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Learning Sparse Representations by
Non-Negative Matrix Factorization and

Sequential Cone Programming

Matthias Heiler HEILER@UNI-MANNHEIM .DE

Christoph Schnörr SCHNOERR@UNI-MANNHEIM .DE

Computer Vision, Graphics, and Pattern Recognition Group
Department of Mathematics and Computer Science
University of Mannheim
D-68131 Mannheim, Germany

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract
We exploit the biconvex nature of the Euclidean non-negative matrix factorization (NMF) optimiza-
tion problem to derive optimization schemes based on sequential quadratic and second order cone
programming. We show that for ordinary NMF, our approach performs as well as existing state-
of-the-art algorithms, while for sparsity-constrained NMF, as recently proposed by P. O. Hoyer in
JMLR 5 (2004), it outperforms previous methods. In addition, we show how to extend NMF learn-
ing within the same optimization framework in order to make use of class membership information
in supervised learning problems.
Keywords: non-negative matrix factorization, second-order cone programming, sequential convex
optimization, reverse-convex programming, sparsity

1. Introduction

Originally proposed to model physical and chemical processes (Shen and Isräel, 1989; Paatero
and Tapper, 1994),non-negative matrix factorization (NMF)has become increasingly popular for
feature extraction in machine learning, computer vision, and signal processing (e.g., Hoyer and
Hyvärinen, 2002; Xu et al., 2003; Smaragdis and Brown, 2003). One reason for this popularity is
that NMF codes naturally favor sparse, parts-based representations(Lee and Seung, 1999; Donoho
and Stodden, 2004) which in the context of recognition can be more robust than non-sparse, global
features. In some application domains, researchers suggested variousextensions of NMF in order
to enforce very localized representations (Li et al., 2001; Hoyer, 2002; Wang et al., 2004; Chi-
chocki et al., 2006). For example, Hoyer (2004) recently proposed NMF subject to additional con-
straints that allow particularly accurate control over sparseness and, indirectly, over the localization
of features—see Figure 1 for an illustration.

From the viewpoint of optimization, NMF amounts to solving a difficult non-convex optimiza-
tion problem. So far, learning NMF codes relied on variations of the gradient descent scheme which
tend to be less efficient in the presence of additional sparsity constraints.Therefore, in this work,
we exploit both the biconvex nature of the Euclidean NMF optimization criterion and the reverse-
convex structure of the sparsity constraints to derive efficient optimizationschemes using convex
quadratic and second order cone programming (Lobo et al., 1998) as core subroutines. We show

c©2006 Matthias Heiler and Christoph Schnörr.
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Figure 1: Motivation of NMF with sparseness constraints.Five basis functions (columns) with
sparseness constraints ranging from 0.1 (first row, left) to 0.8 (last row, right) onW were
trained on the CBCL face database. A moderate amount of sparseness encourages local-
ized, visually meaningful base functions.

that for ordinary NMF our schemes perform as well as existing state-of-the-art algorithms, while
for sparsity-constrained NMF they outperform previous methods. In addition, our approach easily
extends to supervised settings similar to Fisher-NMF (Wang et al., 2004).

Organization. In Section 2, we introduce various versions of the NMF optimization problem.
Then, we first consider the unconstrained case in Section 3. The representation of the sparsity
constraints and the corresponding optimality conditions are described in Section 4. Using convex
optimization problems as basic components, we suggest algorithms for solving the general NMF
problem in Section 5. Numerical experiments validate our approach in Section6. We conclude in
Section 7.

Notation. For anym× n-matrix A, we denote columns byA = (A•1, . . . ,A•n) and rows by
A = (A1•, . . . ,Am•)⊤. V ∈ R

m×n
+ is a non-negative matrix ofn data samples, andW ∈ R

m×r
+ a

corresponding basis with loadingsH ∈ R
r×n
+ . Furthermore, we denote bye the column vector with

all entries set to 1.‖x‖p represents theℓp-norm for vectorsx, ‖x‖p = (∑i |xi |p)1/p, and‖A‖F the
Frobenius norm for matricesA: ‖A‖2F = ∑i, j A

2
i j = tr(A⊤A). vec(A) = (A⊤•1, . . . ,A

⊤
•n)
⊤ is the vector

obtained by concatenating the columns of the matrixA. The Kronecker product of two matricesA
andB is writtenA⊗B (see, e.g., Graham, 1981). As usual, relations between vectors and matrices,
like x≥ 0,A≥ 0, are understood elementwise.

2. Variations of the NMF Optimization Problem

In this section we introduce a number of optimization problems related to NMF. Corresponding
optimization algorithms are developed in Sections 3 to 5.
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SPARSENMF BY SEQUENTIAL CONE PROGRAMMING

2.1 Unconstrained NMF

The original NMF problem reads with a non-negative matrix ofn data samplesV ∈ R
m×n
+ , a matrix

of basis functionsW ∈ R
m×r
+ , and corresponding loadingsH ∈ R

r×n
+ :

min
W,H

‖V−WH‖2F
s.t. 0≤W,H.

(1)

This problem is non-convex. There are algorithms that compute theglobal optimum for such prob-
lems (Floudas and Visweswaran, 1993), however, they do not yet scale up to the large problems
common in, e.g., machine learning, computer vision, or engineering. As a result, we will con-
fine ourselves to efficiently compute alocal optimum by solving a sequence of convex programs
(Section 3.2).

2.2 Sparsity-Constrained NMF

Although NMF codes tend to be sparse (Lee and Seung, 1999), it has been suggested to control
sparsity by more direct means. A particularly attractive solution was proposed by Hoyer (2004)
where the following sparseness measure for vectorsx∈ R

n
+, x 6= 0, was used:

sp(x) :=
1√

n−1

(√
n− ‖x‖1‖x‖2

)

. (2)

Because of the relations
1√
n
‖x‖1≤ ‖x‖2≤ ‖x‖1 , (3)

the latter being a consequence of the Cauchy-Schwarz inequality, this sparseness measure is bounded:

0≤ sp(x)≤ 1. (4)

The bounds are attained for minimal sparse vectors with equal non-zero components where sp(x) =
0 and for maximal sparse vectors with all but one vanishing components where sp(x) = 1. These
bounds are useful from a practical viewpoint since they make it relatively intuitive to estimate
sparseness for a given vectorx. In addition, we found that (2) can conveniently be represented
in terms of second order cones (Section 4), allowing efficient numerical solvers to be applied.

In this text, we will sometimes write sp(M) ∈ R
n, meaning sp(·) is applied to each column

of matrix M ∈ R
m×n and the results are stacked in a column vector. Using this convention, the

following constrained NMF problem was proposed in (Hoyer, 2004):

min
W,H

‖V−WH‖2F
s.t. 0≤W,H

sp(W) = sw

sp(H⊤) = sh ,

(5)

wheresw,sh are user parameters. The sparsity constraints control (i) to what extentbasis functions
are sparse, and (ii) how much each basis function contributes to the reconstruction of only a subset

1387



HEILER AND SCHNÖRR

of the dataV. In a pattern recognition application the sparsity constraints effectively weight the
desired generality over the specificity of the basis functions.

Instead of using equality constraints we will slightly generalize the constraintsin this work to
intervalssmin

w ≤ sp(W) ≤ smax
w andsmin

h ≤ sp(H⊤) ≤ smax
h . This disburdens the user from choosing

exact parameter valuessw,sh, which can be difficult to find in realistic scenarios. In particular, it
allows forsmax

h = smax
w = 1, which may often be useful.

Consequently, we define thesparsity-constrained NMF problemas follows:

min
0≤W,H

‖V−WH‖2F

s.t. smin
w ≤ sp(W)≤ smax

w

smin
h ≤ sp(H⊤)≤ smax

h ,

(6)

wheresmin
w ,smax

w ,smin
h ,smax

h are user parameters. See Figure 1 and Section 6 for illustrations.
Efficient algorithms for solving (6) are developed in Section 5.

2.3 Supervised NMF

When NMF bases are used for recognition, it can be beneficial to introduce information about class
membership in the training process. Doing so encourages NMF codes that not only describe the
input data well, but also allow for good discrimination in a subsequent classification stage. We
propose a formulation, similar to Fisher-NMF (Wang et al., 2004), that leadsto particularly efficient
algorithms in the training stage.

The basic idea is to restrict, for each classi and for each of its vectorsj, the coefficientsH j • to
a cone around the class centerµi which is implicitly computed in the optimization process:

min
W,H

‖V−WH‖2F
s.t. 0≤W,H

‖µi−H j •‖2≤ λ‖µi‖1 ∀i,∀ j ∈ class(i) .

(7)

As will be explained in Section 5.4, these additional constraints are no more difficult from the view-
point of optimization than are the previously introduced constraints in (6). Onthe other hand, they
offer greatly increased classification performance for some problems (Section 6). Of course, if the
application suggests, supervised NMF (7) can be conducted with the additional sparsity constraints
from (6).

2.4 Assumptions

Throughout the remainder of this paper, the following assumptions are made:

1. The matricesW⊤W andHH⊤ are positive definite.

2. smin
h < smax

h andsmin
w < smax

w in (6).

3. The min-sparsity constraints in (6) are essential in the sense that each global optimum of the
problem with min-sparsity constraints removed violates at least one such constraint onW and
H.
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The first assumption is introduced to simplify reasoning about convergence. In applications, it will
regularly be satisfied as long as the number of basis functionsr does not exceed size or dimension
of the training data:r ≤ m,n. Assumption two has been discussed above in connection with (6).
Finally, assumption three is natural, because without the min-sparsity constraint problem (6) would
essentially correspond to (1) which is less involved.

3. Solving Unconstrained NMF Problems

We introduced various forms of the NMF problem in the previous section. Next, we concentrate
on practical algorithms to find locally optimal solutions. Unlike previous work, where variations
of the gradient descent scheme were applied (Paatero, 1997; Hoyer,2004), our algorithms’ basic
building blocks are convex programs for which fast and robust solvers exist. As a side effect, we
avoid introducing additional optimization parameters like step-sizes or damping-constants, which
is convenient for the user and increases robustness. As a result, justlike with Lee and Seung’s fast
NMF algorithm (Lee and Seung, 2000), there is no artificial step size parameter to be determined,
removing a potential source of errors and inefficiencies.

We next recall briefly the definition of quadratic programs, and then explain our approach to
unconstrained NMF. Comparisons to existing work are reported in Section 6.

3.1 Convex Quadratic Programs (QP)

Convex quadratic programs (QP)are optimization problems involving convex quadratic objectives
functions and linear constraints. In connection with unconstrained NMF (1), the QPs to be defined
in the next section take the following general form:

min
x

1
2

x⊤Ax−b⊤x , 0≤ x , A positive semidefinite. (8)

We denote the quadratic program (8) with parametersA,b:

QP(A,b) (9)

Note, that for QPs efficient and robust algorithms exist (e.g., Wright, 1996) and software for large-
scale problems is available.

3.2 NMF by Quadratic Programming

The unconstrained NMF problem (1) reads:

min
W,H

‖V−WH‖2F
s.t. 0≤W,H .

Let us fixW and expand the objective function:

‖V−WH‖2F = tr
[

(V−WH)⊤(V−WH)
]

= tr(H⊤W⊤WH)−2tr(V⊤WH)+ tr(V⊤V) .
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Algorithm 3.1 QP-based NMF algorithm in pseudocode.

1: initialize W0, H0≥ 0 randomly,k← 0
2: repeat
3: Hk+1←QP-result(Wk,V) using eqn. (10)
4: Wk+1←QP-result(Hk+1,V) using eqn. (12)
5: k← k+1
6: until

∣

∣‖V−Wk−1Hk−1‖−‖V−WkHk‖
∣

∣≤ ε

Together with the non-negativity constraints 0≤ H, this amounts to solving the QPs:

QP(W⊤W,W⊤V• i) , i = 1, . . .n , (10)

for H•1, . . . ,H•n. Conversely, fixingH we obtain:

‖V−WH‖2F = tr(WHH⊤W⊤)−2tr(VH⊤W⊤)+ tr(V⊤V) , (11)

which amounts to solve the QPs:

QP(HH⊤,HVi •) , i = 1, . . . ,m , (12)

for W1•, . . . ,Wm•.
We emphasize that by using a batch-processing schemeproblems of almost arbitrary sizecan

be handled: The only hard limitation is the number of basis vectorsr; the dimension of the basis
vectorsm can, in principle, grow almost arbitrarily large. This is particularly important for image
processing applications wherem represents the number of pixels which can be large.

The algorithm is summarized in Alg. 3.1. Note, thatthe sametarget function (1) is optimized
alternately with respect toH andW. As a result, the algorithm performs ablock coordinate descent
(cf. Bertsekas, 1999). Furthermore, we may assume that the QPs in (10)and (12) are strictly convex,
because typicallyr ≪m,n (c.f. Section 2.4).

Proposition 1 Under the assumptions of Section 2.4, the algorithm stated in Alg. 3.1 converges to
a local minimum of problem(1).

Proof See Bertsekas (1999), Prop. 2.7.1.

4. Sparsity Constraints and Optimality

In this section we develop a geometric formulation of problem (6) in terms of second order cones
that fits into the framework of reverse-convex programming (Section 5.1).We note that from the
viewpoint of optimization problem (6) is considerably more involved than (1) because the lower
sparsity bound imposed in terms ofsmin

w , smin
h destroys convexity.

4.1 Second Order Cone Programms (SOCP) and Sparsity

Thesecond order coneL n+1⊂ R
n+1 is the convex set (Lobo et al., 1998):

L n+1 :=

{(

x
t

)

= (x1, . . . ,xn, t)
⊤
∣

∣

∣
‖x‖2≤ t

}

, (13)
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The problem of minimizing a linear objective function, subject to the constraintsthat several affine
functions of the variables are required to lie inL n+1, is called asecond order cone program (SOCP):

min
x∈Rn

f⊤x

s.t.

(

Aix+bi

c⊤i x+di

)

∈ L n+1 , i = 1, . . . ,m . (14)

Note, that efficient and robust solvers for solving SOCPs exist in software (Sturm, 2001; Mittel-
mann, 2003; Mosek 2005). Furthermore, additional linear constraints and, in particular, the condi-
tion x∈ R

n
+ are admissible, as they are special cases of constraints of the form (14). Our approach

to sparsity-constrained NMF, to be developed below, is based on this classof convex optimization
problems.

Motivated by the sparseness measure (2) and our goal to compute non-negative representations,
we consider the family ofconvexsets parametrized by a sparsity parameters:

C (s) :=

{

x∈ R
n
∣

∣

∣

(

x
1

cn,s
e⊤x

)

∈ L n+1

}

, cn,s :=
√

n− (
√

n−1)s . (15)

Inserting the bounds (4) fors, we obtain from (3):

C (0) =
{

λe, 0 < λ ∈ R
}

and R
n
+ ⊂ C (1) . (16)

This raises the question as to when non-negativity constraints must be imposedexplicitly.

Proposition 2 The setC (s) contains non-positive vectors x6= 0 if:

√
n−
√

n−1√
n−1

< s≤ 1 , n≥ 3 . (17)

Proof We observe that ifx ∈ C (s), then λx ∈ C (s) for arbitrary 0< λ ∈ R, because‖λx‖2−
e⊤(λx)/cn,s = λ(‖x‖2−e⊤x/cn,s) ≤ 0. Hence it suffices to consider vectorsx with ‖x‖2 = 1. Ac-
cording to definition (15), such vectors tend to be inC (s) the more they are aligned withe. There-
fore, w.l.o.g., setxn = 0 andxi = (n−1)−1/2 , i = 1, . . . ,n−1. Thenx∈ C (s) if cn,s <

√
n−1, and

the result follows from the definition ofcn,s in (15). Finally, forn = 2 the lower bound fors equals
1, that is no non-positive vectors exist for all admissible values ofs.

The arguments above show that:

C (s′)⊆ C (s) for s′ ≤ s . (18)

Thus, to represent the feasible set of problem (6), we combine the convex non-negativity condition
with the convex upper bound constraint

{

x∈ R
n
+

∣

∣ sp(x)≤ s
}

= R
n
+∩C (s) (19)

and impose thereverse-convexlower bound constraint by subsequently removingC (s′):
{

x∈ R
n
+

∣

∣ s′ ≤ sp(x)≤ s, s′ < s
}

=
(

R
n
+∩C (s)

)

\C (s′) . (20)
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To reformulate (6), we define accordingly, based on (15):

Cw(s) :=
{

W ∈ R
m×r

∣

∣W• i ∈ C (s) , i = 1, . . . , r
}

, (21)

Ch(s) :=
{

H ∈ R
r×n
∣

∣ H⊤i • ∈ C (s) , i = 1, . . . , r
}

. (22)

As a result, the sparsity-constrained NMF problem (6) now reads:

min
W,H

‖V−WH‖2F

s.t. W ∈
(

R
m×r
+ ∩Cw(smax

w )
)

\Cw(smin
w )

H ∈
(

R
r×n
+ ∩Ch(smax

h )
)

\Ch(smin
h ) .

(23)

This formulation makes explicit that enforcing sparse NMF solutions introduces a single additional
reverse-convexconstraint forW andH, respectively. Consequently, not only the joint optimization
of W,H is non-convex, but individual optimization ofW andH is also.

4.2 Optimality Conditions

We state the first-order optimality conditions for problem (23). They will be used to verify the
algorithms in Section 5.

To this end, we define in view of (15) and (23):

f (W,H) := ‖V−WH‖2F , (24a)

Q := Qw×Qh , Qw := R
m×r
+ ∩Cw(smax

w ) , Qh := R
r×n
+ ∩Ch(smax

h ) , (24b)

Gw(W) :=

(

‖W•1‖2−
1

cn,smin
w

‖W•1‖1 , . . . , ‖W• r‖2−
1

cn,smin
w

‖W• r‖1
)⊤

, (24c)

Gh(H) :=

(

‖H1•‖2−
1

cn,smin
h

‖H1•‖1 , . . . , ‖Hr •‖2−
1

cn,smin
h

‖Hr •‖1
)⊤

. (24d)

Note thatQ represents the convex constraints of problem (23) whileGw(W) andGh(H) are non-
negative exactly when sparsity is at leastsmin

w andsmin
h . For non-negativeW andH computing theℓ1

norm is a linear operation, that is,W ≥ 0⇒‖W•1‖1≡ 〈W•1,e〉.
Problem (23) then can be rewritten so as to directly apply standard results from variational

analysis (Rockafellar and Wets, 1998):

min
(W,H)∈Q

f (W,H) , Gw(W) ∈ R
r
+ , Gh(H) ∈ R

r
+ . (25)

With the corresponding LagrangianL and multipliersλw,λh,

L(W,H,λw,λh) = f (W,H)+λ⊤wGw(W)+λ⊤h Gh(H) , (26)

the first-order conditions for a locally optimal point(W∗,H∗) are:

−
(

∂L
∂W

,
∂L
∂H

)⊤
∈ NQ(W∗,H∗) = NQw(W∗)×NQh(H

∗) , (27a)

Gw(W∗) ∈ R
r
+ , Gh(H

∗) ∈ R
r
+ , (27b)

λ∗w,λ∗h ∈ R
r
− , (27c)

〈

λ∗w,Gw(W∗)
〉

= 0,
〈

λ∗h,Gh(H
∗)
〉

= 0 , (27d)

whereNX(x) denotes the normal cone to a setX at pointx (see, e.g., Rockafellar and Wets, 1998).
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5. Algorithms

In this section, we present two algorithms for solving problem (23). The algorithm discussed in
Section 5.2 is very efficient and computes a good local optimum if it converges. However, it may
oscillate in rare cases. Therefore, Section 5.3 presents a slightly less efficient but “save” and con-
vergent algorithm. Both algorithms can also be applied to the supervised settingjust by adding
additional convex constraints—see Sections 2.3 and 5.4.

5.1 Reverse-Convex Programs (RCP)

The computational framework of our algorithms is reverse-convex programming (RCP) which con-
siders problems of the form

min
x

f (x) , g(x)≤ 0 , 0≤ h(x) , (28)

where f , g, andh are convex (Singer, 1980; Tuy, 1987; Horst and Tuy, 1996). Geometrically, the
feasible setX has the formX = G\H whereG andH are convex sets.

RPCs are closely related to the class of d.c. programs (Toland, 1979; Hiriart-Urruty, 1985; Tuy,
1995; Yuille and Rangarajan, 2003). In fact, a d.c. program in standard form can be written as RCP:

min
x

f1(x)− f2(x) min
x,z

f1(x)−z

s.t. g(x)≤ 0 ⇒ s.t. g(x)≤ 0 (29)

0≤ f2(x)−z .

Existing strategies for globally optimizing RPCs (Horst and Tuy, 1996) can be only applied for
small or medium-sized problems. Accordingly, our algorithms below focus on the realistic goal to
efficiently compute a local minimum for larger learning problems.

5.2 Cone Programming with Tangent-Plane Constraints

In this section, we present an optimization scheme for sparsity-controlled NMF which relies on
linear approximation of the reverse-convex constraint in (23). As in the case of unconstrained NMF,
we alternately minimize (23) with respect toW andH. It thus suffices to concentrate on theH-step:

min
H

f (H) = ‖V−WH‖2F
s.t. H ∈

(

R
r×n
+ ∩Ch(smax

h )
)

\Ch(smin
h ) .

(30)

Recall the assumptions made in Section 2.4.

5.2.1 TANGENT-PLANE CONSTRAINT (TPC) ALGORITHM

The tangent-plane constraint algorithm solves a sequence of SOCPs where the convex max-sparsity
constraints are modeled as second order cones and the min-sparsity coneis linearized: In an initial-
ization step we solve a SOCP ignoring the min-sparsity constraint and examine the solution. For
the rows ofH that violate the min-sparsity constraint we compute tangent planes to the min-sparsity
cone and solve the SOCP again with additional tangent-plane constraints in place. This is repeated
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Algorithm 5.1 Tangent-plane approximation algorithm in pseudocode.

1: H0← solution of (32),J0← /0, k← 0
2: repeat
3: H̃k← Hk

4: repeat
5: Jk← Jk∪{ j ∈ 1, . . . , r : H̃k

j • ∈ C (smin
h )}

6: tk
j ← ∇C (smin

h )(π(H̃k
j •)) ∀ j ∈ Jk

7: H̃k← solution of (33) replacingHk by H̃k

8: until H̃k is feasible
9: Hk+1← H̃k, Jk+1← Jk, k← k+1

10: until | f (Hk)− f (Hk−1)| ≤ ε

until all necessary tangent-planes are identified. During iteration we repeatedly solve this SOCP
where the tangent planes are permanently updated to follow their corresponding entries inH: This
ensures that they constrain the feasible set no more than necessary. This process of updating the
tangent planes and computing new estimates forH is repeated until the objective function no longer
improves.

The TPC algorithm consists of the following steps:

• Initialization. The algorithm starts by settingsmin
h = 0 in (30), and by computing the global

optimum of the convex problem: minf (H), H ∈ Ch(smax
h ), denoted byH̃0. Rewriting the

objective function:

f (H) = ‖V⊤−H⊤W⊤‖2F
= ‖vec(V⊤)− (W⊗ I)vec(H⊤)‖22 , (31)

we observe that̃H0 solves the SOCP:

min
H,z

z , H ∈ R
r×n
+ ∩Ch(smax

h ) ,

(

vec(V⊤)− (W⊗ I)vec(H⊤)
z

)

∈ L r×n+1 . (32)

Note thatH̃0 will be infeasible w.r.t. the original problem because the reverse-convexcon-
straint of (30) is not imposed in (32). We determine the index setJ0 ⊆ {1, . . . , r} of those
vectorsH̃0

j • violating the reverse-convex constraint, that isH̃0
j • ∈ C (smin

h ).
Let π(H̃0

j •) denote the projections of̃H0
j • onto∂C (smin

h ), ∀ j ∈ J0 (Hoyer, 2004). Further, let
t0
j denote the tangent plane normals toCh(smin

h ) at these points, andH0← π(H̃0) a feasible
starting point. We initialize the iteration counterk← 0.

• Iteration. GivenJk, k= 0,1,2, . . . , we once more solve (32) with additional linear constraints
enforcing feasibility of eachHk

j • , j ∈ Jk:

min
H,z

z , H ∈ R
r×n
+ ∩Ch(smax

h ) ,

(

vec(V⊤)− (W⊗ I)vec(H⊤)
z

)

∈ L r×n+1

〈

tk
j ,H j •−π(Hk

j •)
〉

≥ 0 , ∀ j ∈ Jk . (33)
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Let us denote the solution bỹHk+1. It may occur that because of the additional constraints
new rowsH̃k+1

j • of H̃k+1 became infeasible for indicesj 6∈ Jk. In this case we augmentJk

accordingly, and solve (33) again until the solution is feasible.

Note that we never remove indices fromJk. Instead, we permanently re-adjust the corre-
sponding tangent plane constraintstk

j , settingtk
j ← ∇C (smin

h )(π(H̃k
j •)),∀ j ∈ Jk. This ensures

that the constraints are not active at termination unless a componentH̃k
j • is actually on the

boundary of the min-sparsity cone.

Finally, we rectify the vectors̃Hk+1
j • by projection, as in the initialization, provided this further

minimizes the objective functionf . The result is denoted byHk+1 and the corresponding
index set byJk+1. At last, we increment the iteration counter:k← k+1

• Termination criterion. We check whetherHk+1 satisfies the termination criterion| f (Hk+1)−
f (Hk)|< ε. If not, we continue the iteration.

The algorithm is summarized in pseudocode in Alg. 5.1.

Remark 3 The projection operatorπ mapping a point x∈R
m
+ onto the boundary of the min-sparsity

cone can be implemented using either the method of Hoyer (2004) or a fastapproximation. In the
approximation, used exclusively in our experiments (Section 6), each element xi in x is exponentiated
and replaced by c·xα

i , with α≥ 1 chosen such that the min-sparsity constraint is not violated. The
factor c= c(x,α) ensures that theℓ2-norm of x is not affected by this transformation.

Remark 4 Problems(32) and (33) are formulated in terms of therows of H, complying with the
sparsity constraints(22). Unfortunatly, matrix W⊗ I in (32) is not block-diagonal, so we cannot
separately solve for each Hj •. Nevertheless, the algorithm is efficient (cf. Section 6).

Remark 5 Multiple tangent-planes with reversed signs can also be used to approximatethe con-
vex max-sparsity constraints. Then problem(33) reduces to a QP. Except for solvers for linear
programs, QP solvers are usually among the most efficient mathematical programming codes avail-
able. Thus, for a given large-scale problem additional speed might be gained by using QP instead
of SOCP solvers. In particular, this holds for the important special case when no non-trivial max-
sparsity constraints are specified at all (i.e., smax

h = smax
w = 1).

Remark 6 A final remark concerns the termination criterion (Step 10 in Alg. 5.1). Whilein prin-
ciple it can be chosen almost arbitrarily rigid, an overly smallε might not help in the overall
optimization w.r.t. WandH. As long as, e.g., W is known only approximately, we need not compute
the corresponding H to the last digit. In our experiments we chose relativelylarge ε so that the
outer loop (steps 2 to 10 in Tab. 5.1) was executed only once or twice beforethe variable under
optimization was switched.

5.2.2 CONVERGENCEPROPERTIES

In the following discussion we use matricesTk = (tk
j ) j∈1,...,r that have tangent plane vectortk

j as j-th
column whenj ∈ Jk and zeros elsewhere.

Proposition 7 Under the assumptions stated in Section 2.4 Algorithm 5.1 yields a sequence H1,H2, . . .
of feasible points, every cluster point of which is a local optimum.
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Proof Our proof follows (Tuy, 1987, Prop. 3.2). First, note that for everyk > 0 the solutionHk

of iterationk is a feasible point for the SOCP solved in iterationk+ 1. Therefore,{ f (Hk)}k=1,...

is a decreasing sequence, bounded from below and thus convergent.By the first assumption in
Section 2.4, the objective function (31) is strictly convex, because(W⊗ I)⊤(W⊗ I) = (W⊤W⊗ I)
has positive eigenvaluesλi(W⊤W)λ j(I) = λi(W⊤W) , ∀i, j (Graham, 1981). Consequently,{H :
f (H) ≤ f (Hk)} is bounded for eachk. Let {Hkν}ν=1,... denote a subsequence of solutions to (33)
converging to a cluster point̄H, and let{Tkν}ν=1,... resp.T̄ denote the corresponding tangent planes.
We have

f (Hkν)≤ f (H), ∀H ∈ C (smax
h ) with Tkν⊤H ≥ 0, (34)

and in the limitν→ ∞

f (H̄)≤ f (H), ∀H ∈ C (smax
h ) with T̄⊤H ≥ 0. (35)

Note that the constraints active in̄T correspond to entries̄H j • ∈ ∂C (smin
h ), j ∈ J. According to (35)

there is no feasible descent direction atH̄ and, thus, it must be a stationary point. Since the target
function is quadratic positive-semidefinite by assumption,H̄ is an optimum.

Thus, the TPC algorithm yields locally optimalW andH. However, this holds for theindividual
optimizations ofW andH only. The same cannot be claimed for thealternating sequenceof opti-
mizations inW andH necessary to solve (6). Because of the intervening optimization of, e.g.,W,
we cannot derive a bound onf (H) from a previously found locally optimalH. In rare cases, this
can lead to undesirable oscillations. When this happens, we must introduce some damping term or
simply switch to the convergent sparsity maximization algorithm described in Section 5.3.

On the other hand, if the TPC algorithm converges it does in fact yield a locally optimal solution.

Proposition 8 If the TPC algorithm converges to a point(W∗,H∗) and the assumptions stated
in Section 2.4 hold then(W∗,H∗) satisfies the first-order necessary optimality conditions 4.2 of
problem(23).

Proof ForH∗ we have from (33) using the notation from Sec. 4.2

H∗ = arg min
H∈Qh

‖V−W∗H‖2F (36a)

s.t.
〈

tk
j , H j •−π(H∗kj •)

〉

≥ 0 , ∀ j ∈ Jk. (36b)

Sincetk
j = ∇sp(π(H∗kj •)

⊤) constraint (36b) ensures that the min-sparsity constraint is enforced at H∗

when necessary (c.f. Prop. 7). Applyingπ on each column ofH∗k simultaneously and introducing
Lagrange parametersλ∗f , λ̃∗h for this convex problem yields that the result of (36) adheres to the
first-order condition

−λ∗f
∂

∂H
f (W∗,H∗)− λ̃∗h

∂
∂H

∇sp(π(H∗k)⊤)(H∗−π(H∗k)) ∈ NQh(H
∗)

⇔ −λ∗f
∂

∂H
f (W∗,H∗)− λ̃∗h∇sp(π(H∗k)⊤) ∈ NQh(H

∗)

⇔ − ∂
∂H

(

λ∗f f (W∗,H∗)+
〈

λ̃∗h,Gh(H
∗)
〉

)

∈ NQh(H
∗)

(37)

which coincides with the condition onH in (27a). TheW-part can be treated in the same way.
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5.3 Sparsity-Maximization Algorithm

In this section we present an optimization scheme for sparsity-controlled NMFfor which global
convergence can be proven, even whenW andH are optimized alternately. Here, global convergence
means that the algorithmalways convergesto a local optimum. As in the previous sections, we
assume our standard scenario (Section 2.4) and independently optimize forW and forH. Thus, it
suffices to focus on theH-step.

Our algorithm is inspired by the reverse-convex optimization scheme suggested by Tuy (1987).
This scheme is aglobal optimization algorithm in the sense that it finds a true global optimum.
However, as already pointed out in Tuy (1987), it does so at a considerable computational cost.
Furthermore, it does not straightforwardly generalize tomultiple reverse-convex constraints that
are essential for sparsity-controlled NMF. We avoid these difficulties by confining ourselves with a
locally optimal solution.

The general idea of our algorithm is as follows: After an initialization step, it alternates between
two convex optimization problems. One maximizes sparsity subject to the constraint that the objec-
tive value must not increase. Dually, the other optimizes the objective function under the condition
that the min-sparsity constraint may not be violated.

5.3.1 SPARSITY-MAXIMIZATION ALGORITHM (SMA)

The sparsity-maximization algorithm is described below. A summary in pseudocode is outlined in
Alg. 5.2

• Initialization. For initialization we start with any pointH0∈ ∂C (smin
h ) on the boundary of the

min-sparsity cone. It may be obtained by solving (30) without the min-sparsityconstraints
and projecting the solution onto∂C (smin

h ). We setk← 0.

• First step. Given the current iterateHk, we solve the SOCP

max
H,t

t

s.t. H ∈ R
r×n
+ ∩Ch(smax

h ) (38a)

f (H)≤ f (Hk) (38b)

t ≤ sp(Hk
j •)+ 〈∇H j •sp(Hk

j •),H j •−Hk
j •〉 , j = 1, . . . , r (38c)

where constraint (38b) ensures that the objective value will not deteriorate. In standard form
this constraint translates to

(

vec(V⊤)− (W⊗ I)vec(H⊤)
f (Hk)

)

∈ L rn+1. (39)

We denote the result byHsp. Note that this step maximizes sparsity in the sense that sp(Hk)≤
sp(Hsp), due to (38c) and the convexity of sp(·).

• Second step.While the intermediate solutionHsp satisfies the min-sparsity constraint, it may
not be an optimal local solution to the overall problem. Therefore, in a second step, we solve

1397



HEILER AND SCHNÖRR

the SOCP

min
H

f (H)

s.t. H ∈ R
r×n
+ ∩Ch(smax

h ) (40a)

‖H j •−Hsp
j •‖2≤ min

q∈C (smin
h )
‖q−Hsp

j •‖2 , j = 1, . . . , r (40b)

which reads in standard form

min
H,t

t

s.t.

(

vec(V⊤)− (W⊗ I)vec(H⊤)
t

)

∈ L rn+1 (41)

(

H j •−Hsp
j •

minq∈C (smin
h ) ‖q−Hsp

j •‖2

)

∈ L n+1 , ∀ j

H ∈ R
r×n
+ ∩Ch(smax

h ).

Here, the objective functionf is minimized subject to the constraint that the solution must not
be too distant fromHsp. To this end, the non-convex min-sparsity constraint is replaced by a
convex max-distance constraint (40b), in effect defining a sphericaltrust region. The radius
minq∈C (smin

h ) ‖q−Hsp
j •‖2 of the trust region is computed by a small SOCP.

• Termination. As long as the termination criterion| f (Hk)− f (Hk−1)| ≤ ε is not met we
continue with the first step.

When the algorithm terminates a locally optimalH for the current configuration ofW is found.
In subsequent runs we will not initialize the algorithm with an arbitraryH0, but simply continue
alternating between step one and step two using the current best estimate forH as a starting point1.
This way, we can be sure that the sequence ofHk is monotonous, even whenW is occasionally
changed in between.

Remark 9 The requirement that the feasible set has an non-empty interior is important. If smax
h =

smin
h , the approximate approach in(38) breaks down, and each iteration just yields Hk = Hsp =

Hk+1. In this situation, it is necessary to temporarily weaken the max-sparsity constraint. Fortu-
nately, max-sparsity constraints seem to be less important in many applications.

5.3.2 CONVERGENCEPROPERTIES

We check the convergence properties of the SMA.

Proposition 10 Under the assumptions stated in Section 2.4 and 4.2, the SMA (Alg. 5.2) converges
to a point(W∗,H∗) satisfying the first-order necessary optimality conditions of problem(23).

1. Note that while such a scheme could be implemented with TPC as well, it wouldperform poorly in practice: Without
proper initialization TPC locks too early onto bad local optima.
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Algorithm 5.2 Sparsity-maximization algorithm in pseudocode.

1: H0← solution of (32) projected on∂Ch(smin
h ), k← 0

2: repeat
3: Hsp← solution of (38)
4: Hk+1← solution of (40)
5: k← k+1
6: until | f (Hk)− f (Hk−1)| ≤ ε

Proof Under the assumptions stated in Section 2.4, the feasible set is bounded. Furthermore,
Alg. 5.2, alternately applied to the optimization ofW andH, respectively, computes a sequence
of feasible points{Wk,Hk} that steadily decreases the objective function value. Thus, by taking a
convergent subsequence, we obtain a cluster point(W∗,H∗) whose components separately optimize
(38) when the other component is held fixed. It remains to check that conditions (27) are satisfied
after convergence.

We focus onH without loss of generality. Taking into account the additional non-negativity
condition, condition (38c) is equivalent tot ≤ sp(H j •), because sp(·) is convex. Moreover,t = smin

h
because after convergence of iterating (38) and (40), the min-sparsityconstraint will be active for
some of the indicesj ∈ {1, . . . , r}. Therefore, using the notation (24), the solution to problem (38)
satisfies

max
t,H∈Qh

t∗ = smin
h , f (Hk)− f (H∗)≥ 0, Gh(H

∗) ∈ R
r
+ . (42)

Using multipliersλ∗f , λ̃∗h, the relevant first-order condition with respect toH is:

− ∂
∂H

(

λ∗f f (H∗)+
〈

λ̃∗h,Gh(H
∗)
〉

)

∈ NQh(H
∗) . (43)

This corresponds to the condition onH in (27a). TheW-part can be handled the same way.

Remark 11 While convergence is guaranteed and high-quality results are obtained (Section 6),
SMA can be slower than the TPC method presented in the previous section. This is especially the
case when smax

h ≈ smin
h . Then, in order to solve a problem most efficiently, one will start with the

tangent-plane method and only if it starts oscillating switch to sparsity-maximization mode.

5.4 Solving Supervised NMF

The supervised NMF problem (7) is solved either by the tangent-plane constraint or the sparsity-
maximization algorithm presented above. We merely add constraints ensuring that the coefficients
belonging to classi, abbreviatedH(i) ∈R

r×ni
+ below, stay in a cone centered at meanµi = 1/niH(i)e.

Then, the supervised constraint in (7) translates to
(

1/niH(i)e−H j∗
λ/nie⊤H(i)e

)

∈ L n+1, ∀i,∀ j ∈ class(i) . (44)

It is an important advantage that the algorithms above can easily be augmentedby various convex
constraints (e.g., Heiler and Schnörr, 2005).
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r = 2 r = 5 r = 10 r = 15 r = 20 r = 25
MU ε = 10−1 0.13 0.15 0.17 0.30 0.49 0.68
MU ε = 10−2 0.21 0.44 0.60 0.71 0.82 0.91
MU ε = 10−3 0.36 0.29 0.33 0.37 0.41 0.45
MU ε = 10−4 0.69 2.46 3.18 3.77 4.47 5.11
MU ε = 10−5 2.64 4.29 5.99 8.08 9.70 11.83
QP ε = 10−1 0.20 0.35 0.67 1.14 1.74 2.53
QP ε = 10−2 0.17 0.36 0.67 1.13 1.74 2.52
QP ε = 10−3 0.26 0.45 0.79 1.27 1.97 2.60
QP ε = 10−4 0.36 1.25 1.57 2.54 3.88 5.61
QP ε = 10−5 1.46 2.05 2.56 4.55 7.62 12.21

Table 1: Unconstrained NMF. Comparison between QP algorithm and multiplicative updates
(MU). A medium-sized computer vision data set,V ∈ R

1200×150, was factorized using
multiplicative updates and the QP algorithm (Alg. 3.1) using different numbersof basis
functionsr and different accuraciesε. Average run time in seconds over 10 repeated runs
is reported. Overall, the QP algorithm shows similar performance to multiplicativeup-
dates.

6. Experiments

In this section we perform comparisons with established algorithms on artificialand on real-world
data sets to validate our results from a practical point of view. We also provide evidence that the
local sparsity maximization seems not prone to end in bad local optima. Finally, weshow that the
supervised constraints from eqn. (7) can lead to NMF codes that are more useful for recognition.

6.1 Unconstrained NMF

In a first experiment, we validated that the quadratic programming algorithm (Tab. 3.1) yields results
similar to the fast and stablemultiplicative update(MU) algorithm by Lee and Seung (2000). To
this end, we factorized a data set from facial expression classification (Buciu and Pitas, 2004; Lyons
et al., 1998) using both algorithms on subproblems of different sizes and different requirements for
accuracy. To make a fair comparison, we ensured that the reconstruction error f (W,H) = ‖V −
WH‖F of the QP algorithm was at least as small as the corresponding error froma previous run
of the MU algorithm. We performed 10 repeated runs, each time starting from arandomly chosen
initialization W,H that was identical for both methods. The results2 are summarized in Tab. 1.
Both methods perform well on the data set. MU has an edge with the smaller problems, while QP
has advantages when high accuracies are required. Overall, both methods are practical for solving
real-world problems.

2. All run times are reported in seconds using a 3 GHz Pentium IV running Linux, Matlab, and the Mosek 3.1 solvers
(Mosek 2005). In preliminary experiments we found that the SeDuMi SOCP solver (Sturm, 2001) and the CPLEX
QP solver (Cplex 2001) can be used as well.
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w = 0.0.
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w = 0.6.

Figure 2: Paatero experiments.The entries of the factorsW andH are displayed (Figure 2(a)) as
well as the resulting data matrixX (Figure 2(b)). In the experiments, a small amount of
Gaussian noiseη ∼ N (0,0.1) is added to the factors. The results for different values of
the min-sparsity constraint are shown in Figure 2(c) and 2(d): Only an active constraint
allows to correctly recoverW andH.

6.2 Sparsity-Controlled NMF

To examine the performance of the sparsity-controlled NMF algorithms we repeated an experiment
suggested by Paatero (1997). Here, a synthetic data set consisting of products of Gaussian and
exponential distributions is analyzed using NMF. This data set (Figure 2(a)) is designed to resemble
data from spectroscopic experiments in chemistry and physics and isnot easily analyzed: without
prior knowledge, NMF is reported to fail to recover the original factors inthe data set. As a remedy,
Paatero hints that a “target shape” extension to NMF is beneficial. We will show that for this data set
imposing an additional min-sparsity constraint onW is sufficient to lead to correct factorizations.

In Tab. 2 we report the results for 10 repeated runs of the tangent-plane constraints and the
sparsity-maximization algorithm using different choices of the min-sparsity constraint. The most
important figure is the number of correct recoveries of the basis functions. We counted a NMF-
result correct if it showed the correct number of modes at the correctlocations. First note that,
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smin
w 0.0 0.2 0.4 0.6 0.8

TPC # correct results 0 0 0 7 4
TPC med run time (sec.) 20.7 16.8 14.5 53.7 117.2
TPC min obj. value 0.26 0.26 0.24 0.25 210.57
SMA # correct results 0 0 0 9 0
SMA med run time (sec.) 142.0 113.3 60.3 54.1 14.0
SMA min obj. value 0.25 0.26 0.24 0.26 161.5

Table 2: Sparsity-controlled NMF. Statistics of the Paatero experiment collected over 10 runs for
the tangent-plane constraints (TPC) and the sparsity-maximization algorithm (SMA). The
number of correct reconstructions (see text), the median run time, and the best objective
value obtained are reported for different choices of the sparsity constraint. Correct recon-
structions are found in seven resp. nine out of ten trials for a sufficientlystrong sparsity
constraint:smin

w = 0.6. This quota can be increased at the expense of longer running times.

consistent with Paatero (1997), the basis functions are not recoveredcorrectly without additional
prior information in the form of constraints. Also, the objective valuef (W,H) = ‖V −WH‖F
is not indicative of correct results. Only for the extremely sparse case withsmin

w = 0.8 did we
obtain noticeably worse objective values. However, not shown in the table, for the interesting case
smin
w = 0.6 the objective values of the correct recoveries were all below 0.4 while from the remaining

incorrect recoveries each was above 5.0. Thus, while the objective value is not useful for model
selection purposes it seems to indicate good solutions once a suitable model is defined.

Finally, we point out that for the correct value of the sparsity constraintthe number of correct
recoveries is essentially a function of the stopping parameters. With more conservative stopping
parameters one can ensure that in every single case bases are recovered correctly. But then running
times increase. In our experiment we favored a short run time over perfect success rate. Accordingly,
the best combination ofW andH was found after just 9 seconds of computation.

6.3 Global Approaches

A potential source of difficulties with the sparsity-maximization algorithm is that thelower bound
on sparsity is optimized only locally in (38). Through the proximity constraint in (40) the amount
of sparsity obtained in effect limits the step size of the algorithm. Insufficient sparsity optimization
may, in the worst case, lead to convergence to a bad local optimum.

To see if this worst-case scenario is relevant in practice, we discretized the problem by sampling
the sparsity cones using rotated and scaled version of the current estimateHk and then evaluated
f (W,H) using samples from each individual sparsity cone. Then we picked one sample from each
cone and computed (38) replacing the starting pointHk by the sampled coordinates. For an exhaus-
tive search onr cones each sampled withspoints we havesr starting points to consider.

For demonstration we used the artificial data set from Paatero (1997) consisting of products of
Gaussian and exponential functions (Figure 2). This data set is suitable since it is not overly large
and sparsity control is crucial for its successful factorization.

In the sparsity-maximization algorithm we first sampled the four sparsity conescorresponding
to each basis function of the data forsw ≥ 0.6 sparsely, using only 10 rotations on each cone. We
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smin,max
w,h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time TPC 42.08 36.68 38.00 65.23 58.90 51.16 66.77 71.41 111.35
time PGD 133.00 292.73 2046.92 1269.06 453.38 713.41 568.20 129.44 1463.89
quotient 3.16 7.98 53.87 19.46 7.70 13.94 8.51 1.81 13.15

error TPC 0.19 0.17 0.18 0.19 0.43 0.72 0.89 1.01 1.07
error PGD 0.21 0.16 0.17 0.19 0.48 0.79 0.95 1.05 1.08

error quotient 1.09 0.98 0.94 0.99 1.11 1.10 1.07 1.04 1.01

Table 3: Comparison. Tangent-plane constraint (TPC) algorithm and projected gradient descent
(PGD). The algorithms were used to find sparse decompositions of the CBCLface data set.
TPC outperforms PGD w.r.t. computational effort (measured in seconds) while keeping
errors small.

then combined the samples on each cone in each possible way and evaluatedg for all corresponding
starting points. In a second experiment we placed 1000 points on each sparsity cone, and randomly
selected 104 combinations as starting points. The best results obtained over four runs and 80 iter-
ations with our local linearization method used in SMA and the sparse enumeration (first) and the
sampling (second) strategy, are reported below:

Algorithm min-sparsity objective value
SMA 0.60 0.24

sparse enumeration 0.60 0.26
sampling 0.60 0.26

We see that the local sparsity maximization in SMA yields results comparable to the sampling
strategies. In fact, it is better: Over four repeated runs the sampling strategies each produced outliers
with very bad objective values (not shown). This is most likely caused by severe under-sampling
of the sparsity cones. This problem is not straightforward to circumvent: With above sampling
schemes a run over 80 iterations takes about 24h of computation, so more sampling is not an option.
In comparison, the proposed algorithm finishes in few seconds.

6.4 Real-World Data and Comparison with PGD

For a test with real-world data we used the CBCL face data set (CBCL, 2000). For different values
of the sparsity constraints we derived NMF bases (Figure 1) and examined reconstruction errorg and
training time. In this experiment we used the tangent-plane constraints method and smin

w = smax
w =

smin
h = smax

h . For comparison, we also employed theprojected gradient descent(PGD) algorithm
from Hoyer (2004) using the code provided on the author’s homepage3. While the comparison in
speed should be taken with a grain of salt—both methods use very differentstopping criteria—the
results (Tab. 3) show that the TPC method is competitive in speed and quality ofits solutions.

6.5 Large-Scale Factorization of Image Data

To examine performance on a larger data set we sampled 10 000 image patches of size 11×11 from
the Caltech-101 image database (Fei-Fei et al., 2004). Using a QP solver (Remark 5) and the TPC

3. To increase speed logging to file and screen were manually removed from the program.
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ε r = 2 r = 4 r = 6 r = 8 r = 10
1.00 5.99 49.32 98.91 222.01 278.76
0.50 5.97 54.67 103.93 230.45 256.98
0.25 10.22 72.75 133.23 224.62 363.62

Table 4: Large-scale performance. A matrix containingn = 10000 image patches withm =
121 pixels was factorized usingr basis functions and different stopping criteria for the
TPC/QP algorithm (see text). The median CPU time (sec.) for three repeated runs is
shown. Even the largest experiment with over 100 000 unknown variables is solved within
6 min.

algorithm we computed image bases withr = 2,4, . . . ,10 andr = 50 basis functions usingsmin
w = 0.5.

In addition, we varied the stopping criterion fromε ∈ {1,0.5,0.25}. Note that the corresponding
QP instances contained roughly 100 000 to over half a million unknowns, so astopping criterion
of ε = 1 translates to very small changes in the entries ofW andH. We did not use any batch
processing scheme but solved the QP instances directly, requiring between 100 MB and 2 GB of
memory.

We show the median CPU time over three repeated runs for this experiment in Table 4: While
the stopping criterion has only minor influence on the run time the number of basisfunctions is
critical. All problems with up to 10 basis functions are solved within 6 min. For the large problem
with 50 basis functions we measured a CPU time of 3, 5, and 7 hours forε ∈ {1,0.5,0.25}. Mem-
ory consumption was roughly 2 GB. We conclude that factorization problemswith half a million
unknowns can be comfortably solved on current office equipment.

6.6 Supervised NMF

We examined how supervised NMF contributes to solve a classification task. Using overall 100
training samples we trained anr = 4 dimensional NMF basis for the digits 0, 3, 5, and 8 from the opt-
digits database. Subsequently, the remaining 1421 digits were classified using the nearest neighbor
classifier. The penalty parameterλ in (7) was chosen asλ = (∞,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,
0.05,0.01), where∞ corresponds to classical NMF without class label information. The experiment
was repeated 30 times, and the mean classification error is depicted in Figure 3. For comparison,
a nearest-neighbor classification using a PCA basis of equal dimension generated 109 errors on the
test data. It is evident that by strengthening the supervised label constraint we reduce the classifica-
tion error significantly, increasing recognition accuracy by a factor of two.

7. Conclusion

We have shown that Euclidean NMF with and without sparsity constraints fits nicely within the
framework of sequential quadratic and second order cone programming. For these problems, progress
in numerical analysis has lead to highly efficient solvers which we exploit.

As a result, we propose efficient and robust algorithms for NMF which are competitive with
or better than state-of-the-art alternatives. Besides performance androbustness, a key advantage of
our approach is that incorporating prior knowledge in form of additionalconstraints will often be
possible in a controlled and systematic way. For instance, information on classmembership avail-
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Figure 3: Supervised NMF. Reduction of classification error by supervised NMF. The letters 8,
5, 3, and 0 from the optdigits database are classified using a NMF basis of dimension
m= 4 and overall 100 training and 1421 test samples. From left to right various values
for the supervised label constraint,λ = (∞,5,2,1,0.75,0.5,0.4,0.3,0.2,0.1,0.05,0.01),
were applied. Each experiment was repeated 30 times, mean performance and standard
deviations of the nearest neighbor classificator are reported. Asλ decreases the super-
vised label constraint is strengthened, reducing the classification error by a factor of two.

able in supervised classification settings leads to additionalconvexconstraints that do not further
complicate the optimization problem in a noteworthy way: no new algorithms need to be derived,
no suitable, typically more stringent, learning rates need to be determined.
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Abstract

The rise of convex programming has changed the face of many research fields in recent
years, machine learning being one of the ones that benefitted the most. A very recent de-
velopement, the relaxation of combinatorial problems to semi-definite programs (SDP), has
gained considerable attention over the last decade (Helmberg, 2000; De Bie and Cristianini,
2004a). Although SDP problems can be solved in polynomial time, for many relaxations
the exponent in the polynomial complexity bounds is too high for scaling to large problem
sizes. This has hampered their uptake as a powerful new tool in machine learning.

In this paper, we present a new and fast SDP relaxation of the normalized graph cut
problem, and investigate its usefulness in unsupervised and semi-supervised learning. In
particular, this provides a convex algorithm for transduction, as well as approaches to
clustering. We further propose a whole cascade of fast relaxations that all hold the middle
between older spectral relaxations and the new SDP relaxation, allowing one to trade off
computational cost versus relaxation accuracy. Finally, we discuss how the methodology
developed in this paper can be applied to other combinatorial problems in machine learning,
and we treat the max-cut problem as an example.

Keywords: convex transduction, normalized graph cut, semi-definite programming, semi-
supervised learning, relaxation, combinatorial optimization, max-cut

1. Introduction

Let us assume a data sample S containing n points is given. Between every pair of samples
(xi,xj), an affinity measure A(i, j) = a(xi,xj) is defined, making up an affinity matrix A.
We assume the function a is symmetric and positive, however, no positive definiteness of A
will be necessary, probably making the application domain larger than that of kernel based
methods as discussed in e.g. Chapelle et al. (2003); De Bie and Cristianini (2004a).
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Graph cut clustering Informally speaking, in this paper we are seeking to divide these
data points into two coherent sets, denoted by P and N , such that P

⋃
N = S and P

⋂
N =

∅. In the fully unsupervised-learning scenario, no prior information is given as to which
class the points belong to. A number of approaches to bipartitioning sets of data, known
as graph cut clustering approaches, make use of an edge-weighted graph, where the nodes
in the graph represent the data points and the edges between them are weighted with the
affinities between the data points. Bipartitioning the data set then corresponds to cutting
the graph in two parts. Intuitively, the fewer high affinity edges are cut, the better the
division into two coherent and mutually different parts will be. In Section 1.1 we recall a
few graph cut cost functions that have been proposed in literature.

Graph cut transduction Besides this clustering scenario, we also consider the trans-
duction scenario, where part of the class labels is specified. Transduction has received much
attention in the past years as a promising middle ground between supervised and unsuper-
vised learning, but major computational obstacles have so far prevented it from becoming
a standard piece in the toolbox of practitioners, despite the fact that many natural learning
situations directly translate into a transduction problem. In graph cut approaches, the
problem of transduction can naturally be approached by restricting the search for a low
cost graph cut to graph cuts that do not violate the label information.

Even more generally, one can consider the case where labels are not exactly specified,
but where equivalence or inequivalence constraints (Shental et al., 2004) are given instead,
specifying equality or non-equality of the labels respectively.

1.1 Cut, Average Cut and Normalized Cut Cost Functions

Several graph cut cost functions have been proposed in literature in the context of clustering,
among which the cut cost, the average cut cost (ACut) and the normalized cut cost (NCut)
(Shi and Malik, 2000).

The Cut cost is computationally the easiest to handle in a transduction setting (see
Blum and Chawla, 2001), however as clearly motivated in Joachims (2003), it often leads
to degenerate results with one of both clusters extremely small. This problem could largely
be solved by using the ACut or NCut cost functions, of which the ACut cost seems to be
more vulnerable to outliers (atypical data points, meaning that they have low affinity to the
rest of the sample). However, both optimizing the ACut and NCut costs are NP-complete
problems (Shi and Malik, 2000).

To get around this, spectral relaxations of the ACut and NCut optimization problems
have been proposed in a clustering (Shi and Malik, 2000; Ng et al., 2002; Cristianini et al.,
2002) and more recently also in a transduction setting (Kamvar et al., 2003; Joachims,
2003; De Bie et al., 2004). Xing and Jordan (2003) also proposed an interesting SDP
relaxation for the NCut optimization problem in a multiclass clustering setting, however,
the computational cost to solve this relaxation turns out to be too high to cluster data sets
of more than about 150 data points, which makes it impractical in real situations.
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1.2 Paper Outline

We should emphasize that we are not as much interested in making claims concerning the
usefulness of the normalized graph cut for (constrained) clustering problems. A statistical
study of the NCut cost function is still lacking, such that claims are necessarily data-
dependent, and hence conflicting opinions exist. Instead, we mainly focus on the algorithmic
problem involved in the optimization of the normalized graph cut as an interesting object
of study on itself, because of its direct applicability to machine learning algorithms design.
Furthermore, we will show how the methodologies presented in the context of the NCut
optimization problem have a wider applicability, and can be of use to approximately solve
other combinatorial problems as well. Our results are structured as follows.

• In Section 2 we recapitulate the well known spectral relaxation of the NCut problem
to an eigenvalue problem. Subsequently, a first main result of this paper is presented,
which is an efficiently solvable SDP relaxation of the NCut optimization problem.
Lastly, this section contains a methodology to construct a cascade of SDP relaxations,
all tighter than the spectral relaxation and looser than the SDP relaxation, and with
a computational cost in between the cost of both extremes.

• In Section 3 we introduce the so-called subspace trick, and show two of its applications.
In Section 3.1 we observe how it enables one to efficiently impose equivalence and
inequivalence constraints between the labels on the solution of the relaxations. Hence,
also transduction problems with the NCut cost can be tackled efficiently. Section 3.2
contains a second application of the subspace trick, consisting of a further speed-up
of the relaxations derived in Section 2.

• Lastly, in Section 4 we illustrate how the relaxation cascade and the subspace trick
can be applied to speed up relaxations of other combinatorial problems as well, by
applying it to the max-cut problem.

We conclude with empirical results for the normalized cut and for the max-cut problems.

2. Relaxations of the Normalized Graph Cut Problem

The NCut cost function for a partitioning of the sample S into a positive P and a negative
N set is given by (as originally denoted in Shi and Malik (2000)):

cut(P,N )
assoc(P,S)

+
cut(N ,P)

assoc(N ,S)
=

(
1

assoc(P,S)
+

1
assoc(N ,S)

)
· cut(P,N ), (1)

where cut(P,N ) = cut(N ,P) =
∑

i:xi∈P,j:xj∈N A(i, j) is the cut between sets P and
N , and assoc(P,S) =

∑
i:xi∈P,j:xj∈S A(i, j) the association between sets P and the full

sample S. (Note that in fact cut(P,N ) = assoc(P,N ).) Intuitively, it is clear that
the second factor cut(P,N ) defines how well the two clusters separate. The first factor(

1
assoc(P,S) + 1

assoc(N ,S)

)
measures how well the clusters are balanced. This specific mea-

sure of imbalancedness can be seen to improve robustness against atypical data points:1

1. This property seems even more important in the relaxations of NCut based methods: the variables then
have even more freedom, often making the methods more vulnerable to outliers.
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such outliers have a small cut cost with the other data points, making it beneficial to sepa-
rate them out into a cluster of their own, which would lead to a useless result in our 2-class
setting. However, they also have a small association with the rest of the sample S, which on
the other hand increases the cost function. In other words, the NCut cost function promotes
partitions that are balanced in the sense that both clusters are roughly equally ‘coherent’,
while at the same time ‘distant’ from each other. It is this feature that makes it preferable
over the ACut cost function.2

To optimize this cost function, we reformulate it into algebraic terms using the unknown
label vector y ∈ {−1, 1}n, the affinity matrix A, the degree vector d = A1 and associated
matrix D = diag(d), and shorthand notations s+ = assoc(P,S) and s− = assoc(N ,S).

Observe that cut(P,N ) = (1+y)′

2 A (1−y)′

2 = 1
4 (−y′Ay + 1′A1) = 1

4y
′(D − A)y. Fur-

thermore, s+ = assoc(P,S) = 1
21
′A(1 + y) = 1

2d
′(1 + y) and s− = 1

2d
′(1 − y). Then we

can write the combinatorial optimization problem as:

min
y,s+,s−

1
4

(
1
s+

+
1
s−

)
· y′(D−A)y

s.t. y ∈ {−1, 1}n,{
s+ = 1

2d
′(1 + y)

s− = 1
2d

′(1− y)
⇔

{
d′y = s+ − s−

d′1 = s+ + s− = s,

where we introduced the additional symbol s for the constant s = s+ + s− = d′1 = 1′D1.
In this new notation, the optimization problem becomes:

min
y,s+,s−

s

4s+s−
· y′(D−A)y (2)

s.t. y ∈ {−1, 1}n,

d′y = s+ − s−,

s+ + s− = s.

Unfortunately, the resulting optimization problem is known to be NP-complete. There-
fore, we approach the problem by relaxing it to more tractable optimization problems. This
is the subject of what follows below.

As a guide for the reader, the main notation is summarized in Table 1. We would like
to note that we suppress matrix symmetricity constraints where these can be understood
from the context.

2.1 A Spectral Relaxation

We now provide a short derivation of the spectral relaxation of the NCut optimization
problem as first given in Shi and Malik (2000). Let us introduce the variable ỹ defined as:

ỹ =
√

s

4s+s−

(
y − 1

s+ − s−
s

)
=

√
s

4s+s−

(
I− 1d′

s

)
y,

2. Note however that when a k-nearest neighbor affinity matrix is used, as in Kamvar et al. (2003), every
sample has the same affinity with the remainder of the data set, such that the ACut and the NCut costs
become equivalent.
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Symbol Definition Useful identities
A = affinity matrix ∈ <n×n

+

1 = {1}n

I = diag(1)
d = A1
D = diag(d)
s+ = assoc(P,S) =

∑
i:yi=1 di = d′ 1+y

2 = 1′A1+y
2

s− = assoc(N ,S) =
∑

i:yi=−1 di = d′ 1−y
2 = 1′A1−y

2

s = assoc(S,S) = s+ + s− = 1′d = 1′D1 = 1′A1
y ∈ {−1, 1}n

ỹ =
√

s
4s+s−

(
y − 1 s+−s−

s

)
=

√
s

4s+s−

(
I− 1d′

s

)
y

p = 4s+s−
s2

q = 1
p

Γ = yy′

Γ̂ = 1
pΓ = qΓ

Γ̃ = s
4s+s−

(
I− 1d′

s

)
· Γ ·

(
I− 1d′

s

)′
= ỹỹ′

W ∈ <n×m

V = eigenvectors of spectral relaxation
Γ̂ = VMV′

R = subspace constraint matrix ∈ <n×d

Γ̂ = RMR′

(subspace-constrained label matrix)
L = label constraint matrix
Γ̂ = LML′

(label-constrained label matrix)

Table 1: Notation summary. Note that some equalities should be replaced by approximate
equalities depending on the context. Throughout the paper, label matrices are
understood to be symmetric and any symmetricity constraints are suppressed for
conciseness.
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and rewrite the optimization problem in terms of this variable by accordingly substituting

y =
√

4s+s−
s ỹ + 1 s+−s−

s :

miney,s+,s− ỹ′(D−A)ỹ

s.t. ỹ ∈
{
−

√
s+

ss−
,
√

s−
ss+

}n
,

d′ỹ = 0,
s+ + s− = s.

