implicitly constructed in the feature space using
only information contained in the Gram matrix, without explicitly evaluating the positions of the
data in the feature space via the transformation φ(·). Indeed, the representer theorem (Kimeldorf
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and Wahba, 1971) shows that the solution of the optimisation problem (1) can be written as an
expansion over the training patterns,

w=
!

∑
i=1

αiφ(xi) =⇒ f (x) =
!

∑
i=1

αiK (xi,x)+b.

The advantage of the “kernel trick” then becomes apparent; a linear model can be constructed in an
extremely rich, high- (possibly infinite-) dimensional feature space, using only finite-dimensional
quantities, such as the Gram matrix, K. The “kernel trick” also allows the construction of statistical
models that operate directly on structured data, for instance strings, trees and graphs, leading to the
current interest in kernel learning methods in computational biology (Schölkopf et al., 2004) and
text-processing (Joachims, 2002). The Radial Basis Function (RBF) kernel,

K (x,x′) = exp
{
−η‖x− x′‖2

}

is commonly encountered in practical applications of kernel learning methods, here η is a kernel
parameter, controlling the sensitivity of the kernel function. The feature space for the radial basis
function kernel consists of the positive orthant of an infinite-dimensional unit hyper-sphere (e.g.,
Shawe-Taylor and Cristianini, 2004). The Gram matrix for the radial basis function kernel is thus
of full rank (Micchelli, 1986), and so the kernel model is able to form an arbitrary shattering of the
data.

1.1.1 A DUAL TRAINING ALGORITHM

The basic training algorithm for the least-squares support vector machine (Suykens and Vandewalle,
1999) views the regularised loss function (1) as a constrained minimisation problem:

min
w,b,εi

1
2
‖w‖2+

1
2µ

!

∑
i=1

ε2i subject to εi = yi−w ·φ(xi)−b.

The primal Lagrangian for this constrained optimisation problem gives the unconstrained minimi-
sation problem defined by the following regularised loss function,

L =
1
2
‖w‖2+

1
2µ

!

∑
i=1

ε2i −
!

∑
i=1

αi {w ·φ(xi)+b+ εi− yi} ,

where α = (α1,α2, . . . ,α!) ∈ R! is a vector of Lagrange multipliers. The optimality conditions for
this problem can be expressed as follows:

∂L
∂w

= 0 =⇒ w=
!

∑
i=1

αiφ(xi), (2)

∂L
∂b

= 0 =⇒
!

∑
i=1

αi = 0, (3)

∂L
∂εi

= 0 =⇒ αi =
εi
µ

, ∀i ∈ {1,2, . . . ,!}, (4)

∂L
∂αi

= 0 =⇒ w ·φ(xi)+b+ εi− yi = 0, ∀ i ∈ {1,2, . . . ,!}. (5)
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Using (2) and (4) to eliminate w and ε= (ε1,ε2, . . . ,ε!), from (5), we find that
!

∑
j=1

α jφ(x j) ·φ(xi)+b+µαi = yi ∀ i ∈ {1,2, . . . ,!}. (6)

Noting that K (x,x′) = φ(x) ·φ(x′), the system of linear equations, (6) and (3), can be written more
concisely in matrix form as [

K+µI 1
1T 0

][
α
b

]
=

[
y
0

]
,

where K = [ki j = K (xi,x j)]!i, j=1, I is the !×! identity matrix and 1 is a column vector of ! ones. The
optimal parameters for the model of the conditional mean can then be obtained with a computational
complexity of O(!3) operations, using direct methods, such as Cholesky decomposition (Golub and
Van Loan, 1996).

1.1.2 EFFICIENT IMPLEMENTATION VIA CHOLESKY DECOMPOSITION

A more efficient training algorithm can be obtained, taking advantage of the special structure of the
system of linear equations (Suykens et al., 2002). The system of linear equations to be solved in
fitting a least-squares support vector machine is given by,

[
M 1
1T 0

][
α
b

]
=

[
y
0

]
, (7)

whereM = K+µI. Unfortunately the matrix on the left-hand side is not positive definite, and so we
cannot solve this system of linear equations directly using the Cholesky decomposition. However,
the first row of (7) can be re-written as

M
(
α+M−11b

)
= y. (8)

Rearranging (8), we see that α = M−1 (y−1b), using this result to eliminate α, the second row of
(7) can be written as

1TM−11b= 1TM−1y.

The system of linear equations can then be re-written as
[
M 0
0T 1TM−11

][
α+M−11b

b

]
=

[
y

1TM−1y

]
. (9)

In this case, the matrix on the left hand side is positive-definite, as M = K+λI is positive-definite
and 1TM−11 is positive since the inverse of a positive definite matrix is also positive definite. The
revised system of linear equations (9) can be solved as follows: First solve

Mρ= 1 and Mν= y, (10)

which may be performed efficiently using the Cholesky factorisation of M. The model parameters
of the least-squares support vector machine are then given by

b=
1Tν
1Tρ

and α= ν−ρb.

The two systems of linear equations (10) can be solved efficiently using the Cholesky decomposition
ofM = RTR, where R is the upper triangular Cholesky factor ofM.
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1.2 Leave-One-Out Cross-Validation

Cross-validation (Stone, 1974) is commonly used to obtain a reliable estimate of the test error for
performance estimation or for use as a model selection criterion. The most common form, k-fold
cross-validation, partitions the available data into k disjoint subsets. In each iteration a classifier
is trained on a different combination of k− 1 subsets and the unused subset is used to estimate
the test error rate. The k-fold cross-validation estimate of the test error rate is then simply the av-
erage of the test error rate observed in each of the k iterations, or folds. The most extreme form
of cross-validation, where k = ! such that the test partition in each fold consists of only a sin-
gle pattern, is known as leave-one-out cross-validation (Lachenbruch and Mickey, 1968) and has
been shown to provide an almost unbiased estimate of the test error rate (Luntz and Brailovsky,
1969). Leave-one-out cross-validation is however computationally expensive, in the case of the
least-squares support vector machine a naı̈ve implementation having a complexity of O(!4) opera-
tions. Leave-one-out cross-validation is therefore normally only used in circumstances where the
available data are extremely scarce such that the computational expense is no longer prohibitive.
In this case the inherently high variance of the leave-one-out estimator (Kohavi, 1995) is offset by
the minimal decrease in the size of the training set in each fold, and so may provide a more reliable
estimate of generalisation performance than conventional k-fold cross-validation. Fortunately leave-
one-out cross-validation of least-squares support vector machines can be performed in closed form
with a computational complexity of only O(!3) operations (Cawley and Talbot, 2004). Leave-one-
out cross-validation can then be used in medium to large scale applications, where there may be a
few thousand data-points, although the relatively high variance of this estimator remains potentially
problematic.

1.2.1 VIRTUAL LEAVE-ONE-OUT CROSS-VALIDATION

The optimal values of the parameters of a Least-Squares Support Vector Machine are given by the
solution of a system of linear equations:

[
K+µI 1
1T 0

][
α
b

]
=

[
y
0

]
. (11)

The matrix on the left-hand side of (11) can be decomposed into block-matrix representation, as
follows: [

K+µI 1
1T 0

]
=

[
c11 cT1
c1 C1

]
=C.

Let [α(−i);b(−i)] represent the parameters of the least-squares support vector machine during the ith
iteration of the leave-one-out cross-validation procedure, then in the first iteration, in which the first
training pattern is excluded, [

α(−1)

b(−1)

]
=C−1

1 [y2, . . . ,y!,0]T .

The leave-one-out prediction for the first training pattern is then given by

ŷ(−1)1 = cT1

[
α(−1)

b(−1)

]
= cT1C

−1
1 [y2, . . . ,y!,0]T .

845



CAWLEY AND TALBOT

Considering the last ! equations in the system of linear equations (11), it is clear that [c1 C1]
[α1, . . . ,α!,b]T = [y2, . . . ,y!,0]T , and so

ŷ(−1)1 = cT1C
−1
1 [c1 C1]

[
αT ,b

]T = cT1C
−1
1 c1α1+ c1 [α2, . . . ,α!,b]T .

Noting, from the first equation in the system of linear equations (11), that y1 = c11α1+
cT1 [α2, . . . ,α!,b]T , thus

ŷ(−1)1 = y1−α1
(
c11− cT1C

−1
1 c1

)
.

Finally, via the block matrix inversion lemma,
[
c11 cT1
c1 C1

]−1
=

[
κ−1 −κ−1c1C−1

1
C−1
1 +κ−1C−1

1 cT1 c1C
−1
1 −κ−1C−1

1 cT1

]
,

where κ= c11−cT1C
−1
1 c, and noting that the system of linear equations (11) is insensitive to permu-

tations of the ordering of the equations and of the unknowns, we have that,

yi− ŷ(−i)i =
αi
C−1
ii

. (12)

This means that, assuming the system of linear equations (11) is solved via explicit inversion of C,
a leave-one-out cross-validation estimate of an appropriate model selection criterion can be evalu-
ated using information already available a by-product of training the least-squares support vector
machine on the entire data set (cf., Sundararajan and Keerthi, 2001).

1.2.2 EFFICIENT IMPLEMENTATION VIA CHOLESKY FACTORISATION

The leave-one-out cross-validation behaviour of the least-squares support vector machine is de-
scribed by (12). The coefficients of the kernel expansion, α, can be found efficiently, via Cholesky
factorisation, as described in Section 1.1.2. However we must also determine the diagonal elements
ofC−1 in an efficient manner. Using the block matrix inversion formula, we obtain

C−1 =
[
M 1
1T 0

]−1
=

[
M−1+M−11S−1M 1

TM−1 −M−11S−1M
−S−1M 1TM−1 S−1M

]

where M = K+µI and SM = −1TM−11 = −1Tη is the Schur complement of M. The inverse of
the positive definite matrix, M, can be computed efficiently from its Cholesky factorisation, via the
SYMINV algorithm (Seaks, 1972), for example using the LAPACK routine DTRTRI (Anderson et al.,
1999). Let R = [ri j]!i, j=1 be the lower triangular Cholesky factor of the positive definite matrix M,
such thatM = RRT . Furthermore, let

S= [si j]!i, j=1 = R−1, where sii =
1
rii

and si j = −sii
i−1

∑
k=1

riksk j,

represent the (lower triangular) inverse of the Cholesky factor. The inverse of M is then given by
M−1 = STS. In the case of efficient leave-one-out cross-validation of least-squares support vector
machines, we are principally concerned only with the diagonal elements ofM−1, given by

M−1
ii =

i

∑
j=1

s2i j =⇒ C−1
ii =

i

∑
j=1

s2i j +
ρ2i
SM

∀ i ∈ {1,2, . . . ,!}.
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The computational complexity of the basic training algorithm is O(!3) operations, being dom-
inated by the evaluation of the Cholesky factor. However, the computational complexity of the
analytic leave-one-out cross-validation procedure, when performed as a by-product of the training
algorithm, is onlyO(!) operations. The computational expense of the leave-one-out cross-validation
procedure therefore becomes increasingly negligible as the training set becomes larger.

1.3 Model Selection

The virtual leave-one-out cross-validation procedure described in the previous section provides the
basis for a simple automated model selection strategy for the least-squares support vector machine.
Perhaps the most basic model selection criterion is provided by the Predicted REsidual Sum of
Squares (PRESS) criterion (Allen, 1974), which is simply the leave-one-out estimate of the sum-of-
squares error,

Q(θ) =
1
2

!

∑
i=1

[
yi− ŷ(−i)i

]2
.

A minimum of the model selection criterion is often found via a simple grid-search procedure in
the majority of practical applications of kernel learning methods. However, this is rarely necessary
and often highly inefficient as a grid-search spends a large amount of time investigating hyper-
parameter values outside the neighbourhood of the global optimum. A more efficient approach uses
the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), as implemented by the fminsearch
function of the MATLAB optimisation toolbox. An alternative easily implemented approach uses
conjugate gradient methods, with the required gradient information estimated by the method of finite
differences, and implemented by the fminunc function from the MATLAB optimisation toolbox.
In this study however, we use scaled conjugate gradient descent (Williams, 1991), with the required
gradient information evaluated analytically, as this is approximately twice as efficient.

1.3.1 PARTIAL DERIVATIVES OF THE PRESS MODEL SELECTION CRITERION

Let θ = {θ1, . . . ,θn} = {λ,η1, . . . ,ηd} represent the vector of hyper-parameters for a least-squares
support vector machine, where η1, . . . ,ηd represent the kernel parameters. The PRESS statistic
(Allen, 1974) can be written as

Q(θ) =
1
2

!

∑
i=1

[
r(−i)i

]2
, where r(−i)i = yi− ŷ(−i)i =

αi
C−1
ii

.

Using the chain rule, the partial derivative of the PRESS statistic, with respect to an individual
hyper-parameter, θ j, is given by,

∂Q(θ)
∂θ j

=
!

∑
i=1

∂Q(θ)

∂r(−i)i

∂r(−i)i
∂θ j

,

where
∂Q(θ)

∂r(−i)i

= r(−i)i =
αi
C−1
ii

and
∂r(−i)i
∂θ j

=
∂αi
∂θ j

1
C−1
ii

− αi
[
C−1
ii

]2
∂C−1

ii
∂θ j

,

such that
∂Q(θ)
∂θ j

=
!

∑
i=1

αi
C−1
ii

{
∂αi
∂θ j

1
C−1
ii

− αi
[
C−1
ii

]2
∂C−1

ii
∂θ j

}
.
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We begin by deriving the partial derivatives of the model parameters,
[
αT b

]T , with respect to the
hyper-parameter θ j. The model parameters are given by the solution of a system of linear equations,
such that [

αT b
]T =C−1 [yT 0

]T
.

Using the following identity for the partial derivatives of the inverse of a matrix,

∂C−1

∂θ j
= −C−1 ∂C

∂θ j
C−1, (13)

we obtain,
∂
[
αT b

]T

∂θ j
= −C−1 ∂C

∂θ j
C−1 [yT 0

]
= −C−1 ∂C

∂θ j

[
αT b

]T
.

Note the computational complexity of evaluating the partial derivatives of the model parameters
is O(!2), as only two successive matrix-vector products are required. The partial derivatives of the
diagonal elements ofC−1 can be found using the inverse matrix derivative identity (13). For a kernel
parameter, ∂C/∂η j will generally be fully dense, and so the computational complexity of evaluating
the diagonal elements of ∂C−1/∂η j will be O(!3) operations. If, on the other hand, we consider the
regularisation parameter, µ, we have that

∂C
∂µ

=
[

I 0
0T 0

]
,

and so the computation of the partial derivatives of the model parameters, with respect to the regu-
larisation parameter, is slightly simplified,

∂
[
αT b

]T

∂µ
= −C−1 [αT b

]T
.

More importantly, as ∂C/∂µ is diagonal, the diagonal elements of (13) can be evaluated with a
computational complexity of only O(!2) operations. This suggests that it may be more efficient
to adopt different strategies for optimising the regularisation parameter, µ, and the vector of kernel
parameters, η, (cf., Saadi et al., 2004). For a kernel parameter, η j, the partial derivatives of C with
respect to η j are given by the partial derivatives of the kernel matrix, that is,

∂C
∂η j

=
[
∂K/∂η j 0
0T 0

]
.

For the spherical radial basis function kernel, used in this study, the partial derivative with respect
to the kernel parameter is given by

∂K (x,x′)
∂η

= −K (x,x′)‖x− x′‖2.

Finally, since the regularisation parameter, µ, and the scale parameter of the radial basis function
kernel are strictly positive quantities, in order to permit the use of an unconstrained optimisation
procedure, we adopt the parameterisation θ̃ j = log2 θ j, such that

∂Q(θ)
∂θ̃ j

=
∂Q(θ)
∂θ j

∂θ j

∂θ̃ j
where

∂θ j

∂θ̃ j
= θ j log2.
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1.3.2 AUTOMATIC RELEVANCE DETERMINATION

Automatic Relevance Determination (ARD) (e.g., Rasmussen and Williams, 2006), also known as
feature scaling (Chapelle et al., 2002; Bo et al., 2006), aims to identify informative input features as
a natural consequence of optimising the model selection criterion. This can be most easily achieved
using an elliptical radial basis function kernel,

K (x,x′) = exp

{
−

d

∑
i=1

ηi[xi− x′i]
2

}
,

that incorporates individual scaling factors for each input dimension. The partial derivatives with
respect to the kernel parameters are then given by,

∂K (x,x′)
∂ηi

= −K (x,x′)[xi− x′i]
2.

Generalisation performance is likely to be enhanced if irrelevant features are down-weighted. It is
therefore hoped that minimising the model selection criterion will lead to very small values for the
scaling factors associated with redundant input features, allowing them to be identified and pruned
from the model.

2. Bayesian Regularisation in Model Selection

In order to overcome the observed over-fitting in model selection using leave-one-out cross-validation
based methods, we propose to add a regularisation term (Tikhonov and Arsenin, 1977) to the model
selection criterion, which penalises solutions where the kernel parameters take on unduly large val-
ues. The regularised model selection criterion is then given by

M(θ) = ζQ(θ)+ξΩ(θ), (14)

where ξ and ζ are additional regularisation parameters, Q(θ) is the model selection criterion, in this
case the PRESS statistic and Ω(θ) is a regularisation term,

Q(θ) =
1
2

!

∑
i=1

[
yi− ŷ(−i)i

]2
and Ω(θ) =

1
2

d

∑
i=1

η2i .

In this study we have left the regularisation parameter, µ, unregularised. However, we have now
introduced two further regularisation parameters ξ and ζ for which good values must also be found.
This problem may be solved by taking a Bayesian approach and adopting an ignorance prior and
integrating out the additional regularisation parameters analytically in the style of Buntine and
Weigend (1991). Adapting the approach taken by Williams (1995), the regularised model selec-
tion criterion (14) can be interpreted as the posterior density in the space of the hyper-parameters,

P(θ|D) ∝ P(D|θ)P(θ),

by taking the negative logarithm and neglecting additive constants. Here P(D|θ) represents the
likelihood with respect to the hyper-parameters and P(θ) represents our prior beliefs regarding the
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hyper-parameters, in this case that they should have a small magnitude, corresponding to a relatively
simple model. These quantities can be expressed as

P(D|θ) = Z−1
Q exp{−ζQ(θ)} and P(θ) = Z−1

Ω exp{−ξΩ(θ)}

where ZQ and ZΩ are the appropriate normalising constants. Assuming the data represent an i.i.d.
sample, the likelihood in this case is Gaussian,

P(D|θ) =
!

∏
i=1

1√
2πσ

exp





−

[
yi− ŷ(−i)i

]2

2σ2





where ζ=

1
σ2

=⇒ ZQ =
(
2π
ζ

)!/2
.

Likewise, the prior is a Gaussian, centred on the origin,

P(θ) =
d

∏
i=1

1√
2π/ξ

exp
{
−ξ
2
η2i

}
such that ZΩ =

(
2π
ξ

)d/2
.

Minimising (14) is thus equivalent to maximising the posterior density with respect to the hyper-
parameters. Note that the use of a prior over the hyper-parameters is in accordance with normal
Bayesian practice and has been investigated in the case of Gaussian Process classifiers by Williams
and Barber (1998). The combination of frequentist and Bayesian approaches at the first and sec-
ond levels of inference is however somewhat unusual. The marginal likelihood is dependent on
the assumptions of the model, which may not be completely appropriate. Cross-validation based
procedures may therefore be more robust in the case of model mis-specification (Wahba, 1990). It
seems reasonable for the model to be less sensitive to assumptions at the second level of inference
than the first, and so the proposed approach represents a pragmatic combination of techniques.

2.1 Elimination of Second Level Regularisation Parameters ξ and ζ

Under the evidence framework proposed by MacKay (1992a,b,c) the hyper-parameters ξ and ζ are
determined by maximising the marginal likelihood, also known as the Bayesian evidence for the
model. In this study, however we opt to integrate out the hyper-parameters analytically, extending
the work by Buntine and Weigend (1991) and Williams (1995) to consider Bayesian regularisation
at the second level of inference, namely the selection of good values for the hyper-parameters. We
begin with the prior over the hyper-parameters, which depends on ξ,

P(θ|ξ) = ZΩ(ξ)−1 exp{−ξΩ} .

The regularisation parameter ξ may then be integrated out analytically using a suitable prior, P(ξ),

P(θ) =
Z
P(θ|ξ)P(ξ)dξ.

The improper Jeffreys’ prior, P(ξ)∝ 1/ξ is an appropriate ignorance prior in this case as ξ is a scale
parameter, noting that ξ is strictly positive,

p(θ) =
1

(2π)d/2

Z ∞

0
ξd/2−1 exp{−ξΩ}dξ.
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Using the Gamma integral
R ∞
0 xν−1e−µxdx=Γ(ν)/µν (Gradshteyn and Ryzhic, 1994, equation 3.384),

we obtain
p(θ) =

1
(2π)d/2

Γ(d/2)
Ωd/2 =⇒ − log p(θ) ∝ d

2
logΩ.

Finally, adopting a similar procedure to eliminate ζ, we obtain a revised model selection criterion
with Bayesian regularisation,

L=
!

2
logQ(θ)+

d
2
logΩ(θ). (15)

in which the regularisation parameters have been eliminated. As before, this criterion can be opti-
mised via standard methods, such as the Nelder-Mead simplex algorithm (Nelder and Mead, 1965)
or scaled conjugate gradient descent (Williams, 1991). The partial derivatives of the proposed
Bayesian model selection criterion are given by

∂L
∂θi

=
!

2Q(θ)
∂Q(θ)
∂θi

+
d

2Ω(θ)
∂Ω(θ)
∂θi

and
∂Ω(θ)
∂ηi

= ηi.

The additional computational expense involved in Bayesian regularisation of the model selection
criterion is only O(d) operations, and is extremely small in comparison with the O(!3) operations
involved in obtaining the leave-one-out error (including the cost of training the model on the entire
data set). Per iteration of the model selection process, the cost of the Bayesian regularisation is
therefore minimal. There seems little reason to suppose that the regularisation will have an adverse
effect on convergence, and this seems to be the case in practice.

2.2 Relationship with the Evidence Framework

Under the evidence framework of MacKay (1992a,b,c) the regularisation parameters, ξ and ζ, are
selected so as to maximise the marginal likelihood, also known as the Bayesian evidence, for the
model. The log-evidence is given by

logP(D) = −ξΩ(θ)−ζQ(θ)− 1
2
log |A|+ d

2
logξ+

!

2
logζ− !

2
log{2π} ,

where A is the Hessian of the regularised model selection criterion (14) with respect to the hyper-
parameters, θ. Setting the partial derivatives of the log evidence with respect to the regularisation
parameters, ξ and ζ, equal to zero, we obtain the familiar update formulae,

ξnew =
γ

2Ω(θ)
and ζnew =

!− γ
2Q(θ)

,

where γ is the number of well defined hyper-parameters, that is, the hyper-parameters for which the
optimal value is primarily determined by the log-likelihood term,Q(θ) rather than by the regulariser,
Ω(θ). In the case of the L2 regularisation term, corresponding to a Gaussian prior, the number of
well determined hyper-parameters is given by

γ=
n

∑
j=1

λ j
λ j +ξ

where, λi, . . . ,λn represent the eigenvalues of the Hessian of the unregularised model selection cri-
terion, Q(θ) with respect to the kernel parameters. Comparing the partial derivatives of the reg-
ularised model selection criterion (14) with those of the Bayesian criterion (15), reveals that the
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Bayesian regularisation scheme is equivalent to optimising the regularised model selection criterion
(14) assuming that the regularisation parameters, ξ and ζ, are continuously updated according to the
following update rules,

ξeff =
d

2Ω(θ)
and ζeff =

!

2Q(θ)
.

This exactly corresponds to the “cheap and cheerful” approximation of the evidence framework sug-
gested by MacKay (1994), which assumes that all of the hyper-parameters are well-determined and
that the number of hyper-parameters is small in relation to the number of training patterns. Since
γ≤ d, it seems self evident that the proposed Bayesian regularisation scheme will be prone to a de-
gree of under-fitting, especially in the case of a feature scaling kernel with many redundant features.
The theoretical and practical pros and cons of the integrate-out approach and the evidence frame-
work are discussed in some detail by MacKay (1994) and Bishop (1995) and references therein.
However, the integrate-out approach does not require the evaluation of the Hessian matrix of the
original selection criterion, Q(θ), which is likely to prove computationally prohibitive.

3. Results

In this section, we present experimental results demonstrating the benefits of the proposed model
selection strategy incorporating Bayesian regularisation to overcome the inherent high variance of
leave-one-out cross-validation based selection criteria. Table 2 shows a comparison of the error
rates of least-squares support vector machines, using model selection procedures with, and without,
Bayesian regularisation, (LS-SVM and LS-SVM-BR respectively) over the suite of thirteen pub-
lic domain benchmark data sets used in the study by Mika et al. (2000). Results obtained using a
Gaussian process classifier (Rasmussen and Williams, 2006), based on the expectation propagation
method, are also provided for comparison (EP-GPC). The same set of 100 random partitions of the
data (20 in the case of the larger image and splice benchmarks) to form training and test sets used
in that study are also used here. In each case, model selection is performed independently for each
realisation of the data set, such that the standard errors reflect the variability of both the training
algorithm and the model selection procedure with changes in the sampling of the data. Both con-
ventional spherical and elliptical radial basis kernels are used for all kernel learning methods, so
that the effectiveness of each algorithm for automatic relevance determination can be assessed. The
use of multiple training/test partitions allows an estimate of the statistical significance of differences
in performance between algorithms to be computed. Let x̂ and ŷ represent the means of the perfor-
mance statistic for a pair of competing algorithms, and ex and ey the corresponding standard errors,
then the z statistic is computed as

z=
ŷ− x̂√
e2x + e2y

.

The z-score can then be converted to a significance level via the normal cumulative distribution
function, such that z = 1.64 corresponds to a 95% significance level. All statements of statistical
significance in the remainder of this section refer to a 95% level of significance.

3.1 Performance of Models Based on the Spherical RBF Kernel

The results shown in the first three data columns of Table 2 show the performance of LS-SVM,
LS-SVM-BR and EP-ARD models based on the spherical Gaussian kernel. The performance of

852



BAYESIAN REGULARISATION IN MODEL SELECTION

Data Set Training Testing Number of Input
Patterns Patterns Replications Features

Banana 400 4900 100 2
Breast cancer 200 77 100 9
Diabetis 468 300 100 8
Flare solar 666 400 100 9
German 700 300 100 20
Heart 170 100 100 13
Image 1300 1010 20 18
Ringnorm 400 7000 100 20
Splice 1000 2175 20 60
Thyroid 140 75 100 5
Titanic 150 2051 100 3
Twonorm 400 7000 100 20
Waveform 400 4600 100 21

Table 1: Details of data sets used in empirical comparison.

LS-SVM models with and without Bayesian regularisation are very similar, with neither model
proving significantly better than the other on any of the data sets. This seems reasonable given
that only two hyper-parameters are optimised during model selection and so there is little scope for
over-fitting the PRESS model selection criterion and the regularisation term will have little effect.
The LS-SVM model with Bayesian regularisation is significantly out-performed by the Gaussian
Process classifier on one benchmark banana, but performs significantly better on a further four
(ringnorm, splice, twonorm, waveform). Demšar (2006) recommends the use of the Wilcoxon
signed rank test for assessing the statistical significance of differences in performance over multiple
data sets. According to this test, neither the LSSVM-BR nor the EP-PGC is statistically superior at
the 95% level of significance.

3.2 Performance of Models Based on the Elliptical RBF Kernel

The performances of LS-SVM, LS-SVM-BR and EP-GPC models based on the elliptical Gaussian
kernel, which includes a separate scale parameter for each input feature, are shown in the last three
columns of Table 2. Before evaluating the effects of Bayesian regularisation in model selection it is
worth noting that the use of elliptical RBF kernels does not generally improve performance. For the
LS-SVM, the elliptical kernel produces significantly better results on only two benchmarks (image
and splice) and significantly worse results on a further eight (banana, breast cancer, diabetis,
german, heart, ringnorm, twonorm, waveform), with the degradation in performance being very
large in some cases (e.g., heart). This seems likely to be a result of the additional degrees of
freedom involved in the model selection process, allowing over-fitting of the PRESSmodel selection
criterion as a result of its inherently high variance. Note that fully Bayesian approaches, such as
the Gaussian Process Classifier, are also unable to reliably select kernel parameters for the elliptical
RBF kernel. The elliptical kernel is significantly better on only three benchmarks (flare solar,

853



C
A
W
L
E
Y
A
N
D
TA

L
B
O
T

Data Set
Radial Basis Function Automatic Relevance Determination

LSSVM LSSVM-BR EP-GPC LSSVM LSSVM-BR EP-GPC

Banana 10.60 ± 0.052 10.59 ± 0.050 10.41 ± 0.046 10.79 ± 0.072 10.73 ± 0.070 10.46 ± 0.049

Breast cancer 26.73 ± 0.466 27.08 ± 0.494 26.52 ± 0.489 29.08 ± 0.415 27.81 ± 0.432 27.97 ± 0.493

Diabetes 23.34 ± 0.166 23.14 ± 0.166 23.28 ± 0.182 24.35 ± 0.194 23.42 ± 0.177 23.86 ± 0.193

Flare solar 34.22 ± 0.169 34.07 ± 0.171 34.20 ± 0.175 34.39 ± 0.194 33.61 ± 0.151 33.58 ± 0.182

German 23.55 ± 0.216 23.59 ± 0.216 23.36 ± 0.211 26.10 ± 0.261 23.88 ± 0.217 23.77 ± 0.221

Heart 16.64 ± 0.358 16.19 ± 0.348 16.65 ± 0.287 23.65 ± 0.355 17.68 ± 0.623 19.68 ± 0.366

Image 3.00 ± 0.158 2.90 ± 0.154 2.80 ± 0.123 1.96 ± 0.115 2.00 ± 0.113 2.16 ± 0.068

Ringnorm 1.61 ± 0.015 1.61 ± 0.015 4.41 ± 0.064 2.11 ± 0.040 1.98 ± 0.026 8.58 ± 0.096

Splice 10.97 ± 0.158 10.91 ± 0.154 11.61 ± 0.181 5.86 ± 0.179 5.14 ± 0.145 7.07 ± 0.765

Thyroid 4.68 ± 0.232 4.63 ± 0.218 4.36 ± 0.217 4.68 ± 0.199 4.71 ± 0.214 4.24 ± 0.218

Titanic 22.47 ± 0.085 22.59 ± 0.120 22.64 ± 0.134 22.58 ± 0.108 22.86 ± 0.199 22.73 ± 0.134

Twonorm 2.84 ± 0.021 2.84 ± 0.021 3.06 ± 0.034 5.18 ± 0.072 4.53 ± 0.077 4.02 ± 0.068

Waveform 9.79 ± 0.045 9.78 ± 0.044 10.10 ± 0.047 13.56 ± 0.141 11.48 ± 0.177 11.34 ± 0.195

Table 2: Error rates of least-squares support vector machine, with and without Bayesian regularisation of the model selection criterion, in
this case the PRESS statistic (Allen, 1974), and Gaussian process classifiers over thirteen benchmark data sets (Rätsch et al., 2001),
using both standard radial basis function and automatic relevance determination kernels. The results for the EP-GPC were obtained
using theMATLAB software accompanying the book by Rasmussen andWilliams (2006). The results for each method are presented
in the form of the mean error rate over test data for 100 realisations of each data set (20 in the case of the image and splice data sets),
along with the associated standard error. The best results are shown in boldface and the second best in italics (without implication
of statistical significance).
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image and splice), while being significantly worse on six (breast cancer, diabetis, heart,
ringnorm, twonorm and waveform).

In the case of the elliptical RBF kernel, the use of Bayesian regularisation in model selection
has a dramatic effect on the performance of LS-SVM models, with the LS-SVM-BR model prov-
ing significantly better than the conventional LS-SVM on nine of the thirteen benchmarks (breast
cancer, diabetis, flare solar, german, heart, ringnorm, splice, twonorm and waveform)
without being significantly worse on any of the remaining four data sets. This demonstrates that
over-fitting in model selection, due to the larger number of kernel parameters, is likely to be the
significant factor causing the relatively poor performance of models with the elliptical RBF kernel.
Again, the Gaussian Process classifier is significantly better than the LS-SVM with Bayesian regu-
larisation on the banana and twonorm data sets, but is significantly worse on four of the remaining
eleven (diabetis, heart, ringnorm and splice). Again, according to the Wilcoxon signed rank
test, neither the LSSVM-BR nor the EP-PGC is statistically superior at the 95% level of signifi-
cance. However the magnitude of the difference in performance between LSSVM-BR and EP-GPC
approaches tends to be greatest when the LSSVM-BR out-performs EP-GPC, most notably on the
heart, splice and ringnorm data sets. This provides some support for the observation of Wahba
(1990) that cross-validation based model selection procedures should be more robust against model
mis-specification (see also Rasmussen and Williams, 2006).

4. Discussion

The experimental evaluation presented in the previous section demonstrates that over-fitting can
occur in model selection, due to the variance of the model selection criterion. In many cases the
minimum of the selection criterion using the elliptical RBF kernel is lower than that achievable us-
ing the spherical RBF kernel, however this results in a degradation in generalisation performance.
Using the PRESS statistic, the over-fitting is likely to be most severe in cases with a small num-
ber of training patterns, as the variance of the leave-one-out estimator decreases as the sample size
becomes larger. Using the standard LSSVM, the elliptical RBF kernel only out-performs the spher-
ical RBF kernel on two of the thirteen data sets, image and splice, which also happen to be the
two largest data sets in terms of the number of training patterns. The greatest degradation in per-
formance is obtained on the heart benchmark, the third smallest. The heart data set also has a
relatively large number of input features (13). A large number of input features introduces a many
additional degrees of freedom to optimise the model selection criterion, and so will generally tend
to encourage over-fitting. However, there may be a compact subset of highly relevant features with
the remainder being almost entirely uninformative. In this case the advantage of suppressing the
noisy inputs is so great that it overcomes the predisposition towards over-fitting, and so results in
improved generalisation (as observed in the case of the image and splice benchmarks). Whether
the use of an elliptical RBF kernel will improve or degrade generalisation largely depends on such
characteristics of the data that are not known a-priori, and so it seems prudent to consider a range
of kernel functions and select the best via cross-validation.

The experimental results indicate that Bayesian regularisation of the hyper-parameters is gen-
erally beneficial, without at this stage providing a complete solution to the problem of over-fitting
the model selection criterion. The effectiveness of the Bayesian regularisation scheme is to a large
extent dependent on the appropriateness of the prior imposed on the hyper-parameters. There is no
reason to assume that the simple Gaussian prior used here is in any sense optimal, and this is an
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issue where further research is necessary (see Section 4.2). The comparison of the integrate-out ap-
proach and the evidence framework highlights a deficiency of the simple Gaussian prior. It suggests
that the integrate-out approach is likely to result in mild over-regularisation of the hyper-parameters
in the presence of a large number of irrelevant features, as the corresponding hyper-parameters will
be ill-determined.

The LSSVM with Bayesian regularisation of the hyper-parameters does not significantly out-
perform the expectation propagation based Gaussian process classifier over the suite of thirteen
benchmark data sets considered. This is not wholly surprising as the EP-GPC is at least very
close to the state-of-the-art, indeed it is interesting that the EP-GPC does not out-perform such
a comparatively simple model. The EP-GPC uses the marginal likelihood as the model selection
criterion, which gives the probability of the data, given the assumptions of the model (Rasmussen
and Williams, 2006). Cross-validation based approaches, on the other hand, provide an estimate of
generalisation performance that does not depend on the model assumptions, and so may be more
robust against model mis-specification (Wahba, 1990). The no free lunch theorems suggest that, at
least in terms of generalisation performance, there is a lack of inherent superiority of one classifi-
cation method over another, in the absence of a-priori assumptions regarding the data. This implies
that if one classifier performs better than another on a particular data set it is because the inductive
biases of that classifier provide a better fit to the particular pattern recognition task, rather than to
its superiority in a more general sense. A model with strong inductive biases is likely to benefit
when these biases are well suited to the data, but will perform badly when they do not. While a
model with weak inductive biases will be more robust, it is less likely to perform conspicuously
well on any given data set. This means there are complementary advantages and disadvantages to
both approaches.

4.1 Relationship to Existing Work

The use of a prior over the hyper-parameters is in accordance with normal Bayesian practice and
has been used in Gaussian Process classification (Williams and Barber, 1998). The problem of
over-fitting in model selection has also been addressed by Qi et al. (2004), in the case of selecting
informative features for a logistic regression model using an Automatic Relevance Determination
(ARD) prior (cf., Tipping, 2000). In this case, the Expectation Propagation method (Minka, 2001)
is used to obtain a deterministic approximation of the posterior, and also (as a by-product) a leave-
one-out performance estimate. The latter is then used to implement a form of early-stopping (e.g.,
Sarle, 1995) to prevent over-fitting resulting from the direct optimization of the marginal likelihood
until convergence. It seems likely that this approach would be also be beneficial in the case of tuning
the hyper-parameters of the covariance function of Gaussian process model, using either the leave-
one-out estimate arising from the EP approximation, or an approximate leave-one-out estimate from
the Laplace approximation (cf., Cawley and Talbot, 2007).

4.2 Directions for Further Research

In this paper, the regularisation term corresponds to a simple spherical Gaussian prior over the kernel
parameters. One direction of research would be to investigate alternative regularisation terms. The
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first possibility would be to use a regularisation term corresponding to a separable Laplace prior,

Ω(θ) =
1
2

d

∑
i=1

|ηi| =⇒ p(θ) =
d

∏
i=1

ξ
2
exp{−ξ|ηi|} .

Setting the derivative of the regularised model selection criterion (14) to zero, we obtain
∣∣∣∣
∂Q
∂ηi

∣∣∣∣ =
ξ
ζ

if |ηi| > 0 and
∣∣∣∣
∂Q
∂ηi

∣∣∣∣ <
ξ
ζ

if |ηi| = 0,

which implies that if the sensitivity of the leave-one-out error,Q(θ), falls below ξ/ζ, the value of the
hyper-parameter, ηi will be set exactly to zero, effectively pruning that input from the model. In this
way explicit feature selection may be obtained as a consequence of (regularised) model selection.
The model selection criterion with Bayesian regularisation then becomes

L=
!

2
logQ(θ)+N logΩ(θ)

where N is the number of input features with non-zero scale factors. This potentially overcomes the
propensity towards under-fitting the data that might be expected when using the Gaussian prior, as
the pruning action of the Laplace prior means that the values of all remaining hyper-parameters are
well-determined by the data. In the case of the Laplace prior, the integrate-out approach is exactly
equivalent to continuous updates of the hyper-parameters according to the update formulae under
the evidence framework (Williams, 1995). Alternatively, defining a prior over the function of a
model seems more in accordance with Bayesian ideals than choosing a prior over the parameters of
the model. The use of a prior over the hyper-parameters based on the smoothness of the resulting
model also provides a potential direction for future research. In this case, the regularisation term
might take the form,

Ω(θ) =
1
2!

!

∑
i=1

d

∑
j=1

[
∂2ŷi
∂x2i j

]2
,

directly penalising models with excess curvature. This regularisation term corresponds to curvature
driven smoothing in multi-layer perceptron networks (Bishop, 1993), except that the model output
ŷi is viewed as a function of the hyper-parameters, rather than of the weights. A penalty term based
on the first-order partial derivatives is also feasible (cf., Drucker and Le Cun, 1992).

5. Conclusion

Leave-one-out cross-validation has proved to be an effective means of model selection for a variety
of kernel learning methods, provided the number of hyper-parameters to be tuned is relatively small.
The use of kernel functions with large numbers of parameters often provides sufficient degrees of
freedom to over-fit the model selection criterion, leading to poor generalisation. In this paper, we
have proposed the use of regularisation at the second level of inference, that is, model selection.
The use of Bayesian regularisation is shown to be effective in reducing over-fitting, by ensuring the
values of the kernel parameters remain small, giving a smoother kernel and hence a less complex
classifier. This is achieved with only a minimal computational expense as the additional regular-
isation parameters are integrated out analytically using a reference prior. While a fully Bayesian
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model selection strategy is conceptually more elegant, it may also be less robust to model mis-
specification. The use of leave-one-out cross-validation in model selection and Bayesian methods
at the next level seems to be a pragmatic compromise. The effectiveness of this approach is clearly
demonstrated in the experimental evaluation where, on average, the LS-SVM with Bayesian reg-
ularisation out-performs the expectation-propagation based Gaussian process classifier, using both
spherical and elliptical RBF kernels.
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Abstract
There exist many different generalization error bounds in statistical learning theory. Each of these
bounds contains an improvement over the others for certain situations or algorithms. Our goal
is, first, to underline the links between these bounds, and second, to combine the different im-
provements into a single bound. In particular we combine the PAC-Bayes approach introduced by
McAllester (1998), which is interesting for randomized predictions, with the optimal union bound
provided by the generic chaining technique developed by Fernique and Talagrand (see Talagrand,
1996), in a way that also takes into account the variance of the combined functions. We also show
how this connects to Rademacher based bounds.
Keywords: statistical learning theory, PAC-Bayes theorems, generalization error bounds

1. Introduction

Since the first results of Vapnik and Chervonenkis on uniform laws of large numbers for classes of
{0;1}-valued functions, there has been a considerable amount of work aiming at obtaining general-
izations and refinements of these bounds. This work has been carried out by different communities.
On the one hand, people developing empirical processes theory like Dudley and Talagrand (among
others) obtained very interesting results concerning the behavior of the suprema of empirical pro-
cesses. On the other hand, people exploring learning theory tried to obtain refinements for specific
algorithms with an emphasis on data-dependent bounds.

The goal of a generalization error bound is to control the behavior of the function that is returned
by the algorithm. This function is data-dependent and thus unknown before seeing the data. As a
consequence, if one wants to make statements about its error, one has to be able to predict which
function is likely to be chosen by the algorithm. Since this cannot be done exactly, there is a need to
provide guarantees that hold simultaneously for several candidate functions. This is known as the
union bound. The way to perform this union bound optimally is now well mastered in the empirical
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processes community. In particular, the role of the metric structure of the space of functions in the
deviations of the empirical process has been thoroughly studied (see, for example, Talagrand, 2005).

In the learning theory setting, one is interested in bounds that are as algorithm and data de-
pendent as possible. This particular focus has made concentration inequalities (see, for example,
Boucheron et al., 2000) popular as they allow to obtain data-dependent results in an effortless way.
Another aspect that is of interest for learning is the case where the classifiers are randomized or
averaged. McAllester (1998, 1999) has proposed a new type of bound that takes the randomization
into account in a clever way.

Another direction in which the error bounds can be improved is by using the variance of the
functions in order to control the fluctuations of the empirical error. This idea originated in Huber’s
peeling device (here peeling refers to the fact that the class of function is ”peeled off” into layers
according to the variance of the functions) and is often referred to as ”localization” (see, for exam-
ple, van der Vaart and Wellner, 1996; van de Geer, 2000; Massart, 2000). It allows to get bounds
with optimal rates of convergence, for example in the case of empirical error minimization (see, for
example, Bartlett et al., 2005).

Our goal is to combine several of these improvements, bringing together the power of the ma-
jorizing measures as an optimal union bound technique and the power of the PAC-Bayesian bounds
to handle randomized predictions efficiently in a way that is sensitive to the variance (localization)
effect.

The paper is structured as follows. Next section introduces the notation and gives an overview
of the existing bounds. Section 3 then presents our main result while Section 4 discusses its appli-
cations, showing in particular how to recover previously known results.

2. A Survey of Previous Results

In this section, after having introduced some notation and the setup of generalization bounds, we
state and compare existing generalization bounds. By doing so, we hope to give a better and more
global view on the various approaches that have been developed to obtain error bounds. In particular,
we want to emphasize the differences and the complementarity of the approaches. Our goal is not
to entirely cover the topic of error bounds and we thus refer the interested reader to Boucheron et al.
(2005), Koltchinskii (2006), Bartlett et al. (2004), Bartlett and Mendelson (2006), Massart (2006),
Massart (2000) and references therein for more information.

2.1 Notation

Random Variables and Distributions. We consider an input space X , an output space Y and a
probability distribution P on the product spaceZ := X ×Y . Let Z := (X ,Y ) (Z ∈Z) denote a pair of
random variables distributed according to P and for a given integer n, let Z1, . . . ,Zn and Z′1, . . . ,Z′n be
two independent samples of n independent copies of Z. We denote by Pn, P′

n and P2n the empirical
measures associated respectively to the first, the second and the union of both samples. En, E′n and
E2n denote the expectation with respect to the first, second and union of both training samples, while
Pn,P′n and P2n denote the distribution of these samples (i.e., Pn is the n-fold product distribution
whose marginals are P).
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Regret Functions. To each function g : X → Y and each function L : Y ×Y → R, we associate
the function f : Z → R defined as

f (z) = L(g(x),y).

Such functions g, L and f will be respectively called prediction function, loss function and regret
function. In classification, the loss function is L = g(x)$=y where denotes the indicator function.
To each pair of prediction functions g1 and g2, we define the relative regret function f : Z → R
defined as

f (z) = L(g1(x),y)−L(g2(x),y).

To each measurable real-valued function f defined on Z, we denote their expectation under P by P f
and their empirical expectation by Pn f

(
i.e., Pn f = n−1∑n

i=1 f (Zi)
)
. For (relative) regret functions,

P f is often called the (relative) risk.

Geometry of the Regret Class. Let F denote a set of measurable real-valued functions defined
on Z. Typical examples of such a class are based on regret function or relative regret functions and
derived from a set of prediction functions. By slight extension, any set of measurable real-valued
functions defined on Z will be called a regret class. On the set F , we consider the pseudo-distance

d( f1, f2) =
√
P( f1− f2)2,

and define similarly dn,d′n and d2n. We define the covering number N(F ,ε,d) as the minimum
number of balls of radius ε needed to cover F in the pseudo-distance d.

An important task for obtaining error bounds is to define sieves, that is, subsets of F that
approximate F to a certain distance. The simplest way is to use minimum covers at various scales,
but it is also possible to use sequences of nested partitions as defined below.

Definition 1 A sequence (A j) j∈N is a sequence of nested partitions of F if

• A j is a partition of F either countable or equal to the set of all singletons of F

• The A j are nested: each element of A j+1 is contained in an element of A j, and A0 = {F }

For a partition A , we denote by A( f ) the unique element of A containing f .
Given a sequence of nested partitions (A j), we can build a collection (S j) j∈N of approximating

subsets of F in the following way: for each j ∈ N, for each element A of A j, choose a unique
element of F contained in A and define S j as the set of all chosen elements. We have |S0| = 1 and
denoting by p j( f ) the unique element of S j contained in A j( f ) we have

{
p j( f ) = f for any f ∈ S j,
p j−1 ◦ p j = p j−1.

Measures on the Regret Class. We denote by ρ and π two probability measures on the space F ,
so that ρP f will actually mean the expectation of P f when f is sampled according to the probability
measure ρ. We will denote by M 1

+(F ) the set of all probability measures on F . For two such
measures, K(ρ,π) will denote their Kullback-Leibler divergence defined as

K(ρ,π) = ρ log
dρ
dπ
:=

Z

F
log

(
dρ
dπ

( f )
)
ρ(d f ),

when ρ is absolutely continuous with respect to π and K(ρ,π) = +∞ otherwise.
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Other Notation. The notation x+ and x− refers to the positive and negative parts respectively, that
is, x+ :=max(x,0) and x− :=max(−x,0). β will denote some positive real number whileC will be
some positive constant (whose value may differ from line to line).

2.2 The Setting for Error Bounds

Generalization error bounds give upper bounds on the true (i.e., under P) error of the function re-
turned by a learning algorithm. These upper bound typically involve the empirical error of this func-
tion. A learning algorithm (or learning rule), is a map from sequences of pairs (X1,Y1), . . . ,(Xn,Yn)
to functions g : X → R. We will denote by gn the function returned by the algorithm under investi-
gation.

2.2.1 ABSOLUTE AND RELATIVE RISK BOUNDS

The goal is thus to formulate a statement of the following form: for each (small enough) β> 0, with
probability at least 1−β with respect to the random draw of the sample,

E [L(gn(X),Y )|(X1,Y1), . . . ,(Xn,Yn)] ≤
1
n

n

∑
i=1

L(gn(Xi),Yi)+B(n,β) , (1)

where the expectation in the left-hand side is taken with respect to the distribution of (X ,Y ), mean-
ing: conditionally to the training sample distribution.

Another type of result that can be obtained is a relative risk bound where one compares the risk
of the algorithm to the risk of a fixed prediction function g̃. The type of inequality that could be
obtained looks like this

E [L(gn(X),Y )|(X1,Y1), . . . ,(Xn,Yn)]−E [L(g̃(X),Y )]
≤ 1

n ∑
n
i=1

[
L(gn(Xi),Yi)−L(g̃(Xi),Yi)

]
+B(n,β) . (2)

With the notation introduced above, denoting by fn the (relative) regret function associated to
the predicition gn we can rewrite both previous inequalities as follows:

P fn−Pn fn ≤ B(n,β) . (3)

This shows that there is no essential difference between the techniques used to get bounds of
the form (1) and (2).

2.2.2 AVERAGED BOUNDS

Most algorithms simply pick a candidate function gn from a fixed set G . However, Bayesian algo-
rithms usually aggregate several such functions by taking their weighted average. The correspond-
ing regret function is not the average of the regrets of the individual functions which makes the
analysis difficult. In order to avoid this caveat, it is common to first study randomized estimators
and then relate the randomized to the aggregate ones. Randomized estimators are built by replacing
the weighted average by a randomized choice (where the probability of choosing a specific function
is proportional to its weight). The advantage of such a procedure is that it is relatively simple to
analyze. Indeed, if one uses weights given by a probability distribution ρ on G , the error of the
randomized estimator is simply the average of the errors of the combined estimators ρP f .
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Hence, bounds for randomized estimators will have the form

ρnP f ≤ ρnPn f +B(n,β) , (4)

where ρn is the specific distribution chosen by the algorithm based on the data.

2.2.3 ALGORITHM AND DATA DEPENDENT BOUNDS

In the form stated in (3), the quantity B only depends on the confidence level β and the sample
size n. The only way in which B depends on the algorithm is usually by incorporating terms that
depend on the class of prediction functions used by the algorithm. For example if the algorithm
picks functions in a class G whose associated regret class is F , statement (3) can be deduced from

sup
f∈F

{
P f −Pn f

}
≤ B(n,β) .

This is a supremum bound and is the most common type found in the literature. Unfortunately, this
usually yields quantitatively loose bounds which do not tell much about the algorithm’s behavior.

Ideally, B should depend on the sample (data-dependent bound) and on the specific function fn
or distribution ρn chosen by the algorithm (algorithm-dependent bound).

Hence we can aim at obtaining bounds of the form (algorithm-dependent)

∀ f ∈ F ,P f ≤ Pn f +B(n,β, f ) ,

or even (algorithm and data-dependent)

∀ f ∈ F ,P f ≤ Pn f +B(n,β, f ,Z1, . . . ,Zn) .

2.3 Previous Error Bounds

We are now in a position to state and compare some of the previously known error bounds. From
now on, the functions in the regret class F are assumed to be bounded. Without loss of generality,
we may assume that they take their values in [0;1]. We do not always state the bounds in their
original form in order to allow an easier comparison and we thus include the proofs and the explicit
values of the constantC in Section B.3.

2.3.1 SUPREMUM BOUNDS

We start with the most common bounds involving the supremum over a class of the difference
between true and empirical error.

Single function. The starting point is to consider a class containing only one function f . By
Hoeffding’s inequality one easily gets that with probability at least 1−β,

P f −Pn f ≤C
√
log(β−1)

n
. (5)

Unfortunately, when F has more than one element, this statement can only be made separately for
each function. [Proof in Section B.3.1]
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Finite union bound. It is easy to convert the above statement into one which is valid simultane-
ously for a finite set of functionsF . The simplest form of the union bound gives that with probability
at least 1−β,

sup
f∈F

{
P f −Pn f

}
≤C

√
log |F |+ log(β−1)

n
. (6)

The term log |F | represents the extra price to pay to obtain a uniform statement. It can be considered
as a measure of the complexity of the class F . [Proof in Section B.3.2]

Symmetrization. When F is infinite this cannot work directly. The trick is to introduce a second
sample Z′

1, . . . ,Z′n (see the notation section for definitions) and to consider the set of vectors formed
by the values of each function in F on the double sample. When the functions have values in
{0;1}, this is a finite set and the above union bound applies. This idea was first used in Vapnik and
Chervonenkis (1971) to obtain that with probability at least 1−β,

sup
f∈F

{
P f −Pn f

}
≤C

√
logE2nN(F ,1/2n,d2n)+ log(2β−1)

n
. (7)

The capacity is here better estimated than in (6) since the term N(F ,1/2n,d2n) does not count
twice functions classifying in the same way the training and virtual samples. However the quantity
E2nN(F ,1/2n,d2n) cannot be computed in general since P is unknown, but upper bounds can be
obtained in terms of combinatorial parameters such as the VC dimension.

We now see that the complexity of F has to be measured in a way that involves the metric
induced by the distribution. What matters is thus not how many functions there are in F but how
they span the space of possible vectors ( f (Z1), . . . , f (Zn), f (Z′1), . . . , f (Z′n)), which can be measured
by the minimum number of balls required to get an approximation at scale 1/2n. [Proof in Section
B.3.3]

Chaining. One limitation of the above result is that it applies only to {0;1}-valued functions and
it measures the size only at the smallest scale which is known to be suboptimal in general. The union
bound can be refined by considering finite covers of the set of function at different scales. This is
called the chaining technique, pioneered by Dudley (1984) since one constructs a chain of functions
that approximate a given function more and more closely. The results involve the Koltchinskii-
Pollard entropy integral as, for example in Devroye and Lugosi (2001). One has with probability at
least 1−β,

sup
f∈F

{
P f −Pn f

}
≤C

(
1√
n

En
Z ∞

0

√
logN(F ,ε,dn)dε+

√
log(β−1)

n

)
. (8)

[Proof in Section B.3.8]. Chained bounds are particularly useful when one has a tight control of
the entropy numbers of the set F (see, for example, van der Vaart 1998 and van de Geer 2000).

Generic chaining. It has been noticed by Fernique and Talagrand that it is possible to capture
the complexity in a better way than using minimal covers by considering majorizing measures or
generic chaining. This is essentially optimal for Gaussian processes and optimal up to logarithmic
factors for empirical processes. Let r > 1 and (A j) j≥1 be a sequence of nested partitions of F
such that all the elements of A j have diameter at most r− j w.r.t. the distance dn. Let also (π( j)) be
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a sequence of probability distributions defined on F . We can prove that with probability at least
1−β,

sup
f∈F

{
P f −Pn f

}
≤C

(
1√
n

En sup
f∈F

∞

∑
j=1

r− j
√
log{1/π( j)[A j( f )]}+

√
log(β−1)

n

)
. (9)

[Proof in Section B.3.9]. The interpretation of the complexity term is a bit harder now.1 If one takes
partitions induced by minimal covers of F at radii r− j, and uniform measures concentrated at the
centers of the balls, one has 1/π( j)[A j( f )] = N(F ,r− j,dn) so that (9) leads to a sum of terms of the
form r− j

√
logN(F ,r− j,dn), which allows to recover (8). This means that the complexity term of

(9) is at least as sharp as the one of (8), but has more flexibility since the partitions can be built in a
better way than via uniform covers.

As in Section 2.1, from the nested partitions (A j), we can build a collection (S j) j∈N of approx-
imating subsets of F in the following way: for each j ∈ N, for each element A j of A j, choose a
unique element of F contained in A j and define S j as the set of all chosen elements. Then consider
p j( f ) the unique element of S j contained in A j( f ). The p j( f ) define successive approximations of
f . Without loss of generality, consider that the null function belongs to A0 and that S0 contains this
function. The sum in (9) (as the integral in (8)) comes from the core of the chaining idea which
is to decompose the function f (which is a difference between two functions in the case of relative
regret classes, or a difference between itself and the null function in the case of a regret class) into
∑ j>0 p j( f )− p j−1( f ) and to separately control the deviation of each term. These terms form a
chain of finer and finer approximations to f that give the name to the method (chaining). This is
essentially the idea that we use in the proof of our main results.

Let us try to give some insights about how to construct the partitions (A j) (for more details, see
Talagrand, 2005). First of all, one should understand that the measures π( j) play no essential role
here (as was noticed by Talagrand, 2001, , they can be taken as finitely supported uniform measures
on appropriate subsets) The only reason why we state the result in the above form is to emphasize
the connection with our main result (to be presented in Section 3).

It turns out that there are many ways to state the majorizing measure/generic chaining bound.
Each way involves a different geometric construction on the regret class F and a different notion
of size, but most can be shown to be equivalent up to constant factors. The general form of such
bounds is

sup
f∈F
∑
i≥i0

F( f , i)G( f , i)

where F( f , i) is a measure of the scale of the geometric object of order i containing f , while G( f , i)
is a measure of the size of this object. For example, if one uses balls, F( f , i) is the radius of the ball(
e.g., F( f , i) = 2−i

)
and G( f , i) is the “mass” (or rather a function of the mass) of the ball centered

at f and of radius 2−i
(
e.g., G( f , i) =

√
log1/π(i)[B( f ,2−i)]

)
.

1. It is important to mention that there are various possible ways to measure the complexity of the space F that all
lead to an essentially optimal result. For example, one could replace the set A j( f ) by a ball centered at f and with
radius r− j. This would give the standard majorizing measure bound (where all the π( j) are the same). Also, one
can use partitions whose elements are allowed to have different diameters and replace the r− j term by the diameter
of A j( f ). Using such an approach actually allows to get rid of the measures π( j), the sum in the complexity term
becoming ∑d(A j( f ))

√
log |A j|. We did not choose this formulation as we wish to obtain a result that explicitly uses

the probability π so that it can be more directly related to the PAC-Bayesian bounds. The interested reader is referred
to Talagrand (2005) for more information about the variants of the generic chaining bounds.
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Coming back to nested partitions (which really are the key ingredient here), let us say a few
words about their construction. Talagrand proposed a partitioning scheme that runs as follows.
The general idea is that one starts with a size function (that measures how big a subset of F is).
This function has to satisfy certain compatibility conditions in order to ensure that the resulting
construction will be optimal (up to constants). Then one starts with A0 = {F } and, at each stage,
the partition is refined by splitting each of its element in a greedy way: one selects separated enough
points in the element to be split and builds balls arounds these points. Starting with the ”biggest”
ball (as measured by the size function), one removes the balls until nothing is left. The sub-partition
elements are thus the subsets that are removed with each ball.

Rademacher averages. As we said before, the generic chaining bound is optimal up to constant
factors. More precisely, it is a tight upper bound for the quantity

En

[
sup
f∈F

{
P f −Pn f

}
]

.

It is also a lower bound for this quantity but up to a logn factor. Hence the generic chaining bound
is as good (up to this log) as another well-known quantity in the learning theory community, the
Rademacher average of F :

En

[
Eσ sup

f∈F

1
n∑σi f (Zi)

]
,

where the σi are independent random signs (+1,−1 with probability 1/2). Using this quantity as a
measure of complexity, it is possible to obtain the following statement. One has with probability at
least 1−β,

sup
f∈F

P f −Pn f ≤C

(
1
n

EnEσ sup
f∈F

n

∑
i=1

σi f (Zi)+

√
log(β−1)

n

)
. (10)

[Proof in Section B.3.7]

2.3.2 VARIANCE (LOCALIZED) BOUNDS

It has been noticed that the supremum bounds do not give optimal rates of convergence for algo-
rithms based on the minimization of the empirical risk. The main reason is that the size of the
deviations between P f and Pn f depends on the variance Var f . A lot of work has been carried out
recently in order to take this into account in the bounds presented above, for example by restricting
the complexity term to functions with small variance.

Variance for Single Functions. Since the deviations between P f and Pn f for a given function f
actually depend on its variance, one can refine (5) into

P f −Pn f ≤C

(√
Var f log(β−1)

n
+
log(β−1)

n

)
. (11)

[Proof in Section B.3.5]
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Variance with Symmetrization. The above inequality can be combined with the symmetrization
trick. This was done by Vapnik and Chervonenkis (1974) (for functions in {0;1}). Their result is
that with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C
√
P f

√
logE2nN(F ,1/2n,d2n)+ log(4β−1)

n
, (12)

which also gives with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C
(√

Pn f
√

logE2nN(F ,1/2n,d2n)+log(4β−1)
n

+ logE2nN(F ,1/2n,d2n)+log(4β−1)
n

)
.

One can thus consider that the capacity term is weighted by the risk (or equivalently here by the
empirical risk).

Localized Rademacher Averages. It is also possible to combine (11) with (10) as was done for
example by Bartlett et al. (2005). This gives a complexity termwhich involves Rademacher averages
that are computed on subsets of functions with small variance.

How to Use Variance Bounds. In order to better explain how variance bounds can be used effi-
ciently, we should notice that the quantitative gain occurs only when Var f is small for the function
chosen by the algorithm.

For a loss function L taking its values [0;1], the variance of a regret function f can be bounded
successively by P f 2 and P f . Consequently, in low noise setting (i.e., when there exists a prediction
function such that its associated risk P f is small), one can expect that the deviation of the risk of an
algorithm based on the minimization of the empirical error is much smaller than in noisy situations.

For relative regret function the situation is different. We are still interested in low (relative) risk
but in general we will not have any particular relation between the variance Var f and the relative risk
P f . Consequently variance localized bounds will not yield any significant improvement. However
in some situations as in classification under Mammen and Tsybakov noise condition (Tsybakov,
2004) or in least square regression (see, for example, Audibert, 2004a), one has the inequality
Var f ≤ (P f )α for some positive α. This inequality is well exploited by variance localized bounds.

2.3.3 ALGORITHM DEPENDENT COMPLEXITY

Another direction in which the bounds can be improved is by making the bound depend more
directly of the function chosen by the algorithm. The variance bounds already have this property
but the bound only depends on Var f but not on where the function is in the space F . We now
present results where the complexity term depends directly on the selected function.

Weighted union bound and algorithm dependence. The finite union bound can be directly ex-
tended to the countable case by introducing a probability distribution π over F which weights each
function (McAllester, 1998) and gives, with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C
√
log1/π( f )+ log(β−1)

n
. (13)

The complexity term now depends on f and of course, taking a uniform distribution on a finite set
we recover (6).
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Surprisingly, the capacity term could be arbitrarily small if π were chosen appropriately. How-
ever, π has to be chosen before seeing the data, so there is no way to ensure that the bound will be
always small.

It is important to understand that the choice of π is completely arbitrary and need not reflect any
prior belief in what is the true target function. The distribution π is just a “technical” prior which is
used to formulate the bound.

Inequality (13) can be read as follows: given a fixed π, if one samples data repeatedly, with high
probability, the error of any function f in the class will be upper bounded by a function of π( f ).
This function of π( f ) is basically a bound on the deviation one would expect for each individual
function, plus an extra term coming from the fact that the function f to be considered is unknown
prior to observing the sample so that we need to have a statement which holds simultaneously for
all functions in the class. The interesting point is that in making this statement uniform, there is a
freedom in the choice of how we distribute the ’extra cost’. The distribution of the uniformization
cost is thus represented by π. Any probability distribution will do, and if one is lucky, the functions
of interest (the ones returned by the classification algorithm when given typical samples from the
problem) will have large prior and the bound for them will be relatively small.

Thus, if one wants to obtain a bound which has small values, one has to “guess” how likely each
function f ∈ F is to be chosen by the algorithm.

Averaging. We now come to the case of randomized predictions which give rise (as explained
above) to averaged bounds of the form (4). Consider a probability distribution ρn defined on a
countable F , take the expectation of (13) with respect to ρn and use Jensen’s inequality. This gives
with probability at least 1−β,

ρn(P f −Pn f ) ≤C
√
K(ρn,π)+H(ρn)+ log(β−1)

n
,

where ρn is still the specific distribution chosen by the algorithm based on the data and H(ρn) is
its Shannon entropy. The l.h.s. is the difference between true and empirical error of a randomized
classifier which uses ρn as weights for choosing the decision function (independently of the data).
The following PAC-Bayes bound (McAllester, 1999) refines the above bound since it has the form
(for possibly uncountable F )

ρn(P f −Pn f ) ≤C
√
K(ρn,π)+ logn+ log(β−1)

n
. (14)

This in particular shows that the entropy term is unnecessary. To some extent, one can consider that
the PAC-Bayes bound is a refined union bound where the gain happens when ρn is not concentrated
on a single function (or more precisely ρn has entropy larger than logn).

The complexity now depends upon the arbitrary choice of π and one may notice that it is mod-
ulated by the “spread” of ρn. Indeed, if ρn is concentrated, this term can be big, but if ρn is similar
to π it becomes very small. As a special case, if the randomizing distribution is concentrated at a
single function (corresponding to classical algorithms that simply pick a function), the bound has
the form (13) which is not suited for large (e.g., uncountable) sets of functions.

2.3.4 DATA-DEPENDENT BOUNDS

We now consider ways to obtain bounds where the complexity term itself depend on the sample
(hence can be computed from the data only).
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Transductive priors. It is actually possible to combine the symmetrization and weighting ideas
(Catoni, 2003). For example, if one defines a function Π : Z2n → M 1

+(F ) that is almost exchange-
able in the sense that if we exchange the value of zi and zi+n we do not change the value of the
function, then one gets, with probability at least 1−β (over the random choice of a double sample),

∀ f ∈ F , P′
n f −Pn f ≤C

√
log1/Π(Z1, . . . ,Zn,Z′1, . . . ,Z′n)( f )+ log(β−1)

n
.

Note that we no longer require F to be countable but Π(.) should have countable support for each
value of the double sample. This type of result is interesting in the transduction framework, where
the instances (or inputs) are known in advance and where the randomness is in the way the data
is split into a training set (with known labels) and a testing set (with unknown labels). Convert-
ing this into an induction statement (comparing the empirical with the expected errors) gives with
probability 1−β,

∀ f ∈ F , P f −Pn f ≤CE′n
√
log1/Π(Z1, . . . ,Zn,Z′1, . . . ,Z′n)( f )+ log(β−1)

n
.

This is useful provided one can upper bound the first logarithmic factor in the r.h.s. either with a
data-independent quantity or with an observable function of the first sample.

Concentration. Using concentration inequalities as in Boucheron et al. (2000) for example, one
can get rid of the expectation appearing in the r.h.s. of (7), (8), (10) or (9) and thus obtain a bound
that can be computed from the data.

In particular, a data-dependent and localized version of (10) is given in Bartlett et al. (2005).
However it has not been combined with the PAC-Bayes improvement for randomized predictions.

2.3.5 SUMMARY

Our goal in this work is to see how to attempt to combine the different approaches that have been
used before, in the hope to obtain a bound that has the combined properties

1. structural (metric structure effect)

2. statistical (variance effect)

3. PAC-Bayesian (averaging effect).

The connection between 1 and 2 already exists, so does the connection between 2 and 3. Our
main result aims at dealing simultaneously with 1, 2 and 3.

The main difficulty in connecting 1 and 2 with 3 is that if one has a non-countable infinite set
of functions, even using symmetrization, if the prior π is non-atomic, then π({ f}) = 0 for all f .
Hence the complexity term K(ρn,π) blows up when ρn is concentrated on a single function. The
result we present below is, to our knowledge, the first one which actually bridges this gap since the
complexity term does not blow up when ρn is concentrated at one function.

3. Main results

We now state and comment our main result. We recall that F denotes a set of functions defined on
a measurable space Z and taking their values in [0;1]. In the theorem we present, one has to

873



AUDIBERT AND BOUSQUET

• choose a sequence of nested partitions (A j) j∈N of the set F ,

• build an associated sequence of approximating sets (S j) j∈N (see Section 2.1),

• for each f and j ∈ N, define its approximating functions p j( f ) as the unique element of S j
contained in A j( f ), where A j( f ) is the set of the partition A j containing f

• for each j ∈ N, choose the distribution π( j) on F .

The quantities π( j), S j, and p j are allowed to depend on the sample Z1, . . . ,Zn provided that it also
depends on a double sample Z ′

1, . . . ,Z′n in an almost exchangeable way (i.e., exchanging Zi and Z′i
does not affect their value). Denote δ f the Dirac measure on f . For a probability distribution ρ on
F , define its j-th projection as

[ρ] j = ∑
f∈S j

ρ[A j( f )]δ f ,

when S j is countable and [ρ] j = ρ otherwise. When S j is countable, [ρ] j is a probability distribution
on F supported by S j and can be viewed as the projection of ρ on S j. Let ρn be a randomized
estimator, that is, a data-dependent distribution on the set F . To shorten the notation, the average
(w.r.t. the probabiblity distribution ρn) distance between two successive approximations is denoted
by

ρnd2j := ρnd22n[p j( f ), p j−1( f )],

where we recall that d2n is the empirical pseudo-distance d2n( f1, f2) =
√
P2n( f1− f2)2. Finally, let

Δn, j( f ) := P′
n[ f − p j( f )]−Pn[ f − p j( f )],

χ(x) :=
√
x log log

(
4e2/x

)
,

and for β> 0 introduce
K j := K([ρn] j, [π( j)] j)+ log[ j( j+1)β−1] (15)

in which the leading term is the Kullback-Leibler divergence between the j-th projections of the
randomized distribution ρn and the ( j-th prior) distribution π( j).

The previous definitions are common to both transduction and induction setting. However the
double sample is a totally virtual one in the induction setting.

We consider first the so-called transduction setting, or rather, a version of it. In this setting, we
recall that the two independent samples Z1, . . . ,Zn and Z′1, . . . ,Z′n are drawn i.i.d. according to the
unknown probability P.

The learning algorithm is allowed to use the instances of both samples (training and testing
samples) but has access to the labels of the training instances only. Its goal is to correctly predict the
instances of the testing samples. In this context, the quantity of interest is the difference between the
average misclassification error obtained on the testing sample and the one on the training sample.

Theorem 2 (Transduction) Let 0< β≤ 2e−1. If the following condition holds

lim
j→+∞

sup
f∈F

Δn, j( f ) = 0, P2n-a.s. (16)
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then, with P2n-probability at least 1−β, for any distribution ρn, we have

ρnP′
n f −P′

n f0 ≤ ρnPn f −Pn f0+
2
√
2e 14√
n

+∞

∑
j=1

√
K j ρnd2j +

2
√
2e 14√
n

+∞

∑
j=1

χ
(ρnd2j
K j

)
.

In the induction setting, the learning algorithm is only allowed to use the first sample Z1, . . . ,Zn.
Nevertheless the proof technique uses an independent and i.i.d. virtual sample Z ′

1, . . . ,Z′n that is at
the origin of the following expectations E′n.

Theorem 3 (Induction) With the above notation, if the following condition holds

limsup
j→+∞

sup
f∈F

E′nΔn, j( f ) ≤ 0, Pn-a.s. (17)

then for any 0< β≤ 0.73, with Pn-probability at least 1−β, we have

ρnP f −P f0 ≤ ρnPn f −Pn f0+ 3.7√
n ∑

+∞
j=1

√
E′nK jE′nρnd2j +

3.7√
n ∑

+∞
j=1χ

(E′nρnd2j
E′nK j

)
.

Remark 1 The second sum in the bound is in general negligible w.r.t. the first one2 and has at
worse the same order.

Remark 2 Let G be a model (i.e., a set of prediction functions). Let g̃ be a reference function (not
necessarily in G and possibly depending on the data in an exchangeable way). Consider the class
of regret functions F = {z )→ L[g(x),y] : g ∈ G ∪{g̃}} . Define f0 = L[g̃(x),y]. The induction (resp.
transduction) theorem compares the risk (resp. the risk on the second sample) of any (randomized)
estimator with the risk (resp. the risk on the second sample) of the reference function g̃.

Remark 3 Assumption (16) is not very restrictive. For instance, it is satisfied when one of the
following condition holds:

• there exists J ∈ N∗ such that SJ = F ,

• almost surely lim j→+∞ sup f∈F ‖ f − p j( f )‖∞ = 0 (it is in particular the case when the brack-
eting entropy of the set F is finite for any radius and when the S j’s and p j’s are appropriately
built on the bracketing nets of radius going to 0 when j→ +∞),

• almost surely lim j→+∞ sup f∈F d2n( f , p j( f )) = 0.3

Finally, by Lebesgue’s dominated convergence theorem and standard probabilistic arguments, one
may prove that (16) implies (17).

Remark 4 Note that E′nρnd2j = 1
2
{
ρnd2n [p j( f ), p j−1( f )] + ρnd2[p j( f ), p j−1( f )]

}
. Besides, when

the quantities π( j), S j, f0 and p j do not depend on the data, we have E′nK j = K j, so that the
conditional expectation E′n disappears in Theorem 3.

Remark 5 A slightly different version of Theorem 3 can be obtained by using Theorem 2 and
Lemma 19.
2. Since K j is greater than or equal to 1 and the function χ is an upper bounded function which behaves as the square
root near 0.

3. Here we give a typical construction for which this assumption is satisfied when the functions in F take their values in
a common finite set (e.g., classification setting). Take the sequence S j as embedded nets w.r.t. the pseudo-distance d2n
of radius tending to 0 when j goes to infinity. Then there exists J satisfying

∣∣( f (X1), . . . , f (Xn), f (X ′
1), . . . , f (X

′
n)

)
:

f ∈ SJ
∣∣ =

∣∣( f (X1), . . . , f (Xn), f (X ′
1), . . . , f (X

′
n)

)
: f ∈ F

∣∣ and S j = SJ for any j > J. Consider projections p j consis-
tent with d2n to the extent that, if d2n( f ,S j) = 0, then d2n( f , p j( f )) = 0. Then the assumption holds.
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4. Discussion

We now present in which sense the result presented above combines several previous improvements
in a single bound. The discussion will also clarify how to choose the priors π( j), and the sets S j by
giving more explicit bounds for some particular choices.

4.1 Supremum Bounds

We first show that we can derive from Theorem 3 a result similar to the generic chaining bound (9).

Corollary 4 Under Assumption (17), we have with Pn-probability at least 1−β,

∀ f ∈ F , P f −Pn f −P f0+Pn f0

≤C
(

1√
n ∑

∞
j≥ j( f ) 2

− j
√

E′n log{1/π( j)[A j( f )]}+
√

log2 j( f )+log(β−1)
2 j( f )n

)
,

where j( f ) :=min{ j ∈ N∗ : p j( f ) ,= f0}.

Proof Choose for ρn a distribution concentrated at the single function fn. Then we have [ρn] j =
δp j( fn) and K j, defined in (15), reduces to log{1/π( j)[A j( fn)]}+ log[ j( j+1)β−1]. We can take the
partitions A j to have diameter 2− j so that sup f∈F d2n[ f , p j( f )] ≤ 2− j and thus d j ≤ 2− j+1.

The “closer” the function f is from f0, the bigger the integer j( f ) is. This result improves on (9)
since it is algorithm dependent (the l.h.s. depends on fn) and takes into account the variance. Since
the series starts from j( f ), our bound is better when f is “close” to f0.

Since we essentially have a result that is as powerful as generic chaining, it should be possible
to recover Rademacher averages bounds. However, there is a difficulty coming from the fact that the
result we have is not ”symmetric” in the sense that it involves taking expectations over the second
sample. Taking care of this remains a topic for further research.

4.2 Variance Bounds

We now show how the variance of the function of interest can be obtained explicitly in the upper
bound. In particular, we have the following corollary.

Corollary 5 Under Assumption (17), if the functions in F have values in {0;1}, we have with
Pn-probability at least 1−β,

∀ f ∈ F , P f −Pn f −P f0+Pn f0
≤ C√

n

√
E′nP2n( f − f0)2(E′nN(F ,1/2n,d2n)+ log(β−1)).

Proof As before, choose for ρn a distribution concentrated at a single function fn, then [ρn] j = δp j( fn)
and thus K j = log1/π( j)[A j( fn)]. Now since the functions are binary valued, F is a finite metric
space under the metric d2n. We can thus take A1 as a minimal cover at radius 1/2n, A2 = F and we
will get d2( f ) = 0 and d1( f ) = P2n( f − f0)2. Taking π( j) to be uniform on the centers of the cover,
we will obtain K1 = logN(F ,1/2n,d2n)+ log(β−1) which gives the result.

We thus essentially recover (12) and a fortiori standard VC bounds.
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4.3 Averaging

Theorem 2 also includes the PAC-Bayesian improvement for averaging classifiers since if one con-
siders the set S1 = F one recovers a result similar to McAllester’s (14). More precisely, we obtain:

Corollary 6 Let F be a set of functions taking their values in [−1;1]. Let 0 < β ≤ 0.73 and
K := K(ρn,π)+ log(2β−1). With P2n-probability at least 1−β, we have

ρnP′
n f −ρnPn f ≤ 3.7√

n

√
K ρnP2n f 2+ 3.7√

nχ
(
ρnP2n f 2

K

)
.

As a consequence, for any β> 0, with Pn-probability at least 1−β, we have

ρnP f −ρnPn f ≤C
√

K(ρn,π)+log(2β−1)
n .

Note that this last inequality is slightly better than (14) since there is no extra logarithmic term.
However the cost of removing the logarithmic factor is to have a slightly bigger constantC.
Proof Even if it means expanding F , we may assume that the function f0 identically equal to 0 is
in F . Then we can take S0 := { f0} and S1 := F . We have for any j≥ 1, S j = F and p j = IdF . The
first assertion is then a direct application of Theorem 2.

From the first result of the corollary, for any 0 < β ≤ 0.73, with P2n-probability at least 1−β,
for any distribution ρn, we have

ρnP′
n f −ρnPn f ≤ 3.7

√
K(ρn,π)+log(2β−1)

n + 3.7max[0;1] χ√
n .

The second assertion of the corollary then follows.

4.4 Data-dependent Bounds

The obtained bound is not completely empirical since it involves the expectation with respect to an
extra sample. In the transduction setting, this is not an issue, it is even an advantage as one can
use the unlabelled data in the computation of the bound. However, in the inductive setting, this is
a drawback. Future work will focus on using concentration inequalities to give a fully empirical
bound.

5. Conclusion and Perspectives

We have obtained a generalization error bound for randomized classifiers which combines several
previous improvements. It contains an optimal union bound, both in the sense of optimally taking
into account the metric structure of the set of functions (via the majorizing measure approach) and
in the sense of taking into account the averaging distribution. It also is sensitive to the variance of
the functions and is thus ”localized”.

In particular it is the first PAC-Bayesian bound that remains finite when the averaging distribu-
tion is concentrated at a point.

There still remains work in order to get a fully empirical bound and to better understand the
connection with Rademacher averages. In particular, the way the approximating sets S j should be
constructed in practical cases has to be investigated.

877



AUDIBERT AND BOUSQUET

Acknowledgments

We would like to thank Gilles Blanchard and the referees for their numerous useful comments and
suggestions that have greatly improved the first version of this work.

Appendix A. Proof of Our Main Results

The proof of our main results is inspired by previous work on the PAC-Bayesian bounds (Catoni,
2003), Audibert (2004b) and on the generic chaining (Talagrand, 1996). Classical PAC-Bayesian
bounds are mainly based on the combination of three ingredients:

1. the duality property of the entropy (Lemma 7),

2. Markov’s inequality (which leads to Lemma 8),

3. and upper bounds on the exponential moment of a bounded random variable (which is the
underlying idea of Lemma 9).

We reused these three main ingredients and slightly extended them to fit our needs. The additional
extra step that is required to obtain the generic chaining aspect is to decompose the functions into
a chain (as explained in Section 2.3.1) and to combine together all the individual PAC-Bayesian
bounds obtained for each element of the chain. This chaining part is actually done in two steps:
in the first one (Section A.1.4) we perform a non uniform union bound with appropriately chosen
weights in order to make the bound independent on λ, while in the second one (Section A.1.5), we
actually chain the inequalities to obtain the final result.

A.1 Proof of Theorem 2

In order to emphasize the various techniques that are used, we decompose its proof in a series of
short steps.

A.1.1 LEGENDRE TRANSFORM OF THE KULLBACK-LEIBLER DIVERGENCE

The first step consists in using a duality property of the relative entropy (see, for example, Dembo
and Zeitouni 1998, or page 10 of Catoni 2003). Namely, one has the following

Lemma 7 (Legendre transform of the KL-divergence) For any π-measurable function h : F →
R and any probability distribution ρ on F ,

ρh≤ logπeh+K(ρ,π).

Proof We have ρh−K(ρ,π)− logπeh = −K
(
ρ, eh

πeh ·π
)
≤ 0 with equality when ρ= eh

πeh ·π.

Lemma 8 Consider a function h : F → R and probability distributions π and ρ on F that depend
on Z1, . . . ,Zn,Z′1, . . . ,Z′n in a measurable way, we have for any β> 0, with probability at least 1−β
with respect to the samples distribution

ρh≤ logE2nπeh+K(ρ,π)+ log(β−1) .
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Also, with probability at least 1−β with respect to the first sample distribution,

E′nρh≤ logE2nπeh+E′nK(ρ,π)+ log(β−1) .

Proof From Markov’s inequality applied to the non-negative random variable πeh, we obtain that
for any t > 0 P

(
πeh > t

)
≤ 1

t E
2nπeh, hence for any β> 0, with probability at least 1−βwith respect

to the samples distribution,
logπeh ≤ logE2nπeh+ log(β−1) .

Then the proof of the first result follows from Lemma 7. The second assertion can be proved in
a similar way (applying Markov’s inequality conditionally to the second sample) and using the in-
equality E′n logEn.. ≤ logE2n...

A.1.2 DEVIATION INEQUALITY

Lemma 9 For any λ> 0, any function W : F ×Z → R and any exchangeable function π : X 2n →
M 1

+(F ), we have

E2nπeλP′nW−λPnW− 2λ2
n P2nW 2 ≤ 1.

Proof Denote Δi := W (·,Z′i)−W (·,Zi) and

h := λP′
nW −λPnW − 2λ

2

n
P2nW 2.

By the exchangeability of π, for any σ ∈ {−1;+1}n, we have

E2nπeh = E2nπe− 2λ2
n P2nW 2+ λ

n ∑
n
i=1Δi

= E2nπe− 2λ2
n P2nW 2+ λ

n ∑
n
i=1σiΔi .

Now taking the expectation w.r.t. σ, where σ is a n-dimensional vector of Rademacher variables.
We obtain

E2nπeh = E2nπ
[
e− 2λ2

n P2nW 2
∏n
i=1 cosh

(
λ
nΔi

)]

≤ E2nπ
[
e− 2λ2

n P2nW 2e∑
n
i=1

λ2
2n2

Δ2i

]

where at the last step we use that coshs ≤ e s2
2 . The result follows from the inequality Δ2i ≤

2W 2(·,Z′i)+2W 2(·,Zi).

A.1.3 CONSEQUENCES

We first prove the following lemma.

Lemma 10 For any β > 0, λ > 0, any function W : F ×Z → R and any exchangeable function
π : X 2n → M 1

+(F ), with Pn-probability at least 1−β, for any probability distribution ρn ∈ M 1
+(F ),

we have
ρnP′

nW −ρnPnW ≤ 2λ
n
ρnP2nW 2+

K(ρn,π)+ log(β−1)
λ

.
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Proof The result follows from Lemmas 8 and 9 applied to h := λP′
nW −λPnW − 2λ2

n P2nW 2 and
ρ= ρn.

Now let us apply this result to the projected measures [π( j)] j and [ρn] j and for W ( f ,Z) =
p j( f )(Z)− p j−1( f )(Z). Since, by definition, π( j), S j and p j are exchangeable, [π( j)] j is also ex-
changeable. With P2n-probability at least 1−β, uniformly in ρn, we have

[ρn] j
{
P′
n[p j( f )− p j−1( f )]−Pn[p j( f )− p j−1( f )]

}
≤ 2λ

n
[ρn] jd22n[p j( f ), p j−1( f )]+

K′
j

λ
,

where K′
j := K([ρn] j, [π( j)] j)+ log(β−1). By definition of [ρn] j, it implies that

ρn
{
P′
n[p j( f )− p j−1( f )]−Pn[p j( f )− p j−1( f )]

}
≤ 2λ

n
ρnd22n[p j( f ), p j−1( f )]+

K′
j

λ
,

which, by using the notation introduced on page 874, can be shortened into

ρnΔn, j ≤
2λ
n
ρnd2j +

K′
j

λ
, (18)

The parameter λ =
√

nK′
j

2ρnd2j
minimizing the r.h.s. of the previous inequality depends on ρn. To use

this data-dependent parameter, we need that (18) holds uniformly in λ.

A.1.4 WEIGHTED UNION BOUND ON THE PARAMETER λ

To get a uniform version of (18), introduce a grid (λk)k∈N∗ of R∗
+. Let (wk)k∈N∗ denote some

positive real numbers such that ∑k≥1wk = 1. Define B := infk≥1
{2ρnd2j

n λk + K′
j+logw

−1
k

λk

}
. Using a

weighted union bound of (18), precisely using (18) for (λ,β) = (λk,wkβ) for k ∈ N∗, we get that,
with probability at least 1−β, we have ρnΔn, j ≤ B.

Our goal is then to choose the λk’s and the wk’s such that B is the smallest possible. Ideally, we
want to obtain a bound close to aλ :=minλ∈R∗

+

{2ρnd2j
n λ+ K′

j
λ

}
.

Let m := e− 1
4
√ n

8 . Taking λk =me k2 and wk = 1
k(k+1) , we are going to prove that we achieve this

target up to a multiplicative constant and an additive loglog term.
First, since we have ρnΔn, j = 0 when ρnd2j = 0, we only focus on the case when ρnd2j > 0.

Define λ∗ := 2m
√

K′
j

ρnd2j
. We have ρnd2j ≤ 4 and K′

j ≥ 1 for β ≤ e−1, hence λ∗ ≥ m. So there exists

k∗ ∈ N∗ such that λk∗e−
1
2 ≤ λ∗ < λk∗ .We have

B ≤ 2ρnd2j
n λk∗ + K′

j+logw
−1
k∗

λk∗

≤ 2e
1
2 ρnd2j
n λ∗ + K′

j+log[k∗(k∗+1)]
λ∗

≤ 2
√
2e 14

√
ρnd2jK′

j
n + log[k∗(k∗+1)]

λ∗ .
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The inequality λk∗e−
1
2 ≤ λ∗ implies k∗− 1 ≤ 2log

(
λ∗
m

)
, hence k∗ + 1 ≤ log

(
4e2 K′

j
ρnd2j

)
. Finally we

have proved that with probability at least 1−β,

ρnΔn, j ≤ 2
√
2e

1
4

√
ρnd2jK′

j

n
+
2
√
2e 14√
n

χ
(ρnd2j
K′
j

)
.

We recall that K ′
j := K([ρn] j, [π( j)] j)+ log(β−1) and χ(x) :=

√
x log log

(
4e2/x

)
.

A.1.5 CHAINING THE INEQUALITIES

By simply using a union bound with weights equal to 1
j( j+1) , the previous inequality holds

4 uni-
formly in j ∈ N∗ provided that β is replaced with β/[ j( j+ 1)], hence to apply the result of the
previous section we need that β/2≤ e−1.

Since p j−1 = p j−1 ◦ p j, we have

ρn
[
P′
n f −P′

n f0+Pn f0−Pn f
]

= ρnΔn,J( f )+ρn
{
∑J
j=1

[
(P′

n−Pn)p j( f )− (P′
n−Pn)p j−1( f )

]}

= ρnΔn,J( f )+∑J
j=1ρn

[
(P′

n−Pn)p j( f )− (P′
n−Pn)p j−1( f )

]

= ρnΔn,J( f )+∑J
j=1[ρn] j

[
(P′

n−Pn) f − (P′
n−Pn)p j−1( f )

]

Setting K j := K([ρn] j, [π( j)] j) + log[ j( j+ 1)β−1], with Pn-probability at least 1− β, for any
distribution ρn, we have

ρn
[
P′
n f −P′

n f0+Pn f0−Pn f
]
≤ supF Δn,J +2

√
2e 14 ∑J

j=1

√
ρnd2jK j

n

+ 2
√
2e

1
4√

n ∑J
j=1χ

(
ρnd2j
K j

)
.

Making J→ +∞, we obtain Theorem 2.

A.2 Proof of Theorem 3

It suffices to modify Lemma 10 in the proof of Theorem 2. Indeed, using the second part of Lemma
8 instead of the first one we get

ρnPW −ρnPnW ≤ 2λ
n

E′nρnP2nW 2+
E′nK(ρn,π)+ log(β−1)

λ
.

The remaining parts of the proof (i.e., the union bound and the chaining) are similar.

Appendix B. Additional Material

Lemma 11 For any random variable Z f which is π⊗P measurable we have

logπeE[Z f ] ≤ E
[
logπeZ f

]
≤ logπE

[
eZ f

]
.

4. This is because ∑ j∈N∗
1

j( j+1) = 1.

881



AUDIBERT AND BOUSQUET

Proof By duality (Lemma 7), we have

E
[
logπeZ f

]
= E

[
sup
ρn

{
ρnZ f −K(ρn,π)

}
]
≥ sup

ρn
ρnE [Z f ]−K(ρn,π) = logπeE[Z f ].

This gives the first inequality. The second inequality follows from Jensen’s inequality (applied to
the convex function − log) and Fubini’s theorem.

B.1 Concentration Inequalities

In this section, we recall some concentration inequalities whose proofs can be found in Lugosi
(2003). We start with Markov’s inequality

Theorem 12 (Markov’s inequality) For any real-valued random variable X,

P(X >= t) ≤ e−tE
[
eX

]
.

Theorem 13 (Hoeffding’s inequality, 1963) For any centered random variable X such that a ≤
X ≤ b, and any λ> 0, we have EeλX ≤ e

λ2(b−a)2
8 . As a consequence, for any i.i.d. random variables

X1, . . . ,Xn such that a≤ Xi ≤ b, we have

P
(
1
n

n

∑
i=1

Xi > t
)
≤ e−

2nt2
(b−a)2 .

Theorem 14 (Bernstein’s inequality) Let X1, . . . ,Xn be n i.i.d. centered random variables such
that a≤ Xi ≤ b. We have

P
(
1
n

n

∑
i=1

Xi > t
)
≤ e

− nt2

2VarX+ 2(b−a)t3 .

We say that a function has the bounded differences property if for some constant c> 0

sup
x1,...,xn,x′∈X ,i∈{1,...,n}

∣∣g(x1, . . . ,xn)−g(x1, . . . ,xi−1,x′,xi+1, . . . ,xn)
∣∣ ≤ c.

Theorem 15 (McDiarmid’s inequality) Let g satisfy the bounded differences assumption with con-
stant c. Then we have

P
[
g(X1, . . . ,Xn)−Eg(X1, . . . ,Xn) ≥ t

]
≤ e−

2t2
nc2 .

Note that McDiarmid’s result generalizes Hoeffding’s inequality.

B.2 Symmetrization Inequalities

Lemma 16 (Symmetrization in probability, Vapnik and Chervonenkis 1971) Assume the func-
tions in F have range in [a;b]. For any t > 0 such that nt2 ≥ 2(b−a)2,

Pn
(
sup
f∈F

{
P f −Pn f

}
≥ t

)
≤ 2P2n

(
sup
f∈F

{
P′
n f −Pn f

}
≥ t
2

)
.
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Proof Let fn be the function (depending on the first sample) achieving the supremum of (P−Pn) f
over F (if it does not exist, one can use a limiting argument). We have (P−Pn) fn>t (P−P′n) fn< t

2
≤

(P′n−Pn) f> t
2
. Taking expectations w.r.t. the second sample gives (P−Pn) fn>tP′n[(P−P′

n) fn < t
2 ] ≤

P′n[(P′
n − Pn) f > t

2 ]. Now by Chebyshev’s inequality, we have P′n[(P− P′
n) fn ≥ t

2 ] ≤
4Var fn
nt2 ≤

(b−a)2
nt2 ≤ 1

2 .We obtain (P−Pn) fn>t ≤ 2P′n[(P′
n−Pn) f > t

2 ] and conclude by taking expectations w.r.t.
the first sample.

Remark 6 By replacing Chebyshev’s inequality with Bernstein’s inequality, we can improve the
previous result to take into account t of order smaller than 1/

√
n. One can also slightly generalize

the previous result to obtain: for any positive reals η and t,

Pn
(
sup
f∈F

{
P f −Pn f

}
≥ t

)
≤

P2n
(
sup
f∈F

{
P′
n f −Pn f

}
≥ (1−η)t

)

1− e−
nη2t2

2Var f+2(b−a)ηt/3

.

Lemma 17 (Symmetrization for expectations, Giné and Zinn 1984) For any set F of functions,

En sup
f∈F

{
P f −Pn f

}
≤ 2
n

EnEσ sup
f∈F

n

∑
i=1

σi f (Zi).

Proof We have

En sup
f∈F

{
P f −Pn f

}
= En sup

f∈F

{
E′n [P′

n f ]−Pn f
}

≤ E2n sup
f∈F

{
P′
n f −Pn f

}

= E2nEσ sup
f∈F

1
n ∑σi( f (Z

′
i)− f (Zi))

≤ 2
nE

nEσ sup
f∈F

∑σi f (Zi).

The following lemmas, due to Panchenko, allow to convert transductive bounds into inductive
ones.

Lemma 18 For any function B : Z2n → R, if for any β> 0, with P2n-probability at least 1−β, we
have B≤ log(β−1), then for any β> 0, with Pn-probability 1− eβ, we have

E′nB≤ log(β−1).

Proof It directly comes from Lemma 1 in Panchenko (2003).

Lemma 19 Let B1, B2 and B3 be three functions of Z1, . . . ,Zn and Z′1, . . . ,Z′n with B2≥ 0 and B3≥ 0.
If for any β> 0, with P2n-probability at least 1−β, we have

B1 ≤
√
B2(B3+ log(β−1))
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then for all β> 0, with Pn-probability 1− eβ,

E′nB1 ≤
√

E′nB2 [E′nB3+ log(β−1)].

Proof It suffices to modify slightly the proof of Corollary 1 in Panchenko (2003). Specifically, we
apply Lemma 18 to the quantity B := supλ>0

{
4λ(B1−λB3)−B2

}
since simple computations show

that
{
B≥ log(β−1)

}
=

{
B1 ≥

√
B3(B2+ log(β−1))

}
.

B.3 Proof of Known Results

Here we prove the results presented in the survey section (see Section 2).

B.3.1 PROOF OF INEQUALITY (5)

For any t ∈R, Hoeffding’s inequality (see Section B.1) implies Pn [P f −Pn f > t]≤ e−2nt2 .Choosing
β= e−2nt2 , we obtain

P f −Pn f ≤
1√
2

√
log(β−1)

n
.

B.3.2 PROOF OF INEQUALITY (6)

Statement (5) holds uniformly over |F | functions with probability at least 1− |F |β. Setting β′ =
|F |β, we obtain the desired result.

B.3.3 PROOF OF INEQUALITY (7) (VAPNIK AND CHERVONENKIS, 1971)

First, use the symmetrization lemma 16. Denote FZ,Z′ the set of vectors formed by the values of each
function in F on the double sample. Let σi be independent random signs (+1,−1 with probability
1/2). We have

P2n
(
sup
f∈F

{
P′
n f −Pn f

}
≥ t

2

)
= P2n

(
sup
f∈FZ,Z′

{
P′
n f −Pn f

}
≥ t

2

)

= PσP2n
(
sup
f∈FZ,Z′

1
n ∑

n
i=1σi[ f (Zi)− f (Z′i)] ≥ t

2

)

= E2nEσ sup
f∈FZ,Z′

1
n ∑

n
i=1σi[ f (Zi)− f (Z′i)]≥

t
2

≤ E2nEσ ∑
f∈FZ,Z′

1
n ∑

n
i=1σi[ f (Zi)− f (Z′i)]≥

t
2

≤ E2n|FZ,Z′ | sup
b∈{−1;0;+1}n

Pσ
(1
n ∑

n
i=1 biσi ≥ t

2
)

≤ e− nt2
8 E2n|FZ,Z′ |,

where the last step comes from Hoeffding’s inequality. Putting β = 2E2n|FZ,Z′ |e−
nt2
8 , we get with

probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤
√
8
√
logP2nN(F ,1/n,d2n)+ log(2β−1)

n
.
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B.3.4 PROOF OF INEQUALITY (13) (MCALLESTER, 1998)

We use the same C as for statement (5). The probability that (13) does not hold is upper bounded
with

∑
f∈F

Pn
[
P f −Pn f >C

√
log1/[βπ( f )]

n

]
≤ ∑

f∈F
π( f )β= β.

B.3.5 PROOF OF INEQUALITY (11)

To prove (11), we replace Hoeffding’s inequality with Bernstein’s inequality (see Section B.1):

Pn [P f −Pn f > t] ≤ e−
nt2

2Var f+2t/3 . Then choosing β equal to the right-hand side gives the result.

B.3.6 PROOF OF INEQUALITY (14) (MCALLESTER, 1999; SEEGER, 2003)

Let c≥ 1/2. Here we propose a slightly different proof in order to get rid of the logarithmic term in
(14). Using Jensen’s inequality and Lemma 7, we get

[ρn(P f −Pn f )+]2 ≤ ρn(P f −Pn f )2+ ≤ c
n

(
logπe

n
c (P f−Pn f )

2
+ +K(ρn,π)

)
.

Moreover, by Markov’s inequality and Fubini’s Theorem, we have

Pn
[
logπe

n
c (P f−Pn f )

2
+ > t

]
≤ e−tπEn

[
e
n
c (P f−Pn f )

2
+

]
,

and
Ene nc (P f−Pn f )2+ =

R +∞
0 Pn

(
e nc (P f−Pn f )2+ ≥ u

)
du

= 1+
R en/c
1 Pn

(
P f −Pn f ≥

√
c logu
n

)
du

≤ 1+
R en/c
1

du
u−2c

= 1+ 1−e−n(2c−1)/c
2c−1 ,

where the inequality comes from the proof of (5). Taking β = 1+ 1−e−n(2c−1)/c
2c−1 e−t , we obtain for

c= 1/2, with probability at least 1−β,

ρn(P f −Pn f ) ≤
1√
2

√
K(ρn,π)+ log(2n+1)+ log1/β

n

and for any c> 1
2 , with probability at least 1−β,

ρn(P f −Pn f ) ≤
√
c

√
K(ρn,π)+ log( 2c

2c−1)+ log1/β
n

.

B.3.7 PROOF OF INEQUALITY (10)

From Theorem 15 and Lemma 17, we obtain that with probability at least 1−β,

sup
f∈F

(P f −Pn f ) ≤
2
n

En

[
Eσ sup

f∈F
∑σi f (Zi)

]
+
1√
2

√
log(β−1)

n
. (19)
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B.3.8 PROOF OF INEQUALITY (8)

The starting point is Inequality (19). Let fn be the function achieving the supremum. (To shorten
the proof, we assume its existence.) Introduce the vectors h∗ and h(0) such that h∗i = fn(Zi) and
h(0)
i = 0. Consider the canonical distance on Rn: ‖x‖ :=

√
∑x2i , and take the minimal covering nets

Nk of the set of vectors {[ f (Zi)]i=1,...,n : f ∈ F } of respective radius 2−k for k= 1, . . . ,K where K :=
/log2

√
n0+1. Let h(k) be a nearest neighbour of h∗ in the netNk. Let ek := Eσ max

(h′,h′′)∈ ¯̄Nk

∑iσi( fi−gi)

and
¯̄Nk :=

{
h′ ∈ Nk,h′′ ∈ Nk−1 : ‖h′−h′′‖ ≤ 32−k

}
.

We have

Eσ sup
f∈F
∑σi f (Zi) = Eσ∑σih∗i

= Eσ∑σi
(
h∗i −h(K)

i

)
+Eσ∑

i,k
σi

(
h(k)
i −h(k−1)

i

)

≤ 1+Eσ∑
i,k
σi

(
h(k)
i −h(k−1)

i

)

≤ 1+∑
k

Eσ∑
i
σi

(
h(k)
i −h(k−1)

i

)

≤ 1+∑
k
ek.

From the following lemma, using that for any (h′,h′′) ∈ ¯̄Nk, ‖h′−h′′‖ ≤ 3×2−k and | ¯̄Nk|≤ |Nk|2,
we get ek ≤ 3×2−k

√
4n logN(F ,2−k,dn).

Lemma 20 (Pisier 1986) Let σi, i = 1, . . . ,n be Rademacher variables and c j, j = 1, . . . ,J be Rn-
vectors such that for any j ∈ {1, . . . ,J}, ‖c j‖ ≤ c. Then we have

E max
j∈{1,...,J}

∑
i
σic j,i ≤ c

√
2n logJ.

Proof For any λ> 0, we have

E max
j∈{1,...,J}

∑
i
σic j,i ≤

1
λ
log∑

j
Ee∑i λσic j,i ≤ logJ

λ
+
λnc2

2
.

Optimizing the parameter λ, the upper bound becomes c
√
2n logJ.

Then we have
∑k ek ≤ 12

√
n∑2−(k+1)

√
logN(F ,2−k,dn)

≤ 12
√
n

R 1
0

√
logN(F ,r,dn)dr.

To conclude, the chaining trick showed that Rademacher averages are bounded by the Koltchinskii-
Pollard integral.
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B.3.9 PROOF OF INEQUALITY (9)

The proof is inspired from Talagrand (1996). Let
(
π( j))

j∈N be a family of probability distributions
on F . We want to prove that the Rademacher averages are bounded with
C sup f∈F ∑∞

j=1 r− j
√
log{1/π( j)[A j( f )]}. For any j ∈ N and any A ∈ A j, we choose an arbitrary

point xA ∈ A. Let us define p j( f ) := xA j( f ) and S j := {p j( f ) : f ∈ F }. We have A0 = {F }. Let
f0 = xF . Define X f := ∑iσi f (Zi).

FromCauchy-Schwarz inequality, we have sup
σ,Z1,...,Zn, f

|X f −Xp j( f )|≤
√
nr− j, hence∑ j≥1[Xp j( f )−

Xp j−1( f )] converges uniformly towards X f −X f0 . Introduce a probability distribution π′ such that
π′({xA}) ≥ 2− j−1π( j)(A) for any A ∈ A j. Define the quantities a j( f ) := r− j+1

√
2n log[2/π′( f )]

andM := sup
f∈F

∑ j≥1 a j[p j( f )]. We have

Eσ exp
{
λ(X f −Xg)

}
= ∏n

i=1Eσ exp
{
σiλ[ f (Zi)−g(Zi)]

}

= ∏n
i=1 cosh{λ[ f (Zi)−g(Zi)]}

≤ ∏n
i=1 exp

{λ2[ f (Zi)−g(Zi)]2
2

}

= e
nλ2d2n ( f ,g)

2 ,

hence for any u> 0, Pσ(X f −Xg ≥ u) ≤ e
− u2
2nd2n ( f ,g) . Then for any u≥ 1, we get

Pσ
(
sup
f∈F

{
X f −X f0

}
≥ uM

)
≤ ∑

j≥1,v∈S j
Pσ

[
Xv−Xp j−1(v) ≥ ua j(v)

]

≤ ∑
j≥1,v∈S j

e
−

u2a2j (v)

2nDiam2A j−1(v)

≤ ∑
j≥1,v∈S j

e−u
2 log 2

π′(v)

≤ 21−u2 ,

since π′(v)u2 ≤ π′(v).We obtain

Eσ sup
f∈F

X f = Eσ sup
f∈F

{
X f −X f0

}
≤

R +∞
0 21−u2duM ≤ 2.2M.

By plugging the definitions of X f andM, we obtain

Eσ sup
f∈F

∑iσi f (Zi) ≤ 4
√
n sup
f∈F

∑ j≥1 r− j+1
√
log{2 j+2/π( j)[A j( f )]}.

From (19) and by using that
√
log{2 j+2/π( j)[A j( f )]}≤

√
j+2+

√
log{1/π( j)[A j( f )]}, we get the

desired result.
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Abstract
The majority of existing algorithms for learning decision trees are greedy—a tree is induced top-
down, making locally optimal decisions at each node. In most cases, however, the constructed tree
is not globally optimal. Even the few non-greedy learners cannot learn good trees when the concept
is difficult. Furthermore, they require a fixed amount of time and are not able to generate a better
tree if additional time is available. We introduce a framework for anytime induction of decision
trees that overcomes these problems by trading computation speed for better tree quality. Our
proposed family of algorithms employs a novel strategy for evaluating candidate splits. A biased
sampling of the space of consistent trees rooted at an attribute is used to estimate the size of the
minimal tree under that attribute, and an attribute with the smallest expected tree is selected. We
present two types of anytime induction algorithms: a contract algorithm that determines the sample
size on the basis of a pre-given allocation of time, and an interruptible algorithm that starts with
a greedy tree and continuously improves subtrees by additional sampling. Experimental results
indicate that, for several hard concepts, our proposed approach exhibits good anytime behavior and
yields significantly better decision trees when more time is available.

Keywords: anytime algorithms, decision tree induction, lookahead, hard concepts, resource-bounded
reasoning

1. Introduction

Assume that a medical center has decided to use medical records of previous patients in order to
build an automatic diagnostic system for a particular disease. The center applies the C4.5 algorithm
on thousands of records, and after few seconds receives a decision tree. During the coming months,
or even years, the same induced decision tree will be used to predict whether patients have or do
not have the disease. Obviously, the medical center is willing to wait much longer to obtain a better
tree—either more accurate or more comprehensible.

Consider also a planning agent that has to learn a decision tree from a given set of examples,
while the time at which the model will be needed by the agent is not known in advance. In this case,
the agent would like the learning procedure to learn the best tree it can until it is interrupted and
queried for a solution.

In both of the above scenarios, the learning algorithm is expected to exploit additional time
allocation to produce a better tree. In the first case, the additional time is allocated in advance. In
the second, it is not. Similar resource-bounded reasoning situations may occur in many real-life

c©2007 Saher Esmeir and Shaul Markovitch.
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a1 a2 a3 a4 label
1 0 0 1 +
0 1 0 0 +
0 0 0 0 -
1 1 0 0 -
0 1 1 1 +
0 0 1 1 -
1 0 1 1 +

(a) A set of training instances.

 



 



(b) ID3’s performance.

Figure 1: Learning the 2-XOR concept a1⊕a2, where a3 and a4 are irrelevant

applications such as game playing, planning, stock trading and e-mail filtering. In this work, we
introduce a framework for exploiting extra time, preallocated or not, in order to learn better models.

Despite the recent progress in advanced induction algorithms such as SVM (Vapnik, 1995),
decision trees are still considered attractive for many real-life applications, mostly due to their
interpretability (Hastie et al., 2001, chap. 9). Craven (1996) lists several reasons why the under-
standability of a model by humans is an important criterion for evaluating it. These reasons include,
among others, the possibility for human validation of the model and generation of human-readable
explanations for the classifier predictions. When classification cost is important, decision trees may
be attractive in that they ask only for the values of the features along a single path from the root to
a leaf. In terms of accuracy, decision trees have been shown to be competitive with other classifiers
for several learning tasks.

The majority of existing methods for decision tree induction build a tree top-down and use
local measures in an attempt to produce small trees, which, by Occam’s Razor (Blumer et al.,
1987), should have better predictive power. The well-known C4.5 algorithm (Quinlan, 1993) uses
the gain ratio as a heuristic for predicting which attribute will yield a smaller tree. Several other
alternative local greedy measures have been developed, among which are ID3’s information gain,
Gini index (Breiman et al., 1984), and chi-square (Mingers, 1989). Mingers (1989) reports an
empirical comparison of several measures, and concludes that the predictive accuracy of the induced
trees is not sensitive to the choice of split measure and even random splits do not significantly
decrease accuracy. Buntine and Niblett (1992) present additional results on further domains and
conclude that while random splitting leads to inferior trees, the information gain and Gini index
measures are statistically indistinguishable.

The top-down methodology has the advantage of evaluating a potential attribute for a split in
the context of the attributes associated with the nodes above it. The local greedy measures, how-
ever, consider each of the remaining attributes independently, ignoring potential interaction between
different attributes (Mingers, 1989; Kononenko et al., 1997; Kim and Loh, 2001). We refer to the
family of learning tasks where the utility of a set of attributes cannot be recognized by examining
only subsets of it as tasks with a strong interdependency. When learning a problem with a strong
interdependency, greedy measures can lead to a choice of non-optimal splits. To illustrate the above,
let us consider the 2-XOR problem a1⊕a2 with two additional irrelevant attributes, a3 and a4. As-
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sume that the set of examples is as listed in Figure 1(a). We observe that gain-1 of the irrelevant
attribute a4 is the highest:

0.13= gain1(a4) > gain1(a1) = gain1(a2) = gain1(a3) = 0.02,

and hence ID3 would choose attribute a4 first. Figure 1(b) gives the decision tree as produced by
ID3. Any positive instance with value 0 for a4 would be misclassified by this decision tree. In the
general case of parity concepts, the information gain measure is unable to distinguish between the
relevant and irrelevant attributes because neither has a positive gain. Consequently, the learner will
grow an overcomplicated tree with splits on irrelevant variables that come either in addition to or
instead of the desired splits.

The problem of finding the smallest consistent tree1 is known to be NP-complete (Hyafil and
Rivest, 1976; Murphy and McCraw, 1991). In many applications that deal with hard problems,
we are ready to allocate many more resources than required by simple greedy algorithms, but still
cannot afford algorithms of exponential complexity. One commonly proposed approach for hard
problems is anytime algorithms (Boddy and Dean, 1994), which can trade computation speed for
quality. Quinlan (1993, chap. 11) recognized the need for this type of anytime algorithm for decision
tree learning: “What is wanted is a resource constrained algorithm that will do the best it can within
a specified computational budget and can pick up threads and continue if this budget is increased.
This would make a challenging thesis topic!”

There are two main classes of anytime algorithms, namely contract and interruptible (Russell
and Zilberstein, 1996). A contract algorithm is one that gets its resource allocation as a parameter.
If interrupted at any point before the allocation is completed, it might not yield any useful results.
An interruptible algorithm is one whose resource allocation is not given in advance and thus must be
prepared to be interrupted at any moment. While the assumption of preallocated resources holds for
many induction tasks, in many other real-life applications it is not possible to allocate the resources
in advance. Therefore, in our work, we are interested both in contract and interruptible decision tree
learners.

In this research, we suggest exploiting additional time resources by performing lookahead.
Lookahead search is a well-known technique for improving greedy algorithms (Sarkar et al., 1994).
When applied to decision tree induction, lookahead attempts to predict the profitability of a split at
a node by estimating its effect on deeper descendants of the node. One of the main disadvantages
of the greedy top-down strategy is that the effect of a wrong split decision is propagated down to
all the nodes below it (Hastie et al., 2001, chap. 9). Lookahead search attempts to predict and avoid
such non-contributive splits during the process of induction, before the final decision at each node
is made.

Lookahead techniques have been applied to decision tree induction by several researchers. The
reported results vary from lookahead produces better trees (Norton, 1989; Ragavan and Rendell,
1993; Dong and Kothari, 2001) to lookahead does not help and can hurt (Murthy and Salzberg,
1995). One problem with these works is their use of a uniform, fixed low-depth lookahead, therefore
disqualifying the proposed algorithms from serving as anytime algorithms. Another problem is
the data sets on which the lookahead methods were evaluated. For simple learning tasks, such as
induction of conjunctive concepts, greedy methods perform quite well and no lookahead is needed.
However, for more difficult concepts such as XOR, the greedy approach is likely to fail. Few other

1. A consistent decision tree is a tree that correctly classifies all training examples.
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Procedure TDIDT(E,A)
If E = /0 Return Leaf(nil)
If ∃c such that ∀e ∈ EClass(e) = c

Return Leaf(c)
a← CHOOSE-ATTRIBUTE(A,E)
V ← domain(a)
Foreach vi ∈V

Ei ← {e ∈ E | a(e) = vi}
Si ← TDIDT(Ei,A−{a})

Return Node(a,{〈vi,Si〉 | i= 1 . . . |V |})

Figure 2: Procedure for top-down induction of decision trees. E stands for the set of examples and
A stands for the set of attributes.

non-greedy decision tree learners have been recently introduced (Bennett, 1994; Utgoff et al., 1997;
Papagelis and Kalles, 2001; Page and Ray, 2003). These works, however, are not capable to handle
high-dimensional difficult concepts and are not designed to offer anytime behavior.2 The main
challenge we face in this work is to make use of extra resources to induce better trees for hard
concepts. Note that in contrast to incremental induction (Utgoff, 1989), we restrict ourselves in this
paper to batch setup where all the training instances are available beforehand.

2. Contract Anytime Induction of Decision Trees

TDIDT (top-down induction of decision trees) methods start from the entire set of training examples,
partition it into subsets by testing the value of an attribute, and then recursively call the induction
algorithm for each subset. Figure 2 formalizes the basic algorithm for TDIDT. We focus first on
consistent trees for which the stopping criterion for the top-down recursion is when all the examples
have the same class label. Later, we consider pruning, which allows simpler trees at the cost of
possible inconsistency with the training data (Breiman et al., 1984; Quinlan, 1993).

In this work we propose investing more time resources for making better split decisions. We
first discuss tree size as a desired property of the tree to be learned and then we describe an anytime
algorithm that uses sampling methods to obtain smaller trees.

2.1 Inductive Bias in Decision Tree Induction

The hypothesis space of TDIDT is huge and a major question is what strategy should be followed
to direct the search. In other words, we need to decide what our preference bias (Mitchell, 1997,
chap. 3) will be. This preference bias will be expressed in the CHOOSE-ATTRIBUTE procedure that
determines which tree is explored next.

Ultimately, we would like to follow a policy that maximizes the accuracy of the tree on unseen
examples. However, since these examples are not available, a heuristic should be used. Motivated
by Occam’s Razor, a widely adopted approach is to prefer smaller trees. The utility of this principle

2. In Section 5 we discuss related works in details.
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to machine learning algorithms has been the subject of a heated debate. Several studies attempted
to justify Occam’s razor with theoretical and empirical arguments (Blumer et al., 1987; Quinlan and
Rivest, 1989; Fayyad and Irani, 1990). But a number of recent works have questioned the utility of
Occam’s razor, and provided theoretical and experimental evidence against it.

Quinlan and Cameron-Jones (1995) provided empirical evidence that oversearching might result
in less accurate rules. Experimental results with several UCI data sets indicate that the complexity
of the produced theories does not correlate well with their accuracy, a finding that is inconsistent
with Occam’s Razor. Schaffer (1994) proved that no learning bias can outperform another bias over
the space of all possible learning tasks. This looks like theoretical evidence against Occam’s razor.
Rao et al. (1995), however, argued against the applicability of this result to real-world problems by
questioning the validity of its basic assumption about the uniform distribution of possible learning
tasks. Webb (1996) presented C4.5X, an extension to C4.5 that uses similarity considerations to
further specialize consistent leaves. Webb reported an empirical evaluation which shows that C4.5X
has a slight advantage in a few domains and argued that these results discredit Occam’s thesis.

Murphy and Pazzani (1994) reported a set of experiments in which all the possible consistent
decision trees were produced and showed that, for several tasks, the smallest consistent decision
tree had higher predictive error than slightly larger trees. However, when the authors compared the
likelihood of better generalization for smaller vs. more complex trees, they concluded that simpler
hypotheses should be preferred when no further knowledge of the target concept is available. The
small number of training examples relative to the size of the tree that perfectly describes the concept
might explain why, in these cases, the smallest tree did not generalize best. Another reason could
be that only small spaces of decision trees were explored. To verify these explanations, we use a
similar experimental setup where the data sets have larger training sets and attribute vectors of higher
dimensionality. Because the number of all possible consistent trees is huge, we use a Random Tree
Generator (RTG) to sample the space of trees obtainable by TDIDT algorithms. RTG builds a tree
top-down and chooses the splitting attribute at random.

We report the results for three data sets: XOR-5, Tic-tac-toe, and Zoo (See Appendix A for
detailed descriptions of these data sets). For each data set, the examples were partitioned into a
training set (90%) and a testing set (10%), and RTG was used to generate a sample of 10 million
consistent decision trees. The behavior in the three data sets is similar: the accuracy monotonically
decreases with the increase in the size of the trees (number of leaves), confirming the utility of
Occam’s Razor. Further experiments with a variety of data sets indicate that the inverse correlation
between size and accuracy is statistically significant (Esmeir and Markovitch, 2007).

It is important to note that smaller trees have several advantages aside from their probable greater
accuracy, such as greater statistical evidence at the leaves, better comprehensibility, lower storage
costs, and faster classification (in terms of total attribute evaluations).

Motivated by the above discussion, our goal is to find the smallest consistent tree. In TDIDT,
the learner has to choose a split at each node, given a set of examples E that reach the node and a
set of unused attributes A. For each attribute a, let Tmin(a,A,E) be the smallest tree rooted at a that
is consistent with E and uses attributes from A− {a} for the internal splits. Given two candidate
attributes a1 and a2, we obviously prefer the attribute whose associated Tmin(a) is the smaller. For
a set of attributes A, we define Ã to be the set of attributes whose associated Tmin(a) is the smaller.
Formally, Ã = argmina∈ATmin (a). We say that a splitting attribute a is optimal if a ∈ Ã. Observe
that if the learner makes an optimal decision at each node, then the final tree is necessarily globally
optimal.
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Procedure ENTROPY-K(E,A,a,k)
If k = 0

Return I(PE(c1), . . . ,PE(cn))
V ← domain(a)
Foreach vi ∈V

Ei ← {e ∈ E | a(e) = vi}
Foreach a′ ∈ A

A′ ← A−{a′}
hi(a′) ← ENTROPY-K(Ei,A′,a′,k−1))

Return ∑|V |
i=1

|Ei|
|E| mina′∈A (hi(a′))

Procedure GAIN-K(E,A,a,k)
Return I(PE(c1), . . . ,PE(cn))−

ENTROPY-K(E,A,a,k)

Figure 3: Procedures for computing entropyk and gaink for attribute a

2.2 Fixed-depth Lookahead

One possible approach for improving greedy TDIDT algorithms is to lookahead in order to examine
the effect of a split deeper in the tree. ID3 uses entropy to test the effect of using an attribute one
level below the current node. This can be extended to allow measuring the entropy at any depth k
below the current node. This approach was the basis for the IDX algorithm (Norton, 1989). The
recursive definition minimizes the k−1 entropy for each child and computes their weighted average.
Figure 3 describes an algorithm for computing entropyk and its associated gaink. Note that the gain
computed by ID3 is equivalent to gaink for k= 1. We refer to this lookahead-based variation of ID3
as ID3-k. At each tree node, ID3-k chooses the attribute that maximizes gaink.3

ID3-k can be viewed as a contract anytime algorithm parameterized by k. However, despite its
ability to exploit additional resources when available, the anytime behavior of ID3-k is problematic.
The run time of ID3-k grows exponentially as k increases.4 As a result, the gap between the points
of time at which the resulting tree can improve grows wider, limiting the algorithm’s flexibility.
Furthermore, it is quite possible that looking ahead to depth k will not be sufficient to find an op-
timal split. Entropyk measures the weighted average of the entropy in depth k but does not give a
direct estimation of the resulting tree size. Thus, when k < |A|, this heuristic is more informed than
entropy1 but can still produce misleading results. In most cases we do not know in advance what
value of k would be sufficient for correctly learning the target concept. Invoking exhaustive looka-
head, that is, lookahead to depth k= |A|, will obviously lead to optimal splits, but its computational
costs are prohibitively high. In the following subsection, we propose an alternative approach for
evaluating attributes that overcomes the above-mentioned drawbacks of ID3-k.

3. If two attributes yield the same decrease in entropy, we prefer the one whose associated lookahead tree is shallower.
4. For example, in the binary case, ID3-k explores ∏k−1

i=0 (n− i)2i combinations of attributes.
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Procedure SID3-CHOOSE-ATTRIBUTE(E,A)
Foreach a ∈ A

p(a) ← gain1(E,a)
If ∃a such that entropy1(E,a) = 0

a∗ ← Choose attribute at random from
{a ∈ A | entropy1(E,a) = 0}

Else
a∗ ← Choose attribute at random from A;

for each attribute a, the probability
of selecting it is proportional to p(a)

Return a∗

Figure 4: Attribute selection in SID3

2.3 Estimating Tree Size by Sampling

Motivated by the advantages of smaller decision trees, we introduce a novel algorithm that, given an
attribute a, evaluates it by estimating the size of the minimal tree under it. The estimation is based
on Monte-Carlo sampling of the space of consistent trees rooted at a. We estimate the minimum
by the size of the smallest tree in the sample. The number of trees in the sample depends on the
available resources, where the quality of the estimation is expected to improve with the increased
sample size.

One way to sample the space of trees is to repeatedly produce random consistent trees using
the RTG procedure. Since the space of consistent decision trees is large, such a sample might be
a poor representative and the resulting estimation inaccurate. We propose an alternative sampling
approach that produces trees of smaller expected size. Such a sample is likely to lead to a better
estimation of the minimum.

Our approach is based on a new tree generation algorithm that we designed, called Stochastic
ID3 (SID3). Using this algorithm repeatedly allows the space of “good” trees to be sampled semi-
randomly. In SID3, rather than choose an attribute that maximizes the information gain, we choose
the splitting attribute randomly. The likelihood that an attribute will be chosen is proportional to
its information gain.5 However, if there are attributes that decrease the entropy to zero, then one of
them is picked randomly. The attribute selection procedure of SID3 is listed in Figure 4.

To show that SID3 is a better sampler than RTG, we repeated our sampling experiment (Section
2.1) using SID3 as the sample generator. Figure 5 compares the frequency curves of RTG and SID3.
Relative to RTG, the graph for SID3 is shifted to the left, indicating that the SID3 trees are clearly
smaller. Next, we compared the average minimum found for samples of different sizes. Figure 6
shows the results. For the three data sets, the minimal size found by SID3 is strictly smaller than the
value found by RTG. Given the same budget of time, RTG produced, on average, samples that are
twice as large as that of SID3. However, even when the results are normalized (dashed line), SID3
is still superior.

Having decided about the sampler, we are ready to describe our proposed contract algorithm,
Lookahead-by-Stochastic-ID3 (LSID3). In LSID3, each candidate split is evaluated by the estimated

5. We make sure that attributes with gain of zero will have a positive probability of being selected.
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Figure 5: Frequency curves for the XOR-5 (left), Tic-tac-toe, and Zoo (right) data sets
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Figure 6: The minimum as estimated by SID3 and RTG as a function of the sample size. The data
sets are XOR5 (left), Tic-tac-toe and Zoo (right). The dashed line describes the results for
SID3 normalized by time.

size of the subtree under it. To estimate the size under an attribute a, LSID3 partitions the set of
examples according to the values a can take and repeatedly invokes SID3 to sample the space of trees
consistent with each subset. Summing up the minimal tree size for each subset gives an estimation
of the minimal total tree size under a.

LSID3 is a contract algorithm parameterized by r, the sample size. LSID3 with r = 0 is defined
to choose the splitting attribute using the standard ID3 selection method. Figure 7 illustrates the
choice of splitting attributes as made by LSID3. In the given example, SID3 is called twice for each
subset and the evaluation of the examined attribute a is the sum of the two minima: min(4,3) +
min(2,6) = 5. The method for choosing a splitting attribute is formalized in Figure 8.

To analyze the time complexity of LSID3, let m be the total number of examples and n be the
total number of attributes. For a given node y, we denote by ny the number of candidate attributes
at y, and by my the number of examples that reach y. ID3, at each node y, calculates gain for ny
attributes using my examples, that is, the complexity of choosing an attribute is O(ny ·my). At level i
of the tree, the total number of examples is bounded by m and the number of attributes to consider is
n− i. Thus, it takes O(m · (n− i)) to find the splits for all nodes in level i. In the worst case the tree
will be of depth n and hence the total runtime complexity of ID3 will be O(m · n2) (Utgoff, 1989).
Shavlik et al. (1991) reported for ID3 an empirically based average-case complexity of O(m ·n).

It is easy to see that the complexity of SID3 is similar to that of ID3. LSID3(r) invokes SID3 r
times for each candidate split. Recalling the above analysis for the time complexity of ID3, we can
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Figure 7: Attribute evaluation using LSID3. The estimated subtree size for a is min(4,3) +
min(2,6) = 5.

Procedure LSID3-CHOOSE-ATTRIBUTE(E,A,r)
If r = 0

Return ID3-CHOOSE-ATTRIBUTE(E, A)
Foreach a ∈ A

Foreach vi ∈ domain(a)
Ei ← {e ∈ E | a(e) = vi}
mini ← ∞
Repeat r times

mini ←min(mini, |SID3(Ei,A−{a})|)
totala ← ∑

|domain(a)|
i=1 mini

Return a for which totala is minimal

Figure 8: Attribute selection in LSID3

write the complexity of LSID3(r) as

n−1

∑
i=0

r · (n− i) ·O(m · (n− i)2) =
n

∑
i=1

O(r ·m · i3) = O(r ·m ·n4).

In the average case, we replace the runtime of SID3 by O(m · (n− i)), and hence we have

n−1

∑
i=0

r · (n− i) ·O(m · (n− i)) =
n

∑
i=1

O(r ·m · i2) = O(r ·m ·n3). (1)

According to the above analysis, the run-time of LSID3 grows at most linearly with r (under
the assumption that increasing r does not result in larger trees). We expect that increasing r will
improve the classifier’s quality. To understand why, let us examine the expected behavior of the
LSID3 algorithm on the 2-XOR problem used in Figure 1(b). LSID3 with r= 0, which is equivalent
to ID3, prefers to split on the irrelevant attribute a4. LSID3 with r ≥ 1 evaluates each attribute a by
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calling SID3 to estimate the size of the trees rooted at a. The attribute with the smallest estimation
will be selected. The minimal size for trees rooted at a4 is 6 and for trees rooted at a3 is 7. For
a1 and a2, SID3 would necessarily produce trees of size 4.6 Thus, LSID3, even with r = 1, will
succeed in learning the right tree. For more complicated problems such as 3-XOR, the space of
SID3 trees under the relevant attributes includes trees other than the smallest. In that case, the larger
the sample is, the higher the likelihood is that the smallest tree will be drawn.

2.4 Evaluating Continuous Attributes by Sampling the Candidate Cuts

When attributes have a continuous domain, the decision tree learner needs to discretize their values
in order to define splitting tests. One common approach is to partition the range of values an attribute
can take into bins, prior to the process of induction. Dougherty et al. (1995) review and compare
several different strategies for pre-discretization. Using such a strategy, our lookahead algorithm
can operate unchanged. Pre-discretization, however, may be harmful in many domains because the
correct partitioning may differ from one context (node) to another.

An alternative approach is to determine dynamically at each node a threshold that splits the
examples into two subsets. The number of different possible thresholds is at most |E|− 1, and
thus the number of candidate tests to consider for each continuous attribute increases to O(|E|).
Such an increase in complexity may be insignificant for greedy algorithms, where evaluating each
split requires a cheap computation (like information gain in ID3). In LSID3, however, the dynamic
method may present a significant problem because evaluating the usefulness of each candidate split
is very costly.

The desired method would reduce the number of splits to evaluate while avoiding the disadvan-
tages of pre-discretization. We devised a method for controlling the resources devoted to evaluating
a continuous attribute by Monte Carlo sampling of the space of splits. Initially, we evaluate each
possible splitting test by the information gain it yields. This can be done in linear time O(|E|).
Next, we choose a sample of the candidate splitting tests where the probability that a test will be
chosen is proportional to its information gain. Each candidate in the sample is evaluated by a single
invocation of SID3. However, since we sample with repetitions, candidates with high information
gain may have multiple instances in the sample, resulting in several SID3 invocations.

The resources allocated for evaluating a continuous attribute using the above method are deter-
mined by the sample size. If our goal is to devote a similar amount of resources to all attributes,
then we can use r as the size of the sample. Such an approach, however, does not take into account
the size of the population to be sampled. We use a simple alternative approach of taking samples
with size p · |E| where p is a predetermined parameter, set by the user according to the available
resources.7 Note that p can be greater than one because we sample with repetition.

We name this variant of the LSID3 algorithm LSID3-MC, and formalize it in Figure 9. LSID3-
MC can serve as an anytime algorithm that is parameterized by p and r.

2.5 Multiway vs. Binary Splits

The TDIDT procedure, as described in Figure 2, partitions the current set of examples into subsets
according to the different values the splitting attribute can take. LSID3, which is a TDIDT algo-
rithm, inherits this property. While multiway splits can yield more comprehensible trees (Kim and

6. Neither a3 nor a4 can be selected at the 2nd level since the remaining relevant attribute reduces the entropy to zero.
7. Similarly to the parameter r, a mapping from the available time to p is needed (see Section 2.7).
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Procedure MC-EVALUATE-CONTINUOUS-ATTRIBUTE(E,A,a, p)
Foreach e ∈ E

E≤ ← {e′ | a(e′) ≤ a(e)}
E> ← {e′ | a(e′) > a(e)}
entropye ← |E≤|

|E| entropy(E≤)+ |E>|
|E| entropy(E>)

gaine ← entropy(E)− entropye
sampleSize← p · |E|
min← ∞
Repeat sampleSize times

e← Choose an example at random from E; for each example e,
the probability of selecting it is proportional to gaine

E≤ ← {e′ | a(e′) ≤ a(e)}
E> ← {e′ | a(e′) > a(e)}
totale ← |SID3(E≤,A)|+ |SID3(E>,A)|
If totale < min

min← totale
bestTest ← a(e)

Return 〈min,bestTest〉

Figure 9: Monte Carlo evaluation of continuous attributes using SID3

Loh, 2001), they might fragment the data too quickly, decreasing its learnability (Hastie et al., 2001,
chap. 9).

To avoid the fragmentation problem, several learners take a different approach and consider
only binary splits (e.g., CART and QUEST, Loh and Shih, 1997). One way to obtain binary splits
when an attribute a is categorical is to partition the examples using a single value v: all the examples
with a = v are bagged into one group and all the other examples are bagged into a second group.
Therefore, for each attribute a there are |domain(a)| candidate splits. While efficient, this strategy
does not allow different values to be combined, and therefore might over-fragment the data. CART
overcomes this by searching over all non-empty subsets of domain(a). We denote by BLSID3 a
variant of LSID3 that yields binary trees and adopts the CART style exhaustive search. Observe
that the complexity of evaluating an attribute in BLSID3 is O(2|domain(a)|) times that in LSID3.

A second problem with LSID3’s multiway splits is their bias in attribute selection. Consider
for example a learning task with four attributes: three binary attributes a1,a2,a3, and a categorical
attribute a4 whose domain is {A,C,G,T}. Assume that the concept is a1⊕a2 and that a4 was created
from the values of a2 by randomly and uniformly mapping every 0 into A or C and every 1 into G
or T . Theoretically, a2 and a4 are equally important to the class. LSID3, however, would prefer to
split a2 due to its smaller associated total tree size.8 BLSID3 solves this problem by considering the
binary test ∈ {A,C}.

Loh and Shih (1997) pointed out that exhaustive search tends to prefer features with larger
domains and proposed QUEST, which overcomes this problem by dealing with attribute selection
and with test selection separately: first an attribute is chosen and only then is the best test picked.

8. Note that this bias is opposite to that of favoring attributes with a large domain (Quinlan, 1993, chap. 2).
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Figure 10: The space of decision trees over a set of attributes A and a set of examples E

This bias, and its reduction by QUEST, were studied in the context of greedy attribute evaluation,
but can potentially be applied to our non-greedy approach.

2.6 Pruning the LSID3 Trees

Pruning tackles the problem of how to avoid overfitting the data, mainly in the presence of classifi-
cation noise. It is not designed, however, to recover from wrong greedy decisions. When there are
sufficient examples, wrong splits do not significantly diminish accuracy, but result in less compre-
hensible trees and costlier classification. When there are fewer examples the problem is intensified
because the accuracy is adversely affected. In our proposed anytime approach, this problem is tack-
led by allotting additional time for reaching trees unexplored by greedy algorithms with pruning.
Therefore, we view pruning as orthogonal to lookahead and suggest considering it as an additional
phase in order to avoid overfitting.

Pruning can be applied in two different ways. First, it can be applied as a second phase after
each LSID3 final tree has been built. We denote this extension by LSID3-p (and BLSID3-p for
binary splits). Second, it is worthwhile to examine pruning of the lookahead trees. For this purpose,
a post-pruning phase will be applied to the trees that were generated by SID3 to form the lookahead
sample, and the size of the pruned trees will be considered. The expected contribution of pruning in
this case is questionable since it has a similar effect on the entire lookahead sample.

Previous comparative studies did not find a single pruning method that is generally the best
and conclude that different pruning techniques behave similarly (Esposito et al., 1997; Oates and
Jensen, 1997). Therefore, in our experiments we adopt the same pruning method as in C4.5, namely
error-based pruning (EPB), and examine post-pruning of the final trees as well as pruning of the
lookahead trees.

Figure 10 describes the spaces of decision trees obtainable by LSID3. Let A be a set of attributes
and E be a set of examples. The space of decision trees over A can be partitioned into two: the space
of trees consistent with E and the space of trees inconsistent with E. The space of consistent trees
includes as a subspace the trees inducible by TDIDT.9 The trees that ID3 can produce are a subspace
of the TDIDT space. Pruning extends the space of ID3 trees to the inconsistent space. LSID3

9. TDIDT is a strict subspace because it cannot induce trees that: (1) contain a subtree with all leaves marked with the
same class, and (2) include an internal node that has no associated training examples.
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can reach trees that are obtainable by TDIDT but not by the greedy methods and their extensions.
LSID3-p expands the search space to trees that do not fit the training data perfectly, so that noisy
training sets can be handled.

2.7 Mapping Contract Time to Sample Size

LSID3 is parameterized by r, the number of times SID3 is invoked for each candidate. In real-life
applications, however, the user supplies the system with the time she is willing to allocate for the
learning process. Hence, a mapping from the contract time to r is needed.

One way to obtain such a mapping is to run the algorithm with r = 1. Since the runtime grows
linearly with r, one can now, given the remaining time and the runtime for r = 1, easily find the
corresponding value of r. Then, the whole induction process is restarted with the measured r as
the contract parameter. The problem with this method is that, in many cases, running the algorithm
with r = 1 consumes many of the available resources while not contributing to the final classifier.

Another possibility is mapping time to r on the basis of previous experience on the same domain
or a domain with similar properties. When no such knowledge exists, one can derive the runtime
from the time complexity analysis. However, in practice, the runtime is highly dependent on the
complexity of the domain and the number of splits that in fact take place. Hence it is very difficult
to predict.

3. Interruptible Anytime Learning of Decision Trees

As a contract algorithm, LSID3 assumes that the contract parameter is known in advance. In many
real-life cases, however, either the contract time is unknown or mapping the available resources
to the appropriate contract parameter is not possible. To handle such cases, we need to devise an
interruptible anytime algorithm.

We start with a method that converts LSID3 to an interruptible algorithm using the general
sequencing technique described by Russell and Zilberstein (1996). This conversion, however, uses
the contract algorithm as a black box and hence cannot take into account specific aspects of decision
tree induction. Next, we present a novel iterative improvement algorithm, Interruptible Induction
of Decision Trees (IIDT), that repeatedly replaces subtrees of the current hypothesis with subtrees
generated with higher resource allocation and thus expected to be better.

3.1 Interruptible Induction by Sequencing Contract Algorithms

By definition, every interruptible algorithm can serve as a contract algorithm because one can stop
the interruptible algorithm when all the resources have been consumed. Russell and Zilberstein
(1996) showed that the other direction works as well: any contract algorithm A can be converted
into an interruptible algorithm B with a constant penalty. B is constructed by running A repeatedly
with exponentially increasing time limits. This general approach can be used to convert LSID3 into
an interruptible algorithm. LSID3 gets its contract time in terms of r, the sample size. When r = 0,
LSID3 is defined to be identical to ID3. Therefore, we first call LSID3 with r= 0 and then continue
with exponentially increasing values of r, starting from r = 1. Figure 11 formalizes the resulting
algorithm. It can be shown that the above sequence of runtimes is optimal when the different runs
are scheduled on a single processor (Russell and Zilberstein, 1996).
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Procedure SEQUENCED-LSID3(E,A)
T ← ID3(E,A)
r← 1
While not-interrupted

T ← LSID3(E,A,r)
r← 2 · r

Return T

Figure 11: Conversion of LSID3 to an interruptible algorithm by sequenced invocations

One problem with the sequencing approach is the exponential growth of the gaps between the
times at which an improved result can be obtained. The reason for this problem is the generality of
the sequencing approach, which views the contract algorithm as a black box. Thus, in the case of
LSID3, at each iteration the whole decision tree is rebuilt. In addition, the minimal value that can
be used for τ is the runtime of LSID3(r = 1). In many cases we would like to stop the algorithm
earlier. When we do, the sequencing approach will return the initial greedy tree. Our interruptible
anytime framework, called IIDT, overcomes these problems by iteratively improving the tree rather
than trying to rebuild it.

3.2 Interruptible Induction by Iterative Improvement

Iterative improvement approaches that start with an initial solution and repeatedly modify it have
been successfully applied to many AI domains, such as CSP, timetabling, and combinatorial prob-
lems (Minton et al., 1992; Johnson et al., 1991; Schaerf, 1996). The key idea behind iterative
improvement techniques is to choose an element of the current suboptimal solution and improve
it by local repairs. IIDT adopts the above approach for decision tree learning and iteratively re-
vises subtrees. It can serve as an interruptible anytime algorithm because, when interrupted, it can
immediately return the currently best solution available.

As in LSID3, IIDT exploits additional resources in an attempt to produce better decision trees.
The principal difference between the algorithms is that LSID3 uses the available resources to in-
duce a decision tree top-down, where each decision made at a node is final and does not change.
IIDT, however, is not allocated resources in advance and uses extra time resources to modify split
decisions repeatedly.

IIDT receives a set of examples and a set of attributes. It first performs a quick construction of
an initial decision tree by calling ID3. Then it iteratively attempts to improve the current tree by
choosing a node and rebuilding its subtree with more resources than those used previously. If the
newly induced subtree is better, it will replace the existing one. IIDT is formalized in Figure 12.

Figure 13 illustrates how IIDT works. The target concept is a1⊕ a2, with two additional irrel-
evant attributes, a3 and a4. The leftmost tree was constructed using ID3. In the first iteration, the
subtree rooted at the bolded node is selected for improvement and replaced by a smaller tree (sur-
rounded by a dashed line). Next, the root is selected for improvement and the whole tree is replaced
by a tree that perfectly describes the concept. While in this particular example IIDT first chooses to
rebuild a subtree at depth 2 and then at depth 1, it considers all subtrees, regardless of their level.
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Procedure IIDT(E,A)
T ← ID3(E,A)
While not-interrupted

node← CHOOSE-NODE(T,E,A)
t ← subtree of T rooted at node
Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
r← NEXT-R(node)
t ′ ← REBUILD-TREE(Enode,Anode,r)
If EVALUATE(t) > EVALUATE(t ′)

replace t with t ′
Return T

Figure 12: Interruptible induction of decision trees







 



 



 

       





 

   

Figure 13: Iterative improvement of the decision tree produced for the 2-XOR concept a1 ⊕ a2
with two additional irrelevant attributes, a3 and a4. The leftmost tree was constructed
using ID3. In the first iteration the subtree rooted at the bolded node is selected for
improvement and replaced by a smaller tree (surrounded by a dashed line). Next, the
root is selected for improvement and the whole tree is replaced by a tree that perfectly
describes the concept.

IIDT is designed as a general framework for interruptible learning of decision trees. It can use
different approaches for choosing which node to improve, for allocating resources for an improve-
ment iteration, for rebuilding a subtree, and for deciding whether an alternative subtree is better.

After the subtree to be rebuilt is chosen and the resources for a reconstruction iteration allo-
cated, the problem becomes a task for a contract algorithm. A good candidate for such an algorithm
is LSID3, which is expected to produce better subtrees when invoked with a higher resource al-
location. In what follows we focus on the different components of IIDT and suggest a possible
implementation that uses LSID3 for revising subtrees.
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3.2.1 CHOOSING A SUBTREE TO IMPROVE

Intuitively, the next node we would like to improve is the one with the highest expected marginal
utility, that is, the one with the highest ratio between the expected benefit and the expected cost
(Hovitz, 1990; Russell and Wefald, 1989). Estimating the expected gain and expected cost of re-
building a subtree is a difficult problem. There is no apparent way to estimate the expected im-
provement in terms of either tree size or generalization accuracy. In addition, the resources to be
consumed by LSID3 are difficult to predict precisely. We now show how to approximate these
values, and how to incorporate these approximations into the node selection procedure.

Resource Allocation. The LSID3 algorithm receives its resource allocation in terms of r, the
number of samplings devoted to each attribute. Given a tree node y, we can view the task of re-
building the subtree below y as an independent task. Every time y is selected, we have to allocate
resources for the reconstruction process. Following Russell and Zilberstein (1996), the optimal
strategy in this case is to double the amount of resources at each iteration. Thus, if the resources
allocated for the last attempted improvement of y were LAST-R(y), the next allocation will be
NEXT-R(y) = 2 ·LAST-R(y).

Expected Cost. The expected cost can be approximated using the average time complexity of the
contract algorithm used to rebuild subtrees. Following Equation 1, we estimate NEXT-R(y) ·m ·n3 to
be the expected runtime of LSID3 when rebuilding a node y, wherem is the number of examples that
reach y and n is the number of attributes to consider. We observe that subtrees rooted in deeper levels
are preferred because they have fewer examples and attributes to consider. Thus, their expected
runtime is shorter. Furthermore, because each time allocation for a node doubles the previous one,
nodes that have already been selected many times for improvement will have higher associated costs
and are less likely to be chosen again.

Expected benefit. The whole framework of decision tree induction rests on the assumption that
smaller consistent trees are better than larger ones. Therefore, the size of a subtree can serve as
a measure for its quality. It is difficult, however, to estimate the size of the reconstructed subtree
without actually building it. Therefore, we use instead an upper limit on the possible reduction in
size. The minimal size possible for a decision tree is obtained when all examples are labelled with
the same class. Such cases are easily recognized by the greedy ID3. Similarly, if a subtree were
replaceable by another subtree of depth 1, ID3 (and LSID3) would have chosen the smaller subtree.
Thus, the maximal reduction of the size of an existing subtree is to the size of a tree of depth 2.
Assuming that the maximal number of values per attribute is b, the maximal size of such a tree is
b2. Hence, an upper bound on the benefit from reconstructing an existing tree t is SIZE(t)− b2.
Ignoring the expected costs and considering only the expected benefits results in giving the highest
score to the root node. This makes sense: assuming that we have infinite resources, we would
attempt to improve the entire tree rather than parts of it.

Granularity. Considering the cost and benefit approximations described above, the selection pro-
cedure would prefer deep nodes (that are expected to have low costs) with large subtrees (that are
expected to yield large benefits). When no such large subtrees exist, our algorithm may repeatedly
attempt to improve smaller trees rooted at deep nodes because these trees have low associated costs.
In the short term, this behavior would indeed be beneficial but can be harmful in the long term. This
is because when the algorithm later improves subtrees in upper levels, the resources spent on deeper
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Procedure CHOOSE-NODE(T,E,A,g)
max-cost ← NEXT-R(root) · |E| · |A|3
Foreach node ∈ T

Anode ← {a ∈ A | a /∈ ancestor of node}
Enode ← {e ∈ E | e reaches node}
rnode ← NEXT-R(node)
costnode ← rnode · |Enode| · |Anode|3
If (costnode/max-cost) > g

l-bound ← (mina∈Anode |DOMAIN(a)|)2
Δq← LEAVES(node)− l-bound
unode ← Δq/costnode

best ← node that maximizes unode
Return 〈best,rbest〉

Procedure NEXT-R(node)
If LAST-R(node) = 0

Return 1
Else

Return 2 ·LAST-R(node)

Figure 14: Choosing a node for reconstruction

nodes will have been wasted. Had the algorithm first selected the upper level trees, this waste would
have been avoided, but the time gaps between potential improvements would have increased.

To control the tradeoff between efficient resource use and anytime performance flexibility, we
add a granularity parameter 0 ≤ g ≤ 1. This parameter serves as a threshold for the minimal time
allocation for an improvement phase. A node can be selected for improvement only if its normalized
expected cost is above g. To compute the normalized expected cost, we divide the expected cost by
the expected cost of the root node. Note that it is possible to have nodes with a cost that is higher
than the cost of the root node, since the expected cost doubles the cost of the last improvement
of the node. Therefore, the normalized expected cost can be higher than 1. Such nodes, however,
will never be selected for improvement, because their expected benefit is necessarily lower than the
expected benefit of the root node. Hence, when g = 1, IIDT is forced to choose the root node and
its behavior becomes identical to that of the sequencing algorithm described in Section 3.1.

Figure 14 formalizes the procedure for choosing a node for reconstruction. Observe that IIDT
does not determine g but expects the user to provide this value according to her needs: more frequent
small improvements or faster overall progress.

3.2.2 EVALUATING A SUBTREE

Although LSID3 is expected to produce better trees when allocated more resources, an improved
result is not guaranteed. Thus, to avoid obtaining an induced tree of lower quality, we replace an
existing subtree with a newly induced alternative only if the alternative is expected to improve the
quality of the complete decision tree. Following Occam’s Razor, we measure the usefulness of a
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subtree by its size. Only if the reconstructed subtree is smaller does it replace an existing subtree.
This guarantees that the size of the complete decision tree will decrease monotonically.

Another possible measure is the accuracy of the decision tree on a set-aside validation set of
examples. In this case the training set is split into two subsets: a growing set and a validation
set. Only if the accuracy on the validation set increases is the modification applied. This measure
suffers from two drawbacks. The first is that putting aside a set of examples for validation results
in a smaller set of training examples, making the learning process harder. The second is the bias
towards overfitting the validation set, which might reduce the generalization abilities of the tree.
Several of our experiments, which we do not report here, confirmed that relying on the tree size
results in better decision trees.

4. Empirical Evaluation

A variety of experiments were conducted to test the performance and behavior of the proposed
anytime algorithms. First we describe our experimental methodology and explain its motivation.
We then present and discuss our results.

4.1 Experimental Methodology

We start our experimental evaluation by comparing our contract algorithm, given a fixed resource
allocation, with the basic decision tree induction algorithms. We then compare the anytime behavior
of our contract algorithm to that of fixed lookahead. Next we examine the anytime behavior of
our interruptible algorithm. Finally, we compare its performance to several modern decision tree
induction methods.

Following the recommendations of Bouckaert (2003), 10 runs of a 10-fold cross-validation ex-
periment were conducted for each data set and the reported results averaged over the 100 individual
runs.10 For the Monks data sets, which were originally partitioned into a training set and a test-
ing set, we report the results on the original partitions. Due to the stochastic nature of LSID3, the
reported results in these cases are averaged over 10 different runs.

In order to evaluate the studied algorithms, we used 17 data sets taken from the UCI repository
(Blake and Merz, 1998).11 Because greedy learners perform quite well on easy tasks, we looked for
problems that hide hard concepts so the advantage of our proposed methods will be emphasized.
The UCI repository, nevertheless, contains only few such tasks. Therefore, we added 7 artificial
ones.12 Several commonly used UCI data sets were included (among the 17) to allow compari-
son with results reported in literature. Table 1 summarizes the characteristics of these data sets
while Appendix A gives more detailed descriptions. To compare the performance of the different
algorithms, we will consider two evaluation criteria over decision trees: (1) generalization accu-
racy, measured by the ratio of the correctly classified examples in the testing set, and (2) tree size,
measured by the number of non-empty leaves in the tree.

10. An exception was the Connect-4 data set, for which only one run of 10-fold CV was conducted because of its
enormous size.