(3)

Proposition 1 The constraints of optimization problem (3) imply that the D-weighted 2-
norm of ỹ is constant and equal to ỹ′Dỹ = 1.

Proof

ỹ′Dỹ =
s

4s+s−
y′

(
I− d1′

s

)
D

(
I− 1d′

s

)
y

=
s

4s+s−
y′

(
D− dd′

s

)
y

=
s

4s+s−

(
s− (s+ − s−)2

s

)
= 1.

Hence we can add the (redundant) constraint ỹ′Dỹ = 1 to the optimization problem without
altering the result. The spectral relaxation is obtained by doing so, and subsequently
dropping the combinatorial constraint on ỹ. The result is:

Spectral


miney ỹ′(D−A)ỹ

s.t. ỹ′Dỹ = 1,
d′ỹ = 0,

(4)

which is solved by taking the (generalized) eigenvector ỹ corresponding to the second small-
est generalized eigenvalue σ2 of the generalized eigenvalue problem (D−A)v = σDv. Note
that the smallest generalized eigenvalue is σ1 = 0, corresponding to the eigenvector 1√

s
1.

2.2 An SDP Relaxation

We start from formulation (2), and introduce the notation Γ = yy′. Then, we can write
the equivalent optimization problem:

minΓ,s+,s−
s

4s+s−
〈Γ,D−A〉

s.t. Γ = yy′,
y ∈ {−1, 1}n,
〈Γ,dd′〉 = (s+ − s−)2 = (s+ + s−)2 − 4s+s−,
s+ + s− = s, s+ > 0, s− > 0.

(5)

Note that these constraints imply that (Γ′ =)Γ � 0 and diag(Γ) = 1 (where A � B means
that A−B is positive semi-definite). Hence we can relax the constraint set by adding these
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two redundant constraints (we suppress the symmetricity constraint on Γ from the notation
for conciseness), and dropping Γ = yy′ and y ∈ {−1, 1}n. (While this is a tight relaxation,
tighter relaxations are possible at higher computational cost, see Helmberg (2000).) If we
further use the notation p = 4s+s−

s2 , we get:

minΓ,p
1
p〈Γ, D−A

s 〉
s.t. Γ � 0,

diag(Γ) = 1,
1
s2 〈Γ,dd′〉 = 1− p,
0 < p ≤ 1.

(6)

By once again reparameterizing with Γ̂ = Γ
p and q = 1/p, we obtain:

minbΓ,q
〈Γ̂, D−A

s 〉
s.t. Γ̂ � 0,

diag(Γ̂) = q1,

〈Γ̂, dd′

s2 〉 = q − 1,
q ≥ 1.

Note that 〈Γ̂, dd′

s2 〉 ≥ 0 such that the constraint 〈Γ̂, dd′

s2 〉 = q − 1 implies the inequality
constraint q ≥ 1. Hence it does not need to be mentioned explicitly. The result is an
optimization problem with a linear objective, n + 1 linear equality constraints, and a PSD
constraint on a matrix of size n that is linear in the parameters. Hence, we have reshaped
the relaxed problem into a standard SDP formulation.

The Lagrange dual We will now derive the dual of this optimization problem, as it will
be helpful in the theoretical understanding of the optimization problem as well as for its
implementation. To this end we use a symmetric matrix Ξ ∈ <n×n, a vector λ ∈ <n and
a scalar µ as Lagrange multipliers (also called dual variables in the sequel). Then we can
write the Lagrangian as:

L(Γ̂, q,Ξ,λ, µ) = 〈Γ̂,
D−A

s
〉 − 〈Γ̂,Ξ〉 − λ′

(
diag(Γ̂)− q1

)
− µ

(
(q − 1)− 〈Γ̂,

dd′

s2
〉
)

= 〈Γ̂,
D−A

s
−Ξ− diag(λ) + µ

dd′

s2
〉+ q(1′λ− µ) + µ,

and the primal optimization problem is equivalent with:

optprimal = minbΓ,q

[
max

Ξ�0,λ,µ
L(Γ̂, q,Ξ,λ, µ)

]
.

Indeed, either the primal constraints are fulfilled and then the inner maximization reduces
to the primal objective, or the maximum over the dual constraints is unbounded:

max
Ξ�0,λ,µ

L(Γ̂, q,Ξ,λ, µ) =
{
〈Γ̂, D−A

s 〉 if the primal constraints are fulfilled, and
∞ otherwise.
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Thus, in order to minimize this maximum, the primal variables Γ̂ and q will be such that
the constraints are met.

The so-called dual optimization problem is obtained by interchanging the maximization
and minimization in this optimization problem:

optdual = max
Ξ�0,λ,µ

[
minbΓ,q

L(Γ̂, q,Ξ,λ, µ)

]
.

A very useful relation between the primal and dual optima (on its own already warranting
the study of the dual problem) is known as weak duality, and says that the dual maximum
is a lower bound for the primal minimum (see e.g. Boyd and Vandenberghe (2004)). I.e.:

optprimal ≥ optdual.

Let us further focus on the dual optimization problem. The inner minimization can be
explicitly solved. Indeed, it is easy to see that it is equal to µ if the following conditions
hold:

D−A
s

−Ξ− diag(λ) + µ
dd′

s2
= 0

1′λ− µ = 0,

and unbounded from below otherwise. Following a similar reasoning as above, this implies
that these equalities will hold at the optimum. Hence, we obtain as a dual optimization
problem:

maxΞ,λ,µ µ,

s.t. Ξ � 0,

Ξ = D−A
s − diag(λ) + µdd′

s2 ,
1′λ = µ.

The matrix Ξ is easily eliminated from these constraints, which gives us the final formula-
tion. We state both the primal and the dual:

Pclust
SDP


minbΓ,q

〈Γ̂, D−A
s 〉

s.t. Γ̂ � 0,

diag(Γ̂) = q1,

〈Γ̂, dd′

s2 〉 = q − 1.

Dclust
SDP


maxλ,µ µ,

s.t. D−A
s − diag(λ) + µdd′

s2 � 0,
1′λ = µ.

Importantly, this relaxation contains only n + 1 dual variables. It is thanks to this
feature that this relaxation leads to a much more efficient algorithm than the one presented
in Xing and Jordan (2003). But we postpone a detailed computational study until Section
2.4.

2.3 A Cascade of Relaxations Tighter Than Spectral and Looser Than SDP

Still, in many cases the SDP relaxation is too complex, while the spectral relaxation is
computationally feasible but too loose. Whereas numerous efforts have been made in lit-
erature to further tighten SDP relaxations of (other) combinatorial problems by adding in
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additional constraints and using so-called lifting techniques (see e.g. Anjos and Wolkowicz
(2002)), contributions to further relax the SDP problem without considerably degrading
the solution and while gaining on the computational side, have remained limited. Here we
present a set of such relaxations, and we will show that they hold the middle between the
SDP relaxation and the spectral relaxation, both in terms of computational complexity and
in terms of accuracy.

The basic observation to be made is the fact that the constraint diag(Γ̂) = q1 implies:

W′diag(Γ̂) = qW′1,

for W ∈ <n×m (which we choose to be of full column rank, so with 1 ≤ m ≤ n). Hence, we
can relax the constraint diag(Γ̂) = q1 to this weaker constraint. The resulting primal and
dual optimization problems are:

Pclust
m-SDP


minbΓ,q

〈Γ̂, D−A
s 〉

s.t. Γ̂ � 0,

W′diag(Γ̂) = qW′1,

〈Γ̂, dd′

s2 〉 = q − 1.

Dclust
m-SDP


maxλ,µ µ,

s.t. D−A
s − diag(Wλ)

+µdd′

s2 � 0,
µ = 1′Wλ.

The attractive feature of the relaxation cascade is the fact that the number of dual
parameters is only m + 1, as opposed to n + 1 for the basic SDP relaxation. Hence, for
smaller m, the optimization can be carried out more efficiently.

In general, it is clear that a relaxation is tighter than another if the column space of
the matrix W used in the first one contains the full column space of W of the second. In
particular, for d = n the original SDP relaxation is obtained. At the other extreme, for
m = 1, let us take W = d. Then essentially the spectral relaxation is obtained.

Theorem 2 The SDP relaxation from the cascade with m = 1 and W = d is (essentially)
equivalent to the spectral relaxation.

Proof Let us write Γ̂ = VMV′ with M ∈ <n×n a symmetric matrix and with the
eigenvectors v of the spectral relaxation (D −A)v = σDv as the columns of V, in order
of increasing eigenvalue σ, and normalized such that V′DV = I. I.e., the first column of
V(:, 1) = 1√

s
, and the second column V(:, 2) = ỹ is the relaxed label vector obtained using

the spectral relaxation. Then we have that V′(D − A)V = Σ, a diagonal matrix with
the generalized eigenvalues in ascending order on the diagonal, i.e. Σ(1, 1) = σ1 = 0 and
Σ(2, 2) = σ2. Using this reparameterization we can rewrite Pclust

m-SDP with W = d as:

minM,q 〈Γ̂, D−A
s 〉 ≡ 〈M, Σ

s 〉
s.t. Γ̂ � 0 ⇔ M � 0,

d′diag(VMV′) ≡ 〈D,VMV′〉 ≡ 〈I,M〉 = qs ≡ qd′1,

〈VMV′, dd′

s2 〉 ≡ 〈M, V′dd′V
s2 〉 ≡ 1

sM(1, 1) = q − 1,

or in summary:

minM,q 〈M, Σ
s 〉

s.t. M � 0,
〈I,M〉 = qs,
1
sM(1, 1) = q − 1,

(7)
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where we made use of the fact that d′V = 1′DV =
√

sV(:, 1)′DV =
( √

s 0 · · · 0
)
.

We can eliminate q from these constraints, and obtain:

minM 〈M, Σ
s 〉

s.t. M � 0,
〈I,M〉 = M(1, 1) + s.

(8)

This optimization problem can be solved by inspection: its optimal solution is given by
putting M(1, 1) = s(q − 1) for any q ≥ 1, M(2, 2) = s, and M(1, 2) = M(2, 1) = f for any
f ∈ [−s

√
q − 1, s

√
q − 1] (to ensure that M � 0). All other entries of M should be equal

to 0. This means that

Γ̂ = sV(:, 2)V(:, 2)′ + s(q − 1)V(:, 1)V(:, 1)′ + fV(:, 2)1′ + f1V(:, 2)′,
= sỹỹ′ + (q − 1)11′ + f ỹ1′ + f1ỹ′.

The value of the optimum is equal to Σ(2, 2) = σ2, the smallest nonzero generalized eigen-
value. The value of Γ̂ is essentially equivalent to the vector ỹ from the spectral relaxation.

This result shows that, while the actual choice of how to choose the matrix W in the
relaxation cascade is basically free, for interpretability it is reasonable that d is within
its column space (as only then all relaxations in the cascade are tighter than the spectral
relaxation). Well-motivated choices for W exist, and we will construct one in Section 4.

2.4 Discussion

So far we have introduced a cascade of relaxations of the normalized cut problem, the
loosest of which is equivalent to the spectral relaxation. For each SDP relaxation we have
derived a dual version, the optimum of which is a lower bound for the primal optimum
(weak duality).

In this section we go further into the duality aspects of the SDP problems. In particular,
we investigate whether strong duality holds, which would imply that the primal and the
dual optima are equal to each other. Additionally, this allows us to get a better insight in
the relation between the spectral relaxation and the cascade of SDP relaxations.

2.4.1 Strong Duality

Let us investigate whether the dual optimum optdual is equal to the primal optimum
optprimal, instead of merely a lower bound as guaranteed by the weak duality. If the pri-
mal and dual optima are equal to each other, one says that strong duality holds. Slater’s
condition gives a sufficient condition for strong duality to hold.

Lemma 3 (Slater’s condition) Strong duality holds if the primal problem is convex and
the primal constraints are strictly feasible. Then the primal and dual optima are equal to
each other.

Hereby, strict feasibility means that a matrix Γ̂ � 0 along with a value for q satisfying
the equality constraints can be found. As SDP problems are convex, the first condition is
certainly fulfilled. That the primal constraints in our SDP relaxations are strictly feasible
can be seen by construction: choose Γ̂ = qI � 0 and q = 1/(1− d′d

s2 ). Hence:
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Proposition 4 The primal optimization problems Pclust
SDP and Pclust

m-SDP are strictly feasible.
I.e. the Slater condition is fulfilled, and the primal and dual optima are equal to each other:

optdual = optprimal.

If the dual constraints are also strictly feasible, duality theory teaches us that the primal
optimum is achieved for a finite value of the variables (see e.g. Helmberg (2000)). However,
the following remark answers negatively to this presupposition:

Remark 5 The dual optimization problems Dclust
SDP and Dclust

m-SDP are not strictly feasible.
Indeed, 1′

(
D−A

s − diag(λ) + µdd′

s2

)
1 = 0 for all µ and λ satisfying the constraint µ =

1′λ, and 1′
(

D−A
s − diag(Wλ) + µdd′

s2

)
1 = 0 for all µ and λ satisfying the constraint

µ = 1′Wλ. This means that the PSD constrained matrix is never strictly positive definite.
Correspondingly, the primal optimum is not achieved for a finite value of the variables.

In particular, note that if Γ̂ is a feasible point of optimization problem Pclust
SDP or of Pclust

m-SDP,
then also Γ̂ + x11′ with x ≥ 0 is a feasible point with the same value of the objective.
The consequence is that the optimum will be achieved for matrix Γ̂ with an infinitely large
constant component, and hence with q infinitely large. Indeed, increasing q never increases
the objective for a fixed value of Γ̂ as the Remark above shows. This also means that the
minimum over Γ̂ can only be smaller for q larger, such that the minimum over both q and
Γ̂ is obtained for q unboundedly large. What does this mean? A more in-depth study of
the relation between the spectral and SDP relaxations makes things clear.

2.4.2 How Much Tighter Are the SDP Relaxations?

We have already shown in Theorem 2 that the SDP relaxation from the cascade with W = d
is equivalent to the spectral relaxation. Here we prove an even stronger theorem that relates
the solution of the basic SDP relaxation, which is the tightest of all, to the spectral one. Our
insights gained in the previous section are of help here: the fact that the primal optimum is
attained for q approaching infinity will be crucial in the proof. We sketch the proof, which
follows a similar reasoning as in the proof of Theorem 2, in Appendix.

Theorem 6 Also the solution of the basic SDP relaxation Pclust
SDP is essentially equivalent

to the spectral relaxation. More specifically, the solution is given by:

Γ̂ = sỹỹ′ + (q − 1)11′ + m1′ + 1m′,

with q →∞, and m such that diag(Γ̂) = q1 and m′d = 0.

This result is essentially equivalent with the result from the spectral relaxation, if we ignore
the infinitely large constant matrix, and the two rank 2 matrix m′1 + 1′m that merely
makes the diagonal of the label matrix equal to a constant. A very similar theorem holds
for the relaxations from the cascade Pclust

m-SDP.
So, does this mean that none of the SDP relaxations is tighter than the spectral relax-

ation? Certainly not: the constraint set is clearly much tighter, as is obvious by looking
at the relaxation cascade where constraints on the diagonal of Γ̂ can explicitly be added
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or omitted. However, all constraints except for the ones that are also present in the spec-
tral relaxation are inactive. If additional constraints are imposed on the problem, some of
the inactive constraints may become active, such that the tightness of the SDP relaxations
starts paying off.

2.4.3 Additional Constraints on the SDP problems

A first approach is to introduce an upper bound on q as an additional constraint. Stated
in terms of the original variables, this implies that the imbalance s2

4s+s−
is upper bounded,

which makes sense as this number should be finite for the unrelaxed optimum as well.
(If desired, it is easy to compute the maximal value of s2

4s+s−
that can be achieved in

any bipartitioning of the graph, and this value can be used as a certain upper bound).
Interestingly, introducing such an upper bound on q does not affect the correctness of
Theorem 2. However, Theorem 6 ceases to hold if q is upper bounded, which was indeed
the goal.

Perhaps a more elegant approach is based on the transductive version of the NCut
relaxation, which we will present in detail in Section 3.1. The transductive version optimizes
the same objective while respecting some given labels, and has at most the same number of
variables and constraints as in the unconstrained NCut SDP relaxation. However, the dual is
automatically strictly feasible as long as at least two data points are labeled differently. We
can use this fact as follows. Instead of upper bounding q, one can pick two data points and
specify their classes to be different from each other and subsequently solve the transductive
NCut SDP relaxation from Section 3.1. It makes sense to pick the two most dissimilar
points for this. If needed, the transductive NCut SDP relaxation can be solved for several
pairs of data points, up to at most n − 1 (which, if well chosen, is sufficient to guarantee
that at least one of the pairwise inequivalence constraints was correct), although much less
than n− 1 pairs will usually be sufficient to guarantee that with high probability one of the
pairwise constraints was correct. Then one proceeds with the solution that achieved the
smallest normalized cut value.

2.4.4 Complexity Analysis

We are now ready to study the computational complexity to solve the derived SDP relax-
ations. The worst-case computational complexity of a pair of primal-dual strictly feasible
SDP problems is known to be polynomial, which is achieved by publicly available software
tools such as SeDuMi (Sturm, 1999).3

In particular for the basic SDP relaxation Pclust
SDP , with (#vars) = O(n) variables (in the

dual SDP) and an SDP constraint of size (size SDP) = O(n) the worst case complexity
(based on a theoretical analysis of SDP problems without exploiting structure, see Van-
denberghe and Boyd (1996)) is given by O((#vars)2(size SDP)2.5) = O(n4.5), hence the
complexity of our basic SDP relaxation with an additional upper bound on q (for dual
strict feasibility).

For the SDP cascade Pclust
m-SDP, it is important to note that the number of dual variables

is now only O(m), reducing the worst case complexity down to O(m2n2.5). Hence, m is a

3. Other software tools that are in practice often faster exist, notably SDPLR, which we used for the
large-scale experiments (Burer and Monteiro, 2003, 2005).
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parameter trading off the tightness of the relaxation with the computational complexity,
and can be adapted according to the available computing resources.

2.4.5 Estimating the Label Vector

In the context of the max-cut problem, several techniques have been proposed in literature
to construct a good binary label vector based on a label matrix as found by the max-cut
SDP relaxation (see e.g. Helmberg (2000) for an overview). Those techniques can be used
here as well, and in this paper we use the randomized rounding technique.

2.4.6 Bounds on the Unrelaxed Minimum

Let us briefly discuss how the solution of the unrelaxed NCut optimization problem relates
to the solution of any of the relaxations. First, since the feasible region is enlarged in
the relaxed optimization problem, the relaxed minimum provides a lower bound for the
minimum of the unrelaxed NCut problem.

On the other hand, the cost of any binary label vector provides an upper bound on the
minimal cost over all label vectors. Hence, also the label vector as found by the randomized
rounding technique will provide such an upper bound. In summary, each of our SDP
relaxations allows us to both upper bound and lower bound the minimal NCut cost.

3. The Subspace Trick

In this section we discuss a simple trick that allows one to impose equivalence and inequiv-
alence constraints on the labels in a very natural way. Furthermore, the very same trick
leads to a fast approximation of the relaxed NCut optimization problem.

The idea is to reparameterize the label matrix Γ̂ by Γ̂ = RMR′, with M symmetric
and R a fixed, specified matrix. In this way, we restrict the row and column space of the
label matrix Γ̂ to the columns of R.

3.1 Imposing Label Constraints: Transduction and Learning with
Side-Information

We first discuss the use of the subspace trick in the transduction scenario, and subsequently
extend it to the general semi-supervised learning setting. Here we will use a label constraint
matrix L for the matrix R.

The approach of using such label constraint matrices has been used previously by De
Bie et al. (2004) to derive a spectral relaxation of label-constrained normalized cut cost
problems. In the experimental section, we will compare this spectral transduction method
with the here derived SDP relaxations.

3.1.1 Transduction

By parameterizing Γ̂ as Γ̂ = LML′, it is straightforward to enforce label constraints in
order to achieve a transductive version. Let us assume without loss of generality that the
rows and columns of A are sorted such that the labeled (training) points occur first, with
labels given by the label vector yt, and the unlabeled (test) points thereafter. Then we
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define the label constraint matrix as:

L =
(

yt 0
0 I

)
.

I.e., the first column of the matrix L consists of the given label vector yt, and zeros at
positions corresponding to the ntest test points. The rest of the first block row contains
zeros, and the lower right block is an identity matrix of size ntest. Then the label constraints
can be imposed by observing that any valid Γ̂ must satisfy:

Γ̂ = LML′ =
(

M(1, 1)yty′t ytM(2 : ntest, 1)′

M(2 : ntest, 1)y′t M(2 : ntest, 2 : ntest)

)
.

Indeed, rows (columns) corresponding to oppositely labeled training points then automati-
cally are each other’s opposite, and rows (columns) corresponding to same-labeled training
points are equal to each other.

Using this parameterization we can easily derive the transductive NCut relaxation whose
solution will by construction respect the constraints on the training labels:

Ptrans
SDP


minM,q 〈M,L′D−A

s L〉
s.t. M � 0,

diag(M) = q1,

〈M,L′ dd′

s2 L〉 = q − 1.

Dtrans
SDP


maxλ,µ µ,

s.t. sL′D−A
s L− diag(λ)

+µL′ dd′

s2 L � 0,
µ = 1′λ.

Note that this is computationally even easier to solve than the unconstrained Pclust
SDP since

the number of dual variables is ntest + 2, which decreases with an increasing number of
labeled data points.

3.1.2 General Equivalence and Inequivalence Constraints

By using a different label constraint matrix, more general equivalence and inequivalence
constraints can be imposed (Shental et al., 2004). An equivalence constraint between a pair
of data points specifies that they belong to the same class. By extension, one can define an
equivalence constraint for a set of points. On the other hand, an inequivalence constraint
specifies two data points to belong to opposite classes. It is clear that the transduction
scenario is a special case of the scenario where equivalence and inequivalence constraints
are given. This large flexibility can be dealt with by using a label constraint matrix of the
following form:

L =



1s1 0 · · · 0 0 0 · · · 0
−1s2 0 · · · 0 0 0 · · · 0

0 1s3 · · · 0 0 0 · · · 0
0 −1s4 · · · 0 0 0 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · 1s2p−1 0 0 · · · 0
0 0 · · · −1s2p 0 0 · · · 0
0 0 · · · 0 1s2p+1 0 · · · 0
0 0 · · · 0 0 1s2p+2 · · · 0
...

... · · ·
...

...
... · · ·

...
0 0 · · · 0 0 0 · · · 1sc



.
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Hereby, the ith row of L corresponds to the ith data point, in so that samples corresponding
to one block row of size sk are given to belong to the same class by an equivalence constraint
(without loss of generality we assume that the samples are organized in this order in the
affinity matrix A). Inequivalence constraints are encoded by the first 2p block rows: for all
k ≤ 2p, samples from block row k are given to belong to a different class as samples from
block row k + 1. For the last c − 2p blocks no inequivalence constraints are given. These
blocks will often contain only a single row, meaning that for the corresponding data point
no equivalence nor inequivalence constraints are specified.

3.2 Approximating the SDP Relaxation for Speed-Up

Besides for imposing label constraints, the subspace trick can also be used to achieve a
further speed-up of the SDP relaxations developed in the previous section. We discuss two
different approaches. It is important to stress that both are approximations, and hence no
genuine relaxations of the NCut problem anymore.

3.2.1 Using a Coarse Pre-clustering

The semi-supervised learning methodology lends itself to speed up the SDP relaxation itself.
A useful approach would be to perform a coarse pre-clustering of the data. The equivalence
constraints found by the pre-clustering can then be used as constraints in the constrained
SDP relaxation of the NCut problem.

3.2.2 Using the Spectral Relaxation

Assuming that the spectral relaxation performs reasonably well, we know that the optimal
label vector will be close to the generalized eigenvector ỹ belonging to the smallest nonzero
eigenvalue σ2, plus some constant vector (which is essentially the generalized eigenvector
belonging to the smallest eigenvalue σ1 = 0). In fact, it is likely that the optimal label
vector is close to the space spanned by the eigenvectors corresponding to the d smallest
generalized eigenvalues of (D −A)v = σDv. We store these eigenvectors in the columns
of the matrix V(:, 1 : d) ∈ <n×d. Then, we can approximate (the optimal value of) Γ̂ by
Γ̂ ≈ V(:, 1 : d)MV(:, 1 : d)′.

Since the label vector will only approximately lie in the column space of V(:, 1 : d), the
equality constraint W′diag(V(:, 1 : d)MV(:, 1 : d)′) = qW′1 will be infeasible in general.
Hence we relax this constraint to an inequality constraint:

W′diag(V(:, 1 : d)MV(:, 1 : d)′) ≥ qW′1.

The resulting approximated relaxation then becomes:

Pappr
SDP


minM,q 〈M, Σ(1:d,1:d)

s 〉,
s.t. M � 0,

W′diag(V(:, 1 : d)MV(:, 1 : d)′) ≥ qW′1,
〈M,V(:, 1 : d)′dd′V(:, 1 : d)〉 = q − 1.
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Dappr
SDP



maxλ,µ µ,

s.t. Σ(1:d,1:d)
s −V(:, 1 : d)′diag(Wλ)V(:, 1 : d)

+µV(:, 1 : d)′ dd′

s2 V(:, 1 : d) � 0,
µ = 1′Wλ,
λ ≥ 0.

Note that the number of dual variables is equal to m + 1, and the size of the dual PSD
constraint is d. Hence, the computational complexity is now reduced to O(m2d2.5 + dn2),
where the second term arises from the computation of the generalized eigenvectors V cor-
responding to the d smallest eigenvalues.

4. Implications Beyond the Normalized Cut

The methodology, developed in this paper in the context of (constrained) NCut biparti-
tioning, can be used for other combinatorial problems as well. For example, the extension
of the developed techniques towards the ACut cost function is straightforward. We briefly
discuss the applicability to another example, namely the well-known max-cut problem. For
this problem we will also discuss a specific choice of W in the cascade of SDP relaxations.

4.1 The Max-Cut Problem

The SDP-relaxed max-cut problem is given by (Goemans and Williamson, 1995; Helmberg,
2000):

Pmax-cut


maxΓ

1
4〈Γ,D−A〉

s.t. Γ � 0,
diag(Γ) = 1.

Dmax-cut

{
minλ 1′λ,

s.t. −1
4(D−A) + diag(λ) � 0.

where again Γ ≈ yy′ is the label matrix, with y ∈ {−1, 1}n. Just as for the NCut op-
timization problem, we can relax the constraints on the diagonal to the m constraints
W′diag(Γ) = W′1 with W ∈ <n×m. For W = 1 (for m = 1), the well-known spectral
relaxation of max-cut is obtained:

1
4
(D−A)v = σv,

where the dominant eigenvector is an approximation for the maximal cut.
Also the subspace trick can readily be applied here, to give rise to label-constrained max-

cut relaxations, or to approximations of the max-cut relaxation to control the computational
burden. Here, let us define the matrix V as containing the eigenvectors of the above
eigenvalue problem in order of decreasing eigenvalue. Then, the approximated max-cut
relaxation becomes:

Pmax-cut appr


maxM

1
4〈Γ,D−A〉

s.t. M � 0,
W′diag(V(:, 1 : d)MV(:, 1 : d)′) ≤ W′1.

Dmax-cut appr


minλ 1′λ,

s.t. −1
4(D−A) + diag(Wλ) � 0,

λ ≥ 0.
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A good W for max-cut The matrix W can essentially be chosen freely, as long as
1 is within its column space, in order to maintain the interpretation that for m = 1 the
spectral relaxation results, and to ensure that for m > 1 the relaxation is stricter than for
m = 1. In particular, we propose to design W as follows. First, a partition of the data
points in m subsets is made. Then, each subset of the partition corresponds to a column
of W, and the row-entries in each column that are within the corresponding subset are
set equal to 1, the others are kept to 0. The result is that the constraints on the diagonal
W′diag(V(:, 1 : d)′λV(:, 1 : d)) ≤ W′1 are effectively constraints on sums of subsets of
diagonal elements. Clearly, W1 = 1 so 1 is in W’s column space, as desired. In order
to make these constraints as strong as possible, we use the heuristic to put points with
a large value in the result of the spectral relaxation in the same subset of the partition.
More specifically, we sort the entries of the relaxed label vector from the spectral relaxation,
and construct the partition such that the m subsets are (roughly) equally large and such
that data points in the same subset occur consecutively in this sorted ordering. This is the
approach we use in the empirical results section.

5. Empirical Results

In this section we empirically evaluate the basic SDP relaxation of the NCut problem and
its use for transduction. Next, we investigate the cascade of relaxations for the max-cut
problem, and the subspace trick to speed up the calculations.

5.1 NCut Clustering and Transduction

In all experiments for NCut clustering and transduction, we use the randomized rounding
technique (with 100 random projections) to derive a crisp label vector from the label matrix
Γ̂, and K-means on the relaxed label vector ỹ obtained from the spectral relaxation. All
optimization problems related to the NCut cost function are implemented using the SeDuMi
SDP solver (Sturm, 1999).

5.1.1 A Few Toy Problems

The results obtained by using the basic SDP relaxation for a few 2-dimensional clustering
problems are summarized in Figure 1. A Gaussian kernel is used with kernel width equal
to the average over all data points of the distance to their closest neighbor. In all these
cases the resulting label matrix turned out to be indistinguishable from a perfect 1 / -1
label matrix.

5.1.2 Clustering and Transduction on Text

We use the data from De Bie and Cristianini (2004b) to evaluate the clustering and trans-
duction performance of the basic SDP relaxation of the NCut optimization problem. The
data set contains 195 articles of the Swiss constitution, each translated in 4 languages (En-
glish, French, German and Italian). The articles are grouped into so-called ‘Titles’, which
are topics in the constitution. We use a 20-nearest neighbor affinity matrix A (meaning
that two documents have affinity 1 if they are in the set of 20 nearest neighbors of each
other, 0.5 if one is in the set of 20 nearest neighbors of the other but not vice versa, and 0
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Figure 1: The labeling obtained by the SDP relaxation on 4 toy problems. All results are
balanced, except for the last one.
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otherwise). The distance used is the cosine distance on the bag of words representation of
the documents (computed after stemming and stop word removal), i.e. 1 minus the cosine
between both bag of words vectors.

We consider two reasonable divisions of the data as target clusterings. The first division
clusters all articles in English with those in French, and those in German with those in
Italian. The second clustering is by topic (independent of the language): it clusters those
articles in the largest ‘Title’ together in one cluster, and the articles in all other ‘Titles’ in
the other cluster. Clearly, considering we are using a bag of words kernel, the distinction
by language is more natural. However, since there are 4 languages, several bipartitionings
are likely to be more or less as natural.

Figures 2 contain the relaxed minimal cost for the transductive spectral relaxation (De
Bie et al., 2004) and for the transductive SDP relaxation developed in this paper, as well
as the costs corresponding to the label vectors derived from them, as a function of the
fraction of data points labeled. The left graph reports the results for the (easy) clustering
by language, the right one for the (harder) clustering by topic. Both graphs confirm that the
lower bound on the true (unrelaxed) minimum, provided by the SDP relaxation minimum,
is consistently (and significantly) tighter than the one provided by the spectral relaxation.
Furthermore, the cost of the label vector derived from the spectral relaxation is consistently
and significantly larger than the cost of the SDP derived solution. The leftmost points in
the figures correspond to the unsupervised case (for the SDP relaxation we used the second
approach explained in Section 2.4.3). Note that these unsupervised optima are considerably
smaller than the value of the NCut for the true label vector, which is given by the rightmost
points in both figures (100% of the data points labeled). This is especially true for the harder
problem that ignores languages and clusters based on topic, which is not a surprise. In other
words, both target clusterings correspond to a considerably larger cost than the optimal
clustering. This result supports the conclusion of Xing and Jordan (2003) that the NCut
cost function is not always a good cost function to use for clustering.

On the other hand, even a limited amount of label information seems to guide the
prediction to the correct target clustering, even (although to a lesser extent) for the more
unnatural clustering by topic. Consider Figure 3, where the test set accuracies for both
transduction experiments are shown, again as a function of the fraction of labeled data
points. On the left, the performance for the clustering by language is seen to steeply improve
for a very small number of labeled data points, to saturate at a level above 0.95. On the
right, we see that for the harder less natural division the improvement is less dramatic,
and needs more label information, which is to be expected. Interesting to note is that for
the easier problem (left figure), the spectral relaxation and the SDP relaxation perform
exactly equally, while the SDP problem responds significantly better to label information
than the spectral relaxation for the harder problem (right figure). This is evidence for the
fact that in a transductive regime, the NCut cost function may be a good one indeed, and
it is beneficial to approximate it as well as possible.

5.2 Max-Cut

We use the max-cut problem to conduct an in-depth analysis of the computational conse-
quences of the relaxation cascade and of the subspace trick. We make use of a number of
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Figure 2: The costs for the best solution over 100 random roundings based on the SDP solu-
tion Γ̂ (full bold line), and by performing K-means on the generalized eigenvector
ỹ of the spectral relaxation (full faint line). This is done in the transductive sce-
nario where the fraction of points labeled is given by the horizontal axis. Hence,
the leftmost points in the graph are for the completely unsupervised scenario, and
the rightmost points are equal to the cost of the target solution. The dotted lines
show the lower bounds provided by the optima of both relaxed problems (bold
for the SDP and faint for the spectral relaxation). The plot shows averages (and
standard deviations) over 5 random selections of the training set. The left figure
is for the clustering by language, the right is for the (harder) clustering by topic.
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Figure 3: The test set accuracies for the best solution over 100 random roundings based on
the SDP solution (bold), and by performing K-means on the generalized eigen-
vector of the spectral relaxation (faint). Again the horizontal axis represents the
fraction of data points labeled. Averages and standard deviations over 5 random
selections of the training set are shown. The left figure is for the clustering by
language, the right one is for the clustering by topic.
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G |V | |E| density
1 800 19176 6.00

22 2000 19990 1.47
58 5000 29570 0.24
64 7000 41459 0.17
67 10000 20000 0.04
81 20000 40000 0.02

Table 2: The benchmark graphs from the Gset collection. The first column is the identifier
of the graph, the second the number of vertices in the graph, the third the number
of edges, and the last column shows the edge-density of the graph.

publicly available benchmark data sets from the so-called Gset collection (Helmberg and
Rendl, 2000). For a summary of the graphs we used, see Table 2. For these graphs, Fig-
ure 4, shows the results of a computational analysis of the relaxation cascade and of the
subspace trick as outlined in Section 4.1. In all experiments, a crisp label vector is de-
rived from a relaxed vector (obtained using the spectral relaxation) by simple thresholding
around 0, and from a relaxed label matrix by using the randomized rounding technique ex-
plained in Section 2.4.5 with 100 random projections (for the SDP relaxations). Motivated
by the large size of some of the graphs in the Gset collection, we use the highly effective
SDP solver SDPLR (Burer and Monteiro, 2003, 2005) called from within MATLAB in all
max-cut experiments on which we report here.

For the relaxation cascade, there is only one parameter to study the effect of: the number
of constraints m on the trace of the label matrix. We varied this parameter over all values
1, 2, 4, 8, 16, 32, 64, 128, 256 and n, where for m = 1, the algorithm reduces to the spectral
relaxation, and for m = n the well-known SDP relaxation is obtained. In Figures 4, the
value of the cut for each of these values of m is plotted as a function of the computation time
(full line with cross markers). Average times and cuts over 10 simulations are shown, to
account for the randomness of the rounding procedure and effect on the running time of the
random initialization of the optimization procedure. Apparently, already a relatively small
value for m and correspondingly small increase in computation time results in a significant
increase of the cut found. Still, for the two largest graphs in the benchmark, our Pentium
2GHz with 1Mb RAM was unable to solve any of the SDP formulations, for memory reasons,
and only one cross is plotted for m = 1, the spectral relaxation.

The small dots in the figures give an idea of the effect of the subspace trick, for subspace
dimensionality d equal to d = 2, 4, 8, 16, 32, in combination with the values for m (except
for 1 and n) used as above in the relaxation cascade. I.e., there are 5 × 8 = 40 dots in
each plot. Clearly the subspace trick allows one to achieve a generally higher cut value at
a significantly reduced computational cost. Using the subspace approximation, it is also
possible to find a better cut than the one found using the spectral relaxation for the two
most challenging problems below in the figure.

Even though the cascade of relaxations empirically appears less efficient in obtaining
good approximations to the relaxed optimum, a major disadvantage of the subspace trick is
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Figure 4: These plots show the value of the cut as a function of the running time for
various parameter settings, each figure for another benchmark graph from the
Gset collection: G1, G22, G58, G64, G67 and G81. Note the logarithmic
scale on the time axis. The crosses correspond to the relaxation cascade, with
m = 1, 2, 4, . . . , 256, n. The small dots correspond to the use of the subspace
trick for the same values of m and for various dimensionality d of the subspace:
d = 2, 4, 8, 16, 32. For the last two graphs G67 abd G81, the relaxation cascade
requires too much memory to solve on a Pentium 2GHz with 1Gb Ram and is
therefore omitted (except for d = 1, the spectral relaxation).
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Figure 5: The upper bound on the cut as provided by the SDP relaxations (upper curves),
along with the actual cut found (lower curves), for the benchmark graphs G1,
G22, G58 and G64.

that it is an approximation and not a genuine relaxation. The result is that the application
of the subspace trick makes the relaxed optimum useless to bound the value of the true
optimum.4 So let us now investigate to what extent the cascade of relaxations is helpful in
obtaining a bound on the unrelaxed optimum in those cases where computing the full SDP
relaxation is too time consuming. Figure 5 contains the value of the max-cut relaxations
as a function of the number of constraints m on the diagonal of the label matrix, as well as
the actual value of the cut found. One can see that the SDP upper bound on the maximum
indeed decreases (that is, tightens) for increasing m. At the same time, for larger m the
objective value (the cut cost) for the found label vector increases. Interestingly, it increases
(and the upper bound decreases) rather steeply in the beginning and then flattens off,
suggesting that a relatively low value for m may often be sufficient in practical cases.

4. Such bounds are of use for example when a Branch&Bound method is employed to find the exact optimum
of the combinatorial problem.
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6. Conclusions

We proposed a new cascade of SDP relaxations of the NP-complete normalized graph cut
optimization problem. On both extremes of the cascade are the well-know spectral relax-
ation and a newly proposed SDP relaxation. The proposed relaxations directly translate
into efficient machine learning algorithms for unsupervised and semi-supervised learning.

The availability of a series of relaxations with different computational complexity and
tightness allows one to trade off the computational cost versus accuracy. Furthermore,
we introduced the ‘subspace trick’, which is a simple technique that makes it possible
to efficiently impose label constraints on the result of the relaxed optimization problem.
Besides this, the subspace trick provides ways to obtain approximate formulations of the
relaxed optimization problems with a further reduced computational cost. We believe that
an interesting aspect of the paper is the fact that the techniques presented may prove useful
in relaxations of other combinatorial problems as well, as witnessed by their application to
the max-cut problem.

The application of these efficient approximations to machine learning algorithms might
have the potential to finally fulfill the promise of SDP as a powerful new addition to the
machine-learning toolbox.

We reported encouraging empirical results for the use of the NCut cost function and more
in particular of its newly proposed SDP relaxation for clustering and for semi-supervised
learning. Furthermore, we illustrated the use of the cascade of relaxations and of the
subspace trick on the max-cut problem.

An interesting research direction opened in this paper is the question which are good
and and efficiently computable choices for the matrix W, both for the relaxation cascade
and for the subspace approximation that is based on it. An answer to this question may
have broad implications in the field of combinatorial optimization and relaxation theory.

An alternative avenue that can be followed to increase the scalability of SDP relaxations
can be found in Lang (2004). It is based on the exploiting the ideas behind the SDPLR
method (Burer and Monteiro, 2003), and works by explicitly restricting the rank of the
label matrix. Further research should clarify potential relations and synergies between
their method and the approaches developed in this paper.
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Appendix A. Proof of Theorem 6

While this theorem would be easy to prove by plugging in the result provided in the theorem
statement, for the sake of clarity we give here a prove that derives the result rather than
posing it.
Proof Let us use the same notation as in the proof of Theorem 2. Then we can rewrite
Pclust

SDP (in the same line as for Theorem 2):

minM,q 〈M, Σ
s 〉

s.t. M � 0,
diag(VMV′) = q1,
1
sM(1, 1) = q − 1.

We can eliminate q from these constraints by substituting q = 1 + 1
sM(1, 1), and obtain:

minM 〈M, Σ
s 〉

s.t. M � 0,
diag(VMV′) = 1

(
1 + 1

sM(1, 1)
)
.

Let us decompose the left hand side of the last constraint in the following way:

diag(V(:, 1)M(1, 1)V(:, 1)′) + 2diag(V(:, 1)M(1, 2 : n)V(:, 2 : n)′)
+diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′)

= 1
1
s
M(1, 1) + 2diag(V(:, 1)M(1, 2 : n)V(:, 2 : n)′)

+diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′).

We also rewrite the PSD constraint by using the Schur complement lemma as:

M � 0 ⇔ M(2 : n, 2 : n) � M(1, : 2 : n)M(1, 2 : n)′

M(1, 1)
.

Besides, as Σ(1, 1) = 0 and Σ is diagonal, we can write

〈M,
Σ
s
〉 = 〈M(2 : n, 2 : n),

Σ(2 : n, 2 : n)
s

〉.

Then the optimization problem Pclust
SDP becomes:

minM 〈M(2 : n, 2 : n), Σ(2:n,2:n)
s 〉

s.t. M(2 : n, 2 : n) � M(1,:2:n)M(1,2:n)′

M(1,1) ,

2diag(V(:, 1)M(1, 2 : n)V(:, 2 : n)′) + diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′) = 1.

We can see that the variable M(1, 1) only occurs in the first constraint, and that this
constraint becomes less stringent for M(1, 1) → ∞ (note that this corresponds to q →
∞, which should not be a surprise), such that the minimum will be achieved for M(1, 1)
unboundedly large. So let us already take the limit for M(1, 1) to infinity, which gives:

minM 〈M(2 : n, 2 : n), Σ(2:n,2:n)
s 〉

s.t. M(2 : n, 2 : n) � 0,
2diag(V(:, 2 : n)M(2 : n, 1)V(:, 1)′) + diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′) = 1.
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The dual of this optimization problem, using Lagrange multipliers λ for the equality
constraint on the diagonal and the symmetric matrix Ξ for the PSD constraint, is given by:

maxλ,Ξ 1′λ
s.t. Ξ = Σ(2 : n, 2 : n)−V(:, 2 : n)′diag(λ)V(:, 2 : n),

Ξ � 0,
V(:, 2 : n)′λ = 0,

or equivalently:

maxλ 1′λ
s.t. Σ(2 : n, 2 : n)−V(:, 2 : n)′diag(λ)V(:, 2 : n) � 0,

V(:, 2 : n)′λ = 0.

From the equality constraint we can immediately see that λ ∝ d, such that V(:, 2 :
n)′diag(λ)V(:, 2 : n) ∝ V(:, 2 : n)′DV(:, 2 : n) = I. Therefrom we can see that λ = σ2d
and hence Ξ = Σ(2 : n, 2 : n) − σ2I at the optimum (where σ2 is used to denote Σ(2, 2),
the smallest generalized eigenvalue of the spectral relaxation that is different from 0). The
optimum itself is equal to 1′λ = σ2.

To determine the value of the primal variables at the optimum, let us now have a look
at the Karush Kuhn Tucker (KKT) condition corresponding to the PSD constraint:

〈M(2 : n, 2 : n),Ξ〉 = 〈M(2 : n, 2 : n),Σ(2 : n, 2 : n)− σ2I〉 = 0

The implies that M(i, j) = 0 for all i ≥ 2 and j ≥ 2 except for i = j = 2. The exact value
of M(2, 2) can be derived from the second KKT condition:(

2diag(V(:, 2 : n)M(2 : n, 1)V(:, 1)′) + diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′)− 1
)′

λ

=
(

2√
s
V(:, 2 : n)M(2 : n, 1) + diag(V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′)− 1

)′
σ2d

= 0

From this follows that 〈D,V(:, 2 : n)M(2 : n, 2 : n)V(:, 2 : n)′〉 = 〈I,M(2 : n, 2 : n)〉 = s.
Thus, we obtain that M(2, 2) = s.

The value of M(1, 2 : n) can straightforwardly be determined based on the equality
constraints in the primal problem. The final solution is thus given by: M(1, 1) = s(q−1) =
∞, M(2, 2) = s and M(2 : n, 1) as determined by the equality constraints of the primal
problem. If we define m ∈ <n as m = 1√

s
V(:, 2 : n)M(2 : n, 1) (satisfying m′d = 0), we

can state this result conveniently in terms of the original variables:

Γ̂ = sV(:, 2)V(:, 2)′ + (q − 1)11′ + m1′ + 1m′,

= sỹỹ′ + (q − 1)11′ + m1′ + 1m′.

with q →∞.
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Abstract
Support vector machines are trained by solving constrainedquadratic optimization problems. This
is usually done with an iterative decomposition algorithm operating on a small working set of vari-
ables in every iteration. The training time strongly depends on the selection of these variables. We
propose the maximum-gain working set selection algorithm for large scale quadratic programming.
It is based on the idea to greedily maximize the progress in each single iteration. The algorithm
takes second order information from cached kernel matrix entries into account. We prove the con-
vergence to an optimal solution of a variant termed hybrid maximum-gain working set selection.
This method is empirically compared to the prominent most violating pair selection and the lat-
est algorithm using second order information. For large training sets our new selection scheme is
significantly faster.

Keywords: working set selection, sequential minimal optimization, quadratic programming, sup-
port vector machines, large scale optimization

1. Introduction

We consider 1-norm support vector machines (SVM) for classification.These classifiers are usually
trained by solving convex quadratic problems with linear constraints. For large data sets, this is typ-
ically done with an iterative decomposition algorithm operating on a small workingset of variables
in every iteration. The selection of these variables is crucial for the trainingtime.

Recently, a very efficient SMO-like (sequential minimal optimizationusing working sets of
size 2, see Platt, 1999) decomposition algorithm was presented by Fan et al.(2005). The main
idea is to consider second order information to improve the working set selection. Independent
from this approach, we have developed a working set selection strategysharing this basic idea but
with a different focus, namely to minimize the number of kernel evaluations periteration. This
considerably reduces the training time of SVMs in case of large training data sets. In the following,
we present our approach, analyze its convergence properties, andpresent experiments evaluating
the performance of our algorithm. We close with a summarizing conclusion.

1.1 Support Vector Machine Learning

We consider 1-norm soft margin SVMs for classification (Vapnik, 1998;Cristianini and Shawe-
Taylor, 2000; Scḧolkopf and Smola, 2002). The learning problem at hand is defined by a set of ℓ
training examples{(x1,y1), . . . ,(xℓ,yℓ)}, where thexi are points in some input spaceX with corre-

c©2006 Tobias Glasmachers and Christian Igel.
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sponding class labelsyi =±1. A positive semi-definite kernel functionk : X ×X → R ensures the
existence of a feature Hilbert spaceF with inner product〈·, ·〉 and a mappingΦ : X → F such that
k(xi ,x j) = 〈Φ(xi),Φ(x j)〉.

The SVM algorithm constructs a real-valued, affine linear functionH on the feature space. The
corresponding functionh := H ◦Φ on the input space can be computed in terms of the kernelk with-
out the need for explicit computations inF . The zero set ofH is called the separating hyperplane,
because the SVM uses the sign of this function for class prediction. This affine linear function is
defined through maximizing the margin, that is, the desired distance of correctly classified training
patterns from the hyperplane, and reducing the sum of distances by which training examples violate
this margin. The trade-off between these two objectives is controlled by a regularization parameter
C > 0.

Training a 1-norm soft margin SVM is equivalent to solving the followingℓ-dimensional convex
quadratic problem with linear constraints forα ∈ R

ℓ:

P











maximize f (α) = vTα− 1
2αTQα

subject to yTα = z

and 0≤ αi ≤C , ∀i ∈ {1, . . . , ℓ} .

The requirementsyTα = zand 0≤ αi ≤C are referred to as equality constraint and box constraints,
respectively. In the SVM context the constantsv ∈ R

ℓ andz∈ R are fixed tov = (1, . . . ,1)T and
z = 0. The matrixQ ∈ R

ℓ×ℓ is defined asQi j := yiy jk(xi ,x j) and is positive semi-definite as the
considered kernel functionk is positive semi-definite. The vectory := (y1, . . . ,yℓ)

T , yi ∈ {+1,−1}
for 1 ≤ i ≤ ℓ, is composed of the labels of the training patternsx1, . . . ,xℓ. The set of pointsα
fulfilling the constraints is called the feasible regionR (P ) of problemP .

An optimal solutionα∗ of this problem defines the functionh(x) = ∑ℓ
i=1 α∗i yik(xi ,x)+b, where

the scalarb can be derived fromα∗ (e.g., see Cristianini and Shawe-Taylor, 2000; Schölkopf and
Smola, 2002).

1.2 Decomposition Algorithms

Making SVM classification applicable in case of large training data sets requires an algorithm for the
solution ofP that does not presuppose theℓ(ℓ+1)/2 independent entries of the symmetric matrixQ
to fit into working memory. The methods of choice in this situation are the so called decomposition
algorithms (Osuna et al., 1997). These iterative algorithms start at an arbitrary feasible pointα(0)

and improve this solution in every iterationt from α(t−1) to α(t) until some stopping condition is
satisfied. In each iteration an active set or working setB(t) ⊂ {1, . . . , ℓ} is chosen. Its inactive
complement is denoted byN(t) := {1, . . . , ℓ} \B(t). The improved solutionα(t) may differ from

α(t−1) only in the components in the working set, that is,α(t−1)
i = α(t)

i for all i ∈ N(t). Usually the
working setB(t) is limited to a fixed size|B(t)| ≤ q≪ ℓ. The working set must always be larger than
the number of equality constraints to allow for a useful, feasible step. In general a decomposition
algorithm can be formulated as follows:
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Decomposition Algorithm

α(0)← feasible starting point,t← 11

repeat2

select working setB(t)3

solve QP restricted toB(t) resulting inα(t)4

t← t +15

until stopping criterion is met6

The sub-problem defined by the working set in step 4 has the same structure as the full problem
P but with onlyq variables.1 Thus, the complete problem description fits into the available working
memory and is small enough to be solved by standard tools.

For the SVM problemP the working set must have a size of at least two. Indeed, the sequen-
tial minimal optimization (SMO) algorithm selecting working sets of sizeq = 2 is a very efficient
method (Platt, 1999). The great advantage of the SMO algorithm is the possibility to solve the sub-
problem analytically (cf. Platt, 1999; Cristianini and Shawe-Taylor, 2000; Scḧolkopf and Smola,
2002).

1.3 Working Set Selection

Step 3 is crucial as the convergence of the decomposition algorithm depends strongly on the work-
ing set selection procedure. As the selection of the working set of a given sizeq that gives the
largest improvement in a single iteration requires the knowledge of the full matrix Q, well working
heuristics for choosing the variables using less information are needed.

There exist various algorithms for this task, an overview is given in the book by Scḧolkopf and
Smola (2002). The most prominent ones share the strategy to select pairs of variables that mostly
violate the Karush-Kuhn-Tucker (KKT) conditions for optimality and can besubsumed under the
most violating pair(MVP) approach. Popular SVM packages such as SVMlight by Joachims (1999)
and LIBSVM 2.71 by Chang and Lin (2001) implement this technique. The ideaof MVP is to
select one or more pairs of variables that allow for a feasible step and moststrongly violate the
KKT conditions.

Here we describe the approach implemented in the LIBSVM 2.71 package. Following Keerthi
and Gilbert (2002) we define the sets

I := {i ∈ {1, . . . , ℓ}|yi = +1∧α(t−1)
i < C}∪{i ∈ {1, . . . , ℓ}|yi =−1∧α(t−1)

i > 0}
J := {i ∈ {1, . . . , ℓ}|yi = +1∧α(t−1)

i > 0}∪{i ∈ {1, . . . , ℓ}|yi =−1∧α(t−1)
i < C} .

Now the MVP algorithm selects the working setB(t) = {b1,b2} using the rule

b1 := argmax
i∈I

(

yi
∂ f
∂αi

(α)

)

b2 := argmin
i∈J

(

yi
∂ f
∂αi

(α)

)

.

1. For a sub-problem the constantsv∈ R
q andz∈ R in general differ from(1, . . . ,1)T and 0, respectively, and depend

on α(t−1)
i for i ∈ N(t).
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The conditionyb1
∂ f

∂αb1
(α)− yb2

∂ f
∂αb2

(α) < ε is used as the stopping criterion. In the limitε→ 0

the algorithm checks the exact KKT conditions and only stops if the solution found is optimal.
The MVP algorithm is known to converge to the optimum (Lin, 2001; Keerthi and Gilbert, 2002;
Takahashi and Nishi, 2005).

SVMlight uses essentially the same working set selection method with the important difference
that it is not restricted to working sets of size 2. The default algorithm selects 10 variables by
picking the five most violating pairs. In each iteration an inner optimization loop determines the
solution on the 10-dimensional sub-problem up to some accuracy.

Fan et al. (2005) propose a working set selection procedure which uses second order informa-
tion. The first variableb1 is selected as in the MVP algorithm. The second variable is chosen in
a way that promises the maximal value of the target functionf ignoring the box constraints. The
selection rule is

b2 := argmax
i∈J

(

f (αmax
{b1,i})

)

.

Here,αmax
{b1,i} is the solution of the two-dimensional sub-problem defined by the working set {b1, i}

at positionα(t−1) considering only the equality constraint. For this second order algorithm costly
kernel function evaluations may become necessary which can slow down the entire algorithm. These
kernel values are cached and can be reused in the gradient update step, see equation (2) in Section
2.1. Because this algorithm is implemented in version 2.8 of LIBSVM, we will refer to it as the
LIBSVM-2.8 algorithm.

The simplest feasible point one can construct isα(0) = (0, . . . ,0)T , which has the additional
advantage that the gradient∇ f (α(0)) = v= (1, . . . ,1)T can be computed without kernel evaluations.
It is interesting to note that in the first iteration starting from this point all components of the gradient
∇ f (α(0)) of the objective function are equal. Thus, the selection schemes presented above have a
freedom of choice for the selection of the first working set. In case of LIBSVM, for b1 simply the
variable with maximum index is chosen in the beginning. Therefore, the orderin which the training
examples are presented is important in the first iteration and can indeed significantly influence the
number of iterations and the training time in practice.

Other algorithms select arate certifying pair(Hush and Scovel, 2003). The allurement of this
approach results from the fact that analytical results have been derived not only about the guaranteed
convergence of the algorithm, but even about the rate of convergence(Hush and Scovel, 2003; List
and Simon, 2005). Unfortunately, in practice these algorithms seem to perform rather poorly.

1.4 Related Methods

Several new training algorithms for SVMs have been developed recently,which could be considered
for large scale data sets. One possibility to reduce the computational cost for huge data sets is to
determine only rough approximate solutions of the SVM problem. Algorithms emerged from this
line of research include the Core Vector Machine by Tsang et al. (2005)and LASVM by Bordes et al.
(2005), which have the additional advantage to produce even sparsersolutions than the exact SVM
formulation. In theory, both methods can solve the exact SVM problem with arbitrary accuracy,
but their strength lies in the very fast computation of relatively rough approximate solutions. Both
methods can profit from our working set selection algorithm presented below, as the Core Vector
Machine uses an inner SMO loop and LASVM is basically an online version ofSMO.

1440



MAXIMUM -GAIN WORKING SET SELECTION

The SimpleSVM algorithm developed by Vishwanathan et al. (2003) provides an alternative to
the decomposition technique. It can handle a wide variety of SVM formulations, but is limited in the
large scale context by its extensive memory requirements. In contrast, Keerthi et al. (2000) present
a geometrically inspired algorithm with modest memory requirements for the exactsolution of the
SVM problem. A drawback of this approach is that it is not applicable to the standard one-norm
slack penalty soft margin SVM formulation, which we consider here, because it requires the classes
to be linearly separable in the feature spaceF .

2. Maximum-Gain Working Set Selection

Before we describe our new working set selection method, we recall howthe quadratic problem re-
stricted to a working set can be solved (cf. Platt, 1999; Cristianini and Shawe-Taylor, 2000; Chang
and Lin, 2001). Then we compute the progress, the functional gain, thatis achieved by solving a
single sub-problem. Picking the variable pair maximizing the functional gain whileminimizing ker-
nel evaluations—by reducing cache misses when looking up rows ofQ—leads to the new working
set selection strategy.

2.1 Solving the Problem Restricted to the Working Set

In every iteration of the decomposition algorithm all variables indexed by the inactive setN are
fixed and the problemP is restricted to the variables indexed by the working setB = {b1, . . . ,bq}.
We define

αB = (αb1, . . . ,αbq)
T , QB =







Qb1b1 . . . Qbqb1
...

. . .
...

Qb1bq . . . Qbqbq






, yB = (yb1, . . . ,ybq)

T

and fix the values

vB =

(

1−∑
i∈N

Qib1αi , . . . ,1−∑
i∈N

Qibqαi

)T

∈ R
q and zB =−∑

i∈N

yiαi ∈ R

not depending onαB. This results in the convex quadratic problem (see Joachims, 1999)

PB,α











maximize fB(αB) = vT
BαB− 1

2αT
BQBαB

subject to yT
BαB = zB

and 0≤ αi ≤C ∀i ∈ B .

The valuezB can easily be determined in time linear inq, but the computation ofvB takes time
linear in q andℓ. ThenPB,α can be solved using a ready-made quadratic program solver in time
independent ofℓ.

We will deal with this problem under the assumption that we know the gradient vector

G := ∇ fB(αB) =

(

∂
∂αb1

fB(αB), . . . ,
∂

∂αbq

fB(αB)

)T

(1)

of partial derivatives offB with respect to allq variablesαb1, . . . ,αbq indexed by the working set.
In the following, we consider SMO-like algorithms using working sets of sizeq = 2. In this case
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∇f(αB)

∇f(α∗

B
)

αB

α∗

B

Figure 1: The 2-dimensional SMO sub-problem restricted to the equality constraint (solid ‘feasible’
line) and the box constraints (boundary). The point fulfilling the equality constraint with
gradient orthogonal to the feasible line is a candidate for the solution of the sub-problem.
If it is not feasible w.r.t. the box constraints it has to be moved along the line ontothe box
boundary.

the equality constraint restricts us to a line. Due to the box constraints only a bounded segment
of this line is feasible (see Figure 1). To solve the restricted problem we define the vectorwB :=
(1,−yb1yb2)

T pointing along the 1-dimensional feasible hyperplane. To find the maximum on this
line we look at the gradient∇ fB(αB) = vB−QBαB and compute the stepµB ·wB (µB ∈ R) such that
the gradient∇ fB(αB +µB ·wB) is orthogonal towB,

0 = 〈∇ fB(αB +µBwB),wB〉
= 〈vB−QBαB−µBQBwB,wB〉
= 〈∇ fB(αB)−µBQBwB,wB〉 .

Using∇ fB(αB) = (Gb1,Gb2)
T we get the solution

µmax
B = (Gb1−yb1yb2Gb2)/(Qb1b1 +Qb2b2−2yb1yb2Qb1b2) .

The corresponding point on the feasible line is denoted byαmax
B = αB +µmax

B wB. Of course,αmax
B is

not necessarily feasible. We can easily apply the box constraints toµmax
B . The new solution clipped

to the feasible line segment is denotedµ∗B. The maximum ofPB,α can now simply be expressed as
α∗B = αB +µ∗BwB.

After the solution of the restricted problem the new gradient

∇ f (α(t)) = ∇ f (α(t−1))−Q(α(t)−α(t−1)) (2)
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has to be computed. As the formula indicates this is done by an update of the former gradient.
Because∆α = α(t)−α(t−1) differs from zero in only theb1th andb2th component only the corre-
sponding two matrix rows ofQ have to be known to determine the update.

2.2 Computing the Functional Gain

Expressing the target function on the feasible line by its Taylor expansion inthe maximumαmax
B we

get

f̃B(ξ) := fB(αmax
B +ξwB)

= fB(αmax
B )− 1

2
(ξwB)TQB(ξwB)

= fB(αmax
B )−

(

1
2

wT
BQBwB

)

ξ2 .

Now it is possible to calculate the gain as

fB(α∗B)− fB(αB) = f̃B(µ∗B−µmax
B )− f̃B(0−µmax

B )

=

(

1
2

wT
BQBwB

)

((µmax
B )2− (µ∗B−µmax

B )2)

=

(

1
2

wT
BQBwB

)

(µ∗B(2µmax
B −µ∗B))

=
1
2
(Qb1b1 +Qb2b2−2yb1yb2Qb1b2)(µ

∗
B(2µmax

B −µ∗B)) . (3)

The diagonal matrix entriesQii needed for the calculation can be precomputed before the decom-
position loop starts using time and memory linear inℓ. Thus, knowing only the derivatives (1),C,
yB, andQb1b2 (and the precomputed diagonal entries) makes it possible to compute the gain inf .
Usually in an SVM implementation the derivatives are already at hand because they are required for
the optimality test in the stopping criterion. Of course we have access to the labels and the regu-
larization parameterC. The only remaining quantity needed isQb1b2, which unfortunately requires
evaluating the kernel function.

2.3 Maximum-Gain Working Set Selection

Now, a straightforward working set selection strategy is to look at allℓ(ℓ−1)/2 possible variable
pairs, to evaluate the gain (3) for every one of them, and to select the best,that is, the one with
maximum gain. It can be expected that this greedy selection policy leads to very fast convergence
measured in number of iterations needed. However, it has two major drawbacks making it advisable
only for very small problems: looking at all possible pairs requires the knowledge of the complete
matrix Q. As Q is in general too big to fit into the working memory, expensive kernel function
evaluations become necessary. Further, the evaluation of all possible pairs scales quadratically with
the number of training examples.

Fortunately, modern SVM implementations use a considerable amount of workingmemory as a
cache for the rows ofQ computed in recent iterations. In all cases, this cache contains the two rows
corresponding to the working set chosen in the most recent iteration, because they were needed for
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the gradient update (2). This fact leads to the following maximum-gain workingpair selection (MG)
algorithm:

Maximum-Gain Working Set Selection in stept

if t = 1 then1

select arbitrary working setB(1) = {b1,b2},yb1 6= yb22

else3

select pairB(t)← argmax
B={b1,b2}|b1∈B(t−1),b2∈{1,...,ℓ}

gB(α)
4

In the first iteration, usually no cached matrix rows are available. Thus, anarbitrary working set
B(1) = {b1,b2} fulfilling yb1 6= yb2 is chosen. In all following iterations, given the previous working
setB(t−1) = {b1,b2}, the gain of all combinations{b1,b} and{b2,b} (b∈ {1, . . . , ℓ}) is evaluated
and the best one is selected.

The complexity of the working set selection is linear in the number of training examples. It is
important to note that the algorithm uses second order information from the matrix cache. These
information are ignored by all existing working set selection strategies, albeit they are available for
free, that is, without spending any additional computational effort. This situation is comparable to
the improvement of using the gradient for the analytical solution of the sub-problem in the SMO
algorithm. Although the algorithm by Fan et al. (2005) considers second order information, these
are in general not available from the matrix cache.

The maximum gain working pair selection can immediately be generalized to the classof
maximum-gain working set selectionalgorithms (see Section 2.5). Under this term we want to
subsume all working set selection strategies choosing variables according to a greedy policy with
respect to the functional gain computed using cached matrix rows. In the following, we restrict
ourselves to the selection of pairs of variables as working sets.

In some SVM implementations, such as LIBSVM, the computation of the stopping condition
is done using information provided during the working set selection. LIBSVM’s MVP algorithm
stops if the sum of the violations of the pair is less than a predefined constantε. The simplest way
to implement a roughly comparable stopping condition in MG is to stop if the valueµ∗B defining the
length of the constrained step is smaller thanε.

It is worth noting that the MG algorithm does not depend on the caching strategy. The only
requirement for the algorithm to efficiently profit from the kernel cache isthat the cache always
contains the two rows of the matrixQ that correspond to the previous working set. This should be
fulfilled by every efficient caching algorithm, because recently active variables have a high proba-
bility to be in the working set again in future iterations. That is, the MG algorithm does not require
a change of the caching strategy. Instead, it improves the suitability of all caching strategies that at
least store the information most recently used.

2.4 Hybrid Maximum-Gain Working Set Selection

The MG algorithm can be used in combination with other methods. In order to inherit the conver-
gence properties from MVP we introduce thehybrid maximum gain(HMG) working set selection
algorithm. The algorithm is defined as follows:
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Hybrid Maximum-Gain Working Set Selection in stept, 0< η≪ 1

if t = 1 then1

select arbitrary working setB(1) = {b1,b2},yb1 6= yb22

else3

if ∀i ∈ B(t−1) : αi ≤ η ·C∨αi ≥ (1−η) ·C then4

selectB(t) according to MVP5

else6

select pairB(t)← argmax
B={b1,b2}|b1∈B(t−1),b2∈{1,...,ℓ}

gB(α)
7

In the first iteration, usually no cached matrix rows are available. Thus, anarbitrary working set
{b1,b2} fulfilling yb1 6= yb2 is selected. If in iterationt > 1 both variables indexed by the previous
working setB(t−1) = {b1,b2} are no more thanη ·C, 0 < η≪ 1, from the bounds, then the MVP
algorithm is used. Otherwise the working set is selected according to MG. Figure 2 illustrates
the HMG decision rule. The stopping condition tested by the decomposition algorithm is the one

∇

0

Cη

C(1− η)

C

0 Cη C(1− η) C

αb1

αb2

Figure 2: Illustration of the HMG algorithm. The plain defined by the previous working setB(t−1) =
{b1,b2} is drawn. If the algorithm ended up in one of the gray corners then the MVP
algorithm is used in iterationt.

from the working set selection algorithm used in the current iteration. Thatis, the decomposition
algorithm stops ifyb1

∂ f
∂αb1

(α)− yb2
∂ f

∂αb2
(α) or µ∗B falls below the thresholdε depending on whether

MVP or MG has been selected.
The HMG algorithm is a combination of MG and MVP using MVP only in special situations.

In our experiments, we setη = 10−8. This choice is arbitrary and makes no difference toη = 0 in
nearly all cases. In practice, in almost all iterations MG will be active. Thus, this algorithm inherits
the speed of the MG algorithm. It is important to note thatη is not a parameter influencing the
convergence speed (as long as the parameter is small) and is therefore not subject to tuning.

The technical modification ensures the convergence of the algorithm. This isformally expressed
by the following theorem.
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Theorem 1 We consider problemP . Let (α(t))t∈N be a sequence of feasible points produced by
the decomposition algorithm using the HMG policy. Then, the limit point of every convergent sub-
sequence is optimal forP .

The proof can be found in Section 3.

2.5 Generalization of the Algorithm

In the following, we discuss some of the potential variants of the basic MG or HMG algorithm.
It is possible to use a larger set of precomputed rows, say, 10, for the working set selection. In

the extreme case we can run through all cached rows ofQ. Then the working set selection algorithm
becomes quite time consuming in comparison to the gradient update. As the numberof iterations
does not decrease accordingly, as we observed in real world applications, we recommend to use only
the two rows of the matrix from the previous working set. We refer to Section 4.6 for a comparison.

A small change speeding up the working set selection is fixing one element ofthe working set in
every iteration. When alternating the fixed position, every element is used twotimes successively.
Only ℓ− 2 pairs have to be evaluated in every iteration. Though leading to more iterations this
policy can speed up the MG algorithm for small problems (see Section 4.6).

The algorithm can be extended to compute the gain for tuples of sizeq > 2. It is a severe
disadvantage that such sub-problems can not be solved analytically and an iterative solver has to
be used for the solution of the sub-problem. Note that this becomes necessary also for every gain
computation during the working set selection. To keep the complexity of the working set selection
linear in ℓ only one element new to the working set can be evaluated. Due to this limitation this
method becomes even more cache friendly. The enlarged working set sizemay decrease the number
of iterations required, but at the cost of the usage of an iterative solver. This should increase the
speed of the SVM algorithm only on large problems with extremely complicated kernels, where
the kernel matrix does not fit into the cache and the kernel evaluations in every iteration take much
longer than the working set selection.

3. Convergence of the Algorithms

In this section we discuss the convergence properties of the decompositionalgorithm using MG and
HMG working set selection. First, we give basic definitions and prove a geometrical criterion for
optimality. Then, as a motivation and a merely theoretical result, we show some properties of the
gain function and prove that the greedy strategy w.r.t. the gain convergesto an optimum. Returning
to our algorithm, we give a counter example proving that there exist scenarios where pure MG
looking at pairs of variables may stop after finitely many iterations without reaching an optimum.
Finally, we prove that HMG converges to an optimum.

3.1 Prerequisites

In our convergence analysis, we consider the limitε→ 0, that is, the algorithms only stop if the
quantities checked in the stopping conditions vanish. We will discuss the convergence of the infinite
sequence(α(t))t∈N produced by the decomposition algorithm. If the decomposition algorithm stops
in some iterationt0 at α(t0−1), then by convention we setα(t)← α(t0−1) for all t ≥ t0. The definition
of convergence used here directly implies the convergence in finite time to a solution arbitrarily
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close to the optimum considered in other proofs (Keerthi and Gilbert, 2002;Takahashi and Nishi,
2005).

The Bolzano-Weierstraß property states that every sequence on a compact set contains a con-
vergent sub-sequence. Because of the compactness ofR (P ) the sequence(α(t))t∈N always con-
tains a convergent sub-sequence denoted(α(t))t∈S with limit point α(∞). From the construction
of the decomposition algorithm it follows that the sequence( f (α(t)))t∈N increases monotonically.
The compactness ofR (P ) implies that it is bounded. It therefore converges and its limitf (α(∞))
does not depend on the choice of the convergent sub-sequence. The gain sequencegB(t)(α(t−1)) =
f (α(t))− f (α(t−1)) is non-negative and converges to zero. It will be the aim of this section to prove
thatα(∞) is the maximizer off within the feasible regionR (P ) if the decomposition algorithm is
used with HMG working set selection.

List and Simon (2004) introduced the (technical) restriction that all principal 2×2 minors ofQ
have to be positive definite. For Theorem 4, which was shown by List andSimon (2004), and the
proof of Lemma 9 (and thus of Theorem 1) we adopt this requirement. The assumption is not very
restrictive because it does not require the whole matrixQ to be positive definite. If in contrastQ is
indeed positive definite (for example for Gaussian kernels with distinct examples) then this property
is inherited by the principal minors.2

If we fix any subset of variables ofP at any feasible pointα∈ R (P ) then the resulting restricted
problem is again of the formP . By analytically solving the problem restricted to a working setB
we can compute the gaingB(α). The setVP := {α ∈ R

ℓ | 〈y,α〉 = z} is the hyperplane defined by
the equality constraint. It contains the compact convex feasible regionR (P ). The set of possible
working sets is denoted byB (P ) :=

{

B
∣

∣B⊂ {1, . . . , ℓ}, |B|= 2
}

. We call two working setsB1,B2∈
B (P ) related ifB1∩B2 6= /0. With a working setB = {b1,b2}, b1 < b2, we associate the vectorwB

with components(wB)b1 = 1, (wB)b2 =−yb1yb2 and(wB)i = 0 otherwise. It points into the direction
in which α can be modified using the working set.

If a feasible pointα is not optimal then there exists a working setB on which it can be improved.
This simply follows from the fact that there are working set selection policiesbased on which the
decomposition algorithm is known to converge (Lin, 2001; Keerthi and Gilbert, 2002; Fan et al.,
2005; Takahashi and Nishi, 2005). In this case the gaingB(α) is positive.

Next, we give a simple geometrically inspired criterion for the optimality of a solution.

Lemma 2 We consider the problemP . For a feasible pointα0 the following conditions are equiv-
alent:

1. α0 is optimal.

2. 〈(α−α0),∇ f (α0)〉 ≤ 0 for all α ∈ R (P ).

3. 〈µ·wB,∇ f (α0)〉 ≤ 0 for all µ ∈ R, B∈ B (P ) fulfilling α0 +µ·wB ∈ R (P ).

Proof The proof is organized as(1)⇒ (2)⇒ (3)⇒ (1). We consider the Taylor expansion

f (α) = f (α0)+ 〈(α−α0),∇ f (α0)〉−
1
2
(α−α0)

TQ(α−α0)

2. Usually there is only a zero set of training data sets that violate this condition. This is obviously true if the input
space is an open subset of someR

n and the distribution generating the training data has a density w.r.t. the Lebesgue
measure.
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of f in α0. Let us assume that(2) does not hold, that is, there existsα ∈ R (P ) such thatq :=
〈(α−α0),∇ f (α0)〉> 0. From the convexity ofR (P ) it follows thatαµ := µα+(1−µ)α0 ∈ R (P )
for µ∈ [0,1]. We further setr := 1

2(α−α0)
TQ(α−α0)≥ 0 and have〈(αµ−α0),∇ f (α0)〉= µqand

1
2(αµ−α0)

TQ(αµ−α0) = µ2r. We can choseµ0 ∈ (0,1] fulfilling µ0q > µ2
0r. Then it follows

f (αµ0) = f (α0)+ 〈(αµ0−α0),∇ f (α0)〉−
1
2
(αµ0−α0)

TQ(αµ0−α0)

= f (α0)+µ0q−µ2
0r

> f (α0) ,

which proves thatα0 is not optimal. Thus(1) implies(2). Of course (3) follows from (2). Now we
assumeα0 is not optimal. From the fact that there are working set selection policies forwhich the
decomposition algorithm converges to an optimum it follows that there exists a working setB on
which α0 can be improved, which meansgB(α0) > 0. Let α1 denote the optimum on the feasible
line segment withinR (P ) written in the formα1 = α0 +µ·wB. Using the Taylor expansion above
at α1 and the positive semi-definiteness ofQ we get

f (α1) = f (α0)+ 〈(α1−α0),∇ f (α0)〉−
1
2
(α1−α0)

TQ(α1−α0) > f (α0)

⇔ 〈(α1−α0),∇ f (α0)〉>
1
2
(α1−α0)

TQ(α1−α0)≥ 0

⇒ 〈µ·wB,∇ f (α0)〉> 0

showing that (3) implies (1).

α

α

αb1
αb1

αb2
αb2

Figure 3: This figure illustrates the optimality condition given in Lemma 2 for one working set. On
the left the case of two free variablesαb1 andαb2 is shown, while on the right the variable
αb1 is at the boundC. The fat lines represent the feasible region for the 2-dimensional
problem induced by the working set. The arrows show the possible gradient directions
not violating the optimality conditions.
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3.2 Convergence of the Greedy Policy

Before we look at the convergence of the MG algorithm, we use Theorem 4by List and Simon
(2004) to prove the convergence of the decomposition algorithm using the greedy policy with respect
to the gain for the working set selection. For this purpose we will need the concept of a 2-sparse
witness of suboptimality.

Definition 3 (2-sparse witness of suboptimality)A family of functions(CB)B∈B (P )

CB : R (P )→ R
≥0

fulfilling the conditions
(C1) CB is continuous,
(C2) if α is optimal forPB,α, then CB(α) = 0, and
(C3) if a feasible pointα is not optimal forP , then there exists B such that CB(α) > 0
is called a2-sparse witness of suboptimality(List and Simon, 2004).

Every 2-sparse witness of suboptimality induces a working set selection algorithm by

B(t) := argmax
B∈B (P )

(

CB(α(t−1))
)

.

List and Simon (2004) call this the induced decomposition algorithm. Now we canquote a general
convergence theorem for decomposition methods induced by a 2-sparsewitness of suboptimality:3

Theorem 4 (List and Simon, 2004)We consider the problemP and a 2-sparse witness of subop-
timality (CB)B∈B (P ). Let (α(t))t∈N denote a sequence of feasible points generated by the decompo-

sition method induced by(CB) and(α(t))t∈S a convergent sub-sequence with limit pointα(∞). Then,
the limit point is optimal forP .

The following lemma allows for the application of this theorem.

Lemma 5 The family of functions(gB)B∈B (P ) is a 2-sparse witness of suboptimality.

Proof Property(C2) is fulfilled directly per construction. Property(C3) follows from the fact
that there exist working set selection strategies such that the decompositionmethod converges (Lin,
2001; Takahashi and Nishi, 2005; List and Simon, 2005). It is left to prove property(C1). We fix a
working setB = {b1,b2} and the corresponding direction vectorwB. Choosing the working setB is
equivalent to restricting the problem to this direction. We define the affine linear function

ϕ : VP → R , α 7→ ∂
∂µ

∣

∣

∣

∣

µ=0
f (α+µwB)

and the ((ℓ−2)-dimensional) hyperplaneH := {α∈VP |ϕ(α) = 0}within the ((ℓ−1)-dimensional)
vector spaceVP . This set always forms a hyperplane becauseQwB 6= 0 is guaranteed by the as-
sumption that all 2×2 minors orQ are positive definite. This hyperplane contains the optima off
restricted to the linesα+R ·wB considering the equality constraint but not the box constraints. We

3. Theorem 1 in List and Simon (2004) is more general as it is not restricted to working sets of size two.
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introduce the mapπH projectingVP ontoH alongwB, that is the projection mapping the whole line
α+R ·wB onto its unique intersection withH. The hyperplaneH contains the compact subset

H̃ :=
{

α ∈ H
∣

∣α+R ·wB∩R (P ) 6= /0
}

= πH(R (P ))

on which we define the function

δ : H̃→ R , α 7→ argmin
{µ∈R |α+µwB∈R (P )}

|µ| .

The termδ(πH(α))wB describes the shortest vector movingα ∈ H̃ to the feasible region on the line
alongwB. On H̃ \R (P ) it parameterizes the boundary of the feasible region (see Figure 4). These
properties enable us to describe the optimal solution of the sub-problem induced by the working
set. Starting fromα ∈ R (P ) the optimumπH(α) is found neglecting the box constraints. In case
this point is not feasible it is clipped to the feasible region by moving it byδ(πH(α))wB. Thus,
per construction it holdsgB(α) = f (πH(α)+δ(πH(α))wB)− f (α). The important point here is that
convexity and compactness ofR (P ) guarantee thatδ is well-defined and continuous. We conclude
thatgB is continuous as it is a concatenation of continuous functions.

R(P)

H

H̃

wB

Figure 4: The feasible regionR (P ) within the (ℓ−1)-dimensional vector spaceVP is illustrated.
Theℓ-dimensional box constraints are indicated in light gray. The thin line represents the
hyperplaneH containing the compact subsetH̃ drawn as a fat line segment. The lengths
of the dotted lines indicate the absolute values of the functionδ on H̃. The functionδ
vanishes within the intersection ofH̃ andR (P ).

Corollary 6 We consider problemP . Let (α(t))t∈N be a sequence of feasible points produced by
the decomposition algorithm using the greedy working set selection policy. Then, every limit point
α(∞) of a converging sub-sequence(α(t))t∈S is optimal forP .

Proof For a feasible pointα and a working setB the achievable gain is computed asgB(α). Thus, the
decomposition method induced by the family(gB) selects the working set resulting in the maximum
gain, which is exactly the greedy policy. Lemma 5 and Theorem 4 complete the proof.

It is straightforward to use the more general version of the theorem fromList and Simon (2004) to
extend the construction for working sets limited in size to someq > 2.
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3.3 Convergence of the MG Algorithm

Theorem 7 Given a feasible pointα(t) for P and a previous working set B(t−1) of size 2 as a starting
point. Then, in general, the MG algorithm may get stuck, that means, it maystop after finitely many
iterations without reaching an optimum.

Proof As a proof we give a counter example. The MG algorithm may get stuck before reaching the
optimum because it is restricted to reselect one element of the previous working set. Forℓ < 4 this
poses no restriction. Thus, to find a counter example, we have to use someℓ≥ 4. Indeed, using four
training examples is already sufficient. We considerP for ℓ = 4 with the values

Q =









2
√

3 1
√

3√
3 4

√
3 3

1
√

3 2
√

3√
3 3

√
3 4









, C =
1
10

, y =









−1
−1
+1
+1









.

The matrixQ is positive definite with eigenvalues(9,1,1,1). We assume the previous working set
to beB(1) = {1,3} resulting in the pointα(1) = (C,0,C,0)T . Note that this is the result of the first
iteration starting fromα(0) = (0,0,0,0) greedily choosing the working setB(1) = {1,3}. It is thus
possible that the decomposition algorithm reaches this state in the SVM context. We compute the
gradient

∇ f (α(1)) = 1−Qα(1) = (
7
10

,1−
√

3
5

,
7
10

,1−
√

3
5

)T ≈ (0.7,0.65,0.7,0.65)T

(which is orthogonal toy). Using Lemma 2 we compute that the sub-problems defined by all work-
ing sets with exceptionB= {2,4} are already optimal. The working setsB(1) andB have no element
in common. Thus, the maximum gain working pair algorithm cannot selectB(2) = B and gets stuck
although the pointα(1) is not optimal. From Figure 5 we can see that the same example works for
all points on the edgeα(1) = (C,ν,C,ν) for ν ∈ [0,C). Lemma 8 states that indeed the edges of the
octahedron are the only candidates for the MG algorithm to get stuck.

3.4 Convergence of the HMG Algorithm

The above result makes it advisable to use a different algorithm whenever MG is endangered to
get stuck. For this purpose the HMG algorithm was designed. In this sectionwe prove that this
modification indeed guarantees convergence to an optimum.

The following lemma deals with the specific property of the MG algorithm to reselect one
element of the working set, that is, to select related working sets in consecutive iterations. It is a
major building block in the proof of the main result stated in Theorem 1.

Lemma 8 We considerP , a current non-optimal feasible pointα and a previous working set B1 =
{b1,b2}. If at least one of the variablesαb1 and αb2 is free (not at the bounds0 or C) then there
exists a working set B2 related to B1 such that positive gain gB2(α) > 0 can be achieved.

Proof We show that no counter example exists. The idea is to reduce the number of possible
scenarios to a finite number and to inspect each case individually.
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C(1

α(0)

α(1) α(2)

∇f(α(1))

{1, 3}

{2, 4}

Figure 5: Illustration of the counter example. The feasible regionR (P ) forms an octahedron within
the 3-dimensional spaceVP . The possible directions of movement using working sets of
size 2 are parallel to the edges of the octahedron. The SVM algorithm startsin α(0) =
(0,0,0,0)T . During the first two iterations the greedy policy reaches the pointsα(1) =
(C,0,C,0)T andα(2) = (C,C,C,C)T . The MG algorithm gets stuck after the first iteration
at α(1). The plane spanned by the directions(1,0,1,0)T and(0,1,0,1)T defined by the
working sets{1,3} and{2,4} respectively, is drawn. The gray lines are level sets of the
target functionf within this plane. In the pointα(1) the gradient∇ f (α(1)) (which lies
within the plane) has an angle of less thanπ/2 only with the horizontally drawn edge
corresponding to the working set{2,4}.

For ℓ≤ 3 the condition thatB1 andB2 are related is no restriction and we are done. In the main
part of the proof, we consider the 4-dimensional case and setα = (α1,α2,α3,α4)

T andB1 = {1,2}
with free variableα1 ∈ (0,C). In the end, we will reduce the general case toℓ≤ 4.

Let us have a look at potential counter examples. A feasible pointα is a counter example if it is
not optimal and does not allow for positive gain on any working set relatedto B1. These conditions
are equivalent to

gB(α)

{

= 0 for B 6= {3,4}
> 0 for B = {3,4} .

(4)

Looking at the six possible working setsB we observe from Lemma 2 that we have to distinguish
three cases for sub-problems induced by the working sets:

• The current pointα is at the bounds for a variable indexed byB and the pointsα + µ ·
wB lie within R (P ) only for µ≤ 0. Then Lemma 2 states thatα can only be optimal if
〈wB,∇ f (α)〉 ≥ 0.
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• The current pointα is at the bounds for a variable indexed byB and the pointsα + µ ·
wB lie within R (P ) only for µ≥ 0. Then Lemma 2 states thatα can only be optimal if
〈wB,∇ f (α)〉 ≤ 0.

• The current pointα is not at the bounds for both variables indexed byB. Thus, there are
positive and negative values forµ such thatα + µ ·wB lies within R (P ). From Lemma 2 it
follows thatα can only be optimal if〈wB,∇ f (α)〉= 0.

We conclude that the signs (< 0, = 0, or> 0) of the expressions

〈wB,∇ f (α)〉= ∂ f
∂αb′0

(α)−yb′0
yb′1

∂ f
∂αb′1

(α) for B = {b′0,b′1} ⊂ {1,2,3,4} (5)

and the knowledge about which variables are at which bound are sufficient for the optimality check.
Further, it is not important which exact value a free variable takes. The possible combinations of
vectorswB occurring in equation (5) are generated by the label vectory. Combining these insights,
we define the maps

sign :R→{−1,0,+1}, x 7→











−1 if x < 0

0 if x = 0

+1 if x > 0

bound :[0,C]→{0,
C
2

,C}, x 7→











0 if x = 0
C
2 if 0 < x < C

C if x = C

and a mapping of all possible counter examples onto a finite number of cases

Ψ : R (P )×R
4×{−1,+1}4→{−1,0,+1}6×{0,C/2,C}3×{−1,+1}4,




α
∇ f (α)

y



 7→





bound(αi), i ∈ {2,3,4}
sign(〈wB,∇ f (α)〉), B∈ B (P )

y



 .

A possible counter example is fully determined by a candidate pointα ∈ R (P ), the gradientG =
∇ f (α), and the label vectory. As the parameters of problemP are not fixed here, the equality
constraint can be ignored, because every point fulfilling the box constraints can be made feasible
by shifting the equality constraint hyperplane. The relationΨ(α,G,y) = Ψ(α̃,G̃, ỹ) divides the
pre-image ofΨ into equivalence classes. For each element of one equivalence class the check of
condition (4) using Lemma 2 is the same. Formally, we have

Ψ(α,G,y) = Ψ(α̃,G̃, ỹ)

⇒condition (4) holds for(α,G,y) if and only if condition (4) holds for(α̃,G̃, ỹ) .

It follows that any finite set containing representatives of all the non-empty equivalence classes
is sufficient to check for the existence of a counter example in the infinite pre-image ofΨ.4 The
checking can be automated using a computer program. A suitable program can be downloaded from
the online appendix

4. The functionΨ itself helps designing such a set of representatives of the non-empty classes. For every fixedα andy
the set{−4,−3, . . . ,3,4}4 ⊂ R

4 is sufficient to generate all possible combinations of sign(〈wB,∇ f (α)〉), B∈ B (P ).
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http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/wss/ .

The outcome of the program is that there exists no counter example.
It is left to prove the lemma forℓ > 4. This case can be reduced to the situations already

considered. Becauseα is not optimal there exists a working setB∗ with gB∗(α) > 0. The set
W := B1∪B∗ defines an at most 4-dimensional problem. The proof above shows that there exists a
working setB⊂W with the required properties.

Following List and Simon (2004), one can bound‖α(t)−α(t−1)‖ in terms of the gain:

Lemma 9 We consider problemP and a sequence(α(t))t∈N produced by the decomposition algo-
rithm. Then, the sequence

(

‖α(t)−α(t−1)‖
)

t∈N
converges to0.

Proof The gain sequence
(

gB(t)(α(t−1))
)

t∈N
converges to zero as it is non-negative and its sum is

bounded from above. The inequality

gB(t)(α(t−1))≥ σ
2
‖α(t)−α(t−1)‖2 ⇔ ‖α(t)−α(t−1)‖ ≤

√

2
σ

gB(t)(α(t−1))

holds, whereσ denotes the minimal eigenvalue of the 2×2 minors ofQ. By the technical assump-
tion that all principal 2×2 minors ofQ are positive definite we haveσ > 0.

Before we can prove our main result we need the following lemma.

Lemma 10 We consider problemP , a sequence(α(t))t∈N produced by the decomposition algorithm
and the corresponding sequence of working sets (B(t))t∈N. Let the index set S⊂ N correspond to a
convergent sub-sequence(α(t))t∈S with limit point α(∞).

(i) Let

I :=
{

B∈ B (P )
∣

∣ |{t ∈ S|B(t) = B}|= ∞
}

denote the set of working sets selected infinitely often. Then, no gain can beachieved in
the limit pointα(∞) using working sets B∈ I.

(ii) Let

R :=
{

B∈ B (P )\ I
∣

∣ B is related to somẽB∈ I
}

.

denote the set of working sets related to working sets in I. If the decomposition algorithm
chooses MG working sets, no gain can be achieved in the limit pointα(∞) using working
sets B∈ R.

This is obvious from equation (5) and the fact that these cases cover different as well as equal absolute values for
all components together with all sign combinations. Hence, it is sufficient tolook at these 94 gradient vectors, or in
other words, the map from{−4,−3, . . . ,3,4}4 to sign(〈wB,∇ f (α)〉), B∈ B (P ) is surjective. The mapping of the 33

pointsα1 = C/2, αi ∈ {0,C/2,C} for i ∈ {2,3,4} onto bound(αi), i ∈ {2,3,4} is bijective. Of course the identity
mapy 7→ y of the 24 possible labels is bijective, too. Now we have constructed a set of 94 ·33 ·24 = 2,834,352 cases.
If there is no counter example among them, we know that no counter example exists in the whole infinite set.
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Proof First, we prove(i). Let us assume these existsB∈ I on which positive gain can be achieved
in the limit point α(∞). Then we haveε := gB(α(∞)) > 0. BecausegB is continuous there exists
t0 such thatgB(α(t)) > ε/2 for all t ∈ S, t > t0. BecauseB is selected infinitely often it follows
f (α(∞)) = ∞. This is a contradiction to the fact thatf is bounded onR (P ).

To prove(ii) we define the index setS(+1) := {t +1| t ∈ S}. Using Lemma 9 we conclude that
the sequence(α(t))t∈S(+1)

converges toα(∞). Let us assume that the limit point can be improved us-

ing a working setB∈Rresulting inε := gB(α(∞)) > 0. BecausegB is continuous, there existst0 such
that it holdsgB(α(t)) > ε/2 for all t ∈S(+1), t > t0. By the convergence of the sequence( f (α(t)))t∈N

we findt1 such that for allt > t1 it holdsgB(t)(α(t−1)) < ε/2. The definition ofI yields that there is a
working setB̃∈ I related toB which is chosen in an iterationt > max{t0, t1}, t ∈S. Then in iteration
t +1∈S(+1) due to the MG policy the working setB (or another working set resulting in larger gain)
is selected. We conclude that the gain achieved in iterationt +1 is greater and smaller thanε/2 at
the same time which is a contradiction. Thus,α(∞) can not be improved using a working setB∈R.

Proof of Theorem 1First we consider the case that the algorithm stops after finitely many iterations,
that it, the sequence(α(t))t∈N becomes stationary. We again distinguish two cases depending on the
working set selection algorithm used just before the stopping condition is met.In case the MVP
algorithm is used the stopping condition checks the exact KKT conditions. Thus, the point reached
is optimal. Otherwise Lemma 8 asserts the optimality of the current feasible point.

For the analysis of the infinite case we distinguish two cases again. If the MG algorithm is used
only finitely often then we can simply apply the convergence proof of SMO (Keerthi and Gilbert,
2002; Takahashi and Nishi, 2005). Otherwise we consider the set

T := {t ∈ N |MG is used in iterationt}

of iterations in which the MG selection is used. The compactness ofR (P ) ensures the existence of
a subsetS⊂ T such that the sub-sequence(α(t))t∈S converges to some limit pointα(∞). We define
the sets

I :=
{

B∈ B (P )
∣

∣ |{t ∈ S|B(t) = B}|= ∞
}

R :=
{

B∈ B (P )\ I
∣

∣ B is related to somẽB∈ I
}

and conclude from Lemma 10 thatα(∞) can not be improved using working setsB∈ I ∪R. Now let
us assume that the limit point can be improved using any other working set. Then Lemma 8 states
that all coordinatesα(∞)

i for all i ∈ B∈ I are at the bounds. By the definition of the HMG algorithm
this contradicts the assumption that the MG policy is used on the whole sequence(α(t))t∈S. Thus,
the limit pointα(∞) is optimal forP . From the strict increase and the convergence of the sequence
( f (α(t)))t∈N it follows that the limit point of every convergent sub-sequence(α(t))t∈S̃ is optimal.

4. Experiments

The main purpose of our experiments is the comparison of different working set selection policies
for large scale problems. This comparison focuses on SMO-like algorithms.The experiments were
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carried out using LIBSVM (Chang and Lin, 2001). We implemented our HMGselection algorithm
within LIBSVM to allow for a direct comparison. The modified source code ofLIBSVM is given
in the online appendix

http://www.neuroinformatik.ruhr-uni-bochum.de/PEOPLE/igel/wss/ .

Three SMO-like working set selection policies were compared, namely the LIBSVM-2.71 MVP
algorithm, the second order LIBSVM-2.8 algorithm, and HMG working set selection.

To provide a baseline, we additionally compared these three algorithms to SVMlight (Joachims
1999) with a working set of size ten. In these experiments we used the same configuration and
cache size as for the SMO-like algorithms. It is worth noting that neither the iteration count nor
the influence of shrinking are comparable between LIBSVM and SVMlight. As we do not want
to go into details on conceptual and implementation differences between the SVMpackages, we
only compared the plain runtime for the most basic case as it most likely occurs inapplications.
Still, as the implementations of the SMO-like algorithms and SVMlight differ, the results have to be
interpreted with care.

We consider 1-norm soft margin SVM with radial Gaussian kernel functions

kσ(xi ,x j) := exp

(

−‖xi−x j‖2
2σ2

)

(6)

with kernel parameterσ and regularization parameterC. If not stated otherwise, the SVM was given
40 MB of working memory to store matrix rows. The accuracy of the stopping criterion was set to
ε = 0.001. This value is small compared to the components of the gradient of the target function in
the starting positionα(0). The shrinking heuristics for speeding up the SVM algorithm is turned on,
see Section 4.4. Shrinking may cause the decomposition algorithm to require more iterations, but
in most cases it considerably saves time. All of these settings correspond to the LIBSVM default
configuration. If not stated otherwise, the hyperparametersC andσ were fixed to values giving well
generalizing classifiers. These were determined by grid search optimizing the error on independent
test data.

For the determination of the runtime of the algorithms we used a 1533 MHz AMD Athlon-XP
system running Fedora Linux.

In most experiments we measured both the number of iterations needed and theruntime of
the algorithm.5 Although the runtime depends highly on implementation issues and programming
skills, this quantity is in the end the most relevant in applications.

The comparison of the working set selection algorithms involves one major difficulty: The
stopping criteria are different. It is in general not possible to compute the stopping criterion of one

5. We did not investigate the classification performance of the different approaches. As we are comparing algorithms
converging to the exact solution of the SVM problem and the stopping criteriaare chosen appropriately, we can
expect that the machines trained using the different methods are equallywell suited for classification. Due to the
finite accuracy, the direction from which the optimum is approached, the exact path taken by the optimization, and
the stopping criterion influence the value of the final solution. Thus, small differences in classification performance
may occur between the algorithms. In contrast to the comparison of rough approximation methods or completely
distinct types of classifiers, these effects are highly random, as they can depend on the presence of single input
patterns or even on the order in which the training examples are presented. Another well known effect is that the
classification accuracy measured on a test set does not necessarily increase with the solution accuracy. Thus, besides
the prior knowledge that the differences are negligible, a comparisons of the classification accuracy is not meaningful
in this context.
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algorithm in another without additional computational effort. As the comparability of the runtime
depends on an efficient implementation, each algorithm in the comparisons uses its own stopping
criterion. The computation of the final value of the objective function reveals that the two stopping
conditions are roughly comparable (see Section 4.2 and Table 2).

As discussed in Section 1.3, the order in which the training examples are presented influences
the initial working set and thereby considerably the speed of optimization. Whether a certain or-
dering leads to fast or slow convergence is dependent on the working set selection method used.
Therefore, we always consider the median over 10 independent trials with different initial working
sets if not stated otherwise. In each trial the different algorithms started from the same working
set. Whenever we claim that one algorithm requires less iterations or time theseresults are highly
significant (two-tailed Wilcoxon rank sum test,p < 0.001).

Besides the overall performance of the working set selection strategies we investigated the influ-
ence of a variety of conditions. The experiments compared different values of the kernel parameter
σ, the regularization parameterC, and the cache size. Further, we evaluated the performance with
LIBSVM’s shrinking algorithm turned on or off. Finally, we compared variants of the HMG strategy
using different numbers of cached matrix rows for the gain computation.

4.1 Data Set Description

Four benchmark problems were considered. The 60,000 training examplesof theMNIST handwrit-
ten digit database (LeCun et al., 1998) were split into two classes containingthe digits{0,1,2,3,4}
and{5,6,7,8,9}, respectively. Every digit is represented as a 28×28 pixel array making up a 784
dimensional input space.

The next two data sets are available from the UCI repository (Blake and Merz, 1998). The
spam-database contains 4,601 examples with 57 features extracted from e-mails. There are1,813
positive examples (spam) and 2,788 negative ones. We transformed every feature to zero mean and
unit variance. Because of the small training set, HMG is not likely to excel atthis benchmark.

The connect-4 opening database contains 67,557 game states of the connect-4 game after 8
moves together with the labels ‘win’, ‘loose’, or ‘draw’. For binary classification the ‘draw’ ex-
amples were removed resulting in 61,108 data points. Every situation was transformed into a 42-
dimensional vector containing the entries 1, 0, or−1 for the first player, no player, or the second
player occupying the corresponding field, respectively. The representation is sparse as in every vec-
tor only 8 components are non-zero. The data were split roughly into two halves making up training
and test data. For the experiments only the training data were used.

The face data set contains 20,000 positive and 200,000 negative training examples.Every ex-
ample originates from the comparison of two face images. Two pictures of the same person were
compared to generate positive examples, while comparisons of pictures of different persons make
up negative examples. The face comparison is based on 89 similarity features. These real-world
data were provided by the Viisage Technology AG and are not available to the public.

Training an SVM using the large data setsface andMNIST takes very long. Therefore these two
problems were not considered in all experiments.

We determined appropriate values forσ andC for each benchmark problem, see Table 1. We did
coarse grid searches. The parameter combinations resulting in the smallest errors on corresponding
test sets were chosen.
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We want to pay special attention to the size of the kernel matrices in comparisonto the cache
size (see Table 1). The data sets cover a wide range of kernel matrix sizes which fit into the cache
by nearly 50% to only 0.02%. It is a hopeless approach to adapt the cache size in order to fit larger
parts of the kernel matrix into working memory. Because the space requirement for the kernel
matrix grows quadratically withℓ, large scale real world problems exceed any physically available
cache.

data set dim. ℓ cache σ C SV BSV
spam-database 57 4,601 47.2 % 10 50 18.5 % 11.7 %
connect-4 42 30,555 1.07 % 1.5 4.5 27.0 % 7.7 %
MNIST 784 60,000 0.28 % 3,500 50 10.5 % 4.6 %
face 89 220,000 0.02 % 3 5 2.6 % 1.2 %

Table 1: SVM parameters used in the comparison together with solution statistics.The column
“dim.” gives the input space dimension whileℓ is the number of training examples. The
“cache”-column shows how much of the kernel matrix fits into the kernel cache. The
fractions of support vectors and bounded support vectors are denoted by “SV” and “BSV”.
These percentage values might slightly differ between the algorithms because of the finite
accuracy of the solutions.

4.2 Comparison of Working Set Selection Strategies

We trained SVMs on all data sets presented in the previous section. We monitored the number
of iterations and the time until the stopping criterion was met. The results are shown in Table 2.
The final target function valuesf (α∗) are also presented to prove the comparability of the stopping
criteria (for the starting state it holdsf (α(0)) = 0). Indeed, the final values are very close and which
algorithm is most accurate depends on the problem.

It becomes clear from the experiments that the LIBSVM-2.71 algorithm performs worst. This
is no surprise because it does not take second order information into account. In the following we
will concentrate on the comparison of the second order algorithms LIBSVM-2.8 and HMG.

As the smallest problem considered thespam-database consists of 4,601 training examples.
The matrixQ requires about 81 MB of working memory. The cache size of 40 MB shouldbe
sufficient when using the shrinking technique. The LIBSVM-2.8 algorithmprofits from the fact
that the kernel matrix fits into the cache after the first shrinking event. It takes less iterations and (in
the mean) the same time per iteration as the HMG algorithm and is thus the fastest in theend.

In theconnect-4 problem the kernel matrix does not fit into the cache even if shrinking is used
to reduce the problem size. Thus, even in late iterations kernel evaluations can occur. Here, HMG
outperforms the old and the new LIBSVM algorithm. This situation is even more pronounced for
the MNIST data set and theface problem. Only a small fraction ofQ fit into the cache making
expensive kernel evaluations necessary. Note that for all of these large problems the LIBSVM-2.8
algorithm minimizes the number of iterations while HMG minimizes the training time. The HMG
algorithm is the fastest on the three large scale problems, because it makes use of the kernel cache
more efficiently.
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data set (ℓ) algorithm iterations runtime f (α∗)
LIBSVM-2.71 36,610 11.21 s 27,019.138

spam-database (4,601) LIBSVM-2.8 9,228 8.44s 27,019.140
HMG 10,563 9.17 s 27,019.140
LIBSVM-2.71 65,167 916 s 13,557.542

connect-4 (30,555) LIBSVM-2.8 45,504 734 s 13,557.542
HMG 50,281 633 s 13,557.536
LIBSVM-2.71 185,162 13,657 s 143,199.142

MNIST (60,000) LIBSVM-2.8 110,441 9,957 s 143,199.146
HMG 152,873 7,485 s 143,199.160
LIBSVM-2.71 37,137 14,239 s 15,812.666

face (220,000) LIBSVM-2.8 32,783 14,025 s 15,812.666
HMG 42,303 11,278 s 15,812.664

Table 2: Comparison of the number of iterations of the decomposition algorithm and training times
for the different working set selection approaches. In each case thebest value is high-
lighted. The differences are highly significant (Wilcoxon rank sum test,p< 0.001). Addi-
tionally, the final value of the objective function showing the comparability of the results
is given.

We performed the same experiments with the SVMlight support vector machine implementation.
The results are summarized in Table 3. We relaxed the stopping condition suchthat the SVMlight

solutions are less accurate than the LIBSVM solutions. Nevertheless, the SVM light algorithm is
slower than the LIBSVM implementation using the SMO algorithm (see Table 2). Please note
that according to the numerous implementation differences these experiments do not provide a fair
comparison between SMO-like methods and decomposition algorithms using larger working sets.

data set (ℓ) iterations runtime f (α∗)
spam-database (4,601) 9,450 23.97 s 27,019,125
connect-4 (30,555) 17,315 5,589 s 13,557.520
MNIST (60,000) 42,347 282,262 s 143,175.447
face (220,000) 9,806 51,011 s 15,812.643

Table 3: Iterations, runtime and objective function value of the SVMlight experiments with working
set sizeq = 10. Because of the enormous runtime, only one trial was conducted for the
MNIST task.
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4.3 Analysis of Different Parameter Regimes

The choice of the regularization parameterC and the parameterσ of the Gaussian kernel (6) influ-
ence the quadratic problem induced by the data. We analyzed this dependency using grid search on
theconnect-4 problem. The results are plotted in Figure 6.

All parameter configurations where LIBSVM-2.71 or LIBSVM-2.8 outperformed HMG have
one important property in common, namely, that it is a bad idea to reselect an element of the previous
working set. This is true when after most iterations both coordinates indexedby the working set are
already optimal. This can happen for different reasons:

• Forσ→ 0 the feature vectors corresponding to the training examples become more and more
orthogonal and the quadratic problemP becomes (almost) separable.

• For increasing values ofσ the example points become more and more similar in the feature
space until they are hard to distinguish. This increases the quotient of the largest and smallest
eigenvalue ofQ. Thus, the solution ofP is very likely to lie in a corner or on a very low
dimensional edge of the box constraining the problem, that is, many of theα∗i end up at the
constraints 0 orC. This is even more likely for small values ofC.

We argue that in practice parameter settings leading to those situations are notreally relevant be-
cause they tend to produce degenerate solutions. Either almost all examplesare selected as support
vectors (and the SVM converges to nearest neighbor classification) orthe information available are
used inefficiently, setting most support vector coefficients toC. Both extremes are usually not in-
tended in SVM learning. In our experiments, HMG performs best in the parameter regime giving
well generalizing solutions.

4.4 Influence of the Shrinking Algorithm

A shrinking heuristics in a decomposition algorithm tries to predict whether a variableαi will end up
at the box constraint, that is, whether it will take one of the values 0 orC. In this case the variable
is fixed at the boundary and the optimization problem is reduced accordingly. Of course, every
heuristics can fail and thus when the stopping criterion is met these variablesmust be reconsidered.
The temporary reduction of the problem restricts working set selection algorithms to a subset of
possible choices. This may cause more iterations but has the potential to savea lot of runtime.

We repeated our experiments with the LIBSVM shrinking heuristics turned off to reveal the
relation between the working set selection algorithms and shrinking, see Table 4. The experiments
show that the influence of the shrinking algorithm on the different workingset selection policies is
highly task dependent. The time saved and even the algorithm for which more timewas saved differs
from problem to problem. For some problems the differences between the methods increase, for
others they decrease. Compared to the experiments with shrinking turned onthe results qualitatively
remain the same.

4.5 Influence of the Cache Size

The speed (in terms of runtime, not iterations) of the SVM algorithm depends on the fraction of
matrix rows fitting into the cache. We used theconnect-4 data set to test the dependency of speed
on the cache size. The full representation of the matrixQ requires nearly 3.5 GB of working memory
for this problem. We trained SVMs with 20 MB (0.56% of the matrix), 40 MB (1.12%), 100 MB
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Figure 6: Influence ofC andσ on the runtime for theconnect-4 data set. The plots show on loga-
rithmic scales the runtime of the SVM depending onC andσ. The comparison of HMG
to LIBSVM-2.71 is plotted in (A), while plot (B) shows the comparison of HMG to
LIBSVM-2.8. The colored shapes indicate the method needing less runtime, inlight and
dark gray for LIBSVM and HMG, respectively. Only the lower surfacecorresponding
to the faster algorithm is drawn solid while the higher surface is indicated by thedotted
grid lines. Bothγ = 1/(2σ2) andC are considered in a range of factor 10,000 containing
the well generalizing parameter regime, see Table 2. The dots mark degenerate (and thus
not desirable) solutions. The gray dots indicate that the solution uses at least 99 % of the
training data as support vectors. If at least 99 % of the support vectors are at the upper
boundC the solution is marked with a black dot.

(2.8%) and 200 MB (5.6%) cache. Because the shrinking heuristics reduces the amount of memory
required for the storage of the relevant part ofQ, the percentage values should be viewed with care.
If all variables ending up at the box constraints are removed, the storagesize of the matrixQ is
about 134 MB. This matrix already fits into the 200 MB cache.

The results listed in Table 5 and plotted in Figure 7 clearly show that for small cache sizes the
HMG algorithm is advantageous while for a large cache the LIBSVM-2.8 algorithm catches up.

These results can easily be explained. As long as there is a considerable chance to find a matrix
row in the cache it is not necessary to use the cache friendly HMG strategy. In this case it is reason-
able to minimize the number of iterations. This is best achieved by the LIBSVM-2.8algorithm. If
the cache is too small to store a relevant part of the kernel matrix it becomes advantageous to use
HMG, because HMG produces at most one cache miss per iteration. We conclude that the HMG
algorithm should be used for large scale problems.
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data set algorithm iterations runtime
LIBSVM-2.71 33,340 91.1 % 12.77 s 114 %

spam-database LIBSVM-2.8 9,123 98.9 % 8.98 s 106 %
HMG 9,342 88.4 % 11.41 s 124 %
LIBSVM-2.71 65,735 100.9 % 2,223 s 243 %

connect-4 LIBSVM-2.8 45,466 99.9 % 1,567 s 213 %
HMG 49,512 98.5 % 1,005 s 159 %
LIBSVM-2.71 187,653 101.3 % 94,981 s 695 %

MNIST LIBSVM-2.8 110,470 100.0 % 58,213 s 585 %
HMG 155,182 101.5 % 41,097 s 549 %
LIBSVM-2.71 37,060 99.8 % 55,057 s 387 %

face LIBSVM-2.8 32,796 100.0 % 48,922 s 349 %
HMG 43,066 101.8 % 33,001 s 293 %

Table 4: Iterations and time needed for solving the quadratic problem withoutshrinking. The per-
centage values refer to the corresponding results with shrinking turned on, that is, iterations
and runtime of the experiments with shrinking turned on define the 100% mark. Due to
the enormous runtime, for the data setsMNIST andface only one trial was conducted.

cache size LIBSVM-2.71 LIBSVM-2.8 HMG
20 MB 958 s 766 s 656 s
40 MB 916 s 734 s 633 s

100 MB 758 s 649 s 583 s
200 MB 603 s 547 s 555 s

Table 5: The training time for theconnect-4 task for the different working set selection algorithms
depending on the cache size.

4.6 Number of Matrix Rows Considered

In the definition of the HMG algorithm we restrict ourselves to computing the gainusing the two
cached matrix rows corresponding to the previous working set. This seemsto be an arbitrary re-
striction. To determine the influence of the number of rows considered we compared the HMG
algorithm to two modified versions.

We computed the gain using only one matrix row corresponding to one element of the working
set. The element chosen was alternated in every iteration such that a selected variable was used in
exactly two successive iterations. This policy reduces the time required forthe working set selection
by about 50%. It can be considered as the minimal strategy avoiding asymmetries between the
variables. The results comparing the usage of one and two rows are shown in Table 6.

Although the stopping criteria used are the same we get different final target function values.
This happens due to the reduced number of pairs over which the maximum is taken in the one-row
strategy. The values listed indicate that the experiments are roughly comparable, but the one-row
strategy produces less accurate solutions in general.
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Figure 7: The training time in seconds for theconnect-4 data set is plotted over the cache size in
MB.

two rows one row
data set iterations runtime f (α∗) iterations runtime f (α∗)
spam-database 10,563 9.17 s 27,019.140 14,023 10.99 s 27,019.134
connect-4 50,281 633 s 13,557.536 83,305 4,967 s 13,557.529

Table 6: Comparison of the one-row and the two-row strategy. The better values are printed in bold
face. The differences are highly significant (Wilcoxon rank sum test,p< 0.001). The final
target function values are lower using the one-row strategy.

The two-row strategy performed clearly better. The reasons for the poor performance of the
one-row strategy are the higher number of iterations and, what is worse,the far higher number of
unshrinking events. Because of the reduced amount of pairs considered this strategy is endangered
to wrongly detect optimality on the shrunk problem causing a costly unshrinking process. Simple
experiments indicated that the one-row strategy can compete if the problem is small. However, in
this case both HMG strategies were outperformed by the LIBSVM algorithm.

The other strategy tested is to compute the gain for every cached matrix elementavailable. Of
course this algorithm is extremely time consuming and thus not practical for applications. This test
gives us the minimum number of iterations the HMG working pair algorithm can achieve, as it is
the strategy using all information available. It thus provides a bound on the performance of possible
extensions of the algorithm using more than two cached matrix rows to determine the working pair.
In the case where the whole matrixQ fits into the cache and all rows have already been computed,
the strategy coincides with the exact greedy policy w.r.t. the gain. We compared the results to the
the two-row strategy, see Table 7.

Again it is difficult to compare the experiments because the algorithm using all cached rows
available generally stops later than the two-row strategy. We will nevertheless interpret the results,
although this difficulty indicates that the bound on the possible performance of HMG algorithms
using more than two rows may not be tight.

The behavior is clearly problem specific. On theconnect-4 task both strategies nearly showed
the same performance. This reveals that on some real world problems the two-row strategy cannot
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two rows whole cache iterations
data set iterations f (α∗) iterations f (α∗) saved
spam-database 10,563 27,019.140 7,280 27,019.143 31 %
connect-4 50,281 13,557.536 51,285 13,557.538 0 %

Table 7: Comparison of the strategies using two matrix rows and the whole matrix cache available.

be outperformed by HMG strategies using more than two matrix rows. In contrast for thespam-
database, the whole-cache strategy saved 31 percent of the iterations. This is a considerable amount
which was bought dearly using all cached matrix rows for the working setselection. In practice one
would like to use a faster method, which, for example, looks at a small fixed number of matrix
rows. The reduction of the number of iterations will presumably be less for such strategies. Addi-
tionally, the non-trivial question for the row selection policy arises. Thus,for simplicity as well as
performance we recommend to stick to the two-row HMG algorithm.

5. Conclusion

The time needed by a decomposition algorithm to solve the support vector machine (SVM) opti-
mization problem up to a given accuracy depends highly on the working setselection. In our experi-
ments with large data sets, that is, when training time really matters, our new hybridmaximum-gain
working set selection (HMG) saved a lot of time compared to the latest secondorder selection algo-
rithm. This speed-up is achieved by the avoidance of cache misses in the decomposition algorithm.
In contrast, for small problems the LIBSVM-2.8 algorithm is faster. This result suggest a mixed
strategy which switches between the algorithms depending on cache and problem size.

The main advantage of the HMG algorithm is its efficient usage of the matrix cache. It reselects
almost always one element of the previous working set. Therefore, at most one matrix row needs to
be computed in every iteration. The new algorithm obtains strong theoretical support as it is known
to converge to an optimum under weak prerequisites, see Section 3.

The HMG algorithm is especially efficient for appropriate kernel and regularization parameter
settings leading to well-generalizing solutions. Thus, it is the method of choice when parameters
suiting the problem at hand areroughlyknown. It is for example a good idea to find out well working
parameters using a small subset of the data and then train the SVM with the HMG algorithm using
the whole data set.

Although LIBSVM-2.8 and HMG both select working sets using second order information,
different target functions and variable sets are considered. It is an issue of future work to investigate
the performance and the convergence properties of possible combinations of methods. In particular,
an elaborate cooperation between the kernel cache strategy and the working set selection algorithm
is promising to increase the efficiency of future algorithms.
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Abstract
Parallel software for solving the quadratic program arising in trainingsupport vector machinesfor
classification problems is introduced. The software implements an iterative decomposition tech-
nique and exploits both the storage and the computing resources available on multiprocessor sys-
tems, by distributing the heaviest computational tasks of each decomposition iteration. Based on a
wide range of recent theoretical advances, relevant decomposition issues, such as the quadratic sub-
problem solution, the gradient updating, the working set selection, are systematically described and
their careful combination to get an effective parallel toolis discussed. A comparison with state-of-
the-art packages on benchmark problems demonstrates the good accuracy and the remarkable time
saving achieved by the proposed software. Furthermore, challenging experiments on real-world
data sets with millions training samples highlight how the software makes large scale standard
nonlinear support vector machines effectively tractable on common multiprocessor systems. This
feature is not shown by any of the available codes.
Keywords: support vector machines, large scale quadratic programs, decomposition techniques,
gradient projection methods, parallel computation

1. Introduction

Training support vector machines (SVM) for binary classification requires to solve the following
convex quadratic programming (QP) problem (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000)

min F (α) =
1
2

αTGα−
n

∑
i=1

αi

sub. to ∑n
i=1yiαi = 0,

0≤ αi ≤C, i = 1, . . . ,n,

(1)
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whose sizen is equal to the number of examples in the given training set

D =
{

(xi ,yi), i = 1, . . . ,n, xi ∈ R
M, yi ∈ {−1,1}

}

,

and the entries ofG are defined by

Gi j = yiy jK(xi ,x j), i, j = 1,2, . . . ,n,

whereK : R
M ×R

M → R denotes the kernel function. The main features of this problem are the
density of the quadratic form and the special feasible region defined by box constraints and a sin-
gle linear equality constraint. In many practical SVM applications, standard QP solvers based on
the explicit storage of the Hessian matrixG may be very inefficient or, in the case of large data
sets, even not applicable due to excessive memory requirements. For these reasons in recent years
a lot of attention has been dedicated to this problem and severalad hocstrategies have been de-
veloped, which are able to solve the problem withG out of memory. Among these strategies, the
decomposition techniques have been the most investigated approaches andhave given rise to the
state-of-the-art software for the SVM QP problem. The idea behind the decomposition techniques
consists in splitting the problem into a sequence of smaller QP subproblems, sized nsp say, that can
be stored in the available memory and efficiently solved (Boser et al., 1992; Chang and Lin, 2001;
Collobert and Bengio, 2001; Joachims, 1998; Osuna et al., 1997; Platt, 1998). At each decomposi-
tion step, a subset of the variables, usually calledworking set, is optimized through the solution of
the subproblem in order to obtain a progress towards the minimum of the objective functionF (α).
Effective implementations of this simple idea involve important theoretical and practical issues.
From the theoretical point of view, the policy for updating the working set plays a crucial role since
it can guarantee the strict decrease of the objective function at each step (Hush and Scovel, 2003).
The most used working set selections rely on the violations of the Karush-Kuhn-Tucker (KKT) first
order optimality conditions. In case of working sets of minimal size, that is sized2, a proper selec-
tion via themaximal-violating pairprinciple (or related criteria) is sufficient to ensure asymptotic
convergence of the decomposition scheme (Lin, 2002; Chen et al., 2005). For larger working sets,
convergence proofs are available under a further condition which ensures that the distance between
two successive approximations tends to zero (Lin, 2001a; Palagi and Sciandrone, 2005). Further-
more, based on these working set selections and further assumptions, thelinear convergence rate
can be also proved (Lin, 2001b). For the practical efficiency of a decomposition technique, the fast
convergence and the low computational cost per iteration seem the most important features. Unfor-
tunately, these goals are conflicting since the strategies to improve the convergence rate (as the use
of large working sets or the selections based on second order information) usually increase the cost
per iteration. Examples of good trade-offs between the two goals are given by the most widely used
decomposition packages: LIBSVM (Chang and Lin, 2001) and SVMlight (Joachims, 1998).

The LIBSVM software is developed for working sets sized 2, hence it tends to minimize the
computational cost per iteration. In fact, in this case the inner QP subproblem can be analytically
solved without requiring a numerical QP solver and the updating of the objective gradient only
involves the two Hessian columns corresponding to the updated variables. On the other hand, if
only few components are updated per iteration, slow convergence is generally implied. In the last
LIBSVM release (ver. 2.8) this drawback is attenuated by a new working set selection that partially
exploits the second order information, thus getting only a moderate increase of the computational
cost with respect to the standard selections (Fan et al., 2005).
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The SVMlight algorithm uses a more general decomposition strategy, in the sense that it can
also exploit working sets of size larger than 2. By updating more variables per iteration, such an
approach is well suited for a faster convergence, but it introduces additional difficulties and costs.
A generalized maximal-violating pair policy for the working set selection and a numerical solver
for the inner QP subproblems are needed; furthermore, we must recall that the more variables are
changed per iteration, the more expensive is the objective gradient updating. Even if SVMlight can
run with any working set size, numerical experiences show that it effectively faces the above diffi-
culties only in case of small sized working sets (nsp = O(10)), where it often exhibits comparable
performance with LIBSVM.

Following the SVMlight decomposition framework, another attempt to reach a good trade-off
between convergence rate and cost per iteration was introduced by Zanghirati and Zanni (2003).
This was the first approach suited for an effective implementation on multiprocessors systems.
Unlike SVMlight, it is designed to manage medium-to-large sized working sets (nsp = O(102) or
nsp = O(103)), that allow the scheme to converge in very few iterations, whose most expensive
tasks (subproblem solving and gradient updating) can be easily and fruitfully distributed among the
available processors. Of course, several issues must be addressed to achieve good performance,
such as limiting the overhead for kernel evaluations and, also important, choosing a suitable inner
QP solver. Zanghirati and Zanni (2003) obtained an efficient subproblem solution by a gradient
projection-type method: it exploits the simple structure of the constraints, exhibits good conver-
gence rate and is well suited for a parallel implementation. The promising resultsgiven by this
parallel scheme can be now further improved thanks to some recent studieson both the gradient
projection QP solvers (Serafini et al., 2005; Dai and Fletcher, 2006) and the selection rules for large
sized working sets (Serafini and Zanni, 2005). On the basis of these studies a newparallel gradi-
ent projection-based decomposition technique(PGPDT) is developed and implemented in software
available athttp://www.dm.unife/gpdt.

Other parallel approaches to SVMs have been recently proposed, by splitting the training data
into subsets and distributing them among the processors. Some of these approaches, such as those
by Collobert et al. (2002) and by Dong et al. (2003), do not aim to solvethe problem (1) and then
perform non-standard SVM training. Collobert et al. (2002) presented a mixture of multiple SVMs
where, cyclically, single SVMs are trained on subsets of the training set and a neural network is
used to assign samples to different subsets. Dong et al. (2003) used a block-diagonal approximation
of the kernel matrix to derive independent SVMs and filter out the exampleswhich are estimated to
be non-support vectors; then a new serial SVM is trained on the collectedsupport vectors. The idea
to combine asynchronously-trained SVMs is revisited also by thecascade algorithmintroduced by
Graf et al. (2005). The support vectors given by the SVMs of a cascade layer are combined to
form the training sets of the next layer. At the end, the global KKT conditions are checked and the
process is eventually restarted from the beginning, re-inserting the computed support vectors in the
training subsets of the first layer. The authors prove that this feedbackloop allows the algorithm to
converge to a solution of (1) and consequently to perform a standard training. Unfortunately, for all
these approaches no parallel code is available yet.

This work deals with the PGPDT software and its practical behaviour. First,we give the reader
an exhaustive self-contained description of the PGPDT algorithm by showing how the crucial sub-
tasks, singly developed in very recent works, are combined with appropriate load balancing strate-
gies newly designed to get an effective parallel tool. Second, we show how, by exploiting the
resources of common multiprocessor systems, PGPDT achieves good time speedup in comparison
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with state-of-the-art serial packages and makes nonlinear SVMs tractable even on millions training
samples.

The paper is organized as follows: Section 2 states the decomposition framework and describes
its parallelization, Section 3 compares the PGPDT with SVMlight and LIBSVM on medium-to-large
benchmark data sets and also faces someO(106) real-world problems, Section 4 draws the main
conclusions and future developments.

2. The Decomposition Framework and its Parallelization

To describe in detail the decomposition technique implemented by PGPDT we needsome basic
notations. At each decomposition iteration, the indices of the variablesαi , i = 1, . . . ,n, are split into
the setB of basicvariables, usually called theworking set, and the setN =

{

1,2, . . . ,n
}

\ B of
nonbasicvariables. As a consequence, the kernel matrixG and the vectorsα = (α1, . . . ,αn)

T and
y = (y1, . . . ,yn)

T can be arranged with respect toB andN as follows:

G =

[

GB B GB N
GN B GN N

]

, α =

[

αB
αN

]

, y =

[

yB
yN

]

.

Furthermore, we denote bynsp the size of the working set (nsp = #B ) and byα∗ a solution of
(1). Finally, suppose a distributed-memory multiprocessor system equippedwith NP processors is
available for solving the problem (1) and that each processor has a local copy of the training set.

The decomposition strategy used by the PGPDT falls within the general schemestated in Al-
gorithm PDT. Here, we denote by the label “Distributed task” the steps where theNP processors
cooperate to perform the required computation; in these steps communicationsand synchronization
are needed. In the other steps, the processors asynchronously perform the same computations on
the same input data to obtain a local copy of the expected output data.

It must be observed that algorithm PDT essentially follows the SVMlight decomposition scheme
proposed by Joachims (1998), but it allows to distribute among the available processors the sub-
problem solution in step A2 and the gradient updating in step A3. Thus, two important implications
can be remarked: from the theoretical viewpoint, the PDT algorithm satisfiesthe same convergence
properties of the SVMlight algorithm, but, in practice, it requires new implementation strategies in
order to effectively exploit the resources of a multiprocessor system. Here, we state the main con-
vergence results of the PDT algorithm and we will describe in the next subsections how its steps
have been implemented in the PGPDT software.