11. Due to the time-intensiveness of the experiments, we limited ourselves to 17 UCI problems.
12. The artificial data sets are available at http://www.cs.technion.ac.il/∼esaher/publications/datasets.
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ATTRIBUTES MAX ATTRIBUTE
DATA SET INSTANCES NOMINAL (BINARY) NUMERIC DOMAIN CLASSES

AUTOMOBILE - MAKE 160 10 (4) 15 8 22
AUTOMOBILE - SYMBOLING 160 10 (4) 15 22 7
BALANCE SCALE 625 4 (0) 0 5 3
BREAST CANCER 277 9 (3) 0 13 2
CONNECT-4 68557 42 (0) 0 3 3
CORRAL 32 6 (6) 0 2 2
GLASS 214 0 (0) 9 - 7
IRIS 150 0 (0) 4 - 3
MONKS-1 124+432 6 (2) 0 4 2
MONKS-2 169+432 6 (2) 0 4 2
MONKS-3 122+432 6 (2) 0 4 2
MUSHROOM 8124 22 (4) 0 12 2
SOLAR FLARE 323 10 (5) 0 7 4
TIC-TAC-TOE 958 9 (0) 0 3 2
VOTING 232 16 (16) 0 2 2
WINE 178 0 (0) 13 - 3
ZOO 101 16 (15) 0 6 7
NUMERIC XOR 3D 200 0 (0) 6 - 2
NUMERIC XOR 4D 500 0 (0) 8 - 2
MULTIPLEXER-20 615 20 (20) 0 2 2
MULTIPLEX-XOR 200 11 (11) 0 2 2
XOR-5 200 10 (10) 0 2 2
XOR-5 10% NOISE 200 10 (10) 0 2 2
XOR-10 10000 20 (20) 0 2 2

Table 1: Characteristics of the data sets used

4.2 Fixed Time Comparison

Our first set of experiments compares ID3, C4.5 with its default parameters, ID3-k(k= 2), LSID3(r=
5) and LSID3-p(r = 5). We used our own implementation for all algorithms, where the results of
C4.5 were validated with WEKA’s implementation (Witten and Frank, 2005). We first discuss the
results for the consistent trees and continue by analyzing the findings when pruning is applied.

4.2.1 CONSISTENT TREES

Figure 15 illustrates the differences in tree size and generalization accuracy of LSID3(5) and ID3.
Figure 16 compares the performance of LSID3 to that of ID3-k. The full results, including signifi-
cance tests, are available in Appendix B.

When comparing the algorithms that produce consistent trees, namely ID3, ID3-k and LSID3,
the average tree size is the smallest for most data sets when the trees are induced with LSID3. In
all cases, as Figure 15(a) implies, LSID3 produced smaller trees than ID3 and these improvements
were found to be significant. The average reduction in size is 26.5% and for some data sets, such
as XOR-5 andMultiplexer-20, it is more than 50%. ID3-k produced smaller trees than ID3 for most
but not all of the data sets (see Figure 16, a).

In the case of synthetic data sets, the optimal tree size can be found in theory.13 For instance,
the tree that perfectly describes the n XOR concept is of size 2n. The results show that in this sense,
the trees induced by LSID3 were almost optimal.

13. Note that a theoretically optimal tree is not necessarily obtainable from a given training set.
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Figure 15: Illustration of the differences in performance between LSID3(5) and ID3. The left-side
figure gives the relative size of the trees produced by LSID3 in comparison to ID3. The
right-side figure plots the accuracy achieved by both algorithms. Each point represents
a data set. The x-axis represents the accuracy of ID3 while the y-axis represents that of
LSID3. The dashed line indicates equality. Points are above it if LSID3 performs better
and below it if ID3 is better.
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Figure 16: Performance differences for LSID3(5) and ID3-k. The left-side figure compares the
size of trees induced by each algorithm, measured relative to ID3 (in percents). The
right-side figure plots the absolute differences in terms of accuracy.

Reducing the tree size is usually beneficial only if the associated accuracy is not reduced. Ana-
lyzing the accuracy of the produced trees shows that LSID3 significantly outperforms ID3 for most
data sets. For the other data sets, the t-test values indicate that the algorithms are not significantly
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Figure 17: Performance differences for LSID3-p(5) and C4.5. The left-side figure compares the
size of trees induced by each algorithm, measured relative to ID3 (in percents). The
right-side figure plots the absolute differences in terms of accuracy.

different. The average absolute improvement in the accuracy of LSID3 over ID3 is 11%. The
Wilcoxon test (Demsar, 2006), which compares classifiers over multiple data sets, indicates that the
advantage of LSID3 over ID3 is significant, with α= 0.05.

The accuracy achieved by ID3-k, as shown in Figure 16(b), is better than that of ID3 on some
data sets. ID3-k achieved similar results to LSID3 for some data sets, but performed much worse
for others, such as Tic-tac-toe and XOR-10. For most data sets, the decrease in the size of the
trees induced by LSID3 is accompanied by an increase in predictive power. This phenomenon is
consistent with Occam’s Razor.

4.2.2 PRUNED TREES

Pruning techniques help to avoid overfitting. We view pruning as orthogonal to our lookahead
approach. Thus, to allow handling noisy data sets, we tested the performance of LSID3-p, which
post-prunes the LSID3 trees using error-based pruning.

Figure 17 compares the performance of LSID3-p to that of C4.5. Applying pruning on the
trees induced by LSID3 makes it competitive with C4.5 on noisy data. Before pruning, C4.5 out-
performed LSID3 on the Monks-3 problem, which is known to be noisy. However, LSID3 was
improved by pruning, eliminating the advantage C4.5 had. For some data sets, the trees induced
by C4.5 are smaller than those learned by LSID3-p. However, the results indicate that among the
21 tasks for which t-test is applicable,14 LSID3-p was significantly more accurate than C4.5 on 11,
significantly worse on 2, and similar on the remaining 8. Taking into account all 24 data sets, the
overall improvement by LSID3-p over C4.5 was found to be statistically significant by a Wilcoxon
test with α= 0.05. In general, LSID3-p performed as well as LSID3 on most data sets, and signifi-
cantly better on the noisy ones.

14. The t-test is not applicable for the Monk data sets because only 1 train-test partition was used.
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These results confirm our expectations: the problems addressed by LSID3 and C4.5’s pruning
are different. While LSID3 allots more time for better learning of hard concepts, pruning attempts
to simplify the induced trees to avoid overfitting the data. The combination of LSID3 and pruning
is shown to be worthwhile: it enjoys the benefits associated with lookahead without the need to
compromise when the training set is noisy.

We also examined the effect of applying error-based pruning not only to the final tree, but to
the lookahead trees as well. The experiments conducted on several noisy data sets showed that
the results of this extra pruning phase were very similar to the results without pruning. Although
pruning results in samples that better represent the final trees, it affects all samples similarly and
hence does not lead to different split decisions.

4.2.3 BINARY SPLITS

By default, LSID3 uses multiway splits, that is, it builds a subtree for each possible value of a
nominal attribute. Following the discussion in Section 2.5, we also tested how LSID3 performs if
binary splits are forced. The tests in this case are found using exhaustive search.

To demonstrate the fragmentation problem, we used two data sets. The first data set is Tic-
tac-toe. When binary splits were forced, the performance of both C4.5 and LSID3-p improved
from 85.8 and 87.2 to 94.1 and 94.8 respectively. As in the case of multiway splits, the advantage
of LSID3-p over C4.5 is statistically significant with α = 0.05. Note that binary splits come at a
price: the number of candidate splits increases and the runtime becomes significantly longer. When
allocated the same time budget, LSID3-p can afford larger samples than BLSID3-p. The advantage
of the latter, however, is kept.

The second task is a variant on XOR-2, where there are 3 attributes a1,a2,a3, each of which can
take one of the values A,C,G,T . The target concept is a∗1⊕a∗2. The values of a∗i are obtained from
ai by mapping each A and C to 0 and each G and T to 1. The data set, referred to as Categorial
XOR-2, consists of 16 randomly drawn examples. With multiway splits, both LSID3-p and C4.5
could not learn Categorial XOR-2 and their accuracy was about 50%. C4.5 failed also with binary
splits. BLSID3-p, on the contrary, was 92% accurate.

We also examined the bias of LSID3 toward binary attributes. For this purpose we used the
example described in Section 2.5. An artificial data set with all possible values was created. LSID3
with multiway and with binary splits were run 10000 times. Although a4 is as important to the
class as a1 and a2, LSID3 with multiway splits never chose it at the root. LSID3 with binary splits,
however, split the root on a4 35% of the time. These results were similar to a1 (33%) and a2 (32%).
They indicate that forcing binary splits removes the LSID3 bias.

4.3 Anytime Behavior of the Contract Algorithms

Both LSID3 and ID3-k make use of additional resources for generating better trees. However, in
order to serve as good anytime algorithms, the quality of their output should improve with the
increase in their allocated resources. For a typical anytime algorithm, this improvement is greater
at the beginning and diminishes over time. To test the anytime behavior of LSID3 and ID3-k, we
invoked them with successive values of r and k respectively. In the first set of experiments we
focused on domains with nominal attributes, while in the second set we tested the anytime behavior
for domains with continuous attributes.
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Figure 18: Anytime behavior of ID3-k and LSID3 on theMultiplex-XOR data set
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Figure 19: Anytime behavior of ID3-k and LSID3 on the 10-XOR data set

4.3.1 NOMINAL ATTRIBUTES

Figures 18, 19 and 20 show the average results over 10 runs of 10-fold cross-validation experiments
for theMultiplex-XOR, XOR-10 and Tic-tac-toe data sets respectively. The x-axis represents the run
time in seconds.15 ID3 and C4.5, which are constant time algorithms, terminate quickly and do not
improve with time. Since ID3-k with k= 1 and LSID3 with r= 0 are defined to be identical to ID3,
the point at which ID3 yields a result serves also as the starting point of these anytime algorithms.

The graphs indicate that the anytime behavior of LSID3 is better than that of ID3-k. For ID3-
k, the gaps between the points (width of the steps) increase exponentially, although successive
values of k were used. As a result, any extra time budget that falls into one of these gaps cannot be
exploited. For example, when run on the XOR-10 data set, ID3-k is unable to make use of additional
time that is longer than 33 seconds (k = 3) but shorter than 350 seconds (k = 4). For LSID3, the
difference in the time required by the algorithm for any 2 successive values of r is almost the same.

For the Multiplex-XOR data set, the tree size and generalization accuracy improve with time
for both LSID3 and ID3-k, and the improvement decreases with time. Except for a short period of
time, LSID3 dominates ID3-k. For the XOR-10 data set, LSID3 has a great advantage: while ID3-k

15. The algorithms were implemented in C++, compiled with GCC, and run on Macintosh G5 2.5 GHz.
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Figure 20: Anytime behavior of ID3-k and LSID3 on the Tic-tac-toe data set
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Figure 21: Anytime behavior of ID3-k, LSID3 on the Numeric-XOR 4D data set

produced trees whose accuracy was limited to 55%, LSID3 reached an average accuracy of more
than 90%.

In the experiment with the Tic-tac-toe data set, LSID3 dominated ID3-k consistently, both in
terms of accuracy and size. ID3-k performs poorly in this case. In addition to the large gaps
between successive possible time allocations, a decrease in accuracy and an increase in tree size
are observed at k = 3. Similar cases of pathology caused by limited-depth lookahead have been
reported by Murthy and Salzberg (1995). Starting from r = 5, the accuracy of LSID3 does not
improve over time and sometimes slightly declines (but still dominates ID3-k). We believe that the
multiway splits prevent LSID3 from further improvements. Indeed, our experiments in Section 4.2
indicate that LSID3 can perform much better with binary splits.

4.3.2 CONTINUOUS ATTRIBUTES

Our next anytime-behavior experiment uses the Numeric-XOR 4D data set with continuous at-
tributes. Figure 21 gives the results for ID3, C4.5, LSID3, and ID3-k. LSID3 clearly outperforms
all the other algorithms and exhibits good anytime behavior. Generalization accuracy and tree size
both improve with time. ID3-k behaves poorly in this case. For example, when 200 seconds are
allocated, we can run LSID3 with r = 2 and achieve accuracy of about 90%. With the same allo-
cation, ID3-k can be run with k = 2 and achieve accuracy of about 52%. The next improvement of
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Figure 22: Anytime behavior of LSID3-MC on the Numeric-XOR 4D data set

ID3-k (with k= 3) requires 10,000 seconds. But even with such a large allocation (not shown in the
graph since it is off the scale), the resulting accuracy is only about 66%.

In Section 2.4 we described the LSID3-MC algorithm which, instead of uniformly distributing
evaluation resources over all possible splitting points, performs biased sampling towards points with
high information gain. Figure 22 compares the anytime behavior of LSID3-MC to that of LSID3.
The graph of LSID3 shows, as before, the performance for successive values of r. The graph of
LSID3 shows the performance for p = 10%,20%, . . . ,150%. A few significant conclusions can be
drawn from these results:

1. The correlation between the parameter p and the runtime is almost linear: the steps in the
graph are of almost constant duration.16 We can easily increase the granularity of the anytime
graph by smaller gaps between the p values.

2. It looks as if the runtime for LSID3-MC with p= 100% should be the same as LSID3(r = 1)
without sampling where all candidates are evaluated once. We can see, however, that the
runtime of LSID3(r = 1) is not sufficient for running LSID3-MC with p = 50%. This is
due to the overhead associated with the process of ordering the candidates prior to sample
selection.

3. LSID3-MC with p = 100% performs better than LSID3(r = 1). This difference can be ex-
plained by the fact that we performed a biased sample with repetitions, and therefore more
resources were devoted to more promising tests rather than one repetition for each point as in
LSID3(r = 1).

4. When the available time is insufficient for running LSID3(r = 1) but more than sufficient for
running ID3, LSID3-MC is more flexible and allows these intermediate points of time to be
exploited. For instance, by using only one-fifth of the time required by LSID3(r = 1), an
absolute accuracy improvement of 20% over ID3 was achieved.
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Figure 23: Anytime behavior of IIDT on the Glass data set
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Figure 24: Anytime behavior of IIDT on the 10-XOR data set

4.4 Anytime Behavior of IIDT

IIDT was presented as an interruptible decision tree learner that does not require advanced knowl-
edge of its resource allocation: it can be stopped at any moment and return a valid decision tree.
We tested two versions of IIDT, the first with granularity threshold g = 0.1 and the second with
g = 1. Figures 23, 24, and 25 show the anytime performance of IIDT in terms of tree size and
accuracy for the Glass, XOR-10, and Tic-tac-toe data sets. Each graph represents an average of 100
runs (for the 10× 10 cross-validation). Unlike the graphs given in the previous section, these are
interruptible anytime graphs, that is, for each point, the y coordinate reflects the performance if the
algorithm was interrupted at the associated x coordinate. In the contract algorithm graphs, however,
each point reflects the performance if the algorithm was initially allocated the time represented by
the x coordinate.

In all cases, the two anytime versions indeed exploit the additional resources and produce both
smaller and more accurate trees. Since our algorithm replaces a subtree only if the new one is
smaller, all size graphs decrease monotonically. The most interesting anytime behavior is for the
difficult XOR-10 problem. There, the tree size decreases from 4000 leaves to almost the optimal
size (1024), and the accuracy increases from 50% (which is the accuracy achieved by ID3 and C4.5)

16. Some steps look as though they require durations that are twice as long. However, these durations actually represent
two p values with identical results.
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Figure 25: Anytime behavior of IIDT on the Tic-tac-toe data set
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Figure 26: Time steps for a single run on 10-XOR

to almost 100%. The shape of the graphs is typical to those of anytime algorithms with diminishing
returns. The improvement in the accuracy of IIDT (at the latest point it was measured) over ID3
and C4.5 was found by t-test (α = 0.05) to be significant for the Glass and XOR-10 data sets. The
performance of IIDT on Tic-tac-toe slightly degrades over time. We believe that similarly to LSID3,
IIDT can perform much better if binary splits are used.

The difference in performance of the two anytime algorithms is interesting. IIDT(0.1), with
the lower granularity parameter, indeed produces smoother anytime graphs (with lower volatility),
which allows for better control and better predictability of return. Moreover, in large portions of the
time axis, the IIDT(0.1) graph shows better performance than that of IIDT(1). This is due to more
sophisticated node selection in the former. Recall that g= 1 means that the algorithm always selects
the entire tree for improvement.

The smoothness of the IIDT(0.1) graphs is somehowmisleading because it represents an average
of 100 runs, with each step taking place at a different time (this is in contrast to the graph for
IIDT(1), where the steps are at roughly the same times). Figure 26 illustrates the significance of this
smoothing effect on a single anytime graph (out of the 100). We can see that although the IIDT(0.1)
graph is less smooth than the average graph, it is still much smoother than the corresponding IIDT(1)
graph.

917



ESMEIR AND MARKOVITCH

4.5 Comparison with Modern Decision Tree Learners

During the last decade, several modern decision tree learners were introduced. Although these
learners were not presented and studied as anytime algorithms, some of them can be viewed as such.
In what follows we compare our proposed anytime framework to three such algorithms: bagging,
skewing and GATree. We first give a brief overview of the studied methods and then compare their
performance to that of our anytime approach.

4.5.1 OVERVIEW OF THE COMPARED METHODS

Page and Ray (2003) introduced skewing as an alternative to lookahead for addressing problematic
concepts such as parity functions. At each node, the algorithm skews the set of examples and
produces several versions of it, each with different weights for the instances. The algorithm chooses
to split on the attribute that exceeds a pre-set gain threshold for the greatest number of weightings.
Skewing was reported to perform well on hard concepts such as XOR-n, mainly when the data set
is large enough relative to the number of attributes. Skewing can be viewed as a contract algorithm
parameterized by w, the number of weightings. In order to convert skewing into an interruptible
algorithm, we apply the general conversion method described in Section 3.1.

Two improvements to the original skewing algorithm were presented, namely sequential skew-
ing (Page and Ray, 2004), which skews one variable at a time instead of all of them simultaneously,
and generalized skewing (Ray and Page, 2005), which can handle nominal and continuous attributes.
Nominal attributes are skewed by randomly reordering the possible values and assigning a weight
for a value proportional to its rank. Continuous attributes are handled by altering the input distri-
bution for every possible split point. We test the sequential skewing algorithm on the binary XOR
andMultiplexer data sets. This version is not parameterized and hence is not anytime by nature. To
convert it into an anytime algorithm, we added a parameter k that controls the number of skewing
iterations. Thus, instead of skewing each variable once, we skew it k times. For the Tic-tac-toe data
set, where the attributes are ternary, we used only the generalized skewing algorithm, parameterized
by the number of random orderings by which the nominal attributes are reweighed.

Papagelis and Kalles (2001) presented GATree, a learner that uses genetic algorithms to evolve
decision trees. The initial population consists of randomly generated 1-level depth decision trees,
where both the test and the class labels are drawn randomly. Mutation steps choose a random node
and replaces its test with a new random one. If the chosen node is a leaf, the class label is replaced
by a random label. Crossover chooses two random nodes, possibly from different trees, and swaps
their subtrees. When tested on several UCI data sets, GATree was reported to produce trees as
accurate as C4.5 but of significantly smaller size. GATree was also shown to outperform C4.5 on
the XOR-2 and XOR-3 problems. GATree can be viewed as an interruptible anytime algorithm that
uses additional time to produce more and more generations. In our experiments we used the GATree
full original version with the same set of parameters as reported by Papagelis and Kalles, with one
exception: we allowed a larger number of generations.

The third algorithm we tested is bagging (Breiman, 1996). Bagging is an ensemble-based
method, and as such, it is naturally an interruptible anytime learner. Additional resources can be
exploited by bagging to generate larger committees. In our experiments we consider 3 different
bagging methods that use ID3, C4.5, and RTG (Random Tree Generator) as base learners. In ad-
dition, we tested a committee of trees produced by our LSID3. Since the latter takes significantly
more time to run, the LSID3 committees are expected to be smaller than the greedy committees for
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Figure 27: Anytime behavior of various modern algorithms on the XOR-5 data set
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Figure 28: Anytime behavior of various modern algorithms on theMultiplexer-20 data set

the same allocated time. Note that bagging is not a direct competitor to our method. We defined our
goal as inducing a single “good” decision tree while bagging generates a set of trees. Generating
a set of trees rather than a single good tree eliminates one of the greatest advantages of decision
trees—their comprehensibility.

4.5.2 EMPIRICAL COMPARISON

We used our own implementation for IIDT, skewing, and bagging, and the commercial version
for GATree.17 The skewing and sequential skewing versions were run with linearly increasing
parameters. The generalized skewing algorithm was run with exponentially increasing parameters.
The performance of the ensemble method was tested for exponentially increasing committee sizes
(1,2,4,8, . . .).

Figures 27, 28, and 29 compare IIDT to bagging with ID3 as a base learner, bagging with
LSID3(r = 1), and skewing on the XOR-5, Multiplexer-20, and Tic-tac-toe tasks respectively. Note
that the results for ID3 are identical to those of bagging-ID3 with a single tree in the committee and

17. The experiments with GATree were run on a Pentium IV 2.8 GHz machine with the Windows XP operating system.
The reported times are as output by the application itself.
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Figure 29: Anytime behavior of various modern algorithms on the Tic-tac-toe data set

hence are not plotted independently. Since GATree was run on a different machine, we report its
results separately later in this section.

The graphs for the first 2 problems, which are known to be hard, show that IIDT clearly outper-
forms the other methods both in terms of tree size and accuracy. In both cases IIDT reaches almost
perfect accuracy (99%), while bagging-ID3 and skewing topped at 55% for the first problem and
75% for the second.

The inferior performance of bagging-ID3 on the XOR-5 andMultiplexer-20 tasks is not surpris-
ing. The trees that form the committee were induced greedily and hence could not discover these
difficult concepts, even when they were combined. Similar results were obtained when running bag-
ging over C4.5 and RTG. However, when our LSID3(r= 1) was used as a base learner, performance
was significantly better than that of the greedy committees. Still, IIDT performed significantly bet-
ter than bagging-LSID3, indicating that for difficult concepts, it is better to invest more resources
for improving a single tree than for adding more trees of lower quality to the committee.

The inferior results of the skewing algorithms are more difficult to interpret, since skewing was
shown to handle difficult concepts well. One possible explanation for this is the small number
of examples with respect to the difficulty of the problem. To verify that this indeed explains the
inferior results, we repeated the experiment with simpler XOR problems such as XOR-2 and XOR-
3. In these cases skewing indeed did much better and outperformed ID3, reaching 100% accuracy
(as IIDT). When we increased the size of the training set for the XOR-5 domain, skewing also
performed better, yet IIDT outperformed it by more than 9%. For a deeper analysis of the difference
between IIDT and skewing, see Section 5.

The average accuracy of GATree, after 150 generations, was 49.5%. It took more than 3 seconds
on average to reach 150 generations. Thus, even when GATree was allocated much more time than
IIDT, it could not compete with the latter. We repeated the experiment, allowing GATree to have a
larger initial population and to produce more generations. The accuracy on the testing set, even after
thousands of generations, remained very low. Similar results were obtained for theMultiplexers-20
data set.

The above set of experiments was repeated on the much more difficult XOR-10 data set. The
advantage of IIDT over the other methods was even more evident. While IIDT was able to reach
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accuracy of 100%, bagging-ID3, skewing, and GATree performed as poorly as a random guesser,
with accuracy of only 50%.

The next experiment was with the Tic-tac-toe data set. In this case, as shown in Figure 29, both
ensemble-based methods have a significant advantage over the single tree inducers. We speculate
that this is because ensemble methods were able to overcome the quick-fragmentation problem
associated with multiway splits by combining several classifiers. We are still looking for ways to
verify this hypothesis. Bagging-ID3 outperforms the other methods until the fifth second, where
bagging-LSID3 overtakes it slightly. In contrast to the XOR-5 domain, building larger committees
is worthwhile in this case, even at the expense of less accurate base classifiers. However, if the time
allocation permits, large ensembles of LSID3 trees are shown to be the most accurate. We believe
that the general question of tradeoff between the resources allocated for each tree and the number
of trees forming the ensemble should be addressed by further research with extensive experiments
on various data sets. The performance of generalized skewing and IIDT was similar in this case,
with a slight advantage for skewing in terms of accuracy and an advantage for IIDT in terms of tree
size. GATree was run on the data set for 150 generations (30 seconds). The average accuracy was
76.42%, much lower than that of the other methods.

5. Related Work

While to the best of our knowledge no other work has tried to design an anytime algorithm for
decision tree induction in particular, there are several related works that warrant discussion here. We
consider first works that deal with decision tree inducers. We then discuss algorithms for induction
of other models, and finally we consider methods that focus on aspects of the learning process other
than the model-induction phase.

5.1 Single Tree Inducers

The goal of our research was to develop anytime algorithms for inducing a single decision tree. Sev-
eral other algorithms for single decision-tree induction can either be considered anytime algorithms
or can be converted into them with relative ease. We view the recently introduced skewing approach
as the most relevant to our work. Therefore, we focus first on the differences between skewing and
our anytime framework, and then we consider other decision tree learners.

5.1.1 SKEWING

The skewing approach was presented as an efficient alternative to lookahead (Page and Ray, 2003).
In our discussion, we analyze the original skewing algorithm, which is applicable only to binary
attributes. This analysis, however, holds also for the other versions of skewing (see Section 4.5),
since they are based on the same ideas.

Skewing relies on the hypothesis that, when learning a hard concept, it may be easier for a greedy
decision tree inducer to pick a relevant attribute if the distribution over the data is significantly
different from the uniform distribution. Therefore, at each node, skewing repeatedly attempts to
produce, from the existing set of examples, skewed versions that represent different distributions.
Several different weight vectors are repeatedly assigned to the examples for this purpose. Then, the
information gain of each attribute is calculated on the basis of each weight vector. The attribute
that exceeds a pre-determined gain threshold for the greatest number of times is chosen. In order
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to generate the weight vectors, a favored value vi is randomly drawn for each candidate attribute ai.
Then, the weight of each example in which ai takes the value vi is increased.

This process can be viewed as a stochastic clustering of the examples according to the values
they take for a subset of the attributes: examples that most agree with the favored value for a large
number of attributes are assigned the highest weight. Therefore, the calculation of the information
gain will be most affected by sets of examples that share the same values for different subsets of the
attributes.

In regular k-steps lookahead, for each tuple of k attributes we divide the set of examples into
2k subsets, each of which is associated with a different k-tuple of binary values, that is, a different
sub-path of length k in the lookahead tree. Then, we calculate the information gain for each subset
and compute the average gain weighted by subset sizes.

In skewing, each iteration assigns a high weight to a few subsets of the examples that have
common values for some of the attributes. These subsets have the greatest influence on the gain
calculation at that skewing iteration. Hence, skewing iterations can be seen as sampling the space
of lookahead sub-paths and considering a few of them at a time.

The great advantage of skewing over our proposed framework is efficiency. While LSID3 sam-
ples full decision trees, skewing samples only single sub-paths. When there are many examples but
relatively few attributes, skewing improves greatly over the greedy learners at a low cost. The ef-
fectiveness of skewing, however, noticeably degrades when the concept hides a mutual dependency
between a large number of attributes. When the number of attributes increases, it becomes harder
to create large clusters with common values for some of the relevant ones, and hence the resulting
lookahead is shallower.

Consider, for example, the n-XOR problem with n additional irrelevant attributes. For n = 2, a
reweighting that assigns a high weight to examples that agree only on 1 of the 2 relevant attributes
results in a high gain for the second attribute because it decreases the entropy of the cluster to 0.
Nevertheless, in order to have a positive gain for a relevant attribute when n= 10, we should cluster
together examples that agree on 9 of the 10 relevant attributes. Obviously, the probability for a good
cluster in the first case is high while in the second case it is almost 0. The experiments reported in
Section 4.5 provide an empirical backup for this argument.

5.1.2 OTHER SINGLE TREE INDUCERS

Papagelis and Kalles (2001) studied GATree, a learner that uses genetic algorithms for building
decision trees. GATree does not adopt the top-down scheme. Instead, it starts with a population of
random trees and uses a mutation operation of randomly changing a splitting test and a crossover
operation of exchanging subtrees. Unlike our approach, GATree is not designed to generate con-
sistent decision trees and searches the space of all possible trees over a given set of attributes.
Thus, it is not appropriate for applications where a consistent tree is required. Like most genetic
algorithms, GATree requires cautious parameter tuning and its performance depends greatly on the
chosen setting. Comparing GATree to our algorithm (see Section 4.5) shows that, especially for
hard concepts, it is much better to invest the resources in careful tuning of a single tree than to
perform genetic search over the large population of decision trees.

Utgoff et al. (1997) presented DMTI, an induction algorithm that chooses an attribute by build-
ing a single decision tree under each candidate attribute and evaluates it using various measures.
Several possible tree measures were examined and the MDL (Minimum Description Length) mea-
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sure performed best. DMTI is similar to LSID3(r = 1) but, unlike LSID3, it can only use a fixed
amount of additional resources and hence cannot serve as an anytime algorithm. When the user can
afford using more resources than required by DMTI, the latter does not provide means to improve
the learned model further. Furthermore, DMTI uses a single greedy lookahead tree for attribute
evaluation, while we use a biased sample of the possible lookahead trees. Our experiments with
DMTI (as available online) show that while it can solve simpler XOR and multiplexer problems, its
limited lookahead is not sufficient for learning complex concepts such as XOR-10: DMTI achieved
an accuracy of 50%. IIDT and LSID3, by producing larger samples, overcame this problem and
reached high accuracies.

Kim and Loh (2001) introduced CRUISE, a bias-free decision tree learner that attempts to pro-
duce more compact trees by (1) using multiway splits—one subnode for each class, and (2) exam-
ining pair-wise interactions among the variables. CRUISE is able to learn XOR-2 and Chess-board
(numeric XOR-2) concepts. Much like ID3-k with k = 2, it cannot recognize more complex inter-
actions.

Bennett (1994) presented GTO, a non-greedy approach for repairing multivariate decision trees.
GTO requires as input an initial tree. The algorithm retains the structure of the tree but attempts to
simultaneously improve all the multivariate decisions of the tree using iterative linear programming.
GTO and IIDT both use a non-greedy approach to improve a decision tree. The advantage of GTO
is its use of a well-established numerical method for optimization. Its disadvantages are its inability
to modify the initial structure and its inability to exploit additional resources (beyond those needed
for convergence).

5.2 Induction of Other Models

Ensemble-based methods, such as bagging and boosting (Schapire, 1999), can also be viewed as
anytime algorithms. However, the classifiers constructed by the bagging and boosting algorithms
consist of a committee of decision trees rather than a single tree. Therefore, the problem they face
is very different from the problem we face in this work—that of learning a single tree. A major
problem with ensemble-based methods is that the induced ensemble is often large, complex, and
difficult to interpret (Freund and Mason, 1999). Therefore, these methods cannot be used when
comprehensible models are required. Another problem is that greedy trees are unable to discover
any knowledge about hard-to-learn target concepts. Therefore, combining them cannot improve
performance. In our experiments, reported in Section 4.5, we provide empirical support for this
claim by comparing our proposed anytime algorithms to bagging.

Dietterich (2000) presented the randomized-C4.5 algorithm, where a randomized version of
C4.5 that chooses the split attribute at random from among the 20 best candidates is repeatedly
invoked to produce an ensemble of decision trees. The experimental results indicate that ensembles
of randomized-C4.5 were competitive with bagging but not as accurate as boosting. As in the case
of the traditional bagging and boosting methods, our framework differs from randomized-C4.5 in
that the latter produces an ensemble of trees that is obviously not as comprehensible as a single
decision trees is.

The SVM algorithm usually depends on several parameters—kernel parameters for example.
Several works, such as Chapelle et al. (2002), proposed iterative methods for automatic tuning of
SVM parameters. These iterative methods can exploit additional time resources for better tuning.
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Opitz (1995) introduced an anytime approach for theory refinement. This approach starts by
generating a neural network from a set of rules that describe what is currently known about the
domain. The network then uses the training data and the additional time resources to try to improve
the resulting hypothesis.

5.3 Other Learning Components

In addition to the induction procedure, the learning process involves other components, where ad-
ditional resources can be invested. Many algorithms for active learning (Lindenbaum et al., 2004),
feature generation (Markovitch and Rosenstein, 2002), and feature selection (Last et al., 2001) have
some level of anytime characteristics. All these methods are orthogonal to our induction methods
and can complement them. An interesting research direction is to determine resource distribution
between the various learning stages.

The related problem of budgeted learning was defined by Lizotte et al. (2003). There is a cost
associated with obtaining each attribute value of a training example, and the task is to determine
what attributes to test given a budget.

6. Conclusions

With the increased popularity of Machine Learning techniques, induction algorithms are being ap-
plied to more complex problems. Recently, much research effort has been spent on developing
advanced induction algorithms, such as SVM. However, these algorithms do not provide compre-
hensible models and therefore are not appropriate when understandability is crucial, such as in
medical tasks. Decision trees, on the contrary, are considered easy to interpret. In order to allow
induction of better decision trees for hard-to-learn concepts, we presented a framework for anytime
induction of decision trees that makes use of additional resources for producing better hypotheses.

Existing greedy algorithms for learning decision trees require a fixed small amount of time. We
showed that for several real-world and synthetic data sets, our proposed anytime algorithms can
exploit larger time budgets. This is shown to be worthwhile especially for hard concepts where
existing greedy methods fail.

The major contributions of this paper are:

• A better understanding of the space of consistent decision trees: Using sampling techniques,
we conducted experiments that support the application of Occam’s Razor for decision trees
and showed that smaller trees are clearly preferable.

• LSID3: We presented and empirically evaluated LSID3, a contract anytime algorithm for
learning decision trees. On the data sets studied in this paper, LSID3 was shown to exhibit
good anytime behavior and to produce better decision trees.

• IIDT: Motivated by the need for interruptible learners, we introduced IIDT, an interruptible
anytime algorithm for inducing decision trees. In our experiments on hard concepts, IIDT
produced significantly better decision trees when run for longer time.

• Comparison with modern learners: Our proposed framework was compared to several mod-
ern decision tree learners and shown to outperform them significantly. The advantage of
LSID3 and IIDT is most evident when applied on problems with a strong interdependency.
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When one can afford allocating extra resources, both LSID3 and IIDT are considered among
the best choices for inducing a decision tree.

To the best of our knowledge, this is the first work that proposes anytime algorithms for learning
decision trees. This research is only a first step in this direction. We are currently in the process of
designing and implementing many variations of our proposed algorithms, including algorithms that
combine ID3-k and LSID3, algorithms that allow different resource distribution for different sub-
concepts, and algorithms that allow pruning as an improvement phase in the interruptible learner.
In addition, we intend to adapt our anytime framework for incremental tasks, where new examples
arrive after the learning process has been initiated. This will allow the classifier to exploit both
additional time resources and additional data that becomes available with time.
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Appendix A. Data Sets

Below we give a more detailed description of the data sets used in our experiments:

1. Automobile: This problem, taken from the UCI Repository, consists of three types of enti-
ties: (1) the specification of an automobile, (2) its assigned insurance risk rating, and (3) its
normalized losses in use as compared to other cars. Several of the attributes in the database
could be used as class attributes: we chose to use both the make (model) and the symbolling
(risk degree).

2. Balance Scale: This data set is taken from the UCI Repository and was generated to model
psychological experimental results. Each example is classified as having the balance scale tip
to the right, tip to the left, or be balanced. The attributes are the left weight, the left distance,
the right weight and the right distance.

3. Breast Cancer (Ljubljana): This problem is taken from the UCI Repository. Each instance
represents the characteristics of a patient and the class is whether or not there are recurrence
events.

4. Connect-4: This data set, taken from the UCI Repository, contains all legal 8-ply positions in
the connect-4 game in which neither player has won yet and the next move is not forced.

5. Corral: An artificial data set first used by John et al. (1994).

6. Glass: In this domain, taken from the UCI Repository, the goal is to determine the type of
glass from its characteristics.

7. Iris: This data set is taken from the UCI Repository and contains 3 classes of 50 instances
each, where each class refers to a type of iris plant.
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8. Monks problems: This set, taken from the UCI Repository, contains three problems. Each
example is represented by 5 nominal attributes in the range 1,2,3,4. The problems are:

• Monks-1: (a1= a2)or(a5= 1).
• Monks-2: exactly two of (a1= 1,a2= 1,a3= 1,a4= 1,a5= 1).
• Monks-3: ((a5 = 3)and(a4 = 1))or((a5 ,= 4)and(a2 ,= 3)), with an added 5% class
noise.

The original data sets are already partitioned into training and testing sets.

9. Mushroom: This data set, taken from the UCI Repository, includes descriptions of hypothet-
ical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota
family. Each species is identified as edible or poisonous.

10. Solar Flare: This problem is taken from the UCI Repository. Each instance represents cap-
tured features for one active region on the sun. Among the three possible classes, we consid-
ered the C-class flare where the instances are more distributed.

11. Tic-Tac-Toe: The problem, taken from the UCI Repository, deals with the classification of
legal tic-tac-toe end games, as wins or non-wins for the x player. Each example is represented
by 9 nominal attributes, which represent the slot values.

12. Voting: This data set, taken from the UCI repository, includes votes for each member of the
U.S. House of Representatives on the 16 key votes identified by the CQA. The class of each
record is Democrat or Republican.

13. Wine: This problem, taken from the UCI Repository, deals with the classification of wines
into 3 class types. Each example is represented by 13 continuous attributes, which represent
measures of chemical elements in the wine.

14. Zoo: In this domain, taken from the UCI Repository, the goal is to determine the type of the
animal from several attributes.

15. Multiplexer: The multiplexer task was used by several researchers for evaluating classifiers,
for example, Quinlan (1993). An instance is a series of bits of length a+ 2a, where a is a
positive integer. The first a bits represent an index into the remaining bits and the label of the
instance is the value of the indexed bit. In our experiments we considered the 20-Multiplexer
(a= 4). The data set contains 500 randomly drawn instances.

16. Boolean XOR: Parity-like functions are known to be problematic for many learning algo-
rithms. However, they naturally arise in real-world data, such as the Drosophila survival
concept (Page and Ray, 2003). We considered XOR of five and ten variables with additional
irrelevant attributes.

17. Numeric XOR: A XOR based numeric data set that has been used to evaluate learning al-
gorithms, for example, Baram et al. (2003). Each example consists of values for x and y
coordinates. The example is labelled 1 if the product of x and y is positive, and−1 otherwise.
We generalized this domain for three and four dimensions and added irrelevant variables to
make the concept harder.
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18. Multiplex-XOR: Another XOR based concept that is defined over 11 binary attributes. The
concept is a composition of two XOR terms, where the first attribute determines which one
should be considered. The other 10 attributes are used to form the XOR terms. The size of
each term is drawn randomly between 2 and 5.

Appendix B. Full Results

Table 2 shows the size of the trees induced by the above mentioned algorithms, lists the differences
between the algorithms, and states whether these differences were found to have t-test significance
with α = 0.05. Similarly, Table 3 compares the produced trees in terms of their generalization
accuracy.
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Abstract
This paper1 is about classifying entities that are interlinked with entities for which the class is
known. After surveying prior work, we present NetKit, a modular toolkit for classification in net-
worked data, and a case-study of its application to networked data used in prior machine learning
research. NetKit is based on a node-centric framework in which classifiers comprise a local clas-
sifier, a relational classifier, and a collective inference procedure. Various existing node-centric
relational learning algorithms can be instantiated with appropriate choices for these components,
and new combinations of components realize new algorithms. The case study focuses on univari-
ate network classification, for which the only information used is the structure of class linkage in
the network (i.e., only links and some class labels). To our knowledge, no work previously has
evaluated systematically the power of class-linkage alone for classification in machine learning
benchmark data sets. The results demonstrate that very simple network-classification models per-
form quite well—well enough that they should be used regularly as baseline classifiers for studies
of learning with networked data. The simplest method (which performs remarkably well) highlights
the close correspondence between several existing methods introduced for different purposes—that
is, Gaussian-field classifiers, Hopfield networks, and relational-neighbor classifiers. The case study
also shows that there are two sets of techniques that are preferable in different situations, namely
when few versus many labels are known initially. We also demonstrate that link selection plays an
important role similar to traditional feature selection.
Keywords: relational learning, network learning, collective inference, collective classification,
networked data, probabilistic relational models, network analysis, network data

1. Introduction

Networked data contain interconnected entities for which inferences are to be made. For example,
web pages are interconnected by hyperlinks, research papers are connected by citations, telephone
accounts are linked by calls, possible terrorists are linked by communications. This paper is about

1. Versions of this paper have been available as S.A. Macskassy and Provost, F.J., “Classification in Networked Data:
A toolkit and a univariate case study” CeDER Working Paper CeDER-04-08, Stern School of Business, New York
University, NY, NY 10012. December 2004. Updated December 2006.

c©2007 Sofus A. Macskassy and Foster Provost.
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within-network classification: entities for which the class is known are linked to entities for which
the class must be estimated. For example, telephone accounts previously determined to be fraudu-
lent may be linked, perhaps indirectly, to those for which no assessment yet has been made.

Such networked data present both complications and opportunities for classification and ma-
chine learning. The data are patently not independent and identically distributed, which introduces
bias to learning and inference procedures (Jensen and Neville, 2002b). The usual careful separation
of data into training and test sets is difficult, and more importantly, thinking in terms of separating
training and test sets obscures an important facet of the data: entities with known classifications can
serve two roles. They act first as training data and subsequently as background knowledge during
inference. Relatedly, within-network inference allows models to use specific node identifiers to aid
inference (see Section 3.5.3).

Networked data allow collective inference, meaning that various interrelated values can be in-
ferred simultaneously. For example, inference in Markov random fields (MRFs, Dobrushin, 1968;
Besag, 1974; Geman and Geman, 1984) uses estimates of a node’s neighbors’ labels to influence
the estimation of the node’s label—and vice versa. Within-network inference complicates such pro-
cedures by pinning certain values, but also offers opportunities such as the application of network-
flow algorithms to inference (see Section 3.5.1). More generally, networked data allow the use of
the features of a node’s neighbors, although that must be done with care to avoid greatly increasing
estimation variance and thereby error (Jensen et al., 2004).

To our knowledge there previously has been no large-scale, systematic experimental study of
machine learning methods for within-network classification. A serious obstacle to undertaking such
a study is the scarcity of available tools and source code, making it hard to compare various method-
ologies and algorithms. A systematic study is further hindered by the fact that many relational learn-
ing algorithms can be separated into various sub-components; ideally the relative contributions of
the sub-components and alternatives should be assessed.

As a main contribution of this paper, we introduce a network learning toolkit (NetKit-SRL)
that enables in-depth, component-wise studies of techniques for statistical relational learning and
classification with networked data. We abstract prior, published methods into a modular framework
on which the toolkit is based.2

NetKit is interesting for several reasons. First, various systems from prior work can be realized
by choosing particular instantiations for the different components. A common platform allows one
to compare and contrast the different systems on equal footing. Perhaps more importantly, the
modularity of the toolkit broadens the design space of possible systems beyond those that have
appeared in prior work, either by mixing and matching the components of the prior systems, or by
introducing new alternatives for components.

In the second half of the paper, we use NetKit to conduct a case study of within-network classifi-
cation in homogeneous, univariate networks, which are important both practically and scientifically
(as we discuss in Section 5). We compare various learning and inference techniques on twelve
benchmark data sets from four domains used in prior machine learning research. Beyond illustrat-
ing the value of the toolkit, the case study provides systematic evidence that with networked data
even univariate classification can be remarkably effective. One implication is that such methods
should be used as baselines against which to compare more sophisticated relational learning algo-
rithms (Macskassy and Provost, 2003). One particular very simple and very effective technique

2. NetKit-SRL, or NetKit for short, is written in Java 1.5 and is available as open source from
http://www.research.rutgers.edu/˜sofmac/NetKit.html.
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highlights the close correspondence between several types of methods introduced for different pur-
poses: “node-centric” methods, which focus on each node individually; random-field methods; and
classic connectionist methods. The case study also illustrates a bias/variance trade-off in networked
classification, based on the principle of homophily (the principle that a contact between similar peo-
ple occurs at a higher rate than among dissimilar people, Blau, 1977; McPherson et al., 2001, page
416; cf., assortativity, Newman, 2003, and relational autocorrelation, Jensen and Neville, 2002b)
and suggests network-classification analogues to feature selection and active learning.

To further motivate and to put the rest of the paper into context, we start by reviewing some (pub-
lished) applications of classification in networked data. Section 3 describes the problem of network
learning and classification more formally, introduces the modular framework, and surveys existing
work on network classification. Section 4 describes NetKit. Then Section 5 covers the case study,
including motivation for studying univariate network inference, the experimental methodology, data
used, toolkit components used, and the results and analysis.

2. Applications

The earliest work on classification in networked data arose in scientific applications, with the net-
works based on regular grids of physical locations. Statistical physics introduced, for example,
the Ising model (Ising, 1925) and the Potts model (Potts, 1952), which were used to find mini-
mum energy configurations in physical systems with components exhibiting discrete states, such
as magnetic moments in ferromagnetic materials. Network-based techniques then saw application
in spatial statistics (Besag, 1974) and in image processing (e.g., Geman and Geman, 1984; Besag,
1986), where the networks were based on grids of pixels.

More recent work has concentrated on networks of arbitrary topology, for example, for the
classification of linked documents such as patents (Chakrabarti et al., 1998), scientific research
papers (e.g., Taskar et al., 2001; Lu and Getoor, 2003), and web pages (e.g., Neville et al., 2003;
Lu and Getoor, 2003). Segal et al. (2003a,b) apply network classification (specifically, relational
Markov networks, Taskar et al., 2002) to protein interaction and gene expression data, where protein
interactions form a network over which inferences are drawn about pathways, that is, sets of genes
that coordinate to achieve a particular task. In computational linguistics network classification is
applied to tasks such as the segmentation and labeling of text (e.g., part-of-speech tagging, Lafferty
et al., 2001).

Explicit social-network data play an important role in counterterrorism, law enforcement, and
fraud detection, because suspicious people may interact with known malicious people. The U.S.
Government recently has received attention for its gathering of telephone call-detail records to build
a network for counterterrorism analysis (Tumulty, 2006). The simple relational-neighbor technique
that performs so well in the case study below (wvRN), combined with a protocol for acquiring net-
work link data, can be applied to communication or surveillance networks for suspicion scoring—
ranking candidates by their estimated likelihood of being malicious (Macskassy and Provost, 2005)
(cf., Galstyan and Cohen, 2005). In fraud detection, entities to be classified as being fraudulent or
legitimate are linked by chains of transactions to those for which classifications are known. For more
than a decade “state-of-the-art” fraud detection techniques have included network-based methods
such as the “dialed-digit monitor” (Fawcett and Provost, 1997) that examines indirect (two-hop)
connections to prior fraudulent accounts in the call network. Cortes et al. (2001) and Hill et al.
(2006b) explicitly represent and reason with accounts’ local network neighborhoods, for identify-
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ing telecommunications fraud. Similarly, networks of relationships between brokers can help in
identifying securities fraud (Neville et al., 2005).

For marketing, consumers can be connected into a network based on the products that they
buy (or that they rate in a collaborative filtering system), and then network-based techniques can
be applied for making product recommendations (Domingos and Richardson, 2001; Huang et al.,
2004). If a firm can know actual social-network links between consumers, for example through
communications records, statistical, network-based marketing techniques can perform significantly
better than traditional targeted marketing based on demographics and prior purchase data (Hill et al.,
2006a).

Finally, network classification approaches have seen elegant application to problems that ini-
tially do not present themselves as network classification. Section 3.5.1 discusses how for “trans-
ductive” inference (Vapnik, 1998a), data points can be linked into a network based on any similarity
measure. Thus, any transductive classification problem can be treated as a (within-)network classi-
fication problem.

3. Network Classification and Learning

Traditionally, machine learning methods have treated entities as being independent, which makes
it possible to infer class membership on an entity-by-entity basis. With networked data, the class
membership of one entity may have an influence on the class membership of a related entity. Fur-
thermore, entities not directly linked may be related by chains of links, which suggests that it may
be beneficial to infer the class memberships of all entities simultaneously. Collective inferencing in
relational data (Jensen et al., 2004) makes simultaneous statistical judgments regarding the values of
an attribute or attributes for multiple linked entities for which some attribute values are not known.

3.1 Univariate Collective Inferencing

For the univariate case study presented below, the (single) attribute Xi of a vertex vi, representing
the class, can take on some categorical value c ∈ X—for m classes, X = {c1, . . . ,cm}. We will use
c to refer to a non-specified class value.

Given graphG= (V,E,X) where Xi is the (single) attribute of vertex vi ∈V, and given
known values xi of Xi for some subset of vertices VK , univariate collective inferencing
is the process of simultaneously inferring the values xi of Xi for the remaining vertices,
VU = V−VK , or a probability distribution over those values.

As a shorthand, we will use xK to denote the (vector of) class values for VK , and similarly for
xU . Then, GK = (V,E,xK) denotes everything that is known about the graph (we do not consider
the possibility of unknown edges). Edge ei j ∈ E represents the edge between vertices vi and v j, and
wi j represents the edge weight. For this paper we consider only undirected edges (i.e., wi j = w ji), if
necessary simply ignoring directionality for a particular application.

Rather than estimating the full joint probability distribution P(xU |GK) explicitly, relational
learning often enhances tractability by making a Markov assumption:

P(xi|G) = P(xi|Ni),

where Ni is a set of “neighbors” of vertex vi such that P(xi|Ni) is independent of G−Ni (i.e.,
P(xi|Ni) = P(xi|G)). For this paper, we make the (“first-order”) assumption that Ni comprises only
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the immediate neighbors of vi in the graph. As one would expect, and as we will see in Section 5.3.5,
this assumption can be violated to a greater or lesser degree based on how edges are defined.

Given Ni, a relational model can be used to estimate xi. Note that N U
i (= Ni∩VU )—the set of

neighbors of vi whose values of attribute X are not known—could be non-empty. Therefore, even
if the Markov assumption holds, a simple application of the relational model may be insufficient.
However, the relational model also may be used to estimate the labels of N U

i . Further, just as esti-
mates for the labels of N U

i influence the estimate for xi, xi also influences the estimate of the labels
of v j ∈ N U

i (because edges are undirected, so v j ∈ Ni =⇒ vi ∈ N j). In order to simultaneously
estimate these interdependent values xU , various collective inference methods can be applied, which
we discuss below.

Many of the algorithms developed for within-network classification are heuristic methods with-
out a formal probabilistic semantics (and others are heuristic methods with a formal probabilistic
semantics). Nevertheless, let us suppose that at inference time we are presented with a probability
distribution structured as a graphical model.3 In general, there are various inference tasks we might
be interested in undertaking (Pearl, 1988). We focus primarily on within-network, univariate classi-
fication: the computation of the marginal probability of class membership of a particular node (i.e.,
the variable represented by the node taking on a particular value), conditioned on knowledge of the
class membership of certain other nodes in the network. We also discuss methods for the related
problem of computing the maximum a posteriori (MAP) joint labeling for V or VU .

For the sort of graphs we expect to encounter in the aforementioned applications, such proba-
bilistic inference is quite difficult. As discussed byWainwright and Jordan (2003), the naive method
of marginalizing by summing over all configurations of the remaining variables is intractable even
for graphs of modest size; for binary classification with around 400 unknown nodes, the summation
involves more terms than atoms in the visible universe. Inference via belief propagation (Pearl,
1988) is applicable only as a heuristic approximation, because directed versions of many network
classification graphs will contain cycles.

An important alternative to heuristic (“loopy”) belief propagation is the junction-tree algorithm
(Cowell et al., 1999), which provides exact solutions for arbitrary graphs. Unfortunately, the com-
putational complexity of the junction-tree algorithm is exponential in the “treewidth” of the junction
tree formed by the graph (Wainwright and Jordan, 2003). Since the treewidth is one less than the
size of the largest clique, and the junction tree is formed by triangulating the original graph, the
complexity is likely to be prohibitive for graphs such as social networks, which can have dense
local connectivity and long cycles.

3.2 A Node-centric Network Learning Framework and Historical Background:
Local, Relational, and Collective Inference

A large set of approaches to the problem of network classification can be viewed as “node centric,”
in the sense that they focus on a single node at a time. For a couple reasons, which we elaborate
presently, it is useful to divide such systems into three components. One component, the relational
classifier, addresses the question: given a node and the node’s neighborhood, how should a clas-
sification or a class-probability estimate be produced? For example, the relational classifier might

3. For this paper, we assume that the structure of the network resulting from the chosen links corresponds at least
partially to the structure of the network of probabilistic dependencies. This of course will be more or less true based
on the choice of links, as we will see in Section 5.3.5.
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1. Non-relational (“local”) model. This component consists of a (learned)
model, which uses only local information—namely information about (at-
tributes of) the entities whose target variable is to be estimated. The local
models can be used to generate priors that comprise the initial state for the
relational learning and collective inference components. They also can be
used as one source of evidence during collective inference. These models
typically are produced by traditional machine learning methods.

2. Relational model. In contrast to the non-relational component, the rela-
tional model makes use of the relations in the network as well as the values
of attributes of related entities, possibly through long chains of relations. Re-
lational models also may use local attributes of the entities.

3. Collective inferencing. The collective inferencing component determines
how the unknown values are estimated together, possibly influencing each
other, as described above.

Table 1: The three main components making up a (node-centric) network learning system.

combine local features and the labels of neighbors using a naive Bayes model (Chakrabarti et al.,
1998) or a logistic regression (Lu and Getoor, 2003). A second component addresses the problem
of collective inference: what should we do when a classification depends on a neighbor’s classifi-
cation, and vice versa? Finally, most such methods require initial (“prior”) estimates of the values
for P(xU |GK). The priors could be Bayesian subjective priors (Savage, 1954), or they could be
estimated from data. A common estimation method is to employ a non-relational learner, using
available “local” attributes of vi to estimate xi (e.g., as done by Besag, 1986). We propose a general
“node-centric” network classification framework consisting of these three main components, listed
in Table 1.

Viewing network classification approaches through this decomposition is useful for two main
reasons. First, it provides a way of describing certain approaches that highlights the similarities and
differences among them. Secondly, it expands the small set of existing methods to a design space
of methods, since components can be mixed and matched in new ways. In fact, some novel com-
bination may well perform better than those previously proposed; there has been little systematic
experimentation along these lines. Local and relational classifiers can be drawn from the vast space
of classifiers introduced over the decades in machine learning, statistics, pattern recognition, etc.,
and treated in great detail elsewhere. Collective inference has received much less attention in all
these fields, and therefore warrants additional introduction.

Collective inference has its roots mainly in pattern recognition and statistical physics. Markov
random fields have been used extensively for univariate network classification for vision and image
restoration. Introductions to MRFs fill textbooks (Winkler, 2003); for our purposes, it is important
to point out that they are the basis both directly and indirectly for many network classification
approaches. MRFs are used to estimate a joint probability distribution over the free variables of
a set of nodes under the first-order Markov assumption that P(xi|G/vi) = P(xi|Ni), where xi is
the (estimated) label of vertex vi, G/vi means all nodes in G except vi, and Ni is a neighborhood

940



CLASSIFICATION IN NETWORKED DATA

function returning the neighbors of vi. In a typical image application, nodes in the network are
pixels and the labels are image properties such as whether a pixel is part of a vertical or horizontal
border.

Because of the obvious interdependencies among the nodes in an MRF, computing the joint
probability of assignments of labels to the nodes (“configurations”) requires collective inference.
Gibbs sampling (Geman and Geman, 1984) was developed for this purpose for restoring degraded
images. Geman and Geman enforce that the Gibbs sampler settles to a final state by using simu-
lated annealing where the temperature is dropped slowly until nodes no longer change state. Gibbs
sampling is discussed in more detail below.

Two problems with Gibbs sampling (Besag, 1986) are particularly relevant for machine learning
applications of network classification. First, prior to Besag’s paper Gibbs sampling typically was
used in vision not to compute the final marginal posteriors, as required by many “scoring” applica-
tions where the goal is to rank individuals, but rather to get final MAP classifications. Second, Gibbs
sampling can be very time consuming, especially for large networks (not to mention the problems
detecting convergence in the first place). With his Iterated Conditional Modes (ICM) algorithm,
Besag introduced the notion of iterative classification for scene reconstruction. In brief, iterative
classification repeatedly classifies labels for vi ∈VU , based on the “current” state of the graph, until
no vertices change their label. ICM is presented as being efficient and particularly well suited to
maximum marginal classification by node (pixel), as opposed to maximum joint classification over
all the nodes (the scene).

Two other, closely related, collective inference techniques are (loopy) belief propagation (Pearl,
1988) and relaxation labeling (Rosenfeld et al., 1976; Hummel and Zucker, 1983). Loopy belief
propagation was introduced above. Relaxation labeling originally was proposed as a class of par-
allel iterative numerical procedures that use contextual constraints to reduce ambiguities in image
analysis; an instance of relaxation labeling is described in detail below. Both methods use the es-
timated class distributions directly, rather than the hard labelings used by iterative classification.
Therefore, one requirement for applying these methods is that the relational classifier, when esti-
mating xi, must be able to use the estimated class distributions of v j ∈ NUi .

Graph-cut techniques recently have been used in vision research as an alternative to using Gibbs
sampling (Boykov et al., 2001). In essence, these are collective inference procedures, and are the
basis of a collection of modern machine learning techniques. However, they do not quite fit in the
node-centric framework, so we treat them separately below.

3.3 Node-centric Network Classification Approaches

The node-centric framework allows us to describe several prior systems by how they solve the
problems of local classification, relational classification, and collective inference. The components
of these systems are the basis for composing methods in NetKit.

For classifying web-pages based on the text and (possibly inferred) class labels of neighboring
pages, Chakrabarti et al. (1998) combined naive Bayes local and relational classifiers with relaxation
labeling for collective inference. In their experiments, performing network classification using the
web-pages’ link structure substantially improved classification as compared to using only the local
(text) information. Specifically, considering the text of neighboring pages generally hurt perfor-
mance, whereas using only the (inferred) class labels improved performance.
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The iterated conditional modes procedure (ICM, Besag, 1986) is a node-centric approach where
the local and relational classifiers are domain-dependent probabilistic models (based on local at-
tributes and a MRF), and iterative classification is used for collective inference. Iterative classifica-
tion has been used for collective inference elsewhere as well, for example Neville and Jensen (2000)
use it in combination with naive Bayes for local and relational classification (with a simulated an-
nealing procedure to settle on the final labeling).

We will look in more detail at the procedure known as “link-based classification” (Lu and
Getoor, 2003), also introduced for the classification of linked documents (web pages and published
manuscripts with an accompanying citation graph). Similarly to the work of Chakrabarti et al.
(1998), linked-based classification uses the (local) text of the document as well as neighbor labels.
More specifically, the relational classifier is a logistic regression model applied to a vector of ag-
gregations of properties of the sets of neighbor labels linked with different types of links (in-, out-,
co-links). Various aggregates could be used and are examined by Lu and Getoor (2003), such as
the mode (the value of the most often occurring neighbor class), a binary vector with a value of 1 at
cell i if there was a neighbor whose class label was ci, and a count vector where cell i contained the
number of neighbors belonging to class ci. In their experiments, the count model performed best.
They used logistic regression on the local (text) attributes of the instances to initialize the priors for
each vertex in their graph and then applied the link-based classifiers as their relational model.

The simplest network classification technique we will consider was introduced to highlight the
remarkable amount of “power” for classification present just in the structure of the network, a no-
tion that we will investigate in depth in the case study below. The weighted-vote relational neighbor
(wvRN) procedure (Macskassy and Provost, 2003) performs relational classification via a weighted
average of the (potentially estimated) class membership scores (“probabilities”) of the node’s neigh-
bors. Collective inference is performed via a relaxation labeling method similar to that used by
Chakrabarti et al. (1998). If local attributes such as text are ignored, the node priors can be instanti-
ated with the unconditional marginal class distribution estimated from the training data.

Since wvRN performs so well in the case study below, it is noteworthy to point out its close re-
lationship to Hopfield networks (Hopfield, 1982) and Boltzmann machines (Hinton and Sejnowski,
1986). A Hopfield network is a graph of homogeneous nodes and undirected edges, where each
node is a binary threshold unit. Hopfield networks were designed to recover previously seen graph
configurations from a partially observed configuration, by repeatedly estimating the states of nodes
one at a time. The state of a node is determined by whether or not its input exceeds its threshold,
where the input is the weighted sum of the states of its immediate neighbors. wvRN differs in that
it retains uncertainty at the nodes rather than assigning each a binary state (also allowing multi-
class networks). Learning in Hopfield networks consists of learning the weights of edges and the
thresholds of nodes, given one or more input graphs. Given a partially observed graph state and
repeatedly applying, node-by-node, the node-activation equation will provably converge to a stable
graph state—the low-energy state of the graph. If the partial input state is “close” to one of the
training states, the Hopfield network will converge to that state.

A Boltzmann machine, like a Hopfield network, is a network of units with an “energy” defined
for the network (Hinton and Sejnowski, 1986). Unlike Hopfield networks, Boltzmann machine
nodes are stochastic and the machines use simulated annealing to find a stable state. Boltzmann
machines also often have both visible and hidden nodes. The visible nodes’ states can be observed,
whereas the states of the hidden nodes cannot—as with hidden Markov models.
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3.4 Modeling Homophily for Classification

The case study below demonstrates the remarkable power of a simple assumption: linked entities
have a propensity to belong to the same class. This autocorrelation in the class variable of related
entities is one form of homophily (the principle that a contact between similar people occurs at a
higher rate than among dissimilar people), which is ubiquitous in observations and theories of social
networks (Blau, 1977; McPherson et al., 2001). The relational neighbor classifier, which performs
well in the case study below, was introduced as a very simple classifier based solely on homophily,
that might provide a baseline to other relational classification techniques (Macskassy and Provost,
2003). As we discuss in Section 3.5.4 some more complex relational classification techniques can
deal well with (arbitrary) homophily, and others cannot.

Homophily was one of the first characteristics noted by early social network researchers (Al-
mack, 1922; Bott, 1928; Richardson, 1940; Loomis, 1946; Lazarsfeld and Merton, 1954), and holds
for a wide variety of different relationships (McPherson et al., 2001). It seems reasonable to conjec-
ture that homophily may also be present in other sorts of networks, especially networks of artifacts
created by people. (Recently assortativity, a link-centric notion of homophily, has become the focus
of mathematical studies of network structure, Newman, 2003).

Shared membership in groups such as communities with shared interests is an important reason
for similarity among interconnected nodes (Neville and Jensen, 2005). Inference can be more ef-
fective if these groups are modeled explicitly, such as by using latent group models (LGMs, Neville
and Jensen, 2005) to specify joint models of attributes, links, and groups. LGMs are especially
promising for within-network classification, since the existence of known classes will facilitate the
identification of (hidden) group membership, which in turn may aid in the estimation of xU .

3.5 Other Methods for Network Classification

Before describing the node-centric network classification toolkit, for completeness we first will dis-
cuss three other types of methods that are suited to univariate, within-network classification. Graph-
based methods (Sections 3.5.1 and 3.5.2) that are used for semi-supervised learning, could apply as
well to within-network classification. Within-network classification also offers the opportunity to
take advantage of node identifiers, discussed in Section 3.5.3. Finally, although there are important
reasons to study univariate network classification (see below), recently the field has seen a flurry of
development of multivariate methods applicable to classification in networked data (Section 3.5.4).

3.5.1 GRAPH-CUT METHODS AND THEIR RELATIONSHIP TO TRANSDUCTIVE INFERENCE

As mentioned above, one complication to within-network classification is that the to-be-classified
nodes and the nodes for which the labels are known are intermixed in the same network. Most prior
work on network learning and classification assumes that the classes of all the nodes in the network
need to be estimated (perhaps having learned something from a separate, related network). Pinning
the values of certain nodes intuitively should be advantageous, since it gives to the classification
procedure clear points of reference.

This complication is addressed directly by several lines of recent work (Blum and Chawla,
2001; Joachims, 2003; Zhu et al., 2003; Blum et al., 2004). The setting is not initially one of net-
work classification, but rather, semi-supervised learning in a transductive setting (Vapnik, 1998b).
Nevertheless, the methods introduced may have direct application to certain instances of univari-
ate network classification. Specifically, they consider data sets where labels are given for a subset
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of cases, and classifications are desired for a subset of the rest. To form an “induced” weighted
network, edges are added between data points based on similarity between cases.

Finding the minimum energy configuration of a MRF, the partition of the nodes that maximizes
self-consistency under the constraint that the configuration be consistent with the known labels, is
equivalent to finding a minimum cut of the graph (Greig et al., 1989). Following this idea and sub-
sequent work connecting classification to the problem of computing minimum cuts (Kleinberg and
Tardos, 1999), Blum and Chawla (2001) investigate how to define weighted edges for a transduc-
tive classification problem such that polynomial-time mincut algorithms give optimal solutions to
objective functions of interest. For example, they show elegantly how forms of leave-one-out-cross-
validation error (on the predicted labels) can be minimized for various nearest-neighbor algorithms,
including a weighted-voting algorithm. This procedure corresponds to optimizing the consistency
of the predictions in particular ways—as Blum and Chawla put it, optimizing the “happiness” of the
classification algorithm.

Of course, optimizing the consistency of the labeling may not be ideal. For example in the case
of a highly unbalanced class frequency it is necessary to preprocess the graph to avoid degener-
ate cuts, for example those cutting off the one positive example (Joachims, 2003). This seeming
pathology stems from the basic objective: the minimum of the sum of cut-through edge weights de-
pends directly on the sizes of the cut sets; normalizing for the cut size leads to ratiocut optimization
(Dhillon, 2001) constrained by the known labels (Joachims, 2003).

The mincut partition corresponds to the most probable joint labeling of the graph (taking an
MRF perspective), whereas as discussed earlier we often would like a per-node (marginal) class-
probability estimation (Blum et al., 2004). Unfortunately, in the case we are considering—when
some node labels are known in a general graph—there is no known efficient algorithm for deter-
mining these estimates. There are several other drawbacks (Blum et al., 2004), including that there
may be many minimum cuts for a graph (from which mincut algorithms choose rather arbitrarily),
and that the mincut approach does not yield a measure of confidence on the classifications. Blum
et al. address these drawbacks by repeatedly adding artificial noise to the edge weights in the in-
duced graph. They then can compute fractional labels for each node corresponding to the frequency
of labeling by the various mincut instances. As mentioned above, this method (and the one dis-
cussed next) was intended to be applied to an induced graph, which can be designed specifically
for the application. Mincut approaches are appropriate for graphs that have at least some small,
balanced cuts (whether or not these correspond to the labeled data) (Blum et al., 2004). It is not
clear whether methods like this that discard highly unbalanced cuts will be effective for network
classification problems such as fraud detection in transaction networks, with extremely unbalanced
class distributions.

3.5.2 THE GAUSSIAN-FIELD CLASSIFIER

In the experiments of Blum et al. (2004), their randomized mincut method empirically does not
perform as well as a method introduced by Zhu et al. (2003). Therefore, we will revisit this latter
method in an experimental comparison following the main case study. Zhu et al. treat the induced
network as a Gaussian field (Besag, 1975) (a random field with soft node labels) constrained such
that the labeled nodes maintain their values. The value of the energy function is the weighted av-
erage of the function’s values at the neighboring points. Zhu et al. show that this function is a
harmonic function and that the solution over the complete graph can be computed using a few ma-
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trix operations. The result is a classifier essentially identical to the wvRN classifier (Macskassy and
Provost, 2003) discussed above (paired with relaxation labeling), except with a principled semantics
and exact inference.4 The energy function then can be normalized based on desired class posteriors
(“class mass normalization”). Zhu et al. also discuss various physical interpretations of this proce-
dure, including random walks, electric networks, and spectral graph theory, that can be intriguing
in the context of particular applications. For example, applying the random walk interpretation to
a telecommunications network including legitimate and fraudulent accounts: consider starting at
an account of interest and walking randomly through the call graph based on the link weights; the
node score is the probability that the walk hits a known fraudulent account before hitting a known
legitimate account.

3.5.3 USING NODE IDENTIFIERS

Asmentioned in the introduction, another unique aspect of within-network classification is that node
identifiers, unique symbols for individual nodes, can be used in learning and inference. For example,
for suspicion scoring in social networks, the fact that someone met with a particular individual may
be informative (e.g., having had repeated meetings with a known terrorist leader). Very little work
has incorporated identifiers, because of the obvious difficulty of modeling with very high cardinality
categorical attributes. Identifiers (telephone numbers) have been used for fraud detection (Fawcett
and Provost, 1997; Cortes et al., 2001; Hill et al., 2006b), but to our knowledge, Perlich and Provost
(2006) provide the only comprehensive treatment of the use of identifiers for relational learning.

3.5.4 BEYOND UNIVARIATE CLASSIFICATION

Besides the methods already discussed (e.g., Besag, 1986; Lu and Getoor, 2003; Chakrabarti et al.,
1998), several other methods go beyond the homogeneous, univariate case on which this paper
focuses. Conditional random fields (CRFs, Lafferty et al., 2001) are random fields where the prob-
ability of a node’s label is conditioned not only on the labels of neighbors (as in MRFs), but also on
all the observed attribute data.

Relational Bayesian networks (RBNs, a.k.a. probabilistic relational models, Koller and Pfeffer,
1998; Friedman et al., 1999; Taskar et al., 2001) extend Bayesian networks (BNs, Pearl, 1988) by
taking advantage of the fact that a variable used in one instantiation of a BN may refer to the exact
same variable in another BN. For example, consider that the grade of a student depends to some
extent upon his professor; this professor is the same for all students in the class. Therefore, rather
than building one BN and using it in isolation for each entity, RBNs directly link shared variables,
thereby generating one big network of connected entities for which collective inferencing can be
performed.

Unfortunately, because the BN representation must be acyclic, RBNs cannot model arbitrary
relational autocorrelation, such as the homophily that plays a large role in the case study below.
However, undirected relational graphical models can model relational autocorrelation. Relational
dependency networks (RDNs, Neville and Jensen, 2003, 2004, 2007), extend dependency networks
(Heckerman et al., 2000) in much the same way that RBNs extend Bayesian networks. RDNs learn
the dependency structure by learning a conditional model individually for each variable of interest,
conditioning on the other variables, including variables of other nodes in the network. Cyclic de-

4. Experiments show these two procedures to yield almost identical generalization performance, albeit the matrix-based
procedure of Zhu et al. is much slower than the iterative wvRN.
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Input: GK ,VU ,RCtype,LCtype,CItype
Induce a local classification model, LC, of type LCtype, using GK

Induce a relational classification model, RC, of type RCtype, using GK

Estimate xi ∈ VU using LC.
Apply collective inferencing of type CItype, using RC as the model.
Output: Final estimates for xi ∈ VU

Table 2: High-level pseudo-code for the core routine of the Network Learning Toolkit.

pendencies such as homophily are modeled when the conditional modeling for a particular variable
includes instantiations of the same variable from linked nodes. Relational extensions to Markov
networks (Pearl, 1988) also can model arbitrary autocorrelation dependencies. In relational Markov
networks (RMNs, Taskar et al., 2002) the clique potential functions are based on functional tem-
plates, each of which is a (learned, class-conditional) probability function based on a user-specified
set of relations. In associative Markov networks (AMNs, Taskar et al., 2004) autocorrelation of
labels is explicitly modeled by extending the generalized Potts model (Potts, 1952) (specifically, to
allow different labels to have different penalties). Of particular interest, exact inference can be per-
formed in AMNs (formulated as a quadratic programming problem for binary classification, which
can be relaxed for multi-class problems).

These methods for network classification use only a few of the many relational learning tech-
niques. There are many more, for example from the rich literature of inductive logic programming
(ILP, such as, De Raedt et al., 2001; Dzeroski and Lavrac, 2001; Kramer et al., 2001; Flach and
Lachiche, 2004; Richardson and Domingos, 2006), or based on using relational database joins to
generate relational features (e.g., Perlich and Provost, 2003; Popescul and Ungar, 2003; Perlich and
Provost, 2006).

4. Network Learning Toolkit (NetKit-SRL)

NetKit is designed to accommodate the interchange of components and the introduction of new
components. As outlined in Section 3.2, the node-centric learning framework comprises three main
components: the relational classifier, the local classifier and collective inference. Any local clas-
sifier can be paired with any relational classifier, which can then be combined with any collective
inference method. NetKit’s core routine is simple and is outlined in Table 2; it consists of these five
general modules:

1. Input: This module reads data into a memory-resident graph G.

2. Local classifier inducer: Given as training dataVK , this module returns a modelML that will
estimate xi using only attributes of a node vi ∈ VU . Ideally, ML will estimate a probability
distribution over the possible values for xi.

3. Relational classifier inducer: Given GK , this module returns a model MR that will estimate
xi using vi andNi. Ideally,MR will estimate a probability distribution over the possible values
for xi.
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4. Collective Inferencing: Given a graph G possibly with some xi known, a set of prior esti-
mates for xU , and a relational model MR, this module applies collective inferencing to esti-
mate xU .

5. Weka Wrapper: This module is a wrapper for Weka5 (Witten and Frank, 2000) and can
convert the graph representation of vi into an entity that can either be learned from or be used
to estimate xi. NetKit can use a Weka classifier either as a local classifier or as a relational
classifier (by using various aggregation methods to summarize the values of attributes in Ni).

The current version of NetKit-SRL, while able to read in heterogeneous graphs, only supports
classification in graphs consisting of a single type of node. Algorithms based on expectation max-
imization are possible to implement through the NetKit collective inference module, by having the
collective inference module repeatedly apply a relational classifier to learn a new relational model
and then apply the new relational model to G (rather than repeatedly apply the same learned model
at every iteration).

The rest of this section describes the particular relational classifiers and collective inference
methods implemented in NetKit for the case study. First, we describe the four (univariate6) rela-
tional classifiers. Then, we describe the three collective inference methods.

4.1 Relational Classifiers

All four relational classifiers take advantage of the first-order Markov assumption on the network:
only a node’s local neighborhood is necessary for classification. The univariate case renders this
assumption particularly restrictive: only the class labels of the local neighbors are necessary. The
local network is defined by the user, analogous to the user’s definition of the feature set for proposi-
tional learning. Entities whose class labels are not known are either ignored or are assigned a prior
probability, depending upon the choice of local classifier.

4.1.1 WEIGHTED-VOTE RELATIONAL NEIGHBOR CLASSIFIER (WVRN)

The case study’s simplest classifier (Macskassy and Provost, 2003)7 estimates class-membership
probabilities by assuming the existence of homophily (see Section 3.4).
Definition. Given vi ∈ VU , the weighted-vote relational-neighbor classifier (wvRN) estimates

P(xi|Ni) as the (weighted) mean of the class-membership probabilities of the entities in Ni:

P(xi = c|Ni) =
1
Z ∑
v j∈Ni

wi, j ·P(x j = c|N j),

where Z is the usual normalizer. This can be viewed simply as an inference procedure, or as a
probability model. In the latter case, it corresponds exactly to the Gaussian-field model discussed
below in Section 3.5.2. How to conduct the inference/estimate the model falls on the collective
inference procedure.

5. We use version 3.4.2. Weka is available at http://www.cs.waikato.ac.nz/˜ml/weka/.
6. The open-source NetKit release contains multivariate versions of these classifiers.
7. Previously called the probabilistic Relational Neighbor classifier (pRN).
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4.1.2 CLASS-DISTRIBUTION RELATIONAL NEIGHBOR CLASSIFIER (CDRN)

The simple wvRN assumes that neighboring class labels were likely to be the same. Learning a
model of the distribution of neighbor class labels is more flexible, and may lead to better discrimi-
nation. Following Perlich and Provost (2003, 2006), and in the spirit of Rocchio’s method (Rocchio,
1971), we define node vi’s class vector CV(vi) to be the vector of summed linkage weights to the
various (known) classes, and class c’s reference vector RV(c) to be the average of the class vectors
for nodes known to be of class c. Specifically:

CV(vi)k = ∑
v j∈Ni,x j=ck

wi, j, (1)

where CV(vi)k represents the kth position in the class vector and ck ∈ X is the kth class. Based on
these class vectors, the reference vectors can then be defined as the normalized vector sum:

RV(c) =
1

|VKc |
∑

vi∈VKc

CV(vi), (2)

where VKc = {vi|vi ∈ VK ,xi = c}.
For the case study, during training, neighbors in VU are ignored. For prediction, estimated class

membership probabilities are used for neighbors in VU , and Equation 1 becomes:

CV(vi)k = ∑
v j∈Ni

wi, j ·P(x j = ck|N j). (3)

Definition. Given vi ∈ VU , the class-distribution relational-neighbor classifier (cdRN) esti-
mates the probability of class membership, P(xi = c|Ni), by the normalized vector similarity be-
tween vi’s class vector and class c’s reference vector:

P(xi = c|Ni) = sim(CV(vi),RV(c)),

where sim(a,b) is any vector similarity function (L1, L2, cosine, etc.), normalized to lie in the range
[0,1]. For the results presented below, we use cosine similarity.

As with wvRN, Equation 3 is a recursive definition, and therefore the value of P(x j = c|N j) is
approximated by the “current” estimate as defined by the selected collective inference technique.

4.1.3 NETWORK-ONLY BAYES CLASSIFIER (NBC)

NetKit’s network-only Bayes classifier (nBC) is based on the algorithm described by Chakrabarti
et al. (1998). To start, assume there is a single node vi in VU . The nBC uses multinomial naive
Bayesian classification based on the classes of vi’s neighbors.

P(xi = c|Ni) =
P(Ni|c) ·P(c)

P(Ni)
,

where
P(Ni|c) =

1
Z ∏v j∈Ni

P(x j = x̃ j|xi = c)wi, j
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where Z is a normalizing constant and x̃ j is the class observed at node v j. As usual, because P(Ni)
is the same for all classes, normalization across the classes allows us to avoid explicitly computing
it.

We call nBC “network-only” to emphasize that in the application to the univariate case study
below, we do not use local attributes of a node. As discussed above, Chakrabarti et al. initialize
nodes’ priors based on a naive Bayes model over the local document text and add a text-based
term to the node probability formula.8 In the univariate setting, local text is not available. We
therefore use the same scheme as for the other relational classifiers: initialize unknown labels as
decided by the local classifier being used (in our study: either the class prior or ’null’, depending
on the collective inference component, as described below). If a neighbor’s label is ’null’, then it
is ignored for classification. Also, Chakrabarti et al. differentiated between incoming and outgoing
links, whereas we do not. Finally, Chakrabarti et al. do not mention how or whether they account
for possible zeros in the estimations of the marginal conditional probabilities; we apply traditional
Laplace smoothing where m= |X |, the number of classes.

The foregoing assumes all neighbor labels are known. When the values of some neighbors
are unknown, but estimations are available, we follow Chakrabarti et al. (1998) and perform a
Bayesian combination based on (estimated) configuration priors and the entity’s known neighbors.
Chakrabarti et al. (1998) describe this procedure in detail. For our case study, such an estimation is
necessary only when using relaxation labeling (described below).

4.1.4 NETWORK-ONLY LINK-BASED CLASSIFICATION (NLB)

The final relational classifier used in the case study is a network-only derivative of the link-based
classifier (Lu and Getoor, 2003). The network-only Link-Based classifier (nLB) creates a feature
vector for a node by aggregating the labels of neighboring nodes, and then uses logistic regression
to build a discriminative model based on these feature vectors. This learned model is then applied
to estimate P(xi = c|Ni). As with the nBC, the difference between the “network-only” link-based
classifier and Lu and Getoor’s version is that for the univariate case study we do not consider local
attributes (e.g., text).

As described above, Lu and Getoor (2003) considered various aggregation methods: existence
(binary), the mode, and value counts. The last aggregation method, the count model, is equivalent
to the class vector CV(vi) defined in Equation 3. This was the best performing method in the study
by Lu and Getoor, and is the method on which we base nLB. The logistic regression classifier used
by nLB is the multiclass implementation from Weka version 3.4.2.

We made one minor modification to the original link-based classifier. Perlich (2003) argues that
in different situations it may be preferable to use either vectors based on raw counts (as given above)
or vectors based on normalized counts. We did preliminary runs using both. The normalized vectors
generally performed better, and so we use them for the case study.

4.2 Collective Inference Methods

This section describes three collective inferencing methods implemented in NetKit and used in
the case study. As described above, given (i) a network initialized by the local model, and (ii)
a relational model, a collective inference method infers a set of class labels for xU . Depending

8. The original classifier was defined as: P(xi = c|Ni) = P(Ni|c) ·P(τi|vi) ·P(c), with τi being the text of the document-
entity represented by vertex vi.
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1. Initialize vi ∈ VU using the local classifier model, ML. Specifically, for vi ∈ VU :

(a) ĉi ← ML(vi), where ĉi is a vector of probabilities representingML’s estimates
of P(xi|Ni). We use ĉi(k) to mean the kth value in ĉi, which represents
P(xi = ck|Ni).

For the case study, the local classifier model returns the unconditional
marginal class distribution estimated from xK .

(b) Sample a value cs from ĉi, such that P(cs = ck|ĉi) = ĉi(k).
(c) Set xi ← cs.

2. Generate a random ordering, O, of vertices in VU .

3. For elements vi ∈ O in order:

(a) Apply the relational classifier model: ĉi ← MR(vi).
(b) Sample a value cs from ĉi, such that P(cs = ck|ĉi) = ĉi(k).
(c) Set xi ← cs.

Note that when MR is applied to estimate ĉi it uses the “new” labelings
from elements 1, . . . ,(i−1), while using the “current” labelings for elements
(i+1), . . . ,n.

4. Repeat prior step 200 times without keeping any statistics. This is known as the
burnin period.

5. Repeat again for 2000 iterations, counting the number of times each Xi is assigned
a particular value c ∈ X . Normalizing these counts forms the final class probability
estimates.

Table 3: Pseudo-code for Gibbs sampling.

on the application, the goal ideally would be to infer the class labels with either the maximum
joint probability or the maximum marginal probability for each node. Alternatively, if estimates of
entities’ class-membership probabilities are needed, the collective inference method estimates the
marginal probability distribution P(Xi = c|GK ,Λ) for each Xi ∈ xU and c ∈ X , where Λ stands for
the priors returned by the local classifier.

4.2.1 GIBBS SAMPLING (GS)

Gibbs sampling (Geman and Geman, 1984) is commonly used for collective inferencing with re-
lational learning systems. The algorithm is straightforward and is shown in Table 3.9 The use of
200 and 2000 for the burnin period and number of iterations are commonly used values.10 Ideally,
we would iterate until the estimations converge. Although there are convergence tests for the Gibbs
sampler, they are neither robust nor well understood (cf., Gilks et al., 1995), so we simply use a
fixed number of iterations.

9. This instance of Gibbs sampling uses a single random ordering (“chain”), as this is what we used in the case study.
In the case study, averaging over 10 chains (the default in NetKit) had no effect on the final accuracies.

10. As it turns out, in our case study Gibbs sampling invariably reached a seemingly final plateau in fewer than 1000
iterations, and often in fewer than 500.
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1. For vi ∈ VU , initialize the prior: ĉi(0) ← ML(vi), where ĉi is defined as in Table 3.

For the case study, the local classifier model returns the unconditional marginal class
distribution estimated from xK .

2. For elements vi ∈ VU :

(a) Estimate xi by applying the relational model:

ĉi(t+1) ← MR(v
(t)
i ), (4)

where MR(v
(t)
i ) denotes using the estimates ĉ j(t) for v j ∈ Ni, and t is the

iteration count. This has the effect that all predictions are done pseudo-
simultaneously based on the state of the graph after iteration t.

3. Repeat for T iterations, where T = 99 for the case study. ĉ(T ) will comprise the final
class probability estimations.

Table 4: Pseudo-code for relaxation labeling.

Notably, because all nodes are assigned a class at every iteration, when Gibbs sampling is used
the relational models will always see a fully labeled/classified neighborhood, making prediction
straightforward. For example, nBC does not need to compute its Bayesian combination (see Sec-
tion 4.1.3).

4.2.2 RELAXATION LABELING (RL)

The second collective inferencing method used in the study is relaxation labeling, based on the
method of Chakrabarti et al. (1998). Rather than treat G as being in a specific labeling “state” at
every point (as Gibbs sampling does), relaxation labeling retains the uncertainty, keeping track of the
current probability estimations for xU . The relational model must be able to use these estimations.
Further, rather than estimating one node at a time and updating the graph right away, relaxation
labeling “freezes” the current estimations so that at step t+1 all vertices will be updated based on
the estimations from step t. The algorithm is shown in Table 4.

Preliminary runs showed that relaxation labeling sometimes does not converge, but rather ends
up oscillating between two or more graph states.11 NetKit performs simulated annealing—on each
subsequent iteration giving more weight to a node’s own current estimate and less to the influence
of its neighbors.

The new updating step, replacing Equation 4 is:

ĉi(t+1) = β(t+1) ·MR(v
(t)
i )+(1−β(t+1)) · ĉi(t),

where

β0 = k,
β(t+1) = β(t) ·α,

11. Such oscillation has been noted elsewhere for closely related methods (Murphy et al., 1999).
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1. For vi ∈VU , initialize the prior: ĉi ← ML(vi), where ĉi is defined as in Table 3. The
link-based classification work of Lu and Getoor (2003) uses a local classifier to set
initial classifications. This will clearly not work in our case (all unknowns would be
classified as the majority class), and we therefore use a local classifier model which
returns null (i.e., it does not return an estimation.)

2. Generate a random ordering, O, of elements in VU .

3. For elements vi ∈ O:

(a) Apply the relational classifier model, ĉi ← MR, using all non-null labels (en-
tities which have not yet been classified will be ignored.) If all neighbor enti-
ties are null, then return null.

(b) Classify vi:
xi = ck,k = argmax j ĉi( j),

where ĉi( j) is the jth value in vector ĉi. (Remember, ĉi is a vector of |X |
elements. We classify vi by predicting the class with the highest likelihood).

4. Repeat for T = 1000 iterations, or until no entities receive a new class label.a The
estimates from the final iteration will be used as the final class probability estimates.

a. A post-mortem of the results showed that iterative classification often stopped within 10− 20
iterations when paired with cdRN, nBC or nLB. For wvRN, it generally ran the full 1000 itera-
tions, although the accuracy quickly plateaued and wvRN ended up moving within a small range
of similar accuracies.

Table 5: Pseudo-code for Iterative classification.

where k is a constant between 0 and 1, which for the case study we set to 1.0, and α is a decay
constant, which we set to 0.99. Preliminary testing showed that final performance is very robust as
long as 0.9 < α < 1. Smaller values of α can lead to neighbors losing their influence too quickly,
which can hurt performance when only very few labels are known. A post-mortem of the results
showed that the accuracies often converged within the first 20 iterations.

4.2.3 ITERATIVE CLASSIFICATION (IC)

The third and final collective inferencing method implemented in NetKit and used in the case study
is the variant of iterative classification described in the work on link-based classification (Lu and
Getoor, 2003) and shown in Table 5. As with Gibbs sampling, the relational model never sees
uncertainty in the labels of (neighbor) entities. Either the label of a neighbor is null and ignored
(which only happens in the first iteration or if all its neighbors are also null), or it is assigned a
definite label.

5. Case Study

The study presented in this section has two goals. First, it showcases NetKit, demonstrating that
the modular framework indeed facilitates the comparison of systems for learning and inference in
networked data. Second, it examines the simple-but-important special case of univariate learning

952



CLASSIFICATION IN NETWORKED DATA

and inference in homogeneous networks, comparing alternative techniques that have not before been
compared systematically, if at all. The setting for the case study is simple: For some entities in the
network, the value of xi is known; for others it must be estimated.

Univariate classification, albeit a simplification for many domains, is important for several rea-
sons. First, it is a representation that is used in some applications. Above we mentioned fraud detec-
tion; as a specific example, a telephone account that calls the same numbers as a known fraudulent
account (and hence the accounts are connected through these intermediary numbers) is suspicious
(Fawcett and Provost, 1997; Cortes et al., 2001). For phone fraud, univariate network classification
often provides alarms with reasonable coverage and remarkably low false-positive rates. Gener-
ally speaking, a homogeneous, univariate network is an inexpensive (in terms of data gathering,
processing, storage) approximation of many complex networked data problems. Fraud detection
applications certainly do have a variety of additional attributes of importance; nevertheless, univari-
ate simplifications are very useful and are used in practice.

The univariate case also is important scientifically. It isolates a primary difference between
networked data and non-networked data, facilitating the analysis and comparison of relevant clas-
sification and learning methods. One thesis of this study is that there is considerable information
inherent in the structure of the networked data and that this information can be readily taken advan-
tage of, using simple models, to estimate the labels of unknown entities. This thesis is tested by
isolating this characteristic—namely ignoring any auxiliary attributes and only allowing the use of
known class labels—and empirically evaluating how well univariate models perform in this setting
on benchmark data sets.

Considering homogeneous networks plays a similar role. Although the domains we consider
have obvious representations consisting of multiple entity types and edges (e.g., people and papers
for node types and same-author-as and cited-by as edge types in a citation-graph domain), a homo-
geneous representation is much simpler. In order to assess whether a more complex representation
is worthwhile, it is necessary to assess standard techniques on the simpler representation (as we do
in this case study). Of course, the way a network is “homogenized” may have a considerable effect
on classification performance. We will revisit this below in Section 5.3.6.

5.1 Data

The case study reported in this paper makes use of 12 benchmark data sets from four domains that
have been the subject of prior study in machine learning. As this study focuses on networked data,
any singleton (disconnected) entities in the data were removed. Therefore, the statistics we present
may differ from those reported previously.

5.1.1 IMDB

Networked data from the Internet Movie Database (IMDb)12 have been used to build models pre-
dicting movie success as determined by box-office receipts (Jensen and Neville, 2002a). Following
the work of Neville et al. (2003), we focus on movies released in the United States between 1996
and 2001 with the goal of estimating whether the opening weekend box-office receipts “will” ex-
ceed $2 million (Neville et al., 2003). Obtaining data from the IMDb web-site, we identified 1169
movies released between 1996 and 2001 that we were able to link up with a revenue classification

12. See http://www.imdb.com.
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Category Size
High-revenue 572
Low-revenue 597
Total 1169
Base accuracy 51.07%

Table 6: Class distribution for the IMDb data set.

Category Size
Case-based 402
Genetic Algorithms 551
Neural Networks 1064
Probabilistic Methods 529
Reinforcement Learning 335
Rule Learning 230
Theory 472
Total 3583
Base accuracy 29.70%

Table 7: Class distribution for the cora data set.

in the database given to us by the authors of the original study. The class distribution of the data set
is shown in Table 6.

We link movies if they share a production company, based on observations from previous work
(Macskassy and Provost, 2003).13 The weight of an edge in the resulting graph is the number of
production companies two movies have in common. Notably, we ignore the temporal aspect of the
movies in this study, simply labeling movies at random for the training set. This can result in a
movie in the test set being released earlier than a movie in the training set.

5.1.2 CORA

The cora data set (McCallum et al., 2000) comprises computer science research papers. It includes
the full citation graph as well as labels for the topic of each paper (and potentially sub- and sub-sub-
topics).14 Following a prior study (Taskar et al., 2001), we focused on papers within the machine
learning topic with the classification task of predicting a paper’s sub-topic (of which there are seven).
The class distribution of the data set is shown in Table 7.

Papers can be linked if they share a common author, or if one cites the other. Following prior
work (Lu and Getoor, 2003), we link two papers if one cites the other. The weight of an edge would
normally be one unless the two papers cite each other (in which case it is two—there can be no other
weight for existing edges).

13. And on a suggestion from David Jensen.
14. These labels were assigned by a naive Bayes classifier (McCallum et al., 2000).

954



CLASSIFICATION IN NETWORKED DATA

Number of web-pages
Class Cornell Texas Washington Wisconsin
student 145 163 151 155
not-student 201 171 283 193
Total 346 334 434 348
Base accuracy 58.1% 51.2% 60.8% 55.5%

Table 8: Class distribution for the WebKB data set using binary class labels.

5.1.3 WEBKB

The third domain we draw from is based on theWebKB Project (Craven et al., 1998).15 It consists of
sets of web pages from four computer science departments, with each page manually labeled into 7
categories: course, department, faculty, project, staff, student, or other. As with other work (Neville
et al., 2003; Lu and Getoor, 2003), we ignore pages in the “other” category except as described
below.

From the WebKB data we produce eight networked data sets for within-network classification.
For each of the four universities, we consider two different classification problems: the six-class
problem, and following a prior study, the binary classification task of predicting whether a page
belongs to a student (Neville et al., 2003).16 The binary task results in an approximately balanced
class distribution.

Following prior work on web-page classification, we link two pages by co-citations (if x links
to z and y links to z, then x and y are co-citing z) (Chakrabarti et al., 1998; Lu and Getoor, 2003).
To weight the link between x and y, we sum the number of hyperlinks from x to z and separately
the number from y to z, and multiply these two quantities. For example, if student x has 2 edges
to a group page, and a fellow student y has 3 edges to the same group page, then the weight along
that path between those 2 students would be 6. This weight represents the number of possible co-
citation paths between the pages. Co-citation relations are not uniquely useful to domains involving
documents; for example, as mentioned above, for phone-fraud detection bandits often call the same
numbers as previously identified bandits. We chose co-citations for this case study based on the
prior observation that a student is more likely to have a hyperlink to her advisor or a group/project
page rather than to one of her peers (Craven et al., 1998).17

To produce the final data sets, we extracted the pages that have at least one incoming and one
outgoing link. We removed pages in the “other” category from the classification task, although they
were used as “background” knowledge—allowing 2 pages to be linked by a path through an “other”
page. For the binary tasks, the remaining pages were categorized into either student or not-student.
The composition of the data sets is shown in Tables 8 and 9.

5.1.4 INDUSTRY CLASSIFICATION

The final domain we draw from involves classifying companies by industry sector. Companies are
linked via cooccurrence in text documents. We use two different data sets, representing different

15. We use the WebKB-ILP-98 data.
16. It turns out that the relative performance of the methods is quite different on these two variants.
17. We return to these data in Section 5.3.5, where we show and discuss how using the hyperlinks directly is not sufficient

for any of the univariate methods to do well.
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Number of web-pages
Category cornell texas washington wisconsin
course 54 51 170 83
department 25 36 20 37
faculty 62 50 44 37
project 54 28 39 25
staff 6 6 10 11
student 145 163 151 155
Total 346 334 434 348
Base accuracy 41.9% 48.8% 39.2% 44.5%

Table 9: Class distribution for the WebKB data set using six-class labels.

Number of companies
Sector industry-yh industry-pr
Basic Materials 104 83
Capital Goods 83 78
Conglomerates 14 13
Consumer Cyclical 99 94
Consumer NonCyclical 60 59
Energy 71 112
Financial 170 268
Healthcare 180 279
Services 444 478
Technology 505 609
Transportation 38 47
Utilities 30 69
Total 1798 2189
Base accuracy 28.1% 27.8%

Table 10: Class distribution for the industry-yh and industry-pr data sets.

sources and distributions of documents and different time periods (which correspond to different
topic distributions).

INDUSTRY CLASSIFICATION (YH)
As part of a study of activity monitoring, Fawcett and Provost (1999) collected 22,170 business

news stories from the web between 4/1/1999 and 8/4/1999. Following the study by Bernstein et al.
(2003), we placed an edge between two companies if they appeared together in a story. The weight
of an edge is the number of such cooccurrences found in the complete corpus. The resulting network
comprises 1798 companies that cooccurred with at least one other company. To classify a company,
we used Yahoo!’s 12 industry sectors. Table 10 shows the details of the class memberships.

INDUSTRY CLASSIFICATION (PR)
The second industry classification data set is based on 35,318 PR Newswire press releases

gathered from April 1, 2003 through September 30, 2003. As above, the companies mentioned in
each press release were extracted and an edge was placed between two companies if they appeared
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together in a press release. The weight of an edge is the number of such cooccurrences found in the
complete corpus. The resulting network comprises 2189 companies that cooccurred with at least
one other company. To classify a company, we use the same classification scheme from Yahoo! as
before. Table 10 shows the details of the class memberships.

5.2 Experimental Methodology

NetKit allows for any combination of a local classifier (LC), a relational classifier (RC) and a
collective inferencing method (CI). If we consider an LC-RC-CI configuration to be a complete
network-classification method, we have 12 to compare on each data set. Since, for this paper, the
local classifier component is directly tied to the collective inference component (our local classifier
components determine priors based on which collective inference component is being used), we
henceforth consider a network-classification method to be an RC-CI configuration.

We first verify that the network structure alone (linkages plus known class labels) often con-
tains a considerable amount of useful information for entity classification. We vary from 10% to
90% the percentage of nodes in the network for which class membership is known initially.18 The
study assesses: (1) whether the network structure enables accurate classification; (2) how much
prior information is needed in order to perform well, and (3) whether there are regular patterns of
improvement across methods as the percentage of initially known labels increases.

Accuracy is averaged over 10 runs. Specifically, given a data set, G = (V,E), the subset of
entities with known labels VK (the “training” data set19) is created by selecting a class-stratified
random sample of (100× r)% of the entities in V. The test set, VU , is then defined as V−VK .
We prune VU by removing all nodes in zero-knowledge components—nodes for which there is no
path to any node in VK . We use the same 10 training/test partitions for each network-classification
method. Although it would be desirable to keep the test data disjoint (and therefore independent)
as done in traditional machine learning via methods such as cross-validation, this is not applicable
for within-network learning. We keep the test node sets disjoint as much as possible between the
different runs. For example, at r = 0.90 (90% labeled data), our sets of training and testing nodes
follow standard class-stratified 10-fold cross-validation.

5.3 Results

This section describes the results for our case study as well as follow-up experiments that clar-
ify some of our findings. We start by verifying that there is information in the network structure
alone (Section 5.3.1), then study the collective inference (Section 5.3.2) and relational classifier
(Section 5.3.3) components separately, and then compare the network-classification methods (Sec-
tion 5.3.4). We then revisit how edges were selected—we study the effects of badly chosen edges
(Section 5.3.5) and then provide one method for automatic selection of edges (Section 5.3.6). We
end in Section 5.3.7 with a discussion of the use of network-only methods as a baseline method that
is as important as the standard non-relational-classifier baseline comparison.
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Figure 1: Overall classification accuracies on the twelve data sets. Horizontal lines represent pre-
dicting the most prevalent class. These graphs are shown to display trends and not to
distinguish the twelve methods; individual methods will be clarified in subsequent dis-
cussion. The horizontal axis plots the fraction (r) of a network’s nodes for which the
class label is known. In each case, when many labels are known (right end) there is a
set of methods that performs well. When few labels are known (left end) there is much
more variation in performance. Data sets are tagged based on the edge-type used, where
‘prodco’ on the IMDb data is short for ‘production company’, and ‘B’ and ‘M’ in the
WebKB data sets represent ‘binary’ and ‘multi-class’ respectively.
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Figure 2: Comparison of collective inference methods on a few data sets. The three collective
inference methods are relaxation labeling (RL), iterative classification (IC), and Gibbs
sampling (GS). The data set and the relational classifier component are listed above each
graph. The horizontal line represents predicting the most prevalent class.
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5.3.1 INFORMATION IN THE NETWORK STRUCTURE

Figure 1 shows the accuracies of the 12 network-classification methods across the 12 data sets as
the fraction (r) of entities for which class memberships are known increases from r= 0.1 to r= 0.9.
The purpose of these graphs is not to differentiate the curves, but to compare the general trends and
the levels of the accuracies to the baseline accuracies. In the univariate case, if the linkage structure
is not known, the only non-subjective alternative is to estimate using the class base rate (prior),
which is shown by the horizontal line in the graphs. As is clear from Figure 1, all of the data sets
contain considerable information in the class-linkage structure. The worst relative performance is
on industry-pr, where at the right end of the curves the error rate nonetheless is reduced by 30–40%.
The best performance is on the binary-class WebKB-texas, where the best methods reduce the error
rate by close to 90%. And in most cases, the better methods reduce the error rate by over 50%
toward the right end of the curves.

Machine learning studies on networked data sets seldom have compared to simple network-
classificationmethods like these, opting instead for comparing to non-relational classification. These
results argue strongly that comparisons also should be made to univariate network classification, if
the purpose is to demonstrate the power of a more sophisticated relational learning method. We
return to this argument in Section 5.3.7.

5.3.2 COLLECTIVE INFERENCE COMPONENT

Figure 2 shows, for three of the data sets, the comparative performances of the three collective
inference components. Each graph is for a particular relational classifier. The graphs show that
while the three components often perform similarly, their performances are clearly separated for
low values of r.

Table 11 shows the p-values for a Wilcoxon signed-rank test assessing whether the first method
listed in column 1 is significantly better than the second. Specifically, for a given data set and label
ratio (r), each network-classification experiment consists of 10 random train/test splits—the same
for all configurations. For each pair of collective inference components, averaging the accuracies of
the 10 splits across the 4 relational classifier components gives one average accuracy score for each
of the 12 data sets yielding 12 paired data points for each collective inference method. The results
show clearly that relaxation labeling, across the board, outperforms Gibbs sampling at p≤ 0.01 and
that relaxation labeling is also better than iterative classification across the board. Further, we see
that iterative classification and Gibbs sampling are roughly comparable.

The foregoing gives some evidence that relaxation labeling is consistently better than iterative
classification and Gibbs sampling when the results are pooled, especially at low values of r. Table 12
quantifies the differences. In order to be comparable across data sets with different base rates, the
table shows the amount of error reduction over the base rate. As a simple example, assume the base
error rate is 0.4, method A yields an error rate of 0.1, and method B yields an error rate of 0.2.
Method A reduces the error by 75%. Method B reduces the error by 50%.

18. We also performed boundary experiments using the weighted-vote relational neighbor classifier with relaxation label-
ing, where we decreased the number of initially known labels down to 0.1% of the graph. The classification accuracy
generally degrades gracefully to doing no better than random guessing at this extreme.

19. These data will be used not only for training models, but also as existing background knowledge during classification.
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sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

RL v GS 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.010 0.010
RL v IC 0.025 0.100 0.100 0.025 0.002 0.002 0.001 0.005 0.002
IC v GS 0.400 0.450 — 0.450 0.400 — 0.250 — 0.400

Table 11: p-values for the Wilcoxon signed-rank test, comparing the accuracies of pairs of three
collective inference methods across all data sets and relational classifier methods. (The
three collective inference methods are relaxation labeling (RL), iterative classification
(IC), and Gibbs sampling (GS)). For each cell, bold text means that the first method was
better than the second method and italics means it was worse. The cells with ’—’ means
there was no significant difference.

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

RL 0.081 0.184 0.262 0.339 0.409 0.446 0.468 0.491 0.509 0.354
IC 0.000 0.116 0.235 0.314 0.382 0.423 0.452 0.482 0.503 0.323
GS 0.029 0.126 0.231 0.301 0.385 0.421 0.450 0.474 0.502 0.324

Table 12: Relative error reductions (ERREL) for each collective inference method across all data sets
and relational classifier methods. (The three collective inference methods are relaxation
labeling (RL), iterative classification (IC), and Gibbs sampling (GS)). The last column,
overall, is the average error reduction for each method across all sample ratios. Bold
entries indicate the largest relative error reduction for each sample ratio.

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

RL 11 11 10 7 4 5 6 4 6 64
GS 1 1 0 1 5 3 4 4 4 23
IC 0 0 2 4 3 4 2 4 2 21

Table 13: Number of times each collective inference method was the best across the 12 data sets.
The three methods are relaxation labeling (RL), iterative classification (IC), and Gibbs
sampling (GS).

The relative error reduction of the collective inference (CI) components is defined as follows:

ERABS(RC,CI,D,r) = (base err(D)− err(RC-CI,D,r)),

ERREL(RC,CI,D,r) =
ERABS(RC,CI,D,r)

base err(D)
,

ERREL(RC,CI,r) =
1
|D| ∑D∈D

ERREL(RC,CI,D,r),

ERREL(CI,r) =
1

|RC| ∑
RC∈RC

ERREL(RC,CI,r),
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where err(RC-CI,D,r) is the error for the RC-CI configuration (a relational classifier paired with a
collective inference method) on data set D with r% of the graph being labeled.

Table 12 shows the relative error reductions for each collective inference component. Relaxation
labeling outperformed iterative classification across the board, from as low as a 1.3% improvement
(r = 0.90) to as high as 59% or better improvement (r ≤ 0.2) when averaged over all the data sets
and relational classifier methods. Overall relaxation labeling improved performance over iterative
classification by about 10% as seen in the last column. Notably, relaxation labeling’s advantage over
iterative classification improves monotonically as less is known in the network. Similar numbers
and a similar pattern are seen for relaxation labeling versus Gibbs sampling. Iterative classification
and Gibbs sampling are comparable.

For another perspective, Table 13 shows, for each ratio as well as a total across all ratios, the
number of times each collective inference implementation took part in the best-performing network-
classification combination for each of the 12 data sets. Specifically, for each sampling ratio, each
win for an RC-CI configuration (relational classifier paired with a collective inference method)
counted as a win for the collective inference module of the pair (as well as a win for the relational
classifier module in the next section). For example, in Figure 2, the first column of four graphs shows
the performances of the 12 network-classification combinations on the cora data; at the left end of
the curves, wvRN-RL is the best performing combination. Table 13 adds further support to the
conclusion that relaxation labeling was the overall best component, primarily due to its advantage at
low values of r. We also see again that Gibbs sampling and iterative classification were comparable.

5.3.3 RELATIONAL CLASSIFIER COMPONENT

Comparing relational models, we would expect to see a certain pattern: if even moderate homophily
is present in the data, we would expect wvRN to perform well. Its nonexistent training variance20
should allow it to perform relatively well, even with small numbers of known labels in the net-
work. The higher-variance nLB may perform relatively poorly with small numbers of known labels
(primarily because of the lack of training data). On the other hand, wvRN is potentially a very-
high-bias classifier—it does not learn a relational model at all. The learning-based classifiers may
well perform better with large numbers of known labels if there are patterns beyond homophily
to be learned. As a worst case for wvRN, consider a bipartite graph between two classes. In a
leave-one-out cross-validation, wvRN would be wrong on every prediction. The relational learners
should notice the true pattern immediately. More generally, one should expect a pattern of curves
crossing with increasing numbers of known labels, similar to learning curves crossing (Perlich et al.,
2003): lower variance methods (such as wvRN) should be preferable with fewer known labels; more
flexible learning methods should be preferable with more known labels (thus, more training data).

Figure 3 shows for four of the data sets the performances of the four relational classifier im-
plementations. The rows of graphs correspond to data sets and the columns to the three different
collective inference methods. The graphs show several things. As would be expected, accuracy
improves as more of the network is labeled, although in certain cases classification is remarkably
accurate with very few known labels (e.g., see cora). One method is substantially worse than the
others. Among the remaining methods, performance often differs greatly with few known labels,
and tends to converge with many known labels. More subtly, as expected there often is a crossing
of curves when about half the nodes are labeled (e.g., see Washington).

20. There still will be variance due to the set of known labels.
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Figure 3: Comparison of the relational classifiers on a few data sets. The data set (and link-type)
and the paired collective inference component are listed above each graph. (The three
collective inference methods are relaxation labeling (RL), iterative classification (IC),
and Gibbs sampling (GS)). The horizontal line represents predicting the most prevalent
class.
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sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN v cdRN 0.025 0.200 0.050 0.100 0.025 0.025 0.010 0.002 0.001
wvRN v nBC 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
wvRN v nLB 0.001 0.001 0.001 0.005 0.400 0.005 0.002 0.001 0.001
cdRN v nBC 0.050 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
cdRN v nLB 0.010 0.001 0.010 0.200 0.050 0.001 0.001 0.001 0.001
nLB v nBC — 0.200 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 14: p-values for the Wilcoxon signed-rank test, comparing the accuracies between pairs of
relational classifiers across all data sets and collective inference methods. For each cell,
bold text means that the first method was better than the second method and italic text
means it was worse. The cells with ’—’ showed no significant difference.

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

cdRN 0.106 0.273 0.370 0.423 0.474 0.496 0.519 0.533 0.549 0.416
nLB −0.049 0.039 0.206 0.354 0.508 0.573 0.587 0.609 0.609 0.382

wvRN 0.157 0.299 0.392 0.453 0.494 0.525 0.543 0.563 0.571 0.444

Table 15: Relative error reductions (ERREL) for each relational classifier component across all data
sets. Each cell shows the error reduction of the given method. The last column, overall, is
the average error reduction for the methods across all sample ratios. Bold entries indicate
the largest relative error reduction for each sample ratio.

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

wvRN 7 4 4 6 4 4 2 1 2 34
cdRN 5 8 6 2 1 0 0 1 1 24
nLB 0 0 2 4 7 8 10 10 9 50

Table 16: Number of times each relational classifier implementation was the best across the 12 data
sets.

Table 14 shows statistical significance results, computed as described in the previous section
(except here varying the relational classifier component). nBC was almost always significantly
and often substantially worse than the other three relational classifiers and therefore for clarity is
eliminated from the remainder of this analysis. Although cdRN and wvRN were close, wvRN was
generally better than cdRN. Examining the wvRN and cdRN methods versus nLB we see the same
pattern: at r = 0.5, the advantage shifts from the wvRN/cdRN methods to nLB, consistent with our
expectations discussed above.

Table 15 shows the error reductions for each relational classifier comparison, computed as in
the previous section with the obvious changes between relational classifier and collective inference.
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The same patterns are evident as observed from Table 14. Further, we see that the differences can be
large: when the wvRN/cdRN methods are better, they often are much better. The link-based (nLB)
classifier also can be considerably better than wvRN/cdRN.

Table 16 shows how often each relational classifier method participated in the best combination,
as described in the previous section. nLB is the overall winner, but we see the same clear pattern
that the wvRN/cdRN methods dominate for fewer labels, and nLB dominates for more labels, with
the advantage changing hands at r = 0.5.

5.3.4 INTERACTION BETWEEN COMPONENTS

Table 17 shows how many times each of the 9 individual relational classifier/collective inference
(RC-CI) configurations was the best, across the 12 data sets and 9 labeling ratios.21 Strikingly, two
sets of closely related configurations stand out: wvRN-RL and cdRN-RL; and nLB with any of the
collective inference methods. The wvRN-RL/cdRN-RL methods dominate for r < 0.5; the nLB
methods (nLB paired with any collective inference method) dominate for r ≥ 0.5. Table 18 and
Table 19 compare these five methods analogously to the previous sections. (As before, each cell
comprises 12 data points, each being an average accuracy of one data set over 10 repetitions.) The
clear pattern is in line with that shown in the prior sections, showing that of this set of best methods,
the wvRN/cdRN methods excel for fewer labeled data, and the nLB-based method excels for more
labeled data.

In addition, these results show that the wvRN-/cdRN-methods clearly should be paired with
relaxation labeling, possibly because RL allows them to average estimates between zero and one,
resulting in lower variance, especially with few known labels. nLB, on the other hand, does not
favor one collective inference method over the others.

Following up on these results, a 2-way ANOVA shows a strong interaction between the relational
classifier and collective inference components for most data sets for small numbers of labeled nodes,
as would be expected given the strong performance of the specific pairings wvRN-RL and cdRN-
RL. As more nodes are labeled, the interaction becomes insignificant for almost all data sets, as
might be expected given that nLB dominates but no collective inference method does. The ANOVA
adds weight to the conclusion that for very many known labels, it matters little which collective
inference method is used for accuracy maximization, so perhaps the most efficient method can be
chosen.

5.3.5 THE IMPORTANCE OF EDGE SELECTION

To create homogeneous graphs, we had to select the edges to use. As mentioned briefly above, the
type of edge selected can have a substantial impact on classification accuracy. For these data sets,
the worst case (we have found) occurs for WebKB. As described in Section 5.1.3, for the results
presented so far we have used co-citation links, based on observations in prior published work. An
obvious alternative is to use the hyperlinks themselves.

Figures 4 and 5 compare the results using hyperlinks with those using co-citation links. Using
hyperlinks, the network-classification methods perform much worse than with co-citations. Al-
though there is some lift at large values of r, especially for the Washington data, the performance
is not comparable to that with the co-citation formulation. The transformation from the hyperlink-

21. As mentioned before, we are no longer including nBC in the comparisons. As it turns out, nBC did not have any
wins, regardless of the collective inference method it was paired with.
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sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 total

wvRN-IC 0 0 0 0 0 0 0 0 1 1
wvRN-GS 1 1 0 1 3 0 0 0 0 6
wvRN-RL 6 3 4 5 1 4 2 1 1 27
cdRN-IC 0 0 0 0 0 0 0 0 0 0
cdRN-GS 0 0 0 0 0 0 0 0 0 0
cdRN-RL 5 8 6 2 1 0 0 1 1 24
nLB-IC 0 0 2 4 3 4 2 4 1 20
nLB-GS 0 0 0 0 2 3 4 4 4 17
nLB-RL 0 0 0 0 2 1 4 2 4 13

Table 17: Number of times each relational classifier and collective inference configuration was the
best across the 12 data sets. The three collective inference methods are relaxation labeling
(RL), iterative classification (IC), and Gibbs sampling (GS).

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN-RL v cdRN-RL 0.450 0.200 0.250 0.400 — 0.450 0.400 0.200 0.100
wvRN-RL v nLB-GS 0.010 0.010 0.010 0.010 0.300 0.250 0.100 0.025 0.025
wvRN-RL v nLB-IC 0.010 0.010 0.050 0.300 0.300 0.200 0.200 0.050 0.025
wvRN-RL v nLB-RL 0.010 0.010 0.010 0.010 0.250 0.200 0.100 0.025 0.020
cdRN-RL v nLB-GS 0.010 0.010 0.010 0.020 0.400 0.200 0.100 0.050 0.025
cdRN-RL v nLB-IC 0.050 0.020 0.050 0.300 0.200 0.025 0.050 0.025 0.025
cdRN-RL v nLB-RL 0.010 0.010 0.010 0.025 0.400 0.050 0.100 0.025 0.020
nLB-IC v nLB-GS 0.050 0.010 0.020 0.010 0.400 0.400 0.300 0.300 0.400
nLB-IC v nLB-RL 0.050 0.025 0.020 0.025 0.400 0.400 0.250 0.200 0.100
nLB-RL v nLB-GS 0.450 0.100 — 0.300 0.200 0.400 0.200 0.300 0.100

Table 18: p-values for the Wilcoxon signed-rank test, comparing the accuracies among the five best
relational classifier/collective inference configurations across all data sets. (The three
collective inference methods are relaxation labeling (RL), iterative classification (IC),
and Gibbs sampling (GS)). For each cell, bold text means that the first method was better
than the second method and italic text means it was worse. The cells with ’—’ showed
no significant difference.

sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 overall

wvRN-RL 0.222 0.369 0.444 0.489 0.514 0.537 0.551 0.568 0.573 0.474
cdRN-RL 0.274 0.430 0.462 0.501 0.519 0.538 0.549 0.556 0.558 0.488
nLB-RL −0.101 −0.024 0.131 0.311 0.499 0.577 0.590 0.611 0.612 0.356
nLB-IC 0.054 0.191 0.367 0.468 0.535 0.575 0.587 0.606 0.606 0.443
nLB-GS −0.100 −0.051 0.121 0.284 0.489 0.567 0.585 0.611 0.610 0.346

Table 19: Relative error reduction (ERREL) improvements for the 5 best relational classi-
fier/collective inference configurations across all data sets. (The three collective inference
methods are relaxation labeling (RL), iterative classification (IC), and Gibbs sampling
(GS)). Each cell shows the error reduction of the given method. The last column, over-
all, is the average error reduction for the methods across all sample ratios. Bold entries
indicate the largest relative error reduction for each sample ratio.
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Figure 4: Comparative performances on WebKB multi-class problems using co-citation links ver-
sus using direct hyperlinks as edges. We show here the average performance of the 12
network learners.
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Figure 5: Comparative performances on WebKB binary-class problems using co-citation links ver-
sus using direct hyperlinks as edges. We show here the average performance of the 12
network learners.
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based network to the co-citation-based network adds no new information to the graph. However,
in the hyperlink formulation the network classification methods cannot take full advantage of the
information present—mainly because of the stark violation of the first-order Markov assumption
made by the relational classifiers. These results demonstrate that the choice of edges can be crucial
for good performance.

5.3.6 AUTOMATIC EDGE SELECTION

Creating a graph with a single type of edge from a problem where various possible links exist is
a representation engineering problem reminiscent of the selection of a small set of useful features
for traditional classification.22 For feature selection, practitioners use a combination of domain
knowledge, analysis, and trial and error to select a good representation. To create the networked data
for our study, we chose edges based on suggestions from prior work—which indirectly combines
domain knowledge, prior analysis and prior trial and error, although we explicitly avoided choosing
the representations based on their performance using NetKit.

Pursuing the analogy with choosing features, it may be possible to select edges automatically. It
is beyond the scope of this paper to address the general (open and important) problem of edge selec-
tion; however, the excellence (on these data sets) and simplicity of wvRN suggests straightforward
techniques.

If we consider the data sets used in the study, all but the industry classification data sets have
more than one reasonable choice for defining the edges:

1. cora: We linked entities through citations (cite). Alternatively, we could have linked by the
sharing of an author (author), or by either relationship (combined as a single generic link).

2. imdb: There are many types of ways to connect two movies, but we focus here on four that
were suggested to us by David Jensen: actor, director, producer and production company
(prodco). Again, we could use any or all of them (we do not consider all possible combina-
tions here).

3. WebKB: Based on prior work, we chose co-citations (cocite) for the case study and later
showed that the original hyperlinks (hyper) were a poor choice.

Kohavi and John (1997) differentiate between wrapper approaches and filter approaches to fea-
ture selection, and this notion extends directly to edge selection. For any network classification
method we can take a wrapper approach, computing the error reduction over GK using cross-
validation. wvRN is an attractive candidate for such an approach, because it is very fast and requires
no training; we can use a simple leave-one-out (loo) estimation.

The homophily-based wvRN also lends itself to a filter approach, selecting the edge type simply
by measuring the homophily in GK . Heckathorn and Jeffri (2003) define a homophily index, but it
computes homophily for a specific group, or class, rather than a general value across all classes. The
assortativity coefficient (Newman, 2003) is based on the correlation between the classes linked by
edges in a graph. Specifically, it is based on the graph’s assortativity matrix—a CxC matrix, where

22. We required a single edge type for our homogeneous case study; it is reasonable to conjecture that even if heteroge-
neous links are allowed, a small set of good links would be preferable. For example, a link-based classifier produces
a feature-vector representation with multiple positions per link type.
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cell ei j represents the fraction of (all) edges that link nodes of class ci to nodes of class c j, such that
∑i j ei j = 1. The assortativity coefficient, AE , is calculated as follows:

ai = ∑
j
ei j,

b j = ∑
i
ei j,

AE = ∑i eii−∑i ai ·bi
1−∑i ai ·bi

.

However, AE measures homophily across edges, while wvRN is based on homophily across
nodes. It is possible to create (sometimes weird) graphs with high AE but for which wvRN performs
poorly, and vice versa. However, we can modify AE to be a node-based assortativity coefficient,
AN , by defining e∗i j, a node-based cell-value in the assortativity matrix as follows:

e∗i j =
1
Z
RV(Xi) j,

where RV(Xi) j is the jth element in RV(Xi) as defined in Equation 2, and Z is a normalizing constant
such that all ei j sum to 1.

To assess their value for edge selection for wvRN, we compute the actual error reduction for
each different edge type (and all edges) for the benchmark data sets, and compare with the edge
selected by each of these three methods (loo, AE , AN). In Table 20 the first six columns show the
data set, the number of nodes, the base accuracy, the number of edges, the average edge weight,
and the average node degree. The next columns show AE and AN . The following column shows
the estimated ÊRREL based on the leave-one-out estimation, and the last column shows the ERREL
values on the test set. Each data set group is sorted by the ERREL performance on its various
edge types, so the top row of each group is the “best” edge selection. Note that as the edge types
differ, we get different connectivities and different coverages, and hence different the values are not
completely comparable.

The results show that the links used in our study generally resulted in the highest node-based
assortativity.23 In 8 out of 10 cases, AN chose the best edge. Neither the leave-one-out (loo) method
nor AE performed as well, but they nevertheless yield networks on which wvRN performs relatively
well. Notice that for IMDb, although director has the highest AE , it also has very low coverage
(only 554 nodes were connected), and with such a slight difference in assortativity between that
and prodco there should be no question which should be used for classification. AN and the leave-
one-out estimates are much more volatile than AE as the amount of labeled data decreases, because
typically there are many more edges than nodes. If we believe that assortativity is relatively stable
across the network, it may be beneficial to use AE when little is known. However, for our data sets,
AN performs just as well as AE even when r = 0.1.

In summary, these results show that the differences in the results by domain, and even within
domains, depend on the level of homophily. This is almost tautological for wvRN. We also com-
puted many other graph statistics besides the homophily measures (e.g., average degree, number of
connected clusters, graph diameter, shortest paths, etc.) none of which were as strongly correlated
with performance.

23. We had picked the edge types for the study before performing this analysis. However, common sense and domain
knowledge would lead one to conclude that the edge types we used in the case study would have high assortativity.
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mean mean Assortativity ÊRREL ERREL
base num edge node (edge) (node) loo (wvRN) wvRN at

Data set size acc. edges weight degree AE AN r = 0.90 r = 0.90
coracite 3583 0.297 22516 2.061 6.284 0.737 0.642 0.5373 0.805
coraall 4025 0.315 71824 2.418 17.844 0.656 0.656 0.6122 0.767
coraauthor 3604 0.317 56268 2.262 15.613 0.623 0.558 0.4662 0.711
imdbprodco 1169 0.511 40634 1.077 34.760 0.501 0.392 0.3711 0.647
imdbproducers 1195 0.520 13148 1.598 11.003 0.283 0.389 0.3618 0.547
imdball 1377 0.564 92248 1.307 66.992 0.279 0.308 0.3415 0.531
imdbdirectors 554 0.549 826 1.031 1.491 0.503 0.210 0.0369 0.498
imdbactors 1285 0.541 48354 1.135 37.630 0.131 0.174 0.1372 0.246
cornellBall 349 0.585 27539 3.000 78.908 0.325 0.399 0.5655 0.629
cornellBcocite 346 0.581 26832 2.974 77.549 0.360 0.394 0.5345 0.618
cornellBhyper 349 0.585 1393 2.349 3.991 −0.169 −0.068 −0.1621 −0.114
cornellMall 349 0.415 27539 3.000 78.908 0.219 0.286 0.3209 0.382
cornellMcocite 346 0.419 26832 2.974 77.549 0.227 0.273 0.2481 0.366
cornellMhyper 349 0.415 1393 2.349 3.991 0.054 0.102 −0.2883 −0.212
texasBcocite 334 0.512 32988 2.961 98.766 0.577 0.617 0.7166 0.819
texasBall 338 0.518 33364 2.995 98.710 0.523 0.585 0.6939 0.768
texasBhyper 285 0.547 1001 2.605 3.512 −0.179 −0.114 −0.1368 −0.232
texasMcocite 334 0.488 32988 2.961 98.766 0.461 0.477 0.3737 0.475
texasMall 338 0.482 33364 2.995 98.710 0.420 0.458 0.3874 0.466
texasMhyper 285 0.453 1001 2.605 3.512 −0.033 −0.044 −0.6583 −0.490
washingtonBall 434 0.652 31253 3.800 72.012 0.388 0.455 0.4225 0.530
washingtonBcocite 434 0.652 30462 3.773 70.189 0.375 0.446 0.3940 0.477
washingtonBhyper 433 0.651 1941 2.374 4.483 −0.095 0.076 −0.1126 −0.069
washingtonMcocite 434 0.392 30462 3.773 70.189 0.301 0.359 0.3481 0.503
washingtonMall 434 0.392 31253 3.800 72.012 0.331 0.377 0.4023 0.453
washingtonMhyper 433 0.390 1941 2.374 4.483 0.084 0.233 −0.0167 0.004
wisconsinBall 352 0.560 33587 3.543 95.418 0.524 0.587 0.7219 0.855
wisconsinBcocite 348 0.555 33250 3.499 95.546 0.673 0.585 0.7168 0.788
wisconsinBhyper 297 0.616 1152 2.500 3.879 −0.147 −0.103 −0.2123 −0.331
wisconsinMcocite 348 0.445 33250 3.499 95.546 0.577 0.489 0.4286 0.544
wisconsinMall 352 0.440 33587 3.543 95.418 0.416 0.474 0.4518 0.503
wisconsinMhyper 297 0.384 1152 2.500 3.879 0.160 0.021 −0.4729 −0.275
# mistakes 5 2 4

Table 20: Graph metrics for networks formed by various edge types. Each data set grouping is
sorted on ERREL. AE , AN , ÊRREL and ERREL values were all averaged over the 10 data
splits used throughout the case study. The leave-one-out (loo) measure used only GK to
calculate the ÊRREL value.
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5.3.7 NETWORK-ONLY CLASSIFICATION AS A BASELINE FOR RELATIONAL LEARNING
STUDIES

The foregoing results support the claim that network-only classification should be used as a baseline
against which more sophisticated network-classification methods should be compared. Therefore,
for example, when evaluating a system for the classification of interconnected web pages, their
connectivity alone should be considered in addition to their text alone. This of course is sound
scientific methodology, requiring one to look for simpler explanations for a phenomenon once a
complex explanation has been found. When considering a sophisticated relational learning method
on networked data, using the network alone is one sort of lesion or ablation study (Langley, 2000).
Our point here is that the absolute classification performance based only on the network of class
labels is remarkable in several of the cases examined above. For example, who would have thought
that on the University of Texas student/not-student classification task, accuracy could be increased
from 62.9% to 91.2% using just the network structure—with no text and no learning?

Nevertheless, it is enlightening to compare these simple methods to alternatives. In this section
we provide several such comparisons. We compare to text-only methods and to a relational learning
technique that uses both local and relational information, and we see that one might be led to be
overly optimistic by comparing solely to local-only baselines. We also compare to a graph-based
method that does not fall into the “node-centric” framework. Finally, we replicate a prior, published
study, showing that conclusions would have changed if a network-only baseline had been used.

COMPARISON TO A MULTIVARIATE TECHNIQUE

In real networks, the amount of local information and its relevance to the classification task vary
widely. In certain social network classification applications, for example in support of counterterror-
ism, no information at all may be available about certain individuals other than their connections to
others (Tumulty, 2006). In applications such as fraud detection in telecommunications little reliable
information may be available about potential fraudsters, beyond the calls they make (or as discussed
above, local information may be ignored for many individuals because network-only classification
works so well). On the other hand, the text of certain web pages contains a wealth of information
relevant for classifying the topic of the web page.

For determining howmuch better can be done by using both the text and the interconnectivity in-
formation, even for existing techniques and benchmark data sets, a definitive answer would involve a
comparison of a large number of alternative relational learning systems on equal experimental foot-
ing. Such a comparison is beyond the scope of this paper; to our knowledge, no such comparison
has yet been attempted, but one would be facilitated by a platform such as NetKit. To demonstrate,
we compare to a reimplementation in NetKit of the highly cited approach by Chakrabarti et al.
(1998), which we will call NetKit-CDI.

Thus, for those of our data sets that contained local information, we compared the accuracies
using only the local information with the accuracies using only the network as well as both relational
and local information.24 It must be noted that even within these data sets, there are nodes that
have no local information, just as there are nodes with no connectivity information.25 We compare
classification accuracies only for those nodes that have both local information and connectivity
information. Specifically, the local information is text, and for local classification we use naive

24. We have no local information on the IMDb data or the industry-yh data.
25. The industry-pr and WebKB data sets only have local information for roughly half the instances.
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Figure 6: Comparisons of wvRN-RL (relaxation labeling), a reimplementation of the method of
Chakrabarti et al. (NetKit-CDI), and a local-only naive Bayes classifier (NB(local)).

Bayes classification (which in preliminary studies, when averaged over the data sets, performed
better than Rocchio’s algorithm and multinomial Naive Bayes).

Figure 6 shows the accuracies on three of the ten data sets. We show these three to highlight the
variance in relative performances, making it clear that neither network-only nor local-only should
be the sole baseline of choice. We performed the same statistical analyses of these results as we
did in the main study. Table 21 shows the p-values of the Wilcoxon signed-rank test across the
ten data sets. The table shows that no method is significantly better than any other at r = 0.1,
but the network-only is significantly better than both the full relational classifier and the local-only
for r ≥ 0.3 (p ≤ 0.100) and r ≥ 0.4 (p ≤ 0.025 except against NetKit-CDI at r = 0.9). We also
found that the relational classifier generally performed better than the local-only method at r ≥ 0.4,
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sample ratio (r)
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN-RL v NB-local 0.200 — 0.100 0.025 0.025 0.025 0.025 0.025 0.025
wvRN-RL v NetKit-CDI 0.400 0.100 0.050 0.025 0.025 0.025 0.025 0.025 0.050
NetKit-CDI v NB-local 0.400 0.400 — 0.450 0.450 0.250 0.400 0.200 0.200

Table 21: p-values for the Wilcoxon signed-rank test comparing the performances of wvRN-RL
(relaxation labeling), the method of Chakrabarti et al. (NetKit-CDI), and a local-only
naive Bayes classifier. For each cell, bold text means that the first method was better than
the second method and italics means it was worse. The cell with ’—’ means there was
no significant difference.

although not significantly so in this comparison.26 Most importantly, there are clear cases where
using local-only methods as the sole baseline would lead to overly optimistic conclusions about the
value of the full-blown relational learning technique.

This has an interesting implication: for classification purposes, as more labels are available in
these networks, the network structure carries more information than what can be gotten from the
local text, at least as measured using naive Bayes. It is important to reiterate that for different
applications, the amount of local information and its relevance to the classification task can differ
greatly, so these results are suggestive at best. Furthermore, aggregate classification accuracies tell
only part of the story. Different subpopulations may be more or less amenable to local- or network-
only classification (cf., fraud detection, Fawcett and Provost, 1997).

COMPARISON TO A GRAPH-BASED METHOD

Since there is a close relationship between wvRN and the “graph-based” methods that use only
labels (as discussed in Sections 3.5.1 and 3.5.2), a question that follows from wvRN’s excellent
performance is whether such a graph-based method might provide an even better baseline than
wvRN-RL. Blum et al. (2004) found that their randomized mincut method empirically did not per-
form as well as the method introduced by Zhu et al. (2003), so we compare the method of Zhu et
al. to wvRN-RL on all the data from the case study. Their performances are nearly identical. This
should come as no surprise as the two methods are nearly identical. Which method then should one
use? By our experiments, the method of Zhu et al. gives slightly better scores for ranking entities by
likelihood of class membership. Therefore, when their class mass normalization technique was em-
ployed to match the class posteriors to the class priors, Zhu’s method generally improved more than
when using class mass normalization with wvRN, making Zhu’s method slightly but statistically
significantly better than wvRN at 0.3 ≤ r ≤ 0.8. However, one important reason to favor wvRN
over the method of Zhu et al. is that the latter does not scale well: it requires inverting an NxN ma-
trix and then doing a matrix multiplication, an O(N3) operation. wvRN-RL is linear in the number
of edges. In the worst case this is O(N2), although most networks we have examined have a small
average degree per node. For example, whereas for a modest-sized network (e.g., cora, N=4000)
on a state-of-the-art compute server, wvRN finishes in just a few seconds, the method of Zhu et al.

26. The multi-data-set comparison has only 10 data points for the computation of statistical significance. The graphs also
show standard-deviation error bars based on the 10 runs for each method, which suggest data-set specific conclusions
of superiority. For example, in cora there is a clear ranking of the three methods.
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Figure 7: Comparison on cora of wvRN-RL (relaxation labeling) to RBN (PRM, Taskar et al.,
2001). The graph shows wvRN using both citation and author links as in the original
study. The “pruned” results follow the methodology of the case study in this paper by
removing zero-knowledge components (see page 957) and singletons from the test set.

takes about 20 minutes. While this may not be a considerable burden for modest-sized data, some
social network data sets are significantly larger (e.g., consider the many millions of communications
records mined for fraud detection Fawcett and Provost, 1997; Cortes et al., 2001; Hill et al., 2006b
or for network-based marketing Hill et al., 2006a, or by the NSA for counterterrorism, Tumulty,
2006). On a state-of-the-art machine, wvRN-RL can generate predictions on graphs consisting of
a million nodes and millions of edges in minutes, whereas the method of Zhu et al. would not be
tractable.

COMPARISON TO PRIOR PUBLISHED RESULTS
Yet another way to support the claim that network-only classification should be considered

as a baseline is to a find published study for which using network-only classification would have
changed the resulting conclusions. Consider cora. In a prior study, Taskar et al. (2001) show that
a relational Bayesian network (RBN), there called a Probabilistic Relational Model (PRM), using
author and citation links in conjunction with the text of the paper, was able to achieve a higher
accuracy than a non-relational naive Bayesian classifier for r = {0.1, . . . ,0.6} (which did not use
the links). However, as we saw above, wvRN performed quite well on this data set.

Figure 7 compares the accuracies of the RBN (transcribed from the graphs in the paper) with
wvRN-RL. Note that in the prior work, they used fewer values of r and only had 5 cross-validation
runs. Other than that, our setup is identical to the original study. Also note that to make a direct
comparison, we here use both author edges and citation edges as was done in the original study (as
opposed to only citation edges in our main study). We see clearly that wvRN was able to perform
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Provost, 2006).

comparably.27 This demonstrates that cora is not a good data set to showcase the advantages of
RBNs for classification. Had a method such as wvRN been readily available as a baseline, then
Taskar et al. would most likely have used a more appropriate data set.

5.4 Limitations

We would like to characterize how much classification ability comes from the structure of the net-
work alone. We have examined a limited notion: these methods all assume that “the structure of the
network” can be reduced to “the structure of the neighborhood,” bolstered by collective inference,
rather than using relational models that look deeper.

Furthermore, we only considered links and class labels as comprising the structure of the net-
work. We did not consider aspects of network structure such as the positions of individual nodes
(as discussed in Section 3.5.3 on using node identifiers). For example, Figure 8 shows that accuracy
can be improved substantially by reasoning with node identifiers via the ACORA system (Perlich
and Provost, 2006). To our knowledge, no existing network classification system combines local
attributes, node identifiers, and collective inference.

In the homogeneous, univariate case study we ignored much of the complexity of real networked
data, such as heterogeneous edges, heterogeneous nodes, directed edges, and attributes of nodes
and edges. Each of these introduces complications and opportunities for modeling. There are no

27. The “pruned” results show the accuracy after eliminating the zero-knowledge components, for which wvRN-RL can
only predict the most prevalent class. Recall that zero-knowledge components (as defined on page 957) are nodes for
which there is no path to any node in VK .
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comprehensive, empirical machine learning studies that consider these dimensions systematically.
For example, when using attributes of nodes, how much is gained by using them in the relational
classifier, as opposed to using them simply to initialize priors? (For example, Chakrabarti et al.
1998 found that using the text of hyperlinked documents reduced performance.) Similarly, how
much value is added by considering multiple edge types explicitly?

An important limitation of this work, with respect to its relevance to practical problems, is
that we chose training data randomly to be labeled. It is likely that the data for which labels are
available are interdependent. For example, all the members from one terrorist cell may be known
and none from another. If other attributes are available more uniformly, then studies such as this
may artificially favor network-only methods over attribute-based methods.

5.5 Conclusions and Future Work

We introduced a modular toolkit, NetKit-SRL, for classification in networked data. The importance
of NetKit is three-fold: (1) it generalizes several existing methods for classification in networked
data, thereby making comparison to existing methods possible; (2) it enables the creation and use of
many new algorithms by its modularity and extensibility, and (3) it enables the analysis/comparison
of individual components and configurations.

We then used NetKit to perform a case study of within-network, univariate classification for
homogeneous networked data. The case study makes several contributions. It provides demonstra-
tive support for points 2 and 3 above. Of the five network classifiers that stood clearly above the
rest, three were novel combinations of components (and thus, novel relational classifiers). Certain
collective inference and relational classification components stood out with consistently better per-
formance. For collective inference, relaxation labeling was best when there are few known labels;
it mattered little which collective inference method is used when there were many known labels.
For relational classification, the link-based classifier clearly was preferable when many labels were
known. The lower-variance methods (wvRN and cdRN) dominated when fewer labels were known.
In combination, two pairs of relational classifier/collective inference combinations stand out strik-
ingly: nLB with any of the collective inference methods dominates when many labels are known;
the relational neighbor methods with relaxation labeling (wvRN-RL and cdRN-RL) dominate when
fewer labels are known. Of particular relevance given this latter result, we also show the close cor-
respondence of several simple, network classification methods: the node-centric wvRN-RL (Mac-
skassy and Provost, 2003), the random-field method of Zhu et al. (2003), and classic connectionist
techniques such as Hopfield networks (Hopfield, 1982).

The case study demonstrates the power of simple network classification models, and argues
that they must be included when evaluating relational learning methods on networked data. On the
benchmark data sets, error rates were reduced substantially by taking into account only the class-
linkage structure of the network. Although learning helped in many cases, the no-learning wvRN
was a very strong competitor—performing very well especially when few labels were known. This
result was supported further by followup analyses showing cases where one would draw overly opti-
mistic conclusions about the value of more-sophisticated methods if these network-only techniques
were not used as baselines. It also raises the question of whether we need “better” benchmark data
sets—to showcase the value of more-powerful techniques.

More generally, the results showcase two different modes of within-network classification that
call for different types of methods: when many labels are known versus when few labels are known.
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These modes correspond to different application scenarios. The former may correspond (for ex-
ample) to networks that evolve over time with new nodes needing classification before their labels
become known naturally, as would be the case for predicting movie box-office receipts. Examples
of the little-known scenario can be found in counter-terrorism and law enforcement, where analysts
form complex interaction networks containing a few, known bad guys. The little-known scenario
has an economic component, similar to active learning: it may be worthwhile to incur costs to la-
bel additional nodes in the network, because this will lead to much improved classification. This
suggests another direction for future work—identifying the most beneficial nodes for labeling (cf.,
Domingos and Richardson, 2001).

The case study also showcases a problem of representation for network classification: the se-
lection of which edges to use. We show that edge selection can make a considerable difference,
and suggest techniques analogous to those used in traditional feature selection. It is straightforward
to extend NetKit’s relational classification methods to handle heterogeneous links. However, that
would not solve the fundamental problem that edge selection (like feature selection) may improve
generalization performance, as well as provide simpler models.

Classification in networked data is important for real-world applications and presents many
opportunities for machine-learning research. The field is beginning to amass benchmark domains
containing networked data. We hope that NetKit can facilitate systematic study.
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Abstract
A common assumption in supervised learning is that the input points in the training set follow
the same probability distribution as the input points that will be given in the future test phase.
However, this assumption is not satisfied, for example, when the outside of the training region is
extrapolated. The situation where the training input points and test input points follow different
distributions while the conditional distribution of output values given input points is unchanged
is called the covariate shift. Under the covariate shift, standard model selection techniques such
as cross validation do not work as desired since its unbiasedness is no longer maintained. In this
paper, we propose a new method called importance weighted cross validation (IWCV), for which
we prove its unbiasedness even under the covariate shift. The IWCV procedure is the only one
that can be applied for unbiased classification under covariate shift, whereas alternatives to IWCV
exist for regression. The usefulness of our proposed method is illustrated by simulations, and
furthermore demonstrated in the brain-computer interface, where strong non-stationarity effects
can be seen between training and test sessions.
Keywords: covariate shift, cross validation, importance sampling, extrapolation, brain-computer
interface

1. Introduction

The goal of supervised learning is to infer an unknown input-output dependency from training
samples, by which output values for unseen test input points can be estimated. When developing
a method of supervised learning, it is commonly assumed that the input points in the training set
and the input points used for testing follow the same probability distribution (e.g., Wahba, 1990;
Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001; Schölkopf and Smola, 2002).
However, this common assumption is not fulfilled, for example, when we extrapolate outside of
the training region1 or when training input points are designed by an active learning (experimental
design) algorithm. The situation where the training input points and test input points follow different

1. The term ‘extrapolation’ could have been defined in a narrow sense as prediction in regions with no training samples.
On the other hand, the situation we are considering here is ‘weak’ extrapolation; prediction is carried out in the region
where only a small number of training samples is available.

c©2007 Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller.
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probability distributions but the conditional distributions of output values given input points are
unchanged is called the covariate shift (Shimodaira, 2000). For data from many applications such
as off-policy reinforcement learning (Shelton, 2001), spam filtering (Bickel and Scheffer, 2007),
bioinformatics (Baldi et al., 1998; Borgwardt et al., 2006) or brain-computer interfacing (Wolpaw
et al., 2002), the covariate shift phenomenon is conceivable. Sample selection bias (Heckman, 1979)
in economics may also include a form of the covariate shift. Illustrative examples of covariate shift
situations are depicted in Figures 1 and 3.

In this paper, we develop a new learning method and prove that we can alleviate misestimation
due to covariate shift. From the beginning, we note that all the theoretical discussions will be made
under the assumption that the ratio of test and training input densities at training input points is
known; in experimental studies, the density ratio will be replaced by their empirical estimates and
the practical performance of our approach will be evaluated.

Model selection is one of the key ingredients in machine learning. However, under the covariate
shift, a standard model selection technique such as cross validation (CV) (Stone, 1974; Wahba,
1990) does not work as desired; more specifically, the unbiasedness that guarantees the accuracy
of CV does not hold under the covariate shift anymore. To cope with this problem, we propose a
novel variant of CV called importance weighted CV (IWCV). We prove that IWCV gives an almost
unbiased estimate of the risk even under the covariate shift. Model selection under the covariate
shift has been studied so far only by few researchers (e.g., Shimodaira, 2000; Sugiyama and Müller,
2005)—existing methods have a number of limitations, for example, in the loss function, parameter
learning method, and model. In particular, the existing methods can not be applied to classification
scenarios. On the other hand, the proposed IWCV overcomes these limitations: it allows for any
loss function, parameter learning method, and model; even non-parametric learning methods can
be employed. To the best of our knowledge, the proposed IWCV is the first method that can be
successfully applied to model selection in covariate-shifted classification tasks. The usefulness of
the proposed method is demonstrated in the brain-computer interface applications, in which existing
methods for covariate shift compensation could not be employed.

2. Problem Formulation

In this section, we formulate the supervised learning problem with the covariate shift, and review
existing learning methods.

2.1 Supervised Learning under Covariate Shift

Let us consider the supervised learning problem of estimating an unknown input-output depen-
dency from training samples. Let T = {(xi,yi)}ni=1 be the training samples, where xi ∈ X ⊂ Rd is
an i.i.d. training input point following a probability distribution Ptrain(x) and yi ∈ Y ⊂ R is a corre-
sponding training output value following a conditional probability distribution P(y|x). P(y|x) may
be regarded as the sum of true output f (x) and noise.

Let !(x,y, ŷ) :X ×Y ×Y → [0,∞) be the loss function, which measures the discrepancy between
the true output value y at an input point x and its estimate ŷ. Let us employ a parametric model
f̂ (x;θ) for estimating the output value y, where θ ∈ Θ ⊂ Rb. Note that the range of application
of our proposed method given in Section 3 includes non-parametric methods, but we focus on a
parametric setting for simplicity. A model f̂ (x;θ) is said to be correctly specified if there exists a
parameter θ∗ such that f̂ (x;θ∗) = f (x); otherwise the model is said to be misspecified. In practice,
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the model used for learning would be misspecified to a greater or lesser extent. For this reason,
we do not assume that the model is correct in this paper. The goal of supervised learning is to
determine the value of the parameter θ so that output values for unlearned test input points are
accurately estimated.

Let us consider a test sample, which is not given to the user in the training phase, but will be
given in the test phase in the future. We denote the test sample by (t,u), where t ∈ X is a test input
point and u ∈ Y is a corresponding test output value. The test error expected over test samples is
expressed as

Et,u

[
!(t,u, f̂ (t; θ̂))

]
, (1)

where E denotes the expectation. Note that the learned parameter θ̂ generally depends on the train-
ing set T = {(xi,yi)}ni=1. In the following, we consider the expected test error over the training
samples, which is called the risk or the generalization error:

R(n) ≡ E{xi,yi}ni=1,t,u

[
!(t,u, f̂ (t; θ̂))

]
. (2)

In standard supervised learning theories, the test sample (t,u) is assumed to follow P(u|t)Ptrain(t),
which is the same probability distribution as for the training samples {(xi,yi)}ni=1 (e.g., Wahba,
1990; Bishop, 1995; Vapnik, 1998; Duda et al., 2001; Hastie et al., 2001; Schölkopf and Smola,
2002). On the other hand, in this paper, we consider the situation under the covariate shift, that is,
the conditional distribution P(u|t) remains unchanged, but the test input point t follows a different
probability distribution Ptest(x). Illustrative examples of covariate shift situations are depicted in
Figures 1 and 3.

Let ptrain(x) and ptest(x) be the probability density functions corresponding to the input distri-
butions Ptrain(x) and Ptest(x), respectively. In the following theoretical discussions, we assume that
the ratio of test and training input densities at training input points,

ptest(xi)
ptrain(xi)

, (3)

is finite and known. We refer to the expression (3) as importance à la importance sampling (Fish-
man, 1996). In practical situations where the importance is unknown, we may replace them by
empirical estimates (see Sections 4 and 5).

2.2 Empirical Risk Minimization and Its Importance Weighted Variants

A standard method to learn the parameter θ would be empirical risk minimization (ERM) (e.g.,
Vapnik, 1998; Schölkopf and Smola, 2002):

θ̂ERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

!(xi,yi, f̂ (xi;θ))

]
.

If Ptrain(x) = Ptest(x), ERM provides a consistent estimator2 (Shimodaira, 2000). However, under
the covariate shift where Ptrain(x) &=Ptest(x), ERM is not generally consistent anymore3 (Shimodaira,

2. For a correctly specified model, an estimator is said to be consistent if it converges in probability to the true parameter.
For a misspecified model, we say that an estimator is consistent if it converges in probability to the optimal parameter
in the model (i.e., the optimal approximation of the learning target under the risk (2) within the model).

3. If the model is correct, ERM is still consistent even under the covariate shift.
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2000):
lim
n→∞

(
θ̂ERM

)
&= θ∗,

where
θ∗ ≡ argmin

θ∈Θ

(
Et,u

[
!(t,u, f̂ (t;θ))

])
.

Under the covariate shift, the following importance weighted ERM (IWERM) is consistent (Shi-
modaira, 2000):

θ̂IWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

ptest(xi)
ptrain(xi)

!(xi,yi, f̂ (xi;θ))

]
,

which satisfies even for a misspecified model

lim
n→∞

(
θ̂IWERM

)
= θ∗.

Although IWERM is consistent, it is not efficient and can be rather unstable (Shimodaira, 2000).
Therefore, IWERM may not be optimal in practical finite sample cases; a slightly stabilized variant
of IWERM could be practically better than plain IWERM. The trade-off between consistency and
stability could be controlled, for example, by weakening the weight (Adaptive IWERM; AIWERM)
or by adding a regularizer to the empirical risk (Regularized IWERM; RIWERM):

θ̂AIWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

(
ptest(xi)
ptrain(xi)

)λ

!(xi,yi, f̂ (xi;θ))

]
, (4)

θ̂RIWERM ≡ argmin
θ∈Θ

[
1
n

n

∑
i=1

ptest(xi)
ptrain(xi)

!(xi,yi, f̂ (xi;θ))+ γR(θ)

]
,

where 0≤ λ≤ 1, γ≥ 0, and R(θ) is some regularization functional.
The above AIWERM and RIWERMmethods are just examples; there may be many other possi-

bilities of controlling the trade-off between consistency and stability. We note that the methodology
we propose in this paper is valid for any parameter learning method; this means that, e.g., an im-
portance weighted variant of support vector machines (Vapnik, 1998; Schölkopf and Smola, 2002;
Huang et al., 2007) or graph regularization techniques (Bousquet et al., 2004; Belkin and Niyogi,
2004; Hein, 2006) can also be employed.

2.3 Cross Validation Estimate of Risk

The value of the tuning parameter, say λ in Eq. (4), controls the trade-off between the consistency
and stability. Therefore, we need to perform model selection for determining the value of λ. Cross
validation (CV) is a popular method for model selection (Stone, 1974; Wahba, 1990). A basic idea
of CV is to divide the training set into ‘training part’ and ‘validation part’—a learning machine is
trained using the training part and is tested using the validation part, by which the risk is estimated.
Below, we give a slightly more formal description of the CV procedure, which will be used in the
next section.

Let us randomly divide the training set T = {(xi,yi)}ni=1 into k disjoint non-empty subsets
{Ti}ki=1. Let f̂T j(x) be a function learned from {Ti}i%= j. Then the k-fold CV (kCV) estimate of
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the risk R(n) is given by

R̂(n)
kCV ≡ 1

k

k

∑
j=1

1
|T j| ∑

(x,y)∈T j

!(x,y, f̂T j(x)),

where |T j| is the number of samples in the subset T j. When k = n, kCV is particularly called
leave-one-out cross validation (LOOCV).

R̂(n)
LOOCV ≡ 1

n

n

∑
j=1

!(x j,y j, f̂ j(x j)),

where f̂ j(x) is a function learned from {(xi,yi)}i%= j.
It is known that, if Ptrain(x) = Ptest(x), LOOCV gives an almost unbiased estimate of the risk;

more precisely, LOOCV gives an unbiased estimate of the risk with n− 1 samples (Luntz and
Brailovsky, 1969; Schölkopf and Smola, 2002):

E{xi,yi}ni=1

[
R̂(n)
LOOCV

]
= R(n−1) ≈ R(n).

However, this useful property is no longer true under the covariate shift. In the following section,
we give a novel modified cross validation method which still maintains the ‘almost unbiasedness’
property even under the covariate shift.

3. Importance Weighted Cross Validation

To compensate for the effect of the covariate shift in the CV procedure, we propose the following
importance weighted CV (IWCV):

R̂(n)
kIWCV ≡ 1

k

k

∑
j=1

1
|T j| ∑

(x,y)∈T j

ptest(x)
ptrain(x)

!(x,y, f̂T j(x)),

or

R̂(n)
LOOIWCV ≡ 1

n

n

∑
j=1

ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j)).

That is, the validation error in the CV procedure is weighted according to the importance.
The following lemma shows that LOOIWCV gives an almost unbiased estimate of the risk even

under the covariate shift.

Lemma 1

E{xi,yi}ni=1

[
R̂(n)
LOOIWCV

]
= R(n−1).
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Proof Since the conditional distribution P(y|x) does not change between the training and test
phases, we have, for any j ∈ {1, . . . ,n},

E{xi,yi}ni=1

[
ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j))
]

= E{xi,yi}i != j,x j,y j

[
ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j))
]

= E{xi,yi}i != j,y j

[Z

X

ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j))ptrain(x j)dx j

]

= E{xi,yi}i != j,y j

[Z

X
ptest(x j)!(x j,y j, f̂ j(x j))dx j

]

= E{xi,yi}i!= j,u

[Z

X
!(t,u, f̂ j(t))ptest(t)dt

]

= E{xi,yi}i != j,t,u

[
!(t,u, f̂ j(t))

]

= R(n−1).

Then we have

E{xi,yi}ni=1

[
R̂(n)
LOOIWCV

]
= E{xi,yi}ni=1

[
1
n

n

∑
j=1

ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j))

]

=
1
n

n

∑
j=1

E{xi,yi}ni=1

[
ptest(x j)
ptrain(x j)

!(x j,y j, f̂ j(x j))
]

=
1
n

n

∑
j=1

R(n−1)

= R(n−1),

which concludes the proof.

As proved above, the simple variant of LOOCV called LOOIWCV provides an unbiased esti-
mate of the risk with n−1 samples even under the covariate shift. A similar proof is also possible
for kIWCV, although its bias may be larger than LOOIWCV. Note that we did not assume any con-
dition on the loss function in the above proof. This means that the almost unbiasedness is valid
for any loss function including non-smooth losses such as the 0/1-loss. Also, we did not make a
model-specific assumption in the proof. Therefore, the almost unbiasedness holds for any model;
even non-identifiable models (Watanabe, 2001) such as multi-layer perceptrons or Gaussian mixture
models are included. Furthermore, the above proof does not depend on the method of parameter
learning. This means that the almost unbiasedness is valid for any parameter learning method; even
non-parametric learning methods are allowed.

4. Numerical Examples

In this section, we illustrate how IWCV works using toy regression and classification data sets.
More simulation results can be found in a separate technical report (Sugiyama et al., 2006).
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4.1 Toy Regression Problem

Here we illustrate the behavior of the proposed and existing generalization error estimators using a
simple one-dimensional regression data set.

We use the following linear model for learning:

f̂ (x;θ) = θ0+
d

∑
i=1

θix(i), (5)

where x(i) is the ith element of x and d is the input dimensionality. The parameter vector θ is learned
by adaptive importance weighted least-squares (AIWLS):

θ̂AIWLS ≡ argmin
θ

[
1
n

n

∑
i=1

(
ptest(xi)
ptrain(xi)

)λ(
f̂ (xi;θ)− yi

)2
]

, (6)

where 0≤ λ≤ 1; λ is chosen later by a model selection method. For the linear model (5), the above
minimizer θ̂AIWLS is given analytically by

θ̂AIWLS = (X'DλX)−1X'Dλy,

where

X ≡





1 x'1
1 x'2
...

1 x'n




,

which is assumed to have rank d+1; D is the diagonal matrix with the ith diagonal element Di,i =
ptest(xi)/ptrain(xi) and y= (y1,y2, . . . ,yn)'.

Let the learning target function be f (x) = sinc(x) and let the training and test input densities be

ptrain(x) = φ(x;1,(1/2)2),
ptest(x) = φ(x;2,(1/4)2),

where φ(x;µ,σ2) is the normal density with mean µ and variance σ2. This setting implies that we
are considering an extrapolation problem (see Figure 1(A)). We create the training output value yi
(i = 1,2, . . . ,n) as yi = f (xi) + εi, where {εi}ni=1 have density φ(ε;0,(1/4)2). Let the number of
training samples be n= 150.

Figure 1 (B)–(D) illustrate the true function, a realization of training samples, learned functions
by AIWLS (6) with λ = 0,0.5,1, and a realization of test samples. For this particular realization,
λ = 0.5 appears to work very well. However, the best choice of λ depends on the realization of
samples and λ needs to be carefully chosen by a model selection method. We randomly create
{xi,εi}ni=1 and calculate the scores of 10-fold IWCV and 10-fold CV for λ= 0,0.1,0.2, . . . ,1. This
procedure is repeated 1000 times.

Top graphs in Figure 2 depicts the mean and standard deviation of the test error and its estimate
by each method, as functions of the tuning parameter λ in AIWLS (6). Note that the mean of the test
error corresponds to the true risk (see Eqs. 1 and 2). The graphs show that IWCV gives reasonably
good unbiased estimates of the risk, while CV is heavily biased.
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Figure 1: An illustrative regression example of extrapolation by fitting a linear function. (A) The
probability density functions of the training and test input points and their ratio. (B)–
(D) The learning target function f (x) (the solid line), training samples (‘◦’), a learned
function f̂ (x) (the dashed line), and test samples (‘×’). Note that the test samples are not
given in the training phase; they are plotted in the graph for illustration purposes.

Next we investigate the model selection performance: λ is chosen from {0,0.1,0.2, . . . ,1} so
that the score of each method is minimized. Bottom graphs in Figure 2 depict the histogram of the
minimizer of each score. The mean and standard deviation of the test error when λ is chosen by
each method are described below the graphs. The numbers show that IWCV gives much smaller
test errors than CV (the difference is significant by the t-test at the significance level 1%).

We also carried out the same simulation under unknown training and test densities; they are
estimated by maximum likelihood fitting of a single Gaussian model or a Gaussian kernel density
estimator with variance determined by Silverman’s rule-of-thumb bandwidth selection rule (Sil-
verman, 1986; Härdle et al., 2004). For estimating the test input density, we draw 100 unlabeled
samples following Ptest(x). The simulation results had very similar trends to the case with known
densities (therefore we omit the detail), although the error gets slightly larger. This implies that, for
this toy regression problem, estimating the densities from data does not significantly degrade the
quality of learning.

The above simulation results illustrate that IWCV performs quite well in covariate-shifted re-
gression tasks.
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Figure 2: Top graphs: Test error and its estimates as functions of the tuning parameter λ in AIWLS
(6). Dashed curves in the middle and right graphs depict the mean test error (i.e., the mean
of the left graph) for clear comparison. Bottom graphs: Histograms of the minimizer. The
numbers below the graphs are the means and standard deviations of the test error when λ
is selected by each method.

4.2 Toy Classification Problem

Through the above regression examples, we found that IWCV works quite well. Here, we apply
IWCV to a toy classification problem where the 0/1-loss is used for computing the test error.

Let us consider a binary classification problem on the two-dimensional input space. We define
the class posterior probabilities given input x by

p(y= +1|x) =
1+ tanh

(
x(1) +min(0,x(2))

)

2
,

where x= (x(1),x(2))' and p(y=−1|x) = 1− p(y= +1|x). The optimal decision boundary, that is,
a set of all x such that p(y= +1|x) = p(y= −1|x), is illustrated in Figure 3(b).

Let the training and test input densities be

ptrain(x) =
1
2
φ

(
x;

(
−2
3

)
,

(
1 0
0 2

))
+
1
2
φ

(
x;

(
2
3

)
,

(
1 0
0 2

))
,

ptest(x) =
1
2
φ

(
x;

(
0
−1

)
,

(
1 0
0 1

))
+
1
2
φ

(
x;

(
4
−1

)
,

(
1 0
0 1

))
,

where φ(x;µ,Σ) is the multivariate normal density with mean µand covariance matrix Σ. This setting
implies that we are considering an extrapolation problem. Contours of the training and test input
densities are illustrated in Figure 3(a).

993



SUGIYAMA, KRAULEDAT AND MÜLLER
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Figure 3: Toy classification problem.

Let n = 500 and we create training input points {xi}ni=1 following Ptrain(x) and training output
labels {yi}ni=1 following P(y|xi). Similarly, we create 500 test input points {t i}500i=1 following Ptest(x)
and test output labels {ui}500i=1 following P(u|t i).

We use the linear model (5) combined with AIWLS (6) for learning. The classification result û
of a test sample t is obtained by the sign of the output of the learned function:

û= sgn
(
f̂ (t; θ̂AIWLS)

)
,

where sgn(·) denotes the sign of a scalar. Note that, if Ptrain(x) = Ptest(x), this classification method
is equivalent to linear discriminant analysis (LDA) (Fisher, 1936; Duda et al., 2001), given that the
class labels are yi ∝ {1/n+,−1/n−}, where n+ and n− are the numbers of positive and negative
training samples, respectively. In the following, we rescale the training output values {yi}ni=1 as
such, and refer to AIWLS as adaptive importance weighted LDA (AIWLDA). Figure 3(b) shows an
example of realizations of training and test samples, and decision boundaries obtained by AIWLDA
with λ = 0,0.5,1. In this particular realization, λ = 0.5 or 1 seems to work better than λ = 0.
However, the best value of λ depends on the realization of samples and λ needs to be optimized by
a model selection method.

Top graphs in Figure 4 depicts the mean and standard deviation of the test error (i.e., misclassi-
fication rate) and its estimate by each method over 1000 runs, as functions of the tuning parameter λ
in AIWLDA. The graphs clearly show that IWCV gives much better estimates of the risk than CV.

Next we investigate the model selection performance: λ is chosen from {0,0.1,0.2, . . . ,1} so
that the score of each method is minimized. Bottom graphs in Figure 4 depict the histograms of
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Figure 4: Top graphs: Test error (misclassification rate) and its estimates as functions of the tuning
parameter λ in AIWLDA. Dashed curves in the bottom graphs depict the mean test error
(i.e., the mean of the left graph) for clear comparison. Bottom graphs: Histograms of the
minimizer. The numbers below the graphs are the means and standard deviations of the
test error when λ is selected by each method.

the minimizer of each score. The mean and standard deviation of the test error when λ is chosen
by each method are described below the graphs. The numbers show that IWCV gives much smaller
test errors than CV (the difference is significant by the t-test at the significance level 1%).

We also carried out the same simulation except that the training and test densities are unknown;
they are estimated by maximum likelihood fitting of a single Gaussian model or a Gaussian kernel
density estimator with variance determined by Silverman’s rule-of-thumb bandwidth selection rule.
For estimating the test input density, we draw 500 unlabeled samples following Ptest(x). The sim-
ulation results were almost identical to the known-density case with a small increase in the error
(therefore we omit the detail). This implies that, for this toy classification problem, estimating the
densities from data does not significantly degrade the quality of learning.

This simulation result illustrated that IWCV is useful also in covariate-shifted classification
tasks.

5. Application to Brain-Computer Interface

The previous section showed that IWCV is promising in both regression and classification tasks
with covariate shift. In particular, IWCV is the only method which can be successfully applied
in covariate-shifted classification scenarios. In this section, we apply IWCV to the classification
tasks in brain-computer interfaces (BCIs), which attracts a lot of attention these days in biomedical
engineering.
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A BCI is a system which allows for a direct communication from man to machine (Wolpaw
et al., 2002; Dornhege et al., 2007). Cerebral electric activity is recorded via the electroencephalo-
gram (EEG): electrodes attached to the scalp measure the electric signals of the brain. These signals
are amplified and transmitted to the computer, which translates them into device control commands.
The crucial requirement for the successful functioning of BCI is that the electric activity on the
scalp surface already reflects motor intentions, that is, the neural correlate of preparation for hand
or foot movements. A BCI can detect the motor-related EEG changes and uses this information, for
example, to perform a choice between two alternatives: the detection of the preparation to move the
left hand leads to the choice of the first control command, whereas the right hand intention would
lead to the second alternative. By this means, it is possible to operate devices which are connected
to the computer.

For classification of bandpower estimates of appropriately preprocessed EEG signals (Ramoser
et al., 2000; Pfurtscheller and da Silva, 1999; Lemm et al., 2005), LDA has shown to work very
well (Wolpaw et al., 2002; Dornhege et al., 2004; Babiloni et al., 2000). On the other hand, strong
non-stationarity effects have been often observed in brain signals between training and test sessions
(Vidaurre et al., 2004; Millán, 2004; Shenoy et al., 2006), which could be regarded as an example
of the covariate shift. This indicates that employing importance weighted methods could further
improve the BCI recognition accuracy.

Here, we employ AIWLDA to cope with the non-stationarity (see Section 4.2 for detail). We
test AIWLDA with totally 14 data sets obtained from 5 different subjects (see Table 1 for specifica-
tion), where the task is binary classification of EEG signals. The experimental setting is described
in more detail in the references (Blankertz et al., 2007, 2006; Sugiyama et al., 2006). Note that
training samples and unlabeled/test samples are gathered in different recording sessions, so the non-
stationarity in brain signals may change the distributions. On the other hand, the unlabeled samples
and test samples are gathered in the same recording session; more precisely, the unlabeled samples
are gathered in the first half of the session while the test samples (with labels) are collected in the
latter half. Therefore, unlabeled samples may contain some information on the test input distribu-
tion, although input distributions of unlabeled and test samples are not necessarily identical since
the non-stationarity in brain signals can cause a small change in distributions even within the same
session. Thus, this setting realistically renders the classifier update in online BCI systems.

We estimate ptrain(x) and ptest(x) by maximum likelihood fitting of the multi-dimensional Gaus-
sian density with full covariance matrix. ptrain(x) is estimated using training samples and ptest(x) is
estimated using the unlabeled samples.

Table 2 describes the misclassification rates of the test samples by LDA (an existing method,
which corresponds to AIWLDA with λ = 0), AIWLDA with λ chosen based on 10-fold IWCV or
10-fold CV, and AIWLDA with optimal λ. The value of λ is selected from {0,0.1,0.2, . . . ,1.0};
chosen values are also described in the table. Table 2 also contains the Kullback-Leibler (KL) diver-
gence (Kullback and Leibler, 1951) from the estimated training input distribution to the estimated
test input distribution. Since we want to have an accurate estimate of the KL divergence, we used the
test samples for estimating the test input distribution when computing the KL divergence (cf., only
unlabeled samples are used when the test input distribution is estimated for AIWLDA and IWCV).
The KL values may be roughly interpreted as the level of the covariate shift.

First we compare OPT (AIWLDA with optimal λ) with LDA. The table shows that OPT out-
performs LDA in 8 out of 14 cases, which motivates us to employ AIWLDA in BCI. Within each
subject, we can observe a clear tendency that OPT outperforms LDA when the KL divergence is
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Subject Trial
Dim.
of

samples

# of
training
samples

# of
unlabeled
samples

# of
test

samples
1 1 3 280 112 112
1 2 3 280 120 120
1 3 3 280 35 35
2 1 3 280 113 112
2 2 3 280 112 112
2 3 3 280 35 35
3 1 3 280 91 91
3 2 3 280 112 112
3 3 3 280 30 30
4 1 6 280 112 112
4 2 6 280 126 126
4 3 6 280 35 35
5 1 2 280 112 112
5 2 2 280 112 112

Table 1: Specification of BCI data.

Subject Trial OPT LDA IWCV CV KL
1 1 ∗ 8.7 (0.5) 9.3 (0) − 10.0 (0.9) 10.0 (0.9) 0.76
1 2 ∗ 6.2 (0.3) 8.8 (0) 8.8 (0) 8.8 (0) 1.11
1 3 4.3 (0) 4.3 (0) 4.3 (0) 4.3 (0) 0.69
2 1 40.0 (0) 40.0 (0) ◦ 40.0 (0) 41.3 (0.7) 0.97
2 2 ∗ 38.7 (0.1) 39.3 (0) +

◦ 38.7 (0.2) 39.3 (0) 1.05
2 3 25.5 (0) 25.5 (0) 25.5 (0) 25.5 (0) 0.43
3 1 ∗ 34.4 (0.2) 36.9 (0) + 34.4 (0.2) 34.4 (0.2) 2.63
3 2 ∗ 18.0 (0.4) 21.3 (0) + 19.3 (0.6) 19.3 (0.9) 2.88
3 3 ∗ 15.0 (0.6) 22.5 (0) + 17.5 (0.3) 17.5 (0.4) 1.25
4 1 ∗ 20.0 (0.2) 21.3 (0) 21.3 (0) 21.3 (0) 9.23
4 2 2.4 (0) 2.4 (0) 2.4 (0) 2.4 (0) 5.58
4 3 6.4 (0) 6.4 (0) 6.4 (0) 6.4 (0) 1.83
5 1 21.3 (0) 21.3 (0) 21.3 (0) 21.3 (0) 0.79
5 2 ∗ 13.3 (0.5) 15.3 (0) +

◦ 14.0 (0.1) 15.3 (0) 2.01

Table 2: Misclassification rates for BCI data. All values are in percent. IWCV or CV refers to
AIWLDA with λ chosen by 10-fold IWCV or 10-fold CV. OPT refers to AIWLDA with
optimal λ. Values of chosen λ are described in the bracket (LDA is denoted as λ = 0).
‘∗’ in the table indicates the case where OPT is better than LDA. ‘+’ is the case where
IWCV outperforms LDA and ‘−’ is the opposite case where LDA outperforms IWCV.
‘◦’ denotes the case where IWCV outperforms CV. KL refers to the Kullback-Leibler
divergence between (estimated) training and test input distributions.
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large, while they are comparable to each other when the KL divergence is small. This well agrees
with the theory that AIWLDA can compensate for the effect of the covariate shift, while AIWLDA
is reduced to plain LDA in the absence of covariate shift. Next we compare IWCV (applied to AI-
WLDA) with LDA. IWCV outperforms LDA for 5 cases, while the opposite case occurs only once.
The table also shows that within each subject, IWCV tends to outperform LDA when the KL diver-
gence is large. Finally, we compare IWCV with CV (applied to AIWLDA). IWCV outperforms CV
for 3 cases, while the opposite case does not occur. IWCV tends to outperform CV when the KL
divergence is large within each subject.

6. Discussions, Conclusions, and Future Prospects

In this paper, we discussed the model selection problem under the covariate shift paradigm: training
input points and test input points are drawn from different distributions (i.e., Ptrain(x) &= Ptest(x)), but
the functional relation remains unchanged (i.e., Ptrain(y|x) = Ptest(y|x)). Under the covariate shift,
standard model selection schemes such as cross validation (CV) are heavily biased and do not work
as desired. In this paper, we therefore proposed a new variant of CV called importance weighted
CV (IWCV), which is proved to be almost unbiased even under the covariate shift.

The model selection problem under the covariate shift has been studied so far. For example,
a risk estimator in the context of density estimation called Akaike’s information criterion (AIC)
(Akaike, 1974) was modified to be still asymptotic unbiased (Shimodaira, 2000) and a risk estima-
tor in linear regression called subspace information criterion (SIC) (Sugiyama and Ogawa, 2001)
was similarly extended to be still unbiased (Sugiyama and Müller, 2005). Although these model
selection criteria have rich theoretical properties, the generality of the proposed IWCV goes far be-
yond them: for the first time arbitrary models, arbitrary parameter learning methods, and arbitrary
loss functions can be employed (see Sugiyama et al., 2006, for further discussion and simulation).
Thanks to this generality, IWCV enabled us to select appropriate models even in classification tasks
under the covariate shift.

We proved that IWCV is almost unbiased even under the covariate shift, which guarantees the
quality of IWCV as a risk estimator. However, this does not necessarily imply the good model
selection performance since the estimator has some variance. Although our experiments showed
that IWCV works well in model selection under the covariate shift, it will be important to also
theoretically closer investigate its model selection performance, for example, following the lines of
Stone (1977) or Altman and Léger (1997).

In theory, we assumed that the ratio of test and training input densities at training input points is
known. On the other hand, they are replaced by appropriate empirical estimates in our simulations.
Although the simulation results showed that the proposed method works well even when the densi-
ties are unknown, it is valuable to theoretically evaluate the effect of this replacement. Furthermore,
developing a more sophisticated method of estimating the density ratio is an important issue to be
explored (see, for example, Huang et al., 2007). Feature selection and dimensionality reduction are
also important ingredients for better performance. Taking into account the covariate shift in feature
selection and dimensionality reduction would be an interesting issue to be pursued, for example,
following the lines of He and Niyogi (2004) or Sugiyama (2006b).

While we focused on AIWERM and investigated the model selection performance, developing
more sophisticated parameter learning methods would be an important future direction. Graph
regularization techniques (Bousquet et al., 2004; Belkin and Niyogi, 2004; Hein, 2006; Chapelle
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et al., 2006), support vector machines (SVMs) (Vapnik, 1998; Schölkopf and Smola, 2002; Huang
et al., 2007), boosting (Schapire, 2003; Meir and Rätsch, 2003) could be useful bases for further
development. We note that the proposed IWCV is applicable to any parameter learning methods;
even non-parametric learning methods can be employed. Therefore, IWCV may be used for model
selection of newly developed learning methods in the future.

We showed experimentally that the IWCV method contributes to improving the accuracy of
brain-computer interfaces (BCIs). Future studies along this line will focus on the development of
a real time version of the current idea, ultimately striving for fully adaptive learning systems that
can appropriately deal with various kinds of non-stationarity. In addition to BCI, there are a number
of possible applications, for example, robot control (Shelton, 2001), spam filtering (Bickel and
Scheffer, 2007), and bioinformatics (Baldi et al., 1998). Applying IWCV in these application areas
would be an interesting direction to be investigated.

Active learning (MacKay, 1992; Cohn et al., 1996; Fukumizu, 2000)—also referred to as ex-
perimental design in statistics (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993)—is the problem of
determining the location of training input points {xi}ni=1 so that the risk is minimized. The covariate
shift naturally occurs in the active learning scenario since the training input points are generated fol-
lowing a user-defined distribution. For linear regression, IWLS-based active learning methods that
focus on minimizing the variance of the estimator have been developed (Wiens, 2000; Sugiyama,
2006a). For general situations including classification with logistic regression models, more elabo-
rated active learning methods which use IWERM have been developed (Kanamori and Shimodaira,
2003; Bach, 2007). In the active learning scenarios, the model has to be fixed, for example, in the
above papers, λ in AIWERM (4) is fixed to one. On the other hand, in model selection scenarios, the
training input points have to be fixed and corresponding training output values have to be gathered.
Thus there exists a dilemma between active learning and model selection (Sugiyama and Ogawa,
2003). An interesting future direction would be to develop a method of performing active learning
and model selection at the same time, for example, following the line of Sugiyama and Rubens
(2007).

A general situation where the joint training distribution and the joint test distribution are differ-
ent (i.e., Ptrain(x,y) &= Ptest(x,y)) is called the sample selection bias (see Heckman, 1979). Bayesian
generative approaches to coping with such situations have been proposed when unlabeled test input
points are available (Storkey and Sugiyama, 2007) or when both test input points and test output
values are available (Daumé III and Marcu, 2006). However, due to the Bayesian nature, these
approaches implicitly assume that the model used for learning is correctly specified. When this is
not true, we may need to reasonably restrict the type of distribution change for meaningful estima-
tions (see, for example, Zadrozny, 2004; Fan et al., 2005; Ben-David et al., 2007; Yamazaki et al.,
2007, for theoretical analyses). The covariate shift setting which we discussed in this paper could
be regarded as one of such restrictions.

Another interesting restriction on the distribution change is the class prior probability change
in classification scenarios, where the class prior probabilities are different (i.e., Ptrain(y) &= Ptest(y)),
but the class conditional distribution remains unchanged (i.e., Ptrain(x|y) = Ptest(x|y)). Note that
in this case, the functional relation generally changes (i.e., Ptrain(y|x) &= Ptest(y|x)). SVM (Vapnik,
1998; Schölkopf and Smola, 2002) is a popular classification technique and is shown to converge
to the Bayes optimal classifier as the number of training samples tends to infinity (Lin, 2002).
However, this nice theoretical property is lost under the class prior probability change. To cope
with this problem, SVMs are modified so that the convergence to the Bayes optimal classifier is
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still guaranteed under the class prior probability change (Lin et al., 2002). Our proposed IWCV
idea can be similarly applied in the scenarios of class prior probability change; more specifically, if
we replace the importance ptest(xi)/ptrain(xi) by Ptest(yi)/Ptrain(yi), IWCV is still almost unbiased
even under the class prior probability change. Therefore, IWCV may be used for tuning the model
parameters of SVMs even under the class prior probability change. Note that the setting of class
prior probability change may be regarded as an extension of imbalanced classification, where the
ratio of training samples in each class is not even (see, for example, Japkowicz, 2000; Chawla et al.,
2003).

Beyond the covariate shift, learning under changing distribution has been gathering significant
attention recently (e.g., Bickel, 2006; Candela et al., 2006); note also the large body of work exists
in online learning, where the distribution is subject to continuous change (e.g., Robbins and Munro,
1951; Saad, 1998; LeCun et al., 1998; Murata et al., 2002). For further developing learning methods
under the changing environment, it is essential to establish and share standard benchmark data sets,
for example, the projects supported by PASCAL (Candela et al., 2005) or EPSRC (Kuncheva, 2006),
Common benchmark data sets can be used to evaluate the experimental performance of proposed
and related methods.

Finally, the importance-weighting idea which was originally used in importance sampling (e.g.,
Fishman, 1996) could be applied to various statistical procedures, including resampling techniques
such as bootstrap (Efron, 1979; Efron and Tibshirani, 1993). An interesting future direction is
therefore to develop a family of importance-weighted algorithms following the spirit of this paper
and to investigate their statistical properties.

Acknowledgments

The authors would like to thank Mitsuo Kawato, Kazuyuki Aihara, Olivier Chapelle, Bernhard
Schölkopf, Benjamin Blankertz, Guido Dornhege, Tobias Scheffer, and Masato Okada for their
fruitful comments. This work was supported in part by grants of MEXT (Grant-in-Aid for Young
Scientists 17700142 and Grant-in-Aid for Scientific Research (B) 18300057) and BMBF (FKZ 01IBE01A/B).
A part of this work has been done when MS was staying at University of Edinburgh, which is sup-
ported by EU Erasmus Mundus Scholarship. He would like to thank Sethu Vijayakumar for the
warm hospitality.

References

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, AC-19(6):716–723, 1974.
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Abstract
Binary classification is a well studied special case of the classification problem. Statistical proper-
ties of binary classifiers, such as consistency, have been investigated in a variety of settings. Binary
classification methods can be generalized in many ways to handle multiple classes. It turns out
that one can lose consistency in generalizing a binary classification method to deal with multiple
classes. We study a rich family of multiclass methods and provide a necessary and sufficient con-
dition for their consistency. We illustrate our approach by applying it to some multiclass methods
proposed in the literature.
Keywords: multiclass classification, consistency, Bayes risk

1. Introduction

We consider the problem of classification in a probabilistic setting: n i.i.d. pairs are generated by a
probability distribution on X ×Y . We think of yi in a pair (xi,yi) as being the label or class of the
example xi. The |Y |= 2 case is referred to as binary classification. A number of methods for binary
classification involve finding a real valued function f which minimizes an empirical average of the
form

1
n∑i

Ψyi( f (xi)) . (1)

In addition, some sort of regularization may be used to avoid overfitting. Typically, the sign of f (x)
is used to classify an unseen example x. We interpret Ψy( f (x)) as being the loss associated with
predicting the label of x using f (x) when the true label is y. An important special case of these
methods is that of large margin methods which use {+1,−1} as the set of labels and φ(y f (x)) as
the loss. Here φ is some function chosen by taking into account both computational and statistical
issues. Bayes consistency of these methods has been analyzed in the literature (see Jiang, 2004;
Lugosi and Vayatis, 2004; Zhang, 2004c; Steinwart, 2005; Bartlett et al., 2004). In this paper, we
investigate the consistency of multiclass (|Y |≥ 2) methods which try to generalize (1) by replacing
f with a vector function f. This category includes the methods of Bredensteiner and Bennett (1999);
Lee et al. (2004); Weston and Watkins (1998) and Zhang (2004a). Zhang (2004a,b) has already
initiated the study of these methods.
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Under suitable conditions, minimizing (1) over a sequence of function classes also approxi-
mately minimizes the “Ψ-risk” RΨ(f) = EX Y [Ψy(f(x)) ]. However, our aim in classification is to
find a function f whose probability of misclassification R(f) (often called the “risk” of f) is close to
the minimum possible (the so called Bayes risk R∗). Thus, it is natural to investigate the conditions
which guarantee that if theΨ-risk of f gets close to the optimal then the risk of f also approaches the
Bayes risk. If this happens, we say that the classification method based on Ψ is Bayes consistent.
Bartlett et al. (2004) defined the notion of “classification calibration” to obtain such conditions for
binary classification. The authors also gave a simple characterization of classification calibration
for convex loss functions. In Section 1.1 below, we provide a different point of view for looking
at classification calibration for binary classification in order to motivate our geometric approach to
multiclass classification.

The rest of the paper is organized as follows. Section 2 defines classification calibration in
the setting of multiclass classification and provides a justification, in the form of Theorem 2, for
studying it: classification calibration is equivalent to Bayes consistency. The main result in Sec-
tion 3 is Theorem 7 which characterizes classification calibration in terms of geometric properties
of some sets associated with the loss function Ψ. In Section 4, we provide certain sufficient con-
ditions for classification calibration. These are provided with the hope that, in practice, some of
these conditions will hold and checking the full condition of Theorem 7 can be avoided. Section
5 applies the results obtained in the paper to examine the consistency of a few multiclass methods.
Interestingly, many seemingly natural generalizations of binary methods do not lead to consistent
multiclass methods. Section 6 provides the conclusion.

1.1 Consistency of Binary Classification Methods

If we have a convex loss function φ :R $→ [0,∞) which is differentiable at 0 and φ′(0) < 0, then it is
known (Bartlett et al., 2004) that any minimizer f ∗ of

EX Y [φ(y f (x)) ] = EX [EY |x[φ(y f (x)) ] ] (2)

yields a Bayes consistent classifier, that is, P(Y = +1|X = x) > 1/2⇒ f ∗(x) > 0 and P(Y =−1|X =
x) < 1/2⇒ f ∗(x) < 0. In order to motivate the approach of the next section let us work with a few
examples. Let us fix an x and denote the two conditional probabilities by p+ and p−. We also omit
the argument in f (x). We can then write the inner conditional expectation in (2) as

p+φ( f )+ p−φ(− f ) .

We wish to find an f which minimizes the expression above. If we define the set R ∈ R2 as

R = {(φ( f ),φ(− f )) : f ∈ R} , (3)

then the above minimization can be written as

min
z∈R

〈p,z〉 (4)

where p= (p+, p−).
The set R is shown in Figure 1(a) for the squared hinge loss function φ(t) = ((1− t)+)2. Ge-

ometrically, the solution to (4) is obtained by taking a line whose equation is 〈p,z〉 = c and then
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Figure 1: (a) Squared Hinge Loss (b) Inconsistent Case (the thick curve is the set R in both plots)

sliding it (by varying c) until it just touches R . It is intuitively clear from the figure that if p+ > p−
then the line is inclined more towards the vertical axis and the point of contact is above the angle
bisector of the axes. Similarly, if p+ < p− then the line is inclined more towards the horizontal axis
and the point is below the bisector. This means that sign(φ(− f )−φ( f )) is a consistent classification
rule which, because φ is a decreasing function, is equivalent to sign( f − (− f )) = sign( f ). In fact,
the condition φ′(0) < 0 is not necessary for the existence of a consistent classification rule based on
f . For example, if we had the function φ(t) = ((1+ t)+)2, we would still get the same set R but
will need to change the classification rule to sign(− f ) in order to preserve consistency.

Why do we need differentiability of φ at 0? Figure 1(b) shows the set R for a convex loss
function which is not differentiable at 0. In this case, both lines L1 and L2 touch R at P but L1 has
p+ > p− while L2 has p+ < p−. Thus we cannot create a consistent classifier based on this loss
function. The crux of the problem seems to lie in the fact that there are two distinct supporting lines
to the set R at P and that these two lines are inclined towards different axes.

It seems from the figures that as long as R is symmetric about the angle bisector of the axes, all
supporting lines at a given point are inclined towards the same axis except when the point happens
to lie on the angle bisector. To check for consistency, we need to examine the set of supporting
lines only at that point. In case the set R is generated as in (3), this boils down to checking the
differentiability of φ at 0. In the following sections, we will deal with cases when the set R is
generated in a more general way and the situation possibly involves more than two dimensions. The
intuition developed for the binary case will be proven correct by Propositions 9 and 10 in Section 4.

2. Classification Calibration and its Relation to Consistency

Suppose we have K ≥ 2 classes. For y ∈ {1, . . . ,K}, let Ψy be a continuous function from RK to
R+ = [0,∞). Let F be a class of vector functions f : X $→ RK . Let {Fn} be a sequence of function
classes such that each Fn ⊆ F . Suppose f̂n is a classifier learned from data. For example, we might
obtain f̂n by minimizing the empirical Ψ-risk R̂Ψ over the class Fn,

f̂n = argmin
f∈Fn

R̂Ψ(f) = argmin
f∈Fn

1
n

n

∑
i=1

Ψyi(f(xi)) .
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There might be some constraints on the set of vector functions in the class F . For example, a
common constraint is to have the components of f sum to zero. More generally, let us assume there
is some set C ∈ RK such that

F = {f : ∀x, f(x) ∈ C }. (5)

Let Ψ(f(x)) denote the vector (Ψ1(f(x)), . . . ,ΨK(f(x)))T . We predict the label of a new example x
to be pred(Ψ(f(x))) for some function pred : RK $→ {1, . . . ,K}. The Ψ-risk of a function f is

RΨ(f) = EX Y [Ψy(f(x)) ] ,

and we denote the least possible Ψ-risk by

R∗
Ψ = inf

f∈F
RΨ(f) .

In a classification task, we are more interested in the risk of a function f,

R(f) = EX Y [1[pred(Ψ(f(x))) ,= Y ] ] ,

which is the probability that f leads to an incorrect prediction on a labeled example drawn from the
underlying probability distribution. The least possible risk is

R∗ = EX [1−max
y
py(x) ] ,

where py(x) = P(Y = y | X = x). If f̂n is the empirical Ψ-risk minimizer then, under suitable con-
ditions, one would expect RΨ(f̂n) to converge to R∗

Ψ (in probability). It would be nice if that made
R(f̂n) converge to R∗ (in probability). Theorem 2 below states that classification calibration, a notion
that we will soon define, is both necessary and sufficient for this to happen.

In order to understand the behavior of approximate Ψ-risk minimizers, let us write RΨ(f) as

EX Y [Ψy(f(x)) ] = EX [EY |x[Ψy(f(x)) ] ] .

The above minimization problem is equivalent to minimizing the inner conditional expectation for
each x ∈ X . Let us fix an arbitrary x for now, so we can write f instead of f(x), py instead of py(x),
etc. The minimum might not be achieved and so we consider the infimum1 inff∈C ∑y pyΨy(f) of the
conditional expectation above. Define the subsets R and S of RK

+ as

R = {(Ψ1(f), . . . ,ΨK(f)) : f ∈ C} ,

S = conv(R ) = conv{(Ψ1(f), . . . ,ΨK(f)) : f ∈ C} , (6)

where conv(R ) denotes the convex hull of R . We then have

inf
f∈C ∑y

pyΨy(f) = inf
f∈C

〈p,Ψ(f)〉

= inf
z∈R

〈p,z〉

= inf
z∈S

〈p,z〉 ,

(7)

1. Since py and Ψy(f) are both non-negative, the objective function is bounded below by 0 and hence the existence of
an infimum is guaranteed.
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where p = (p1, . . . , pK). The last equality holds because for a fixed p, the function z $→ 〈p,z〉 is a
linear function and hence we do not change the infimum by taking the convex hull2 of R .

Let us define a symmetric set to be one with the following property: if a point z is in the set
then so is any point obtained by interchanging any two coordinates of z. We assume that R is
symmetric. This assumption holds whenever the loss function treats all classes equivalently. Note
that our assumption about R implies that S too is symmetric.

We now define classification calibration of S . The definition intends to capture the property
that, for any p, minimizing 〈p,z〉 over S leads one to z’s which enable us to figure out the index of
(one of the) maximum coordinate(s) of p.

Definition 1 A set S ⊆ RK
+ is classification calibrated if there exists a predictor function pred :

RK $→ {1, . . . ,K} such that

∀p ∈ ΔK , inf
z∈S : ppred(z)<maxy py

〈p,z〉 > inf
z∈S

〈p,z〉 , (8)

where ΔK is the probability simplex in RK .

The following theorem tells us that classification calibration is indeed the right property to
study, as it is both necessary and sufficient for convergence ofΨ-risk to the optimalΨ-risk to imply
convergence of risk to the Bayes risk. The convergence of the risk of a classifier to the Bayes risk is
often referred to as its consistency.

Theorem 2 Let Ψ be a (vector-valued) loss function and C be a subset of RK . Let F and S be
as defined in (5) and (6) respectively. Then S is classification calibrated iff the following holds.
Whenever {Fn} is a sequence of function classes (where Fn ⊆ F and ∪Fn = F ) such that f̂n ∈ Fn
and P is the data generating probability distribution,

RΨ(f̂n)
P→ R∗

Ψ

implies
R(f̂n)

P→ R∗ .

Proof See Appendix A.

The definition of classification calibration as stated above is not concrete enough to be of any
use in checking the consistency of a multiclass method corresponding to a given loss function. We
now study the property of classification calibration with the aim of arriving at a characterization
expressed in terms of concretely verifiable properties of the loss function. Before we do that, let us
observe that it is easy to reformulate the definition in terms of sequences. The exact statement of
the reformulation is provided by the following lemma whose proof, being entirely straightforward,
is omitted.

Lemma 3 S ⊆ RK
+ is classification calibrated iff there exists a predictor function pred : RK $→

{1, . . . ,K} such that the following holds: ∀p ∈ ΔK and all sequences {z(n)} in S such that

〈p,z(n)〉 → inf
z∈S

〈p,z〉 , (9)

2. If z is a convex combination of z(1) and z(2), then 〈p,z〉 ≥min{〈p,z(1)〉,〈p,z(2)〉}.
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we have
ppred(z(n)) =max

y
py (10)

ultimately.3

This makes it easier to see that if S is classification calibrated then we can find a predictor function
such that any sequence achieving the infimum in (7) ultimately predicts the right label (the one
having maximum probability). The following lemma shows that symmetry of our set S allows us to
reduce the search space of predictor functions (namely to those functions which map z to the index
of a minimum coordinate).

Lemma 4 Suppose S ⊆ RK
+ is symmetric. If there exists a predictor function pred satisfying con-

dition (8) in the definition of classification calibration (Definition 1), then any predictor function
pred′ satisfying

∀z ∈ S , zpred′(z) =min
y
zy (11)

also satisfies (8).

Proof Consider some p ∈ ΔK and a sequence {z(n)} such that (9) holds. We have ppred(z(n)) =
maxy py ultimately. In order to derive a contradiction, assume that ppred′(z(n)) < maxy py infinitely
often. Since there are finitely many labels, this implies that there is a subsequence {z(nk)} and labels
M and m such that the following hold,

pred(z(nk)) =M ∈ {y′ : py′ =max
y
py} ,

pred′(z(nk)) = m ∈ {y′ : py′ <max
y
py} ,

〈p,z(nk)〉 → inf
z∈S

〈p,z〉 .

Because of (11), we also have z(nk)M ≥ z(nk)m . Let p̃ and z̃ denote the vectors obtained from p and z
respectively by interchanging theM andm coordinates. Since S is symmetric, z∈ S ⇔ z̃∈ S . There
are two cases depending on whether the inequality in

liminf
k

(
z(nk)M − z(nk)m

)
≥ 0

is strict or not.
If it is strict, denote the value of the liminf by ε > 0. Then z(nk)M − z(nk)m > ε/2 ultimately and

hence we have

〈p,z(nk)〉−〈p, z̃(nk)〉 = (pM− pm)(z(nk)M − z(nk)m ) > (pM− pm)ε/2

for k large enough. This implies liminfk→∞〈p, z̃(nk)〉 < infz∈S 〈p,z〉, which is a contradiction.
Otherwise, choose a subsequence4 {z(nk)} such that lim(z(nk)M − z(nk)m ) = 0. Multiplying this with

(pM− pm), we have
lim
k→∞

(
〈p̃, z̃(nk)〉−〈p̃,z(nk)〉

)
= 0 .

3. Throughout the paper, use of “ultimately” in the context of a sequence {z(n)} means “for all sufficiently large values
of n”.

4. We do not introduce additional subscripts for simplicity.
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We also have

lim
k→∞

〈p̃, z̃(nk)〉 = lim
k→∞

〈p,z(nk)〉 = inf
z∈S

〈p,z〉 = inf
z∈S

〈p̃, z̃〉 = inf
z∈S

〈p̃,z〉 ,

where the last equality follows because of symmetry. This means

〈p̃,z(nk)〉 → inf
z∈S

〈p̃,z〉

as k→ ∞ and therefore
p̃pred(z(nk)) = pM

ultimately. This is a contradiction since p̃pred(z(nk)) = p̃M = pm.

Having identified the class of potentially useful predictor functions, we will henceforth assume that
pred is defined as in (11).

3. A Characterization of Classification Calibration

We give a characterization of classification calibration in terms of normals to the convex set S
and its projections onto lower dimensions. For a point z ∈ ∂S , we say p is a normal to S at z if5
〈z′− z,p〉 ≥ 0 for all z′ ∈ S . Define the set of positive normals at z as

N (z) = {p : p is a normal to S at z}∩ΔK .

Definition 5 A convex set S ⊆ RK
+ is admissible if ∀z ∈ ∂S ,∀p ∈ N (z), we have

argmin(z) ⊆ argmax(p) (12)

where argmin(z) = {y′ : zy′ =miny zy} and argmax(p) = {y′ : py′ =maxy py}.

Lemma 6 If S ⊆ RK
+ is admissible then for all p ∈ ΔK and all bounded sequences {z(n)} such that

〈p,z(n)〉 → infz∈S 〈p,z〉, we have ppred(z(n)) =maxy py ultimately.

Proof Let Z(p) = {z ∈ ∂S : p ∈ N (z)}. Taking the limit of a convergent subsequence of the given
bounded sequence gives us a point in ∂S which achieves the infimum of the inner product with p.
Thus, Z(p) is not empty. It is easy to see that Z(p) is closed. For a point z and a set Z, define

dist(z,Z) = inf
z′∈Z

‖z− z′‖ ,

to be the distance of z from Z. We claim that for all ε> 0, dist(z(n),Z(p)) < ε ultimately. For if we
assume the contrary, boundedness implies that we can find a convergent subsequence {z(nk)} such
that ∀k, dist(z(nk),Z(p)) ≥ ε. Let z∗ = limk→∞ z(nk). Then 〈p,z∗〉 = infz∈S 〈p,z〉 and so z∗ ∈ Z(p).
On the other hand, dist(z∗,Z(p)) ≥ ε which gives us a contradiction and our claim is proved.

Now we claim that there exists ε′ > 0 such that dist(z(n),Z(p)) < ε′ implies6

argmin(z(n)) ⊆ argmin(Z(p)) .

5. Our sign convention is opposite to the usual one (Rockafellar, 1970, see, for example,) because we are dealing with
minimum (instead of maximum) problems.

6. For a set Z, argmin(Z) denotes ∪z∈Z argmin(z).
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Assume, for sake of a contradiction, that there is a convergent subsequence z(nk) such that

dist(z(nk),Z(p)) → 0 as k→ ∞ ,

and
∀k, argmin(z(nk)) ,⊆ argmin(Z(p)) . (13)

Denote the limit by z∗. Since dist(·,Z(p)) is continuous, dist(z∗,Z(p)) = 0 which implies that
z∗ ∈ Z(p) as Z(p) is closed. Moreover, for large enough k,

argmin(z(nk)) ⊆ argmin(z∗) ⊆ argmin(Z(p)) ,

where the last inclusion holds because z∗ ∈ Z(p). This contradicts (13). Hence the claim is proved.
Finally, by admissibility of S , argmin(Z(p)) ⊆ argmax(p) and so argmin(z(n)) ⊆ argmax(p)

ultimately.

The next theorem provides a characterization of classification calibration in terms of normals to S .

Theorem 7 Let S ⊆ RK
+ be a symmetric convex set. Define the projections

S (i) = {(z1, . . . ,zi)T : z ∈ S}

for i ∈ {2, . . . ,K}. Then S is classification calibrated iff each S (i) is admissible.

Proof We prove the easier ‘only if’ direction first. Suppose some S (i) is not admissible. Then there
exist z ∈ ∂S (i) and p ∈ N (z) and a label y′ such that y′ ∈ argmin(z) and y′ /∈ argmax(p). Choose
a sequence {z(n)} converging to z. Modify the sequence by replacing, in each z(n), the coordinates
specified by argmin(z) by their average. The resulting sequence is still in S (i) (by symmetry and
convexity) and has argmin(z(n)) = argmin(z) ultimately. Therefore, if we set pred(z(n)) = y′, we
have ppred(z(n)) <maxy py ultimately. To get a sequence in S look at the points whose projections are
the z(n)’s and pad p with K− i zeros.

To prove the other direction, assume each S (i) is admissible. Consider a sequence {z(n)} with
〈p,z(n)〉 → infz∈S 〈p,z〉 = L. Without loss of generality, assume that for some j,1≤ j ≤ K we have
p1, . . . , p j > 0 and p j+1, . . . , pK = 0. We claim that there exists anM <∞ such that ∀y≤ j,z(n)y ≤M
ultimately. Since p jz

(n)
j ≤ L+ 1 ultimately, M = max1≤y≤ j{(L+ 1)/py} works. Consider a set of

labels T ⊆ { j+1, . . . ,K}. Consider the subsequence consisting of those z(n) for which z(n)y ≤M for
y∈ {1, . . . , j}∪T and z(n)y >M for y∈ { j+1, . . . ,K}−T . The original sequence can be decomposed
into finitely many such subsequences corresponding to the 2(K− j) choices of the set T . Fix T and
convert the corresponding subsequence into a sequence in S ( j+|T |) by dropping the coordinates
belonging to the set { j+ 1, . . . ,K}−T . Call this sequence z̃(n) and let p̃ be (p1, . . . , p j,0, . . . ,0)T .
We have a bounded sequence with

〈p̃, z̃(n)〉 → inf
z̃∈S ( j+|T |)

〈p̃, z̃〉 .

Thus, by Lemma 6, we have p̃pred(z̃(n)) =maxy p̃y =maxy py ultimately. Since we dropped only those
coordinates which were greater than M, pred(z̃(n)) picks the same coordinate as pred(z(n)) where
z(n) is the element from which z̃(n) was obtained. Thus we have ppred(z(n)) =maxy py ultimately and
the theorem is proved.
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4. Sufficient Conditions for Classification Calibration

In this section, we prove some propositions that reduce the work involved in checking classification
calibration of sets. We will see that the assumptions made in the propositions are often satisfied. Our
first proposition states that in the presence of symmetry, points having a unique minimum coordinate
can never destroy admissibility. Before that, we need the following lemma.

Lemma 8 Let S ⊆ RK
+ be a symmetric convex set, z a point in the boundary of S and p ∈ N (z).

Let y,y′ ∈ {1, . . . ,K}. Then
(zy′ − zy)(py− py′) ≥ 0 .

Proof We have 〈z′− z,p〉 ≥ 0 for all z′ ∈ S . Taking limits, this inequality also holds for z′ ∈ ∂S .
Set z′ to be z with its y,y′ coordinates interchanged. By symmetry z′ ∈ ∂S . Therefore 〈z′−z,p〉 ≥ 0
which implies, since z,z′ agree on all but the y,y′ coordinates,

(zy′ − zy)py+(zy− zy′)py′ ≥ 0 .

Proposition 9 Let S ⊆RK
+ be a symmetric convex set, z a point in the boundary of S and p∈ N (z).

Then argmin(z) ⊆ argmax(p) whenever |argmin(z)| = 1.

Proof For any y,y′, Lemma 8 gives us (zy′−zy)(py− py′)≥ 0. Thus zy < zy′ implies py≥ py′ . There-
fore, if |argmin(z)| = 1 and zy =miny′ zy′ then py ≥ py′ for all y′, and so argmin(z) ⊆ argmax(p).

If the set S possesses a unique normal at every point on its boundary then the next proposition
guarantees admissibility.

Proposition 10 Let S ⊆ RK
+ be a symmetric convex set, z a point in the boundary of S and N (z) =

{p} is a singleton. Then argmin(z)⊆ argmax(p). Thus, S is admissible if |N (z)|= 1 for all z∈ ∂S .

Proof We will assume that there exists a y,y ∈ argmin(z),y /∈ argmax(p) and deduce that there are
at least 2 elements in |N (z)| to get a contradiction. Let y′ ∈ argmax(p). By Lemma 8 we have
(zy′ − zy)(py− py′) ≥ 0 which implies zy′ ≤ zy since py− py′ < 0. But we already know that zy ≤ zy′
and so zy = zy′ . Symmetry of S now implies that p̃ ∈ N (z) where p̃ is obtained from p by inter-
changing the y,y′ coordinates. Since py ,= py′ , p̃ ,= p which means |N (z)|≥ 2.

Theorem 7 provides a characterization of classification calibration in terms of admissibility
of the projections S (k). As we will see in the examples later, proving that a certain set is not
classification calibrated simply involves finding a projection S (k) and a “bad” point in S (k) violating
the condition of admissibility. On the other hand, the characterization is not so easy to use when we
wish to assert, rather than deny, classification calibration. The following lemma shows that under
certain assumptions we can ignore the projections S (k) and only check the admissibility of S . That
we cannot always ignore projections will become clear when we consider examples in the next
section.

Recall that R is the set of points (Ψ1(f), . . . ,ΨK(f)) as f ranges over C . Define the projections
R (k) in the same way as S (k). Since the operations of taking projections and convex hulls commute,
it is easy to see that conv(R (k)) = S (k).
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Theorem 11 Suppose the set R is symmetric and the set S defined in (6) is admissible. Then the
following holds for any k: if R (k) is closed then S (k) is admissible. Furthermore, if R (k) is closed
for all k ∈ {2, . . . ,K} then S is classification calibrated.

Proof We only need to prove that R (k) closed and S admissible implies S (k) is admissible since
the last claim of the theorem follows from this and Theorem 7. Suppose R (k) is closed and S (k) is
not admissible. Therefore, there exists positive normal p to S (k) at a point z′ in the boundary of S (k)

with
argmin(z′) ,⊆ argmax(p) . (14)

Since z′ is in the boundary of S (k) and conv(R (k)) = S (k), there exist points z(1), . . . ,z(l) in the
closure of R (k) such that p ∈ N (z(i)) for all i, and

z′ =
l

∑
i=1

λiz(i)

for some λi ≥ 0 and ∑iλi = 1. It is easy to see that

argmin(z′) ⊆
l[

i=1
argmin(z(i)) .

From (14), it now follows that
argmin(z) ,⊆ argmax(p) (15)

holds for some z ∈ {z(1), . . . ,z(l)}. Now z is a limit point of R (k). Since R (k) is closed, z ∈ R (k).
Let z̃ be the point in R such that z= proj(z̃) where proj is projection operator mapping (z1, . . . ,zK)
to (z1, . . . ,zk). Since R ⊆ S , this gives us z̃ ∈ S . Moreover, p̃ is a normal to S at z̃ where p̃ is p
padded with K− k zeros. This is because

〈p̃,z′− z̃〉 = 〈p,proj(z′)− z〉 ≥ 0 ,

for all z′ ∈ S . We now claim that argmin(z̃) ,⊆ argmax(p̃), which will give us a contradiction as
S was assumed to be admissible. Since p̃ is p padded with zeros, argmax(p̃) = argmax(p). Also,
argmin(z̃) ⊆ argmin(z) for otherwise applying a suitable permutation to the coordinates of z̃ will
give a point ẑ with 〈p,proj(ẑ)〉 < 〈p,z〉. The claim now follows from (15).

We will now provide a sufficient condition for R (k) to be closed. To state it, we need the following
definition.

Definition 12 Let C ⊆ RK be a set and Ψ : C $→ RK
+ be a loss function. Further, let Ψ(k) =

(Ψ1, . . . ,Ψk) be Ψ restricted to the first k coordinates. The mapping Ψ(k) is boundedly invert-
ible iff for all M > 0, there is an M′ > 0 such that ‖z‖ ≤M, z ∈ R (k) implies there is g ∈ C with
‖g‖ ≤M′ and Ψ(k)(g) = z.

Ψ(k) boundedly invertible roughly means that it has an inverse carrying bounded points in its range
to bounded points in the domain.

Lemma 13 Suppose that C is closed andΨ is continuous. IfΨ(k) is boundedly invertible then R (k)

is closed.
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(a) (b)

Figure 2: (a) Crammer and Singer (b) Weston and Watkins

Proof Suppose z(n) ∈ R (k) and z(n) → z. Then these is an M > 0 such that ‖z(n)‖ ≤ M for all n.
Bounded invertibility implies there is a sequence {g(n)} such that, for all n, g(n) ∈ C , ‖g(n)‖ < M′

and (Ψ1(g(n)), . . . ,Ψk(g(n))) = z(n). Being bounded, {g(n)} has a convergent subsequence {g(nk)}.
Since C is closed, the limit g∗ ∈ C . Now,

(Ψ1(g∗), . . . ,Ψk(g∗)) = lim
n→∞

(Ψ1(g(nk)), . . . ,Ψk(g(nk))) (Ψ is continuous)

= lim
n→∞

z(nk)

= z

and so z ∈ R (k).

5. Examples

We apply the results of the previous section to examine the consistency of several multiclass meth-
ods. In all these examples, the functions Ψy(f) are obtained from a single real valued function
ψ : RK

+ $→ R as follows
Ψy(f) = ψ( fy, f1, . . . , fy−1, fy+1, . . . , fK).

Moreover, the function ψ is symmetric in its last K−1 arguments, that is, interchanging any two of
the last K− 1 arguments does not change the value of the function. This ensures that the set S is
symmetric. We assume that we predict the label of x to be argminyΨy(f).

5.1 Example 1

The method of Crammer and Singer (2001) corresponds to

Ψy(f) =max
y′ (=y

φ( fy− fy′), C = RK
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with φ(t) = (1−t)+. For K = 3, the boundary of S is shown in Figure 2(a). At the point z= (1,1,1),
all of these are normals: (0,1,1), (1,0,1), (1,1,0). Thus, there is no y′ such that py′ =maxy py for
all p ∈ N (z). The method is therefore inconsistent.

Even if we choose an everywhere differentiable convex φwith φ′(0) < 0, the three normals men-
tioned above are still there in N (z) for z = (φ(0),φ(0),φ(0)). Therefore the method still remains
inconsistent.

5.2 Example 2

The method of Weston and Watkins (1998) corresponds to

Ψy(f) = ∑
y′ (=y

φ( fy− fy′), C = RK (16)

with φ(t) = (1− t)+. For K = 3, the boundary of S is shown in Figure 2(b). The central hexagon
has vertices (in clockwise order) (1,1,4), (0,3,3), (1,4,1), (3,3,0), (4,1,1) and (3,0,3). At
z = (1,1,4), we have the following normals: (1,1,0), (1,1,1), (2,3,1), (3,2,1) and there is no
coordinate which is maximum in all positive normals. The method is therefore inconsistent.

Now assume that φ is a positive convex classification calibrated loss function (i.e., φ′(0) exists
and is negative). Note that if φ does not satisfy this assumption then we do not get a consistent
method even in the binary classification case. Further assume that φ achieves its minimum. The
following proposition then guarantees that Ψ(k) is boundedly invertible for k> 1 and we can ignore
projections. In particular, if we choose φ differentiable so that S possesses a unique normal every-
where on its boundary then, by Proposition 9, S is admissible and hence classification calibrated.
Such is the case if, for example, we choose φ(t) = ((1− t)+)2.

Proposition 14 Suppose φ : R $→ [0,∞) is a convex function with φ′(0) < 0. Further, suppose that
there is a t such that φ(t) = inft ′∈R φ(t ′). Then Ψ(k) (for Ψ given by (16)) is boundedly invertible.

Proof Since φ is a positive convex function with φ′(0) < 0 which achieves its minimum on the real
line, only two behaviors are possible for φ. Either φ(t) → ∞ as t → ∞ or there exists t0 > 0 such
that φ(t) is constant for t ≥ t0. In the first case, boundedness of (Ψ1(f), . . . ,Ψk(f)),k > 1 implies
boundedness of all pairwise differences fy− fy′ . Letm∗ =miny fy and set gy = fy−m∗. The value of
Ψy remains the same as it depends only on differences while all components of g are now bounded.

In the second case, when we only know that φ(t) → ∞ as t →−∞ and that φ(t) is constant for
t ≥ t0, boundedness of (Ψ1(f), . . . ,Ψk(f)) (k > 1), only implies that differences of the form fy− fy′
are bounded from below for y ∈ {1, . . . ,k}, y′ ∈ {1, . . . ,K}. This implies that fy− fy′ is bounded for
y,y′ ≤ k. Let m∗ = miny≤k fy. Set hy = fy−m∗ (this doesn’t change the value of Ψ as it depends
only on differences). Now hy ≥ 0 for y ≤ k with (at least) one of them exactly zero. Since pair-
wise differences among these are bounded, the hy’s themselves are bounded for y≤ k. This implies
hk+1, . . . ,hK are bounded from above. Now set gy = hy,y≤ k and gy′ =max{−t0,hy′} for y′ > k. To
see that we don’t change anything by this update, note that when hy′ <−t0, both hy−hy′ and hy+ t0
are greater than t0 (above which φ is constant in the case we’re considering) for y ≤ k. Thus, we
have managed to make all gy’s bounded without changing the value of Ψy for all y.
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(a) (b)

Figure 3: (a) Lee, Lin and Wahba (b) Loss of consistency in multiclass setting

5.3 Example 3

The method of Lee et al. (2004) corresponds to

Ψy(f) = ∑
y′ (=y

φ(− fy′), C = {f :∑
y
fy = 0} (17)

with φ(t) = (1− t)+. Figure 3(a) shows the boundary of S for K = 3. In the general K dimensional
case, S is a polyhedron with K vertices where each vertex has a 0 in one of the positions and K’s in
the rest. It is obvious then when we minimize 〈p,z〉 over S , we will pick the vertex which has a 0 in
the same position where p has its maximum coordinate. But we can also apply our result here. The
set of normals is not a singleton only at the vertices. Thus, by Proposition 10, we only need to check
the vertices. Since there is a unique minimum coordinate at the vertices, Proposition 9 implies that
the method is consistent.

The question which naturally arises is: for which convex loss functions φ does (17) lead to
a consistent multiclass classification method? Convex loss functions which are classification cal-
ibrated for the two class case, that is, differentiable at 0 with φ′(0) < 0, can lead to inconsistent
classifiers of this kind in the multiclass setting. An example is provided by the loss function
φ(t) = max{1− 2t,2− t,0}. Figure 3(b) shows the boundary of S for K = 3. The vertices are
(0,3,3), (9,0,0) and their permutations. At (9,0,0), the set of normals includes (0,1,0), (1,2,2)
and (0,0,1) and therefore condition (12) is violated.

A nice thing about this example is that if we assume φ is a positive classification calibrated
binary loss function then Ψ(k) is boundedly invertible for k > 1. As in the previous example, this
implies that differentiability of φ is then sufficient to guarantee consistency. In fact, as Zhang
(2004b) shows, a convex function φ differentiable on (−∞,0] with φ′(0) < 0 will yield a consistent
method.

Proposition 15 Suppose φ : R $→ [0,∞) is a convex loss function with φ′(0) < 0. Then Ψ(k) (for Ψ
given by (17)) is boundedly invertible.
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Proof We have

R (k) =

{(

∑
y′ (=1

φ(− fy′), . . . , ∑
y′ (=k

φ(− fy′)

)
:∑
y
fy = 0

}
.

We claim that φ(t)→∞ as t →−∞. To see this, note that φ′(0) < 0 so the linear function tangent to
φ at 0 tends to ∞ as t → ∞. Since φ is always above the tangent, the same it true for φ. This tells us
that each fy is bounded from above. Since − fy = ∑y′ (=y fy′ , − fy is also bounded from above. This
means that each fy is bounded and Ψ(k) is bounded invertible (just take g= f in Definition 12).

5.4 Example 4

This is an interesting example because even though we use a differentiable loss function, we still do
not have consistency. Let

Ψy(f) = φ( fy), C = {f :∑
y
fy = 0}

with φ(t) = exp(−βt) for some β> 0. One can easily check that

R = {(z1,z2,z3)T ∈ R3+ : z1z2z3 = 1},

S = {(z1,z2,z3)T ∈ R3+ : z1z2z3 ≥ 1}

and so the projection S (2) is the positive quadrant,

S (2) = {(z1,z2)T : z1,z2 > 0} .

This set is inadmissible and therefore the method is inconsistent.
One can further show that changing φ is not of much help. Suppose, φ is a positive convex,

classification calibrated binary loss function and K ≥ 3. Then,

S (2) = {(φ( f1),φ( f2)) :∑
y
fy = 0} .

Since K ≥ 3, ( f1, f2) is free to assume any value in R2 and hence S (2) = T ×T where T = {φ(t) : t ∈
R} is the range of φ. Let m= inf{φ(t) : t ∈ R}. The set T is of the form (m,∞) or [m,∞) depending
on whether or not φ achieves its minimum. Clearly, S (2) is a translation of the positive quadrant and
is not admissible, (m,m) being a point violating the admissibility condition.

5.5 Summary of Examples

Table 1 summarizes how consistency of the four examples treated above depends on the choice of
the underlying binary loss function φ. The last column gives a condition on φ which is sufficient
to ensure consistency in case of a convex, positive, classification calibrated φ. Note that, for all
the examples we considered, mere classification calibration and positivity of φ do not suffice to
guarantee consistency of the derived multiclass method.
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Example Hinge Squared Hinge Exponential Condition on φ
(1− t)+ ((1− t)+)2 exp(−t)

1 × × × Never consistent
2 × ! !7 φ differentiable & achieves its minimum
3 ! ! ! φ differentiable
4 × × × Never consistent

Table 1: Dependence of consistency on the underlying loss function φ.

6. Conclusion

We considered multiclass generalizations of classification methods based on convex risk minimiza-
tion and gave a necessary and sufficient condition for their Bayes consistency. Some examples
showed that quite often straightforward generalizations of consistent binary classification methods
lead to inconsistent multiclass classifiers. This is especially the case if the original binary method
was based on a non-differentiable loss function. Example 4 shows that even differentiable loss func-
tions do not guarantee multiclass consistency. We also showed that in certain cases, one can avoid
checking the full set of conditions mentioned in the theorem characterizing classification calibra-
tion. The question of consistency then reduces to checking properties of a single convex set. This
was illustrated by considering variants of some multiclass methods proposed in the literature and
proving their consistency.
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Appendix A.

We will need the following lemma to prove Theorem 2.

Lemma 16 The function p $→ infz∈S 〈p,z〉 is continuous on ΔK .

Proof Let {p(n)} be a sequence converging to p. If B is a bounded subset of RK , then 〈p(n),z〉 →
〈p,z〉 uniformly over z ∈ B and therefore

inf
z∈B

〈p(n),z〉 → inf
z∈B

〈p,z〉 .

Let Br be a ball of radius r in RK . Then we have

inf
z∈S

〈p(n),z〉 ≤ inf
S∩Br

〈p(n),z〉 → inf
S∩Br

〈p,z〉.

Therefore
limsup

n
inf
z∈S

〈p(n),z〉 ≤ inf
z∈S∩Br

〈p,z〉 .

7. This entry does not follow from the results presented in the paper but is included here for completeness.
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Letting r→ ∞, we get
limsup

n
inf
z∈S

〈p(n),z〉 ≤ inf
z∈S

〈p,z〉 . (18)

Without loss of generality, assume that for some j,1≤ j≤K we have p1, . . . , p j > 0 and p j+1, . . . , pK =
0. For all sufficiently large integers n we can bound the components p(n)

i away from 0 for i ∈
{1, . . . , j}. So, for a sufficiently large ball BM ⊆ R j we have

inf
z∈S

〈p,z〉 = inf
z∈S ( j)

j

∑
y=1

pyzy = inf
z∈S ( j)∩BM

j

∑
y=1

pyzy ,

inf
z∈S

〈p(n),z〉 ≥ inf
z∈S ( j)

j

∑
y=1

p(n)
y zy = inf

z∈S ( j)∩BM

j

∑
y=1

p(n)
y zy .

and thus
liminf

n
inf
z∈S

〈p(n),z〉 ≥ inf
z∈S

〈p,z〉 . (19)

Combining (18) and (19), we get

inf
z∈S

〈p(n),z〉 → inf
z∈S

〈p,z〉 .

Theorem 2. Let Ψ be a (vector-valued) loss function and C be a subset of RK . Let F and S be
as defined in (5) and (6) respectively. Then S is classification calibrated iff the following holds.
Whenever {Fn} is a sequence of function classes (where Fn ⊆ F and ∪Fn = F ) such that f̂n ∈ Fn
and P is the data generating probability distribution,

RΨ(f̂n)
P→ R∗

Ψ

implies
R(f̂n)

P→ R∗ .

Proof (‘only if’) Suppose we could prove that ∀ε> 0,∃δ> 0 such that ∀p ∈ ΔK ,

max
y
py− ppred(z) ≥ ε⇒ 〈p,z〉− inf

z∈S
〈p,z〉 ≥ δ . (20)

Using this it immediately follows that ∀ε,H(ε) > 0 where

H(ε) = inf
p∈ΔK ,z∈S

{〈p,z〉− inf
z∈S

〈p,z〉 : max
y
py− ppred(z) ≥ ε} .

A result of Zhang (2004b, Corollary 26) then guarantees there exists a concave function ξ on [0,∞)
such that ξ(0) = 0 and ξ(δ) → 0 as δ→ 0+ and

R(f)−R∗ ≤ ξ(RΨ(f)−R∗
Ψ) .
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This inequality combined with RΨ(f̂n)
P→R∗

Ψ easily gives R(f̂n)
P→R∗. We now prove the implication

in (20) by contradiction. Suppose S is classification calibrated but there exists ε> 0 and a sequence
(z(n),p(n)) such that

p(n)
pred(z(n)) ≤maxy p(n)

y − ε (21)

and (
〈p(n),z(n)〉− inf

z∈S
〈p(n),z〉

)
→ 0 .

Since p(n) come from a compact set, we can choose a convergent subsequence (which we still denote
as {p(n)}) with limit p. Using Lemma 16, we get

〈p(n),z(n)〉 → inf
z∈S

〈p,z〉 .

As before, we assume that precisely the first j coordinates of p are non-zero. Then the first j
coordinates of z(n) are bounded for sufficiently large n. Hence

limsup
n

〈p,z(n)〉 = limsup
n

j

∑
y=1

p(n)
y z(n)y ≤ lim

n→∞
〈p(n),z(n)〉 = inf

z∈S
〈p,z〉 .

Now (10) and (21) contradict each other since p(n) → p.
(‘if’) If S is not classification calibrated then by Theorem 7 and Propositions 9 and 10, we have

a point in the boundary of some S (i) where there are at least two normals and which does not have
a unique minimum coordinate. Such a point should be there in the projection of R even without
taking the convex hull. Therefore, we must have a sequence z(n) in R such that

δn = 〈p,z(n)〉− inf
z∈S

〈p,z〉 → 0 (22)

and for all n,
ppred(z(n)) <max

y
py . (23)

Without loss of generality assume that δn is a monotonically decreasing sequence. Further, assume
that δn > 0 for all n. This last assumption might be violated but the following proof then goes
through for δn replaced by max(δn,1/n). Let gn be the function that maps every x to one of the
pre-images of z(n) under Ψ. Define Fn as

Fn = {gn} ∪ (F ∩{f : ∀x,〈p,Ψ(f(x)〉− inf
z∈S

〈p,z〉 > 4δn}

∩{f : ∀x,∀ j, |Ψ j(f(x)| <Mn})

where Mn ↑ ∞ is a sequence which we will fix later. Fix a probability distribution P with arbitrary
marginal distribution over x and let the conditional distribution of labels be p for all x. Our choice of
Fn guarantees that theΨ-risk of gn is less than that of other elements of Fn by at least 3δn. Suppose,
we make sure that

Pn
(∣∣R̂Ψ(gn)−RΨ(gn)

∣∣ > δn
)
→ 0 , (24)

Pn
(

sup
f∈Fn−{gn}

∣∣R̂Ψ(f)−RΨ(f)
∣∣ > δn

)
→ 0 . (25)
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Then, with probability tending to 1, f̂n = gn. By (22), RΨ(gn)→R∗
Ψ which implies that RΨ(f̂n)→R∗

Ψ
in probability. Similarly, (23) implies that R(f̂n) ! R∗ in probability.

We only need to show that we can have (24) and (25) hold. For (24), we apply Chebyshev
inequality and use a union bound over the K labels to get

Pn
(∣∣R̂Ψ(gn)−RΨ(gn)

∣∣ > δn
)
≤ K3‖z(n)‖∞

4nδ2n

The right hand side can be made to go to zero by repeating terms in the sequence {z(n)} to slow
down the rate of growth of ‖z(n)‖∞ and the rate of decrease of δn. For (24), we use standard covering
number bounds (e.g., see Pollard, 1984, Section II.6).

Pn
(

sup
f∈Fn−{gn}

∣∣R̂Ψ(f)−RΨ(f)
∣∣ > δn

)
≤ 8exp

(
64M2

n log(2n+1)
δ2n

− nδ2n
128M2

n

)

ThusMn/δn needs to grow slowly enough such that

nδ4n
M4
n log(2n+1)

→ ∞ .
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Abstract
Reducing the dimensionality of data without losing intrinsic information is an important prepro-
cessing step in high-dimensional data analysis. Fisher discriminant analysis (FDA) is a traditional
technique for supervised dimensionality reduction, but it tends to give undesired results if sam-
ples in a class are multimodal. An unsupervised dimensionality reduction method called locality-
preserving projection (LPP) can work well with multimodal data due to its locality preserving
property. However, since LPP does not take the label information into account, it is not necessarily
useful in supervised learning scenarios. In this paper, we propose a new linear supervised dimen-
sionality reduction method called local Fisher discriminant analysis (LFDA), which effectively
combines the ideas of FDA and LPP. LFDA has an analytic form of the embedding transformation
and the solution can be easily computed just by solving a generalized eigenvalue problem. We
demonstrate the practical usefulness and high scalability of the LFDA method in data visualiza-
tion and classification tasks through extensive simulation studies. We also show that LFDA can be
extended to non-linear dimensionality reduction scenarios by applying the kernel trick.
Keywords: dimensionality reduction, supervised learning, Fisher discriminant analysis, locality
preserving projection, affinity matrix

1. Introduction

The goal of dimensionality reduction is to embed high-dimensional data samples in a low-dimensional
space so that most of ‘intrinsic information’ contained in the data is preserved (e.g., Roweis and
Saul, 2000; Tenenbaum et al., 2000; Hinton and Salakhutdinov, 2006). Once dimensionality re-
duction is carried out appropriately, the compact representation of the data can be used for various
succeeding tasks such as visualization, classification, etc. In this paper, we consider the supervised
dimensionality reduction problem, that is, samples are accompanied with class labels.

Fisher discriminant analysis (FDA) (Fisher, 1936; Fukunaga, 1990) is a popular method for
linear supervised dimensionality reduction.1 FDA seeks for an embedding transformation such

∗. An efficient MATLAB implementation of local Fisher discriminant analysis is available from the author’s website:
‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LFDA/’.

1. FDA may refer to the classification method which first projects data samples onto a one-dimensional subspace and
then classifies the samples by thresholding (Fisher, 1936; Duda et al., 2001). The one-dimensional embedding space
used here is obtained as the maximizer of the so-called Fisher criterion. This Fisher criterion can be used for
dimensionality reduction onto a space with dimension more than one in multi-class problems (Fukunaga, 1990). With
some abuse, we refer to the dimensionality reduction method based on the Fisher criterion as FDA (see Section 2.2
for detail).

c©2007 Masashi Sugiyama.
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that the between-class scatter is maximized and the within-class scatter is minimized. FDA is a
traditional but useful method for dimensionality reduction. However, it tends to give undesired
results if samples in a class form several separate clusters (i.e., multimodal) (see, e.g., Fukunaga,
1990).

Within-class multimodality can be observed in many practical applications. For example, in
disease diagnosis, the distribution of medial checkup samples of sick patients could be multimodal
since there may be several different causes even for a single disease. In a traditional task of hand-
written digit recognition, within-class multimodality appears if digits are classified into, for exam-
ple, even and odd numbers. More generally, solving multi-class classification problems by a set of
two-class ‘one-versus-rest’ problems naturally induces within-class multimodality. For this reason,
there is a universal need for reducing the dimensionality of multimodal data.

In order to reduce the dimensionality of multimodal data appropriately, it is important to pre-
serve the local structure of the data. Locality-preserving projection (LPP) (He and Niyogi, 2004)
meets this requirement; LPP seeks for an embedding transformation such that nearby data pairs
in the original space close in the embedding space. Thus LPP can reduce the dimensionality of
multimodal data without losing the local structure. However, LPP is an unsupervised dimensional-
ity reduction method and does not take the label information into account. Therefore, it does not
necessarily work appropriately in supervised dimensionality reduction scenarios.

In this paper, we propose a new dimensionality reduction method called local Fisher discrimi-
nant analysis (LFDA). LFDA effectively combines the ideas of FDA and LPP, that is, LFDA maxi-
mizes between-class separability and preserves within-class local structure at the same time. Thus
LFDA is useful for dimensionality reduction of multimodal labeled data.

The original FDA provides a meaningful result only when the dimensionality of the embedding
space is smaller than the number of classes because of the rank deficiency of the between-class
scatter matrix (Fukunaga, 1990). This is an essential limitation of FDA in dimensionality reduction.
On the other hand, the proposed LFDA does not generally suffer from this problem and can be
employed for dimensionality reduction into an arbitrary dimensional space. Furthermore, LFDA
inherits an excellent property from FDA—it has an analytic form of the embedding matrix and
the solution can be easily computed just by solving a generalized eigenvalue problem. This is an
advantage over recently proposed supervised dimensionality reduction methods (e.g., Goldberger
et al., 2005; Globerson and Roweis, 2006). Furthermore, LFDA can be naturally extended to non-
linear dimensionality reduction scenarios by applying the kernel trick (Schölkopf and Smola, 2002).

The rest of this paper is organized as follows. In Section 2, we formulate the linear dimen-
sionality reduction problem, briefly review FDA and LPP, and illustrate how they typically behave.
In Section 3, we define LFDA and show its fundamental properties. In Section 4, we discuss the
relation between LFDA and other methods. In Section 5, we numerically evaluate the performance
of LFDA and existing methods in visualization and classification tasks using benchmark data sets.
Finally, we give concluding remarks and future prospects in Section 6.

2. Linear Dimensionality Reduction

In this section, we formulate the problem of linear dimensionality reduction and review existing
methods.
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2.1 Formulation

Let xi ∈ Rd (i = 1,2, . . . ,n) be d-dimensional samples and yi ∈ {1,2, . . . ,c} be associated class
labels, where n is the number of samples and c is the number of classes. Let n! be the number of
samples in class !:

c

∑
!=1

n! = n.

Let X be the matrix of all samples:

X ≡ (x1|x2| · · · |xn).

Let zi ∈ Rr (1≤ r ≤ d) be low-dimensional representations of xi, where r is the reduced dimension
(i.e., the dimension of the embedding space). Effectively we consider d to be large and r to be small,
but not limited to such cases.

For the moment, we focus on linear dimensionality reduction, that is, using a d× r transforma-
tion matrix T , the embedded samples zi are given by

zi = T"xi,

where " denotes the transpose of a matrix or vector. In Section 3.4, we extend our discussion to the
non-linear dimensionality reduction scenarios where the mapping from xi to zi is non-linear.

2.2 Fisher Discriminant Analysis for Dimensionality Reduction

One of the most popular dimensionality reduction techniques is Fisher discriminant analysis (FDA)
(Fisher, 1936; Fukunaga, 1990; Duda et al., 2001). Here we briefly describe the definition of FDA.

Let S(w) and S(b) be the within-class scatter matrix and the between-class scatter matrix:

S(w) ≡
c

∑
!=1

∑
i:yi=!

(xi−µ!)(xi−µ!)
", (1)

S(b) ≡
c

∑
!=1

n!(µ!−µ)(µ!−µ)", (2)

where ∑i:yi=! denotes the summation over i such that yi = !, µ! is the mean of the samples in class
!, and µ is the mean of all samples:

µ! ≡
1
n!
∑
i:yi=!

xi,

µ≡ 1
n

n

∑
i=1

xi =
1
n

c

∑
!=1

n!µ!.

We assume that S(w) has full rank. The FDA transformation matrix T FDA is defined as follows:2

TFDA ≡ argmax
T∈Rd×r

[
tr

(
(T"S(w)T )−1T"S(b)T

)]
. (3)

2. The following definition is also used in the literature (e.g., Fukunaga, 1990) and yields the same solution.

TFDA = argmax
T∈Rd×r




det

(
T"S(b)T

)

det
(
T"S(w)T

)



 ,

where det(·) denotes the determinant of a matrix.
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That is, FDA seeks a transformation matrix T such that the between-class scatter is ‘maximized’
while the within-class scatter is ‘minimized’. In the above formulation, we implicitly assumed that
T"S(w)T is invertible. This implies that the above optimization is subject to

rank(T ) = r.

Let {ϕk}dk=1 be the generalized eigenvectors associated with the generalized eigenvalues λ1 ≥
λ2 ≥ · · ·≥ λd of the following generalized eigenvalue problem:

S(b)ϕ= λS(w)ϕ.

Then a solution T FDA of the above maximization problem is analytically given by

TFDA = (ϕ1|ϕ2| · · · |ϕr).

Note that the solution is not unique and the following simple constraint is sometimes imposed
additionally (Fukunaga, 1990).

T"
FDAS

(w)TFDA = Ir,

where Ir is the identity matrix onRr. This constraint makes the within-class scatter in the embedding
space sphered.

The between-class scatter matrix S(b) has at most rank c− 1 (Fukunaga, 1990). This implies
that the multiplicity of λ= 0 is at least d−c+1. Therefore, FDA can find at most c−1 meaningful
features; the remaining features found by FDA are arbitrary. This is an essential limitation of FDA
for dimensionality reduction and is very restrictive in practice.

2.3 Locality-Preserving Projection

Another dimensionality reduction technique that is relevant to the current setting is locality-preserving
projection (LPP) (He and Niyogi, 2004). Here we review LPP.

Let A be an affinity matrix, that is, the n-dimensional matrix with the (i, j)-th element Ai, j being
the affinity between xi and x j. We assume that Ai, j ∈ [0,1]; Ai, j is large if xi and x j are ‘close’
and Ai, j is small if xi and x j are ‘far apart’. There are several different manners of defining A. We
briefly describe typical definitions in Appendix D. The LPP transformation matrix T LPP is defined
as follows:3

T LPP ≡ argmin
T∈Rd×r

(
1
2

n

∑
i, j=1

Ai, j‖T"xi−T"x j‖2
)

subject to T"XDX"T = Ir, (4)

where D is the n-dimensional diagonal matrix with i-th diagonal element being

Di,i ≡
n

∑
j=1

Ai, j.

3. The matrix D in the constraint (4) is motivated by a geometric argument (Belkin and Niyogi, 2003). However, it is
sometimes dropped for the sake of simplicity (Ham et al., 2004).
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Eq. (4) implies that LPP looks for a transformation matrix T such that nearby data pairs in the
original space Rd are kept close in the embedding space. The constraint (4) is imposed for avoiding
degeneracy.

Let {ψk}dk=1 be the generalized eigenvectors associated with the generalized eigenvalues γ1 ≥
γ2 ≥ · · ·≥ γd of the following generalized eigenvalue problem:

XLX"ψ= γXDX"ψ,

where
L≡ D−A.

L is called the graph-Laplacian matrix in the spectral graph theory (Chung, 1997), where A is seen
as the adjacency matrix of a graph. He and Niyogi (2004) showed that a solution of Eq. (4) is given
by

T LPP = (ψd |ψd−1| · · · |ψd−r+1).

2.4 Typical Behavior of FDA and LPP

Dimensionality reduction results obtained by FDA and LPP are illustrated in Figure 1 (LFDA will
be defined and explained in Section 3)—two-dimensional two-class data samples are embedded into
a one-dimensional space. In LPP, the affinity matrix A is determined by the local scaling method
(Zelnik-Manor and Perona, 2005, see also Appendix D.4).

For the simplest data set depicted in Figure 1(a), both FDA and LPP nicely separate the samples
in different classes (‘◦’ and ‘×’) from each other. For the data set depicted in Figure 1(b), FDA
still works well, but LPP mixes samples in different classes into a single cluster. This is caused by
the unsupervised nature of LPP. On the other hand, for the data set depicted in Figure 1(c), LPP
works well but FDA collapses the samples in different classes into a single cluster. The reason for
the failure of FDA is that the ‘levels’ of the between-class scatter and the within-class scatter are
not evaluated in an intuitively natural way because of the two separate clusters in ‘◦’-class (see also
Fukunaga, 1990).

3. Local Fisher Discriminant Analysis

As illustrated in Figure 1, FDA can perform poorly if samples in a class form several separate
clusters (i.e., multimodal). In other words, the undesired behavior of FDA is caused by the globality
when evaluating the within-class scatter and the between-class scatter (e.g., Figure 1(c)). On the
other hand, because of the unsupervised nature of LPP, it can overlap samples in different classes if
they are close in the original high-dimensional space Rd (e.g., Figure 1(b)).

To overcome these problems, we propose combining the ideas of FDA and LPP; more specif-
ically, we evaluate the levels of the between-class scatter and the within-class scatter in a local
manner. This allows us to attain between-class separation and within-class local structure preserva-
tion at the same time. We call our new method local Fisher discriminant analysis (LFDA).

3.1 Reformulating FDA

In order to introduce LFDA, let us first reformulate FDA in a pairwise manner.
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(a) Toy data set 1
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(c) Toy data set 3

Figure 1: Examples of dimensionality reduction by FDA, LPP and LFDA. Two-dimensional two-
class samples are embedded into a one-dimensional space. The line in the figure denotes
the one-dimensional embedding space (which the data samples are projected on) obtained
by each method.
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Lemma 1 S(w) and S(b) defined by Eqs. (1) and (2) can be expressed as

S(w) =
1
2

n

∑
i, j=1

W (w)
i, j (xi− x j)(xi− x j)", (5)

S(b) =
1
2

n

∑
i, j=1

W (b)
i, j (xi− x j)(xi− x j)", (6)

where

W (w)
i, j ≡

{
1/n! if yi = y j = !,

0 if yi *= y j,
(7)

W (b)
i, j ≡

{
1/n−1/n! if yi = y j = !,

1/n if yi *= y j.
(8)

A proof of Lemma 1 is given in Appendix A. Note that 1/n−1/n! in Eq. (8) is negative while
1/n! and 1/n in Eqs. (7) and (8) are positive. This implies that if the data pairs in the same class are
made close, the within-class scatter matrix S(w) gets ‘small’ and the between-class scatter matrix S(b)

gets ‘large’. On the other hand, if the data pairs in different classes are separated from each other,
the between-class scatter matrix S(b) gets ‘large’. Therefore, we may interpret FDA as keeping the
sample pairs in the same class close and the sample pairs in different classes apart. A more formal
discussion on the above interpretation is given in Appendix B.

3.2 Definition and Typical Behavior of LFDA

Based on the above pairwise expression, let us define the local within-class scatter matrix S̃
(w)
and

the local between-class scatter matrix S̃
(b)
as follows.

S̃
(w) ≡ 1

2

n

∑
i, j=1

W̃ (w)
i, j (xi− x j)(xi− x j)", (9)

S̃
(b) ≡ 1

2

n

∑
i, j=1

W̃ (b)
i, j (xi− x j)(xi− x j)",

where

W̃ (w)
i, j ≡

{
Ai, j/n! if yi = y j = !,

0 if yi *= y j,
(10)

W̃ (b)
i, j ≡

{
Ai, j(1/n−1/n!) if yi = y j = !,

1/n if yi *= y j.
(11)

Namely, according to the affinity Ai, j, we weight the values for the sample pairs in the same class.
This means that far apart sample pairs in the same class have less influence on S̃

(w)
and S̃

(b)
. Note

that we do not weight the values for the sample pairs in different classes since we want to separate
them from each other irrespective of the affinity in the original space. From here on, we denote the
local counterparts of matrices by symbols with tilde.
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We define the LFDA transformation matrix T LFDA as

T LFDA ≡ argmax
T∈Rd×r

[
tr

(
(T"S̃

(w)
T )−1T"S̃

(b)
T

)]
. (12)

That is, we look for a transformation matrix T such that nearby data pairs in the same class are
made close and the data pairs in different classes are separated from each other; far apart data pairs
in the same class are not imposed to be close.

Eq. (12) is of the same form as Eq. (3). Therefore, we can similarly compute an analytic form
of T LFDA by solving a generalized eigenvalue problem of S̃

(b)
and S̃

(w)
. An efficient implementation

of LFDA is summarized as a pseudo code in Figure 2 (see Appendix C for detail).
Toy examples of dimensionality reduction by LFDA are illustrated in Figure 1. We used the

local scaling method for computing the affinity matrix A (see Appendix D.4). Note that we perform
the nearest neighbor search in the local scaling method in a classwise manner since we do not
need the affinity values for the sample pairs in different classes (see Eqs. 10 and 11). This highly
contributes to reducing the computational cost (see Appendix C). Figure 1 shows that LFDA gives
desirable results for all three data sets, that is, LFDA can compensate for the drawbacks of FDA and
LPP by effectively combining the ideas of FDA and LPP.

If the affinity value Ai, j is set to 1 for all sample pairs (i.e., all pairs are ‘equally close’ to each
other), S̃

(w)
and S̃

(b)
agree with S(w) and S(b), respectively, and LFDA is reduced to the original

FDA. Therefore, LFDA may be regarded as a natural localized variant of FDA.

3.3 Properties of LFDA

Here we discuss fundamental properties of LFDA.
First, we give an interpretation of LFDA in terms of the ‘pointwise scatter’. S̃

(w)
can be ex-

pressed as

S̃
(w)

=
1
2

n

∑
i=1

1
nyi
P̃(w)
i ,

where nyi is the number of samples in the class to which the sample xi belongs and P̃
(w)
i is the

pointwise local within-class scatter matrix around xi:

P̃
(w)
i ≡ ∑

j:y j=yi
Ai, j(x j− xi)(x j− xi)".

Therefore, ‘minimizing’ S̃
(w)
corresponds to minimizing the weighted sum of the pointwise local

within-class scatter matrices over all samples. S̃
(b)
can also be expressed in a similar way as

S̃
(b)

=
1
2

n

∑
i=1

(
1
n
− 1
nyi

)
P̃

(w)
i +

1
2n

n

∑
i=1

P(b)
i , (13)

where P(b)
i is the pointwise between-class scatter matrix around xi:

P(b)
i ≡ ∑

j:y j %=yi
(x j− xi)(x j− xi)".
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Input: Labeled samples {(xi,yi) | xi ∈ Rd ,yi ∈ {1,2, . . . ,c}}ni=1
Dimensionality of embedding space r (1≤ r ≤ d)

Output: d× r transformation matrix T LFDA

1: S̃
(b) ←− 0d×d;

2: S̃
(w) ←− 0d×d;

3: for ! = 1,2, . . . ,c % Compute scatter matrices in a classwise manner
4: {xi}

n!
i=1 ←− {x j} j:y j=!;

5: for i= 1,2, . . . ,n! % Determine local scaling
6: x(7)i ←− 7th nearest neighbor of xi among {x j}

n!
j=1;

7: σi ←− ‖xi− x(7)i ‖;
8: end
9: for i, j = 1,2, . . . ,n! % Define affinity matrix
10: Ai, j ←− exp(−‖xi− x j‖2/(σiσ j));
11: end
12: X ←− (x1|x2| · · · |xn!

);
13: G←− Xdiag(A1n!)X"−X AX";
14: S̃

(b) ←− S̃
(b)

+G/n+(1−n!/n)X X" +X1n!(X1n!)"/n;
15: S̃

(w) ←− S̃
(w)

+G/n!;
16: end
17: S̃

(b) ←− S̃
(b)−X1n(X1n)"/n− S̃

(w)
;

18: {̃λk, ϕ̃k}rk=1 ←− generalized eigenvalues and normalized eigenvectors of
S̃

(b)
ϕ̃= λ̃S̃

(w)
ϕ̃; % λ̃1 ≥ λ̃2 ≥ · · ·≥ λ̃d

19: T LFDA = (
√
λ̃1ϕ̃1|

√
λ̃2ϕ̃2| · · · |

√
λ̃rϕ̃r);

Figure 2: Efficient implementation of LFDA (see Appendix C for detail). The affinity matrix is
computed by the local scaling method (see Appendix D.4). Matrices and vectors denoted
with underline are classwise counterparts of the original ones. 0d×d denotes the d× d
matrix with zeros, 1n! denotes the n!-dimensional vector with ones, and diag(A1n!) de-
notes the diagonal matrix with diagonal elements A1n! . The generalized eigenvectors in
line 18 are normalized by Eq. (14), which is often automatically carried out by an eigen-
solver. The weighting scheme of the eigenvectors in line 19 is explained in Section 3.3.
A possible bottleneck of the above implementation is the nearest neighbor search in line
6. This could be alleviated by incorporating the prior knowledge of the data structure or
by approximation (see Saul and Roweis, 2003, and references therein). Another possible
bottleneck is the computation of X AX" in line 13, which could be eased by sparsely
defining the affinity matrix (see Appendix D). A MATLAB implementation is available
from ‘http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/LFDA/’.
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Note that P(b)
i does not include the localization factor Ai, j. Eq. (13) implies that ‘maximizing’ S̃

(b)

corresponds to minimizing the weighted sum of the pointwise local within-class scatter matrices
and maximizing the sum of the pointwise between-class scater matrices.

Next, we discuss the issue of eigenvalue multiplicity in LFDA. The original FDA allows us to
extract at most c−1 meaningful features since the between-class scatter matrix S(b) has rank at most
c−1 (Fukunaga, 1990). On the other hand, the local between-class scatter matrix S̃(b)

generally has
a much higher rank with less eigenvalue multiplicity, thanks to the localization factor Ai, j included
in W̃ (b) (see Eq. 11). In the simulation shown in Section 5, S̃

(b)
is always full rank for various data

sets. Therefore, the proposed LFDA can be practically employed for dimensionality reduction into
any dimensional spaces. This is a very important and significant improvement over the original
FDA.

Finally, we discuss the invariance property of LFDA. The value of the LFDA criterion (12) is
invariant under linear transformations, that is, for any r-dimensional invertible matrixH, T LFDAH is
also a solution of Eq. (12). Therefore, the solution T LFDA is not unique—the range of the transfor-
mation H"T"

LFDA is uniquely determined, but the distance metric (Goldberger et al., 2005; Glober-
son and Roweis, 2006; Weinberger et al., 2006) in the embedding space can be arbitrary because
of the arbitrariness of the matrix H. In practice, we propose determining the LFDA transformation
matrix T LFDA as follows. First, we rescale the generalized eigenvectors {ϕ̃k}dk=1 so that

ϕ̃kS̃
(w)
ϕ̃k′ =

{
1 if k = k′,

0 if k *= k′.
(14)

Note that this rescaling is often automatically carried out by an eigensolver. Then we weight each
generalized eigenvector by the square root of its associated generalized eigenvalue, that is,

T LFDA = (
√
λ̃1ϕ̃1|

√
λ̃2ϕ̃2| · · · |

√
λ̃rϕ̃r), (15)

where λ̃1 ≥ λ̃2 ≥ · · ·≥ λ̃d . This weighting scheme weakens the influence of minor eigenvectors and
is shown to work well in experiments (see Section 5).

3.4 Kernel LFDA for Non-Linear Dimensionality Reduction

Here we show how LFDA can be extended to non-linear dimensionality reduction scenarios.
As detailed in Appendix C, the generalized eigenvalue problem that needs to be solved in LFDA

can be expressed as
XL̃

(b)
X"ϕ̃= λ̃XL̃

(w)
X"ϕ̃, (16)

where L̃(b)
= L̃

(m) − L̃
(w) and L̃(m) and L̃(w) are defined by Eqs. (33) and (35), respectively. Since

X"ϕ̃ in Eq. (16) belongs to the range of X", it can be expressed by using some vector α̃ ∈ Rn as

X"ϕ̃= X"Xα̃= Kα̃,

where K is the n-dimensional matrix with the (i, j)-th element being

Ki, j ≡ x"i x j.
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Then multiplying Eq. (16) by X" from the left-hand side yields

KL̃
(b)
Kα̃= λ̃KL̃

(w)
Kα̃. (17)

This implies that {xi}ni=1 appear only in terms of their inner products. Therefore, we can obtain
a non-linear variant of LFDA by the kernel trick (Vapnik, 1998; Schölkopf et al., 1998), which is
explained below.

Let us consider a non-linear mapping φ(x) from Rd to a reproducing kernel Hilbert space H
(Aronszajn, 1950). Let K(x,x′) be the reproducing kernel of H . A typical choice of the kernel
function would be the Gaussian kernel:

K(x,x′) = exp
(
−‖x− x′‖2

2σ2

)
,

with σ> 0. For other choices, see, for example, Wahba (1990), Vapnik (1998), and Schölkopf and
Smola (2002). Because of the reproducing property of K(x,x′), K is now the kernel matrix, that is,
the (i, j)-th element is given by

Ki, j = 〈φ(xi),φ(x j)〉 = K(xi,x j),

where 〈·, ·〉 denotes the inner product in H .
It can be confirmed that L̃(w) is always degenerated (since L̃(w)

(1,1, . . . ,1)" always vanishes;
see Eq. 35 for detail). Therefore, KL̃(w)K is always degenerated and we cannot directly solve the
generalized eigenvalue problem (17). To cope with this problem, we propose regularizing KL̃(w)K
and solving the following generalized eigenvalue problem instead (cf. Friedman, 1989).

KL̃
(b)
Kα̃= λ̃(KL̃

(w)
K+ εIn)α̃, (18)

where ε is a small constant. Let {α̃k}nk=1 be the generalized eigenvectors associated with the gener-
alized eigenvalues λ̃1 ≥ λ̃2 ≥ · · ·≥ λ̃n of Eq. (18). Then the embedded image of φ(x′) in H is given
by

(
√
λ̃1α̃1|

√
λ̃2α̃2| · · · |

√
λ̃rα̃r)"





K(x1,x′)
K(x2,x′)

...
K(xn,x′)




.

We call this kernelized variant of LFDA kernel LFDA (KLFDA).
Recently, kernel functions for non-vectorial structured data such as strings, trees, and graphs

have been proposed (see, e.g., Lodhi et al., 2002; Duffy and Collins, 2002; Kashima and Koyanagi,
2002; Kondor and Lafferty, 2002; Kashima et al., 2003; Gärtner et al., 2003; Gärtner, 2003). Since
KLFDA uses the samples only via the kernel function K(x,x′), it allows us to reduce the dimension-
ality of such non-vectorial data.

4. Comparison with Related Methods

In this section, we discuss the relation between the proposed LFDA and other methods.

1037



SUGIYAMA

4.1 Dimensionality Reduction Using Local Discriminant Information

A discriminant adaptive nearest neighbor (DANN) classifier (Hastie and Tibshirani, 1996a) em-
ploys an adapted distance metric at each test point for classification. Based on a similar idea, they
also proposed a global supervised dimensionality reduction method using local discriminant infor-
mation (LDI) in the same paper. We refer to this supervised dimensionality reduction method as
LDI. The main idea of LDI is to localize FDA—which is very similar to the proposed LFDA. Here
we discuss the relation between LDI and LFDA.

In LDI, the data samples {xi}ni=1 are first sphered according to the within-class scatter matrix
S(w), that is, for i= 1,2, . . . ,n,

xi ≡ (S(w))−
1
2 xi.

Let Ai, j be the weight of sample x j around xi defined by

Ai, j ≡






[
1−

(
‖xi−x j‖
‖xi−x(K)

i ‖

)3]3
if ‖xi− x j‖ < ‖xi− x(K)

i ‖,

0 otherwise.

where x(K)
i is the K-th nearest neighbor of xi in the sphered space. Note that 0 ≤ Ai, j ≤ 1 and Ai, j

is non-increasing as ‖xi− x j‖ increases. Thus it has the same meaning as our affinity matrix. K is
suggested to be determined by

K =max(n/5,50).

Let µ[i]
! be the local weighted mean of the sphered samples in class ! around xi, and let µ[i] be the

local weighted mean of the sphered samples around xi:

µ[i]
! ≡ 1

n[i]
!

∑
j:y j=!

Ai, jx j,

µ[i] ≡ 1
n[i]

n

∑
j=1

Ai, jx j =
1
n[i]

c

∑
!=1

n[i]
! µ

[i]
! ,

where

n[i]
! ≡ ∑

j:y j=!

Ai, j,

n[i] ≡
n

∑
j=1

Ai, j.

Let S(b) be the average between sum-of-squares matrix defined as

S(b) ≡
n

∑
i=1

1
n[i]

c

∑
!=1

n[i]
! (µ[i]

! −µ[i])(µ[i]
! −µ[i])".

The LDI transformation matrix T LDI is defined as

T LDI ≡ argmax
T∈Rd×r

[
T"S(b)T

]

subject to T"T = Ir.

1038



LOCAL FISHER DISCRIMINANT ANALYSIS

T LDI is a transformation matrix for sphered samples; the LDI transformation matrix T LDI for non-
sphered samples is given by

T LDI = (S(w))−
1
2T LDI.

Similar to FDA (and LFDA), T LDI can be efficiently computed by solving a generalized eigenvalue
problem.

The average between sum-of-squares matrix S(b) is conceptually very similar to the local between-
class scatter matrix S̃

(b)
in LFDA. Indeed, as proved in Appendix E, we can express S(b) in a pairwise

manner as
S(b) =

1
2

n

∑
i, j=1

W (b)
i, j (xi− x j)(xi− x j)", (19)

where

W (b)
i, j ≡






n

∑
k=1

1
n[k]

(
1
n[k] −

1
n[k]

!

)
Ai,kA j,k if yi = y j = !,

n

∑
k=1

1
(n[k])2

Ai,kA j,k if yi *= y j.
(20)

However, there exist critical differences between LDI and LFDA. A significant difference is that the
values for the sample pairs in different classes are also localized in LDI (see Eq. 20), while they are
kept unlocalized in LFDA (see Eq. 11). This implies that far apart sample pairs in different classes
could be made close in LDI, which is not desirable in supervised dimensionality reduction. Further-
more, the computation of S(b) is slightly less efficient than S̃

(b)
sinceW (b) includes the summation

over k.
Another important difference between LDI and LFDA is that the within-class scatter matrix S(w)

is not localized in LDI. However, as we showed in Section 3.1, the within-class scatter matrix S(w)

also accounts for collapsing the within-class multimodal structure (i.e., far apart sample pairs in the
same class are made close). This phenomenon is experimentally confirmed in Section 5.2.

4.2 Mixture Discriminant Analysis

FDA can be interpreted as maximum likelihood estimation of Gaussian distributions with common
covariance and different means for each class. Based on this view, Hastie and Tibshirani (1996b)
proposed mixture discriminant analysis (MDA), which extends FDA to maximum likelihood esti-
mation of Gaussian mixture distributions.

Amaximum likelihood solution is obtained by an EM-type algorithm (cf. Dempster et al., 1977).
However, this is an iterative algorithm and gives only a local optimal solution. Therefore, the com-
putation of MDA is rather slow and there is no guarantee that the global solution can be obtained.
Furthermore, the number of mixture components (clusters) in each class as well as the initial loca-
tion of cluster centers should be determined by users. For cluster centers, using standard techniques
such as k-means clustering (MacQueen, 1967; Everitt et al., 2001) or learning vector quantization
(Kohonen, 1989) are recommended. However, they are also iterative algorithms and have no guar-
antee that the global solution can be obtained. Furthermore, there seems to be no systematic method
for determining the number of clusters.

On the other hand, the proposed LFDA contains no tuning parameters (given that the affinity
matrix is determined by the local scaling method, see Appendix D.4) and the global solution can
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be obtained analytically. However, it still lacks a probabilistic interpretation, which remains open
currently.

4.3 Neighborhood Component Analysis

Goldberger et al. (2005) proposed a supervised dimensionality reduction method called neighbor-
hood component analysis (NCA). The NCA transformation matrix T NCA is defined as follows.

TNCA ≡ argmax
T∈Rd×r

(
n

∑
i=1

∑
j:y j=yi

pi, j(TT")

)
, (21)

where

pi, j(U) ≡






exp
{
−(xi− x j)"U(xi− x j)

}

∑k %=i exp{−(xi− xk)"U(xi− xk)}
if i *= j,

0 if i= j.
(22)

The above definition corresponds to maximizing the expected number of correctly classified samples
by a stochastic variant of nearest neighbor classifiers. Therefore, NCA seeks a transformation matrix
T such that the between-class separability is maximized.

Eqs. (21) and (22) imply that nearby data pairs in the same class are made close, which is
similar to the proposed LFDA. Indeed, the simulation results in Section 5.2 show that NCA tends
to preserve the multimodal structure of the data very well. However, a crucial weakness of NCA
is optimization: the optimization problem (21) is non-convex. Therefore, there is no guarantee that
the globally optimal solution can be obtained. Goldberger et al. (2005) proposed using a gradient
ascent method for optimization:

T ← T + ε∇JNCA(T ), (23)

where ε (> 0) is the step size and the gradient ∇JNCA(T ) is given by

∇JNCA(T ) = 2T
n

∑
i=1

({

∑
j:y j=yi

pi, j(TT")

}{
n

∑
j=1

pi, j(TT")(xi− x j)(xi− x j)"
}

− ∑
j:y j=yi

pi, j(TT")(xi− x j)(xi− x j)"
)

.

The gradient ascent iteration (23) is computationally rather inefficient. Also, the choice of the step
size ε is troublesome. If the step size is small enough, the convergence to one of the local optima
is guaranteed but such a choice makes the convergence very slow; on the other hand, if the step
size is too large, gradient flows oscillate and proper convergence properties may not be guaranteed
anymore. Furthermore, the choice of the termination condition in the iterative algorithm is often
cumbersome in practice.

Because of the non-convexity of the optimization problem, the quality of the obtained solution
depends on the initialization of the matrix T . A useful heuristic to alleviate the local optimum
problem is to employ the FDA (or LFDA) result as an initial matrix for optimization (Goldberger
et al., 2005). In the experiments in Section 5, using the LFDA result as an initial matrix appears to
be better than the random initialization. However, the local optima problem still remains even with
the above heuristic.
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When a dimensionality reduction technique is applied to classification tasks, we often want to
embed the data samples into spaces with several different dimensions—the best dimensionality is
later chosen by, for example, cross-validation (Stone, 1974; Wahba, 1990). In such a scenario,
NCA requires to optimize the transformation matrix individually for each dimensionality r of the
embedding space. On the other hand, LFDA needs to compute the transformation matrix only once
for the largest r; its sub-matrices become the optimal solutions for smaller dimensions. Therefore,
LFDA is computationally more efficient than NCA in this scenario.

A simple MATLAB implementation of NCA is available.4 We use this software in Section 5.

4.4 Maximally Collapsing Metric Learning

In order to overcome the computational problem of NCA, Globerson and Roweis (2006) proposed
an alternative method called maximally collapsing metric learning (MCML).

Let p∗i, j be the ‘ideal’ value of pi, j(U) defined by Eq. (22):

p∗i, j ∝

{
1 if yi = y j,

0 if yi *= y j,

where p∗i, j is normalized so that
∑
j %=i
p∗i, j = 1.

p∗i, j can be attained if all samples in the same class collapse into a single point while samples
in other classes are mapped to other locations. In reality, however, any U may not be able to
attain pi, j(U) = p∗i, j exactly; instead the optimal approximation to p∗i, j under the Kullback-Leibler
divergence (Kullback and Leibler, 1951) is obtained. This is formally defined as

UMCML ≡ argmin
U∈Rd×d

(
n

∑
i, j=1

p∗i, j log
p∗i, j

pi, j(U)

)

subject toU ∈ PSD(r), (24)

where PSD(r) is the set of all positive semidefinite matrices of rank r (i.e., r eigenvalues are pos-
itive and others are zero). Once UMCML is obtained, the MCML transformation matrix TMCML is
computed by

TMCML = (φ1|φ2| · · · |φr), (25)

where {φk}rk=1 are the eigenvectors associated with the positive eigenvalues η1 ≥ η2 ≥ · · ·≥ ηr > 0
of the following eigenvalue problem:

UMCMLφ= ηφ.

One of the motivations of MCML is to alleviate the difficulty of optimization in NCA. However,
MCML still has a weakness in optimization: the optimization problem (24) is convex only when
r = d, that is, the dimensionality is not reduced but only the distance metric of the original space is
changed. This means that if r < d (which is our primal focus in this paper), we may not be able to

4. Implementation available at ‘http://www.cs.berkeley.edu/˜fowlkes/software/nca/’.
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obtain the globally optimal solution. Globerson and Roweis (2006) proposed the following heuristic
algorithm to approximate TMCML.

First, the optimization problem (24) with r = d is solved:

ÛMCML ≡ argmin
U∈Rd×d

(
n

∑
i, j=1

p∗i, j log
p∗i, j

pi, j(U)

)

subject toU ∈ PSD(d). (26)

Although Eq. (26) is convex, an analytic form of the unique optimal solution ÛMCML is not known
yet. Globerson and Roweis (2006) proposed using the following alternate iterative procedure for
obtaining ÛMCML.

U ←U− ε∇JMCML(U), (27)

U ←
d

∑
k=1
max(0, η̂k)φ̂kφ̂

"
k , (28)

where ε (> 0) is the step size, η̂k and φ̂k are eigenvalues and eigenvectors of U , and the gradient
∇JMCML(U) is given by

∇JMCML(U) =
n

∑
i, j=1

(p∗i, j− pi, j(U))(xi− x j)(xi− x j)".

Then the eigenvalue decomposition of ÛMCML is carried out and eigenvalues η̂1 ≥ η̂2 ≥ · · · ≥ η̂d
and associated eigenvectors {φ̂k}dk=1 are obtained:

ÛMCMLφ̂= η̂φ̂.

Finally, {φk}rk=1 in Eq. (25) are replaced by {φ̂k}rk=1, which yields

TMCML ≈ (φ̂1|φ̂2| · · · |φ̂r). (29)

This approximation is shown to be practically useful (Globerson and Roweis, 2006), although there
seems to be no theoretical analysis for this approximation.

MCML may have an advantage over NCA in computation: there exists the analytic approx-
imation (29) that can be computed efficiently using the solution of another convex optimization
problem (26). However, MCML still relies on the gradient-based alternate iterative algorithm (27)–
(28) to solve the convex optimization problem (26), which is computationally very expensive since
the eigenvalue decomposition of a d-dimensional matrix should be carried out in each iteration (see
Eq. 28). Furthermore, the difficulty of appropriately choosing the step size and the termination
condition in the iterative procedure still remains.

Since MCML requires all the samples in the same class to collapse into a single point, it is
not necessarily useful in dimensionality reduction of multimodal data samples. Furthermore, the
MCML results can be significantly influenced by outliers since the outliers are also required to
collapse into the same single point together with other samples. This phenomenon is illustrated in
Figure 3, where a single outlier significantly changes the MCML result.

Globerson and Roweis (2006) showed that the sufficient statistics of the MCML algorithm are
pointwise scatter matrices (cf. Section 3.3). Since LFDA also has an interpretation in terms of
pointwise scatter matrices, there may be a link between LFDA and MCML and this needs to be
investigated in the future work.
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(a) Toy data set 1
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(b) Toy data set 1’

Figure 3: Toy examples of dimensionality reduction. The toy data set 1 is equivalent to the one
used in Figure 1(a). The data set 1’ includes a single outlier.

4.5 Remark on Rank Constraint

The optimization problem of MCML (see Eq. 24) is not generally convex since the rank constraint
is non-convex (Boyd and Vandenberghe, 2004). The non-convexity induced by the rank constraint
seems to be a universal problem in dimensionality reduction. NCA eliminates the rank constraint
by decomposing U into TT" (see Eqs. 21 and 22). However, even with this decomposition, the
optimization problem is still non-convex. On the other hand, FDA, LDI, and LFDA cast the opti-
mization problem in the form of the Rayleigh quotient. This is computationally very advantageous
since it allows us to analytically determine the range of the embedding space. However, we cannot
determine the distance metric in the embedding space since the Rayleigh quotient is invariant under
linear transformations. For this reason, an additional criterion is needed to determine the distance
metric (see also Section 3.3).

5. Numerical Examples

In this section, we numerically evaluate the performance of LFDA and existing methods.

5.1 Exploratory Data Analysis

Here we use the Thyroid disease data set available from the UCI machine learning repository (Blake
and Merz, 1998) and illustrate how LFDA can be used for exploratory data analysis.

The original data consists of 5-dimensional input vector x of the following laboratory tests.

1. T3-resin uptake test.

2. Total Serum thyroxin as measured by the isotopic displacement method.
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Figure 4: Histograms of the first feature values obtained by FDA and LFDA for the Thyroid disease
data set. The top row corresponds to the sick patients and the bottom row corresponds to
the healthy patients.

3. Total Serum triiodothyronine as measured by radioimmuno assay.

4. Basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.

5. Maximal absolute difference of TSH value after injection of 200 micro grams of thyrotropin-
releasing hormone as compared to the basal value.

The task is to predict whether patients’ thyroids are euthyroidism, hypothyroidism, or hyperthy-
roidism (Coomans et al., 1983), that is, whether patients’ thyroids are normal, hypo-functioning,
or hyper-functioning (Blake and Merz, 1998). The diagnosis (the class label) is based on a com-
plete medical record, including anamnesis, scan etc. Here we merge the hypothyroidism class and
the hyperthyroidism class into a single class and create binary labeled data (whether thyroids are
normal or not). Our goal is to predict whether patients’ thyroids are normal, hypo-functioning, or
hyper-functioning from the binary labeled data samples.

Figure 4 depicts the histograms of the first feature values obtained by FDA and LFDA—the
top row corresponds to the sick patients and the bottom row corresponds to the healthy patients.
This shows that both FDA and LFDA separate the patients with normal thyroids from sick patients
reasonably well. In addition to between-class separability, LFDA clearly preserves the multimodal
structure among sick patients (i.e., hypo-functioning and hyper-functioning), which is lost by or-
dinary FDA. Another interesting finding from the figure is that the first feature values obtained by
LFDA has a strong negative correlation to the functioning level of thyroids—this could be used for
predicting the functioning level of thyroids.
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Data Set d ‘◦’-and-‘•’ class ‘×’ class
Letter recognition 16 ‘A’ & ‘C’ ‘B’

Iris 4 ‘Setosa’ & ‘Virginica’ ‘Versicolour’

Table 1: Two-class data sets used for visualization experiments (r = 2).

5.2 Data Visualization

Here we apply the proposed and existing dimensionality reduction methods to benchmark data sets
and investigate how they behave in data visualization tasks.

We use the Letter recognition data set and the Iris data set available from the UCI machine
learning repository (Blake and Merz, 1998). Table 1 describes the specifications of the data sets.
Each data set contains three types of samples specified by ‘◦’, ‘•’, and ‘×’. We merged ‘◦’ and
‘•’ into a single class and created two-class problems. We test LFDA, FDA, LPP, LDI, NCA, and
MCML and evaluate the between-class separability (i.e., ‘◦’ and ‘•’ are well separated from ‘×’)
and the within-class multimodality preservation capability (i.e., ‘◦’ and ‘•’ are well grouped). For
LPP and LFDA, we determined the affinity matrix by the local scaling method (see Appendix D.4).
For NCA, we used the LFDA result as an initial matrix since this initialization scheme appears to
work better than the random initialization. FDA allows us to extract only one meaningful feature in
two-class classification problems (see Section 2.2), so we choose the second feature randomly here.
Figures 5 and 6 depict the samples embedded in the two-dimensional space found by each method.
The horizontal axis is the first feature found by each method, while the vertical axis is the second
feature.

First, we compare the embedding results of LFDA with those of FDA and LPP. For the Let-
ter recognition data set (see the top row of Figure 5), LFDA nicely separates samples in different
classes from each other, and at the same time, it clearly preserves within-class multimodality. FDA
separates ‘◦’ and ‘•’ from ‘×’ well, but within-class multimodality is lost, that is, ‘◦’ and ‘•’ are
mixed. LPP gives two separate clusters of samples, but samples in different classes are mixed in one
of the clusters. For the Iris data set (see the top row of Figure 6), LFDA simultaneously achieves
between-class separation and within-class multimodality preservation. On the other hand, FDA
tends to mix samples in different classes, which would be caused by within-class multimodality.
LPP also works well for this data set because three clusters are well separated from each other in
the original high-dimensional space. Overall, LFDA is found to be more appropriate for embed-
ding labeled multimodal data samples than FDA and LPP, implying that our primal goal has been
successfully achieved.

Next, we compare the results of LFDA with those of LDI, NCA, and MCML. For the Letter
recognition data set (see Figure 5), LFDA, LDI, NCA, and MCML separate the samples in different
classes from each other very well. However, LDI and MCML collapse ‘◦’ and ‘•’ into a single
cluster, while LFDA and NCA preserve the multimodal structure clearly. The NCA result is almost
identical to the LFDA result (i.e., the initial value of the NCA iteration), but the result may vary if the
initial value for the gradient ascent algorithm is changed. For the Iris data set (see Figure 6), LFDA,
LDI, and NCA work excellently in both between-class separation and within-class multimodality
preservation. On the other hand, MCML mixes the samples in different classes. Overall, LDI works
fairly well, but the within-class multimodal structure is sometimes lost since LDI only partially
takes within-class multimodality into account (see Section 4.1). NCA also works very well, which
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Figure 5: Visualization of the Letter recognition data set.
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Figure 6: Visualization of the Iris data set.
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Data name Input
dimensionality

# of
training
samples

# of
test

samples

# of
realizations

∗banana 2 400 4900 100
breast-cancer 9 200 77 100
diabetes 8 468 300 100
flare-solar 9 666 400 100
german 20 700 300 100
heart 13 170 100 100
image 18 1300 1010 20
ringnorm 20 400 7000 100
splice 60 1000 2175 20

∗thyroid 5 140 75 100
titanic 3 150 2051 100
twonorm 20 400 7000 100

∗waveform 21 400 4600 100
∗USPS-eo 256 1000 1000 20
∗USPS-sl 256 1000 1000 20

Table 2: List of binary classification data sets. Data sets indicated by ‘∗’ contain intrinsic within-
class multimodal structures.

implies that the heuristic to use the LFDA result as an initial value is useful. However, NCA does
not provide significant performance improvement over LFDA in the above simulations. The MCML
results have similar tendencies to FDA.

Based on the above simulation results, we conclude that LFDA is a promising method in the
visualization of multimodal labeled data.

5.3 Classification

Here we apply the proposed and existing dimensionality reduction techniques to classification tasks,
and objectively evaluate the effectiveness of LFDA.

There are several measures for quantitatively evaluating separability of data samples in different
classes (e.g., Fukunaga, 1990; Globerson et al., 2005). Here we use a simple one: misclassifica-
tion rate by a one-nearest-neighbor classifier. As explained in Section 3.3, the LFDA criterion
is invariant under linear transformations, while the misclassification rate by a one-nearest-neighbor
classifier depends on the distance metric. This means that the following simulation results are highly
dependent on the normalization scheme (15).

We employ the IDA data sets,5 which are standard binary classification data sets originally used
in Rätsch et al. (2001). In addition, we use two binary classification data sets created from the USPS
handwritten digit data set. The first task (USPS-eo) is to separate even numbers from odd numbers
and the second task (USPS-sl) is to separate small numbers (‘0’ to ‘4’) from large numbers (‘5’ to
‘9’). For training and testing, 100 samples are randomly chosen for each digit. Table 2 summarizes

5. Data sets available at http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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Data set LFDA LDI NCA MCML LPP PCA
∗banana ◦13.7±0.8 ◦13.6±0.8 14.3±2.0 39.4±6.7 ◦13.6±0.8 ◦13.6±0.8

breast-cancer ◦34.7±4.3 36.4±4.9 34.9±5.0 ◦34.0±5.8 ◦33.5±5.4 ◦34.5±5.0
diabetes 32.0±2.5 ◦30.8±1.9 — ◦31.2±2.1 31.5±2.5 ◦31.2±3.0
flare-solar ◦39.2±5.0 ◦39.3±4.8 — — ◦39.2±4.9 ◦39.1±5.1
german ◦29.9±2.8 30.7±2.4 ◦29.8±2.6 31.3±2.4 30.7±2.4 ◦30.2±2.4
heart ◦21.9±3.7 23.9±3.1 23.0±4.3 23.3±3.8 23.3±3.8 24.3±3.5
image ◦3.2±0.8 ◦3.0±0.6 — 4.7±0.8 3.6±0.7 ◦3.4±0.5
ringnorm 21.1±1.3 ◦17.5±1.0 21.8±1.3 22.0±1.2 20.6±1.1 21.6±1.4
splice ◦16.9±0.9 17.9±0.8 — ◦17.3±0.9 23.2±1.2 22.6±1.3

∗thyroid ◦4.6±2.6 8.0±2.9 ◦4.5±2.2 18.5±3.8 ◦4.2±2.9 ◦4.9±2.6
titanic ◦33.1±11.9 ◦33.1±11.9 ◦33.0±11.9 ◦33.1±11.9 ◦33.0±11.9 ◦33.0±12.0
twonorm ◦3.5±0.4 4.1±0.6 3.7±0.6 ◦3.5±0.4 3.7±0.7 3.6±0.6

∗waveform ◦12.5±1.0 20.7±2.5 ◦12.6±0.8 17.9±1.5 ◦12.4±1.0 12.7±1.2
∗USPS1 9.0±0.8 12.5±0.9 — — 7.2±1.0 ◦3.5±0.7
∗USPS2 12.9±1.2 25.9±1.7 — 11.7±1.3 7.5±0.8 ◦3.9±0.8

Computation
time (ratio) 1.00 1.11 97.23 70.61 1.04 0.91

Table 3: Means and standard deviations of the misclassification rate when the embedding dimen-
sionality is chosen by cross validation. For each data set, the best method and comparable
ones based on the t-test at the significance level 5% are marked by ‘◦’. Data sets indicated
by ‘∗’ contain the intrinsic within-class multimodal structure.

the specifications of the data sets. The ringnorm, twonorm, and waveform data sets contain features
with only noise. The thyroid, waveform, USPS-eo, and USPS-sl data sets contain intrinsic within-
class multimodal structures since they are converted from multi-class problems by merging some of
the classes. The banana data set is also multimodal.

We test LFDA, LDI, NCA, MCML, LPP, and principal component analysis (PCA). Note that
LPP and PCA are unsupervised dimensionality reduction methods, while others are supervised
methods. NCA is not tested for the diabetes, flare-solar, image, splice, USPS-eo, and USPS-sl
data sets and MCML is not tested for the flare-solar and USPS-eo data sets since the execution time
is too long.

Figure 7 depicts the mean misclassification rate by a one-nearest-neighbor classifier as functions
of the dimensionality r of the reduced space. The error bars are omitted for clear visibility. Instead,
we plotted the results of the following significance test: for each dimensionality r, the mean mis-
classification rate by the best method and comparable ones based on the t-test (Henkel, 1979) at the
significance level 5% are marked by ‘◦’. The results show that LFDA works quite well, but overall
there is no single best method that consistently outperforms the others.

Table 3 describes the mean and standard deviation of the misclassification rate by each method
when the embedding dimensionality r is chosen by 5-fold cross validation (Stone, 1974; Wahba,
1990); for the USPS-eo and USPS-sl data sets, we used 20-fold cross validation since this was
more accurate. For each data set, the best method and comparable ones based on the t-test at
the significance level 5% are indicated by ‘◦’. The table shows that overall LFDA has excellent
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Figure 7: Mean misclassification rates by a one-nearest-neighbor method as functions of the dimen-
sionality of the embedding space. For each dimension, the best method and comparable
ones based on the t-test at the significance level 5% are marked by ‘◦’.
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Data set LFDA EUCLID FDA
∗banana ◦13.7±0.8 ◦13.6±0.8 ◦13.6±0.8

breast-cancer 34.7±4.3 ◦32.7±4.8 ◦32.9±4.5
diabetes 32.0±2.5 ◦30.1±2.1 ◦30.6±2.2
flare-solar ◦39.2±5.0 ◦39.2±5.1 ◦39.0±4.9
german ◦29.9±2.8 ◦29.5±2.5 30.5±2.8
heart ◦21.9±3.7 23.2±3.7 24.0±3.7
image ◦3.2±0.8 ◦3.4±0.5 6.5±1.7
ringnorm ◦21.1±1.3 35.0±1.4 31.2±1.6
splice ◦16.9±0.9 28.9±1.5 33.7±1.5

∗thyroid ◦4.6±2.6 ◦4.4±2.2 5.3±2.5
titanic ◦33.1±11.9 ◦33.0±11.9 ◦33.1±11.9
twonorm ◦3.5±0.4 6.7±0.7 5.0±0.7

∗waveform ◦12.5±1.0 15.8±0.7 17.6±1.4
∗USPS-eo 9.0±0.8 ◦3.6±0.7 15.1±2.4
∗USPS-sl 12.9±1.2 ◦3.8±0.8 13.3±2.9

Table 4: Means and standard deviations of the misclassification rate. The LFDA results are copied
from Table 3. ‘EUCLID’ denotes a naive one-nearest-neighbor classification without di-
mensionality reduction. ‘FDA’ denotes a naive one-nearest-neighbor classification after
the samples are projected onto a one-dimensional FDA subspace.

performance. LDI and MCML also work quite well, but they tend to perform rather poorly for the
multimodal data sets specified by ‘∗’. NCA also works well, but it does not compare favorably with
LFDA. Note that NCA with random initialization was slightly worse; therefore our heuristic to use
the LFDA results for initialization would be reasonable. LPP and PCA perform well, despite the
fact that they are unsupervised dimensionality reduction methods. In particular, PCA has excellent
performance for the USPS data sets since the projection onto the two-dimensional PCA subspace
already gives reasonably separate embedding (He and Niyogi, 2004).

The computation time of each method summed over 9 data sets for which NCA is tested is
described in the bottom of Table 3. For better comparison, we normalized the values by the com-
putation time of LFDA. This shows that LFDA is much faster than NCA and MCML,6 and is
comparable to LDI, LPP, and PCA.

The misclassification rates by a naive one-nearest-neighbor classification without dimensional-
ity reduction (‘EUCLID’) are described in Table 4. The table shows that, on the whole, the per-
formance of LFDA is comparable to EUCLID. This implies that the use of LFDA is advantageous
when the dimensionality of the original data is very high since the computation time in the test phase
can be reduced. Table 4 also includes the misclassification rates by a naive one-nearest-neighbor
classification after the samples are projected onto a one-dimensional FDA subspace, showing that
LFDA tends to outperform FDA.

6. In our implementation of MCML, we used a constant step size for the gradient descent. The computation time could
be improved if, for example, an Armijo like step size rule (Bertsekas, 1976) is employed.
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Based on the above simulation results, we conclude that the proposed LFDA is a promising
dimensionality reduction technique also in classification scenarios.

6. Conclusions

We discussed the problem of supervised dimensionality reduction. FDA (Fisher, 1936; Fukunaga,
1990; Duda et al., 2001) works well for this purpose, given that data samples in each class are uni-
modal Gaussian. However, samples in a class are often multimodal in practice, for example, when
multi-class classification problems are solved by a set of two-class ‘one-versus-rest’ problems. LPP
(He and Niyogi, 2004) can work well in dimensionality reduction of multimodal data. However, it
is an unsupervised method and does not necessarily useful in supervised dimensionality reduction
scenarios. In this paper, we proposed a new method called LFDA, which effectively combines the
ideas of FDA and LPP. LFDA allows us to reduce the dimensionality of multimodal labeled data
appropriately by maximizing between-class separability and preserving the within-class local struc-
ture at the same time. The derivation of LFDA is based on a novel pairwise interpretation of FDA
(see Section 3.1). The original FDA provides a meaningful result only when the dimensionality of
the embedding space is smaller than the number of classes because of the rank deficiency of the
between-class scatter matrix. On the other hand, LFDA does not share this limitation and can be
employed for dimensionality reduction into any dimensional spaces (see Section 3.3). This is a
significant improvement over the original FDA.

As discussed in Section 3.3, the LFDA criterion is invariant under linear transformations. This
means that the range of the transformation matrix can be uniquely determined, but the distance
metric in the embedding space cannot be determined. In this paper, we determined the distance
metric in a heuristic manner. Although this normalization scheme is shown to be reasonable in
experiments, there is still room for further improvement. An important future direction is to develop
a computationally efficient method of determining the distance metric of the embedding space,
for example, following the lines of Goldberger et al. (2005), Globerson and Roweis (2006), and
Weinberger et al. (2006).

We showed in Section 3.4 that a non-linear variant of LFDA can be obtained by employing the
kernel trick. FDA, LPP, and MCML can also be kernelized similarly (Baudat and Anouar, 2000;
Mika et al., 2003; Belkin and Niyogi, 2003; He and Niyogi, 2004; Globerson and Roweis, 2006).
As shown in these papers, the performance of the kernelized methods heavily depend on the choice
of the family and parameters of kernel functions. Therefore, how to optimally determine the kernel
function for supervised dimensionality reduction needs to be explored.

The performance of LFDA depends on the choice of the affinity matrix. In this paper, we simply
employed a standard definition as it is (see Appendix D.4). Although this standard choice appeared
to be reasonable in experiments, it is important to find the optimal way to define the affinity matrix
in the context of supervised dimensionality reduction.

MDA (Hastie and Tibshirani, 1996b) provides a solid probabilistic framework for supervised
dimensionality reduction with multimodality (see Section 4.2). On the other hand, LFDA still lacks
a probabilistic interpretation. An interesting future direction is to analyze the behavior of LFDA in
terms of density models.
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Appendix A. Proof of Lemma 1

It follows from Eq. (1) that

S(w) =
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∑
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which yields Eq. (5). Let S(m) be the mixture scatter matrix (Fukunaga, 1990):

S(m) ≡ S(w) +S(b)

=
n

∑
i=1

(xi−µ)(xi−µ)".

Then we have
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=
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(xix"i + x jx"j − xix"j − x jx"i ),

which yields Eq. (6).

Appendix B. Interpretation of FDA

In Section 3.1, we claimed that FDA tries to keep data pairs in the same class ‘close’ and data pairs
in different classes ‘apart’. Here we show this claim more formally.
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For
vi, j ≡ T"(xi− x j),

let us investigate the change in the Fisher criterion (3) when vi, j yields αvi, j with α > 0. Note that
there does not generally exist a transformation T ′ that keeps all vi, j and only changes a particular
pair. For this reason, the following analysis may be regarded as comparing the values of the Fisher
criterion for two different data sets. This analysis will give an insight into what kind of transforma-
tion matrices the Fisher criterion favors.

Let

W ≡ T"S(w)T ,

B≡ T"S(b)T ,

Wα ≡W −βW (w)
i, j vi, jv

"
i, j,

Bα ≡ B−βW (b)
i, j vi, jv

"
i, j,

β≡ 1−α2

2
.

Note that Wα and Bα correspond to the within-class and between-class scatter matrices for αvi, j,
respectively. We assume that W and W α are positive definite and B and Bα are positive semi-
definite. Then the values of the Fisher criterion (3) for vi, j and αvi, j are expressed as tr

(
W−1B

)
and

tr
(
W−1

α Bα
)
, respectively.

The standard matrix inversion lemma (e.g., Albert, 1972) yields

W−1 = (Wα+βW (w)
i, j vi, jv

"
i, j)

−1

=W−1
α −

W−1
α vi, j(W−1

α vi, j)"

(βW (w)
i, j )−1+ 〈W−1

α vi, j,vi, j〉
.

If yi = y j, we haveW
(w)
i, j > 0 andW (b)

i, j < 0. Then we have

tr
(
W−1B

)
= tr

(
(Wα+βW (w)

i, j vi, jv
"
i, j)

−1(Bα+βW (b)
i, j vi, jv

"
i, j)

)
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α Bα
)
+βW (b)
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−
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α vi, j,vi, j〉2

(βW (w)
i, j )−1+ 〈W−1

α vi, j,vi, j〉
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. (30)

If α< 1, we have β> 0 since α> 0 by definition. Therefore, Eq. (30) yields

tr
(
W−1

α Bα
)

> tr
(
W−1B

)
,

where we used the facts thatWα is positive definite and Bα is positive semi-definite. This implies
that the value of the Fisher criterion increases if a data pair in the same class is made close.
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Similarly, if yi *= y j, we haveW
(w)
i, j = 0 andW (b)

i, j > 0. Then we have

tr
(
W−1

α Bα
)

= tr
(
(W −βW (w)

i, j vi, jv
"
i, j)

−1(B−βW (b)
i, j vi, jvi, j)

)

= tr
(
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)
−βW (b)

i, j 〈W
−1vi, j,vi, j〉. (31)

If α> 1, we have β< 0 and hence Eq. (31) yields

tr
(
W−1

α Bα
)

> tr
(
W−1B

)
.

This implies that the value of the Fisher criterion increases if a pair of samples in different classes
are separated from each other.

Appendix C. Efficient Computation of T LFDA
As shown in Eq. (15), the LFDA transformation matrix T LFDA can be computed analytically using
the generalized eigenvectors and generalized eigenvalues of the following generalized eigenvalue
problem.

S̃
(b)
ϕ̃= λ̃S̃

(w)
ϕ̃.

Given S̃
(b)
and S̃

(w)
, the computational complexity of calculating T LFDA is O(rd2). Here, we provide

an efficient computing method of S̃
(b)
and S̃

(w)
.

Let S̃
(m)
be the local mixture scatter matrix defined by

S̃
(m) ≡ S̃

(b)
+ S̃

(w)
.

From Eqs. (9)–(11), we can immediately show that S̃
(m)
is expressed in the following pairwise form.
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=
1
2

n

∑
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i, j (xi− x j)(xi− x j)",

where W̃ (m) is the n-dimensional matrix with (i, j)-th element being

W̃ (m)
i, j ≡

{
Ai, j/n if yi = y j,

1/n if yi *= y j.

Since
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=
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j ,

S̃
(m)
can be expressed in a matrix form as

S̃
(m)

= XL̃
(m)
X", (32)
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where
L̃

(m) ≡ D̃
(m)−W̃ (m)

, (33)

and D̃(m) is the n-dimensional diagonal matrix with i-th diagonal element being

D̃(m)
i,i ≡

n

∑
j=1
W̃ (m)
i, j .

Similarly, S̃
(w)
can be expressed in a matrix form as

S̃
(w)

= XL̃
(w)
X", (34)

where
L̃

(w) ≡ D̃
(w)−W̃ (w)

, (35)

and D̃(w) is the n-dimensional diagonal matrix with i-th diagonal element being

D̃(w)
i,i ≡

n

∑
j=1
W̃ (w)
i, j .

L̃(m) and L̃(w) are n-dimensional matrices and could be very high dimensional. However, L̃(w)

can be made block-diagonal if the samples {xi}ni=1 are sorted according to the labels {yi}ni=1. Fur-
thermore, diagonal sub-matrices of L̃(w) can be sparse if the affinity matrix A is sparsely defined
(see Appendix D for detail). Therefore, directly calculating S̃

(w)
by Eq. (34) may be already com-

putationally efficient.
On the other hand, computing S̃

(m)
directly by Eq. (32) is not so efficient since W̃ (m) is dense.

This problem can be alleviated as follows. W̃ (m) can be decomposed as

W̃
(m)

=
1
n
1n1"n +W̃

(m1) +W̃
(m2)

,

where 1n is the n-dimensional vector with all ones and W̃
(m1) and W̃ (m2) are the n-dimensional

matrices with (i, j)-th element being

W̃ (m1)
i, j ≡

{
Ai, j/n if yi = y j,

0 if yi *= y j,

W̃ (m2)
i, j ≡

{
−1/n if yi = y j,

0 if yi *= y j.

Then S̃
(m)
can be expressed as

S̃
(m)

= XD̃
(m)
X"− 1

n
X1n(X1n)"−XW̃

(m1)X"−XW̃
(m2)X", (36)

where the diagonal matrix D̃(m) is expressed in terms of W̃ (m1) as

D̃(m)
i,i = 1− nyi

n
+

n

∑
j=1
W̃ (m1)
i, j .

1055



SUGIYAMA

Note that nyi in the above equation is the number of samples in the class which the sample xi
belongs to. W̃ (m2) is a constant block-diagonal matrix if the samples {xi}ni=1 are sorted according
to the labels {yi}ni=1. Therefore, XW̃

(m2)X" in the right-hand side of Eq. (36) can be computed
efficiently. Similarly, W̃ (m1) can also be made block-diagonal, so XW̃ (m1)X" in the right-hand side
of Eq. (36) may also be computed efficiently; if the affinity matrix A is sparse, the computational
efficiency can be further improved. The first two terms in the right-hand side of Eq. (36) can also
be computed efficiently. Therefore, computing S̃

(m)
by Eq. (36) may be more efficient than directly

by Eq. (32). Finally, we can compute S̃
(b)
efficiently by using S̃

(m)
as

S̃
(b)

= S̃
(m)− S̃

(w)
.

To further improve computational efficiency, the affinity matrix A may be computed in a class-
wise manner since we do not need the affinity values for sample pairs in different classes. This
speeds up the nearest neighbor search which is often carried out when defining A (see Appendix D).
The nearest neighbor search itself could also be a bottleneck, but this may be eased by incorporat-
ing the prior knowledge of the data structure or by approximation (see Saul and Roweis, 2003, and
references therein).

The above efficient implementation of LFDA is summarized as a pseudo code in Figure 2.

Appendix D. Definitions of Affinity Matrix

Here, we briefly review typical choices of the affinity matrix A.

D.1 Heat Kernel

A standard choice of the affinity matrix A is

Ai, j = exp
(
−
‖xi− x j‖2

σ2

)
, (37)

where σ (> 0) is a tuning parameter which controls the ‘decay’ of the affinity (e.g., Belkin and
Niyogi, 2003).

D.2 Euclidean Neighbor

The heat kernel gives a non-sparse affinity matrix. It would be computationally advantageous if the
affinity matrix is made sparse. A sparse affinity matrix can be obtained by assigning positive affinity
values only to neighboring samples. More specifically, xi and x j are said to be neighbors if

‖xi− x j‖ ≤ ε,

where ε (> 0) is a tuning parameter. Then Ai, j is defined by Eq. (37) for two neighboring samples
and Ai, j = 0 for non-neighbors (Tenenbaum et al., 2000).

This definition includes two tuning parameters (ε and σ), which are rather troublesome to de-
termine in practice. To ease the problem, we may simply let Ai, j = 1 if xi and x j are neighbors and
Ai, j = 0 otherwise. This corresponds to setting σ= ∞.
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D.3 Nearest Neighbor

Tuning the distance threshold ε is practically rather cumbersome since the relation between the
number of neighbors and the value of ε is not intuitively clear. Another option to determine the
neighbors is to directly specify the number of neighbors (Roweis and Saul, 2000; Tenenbaum et al.,
2000). Let NN(K)

i be the set of K nearest neighbor samples of xi under the Euclidean distance, where
K is a tuning parameter. If x j ∈ NN(K)

i or xi ∈ NN(K)
j , xi and x j are regarded as neighbors; otherwise

they are regarded as non-neighbors. Then the affinity matrix is defined by the heat kernel or in the
simple zero-one manner.

D.4 Local Scaling

A drawback of the above definitions could be that the affinity is computed globally in the same way.
The density of data samples may be different depending on regions. Therefore, it would be more
appropriate to take the local scaling of the data into account. Following this idea, Zelnik-Manor and
Perona (2005) proposed defining the affinity matrix as

Ai, j = exp
(
−
‖xi− x j‖2

σiσ j

)
.

σi represents the local scaling of the data samples around xi, which is determined by

σi = ‖xi− x(K)
i ‖,

where x(K)
i is the K-th nearest neighbor of xi. The parameter K is a tuning parameter, but Zelnik-

Manor and Perona (2005) demonstrated that K = 7 works well on the whole. This would be a
convenient heuristic for those who do not have any subjective/prior preferences. We employed the
local scaling method with this heuristic all through the paper.

For computational efficiency, we may further sparsify the above affinity matrix based on, for
example, the nearest neighbor idea, although this is not tested in this paper.

Appendix E. Pairwise Expression of S(b)

A pairwise expression of S(b) can be derived as

1057



SUGIYAMA

S(b) =
n

∑
k=1

1
n[k]

c

∑
!=1

n[k]
! (µ[k]

! −µ[k])(µ[k]
! −µ[k])"

=
n

∑
k=1

1
n[k]

(
c

∑
!=1

n[k]
! µ

[k]
! µ

[k]
!

"
−n[k]µ[k]µ[k]"

)

=
n

∑
k=1

1
n[k]

(
c

∑
!=1

n[k]
! µ

[k]
! µ

[k]
!

"
−

n

∑
i=1

Ai,kxix"i +
n

∑
i=1

Ai,kxix"i −n[k]µ[k]µ[k]"
)

=
1
2

n

∑
k=1

1
n[k]

(
−

c

∑
!=1

1
n[k]

!

∑
i, j:yi=y j=!

Ai,kA j,k(xi− x j)(xi− x j)"

+
1
n[k]

n

∑
i, j=1

Ai,kA j,k(xi− x j)(xi− x j)"
)

=
1
2

n

∑
i, j=1

W (b)
i, j (xi− x j)(xi− x j)",

which yields Eqs. (19) and (20).
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Abstract
We introduce the blind subspace deconvolution (BSSD) problem, which is the extension of both the
blind source deconvolution (BSD) and the independent subspace analysis (ISA) tasks. We examine
the case of the undercomplete BSSD (uBSSD). Applying temporal concatenation we reduce this
problem to ISA. The associated ‘high dimensional’ ISA problem can be handled by a recent tech-
nique called joint f-decorrelation (JFD). Similar decorrelation methods have been used previously
for kernel independent component analysis (kernel-ICA). More precisely, the kernel canonical cor-
relation (KCCA) technique is a member of this family, and, as is shown in this paper, the kernel
generalized variance (KGV) method can also be seen as a decorrelation method in the feature space.
These kernel based algorithms will be adapted to the ISA task. In the numerical examples, we (i)
examine how efficiently the emerging higher dimensional ISA tasks can be tackled, and (ii) explore
the working and advantages of the derived kernel-ISA methods.
Keywords: undercomplete blind subspace deconvolution, independent subspace analysis, joint
decorrelation, kernel methods

1. Introduction

Independent component analysis (ICA) (Jutten and Herault, 1991; Comon, 1994) aims to recover
linearly or non-linearly mixed independent and hidden sources. There is a broad range of applica-
tions for ICA, such as blind source separation, feature extraction and denoising. Particular applica-
tions include the analysis of financial and neurobiological data, fMRI, EEG, and MEG. For recent
review concerning ICA the reader is referred to the literature (Hyvärinen et al., 2001; Cichocki and
Amari, 2002).

Traditional ICA algorithms are one-dimensional in the sense that all sources are assumed to be
independent real valued random variables. Nonetheless, applications in which only certain groups
of sources are independent may be highly relevant in practice. In this case, the independent sources
can be multidimensional. For instance, consider the generalization of the cocktail-party problem,
where independent groups of people are talking about independent topics or more than one group
of musicians is playing at the party. The separation task requires an extension of ICA, which can
be called independent subspace analysis (ISA) (Hyvärinen and Hoyer, 2000), multidimensional
independent component analysis (MICA) (Cardoso, 1998), and group ICA (Theis, 2005a). We will
use the first of these abbreviations throughout this paper.

c©2007 Zoltán Szabó, Barnabás Póczos and András Lőrincz.
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Strenuous efforts have been made to develop ISA algorithms (Cardoso, 1998; Akaho et al., 1999;
Hyvärinen and Hoyer, 2000; Hyvärinen and Köster, 2006; Vollgraf and Obermayer, 2001; Bach and
Jordan, 2003; Stögbauer et al., 2004; Póczos and Lőrincz, 2005b,a; Theis, 2005a,b, 2006; Szabó
and Lőrincz, 2006; Nolte et al., 2006). For the most part, ISA-related theoretical problems concern
the estimation of entropy or of mutual information. For this, the k-nearest neighbors (Póczos and
Lőrincz, 2005b) and the geodesic spanning tree methods (Póczos and Lőrincz, 2005a) can be ap-
plied. Other recent approaches seek independent subspaces via kernel methods (Bach and Jordan,
2003) and joint block diagonalization (Theis, 2005a, 2006).

Another extension of the original ICA task is the blind source deconvolution (BSD) problem.
Such a problem emerges, for example, at a cocktail-party being held in an echoic room. Several BSD
algorithms were developed in the past. See, for example, the review of Pedersen et al. (2007). Like
ICA, BSD has several applications: (i) remote sensing applications; passive radar/sonar process-
ing (MacDonald and Cain, 2005; Hedgepeth et al., 1999), (ii) image-deblurring, image restoration
(Vural and Sethares, 2006), (iii) speech enhancement using microphone arrays, acoustics (Douglas
et al., 2005; Mitianoudis and Davies, 2003; Roan et al., 2003; Araki et al., 2003), (iv) multi-antenna
wireless communications, sensor networks (Akyildiz et al., 2002; Deligianni et al., 2006), (v)
biomedical signal—EEG, ECG, MEG, fMRI—analysis (Jung et al., 2000; Glover, 1999; Dyrholm
et al., 2007), (vi) optics (Kotzer et al., 1998), (vii) seismic exploration (Karslı, 2006).

The simultaneous assumption of the two extensions, that is, ISA combined with BSD, seems
to be a more realistic model than either of the two models alone. For example, at the cocktail-
party, groups of people or groups of musicians may form independent source groups and echoes
could be present. This task will be called blind subspace deconvolution (BSSD). We treat the
undercomplete case (uBSSD) here. In terms of the cocktail-party problem, it is assumed that there
are more microphones than acoustic sources. Here we note that the complete, and in particular the
overcomplete, BSSD task is challenging and as of yet no general solution is known. We can show
that temporal concatenation turns the uBSSD task into an ISA problem. One of the most stringent
applications of BSSD could be the analysis of EEG or fMRI signals. The ICA assumptions could
be highly problematic here, because some sources may depend one another, so an ISA model seems
better. Furthermore, the passing of information from one area to another and the related delayed
and transformed activities may be modeled as echoes. Thus, one can argue that BSSD may fit this
important problem domain better than ICA or even ISA.

In principle, the ISA problem can be treated with the methods listed above. However, the
dimension of the ISA problem derived from an uBSSD task is not amenable to state-of-the-art ISA
methods. According to a recent decomposition principle, the ISA Separation Theorem (Szabó et al.,
2006b), the ISA task can be divided into two consecutive steps under certain conditions: after the
application of the ICA algorithm, the ICA elements need to be grouped.1 The importance of this
direction stems from the fact that ICA methods can deal with problems in high dimensions. The
derived ISA task will be solved with the use of the decomposition principle augmented by the joint
f-decorrelation (JFD) technique (Szabó and Lőrincz, 2006).

We show other ISA approaches beyond the JFD method: We adapted the kernel canonical cor-
relation analysis (KCCA) and the kernel generalized variance (KGV) methods (Bach and Jordan,
2002) to measure the mutual dependency of multidimensional variables. One can show that simi-

1. The possibility of such a decomposition principle was suspected by Cardoso (1998), who based his conjecture on
numerical experiments. To the best of our knowledge, a proof encompassing sufficient conditions for this intriguing
hypothesis was first published by Szabó et al. (2006a).
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larly to the JFD and the KCCA methods, the KGV technique deals with nonlinear decorrelation in
function spaces. We found that they can be more precise but are limited to smaller problems.

The paper is structured as follows: Section 2 formulates the problem domain. Section 3 shows
how to transform the uBSSD task into an ISA task. The JFD method, which we use to solve the
derived ISA task, is the subject of Section 4. This section also addresses how to tailor the KCCA and
KGV kernel-ICA methods to solve the ISA problem. Section 5 contains the numerical illustrations
and conclusions are drawn in Section 6.

2. The BSSD and the ISA Model

The BSSD task and its special case, the ISA model, are defined in Section 2.1. Section 2.2 details
the ambiguities of the ISA task. Section 2.3 introduces some possible ISA cost functions.

2.1 The BSSD Equations

Here, we define the BSSD task. Assume that we have M hidden, independent, multidimensional
components (random variables). Suppose also that only their casual FIR filtered mixture is available
for observation:2

x(t) =
L

∑
l=0
Hls(t− l), (1)

where s(t) =
[
s1(t); . . . ;sM(t)

]
∈ RMd is a vector concatenated of components sm(t) ∈ Rd . For a

given m, sm(t) is i.i.d. (independent and identically distributed) in time t, sms are non-Gaussian, and
I(s1, . . . ,sM) = 0, where I stands for the mutual information of the arguments. The total dimension
of the components is Ds :=Md, the dimension of the observation x is Dx. Matrices Hl ∈ RDx×Ds

(l = 0, . . . ,L) describe the mixing, these are the mixing matrices. Without any loss of generality
it may be assumed that E[s] = 0, where E denotes the expectation value. Then E[x] = 0 holds, as
well. The goal of the BSSD problem is to estimate the original source s(t) by using observations
x(t) only.