The convergence properties of the sequence{α(k)} generated by the PDT algorithm are mainly
based on the special rule (4) for the working set selection. The rule wasoriginally introduced
by Joachims (1998) following an idea similar to the Zoutendijk’s feasible direction approach, to
define basic variables that make possible a rapid decrease of the objective function. The asymptotic
convergence of the decomposition schemes based on this working set selection was first proved by
Lin (2001a) by relating the selection rule with the violation of the KKT conditions and by assuming
the following strict block-wise convexity assumption onF (α):

min
J

(λmin(GJ J )) > 0 , (5)
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ALGORITHM PDT Parallel decomposition technique

A1. Initialization. Setα(1) = 0 and letnsp andnc be two integer values such thatn≥ nsp≥ nc > 0,
nc even. Choosensp indices for the working setB and setk = 1.

A2. QP subproblem solution. [Distributed task] Compute the solutionα(k+1)
B of

min
1
2

αT
BGB BαB +

(

GB N α(k)
N
−1B

)T
αB

sub. to ∑i∈B yiαi =−∑i∈N yiα
(k)
i ,

0≤ αi ≤C, ∀ i ∈ B ,

(2)

where 1B is thensp-vector of all one; setα(k+1) =
(

α(k+1)
B

T
, α(k)
N

T )T
.

A3. Gradient updating. [Distributed task] Update the gradient

∇F (α(k+1)) = ∇F (α(k))+

[

GB B
GN B

]

(

α(k+1)
B −α(k)

B

)

(3)

and terminate ifα(k+1) satisfies the KKT conditions.

A4. Working set updating. UpdateB by the following selection rule:

A4.1. Find the indices corresponding to the nonzero components of the solution of

min ∇F (α(k+1))Td
sub. to yTd = 0 ,

di ≥ 0 for i such thatα(k+1)
i = 0 ,

di ≤ 0 for i such thatα(k+1)
i = C ,

−1≤ di ≤ 1 ,
#{di | di 6= 0} ≤ nc .

(4)

Let B̄ be the set of these indices.

A4.2. Fill B̄ up tonsp entries with indicesj ∈ B . SetB = B̄ , k← k+1 and go to A2.
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whereJ is any subset of{1, . . . ,n} with #J ≤ nsp andλmin(GJ J ) denotes the smallest eigenvalue of
GJ J . This condition is used to prove that there existsτ > 0 such that

F (α(k+1))≤ F (α(k))− τ
2
‖α(k+1)−α(k)‖2 ∀k , (6)

from which the important property limk→∞ ‖α(k+1)−α(k)‖ = 0 can be derived. Of course, the as-
sumption (5) is satisfied whenG is positive definite (for example, when the Gaussian kernel is used
and all the training examples are distinct), but it may not hold in other instancesof the problem (1).
Convergence results that do not require the condition (5) are given byLin (2002) and Palagi and
Sciandrone (2005).

For the special casensp = 2, where the selection rule (4) gives only the two indices correspond-
ing to the maximal violation of the KKT conditions (themaximal-violating pair), Lin (2002) has
shown that the assumption (5) is not necessary to ensure the convergence.

For any working set size, Palagi and Sciandrone (2005) have shownthat the condition (6) is
ensured by solving at each iteration the following proximal point modification of the subproblem
(2):

min
1
2

αT
BGB BαB +

(

GB N α(k)
N
−1B

)T
αB +

τ
2
‖αB −α(k)

B ‖2

sub. to ∑i∈B yiαi =−∑i∈N yiα
(k)
i ,

0≤ αi ≤C, ∀ i ∈ B .

(7)

Unfortunately, this modification affects the behaviour of standard decomposition schemes in a way
which is not completely understood yet. Our preliminary experiences suggest that sufficiently large
values ofτ can easily allow a better performance of the inner QP solvers, but those values often
imply a dangerous decrease in the convergence rate of the decomposition technique. On the other
hand, too small values forτ do not produce essential differences with respect to the schemes where
the subproblem (2) is solved.

In the PGPDT software, besides the default setting which implements the standard PDT algo-
rithm, two different ways to generate a sequence satisfying the condition (6) are available by user
selection: (i) solving the subproblem (7) in place of (2) at each iteration or(ii) solving (7) only as
emergency step, whenα(k+1)

B obtained via (2) fails to satisfy (6). All the computational experiments
of Section 3 are carried out with the default setting that generally yields the best performance. For
what concerns the practical rule used in the PGPDT to stop the iterative procedure, the fulfilment of
the KKT conditions within a prefixed tolerance is checked (with the equality constraint multiplier
computed as suggested by Joachims, 1998). The default tolerance is 10−3, as it is usual in SVM
packages, but different values can be selected by the user.

Before to describe the PGPDT implementation in detail, it must be recalled that this software is
designed to be effective in case of sufficiently largensp, i.e., when iterations with well parallelizable
tasks are generated. For this reason, in the sequel the reader may assumensp to be of medium-to-
large size.

2.1 Parallel Gradient Projection Methods for the Subproblems

The inner QP subproblems (2) and (7) can fit into the following general form:

min
w∈Ω

f (w) =
1
2

wTAw+bTw (8)
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whereA∈R
nsp×nsp is dense, symmetric and positive semidefinite,w,b∈R

nsp and the feasible region
Ω is defined by

Ω = {w∈ R
nsp, ℓ≤ w≤ u, cTw = γ}, ℓ, u, c∈ R

nsp, ℓ < u. (9)

We recall that the sizensp is such thatA can fit into the available memory.
Since subproblem (8) appears at each decomposition iteration, an effective inner solver becomes

a crucial tool for the performance of a decomposition technique. The standard library QP solvers
can be successfully applied only in the small size case (nsp = O(10)), since their computational
cost easily degrades the performance of a decomposition technique based on medium-to-largensp.
For such kind of decomposition schemes, it is essential to design more efficient inner solvers able
to exploit the special features of (8) and, for the PGPDT purposes, withthe additional property to
be easily parallelizable. To this end, the gradient projection methods are very appealing approaches
(Bertsekas, 1999). They consist in a sequence of projections onto thefeasible region, that are nonex-
pensive operations in the case of the special constraints (9). In fact, the projection ontoΩ (denoted
by PΩ(·)) can be performed inO(nsp) operations by efficient algorithms, like those by Pardalos and
Kovoor (1990) and by Dai and Fletcher (2006). Furthermore, the single iteration core consists es-
sentially in annsp-dimensional matrix-vector product that is suited to be optimized (by exploiting
the vector sparsity) and also to be parallelized. Thus, the simple and nonexpensive iteration moti-
vates the interest for these approaches as possible alternative to standard solvers based on expensive
factorizations (usually requiringO(n3

sp) operations). A general parallel gradient projection scheme
for (8) is depicted in Algorithm PGPM. As in the classical gradient projectionmethods, at each
iteration a feasible descent directiond(k) is obtained by projecting ontoΩ a point derived by taking
a steepest descent step of lengthρk from the currentw(k). A linesearch procedure is then applied
along the directiond(k) to decide the step sizeλk able to ensure the global convergence. The paral-
lelization of this iterative scheme is simply obtained by a block row-wise distributionof A and by a
parallel computation of the heaviest task of each iteration: the matrix-vector productAd(k).

Concerning the convergence rate, that is the key element for the PGPM performance, the choices
of both the steplengthρk and the linesearch parameterλk play a crucial role. Recent works have
shown that appropriate selection rules for these parameters can significantly improve the typical
slow convergence rate of the traditional gradient projection approaches (refer to Ruggiero and Zanni,
2000b, for the R-linear convergence of PGPM-like schemes). From thesteplength viewpoint, very
promising results are actually obtained with selection strategies based on the Barzilai-Borwein (BB)
rules (Barzilai and Borwein, 1988):

ρBB1
k+1 =

d(k)T
d(k)

d(k)T
Ad(k)

, ρBB2
k+1 =

d(k)T
Ad(k)

d(k)T
A2d(k)

.

The importance of these rules has been observed in combination with both monotone and nonmono-
tone linesearch strategies (Birgin et al., 2000; Dai and Fletcher, 2005; Ruggiero and Zanni, 2000a).
In particular, for the SVM applications, the special BB steplength selectionsproposed by Serafini
et al. (2005), for the monotone scheme, and by Dai and Fletcher (2006), for the nonmonotone
method, seem very efficient.

Thegeneralized variable projection method(GVPM) by Serafini et al. (2005) uses a standard
limited minimization rule as linesearch technique and an adaptive alternation of the two BB formu-
lae. It outperforms the monotone gradient projection scheme used by Zanghirati and Zanni (2003),
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ALGORITHM PGPM Parallel gradient projection method for step A2 of Algorithm PDT.

B1. Initialization.

[Data distribution] ∀p = 1, . . . ,NP: allocate a row-wise sliceAp = (ai j )i∈I p, j=1,...,nsp of A,
whereI p is the subset of row indices belonging to processorp:

I p⊂ {1, . . . ,n},
NP
[

p=1

I p = {1, . . . ,n} , I i ∩ I j = /0 for i 6= j.

Furthermore, allocate local copies of all the other input data.

Initialize the parameters for the steplength selection rule and for the linesearch strategy.

Setw(0) ∈Ω , 0< ρmin < ρmax , ρ0 ∈ [ρmin,ρmax] , k = 0.

[Distributed task] ∀p = 1, . . . ,NP: compute the local slicet(0)
p = Apw(0) and send it to all the

other processors; assemble a local copy of the fullt(0) = Aw(0) vector.

Set g(0) = ∇ f (w(0)) = Aw(0) +b = t(0) +b .

B2. Projection.

Terminate ifw(k) satisfies a stopping criterion; otherwise compute the descent direction

d(k) = PΩ
(

w(k)−ρkg
(k))−w(k) .

B3. Matrix-vector product.

[Distributed task] ∀p = 1, . . . ,NP: compute the local slicez(k)
p = Apd(k) and send it to all the

other processors; assemble a local copy of the fullz(k) = Ad(k) vector.

B4. Linesearch.

Compute the linesearch stepλk andw(k+1) = w(k) +λkd
(k).

B5. Update.

Compute

t(k+1) = Aw(k+1) = t(k) +λkAd(k) = t(k) +λkz
(k),

g(k+1) = ∇ f (w(k+1)) = Aw(k+1) +b = t(k+1) +b,

and a new steplengthρk+1.

Update the parameters for the linesearch strategy, setk← k+1 and go to step B2.
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Initialization (step B1). Set iρ = 2, nmin = 3, nmax = 10, λℓ = 0.1, λu = 5, nρ = 1 .

Linesearch (step B4). Compute λk = arg minλ∈[0,1] f (w(k) +λd(k)) .

Update (step B5).

If d(k)T
Ad(k) = 0 then

setρk+1 = ρmax

else
compute ρBB1

k+1 , ρBB2
k+1 , λopt = arg min

λ
f (w(k) +λd(k)) .

If (nρ ≥ nmin) and

[

(nρ ≥ nmax) or (ρBB2
k+1 ≤ ρk ≤ ρBB1

k+1)

or
(

(λopt < λℓ andρk = ρBB1
k ) or (λopt > λu andρk = ρBB2

k )
)

]

then

set iρ←mod(iρ,2)+1, nρ = 0 ;

end.

end.
Compute ρk+1 = min

{

ρmax,max
{

ρmin,ρ
BBiρ
k+1

}}

and set nρ← nρ +1 .

Figure 1: linesearch and steplength rule for the GVPM method.

that was simply based on an alternation of the BB rules every three iterations.Furthermore, the
numerical experiments reported by (Serafini et al., 2005) show that the GVPM is much more ef-
ficient than the prLOQO (Smola, 1997) and MINOS (Murtagh and Saunders, 1998) solvers, two
softwares widely used within the machine learning community. GVPM steplength selection and
linesearch are described in Figure 1.

The Dai-Fletcher scheme is based on the following steplength selection:

ρDF
k+1 =

∑m−1
i=0 s(k−i)T

s(k−i)

∑m−1
i=0 s(k−i)T

v(k−i)
, m≥ 1 , (10)

wheres( j) = w( j+1)−w( j) andv( j) = g( j+1)−g( j), (g( j) = ∇ f (w( j))), j = 0,1, . . .. Observe that the
casem= 1 reduces to the standard BB ruleρBB1

k+1. In order to frequently accept the full stepw(k+1) =

w(k) +d(k) generated with the above steplength, a special nonmonotone linesearch is used. Figure 2
describes the version of the Dai-Fletcher method corresponding to the parameters setting suggested
by Zanni (2006) for the SVM applications. It may be observed that the linesearch parameterλk =
arg minλ∈[0,1] f (w(k) +λd(k)) is used only iff (w(k) +d(k))≥ fref and not at each iteration, as in the
GVPM. The steplength selection corresponds to the rule (10) withm= 2 and, for what concerns
the iteration cost, no significant additional tasks are required in comparisonto the GVPM (g(k+1) is
already available in step B5).

The PGPDT software can run the PGPM with either the GVPM or the Dai-Fletcher scheme, the
latter being the default due to better experimental convergence rate (Zanni, 2006).

We end this subsection with some further details about the PGPM implementation used within
the PGPDT software. The starting pointw(0) is PΩ(α(k)

B ) if the stopping rule of the decomposi-
tion procedure is nearly satisfied, otherwisew(0) = PΩ(0) is used. This aims to start the PGPM with
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Initialization (step B1). Set L = 2, fref = ∞, fbest= fc = f (w(0)), h = 0, k = 0, s(k−1) =
v(k−1) = 0 .

Linesearch (step B4).
If

(

k = 0 and f (w(k) +d(k))≥ f (w(k))
)

or
(

k > 0 and f (w(k) +d(k))≥ fref
)

then

w(k+1) = w(k) +λkd
(k) with λk = arg min

λ∈[0,1]

f (w(k) +λd(k))

else
w(k+1) = w(k) +d(k)

end.

Update (step B5). Compute s(k) = w(k+1)−w(k); v(k) = g(k+1)−g(k).

If s(k)T
v(k) = 0 then

set ρk+1 = ρmax

else
If s(k−1)T

v(k−1) = 0 then

set ρk+1 = min

{

ρmax,max

{

ρmin,
s(k)T

s(k)

s(k)T
v(k)

}}

else

set ρk+1 = min

{

ρmax,max

{

ρmin,
s(k)T

s(k) +s(k−1)T
s(k−1)

s(k)T
v(k) +s(k−1)T

v(k−1)

}}

end.

end.
If f (w(k+1)) < fbest then

set fbest= f (w(k+1)) , fc = f (w(k+1)) , h = 0 ;

else
set fc = max

{

fc, f (w(k+1))
}

, h = h+1 ;

If h = L then
set fref = fc , fc = f (w(k+1)) , h = 0 ;

end.

end.

Figure 2: linesearch and steplength rule for the Dai-Fletcher method.

sparse vectors in the first decomposition steps, and to save inner solver iterations at the end of the de-
composition, where slight changes inα(k)

B are expected. At the beginning we also setρmin = 10−10,
ρmax = 1010 andρ0 = min{ρmax,max{ρmin, ρ̄0}}, whereρ̄0 = ‖PΩ(w(0)− (Aw(0) +b))−w(0)‖−1

∞ .
For the computation ofPΩ(·) in step B2, the default is the following: ifnsp≤ 20 the bisection-like
method described by Pardalos and Kovoor (1990) is used, else the secant-based algorithm proposed
by Dai and Fletcher (2006) is chosen, that usually is faster for large size. However, the user can
select one of the two projectors. Finally, we remark that the PGPM stopping rule is the same used
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for the decomposition technique: the fulfilment of the KKT conditions within a prefixed tolerance.
In the PGPDT, the tolerance required to the inner solver depends on the quality of the outer it-
erateα(k): in the first iterations the same tolerance as the decomposition scheme is used, while a
progressively lower tolerance is imposed whenα(k) nearly satisfies the outer stopping criterion. In
our experience, a more accurate inner solution just from the beginning doesn’t imply remarkable
increase of the overall performance.

2.2 Parallel Gradient Updating

The gradient updating in step A3 is usually the most expensive task of a decomposition iteration.
Since the matrixG is assumed to be out of memory, in order to obtain∇F (α(k+1)) some entries of
G need to be computed and, consequently, some kernel evaluations are involved that can be very
expensive in case of large sized input space and not much sparse training examples. Thus, any strat-
egy able to save kernel evaluations or to optimize their computation is crucial for minimizing the
time consumption for updating the gradient. The updating formula (3) allows to get ∇F (α(k+1)) by

involving only the columns ofG corresponding to the indices for which(α(k+1)
i −α(k)

i ) 6= 0, i ∈ B .
Further improvements in the number of kernel evaluations can be obtained byintroducing a caching
strategy, consisting in using an area of the available memory to store some elements of G to avoid
their recomputation in subsequent iterations. PGPDT fills the caching area withthe columns ofG
involved in (3); when the cache is full, the current columns substitute those that have not been used
for the largest number of iterations. This simple trick seems to well combine with theworking set
selection used in step A4, which forces some indices of the currentB to remain in the new work-
ing set (see the next section for more details), and remarkable reduction of the kernel evaluations
are often observed. Nevertheless, the improvements implied by a caching strategy are obviously
dependent on the size of the caching area. To this regard, the large amount of memory available
on modern multiprocessor systems is an appealing resource for improving theperformance of a de-
composition technique. One of the innovative features of PGPDT is to implement aparallel gradient
updating where both the matrix-vector multiplication and the caching strategy aredistributed among
the processors. This is done by asking each processor to perform a part of the column combinations
required in (3) and to make available its local memory for caching the columns ofG. In this way,
the gradient updating benefits not only from a computations distribution, butalso from a reduction
of the kernel evaluations due to much larger caching areas. Of course,these features are not shared
by standard decomposition packages, designed to exploit the resourcesof only one processor. The
main steps of the above parallel updating procedure are summarized in Algorithm PGU.

Concerning the reduction of the kernel evaluations, it is worth to recall that the entries ofG
stored in the caching area can be used also forGB B in step A2. Moreover, for the computation of
the linear term in (2), the equality

GB N α(k)
N
−1B = ∇FB (α(k))−GB Bα(k)

B

can avoid additional kernel evaluations by exploiting already computed quantities.
The gradient updating overhead within each decomposition iteration can be further reduced

by optimizing the kernel computation. Even if a caching strategy can limit the number of kernel
evaluations, large problems often require millions of them and their optimization becomes a need.
PGPDT uses sparse vector representation of the training examples and exploits the sparseness in
the dot products required by the kernel evaluations. Three kernels are available: linear, polynomial
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ALGORITHM PGU Parallel gradient updating in step A3 of Algorithm PDT

i) Denote byWp, p= 1,2, . . . ,NP, the caching area of the processorp and byGi thei-th column
of G. Let

B1 =
{

i ∈ B | α(k+1)
i −α(k)

i 6= 0
}

,

Bn =
{

i ∈ B1 | Gi /∈Wp, p = 1,2. . . ,NP

}

, B c = B1\Bn.

Distribute among the processors the setsB c andBn and denote byB c,p andBn,p the sets of
indices assigned to processorp. Make the distribution in such a way that

B c =
SNP

i=1B c,i , B c,i ∩B c, j = /0 for i 6= j, ∀i ∈ B c,p ⇒ Gi ∈Wp,

Bn =
SNP

i=1Bn,i , Bn,i ∩Bn, j = /0 for i 6= j

and by trying to obtain a well balanced workload among the processors.

ii) ∀p = 1,2, . . . ,NP: use the columnsGi ∈Wp, i ∈ B c,p, to compute

r p =

[

GB Bc,p

GN B c,p

]

(

α(k+1)
Bc,p

−α(k)
Bc,p

)

,

then compute the columnsGi , i ∈ Bn,p, necessary to obtain

r p← r p +

[

GB Bn,p

GN Bn,p

]

(

α(k+1)
Bn,p

−α(k)
Bn,p

)

and store inWp as much as possible of these columns, eventually by substituting those less
recently used.

iii) ∀p = 1,2, . . . ,NP: sendr p to all the other processors and assemble a local copy of

∇F (α(k+1)) = ∇F (α(k))+
NP

∑
i=1

r i .
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ALGORITHM SP1 Selection procedure for step A4.1 of algorithm PDT.

i) Sort the indices of the variables according toyi∇F (α(k+1))i in decreasing order and
let I ≡ (i1, i2, . . . , in)T be the sorted list (i.e.,yi1∇F (α(k+1))i1 ≥ yi2∇F (α(k+1))i2 ≥ . . . ≥
yin∇F (α(k+1))in).

ii) Repeat the selection of a pair(it , ib) ∈ I × I , with t < b, as follows:

– moving down from the top of the sorted list, chooseit ∈ I top(α(k+1)),

– moving up from the bottom of the sorted list, chooseib ∈ Ibot(α(k+1)),

until nc indices are selected or a pair with the above properties cannot be found.

iii) Let B̄ be the set of the selected indices.

and Gaussian. The interested reader is referred to the available code for more details on their prac-
tical implementation. We end this section by remarking that, in case of linear kernel, the updating
formula (3) can be simplified in

t = ∑
i∈B1

yixi

(

α(k+1)
i −α(k)

i

)

, B1 =
{

i ∈ B | α(k+1)
i −α(k)

i 6= 0
}

,

∇F (α(k+1)) j = ∇F (α(k)) j +y jx
T
j t, j = 1,2, . . . ,n, (11)

and the importance of a caching strategy is generally negligible. Consequently, PGPDT faces linear
SVMs without any caching strategy and performs the gradient updating bysimply distributing the
n tasks (11) among the processors.

2.3 Working Set Selection

In this section we describe how the working set updating in step A4 of the PDTalgorithm is imple-
mented within PGPDT. It consists in two phases: in the first phase at mostnc indices are chosen for
the new working set by solving the problem (4), while in the second phase at leastnsp−nc entries
are selected from the currentB to complete the new working set. The selection procedure in step
A4.1 was first introduced by Joachims (1998) and then rigorously justifiedby Lin (2001a). In short,
by using the notation

I top(α)≡
{

i | (αi < C andyi =−1) or (αi > 0 andyi = 1)
}

,

Ibot(α)≡
{

j | (α j > 0 andy j =−1) or (α j < C andy j = 1)
}

,

this procedure can be stated as in Algorithm SP1.
It is interesting to recall how this selection procedure is related to the violation of the first order

optimality conditions. For the convex problem (1) the KKT conditions can also be written as

a feasibleα∗ is optimal ⇐⇒ max
i∈I top(α∗)

yi∇F (α∗)i ≤ min
j∈Ibot(α∗)

y j∇F (α∗) j .
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ALGORITHM SP2 Selection procedure for step A4.2 of algorithm PDT.

i) Let B̄ be the set of indices selected in step A4.1.

ii) Fill B̄ up tonsp entries by adding the most recent indices† j ∈ B satisfying 0< α(k+1)
j < C;

if these indices are not enough, then add the most recent indicesj ∈ B such thatα(k+1)
j = 0

and, eventually, the most recent indicesj ∈ B satisfyingα(k+1)
j = C.

iii) Set nc = min{nc,max{10,J,nnew}}, whereJ is the largest even integer such thatJ≤ nsp

10 and
nnew is the largest even integer such thatnnew≤ #{ j, j ∈ B̄ \B } ;
setB = B̄ , k← k+1 and go to step A2.

†We mean the indices that are in the working setB since the lowest number of consecutive iterations.

It means that, given a non-optimal feasibleα, there exists at least a pair(i, j) ∈ I top(α)× Ibot(α)
satisfying

yi∇F (α)i > y j∇F (α) j .

Following Keerthi and Gilbert (2002), these pairs are calledKKT-violating pairsand, from this point
of view, the above selection procedure chooses indices(i, j) ∈ I top(α(k+1))× Ibot(α(k+1)) by giving
priority to those pairs which most violate the optimality conditions. In particular, ateach iteration
themaximal-violating pairis included in the working set: this property is crucial for the asymptotic
convergence of a decomposition technique.

From the practical viewpoint, the indices selected via problem (4) identify steepest-like feasible
descent directions: this is aimed to get a quick decrease of the objective function F (α). Never-
theless, for fast convergence, bothnc and the updating phase in step A4.2 have a key relevance.
In fact, as it is experimentally shown by Serafini and Zanni (2005), values ofnc equal or close to
nsp often yield a dangerouszigzaggingphenomenon (i.e., some variables enter and leave the work-
ing set many times), which can heavily degrade the convergence rate especially for largensp. This
drawback suggests to setnc sufficiently smaller thannsp and then it opens the problem of how to
select the remaining indices to fill up the new working set. The studies availablein literature on
this topic (see Hsu and Lin, 2002; Serafini and Zanni, 2005; Zanghiratiand Zanni, 2003, and also
the SVMlight code) suggest that an efficient approach consists in selecting these indices from the
current working set. We recall in Algorithm SP2 the filling strategy recently proposed in (Serafini
and Zanni, 2005) and used by the PGPDT software.

The selection policy used by Algorithm SP2 is based on two criteria: the first accords priority
to the free variables over the variables at either the lower or the upper bound, the second takes
into accounthow long(i.e., how many consecutive decomposition iterations) a variable has been
into the working set. Roughly speaking, both the criteria aim to preserve into the working set the
variables which are likely to need further optimization. The interested readercan find in the papers
by Hsu and Lin (2002) and by Serafini and Zanni (2005) a deeper discussion on these criteria and
the computational evidence of their benefits in terms of convergence rate. Finally, Algorithm SP2
also introduces an adaptive reduction of the parameternc, useful in case of large sized working sets.
This trick allows the decomposition technique to start withnc close tonsp, in order to optimize many
new variables in the very first iterations, and avoids zigzagging through the progressive reduction of
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nc. The reduction takes place only ifnc is larger than an empirical threshold and it is controlled via
the number of those new indices selected in step A4.1 that do not belong to the current working set.

3. Computational Experiments

The aim of this computational study is to analyse the PGPDT performance. To thisend, it is also
worth to show that the serial version of the proposed software (called GPDT) can train SVMs with
effectiveness comparable to that of the state-of-the-art softwares LIBSVM (ver. 2.8) and SVMlight

(ver. 6.01). Since there are no other parallel software currently available for comparison, the PGPDT
will be evaluated in terms of scaling properties with respect to the serial packages.

Our implementation is an object oriented C++ code and its parallel version uses standard MPI
communication routines (Message Passing Interface Forum, 1995), hence it is easily portable on
many multiprocessor systems. Most of the experiments are carried out on anIBM SP5, which is an
IBM SP Cluster 1600 equipped with 64 nodes p5-575 interconnected by a high performance switch
(HPS). Each node owns 8 IBM SMP Power5 processors at 1.9GHz and16GB of RAM (2GB per
CPU). The serial packages run on this computer by exploiting only a single CPU. PGPDT has been
tested also on different parallel architectures and, for completeness, we report the results obtained
on a system where less memory than in the IBM SP5 is available for each CPU: the IBM CLX/1024
Linux Cluster, that owns 512 nodes equipped with two Intel Xeon processors at 3.0GHz and 1GB
of RAM per CPU. Both the systems are available at the CINECA Supercomputing center (Bologna,
Italy, http://www.cineca.it).

The considered softwares are compared on several medium, large and very large test problems
generated from well known benchmark data sets, described in the next subsection.

3.1 Test Problems

We trained Gaussian and polynomial SVMs with kernel functionsK(xi ,x j)= exp
(

−‖xi−x j‖2/(2σ2)
)

andK(xi ,x j) =
(

s(xi
Tx j)+1

)d
, respectively1.

In what follows we give some details on the databases used for the generation of the training
sets, as well as on the SVM parameters we have chosen. Error rates aregiven as the percentage of
misclassifications.

The UCI Adult data set (athttp://www.research.microsoft.com/∼jplatt/smo.html) al-
lows to train an SVM to predict whether a household has an income greater than $50000. The inputs
are 123-dimensional binary sparse vectors with sparsity level≈ 89%. We use the largest version
of the data set, sized 32561. We train a Gaussian SVM with training parameterschosen accord-
ingly to the database technical documentation, i.e.,C = 1 andσ =

√
10, that are indicated as those

maximizing the performance on a (unavailable) validation set.
The Web data set (available athttp://www.research.microsoft.com/∼jplatt/smo.html)

concerns a web page classification problem with a binary representation based on 300 keyword
features. On average, the sparsity level of the examples is about 96%. We use the largest version
of the data set, sized 49749. We train a Gaussian SVM with the parameters suggested in the data
set documentation:C = 5 andσ =

√
10. As before, these values are claimed to give the best

performance on a (unavailable) validation set.

1. Here the notation has the usual meaning:σ is the Gaussian’s variance,s is the polynomial scaling parameter andd is
the polynomial degree.

1481



ZANNI , SERAFINI AND ZANGHIRATI

The MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist) contains
784-dimensional nonbinary sparse vectors; the data set size is 60000 and the data sparsity is≈
81%. The provided test set is sized 10000. We train two SVM classifiers for the digit “8” with the
following parameters:C = 10,σ = 1800 for the Gaussian kernel andC = 3000,d = 4, s= 3 ·10−9

for the polynomial kernel. This setting gives the following error rates on thetest set: 0.55% for the
Gaussian kernel and 0.60% for the polynomial kernel.

The Forest Cover Type data set2 has 581012 samples with 54 attributes, distributed in 8 classes.
The average sparsity level of the samples is about 78%. We train some SVM classifiers for separat-
ing class 2 from the other classes. The training sets, sized up to 300000, are generated by randomly
sampling the data set. We use a Gaussian kernel withσ2 = 2.5·104, C = 10. For the largest training
set the error rate is about 3.6% on the test set given by the remaining 281012 examples.

The KDDCUP-99 Intrusion Detection data set3 consists in binary TCP dump data from seven
weeks of network traffic. Each original pattern has 34 continuous features and 7 symbolic fea-
tures. As suggested by Tsang et al. (2005), we normalize each continuous feature to the range[0,1]
and transform each symbolic feature to multiple binary features. In this way,the inputs are 122-
dimensional sparse vectors with sparsity level≈ 90%. We work with the whole training set sized
4898431 and with some smaller subsets obtained by randomly sampling the original database. We
use a Gaussian kernel with parametersσ2 = (1.2)−1, C = 2. This choice yields error rates of about
7% on the test set of 311029 examples available in the database.

3.2 Serial Behaviour

In the first experiments set, we analyse the behaviour of the serial code on the test problems just
described. In Table 1 we report the time in seconds (sec.), the decomposition iteration count (it.)
and the number of kernel evaluations in millions (MKernel) required for each one of the considered
SVM training packages. The values we use for the working set parameters nsp and nc are also
reported: as mentioned, the LIBSVM software works only withnsp = nc = 2, whilst both SVMlight

and GPDT accept larger values. For these two softwares, meaningful ranges of parameters were
explored: we report the results corresponding to the pairs that gave thebest training time and to the
default setting (nsp = nc = 10 for SVMlight, nsp = 400,nc = ⌊nsp/3⌋= 132 for GPDT). SVMlight is
run with several values ofnsp in the range[2,80] with both its inner solvers: the Hildreth-D’Esopo
and the prLOQO. The best training time is obtained by using the Hildreth-D’Esopo solverwith nsp

small andnc = nsp/2, generally observing a significant performance decrease fornsp > 40.
We run the codes assigning to the caching area 512MB for the MNIST test problems and 768MB

in the other cases; the default thresholdε = 10−3 for the termination criterion is used, except for
the two largest Cover Type and KDDCUP-99 test problems, where the stopping toleranceε is set
to 10−2. All the other parameters are assigned default values. This means that both LIBSVM and
SVMlight benefit from theshrinking(Joachims, 1998) strategy that is not implemented in the current
release of GPDT.

Table 1 well emphasizes the different approach of the three softwares.In particular we see how
GPDT, by exploiting large working sets, converges in far less iterations than the other softwares,
but its iterations are much heavier. Looking at the computational time, GPDT seems to be very
competitive with respect to both LIBSVM and SVMlight. Furthermore, the kernel column highlights

2. Available atftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype.
3. Available athttp://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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Data set n nsp nc sec. it. MKernel
GPDT

UCI Adult 32561 400 132 94.1 162 494.2
400 200 93.6 129 498.5

MNIST (poly) 60000 400 132 379.6 598 424.6
600 200 345.3 221 324.4

MNIST (Gauss) 60000 400 132 359.2 136 504.8
2000 300 341.2 22 396.4

Web Pages 49749 400 132 69.6 228 285.5
600 200 62.2 101 252.9

Cover Type 300000 400 132 24365.5 3730 120846.5
500 80 21561.4 5018 99880.0

KDDCUP-99 400000 400 132 10239.0 1149 56548.3
180 60 9190.3 2248 51336.7

LIBSVM
UCI Adult 32561 2 2 165.9 15388 452.1

MNIST (poly) 60000 2 2 2154.4 452836 792.0
MNIST (Gauss) 60000 2 2 1081.8 20533 409.4

Web Pages 49749 2 2 64.0 13237 170.3
Cover Type 300000 2 2 17271.7 274092 53152.6

KDDCUP-99 400000 2 2 11220.8 40767 50773.8
SVMlight

UCI Adult 32561 10 10 216.7 10448 405.1
20 10 201.1 4317 393.5
40 20 203.8 2565 410.3

MNIST (poly) 60000 10 10 6454.1 380743 1943.8
4 2 3090.2 420038 859.8
8 4 3124.0 238609 905.6

MNIST (Gauss) 60000 10 10 795.6 10262 278.3
4 2 570.3 18401 204.1

16 8 562.8 4970 203.8
Web Pages 49749 10 10 108.6 8728 208.5

4 2 93.8 12195 166.9
16 8 92.7 4444 188.2

Cover Type 300000 10 10 82892.6 266632 146053.2
8 4 29902.3 151762 44791.4

16 8 28585.5 78026 48864.9
KDDCUP-99 400000 10 10 11356.4 21950 23941.3

8 4 10141.8 28254 21663.6
20 10 12308.4 20654 24966.0

Table 1: performance of the serial packages on different test problems.
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Solver SV BSV Fopt b test error
MNIST (poly) test problem

GPDT 2712 640 −2555033.8 3.54283 0.63%
LIBSVM 2715 640 −2555033.6 3.54231 0.63%
SVMlight 2714 640 −2555033.0 3.54213 0.62%

Cover Type test problem
GPDT 50853 32683 −299399.7 0.22083 3.62%
LIBSVM 51131 32573 −299396.0 0.22110 3.63%
SVMlight 51326 32511 −299393.9 0.22149 3.62%

Table 2: accuracy of the serial solvers.

how GPDT benefits from a good optimization of the execution time for the kernelcomputation:
compare, for instance, the results for the MNIST Gaussian test, where thekernel evaluations are
very expensive. Here, in front of a number of kernel evaluations similar to LIBSVM and larger than
SVMlight, a significant lower training time is exhibited. The same consideration holds truefor the
MNIST polynomial test; however in this case the good GPDT performance is also due to a lower
number of kernel evaluations.

The next experiments are intended to underline how the good training time given by GPDT
is accompanied by scaling and accuracy properties very similar to the other packages. From the
accuracy viewpoint, this is shown for two of the considered test problems by reporting in Table
2 the number of support vectors (SV) and bound support vectors (BSV), the computed optimal
valueFopt of the objective function, the biasb of the separating surface expression4 (Cristianini and
Shawe-Taylor, 2000) and the error rate on the test set.

For what concerns the scaling, Figure 3a shows, for the Cover Type test problem (the worst case
for GPDT), the training time with respect to the problem size. All the packagesexhibit almost the
same dependence that, for this particular data set, seems between quadraticand cubic with respect
to the number of examples. For completeness, the number of support vectors of these test problems
is also reported in Figure 3b.

3.3 Parallel Behaviour

The second experiments set concerns with the behaviour of PGPDT. We evaluate PGPDT on
the previous four largest problems and some very large problems sizedO(106) derived from the
KDDCUP-99 data set.

3.3.1 LARGE TEST PROBLEMS

For a meaningful comparison against the serial version, PGPDT is run onthe MNIST, Cover Type
and KDDCUP-99 (n = 400000) test problems with the samensp, nc and ε parameters as in the
previous experiments; furthermore, the same amount of caching area (768MB) is now allocated on
each CPU of the IBM SP5. Default values are assigned to the other parameters.

4. Thesupport vectorsare those samples in the training set corresponding toα∗i > 0; the samples withα∗i = C are
calledbound support vectors. Roughly speaking, the support vectors are the samples characterizing the hypersurface
separating the two classes and the biasb is its displacement.
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Figure 3: scaling of the serial solvers on test problems from the Cover Type data set.

NP sec. spr it. MKernel SV BSV Fopt

MNIST (poly) test problem
1 345.3 221 324.2 2712 640 −2555033.8
2 158.6 2.18 212 249.2 2710 640 −2555033.8
4 100.5 3.44 214 253.9 2711 641 −2555033.8
8 59.7 5.78 212 259.8 2711 641 −2555033.7

16 47.3 7.30 217 271.4 2711 641 −2555033.8
Cover Type test problem

1 21561 5018 99880 50853 32683 −299399.7
2 11123 1.94 5047 98925 50786 32673 −299399.8
4 5715 3.77 5059 93597 50786 32668 −299399.9
8 3016 7.15 5086 82853 50832 32664 −299399.9

16 1673 12.89 5029 59439 50826 32697 −299399.9

Table 3: PGPDT scaling on the IBM SP5 system.

Table 3 and Figure 4 summarize the results obtained by running PGPDT on different numbers
of processors. We evaluate the parallel performance by therelative speedup, defined asspr =
Tserial/Tparallel, whereTserial is the training time spent on a single processor, whileTparalleldenotes the
training time onNP processors.

Seeking clearness, in Table 3 we also report additional information on the overall PGPDT be-
haviour. In particular, we can see an essentially constant number of decomposition iterations (recall
that only the computational burden within the decomposition iteration is distributed)and the same
solution accuracy as the serial run (compare the numbers in SV, BSV andFopt columns). More-
over, remark the lower number of total kernel evaluations needed by the parallel version, due to the
growing amount of global caching memory available, which our parallel caching strategy is able
to exploit. This is the motivation of the superlinear speedup observed in some situations like the
MNIST (Gaussian) test problem (Figure 4a). Unfortunately, there may be cases where the bene-
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(a) MNIST (Gauss) test problem.
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(b) KDDCUP-99 (n = 400000) test problem.
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(c) MNIST (poly) test problem.
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(d) Cover Type test problem.

Figure 4: PGPDT scaling on the IBM SP5 system.

fits due to the parallel caching strategy are not sufficient to ensure optimalspeedups. For instance,
sometimes thensp values that give satisfactory serial performance are not suited for good PGPDT
scaling. This is the case of the KDDCUP-99 test problem (Figure 4b), where the small working
sets sizednsp = 180 imply many decomposition iterations and consequently the fixed costs of the
non-distributed tasks (working set selection and stopping rule) become very heavy. Another exam-
ple is provided by the MNIST (polynomial) test problem (Figure 4c): here the subproblem solution
is a dominant task in comparison to the gradient updating and the suboptimal scaling of the PGPM
solver on 16 processors leads to poor speedups. However, also in these cases remarkable time
reductions are observed in comparison with the serial softwares (see Table 1).

We further remark that all these considerations are quite dependent on the underlying parallel
architecture. In particular, on multiprocessor systems where less memory than in the SP5 platform
is available for each CPU, even better speedups can be expected due to the effectiveness of the
parallel caching strategy. For instance, we report in Figure 5 what we get for the KDDCUP-99 test
problem on the IBM CLX/1024 Linux Cluster, where only 400MB of cachingarea can be allocated
on each CPU. Due to both the worse performance of this machine and the reduced caching area,
larger training time is required, but an optimal PGPDT speedup is now observed up to 16 processors.
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Figure 5:PGPDT scaling on the CLX/1024 system for the KDDCUP-99 (n = 4·105) test problem.
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Figure 6: Parallel training time for different sizes of the KDDCUP-99 test probelms

3.3.2 VERY LARGE TEST PROBLEMS

In this section we present the behavior of the PGPDT code on very large test problems. In partic-
ular we considered three test problems from the KDDCUP-99 data set of size n = 106, 2·106 and
4898431, the latter being the full data set size. The test problems are obtained by training Gaussian
SVMs with the parameters setting previously used for this data set.

In the two larger cases a different setting for thensp, nc and caching area have been used. In
particular, for the casen = 2 ·106 we usednsp = 150,nc = 40 and 600Mb of caching area; for the
full case we usednsp= 90,nc = 30 and 250Mb of caching area. The reason for reducing the caching
area is that every processor can allocate no more that 1.7Gb of memory and, when the data set size
increases, most of the memory is used for storing the training data and cannot be used for caching.

TheseO(106) test problems are firstly used to study how the PGPDT time complexity scales
with the size of the data sets. In Figure 6a the training time is reported for 4, 8 and 16 proces-
sors. Figure 6b shows the growth rate of the support vectors for thesetest problems. It can be
observed that the scaling is close toO(n2), as often exhibited by the serial state-of-the-art decom-
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position packages (Collobert and Bengio, 2001; Joachims, 1998). Thisresult is quite natural if we
remember that PGPDT is based on a parallelization of each iteration of a standard decomposition
technique. Concerning the subquadratic scaling exhibited for increasingsizes, it can be motivated
by the sublinear growth of the support vectors observed on these experiments; however, in different
situations it may be expected a training time complexity that scales at least quadratically (see, for
instance, the experiments on the Cover Type data set described in Figure 3).

Table 4 shows the PGPDT performance in terms of training time and accuracy for different
number of processors. Here, the time is measured in hours and minutes and the kernel evaluations
are expressed in billions. For the test problem sizedn = 2 · 106, the serial results concern only
the GPDT because LIBSVM exceeded the time limit of 60 hours and SVMlight stopped without a
valid solution after relaxing the KKT conditions. Due to the very large size of the problem, the
amount of 600MB for the caching area seems not sufficient to prevent ahuge number of kernel
evaluations in the serial run. Again, this drawback is reduced in the multiprocessor runs, due to
increased memory for caching. Thus, analogously to some previous experiments (see Figures 4a,
5), superlinear speedup is exhibited, in this case up to about 20 processors. The largest test problem,
with size about 5 millions and more than 105 support vectors, can be faced in a reasonable time only
with the parallel version. In this case the overall remark is that, on the considered architecture, few
processors allow to train the Gaussian SVM in less than one day while few tensof processors can
be exploited to reduce the training time to about 10 hours.

Finally, by observing in Table 4 the column of the objective function values, we may confirm that
also in these experiments the training time saving ensured by PGPDT is obtained without damaging
the solution accuracy.

These results show that PGPDT is able to exploit the resources of today multiprocessor systems
to overcome the limits of the serial SVM implementations in solvingO(106) problems (see also
the training time in Figure 6a). As already mentioned, there is no other available parallel software
to perform a fair comparison on the same architecture and the same data; however, an indirect
comparison with the results reported by Graf et al. (2005) for the cascadealgorithm suggests that
PGPDT could be really competitive. Furthermore, since the cascade algorithm and PGPDT exploit
very different parallelization ideas (recall that the former is based on thedistribution of smaller
independent SVMs), promising improvements could be achieved by an appropriate combination of
the two approaches.

4. Conclusions and Future Work

Parallel software to train linear and nonlinear SVMs for classification problems is presented, which
is suitable for distributed memory multiprocessors systems. It implements an iterative decompo-
sition technique based on a gradient projection solver for the inner subproblems. At each decom-
position iteration, the heaviest tasks, i.e., solving the subproblem and updating the gradient, are
distributed among the available processors. Furthermore, a parallel caching strategy allows to effec-
tively exploit as much memory as available to avoid expensive kernel recomputations. Numerical
comparisons with the state-of-the-art softwares LIBSVM and SVMlight on benchmark problems
show the significant speedup that the proposed parallel package can achieve in training large scale
SVMs. In short, experiments onO(106) data sets show that nonlinear SVMs withO(105) support
vectors can be trained in few hours by exploiting some tens of processors. Thus, this parallel pack-
age, available athttp://dm.unife.it/gpdt, can be a useful tool for overcoming the limits of the
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NP time it. GKernel SV BSV Fopt

n = 2·106

1 54h 59m 6192 1135.8 82521 466 −9625.9
2 14h 22m 6077 468.5 84565 463 −9625.8
4 7h 44m 6005 458.1 82193 464 −9625.7
8 4h 18m 6064 462.9 82723 462 −9625.8

16 3h 08m 6116 467.0 84100 460 −9625.9
24 2h 47m 6202 473.0 83626 464 −9626.0

n = 4898431
8 19h 08m 12300 1752.9 131041 1021 −14479.6

16 12h 16m 12295 1739.7 130918 1046 −14479.6
32 9h 22m 12310 1742.9 131736 1017 −14479.6

Table 4: PGPDT scaling on very large test problems from the KDDCUP-99 data set.

serial SVM implementation currently available. The main improvements will concern: (i) the opti-
mization/distribution of the tasks which are not currently parallelized, to improvethe scalability; (ii)
the introduction of a shrinking strategy, for further reducing the number of kernel evaluations; (iii)
the inner solver robustness, to better face the subproblems arising from badly scaled training data.
Furthermore, work is in progress to include in a new PGPDT release a suitable data distribution and
the extension to regression problems.
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Abstract
Support vector machines (SVMs), though accurate, are not preferred in applications requiring

great classification speed, due to the number of support vectors being large. To overcome this
problem we devise a primal method with the following properties: (1) it decouples the idea of basis
functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions
of a specified maximum size (dmax) to approximate the SVM primal cost function well; (3) it is
efficient and roughly scales asO(nd2

max) wheren is the number of training examples; and, (4) the
number of basis functions it requires to achieve an accuracyclose to the SVM accuracy is usually
far less than the number of SVM support vectors.
Keywords: SVMs, classification, sparse design

1. Introduction

Support Vector Machines (SVMs) are modern learning systems that deliver state-of-the-art perfor-
mance in real world pattern recognition and data mining applications such as text categorization,
hand-written character recognition, image classification and bioinformatics.Even though they yield
very accurate solutions, they are not preferred in online applications where classification has to be
done in great speed. This is due to the fact that a large set of basis functions is usually needed to
form the SVM classifier, making it complex and expensive. In this paper wedevise a method to
overcome this problem. Our method incrementally finds basis functions to maximize accuracy. The
process of adding new basis functions can be stopped when the classifier has reached some limiting
level of complexity. In many cases, our method efficiently forms classifiers which have an order of
magnitude smaller number of basis functions compared to the full SVM, while achieving nearly the
same level of accuracy.

SVM solution and post-processing simplification Given a training set{(xi ,yi)}
n
i=1, yi ∈ {1,−1},

the Support Vector Machine (SVM) algorithm with anL2 penalization of the training errors consists

c©2006 Sathiya Keerthi, Olivier Chapelle and Dennis DeCoste.
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of solving the following primal problem

min
λ
2
‖w‖2 +

1
2

n

∑
i=1

max(0,1−yiw·φ(xi))
2. (1)

Computations involvingφ are handled using the kernel function,k(xi ,x j) = φ(xi) ·φ(x j). For conve-
nience the bias term has not been included, but the analysis presented in this paper can be extended
in a straightforward way to include it. The quadratic penalization of the errors makes the primal
objective function continuously differentiable. This is a great advantageand becomes necessary for
developing a primal algorithm, as we will see below.

The standard way to train an SVM is to introduce Lagrange multipliersαi and optimize them
by solving a dual problem. The classifier function for a new inputx is then given by the sign of
∑i αiyik(x,xi). Because there is a flat part in the loss function, the vectorα is usually sparse. Thexi

for which αi 6= 0 are calledsupport vectors (SVs). Let nSV denote the number of SVs for a given
problem. A recent theoretical result by Steinwart (Steinwart, 2004) shows thatnSV grows as a
linear function ofn. Thus, for large problems, this number can be large and the training and testing
complexities might become prohibitive since they are respectively,O(n nSV +nSV

3) andO(nSV).
Several methods have been proposed for reducing the number of support vectors. Burges and

Scḧolkopf (1997) apply nonlinear optimization methods to seek sparse representations after building
the SVM classifier. Along similar lines, Schölkopf et al. (1999) useL1 regularization onβ to obtain
sparse approximations. These methods are expensive since they involvethe solution of hard non-
convex optimization problems. They also become impractical for large problems. Downs et al.
(2001) give an exact algorithm to prune the support vector set after the SVM classifier is built.
Thies and Weber (2004) give special ideas for the quadratic kernel. Since these methods operate as
a post-processing step, an expensive standard SVM training is still required.

Direct simplification via basis functions and primal Instead of finding the SVM solution by
maximizing the dual problem, one approach is todirectly minimize the primal formafter invoking
the representer theorem to representw as

w =
n

∑
i=1

βiφ(xi). (2)

If we allow βi 6= 0 for all i, substitute (2) in (1) and solve for theβi ’s then (assuming uniqueness
of solution) we will getβi = yiαi and thus we will precisely retrieve the SVM solution (Chapelle,
2005). But our aim is to obtain approximate solutions that have as few non-zero βi ’s as possible.
For many classification problems there exists a small subset of the basis functions1 suited to the
complexity of the problem being solved, irrespective of the training size growth, that will yield
pretty much the same accuracy as the SVM classifier. The evidence for this comes from the empir-
ical performance of other sparse kernel classifiers: the Relevance Vector Machine (Tipping, 2001),
Informative Vector Machine (Lawrence et al., 2003) are probabilistic models in a Bayesian setting;
and Kernel Matching Pursuit (Vincent and Bengio, 2002) is a discriminative method that is mainly
developed for the least squares loss function. These recent non-SVM works have laid the claim that
they can match the accuracy of SVMs, while also bringing down considerably, the number of basis
functions as well as the training cost. Work on simplifying SVM solution has notcaught up well

1. Eachk(x,xi) will be referred to as a basis function.
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with those works in related kernel fields. The method outlined in this paper makes a contribution to
fill this gap.

We deliberately use the variable name,βi in (2) so as to interpret it as a basis weight as opposed
to viewing it asyiαi whereαi is the Lagrange multiplier associated with thei-th primal slack con-
straint. While the two are (usually) one and the same at exact optimality, they canbe very different
when we talk of sub-optimal primal solutions. There is a lot of freedom whenwe simply think of
the βi ’s as basis weights that yield a good suboptimalw for (1). First, we do not have to put any
bounds on theβi . Second, we do not have to think of aβi corresponding to a particular location
relative to the margin planes to have a certain value. Going even one more step further, we do not
even have to restrict the basis functions to be a subset of the training set examples.

Osuna and Girosi (1998) consider such an approach. They achievesparsity by including theL1

regularizer,λ1‖β‖1 in the primal objective. But they do not develop an algorithm (for solving the
modified primal formulation and for choosing the rightλ1) that scales efficiently to large problems.

Wu et al. (2005) writew as

w =
l

∑
i=1

βiφ(x̃i)

where l is a chosen small number and optimize the primal objective with theβi as well as the
x̃i as variables. But the optimization can become unwieldy ifl is not small, especially since the
optimization of the ˜xi is a hard non-convex problem.

In the RSVM algorithm (Lee and Mangasarian, 2001; Lin and Lin, 2003) arandom subset of the
training set is chosen to be the ˜xi and then only theβi are optimized.2 Because basis functions are
chosen randomly, this method requires many more basis functions than needed in order to achieve
a level of accuracy close to the full SVM solution; see Section 3.

A principled alternative to RSVM is to use a greedy approach for the selection of the subset
of the training set for forming the representation. Such an approach hasbeen popular in Gaussian
processes (Smola and Bartlett, 2001; Seeger et al., 2003; Keerthi and Chu, 2006). Greedy meth-
ods of basis selection also exist in the boosting literature (Friedman, 2001; Rätsch, 2001). These
methods entail selection from a continuum of basis functions using either gradient descent or linear
programming column generation. Bennett et al. (2002) and Bi et al. (2004) give modified ideas for
kernel methods that employ a set of basis functions fixed at the training points.

Particularly relevant to the work in this paper are the kernel matching pursuit (KMP) algo-
rithm of Vincent and Bengio (2002) and the growing support vector classifier (GSVC) algorithm of
Parrado-Herńandez et al. (2003). KMP is an effective greedy discriminative approach that is mainly
developed for least squares problems. GSVC is an efficient method that isdeveloped for SVMs and
uses a heuristic criterion for greedy selection of basis functions.

Our approach The main aim of this paper is to give an effective greedy method SVMs which
uses a basis selection criterion that is directly related to the training cost function and is also very
efficient. The basic theme of the method is forward selection. It starts with an empty set ofbasis
functions and greedily chooses new basis functions (from the training set) to improve the primal
objective function. We develop efficient schemes for both, the greedy selection of a new basis
function, as well as the optimization of theβi for a given selection of basis functions. For choosing
uptodmax basis functions, the overall compuational cost of our method isO(nd2

max). The different

2. For convenience, in the RSVM method, the SVM regularizer is replacedby a simpleL2 regularizer onβ.
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SpSVM-2 SVM
Data Set TestErate #Basis TestErate nSV
Banana 10.87 (1.74) 17.3 (7.3) 10.54 (0.68) 221.7 (66.98)
Breast 29.22 (2.11) 12.1 (5.6) 28.18 (3.00) 185.8 (16.44)
Diabetis 23.47 (1.36) 13.8 (5.6) 23.73 (1.24) 426.3 (26.91)
Flare 33.90 (1.10) 8.4 (1.2) 33.98 (1.26) 629.4 (29.43)
German 24.90 (1.50) 14.0 (7.3) 24.47 (1.97) 630.4 (22.48)
Heart 15.50 (1.10) 4.3 (2.6) 15.80 (2.20) 166.6 (8.75)
Ringnorm 1.97 (0.57) 12.9 (2.0) 1.68 (0.24) 334.9 (108.54)
Thyroid 5.47 (0.78) 10.6 (2.3) 4.93 (2.18) 57.80 (39.61)
Titanic 22.68 (1.88) 3.3 (0.9) 22.35 (0.67) 150.0 (0.0)
Twonorm 2.96 (0.82) 8.7 (3.7) 2.42 (0.24) 330.30 (137.02)
Waveform 10.66 (0.99) 14.4 (3.3) 10.04 (0.67) 246.9 (57.80)

Table 1: Comparison ofSpSVM-2andSVMon benchmark data sets from (Rätsch). For TestErate,
#Basis andnSV, the values are means over ten different training/test splits and the values
in parantheses are the standard deviations.

components of the method that we develop in this paper are not new in themselves and are inspired
from the above mentioned papers. However, from a practical point of view, it is not obvious how
to combine and tune them in order to get a very efficient SVM training algorithm.That is what
we achieved in this paper through numerous and careful experiments thatvalidated the techniques
employed.

Table 1 gives a preview of the performance of our method (calledSpSVM-2in the table) in
comparison with SVM on several UCI data sets. As can be seen there, ourmethod gives a competing
generalization performance while reducing the number of basis functions very significantly. (More
specifics concerning Table 1 will be discussed in Section 4.)

The paper is organized as follows. We discuss the details of the efficient optimization of the
primal objective function in Section 2. The key issue of selecting basis functions is taken up in
Section 3. Sections 4-7 discuss other important practical issues and givecomputational results that
demonstrate the value of our method. Section 8 gives some concluding remarks. The appendix
gives details of all the data sets used for the experiments in this paper.

2. The Basic Optimization

Let J ⊂ {1, . . . ,n} be a given index set of basis functions that form a subset of the trainingset. We
consider the problem of minimizing the objective function in (1) over the set ofvectorsw of the
form3

w = ∑
j∈J

β jφ(x j). (3)

3. More generally, one can consider expansion on points which do not belong to the training set.

1496



BUILDING SVMS WITH REDUCED COMPLEXITY

2.1 Newton Optimization

Let Ki j = k(xi ,x j) = φ(xi) · φ(x j) denote the generic element of then× n kernel matrixK. The
notationKIJ refers to the submatrix ofK made of the rows indexed byI and the columns indexed
by J. Also, for an-dimensional vectorp, let pJ denote the|J| dimensional vector containing{p j :
j ∈ J}.

Let d = |J|. With w restricted to (3), the primal problem (1) becomes thed dimensional mini-
mization problem of findingβJ that solves

min
βJ

f (βJ) =
λ
2

β⊤
J KJJβJ +

1
2

n

∑
i=1

max(0,1−yioi)
2 (4)

whereoi = Ki,JβJ. Except for the regularizer being more general, i.e.,β⊤
J KJJβJ (as opposed to the

simple regularizer,‖βJ‖
2), the problem in (4) is very much the same as in a linear SVM design.

Thus, the Newton method and its modification that are developed for linear SVMs(Mangasarian,
2002; Keerthi and DeCoste, 2005) can be used to solve (4) and obtain the solutionβJ.

Newton Method

1. Choose a suitable starting vector,β0
J. Setk = 0.

2. If βk
J is the optimal solution of (4), stop.

3. Let I = {i : 1− yioi ≥ 0} whereoi = Ki,Jβk
J is the output of thei-th example. Obtain̄βJ as

the result of a Newton step or equivalently as the solution of the regularizedleast squares
problem,

min
βJ

λ
2

β⊤
J KJJβJ +

1
2 ∑

i∈I

(1−yiKi,JβJ)
2. (5)

4. Takeβk+1
J to be the minimizer off on L, the line joiningβk

J and β̄J. Setk := k+ 1 and go
back to step 2 for another iteration.

The solution of (5) is given by

β̄J = βk
J −P−1g, where P = λKJJ +KJIK

⊤
JI and g = λKJJβJ −KJI(yI −oI ). (6)

P andg are also the (generalized) Hessian and gradient of the objective function (4).
Because the loss function is piecewise quadratic, Newton method converges in a finite number

of iterations. The number of iterations required to converge to the exact solution of (4) is usually
very small (less than 5). Some Matlab code is available online athttp://www.kyb.tuebingen.
mpg.de/bs/people/chapelle/primal.

2.2 Updating the Hessian

As already pointed out in Section 1, we will mainly need to solve (4) in an incremental mode:4 with
the solutionβJ of (4) already available, solve (4) again, but with one more basis functionadded, i.e.,
J incremented by one. Keerthi and DeCoste (2005) show that the Newton method is very efficient

4. In our method basis functions are added one at a time.
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for such seeding situations. Since the kernel matrix is dense, we maintain andupdate a Cholesky
factorization ofP, the Hessian defined in (6). Even withJ fixed, during the course of solving (4)
via the Newton method,P will undergo changes due to changes inI . Efficient rank one schemes
can be used to do the updating of the Cholesky factorization (Seeger, 2004). The updatings of the
factorization ofP that need to be done because of changes inI are not going to be expensive because
such changes mostly occur whenJ is small; whenJ is large,I usually undergoes very small changes
since the set of training errors is rather well identified by that stage. Of courseP and its factorization
will also undergo changes (their dimensions increase by one) each time an element is added toJ.
This is a routine updating operation that is present in most forward selectionmethods.

2.3 Computational Complexity

It is useful to ask: what is the complexity of the incremental computations needed to solve (4)
when its solution is available for someJ, at which point one more basis element is included in it
and we want to re-solve (4)? In the best case, when the support vector set I does not change, the
cost is mainly the following: computing the new row and column ofKJJ (d+1 kernel evaluations);
computing the new row ofKJI (n kernel computations);5 computing the new elements ofP (O(nd)
cost); and the updating of the factorization ofP (O(d2) cost). Thus the cost can be summarized as:
(n+ d+ 1) kernel evaluations andO(nd) cost. Even whenI does change and so the cost is more,
it is reasonable to take the above mentioned cost summary as a good estimate of the cost of the
incremental work. Adding up these costs tilldmax basis functions are selected, we get a complexity
of O(nd2

max). Note that this is the basic cost given that we already know the sequence of dmax basis
functions that are to be used. Thus,O(nd2

max) is also the complexity of the method in which basis
functions are chosen randomly. In the next section we discuss the problem of selecting the basis
functions systematically and efficiently.

3. Selection of New Basis Element

Suppose we have solved (4) and obtained the minimizerβJ. Obviously, the minimum value of the
objective function in (4) (call itfJ) is greater than or equal tof ⋆, the optimal value of (1). If the
difference between them is large we would like to continue on and include another basis function.
Take one j 6∈ J. How do we judge its value of inclusion? The best scoring mechanism is the
following one.

3.1 Basis Selection Method 1

Include j in J, optimize (4) fully using(βJ,β j), and find the improved value of the objective func-
tion; call it f̃ j . Choose thej that gives the least value off̃ j . We already analyzed in the earlier section
that the cost of doing one basis element inclusion isO(nd). So, if we want to try all elements out-
sideJ, the cost isO(n2d); the overall cost of such a method of selectingdmax basis functions is
O(n2d2

max), which is much higher than the basic cost,O(nd2
max) mentioned in the previous section.

Instead, if we work only with a random subset of sizeκ chosen from outsideJ, then the cost in one
basis selection step comes down toO(κnd), and the overall cost is limited toO(κnd2

max). Smola and
Bartlett (2001) have successfully tried such random subset choices for Gaussian process regression,
usingκ = 59. However, note that, even with this scheme, the cost of new basis selection (O(κnd))

5. In fact this is notn but the size ofI . Since we do not know this size, we upper bound it byn.
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is still disproportionately higher (byκ times) than the cost of actually including the newly selected
basis function (O(nd)). Thus we would like to go for cheaper methods.

3.2 Basis Selection Method 2

This method computes a score for a new elementj in O(n) time. The idea has a parallel in Vincent
and Bengio’s work on Kernel Matching Pursuit (Vincent and Bengio, 2002) for least squares loss
functions. They have two methods calledprefitting andbackfitting; see equations (7), (3) and (6)
of Vincent and Bengio (2002).6 Their prefitting is parallel toBasis Selection Method 1that we
described earlier. The cheaper method that we suggest below is parallelto their backfittingidea.
SupposeβJ is the solution of (4). Including a new elementj and its corresponding variable,β j

yields the problem of minimizing

λ
2
(β⊤

J β j)

(

KJJ KJ j

K jJ K j j

)(

βJ

β j

)

+
1
2

n

∑
i=1

max(0,1−yi(KiJβJ +Ki j β j)
2, (7)

We fix βJ and optimize (7) using only the new variableβ j and see how much improvement in the
objective function is possible in order to define the score for the new element j.

This one dimensional function is piecewise quadratic and can be minimized exactly in O(nlogn)
time by a dichotomy search on the different breakpoints. But, a very precise calculation of the
scoring function is usually unnecessary. So, for practical solution we can simply do a few Newton-
Raphson-type iterations on the derivative of the function and get a nearoptimal solution inO(n)
time. Note that we also need to compute the vectorKJ j, which requiresd kernel evaluations. Though
this cost is subsumed inO(n), it is a factor to remember if kernel evaluations are expensive.