The case L = 0 corresponds to the ISA task, and if d = 1 also holds then the ICA task is
recovered. In the BSD task d = 1 and L is a non-negative integer. Dx > Ds is the undercomplete,
Dx = Ds is the complete, and Dx < Ds is the overcomplete task. Here, we treat the undercomplete
BSSD (uBSSD) problem. We will transform the uBSSD task to undercomplete ISA (uISA) or to
complete ISA. From now on they both will be called ISA.

Note 1 Mixing matrices Hl (0 ≤ l ≤ L) have a one-to-one mapping to polynomial matrix3
H[z] := ∑L

l=0Hlz−l ∈ R[z]Dx×Ds , where z is the time-shift operation, that is (z−1u)(t) = u(t−1).
H[z] may be regarded as an operation that maps Ds-dimensional series to Dx-dimensional series.
Equation (1) can be written as x=H[z]s.

Note 2 It can be shown (Rajagopal and Potter, 2003) that in the uBSSD taskH[z] has a polynomial
matrix left inverseW[z] ∈ R[z]Dx×Ds with probability 1, under mild conditions. In other words, for
these polynomial matricesW[z] andH[z],W[z]H[z] is the identity mapping. The mild condition is as
follows: Coefficients of polynomial matrix H[z], that is, random matrix [H0; . . . ;HL] is drawn from

2. Causal: l ≥ 0 in ∑l . FIR: the number of terms in the sum is finite.
3. H[z] is also known as channel matrix or transfer function in the literature.
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a continuous distribution. Under this condition, hidden source s(t) can be estimated by a suitable
causal FIR filtered form of observation x(t).

For the uBSSD task it is assumed that H[z] has a polynomial matrix left inverse. For the uISA
and ISA tasks it is supposed that mixing matrix H0 ∈ RDx×Ds has full column rank, that is its rank is
Ds.

2.2 Ambiguities of the ISA Model

Because the uBSSD task will be reduced to ISA, it is important to see the ambiguities of the ISA
task. First, the complete ISA problem (L= 0,Dx =Ds) is presented, the undercomplete ISA will be
treated later.

The identification of the ISA model is ambiguous. However, the ambiguities are simple (Theis,
2004): hidden multidimensional components can be determined up to permutation and up to in-
vertible transformation within the subspaces. Ambiguities within the subspaces can be weakened.
Namely, because of the invertibility of mixing matrix H[z] =H0 ∈ RDs×Ds , it can be assumed with-
out any loss of generality that both the sources and the observation are white, that is,

E[s] = 0,cov [s] = IDs ,
E[x] = 0,cov [x] = IDx ,

where IDs is the Ds-dimensional identity matrix and cov is the covariance matrix. It then follows
that the mixing matrix H0 and thus the demixing matrixW=H−1

0 are orthogonal:

IDs = cov[x] = E [xx∗] =H0E [ss∗]H∗
0 =H0IDsH∗

0 =H0H∗
0,

where ∗ denotes transposition. In sum, H0,W ∈ ODs , where ODs denotes the set of Ds-dimensional
orthogonal matrices. Now, sm sources are determined up to permutation and orthogonal transforma-
tion.

In order to transform the undercomplete ISA task into a complete ISA task with white observa-
tions let C := cov[x] = E[xx∗] =H0H∗

0 ∈ RDx×Dx denote the covariance matrix of the observation.
Rank of C is Ds, since the rank of matrix H0 is Ds according to our assumptions. Matrix C is
symmetric (C = C∗), thus it can be decomposed as follows: C = UDU∗, where U ∈ RDx×Ds , and
the columns of matrix U are orthogonal, that is, U∗U = IDs . Furthermore, the rank of diagonal
matrix D ∈ RDs×Ds is Ds. The principal component analysis can provide a decomposition in the
desired form. Let Q := D−1/2U∗ ∈ RDs×Dx . Then the original observation x can be modified to
x′ := Qx = QH0s ∈ RDs . The resulting x′ is white and can be regarded as the observation of a
complete ISA task having mixing matrix QH0 ∈ ODs .

2.3 ISA Cost Functions

After the whitening procedure (Section 2.2), the ISA task can be viewed as the minimization of the
mutual information between the estimated components on the orthogonal group:

JI(W) := I
(
y1, . . . ,yM

)
, (2)

where y=Wx, y=
[
y1; . . . ;yM

]
, ym ∈ Rd , andW ∈ OD. This formulation of the ISA task serves

us in Section 4.1, where we estimate the dependencies of the multidimensional variables.
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The ISA task can be rewritten into the minimization of the sum of Shannon’s multidimensional
differential entropies (Póczos and Lőrincz, 2005b):

JH(W) :=
M

∑
m=1

H (ym) , (3)

where y=Wx, y=
[
y1; . . . ;yM

]
, ym ∈ Rd ,W ∈ OD.

Note 3 Until now, we formulated the ISA task by means of the entropy or the mutual information of
multidimensional random variables, see Equations (2) and (3). However, any algorithm that treats
mutual information between 1-dimensional random variables can also be sufficient. This statement
is based on the considerations below. Well-known identities of mutual information and entropy
expressions (Cover and Thomas, 1991) show that the minimization of cost function

JH,I(W) :=
M

∑
m=1

d

∑
i=1

H(ymi )−
M

∑
m=1

I(ym1 , . . . ,ymd ),

or that of

JI,I(W) := I
(
y11, . . . ,y

M
d
)
−

M

∑
m=1

I (ym1 , . . . ,ymd )

can also solve the ISA task. Here, y=Wx is the estimated ISA source, where x ∈ RD is the
whitened observation in the ISA model. W ∈ OD is the estimated ISA demixing matrix, and in
y=

[
y1; . . . ;yM

]
∈ RD the ym ∈ Rd , m= 1, . . . ,M, represent the estimated components with coordi-

nates ymi ∈ R. The first term of both cost functions JH,I and JI,I is an ICA cost function. Thus, these
first terms can be fixed by means of ICA preprocessing.4 In this case, if the Separation Theorem
holds (for details see Section 3.2), then term ∑M

m=1 I(ym1 , . . . ,ymd ) implies that the maximization of
the sum of mutual information between 1-dimensional random variables within the subspaces is
sufficient for solving the ISA task.

3. Reduction Steps

Here we show that the direct search for inverse FIR filter can be circumvented (Note 2). Namely,
temporal concatenation reduces the uBSSD task to an (u)ISA problem (Section 3.1). Our earlier
results will allow further simplifications. We will reduce the ISA task to an ICA task plus a search
for optimal permutation of the ICA coordinates. This decomposition principle will be elaborated in
Section 3.2 by means of the Separation Theorem.

3.1 Reduction of uBSSD to (u)ISA

We reduce the uBSSD task to an ISA problem. The BSD literature provides the basis for our
reduction; Févotte and Doncarli (2003) use temporal concatenation in their work. This method can
be extended to multidimensional sm components in a natural fashion:

Let L′ be such that
DxL′ ≥ Ds(L+L′) (4)

4. From the algorithmic point of view, any ICA algorithm that minimizes cost function I(y11, . . . ,y
M
d ) suits the ICA

preprocessing step.
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is fulfilled. Such L′ exists due to the undercomplete assumption Dx > Ds:

L′ ≥
⌈

DsL
Dx−Ds

⌉
. (5)

This choice of L′ guarantees that the reduction gives rise to an (under)complete ISA task: let xm(t)
denote the mth coordinate of observation x(t) and let the matrix Hl ∈ RDx×Md be decomposed into
1× d sized blocks. That is, Hl = [Hi j

l ]i=1..Dx, j=1..M (Hi j
l ∈ R1×d), where i and j denote row and

column indices, respectively. Using notations

Sm(t) := [sm(t);sm(t−1); . . . ;sm(t− (L+L′)+1)] ∈ Rd(L+L′),

Xm(t) := [xm(t);xm(t−1); . . . ;xm(t−L′ +1)] ∈ RL′ ,

S(t) := [S1(t); . . . ;SM(t)] ∈ RMd(L+L′)=Ds(L+L′),

X(t) := [X1(t); . . . ;XDx(t)] ∈ RDxL′ ,

Ai j :=





Hi j
0 . . . Hi j

L 0 . . . 0
. . . . . .

. . . . . .
0 . . . 0 Hi j

0 . . . Hi j
L




∈ RL′×d(L+L′),

A := [Ai j]i=1..Dx, j=1..M ∈ RDxL′×Md(L+L′)=DxL′×Ds(L+L′),

model
X(t) = AS(t) (6)

can be obtained. Here, sm(t)s are i.i.d. in time t, they are independent for different m values, and
Equation (4) holds for L′. Thus, (6) is either an undercomplete or a complete ISA task, depending
on the relation of the l.h.s and the r.h.s of (4): the task is complete if the two sides are equal. The
number of the components and the dimension of the components in task (6) are M(L+L′) and d,
respectively.

If we end up with an undercomplete ISA problem in (6) then it can be reduced to a complete
one, as was shown in Section 2.2. Thus, choosing the minimal value for L′ in (5), the dimension of
the obtained ISA task is

DISA := Ds(L+L′) = Ds

(
L+

⌈
DsL

Dx−Ds

⌉)
. (7)

Taking into account the ambiguities of the ISA task (Section 2.2), the original sm components will
occur L+L′ times and up to orthogonal transformations. As a result, in the ideal case, our estima-
tions are as follows

ŝmk := Fmk sm ∈ Rd ,

where k = 1, . . . ,L+L′, Fmk ∈ Od .

3.2 Reduction of ISA to ICA

The Separation Theorem (Szabó et al., 2006b) conjectured by Cardoso (1998) allows one to de-
compose the solution of the ISA problem, under certain conditions, into 2 steps: In the first step,
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ICA estimation is executed by minimizing I(y11, . . . ,yMd ). In the second step, the ICA elements are
grouped by finding an optimal permutation. This principle will be formalized in Section 3.2.1.
Section 3.2.2 provides sufficient conditions for the theorem.

3.2.1 THE ISA SEPARATION THEOREM

We state the ISA Separation Theorem for components having possibly different dm dimensions:

Theorem 1 (Separation Theorem for ISA) Let y= [y1; . . . ;yD] =Wx ∈ RD, whereW ∈ OD, x ∈
RD is the whitened observation of the ISA model, and D= ∑M

m=1 dm. Let Sdm denote the surface of
the dm-dimensional unit sphere, that is Sdm := {w ∈ Rdm : ∑dm

i=1w
2
i = 1}.

Presume that the u := sm ∈ Rdm sources (m= 1, . . . ,M) of the ISA model satisfy condition

H

(
dm
∑
i=1

wiui

)
≥

dm
∑
i=1

w2iH (ui) ,∀w ∈ Sdm , (8)

and that the ICA cost function JICA(W) = ∑D
i=1H(yi) has minimum over the orthogonal matrices in

WICA. Then it is sufficient to search for the solution to the ISA task as a permutation of the solution
of the ICA task. Using the concept of demixing matrices, it is sufficient to explore forms

WISA = PWICA,

where P ∈ RD×D is a permutation matrix to be determined andWISA is the ISA demixing matrix.

The proof of the theorem is presented in Appendix A. It is intriguing that if (8) is satisfied then the
simple decomposition principle provides the global minimum of (2). In the literature on joint block
diagonalization (JBD) Abed-Meraim and Belouchrani (2004) have put forth a similar conjecture
recently. According to this conjecture, for quadratic cost function, if Jacobi optimization is applied,
the block-diagonalization of the matrices can be found by the optimization of permutations follow-
ing the joint diagonalization of the matrices. ISA solutions formulated within the JBD framework
(Theis, 2005a,b, 2006; Szabó and Lőrincz, 2006) make efficient use of this idea in practice. Theis
(2006) could justify this approach for local minimum points.

3.2.2 SUFFICIENT CONDITIONS OF THE ISA SEPARATION THEOREM

The question of which types of sources satisfy the Separation Theorem is open. Equation (8) pro-
vides only a sufficient condition. Below, we list sources sm that satisfy (8). Details and the extension
of the Separation Theorem for complex variables can be found in a technical report of Szabó et al.
(2006b).

1. Assume that variables u= sm satisfy the so-called w-EPI condition (EPI is shorthand for the
entropy power inequality, Cover and Thomas, 1991), that is,

e2H(∑di=1wiui) ≥
d

∑
i=1

e2H(wiui),∀w ∈ Sd . (9)

Then inequality (8) holds for these variables too. The proof can be found in Lemma 1 of
Appendix A.
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2. The (9) w-EPI condition is valid

(a) for spherically symmetric or shortly spherical variables (Fang et al., 1990). The dis-
tribution of such variables is invariant for orthogonal transformations.5 Sketch of the
proof (u= sm): the w-EPI condition concerns projections to unit vectors. For spherical
variables, the distribution and thus the entropy of these projections are independent of
w ∈ Sd . Because e2H(wiui) = e2H(ui)w2i and w ∈ Sd , the w-EPI is satisfied with equality
∀w ∈ Sd . !

(b) for 2-dimensional variables invariant to 90◦ rotation. Under this condition, density func-
tion h of component sm is subject to the following invariance

h(u1,u2) = h(−u2,u1) = h(−u1,−u2) = h(u2,−u1)
(
∀u ∈ R2

)
.

Sketch of the proof (u = sm): Assume that function f : S2 ( w )→ H
(
∑d
i=1wiui

)
has

global minimum on set S2∩{w≥ 0}.6 Let this minimum be at wm ∈ R2. Then, the 90◦
invariance warrants that function f take its global minimum also on w⊥

m ∈ R2, which
is perpendicular to wm. Let (Cm)∗ = [wm,w⊥

m ] ∈ O2. Now, we can estimate variables
Cmsm. This is sufficient because the ISA solution is ambiguous up to orthogonal trans-
formations within each subspace. !
A special case of this requirement is invariance to permutation and sign changes

h(±u1,±u2) = h(±u2,±u1).

In other words, there exists a function g : R2 → R, which is symmetric in its variables
and

h(u) = g(|u1|, |u2|).

Special cases within this family are distributions

h(u) = g

(

∑
i
|ui|p

)
(p> 0),

which are constant over the spheres of Lp-space. They are called Lp spherical variables
which, for p= 2, corresponds to spherical variables.

(c) for certain weakly dependent variables: Takano (1995) has determined sufficient condi-
tions when EPI holds.7 If the EPI property is satisfied on unit sphere Sd , then the ISA
Separation Theorem holds (Lemma 1).

These results are summarized schematically in Table 1.

5. In the ISA task the non-degenerate affine transformations of spherical variables, the so called elliptical variables, do
not provide valuable generalizations due to the ambiguities of the ISA task.

6. Relation w≥ 0 concerns each coordinate.
7. The constraint of d = 2 may be generalized to higher dimensions. We are not aware of such generalizations.
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invariance to 90◦ rotation (d = 2)

!!

specially
!!!!!

""!!!!!

invariance to sign and permutation

specially
##

Lp spherical (p> 0)

Takano’s dependency
(d = 2)

$$ w-EPI

!!

spherical symmetry%%

generalization for d = 2

&&

Equation (8): sufficient
for the ISA Separation Theorem

Table 1: Sufficient conditions for the ISA Separation Theorem.

4. ISA Methods

We showed how to convert the uBSSD task to an ISA task in Section 3.1. In the following we
will present methods that can solve the ISA task. In Section 4.1 we treat estimations of the mutual
information of the ISA cost functions in Section 2.3. Methods that can optimize these cost functions
are elaborated in Section 4.2. We also present here the pseudocode of the procedures studied.
In Section 4.3 we review methods that can treat non-equal or unknown component dimensions.
In what follows, and in accordance with (1), let x ∈ RD denote the whitened observation, while
y= [y1; . . . ;yM] =Wx ∈ RD (W ∈ OD) and ym ∈ Rd (m= 1, . . . ,M) stand for the estimated source
and its components in the ISA task, respectively.

4.1 Dependency Estimations

Here we introduce two dependency estimators. First, in Section 4.1.1 we describe a decorrelation
method that uses a set of functions jointly. This method is called joint f-decorrelation (JFD) method
(Szabó and Lőrincz, 2006). Our second technique (Section 4.1.2) generalizes earlier kernel-ICA
methods for the ISA task. The motivation for this latter method is the efficiency and precision of
kernel-ICA methods in finding independent components (Bach and Jordan, 2002). Our experiences
are similar with kernel-ISA methods, see Section 5.3. We found that kernel-ISA methods need more
computations, but can provide more precise solutions than the JFD technique.

4.1.1 THE JFD METHOD

The JFD method estimates the hidden sm components through the decorrelation over a function set
F(( f) (Szabó and Lőrincz, 2006). Formally, let the empirical f-covariance matrix of y(t) and ym(t)
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for function f= [f1; . . . ; fM] ∈ F over t = 1, . . . ,T be denoted by

Σ(f,T,W) = ĉov [f(y) , f(y)] =

=
1
T

T

∑
t=1

{
f[y(t)]− 1

T

T

∑
k=1
f[y(k)]

}{
f[y(t)]− 1

T

T

∑
k=1
f[y(k)]

}∗

,

Σi, j(f,T,W) = ĉov
[
fi
(
yi
)
, f j

(
y j
)]

=

=
1
T

T

∑
t=1

{
fi[yi(t)]− 1

T

T

∑
k=1
fi[yi(k)]

}{
f j[y j(t)]− 1

T

T

∑
k=1
f j[y j(k)]

}∗

.

Then, the joint decorrelation on F can be formulated as the minimization of cost function

JJFD(W) := ∑
f∈F

‖N◦Σ(f,T,W)‖2F . (10)

Here: (i)W ∈ OD, (ii) F denotes a set of RD → RD functions, and each function acts on each coor-
dinate separately, (iii) ◦ denotes the point-wise multiplication, called the Hadamard-product, (iv) N
masks according to the subspaces,N :=ED−IM⊗Ed , where all elements of matrix ED ∈ RD×D and
Ed ∈ Rd×d are equal to 1, ⊗ is the Kronecker-product, (v) ‖·‖2F denotes the square of the Frobenius
norm, that is, the sum of the squares of the elements.

Cost function (10) can be interpreted as follows: for any function fm : Rd → Rd that acts on
independent variables ym (m = 1, . . . ,M) the variables fm(ym) remain independent. Thus, covari-
ance matrix Σ(f,T,W) of variable f(y) =

[
f1
(
y1
)
; . . . ; fM

(
yM

)]
is block-diagonal. Independence

of estimated sources ym is gauged by the uncorrelatedness on the function set F. Thus, the non-
block-diagonal portions (Σi, j(f,T,W), i /= j) of covariance matrices Σ(f,T,W) are punished. This
principle is expressed by the term ‖N◦Σ(f,T,W)‖2F .

4.1.2 KERNEL-ISA METHODS

Two alternatives for the ISA cost function of (10) are presented. They estimate the mutual informa-
tion based ISA cost defined in (2) via kernels: the KCCA and KGV kernel-ICA methods of Bach
and Jordan (2002) are extended to the ISA task. The original methods estimate pair-wise indepen-
dence between 1-dimensional random variables.8 The extension to the multidimensional case is
straightforward, the arguments of the kernels can be modified to multidimensional variables and
the derivation of Bach and Jordan (2002) can be followed. The main steps are provided below for
the sake of completeness. The resulting expressions can be used for the estimation of dependence
between multidimensional random variables. The performance of these simple extensions on the
related ISA applications is shown in Section 5.3.2.

The KCCA Method First, the 2-variable-case is treated and then it will be generalized to many
variables.

2-variable-case Assume that the mutual dependence of two random variables u∈Rd1 and v∈Rd2

has to be measured. Let positive semi-definite kernels ku(·, ·) : Rd1 ×Rd1 → R, and kv(·, ·) : Rd2 ×

8. We note that if our observations are generated by an ISA model then—unlike in the ICA task when d = 1—pairwise
independence is not equivalent to mutual independence (Comon, 1994; Póczos and Lőrincz, 2005a). Nonetheless,
according to our numerical experiences it is an efficient approximation in many situations.

1072



UNDERCOMPLETE BLIND SUBSPACE DECONVOLUTION

Rd2 → R be chosen in the respective spaces. Let Fu and Fv denote the reproducing kernel Hilbert
spaces (RKHS) (Aronszajn, 1950; Wahba, 1999; Schölkopf et al., 1999) associated with the kernels.
Here, Fu and Fv are function spaces having elements that perform mappingsRd1 →R andRd2 →R,
respectively. Then the mutual dependence between u and v can be measured, for instance, by the
following expression:

J∗KCCA(u,v,Fu,Fv) := sup
g∈Fu,h∈Fv

corr[g(u),h(v)],

where corr denotes correlation.
The value of J∗KCCA can be estimated empirically: assume that we have T samples both from

u and from v. These samples are u1, . . . ,uT ∈ Rd1 and v1, . . . ,vT ∈ Rd2 . Then, using notations

ḡ := 1
T

T
∑
k=1

g(uk), h̄ := 1
T

T
∑
k=1

g(vk), the empirical estimation of J∗KCCA could be the following:

J∗,empKCCA(u,v,Fu,Fv) := sup
g∈Fu,h∈Fv

1
T ∑

T
t=1[g(ut)− ḡ][h(vt)− h̄]

√
1
T ∑

T
t=1[g(ut)− ḡ]2

√
1
T ∑

T
t=1[h(vt)− h̄]2

.

However, it is worth including some regularization for J∗KCCA (Fukumizu et al., 2007), therefore
J∗KCCA is modified to

JKCCA(u,v,Fu,Fv) := sup
g∈Fu,h∈Fv

cov[g(u),h(v)]√
var [g(u)]+κ‖g‖2Fu

√
var [h(v)]+κ‖h‖2Fv

, (11)

where expression ‘var’ stands for variance, κ > 0 is the regularization parameter, ‖.‖2Fu and ‖.‖
2
Fv

denote the RKHS norm of their arguments in Fu and Fv, respectively. Now, expanding the denom-
inator up to second order in κ, setting the expectation value of the samples to zero in the respective
RKHSs, and using the notation κ2 := κT

2 (Bach and Jordan, 2002), the empirical estimation of (11)
is

ĴempKCCA(u,v,Fu,Fv) = sup
c1∈RT ,c2∈RT

c∗1K̃uK̃vc2√
c∗1
(
K̃u+κ2IT

)2
c1
√
c∗2
(
K̃v+κ2IT

)2
c2

, (12)

where K̃u, K̃v ∈ RT×T are the so-called centered kernel matrices: These matrices are derived from
kernel matricesKu = [k(ui,u j)]i, j=1,...,T ,Kv = [k(vi,v j)]i, j=1,...,T ∈RT×T , as is described below. Let
1T ∈ RT denote a vector whose all elements are equal to 1 and letH := IT − 1

T 1T1
∗
T ∈ RT×T denote

the so-called T -dimensional centering matrix. Then K̃u :=HKuH, K̃v :=HKvH.
Computing the stationary points of Ĵ empKCCA in (12), that is, setting 0 = ∂Ĵ empKCCA

∂c , the resulting task
is to solve a generalized eigenvalue problem of the form Cξ = µDξ:

(
(K̃u+κ2IT )2 K̃uK̃v
K̃vK̃u (K̃v+κ2IT )2

)(
c1
c2

)
= (1+ γ)

(
(K̃u+κ2IT )2 0

0 (K̃v+κ2IT )2

)(
c1
c2

)
,

where the objective is to maximize γ := c∗1K̃uK̃vc2. Our task is to estimate Ĵ
emp
KCCA, the maximum of

γ.
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Generalization for many variables The KCCA method can be generalized for more than two
random variables and can be used to measure pair-wise dependence: Let us introduce the fol-
lowing notations: Let y1 ∈ Rd1 , . . . ,yM ∈ RdM be random variables. We want to measure the
dependence between these variables. Let positive semi-definite kernels km(·, ·) : Rdm ×Rdm → R
(m = 1, . . . ,M) be chosen in the respective spaces. Let Fm denote the RKHS associated with ker-
nel km(·, ·). Having T samples ym1 , . . . ,ymT for all random variables ym (m = 1, . . . ,M), matrices
Km := [km(ymi ,ymj )]i, j=1,...,T ∈ RT×T and K̃m := HKmH ∈ RT×T can be created. Let the regular-
ization parameter be chosen as κ > 0 and let κ2 denote the auxiliary variable κ2 := κT

2 . It can be
proven that the computation of Ĵ empKCCA involves the solution of the following generalized eigenvalue
problem:





(K̃1+κ2IT )2 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 (K̃2+κ2IT )2 · · · K̃2K̃M

...
...

...
K̃MK̃1 K̃MK̃2 · · · (K̃M +κ2IT )2









c1
c2
...
cM




= (13)

= λ





(K̃1+κ2IT )2 0 · · · 0
0 (K̃2+κ2I)2 · · · 0
...

...
...

0 0 · · · (K̃M +κ2I)2









c1
c2
...
cM




.

Analogously to the two-variable-case, the largest eigenvalue of this task is a measure of the value
of the pair-wise dependence of the random variables.

The KGV Method Equation (2) in Section 2.3 indicates that the ISA task can be seen as the
minimization of the mutual information. The basic idea of the KGV technique is that—even for
non-Gaussian variables—it estimates the mutual information by the Gaussian approximation (Bach
and Jordan, 2002). Namely, let y = [y1; . . . ,yM] be multidimensional normal random variable with
covariance matrix C. Let Ci, j ∈ Rdm×dm denote the cross-covariance between components of ym ∈
Rdm . The mutual information between components y1, . . . ,yM is (Cover and Thomas, 1991):

I(y1, . . . ,yM) = −1
2
log

(
detC

∏M
m=1 detCm,m

)
.

The quotient detC
∏M
m=1 detCm,m is called the generalized variance. If y is not normal—this is the typical

situation in the ISA task—then let us transform the individual components ym using feature mapping
ϕ associated with the reproducing kernel and assume that the image is a normal variable. Thus, the
cost function

JKGV(W) := −1
2
log

[
det(K )

∏M
m=1 det(K m,m)

]
(14)

is associated with the ISA task. In Equation (14) φ(y) := [ϕ(y1); . . . ;ϕ(yM)], K := cov[φ(y)],
and the sub-matrices are K i, j = cov[ϕ(yi),ϕ(y j)]. Expression det(K )

∏M
m=1 det(K m,m) is called the kernel

generalized variance (KGV).
The next theorem shows that the KGV technique can be interpreted as a decorrelation based

method:
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Theorem 2 Let Σ ∈ RD×D be a positive semi-definite matrix, let Σm,m ∈ Rdm×dm denote the mth
block in the diagonal of matrix Σ, and let D= ∑M

m=1 dm. Then the function

0≤ Q(Σ) := −1
2
log

[
det(Σ)

∏M
m=1 det(Σm,m)

]

is 0 iff Σ= blockdiag(Σ1,1, . . . ,ΣM,M).

This theorem can be proven for dm ≥ 1, as in the case of dm = 1 (Cover and Thomas, 1991), see
the work of Szabó and Lőrincz (2006). The theorem implies the following:

Corollary Setting Σ := K , the KGV technique is a decorrelation technique according to feature
mapping ϕ. The KGV technique aims at minimizing of cross-covariances K i, j = cov[ϕ(yi),ϕ(y j)]
to 0.

We note that the kernel covariance (KC) ICA method (Gretton et al., 2005)—similarly to the
KCCA method—can be extended to measure the mutual dependence of multidimensional random
variables and thus to solve the ISA task. Again, the computation of the cost function can be con-
verted to the solution of a generalized eigenvalue problem. This eigenvalue problem is provided in
Appendix B for the sake of completeness.

Note 4 The KCCA, KGV and KC methods can estimate only pair-wise dependence. Nonetheless,
the joint mutual information can be estimated by recursive methods computing pair-wise mutual
information: for the mutual information of random variables ym ∈ Rdm (m = 1, . . . ,M) it can be
shown that the recursive relation

I(y1, . . . ,yM) =
M

∑
m=1

I
(
ym,

[
ym+1, . . . ,yM

])
(15)

holds (Cover and Thomas, 1991). Thus, for example, the KCCA eigenvalue problem of (13) can be
replaced by pair-wise estimation of mutual information. We note that the tree-dependent component
analysis model (Bach and Jordan, 2003) estimates the joint mutual information from the pair-wise
mutual information.

4.2 Optimization of ISA Costs

There are several possibilities to optimize ISA cost functions:

1. Without ICA preprocessing, optimization problems concern either the Stiefel manifold (Edel-
man et al., 1998; Lippert, 1998; Plumbley, 2004; Quinquis et al., 2006) or the flag manifold
(Nishimori et al., 2006). According to our experiences, these gradient based optimization
methods may be stuck in poor local minima.

2. According to the ISA Separation Theorem, it may be sufficient to search for optimal permuta-
tion of the ICA components provided by ICA preprocessing. We applied greedy permutation
search: two coordinates of different subspaces are exchanged provided that this change de-
creases cost function J. Here, J denotes, for example, JJFD, JKCCA, or JKGV depending on the
ISA technique applied. The variable of J is the permutation matrix P using the parametriza-
tionWISA = PWICA. Pseudocode is provided in Table 2. Our experiences show that greedy
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Input of the algorithm
ISA observation: {x(t)}t=1,...,T

Optimization9
ICA: on the whitened observation x⇒ ŝICA estimation
Permutation search

P := ID
repeat

sequentially for ∀p ∈ Gm1 ,q ∈ Gm2(m1 /= m2) :
if J(PpqP) < J(P)

P := PpqP
end

until J(·) decreases in the sweep above
Estimation

ŝISA = PŝICA

Table 2: Pseudocode of the ISA Algorithm. Cost J stands for the ISA cost function of JFD, KCCA,
or KGV methods. The permutation matrix of the ISA Separation Theorem is the variable of J.

permutation search is often sufficient for the estimation of the ISA subspaces. However, it
is easy to generate examples in which this is not true (Póczos and Lőrincz, 2005a). In such
cases, global permutation search method of higher computational burden may become neces-
sary (Szabó et al., 2006a).

4.3 Different and Unknown Component Dimensions

Here we give a quick overview how one can handle situations when the dimensions of the subspaces
are unequal, unknown, or both. Note that the introduced uBSSD-ISA reduction, the ISA ambiguities
(Theis, 2006) and the Separation Theorem remain the same for subspaces of different dimensions,
and thus it is sufficient to consider the ISA problem.

1. If the dimensions of the subspaces are different but known, the ISA task can be solved

(a) the mask N of the JFD method should be modified (see Equation 10).
(b) the kernel-ISA methods include this situation; they were introduced for different sub-

space dimensions.

2. If the dimension of the hidden source s is known, but the individual dimensions of compo-
nents sm are not, then clustering can exploit the dependencies between the coordinates of the
estimated sources. For example:

(a) If we assume that the hidden s source has block diagonal AR dynamics of the form
s(t + 1) = Fs(t) + e(t)—F = blockdiag

(
F1, . . . ,FM

)
—then connectivity of the esti-

mated matrix F̂ may help (Póczos and Lőrincz, 2006). One may assume that the i and
the j coordinates are ‘F̂-connected’ if value max{|F̂i j|, |F̂ji|} is above a certain threshold.

9. Let G1, . . . ,GM denote the indices of the 1st , . . . ,Mth subspaces, that is, Gm := {(m−1)d+1, . . . ,md}, and permuta-
tion matrix Ppq exchanges coordinates p and q.

1076



UNDERCOMPLETE BLIND SUBSPACE DECONVOLUTION

(b) Similar considerations can be applied in the ISA problem, for example, by using cumu-
lant based matrices (Theis, 2006).

(c) Weaknesses of the threshold based method include (i) the uncertainty in choosing the
threshold, and (ii) the fact that the methods are sensitive to the threshold. More ro-
bust solutions can be designed if the dependencies, for example, the mutual information
amongst the coordinates, are used to construct an adjacency matrix and apply a cluster-
ing method for this matrix. One might use, for example, hierarchical (Stögbauer et al.,
2004) or tree-structured clustering methods (Bach and Jordan, 2003).

5. Illustrations

The efficiency of the algorithms of Section 4 are illustrated. Test cases are introduced in Section 5.1.
The quality of the solutions will be measured by the normalized Amari-error, the Amari-index
(Section 5.2). Numerical results are presented in Section 5.3.

5.1 Databases

We define five databases to study our identification algorithms. We do not know whether they satisfy
(8) or not. According to our experiences, the ISA Separation Theorem works on these examples.

5.1.1 THE 3D-GEOM, THE CELEBRITIES AND THE ABC DATABASE

The first 3 databases are illustrated in Figure 1. In the 3D-geom test sms were random variables
uniformly distributed on 3-dimensional geometric forms (d = 3). We chose 6 different components
(M = 6) and, as a result, the dimension of the hidden source s is Ds = 18. The celebrities test
has 2-dimensional source components generated from cartoons of celebrities (d = 2).10 Sources sm
were generated by sampling 2-dimensional coordinates proportional to the corresponding pixel in-
tensities. In other words, 2-dimensional images of celebrities were considered as density functions.
M = 10 was chosen. In the ABC database, hidden sources sm were uniform distributions defined
by 2-dimensional images (d = 2) of the English alphabet. The number of components varied as
M = 2,5,10,15, and thus the dimension of the source Ds was 4,10,20,30, respectively.

5.1.2 THE ALL-K-INDEPENDENT DATABASE

The d-dimensional hidden components u := sm were created as follows: coordinates ui(t) (i =
1, . . . ,k) were uniform random variables on the set {0,. . . ,k-1}, whereas uk+1 was set to mod(u1+
. . .+ uk,k). In this construction, every k-element subset of {u1, . . . ,uk+1} is made of independent
variables. This database is called the all-k-independent problem (Póczos and Lőrincz, 2005a; Szabó
et al., 2006a). In our simulations d = k+ 1 was set to 3 or 4 and we used 2 components (M = 2).
Thus, source dimension Ds was either 6 or 8.

5.1.3 THE BEATLES DATABASE

Our Beatles test is a non-i.i.d. example. Here, hidden sources are stereo Beatles songs.11 8 kHz
sampled portions of two songs (A Hard Day’s Night, Can’t Buy Me Love) made the hidden sms.

10. See http://www.smileyworld.com.
11. See http://rock.mididb.com/beatles/.
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(a) (c)

(b)

Figure 1: Illustration of the 3D-geom, celebrities and ABC databases. (a): database 3D-geom, 6
3-dimensional components (M = 6, d = 3). Hidden sources are uniformly distributed variables on
3-dimensional geometric objects. (b): database celebrities. Density functions of the hidden sources
are proportional to the pixel intensities of the 2-dimensional images (d = 2). Number of hidden
components: M = 10. (c): database ABC. Here, the hidden sources sm are uniformly distributed on
images (d = 2) of letters. Number of componentsM varies between 2 (A and B) and 15 (A-O).

Thus, the dimension of the components d was 2, the number of the components M was 2, and the
dimension of the problem Ds was 4.

5.2 Normalized Amari-error, the Amari-index

We have shown in Section 3.1 that the uBSSD task can be reduced to an ISA task. Consequently,
we use ISA performance measure to evaluate our algorithms. Assume that there are M pieces
of d-dimensional hidden components in the ISA task, A is the mixing matrix, and W is the esti-
mated demixing matrix. Then optimal estimation provides matrix G :=WA, a block-permutation
matrix made of d × d sized blocks. Let matrix G ∈ RD×D be decomposed into d × d blocks:
G =

[
Gi j]

i, j=1,...,M . Let gi, j denote the sum of the absolute values of the elements of matrix
Gi, j ∈ Rd×d . We used the normalized version (Szabó et al., 2006a) of the Amari-error (Amari
et al., 1996) adapted to the ISA task (Theis, 2005a,b) defined as:

r(G) :=
1

2M(M−1)

[
M

∑
i=1

(
∑M
j=1 gi j

max j gi j
−1

)
+

M

∑
j=1

(
∑M
i=1 gi j

maxi gi j
−1

)]
.

We refer to the normalized Amari-error as the Amari-index. One can see that 0≤ r(G) ≤ 1 for any
matrix G, and r(G) = 0 if and only if G is a block-permutation matrix with d× d sized blocks.
Normalization is advantageous; we can compare the precision of ISA procedures and procedures,
which are reduced to ISA tasks.

5.3 Simulations

Results on databases 3D-geom, celebrities, ABC, all-k-independent and Beatles are provided here.
These experimental studies have two main parts:

1. The efficiency of the JFD method on the uBSSD task is demonstrated in Section 5.3.1.
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2. The derived KCCA, KGV kernel-ISA methods were tested on ISA tasks. We show examples
in which these methods are favorable over the JFD method in Section 5.3.2.

In both cases the tasks are either ISA tasks or can be reduced to ISA (Section 3.1). Thus, we used
the Amari-index (Section 5.2) to measure and compare the performance of the different methods.
For each individual parameter, 50 random runs were averaged. Our parameters are: T , the sample
number of observations x(t), L, the parameter of the length of the convolution (the length of the
convolution is L+1), M, the number of the components, and d, the dimension of the components,
depending on the test. Random run means random choice of quantities H[z] and s.

5.3.1 JFD ON UBSSD

Our results concerning the uBSSD task are delineated. As we showed in Section 3.1, the temporal
concatenation can turn the uBSSD task into an ISA problem. These ISA tasks associated with sim-
ple uBSSD problems can easily become more than 100-dimensional. Earlier ISA methods cannot
deal with such ‘high dimensional’ problems. This is why we resorted to the recent JFD method
(Section 4.1.1), which seemed to be efficient in solving such large problems under the following
circumstances: Equation (7) implies that the dimension DISA of the derived ISA task with fixed L
and Ds decreases provided that the difference Dx−Ds ≥ 1 increases. This coincides with our expe-
riences: the higher this difference is, the smaller number of samples can reach the same precision.
Below, studies for Dx−Ds = Ds (Dx = 2Ds) are presented. This choice was amenable to the JFD
method.12 In this case the dimension of the ISA task in (7) simplifies to the form

DISA = 2DsL.

The JFD technique works with the pseudocode given in Table 2: it reduces the uBSSD task
to the ISA task, where the fastICA algorithm (Hyvärinen and Oja, 1997) was chosen to perform
the ICA computation. In the JFD cost, we chose manifold F as F := {u→ cos(u),u→ cos(2u)},
where the functions operated on the coordinates separately (Szabó and Lőrincz, 2006). For the
‘observations’, the elements of mixing matrices Hl in Equation (1) were generated independently
from standard normal distributions.13

L= 1 L= 2 L= 3 L= 4 L= 5
3D-geom 0.25% (±0.01) 0.27% (±0.03) 0.28% (±0.02) 0.29% (±0.03) 0.29% (±0.01)
celebrities 0.37% (±0.01) 0.38% (±0.01) 0.39% (±0.01) 0.39% (±0.01) 0.40% (±0.01)

Table 3: The Amari-index of the JFD method for database 3D-geom and celebrities, for different
convolution lengths: average ± deviation. Number of samples: T = 100,000. For other sample
numbers between 1,000≤ T < 100,000 see Figure 2.

We studied the dependence of the precision versus the sample number on databases 3D-geom
and celebrities. The dimension and the number of the components were d = 3 and M = 6 for
the 3D-geom database and d = 2 and M = 10 for the celebrities database, respectively. In both
cases the sample number T varied between 1,000 and 100,000. The parameter of the length of the

12. We note that the hardest Dx−Ds = 1 task is also feasible. However, the sample number necessary to find the solution
grows considerably, as can be expected from (5).

13. Uniform distribution on [0.1], instead of normal distribution, showed similar performance.
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Figure 2: Estimation error of the JFD method on the 3D-geom and celebrities databases: Amari-
index as a function of sample number on log-log scale for different convolution lengths. (a): 3D-
geom, (b): celebrities database. Dimension of the ISA task: DISA. For further information, see
Table 3.
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Figure 3: Number of sweeps in permutation search needed for the JFD method as a function of the
convolution length. (a): 3D-geom, (b): celebrities database. Black: minimum, gray: average, light
gray: maximum.

convolution took L= 1, . . . ,5 values. Thus, the length of the convolution changed between 2 and 6.
Our results are summarized in Figure 2. The values of the errors are given in Table 3. The number of
sweeps needed to optimize the permutations after performing ICA is provided in Figure 3. Figures 4
and 5 illustrate the estimations of the JFD technique on the 3D-geom and the celebrities databases,
respectively.

Figure 2 demonstrates that the JFD algorithm was able to uncover the hidden components with
high precision. The precision of the estimations shows similar characteristics on the 3D-geom and
the celebrities databases. The Amari-index is approximately constant for small sample numbers.
For each curve, above a certain threshold the Amari-index decreases suddenly and after the sudden
decrease the precision follows a power law r(T )∝ T−c (c> 0). The power law decline is manifested
by straight line on log-log scale. The slopes of these straight lines are very close to one another.
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(a) (b) (c)

Figure 4: Illustration of the JFD method on the uBSSD task for the 3D-geom database. Sample
number T = 100,000, convolution length L = 1, Amari-index: 0.25%. (a): observed convolved
signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the derived ISA task and
the estimated demixing matrix (= approximately block-permutation matrix with 3×3 blocks). (c):
estimated components. Note: hidden components are recovered L+L′ = 2 times, up to permutation
and orthogonal transformation.

(a) (b) (c)

Figure 5: Illustration of the JFD method on the uBSSD task for the celebrities database. Sample
number T = 100,000, convolution length L = 1, Amari-index: 0.37%. (a): observed convolved
signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the derived ISA task and
the estimated demixing matrix (= approximately block-permutation matrix with 2×2 blocks). (c):
estimated components. Note: hidden components are recovered L+L′ = 2 times, up to permutation
and orthogonal transformation.

The number of sweeps was between 2 and 11 (2 and 8) for the 3D-geom (celebrities) tests over all
sample numbers, for 1≤ L≤ 5 and for 50 random initializations. According to Table 3, the Amari-
index for sample number T = 100,000 is below 1% (0.25−0.40%) with small standard deviations
(0.01−0.03).
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Figure 6: (a): Amari-index of the JFD method on the ABC database as a function of sample number
and for different convolution lengths on log-log scale. (b): Number of sweeps of permutation
optimization on the derived ISA task as a function of convolution length. Dimension of the ISA
task: DISA. Black: minimum, gray: average, light gray: maximum. For further information, see
Table 4.

In another test the ABC database was used. The number and the dimensions of the components
were minimal (d = 2,M= 2) and the dependence on the convolution length was tested. Parameter L
took values on 1,2,5,10,20,30. The number of observations varied between 1,000≤ T ≤ 75,000.
The Amari-index and the sweep number of the optimization are illustrated in Figure 6. Precise
values of the Amari-index are provided in Table 4.

L= 1 L= 2 L= 5 L= 10 L= 20 L= 30
0.41% (±0.06) 0.44% (±0.05) 0.46% (±0.05) 0.47% (±0.03) 0.66% (±0.13) 0.70% (±0.11)

Table 4: Amari-index of the JFD method for ABC database for different convolution lengths:
average ± deviation. Number of samples: T = 75,000. For other sample numbers between
1,000≤ T < 75,000 see Figure 6(a).

According to Figure 6, the JFD method found the hidden components. The ‘power law’ decline
of the Amari-index, which was apparent in the 3D-geom and the celebrities databases, appears for
the ABC test, too. The figure indicates that for 75,000 samples and for L = 30 (convolution length
is 31) the problem is still amenable to the JFD technique. The number of sweeps required for the
optimization of the permutations was between 1 and 8 for all sample numbers 1,000≤ T ≤ 75,000,
parameters 1 ≤ L ≤ 30 and for all 50 random initializations. According to Table 4, for sample
number T = 75,000 the Amari-index stays below 1% on average (0.41− 0.7%) and has a small
(0.03−0.11) standard deviation.

In the case of Beatles database, test parameters were similar to those of the ABC database: the
number and the dimensions of the components were minimal (d = 2, M = 2) and the dependence
on the convolution length was tested. Parameter L took values on 1,2,5,10,20,30. The number of
observations varied between 1,000≤ T ≤ 75,000. The Amari-index and the sweep number of the

1082



UNDERCOMPLETE BLIND SUBSPACE DECONVOLUTION

1 2 5 10 30 50 75

10−2

10−1

100

Number of samples (T)

Am
ar

i−
in

de
x

uBSSD: Beatles (JFD)

 

 

L=1,   DISA=8
L=2,   DISA=16
L=5,   DISA=40
L=10, DISA=80
L=20, DISA=160
L=30, DISA=240

x103

(a)

1 2 5 10 20 30
0

1

2

3

4

5

6

L

Nu
m

be
r o

f s
we

ep
s

uBSSD: Beatles (JFD)

 

 
min
mean
max

(b)

Figure 7: (a): Amari-index of the JFD method on the Beatles database as a function of sample num-
ber and for different convolution lengths on log-log scale. (b): Number of sweeps of permutation
optimization on the derived ISA task as a function of convolution length. Dimension of the ISA
task: DISA. Black: minimum, gray: average, light gray: maximum. For further information, see
Table 5.

optimization are illustrated in Figure 7. Precise values of the Amari-index are provided in Table 5.
The Hinton-diagrams are in Figure 8.

The Beatles songs are non-i.i.d sources and subsequent samples sm(t) and sm(t−1) have depen-
dencies. Thus, in S(t) the components of the (6) model that belong to the same song can not be
distinguished. In the ideal case, however, the songs can be separated, that is, the separation of the
2 pieces of (DISA/2)-dimensional song-subspaces is possible. We measure the appearance of the 2
of (DISA/2)-dimensional blocks for the Beatles songs by means of the Amari-index. The results,
which demonstrate the success of our method, are shown in Figure 7. It can be seen that the JFD
method found the hidden components, for 50 and 75 thousand samples for L = 30 (convolution
length is 31) too. The number of sweeps required for the optimization of the permutations was
between 1 and 6 for all sample numbers 1,000≤ T ≤ 75,000, parameters 1 ≤ L ≤ 30 and for all
50 random initializations. According to Table 5, for sample number T = 75,000 the Amari-index is
between 1.07% (L= 1) and 4.43% (L= 30) on the average and has a small (0.04−0.09) standard
deviation. Separation of the 2 of DISA/2 dimensional subspaces are illustrated in Figure 8 through
the Hinton-diagrams.

L= 1 L= 2 L= 5 L= 10 L= 20 L= 30
1.07% (±0.04) 1.43% (±0.09) 2.29% (±0.07) 3.31% (±0.06) 4.03% (±0.06) 4.43% (±0.04)

Table 5: Amari-index of the JFD method for Beatles database for different convolution lengths:
average± deviation. Number of samples: T = 75,000. For other sample numbers between 1,000≤
T < 75,000 see Figure 7(a).
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(a) (b) (c)

Figure 8: Hinton-diagrams of the JFD methods on the Beatles database for different convolution
parameters. (a): L = 1 (DISA = 8), (b): L = 2 (DISA = 16), (c): L = 5 (DISA = 40). In the ideal
case, 2 pieces of DISA/2-dimensional blocks are formed by multiplying the mixing matrix of the
derived ISA task and the estimated demixing matrix.

5.3.2 KERNEL-ISA TECHNIQUES

We study the efficiency of the KCCA and KGV kernel-ISA methods of Section 4.1.2. The kernel-
ISA techniques was found to have a higher computational burden, but they also have advantages
compared with the JFD technique for ISA tasks.

For the KCCA and KGVmethods we also applied the pseudocode of Table 2. ICA was executed
by the fastICA algorithm (Hyvärinen and Oja, 1997). The Gaussian kernel k(u,v)∝ exp

(
−‖u−v‖2
2σ2

)

was chosen for both the KCCA and KGV methods and parameter σ was set to 5. In the KCCA
method, regularization parameter κ= 10−4 was applied. In the experiments, parameters (σ,κ) were
proved to be reasonably robust. Mixing matrix A was generated randomly from the orthogonal
group and the sample number was chosen from the interval 100≤ T ≤ 5,000.

Our first ISA example concerns the ABC database. The dimension of a component was d = 2
and the number of the components M took different values (M = 2,5,10,15). Precision of the
estimations is shown in Figure 9, where the precision of the JFD method on the same database is
also depicted. The number of sweeps required for the optimization of the permutations is shown in
Figure 10 for different sample numbers and for different component numbers. The data are averaged
over 50 random estimations. Figure 11 depicts the KCCA estimation for the ABC database.

Figure 9 shows that the KCCA and KGV kernel-ISA methods give rise to high precision esti-
mations on the ABC database even for small sample numbers. The KGV method was more precise
for all M values studied than the JFD method. The ratio of precisions could be as high as 4 (see
sample number 500). The KCCA method is somewhat weaker. For smaller tasks (M = 2 and 5)
and for small sample numbers it also exceeds the precision of the JFD method. Precision of the
method become about the same for higher sample numbers and larger tasks. Sweep numbers of the
KCCA (KGV) method were between 2 and 8 (2 and 6) (Figure 10). Note that one sweep is always
necessary for our procedure (Table 2). A single sweep may be satisfactory if—by chance—the ICA
provides the correct permutation.

The other illustration concerns the all-k-independent database. This test can be difficult for
ISA methods (Szabó et al., 2006a). Number of components M was 2. For k = 2,3, when the
dimension of the components d = 3 and 4, respectively, the KCCA and KGV kernel-ISA methods
efficiently estimated the hidden components. The precision of the KCCA and KGV estimations
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Figure 9: (a) and (b): Amari-index of the KCCA and KGV methods, respectively, for the ABC
database as a function of sample number and for different numbers of components M. (c) and (d):
Amari-index of the JFD method is divided by the Amari-index of the KCCA method and the KGV
technique, respectively. For values larger (smaller) than 1 the kernel-ISA method is better (worse)
than the JFD method.

M = 2 M = 5 M = 10 M = 15
KCCA 1.33% (±0.48) 1.20% (±0.17) 2.76% (±2.86) 3.00% (±2.21)
KGV 1.26% (±0.54) 1.18% (±0.17) 1.51% (±0.31) 1.54% (±0.34)

Table 6: Amari-index for the KCCA and the KGV methods for database ABC, for different compo-
nent number M: average ± deviation. Number of samples: T = 5,000. For other sample numbers
between 100≤ T < 5,000, see Figure 9.

as well as the comparison with the JFD method are shown in Figure 12. The average number of
sweeps required for the optimization of the permutations for different k values and for 50 randomly
initialized computations is provided in Figure 13. The values of the Amari-indices are shown in
Table 7.
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Figure 10: Number of sweeps for the KCCA and the KGV methods needed for the optimization of
permutations as a function of component numberM on the ABC database. (a): KCCA method, (b):
KGV method. Black: minimum, gray: mean, light gray: maximum.

(a) (b) (c)

Figure 11: Illustration of the KCCA method for the ABC database. Sample number: T = 5,000.
(a): observed mixed signals x(t). (b) Hinton-diagram: the product of the mixing matrix of the
derived ISA task and the estimated demixing matrix (= approximately block-permutation matrix).
(c): estimated components. Hidden components are recovered up to permutation and orthogonal
transformation.

According to Figure 12 the two kernel-based methods exhibit similar precision. Both were
superior to the JFD technique. The ratio of the Amari-indices for sample number 5,000 and for
k = 2 is more than 15,000, for k = 3 it is more than 500. For details concerning the Amari-indices,
see Table 7. These indices are close to each other for the KCCA and the KGVmethods: 0.0017% for
k= 2, 0.16% for k= 3 on average. Both kernel-ISA methods used 2−3 sweeps for the optimization
of the permutations (Figure 13).

6. Conclusions

We have introduced a new model, the blind subspace deconvolution (BSSD) for data analysis. This
model deals with the casual convolutive mixture of multidimensional independent sources. The
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Figure 12: (a) and (b): Amari-indices of the KCCA and KGV methods, respectively, as a function
of the sample number and for k = 2 and 3 on the all-k-independent database. For more details, see
Table 7. (c): ratio of Amari-indices of JFD and KCCA methods, (d): ratio of Amari-indices of JFD
and KGV methods.
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Figure 13: Number of sweeps of permutation optimization for the KCCA (a) and KGV (b) methods
for the all-k-independent database and for different k values. Black: minimum, gray: mean, light
gray: maximum.
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k = 2 k = 3
KCCA/KGV 0.0017% (±0.0014) 0.16% (±0.04)

Table 7: The Amari-index of the KCCA and KGV methods for database all-k-independent for
different k values: average± deviation. Number of samples: T = 5,000. For other sample numbers
between 100≤ T < 5,000, see Figure 12.

undercomplete version (uBSSD) of the task has been presented, and it has been shown how to derive
an independent subspace analysis (ISA) task from the uBSSD problem. Recent developments of the
ISA techniques enabled us to handle the emerging high dimensional problems. Our earlier results,
namely the ISA Separation Theorem (Szabó et al., 2006b) motivated us to reduce the ISA task to
the search for the optimal permutation of the ICA components. The components were grouped with
a novel joint decorrelation technique, the joint f-decorrelation (JFD) method (Szabó and Lőrincz,
2006).

Also, we adapted other ICA techniques, such as the KCCA and KGV methods to the ISA task
and studied their efficiency. Simulations indicated that although the KCCA and KGV methods
give rise to serious computational burden relative to the JFD method, they can be advantageous for
smaller ISA tasks and for ISA tasks when the number of samples is small.

Finally, we note that we achieved small errors in these high dimensional computations. These
small errors indicate that the Separation Theorem is robust and might be extended to a larger class
of noise sources.
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Appendix A. Proof of the ISA Separation Theorem

We shall rely on entropy inequalities (Section A.1). In Section A.2 connection to the ICA cost
function is derived (Lemma 2). The ISA Separation Theorem then follows.

A.1 EPI-type Relations

First, consider the so-called entropy power inequality (EPI)

e2H(∑Li=1 ui) ≥
L

∑
i=1

e2H(ui),

where u1, . . . ,uL ∈ R denote continuous random variables. This inequality holds, for example, for
independent continuous variables (Cover and Thomas, 1991).

If EPI is satisfied on the surface of the L-dimensional unit sphere SL, then a further inequality
holds:
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Lemma 1 Suppose that continuous random variables u1, . . . ,uL ∈R satisfy the following inequality

e2H(∑Li=1wiui) ≥
L

∑
i=1

e2H(wiui),∀w ∈ SL. (16)

This inequality will be called the w-EPI condition. Then Equation (8) holds, too.

Proof Assume that w ∈ SL. Applying ln on condition (16), and using the monotonicity of the ln
function, we can see that the first inequality is valid in the following inequality chain

2H

(
L

∑
i=1

wiui

)
≥ ln

(
L

∑
i=1

e2H(wiui)

)
= ln

(
L

∑
i=1

e2H(ui)w2i

)

≥
L

∑
i=1

w2i ln
(
e2H(ui)

)
= 2

L

∑
i=1

w2iH(ui).

Here,

1. we used the relation
H(wiui) = H(ui)+ ln(|wi|)

for the entropy of the transformed variable (Cover and Thomas, 1991). Hence

e2H(wiui) = e2H(ui)+2ln(|wi|) = e2H(ui)e2ln(|wi|) = e2H(ui)w2i .

2. In the second inequality, the concavity of ln was exploited. !

Note 5 w-EPI holds, for example, for independent variables ui, because independence is not af-
fected by multiplication with a constant.

A.2 Connection to the Cost Function of the ICA Task

The ISA Separation Theorem will be a corollary of the following claim:

Lemma 2 Let y =
[
y1; . . . ;yM

]
= y(W) =Ws ∈ RD, whereW ∈ OD (D = ∑M

m=1 dm), ym ∈ Rdm is
the estimation of the mth component of the ISA task. Let ymi ∈ R be the ith coordinate of the mth

component (i = 1, . . . ,dm). Similarly, let smi ∈ R stand for the ith coordinate of the mth source. Let
us assume that the u := sm ∈ Rdm sources satisfy the condition (8). Then

M

∑
m=1

dm
∑
i=1

H (ymi ) ≥
M

∑
m=1

dm
∑
i=1

H (smi ) . (17)

Proof Let us denote the (i, j)th element of matrixW byWi, j. Coordinates of y and s will be denoted
by yi and si, respectively. Further, let Gm denote the indices of the mth subspace (m= 1, . . . ,M), that
is, Gm := {1+∑m−1

i=1 di, . . . ,∑
m
i=1 di} (d0 := 0). Now, writing the elements of the ith row of matrix

multiplication y=Ws, we have

yi = ∑
j∈G1

Wi, js j + . . .+ ∑
j∈GM

Wi, js j (18)
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and thus,

H (yi) = H

(
M

∑
m=1

∑
j∈Gm

Wi, js j

)
(19)

= H




M

∑
m=1





(

∑
l∈Gm

W 2
i,l

) 1
2 ∑ j∈GmWi, js j
(
∑l∈GmW 2

i,l

) 1
2







 (20)

≥
M

∑
m=1





(

∑
l∈Gm

W 2
i,l

)
H




∑ j∈GmWi, js j
(
∑l∈GmW 2

i,l

) 1
2







 (21)

=
M

∑
m=1





(

∑
l∈Gm

W 2
i,l

)
H



 ∑
j∈Gm

Wi, j
(
∑l∈GmW 2

i,l

) 1
2
s j







 (22)

≥
M

∑
m=1





(

∑
l∈Gm

W 2
i,l

)

∑
j∈Gm




Wi, j

(
∑l∈GmW 2

i,l

) 1
2





2

H (s j)



 (23)

= ∑
j∈G1

W 2
i, jH (s j)+ . . .+ ∑

j∈GM
W 2
i, jH (s j) . (24)

The above steps can be justified as follows:

1. (19): Equation (18) was inserted into the argument of H.

2. (20): New terms were added for Lemma 1.

3. (21): Sources sm are independent of one another and this independence is preserved upon
mixing within the subspaces, and we could also use Lemma 1, becauseW is an orthogonal
matrix.

4. (22): Nominators were transferred into the ∑ j terms.

5. (23): Variables sm satisfy condition (8) according to our assumptions.

6. (24): We simplified the expression after squaring.

Using this inequality, summing it for i, exchanging the order of the sums, and making use of the
orthogonality of matrixW, we have
D

∑
i=1

H(yi) ≥
D

∑
i=1

(

∑
j∈G1

W 2
i, jH (s j)+ . . .+ ∑

j∈GM
W 2
i, jH (s j)

)

= ∑
j∈G1

(
D

∑
i=1
W 2
i, j

)
H (s j)+ . . .+ ∑

j∈GM

(
D

∑
i=1
W 2
i, j

)
H (s j)

=
D

∑
j=1

H(s j). !
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Corollary (ISA Separation Theorem) ICA minimizes the l.h.s. of Equation (17), that is, it mini-
mizes ∑M

m=1∑
dm
i=1H (ymi ). The set of minima is invariant to permutations and to changes of the signs.

Also, according to Proposition 2, {smi }, that is, the coordinates of the sm components of the ISA task
belong to the set of the minima. !

Appendix B. Kernel Covariance Technique for the ISA Task

For the sake of completeness, the extension of the KC method (Gretton et al., 2005) for the ISA task
is detailed below. The extension is similar to the extensions presented in Section 4.1.2, and we use
the notations of that section.

First, we would like to measure the dependence of two 2 random variables u ∈ Rd1 and v ∈ Rd2 .
The KC technique defines their dependence as their maximal covariance on the unit spheres Su, Sv
of function spaces Fu, Fv:

JKC(u,v,Fu,Fv) := sup
g∈Su,h∈Sv

|E{[g(u)−Eg(u)][h(v)−Eh(v)]}|.

This function JKC can be estimated empirically from T -element samples u1, . . . ,uT ∈Rd1 , v1, . . . ,vT ∈
Rd2 :

J empKC (u,v,Fu,Fv) := sup
g∈Su,h∈Sv

∣∣∣∣∣
1
T

T

∑
t=1

[g(ut)− ḡ][h(vt)− h̄]

∣∣∣∣∣ .

The estimation can be reduced to the following conditional maximization problem:

J empKC (u,v,Fu,Fv) = sup
c∗1K̃uc1≤1,c∗2K̃vc2≤1

c∗1K̃uK̃vc2. (25)

After the adaptation of the Lagrange multiplier technique and the computation of the stationary
points of (25) it can be realized that the values of [c1;c2] and J empKC can be computed as the solutions
of the generalized eigenvalue problem

(
K̃u K̃uK̃v
K̃vK̃u K̃v

)(
c1
c2

)
= λ

(
K̃u 0
0 K̃v

)(
c1
c2

)
. (26)

If the task is to measure the dependence between more than two random variables y1 ∈ Rd1 , . . . ,
yM ∈ RdM then (26) is to be replaced with the following generalized eigenvalue problem:





K̃1 K̃1K̃2 · · · K̃1K̃M

K̃2K̃1 K̃2 · · · K̃2K̃M

...
...

...
K̃MK̃1 K̃MK̃2 · · · K̃M









c1
c2
...
cM




= λ





K̃1 0 · · · 0
0 K̃2 · · · 0
...

...
...

0 0 · · · K̃M









c1
c2
...
cM




.

Using the maximal eigenvalue of this problem, JKC can be estimated.
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Zoltán Szabó and András Lőrincz. Real and complex independent subspace analysis by generalized
variance. In Proceedings of ICA Research Network International Workshop (ICARN 2006), pages
85–88, Liverpool, U.K., 2006. http://arxiv.org/abs/math.ST/0610438.
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Abstract
Factor analysis and discriminant analysis are often used as complementary approaches to identify
linear components in two dimensional data arrays. For three dimensional arrays, which may orga-
nize data in dimensions such as space, time, and trials, the opportunity arises to combine these two
approaches. A new method, Bilinear Discriminant Component Analysis (BDCA), is derived and
demonstrated in the context of functional brain imaging data for which it seems ideally suited. The
work suggests to identify a subspace projection which optimally separates classes while ensuring
that each dimension in this space captures an independent contribution to the discrimination.
Keywords: bilinear, decomposition, component, classification, regularization

1. Introduction

The work presented in this paper is motivated by the analysis of functional brain imaging signals
recorded with functional magnetic resonance imaging (fMRI) or electric or magnetic encephalogra-
phy (EEG/MEG). These imaging modalities record brain activity across time at multiple locations,
providing spatio-temporal data. The design of a brain imaging experiment often includes multi-
ple repetitions or trials. Trials may differ in the type of stimulus presented, the task given to the
subject, or the subject’s response. Hence, brain imaging data is often given as a three-dimensional
array including space, time, and trials. In addition, for each trial we have labels at our disposal that
characterize the trial.

A number of linear analysis methods have been proposed for both EEG/MEG and fMRI in
order to decompose this data into meaningful linear ’components’. These methods include principal
component analysis (Squires et al., 1977; Bullmore et al., 1996), independent component analysis
(Makeig et al., 1996; Calhoun et al., 2001), and linear discriminant analysis (Mørch et al., 1997;
Parra et al., 2005), denoted respectively as PCA, ICA, and LDA. Linear decomposition of a data
matrix X ∈ IRD×T using PCA or ICA involves estimation of the factors of the model

(X)i j ≈
K

∑
k=1

(ak)i(sk) j

where ak ∈ IRD, sk ∈ IRT , and K denotes the number of components in the model. Uniqueness of
such decomposition is guaranteed by declaring additional conditions on the factors {ak} and {sk},
that is, assuming orthogonality in the case of PCA or assuming independence in the case of ICA.

c©2007 Mads Dyrholm, Christoforos Christoforou and Lucas C. Parra.
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When applying PCA or ICA to brain imaging data, trials are often combined with time samples to
form a single dimension, thereby ignoring the tensor structure of the data (see, e.g., Delorme and
Makeig, 2004).

A related model which aims to exploit the additional structure in the data provided by the third
dimension is parallel factor analysis (PARAFAC) (Harshman, 1970). In PARAFAC the three-way
data array X ∈ IRD×T×N is decomposed under the model

(Xn)i j ≈
K

∑
k=1

(ak)i(bk) j(ck)n (1)

where ak ∈ IRD, bk ∈ IRT , ck ∈ IRN , and ·≈ · denotes least-squares approximation. This model has
been suggested as a tool to analyze for instance EEG (Harshman, 1970; Möcks, 1988; Miwakeichi
et al., 2004; Martinez-Montes et al., 2004; Mørup et al., 2006) and fMRI (Andersen and Rayens,
2004; Beckmann and Smith, 2005). The PARAFAC decomposition often turns out to be unique
even without having to declare any additional assumptions such as orthogonality or independence
among the factors of the model (Kruskal, 1977).1 Each component in the PARAFAC model, say
component k consisting of {ak,bk,ck}, offers a simple interpretation—for example, when having
data on the form of spatio-temporal matrices recorded in repeated trials: ak will describe the spatial
distribution of the temporal source signal bk with relative strengths in the different trials given by
the elements of ck. In this example index i labels the space coordinate, index j refers to the time
coordinate, and index n enumerates the trials.

A limitation of the unsupervised methods PARAFAC, ICA and PCA, is that the available labels
are not used when identifying components in the data. Typically, the variability in the data due
to noise and task irrelevant activity is quite large when compared to the signal that relates specif-
ically to the experimental question under consideration. In fMRI data, for instance, the activity
that is extracted from the raw data is often only a small fraction of the total background BOLD
signal. A similar situation arises in EEG where often hundreds of trials have to be averaged to gain
a significant difference between two experimental conditions. Linear discrimination methods have
been suggested in both EEG and fMRI to compensate for this problem (Mørch et al., 1997; Parra
et al., 2005). In essence, these methods project the data onto a linear subspace that best character-
izes the relevant activity. This stands in contrast to an unsupervised analysis that decomposes the
data into orientations that capture the largest variability in the data. Hence, unsupervised methods
that are purely variance based (PCA and PARAFAC) may fail to recover components with very
small signal-to-noise ratios (SNR), typically less than −20dB for EEG. Unsupervised ICA can in
principle recover components with low SNR (see, e.g., Beckmann and Smith, 2005), if the ICA
decomposition is followed by component inspection in order to identify task specific components.
However, dimensionality reduction (typically PCA) may remove task specific components with low
SNR which will then no longer be recovered with subsequent ICA. In this paper we propose an al-
gorithm that includes the labels at the earliest stage in order to identify possible subspaces wherein
the SNR of task specific activity is maximized.

We propose to find a subspace projection in which the dimensions sum up to an optimal classifi-
cation of the trials, while each dimension contributes to this discriminant sum independently across
trials. The subspace will be restricted to a bilinear subspace to express the assumption that each
contributing dimensions should have a fixed spatial profile and an associated temporal profile. The

1. Here ‘unique’ means: unique except for trivial scaling and permutation ambiguities.
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underlying task relevant activity can be expected to involve a number of interacting sources, and
we therefore allow the bilinear subspace to be of rank-K where K > 1. All this can be compactly
represented in a factorization of the form

(X(W )
n )i j =

K

∑
k=1

(ak)i(bk) j(ck)n (2)

where X(W )
n denotes projected data in discriminant directions {ak} and {bk}, with statistically in-

dependent (ck)n across n.
As a first step, a manifold of possible {ak,bk} is identified using Bilinear Discriminant Analysis

(BLDA), extending the work of Dyrholm and Parra (2006). Any choice within this manifold gives
the same (optimal) classification. To select a specific {ak,bk} we require that the resulting {ck} are
independent across n. The resulting model can potentially identify relevant components in low SNR
by using the information available in the labels.

The model satisfies a factorization as in PARAFAC, but the parameter estimation satisfies dif-
ferent optimality criteria, namely discriminability and independence. Hence, we are proposing a
factorized model where the components are independently discriminant.

ICA in tensor models has been suggested before by, for example, Beckmann and Smith (2005);
unsupervised dimensionality reduction in tensorial data is reviewed by De Lathauwer and Van-
dewalle (2004); supervised learning in the context of ICA has been investigated by, for example,
Sakaguchi et al. (2002); however, our method uniquely enables supervised dimensionality reduction
and learning of ICA in a tensor model.

2. Bilinear Discriminant Analysis

The aim of Linear Discriminant Analysis (LDA) is to find a set of weights w and a threshold ε such
that the discriminant function

t(xn) = wTxn− ε (3)

maximizes a discrimination criterion, for example, in a two class problem, the data vector xn is
assigned to one class if t(xn) > 0 and to the other class if t(xn) < 0. Methods for determin-
ing the weights w, and the threshold ε, include Least-Squares Regression, Logistic Regression,
Fisher’s Linear Discriminant and the Single-Layer Perceptron (see, e.g., Bishop, 1996; McCulloch
and Searle, 2001). The simplicity of the LDA model (as opposed to more complex non-linear mod-
els) makes it a good candidate for classification in situations where training data is very limited (see,
e.g., Mørch et al., 1997), which is typically the case, for instance, in Brain Computer Interfacing
(BCI). Furthermore, LDA allows identification of class dependent features/components in the data
(Parra et al., 2005; Ye, 2005).

In this paper we address situations where data is available as a set of matrices {Xn} instead of
as a set of vectors {xn}. For example, in brain imaging modalities (e.g., fMRI or EEG) the columns
of Xn can represent space while its rows represent time. LDA is directly applicable in the form
(3) by letting the data vector xn be a stacking of the elements of the data matrix Xn, but, the data
matrix structure could potentially be exploited to obtain a more parsimonious representation of the
weight vector w. We consider situations where the data is not only given as a set of matrices, but
also, the generators of class-dependent variance in the data have low-rank contributions to each data
matrix Xn. In EEG for instance, an electrical current source which is spatially static in the brain will

1099



DYRHOLM, CHRISTOFOROU AND PARRA

give a rank-one contribution to the spatiotemporal Xn (see also Makeig et al., 1996; Dyrholm and
Parra, 2006). In this paper we incorporate a low-rank assumption in LDA by generalizing (3) to the
following form

t(Xn) = Trace(UTXnV)− ε (4)

where U and V are parameter matrices which share the same number of columns. Let R denote the
number of columns in both U and V, then (4) is equivalent to (3) but with a rank-R constraint on w,
that is,

wTxn =∑
i, j

(W)i j(Xn)i j where W= UVT. (5)

Since Xn is D×T -dimensional, the number of parameters in the rank-Rmodel (4) is [R×(D+T )+
1] while the number of parameters in the unconstrained LDA model (3) is [D× T + 1]. Thus, if
R is kept moderately small compared to min{D,T}, improved generalization performance can be
expected in limited data, particularly in data where the low-rank generator assumption is fundamen-
tally valid. In this model the parameter R quantifies the number of generators (or current sources
for EEG).

Bilinear parameter space factorization has been suggested before in context of Fisher LDA
(Visani et al., 2005). In this paper we generalize maximum likelihood Logistic Regression to the
case of a bilinear factorization of w. The algorithm can be found in Appendix A. The proposed
algorithm has the advantage that it allows us to regularize the estimation and incorporate prior
assumptions about smoothness as described in Section 2.1. In Section 4.1 we test the performance of
this classifier in a benchmark data set from the BCI Competition 2003, and in Section 4.2 we extract
components from the EEG of six human subjects in a rapid serial visual presentation paradigm.

2.1 Smoothness Regularization using Gaussian Processes

For a factorized weight representation regularization can be applied in the column space of Xn and
in the row space separately. For instance, if knowledge is available about the smoothness in the
column space of Xn (e.g., spatial smoothness) or in its row space (e.g., temporal smoothness), such
knowledge can be incorporated by declaring a prior p.d.f. on the columns of U or V respectively
(Dyrholm and Parra, 2006). Spatial and temporal smoothness is typically a valid assumption in
EEG and fMRI, see, for example, Penny et al. (2005).

One way to incorporate prior assumptions in the estimation is through the posterior distribution
of the weights. Here, we propose to estimate U and V through maximization of the posterior. Let
uk denote the kth column of U, and let vk denote the kth column of V. We declare Gaussian Process
priors for uk and vk, that is, assume uk ∼ N (0,Ku) and vk ∼ N (0,Kv), where the covariance
matrices Ku and Kv define the degree and form of smoothness of uk and vk respectively. This is
done through choice of covariance function: Let r be a spatial or temporal measure in context of Xn.
For instance r is a measure of spatial distance between data acquisition sensors, or a measure of time
difference between two samples in the data. Then a covariance function k(r) expresses the degree
of correlation between any two points with that given distance. For example, a class of covariance
functions that has been suggested for modelling smoothness in physical processes, the Matérn class,
is given by

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr
l

)ν

B

(√
2νr
l

)
(6)
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where l is a length-scale parameter, and ν is a shape parameter. The parameter l can roughly be
thought of as the distance within which points are significantly correlated (Rasmussen andWilliams,
2006). The parameter ν defines the degree of ripple. The covariance matrix K is then built by
evaluating the covariance function

(K)i j = σ2 kMatérn(ri j)

where ri j is exemplified by the distance between sensor-i and sensor- j, or time difference between
sample-i and sample- j, and σ2 defines the overall parameter scale. Note that there is a scaling
ambiguity between u and v, and the variance parameter σ2 can thus be kept equal for u and v.
B(·) is a modified Bessel function (Rasmussen and Williams, 2006). The equations for regularized
(maximum posterior) estimation of U and V are deferred to Appendix A.1.

3. Subspace Factorization with Labeled Mode Independence

Applying the Bilinear Discriminant Analysis algorithm of the appendix to classify matrices Xn will
deliver estimates Û and V̂. Note, however, that these estimates will be subject to an arbitrary linear
column space transformation, since

Trace(ÛTXnV̂) = Trace(G−1GÛTXnV̂)

= Trace((ÛGT)TXn(V̂G−1))

= Trace(ŨTXnṼ)

(7)

where G ∈ IRR×R is arbitrary with full rank, and we have implicitly defined Ũ ≡ ÛGT and Ṽ ≡
V̂G−1. Due to this ambiguity, the columns of Û will be arbitrarily mixed, and the columns of V̂ will
be mixed correspondingly (transposed inverse mix). We propose to enhance the task relevant activity
by projecting the data using {Ũ, Ṽ} (similar to the argument of the Trace operator in Equation 7),
hence we need a meaningful way to estimate G. As we will show, the projection can be defined
along with a criterion for estimating G such that the entities Ũ and Ṽ become rather meaningful.

First, we define the projection that uses Ũ and Ṽ, that is, assumingG is given. Define W̃r as the
outer product of the rth columns of Ũ and Ṽ. Least-squares projection of a data matrix Xn onto the
matrix space W = span{W̃r} is given by

X̃(W )
n = vec-1

[
(Ṽ |⊗| Ũ)(Ṽ |⊗| Ũ)+ vec(Xn)

]
(8)

where |⊗| denotes the columnwiseKronecker product which is also known as the Khatri-Rao product
(Bro, 1998), (·)+ denotes Moore-Penrose (least-squares pseudo) inverse, and vec(·) produces a
vector by stacking the columns of its matrix argument (and vec-1 does the opposite). That is, each
data trial is projected to the best (in terms of squared residuals) rank-R representation available
through the basis {W̃r} (the basis is of size R and each W̃r is rank-one).

Next, we define a criterion for estimating G. We design the solution so that the dimensions of
the projection act as independently as possible across trials. Our reasoning behind this choice is
that different cortical processes might respond to the same stimuli, and are hence not temporally
independent, but the trial-to-trial variability between the different cortical networks might satisfy
the independence criterion better. That is, by making the component activations as independent
as possible across trials, we hope to be able to segregate activity arising from different cortical
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networks into separate sets of components. The projection (8) can be rewritten in terms of a precise
definition of ‘component activations’ {ŝn},

X̃(W )
n = vec-1

[
Ãs̃n

]
where Ã≡ (V̂G−1 |⊗| ÛGT) and s̃n ≡ Ã+ vec(Xn)

where the R×N elements of {s̃n} are assumed i.i.d. Hence, determining G is essentially an ICA
problem where the ‘mixing’ matrix A is parameterized in terms of the elements of G (given Û
and V̂). The algorithm for gradient based maximum likelihood estimation of G is deferred to Ap-
pendix B. With an estimate of G, and hence unambiguous estimates of Ũ ≡ ÛGT and Ṽ ≡ V̂G−1,
the projection (8) can be written

(X̃(W )
n )i j =

R

∑
r=1

(Ũ)ir(Ṽ) jr(s̃n)r (9)

The structure of (9) is identical to that of PARAFAC (1), with R= K, ak being the kth column of Ũ,
bk being the kth column of Ṽ, and (ck)n being (s̃n)k, hence we have derived (2) which we will refer
to as a Bilinear Discriminant Component Analysis (BDCA) model.

4. Experiments

We conducted two experiments on real EEG data. The first experiment benchmarks the classification
performance of our BLDA method with smoothness regularization against state-of-the art methods
in a published data set. In the second experiment we extract meaningful components, using BDCA,
and illustrate the usefulness of the method in terms of interpretability.

4.1 Experiment I: Classification Benchmark with ‘The BCI Competition 2003’

The EEG data set in this experiment was made available though ‘The BCI Competition 2003’
(Blankertz et al., 2002, 2004, Data Set IV). The 28 channel EEG was recorded from a single subject
performing a ‘self-paced key typing’, that is, pressing with the index and little fingers corresponding
keys in a self-chosen order and timing. Typing was done at an average speed of 1 key per second.
Trial matrices were extracted by epoching the data starting 630ms before each key-press. A total of
416 epochs were recorded, each of length 500ms. For the competition, the first 316 epochs were to
be used for classifier training, while the remaining 100 epochs were to be used as a test set. Data
were recorded at 1000 Hz with a pass-band between 0.05 and 200 Hz, then downsampled to 100Hz
sampling rate.

4.1.1 TRAINING AND RESULTS

We tuned the smoothness prior parameters using cross validation on the training set using only a
single component, that is, R=1. We used the Matérn class of covariance functions for incorporating
smoothness regularization in the model c.f. Section 2.1. Temporal smoothness was implemented
by letting ri j equal the normalized temporal latency |i− j| between samples i and j. The relative
3D electrode coordinates were looked up from a standard table provided by Delorme and Makeig
(2004), and spatial smoothness was implemented by letting ri j equal the Euclidean distance between
electrodes i and j in a normalized space where the human head was assumed spherical with radius
0.5. The parameters of the Gaussian Process priors were picked to maximize the area under the ROC
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Std.dev. σ Matérn scale l Matérn shape ν Cross valid.
Experiment space time space time space time AUC

BCI Competition 2003 0.5 0.5 0.1 15 100 2.5 0.91
RSVP 0.1 0.1 0.1 10 100 2.5 0.95

Table 1: The parameter values for the Matérn covariance function (6) are summarized in this table.
The values were found by optimizing AUC using five-fold cross validation. Note that the
scale parameter l is defined spatially on a head with unitless radius of 0.5, and defined
temporally in terms of samples (l = 15 corresponds to 150ms for the BCI Competition
data, while l = 10 corresponds to 78ms for the RSVP data).

curve (‘AUC’, see Fawcett, 2003) using five-fold cross validation. The resulting set of parameter
values are summarized in the first row of Table 1, and the resulting number of components was
R= 1.

Benchmark performance was measured on the test set which had not been used during either
training or cross validation. The number of misclassified trials in the test set was 21 which places
our method on a new third place given the result of the competition which can be found online at
http://ida.first.fraunhofer.de/projects/bci/competition_ii/results/index.html
(Blankertz et al., 2004). These benchmark results indicate that classification of single-trial EEG is
indeed a hard problem. Hence, our method works as a classifier producing a state-of-the art result in
this hard data set. We estimated the SNR of this discriminating signal to SNR≈ 10log10(P‖/P⊥) =
−43dB, where P‖ is the power of the projected signal, and P⊥ is the power in the orthogonal space.
The achieved classification performance supports the validity of the bilinear weight space factoriza-
tion in EEG.

4.2 Experiment II: Bilinear Discriminant Component Analysis of Real EEG

We applied the BDCA method in real EEG data which was recorded while the human subjects
were stimulated with a sequence of images presented at a rate of ten images per second. Each
subject attended to a computer monitor where most of the images where ‘distractors’, that is, of no
particular interest. Rare but anticipated ‘target’ images were to be detected by the subject. This
paradigm is also known as Rapid Serial Visual Presentation (RSVP) (Thorpe et al., 1996; Gerson
et al., 2005). In this experiment the subject was instructed to omit any overt response to the targets
but simply note its occurrence. The images used here were identical to those of Gerson et al.
(2005). Sixty-four EEG channels were recorded at 2048Hz, re-referenced to average reference
(one channel removed to obtain full row-rank data), filtered (for anti-aliasing) and downsampled to
128Hz sampling rate, and filtered again with a pass-band between 0.5Hz and 50Hz. All filtering
was applied forwards and backwards in time to avoid introducing group delay. Trial matrices of
dimension (D,T ) = (64,64) were extracted by epoching (500ms per epoch) the data in alignment
with image stimulus. The number of recorded target/distractor trials was roughly 60/3000 for
training and 40/2000 for testing, but varied slightly between subjects.
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Number of Classifier performance (AUC)
Subject components R Train Cross-Valid. Test
1 1 / 2 0.99 / 1.00 0.95 / 0.97 N.A.
2 1 / 2 0.95 / 0.97 0.92 / 0.93 0.84 / 0.87
3 1 / 2 0.91 / 0.95 0.84 / 0.83 0.85 / 0.92
4 1 / 2 0.96 / 0.99 0.91 / 0.93 0.83 / 0.85
5 1 / 2 0.92 / 0.95 0.88 / 0.87 0.92 / 0.92
6 1 / 2 0.80 / 0.90 0.65 / 0.74 0.67 / 0.85

mean 1 / 2 0.92 / 0.96 0.86 / 0.88 0.82 / 0.88

Table 2: Summary of classification performance of classifiers for all subjects. Classifiers with
two components generally perform better than single-component classifiers in both cross-
validation and test.

4.2.1 TRAINING AND RESULTS

We tuned the parameters using cross validation on the training set from a single subject, again using
R= 1 and assuming standard electrode coordinates c.f. Section 4.1.1. The resulting set of parameter
values are summarized in the second row of Table 1. For this subject, the cross validation AUC was
0.95, and corresponded to roughly 0.11 false positive rate and 0.89 true positive rate, indicating that
the algorithm was successful in estimating a discriminating direction which was highly relevant for
the experimental task. This finding underlines the usefulness of the method as a single-trial classifier
for EEG.

Next, we trained classifiers for all subjects keeping the parameters fixed to the values in Table 1.
The training, cross-validated, and test performances are reported in Table 2. In general the two-
component classifiers performed slightly better than the single-component classifiers.

The G matrices (one for each subject) were estimated using the algorithm in Appendix B. Fig-
ure 1 shows a single BDCA component for each subject. Clearly, there are inter-subject variability in
the spatial topographies and in the temporal profiles, however, all temporal profiles exhibit positive
peaks at around 125ms and 300ms after target stimulus, and negative peak at around 200ms. The
peak at 300ms in the temporal profile is in agreement with the conventional P300 which is typically
observed with a rare target stimulus (Gerson et al., 2005; Parra et al., 2005). The early peak (here
around 125ms) had likewise been reported previously for the RSVP paradigm (Thorpe et al., 1996).
The spatial topographies shown in Figure 1 are rather complex. This may simply represent noise,
but it is also possible that BDCA, using additional trials and R > 2, could decompose the complex
rank-one patterns into more than two components with localized, that is, ‘simpler’, topography.

Two of the subjects (4 and 6) showed another interesting component with a broad spatial projec-
tion located slightly below the center on the scalp, see Figure 2. The component time courses were
dominated by a 20Hz rhythm which seemed to modulate in amplitude around 200–300ms. This
feature had not been reported before for this paradigm and underlined the usefulness of the method
as a hypothesis generating tool. To validate the new hypothesis, we measured the single-component
classification performances on the test set for each subject, that is, performed classification based
only on the (subject specific) component shown in Figure 2. The test performances were 0.71 AUC
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Figure 1: For each subject, one of the (spatial) ak vectors is shown topographically on a cartoon
head, and the corresponding (temporal) bk vector is shown right next to it. The sign
ambiguity between component topographies and time courses has been set so that the
P300 peak has a positive projection to the center in the back of the cartoon head. All
temporal profiles exhibit positive peaks at around 100ms and 350ms (P300) after target
stimulus, and negative peak at around 200ms.
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Figure 2: Two of the subjects showed a component with a broad spatial projection located slightly
below center on the scalp. The component time courses shown here have that in common
that they were dominated by a 20Hz rhythm which seemed to modulate in amplitude
around 200–300ms.

1105



DYRHOLM, CHRISTOFOROU AND PARRA

for Subject 4, and 0.87 AUC for subject 6 which indicated that the newly identified components
were indeed associated with target detection.

Finally we would like to point out that the resulting smoothness (e.g., the time courses in Fig-
ure 1) is not only affected by the choice of regularization parameters but also by the data and the
number of trials. If more data is available that supports a deviation from the prior smoothness
assumption the resulting time courses can and will be more punctuated in time.

5. Conclusion and Discussion

Bilinear Discriminant Analysis (BLDA) can give better classification performance in situations
where a bilinear decomposition of the parameter matrix can be assumed as in (5). Such parameter
matrix decompositions might prove reasonable in situations were component analysis according to
model (2) is meaningful. A ‘component’ in this model is considered to be all the activity that can
be associated with a common time course. One such component contributes to a rank-one subspace
in data Xn. If separate spatial distributions have separate time courses the model assumes that these
contribution add up linearly. For instance, when applying this on fMRI data the implicit assumption
would be that the BOLD signal originating from different neuronal populations is additive.

We presented a method for BLDA which allows smoothness regularization for better general-
ization performance in data sets with limited examples. This step was motivated by application to
functional brain imaging were the number of examples is typically very limited compared to the
data space dimensionality. The proposed BLDA method was verified in a benchmark data set, and
the results were highly competitive, putting the new method on a place between the official second
and third places of the competition.

We showed that BLDA can yield a data subspace factorization which makes it a useful tool for
supervised extraction of components as opposed to simply a tool for classifying data matrices. We
identified some essential ambiguities in such supervised subspace component decomposition and
proposed to resolve them by assuming independence across the labeled mode (i.e., across trials in
the EEG examples). The new method (BDCA: Bilinear Discriminant Component Analysis) thus
combines BLDA with ICA and was applied to real EEG data from six human subjects. The results
were in agreement with literature on the given experiment. Furthermore, a hypothesis was generated
due to some components that had not been reported previously.

Model selections (i.e., finding the number of components) was based solely on classification.
Then, given the optimal number of components, ICA was performed as a separate step. Future
work will consider the combined likelihood to select a model that optimizes simultaneously both
discrimination and independence.

Though the algorithm was motivated by functional brain imaging data (with space, time, and
labeled trials as its dimensions) it should be applicable for any data set that records a matrix rather
than a vector for every repetition. Examples include repetitions of spectro-temporal data such as the
acoustic spectrograms of several utterances of words; multiple samples of spectro-spatial data such
as multispectral images of the same areas; or spatio-temporal data such as video clips with multiple
renditions of the same actions. Also, the method readily extends to the case of multiple classes
or regression with continuous dependent variables. With multiple class labels one may consider
multinomial logistic regression. When the dependent variables are continuous rather than discrete
one can use a bilinear model with a unit link function to derive the corresponding bilinear regression.
We are currently pursuing these topics in the context of EEG and fMRI.
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Appendix A. Maximum-Likelihood Estimation of U and V

Parameter estimation in a Logistic Regression model is often done though iterative maximum like-
lihood estimation using Newton-Raphson updates (McCulloch and Searle, 2001). In line with tra-
ditional Logistic Regression we assume the labels independent and Bernoulli distributed. The log
likelihood is then given by

l(w0,{ur,vr}) =
N

∑
n=1

yn(w0+
R

∑
r=1
uTrXnvr)− log(1+ ew0+∑

R
r=1 uTr Xnvr) (10)

where yn is the nth label, ur is the rth column vector of U, vr is the rth column vector of V, and w0
is a scalar that enables a possible activation offset in the logistic function. Define

π(Xn) ≡ E[yn] =
1

1+ e−(w0+∑Rr=1 uTr Xnvr)
.

hen, the gradient of (10) is given by

∂l
∂w0

=∑
n
yn−π(Xn),

∂l
∂ur

=∑
n
Xnvr[yn−π(Xn)],

∂l
∂vTr

=∑
n
uTrXn[yn−π(Xn)],

and the Hessian matrix entries are given by

∂2l
∂w0∂w0

= −∑
n
π(Xn)[1−π(Xn)],

∂2l
∂w0∂ur

= −∑
n
Xnvrπ(Xn)[1−π(Xn)],

∂2l
∂w0∂vTr

= −∑
n
uTrXnπ(Xn)[1−π(Xn)],

∂2l
∂ur∂(uk′) j

= −∑
n
Xnvr(Xnvk′) jπ(Xn)[1−π(Xn)],

∂2l
∂vTr ∂(vk′) j

= −∑
n
uTrXn(uTk′Xn) jπ(Xn)[1−π(Xn)],
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∂2l
∂ur∂(vTk′) j

=∑
n
δk,k′(Xn): j[yn−π(Xn)]−Xnvr(uTk′Xn) jπ(Xn)[1−π(Xn)],

where δk,k′ = 1 for k = k′ and zero otherwise. We provide no guarantee that the Hessian matrix
will be definite, and in our experiments in this paper we obtain ML estimates using the so-called
‘Damped Newton’ optimization scheme which will take regularized Newton steps using adaptive
regularization of the Hessian matrix (Bishop, 1996; Nielsen, 2005).

A.1 Smoothness Regularization with Gaussian Processes

The log posterior is equal to the log likelihood plus evaluation of the log prior, that is,

logp(w0,{ur,vr}|X) = l(w0,{ur,vr})+ logp(w0,{ur,vr})− logp(X)

where X denotes data in all the trials available. Here we consider the maximum of the posterior
(MAP) estimate, that is,

(w0,{ur,vr})MAP = arg max
w0,{ur,vr}

l(w0,{ur,vr})+ logp(w0,{ur,vr})

with independent priors

logp(w0,{ur,vr}) = logp(w0)+∑
r
logp(ur)+∑

r
logp(vr). (11)

For iterative MAP estimation, the terms for the Gaussian prior, to be inserted in (11), are (here
shown for ur)

logp(ur) = −dimur
2

log(2π)− 1
2
log(detK)− 1

2
uTrK−1ur

where dimur =D (or likewise dimvr = T or dimw0 = 1) (see also Rasmussen and Williams, 2006).
The extra terms, to be added to the ML terms, are; for the gradient

∂ logp(ur)
∂ur

= −K−1ur

and for the Hessian
∂2 logp(ur)
∂ur∂(ur) j

= −K−1e j

where e j is the jth unit vector. These expressions (and similar for w0 and vr) thus augment the terms
in the maximum likelihood algorithm above.

Appendix B. Equations for Maximum-Likelihood Estimation of G

The log likelihood is given by

logp(Xn|V̂G−1, ÛGT) = −N
2
logdet[ATA]+∑

n
logp(ŝn)

see also Dyrholm et al. (2006) and http://www.imm.dtu.dk/˜mad/papers/madrix.pdf. We
choose the component activation prior pdf p(·) = 1/[πcosh(·)], as proposed by Bell and Sejnowski
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(1995), which is appropriate for super-Gaussian independent activations (see also Lee et al., 1999).
This choice however might not fit the scaling of the data very well so we parameterize the activation
pdf and rewrite the likelihood

logp(Xn|V̂G−1, ÛGT,α) = −N
2
logdet[ATA]+∑

n
logp(ẑn/α2)

where ẑk(n) = (ŝk(n)−E[ŝk(n)])/
√
var[ŝk(n)]. Again, we use Damped Newton optimization which

will take regularized Newton steps using adaptive regularization of the Hessian matrix (Bishop,
1996; Nielsen, 2005). We do not actually compute the Hessian but use the outer product approxi-
mation to the Hessian given by averaging gradient products across trials (see also Bishop, 1996).

The gradient of the determinant term of the log likelihood, with respect to G, is given by

∂− N
2 logdet[A

TA]
∂(G)i j

= −NTrace
{

(A+)T
(

∂A
∂(G)i j

)T}

where
∂A

∂(G)i j
= −V(G−1eieTjG−1) |⊗|UGT+VG−1 |⊗|Ue jeTi

The gradient of the sum term of the log likelihood, with respect to G, is given by

∂ logp(A+ vec(Xn)/α2)
∂(G)i j

= [ψ(ŝn/α2)]T
∂ŝn

∂(G)i j
/α2

where
ψ(·) =

p′(·)
p(·) = − tanh(·)

and
∂ŝn

∂(G)i j
=

(
∂(ATA)−1

∂(G)i j
AT+(ATA)−1

∂AT

∂(G)i j

)
vec(Xn)

where
∂(ATA)−1

∂(G)i j
= −(ATA)−1Trace

{
∂AT

∂(G)i j
A+AT ∂A

∂(G)i j

}
(ATA)−1.
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Abstract

We propose a method to improve approximate inference methods by correcting for the influence of
loops in the graphical model. The method is a generalization and alternative implementation of a re-
cent idea fromMontanari and Rizzo (2005). It is applicable to arbitrary factor graphs, provided that
the size of the Markov blankets is not too large. It consists of two steps: (i) an approximate infer-
ence method, for example, belief propagation, is used to approximate cavity distributions for each
variable (i.e., probability distributions on the Markov blanket of a variable for a modified graphical
model in which the factors involving that variable have been removed); (ii) all cavity distributions
are improved by a message-passing algorithm that cancels out approximation errors by imposing
certain consistency constraints. This loop correction (LC) method usually gives significantly better
results than the original, uncorrected, approximate inference algorithm that is used to estimate the
effect of loops. Indeed, we often observe that the loop-corrected error is approximately the square
of the error of the uncorrected approximate inference method. In this article, we compare different
variants of the loop correction method with other approximate inference methods on a variety of
graphical models, including “real world” networks, and conclude that the LC method generally
obtains the most accurate results.

Keywords: loop corrections, approximate inference, graphical models, factor graphs, belief prop-
agation

1. Introduction

In recent years, much research has been done in the field of approximate inference on graphical
models. One of the goals is to obtain accurate approximations of marginal probabilities of complex
probability distributions defined over many variables, using limited computation time and memory.
This research has led to a large number of approximate inference methods. Apart from sampling
(“Monte Carlo”) methods, there is a large number of “deterministic” approximate inference meth-
ods, such as variational methods, for example, the mean field method (Parisi, 1988), and a family
of algorithms that are in some way related to the highly successful belief propagation (BP) algo-
rithm (Pearl, 1988). BP is also known as the “sum-product algorithm” (Kschischang et al., 2001)
and as “loopy belief propagation” and is directly related to the Bethe approximation (Bethe, 1935;
Yedidia et al., 2005) from statistical physics. It is well-known that belief propagation yields exact
results if the graphical model is a tree, or, more generally, if each connected component is a tree. If
the graphical model does contain loops, BP can still yield surprisingly accurate results using little
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computation time. However, if the influence of loops is large, the approximate marginals calculated
by BP can have large errors and the quality of the BP results may not be satisfactory.

One way to correct for the influence of short loops is to increase the cluster size of the approxi-
mation, using the cluster variation method (CVM) (Pelizzola, 2005) or other region-based approx-
imation methods (Yedidia et al., 2005). These methods are related to the Kikuchi approximation
(Kikuchi, 1951), a generalization of the Bethe approximation using larger clusters. Algorithms for
calculating the CVM and related region-based approximation methods are generalized belief prop-
agation (GBP) (Yedidia et al., 2005) and double-loop algorithms that have guaranteed convergence
(Yuille, 2002; Heskes et al., 2003). By choosing the (outer) clusters such that they subsume as many
loops as possible, the BP results can be improved. However, choosing a good set of outer clusters
is highly nontrivial, and in general this method will only work if the clusters do not have many
intersections, or in other words, if the loops do not have many intersections (see also Welling et al.,
2005).

Another method that corrects for loops to a certain extent is TreeEP (Minka and Qi, 2004),
a special case of expectation propagation (EP) (Minka, 2001). TreeEP does exact inference on
the base tree, a subgraph of the graphical model which has no loops, and approximates the other
interactions. This corrects for the loops that consist of part of the base tree and exactly one additional
factor. TreeEP yields good results if the graphical model is dominated by the base tree, which is
the case in very sparse models. However, loops that consist of two or more interactions that are
not part of the base tree are approximated in a similar way as in BP. Hence, for denser models, the
improvement of TreeEP over BP usually diminishes.

In this article we propose a method that takes into account all the loops in the graphical model
in an approximate way and therefore obtains more accurate results in many cases. Our method
is a variation on the theme introduced by Montanari and Rizzo (2005). The basic idea is to first
estimate the “cavity distributions” of all variables and subsequently improve these estimates by
cancelling out errors using certain consistency constraints. A cavity distribution of some variable
is the probability distribution on its Markov blanket (all its neighboring variables) of a modified
graphical model, in which all factors involving that variable have been removed. The removal of the
factors breaks all the loops in which that variable takes part. This allows an approximate inference
algorithm to estimate the strength of these loops in terms of effective interactions or correlations
between the variables of the Markov blanket. Then, the influence of the removed factors is taken
into account, which yields accurate approximations to the probability distributions of the original
graphical model. Even more accuracy is obtained by imposing certain consistency relations between
the cavity distributions, which results in a cancellation of errors to some extent. This error cancel-
lation is done by a message-passing algorithm which can be interpreted as a generalization of BP
in case the factor graph does not contain short loops of four nodes; indeed, assuming that the cavity
distributions factorize (which they do in case there are no loops), the BP results are obtained. On
the other hand, using better estimates of the effective interactions in the cavity distributions yields
accurate loop-corrected results.

Although the basic idea underlying our method is very similar to that described in Montanari
and Rizzo (2005), the alternative implementation that we propose here offers two advantages. Most
importantly, it is directly applicable to arbitrary factor graphs, whereas the original method has
only been formulated for the rather special case of graphical models with binary variables and
pairwise factors, which excludes, for example, many interesting Bayesian networks. Furthermore,
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our implementation appears to be more robust and also gives improved results for relatively strong
interactions, as will be shown numerically.

This article is organized as follows. First we explain the theory behind our proposed method and
discuss the differences with the original method by Montanari and Rizzo (2005). Then we report
extensive numerical experiments regarding the quality of the approximation and the computation
time, where we compare with other approximate inference methods. Finally, we discuss the results
and state conclusions.

2. Theory

In this work, we consider graphical models such as Markov random fields and Bayesian networks.
We use the general factor graph representation since it allows for formulating approximate inference
algorithms in a unified way (Kschischang et al., 2001). In the next subsection, we introduce our
notation and basic definitions.

2.1 Graphical Models and Factor Graphs

Consider N discrete random variables {xi}i∈V with V := {1, . . . ,N}. Each variable xi takes values
in a discrete domain Xi. We will use the following multi-index notation: for any subset I ⊆ V ,
we write xI := (xi1 ,xi2 , . . . ,xim) if I = {i1, i2, . . . , im} and i1 < i2 < .. . im. We consider a probability
distribution over x= (x1, . . . ,xN) that can be written as a product of factors ψI:

P(x) =
1
Z ∏I∈F

ψI(xI), Z =∑
x
∏
I∈F

ψI(xI). (1)

The factors (which we will also call “interactions”) are indexed by (small) subsets of V , that is,
F ⊆ P (V ) := {I : I ⊆ V }. Each factor is a nonnegative function ψI : ∏i∈I Xi → [0,∞). For a
Bayesian network, the factors are conditional probability tables. In case of Markov random fields,
the factors are often called potentials (not to be confused with statistical physics terminology, where
“potential” refers to minus the logarithm of the factor instead). Henceforth, we will refer to a triple
(V ,F ,{ψI}I∈F ) that satisfies the description above as a discrete graphical model (or network).

In general, the normalizing constant Z is not known and exact computation of Z is infeasible, due
to the fact that the number of terms to be summed is exponential inN. Similarly, computingmarginal
distributions P(xJ) of P for subsets of variables J ⊆ V is intractable in general. In this article, we
focus on the task of accurately approximating single-variable marginals P(xi) = ∑xV \{i}

P(x).
We can represent the structure of the probability distribution (1) using a factor graph. This is a

bipartite graph, consisting of variable nodes i ∈ V and factor nodes I ∈ F , with an edge between
i and I if and only if i ∈ I, that is, if xi participates in the factor ψI . We will represent factor nodes
visually as rectangles and variable nodes as circles. See Figure 1(a) for an example of a factor graph.
We denote the neighboring nodes of a variable node i by Ni := {I ∈ F : i ∈ I} and the neighboring
nodes of a factor node I simply by I = {i ∈ V : i ∈ I}. Further, we define for each variable i ∈ V the
set Δi :=

S
Ni consisting of all variables that appear in some factor in which variable i participates,

and the set ∂i := Δi\{i}, theMarkov blanket of i.
In the following, we will often abbreviate the set theoretical notation X \Y (i.e., all elements in

X that are not in Y ) by \Y if it is obvious from the context what the set X is. Also, we will write
X \y instead of X \{y}. Further, we will use lowercase for variable indices and uppercase for factor
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Figure 1: (a) Original factor graph, corresponding to the probability distribution P(x) =
1
ZψL(x j,xn,xo)ψI(xi,x j)ψM(x j,xk)ψK(xi,xm,xn)ψJ(xi,xk,xl)ψO(xl,xm); (b) Factor graph
corresponding to the cavity network of variable i, obtained by removing variable i and the
factor nodes that contain i (i.e., I, J and K). The Markov blanket of i is ∂i= { j,k, l,m,n}.
The cavity distribution Z\i(x∂i) is the (unnormalized) marginal on x∂i of the probability
distribution corresponding to the cavity graph (b).

indices. For convenience, we will define for any subset A ⊂ F the product of the corresponding
factors:

ΨA(xSA) :=∏
I∈A

ψI(xI).

2.2 Cavity Networks and Loop Corrections

The notion of a cavity stems from statistical physics, where it was used originally to calculate
properties of random ensembles of certain graphical models (Mézard et al., 1987). A cavity is
obtained by removing one variable from the graphical model, together with all the factors in which
that variable participates.

In our context, we define cavity networks as follows (see also Figure 1):

Definition 2.1 Given a graphical model (V ,F ,{ψI}I∈F ) and a variable i ∈ V , the cavity network
of variable i is the graphical model (V \ i,F \Ni,{ψI}I∈F \Ni).

The probability distribution corresponding to the cavity network of variable i is thus proportional
to:

Ψ\Ni(x\i) = ∏
I∈F
i#∈I

ψI(xI).

Summing out all the variables, except for the neighbors ∂i of i, gives what we will call the cavity
distribution:
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Definition 2.2 Given a graphical model (V ,F ,{ψI}I∈F ) and a variable i ∈ V , the cavity distri-
bution of i is

Z\i(x∂i) :=∑
x\Δi

Ψ\Ni(x\i). (2)

Thus the cavity distribution of i is proportional to the marginal of the cavity network of i on the
Markov blanket ∂i. The cavity distribution describes the effective interactions (or correlations) in-
duced by the cavity network on the neighbors ∂i of variable i. Indeed, from Equations (1) and (2)
and the trivial observation that ΨF =ΨNiΨ\Ni we conclude:

P(xΔi) ∝ Z\i(x∂i)ΨNi(xΔi). (3)

Thus, given the cavity distribution Z\i(x∂i), one can calculate the marginal distribution of the original
graphical model P on xΔi, provided that the cardinality of XΔi is not too large.

In practice, exact cavity distributions are not known, and the only way to proceed is to use
approximate cavity distributions. Given some approximate inference method (e.g., BP), there are
two ways to calculate P(xΔi): either use the method to approximate P(xΔi) directly, or use the
method to approximate Z\i(x∂i) and use Equation (3) to obtain an approximation to P(xΔi). The
latter approach generally gives more accurate results, since the complexity of the cavity network is
less than that of the original network. In particular, the cavity network of variable i contains no loops
involving that variable, since all factors in which i participates have been removed (e.g., the loop
i− J− l−O−m−K− i in the original network, Figure 1(a), is not present in the cavity network,
Figure 1(b)). Thus the latter approach to calculating P(xΔi) takes into account loops involving
variable i, although in an approximate way. It does not, however, take into account the other loops in
the original graphical model. The basic idea of the loop correction approach of Montanari and Rizzo
(2005) is to use the latter approach for all variables in the network, but to adjust the approximate
cavity distributions in order to cancel out approximation errors before (3) is used to obtain the final
approximate marginals. This approach takes into account all the loops in the original network, in
an approximate way.

This basic idea can be implemented in several ways. Here we propose an implementation which
we will show to have certain advantages over the original implementation proposed in Montanari
and Rizzo (2005). In particular, it is directly applicable to arbitrary factor graphs with variables
taking an arbitrary (discrete) number of values and factors that may contain zeroes and consist of
an arbitrary number of variables. In the remaining subsections, we will first discuss our proposed
implementation in detail. In Section 2.6 we will discuss differences with the original approach.

2.3 Combining Approximate Cavity Distributions to Cancel Out Errors

Suppose that we have obtained an initial approximation ζ\i0 (x∂i) of the (exact) cavity distribution
Z\i(x∂i), for each i ∈ V . Let i ∈ V and consider the approximation error of the cavity distribution
of i, that is, the exact cavity distribution of i divided by its approximation:

Z\i(x∂i)
ζ\i0 (x∂i)

.
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In general, this is an arbitrary function of the variables x∂i. However, for our purposes, we approxi-
mate the error as a product of factors defined on small subsets of ∂i in the following way:

Z\i(x∂i)
ζ\i0 (x∂i)

≈ ∏
I∈Ni

φ\iI (xI\i).

Thus we assume that the approximation error lies near a submanifold parameterized by the error
factors {φ\iI (xI\i)}I∈Ni . If we were able to calculate these error factors, we could improve our initial
approximation ζ\i0 (x∂i) by replacing it with the product

ζ\i(x∂i) := ζ\i0 (x∂i)∏
I∈Ni

φ\iI (xI\i) ≈ Z\i(x∂i). (4)

Using (3), this would then yield an improved approximation of P(xΔi).
It turns out that the error factors can indeed be calculated by exploiting the redundancy of the in-

formation in the initial cavity approximations {ζ\i0 }i∈V . The fact that all ζ\i provide approximations
to marginals of the same probability distribution P(x) via (3) can be used to obtain consistency con-
straints. The number of constraints obtained in this way is usually enough to solve for the unknown
error factors {φ\iI (xI\i)}i∈V ,I∈Ni .

Here we propose the following consistency constraints. Let Y ∈ F , i ∈ Y and j ∈ Y with i '= j
(see also Figure 2). Consider the graphical model (V ,F \Y,{ψI}I∈F \Y ) that is obtained from the
original graphical model by removing factor ψY . The product of all factors (except ψY ) obviously
satisfies:

Ψ\Y =ΨNi\YΨ\Ni =ΨN j\YΨ\N j .

Using (2) and summing over all xk for k '∈ Y \ i, we obtain the following equation, which holds for
the exact cavity distributions Z\i and Z\ j:

∑
xi
∑
xΔi\Y

ΨNi\YZ
\i =∑

xi
∑
xΔ j\Y

ΨN j\YZ
\ j.

Substituting our basic assumption (4) on both sides and pulling the factor φ\iY (xY\i) in the l.h.s.
through the summation, we obtain:

φ\iY ∑
xi
∑
xΔi\Y

ΨNi\Yζ
\i
0 ∏
I∈Ni\Y

φ\iI =∑
xi
∑
xΔ j\Y

ΨN j\Yζ
\ j
0 ∏
J∈N j

φ\ jJ .

Since this should hold for each j ∈ Y \ i, we can take the geometric mean of the r.h.s. over all
j ∈ Y \ i. After rearranging, this yields:

φ\iY =

(

∏
j∈Y\i

∑
xi
∑
xΔ j\Y

ΨN j\Yζ
\ j
0 ∏
J∈N j

φ\ jJ

)1/|Y\i|

∑
xi
∑
xΔi\Y

ΨNi\Yζ
\i
0 ∏
I∈Ni\Y

φ\iI
for all i ∈ V , Y ∈ Ni. (5)

Note that the numerator is an approximation of the joint marginal P\Y (xY\i) of the modified graphi-
cal model (V ,F \Y,{ψI}I∈F \Y ) on the variables Y \ i.
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Figure 2: Part of the factor graph, illustrating the derivation of (5). The two gray variable nodes
correspond to Y \ i= { j,k}.

Solving the consistency Equations (5) simultaneously for the error factors {φ\iI }i∈V ,I∈Ni can be
done using a simple fixed point iteration algorithm, for example, Algorithm 1. The input consists
of the initial approximations {ζ\i0 }i∈V to the cavity distributions. It calculates the error factors that
satisfy (5) by fixed point iteration and from the fixed point, it calculates improved approximations
of the cavity distributions {ζ\i}i∈V using Equation (4).1 From the improved cavity distributions, the
loop-corrected approximations to the single-variable marginals of the original probability distribu-
tion (1) can be calculated as follows:

Pi(xi) ≈ bi(xi) ∝∑
x∂i
ΨNi(xΔi)ζ

\i(x∂i), (6)

where the factor ψY is now included. Algorithm 1 uses a sequential update scheme, but other update
schemes are possible (e.g., random sequential or parallel). In practice, the fixed sequential update
scheme often converges without the need for damping.

Alternatively, one can formulate Algorithm 1 in terms of the “beliefs”

Qi(xΔi) ∝ΨNi(xΔi)ζ
\i
0 (x∂i)∏

I∈Ni
φ\iI (xI\i) =ΨNi(xΔi)ζ

\i(x∂i). (7)

As one easily verifies, the update equation

Qi ← Qi

∏
j∈Y\i

(

∑
xΔ j\(Y\i)

Q jψ
−1
Y

)1/|Y\i|

∑
xΔi\(Y\i)

Qiψ
−1
Y

1. Alternatively, one could formulate the updates directly in terms of the cavity distributions {ζ\i}.
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Algorithm 1 Loop Correction Algorithm
Input: initial approximate cavity distributions {ζ\i0 }i∈V
Output: improved approximate cavity distributions {ζ\i}i∈V

1: repeat
2: for all i ∈ V do
3: for all Y ∈ Ni do

4: φ\iY (xY\i) ←

(

∏
j∈Y\i

∑
xi
∑
xΔ j\Y

ΨN j\Yζ
\ j
0 ∏
J∈N j

φ\ jJ

)1/|Y\i|

∑
xi
∑
xΔi\Y

ΨNi\Yζ
\i
0 ∏
I∈Ni\Y

φ\iI

5: end for
6: end for
7: until convergence
8: for all i ∈ V do
9: ζ\i(x∂i) ← ζ\i0 (x∂i)∏I∈Ni φ

\i
I (xI\i)

10: end for

is equivalent to line 1 of Algorithm 1. Intuitively, the update improves the approximate distribution
Qi on Δi by replacing its marginal onY \ i (in the absence ofY ) by a more accurate approximation of
this marginal, namely the numerator. Written in this form, the algorithm is reminiscent of iterative
proportional fitting (IPF). However, contrary to IPF, the desired marginals are also updated at each
iteration. Note that after convergence, the large beliefs Qi(xΔi) need not be consistent, that is, in
general ∑xΔi\J Qi '= ∑xΔ j\J Q j for i, j ∈ V , J ⊆ Δi∩Δ j.

2.4 A Special Case: Factorized Cavity Distributions

In the previous subsection we have discussed how to improve approximations of cavity distribu-
tions. We now discuss what happens when we use the simplest possible initial approximations
{ζ\i0 }i∈V , namely constant functions, in Algorithm 1. This amounts to the assumption that no loops
are present. We will show that if the factor graph does not contain short loops consisting of four
nodes, fixed points of the standard BP algorithm are also fixed points of Algorithm 1. In this sense,
Algorithm 1 can be considered to be a generalization of the BP algorithm. In fact, this holds even if
the initial approximations factorize in a certain way, as will be shown below.

If all factors involve at most two variables, one can easily arrange for the factor graph to have
no loops of four nodes. See Figure 1(a) for an example of a factor graph which has no loops of four
nodes. The factor graph depicted in Figure 2 does have a loop of four nodes: k−Y − j− J2− k.

Theorem 2.1 If the factor graph corresponding to (1) has no loops of exactly four nodes, and all
initial approximate cavity distributions factorize in the following way:

ζ\i0 (x∂i) = ∏
I∈Ni

ξ\iI (xI\i) ∀i ∈ V , (8)

then fixed points of the BP algorithm can be mapped to fixed points of Algorithm 1. Furthermore,
the corresponding variable and factor marginals obtained from (7) are identical to the BP beliefs.
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Proof Note that replacing the initial cavity approximations by

ζ\i0 (x∂i) +→ ζ\i0 (x∂i)∏
I∈Ni

ε\iI (xI\i)

for arbitrary positive functions ε\iI (xI\i) does not change the beliefs (7) corresponding to the fixed
points of (5). Thus, without loss of generality, we can assume ζ\i0 (x∂i) = 1 for all i ∈ V . The BP
update equations are (Kschischang et al., 2001):

µj→I(x j) ∝ ∏
J∈N j\I

µJ→ j(x j) j ∈ V , I ∈ N j,

µI→i(xi) ∝∑
xI\i
ψI(xI) ∏

j∈I\i
µj→I(x j) I ∈ F , i ∈ I (9)

in terms of messages {µJ→ j(x j)} j∈V ,J∈N j and {µj→J(x j)} j∈V ,J∈N j . Assume that the messages µ are
a fixed point of (9) and take the Ansatz

φ\iI (xI\i) = ∏
k∈I\i

µk→I(xk) for i ∈ V , I ∈ Ni.

Then, for i ∈ V , Y ∈ Ni, j ∈ Y \ i, we can write out part of the numerator of (5) as follows:

∑
xi
∑
xΔ j\Y

ΨN j\Yζ
\ j
0 ∏
J∈N j

φ\ jJ =∑
xi
∑
xΔ j\Y

φ\ jY ∏
J∈N j\Y

ψJφ
\ j
J

=∑
xi

(

∏
k∈Y\ j

µk→Y

)

∏
J∈N j\Y

∑
xJ\ j

ψJ ∏
k∈J\ j

µk→J

=∑
xi

(

∏
k∈Y\ j

µk→Y

)
µj→Y =∑

xi
∏
k∈Y

µk→Y ∝ ∏
k∈Y\i

µk→Y

= φ\iY ,

where we used the BP update Equations (9) and rearranged the summations and products using the
assumption that the factor graph has no loops of four nodes. Thus, the numerator of the r.h.s. of (5)
is simply φ\iY . Using a similar calculation, one can derive that the denominator of the r.h.s. of (5) is
constant, and hence (5) is valid (up to an irrelevant constant).

For Y ∈ F , i ∈ Y , the marginal on xY of the belief (7) can be written in a similar way:

∑
xΔi\Y

Qi ∝ ∑
xΔi\Y

ΨNi ∏
I∈Ni

φ\iI = ∑
xΔi\Y
∏
I∈Ni

ψI ∏
k∈I\i

µk→I

= ψY

(

∏
k∈Y\i

µk→Y

)

∏
I∈Ni\Y

∑
xI\i
ψI ∏

k∈I\i
µk→I

= ψY

(

∏
k∈Y\i

µk→Y

)

∏
I∈Ni\Y

µI→i = ψY

(

∏
k∈Y\i

µk→Y

)
µi→Y

= ψY∏
k∈Y

µk→Y ,
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which is proportional to the BP belief bY (xY ) on xY . Hence, also the single-variable marginal bi de-
fined in (6) corresponds to the BP single-variable belief, since both are marginals of bY forY ∈Ni.

If the factor graph does contain loops of four nodes, we usually observe that the fixed point of
Algorithm 1 coincides with the solution of the “minimal” CVM approximation when using factor-
ized initial cavity approximations as in (8). The minimal CVM approximation uses all maximal
factors as outer clusters (a maximal factor is a factor defined on a domain which is not a strict subset
of the domain of another factor). In that case, the factor beliefs found by Algorithm 1 are consis-
tent, that is, ∑xΔi\Y Qi = ∑xΔ j\Y Q j for i, j ∈ Y , and are identical to the minimal CVM factor beliefs.
In particular, this holds for all the graphical models used in Section 3.2

2.5 Obtaining Initial Approximate Cavity Distributions

There is no principled way to obtain the initial cavity approximations ζ\i0 (x∂i). In the previous
subsection, we investigated the results of applying the LC algorithm on factorizing initial cavity
approximations. More sophisticated approximations that do take into account the effect of loops can
significantly enhance the accuracy of the final result. Here, we will describe one method, which uses
BP on clamped cavity networks. This method captures all interactions in the cavity distribution of i
in an approximate way and can lead to very accurate results. Instead of BP, any other approximate
inference method that gives an approximation of the normalizing constant Z in (1) can be used,
such as mean field, TreeEP (Minka and Qi, 2004), a double-loop version of BP (Heskes et al., 2003)
which has guaranteed convergence towards a minimum of the Bethe free energy, or some variant of
GBP (Yedidia et al., 2005). One could also choose the method for each cavity separately, trading
accuracy versus computation time. We focus on BP because it is a very fast and often relatively
accurate algorithm.

Let i ∈ V and consider the cavity network of i. For each possible state of x∂i, run BP on the
cavity network clamped to that state x∂i and calculate the corresponding Bethe free energy F

\i
Bethe(x∂i)

(Yedidia et al., 2005). Then, take the following initial approximate cavity distribution:

ζ\i0 (x∂i) ∝ e−F
\i
Bethe(x∂i).

This procedure is exponential in the size of ∂i: it uses ∏ j∈∂i
∣∣X j

∣∣ BP runs. However, many networks
encountered in applications are relatively sparse and have limited cavity size and the computational
cost may be acceptable.

This particular way of obtaining initial cavity distributions has the following interesting prop-
erty: in case the factor graph contains only a single loop and assuming that the fixed point is unique,
the final beliefs (7) resulting from Algorithm 1 are exact. This can be shown using an argument
similar to that given in Montanari and Rizzo (2005). Suppose that the graphical model contains
exactly one loop and let i ∈ V . First, consider the case that i is part of the loop; removing i will
break the loop and the remaining cavity network will be singly connected. The cavity distribution
approximated by BP will thus be exact. Now if i is not part of the loop, removing i will divide the

2. In a draft version of this work (Mooij and Kappen, 2006), we conjectured that the result of Algorithm 1, when ini-
tialized with factorizing initial cavity approximations, would always coincide with the minimal CVM approximation.
This conjecture no longer stands because we have found a counter example.
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network into several connected components, one for each neighbor of i. This implies that the cav-
ity distribution calculated by BP contains no higher-order interactions, that is, ζ\i0 is exact modulo
single-variable interactions. Because the final beliefs (7) are invariant under perturbation of the ζ\i0
by single-variable interactions, the final beliefs calculated by Algorithm 1 are exact if the fixed point
is unique.

If all interactions are pairwise and each variable is binary and has exactly |∂i|= d neighbors, the
time complexity of the resulting “loop-corrected BP” (LCBP) algorithm is given by O(N2dEIBP+
Nd2d+1ILC), where E is the number of edges in the factor graph, IBP is the average number of
iterations of BP on a clamped cavity network and ILC is the number of iterations needed to obtain
convergence in Algorithm 1.

2.6 Differences with the Original Implementation

As mentioned before, the idea of estimating the cavity distributions and imposing certain consis-
tency relations amongst them has been first presented in Montanari and Rizzo (2005). In its simplest
form (i.e., the so-called first-order correction), the implementation of that basic idea as proposed by
Montanari and Rizzo (2005) differs from our proposed implementation in the following aspects.

First, the original method described by Montanari and Rizzo (2005) is only formulated for
the rather special case of binary variables and pairwise interactions. In contrast, our method is
formulated in a general way that makes it applicable to factor graphs with variables having more than
two possible values and factors consisting of more than two variables. Also, factors may contain
zeroes. The generality that our implementation offers is important for many practical applications.
In the rest of this section, we will assume that the graphical model (1) belongs to the special class
of models with binary variables with pairwise interactions, allowing further comparison of both
implementations.

An important difference is that Montanari and Rizzo (2005) suggest to deform the initial ap-
proximate cavity distributions by altering certain cumulants (also called “connected correlations”),
instead of altering certain interactions. In general, for a set A of ±1-valued random variables
{xi}i∈A , one can define for any subset B ⊆ A the moment

MB :=∑
xA

P(xA)∏
j∈B

x j.

The moments {MB}B⊆A are a parameterization of the probability distribution P(xA). An alternative
parameterization is given in terms of the cumulants. The (joint) cumulants {CE}E⊆A are certain
polynomials of the moments, defined implicitly by the following equations:

MB = ∑
C∈Part(B)

∏
E∈C

CE

where Part(B) is the set of partitions of B .3 In particular, Ci = Mi and Ci j = Mi j−MiM j for all
i, j ∈ A with i '= j. Montanari and Rizzo (2005) propose to approximate the cavity distributions by
estimating the pair cumulants and assuming higher-order cumulants to be zero. Then, the singleton
cumulants (i.e., the single-variable marginals) are altered, keeping higher-order cumulants fixed, in

3. For a set X , a partition of X is a nonempty set Y such that each Z ∈ Y is a nonempty subset of X and
S
Y = X .
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such a way as to impose consistency of the single-variable marginals, in the absence of interac-
tions shared by two neighboring cavities. We refer the reader to Appendix A for a more detailed
description of the implementation in terms of cumulants suggested by Montanari and Rizzo (2005).

The assumption suggested in Montanari and Rizzo (2005) that higher-order cumulants are zero
is the most important difference with our method, which instead takes into account effective in-
teractions in the cavity distribution of all orders. In principle, the cumulant parameterization also
allows for taking into account higher-order cumulants, but this would not be very efficient due to
the combinatorics needed for handling the partitions.

A minor difference lies in the method to obtain initial approximations to the cavity distributions.
Montanari and Rizzo (2005) propose to use BP in combination with linear response theory to obtain
the initial pairwise cumulants. This difference is not very important, since one could also use BP on
clamped cavity networks instead, which turns out to give almost identical results.

As we will show in Section 3, our method of altering interactions appears to be more robust and
still works in regimes with strong interactions, whereas the cumulant implementation suffers from
convergence problems for strong interactions.

Montanari and Rizzo (2005) also derive a linearized version of their cumulant-based scheme (by
expanding up to first order in terms of the pairwise cumulants, see Appendix A) which is quadratic
in the size of the cavity. This linearized, cumulant-based version is currently the only one that can
be applied to networks with large Markov blankets (cavities), that is, where the maximum number
of states maxi∈V |XΔi| is large, provided that all variables are binary and interactions are pairwise.

3. Numerical Experiments

We have performed various numerical experiments to compare the quality of the results and the
computation time of the following approximate inference methods:

MF Mean field, with a random sequential update scheme and no damping.

BP Belief propagation. We have used the recently proposed update scheme (Elidan et al., 2006),
which converges also for difficult problems without the need for damping.

TreeEP TreeEP (Minka and Qi, 2004), without damping. We generalized the method of choosing
the base tree described in Minka and Qi (2004) to multiple variable factors as follows: when
estimating the mutual information between xi and x j, we take the product of the marginals on
{i, j} of all the factors that involve xi and/or x j. Other generalizations of TreeEP to higher-
order factors are possible (e.g., by clustering variables), but it is not clear how to do this in
general in an optimal way.

LCBP (“Loop-corrected belief propagation”) Algorithm 1, where the approximate cavities are ini-
tialized according to the description in Section 2.5.

LCBP-Cum The original cumulant-based loop correction scheme by Montanari and Rizzo (2005),
using response propagation (also known as linear response) to approximate the initial pairwise
cavity cumulants. The full update Equations (14) are used and higher-order cumulants are
assumed to vanish. For strong interactions, the update Equations (14) often yield values for
theM \i

j outside of the valid interval [−1,1]. In this case, we project these values back into the
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valid interval in the hope that the method will converge to a valid result, which it sometimes
does.

LCBP-Cum-Lin Similar to LCBP-Cum, but instead of the full update Equations (14), the lin-
earized update Equations (15) are used.

CVM-Min A double-loop implementation (Heskes et al., 2003) of the minimal CVM approxima-
tion, which uses (maximal) factors as outer clusters.

CVM-Δ A double-loop implementation of CVM using the sets {Δi}i∈V as outer clusters. These are
the same sets of variables as used by LCBP (c.f. (7)) and therefore it is interesting to compare
both algorithms.

CVM-Loopk A double-loop implementation of CVM, using as outer clusters all (maximal) factors
together with all loops in the factor graph that consist of up to k different variables (for k =
3,4,5,6,8).

We have used a double-loop implementation of CVM instead of GBP because the former is
guaranteed to converge to a local minimum of the Kikuchi free energy (Heskes et al., 2003) without
damping, whereas the latter often only converges with strong damping. The difficulty with damping
is that the optimal damping constant is not known a priori, which necessitates multiple trial runs
with different damping constants, until a suitable one is found. Using too much damping slows
down convergence, whereas a certain amount of damping is required to obtain convergence in the
first place. Therefore, in general we expect that (damped) GBP is not much faster than a double-loop
implementation because of the computational cost of finding the optimal damping constant.

To be able to assess the errors of the various approximate methods, we have only considered
problems for which exact inference (using a standard JunctionTree method) was still feasible.

For each approximate inference method, we report the maximum !∞ error of the approximate
single-variable marginals bi, calculated as follows:

Error :=max
i∈V

max
xi∈Xi

|bi(xi)−P(xi)|

where P(xi) is the exact marginal calculated using the JunctionTree method.
The computation time was measured as CPU time in seconds on a 2.4 GHz AMDOpteron 64bits

processor with 4 GB memory. The timings should be seen as indicative because we have not spent
equal amounts of effort optimizing each method.4

We consider an iterative method to be “converged” after T time steps if for each variable i ∈ V ,
the !∞ distance between the approximate probability distributions of that variable at time step T and
T +1 is less than ε= 10−9.

We have studied four different model classes: (i) random graphs of uniform degree with pair-
wise interactions and binary variables; (ii) random factor graphs with binary variables and factor
nodes of uniform degree k= 3; (iii) the ALARM network, which has variables taking on more than
two possible values and factors consisting of more than two variables; (iv) PROMEDAS networks,
which have binary variables but factors consisting of more than two variables. For more extensive
experiments, see Mooij and Kappen (2006).

4. Our C++ implementation of various approximate inference algorithms is free/open source software and can be down-
loaded from http://www.mbfys.ru.nl/˜jorism/libDAI.
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3.1 Random Regular Graphs with Binary Variables

We have compared various approximate inference methods on random graphs, consisting of N bi-
nary (±1-valued) variables, having only pairwise interactions, where each variable has the same
degree |∂i| = d. In this case, the probability distribution (1) can be written in the following way:

P(x) =
1
Z
exp

(

∑
i∈V

θixi+
1
2 ∑i∈V

∑
j∈∂i

Ji jxix j

)
.

The parameters {θi}i∈V are called the local fields and the parameters {Ji j = J ji}i∈V , j∈∂i are called
the couplings. The graph structure and the parameters θ and J were drawn randomly for each in-
stance. The local fields {θi} were drawn independently from aN (0,βΘ) distribution (i.e., a normal
distribution with mean 0 and standard deviation βΘ). For the couplings {Ji j}, we took mixed (“spin-
glass”) couplings, drawn independently from a normal distribution Ji j ∼ N

(
0,β tanh−1 1√

d−1

)
.

The constant β (called “inverse temperature” in statistical physics) controls the overall interaction
strength and thereby the difficulty of the inference problem, larger β corresponding usually to more
difficult problems. The constant Θ controls the relative strength of the local fields, where larger
Θ result in easier inference problems. The particular d-dependent scaling of the couplings is used
in order to obtain roughly d-independent behavior. For Θ = 0 and for β ≈ 1, a phase transition
occurs in the limit of N → ∞, going from an easy “paramagnetic” phase for β< 1 to a complicated
“spin-glass” phase for β> 1.5

We have also done experiments with positive (“attractive” or “ferromagnetic”) couplings, but the
conclusions from these experiments did not differ significantly from those using mixed couplings
(Mooij and Kappen, 2006). Therefore we do not report those experiments here.

3.1.1 N = 100, d = 3, STRONG LOCAL FIELDS (Θ= 2)

We have studied various approximate inference methods on regular random graphs of low degree
d = 3, consisting of N = 100 variables, with relatively strong local fields of strength Θ = 2. We
have considered various overall interaction strengths β between 0.01 and 10. For each value of β,
we have used 16 random instances. On each instance, we have run various approximate inference
algorithms.

Figure 3 shows results for MF, BP and TreeEP, and their loop-corrected versions, LCMF, LCBP
and LCTreeEP. The loop-corrected versions are the result of Algorithm 1, initialized with approx-
imate cavity distributions obtained by the procedure described in Section 2.5 (using MF, BP, and
TreeEP in the role of BP). Note that the loop correction method significantly reduces the error in
each case. In fact, on average the loop-corrected error is approximately given by the square of the
uncorrected error, as is apparent from the scatter plots in Figure 4. BP is the fastest of the uncor-
rected methods and TreeEP is the most accurate but also the slowest uncorrected method. MF is
both slower and less accurate than BP. Unsurprisingly, the loop-corrected methods show similar
relative performance behaviors. Because BP is very fast and relatively accurate, we focus on LCBP
in the rest of this article. Note further that although the graph is rather sparse, the improvement of
LCBP over BP is significantly more than the improvement of TreeEP over BP.

5. More precisely, the PA-SG phase transition occurs at Θ = 0 and (d− 1) =
〈
tanh2(βJi j)

〉
, where 〈·〉 is the average

over all Ji j (Mooij and Kappen, 2005). What happens for Θ> 0 is not known, to the best of our knowledge.
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Figure 3: Error (left) and computation time (right) as a function of interaction strength for vari-
ous approximate inference methods (MF, BP, TreeEP) and their loop-corrected versions
(LCMF, LCBP, LCTreeEP). The averages (calculated in the logarithmic domain) were
computed from the results for 16 randomly generated instances of (N = 100,d = 3) reg-
ular random graphs with strong local fields Θ= 2.
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Figure 4: Pairwise comparisons of errors of uncorrected and loop-corrected methods, for the same
instances as in Figure 3. The solid red lines correspond with y = x, the dotted red lines
with y= x2. Only the cases have been plotted for which both approximate inference meth-
ods have converged. Saturation of errors around 10−9 is an artifact due to the convergence
criterion.

In Figures 5 and 6 we compare the different implementations of the loop correction method on
the same instances as used before. For small values of β, LCBP-Cum and LCBP-Cum-Lin both
converge and yield high quality results, and the error introduced by the linearization is relatively
small. However, for larger values of β, both methods get more and more convergence problems,
although for the few cases where they do converge, they still yield accurate results. At β≈ 10, both
methods have completely stopped converging. The error introduced by the linearization increases
for larger values of β. The computation times of LCBP-Cum, LCBP-Cum-Lin and LCBP do not
differ substantially in the regime where all methods converge. However, the quality of the LCBP
results is higher than that of the cumulant-based methods. This is mainly due to the fact that LCBP
also takes into account effective triple interactions in the initial estimates of the approximate cavity
distributions.
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Figure 5: For the same instances as in Figure 3: average error (left), average computation time
(center) and fraction of converged instances (right) as a function of interaction strength β
for various variants of the LC method. The averages of errors and computation time were
calculated from the converged instances only. The average computation time and fraction
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Figure 6: Pairwise comparisons of errors of various methods for the same instances as in Figure
3. Only the cases have been plotted for which both approximate inference methods con-
verged.

We speculate that the reason for the break-down of LCBP-Cum and LCBP-Cum-Lin for strong
interactions is due to the choice of cumulants instead of interactions. Indeed, consider two random
variables x1 and x2 with fixed pair interaction exp(Jx1x2). By altering the singleton interactions
exp(θ1x1) and exp(θ2x2), one can obtain any desired marginals of x1 and x2. However, a fixed
pair cumulant C12 = 〈x1x2〉− 〈x1〉〈x2〉 imposes a constraint on the range of possible expectation
values 〈x1〉 and 〈x2〉 (hence on the single-variable marginals of x1 and x2); the freedom of choice
in these marginals becomes less as the pair cumulant becomes stronger. We believe that something
similar happens for LCBP-Cum (and LCBP-Cum-Lin): for strong interactions, the approximate pair
cumulants in the cavity are strong, and even tiny errors can lead to inconsistencies which prevent
convergence.

The results of the CVM approach to loop correction are shown in Figures 7 and 8. The CVM-
Loop methods, with clusters reflecting the short loops present in the factor graph, do indeed improve
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for reference) on the same instances as in Figure 3. All methods converged on all in-
stances.
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Figure 8: Pairwise comparisons of errors for various methods for the same instances as in Figure 3.

on BP. Furthermore, as expected, the use of larger clusters (that subsume longer loops) improves the
results, although computation time quickly increases. CVM-Loop3 (not plotted) turned out not to
give any improvement over BP, simply because there were (almost) no loops of 3 variables present.
The most accurate CVM method, CVM-Loop8, needs more computation time than LCBP, whereas
it yields inferior results.6

In addition to the CVM-Loop methods, we compared with the CVM-Δ method, which uses
{Δi}i∈V as outer clusters. These clusters subsume the clusters used implicitly by BP (which are
simply the pairwise factors) and therefore one would naively expect that the CVM-Δ approximation
yields better results. Surprisingly however, the quality of CVM-Δ is similar to that of BP, although
its computation time is enormous. This illustrates that simply using larger clusters for CVM does
not always lead to better results. Furthermore, we conclude that although LCBP and CVM-Δ use
identical clusters to approximate the target probability distribution, the nature of both approxima-
tions is very different.

6. The CVM errors are often seen to saturate around 10−8, which indicates that the slow convergence of the CVM
double-loop algorithm in these cases requires a stricter convergence criterion.
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Figure 9: Selected results for (N = 50,d = 6) regular random graphs with strong local fieldsΘ= 2.
The averaged results for LCBP-Cum and LCBP-Cum-Lin nearly coincide for β! 1.

3.1.2 WEAK LOCAL FIELDS (Θ= 0.2)

We have done the same experiments also for weak local fields (Θ= 0.2), with the other parameters
unaltered (i.e., N = 100, d = 3). The picture roughly remains the same, apart from the following
differences. First, the influence of the phase transition is more pronounced; many methods have
severe convergence problems around β= 1. Second, the negative effect of linearization on the error
(LCBP-Cum-Lin compared to LCBP-Cum) is smaller.

3.1.3 LARGER DEGREE (d = 6)

To study the influence of the degree d = |∂i|, we have done additional experiments for d = 6. We
had to reduce the number of variables to N = 50, because exact inference was infeasible for larger
values of N due to quickly increasing treewidth. The results are shown in Figure 9. As in the
previous experiments, BP is the fastest and least accurate method, whereas LCBP yields the most
accurate results, even for high β. Again we see that the LCBP error is approximately the square of
the BP error and that LCBP gives better results than LCBP-Cum, but needs more computation time.

However, we also note the following differences with the case of low degree (d = 3). The
relative improvement of TreeEP over BP has decreased. This could have been expected, because in
denser networks, the effect of taking out a tree becomes less.

Further, the relative improvement of CVM-Loop4 over BP has increased, probably because
there are more short loops present. On the other hand, computation time of CVM-Loop4 has also
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Figure 10: Error (left) and computation time (right) as a function of N (the number of variables),
for random graphs with uniform degree d = 6, β = 0.1 and Θ = 2. Points are averages
over 16 randomly generated instances. Each method converged on all instances. The
results for LCBP-Cum and LCBP-Cum-Lin coincide.

increased and it is the slowest of all methods. We decided to abort the calculations for CVM-Loop6
and CVM-Loop8, because computation time was prohibitive due to the enormous amount of short
loops present. We conclude that the CVM-Loop approach to loop correction is not very efficient if
there are many loops present.

Surprisingly, the results of LCBP-Cum-Lin are now very similar in quality to the results of
LCBP-Cum, except for a few isolated cases (presumably on the edge of the convergence region).

3.1.4 SCALING WITH N

We have investigated how computation time and error scale with the number of variables N, for
fixed β = 0.1, Θ = 2 and d = 6. We used a machine with more memory (16 GB) to be able to do
exact inference without swapping also for N = 60. The results are shown in Figure 10. The error of
each method is approximately constant.

BP computation time should scale approximately linearly in N, which is difficult to see in this
plot. LCBP variants are expected to scale quadratic in N (since d is fixed) which we have verified
by checking the slopes of corresponding lines in the plot for large values of N. The computation
time of CVM-Loop3 and CVM-Loop4 seems to be approximately constant, probably because the
large number of overlaps of short loops for small values of N causes difficulties. The computation
time of the exact JunctionTree method quickly increases due to increasing treewidth; for N = 60 it
is already ten times larger than the computation time of the slowest approximate inference method.

We conclude that for large N, exact inference is infeasible, whereas LCBP still yields very
accurate results using moderate computation time.

3.1.5 SCALING WITH d

It is also interesting to see how various methods scale with d, the variable degree, which is directly
related to the cavity size. We have done experiments for random graphs of size N = 24 with fixed
β= 0.1 andΘ= 2 for different values of d between 3 and 23. The results can be found in Figure 11.
We aborted the calculations of the slower methods (LCBP, LCBP-Cum, CVM-Loop3) at d = 15.
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Figure 11: Error (left) and computation time (right) as a function of variable degree d for regular
random graphs of N = 24 variables for β = 0.1 and Θ = 2. Points are averages over
16 randomly generated instances. Each method converged on all instances. Errors of
LCBP-Cum and LCBP-Cum-Lin coincide for d ≤ 15; for d > 15, LCBP-Cum became
too slow.

Due to the particular dependence of the interaction strength on d, the errors of most methods
depend only slightly on d. TreeEP is an exception: for larger d, the relative improvement of TreeEP
over BP diminishes, and the TreeEP error approaches the BP error. CVM-Loop3 gives better quality,
but needs relatively much computation time and becomes very slow for large d due to the large
increase in the number of loops of 3 variables. LCBP is the most accurate method, but becomes
very slow for large d. LCBP-Cum is less accurate and becomes slower than LCBP for large d,
because of the additional overhead of the combinatorics needed to perform the update equations.
The accuracy of LCBP-Cum-Lin is indistinguishable from that of LCBP-Cum, although it needs
significantly less computation time.

Overall, we conclude from Section 3.1 that for these binary, pairwise graphical models, LCBP
is the best method for obtaining high accuracy marginals if the graphs are sparse, LCBP-Cum-Lin
is the best method if the graphs are dense and LCBP-Cum shows no clear advantages over either
method.

3.2 Multi-variable Factors

We now go beyond pairwise interactions and study a class of random factor graphs with binary
variables and uniform factor degree |I| = k (for all I ∈ F ) with k > 2. The number of variables
is N and the number of factors is M. The factor graphs are constructed by starting from an empty
graphical model (V , /0, /0) and addingM random factors, where each factor is obtained in the follow-
ing way: a subset I = {I1, . . . , Ik}⊆ V of k different variables is drawn; a vector of 2k independent
random numbers {JI(xI)}xI∈XI is drawn from a N (0,β) distribution; the factor ψI(xI) := expJI(xi)
is added to the graphical model. We only use those constructed factor graphs that are connected.7
The parameter β again controls the interaction strength.

We have done experiments for (N = 50,M = 50,k = 3) for various values of β between 0.01
and 2. For each value of β, we have used 16 random instances. For higher values of β, computation

7. The reason that we require the factor graph to be connected is that not all our approximate inference method imple-
mentations currently support connected factor graphs that consist of more than one connected component.
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Figure 12: Results for (N = 50,M = 50,k = 3) random factor graphs.

times increased quickly and convergence became problematic for BP, TreeEP and LCBP. This is
probably related to the effects of a phase transition. The results are shown in Figure 12.

Looking at the error and the computation time in Figure 12, the following ranking can be made,
where accuracy and computation time both increase: BP, TreeEP, CVM-Min, CVM-Loop3, LCBP.
CVM-Loop4 uses more computation time than LCBP but gives worse results. LCBP-Cum and
LCBP-Cum-Lin are not available due to the fact that the factors involve more than two variables.
Note that the improvement of TreeEP over BP is rather small. Further, note that the LCBP error is
again approximately given by the square of the BP error.

3.3 ALARM Network

The ALARM network8 is a well-known Bayesian network consisting of 37 variables (some of which
can take on more than two possible values) and 37 factors (many of which involve more than two
variables). In addition to the usual approximate inference methods, we have compared with GBP-
Min, a GBP implementation of the minimal CVM approximation that uses maximal factors as outer
clusters. The results are reported in Table 1.9

The accuracy of GBP-Min (and CVM-Min) is almost identical to that of BP for this graphical
model; GBP-Min converges without damping and is faster than CVM-Min. On the other hand,
TreeEP significantly improves the BP result in roughly the same time as GBP-Min needs. Simply
enlarging the cluster size (CVM-Δ) slightly deteriorates the quality of the results and also causes an
enormous increase of computation time. The quality of the CVM-Loop results is roughly compara-
ble to that of TreeEP. Surprisingly, increasing the loop depth beyond 4 deteriorates the quality of the
results and results in an explosion of computation time. We conclude that the CVM-Loop method
is not a very good approach to correcting loops in this case. LCBP uses considerable computation
time, but yields errors that are approximately 104 times smaller than BP errors. The cumulant-

8. The ALARM network can be downloaded from http://compbio.cs.huji.ac.il/Repository/Datasets/
alarm/alarm.dsc.

9. In Mooij et al. (2007), we also report experimental results for the ALARM network. In that work, we used another
update rule for LCBP, which explains the different error obtained there (5.4 · 10−04). The update rule (5) used in
the present work generally yields better results for higher-order interactions, whereas for pairwise interactions, both
update rules are equivalent.
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Method Time (s) Error
BP 0.00 2.026 ·10−01
TreeEP 0.21 3.931 ·10−02
GBP-Min 0.18 2.031 ·10−01
CVM-Min 1.13 2.031 ·10−01
CVM-Δ 280.67 2.233 ·10−01
CVM-Loop3 1.19 4.547 ·10−02
CVM-Loop4 154.97 3.515 ·10−02
CVM-Loop5 1802.83 5.316 ·10−02
CVM-Loop6 84912.70 5.752 ·10−02
LCBP 23.67 3.412 ·10−05

Table 1: Results for the ALARM network

based loop LCBP methods are not available, due to the presence of factors involving more than two
variables and variables that can take more than two values.

3.4 PROMEDAS Networks

In this subsection, we study the performance of LCBP on another “real world” example, the
PROMEDAS medical diagnostic network (Wiegerinck et al., 1999). The diagnostic model in
PROMEDAS is based on a Bayesian network. The global architecture of this network is similar
to QMR-DT (Shwe et al., 1991). It consists of a diagnosis layer that is connected to a layer with
findings.10 Diagnoses (diseases) are modeled as a priori independent binary variables causing a
set of symptoms (findings), which constitute the bottom layer. The PROMEDAS network currently
consists of approximately 2000 diagnoses and 1000 findings.

The interaction between diagnoses and findings is modeled with a noisy-OR structure. The
conditional probability of the finding given the parents is modeled by m+ 1 numbers, m of which
represent the probabilities that the finding is caused by one of the diseases and one that the finding
is not caused by any of the parents.

The noisy-OR conditional probability tables with m parents can be naively stored in a table of
size 2m. This is problematic for the PROMEDAS networks since findings that are affected by more
than 30 diseases are not uncommon in the PROMEDAS network. We use an efficient implementa-
tion of noisy-OR relations as proposed by Takikawa and D’Ambrosio (1999) to reduce the size of
these tables. The trick is to introduce dummy variables s and to make use of the property

OR(x|y1,y2,y3) =∑
s
OR(x|y1,s)OR(s|y2,y3).

The factors on the right hand side involve at most 3 variables instead of the initial 4 (left). Repeated
application of this formula reduces all factors to triple interactions or smaller.

When a patient case is presented to PROMEDAS, a subset of the findings will be clamped and
the rest will be unclamped. If our goal is to compute the marginal probabilities of the diagnostic

10. In addition, there is a layer of variables, such as age and gender, that may affect the prior probabilities of the diagnoses.
Since these variables are always clamped for each patient case, they merely change the prior disease probabilities and
are irrelevant for our current considerations.
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Figure 13: Scatter plots of errors for PROMEDAS instances.

variables only, the unclamped findings and the diagnoses that are not related to any of the clamped
findings can be summed out of the network as a preprocessing step. The clamped findings cause
an effective interaction between their parents. However, the noisy-OR structure is such that when
the finding is clamped to a negative value, the effective interaction factorizes over its parents. Thus,
findings can be clamped to negative values without additional computation cost (Jaakkola and Jor-
dan, 1999).

The complexity of the problem now depends on the set of findings that is given as input. The
more findings are clamped to a positive value, the larger the remaining network of disease variables
and the more complex the inference task. Especially in cases where findings share more than one
common possible diagnosis, and consequently loops occur, the model can become complex.

We use the PROMEDAS model to generate virtual patient data by first clamping one of the
disease variables to be positive and then clamping each finding to its positive value with probability
equal to the conditional distribution of the finding, given the positive disease. The union of all
positive findings thus obtained constitute one patient case. For each patient case, the corresponding
truncated graphical model is generated. The number of disease nodes in this truncated graph is
typically quite large.

The results can be found in Figures 13 and 14. Surprisingly, neither TreeEP nor any of the CVM
methods gives substantial improvements over BP. TreeEP even gives worse results compared to BP.
The CVM-Min and CVM-Loop3 results appear to be almost identical to the BP results. CVM-
Loop4 manages to improve over BP in a few cases. Increased loop depth (k = 5,6) results in worse
quality in many cases and also in an enormous increase in computation time.
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Figure 14: Computation time (in seconds) for PROMEDAS instances: (left) BP computation time
vs. N; (center) LCBP computation time vs. N; (right) LCBP vs. BP.

LCBP, on the other hand, is the only method that gives a significant improvement over BP, in
each case. Considering all patient cases, LCBP corrects the BP error with more than one order
of magnitude in half of the cases for which BP was not already exact. The improvement obtained
by LCBP has its price: the computation time of LCBP is rather large compared to that of BP, as
shown in Figure 14. In many cases, this is due to a few rather large cavities. The cumulant-based
loop correction methods are not available, due to the presence of factors involving more than two
variables.

4. Discussion and Conclusion

We have proposed a method to improve the quality of the single-variable marginals calculated by
an approximate inference method (e.g., BP) by correcting for the influence of loops in the factor
graph. We have proved that the method is a generalization of BP if the initial approximate cavity
distributions factorize and the factor graph does not contain short loops of exactly four nodes. If the
factor graph does contain such short loops, we observe in many cases that the method reduces to the
minimal CVM approximation if one applies it on factorized initial approximate cavity distributions.
If, on the other hand, the LC method is applied in combination with BP estimates of the effective
cavity interactions, we have seen that the loop-corrected error is approximately the square of the
uncorrected BP error. Similar observations have been made for loop-corrected MF and TreeEP. For
practical purposes, we suggest to apply loop corrections to BP (“LCBP”), because the loop correc-
tion approach requires many runs of the approximate inference method and BP is well suited for
this job because of its speed. We have compared the performance of LCBP with other approximate
inference methods that (partially) correct for the presence of loops. In most cases, LCBP turned out
to be the most accurate method (with the notable exception of LCTreeEP, which is also considerably
more expensive). LCBP still works for relatively strong interactions, in contrast with LCBP-Cum
and LCBP-Cum-Lin.