If all j 6∈ J are tried, then the complexity of selecting a new basis function isO(n2), which
is disproportionately large compared to the cost of including the chosen basis function, which is
O(nd). Like in Basis Selection Method 1, we can simply chooseκ random basis functions to try.
If dmax is specified, one can chooseκ = O(dmax) without increasing the overall complexity beyond
O(nd2

max). More complex schemes incorporating a kernel cache can also be tried.

3.3 Kernel Caching

For upto medium size problems, sayn< 15,000, it is a good idea to have cache for the entire kernel
matrix. If additional memory space is available and, say a Gaussian kernel isemployed, then the
values of‖xi −x j‖

2 can also be cached; this will help significantly reduce the time associated with
the tuning of hyperparameters. For larger problems, depending on memory space available, it is a
good idea to cache as many as possible, full kernel rows corresponding to j that get tried, but do
not get chosen for inclusion. It is possible that they get called in a later stage of the algorithm, at
which time, this cache can be useful. It is also possible to think of variations ofthe method in which
full kernel rows corresponding to a large set (as much that can fit into memory) of randomly chosen
training basis is pre-computed and only these basis functions are considered for selection.

3.4 Shrinking

As basis functions get added, the SVM solutionw and the margin planes start stabilizing. If the
number of support vectors form a small fraction of the training set, then, for a large fraction of

6. For least squares problems, Adler et al. (1996) had given the same ideas as Vincent and Bengio in earlier work.

1499



KEERTHI, CHAPELLE AND DECOSTE

(well-classified) training examples, we can easily conclude that they will probably never come into
the active setI . Such training examples can be left out of the calculations without causing any undue
harm. This idea of shrinking has been effectively used to speed-up SVMtraining (Joachims, 1999;
Platt, 1998).

3.5 Experimental Evaluation

We now evaluate the performance of basis selection methods 1 and 2 (we will call them asSpSVM-1,
SpSVM-2) on some sizable benchmark data sets. A full description of these data sets and the kernel
functions used is given in the appendix. The value ofκ = 59 is used. To have a baseline, we also
consider the method,Randomin which the basis functions are chosen randomly. This is almost the
same as the RSVM method (Lee and Mangasarian, 2001; Lin and Lin, 2003), the only difference
being the regularizer (β⊤

J KJ,JβJ in (4) versus‖βJ‖
2 in RSVM). For another baseline we consider

the (more systematic) unsupervised learning method in which an incomplete Cholesky factorization
with pivoting (Meijerink and van der Vorst, 1977; Bach and Jordan, 2005) is used to choose basis
functions.7 For comparison we also include the GSVC method of Parrado-Hernández et al. (2003).
This method, originally given for SVM hinge loss, uses the following heuristiccriterion to select
the next basis functionj∗ 6∈ J:

j∗ = arg min
j∈I , j 6∈J

max
l∈J

|K jl | (8)

with the aim of encouraging new basis functions that are far from the basisfunctions that are already
chosen; also,j is restricted only to the support vector indices (I in (5)). For a clean comparison with
our methods, we implemented GSVC for SVMs using quadratic penalization, max(0,1−yioi)

2. We
also tried another criterion, suggested to us by Alex Smola, that is more complexthan (8):

j∗ = arg max
j∈I , j 6∈J

(1−y jo j)
2d2

j (9)

whered j is the distance (in feature space) of thej-th training point from the subspace spanned by
the elements ofJ. This criterion is based on an upper bound on the improvement to the training cost
function obtained by including thej-th basis function. It also makes sense intuitively as it selects
basis functions that are both not well approximated by the others (larged j ) and for which the error
incurred is large.8 Below, we will refer to this criterion asBH. It is worth noting that both (8) and
(9) can be computed very efficiently.

Figures 1 and 2 compare the six methods on six data sets.9 Overall, SpSVM-1andSpSVM-2
give the best performance in terms of achieving good reduction of test error rate with respect to the
number of basis functions. AlthoughSpSVM-2slightly lagsSpSVM-1in terms of performance in the
early stages, it does equally well as more basis functions are added. SinceSpSVM-2is significantly
less expensive, it is the best method to use. SinceSpSVM-1is quite cheap in the early stages, it is
also appropriate to think of a hybrid method in whichSpSVM-1is used in the early stages and, when
it becomes expensive, switch toSpSVM-2. The other methods sometimes do well, but, overall, they
are inferior in comparison toSpSVM-1andSpSVM-2. Interestingly, on theIJCNNandVehicledata

7. We also tried the method of Bach and Jordan (2005) which uses the training labels, but we noticed little improvement.
8. Note that when the set of basis functions is not restricted, the optimalβ satisfiesλβiyi = max(0,1−yioi).
9. Most figures given in this paper appear in pairs of two plots. One plot gives test error rate as a function of the number

of basis functions, to see how effective the compression is. The other plot gives the test error rate as a function of
CPU time, and is used to indicate the efficiency of the method.
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Figure 1: Comparison of basis selection methods onAdult, IJCNN & Shuttle. On Shuttlesome
methods were terminated because of ill-conditioning in the matrixP in (6).
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Figure 2: Comparison of basis selection methods onM3V8, M3VOthers& Vehicle.

1502



BUILDING SVMS WITH REDUCED COMPLEXITY

sets,Cholesky, GSVCandBH are even inferior toRandom. A possible explanation is as follows:
these methods give preference to points that are furthest away in feature space from the points
already selected. Thus, they are likely to select points which are outliers (far from the rest of the
training points); but outliers are probably unsuitable points for expandingthe decision function.

As we mentioned in Section 1, there also exist other greedy methods of kernel basis selection
that are motivated by ideas from boosting. These methods are usually given in a setting different
from that we consider: a set of (kernel) basis functions is given and aregularizer (such as‖β‖1) is
directly specified on the multiplier vectorβ. The method of Bennett et al. (2002) called MARK is
given for least squares problems. It is close to the kernel matching pursuit method. We compare
SpSVM-2with kernel matching pursuit and discuss MARK in Section 5. The method of Biet al.
(2004) uses column generation ideas from linear and quadratic programming to select new basis
functions and so it requires the solution of, both, the primal and dual problems.10 Thus, the basis
selection process is based on the sensitivity of the primal objective functionto an incoming basis
function. On the other hand, ourSpSVMmethods are based on computing an estimate of the de-
crease in the primal objective function due to an incoming basis function; also, the dual solution is
not needed.

4. Hyperparameter Tuning

In the actual design process, the values of hyperparameters need to bedetermined. This can be done
using k-fold cross validation. Cross validation (CV) can also be used to choosed, the number of
basis functions. Since the solution given by our method approaches the SVM solution asd becomes
large, there is really no need to choosed at all. One can simply choosed to be as big a value as
possible. But, to achieve good reduction in the classifier complexity (as well as computing time)
it is a good idea to track the validation performance as a function ofd and stop when this function
becomes nearly flat. We proceed as follows. First an appropriate value for dmax is chosen. For a
given choice of hyperparameters, the basis selection method (say,SpSVM-2) is then applied on each
training set formed from the k-fold partitions tilldmax basis functions are chosen. This gives an
estimate of the k-fold CV error for each value ofd from 1 todmax. We choosed to be the number
of basis functions that gives the lowest k-fold CV error. This computationcan be repeated for each
set of hyperparameter values and the best choice can be decided.

Recall that, at staged, our basis selection methods choose the(d+1)-th basis function from a
set ofκ random basis functions. To avoid the effects of this randomness on hyperparameter tuning,
it is better to make thisκ-set to be dependent only ond. Thus, at staged, the basis selection methods
will choose the same set ofκ random basis functions for all hyperparameter values.

We applied the above ideas on 11 benchmark data sets from (Rätsch) usingSpSVM-2as the
basis selection method. The Gaussian kernel,k(xi ,x j) = 1+ exp(−γ‖xi − x j‖

2) was used. The
hyperparameters,λ andγ were tuned using 3-fold cross validation. The values, 2i , i = −7, · · · ,7
were used for each of these parameters. Ten different train-test partitions were tried to get an idea
of the variability in generalization performance. We usedκ = 25 anddmax = 25. (TheTitanic data
set has three input variables, which are all binary; hence we setdmax = 8 for this data set.)

Table 1 (already introduced in Section 1) gives the results. For comparison we also give the
results for the SVM (solution of (1)); in the case of SVM, the number of support vectors (nSV) is the

10. The CPLEX LP/QP solver is used to obtain these solutions.
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number of basis functions. Clearly, our method achieves an impressive reduction in the number of
basis functions, while yielding test error rates comparable to the full SVM.

5. Comparison with Kernel Matching Pursuit

Kernel matching pursuit (KMP) (Vincent and Bengio, 2002) was mainly given as a method of
greedily selecting basis functions for the non-regularized kernel leastsquares problem. As we
already explained in Section 3, our basis selection methods can be viewed asextensions of the
basic ideas of KMP to the SVM case. In this section we empirically compare the performances
of these two methods. For both methods we only considerBasis Selection Method 2and refer
to the two methods simply asKMP and SpSVM. It is also interesting to study the effect of the
regularizer term (λ‖w‖2/2 in (1)) on generalization. The regularizer can be removed by settingλ =
0. The original KMP formulation of Vincent and Bengio (2002) considered such a non-regularized
formulation only. In the case of SVM, when perfect separability of the training data is possible, it
is improper to setλ = 0 without actually rewriting the primal formulation in a different form; so,
in our implementation we brought in the effect of no-regularization by settingλ to the small value,
10−5. Thus, we compare 4 methods:KMP-R, KMP-NR, SpSVM-RandSpSVM-NR. Here “R” and
“NR” refer to regularization and no-regularization, respectively.

Figures 3 and 4 compare the four methods on six data sets. Except onM3V8, SpSVM gives a
better performance than KMP. The better performance ofKMP onM3V8 is probably due to the fact
that the examples corresponding to each of the digits, 3 and 8, are distributed as a Gaussian, which
is suited to the least squares loss function. Note that in the case ofM3VOtherswhere the “Others”
class (corresponding to all digits other than 3) is far from a Gaussian distribution, SVM does better
than KMP.

The no-regularization methods,KMP-NRandSpSVM-NRgive an interesting performance. In
the initial stages of basis addition we are in the underfitting zone and so they perform as well (in fact,
a shade better) than their respective regularized counterparts. But, asexpected, they start overfitting
when many basis functions are added. See, for example the performanceon Adult data set given in
Figure 3. Thus, when using these non-regularized methods, a lot of care is needed in choosing the
right number of basis functions. The number of basis functions at which overfitting sets-in is smaller
for SpSVM-NRthan that ofKMP-NR. This is because of the fact that, while KMP has to concentrate
on reducing the residual on all examples in its optimization, SVM only needs to concentrate on the
examples violating the margin condition.

It is also useful to mention the method, MARK11 of Bennett et al. (2002) which is closely re-
lated to KMP. In this method, a new basis function (say, the one corresponding to the j-th training
example) is evaluated by looking at the magnitude (larger the better) of the gradient of the primal
objective function with respect toβ j evaluated at the currentβJ. This gradient is the dot product of
the kernel column containingKi j and the residual vector having the elements,oi −yi . The compu-
tational cost as well as the performance of MARK are close to those of KMP. MARK can also be
easily extended to the SVM problem in (1): all that we need to do is to replace the residual vec-
tor mentioned above by the vector having the elements,yi max{0,1−yioi}. This modified method
(which uses our Newton optimization method as the base solver) is close to ourSpSVM-2in terms
of computational cost as well as performance. Note that, if we optimize (7) for β j using only a

11. The basis selection idea used in MARK is also given in the earlier papers, Mallat and Zhang (1993) and Adler et al.
(1996) under the name,Basic Matching Pursuit.
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Figure 3: KMP vs SpSVM (with/without regularization) onAdult, IJCNN& Shuttle.
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Figure 4: KMP vs SpSVM (with/without regularization) onM3V8, M3VOthers& Vehicle.
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single Newton step, the difference between MARK (as adapted above to SVMs) andSpSVM-2is
only in the use of the second order information.

6. Additional Tuning

We discuss in this section the choice ofκ for SpSVMas well as the possibility of not solving (4)
every time a new basis function is added.

6.1 Few Retrainings

It might be a bit costly to perform the Newton optimization described in Section 2.1each time a
new basis function is added. Indeed, it is unlikely that the set of supportvectors changes a lot after
each addition. Therefore, we investigate the possibility of retraining only from time to time.

We first tried to do retraining only when|J| = 2p for somep∈ N, the set of positive integers. It
makes sense to use an exponential scale since we expect the solution not tochange too much when
J is already relatively large. Note that the overall complexity of the algorithm does not change since
the cost of adding one basis function is stillO(nd). It is only the constant which is better, because
fewer Newton optimizations are performed.

The results are presented in figure 5. For a given number of basis functions, the test error is
usually not as good as if we always retrain. But on the other hand, this can be much faster. We
found that a good trade-off is to retrain whenever|J| = ⌊2p/4⌋ for p ∈ N. This is the strategy we
will use for the experiments in the rest of the paper.

6.2 Influence ofκ

The parameterκ is the number of candidate basis functions that are being tried each time a new
basis function should be added: we select a random set ofκ examples and the best one (as explained
in Section 3.2) among them is chosen. Ifκ = 1, this amounts to choosing a random example at each
step (i.e. theRandommethod on figures 1 and 2) .

The influence ofκ is studied in figure 6. The largerκ is, the better the test error for a given
number of basis functions, but also the longer the training time. We found thatκ = 10 is a good
trade-off and that is the value that we will keep for the experiments presented in the next section.

Finally, an interesting question is how to choose appropriately a good value for κ and an efficient
retraining strategy. Both are likely to be problem dependent, and even though κ = 59 was suggested
by Smola and Scḧolkopf (2000), we believe that there is no universal answer. The answer would
for instance depend on the cost associated with the computation of the kernel function, on the
number of support vectors and on the number of training points. Indeed,the basic cost for one
iteration isO(nd) and the number of kernel calculations isκnSV +n: the first term corresponds to
trying different basis function, while the second one correspond to the inclusion of the chosen basis
function. Soκ should be chosen such that the kernel computations takes about the same tame as the
training itself.

Ideally, an adaptive strategy should be designed to find automaticallyκ and to adjust the retrain-
ing schedule. The decay rate of the objective function as well as the variance of the scores produced
by the basis selection scoring function would be two key quantities helpful to adjust them.
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7. Comparison with Standard SVM Training

We conclude the experimental study by comparing our method with the well known SVM solver,
SVMLight(Joachims, 1999).12 For this solver, we selected random training subsets of sizes from
2−10n,2−9n, . . . ,n/4,n/2,n. For each training set size, we measure the test error, the training time
and the number of support vectors. TheL2 version (quadratic penalization of the slacks) is the one
relevant for our study since it is the same loss function as the one we used;note that, when the
number of basis functions increases towardsn, theSpSVMsolution will converge to theL2 SVM
solution. For completeness, we also included experimental results of an SVMtrained with aL1

penalization of the slacks. Finally, note that for simplicity we kept the same hyperparameters for
the different sizes, but that both methods would certainly gain by additionalhyerparameter tuning
(for instance when the number of basis functions is smaller, the bandwith of the RBF kernel should
be larger).

Results are presented in figures 7 and 8. In terms of compression (left columns), our method is
usually able to reach the same accuracy as a standard SVM using less than one-tenth the number of
basis functions (this confirms the results of table 1).

From a time complexity point of view also, our method is very competitive and can reach the
same accuracy as an SVM in less time. The only disappointing performance is on theM3V8data
set. A possible explanation is that for this data set, the number of support vectors is very small and
a standard SVM can compute the exact solution quickly.

Finally, note that when the number of basis functions is extremely small compared to the number
of training examples,SpSVMcan be slower than a SVM trained on a small subset (left part of the
right column plots). It is because solving (4) usingn training examples while there are only few
parameters to estimate is an overkill. It would be wiser to choosen as a function ofd, the number
of basis functions.

8. Conclusion

In this paper we have given a fast primal algorithm that greedily choosesa subset of the training
basis functions to approximate the SVM solution. As the subset grows the solution converges to the
SVM solution since choosing the subset to be the entire training set is guaranteed to yield the exact
SVM solution. The real power of the method lies in its ability to form very good approximations
of the SVM classifier with a clear control on the complexity of the classifier (number of basis
functions) as well as the training time. In most data sets, performance very close to that of the
SVM is achieved using a set of basis functions whose size is a small fractionof the number of SVM
support vectors. The graded control over the training time offered by our method can be valuable
in large scale data mining. Many a times, simpler algorithms such as decision trees are preferred
over SVMs when there is a severe constraint on computational time. While there is no satisfactory
way of doing early stopping with SVMs, our method enables the user to control the training time
by choosing the number of basis functions to use.

Our method can be improved and modified in various ways. Hyperparameter tuning time can
be substantially reduced by using gradient-based methods on a differentiable estimate of the gen-
eralization performance formed using k-fold cross validation and posterior probabilities. Improved
methods of choosing theκ-subset of basis functions in each step can also make the method more ef-

12. The default optimization options ofSVMLight (Version 6.0)have been used.
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Figure 7: Comparison ofSpSVMwith SVMLight onAdult, IJCNN, Shuttle. For SVMLight, “Num
of basis functions” should be understood as number of support vectors.
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fective. Also, all the ideas described in this paper can be easily extendedto the Huber loss function
using the ideas in Keerthi and DeCoste (2005).

Appendix: A Description of Data Sets Used

As in the main paper, letn denote the number of training examples. The six data sets used for
the main experiments of the paper are:Adult, IJCNN, M3V8, M3VOthers, ShuttleandVehicle. For
M3V8 and M3VOtherswe go by the experience in (DeCoste and Schölkopf, 2002) and use the
polynomial kernel,k(xi ,x j) = 1+(1+xi ·x j)

9 where eachxi is normalized to have unit length. For
all other data sets, we use the Gaussian kernel,k(xi ,x j) = 1+exp(−γ‖xi −x j‖

2). The values ofγ are
given below.13 In each case, the values chosen forγ andλ are ballpark values such that the methods
considered in the paper give good generalization performance.

Adult data set is the version given by Platt in hisSMOweb page:http://www.research.
microsoft.com/∼jplatt/smo.html. Platt created a sequence of data sets with increasing number
of examples in order to study the scaling properties of hisSMOalgorithm with respect ton. For
our experiments we only usedAdult-8which has 22,696 training examples and 9865 test examples.
Each example has 123 binary features, of which typically only 14 are non-zero. We usedγ = 0.05
andλ = 1.

The next five data sets are available from the following LIBSVM-Tools page: http://www.
csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

IJCNN data set has 49,990 training examples and 91,701 test examples. Each example is de-
scribed by 22 features. We usedγ = 4 andλ = 1/16.

Shuttledata set has 43,500 training examples and 14,500 test examples. Each example is de-
scribed by 9 features. This is a multiclass data set with seven classes. We looked only at the binary
classification problem of differentiating class 1 from the rest. We usedγ = 16 andλ = 1/512.

M3V8data set is the binary classification problem ofMNISTcorresponding to classifying digit
3 from digit 8. The original data set has 11,982 training examples and 1984test examples for
this problem. Since the original test data set could not clearly show a distinction between several
closely competing methods, we formed an extended test set by applying invariances like translation
and rotation to create an extended test set comprising of 17,856 examples. (This data set can be
obtained from the authors.) We usedλ = 0.1.

M3VOthersdata set is another binary classification problem ofMNISTcorresponding to differ-
entiating digit 3 from all the other digits. The data set has 60,000 training examples and 10,000 test
examples. We usedλ = 0.1.

Vehicledata set corresponds to the “vehicle (combined, scaled to [-1,1])” version in the LIBSVM-
Tools page mentioned above. It has 78,823 training examples and 19,705 test examples. Each ex-
ample is described by 100 features. This is a multiclass data set with three classes. We looked only
at the binary classification problem of differentiating class 3 from the rest.We usedγ = 1/8 and
λ = 1/32.

Apart from the above six large data sets, we also used modified versions of UCI data sets as
given in (R̈atsch). These data sets were used to show the sparsity that is achievable using our
method; see Table 1 of Section 1 and the detailed discussion in Section 4.

13. For both, the polynomial and Gaussian kernels, the additive term “1”gives the effect of including the threshold term
in the classifier and regularizing it.
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Abstract
Support vector machines utilizing the 1-norm, typically set up as linear programs (Mangasarian,

2000; Bradley and Mangasarian, 1998), are formulated here as a completely unconstrained mini-
mization of a convex differentiable piecewise-quadratic objective function in the dual space. The
objective function, which has a Lipschitz continuous gradient and contains only one additional fi-
nite parameter, can be minimized by a generalized Newton method and leads to an exact solution
of the support vector machine problem. The approach here is based on a formulation of a very
general linear program as an unconstrained minimization problem and its application to support
vector machine classification problems. The present approach which generalizes both (Mangasar-
ian, 2004) and (Fung and Mangasarian, 2004) is also applied to nonlinear approximation where a
minimal number of nonlinear kernel functions are utilized to approximate a function from a given
number of function values.

1. Introduction

One of the principal advantages of 1-norm support vector machines (SVMs) is that, unlike 2-norm
SVMs, they are very effective in reducing input space features for linear kernels and in reducing
the number of kernel functions (Bradley and Mangasarian, 1998; Fung and Mangasarian, 2004) for
nonlinear SVMs. With few exceptions, the simplex method (Dantzig, 1963) hasbeen the exclusive
algorithm for solving 1-norm SVMs. The interesting paper (Zhu et al., 2004) which treats the 1-
norm SVM uses standard linear programming packages for solving their formulation. To the best
of our knowledge there has not been an exact completely unconstraineddifferentiable minimiza-
tion formulation of 1-norm SVMs, which is the principal concern of the present rather theoretical
contribution which we outline now.

In Section 2 we show how a very general linear program can be solved as the minimization
of a completely unconstrained differentiable piecewise-quadratic convexfunction that contains a
single finite parameter. This result generalizes (Mangasarian, 2004) where linear programs with
millions of constraints were solved as unconstrained minimization problems by a generalized New-
ton method. In Section 3 we show how to set up 1-norm SVMs, with linear and nonlinear kernels
as unconstrained minimization problems and state a generalized Newton method for their solution.
In Section 4 we show how to solve the problem of approximating an unknown function based on
a given number of function values using a minimal number of kernel functions. We achieve this

∗. For commercial use of the algorithms described in this work, please contact the author.

c©2006 Olvi L. Mangasarian .
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by again converting a 1-norm approximation problem to an unconstrained minimization problem.
Computational results given in Section 5 show that the proposed approachis faster than a conven-
tional linear programming solver, CPLEX (ILO, 2003), and faster than another related method as
well as having better input space feature suppression for a linear classifier and mostly better kernel
function suppression for a nonlinear classifier. Section 6 concludes thepaper.

We now describe our notation and give some background material. All vectors will be column
vectors unless transposed to a row vector by a prime′. For a vectorx in then-dimensional real space
Rn, x+ denotes the vector inRn with all of its negative components set to zero. This corresponds
to projectingx onto the nonnegative orthant. For a vectorx∈ Rn, x∗ denotes the vector inRn with
components(x∗)i = 1 if xi > 0 and 0 otherwise (i.e.x∗ is the result of applying the step function
component-wise tox). Forx∈ Rn, ‖x‖1, ‖x‖ and‖x‖∞, will denote the 1−, 2− and∞− norms ofx.
For simplicity we drop the 2 from‖x‖2. The notationA∈ Rm×n will signify a realm×n matrix. For
such a matrixA′ will denote the transpose ofA, Ai will denote thei-th row ofAandAi j will denote the
i j -th element ofA. A vector of ones or zeroes in a real space of arbitrary dimension will bedenoted
by eor 0, respectively. For a piecewise-quadratic function such as,f (x) = 1

2||(Ax−b)+||
2 + 1

2x′Px,
whereA∈ Rm×n, P∈ Rn×n, P = P′, P positive semidefinite andb∈ Rm, the ordinary Hessian does
not exist because its gradient, then×1 vector∇ f (x) = A′(Ax−b)+ +Px, is not differentiable but
is Lipschitz continuous with a Lipschitz constant of‖A′‖‖A‖+ ‖P‖. However, one can define its
generalized Hessian(Hiriart-Urruty et al., 1984; Facchinei, 1995; Mangasarian, 2001) which is the
n×n symmetric positive semidefinite matrix:

∂2 f (x) = A′diag(Ax−b)∗A+P,

wherediag(Ax− b)∗ denotes anm×m diagonal matrix with diagonal elements(Aix− bi)∗, i =
1, . . . ,m. The generalized Hessian has many of the properties of the regular Hessian (Hiriart-Urruty
et al., 1984; Facchinei, 1995; Mangasarian, 2001) in relation tof (x). If the smallest eigenvalue of
∂2 f (x) is greater than some positive constant for allx∈Rn, then f (x) is a strongly convex piecewise-
quadratic function onRn. A separating plane, with respect to two given point setsA andB in Rn,
is a plane that attempts to separateRn into two halfspaces such that each open halfspace contains
points mostly ofA or B . The notation := denotes a definition.

2. Linear Programs as Exact Unconstrained Differentiable Minimization Problems

We consider in this section a very general linear program (LP) that contains nonnegative and un-
restricted variables as well as inequality and equality constraints. We will show how to obtain an
exact solution of this LP by a single minimization of a completely unconstrained differentiable
piecewise-quadratic function that contains a single finite parameter. We begin with the primal linear
program:

min
(x,y)∈Rn+ℓ

c′x+d′y s.t. Ax+By≥ b, Ex+Gy= h, x≥ 0, (1)

wherec∈ Rn, d ∈ Rℓ, A∈ Rm×n, B∈ Rm×ℓ, E ∈ Rk×n, G∈ Rk×ℓ, b∈ Rm andh∈ Rk, and its dual:

max
(u,v)∈Rm+k

b′u+h′v s.t. A′u+E′v≤ c, B′u+G′v = d, u≥ 0. (2)

The exterior penalty problem for the dual linear program is:

min
(u,v)∈Rm+k

ε(−b′u−h′v)+
1
2
(‖(A′u+E′v−c)+‖

2 +‖B′u+G′v−d‖2 +‖(−u)+‖
2). (3)
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Solving the exterior penalty problem for a positive sequence{εi} converging to zero will yield a
solution to the dual linear program (2) (Fiacco and McCormick, 1968; Bertsekas, 1999). However,
we will not do that here because of the inherent inaccuracies associated with asymptotic exterior
penalty methods and the fact that this would merely yield an approximatedual solution butnot a
primal solution. Instead, we will solve the exterior penalty problem for some finite value of the
penalty parameterε and from thisinexactdual solution we shall easily extract anexactprimal
solution by using the following proposition.

Proposition 1 Exact Primal Solution Computation Let the primal LP (1) be solvable. Then the
dual exterior penalty problem (3) is solvable for allε > 0. For anyε ∈ (0, ε̄] for someε̄ > 0, any
solution(u,v) of (3) generates an exact solution to primal LP (1) as follows:

x =
1
ε
(A′u+E′v−c)+, y =

1
ε
(B′u+G′v−d). (4)

In addition, this(x,y) minimizes:

‖x‖2 +‖y‖2 +‖Ax+By−b‖2, (5)

over the solution set of the primal LP (1).

Proof The dual exterior penalty minimization problem (3) can be written in the equivalent form:

min
(u,v,z1,z2)∈Rm+k+n+m

ε(−b′u−h′v)+
1
2
(‖z1‖

2 +‖B′u+G′v−d‖2 + ‖z2‖
2)

s.t. −A′u−E′v+c+z1 ≥ 0
u+z2 ≥ 0.

(6)

The justification for this is that at a minimum of (6) the variablesz1 andz2 are nonnegative, else
if any component of these variables is negative the objective function canbe strictly decreased by
setting that component to zero while maintaining constraint feasibility. Hence, at a solution of (6),
z1 = (A′u+E′v−c)+ andz2 = (−u)+. The Wolfe dual (Mangasarian, 1994, Problem 8.2.2) for the
convex quadratic program (6) is:

max
(u,v,z1,z2,r,s)∈Rm+k+n+m+n+m

−
1
2
((‖z1‖

2 +‖B′u‖2 +‖G′v‖2 +2v′GB′u−‖d‖2 +‖z2‖
2) − c′r

s.t. − εb+B(B′u+G′v−d)+Ar−s = 0
−εh+G(B′u+G′v−d)+Er = 0

z1 = r ≥ 0
z2 = s ≥ 0,

(7)

which can be written in the equivalent form:

− min
(u,v,r,s)∈Rm+k+n+m

1
2
(‖r‖2 +‖B′u‖2 +‖G′v‖2 +2v′GB′u−‖d‖2 +‖s‖2) + c′r

s.t. −b+B(B′u+G′v−d
ε )+Ar

ε = s
ε ≥ 0

−h+G(B′u+G′v−d
ε )+E r

ε = 0
r ≥ 0.

(8)
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Note that at a solution of the exterior penalty problem (6) and the corresponding Wolfe dual (7) we
have that:

r = z1 = (A′u+E′v−c)+

s= z2 = (−u)+.
(9)

Define now:
x := r

ε = 1
ε (A

′u+E′v−c)+

y := 1
ε (B

′u+G′v−d),
(10)

where the equality in (10) follows from (9). Substituting (10) in (8) gives,after some algebra, the
optimization problem (11) below. It is easiest to see that (8) follows from (11) if we substitute forx
andy from (10) in (11) below and note that 0≤ r = εx and that 0≤ s= ε(Ax+By−b) which follow
from the constraints of (8) and the definitions (10) ofx andy.

− min
(x,y)∈Rn+ℓ

c′x+d′y + ε
2(‖x‖2 +‖y‖2 +‖Ax+By−b‖2)

Ax+By ≥ b
Ex+Gy = h
x ≥ 0.

(11)

This convex quadratic program (11) is feasible, because the linear program (1) is feasible. It is
solvable for anyε > 0 (Frank and Wolfe, 1956) because its objective function is bounded below
since it is a strongly convex quadratic function in(x,y). Since the dual exterior penalty minimization
problem objective (3) or equivalently (6) is bounded below by the negative of the objective function
of (11) by the weak duality theorem (Mangasarian, 1994, Theorem 8.2.3), hence (3) is solvable
for any ε > 0. By the perturbation theory of linear programs (Mangasarian and Meyer, 1979), it
follows that forε ∈ (0, ε̄], for someε̄ > 0, (x,y) as defined in (10) or equivalently (4), solve the
linear program (1) and additionally minimize the expression (5) over the solution set of the original
linear program (1).2

A more direct, but just as laborious and rather unintuitive proof of Proposition 1 can be given
by showing that the KKT necessary and sufficient optimality conditions for (11) follow from the
necessary and sufficient optimality conditions of setting the gradient of the exterior penalty problem
(3) equal to zero. We do not give that proof here because it does not justify how the quadratic
perturbation terms of (11) arose, but it merely starts with these terms as given.

We turn now to an implementation of this result for various 1-norm SVMs.

3. 1-Norm SVMs as Unconstrained Minimization Problems

We consider first the 1-norm linear SVM binary classification problem (Mangasarian, 2000; Bradley
and Mangasarian, 1998; Fung and Mangasarian, 2004):

min
(w,γ,y)

ν‖y‖1 +‖w‖1

s.t. D(Aw−eγ)+y ≥ e
y ≥ 0,

(12)

where, with some abuse of notation by multiple representation, we let them×n matrix A in this
section representmpoints inRn to be separated to the best extent possible by a separating plane:

x′w = γ, (13)
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according to the class of each row ofA as given by them×m diagonal matrixD with elements
Dii = ±1. The objective term‖y‖1 minimizes the classification error weighted with the positive
parameterν while the term‖w‖1 maximizes the∞-norm margin (Mangasarian, 1999) between the
bounding planesx′w= γ±1 that approximately bound each of the two classes of points represented
by A. It is well known (Bradley and Mangasarian, 1998; Fung and Mangasarian, 2004) that using
‖w‖1 in the objective function of (12) instead of the standard 2-norm squaredterm‖w‖2 (Vapnik,
2000; Scḧolkopf and Smola, 2002) results in input space feature selection by suppressing many
components ofw, whereas the standard 2-norm SVM does not suppress any components of w in
general. We convert (12) to an explicit linear program as in (Fung and Mangasarian, 2004) by
setting:

w = p−q, p≥ 0, q≥ 0, (14)

which results in the linear program:

min
(p,q,γ,y)

νe′y+e′(p+q)

s.t. D(A(p−q)−eγ)+y ≥ e
p,q,y ≥ 0.

(15)

We note immediately that this linear program is solvable because it is feasible andits objective
function is bounded below by zero. Hence, Proposition 1 can be utilized to yield the following
unconstrained reformulation of the problem.

Proposition 2 Exact1-Norm SVM Solution via Unconstrained Minimization The unconstrained
dual exterior penalty problem for the1-norm SVM (15):

min
u∈Rm

− εe′u+
1
2
(‖(A′Du−e)+‖

2 +‖(−A′Du−e)+‖
2 +(−e′Du)2 +‖(u−νe)+‖

2 +‖(−u)+‖
2),

(16)
is solvable for allε > 0. For anyε ∈ (0, ε̄] for somēε > 0, any solution u of (16) generates an exact
solution of the1-norm SVM classification problem (12) as follows:

w = p−q = = 1
ε ((A

′Du−e)+− (−A′Du−e)+),

γ = −1
ε e′Du,

y = 1
ε (u−νe)+.

(17)

In addition this(w,γ,y) minimizes:

‖w‖2 + γ2 +‖y‖2 +‖D(Aw−eγ)+y−e‖2, (18)

over the solution set of the1-norm SVM classification problem (12).

We note here the similarity between our unconstrained penalty minimization problem(16) and the
corresponding problem of (Fung and Mangasarian, 2004, Equation 23). But, we also note a major
difference. In the latter, a penalty parameterα multiplies the term‖(−u)+‖

2 of equation (16) above
and is required to approach∞ in order to obtain an exact solution to the original problem (12).
Thus, the solution obtained by (Fung and Mangasarian, 2004, Equation 23) for any finiteα is only
approximate, as pointed out there. Furthermore, our solution to (16) hereminimizes the expression
(18) rather than being merely an approximate least 2-norm solution as is the case in (Fung and
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Mangasarian, 2004, Equation 11). However the generalized Newton method prescribed in (Fung
and Mangasarian, 2004) for a sequence{α ↑ ∞}, is applicable here withα = 1. For completeness
we state that result here. To do that we letf (u) denote the exterior penalty function (16). Then the
gradient and generalized Hessian as defined in the Introduction are given as follows.

∇ f (u) = −εe+DA(A′Du−e)+−DA(−A′Du−e)+

+Dee′Du+(u−νe)+− (−u)+.
(19)

∂2 f (u) = DA(diag((A′Du−e)∗ +(−A′Du−e)∗)A′D
+Dee′D+diag((u−νe)∗ +(−u)∗)

= DA(diag(|A′Du|−e)∗)A′D
+Dee′D+diag((u−νe)∗ +(−u)∗),

(20)

where the last equality follows from the equality:

(a−1)∗ +(−a−1)∗ = (|a|−1)∗. (21)

To handle a nonlinear symmetric kernelK(A,B) that mapsRm×n×Rn×ℓ into Rm×ℓ and which
generates, instead of the separating plane (13), the nonlinear separating surface:

K(x′,A′)Dv = γ, (22)

all we need to do is essentially to make the replacement:

A −→ K(A,A′)D, (23)

which we justify now. For a linear kernelK(A,A′) = AA′, we have thatw = A′Dv, wherev is a dual
variable (Mangasarian, 2000) and the primal linear programming SVM (15)becomes upon using
w = p−q = A′Dv and minimizing the 1-norm ofv in the objective instead that ofw:

min
(v,γ,y)

νe′y+‖v‖1

s.t. D(AA′Dv−eγ)+y ≥ e
y ≥ 0.

(24)

Setting:
v = r −s, r ≥ 0, s≥ 0, (25)

the linear program (24) becomes:

min
(r,s,γ,y)

νe′y+e′(r +s)

s.t. D(AA′D(r −s)−eγ)+y ≥ e
r,s,y ≥ 0,

(26)

which is the linear kernel SVM in terms of the dual variablev= r−s. If we replace the linear kernel
AA′ in (26) by the nonlinear kernelK(A,A′) we obtain the nonlinear kernel linear program:

min
(r,s,γ,y)

νe′y+e′(r +s)

s.t. D(K(A,A′)D(r −s)−eγ)+y ≥ e
r,s,y ≥ 0.

(27)
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We immediately note that the linear program (15) is identical to the linear program(27) if we make
the replacement (23).

Finally, a word regarding the choice ofε in Propositions 1 and 2. Computationally in (Fung
and Mangasarian, 2004) this does not seem to be critical and is effectively addressed as follows. By
(Lucidi, 1987, Corollary 3.2), if for two successive values ofε: ε1 > ε2, the corresponding solutions
of the ε-perturbed quadratic programs (11) are equal, then under certain assumptions these equal
successive solutions constitute a solution of the linear programs (1) or (12) that also minimize the
quadratic perturbations (5) or (18). This result can be implemented computationally by using anε,
which when decreased by some factor yields the same solution to (1) or (12). In our computational
results this turned out to either 4×10−4 or 10−6.

We state now our generalized Newton algorithm for solving the unconstrained minimization
problem (16) as follows.

Algorithm 3 Generalized Newton Algorithm for (16) Let f(u), ∇ f (u) and ∂2 f (u) be defined
by (16),(19) and (20). Set the parameter valuesν, ε, δ, tolerancetol, and imax (typically: ε ∈
[10−6 , 4×10−4] for linear SVMs andε ∈ [10−9 ,1] nonlinear SVMs, tol= 10−3, imax= 50, while
ν andδ are set by a tuning procedure). Start with any u0 ∈ Rm. For i = 0,1, . . .:

(I) ui+1 = ui −λi(∂2 f (ui)+δI)−1∇ f (ui) = ui +λidi ,
where the Armijo stepsizeλi = max{1, 1

2, 1
4, . . .} is such that:

f (ui)− f (ui +λid
i) ≥−

λi

4
∇ f (ui)′di , (28)

and di is the modified Newton direction:

di = −(∂2 f (ui)+δI)−1∇ f (ui). (29)

In other words, start withλi = 1 and keep multiplyingλi by 1
2 until (28) is satisfied.

(II) Stop if‖ui −ui+1‖ ≤ tol or i = imax. Else, set i= i +1 and go to(I).

(III) Define the solution of the1-norm SVM (12) with least quadratic perturbation (18) by (17)
with u= ui .

We state a convergence result for this algorithm now.

Proposition 4 Let tol = 0, imax= ∞ and letε > 0 be sufficiently small. Each accumulation point
ū of the sequence{ui} generated by Algorithm 3 solves the exterior penalty problem (16). The
corresponding(w̄, γ̄, ȳ) obtained by setting u tōu in (17) is an exact solution to the primal1-norm
SVM (12) which in addition minimizes the quadratic perturbation (18) over thesolution set of (12).

Proof That each accumulation point ¯u of the sequence{ui} solves the minimization problem (13)
follows from exterior penalty results (Fiacco and McCormick, 1968; Bertsekas, 1999) and standard
unconstrained descent methods such as (Mangasarian, 1995, Theorem 2.1, Examples 2.1(i), 2.2(iv))
and the facts that the direction choicedi of (24) satisfies, for somec > 0:

−∇ f (ui)′di = ∇ f (ui)′(δI +∂2 f (ui))−1∇ f (ui)
≥ c‖∇ f (ui)‖2,

(30)

and that we are using an Armijo stepsize (28). The last statement of the theorem follows from
Proposition 2.2

We turn now to minimal kernel function approximation.
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4. Minimal Kernel Function Approximation as Unconstrained Mi nimization
Problems

We consider here the problem of constructing a kernel function approximation from a given number
of function values using the 1-norm to minimize both the error in the approximationas well as the
weights of the kernel functions. Utilizing the 1-norm in minimizing the kernel weights suppresses
unnecessary kernel functions similar to the approach of (Mangasarianet al., 2004) except that we
shall solve the resulting linear program here through an unconstrained minimization reformulation.
Also, for simplicity we shall not incorporate prior knowledge as was done in(Mangasarian et al.,
2004).

We considerm given function valuesb ∈ Rm associated withm n-dimensional vectors repre-
sented by them rows of them×n matrix A. We shall fit the data points by a linear combination of
symmetric kernel functions as follows:

K(A,A′)v+eγ ≈ b, (31)

where the unknown parametersv∈ Rm andγ ∈ R are determined by minimizing the 1-norm of the
approximation error weighted byν > 0 and the 1-norm ofv as follows:

min
(v,γ)∈Rn+1

ν‖K(A,A′)v+eγ−b‖1 +‖v‖1. (32)

Setting
v = r −s, r ≥ 0, s≥ 0,

K(A,A′)v+eγ−b = y−z, y≥ 0, z≥ 0,
(33)

we obtain the following linear program:

min
(r,s,γ,y,z)

νe′(y+z)+e′(r +s)

s.t. K(A,A′)(r −s)+eγ−y+z = b
r,s,y,z ≥ 0,

(34)

which is similar to the nonlinear kernel SVM classifier linear programming formulation (27) with
equality constraints replacing inequality constraints. We also note that this linear program is solv-
able because it is feasible and its objective function is bounded below by zero. Hence, Proposition
1 can be utilized to yield the following unconstrained reformulation of the problem.

Proposition 5 Exact 1-Norm Nonlinear SVM Approximation via Unconstrained Minimiza-
tion The unconstrained dual exterior penalty problem for the1-norm SVM approximation (34):

min
u∈Rm

− εb′u+
1
2
(‖(K(A,A′)u−e)+‖

2 +‖(−K(A,A′)u−e)+‖
2+

(e′u)2 +‖(−u−νe)+‖
2 +‖(u−νe)+‖

2),
(35)

is solvable for allε > 0. For anyε ∈ (0, ε̄] for somēε > 0, any solution u of (35) generates an exact
of the1-norm SVM approximation problem (32) as follows:

v = r −s= = 1
ε ((K(A,A′)u−e)+− (−K(A,A′)u−e)+),

γ = 1
ε e′u,

y = 1
ε (−u−νe)+,

z = 1
ε (u−νe)+

(36)
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In addition this(r,s,γ,y,z) minimizes:

‖r‖2 +‖s‖2 + γ2 +‖y‖2 +‖z‖2, (37)

over the solution set of the1-norm SVM classification problem (34).

Computational results utilizing the linear programming formulation (32) with prior knowledge
in (Mangasarian et al., 2004) but using the simplex method of solution is effective for solving ap-
proximation problems. The unconstrained minimization formulation (35) is anothermethod of solu-
tion which can also handle such problems without prior knowledge as well aswith prior knowledge
with appropriate but straightforward modifications.

We turn now to our computational results.

5. Computational Results

Computational testing was carried on a 3 Ghz Pentium 4 machine with 2GB of memoryrunning
CentOS 4 Linux and utilizing the CPLEX 7.1 (ILO, 2003) linear programming package within
MATLAB 7.1 (MATLAB, 1994-2001). We tested our algorithm on six publiclyavailable data sets.
Five from the UCI Machine Learning Repository Murphy and Aha (1992): Ionosphere, Cleveland
Heart, Pima Indians, BUPA Liver and Housing. The sixth data set, Galaxy Dim, is available from
Odewahn et al. (1992). The results are summarized in Tables 1 and 2.

For the linear classifier (13) we compare in Table 1, NLPSVM (Fung and Mangasarian, 2004),
CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm for (16),on six public data sets
using ten-fold cross validation. NLPSVM is essentially identical to our algorithm, except that it
requires a penalty parameter multiplying the last term of (16) to approach infinity. CPLEX uses the
standard linear programming package CPLEX (ILO, 2003) to solve (26).We note that our method
LPNewton is faster than both NLPSVM and CPLEX on all six data sets and gives the best feature
suppression based on the average number of features used by the linear classifier (13). NLPSVM
has the best test set correctness on two of the data sets, and comparablecorrectness on the other
four. The Armijo step size was not needed in either NLPSVM or LPNewton. Tuning on 10%
of the training set was used to determine the parametersν andδ from the sets{2−12, . . . ,212} and
{10−3, . . . , .103} respectively. Epsilon was set to the value 4.00E-04 used in (Fung and Mangasarian,
2004) for NLPSM and to 1.00E-06 for our LPNewton algorithm.

For the nonlinear classifier (22) we compare in Table 2, NLPSVM (Fung and Mangasarian,
2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm 3 for (27), on three public
data sets using ten-fold cross validation. We note again that our method LPNewton is faster than
both NLPSVM and CPLEX on all three data sets and gives the best reduction in the number of
kernel functions utilized, on two of the data sets, based on the cardinality ofv = r −s as defined in
(25) and (27). Best test set correctness was achieved on two data sets by our method and it was a
close second on the third data set. Again the Armijo step size was not needed ineither NLPSVM or
LPNewton. Tuning and choice of the parametersν andε was done as for the linear classifier above.
A Gaussian kernel was used for all three methods and data sets with the Gaussian parameter tuned
from the set{2−12, . . . ,212}.

1525



MANGASARIAN

Data Set/Size Algorithm Iters Time Train % Test % Feat Eps

Ionosphere NLPSVM 69 0.1796 92.6254 83.8016 20.6 4e-4
Ionosphere CPLEX 0.179 92.6255 85.4841 25.1
Ionosphere LPNewton 30.7 0.0767 89.6169 87.1825 9.6 1e-6

351× 34

BUPA Liver NLPSVM 100 0.1062 70.1791 67.916 5.9 4e-4
BUPA Liver CPLEX 0.2278 70.4994 67.2941 6
BUPA Liver LPNewton 63.3 0.0623 69.1814 67.563 5.2 1e-6

345× 6

Pima Indians NLPSVM 93.2 0.2169 73.5809 72.6692 6.8 4e-4
Pima Indians CPLEX 1.1707 76.8086 75.2683 5.8
Pima Indians LPNewton 40.6 0.0904 76.0563 75.0051 4.6 1e-6

768× 8

Cleveland NLPSVM 42.2 0.0515 85.6742 84.1609 7.5 4e-4
Cleveland CPLEX 0.1409 85.9348 84.1609 8.4
Cleveland LPNewton 25.3 0.028 85.7478 84.5287 7.1 1e-6
297× 13

Housing NLPSVM 66.6 0.0891 83.9049 83.8078 9.1 4e-4
Housing CPLEX 0.363 86.8035 84.3882 10.5
Housing LPNewton 57.4 0.0781 85.6626 83.2078 7.7 1e-6
506× 13

Galaxy Dim NLPSVM 97.5 1.097 94.4392 94.4415 5.9 4e-4
Galaxy Dim CPLEX 12.5357 95.5153 95.5153 11.5
Galaxy Dim LPNewton 39.2 0.4297 94.4948 94.5131 4.8 1e-6

4192× 14

Table 1: Comparison of the Linear Classifier (13) obtained by NLPSVM (Fung and Man-
gasarian, 2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm 3
for (16) on six public data sets. Time is for one fold in seconds, Train and Test corect-
ness is the average over ten folds and Features (Feat) denote the average number over
ten folds of input space features utilized by the linear classifier. Epsilon (Eps) is the
finite parameter defined in (16). Best result is in bold. Note that LPNewton is fastest
and has least features.
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Data Set/Size Algorithm Iters Time Train % Test % Card(v) Eps
Ionosphere NLPSVM 81.7 0.181 92.0242 89.4683 18.5 4e-4
Ionosphere CPLEX 0.155594.7773 91.4683 15.5
Ionosphere LPNewton 36.5 0.103 92.5297 91.1587 11.2 1e-6

351× 34

BUPA NLPSVM 88.3 0.1706 68.8514 65.2521 15.5 4e-4
BUPA CPLEX 0.2552 74.1061 69.2521 17.3
BUPA LPNewton 88.2 0.1345 73.6572 70.6975 25.5 1e+0

345× 6

Cleveland NLPSVM 84.6 0.1128 83.168 80.4368 9.1 4e-4
Cleveland CPLEX 0.1097 85.0383 81.8161 11.8
Cleveland LPNewton 80.2 0.1061 83.0151 82.8621 5.6 1e-9
297× 13

Table 2: Comparison of the Nonlinear Classifier (22) obtained by NLPSVM (Fung and Man-
gasarian, 2004), CPLEX (ILO, 2003) and our Generalized LPNewton Algorithm 3
for (27) on three public data sets. Time for one fold is in seconds, Train and Test
corectness is on ten folds. Card(v) denotes the average numberof nonzero compo-
nents ofv = r − s as defined in (25) and (27) and hence that is the number of kernel
functions utilized by the nonlinear classifier (22). Epsilon (Eps) is thefinite param-
eter defined in (16) with the replacement (23) ofA by K(A,A′)D. Features (Feat)
denotes the average number of features over ten folds. Reduced SVM (RSVM) (Lee
and Mangasarian, 2001) was used to speed all computations by using the reduced
kernel K(A, Ā′) where m

10 randomly chosen rows ofA constitute the rows of rows ofĀ.
Best result is in bold. Note that LPNewton is fastest.

1527



MANGASARIAN

6. Conclusion and Outlook

We have derived an unconstrained differentiable convex minimization reformulation of a most gen-
eral linear program and have applied it to 1-norm classification and approximation problems. Very
effective computational results of our method on special cases of general linear programs (Man-
gasarian, 2004) and an approximate version for support vector machine classification (Fung and
Mangasarian, 2004), as well as computational results presented in Section 5, lead us to believe that
the proposed unconstrained reformulation of very general linear programs and support vector ma-
chines is a very promising computational method for solving such problems as well as extensions
to knowledge-based formulations (Mangasarian, 2005; Fung et al., 2003; Mangasarian et al., 2004).
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Abstract

While classical kernel-based learning algorithms are basedon a single kernel, in practice it is often
desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel
matrices for classification, leading to a convex quadratically constrained quadratic program. We
show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recy-
cling the standard SVM implementations. Moreover, we generalize the formulation and our method
to a larger class of problems, including regression and one-class classification. Experimental re-
sults show that the proposed algorithm works for hundred thousands of examples or hundreds of
kernels to be combined, and helps for automatic model selection, improving the interpretability of
the learning result. In a second part we discuss general speed up mechanism for SVMs, especially
when used withsparsefeature maps as appear for string kernels, allowing us to train a string kernel
SVM on a 10 million real-world splice data set from computational biology. We integrated multi-
ple kernel learning in our machine learning toolboxSHOGUN for which the source code is publicly
available athttp://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

Keywords: multiple kernel learning, string kernels, large scale optimization, support vector ma-
chines, support vector regression, column generation, semi-infinite linear programming

1. Introduction

Kernel based methods such as support vector machines (SVMs) have proven to be powerful for a
wide range of different data analysis problems. They employ a so-called kernel functionk(xi ,x j)
which intuitively computes the similarity between two examplesxi and x j . The result of SVM
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learning is anα-weighted linear combination of kernels with a biasb

f (x) = sign

(
N

∑
i=1

αiyik(xi ,x)+b

)

, (1)

where thexi , i = 1, . . . ,N are labeled training examples (yi ∈ {±1}).
Recent developments in the literature on SVMs and other kernel methods haveshown the need

to consider multiple kernels. This provides flexibility and reflects the fact thattypical learning
problems often involve multiple, heterogeneous data sources. Furthermore, as we shall see below, it
leads to an elegant method to interpret the results, which can lead to a deeperunderstanding of the
application.

While this so-called “multiple kernel learning” (MKL) problem can in principle be solved via
cross-validation, several recent papers have focused on more efficient methods for multiple kernel
learning (Chapelle et al., 2002; Bennett et al., 2002; Grandvalet and Canu, 2003; Ong et al., 2003;
Bach et al., 2004; Lanckriet et al., 2004; Bi et al., 2004).

One of the problems with kernel methods compared to other techniques is that the resulting
decision function (1) is hard to interpret and, hence, is difficult to use in order to extract relevant
knowledge about the problem at hand. One can approach this problem by considering convex
combinations ofK kernels, i.e.

k(xi ,x j) =
K

∑
k=1

βkkk(xi ,x j) (2)

with βk ≥ 0 and∑K
k=1 βk = 1, where each kernelkk uses only a distinct set of features. For ap-

propriately designed sub-kernelskk, the optimized combination coefficients can then be used to
understand which features of the examples are of importance for discrimination: if one is able to
obtain an accurate classification by asparseweightingβk, then one can quite easily interpret the re-
sulting decision function. This is an important property missing in current kernel based algorithms.
Note that this is in contrast to the kernel mixture framework of Bennett et al. (2002) and Bi et al.
(2004) where each kerneland each example are assigned an independent weight and therefore do
not offer an easy way to interpret the decision function. We will illustrate that the considered MKL
formulation provides useful insights and at the same time is very efficient.

We consider the framework proposed by Lanckriet et al. (2004), which results in a convex op-
timization problem - a quadratically-constrained quadratic program (QCQP). This problem is more
challenging than the standard SVM QP, but it can in principle be solved by general-purpose opti-
mization toolboxes. Since the use of such algorithms will only be feasible for small problems with
few data points and kernels, Bach et al. (2004) suggested an algorithm based on sequential mini-
mization optimization (SMO Platt, 1999). While the kernel learning problem is convex, it is also
non-smooth, making the direct application of simple local descent algorithms such as SMO infeasi-
ble. Bach et al. (2004) therefore considered a smoothed version of theproblem to which SMO can
be applied.

In the first part of the paper we follow a different direction: We reformulate the binary clas-
sification MKL problem (Lanckriet et al., 2004) as asemi-infinite linear program, which can be
efficiently solved using an off-the-shelf LP solver and a standard SVM implementation (cf. Sec-
tion 2.1 for details). In a second step, we show how easily the MKL formulationand the algorithm
is generalized to a much larger class of convex loss functions (cf. Section2.2). Our proposedwrap-
per methodworks for any kernel and many loss functions: In order to obtain an efficient MKL
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algorithm for a new loss function, it now suffices to have an LP solver andthe corresponding single
kernel algorithm (which is assumed to be efficient). Using this general algorithm we were able to
solve MKL problems with up to 30,000 examples and 20 kernels within reasonable time.1

We also consider achunkingalgorithm that can be considerably more efficient, since it optimizes
the SVM α multipliers and the kernel coefficientsβ at the same time. However, for large scale
problems it needs to compute and cache theK kernels separately, instead of only one kernel as
in the single kernel algorithm. This becomes particularly important when the sample sizeN is
large. If, on the other hand, the number of kernelsK is large, then the amount of memory available
for caching is drastically reduced and, hence, kernel caching is not effective anymore. (The same
statements also apply to the SMO-like MKL algorithm proposed in Bach et al. (2004).)

Since kernel caching cannot help to solve large scale MKL problems, we sought for ways to
avoid kernel caching. This is of course not always possible, but it certainly is for the class of
kernels where the feature mapΦ(x) can be explicitly computed and computations withΦ(x) can
be implemented efficiently. In Section 3.1.1 we describe several string kernels that are frequently
used in biological sequence analysis and exhibit this property. Here, thefeature space can be very
high dimensional, butΦ(x) is typically very sparse. In Section 3.1.2 we discuss several methods for
efficiently dealing with high dimensional sparse vectors, which not only is ofinterest for MKL but
also for speeding up ordinary SVM classifiers. Finally, we suggest a modification of the previously
proposed chunking algorithm that exploits these properties (Section 3.1.3). In the experimental part
we show that the resulting algorithm is more than 70 times faster than the plain chunking algorithm
(for 50,000 examples), even though large kernel caches were used.Also, we were able to solve
MKL problems with up to one million examples and 20 kernels and a 10 million real-world splice
site classification problem from computational biology. We conclude the paper by illustrating the
usefulness of our algorithms in several examples relating to the interpretationof results and to
automatic model selection. Moreover, we provide an extensive benchmarkstudy comparing the
effect of different improvements on the running time of the algorithms.

We have implemented all algorithms discussed in this work in C++ with interfaces toMatlab,
Octave, R andPython. The source code is freely available at

http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

The examples used to generate the figures are implemented inMatlab using theMatlab inter-
face of theSHOGUN toolbox. They can be found together with the data sets used in this paper at
http://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.

2. A General and Efficient Multiple Kernel Learning Algorithm

In this section we first derive our MKL formulation for the binary classification case and then show
how it can be extended to general cost functions. In the last subsectionwe will propose algorithms
for solving the resulting semi-infinite linear programs (SILPs).

2.1 Multiple Kernel Learning for Classification Using SILP

In the multiple kernel learning problem for binary classification one is givenN data points(xi ,yi)
(yi ∈ {±1}), wherexi is translated viaK mappingsΦk(x) 7→R

Dk, k= 1, . . . ,K, from the input intoK

1. The results are not shown.
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feature spaces(Φ1(xi), . . . ,ΦK(xi)) whereDk denotes the dimensionality of thek-th feature space.
Then one solves the following optimization problem (Bach et al., 2004), whichis equivalent to the
linear SVM forK = 1:2

MKL Primal for Classification

min
1
2

(
K

∑
k=1

‖wk‖2

)2

+C
N

∑
i=1

ξi (3)

w.r.t. wk ∈ R
Dk,ξ ∈ R

N,b∈ R,

s.t. ξi ≥ 0 andyi

(
K

∑
k=1

〈wk,Φk(xi)〉+b

)

≥ 1−ξi , ∀i = 1, . . . ,N

Note that the problem’s solution can be written aswk = βkw′k with βk ≥ 0, ∀k = 1, . . . ,K and
∑K

k=1 βk = 1 (Bach et al., 2004). Note that therefore theℓ1-norm of β is constrained to one, while
one is penalizing theℓ2-norm ofwk in each blockk separately. The idea is thatℓ1-norm constrained
or penalized variables tend to have sparse optimal solutions, whileℓ2-norm penalized variables do
not (e.g. Rätsch, 2001, Chapter 5.2). Thus the above optimization problemoffers the possibility to
find sparse solutions on the block level with non-sparse solutions within the blocks.

Bach et al. (2004) derived the dual for problem (3). Taking their problem (DK), squaring the
constraints on gamma, multiplying the constraints by1

2 and finally substituting12γ2 7→ γ leads to the
to the followingequivalentmultiple kernel learning dual:

MKL Dual for Classification

min γ−
N

∑
i=1

αi

w.r.t. γ ∈ R,α ∈ R
N

s.t. 0≤ α≤ 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkk(xi ,x j)≤ γ, ∀k = 1, . . . ,K

wherekk(xi ,x j) = 〈Φk(xi),Φk(x j)〉. Note that we have one quadratic constraint per kernel (Sk(α)≤
γ). In the case ofK = 1, the above problem reduces to the original SVM dual. We will now move
the term−∑N

i=1 αi , into the constraints onγ. This can be equivalently done by adding−∑N
i=1 αi to

both sides of the constraints and substitutingγ−∑N
i=1 αi 7→ γ:

2. We assume tr(Kk) = 1, k = 1, . . . ,K and setd j in Bach et al. (2004) to one.
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MKL Dual ∗ for Classification

min γ (4)

w.r.t. γ ∈ R,α ∈ R
N

s.t. 0≤ α≤ 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkk(xi ,x j)−
N

∑
i=1

αi

︸ ︷︷ ︸

=:Sk(α)

≤ γ, ∀k = 1, . . . ,K

In order to solve (4), one may solve the following saddle point problem: minimize

L := γ+
K

∑
k=1

βk(Sk(α)− γ) (5)

w.r.t. α ∈R
N,γ ∈R (with 0≤ α≤C1 and∑i αiyi = 0), and maximize it w.r.t.β ∈R

K , where0≤ β.
Setting the derivative w.r.t. toγ to zero, one obtains the constraint∑K

k=1 βk = 1 and (5) simplifies
to: L = S(α,β) := ∑K

k=1 βkSk(α). While oneminimizesthe objective w.r.t.α, at the same time one
maximizesw.r.t. the kernel weightingβ. This leads to a

Min-Max Problem

max
β

min
α

K

∑
k=1

βkSk(α) (6)

w.r.t. α ∈ R
N, β ∈ R

K

s.t. 0≤ α≤C , 0≤ β,
N

∑
i=1

αiyi = 0 and
K

∑
k=1

βk = 1.

This problem is very similar to Equation (9) in Bi et al. (2004) when “compositekernels,“ i.e. linear
combinations of kernels are considered. There the first term ofSk(α) has been moved into the
constraint, stillβ including the∑K

k=1 βk = 1 is missing.3

Assumeα∗ were the optimal solution, thenθ∗ := S(α∗,β) would be minimal and, hence,S(α,β)≥
θ∗ for all α (subject to the above constraints). Hence, finding a saddle-point of (5) is equivalent to
solving the following semi-infinite linear program:

Semi-Infinite Linear Program (SILP)

max θ (7)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β, ∑
k

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ (8)

for all α ∈ R
N with 0≤ α≤C1 and∑

i

yiαi = 0

3. In Bi et al. (2004) it is argued that the approximation quality of composite kernels is inferior to mixtures of kernels
where a weight is assigned per exampleand kernel as in Bennett et al. (2002). For that reason and as no efficient
methods were available to solve the composite kernel problem, they only considered mixtures of kernels and in the
experimental validation used a uniform weighting in the composite kernel experiment. Also they did not consider to
use composite kernels as a method to interpret the resulting classifier but looked at classification accuracy instead.
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Note that this is a linear program, asθ and β are only linearly constrained. However there are
infinitely many constraints: one for eachα ∈ R

N satisfying 0≤ α ≤ C and∑N
i=1 αiyi = 0. Both

problems (6) and (7) have the same solution. To illustrate that, considerβ is fixed and we minimize
α in (6). Let α∗ be the solution that minimizes (6). Then we can increase the value ofθ in (7) as
long as none of the infinitely manyα-constraints (8) is violated, i.e. up toθ = ∑K

k=1 βkSk(α∗). On the
other hand as we increaseθ for a fixedα the maximizingβ is found. We will discuss in Section 2.3
how to solve such semi-infinite linear programs.

2.2 Multiple Kernel Learning with General Cost Functions

In this section we consider a more general class of MKL problems, where one is given anarbitrary
strictly convex and differentiable loss function, for which we derive its MKL SILP formulation.
We will then investigate in this general MKL SILP using different loss functions, in particular the
soft-margin loss, theε-insensitive loss and the quadratic loss.

We define the MKL primal formulation for a strictly convex and differentiable loss function
L( f (x),y) as:

MKL Primal for Generic Loss Functions

min
1
2

(
K

∑
k=1

‖wk‖

)2

+
N

∑
i=1

L( f (xi),yi) (9)

w.r.t. w = (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

In analogy to Bach et al. (2004) we treat problem (9) as a second order cone program (SOCP)
leading to the following dual (see Appendix A for the derivation):

MKL Dual ∗ for Generic Loss Functions

min γ (10)

w.r.t. γ ∈ R, α ∈ RN

s.t.
N

∑
i=1

αi = 0 and

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)≤ γ, ∀k = 1, . . . ,K

HereL′−1 denotes the inverse of the derivative ofL( f (x),y) w.r.t. the predictionf (x). To derive the
SILP formulation we follow the same recipe as in Section 2.1: deriving the Lagrangian leads to a
max-min problem formulation to be eventually reformulated as a SILP:
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SILP for Generic Loss Functions

max θ (11)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ, ∀α ∈ R
N,

N

∑
i=1

αi = 0,

where

Sk(α) =−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

We assumed thatL(x,y) is strictly convex and differentiable inx. Unfortunately, the soft margin and
ε-insensitive loss do not have these properties. We therefore considerthem separately in the sequel.

Soft Margin Loss We use the following loss in order to approximate the soft margin loss:

Lσ(x,y) =
C
σ

log(1+exp(σ(1−xy))).

It is easy to verify that

lim
σ→∞

Lσ(x,y) = C(1−xy)+.

Moreover,Lσ is strictly convex and differentiable forσ < ∞. Using this loss and assumingyi ∈
{±1}, we obtain (cf. Appendix B.3):

Sk(α) =−
N

∑
i=1

C
σ

(

log

(
Cyi

αi +Cyi

)

+ log

(

−
αi

αi +Cyi

))

+
N

∑
i=1

αiyi +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

If σ→ ∞, then the first two terms vanish provided that−C≤ αi ≤ 0 if yi = 1 and 0≤ αi ≤C if
yi =−1. Substitutingαi =−α̃iyi , we obtain

Sk(α̃) =−
N

∑
i=1

α̃i +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

α̃iyiΦk(xi)

∥
∥
∥
∥
∥

2

2

and
N

∑
i=1

α̃iyi = 0,

with 0≤ α̃i ≤C (i = 1, . . . ,N) which is the same as (7).

One-Class Soft Margin Loss The one-class SVM soft margin (e.g. Schölkopf and Smola, 2002)
is very similar to the two-class case and leads to

Sk(α) =
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

subject to0≤ α≤ 1
νN1 and∑N

i=1 αi = 1.
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ε-insensitive Loss Using the same technique for the epsilon insensitive lossL(x,y) = C(1−|x−
y|)+, we obtain

Sk(α,α∗) =
1
2

∥
∥
∥
∥
∥

N

∑
i=1

(αi−α∗i )Φk(xi)

∥
∥
∥
∥
∥

2

2

−
N

∑
i=1

(αi +α∗i )ε−
N

∑
i=1

(αi−α∗i )yi

and
N

∑
i=1

(αi−α∗i )yi = 0, with 0≤ α,α∗ ≤C1.

It is easy to derive the dual problem for other loss functions such as thequadratic loss or logistic
loss (see Appendix B.1 & B.2). Note that the dual SILP’s only differ in the definition of Sk and the
domains of theα’s.

2.3 Algorithms to Solve SILPs

All semi-infinite linear programsconsidered in this work have the following structure:

max θ (12)

w.r.t. θ ∈ R,β ∈ R
K

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkSk(α)≥ θ for all α ∈ C .

They have to be optimized with respect toβ and θ. The constraints depend on definition ofSk

and therefore on the choice of the cost function. Using Theorem 5 in Rätsch et al. (2002) one can
show that the above SILP has a solution if the corresponding primal is feasible and bounded (see also
Hettich and Kortanek, 1993). Moreover, there is no duality gap, ifM = co{[S1(α), . . . ,SK(α)]⊤ |α∈
C } is a closed set. For all loss functions considered in this paper this condition issatisfied.

We propose to use a technique calledColumn Generationto solve (12). The basic idea is to
compute the optimal(β,θ) in (12) for a restricted subset of constraints. It is called therestricted
master problem. Then a second algorithm generates a new, yet unsatisfied constraint determined by
α. In the best case the other algorithm finds the constraint that maximizes the constraint violation
for the given intermediate solution(β,θ), i.e.

αβ := argmin
α∈C

∑
k

βkSk(α). (13)

If αβ satisfies the constraint∑K
k=1 βkSk(αβ) ≥ θ, then the solution(θ,β) is optimal. Otherwise, the

constraint is added to the set of constraints and the iterations continue.
Algorithm 1 is a special case of a set of SILP algorithms known asexchange methods. These

methods are known to converge (cf. Theorem 7.2 in Hettich and Kortanek,1993). However, no
convergence rates for such algorithm are known.4

Since it is often sufficient to obtain an approximate solution, we have to definea suitable con-
vergence criterion. Note that the problem is solved when all constraints are satisfied. Hence, it is a

4. It has been shown that solving semi-infinite problems like (7), using a method related to boosting (e.g.
Meir and Rätsch, 2003) one requires at mostT = O (log(M)/ε̂2) iterations, wherêε is the remaining constraint viola-
tion and the constants may depend on the kernels and the number of examplesN (Rätsch, 2001; Rätsch and Warmuth,
2005; Warmuth et al., 2006). At least for not too small values ofε̂ this technique produces reasonably fast good ap-
proximate solutions.
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natural choice to use the normalized maximal constraint violation as a convergence criterion, i.e. the

algorithm stops ifεMKL ≥ εt
MKL :=

∣
∣
∣1− ∑K

k=1 βt
kSk(αt)

θt

∣
∣
∣, whereεMKL is an accuracy parameter,(βt ,θt)

is the optimal solution at iterationt−1 andαt corresponds to the newly found maximally violating
constraint of the next iteration.

In the following we will formulate algorithms that alternately optimize the parametersα andβ.

2.3.1 A WRAPPERALGORITHM

The wrapper algorithm (see Algorithm 1) divides the problem into an inner and an outer subproblem.
The solution is obtained by alternatively solving the outer problem using the results of the inner
problem as input and vice versa until convergence. The outer loop constitutes therestricted master
problemwhich determines the optimalβ for a fixedα using an of-the-shelf linear optimizer. In the
inner loop one has to identify unsatisfied constraints, which, fortunately, turns out to be particularly
simple. Note that (13) is for all considered cases exactly the dual optimizationproblem of the single
kernel case for fixedβ. For instance for binary classification with soft-margin loss, (13) reduces to
the standard SVM dual using the kernelk(xi ,x j) = ∑k βkkk(xi ,x j):

v = min
α∈RN

N

∑
i, j=1

αiα jyiy jk(xi ,x j)−
N

∑
i=1

αi

s.t. 0≤ α≤C1 and
N

∑
i=1

αiyi = 0.

Hence, we can use a standard SVM implementation with a single kernel in orderto identify the most
violated constraintv≤ θ. Since there exists a large number of efficient algorithms to solve the single
kernel problems for all sorts of cost functions, we have therefore found an easy way to extend their
applicability to the problem of Multiple Kernel Learning. Also, if the kernels are computed on-the-
fly within the SVM still only a single kernel cache is required. The wrapper algorithm is very easy to
implement, very generic and already reasonably fast for small to medium sizeproblems. However,
determiningα up to a fixed high precision even for intermediate solutions, whileβ is still far away
from the global optimal is unnecessarily costly. Thus there is room for improvement motivating the
next section.

2.3.2 A CHUNKING ALGORITHM FOR SIMULTANEOUS OPTIMIZATION OF α AND β

The goal is to simultaneously optimizeα andβ in SVM training. Usually it is infeasible to use stan-
dard optimization tools (e.g. MINOS, CPLEX, LOQO) for solving even theSVM trainingproblems
on data sets containing more than a few thousand examples. So-called decomposition techniques as
chunking (e.g. used in Joachims, 1998) overcome this limitation by exploiting the special structure
of the SVM problem. The key idea of decomposition is to freeze all but a small number of opti-
mization variables (working set) and to solve a sequence of constant-size problems (subproblems of
the SVM dual).

Here we would like to propose an extension of the chunking algorithm to optimizethe kernel
weightsβ and the example weightsα at the same time. The algorithm is motivated from an insuf-
ficiency of the wrapper algorithm described in the previous section: If theβ’s are not optimal yet,
then the optimization of theα’s until optimality is not necessary and therefore inefficient. It would
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Algorithm 1 The MKL-wrapper algorithm optimizes a convex combination ofK kernels and em-
ploys a linear programming solver to iteratively solve the semi-infinite linear optimization problem
(12). The accuracy parameterεMKL is a parameter of the algorithm.Sk(α) andC are determined by
the cost function.

S0 = 1, θ1 =−∞, β1
k = 1

K for k = 1, . . . ,K
for t = 1,2, . . . do

Computeαt = argmin
α∈C

K

∑
k=1

βt
kSk(α) by single kernel algorithm withk =

K

∑
k=1

βt
kkk

St =
K

∑
k=1

βt
kS

t
k, whereSt

k = Sk(αt)

if

∣
∣
∣
∣
1−

St

θt

∣
∣
∣
∣
≤ εMKL then break

(βt+1,θt+1) = argmaxθ
w.r.t. β ∈ R

K ,θ ∈ R

s.t. 0≤ β,
K

∑
k=1

βk = 1 and
K

∑
k=1

βkS
r
k ≥ θ for r = 1, . . . , t

end for

be considerably faster if for any newly obtainedα in the chunking iterations, we could efficiently
recompute the optimalβ and then continue optimizing theα’s using the new kernel weighting.

Intermediate Recomputation of β Recomputingβ involves solving a linear program and the
problem grows with each additionalα-induced constraint. Hence, after many iterations solving
the LP may become infeasible. Fortunately, there are two facts making it still possible: (a) only
a small number of the added constraints remain active and one may as well remove inactive ones
— this prevents the LP from growing arbitrarily and (b) for Simplex-based LP optimizers such as
CPLEX there exists the so-calledhot-start featurewhich allows one to efficiently recompute the new
solution, if for instance only a few additional constraints are added.

The SVMlight optimizer which we are going to modify, internally needs the output

ĝi =
N

∑
j=1

α jy jk(xi ,x j)

for all training examplesi = 1, . . . ,N in order to select the next variables for optimization (Joachims,
1999). However, if one changes the kernel weights, then the stored ˆgi values become invalid and
need to be recomputed. In order to avoid the full recomputation one has to additionally store aK×N
matrixgk,i = ∑N

j=1 α jy jkk(xi ,x j), i.e. the outputs for each kernel separately. If theβ’s change, then ˆgi

can be quite efficiently recomputed by ˆgi = ∑k βkgk,i . We implemented the final chunking algorithm
for the MKL regression and classification case and display the latter in Algorithm 2.

2.3.3 DISCUSSION

The Wrapper as well as the chunking algorithm have both their merits: The Wrapper algorithm
only relies on the repeated efficient computation of the single kernel solution, for which typically
large scale algorithms exist. The chunking algorithm is faster, since it exploitsthe intermediateα’s
– however, it needs to compute and cache theK kernels separately (particularly important when
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Algorithm 2 Outline of the MKL-chunking algorithm for the classification case (extensionto
SVMlight) that optimizesα and the kernel weightingβ simultaneously. The accuracy parameter
εMKL and the subproblem sizeQ are assumed to be given to the algorithm. For simplicity we omit
the removal of inactive constraints. Also note that from one iteration to the next the LP only differs
by one additional constraint. This can usually be exploited to save computing timefor solving the
LP.

gk,i = 0, ĝi = 0, αi = 0, β1
k = 1

K for k = 1, . . . ,K andi = 1, . . . ,N
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select Q suboptimal variablesi1, . . . , iQ based on̂g andα
αold = α
solve SVM dual with respect to the selected variables and updateα
gk,i = gk,i +∑Q

q=1(αiq−αold
iq )yiqkk(xiq,xi) for all k = 1, . . . ,M andi = 1, . . . ,N

for k = 1, . . . ,K do
St

k = 1
2 ∑r gk,rαt

ryr −∑r αt
r

end for
St = ∑K

k=1 βt
kS

t
k

if
∣
∣
∣1− St

θt

∣
∣
∣≥ εMKL

(βt+1,θt+1) = argmaxθ
w.r.t. β ∈ R

K ,θ ∈ R

s.t. 0≤ β, ∑k βk = 1 and∑M
k=1 βkSr

k ≥ θ for r = 1, . . . , t
else

θt+1 = θt

end if
ĝi = ∑k βt+1

k gk,i for all i = 1, . . . ,N
end for

N is large). If, on the other hand,K is large, then the amount of memory available for caching
is drastically reduced and, hence, kernel caching is not effective anymore. The same statements
also apply to the SMO-like MKL algorithm proposed in Bach et al. (2004). Inthis case one is left
with the Wrapper algorithm, unless one is able to exploit properties of the particular problem or the
sub-kernels (see next section).

3. Sparse Feature Maps and Parallel Computations

In this section we discuss two strategies to accelerate SVM training. First we consider the case
where the explicit mappingΦ into the kernel feature space is known as well as sparse. For this case
we show that MKL training (and also SVM training in general) can be made drastically faster, in
particular, whenN andK are large. In the second part we discuss a simple, yet efficient way to
parallelize MKL as well as SVM training.

3.1 Explicit Computations with Sparse Feature Maps

We assume that allK sub-kernels are given as

kk(x,x′) = 〈Φk(x),Φk(x′)〉
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and the mappingsΦk are given explicitly (k = 1, . . . ,K). Moreover, we suppose that the mapped
examplesΦk(x) are very sparse. We start by giving examples of such kernels and discuss two
kernels that are often used in biological sequence analysis (Section 3.1.1). In Section 3.1.2 we
discuss several strategies for efficiently storing and computing with high dimensional sparse vectors
(in particular for these two kernels). Finally in Section 3.1.3 we discuss how we can exploit these
properties to accelerate chunking algorithms, such as SVMlight, by a factor of up toQ (the chunking
subproblem size).

3.1.1 STRING KERNELS

The Spectrum Kernel The spectrum kernel (Leslie et al., 2002) implements then-gram or bag-
of-words kernel (Joachims, 1998) as originally defined for text classification in the context of bio-
logical sequence analysis. The idea is to count how often ad-mer (a contiguous string of lengthd)
is contained in the sequencesx andx′. Summing up the product of these counts for every possible
d-mer (note that there are exponentially many) gives rise to the kernel valuewhich formally is de-
fined as follows: LetΣ be an alphabet andu∈ Σd a d-mer and #u(x) the number of occurrences of
u in x. Then the spectrum kernel is defined as the inner product ofk(x,x′) = 〈Φ(x),Φ(x′)〉, where
Φ(x) = (#u(x))u∈Σd . Note that spectrum-like kernels cannot extract any positional informationfrom
the sequence which goes beyond thed-mer length. It is well suited for describing the content of a
sequence but is less suitable for instance for analyzing signals where motifsmay appear in a cer-
tain order or at specific positions. Also note that spectrum-like kernels arecapable of dealing with
sequences with varying length.

The spectrum kernel can be efficiently computed inO (d(|x|+ |x′|)) using tries (Leslie et al.,
2002), where|x| denotes the length of sequencex. An easier way to compute the kernel for two
sequencesx andx′ is to separately extract and sort theN d-mers in each sequence, which can be
done in a preprocessing step. Note that for instance DNAd-mers of lengthd≤ 16 can be efficiently
represented as a 32-bit integer value. Then one iterates over alld-mers of sequencesx and x′

simultaneously and counts whichd-mers appear in both sequences and sums up the product of their
counts. The computational complexity of the kernel computation isO (log(|Σ|)d(|x|+ |x′|)).

The Weighted Degree Kernel The so-calledweighted degree(WD) kernel (Rätsch and Sonnenburg,
2004) efficiently computes similarities between sequences while taking positional information ofk-
mers into account. The main idea of the WD kernel is to count the (exact) co-occurrences ofk-mers
at corresponding positions in the two sequences to be compared. TheWD kernel of order dcom-
pares two sequencesxi andx j of lengthL by summing all contributions ofk-mer matches of lengths
k∈ {1, . . . ,d}, weighted by coefficientsβk:

k(xi ,x j) =
d

∑
k=1

βk

L−k+1

∑
l=1

I(uk,l (xi) = uk,l (x j)). (14)

Here,uk,l (x) is the string of lengthk starting at positionl of the sequencex and I(·) is the indicator
function which evaluates to 1 when its argument istrue and to 0 otherwise. For the weighting
coefficients, Rätsch and Sonnenburg (2004) proposed to useβk = 2d−k+1

d(d+1) . Matching substrings are

thus rewarded with a score depending on the length of the substring.5

5. Note that although in our caseβk+1 < βk, longer matches nevertheless contribute more strongly than shorter ones: this
is due to the fact that each long match also implies several short matches,adding to the value of (14). Exploiting this
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Note that the WD kernel can be understood as a Spectrum kernel wherethek-mers starting at
different positions are treated independently of each other.6 Moreover, it does not only consider
substrings of length exactlyd, but also all shorter matches. Hence, the feature space for each

position has∑d
k=1 |Σ|k = |Σ|d+1−1

|Σ|−1 −1 dimensions and is additionally duplicatedL times (leading to

O (L|Σ|d) dimensions). However, the computational complexity of the WD kernel is in the worst
caseO (dL) as can be directly seen from (14).

3.1.2 EFFICIENT STORAGE OFSPARSEWEIGHTS

The considered string kernels correspond to a feature space that canbe huge. For instance in the
case of the WD kernel on DNA sequences of length 100 withK = 20, the corresponding feature
space is 1014 dimensional. However, most dimensions in the feature space are not used since only
a few of the many differentk-mers actually appear in the sequences. In this section we briefly
discuss three methods to efficiently deal with sparse vectorsv. We assume that the elements of the
vectorv are indexed by some index setU (for sequences, e.g.U = Σd) and that we only need three
operations:clear, add andlookup. The first operation sets the vectorv to zero, theadd operation
increases the weight of a dimension for an elementu∈ U by some amountα, i.e. vu = vu + α and
lookup requests the valuevu. The latter two operations need to be performed as quickly as possible
(whereas the performance of thelookup operation is of higher importance).

Explicit Map If the dimensionality of the feature space is small enough, then one might consider
keeping the whole vectorv in memory and to perform direct operations on its elements. Then each
read or write operation isO (1).7 This approach has expensive memory requirements (O (|Σ|d)), but
is very fast and best suited for instance for the Spectrum kernel on DNA sequences withd≤ 14 and
on protein sequences withd≤ 6.

Sorted Arrays More memory efficient but computationally more expensive are sorted arrays of
index-value pairs(u,vu). Assuming theL indexes are given and sorted in advance, one can effi-
ciently change or look up a singlevu for a correspondingu by employing a binary search procedure
(O (log(L))). When givenL′ look up indexes at once, one may sort them in advance and then si-
multaneously traverse the two arrays in order to determine which elements appear in the first array
(i.e.O (L+L′) operations – omitting the sorting of the second array – instead ofO (log(L)L′)). This
method is well suited for cases whereL andL′ are of comparable size, as for instance for compu-
tations of single Spectrum kernel elements (as proposed in Leslie et al., 2004). If, L≫ L′, then the
binary search procedure should be preferred.

Tries Another way of organizing the non-zero elements aretries (Fredkin, 1960): The idea is to
use a tree with at most|Σ| siblings of depthd. The leaves store a single value: the elementvu, where
u∈ Σd is ad-mer and the path to the leaf corresponds tou.

knowledge allows for aO (L) reformulation of the kernel using “block-weights” as has been done in Sonnenburg et al.
(2005b).

6. It therefore is very position dependent and does not tolerate any positional “shift”. For that reason we proposed in
Rätsch et al. (2005) a WD kernelwith shifts, which tolerates a small number of shifts, that lies in between the WD
and the Spectrum kernel.

7. More precisely, it is logd, but for small enoughd (which we have to assume anyway) the computational effort is
exactly one memory access.
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To add or lookup an element one only needsd operations to reach a leaf of the tree (and to
create necessary nodes on the way in anadd operation). Note that the worst-case computational
complexity of the operations is independent of the number ofd-mers/elements stored in the tree.

While tries are not faster thansorted arraysin lookup and need considerably more storage (e.g.
for pointers to its parent and siblings), they are useful for the previously discussed WD kernel. Here
we not only have to lookup one substringu∈ Σd, but also all prefixes ofu. For sorted arraysthis
amounts tod separatelookup operations, while for tries all prefixes ofu are already known when
the bottom of the tree is reached. In this case the trie has to store weights also on the internal nodes.
This is illustrated for the WD kernel in Figure 1.

α1

α2

α3

α1 + α2

α3

α3

α1 α2

Figure 1: Three sequences AAA, AGA, GAA with weightsα1,α2 & α3 are added to the trie. The
figure displays the resulting weights at the nodes.

3.1.3 SPEEDINGUP SVM TRAINING

As it is not feasible to use standard optimization toolboxes for solving large scale SVM train-
ing problem, decomposition techniques are used in practice. Most chunkingalgorithms work by
first selectingQ variables (working setW ⊆ {1, . . . ,N}, Q := |W|) based on the current solution
and then solve the reduced problem with respect to the working set variables. These two steps
are repeated until some optimality conditions are satisfied (see e.g. Joachims (1998)). For se-
lecting the working set and checking the termination criteria in each iteration, thevectorg with
gi = ∑N

j=1 α jy jk(xi ,x j), i = 1, . . . ,N is usually needed. Computingg from scratch in every iter-
ation which would requireO (N2) kernel computations. To avoid recomputation ofg one typically
starts withg = 0 and only computes updates ofg on the working setW

gi ← gold
i + ∑

j∈W

(α j −αold
j )y jk(xi ,x j), ∀i = 1, . . . ,N.
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As a result the effort decreases toO (QN) kernel computations, which can be further speed up by
using kernel caching (e.g. Joachims, 1998). However kernel caching is not efficient enough for
large scale problems8 and thus most time is spend computing kernel rows for the updates ofg on
the working setW. Note however that this update as well as computing theQ kernel rows can be
easily parallelized; cf. Section 4.2.1.

Exploitingk(xi ,x j) = 〈Φ(xi),Φ(x j)〉 andw = ∑N
i=1 αiyiΦ(xi) we can rewrite the update rule as

gi ← gold
i + ∑

j∈W

(α j −αold
j )y j〈Φ(xi),Φ(x j)〉= gold

i + 〈wW,Φ(xi)〉, (15)

wherewW = ∑ j∈W(α j −αold
j )y jΦ(x j) is the normal (update) vector on the working set.

If the kernel feature map can be computed explicitly and is sparse (as discussed before), then
computing the update in (15) can be accelerated. One only needs to compute and storewW (using
theclear and∑q∈W |{Φ j(xq) 6= 0}| add operations) and performing the scalar product〈wW,Φ(xi)〉
(using|{Φ j(xi) 6= 0}| lookup operations).

Depending on the kernel, the way the sparse vectors are stored Section 3.1.2 and on the sparse-
ness of the feature vectors, the speedup can be quite drastic. For instance for the WD kernel one
kernel computation requiresO (Ld) operations (L is the length of the sequence). Hence, computing
(15) N times requires O(NQLd) operations. When using tries, then one needsQL add operations
(eachO (d)) andNL lookup operations (eachO (d)). Therefore onlyO (QLd+ NLd) basic opera-
tions are needed in total. WhenN is large enough it leads to a speedup by a factor ofQ. Finally note
that kernel caching is no longer required and asQ is small in practice (e.g.Q= 42) the resulting trie
has rather few leaves and thus only needs little storage.

The pseudo-code of ourlinadd SVM chunking algorithm is given in Algorithm 3.

Algorithm 3 Outline of the chunking algorithm that exploits the fast computations of linear combi-
nations of kernels (e.g. by tries).

{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . ,N
{LOOP UNTIL CONVERGENCE}
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select working set W based ong andα, storeαold = α
solve reduced problemW and updateα

clear w
w← w+(α j −αold

j )y jΦ(x j) for all j ∈W (usingadd)
updategi = gi + 〈w,Φ(xi)〉 for all i = 1, . . . ,N (usinglookup)

end for

MKL Case As elaborated in Section 2.3.2 and Algorithm 2, for MKL one storesK vectors
gk, k = 1, . . . ,K: one for each kernel in order to avoid full recomputation ofĝ if a kernel weightβk

is updated. Thus to use the idea above in Algorithm 2 all one has to do is to storeK normal vectors

8. For instance when using a million examples one can only fit 268 rows into 1GB. Moreover, caching 268 rows is
insufficient when for instance having many thousands of active variables.
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(e.g. tries)
wW

k = ∑
j∈W

(α j −αold
j )y jΦk(x j), k = 1, . . . ,K

which are then used to update theK×N matrix gk,i = gold
k,i + 〈wW

k ,Φk(xi)〉 (for all k = 1. . .K and
i = 1. . .N) by whichĝi = ∑k βkgk,i , (for all i = 1. . .N) is computed.

3.2 A Simple Parallel Chunking Algorithm

As still most time is spent in evaluatingg(x) for all training examples further speedups are gained
when parallelizing the evaluation ofg(x). When using thelinadd algorithm, one first constructs
the trie (or any of the other possible more appropriate data structures) andthen performs parallel
lookup operations using several CPUs (e.g. using shared memory or several copies of the data
structure on separate computing nodes). We have implemented this algorithm based on multiple
threads(using shared memory) and gain reasonable speedups (see next section).

Note that this part of the computations is almost ideal to distribute to many CPUs, asonly the
updatedα (or w depending on the communication costs and size) have to be transfered before each
CPU computes a large chunkIk ⊂ {1, . . . ,N} of

h(k)
i = 〈w,Φ(xi)〉, ∀i ∈ Ik, ∀k = 1, . . . ,N, where(I1∪·· ·∪ In) = (1, . . . ,N)

which is transfered to a master node that finally computesg← g+h, as illustrated in Algorithm 4.

4. Results and Discussion

In the following subsections we will first apply multiple kernel learning to knowledge discovery
tasks, demonstrating that it can be used for automated model selection and to interpret the learned
model (Section 4.1), followed by a benchmark comparing the running times of SVMs and MKL
using any of the proposed algorithmic optimizations (Section 4.2).

4.1 MKL for Knowledge Discovery

In this section we will discuss toy examples for binary classification and regression, showing that
MKL can recover information about the problem at hand, followed by a brief review on problems
for which MKL has been successfully used.

4.1.1 CLASSIFICATION

The first example we deal with is a binary classification problem. The task is to separate two
concentric classes shaped like the outline of stars. By varying the distancebetween the boundary of
the stars we can control the separability of the problem. Starting with a non-separable scenario with
zero distance, the data quickly becomes separable as the distance betweenthe stars increases, and
the boundary needed for separation will gradually tend towards a circle.In Figure 2 three scatter
plots of data sets with varied separation distances are displayed.

We generate several training and test sets for a wide range of distances(the radius of the inner
star is fixed at 4.0, the outer stars radius is varied from 4.1. . .9.9). Each data set contains 2,000
observations (1,000 positive and 1,000 negative) using a moderate noiselevel (Gaussian noise with
zero mean and standard deviation 0.3). The MKL-SVM was trained for different values of the
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Algorithm 4 Outline of the parallel chunking algorithm that exploits the fast computations oflinear
combinations of kernels.

{ Master node}
{INITIALIZATION}
gi = 0, αi = 0 for i = 1, . . . ,N
{LOOP UNTIL CONVERGENCE}
for t = 1,2, . . . do

Check optimality conditions and stop if optimal
select working set W based ong andα, storeαold = α
solve reduced problemW and updateα
transfer to Slave nodes:α j −αold

j for all j ∈W

fetch fromn Slave nodes:h = (h(1), . . . ,h(n))
updategi = gi +hi for all i = 1, . . . ,N

end for
signal convergence to slave nodes

{ Slave nodes}
{LOOP UNTIL CONVERGENCE}
while not convergeddo

fetch from Master nodeα j −αold
j for all j ∈W

clear w
w← w+(α j −αold

j )y jΦ(x j) for all j ∈W (usingadd)

nodek computesh(k)
i = 〈w,Φ(xi)〉

for all i = (k−1)N
n , . . . ,kN

n −1 (usinglookup)
transfer to master:h(k)

end while

regularization parameterC, where we setεMKL = 10−3. For every value ofC we averaged the test
errors of all setups and choose the value ofC that led to the smallest overall error (C = 0.5).9

The choice of the kernel width of the Gaussian RBF (below, denoted by RBF) kernel used
for classification is expected to depend on the separation distance of the learning problem: An
increased distance between the stars will correspond to a larger optimal kernel width. This effect
should be visible in the results of the MKL, where we used MKL-SVMs with fiveRBF kernels with
different widths (2σ2 ∈ {0.01,0.1,1,10,100}). In Figure 2 we show the obtained kernel weightings
for the five kernels and the test error (circled line) which quickly drops tozero as the problem
becomes separable. Every column shows one MKL-SVM weighting. The courses of the kernel
weightings reflect the development of the learning problem: as long as the problem is difficult the
best separation can be obtained when using the kernel with smallest width. The low width kernel
looses importance when the distance between the stars increases and larger kernel widths obtain a
larger weight in MKL. Increasing the distance between the stars, kernelswith greater widths are
used. Note that the RBF kernel with largest width was not appropriate andthus never chosen. This
illustrates that MKL can indeed recover information about the structure of the learning problem.

9. Note that we are aware of the fact that the test error might be slightly underestimated.
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Figure 2: A 2-class toy problem where the dark gray (or green) star-like shape is to be distinguished
from the light gray (or red) star inside of the dark gray star. The distance between the dark
star-like shape and the light star increases from the left to the right.

4.1.2 REGRESSION

We applied the newly derived MKL support vector regression formulationto the task of learning a
sine function using three RBF-kernels with different widths (2σ2∈ {0.005,0.05,0.5,1,10}). To this
end, we generated several data sets with increasing frequency of the sine wave. The sample size was
chosen to be 1,000. Analogous to the procedure described above we choose the value ofC = 10,
minimizing the overall test error. In Figure 3 exemplarily three sine waves aredepicted, where the
frequency increases from left to right. For every frequency the computed weights for each kernel
width are shown. One can see that MKL-SV regression switches to the widthof the RBF-kernel
fitting the regression problem best.

In another regression experiment, we combined a linear function with two sinewaves, one
of lower frequency and one of high frequency, i.e.f (x) = sin(ax)+ sin(bx)+ cx. Furthermore we
increase the frequency of the higher frequency sine wave, i.e. we varieda leavingb andc unchanged.
The MKL weighting should show a combination of different kernels. Using ten RBF-kernels of
different width (see Figure 4) we trained a MKL-SVR and display the learned weights (a column
in the figure). Again the sample size is 1,000 and one value forC = 5 is chosen via a previous
experiment (εMKL = 10−5). The largest selected width (100) models the linear component (since
RBF kernels with large widths are effectively linear) and the medium width (1)corresponds to
the lower frequency sine. We varied the frequency of the high frequency sine wave from low to
high (left to right in the figure). One observes that MKL determines an appropriate combination of
kernels of low and high widths, while decreasing the RBF kernel width with increased frequency.
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Figure 3: MKL-Support Vector Regression for the task of learning a sine wave (please see text for
details).

Additionally one can observe that MKL leads to sparse solutions since most of the kernel weights
in Figure 4 are depicted in blue, that is they are zero.10

4.1.3 REAL WORLD APPLICATIONS IN BIOINFORMATICS

MKL has been successfully used on real-world data sets in the field of computational biology
(Lanckriet et al., 2004; Sonnenburg et al., 2005a). It was shown to improve classification perfor-
mance on the task of ribosomal and membrane protein prediction (Lanckriet et al., 2004), where a
weighting over different kernels each corresponding to a different feature set was learned. In their
result, the included random channels obtained low kernel weights. However, as the data sets was
rather small (≈ 1,000 examples) the kernel matrices could be precomputed and simultaneously kept
in memory, which was not possible in Sonnenburg et al. (2005a), where asplice site recognition task
for the wormC. eleganswas considered. Here data is available in abundance (up to one million ex-
amples) and larger amounts are indeed needed to obtain state of the art results (Sonnenburg et al.,
2005b).11 On that data set we were able to solve the classification MKL SILP forN = 1,000,000
examples andK = 20 kernels, as well as forN = 10,000 examples andK = 550 kernels, using the
linadd optimizations with the weighted degree kernel. As a result we a) were able to learn the
weightingβ instead of choosing a heuristic and b) were able to use MKL as a tool for interpreting
the SVM classifier as in Sonnenburg et al. (2005a); Rätsch et al. (2005).

As an example we learned the weighting of a WD kernel of degree 20, whichconsist of a
weighted sum of 20 sub-kernels each counting matchingd-mers, ford = 1, . . . ,20. The learned

10. The training time for MKL-SVR in this setup but with 10,000 examples wasabout 40 minutes, when kernel caches
of size 100MB are used.

11. In Section 4.2 we will use ahumansplice data set containing 15 million examples, and train WD kernel based SVM
classifiers on up to 10 million examples using the parallelizedlinadd algorithm.
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Figure 4: MKL support vector regression on a linear combination of threefunctions: f (x) =
sin(ax)+sin(bx)+cx. MKL recovers that the original function is a combination of func-
tions of low and high complexity. For more details see text.
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Figure 5: The learned WD kernel weighting on a million of examples.

weighting is displayed in Figure 5 and shows a peak for 6-mers and 9&10-mers. It should be noted
that the obtained weighting in this experiment is only partially useful for interpretation. In the case
of splice site detection, it is unlikely thatk-mers of length 9 or 10 are playing the most important
role. More likely to be important are substrings of length up to six. We believe that the large weights
for the longestk-mers are an artifact which comes from the fact that we are combining kernels with

1550



LARGE SCALE MKL

quite different properties, i.e. the 9th and 10th kernel leads to a combined kernel matrix that is most
diagonally dominant (since the sequences are only similar to themselves but not to other sequences),
which we believe is the reason for having a large weight.12

In the following example we consider one weight per position. In this case thecombined ker-
nels are more similar to each other and we expect more interpretable results. Figure 6 shows an
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Figure 6: The figure shows an importance weighting for each position in a DNA sequence (around
a so called splice site). MKL was used to determine these weights, each corresponding
to a sub-kernel which uses information at that position to discriminate splice sites from
non-splice sites. Different peaks correspond to different biologicallyknown signals (see
text for details). We used 65,000 examples for training with 54 sub-kernels.

importance weighting for each position in a DNA sequence (around a so called acceptor splice site,
the start of an exon). We used MKL on 65,000 examples to compute these 54 weights, each cor-
responding to a sub-kernel which uses information at that position to discriminate true splice sites
from fake ones. We repeated that experiment on ten bootstrap runs of the data set. We can iden-
tify several interesting regions that we can match to current biological knowledge about splice site
recognition: a) The region−50 nucleotides (nt) to−40nt, which corresponds to the donor splice
site of the previous exon (many introns inC. elegansare very short, often only 50nt), b) the region
−25nt to−15nt that coincides with the location of the branch point, c) the intronic regionclosest
to the splice site with greatest weight (−8nt to−1nt; the weights for theAG dimer are zero, since
it appears in splice sites and decoys) and d) the exonic region (0nt to+50nt). Slightly surprising
are the high weights in the exonic region, which we suspect only model tripletfrequencies. The

12. This problem might be partially alleviated by including the identity matrix in the convex combination. However as
2-norm soft margin SVMs can be implemented by adding a constant to the diagonal of the kernel (Cortes and Vapnik,
1995), this leads to an additional 2-norm penalization.
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decay of the weights seen from+15nt to+45nt might be explained by the fact that not all exons are
actually long enough. Furthermore, since the sequence ends in our caseat +60nt, the decay after
+45nt is an edge effect as longer substrings cannot be matched.

4.2 Benchmarking the Algorithms

Experimental Setup To demonstrate the effect of the several proposed algorithmic optimiza-
tions, namely thelinadd SVM training (Algorithm 3) and for MKL the SILP formulation with
and without thelinadd extension for single, four and eight CPUs, we applied each of the algo-
rithms to ahumansplice site data set,13 comparing it to the original WD formulation and the case
where the weighting coefficients were learned using multiple kernel learning. The splice data set
contains 159,771 true acceptor splice site sequences and 14,868,555 decoys, leading to a total of
15,028,326 sequences each 141 base pairs in length. It was generatedfollowing a procedure similar
to the one in Sonnenburg et al. (2005a) forC. eleganswhich however contained “only” 1,026,036
examples. Note that the data set is very unbalanced as 98.94% of the examples are negatively la-
beled. We are using this data set in all benchmark experiments and trained (MKL-)SVMs using
the SHOGUN machine learning toolbox which contains a modified version of SVMlight (Joachims,
1999) on 500, 1,000, 5,000, 10,000, 30,000, 50,000, 100,000, 200,000, 500,000, 1,000,000,
2,000,000, 5,000,000 and 10,000,000 randomly sub-sampled examples and measured the time
needed in SVM training. For classification performance evaluation we always use the same re-
maining 5,028,326 examples as a test data set. We set the degree parameter tod = 20 for the WD
kernel and tod = 8 for the spectrum kernel fixing the SVMs regularization parameter toC = 5.
Thus in the MKL case alsoK = 20 sub-kernels were used. SVMlight’s subproblem size (parameter
qpsize), convergence criterion (parameterepsilon) and MKL convergence criterion were set to
Q = 112, εSVM = 10−5 andεMKL = 10−5, respectively. A kernel cache of 1GB was used for all
kernels except the precomputed kernel and algorithms using thelinadd-SMO extension for which
the kernel-cache was disabled. Later on we measure whether changing the quadratic subproblem
size Q influences SVM training time. Experiments were performed on a PC powered by eight
2.4GHz AMD Opteron(tm) processors running Linux. We measured the training time for each of
the algorithms (single, quad or eight CPU version) and data set sizes.

4.2.1 BENCHMARKING SVM

The obtained training times for the different SVM algorithms are displayed in Table 1 and in Figure
7. First, SVMs were trained using standard SVMlight with the Weighted Degree Kernel precomputed
(WDPre), the standard WD kernel (WD1) and the precomputed (SpecPre) and standard spectrum
kernel (Spec). Then SVMs utilizing thelinadd extension14 were trained using the WD (LinWD)
and spectrum (LinSpec) kernel. Finally SVMs were trained on four and eight CPUs using the
parallel version of thelinadd algorithm (LinWD4, LinWD8). WD4 andWD8 demonstrate the
effect of a simple parallelization strategy where the computation of kernel rows and updates on the
working set are parallelized, which works withanykernel.

The training times obtained when precomputing the kernel matrix (which includesthe time
needed to precompute the full kernel matrix) is lower when no more than 1,000 examples are used.

13. The splice data set can be downloaded fromhttp://www.fml.tuebingen.mpg.de/raetsch/projects/lsmkl.
14. More precisely thelinadd andO (L) block formulation of the WD kernel as proposed in Sonnenburg et al. (2005b)

was used.
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Note that this is a direct cause of the relatively large subproblem sizeQ = 112. The picture is
different for, say,Q = 42 (data not shown) where theWDPre training time is in all cases larger
than the times obtained using the original WD kernel demonstrating the effectiveness of SVMlight’s
kernel cache. The overhead of constructing a trie onQ= 112 examples becomes even more visible:
only starting from 50,000 exampleslinadd optimization becomes more efficient than the original
WD kernel algorithm as the kernel cache cannot hold all kernel elementsanymore.15 Thus it would
be appropriate to lower the chunking sizeQ as can be seen in Table 3.

The linadd formulation outperforms the original WD kernel by a factor of 3.9 on a million
examples. The picture is similar for the spectrum kernel, here speedups offactor 64 on 500,000
examples are reached which stems from the fact that explicit maps (and nottries as in the WD
kernel case) as discussed in Section 3.1.2 could be used leading to alookup cost ofO (1) and a
dramatically reduced map construction time. For that reason the parallelization effort benefits the
WD kernel more than the Spectrum kernel: on one million examples the parallelization using 4
CPUs (8 CPUs) leads to a speedup of factor 3.25 (5.42) for the WD kernel, but only 1.67 (1.97) for
the Spectrum kernel. Thus parallelization will help more if the kernel computation is slow. Training
with the original WD kernel with a sample size of 1,000,000 takes about 28 hours, thelinadd
version still requires 7 hours while with the 8 CPU parallel implementation only about 6 hours and
in conjunction with thelinadd optimization a single hour and 20 minutes are needed. Finally,
training on 10 million examples takes about 4 days. Note that this data set is already 2.1GB in size.

Classification Performance Figure 8 and Table 2 show the classification performance in terms of
classification accuracy, area under the Receiver Operator Characteristic (ROC) Curve (Metz, 1978;
Fawcett, 2003) and the area under the Precision Recall Curve (PRC) (see e.g. Davis and Goadrich
(2006)) of SVMs on the human splice data set for different data set sizes using the WD kernel.

Recall the definition of the ROC and PRC curves: The sensitivity (or recall)is defined as
the fraction of correctly classified positive examples among the total number of positive exam-
ples, i.e. it equals the true positive rateTPR= TP/(TP+ FN). Analogously, the fractionFPR=
FP/(TN+ FP) of negative examples wrongly classified positive is called the false positiverate.
Plotting FPR against TPR results in the Receiver Operator Characteristic Curve (ROC) Metz (1978);
Fawcett (2003). Plotting the true positive rate against the positive predictive value (also precision)
PPV= TP/(FP+TP), i.e. the fraction of correct positive predictions among all positively predicted
examples, one obtains the Precision Recall Curve (PRC) (see e.g. Davis and Goadrich (2006)). Note
that as this is a very unbalanced data set the accuracy and the area under the ROC curve are almost
meaningless, since both measures are independent of class ratios. The more sensible auPRC, how-
ever, steadily increases as more training examples are used for learning.Thus one should train using
all available data to obtain state-of-the-art results.

Varying SVM light’s qpsize parameter As discussed in Section 3.1.3 and Algorithm 3, using the
linadd algorithm for computing the output for all training examples w.r.t. to some workingset can
be speed up by a factor ofQ (i.e. the size of the quadratic subproblems, termedqpsize in SVMlight).
However, there is a trade-off in choosingQ as solving larger quadratic subproblems is expensive
(quadratic to cubic effort). Table 3 shows the dependence of the computingtime from Q andN.
For example the gain in speed between choosingQ = 12 andQ = 42 for 1 million of examples is
54%. Sticking with a mid-rangeQ (hereQ = 42) seems to be a good idea for this task. However,

15. When single precision 4-byte floating point numbers are used, caching all kernel elements is possible when training
with up to 16384 examples.
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Figure 7: Comparison of the running time of the different SVM training algorithms using the
weighted degree kernel. Note that as this is a log-log plot small appearing distances are
large for largerN and that each slope corresponds to a different exponent. In the upper
figure the Weighted Degree kernel training times are measured, the lower figure displays
Spectrum kernel training times.

a large variance can be observed, as the SVM training time depends to a large extend on whichQ
variables are selected in each optimization step. For example on the relatedC. eleganssplice data
setQ = 141 was optimal for large sample sizes while a midrangeQ = 71 lead to the overall best
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N WDPre WD1 WD4 WD8 LinWD1 LinWD4 LinWD8

500 12 17 17 17 83 83 80
1,000 13 17 17 17 83 78 75
5,000 40 28 23 22 105 82 80

10,000 102 47 31 30 134 90 87
30,000 636 195 92 90 266 139 116
50,000 - 441 197 196 389 179 139

100,000 - 1,794 708 557 740 294 212
200,000 - 5,153 1,915 1,380 1,631 569 379
500,000 - 31,320 10,749 7,588 7,757 2,498 1,544

1,000,000 - 102,384 33,432 23,127 26,190 8,053 4,835
2,000,000 - - - - - - 14,493
5,000,000 - - - - - - 95,518

10,000,000 - - - - - - 353,227

N SpecPre Spec LinSpec1 LinSpec4 LinSpec8

500 1 1 1 1 1
1,000 2 2 1 1 1
5,000 52 30 19 21 21

10,000 136 68 24 23 24
30,000 957 315 36 32 32
50,000 - 733 54 47 46

100,000 - 3,127 107 75 74
200,000 - 11,564 312 192 185
500,000 - 91,075 1,420 809 728

1,000,000 - - 7,676 4,607 3,894

Table 1: (top) Speed Comparison of the original single CPU Weighted Degree Kernel algorithm
(WD1) in SVMlight training, compared to the four (WD4)and eight (WD8) CPUs par-
allelized version, the precomputed version (Pre) and thelinadd extension used in con-
junction with the original WD kernel for 1,4 and 8 CPUs (LinWD1, LinWD4, LinWD8).
(bottom) Speed Comparison of the spectrum kernel without (Spec) and withlinadd (Lin-
Spec1, LinSpec4, LinSpec8using 1,4 and 8 processors).SpecPredenotes the precomputed
version. The first column shows the sample sizeN of the data set used in SVM training
while the following columns display the time (measured in seconds) needed in the training
phase.

performance. Nevertheless, one observes the trend that for larger training set sizes slightly larger
subproblems sizes decrease the SVM training time.
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Figure 8: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the Receiver Operator Charac-
teristic (ROC) Curve, the area under the Precision Recall Curve (PRC) as well as the
classification accuracy are displayed (in percent). Note that as this is a very unbalanced
data set, the accuracy and the area under the ROC curve are less meaningful than the area
under the PRC.

4.2.2 BENCHMARKING MKL

The WD kernel of degree 20 consist of a weighted sum of 20 sub-kernels each counting matchingd-
mers, ford = 1, . . . ,20. Using MKL we learned the weighting on the splice site recognition task for
one million examples as displayed in Figure 5 and discussed in Section 4.1.3. Focusing on a speed
comparison we now show the obtained training times for the different MKL algorithms applied
to learning weightings of the WD kernel on the splice site classification task. Todo so, several
MKL-SVMs were trained using precomputed kernel matrices (PreMKL), kernel matrices which
are computed on the fly employing kernel caching (MKL 16), MKL using thelinadd extension
(LinMKL1 ) andlinadd with its parallel implementation17 (LinMKL4 andLinMKL8 - on 4 and 8
CPUs). The results are displayed in Table 4 and in Figure 9. While precomputing kernel matrices
seems beneficial, it cannot be applied to large scale cases (e.g.> 10,000 examples) due to the
O (KN2) memory constraints of storing the kernel matrices.18 On-the-fly-computation of the kernel
matrices is computationally extremely demanding, but since kernel caching19 is used, it is still
possible on 50,000 examples in about 57 hours. Note that no WD-kernel specific optimizations are
involved here, so one expects a similar result for arbitrary kernels.

16. Algorithm 2.
17. Algorithm 2 with thelinadd extensions including parallelization of Algorithm 4.
18. Using 20 kernels on 10,000 examples requires already 7.5GB, on30,000 examples 67GB would be required (both

using single precision floats).
19. Each kernel has a cache of 1GB.
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N Accuracy auROC auPRC

500 98.93 75.61 3.97
1,000 98.93 79.70 6.12
5,000 98.93 90.38 14.66

10,000 98.93 92.79 24.95
30,000 98.93 94.73 34.17
50,000 98.94 95.48 40.35

100,000 98.98 96.13 47.11
200,000 99.05 96.58 52.70
500,000 99.14 96.93 58.62

1,000,000 99.21 97.20 62.80
2,000,000 99.26 97.36 65.83
5,000,000 99.31 97.52 68.76

10,000,000 99.35 97.64 70.57

10,000,000 - 96.03∗ 44.64∗

Table 2: Comparison of the classification performance of the Weighted Degree kernel based SVM
classifier for different training set sizes. The area under the ROC curve (auROC), the area
under the Precision Recall Curve (auPRC) as well as the classification accuracy (Accuracy)
are displayed (in percent). Larger values are better. A optimal classifierwould achieve
100% Note that as this is a very unbalanced data set the accuracy and the area under
the ROC curve are almost meaningless. For comparison, the classification performance
achieved using a 4th order Markov chain on 10 million examples (order 4 waschosen
based on model selection, where order 1 to 8 using several pseudo-counts were tried) is
displayed in the last row (marked∗).

Thelinadd variants outperform the other algorithms by far (speedup factor 53 on 50,000 exam-
ples) and are still applicable to data sets of size up to one million. Note that withoutparallelization
MKL on one million examples would take more than a week, compared with 2.5 (2) days in the
quad-CPU (eight-CPU) version. The parallel versions outperform thesingle processor version from
the start achieving a speedup for 10,000 examples of 2.27 (2.75), quicklyreaching a plateau at a
speedup factor of 2.98 (4.49) at a level of 50,000 examples and approaching a speedup factor of
3.28 (5.53) on 500,000 examples (efficiency: 82% (69%)). Note that the performance gain using 8
CPUs is relatively small as e.g. solving the QP and constructing the tree is not parallelized.

5. Conclusion

In the first part of the paper we have proposed a simple, yet efficient algorithm to solve the multiple
kernel learning problem for a large class of loss functions. The proposed method is able to exploit
the existing single kernel algorithms, thereby extending their applicability. In experiments we have
illustrated that MKL for classification and regression can be useful for automatic model selection
and for obtaining comprehensible information about the learning problem athand. It would be of
interest to develop and evaluate MKL algorithms for unsupervised learningsuch as Kernel PCA
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Q
N 112 12 32 42 52 72

500 83 4 1 22 68 67
1,000 83 7 7 11 34 60
5,000 105 15 21 33 31 68

10,000 134 32 38 54 67 97
30,000 266 128 128 127 160 187
50,000 389 258 217 242 252 309

100,000 740 696 494 585 573 643
200,000 1,631 1,875 1,361 1,320 1,417 1,610
500,000 7,757 9,411 6,558 6,203 6,583 7,883

1,000,000 26,190 31,145 20,831 20,136 21,591 24,043

Table 3: Influence on training time when varying the size of the quadratic programQ in SVMlight,
when using thelinadd formulation of the WD kernel. While training times do not vary
dramatically one still observes the tendency that with larger sample size a larger Qbecomes
optimal. TheQ = 112 column displays the same result as columnLinWD1 in Table 1.
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Figure 9: Comparison of the running time of the different MKL algorithms whenused with the
weighted degree kernel. Note that as this is a log-log plot, small appearing distances are
large for largerN and that each slope corresponds to a different exponent.

and one-class classification and to try different losses on the kernel weighting β (such asL2). In
the second part we proposed performance enhancements to make large scale MKL practical: the
SILP wrapper, SILP chunking and (for the special case of kernels that can be written as an inner
product of sparse feature vectors, e.g., string kernels) thelinadd algorithm, which also speeds up
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N PreMKL MKL LinMKL1 LinMKL4 LinMKL8

500 22 22 11 10 80
1,000 56 64 139 116 116
5,000 518 393 223 124 108

10,000 2,786 1,181 474 209 172
30,000 - 25,227 1,853 648 462
50,000 - 204,492 3,849 1292 857

100,000 - - 10,745 3,456 2,145
200,000 - - 34,933 10,677 6,540
500,000 - - 185,886 56,614 33,625

1,000,000 - - - 214,021 124,691

Table 4: Speed Comparison when determining the WD kernel weight by multiple kernel learn-
ing using the chunking algorithm (MKL) and MKL in conjunction with the (parallelized)
linadd algorithm using 1, 4, and 8 processors (LinMKL1, LinMKL4, LinMKL8 ). The
first column shows the sample sizeN of the data set used in SVM training while the fol-
lowing columns display the time (measured in seconds) needed in the training phase.

standalone SVM training. For the standalone SVM using the spectrum kernel we achieved speedups
of factor 64 (for the weighted degree kernel, about 4). For MKL we gained a speedup of factor 53.
Finally we proposed a parallel version of thelinadd algorithm running on a 8 CPU multiprocessor
system which lead toadditional speedups of factor up to 5.5 for MKL, and 5.4 for vanilla SVM
training.
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Appendix A. Derivation of the MKL Dual for Generic Loss Functio ns

We start from the MKL primal problem Equation (9):

min
1
2

(
K

∑
k=1

‖wk‖

)2

+
N

∑
i=1

L( f (xi),yi)

w.r.t. w = (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N
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Introducingu ∈ R allows us to move∑K
k=1‖wk‖ into the constraints and leads to the following

equivalent problem

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, (w1, . . . ,wK) ∈ R
D1×·· ·×R

DK

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

K

∑
k=1

‖wk‖ ≤ u

Usingtk ∈ R, k = 1, . . . ,K, it can be equivalently transformed into

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, tk ∈ R,wk ∈ R
Dk, ∀k = 1, . . . ,K

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

‖wk‖ ≤ tk,
K

∑
k=1

tk ≤ u.

Recall that the second-order cone of dimensionalityD is defined as

KD = {(x,c) ∈ R
D×R, ‖x‖2≤ c}.

We can thus reformulate the original MKL primal problem (Equation (9)) using the followingequiv-
alentsecond-order cone program, as the norm constraint onwk is implicitly taken care of:

Conic Primal

min
1
2

u2 +
N

∑
i=1

L( f (xi),yi)

w.r.t. u∈ R, tk ∈ R,(wk, tk) ∈ KDk, ∀k = 1, . . . ,K

s.t. f (xi) =
K

∑
k=1

〈Φk(xi),wk〉+b, ∀i = 1, . . . ,N

K

∑
k=1

tk ≤ u

We are now going to derive the conic dual following the recipe of Boyd andVandenberghe
(2004) (see p. 266). First we derive the conic Lagrangian and then using the infimum w.r.t. the
primal variables in order to obtain the conic dual. We therefore introduce Lagrange multipliers
α ∈ R

K , γ ∈ R, γ ≥ 0 and(λk,µk) ∈ K
∗

D living on the self dual coneK ∗D = KD. Then the conic
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Lagrangian is given as

L (w,b, t,u,α,γ,λ,µ) =
1
2

u2 +
N

∑
i=1

L( f (xi),yi)−
N

∑
i=1

αi f (xi)+

+
N

∑
i=1

αi

K

∑
k=1

(〈Φk(xi),wk〉+b)+ γ

(
K

∑
k=1

tk−u

)

−
K

∑
k=1

(〈λk,wk〉+µktk) .

To obtain the dual, the derivatives of the Lagrangian w.r.t. the primal variables, w,b, t,u have to
vanish which leads to the following constraints

∂wkL =
N

∑
i=1

αiΦk(xi)−λk ⇒ λk =
N

∑
i=1

αiΦk(xi)

∂bL =
N

∑
i=1

αi ⇒
N

∑
i=1

αi = 0

∂tkL = γ−µk ⇒ γ = µk

∂uL = u− γ⇒ γ = u

∂ f (xi)L = L′( f (xi),yi)−αi ⇒ f (xi) = L′−1(αi ,yi).

In the equationL′ is the derivative of the loss function w.r.t.f (x) andL′−1 is the inverse ofL′ (w.r.t.
f (x)) for which to existL is required to be strictly convex and differentiable. We now plug in what
we have obtained above, which makesλk, µk and all of the primal variables vanish. Thus the dual
function is

D(α,γ) = −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi)+

+
N

∑
i=1

αi

K

∑
k=1

〈Φk(xi),wk〉−
K

∑
k=1

N

∑
i=1

αi〈Φk(xi),wk〉

= −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi).

As constraints remainγ≥ 0, due to the bias∑N
i=1 αi = 0 and the second-order cone constraints

‖λk‖=

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

≤ γ, ∀k = 1, . . . ,K.

This leads to:

max −
1
2

γ2 +
N

∑
i=1

L(L′−1(αi ,yi),yi)−
N

∑
i=1

αiL
′−1(αi ,yi)

w.r.t. γ ∈ R, α ∈ RN

s.t. γ≥ 0,
N

∑
i=1

αi = 0

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

≤ γ, ∀k = 1, . . . ,K
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Squaring the latter constraint, multiplying by1
2, relabeling1

2γ2 7→ γ and dropping theγ≥ 0 constraint
as it is fulfilled implicitly, we obtain the MKL dual for arbitrary strictly convex lossfunctions.

Conic Dual

min γ−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)

︸ ︷︷ ︸

:=T

w.r.t. γ ∈ R, α ∈ RN

s.t.
N

∑
i=1

αi = 0

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

≤ γ, ∀k = 1, . . . ,K.

Finally adding the second term in the objective (T) to the constraint onγ and relabelingγ+T 7→ γ
leads to the reformulated dual Equation (10), the starting point from which one can derive the SILP
formulation in analogy to the classification case.

Appendix B. Loss Functions

B.1 Quadratic Loss

For the quadratic loss caseL(x,y) = C(x−y)2 we obtain as the derivativeL′(x,y) = 2C(x−y) =: z
andL′−1(z,y) = 1

2Cz+y for the inverse of the derivative. Recall the definition of

Sk(α) =−
N

∑
i=1

L(L′−1(αi ,yi),yi)+
N

∑
i=1

αiL
′−1(αi ,yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

Plugging inL,L′−1 leads to

Sk(α) = −
N

∑
i=1

(
1

2C
αi +yi−yi)

2 +
N

∑
i=1

αi(
1

2C
αi +yi)+

1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

=
1

4C

N

∑
i=1

α2
i +

N

∑
i=1

αiyi +
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

B.2 Logistic Loss

Very similar to the Hinge loss the derivation for the logistic lossL(x,y) = log(1+e−xy) will be given
for completeness.

L′(x,y) =
−ye−xy

1+e−xy =−
ye(1−xy)

1+e(1−xy)
=: z.

The inverse function fory 6= 0 andy+z 6= 0 is given by

L′−1(z,y) =−
1
y

log

(

−
z

y+z

)
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and finally we obtain

Sk(α) =
N

∑
i=1

log

(

1−
αi

yi +αi

)

−
N

∑
i=1

αi

yi
log

(

−
αi

yi +αi

)

+
1
2

∥
∥
∥
∥
∥

N

∑
i=1

αiΦk(xi)

∥
∥
∥
∥
∥

2

2

.

B.3 Smooth Hinge Loss

Using the Hinge LossL(x,y) = C
σ log(1+ eσ(1−xy)) with σ > 0, y∈ R fixed, x ∈ R one obtains as

derivative

L′(x,y) =
−σCyeσ(1−xy)

σ(1+eσ(1−xy))
=−

Cyeσ(1−xy)

1+eσ(1−xy)
=: z.

Note that withy fixed, z is bounded: 0≤ abs(z) ≤ abs(Cy) and sign(y) = −sign(z) and therefore
− z

Cy+z > 0 for Cy+z 6= 0. The inverse function is derived as

z+zeσ(1−xy) = −Cyeσ(1−xy)

(Cy+z)eσ(1−xy) = −z

eσ(1−xy) = −
z

Cy+z

σ(1−xy) = log(−
z

Cy+z
)

1−xy =
1
σ

log(−
z

Cy+z
)

x =
1
y
(1−

1
σ

log(−
z

Cy+z
)), y 6= 0

L′−1(z,y) =
1
y
(1−

1
σ

log(−
z

Cy+z
))

DefineC1 = 1
2

∥
∥∑N

i=1 αiΦk(xi)
∥
∥

2
2 andC2 = ∑N

i=1 αi
1
yi

(

1− 1
σ log(− αi

Cyi+αi
)
)

Using these ingredients it follows forSk(α)

Sk(α) = −
N

∑
i=1

L

(
1
yi

(

1−
1
σ

log(−
αi

Cyi +αi
)

)

,yi

)

+C2 +C1

= −
N

∑
i=1

1
σ

log

(

1+e
σ
(

1−
(

yi
yi

(

1− 1
σ log(−

αi
Cyi+αi

)
))))

+C2 +C1

= −
N

∑
i=1

1
σ

log

(

1−
αi

Cyi +αi

)

+
N

∑
i=1

αi

yi

(

1−
1
σ

log(−
αi

Cyi +αi
)

)

+C1.
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Abstract
We discuss the problem of learning to rank labels from a real valued feedback associated with

each label. We cast the feedback as a preferences graph wherethe nodes of the graph are the
labels and edges express preferences over labels. We tacklethe learning problem by defining a
loss function for comparing a predicted graph with a feedback graph. This loss is materialized by
decomposing the feedback graph into bipartite sub-graphs.We then adopt the maximum-margin
framework which leads to a quadratic optimization problem with linear constraints. While the size
of the problem grows quadratically with the number of the nodes in the feedback graph, we derive
a problem of a significantly smaller size and prove that it attains the same minimum. We then
describe an efficient algorithm, called SOPOPO, for solvingthe reduced problem by employing a
soft projection onto the polyhedron defined by a reduced set of constraints. We also describe and
analyze a wrapper procedure for batch learning when multiple graphs are provided for training. We
conclude with a set of experiments which show significant improvements in run time over a state
of the art interior-point algorithm.

1. Introduction

To motivate the problem discussed in this paper let us consider the following application. Many
news feeds such as Reuters and Associated Press tag each news articlethey handle with labels
drawn from a predefined set of possible topics. These tags are used for routing articles to different
targets and clients. Each tag may also be associated with a degree of relevance, often expressed
as a numerical value, which reflects to what extent a topic is relevant to the news article on hand.
Tagging each individual article is clearly a laborious and time consuming task.In this paper we
describe and analyze an efficient algorithmic framework for learning andinferring preferences over
labels. Furthermore, in addition to the task described above, our learning apparatus includes as
special cases problems ranging from binary classification to total order prediction.
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SHALEV-SHWARTZ AND SINGER

We focus on batch learning in which the learning algorithm receives a set of training examples,
each example consists of an instance and a target vector. The goal of thelearning process is to
deduce an accurate mapping from the instance space to the target space.The target spaceY is a
predefinedset of labels. For concreteness, we assume thatY = {1,2, . . . ,k}. The prediction task
is to assert preferences over the labels. This setting in particular generalizes the notion of a single
tag or labely∈ Y = {1,2, . . . ,k}, typically used in multiclass categorization tasks, to a full set of
preferences over the labels. Preferences are encoded by a vectorγ ∈ R

k, whereγy > γy′ means that
label y is more relevant to the instance than labely′. The preferences over the labels can also be
described as a weighted directed graph: the nodes of the graph are the labels and weighted edges
encode pairwise preferences over pairs of labels. In Fig. 1 we give the graph representation for the
target vector(−1,0,2,0,−1) where each edge marked with its weight. For instance, the weight of
the edge(3,1) is γ3− γ1 = 3.