On sparse factor graphs, TreeEP can obtain significant improvements over BP by correcting for
loops that consist of part of the base tree and one additional interaction, using little computation
time. However, for denser graphs, we observed that the difference between the quality of TreeEP
and BP marginals diminishes. For both sparse and dense graphs, LCBP obtained more accurate
results than TreeEP, although the computation time quickly increases for denser graphs.
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We have seen that the CVM-Loop approximation, which uses small loops as outer clusters,
can also provide accurate results, provided that the number of short loops is not too large and the
number of intersections of clusters is limited. However, the computation time becomes prohibitive
in many cases. In order to obtain the same accuracy as LCBP, the CVM-Loop approach usually
needs significantly more computation time. This behavior is also seen on “real world” instances
such as the ALARM network and PROMEDAS test cases. There may exist other cluster choices
that give better results for the CVM approximation, but no general method for obtaining “good”
cluster choices seems to be known (although for some special cases, for example, 2D grids, very
good choices exist). Welling et al. (2005) give some criteria for “good” CVM cluster choices, but
to our knowledge, no good general method for choosing CVM clusters is known.11

We have also compared the performance of LCBP with the original implementations proposed
by Montanari and Rizzo (2005) (LCBP-Cum and LCBP-Cum-Lin) on the limited class of binary
pairwise models. The original implementations work with cumulants instead of interactions and
we believe that this explains the observed convergence difficulties of LCBP-Cum and LCBP-Cum-
Lin in the regime of strong interactions. On sparse graphs, LCBP obtained better accuracy than
LCBP-Cum and LCBP-Cum-Lin, using approximately similar computation time. This is mainly
due to the fact that LCBP estimates the higher-order effective interactions in the cavity distributions.
On dense graphs, both LCBP and LCBP-Cum become computationally infeasible. The linearized
version LCBP-Cum-Lin, which is still applicable in these cases, performed surprisingly well, often
obtaining similar accuracy as LCBP-Cum. For random graphs with high degree d (i.e., largeMarkov
blankets), it turned out to be the most accurate of the applicable approximate inference methods.
It is rather fortunate that the negative effect of the linearization error on the accuracy of the result
becomes smaller as the degree increases, since it is precisely for high degree where one needs the
linearization because of performance issues.

In the experiments reported here, the standard JunctionTree method was almost always faster
than LCBP. The reason is that we have intentionally selected experiments for which exact inference
is still feasible, in order to be able to compare the quality of various approximate inference methods.
However, as implied by Figure 10, there is no reason to expect that LCBP will suddenly give inac-
curate results when exact inference is no longer feasible. Thus we suggest that LCBP may be used
to obtain accurate marginal estimates in cases where exact inference is impossible because of high
treewidth. As illustrated in Figure 10, the computation time of LCBP scales very different from that
of the JunctionTree method: whereas the latter is exponential in treewidth, LCBP is exponential in
the size of the Markov blankets.

The fact that computation time of LCBP (in its current form) scales exponentially with the
size of the Markov blankets can be a severe limitation in practice. Many real world Bayesian
networks have large Markov blankets, prohibiting application of LCBP. The linear cumulant-based
implementation LCBP-Cum-Lin does not suffer from this problem, as it is quadratic in the size of
the Markov blankets. Unfortunately, this particular implementation can in its current form only be
applied to graphical models that consist of binary variables and factors that involve at most two
variables (which excludes any interesting Bayesian network, for example). Furthermore, problems
may arise if some factors contain zeroes. For general application of loop correction methods, it
will be of paramount importance to derive an implementation that combines the generality of LCBP

11. After submitting this manuscript, we became aware of the method called IJGP(i) proposed in Dechter et al. (2002).
IJGP(i) is essentially a heuristic to create region graphs that can also significantly improve on BP. We have not yet
done an experimental comparison of LCBP with IJGP(i).
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with the speed of LCBP-Cum-Lin. This topic will be left for future research. The work presented
here provides some intuition that may be helpful for constructing a general and fast loop correction
method that is applicable to arbitrary factor graphs that can have large Markov blankets.

Another important direction for future research would be to find an extension of the loop cor-
rection framework that also gives a loop-corrected approximation of the normalization constant Z in
(1). Additionally, and possibly related to that, it would be desirable to find an approximate “free en-
ergy”, a function of the beliefs, whose stationary points coincide with the fixed points of Algorithm
1. This can be done for many approximate inference methods (MF, BP, CVM, EP) so it is natural to
expect that the LC algorithm can also be seen as a minimization procedure of a certain approximate
free energy. Despite some efforts, we have not yet been able to find such a free energy.

Recently, other loop correction approaches (to the Bethe approximation) have been proposed
in the statistical physics community (Parisi and Slanina, 2006; Chertkov and Chernyak, 2006b). In
particular, Chertkov and Chernyak (2006b) have derived a series expansion of the exact normalizing
constant Z in terms of the BP solution. The first term of the series is precisely the Bethe free energy
evaluated at the BP fixed point. The number of terms in the series is finite, but can be very large,
even larger than the number of total states of the graphical model. Each term is associated with
a “generalized loop”, which is a subgraph of the factor graph for which each node has at least
connectivity two. By truncating the series, it is possible to obtain approximate solutions that improve
on BP by taking into account a subset of all generalized loops (Gómez et al., forthcoming; Chertkov
and Chernyak, 2006a). Summarizing, the approach to loop corrections by Chertkov and Chernyak
(2006b) takes a subset of loops into account in an exact way, whereas the loop correction approach
presented in this article takes all loops into account in an approximate way. More experiments
should be done to compare both approaches.

Summarizing, we have proposed a method to correct approximate inference methods for the
influence of loops in the factor graph. We have shown that it can obtain very accurate results, also
on real world graphical models, outperforming existing approximate inference methods in terms of
quality, robustness or applicability. We have shown that it can be applied to problems for which
exact inference is infeasible. The rather large computation time required is an issue which deserves
further consideration; it may be possible to use additional approximations on top of the loop correc-
tion framework that trade quality for computation time.
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Appendix A. Original Approach by Montanari and Rizzo (2005)

For completeness, we describe the implementation based on cumulants as originally proposed by
Montanari and Rizzo (2005). The approach can be applied in recursive fashion. Here we will only
discuss the first recursion level.
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Consider a graphical model which has only binary (±1-valued) variables and factors that involve
at most two variables. The corresponding probability distribution can be parameterized in terms of
the local fields {θi}i∈V and the couplings {Ji j = J ji}i∈V , j∈∂i:

P(x) =
1
Z
exp

(

∑
i∈V

θixi+
1
2 ∑i∈V

∑
j∈∂i

Ji jxix j

)
.

Let i ∈ V and consider the corresponding cavity network of i. For A ⊆ ∂i, the cavity moment
M \i

A is defined as the following expectation value under the cavity distribution:

M \i
A :=

∑
x∂i
Z\i(x∂i)∏

j∈A
x j

∑
x∂i
Z\i(x∂i)

,

where we will not explicitly distinguish between approximate and exact quantities, following the
physicists’ tradition.12 The cavity cumulants (also called “connected correlations”) C \i

A are related
to the moments in the following way:

M \i
A = ∑

B∈Part(A)
∏

E∈B
C \i

E

where Part(A) is the set of partitions of A .
We introduce some notation: we define for A ⊆ ∂i:

tiA := ∏
k∈A

tanhJik.

Further, for a set X , we denote the even subsets of X as P+(X) := {Y ⊆ X : |Y | is even} and the odd
subsets of X as P−(X) := {Y ⊆ X : |Y | is odd}.

Using standard algebraic manipulations, one can show that for j ∈ ∂i, the expectation value of
x j in the absence of the interaction ψi j = exp(Ji jxix j) can be expressed in terms of cavity moments
of i as follows:

∑
A∈P+(∂i\ j)

tiA M \i
A∪ j + tanhθi ∑

A∈P−(∂i\ j)
tiA M \i

A∪ j

∑
A∈P+(∂i\ j)

tiA M \i
A + tanhθi ∑

A∈P−(∂i\ j)
tiA M \i

A
. (10)

On the other hand, the same expectation value can also be expressed in terms of cavity moments of
j as follows:

tanhθ j ∑
A∈P+(∂ j\i)

t jBM \ j
B + ∑

A∈P−(∂ j\i)
t jBM \ j

B

∑
A∈P+(∂ j\i)

t jBM \ j
B + tanhθ j ∑

A∈P−(∂ j\i)
t jBM \ j

B

. (11)

The consistency equations are now given by equating (10) to (11) for all i ∈ V , j ∈ ∂i.

12. In Montanari and Rizzo (2005), the notation C̃(i)
A is used for the cavity moment M \i

A .
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The expectation value of xi (in the presence of all interactions) can be similarly expressed in
terms of cavity moments of i:

Mi := ∑
xi=±1

P(xi)xi =

tanhθi ∑
A∈P+(∂i)

tiA M \i
A + ∑

A∈P−(∂i)
tiA M \i

A

∑
A∈P+(∂i)

tiA M \i
A + tanhθi ∑

A∈P−(∂i)
tiA M \i

A
. (12)

A.1 Neglecting Higher-order Cumulants

Montanari and Rizzo proceed by neglecting cavity cumulants C \i
A with |A |> 2. Denote by Part2(A)

the set of all partitions of A into subsets which have cardinality 2 at most. Thus, neglecting higher-
order cavity cumulants amounts to the following approximation:

M \i
A ≈ ∑

B∈Part2(A)
∏

E∈B
C \i

E . (13)

By some algebraic manipulations, one can express the consistency Equations (10) = (11) in this
approximation as follows:

M \i
j =

tanhθ j ∑
A∈P+(∂ j\i)

t jBM \ j
B + ∑

A∈P−(∂ j\i)
t jBM \ j

B

∑
A∈P+(∂ j\i)

t jBM \ j
B + tanhθ j ∑

A∈P−(∂ j\i)
t jBM \ j

B

− ∑
k∈∂i\ j

tikC \i
jk

tanhθi ∑
A∈P+(∂i\{ j,k})

tiA M \i
A + ∑

A∈P−(∂i\{ j,k})
tiA M \i

A

∑
A∈P+(∂i\ j)

tiA M \i
A + tanhθi ∑

A∈P−(∂i\ j)
tiA M \i

A
. (14)

One can use (13) to write (14) in terms of the singleton cumulants {M \i
j }i∈V , j∈∂i and the pair cumu-

lants {C \i
jk}i∈V , j∈∂i,k∈∂i\ j. Given (estimates of) the pair cumulants, the consistency Equations (14)

are thus fixed point equations in the singleton cumulants. The procedure is now:

• Estimate the pair cumulants {C \i
jk}i∈V , j∈∂i,k∈∂i\ j using BP in combination with linear response

(called “response propagation” in Montanari and Rizzo (2005)).

• Calculate the fixed point {M \i
j }i∈V , j∈∂i of (14) using the estimated pair cumulants.

• Use (12) in combination with (13) to calculate the final expectation values {M j} j∈V using the
estimated pair cumulants and the fixed point of (14).

A.2 Linearized Version

The update equations can be linearized by expanding up to first order in the pair cumulants C \i
jk .

This yields the following linearized consistency equation (Montanari and Rizzo, 2005):

M \i
j = T \ j

i − ∑
l∈∂i\ j

Ω\i
j,ltilC

\i
jl + ∑

{l1,l2}:l1,l2∈∂ j\i
Γ\ ji,l1l2t jl1t jl2C

\ j
l1l2 (15)
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where

T \i
A := tanh

(
θi+ ∑

k∈∂i\A
tanh−1 (tikM \i

k )

)
,

Ω\i
j,l :=

T \i
jl

1+ tilM
\i
l T

\i
jl

,

Γ\ ji,l1l2 :=
T \ j
il1l2 −T \ j

i

1+ t jl1t jl2M
\ j
l1 M \ j

l2 + t jl1M
\ j
l1 T

\ j
il1l2 + t jl2M

\ j
l2 T

\ j
il1l2

.

The final magnetizations (12) are, up to first order in the pair cumulants:

M j = T \ j + ∑
{l1,l2}:l1,l2∈∂ j2

Γ\ jl1l2t jl1t jl2C
\ j
l1l2 +O(C2)

where

Γ\ jl1l2 :=
T \ j
l1l2 −T \ j

1+ t jl1t jl2M
\ j
l1 M \ j

l2 + t jl1M
\ j
l1 T

\ j
l1l2 + t jl2M

\ j
l2 T

\ j
l1l2

.
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Abstract
Variable selection in clustering analysis is both challenging and important. In the context of model-
based clustering analysis with a common diagonal covariance matrix, which is especially suitable
for “high dimension, low sample size” settings, we propose a penalized likelihood approach with
an L1 penalty function, automatically realizing variable selection via thresholding and delivering a
sparse solution. We derive an EM algorithm to fit our proposed model, and propose a modified BIC
as a model selection criterion to choose the number of components and the penalization parameter.
A simulation study and an application to gene function prediction with gene expression profiles
demonstrate the utility of our method.
Keywords: BIC, EM, mixture model, penalized likelihood, soft-thresholding, shrinkage

1. Introduction

This article concerns variable selection in model-based clustering, especially for “high dimension,
low sample size” data, where the data dimension greatly exceeds the number of observations.
Specifically, given n P-dimensional observations x j = (x j1, ...,x jP)′ for j = 1, ...,n, we aim to group
the data into a few, say K, clusters such that the observations in the same cluster are more similar to
each other than those from different clusters. In this context, some of the attributes x jp’s of x j may
not be relevant: use of such attributes only introduces noise, and may impede uncovering the clus-
tering structure of interest. In addition, removing non-informative attributes may largely enhance
interpretability. Due to lack of statistical models in many existing clustering algorithms, it is difficult
to implement principled variable selection, though some promising methods have been proposed,
based largely on heuristics (Friedman and Meulman, 2004; Mangasarian and Wild, 2004). In con-
trast, model-based clustering (McLachlan and Peel, 2002; Fraley and Raftery, 2002) assumes that
data come from a finite mixture model with each component corresponding to a cluster; with such
a statistical model, statistical inference, including variable selection, can be carried out. Because,
to our knowledge, no formal hypothesis tests are available to assess the statistical significance of an
attribute, it is unclear how to implement a sequential variable selection, such as forward additions
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PAN AND SHEN

and/or backward eliminations of variables, in model-based clustering; an alternative is to conduct
best subset selection, which however is unrealistic for high-dimensional data: for example, with
P = 1000, there are more than 10300 possible models to be considered, which is prohibitive given
the current standard computing power. Furthermore, even for smaller problems, as in regression,
due to its discreteness, best subset selection may be unstable and may not work well in selecting
relevant variables (Tibshirani, 1996); most importantly, unlike in regression or classification but
unique to clustering or semi-supervised learning, best subset selection may identify a correct model
which however is of no interest, as to be confirmed by our numerical example later.

With high-dimensional data, as an alternative to variable selection, one may apply dimension
reduction techniques, such as principal component analysis, prior to clustering (Ghosh and Chin-
naiyan, 2002; Liu et al., 2003). A possible drawback of this approach is the separation between
dimension reduction and subsequent clustering; for example, as pointed out by many researchers
(Chang, 1983; Yeung and Ruzzo, 2001; Raftery, 2003), using first few principal components in
clustering may destroy the clustering structure of the original data.

There has been increasing interest in variable selection for model-based clustering, mostly
within the Bayesian framework (Liu et al., 2003; Hoff, 2005, 2006; Tadesse et al., 2005; Raftery
and Dean, 2006; Kim et al., 2006). An idea is to parametrize the mean of cluster k as µk = µ+ δk,
where µ is the global mean. It is clear that, if some components of δk are 0, then the corresponding
attributes are not informative to clustering, at least in terms of the means/locations. Two Bayesian
approaches have been proposed based on this idea (Liu et al., 2003; Hoff, 2005, 2006). Another
Bayesian approach, analogous to stepwise variable selection in regression, is to sequentially com-
pare two nested models to determine whether an attribute should be included in or excluded from
the current model based on a greedy search (Raftery and Dean, 2006), which may be computation-
ally too time-consuming for high-dimensional data. In contrast, to our knowledge, no frequentist
alternatives to subset selection are available for variable selection in model-based clustering. In light
of the success of penalized regression with variable selection (Tibshirani, 1996; Fan and Li, 2001),
we conjecture that penalization may be also viable to variable selection in clustering, and hence we
propose an approach through penalized model-based clustering. Specifically, cluster-specific means
µk are adaptively shrunken towards the global mean µ; with an appropriately chosen penalty func-
tion, some components of µk are estimated to be exactly the same as that of µ, effectively realizing
variable selection. We also propose a modified BIC as a model selection criterion to adaptively
determine the amount of penalization as well as the number of clusters. Note that, although there
is an extensive body of literature on penalized likelihood methods, most focus on classification and
regression; in particular, to our knowledge, we are not aware of any existing works on penalized
likelihood particularly designed for multivariate clustering.

Recent advances in high-throughput biotechnologies, such as microarrays, have generated a
large amount of high-dimensional data, and have led to routine use of clustering analyses, for exam-
ple, in gene function discovery (Eisen et al., 1998) and cancer subtype discovery (Golub et al., 1999;
Ghosh and Chinnaiyan, 2002; McLachlan et al., 2002; Yeung et al., 2001). In these applications,
one key issue is how to select variables: although expression levels of thousands or tens of thou-
sands of genes are measured on each microarray, corresponding to a high-dimensional observation,
it is known that not all the genes are related to the phenotype of interest, for example, subtypes of
a cancer; in fact, often only a small number of the genes are relevant, and identifying those genes
is one of the biologically most important goals. Hence, variable selection in clustering not only
improves the performance in identifying interesting clusters, as to be shown later, but also largely
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facilitates interpretation of results, and even directly addresses biological questions of interest, for
example, which genes are involved in the biology of a cancer or its subtypes. In this article, in addi-
tion to the promising application of cancer subtype discovery, we also apply model-based clustering
to the task of gene function discovery (Li and Hong, 2001; Ghosh and Chinnaiyan, 2002). Although
the human genome and many other genome sequencing projects have led to a discovery of many
new genes, biological functions of many genes remain unknown; many known functions also need
to be refined. It has become popular to cluster gene expression profiles to discover unknown gene
functions.

In the remaining parts of this article, we first review briefly the standard model-based clustering,
then we introduce a general framework for penalized model-based clustering. We propose a spe-
cific implementation with an L1 penalty, resulting in soft-thresholding on the mean parameters, and
thus realizing automatic variable selection. We derive an EM algorithm to compute the maximum
penalized likelihood estimates for the model; a modified BIC is used to determine the number of
components and the value of the penalization parameter in penalized model-based clustering. We
compare the proposed method with the standard method using simulated data and gene expression
data for tumor subtype discovery and gene function prediction; in particular, we illustrate problems
associated with clustering without variable selection, and those with best subset selection, conclud-
ing that penalized clustering is an effective and simple method for variable selection. We end the
article with a short discussion on some open questions.

2. Methods

We first give a brief review on model-based clustering with a finite Normal mixture model, then we
introduce our penalized model-based clustering, including an EM algorithm and a modified BIC for
model selection.

2.1 Model-based Clustering

In model-based clustering, it is assumed that each observation x is drawn from a finite mixture dis-
tribution f (x;Θ) =∑K

k=1πk fk(x;θk), with the mixing proportion πk, component-specific distribution
fk and its parameters θk. Denote by Θ = {(πk,θk) : k = 1, ...,K} all unknown parameters, with re-
striction that 0 ≤ πk ≤ 1 for any k and ∑K

k=1πk = 1. Each component of the mixture distribution
corresponds to a cluster. The number of clusters, K, has to be determined in practice; see section
2.4.

Given data x j, j = 1, ...,n, the log-likelihood is

logL(Θ) =
n

∑
j=1
log[

K

∑
k=1

πk fk(x j;θk)].

Maximization of the above log-likelihood with respect to Θ is difficult, and it is common to use
the EM algorithm (Dempster et al., 1977) by casting the problem in the framework of missing
data. Define zk j as the indicator of whether x j is from component k; that is, zk j = 1 if x j is indeed
from component k, and zk j = 0 otherwise. If the missing data zk j’s could be observed, then the
log-likelihood for the complete data is:

logLc(Θ) =∑
k
∑
j
zk j[logπk + log fk(x j;θk)].
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The EM algorithm can be applied to obtain the maximum likelihood estimator (MLE) of Θ; see
McLachlan and Peel (2002) and Fraley and Raftery (2002) for more details.

2.2 Penalized Model-based Clustering

With the same motivation as in penalized regression, we propose a penalized model-based cluster-
ing approach. The general purpose of penalization is for model regularization, which in general can
enhance the predictive power of a model, and may be even necessary in some situations. For exam-
ple, in the univariate Normal mixture model with each fk(.) = φ(.;µk,σk), it is well-known that with
σk → 0, we have a degeneracy with logL being unbounded, and thus no (unrestricted) MLE exists.
Ciuperca et al. (2003) proposed a penalized likelihood approach to dealing with the degeneracy:
by penalizing small variance components σk, one circumvents the problem. In addition, as to be
discussed in the next section, with an appropriate choice of penalty function, we can realize a sparse
solution, resulting in automatic variable selection.

Specifically, we regularize logL(Θ) to yield a penalized log-likelihood:

logLP(Θ) =
n

∑
j=1
log[

K

∑
k=1

πk fk(x j;θk)]−hλ(Θ),

where hλ() is a penalty function with penalization parameter λ. The choice of hλ() depends on the
goal of the analysis; see Fan and Li (2001) for some general theory. Correspondingly, the penalized
log-likelihood for the complete data is

logLc,P(Θ) =
K

∑
k=1

n

∑
j=1

zk j[logπk + log fk(x j;θk)]−hλ(Θ).

We propose using such penalized model-based clustering as a general way to regularize parameter
estimates. This can be useful for high-dimensional data, especially for situations of “large P, small
n”. Recently Fraley and Raftery (2005) proposed a Bayesian approach to regularizing model-based
clustering; there is a large body of literature on Bayesian mixture modeling, for example, Richard-
son and Green (1997), Jasra et al. (2005) and references therein. There is a well known connection
between penalized likelihood and Bayesian modeling (Hastie et al., 2001): it can be regarded that
minus the penalty function −hλ(Θ) is proportional to the log density of the prior distribution for
parameters Θ, and the penalized (log) likelihood is proportional to the (log) posterior density.

Note that in contrast to Ciuperca et al. (2003), where only univariate Normal mixture models
were considered, our main interest here is in multivariate clustering.

2.3 Penalizing Mean Parameters

Now we propose a specific implementation of penalized model-based clustering to realize variable
selection. Consider the common case with each component fk as Normal. We are particularly
interested in “large P, small n” often encountered in genomic studies. Hence, as in naive Bayes
classification, we adopt a working independence model for components of x j. Furthermore, to
facilitate variable selection for “large P, small n” settings, a common diagonal covariance matrix is
used across clusters; more discussions on this choice is given in Section 4. We assume throughout
this article that, prior to clustering analysis, we have standardized data so that each attribute has
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sample mean 0 and sample variance 1. Specifically, we have

fk(x;θk) =
1

(2π)P/2|V |
exp

(
−1
2
(x−µk)′V−1(x−µk)

)
,

where V = diag(σ1,σ2, ...,σP), and |V | =∏P
p=1σp. We propose using the L1 penalty:

hλ(Θ) = λ∑
k
∑
p
|µkp|,

though other penalty functions may be also suitable, as discussed in Fan and Li (2001) in the context
of regression. The main goal is to obtain a sparse solution with many small estimates of µkp’s
automatically set to 0, thus realizing variable selection.

Next we derive an EM algorithm for the above penalized model-based clustering; in particular,
it is confirmed that the L1-penalty yields a thresholding rule with the desired sparsity property.
The derivation closely follows from that for standard model-based clustering (McLachlan and Peel,
2002) and the general methodology for penalized likelihood (Green, 1990). We use generic notation
Θ(m) to represent the parameter estimates at iteration m, and use X = (x1, ...,xn) to denote all the
observations. It is easy to verify that the E-step yields

QP(Θ;Θ(m)) = EΘ(m)(logLc,P|X) =∑
k
∑
j
τ(m)
k j [logπk + log fk(x j;θk)]−λ∑

k
∑
p
|µkp|,

where

τ(m)
k j =

π(m)
k fk(x j;θ

(m)
k )

f (x j;Θ(m))
=

π(m)
k fk(x j;θ

(m)
k )

∑K
k=1π

(m)
k fk(x j;θ

(m)
k )

(1)

is the estimated posterior probability of x j’s coming from component k.
The M-step maximizes the above QP to update the parameter estimates. It is easy to show that

∂QP

∂πk
=∑

j
(τ(m)
k j /πk− τ(m)

K j /πK),

for any k = 1,2, ...,K−1, and

∂QP

∂σ2p
=∑

k
∑
j
τ(m)
k j

[
− 1
2σ2p

+
(x jp−µkp)2

2σ4p

]
,

for any p= 1, ...,P. Hence

π̂(m+1)
k =

n

∑
j=1

τ(m)
k j /n, and σ̂2,(m+1)

p =
K

∑
k=1

n

∑
j=1

τ(m)
k j (x jp−µ(m)

kp )2/n. (2)

Now for the mean parameters,

∂QP

∂µk
=∑

j
τ(m)
k j V

−1(x j−µk)−λsign(µk).
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Some algebraic manipulations yield

µ̂(m+1)
k = sign(µ̃(m+1)

k )



|µ̃(m+1)
k |− λ

∑ j τ
(m+1)
k j

V (m+1)1





+

, (3)

where µ̃(m+1)
k = ∑ j τ

(m+1)
k j x j/∑ j τ

(m+1)
k j is the usual update for µk if no penalty is imposed; for any

f , f+ = f if f > 0, and f+ = 0 otherwise; 1 is a vector with all elements 1’s. Note that all
the operations in (3), including sign() and ()+, are component-wise. It is evident that, if λ >

|∑n
j=1 τ

(m+1)
k j x jp/σ

2,(m+1)
p |, then µ̂(m+1)

kp = 0; otherwise, µ̂(m+1)
kp is obtained by shrinking µ̃(m+1)

kp to-
wards 0 by an amount λσ2,(m+1)

p /∑n
j=1 τ

(m+1)
k j .

The above iteration is repeated until convergence, resulting in the maximum penalized likeli-
hood estimate (MPLE) Θ̂. Then we use (1) to calculate the posterior probability of any observation
x’s belonging to each cluster, and assign the observation to the cluster with the highest probability.
Because of possible existence of multiple local maxima, we run the algorithm multiple times, and
each time we use the result from a randomly started K-means algorithm as starting values for the
EM. We fit a series of models with various values of K and λ, then use a model selection criterion
to choose their appropriate values, as to be discussed in the next section.

It can be seen that, if µ̂kp = 0 for all k, then the p-th attribute does not contribute to clustering:
it will be cancelled out from the numerator and the denominator of (1). In contrast, in the standard
method, all attributes contribute to the posterior probability calculation.

Note that in (3), if we use µ̃(m+1)
k , instead of µ̂(m+1)

k , we obtain the standard model-based cluster-
ing, which is equivalent to using λ= 0. In our numerical examples, to reduce bias, we used µ̃(m)

kp in
(2) to estimate σ2p, though we did not find much difference in several simulations if µ̂

(m)
kp was indeed

used. In addition, if we replace µ̂(m+1)
k by

µ̂(m+1)
k,H = µ̃(m+1)

k I(λ> |
n

∑
j=1

τ(m+1)
k j V−1,(m)x j|),

we obtain so-called hard-thresholding, which is in contrast to soft-thresholding in (3). In our nu-
merical examples, we found that hard-thresholding gave results similar to those of soft-thresholding,
and we will skip its further discussion.

2.4 Model Selection

In practice, we need to determine the number of components, K. This is realized by first fitting a
series of models with various numbers of components, and then using a model selection criterion to
choose the best one. For standard model-based clustering, it is common to use Bayesian information
criterion (BIC) (Schwarz, 1978) defined as

BIC = −2logL(Θ̃)+ log(n)d,

where Θ̃ is the MLE, and d = dim(Θ) is the total number of unknown parameters (Fraley and
Raftery, 1998). In our proposed model, we have d = K+P+KP−1, because we have three sets of
parameters, πk’s, σp’s and µkp’s, under the constraint ∑K

k=1πk = 1.
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For penalized model-based clustering, in addition to K, we also have to choose an appropriate
value of penalization parameter λ; a model selection criterion has to account for the adaptive choice
of λ. One difficulty in using the above BIC criterion is that it is not always clear what is d in a pe-
nalized model. Although other resampling-based model selection methods, such as cross-validation
or generalized degrees of freedom (Shen and Ye, 2002) can be employed, they are computationally
more demanding, and even prohibitive for large and/or high-dimensional data as considered here.
Following a conjecture of Efron et al. (2004) and a result of Zou et al. (2004) for L1-penalized re-
gression, we treat d as the number of non-zero parameter estimates, modifying BIC for penalized
model-based clustering as

BIC = −2logL(Θ̂)+ log(n)de,

where Θ̂ is the MPLE, and de = K+P+KP− 1− q is the effective number of parameters; we
set q as the number of the MPLE mean components that equal to 0. Hence, as expected, due to
thresholding, de < d with a large penalization parameter λ.

3. Results

We first present results for simulated data, then consider clustering samples and clustering genes for
two microarray data.

3.1 Simulated Data

We consider first high-dimensional data, then, to facilitate comparisons with best subset selection,
we also consider low-dimensional data.

3.1.1 LARGE P

We first considered simulated data as described in Hoff (2004) and Hoff (2005). In each simulated
data set, there were two clusters based on the first 150 attributes, while only one cluster based on
the remaining 850 attributes; in other words, there were a total of P = 1000 variables with the first
150 effective while the other 850 as noise variables in forming two clusters. Specifically, there
were n = 100 observations with 85 in one cluster and 15 in the other: the first 150 variables were
iid from N(0,1) for the first cluster, whereas they were iid from N(1.5,1) for the second cluster;
the remaining 850 variables were all iid from N(0,1) for either cluster. Hence, there were 150
informative attributes and 850 noise ones.

For each of 100 simulated data sets, we fitted a series of models with the number of components
K = 1, 2, 3 and various values of penalization parameter λ= 0, 1, 1.5, 2, 5, 7.5, 10, 12.5, 15, 17.5,
20, 25 and 30.

Table 1 summarizes the means and standard errors of BIC for the standard clustering using all
1000 attributes, and those of BIC and penalization parameter λ of the selected models in penalized
clustering. Table 2 gives the frequencies of the selected K for both the methods. Twenty out of a
hundred times, standard model-based clustering incorrectly selected K = 1, failing to discover the
existence of the two clusters of interest. In some sense, the result was reasonable and unsurprising:
indeed, there were two clusters based on the first 150 attributes in the data; however, based on any
of the other 850 attributes, there was only one cluster. Because standard clustering used all the
attributes, noting that 850 was much larger than 150, as expected it might choose K = 1. In contrast,
with an appropriate variable selection, penalized clustering more frequently chose the model with
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Standard Penalized
K BIC BIC λ
1 92923 (2) 88393 (0) 1.00 (0.00)
2 92834 (12) 85738 (65) 9.60 (0.22)
3 96282 (13) 86778 (32) 9.60 (0.12)

Table 1: Mean BIC (with standard errors in parentheses) with various numbers (K) of clusters in
the standard and penalized clustering for 100 simulated data sets. λ is the value of the
penalization parameter minimizing BIC for the given K.

Standard Penalized
K Freq BIC Freq BIC λ #Zero1 #Zero0
1 20 92923 0 - - - -

(5)
2 80 92791 94 85679 9.57 1.1 832.5

(10) (64) (0.22) (0.2) (1.7)
3 0 - 6 86348 7.50 0.0 626.5

(43) (0.00) (0.0) (5.6)

Table 2: Frequencies of the selected numbers (K) of clusters in the standard and penalized cluster-
ing from 100 simulated data sets with P= 1000. The corresponding means (with standard
errors in parentheses) of BIC, λ, the number of the first 150 informative attributes ex-
cluded (#Zero1), and the number of the last 850 noise attributes excluded (#Zero0) are
also included.

1152



PENALIZED MODEL-BASED CLUSTERING

Standard Penalized
K Freq Freq #(1 and 2) #(1 or 2, not both) #Zero1 #Zero0
1 100 6 0 0 2 8

(0) (0)
2 0 38 30 6 0.26 5.08

(0.09) (0.26)
3 0 56 42 12 0.29 2.45

(0.07) (0.19)

Table 3: Frequencies of the selected numbers (K) of clusters in the standard and penalized clus-
tering from 100 simulated data sets with P = 10. The frequencies of the corresponding
models including both the two informative attributes (#(1 and 2)), or only one of the two
(#(1 or 2, not both)), and the means (with standard errors in parentheses) of the number
of the two informative attributes excluded (#Zero1), and the number of the other 8 noise
attributes excluded (#Zero0) are also included.

K = 2, uncovering the interesting structure in the data. Importantly, the penalized approach can
automatically select attributes: out of the total 850 noise attributes, on average, 833 attributes were
correctly identified and not used in the final clustering; on the other hand, only one out of 150
informative attributes was not used.

Penalized clustering gave perfect assignments for K = 2: the 15 and 85 observations from two
distributions/classes were correctly assigned to clusters 1 and 2 respectively. More interestingly,
even when K = 3 was selected, the assignments were also correct; the clustering results for the 6
simulated data sets with K = 3 were the following: i) for two data sets, the 15 observations from
class 1 were assigned to cluster 1, and 45 and 40 observations from class 2 were assigned to clusters
2 and 3 respectively, denoted as {(15,0,0),(0,45,40)}; ii) for two data sets: {(15,0,0),(0,49,36)};
iii) for the other two, {(15,0,0),(0,48,37)} and {(15,0,0),(0,46,39)} respectively.

It would be interesting to compare our method with best subset selection, which however was
computationally prohibitive: with 1000 attributes, there were 21000≈ 10300 possible subsets/models!
Note that, because there is no formal significance test for each individual attribute in model-based
clustering, the commonly used sequential variable selection in regression is not applicable here.
Below, we considered a problem with a much smaller P so that a comparison with best subset
selection was possible.

3.1.2 SMALL P

We considered simulated data similar to those in the previous section, but with much fewer at-
tributes. There were only P = 10 attributes, among which the first two were informative while
the other eight were noise attributes; all other aspects remained the same. In best subset selection,
first, each of the 1023 (non-null) candidate models containing all possible combinations of the 10
attributes was fitted using Mclust() in R with K ranging from 1 to 3 (and a common diagonal co-
variance matrix); for each model, the value of K was selected to give the minimum BIC; finally, we
chose the final model from the 1023 fitted models as the one with the smallest BIC.
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Any attributes ≥ 2 attributes
K Freq #(1 and 2) #(1 or 2, not both) Freq #(1 and 2) #(1 or 2, not both)
1 79 0 0 56 11 6
2 19 0 7 41 21 11
3 2 0 1 3 2 0

Table 4: Frequencies of the selected numbers (K) of clusters by best subset selection from 100
simulated data sets with P = 10. The frequencies of the corresponding models including
both the two informative attributes (#(1 and 2)), or only one of the two (#(1 or 2, not
both)). Two searches were conducted: all possible models including any combinations of
the attributes, and only models including at least two attributes.

Table 3 gives the results for standard and penalized clustering. Again, in presence of the eight
noise attributes, standard clustering always chose K = 1; in contrast, penalized clustering with
automatic variable selection tended to chose K > 1, and the two informative attributes were most
often retained. However, penalized clustering did not work as well as in the previous set-up with
P = 1000: it chose K = 3 most often while keeping most of the noise attributes; the reason could
be that with fewer informative attributes, this was a more difficult problem than that of the previous
section. Nevertheless, compared with best subset selection (Table 4), it still worked much better.
In best subset selection, if we considered all possible non-null models (i.e., all possible non-null
combinations of attributes), it most often selected K = 1; in all cases, only one noise attribute was
included in the selected model. Because there was indeed only one cluster according to any noise
attribute, the choice of K = 1 based on any noise attribute was correct; in other words, the selected
model was correct, though of no interest. This highlights a unique point that in variable selection
for clustering, unlike in regression, a correct model for the data based on a subset of attributes (e.g.,
noise attributes here) may be of no interest!

In addition, we considered only the models containing at least two attributes in best subset
selection (Table 4). It turned out that all the selected models included only two attributes; it was
still more likely to choose K = 1, most often with two noise attributes, which was again caused by
the the complication of having so many correct models of no interest: there was indeed only one
cluster based on any two of the noise attributes. In summary, we concluded that subset selection
was not suitable at all for variable selection in clustering, whereas penalized clustering was much
more effective.

3.2 Tumor Subtype Discovery Using Gene Expression Profiles

Golub et al. (1999) studied discovering two subtypes of human acute leukemia, acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL), using microarray gene expression data.
Distinguishing the two subtypes is clinically important because, for example, the same chemother-
apy applied to ALL patients may not be suitable for AML patients. They used Affymetrix microar-
rays, each containing 7129 genes. We applied model-based clustering to their data with 38 patients,
among which 21 were ALL while the other 11 were AML patients; each patient was treated as an
observation while the genes were treated as attributes. Because most of the 7129 genes were not
believed to be informative to discriminating between ALL and AML, and in fact, many of the genes
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Standard Penalized
K BIC BIC λ
1 76966 69691 > 0
2 73802 68504 5
3 71104 66630 3
4 72232 65378 3
5 - 64034 2
6 - 62912 2
7 - 61950 2
8 - 63626 3

Table 5: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Golub’ gene expression data.

Standard Penalized
Samples/clusters 1 2 3 1 2 3 4 5 6 7

ALL 4 0 23 0 1 1 1 7 8 9
AML 0 4 7 6 0 0 0 4 1 0

Table 6: Clustering results for Golub’s data.

were not even expressed in any sample, we filtered out most genes: we ranked the genes based on
their sample variances across all 38 samples, and used only the top 2000 ones. For each method,
we started from g = 1 and increased g until a minimum BIC was reached. The standard clustering
chose K = 3 while the penalized one selected K = 7 (Table 5).

The clustering results are detailed in Table 6. The penalized method performed better than the
standard clustering: the former incorrectly assigned five while the latter misclassified seven AML
samples into the clusters with the ALL samples as the majority. In penalized clustering, although
35% of the mean parameter estimates were 0’s, only eight genes had their cluster-specific mean
estimates as 0’s across all seven clusters, and hence were regarded as non-informative; previous
studies demonstrated that there were indeed a large number of the genes differentially expressed
between ALL and AML samples (Thomas et al., 2001; Pan, 2002).

3.3 Gene Function Discovery Using Gene Expression Profiles

Because many genes still have unknown functions, a biologically important subject is to computa-
tionally predict gene functions using, for example, gene expression profiles (Brown et al., 2000).
The premise is that co-expressed genes are likely to share the same biological function. Due to
incomplete knowledge, it is equally important to discover new gene functions; there is functional
heterogeneity within most of functional categories, and there are probably many more uncharacter-
ized gene functions. Clustering gene expression profiles has become a popular approach for both
gene function prediction and discovery (Eisen et al., 1998; Wu et al., 2002; Zhou et al., 2002; Xiao
and Pan, 2005). We stress that gene function discovery is more of a clustering or unsupervised
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learning problem, as opposed to supervised learning: first, we do not restrict the genes of the same
function to be in the same cluster/class; each of the multiple clusters of the genes coming from the
same functional category may suggest some novel subcategory, a refinement of the original func-
tional category. Second, we allow the existence of some unknown and novel classes: some genes
of unknown function do not have to be predicted to have any one of the known functions because
they may have some unknown new functions. Here, we considered gene function discovery using
gene expression data for yeast S cerevisiae. Specifically, we used a gene expression data set con-
taining 300 microarray experiments with gene deletions and drug treatments (Hughes et al., 2000).
Variable selection was highly relevant here: first, as shown in simulation, incorrectly using noise
attributes might degrade the performance of clustering, obscuring some interesting clustering struc-
tures; second, it was also biologically important to identify which microarray experiments (i.e.,
attributes) were informative in clustering, linking putative functions of gene clusters to biological
perturbations underlying the microarray experiments.

One difficulty in evaluating the performance of a clustering algorithm for real data is how to
choose an appropriate criterion. Although our interest was in clustering for gene function discov-
ery, for the purpose of evaluations, we treated the problem as supervised learning: each gene had its
response variable as its known function; gene functions were downloaded from the MIPS database
(Mewes et al., 2004). For illustration, we only considered two gene functions, cytoplasm and mito-
chondrion, with 100 genes in each class as training data; we used other 406 and 212 genes in the
two functional classes as test data.

We first used the training data without their class labels: we clustered the 200 gene expression
profiles into, say K, clusters. Then, for each cluster, based on the class labels of the training obser-
vations assigned to the cluster, we assigned a class label or class probability to the cluster. There
were two ways to do so, namely, hard classification and soft classification. For hard classification,
we assign each cluster a class label that was possessed by the majority of the observations in the
cluster. For a test observation that was assigned to a cluster, we predicted its class label as that of
the cluster. For soft classification, for each cluster, we first calculated the proportion of the training
observations in each class. Suppose Pck was such a proportion for class c in cluster k. For a test
observation, if it was assigned to cluster k with posterior probability τk, it was classified to class c
with probability ∑K

k=1Pck τk; summing these probabilities all over, we obtained an expected number
of test observations assigned to each class.

3.3.1 USING THE ORIGINAL DATA

Both standard clustering and penalized clustering selectedK= 7 by BIC (Table 7), with their predic-
tive performances for the test data given in Table 8. The results were close. For penalized clustering,
some MPLEs of the cluster-specific mean parameters were exactly zero; their numbers ranged from
36 to 126 in the seven clusters. However, there was no single attribute for which the mean parameter
MPLEs were all zero in the seven clusters, hence all the 300 attributes were used in final clustering.
This example showed that our penalized clustering performed as well as the standard clustering
method for data with none or few non-informative attributes.

As a comparison, we applied the nearest shrunken centroids (NSC) (Tibshirani et al., 2003),
random forests (RF) (Breiman, 2001), and support vector machines (SVM) (Vapnik, 1998), and thus
treating the problem as supervised learning; the NSC was specifically developed for classification
with gene expression data, while the RF and SVM are two state-of-the-art machine learning tools.
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Standard Penalized
K BIC BIC λ
1 51420 49830 > 0
2 46993 46409 5
3 44252 44170 2
4 42674 42352 5
5 41944 41382 5
6 41891 40716 2
7 41797 38368 5
8 42138 39448 5

Table 7: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Hughes’ gene expression data.

Hard classification Soft classification
Standard Penalized Standard Penalized

Truth Pred=1 Pred=2 1 2 1 2 1 2
1 375 31 377 29 265.5 140.5 271.9 134.1
2 111 101 107 105 83.5 128.5 81.4 130.6

Accuracy 0.770 0.780 0.638 0.651

Table 8: Predictions of standard clustering and penalized clustering over a separate test data set for
Hughes’ gene expression data. BIC selected K = 7 for both the methods.
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NC (P= 300) NSC (P= 6) RF SVM
Truth Pred=1 Pred=2 1 2 1 2 1 2
1 313 93 304 102 316 90 362 44
2 61 151 68 144 48 164 81 131

Accuracy 0.751 0.725 0.777 0.798

Table 9: Predictions over a separate test data set based on the nearest shrunken centroid without
shrinkage (called NC) and with shrinkage (NSC), random forests (RF) and support vector
machine (SVM) for Hughes’ gene expression data.

Note that it is in general unfair to compare the predictive performance of a clustering method against
that of a classification or supervised learning method; our purpose here was to use the modern
classifiers as benchmarks. We used the default setting of R function randomForest() for the RF,
and used pamr() and svm() for the NSC and SVM respectively; for the latter two, a 5-fold cross-
validation was used to choose tuning parameters, such as the shrinkage parameter Δ in the NSC.

For the NSC, with the selected Δ, only six attributes remained in the final model; however,
using all the attributes gave a slightly higher accuracy (Table 9). It was interesting to note that
the NSC failed to perform better than either clustering with hard classification. There was some
similarity between these two: if we regarded each cluster as a single class, then clustering with
hard classification worked in a similar manner as the NSC. Nevertheless, a difference between
the two was that, the NSC assumed only one cluster for each class, whereas clustering with hard
classification allowed observations of the same class to go to different clusters. Unsurprisingly, the
random forests and SVM also performed well for the data.

3.3.2 USING THE DATA WITH ADDED NOISE

It seemed that there were none or few non-informative attributes in the gene expression data for
gene function prediction. To mimic other real applications, where a large number of microarray
experiments were available, of which however only a fraction are informative, we added 700 noise
attributes to the gene expression data. Each noise variable was generated from a standard Normal
distribution independent of each other.

Table 10 summarizes the results of model fitting. By BIC, standard clustering selected K = 2
whereas penalized clustering chose K = 6. With K = 2, standard clustering gave quite bad results
for the test data with an accuracy only at about 50% (Table 11), while it performed much better with
K = 6 (results not shown); in contrast, penalized clustering gave much higher accuracy rates. Note
that with many noise attributes, in agreement with that in the previous simulation study, standard
clustering probably under-estimated the true number of the clusters of interest at K = 2. In addition,
a distinct advantage of penalized clustering was that it could correctly identify most non-informative
attributes: among the added 700 noise attributes, penalized clustering correctly identified 508 such
attributes; in total, 521 attributes whose cluster-specific means were estimated to be 0 for all the
clusters in penalized clustering.

By comparison, the NSC performed poorly (Table 12). By 5-fold cross-validation, the method
selected a model with only one attribute. Using all attributes (or some subsets of the attributes) in
the NSC did not help either. In contrast, both the RF and SVM performed well. It was not clear
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Standard Penalized
K BIC BIC λ
1 173221 167960 > 0
2 172209 164909 20
3 173663 163148 15
4 175812 161830 15
5 177712 160906 15
6 181799 159805 10
7 185537 159917 15

Table 10: BIC values for various numbers (K) of clusters in standard and penalized clustering for
Hughes’ gene expression data with added noise.

Hard classification Soft classification
Standard Penalized Standard Penalized

Truth Pred=1 Pred=2 1 2 1 2 1 2
1 263 143 307 99 203.0 203.0 265.4 140.6
2 149 63 73 139 106.0 106.0 82.2 129.8

Accuracy 0.527 0.722 0.500 0.639

Table 11: Predictions of standard clustering and penalized clustering over a separate test data set
for Hughes’ gene expression data with added noise.

NC (P= 1000) NSC (P= 1) LDA RF SVM
Truth Pred=1 Pred=2 1 2 1 2 1 2 1 2
1 213 193 200 206 275 131 312 94 322 84
2 105 107 111 101 65 147 50 162 57 155

Accuracy 0.518 0.487 0.683 0.767 0.772

Table 12: Predictions for a separate test data set based on several classifiers for Hughes’ gene ex-
pression data with added noise.
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why the NSC did not work in this example. One possible explanation was that there were multiple
centroids for each class, contrary to the assumption of the NSC that there was only a single one for
each class. Hence, we applied linear discriminant analysis (LDA), which imposed an assumption
similar to that of the NSC. Although there was a warning message from the R function lda() (due
to P> n), the LDA performed much better than the NSC.

4. Discussion

Penalized likelihood has been widely used in model regularization, particularly for variable selec-
tion. A general theory has been laid out, see, for example, Fan and Li (2001), but mainly in the
context of regression and classification. We are not aware of any other penalized likelihood ap-
proaches to multivariate model-based clustering, which we have studied in this article. In particular,
it is confirmed that with the chosen L1 penalty function, it yields a simple thresholding, enabling
automatic variable selection. Our numerical examples demonstrate the usefulness of our proposal,
especially for “high dimension, low sample size” settings. In particular, our numerical studies
suggest the following two points. First, clustering without variable selection may fail to uncover
interesting structures underlying the data. Second, best subset selection not only is computationally
infeasible for clustering high-dimensional data, but also may fail in small problems. In addition
to high computational demand, a key issue with best subset selection is the lack of an appropriate
model selection criterion: if a conventional criterion is adopted based on the correctness of a model,
because of the existence of many correct models, the criterion will not be useful; for example, any
model containing one cluster based on any noise variable or their combinations is correct, but of no
interest, in clustering analysis.

The basic idea proposed here is generalizable to semi-supervised learning where some, but not
all, observations have class labels. An approach to semi-supervised learning is to conduct clus-
tering analysis (i.e., class discovery) simultaneously with supervised learning (i.e., classification)
with a mixture model (McLachlan and Peel, 2002). Alexandridis et al. (2004) proposed such a
semi-supervised learning approach with an application to tumor classification and class discov-
ery. A drawback of their approach was that variable selection had to be taken prior to cluster-
ing/classification: they conducted variable selection using either supervised learning or other heuris-
tics, then used the selected variables in the subsequent clustering/classification. Pan et al. (2006) ex-
tended the penalized likelihood approach discussed here to semi-supervised learning so that variable
selection is accomplished simultaneously along with model fitting (i.e., clustering/classification). In
particular, their simulation results clearly demonstrated the advantage of simultaneous variable se-
lection and model fitting over that of separating variable selection from model fitting.

We have used a common diagonal covariance matrix for all clusters. There are several practical
reasons. First, in “high dimension, low sample size” settings, which are of particular interest here,
an unrestricted covariance matrix is infeasible for P > n; some modeling is necessary. Second, in
the context of linear discriminant analysis with “high dimension, low sample size” data, it has been
found, both empirically and theoretically, that a diagonal covariance matrix may work better than
non-diagonal ones (Tibshirani et al., 2003; Bickel and Levina, 2004); in fact, naive Bayes classifiers
are well known to work well in these settings. These results suggest a possible advantage of using
a diagonal covariance matrix in clustering. Finally, a careful examination reveals that other more
flexible choices of the within-cluster/class covariance matrix, for example, allowing different diag-
onal covariance matrices for different clusters/classes, destroy the mechanism of variable selection
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in model-based clustering, as the use of a common diagonal covariance matrix in the NSC for the
same purpose of variable selection for classification. For example, consider an attribute xp with dis-
tribution N(0,1) or N(0,2) for the two clusters respectively: although its means are equal, because
of its different variances in the two clusters, it is still informative to discriminating between the two
clusters. It is unclear how to realize automatic variable selection for other more general covariance
matrices in penalized model-based clustering. Nevertheless, we acknowledge that it may be desir-
able to use more flexible covariance structures, for example, a non-diagonal covariance matrix, in
some applications (McLachlan et al., 2003), and more work is needed to explore how to realize
variable selection with such a choice in penalized model-based clustering.

In penalized/regularized methods, an important issue is the choice of the penalization param-
eter. Although cross-validation and other data-resampling methods can be adopted, due to their
high computational cost and possibly sub-optimal performance (Efron, 2004), we have proposed a
modified BIC as a model selection criterion. Based on the new results on degrees of freedom in
the context of L1-penalized regression (Efron et al., 2004; Zou et al., 2004), we propose counting
only non-zero components of the maximum penalized likelihood estimate when calculating the ef-
fective number of parameters in BIC. Although it seemed to work well in our numerical examples,
theoretical justifications and further evaluations are needed.
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Abstract
Face recognition is a challenging problem due to variations in pose, illumination, and expression.
Techniques that can provide effective feature representation with enhanced discriminability are cru-
cial. Wavelets have played an important role in image processing for its ability to capture localized
spatial-frequency information of images. In this paper, we propose a novel local discriminant co-
ordinates method based on wavelet packet for face recognition to compensate for these variations.
Traditional wavelet-based methods for face recognition select or operate on the most discriminant
subband, and neglect the scattered characteristic of discriminant features. The proposed method se-
lects the most discriminant coordinates uniformly from all spatial frequency subbands to overcome
the deficiency of traditional wavelet-based methods. To measure the discriminability of coordi-
nates, a new dilation invariant entropy and a maximum a posterior logistic model are put forward.
Moreover, a new triangle square ratio criterion is used to improve classification using the Euclidean
distance and the cosine criterion. Experimental results show that the proposed method is robust for
face recognition under variations in illumination, pose and expression.
Keywords: local discriminant coordinates, invariant entropy, logistic model, wavelet packet, face
recognition, illumination, pose and expression variations

1. Introduction

Face recognition (Zhao et al., 2003; Jain et al., 2004) has become one of the most active research
areas in pattern recognition. It plays an important role in many application areas, such as human-
machine interaction, authentication and surveillance. However, the wide-range variations of human
face, due to pose, illumination, and expression, result in a highly complex distribution and deterio-
rate the recognition rate. It seems impractical to collect sufficient prototype images covering all the
possible variations. Therefore, how to construct a small-size-training face recognizer robust to envi-
ronmental variations is a challenging research issue. Wavelets have been successfully used in image
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processing. Their ability to capture localized spatial-frequency information of image motivates us
to use them for feature extraction. In this study, we investigate a new approach by extracting the
features not sensitive to environmental changes from a wavelet packet dictionary.

Generally, feature extraction, discriminant analysis and classifying criterion are the three basic
elements of a face recognition system. The performance and robustness of face recognition could
be enhanced by improving these elements. Feature extraction in the sense of some linear or non-
linear transform of the data with subsequent feature selection is commonly used for reducing the
dimensionality of facial image so that the extracted features are as representative as possible. A
lot of work on face recognition has been carried out based on similarities analysis (P. Howland
and Park, 2006; Belhumeur et al., 1997; Jiang et al., 2006; Martinez and Zhu, 2005; Vaswani and
Chellappa, 2006; Xiang et al., 2006; Zhao et al., 2003). A well-known feature extraction method is
called FisherFace, based on linear discriminant analysis (LDA), which linearly projects the image
space to a low-dimensional subspace so as to discount environmental variations (Belhumeur et al.,
1997; Fukunaga, 1990). This method is a statistical linear projection method which largely relies on
the representation of the training samples. On the other hand, wavelet-based methods with no spe-
cial focus on the training data have been used for feature extraction (Mallat, 1989; Coifman et al.,
1992). The decomposition of the data into different frequency ranges allows us to isolate the fre-
quency components introduced by intrinsic deformations due to expression or extrinsic factors (like
illumination) into certain subbands. Wavelet-based methods prune away these variable subbands,
and focus on the subbands that contain the most relevant information to better represent the data.
WaveletFace (Chien and Wu, 2002) only uses the low-frequency subband to present the basic figure
of an image, and ignores the efficacy of high-frequency components. Our previous study (Dai and
Yuen, 2006) uses a wavelet enhanced regularized discriminant analysis after dimensionality reduc-
ing with low-pass filter to solve the small sample size problem, which is also a method based on the
low frequency subband. Similarly, some other studies (Feng et al., 2000; Ekenel and Sanker, 2005;
Zhang et al., 2004, 2005) employ the traditional transform (e.g., ICA, PCA, Neural Networks) to
enhance the discriminant power in one or several special subbands, the latter always fuse the dis-
criminant power in these different subbands for final classification (Ekenel and Sanker, 2005; Zhang
et al., 2005). Moreover, as a generalization of the wavelet transform, the wavelet packet not only
offers an attractive tool for reducing the dimensionality by feature extraction, but also allows us
to create localized subbands of the data in both space and frequency domains. Saito and Coifman
introduced the local discriminant basis (LDB) algorithm based on a best-basis paradigm to search
for the most discriminant subbands (basis) that illuminates the dissimilarities among classes from
the wavelet packet dictionary (Coifman and Saito, 1994; Saito and Coifman, 1994, 1995). Some
studies (Saito et al., 2002; Stranss et al., 2003) constructed the modified LDB later. In Kouzani
et al. (1997), the best-basis algorithm of Coifman and Wicherhauser (1992) is used to search for
the wavelet packet basis for face representation. In Bhagavatula and Savvides (2005), PCA is per-
formed in wavelet packet subbands and the subbands which generalize better across illumination
variations for face recognition are sought. All the methods on these studies are based on the whole
discriminant subband.

It is known that a good feature extractor for a face recognition system is claimed to select as
many the best discriminant features as possible, which are not sensitive to arbitrary environmental
variations. Nastar and Ayach (1996) investigated the relationships between variations in facial ap-
pearance and their deformation spectrum. They found that facial expressions and small occlusions
affect the intensity manifold locally. Under frequency-based representation, only high-frequency
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spectrum is affected. Moreover, changes in pose or scale of a face and most illumination variations
affect the intensity manifold globally, in which only their low-frequency spectrum is affected. Only
a change in face will affect all frequency components (Zhang et al., 2004). So there are no special
subbands whose all coordinates are not sensitive to these variations. In each subband, there may
be only segmental coordinates which have enough discriminant power to distinguish different per-
son, the remainder may be sensitive to environmental changes, but the methods based on the whole
subband will also extract these sensitive features. Moreover, there may be no special subbands
containing all the best discriminant features, because the features not sensitive to environmental
variations are always distributed in different coordinates of different subbands locally. The methods
based on the segmental subbands will lose some good discriminant features. Furthermore, in dif-
ferent subbands, the amount and distribution of best discriminant coordinates are always different.
Many less discriminant coordinates in one subband may add up to a larger discriminability than
another subband whose discriminability is added up with few best discriminant coordinates and
residual small discriminant coordinates (Saito et al., 2002), then the few best discriminant coordi-
nates will be discarded by the methods which search for the best discriminate subbands, but only
the few best discriminant coordinates are needed. So the best discriminant information selection
should be independent of their seated subbands, and only depends on their discriminability for face
recognition. However, the methods based on the whole subband neglect the distribution of features,
they are deficient to select the best discriminant features sometimes.

Moreover, how to measure the discriminability of coordinate is one crucial element of the whole
algorithm. We translate it into the separability of each coordinate-loading ensemble, and propose
a new dilation invariant entropy which is independent of the order of magnitude (OM), instead of
deficient absolute “distance” measures. Furthermore, we construct a maximum a posterior (MAP)
logistic model to produce a separability measure function which presents factually the separability
of each coordinate-loading ensemble, that is, discriminability of each coordinate. Based on the new
dilation invariant entropy and its derived separability measure function, any two coordinates are
comparable for their discriminability, either they locate in the same subband or different subbands.

To solve the “small sample size” (SSS) problem, we use the complete linear discriminant analy-
sis (CLDA) idea (Yang et al., 2005) which captures both regular and irregular discriminant informa-
tion and makes a more powerful discriminator. For classifying criterion, the traditional Euclidean
distance cannot measure the similarity very well when there exist illumination variations on facial
images, and the cosine criterion is unsatisfactory when there exist pose and expression changes.
Thus, we propose a new triangle square ratio criterion. Experimental results show that it can over-
come the deficiency of the Euclidean distance and cosine criterion very well.

In this paper, to deal with illumination, pose and expression problems, we propose a new local
discriminant coordinates (LDC) algorithm to select uniformly the most discriminant independent
coordinates in all spatial frequency subbands for face recognition, in order to overcome the limi-
tation of the methods based on whole subband. Experimental results show that our LDC feature
extraction has almost overcome the shortcomings of the methods based on subband and improves
the effect of feature extraction for face recognition under different environmental variations.

The contribution of this paper consists of the following:

• Further extension of wavelets to face recognition to deal with illumination, pose and expres-
sion problems.
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• Introduction of a dilation invariant entropy and a maximum a posterior logistic model for
selection of wavelet packet coordinates.

• Use of a new similarity criterion coupled with the nearest neighbor classifier.

• Design of a face recognition system, which solves the small sample size problem and is robust
to variations in illumination, pose and expression.

The paper is organized as follows. In Section 2, the wavelet packet decomposition and the
local discriminant basis algorithm will be introduced. Our proposed algorithm and the whole pro-
cedure will be presented in Section 3. In Section 4, experimental results are presented, followed by
discussions and conclusion in Section 5.

2. Feature Extraction by Local Discriminant Basis

In this section, we first make a review on the wavelet packet decomposition, then the local discrim-
inant basis (LDB) algorithm and the modified LDB algorithm are introduced.

2.1 The Wavelet Packet Decomposition

Wavelets are functions that satisfy certain mathematical requirements and are used as basis functions
in representing data at different scales and time-frequency locations. Wavelets (Kouzani et al., 1997;
Vaidyanathan, 1993) can be generated from a two-channel filter bank method which uses repeated
filtering and downsampling to decompose signals into time-frequency subbands. The two-channel
filter bank has a lowpass filter which removes the high frequencies and a highpass filter which
removes the low frequencies. For the wavelet transform, only the lowpass filtered subband is further
iterated. As a generalization of the wavelet transform, the two-channel filter banks are iterated over
the lowpass and the highpass subbands in the wavelet packet decomposition. This generates a tree
structure which provides many possible wavelet packet bases, accordingly, signals are decomposed
into a time-frequency dictionary.

When dealing with images, the wavelet decomposition or the wavelet packet decomposition
is first applied along the rows of the images, then their results are further decomposed along the
columns. This results in four decomposed subimages L1, H1, V1 and D1. These subimages rep-
resent different frequency localizations of the original image which refer to Low-Low, Low-High,
High-Low and High-High respectively. Their frequency components comprise the original fre-
quency components but now in distinct ranges. While the process being iterated, only L1 is further
decomposed in the wavelet decomposition, but all L1, H1, V1 and D1 are further decomposed in the
wavelet packet decomposition. Figure 1 shows a two-dimensional examples of a facial image for
the wavelet decomposition and the wavelet packet decomposition with depth 2.

2.2 The Local Discriminant Basis (LDB) Algorithm

The local discriminant bases algorithm (Coifman and Saito, 1994; Saito and Coifman, 1994, 1995)
uses an adjustment of dictionary, or a wavelet packet decomposition tree which offers a library of
orthonormal basis localized both in space and in frequency. Before proceeding further, let us set our
notations. Let X = {x1,x2, · · · ,xN} be an ensemble of training samples with K classes, X =

SK
y=1Xy,

and Xy = {xy1,x
y
2, · · ·x

y
Ny}, where Ny is the number of samples belong to class y, and N = ∑K

y=1Ny.
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Figure 1: (Top) The two-dimensional wavelet decomposition of facial image with depth 2. (Bottom)
The two-dimensional wavelet packet decomposition of facial image with depth 2.

We use D to represent the space-frequency dictionary consisting of a collection of wavelet packet
subbands {B j}, j = 1, · · · ,(4L+1 − 1)/3, where B j = {b j1,b j2, · · · ,b jn j}, b ji(i = 1,2, · · · ,n j) are
wavelet packet coefficients and n j is the size of wavelet packet subband B j, L is the decomposition
level of wavelet packet.

The LDB algorithm first decomposes the training samples in the dictionary D , then sample
energies at the basis coordinates are accumulated for each sample class separately to form a space-
frequency energy distribution per class. Let Γ(y)(B j) be a normalized energy of class y samples
presented on the subbands B j:

Γ
(y)

(B j) = (Γ
(y)

(b j1),Γ
(y)

(b j2), · · · ,Γ
(y)

(b jn j)) ∀B j ⊂ D, (1)

Γ
(y)

(b jt)
Δ=
∑
Ny
i=1

∣∣b jt · xyi
∣∣2

∑
Ny
i=1 ‖x

y
i‖
2 (2)

where · denotes the standard inner product in the Euclidean space. The loss function φ1 is used to
measure “distances” among K vectors Γ(1)(B j),Γ

(2)(B j), · · · ,Γ
(K)(B j):

φ1(B j) = φ1(Γ
(1)

(B j),Γ
(2)

(B j), · · · ,Γ
(K)

(B j))
Δ=

K

∑
m,n=1
m!=n

d∗(Γ
(m)

(B j),Γ
(n)

(B j)) (3)

where d∗ (·, ·) is a “distance” measure, it can be the l2 distance, the relative entropy, or the J-
Divergence. Then φ1(B j) will be a measure of efficacy of the subband B j for classification, and
local discriminant basis are selected by the best-basis algorithm (Coifman and Wicherhauser, 1992)
using the following criterion:

Ψ= argmax
B j∈D

φ1(B j). (4)

The final step is to construct traditional discriminant analysis (e.g., LDA, CT) with features derived
from the LDB feature extraction.
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2.3 The Modified LDB (MLDB) Algorithm

In Saito et al. (2002), a modified version of the LDB algorithm is introduced using the empirical
probability distributions instead of the space-frequency energy distribution as their selection strategy
to eliminate some less discriminant coordinates in each subband locally. Let

δ jt
Δ= φ2(Γ

(1)
(b jt),Γ

(2)
(b jt), · · ·Γ

(K)
(b jt)) =

K

∑
m,n=1
m!=n

d∗(Γ
(m)

(b jt),Γ
(n)

(b jt)) (5)

that is, the discriminability of coordinate b jt (t = 1,2, · · · ,n j). Then the measure of the discrim-
inability of B j is obtained by summing only the n0(< n j) largest terms, that is,

φ2(B j)
Δ=

n0
∑
t=1

δ j(t) (6)

where {δ j(t)} is the decreasing rearrangement of {δ jt}, and local discriminant basis are selected by
the best-basis algorithm using the criterion (4) as LDB. The final step is the same as LDB.

Although the MLDB algorithmmay overcome some limitations of LDB, the selection of coordi-
nates is only limited to each subband so that coordinates in different subbands are still incomparable.

3. The General Framework of the LDC Algorithm

Our LDC algorithm uses a ternary architecture similar to LDB. We use the wavelet packet feature
extraction at the first step. The main difference between LDB and our LDC algorithm is the nature
of “distance” measure and feature selection strategy. We propose a new dilation invariant entropy to
take the place of traditional traditional absolute “distance” measures. This ensures that the compar-
ison of discriminability among all coordinates is independent of spatial frequency subbands. Thus,
our selection can be based on all coordinates of the dictionary, but not the subbands themselves.

Moreover, LDB uses only the between-class difference, and ignores the within-class difference.
This may lead to an unsatisfactory discriminability. The solution presented in this paper makes use
of the maximum a posterior (MAP) logistic model. Its derived separability measure function will
get a contrastive term to ensure not only the within-class difference is low, but also the between-
class difference is large. Our LDC algorithm does not need the best-basis algorithm (Coifman and
Wicherhauser, 1992) used in LDB, it ensures that we can select the most discriminant features with-
out any impact of the best-basis algorithm. Subsequently, the LDC algorithm uses the complete
linear discriminant analysis (CLDA) to solve the “small sample size” (SSS) problem, instead of
the traditional LDA or CT in LDB. Finally, we modify the Euclidean distance and the cosine crite-
rion in the nearest neighbor classifier, and replace them with the triangle square ratio criterion for
classification.

3.1 The Wavelet Packet Decomposition in our LDC Algorithm

In the LDC algorithm, the wavelet packet technique is used to decompose an image into subbands
that are localized in both space and frequency domains, and offers a choice of optimal coordinates
for the representation of a human face. Therefore, it is possible to seek the most discriminative
coordinates for classification. Because each child subband is derived from its parent subband at
the above level, the coordinates in the two levels are linearly dependent. In the first experiment in
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Original Image

L1 V1 D1H1Level 1

Level 2

Level 3

LL2 LH2 LV2 LD2

LLL3 LLH3 LLV3 LLD3 LHL3 LHH3 LHV3 LHD3 LVL3 LVH3 LVV3 LVD3 LDL3 LDH3 LDV3 LDD3

Figure 2: The wavelet decomposition tree used in this study. The dashed part is the spatial-
frequency dictionary D in the LDC algorithm

Section 4, we will search for the most discriminant level by the best performance of its selected
coordinates. Because it is more time-consuming when the decomposition level L is larger than 4,
L = 4 will be used in the experiment. In the first level, four subband images—L1, H1, V1, D1—are
obtained. However, the high frequency H1, V1, D1 are sensitive to noises in facial images, and
Ekenel and Sanker (2005) claimed that they have low performance for classification. Moreover, the
results in Table 4 show that our dilation invariant entropy used in the LDC algorithm may extract
few high frequency components which may slightly affect the performance, also for the sake of
computational efficiency, the H1, V1, D1 components are not further decomposed. Our experimen-
tal results show that Level 3 has better performance than Level 1, 2, 4, and the same results are also
presented in Chien and Wu (2002). In fact, with the further wavelet packet decomposition, more
fine scale information which may have good discriminant power is generated, however, the reso-
lution of subband images becomes lower so that less information exists for the purpose of object
localization (Grewe and Brooks, 1997). Neither little scale information nor little localization infor-
mation can generate a judicious combination which has best discriminate power, so Level 3 which
may give a suitable tradeoff between scale information and localization information is used in some
studies (Chien and Wu, 2002; Feng et al., 2000). We also use Level 3 in the LDC algorithm, and
our spatial-frequency dictionary D consists of 16 subbands in Level 3 (a subset of the dictionary in
the LDB algorithm) (see Figure 2). The Daubechies db4 wavelet will be used for image decompo-
sition (Daubechies, 1990), if the sizes of facial images are not the dyadic numbers, we will apply
zero-padding extension to create the smallest dyadic images for the wavelet packet decomposition.

3.2 The Dilation Invariant Entropy

In this subsection, we first point out the deficiency of absolute “distance” measures in wavelet-based
methods, then introduce our dilation invariant entropy and its property.

3.2.1 DEFICIENCY OF ABSOLUTE “DISTANCE” MEASURES IN WAVELET-BASED METHODS

To introduce our new dilation invariant entropy, we first list several traditional discriminant mea-
sures. Given two nonnegative sequences w = (w1,w2, · · · ,wn), z = (z1,z2, · · · ,zn), the square !2-
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norm is defined by

ds!
2
(w,z) Δ= ‖w− z‖22 =

n

∑
i=1

(wi− zi)2. (7)

Suppose ∑n
i=1wi = 1,∑n

i=1 zi = 1, then the Kullback-Leibler divergence (Kullback and Leibler,
1951), also known as relative entropy, is defined by

dKLD(w,z) Δ=
n

∑
i=1

wi log
wi
zi

(8)

with the convention that log0 = −∞, logγ/0 = ∞ for γ > 0 and 0(±∞) = 0. A symmetric version
of dKLD is the J-Divergence (Kullback and Leibler, 1951) given by

dJDIV(w,z) Δ=
dKLD(w,z)+dKLD(z,w)

2
. (9)

It is easy to show that measures in Equations (7)-(9) are additive discriminant measure, that is,

d∗(w,z) =
n

∑
i=1

d∗(wi,zi) (∗=s!2,KLD,JDIV ). (10)

From Equations (3) and (10), we know that the discriminant measure of subband B j in the LDB
algorithm can be written as

φ1(B j) =
K

∑
m,n=1
m!=n

n j

∑
t=1

d∗(Γ
(m)

(b jt),Γ
(n)

(b jt)). (11)

Also from Equations (5) and (6), we know that the discriminant measure of subband B j in the
MLDB algorithm can be written as

φ2(B j) =
K

∑
m,n=1
m!=n

n0
∑
t=1

d∗(Γ
(m)

(b j(t)),Γ
(n)

(b j(t))), (n0 < n j) (12)

where b j(t), (t = 1, · · · ,n0) are the first n0 coordinates with largest discriminability in subband B j.
However, there are no normalized conditions imposed in each subband when the decomposition

level L > 0, because for each subband B j( j > 1) (B1 is the original image)

n j

∑
t=1

Γ
(y)

(b jt),
n0
∑
t=1

Γ
(y)

(b j(t)) < 1 and
n j

∑
t=1

Γ
(y)

(b jt) %≡C0,
n0
∑
t=1

Γ
(y)

(b j(t)) %≡C1 ∀y

whereC0,C1 are constants independent of y and B j. Without the normalized conditions, the absolute
“distance” measures (7)-(9) will lead to a jeopardy that φ1(B j) and φ2(B j) depend absolutely on the
order of magnitude (OM) of Γ(m)(b jt), Γ

(n)(b jt) and Γ
(m)(b j(t)), Γ

(n)(b j(t)) respectively.
Unfortunately, we find that the OM of coordinate loadings make much difference between lower

spatial frequency subbands and higher spatial frequency subbands. For example, the coordinate
loadings in the first spatial frequency subband B6 (=LL2 in Figure 2) of the second level may vary
from 0.1 to 10, and the coordinate loadings in the second spatial frequency subband B7 (=LH2 in
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B6 B7
Γ

(1)(b6t) Γ
(2)(b6t) Γ

(1)(b7t) Γ
(2)(b7t)

1.47e-04 3.86e-04 6.72e-08 4.90e-07
8.04e-05 3.57e-04 4.13e-07 5.04e-06
2.07e-04 3.91e-04 1.32e-06 1.10e-07
1.06e-04 3.57e-04 5.45e-07 7.02e-08
1.07e-04 3.83e-04 1.43e-07 5.32e-08
2.05e-04 3.57e-04 5.20e-09 7.14e-08

Table 1: Values of Γ(y)(b6t),Γ
(y)(b7t) (y= 1,2; t = 1, · · · ,6)

Figure 2) of the second level may vary from 0.001 to 0.01. Table 1 lists an example of some values
of Γ(y)(b6t),Γ

(y)(b7t) computed by Equation (2) in latter experiment.
From Equations (11),(12) and (2), we can deduce a bad result that the coordinates in lower

spatial frequency subbands have more discriminability because of the larger OM of theirs loadings,
and the coordinates in higher spatial frequency subbands have less discriminability because of the
smaller OM of theirs loadings. So the low spatial frequency subbands are dominant in the LDB
and MLDB algorithm. However, it is unreasonable to neglect the middle and high spatial frequency
components merely for small OM of their loadings. Our experimental results also show that not
only low spatial frequency components, but also middle spatial frequency components are useful
for face recognition.

3.2.2 THE DILATION INVARIANT ENTROPY AND ITS PROPERTY

First, we define that the separability of sample ensemble X is the probability of classifying all sam-
ples into their genuine classes by certain discriminant functions. It is well-known that the separabil-
ity of X does not depend on the absolute distances based on the OM of sample values, but depends
on the relative distances among all the samples in X . For each coordinate c, the coordinate loadings
from all the training samples can induce a sample ensemble X c in R1, and the discriminability of c
is equivalent to the separability of X c, so it is independent of the OM of coordinate loadings, and
only depends on the relative distances among the coordinate loadings from all the training samples.
Obviously, the “distance” measures used in LDB do not take this fact into account. So we propose
a new “distance” measure derived from the J-Divergence. We call it the dilation invariant entropy :

dDIE(w,z) Δ=
n

∑
i=1

1
2(wi+ zi)

(
wi
zi
logwi+

zi
wi
logzi) =

n

∑
i=1

(wi− zi)(logwi− logzi)
2(wi+ zi)

(13)

where w= (w1,w2, · · · ,wn), z= (z1,z2, · · · ,zn) are two nonnegative sequences, with the convention
that log0= −∞, logγ/0= ∞ for γ> 0 and 0(±∞) = 0.

Proposition 1 The new relative entropy defined by Equation (13) is dilation invariant.

Proof Suppose the dilation transform f : w ∈ Rn → f (w) = aw ∈ Rn, a(> 0) is a dilation constant,
then
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dDIE( f (w), f (z)) = dDIE(aw,az) =
n

∑
i=1

(awi−azi)(logawi− logazi)
2(awi+azi)

=
n

∑
i=1

a(wi− zi)(logwi+ loga− logzi− loga)
2a(wi+ zi)

=
n

∑
i=1

(wi− zi)(logwi− logzi)
2(wi+ zi)

= dDIE(w,z).

In fact, the new dilation invariant entropy is the generalization of the J-Divergence (when the
J-Divergence satisfies the constraint: w+ z= 1) because

dDIE(w,z) =
n

∑
i=1

(wi− zi)(logwi− logzi)
2(wi+ zi)

=
n

∑
i=1

1
2
(

wi
wi+ zi

− zi
wi+ zi

)(log
wi

wi+ zi
− log zi

wi+ zi
)

=
1
2
(
n

∑
i=1

w′
i log

w′
i
z′i

+
n

∑
i=1

z′i log
z′i
w′
i
)

= dJDIV(w′,z′)

(14)

where w′
i =

wi
wi+zi ,z

′
i =

zi
wi+zi , w

′
i+z′i = 1 and w′ = (w′

1, · · · ,w′
n),z′ = (z′1, · · · ,z′n). Equation (14) shows

that the dilation invariant entropy normalizes the sample ensembles into unit sample ensembles with
the sum formalism, so different sample ensembles are comparable for their separability. Similarly,
we can define the dilation invariant !2 norm as

dDI!2(w,z) =

(
n

∑
i=1

(
wi

wi+ zi
− zi
wi+ zi

)2
) 1

2

=

(
n

∑
i=1

(w′
i− z′i)

2

) 1
2

= d!2(w′,z′). (15)

In Section 4, we will conduct an experiment to test the performance of the LDC algorithm using
both dilation invariant entropy and dilation invariant !2 norm.

The dilation-invariance of the new relative entropy ensures that the separability of each coordinate-
loadings ensemble X c is independent of its OM. Accordingly, the discriminability of each coordinate
c can be independent of its corresponding subband. It offers a benefit that any two coordinates in
the dictionary D are comparable for their discriminability. So all the coordinates in the dictionary
can be uniformly selected by a criterion.

3.3 Feature Selection Criterion

Sometimes, maximizing the between-class difference or minimizing the within-class difference
alone leads to a bad result. So in the LDC algorithm, our separability measure function will contain
a term to maximize the between-class difference and minimize the within-class difference simulta-
neously.
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3.3.1 THE MAXIMUM a posteriori (MAP) LOGISTIC MODEL

To select the most discriminant coordinates, we make use of the Bayesian algorithm based on min-
imizing the error on the training set. The Bayesian algorithm adopts a probabilistic measure of
similarity based on a Bayesian MAP analysis of face differences. In the traditional methods (Wang
et al., 2006; Chou, 2000), the similarity measure is used to characterize what kind of image variation
is typical for the same person and what is for different persons. In this paper, the MAP similarity
measure is used to choose the coordinates that make the training data set with known class labels
having the minimum error. In this way the selected coordinates can make the known classification
of training data set the most probable:

ĉ= argmax
c

K

∑
y=1

1
#(Xy)

Z

X
Pc(Xy|x)1(x ∈ Xy)dP(x)

where #(·) is the cardinal number, and 1(·) is the indicator function. The posterior probability
Pc(Xy|x) can be rewritten as

Pc(Xy|x) = Pc(x|Xy)Pc(Xy)/Pc(x) = Pc(x|Xy)Pc(Xy)/P(x).

Since P(x) is not a function of the class index and thus has no effect in the MAP decision, the needed
probabilistic knowledge can be represented by the class prior distribution Pc(Xy) and the conditional
probability Pc(x|Xy) which will be modeled by logistic functions.

Definition 1 The prior distribution Pc(Xy) is defined as

Pc(Xy) =
1
T

1
1+ exp(−dDIE (Γ(y)(c),Γ(0)(c)))

,

T =
K

∑
y=1

1
1+ exp(−dDIE (Γ(y)(c),Γ(0)(c)))

.
(16)

Definition 2 The conditional probability Pc(xyi |Xy)(x= xyi ) is defined as

Pc(xyi |Xy) =
1

1+ exp(dDIE (Γ(y)
i (c),Γ(y)(c))

(17)

where Γ(y)(c) is defined by Equation (2), representing the normalized spatial-frequency energy map
of class y on coordinate c, and can be thought of as the center of class y. Similar to that of LDB, we
set

Γ
(y)

i (c) Δ=
|c · xyi |

2

‖xyi‖
2 , Γ

(0)
(c) Δ=

∑K
y=1∑

Ny
i=1 |c · x

y
i |
2

∑K
y=1∑

Ny
i=1 ‖x

y
i‖
2 . (18)

Γ(y)
i (c) represents the normalized spatial-frequency energy map of sample xyi on coordinate c, and

Γ(0)(c) represents the normalized spatial-frequency energy map of all the training samples on coor-
dinate c, which can be considered as the center of all samples.

The properties of the probability functions Pc(Xy) and Pc(xyi |Xy) can be made clear by consider-
ing the sigmoid function:

f (d) =
1

1+ exp(−γd+θ)
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with θ normally set to zero and γ set to 1 for Pc(Xy) and -1 for Pc(xyi |Xy). When γ = 1, f (d) is
a monotonically increasing function, a larger dDIE (Γ(y)(c),Γ(0)(c))) means that it is more probable
to separate class set Xy. Contrarily, when γ = −1, f (d) is a monotonically decreasing function, a
smaller dDIE (Γ(y)

i (c),Γ(y)(c)) means that sample xyi is more likely to belong to class set Xy. In fact,
the idea of MAP logistic model is derived from the Fisher criterion. Moreover, the sigmoid function
can effectively allay the effect of outliers which have great effect on the Fisher criterion.

3.3.2 SEPARABILITY MEASURE AND FEATURE SELECTION CRITERION

For the given training data set, the empirical probability measure P(x) defined on the training data set
is a discrete probability measure that assigns equal mass at each sample. We define the separability
measure as

SM(c) =
K

∑
y=1

1
#(Xy)

Z

X
Pc(Xy|x)1(x ∈ Xy)dP(x)

≈
K

∑
y=1

1
Ny

Ny

∑
i=1

Pc(xyi |Xy)Pc(Xy)

=
K

∑
y=1

Pc(Xy)

(
1
Ny

Ny

∑
i=1

Pc(xyi |Xy)
)

.

(19)

In fact, the separability measure defined by Equation (19) is an empirical measure. If the training
samples are obtained by an independent sampling from a space with a fixed probability distribution
P0(x), the empirical probability distribution P(x) will converge to P0(x) in distribution as N → ∞.
Then the empirical measure defined on the N independent training samples will converge to the
expected measure as the sample size N increases. With sufficient training samples, the empirical
measure is an estimate of the expected measure. The goodness of this estimate is determined by the
training sample size N and the convergence rate of the empirical probability measure P(x) to the
limit distribution P0(x).

Furthermore, we use the following criterion for feature selection:
Criterion: Select uniformly the first N0 coordinates from the dictionaryD with largest separability
measure defined by Equation (19).

3.4 Discriminant Analysis

LDA (Fukunaga, 1990) is a linear statistic classification method, which tries to find a linear trans-
form so that after its application the scatter of sample vectors is minimized within each class and
the scatter of mean vectors around the total mean vector is maximized simultaneously.

Let the between-class scatter operator Sb and the within-class scatter operator Sw be:

Sb =
1
N

K

∑
y=1

Ny(my−m0)(my−m0)T , Sw =
1
N

K

∑
y=1

Ny

∑
i=1

(xyi−my)(xyi−my)T

where my is the mean of the mapped training sample of class y, and m0 is the mean across all the
mapped training samples. Then the Fisher criterion function can be defined by
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J1(ϕ1) =
ϕT1 Sbϕ1
ϕT1 Swϕ1

, (ϕ1 %= 0,‖ϕ1‖ = 1). (20)

The solution to maximizing J1(ϕ1) can be found by searching for a direction which maximizes the
projected class means (the numerator) while minimizing the class variances in this direction (the
denominator).

However, the LDA algorithm often suffers from the “small sample size” (SSS) problem which
exists in high-dimensional pattern recognition tasks, where the number of available samples is
smaller than the dimensionality of the samples. Many methods (Mika et al., 1999; Baudat and
Anouar, 2000; S. Mika and Müller, 2003; Yang, 2002) discard the discriminant information con-
tained in the null space of Sw. But a significant result is a finding that there exists crucial discrim-
inative information in the null space of Sw (Chen et al., 2000; Zhuang and Dai, 2007; Yang and
Yang, 2003; Yu and Yang, 2001). We proposed the use of regularization (Dai and Yuen, 2003), but
it involves a determination of parameters. Yang et al. (2005) proposed a complete kernel Fisher
discriminant analysis algorithm which makes full use of two kinds of discriminant information, reg-
ular and irregular in kernel feature space. Its advantage is that no estimation of parameter is needed.
Based on their idea, we use complete linear discriminant analysis (CLDA) in the LDC algorithm to
solve the SSS problem.

In Equation (20), if the within-class scatter operator Sw is invertible, ϕT1 Swϕ1 > 0 always holds
for every nonzero vector ϕ1, and the Fisher criterion can be directly employed to extract a set of
optimal discriminant vectors. If Sw is singular, there always exist vectors satisfying ϕ̃TSwϕ̃ = 0.
These vectors are from the null space of Sw (null(Sw)) and can be very effective if they satisfy
ϕ̃TSbϕ̃ > 0 at the same time (Chen et al., 2000; Zhuang and Dai, 2007; Yang and Yang, 2003; Yu
and Yang, 2001). In this case, the Fisher criterion degenerates into the following between-class
scatter criterion:

J2(ϕ2) = ϕT2 Sbϕ2, (‖ϕ2‖ = 1). (21)

CLDA uses the between-class scatter criterion defined in Equation (21) to derive the irregular dis-
criminant vectors from null(Sw), while using the standard Fisher criterion defined in Equation (20)
to derive the regular discriminant vectors from range(Sw).

In our experiments, we capture all the regular discriminant vectors which satisfy J1(ϕ1) > 0
from the range space of Sw, simultaneously, we capture all the irregular discriminant vectors which
satisfy J2(ϕ2) > 0 from the null space of Sw.

3.5 A New Criterion for the Nearest Neighbor (NN) Classifier

After the discriminant features are extracted, a remaining key element of face recognition is to
design a robust classifier. Because there are large numbers of classes in face recognition problems,
we do not use the hyperplane classifier, but the NN classifier which is more suitable for such many-
class problems. Because the NN classifier forms class boundaries with piecewise linear hyperplanes,
any classifying border can be approximated by a series of hyperplanes defined locally. Moreover,
classifying criterion is the core of the design. The Euclidean distance is the most popular one which
exhibits the distance between two vectors intuitively. However, it ignores the correlation which is
also important for measuring the similarity of two vectors. On the contrary, the cosine criterion
(Zhang and Korfhage, 1999) exhibits the correlation, but ignores the distance between two vectors.
In order to improve the Euclidean distance and cosine criterion, we propose a new triangle square
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ratio which takes into account of both distance and correlation between two vectors. Suppose υ1,
υ2 are two vectors, the triangle square ratio is defined as

TSR(υ1,υ2) =
‖υ1−υ2‖22

‖υ1‖22+‖υ2‖22
.

The triangle square ratio is a similarity measure based on the argument and modulus of each vector,
as shown in proposition 2.

Proposition 2 Suppose θ is the include angle of υ1 and υ2, then TSR(υ1,υ2) → 0 if and only if
‖υ1‖2 →‖υ2‖2 and θ→ 0, which implies the correlation between υ1 and υ2 should approach 1.

Proof

TSR(υ1,υ2) = 1− 2‖υ1‖2 ·‖υ2‖2
‖υ1‖22+‖υ2‖22

cosθ (by the cosine law)

≥ 1− cosθ (“=” holds if and only if ‖υ1‖2 = ‖υ2‖2)
≥ 0 (“=” holds if and only if θ= 0).

(22)

In fact, if υ1 and υ2 are unit vectors, the triangle square ratio is equivalent to Euclidean distance.
Also, Equation (22) shows that triangle square ratio is a modification of cosine criterion by the
term 2‖υ1‖2·‖υ2‖2

‖υ1‖22+‖υ2‖22
. If ‖υ1‖2 = ‖υ2‖2, it is equivalent to cosine criterion. Moreover, we have done

large numbers of numerical experiments which exclusively show that
√
TSR(υ1,υ2) satisfies the

triangle inequality, and the symmetric and positive definitive properties are obvious. So we guess√
TSR(υ1,υ2) is a distance measure, its proof in theory is an open problem.
Experimental results in Section 4 show that the triangular square ratio is more robust against

illumination variations than the Euclidean distance, whilst retaining the robustness against pose and
expression changes as the Euclidean distance. On the other hand, although the triangular square
ratio marginally underperforms the cosine criterion when there are variations of illumination, it can
obviously outperform the cosine criterion when there are changes of pose and expression.

3.6 The Procedure of Proposed LDC Algorithm

We summarize our local discriminant wavelet packet coordinates algorithm as follows:
Step 1: The wavelet packet transform

Expand each training sample xyi into the spatial-frequency dictionary D (see Figure 2) by
the wavelet packet decomposition, then xyi will be represented by the loadings of coordinates in D .
Step 2: The LDC selection transform

(2.a) For each coordinate c in the dictionary D , use the Equations (2), (18), (16), and (17) to
compute its prior distribution Pc(Xy) and conditional probability Pc(xyi |Xy), whereafter, compute its
separability measure defined by Equation (19), that is, its discriminability.

(2.b) Select the first N0 coordinates from D with the largest discriminability. Whereupon, each
training sample xyi can be represented by a feature vector v

y
i which is formed by the loadings of the

selected coordinates. These feature vectors form a new feature space F .
Step 3: The CLDA transform
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Use the Equations (20) and (21) to construct the subspace template by the complete linear dis-
criminant analysis (CLDA) in F .
Step 4: Testing a new probe sample

For a new probe sample, it will be expanded into the spatial-frequency dictionary D by the
wavelet packet decomposition, and be extracted the loadings of the corresponding coordinates se-
lected in Step 2 to form a new feature vector vnew. Then vnew will be projected to the subspace
constructed in Step 3 and classified by the nearest neighbor classifier.

Simply, the LDC algorithm can be represented as:

Out put = T3 ·T2 ·T1 · Input

where T1 is the wavelet packet transform, T2 is the LDC selection transform. and T3 is the CLDA
transform.

3.7 Computational Complexity Comparison of the LDC and LDB Algorithm

The framework of the LDC algorithm is similar to LDB. We compare their computational complex-
ity step by step:
Step 1: The wavelet packet transform

The same procedure of the LDC and LDB algorithms cost O(N ·nrnc ·L), where nr×nc is the
size of facial images, L is the level of the wavelet packet decomposition.
Step 2: The LDC/LDB selection transform

(2.a) For each coordinate in DLDC, the LDC algorithm needs to compute the prior distribution
(16), the conditional probability (17) and its discriminability (19), so the costs of all the coordinates
in DLDC are O(N · nrnc)+O(K · nrnc)+O(N · nrnc). For each subband in DLDB, the LDB algorithm
needs to compute the space-frequency energy distribution (2), (1) and its measure of efficacy (3).
So the costs of all the subbands in DLDB are O(N ·nrnc ·L)+O(K2 ·nrnc ·L).

(2.b) The LDC algorithm needs to sort all the coordinates in DLDC by their discriminability,
which costs O(nrnc · log2(nrnc)). The LDB algorithm needs to select the local discriminant basis
from DLDB using the best-basis algorithm, which costs O(L · 4L). Then both algorithms need to
represent all the training samples by new feature vectors, which cost O(N ·N0).
Step 3: The CLDA/LDA transform

CLDA in the LDC algorithm has the same computational complexity O((N0)3) as LDA in the
LDB algorithm in the new feature space F .
Step 4: Testing a new probe sample

A new probe sample should be transformed by T1, T2, T3 with complexityO(nrnc ·L)+O(N0)+
O(N0 ·Nev) and classified by the NN classifier with complexity O(N ·Nev), where Nev is the number
of eigenvectors extracted by CLDA or LDA.

The computational complexity of Step 2 shows that the LDC algorithm is more efficient than
LDB in many real applications when K is large. Table 11 also validates the fact.

4. Experiment Results

The results presented in this section are divided into five parts. First, we construct a dictionary D
and choose a preferable N0 for our LDC algorithm. As aforementioned, the LDC algorithm consists
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of the LDC based feature extraction, the complete linear discriminant analysis (CLDA) and the
nearest neighbor (NN) classifier with the triangle square ratio (TSR) criterion. In the second and
third parts, we evaluate the efficacy of the LDC feature extraction and the new classifying criterion
respectively. The fourth part gives the performance of the whole LDC algorithm. Some further
researches of the LDC algorithm are shown in the final part.

4.1 Database

1) FERET Database: The FERET database, distributed by the National Institute of Standards and
Technology, consists of 14051 eight-bit grayscale images of human heads with different expres-
sions, poses, occlusion and illuminations (Phillips et al., 2000). Two data sets of the database are
used in our experiments, one is a small data set, which contains 432 images of 72 people and each
individual has six images, the other is a large data set with 255 individuals, and each person has four
frontal images, the datas are extracted from four different sets, namely, Fa, Fb, Fc, and duplicate
(Phillips et al., 2000). There are 1020 images in this data set. All the images are aligned by the
centers of eyes and mouth, and then normalized with the resolution 92× 112. Some images from
both data sets of the FERET database are shown in Figure 3.

2) ORL Database: The Olivetti-Oracle Research Lab (ORL) database has 40 subjects and each
subject has 10 different facial views representing various expressions, small occlusion (by glasses),
different scales and orientations. So there are totally 400 facial images in the database. Each image
has 92×112 pixels in gray scale. Some samples are shown in Figure 4.

3) Hybrid Database: As aforementioned, the variations of the ORL database and the FERET
database are very different, which lead to unequal covariance distribution. So we blend the small
FERET data set and the ORL database together, in order to test the performance of the LDC algo-
rithm when facial images have larger illumination variations and pose, expression changes (Loog
and Duin, 2004). The hybrid database has 832 images of 112 persons.

4) CMU PIE Database: The CMU Pose, Illumination, and Expression (PIE) (Sim et al., 2003)
database consists of 41368 images of 68 people. Each person has images captured under 13 different
poses and 43 different illumination conditions and with four different expressions. In this paper, we
use a subset that focuses on illumination variations with pose and expression variations in frontal

Figure 3: Facial images of the FERET database. (Top) A person from the small data set. (Bottom)
A person from the large data set.

1180



LOCAL DISCRIMINANT WAVELET PACKET COORDINATES FOR FACE RECOGNITION

Figure 4: Segmental facial images of one person. (Top) From the ORL database. (Bottom) From
the CMU PIE database.

Total number Number of images Number ofDatabase
of images per person classes

ORL 400 10 40
SmallFERET 432 6 72
LargeFERET 1020 4 255
Hybrid 832 6 or 10 112

CMU-lights 2924 43 68

Table 2: Statistics for face images

view. There are 68 persons with each 43 images yielding a total of 2924 images. Each image has
92×112 pixels in gray scale. Some samples are shown in Figure 4.

The statistics of each data set is listed in Table 2.

4.2 Parameter Setting

In order to show more comparability with the PCA+CLDA, WaveletFace, LDB and MLDB algo-
rithms and present the performance of our LDC algorithmmore accurately, CLDA is used to capture
the complete discriminant features in the five algorithms. The number of discriminant vectors is ob-
tained in the same way as the LDC algorithm (see Subsection 3.4).

The FisherFace technique uses the classical PCA+LDA. TheNtrain−K−λ (λ is the critical value
which ensures Sw is non-singular) eigenvectors with largest eigenvalues are preserved on ‘PCA step’
(Belhumeur et al., 1997). For the PCA+CLDA algorithm, we select the first min(N0,M0)(M0 is the
number of non-zero eigenvalues) eigenvectors with largest eigenvalues on ‘PCA step’. For direct
LDA (DLDA), we use all the eigenvectors in their Step 2 (Yu and Yang, 2001).

The third-level lowest frequency subband LLL3 with a matrix of (nr/8)× (nc/8) (where nr×nc
is the resolution of original image) is referred to as WaveletFace (Chien and Wu, 2002). Because
the LDB algorithm selects a best discriminant subset of the whole basis, we choose four subbands,
and the number of selected coordinates is closest to N0. For the MLDB algorithm, we choose N0
coordinates as LDC on the scheme—five subbands with each 260 coordinates.
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ParametersMethods number of features for discriminant analysis classifier (criterion)
FisherFace Ntrain−K−λ NN(l2)
PCA+CLDA min(N0,M0) NN(l2)
DLDA all eigenvectors NN(l2)
WaveletFace subband LLL3 in D NN(l2)
LDB four subbands NN(l2)
MLDB 5×260 NN(l2)
LDC N0 NN(TSR)

Table 3: Parameters of aforementioned methods

In the ‘Decision Step’, we use the nearest neighbor classifier with the Euclidean distance for the
aforementioned methods as their original forms. For our LDC algorithm, we use the new triangle
square ratio criterion, the Euclidean distance and the cosine criterion are used for comparison. Most
parameters are listed in Table 3.

The recognition rate is calculated as the ratio of the number of successful recognition and the
total number of test samples. All the experiments are repeated 30 times, and the final recognition
rate is the average value of the thirty results. Suppose M is the number of facial images for each
person. On each database, we randomly select i0(<M) images from each person for training, while
the rest M− i0 images of each individual are selected for testing. i0 is a small integer, in order to
show the performance of the LDC algorithm when there are small-size-training samples.

4.3 Construction of the Dictionary D and Choice of N0

In this subsection, we conduct two experiments to construct the dictionary D and select a suitable
N0 for the LDC algorithm.

4.3.1 CONSTRUCTION OF THE DICTIONARY D

In the first experiment, to construct our dictionary D , we search for the most discriminant level
by the best performance of its selected coordinates. Because it is more time-consuming when the
decomposition level L is larger than 4, L = 4 is used in the experiment. In order to test the effect
of high frequency components and show the tolerance of the dilation invariant entropy in LDC to
noise, we design two schemes: Scheme 1 uses all the subbands in the wavelet decomposition tree,
Scheme 2 only uses the left subtree whose root node is L1, that is the H1, V1, D1 components are
not further decomposed. For each level, we select the first 1000 coordinates by the criterion in
Subsection 3.3 for both schemes. Their performances on the small FERET data set and the ORL
database are shown in Table 4.

Table 4 shows that the performance of Scheme 1 is marginally underperform Scheme 2, and
Scheme 1 with all the subbands in the wavelet packet tree is more time-consuming than Scheme
2 which only uses the left subtree whose root node is L1. So Scheme 2 is adopted in the LDC
algorithm. However, the effect of high frequency components is very slight, especially in the first
three levels, which implies that our dilation invariant entropy has good tolerance to noise. Table
4 also shows that the third level has the best performance, it can offer a judicious combination of

1182



LOCAL DISCRIMINANT WAVELET PACKET COORDINATES FOR FACE RECOGNITION

Training LevelDatabase
samples (i0)

Schemes
1 2 3 4

1 82.43± 2.40 91.38 ± 2.57 92.99 ± 1.60 90.43 ± 2.383
2 82.35± 2.54 92.19 ± 2.32 93.30 ± 1.85 92.34 ± 1.78
1 85.54± 2.76 94.00 ± 1.56 94.47 ± 1.68 91.79 ± 2.08ORL 4
2 85.56± 2.87 94.43 ± 1.62 95.26 ± 1.46 94.18 ± 1.35
1 87.70± 2.03 95.32 ± 1.45 95.42 ± 1.71 92.57 ± 1.625
2 87.82± 2.12 96.03 ± 1.49 96.23 ± 1.55 94.12 ± 1.59
1 92.42± 1.93 91.88 ± 1.69 92.33 ± 2.51 92.41 ± 2.423
2 92.42± 1.93 91.88 ± 1.77 92.30 ± 2.43 92.53 ± 2.39

FERET 1 94.93± 1.40 94.79 ± 2.25 95.23 ± 2.40 94.31 ± 2.58
(small)

4
2 94.93± 1.40 94.72 ± 2.04 95.60 ± 2.20 95.30 ± 2.94
1 95.93± 1.41 96.30 ± 1.76 97.04 ± 1.92 96.39 ± 2.955
2 95.93± 1.41 96.07 ± 1.90 96.90 ± 2.33 97.13 ± 2.13

(∗)±(∗∗): (∗) represents the recognition rate (%), (∗∗) represents standard deviation (%).

Table 4: Effect of high frequency components and performances of level 1,2,3,4

scale information and localization information. So Level 3 is used in the LDC algorithm, and our
spatial-frequency dictionary D consists of the first 16 subbands in the third level (see Figure 2).

4.3.2 CHOICE OF N0

Because all of the top N0 coordinates are used for the classification, a natural way to determine the
best N0 is to select the top N0 coordinates and compute the average recognition rates for various
different N0. Based on the idea, we use a global to local search strategy (Müller et al., 2001) on both
data sets of the FERET database. Because the computational complexity of CLDA is O((N0)3), for
the sake of computational efficiency, we set the range [100,2500] as the original wide range of N0. In
the “global” stage, we compare the performances of the LDC algorithm using the top N0 coordinates
when N0 increases from 100 to 2500 with interval 100 on the small data set, as shown in Figure 5
(Left). It shows that the LDC algorithm has a good and stable performance after N0 = 700 because
more good discriminant features are used. After N0 = 1700, the performance slightly decreases due
to the more redundant information included. So we ascertain a more precise subrange [700, 1700]
where the optimal N0 might exist.

In the “local” stage, we compare the performances of different N0 between 700 and 1700 with
interval 100 on the large data set, as shown in Figure 5 (Right). From the overall comparison of
two stages, we find that when N0 increases from 1300 to 1700 with interval 100, their performances
are very close, and the performance of N0 = 1300 is marginally better than others. Also for the
sake of computational efficiency, we select the first N0 = 1300 best discriminant coordinates in our
following experiments.

However, it should point out that the choice of N0 is not necessarily easy and needs further
research. The best N0 may be not the same for different databases, and it may be ascertained by the
cross validation method. We use the natural method and generalize the same N0 = 1300 to other
databases, in order to show that the LDC algorithm has robustness with respect to N0. Figure 6 also
validates the conclusion.
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Figure 5: (Left) The performances of the LDC algorithm using different N0 between 100 and 2500
with interval 100 on the small FERET data set. (Right) The performances of the LDC
algorithm using different N0 between 700 and 1700 with interval 100 on the large FERET
data set.
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Figure 6: The performances of the LDC algorithm using different N0 between 1300 and 1700 with
interval 100. (Left) The ORL database. (Right) The CMU-lights database.

4.3.3 RECONFIRMATION OF THE DICTIONARY D USING N0=1300

Moreover, we return to the anterior experiment (the construction of the dictionary D) with the top
N0(= 1300) coordinates. The results prove that the third level has the best performance once again,
as shown in Figure 7.

4.4 Efficacy of the LDC Based Feature Extraction

It is of paramount importance for face recognition to extract most discriminant features that are
less sensitive to environmental variations. In this subsection, we compare the efficacy of feature
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Figure 7: Performances of the LDC algorithm with N0(=1300) coordinates in four levels. (Left)
The ORL database. (Right) The small FERET data set.

Training Methods with the l2 criterion
Database samples (i0) LDC LDB MLDB WaveletFace

3 93.43 ± 1.95 93.30 ± 2.22 92.49 ± 1.91 92.92± 1.60
ORL 4 95.81 ± 1.59 95.60 ± 1.53 95.18 ± 1.39 94.56 ± 1.77

5 96.95 ± 1.59 96.65 ± 1.20 96.43 ± 1.29 94.20 ± 1.82
3 89.63 ± 3.01 87.56 ± 3.29 84.23 ± 3.26 88.80± 3.47FERET 4 92.92 ± 4.57 91.90 ± 4.48 88.80 ± 4.11 85.74 ± 4.85(small) 5 96.11 ± 3.39 95.69 ± 3.29 93.01 ± 3.80 87.50 ± 3.28

FERET 2 79.53 ± 3.23 76.05 ± 2.90 67.16 ± 3.36 73.18± 4.77
(large) 3 89.32 ± 1.82 87.45 ± 1.94 79.69 ± 1.99 72.59 ± 4.14

3 79.46 ± 10.95 79.92 ± 10.91 81.30 ± 9.87 78.44± 10.92CMU- 6 93.48 ± 7.63 93.69 ± 7.52 94.16 ± 6.89 85.08 ± 7.79lights 9 96.83 ± 4.29 96.54 ± 4.50 96.76 ± 4.56 54.80 ± 17.52

Table 5: Comparison with wavelet-based methods

extraction in LDC with other wavelet-based methods, such as LDB, MLDB and WaveletFace on the
ORL database, both data sets of the FERET database and the CMU-lights database. The setting of
the feature extractions can be seen in Subsection 4.2. In order to show more comparability, all the
methods use CLDA and the NN classifier with the Euclidean distance.

Table 5 shows that the LDC based feature extraction has the best result on the ORL database,
both data sets of the FERET database, and it outperforms WaveletFace, though it underperforms
LDB and MLDB marginally on the CMU-lights database. Moreover, LDC is more efficient than
LDB, MLDB because of the lower computational complexity when K is large, especially on the
large FERET data set (K = 255). On the whole, the feature extraction of LDC is more effective than
the kin methods, including LDB, MLDB and WaveletFace.
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Training Methods with the triangle square ratio criterion
Database samples (i0) LDC LDB MLDB WaveletFace

3 93.49 ± 2.19 92.93 ± 2.17 92.27 ± 1.82 92.80± 1.72
ORL 4 95.54 ± 1.45 95.32 ± 1.51 94.67 ± 1.64 94.13 ± 1.82

5 96.72 ± 1.71 96.65 ± 1.54 96.37 ± 1.41 93.60 ± 1.83
3 92.22 ± 2.18 90.03 ± 2.39 87.15 ± 2.91 90.54± 2.29FERET 4 95.32 ± 1.90 94.31 ± 2.58 91.53 ± 3.31 87.78 ± 2.92(small) 5 97.27 ± 2.01 95.56 ± 2.56 94.17 ± 2.88 87.18 ± 2.21

FERET 2 86.54 ± 2.78 84.11 ± 2.82 77.39 ± 3.34 79.01 ± 4.28
(large) 3 94.30 ± 0.37 92.39 ± 0.48 87.87 ± 1.78 74.98 ± 5.17

3 91.62 ± 6.63 91.90 ± 6.57 92.31 ± 6.37 88.67± 8.28CMU- 6 97.82 ± 3.18 97.82 ± 3.25 98.14 ± 2.90 87.57 ± 6.86lights 9 98.75 ± 2.09 98.47 ± 2.30 98.73 ± 2.14 55.96 ± 17.81

Table 6: Efficacy of the triangle square ratio criterion

4.5 Efficacy of the Triangle Square Ratio Criterion

Classifier and its classifying criterion are also important elements for face recognition. Generally,
distance-based criterion is more robust than correlation-based criterion with respect to pose and
expression changes while the contrary result is shown with respect to illumination variations. To
extend the capacity covering variations of pose, expression and illumination, we have proposed
the new triangle square ratio criterion in Subsection 3.5. In this experiment, we use the same four
feature extractions and CLDA as in Subsection 4.4, but the Euclidean distance is replaced by the
triangle square ratio criterion for the NN classifer. The results on the ORL database, both data sets
of the FERET database and the CMU-lights database are shown in Table 6.

Comparing the results on Table 6 with Table 5 which uses the Euclidean distance, it shows
that the triangle square ratio criterion performs better than the Euclidean distance considerably on
both data sets of the FERET database and the CMU-lights database, while its efficacy is very close
to the Euclidean distance on the ORL database. In fact, the FERET database, the CMU-lights
database concern about illumination variations (light intensity and direction respectively), and the
ORL database concerns about expression and pose changes. Comparison results show that the trian-
gle square ratio criterion is more robust against illumination variations than the Euclidean distance,
whilst retaining the robustness against pose and expression changes as the Euclidean distance.

Furthermore, we replace the triangle square ratio criterion with the cosine criterion, whilst
keeping the other setting, on the ORL database and the small FERET data set. The performance of
the cosine criterion is showed in Table 7. The comparison between Table 6 and Table 7 shows that
the triangle square ratio criterion performs better than the cosine criterion considerably on the ORL
database, although it marginally underperforms the cosine criterion on the small FERET data set.

4.6 Performance of the LDC Algorithm

In this part, we compare the performance of LDC with statistical methods, including FisherFace,
PCA+CLDA, DLDA, and wavelet based methods: WaveletFace, LDB, MLDB on both individual
and hybrid databases. All the methods used for comparison keep their settings as their original
forms (see Subsection 4.2).
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Training Methods with the cosine criterion
Database samples (i0) LDC LDB MLDB WaveletFace

3 92.54 ± 1.93 91.56 ± 2.12 90.99 ± 2.03 91.88± 1.73
ORL 4 94.78 ± 1.42 94.25 ± 1.50 93.71 ± 1.71 93.46± 1.89

5 96.22 ± 1.60 96.00 ± 1.49 95.53 ± 1.58 93.73 ± 1.76
3 92.41 ± 1.97 90.15 ± 2.56 86.99 ± 3.00 90.82± 2.58FERET 4 95.67 ± 1.96 94.86 ± 2.31 91.85 ± 3.29 87.94 ± 3.51(small) 5 97.27 ± 2.01 95.56 ± 2.43 94.49 ± 2.62 87.55 ± 2.59

Table 7: Performance of the cosine criterion

Since our motivation is to compensate for illumination, pose and expression variation, from
the properties of various databases, the ORL database is used to test moderate variations in pose
and expression, the CMU-lights database to test illumination variations, the FERET database for
more generic situation, and the hybrid database to test heteroscedastic class covariance distribution
tolerance.

4.6.1 COMPARISON ON THE INDIVIDUAL DATABASES

The comparison of results are depicted in Table 8. Although some algorithms occasionally have
better performance, LDC shows stable performance for every number of training samples per class
on all databases. Especially on the large FERET data set, it outperforms FisherFace, PCA+CLDA,
DLDA, WaveletFace, LDB, MLDB by 30.94%, 10.49%, 31.85%, 13.36%, 10.49%, 19.38% respec-
tively when two samples per class are used for training, and by 21.75%, 5.95%, 31.75%, 21.71%,
6.85%, 14.61% respectively when three samples per class are used for training. In particular, LDC
significantly outperforms FisherFace, DLDA, WaveletFace. From the standard derivation, we can
see that LDC has better stability than other algorithms.

4.6.2 COMPARISON ON THE HYBRID DATABASE

On the hybrid database, we randomly select i0 (i0=2 to 4) images from each person for training, the
rest (6−i0) images of each individual in the small FERET data set are tested while the rest (10−i0)
images of each individual in the ORL database are used for testing. The comparison results are
recorded in Table 9.

It shows that when the number of training sample per class increases from 2 to 4, the average
recognition rates of LDC are from 82.20% to 90.28%. The performance is better than Fisher-
Face, PCA+CLDA, DLDA, WaveletFace, LDB and MLDB which increase from 60.38%, 79.06%,
66.86%, 77.43%, 77.99%, 76.00%, to 75.63%, 90.64%, 80.85%, 66.09%, 88.11%, 86.09% respec-
tively on the hybrid database.

As a whole, these experimental results reveal that LDC has better performance and stability on
the ORL, FERET, CMU-lights databases than other methods, including FisherFace, PCA+CLDA,
DLDA, WaveletFace, LDB and MLDB, especially outperforms FisherFace, DLDA, WaveletFace.
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Training samples (i0)Database Methods 3 4 5
FisherFace 87.20 ± 1.96 90.53 ± 1.87 92.07 ± 1.97
PCA+CLDA 91.89 ± 1.97 94.81 ± 1.68 96.48 ± 1.58
DLDA 84.17 ± 2.23 87.31 ± 1.92 90.17 ± 1.55

ORL WaveletFace 92.92± 1.60 94.56 ± 1.77 94.20 ± 1.82
LDB 93.30 ± 2.22 95.60 ± 1.53 96.65 ± 1.20
MLDB 92.49 ± 1.91 95.18 ± 1.39 96.43 ± 1.29
LDC(TSR) 93.49 ± 2.19 95.54 ± 1.45 96.72 ± 1.71
FisherFace 84.85 ± 3.64 88.01 ± 4.91 91.94 ± 4.23
PCA+CLDA 89.07 ± 2.88 92.85 ± 4.06 95.60 ± 3.95
DLDA 80.45 ± 4.81 86.34 ± 5.28 88.61 ± 6.41FERET WaveletFace 88.80± 3.47 85.74 ± 4.85 87.50 ± 3.28(small) LDB 87.56 ± 3.29 91.90 ± 4.48 95.69 ± 3.29
MLDB 84.23 ± 3.26 88.80 ± 4.11 93.01 ± 3.80
LDC(TSR) 92.22 ± 2.18 95.32 ± 1.90 97.27 ± 2.01

Training samples (i0)
2 3

FisherFace 55.60 ± 5.10 72.55 ± 2.57
PCA+CLDA 76.05 ± 3.36 88.35 ± 1.74
DLDA 54.69 ± 4.86 62.55 ± 2.30FERET WaveletFace 73.18± 4.77 72.59 ± 4.14(large) LDB 76.05 ± 2.90 87.45 ± 1.94
MLDB 67.16 ± 3.36 79.69 ± 1.99
LDC(TSR) 86.54 ± 2.78 94.30 ± 0.37

Training samples (i0)
3 6 9

FisherFace 80.57 ± 8.96 94.46 ± 6.44 97.36 ± 4.08
PCA+CLDA 78.48 ± 10.89 93.91 ± 7.72 97.45 ± 3.70
DLDA 76.92 ± 7.48 87.49 ± 6.60 92.65 ± 4.60CMU- WaveletFace 78.44± 10.92 85.08 ± 7.79 54.80 ± 17.52lights LDB 79.92 ± 10.91 93.69 ± 7.52 96.54 ± 4.50
MLDB 81.30 ± 9.87 94.16 ± 6.89 96.76 ± 4.56
LDC(TSR) 91.62 ± 6.63 97.82 ± 3.18 98.75 ± 2.09

Table 8: Comparison on the individual databases

4.7 Some Further Researches of the LDC Algorithm

In this subsection, we keep the experimental settings in Subsection 4.2 and carry out some further
researches of the LDC algorithm, including: effects of different wavelets, effects of different relative
“distance” measures and comparison of CPU time.
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Training samples (i0)Methods 2 3 4
FisherFace 60.38 ± 3.24 72.58 ± 2.51 75.63 ± 2.87
PCA+CLDA 79.06 ± 2.22 86.99 ± 1.34 90.64 ± 1.77
DLDA 66.86 ± 2.57 74.55 ± 2.61 80.85 ± 1.89
WaveletFace 77.43 ± 2.28 76.21 ± 1.55 66.09 ± 2.86
LDB 77.99 ± 2.21 85.81 ± 1.73 88.11± 1.78
MLDB 76.00 ± 2.07 83.41 ± 1.85 86.09 ± 2.20
LDC(TSR) 82.20 ± 1.69 88.46 ± 1.44 90.28 ± 1.47

Table 9: Comparison on the hybrid database

Training samples (i0)Database wavelets 3 4 5
harr 92.49 ± 2.16 94.79 ± 1.55 96.33 ± 1.53
db6 92.86 ± 1.52 95.24 ± 1.53 96.30 ± 1.55
sym2 92.83 ± 2.02 95.29 ± 1.74 96.78 ± 1.77

ORL coif2 93.27± 1.37 94.94 ± 1.39 95.67 ± 1.67
bior2.4 92.38 ± 2.08 94.04 ± 1.37 94.93 ± 1.54
rbio2.4 93.71 ± 2.10 95.19 ± 1.33 95.78 ± 1.64
db4 93.49 ± 2.19 95.54 ± 1.45 96.72 ± 1.71
harr 93.69 ± 2.07 95.86 ± 2.17 97.22 ± 1.96
db6 91.76 ± 2.65 94.58 ± 2.44 95.42 ± 2.42
sym2 92.56 ± 2.41 95.72 ± 2.60 97.22 ± 2.34FERET coif2 91.73 ± 2.55 94.75± 2.15 96.30 ± 1.94(small) bior2.4 90.88 ± 2.10 94.47 ± 2.78 95.46 ± 1.86
rbio2.4 91.59 ± 2.20 95.12 ± 2.37 96.16 ± 2.55
db4 92.22 ± 2.18 95.32 ± 1.90 97.27 ± 2.01

Table 10: Performances of different wavelet basis functions

4.7.1 EFFECTS OF DIFFERENT WAVELET BASIS FUNCTIONS

We use different wavelet basis functions for the wavelet packet decomposition on the ORL database
and the small FERET data set, including: harr wavelet, Daubechies db6 wavelet, Symlets sym2
wavelet, Coiflets coif2 wavelet, Biorthogonal spline bior2.4 wavelet, Reverse biorthogonal spline
rbio2.4 wavelet. Their performances are depicted in Table 10.

Table 10 shows that the performances of the harr and sym2 wavelets are very close to the db4
wavelet. Although other wavelets a little underperform the db4 wavelet, their performances are also
better than some other methods shown in Table 8. So we can conclude that the changes among
aforementioned different wavelet basis functions have small effects on the performance of the LDC
algorithm. Moreover, the orthogonal wavelets are superior to the biorthogonal wavelets in general.

4.7.2 EFFECTS OF DIFFERENT RELATIVE “DISTANCE” MEASURES

In order to show the effect of different relative “distance” measures on the performance of classi-
fication, we compare the dilation invariant entropy with the dilation invariant l2 norm (15) on the
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Figure 8: Performances of the LDC algorithm using the dilation invariant entropy and the dilation
invariant l2 norm. (Left) The ORL database. (Right) The small FERET data set.

MethodsDatabase
LDC FisherFace LDB MLDB WaveletFace

ORL (K = 40) 154 8 336 263 23
SmallFERET (K = 72) 164 24 415 400 40
LargeFERET (K = 255) 269 521 2888 3045 123

Table 11: Comparison of training CPU time (seconds)

ORL database and the small FERET data set. The results are shown in Figure 8. It shows that the
dilation invariant l2 norm marginally underperforms the dilation invariant entropy, which implies
the changes between aforementioned different relative “distance” measures have slight effects on
the performance of the LDC algorithm.

4.7.3 COMPARISON OF CPU TIME

We conduct an experiment to compare the time-consumption of the LDC algorithm with the popular
statistics-based method: FisherFace and the wavelet-based methods: LDB, MLDB, WaveletFace on
the ORL database and both data sets of the FERET database. We randomly select 3 images from
each person for training. The experiments are implemented using MATLAB in a personal computer
with Pentium 4 CPU and 256MB RAM. The time-consumptions are shown in Table 11. Although
LDC is less efficient than WaveletFace, it is considerably more efficient than LDB and MLDB,
especially when K is large. When K increases, the time-consumption of LDC increases more slowly
than that of FisherFace, so that LDC can catch up with and surpass the efficiency of FisherFace.

It should point out that in our experiments, LDB selects the four best discriminant subbands
from the local discriminant basis (see Subsection 4.2) and the number of selected coordinates is
bigger than N0(= 1300). So LDB takes more time than LDC, MLDB in the CLDA transform.
However, MLDB based feature extraction needs to estimate the probability density functions, when
K increases, it takes more and more time than LDB based feature extraction, so the total time in Ta-
ble 11 shows that LDB is more expensive than MLDB on the ORL database and the small FERET
data set due to their small K, the contrary result is shown on the large FERET data set due to its
large K.
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5. Discussions and Conclusion

In this paper, we have presented a novel local discriminant coordinates (LDC) method based on
wavelet packet for face recognition to compensate for illumination, pose and expression variations.
The method searches for the most discriminant coordinates from a wavelet packet dictionary, instead
of the most discriminant basis as in the LDB algorithm. The LDC idea makes use of the scattered
characteristic of the best discriminant features. In our method, the feature selection procedure is
independent of subbands, and only depends on the discriminability of all coordinates. We have
shown that the traditional “distance” measures (e.g., the l2 distance, relative entropy) are deficient
to measure the separability, while comparing the separability of two sample ensembles. We have
proposed a new dilation invariant entropy which is independent of the order of magnitude. We
have used the dilation invariant entropy and a MAP logistic model to measure the separability of
coordinate-loading ensemble accurately. It locates in either low spatial frequency subbands or high
spatial frequency subbands. So any two coordinates in the wavelet packet dictionary are comparable
for their discriminability. Experimental results show that the LDC based feature extraction is more
effective than LDB, MLDB, WaveletFace, PCA for feature extraction.

The LDC based feature extraction not only selects low frequency components, but also middle
frequency components. From its significant improvement upon the WaveletFace method which only
uses low frequency components, we can conclude that middle frequency components are helpful
for face recognition, since their judicious combination with low spatial frequency components can
improve the performance of face recognition greatly.

We have modified the Euclidean distance and the cosine criterion in the nearest neighbor clas-
sifier, and proposed a new triangle square ratio criterion which takes into account of two similarity
measures, distance and correlation. Experimental results show that the triangle square ratio cri-
terion is more robust against illumination variations than the Euclidean distance, while retaining
the robustness against pose and expression changes as the Euclidean distance. Also, it can obvi-
ously outperform the cosine criterion when there are changes of pose and expression, although it
marginally underperforms the cosine criterion when there are variations of illumination. So it can
well extend the capacity covering variations of pose, expression and illumination.

We have used the ORL database to test moderate variations in pose and expression, the CMU
database to test illumination variations, the FERET database for more generic situation, and the
hybrid to test heteroscedastic class covariance distribution.

In conclusion, experimental results show that our LDC algorithm can well preserve the most
discriminant information of facial image and improve the performance for face recognition under
different variations. Also, experimental results show that our LDC algorithm has robustness with
respect to the number of selected coordinates. The changes among some different wavelet basis
functions and different relative “distance” measures have few effects on its performance. Moreover,
it is an efficient method.

The LDC idea may have numerous applications beyond the one described in this paper. It also
can be applied to feature or variable selection in other dictionaries of basis functions instead of
wavelets, such as the local trigonometric functions.
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Abstract
We describe a novel method for simultaneously detecting faces and estimating their pose in real
time. The method employs a convolutional network to map images of faces to points on a low-
dimensional manifold parametrized by pose, and images of non-faces to points far away from that
manifold. Given an image, detecting a face and estimating its pose is viewed as minimizing an en-
ergy function with respect to the face/non-face binary variable and the continuous pose parameters.
The system is trained to minimize a loss function that drives correct combinations of labels and
pose to be associated with lower energy values than incorrect ones.

The system is designed to handle very large range of poses without retraining. The performance
of the system was tested on three standard data sets—for frontal views, rotated faces, and profiles—
is comparable to previous systems that are designed to handle a single one of these data sets.

We show that a system trained simuiltaneously for detection and pose estimation is more accu-
rate on both tasks than similar systems trained for each task separately.1

Keywords: face detection, pose estimation, convolutional networks, energy based models, object
recognition

1. Introduction

The detection of human faces in natural images and videos is a key component in a wide variety of
applications of human-computer interaction, search and indexing, security, and surveillance. Many
real-world applications would profit from view-independent detectors that can detect faces under a
wide range of poses: looking left or right (yaw axis), up or down (pitch axis), or tilting left or right
(roll axis).

In this paper we describe a novel method that can not only detect faces independently of their
poses, but also simultaneously estimate those poses. The system is highly reliable, runs in real time

1. A more preliminary version of this work appears as: Osadchy et al. (2005).

c©2007 Margarita Osadchy, Yan Le Cun and Matthew L. Miller.
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on standard hardware, and is robust to variations in yaw (±90◦), roll (±45◦), pitch (±60◦), as well
as partial occlusions.

The method is motivated by the idea that multi-view face detection and pose estimation are
so closely related that they should not be performed separately. The tasks are related in the sense
that they could use similar features and internal representations, and must be robust against the
same sorts of variation: skin color, glasses, facial hair, lighting, scale, expressions, etc. We suspect
that, when trained together, each task can serve as an inductive bias for the other, yielding better
generalization or requiring fewer training examples (Caruana, 1997).

To exploit the synergy between these two tasks, we train a learning machine to map input images
to points in a low-dimensional space. In the low-dimensional output space we embed a face mani-
fold which is parameterized by facial pose parameters (e.g., pitch, yaw, and roll). A convolutional
network is trained to map face images to points on the face manifold that correspond to the pose of
the faces and non-face images to points far away from that manifold. After training, a detection is
performed by measuring whether the distance of the output point from the manifold is lower than a
threshold. If the point is close to the manifold, indicating that a face is present in the image, its pose
parameters can be inferred from the position of the projection of the point onto the manifold.

To map input images to points in the low-dimensional space, we employ a convolutional network
architecture (LeCun et al., 1998). Convolutional networks are specifically designed to learn invariant
representation of images. They can easily learn the type of shift-invariant local features that are
relevant to face detection and pose estimation. More importantly, they can be replicated over large
images (applied to every sub-windows in a large image) at a small fraction of the cost of applying
more traditional classifiers to every sub-windows in an image. This is a considerable advantage for
building real-time systems.

As a learning machine we use the recently proposed Energy-Based Models (EBM) that provide a
description and the inference process and the learning process in a single, well-principled framework
(LeCun and Huang, 2005; LeCun et al., 2006).

Given an input (an image), an Energy-Based Model associates an energy to each configuration
of the variables to be modeled (the face/non-face label and the pose parameters in our case). Making
an inference with an EBM consists in searching for a configuration of the variables to be predicted
that minimizes the energy, or comparing the energies of a small number of configurations of those
variables. EBMs have a number of advantages over probabilistic models: (1) There is no need to
compute partition functions (normalization constants) that may be intractable; (2) because there is
no requirement for normalization, the repertoire of possible model architectures that can be used
is considerably richer. In our application we define an Energy-Based Model as a scalar-valued
energy function of three variables: image, label, and pose, and we treat pose as a deterministic
latent variable. Thus both label of an image and pose are inferred through the energy-minimization
process.

Training an EBM consists in finding values of the trainable parameters (which parameterize
the energy function) that associate low energies to “desired” configurations of variables, and high
energies to “undesired” configurations. With probabilistic models, making the probability of some
values large automatically makes the probabilities of other values small because of the normaliza-
tion. With EBM’s making the energy of desired configurations low may not necessarily make the
energies of other configurations high. Therefore, one must be very careful when designing loss
functions for EBMs. In our application to face detection we derive a new type of contrastive loss
function that is tailored to such detection tasks.
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The paper is organized as follows. First, some of the relevant prior works on multi-view face
detection are briefly discussed. Section 2 discusses the synergy between pose estimation and face
detection, and describes the basic methods for integrating them. Section 3 discusses the learning
machine, and Section 4 gives the results of experiments conducted with our system. Section 5 draws
some conclusions.

1.1 Previous Work

Learning-based approaches to face detection abound, including real-time methods (Viola and Jones,
2001), and approaches based on convolutional networks (Vaillant et al., 1994; Garcia and Delakis,
2002). Most multi-view systems take a view-based approach, which involves building separate
detectors for different views and either applying them in parallel (Pentland et al., 1994; Sung and
Poggio, 1998; Schneiderman and Kanade, 2000; Li et al., 2002) or using a pose estimator to select
the most appropriate detector (Jones and Viola, 2003; Huang et al., 2004). Another approach is
to estimate and correct in-plane rotations before applying a single pose-specific detector (Rowley
et al., 1998b). Some attempts have been done in integrating pose search and detection, but in much
smaller space of pose parameters (Fleuret and Geman, 2001).

Closer to our approach is that of Li et al. (2000), in which a number of Support Vector Regressors
are trained to approximate smooth functions, each of which has a maximum for a face at a particular
pose. Another machine is trained to convert the resulting values to estimates of poses, and a third
machine is trained to convert the values into a face/non-face score. The resulting system is rather
slow. See Yang et al. (2002) for survey of face detection methods.

2. Integrating Face Detection and Pose Estimation

To exploit the posited synergy between face detection and pose estimation, we must design a system
that integrates the solutions to the two problems. Merely cascading two systems where the answer
to one problem is used to assist in solving the other will not optimally take advantage of the synergy.
Therefore, both answers must be derived from one underlying analysis of the input, and both tasks
must be trained together.

Our approach is to build a trainable system that can map raw images X to points in a low-
dimensional space (Figure 1). In that space, we pre-define a face manifold F(Z) that we parameter-
ize by the pose Z. We train the system to map face images with known poses to the corresponding
points on the manifold. We also train it to map images of non-faces to points far away from the
manifold. During recognition, the system maps the input image X to a point in the low dimensional
space G(X). The proximity of G(X) to the manifold then tells us whether or not an image X is a
face. By finding the pose parameters Z that correspond to the point on the manifold that is closest
to the point G(X) (projection), we obtain an estimate of the pose (Figure 2).

2.1 Parameterizing the Face Manifold

We will now describe the details of the parameterizations of the face manifold. Three criteria di-
rected the design of the face manifold: (1) preserving the topology and geometry of the problem;
(2) providing enough space for mapping the background images far from the manifold (since the
proximity to the manifold indicates whether the input image contains a face); and (3) minimizing
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Figure 2: Manifold Mapping— Recognition and Pose Estimation.
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the computational cost of finding the parameters of the closest point on the manifold to any point in
the space.

Let’s start with the simplest case of one pose parameter Z= θ, representing, say, yaw. If we want
to preserve the natural topology and geometry of the problem (the first criterion), the face manifold
under yaw variations in the interval [−90◦,90◦] should be a half circle (with constant curvature).
The natural way of representing a circle is with sine and cosine functions. In this case we embed
the angle parameter in two dimensional space. Now images of faces will be mapped to points on
the half circle manifold corresponding to θ, and non-face images will be mapped to points in the
rest of the two dimensional space. Having lots of free space to represent non-face images may
be necessary, due to the considerable amount of variability in non-face images. So increasing the
dimension of embedding might help us in better separation of face and non-face images (the second
criterion). In the case of single pose parameter we suggest 3D embedding.

To make the projection and parameter estimation simple (the third criterion), we embed this
half-circle in a three-dimensional space using three equally-spaced shifted cosine functions (Figure
3):

Fi(θ) = cos(θ−αi); i= 1,2,3; θ= [−π
2
,
π
2
]; α= {−π

3
,0,

π
3
}.

A point on the face manifold parameterized by the yaw angle θ is F(θ) = [F1(θ),F2(θ),F3(θ)].
When we run the network on an image X , it outputs a vector G(X). The yaw angle θ corresponding
to the point on the manifold that is closest to G(X) can be expressed analytically as:

θ= arctan ∑
3
i=1Gi(X)cos(αi)

∑3i=1Gi(X)sin(αi)
.

The point on the manifold closest to G(X) is just F(θ).
The function choice is not limited to cosine. However cosines are preferable since they allow

computing the pose analytically from the output of the network. Without this property, finding
the pose could be an expensive optimization process, or even require the use of a second learning
machine.

The same idea can be generalized to any number of pose parameters. Let us consider the set of
all faces with yaw in [−90,90] and roll in [−45,45]. In an abstract way, this set is isomorphic to a
portion of a sphere. Consequently, we can represent a point on the face manifold as a function of
the two pose parameters by 9 basis functions that are the cross-products of three shifted cosines for
one of the angles, and three shifted cosines for the other angle:

Fi j(θ,φ) = cos(θ−αi)cos(φ−β j); i, j = 1,2,3.

For convenience, we rescale the roll angles to the range [−90,90] which allows us to set βi = αi.
With this parameterization, the manifold has constant curvature, which ensures that the effect of er-
rors will be the same regardless of pose. Given a 9-dimensional output vector from the convolutional
network Gi j(X), we compute the corresponding yaw and roll angles θ,φ as follows:

cc = ∑i jGi j(X)cos(αi)cos(β j); cs = ∑i jGi j(X)cos(αi)sin(β j);
sc = ∑i jGi j(X)sin(αi)cos(β j); ss = ∑i jGi j(X)sin(αi)sin(β j);

θ= 0.5(atan2(cs+ sc,cc− ss)+atan2(sc− cs,cc+ ss)) ;
φ= 0.5(atan2(cs+ sc,cc− ss)−atan2(sc− cs,cc+ ss)) .

The process can easily be extended to include pitch in addition to yaw and roll, as well as other
parameters if necessary.
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F1
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F3

Face Manifold
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32 3 2

Figure 3: Left: face manifold embedding; right: manifold parametrization by single pose parame-
ter. The value of each cosine function for one pose angle constitute the three components
of a point on the face manifold corresponding to that pose.

3. Learning Machine

To map input images to points in the low-dimensional space, we employ a convolutional network
architecture trained using Energy Minimization Framework. Next we present the details of the
learning machine.

3.1 Energy Minimization Framework

We propose the following configuration of the Energy Based Model (LeCun and Huang, 2005;
LeCun et al., 2006). Consider a scalar-valued function EW (Y,Z,X), where X is a raw image, Z is
a facial pose (e.g., yaw and roll as defined above), Y is a binary label: Y = 1 for face, Y = 0 for
non-face. W is a parameter vector subject to learning. EW (Y,Z,X) can be interpreted as an energy
function that measures the degree of compatibility between the values of X ,Z,Y . The inference
process consists in clamping X to the observed value (the image), and searching for configurations
of Z and Y that minimize the energy EW (Y,Z,X):

(Y ,Z) = argminY∈{Y}, Z∈{Z}EW (Y,Z,X)

where {Y} = {0,1} and {Z} = [−90,90]× [−45,45] for yaw and roll variables.
Ideally, if the input X is the image of a face with pose Z, then a properly trained system

should give a lower energy to the face label Y = 1 than to the non-face label Y = 0 for any pose:
EW (1,Z,X) < EW (0,Z′,X), ∀Z′. For accurate pose estimation, the system should give a lower en-
ergy to the correct pose than to any other pose: EW (1,Z′,X) > EW (1,Z,X), ∀Z′ $= Z. Training a
machine to satisfy those two conditions for any image will guarantee that the energy-minimizing
inference process will produce the correct answer.

Transforming energies to probabilities can easily be done via Gibbs distribution:

P(Y,Z|X) = exp(−βEW (Y,Z,X))/
Z

y∈{Y},z∈{Z}
exp(−βEW (y,z,X))

where β is an arbitrary positive constant, and {Y} and {Z} are the sets of possible values of y and
z. With this formulation, we can easily interpret the energy minimization with respect to Y and Z as
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Figure 4: Architecture of the Minimum Energy Machine.

a maximum conditional likelihood estimation of Y and Z. This probabilistic interpretation assumes
that the integral in the denominator (the partition function) converges. It is easy to design such
an energy function for our case. However, a proper probabilistic formulation would require us to
use the negative log-likelihood of the training samples as our loss function for training. This will
require us to compute the derivative of the denominator with respect to the trainable parametersW .
This is unnecessary complication which can be alleviated by adopting the energy-based formulation.
Removing the necessity for normalization gives us complete freedom in the choice of the internal
architecture and parameterization of EW (Y,Z,X), as well as considerable flexibility in the choice of
the loss function for training.

Our energy function for a face EW (1,Z,X) is defined as the distance between the point produced
by the network GW (X) and the point with pose Z on the manifold F(Z):

EW (1,Z,X) = ‖GW (X)−F(Z)‖.

The energy function for a non-face EW (0,Z,X) is equal to a constant T that we can interpret as a
threshold (it is independent of Z and X). The complete energy function is:

EW (Y,Z,X) = Y‖GW (X)−F(Z)‖+(1−Y )T.

The architecture of the machine is depicted in Figure 4. Operating this machine (finding the output
label and pose with the smallest energy) comes down to first finding: Z= argminZ∈{Z}||GW (X)−F(Z)||,
and then comparing this minimum distance, ‖GW (X)−F(Z)‖, to the threshold T . If it’s smaller
than T , then X is classified as a face, otherwise X is classified as a non-face. This decision is
implemented in the architecture as a switch, that depends upon the binary variable Y .

For simplicity we fix T to be a constant. Although it is also possible to make T a function of
pose Z.

1203



OSADCHY, LECUN AND MILLER

3.2 Convolutional Network

We employ a Convolutional Network as the basic architecture for the GW (X) function that maps
image points in the face-space. The architecture of convolutional nets is somewhat inspired by the
structure of biological visual systems. Convolutional nets have been used successfully in a number
of vision applications such as handwriting recognition (LeCun et al., 1989, 1998), and generic object
recognition (LeCun et al., 2004). Several authors have advocated the use of Convolutional Networks
for object detection (Vaillant et al., 1994; Nowlan and Platt, 1995; LeCun et al., 1998; Garcia and
Delakis, 2002).

Convolutional networks are “end-to-end” trainable system that can operate on raw pixel images
and learn low-level features and high-level representation in an integrated fashion. Each layer in
a convolutional net is composed units organized in planes called feature maps. Each unit in a
feature map takes inputs from a small neighborhood within the feature maps of the previous layer.
Neighboring units in a feature map are connected to neighboring (possibly overlapping) windows.
Each unit computes a weighted sum of its inputs and passes the result through a sigmoid saturation
function. All units within a feature map share the same weights. Therefore, each feature map can be
seen as convolving the feature maps of the previous layers with small-size kernels, and passing the
sum of those convolutions through sigmoid functions. Units in a feature map detect local features
at all locations on the previous layer.

Convolutional nets are advantageous because they can operate on raw images and can easily
learn the type of shift-invariant local features that are relevant to image recognition. Furthermore,
they are very efficient computationally for detection and recognition tasks involving a sliding win-
dow over large images (Vaillant et al., 1994; LeCun et al., 1998).

The network architecture used for training is shown in Figure 5. It is similar to LeNet5 (LeCun
et al., 1998), but contains more feature maps. The network input is a 32× 32 pixel gray-scale
image. The first layer C1 is a convolutional layer with 8 feature maps of size 28× 28. Each unit
in each feature map is connected to a 5× 5 neighborhood in the input. Contiguous units in C1
take input from neighborhood on the input that overlap by 4 pixels. The next layer, S2, is a so-
called subsampling layer with 8 feature maps of size 14×14. Each unit in each map is connected
to a 2× 2 neighborhood in the corresponding feature map in C1. Contiguous units in S2 take
input from contiguous, non-overlapping 2x2 neighborhoods in the corresponding map in C1. C3 is
convolutional with 20 feature maps of size 10×10. Each unit in each feature map is connected to
several 5× 5 neighborhoods at identical locations in a subset of S2’s feature maps. Different C3
maps take input from different subsets of S2 to break the symmetry and to force the maps to extract
different features. S4 is a subsampling layer with 2× 2 subsampling ratios containing 20 feature
maps of size 5×5. Layer C5 is a convolutional layer with 120 feature maps of size 1×1 with 5×5
kernels. Each C5 map takes input from all 20 of S4’s feature maps. The output layer has 9 outputs
(since the face manifold is nine-dimensional) and is fully connected to C5 (such a full connection
can be seen as a convolution with 1×1 kernels).

3.3 Training with a Contrastive Loss Function

The vector W contains all 63,493 weights and kernel coefficients in the convolutional network.
They are all subject to training by minimizing a single loss function. A key element, and a novel
contribution, of this paper is the design of the loss function.
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Figure 5: Architecture of convolutional network used for training. This represents one slice of the
network with with a 32× 32 input window. The slice includes all the elements that are
necessary to compute a single output vector. The trained network is replicated over the
full input image, producing one output vector for each 32× 32 window stepped every 4
pixels horizontally and vertically. The process is repeated at multiple scales.

The training set S is composed of two subsets: the set S1 of training samples (1,X i,Zi) contain-
ing a face annotated with the pose; and the set S0 of training sample (0,X i) containing a non-face
image (background). The loss function L(W,S) is defined as the average over S1 of a per-sample
loss function L1(W,Zi,X i), plus the average over S0 of a per-sample loss function L0(W,X i):

L(W,S) =
1
|S1| ∑i∈S1

L1(W,Zi,X i)+
1
|S0| ∑i∈S0

L0(W,X i). (1)

Face samples whose pose is unknown can easily be accommodated by viewing Z as a “deterministic
latent variable” over which the energy must be minimized. However, experiments reported in this
paper only use training samples manually labeled with the pose.

For a particular positive training sample (X i,Zi,1), the per-sample loss L1 should be designed in
such a way that its minimization with respect toW will make the energy of the correct answer lower
than the energies of all possible incorrect answers. Minimizing such a loss function will make the
machine produce the right answer when running the energy-minimizing inference procedure. We
can write this condition as:

Condition 1

EW (Y i = 1,Zi,X i) < EW (Y,Z,X i) for Y $= Y i or Z $= Zi.

Satisfying this condition can be done by satisfying the two following conditions

Condition 2

EW (1,Zi,X i) < T and EW (1,Zi,X i) < min
Z %=Zi

EW (1,Z,X i).
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Following LeCun and Huang (2005), we assume that the loss is a functional that depends on X only
through the set of energies associated with X and all the possible values of Z andY . This assumption
allows us to decouple the design of the loss function from the internal structure (architecture) of the
energy function. We also assume that there exist aW for which condition 2 is satisfied. This is a
reasonable assumption, we merely ensure that the learning machine can produce the correct output
for any single sample. We now show that, with our architecture, if we choose L1 to be a strictly
monotonically increasing function of EW (1,Zi,X i) (over the domain of E), then minimizing L1 with
respect toW will cause the machine to satisfy condition 2. The first inequality in 2 will obviously
be satisfied by minimizing such a loss. The second inequality will be satisfied if EW (1,Z,X i) has a
single (non-degenerate) global minimum as a function of Z. The minimization of L1 with respect to
W will place this minimum at Z i, and therefore will ensure that all other values of Z will have higher
energy. Our energy function EW (1,Z,X) = ||GW (X)−F(Z)|| indeed has a single global minimum
as a function of Z, because F(Z) is injective and the norm is convex. The single global minimum is
attained for GW (X) = F(Z). For our experiments, we simply chose:

L1(W,1,Z,X) = EW (1,Z,X)2.

For a particular negative (non-face) training sample (X i,0), the per-sample loss L0 should be
designed in such a way that its minimization with respect to W will make the energy for Y = 1
and any value of Z higher than the energy for Y = 0 (which is equal to T ). Minimizing such a
loss function will make the machine produce the right answer when running the energy-minimizing
inference procedure. We can write the condition for correct output as:

Condition 3

EW (1,Z,X i) > T ∀Z

which can be re-written as:

Condition 4

EW (1,Z,X i) > T Z = argminzEW (1,z,X i).

Again, we assume that there exists aW for which condition 4 is satisfied. It is easy to see that, with
our architecture, if we choose L0 to be a strictly monotonically decreasing function of EW (1,Z,X i)
(over the domain of E), then minimizing L0 with respect to W will cause the machine to satisfy
condition 4. For our experiments, we simply chose:

L0(W,0,X i) = K exp[−E(1,Z,X i)]

where K is a positive constant. A nice property of this function is that it is bounded below by 0, and
that its gradient vanishes we approach the minimum.

The entire system was trained by minimizing average value of the loss function in Eq. (1) with
respect to the parameter W . We used a stochastic version of the Levenberg-Marquardt algorithm
with diagonal approximation of the Hessian (LeCun et al., 1998).
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Figure 6: Screenshot from annotation tool.

3.4 Running the Machine

The detection system operates on raw grayscale images. The convolutional network is applied to
all 32×32 sub-windows of the image, stepped every 4 pixels horizontally and vertically. Because
the layers are convolutional, applying two replicas of the network in Figure 5 to two overlapping
input windows leads to a considerable amount of redundant computation. Eliminating the redundant
computation yields a dramatic speed up: each layer of the convolutional network is extended so as
to cover the entire input image. The output is also replicated the same way. Due to the two 2× 2
subsampling layers, we obtain one output vector every 4×4 pixels.

To detect faces in a size-invariant fashion, the network is applied to multiple down-scaled ver-
sions of the image over a range of scales stepped by a factor of

√
2. At each scale and location, the

network’s 9-dimensional output vector is compared to the closest point on the face manifold (whose
position indicates the pose of the candidate face). The system collects a list of all locations and
scales of output vectors closer to the face manifold than the detection threshold. After examining
all scales, the system identifies groups of overlapping detections in the list and discards all but the
strongest (closest to the manifold) from each group within an exclusion area of a preset size. No
attempt is made to combine detections or apply any voting scheme.

4. Experiments and Results

Using the architecture described in Section 3, we built a detector to locate faces and estimate two
pose parameters: yaw from left to right profile, and in-plane rotation from −45 to 45 degrees. The
machine was trained to be robust against pitch variation.

In this section, we first describe the training protocol for this network, and then give the results
of two sets of experiments. The first set of experiments tests whether training for the two tasks
together improves performance on both. The second set allows comparisons between our system
and other published multi-view detectors.
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4.1 Training

The images we used for training were collected at NEC Labs. All face images were manually
annotated with appropriate poses. The annotation process was greatly simplified by using a simple
tool for specifying a location and approximate pose of a face. The user interface for this tool is
shown in Figure 6. Annotation process is done by first clicking on the midpoint between the eyes
and on the center of the mouth. The tool then draws a perspective grid in front of the face and
the user adjusts it to be parallel to the face plane. This process yields estimates for all six pose
parameters: location (x,y), three angles (yaw, pitch, and roll) and scale. The images were annotated
in such a way that the midpoint between the eyes and on the center of the mouth are positioned in
the center of the image. This allows these two points to stay fixed when the pose changes from left
to right profile. The downside is that profiles occupy only half of the image.

In this manner we annotated about 30,000 faces in images from various sources. Each face
was then cropped and scaled so that the eye midpoint and the mouth midpoint appeared in canonical
positions, 10 pixels apart, in 32×32-pixel image with somemoderate variation of location and scale.
The resulting images where mirrored horizontally, to yield roughly 60,000 faces. We removed some
portion of faces from this set to yield a roughly uniform distribution of poses from left profile to
right profile. Unfortunately, the amount of variation in pitch (up/down) was not sufficient to do the
same. This was the reason for training our system to be robust against pitch variation instead of
estimating the pitch angle. The roll variation was added by randomly rotating the images in the
range of [−45,45] degrees. The resulting training set consisted of 52,850, 32x32 grey-level images
of faces with uniform distribution of poses.

The initial set of negative training samples consisted of 52,850 image patches chosen randomly
from non-face areas in a variety of images. For the second set of tests, half of these images were
replaced with image patches obtained by running the initial version of the detector on the training
images and collecting false detections.

Each training image was used 5 times during training, with random variations in scale (from
x
√
2 to x(1+

√
2)), in-plane rotation (±45◦), brightness (±20), and contrast (from 0.8 to 1.3).

To train the network, we made 9 passes through this data, though it mostly converged after about
the first 6 passes. The training system was implemented in the Lush language (Bottou and LeCun,
2002). The total training time was about 26 hours on a 2Ghz Pentium 4. At the end of training, the
network had converged to an equal error rate of 5% on the training data and 6% on a separate test
set of 90,000 images.

A standalone version of the detection system was implemented in the C language. It can detect,
locate, and estimate the pose of faces that are between 40 and 250 pixels high in a 640×480 image
at roughly 5 frames per second on a 2.4GHz Pentium 4.

4.2 Synergy Tests

The goal of the synergy test was to verify that both face detection and pose estimation benefit from
learning and running in parallel. To test this claim we built three networks with almost identical
architectures, but trained to perform different tasks. The first one was trained for simultaneous face
detection and pose estimation (combined), the second was trained for detection only and the third
for pose estimation only. The “detection only” network had only one output for indicating whether
or not its input was a face. The “pose only” network was identical to the combined network, but
trained on faces only (no negative examples). Figure 7 shows the results of running these networks
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Figure 7: Synergy test. Left: ROC curves for the pose-plus-detection and detection-only networks.
(The x axis is the false positive rate per image). Right: frequency with which the pose-
plus-detection and pose-only networks correctly estimated the yaws within various error
tolerances.
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Figure 8: Results on standard data sets. Left: ROC curves for our detector on the three data sets.
The x axis is the average number of false positives per image over all three sets, so each
point corresponds to a single detection threshold. Right: frequency with which yaw and
roll are estimated within various error tolerances.

on our 10,000 test images. In both these graphs, we see that the pose-plus-detection network had
better performance, confirming that training for each task benefits the other.

4.3 Standard Data Sets

There is no standard data set that spans the range of poses our system is designed to handle. There
are, however, data sets that have been used to test more restricted face detectors, each set focusing
on a particular variation in pose. By testing a single detector with all of these sets, we can compare
our performance against published systems. As far as we know, we are the first to publish results
for a single detector on all these data sets. The details of these sets are described below:
• MIT+CMU (Sung and Poggio, 1998; Rowley et al., 1998a) – 130 images for testing frontal face
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detectors. We count 517 faces in this set, but the standard tests only use a subset of 507 faces,
because 10 faces are in the wrong pose or otherwise not suitable for the test. (Note: about 2% of the
faces in the standard subset are badly-drawn cartoons, which we do not intend our system to detect.
Nevertheless, we include them in the results we report.)
• TILTED (Rowley et al., 1998b) – 50 images of frontal faces with in-plane rotations. 223 faces out
of 225 are in the standard subset. (Note: about 20% of the faces in the standard subset are outside
of the ±45◦ rotation range for which our system is designed. Again, we still include these in our
results.)
• PROFILE (Schneiderman and Kanade, 2000) – 208 images of faces in profile. There seems to
be some disagreement about the number of faces in the standard set of annotations: Schneiderman
and Kanade (2000) reports using 347 faces of the 462 that we found, Jones and Viola (2003) reports
using 355, and we found 353 annotations. However, these discrepancies should not significantly
effect the reported results.