The class of mappings we employ in this paper is the set of linear functions. While this func-
tion class may seem restrictive, the pioneering work of Vapnik (1998) andcolleagues demonstrates
that by using Mercer kernels one can employ highly non-linear predictors, called support vector
machines (SVM) and still entertain all the formal properties and simplicity of linear predictors. We
propose a SVM-like learning paradigm for predicting the preferences over labels. We generalize
the definition of the hinge-loss used in SVM to the label ranking setting. Our generalized hinge
loss contrasts the predicted preferences graph and the target preferences graph by decomposing the
target graph into bipartite sub-graphs. As we discuss in the next section,this decomposition into
sub-graphs is rather flexible and enables us to analyze several previously defined loss functions in a
single unified setting. This definition of the generalized hinge loss lets us posethe learning problem
as a quadratic optimization problem while the structured decomposition leads to anefficient and
effective optimization procedure.

The main building block of our optimization procedure is an algorithm which performs fast and
frugal SOft ProjectionsOnto aPOlyhedron and is therefore abbreviated SOPOPO. Generalizing the
iterative algorithm proposed by Hildreth (1957) (see also Censor and Zenios (1997)) from half-space
constraints to polyhedra constraints, we also derive and analyze an iterative algorithm which on each
iteration performs a soft projection onto a single polyhedron. The end result is a fast optimization
procedure for label ranking from general real-valued feedback.

The paper is organized as follows. In Sec. 2 we start with a formal definition of our setting and
cast the learning task as a quadratic programming problem. We also make references to previous
work on related problems that are covered by our setting. Our efficient optimization procedure for
the resulting quadratic problem is described in two steps. First, we presentin Sec. 3 the SOPOPO
algorithm for projecting onto a single polyhedron. Then, in Sec. 4, we derive and analyze an iterative
algorithm which solves the original quadratic optimization problem by successive activations of
SOPOPO. Experiments are provided in Sec. 5 and concluding remarks aregiven in Sec. 6.

Before moving to the specifics, we would like to stress that while the learning task discussed in
this paper is well rooted in the machine learning community, the focus of the paper is the design
and analysis of an optimization apparatus. The readers interested in the broad problem of learning
preferences, including its learning theoretic facets such as generalization properties are referred for
instance to (Cohen et al., 1999; Herbrich et al., 2000; Rudin et al., 2005;Agarwal and Niyogi, 2005;
Clemenon et al., 2005) and the many references therein.
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Figure 1: The graph induced by the feedbackγ = (−1,0,2,0,−1).

2. Problem Setting

In this section we introduce the notation used throughout the paper and formally describe our prob-
lem setting. We denote scalars with lower case letters (e.g.x andα), and vectors with bold face
letters (e.g.x andα). Sets are designated by upper case Latin letters (e.g. E) and set of setsby bold
face (e.g.E). The set of non-negative real numbers is denoted byR+. For anyk ≥ 1, the set of
integers{1, . . . ,k} is denoted by[k]. We use the notation(a)+ to denote the hinge function, namely,
(a)+ = max{0,a}.

Let X be an instance domain and letY = [k] be a predefined set of labels. A target for an
instancex ∈ X is a vectorγ ∈ R

k whereγy > γy′ means thaty is more relevant tox thany′. We also
refer toγ as a label ranking. We would like to emphasize that two different labels may attain the
same rank, that is,γy = γy′ while y 6= y′. In this case, we say thaty andy′ are of equal relevance to
x. We can also describeγ as a weighted directed graph. The nodes of the graph are labeled by the
elements of[k] and there is a directed edge of weightγr − γs from noder to nodes iff γr > γs. In
Fig. 1 we give the graph representation for the label-ranking vectorγ = (−1,0,2,0,−1).

The learning goal is to learn a ranking function of the formf : X → R
k which takesx as an

input instance and returns a ranking vectorf(x) ∈ R
k. We denote byfr(x) the rth element off(x).

Analogous to the target vector,γ, we say that labely is more relevant than labely′ with respect to the
predicted ranking iffy(x) > fy′(x). We assume that the label-ranking functions are linear, namely,

fr(x) = wr ·x ,

where eachwr is a vector inR
n andX ⊆ R

n. As we discuss briefly at the end of Sec. 4, our al-
gorithm can be generalized straightforwardly to non-linear ranking functions by employing Mercer
kernels (Vapnik, 1998).

We focus on a batch learning setting in which a training setS= {(xi ,γi)}m
i=1 is provided. Thus,

each example consists of an instancexi ∈ X and a label-rankingγi ∈R
k. The performance of a label-

ranking functionf on an example(x,γ) is evaluated via a loss functionℓ : R
k ×R

k → R. Clearly,
we want the loss of a predicted ranking to be small if it expresses similar preferences over pairs as
the given label-ranking. Moreover, we view the differenceγr − γs for a pair of labelsr ands as an
encoding of the importance of the ordering ofr ahead ofs. That is, the larger this difference is the
more we preferr overs. We view this requirement as a lower bound on the difference betweenfr(x)
and fs(x). Formally, for each pair of labels(r,s) ∈ Y ×Y such thatγr > γs, we define the loss off
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with respect to the pair as,

ℓr,s(f(x),γ) = ((γr − γs)− ( fr(x)− fs(x)))+ . (1)

The above definition of loss extends the hinge-loss used in binary classification problems (Vapnik,
1998) to the problem of label-ranking. The lossℓr,s reflects the amount by which the constraint
fr(x)− fs(x) ≥ γr − γs is not satisfied. While the construction above is defined for pairs, our goal
though is to associate a loss with theentirepredicted ranking and not a single pair. Thus, we need
to combine the individual losses over pairs into one meaningful loss. In this paper we take a rather
flexible approach by specifying an apparatus for combining the individual losses over pairs into a
single loss. We combine the different pair-based losses into a single loss bygrouping the pairs of
labels into independent sets each of which is isomorphic to acomplete bipartitegraph. Formally,
given a target label-ranking vectorγ ∈ R

k, we defineE(γ) = {E1, . . . ,Ed} to be a collection of
subsets ofY ×Y . For eachj ∈ [d], defineVj to be the set of labels which support the edges inE j ,
that is,

Vj = {y∈ Y : ∃ r s.t.(r,y) ∈ E j ∨ (y, r) ∈ E j} . (2)

We further require thatE(γ) satisfies the following conditions,

1. For eachj ∈ [d] and for each(r,s) ∈ E j we haveγr > γs.

2. For eachi 6= j ∈ [d] we haveEi ∩E j = /0.

3. For eachj ∈ [d], the sub-graph defined by(Vj ,E j) is a complete bipartite graph. That is, there
exists two setsA andB, such thatA∩B = /0, Vj = A∪B, andE j = A×B.

In Fig. 2 we illustrate a few possible decompositions into bipartite graphs for a given label-ranking.
The loss of each sub-graph(Vj ,E j) is defined as the maximum over the losses of the pairs

belonging to the sub-graph. In order to add some flexibility we also allow different sub-graphs to
have different contribution to the loss. We do so by associating a weightσ j with each sub-graph.
The general form of our loss is therefore,

ℓ(f(x),γ) =
d

∑
j=1

σ j max
(r,s)∈E j

ℓr,s(f(x),γ) , (3)

where eachσ j ∈ R+ is a non-negative weight. The weightsσ j can be used to associate importance
values with each sub-graph(Vj ,E j) and to facilitate different notions of losses. For example, in
multilabel classification problems, each instance is associated with a set of relevant labels which
come from a predefined setY . The multilabel classification problem is a special case of the label
ranking problem discussed in this paper and can be realized by settingγr = 1 if the r ’th label is
relevant and otherwise definingγr = 0. Thus, the feedback graph itself is of a bipartite form. Its
edges are fromA×B whereA consists of all the relevant labels andB of the irrelevant ones. If
we decide to setE(γ) to contain the single setA×B and defineσ1 = 1 thenℓ(f(x),γ) amounts
to themaximumvalue ofℓr,s over pairs of edges inA×B. Thus, the loss of this decomposition
distills to the worst loss suffered over all pairs of comparable labels. Alternatively, we can setE(γ)
to consist of all the sets{(r,s)} for each(r,s) ∈ A×B and defineσ j = 1/|E(γ)|. In this case the
total lossℓ(f(x),γ) is theaveragevalue of ℓr,s over the edges inA×B. Clearly, one can devise
decompositions ofE(γ) which are neither all pairs of edges nor a singleton including all edges. We
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Figure 2: Three possible decompositions into complete bipartite sub-graphs of the graph from
Fig. 1. Top: all-pairs decomposition; Middle: all adjacent layers; Bottom: toplayer
versus the rest of the layers. The edges and vertices participating in each sub-graph are
depicted in black while the rest are presented in gray. In each graph the nodes constituting
the setA are designated by black circles while for the nodes inB by filled black circles.

can thus capture different notions of losses for label ranking functions with multitude schemes for
casting the relative importance of each subset(Vj ,E j).

Equipped with the loss function given in Eq. (3) we now formally define our learning problem.
As in most learning settings, we assume that there exists an unknown distribution D overX ×R

k

and that each example in our training set is identically and independently drawn from D. The
ultimate goal is to learn a label ranking functionf which entertains a small generalization loss,
E(x,γ)∼D [ℓ(f(x),γ)]. Since the distribution is not known we use instead an empirical sample fromD
and encompass a penalty for excessively complex label-ranking functions. Generalizing the Support
Vector Machine (SVM) paradigm, we define a constrained optimization problem, whose optimal
solution would constitute our label-ranking function. The objective functionwe need to minimize is
composed of two terms. The first is the empirical loss of the label-ranking function on the training
set and the second is a penalty for complexity, often referred to as a regularization term. This term
amounts to the sum of the squared norms of{w1, . . . ,wk}. The trade-off between the regularization
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term and the empirical loss term is controlled by a parameterC. The resulting optimization problem
is,

min
w1,...,wk

1
2

k

∑
j=1

‖w j‖
2 + C

m

∑
i=1

ℓ(f(xi),γi) , (4)

where fy(xi) = wy ·xi . Note that the loss function in Eq. (3) can also be represented as the solution
of the following optimization problem,

ℓ(f(x),γ) = min
ξ∈R

d
+

d

∑
j=1

σ j ξ j

s.t. ∀ j ∈ [d], ∀(r,s) ∈ E j , fr(x)− fs(x) ≥ γr − γs−ξ j ,

(5)

whered = |E(γ)|. Thus, we can rewrite the optimization problem given in Eq. (4) as a quadratic
optimization problem,

min
w1,...,wk,ξ

1
2

k

∑
j=1

‖w j‖
2 + C

m

∑
i=1

|E(γi)|

∑
j=1

σ j ξi
j

s.t. ∀ i ∈ [m], ∀E j ∈ E(γi), ∀(r,s) ∈ E j , wr ·xi −ws ·xi ≥ γi
r − γi

s−ξi
j

∀ i, j, ξi
j ≥ 0 .

(6)

To conclude this section, we would like to review the rationale for choosing anone-sided loss
for each pair by casting a single inequality for each(r,s). It is fairly easy to define a two-sided
loss for a pair by mimicking regression problems. Concretely, we could replace the definition of
ℓr,s as given in Eq. (1) with the loss| fr(x)− fs(x)− (γr − γs)|. This loss penalizes foranydeviation
from the desired difference ofγr − γs. Instead, our loss is one sided as it penalizes only for not
achieving a lower-bound. This choice is more natural in ranking applications. For instance, suppose
we need to induce a ranking over 4 labels where the target label ranking is(−1,2,0,0). Assume
that the predicted ranking is instead(−5,3,0,0). In most ranking and search applications such a
predicted ranking would be perceived as being right on target since thepreferences it expresses over
pairs are on par with the target ranking. Furthermore, in most ranking applications, overly demotion
of the most irrelevant items and excessive promotion of the most relevant ones is perceived as
beneficial rather than a deficiency. Put another way, the set of targetvalues encode minimal margin
requirements and over-achieving these margin requirements should not bepenalized.

Related Work Various known supervised learning problems can be viewed as special cases of the
label ranking setting described in this paper. First, note that when there are only two labels we obtain
the original constrained optimization of support vector machines for binaryclassification (Cortes
and Vapnik, 1995) with the bias term set to zero. In the binary case, our algorithm reduces to
the SOR algorithm described in (Mangasarian and Musicant, 1999). The multiclass problem, in
which the target is a single labely ∈ Y , can also be derived from our setting by definingγy =
1 andγr = 0 for all r 6= y. A few special-purpose algorithms have been suggested to solve the
multiclass SVM problems. The multiclass version of Weston and Watkins (1999) isobtained by
definingE(γ) = {{(y, r)}}r 6=y, that is, each subset consists of a single pair(y, r). The multiclass
version of Crammer and Singer (2001) can be obtained by simply settingE(γ) to be a single set
containing all the pairs(y, r) for r 6= y, namelyE(γ) = {{(y,1), . . . ,(y,y−1),(y,y+1), . . . ,(y,k)}}.
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While the learning algorithms from (Weston and Watkins, 1999) and (Crammer and Singer, 2001)
are seemingly different, they can be solved using the same algorithmic infrastructure presented in
this paper. Proceeding to more complex decision problems, the task of multilabelclassification or
ranking is concerned with predicting a set or relevant labels or ranking the labels in accordance to
their relevance to the input instance. This problem was studied by severalauthors (Elisseeff and
Weston, 2001; Crammer and Singer, 2002; Dekel et al., 2003). Among these studies, the work
of Elisseeff and Weston (2001) is probably the closest to ours yet it is stilla derived special case
of our setting . Elisseeff and Weston focus on a feedback vectorγ which constitutes a bipartite
graph by itself and define a constrained optimization problem with aseparateslack variable for
each edge in the graph. Formally, each instancex is associated with a set of relevant labels denoted
Y. As discussed in the example above, the multilabel categorization setting can thusbe realized by
definingγr = 1 for all r ∈Y andγs = 0 for all s 6∈Y. The construction of Elisseeff and Weston can
be recovered by definingE(γ) = {{(r,s)}|γr > γs}. Our approach is substantially more general as it
allows much richer and flexible ways to decompose the multilabel problem as wellas more general
label ranking problems.

3. Fast “Soft” Projections

In the previous section we introduced the learning apparatus. Our goal now is to derive and analyze
an efficient algorithm for solving the label ranking problem. In addition to efficiency, we also
require that the algorithm would be general and flexible so it can be used with anydecomposition
of the feedback according toE(γ). While the algorithm presented in this and the coming sections
is indeed efficient and general, its derivation is rather complex. We therefore would like to present
it in a bottom-up manner starting with a sub-problem which constitutes the main building block
of the algorithm. In this sub-problem we assume that we have obtained a label-ranking function
realized by the setu1, . . . ,uk and the goal is to modify the ranking function so as to fit better a newly
obtained example. To further simplify the derivation, we focus on the case whereE(γ) contains a
single complete bipartite graph whose set of edges are simply denoted byE. The end result is the
following simplified constrained optimization problem,

min
w1,...,wk,ξ

1
2

k

∑
y=1

‖wy−uy‖
2 + Cξ

s.t. ∀(r,s) ∈ E, wr ·x−ws ·x ≥ γr − γs−ξ
ξ ≥ 0 .

(7)

Herex ∈ X is a single instance andE is a set of edges which induces a complete bipartite graph.
The focus of this section is an efficient algorithm for solving Eq. (7). Thisoptimization problem

finds the set closest to{u1, . . . ,uk} which approximately satisfies a system of linear constraints
with a single slack (relaxation) variableξ. Put another way, we can view the problem as the task
of finding a relaxed projection of the set{u1, . . . ,uk} onto the polyhedron defined by the set of
linear constraints induced fromE. We thus refer to this task as the soft projection. Our algorithmic
solution, while being efficient, is rather detailed and its derivation consists ofmultiple complex
steps. We therefore start with a high level overview of its derivation. We first derive a dual version
of the problem defined by Eq. (7). Each variable in the dual problem corresponds to an edge in
E. Thus, the total number of dual variables can be as large ask2/4. We then introduce a new
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and more compact optimization problem which has onlyk variables. We prove that the reduced
problem nonetheless attains the same optimum as the original dual problem. Thisreduction is one
of the two major steps in the derivation of an efficient soft projection procedure. We next show that
the reduced problem can be decoupled into two simpler constrained optimizationproblems each of
which corresponds to one layer in the bipartite graph induced byE. The two problems are tied by
a single variable. We finally reach an efficient solution by showing that the optimal value of the
coupling variable can be efficiently computed inO(k log(k)) time. We recap our entire derivation
by providing the pseudo-code of the resulting algorithm at the end of the section.

3.1 The Dual Problem

To start, we would like to note that the primal objective function is convex and all the primal con-
straints are linear. A necessary and sufficient condition for strong duality to hold in this case is that
there exists a feasible solution to the primal problem (see for instance (Boydand Vandenberghe,
2004)). A feasible solution can indeed obtained by simply settingwy = 0 for all y and defining
ξ = max(r,s)∈E(γr − γs). Therefore, strong duality holds and we can obtain a solution to the primal
problem by finding the solution of its dual problem. To do so we first write the Lagrangian of the
primal problem given in Eq. (7), which amounts to,

L =
1
2

k

∑
y=1

‖wy−uy‖
2 + Cξ + ∑

(r,s)∈E

τr,s(γr − γs−ξ+ws ·x−wr ·x)−ζξ

=
1
2

k

∑
y=1

‖wy−uy‖
2 +ξ

(

C− ∑
(r,s)∈E

τr,s−ζ

)

+ ∑
(r,s)∈E

τr,s(γr −wr ·x− γs+ws ·x) ,

whereτr,s ≥ 0 for all (r,s) ∈ E andζ ≥ 0. To derive the dual problem we now can use the strong
duality. We eliminate the primal variables by minimizing the Lagrangian with respect toits primal
variables. First, note that the minimum of the termξ(C−∑(r,s)∈Eτr,s− ζ) with respect toξ is zero
wheneverC−∑(r,s)∈E τr,s− ζ = 0. If howeverC−∑(r,s)∈E τr,s− ζ 6= 0 then this term can be made
to approach−∞. Since we need to maximize the dual we can rule out the latter case and pose the
following constraint on the dual variables,

C− ∑
(r,s)∈E

τr,s−ζ = 0 . (8)

Next, recall our assumption thatE induces a complete bipartite graph(V,E) (see also Eq. (2)).
Therefore, there exists two setsA andB such thatA∩B = /0, V = A∪B, andE = A×B. Using the
definition of the setsA andB we can rewrite the last sum of the Lagrangian as,

∑
r∈A,s∈B

τr,s(γr −wr ·x− γs+ws ·x) =

∑
r∈A

(γr −wr ·x) ∑
s∈B

τr,s − ∑
s∈B

(γs−ws ·x) ∑
r∈A

τr,s .

Eliminating the remaining primal variablesw1, . . . ,wk is done by differentiating the Lagrangian
with respect towr for all r ∈ [k] and setting the result to zero. For ally∈ A, the above gives the set
of constraints,

∇wyL = wy−uy−

(

∑
s∈B

τy,s

)

x = 0 . (9)
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Similarly, for y∈ B we get that,

∇wyL = wy−uy +

(

∑
r∈A

τr,y

)

x = 0 . (10)

Finally, we would like to note that for any labely /∈ A∪B we get thatwy−uy = 0. Thus, we can
omit all such labels from our derivation. Summing up, we get that,

wy =







uy +(∑s∈B τy,s)x y∈ A

uy− (∑r∈A τr,y)x y∈ B
uy otherwise

. (11)

Plugging Eq. (11) and Eq. (8) into the Lagrangian and rearranging termsgive the following dual
objective function,

D(τ) = −
1
2
‖x‖2 ∑

y∈A

(

∑
s∈B

τy,s

)2

−
1
2
‖x‖2 ∑

y∈B

(

∑
r∈A

τr,y

)2

(12)

+ ∑
y∈A

(γy−uy ·x) ∑
s∈B

τy,s− ∑
y∈B

(γy−uy ·x) ∑
r∈A

τr,y .

In summary, the resulting dual problem is,

max
τ∈R

|E|
+

D(τ) s.t. ∑
(r,s)∈E

τr,s ≤C . (13)

3.2 Reparametrization of the Dual Problem

Each dual variableτr,s corresponds to an edge inE. Thus, the number of dual variables may be
as large ask2/4. However, the dual objective function depends only on sums of variables τr,s.
Furthermore, each primal vectorwy also depends on sums of dual variables (see Eq. (11)). We
exploit these useful properties to introduce an equivalent optimization of asmaller size with onlyk
variables. We do so by defining the following variables,

∀y∈ A, αy = ∑
s∈B

τy,s and ∀y∈ B, βy = ∑
r∈A

τr,y . (14)

The primal variableswy from Eq. (11) can be rewritten usingαy andβy as follows,

wy =







uy +αyx y∈ A

uy−βyx y∈ B
uy otherwise

. (15)

Overloading our notation and usingD(α,β) to denote dual objective function in terms ofα andβ,
we can rewrite the dual objective of Eq. (12) as follows,

D(α,β) = −
1
2
‖x‖2

(

∑
y∈A

α2
y + ∑

y∈B

β2
y

)

+ ∑
y∈A

(γy−uy ·x)αy − ∑
y∈B

(γy−uy ·x)βy . (16)
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Note that the definition ofαy andβy from Eq. (14) implies thatαy andβy are non-negative. Further-
more, by construction we also get that,

∑
y∈A

αy = ∑
y∈B

βy = ∑
(r,s)∈E

τr,s ≤ C . (17)

In summary, we have obtained the following constrained optimization problem,

max
α∈R

|A|
+ , β∈R

|B|
+

D(α,β) s.t. ∑
y∈A

αy = ∑
y∈B

βy ≤C . (18)

We refer to the above optimization problem as thereducedproblem since it encompasses at
mostk = |V| variables. In appendix A we show that the reduced problem and the original dual
problem from Eq. (13) are equivalent. The end result is the following corollary.

Corollary 1 Let(α⋆,β⋆) be the optimal solution of the reduced problem in Eq. (18). Define{w1, . . . ,wk}
as in Eq. (15). Then,{w1, . . . ,wk} is the optimal solution of the soft projection problem defined by
Eq. (7).

We now move our focus to the derivation of an efficient algorithm for solving the reduced
problem. To make our notation easy to follow, we definep = |A| andq = |B| and construct two
vectorsµ ∈ R

p and ν ∈ R
q such that for eacha ∈ A there is an element(γa − ua · x)/‖x‖2 in µ

and for eachb∈ B there is an element−(γb−ub · x)/‖x‖2 in ν. The reduced problem can now be
rewritten as,

min
α∈R

p
+,β∈R

q
+

1
2
‖α−µ‖2 +

1
2
‖β−ν‖2

s.t.
p

∑
i=1

αi =
q

∑
j=1

β j ≤ C .

(19)

3.3 Decoupling the Reduced Optimization Problem

In the previous section we showed that the soft projection problem givenby Eq. (7) is equivalent
to the reduced optimization problem of Eq. (19). Note that the variablesα andβ are tied together
through a single equality constraint‖α‖1 = ‖β‖1. We represent this coupling ofα andβ by rewriting
the optimization problem in Eq. (19) as,

min
z∈[0,C]

g(z;µ)+g(z;ν) ,

where

g(z;µ) = min
α

1
2
‖α−µ‖2 s.t.

p

∑
i=1

αi = z , αi ≥ 0 , (20)

and similarly

g(z;ν) = min
β

1
2
‖β−ν‖2 s.t.

q

∑
j=1

β j = z , β j ≥ 0 . (21)
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The functiong(z; ·) takes the same functional form whether we useµ or ν as the second argument.
We therefore describe our derivation in terms ofg(z;µ). Clearly, the same derivation is also appli-
cable tog(z;ν). The Lagrangian ofg(z;µ) is,

L =
1
2
‖α−µ‖2 +θ

(
p

∑
i=1

αi −z

)

−ζ ·α ,

whereθ ∈ R is a Lagrange multiplier andζ ∈ R
p
+ is a vector of non-negative Lagrange multipliers.

Differentiating with respect toαi and comparing to zero gives the following KKT condition,

dL
dαi

= αi −µi +θ−ζi = 0 .

The complementary slackness KKT condition implies that wheneverαi > 0 we must have that
ζi = 0. Thus, ifαi > 0 we get that,

αi = µi −θ+ζi = µi −θ . (22)

Since all the non-negative elements of the vectorα are tied via a single variable we would have
ended with a much simpler problem had we known the indices of these elements. On a first sight,
this task seems difficult as the number of potential subsets ofα is clearly exponential in the di-
mension ofα. Fortunately, the particular form of the problem renders an efficient algorithm for
identifying the non-zero elements ofα. The following lemma is a key tool in deriving our proce-
dure for identifying the non-zero elements.

Lemma 2 Letα be the optimal solution to the minimization problem in Eq. (20). Let s and j be two
indices such that µs > µj . If αs = 0 thenα j must be zero as well.

Proof Assume by contradiction thatαs = 0 yetα j > 0. Let α̃ ∈ R
k be a vector whose elements are

equal to the elements ofα except forα̃s andα̃ j which are interchanged, that is,α̃s = α j , α̃ j = αs,
and for every otherr /∈ {s, j} we haveα̃r = αr . It is immediate to verify that the constraints of
Eq. (20) still hold. In addition we have that,

‖α−µ‖2−‖α̃−µ‖2 = µ2
s +(α j −µj)

2− (α j −µs)
2−µ2

j = 2α j(µs−µj) > 0 .

Therefore, we obtain that‖α− µ‖2 > ‖α̃− µ‖2, which contradicts the fact thatα is the optimal
solution.

Let I denote the set{i ∈ [p] : αi > 0}. The above lemma gives a simple characterization of the set
I . Let us reorder theµ such thatµ1 ≥ µ2 ≥ . . . ≥ µp. Simply put, Lemma 2 implies that after the
reordering, the setI is of the form{1, . . . ,ρ} for some 1≤ ρ ≤ p. Had we knownρ we could have
simply use Eq. (22) and get that

p

∑
i=1

αi =
ρ

∑
i=1

αi =
ρ

∑
i=1

(µi −θ) = z ⇒ θ =
1
ρ

(
ρ

∑
i=1

µi −z

)

.

In summary, givenρ we can summarize the optimal solution forα as follows,

αi =







µi −
1
ρ

(
ρ

∑
i=1

µi −z

)

i ≤ ρ

0 i > ρ
. (23)
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We are left with the problem of finding the optimal value ofρ. We could simply enumerate all
possible values ofρ in [p], for each possible value computeα as given by Eq. (23), and then choose
the value for which the objective function (‖α− µ‖2) is the smallest. While this procedure can
be implemented quite efficiently, the following lemma provides an even simpler solutiononce we
reorder the elements ofµ to be in a non-increasing order.

Lemma 3 Let α be the optimal solution to the minimization problem given in Eq. (20) and assume
that µ1 ≥ µ2 ≥ . . . ≥ µp. Then, the number of strictly positive elements inα is,

ρ(z,µ) = max

{

j ∈ [p] : µj −
1
j

(
j

∑
r=1

µr −z

)

> 0

}

.

The proof of this technical lemma is deferred to the appendix.
Had we known the optimal value ofz, i.e. the argument attaining the minimum ofg(z;µ) +

g(z;ν) we could have calculated the optimal dual variablesα⋆ andβ⋆ by first findingρ(z,µ) and
ρ(z,ν) and then findingα andβ using Eq. (23). This is a classical chicken-and-egg problem: we
can easily calculate the optimal solution given some side information, however,obtaining the side
information seems as difficult as finding the optimal solution. One option is to perform a search
over anε-net of values forz in [0,C]. For each candidate value forz from theε-net we can findα
andβ and then choose the value which attains the lowest objective value (g(z;µ)+g(z;ν)). While
this approach may be viable in many cases, it is still quite time consuming. To our rescue comes
the fact thatg(z;µ) andg(z;ν) entertain a very special structure. Rather than enumerating over all
possible values ofzwe need to check at mostk+1 possible values forz. To establish the last part of
our efficient algorithm which performs this search for the optimal value ofz we need the following
theorem. The theorem is stated withµ but, clearly, it also holds forν .

Theorem 4 Let g(z;µ) be as defined in Eq. (20). For each i∈ [p], define

zi =
i

∑
r=1

µr − iµi .

Then, for each z∈ [zi ,zi+1] the function g(z;µ) is equivalent to the following quadratic function,

g(z;µ) =
1
i

(
i

∑
r=1

µr −z

)2

+
p

∑
r=i+1

µ2
r .

Moreover, g is continuous, continuously differentiable, and convex in[0,C].

The proof of this theorem is also deferred to the appendix. The good news that the theorem carries is
thatg(z;µ) andg(z;ν) are convex and therefore their sum is also convex. Furthermore, the function
g(z; ·) is piecewise quadratic and the points where it changes from one quadraticfunction to another
are simple to compute. We refer to these points as knots. In the next sub-section we exploit the
properties of the functiong to devise an efficient procedure for finding the optimal value ofz and
from there the road to the optimal dual variables is clear and simple.
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INPUT: instancex ∈ X ; target rankingγ ; setsA,B

current prototypesu1, . . . ,uk ; regularization parameterC

MARGINS:

µ= sort
{
(γa−ua ·x)/‖x‖2 | a∈ A

}

ν = sort
{
(ub ·x− γb)/‖x‖2 | b∈ B

}

KNOTS:

∀i ∈ [p] : zi = ∑i
r=1µr − iµi ∀ j ∈ [q] : z̃j = ∑ j

s=1 νs− jν j

Q = {zi : zi < C}∪
{

z̃j : z̃j < C
}
∪{C}

INTERVALS:

∀z∈ Q : R(z) = |{zi : zi ≤ z}| ; S(z) =
∣
∣{z̃j : z̃j ≤ z}

∣
∣

∀z∈ Q : N(z) = min{z′ ∈ Q : z′ > z}∪{C}

LOCAL M IN :

O(z) =

(

S(z)
R(z)

∑
r=1

µr +R(z)
S(z)

∑
r=1

νr

)

/(R(z)+S(z))

GLOBAL M IN :

If (∃z∈ Q s.t. O(z) ∈ [z,N(z)]) Then

z⋆ = O(z) ; i⋆ = R(z) ; j⋆ = S(z)

Else If (µ1 +ν1 ≤ 0)

z⋆ = 0 ; i⋆ = 1 ; j⋆ = 1

Else

z⋆ = C ; i⋆ = R(C) ; j⋆ = S(C)

DUAL’ S AUXILIARIES :

θα =
1
i⋆

(
i⋆

∑
r=1

µr −z⋆

)

; θβ =
1
j⋆

(
j⋆

∑
r=1

νr −z⋆

)

OUTPUT:

∀a∈ A : αa =
(

γa−ua·x
‖x‖2 −θα

)

+
and wa = ua +αax

∀b∈ B : βb =
(

ub·x−γb
‖x‖2 −θβ

)

+
and wb = ub−βbx

Figure 3: Pseudo-code of the soft-projection onto polyhedra (SOPOPO) algorithm.
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Figure 4: An illustration of the functiong(z;µ)+g(z;ν). The vectorsµ andν are constructed from,
γ = (1,2,3,4,5,6), u ·x = (2,3,5,1,6,4), A = {4,5,6}, andB = {1,2,3}.

3.4 Putting it All Together

Due to the strict convexity ofg(z;µ)+ g(z;ν) its minimum is unique and well defined. Therefore,
it suffices to search for a seeminglylocal minimum over all the sub-intervals in which the objective
function is equivalent to a quadratic function. If such a local minimum point is found it is guaranteed
to be the global minimum. Once we have the value ofz which constitutes the global minimum we
can decouple the optimization problems forα andβ and quickly find the optimal solution. There
is though one last small obstacle: the objective function is the sum of two piecewise quadratic
functions. We therefore need to efficiently go over theunionof the knots derived fromµ andν. We
now summarize the full algorithm for finding the optimum of the dual variables and wrap up with
its pseudo-code.

Givenµ andν we find the sets of knots for each vector, take the union of the two sets, andsort
the set in an ascending order. Based on the theorems above, it follows immediately that each interval
between two consecutive knots in the union is also quadratic. Sinceg(z;µ)+g(z;ν) is convex, the
objective function in each interval can be characterized as falling into oneof two cases. Namely,
the objective function is either monotone (increasing or decreasing) or it attains its unique global
minimum inside the interval. In the latter case the objective function clearly decreases, reaches
the optimum where its derivative is zero, and then increases. See also Fig.4 for an illustration. If
the objective function is monotone in all of the intervals then the minimum is obtained at one of
the boundary pointsz= 0 or z= C. Otherwise, we simply need to identify the interval bracketing
the global minimum and then find the optimal value ofz by finding the minimizer of the quadratic
function associated with the interval. For instance, in Fig. 4 the minimum is attained just below 5
at the interval defined by the second and third knots. IfC is, say, 10 then the optimal value forz
coincides with the minimum below 5. If howeverC lies to the left of the minimum, say at 3, then
the optimum ofz is at 3. We now formally recap the entire procedure.
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We utilize the following notation. For eachi ∈ [p], define the knots derived fromµ

zi =
i

∑
r=1

µr − iµi ,

and similarly, for eachj ∈ [q] define

z̃j =
j

∑
r=1

νr − jν j .

From Lemma 4 we know thatg(z;µ) is quadratic in each segment[zi ,zi+1) andg(z;ν) is quadratic
in each segment[z̃j , z̃j+1). Therefore, as already argued above, the functiong(z;µ)+g(z;ν) is also
piecewise quadratic in[0,C] and its knots are the points in the set,

Q = {zi : zi < C}∪{z̃j : z̃j < C}∪{C} .

For each knotz∈ Q , we denote byN(z) its consecutive knot inQ , that is,

N(z) = min
(
{z′ ∈ Q : z′ > z}∪{C}

)
.

We also need to know for each knot how many knots precede it. Given a knot z we define

R(z) = |{zi : zi ≤ z}| and S(z) = |{z̃i : z̃i ≤ z}| .

Using the newly introduced notation we can find for a given valuez its bracketing interval,z∈
[z′,N(z′)]. From Thm. 4 we get that the value of the dual objective function atz is,

g(z;µ)+g(z;ν) =

1
R(z′)

(
R(z′)

∑
r=1

µr −z

)2

+
p

∑
r=R(z′)+1

µ2
r +

1
S(z′)

(
S(z′)

∑
r=1

νr −z

)2

+
p

∑
r=S(z′)+1

ν2
r .

The unique minimum of the quadratic function above is attained at the point

O(z′) =

(

S(z′)
R(z′)

∑
i=1

µi +R(z′)
S(z′)

∑
i=1

νi

)

/
(
R(z′)+S(z′)

)
.

Therefore, ifO(z′) ∈ [z′,N(z′)], then the global minimum of the dual objective function is attained
at O(z′). Otherwise, if no such interval exists, the optimum is either atz = 0 or atz = C. The
minimum is achieved atz= 0 iff the derivative of the objective function atz= 0 is non-negative,
namely,−µ1 − ν1 ≥ 0. In this case, the optimal solution isα = 0 andβ = 0 which implies that
wr = ur for all r. If on the other hand−µ1− ν1 < 0 then the optimum is attained atz= C. The
skeleton of the pseudo-code for the fast projection algorithm is given in Fig. 3. The most expensive
operation performed by the algorithm is the sorting ofµ andν. Since the sum of the dimensions of
these vectors isk the time complexity of the algorithm isΘ(k log(k)).
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4. From a Single Projection to Multiple Projections

We now describe the algorithm for solving the original batch problem defined by Eq. (6) using the
SOPOPO algorithm as its core. We would first like to note that the general batch problem can
also be viewed as a soft projection problem. We can cast the batch problemas finding the set of
vectors{w1, . . . ,wk} which is closest tok zero vectors{0, . . . ,0} while approximately satisfying a
set of systems of linear constraints where each system is associated with anindependent relaxation
variable. Put another way, we can view the full batch optimization problem asthe task of finding
a relaxed projection of the set{0, . . . ,0} onto multiple polyhedra each of which is defined via a
set of linear constraints induced by a single sub-graphE j ∈ E(γi). We thus refer to this task as the
soft-projection onto multiple polyhedra. We devise an iterative algorithm whichsolves the batch
problem by successively calling to the SOPOPO algorithm from Fig. 3. We describe and analyze
the algorithm for a slightly more general constrained optimization which results ina simplified
notation. We start with the presentation of our original formulation as an instance of the generalized
problem.

To convert the problem in Eq. (6) to a more general form, we assume without loss of generality
that |E(γi)| = 1 for all i ∈ [m]. We refer to the single set inE(γi) asEi . This assumption does not
pose a limitation since in the case of multiple decompositions,E(γi) = {E1, . . . ,Ed}, we can replace
the ith example withd pseudo-examples:{(xi ,E1), . . . ,(xi ,Ed)}. Using this assumption, we can
rewrite the optimization problem of Eq. (6) as follows,

min
w1,...,wk,ξ

1
2

k

∑
r=1

‖wr‖
2 +

m

∑
i=1

Ci ξi

s.t. ∀ i ∈ [m], ∀(r,s) ∈ Ei , wr ·xi −ws ·xi ≥ γi
r − γi

s−ξi

∀ i, ξi ≥ 0 ,

(24)

whereCi = Cσi is the weight of theith slack variable. To further simplify Eq. (24), we usew̄ ∈ R
nk

to denote the concatenation of the vectors(w1, . . . ,wk). In addition, we associate an index, denoted
j, with each(r,s) ∈ Ei and defineai, j ∈ R

nk to be the vector,

ai, j = ( 0
︸︷︷︸

1st block

, . . . , 0 , xi
︸︷︷︸

rth block

, 0 , , . . . , 0 , −xi
︸︷︷︸

sth block

, 0 , . . . , 0
︸︷︷︸

kth block

) . (25)

We also definebi, j = γi
r − γi

s. Finally, we defineki = |Ei |. Using the newly introduced notation we
can rewrite Eq. (24) as follows,

min
w̄,ξ

1
2
‖w̄‖2 +

m

∑
i=1

Ci ξi

s.t. ∀i ∈ [m], ∀ j ∈ [ki ], w̄ ·ai, j ≥ bi, j −ξi

ξi ≥ 0 .

(26)

Our goal is to derive an iterative algorithm for solving Eq. (26) based ona procedure for solving a
single soft-projection which takes the form,

min
w̄,ξi

1
2
‖w̄−u‖2 + Ci ξi

s.t. ∀ j ∈ [ki ], w̄ ·ai, j ≥ bi, j −ξi

ξi ≥ 0 .

(27)
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By construction, an algorithm for solving the more general problem defined in Eq. (26) would also
solve the more specific problem defined by Eq. (6).

The rest of the section is organized as follows. We first derive the dualof the problem given in
Eq. (26). We then describe an iterative algorithm which on each iteration performs a single soft-
projection and present a pseudo-code of the iterative algorithm tailored for the specific label-ranking
problem of Eq. (6). Finally, we analyze the convergence of the suggested iterative algorithm.

4.1 The Dual Problem

First, note that the primal objective function of the general problem is convex and all the primal
constraints are linear. Therefore, using the same arguments as in Sec. 3.1it is simple to show that
strong duality holds and a solution to the primal problem can be obtained from the solution of its
dual problem. To derive the dual problem, we first write the Lagrangian,

L =
1
2
‖w̄‖2 +

m

∑
i=1

Ci ξi +
m

∑
i=1

ki

∑
j=1

λi, j
(
bi, j −ξi − w̄ ·ai, j)−

m

∑
i=1

ζiξi ,

whereλi, j andζi are non-negative Lagrange multipliers. Taking the derivative ofL with respect to
w̄ and comparing it to zero gives,

w̄ =
m

∑
i=1

ki

∑
j=1

λi, j ai, j . (28)

As in the derivation of the dual objective function for a single soft projection, we get that the
following must hold at the optimum,

∀i ∈ [m],
ki

∑
j=1

λi, j −Ci −ζi = 0 . (29)

Sinceλi, j andζi are non-negative Lagrange multipliers we get that the set of feasible solutions of
the dual problem is,

S =

{

λ

∣
∣
∣
∣
∣
∀i,

ki

∑
j=1

λi, j ≤ Ci and ∀i, j, λi, j ≥ 0

}

.

Using Eq. (28) and Eq. (29) to further rewrite the Lagrangian gives thedual objective function,

D(λ) = −
1
2

∥
∥
∥
∥
∥

m

∑
i=1

ki

∑
j=1

λi, j ai, j

∥
∥
∥
∥
∥

2

+
m

∑
i=1

ki

∑
j=1

λi, j b
i, j .

The dual of the problem defined in Eq. (26) is therefore,

max
λ∈S

D(λ) . (30)
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INPUT: training set{(xi ,γi)}m
i=1 ; decomposition functionE(γ) ;

regularization parameterC

INITIALIZE :

∀i ∈ [m], A j ×B j ∈ E(γi), (a,b) ∈ A j ×B j , setαi, j
a = 0, βi, j

b = 0

∀r ∈ [k], setwr = 0

LOOP:

Choose a sub-graphi ∈ [m], A j ×B j ∈ E(γi)

UPDATE:

∀a∈ A j : ua = wa−αi, j
a xi ∀b∈ B j : ub = wb +βi, j

b xi

SOLVE:

(αi, j ,βi, j ,{wr}) = SOPOPO({ur},xi ,γi ,A j ,B j ,Cσi
j)

OUTPUT: The final vectors{wr}
k
r=1

Figure 5: The procedure for solving the preference graphs problemvia soft-projections.

4.2 An Iterative Procedure

We are now ready to describe our iterative algorithm. We would like to stress again that the method-
ology and analysis presented here have been suggested by several authors. Our procedure is a slight
generalization of row action methods (Censor and Zenios, 1997) which is often referred to as de-
composition methods (see also Lin (2002); Mangasarian and Musicant (1999); Platt (1998)). The
iterative procedure works in rounds and operates on the dual form ofthe objective function. We
show though that each round can be realized as a soft-projection operation. Letλt denote the vector
of dual variables before thetth iteration of the iterative algorithm. Initially, we setλ1 = 0, which
constitutes a trivial feasible solution to Eq. (30). On thetth iteration of the algorithm, we choose a
single example whose index is denotedr and update its dual variables. We freeze the rest of the dual
variables at their current value. We cast thetth iteration as the following constrained optimization
problem,

λt+1 = argmax
λ∈S

D(λ) s.t. ∀i 6= r, ∀ j ∈ [ki ], λi, j = λt
i, j . (31)

Note thatλt+1 is essentially the same asλt except for the variables corresponding to therth example,
namely,{λr, j | j ∈ [kr ]}. In order to explicitly write the objective function conveyed by Eq. (31) let
us introduce the following notation,

u = ∑
i 6=r

ki

∑
j=1

λt
i, ja

i, j . (32)
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The vectoru is equal to the current estimate ofw̄ excluding the contribution of therth set of dual
variables. Withu on hand, we can rewrite the objective function of Eq. (31) as follows,

−
1
2

∥
∥
∥
∥
∥

kr

∑
j=1

λr, jar, j

∥
∥
∥
∥
∥

2

−

(
kr

∑
j=1

λr, jar, j

)

·u−
1
2
‖u‖2 +

kr

∑
j=1

λr, jb
r, j +∑

i 6=r

ki

∑
j=1

λt
i, jb

i, j

= −
1
2

∥
∥
∥
∥
∥

kr

∑
j=1

λr, jar, j

∥
∥
∥
∥
∥

2

+
kr

∑
j=1

λr, j
(
br, j −u ·ar, j)+Γ , (33)

whereΓ is a constant that does not depend on the variables in{λr, j | j ∈ [kr ]}. In addition the set of
variables which are not fixed must reside inS, therefore,

ki

∑
j=1

λr, j ≤ Cr and ∀ j, λr, j ≥ 0 . (34)

The fortunate circumstances are that the optimization problem defined by Eq.(33) subject to the
constraints given in Eq. (34) can be rephrased as a soft-projection problem. Concretely, let us define
the following soft-projection problem,

min
w̄,ξr

1
2
‖w̄−u‖2 + Cr ξr

s.t. ∀ j ∈ [kr ], w̄ ·ar, j ≥ br, j −ξr

ξr ≥ 0 .

(35)

The value ofλt+1
r, j is obtained from the optimal value of the dual problem of Eq. (35) as we now

show. The Lagrangian of Eq. (35) is

L =
1
2
‖w̄−u‖2 + Cr ξr +

kr

∑
j=1

λr, j
(
br, j −ξr − w̄ ·ar, j)−ζrξr .

Differentiating with respect tōw and comparing to zero give,

w̄ = u+
kr

∑
j=1

λr, j ar, j .

As in the previous derivations of the dual objective functions we also getthat,

Cr −ζr −
kr

∑
j=1

λr, j = 0 ,

and thus the Lagrange multipliers must satisfy,

kr

∑
j=1

λr, j ≤ Cr .
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Therefore, the dual problem of Eq. (35) becomes,

max
λr,·

−
1
2

∥
∥
∥
∥
∥

kr

∑
j=1

λr, j ar, j

∥
∥
∥
∥
∥

2

+
kr

∑
j=1

λr, j (b
r, j −u ·ar, j) s.t.

kr

∑
j=1

λr, j ≤Cr and ∀ j, λr, j ≥ 0 ,

(36)

which is identicalto the problem defined by Eq. (33) subject to the constraints given by Eq.(34).
In summary, our algorithm works by updating one set of dual variables oneach round while

fixing the rest of the variables to their current values. Finding the optimal value of the unrestricted
variables is achieved by defining an instantaneous soft-projection problem. The instantaneous soft-
projection problem is readily solved using the machinery developed in the previous section. The
pseudo-code of this iterative procedure is given in Fig. 5. It is therefore left to reason about the
formal properties of the iterative procedure. From the definition of the update from Eq. (31) we
clearly get that on each round we are guaranteed to increase the dual objective function unless we
are already at the optimum. In the next subsection we show that this iterative paradigm converges
to the global optimum of the dual objective function.

To conclude this section, we would like to note that a prediction of our label-ranking function
is solely based on inner products between vectors from{w1, . . . ,wk} and an instancex. In addition,
as we have shown in the previous section, the solution of each soft projection takes the formwa =
ua +αaxi andwb = ub−βbxi . Since we initially set all vectors to be the zero vector, we get that at
each step of the algorithm all the vectors can be expressed as linear combinations of the instances.
Thus, as in the case of support vector machines for classification problems, we can replace the inner
product operation with any Mercer kernel (Vapnik, 1998).

4.3 Analysis of Convergence

To analyze the convergence of the iterative procedure we need to introduce a few more definitions.
We denote byDt the value of the dual objective functionbeforethetth iteration and by∆t = Dt+1−
Dt the increase in the dual on thetth iteration. We also denote by∆i(λ) the potential increase we
have gained had we chosen theith example for updatingλ. We assume that on each iteration of the
algorithm, we choose an example, whose index isr, which attains the maximal increase in the dual,
therefore∆r(λ) = maxi ∆i(λt). Last, letD⋆ andλ⋆ denote the optimal value and argument of the
dual objective function. Our algorithm maximizes the dual objective on eachiteration subject to the
constraint that for alli 6= r and j ∈ [ki ], the variablesλi, j are kept intact. Therefore, the sequence
D1,D2, . . . is monotonically non-decreasing.

To prove convergence we need the following lemma which says that if the algorithm is at sub-
optimal solution then it will keep increasing the dual objective on the subsequent iteration.

Lemma 5 Let λ be a suboptimal solution, D(λ) < D⋆. Then there exists an example r for which
∆r(λ) > 0.

Proof Assume by contradiction that for alli, ∆i(λ) = 0 and yetD(λ) < D⋆. In this case we clearly
have thatλ 6= λ⋆. Let v = λ⋆−λ denote the difference between the optimal solution and the current
solution and denoteh(θ) = D(λ+θv) the value of the dual obtained by moving along the direction
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v from λ. SinceD(λ) is concave then so ish. Therefore, the line tangent toh at 0 resides aboveh at
all points butθ = 0. We thus get that,h(0)+h′(0)θ ≥ h(θ) and in particular forθ = 1 we obtain,

h′(0) ≥ h(1)−h(0) = D(λ⋆)−D(λ) > 0 .

Let ∇D denote the gradient of the dual objective atλ. Sinceh′(0) = ∇D ·v we get that,

∇D ·v > 0 . (37)

We now rewritev as the sum of vectors,

v =
m

∑
i=1

zi where zi
r, j =

{
vr, j r = i
0 r 6= i

.

In words, we rewritev as the sum of vectors each of which corresponds to the dual variables
appearing in a single soft-projection problem induced by theith example. From the definition ofzi

together with the form of the dual constraints we get that the vectorλ+zi is also a feasible solution
for the dual problem. Using the assumption that for alli, ∆i(λ) = 0, we get that for eachθ ∈ [0,1],
D(λ) ≥ D(λ+θzi). Analogously toh we define the scalar functionhi(θ) = D(λ+θzi). Sincehi is
derived from the dual problem by constraining the dual variables to reside on the lineλ+θzi , then
as the functionD, hi is also continuously differentiable. The fact thathi(0) ≥ hi(θ) for all θ ∈ [0,1]
now implies thath′i(0) ≤ 0. Furthermore,∇D ·zi = h′i(0) ≤ 0 for all i which gives,

∇D ·v = ∇D ·
m

∑
i=1

zi =
m

∑
i=1

∇D ·zi ≤ 0 ,

which contradicts Eq. (37).

Equipped with the above lemma we are now ready to prove that the iterative algorithm converges to
an optimal solution.

Theorem 6 Let Dt denote the value of the dual objective after the t’th iteration of the algorithm
defined in Eq. (31). Denote by D⋆ the optimum of the problem given in Eq. (30). Then, the sequence
D1,D2, . . . ,Dt , . . . converges to D⋆.

Proof Recall that the primal problem has a trivial feasible solution which is attained by setting
w̄ = 0 andξi = maxj bi, j . For this solution the value of the primal problem is finite. Since the value
of the dual problem cannot exceed the value of the primal problem we getthatD⋆ < ∞. Therefore,
the sequence of dual objective values is a monotonic, non-decreasing,and upper bounded sequence,
D1 ≤ D2 ≤ . . . ≤ Dt ≤ . . . ≤ D⋆ < ∞. Thus, this sequence converges to a limit which we denote
by D′. It is left to show thatD′ = D⋆. Assume by contradiction thatD⋆ −D′ = ε > 0. The set of
feasible dual solutions,S, is a compact set. Let∆′ : S→ R be the average increase of the dual over
all possible choices for an example to use for updatingλ,

∆′(λ) =
1
m∑

i

∆i(λ) .

On each iteration we have by construction that∆t ≥ ∆′(λt). DefineA = {λ : D(λ) > D⋆ − ε/2}.
From the concavity ofD we get that the setS\A is a compact set. Since∆′ is a continuous function
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it attains a minimum value overS\A. Denote this minimum value byκ and letλ̃ be the point which
attains this minimum. From Lemma 5 we know thatκ > 0 since otherwiseD(λ̃) would have equal
to D⋆ which in turn contradicts the fact thatλ̃ /∈ A. Since for allt we know thatDt ≤ D′ = D⋆ − ε
we conclude thatλt ∈ S\A. This fact implies that for allt ,

∆t ≥ ∆′(λt) ≥ ∆′(λ̃) = κ .

The above lower bound on the increase in the dual implies that the sequenceD1,D2,D3, . . . diverges
to infinity and thusD′ = ∞ which is in contradiction to the fact thatD′ = D⋆− ε < ∞.

5. Experiments

In this section we compare the SOPOPO algorithm from Fig. 3 and our iterativeprocedure for
soft-projection onto multiple polyhedra from Fig. 5 to a commercial interior pointmethod called
LOQO (Vanderbei, 1999).

Our first set of experiments focuses on assessing the efficiency of SOPOPO for soft-projection
onto asingle polyhedron. In this set of experiments, the data was generated as follows. First,
we chose the number of classesk = |Y | and definedE to be the setA×B with A = [k/2] andB =
[k]\ [k/2]. We set the value ofγr to be one forr ∈Aand otherwise it was set to zero. We then sampled
an instancex and a set of vectors{u1, . . . ,uk} from a 100-dimensional Normal distribution of a zero
mean and an identity matrix as a covariance matrix. After generating the instanceand the targets, we
presented the optimization problem of Eq. (7) to SOPOPO and to the LOQO optimization package.
We repeated the above experiment for different values ofk ranging from 10 through 100. For
each value ofk we repeated the entire experiment ten times, where in each trial we generateda
new problem. We then averaged the results over the ten trials. The averageCPU time consumed
by the two algorithms as a function ofk is depicted on the left hand side of Fig. 6. We would
like to note that we have implemented SOPOPO both in Matlab and C++. We used the Matlab
interface to LOQO, while LOQO itself was run in its native mode. We report results using our
Matlab implementation of SOPOPO in order to eliminate possible implementation advantages. Our
Matlab implementation follows the pseudo-code of Fig. 3. Nevertheless, as clearly indicated by
the results, the time consumed by SOPOPO is negligible and exhibits only a very minor increase
with k. In contrast, the run time of LOQO increases significantly withk. The apparent advantage
of our algorithm over LOQO can be attributed to a few factors. First, LOQO isa general purpose
numericaloptimization toolkit. Its generality is clearly a two edged sword as it employs a numerical
interior point method regardless of the problem on hand. Furthermore, LOQO was set to solve
numerically the soft-projection problem of Eq. (7) while SOPOPO solves optimally the equivalent
reduced problem of Eq. (19). To eliminate the latter mitigating factor which is in favor of SOPOPO,
we repeated the same experiment as before while presenting to LOQO the reduced optimization
problem rather than the original soft-projection problem. The results are depicted on the right hand
side of Fig. 6. Yet again, the run time of SOPOPO is still significantly lower than LOQO fork> 300
and as before there is no significant increase in the run time of SOPOPO ask increases.

The second experiment compares the performance of the iterative algorithm from Fig. 5 and
LOQO in the batch setting described by Eq. (6). In this experiment we generated synthetic data
as follows. First, we chose the number of classesk = |Y | and sampledm instances from a 100-
dimensional Normal distribution of a zero mean and an identity covariance matrix. We next sam-
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Figure 6: A comparison of the run-time of SOPOPO and LOQO on the original soft-projection
problem defined in Eq. (7) (left) and on the reduced problem from Eq. (19) (right).

pled a set of vectors{w1, . . . ,wk} from the same Gaussian distribution. For each instancexi , we
calculated the vectorvi ∈ R

k, whoser ’th element iswr · xi . We then setAi to be the indices of
the topk/2 elements ofvi while Bi consisted of all the rest of the elements,[k] \Ai . For example,
assume thatvi = (0.4,4.1,3.5,−2) thenAi = {2,3} andBi = {1,4}. As feedback we setγi

a = 1 for
all a∈ Ai and forb∈ Bi we setγi

b = 0. In our running example, the resulting vectorγi amounts to
(0,1,1,0). Finally, we setE(γi) = {Ei}, whereEi = A×B, and the value ofσ was always 1. We
repeated the above process for different values ofk ranging from 20 through 100. The number of
examples was fixed to be 10k and thus ranged from 200 through 1000. The value ofC was set to
be 1/m. In each experiment we terminated the wrapper procedure described in Fig. 5 when the gap
between the primal and dual objective functions went below 0.01. We first tried to execute LOQO
with the original optimization problem described in Eq. (6). However, the resulting optimization
problem was too large for LOQO to manage in a reasonable time, even for the smallest problem
(k = 20). Our iterative algorithm solves such small problems in less than a second. To facilitate a
more meaningful comparison, we used the techniques described in Sec. 3 and replaced the original
optimization problem from Eq. (6) with the following reduced problem,

max
α,β

−
1
2

k

∑
r=1

∥
∥
∥
∥
∥

∑
i:r∈Ai

αi
r xi − ∑

i:r∈Bi

βi
r xi

∥
∥
∥
∥
∥

2

+
k

∑
r=1

(

∑
i:r∈Ai

αi
r γi

r − ∑
i:r∈Bi

βi
r γi

r

)

s.t. ∀ i ∈ [m] : ∀a∈ Ai , αi
a ≥ 0 and ∀b∈ Bi , βi

b ≥ 0

∀ i ∈ [m] : ∑
a∈Ai

αi
a = ∑

b∈Bi

βi
b ≤ C .

(38)

By presenting the reduced problem given in Eq. (38) to LOQO, we injectedquite a bit of prior
knowledge that made the task manageable for LOQO. The derivation of the above reduced problem
is given in appendix C. The results are summarized in Fig. 7. As clearly can be seen from the
graph, our iterative algorithm outperforms LOQO, in particular as the size of the problem increases.
Due to the nature of the decomposition procedure, our running time is no longer independent of the
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Figure 7: A comparison of the run-time in batch settings of SOPOPO and LOQO (using the reduced
problem in Eq. (38)). The number of examples was set to be 10 times the number of labels
(denotedk) in each problem.

value ofk as the number of graphs grows withk. Nonetheless, even fork = 100 the run time of
SOPOPO’s wrapper does not exceed 4 seconds. These promising results emphasize the viability of
our approach for large scale optimization problems.

The last experiment underscores an interesting property of our iterative algorithm. In this ex-
periment we have used the same data as in the previous experiment withk = 100 andm= 1000.
After each iteration of the algorithm, we examined both the increase in the dual objective after the
update and the difference between the primal and dual values. The results are shown in Fig. 8. The
graphs exhibit a phenomena reminiscent of a phase transition. After about 1000 iterations, which
is also the number of examples, the increase in the dual objective becomes miniscule. This phase
transition is also exhibited for other choices ofm, k andC. Note in addition that as the number of
epochs increases, the increase of the dual objective becomes very small relatively to the duality gap.
It is common to use the increase of the dual objective as a stopping criterion and the last experiment
indicates that this criterion does not necessarily imply convergence. We leave further investigation
of these phenomena to future research.

We would like to conclude this section with a short discussion which contrasts our approach
with previous algorithms. Previous large margin approaches for label ranking associate a unique
slack variable with each constraint which is induced by a pair of labels. Seefor example (Elisseeff
and Weston, 2001) and the SVM-light implementation of label ranking (Joachims, 2002). Thus,
using the terminology of this paper, these methods employ the overly simple all-pair decomposition
(see Fig. 2). Using the all-pair decomposition, the label ranking problem is reduced to a binary
classification problem. Indeed, the soft projection problem can be solvedanalytically and our wrap-
per algorithm from Fig. 5 is equivalent to the SOR algorithm for binary classification described
in (Mangasarian and Musicant, 1999). The practical performance of the SOR algorithm for binary
classification was extensively studied by Mangasarian and others. One of the main contributions
of this paper is a general and flexible algorithmic framework for label ranking which can be car-
ried with more complex decompositions. Moreover, trying to import one of the previously studied
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Figure 8: The increase in the dual objective (left) and the primal-dual gap(right) as a function of
the number of iterations of the iterative algorithm in Fig. 5.

approach to our setting is difficult. A main obstacle is attributed to the fact that theset of feasible
solutions for the dual problem must satisfy the constraint∑a αa = ∑b βb ≤ C. Thus, a sequential
minimization algorithm must update at least 4 dual variables on each iteration in order to preserve
the feasibility of the dual solution. Therefore the SMO algorithm of Platt (1998) is not easily appli-
cable to our setting. The SOPOPO algorithm suggests an efficient alternative by updating atomically
all the dual variables of each sub-graph.

6. Discussion

We described an algorithmic framework for label ranking. Each iteration ofour algorithm is based
on SOPOPO, a fast procedure for soft projection onto a single polyhedron. There are several possi-
ble extensions of the work presented in this paper. One of them is further generalization of SOPOPO
to more complex polyhedral constraints. Recall that SOPOPO is designed for projecting onto a poly-
hedron which is defined according to a complete bipartite graph. The generalization of SOPOPO
to decompositions consisting ofk-partite graphs is one particular interesting task. Another type of
polyhedra that naturally emerges is regression problems with multiple outputs. In this setting, we
would like the predicted differencesfr(x)− fs(x) to be as close as possible to the target differences
γr − γs, possibly up to an insensitivity termε. This problem can be formalized by replacing the
constraintfr(x)− fs(x) ≥ γr − γs− ξ with the constraint|( fr(x)− fs(x))− (γr − γs)| ≤ ε + ξ. Yet
another interesting direction is the applicability of SOPOPO to online learning ranking (Crammer
and Singer, 2005) where each online update is performed efficiently using SOPOPO. The phase
transition phenomenon underscored in our experiments surfaces the important issue of generaliza-
tion properties of our algorithm. In particular, the fact that increases in thevalue of dual become
miniscule suggests the usage of early stopping so long as the prediction accuracy does not degrade.
Finally, we plan to work on real world applications of SOPOPO to tasks such as category ranking
for text documents.
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Appendix A. The Equivalence Between the Dual Problems in Eq. (18)and Eq. (13)

In this appendix we prove that the solutions of the problem in Eq. (18) and our original dual problem
from Eq. (13) are equivalent. (For an alternative derivation see also(Fung et al., 2006)). To do so,
it suffices to show that for each feasible solution of the reduced problemthere exists an equivalent
feasible solution of the original problem and vice versa. Clearly, givenτ which satisfies the con-
straints imposed by Eq. (13), definingα andβ as given by Eq. (14) would satisfy the constraints of
Eq. (18) and furthermoreD(α,β) = D(τ). Denoting the optimal solution of Eq. (13) byτ⋆ and that
of Eq. (18) by(α⋆,β⋆), we immediately get thatD(α⋆,β⋆)≥D(τ⋆). We are thus left to show that for
each feasible solutionα,β there exists a feasible solutionτ such thatD(τ) = D (α,β). This reverse
mapping is non-trivial and there does not exist a closed form descriptionof the mapping fromα,β to
τ. The existence of such a mapping is provided in Lemma 7 below which uses the duality of max-
flow and min-cut. Lemma 7 immediately implies thatD(τ⋆) ≥ D(α⋆,β⋆). In summary, we have
shown that bothD(τ⋆) ≤ D(α⋆,β⋆) andD(τ⋆) ≥ D(α⋆,β⋆) holds and thereforeD(τ⋆) = D(α⋆,β⋆).