We counted a face as being detected if 1) at least one detection lay within a circle centered on
the midpoint between the eyes, with a radius equal to 1.25 times the distance from that point to the
midpoint of the mouth, and 2) that detection came at a scale within a factor of two of the correct
scale for the face’s size. We counted a detection as a false positive if it did not lie within this range
for any of the faces in the image, including those faces not in the standard subset.

The left graph in Figure 8 shows ROC curves for our detector on the three data sets. Figures 9, 10
show detection results on various poses. Table 1 shows our detection rates compared against other
multi-view systems for which results were given on these data sets. We want to stress here that all
these systems are tested in a pose specific manner: for example, a detector tested on TILTED set is
trained only on frontal tilted faces. Such a detector will not be able to detect non frontal tilted faces.
Combining all pose variations in one system obviously will increase the number of false positives,
since false positives of view-based detectors are not necessarily correlated. Our system is designed
to handle all pose variations. This makes the comparison in Table 1 somewhat unfair to our system,
but we don’t see any other way of comparison against other systems.

The table shows that our results on the TILTED and PROFILE sets are similar to those of the two
Jones & Viola detectors, and even approach those of the Rowley et al and Schneiderman & Kanade
non-real-time detectors. Those detectors, however, are not designed to handle all variations in pose,
and do not yield pose estimates. More recent system reported in Huang et al. (2004) is also real-
time and can handle all pose variation, but doesn’t yield pose estimates. Unfortunately, they also
report the results of pose specific detectors. These results are not shown in Table 1, because they
report different points on ROC curve in the PROFILE experiment (86.2% for 0.42 f.p per image)
and they didn’t test on the TILTED set. Even though they trained a combined detector for all pose
variations, they did not test it the way we did. Their test consists in running the full detector on
the PROFILE set rotated by [-30, 30] degrees in-plane. Unfortunately, they do not provide enough
details to recreate their test set.

The right side of Figure 8 shows our performance at pose estimation. To make this graph, we
fixed the detection threshold at a value that resulted in about 0.5 false positives per image over all
three data sets. We then compared the pose estimates for all detected faces (including those not in
the standard subsets) against our manual pose annotations. Note that this test is more difficult than
typical tests of pose estimation systems, where faces are first localized by hand. When we hand-
localize these faces, 89% of yaws and 100% of in-plane rotations are correctly estimated to within
15◦.
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Figure 9: Some example face detections. Each white box shows the location of a detected face. The
angle of each box indicates the estimated in-plane rotation. The black crosshairs within
each box indicate the estimated yaw.
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Figure 10: More examples of face detections.
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Data set→ TILTED PROFILE MIT+CMU
False positives per image→ 4.42 26.90 .44 3.36 .50 1.28

Our detector 90% 97% 67% 83% 83% 88%
Jones and Viola (2003) (tilted) 90% 95% x x
Jones and Viola (2003) (profile) x 70% 83% x
Rowley et al. (1998a) 89% 96% x x
Schneiderman and Kanade (2000) x 86% 93% x

Table 1: Comparisons of our results with other multi-view detectors. Each column shows the detec-
tion rates for a given average number of false positives per image (these rates correspond
to those for which other authors have reported results). Results for real-time detectors are
shown in bold. Note that ours is the only single detector that can be tested on all data sets
simultaneously.

5. Conclusion

The system we have presented here integrates detection and pose estimation by training a convolu-
tional network to map faces to points on a manifold, parameterized by pose, and non-faces to points
far from the manifold. The network is trained by optimizing a loss function of three variables—
image, pose, and face/non-face label. When the three variables match, the energy function is trained
to have a small value, when they do not match, it is trained to have a large value.

This system has several desirable properties:
• The use of a convolutional network makes it fast. At typical webcam resolutions, it can process 5
frames per second on a 2.4Ghz Pentium 4.
• It is robust to a wide range of poses, including variations in yaw up to ±90◦, in-plane rotation up
to ±45◦, and pitch up to ±60◦. This has been verified with tests on three standard data sets, each
designed to test robustness against a single dimension of pose variation.
• At the same time that it detects faces, it produces estimates of their pose. On the standard data
sets, the estimates of yaw and in-plane rotation are within 15◦ of manual estimates over 80% and
95% of the time, respectively.

We have shown experimentally that our system’s accuracy at both pose estimation and face
detection is increased by training for the two tasks together.
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Abstract
We present a unified and complete account of maximum entropy density estimation subject to
constraints represented by convex potential functions or, alternatively, by convex regularization. We
provide fully general performance guarantees and an algorithm with a complete convergence proof.
As special cases, we easily derive performance guarantees for many known regularization types,
including !1, !2, !22, and !1+ !22 style regularization. We propose an algorithm solving a large and
general subclass of generalized maximum entropy problems, including all discussed in the paper,
and prove its convergence. Our approach generalizes and unifies techniques based on information
geometry and Bregman divergences as well as those based more directly on compactness. Our
work is motivated by a novel application of maximum entropy to species distribution modeling,
an important problem in conservation biology and ecology. In a set of experiments on real-world
data, we demonstrate the utility of maximum entropy in this setting. We explore effects of different
feature types, sample sizes, and regularization levels on the performance of maxent, and discuss
interpretability of the resulting models.
Keywords: maximum entropy, density estimation, regularization, iterative scaling, species distri-
bution modeling

1. Introduction

Themaximum entropy (maxent) approach to density estimation was first proposed by Jaynes (1957),
and has since been used in many areas of computer science and statistical learning, especially natural
language processing (Berger et al., 1996; Della Pietra et al., 1997). In maxent, one is given a
set of samples from a target distribution over some space, and a set of known constraints on the
distribution. The distribution is then estimated by a distribution of maximum entropy satisfying

c©2007 Miroslav Dudı́k, Steven J. Phillips and Robert E. Schapire.
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Figure 1: Left to right: Yellow-throated Vireo training localities from the first random partition, an
example environmental variable (annual average temperature, higher values in red), max-
ent prediction using linear, quadratic and product features. Prediction strength is shown
as white (weakest) to red (strongest); reds could be interpreted as suitable conditions for
the species.

the given constraints. The constraints are often represented using a set of features (real-valued
functions) on the space, with the expectation of every feature required to match its empirical average.
By convex duality, this turns out to be the unique Gibbs distribution maximizing the likelihood of
the samples, or, equivalently, minimizing the empirical log loss. (Maxent and its dual are described
more rigorously in Section 2.)

The work in this paper was motivated by a new application of maxent to the problem of modeling
the distribution of a plant or animal species, a critical problem in conservation biology. Input data
for species distribution modeling consists of occurrence locations of a particular species in a region
and of environmental variables for that region. Environmental variables may include topographical
layers, such as elevation and aspect, meteorological layers, such as annual precipitation and average
temperature, as well as categorical layers, such as vegetation and soil type. Occurrence locations
are commonly derived from specimen collections in natural history museums and herbaria. In the
context of maxent, occurrences correspond to samples, the map divided into a finite number of cells
is the sample space, and environmental variables or functions derived from them are features (see
Figure 1 for an example). The number of occurrences for individual species is frequently quite small
by machine learning standards, for example, a hundred or less.

It should not be surprising that maxent can severely overfit training data when the constraints
on the output distribution are based on empirical averages, as described above, especially if there is
a very large number of features. For instance, in our application, we sometimes consider threshold
features for each environmental variable. These are binary features equal to one if an environmental
variable is larger than a fixed threshold and zero otherwise. Thus, there is a continuum of features for
each variable, and together they force the output distribution to be non-zero only at values achieved
by the samples. The problem is that in general, the empirical averages of features will almost never
be equal to their true expectations, so the target distribution itself does not satisfy the constraints
imposed on the output distribution. From the dual perspective, the family of Gibbs distributions is
too expressive and the algorithm overfits. Common approaches to counter overfitting are parameter
regularization (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005),
introduction of a prior (Williams, 1995; Goodman, 2004), feature selection (Berger et al., 1996;
Della Pietra et al., 1997), discounting (Lau, 1994; Rosenfeld, 1996; Chen and Rosenfeld, 2000)
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and constraint relaxation (Khudanpur, 1995; Kazama and Tsujii, 2003; Jedynak and Khudanpur,
2005). Thus, there are many ways of modifying maxent to control overfitting calling for a general
treatment.

In this work, we study a generalized form of maxent. Although mentioned by other authors
as fuzzy maxent (Lau, 1994; Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001), we give
the first complete theoretical treatment of this very general framework, including fully general and
unified performance guarantees, algorithms, and convergence proofs. Independently, Altun and
Smola (2006) derive a different theoretical treatment (see discussion below).

As special cases, our results allow us to easily derive performance guarantees for many known
regularized formulations, including !1, !2, !22, and !1+ !22 regularizations. More specifically, we
derive guarantees on the performance of maxent solutions compared to the “best” Gibbs distribution
q! defined by a weight vector λ!. Our guarantees are derived by bounding deviations of empirical
feature averages from their expectations, a setting in which we can take advantage of a wide array
of uniform convergence results. For example, for a finite set of features bounded in [0,1], we can
use Hoeffding’s inequality and the union bound to show that the true log loss of the !1-regularized
maxent solution will be with high probability worse by no more than an additiveO(‖λ!‖1

√
(lnn)/m)

compared with the log loss of the Gibbs distribution q!, where n is the number of features and m is
the number of samples. For an infinite set of binary features with VC-dimension d, the difference
between the !1-regularized maxent solution and q! is at most O(‖λ!‖1

√
d ln(m2/d)/m). Note that

these bounds drop quickly with an increasing number of samples and depend only moderately on the
number or complexity of the features, even admitting an extremely large number of features from
a class of bounded VC-dimension. For maxent with !2 and !22-style regularization, it is possible to
obtain bounds which are independent of the number of features, provided that the feature vector can
be bounded in the !2 norm.

In the second part, we propose algorithms solving a large and general subclass of generalized
maxent problems. We show convergence of our algorithms using a technique that unifies previous
approaches and extends them to a more general setting. Specifically, our unified approach general-
izes techniques based on information geometry and Bregman divergences (Della Pietra et al., 1997,
2001; Collins et al., 2002) as well as those based more directly on compactness. The main novel
ingredient is a modified definition of an auxiliary function, a customary measure of progress, which
we view as a surrogate for the difference between the primal and dual objective rather than a bound
on the change in the dual objective.

Standard maxent algorithms such as iterative scaling (Darroch and Ratcliff, 1972; Della Pietra
et al., 1997), gradient descent, Newton and quasi-Newton methods (Cesa-Bianchi et al., 1994; Mal-
ouf, 2002; Salakhutdinov et al., 2003), and their regularized versions (Lau, 1994; Williams, 1995;
Chen and Rosenfeld, 2000; Kazama and Tsujii, 2003; Goodman, 2004; Krishnapuram et al., 2005)
perform a sequence of feature weight updates until convergence. In each step, they update all fea-
ture weights. This is impractical when the number of features is very large. Instead, we propose a
sequential update algorithm that updates only one feature weight in each iteration, along the lines of
algorithms studied by Collins, Schapire, and Singer (2002), and Lebanon and Lafferty (2001). This
leads to a boosting-like approach permitting the selection of the best feature from a very large class.
For instance, for !1-regularized maxent, the best threshold feature associated with a single variable
can be found in a single linear pass through the (pre-sorted) data, even though conceptually we are
selecting from an infinite class of features. Other boosting-like approaches to density estimation
have been proposed by Welling, Zemel, and Hinton (2003), and Rosset and Segal (2003).
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For cases when the number of features is relatively small, yet we want to use benefits of regu-
larization to prevent overfitting on small sample sets, it might be more efficient to solve generalized
maxent by parallel updates. In Section 7, we give a parallel-update version of our algorithm with a
proof of convergence.

In the last section, we return to species distribution modeling, and use it as a setting to test our
ideas. In particular, we apply !1-regularized maxent to estimate distributions of bird species in North
America. We present learning curves for several different feature classes derived for four species
with a varying number of occurrence records. We also explore effects of regularization on the test
log loss and interpretability of the resulting models. A more comprehensive set of experiments is
evaluated by Phillips, Dudı́k, and Schapire (2004). The biological application is explored in more
detail by Phillips, Anderson, and Schapire (2006).

1.1 Previous Work

There have been many studies of maxent and logistic regression, which is a conditional version of
maxent, with !1-style regularization (Khudanpur, 1995; Williams, 1995; Kazama and Tsujii, 2003;
Ng, 2004; Goodman, 2004; Krishnapuram et al., 2005), !22-style regularization (Lau, 1994; Chen
and Rosenfeld, 2000; Lebanon and Lafferty, 2001; Zhang, 2005) as well as some other types of
regularization such as !1+ !22-style (Kazama and Tsujii, 2003), !2-style regularization (Newman,
1977) and a smoothed version of !1-style regularization (Dekel et al., 2003). In a recent work, Altun
and Smola (2006) derive duality and performance guarantees for settings in which the entropy is
replaced by an arbitrary Bregman or Csiszár divergence and regularization takes the form of a norm
raised to a power greater than one. With the exception of Altun and Smola’s work and Zhang’s
work, the previous studies do not give performance guarantees applicable to our case, although Kr-
ishnapuram et al. (2005) and Ng (2004) prove guarantees for !1-regularized logistic regression. Ng
also shows that !1-regularized logistic regression may be superior to the !22-regularized version in
a scenario when the number of features is large and only a small number of them is relevant. Our
results indicate a similar behavior for unconditional maxent.

In the context of linear models, !22, !1, and !1+ !22 regularization have been used under the
names ridge regression (Hoerl and Kennard, 1970), lasso regression (Tibshirani, 1996), and elastic
nets (Zou and Hastie, 2005). Lasso regression, in particular, has provoked a lot of interest in recent
statistical theory and practice. The frequently mentioned benefit of the lasso is its bias toward sparse
solutions. The same bias is present also in !1-regularized maxent, but we do not analyze this bias
in detail. Our interest is in deriving performance guarantees. Similar guarantees were derived by
Donoho and Johnstone (1994) for linear models with the lasso penalty. The relationship between
the lasso approximation and the sparsest approximation is explored, for example, by Donoho and
Elad (2003).

Quite a number of approaches have been suggested for species distribution modeling, including
neural nets, nearest neighbors, genetic algorithms, generalized linear models, generalized additive
models, bioclimatic envelopes, boosted regression trees, and more; see Elith (2002) and Elith et al.
(2006) for a comprehensive comparison. The latter work evaluates !1-regularized maxent as one
of a group of twelve methods in the task of modeling species distributions. Maxent is among the
best methods alongside boosted decision trees (Schapire, 2002; Leathwick et al., 2006), general-
ized dissimilarity models (Ferrier et al., 2002) and multivariate adaptive regression splines with the
community level selection of basis functions (Moisen and Frescino, 2002; Leathwick et al., 2005).
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Among these, however, maxent is the only method designed for presence-only data. It comes with a
statistical interpretation that allows principled extensions, for example, to cases where the sampling
process is biased (Dudı́k et al., 2005).

2. Preliminaries

Our goal is to estimate an unknown density π over a sample space X which, for the purposes of this
paper, we assume to be finite.1 As empirical information, we are typically given a set of samples
x1, . . . ,xm drawn independently at random according to π. The corresponding empirical distribution
is denoted by π̃:

π̃(x) =
|{1≤ i≤ m : xi = x}|

m
.

We also are given a set of features f1, . . . , fn where f j : X → R. The vector of all n features is
denoted by f and the image of X under f, the feature space, is denoted by f(X ). For a distribution π
and function f , we write π[ f ] to denote the expected value of f under distribution π:

π[ f ] = ∑x∈X π(x) f (x) .

In general, π̃ may be quite distant, under any reasonable measure, from π. On the other hand,
for a given function f , we do expect π̃[ f ], the empirical average of f , to be rather close to its
true expectation π[ f ]. It is quite natural, therefore, to seek an approximation p under which f j’s
expectation is equal to π̃[ f j] for every f j. There will typically be many distributions satisfying these
constraints. The maximum entropy principle suggests that, from among all distributions satisfying
these constraints, we choose the one of maximum entropy, that is, the one that is closest to uniform.
Here, as usual, the entropy of a distribution p on X is defined to be H(p) = −∑x∈X p(x) ln p(x).

However, the default estimate of π, that is, the distribution we would choose if we had no sample
data, may be in some cases non-uniform. In a more general setup, we therefore seek a distribution
that minimizes entropy relative to the default estimate q0. The relative entropy, or Kullback-Leibler
divergence, is an information theoretic measure defined as

D(p ‖ q) = p[ln(p/q)] .

Minimizing entropy relative to q0 corresponds to choosing a distribution that is closest to q0. When
q0 is uniform then minimizing entropy relative to q0 is equivalent to maximizing entropy.

Instead of minimizing entropy relative to q0, we can consider all Gibbs distributions of the form

qλ(x) =
q0(x)eλ·f(x)

Zλ

where Zλ = ∑x∈X q0(x)eλ·f(x) is a normalizing constant, and λ ∈ Rn. It can be proved (Della Pietra
et al., 1997) that the maxent distribution is the same as the maximum likelihood distribution from
the closure of the set of Gibbs distributions, that is, the distribution q that achieves the supremum
of ∏m

i=1 qλ(xi) over all values of λ, or equivalently, the infimum of the empirical log loss (negative
normalized log likelihood)

Lπ̃(λ) = − 1
m

m

∑
i=1
lnqλ(xi) .

1. In this paper, we are concerned with densities relative to the counting measure on X . These correspond to probability
mass functions.
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The convex programs corresponding to the two optimization problems are

min
p∈∆

D(p ‖ q0) subject to p[f] = π̃[f] , (1)

inf
λ∈Rn

Lπ̃(λ) (2)

where ∆ is the simplex of probability distributions over X .
In general, we use

Lr(λ) = −r[lnqλ]

to denote the log loss of qλ relative to the distribution r. It differs from relative entropy D(r ‖ qλ)
only by the constant H(r). We will use the two interchangeably as objective functions.

3. Convex Analysis Background

Throughout this paper we make use of convex analysis. The necessary background is provided
in this section. For a more detailed exposition see for example Rockafellar (1970), or Boyd and
Vandenberghe (2004).

Consider a function ψ : Rn → (−∞,∞]. The effective domain of ψ is the set domψ= {u ∈ Rn :
ψ(u) <∞}. A point u where ψ(u) <∞ is called feasible. The epigraph of ψ is the set of points
above its graph {(u, t) ∈ Rn×R : t ≥ ψ(u)}. We say that ψ is convex if its epigraph is a convex
set. A convex function is called proper if it is not uniformly equal to ∞. It is called closed if its
epigraph is closed. For a proper convex function, closedness is equivalent to lower semi-continuity
(ψ is lower semi-continuous if liminfu′→uψ(u′) ≥ ψ(u) for all u).

If ψ is a closed proper convex function then its conjugate ψ∗ : Rn → (−∞,∞] is defined by

ψ∗(λ) = sup
u∈Rn

[λ ·u−ψ(u)] .

The conjugate provides an alternative description of ψ in terms of tangents of ψ’s epigraph. The
definition of the conjugate immediately yields Fenchel’s inequality

∀λ,u : λ ·u≤ ψ∗(λ)+ψ(u) .

In fact, ψ∗(λ) is defined to give the tightest bound of the form above. It turns out that ψ∗ is also a
closed proper convex function and ψ∗∗ = ψ (for a proof see Rockafellar, 1970, Corollary 12.2.1).

In this work we use several examples of closed proper convex functions. The first of them is
relative entropy, viewed as a function of its first argument and extended to RX as follows:

ψ(p) =

{
D(p ‖ q0) if p ∈ ∆
∞ otherwise

where q0 ∈ ∆ is assumed fixed. The conjugate of relative entropy is the log partition function

ψ∗(r) = ln
(
∑x∈X q0(x)er(x)

)

where r ∈ RX and its components are denoted by r(x).
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The second example is the unnormalized relative entropy

D̃(p ‖ q0) = ∑x∈X

[
p(x) ln

(
p(x)
q0(x)

)
− p(x)+q0(x)

]
.

Fixing q0 ∈ [0,∞)X , it can be extended to a closed proper convex function of its first argument:

ψ(p) =

{
D̃(p ‖ q0) if p(x) ≥ 0 for all x ∈ X
∞ otherwise.

The conjugate of unnormalized relative entropy is a scaled exponential shifted to the origin:

ψ∗(r) = ∑x∈X q0(x)(er(x)−1) .

Both relative entropy and unnormalized relative entropy are examples of Bregman divergences
(Bregman, 1967) which generalize some common distance measures including the squared Eu-
clidean distance. We use two properties satisfied by any Bregman divergence B(· ‖ ·):

(B1) B(a ‖ b) ≥ 0 ,
(B2) if B(at ‖ bt) → 0 and bt → b! then at → b!.

It is not too difficult to check these properties explicitly both for relative entropy and unnormalized
relative entropy.

Another example of a closed proper convex function is an indicator function of a closed convex
set C ⊆ Rn, denoted by IC, which equals 0 when its argument lies in C and infinity otherwise. We
will also use I(u ∈C) to denote IC(u). The conjugate of an indicator function is a support function.
For C = {u0}, we obtain I∗{u0}(λ) = λ · u0. For a box R = {u : |u j| ≤ β j for all j}, we obtain an
!1-style conjugate I∗R(λ) =∑ j β j|λ j|. For a Euclidean ball B= {u : ‖u‖2 ≤ β}, we obtain an !2-style
conjugate, I∗B(λ) = β‖λ‖2.

The final example is a square of the Euclidean norm ψ(u) = ‖u‖22/(2α), whose conjugate is also
a square of the Euclidean norm ψ∗(λ) = α‖λ‖22/2.

The following identities can be proved from the definition of the conjugate function:

if ϕ(u) = aψ(bu+ c) then ϕ∗(λ) = aψ∗(λ/(ab))−λ · c/b , (3)
if ϕ(u) = ∑ j ϕ j(u j) then ϕ∗(λ) = ∑ j ϕ

∗
j(λ j) (4)

where a> 0,b *= 0 and c ∈ Rn are constants, and u j,λ j refer to the components of u,λ.
We conclude with a version of Fenchel’s Duality Theorem which relates a convex minimization

problem to a concave maximization problem using conjugates. The following result is essentially
Corollary 31.2.1 of Rockafellar (1970) under a stronger set of assumptions.

Theorem 1 (Fenchel’s Duality). Let ψ : Rn → (−∞,∞] and ϕ : Rm → (−∞,∞] be closed proper
convex functions andA a real-valued m×n matrix. Assume that domψ∗ = Rn or domϕ= Rm. Then

inf
u

[
ψ(u)+ϕ(Au)

]
= sup

λ

[
−ψ∗(A&λ)−ϕ∗(−λ)

]
.

We refer to the minimization over u as the primal problem and the maximization over λ as the
dual problem. When no ambiguity arises, we also refer to the minimization over λ of the negative
dual objective as the dual problem. We call u a primal feasible point if the primal objective is finite
at u and analogously define a dual feasible point.
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4. Generalized Maximum Entropy

In this paper we study a generalized maxent problem

P : min
p∈∆

[
D(p ‖ q0)+U(p[f])

]

where U : Rn → (−∞,∞] is an arbitrary closed proper convex function. It is viewed as a potential
for the maxent problem. We further assume that q0 is positive on X , that is, D(p ‖ q0) is finite for
all p ∈ ∆ (otherwise we could restrict X to the support of q0), and there exists a distribution whose
vector of feature expectations is a feasible point of U (this is typically satisfied by the empirical
distribution). These two conditions imply that the problem P is feasible.

The definition of generalized maxent captures many cases of interest including basic maxent, !1-
regularized maxent and !22-regularized maxent. Basic maxent is obtained by using a point indicator
potential U(0)(u) = I(u = π̃[f]). The !1-regularized version of maxent, as shown by Kazama and
Tsujii (2003), corresponds to the relaxation of equality constraints to box constraints

|π̃[ f j]− p[ f j]|≤ β j .

This choice can be motivated by an observation that we do not expect π̃[ f j] to be equal to π[ f j]
but only close to it. Box constraints are represented by the potential U(1)(u) = I(|π̃[ f j]− u j| ≤
β j for all j). Finally, as pointed out by Chen and Rosenfeld (2000) and Lebanon and Lafferty
(2001), !22-regularized maxent is obtained using the potential U(2)(u) = ‖π̃[f]− u‖22/(2α) which
incurs an !22-style penalty for deviating from empirical averages.

The primal objective of generalized maxent will be referred to as P:

P(p) = D(p ‖ q0)+U(p[f]) .

Note that P attains its minimum over ∆, because ∆ is compact and P is lower semi-continuous. The
minimizer of P is unique by strict convexity of D(p ‖ q0).

To derive the dual of P , define the matrix Fjx = f j(x) and use Fenchel’s duality:

min
p∈∆

[D(p ‖ q0)+U(p[f])] =min
p∈∆

[D(p ‖ q0)+U(Fp)]

= sup
λ∈Rn

[
− ln

(
∑x∈X q0(x)exp

{
(F&λ)x

})
−U∗(−λ)

]
(5)

= sup
λ∈Rn

[− lnZλ−U∗(−λ)] . (6)

In Equation (5), we apply Theorem 1. We use (F&λ)x to denote the entry of F&λ indexed by x.
In Equation (6), we note that (F&λ)x = λ · f(x) and thus the expression inside the logarithm is the
normalization constant of qλ. The dual objective will be referred to as Q:

Q(λ) = − lnZλ−U∗(−λ) .

There are two formal differences between generalized maxent and basic maxent. The first dif-
ference is that the constraints of the basic primal (1) are stated relative to the empirical expectations
whereas the potential of the generalized primal P makes no reference to π̃[f]. This difference is
only superficial. It is possible to “hard-wire” the distribution π̃ in the potential U, as we saw on
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potential (absolute and relative) conjugate potential
generalized maxent:

U(u) U(u) U∗(λ)
Ur(u) U(r[f]−u) U∗(−λ)+λ · r[f]
Uπ̃(u) U(π̃[f]−u) U∗(−λ)+λ · π̃[f]

basic constraints:
U(0)(u) I(u= π̃[f]) λ · π̃[f]
U(0)
r (u) I(u= r[f]− π̃[f]) λ · (r[f]− π̃[f])
U(0)
π̃ (u) I(u= 0) 0

box constraints:
U(1)(u) I(|π̃[ f j]−u j|≤ β j for all j) λ · π̃[f]+∑ j β j|λ j|
U(1)
r (u) I(|u j− (r[ f j]− π̃[ f j])|≤ β j for all j) λ · (r[f]− π̃[f])+∑ j β j|λ j|
U(1)
π̃ (u) I(|u j|≤ β j for all j) ∑ j β j|λ j|

!22 penalty:
U(2)(u) ‖π̃[f]−u‖22/(2α) λ · π̃[f]+α‖λ‖22/2
U(2)
r (u) ‖u− (r[f]− π̃[f])‖22/(2α) λ · (r[f]− π̃[f])+α‖λ‖22/2
U(2)
π̃ (u) ‖u‖22/(2α) α‖λ‖22/2

Table 1: Absolute and relative potentials, and their conjugates for various versions of maxent.

the example of U(0). In the latter case, it would be more correct, but perhaps overly pedantic and
somewhat clumsy, to make the dependence of the potential on π̃ explicit and use the notation U(0),π̃.

The second difference, which seems more significant, is the difference between the duals. The
objective of the basic dual (2) equals the log loss relative to the empirical distribution π̃, but the log
loss does not appear in the generalized dual. However, we will see that the generalized dual can be
expressed in terms of the log loss. In fact, it can be expressed in terms of the log loss relative to an
arbitrary distribution, including the empirical distribution π̃ as well as the unknown distribution π.

We next describe shifting, the transformation of an “absolute” potential to a “relative” potential.
Shifting is a technical tool which will simplify some of the proofs in Sections 5 and 6, and will also
be used to rewrite the generalized dual in terms of the log loss.

4.1 Shifting

For an arbitrary distribution r and a potential U, let Ur denote the function

Ur(u) = U(r[f]−u) .

This function will be referred to as the potential relative to r or simply the relative potential. The
original potential U will be in contrast referred to as the absolute potential. In Table 1, we list
potentials discussed so far, alongside their versions relative to an arbitrary distribution r, and relative
to π̃ in particular.

From the definition of a relative potential, we see that the absolute potential can be expressed
as U(u) = Ur(r[f]−u). Thus, it is possible to implicitly define a potential U by defining a relative
potential Ur for a particular distribution r. The potentials U(0), U(1), U(2) of basic maxent, maxent with
box constraints, and maxent with !22 penalty could thus have been specified by defining U

(0)
π̃ (u) =

I(u= 0), U(1)
π̃ (u) = I(|u j|≤ β j for all j) and U(2)

π̃ (u) = ‖u‖22/(2α).
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The conjugate of a relative potential, the conjugate relative potential, is obtained, according
to Equation (3), by adding a linear function to the conjugate of U:

U∗
r (λ) = U∗(−λ)+λ · r[f] . (7)

Table 1 lists U(0)∗, U(1)∗, U(2)∗, and the conjugates of the corresponding relative potentials.

4.2 The Generalized Dual as the Minimization of a Regularized Log Loss

We will now show how the dual objective Q(λ) can be expressed in terms of the log loss relative to
an arbitrary distribution r. This will highlight how the dual of the generalized maxent extends the
dual of the basic maxent. Using Equation (7), we rewrite Q(λ) as follows:

Q(λ) = − lnZλ−U∗(−λ) = − lnZλ−U∗
r (λ)+λ · r[f]

= −r[lnq0]+ r[lnq0+λ · f− lnZλ]−U∗
r (λ)

= Lr(0)−Lr(λ)−U∗
r (λ) . (8)

Since the first term in Equation (8) is a constant independent of λ, the maximization of Q(λ) is
equivalent to the minimization of Lr(λ)+U∗

r (λ). Setting r = π̃ we obtain a dual analogous to the
basic dual (2):

Qπ̃ : inf
λ∈Rn

[
Lπ̃(λ)+U∗

π̃(λ)
]

.

From Equation (8), it follows that the λ minimizing Lr(λ) +U∗
r (λ) does not depend on a partic-

ular choice of r. As a result, the minimizer of Qπ̃ is also the minimizer of Lπ(λ) +U∗
π(λ). This

observation will be used in Section 5 to prove performance guarantees.
The objective of Qπ̃ has two terms. The first of them is the empirical log loss. The second

one is the regularization term penalizing “complex” solutions. The regularization term need not be
non-negative and it does not necessarily increase with any norm of λ. On the other hand, it is a
proper closed convex function and if π̃ is feasible then by Fenchel’s inequality the regularization is
bounded from below by −Uπ̃(0). From a Bayesian perspective, U∗

π̃ corresponds to negative log of
the prior, and minimizing Lπ̃(λ)+U∗

π̃(λ) is equivalent to maximizing the posterior.
In the case of basic maxent, we obtain U(0)∗

π̃ (λ) = 0 and recover the basic dual. For the box
potential, we obtain U(1)∗

π̃ (λ) = ∑ j β j|λ j|, which corresponds to an !1-style regularization and a
Laplace prior. For the !22 potential, we obtain U

(2)∗
π̃ (λ) = α‖λ‖22/2, which corresponds to an !22-style

regularization and a Gaussian prior.
In all the cases discussed in this paper, it is natural to consider the dual objective relative to π̃

as we have seen in the previous examples. In other cases, the empirical distribution π̃ need not be
available, and there may be no natural distribution relative to which a potential could be specified,
yet it is possible to define a meaningful absolute potential (Dudı́k et al., 2005; Dudı́k and Schapire,
2006). To capture the more general case, we formulate the generalized maxent using the absolute
potential.

4.3 Maxent Duality

We know from Equation (6) that the generalized maxent primal and dual have equal values. In
this section, we show the equivalence of the primal and dual optimizers. Specifically, we show that
the maxent primal P is solved by the Gibbs distribution whose parameter vector λ solves the dual
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(possibly in a limit). This parallels the result of Della Pietra, Della Pietra, and Lafferty (1997) for
the basic maxent and gives additional motivation for the view of the dual objective as the regularized
log loss.

Theorem 2 (Maxent Duality). Let q0,U,P,Q be as above. Then

min
p∈∆

P(p) = sup
λ∈Rn

Q(λ) . (9)

Moreover, for a sequence λ1,λ2, . . . such that

lim
t→∞

Q(λt) = sup
λ∈Rn

Q(λ)

the sequence of qt = qλt has a limit and

P
(
lim
t→∞

qt
)

=min
p∈∆

P(p) . (10)

Proof. Equation (9) is a consequence of Fenchel’s duality as was shown earlier. It remains to prove
Equation (10). We will use an alternative expression for the dual objective. Let r be an arbitrary
distribution. Adding and subtracting H(r) from Equation (8) yields

Q(λ) = −D(r ‖ qλ)+D(r ‖ q0)−U∗
r (λ) . (11)

Let p̂ be the minimizer of P and λ1,λ2, . . . maximize Q in the limit. Then

D(p̂ ‖ q0)+U p̂(0) = P(p̂) = sup
λ∈Rn

Q(λ) = lim
t→∞

Q(λt)

= lim
t→∞

[
−D(p̂ ‖ qt)+D(p̂ ‖ q0)−U∗

p̂(λt)
]

.

Denoting terms with the limit 0 by o(1) and rearranging yields

Up̂(0)+U∗
p̂(λt) = −D(p̂ ‖ qt)+o(1) .

The left-hand side is non-negative by Fenchel’s inequality, so D(p̂ ‖ qt) → 0 by the non-negativity
of relative entropy. Therefore, by property (B2), every convergent subsequence of q1,q2, . . . has the
limit p̂. Since the qt’s come from the compact set ∆, we obtain qt → p̂.

Thus, in order to solve the primal, it suffices to find a sequence of λ’s maximizing the dual. This
will be the goal of algorithms in Sections 6 and 7.

5. Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of generalized maxent relative to the true
distribution π. That is, we are able to bound Lπ(λ̂) in terms of Lπ(λ!) when qλ̂ maximizes the dual
objective Q and qλ! is either an arbitrary Gibbs distribution, or in some cases, a Gibbs distribution
with a bounded norm of λ!. In particular, bounds hold for the Gibbs distribution minimizing the true
loss (in some cases, among Gibbs distributions with a bounded norm of λ!). Note that D(π ‖ qλ)
differs from Lπ(λ) only by the constant term H(π), so identical bounds also hold for D(π ‖ qλ̂) in
terms of D(π ‖ qλ!).
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Our results are stated for the case when the supremum of Q is attained at λ̂ ∈ Rn, but they easily
extend to the case when the supremum is only attained in a limit. The crux of our method is the
lemma below. Even though its proof is remarkably simple, it is sufficiently general to cover all the
cases of interest.
Lemma 3. Let λ̂ maximize Q. Then for an arbitrary Gibbs distribution qλ!

Lπ(λ̂) ≤ Lπ(λ!)+2U(π[f])+U∗(λ!)+U∗(−λ!) , (12)
Lπ(λ̂) ≤ Lπ(λ!)+2Uπ̃(π̃[f]−π[f])+U∗

π̃(λ
!)+U∗

π̃(−λ!) , (13)
Lπ(λ̂) ≤ Lπ(λ!)+(λ!− λ̂) · (π[f]− π̃[f])+U∗

π̃(λ
!)−U∗

π̃(λ̂) . (14)

Proof. Optimality of λ̂ with respect to Lπ(λ)+U∗
π(λ) = −Q(λ)+ const. yields

Lπ(λ̂) ≤ Lπ(λ!)+U∗
π(λ

!)−U∗
π(λ̂)

≤ Lπ(λ!)+(λ!− λ̂) ·π[f]+U∗(−λ!)−U∗(−λ̂) . (15)

In Equation (15), we express U∗
π in terms of U∗ using Equation (7). Now Equation (12) is obtained

by applying Fenchel’s inequality to the second term of Equation (15):

(λ!− λ̂) ·π[f] ≤ U∗(λ!)+U(π[f])+U∗(−λ̂)+U(π[f]) .

Equations (13) and (14) follow from Equations (12) and (15) by shifting potentials and their conju-
gates to π̃.

Remark. Notice that π and π̃ in the statement and the proof of the lemma can be replaced by arbitrary
distributions p1 and p2.

A special case which we discuss in more detail is when U is an indicator of a closed convex
set C, such as U(0) and U(1) of the previous section. In that case, the right hand side of Lemma 3.12
will be infinite unless π[f] lies inC. In order to apply Lemma 3.12, we ensure that π[f]∈C with high
probability. Therefore, we choose C as a confidence region for π[f]. If π[f] ∈C then for any Gibbs
distribution qλ!

Lπ(λ̂) ≤ Lπ(λ!)+ I∗C(λ!)+ I∗C(−λ!) . (16)
For a fixed λ! and a non-empty C, I∗C(λ!)+ I∗C(−λ!) is always non-negative and proportional to the
size of C’s projection onto a line in the direction λ!. Thus, smaller confidence regions yield better
performance guarantees.

A commonmethod of obtaining confidence regions is to bound the difference between empirical
averages and true expectations. There exists a huge array of techniques to achieve this. Before
moving to specific examples, we state a general result which follows directly from Lemma 3.13
analogously to Equation (16).
Theorem 4. Assume that π̃[f]− π[f] ∈ C0 where C0 is a closed convex set symmetric around the
origin. Let λ̂ minimize Lπ̃(λ)+ I∗C0(λ). Then for an arbitrary Gibbs distribution qλ!

Lπ(λ̂) ≤ Lπ(λ!)+2I∗C0(λ
!) .

Proof. Setting Uπ̃(u) = IC0(u) and assuming π̃[f]−π[f] ∈C0, we obtain by Lemma 3.13

Lπ(λ̂) ≤ Lπ(λ!)+ I∗C0(λ
!)+ I∗C0(−λ

!) .

The result now follows by the symmetry of C0, which implies the symmetry of IC0 , which in turn
implies the symmetry of I∗C0 .
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5.1 Maxent with !1 Regularization

We now apply the foregoing general results to some specific cases of interest. To begin, we consider
the box indicator U(1) of Section 4. In this case it suffices to bound |π̃[ f j]−π[ f j]| and use Theorem 4
to obtain a bound on the true loss Lπ(λ̂). For instance, when the features are bounded, we can prove
the following:

Corollary 5. Assume that features f1, . . . , fn are bounded in [0,1]. Let δ > 0 and let λ̂ minimize
Lπ̃(λ) + β‖λ‖1 with β =

√
ln(2n/δ)/(2m). Then with probability at least 1− δ, for every Gibbs

distribution qλ! ,

Lπ(λ̂) ≤ Lπ(λ!)+
‖λ!‖1√
m
√
2ln(2n/δ) .

Proof. By Hoeffding’s inequality, for a fixed j, the probability that |π̃[ f j]− π[ f j]| exceeds β is at
most 2e−2β2m = δ/n. By the union bound, the probability of this happening for any j is at most δ.
The claim now follows immediately from Theorem 4.

Similarly, when the f j’s are selected from a possibly larger class of binary features with VC-
dimension d, we can prove the following corollary. This will be the case, for instance, when using
threshold features on k variables, a class with VC-dimension O(lnk).

Corollary 6. Assume that features are binary with VC-dimension d. Let δ > 0 and let λ̂ minimize
Lπ̃(λ)+β‖λ‖1 with

β=

√
d ln(em2/d)+ ln(1/δ)+ ln(4e8)

2m
.

Then with probability at least 1−δ, for every Gibbs distribution qλ! ,

Lπ(λ̂) ≤ Lπ(λ!)+
‖λ!‖1√
m

√
2[d ln(em2/d)+ ln(1/δ)+ ln(4e8)] .

Proof. Here, a uniform-convergence result of Devroye (1982), combined with Sauer’s Lemma, can
be used to argue that |π̃[ f j]−π[ f j]|≤ β for all f j simultaneously with probability at least 1−δ.

The final result for !1-regularized maxent is motivated by the Central Limit Theorem approx-
imation |π̃[ f j]− π[ f j]| = O(σ[ f j]/

√
m), where σ[ f j] is the standard deviation of f j under π. We

bound σ[ f j] from above using McDiarmid’s inequality for the empirical estimate of variance

σ̃2[ f j] =
m
(
π̃[ f 2j ]− π̃[ f j]2

)

m−1 ,

and then obtain non-asymptotic bounds on |π̃[ f j]−π[ f j]| by Bernstein’s inequality (for a complete
proof see Appendix A).

We believe that this type of result may in practice be more useful than Corollaries 5 and 6,
because it allows differentiation between features depending on empirical error estimates computed
from the sample data. Motivated by Corollary 7 below, in Section 8 we describe experiments that
use β j = β0σ̃[ f j]/

√
m, where β0 is a single tuning constant. This approach is equivalent to using

features scaled to the unit sample variance, that is, features f ′j(x) = f j(x)/σ̃[ f j], and a regularization
parameter independent of features, β′j = β0/

√
m, as is a common practice in statistics. Corollary 7

justifies this practice and also suggests replacing the sample variance by a slightly larger value
σ̃2[ f j]+O(1/

√
m).
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Corollary 7. Assume that features f1, . . . , fn are bounded in [0,1]. Let δ > 0 and let λ̂ minimize
Lπ̃(λ)+∑ j β j|λ j| with

β j =

√
2ln(4n/δ)

m
·

√

σ̃2[ f j]+
√
ln(2n/δ)
2m

+
ln(4n/δ)
18m

+
ln(4n/δ)
3m

.

Then with probability at least 1−δ, for every Gibbs distribution qλ! ,

Lπ(λ̂) ≤ Lπ(λ!)+2∑ j β j|λ!j | .

Corollaries of this section show that the difference in performance between the distribution
computed by minimizing !1-regularized log loss and the best Gibbs distribution becomes small
rapidly as the number of samples m increases. Note that this difference depends only moderately on
the number or complexity of features.

Another feature of !1 regularization is that it induces sparsity (Tibshirani, 1996). Note that a
maxent solution λ̂ is “truly” sparse, that is, some of its components are “truly” zero, only if they
remain zero under perturbations in the regularization parameters β j and the expectations π̃[ f j]; in
other words, the fact that the components of λ̂ are zero is not just a lucky coincidence. To see
how !1 regularization induces this property, notice that its partial derivatives are discontinuous at
λ j = 0. As a consequence, if the regularized log loss is uniquely minimized at a point where the
j0-th component λ̂ j0 equals zero, then the optimal λ̂ j0 will remain zero even if the parameters β j and
the expectations π̃[ f j] are slightly perturbed.

5.2 Maxent with Smoothed !1 Regularization

While the guarantees for !1-style regularization have many favorable properties, the fact that the !1
norm is not strictly convex and its first derivative is discontinuous at zero may sometimes be prob-
lematic. The lack of strict convexity may lead to infinitely many λ’s optimizing the dual objective,2
and the discontinuous derivatives may cause problems in certain convex optimization algorithms.
To prevent these problems, smooth approximations of !1 regularization may be necessary.

In this section, we analyze a smooth approximation similar to one used by Dekel, Shalev-
Shwartz, and Singer (2003):

U(≈1)∗
π̃ (λ) = ∑ jα jβ j lncosh(λ j/α j) = ∑ jα jβ j ln

(
eλ j/α j + e−λ j/α j

2

)
.

Constants α j > 0 control the tightness of fit to the !1 norm while constants β j ≥ 0 control scaling.
Note that coshx≤ e|x| hence

U(≈1)∗
π̃ (λ) ≤ ∑ jα jβ j lne|λ j|/α j = ∑ jα jβ j|λ j|/α j = ∑ j β j|λ j| . (17)

The potential corresponding to U(≈1)∗
π̃ is

U(≈1)
π̃ (u) = ∑ jα jβ jD

(
1+u j/β j

2

∥∥∥∥
1
2

)

2. This may only happen if features are not linearly independent.
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where D(a ‖ b) is a shorthand for D((a,1−a) ‖ (b,1−b)) (for a derivation of U(≈1)
π̃ see Appendix B).

This potential can be viewed as a smooth upper bound on the box potential U(1)
π̃ in the sense that the

gradient of U(≈1)
π̃ is continuous on the interior of the effective domain of U(1)

π̃ and its norm approaches
∞ on the border. Note that if |u j|≤ β j for all j then D

( 1+u j/β j
2

∥∥ 1
2
)
≤ D

(
0
∥∥ 1
2
)

= ln2 and hence

U(≈1)
π̃ (u) ≤ (ln2)∑ jα jβ j . (18)

Applying bounds (17) and (18) in Lemma 3.13 we obtain an analog of Theorem 4.

Theorem 8. Assume that for each j, |π̃[ f j]− π[ f j]| ≤ β j. Let λ̂ minimize Lπ̃(λ)+U(≈1)∗
π̃ (λ). Then

for an arbitrary Gibbs distribution qλ!

Lπ(λ̂) ≤ Lπ(λ!)+2∑ j β j|λ!j |+(2ln2)∑ jα jβ j .

To obtain guarantees analogous to those of !1-regularized maxent, it suffices to choose suffi-
ciently small α j. For example, in order to perform well relative to distributions qλ! with ∑ j β j|λ!j |≤
L, it suffices to choose α j = (εL)/(nβ j ln2) and obtain

Lπ(λ̂) ≤ Lπ(λ!)+2(1+ε)L .

For example, we can derive an analog of Corollary 5. We relax the constraint that features are
bounded in [0,1] and, instead, provide a guarantee in terms of the !∞ diameter of the feature space.

Corollary 9. Let D∞ = supx,x′∈X ‖f(x)− f(x′)‖∞ be the !∞ diameter of f(X ). Let δ,ε,L1 > 0 and
let λ̂ minimize Lπ̃(λ)+αβ∑ j lncosh(λ j/α) with

α=
εL1
n ln2

, β= D∞

√
ln(2n/δ)
2m

.

Then with probability at least 1−δ

Lπ(λ̂) ≤ inf
‖λ!‖1≤L1

Lπ(λ!)+
(1+ε)L1D∞√

m
·
√
2ln(2n/δ) .

Thus, maxent with smoothed !1 regularization performs almost as well as !1-regularized maxent,
provided that we specify an upper bound on the !1 norm of λ! in advance. As a result of removing
discontinuities in the gradient, smoothed !1 regularization lacks the sparsity inducing properties of
!1 regularization.

As α→ 0, the guarantees for smoothed !1 regularization converge to those for !1 regularization,
but at the price of reducing smoothness of the objective in some regions and increasing its flatness
in others. For many methods of convex optimization, this leads to a worse runtime. For example,
the number of iterations of gradient descent increases with an increasing condition number of the
Hessian of the objective, which in our case grows as α→ 0. Similarly, the number of iterations of
Newton’s method depends both on the condition number and the Lipschitz constant of the Hessian,
both of which increase as α→ 0. Thus, in choosing α, we trade an improvement in performance
guarantees for an increase in runtime.

1231
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5.3 Maxent with !2 Regularization

In some cases, tighter performance guarantees are obtained by using confidence regions which take
the shape of a Euclidean ball. More specifically, we consider the potential and conjugate

U(
√
2)
π̃ (u) =

{
0 if ‖u‖2 ≤ β
∞ otherwise

, U(
√
2)∗
π̃ (λ) = β‖λ‖2 .

We first derive an !2 version of Hoeffding’s inequality (Lemma 10 below, proved in Appendix C)
and then use Theorem 4 to obtain performance guarantees.

Lemma 10. Let D2 = supx,x′∈X ‖f(x)− f(x′)‖2 be the !2 diameter of f(X ) and let δ> 0. Then with
probability at least 1−δ

‖π̃[f]−π[f]‖2 ≤
D2√
2m
[
1+
√
ln(1/δ)

]
.

Theorem 11. Let D2 be the !2 diameter of f(X ). Let δ > 0 and let λ̂ minimize Lπ̃(λ)+β‖λ‖2 with
β=D2

[
1+
√
ln(1/δ)

]
/
√
2m. Then with probability at least 1−δ, for every Gibbs distribution qλ! ,

Lπ(λ̂) ≤ Lπ(λ!)+
‖λ!‖2D2√

m

(√
2+
√
2ln(1/δ)

)
.

Unlike results of the previous sections, this bound does not explicitly depend on the number
of features and only grows with the !2 diameter of the feature space. The !2 diameter is small for
example when the feature space consists of sparse binary vectors.

An analogous bound can also be obtained for !1-regularized maxent in terms of the !∞ diameter
of the feature space (relaxing the requirement of Corollary 5 that features be bounded in [0,1]):

Lπ(λ̂) ≤ Lπ(λ!)+
‖λ!‖1D∞√

m
√
2ln(2n/δ) .

This bound increases with the !∞ diameter of the feature space and also grows slowly with the
number of features. It provides some insight for when we expect !1 regularization to perform better
than !2 regularization. For example, consider a scenario when the total number of features is large,
but the best approximation of π can be derived from a small number of relevant features. Increasing
the number of irrelevant features, we may keep ‖λ!‖1, ‖λ!‖2 and D∞ fixed while increasing D2 as
Ω(

√
n). The guarantee for !2-regularized maxent then grows as Ω(

√
n) while the guarantee for !1-

regularized maxent grows only asΩ(
√
lnn). Note, however, that in practice the distribution returned

by !2-regularized maxent may perform better than indicated by this guarantee. For a comparison of
!1 and !22 regularization in the context of logistic regression see Ng (2004).

5.4 Maxent with !22 Regularization

So far we have considered potentials that take the form of an indicator function or its smooth approx-
imation. In this section we present a result for the !22 potential U

(2)
π̃ of Section 4 and the corresponding

conjugate U(2)∗
π̃ :

U(2)
π̃ (u) =

‖u‖22
2α

, U(2)∗
π̃ (λ) =

α‖λ‖22
2

.
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The potential U(2)
π̃ grows continuously with an increasing distance from empirical averages while

the conjugate U(2)∗
π̃ corresponds to !22 regularization.

In the case of !22-regularized maxent it is possible to derive guarantees on the expected per-
formance in addition to probabilistic guarantees. However, these guarantees require an a priori
bound on ‖λ!‖2 and thus are not entirely uniform. Our expectation guarantees are analogous to
those derived by Zhang (2005) for the conditional case. However, we are able to obtain a better
multiplicative constant.

Note that we could derive expectation guarantees by simply applying Lemma 3.13 and taking
the expectation over a random sample:

Lπ(λ̂) ≤ Lπ(λ!)+
‖π[f]− π̃[f]‖22

α
+α‖λ!‖22 (19)

E
[
Lπ(λ̂)

]
≤ Lπ(λ!)+

trΣ
αm

+α‖λ!‖22 .

Here, Σ is the covariance matrix of features with respect to π and tr denotes the trace of a matrix.
We improve this guarantee by using Lemma 3.14 with qλ! chosen to minimize Lπ(λ)+U(2)∗

π̃ (λ), and
explicitly bounding (λ!− λ̂) · (π[f]− π̃[f]) using a stability result similarly to Zhang (2005).

Lemma 12. Let λ̂ minimize Lπ̃(λ)+α‖λ‖22/2 where α> 0. Then for every qλ!

Lπ(λ̂) ≤ Lπ(λ!)+
‖π[f]− π̃[f]‖22

α
+
α‖λ!‖22
2

.

Proof of Lemma 12 is given in Appendix D. Lemma 12 improves on (19) in the leading constant
of ‖λ!‖22 which is α/2 instead of α. Taking the expectation over a random sample and bounding the
trace of Σ in terms of the !2 diameter (see Lemma 22 of Appendix C), we obtain an expectation
guarantee. We can also use Lemma 10 to bound ‖π[f]− π̃[f]‖22 with high probability, and obtain a
probabilistic guarantee. The two results are presented in Theorem 13 with the tradeoff between the
guarantees controlled by the parameter s.

Theorem 13. Let D2 be the !2 diameter of f(X ) and let L2,s> 0. Let λ̂ minimize the !22-regularized
log loss Lπ̃(λ)+α‖λ‖22/2 with α= sD2/(L2

√
m). Then

E
[
Lπ(λ̂)

]
≤ inf

‖λ!‖2≤L2
Lπ(λ!)+

L2D2√
m

· s+ s−1

2

and if δ> 0 then with probability at least 1−δ

Lπ(λ̂) ≤ inf
‖λ!‖2≤L2

Lπ(λ!)+
L2D2√
m

·
s+ s−1

(
1+
√
ln(1/δ)

)2

2
.

The bounds of Theorem 13 have properties similar to probabilistic guarantees of !2-regularized
maxent. As mentioned earlier, they differ in the crucial fact that the norm ‖λ!‖2 needs to be bounded
a priori by a constant L2. It is this constant rather than a possibly smaller norm ‖λ!‖2 that enters the
bound.

Note that bounds of this section generalize to arbitrary quadratic potentials Uπ̃(u) = u&A−1u/2
and respective conjugates U∗

π̃(λ) = λ&Aλ/2 where A is a symmetric positive definite matrix. Apply-
ing the transformation

f′(x) = α1/2A−1/2f(x) , λ′ = α−1/2A1/2λ

1233
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where A1/2 is the unique symmetric positive definite matrix such that A1/2A1/2 = A, the guarantees
for quadratic-regularized maxent in terms of f(X ) and λ! reduce to the guarantees for !22-regularized
maxent in terms of f′(X ) and λ!′.

5.5 Maxent with !2 Regularization versus !22 Regularization

In the previous two sections we have seen that performance guarantees for maxent with !2 and !22
regularization differ whenever we require that β and α be fixed before running the algorithm. We
now show that if all possible values of β and α are considered then the sets of models generated by
the two maxent versions are the same.

Let Λ(
√
2),β and Λ(2),α denote the respective solution sets for maxent with !2 and !22 regularization:

Λ(
√
2),β = argmin

λ∈Rn
[Lπ̃(λ)+β‖λ‖2] (20)

Λ(2),α = argmin
λ∈Rn

[
Lπ̃(λ)+α‖λ‖22/2

]
. (21)

If β,α > 0 then Λ(
√
2),β and Λ(2),α are non-empty because the objectives are lower semi-continuous

and approach infinity as ‖λ‖2 increases. For β= 0 and α= 0, Equations (20) and (21) reduce to the
basic maxent. Thus, Λ(

√
2),0 and Λ(2),0 contain the λ’s for which qλ[f] = π̃[f]. This set will be empty if

the basic maxent solutions are attained only in a limit.

Theorem 14. Let Λ(
√
2) =

S
β∈[0,∞]Λ

(
√
2),β and Λ(2) =

S
α∈[0,∞]Λ

(2),α. Then Λ(
√
2) = Λ(2).

Proof. First note that Λ(
√
2),∞ =Λ(2),∞ = {0}. Next, we will show that Λ(

√
2) \{0} =Λ(2) \{0}. Taking

derivatives in Equations (20) and (21), we obtain that λ ∈ Λ(
√
2),β \{0} if and only if

λ *= 0 and ∇Lπ̃(λ)+βλ/‖λ‖2 = 0 .

Similarly, λ ∈ Λ(2),α \{0} if and only if

λ *= 0 and ∇Lπ̃(λ)+αλ= 0 .

Thus, any λ ∈ Λ(
√
2),β \{0} is also in the set Λ(2),β/‖λ‖2 \{0}, and conversely any λ ∈ Λ(2),α \{0} is also

in the set Λ(
√
2),α‖λ‖2 \{0}.

The proof of Theorem 14 rests on the fact that the contours of regularization functions ‖λ‖2
and ‖λ‖22 coincide. We could easily extend the proof to include the equivalence of Λ(

√
2), Λ(2) with

the set of solutions to min{Lπ̃(λ) : ‖λ‖2 ≤ 1/γ} where γ ∈ [0,∞]. Similarly, one could show the
equivalence of the solutions for regularizations β‖λ‖1, α‖λ‖21/2 and I(‖λ‖1 ≤ 1/γ).

The main implication of Theorem 14 is for maxent density estimation with model selection,
for example, by minimization of held-out or cross-validated empirical error. In those cases, maxent
versions with !2, !22 (and an !2-ball indicator) regularization yield the same solution. Thus, we prefer
to use the computationally least intensive method. This will typically be !22-regularized maxent
whose potential and regularization are smooth.

The solution sets Λ(
√
2),β and Λ(2),α differ in their “sparsity” properties. We put the sparsity inside

quotation marks because there are only two sparsity levels for !2 regularization: either all coordi-
nates of λ remain zero under perturbations, or none of them. This is because the sole discontinuity
of the gradient of the !2-regularized log loss is at λ = 0. On the other hand, !22 regularization is
smooth and therefore does not induce sparsity.
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5.6 Maxent with !1+ !22 Regularization

In this section, we consider regularization that has both !1-style and !22-style terms. To simplify the
discussion, we do not distinguish between coordinates and use a weighted sum of the !1 norm and
the square of the !2 norm:

U(1+2)∗
π̃ (λ) = β‖λ‖1+

α‖λ‖22
2

, U(1+2)
π̃ (u) = ∑ j

∣∣|u j|−β
∣∣2
+

2α
.

Here α and β are positive constants, and |x|+ = max{0,x} denotes the positive part of x. For a
derivation of U(1+2)

π̃ see Appendix E.
For this type of regularization we are able to prove both probabilistic and expectation guarantees.

Using similar techniques as in the previous sections we can derive, for example, the following
theorem.

Theorem 15. Let D2,D∞ be the !2 and !∞ diameters of f(X ) respectively. Let δ,L2 > 0 and let λ̂
minimize Lπ̃(λ) + β‖λ‖1 + α‖λ‖22/2 with α = (D2min{1/

√
2,
√
mδ})/(2L2

√
m) and β =

D∞
√
ln(2n/δ)/(2m). Then

E
[
Lπ(λ̂)

]
≤ inf

‖λ!‖2≤L2

[
Lπ(λ!)+

D∞‖λ!‖1√
m

√
2ln(2n/δ)

]
+
D2L2√
m

·min
{
1√
2
,
√
mδ
}

and with probability at least 1−δ

Lπ(λ̂) ≤ inf
‖λ!‖2≤L2

[
Lπ(λ!)+

D∞‖λ!‖1√
m

√
2ln(2n/δ)

]
+
D2L2√
m

· 1
2
min

{
1√
2
,
√
mδ
}

.

Proof. We only need to bound U(1+2)
π̃ (π̃[f]− π[f]) and its expectation and use Lemma 3.14. By

Hoeffding’s inequality and the union bound, the potential is zero with probability at least 1− δ,
immediately yielding the second claim. Otherwise,

U(1+2)
π̃ (π̃[f]−π[f]) ≤ ‖π̃[f]−π[f]‖22

2α
≤ D22
2α

hence E
[
U(1+2)
π̃ (π̃[f]−π[f])

]
≤ (δD22)/(2α). On the other hand, we can bound the trace of the feature

covariance matrix by Lemma 22 of Appendix C and obtain

E
[
U(1+2)
π̃ (π̃[f]−π[f])

]
≤
E
[
‖π̃[f]−π[f]‖22

]

2α
=
trΣ
2mα

≤ D22
4mα

.

Hence
E
[
U(1+2)
π̃ (π̃[f]−π[f])

]
≤ D22
2mα

·min
{
1
2
,mδ
}

and the first claim follows.

Setting δ = s/m, we bound the difference in performance between the maxent distribution and
any Gibbs distribution of a bounded weight vector by O

((
D∞‖λ!‖1

√
ln(2mn/s)+D2L2

√
s
)
/
√
m
)
.

Now the constant s can be tuned to achieve the optimal tradeoff betweenD∞‖λ!‖1 andD2L2. Notice
that the sparsity inducing properties of !1 regularization are preserved in !1+ !22 regularization,
because the partial derivatives of β‖λ‖1+α‖λ‖22/2 are discontinuous at zero.
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5.7 Extensions to Other Regularization Types

Regularizations explored in previous sections are derived from !1 and !2 norms. However, perfor-
mance guarantees easily extend to arbitrary norms using the corresponding concentration bounds
and conjugacy relationships in the spirit of (Altun and Smola, 2006).

For instance, for an arbitrary norm ‖·‖B∗ , the regularization function β‖λ‖B∗ corresponds to the
potential IB(u) where B = {‖u‖B ≤ β} and ‖·‖B is the dual norm of ‖·‖B∗ . Similarly, for a norm
‖·‖A∗ , the regularization function α‖λ‖2A∗/2 corresponds to the potential ‖u‖2A/(2α) where ‖·‖A
is the dual norm of ‖·‖A∗ . For the combined regularization U∗

π̃(λ) = β‖λ‖B∗ +α‖λ‖2A∗/2, we can
perform a similar analysis as for !1+ !22 regularization using the bound

Uπ̃(u) ≤min{IB(u),‖u‖2A/(2α)} .

Of course, the framework presented here is not limited to regularization functions derived from
norms; however, the corresponding concentration bounds are typically less readily available.

6. Selective-Update Algorithm

In the previous section, we have discussed performance bounds of various types of regularization.
Now we turn our attention to algorithms for solving generalized maxent problems. In the present
and the following section, we propose two algorithms for generalized maxent with complete proofs
of convergence. Our algorithms cover a wide class of potentials including the basic, box and !22
potential. The !2-ball potential U(

√
2)
π̃ does not fall in this class, but we show that the corresponding

maxent problem can be reduced and our algorithms can still be applied.
There are a number of algorithms for finding the basic maxent distribution, especially iterative

scaling and its variants (Darroch and Ratcliff, 1972; Della Pietra et al., 1997). The Selective-Update
algorithm for MaximuM EnTropy (SUMMET) described in this section modifies one weight λ j
at a time, as explored by Collins, Schapire, and Singer (2002) in a similar setting. This style of
coordinate-wise descent is convenient when working with a very large (or infinite) number of fea-
tures. The original Darroch and Ratcliff algorithm also allows single-coordinate updates. Goodman
(2002) observes that this leads to a much faster convergence than with the parallel version. However,
updates are performed cyclically over all features, which renders the algorithm less practical with
a large number of irrelevant features. Similarly, the sequential-update algorithm of Krishnapuram
et al. (2005) requires a visitation schedule that updates each feature weight infinitely many times.

SUMMET differs since the weight to be updated is selected independently in each iteration.
Thus, the features whose optimal weights are zero may never be updated. This approach is particu-
larly useful in the context of !1-regularized maxent which often yields sparse solutions.

As explained in Section 4, the goal of the algorithm is to produce a sequence λ1,λ2, . . . maxi-
mizing the objective functionQ in the limit. In this and the next section we assume that the potential
U is decomposable as defined below:

Definition 16. A potential U :Rn→ (−∞,∞] is called decomposable if it can be written as a sum of
coordinate potentials U(u) = ∑ jU j(u j), each of which is a closed proper convex function bounded
from below.

As a consequence of this definition, the conjugate potential U∗ equals the sum of conjugate
coordinate potentials U∗

j , by Equation (4), and U∗
j(0) = supu j [−U j(u j)] is finite for all j.
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Input: finite domain X , default estimate q0
features f1, . . . , fn where f j : X → [0,1], f j(X ) %= {0} and f j(X ) %= {1}
decomposable potential U where domU j ∩ [0,1] %= {0} and domU j ∩ [0,1] %= {1}

Output: λ1,λ2, . . . maximizing Q
Let λ1 = 0
For t = 1,2, . . . :
• let ( j!,δ!) = argmax

( j,δ)

[
− ln

(
1+(eδ−1)qλ[ f j]

)
−U∗

j(−λ j−δ)+U∗
j(−λ j)

]

• λt+1, j =
{
λt, j! +δ! if j = j!
λt, j otherwise

Figure 2: Selective-Update algorithm forMaximuM EnTropy (SUMMET).

Throughout this section we assume that values of features f j lie in the interval [0,1] and that
features and coordinate potentials are non-degenerate in the sense that ranges f j(X ) and intersec-
tions domU j ∩ [0,1] differ from {0} and {1}. In Appendix G we show that a generalized maxent
problem with a decomposable potential can always be reduced to the non-degenerate form.

Our algorithm works by iteratively adjusting the single weight λ j that maximizes (an approx-
imation of) the change in Q. To be more precise, suppose we add δ to λ j. Let λ′ be the resulting
vector of weights, identical to λ except that λ′j = λ j +δ. Then the change in the objective is

Q(λ′)−Q(λ) = − lnZλ′ −U∗(−λ′)+ lnZλ+U∗(−λ)
= − ln(qλ

[
eδ f j
]
)−∑ j′ [U∗

j′(−λ′j′)−U∗
j′(−λ j′)] (22)

≥− ln(qλ
[
1+(eδ−1) f j

]
)−U∗

j(−λ j−δ)+U∗
j(−λ j) (23)

= − ln
(
1+(eδ−1)qλ[ f j]

)
−U∗

j(−λ j−δ)+U∗
j(−λ j) . (24)

Equation (22) uses
Zλ′ = ∑

x∈X
q0(x)eλ·f(x)+δ j f j(x) = Zλ ∑

x∈X
qλ(x)eδ j f j(x) . (25)

Equation (23) is because eδx ≤ 1+(eδ−1)x for x ∈ [0,1] by convexity.
Let Fj(λ,δ) denote the expression in (24):

Fj(λ,δ) = − ln
(
1+(eδ−1)qλ[ f j]

)
−U∗

j(−λ j−δ)+U∗
j(−λ j) .

Our algorithm, shown in Figure 2, on each iteration, maximizes this lower bound over all choices
of ( j,δ) and for the maximizing j adds the corresponding δ to λ j. We assume that for each j the
maximizing δ is finite. This will be the case if the potential and features are non-degenerate (see
Appendix G). Note that Fj(λ,δ) is strictly concave in δ so we can use any of a number of search
methods to find the optimal δ.

Solving !1-Regularized Maxent. For maxent with box constraints (which subsumes the basic
maxent), the optimizing δ can be derived explicitly. First note that

F (1)
j (λ,δ) = − ln

(
1+(eδ−1)qλ[ f j]

)
−U(1)∗

j (−λ j−δ)+U(1)∗
j (−λ j)

= − ln
(
1+(eδ−1)qλ[ f j]

)
+δπ̃[ f j]−β j(|λ j +δ|− |λ j|)

1237
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Input: finite domain X , default estimate q0
examples x1, . . . ,xm ∈ X
features f1, . . . , fn where f j : X → [0,1], f j(X ) %= {0} and f j(X ) %= {1}
non-negative regularization parameters β1, . . . ,βn where β j > 0 if π̃[ f j] ∈ {0,1}

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑ j β j|λ j|
Let λ1 = 0
For t = 1,2, . . . :

• ( j!,δ!) = argmax
( j,δ)

[
− ln

(
1+(eδ−1)qt [ f j]

)
+ π̃[ f j]δ−β j(|λt, j +δ|− |λt, j|)

]

for each j it suffices to consider the following possibilities (whenever defined)

δ+ = ln
(

(π̃[ f j]−β j)(1−qt [ f j])
(1− π̃[ f j]+β j)qt [ f j]

)
, δ0 = −λt, j , δ− = ln

(
(π̃[ f j]+β j)(1−qt [ f j])
(1− π̃[ f j]−β j)qt [ f j]

)

and choose δ+ if λt, j +δ+ > 0, δ− if λt, j +δ−< 0, and δ0 otherwise

• λt+1, j =
{
λt, j! +δ! if j = j!
λt, j otherwise

Figure 3: Selective-update algorithm for !1-regularized maxent (!1-SUMMET).

since
U(1)∗
j (−µj) = U(1)∗

π̃, j (µj)−µjπ̃[ f j] = β j|µj|−µjπ̃[ f j] .

The optimum δ can be obtained for each j via a simple case analysis on the sign of λ j + δ. In
particular, using calculus, we see that we only need consider the possibility that δ=−λ j or that δ is
equal to

ln
(

(π̃[ f j]−β j)(1−qλ[ f j])
(1− π̃[ f j]+β j)qλ[ f j]

)
or ln

(
(π̃[ f j]+β j)(1−qλ[ f j])
(1− π̃[ f j]−β j)qλ[ f j]

)

where the first and second of these can be valid only if λ j +δ≥ 0 and λ j +δ≤ 0, respectively. The
complete algorithm, !1-SUMMET, is shown in Figure 3.

Solving !2-Regularized Maxent. The !2-ball potential U(
√
2)
π̃ is not decomposable. In order to

reduce !2-regularized maxent to maxent with a decomposable potential, we replace the constraint
‖π̃[f]− p[f]‖2 ≤ β by ‖π̃[f]− p[f]‖22 ≤ β2 which yields an equivalent primal:

P ′ : min
p∈∆

D(p ‖ q0) subject to ‖π̃[f]− p[f]‖22 ≤ β2 .

If β> 0 then, by the Lagrange duality and Slater’s conditions (Boyd and Vandenberghe, 2004), there
exists µ≥ 0 such that the solution of P ′ is the same as the solution of

P ′′ : min
p∈∆

[
D(p ‖ q0)+µ

(
‖π̃[f]− p[f]‖22−β2

)]
.

The sought-after µ is the one which maximizes the value of P ′′. Since the value of P ′′ is concave in µ,
we can employ a range of search techniques to find the optimal µ, using SUMMET (or PLUMMET
of the next section) with !22 regularization in each iteration.
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6.1 Convergence

In order to prove convergence of SUMMET, we will measure its progress towards solving the
primal and dual. One measure of progress is the difference between the primal evaluated at qλ and
the dual evaluated at λ:

P(qλ)−Q(λ) = [D(qλ ‖ q0)+U(qλ[f])]− [− lnZλ−U∗(−λ)]
= qλ[λ · f− lnZλ]+U(qλ[f])+qλ[lnZλ]+U∗(−λ)
= U(qλ[f])+U∗(−λ)+λ ·qλ[f] .

By Theorem 1, this difference is non-negative and equals zero exactly when qλ solves primal and λ
solves the dual.

For a decomposable potential, Fenchel’s inequality in each coordinate implies that the difference
is zero exactly when

U j(qλ[ f j])+U∗
j(−λ j)+λ jqλ[ f j] = 0

for all j. This characterization corresponds to the Kuhn-Tucker conditions (Rockafellar, 1970) in
the case when coordinate potentials express equality and inequality constraints.

For many potentials of interest, including equality and inequality constraints, the difference
between primal and dual may remain infinite throughout the computation. Therefore, we propose
to use an auxiliary function as a surrogate for this difference. The auxiliary function is defined,
somewhat non-standardly, as follows:

Definition 17. A function A : Rn×Rn → (−∞,∞] is called an auxiliary function if

A(λ,a) = U(a)+U∗(−λ)+λ ·a+B(a ‖ qλ[f])

where B(· ‖ ·) : Rn×Rn → (−∞,∞] satisfies conditions (B1) and (B2).

The interpretation of an auxiliary function as a surrogate for the difference between primal
and dual objectives is novel. Unlike previous applications of auxiliary functions (Della Pietra et al.,
1997, 2001; Collins et al., 2002), we do not assume that A(λ,a) bounds a change in the dual objective
and we also make no continuity assumptions. The reason for the former is technical: we need to
allow a more flexible relationship between A and a change in the dual objective to accommodate
algorithms both with single-coordinate and parallel updates. The absence of continuity assumptions
is, however, crucial in order to allow arbitrary (decomposable) potentials. The continuity is replaced
by the property (B2). On the other hand, our form of auxiliary function is more restrictive as the
only flexibility is in choosing B, which is a function of qλ[f] rather than qλ.

The auxiliary function is always non-negative since U(a) +U∗(−λ) ≥ −λ · a by Fenchel’s
inequality and hence A(λ,a) ≥ B(a ‖ qλ[f]) ≥ 0. Moreover, if A(λ,a) = 0 then qλ[f] = a and
A(λ,a) = P(qλ)−Q(λ) = 0, that is, by maxent duality, qλ solves the primal and λ solves the dual.

It turns out, as we show in Lemma 19 below, that the optimality property generalizes to the case
when A(λt ,at) → 0 provided that Q(λt) has a finite limit. In particular, it suffices to find a suitable
sequence of at’s for λt’s produced by an algorithm to show its convergence. Note that the optimality
in the limit trivially holds when λt’s and at’s come from a compact set, because A(λ̂, â) = 0 at a
cluster point of {(λt ,at)} by the lower semi-continuity of U and U∗.

In a general case, we follow the technique used by Della Pietra, Della Pietra, and Lafferty
(1997) for the basic maxent: we consider a cluster point q̂ of {qλt} and show that (i) q̂ is primal

1239
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feasible and (ii) the difference P(q̂)−Q(λt) approaches zero. In the case of the basic maxent,
A(λ,a) = B(π̃[f] ‖ qλ[f]) whenever finite. Thus, (i) is obtained by (B2), and noting that P(q̂)−
Q(λ) = D(q̂ ‖ qλ) yields (ii). For a general potential, however, claims (i) and (ii) seem to require
a novel approach. In both steps, we use decomposability and the technical Lemma 18 (proved in
Appendix F). Thus compactness or decomposability seem to be crucial in the present approach.

Lemma 18. Let Ur be a decomposable potential relative to a feasible point r. Let S = domUr =
{u ∈ Rn : Ur(u) <∞} and Tc = {λ ∈ Rn : U∗

r (λ) ≤ c}. Then there exists αc ≥ 0 such that λ ·u ≤
αc‖u‖1 for all u ∈ S,λ ∈ Tc.

Lemma 19. Let λ1,λ2, . . . ∈ Rn, a1,a2, . . . ∈ Rn be sequences such that Q(λt) has a finite limit and
A(λt ,at) → 0 as t →∞. Then limt→∞Q(λt) = supλQ(λ).

Proof. Let qt denote qλt . Distributions qt come from the compact set ∆, so we can choose a con-
vergent subsequence. We index this subsequence by τ and denote its limit by q̂. We assume that
the subsequence was chosen in such a manner that values A(λτ,aτ) and Q(λτ) are finite. We do
this without loss of generality because limits of A(λτ,aτ) and Q(λτ) are finite. We will show that
limτ→∞Q(λτ) = supλQ(λ). The result will then follow since limτ→∞Q(λτ) = limt→∞Q(λt).

As noted earlier, A(λ,a) ≥ B(a ‖ qλ[f]). Since B(aτ ‖ qτ[f]) is non-negative and A(λτ,aτ) →
0, we obtain B(aτ ‖ qτ[f]) → 0. Thus, aτ → q̂[f] by the property (B2). Rewriting A in terms of
the potential and the conjugate potential relative to an arbitrary feasible point r (which exists by
assumption), we obtain

A(λτ,aτ) = Ur(r[f]−aτ)+U∗
r (λτ)−λτ · (r[f]−aτ)+B(aτ ‖ qτ[f]) . (26)

Rearrange terms, noting that A(λτ,aτ) → 0 and B(aτ ‖ qτ[f]) → 0:

Ur(r[f]−aτ) = −U∗
r (λτ)+λτ · (r[f]−aτ)+o(1) . (27)

We use Equation (27) to prove first the feasibility and then the optimality of q̂.

Feasibility. We bound the right hand site of Equation (27) and take limits to show that Ur(r[f]−
q̂[f]) is also finite. The first term is bounded by Fenchel’s inequality:

−U∗
r (λτ) ≤−λτ ·0+Ur(0) = Ur(0) , (28)

which is finite by the feasibility of r. In order to bound λτ · (r[f]− aτ), the second term of Equa-
tion (27), we use Lemma 18. First note that r[f]− aτ is a feasible point of Ur for all τ by Equa-
tion (26) and the finiteness of A(λτ,aτ). Next, from Equation (11):

U∗
r (λτ) = −Q(λτ)−D(r ‖ qτ)+D(r ‖ q0) ,

which is bounded above by some constant c independent of τ because −Q(λτ) has a finite limit
and is thus bounded above, −D(r ‖ qτ) is non-positive, and D(r ‖ q0) is a finite constant. Hence by
Lemma 18

λτ · (r[f]−aτ) ≤ αr‖r[f]−aτ‖1 (29)
for some constant αr independent of τ. Plugging Equations (28) and (29) in Equation (27) and
taking limits, we obtain by lower semi-continuity of Ur

Ur(r[f]− q̂[f]) ≤ Ur(0)+αr‖r[f]− q̂[f]‖1 .

Thus q̂ is primal feasible.
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Optimality. Since the foregoing holds for any primal feasible r, we can set r = q̂ and obtain

Uq̂(q̂[f]−aτ) = −U∗
q̂(λτ)+λτ · (q̂[f]−aτ)+o(1) (30)

≤−U∗
q̂(λτ)+αq̂‖q̂[f]−aτ‖1+o(1) . (31)

Equation (30) follows from Equation (27). Equation (31) follows from Equation (29). Taking limits,
we obtain

Uq̂(0) ≤ lim
τ→∞

[
−U∗

q̂(λτ)
]

. (32)

Now we are ready to show that Q(λτ) maximizes the dual in the limit:

P(q̂) = D(q̂ ‖ q0)+Uq̂(0)
≤ D(q̂ ‖ q0)+ lim

τ→∞

[
−U∗

q̂(λτ)
]

(33)

= lim
τ→∞

[
D(q̂ ‖ q0)−D(q̂ ‖ qτ)−U∗

q̂(λτ)
]

(34)

= lim
τ→∞

Q(λτ) . (35)

Equation (33) follows from Equation (32). Equation (34) follows from the continuity of relative
entropy since qτ→ q̂. Equation (35) follows from Equation (11). Finally, combining Equations (33–
35), we obtain by maxent duality that q̂ minimizes the primal and λτ maximizes the dual as τ→∞.

Theorem 20. SUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt) = sup
λ
Q(λ) .

Proof. It suffices to show that Q(λt) has a finite limit and present an auxiliary function A and a
sequence a1,a2, . . . for which A(λt ,at) → 0.

Note that Q(λ1) = Q(0) = −U∗(0) is finite by the decomposability of the potential, and Q
is bounded above by the feasibility of the primal. Let Ft, j = maxδFj(λt ,δ). Note that Ft, j is non-
negative since Fj(λt ,0) = 0. Since Ft, j bounds change in the objective from below, the dual objective
Q(λt) is non-decreasing and thus has a finite limit.

In each step
Q(λt+1)−Q(λt) ≥ Ft, j ≥ 0 .

Since Q has a finite limit, differences Q(λt+1)−Q(λt) converge to zero and thus Ft, j → 0. We use
Ft, j to define an auxiliary function. To begin, we rewrite Ft, j using Fenchel’s duality:

Ft, j =max
δ

[
− ln(1+(eδ−1)qt [ f j])−U∗

j(−λt, j−δ)+U∗
j(−λt, j)

]

=max
δ

[
− ln

{(
1−qt [ f j]

)
e0·δ+qt [ f j]e1·δ

}
−U′∗

j (−δ)
]
+U∗

j(−λt, j) (36)

=min
a′,a

[
D
(
(a′,a)

∥∥ (1−qt [ f j],qt [ f j])
)
+U′

j(0 ·a′ +1 ·a)
]
+U∗

j(−λt, j) (37)

= min
0≤a≤1

[
D(a ‖ qt [ f j])+U j(a)+λt, j ·a

]
+U∗

j(−λt, j) . (38)
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Input: finite domain X , default estimate q0
features f1, . . . , fn where f j : X → [0,1], f j(X ) %= {0} and ∑ j f j(x) ≤ 1 for all x ∈ X
decomposable potential U where domU j ∩ [0,1] %= {0}

Output: λ1,λ2, . . . maximizing Q(λ)
Let λ1 = 0
For t = 1,2, . . . :

• for each j, let
δ j = argmax

δ

[
−qt [ f j](eδ−1)−U∗

j(−λt, j−δ)+U∗
j(−λt, j)

]

• update λt+1 = λt +δ

Figure 4: ParalleL-Update algorithm forMaximuM EnTropy (PLUMMET).

In Equation (36), we rearranged terms inside the logarithm so they would take the form of a partition
function. We write U′∗

j (u) for U∗
j(u−λt, j). In Equation (37), we applied Theorem 1, noting that the

conjugate of the log partition function is the relative entropy (see Section 3). The value of relative
entropy D((a′,a) ‖ (1−qt [ f j],qt [ f j])) is infinite whenever (a′,a) is not a probability distribution, so
it suffices to consider pairs where 0≤ a≤ 1 and a′ = 1−a. In Equation (38), we use D(a ‖ qt [ f j])
as a shorthand for D((1−a,a) ‖ (1−qt [ f j],qt [ f j])). We use Equation (3) to convert U′

j into U j:

U′
j(0 ·a′ +1 ·a) = U′

j(a) = U j(a)+λt, j ·a .

The minimum in Equation (38) is always attained because a comes from a compact set and the
minimized expression is lower semi-continuous in a. We use at, j to denote a value attaining this
minimum. Thus

Ft, j = U j(at, j)+U∗
j(−λt, j)+λt, jat, j +D(at, j ‖ qt [ f j]) .

Note that D(a ‖ b) satisfies conditions (B1) and (B2) hence the sum B(a ‖ b) = ∑ jD(a j ‖ b j) also
satisfies (B1) and (B2). We use this to derive the auxiliary function

A(λ,a) = ∑ j
[
U j(a j)+U∗

j(−λ j)+λ ja j +D(a j ‖ qλ[ f j])
]

.

Now A(λt ,at) = ∑ jFt, j → 0, and the result follows by Lemma 19.

7. Parallel-Update Algorithm

Much of this paper has tried to be relevant to the case in which we are faced with a very large
number of features. However, when the number of features is relatively small, it may be reasonable
to maximizeQ using an algorithm that updates all features simultaneously on every iteration. In this
section, we describe a variant of generalized iterative scaling (Darroch and Ratcliff, 1972) applicable
to generalized maxent with an arbitrary decomposable potential and prove its convergence. Note
that gradient-based or Newton methods may be faster in practice.

Throughout this section, we make the assumption (without loss of generality) that, for all x∈ X ,
f j(x) ≥ 0 and ∑ j f j(x) ≤ 1 and features and coordinate potentials are non-degenerate in the sense
that feature ranges f j(X ) and intersections domU j ∩ [0,1] differ from {0}. Note that this differs
from the notion of degeneracy in SUMMET.
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Input: finite domain X , default estimate q0
examples x1, . . . ,xm ∈ X
features f1, . . . , fn where f j : X → [0,1], f j(X ) %= {0} and ∑ j f j(x) ≤ 1 for all x ∈ X
nonnegative regularization parameters β1, . . . ,βn where β j > 0 if π̃[ f j] = 0

Output: λ1,λ2, . . . minimizing Lπ̃(λ)+∑ j β j|λ j|
Let λ1 = 0
For t = 1,2, . . . :

• for each j, let
δ j = argmax

δ

[
−qt [ f j](eδ−1)+δπ̃[ f j]−β j(|λt, j +δ|− |λt, j|)

]

it suffices to consider the following possibilities (whenever defined)

δ+ = ln
(
π̃[ f j]−β j
qt [ f j]

)
, δ0 = −λt, j , δ− = ln

(
π̃[ f j]+β j
qt [ f j]

)

and choose δ+ if λt, j +δ+ > 0, δ− if λt, j +δ−< 0, and δ0 otherwise
• update λt+1 = λt +δ

Figure 5: Parallel-update algorithm for !1-regularized maxent (!1-PLUMMET).

Similarly to SUMMET, our ParalleL-Update algorithm for MaximuM EnTropy (PLUM-
MET) is based on an approximation of the change in the objective function Q, in this case the
following, where λ′ = λ+δ:

Q(λ′)−Q(λ) = − lnZλ′ −U∗(−λ′)+ lnZλ+U∗(−λ)
= − lnqλ

[
eδ·f
]
−U∗(−λ−δ)+U∗(−λ) (39)

≥∑
j

[
−qλ[ f j](eδ j −1)−U∗

j(−λ j−δ j)+U∗
j(−λ j)

]
. (40)

Equation (39) uses Equation (25). For Equation (40), note first that if x j ∈ R and p j ≥ 0 with
∑ j p j ≤ 1 then

exp
(
∑ j p jx j

)
−1≤ ∑ j p j(ex j −1) .

(See Collins, Schapire, and Singer, 2002, for a proof.) Thus,

lnqλ
[
exp
(
∑ j δ j f j

)]
≤ lnqλ

[
1+∑ j f j(eδ j −1)

]

= ln
(
1+∑ j qλ[ f j](eδ j −1)

)

≤ ∑ j qλ[ f j](eδ j −1)

since ln(1+ x) ≤ x for all x> −1.
PLUMMET, shown in Figure 4, on each iteration, maximizes Equation (40) over all choices

of the δ j’s. For the basic potential U(0), this algorithm reduces to generalized iterative scaling
of Darroch and Ratcliff (1972). For !1-style regularization, the maximizing δ can be calculated
explicitly (see algorithm !1-PLUMMET in Figure 5). Again, it turns out that all the components of
the maximizing δ are finite as long as features and potentials are non-degenerate (see Appendix G).
As before, we can prove the convergence of PLUMMET, and thus also of !1-PLUMMET.
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Theorem 21. PLUMMET produces a sequence λ1,λ2, . . . for which

lim
t→∞

Q(λt) = sup
λ
Q(λ) .

Proof. The proof mostly follows the same lines as the proof of Theorem 20. Here we sketch the
main differences.

Let qt denote qλt and Ft denote the lower bound on the change in the objective:

Ft = sup
δ
∑
j

[
−qt [ f j](eδ j −1)−U∗

j(−λt, j−δ j)+U∗
j(−λt, j)

]
.

As before, Q(λt) has a finite limit and Ft → 0. We can rewrite Ft using Fenchel’s duality:

Ft = sup
δ
∑
j

[
−qt [ f j](eδ j −1)−U′∗

j (−δ j)
]
+U∗(−λt) (41)

= inf
a≥0∑j

[
D̃(a j ‖ qt [ f j])+U′

j(a j)
]
+U∗(−λt) (42)

= inf
a≥0

[
D̃(a ‖ qt [f])+U(a)+λt ·a+U∗(−λt)

]
. (43)

In Equation (41) we write U′∗
j (u) for U∗

j(u−λt, j). In Equation (42) we use Theorem 1, noting that
the conjugate of u0(eu− 1) is the unnormalized relative entropy. In Equation (43) we convert U′

j

back into U j and take the sum over j. Note that D̃(a ‖ qt [f]) increases without bound if ‖a‖∞→∞
and, by Fenchel’s inequality,

U(a)+λt ·a+U∗(−λt) ≥ 0

so in Equation (43) it suffices to take an infimum over the a’s of a bounded norm, that is, over a
compact set. By lower semi-continuity we thus obtain that the infimum is attained at some point at
and

Ft = D̃(at ‖ qt [f])+U(at)+U∗(−λt)+λt ·at .

Since D̃(a ‖ b) satisfies conditions (B1) and (B2), we obtain that

A(λ,a) = D̃(a ‖ qλ[f])+U(a)+U∗(−λ)+λ ·a

is an auxiliary function. Noting that A(λt ,at) = Ft → 0 and using Lemma 19 yields the result.

8. Species Distribution Modeling Experiments

In this section we study how generalized maxent can be applied to the problem of modeling ge-
ographic distributions of species. This is a critical topic in ecology and conservation biology: to
protect a threatened species, one first needs to know its environmental requirements, that is, its
ecological niche (Hutchinson, 1957). A model of the ecological niche can further be used to pre-
dict the set of locations with sufficient conditions for the species to persist, that is, the potential
distribution of the species (Anderson and Martı́nez-Meyer, 2004; Phillips et al., 2006), or the set
of locations where conditions may become suitable under future climate conditions (Hannah et al.,
2005). Ecological niche models are also useful for predicting the spread of invasive species and in-
fectious diseases (Welk et al., 2002; Peterson and Shaw, 2003), as well as understanding ecological
processes such as speciation (Graham et al., 2006).
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As mentioned earlier, the input for species distribution modeling typically consists of a list of
georeferenced occurrence localities as well as data on a number of environmental variables which
have been measured or estimated across a geographic region of interest. The most basic goal is
to predict which areas within the region are within the species’ potential distribution. The poten-
tial distribution can be used to estimate the species’ realized distribution, for example by removing
areas where the species is known to be absent because of deforestation or other habitat destruc-
tion. Although a species’ realized distribution may exhibit some spatial correlation, the potential
distribution does not, so considering spatial correlation is not necessarily desirable during species
distribution modeling.

It is often the case that only presence data is available indicating the occurrence of the species.
Natural history museum and herbarium collections constitute the richest source of occurrence lo-
calities (Ponder et al., 2001; Stockwell and Peterson, 2002). Their collections typically have no
information about the failure to observe the species at any given location; in addition, many loca-
tions have not been surveyed. In the lingo of machine learning, this means that we have only positive
examples and no negative examples from which to learn. Moreover, the number of sightings (train-
ing examples) will often be very small by machine learning standards, for example, a hundred, ten,
or even less. Thus, species distribution modeling is an example of a scientifically important problem
which presents a challenging area for study by the machine learning community.

To explore the utility of generalized maxent and effects of regularization, we used !1-regularized
maxent to model distributions of bird species, based on occurrence records in the North Ameri-
can Breeding Bird Survey (Sauer et al., 2001), an extensive data set consisting of thousands of
occurrence localities for North American birds and used previously for species distribution mod-
eling (Peterson, 2001). A preliminary version of these experiments and others was evaluated by
Phillips, Dudı́k, and Schapire (2004).

In modeling species distributions from presence-only data, sample selection bias may hinder
accurate prediction. Sample selection bias refers to the fact that observations are typically more
likely in places that are easier to access, such as areas close to towns, roads, airports, or waterways.
The impact of sample selection bias on maxent models, and various ways of coping with it are
explored by Dudı́k, Schapire, and Phillips (2005). Here, we assume that the bias is not significant.

A comprehensive comparison of maxent and other species distribution modeling techniques
was carried out by Elith et al. (2006) on a different data set than analyzed here. In that comparison,
maxent is in the group of the best-performing methods. Here, we do not perform comparison with
other approaches. We use species modeling as a setting to explore various aspects of !1-regularized
maxent.

From the North American Breeding Bird Survey, we selected four species with a varying num-
ber of occurrence records: Hutton’s Vireo (198 occurrences), Blue-headed Vireo (973 occurrences),
Yellow-throated Vireo (1611 occurrences) and Loggerhead Shrike (1850 occurrences). The occur-
rence data of each species was divided into ten random partitions: in each partition, 50% of the
occurrence localities were randomly selected for the training set, while the remaining 50% were
set aside for testing. The environmental variables (coverages) use a North American grid with 0.2
degree square cells. We used seven coverages: elevation, aspect, slope, annual precipitation, num-
ber of wet days, average daily temperature and temperature range. The first three derive from a
digital elevation model for North America (USGS, 2001), and the remaining four were interpolated
from weather station readings (New et al., 1999). Each coverage is defined over a 386 × 286 grid,
of which 58,065 points have data for all coverages. In addition to threshold features derived from
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Figure 6: Learning curves. Log loss averaged over 10 partitions as a function of the number of
training examples. Numbers of training examples are plotted on a logarithmic scale.

all environmental variables, we also used raw environmental variables (linear features), squares
of environmental variables (quadratic features), and products of pairs of environmental variables
(product features). Maxent with linear features finds the distribution of maximum entropy that
matches empirical means of environmental variables; maxent with linear and quadratic features
matches empirical means and variances; and maxent with linear, quadratic, and product features
matches empirical means, variances, and covariances.

Recall that threshold features derived from a particular environmental variable are binary fea-
tures equal to one if the variable is greater than a specified threshold and equal to zero otherwise.
Formally, we consider a continuum of threshold features for each variable. In practice, it suffices to
consider a single threshold between each pair of consecutive values appearing in the sample space;
thus, in our data set we consider up to 58,064 threshold features for each variable. Given enough
data, threshold features across all variables can model arbitrary additive responses in the exponent
of the Gibbs distribution. Because of their expressivity, we expect that the danger of overfitting will
be the most severe and regularization necessary.

In our experiments, we used !1-SUMMET of Section 6. All features are scaled to the interval
[0,1]. Motivated by Corollary 7, we reduced the β j’s to a single regularization parameter β0 by using
β j = β0σ̃[ f j]/

√
m. According to the bounds of Section 5.2, we expect that β0 will depend on the

number and complexity of features. Therefore, we expect that different values of β0 will be optimal
for different combinations of the feature types.

On each training set, we ran maxent with four different subsets of the feature types: linear (L);
linear and quadratic (LQ); linear, quadratic and product (LQP); and threshold (T). We ran two types
of experiments. First, we ran maxent on increasing subsets of the training data and evaluated log
loss on the test data. We took an average over ten partitions and plotted the log loss as a function
of the number of training examples. These plots are referred to as learning curves. Second, we
also varied the regularization parameter β0 and plotted the log loss for fixed numbers of training
examples as functions of β0. These curves are referred to as sensitivity curves.

In addition to these curves, we show how Gibbs distributions returned by maxent can be inter-
preted in terms of contribution of individual environmental variables to the exponent. The corre-
sponding plots are called feature profiles. We give examples of feature profiles returned by maxent
with and without regularization.
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Figure 7: Sensitivity curves. Log loss averaged over 10 partitions as a function of β0 for a varying
number of training examples. For a fixed value of β0, maxent finds better solutions (with
smaller log loss) as the number of examples grows. Values of β0 are plotted on a log
scale.

Figure 6 shows learning curves for the four studied species. We set β0 = 0.1 in L, LQ and
LQP runs and β0 = 1.0 in T runs. This choice is justified by the sensitivity curve experiments
described below. In all cases, the performance improves as more samples become available. This is
especially striking in the case of threshold features. In the absence of regularization, maxent would
exactly fit the training data with delta functions around sample values of the environmental variables
which would result in severe overfitting even when the number of training examples is large. As the
learning curves show, regularized maxent does not exhibit this behavior.

Note the heavy overfitting of LQ and LQP features on the smallest sample sizes of Blue-headed
Vireo and Loggerhead Shrike. A more detailed analysis of the sensitivity curves suggests that this
overfitting could be alleviated by using larger values of β0, resulting in curves qualitatively similar
to those of other species. Similarly, performance of linear features, especially for larger feature
sizes, could be somewhat improved using smaller regularization values.

Figure 7 shows the sensitivity of maxent to the regularization value β0 for LQP and T versions
of maxent. Results for L and LQ versions are similar to those for the LQP version. Note the
remarkably consistent minimum at β0 ≈ 1.0 for threshold feature curves across different species,
especially for larger sample sizes. It suggests that for the purposes of !1 regularization, σ̃[ f j]/

√
m

are good estimates of |π̃[ f j]−π[ f j]| for threshold features. For LQP runs, the minima are much less
pronounced as the number of samples increases and do not appear at the same value of β0 across
different species nor for different sizes of the same species. Benefits of regularization in LQP runs
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Figure 8: Feature profiles learned on the first partition of the Yellow-throated Vireo. For every
environmental variable, its additive contribution to the exponent of the Gibbs distribution
is given as a function of its value. Profiles have been shifted for clarity. This corresponds
to adding a constant in the exponent, which has no effect on the resulting models since
constants in the exponent cancel out with the normalization factor.

diminish as the number of training examples increases (this is even more so for LQ and L runs, not
presented here). One possible explanation is that the relatively small number of features (compared
with threshold features) prevents overfitting for large training sets.

To derive feature profiles, recall that maxent with a uniform default distribution returns the
Gibbs distribution qλ(x) = eλ·f(x)/Zλ minimizing the regularized log loss. For L, LQ, and T runs,
the exponent is additive in contributions of individual environmental variables. Plotting this con-
tribution as a function of the corresponding environmental variable we obtain feature profiles for
the respective variables. Note that adding a constant to a profile has no impact on the resulting
distribution as constants in the exponent cancel out with Zλ. For L models profiles are linear func-
tions, for LQ models profiles are quadratic functions, and for T models profiles can be arbitrary
piecewise constant functions. These profiles provide an easier to understand characterization of the
distribution than the vector λ.

Figure 8 shows feature profiles for an LQ run on the first partition of the Yellow-throated Vireo
and two T runs with different values of β0. The value of β0 = 0.01 only prevents components
of λ from becoming extremely large, but it does little to prevent heavy overfitting with numerous
peaks capturing single training examples. Raising β0 to 1.0 completely eliminates these peaks. This
is especially prominent for the aspect variable where the regularized T as well as the LQ model
show no dependence while the insufficiently regularized T model overfits heavily. Note the rough
agreement between LQ profiles and regularized T profiles. Peaks in these profiles can be interpreted
as intervals of environmental conditions favored by a species.3

3. Such interpretations should be made with caution as the objective of maxent is based solely on the predictive perfor-
mance. In the extreme case, consider two identical environmental variables, only one of which has a causal effect on
the species. Maxent has no knowledge which of the two variables is truly relevant, and may easily pick the wrong
one, leaving the profile of the relevant one flat. Thus, interpretability is affected by correlations between variables.
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9. Conclusion and Future Research Directions

The maximum entropy principle is a widely used method of density estimation. When the number
of features is large, overfitting needs to be prevented by measures such as feature selection, reg-
ularization, discounting, or introduction of priors. In this work, we have provided a unified and
complete account of maxent with generalized regularization. We have proved general performance
guarantees and proposed versions of iterative scaling that incorporate regularization.

We have carried out analysis of several regularization types and presented scenarios in which
these regularizations may be useful. In our experiments, we have shown how the principled !1 regu-
larization facilitates learning. Further empirical study is needed to verify whether the theory derived
for other regularization types corresponds to their performance. Generalizing the present analysis
could help design task-specific regularization functions based on some prior information (for exam-
ple properties of the feature space such as diameters with respect to various norms). Note that the
quality of a regularization function can be assessed from two different perspectives: performance
over test data and running time. The tradeoff between statistical guarantees and computational effi-
ciency remains open for future research. In particular, convergence rates of algorithms presented in
this paper are not known.

We have explored one direction of generalizing maxent: replacing equality constraints by an
arbitrary convex potential in the primal or, equivalently, adding a convex regularization term to
the maximum likelihood estimation in the dual. An alternative line of generalizations arises by
replacing relative entropy in the primal objective by an arbitrary Bregman or Csiszár divergence
along the lines of Altun and Smola (2006), and Collins, Schapire, and Singer (2002). Modified
duality results and modified algorithms apply in the new setting, but performance guarantees do not
directly translate to the case when divergences are derived from samples. Divergences of this kind
are used in many cases of interest such as logistic regression (a conditional version of maxent) and
boosting. In future work, we would like to generalize performance guarantees to these settings.

Finally, we have demonstrated the utility of generalized maxent in a novel application to species
distribution modeling. We believe it is a scientifically important area that deserves the attention
of the machine learning community while presenting some interesting challenges. Even though
maxent fits the problem of species distribution modeling cleanly and effectively, there are many
other techniques that could be used such as Markov random fields or mixture models. We leave
the question of alternative machine learning approaches to species distribution modeling open for
future research.
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Appendix A. Proof of Corollary 7

Proof of Corollary 7. Let

β′j =

√
ln(4n/δ)
3m

·
√
6σ2[ f j]+

ln(4n/δ)
3m

+
ln(4n/δ)
3m

.
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Wewill show that |π̃[ f j]−π[ f j]|> β′j with probability at most δ/2n, and also β′j≥ β j with probability
at most δ/2n. Then by the union bound, we obtain that

|π̃[ f j]−π[ f j]|≤ β′j ≤ β j

for all j with probability at least 1−δ.
Consider a fixed j and let ε= ln(4n/δ)/3m. Thus,

β′j =
√
ε

(√
6σ2[ f j]+ε+

√
ε

)

β j =
√
6ε

√

σ̃2[ f j]+
√
ln(2n/δ)
2m

+
ε

6
+ε

=
√
ε

(√
6
[
σ̃2[ f j]+

√
ln(2n/δ)/(2m)

]
+ε+

√
ε

)
.

By Bernstein’s inequality (Bernstein, 1946)

Pr
[
|π̃[ f j]−π[ f j]| > β′j

]
≤ 2exp

{
−

3mβ′2j
6σ2[ f j]+2β′j

}

= 2exp




−
3mε

(
6σ2[ f j]+ε+2

√
ε
√
6σ2[ f j]+ε+ε

)

6σ2[ f j]+2
√
ε
√
6σ2[ f j]+ε+2ε






= 2exp{−3mε} = 2exp{− ln(4n/δ)} = δ/2n .

To bound the probability that β′j ≥ β j, it suffices to bound the probability of

σ2[ f j] ≥ σ̃2[ f j]+
√
ln(2n/δ)
2m

.

We will use McDiarmid’s inequality (McDiarmid, 1989) for the function

s(y1,y2, . . . ,ym) = ∑m
i=1 y2i
m−1 − (∑m

i=1 yi)
2

m(m−1) .

Note that σ̃2[ f j] = s( f j(x1), f j(x2), . . . , f j(xm)) and E
[
σ̃2[ f j]

]
= σ2[ f j]. By a simple case analysis,

sup
y1,...,ym,y′i∈[0,1]

|s(y1, . . . ,ym)− s(y1, . . . ,yi−1,y′i,yi+1, . . . ,ym)|≤ 1
m

for all i. Thus,

Pr

[
σ2[ f j] ≥ σ̃2[ f j]+

√
ln(2n/δ)
2m

]
≤ exp

{
−2 ·

[
ln(2n/δ)/2m

]

m · (1/m)2

}

= exp{− ln(2n/δ)} = δ/2n .

Hence also β′j ≥ β j with probability at most δ/2n.
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Appendix B. Derivation of U(≈1)
π̃

It suffices to derive a single coordinate potential U(≈1)
π̃, j :

U(≈1)
π̃, j (u j) = sup

λ j

[
u jλ j−α jβ j ln

(
eλ j/α j + e−λ j/α j

2

)]

= α jβ j sup
λ j

[
u j ·

λ j
α jβ j

− ln
(
1
2
exp
{
β j ·

λ j
α jβ j

}
+
1
2
exp
{
−β j ·

λ j
α jβ j

})]

= α jβ j sup
λ′j:=λ j/α jβ j

[
u jλ′j− ln

(
1
2
eβ jλ

′
j +
1
2
e−β jλ

′
j

)]
(44)

= α jβ jD
((

1+u j/β j
2

,
1−u j/β j

2

) ∥∥∥∥

(
1
2
,
1
2

))
(45)

Equation (44) follows by change of variables. Note that the supremum in Equation (44) takes
form of a dual objective in a basic maxent over a two-sample space, say X = {0,1}, with a single
feature f (0) = β j, f (1) = −β j, and the empirical expectation π̃[ f ] = u j. Thus, by maxent duality,
the value of the supremum equals D(p ‖ (1/2,1/2)), where p comes from a closure of the set of
Gibbs distribution and p[ f ] = u j. However, the only distribution on X that satisfies the expectation
constraint is

p(0) =
1+u j/β j

2
, p(1) =

1−u j/β j
2

.

Thus, we obtain Equation (45).

Appendix C. Proof of Lemma 10

Before we proceed with the proof of Lemma 10, we show how the trace of the feature covariance
matrix can be bounded in terms of the !2 diameter of the feature space.

Lemma 22. Let D2 = supx,x′∈X ‖f(x)− f(x′)‖2 be the !2 diameter of f(X ) and let Σ = E
[
(f(X)−

π[f])(f(X)− π[f])&
]
, where X is distributed according to π, denote the feature covariance matrix.

Then trΣ≤ D22/2.

Proof. Consider independent random variables X ,X ′ distributed according to π. Let f, f′ denote the
random variables f(X) and f(X ′). Then

E
[
‖f− f′‖22

]
= E

[
f · f
]
−2E

[
f
]
·E
[
f′
]
+E
[
f′ · f′

]

= 2E
[
f · f
]
−2E

[
f
]
·E
[
f
]

= 2∑ j
[
E
[
f 2j
]
− (E

[
f j
]
)2
]
= 2trΣ .

Since ‖f− f′‖2 ≤ D2, we obtain trΣ≤ D22/2.

Proof of Lemma 10. Consider independent samples X1, . . . ,Xm distributed according to π and the
random variable v(X1, . . . ,Xm) = ∑i(f(Xi)−π[f]) = m(π̃[f]−π[f]). We will bound E

[
‖v‖2

]
and use

McDiarmid’s inequality (McDiarmid, 1989) to show that

Pr
[
‖v‖2−E

[
‖v‖2

]
≥ D2

√
m ln(1/δ)/2

]
≤ δ . (46)
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By Jensen’s inequality and Lemma 22, we obtain

E
[
‖v‖2

]
≤
√
E
[
‖v‖22

]
=
√
m trΣ≤ D2

√
m/2 .

Now, by the triangle inequality,

sup
X1,...,Xm,X ′

i

∣∣∣
∥∥v(X1, . . . ,Xm)

∥∥
2−
∥∥v(X1, . . . ,Xi−1,X ′

i ,Xi+1, . . . ,Xm)
∥∥
2

∣∣∣

≤ sup
Xi,X ′

i

‖f(Xi)− f(X ′
i )‖2 ≤ D2 ,

and Equation (46) follows by McDiarmid’s inequality.

Appendix D. Proof of Lemma 12

Proof of Lemma 12. Let

λ!! = argmin
λ

[
Lπ(λ)+

α‖λ‖22
2

]

λ̂= argmin
λ

[
Lπ̃(λ)+

α‖λ‖22
2

]
.

As the first step, we show that
∥∥λ!!− λ̂

∥∥
2 ≤

‖π[f]− π̃[f]‖2
α

. (47)

Assume that λ!! *= λ̂ (otherwise Equation (47) holds). Let g(λ) denote lnZλ. This is the cumulant or
log partition function of the family of Gibbs distributions. It is well known (and not difficult to show
by calculus) that this function is convex in λ. By the convexity of g(λ) and α‖λ‖22/2, the gradients
of

Lπ(λ)+
α‖λ‖22
2

= lnZλ−λ ·π[f]+
α‖λ‖22
2

Lπ̃(λ)+
α‖λ‖22
2

= lnZλ−λ · π̃[f]+
α‖λ‖22
2

at their respective minima must equal zero:

∇g(λ!!)−π[f]+αλ!! = 0
∇g(λ̂)− π̃[f]+αλ̂= 0 .

Taking the difference yields

α(λ!!− λ̂) = −(∇g(λ!!)−∇g(λ̂))+(π[f]− π̃[f]) .

Multiplying both sides by (λ!!− λ̂), we obtain

α‖λ!!− λ̂‖22 = −(λ!!− λ̂) · (∇g(λ!!)−∇g(λ̂))+(λ!!− λ̂) · (π[f]− π̃[f])
≤ (λ!!− λ̂) · (π[f]− π̃[f]) (48)
≤ ‖λ!!− λ̂‖2‖π[f]− π̃[f]‖2 . (49)
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Equation (48) follows because by convexity of g(λ) for all λ1,λ2

(∇g(λ2)−∇g(λ1)) · (λ2−λ1) ≥ 0 .

Equation (49) follows by the Cauchy-Schwartz inequality. Dividing (49) by α‖λ!!− λ̂‖2 we ob-
tain Equation (47). Now, by Lemma 3.13, the Cauchy-Schwartz inequality, Equation (47) and the
optimality of λ!! we obtain

Lπ(λ̂) ≤ Lπ(λ!!)+(λ!!− λ̂) · (π[f]− π̃[f])+U(2)∗
π̃ (λ!!)−U(2)∗

π̃ (λ̂)

≤ Lπ(λ!!)+‖λ!!− λ̂‖2‖π[f]− π̃[f]‖2+
α‖λ!!‖22
2

− α‖λ̂‖
2
2

2

≤ Lπ(λ!!)+
‖π[f]− π̃[f]‖22

α
+
α‖λ!!‖22
2

≤ Lπ(λ!)+
‖π[f]− π̃[f]‖22

α
+
α‖λ!‖22
2

.

Appendix E. Derivation of U(1+2)
π̃

It suffices to derive a single coordinate potential U(1+2)
π̃, j :

U(1+2)
π̃, j (u j) = sup

λ j

(
u jλ j−β|λ j|−

αλ2j
2

)

= sup
λ j:u jλ j=|u j||λ j|

(
α

2
· |λ j| ·

[
2(|u j|−β)
α

− |λ j|
])

. (50)

In Equation (50) we note that for each pair ±λ j, it suffices to consider the value whose sign agrees
with u j. Next, if |u j| ≤ β then the bracketed expression is non-positive, hence the supremum is
attained at λ j = 0 and its value equals 0. For |u j| > β, the supremum is attained when |λ j| =
(|u j|−β)/α, in which case its value equals (|u j|−β)2/(2α).

Appendix F. Proof of Lemma 18

We will first prove a single coordinate version of Lemma 18 and then turn to the general case.

Lemma 23. Let ψ : R → (−∞,∞] be a proper closed convex function. Let S = domψ = {u ∈ R :
ψ(u) < ∞} and Tc = {v ∈ R : ψ∗(v) ≤ c}. Then there exists αc ≥ 0 such that uv ≤ αc|u| for all
u ∈ S,v ∈ Tc.

Proof. Inequality uv≤ αc|u| holds for an arbitrary αc if u= 0. We determine αc separately for cases
u ∈ S+ = S∩ (0,∞) and u ∈ S− = S∩ (−∞,0) and choose the maximum.

Assume S+ *= /0 and pick an arbitrary u+ ∈ S+. Then for any v ∈ Tc by Fenchel’s inequality

u+v≤ ψ(u+)+ψ∗(v) ≤ ψ(u+)+ c

and thus
v≤ ψ(u+)+ c

u+
.
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Now for any u ∈ S+

uv≤ u · ψ(u+)+ c
u+

≤ |u| ·
∣∣∣∣
ψ(u+)+ c

u+

∣∣∣∣ .

Similarly, if S− *= /0 then we can choose an arbitrary u− ∈ S− and obtain for all u ∈ S−

uv≤ |u| ·
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣ .

To complete the proof we choose

αc =max
{∣∣∣∣
ψ(u+)+ c

u+

∣∣∣∣ ,
∣∣∣∣
ψ(u−)+ c

u−

∣∣∣∣

}

setting the respective terms to 0 if S+ or S− is empty.

Proof of Lemma 18. Assume that Ur(u) <∞ and thus by decomposability Ur, j(u j) <∞ for all j.
Also assume that U∗

r (λ) = ∑ jU∗
r, j(λ j) < c. By Fenchel’s inequality U∗

r, j(λ j) ≥ −Ur, j(0) which
is finite by the feasibility of r. Since the sum of U∗

r, j(λ j) is bounded above by c and individual
functions are bounded below by constants, they must also be bounded above by some constants c j.
By Lemma 23 applied to coordinate potentials, we obtain that u jλ j ≤ α j|u j| for some constants
α1, . . . ,αn. The conclusion follows by taking αc =max jα j.

Appendix G. Ensuring Finite Updates

In this appendix, we discuss how to ensure that features and coordinate potentials are non-degenerate
in SUMMET and PLUMMET, and show that non-degeneracy implies that updates in both algo-
rithms are always finite.

G.1 Non-degeneracy in SUMMET

In SUMMET, we assume that f j(X )⊆ [0,1]. In context of this algorithm, a feature f j is degenerate
if f j(X ) = {0} or f j(X ) = {1} and a coordinate potential U j is degenerate if domU j ∩ [0,1] = {0}
or domU j ∩ [0,1] = {1}. In order to obtain non-degenerate features and coordinate potentials, it
suffices to preprocess the sample space X and the feature set as follows:

1. For all j: if domU j ∩ [0,1] = {0} then X ← {x ∈ X : f j(x) = 0}.
2. For all j: if domU j ∩ [0,1] = {1} then X ← {x ∈ X : f j(x) = 1}.
3. For all j: if f j(x) = 0 for all x ∈ X then remove feature f j.
4. For all j: if f j(x) = 1 for all x ∈ X then remove feature f j.

Whenever U j is degenerate, steps 1–2 guarantee that f j will be eventually removed in steps 3–4.
While f j could be removed immediately in steps 1–2, note that steps 3–4 are still necessary since
features may be degenerate even when potentials are not. Also note that steps 1–2 must precede
steps 3–4 since restricting X may introduce new degenerate features.

The preprocessing described above yields an equivalent form of the primal. By restricting the
sample space in steps 1–2, we effectively eliminate distributions that are nonzero outside the re-
stricted sample set. Note that those distributions are infeasible because their feature means lie
outside domU. In steps 3–4, we simply remove constant terms of the potential function.
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Theorem 24. Let λ and Q(λ) be finite and f j,U j non-degenerate. Then Fj(λ,δ) is maximized by a
finite δ.

Proof. We will show that Fj(λ,δ)→−∞ if δ→±∞. Thus, it suffices to consider δ from a compact
interval and the result follows by upper semi-continuity of Fj. First, consider the case δ→∞. Let r
be an arbitrary feasible distribution. Rewrite Fj(λ,δ) as follows:

Fj(λ,δ) = − ln
(
1+(eδ−1)qλ[ f j]

)
−U∗

j(−λ j−δ)+U∗
j(−λ j)

= − ln
{
eδ
[
e−δ(1−qλ[ f j])+qλ[ f j]

]}
+δr[ f j]−U∗

r, j(λ j +δ)+U∗
r, j(λ j)

= − ln
[
e−δ(1−qλ[ f j])+qλ[ f j]

]
−δ(1− r[ f j])−U∗

r, j(λ j +δ)+U∗
r, j(λ j). (51)

Suppose that r[ f j] < 1. Then Fj(λ,δ)→−∞: the first term of (51) is bounded above by− ln(qλ[ f j])
which is finite by non-degeneracy of f j; the second term decreases without bound; the third term is
bounded above by Ur, j(0) by Fenchel’s inequality; and the fourth term is a finite constant because
Q(λ) is finite. In case r[ f j] = 1, the second term equals zero, but the third term decreases without
bound because by non-degeneracy of U j there exists ε > 0 such that Ur, j(ε) = U j(1− ε) <∞ and
hence by Fenchel’s inequality −U∗

r, j(λ j +δ) ≤−(λ j +δ)ε+Ur, j(ε).
Now consider δ→−∞ and rewrite Fj(λ,δ) as follows:

Fj(λ,δ) = − ln
(
(1−qλ[ f j])+ eδqλ[ f j]

)
+δr[ f j]−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .

Assuming that r[ f j] > 0, the second term decreases without bound and the remaining terms are
bounded above. If r[ f j] = 0 then the third term decreases without bound because by non-degeneracy
of U j there exists ε> 0 such that Ur, j(−ε) =U j(ε) <∞ and thus by Fenchel’s inequality−U∗

r, j(λ j+
δ) ≤ (λ j +δ)ε+Ur, j(−ε).

Corollary 25. Updates of SUMMET are always finite.

Proof. We proceed by induction. In the first step, both λ1 and Q(λ1) are finite (see proof of Theo-
rem 20). Now suppose that in step t, λt and Q(λt) are finite. Then by Theorem 24, all considered
coordinate updates will be finite, so λt+1 will be finite too. Since Q(λt+1) ≥ Q(λt) and Q(λ) is
bounded above (see proof of Theorem 20), we obtain that Q(λt+1) is finite.

G.2 Non-degeneracy in PLUMMET

In this case, we assume that f j(x)≥ 0 and ∑ j f j(x)≤ 1 for all x∈ X . We call a feature f j degenerate
if f j(X ) = {0} and a coordinate potential U j degenerate if domU j ∩ [0,1] = {0}. To obtain non-
degenerate features and coordinate potentials, it suffices to preprocess the sample space X and the
feature set as follows:

1. For all j: if domU j ∩ [0,1] = {0} then X ← {x ∈ X : f j(x) = 0}.
2. For all j: if f j(x) = 0 for all x ∈ X then remove feature f j.

Similarly to SUMMET, this preprocessing derives an equivalent form of the primal. Using anal-
ogous reasoning as in Theorem 24, we show below that non-degeneracy implies finite updates in
PLUMMET.
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In each iteration of the algorithm we determine updates δ j by maximizing

Fj(λ,δ) = −qλ[ f j](eδ−1)−U∗
j(−λ j−δ)+U∗

j(−λ j)
= −qλ[ f j](eδ−1)+δr[ f j]−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .

It suffices to prove that Fj(λ,δ) →−∞ if δ→ ±∞ given that Q(λ) and λ j are finite and f j,U j are
non-degenerate.

First, we rewrite Fj as follows:

Fj(λ,δ) = −eδ
[
qλ[ f j]− e−δqλ[ f j]− e−δδr[ f j]

]
−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .

If δ→∞ then the expression in the brackets approaches qλ[ f j], which is positive by non-degeneracy
of f j. Thus the first term decreases without bound while the second and third terms are bounded
from above. Next, rewrite Fj as

Fj(λ,δ) = δ
[
r[ f j]−

eδ

δ
qλ[ f j]+

1
δ
qλ[ f j]

]
−U∗

r, j(λ j +δ)+U∗
r, j(λ j) .

If δ→−∞ then the expression in the brackets approaches r[ f j]. Thus, if r[ f j] > 0 then the first term
decreases without bound and the other two terms are bounded above. If r[ f j] = 0 then the first term
approaches qλ[ f j] and the second term decreases without bound because, by non-degeneracy of U j,
there exists ε > 0 such that Ur, j(−ε) = U j(ε) <∞ and hence by Fenchel’s inequality −U∗

r, j(λ j +
δ) ≤ (λ j +δ)ε+Ur, j(−ε).

References

Y. Altun and A. Smola. Unifying divergence minimization and statistical inference via convex
duality. In Proceedings of the Nineteenth Annual Conference on Learning Theory, 2006.

R. P. Anderson and E. Martı́nez-Meyer. Modeling species’ geographic distributions for prelimi-
nary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of
Ecuador. Biological Conservation, 116:167–179, 2004.

A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1):39–71, 1996.

S. N. Bernstein. Theory of Probability. Gostekhizdad, 1946.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. M. Bregman. The relaxation method of finding the common point of convex sets and its applica-
tion to the solution of problems in convex programming. U.S.S.R. Computational Mathematics
and Mathematical Physics, 7(1):200–217, 1967.

N. Cesa-Bianchi, A. Krogh, and M. K. Warmuth. Bounds on approximate steepest descent for
likelihood maximization in exponential families. IEEE Transactions on Information Theory, 40
(4):1215–1220, July 1994.

S. F. Chen and R. Rosenfeld. A survey of smoothing techniques for ME models. IEEE Transactions
on Speech and Audio Processing, 8(1):37–50, January 2000.

1256



MAXIMUM ENTROPY DENSITY ESTIMATION

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances.
Machine Learning, 48(1):253–285, 2002.

J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. The Annals of
Mathematical Statistics, 43(5):1470–1480, 1972.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. Smooth ε-insensitive regression by loss symmetriza-
tion. In Proceedings of the Sixteenth Annual Conference on Computational Learning Theory,
pages 433–447. Springer, 2003.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(4):1–13, April 1997.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Duality and auxiliary functions for Bregman dis-
tances. Technical Report CMU-CS-01-109, School of Computer Science, Carnegie Mellon Uni-
versity, 2001.

L. Devroye. Bounds for the uniform deviation of empirical measures. Journal of Multivariate
Analysis, 12:72–79, 1982.

D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal) dictionar-
ies via !1 minimization. Proceedings of the National Academy of Sciences, 100(5):2197–2202,
March 2003.

D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81
(3):425–455, August 1994.

M. Dudı́k and R. E. Schapire. Maximum entropy distribution estimation with generalized regulari-
zation. In Proceedings of the Nineteenth Annual Conference on Learning Theory, pages 123–138.
Springer-Verlag, 2006.

M. Dudı́k, R. E. Schapire, and S. J. Phillips. Correcting sample selection bias in maximum entropy
density estimation. In Advances in Neural Information Processing Systems 18, pages 323–330.
MIT Press, 2005.

J. Elith. Quantitative methods for modeling species habitat: Comparative performance and an ap-
plication to Australian plants. In Scott Ferson and Mark Burgman, editors, Quantitative Methods
for Conservation Biology, pages 39–58. Springer-Verlag, New York, 2002.

J. Elith, C. H. Graham, and the NCEAS Species Distribution Modelling Group. Novel methods
improve prediction of species’ distributions from occurrence data. Ecography, 29(2):129–151,
2006.

S. Ferrier, M. Drielsma, G. Manion, and G. Watson. Extended statistical approaches to modelling
spatial pattern in biodiversity: the north-east New South Wales experience. II. Community-level
modelling. Biodiversity and Conservation, 11:2309–2338, 2002.

J. Goodman. Sequential conditional generalized iterative scaling. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, pages 9–16, July 2002.

1257
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DUDÍK, PHILLIPS AND SCHAPIRE

R. Tibshirani. Regression shrikage and selection via the lasso. J. R. Statist. Soc. B, 58(1):267–288,
1996.

USGS. HYDRO 1k, elevation derivative database. Available at http://edcdaac.usgs.gov/gtopo30/
hydro/, 2001. United States Geological Survey, Sioux Falls, South Dakota.

E. Welk, K. Schubert, and M. H. Hoffmann. Present and potential distribution of invasive mustard
(Alliara petiolata) in North America. Diversity and Distributions, 8:219–233, 2002.

M. Welling, R. S. Zemel, and G. E. Hinton. Self supervised boosting. In Advances in Neural
Information Processing Systems 15, pages 665–672. MIT Press, 2003.

P. M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7
(1):117–143, 1995. ISSN 0899-7667.

T. Zhang. Class-size independent generalization analysis of some discriminative multi-category
classification. In Advances in Neural Information Processing Systems 17, pages 1625–1632,
2005.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J. R. Statist. Soc. B,
67:301–320, 2005.

1260



Journal of Machine Learning Research 8 (2007) 1261-1276  Submitted 3/06; Revised 10/06; Published 6/07  

©2007 Moshe Koppel, Jonathan Schler and Elisheva Bonchek-Dokow. 

Measuring Differentiability:  Unmasking Pseudonymous Authors 

 

Moshe Koppel KOPPEL@CS.BIU.AC.IL 
Jonathan Schler SCHLERJ@CS.BIU.AC.IL 
Elisheva Bonchek-Dokow LE7.BONCHEK.DOKOW@GMAIL.COM 
Department of Computer Sciences 
Bar-Ilan University 
Ramat-Gan 52900, Israel 
 

Editor: Michael Collins 

 

Abstract 
In the authorship verification problem, we are given examples of the writing of a single author and 
are asked to determine if given long texts were or were not written by this author. We present a 
new learning-based method for adducing the “depth of difference” between two example sets and 
offer evidence that this method solves the authorship verification problem with very high 
accuracy. The underlying idea is to test the rate of degradation of the accuracy of learned models 
as the best features are iteratively dropped from the learning process.  

Keywords: authorship attribution, one-class learning, unmasking 

1 Introduction  
In the authorship attribution problem, we are given examples of the writing of a number of 
authors and are asked to determine which of them authored given anonymous texts (Mosteller and 
Wallace 1964; Holmes 1998). If it can be assumed for each test document that one of the 
specified authors is indeed the actual author, the problem fits the standard paradigm of a text 
categorization problem (Sebastiani 2002).  

In the authorship verification problem (Van Halteren 2004), we are given examples of the 
writing of a single author and are asked to determine if given texts were or were not written by 
this author. As a categorization problem, verification is significantly more difficult than 
attribution and little, if any, work has been performed on it in the learning community. If, for 
example, all we wished to do is to determine if a text was written by Shakespeare or Marlowe, it 
would be sufficient to use their respective known writings, to construct a model distinguishing 
them, and to test the unknown text against the model. If, on the other hand, we need to determine 
if a text was written by Shakespeare or not, it is very difficult – if not impossible – to assemble an 
exhaustive, or even representative, sample of not-Shakespeare. The situation in which we suspect 
that a given author may have written some text but do not have an exhaustive list of alternative 
candidates is a common one. The problem is complicated by the fact that a single author may 
consciously vary his or her style from text to text for many reasons or may unconsciously drift 
stylistically over time.  Thus researchers must learn to somehow distinguish between relatively 
shallow differences that reflect conscious or unconscious changes in an author’s style and deeper 
differences that reflect styles of different authors. 
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Verification is thus essentially a one-class problem. A fair amount of work has been done on 
one-class problems, especially using support vector machines (Manevitz and Yousef 2001; 
Schölkopf et al., 2001; Tax 2001). There are, however, two important points that must be noted. 
First, in authorship verification we do not actually lack for negative examples. The world is 
replete with texts that were, for example, not written by Shakespeare. However, these negative 
examples are not representative of the entire class. Thus, for example, the fact that a particular 
text may be deemed more similar to the known works of Shakespeare than to those of some given 
set of other authors does not by any means constitute solid evidence that the text was authored by 
Shakespeare rather than by some other author not considered at all. We will consider how to 
make proper limited use of whatever partial negative information is available for the authorship 
verification problem.  

A second distinction between authorship verification and some one-class problems is that if 
the text we wish to attribute is long – and in this paper we will consider only long texts – then we 
can chunk the text so that we effectively have multiple examples which are known to be either all 
written by the author or all not written by the author. Thus, a better way to think about authorship 
verification is that we are given two example sets and are asked whether these sets were 
generated by a single generating process (author) or by two different processes.  

The central novelty of this paper is a new method for adducing the depth of difference 
between two example sets, a method that may have far-reaching consequences for determining 
the reliability of classification models. The underlying idea is to test the rate of degradation of the 
accuracy of learned models as the best features are iteratively dropped from the learning process. 

We will show that this method provides an extremely robust solution to the authorship 
verification problem that is independent of language, period and genre. This solution has already 
been used to settle at least one outstanding literary problem.  

 

2 Authorship Attribution with Two Candidates  
Since our methods will build upon the standard methods for handling authorship attribution 
between two candidate authors, let us begin by briefly reviewing those standard methods.  

We begin by choosing a feature set consisting of the kinds of features that might be used 
consistently by a single author over a variety of writings. Typically, these features might include 
frequencies of function words (Mosteller and Wallace 1964), syntactic structures (Baayen et al., 
1996; Stamatatos et al., 2001), parts-of-speech n-grams (Koppel et al., 2002), complexity and 
richness measures (such as sentence length, word length, type/token ratio) (Yule 1938; Tweedie 
and Baayen 1998; De Vel et al., 2002) or syntactic and orthographic idiosyncrasies (Koppel and 
Schler 2003). Note that these feature types contrast sharply with the content words commonly 
used in text categorization by topic.  

Having constructed the appropriate feature vectors, we continue, precisely as in topic-based 
text categorization, by using a learning algorithm to construct a distinguishing model. Although 
many learning methods have been applied to the problem, including multivariate analysis, 
decision trees and neural nets, a good number of studies have shown that linear separators work 
well for text categorization (Yang 1999). Linear methods that have been used for text 
categorization include Naïve Bayes (Mosteller and Wallace 1964; Peng et al., 2004), which for 
the two-class case is a linear separator, Winnow and Exponential Gradient (Lewis et al., 1996; 
Dagan et al., 1997; Koppel et al., 2002) and linear support vector machines (SVM) (Joachims 
1998; De Vel et al., 2002; Diederich et al., 2003).  

This general framework has been used to convincingly solve a number of real world 
authorship attribution problems (e.g., Mosteller and Wallace 1964; Matthews and Merriam 1993; 
Holmes et al., 2001; Binongo 2003). 
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3 Authorship Verification: Naïve Approaches  
Is there some way to leverage these methods to solve the verification problem in which we are 
asked if some book X was written by author A without being offered a closed set of alternatives? 
Let us begin by considering three naïve approaches to the problem. Although none of them will 
prove satisfactory, each will contribute to our understanding of the problem. 

Approach 1: Lining up impostors – One possibility that suggests itself is to assemble a 
representative collection of works by other authors and to use a two-class learner, such as SVM, 
to learn a model for A vs. not-A. Then we chunk the mystery work X and run the chunks through 
the learned model. If the preponderance of chunks of X are classed as A, then X is deemed to 
have been written by A; otherwise it is deemed to have been written by someone else. This 
method is straightforward but it suffers from a conceptual flaw. While it is indeed reasonable to 
conclude that A is not the author if most chunks are attributed to not-A, the converse is not true. 
Any author who is neither A nor represented in the sample not-A, but who happens to have a 
style more similar to A than to not-A, will be falsely determined by this method to be A. Despite 
this flaw, we will see later that this approach can be used to augment other methods.  

Approach 2: One-class learning – Another plausible approach would be to try to handle the 
problem with no negative examples at all. The most straightforward way to do this is to apply a 
one-class learner, such as a one-class support vector machine (Chang and Lin 2001), that finds an 
optimal boundary that circumscribes all positive examples of A. Then we ascribe X to A if a 
sufficient number of chunks of X lie inside the boundary. This approach is conceptually sound 
but we will see that it performs poorly in practice for our problem. 

Approach 3: Comparing A directly to X – Another approach that doesn’t depend on negative 
examples is this: learn a model for A vs. X and assess the extent of the difference between A and 
X using cross-validation. If it is easy to distinguish between them, that is, if we obtain high 
accuracy in cross-validation, then conclude that A did not write X. If we fail to correctly classify 
test examples, conclude that A did write X. This method does not work well at all. But since the 
method that we introduce in this paper is based on this method, it is worth our while to pause here 
and consider exactly why the method fails. 

Let’s consider a real-world example. We are given known works by three 19th century 
American novelists, Herman Melville, James Fenimore Cooper and Nathaniel Hawthorne. For 
each of the three authors, we are asked if that author was or was not also the author of The House 
of Seven Gables (henceforth: Gables). Using the method just described and using a feature set 
consisting of the 250 most frequently used words in A and X (details below), we find that we can 
distinguish Gables from the works of each author with cross-validation accuracy of above 98%. If 
we were to conclude, therefore, that none of these authors wrote Gables, we would be wrong: 
Hawthorne wrote it. 

 

4 A New Approach: Unmasking  
If we look closely at the models that successfully distinguish Gables from Hawthorne’s other 
work (in this case, The Scarlet Letter), we find that a small number of features are doing all the 
work of distinguishing between them. These features include he (more frequent in The Scarlet 
Letter) and she (more frequent in Gables). The situation in which an author will use a small 
number of features in a consistently different way between works is typical. These differences 
might result from thematic differences between the works, from differences in genre or purpose, 
from chronological stylistic drift, or from deliberate attempts by the author to mask his or her 
identity (as we shall see below).  
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The main point of this paper is to show how this problem can be overcome by determining 
not only if A is distinguishable from X but also how great is the depth of difference between A 
and X. To do this we introduce a new technique we call “unmasking”. The intuitive idea of 
unmasking is to iteratively remove those features that are most useful for distinguishing between 
A and X and to gauge the speed with which cross-validation accuracy degrades as more features 
are removed. Our main hypothesis is that if A and X are by the same author, then whatever 
differences there are between them will be reflected in only a relatively small number of features, 
despite possible differences in theme, genre and the like. 

In Figure 1, we show the result of unmasking when comparing Gables to known works of 
Melville, Cooper and Hawthorne. This graph illustrates our hypothesis: when comparing Gables 
to works by other authors the degradation as we remove distinguishing features from 
consideration is slow and smooth but when comparing it to another work by Hawthorne, the 
degradation is sudden and dramatic. This illustrates that once a small number of distinguishing 
markers are removed, the two works by Hawthorne become increasingly hard to distinguish from 
each other.  

In the following section, we will show how the suddenness of the degradation can be 
quantified in a fashion optimal for this task and we will see that the phenomenon illustrated in the 
Gables example holds very generally. Thus by taking into account the depth of difference 
between two works, we can determine if they were authored by the same person or two different 
people. 

 

Figure 1. Ten-fold cross-validation accuracy of models distinguishing House of Seven Gables 
from each of Hawthorne, Melville and Cooper. The x-axis represents the number of 
iterations of eliminating best features at previous iteration. The curve well below the 
others is that of Hawthorne, the actual author. 

 

5 Experimental Results 

In this section we consider an experimental framework for systematic testing of the 
effectiveness of the unmasking algorithm 

5.1 Corpus  
We consider a collection of 21 nineteenth century English books written by 10 different authors 
and spanning a variety of genres. We chose all electronically available books by these authors 
that were sufficiently large (above 500K) and that presented no special formatting challenges. 
The full list is shown in Table 1. Our objective is to run 209 independent authorship verification 
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experiments representing all possible author/book pairs (21 books ! 10 authors but excluding the 
pair Emily Bronte/Wuthering Heights which can’t be tested since it is the author’s only work).   

 
 

Group Author Book Chunks 

Dr. Grimshawe’s Secret 75 Hawthorne 

House of Seven Gables 63 

Redburn 51 Melville 

Moby Dick 88 

The Last of the Mohicans 49 

The Spy 63 

American 
Novelists 

Cooper 

Water Witch 80 

Walden 49 Thoreau 

A Week on Concord 50 

Conduct Of Life 47 

American 
Essayists 

Emerson 

English Traits 52 

Pygmalion 44 

Misalliance 43 

Shaw 

Getting Married 51 

An Ideal Husband 51 

British 
Playwrights 

Wilde 

Woman of No Importance 
38 

Agnes Grey 45  Anne 

Tenant Of Wildfell Hall 84 

The Professor 51 Charlotte 

Jane Eyre 84 

Bronte Sisters 

Emily Wuthering Heights 65 

Table 1 The list of books used in our experiments. 

For the sake of all the experiments that follow, we chunk each book into approximately equal 
sections of at least 500 words without breaking up paragraphs. For each author A and each book 
X, let AX consist of all the works by A in the corpus unless X is in fact written by A, in which 
case AX consists of all works by A except X. Our objective is to assign to each pair <AX,X> the 
value same-author if X is by A and the value different-author otherwise.  
 

5.2 Baseline: One-class SVM 
In order to establish a baseline, for each author A in the corpus and each book X, we use a one-
class SVM (Chang and Lin 2001) on the 250 most frequent words in AX to build a model for AX. 



KOPPEL, SCHLER AND BONCHEK-DOKOW 

 1266 

(Although, as discussed above, many more interesting feature sets are possible, we use this 
feature set here for simplicity and universal applicability.) We then test each book X against the 
model of each AX. We assign the pair <AX,X> the value same-author if more than half the chunks 
of X are assigned to AX. This method performs very poorly. Of the 20 pairs that should have been 
assigned the value same-author, only 6 are correctly classified, while 46 of the 189 pairs that 
should be assigned the value different-author are incorrectly classified. These results hold using 
an RBF kernel; using other kernels or using a threshold other than half (the number of chunks 
assigned to the class) only degrades results.  

A second possible baseline is the “lining up impostors” method mentioned in Section 3 
above. We will discuss this method in some detail in Section 6. 

5.3 Unmasking Applied 
Now let us introduce the details of our new method based on our observations above regarding 
iterative elimination of features. We choose as an initial feature set the n words with highest 
average frequency in AX and X (that is, the average of the frequency in AX and the frequency in 
X, giving equal weight to AX and X). Using an SVM with linear kernel we run the following 
unmasking scheme:  

 
1. Determine the accuracy results of a ten-fold cross-validation experiment for AX against 

X. (If one of the sets, AX or X, includes more chunks than the other, we randomly discard 
the surplus. Accuracy results are the average of five runs of ten-fold cross-validation in 
which we discard randomly for each run.) 

2. For the model obtained in each fold, eliminate the k most strongly weighted positive 
features and the k most strongly weighted negative features. 

3. Go to step 1. 

In this way, we construct degradation curves for each pair <AX,X>. In Figure 2, we show such 
curves (using n=250 and k=3) for An Ideal Husband against each of ten authors, including Oscar 
Wilde.  

 Figure 2. Unmasking An Ideal Husband against each of the ten authors (n=250, k=3). The curve 
below all the authors is that of Oscar Wilde, the actual author. (Several curves are 
indistinguishable.) 
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5.4 Meta-learning: Identifying Same-Author Curves 
We wish now to quantify the difference between same-author curves and different-author curves. 
To do so, we first represent each curve as a numerical vector in terms of its essential features. 
These features include, for i = 0,…,m:  
 
" accuracy after i elimination rounds  

" accuracy difference between round i and i+1  

" accuracy difference between round i and i+2  

" ith highest accuracy drop in one iteration 

" ith highest accuracy drop in two iterations 

 
We sort these vectors into two subsets: those in which AX and X are the by same author and those 
in which AX and X are by different authors. We then apply a meta-learning scheme in which we 
use learners to determine what role to assign to various features of the curves. (Note that although 
we have 20 same-author pairs, we really only have 13 distinct same-author curves, since for 
authors with exactly two works in our corpus, the comparison of AX with X is identical for each 
of the two books.)  
 

To illustrate the ease with which same-author curves can be distinguished from different-
author curves, we note that for all same-author curves, it holds that:  
 
" accuracy after 6 elimination rounds is lower than 89% and  

" the second highest accuracy drop in two iterations is greater than 16%.  

 
These two conditions hold for only 5 of the 189 different-author curves.  
 

5.5 Accuracy Results: Leave-one-book-out Tests 
In order to assess the accuracy of the method, we use the following cross-validation methodology. 
For each book B in our corpus, we run a trial in which B is completely eliminated from 
consideration. We use unmasking to construct curves for all author/book pairs <AX,X> (where B 
does not appear in AX and is not X) and then we use a linear SVM to meta-learn to distinguish 
same-author curves from different-author curves. Then, for each author A in the corpus, we use 
unmasking to construct a curve for the pair <AB,B> and use the meta-learned model to determine 
if the curve is a same-author curve or a different-author curve. 

Using this testing protocol, we obtain the following results: All but one of the twenty same-
author pairs are correctly classified. The single exception is Pygmalion by George Bernard Shaw. 
In addition, 181 of 189 different-author pairs were correctly classified. Among the exceptions 
were the attributions of The Professor by Charlotte Bronte to each of her sisters. Thus, we obtain 
overall accuracy of 95.7% with errors almost identically distributed between false positives and 
false negatives. (It should be noted that some of the 8 misclassified different-author pairs result in 
a single book being attributed to two authors, which is obviously impossible. Nevertheless, since 
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each of our author/book pairs is regarded as an independent experiment, we do not leverage this 
information.) 

Note that the algorithm includes three parameters: n, the size of the initial feature set; k, the 
number of eliminated features from each extreme in each iteration; m, the number of iterations we 
consider. The results reported above are based on experiments using n=250, k=3, and m=10, the 
settings used in initial experiments first reported in Koppel and Schler (2004). We chose n=250 
because experimentation indicated that this was a reasonable rough boundary between common 
words and words tightly tied to a particular work. Nevertheless, it might be asked how robust our 
results are vis-à-vis these parameters. To test this, we ran our leave-one-book-out experiment for 
a variety of parameter settings. The results are shown in Table 2.  

 

Features (n) 
Features 
eliminated (k) Iterations (m) 

Correctly classified   
same-author  
(out of 20) 

Correctly classified   
different-author  
(out of 189)  

F1 
(macro average) 

5 16 183 0.868 
10 19 181 0.892 3 
20 20 180 0.896 
5 20 182 0.916 
10 20 180 0.896 6 
20 20 181 0.906 
5 20 180 0.896 

250 

10 
10 20 179 0.886 
5 14 189 0.904 
10 12 186 0.828 3 
20 16 180 0.838 
5 13 184 0.826 
10 18 180 0.868 6 
20 19 179 0.873 
5 16 181 0.848 
10 18 180 0.868 

500 

10 
20 20 177 0.868 
5 11 189 0.843 
10 11 188 0.831 3 
20 12 183 0.797 
5 12 188 0.852 
10 14 184 0.844 6 
20 17 181 0.863 
5 15 184 0.862 
10 16 182 0.857 

1000 

10 
20 16 177 0.812 

Table 2 Accuracy results on the 21 book experiment for a variety of parameter setting 
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As is evident, results are somewhat robust with regard to choice of k and m (in fact, some 
parameter choices turn out to be better than our initial choice), but the recall results for same-
author degrades considerably as the size of the initial feature set increases. Apparently, what is 
important is that at some stage a sufficiently small feature set is reached. A related pattern that is 
evident in the data is that as the maximum number of features eliminated (i.e., k*m) increases, the 
total number of example pairs classified as same-author increases. (This is reflected by increasing 
same-author recall and decreasing different-author recall.) This is because it is the behavior of 
significantly stripped-down feature sets that permits meta-learning to effectively distinguish 
between same-author curves and different-author curves. In the absence of such information, 
support vector machines tend to err in the direction of majority class, which in this case is 
different-author. 

 

6 Extension: Using Negative Examples  
Until now we have not used any examples of non-A writing to help us construct a model of 
author A. Of course, plenty of examples of non-A writing exist; they are simply neither 
exhaustive nor representative. We now consider how use can be made of such data.  

Let us recall the “lining up impostors” method suggested in Section 3 above. Suppose, that 
we have available the works of several authors roughly filling the same profile as A in terms of 
geography, chronology, culture and genre. To make matters concrete, suppose we are considering 
whether some book X was written by Melville.  We could use the works of Hawthorne and 
Cooper as examples of non-Melville writing and learn a model for Melville against non-Melville. 
Assuming we can do so successfully, we can then test each example of X to see if it assigned by 
the model to Melville or to not-Melville. If many are assigned to not-A, it might be reasonable to 
conclude that X is not by the same author as A. But, as we noted above, if it turns out that many, 
or even all, examples of X are assigned to Melville, we would be hard-pressed to conclude that 
Melville wrote the book since it may very well be that the works of other authors, say Shaw or 
Bronte, happen to be more similar to Melville than to Hawthorne or Cooper. 

Nevertheless, it is instructive to try this method. Formally, we proceed as follows. For each 
author A, choose other authors of the same type (“impostors”) – let’s call them A1,…,An –  and 
allow them to collectively represent the class not-A. In our corpus, we consider four types as 
indicated in Table 1.  We learn a model for A against not-A and we learn models for each Ai 
against not-Ai. Assuming that k-fold cross-validation results for each of these models are 
satisfactory, we test all the examples in X against each one of these models. Let A(X) be the 
percentage of examples of X classed as A rather than not A; define Ai(X) analogously. Then if 
A(X) is not greater than Ai(X) for all i, conclude that A is not the author of X. Otherwise 
conclude that A is the author of X. 

Applying this impostors method to our 209 book-author experiments, we find that 19 of 20 
same-author pairs are correctly classified but only125 of 189 different-author pairs are correctly 
classified. If we try to remedy the tendency of the method to over-assign to the class same-author 
by adding the constraint that X not be assigned to A unless A(X) exceeds some threshold, !, we at 
best obtain only very slightly improved performance. For example, for !=1/2, 19 of 20 same-
author pairs and 127 of 189 different-author pairs are correctly classified. For !=.8, 13 of 20 
same-author pairs and 140 of 189 different-author pairs are correctly classified.  

In short, the basic impostors method often wrongly concludes that a given author wrote a 
given book, but when it concludes that a given author did not write a given book (because some 
impostor looks more plausible), it is almost always correct. Thus, although the impostors method 
is obviously not as effective as unmasking as a stand-alone method, it can be used to augment 
unmasking. We simply conclude that A is the author of X if and only if both the unmasking 
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method and the impostors method indicate that A is the author of X. If either of them indicates 
that A is not the author of X, we conclude that A is not the author of X. 

 
 
 

Given: anonymous book X, works of suspect author A, 
       (optionally)impostors {A1,…,An}  
 
Step 1 – Impostors method(optional)  
 
if impostors {A1,…,An} are given then 
{ 
    Build model M for classifying A vs. all impostors 
    Test each chunk of X with built model M  
    foreach impostor Ai  
    {  

   Build model Mi for classifying Ai vs. {A # all other 
impostors} 

         Test each chunk of X with built model Mi 
     } 
     If for some Ai number of chunks assigned to Ai > number of 

chunks assigned to A  
  then 

            return different-author  
} 
 
Step 2 - Unmasking 
Build degradation curve <A,X> 
Represent degradation curve as feature vector (see text)  
Test degradation curve vector (see text) 
    if test result positive 
        return same-author 
    else 
        return different-author 
 
Method Build Degradation Curve: 
 
Use 10 fold cross validation for A against X 
foreach fold 
{ 
      Do m iterations 
      { 
   Build a model for A against X 
   Evaluate accuracy results 
   Add accuracy number to degradation curve <A,X> 
   Remove k top contributing features (in each 

 direction) from data 
       } 
} 

Figure 3: Overview of the authorship verification algorithm. 
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In our experiment, using the augmenting unmasking with the impostors method resulted in 
the introduction of a single new misclassification: Thoreau was incorrectly concluded not to have 
written A Week on Concord. At the same time, all of the different-author pairs previously 
misclassified as same-author were corrected. Overall, then, the augmented method classed all 189 
different-author pairs and 18 of 20 same-author pairs correctly.  

In Figure 3, we summarize the entire algorithm including both unmasking and (optionally) 
the impostors method. Note that although we introduced the impostors method after the 
unmasking method in our exposition, for purposes of the pseudo-code it is more natural to present 
the impostors method as a filter prior to the unmasking method. 

  

7 Effects of Topic Variability on Unmasking 
It might well be wondered how robust unmasking is to variability in topic. Specifically, can we 
successfully identify two works as being by a single author even if they are on different topics 
and, conversely, can we identify two works as being by two different authors even if they are on 
the same topic? 

An ideal corpus for testing this question is that of rabbinic legal responsa. This corpus of 
Hebrew-Aramaic letters in response to legal queries is divided by author and typically sub-
divided by general topic: ritual law, family law and business law. For our purposes, we chose 
three prolific authors all of whom worked in the second half of the 20th century. Table 3 shows 
the number of responsa written by each author in each of three different topic areas. 
 

 Ritual Business Family 
Author 1 ( Yosef) 328 55 143 
Author 2 (Feinstein) 157 46 120 
Author 3 (Halberstam) 138 70 82 

Table 3. Number of responsa written by each author on each topic in legal responsa corpus. 

 
Using the same parameter settings as above (n=250, k=3, m=10), we plotted a variety of 

unmasking curves. In Figure 4, we show unmasking curves for each author vs. all other authors 
(solid lines) where all writings are on the same topic, and unmasking curves for each author’s 
writing on a given topic vs. that same author’s writing on all other topics (dotted lines). 

As is evident, for different-author pairs (on a single topic), accuracy remains high even as 
features are eliminated, while for same-author pairs (on different topics), accuracy degrades as 
features are eliminated. Evidently, among common words, the set of markers of authorial style, 
regardless of topic, is much larger than the quickly eliminated set of topic markers. In this sense, 
it is much easier to tell apart one author from another – even when the authors are writing on the 
same topic – than to tell apart works on different topics written by the same author. As a result, 
same-author curves and different-author curves do not resemble each other, despite the 
potentially confounding effects of topic. In fact, in this case different-author curves are 
distinguishable from same-author curves already at the first iteration, before any unmasking is 
performed. But note that as unmasking is performed, the differences become most clear at the 
sixth iteration just as was the case for the English literature curves.  
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Figure 4 Unmasking of  rabbinic legal responsa. Solid lines are different-author curves (on 

same topic) and dotted lines are same-author curves (on different topics). 

7.1 Solution to a Literary Mystery: The Case of the Bashful Rabbi 
Finally, we apply our method to an actual literary mystery. Ben Ish Chai was the leading rabbinic 
scholar in Baghdad in the late 19th century. Among his vast literary legacy are two collections of 
responsa. The first, RP (Rav Pe'alim) includes 509 documents known to have been authored by 
Ben Ish Chai. The second, TL (Torah Lishmah) includes 524 documents that Ben Ish Chai claims 
to have found in an archive. There is ample historical reason to believe that he in fact authored 
the manuscript but did not wish to take credit for it for personal reasons (Ben-David, 2002).  

For the sake of comparison, we also have four more collections of responsa written by four 
other authors working in the same area during the same period. While these far from exhaust the 
range of possible authors, they collectively constitute a reasonable starting point. There is no 
reason to believe that any of these authors wrote TL. 

In any event, the impostors method handily eliminates all candidates but Ben Ish Chai. We 
now wish to use unmasking to check if Ben Ish Chai is indeed the author. Unmasking is 
particularly pertinent here, since Ben Ish Chai did not wish to be identified as the author and there 
is evidence that he may have deliberately altered his style to disguise his authorship. (In fact, the 
strongest distinguishing features – and hence the first eliminated by unmasking – result from Ben 
Ish Chai employing different standard signoffs in RP and TL; it is hard to know whether this 
reflects deliberate subterfuge or mere chronological drift.) 

In Figure 5, we show the results of unmasking for TL against Ben Ish Chai as well as, for 
comparison, each of the other four candidate authors. The curve for Ben Ish Chai is the one far 
below those of the others. This affirms the consensus among historians (Ben-David 2002) that 
Ben Ish Chai was indeed the author of TL. Indeed, as in our previous experiments, the differences 
between the curves are most clear at the sixth iteration. 
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Figure 5:  Unmasking TL against Ben Ish Chai and four impostors. The curve below the others is 
Ben Ish Chai. 

 

8 An Alternative Measure of Depth of Difference 
It seems plausible that there should be a direct way to determine how different two works are 
without actually going to the trouble of running the multiple learning experiments required for 
plotting unmasking curves. One sensible suggestion would be to check the number of features 
with significant information-gain between authors. Gabrilovich and Markovitch (2004) have used 
precisely this measure to suggest which learning algorithms might be most appropriate for a given 
problem.  

In Figure 6, we plot the curve in which the y-axis represents the number of features with 
information gain greater than x, plotted for each multiple of 0.01 from 0 to 0.6. The ten curves 
represent the book An Ideal Husband vs. the works of each of the ten authors considered in 
Section 5 above. (Thus, this figure is analogous to Figure 2 above.) The idea is that we expect the 
curve representing An Ideal Husband vs. the other work of Oscar Wilde – the actual author – to 
show a more sudden drop than those curves comparing An Ideal Husband to other authors. And 
indeed this is the case.  

The differences between the same-author curve and the different-author curves in Figure 6 
are not quite as dramatic as the difference in Figure 2 where unmasking curves were used. 
Nevertheless, the question arises if we can use these curves in much the same way as we use 
unmasking curves for determining whether two books are by the same author. In order to answer 
this question, we ran experiments analogous to the leave-one-book-out experiments of Section 5 
but with a different feature set. Whereas above we used characteristics of unmasking curves as 
features in a meta-learning scheme, here we use features of the information-gain curves just 
considered. More precisely, we record each value shown in Figure 6.  

There is no doubt that these curves encode a great deal of information regarding authorship. 
For example, of the 210 curves generated by the authorship experiment of Section 5, there are 
182 IG curves in which there are fewer than 65 features with information gain above 0.03. Of 
these, 179 are different-author curves and only 3 are same-author curves. Unfortunately, 
however, using the meta-learning approach described in Section 5 and a leave-one-out testing 
protocol results in correct classification of 182 out of 189 different-author curves, but only 11 out 
of 20 same-author curves. These results are not quite as good as those obtained using unmasking 
but they do suggest that information-gain curves are somewhat useful despite their simplicity. 
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Figure 6. Information-gain curves for An Ideal Husband versus ten authors. The dark line is 

Oscar Wilde, the actual author. 

 

9 Conclusions  
The essentials of two-class text categorization are fairly well understood. We have shown in this 
paper that by using ensembles of text-categorization results as raw material for meta-level 
analysis, we are able to solve a more difficult and sophisticated problem such as authorship 
verification. Even when we completely ignore negative examples and thus treat authorship 
verification as a true one-class classification problem, our methods obtain extremely high 
accuracy on out-of-sample author/book pairs. When we use just a bit of non-representative 
negative data, classification is even better. 

Nothing in our method is tied to any particular language, period or genre and some evidence 
presented suggests that similar results are obtained as these parameters are varied. In fact, some 
evidence presented suggests that the method is immune to deliberate attempts to cover up 
authorship. 

The point of the unmasking method suggested here is to measure of the true “depth of 
difference” between two example sets. This measure is clearly of a different type than other 
measures, such as margin width, that could in principle depend on a single highly differentiating 
feature. Although we have tested the method on a single application, it is not unreasonable to 
speculate that the new measure presented here ought to be applicable to other applications in 
which we need to determine whether given phenomena were generated by a single process.  
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Abstract
Quadratic discriminant analysis is a common tool for classification, but estimation of the Gaus-
sian parameters can be ill-posed. This paper contains theoretical and algorithmic contributions to
Bayesian estimation for quadratic discriminant analysis. A distribution-based Bayesian classifier is
derived using information geometry. Using a calculus of variations approach to define a functional
Bregman divergence for distributions, it is shown that the Bayesian distribution-based classifier that
minimizes the expected Bregman divergence of each class conditional distribution also minimizes
the expected misclassification cost. A series approximation is used to relate regularized discrimi-
nant analysis to Bayesian discriminant analysis. A new Bayesian quadratic discriminant analysis
classifier is proposed where the prior is defined using a coarse estimate of the covariance based on
the training data; this classifier is termed BDA7. Results on benchmark data sets and simulations
show that BDA7 performance is competitive with, and in some cases significantly better than, reg-
ularized quadratic discriminant analysis and the cross-validated Bayesian quadratic discriminant
analysis classifier Quadratic Bayes.
Keywords: quadratic discriminant analysis, regularized quadratic discriminant analysis, Bregman
divergence, data-dependent prior, eigenvalue decomposition, Wishart, functional analysis

1. Introduction

A standard approach to supervised classification problems is quadratic discriminant analysis (QDA),
which models the likelihood of each class as a Gaussian distribution, then uses the posterior distri-
butions to estimate the class for a given test point (Hastie et al., 2001). The Gaussian parameters for
each class can be estimated from training points with maximum likelihood (ML) estimation. The
simple Gaussian model assumption is best suited to cases when one does not have much information
to characterize a class, for example, if there are too few training samples to infer much about the
class distributions. Unfortunately, when the number of training samples n is small compared to the
number of dimensions of each training sample d, the ML covariance estimation can be ill-posed.

c©2007 Santosh Srivastava, Maya R. Gupta and Béla Frigyik.
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One approach to resolve the ill-posed estimation is to regularize the covariance estimation; another
approach is to use Bayesian estimation.

Bayesian estimation for QDA was first proposed by Geisser (1964), but this approach has not
become popular, even though it minimizes the expected misclassification cost. Ripley (2001) in
his text on pattern recognition states that such predictive classifiers are mostly unmentioned in other
texts and that “this may well be because it usually makes little difference with the tightly constrained
parametric families.” Geisser (1993) examines Bayesian QDA in detail, but does not show that in
practice it can yield better performance than regularized QDA. In preliminary experiments we found
that the performance of Bayesian QDA classifiers is very sensitive to the choice of prior (Srivastava
and Gupta, 2006), and that priors suggested by Geisser (1964) and Keehn (1965) produce error rates
similar to those yielded by ML.

In this paper we propose a Bayesian QDA classifier termed BDA7. BDA7 is competitive with
regularized QDA, and in fact performs better than regularized QDA in many of the experiments
with real data sets. BDA7 differs from previous Bayesian QDA methods in that the prior is selected
by crossvalidation from a set of data-dependent priors. Each data-dependent prior captures some
coarse information from the training data. Using ten benchmark data sets and ten simulations,
the performance of BDA7 is compared to that of Friedman’s regularized quadratic discriminant
analysis (RDA) (Friedman, 1989), to a model-selection discriminant analysis (EDDA) (Bensmail
and Celeux, 1996), to a modern cross-validated Bayesian QDA (QB) (Brown et al., 1999), and to
ML-estimated QDA, LDA, and the nearest-means classifier. Our focus is on cases in which the
number of dimensions d is large compared to the number of training samples n. The results show
that BDA7 performs slightly better than the other approaches averaged over the real data sets. The
simulations help analyze the methods under controlled conditions.

This paper also contributes to the theory of Bayesian QDA in several aspects. First, the Bayesian
classifier is solved for in terms of the Gaussian distributions themselves, as opposed to the standard
approach of formulating the problem in terms of the Gaussian parameters. This distribution-based
Bayesian discriminant analysis removes the parameter-based Bayesian analysis restriction of re-
quiring more training samples than feature dimensions, and removes the question of invariance to
transformations of the parameters, because the estimate is defined in terms of the Gaussian dis-
tribution itself. We show that the distribution-based Bayesian discriminant analysis classifier has
roughly the same closed-form as the parameter-based Bayesian discriminant analysis classifier, but
has a different degree of freedom.

The second theoretical result links Bayesian QDA and Friedman’s regularized QDA by a using
series approximation. Third, we show that the Bayesian distribution-based classifier that minimizes
the expected misclassification cost is equivalent to the classifier that uses the Bayesian minimum
expected Bregman divergence estimates of the class conditional distributions.

We begin with a review of approaches to Bayesian QDA and regularized QDA in Section 2. We
formulate the distribution-based Bayesian classifier in Section 3, and review recent results showing
that the distribution-based performance is superior to the parameter-based Bayesian classifier given
the same prior if no cross-validation is allowed. An approximate relationship between Bayesian
QDA and Friedman’s regularized QDA is given in Section 4. In Section 5 we establish that the
Bayesian minimum expected misclassification cost estimate is equivalent to a plug-in estimate using
the Bayesian minimum expected Bregman divergence estimate for each class conditional. Then,
we turn to the practical matter of classification: we propose the cross-validated Bayesian QDA
classifier BDA7 in Section 6. In Section 7, benchmark data set results compare BDA7 to other QDA
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Notation Description Notation Description
I identity matrix I(·) indicator function
xi ∈ Rd ith training sample n number of training samples
yi class label corresponding to xi nh number of training samples of class h
G number of class labels x̄h sample mean for class h
T n pairs of training samples Th nh pairs of class h training samples
x ∈ Rd test sample S ∑n

i=1(xi− x̄)(xi− x̄)T

Y class label corresponding to x Sh ∑n
i=1(xi− x̄h)(xi− x̄h)T I(yi=h)

C misclassification cost matrix |B| determinant of B
diag(B) diagonal of B tr(B) trace of B
N random Gaussian distribution N realization of a Gaussian distribution

Table 1: Key Notation

classifiers, followed by further analysis using simulation results in Section 8. The paper concludes
with a discussion of the results and some open questions.

Table 1 details some of the notation used in this paper.

2. Prior Research on Ill-Posed QDA

We review the prior literature on Bayesian approaches to QDA, regularization approaches to QDA,
and other approaches to resolving ill-posed QDA.

2.1 Bayesian Approaches to QDA

Discriminant analysis using Bayesian estimation was first proposed by Geisser (1964) and Keehn
(1965). Geisser’s work used a noninformative prior distribution to calculate the posterior odds that
a test sample belongs to a particular class. Keehn’s work assumed that the prior distribution of the
covariance matrix is an inverse Wishart distribution. Raudys and Jain (1991) stated that Bayesian
QDA does not solve the problems that occur with ML QDA, particularly when class sample sizes
differ. Recent work by the authors showed that Bayesian QDA using the priors suggested by Geisser
and Keehn perform similarly to ML QDA on six standard QDA simulations (Srivastava and Gupta,
2006).

The inverse Wishart prior is a conjugate prior for the covariance matrix, and it requires the
specification of a “seed” positive definite matrix and a scalar degree of freedom. Following Brown
et al. (1999), the term Quadratic Bayes (QB) is used to refer to a modern form of Bayesian QDA
where the inverse Wishart seed matrix is kI, where I is the d-dimensional identity matrix, k is a
scalar, and the parameters k and the degree of freedom q of the inverse Wishart distribution are
chosen by crossvalidation.

Previous Bayesian QDA work is parameter-based in that the mean µ and covariance Σ are
treated as random variables, and the expectations of the Gaussian class-conditional distributions are
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calculated with respect to Lebesgue measure over the domain of the parameters. In this paper we
solve for the distribution-based Bayesian QDA, such that the uncertainty is considered to be over
the set of Gaussian distributions and the Bayesian estimation is formulated over the domain of the
Gaussian distributions.

2.2 Regularizing QDA

Friedman (1989) proposed regularizing ML covariance estimation by linearly combining a ML
estimate of each class covariance matrix with the ML pooled covariance estimate and with a scaled
version of the identity matrix to form an estimate Σ̂h(λ,γ) for the hth class:

Σ̂h(λ) =
(1−λ)Sh+λS
(1−λ)nh+λn

, (1)

Σ̂h(λ,γ) = (1− γ)Σ̂h(λ)+
γ
d
tr

(
Σ̂h(λ)

)
I. (2)

The above notation and other key notation is defined in Table 1.
In Friedman’s regularized QDA (RDA), the parameters λ,γ are trained by crossvalidation to

be those parameters that minimize the number of classification errors. Friedman’s comparisons
to ML QDA and ML linear discriminant analysis on six simulations showed that RDA could deal
effectively with ill-posed covariance estimation when the true covariance matrix is diagonal. RDA
is perhaps the most popular approach to discriminant analysis when the covariance estimation is
expected to be ill-posed (Hastie et al., 2001).

Hoffbeck and Landgrebe (1996) proposed a similar regularized covariance estimate for classifi-
cation of the form

Σ̂= α1diag(Σ̂ML)+α2Σ̂ML+α3Σ̂pooledML+α4diag(Σ̂pooledML),

where Σ̂ML and Σ̂pooledML are maximum likelihood estimates of class and pooled covariance matri-
ces, respectively, and the parameters α1,α2,α3,α4 are trained by crossvalidation to maximize the
likelihood (whereas Friedman’s RDA crossvalidates to maximize classification accuracy). Results
on Friedman’s simulation suite and experimental results on a hyperspectral classification problem
showed that the two classifiers achieved similar accuracy (Hoffbeck and Landgrebe, 1996). An-
other restricted model used to regularize covariance matrix estimation is a banded covariance matrix
(Bickel and Li, 2006).

RDA and the Hoffbeck-Landgrebe classifiers linearly combine different covariance estimates. A
related approach is to select the best covariance model out of a set of models using crossvalidation.
Bensmail and Celeux (1996) propose eigenvalue decomposition discriminant analysis (EDDA), in
which fourteen different models for the class covariances are considered, ranging from a scalar times
the identity matrix to a full class covariance estimate for each class. The model that minimizes the
crossvalidation error is selected for use with the test data. Each individual model’s parameters are
estimated by ML; some of these estimates require iterative procedures that are computationally
intensive.

The above techniques consider a discrete set of possible models for Σ, and either linearly com-
bine models or select one model. In contrast, Bayesian QDA combines a continuous set of possible
models for Σ, weighting each model by its posterior probability.
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2.3 Other Approaches to Quadratic Discriminant Analysis

Other approaches have been developed for ill-posed quadratic discriminant analysis. Friedman
(1989) notes that, beginning with work by James and Stein in 1961, researchers have attempted to
improve the eigenvalues of the sample covariance matrix. Another approach is to reduce the data
dimensionality before estimating the Gaussian distributions, for example by principal components
analysis (Swets andWeng, 1996). One of the most recent algorithms of this type is orthogonal linear
discriminant analysis (Ye, 2005), which was shown by the author of that work to perform similarly
to Friedman’s regularized linear discriminant analysis on six real data sets.

3. Distribution-based Bayesian Discriminant Analysis

Parameter estimation depends on the form of the parameter, for example, Bayesian estimation can
yield one result if the expected standard deviation is solved for, or another result if the expected
variance is solved for. To avoid this issue we derive Bayesian QDA by formulating the problem
in terms of the Gaussian distributions explicitly. This section extends work presented in a recent
conference paper (Srivastava and Gupta, 2006).

Suppose one is given an iid training set T = {(xi,yi), i = 1,2, . . .n} and a test sample x, where
xi,x ∈ Rd , and yi takes values from a finite set of class labels yi ∈ {1,2, . . . ,G}. Let C be the
misclassification cost matrix such that C(g,h) is the cost of classifying x as class g when the truth
is class h. Let P(Y = h) be the prior probability of class h. Suppose the true class conditional
distributions p(x|Y = h) exist and are known for all h, then the estimated class label for x that
minimizes the expected misclassification cost is

Y ∗ #= argmin
g=1,...,G

G

∑
h=1

C(g,h)p(x|Y = h)P(Y = h). (3)

In practice the class conditional distributions and the class priors are usually unknown. We model
each unknown distribution p(x|h) by a randomGaussian distributionNh, and we model the unknown
class priors by the random vector Θ, which has components Θh = P(Y = h) for h= 1, . . . ,G. Then,
we estimate the class label that minimizes the expected misclassification cost, where the expecta-
tion is with respect to the random distributions Θ and {Nh} for h = 1, . . . ,G. That is, define the
distribution-based Bayesian QDA class estimate by replacing the unknown distributions in (3) with
their random counterparts and taking the expectation:

Ŷ #= argmin
g=1,...,G

E

[
G

∑
h=1

C(g,h)Nh(x)Θh

]
. (4)

In (4) the expectation is with respect to the joint distribution over Θ and {Nh} for h= 1, . . . ,G, and
these distributions are assumed independent. Therefore (4) can be rewritten as

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)ENh [Nh(x)]EΘ[Θh]. (5)

Straightforward integration yields an estimate of the class prior, EΘ[Θh] = nh+1
n+G ; this Bayesian esti-

mate for the multinomial is also known as Laplace correction (Jaynes and Bretthorst, 2003).
In this next section we discuss the evaluation of ENh [Nh(x)].
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3.1 Statistical Models and Measure

Consider the family M of multivariate Gaussian probability distributions on Rd . Let each element
ofM be a probability distributionN :Rd → [0,1], parameterized by the real-valued variables (µ,Σ)
in some open set in Rd ⊗S, where S ⊂ Rd(d+1)/2 is the cone of positive semi-definite symmetric
matrices. That is M = {N (· ;µ,Σ)} defines a d2+3d

2 -dimensional statistical model, (Amari and
Nagaoka, 2000, pp. 25–28).

Let the differential element over the set M be defined by the Riemannian metric (Kass, 1989;
Amari and Nagaoka, 2000),

dM = |IF(µ,Σ)|
1
2 dµdΣ, where

IF(µ,Σ) = −EX [∇2 logN (X ;(µ,Σ))],

where ∇2 is the Hessian operator with respect to the parameters µ and Σ, and this IF is also known
as the Fisher information matrix. Straightforward calculation shows that

dM =
dµ
|Σ| 12

dΣ
|Σ| d+12

=
dµdΣ
|Σ| d+22

. (6)

Let Nh(µh,Σh) be a possible realization of the Gaussian pdf Nh. Using the measure defined in
(6),

ENh [Nh(x)] =
Z

M
Nh(x)r(Nh)dM, (7)

where r(Nh) is the posterior probability of Nh given the set of class h training samples Th; that is,

r(Nh) =
!(Nh,Th)p(Nh)

αh
, (8)

where αh is a normalization constant, p(Nh) is the prior probability ofNh (treated further in Section
3.2), and !(Nh,Th) is the likelihood of the data Th given Nh, that is,

!(Nh(µh,Σh),Th) =
exp[− 1

2 tr
(
Σ−1h Sh

)
− nh

2 tr
(
Σ−1h (µh− X̄h)(µh− X̄h)T

)
]

(2π)
dnh
2 |Σh|

nh
2

. (9)

3.2 Priors

A prior probability distribution of the Gaussians, p(Nh), is needed to solve the classification prob-
lem given in (4). A common interpretation of Bayesian analysis is that the prior represents informa-
tion that one has prior to seeing the data (Jaynes and Bretthorst, 2003). In the practice of statistical
learning, one often has very little quantifiable information apart from the data. Instead of thinking
of the prior as representing prior information, we considered the following design goals: the prior
should

• regularize the classification to reduce estimation variance, particularly when the number of
training samples n is small compared to the number of feature dimensions;

• add minimal bias;
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• allow the estimation to converge to the true generating class conditional normals as n→ ∞ if
in fact the data was generated by class conditional normals;

• lead to a closed-form result.

To meet these goals, we use as a prior

p(Nh) = p(µh)p(Σh) = γ0
exp[− 1

2 tr
(
Σ−1h Bh

)
]

|Σh|
q
2

, (10)

where Bh is a positive definite matrix (further specified in (25)) and γ0 is a normalization constant.
The prior (10) is equivalent to a noninformative prior for the mean µ, and an inverted Wishart prior
with q degrees of freedom over Σ.

This prior is unimodal and leads to a closed-form result. Depending on the choice of Bh and q,
the prior probability mass can be focused over a small region of the set of Gaussian distributions
M in order to regularize the estimation. Regularization is important for cases where the number of
training samples n is small compared to the dimensionality d. However, the tails of this prior are
sufficiently heavy that the prior does not hinder convergence to the true generating distribution as
the number of training samples increases if the true generating distribution is normal.

The positive definite matrix Bh specifies the location of the maximum of the prior probability
distribution. Using the matrix derivative (Dwyer, 1967) and the knowledge that the inverse Wishart
distribution has only one maximum, one can calculate the location of the maximum of the prior.
Take the log of the prior,

log p(Nh) = −1
2
tr

(
Σ−1h Bh

)
− q
2
log |Σh|+ logγ0.

Differentiate with respect to Σh to solve for Σh,max,

−1
2

∂
∂Σh

tr
(
Σ−1h,maxBh

)
− q
2

∂
∂Σh

log |Σh,max| = 0,

Σ−1h,maxBhΣ
−1
h,max−qΣ−1h,max = 0,

Σh,max =
Bh
q

. (11)

Because this prior is unimodal, a rough interpretation of its action is that it regularizes the
likelihood covariance estimate towards the maximum of the prior, given in (11). To meet the goal of
minimizing bias, we encode some coarse information about the data into Bh. In QB (Brown et al.,
1999), the prior seed matrix Bh = kI, where k is a scalar determined by crossvalidation. Setting
Bh = kI is reminiscent of Friedman’s RDA (Friedman, 1989), where the covariance estimate is
regularized by the trace: tr(Σ̂ML)d I.

We have shown in earlier work that setting Bh = tr(Σ̂ML)
d I for a distribution-based discriminant

analysis outperforms Geisser’s or Keehn’s parameter-based Bayesian discriminant methods, and
does not require crossvalidation (Srivastava and Gupta, 2006). The trace of the ML covariance
estimate is stable, and provides coarse information about the scale of the data samples. Thus, this
proposed data-dependent prior can be interpreted as capturing the knowledge an application expert
would have before seeing the actual data. There are many other approaches to data-dependent
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priors, including hyperparameters and empirical Bayes methods (Efron and Morris, 1976; Haff,
1980; Lehmann and Casella, 1998). Data-dependent priors are also used to form proper priors
that act similarly to improper priors, or to match frequentist goals (Wasserman, 2000). Next, we
describe the closed form result with a prior of the form given in (10), then we return to the question
of data-dependent definitions for Bh when we propose the BDA7 classifier in Section 6.

3.3 Closed-Form Result

In Theorem 1 we establish the closed-form result for the distribution-based Bayesian QDA classi-
fier. The closed-form result for the parameter-based classifier with the same prior is presented after
the theorem for comparison.

Theorem 1: The classifier (5) using the prior (10) can be written as

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)
(nh)

d
2Γ

(
nh+q+1

2

)∣∣∣ Sh+Bh2

∣∣∣
nh+q
2

(nh+1) d2Γ
(
nh+q−d+1

2

)
|Ah|

nh+q+1
2

P̂(Y = h), (12)

where P̂(Y = h) is an estimate of the class prior probability for class h, Γ(·) is the standard gamma
function, and

Ah =
1
2

(
Sh+

nh(x− x̄h)(x− x̄h)T

(nh+1)
+Bh

)
. (13)

The proof of the theorem is given in Appendix A. The parameter-based Bayesian QDA class label
using the prior given in (10) is

Ŷ = argmin
g=1,...,G

G

∑
h=1

C(g,h)
(nh)

d
2Γ

(
nh+q−d−1

2

)

(nh+1) d2Γ
(
nh+q−2d−1

2

) | Sh+Bh2 |
nh+q−d−2

2

|Ah|
nh+q−d−1

2

P̂(Y = h). (14)

Equation (14) can be proved by following the same steps as the proof of Theorem 1. The parameter-
based Bayesian discriminant result (14) will not hold if nh ≤ 2d−q+1, while the distribution-based
result (12) holds for any nh > 0 and any d.

In a previous publication (Srivastava and Gupta, 2006), we compared the distribution-based
Bayesian QDA to the parameter-based Bayesian QDA classifier, maximum likelihood QDA, and
nearest means. We compared the noninformative prior originally proposed by Geisser (1964), and
the modified inverse Wishart prior given in Equation (10) with Bh = tr

(
Σ̂ML,h/d

)
I. We fixed the

degrees of freedom for the modified inverse Wishart to be d+3, so that in one-dimension it reduces
to the common inverted gamma distribution. Results on six simulations (two-class versions of
Friedman’s original simulations) showed that given the same prior, the distribution-based performed
better than the parameter-based when the ratio of feature dimensions to number of training samples
is high. For the reader’s convenience, we include a representative set of the simulation results from
Srivastava and Gupta (2006) in Figure 1.

It is interesting to see that the only difference between the parameter-based Bayesian QDA (14)
and the distribution-based Bayesian QDA (12) is a shift of the degree of freedom q; this is true
whether the distribution-based formula (12) is solved for using either the Fisher or Lebesgue mea-
sure. QB, which is a modern parameter-based Bayesian QDA classifier (discussed further in Section

1284



BAYESIAN QUADRATIC DISCRIMINANT ANALYSIS

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Number of Feature Dimensions

M
ea

n 
Er

ro
r P

er
ce

nt
Maximum
Likelihood
QDA

Parameter−based
Bayesian QDA with
Modified Inverse
Wishart Prior

Distribution−based
Bayesian QDA
with
Modified Inverse
Wishart Prior

Figure 1: Mean error rates are shown for a two-class simulation where the samples from each
class are drawn from a Gaussian distribution with the same mean but different, highly-
ellipsoidal covariance matrices. The error rates were averaged over 1000 random trials,
where on each trial 40 training samples and 100 test samples were drawn iid.

2.1), chooses the degree of freedom for the modified inverse Wishart prior by cross-validation. If
one cross-validates the degree of freedom, then it does not matter if one starts from the parameter-
based formula or the distribution-based formula. In Section 6, we propose a new Bayesian QDA
classifier called BDA7 that cross-validates the degree of freedom and a data-dependent seed matrix
Bh for the prior. But first we consider further the analytic properties of Bayesian QDA; in the next
section we develop a relationship between regularized QDA and Bayesian QDA, and then in Section
5 we show how Bayesian QDA is the solution to minimizing any expected Bregman divergence.

4. Relationship Between Regularized QDA and Bayesian QDA

In this section we show that Friedman’s regularized form for the covariance matrix (Friedman, 1989)
emerges from the Bayesian QDA formula.
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Let Dh = Sh +Bh,Zh = x− x̄h. The distribution-based Bayesian discriminant formula for the
class conditional pdf (12) can be simplified to

ENh [Nh] =
n
d
2
h Γ

(
nh+q+1

2

)

(2π) d2 (nh+1) d2Γ
(
nh+q−d+1

2

)
∣∣Dh
2

∣∣
nh+q
2

∣∣∣Dh2 + nh
2(nh+1)ZhZ

T
h

∣∣∣
nh+q+1

2

=
n
d
2
h Γ

(
nh+q+1

2

)∣∣Dh
2

∣∣
nh+q
2

(2π) d2 (nh+1) d2Γ
(
nh+q−d+1

2

)∣∣Dh
2

∣∣
nh+q+1

2

∣∣∣∣I+
nh

nh+1
ZhZTh D

−1
h

∣∣∣∣
− nh+q+1

2

=
Γ

(
nh+q+1

2

)

(π)
d
2

∣∣∣
(
nh+1
nh

)
Dh

∣∣∣
1
2
Γ

(
nh+q−d+1

2

)
(
1+

nh
nh+1

ZTh D
−1
h Zh

)− nh+q+1
2

, (15)

where (15) follows by rearranging terms and applying the identity |I+ZhZTh D
−1
h | = 1+ZTh D

−1
h Zh

(Anderson, 2003).
Approximate nh/(nh + 1) ≈ 1 in (15). Recall the series expansion er = 1+ r+ r2/2 . . ., so if r

is small, 1+ r ≈ er. We apply this approximation to the term 1+ZTh D
−1
h Zh in (15), and note that

the approximation is better the closer the test point x is to the sample mean x̄h, such that Zh is small.
The approximation is also better the larger the minimum eigenvalue λmin of Dh is, because of the
bound |ZTh D

−1
h Zh|≤ ‖Zh‖2/λmin. Then (15) becomes

ENh [Nh] ≈
Γ

(
nh+q+1

2

)(
exp

[
nh

nh+1Z
T
h D

−1
h Zh

])− nh+q+1
2

(π)
d
2

∣∣∣
(
nh+1
nh

)
Dh

∣∣∣
1
2
Γ

(
nh+q−d+1

2

) ,

=
Γ

(
nh+q+1

2

)
exp

[
− 1
2Z

T
h

[
nh+1

nh+q+1

(
Dh
nh

)]−1
Zh

]

(π)
d
2

∣∣∣
(
nh+1
nh

)
Dh

∣∣∣
1
2
Γ

(
nh+q−d+1

2

) . (16)

Let
Σ̃h

#=
nh+1

nh+q+1
Dh

nh
. (17)

The approximation (16) resembles a Gaussian distribution, where Σ̃h plays the role of the covariance
matrix. Rewrite (17),

Σ̃h =
nh+1

nh+q+1

(
Sh+Bh
nh

)

=
nh+1

nh+q+1

(
Sh
nh

)
+

nh+1
nh+q+1

(
Bh
nh

)

=
(
1− q

nh+q+1

)
Sh
nh

+
1

nh+q+1

(
nh+1
nh

)
Bh. (18)

In (18), make the approximation nh+1
nh ≈ 1, then multiply and divide the second term of (18) by q,

Σ̃h ≈
(
1− q

nh+q+1

)
Sh
nh

+
(

q
nh+q+1

)
Bh
q

. (19)
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The right-hand side of (19) is a convex combination of the sample covariance and the positive defi-
nite matrix Bh

q . This is the same general formulation as Friedman’s RDA regularization (Friedman,
1989), re-stated in this paper in Equations (1) and (2). Here, the fraction q

nh+q+1 controls the shrink-
age of the sample covariance matrix toward the positive definite matrix Bh

q ; recall from (11) that
Bh
q is

the maximum of the prior probability distribution. Equation (19) also gives information about how
the Bayesian shrinkage depends on the number of sample points from each class: fewer training
samples nh results in greater shrinkage towards the positive definite matrix Bh

q . Also, as the degree
of freedom q increases, the shrinkage towards Bh

q increases. However, as q increases, the shrinkage
target Bhq moves towards the zero-matrix.

5. Bregman Divergences and Bayesian Quadratic Discriminant Analysis

In (5) we defined the Bayesian QDA class estimate that minimizes the expected misclassification
cost. Then assuming a Gaussian class-conditional distribution, the expected class-conditional dis-
tribution is given in (12). A different approach to Bayesian estimation would be to estimate the
hth class-conditional distribution to minimize some expected risk. That is, the estimated class-
conditional distribution would be

f̂h = argmin
f∈A

Z

M
R(Nh, f )dM, (20)

where R(Nh, f ) is the risk of guessing f if the truth is Nh, the set of functions A is defined more
precisely shortly, and dM is a probability measure on the set of Gaussians, M. Equation (20) is a
distribution-based version of the standard parameter Bayesian estimate given in Ch. 4 of Lehmann
and Casella (1998); for example, the standard parameter Bayesian estimate of the mean µ̂ ∈ Rd

would be formulated
µ̂= argmin

ψ∈Rd

Z
R(µ,ψ)dΛ(µ),

where Λ(µ) is some probability measure.
Given estimates of the class-conditional distributions { f̂h} from (20), one can solve for the class

label as

Ỹ ∗ = argmin
g=1,...,G

G

∑
h=1

C(g,h) f̂h(x)P̂(Y = h). (21)

In this section we show that the class estimate Ŷ from minimizing the expected misclassification
cost as defined in (5) is equivalent to the class estimate Ỹ ∗ from (21) if the risk function in (20) is a
(functional) Bregman divergence. This result links minimizing expected misclassification cost and
minimizing an expected Bregman divergence.

Bregman divergences form a set of distortion functions that include squared error, relative en-
tropy, logistic loss, Mahalanobis distance, and the Itakura-Saito function, and are sometimes termed
Bregman loss functions (Censor and Zenios, 1997). Bregman divergences act on pairs of vectors.
Csiszár defined a Bregman divergence between two distributions (Csiszár, 1995), but Csiszár’s def-
inition acts pointwise on the input distributions, which limits its usefulness in analysis. A recent
result showed that the mean minimizes the average Bregman divergence (Banerjee et al., 2005a,b).
In order to extend this result to distributions and show how it links to Bayesian estimation, one
must solve for minima over sets of functions. To this end, we define a new functional Bregman
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divergence that acts on pairs of distributions. This allows us to extend the Banerjee et al. result
to the Gaussian case and establish the equivalence between minimizing expected misclassification
cost and minimizing the expected functional Bregman divergence.

This section makes use of functional analysis and the calculus of variations; the relevant defini-
tions and results from these fields are provided for reference in Appendix B.

Let ν be some measure, and define the set of functions Ap to be

Ap =
{
a : Rd → [0,1]

∣∣∣∣ a ∈ L
p(ν), a> 0, ‖a‖Lp(ν) = 1

}
.

5.1 Functional Definition of Bregman Divergence

Let φ : Ap → R be a continuous functional. Let δ2φ[ f ; ·, ·], the second variation of φ, be strongly
positive. The functional Bregman divergence dφ : Ap×Ap → [0,∞) is defined as

dφ( f ,g) = φ[ f ]−φ[g]−δφ[g; f −g], (22)

where δφ[g; ·] is the Fréchet derivative or first variation of φ at g.
Different choices of the functional φwill lead to different Bregman divergences. As an example,

we present the φ for squared error.

5.2 Example (Squared error)

Let φ : A2 → R be defined

φ[g] =
Z
g2dν.

Perturbing g by a sufficiently nice function a (see Appendix B for more details about the perturbation
function a) leads to the difference

φ[g+a]−φ[g] =
Z (

g2+2ga+a2−g2
)
dν.

Then, because

‖φ[g+a]−φ[g]−
R
2gadν‖L2(ν)

‖a‖L2(ν)
=

R
a2 dν

(
R
a2 dν) 12

,

=
(Z

a2 dν
) 1

2

tends to zero as ‖a‖L2(ν) tends to zero, the differential is

δφ[g;a] =
Z
2ga dν. (23)
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Using (23), the Bregman divergence (22) becomes

dφ( f ,g) =
Z
f 2dν−

Z
g2dν−

Z
2g( f −g)dν

=
Z
f 2dν−

Z
2 f gdν+

Z
g2dν

=
Z

( f −g)2dν

= ‖ f −g‖2L2(ν) ,

which is the integrated squared error between two functions f and g in A2.

5.3 Minimizing Expected Bregman Divergence

The functional definition (22) is a generalization of the standard vector Bregman divergence

dφ̃(x,y) = φ̃(x)− φ̃(y)−∇φ̃(y)T (x− y)

where x,y ∈ Rn, and φ̃ : Rn → R is strictly convex and twice differentiable.

Theorem 2: Let φ : A1 → R, φ ∈ C 3, and δ2φ[ f ; ·, ·] be strongly positive. Suppose the function f̂h
minimizes the expected Bregman divergence between a random Gaussian Nh and any probability
density function f ∈ A where the expectation is taken with respect to the distribution r(Nh), such
that

f̂h = argmin
f∈A

ENh [dφ(Nh, f )]. (24)

Then f̂h is given by
f̂h =

Z

M
Nh r(Nh)dM = ENh [Nh(x)].

The proof of the theorem is given in Appendix A.

Corollary: The result of (5) is equivalent to the result of (21) where each f̂h comes from (24).

The corollary follows directly from Theorem 2 where r(Nh) is the posterior distribution of Nh
given the training samples.

6. The BDA7 Classifier

Distribution-based QDA with a fixed degree of freedom as proposed by the authors in the confer-
ence paper (Srivastava and Gupta, 2006) does not require cross-validation. However, with cross-
validation, one can generally do better if cross-validating a useful parameter. The question is, what
parameters to cross-validate with what options? As done in the QB Bayesian QDA classifier, we
believe that the degree of freedom of the prior should be cross-validated. Also, in preliminary exper-
iments we found that the distribution-based performance could be enhanced by using the diagonal
of Σ̂ML rather than the trace for each prior seed matrix Bh; the diagonal encodes more information
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but is still relatively stable to estimate. The diagonal of Σ̂ML has been used to regularize a regular-
ized discriminant analysis (Hoffbeck and Landgrebe, 1996) and model-based discriminant analysis
(Bensmail and Celeux, 1996).

Note that setting Bh = diag
(
Σ̂ML

)
places the maximum of the prior at 1qdiag

(
Σ̂ML

)
. We hypoth-

esize that in some cases it may be more effective to place the maximum of the prior at diag
(
Σ̂ML

)
;

that requires setting Bh = q diag
(
Σ̂ML

)
.

We also consider moving the maximum of the prior closer to the zero matrix, effectively turn-
ing the prior into an exponential prior rather than a unimodal one. We expect that this will have the
rough effect of shrinking the estimate toward zero. Shrinkage towards zero is a successful technique
in other estimation scenarios: for example ridge and lasso regression shrink linear regression coef-
ficients toward zero (Hastie et al., 2001), and wavelet denoising shrinks wavelet coefficients toward
zero. To this end, we also consider setting the prior matrix seed to be Bh = 1

qdiag
(
Σ̂ML

)
.

These different choices for Bh will be more or less appropriate depending on the amount of data
and the true generating distributions. Thus, for BDA7 the Bh is selected by crossvalidation from
seven options:

Bh =






q diag
(
Σ̂(pooled ML)

)
, q diag

(
Σ̂(class ML,h)

)
,

1
q diag

(
Σ̂(pooled ML)

)
, 1q diag

(
Σ̂(class ML,h)

)
,

diag
(
Σ̂(pooled ML)

)
, diag

(
Σ̂(class ML,h)

)
,

1
q tr(Σ̂(pooled ML)) I.

(25)

To summarize: BDA7 uses the result (12) where q is cross-validated, and Bh is cross-validated
as per (25).

7. Experiments with Benchmark Data Sets

We compared BDA7 to popular QDA classifiers on ten benchmark data sets from the UCI Machine
Learning Repository. In the next section we use simulations to further analyze the behavior of each
of the classifiers.

QDA classifiers are best-suited for data sets where there is relatively little data, assuming the
class-conditional distribution is Gaussian model can be an appropriate model. For this reason, for
data sets with separate training and test sets, Tables 3 and 4 show results on the test set given a
randomly chosen 5% or 10% of the training samples. For data sets without separate training and
test sets, 5% and 10% of the available samples of each class were randomly selected and used for
training, and the rest of the available samples were used as test samples. Each result in Table 3 and
4 is the average test error of 100 trials with different randomly chosen training samples, with the
exception of the Cover Type data set, for which only 10 random trials were performed due to its
large size. Table 2 summarizes each of the benchmark data sets.

7.1 Experimental Details for Each Classifier

BDA7 is compared with QB (Brown et al., 1999), RDA (Friedman, 1989), eigenvalue decompo-
sition discriminant analysis (EDDA) (Bensmail and Celeux, 1996), and maximum-likelihood esti-
mated QDA, LDA, and the nearest-means classifier (NM). Code for the classifiers (and the simula-
tions presented in the next section) is available at idl.ee.washington.edu.

The parameters for each classifier were estimated by leave-one-out crossvalidation, unless there
exists a separate validation set. Some of the classifiers required the prior probability of each class
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P(Y = h); those probabilities were estimated based on the number of observations from each class
using Bayesian estimation (see Section 3).

The RDA parameters λ and γ were calculated and crossvalidated as in Friedman’s paper (Fried-
man, 1989) for a total of 25 joint parameter choices.

The BDA7 method is crossvalidated with the seven possible choices of Bh for the prior specified
in (25). The scale parameter q of the inverse Wishart distribution is crossvalidated in steps of the
feature space dimension d so that q ∈ {d,2d,3d,4d,5d,6d}. Thus there are 42 parameter choices.

The QB method is implemented as described by Brown et al. (1999). QB uses a normal prior
for each mean vector, and an inverse Wishart distribution prior for each covariance matrix. There
are two free parameters to the inverse Wishart distribution: the scale parameter q≥ d and the seed
matrix Bh. For QB, Bh is restricted to be spherical: Bh = kI. The parameters q and k are trained by
crossvalidation. In an attempt to be similar to the RDA and BDA7 crossvalidations, we allowed there
to be 42 parameter choices, q∈ {d,2d,3d,4d,5d,6d} and k ∈ {1,2, . . .7}. Other standard Bayesian
quadratic discriminant approaches use a uniform (improper) or fixedWishart prior with a parameter-
based classifier (Ripley, 2001; Geisser, 1964; Keehn, 1965); we have previously demonstrated that
the inverse Wishart prior performs better than these other choices (Srivastava and Gupta, 2006).

The EDDA method of Bensmail and Celeux is run as proposed in their paper (Bensmail and
Celeux, 1996). Thus, the crossvalidation selects one of fourteen models for the covariance, where
the ML estimate for each model is used. Unfortunately, we found it computationally infeasible to
run the 3rd and 4th model for EDDA for some of the problems. These models are computationally
intensive iterative ML procedures that sometimes took prohibitively long for large n, and when
n < d these models sometimes caused numerical problems that caused our processor to exit with
error. Thus, in cases where the 3rd and 4th model were not feasible, they were not used.

7.2 Results

The results are shown in Tables 3 and 4 for the UCI Machine Learning Repository benchmark data
sets described in Table 2. The lowest mean error rate is in bold, as well as any other mean error rate
that is not statistically significantly different from the lowest mean error rate, as determined by the
Wilcoxon signed rank test for paired-differences at a significance level of .05.

BDA7 was the best or statistically insignificant from the best for seven of the ten tested data
sets: Heart, Iris, Image Segmentation, Pen Digits, Sonar, Thyroid, and Wine. For the Pima Dia-
betes, Ionosphere, and Cover Type data sets, BDA7 is not the best QDA classifier, but performs
competitively.

The Ionosphere data set is a two-class problem with 351 samples described by 34 features. One
of the features has the value zero for all samples of class two. This causes numerical difficulties
in estimating the maximum likelihood covariance estimates. BDA7 chooses the identity prior seed
matrix Bh = 1

q tr(Σ̂(pooled ML)) I every time for this data set. Given that this is BDA7’s choice, BDA7
is at a disadvantage compared to QB, which cross-validates a scaled identity seed matrix kI. In fact,
our experiments have showed that shrinking the prior closer to zero improves the performance on
this data set, for example using Bh = 1

qd tr(Σ̂(pooled ML)) I.
For the Cover Type problem, the maximum likelihood estimated matrices for QDA and LDA

contain many zeros, which result in a zero determinant; this is in part because 44 of the 54 features
are binary. Thus the QDA and LDA error rate is solely due to the prior class probabilities. Because
of the zero determinant, the best BDA7model for the prior’s seed matrix is the identity-based model,
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Number of Classes Number of Features Number of Total Samples
(Training/Test)

(Training/Validation/Test)
Cover Type 8 54 11,340/3,780/565,892
Heart 2 10 (nominal features excluded) 270
Image Segmentation 7 19 2310
Ionosphere 2 34 351
Iris 3 4 150
Pen Digits 10 16 7,494/3,498
Pima 2 8 768
Sonar 2 60 238
Thyroid 3 5 215
Wine 3 13 178

Table 2: Information About the Benchmark Data Sets

BDA7 QB RDA EDDA NM LDA QDA
Cover Type 48.3 44.6 59.2 83.1 78.5 62.9 62.9
Heart 30.6 38.5 38.2 33.9 39.9 35.9 44.5
Image Segmentation 12.7 12.9 18.3 29.7 29.5 85.7 85.7
Ionosphere 16.9 16.1 12.5 26.0 27.1 35.8 35.8
Iris 6.9 7.6 8.1 9.4 9.3 8.8 66.6
Pen Digits 6.1 8.1 8.5 7.7 23.9 17.8 23.8
Pima 29.7 32.7 29.4 30.7 35.8 27.6 33.4
Sonar 36.8 40.4 40.4 39.8 42.6 46.7 46.7
Thyroid 11.7 14.8 17.0 14.7 19.2 15.0 30.0
Wine 9.6 33.1 34.2 11.2 32.0 60.1 60.1

Table 3: Average Error Rate Using Randomly Selected 5% of Training Samples
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BDA7 QB RDA EDDA NM LDA QDA
Cover Type 48.0 43.7 57.4 82.1 77.9 62.9 62.9
Heart 27.4 32.0 31.8 28.3 38.6 28.1 41.8
Image Segmentation 10.9 10.8 16.4 27.9 27.7 85.7 85.7
Ionosphere 12.5 11.1 8.7 23.3 24.2 35.9 35.9
Iris 6.2 5.9 6.2 7.4 8.3 5.3 44.9
Pen Digits 5.3 6.0 7.5 5.6 22.9 17.3 16.9
Pima 28.4 29.7 27.7 29.0 36.1 25.8 29.8
Sonar 31.2 33.7 32.8 34.8 38.8 46.8 46.8
Thyroid 7.9 9.1 10.0 8.6 16.2 10.5 30.0
Wine 7.9 16.9 25.0 8.2 30.1 21.6 60.3

Table 4: Average Error Rate Using Randomly Selected 10% of Training Samples

Bh = 1
q tr(Σ̂(pooled ML)) I. As in the Ionosphere data set, this puts BDA7 at a disadvantage compared

to QB, and it is not surprising that on this data set QB does a little better. Despite the numerical
difficulties inherent in this problem, the two Bayesian QDA classifiers do better than the other QDA
classifiers.

8. Simulations

In order to further analyze the behavior of the different QDA classifiers, we compared them in ten
simulations. For each of the ten simulations, the data are drawn iid from three Gaussian class con-
ditional distributions. Six of the simulations were originally created by Friedman and used to show
that RDA performs favorably compared to ML linear discriminant analysis (LDA) and ML QDA
(Friedman, 1989). Friedman’s six simulations all have diagonal generating class covariance matri-
ces, corresponding to independent classification features. In those cases, the constrained diagonal
models used in RDA and EDDA are correct, and so RDA and EDDA’s performance may be opti-
mistic compared to real data. For a fuller picture, we add two full covariance matrix simulations
to Friedman’s six diagonal Gaussian simulations (Cases 1–6), and for each of the full covariance
matrix simulations we consider the cases of classes with the same means (Case 7 and 9), and classes
with different means (Case 8 and 10).

All of the simulation results are presented for 40 training and 100 test samples, drawn iid.
The parameters for each classifier were estimated by leave-one-out crossvalidation, as described in
Section 7.1. Each simulation was run 100 times. Thus, each result presented in Tables 5, 6, and 7 is
the average error over 10,000 test samples.

8.1 Simulation Details and Results

The results show that when the true generating distributions are diagonal (Cases 1–6), then EDDA
performs the best. This can be expected because many of the 14 models EDDA cross-validates are
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diagonal, and are thus a good match to the true generating distributions. When the true generating
distributions are drawn from full covariance matrices (Cases 7–10), EDDA performs well when
there are only 10 features, but the maximum likelihood estimates used in EDDA fail for 50 and
100 feature dimensions. RDA similarly does well when the true generating distribution matches
the RDA models, and like EDDA is unable to learn when the features are highly correlated (Cases
9–10).

BDA7 is rarely the best classifier on the simulations, but never fails to produce relatively rea-
sonable error rates. In particular, BDA7 is shown to be a more robust classifier than QB, achieving
much lower error rates for Cases 5–6, and lower error rates for Cases 2–4 (with the exception of
Case 4 for 100 feature dimensions).

A more detailed analysis and description of each of the simulation cases follows.

8.1.1 CASE 1: EQUAL SPHERICAL COVARIANCE MATRICES

Each class conditional distribution is normal with identity covariance matrix I. The mean of the
first class µ1 is the origin, and the second class has zero mean, except that the first component of the
second class mean is 3. Similarly, the third class has zero mean, except the last component of the
third class mean is 3.

The performance here is bounded by the nearest-means classifier, which is optimal for this
simulation. EDDA also does well, because one of the 14 models available for it to choose is exactly
correct: scalar times the identity matrix. Similarly, RDA strongly shrinks towards the trace times
the identity. Though this is an unrealistic case, it shows that BDA7 can perform relatively well even
though it does not explicitly model the true generating distribution.

8.1.2 CASE 2: UNEQUAL SPHERICAL COVARIANCE MATRICES

The class one conditional distribution is normal with identity covariance matrix I and mean at the
origin. The class two conditional distribution is normal with covariance matrix 2I and has zero mean
except the first component of its mean is 3. The class three conditional distribution is normal with
covariance matrix 3I and has zero mean except the last component of its mean is 4. Like Case 1,
EDDA and RDA use the fact that the true generating distributions match their models to outperform
BDA7, which is significantly better than QB.

8.1.3 CASES 3 AND 4: EQUAL HIGHLY ELLIPSOIDAL COVARIANCE MATRICES

Covariance matrices of each class distribution are the same, and highly ellipsoidal. The eigenvalues
of the common covariance matrix are given by

ei =
(
9(i−1)
d−1 +1

)2
, 1≤ i≤ d, (26)

so the ratio of the largest to smallest eigenvalue is 100.
For Case 3 the class means are concentrated in a low-variance subspace. The mean of class one

is located at the origin and the ith component of the mean of class two is given by

µ2i = 2.5
√
ei
d

d− i
(d2 −1)

, 1≤ i≤ d.
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BDA7 QB RDA EDDA NM LDA QDA
Case 1 13.2 19.2 12.4 11.2 9.7 14.7 56.1
Case 2 21.3 27.4 17.4 16.1 21.0 26.0 54.6
Case 3 10.4 35.0 14.6 9.1 30.3 12.2 56.4
Case 4 12.6 32.8 12.6 11.6 11.0 13.5 56.9
Case 5 4.1 15.0 18.9 4.4 59.1 60.0 45.8
Case 6 5.2 7.9 7.2 1.7 36.1 36.9 47.7
Case 7 19.5 22.8 29.0 19.7 66.4 63.1 46.5
Case 8 3.7 2.7 4.0 5.1 40.6 6.7 37.5
Case 9 1.5 0.9 10.8 1.0 65.4 58.5 32.5
Case 10 0.4 0.1 2.8 3.4 60.7 7.2 36.5

Table 5: Average Error Rate for 10 Features

BDA7 QB RDA EDDA NM LDA QDA
Case 1 27.9 33.3 25.4 21.7 21.5 67.0 67.0
Case 2 26.8 42.6 15.4 12.5 32.0 66.8 66.8
Case 3 27.2 55.7 44.8 21.2 47.3 66.6 66.6
Case 4 22.5 30.9 17.9 17.0 15.5 67.0 67.0
Case 5 1.2 30.6 11.8 0.0 52.4 66.6 66.6
Case 6 0.5 26.5 8.0 0.0 43.2 66.6 66.6
Case 7 34.7 30.9 41.9 63.9 66.5 66.0 66.0
Case 8 9.2 3.5 2.8 25.5 40.9 66.6 66.6
Case 9 1.3 0.9 62.7 32.5 66.3 66.5 66.5
Case 10 1.7 0.9 60.6 32.4 66.2 66.2 66.2

Table 6: Average Error Rate for 50 Features
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BDA7 QB RDA EDDA NM LDA QDA
Case 1 35.8 31.1 28.1 24.8 24.7 68.0 68.0
Case 2 20.8 41.9 11.1 9.0 37.2 66.8 66.8
Case 3 46.9 56.4 50.5 27.7 51.1 64.9 64.9
Case 4 37.6 32.1 23.9 21.1 20.3 66.7 66.7
Case 5 0.2 38.3 14.5 0.1 55.8 66.6 66.6
Case 6 0.1 29.4 7.2 0.0 40.9 67.3 67.3
Case 7 40.0 35.2 44.3 64.8 66.6 65.8 65.8
Case 8 17.3 8.1 7.4 55.2 54.1 66.3 66.3
Case 9 2.9 2.8 67.0 67.0 66.6 66.6 66.6
Case 10 2.2 2.4 64.0 64.0 66.3 65.9 65.9

Table 7: Average Error Rate for 100 Features

The mean of class three is the same as the mean of class two except every odd numbered dimension
of the mean is multiplied by −1.

Here, BDA7 rivals the performance of EDDA, which makes half the errors of RDA. In contrast,
the error rate of QB is twice as high as BDA7 for 10 and 50 dimensions.

Case 4 is that the class means are concentrated in a high-variance subspace. The mean of class
one is again located at the origin and the ith component of the mean of class two is given by

µ2i = 2.5
√
ei
d

i−1
(d2 −1)

, 1≤ i≤ d.

The mean of class three is the same as the mean of class two except every odd numbered dimension
of the mean is multiplied by −1.

8.1.4 CASES 5 AND 6: UNEQUAL HIGHLY ELLIPSOIDAL COVARIANCE MATRICES

For these cases, the covariance matrices are highly ellipsoidal and different for each class. The
eigenvalues of the class one covariance are given by Equation (26), and those of class two are given
by

e2i =
(
9(d− i)
d−1 +1

)2
, 1≤ i≤ d.

The eigenvalues of class three are given by

e3i =

(
9(i− d−1

2 )
d−1

)2

, 1≤ i≤ d.

For Case 5, the class means are identical. For Case 6 the class means are different, with the class
one mean located at the origin and the ith component of the class two mean given by µ2i = 14√

d
. The
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mean of class three is the same as the mean of class two except every odd numbered dimension of
the mean is multiplied by −1.

In both these cases the BDA7 error falls to zero as the number of feature dimensions rise,
whereas RDA plateaus around 10% error, and QB has substantially higher error. Case 5 and Case
6 present more information to the classifiers than the previous cases because the covariance ma-
trices are substantially different. BDA7 and EDDA are able to use this information effectively to
discriminate the classes.

8.1.5 CASES 7 AND 8: UNEQUAL FULL RANDOM COVARIANCES

Let R1 be a d×d matrix where each element is drawn independently and identically from a uniform
distribution on [0,1]. Then let the class one covariance matrix be RT1R1. Similarly, let the class two
and class three covariance matrices be RT2R2 and RT3R3, where R2 and R3 are constructed in the same
manner as R1. For Case 7, the class means are identical. For Case 8, the class means are each drawn
randomly, where each element of each mean vector is drawn independently and identically from a
standard normal distribution.

Case 7 is a difficult case because the means do not provide any information and the covariances
may not be very different. However, BDA7 and QB only lose classification performance slowly as
the dimension goes up, while EDDA jumps from 20% error at 10 feature dimensions to 64% error
at 50 dimensions. For most runs of this simulation, the best EDDA model is the full covariance
model, but because EDDA uses ML estimation, its estimation of the full covariance model is ill-
conditioned.

Case 8 provides more information to discriminate the classes because of the different class
means. EDDA again does relatively poorly because its best-choice model is the full-covariance
which it estimates with ML. QB and RDA do roughly equally as well, with BDA7 at roughly twice
their error.

8.1.6 CASES 9 AND 10: UNEQUAL FULL HIGHLY ELLIPSOIDAL RANDOM COVARIANCE

Let R1,R2,R3 be as described for Cases 7 and 8. Then the Cases 9 and 10 covariance matrices are
RiRTi RTi Ri for i = 1,2,3. These covariance matrices are highly ellipsoidal, often with one strong
eigenvalue and many relatively small eigenvalues. This simulates the practical classification sce-
nario in which the features are all highly correlated. For Case 9, the class means are the same.
For Case 10, the class means are each drawn randomly, where each element of the mean vector is
drawn independently and identically from a standard normal distribution. The two Bayesian meth-
ods capture the information and achieve very low error rates. The other classifiers do not model this
situation well, and have high error rates for 50 and 100 feature dimensions.

9. Conclusions

In this paper, we have shown how a distribution-based formulation of the Bayesian quadratic dis-
criminant analysis classifier relates to the standard parameter-based formulation, established an an-
alytic link between Bayesian discriminant analysis and regularized discriminant analysis, and pre-
sented a functional equivalence between minimizing the expected misclassification cost and mini-
mizing the expected Bregman divergence of class conditional distributions. A side result was the
establishment of a functional definition of the standard vector Bregman divergence.
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The practical contribution of this paper is the classifier BDA7, which has been shown to perform
generally better than RDA, EDDA and QB on ten benchmark data sets. Key aspects of BDA7 are
that the seed matrix in the inverse Wishart prior uses a coarse estimate of the covariance matrix to
peg the maximum of the prior to a relevant part of the distribution-space.

The simulations presented are helpful in analyzing the different classifiers. Comparisons on
simulations show that RDA and EDDA perform well when the true Gaussian distribution matches
one of their regularization covariance models (e.g., diagonal, identity), but can fail when the gener-
ating distribution has a full covariance matrix, particularly when features are correlated. In contrast,
the Bayesian methods BDA7 and QB can learn from the rich differentiating information offered by
full covariance matrices.

We hypothesize that better priors exist, and that such priors will also be data-dependent and
make use of a coarse estimate of the covariance matrix for the prior. Although modeling each class
by one Gaussian distribution has too much model bias to be a general purpose classifier, Gaussian
mixture model classifiers are known to work well for a variety of problems. It is an open question
as to how to effectively integrate the presented ideas into a mixture model classifier.
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Appendix A.

This appendix contains the proofs of Theorem 1 and Theorem 2.

A.1 Proof of Theorem 1

The proof employs the following identities (Box and Tiao, 1973; Gupta and Nagar, 2000),

Z

µ
exp

[
−nh
2
tr

(
Σ−1(µ− x̄)(µ− x̄)T

)]
dµ =

(
2π
nh

) d
2
|Σ|

1
2 , (27)

Z

Σ>0

1
|Σ|

q
2
exp[− tr

(
Σ−1B

)
]dΣ =

Γd
(
q−d−1
2

)

|B|
q−d−1
2

, (28)

where Γd(·) is the multivariate gamma function,

Γd(a) =
(
Γ

(
1
2

)) d(d−1)
d d

∏
i=1

Γ

(
a− d− i

2

)
. (29)

To expand (5), we first simplify (7). The posterior (8) requires calculation of the normalization
constant αh,

αh =
Z

Σh

Z

µh
!(Nh,Th)p(Nh)

dµdΣh
|Σh|

d+2
2

.
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Substitute !(Nh,Th) from (9) and p(Nh) from (10),

αh =
Z

Σh

Z

µh

exp[− nh
2 tr

(
Σ−1h (µh− x̄h)(µh− x̄h)T

)
]

(2π)
nhd
2 |Σh|

nh+q
2

exp
[
−1
2
tr

(
Σ−1(Sh+Bh)

)] dΣhdµh
|Σh|

d+2
2

.

Integrate with respect to µh using identity (27):

αh =
1

(2π)
nhd
2

(
2π
nh

) d
2 Z

Σh

exp[− 1
2 tr

(
Σ−1h (Sh+Bh)

)
]

|Σh|
nh+q+d+1

2

dΣh.

Next, integrate with respect to Σh using identity (28):

αh =
1

(2π)
nhd
2

(
2π
nh

) d
2 Γd

( nh+q
2

)

∣∣∣ Sh+Bh2

∣∣∣
nh+q
2

. (30)

Therefore the expectation ENh [Nh(x)] is

ENh [Nh(x)] =
Z

M
Nh(x) f (Nh)dMh

=
1

αh(2π)
nhd
2

Z

Σh

Z

µh

exp
[
− 1
2 tr

(
Σ−1h (x−µh)(x−µh)T

)]

(2π) d2 |Σh|
1
2

.
exp

[
− 1
2 tr

(
Σ−1h (Sh+Bh)

)]

|Σh|
nh+q
2

exp
[
−nh
2
tr

(
Σ−1h (µh− x̄h)(µh− x̄h)T

)] dµhdΣh
|Σh|

d+2
2

.

Integrate with respect to µh and Σh using identities (27) and (28), and equation (13) to yield

ENh [Nh(x)] =
1

αh(2π)
dnh
2 (nh+1) d2

Γd
(
nh+q+1

2

)

|Ah|
nh+q+1

2

,

where Ah is given by Equation (13). After substituting the value of αh from (30),

ENh [Nh(x)] =
1

(2π) d2

n
d
2
h Γd

(
nh+q+1

2

)
| Sh+Bh2 |

nh+q
2

(nh+1) d2Γd
( nh+q

2
)
|Ah|

nh+q+1
2

.

Simplify the multivariate gamma function Γd using (29):

ENh [Nh(x)] =
1

(2π) d2

n
d
2
h Γ

(
nh+q+1

2

)

(nh+1) d2Γ
(
nh+q−d+1

2

) | Sh+Bh2 |
nh+q
2

|Ah|
nh+q+1

2

. (31)

Substituting (31) into (5) proves the theorem. Because q≥ d, the result (31) is valid for any nh > 0
and any feature space dimension d.

!
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A.2 Proof of Theorem 2

Let

J[ f ] = ENh [dφ(Nh, f )]

=
Z

M
dφ(Nh, f )r(Nh)dM

=
Z

M
(φ[Nh]−φ[ f ]−δφ[ f ;Nh− f ])r(Nh)dM, (32)

where (32) follows by substituting the definition of functional Bregman divergence (22). Consider
the increment

+J[ f ,a] = J[ f +a]− J[ f ] (33)

= −
Z

M
(φ[ f +a]−φ[ f ])r(Nh)dM

−
Z

M
(δφ[ f +a;Nh− f −a]−δφ[ f ;Nh− f ])r(Nh)dM, (34)

where (34) follows from substituting (32) into (33). Using the definition of the differential of a
functional (46), the first integrand in (34) can be written as

φ[ f +a]−φ[ f ] = δφ[ f ;a]+ ε[ f ,a]‖a‖L1(ν) . (35)

Take the second integrand of (34), and subtract and add δφ[ f ;Nh− f −a],

δφ[ f +a;Nh− f −a]−δφ[ f ;Nh− f ]
= δφ[ f +a;Nh− f −a]−δφ[ f ;Nh− f −a]+δφ[ f ;Nh− f −a]−δφ[ f ;Nh− f ]
(a)
= δ2φ[ f ;Nh− f −a,a]+ ε[ f ,a]‖a‖L1(ν) +δφ[ f ;Nh− f ]−δφ[ f ;a]−δφ[ f ;Nh− f ]
(b)
= δ2φ[ f ;Nh− f ,a]−δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖L1(ν)−δφ[ f ;a], (36)

where (a) follows from the definition of the second differential (see (47) in Appendix B) and from
the fact that

δφ[ f +a;a]−δφ[ f ;a] = δ2φ[ f ;a,a]+o(‖a‖2L1(ν)), (37)

where o(‖a‖2L1(ν)) denotes a function which goes to 0 even if it is divided by ‖a‖2L1(ν); and (b)
follows from linearity of the first term. Substitute (35) and (36) into (34),

+J[ f ,a] = −
Z

M

(
δ2φ[ f ;Nh− f ,a]−δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖L1(ν)

)
r(Nh)dM.

Note that the term δ2φ[ f ;a,a] is of order ‖a‖2L1(ν), that is,
∥∥δ2φ[ f ;a,a]

∥∥
L1(ν) ≤ m‖a‖2L1(ν) for some

constant m. Therefore,

lim
‖a‖L1(ν)→0

‖J[ f +a]− J[ f ]−δJ[ f ;a]‖L1(ν)
‖a‖L1(ν)

= 0,
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where

δJ[ f ;a] = −
Z

M
δ2φ[ f ;Nh− f ,a]r(Nh)dM. (38)

For fixed a, δ2φ[ f ; ·,a] is a bounded linear functional in the second argument, so the integration and
the functional can be interchanged in (38). Thus the above equation becomes

δJ[ f ;a] = −δ2φ
[
f ;

Z

M
(Nh− f )r(Nh)dM,a

]
.

Here we tacitly assumed that both
R
M r(Nh)dM and

R
M Nh r(Nh)dM exist. Under the functional

optimality conditions (stated in Appendix B), J[ f ] has an extremum for f = f̂ if, for all admissible
a ∈ A1,

δ2φ

[
f ;

Z

M

(
Nh− f̂

)
r(Nh)dM,a

]
= 0. (39)

Set a =
R
M

(
Nh− f̂

)
r(Nh)dM in (39) and use the assumption that the functional δ2φ[ f ; ·, ·] is

strongly positive, which implies that the above functional can be zero if and only if a = 0, that
is,

0 =
Z

M
(Nh− f̂ )r(Nh)dM, (40)

f̂ = ENh [Nh]. (41)

Equation (41) is well-defined with the measure given in (6). Because a Bregman divergence is not
necessarily convex in its second argument, it is not yet established that the above unique extremum
is a minimum. To show that (41) is in fact a minimum of J, from the functional optimality conditions
it is enough to show that δ2J[ f̂ ; ·, ·] is strongly positive. To show this, for b ∈ A1, consider δJ[ f +
b;a]−δJ[ f ;a] to be the increment in the first differential of J at f . Then

δJ[ f +b;a]−δJ[ f ;a]
(c)
= −

Z

M

(
δ2φ[ f +b;Nh− f −b,a]−δ2φ[ f ;Nh− f ,a]

)
r(Nh)dM

(d)
= −

Z

M
(δ2φ[ f +b;Nh− f −b,a]−δ2φ[ f ;Nh− f −b,a]+δ2φ[ f ;Nh− f −b,a]

−δ2φ[ f ;Nh− f ,a])r(Nh)dM
(e)
= −

Z

M
(δ3φ[ f ;Nh− f −b,a,b]+ ε[ f ,a,a,b]‖b‖L1(ν) +δ2φ[ f ;Nh− f ,a]−δ2φ[ f ;b,a]

−δ2φ[ f ;Nh− f ,a])r(Nh)dM
( f )
= −

Z

M
(δ3φ[ f ;Nh− f ,a,b]−δ3φ[ f ;b,a,b]+ ε[ f ,a,a,b]‖b‖L1(ν)

−δ2φ[ f ;b,a])r(Nh)dM, (42)

where (c) follows from using integral (38); (d) from subtracting and adding δ2φ[ f ;Nh− f − b,a];
(e) from using the definition of the second differential and from the fact (37); and ( f ) follows from
the linearity of the first term and cancelation of the third and fifth terms. Note that in (42), for fixed
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a, the term δ3φ[ f ;b,a,b] is of order ‖b‖2L1(ν), while the first and the last terms are of order ‖b‖L1(ν) .
Therefore,

lim
‖b‖L1(ν)→0

∥∥δJ[ f +b;a]−δJ[ f ;a]−δ2J[ f ;a,b]
∥∥
L1(ν)

‖b‖L1(ν)
= 0,

where

δ2J[ f ;a,b] = −
Z

M
(δ3φ[ f ;Nh− f ,a,b]−δ2φ[ f ;b,a])r(Nh)dM. (43)

Substitute b = a and f = f̂ , and interchange integration and the functional δ3φ in the first integral
of (43) to yield

δ2J[ f̂ ;a,a] = −δ3φ
[
f̂ ;

Z

M
(Nh− f̂ )r(Nh)dM,a,a

]
+

Z

M
δ2φ[ f̂ ;a,a]r(Nh)dM

=
Z

M
δ2φ[ f̂ ;a,a]r(Nh)dM (44)

≥
Z

M
k‖a‖2L1(ν) r(Nh)dM

= K ‖a‖2L1(ν) > 0, (45)

where (44) follows from (40), and (45) follows from the strong positivity of δ2φ[ f̂ ; ·, ·] and K #=
k

R
M dM > 0. Therefore from (45) and the functional optimality conditions, f̂ is the minimum. The

result f̂ is given in (31).

!

Appendix B. Relevant Definitions and Results from Functional Analysis

The following survey of the relevant definitions and results from functional analysis is based on
Gelfand and Fomin (2000). Let a function space A1 be defined

A1 =
{
a : Rd → [0,1]

∣∣∣∣ a ∈ L
1(ν), a> 0, ‖a‖L1(ν) = 1

}

where ν is some measure. Note that A1 is a convex subspace of L1(ν): if a1, a2 ∈ A1 and 0≤ω≤ 1,
then ωa1+(1−ω)a2 ∈ A1.

B.1 Definition of Continuous Linear Functionals

The functional ψ : L1(ν) → R is linear and continuous if

1. ψ[ωa1+a2] = ωψ[a1]+ψ[a2] for any a1,a2 ∈ L1(ν) and any real number ω (linearity); and

2. there is a constant C such that |ψ[a]|≤C‖a‖ for all a ∈ L1(ν).
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B.2 Functional Derivatives

1. Let φ be a real functional over the normed space L1(ν). The bounded linear functional δφ[ f ; ·]
is the Fréchet derivative of φ at f ∈ L1(ν) if

φ[ f +a]−φ[ f ] = +φ[ f ;a]
= δφ[ f ;a]+ ε[ f ,a]‖a‖L1(ν) (46)

for all a ∈ L1(ν), with ε[ f ,a] → 0 as ‖a‖L1(ν) → 0.

2. When the second variation δ2φ and the third variation δ3φ exist, they are described by

+φ[ f ;a] = δφ[ f ;a]+
1
2
δ2φ[ f ;a,a]+ ε[ f ,a]‖a‖2L1(ν)

= δφ[ f ;a]+
1
2
δ2φ[ f ;a,a]+

1
6
δ3φ[ f ;a,a,a]+ ε[ f ,a]‖a‖3L1(ν) ,

where ε[ f ,a]→ 0 as ‖a‖L1(ν) → 0 . The term δ2φ[ f ;a,b] is bilinear with respect to arguments
a and b, and δ3φ[ f ;a,b,c] is trilinear with respect to a,b, and c.

3. Suppose {an},{ fn}⊂L1(ν) , moreover an→ a, fn→ f ,where a, f ∈L1(ν). If φ∈C 3(L1(ν);R)
and δφ[ f ;a], δ2φ[ f ;a,a], and δ3[ f ;a,a,a] are defined as above, then δφ[ fn;an] → δφ[ f ;a],
δ2φ[ fn;an,an] → δ2φ[ f ;a,a], and δ3φ[ fn;an,an,an] → δ3φ[ f ;a,a,a], respectively.

4. The functional δ2φ[ f ;a,a] defined on normed linear space L1(ν) is quadratic; it is also strongly
positive if there exists a constant k > 0 such that δ2φ[ f ;a,a] ≥ k‖a‖2L1(ν) for all a ∈ A1. In a
finite-dimensional space, strong positivity of a quadratic form is equivalent to the quadratic
form being positive definite.

B.3 Functional Optimality Conditions

A necessary condition for the differential functional J[ f ] to have an extremum (minimum) at f = f̂
is that δJ[ f ;a] = 0 and δ2J[ f ;a,a] ≥ 0, for f = f̂ and all admissible functions a ∈ A1. A sufficient
condition for a functional J[ f ] to have a minimum for f = f̂ is that the first variation δJ[ f ;a] vanishes
for f = f̂ , and its second variation δ2J[ f ;a,a] is strongly positive for f = f̂ .
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Abstract
External regret compares the performance of an online algorithm, selecting among N actions, to
the performance of the best of those actions in hindsight. Internal regret compares the loss of an
online algorithm to the loss of a modified online algorithm, which consistently replaces one action
by another.

In this paper we give a simple generic reduction that, given an algorithm for the external regret
problem, converts it to an efficient online algorithm for the internal regret problem. We provide
methods that work both in the full information model, in which the loss of every action is observed
at each time step, and the partial information (bandit) model, where at each time step only the loss
of the selected action is observed. The importance of internal regret in game theory is due to the fact
that in a general game, if each player has sublinear internal regret, then the empirical frequencies
converge to a correlated equilibrium.

For external regret we also derive a quantitative regret bound for a very general setting of regret,
which includes an arbitrary set of modification rules (that possibly modify the online algorithm) and
an arbitrary set of time selection functions (each giving different weight to each time step). The
regret for a given time selection and modification rule is the difference between the cost of the
online algorithm and the cost of the modified online algorithm, where the costs are weighted by the
time selection function. This can be viewed as a generalization of the previously-studied sleeping
experts setting.
Keywords: online learning, internal regret, external regret, multi-arm bandit, sleeping experts,
reductions

1. Introduction

The motivation behind regret analysis might be viewed as the following: we design a sophisticated
online algorithm that deals with various issues of uncertainty and decision making, and sell it to a
client. Our online algorithm runs for some time and incurs a certain loss. We would like to avoid
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the embarrassment that our client will come back to us and claim that in retrospect we could have
incurred a much lower loss if we used his simple alternative policy π. The regret of our online
algorithm is the difference between the loss of our algorithm and the loss using π. Different notions
of regret quantify differently what is considered to be a “simple” alternative policy.

At a high level one can split alternative policies into two categories. The first consists of alterna-
tive policies that are independent from the online algorithm’s action selection, as is done in external
regret. External regret, also called the best expert problem, compares the online algorithm’s cost
to the best of N actions in retrospect (see Hannan, 1957; Foster and Vohra, 1993; Littlestone and
Warmuth, 1994; Freund and Schapire, 1997, 1999; Cesa-Bianchi et al., 1997). This implies that the
simple alternative policy performs the same action in all time steps, which indeed is quite simple.
Nonetheless, one important application of external regret is a general methodology for develop-
ing online algorithms whose performance matches that of an optimal static offline algorithm, by
modeling the possible static solutions as different actions.

The second category of alternative policies are those that consider the online sequence of actions
and suggest a simple modification to it, such as “every time you bought IBM, you should have
bought Microsoft instead.” This notion is captured by internal regret, introduced in Foster and
Vohra (1998). Specifically, internal regret allows one to modify the online action sequence by
changing every occurrence of a given action i to an alternative action j. Specific low internal regret
algorithms were derived by Hart and Mas-Colell (2000), Foster and Vohra (1997, 1998, 1999), and
Cesa-Bianchi and Lugosi (2003), where the use of the approachability theorem of Blackwell (1956)
has played an important role in some of the algorithms.

One of the main contributions of our work is to show a simple online way to efficiently convert
any low external regret algorithm into a low internal regret algorithm. Our guarantee is somewhat
stronger than internal regret and we call it swap regret, which allows one to simultaneously swap
multiple pairs of actions. (If there are N actions total, then swap-regret is bounded by N times
the internal regret.) Using known results for external regret we can derive a swap regret bound of
O(

√
TN logN), where T is the number of time steps, which is the best known bound on swap regret

for efficient algorithms. We also show an Ω(
√
TN) lower bound for the case of randomized online

algorithms against an adaptive adversary.
The importance of internal and swap regret is due to their tight connection to correlated equi-

libria, introduced by Aumann (1974). For a general-sum game of any finite number of players, a
distribution Q over the joint action space is a correlated equilibrium if every player would have zero
internal regret when playing it. In a repeated game scenario, if each player uses an action selection
algorithm whose regret of this form is sublinear in T , then the empirical distribution of the players
actions converges to a correlated equilibrium (see, e.g., Hart and Mas-Colell, 2000), and in fact,
the benefit of a deviation from a correlated equilibrium is bounded exactly by R/T , where R is the
largest swap regret of any of the players.

We also extend our results to the partial information model, also called the adversarial multi-
armed bandit (MAB) problem in Auer et al. (2002a). In this model, the online algorithm only gets to
observe the loss of the action actually selected, and does not see the losses of the actions not chosen.
For example, if you are driving to work and need to select which of several routes to take, you only
observe the travel time on the route actually taken. If we view this as an online problem, each day
selecting which route to take on that day, then this fits the MAB setting. Furthermore, the route-
choosing problem can be viewed as a general-sum game: your travel time depends on the choices of
the other drivers as well. Thus, if every driver uses a low internal-regret algorithm, then the uniform
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distribution over observed traffic patterns will converge to a correlated equilibrium. For the MAB
problem, our combining algorithm requires additional assumptions on the base external-regret MAB
algorithm: a smoothness in behavior when the actions played are taken from a somewhat different
distribution than the one proposed by the algorithm. Luckily, these conditions are satisfied by
existing external-regret MAB algorithms such as that of Auer et al. (2002a). For the multi-armed
bandit setting, we derive an O(N

√
NT logN) swap-regret bound. Thus, after T = O( 1ε2N

3 logN)
rounds, the empirical distribution on the history is an ε-correlated equilibrium. In a recent work,
Stoltz (2005) gives an improved swap regret bound of O(N

√
T logN). (The work of Hart and Mas-

Colell (2001) also gives a multi-armed bandit algorithm whose swap regret is sublinear in T , but
does not derive explicit bounds.)

One can also envision broader classes of regret. Lehrer (2003) defines a notion of wide range
regret that allows for arbitrary action-modification rules, which might depend on history, and also
Boolean time selection functions (that determine which subset of times is relevant). Using the ap-
proachability theorem, he shows a scheme that in the limit achieves no regret (i.e., regret is sublinear
in T ). While Lehrer (2003) derives the regret bounds in the limit, we derive finite-time regret bounds
for this setting. We show that for any family of N actions, M time selection functions and K mod-
ification rules, the maximum regret with respect to any selection function and modification rule is
bounded byO(

√
TN log(MK)). Our model also handles the case where the time selection functions

are not Boolean, but rather real valued in [0,1].
This latter result can be viewed as a generalization of the sleeping experts setting of Freund

et al. (1997) and Blum (1997). In the sleeping experts problem, we again have a set of experts, but
on any given time step, each expert may be awake (making a prediction) or asleep (not predicting).
This is a natural model for combining a collection of if-then rules that only make predictions when
the “if” portion of the rule is satisfied, and this setting has had application in domains ranging from
managing a calendar (Blum, 1997) and text-categorization (Cohen and Singer, 1999) to learning
how to formulate web search-engine queries (Cohen and Singer, 1996). By converting each such
sleeping-expert into a pair 〈expert, time-selection function〉, we achieve the desired guarantee that
for each sleeping-expert, our loss during the time that expert was awake is not much more than
its loss in that period. Moreover, by using non-Boolean time-selection functions, we can naturally
handle prediction rules that have varying degrees of confidence in their predictions and achieve a
confidence-weighted notion of regret.

We also study the case of deterministic Boolean prediction in the setting of time selection func-
tions. We derive a deterministic online algorithm whose number of weighted errors, with respect to
any time selection function from our class ofM selection functions, is at most 3OPT +2+2log2M,
where OPT is the cumulative loss of the best constant prediction for that time selection function.

1.1 Related Work

A different conversion procedure from external to internal regret was given independently by Stoltz
and Lugosi (2005), yet the approach there is very different from the one developed here. Further
results regarding the relation between external and internal regret appear in Stoltz and Lugosi (2007)
and for the multi-armed bandit setting in Cesa-Bianchi et al. (2006). In comparison to Stoltz and Lu-
gosi (2007), we are able to achieve a better swap regret guarantee in polynomial time. (A straightfor-
ward application of Stoltz and Lugosi (2007) to swap regret would require time-complexityΩ(NN);
alternatively, they can achieve a good internal-regret bound in polynomial time, but then their swap
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regret bound becomes worse by a factor of
√
N.) On the other hand, their work is applicable to any

convex loss function while our work is restricted to linear loss functions. See also Stoltz (2005),
Section 1.3, for a discussion of the different procedures.

2. Model and Preliminaries

We assume an adversarial online model where there are N available actions {1, . . . ,N}. At each
time step t, an online algorithm H selects a distribution pt over the N actions. After that, the
adversary selects a loss vector !t ∈ [0,1]N , where !ti ∈ [0,1] is the loss of the i-th action at time t. In
the full information model, the online algorithm receives the loss vector !t and experiences a loss
!tH = ∑N

i=1 pti!ti . In the partial information model, the online algorithm receives (!tkt ,k
t), where kt is

distributed according to pt , and !tH = !tkt is its loss. The loss of the i-th action during the first T time
steps is LTi =∑T

t=1 !
t
i , and the loss of H is LTH =∑T

t=1 !
t
H . The aim for the external regret setting is to

design an online algorithm that will be able to approach the best action, namely, to have a loss close
to LTmin =miniLTi . Formally we would like to minimize the external regret R= LTH −LTmin.

We introduce a notion of a time selection function. A time selection function I is a function over
the time steps mapping each time step to [0,1]. That is, I : {1, . . . ,T}→ [0,1]. The loss of action j
using time-selector I is LTj,I =∑t I(t)!tj. Similarly we define LH,I , the loss of the online algorithm H
with respect to time selection function I, as LTH,I = ∑t I(t)!tH , where !tH is the loss of H at time t.1
This notion of experts with time selection is very similar to the notion of “sleeping experts” studied
in Freund et al. (1997). Specifically, for each action j and time selection function I, one can view
the pair ( j, I) as an expert that is “awake” when I(t) = 1 and “asleep” when I(t) = 0 (and we could
view it as “partially awake” when I(t) ∈ (0,1)).

We also consider modification rules that modify the actions selected by the online algorithm,
producing an alternative strategy we will want to compete against. A modification rule F has as
input the history and an action choice and outputs a (possibly different) action. (We denote by F t

the function F at time t, including any dependency on the history.) Given a sequence of probability
distributions pt used by an online algorithmH, and a modification rule F , we define a new sequence
of probability distributions f t = F t(pt), where f ti =∑ j:F t( j)=i ptj. The loss of the modified sequence
is LH,F =∑t∑i f ti !ti . Similarly, given a time selection function I and a modification rule F we define
LH,I,F = ∑t∑i I(t) f ti !ti .

In our setting we assume a finite class of N actions, {1, . . . ,N}, a finite set F of K modification
rules, and a finite set I of M time selection function. Given a sequence of loss vectors, the regret
of an online algorithm H with respect to the N actions, the K modification rules, and the M time
selection functions, is

RI ,F
H =max

I∈I
max
F∈F

{LH,I−LH,I,F}.

Note that the external regret setting is equivalent to having a single time-selection function
(I(t) = 1 for all t) and a set F ex of N modification rules Fi, where Fi always outputs action i.
For internal regret, the set F in consists of N(N− 1) modification rules Fi, j, where Fi, j(i) = j and

1. We can let the time selector depend on the history up to time t, rather than the time t itself, and all the results presented
would be the same.
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Fi, j(i′) = i′ for i′ '= i, plus the identity function. That is, the internal regret of H is

max
F∈F in

{LH −LH,F} = max
i, j ∑t

pti(!
t
i− !tj).

We also define an extension to internal regret that we call swap regret. This case has F sw include
all NN functions F : {1, . . . ,N}→ {1, . . . ,N}, where the function F swaps the current online action
i with F(i) (which can be the same or a different action).2

A few simple relationships between the different types of regret: since F ex ⊆ F sw and F in ⊆
F sw, both external and internal regret are upper-bounded by swap-regret. Also, swap-regret is at
most N times larger than internal regret. On the other hand, even with N = 3, there are simple
examples that separate internal and external regret (see, e.g., Stoltz and Lugosi, 2005).

2.1 Correlated Equilibria and Swap Regret

We briefly sketch the relationship between correlated equilibria and swap regret.

Definition 1 A game G = 〈M,(Ai),(si)〉 has a finite set M of m players. Player i has a set Ai of
N actions and a loss function si : Ai× (× j %=iA j) → [0,1] that maps the action of player i and the
actions of the other players to a real number. (We have scaled losses to [0,1].)

The aim of each player is to minimize its loss. A correlated equilibrium is a distribution P over
the joint action space with the following property. Imagine a correlating device draws a vector of
actions"a using distribution P over×Ai, and gives player i the action ai from"a. (Player i is not given
any other information regarding"a.) The probability distribution P is a correlated equilibrium if, for
each player, it is its best response to play the suggested action (provided that the other players do
not deviate).

We now define an ε-correlated equilibrium.

Definition 2 A joint probability distribution P over ×Ai is an ε-correlated equilibrium if for every
player j and for any function F : A j → A j, we have Ea∼P[s j(a j,a− j)] ≤ Ea∼P[s j(F(a j),a− j)] +ε,
where a− j denotes the joint actions of the other players.

In other words, P is an ε-correlated equilibrium if the expected incentive to deviate is at most ε for
every player.

The following theorem relates the empirical distribution of the actions performed by each player,
their swap regret, and the distance from a correlated equilibrium (see also, Foster and Vohra 1997,
1998 and Hart and Mas-Colell 2000).

Theorem 3 Let G= 〈M,(Ai),(si)〉 be a game and assume that for T time steps each player follows
a strategy that has swap regret of at most R(T,N). The empirical distribution Q of the joint actions
played by the players is an (R(T,N)/T )-correlated equilibrium, and the loss of each player equals,
by definition, its expected loss on Q.

The above states that the payoff of each player is its payoff in some approximate correlated
equilibrium. In addition, it relates the swap regret to the distance from a correlated equilibrium.
Note that if the average swap regret vanishes then the procedure converges, in the limit, to the set of
correlated equilibria (see Hart and Mas-Colell 2000 and Foster and Vohra 1997, 1999).

2. Note that in swap and external regret, the modification functions do not depend on history. In Section 7 we consider
general modification functions.
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3. Generic Reduction from External to Swap Regret

We now give a black-box reduction showing how any algorithm A achieving good external regret
can be used as a subroutine to achieve good swap regret as well. The high-level idea is as follows.
We will instantiate N copies of the external-regret algorithm. At each time step, these algorithms
will each give us a probability vector, which we will combine in a particular way to produce our own
probability vector p. When we receive a loss vector !, we will partition it among the N algorithms,
giving algorithm Ai a fraction pi (pi is our probability mass on action i), so that Ai’s belief about the
loss of action j is ∑t pti!tj, and matches the cost we would incur putting i’s probability mass on j. In
the proof, algorithm Ai will in some sense be responsible for ensuring low regret of the Fi, j variety.
The key to making this work is that we will be able to define the p’s so that the sum of the losses of
the algorithms Ai on their own loss vectors matches our overall true loss.

To be specific, let us formalize what we mean by an external regret algorithm.

Definition 4 An algorithm A has external regret R(Lmin,T,N) if for any sequence of T losses !t

such that some action has total loss at most Lmin, for any action j ∈ {1, . . . ,N} we have

LTA =
T

∑
t=1

!tA ≤
T

∑
t=1

!tj +R(Lmin,T,N) = LTj +R(Lmin,T,N) .

We assume we have N algorithms Ai (which could all be identical or different) such that Ai has
external regret Ri(Lmin,T,N). We combine the N algorithms as follows. At each time step t, each
algorithm Ai outputs a distribution qti , where qti, j is the fraction it assigns action j. We compute a
vector p such that ptj =∑i ptiqti, j. That is, p= pQ, where p is the row-vector of our probabilities and
Q is the matrix of qi, j. (We can view p as a stationary distribution of the Markov Process defined
by Q, and it is well known such a p exists and is efficiently computable.) For intuition into this
choice of p, notice that it implies we can consider action selection in two equivalent ways. The
first is simply using the distribution p to select action j with probability p j. The second is to select
algorithm Ai with probability pi and then to use algorithm Ai to select the action (which produces
distribution pQ).

When the adversary returns !t , we return to each Ai the loss vector pti!t . So, algorithm Ai
experiences loss (pti!t) ·qti = pti(qti · !t).

Now we consider the guarantee that we have for algorithm Ai, namely, for any action j,
T

∑
t=1

pti(q
t
i · !t) ≤

T

∑
t=1

pti!
t
j +Ri(Lmin,T,N) . (1)

If we sum the losses of the N algorithms at any time t, we get ∑i pti(qti · !t) = ptQt!t , where pt is
the row-vector of our probabilities, Qt is the matrix of qti, j, and !t is viewed as a column-vector. By
design of pt , we have ptQt = pt . So, the sum of the perceived losses of the N algorithms is equal to
our actual loss pt!t .

Therefore, summing Equation (1) over all N algorithms, the left-hand-side sums to LTH . Since
the right-hand-side of Equation (1) holds for any j, we have that for any function F : {1, . . . ,N}→
{1, . . . ,N},

LTH ≤
N

∑
i=1

T

∑
t=1

pti!
t
F(i) +

N

∑
i=1

Ri(Lmin,T,N).

We have therefore proven the following theorem.
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Theorem 5 For any N algorithms Ai with regret Ri, for every function F : {1, . . . ,N}→ {1, . . . ,N},
for any sequence of T losses !t such that some action has total loss at most Lmin, the above algorithm
satisfies

LH ≤ LH,F +
N

∑
i=1

Ri(Lmin,T,N),

that is, the swap-regret of H is at most ∑N
i=1Ri(Lmin,T,N).

A typical optimized experts algorithm, such as in Littlestone and Warmuth (1994), Freund and
Schapire (1997), Auer et al. (2002a), and Cesa-Bianchi et al. (1997), will have R(Lmin,T,N) =
O(

√
Lmin logN+ logN). (Alternatively, Corollary 15 can be also used to deduce the above bound.)

We can immediately derive the following corollary.

Corollary 6 Using an optimized experts algorithm as the Ai, for every function F : {1, . . . ,N} →
{1, . . . ,N}, we have that

LH ≤ LH,F +O(N
√
T logN) .

We can perform a slightly more refined analysis of the bound by having Limin be the minimum
loss for an action in Ai. Note that ∑N

i=1Limin ≤ T , since we scaled the losses given to algorithm Ai at
time t by pti . By convexity of the square-root function, this implies that ∑

N
i=1

√
Limin ≤

√
NT , which

implies the worst case regret is O(
√
TN logN).3

Corollary 7 Using optimized experts algorithms as the Ai, for every function F : {1, . . . ,N} →
{1, . . . ,N}, we have that

LH ≤ LH,F +O(
√
TN logN) .

One strength of the above general reduction is it ability to accommodate new regret minimiza-
tion algorithms. For example, using the algorithms of Cesa-Bianchi et al. (2005) one can get a more
refined regret bound, which depends on the second moment.

4. Lower Bounds on Swap Regret

Notice that while good algorithms for external regret achieve bounds of O(
√
T logN), our swap-

regret bounds are roughlyO(
√
TN logN). Or, to put it another way, imagine we are interested in the

number of time steps T needed to achieve an average regret of ε per time step (a total regret of εT ).
Then, for external regret we have algorithms that can do this in T = O(ε−2 logN) steps, whereas
our bounds require T = O(ε−2N logN) steps for the case of swap-regret. From the point of view
of equilibrium, this means that while for two-player zero-sum games such algorithms will achieve
approximate minimax-optimality inO(logN) steps when played against each other, for general-sum
games we seem to need O(N logN) steps to achieve an ε-correlated equilibrium. A natural question
is whether this is best possible. In particular, is it possible to guarantee swap-regret at most εT in a
number of time steps that is sublinear in the size of the action space N?

3. We need to use here an external regret algorithm which does not need to have as an input the value of Limin. An
example of such an algorithm is Corollary 2 in Cesa-Bianchi et al. (2005), which guarantees an external regret of at
most O(

√
Lmin logN+ logN).
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We give here a partial answer: a lower bound of Ω(
√
TN) on swap-regret but in a more adver-

sarial model. Specifically, we have defined swap regret with respect to the distribution pt produced
by the player, rather than the actual action at selected from that distribution. In the case that the
adversary is oblivious (does not depend on the player’s action selection) then the two models have
the same expected regret. However we will consider an adaptive adversary, whose choices may
depend on the player’s action selection in previous rounds. In this setting (adaptive adversary and
regret defined with respect to the action selected from pt rather than pt itself) we derive anΩ(

√
TN)

lower bound.
Before presenting these bounds, we first mention one subtle issue. For a given stochastic adver-

sary, the optimal policy for minimizing loss may not be the optimal policy for minimizing swap-
regret. For example, consider a process in which {0,1} losses are generated by a fair coin, except
that in time steps t ∈ ((i−1)T/N, iT/N], action i has loss of 1 with probability only 1/2− 1/T .
In this case, the optimal policy for minimizing expected loss uses action i = 1 for the first T/N
steps, then action i = 2 for the next T/N steps, and so forth. However, because of the variance of
the coin flips, in retrospect each action played can be swapped with another for an expected gain of
Ω(

√
(T logN)/N) each (see, e.g., Feller, 1968, 1971), giving a total swap-regret of Ω(

√
TN logN)

for this policy. On the other hand, a policy that just picks a single fixed action would have swap-
regret only O(

√
T logN) even though its expected loss is slightly higher.

We now present our lower bound, first giving a somewhat weaker version whose proof is simpler
but contains the main ideas, and then giving the stronger version. Notice that even the weaker
version (Theorem 8) implies that Ω(N/ε) time steps are necessary in order to achieve an average
swap regret ε per time step, in the adaptive adversary model.

Theorem 8 There exists an adaptive adversary such that for any randomized online algorithm A,
its expected swap regret E[ max

F∈F sw
LA− LA,F ] (defined with respect to the actions selected from pt

rather than pt itself), is at least min((N−1)/16,T/8).

Proof The adversary behaves as follows. At each time step t, all actions i that have been previously
played by algorithm A receive a loss of 1. All other actions i receive either (a) a loss chosen
uniformly and independently at random from {0,1} if i ∈ {1, . . . ,N/2}, or (b) a loss of exactly 1/2
if i ∈ {N/2+1, . . . ,N}. The basic idea of the argument now is that so long as there are still actions
of type (a) remaining, algorithm A has no good choices: if it chooses to play a previously-played
action, then it will incur large loss, whereas if it chooses to play a new action, this will have a good
probability of substantially increasing swap regret. The presence of the actions of type (b) with loss
exactly 1/2 is not really necessary but helps to simplify the calculations. Formally, we argue as
follows.

Assume T < N/2. We will give a swap-regret lower bound of T/8, implying our desired result.
In particular, we will keep track of two quantities: EF , the expected regret of A with respect to
a specific modification rule F , and EL, the expected loss of A. Modification rule F is defined as
follows: the first time t that algorithm A plays some action i, we define F(i) to be whichever action
performed best at time t (breaking ties arbitrarily); for actions never played, the value of F does not
matter. Now, consider some specific time step t. If algorithm A plays some action i that was never
before played, then EF increases by at least 1/4 (since for T < N/2 there must be at least one other
unplayed action j ≤ N/2 and E[max(!ti − !tj,0)] = 1/4), and EL increases by 1/2. On the other
hand, if algorithm A plays a previously-played action, then EL increases by 1, and EF at least does
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not decrease. Notice that either way, 2EF +EL increases by at least 1. Therefore, by time T we have
2EF +EL ≥ T . Now, if algorithm A is such that EF ≥ T/8 then we are done (the expected regret
with respect to F is large). On the other hand, if EF < T/8, then this implies EL ≥ 3T/4. However,
this means that algorithm A has large expected external regret since there must exist some unplayed
action j > N/2 whose total loss is exactly T/2. Thus in this case the expected swap-regret of A is
at least T/4.

Theorem 9 There exists an adaptive adversary such that for any randomized online algorithm A,
its expected swap regret E[ max

F∈F sw
LA− LA,F ] (defined with respect to the actions selected from pt

rather than pt itself), is at least
√
TN/160−1, for N ≤ T ≤ 1√

N e
N/288.

Proof The adversary is the same as that used in the proof of Theorem 8, except now it waits
until an action is played 8T/N times before causing it to deterministically receive a loss of 1.
Specifically, all actions played by algorithm A at least 8T/N times receive a loss of 1, and all other
actions i receive either (a) a loss chosen uniformly and independently at random from {0,1} if
i ∈ {1, . . . ,N/2}, or (b) a loss of exactly 1/2 if i ∈ {N/2+1, . . . ,N}. Let us call an action that has
been played less than 8T/N times a “low-loss action” and those played at least 8T/N times a “1-
loss action”. Let T ! denote the number of times the algorithm plays low-loss actions (which could
be a random variable depending on the algorithm). Notice that the expected loss of the algorithm is
E[T !/2+(T −T !)] = T −E[T !/2].

We break the argument into two cases based on E[T !]. The simpler case is E[T !] ≤ 3T/4 (i.e.,
the algorithm plays many 1-loss actions). In that case, the expected loss of the algorithm is at least
5T/8. On the other hand, there must be some action of total loss at most T/2 because it is not
possible for the algorithm to have played all actions i ∈ {N/2+1, . . . ,N} for 8T/N times each. So,
the expected regret is at least T/8≥

√
TN/8.

We now analyze the case that E[T !] > 3T/4. Let Ti denote the time steps in which the algorithm
plays i, and let Ti = |Ti|. Define modification rule F such that F(i) is the action of least total loss in
time steps Ti. We will argue later that with probability 1−λ (where we will set λ = 1/T ), for all i
the action F(i) has loss at most Ti/2−

√
Ti/5 during time steps Ti. So, letting R denote the swap-

regret of algorithm A, the expected swap-regret E[R] is at least the difference between its expected
loss and E[∑iTi/2−

√
Ti/5]+λT :

E[R] ≥ T −E
[
T !

2

]
−E

[
N

∑
i=1

Ti
2
−

√
Ti
5

]
−λT ≥ 1

5
E

[
N

∑
i=1

√
Ti

]
−λT,

where we use the fact that ∑iTi = T and T ! ≤ T .
The number of actions i such that Ti ≥ T/(4N) is at least (T !−T/4)/(8T/N), since even if one

considers only the time steps in which low-loss actions are played, at most T/4 of them can involve
playing actions with Ti < T/(4N), and for the rest, any given action i can occur at most 8T/N times.
Since E[T !] ≥ 3T/4, the expected number of such actions is at least (T/2)/(8T/N) = N/16 and
therefore,

E[R] ≥ 1
5
E

[
N

∑
i=1

√
Ti

]
−λT ≥ N

80

√
T
4N

−λT =
√
TN
160

−λT.
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It remains to show that with high probability, all actions F(i) have loss at most Ti/2−
√
Ti/5

during time steps Ti. First, note that in K coin tosses, with probability at least 1/3 we have at most
K/2−

√
K/5 heads. Fix an action i and any given value of Ti. So, by Hoeffding bounds, if N/2

coins (corresponding to actions 1, . . . ,N/2) are each tossed K = Ti times, with probability at least
e−N(1/3−1/4)2 we have over N/8 (i.e., 1/4 of them) with at most Ti/2−

√
Ti/5 heads. Thus, even if

the algorithm could decide which (at most N/8) actions to turn into 1-loss actions after the fact, with
probability at least e−N(1/3−1/4)2 there will still be at least one with loss at most Ti/2−

√
Ti/5. Sum-

ming over all i and all possible values of Ti yields a failure probability at most NTe−N(1/3−1/4)2 = λ.
For T ≤ 1√

N e
N/288, this is at most 1/T , completing the proof.

5. Reducing External to Swap Regret in the Partial Information Model

In the full information setting the learner gets, at the end of each time step, full information on
the costs of all the actions. In the partial information (multi-arm bandit) model, the learner gets
information only about the action that was selected. In some applications this is a more plausible
model regarding the information the learner can observe.

The reduction in the partial information model is similar to the one of the full information
model, but with a few additional complications. We are given N partial information algorithms
Ai. At each time step t, each algorithm Ai outputs a distribution qti . Our master online algorithm
combines them to some distribution pt which it uses. Given pt it receives a feedback, but now this
includes information only regarding one action, that is, it receives (!tkt ,k

t), where kt is distributed
according to pt . We take this feedback and distribute to each algorithm Ai a feedback (cti,kt), such
that ∑i cti = !tkt . The main technical difficulty is that now the action selected, kt , is distributed
according to pt and not qti . (For example, it might be that Ai has qti, j = 0 but it receives feedback
about action j. From Ai’s point of view this is impossible! Or, more generally, Ai might start
noticing it seems to have a very bad random-number generator.) For this reason, for the reduction
to work we need to make a stronger assumption about the guarantees of the algorithms Ai, which
luckily is implicit in the algorithms of Auer et al. (2002a). Since results of Auer et al. (2002a) are
stated in terms of maximizing gain rather then minimizing loss we will switch to this notation, for
example, define the benefit of action j at time t to be btj = 1− !tj.

We start by describing our MAB algorithm SR MAB. Initially, we are given N partial informa-
tion algorithms Ai. At each time step t, each Ai gives a selection distribution qti over actions. Given
all the selection distributions we compute an action distribution pt . We would like to keep two sets
of gains: one is the real gain, denoted by bti , and the other is the gain that the MAB algorithm Ai
observes, gtAi . Given the action distribution p

t the adversary selects a vector of real gains bti . Our
MAB algorithm SR MAB receives a single feedback (btkt ,k

t) where kt is a random variable that with
probability ptj equals j. Algorithm SR MAB, given bt , returns to each Ai a pair (gtAi ,k

t), where
the observed gain gtAi is based on b

t
kt , p

t and qti . Again, note that kt is distributed according to pt ,
which may not equal qti: it is for this reason we need to use an MAB algorithm that satisfies certain
properties (stated in Lemma 10).

In order to specify our MAB algorithm, SR MAB, we need to specify how it selects the action
distribution pt and the observed gains gtAi . As in the full information case, we compute an action
distribution pt such that ptj = ∑i ptiqti, j. That is, p= pQ, where p is the row-vector of our probabili-
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ties and Q is the matrix of qi, j. Given pt the adversary returns a real gain (btkt ,k
t), namely, the real

gain is of our algorithm btkt . We return to each algorithm Ai an observed gain of gtAi = ptibtktqi,kt/p
t
kt .

(In general, define gti, j = ptibtjqti, j/ptj, if j = kt and gti, j = 0 if j '= kt .)
First, we will show that ∑N

i=1 gtAi = btkt which implies that g
t
Ai ∈ [0,1]. From the property of the

distribution pt we have that,

N

∑
i=1

gtAi =
N

∑
i=1

ptibtktqi,kt
ptkt

=
ptktb

t
kt

ptkt
= btkt .

This shows that we distribute our real gain among the algorithms Ai; that is, that the sum of the
observed gains equals the real gain. In addition, it bounds the observed gain that each algorithm Ai
receives. Namely, 0≤ gtAi ≤ btkt ≤ 1.

In order to describe the guarantee that each external regret multi-arm bandit algorithm Ai is
required to have, we need the following additional definition. At time t let X t

i, j be a random variable
such that X ti, j = gti, j/qti, j if j = kt and X ti, j = 0 otherwise. The expectation of X ti, j is,

Ekt∼pt [X ti,kt ] = ptkt
gti,kt
qti,kt

= ptkt
ptibtkt
ptkt

= ptib
t
kt .

Lemma 10 (Auer et al. 2002a) There exists a multi-arm bandit algorithm, Ai, such that for any
sequence of observed gains gti, j ∈ [0,1] it outputs actions distributions qti , and for any sequence of
selected actions kt , and for any action r and parameter γ ∈ (0,1], then,

GAi,gt ≡
T

∑
t=1

gtAi ≡
T

∑
t=1

gti,kt ≥ (1− γ)
T

∑
t=1

X ti,r−
N lnN
γ

− γ
N

T

∑
t=1

N

∑
j=1

X ti, j,

where X ti, j is a random variable such that X ti, j = gti, j/qti, j if j = kt and X ti, j = 0 otherwise.

Note that in Auer et al. (2002a) the action distribution is identical to the selection distribution,
that is, pt ≡ qt , and the observed and real gain are identical, that is, gt ≡ bt . Auer et al. (2002a) derive
the external regret bound by taking the expectation with respect to the action distribution (which is
identical to the selection distribution). In our case we separate the real gain from the observed gain,
which adds another layer of complication. (Technically, the distribution pt is a random variable
that depends on the history H t−1 up to time t, that is, the observed actions k1, . . .kt−1 and well as
the observed gains b1k1 , . . .b

t−1
kt−1 . For this reason we take the expectation with respect to H t−1 every

time we refer to pt . For simplicity we make this dependency implicitly in the expectations E[·].)
We define the expected benefit of SR MAB to be BSR MAB = E[∑T

t=1 btSR MAB] and for a function
F : {1, . . . ,N} → {1, . . . ,N} we define BSR MAB,F = E[∑T

t=1∑
N
i=1 ptibtF(i)]. We now state our main

theorem regarding the partial information model.

Theorem 11 Given a multi-arm bandit algorithm satisfying Lemma 10 (such as the algorithm of
Auer et al., 2002a), it can be converted to a master online algorithm SR MAB, such that

BSR MAB ≥max
F

BSR MAB,F −N ·RMAB(Bmax,T,N) ,

where the expectation is over the observed actions of SR MAB, Bmax bounds the maximum benefit
of any algorithm and RMAB(B,T,N) = O(

√
BN logN).

1317



BLUM AND MANSOUR

Proof Let the total observed gain of algorithm Ai be GAi =∑T
t=1 gtAi =∑T

t=1 gti,kt . Since we distribute
our gain between the Ai, that is, ∑N

i=1 gtAi = btSR MAB, we have that BSR MAB = E[∑T
t=1 btSR MAB] =

∑N
i=1E[GAi ]. Since gti, j ∈ [0,1], by Lemma 10, this implies that for any action r, after taking the
expectation, we have

E[GAi ] = E[
T

∑
t=1

Ept [gti,kt ]]

≥ (1− γ)E[
T

∑
t=1

Ept [X ti,r]]−
N lnN
γ

− γ
N
E

[
T

∑
t=1

N

∑
j=1

Ept [X ti, j]

]

= (1− γ)E[
T

∑
t=1

ptib
t
r]−

N lnN
γ

− γ
N
E

[
T

∑
t=1

N

∑
j=1

ptib
t
j

]

≥ (1− γ)Bi,r−
N lnN
γ

− γ
N

N

∑
j=1

Bi, j

≥ Bi,r−O(
√
BmaxN lnN) = Bi,r−RMAB(Bmax,N,T ) ,

where Bi,r = E[∑T
t=1 ptibtr], Bmax ≥maxi, jBi, j and γ=min{

√
(N lnN)/Bmax,1}.

For swap regret, we compare the expected benefit of SR MAB to that of ∑N
i=1max jBi, j. There-

fore,

BSR MAB =
N

∑
i=1

E[GAi ] ≥maxF
N

∑
i=1

Bi,F(i) −N ·RMAB(Bmax,T,N)

which completes the proof of the theorem.

6. External Regret with Time-Selection Functions

We now present a simple online algorithm that achieves a good external regret bound in the presence
of time selection functions, generalizing the sleeping experts setting. Specifically, our goal is for
each action a, and each time-selection function I, that our total loss during the time-steps selected
by I should be not much more than the loss of a during those time steps. More generally, this should
be true for the losses weighted by I when I(t) ∈ [0,1]. The idea of the algorithm is as follows. Let
Ra,I be the regret of our algorithm with respect to action a and time selection function I. That is,
Ra,I = ∑t I(t)(!tH − !ta). Let R̃a,I be a less-strict notion of regret in which we multiply our loss by
some β ∈ (0,1), that is, R̃a,I = ∑t I(t)(β!tH − !ta). What we will do is give to each action a and
time selection function I a weight wa,I that is exponential in R̃a,I . We will prove that the sum of
our weights never increases, and thereby be able to easily conclude that none of the R̃a,I can be too
large.

Specifically, for each of the N actions and the M time selection functions we maintain a weight
wta,I . We update these weights using the rule w

t+1
a,I = wta,IβI(t)(!

t
a−β!tH), where !tH is the loss of our

online algorithm H at time t. (Initially, w0a,I = 1.) Equivalently, wta,I = β−R̃
t
a,I , where R̃ta,I is the

“less-strict” regret mentioned above up to time t.
At time t we define wta =∑I I(t)wta,I ,W t =∑awta and pta =wta/W t . Our distribution over actions

at time t is pt . The following claim shows that the weights remain bounded.
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Claim 12 At any time t we have 0≤ ∑a,Iwta,I ≤ NM.

Proof Initially, at time t = 0, the claim clearly holds. Observe that at time t we have the following
identity,

W t!tH =W t∑
a
pta!

t
a =∑

a
wta!

t
a =∑

a
∑
I
I(t)wta,I!

t
a. (2)

For the inductive step we show that the sum of the weights can only decrease. Note that for any
β ∈ [0,1] and x ∈ [0,1] we have βx ≤ 1− (1−β)x and β−x ≤ 1+(1−β)x/β. Therefore,

∑
a
∑
I
wt+1a,I = ∑

a
∑
I
wta,Iβ

I(t)(!ta−β!tH)

= ∑
a
∑
I
wta,Iβ

I(t)!taβ−βI(t)!
t
H)

≤ ∑
a
∑
I
wta,I(1− (1−β)I(t)!ta)(1+(1−β)I(t)!tH)

≤
(

∑
a
∑
I
wta,I

)
− (1−β)

(

∑
a,I
I(t)wta,I!

t
a

)
+(1−β)

(

∑
a,I
I(t)wta,I!

t
H

)

=

(

∑
a
∑
I
wta,I

)
− (1−β)W t!tH +(1−β)W t!tH (using Equation 2)

=

(

∑
a
∑
I
wta,I

)
,

which completes the proof of the claim.

We use the above claim to bound the weight of any action a and time-selection function I.

Corollary 13 For every action a and time selection I we have

wta,I = βLa,I−βLH,I ≤MN,

where LH,I = ∑t I(t)!tH is the loss of the online algorithm with respect to time-selection function I.

A simple algebraic manipulation of the above implies the following theorem

Theorem 14 For every action a and every time selection function I ∈ I we have

LH,I ≤
La,I + logNM

log 1β
β

.

We can optimize for β in advance, or do it dynamically using Auer et al. (2002b), establishing:

Corollary 15 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I +O(
√
Lmin logNM+ logMN),

where Lmin =maxImina{La,I}.
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One can get a more refined regret bound of O(
√
Lmin,I logNM+ logMN) with respect to each

time selection function I ∈ I , where Lmin,I = mina{La,I}. This is achieved by keeping a parame-
ter βI for each time selection function I ∈ I . As before we then set wta,I = β

−R̃ta,I
I , where R̃ta,I =

∑t ′≤t I(t ′)(βI!t
′
H−!t

′
a). We then let wta =∑I(1−βI)I(t)wta,I ,W t =∑awta and pta =wta/W t . The proof

of Claim 12 holds in a similar way, and from that one can derive, analogously, the more refined
regret bound, as stated in the following theorem.

Theorem 16 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I +O(
√
Lmin,I logNM+ logMN),

where Lmin,I =mina{La,I}.

7. Arbitrary Time Selection and Modification Rules

In this section we combine the techniques from Sections 3 and 6 to derive a regret bound for the
general case where we assume that there is a finite set I of M time selection functions, and a finite
set F of K modification rules. Our goal is to design an algorithm such that for any time selection
function I ∈ I and any F ∈ F , we have that LH,I is not much larger than LH,I,F . Essentially, our
results can be viewed as deriving explicit rates for the wide range regret of Lehrer (2003).

We maintain at time t a weight wtj,I,F per action j, time selection I and modification rule F .
Initially w0j,I,F = 1. We set

wt+1j,I,F = wtj,I,Fβ
ptjI(t)(!tF( j)−β!

t
H, j),

and letW t
j,F = ∑I I(t)wtj,I,F ,W t

j = ∑FW t
j,F , and !tH, j = ∑FW t

j,F!tF( j)/W
t
j .

We use the weights to define a distribution pt over actions as follows. We select a distribution
pt such that

pti =
N

∑
j=1

ptj ∑
F:F( j)=i

W t
j,F

W t
j

. (3)

That is, p is the stationary distribution of the associated Markov chain. Notice that the definition of
p implies that the loss of H at time t can either be viewed as ∑i pti!ti or as ∑ j p j∑F(W t

j,F/W t
j )!

t
F( j)

= ∑ j ptj!tH, j. The following claim bounds the magnitude of the weights.

Claim 17 For every action j, at any time t we have 0≤ ∑I,F wtj,I,F ≤MK.

Proof This clearly holds initially at t = 0. For any t ≥ 0 we show that ∑I,F wt+1j,I,F ≤ ∑I,F wtj,I,F .
Recall that for β ∈ [0,1] and x ∈ [0,1] we have βx ≤ 1− (1−β)x and β−x ≤ 1+(1−β)x/β.

∑
I,F
wt+1j,I,F = ∑

I,F
wtj,I,Fβ

ptjI(t)(!tFt ( j)−β!
t
H, j)

≤ ∑
I,F
wtj,I,F(1− (1−β)ptjI(t)!

t
Ft( j))(1+(1−β)ptjI(t)!

t
H, j)

≤
(

∑
I,F
wtj,I,F

)
− (1−β)ptj∑

F
!tF t( j)∑

I
I(t)wtj,I,F +(1−β)ptj!

t
H, j∑

I,F
I(t)wtj,I,F
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=

(

∑
I,F
wtj,I,F

)
− (1−β)ptj∑

F
!tF t( j)W

t
j,F +(1−β)ptj!

t
H, jW

t
j

=

(

∑
I,F
wtj,I,F

)
− (1−β)ptjW

t
j !
t
H, j +(1−β)ptjW

t
j !
t
H, j

= ∑
I,F
wtj,I,F ,

where in the second to last equality we used the identity ∑F !tF t( j)W
t
j,F = !tH, jW t

j .

The following theorem derives the general regret bound.

Theorem 18 For every time selection I ∈ I and modification rule F ∈ F , we have that

LH,I ≤ LH,I,F +O(
√
TN logMK) .

Proof Consider a time selection function I ∈ I and a modification function F ∈ F . By Claim 17
we have that,

wTj,I,F = β(∑t ptjI(t)!tFt ( j))−β(∑t p
t
jI(t)!tH, j) ≤MK ,

which is equivalent to
(
∑
t
I(t)ptj!

t
H, j

)
≤ 1
β

(
∑
t
I(t)ptj!

t
F t( j)

)
+
logMK
β log 1β

.

Notice that ∑ j,t I(t)ptj!tH, j = ∑i,t I(t)pti!ti , by the definition of the pi’s in Equation (3). Summing
over all actions j this sum is LH,I . Therefore,

LH,I =
N

∑
j=1

(
∑
t
I(t)ptj!

t
H, j

)
≤

N

∑
j=1

1
β

(
∑
t
I(t)ptj!

t
F t( j)

)
+
N logMK
β log 1β

=
1
β
LH,I,F +

N logMK
β log 1β

,

where LH,I is the cost of the online algorithm at time selection I and LH,I,F is the cost of the modified
output sequence at time selection I. Optimizing for β we derive the theorem.

8. Boolean Prediction with Time Selection

In this section we consider the case that there are two actions {0,1}, and the loss function is such
that at every time step t one action has loss 1 and the other has loss 0. Namely, we assume that
the adversary returns at time t an action ot ∈ {0,1}, and the loss of action at is 1 if at '= ot and 0 if
at = ot . Our objective here is to achieve good bounds with a deterministic algorithm.

For each time selection function I ∈ I , action a ∈ {0,1}, and time t, our online Boolean predic-
tion algorithm maintains a weight wta,I . Initially we set w0a,I = 1 for every action a ∈ {0,1} and time
selection function I ∈ I . At time t, for each action a ∈ {0,1}, we compute wta = ∑I I(t)wta,I , and
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predict at = 1 if wt1 ≥ wt0, and otherwise predict at = 0. The weighted errors of our online Boolean
prediction algorithm, during the time selection function I ∈ I , is ∑t:ot %=at I(t).

Following our prediction we observe the adversary action ot . If no error occurred (i.e., at = ot)
then all the weights at time t+1 equal the weights at time t. If an error occurred (i.e., at '= ot) then
we update the weights as follows. For every time selection function I ∈ I we set the weight of action
b to wt+1b,I = wtb,I2

cI(t), where c=−1 if b '= ot and c= 1/2 if b= ot . This can be viewed as a version
of the Balanced-Winnow algorithm of Littlestone (1988). We establish the following claim,

Claim 19 At any time t we have 0≤ ∑a,Iwta,I ≤ 2M.

Proof Clearly this holds at time t = 0. When an error is performed, we have that wterror ≥
wtcorrect , where correct = ot and error = 1− ot . The additive change in the weights is at most
(
√
2−1)wtcorrect −wterror/2< 0, which completes the proof.

For a time selection function I ∈ I , let va,I = ∑t:ot=a I(t). The preferred action for a time selec-
tion function I is 1 if v1,I ≥ v0,I and 0 otherwise. Let OPT (I) be the weighted errors of the preferred
action during time selection function I. W.l.o.g., assume that the preferred action for I is 1, which
implies that OPT (I) = v0,I . By Claim 19 we have that wt1,I ≤ 2M. The total decrease in wt1,I is
bounded by a factor of 2−v0,I . Since wT1,I ≤ 2M this implies that 2x/2−v0,I ≤ 2M, where x is the total
increase, which implies that

x≤ 2v0,I +2+2log2M .

The weighted errors of our online Boolean prediction algorithm, during time selection function
I ∈ I , that is, ∑t:at %=ot I(t), is at most x+ v0,I , while the preferred action makes only v0,I weighted
errors. This implies that the weighted errors of our online Boolean prediction algorithm during time
selection function I is bounded by x+ v0,I = 3v0,I + 2+ 2log2M, which establishes the following
theorem.

Theorem 20 For every I ∈ I , our online algorithm makes at most 3OPT (I)+2+2log2M weighted
errors.

9. Conclusion and Open Problems

In this paper we give general reductions by which algorithms achieving good external regret can be
converted to algorithms with good internal or swap regret, and in addition we develop algorithms for
a generalization of the sleeping experts scenario including both real-valued time-selection functions
and a finite set of modification rules.

A key problem left open by this work is whether it is possible to achieve swap-regret that has a
sublinear or even logarithmic dependence on N. Specifically, for external regret, existing algorithms
achieve regret εT in time T = O( 1ε2 logN), but our algorithms for swap-regret achieve regret εT
only by time T = O( 1ε2N logN). We have shown that sublinear dependence is not possible against
an adaptive adversary with swap-regret defined with respect to the actions actually chosen from
the algorithm’s distribution, but we do not know whether there is a comparable lower bound in the
distributional setting (where swap-regret is defined with respect to the distributions pt themselves).
In particular, an algorithm with lower dependence on N would imply a more efficient (in terms
of number of rounds) procedure for achieving an approximate correlated equilibrium. Ideally,
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one would like to achieve approximate correlated equilibrium in a number of rounds that is only
logarithmic in N, much as can be done for approximate minimax optimality in 2-player zero-sum
games.
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Abstract
Given a sample from a probability measure with support on a submanifold in Euclidean space one
can construct a neighborhood graph which can be seen as an approximation of the submanifold. The
graph Laplacian of such a graph is used in several machine learning methods like semi-supervised
learning, dimensionality reduction and clustering. In this paper we determine the pointwise limit
of three different graph Laplacians used in the literature as the sample size increases and the neigh-
borhood size approaches zero. We show that for a uniform measure on the submanifold all graph
Laplacians have the same limit up to constants. However in the case of a non-uniform measure
on the submanifold only the so called random walk graph Laplacian converges to the weighted
Laplace-Beltrami operator.
Keywords: graphs, graph Laplacians, semi-supervised learning, spectral clustering, dimensional-
ity reduction

1. Introduction

In recent years, methods based on graph Laplacians have become increasingly popular in machine
learning. They have been used in semi-supervised learning (Belkin and Niyogi, 2004; Zhou et al.,
2004; Zhu and Ghahramani, 2002), spectral clustering (Spielman and Teng, 1996; von Luxburg,
2006) and dimensionality reduction (Belkin and Niyogi, 2003; Coifman and Lafon, 2006). Their
popularity is mainly due to the following properties of the Laplacian which will be discussed in
more detail in a later section:

c©2007 Matthias Hein, Jean-Yves Audibert and Ulrike von Luxburg.
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• the Laplacian is the generator of the diffusion process (label propagation in semi-supervised
learning),

• the eigenvectors of the Laplacian have special geometric properties (motivation for spectral
clustering),

• the Laplacian induces an adaptive regularization functional, which adapts to the density and
the geometric structure of the data (semi-supervised learning, classification).

If the data lies inRd the neighborhood graph built from the random sample can be seen as an ap-
proximation of the continuous structure. In particular, if the data has support on a low-dimensional
submanifold the neighborhood graph is a discrete approximation of the submanifold. In machine
learning we are interested in the intrinsic properties and objects of this submanifold. The approxi-
mation of the Laplace-Beltrami operator via the graph Laplacian is a very important one since it has
numerous applications as we will discuss later.

Approximations of the Laplace-Beltrami operator or related objects have been studied for cer-
tain special deterministic graphs. The easiest case is a grid in Rd . In numerics it is standard to
approximate the Laplacian with finite-differences schemes on the grid. These can be seen as a spe-
cial instances of a graph Laplacian. There convergence for decreasing grid-size follows easily by
an argument using Taylor expansions. Another more involved example is the work of Varopoulos
(1984), where for a graph generated by an ε-packing of a manifold, the equivalence of certain prop-
erties of random walks on the graph and Brownian motion on the manifold have been established.
The connection between random walks and the graph Laplacian becomes obvious by noting that
the graph Laplacian as well as the Laplace-Beltrami operator are the generators of the diffusion
process on the graph and the manifold, respectively. In Xu (2004) the convergence of a discrete ap-
proximation of the Laplace Beltrami operator for a triangulation of a 2D-surface in R3 was shown.
However, it is unclear whether the approximation described there can be written as a graph Lapla-
cian and whether this result can be generalized to higher dimensions.

In the case where the graph is generated randomly, only first results have been proved so far.
The first work on the large sample limit of graph Laplacians has been done by Bousquet et al.
(2004). There the authors studied the convergence of the regularization functional induced by the
graph Laplacian using the law of large numbers forU-statistics. In a second step taking the limit of
the neighborhoodsize h→ 0, they got 1

p2∇(p2∇) as the effective limit operator in Rd . Their result
has recently been generalized to the submanifold case and uniform convergence over the space of
Hölder-functions by Hein (2005, 2006). In von Luxburg et al. (2007), the neighborhoodsize h was
kept fixed while the large sample limit of the graph Laplacian was considered. In this setting, the
authors showed strong convergence results of graph Laplacians to certain integral operators, which
imply the convergence of the eigenvalues and eigenfunctions. Thereby showing the consistency of
spectral clustering for a fixed neighborhood size.

In contrast to the previous work in this paper we will consider the large sample limit and the
limit as the neighborhood size approaches zero simultaneously for a certain class of neighbhorhood
graphs. The main emphasis lies on the case where the data generating measure has support on a
submanifold of Rd . The bias term, that is the difference between the continuous counterpart of the
graph Laplacian and the Laplacian itself has been studied first for compact submanifolds without
boundary by Smolyanov, von Weizsäcker, and Wittich (2000) and Belkin (2003) for the Gaussian
kernel and a uniform data generating measure and was then generalized by Lafon (2004) to general
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isotropic weights and general probability measures. Additionally Lafon showed that the use of data-
dependent weights for the graph allows to control the influence of the density. They all show that the
bias term converges pointwise if the neighborhood size goes to zero. The convergence of the graph
Laplacian towards these continuous averaging operators was left open. This part was first studied by
Hein et al. (2005) and Belkin and Niyogi (2005). In Belkin and Niyogi (2005) the convergence was
shown for the so called unnormalized graph Laplacian in the case of a uniform probability measure
on a compact manifold without boundary and using the Gaussian kernel for the weights, whereas
in Hein et al. (2005) the pointwise convergence was shown for the random walk graph Laplacian
in the case of general probability measures on non-compact manifolds with boundary using general
isotropic data-dependent weights. More recently Giné and Koltchinskii (2006) have extended the
pointwise convergence for the unnormalized graph Laplacian shown by Belkin and Niyogi (2005)
to uniform convergence on compact submanifolds without boundary giving explicit rates. In Singer
(2006), see also Giné and Koltchinskii (2006), the rate of convergence given by Hein et al. (2005)
has been improved in the setting of the uniform measure. In this paper we will study the three most
often used graph Laplacians in the machine learning literature and show their pointwise convergence
in the general setting of Lafon (2004) and Hein et al. (2005), that is we will in particular consider
the case where by using data-dependent weights for the graph we can control the influence of the
density on the limit operator.

In Section 2 we introduce the basic framework necessary to define graph Laplacians for general
directed weighted graphs and then simplify the general case to undirected graphs. In particular, we
define the three graph Laplacians used in machine learning so far, which we call the normalized,
the unnormalized and the random walk Laplacian. In Section 3 we introduce the neighborhood
graphs studied in this paper, followed by an introduction to the so called weighted Laplace-Beltrami
operator, which will turn out to be the limit operator in general. We also study properties of this
limit operator and provide insights why and how this operator can be used for semi-supervised
learning, clustering and regression. Then finally we present the main convergence result for all
three graph Laplacians and give the conditions on the neighborhood size as a function of the sample
size necessary for convergence. In Section 4 we illustrate the main result by studying the difference
between the three graph Laplacians and the effects of different data-dependent weights on the limit
operator. In Section 5 we prove the main result. We introduce a framework for studying non-
compact manifolds with boundary and provide the necessary assumptions on the submanifold M,
the data generating measure P and the kernel k used for defining the weights of the edges. We
would like to note that the theorems given in Section 5 contain slightly stronger results than the
ones presented in Section 3. The reader who is not familiar with differential geometry will find a
brief introduction to the basic material used in this paper in Appendix A.

2. Abstract Definition of the Graph Structure

In this section we define the structure on a graph which is required in order to define the graph
Laplacian. To this end one has to introduce Hilbert spaces HV and HE of functions on the vertices
V and edges E, define a difference operator d, and then set the graph Laplacian as Δ = d∗d. We
first do this in full generality for directed graphs and then specialize it to undirected graphs. This
approach is well-known for undirected graphs in discrete potential theory and spectral graph theory,
see for example Dodziuk (1984), Chung (1997), Woess (2000) and McDonald and Meyers (2002),
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and was generalized to directed graphs by Zhou et al. (2005) for a special choice of HV ,HE and d.
To our knowledge the very general setting introduced here has not been discussed elsewhere.

In many articles graph Laplacians are used without explicitly mentioning d, HV and HE . This
can be misleading since, as we will show, there always exists a whole family of choices for d, HV
and HE which all yield the same graph Laplacian.

2.1 Hilbert Spaces of Functions on the Vertices V and the Edges E

Let (V,W ) be a graph where V denotes the set of vertices with |V | = n and W a positive n× n
similarity matrix, that is wi j ≥ 0, i, j= 1, . . . ,n.W need not to be symmetric, that means we consider
the case of a directed graph. The special case of an undirected graph will be discussed in a following
section. Let E ⊂V ×V be the set of edges ei j = (i, j) with wi j > 0. ei j is said to be a directed edge
from the vertex i to the vertex j with weight wi j. Moreover, we define the outgoing and ingoing sum
of weights of a vertex i as

douti =
1
n

n

∑
j=1

wi j, dini =
1
n

n

∑
j=1

w ji.

We assume that douti +dini > 0, i= 1, . . . ,n, meaning that each vertex has at least one in- or outgoing
edge. Let R+ = {x ∈ R |x≥ 0} and R∗

+ = {x ∈ R |x> 0}. The inner product on the function space
RV is defined as

〈 f ,g〉V =
1
n

n

∑
i=1

fi giχi,

where χi = (χout(douti )+χin(dini )) with χout : R+ → R+ and χin : R+ → R+, χout(0) = χin(0) = 0
and further χout and χin strictly positive on R∗

+.
We also define an inner product on the space of functions RE on the edges:

〈F,G〉E =
1
2n2

n

∑
i, j=1

Fi jGi j φ(wi j),

where φ : R+ → R+, φ(0) = 0 and φ strictly positive on R∗
+. Note that with these assumptions

on φ the sum is taken only over the set of edges E. One can check that both inner products are
well-defined. We denote by H (V,χ) = (RV ,〈·, ·〉V ) and H (E,φ) = (RE ,〈·, ·〉E) the corresponding
Hilbert spaces. As a last remark let us clarify the roles of RV and RE . The first one is the space
of functions on the vertices and therefore can be regarded as a normal function space. However,
elements of RE can be interpreted as a flow on the edges so that the function value on an edge ei j
corresponds to the ”mass” flowing from one vertex i to the vertex j (per unit time).

2.2 The Difference Operator d and its Adjoint d∗

Definition 1 The difference operator d :H (V,χ) → H (E,φ) is defined as follows:

∀ ei j ∈ E, (d f )(ei j) = γ(wi j)( f ( j)− f (i)),

where γ : R∗
+ → R∗

+.
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Remark 2 Note that d is zero on the constant functions as one would expect it from a derivative.
In Zhou et al. (2004) another difference operator d is used:

(d f )(ei j) = γ(wi j)
(

f ( j)√
d( j)

− f (i)√
d(i)

)
. (1)

Note that in Zhou et al. (2004) they have γ(wi j) ≡ 1. This difference operator is in general not
zero on the constant functions. This in turn leads to the effect that the associated Laplacian is also
not zero on the constant functions. For general graphs without any geometric interpretation this is
just a matter of choice. However, the choice of d matters if one wants a consistent continuum limit
of the graph. One cannot expect convergence of the graph Laplacian associated to the difference
operator d of Equation (1) towards a Laplacian, since as each of the graph Laplacians in the
sequence is not zero on the constant functions, also the limit operator will share this property unless
limn→∞ d(Xi) = c,∀i = 1, . . . ,n, where c is a constant. We derive also the limit operator of the
graph Laplacian induced by the difference operator of Equation (1) introduced by Zhou et al. in
the machine learning literature and usually denoted as the normalized graph Laplacian in spectral
graph theory (Chung, 1997).

Obviously, in the finite case d is always a bounded operator. The adjoint operator d∗ :H (E,φ)→
H (V,χ) is defined by

〈d f ,u〉E = 〈 f ,d∗u〉V , ∀ f ∈ H(V,χ), u ∈ H (E,φ).

Lemma 3 The adjoint d∗ :H (E,φ) → H (V,χ) of the difference operator d is explicitly given by:

(d∗u)(l) =
1
2χl

(
1
n

n

∑
i=1

γ(wil)uil φ(wil)−
1
n

n

∑
i=1

γ(wli)uli φ(wli)
)

. (2)

Proof Using the indicator function f ( j) = j=l it is straightforward to derive:

1
n
χl (d∗u)(l) = 〈d ·=l,u〉E =

1
2n2

n

∑
i=1

(
γ(wil)uilφ(wil)− γ(wli)uliφ(wli)

)
,

where we have used 〈d ·=l,u〉E = 1
2n2 ∑

n
i, j=1(d ·=l)i jui jφ(wi j).

The first term of the rhs of (2) can be interpreted as the outgoing flow, whereas the second term
can be seen as the ingoing flow. The corresponding continuous counterpart of d is the gradient of
a function and for d∗ it is the divergence of a vector-field, measuring the infinitesimal difference
between in- and outgoing flow.

2.3 The General Graph Laplacian

Definition 4 (graph Laplacian for a directed graph) Given Hilbert spaces H (V,χ)
andH (E,φ) and the difference operator d :H (V,χ)→H (E,φ) the graph Laplacian Δ :H (V,χ)→
H (V,χ) is defined as

Δ= d∗d.
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Lemma 5 Explicitly, Δ :H (V,χ) → H (V,χ) is given as:

(Δ f )(l) =
1
2χl

[
1
n

n

∑
i=1

(
γ(wil)2φ(wil)+ γ(wli)2φ(wli)

)(
f (l)− f (i)

)]
.

Proof The explicit expression Δ can be easily derived by plugging the expression of d∗ and d
together:

(d∗d f )(l) =
1
2χl

(
1
n

n

∑
i=1

γ(wil)2[ f (l)− f (i)]φ(wil)−
1
n

n

∑
i=1

γ(wli)2[ f (i)− f (l)]φ(wli)
)

=
1
2χl

[
f (l)

1
n

n

∑
i=1

ŵi j−
1
n

n

∑
i=1

f (i)ŵi j
]
,

where we have introduced ŵi j =
(
γ(wil)2φ(wil)+ γ(wli)2φ(wli)

)
.

Proposition 6 Δ is self-adjoint and positive semi-definite.

Proof By definition, 〈 f ,Δg〉V = 〈d f ,dg〉E = 〈Δ f ,g〉V , and 〈 f ,Δ f 〉V = 〈d f ,d f 〉E ≥ 0.

2.4 The Special Case of an Undirected Graph

In the case of an undirected graph we have wi j = w ji, that is whenever there is an edge from i
to j there is an edge with the same value from j to i. This implies that there is no difference
between in- and outgoing edges. Therefore, douti ≡ dini , so that we will denote the degree function
by d with di = 1

n ∑
n
j=1wi j. The same for the weights in HV , χout ≡ χin, so that we have only one

function χ. If one likes to interpret functions on E as flows, it is reasonable to restrict the space HE
to antisymmetric functions since symmetric functions are associated to flows which transport the
same mass from vertex i to vertex j and back. Therefore, as a net effect, no mass is transported at
all so that from a physical point of view these functions cannot be observed at all. Since anyway we
consider only functions on the edges of the form d f (where f is in HV ) which are by construction
antisymmetric, we will not do this restriction explicitly.

The adjoint d∗ simplifies in the undirected case to

(d∗u)(l) =
1

2χ(dl)
1
n

n

∑
i=1

γ(wil)φ(wil)(uil−uli),

and the general graph Laplacian on an undirected graph has the following form:

Definition 7 (graph Laplacian for an undirected graph) Given Hilbert spaces
H (V,χ) and H (E,φ) and the difference operator d : H (V,χ) → H (E,φ) the graph Laplacian Δ :
H (V,χ) → H (V,χ) is defined as

Δ= d∗d.

Explicitly, for any vertex l, we have

(Δ f )(l) = (d∗d f )(l) =
1

χ(dl)

[
f (l)

1
n

n

∑
i=1

γ2(wil)φ(wil)−
1
n

n

∑
i=1

f (i)γ2(wil)φ(wil)
]
.
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In the literature one finds the following special cases of the general graph Laplacian. Unfortu-
nately there exist no unique names for the three graph Laplacians we introduce here, most of the
time all of them are just called graph Laplacians. Only the term ’unnormalized’ or ’combinatorial’
graph Laplacian seems to be established now. However, the other two could both be called normal-
ized graph Laplacian. Since the first one is closely related to a random walk on the graph we call it
random walk graph Laplacian and the other one normalized graph Laplacian.

The ’random walk’ graph Laplacian is defined as:

(Δ(rw) f )(i) = f (i)− 1
di
1
n

n

∑
j=1

wi j f ( j), Δ(rw) f = ( −D−1W ) f ,

where the matrix D is defined as Di j = di δi j. Note that P = D−1W is a stochastic matrix and
therefore can be used to define a Markov random walk on V , see for example Woess (2000). The
’unnormalized’ (or ’combinatorial’) graph Laplacian is defined as

(Δ(u) f )(i) = di f (i)−
1
n

n

∑
j=1

wi j f ( j), Δ(u) f = (D−W ) f .

We have the following conditions on χ,γ and φ in order to get these Laplacians:

∀ei j ∈ E : rw :
γ2(wi j)φ(wi j)

χ(di)
=
wi j
di

, unnorm :
γ2(wi j)φ(wi j)

χ(di)
= wi j.

We observe that by choosing Δ(rw) or Δ(u) the functions φ and γ are not fixed. Therefore it can
cause confusion if one speaks of the ’random walk’ or ’unnormalized’ graph Laplacian without
explicitly defining the corresponding Hilbert spaces and the difference operator. We also consider
the normalized graph Laplacian Δ(n) introduced by Chung (1997); Zhou et al. (2004) using the
difference operator of Equation (1) and the general spaces H(V,χ) and H (E,φ). Following the
scheme a straightforward calculation shows the following:

Lemma 8 The graph Laplacian Δnorm = d∗d with the difference operator d from Equation (1) can
be explicitly written as

(Δ(n) f )(l) =
1

nχ(dl)
√
dl

[
f (l)√
dl
1
n

n

∑
i=1

γ2(wil)φ(wil)−
1
n

n

∑
i=1

f (i)√
di
γ2(wil)φ(wil)

]
.

The choice χ(dl) = 1 and γ2(wil)φ(wil) = wil leads then to the graph Laplacian proposed in Chung
and Langlands (1996); Zhou et al. (2004),

(Δ(n) f )(l) =
1

n
√
dl

[
f (l)√
dl
dl−

1
n

n

∑
i=1

f (i)√
di
wli

]
=
1
n

[
f (l)− 1

n

n

∑
i=1

f (i)
wil√
dl di

]
,

or equivalently
Δ(n) f = D− 1

2 (D−W )D− 1
2 f = ( −D− 1

2WD− 1
2 ) f .

Note that Δ(u) = DΔ(rw) and Δ(n) = D− 1
2Δ(u)D− 1

2 .
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3. Limit of the Graph Laplacian for Random Neighborhood Graphs

Before we state the convergence results for the three graph Laplacians on random neighborhood
graphs, we first have to define the limit operator. Maybe not surprisingly, in general the Laplace-
Beltrami operator will not be the limit operator of the graph Laplacian. Instead it will converge to
the weighted Laplace-Beltrami operator which is the natural generalization of the Laplace-Beltrami
operator for a Riemannian manifold equipped with a non-uniform probability measure. The def-
inition of this limit operator and a discussion of its use for different applications in clustering,
semi-supervised learning and regression is the topic of the next section, followed by a sketch of the
convergence results.

3.1 Construction of the Neighborhood Graph

We assume to have a sample Xi, i = 1, . . . ,n drawn i.i.d. from a probability measure P which has
support on a submanifold M. For the exact assumptions regarding P, M and the kernel function k
used to define the weights we refer to Section 5.2. The sample then determines the set of vertices V
of the graph. Additionally we are given a certain kernel function k :R+ →R+ and the neighborhood
parameter h ∈R∗

+. As proposed by Lafon (2004) and Coifman and Lafon (2006), we use this kernel
function k to define the following family of data-dependent kernel functions k̃λ,h parameterized by
λ ∈ R as:

k̃λ,h(Xi,X j) =
1
hm

k(
∥∥Xi−X j

∥∥2 /h2)
[dh,n(Xi)dh,n(X j)]λ

,

where dh,n(Xi) = 1
n ∑

n
i=1

1
hm k(

∥∥Xi−X j
∥∥2 /h2) is the degree function introduced in Section 2 with

respect to the edge-weights 1
hm k(

∥∥Xi−X j
∥∥2 /h2). Finally we use k̃λ,h to define the weight wi j =

w(Xi,X j) of the edge between the points Xi and X j as

wλ,h(Xi,X j) = k̃λ,h(Xi,X j).

Note that the case λ= 0 corresponds to weights with no data-dependent modification. The parameter
h ∈ R∗

+ determines the neighborhood of a point since we will assume that k has compact support,
that is Xi and X j have an edge if

∥∥Xi−X j
∥∥ ≤ hRk where Rk is the support of kernel function. Note

that we will have k(0) = 0, so that there are no loops in the graph. This assumption is not necessary,
but it simplifies the proofs and makes some of the estimators unbiased.

In Section 2.4 we introduced the random walk, the unnormalized and the normalized graph
Laplacian. From now on we consider these graph Laplacians for the random neighborhood graph,
that is the weights of the graph wi j have the form wi j = w(Xi,X j) = k̃λ,h(Xi,X j). Using the kernel
function we can easily extend the graph Laplacians to the whole submanifold M. These extensions
can be seen as estimators for the Laplacian on M. We introduce also the extended degree function
d̃λ,h,n and the average operator Ãλ,h,n,

d̃λ,h,n(x) =
1
n

n

∑
j=1

k̃λ,h(x,X j), (Ãλ,h,n f )(x) =
1
n

n

∑
j=1

k̃λ,h(x,X j) f (X j).
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Note that d̃λ,h,n = Ãλ,h,n1. The extended graph Laplacians are defined as follows:

randomwalk (Δ(rw)λ,h,n f )(x) =
1
h2

(
f − 1

d̃λ,h,n
Ãλ,h,n f

)
(x) =

1
h2

(
Ãλ,h,ng
d̃λ,h,n

)
(x), (3)

unnormalized (Δ(u)λ,h,n f )(x) =
1
h2

(
d̃λ,h,n f − Ãλ,h,n f

)
(x) =

1
h2

(Ãλ,h,ng)(x),

normalized (Δ(n)λ,h,n f )(x) = 1
h2
√
d̃λ,h,n(x)

(
d̃λ,h,n f√

d̃λ,h,n
−

(
Ãλ,h,n f√

d̃λ,h,n

))
(x)

= 1
h2
√
d̃λ,h,n(x)

(Ãλ,h,ng′)(x),

where we have introduced g(y) := f (x)− f (y) and g′(y) := f (x)√
d̃λ,h,n(x)

− f (y)√
d̃λ,h,n(y)

. Note that all
extensions reproduce the graph Laplacian on the sample:

(Δ f )(i) = (Δ f )(Xi) = (Δλ,h,n f )(Xi), ∀i= 1, . . . ,n.

The factor 1/h2 arises by introducing a factor 1/h in the weight γ of the derivative operator d of
the graph. This is necessary since d is supposed to approximate a derivative. Since the Laplacian
corresponds to a second derivative we get from the definition of the graph Laplacian a factor 1/h2.

We would like to note that in the case of the random walk and and the normalized graph Lapla-
cian the normalization with 1/hm in the weights cancels out, whereas it does not cancel for the
unnormalized graph Laplacian except in the case λ = 1/2. The problem here is that in general
the intrinsic dimension m of the manifold is unknown. Therefore a normalization with the correct
factor 1

hm is not possible, and in the limit h→ 0 the estimate of the unnormalized graph Laplacian
will generally either vanish or blow up. The easy way to circumvent this is just to rescale the whole
estimate such that 1n ∑

n
i=1 d̃λ,h,n(Xi) equals a fixed constant for every n. The disadvantage is that this

method of rescaling introduces a global factor in the limit. A more elegant way might be to simulta-
neously estimate the dimension m of the submanifold and use the estimated dimension to calculate
the correct normalization factor, see, for example, Hein and Audibert (2005). However, in this work
we assume for simplicity that for the unnormalized graph Laplacian the intrinsic dimension m of
the submanifold is known. It might be interesting to consider both estimates simultaneously, but we
leave this as an open problem.

We will consider in the following the limit h→ 0, that is the neighborhood of each point Xi
shrinks to zero. However, since n→ ∞ and h as a function of n approaches zero sufficiently slow,
the number of points in each neighborhood approaches∞, so that roughly spoken sums approximate
the corresponding integrals. This is the basic principle behind our convergence result and is well
known in the framework of nonparametric regression (see Györfi et al., 2004).

3.2 The Weighted Laplacian and the Continuous Smoothness Functional

The Laplacian is one of the most prominent operators in mathematics. The following general prop-
erties are taken from the books of Rosenberg (1997) and Bérard (1986). It occurs in many partial
differential equations governing physics, mainly because in Euclidean space it is the only linear
second-order differential operator which is translation and rotation invariant. In Euclidean space Rd

it is defined as ΔRd f = div(grad f ) = ∑d
i=1 ∂

2
i f . Moreover, for any domain Ω ⊆ Rd it is a negative-

semidefinite symmetric operator onC∞
c (Ω), which is a dense subset of L2(Ω) (formally self-adjoint),
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and satisfies Z

Ω
fΔhdx= −

Z

Ω
〈∇ f ,∇h〉dx.

It can be extended to a self-adjoint operator on L2(Ω) in several ways depending on the choice
of boundary conditions. For any compact domain Ω (with suitable boundary conditions) it can be
shown that Δ has a pure point spectrum and the eigenfunctions are smooth and form a complete
orthonormal basis of L2(Ω), see, for example, Bérard (1986).

The Laplace-Beltrami operator on a Riemannian manifold M is the natural equivalent of the
Laplacian in Rd , defined as

ΔM f = div(grad f ) = ∇a∇a f .

However, the more natural definition is the following. For any f ,g ∈C∞
c (M), we have

Z

M
fΔhdV (x) = −

Z

M
〈∇ f ,∇h〉dV (x),

where dV =
√
detgdx is the natural volume element ofM. This definition allows easily an extension

to the case where we have a Riemannian manifoldM with a measure P . In this paper P will be the
probability measure generating the data. We assume in the following that P is absolutely continuous
wrt the natural volume element dV of the manifold. Its density is denoted by p. Note that the case
when the probability measure is absolutely continuous wrt the Lebesgue measure on Rd is a special
case of our setting.

A recent review article about the weighted Laplace-Beltrami operator is Grigoryan (2006).

Definition 9 (Weighted Laplacian) Let (M,gab) be a Riemannian manifold with measure P where
P has a differentiable and positive density p with respect to the natural volume element dV =√
detgdx, and let ΔM be the Laplace-Beltrami operator on M. For s∈R, we define the s-th weighted

Laplacian Δs as

Δs := ΔM +
s
p
gab(∇ap)∇b =

1
ps
gab∇a(ps∇b) =

1
ps
div(ps grad).

This definition is motivated by the following equality, for f ,g ∈C∞
c (M),

Z

M
f (Δsg) psdV =

Z

M
f
(
Δg+

s
p
〈∇p,∇g〉

)
psdV = −

Z

M
〈∇ f ,∇g〉 psdV, (4)

The family of weighted Laplacians contains two cases which are particularly interesting. The
first one, s = 0, corresponds to the standard Laplace-Beltrami operator. This case is interesting
if one only wants to use properties of the geometry of the manifold but not of the data generat-
ing probability measure. The second case, s = 1, corresponds to the standard weighted Laplacian
Δ1 = 1

p∇
a(p∇a).

In the next section it will turn out that through a data-dependent change of the weights of the
graph we can get the just defined weighted Laplacians as the limit operators of the graph Laplacian.
The rest of this section will be used to motivate the importance of the understanding of this limit
in different applications. Three different but closely related properties of the Laplacian are used in
machine learning
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• The Laplacian generates the diffusion process. In semi-supervised learning algorithms with a
small number of labeled points one would like to propagate the labels along regions of high-
density, see Zhu and Ghahramani (2002); Zhu et al. (2003). The limit operator Δs shows the
influence of a non-uniform density p. The second term s

p 〈∇p,∇ f 〉 leads to an anisotropy in
the diffusion. If s< 0 this term enforces diffusion in the direction of the maximum of the den-
sity whereas diffusion in the direction away from the maximum of the density is weakened.
If s< 0 this is just the other way round.

• The smoothness functional induced by the weighted Laplacian Δs, see Equation (4), is given
by

S( f ) =
Z

M
‖∇ f‖2 ps dV.

For s > 0 this smoothness functional prefers functions which are smooth in high-density re-
gions whereas unsmooth behavior in low-density is penalized less. This property can also
be interesting in semi-supervised learning where one assumes especially when only a few la-
beled points are known that the classifier should be constant in high-density regions whereas
changes of the classifier are allowed in low-density regions, see Bousquet et al. (2004) for
some discussion of this point and Hein (2005, 2006) for a proof of convergence of the regular-
izer induced by the graph Laplacian towards the smoothness functional S( f ). In Figure 1 this
is illustrated by mapping a density profile in R2 onto a two-dimensional manifold. However,

Figure 1: A density profile mapped onto a two-dim. submanifold in R3 with two clusters.

also the case s < 0 can be interesting. Minimizing the smoothness functional S( f ) implies
that one enforces smoothness of the function f where one has little data, and one allows the
function to vary more where one has sampled a lot of data points. Such a penalization has
been considered by Canu and Elisseeff (1999) for regression.

• The eigenfunctions of the Laplacian Δs can be seen as the limit partioning of spectral clus-
tering for the normalized graph Laplacian (however, a rigorous mathematical proof has not
been given yet, see von Luxburg et al., 2007, for a convergence result for fixed h). If s = 0
one gets just a geometric clustering in the sense that irrespectively of the probability measure
generating the data the clustering is determined by the geometry of the submanifold. If s> 0
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the eigenfunction corresponding to the first non-zero eigenvalue is likely to change its sign in
a low-density region. This argument follows from the previous discussion on the smoothness
functional S( f ) and the Rayleigh-Ritz principle. Let us assume for a moment that M is com-
pact without boundary and that p(x) > 0,∀x ∈M, then the eigenspace corresponding to the
first eigenvalue λ0 = 0 is given by the constant functions. The first non-zero eigenvalue can
then be determined by the Rayleigh-Ritz variational principle

λ1 = inf
u∈C∞(M)

{R
M ‖∇u‖2 p(x)sdV (x)R
M u2(x)p(x)sdV (x)

∣∣∣
Z

M
u(x) p(x)sdV (x) = 0

}
.

Since the first eigenfunction has to be orthogonal to the constant functions, it has to change
its sign. However, since ‖∇u‖2 is weighted by a power of the density ps it is obvious that for
s> 0 the function will change its sign in a region of low density.

3.3 Limit of the Graph Laplacians

The following theorem summarizes and slightly weakens the results of Theorem 30 and Theorem
31 of Section 5.

Main Result Let M be a m-dimensional submanifold in Rd , {Xi}ni=1 a sample from a probability
measure P on M with density p. Let x ∈ M\∂M and define s = 2(1− λ). Then under technical
conditions on the submanifold M, the kernel k and the density p introduced in Section 5, if h→ 0
and nhm+2/ logn→ ∞,

random walk: lim
n→∞

(Δ(rw)λ,h,n f )(x) ∼ −(Δs f )(x) almost surely,

unnormalized: lim
n→∞

(Δ(u)λ,h,n f )(x) ∼ −p(x)1−2λ (Δs f )(x) almost surely.

The optimal rate is obtained for h(n) = O
(
(logn/n)

1
m+4

)
. If h→ 0 and nhm+4/ logn→ ∞,

normalized: lim
n→∞

(Δ(n)λ,h,n f )(x) ∼ −p(x)
1
2−λΔs

(
f

p 12−λ

)
(x) almost surely.

where ∼ means that there exists a constant only depending on the kernel k and λ such that equality
holds.

The first observation is that the conjecture that the graph Laplacian approximates the Laplace-
Beltrami operator is only true for the uniform measure, where p is constant. In this case all limits
agree up to constants. However, big differences arise when one has a non-uniform measure on the
submanifold, which is the generic case in machine learning applications. In this case all limits dis-
agree and only the random walk graph Laplacian converges towards the weighted Laplace-Beltrami
operator which is the natural generalization of the Laplace-Beltrami operator when the manifold
is equipped with a non-uniform probability measure. The unnormalized graph Laplacian has the
additional factor p1−2λ. However, this limit is actually quite useful, when one thinks of applica-
tions of so called label propagation algorithms in semi-supervised learning. If one uses this graph
Laplacian as the diffusion operator to propagate the labeled data, it means that the diffusion for
λ < 1/2 is faster in regions where the density is high. The consequence is that labels in regions of
high density are propagated faster than labels in low-density regions. This makes sense since under
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the cluster assumption labels in regions of low density are less informative than labels in regions of
high density. In general, from the viewpoint of a diffusion process the weighted Laplace-Beltrami
operator Δs = ΔM + s

p∇p∇ can be seen as inducing an anisotropic diffusion due to the extra term
s
p∇p∇, which is directed towards or away from increasing density depending on s. This is a desired
property in semi-supervised learning, where one actually wants that the diffusion is mainly along
regions of the same density level in order to fulfill the cluster assumption.

The second observation is that the data-dependent modification of edge weights allows to control
the influence of the density on the limit operator as observed by Coifman and Lafon (2006). In fact
one can even eliminate it for s= 0 resp. λ= 1 in the case of the random walk graph Laplacian. This
could be interesting in computer graphics where the random walk graph Laplacian is used for mesh
and point cloud processing, see, for example, Sorkine (2006). If one has gathered points of a curved
object with a laser scanner it is likely that the points have a non-uniform distribution on the object.
Its surface is a two-dimensional submanifold in R3. In computer graphics the non-uniform measure
is only an artefact of the sampling procedure and one is only interested in the Laplace-Beltrami
operator to infer geometric properties. Therefore the elimination of the influence of a non-uniform
measure on the submanifold is of high interest there. We note that up to a multiplication with the
inverse of the density the elimination of density effects is also possible for the unnormalized graph
Laplacian, but not for the normalized graph Laplacian. All previous observations are naturally also
true if the data does not lie on a submanifold but has d-dimensional support in Rd .

The interpretation of the limit of the normalized graph Laplacian is more involved. An expan-
sion of the limit operator shows the complex dependency on the density p:

p
1
2−λΔs

(
f

p 12−λ

)
= ΔM f +

1
p
∇p∇ f − (λ− 1

2
)2
f
p
‖∇p‖2+(λ− 1

2
)
f
p
ΔMp.

We leave it to the reader to think of possible applications of this Laplacian.
The discussion shows that the choice of the graph Laplacian depends on what kind of problem

one wants to solve. Therefore, in our opinion there is no universal best choice between the random
walk and the unnormalized graph Laplacian from a machine learning point of view. However, from
a mathematical point of view only the random walk graph Laplacian has the correct (pointwise)
limit to the weighted Laplace-Beltrami operator.

4. Illustration of the Results

In this section we want to illustrate the differences between the three graph Laplacians and the
control of the influence of the data-generating measure via the parameter λ.

4.1 Flat Space R2

In the first example the data lies in Euclidean space R2. Here we want to show two things. First, the
sketch of the main result shows that if the data generating measure is uniform all graph Laplacians
converge for all values of the reweighting parameter λ up to constants to the Laplace-Beltrami
operator, which is in the case of R2 just the standard Laplacian. In Figure 2 the estimates of the
three graph Laplacians are shown for the uniform measure [−3,3]2 and λ= 0. It can be seen that up
to a scaling all estimates agree very well. In a second example we study the effect of a non-uniform
data-generating measure. In general all estimates disagree in this case. We illustrate this effect
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Figure 2: For the uniform distribution all graph Laplacians, Δ(rw)λ,h,n, Δ
(u)
λ,h,n and Δ

(n)
λ,h,n (from left to

right) agree up to constants for all λ. In the figure the estimates of the Laplacian are
shown for the uniform measure on [−3,3]2 and the function f (x) = sin( 12 ‖x‖

2)/‖x‖2
with 2500 samples and h= 1.4.

in the case of R2 with a Gaussian distribution N (0,1) as data-generating measure and the simple
function f (x) =∑i xi−4. Note that Δ f = 0 so that for the random walk and the unnormalized graph
Laplacian only the anisotropic part of the limit operator, 1p∇p∇ f is non-zero. Explicitly the limits
are given as

Δ(rw) ∼ Δs f = Δ f +
s
p
∇p∇ f = −s∑i xi,

Δ(u) ∼ p1−2λΔs f = −se−
1−2λ
2 ‖x‖2∑i xi,

Δ(n) ∼ p
1
2−λΔs

f
p
1
2−λ

= −∑i xi−
(
∑i xi−4

)[
(λ− 1

2
)(
3
2
−λ)‖x‖2−2(λ− 1

2
)
]
.

This shows that even applied to simple functions there can be large differences between the different
limit operators provided the samples come from a non-uniform probability measure. Note that like
in nonparametric kernel regression the estimate is quite bad at the boundary. This well known
boundary effect arises since at the boundary one does not average over a full ball but only over
some part of a ball. Thus the first derivative ∇ f of order O(h) does not cancel out so that multiplied
with the factor 1/h2 we have a term of order O(1/h) which blows up. Roughly spoken this effect
takes place at all points of order O(h) away from the boundary, see also Coifman and Lafon (2006).

4.2 The Sphere S2

In our next example we consider the case where the data lies on a submanifold M in Rd . Here
we want to illustrate in the case of a sphere S2 in R3 the control of the influence of the density
via the parameter λ. In this case we sample from the probability measure with density p(φ,θ) =
1
8π + 3

8π cos
2(θ) in spherical coordinates with respect to the volume element dV = sin(θ)dθdφ. This

density has a two-cluster structure on the sphere, where the northern and southern hemisphere rep-
resent one cluster. An estimate of the density p is shown in the Figure 4. We show the results of the
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Figure 3: Illustration of the differences of the three graph Laplacians, random walk, unnormalized
and normalized (from the top) for λ= 0. The function f is f = ∑2i=1 xi−4 and the 2500
samples come from a standard Gaussian distribution on R2. The neighborhood size h is
set to 1.2.
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random walk graph Laplacian together with the result of the weighted Laplace-Beltrami operator
and an error plot for λ= 0,1,2 resulting in s= −2,0,2 for the function f (φ,θ) = cos(θ). First one
can see that for a non-uniform probability measure the results for different values of λ differ quite
a lot. Note that the function f is adapted to the cluster structure in the sense that it does not change
much in each cluster but changes very much in region of low density. In the case of s = 2 we can
see that Δs f would lead to a diffusion which would lead roughly to a kind of step function which
changes at the equator. The same is true for s = 0 but the effect is much smaller than for s = 2. In
the case of s=−2 we have a completely different behavior. Δs f has now flipped its sign near to the
equator so that the induced diffusion process would try to smooth the function in the low density
region.

5. Proof of the Main Result

In this section we will present the main results which were sketched in Section 3.3 together with the
proofs. In Section 5.1 we first introduce some non-standard tools from differential geometry which
we will use later on. In particular, it turns out that the so called manifolds with boundary of bounded
geometry are the natural framework where one can still deal with non-compact manifolds in a
setting comparable to the compact case. After a proper statement of the assumptions under which
we prove the convergence results of the graph Laplacian and a preliminary result about convolutions
on submanifolds which is of interest on its own, we then start with the final proofs. The proof is
basically divided into two parts, the bias and the variance, where these terms are only approximately
valid. The reader not familiar with differential geometry is encouraged to first read the appendix on
basics of differential geometry in order to be equipped with the necessary background.

5.1 Non-compact Submanifolds in Rd with Boundary

We prove the pointwise convergence for non-compact submanifolds. Therefore we have to restrict
the class of submanifolds since manifolds with unbounded curvature do not allow reasonable func-
tion spaces.

Remark 10 In the rest of this paper we use the Einstein summation convention that is over indices
occurring twice has to be summed. Note that the definition of the curvature tensor differs between
textbooks. We use here the conventions regarding the definitions of curvature etc. of Lee (1997).

5.1.1 MANIFOLDS WITH BOUNDARY OF BOUNDED GEOMETRY

We will consider in general non-compact submanifolds with boundary. In textbooks on Riemannian
geometry one usually only finds material for the case where the manifold has no boundary. Also
the analysis, for example the definition of Sobolev spaces on non-compact Riemannian manifolds,
seems to be non-standard. We profit here very much from the thesis and an accompanying paper of
Schick (1996, 2001) which introduces manifolds with boundary of bounded geometry. All material
of this section is taken from these articles. Naturally this plus of generality leads also to a slightly
larger technical overload. Nevertheless we think that it is worth this effort since the class of mani-
folds with boundary of bounded geometry includes almost any kind of submanifold one could have
in mind. Moreover, to our knowledge, it is the most general setting where one can still introduce a
notion of Sobolev spaces with the usual properties.
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Figure 4: Illustration of the effect of λ = 0,1,2 (row 2−4) resulting in s = −2,0,2 for the sphere
with a non-uniform data-generating probability measure and the function f (θ,φ)= cos(θ)
(row 1) for the random walk Laplacian with n= 2500 and h= 0.6
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Note that the boundary ∂M is an isometric submanifold of M of dimension m−1. Therefore it
has a second fundamental form Π which should not be mixed up with the second fundamental form
Π ofM which is with respect to the ambient space Rd . We denote by ∇ the connection and by R the
curvature of ∂M. Moreover, let ν be the normal inward vector field at ∂M.

Definition 11 (Manifold with boundary of bounded geometry) Let M be a manifold with bound-
ary ∂M (possibly empty). It is of bounded geometry if the following holds:

• (N) Normal Collar: there exists rC > 0 so that the normal geodesic flow,

K : (x, t) → expx(tνx),

is defined on ∂M× [0,rC) and is a diffeomorphism onto its image (νx is the inward normal
vector). Let N(s) := K(∂M× [0,s]) be the collar set for 0≤ s≤ rC.

• (IC) The injectivity radius inj∂M of ∂M is positive.

• (I) Injectivity radius of M: There is ri > 0 so that if r≤ ri then for x∈M\N(r) the exponential
map is a diffeomorphism on BM(0,r) ⊂ TxM so that normal coordinates are defined on every
ball BM(x,r) for x ∈M\N(r).

• (B) Curvature bounds: For every k ∈ N there is Ck so that |∇iR| ≤ Ck and ∇
i
Π ≤ Ck for

0≤ i≤ k, where ∇i denotes the covariant derivative of order i.

Note that (B) imposes bounds on all orders of the derivatives of the curvatures. One could also
restrict the definition to the order of derivatives needed for the goals one pursues. But this would
require even more notational effort, therefore we skip this. In particular, in Schick (1996) it is
argued that boundedness of all derivatives of the curvature is very close to the boundedness of the
curvature alone.

The lower bound on the injectivity radius of M and the bound on the curvature are standard
to define manifolds of bounded geometry without boundary. Now the problem of the injectivity
radius of M is that at the boundary it somehow makes only partially sense since injM(x) → 0 as
d(x,∂M)→ 0. Therefore one replaces next to the boundary standard normal coordinates with normal
collar coordinates.

Definition 12 (normal collar coordinates) Let M be a Riemannian manifold with
boundary ∂M. Fix x′ ∈ ∂M and an orthonormal basis of Tx′∂M to identify Tx′∂M with Rm−1. For
r1,r2 > 0 sufficiently small (such that the following map is injective) define normal collar coordi-
nates,

nx′ : BRm−1(0,r1)× [0,r2] →M : (v, t) → expMexp∂Mx′ (v)(tν).

The pair (r1,r2) is called the width of the normal collar chart nx′ .

The next proposition shows why manifolds of bounded geometry are especially interesting.

Proposition 13 (Schick 2001) Assume that conditions (N),(IC),(I) of Definition 11 hold.

1342



LIMIT OF GRAPH LAPLACIANS ON RANDOM NEIGHBORHOOD GRAPHS

• (B1) There exist 0 < R1 ≤ rinj(∂M), 0 < R2 ≤ rC and 0 < R3 ≤ ri and constants CK > 0 for
each K ∈ N such that whenever we have normal boundary coordinates of width (r1,r2) with
r1 ≤ R1 and r2 ≤ R2 or normal coordinates of radius r3 ≤ ri then in these coordinates,

|Dαgi j|≤CK and |Dαgi j|≤CK for all |α|≤ K.

The condition (B) in Definition 11 holds if and only if (B1) holds. The constants CK can be chosen
to depend only on ri,rC, inj∂M and Ck.

Note that due to gi jg jk = δik one gets upper and lower bounds on the operator norms of g and
g−1, respectively, which result in upper and lower bounds for

√
detg. This implies that we have

upper and lower bounds on the volume form dV (x) =
√
detgdx.

Lemma 14 (Schick 2001) Let (M,g) be a Riemannian manifold with boundary of
bounded geometry of dimension m. Then there exists R0 > 0 and constants S1 > 0 and S2 such that
for all x ∈M and r ≤ R0 one has

S1rm ≤ vol(BM(x,r)) ≤ S2rm.

Another important tool for analysis on manifolds are appropriate function spaces. In order to
define a Sobolev norm one first has to fix a family of charts Ui with M ⊂ ∪iUi and then define
the Sobolev norm with respect to these charts. The resulting norm will depend on the choice of
the charts Ui. Since in differential geometry the choice of the charts should not matter, the natural
question arises how the Sobolev norm corresponding to a different choice of charts Vi is related to
that for the choiceUi. In general, the Sobolev norms will not be the same. However, if one assumes
that the transition maps are smooth and the manifold M is compact then the resulting norms will
be equivalent and therefore define the same topology. Now if one has a non-compact manifold this
argumentation does not work anymore. This problem is solved in general by defining the norm with
respect to a covering of M by normal coordinate charts. Then it can be shown that the change of
coordinates between these normal coordinate charts is well-behaved due to the bounded geometry
of M. In that way it is possible to establish a well-defined notion of Sobolev spaces on manifolds
with boundary of bounded geometry in the sense that any norm defined with respect to a different
covering of M by normal coordinate charts is equivalent. Let (Ui,φi)i∈I be a countable covering of
the submanifoldM with normal coordinate charts ofM, that is M ⊂ ∪i∈IUi, then:

‖ f‖Ck(M) =max
m≤k

sup
i∈I

sup
x∈φi(Ui)

∣∣Dm( f ◦φ−1i )(x)
∣∣.

In the following we will denote withCk(M) the space ofCk-functions onM together with the norm
‖·‖Ck(M).

5.1.2 INTRINSIC VERSUS EXTRINSIC PROPERTIES

Most of the proofs for the continuous part will work with Taylor expansions in normal coordinates.
It is then of special interest to have a connection between intrinsic and extrinsic distances. Since the
distance on M is induced from Rd , it is obvious that one has ‖x− y‖Rd ∼ dM(x,y) for all x,y ∈M
which are sufficiently close. The next proposition proven by Smolyanov, von Weizsäcker, and
Wittich (2000) provides an asymptotic expression of geometric quantities of the submanifold M in
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the neighborhood of a point x ∈M. Particularly, it gives a third-order approximation of the intrinsic
distance dM(x,y) inM in terms of the extrinsic distance in the ambient space X which is in our case
just the Euclidean distance in Rd .

Proposition 15 Let i :M → Rd be an isometric embedding of the smooth m-dimensional Rieman-
nian manifold M into Rd . Let x ∈M andV be a neighborhood of 0 in Rm and letΨ :V →U provide
normal coordinates of a neighborhood U of x, that is Ψ(0) = x. Then for all y ∈V:

‖y‖2Rm = d2M(x,Ψ(y)) = ‖(i◦Ψ)(y)− i(x)‖2+
1
12

‖Π(γ̇, γ̇)‖2TxRd +O(‖y‖5Rm),

where Π is the second fundamental form of M and γ the unique geodesic from x to Ψ(y) such that
γ̇= yi∂yi . The volume form dV =

√
det gi j(y)dy of M satisfies in normal coordinates,

dV =
(
1+

1
6
Riuvi yuyv+O(‖y‖3Rm)

)
dy,

In particular,
(Δ

√
det gi j)(0) = −1

3
R,

where R is the scalar curvature (i.e., R= gikg jlRi jkl).

We would like to note that in Smolyanov, von Weizsäcker, and Wittich (2007) this proposition
was formulated for general ambient spaces X , that is arbitrary Riemannian manifolds X . Using the
more general form of this proposition one could extend the results in this paper to submanifolds
of other ambient spaces X . However, in order to use the scheme one needs to know the geodesic
distances in X , which are usually not available for general Riemannian manifolds. Nevertheless, for
some special cases like the sphere, one knows the geodesic distances. Submanifolds of the sphere
could be of interest, for example in geophysics or astronomy.

The previous proposition is very helpful since it gives an asymptotic expression of the geodesic
distance dM(x,y) on M in terms of the extrinsic Euclidean distance. The following lemma is a non-
asymptotic statement taken from Bernstein et al. (2001) which we present in a slightly different
form. But first we establish a connection between what they call the ’minimum radius of curvature’
and upper bounds on the extrinsic curvatures ofM and ∂M. Let

Πmax = sup
x∈M

sup
v∈TxM,‖v‖=1

‖Π(v,v)‖ , Πmax = sup
x∈∂M

sup
v∈Tx∂M,‖v‖=1

∥∥Π(v,v)
∥∥ ,

where Π is the second fundamental form of ∂M as a submanifold of M. We set Πmax = 0 if the
boundary ∂M is empty.

Using the relation between the acceleration in the ambient space and the second fundamental
form for unit-speed curves γ with no acceleration inM (Dt γ̇= 0) established in Section A.3, we get
for the Euclidean acceleration of such a curve γ in Rd ,

‖γ̈‖ = ‖Π(γ̇, γ̇)‖ .

Now if one has a non-empty boundary ∂M it can happen that a length-minimizing curve goes (par-
tially) along the boundary (imagine Rd with a ball at the origin cut out). Then the segment c along
the boundary will be a geodesic of the submanifold ∂M, see Alexander and Alexander (1981), that
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is Dt ċ=∇ċċ= 0 where ∇ is the connection of ∂M induced byM. However, c will not be a geodesic
inM (in the sense of a curve with no acceleration) since by the Gauss-Formula in Theorem 41,

Dt ċ= Dt ċ+Π(ċ, ċ) =Π(ċ, ċ).

Therefore, in general the upper bound on the Euclidean acceleration of a length-minimizing curve γ
inM is given by,

‖γ̈‖ =
∥∥Π(γ̇, γ̇)+Π(γ̇, γ̇)

∥∥ ≤Πmax+Πmax.

Using this inequality, one can derive a lower bound on the ’minimum radius of curvature’ ρ defined
in Bernstein et al. (2001) as ρ = inf{1/‖γ̈‖Rd} where the infimum is taken over all unit-speed
geodesics γ ofM (in the sense of length-minimizing curves):

ρ≥ 1
Πmax+Πmax

.

Finally we can formulate the Lemma from Bernstein et al. (2001).

Lemma 16 Let x,y ∈M with dM(x,y) ≤ πρ. Then

2ρsin(dM(x,y)/(2ρ)) ≤ ‖x− y‖Rd ≤ dM(x,y).

Noting that sin(x) ≥ x/2 for 0≤ x≤ π/2, we get as an easier to handle corollary:

Corollary 17 Let x,y ∈M with dM(x,y) ≤ πρ. Then

1
2
dM(x,y) ≤ ‖x− y‖Rd ≤ dM(x,y).

In the given form this corollary is quite useless since we only have the Euclidean distances
between points and therefore we have no possibility to check the condition dM(x,y)≤ πρ. In general
small Euclidean distance does not imply small intrinsic distance. Imagine a circle where one has cut
out a very small segment. Then the Euclidean distance between the two ends is very small however
the geodesic distance is very large. We show now that under an additional assumption one can
transform the above corollary so that one can use it when one has only knowledge about Euclidean
distances.

Lemma 18 Let M have a finite radius of curvature ρ> 0. We further assume that,

κ := inf
x∈M

inf
y∈M\BM(x,πρ)

‖x− y‖ ,

is non-zero. Then BRd (x,κ/2)∩M ⊂ BM(x,κ) ⊂ BM(x,πρ). Particularly, if x,y ∈M and ‖x− y‖ ≤
κ/2, then

1
2
dM(x,y) ≤ ‖x− y‖Rd ≤ dM(x,y) ≤ κ.

Proof By definition κ is at most the infimum of ‖x− y‖ where y satisfies dM(x,y) = πρ. Therefore
the set BRd (x,κ/2)∩M is a subset of BM(x,πρ). The rest of the lemma then follows by Corollary
17. Figure 5 illustrates this construction.
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Figure 5: κ is the Euclidean distance of x ∈M toM\BM(x,πρ).

5.2 Notations and Assumptions

In general we work on complete non-compact manifolds with boundary. Compared to a setting
where one considers only compact manifolds one needs a slightly larger technical overhead. How-
ever, we will indicate how the technical assumptions simplify if one has a compact submanifold
with boundary or even a compact manifold without boundary.

We impose the following assumptions on the manifoldM:

Assumption 19 (i) The map i :M→ Rd is a smooth embedding,

(ii) The manifold M with the metric induced from Rd is a smooth manifold with boundary of
bounded geometry (possibly ∂M = /0),

(iii) M has bounded second fundamental form,

(iv) It holds κ := infx∈M infy∈M\BM(x,πρ) ‖i(x)− i(y)‖> 0, where ρ is the radius of curvature defined
in Section 5.1.2,

(v) For any x ∈ M\∂M, δ(x) := inf
y∈M\BM(x, 13 min{inj(x),πρ})

‖i(x)− i(y)‖Rd > 0, where inj(x) is the

injectivity radius1 at x and ρ> 0 is the radius of curvature.

The first condition ensures that i(M) is a smooth submanifold of Rd . Usually we do not distin-
guish between i(M) and M. The use of the abstract manifold M as a starting point emphasizes that
there exists an m-dimensional smooth manifold M or roughly equivalent an m-dimensional smooth
parameter space underlying the data. The choice of the d features determines then the representa-
tion in Rd . The choice of features corresponds therefore to a specific choice of the inclusion map i
since i determines howM is embedded into Rd . This means that another choice of features leads in
general to a different mapping i but the initial abstract manifoldM is always the same. However, in
the second condition we assume that the metric structure ofM is induced by Rd (which implies that
i is trivially an isometric embedding). Therefore the metric structure depends on the embedding i or
equivalently on our choice of features.

The second condition ensures thatM is an isometric submanifold of Rd which is well-behaved.
As discussed in Section 5.1.1, manifolds of bounded geometry are in general non-compact, complete
Riemannian manifolds with boundary where one has uniform control over all intrinsic curvatures.
The uniform bounds on the curvature allow to do reasonable analysis in this general setting. In

1. Note that the injectivity radius inj(x) is always positive.
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particular, it allows us to introduce the function spaces Ck(M) with their associated norm. It might
be possible to prove pointwise results even without the assumption of bounded geometry. But we
think that the setting studied here is already general enough to encompass all cases encountered in
practice.

The third condition ensures that M also has well-behaved extrinsic geometry and implies that
the radius of curvature ρ is lower bounded. Together with the fourth condition it enables us to get
global upper and lower bounds of the intrinsic distance on M in terms of the extrinsic distance in
Rd and vice versa, see Lemma 18.

The fourth condition is only necessary in the case of non-compact submanifolds. It prevents the
manifold from self-approaching. More precisely it ensures that if parts of M are far away from x in
the geometry of M they do not come too close to x in the geometry of Rd . Assuming that i(M) is
a submanifold, this assumption is already included implicitly. However, for non-compact subman-
ifolds the self-approaching could happen at infinity. Therefore we exclude it explicitly. Moreover,
note that for submanifolds with boundary one has inj(x) → 0 as x approaches the boundary2 ∂M.
Therefore also δ(x) → 0 as d(x,∂M) → 0. However, this behavior of δ(x) at the boundary does not
matter for the proof of pointwise convergence in the interior ofM.

Note that if M is a smooth and compact manifold conditions (ii)-(v) hold automatically.
In order to emphasize the distinction between extrinsic and intrinsic properties of the manifold

we always use the slightly cumbersome notations x ∈M (intrinsic) and i(x) ∈ Rd (extrinsic). The
reader who is not familiar with Riemannian geometry should keep in mind that locally, a subman-
ifold of dimension m looks like Rm. This becomes apparent if one uses normal coordinates. Also
the following dictionary between terms of the manifold M and the case when one has only an open
set in Rd (i is then the identity mapping) might be useful.

ManifoldM open set in Rd

gi j ,
√
detg δi j , 1

natural volume element Lebesgue measure
Δs Δs = ∑d

i=1
∂2

∂(zi)2
+ s

p ∑
d
i=1

∂p
∂zi

∂
∂zi

The kernel functions which are used to define the weights of the graph are always functions of the
squared norm in Rd . Furthermore, we make the following assumptions on the kernel function k:

Assumption 20 (i) k : R+ → R is measurable, non-negative and non-increasing on R∗
+,

(ii) k ∈C2(R∗
+), that is in particular k, ∂k∂x and

∂2k
∂x2 are bounded,

(iii) k, | ∂k∂x | and |
∂2k
∂x2 | have exponential decay: ∃c,α,A ∈ R+ such that for any t ≥ A, f (t) ≤ ce−αt ,

where f (t) =max{k(t), | ∂k∂x |(t), |
∂2k
∂x2 |(t)},

(iv) k(0) = 0.

The assumption that the kernel is non-increasing could be dropped, however it makes the proof
and the presentation easier. Moreover, in practice the weights of the neighborhood graph which are
determined by k are interpreted as similarities. Therefore the usual choice is to take weights which

2. This is the reason why one replaces normal coordinates in the neighborhood of the boundary with normal collar
coordinates.
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decrease with increasing distance. The fourth condition implies that the graph has no loops.3 In
particular, the kernel is not continuous at the origin. All results hold also without this condition.
The advantage of this condition is that some estimators become unbiased. Also let us introduce the
helpful notation, kh(t) = 1

hm k
( t
h2

)
where we call h the bandwidth of the kernel. Moreover, we define

the following two constants related to the kernel function k,

C1 =
Z

Rm
k(‖y‖2)dy< ∞, C2 =

Z

Rm
k(‖y‖2)y21dy< ∞.

We also have some assumptions on the probability measure P.

Assumption 21 (i) P is absolutely continuous with respect to the natural volume element dV on
M,

(ii) the density p fulfills: p ∈C3(M) and p(x) > 0,∀ x ∈M\∂M,

(iii) the sample Xi, i= 1, . . . ,n is drawn i.i.d. from P,

Note that condition (i) implies P(∂M) = 0, that is the boundary ∂M is a set of measure zero.
We will call the Assumptions 19 on the submanifold, Assumptions 20 on the kernel function, and
Assumptions 21 on the probability measure P together the standard assumptions.

In the following table we summarize the notation used in the proofs:

k : R+ → R+ kernel function
h> 0 neighborhood/bandwidth parameter
m ∈ N dimension of the submanifoldM

kh(t) = 1
hm k

( t
h2

)
scaled kernel function

λ ∈ R reweighting parameter

dh,n(x) = 1
n ∑

n
i=1 kh(‖x−Xi‖2) degree function associated with k

k̃λ,h(x,Xi) = kh(‖x−Xi‖2)
[dh,n(Xi)dh,n(X j)]λ

reweighted kernel

d̃λ,h,n(x) = 1
n ∑

n
i=1 k̃λ,h(x,Xi) degree function associated with k̃λ,h

(Ãλ,h,n f )(x) = 1
n ∑

n
i=1 k̃λ,h(x,Xi) f (Xi) empirical average operator Ãλ,h,n

Δ(rw)λ,h,n f = 1
h2

(
f − 1

d̃λ,h,n
Ãλ,h,n f

)
random walk graph Laplacian

Δ(u)λ,h,n f = 1
h2

(
d̃λ,h,n f − Ãλ,h,n f

)
unnormalized graph Laplacian

Δ(n)λ,h,n f = 1
h2

(
f − 1√

d̃λ,h,n
Ãλ,h,n

(
f√
d̃λ,h,n

))
normalized graph Laplacian

C1 =
R
Rm k(‖y‖2Rm)dy,C2 =

R
Rm k(‖y‖2Rm)y21dy characteristic constants of the kernel

ph(x) = EZ kh(‖x−Z‖2) convolution of p with kh
(Ãλ,h f )(x) = EZ k̃λ,h(x,Z) f (Z) average operator Ãλ,h

Δ(rw)λ,h , Δ
(u)
λ,h, Δ

(n)
λ,h Laplacians associated with Ãλ,h

Δs = 1
ps div(p

s grad) = 1
ps g

ab∇a(ps∇b) s-th weighted Laplacian onM

3. An edge from a vertex to itself is called a loop.
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5.3 Asymptotics of Euclidean Convolutions on the SubmanifoldM

The following proposition describes the asymptotic expression of the convolution of a function f
on the submanifoldM with a kernel function having the Euclidean distance ‖x− y‖ as its argument
with respect to the probability measure P onM. This result is interesting since it shows how the use
of the Euclidean distance introduces a curvature effect if one averages a function locally. A similar
result has been presented in Coifman and Lafon (2006). We define the density p invariantly with
respect to the natural volume element and also explicitly give the second order curvature terms. Our
proof is similar to that of Smolyanov, von Weizsäcker, and Wittich (2007) where under stronger
conditions a similar result was proven for the Gaussian kernel. The more general setting and the
use of general kernel functions make the proof slightly more complicated. In order to emphasize
the distinction between extrinsic and intrinsic properties of the manifold we will use the slightly
cumbersome notations x ∈M (intrinsic) and i(x) ∈ Rd (extrinsic).

Proposition 22 Let M and k satisfy Assumptions 19 and 20. Furthermore, let P have a density p
with respect to the natural volume element and p ∈C3(M). Then, for any x ∈M\∂M, there exists
an h0(x) > 0 such that for all h< h0(x) and any f ∈C3(M),

Z

M
kh

(
‖i(x)− i(y)‖2Rd

)
f (y)p(y)

√
detgdy

=C1p(x) f (x)+
h2

2
C2

(
p(x) f (x)S(x)+(ΔM(p f ))(x)

)
+O(h3),

where O(h3) is a function depending on x, ‖ f‖C3(M) and ‖p‖C3(M) and

S(x) =
1
2

[
−R

∣∣
x+

1
2

∥∥∑aΠ(∂a,∂a)
∥∥2
Ti(x)Rd

]
,

where R is the scalar curvature and Π the second fundamental form of M .

The following Lemma is an application of Bernstein’s inequality. Together with the previous
proposition it will be the main ingredient for proving consistency statements for the graph structure.

Lemma 23 Suppose the standard assumptions hold and let the kernel k have compact support on
[0,R2k ]. Define b1 = ‖k‖∞ ‖ f‖∞ , b2 = K ‖ f‖2∞ where K is a constant depending on ‖p‖∞, ‖k‖∞ and
Rk. Let x ∈M\∂M and Vi := kh(‖i(x)− i(Xi)‖2) f (Xi). Then for any bounded function f ,

P
(∣∣∣
1
n

n

∑
i=1
Vi−EV

∣∣∣ > ε
)
≤ 2exp

(
− nhmε2

2b2+2b1ε/3

)
.

Let Wi = kh(‖i(x)− i(Xi)‖2)( f (x)− f (Xi)). Then for hRk ≤ κ/2 and f ∈C1(M),

P
(∣∣∣
1
n

n

∑
i=1
Wi−EW

∣∣∣ > hε
)
≤ 2exp

(
− nhmε2

2b2+2b1ε/3

)
.

Proof Since by assumption κ > 0, by Lemma 18, for any x,y ∈ M with ‖i(x)− i(y)‖ ≤ κ/2, we
have dM(x,y) ≤ 2‖i(x)− i(y)‖. This implies ∀a≤ κ/2, BRd (x,a)∩M ⊂ BM(x,2a).
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LetWi := kh(‖i(x)− i(Xi)‖2) f (Xi). We have

|Wi|≤
‖k‖∞
hm

sup
y∈BRd (x,hRk)∩M

| f (y)|≤ ‖k‖∞
hm

‖ f‖∞ :=
b1
hm

.

For the variance ofW we have two cases. First let hRk < s :=min{κ/2,R0/2}. Then we get,

VarW ≤ EZ k2h(‖i(x)− i(Z)‖2) f 2(Z) ≤ ‖k‖∞
hm

‖ f‖2∞ ph(x) ≤ D2
‖k‖∞
hm

‖ f‖2∞ ,

where we have used Lemma 46 in the last step. Now consider hRk ≥ s, then

VarW ≤ ‖k‖2∞
h2m

‖ f‖2∞ ≤
Rmk ‖k‖

2
∞

sm hm
‖ f‖2∞ .

Therefore we define b2 =K ‖ f‖2∞ with K =Rmk ‖k‖
2
∞max{2mS2 ‖p‖∞ ,s−m}. By Bernstein’s inequal-

ity we finally get

P
(∣∣1

n ∑
n
i=1Wi−EW

∣∣ > ε
)

≤ 2e−
nhmε2

2b2+2b1ε/3 .

Both constants b2 and b1 are independent of x. For the second part note that by Lemma 18 for
hRk ≤ κ/2, we have that ‖x− y‖ ≤ hRk implies dM(x,y) ≤ 2‖x− y‖ ≤ 2hRk. In particular, for all
x,y ∈M with ‖x− y‖ ≤ hRk,

| f (x)− f (y)|≤ sup
y∈M

‖∇ f‖TyM dM(x,y) ≤ 2hRk sup
y∈M

‖∇ f‖TyM .

A similar reasoning as above leads then to the second statement.

Note that EZ kh(‖i(x)− i(Z)‖2) f (Z) =
R

M
kh(‖i(x)− i(y)‖2) f (y)p(y)

√
detgdy.

5.4 Pointwise Consistency of the RandomWalk, Unnormalized and Normalized Graph
Laplacian

The proof of the convergence result for the three graph Laplacians is organized as follows. First we
introduce the continuous operators Δ(rw)λ,h , Δ(n)λ,h and Δ

(u)
λ,h. Then we derive the limit of the continuous

operators as h→ 0. This part of the proof is concerned with the bias part since roughly (Δλ,h f )(x)
can be seen as the expectation of Δλ,h,n f (x). Second we show that with high probability all extended
graph Laplacians are close to the corresponding continuous operators. This is the variance part.
Combining both results we arrive finally at the desired consistency results.

5.4.1 THE BIAS PART - DEVIATION OF Δλ,h FROM ITS LIMIT

The following continuous approximation of Δ(rw)λ,h was similarly introduced in Lafon (2004) and
Coifman and Lafon (2006).

Definition 24 (Kernel-based approximation of the Laplacian) We introduce the
following averaging operator Ãλ,h based on the reweighted kernel k̃λ,h,

(Ãλ,h f )(x) =
Z

M
k̃λ,h(x,y) f (y)p(y)

√
detgdy,
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and with d̃λ,h = (Ãλ,h1) the following continuous operators,

randomwalk : Δ(rw)λ,h f :=
1
h2

(
f − 1

d̃λ,h
Ãλ,h f

)
=
1
h2

(
Ãλ,hg
d̃λ,h

)
(x),

unnormalized : Δ(u)λ,h f :=
1
h2

(
d̃λ,h f − Ãλ,h f

)
=
1
h2

(Ãλ,hg)(x),

normalized : Δ(n)λ,h f :=
1

h2
√
d̃λ,h

(
dλ,h

f√
d̃λ,h

− Ãλ,h
f√
d̃λ,h

)
= 1

h2
√
d̃λ,h(x)

(Ãλ,hg′)(x),

where we have introduced again g(y) := f (x)− f (y) and g′(y) := f (x)√
d̃λ,h(x)

− f (y)√
d̃λ,h(y)

. The definition

of the normalized approximation Δ(rw)λ,h can be justified by the alternative definition of the Laplacian
in Rd sometimes made in physics textbooks:

(Δ f )(x) = lim
r→0

− 1
Cd r2

(
f (x)− 1

vol(B(x,r))

Z

B(x,r)
f (y)dy

)
,

whereCd is a constant depending on the dimension d.
Approximations of the Laplace-Beltrami operator based on averaging with the Gaussian kernel

in the case of a uniform probability measure have been studied for compact submanifolds without
boundary by Smolyanov, von Weizsäcker, and Wittich (2000, 2007) and Belkin (2003). Their result
was then generalized by Lafon (2004) to general densities and to a wider class of isotropic, pos-
itive definite kernels for compact submanifolds with boundary. The proof given in Lafon (2004)
applies only to compact hypersurfaces4 in Rd , a proof for the general case of compact submanifolds
with boundary using boundary conditions has been presented in Coifman and Lafon (2006). In
this section we will prove the pointwise convergence of the continuous approximation for general
submanifolds M with boundary of bounded geometry with the additional Assumptions 19. This
includes the case whereM is not compact. Moreover, no assumptions of positive definiteness of the
kernel are made nor any boundary condition on the function f is imposed. Almost any submanifold
occurring in practice should be covered in this very general setting.

For pointwise convergence in the interior of the manifold M boundary conditions on f are not
necessary. However, for uniform convergence there is no way around them. Then the problem
lies not in the proof that the continuous approximation still converges in the right way but in the
transfer of the boundary condition to the discrete graph. The main problem is that since we have no
information aboutM apart from the random samples the boundary will be hard to locate. Moreover,
since the boundary is a set of measure zero, we will actually almost surely never sample any point
from the boundary. The rigorous treatment of the approximation of the boundary respectively the
boundary conditions of a function on a randomly sampled graph remains as an open problem.

Especially for dimensionality reduction the case of low-dimensional submanifolds in Rd is im-
portant. Notably, the analysis below also includes the case where due to noise the data is only
concentrated around a submanifold.

Theorem 25 Suppose the standard assumptions hold. Furthermore, let k be a kernel with compact
support on [0,R2k ]. Let λ ∈ R, and x ∈ M\∂M. Then there exists an h1(x) > 0 such that for all

4. A hypersurface is a submanifold of codimension 1.

1351



HEIN, AUDIBERT AND VON LUXBURG

h< h1(x) and any f ∈C3(M),

(Δ(rw)λ,h f )(x) =− C2
2C1

(
(ΔM f )(x)+

s
p(x)

〈∇p,∇ f 〉TxM
)

+O(h) = − C2
2C1

(Δs f )(x)+O(h),

where ΔM is the Laplace-Beltrami operator of M and s= 2(1−λ).

Proof For sufficiently small h we have BRd (x,2hRk)∩M ∩ ∂M = /0. Moreover, it can be directly
seen from the proof of Proposition 22 that the upper bound of the interval [0,h0(y)] for which the
expansion holds depends continuously on δ(x) and ε(y), where ε(y) = 1

3min{πρ, inj(y)}. Now h0(x)
is continuous since inj(x) is continuous on compact subsets, see Klingenberg (1982)[Prop. 2.1.10],
and δ(x) is continuous since the injectivity radius is continuous. Therefore we conclude that since
h0(y) is continuous on B(x,2hRk)∩M and h0(y) > 0, h1(x) = infy∈BRd (x,2hRk)∩M h0(y) > 0. Then for
the interval (0,h1(x)) the expansion of ph(y) holds uniformly over the whole set B(x,2hRk)∩M.
That is, using the definition of k̃ as well as Proposition 22 and the expansion 1

(a+h2b)λ = 1
aλ −λ h2b

aλ+1 +
O(h4), we get for h ∈ (0,h1(x)) that

Z

M
k̃λ,h

(
‖i(x)− i(y)‖2

)
f (y)p(y)

√
detgdy

=
Z

BRd (x,hRk)∩M

kh
(
‖i(x)− i(y)‖2

)

pλh(x)
f (y)

[
C1p(y)−λ/2C2h2(p(y)S+Δp)

Cλ+11 p(y)λ
+O(h3)

]√
detgdy,

where the O(h3)-term is continuous on BRd (x,hRk) and we have introduced the abbreviation S =
1
2 [−R+ 1

2 ‖∑aΠ(∂a,∂a)‖2Ti(x)Rd ]. Using f (y) = 1 we get,

d̃λ,h(x) =
Z

BRd (x,hRk)∩M

kh
(
‖i(x)− i(y)‖2

)

pλh(x)

[
C1p(y)−λ/2C2h2(p(y)S+Δp)

Cλ+11 p(y)λ
+O(h3)

]√
detgdy,

as an estimate for d̃λ,h(x). Now using Proposition 22 again, we arrive at:

Δ(rw)λ,h f =
1
h2
d̃λ,h f − Ãλ,h f

d̃λ,h
= − C2

2C1

(
ΔM f +

2(1−λ)
p

〈∇p,∇ f 〉
)

+O(h),

where all O(h)-terms are finite on BRd (x,hRk)∩M since p is strictly positive.

Note that the limit of Δ(rw)λ,h has the opposite sign of Δs. This is due to the fact that the Laplace-
Beltrami operator on manifolds is usually defined as a negative definite operator (in analogy to the
Laplace operator in Rd), whereas the graph Laplacian is positive definite. But this varies through
the literature, thus the reader should be aware of the sign convention.

Remark 26 The assumption of compact support of the kernel k is only necessary in the case of
non-compact manifolds M. For compact manifolds a kernel with non-compact support, such as a
Gaussian kernel, would work, too. The reason for compact support of the kernel comes from the
fact that for non-compact manifolds there exists no lower bound on a strictly positive density. This
in turn implies that one cannot upper bound the convolution with the reweighted kernel if one does
not impose additional assumptions on the density. In practice the solution of graph-based methods
for large-scale problems is usually only possible for sparse neighborhood graphs. Therefore the
compactness assumption of the kernel is quite realistic and does not exclude relevant cases.
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With the relations,

(Δ(u)λ,h,n f )(x) = d̃λ,h,n(x)(Δ
(rw)
λ,h,n f )(x),

(Δ(n)λ,h,n f )(x) = 1/
√
d̃λ,h,n(x)

(
Δ(u)λ,h,n

(
f/

√
d̃λ,h,n

))
(x),

one can easily adapt the last lines of the previous proof to derive the following corollary.

Corollary 27 Under the assumptions of Theorem 25. Let λ ∈ R and x ∈M\∂M. Then there exists
an h1(x) > 0 such that for all h< h1(x) and any f ∈C3(M),

(Δ(u)λ,h f )(x) = − C2
2C2λ1

p(x)1−2λ(Δs f )(x)+O(h), where s= 2(1−λ),

(Δ(n)λ,h f )(x) = − C2
2C1

p(x)
1
2−λΔs

(
f

p 12−λ

)
(x)+O(h).

5.4.2 THE VARIANCE PART - DEVIATION OF Δλ,h,n FROM Δλ,h

Before we state the results for the general case with data-dependent weights we now treat the case
λ = 0, that is we have non-data-dependent weights. There the proof is considerably simpler and
much easier to follow. Moreover, as opposed to the general case here we get convergence in prob-
ability under slightly weaker conditions than almost sure convergence. Since this does not hold for
the normalized graph Laplacian in that case we will only provide the general proof.

Theorem 28 (Weak and strong pointwise consistency for λ= 0) Suppose the standard assump-
tions hold. Furthermore, let k be a kernel with compact support on [0,R2k ]. Let x ∈ M\∂M and
f ∈C3(M). Then if h→ 0 and nhm+2 → ∞,

lim
n→∞

(Δ(rw)0,h,n f )(x) = − C2
2C1

(Δ2 f )(x) in probability,

lim
n→∞

(Δ(u)0,h,n f )(x) = −C2
2
p(x)(Δ2 f )(x) in probability.

If even nhm+2/ logn→ ∞, then almost sure convergence holds.

Proof We give the proof for Δ(rw)0,h,n. The proof for Δ
(u)
0,h,n can be directly derived with the second

statement of Lemma 23 for the variance term together with Corollary 27 for the bias term. Similar
to the proof for the Nadaraya-Watson regression estimate of Greblicki et al. (1984), we rewrite the
estimator Δ(rw)0,h,n f in the following form

(Δ(rw)0,h,n f )(x) =
1
h2

[
(C0,h f )(x)+B1n

1+B2n

]
,

where

(C0,h f )(x) =
EZ kh(‖i(x)− i(Z)‖2)g(Z)

EZ kh(‖i(x)− i(Z)‖2)
,

B1n =
1
n ∑

n
j=1 kh(

∥∥i(x)− i(X j)
∥∥2)g(X j)−EZ kh(‖i(x)− i(Z)‖2)g(Z)

EZ kh(‖i(x)− i(Z)‖2)
,

B2n =
1
n ∑

n
j=1 kh(

∥∥i(x)− i(X j)
∥∥2)−EZ kh(‖i(x)− i(Z)‖2)

EZ kh(‖i(x)− i(Z)‖2)
,
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with g(y) := f (x)− f (y). In Theorem 25 we have shown that for x ∈M\∂M,

lim
h→0

(Δ(rw)0,h f )(x) = lim
h→0

1
h2

(C0,h g)(x) = − C2
2C1

(Δ2 f )(x).

Using the lower bound of ph(x) = EZ kh(‖i(x)− i(Z)‖2) derived in Lemma 46 we can for hRk ≤ κ/2
directly apply Lemma 23. Thus there exist constants d1 and d2 such that

P( |B1n|≥ h2t ) ≤ 2 exp
(
− nhm+2 t2

2‖k‖∞ (d2+ t hd1/3)

)
.

The same analysis can be done for B2n. This shows convergence in probability. Complete conver-
gence (which implies almost sure convergence) can be shown by proving for all t > 0 the conver-
gence of the series ∑∞

n=0P
(
|B1n|≥ h2t

)
< ∞. A sufficient condition for that is nhm+2/ logn→ ∞ as

n→ ∞.

The weak pointwise consistency of the unnormalized graph Laplacian for compact submani-
folds with the uniform probability measure using the Gaussian kernel for the weights and λ = 0
was proven by Belkin and Niyogi (2005). A more general result appeared independently in Hein
et al. (2005). We prove here the limits of all three graph Laplacians for general submanifolds with
boundary of bounded geometry, general probability measures P, and general kernel functions k as
stated in our standard assumptions.

The rest of this section is devoted to the general case λ 4= 0. We show that with high probability
the extended graph Laplacians Δλ,h,n are pointwise close to the continuous operators Δλ,h when
applied to a function f ∈C3(M). The following proposition is helpful.

Proposition 29 Suppose the standard assumptions hold. Furthermore, let k be a kernel with com-
pact support on [0,R2k ]. Fix λ ∈ R and let x ∈M\∂M, f ∈C3(M) and define g(y) := f (x)− f (y).
Then there exists a constant C such that for any 2‖k‖∞

nhm < ε< 1/C, 0< h< κ
2Rk , the following events

hold with probability at least 1−Cne−nhmε2
C ,

|(Ãλ,h,ng)(x)− (Ãλ,hg)(x)|≤ εh, |d̃λ,h,n(x)− d̃λ,h(x)|≤ ε.

Proof The idea of this proof is to show that several empirical quantities which can be expressed
as a sum of i.i.d. random variables are close to their expectation. Then one can deduce that also
(Ãλ,h,ng)(x) will be close to (Ãλ,hg)(x). The proof for d̃λ,h,n can then be easily adapted from the
following. We consider here only λ≥ 0, the proof for λ< 0 is even simpler. Consider the event E
for which one has






for any j ∈ {1, . . . ,n},
∣∣dh,n(X j)− ph(X j)

∣∣ ≤ ε,∣∣dh,n(x)− ph(x)
∣∣ ≤ ε,∣∣∣ 1n

n
∑
j=1

kh(‖i(x)−i(X j)‖2)|g(X j)|
[ph(x) ph(X j)]λ

−
R

M
kh(‖i(x)− i(y)‖2)|g(y)| p(y)

[ph(x) ph(y)]λ
√
detgdy

∣∣∣ ≤ hε.

We will now prove that for sufficiently large C the event E holds with probability at least 1−
Cne− nhmε2

C . For the second assertion defining E , we use Lemma 23

P( |dh,n(x)− ph(x)| > ε) ≤ 2 exp
(
− nhmε2

2b2+2b1ε/3

)
,
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where b1 and b2 are constants depending on the kernel k and p. For the first term in the event E
remember that k(0) = 0. We get for ‖k‖∞

nhm < ε/2 and 1≤ j ≤ n,

P
(∣∣ 1

n ∑
n
i=1 kh(

∥∥i(X j)− i(Xi)
∥∥2)− ph(x)

∣∣ > ε
∣∣∣X j

)
≤ 2exp

(
− (n−1)hmε2
8b2+4b1ε/3

)
.

This follows by
∣∣∣
1
n

n

∑
i=1

kh(
∥∥i(X j)− i(Xi)

∥∥2)− ph(X j)
∣∣∣ ≤

∣∣∣
1

n(n−1)

n

∑
i=1

kh(
∥∥i(X j)− i(Xi)

∥∥2)
∣∣∣

+
∣∣∣
1

n−1∑i*= j
kh(

∥∥i(X j)− i(Xi)
∥∥2)− ph(X j)

∣∣∣,

where the first term is upper bounded by ‖k‖∞
nhm . First integrating wrt to the law of X j (the right hand

side of the bound is independent of X j) and then using a union bound, we get

P
(
for any j ∈ {1, . . . ,n},

∣∣dh,n(X j)− ph(X j)
∣∣ ≤ ε

)
> 1−2nexp

(
− (n−1)hmε2
8b2+4b1ε/3

)
.

Noting that 1
ph(x)ph(y) is upper bounded by Lemma 46 we get by Lemma 23 for hRk≤ κ/2 a Bernstein

type bound for the probability of the third event in E . Finally, combining all these results, we obtain
that there exists a constant C such that for h ≤ κ

2Rk and
2‖k‖∞
nhm ≤ ε ≤ 1, the event5 E holds with

probability at least 1−Cne− nhmε2
C . Let us define

{
B :=

R
M kh(‖i(x)− i(y)‖2)( f (x)− f (y))[ph(x) ph(y)]−λp(y)

√
detgdy,

B̂ := 1
n ∑

n
j=1 kh(

∥∥i(x)− i(X j)
∥∥2)( f (x)− f (X j))

[
dh,n(x)dh,n(X j)

]−λ
,

then (Ãλ,h,ng)(x) = B̂ and (Ãλ,hg)(x) = B . Let us now work only on the event E . By Lemma 46
for any y ∈ BRd (x,hRk)∩M there exist constants D1,D2 such that 0< D1 ≤ ph(y) ≤ D2. Using the
first order Taylor formula of [x 5→ x−λ], we obtain that for any λ ≥ 0 and a,b > β,

∣∣a−λ− b−λ
∣∣ ≤

λβ−λ−1|a−b|. So we can write for ε< D1/2,
∣∣∣ 1(

dh,n(x)dh,n(X j)
)λ − 1(

ph(x) ph(X j)
)λ

∣∣∣ ≤ λ(D1− ε)−2λ−2|dh,n(x)dh,n(X j)− ph(x)ph(X j)|

≤ 2λ(D1− ε)−2λ−2(D2+ ε)ε :=C ε.

Noting that for hRk ≤ κ/2 by Lemma 18, dM(x,y) ≤ 2hRk, ∀y ∈ BRd (x,hRk)∩M,
∣∣B̂ −B

∣∣ ≤
∣∣∣1n ∑

n
j=1 kh(

∥∥i(x)− i(X j)
∥∥2)| f (x)− f (X j)|C ε

+
∣∣∣1n ∑

n
j=1 kh(

∥∥i(x)− i(X j)
∥∥2)( f (x)− f (X j))[ph(x) ph(X j)]−λ−B

∣∣∣
≤ 2C‖k‖∞Rk supy∈M ‖∇ f‖TyM hε+hε.

We have proven that there exists a constantC> 1 such that for any 0< h< κ
2Rk and

2‖k‖∞
nhm < ε< 1/C,

∣∣(Ãλ,h,ng)(x)− (Ãλ,hg)(x)
∣∣ ≤C′′′hε,

5. The upper bound on ε is here not necessary but allows to write the bound more compactly.
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with probability at least 1−Cne− nhmε2
C .

This leads us to our first main result for the random walk and the unnormalized graph Laplacian.

Theorem 30 (Pointwise consistency of Δ(rw)λ,h,n and Δ
(u)
λ,h,n) Suppose the standard assumptions hold.

Furthermore, let k be a kernel with compact support on [0,R2k ]. Let x ∈ M\∂M, λ ∈ R. Then for
any f ∈ C3(M) there exists a constant C such that for any 2‖k‖∞

nhm+1 < ε < 1/C, 0 < h < hmax with

probability at least 1−Cne−nhm+2ε2
C ,

|(Δ(rw)λ,h,n f )(x)− (Δ(rw)λ,h f )(x)| ≤ ε,

|(Δ(u)λ,h,n f )(x)− (Δ(u)λ,h f )(x)| ≤ ε.

Define s= 2(1−λ). Then if h→ 0 and nhm+2/ logn→ ∞,

lim
n→∞

(Δ(rw)λ,h,n f )(x) = − C2
2C1

(Δs f )(x) almost surely,

lim
n→∞

(Δ(u)λ,h,n f )(x) = − C2
2C2λ1

p(x)1−2λ (Δs f )(x) almost surely.

In particular, under the above conditions,
∣∣∣(Δ(rw)λ,h,n f )(x) −

[
− C2
2C1

(Δs f )(x)
]∣∣∣ = O(h)+O

(√
logn
nhm+2

)
a.s. ,

∣∣∣(Δ(u)λ,h,n f )(x) −
[
− C2
2C2λ1

p(x)1−2λ (Δs f )(x)
]∣∣∣ = O(h)+O

(√
logn
nhm+2

)
a.s. .

The optimal rate for h(n) is h= O((logn/n)
1

m+4 ).

Proof In Equation (3) it was shown that

(Δ(rw)λ,h,n f )(x) =
1
h2

(
Ãλ,h,ng
d̃λ,h,n

)
(x), (Δ(u)λ,h,n f )(x) =

1
h2

(Ãλ,h,ng)(x),

where g(y) := f (x)− f (y). Since f is Lipschitz we can directly apply Proposition 29 so that for the
unnormalized Laplacian we get with probability 1−Cne −nhm+2ε2

C ,

|(Δ(u)λ,h,n f )(x)− (Δ(u)λ,h f )(x)|≤ ε.

For the random walk Laplacian Δ(rw)λ,h,n we work on the event where |d̃λ,h,n− d̃λ,h| ≤ hε, where ε ≤
1
2h d̃λ,h. This holds by Proposition 29 with probability 1−Cne

−nhm+2ε2
C . Moreover, note that by

Lemmas 18 and 14 for hRk ≤min{κ/2,R0}, we have

∣∣Ãλ,hg
∣∣ ≤

2mRmk S2
D2λ1

‖p‖∞ ‖k‖∞ 2L( f )hRk.
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Using Proposition 29 for Ãλ,h,ng and the bounds of ph(x) from Lemma 46,

∣∣(Δ(rw)λ,h,n f )(x)− (Δ(rw)λ,h f )(x)
∣∣ =

1
h2

∣∣∣ (Ãλ,h,ng)(x)
d̃λ,h,n(x)

− (Ãλ,hg)(x)
d̃λ,h(x)

∣∣∣

≤ 1
h2

( |(Ãλ,h,ng)(x) − (Ãλ,hg)(x)|
d̃λ,h,n(x)

+(Ãλ,hg)(x)
|d̃λ,h,n(x) − d̃λ,h(x)|
d̃λ,h,n(x)d̃λ,h(x)

)

≤ 2D2λ2
D1

ε+
2mRmk S2
D2λ1

‖p‖∞ ‖k‖∞ 2L( f )Rk ε :=C ε,

with probability 1−Cne−nhm+2ε2
C . By Theorem 25 and 27 we have for s= 2(1−λ),

∣∣∣(Δ(rw)λ,h f )(x) −
[
− C2
2C1

(Δs f )(x)
]∣∣∣ ≤Ch,

∣∣∣(Δ(u)λ,h f )(x) −
[
− C2
2C2λ1

p(x)1−2λ (Δs f )(x)
]∣∣∣ ≤Ch.

Combining both results together with the Borel-Cantelli-Lemma yields almost sure convergence.
The optimal rate for h(n) follows by equating both order terms.

Using the relationship between the unnormalized and the normalized Laplacian the pointwise
consistency can be easily derived. However, the conditions for convergence are slightly stronger
since the Laplacian is applied to the function f/

√
d̃λ,h,n.

Theorem 31 (Pointwise consistency of Δ(n)λ,h,n) Suppose that the standard assumptions hold. Fur-
thermore, let k be a kernel with compact support on [0,R2k ]. Let x ∈ M\∂M, λ ∈ R. Then for any
f ∈C3(M) there exists a constantC such that for any 2‖k‖∞nhm+2 < ε< 1/C, 0< h< hmax with probability

at least 1−Cn2 e−nhm+4ε2
C , ∣∣∣(Δ(n)λ,h,n f )(x)− (Δ(n)λ,h f )(x)

∣∣∣ ≤ ε.

Define s= 2(1−λ). Then if h→ 0 and nhm+4/ logn→ ∞,

lim
n→∞

(Δ(n)λ,h,n f )(x) = −p(x)
1
2−λ

C2
2C1

Δs

(
f

p 12−λ

)
(x) almost surely.

Proof We reduce the case of Δ(n)λ,h,n to the case of Δ
(u)
λ,h,n. We work on the event where

|d̃λ,h,n(x)− d̃λ,h(x)|≤ h2 ε, |d̃λ,h,n(Xi)− d̃λ,h(Xi)|≤ h2 ε, ∀ i= 1, . . . ,n.

From Proposition 29 we know that this holds with probability at least 1−Cn2 e−nhm+4ε2
C . Working

on this event we get by a similar argumentation as in the proof of Theorem 30 that there exists a
constantC′ such that

∣∣∣(Δ(n)λ,h,n f )(x)−
1

d̃λ,h(x)

(
Δ(u)λ,h,n

f√
d̃λ,h

)
(x)

∣∣∣ =
1
h2

∣∣∣d̃λ,h,n(x) f (x)
[

1
d̃λ,h(x)

− 1
d̃λ,h,n(x)

]

+
n

∑
i=1

k̃λ,h(x,Xi) f (Xi)
[

1√
d̃λ,h(x)d̃λ,h(Xi)

− 1√
d̃λ,h,n(x)d̃λ,h,n(Xi)

]∣∣∣ ≤C′ε.
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Noting that f
d̃λ,h

is Lipschitz since f and d̃λ,h are Lipschitz and upper and lower bounded, on
M ∩BRd (x,hRk) one can apply Theorem 30 to derive the first statement. The second statement
follows by Corollary 27.
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Appendix A. Basic Concepts of Differential Geometry

In this section we introduce the necessary basics of differential geometry, in particular normal co-
ordinates and submanifolds in Rd , used in this paper. Note that the definition of the Riemann
curvature tensor varies across textbooks which can result in sign-errors. Throughout the paper we
use the convention of Lee (1997).

A.1 Basics

Definition 32 A d-dimensionalmanifold X with boundary is a topological (Hausdorff) space such
that every point has a neighborhood homeomorphic to an open subset of Hd = {(x1, . . . ,xd) ∈
Rd

∣∣x1 ≥ 0}. A chart (or local coordinate system) (U,φ) of a manifold X is an open set U ⊂ X
together with a homeomorphism φ : U → V of U onto an open subset V ⊂ Hd . The coordinates
(x1, . . . ,xd) of φ(x) are called the coordinates of x in the chart (U,φ). A Cr-atlas A is a collection
of charts,

A ! ∪{(Uα,φα),α ∈ I},

where I is an index set, such that X = ∪α∈IUα and for any α,β ∈ I the corresponding transition
map,

φβ ◦φ−1α
∣∣
φα(Uα∩Uβ)

: φ(Uα∩Uβ) → Hd ,

is r-times continuously differentiable. A smooth manifold with boundary is a manifold with bound-
ary with a C∞-atlas.

For more technical details behind the definition of a manifold with boundary we refer to Lee
(2003). Note that the boundary ∂M of M is a (d− 1)-dimensional manifold without boundary. In
textbooks one often only finds the definition of a manifold without boundary which can be easily
recovered from the above definition by replacing Hd with Rd . The interior M\∂M of the manifold
M is a manifold without boundary.

Definition 33 A subset M of a d-dimensional manifold X is a m-dimensional submanifold M with
boundary if every point x ∈M is in the domain of a chart (U,φ) of X such that

φ :U ∩M→ Hm×a, φ(x) = (x1, . . . ,xm,a1, . . . ,ad−m),

where a is a fixed element in Rd−m. X is called the ambient space of M.
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This definition excludes irregular cases like intersecting submanifolds or self-approaching sub-
manifolds. In the following it is more appropriate to take the following point of view. Let M be an
m-dimensional manifold. The smooth mapping i :M→ X is said to be an immersion if i is differen-
tiable and the differential of i has rank m everywhere. An injective immersion is called embedding
if it is an homeomorphism onto its image. In this case i(M) is a submanifold of X . If M is compact
and i is an injective immersion, then i is an embedding. This is not the case if M is not compact
since i(M) can be self-approaching.

Definition 34 A Riemannian manifold (M,g) is a smooth manifold M together with a tensor6 of
type (0,2), called the metric tensor g, at each p ∈M, such that g defines an inner product on the
tangent space TpM which varies smoothly over M. The volume form induced by g is given in local
coordinates as dV =

√
detgdx1 ∧ . . .∧ dxm. dV is uniquely determined by dV (e1, . . . ,em) = 1 for

any oriented orthonormal basis e1, . . . ,em in TxM.

The metric tensor induces for every p ∈M an isometric isomorphism between the tangent space
TpM and its dual T ∗

pM. A submanifoldM of a Riemannian manifold (X ,g) has a natural Riemannian
metric h induced from X in the following way. Let i : M → X be an embedding so that M is a
submanifold of X . Then one can induce a metric h on M using the mapping i, namely h = i∗g,
where i∗ : T ∗

i(x)X → T ∗
x M is the pull-back7 of the differentiable mapping i. In this case i trivially is

an isometric embedding of (M,h) into (X ,g). In the paper we always use on the submanifoldM the
metric induced from Rd .

Definition 35 The Laplace-Beltrami operator ΔM of a Riemannian manifold is defined as ΔM =
div(grad). For a twice differentiable function f :M→ R it is explicitly given as

ΔM f =
1√
detg

∂
∂x j

(√
detggi j

∂ f
∂xi

)
,

where gi j are the components of the inverse of the metric tensor g= gi j dxi⊗dx j.

A.2 Normal Coordinates

Since in the proofs we use normal coordinates, we give here a short introduction. Intuitively, normal
coordinates around a point p of an m-dimensional Riemannian manifold M are coordinates chosen
such that M looks around p like Rm in the best possible way. This is achieved by adapting the
coordinate lines to geodesics through the point p. The reference for the following material is the
book of Jost (2002). We denote by cv the unique geodesic starting at c(0) = x with tangent vector
ċ(0) = v (cv depends smoothly on p and v).

Definition 36 Let M be a Riemannian manifold, p ∈M, and Vp = {v ∈ TpM, cv defined on [0,1]},
then, expp :Vp →M, v 5→ cv(1), is called the exponential map of M at p.

It can be shown that expp maps a neighborhood of 0 ∈ TpM diffeomorphically onto a neighbor-
hoodU of p ∈M. This justifies the definition of normal coordinates.

6. A tensor T of type (m,n) is a multilinear form TpM× . . .TpM×T ∗
pM× . . .×T ∗

pM→R (n-times TpM, m-times T ∗
pM).

7. T ∗
x M is the dual of the tangent space TxM. Every differentiable mapping i :M→ X induces a pull-back i∗ : T ∗

i(x)X →
T ∗
x M. Let u ∈ TxM, w ∈ T ∗

i(x)X and denote by i
′ the differential of i. Then i∗ is defined by (i∗w)(u) = w(i′u).
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Definition 37 Let U be a neighborhood of p in M such that expp is a diffeomorphism. The local
coordinates defined by the chart (U,exp−1p ) are called normal coordinates at p.

Note that in TpM 8 Rm ⊃ exp−1p (U) we use always an orthonormal basis. The injectivity radius
describes the largest ball around p such that normal coordinates can be introduced.

Definition 38 Let M be a Riemannian manifold. The injectivity radius of p ∈M is

inj(p) = sup{ρ> 0, expp is defined on BRm(0,ρ) and injective}.

It can be shown that inj(p) > 0,∀p ∈M\∂M. Moreover, for compact manifolds without bound-
ary there exists a lower bound injmin > 0 such that inj(p) ≥ injmin,∀p ∈M. However, for manifolds
with boundary one has inj(pn) → 0 for any sequence of points pn with limit on the boundary. The
motivation for introducing normal coordinates is that the geometry is particularly simple in these
coordinates. The following theorem makes this more precise.

Theorem 39 In normal coordinates around p one has for the Riemannian metric g and the Laplace-
Beltrami operator ΔM applied to a function f at p= exp−1p (0),

gi j(0) = δi j,
∂
∂xk

gi j(0) = 0, (ΔM f )(0) =
m

∑
i=1

∂2 f
∂(xi)2

(0).

The second derivatives of the metric tensor cannot be made to vanish in general. There curvature
effects come into play which cannot be deleted by a coordinate transformation. To summarize,
normal coordinates with center p achieve that, up to first order, the geometry of M at point p looks
like that of Rm.

A.3 The Second Fundamental Form

In this section we assume that M is an isometrically embedded submanifold of a manifold X . At
each point p ∈ M one can decompose the tangent space TpX into a subspace TpM, which is the
tangent space to M, and the orthogonal normal space NpM. In the same way one can split the
covariant derivative of X at p, ∇̃UV into a component tangent (∇̃UV )+ and normal (∇̃UV )⊥ toM.

Definition 40 The second fundamental form Π of an isometrically embedded submanifold M of X
is defined as

Π : TpM⊗TpM→ NpM, Π(U,V ) = (∇̃UV )⊥.

The following theorem, see Lee (1997), then shows that the covariant derivative of M at p is
nothing else than the projection of the covariant derivative of X at p onto TpM.

Theorem 41 (Gauss Formula) Let U,V be vector fields on M which are arbitrarily extended to X,
then the following holds along M

∇̃UV = ∇UV +Π(U,V ),

where ∇̃ is the covariant derivative of X and ∇ the covariant derivative of M.

The second fundamental form connects also the curvature tensors of X andM.
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Theorem 42 (Gauss equation) For any U,V,W,Z ∈ TpM the following equation holds

R̃(U,V,W,Z) = R(U,V,W,Z)−〈Π(U,Z),Π(V,W )〉+ 〈Π(U,W ),Π(V,Z)〉 ,

where R̃ and R are the Riemann curvature8 tensors of X and M.

In this paper we derive a relationship between distances in M and the corresponding distances in
X . Since Riemannian manifolds are length spaces and therefore the distance is induced by length
minimizing curves (locally the geodesics), it is of special interest to connect properties of curves of
M with respect to X . Applying the Gauss Formula to a curve c(t) : (t0, t1) →M yields the following

D̃tV = DtV +Π(V, ċ),

where D̃t = ċa∇̃a and ċ is the tangent vector field to the curve c(t). Now let c(t) be a geodesic
parameterized by arc-length, that is with unit-speed, then its acceleration fulfills Dt ċ= ċa∇aċb = 0
(however that is only true locally in the interior ofM, globally ifM has boundary length minimizing
curves may behave differently especially if a length minimizing curve goes along the boundary its
acceleration can be non-zero), and one gets for the acceleration in the ambient space

D̃t ċ=Π(ċ, ċ).

In our setting where X = Rd the term D̃t ċ is just the ordinary acceleration c̈ in Rd . Remember
that the norm of the acceleration vector is inverse to the curvature of the curve at that point (if c is
parameterized by arc-length).9 Due to this connection it becomes more apparent why the second
fundamental form is often called the extrinsic curvature (with respect to X).

The following Lemma shows that the second fundamental formΠ of an isometrically embedded
submanifoldM of Rd is in normal coordinates just the Hessian of i.

Lemma 43 Let eα, α= 1, . . . ,d denote an orthonormal basis of Ti(x)Rd then the second fundamen-
tal form of M in normal coordinates at y is given as:

Π(∂yi ,∂y j)
∣∣∣
0
=

∂2iα

∂yi∂y j
eα.

Proof Let ∇̃ be the flat connection of Rd and ∇ the connection of M. Then by Theorem 41,
Π(∂yi ,∂y j) = ∇̃i∗∂yi (i

∗∂y j)−∇∂yi
∂y j = ∂yi

(
∂iα
∂y j

)
eα = ∂2iα

∂yi∂y j eα,where the second equality follows from

the flatness of ∇̃ and Γijk
∣∣∣
0
= 0 in normal coordinates.

8. The Riemann curvature tensor of a Riemannian manifoldM is defined as R : TpM⊗TpM⊗TpM→ T ∗
pM,

R(X ,Y )Z = ∇X∇YZ−∇Y∇XZ−∇[X ,Y ]Z.

In local coordinates xi, Ri jk l∂l = R(∂i,∂ j)∂k and Ri jkm = glmRi jk l .
9. Note that if c is parameterized by arc-length, ċ is tangent to M, that is in particular ‖ċ‖TxX = ‖ċ‖TxM
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Appendix B. Proofs and Lemmas

The following lemmas are needed in the proof of Proposition 22.

Lemma 44 If the kernel k : R+ → R+ satisfies Assumptions 20, then
Z

Rm

∂k
∂x

(‖u‖2)uiu jukuldu= −1
2
C2

[
δi jδkl +δikδ jl +δilδ jk

]
.

Proof Note first that for a function f (‖u‖2) one has ∂ f
∂‖u‖2

= ∂ f
∂u2i
. The rest follows from partial

integration.

∞Z

−∞

∂k
∂u2

(u2)u2 du=
∞Z

0

∂k
∂v

(v)
√
vdv=

[
k(v)

√
v
]∞
0 −

∞Z

0

k(v)
1
2
√
v
dv= −1

2

∞Z

−∞

k(u2)du,

where [k(v)
√
v]∞0 = 0 due to the boundedness and exponential decay of k.

In the same way one can derive,
R ∞
−∞

∂k
∂u2 (u

2)u4 du = − 3
2

R ∞
−∞ k(u2)u2 du. The result follows by

noting that since k is an even function only integration over even powers of coordinates will be
non-zero.

Lemma 45 Let k satisfy Assumption 20 and let Vi jkl be a given tensor. Assume now ‖z‖2 ≥ ‖z‖2+
Vi jklziz jzkzl +β(z)‖z‖5 ≥ 1

4 ‖z‖
2 on B(0,rmin) ⊂ Rm, where β(z) is continuous and β(z) ∼ O(1) as

z→ 0. Then there exists a constantC and a h0 > 0 such that for all h< h0 and all f ∈C3(B(0,rmin)),

∣∣∣
Z

B(0,rmin)
kh

(
‖z‖2+Vi jklziz jzkzl +β(z)‖z‖5)

h2

)
f (z)dz

−
(
C1 f (0)+C2

h2

2

[
(Δ f )(0)− f (0)

m

∑
i,k
Viikk +Vikik +Vikki

])∣∣∣ ≤Ch3,

where C is a constant depending on k, rmin, Vi jkl and ‖ f‖C3 .

Proof As a first step we do a Taylor expansion of the kernel around ‖z‖2 /h2:

kh
(
‖z‖2+η

h2

)
= kh

(
‖z‖2

h2

)
+
∂kh
∂x

∣∣∣ ‖z‖2

h2

η
h2

+
∂2kh(x)
∂x2

∣∣∣ ‖z‖2(1−θ)+θη
h2

η2

h4
,

where in the last term 0≤ θ(z) ≤ 1. We then decompose the integral:

Z

B(0,rmin)
kh

(
‖z‖2+Vi jklziz jzkzl +β(z)‖z‖5

h2

)
f (z)dz

=
Z

Rm

(
kh

(
‖z‖2

h2

)
+
∂kh
∂x

∣∣∣ ‖z‖2

h2

Vi jkl ziz jzkzl

h2

)(
f (0)+

〈
∇ f

∣∣
0,z

〉
+
1
2
∂2 f
∂zi∂z j

∣∣∣
0
ziz j

)
dz+

4

∑
i=0

αi,
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where we define the five error terms αi as:

α0 =
Z

B(0,rmin)

∂kh
∂x

∣∣∣ ‖z‖2

h2

β(z)‖z‖5

h2
f (z)dz,

α1 =
Z

B(0,rmin)

∂2kh
∂x2

∣∣∣ ‖z‖2(1−θ)+θη
h2

(
Vi jklziz jzkzl +β(z)‖z‖5

)2

h4
f (z)dz,

α2 =
Z

B(0,rmin)
kh

(
‖z‖2+Vi jklziz jzkzl +β(z)‖z‖5

h2

)
1
6

∂3 f
∂zi∂z j∂zk

(θz)ziz jzkdz,

α3 =
Z

Rm\B(0,rmin)
kh

(
‖z‖2

h2

)(
f (0)+

〈
∇ f

∣∣
0,z

〉
+
1
2
∂2 f
∂zi∂z j

∣∣∣
0
ziz j

)
dz,

α4 =
Z

Rm\B(0,rmin)

∂kh
∂x

∣∣∣ ‖z‖2

h2

Vi jkl ziz jzkzl

h2

(
f (0)+

〈
∇ f

∣∣
0,z

〉
+
1
2
∂2 f
∂zi∂z j

∣∣∣
0
ziz j

)
dz,

where in α1, η=Vi jklziz jzkzl +β(z)‖z‖5. With
R
Rm k(‖z‖2)zi dz= 0, ∀ i, andR

Rm k(‖z‖2)zi z jdz= 0 if i 4= j, and Lemma 44 the main term simplifies to:
Z

Rm

(
kh

(
‖z‖2

h2

)
+
∂kh(x)
∂x

∣∣∣ ‖z‖2

h2

Vi jkl ziz jzkzl

h2

)(
f (0)+

1
2
∂2 f
∂zi∂z j

∣∣∣
0
ziz j

)
dz

=
Z

Rm

(
k
(
‖u‖2

)
+h2

∂k(x)
∂x

∣∣∣
‖u‖2

Vi jkl uiu jukul
)(

f (0)+
h2

2
∂2 f
∂zi∂z j

∣∣∣
0
uiu j

)
du

=C1 f (0)−
h2

2
C2 f (0)Vi jkl

[
δi jδkl +δikδ jl +δilδ jk

]
+
h2

2
C2

m

∑
i=1

∂2 f
∂(zi)2

∣∣∣
0
+O(h4),

where the O(h4) term is finite due to the exponential decay of k and depends on k, rmin, Vi jkl and
‖ f‖C3 . Now we can upper bound the remaining error terms αi, i= 0, . . . ,4. For the argument of the
kernel in α1 and α2 we have by our assumptions on B(0,rmin):

‖z‖2

h2
≥

‖z‖2+Vi jklziz jzkzl +β(z)‖z‖5

h2
≥ ‖z‖2

4h2
.

Note that this inequality implies that β is uniformly bounded on B(0,rmin) in terms of rmin andVi jkl .
Moreover, for small enough h we have rmin

h ≥
√
A (see Assumptions 20 for the definition of A) so

that we can use the exponential decay of k for α3 and α4,

|α0|≤ h3 ‖ f‖C3
Z

B(0, rminh )

∂kh
∂x

∣∣∣∣
‖u‖2

|β(hu)|‖u‖5 du.

Since ∂kh
∂x is bounded and has exponential decay, one has |α0|≤ K0 h3 where K0 depends on k, rmin

and ‖ f‖C3 .

|α1|≤
Z

B(0,rmin)

∣∣∣∣
∂2kh
∂x2

(
‖z‖2 (1−θ)+θη

h2

)∣∣∣∣

(
Vi jklziz jzkzl +β(z)‖z‖5

)2

h4
f (z)dz

≤h4 ‖ f‖C3
Z

B(0, rminh )

∣∣∣∣
∂2k
∂x2

(
‖u‖2 (1−θ)+θη

)∣∣∣∣
(
m2max

i, j,k,l
|Vi jkl |‖u‖4+h‖β‖∞ ‖u‖

5
)2
du.
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First suppose rmin
h ≤ 2

√
A then the integral is bounded since the integrands are bounded on B(0, rminh ).

Now suppose rmin
h ≥ 2

√
A and decomposeB(0, rminh ) as B(0, rminh )=B(0,2

√
A)∪B(0, rminh )\B(0,2

√
A).

On B(0,2
√
A) the integral is finite since

∣∣ ∂2k
∂x2

∣∣ is bounded and on the complement the integral is also
finite since

∣∣ ∂2k
∂x2

∣∣ has exponential decay since by assumption

‖u‖2 (1−θ(hu))+θ(hu)η(hu) ≥ 1
4
‖u‖2 ≥ A.

Therefore there exists a constant K1 such that |α1|≤ K1 h4. Moreover,

|α2|≤
Z

B(0,rmin)

kh
(
‖z‖2

4h2

)
1
6

∂3 f
∂zi∂z j∂zk

(θz)ziz jzkdz≤ m3/2 ‖ f‖C3 h3

6

Z

Rm

k
(
‖u‖2

4

)
‖u‖3 du≤ K2 h3,

|α3|≤
Z

Rm\B(0,rmin)
kh

(
‖z‖2

h2

)(
f (0)+

〈
∇ f

∣∣
0,z

〉
+
1
2
∂2 f
∂zi∂z j

∣∣∣
0
ziz j

)
dz

≤ c‖ f‖C3
Z

Rm\B(0,rmin)

e−
α‖z‖2

h2 (1+mh2 ‖z‖2)dz≤ ce−α
r2min
2h2

(
2π
α

)m
2 (
1+mh2

m
α

)
,

|α4|≤ K4
Z

Rm\B(0,rmin)

∣∣∣
∂kh
∂x

(‖z‖2

h2
)∣∣∣

‖z‖4+‖z‖6

h2
dz≤ cK4 h2e−α

r2min
2h2

Z

Rm

e−α‖u‖
2
(‖u‖4+h2 ‖u‖6)du,

where K4 is a constant depending on maxi, j,k,l |Vi jkl | and ‖ f‖C3 . Now one has10: e
− ξ2

h2 ≤ hs/ξs for

h≤ ξ/s. In particular, it holds h3≥ e−α
r2min
2h2 for h≤ 1

3
√

α
2 rmin, so that for h<min{ 13

√
α
2 rmin,

rmin√
A
}=

h0 all error terms are smaller than a constant times h3 where the constant depends on k, rmin, Vi jkl
and ‖ f‖C3 . This finishes the proof.

Now we are ready to prove Proposition 22,
Proof Let ε = 1

3min{inj(x),πρ}
11 where ε is positive by the assumptions on M. Then we de-

compose M as M = B(x,ε)∪ (M\B(x,ε)) and integrate separately. The integral over M\B(x,ε)
can be upper bounded by using the definition of δ(x) (see Assumption 19) and the fact that k is
non-increasing:

Z

M

kh
(
‖i(x)− i(y)‖2Rd

)
f (y)p(y)

√
detgdy=

Z

B(x,ε)

kh
(
‖i(x)− i(y)‖2Rd

)
f (y)p(y)

√
detgdy

+
Z

M\B(x,ε)

kh
(
‖i(x)− i(y)‖2Rd

)
f (y)p(y)

√
detgdy.

Since k is non-increasing, we have the following inequality for the integral overM\B(x,ε):
Z

M\B(x,ε)
kh

(
‖i(x)− i(y)‖2Rd

)
f (y)p(y)

√
detgdy≤ 1

hm
k
(
δ(x)2

h2

)
‖ f‖∞ .

10. This inequality can be deduced from ex ≥ xn for all x≥ 4n2.
11. The factor 1/3 is needed in Theorem 25.
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Since δ(x) is positive by assumption and k decays exponentially, we can make the upper bound
smaller than h3 for small enough h. Now we deal with the integral over B(x,ε). Since ε is smaller
than the injectivity radius inj(x), we can introduce normal coordinates z = exp−1x (y) on B(x,ε), so
that we can rewrite the integral using Proposition 15 as:

Z

B(0,ε)
kh

(‖z‖2− 1
12 ∑

d
α=1

∂2iα
∂za∂zb

∂2iα
∂zu∂zv z

azbzuzv+O(‖z‖5)
h2

)
p(z) f (z)

√
detgdz. (5)

Using our assumptions, we see that p f
√
detg is in C3(B(0,ε)). Moreover, by Corollary 17 one has

for dM(x,y)≤ πρ, 12dM(x,y)≤ ‖x− y‖ ≤ dM(x,y). Therefore we can apply Lemma 45 and compute
the integral in (5) which results in:

p(0) f (0)
(
C1+

h2C2
24

d

∑
α=1

∂2iα

∂za∂zb
∂2iα

∂zc∂zd
[
δabδcd +δacδbd +δadδbc

])

+
h2C2
2

ΔM(p f
√
detg)

∣∣∣
0
+O(h3), (6)

where we have used that in normal coordinates zi at 0 the Laplace-Beltrami operator ΔM is given
as ΔM f

∣∣∣
x
= ∑m

i=1
∂2 f
∂(zi)2

∣∣∣
0
. The second term in the above equation can be evaluated using the Gauss

equations, see Smolyanov, von Weizsäcker, and Wittich (2007, Proposition 6).
m

∑
a,b=1

d

∑
α=1

∂2iα

∂za∂zb
∂2iα

∂zc∂zd
[
δabδcd +δacδbd +δadδbc

]
=

m

∑
a,b=1

d

∑
α=1

∂2iα

∂(za)2
∂2iα

∂(zb)2
+2

∂2iα

∂za∂zb
∂2iα

∂za∂zb

=2
m

∑
a,b=1

d

∑
α=1

(
∂2iα

∂za∂zb
∂2iα

∂za∂zb
− ∂2iα

∂(za)2
∂2iα

∂(zb)2

)
+3

m

∑
a,b=1

d

∑
α=1

∂2iα

∂(za)2
∂2iα

∂(zb)2

=2
m

∑
a,b=1

〈Π(∂za ,∂zb),Π(∂za ,∂zb)〉−〈Π(∂za ,∂za),Π(∂zb ,∂zb)〉+3
∥∥∥∥

m

∑
a=1

Π(∂za ,∂za)
∥∥∥∥
2

Ti(x)Rd

=−2R+3
∥∥∥∥

m

∑
j=1

Π(∂z j ,∂z j)
∥∥∥∥
2

Ti(x)Rd
,

where R is the scalar curvature and we used Lemma 43 in the third equality. Plugging this result
into (6) and using from Proposition 15, ΔM

√
detg

∣∣
0 = − 1

3R, we are done.

Lemma 46 Let k have compact support on [0,R2k ] and let 0< h≤ hmax. Then for any x ∈M there
exist constants D1,D2 > 0 independent of h such that for any y ∈ BRd (x,hRk)∩M,

0< D1 ≤ ph(y) ≤ D2.

Proof First suppose that hRk < s := min{κ/2,R0/2}. Since ‖y− z‖ ≤ hRk ≤ κ/2 we have by
Lemma 18: 12dM(y,z) ≤ ‖y− z‖ ≤ dM(y,z). Moreover, since p(x) > 0 on M and p is bounded and
continuous, there exist lower and upper bounds pmin and pmax on the density on BM(x,4hRk). That
implies

ph(y) ≤
‖k‖∞
hm

pmax
Z

BM(y,2hRk)

√
detgdz≤ ‖k‖∞ pmax S2 2

mRmk ,
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where the last inequality follows from Lemma 14. Note further that dM(x,y) ≤ 2hRk and dM(y,z)≤
2hRk implies dM(x,z) ≤ 4hRk. Since the kernel function is continuous there exists an rk such that
k(x) ≥ ‖k‖∞ /2 for 0< x≤ rk. We get

ph(y) ≥
‖k‖∞
2hm

Z

BRd (x,hrk)∩M

p(z)
√
detgdz≥ ‖k‖∞

2hm
pmin volM(BM(x,hrk)) ≥

‖k‖∞
2

pmin S1 rmk .

Now suppose s≤ hRk and h≤ hmax. Then ph(y) ≤ ‖k‖∞
hm ≤ ‖k‖∞

(Rk
s
)m. For the lower bound we get

ph(y) ≥
Z

M
kh(dM(y,z))p(z)

√
detgdz≥

Z

BM(y,hrk)
kh(dM(y,z))p(z)

√
detgdz

≥ ‖k‖∞
2hm

P
(
BM(y,hrk)

)
≥ ‖k‖∞
2hmmax

P
(
BM(y,s

rk
Rk

)
)
.

Since p is continuous and p > 0, the function y→ P
(
BM(y,s rkRk )

)
is continuous and positive and

therefore has a lower bound greater zero on the ball BRd (x,hRk)∩M.
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Abstract
We consider semi-supervised classification when part of the available data is unlabeled. These
unlabeled data can be useful for the classification problem when we make an assumption relating
the behavior of the regression function to that of the marginal distribution. Seeger (2000) proposed
the well-known cluster assumption as a reasonable one. We propose a mathematical formulation
of this assumption and a method based on density level sets estimation that takes advantage of it
to achieve fast rates of convergence both in the number of unlabeled examples and the number of
labeled examples.
Keywords: semi-supervised learning, statistical learning theory, classification, cluster assumption,
generalization bounds

1. Introduction

Semi-supervised classification has been of growing interest over the past few years and many meth-
ods have been proposed. The methods try to give an answer to the question: “How to improve
classification accuracy using unlabeled data together with the labeled data?”. Unlabeled data can
be used in different ways depending on the assumptions on the model. There are mainly two ap-
proaches to solve this problem. The first one consists in using the unlabeled data to reduce the
complexity of the problem in a broad sense. For instance, assume that we have a set of potential
classifiers and we want to aggregate them. In that case, unlabeled data is used to measure the com-
patibility between the classifiers and reduces the complexity of the set of candidate classifiers (see,
for example, Balcan and Blum, 2005; Blum and Mitchell, 1998). Unlabeled data can also be used
to reduce the dimension of the problem, which is another way to reduce complexity. For exam-
ple, in Belkin and Niyogi (2004), it is assumed that the data actually live on a submanifold of low
dimension.

The second approach is the one that we use here. It assumes that the data contains clusters that
have homogeneous labels and the unlabeled observations are used to identify these clusters. This
is the so-called cluster assumption. This idea can be put in practice in several ways giving rise
to various methods. The simplest is the one presented here: estimate the clusters, then label each
cluster uniformly. Most of these methods use Hartigan’s (1975) definition of clusters, namely the
connected components of the density level sets. However, they use a parametric—usually mixture—
model to estimate the underlying density which can be far from reality. Moreover, no generalization

c©2007 Philippe Rigollet.
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error bounds are available for such methods. In the same spirit, Tipping (1999) and Rattray (2000)
propose methods that learn a distance using unlabeled data in order to have intra-cluster distances
smaller than inter-clusters distances. The whole family of graph-based methods aims also at using
unlabeled data to learn the distances between points. The edges of the graphs reflect the proximity
between points. For a detailed survey on graph methods we refer to Zhu (2005). Finally, we
mention kernel methods, where unlabeled data are used to build the kernel. Recalling that the
kernel measures proximity between points, such methods can also be viewed as learning a distance
using unlabeled data (see Bousquet et al., 2004; Chapelle and Zien, 2005; Chapelle et al., 2006).

The cluster assumption can be interpreted in another way, that is, as the requirement that the
decision boundary has to lie in low density regions. This interpretation has been widely used in
learning since it can be used in the design of standard algorithms such as Boosting (d’Alché Buc
et al., 2001; Hertz et al., 2004) or SVM (Bousquet et al., 2004; Chapelle and Zien, 2005), which are
closely related to kernel methods mentioned above. In these algorithms, a greater penalization is
given to decision boundaries that cross a cluster. For more details, see, for example, Seeger (2000),
Zhu (2005), and Chapelle et al. (2006). Although most methods make, sometimes implicitly, the
cluster assumption, no formulation in probabilistic terms has been provided so far. The formulation
that we propose in this paper remains very close to its original text formulation and allows to derive
generalization error bounds. We also discuss what can and cannot be done using unlabeled data.
One of the conclusions is that considering the whole excess-risk is too ambitious and we need to
concentrate on a smaller part of it to observe the improvement of semi-supervised classification over
supervised classification.

1.1 Outline of the Paper

After describing the model, we formulate the cluster assumption and discuss why and how it can
improve classification performance in Section 2. The main result of this section is Proposition 2.1
which essentially states that the effect of unlabeled data on the rates of convergence cannot be ob-
served on the whole excess-risk. We therefore introduce the cluster excess-risk which corresponds
to a part of the excess-risk that is interesting for this problem. In Section 3, we study the population
case where the clusters are perfectly known, to get an idea of our target. Indeed, such a population
case corresponds in some way to the case where the amount of unlabeled data is infinite. Section 4
contains the main result: after having defined the clusters in terms of density level sets, we propose
an algorithm for which we derive rates of convergence for the cluster excess-risk as a measure of
performance. An example of consistent density level set estimators is given in Section 5. Sec-
tion 6 is devoted to a discussion on the choice of the level as well as possible implementations and
improvements. Proofs of the results are gathered in Section A.

1.2 Notation

Throughout the paper, we denote positive constants by c j. We write Γc for the complement of the
set Γ. For two sequences (up)p and (vp)p (in that paper, p will be m or n), we write up = O(vp) if
there exists a constant C > 0 such that up ≤Cvp and we write up = Õ(vp) if up ≤C(log p)αvp for
some constants α> 0,C> 0. Moreover, we write up = o(vp), if there exists a non negative sequence
(εp)p that tends to 0 when p tends to infinity and such that |up| ≤ εp|vp|. Thus, if up = Õ(vp), we
have up = o(vppβ), for any β> 0.
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2. The Model

Let (X ,Y ) be a random couple with joint distribution P, where X ∈ X ⊂ IRd is a vector of d features
and Y ∈ {0,1} is a label indicating the class to which X belongs. The distribution P of the random
couple (X ,Y ) is completely determined by the pair (PX ,η) where PX is the marginal distribution
of X and η is the regression function of Y on X , that is, η(x) ! P(Y = 1|X = x). The goal of
classification is to predict the labelY given the value of X , that is, to construct a measurable function
g : X → {0,1} called a classifier. The performance of g is measured by the average classification
error

R(g) ! P(g(X) %= Y ) .

A minimizer of the risk R(g) over all classifiers is given by the Bayes classifier g!(x) = 1I{η(x)≥1/2},
where 1I{·} denotes the indicator function. Assume that we have a sample of n observations (X1,Y1),
. . . ,(Xn,Yn) that are independent copies of (X ,Y ). An empirical classifier is a random function
ĝn : X → {0,1} constructed on the basis of the sample (X1,Y1), . . . ,(Xn,Yn). Since g! is the best
possible classifier, we measure the performance of an empirical classifier ĝn by its excess-risk

E(ĝn) = IEnR(ĝn)−R(g!) ,

where IEn denotes the expectation with respect to the joint distribution of the sample (X1,Y1), . . . ,
(Xn,Yn). We denote hereafter by IPn the corresponding probability.

In many applications, a large amount of unlabeled data is available together with a small set
of labeled data (X1,Y1), . . . ,(Xn,Yn) and the goal of semi-supervised classification is to use unla-
beled data to improve the performance of classifiers. Thus, we observe two independent sam-
ples Xl = {(X1,Y1), . . . ,(Xn,Yn)} and Xu = {Xn+1, . . . ,Xn+m}, where n is rather small and typically
m' n. Most existing theoretical studies of supervised classification use empirical processes theory
(Devroye et al., 1996; Vapnik, 1998; van de Geer, 2000; Boucheron et al., 2005) to obtain rates
of convergence for the excess-risk that are polynomial in n. Typically these rates are of the order
O(1/

√
n) and can be as small as Õ(1/n) under some low noise assumptions (cf. Tsybakov, 2004;

Audibert and Tsybakov, 2007). However, simulations indicate that much faster rates should be at-
tainable when unlabeled data is used to identify homogeneous clusters. Of course, it is well known
that in order to make use of the additional unlabeled observations, we have to make an assump-
tion on the dependence between the marginal distribution of X and the joint distribution of (X ,Y )
(see, for example, Zhang and Oles, 2000). Seeger (2000) formulated the rather intuitive cluster
assumption as follows1

Two points x,x′ ∈ X should have the same label y if there is a path between them which
passes only through regions of relatively high PX .

This assumption, in its raw formulation cannot be exploited in the probabilistic model since (i) the
labels are random variables Y,Y ′ so that the expression “should have the same label” is meaningless
unless η takes values in {0,1} and (ii) it is not clear what “regions of relatively high PX” are. To
match the probabilistic framework, we propose the following modifications.

(i) Assume P[Y = Y ′|X ,X ′ ∈C] ≥ P[Y %= Y ′|X ,X ′ ∈C], whereC is a cluster.

(ii) Define “regions of relatively high PX” in terms of density level sets.

1. The notation is adapted to the present framework.
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Assume for the moment that we know what the clusters are, so that we do not have to define them
in terms of density level sets. This will be done in Section 4. Let T1,T2, . . . , be a countable family
of subsets of X . We now make the assumption that the T j’s are clusters of homogeneous data.

Cluster Assumption (CA) Let T1,T2, . . . , be a collection of measurable sets (clusters) such that
Tj ⊂ X , j= 1,2, . . . Then the function x∈ X *→ 1I{η(x) ≥ 1/2} takes a constant value on each
of the Tj, j = 1,2, . . ..

It is not hard to see that the cluster assumption (CA) is equivalent to the following assumption.

Let Tj, j = 1,2, . . . , be a collection of measurable sets such that Tj ⊂ X , j = 1,2, . . .
Then, for any j = 1,2, . . ., we have

P[Y = Y ′|X ,X ′ ∈ Tj] ≥ P[Y %= Y ′|X ,X ′ ∈ Tj] .

A question remains: what happens outside of the clusters? Define the union of the clusters,

C =
[

j≥1
Tj (1)

and assume that we are in the problematic case, PX(C c) > 0 such that the question makes sense.
Since the cluster assumption (CA) says nothing about what happens outside of the set C , we can
only perform supervised classification on C c. Consider a classifier ĝn,m built from labeled and
unlabeled samples (Xl,Xu) pooled together. The excess-risk of ĝn,m can be written (see Devroye
et al., 1996),

E(ĝn,m) = IEn,m
Z

X
|2η(x)−1|1I{ĝn,m(x)$=g!(x)}dPX(x) ,

where IEn,m denotes the expectation with respect to the pooled sample (Xl,Xu). We denote hereafter
by IPn,m the corresponding probability. Since, the unlabeled sample is of no help to classify points
in C c, any reasonable classifier should be based on the sample Xl so that ĝn,m(x) = ĝn(x), ∀x ∈ C c,
and we have

E(ĝn,m) ≥ IEn
Z

C c
|2η(x)−1|1I{ĝn(x)$=g!(x)}dPX(x) . (2)

Since we assumed PX(C c) %= 0, the RHS of (2) is bounded from below by the optimal rates of
convergence that appear in supervised classification.

The previous heuristics can be stated more formally as follows. Recall that the distribution P of
the random couple (X ,Y ) is completely characterized by the couple (PX ,η)where PX is the marginal
distribution of X and η is the regression function of Y on X . In the following proposition, we are
interested in a class of distributions with cylinder form, that is, a class D that can be decomposed
as D = M ×Ξ where M is a fixed class of marginal distributions on X and Ξ is a fixed class of
regression functions on X with values in [0,1].

Proposition 2.1 Fix n,m≥ 1 and let C be a measurable subset of X . Let M be a class of marginal
distributions on X and let Ξ be a class of regression functions. Define the class of distributions D
as D = M ×Ξ. Then, for any marginal distribution P0X ∈ M , we have

inf
Tn
sup
η∈Ξ

IEn
Z

C c
|2η−1|1I{Tn $=g!}dP0X ≤ inf

Tn,m
sup
P∈D

IEn,m
Z

C c
|2η−1|1I{Tn,m $=g!}dPX , (3)

where infTn,m denotes the infimum over all classifiers based on the pooled sample (Xl,Xu) and infTn
denotes the infimum over all classifiers based only on the labeled sample Xl .
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The main consequence of Proposition 2.1 is that even when the cluster assumption (CA) is valid the
unlabeled data are useless to improve the rates of convergence. If the class M is reasonably large
and satisfies P0X(C c) > 0, the left hand side in (3) can be bounded from below by the minimax rate
of convergence with respect to n, over the classD . Indeed a careful check of the proofs of minimax
lower bounds reveals that they are constructed using a single marginal P0X that is well chosen. These
rates are typically of the order n−α,0 < α ≤ 1 (see, for example, Mammen and Tsybakov 1999,
Tsybakov 2004, and Audibert and Tsybakov 2007 and Boucheron et al. 2005 for a comprehensive
survey).

Thus, unlabeled data do not improve the rate of convergence of this part of the excess-risk. To
observe the effect of unlabeled data on the rates of convergence, we have to consider the cluster
excess-risk of a classifier ĝn,m defined by

EC (ĝn,m) ! IEn,m
Z

C
|2η(x)−1|1I{ĝn,m(x)$=g!(x)}dPX(x) .

We will therefore focus on this measure of performance. The cluster excess-risk can also be
expressed in terms of an excess-risk. To observe it, define the set GC of all classifiers restricted
to C :

GC =
{
g : C → {0,1}, g measurable

}
.

The performance of a classifier g ∈ GC is measured by the average classification error on C :

R(g) = P
(
g(X) %= Y

)
= P

(
g(X) %= Y,X ∈ C

)
.

Aminimizer of R(·) over GC is given g!
|C (x) = 1I{η(x)≥1/2}, x∈ C , that is, the restriction of the Bayes

classifier to C . Now it can be easily shown that for any classifier g ∈ GC we have,

R(g)−R(g!
|C ) =

Z

C
|2η(x)−1|1I{g(x)$=g!

|C (x)}dPX(x) . (4)

Taking expectations on both sides of (4) with g= ĝn,m, it follows that

IEn,mR(ĝn,m)−R(g!
|C ) = EC (ĝn,m) .

Therefore, cluster excess-risk equals the excess-risk of classifiers in GC . In the sequel, we only
consider classifiers ĝn,m ∈ GC , that is, classifiers that are defined on C .

We now propose a method to obtain good upper bounds on the cluster excess-risk, taking advan-
tage of the cluster assumption (CA). The idea is to estimate the regions where the sign of (η−1/2)
is constant and make a majority vote on each region.

3. Results for Known Clusters

Consider the ideal situation where the family T1,T2, . . ., is known and we observe only the labeled
sample Xl = {(X1,Y1), . . . ,(Xn,Yn)}. Define

C =
[

j≥1
Tj .

Under the cluster assumption (CA), the function x *→ η(x)−1/2 has constant sign on each T j. Thus
a simple and intuitive method for classification is to perform a majority vote on each T j.
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For any j ≥ 1, define δ j ≥ 0, δ j ≤ 1 by

δ j =
Z

Tj
|2η(x)−1|PX(dx) .

We now define our classifier based on the sample Xl . For any j≥ 1, define the random variable

Z j
n =

n

∑
i=1

(2Yi−1)1I{Xi∈Tj} ,

and denote by ĝ jn the function ĝ jn(x) = 1I{Z jn>0} , for all x ∈ Tj . Consider the classifier defined on C
by

ĝn(x) = ∑
j≥1

ĝ jn(x)1I{x∈Tj} , x ∈ C .

The following theorem gives rates of convergence for the cluster excess-risk of the classifier ĝn
under (CA) that can be exponential in n under a mild additional assumption.

Theorem 3.1 Let Tj, j ≥ 1 be a family of measurable sets that satisfy Assumption (CA). Then, the
classifier ĝn defined above satisfies

EC (ĝn) ≤ 2∑
j≥1

δ je−nδ
2
j/2 .

Moreover, if there exists δ > 0 such that δ = inf j{δ j : δ j > 0}, we obtain an exponential rate of
convergence:

EC (ĝn) ≤ 2e−nδ
2/2 .

In a different framework, Castelli and Cover (1995, 1996) have proved that exponential rates of
convergence were attainable for semi-supervised classification. A rapid overview of the proof shows
that the rate of convergence e−nδ2/2 cannot be improved without further assumption. It will be our
target in semi-supervised classification. However, we need estimators of the clusters T j, j= 1,2, . . ..
In the next section we provide the main result on semi-supervised learning, that is when the clusters
are unknown but we can estimate them using the unlabeled sample Xu.

4. Main Result

We now deal with a more realistic case where the clusters T1,T2, . . . , are unknown and we have to
estimate them using the unlabeled sample Xu = {X1, . . . ,Xm}. We begin by giving a definition of
the clusters in terms of density level sets. In this section, we assume that X has finite Lebesgue
measure.

4.1 Definition of the Clusters

Following Hartigan (1975), we propose a definition of clusters that is also compatible with the
expression “regions of relatively high PX” proposed by Seeger (2000).

Assume that PX admits a density p with respect to the Lebesgue measure on IRd denoted here-
after by Lebd . For a fixed λ> 0, the λ-level set of the density p is defined by

Γ(λ) = {x ∈ X : p(x) ≥ λ} .
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On these sets, the density is relatively high. The cluster assumption involves also a notion of con-
nectedness of a set. For anyC⊂ X , define the binary relation R on any setC as follows: two points
x,y ∈C satisfy xR y if and only if there exists a continuous map f : [0,1] →C, such that f (0) = x
and f (1) = y. If xR y, we say that x and y are pathwise connected. It can be easily show that R is
an equivalence relation and its classes of equivalence are called connected components ofC. At this
point, in view of the formulation of the cluster assumption, it is very tempting to define the clusters
as the connected components ofC. However, this definition suffers from two major flaws:

1. a connected set cannot be defined up to a set of null Lebesgue measure. Indeed, consider
for example the case d = 1 and C = [0,1]. This set is obviously connected (take the map
f equal to the identity on [0,1]) but the set C̃ = C \ {1/2} is not connected anymore even
though C and C̃ only differ by a set of null Lebesgue measure. In our setup we want to
impose connectedness on certain subsets of the λ-level set of the density p which is actually
defined up to a set of null Lebesgue measure. Figure 1 (left) is an illustration of a set with one
connected component whereas it is desirable to have two clusters.

2. There is no scale consideration in this definition of clusters. When two clusters are too close
to each other in a certain sense, we wish identify them as a single cluster. In Figure 1 (right),
the displayed set has two connected components whereas we wish to identify only one cluster.

To fix the first flaw, we introduce the following notions. Let B(z,r) be the d-dimensional closed
ball of center z ∈ IRd and radius r > 0, defined by

B(z,r) =
{
x ∈ IRd : ‖z− x‖ ≤ r

}
,

where ‖ ·‖ denotes the Euclidean norm in IRd .

Definition 4.1 Fix r0 ≥ 0 and let d be an integer such that d ≥ d. We say that a measurable set
C ⊂ X is r0-standard if for any z ∈C and any 0≤ r ≤ r0, we have

Lebd
(
B(z,r)∩C

)
≥ c0rd . (5)

We now comment upon this definition.

Remark 4.1 The definition of a standard set has been introduced by Cuevas and Fraiman (1997).
This definition ensures that the set C has no “flat” parts which allows to exclude pathological cases
such as the one presented on the left hand side of Figure 1.

Remark 4.2 The constant c0 may depend on r0 and this avoids large-scale shape considerations.
Indeed, if the set C is bounded, then for any z∈C, Lebd

(
B(z,r)∩C

)
= Lebd

(
C

)
for r≥ r0 where r0

is the diameter of C. Thus for C to be r0-standard, we have to impose at least that c0 ≤ Lebd
(
C

)
r−d0 .

Remark 4.3 The case d > d allows us to include a wide variety of shapes in this definition. Con-
sider the following example where d = 2:

Cδ =
{
(x,y) : −1≤ x≤ 1, 0≤ y≤ |x|δ

}
, δ> 0.
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Fix r ≤
√
2 and consider the point z= (0,0). It holds

Lebd
(
B(z,r)∩Cδ

)
≥

Z r′

−r′
min(|x|δ,r′)dx , where r′ =

r√
2

.

For any |x|≤ r′ ≤ 1, we have |x|δ ≥ |x|(δ∨1) and |x|(δ∨1) ≤ |r′|(δ∨1) ≤ r′. Thus

Lebd
(
B(z,r)∩Cδ

)
≥

Z r′

−r′
|x|(δ∨1)dx= 2(r′)(δ∨1)+1 .

We conclude that (5) is satisfied at z= (0,0) for d = (δ∨1)+1. However, notice that

Lebd
(
B(z,r)∩Cδ

)
≤

Z r

−r
|x|δdx= 2r(δ+1) .

Thus (5) is not satisfied at z= (0,0) when d = d, if δ> 1.

To overcome the scale problem described in the second flaw, we introduce the notion of s0-
separated sets.

Define the pseudo-distance distance d∞, between two setsC1 andC2 by

d∞(C1,C2) = inf
x∈C1
y∈C2

‖x− y‖.

We say that two setsC1,C2, are s0-separated if d∞(C1,C2) > s0, for some s0≥ 0. More generally, we
say that the sets C1,C2, . . . are mutually s0-separated if for any j %= j′, C j and C j′ are s0-separated.
On the right hand side of Figure 1, we show an example of two sets that are not s0-separated for
a reasonable s0. In that particular example, if s0 is sufficiently small, we would like to identify a
single cluster.

We now define s0-connectedness which is a weaker version of connectedness in the form of a
binary relation

Definition 4.2 Fix s> 0 and let s←→
C

be the binary relation defined onC⊂ X as follows: two points

x,y ∈C satisfy x s←→
C

y if and only if there exists a piecewise constant map f : [0,1] →C such that
f (0) = x and f (1) = y and such that f has a finite number of jumps that satisfy ‖ f (t+)− f (t−)‖ ≤ s
for any t ∈ [0,1], where

f (t+) = lim
θ→t
θ>t

f (θ) and f (t−) = lim
θ→t
θ<t

f (θ) .

If x s←→
C

y, we say that x and y are s-connected.

Note that x and y are s-connected if and only if there exists z1, . . . ,zn ∈C such that ‖x− z1‖ ≤ s,
‖y−zn‖≤ s and ‖zi−zi+1‖≤ s for any j= 1, . . . ,n−1. In other words, there exists a finite sequence
of points in C that links x to y and such that two consecutive points in this sequence have distance
smaller that s.
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Lemma 4.1 Fix s > 0, then the binary relation s←→
C

is an equivalence relation and C can be par-

titioned into its classes of equivalence. The classes of equivalence of s←→
C

are called s-connected
components ofC.

In the next proposition we prove that given a certain scale s> 0, it is possible split a r0-standard
and closed set C into a unique partition that is a coarser than the partition defined by the connected
components ofC and that this partition is finite for such sets.

Proposition 4.1 Fix r0 > 0,s > 0 and assume that C is a r0-standard and closed set. Then there
exists a unique partition C1, . . .CJ , J ≥ 1, of C such that

• for any j = 1, . . . ,J and any x,y ∈C j, we have x
s←→
C

y,

• the sets C1, . . . ,CJ are mutually s-separated.

Remark 4.4 In what follows we assume that the scale s = s0 is fixed by the statistician. It should
be fixed depending on a priori considerations about the scale of the problem. Actually, in the proof
of Proposition 4.3, we could even assume that s0 = 1/(3logm), which means that we can have the
scale depend on the number of observations. This is consistent with the fact that the finite number of
unlabeled observations allows us to have only a blurred vision of the clusters. In this case, we are
not able to differentiate between two clusters that are too close to each other but our vision becomes
clearer and clearer as m tends to infinity.

PSfrag replacements
r0

PSfrag replacements
s0

Figure 1: A set that is not r0-standard for any r0 (left). A set that has two connected components
but only one s0-connected components (right).

We now formulate the cluster assumption when the clusters are defined in terms of density level
sets. In the rest of the section, fix λ > 0 and let Γ denote the λ-level set of the density p. We also
assume in what follows that Γ is closed which is the case if the density p is continuous for example.
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Strong Cluster Assumption (SCA) Fix s0 > 0 and r0 > 0 and assume that Γ admits a version that
is r0-standard and closed. Denote by T1, . . . ,TJ the s0-connected components of this version of
Γ. Then the function x ∈ X *→ 1I{η(x)≥1/2} takes a constant value on each of the Tj, j= 1, . . .J.

4.2 Estimation of the Clusters

Assume that p is uniformly bounded by a constant L(p) and that X is bounded. Denote by IPm and
IEm respectively the probability and the expectation w.r.t the sample Xu of size m. Assume that we
use the sample Xu to construct an estimator Ĝm of Γ satisfying

IEm
[
Lebd(Ĝm!Γ)

]
→ 0, m→ +∞ ,

where ! is the sign for the symmetric difference. We call such estimators consistent estimators of
Γ. Recall that we are interested in identifying the s0-connected components T1, . . . ,TJ of Γ. That
is, we seek a partition of Ĝm, denoted here by Ĥ1, . . . , ĤJ′ such that for any j = 1, . . . ,J, Ĥ j is a
consistent estimator of Tj and IEm

[
Lebd(Ĥ j)

]
→ 0 for j > J. From Proposition 4.1, we know that

for any 1≤ j, j′ ≤ J, j %= j′, we have d∞(Tj,Tj′) > s0. Let s> s0 be defined by

s=min
j $= j′

d∞(Tj,Tj′) . (6)

To define the partition Ĥ1, . . . , ĤJ′ , it is therefore natural to use a suitable reordering of the (s0+
um)-connected components of Ĝm, where um is a positive sequence that tends to 0 as m tends to
infinity. Since the measure of performance IEm

[
Lebd(Ĝm!Γ)

]
is defined up to a set of null Lebesgue

measure it may be the case that even an estimator Ĝm that satisfies IEm
[
Lebd(Ĝm !Γ)

]
= 0 has

only one (s0+ um)-connected components whereas Γ has several s0-connected components. This
happens for example in the case where Ĝm = Γ∪ R where R is a set of thin ribbons with null
Lebesgue measure that link the s0-connected components of Γ to each other (see Figure 1, left). If
Ĝm were r0-standard, such configurations would not occur. To have Ĝm more “standard”, we apply
the following clipping transformation: define the set

Clip(Ĝm) =
{
x ∈ Ĝm : Lebd

(
Ĝm∩B(x,(logm)−1)

)
≤ (logm)−d

mα

}
.

In the sequel, we will only consider the clipped version of Ĝm defined by G̃m = Ĝm \Clip(Ĝm). For
any x ∈ G̃m, we have

Lebd
(
Ĝm∩B(x,(logm)−1)

)
>

(logm)−d

mα .

However, this is not enough to ensure that the union of several s0-connected components of Γ is
not estimated by a single (s0+ um)-connected component of G̃m due to the magnitude of random
fluctuations of G̃m around Γ.

To ensure componentwise consistency, we make assumptions on the estimator Ĝm. Note that
the performance of a density level set estimator Ĝm is measured by the quantity

IEm
[
Lebd(Ĝm!Γ)

]
= IEm

[
Lebd(Ĝc

m∩Γ)
]
+ IEm

[
Lebd(Ĝm∩Γc)

]
. (7)

For some estimators, such as the offset plug-in density level sets estimators presented in Section 5,
we can prove that the dominant term in the RHS of (7) is IEm

[
Lebd(Ĝc

m ∩Γ)
]
. It yields that the

probability of having Γ included in the consistent estimator Ĝm is negligible. We now give a precise
definition of such estimators.
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Definition 4.3 Let Ĝm be an estimator of Γ and fix α> 0. We say that the estimator Ĝm is consistent
from inside at rate m−α if it satisfies

IEm
[
Lebd(Ĝm!Γ)

]
= Õ(m−α) ,

and
IEm

[
Lebd(Ĝm∩Γc)

]
= Õ(m−2α) .

The following proposition ensures that the clipped version of an estimator that is consistent from
inside is also consistent from inside at the same rate.

Proposition 4.2 Fix α > 0,s0 > 0 and let (um) be a positive sequence. Assume that X is bounded
and let Ĝm be an estimator of Γ that is consistent from inside at rate m−α. Then, the clipped
estimator G̃m = Ĝm \Clip(Ĝm) is also consistent from inside a rate m−α and has a finite number
K̃m ≤ Lebd(X )mα of (s0 + um)-connected components that have Lebesgue measure greater than
or equal to m−α. Moreover, the (s0+ um)-connected components of G̃m are mutually (s0+ θum)-
separated for any θ ∈ (0,1).

We are now in position to define the estimators of the s0-connected components of Γ. Define sm =
s0+(3logm)−1 and denote by H̃1, . . . , H̃K̃m the sm-connected components of G̃m that have Lebesgue
measure greater than or equal to m−α. The number K̃m depends on Xu and is therefore random but
bounded from above by the deterministic quantity Lebd(X )mα.

Let J be a subset of {1, . . . ,J}. Define κ( j) = {k= 1, . . . , K̃m : H̃k∩Tj %= /0} and let D(J ) be the
event on which the sets κ( j), j ∈ J are reduced to singletons {k( j)} that are disjoint, that is,

D(J ) =
{
κ( j) = {k( j)},k( j) %= k( j′), ∀ j, j′ ∈ J , j %= j′

}

=
{
κ( j) = {k( j)}, (Tj ∪ H̃k( j))∩ (Tj′ ∪ H̃k( j′)) = /0, ∀ j, j′ ∈ J , j %= j′

}
.

(8)

In other words, on the event D(J ), there is a one-to-one correspondence between the collection
{Tj} j∈J and the collection

{
{H̃k}k∈κ( j)

}
j∈J . Componentwise convergence of G̃m to Γ, is ensured

when D({1, . . . ,J}) has asymptotically overwhelming probability. The following proposition en-
sures that D(J ) has large enough probability.

Proposition 4.3 Fix r0 > 0 and s0 ≥ (3logm)−1. Assume that there exists a version of Γ that is
r0-standard and closed. Then, denoting by J the number of s0-connected components if Γ, for any
J ⊂ {1, . . . ,J}, we have

IPm
(
Dc(J )) = Õ

(
m−α) ,

where D(J ) is defined in (8).

4.3 Labeling the Clusters

From the strong cluster assumption (SCA) the clusters are homogeneous regions. To estimate the
clusters, we apply the method described above that consists in estimating the sm-connected compo-
nents of the clipped estimator G̃m and keep only those that have Lebesgue measure greater than or
equal to m−α. Then we make a majority vote on each homogeneous region. It yields the following
procedure.
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THREE-STEP PROCEDURE

1. Use the unlabeled data Xu to construct an estimator Ĝm of Γ that is consistent from
inside at rate m−α.

2. Define homogeneous regions as the sm-connected components of G̃m = Ĝm \
Clip(Ĝm) (clipping step) that have Lebesgue measure greater than or equal to m−α.

3. Assign a single label to each estimated homogeneous region by a majority vote on
labeled data.

This method translates into two distinct error terms, one term in m and another term in n. We
apply our three-step procedure to build a classifier g̃n,m based on the pooled sample (Xl,Xu). Fix
α> 0 and let Ĝm be an estimator of the density level set Γ, that is consistent from inside at rate m−α.
For any 1≤ k ≤ K̃m, define the random variable

Zkn,m =
n

∑
i=1

(2Yi−1)1I{Xi∈H̃k} ,

where H̃k is obtained by Step 2 of the three-step procedure. Denote by g̃kn,m the function g̃kn,m(x) =
1I{Zkn,m>0} for all x ∈ H̃k and consider the classifier defined on X by

g̃n,m(x) =
K̃m
∑
k=1

g̃kn,m(x)1I{x∈H̃k} , x ∈ X . (9)

Note that the classifier g̃n,m assigns label 0 to any x outside of G̃m. This is a notational convention
and we can assign any value to x on this set since we are only interested in the cluster excess-risk.
Nevertheless, it is more appropriate to assign a label referring to a rejection, for example, the values
“2”or “R” (or any other value different from {0,1}). The rejection meaning that this point should be
classified using labeled data only. However, when the amount of labeled data is too small, it might
be more reasonable not to classify this point at all. This modification is of particular interest in the
context of classification with a rejection option when the cost of rejection is smaller than the cost of
misclassification (see, for example, Herbei and Wegkamp, 2006). Remark that when there is only a
finite number of clusters, there exists δ> 0 such that

δ= min
j=1,...,J

{
δ j : δ j > 0

}
. (10)

Theorem 4.1 Fix α > 0 and assume that (SCA) holds. Consider an estimator Ĝm of Γ, based on
Xu that is consistent from inside at rate m−α. Then, the classifier g̃n,m defined in (9) satisfies

EΓ (g̃n,m) ≤ Õ
(
m−α

1−θ

)
+

J

∑
j=1

δ je−n(θδ j)
2/2 ≤ Õ

(
m−α

1−θ

)
+ e−n(θδ)

2/2 , (11)

for any 0< θ< 1 and where δ> 0 is defined in (10).

Note that, since we often have m' n, the first term in the RHS of (11) can be considered negligible
so that we achieve an exponential rate of convergence in n which is almost the same (up to the
constant θ in the exponent) as in the case where the clusters are completely known. The constant θ
seems to be natural since it balances the two terms.
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5. Plug-in Rules for Density Level Sets Estimation

Fix λ > 0 and recall that our goal is to use the unlabeled sample Xu of size m to construct an
estimator Ĝm of Γ= Γ(λ) = {x ∈ X : p(x) ≥ λ}, that is consistent from inside at rate m−α for some
α > 0 that should be as large as possible. A simple and intuitive way to achieve this goal is to use
plug-in estimators of Γ defined by

Γ̂= Γ̂(λ) = {x ∈ X : p̂m(x) ≥ λ} ,

where p̂m is some estimator of p. A straightforward generalization are the offset plug-in estimators
of Γ(λ), defined by

Γ̃" = Γ̃"(λ) = {x ∈ X : p̂m(x) ≥ λ+ !} ,

where ! > 0 is an offset. Clearly, we have Γ̃" ⊂ Γ̂. Keeping in mind that we want estimators that are
consistent from inside we are going to consider sufficiently large offset ! = !(m).

Plug-in rules is not the only choice for density level set estimation. Direct methods such as
empirical excess mass maximization (see, for example, Polonik, 1995; Tsybakov, 1997; Steinwart
et al., 2005) are also popular. One advantage of plug-in rules over direct methods is that once we
have an estimator p̂m, we can compute the whole collection {Γ̃"(λ),λ > 0}, which might be of
interest for the user who wants to try several values of λ. Note also that a wide range of density
estimators is available in usual software. A density estimator can be parametric, typically based on
a mixture model, or nonparametric such as histograms or kernel density estimators. In Section 6, we
briefly describe a possible implementation based on existing software that makes use of kernel or
nearest neighbors density estimators. To conclude this discussion, remark that the greater flexibility
of plug-in rules may result in a poorer learning performance and even though we do not discuss
any implementation based on direct methods, it may well be the case that the latter perform better
in practice. However, it is not our intent to propose here the best clustering algorithm or the best
density level set estimator and we present a simple proof of convergence for offset plug-in rules
only for the sake of completeness.

The next assumption has been introduced in Polonik (1995). It is an analog of the margin
assumption formulated in Mammen and Tsybakov (1999) and Tsybakov (2004) but for arbitrary
level λ in place of 1/2.

Definition 5.1 For any λ,γ≥ 0, a function f : X → IR is said to have γ-exponent at level λ if there
exists a constant c! > 0 such that, for all ε> 0,

Lebd {x ∈ X : | f (x)−λ|≤ ε}≤ c!εγ .

When γ> 0 it ensures that the function f has no flat part at level λ.
The next theorem gives fast rates of convergence for offset plug-in rules when p̂m satisfies an

exponential inequality and p has γ-exponent at level λ. Moreover, it ensures that when the offset !
is suitably chosen, the plug-in estimator is consistent from inside.

Theorem 5.1 Fix λ > 0,γ > 0 and Δ > 0. Let p̂m be an estimator of the density p based on the
sample Xu of size m ≥ 1 and let P be a class of densities on X . Assume that there exist positive
constants c1,c2 and a≤ 1, such that for PX -almost all x ∈ X , we have

sup
p∈P

IPm (|p̂m(x)− p(x)|≥ δ) ≤ c1e−c2m
aδ2 , m−a/2 < δ< Δ . (12)
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Assume further that p has γ-exponent at level λ for any p ∈ P and that the offset ! is chosen as

! = !(m) = m− a
2 logm . (13)

Then the plug-in estimator Γ̃" is consistent from inside at rate m− γa
2 for any p ∈ P .

Consider a kernel density estimator p̂Km based on the sample Xu defined by

p̂Km(x) =
1
mhd

n+m

∑
i=n+1

K
(
Xi− x
h

)
, x ∈ X ,

where h> 0 is the bandwidth parameter and K : IRd → IR is a kernel. If p is assumed to have Hölder
smoothness parameter β > 0 and if K and h are suitably chosen, it is a standard exercise to prove
inequality of type (12) with a = 2β/(2β+ d). In that case, it can be shown that the rate m− γa

2 is
optimal in a minimax sense (see Rigollet and Vert, 2006).

6. Discussion

We proposed a formulation of the cluster assumption in probabilistic terms. This formulation re-
lies on Hartigan’s (1975) definition of clusters but it can be modified to match other definitions of
clusters.

We also proved that there is no hope to improve the classification performance outside of these
clusters. Based on these remarks, we defined the cluster excess-risk on which we observe the
effect of unlabeled data. Finally we proved that when we have consistent estimators of the clusters,
it is possible to achieve exponential rates of convergence for the cluster excess-risk. The theory
developed here can be extended to any definition of clusters as long as they can be consistently
estimated.

Note that our definition of clusters is parametrized by λ which is left to the user, depending
on his trust in the cluster assumption. Indeed, density level sets have the monotonicity property:
λ ≥ λ′, implies Γ(λ) ⊂ Γ(λ′). In terms of the cluster assumption, it means that when λ decreases
to 0, the assumption (SCA) concerns bigger and bigger sets Γ(λ) and in that sense, it becomes
more and more restrictive. As a result, the parameter λ can be considered as a level of confidence
characterizing to which extent the cluster assumption is valid for the distribution P.

The choice of λ can be made by fixing PX(C ), where C is defined in (1), the probability of the
rejection region. We refer to Cuevas et al. (2001) for more details. Note that data-driven choices
of λ could be easily derived if we impose a condition on the purity of the clusters, that is, if we are
given the δ in (10). Such a choice could be made by decreasing λ until the level of purity is attained.
However, any data-driven choice of λ has to be made using the labeled data. It would therefore yield
much worse bounds when n2 m.

A possible implementation of the ideas presented in this paper can be designed using existing
clustering software such as DBSCAN (Ester et al., 1996) (and its algorithmic improvement called
OPTICS Ankerst et al., 1999) or runt pruning (Stuetzle, 2003). These three algorithms implement
clustering using a definition of clusters that involves density level sets and a certain notion of con-
nectedness. The idea is to use these algorithms on the pooled sample of instances (X1, . . . ,Xn+m,X),
where X is the new instance to be classified. As a result every instance will be affected to a cluster
by the chosen algorithm. The label for X is then predicted using a majority vote on the labeled
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instances that are affected to the same cluster as X . Observe that unlike the method described in
the paper, the clusters depend on the labeled instances (X1, . . . ,Xn). Proceeding so allows us to
use directly existing clustering algorithms without any modification. Since all three algorithms are
distance based, we could run them only on unlabeled instance and then affect each labeled instance
and the new instance to the same cluster as its nearest neighbor. However, if we assume that m' n,
incorporating labeled instances will not significantly affect the resulting clusters.

We now describe more precisely why these algorithms produce estimated clusters that are re-
lated to the sm-connected components of a plug-in estimator of the density level set. Each algorithm
has instances (X1, . . . ,Xm) and several parameters described below as inputs. Note that these clus-
tering algorithms will affect every instance to a cluster. This can be transformed into our framework
by removing clusters that contain only one instance.

• DBSCAN has two input parameters: a real number ε > 0 and and integer M ≥ 1. The basic
version of this algorithm proceeds as follows. For a given instance Xi, let Jε(i) ⊂ {1, . . . ,m}
be the set of indexes j %= i such that ‖X j −Xi‖ ≤ ε. If card(Jε(i)) ≥ M then all instances
X j, j ∈ Jε(i) are affected to the same cluster as Xi and the procedure is repeated with each
X j, j ∈ Jε(i). Otherwise a new cluster is defined and the procedure is repeated with another
instance.

Observe first that the instances X j that satisfy ‖X j −Xi‖ ≤ ε are ε-connected to Xi. Also,
define the kernel density estimator p̂m by:

p̂m(x) =
1
mεd

m

∑
j=1

K
(x−Xi

ε

)
,

where K : IRd → IR is defined by K(x) = 1I{‖x‖≤1} for any x ∈ IRd . Then card(Jε(i)) ≥M is
equivalent to p̂m(Xi) ≥ M+1

mεd . Thus, if we chose s0 = ε− (3logm)−1 and λ+ !(m) = M+1
mεd , we

see that DBSCAN implements our method. Conversely, for given λ and s0, we can derive the
parameters ε andM such that DBSCAN implements our method.

• OPTICS is a modification of DBSCAN that allows the user to compute in an efficient fashion
all cluster partitions for different ε ≤ ε0 for some user specified ε0 > 0. The user still has to
input the chosen value for ε so that from our point of view, the two algorithms are the same.

• Both of the previous algorithms suffer from a major drawback that is inherent to our definition
of cluster based on a global level when determining the density level sets. Indeed, in many
real data sets, some clusters can only be identified using several density levels. Stuetzle
(2003) recently described an algorithm called runt pruning that is free from this drawback.
Since, it does not implement our method, we do not describe the algorithm in detail but
mention it because it implements a more suitable definition of clusters that is also based on
connectedness and density level sets. In particular it resolves the problem of choosing λ. It
uses a nearest neighbor density estimator as a running horse and uses a single input parameter
that corresponds to the scale s0.

This paper is an attempt to give a proper mathematical framework for the cluster assumption
proposed in Seeger (2000). As mentioned above, the definition of clusters that we use here is one
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among several available and it could be interesting to modify the formulation of the cluster assump-
tion to match other definitions of cluster. In particular, the definition of cluster as s0-connected
components of the λ-level set of the density leaves the problem of choosing λ correctly.
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Appendix A. Proofs

This section contains proofs of the results presented in the paper.

A.1 Proof of Proposition 2.1

Since the distribution of the unlabeled sample Xu does not depend on η, we have for any marginal
distribution PX ,

sup
η∈Ξ

IEn,m
Z

C c
|2η−1|1I{Tn,m $=g!}dPX = sup

η∈Ξ
IEmIEn

[Z

C c
|2η−1|1I{Tn,m $=g!}dPX

∣∣Xu

]

= IEm sup
η∈Ξ

IEn
[Z

C c
|2η−1|1I{Tn,m $=g!}dPX

∣∣Xu

]

≥ inf
Tn
sup
η∈Ξ

IEn
Z

C c
|2η−1|1I{Tn $=g!}dPX ,

where in the last inequality, we used the fact that conditionally onXu, the classifier Tn,m only depends
on Xl and can therefore be written Tn.

A.2 Proof of Theorem 3.1

We can decompose EC (ĝn) into

EC (ĝn) = IEn∑
j≥1

Z

Tj
|2η(x)−1|1I{ĝ jn(x)$=g!(x)}p(x)dx .

Fix j ∈ {1,2, . . .} and assume w.l.o.g. that η≥ 1/2 on T j. It yields g!(x) = 1, ∀x ∈ Tj, and since ĝn
is also constant on Tj, we get

Z

Tj
|2η(x)−1|1I{ĝ jn(x)$=g!(x)}p(x)dx= 1I{Z jn≤0}

Z

Tj
(2η(x)−1)p(x)dx

≤ δ j1I{
|δ j− Z jn

n |≥δ j
} .

(14)

Taking expectation IEn on both sides of (14) we get

IEn
Z

Tj
|2η(x)−1|1I{ĝ jn(x)$=g!(x)}p(x)dx≤ δ jIPn

[∣∣δ j−
Z j
n

n
∣∣ ≥ δ j

]

≤ 2δ je−nδ
2
j/2 ,
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where we used Hoeffding’s inequality to get the last bound. Summing now over j yields the theo-
rem.

A.3 Proof of Lemma 4.1

The binary relation s←→
C
is an equivalence relation if it satisfies reflexivity, symmetry and transitivity.

To prove reflexivity, consider the trivial constant path f (t) = x for all t ∈ [0,1]. We immediately
obtain that x s←→

C
x.

To prove symmetry, fix x,y ∈C such that x s←→
C

y and denote by f1 the piecewise constant map
with n1 jumps that satisfies f1(0) = x, f1(1) = y and ‖ f1(t+)− f1(t−)‖ ≤ s. It is not difficult to see
that the map f̃1 defined by f̃1(t) = f1(1− t) for any t ∈ [0,1] is piecewise constant with n1 jumps,
satisfies f̃1(0) = y, f̃1(1) = x and ‖ f̃1(t+)− f̃1(t−)‖ ≤ s for any t ∈ [0,1], so that y s←→

C
x.

To prove transitivity, let z ∈C be such that y s←→
C

z and let f2 be a piecewise constant map with
n2 jumps that satisfies f2(0) = y, f2(1) = z and ‖ f2(t+)− f2(t−)‖ < s for any t ∈ [0,1]. Let now
f : [0,1] → X be the map defined by:

f (t) =
{

f1(2t) if t ∈ [0,1/2]
f2(2t−1) if t ∈ [1/2,1] .

This map is obviously piecewise constant with n1+n2 jumps and satisfies f (0) = x, f (1) = z. More-
over, for any t ∈ [0,1], f satisfies ‖ f̃ (t+)− f̃ (t−)‖ ≤ s.

Thus s←→
C
is an equivalence relation andC can be partitioned into its classes of equivalence.

A.4 Proof of Proposition 4.1

From Lemma 4.1, we know that s←→
C

is an equivalence relation and C can be partitioned into its
classes of equivalence denoted by C1,C2, . . .. The classes of equivalences C1,C2, . . . obviously sat-
isfy the first point of Proposition 4.1 from the very definition of a class of equivalence.

To check the second point, remark first that sinceC is a closed set, eachC j, j≥ 1 is also a closed
set. Indeed, fix some j≥ 1 and let (xn,n≥ 1) be a sequence of points inC j that converges to x. Since
C is closed, we have x ∈C so there exists j′ ≥ 1 such that x ∈C j′ . If j %= j′, then ‖xn− x‖ > s for
any n≥ 1 which contradicts the fact that xn converges to x. Therefore, x ∈C j andC j is closed. Then
let C j and C j′ , be two classes of equivalence such that d∞(C j,C j′) ≤ s. Using the fact that C j and
C j′ are closed sets, we conclude that there exist x ∈C j and x′ ∈C j′ such that ‖x− x′‖ ≤ s and hence
that x s←→

C
x′. Thus C j =C j′ and we conclude that for any C j,C j′ , j %= j′, we have d∞(C j,C j′) > s

and theC j are mutually s-separated.
We now prove that the decomposition is finite. Since the C j are mutually s-separated, for any

1 ≤ j ≤ k, for any x j ∈ C j, the Euclidean balls B(x j,s/3) are disjoint. Using the facts that X is
bounded and thatC is r0-standard we obtain,

∞> Lebd(X ) ≥
k

∑
j=1
Lebd

[
B(x j,s/3)∩X

]
≥

k

∑
j=1
Lebd

[
B(x j,s/3)∩C

]
≥ ck ,
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for a positive constant c. Thus we proved the existence of a finite partition

C =
J[

j=1
C j .

It remains to prove that this partition is unique. To this end, we make use of the fundamental
theorem of equivalence relations (see, for example, Dummit and Foote, 1991, Prop. 2, page 3) which
states that any partition of C corresponds to the classes of equivalences of a unique equivalence
relation. Let P ′ = {C′

1, . . . ,C′
J′} be a partition of C that satisfies the two points of Proposition 4.1

and denote by R ′ the corresponding equivalence relation. We now prove that s←→
C

≡ R ′. From

the first point of Proposition 4.1, we easily conclude that if xR ′y then x s←→
C

y. Now if we choose
x,y ∈ C such that xR ′y does not hold, then there exist j %= j′ such that x ∈ C′

j and y ∈ C′
j′ . If we

had x s←→
C

y, it would hold d∞(C′
j,C′

j′) ≤ s which contradicts the second point of Proposition 4.1 so

x s←→
C

y does not hold. As a consequence we have proved that for any x,y ∈ C, xR y if and only

if x s←→
C

y and the two relations are the same so as their classes of equivalence. This allows us to
conclude that P ′ = P .

A.5 Proof of Proposition 4.2

Consider a regular grid G on IRd with step size 1/ log(m) and observe that the Euclidean balls of
centers in G̃ = G ∩Clip(Ĝm) and radius

√
d/ log(m) cover the set Clip(Ĝm). Since X is bounded,

there exists a constant c1 > 0 such that card{G̃} = c1(logm)d . Therefore

Lebd(Clip(Ĝm)) ≤ ∑
x∈G̃

Lebd
(
B(x,

√
d/ log(m))∩ Ĝm

)
≤ c2(logm)d−d

mα ,

for some positive constant c2. Therefore, the rate of convergence G̃m is the same as that of Ĝm.
Observe also that G̃m ⊂ Ĝm, so that G̃m is also consistent from inside.

Assume that G̃m can be decomposed in at least a number k of (s0+um)-connected components,
H̃1, . . . , H̃k with Lebesgue measure greater than or equal to m−α. It holds

∞> Lebd(X ) ≥
k

∑
j=1
Lebd(T̃j) ≥ km−α ,

Therefore, the number of (s0+ um)-connected components of G̃m with Lebesgue measure greater
than or equal to m−α is at most Lebd(X )mα.

To prove that the (s0+um)-connected components of G̃m are mutually s0-separated, let T̃1 %= T̃2
be two (s0+um)-connected components of G̃m and fix x1 ∈ T̃1, x2 ∈ T̃2. We have ‖x1−x2‖> s0+um,
otherwise T̃1 = T̃2. Thus d∞(T̃1, T̃2) ≥ s0 + um > s0 + θum for any um > 0,θ ∈ (0,1). Thus two
(s0+um)-connected components of G̃m are (s0+θum)-separated for any θ ∈ (0,1).
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A.6 Proof of Proposition 4.3

Define m0 = e
1

3(r0∧s0) and denote D(J ) by D. Remark that

Dc =
J[

j=1
A1( j)∪A2( j)∪A3( j) ,

where

A1( j) = {card[κ( j)] = 0},
A2( j) = {card[κ( j)] ≥ 2},
A3( j) =

[

j′ $= j
{κ( j)∩κ( j′) %= /0} .

In words, A1( j) is the event on which Tj is estimated by none of the (H̃k)k, A2( j) is the event on
which Tj is estimated by at least two different elements of the collection (H̃k)k and A3( j) is the event
on which Tj is estimated by an element of the collection (H̃k)k that also estimates another Tj′ from
the collection (Tj) j.

For any j = 1, . . . ,J, we have

A1( j) = {card[κ( j)] = 0}⊂ {Tj ⊂ G̃m!Γ}⊂ {B(x,r)∩Tj ⊂ G̃m!Γ} ,

for any x ∈ Tj and r > 0. Remark that from Proposition 4.1, the T j are mutually s0-separated so we
have B(x,r)∩Tj = B(x,r)∩Γ for any r ≤ s0. Thus, for any m≥ m0, it holds (3logm)−1 ≤ s0∧ r0
and

A1( j) ⊂ {Lebd [B(x,(3logm)−1)∩Tj] ≤ Lebd [G̃m!Γ]}⊂ {Lebd [G̃m!Γ] ≥ c0(3logm)−d} ,

where in the last inclusion we used the fact that Γ is r0-standard.
We now treat A2( j). Assume without loss of generality that {1,2}⊂ κ( j). On A2( j), there exist

x1 ∈ Tj∩ H̃1, xn ∈ Tj∩ H̃2 and a sequence x2, . . . ,xn−1 ∈ Tj such that ‖x j−x j+1‖ ≤ s0. Observe now
that from Proposition 4.2, we have ‖x1− xn‖ > s0 ≥ (3logm)−1 for m≥ m0. Therefore the integer

j! =min
{
j : 2≤ j ≤ n, ∃z ∈ H̃1 s.t.‖x j− z‖ > (3logm)−1

}
,

is well defined. Moreover, there exists z0 ∈ H̃1 such that ‖x j!−1− z0‖ ≤ (3logm)−1. Now, if there
exists z ∈ H̃k, for some k ∈ {2, . . . , K̃m}, such that ‖x j! − z‖ ≤ (3logm)−1, then

d∞(H̃1, H̃k) ≤ ‖z0− x j!−1‖+‖x j!−1− x j!‖+‖x j! − z‖ ≤ s0+2(3logm)−1 .

This contradicts the conclusion of Proposition 4.2 which states that d∞(H̃1, H̃k) > s0+ θ(logm)−1

for any k = 2, . . . , K̃m in particular when θ = 2/3. Therefore we obtain that on A2( j) there exists
x j! ∈ Tj such that

B(x j! ,(3logm)−1)∩ G̃m = /0 .

It yields

A2( j) ⊂
{

B(x j! ,(3logm)−1)∩Tj ⊂ G̃m!Γ
}

⊂
{
Lebd

[
G̃m!Γ

]
> c0(3logm)−d

}
,
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where in the second inclusion used the fact that B(x j! ,r)∩Tj = B(x j! ,r)∩Γ for any r≤ s0 and that
Γ is r0-standard.

We now consider the event A3( j). Assume without loss of generality that j= 1 and let k be such
that k ∈ κ(1)∩κ( j′) for some j′ ∈ {2, . . . ,J}. On A3(1), there exist y1 ∈ T1∩ H̃k, yn ∈ Tj′ ∩ H̃k and
a sequence y2, . . . ,yn−1 ∈ H̃k such that ‖y j− y j+1‖ ≤ sm.

Observe now that from Proposition 4.1, we have ‖y1 − yn‖ > s0 ≥ (3logm)−1 for m ≥ m0.
Therefore the integer

j# =min
{
j : 2≤ j ≤ n, ∃z ∈ T1 s.t.‖y j− z‖ > (3logm)−1

}
,

is well defined. Moreover, there exists z1 ∈ T1 such that ‖y j"−1− z1‖ ≤ (3logm)−1. Now, if there
exists z ∈ Tj′ for some j′ ∈ {2, . . . ,J} such that ‖y j" − z‖ ≤ (3logm)−1, then

d∞(T1,Tj′) ≤ ‖y j"−1− z1‖+‖y j"−1− y j"‖+(3logm)−1 ≤ s0+(logm)−1 < s ,

for sufficiently large m and where s is defined in (6). This contradicts the definition of s which
implies that d∞(T1,Tj′) ≥ s for any j ∈ {2, . . . ,J}. Therefore we obtain that on A3(1) there exists
y j" ∈ H̃k such that B(y j" ,(3logm)−1) ⊂ Γc. It yields

A3(1) ⊂
{
Lebd(G̃m∩Γc) ≥ Lebd(G̃m∩B(y j" ,(3logm)−1))

}
.

Since y j" ∈ G̃m ⊂ Ĝm, we have Lebd(Ĝm ∩B(y j" ,(3logm)−1)) ≥ m−α(3logm)−d . On the other
hand, we have

Lebd(G̃m∩B(y j" ,(3logm)−1)) = Lebd(Ĝm∩B(y j" ,(3logm)−1))

−Lebd(Clip(Ĝm)∩B(y j" ,(3logm)−1))

≥ m−α(3logm)−d−Lebd(Ĝm∩Γc)
≥ m−α(3logm)−d− c3m−1.1α

≥ c4m−α(logm)−d ,

where we used the fact that Ĝm is consistent from inside at rate m−α . Hence,

A3( j) =
[

j′ $= j
{κ( j)∩κ( j′) %= /0}⊂

{
Lebd(G̃m∩Γc) ≥ c5m−α(logm)−d

}
.

Combining the results for A1( j), A2( j) and A3( j), we have

IPm(Dc) ≤ IPm
{
Lebd

[
G̃m!Γ

]
> c0(3logm)−d

}
+ IPm

{
Lebd(G̃m∩Γc) ≥ c5m−α(logm)−d

}
.

Using the Markov inequality for both terms we obtain

IPm
{
Lebd

[
G̃m!Γ

]
> c0(3logm)−d

}
= Õ

(
m−α) ,

and
IPm

{
Lebd(G̃m∩Γc) ≥ c5m−α(logm)−d

}
= Õ

(
m−α) ,

where we used the fact that G̃m is consistent from inside with rate m−α. It yields the statement of
the proposition.
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A.7 Proof of Theorem 4.1

The cluster excess-risk EΓ(g̃n,m) can be decomposed w.r.t the event D and its complement. It yields

EΓ(g̃n,m) ≤ IEm
[
1IDIEn

(Z

Γ
|2η(x)−1|1I{g̃n,m(x)$=g!(x)}p(x)dx

∣∣∣Xu

)]
+ IPm (Dc) .

We now treat the first term of the RHS of the above inequality, that is, on the event D. Fix j ∈
{1, . . . ,J} and assume w.l.o.g. that η ≥ 1/2 on Tj. Simply write Zk for Zkm,n. By definition of D,
there is a one-to-one correspondence between the collection {T j} j and the collection {H̃k}k. We
denote by H̃ j the unique element of {H̃k}k such that H̃ j ∩Tj %= /0. On D, for any j = 1, . . . ,J, we
have,

IEn
(Z

Tj
|2η(x)−1|1I{g̃ jn,m(x)$=g!(x)}p(x)dx

∣∣∣Xu

)

≤
Z

Tj\G̃m
(2η−1)dPX + IEn

(
1I{Z j≤0}

Z

Tj∩H̃ j
(2η−1)dPX

∣∣∣Xu

)

≤ L(p)Lebd(Tj \ G̃m)+δ jIPn
(
Z j ≤ 0|Xu) .

On the event D, for any 0< θ< 1, it holds

IPn
(
Z j ≤ 0|Xu) = IPn

(Z

Tj
(2η−1)dPX −Z j ≥ δ j|Xu

)

≤ IPn
(∣∣Z j−

Z

H̃ j
(2η−1)dPX

∣∣ ≥ θδ j|Xu
)

+1I{
PX

[
Tj,H̃ j

]
≥(1−θ)δ j

} .

Using Hoeffding’s inequality to control the first term, we get

IPn
(
Z j ≤ 0|Xu) ≤ 2e−n(θδ j)

2/2+1I{
PX

[
Tj,H̃ j

]
≥(1−θ)δ j

} .

Taking expectations, and summing over j, the cluster excess-risk is upper bounded by

EΓ(g̃n,m) ≤ 2L(p)
1−θ

IEm
[
Lebd(Γ! G̃m)

]
+2

J

∑
j=1

δ je−n(θδ j)
2/2+ IPm (Dc) ,

where we used the fact that on D,

J

∑
j=1
Lebd

[
Tj! H̃ j

]
≤ Lebd

[
Γ! G̃m

]
.

From Proposition 4.3, we have IPm (Dc) = Õ(m−α) and IEm
[
Lebd(Γ! G̃m)

]
= Õ(m−α) and the

theorem is proved.
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A.8 Proof of Theorem 5.1

Recall that
Γ̃" !Γ=

(
Γ̃"∩Γc

)
∪

(
Γ̃c" ∩Γ

)
.

We begin by the first term. We have

Γ̃"∩Γc =
{
x ∈ X : p̂m(x) ≥ λ+ !, p(x) < λ

}
⊂

{
x ∈ X : |p̂m(x)− p(x)|≥ !

}
.

The Fubini theorem yields

IEm
[
Lebd(Γ̃"∩Γc)

]
≤ Lebd(X )sup

x∈X
IPm [|p̂m(x)− p(x)|≥ !] ≤ c6e−c2m

a"2 ,

where the last inequality is obtained using (12) and c6 = c1Lebd(X ) > 0. Taking ! as in (13) yields
for m≥ exp(γa/c2),

IEm
[
Lebd(Γ̃"∩Γc)

]
≤ c6m−γa. (15)

We now prove that IEm
[
Lebd(Γ̃" ∩Γc)

]
= Õ

(
m− γa

2
)
. Consider the following decomposition where

we drop the dependence in x for notational convenience,

Γ̃c" ∩Γ= B1∪B2,

where
B1 =

{
p̂m < λ+ !, p≥ λ+2!

}
⊂

{
|p̂m− p|≥ !

}

and
B2 =

{
p̂m < λ+ !,λ≤ p(x) < λ+2!

}
⊂

{
|p−λ|≤ !

}
.

Using (12) and (13) in the same fashion as above we get IEm
[
Lebd(B1)

]
= Õ

(
m−γa). The term

corresponding to B2 is controlled using the γ-exponent of density p at level λ. Indeed, we have

Lebd(B2) ≤ c!!γ = c!(logm)γm− γa
2 = Õ

(
m− γa

2
)
.

The previous upper bounds for Lebd(B1) and Lebd(B2) together with (15) yield the consistency
from inside.
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F. d’Alché Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost. In Advances in
Neural Information Processing Systems, volume 14, pages 553–560, 2001.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

D. S. Dummit and R. M. Foote. Abstract Algebra. Prentice Hall Inc., Englewood Cliffs, New Jersey,
1991.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pages 226–231, 1996.

J. H. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New York, 1975.

R. Herbei and M. Wegkamp. Classification with rejection option. Canad. J. Statist., 34(4):709–721,
2006.

T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance functions for clustering.
In Proceedings of the Twenty-First International Conference on Machine learning, 2004.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. Ann. Statist., 27(6):1808–1829,
1999.

1391



RIGOLLET

W. Polonik. Measuring mass concentrations and estimating density contour clusters—an excess
mass approach. Ann. Statist., 23(3):855–881, 1995.

M. Rattray. A model-based distance for clustering. In Proc. of the IEEE-INNS-ENNS Int. Joint
Conf. on Neural Networks, pages 13–16, 2000.

P. Rigollet and R. Vert. Fast rates for plug-in estimators of density level sets. Technical
Report 1102, Laboratoire de Probabilités et Modèles Aléatoires de Paris 6, 2006. URL
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