Lemma 7 Let (α,β) be a feasible solution of the reduced problem given in Eq. (18). Then, there
exists a feasible solutionτ of the original problem (Eq. (13)) such that D(τ) = D(α,β).

Proof The proof is based on the duality of max-flow and min-cut (see for example Cormen et al.
(1990)). Given a feasible solution(α,β) defined over the setsA andB we construct a directed graph
(V ′,E′). The set of nodes of the graph consists of the original nodes defined by the setsA andB
and two additional nodess which serves as a source andt which is a sink,V ′ = A∪B∪{s, t}. In
addition to the original edges of the bipartite graph supported byA andB we add edges froms to
all the nodes inA and from all the nodes inB to t and thusE′ = (A×B)∪ ({s}×A)∪ (B×{t}).

1592



SOPOPO - SOFT PROJECTIONS ONTOPOLYHEDRA

Each edgee∈ E′ is associated with a capacity valuec(e). For eache∈ A×B we definec(e) = ∞.
For each edge of the form(s,a) wherea∈ A we definec(e) = αa and analogously for(b, t) where
b∈ B we setc(e) = βb. An illustration of the construction is given in Fig. 9 whereA = {1,2} and
B = {3,4,5}. We are now going to define a flow problem for(V ′,E′). We show in the sequel that
maximalflow in the graph above defines a feasible solution for the original optimizationproblem.
Furthermore, by using the max-flow min-cut duality, we also show that the value attained by the
induced solution coincides with the value of the reduced optimization problem for (α,β).

A flow for the graph above is an assignment of non-negative values to edges,F : E′ → R+,
which satisfies

(i) ∀(r,v) ∈ E′, F ((r,v)) ≤ c(r,v)

(ii) ∀v∈V ′, ∑
r:(r,v)∈E′

F ((r,v)) = ∑
r:(v,r)∈E′

F ((v, r)) . (39)

The value of a flow function is defined as the total flow outgoing the source,

val(F ) = ∑
r:(s,r)∈E′

F ((s, r)) .

Let F ⋆ denote the flow attaining the maximal value among all possible flows, that is val(F ⋆) ≥
val(F ). We next prove that val(F ⋆) = ∑a∈A αa. To do so we use the max-flow min-cut duality
theorem. This theorem states that the value of the maximal flow equals the value of the minimal cut
of a graph. Formally, a cut of the graph is a subsetS⊂V ′ such that s∈ Sand t/∈ S. The value of a
cut is defined as the totalcapacityof edges outgoing fromS to V ′ \S,

val(S) = ∑
(r,v)∈S×(V ′\S)∩E′

c(r,v) .

A cut is said to be minimal if its value does not exceed the value of any other cutof the graph. The
value of the cutS= {s} is equal to∑y∈A αy. We now show thatSis a minimal cut. We note in passing
that while there might exist other cuts attaining the minimum value, for our purpose it suffices to
show thatS= {s} is a minimal cut. LetS′ be a cut different fromS. Clearly, if val(S′) = ∞ thenS′

cannot be minimal. We thus can safely assume that val(S′) < ∞. If there exists a nodea ∈ A∩S′

then all the nodes inB must also reside inS′. Otherwise, there exists an edge(a,b) of an infinite
capacity which crosses the cut and val(S′) = ∞ > val(S). Sincet cannot be inS′ we get that for each
b∈ B, the edge(b, t) crosses the cut and therefore the value of the cut is at least∑b∈B βb = ∑a∈A αa.
If on the other handA∩S′ = /0 then all the edges from s to the nodes inA cross the cut. Therefore,
val(S) is again at least∑y∈A αy. We have thus shown thatS= {s} is a minimal cut of the flow graph.

From the duality theorem of max-flow and min-cut we get that there exists a minimal flow F ⋆

such that val(F ⋆) = ∑a∈A αa. Since each outgoing edge from s hits a different node inA, we must
have thatF ⋆((s,a)) = αa in order to reach the optimal flow value. Similarly, for eachb∈ B we get
thatF ⋆((b, t)) = βb. We now setτa,b = F ⋆((a,b)) for each(a,b) ∈ A×B. Since a proper flow
associates a non-negative value with each edge we obtain thatτa,b ≥ 0. From the conservation of
flow we get that,

αa = F ⋆((s,a)) = ∑
b∈B

F ⋆((a,b)) = ∑
b∈B

τa,b ,

and
βb = F ⋆((b, t)) = ∑

a∈A

F ⋆((a,b)) = ∑
a∈A

τa,b .
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Thus, this construction ofτ from the optimal flow satisfies the equalities given in Eq. (14). By
construction, each nodea∈ A has one incoming edge(s,a) and outgoing edges to all nodes inB.
Thus, the flow conservation requirement of Eq. (39) again implies that

C ≥ ∑
a∈A

F ⋆((s,a)) = ∑
a∈A,b∈B

F ⋆((a,b)) = ∑
a∈A,b∈B

τa,b .

Therefore,τ adheres with the constraints of Eq. (13). In summary, we have constructed a feasible
solution for the original constrained optimization problem which is consistent with the definitions
of α andβ. Therefore,D(τ) = D(α,β) as required.

Appendix B. Technical Proofs

Proof of Lemma 3
Throughout the proof we assume that the elements of the vectorµ are sorted in a non-ascending
order, namely,µ1 ≥ µ2 ≥ . . . ≥ µp. Recall that the definition ofρ(z,µ) is,

ρ(z,µ) = max

{

j ∈ [p] : µj −
1
j

(
j

∑
r=1

µr −z

)

> 0

}

.

For brevity, we refer toρ(z,µ) simply asρ. Denote byα⋆ the optimal solution of the constrained
optimization problem of Eq. (20) and let

ρ⋆ = max{ j : α⋆
j > 0} .

From Eq. (23) we know thatα⋆
r = µr −θ⋆ > 0 for r ≤ ρ⋆ where

θ⋆ =
1
ρ⋆

(
ρ⋆

∑
j=1

µj −z

)

,

and thereforeρ ≥ ρ⋆. We thus need to prove thatρ = ρ⋆. Assume by contradiction thatρ > ρ⋆. Let
us denote byα the vector induced by the choice ofρ, that is,αr = 0 for r > ρ andαr = µr −θ for
r ≤ ρ, where,

θ =
1
ρ

(
ρ

∑
j=1

µj −z

)

.

From the definition ofρ, we must have thatαρ = µρ −θ > 0. Therefore, since the elements ofµ are
sorted in a non-ascending order, we get thatαr = µr −θ > 0 for all r ≤ ρ. In addition, the choice
of θ implies that‖α‖1 = z. We thus get thatα is a feasible solution as it satisfies the constraints of
Eq. (20). Examining the objective function attained atα we get that,

‖α−µ‖2 =
ρ⋆

∑
r=1

θ2 +
ρ

∑
r=ρ⋆+1

θ2 +
p

∑
r=ρ+1

µ2
r

<
ρ⋆

∑
r=1

θ2 +
ρ

∑
r=ρ⋆+1

µ2
r +

p

∑
r=ρ+1

µ2
r

=
ρ⋆

∑
r=1

θ2 +
p

∑
r=ρ⋆+1

µ2
r ,
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where to derive the inequality above we used the fact thatµr −θ > 0 for all r ≤ ρ. We now need to
analyze two cases depending on whetherθ⋆ is greater thanθ or not. If θ⋆ ≥ θ than we can further
bound‖α−µ‖2 from above as follows,

‖α−µ‖2 <
ρ⋆

∑
r=1

θ2 +
p

∑
r=ρ⋆+1

µ2
r ≤

ρ⋆

∑
r=1

(θ⋆)2 +
p

∑
r=ρ⋆+1

µ2
r = ‖α⋆−µ‖2 ,

which contradicts the optimality ofα⋆. We are thus left to show that the caseθ > θ⋆ also leads to a
contradiction. We do so by constructing a vectorα̃ from α⋆. We show that this vector satisfies the
constraints of Eq. (20) hence it is a feasible solution. Finally, we show thatthe objective function
attained byα̃ is strictly smaller than that ofα⋆. We define the vector̃α ∈ R

k as follows,

α̃r =







α⋆
ρ⋆ − ε r = ρ⋆

ε r = ρ⋆ +1
α⋆

r otherwise
,

whereε = 1
2(µρ⋆+1−θ⋆). Since we assume thatθ > θ⋆ andρ > ρ⋆ we know thatαρ⋆+1 = µρ⋆+1−θ >

0 which implies that

α̃ρ⋆+1 =
1
2
(µρ⋆+1−θ⋆) >

1
2
(µρ⋆+1−θ) =

1
2

αρ⋆+1 > 0 .

Furthermore, we also get that,

α̃ρ⋆ = µρ⋆ −
1
2

µρ⋆+1−
1
2

θ⋆ >
1
2

(
µρ⋆+1−θ

)
=

1
2

αρ⋆+1 > 0 .

In addition, by construction we get that the rest of components ofα̃ are also non-negative. Our
construction also preserves the norm, that is‖α̃‖1 = ‖α⋆‖1 = z. Thus, the vector̃α is also a feasible
solution for the set of constraints defined by Eq. (20). Alas, examining thedifference in the objective
functions attained bỹα andα⋆ we get,

‖α⋆−µ‖2−‖α̃−µ‖2 = (θ⋆)2 +µ2
ρ⋆+1−

(

(θ⋆ + ε)2 +
(
µρ⋆+1− ε

)2
)

= 2ε(µρ⋆+1−θ⋆

︸ ︷︷ ︸

=2ε

)−2ε2 = 2ε2 > 0 .

We thus obtained the long desired contradiction which concludes the proof.

Proof of Thm. 4
Plugging the value of the optimal solutionα from Eq. (23) into the objective‖α−µ‖2 and using
Lemma 3 give that,

g(z;µ) =
1

ρ(z;µ)

(
ρ(z;µ)

∑
r=1

µr −z

)2

+ ∑
r=ρ(z;µ)+1

µ2
r ,

where, to remind the reader, the number of strictly positiveα’s is,

ρ(z;µ) = max

{

ρ : µρ −
1
ρ

(
ρ

∑
r=1

µr −z

)

≥ 0

}

.
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Throughout the proofµ is fixed and known. We therefore abuse our notation and use the shorthand
ρ(z) for ρ(z;µ). Recall thatµ is given in a non-ascending order,µi+1 ≤ µi for i ∈ [p−1]. Therefore,
we get that

zi+1 =
i+1

∑
r=1

µr − (i +1)µi+1 =
i

∑
r=1

µr +µi+1−µi+1− iµi+1

=
i

∑
r=1

µr − iµi+1 ≥
i

∑
r=1

µr − iµi = zi .

Thus, the sequencez1,z2, . . . ,zp is monotonically non-decreasing and the intervals[zi ,zi+1) are well
defined. The definition ofρ(z) implies that for allz∈ [zi ,zi+1) we haveρ(z) = ρ(zi) = i. Hence, the
value ofg(z;µ) for eachz∈ [zi ,zi+1) is,

g(z;µ) =
1
i

(
i

∑
r=1

µr −z

)2

+
p

∑
r=i+1

µ2
r .

We have thus established the fact thatg(z;µ) is a quadratic function in each interval(zi ,zi+1) and in
particular it is continuous in each such sub-interval. To show thatg is continuous in[0,C] we need
to examine all of its knotszi . Computing the left limit and the right limit ofg at each knot we get
that,

lim
z↓zi

g(z;µ) = lim
z↓zi

1
i

(
i

∑
r=1

µr −z

)2

+
p

∑
r=i+1

µ2
r

=
1
i

(
i

∑
r=1

µr −
i

∑
r=1

µr + iµi

)2

+
p

∑
r=i+1

µ2
r

= iµ2
i +

p

∑
r=i+1

µ2
r ,

and

lim
z↑zi

g(z;µ) = lim
z↑zi

1
i−1

(
i−1

∑
r=1

µr −z

)2

+
p

∑
r=i

µ2
r

=
1

i−1

(
i−1

∑
r=1

µr −
i

∑
r=1

µr + iµi

)2

+
p

∑
r=i

µ2
r

= (i−1)µ2
i +

p

∑
r=i

µ2
r = iµ2

i +
p

∑
r=i+1

µ2
r .

Therefore, limz↓zi g(z;µ) = limz↑zi g(z;µ) andg is indeed continuous. The continuity of the derivative
of g is shown by using the same technique of examining the right and left limits at eachknot zi for
the function,

g′(z;µ) =
2
i

(

z−
i

∑
r=1

µr

)

.
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Finally, we use the fact that a continuously differentiable function is convex iff its derivative is
monotonically non-decreasing. Sinceg is quadratic in each segment[zi ,zi+1], g′ is indeed mono-
tonically non-decreasing in each segment. Furthermore, from the continuity of g′ we get thatg′ is
monotonically non-decreasing on the entire interval[0,C]. Thus,g is convex on[0,C].

Appendix C. Derivation of Eq. (38)

In this section we derive conversion of the optimization problem from Eq. (6) to its reduced form
given in Eq. (38). In Sec. 4 (Eq. (30)) we derived the dual of Eq. (6). Assuming that for each
example,E(γi) = {Ai ×Bi}, and using the definitions ofai, j , bi, j , andw̄ from Sec. 4, we can rewrite
the dual of Eq. (6) as

max
τ

−
1
2

k

∑
r=1

‖wr‖
2 +

m

∑
i=1

∑
a∈Ai

∑
b∈Bi

λi
a,b(γi

a− γi
b)

s.t. ∀ i ∈ [m] : ∀(a,b) ∈ Ai ×Bi , λi
a,b ≥ 0

∀ i ∈ [m] : ∑
(a,b)∈Ai×Bi

λi
a,b ≤C ,

(40)

where
wr = ∑

i:r∈Ai
∑

b∈Bi

λi
r,bxi − ∑

i:r∈Bi
∑

a∈Ai

λi
a,rx

i . (41)

For eacha∈ Ai define,
αi

a = ∑
b∈Bi

λi
a,b , (42)

and similarly, for eachb∈ Bi define,

βi
b = ∑

a∈Ai

λi
a,b . (43)

Using these definitions, we can rewrite Eq. (41) as,

wr = ∑
i:r∈Ai

αi
rx

i − ∑
i:r∈Bi

βi
rx

i .

Therefore, the dual objective can be rewritten as,

D = −
1
2

k

∑
r=1

∥
∥
∥
∥
∥

∑
i:r∈Ai

αi
r xi − ∑

i:r∈Bi

βi
r xi

∥
∥
∥
∥
∥

2

+
k

∑
r=1

(

∑
i:r∈Ai

αi
r γi

r − ∑
i:r∈Bi

βi
r γi

r

)

.

As in Sec. 3, we need to enforce the additional constraints onα andβ,

∀ i ∈ [m] :∀a∈ Ai , αi
a ≥ 0 and ∀b∈ Bi , βi

b ≥ 0

∀ i ∈ [m] : ∑
a∈Ai

αi
a = ∑

b∈Bi

βi
b ≤ C .

Combining the dual definition with the above constraints gives the reduced problem from Eq. (38).
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Abstract
We present a kernel-based algorithm for hierarchical text classification where the documents are
allowed to belong to more than one category at a time. The classification model is a variant of the
Maximum Margin Markov Network framework, where the classification hierarchy is represented
as a Markov tree equipped with an exponential family defined on the edges. We present an effi-
cient optimization algorithm based on incremental conditional gradient ascent in single-example
subspaces spanned by the marginal dual variables. The optimization is facilitated with a dynamic
programming based algorithm that computes best update directions in the feasible set.

Experiments show that the algorithm can feasibly optimize training sets of thousands of exam-
ples and classification hierarchies consisting of hundredsof nodes. Training of the full hierarchical
model is as efficient as training independent SVM-light classifiers for each node. The algorithm’s
predictive accuracy was found to be competitive with other recently introduced hierarchical multi-
category or multilabel classification learning algorithms.

Keywords: kernel methods, hierarchical classification, text categorization, convex optimization,
structured outputs

1. Introduction

In many application fields, taxonomies and hierarchies are natural ways to organize and classify
objects, hence they are widely used for tasks such as text classification.In contrast, machine learn-
ing research has largely been focused on flat target prediction, where the output is a single binary
or multivalued scalar variable. Naively encoding a large hierarchy eitherinto a series of binary
problems or a single multiclass problem with many possible class values suffersfrom the fact that
dependencies between the classes cannot be represented well. For example, if a news article be-
longs to categoryMUSIC, it is very likely that the article belongs to categoryENTERTAINMENT.
The failure to represent these relationships leads to a steep decline of the predictive accuracy in the

∗. A preliminary version of this paper appeared in Proceedings of 19th ICML, Bonn, Germany, 2005.

c©2006 Juho Rousu, Craig Saunders, Sandor Szedmak and John Shawe-Taylor.
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number of possible categories. In recent years, methods that utilize the hierarchy in learning the
classification have been proposed by several authors (Koller and Sahami, 1997; McCallum et al.,
1998; Dumais and Chen, 2000). Very recently, new hierarchical classification approaches utilizing
kernel methods have been introduced (Hofmann et al., 2003; Cai and Hofmann, 2004; Dekel et al.,
2004). The main idea behind these methods is to map the documents (or document–labeling pairs)
into a potentially high-dimensional feature space where linear maximum margin separation of the
documents becomes possible.

Most of the above mentioned methods assume that the object to be classified belongs to exactly
one (leaf) node in the hierarchy. In this paper we consider the more general case where a single
object can be classified into several categories in the hierarchy, to be specific, the multilabel is
a union of partial pathsin the hierarchy. For example, a news article about David and Victoria
Beckham could belong to partial pathsSPORT, FOOTBALL andENTERTAINMENT, MUSIC but might
not belong to any leaf categories such asCHAMPIONS LEAGUE. The problem of multiple partial
paths was also considered in Cesa-Bianchi et al. (2004).

Recently Taskar et al. (2003) introduced a maximum margin technique which optimized an
SVM-style objective function over structured outputs. This technique used a marginalization trick
to obtain a polynomial sized quadratic program using marginal dual variables. This was an im-
provement over the exponentially-sized problem resulting from the dualization of the primal margin
maximization problem, which only can be approximated with polynomial number of support vectors
using a working set method (Altun et al., 2003; Tsochantaridis et al., 2004).

Even using marginal variables, however, the problem becomes infeasiblefor even medium sized
data sets. Therefore, efficient optimization algorithms are needed. In this paper we present an algo-
rithm for working with the marginal variables that is in the spirit of Taskar et al. (2003), however
a reformulation of the objective allows a conditional-gradient method to be used which gains effi-
ciency and also enables us to work with a richer class of loss functions.

The structure of this article is the following. In Section 2 we present the classification frame-
work, review loss functions and derive a quadratic optimization problem for finding the maximum
margin model parameters. In Section 3 we present an efficient learning algorithm relying a decom-
position of the problem into single training example subproblems and conductingiterative condi-
tional gradient ascent in marginal dual variable subspaces corresponding to single training examples.
A dynamic programming algorithm is presented that used to efficiently find the best update direc-
tions. Extensions and variants are briefly discussed in Section 4. We compare the new algorithm
in Section 5 to flat and hierarchical SVM learning approaches and the hierarchical regularized least
squares algorithm recently proposed by Cesa-Bianchi et al. (2004).We conclude the article with
discussion in Section 6.

2. Maximum Margin Hierarchical Multilabel Classification

We consider data from a domainX × Y whereX is a set andY = Y1 × ·· · × Yk is a Cartesian
product of the setsY j = {+1,−1}, j = 1, . . . ,k. A vectory = (y1, . . . ,yk) ∈ Y is called themultilabel
and the componentsy j are called themicrolabels.

We assume that a training set{(xi ,yi)}
m
i=1 ⊂ X ×Y has been given, consisting of training ex-

amples(xi ,yi) of a training patternxi and multilabelyi . A pair (xi ,y) wherexi is a training pattern
andy ∈ Y is arbitrary, is called apseudo-example, to denote the fact that the pair may or may not
be generated by the distribution generating the training examples.
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A HUMAN NECESSITIES
A 01 AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; . . .

A 01 B SOIL WORKING IN AGRICULTURE OR FORESTRY
A 01 B 1/02 Spades; Shovels
A 01 B 9/00 Ploughs with rotary driven tools

D TEXTILES; PAPER
D 21 PAPER-MAKING; PRODUCTION OF CELLULOSE

D 21 F PAPER-MAKING MACHINES
D 21 F 1/00 Wet end of machines for making continuous webs of paper

E.C.1 Oxidoreductases
E.C.1.1. Acting on the CH-OH group of donors.

E.C.1.1.1 With NAD(+) or NADP(+) as acceptor.
E.C.1.1.1.1 Alcohol dehydrogenase.

E.C.6 Ligases
E.C.6.1 Forming carbon-oxygen bonds.

E.C.6.1.1 Ligases forming aminoacyl-tRNA and related compounds.
E.C.6.1.1.1 Tyrosine–tRNA ligase.

Figure 1: Examples of classification hierarchies: An excerpt from the WIPO patent classification
hierarchy (top) and an excerpt from the Enzyme Classification scheme (bottom).

As the model class we use the exponential family

P(y|x) =
1

Z(x,w) ∏
e∈E

exp
(

wT
e φe(x,ye)

)

=
1

Z(x,w)
exp
(

wTφ(x,y)
)

defined on the edges of a Markov treeT = (V,E), where nodej ∈V corresponds to thej ’th compo-
nent of the multilabel and the edgese= ( j, j ′) ∈ E correspond to the classification hierarchy given
as input. Above,Z(x,w) = ∑y exp

(

wTφ(x,y)
)

is the normalizing factor also called the partition
function. Byye = (y j ,y j ′) we denote the restriction of the multilabely = (y1, . . . ,yk) to the edge
e= ( j, j ′). By Ye = Y j ×Y j ′ we denote the set of labelings of an edgee= ( j, j ′).

In this work, we assume that the Markov treeT is given a priori. This is a reasonable assumption,
as hand-made hierarchies and taxonomies are frequent in applications. The ability to learn the
structure from data is an important and challenging question, which is out ofscope of this article
(See Lafferty et al. (2004) for a study to that direction).

Figure 1 depicts examples of two hierarchical classification domains, patentclassification ac-
cording to the World International Patent Organization (WIPO) that is usedto classify patent texts,
and enzyme classification scheme (EC) used by biologists to classify amino acidsequences for
enzymatic proteins.

2.1 Loss Functions for Hierarchical Multilabel Classification

There are many ways to define loss functions for multilabel classification setting, and it depends
on the application which loss function is the most suitable. A few general guidelines can be set,
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though. The loss function between two multilabel vectorsy andu should obviously fulfill some
basic conditions:ℓ(u,y) = 0 if and only ifu = y, ℓ(u,y) is maximum whenu j 6= y j for every 1≤ j ≤
k, andℓ should be monotonically non-decreasing with respect to the sets of incorrect microlabels.
These conditions are satisfied by, for example,zero-one lossℓ0/1(y,u) = [y 6= u]. However, it gives
loss of 1 if the complete hierarchy is not labeled correctly, even if only a single microlabel was
predicted incorrectly.

In multilabel classification, we would like the loss to increase smoothly so that we can make a
difference between ’nearly correct’ and ’clearly incorrect’ multilabel predictions.Symmetric differ-
ence loss

ℓ∆(y,u) = ∑
j

[y j 6= u j ],

has this property and is an obvious first choice as the loss function in structured classification tasks.
However, the classification hierarchy is not reflected in any way in the loss. For uni-category
hierarchical classification (Hofmann et al., 2003; Cai and Hofmann, 2004; Dekel et al., 2004),
where exactly one of the microlabels has value 1, Dekel et al. (2004) useas a loss function the
length of the path(i1, · · · , ik) between the the true and predicted nodes with positive microlabels
ℓPATH(y,u) = |path(i : yi = 1, j : u j = 1)|. Cai and Hofmann (2004) defined a weighted version of
the loss that can take into account factors such as subscription loads of nodes.

In the union of partial paths model, where essentially we need to compare a predicted tree
to the true one the concept of a path distance is not very natural. We would like to account for the
incorrectly predicted subtrees—in the spirit ofℓ∆—but taking the hierarchy into account. Predicting
the parent microlabel correctly is more important than predicting the child correctly, as the child
may deal with some detailed concept that the user may not be interested in; forexample whether
a document was aboutCHAMPIONS LEAGUE football or not may not relevant to a person that is
interested inFOOTBALL in general. Also, for the learners point of view, if the parent class was
already predicted incorrectly, we don’t want to penalize the mistake in the child. A loss function
that has these properties was given by Cesa-Bianchi et al. (2004). It penalizes the first mistake along
a path from root to a node

ℓH(y,u) = ∑
j

c j [y j 6= u j & yh = uh∀h∈ anc( j)],

whereanc( j) denotes the set of ancestors of nodej. The coefficients 0≤ c j ≤ 1 are used for down-
scaling the loss when going deeper in the tree. These can be chosen in manyways. One can divide
the maximum loss among the subtrees met along the path. This is done by defining

croot = 1,c j = cpa( j)/|sibl( j)|,

where we denoted bypa( j) the immediate parent and bysibl( j) the set of siblings of nodej (in-
cluding j itself). Another possibility is to scale the loss by the proportion of the hierarchy that is in
the subtreeT( j) rooted byj, that is, to define

c j = |T( j)|/|T(root)|.

In our experiments we use both the sibling and subtree scaling to re-weight prediction errors on
individual nodes, these are referred to asℓ-sibl andℓ-subtreerespectively. If we just use a uniform
weighting (c j = 1) in conjunction with the hierarchical loss above this is denoted asℓ-uni f .
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Using ℓH for learning a model has the drawback that it does not decompose very well: the
labelings of the complete path are needed to compute the loss. Therefore, in this paper we consider
a simplified version ofℓH , namely

ℓH̃(y,u) = ∑
j

c j [y j 6= u j & ypa( j) = upa( j)],

that penalizes a mistake in a child only if the label of the parent was correct. This choice leads the
loss function to capture some of the hierarchical dependencies (betweenthe parent and the child)
but allows us define the loss in terms of edges, which is crucial for the efficiency of our learning
algorithm.

Using the above, the per-microlabel loss is divided among the edges adjacent to the node. This
is achieved by defining anedge-lossℓe(ye,ue) = ℓ j(y j ,u j)/N ( j)+ ℓ j ′(y j ′ ,u j ′)/N ( j ′) for eache=
( j, j ′), whereℓ j is the term regarding microlabelj, ye = (y j ,y j ′) is a labeling of the edgee and
N ( j) denotes the neighbors of nodej in the hierarchy (i.e. the children of a nodes and it’s parent).
Intuitively, the edges adjacent to nodej ’share the blame’ of the microlabel lossℓ j . The multilabel
loss (ℓ∆ or ℓH̃) is then written as a sum over the edges:ℓ(y,u) = ∑e∈E ℓe(ye,ue).

The above described loss functions do not represent an exhaustivelist of the possible ones.
With probabilistic models, it is common to employ KL-divergence or negative log likelihood as
the loss function (Lafferty et al., 2004). In the max-margin learning framework these types of loss
functions are not applicable, as they require estimating the underlying probability distribution, e.g.
to compute the log-partition function. As our central theme is efficient computation of structured
prediction models, we concentrate on the above simpler formulations of loss functions.

2.2 Feature Representations for Structured Inputs

When handling input data that already comes in vector form, there is no obligation to introduce a
special kernel function. The inner product of the inputsK(x,z) = xTz, also called the ’linear kernel’,
can be used. However, when using structured data such as sequences, trees or graphs, one needs to
convert the structured representation to a vector form. Feature representation for structured input
data have been considered in many works already (c.f. Gartner (2003)), we will concentrate to the
important case of hierarchical classification of text or, in general, sequence data.

For sequences the most common feature representation is to count or check the existence of sub-
sequence occurrences, when the subsequences are taken from a fixed index setU . Different choices
for the index set and accounting for occurrences give rise to a family offeature representations
and kernels. Below we review the main forms of representation for sequences and the computation
kernels for such representations.

Word spectrum (Bag-of-words) kernels. In the most widely used feature representation for
strings in a natural language, informally calledbag-of-words(BoW), the index set is taken as the set
of words in the language, possibly excluding some frequently occurring stop words (Salton, 1989).
The representation was brought to SVM learning by Joachims (1998).

In the case of a strings containing English text, for each English wordu, we define the feature
value

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|,

as the number of timesu occurs in some positionj of s. For the example texts = ’The cat
was chased by the fat dog’ the BoW will contain the following non-zero entries:φthe(s) = 2,
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φdog(s) = 1, φwas(s) = 1, φchased(s) = 1, φby(s) = 1, φfat(s) = 1, φcat = 1. These occurrence
counts can also be weighted, for example by scaling by the inverse document frequency as is done
in TFIDF weighting (c.f. Salton (1989)):

φu(s) = |{ j|sj . . .sj+|u|−1 = u}|× log2N/Nu,

whereNu is the number of documents whereu occurs andN is the total number of documents in the
collection.

Although the dimension of the feature space may be high, computation of the BoWkernel can
be efficiently implemented by scanning the two strings, constructing listsL(s) andL(t) of pairs
(u,cu) of word u and occurrence countcu ordered in the lexicographical order of the substringsu,
and finally traversing the two lists to compute the dot product.

Substring spectrum kernels. For strings that do not encompass a crisply defined word-structure,
for example, biological sequences, a different approach is more suitable. Given an alphabetΣ, a
simple choice is to takeU = Σp, the set of strings of lengthp. In some cases, using a range of
substring lengthsq≤ l ≤ p may be more appropriate than picking a single length. We can define

U = Σq∪Σq+1 · · ·∪Σp for some 1≤ q≤ p.

The most efficient approaches, working inO(p(|s|+ |t|)) time, to compute substring spectrum
kernels are based on suffix trees (Leslie et al., 2002; Vishwanathan and Smola, 2002), although
dynamic programming and approaches based on thetrie data structure also can be used Shawe-
Taylor and Cristianini (2004).

The substring kernels can be generalized in many ways, for example

• Gapped substring spectrum kernelsallow gaps in the subsequence occurrences.Gap-weighting
can be used to down-weight substring occurrences that contain many orlong gaps (Lodhi
et al., 2002; Rousu and Shawe-Taylor, 2005).

• Word or syllable alphabetscan be used in place of characters (Saunders et al., 2002; Cancedda
et al., 2003).

2.3 Feature Representations for Hierarchical Outputs

When the input features are used in hierarchical classification, they need to be associated with
the labelings of the hierarchy. In our setting, this is done via constructing a joint feature map
φ : X ×Y 7→ Fxy. There are important design choices to be made in how the hierarchical structure
should reflect in the feature representation.

There are two general types of features that can be distinguished:

Global featuresare given by the feature mapφx : X 7→ Fx. They are not tied to a particular vertex
or edge but represent the structured object as a whole. For example, the bag-of-words or the
substring spectrum of a document is not tied to a single class of documents in ahierarchy, but
a given word can relate to different classes with different importances.

Local features, are given by a feature mapφx
j : X 7→ Fx j tied to a particular vertexj or edge of the

structure. For example, given a structured representation of a scientificarticle, we can make a
difference between elements occurring within the title, abstract, article body and references,
and construct local feature maps for each of the components.
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Given the input features, there are two basic ways by which the joint feature vector can be con-
structed:

Orthogonal feature representation is defined asφ(x,y) = (φe(x,ye))e∈E , so that there is a block
for each edge (or vertex), which, in turn, is divided into blocks for a specific edge-labeling
pairs(e,ue), i.e.φe(x,ye) = (φue

e (x,ye))ue∈Ye
.

The vectorφu
e should incorporate both thex-features relevant to the edge and encode the

dependency on the labeling of the edge. A simple choice is to define

φue
e (x,ye) = [ue = ye]

(

φx(x)T ,φx
e(x)T)T

that incorporates both the global and local features if the edge is labeledye = ue, and a zero
vector otherwise. Intuitively, the features are turned ’on’ only for the particular labeling of
the edge that is consistent withy.

Additive feature representation is defined as

φ(x,y) = ∑
e∈E

∑
ue∈Ye

[ye = ue]φue
e (x),

whereφue
e contains features specific to the pair(e,ue).

The orthogonal and additive feature representations differ from each other in several respects. In
the orthogonal representation, global features get weighted in a context-dependent manner: some
features may be more important in labeling one edge than another. Thus, the global features will be
’localized’ by the learning algorithm. The size of the feature vectors grow linearly in the number of
edges, which requires careful implementation if solving the primal optimization problem (1) instead
of the dual. The kernel induced by the above feature map decomposes as

K(x,y;x′,y′) = ∑
e∈E

φe(x,ye)
Tφe(x

′,y′e) = ∑
e∈E

Ke(x,ye;x′,y′e),

which means that there is no crosstalk between the edges:

φe(x,ye)
Tφe′(x,ye′) = 0

if e 6= e′, hence the name ’orthogonal’. The number of terms in the sum when calculating the kernel
obviously scales linearly in the number of edges.

The dimension of the feature vector using the additive feature representation is independent of
the size of the hierarchy, thus optimization in primal representation (1) is more feasible for large
structures. Second, as there are no feature weights depending on a particular part of the structure,
the existence of local features is mandatory, otherwise the output structure is not reflected in the
feature vector. Third, the kernel

K(x,y;x′,y′) =

(

∑
e

φe(x,y)

)T(

∑
e

φe(x
′,y′)

)

= ∑
e,e′

φe(x,ye)
Tφe′(x,y′e′) = ∑

e,e′
Kee′(x,ye;x′,y′e′)
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induced by this representation typically has non-zero blocksKee′ 6= 0, representing cross-talk
between edges. There are two consequences of this fact. First, the kernel does not exhibit the
sparsity that is implied by the hierarchy, thus it creates the possibility of overfitting. Second, the
complexity of the kernel will grow quadratically in the size of the hierarchy rather than linearly as
is the case with orthogonal features. This is another reason why a primal optimization approach for
this representation might be more justified than a dual approach.

In the sequel, we describe a method that relies on the orthogonal feature representation which
will give us a dual formulation with complexity growing linearly in the number of edges inE. The
kernel defined by the feature vectors, denoted by

Kx(x,x′) = φx(x)Tφx(x′),

is referred to asx-kernel whileK(x,y;x,y′) is referred to as thejoint kernel.

2.4 Maximum Margin Learning

Typically in learning probabilistic models, one aims to learn maximum likelihood parameters, which
in the exponential CRF amounts to solving

argmaxw log

(

m

∏
i=1

P(yi |xi ;w)

)

= argmaxw
m

∑
i=1

[

wTφ(xi ,yi)− logZ(xi ,w)
]

.

This estimation problem is hampered by the need to compute the (logarithm of the) partition func-
tion Z. For a general graph this problem is hard to solve. Approximation methods for its compu-
tation is a subject of active research (c.f. Wainwright and Jordan 2003). Also, in the absence of
regularization the max-likelihood model is likely to suffer from overfitting

An alternative formulation (c.f Altun et al. 2003; Taskar et al. 2003), inspired by support vector
machines, is to estimate parameters that in some sense maximize the ratio

P(yi |xi ;w)

P(y|xi ;w)

between the probability of the correct labelingyi and the worst competing labelingy. With the
exponential family, the problem translates to the problem of maximizing the minimum linear margin

wTφ(xi ,yi)−wTφ(xi ,y)

in the log-space.
Furthermore, we would like the marginγ to scale as a function of the loss so that grossly incor-

rect pseudo-examples are pushed farther from the correct labeling than only slightly incorrect ones.
Using the canonical hyperplane representation (c.f. Cristianini and Shawe-Taylor (2000)) this can
be stated as the following minimization problem:

min
w

1
2
||w||2

s.t. wT∆φ(xi ,y) ≥ ℓ(yi ,y),∀i,y
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where∆φ(xi ,y) = φ(xi ,yi)−φ(xi ,y). As with SVMs, a model satisfying margin constraints exactly
rarely exists, hence it is necessary to add slack variablesξi to allow examples to deviate from the
margin boundary. Altogether, this results in the following optimization problem

min
w

1
2
||w||2 +C

m

∑
i=1

ξi

s.t. wT∆φ(xi ,y) ≥ ℓ(yi ,y)−ξi ,∀i,y. (1)

This optimization problem suffers from the possible high-dimensionality of the feature vectors, for
example with string kernels, and from the exponential-sized constraint set(in the length of the
multilabel vector). A dual problem

max
α≥0

αTℓ−
1
2

αTKα, s.t.∑
y

α(i,y) ≤C,∀i, (2)

whereK = ∆ΦT∆Φ is thejoint kernel matrix forpseudo-examples(xi ,y) andℓ = (ℓ(yi ,y))i,y is the
loss vector, allows us to circumvent the problem with feature vectors. However, in the dual problem
there are exponentially many dual variablesα(i,y), one for each pseudo-example.

There are a few basic routes by which the exponential complexity can be circumvented:

• Dual working set methods where the constraint set is grown incrementally by adding the worst
margin violator

argmini,ywT∆φ(xi ,y)− ℓ(yi ,y)

to the dual problem. One can guarantee an approximate solution with a polynomial number
of support vectors by this approach (Altun et al., 2003; Tsochantaridiset al., 2004).

• Primal methods where the solution above inference problem is integrated to theprimal opti-
mization problem, rather than writing down the exponential-sized constraint set (Taskar et al.,
2004).

• Marginal dual methods, where the problem is translated to a polynomial-sizedform via con-
sidering the marginals of the dual variables (Taskar et al., 2003).

The methodology presented in this article belongs to the third category.

2.5 Marginalized Dual Problem

The feasible set of the dual problem (2) is a Cartesian product

A = A1×·· ·×Am (3)

of identical closed polytopes

A i = {αi ∈ R
|Y | | αi ≥ 0, ||αi ||1 ≤C}, (4)

with a vertex setV i = {0,Ce1, . . . ,Ce|Y |} ⊂ R
|Y | consisting of the zero vector and the unit vectors

of R
|Y |, scaled byC. The vertex set ofA is the Cartesian productV1×·· ·×Vm.
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The dimension of the setA , dA = m|Y | is exponential in the length of the multilabel vectors.
This means that optimizing directly over the the setA is not feasible. Fortunately by utilizing the
structure ofT, the setA can be mapped to a setM of polynomial dimension, called the marginal
polytope ofH, where optimization becomes more feasible (Taskar et al., 2003).

For an edgee∈ E of the Markov treeT, and an associated labelingye, the marginal ofα(i,y)
for the pair(e,ye) is given by

µe(i,ye) = ∑
{u∈Y i}

[ye = ue]α(i,u) (5)

where the sum picks up those dual variablesα(i,y) that have equal valueue = ye on the edgee.
Single node marginalsµj(i,y j) are defined analogously.

For the hierarchyT, the vector containing the edge marginals of the examplexi , the marginal
dual vector, is given by

µi = (µe(i,ue))e∈E,ue∈Ye
.

The marginal vector of the whole training set is the concatenation of the singleexample marginal
dual vectorsµ = (µi)

m
i=1 . The vector has dimensiondM = m∑e∈E |Ye| = O(m|E|maxe|Ye|). Thus

the dimension is linear in the number of the examples, edges and the maximum cardinality of set of
labelings of a single edge.

The indicator functions in (5) can be collectively represented by the the matrix ME, ME(e,ue;y)=
[ue = ye], and the relationship between a dual vector alpha and the corresponding marginal vectorµ
is given by the linear mapME ·αi = µi andµ= (ME ·αi)

m
i=1. The image of the setA i , defined by

M i = {µi | ∃αi ∈ A i : MEαi = µi}

is called themarginal polytopeof αi onT.
The following properties of the setM i are immediate: LetA i be the polytope of (4) and letM i

be the corresponding marginal polytope. Then

• the vertex set ofM i is the image of the vertex set ofA i :

Vµ,i = {µi | ∃αi ∈Vi : MEαi = µi}.

• As an image of a convex polytopeA i under the linear mapME,M i is a convex polytope.

These properties underlie the efficient solution of the dual problem on themarginal polytope.
The exponential size of the dual problem (2) can be tackled via the relationship between its

feasible setA = A1×·· ·×Am and the marginal polytopesM i of eachA i .
Given a decomposable loss function

ℓ(yi ,y) = ∑
e∈E

ℓe(i,ye)

the linear part of the objective satisfies
m

∑
i=1

∑
y∈Y

α(i,y)ℓ(i,y) =
m

∑
i=1

∑
y

α(i,y)∑
e

ℓe(i,ye)

=
m

∑
i=1

∑
e∈E

∑
ue∈Ye

∑
y:ye=ue

α(i,y)ℓe(i,ue) =
m

∑
i=1

∑
e∈E

∑
ue∈Ye

µe(i,ue)ℓe(i,ue)

=
m

∑
i=1

µT
i ℓi = µTℓE,
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whereℓE = (ℓi)
m
i=1 = (ℓe(i,ue))

m
i=1,e∈E,ue∈Ye

is the marginal loss vector.
Given an orthogonal feature representation inducing a decomposable kernel K(x,y;x′,y′) =

∑e∈E Ke(x,ye;x′,y′e), the quadratic part of the objective becomes

αKα = ∑
e

∑
i,i′

∑
y,y′

α(i,y)Ke(i,ye; i
′,y′e)α(i′,y′)

= ∑
e

∑
i,i′

∑
ue,u′

e

Ke(i,ue; i
′,u′

e) ∑
y:ye=ue

∑
y′:y′e=u′

e

α(i,y)α(i′,y′)

= ∑
e

∑
i,i′

∑
ue,u′

e

µe(i,ue)Ke(i,ue; i
′,u′

e)µe(i,u′
e)

= µTKEµ,

whereKE = diag(Ke,e∈ E) is a block diagonal matrix with edge-specific kernel blocksKe.
The objective should be maximized with respect toµ whilst ensuring that there existα ∈ A

satisfyingMαi = µi for all i, so that the marginal dual solution represents a feasible solution of the
original dual. By the properties outlined above, the feasible set of the marginalized problem is the
marginal dual polytope, or to be exact the Cartesian product of the marginal polytopes of single
examples (which are in fact equal):

M =M 1×·· ·×Mm

In summary, the marginalized optimization problem can be stated in implicit form as

max
µ∈M

µTℓE −
1
2

µTKEµ

This problem is a quadratic programme with a linear number of variables in the number of training
examples and in the number of edges.

For optimization algorithms, an explicit characterization of the feasible set is required. Char-
acterizing the polytopeM in terms of linear constraints defining the faces of the polytope, is for
general graphs infeasible. Singly-connected graphs such as trees are an exception: for such graphs
the marginal polytope is exactly reproduced by the box constraints

∑
ue

µe(i,ue) ≤C,∀i,e∈ E,µe ≥ 0 (6)

and the local consistency constraints

∑
yk

µk j(i,yk,y j) = µj(i,y j);∑
y j

µk j(i,yk,y j) = µk(i,yk). (7)

In this case the size of the resulting constraint set is linear in the number of vertices the graph. Thus
for small hierarchies graphs it can be written down explicitly and the resultingoptimization problem
has linear size in both the number of examples and the size of the graph. Thusthe approach can in
principle be made to work, although not with off-the-shelf QP solvers (seesections 3 and 5).

For hierarchies, the consistency constraints (7), can be equivalently defined in terms of the
edges: it suffices to pair up each edge with its parent which results in the set of edge pairsE2 =
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{(e,e′) ∈ E×E|e= ( j ′, i),e′ = (i, j)}. By introduction of these marginal consistency constraints
the optimization problem gets the form

max
µ≥0

∑
e∈E

µT
e ℓe−

1
2 ∑

e∈E

µT
e Keµe (8)

s.t∑
ye

µe(i,ye) ≤C,∀i,e∈ E,

∑
y′

µe(i,(y
′,y)) = ∑

y′
µe′(i,(y,y

′)), ∀i,y,(e,e′) ∈ E2,

,

While the above formulation is closely related to that described in Taskar et al.(2003), there are
a few differences to be pointed out. Firstly, as we assign the loss to the edges rather than the
microlabels, we are able to use richer loss functions than the simpleℓ∆. Secondly, single-node
marginal dual variables—theµj ’s in (7)—become redundant when the constraints are given in terms
of the edges. Thirdly, we have utilized the fact that in our feature representation the ’cross-edge’
values∆φe(x,ye)

T∆φe′(x
′,y′e′), wheree 6= e′, do not contribute to the kernel, hence we have a block-

diagonal kernelKE = diag(Ke1, . . . ,Ke|E|),KE(i,e,ue; j,e,ve) = Ke(i,ue; j,ve) with the number of
non-zero entries thus scaling linearly rather than quadratically in the numberof edges. Finally, we
write the box constraint (6) as an inequality as we want the algorithm to be ableto inactivate training
examples (see Section 3.2).

Like that of Taskar et al. (2003), our approach can be generalized tonon-tree structures. How-
ever, for a general graph, the feasible region in (8) will only approximate that of (2), which will give
rise to a approximate solution to the primal. To arrive at an exact solution, oneshould construct the
junction tree for the graph and to write down the corresponding constraintsfor the junction tree. As
a caveat, one should note that for dense graphs, the junction tree may be significantly larger than
the size of the original structure. Also, in tractable time, finding the maximum likelihood multilabel
can only be approximated.

3. Efficient Optimization of the Marginalized Dual Problem

While the above quadratic program is polynomial-sized—and considerably smaller than that de-
scribed in Taskar et al. (2003)—it is still easily too large in practice to fit in mainmemory or to
solve by off-the-shelf QP solvers. To arrive at a more tractable problem, we notice from (3) and
(4) that the constraint set decomposes by the examples: to satisfy a single box constraint (6) or a
marginal consistency constraint (7) one only needs to change the marginal dual variables of a single
example. Moreover, the structure of the feasible set only depends on theedge setE, not on the
training example in question: we haveA1 = · · · = Am.

However, the kernel matrix only decomposes by the edges as most pairs ofexamples have
non-positive kernel value between them. Thus there does not seem to bea straightforward way to
decompose the quadratic programme.

A decomposition becomes possible when considering gradient-based approaches. Let us con-
sider optimizing the dual variablesµi = (µe(i,ye))e∈E,ye∈Ye

of examplexi whereℓi denotes the cor-
responding loss vector andK i j =

(

Ke(i,ue; j,ve)e∈E,ue,ve∈Ye

)

denotes the block of kernel values be-
tween examplesi and j, and byK i· = (K i j ) j∈{1,...,m} the columns of the kernel matrixKE referring
to examplei.
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Obtaining the gradient for thexi-subspace requires computing the corresponding part of the
gradient of the objective function in (8) which isgi = ℓi − K i·µ where ℓi = (ℓe(i,ue))e∈E,ue∈Ye

is the corresponding loss vector forxi . However, when updatingµi only, evaluating the change
in objective and updating the gradient can be done more cheaply:∆gi = −K ii ∆µi and ∆ob j =
gT

i ∆µi −1/2∆µiK ii ∆µi . Thus local optimization in a subspace of a single training example can be
done without consulting the other training examples. On the other hand, we donot want to spend
too much time in optimizing a single example: When the dual variables of the other examples are
non-optimal, so is the initial gradientgi . Thus the optimum we would arrive at would not be the
global optimum of the quadratic objective. It makes more sense to optimize all examples more or
less in tandem so that the full gradient approaches its optimum as quickly as possible.

Before presenting the pseudocode of our method some notations have to beintroduced. The
function f () denotes the objective function andF stands for the set of the feasible solutions in (8).
The feasibility domain forµi when all other components inµ are fixed is denoted byF i .

In our approach, we have chosen to conduct a few optimization steps foreach training example
using a conditional gradient ascent (see Algorithm 2) before moving on tothe next example. The
iteration limit for each example is set by using the Karush-Kuhn-Tucker(KKT) conditions as a
guideline (see Section 3.2).

The pseudocode of our algorithm is given in Algorithm 1. It takes as inputthe training data, the
edge set of the hierarchy, the loss vectorℓ = (ℓi)

m
i=1 and the constraints defining the feasible region.

The algorithm chooses a chunk of examples as the working set, computes thekernel for eachxi and
makes an optimization pass over the chunk. After one pass, the gradient, slacks and the duality gap
are computed and a new chunk is picked. The process is iterated until the duality gap gets below
given threshold.

Note in particular, that the joint kernel is not explicitly computed, although evaluating the gra-
dient requires computing the productKEµ. However, we are able to take advantage of the special
structure of the feature vectors, repeating the same feature vector in different contexts, see the defi-
nition of the edge marginal dual variables (5) and the explanation after, to facilitate the computation
using the x-kernelKx(i, j) = ∆φ(xi)

T∆φ(x j) and the dual variables only.

3.1 Conditional Subspace Gradient Ascent

The optimization algorithm used for a single example is a variant of conditional gradient ascent (or
descent) algorithms (Bertsekas, 1999). The algorithms in this family solve a constrained quadratic
problem by iteratively stepping to the best feasible direction with respect to the current gradient. It
exploits the fact ifµ∗ is an optimum solution of a maximization problem with objective function
f above the feasibility domainF i then it has to satisfy the first order optimality condition, i.e., the
inequality

∇ f (µi)(µi −µ∗) ≥ 0 (9)

has to hold for any feasibleµi chosen fromF i .
The pseudocode of our variant CSGA is given in Algorithm 2. The algorithm takes as input the

current dual variables, gradient, constraints and the kernel block for the examplexi , and an iteration
limit. It outputs new values for the dual variablesµi and the change in objective value. As discussed
above, the iteration limit is set very tight so that only a few iterations will be typically conducted.
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Algorithm 1 Maximum margin optimization algorithm for the H-M3 hierarchical classification
model.
H-M3(S,E, ℓ,F )

Require: Training dataS= ((xi ,yi))
m
i=1, edge setE of the hierarchy, a loss vectorℓ, and the feasi-

bility domainF .
Ensure: Dual variable vectorµ and objective valuef (µ).

1: Initialize g = ℓ, ξ = ℓ,dg= ∞ andOBJ= 0.
2: while dg> dgmin & iter < max iter do
3: [WS,Freq] = UpdateWorkingSet(µ,g,ξ);
4: Compute x-kernel valuesKX,WSwith respect to the working set;
5: for i ∈WSdo
6: Compute joint kernel blockK ii and subspace gradientgi ;
7: [µi ,∆ob j] = CSGA(µi ,gi ,K ii ,F i ,Freqi);
8: end for
9: Compute gradientg, slacksξ and duality gapdg;

10: end while

First we need to find a feasibleµ∗ which maximizes the first order feasibility condition (9) at a
fixed µi . It gives a direction potentially increasing the value of objective functionf . Then we have
to choose a step length,τ that gives the optimal feasible solution as a stationary point along the line
segmentµi(τ) = µi +τ∆µ, τ ∈ (0,1], where∆µ= µ∗−µi , starting on the known feasible solutionµi .

The stationary point is found by solving the equation

d
dτ
[

ℓT
i µi(τ)−1/2µi(τ)

TK ii µi(τ)
]

= 0, (10)

expressing the optimality condition with respect toτ. If τ > 1, the stationary point is infeasible
and the feasible maximum is obtained atτ = 1. In our experience, the time taken to compute the
stationary point was typically significantly smaller than time taken to findµ∗i , depending on the
dataset characteristics and the actual algorithm (see Section 3.3) that wasused to findµ∗i .

3.2 Working Set Maintenance

We wish to maintain the working set so that the most promising examples to be updated are con-
tained there at all times to minimize the amount of computation used for unsuccessful updates. Our
working set update is based on the Karush-Kuhn-Tucker(KKT) conditions which at the optimum
hold for allxi :

1. (C−∑e,ye
µe(i,ye))ξi = 0, and

2. α(i,y)(wTφ(xi ,y)− ℓ(yi ,y)+ξi) = 0.

The first condition states that, at optimum, only examples that saturate the box constraint can have
positive slack, and consequently a pseudo-example that has a negativemargin. The second condition
states that pseudo-examples with non-zero dual variables are those thathave the minimum margin,
that is, need the full slackξi . Consequently, if all pseudo-examples ofxi have positive margin, all
dual variables satisfyα(i,y) = 0. This observation leads to the following heuristics for the working
set update:
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Algorithm 2 Conditional subspace gradient ascent optimization step.
CSGA(µi ,gi ,K ii ,F i ,maxiteri)

Require: Initial dual variable vectorµi , gradientgi , constraints of the feasible regionF i , a joint
kernel blockK ii for the subspace, and an iteration limitmaxiteri .

Ensure: New values for dual variablesµi and change in objective∆ob j.
1: ∆ob j = 0;iter = 0;
2: while iter < maxiterdo
3: % find highest feasible point givengi

4: µ∗ = argmaxv∈F i
gT

i v;
5: ∆µ= µ∗−µi ;
6: q = gT

i ∆µ, r = ∆µTK ii ∆µ; % taken from the solution of (10)
7: τ = min(q/r,1); % clip to remain feasible
8: if τ ≤ 0 then
9: break; % no progress, stop

10: else
11: µi = µi + τ∆µ; % update
12: gi = gi − τK ii ∆µ;
13: ∆ob j = ∆ob j+ τq− τ2r/2;
14: end if
15: iter = iter +1;
16: end while

• Non-saturated (∑e,ye
µe(i,ye) < C) examples are given priority as they certainly will need to

be updated to reach the optimum.

• Saturated examples (∑e,ye
µe(i,ye) = C) are added if there are not enough non-saturated ones.

The rationale is that the even though an example is saturated, the individual dual variable
values may still be suboptimal being equal to 0.

• Inactive (∑e,ye
µe(i,ye) = 0) non-violators (ξi = 0) are removed from the working set, as they

do not constrain the objective.

Another heuristic technique to concentrate computational effort to most promising examples is
to favor examples with a large duality gap

∆ob j(µ,ξ) = ∑
i

Cξi +µT
i gi .

As feasible primal solutions always are least as large as feasible dual solutions, the duality gap gives
an upper bound to the distance from the dual solution to the optimum. We use the quantity ∆i =
Cξi + µT

i gi as a heuristic measure of the work needed for that particular example in order to reach
the optimum. Examples are then chosen to the chunk to be updated with probability proportional to
pi ∝ ∆i −min j ∆ j . An example that is drawn more than once will be set a higher iteration limit for
the next optimization step.
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3.3 Finding Update Directions Efficiently

The optimization algorithm described above relies on efficient computation of update directionsµ∗i
in the single example subspaces, that is, to solve the constrained linear program

argmaxv∈F i
gT

i v. (11)

A straightforward approach would be to use a linear programming solver, such as the LIPSOL
interior point solver. However, a such black-box approach does notutilize the special structure of
the problem in any way.

In order to solve this problem efficiently, we first notice two things:

1. A vertex of the feasible set is always among the optimal solutions.

2. Vertices correspond to consistent labelings of the hierarchy. This can be seen from the fact that
at the vertex, for each edgeµe(i,ye) = C for exactly oneye andµe(i,ue) = 0 for ue 6= ye, and
that the marginal consistency constraints require that for two adjacent edgese′ = ( j ′, j),e′′ =
( j, j ′′) we haveµe′(i,y′e) = C = µe′′(i,y′′e) with matching edge-labelingsy′e = (y j ′ ,y j) and
y′′e = (y j ,y j ′′).

Thus instead of solving (11) directly, we can search for the labelingy∗ of the hierarchy corre-
sponding to an optimal vertex
vmu(y∗) of the feasible set:

argmaxy∈Y gT
i µ(y) (12)

This problem can be solved efficiently using a dynamic programming inference algorithm, re-
viewed in the next section.

3.4 Solving the Inference Problem in Linear Time

When dealing with structured output models, one needs to solve the inference problem

argmaxy∈Y gT
i µ(y) (13)

to find a multilabely maximizing the inner product between some (gradient) vectorh and the
marginal dual variablesµ(y) corresponding toy. In our learning scheme this problem is found
in two situations,

• when predicting multilabels given a learned model, and

• to find update directions (12).

The algorithm described below can be used for both problems, the only quantity that changes is the
gradientgi .

Inference algorithms solving problems of the above form have been well-studied in the literature
of probabilistic models, under the names of belief propagation and generalized distributive law (Aji
and McEliece, 2000; Kschischang et al., 2001; Wainwright and Jordan, 2003). It is known that, for
general graphs, solving (13) is not any easier than solving (11). However, for a hierarchical model
dynamic programming can be used: starting from the leaves of the hierarchywe compute bottom-up
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for each subtree the optimal labeling of the subtree, conditioned on fixing thelabel of the subtree
root to+1 or−1.

We denote byTj = (Vj ,E j) the subtree ofT rooted at nodej. We need to maintain two quantities
during the bottom-up pass:

• The best objective value that can be obtained for the examplei in the subtree rooted at nodej
when the labely j has been fixed. We denote this value bySy j (i, j).

• The best objective value that can be obtained for the subtree rooted by the edgee= ( j, j ′)
when the root nodej is fixed toy j . We denote this value byGy j (i,e).

The two quantities are computed from the recurrences

Sy j (i, j) =

{

∑e=( j, j ′)∈E j
Gy j (i,e), if E j 6= /0,and

0, otherwise,

and
Gy j (i,e) = max

y j′
ge(i,y j ,y j ′)µe(i,y j ,y j ′)+Sy j′

(i, j ′)

At the root node of the hierarchy, maxySy(i, root) finally gives the optimum. The corresponding
vertexv(y∗) is found in making a top-down pass over the hierarchy: one looks for best label for a
child of a node given the parent has been fixed. It should be noted thatalthough in principle the best
conditional labeling—how to label a subtree when the root is fixed to one of the possible labels—
could be computed already during the bottom-up pass, the two pass algorithm, where the labeling
is worked out only after the label of the global root of the hierarchy hasbeen found out, is much
easier to implement and works just as fast.

The dynamic programming scheme can be implemented in vectorized form so that all examples
and all nodes on a level of the hierarchy are handled at the same time, thus eliminating the need for
loops going over examples and nodes, which in MATLAB implementation are to beavoided.

All in all, the above described inference algorithm works in linear time in the number of dual
variables, which can be seen from the fact that each example is processed once, each edge is visited
twice (once in the bottom-up pass, once in the top-down pass) and the max operations are taken
over the dual variables belonging to the current edge.

3.5 Computing Stationary Points in Linear Time

The conditional gradient ascent requires us to iteratively solve (10) for τ, which givesτ = ∆µ/∆µK ii ∆µ.
The potentially expensive part is evaluating the matrix-vector productK ii ∆µ= K ii µ∗−K ii µi , which
trivially could take quadratic time in the number of variables. However, we cankeep in mem-
ory the vectorK ii µi during the computation, thus it remains to computeK ii µ∗. Firstly, we no-
tice that for a normalized x-kernel, the entries of the joint kernel are given as sums of indicators
Kii (e,ue;e,u′

e) = 1− [yie = u′
e]− [y′ie = ue]+ [ue = u′

e]. Secondly, sinceµ∗ is an extreme point of
the feasible set,µ∗(e,ue) = C for exactly one of the componentsue ∈ Ye. By these facts and some
arithmetic manipulation we obtainK ii µ∗ = [1− yi ]C− yi ·µ∗ + µ∗. Thus, instead of matrix-vector
product we only need to compute a single vector-vector product and a sum of three vectors. Finally,
the update forK ii µi is given as a convex combination of vectorsK ii µnew

i = τK ii µ∗+(1−τ)K ii µi . The
total number of operations to compute the stationary point remains linear in the number of variables.
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4. Extensions and Variants

There are several variations of the multilabel classification models described above.

Slack variables were defined as non-negative and a single variable was allocated per example.
Allowing negative slack (c.f.Taskar et al. (2003); Tsochantaridis et al.(2004)) results in the dual
equality constraint∑ye

µe(i,ye) = C instead of the box constraint. This results in non-sparse models
as training points are very likely to have non-zero slack.

Allotting a separate slack variable for each edge is a possibility when the data for some edges
can be considered less reliable than the data for others; in such case the unreliable edge can consume
required slack without affecting the other edges. From an optimization pointof view, edge-based
slack variables make the model decompose into separate edge-based quadratic programs and may
allow larger models to be optimized.

Partial paths could be used as the basis of the classification model instead of the edges. For
each partial pathp = ( j1, . . . , jd) one defines a feature vectorφp(i,y) = [yp = 1|p|]φ(x), where
yp = (y j1, . . . ,y jd) is the restriction of the multilabel to the partial path. As the number of par-
tial paths in the hierarchy equals the number of nodes, the resulting featurevectors are actually
smaller than the ones defined by edge-labelings. The marginalization of the model by the partial
paths works in an analogous way to the edge-marginalization and the same optimization algorithms
can be used. The price of the more compact feature representation comesin the form of slightly
more complicated consistency constraints and inference: For consistencyone needs to ensure that
if a partial pathp has non-zero path-marginalµp(i,yp), no prefix p′ of p has non-zero marginal
µp′(i,yp). Correspondingly, the inference algorithms need to make comparisons between a partial
path and its prefixes.

Non-hierarchical models can also be tackled with the above described framework, with a few
caveats. First, ensuring global consistency of the marginalized dual is more involved as local consis-
tency of edge-marginals does not guarantee existence of a dual variable α(i,y) with those marginals.
If the graph is not too dense this problem can be circumvented by computing theclique tree of the
graph and making the clique tree locally consistent, and the conditional gradient optimization will
work unmodified. However, inference for general graphs is NP-hard so both computing predictions
of the model and finding the update directions in the optimization becomes hard. Several schemes to
find approximate solutions exist, including loopy belief propagation, semi-definite relaxations and
tree-based approximations (Wainwright and Jordan (2003); Wainwright et al. (2003)). Depending
on the application, also considering the model in a decomposed form via definition of edge-slack
variables (see above) may be justified.

5. Experiments

We tested the presented learning approach on three datasets that have anassociated classification
hierarchy:

• REUTERS Corpus Volume 1, RCV1 (Lewis et al., 2004). 2500 documents were used for
training and 5000 for testing. As the label hierarchy we used the ’CCAT’ family of categories
(Corporate/Industrial news articles), which had a total of 34 nodes, organized in a tree with
maximum depth 3. The tree is quite unbalanced, half of the nodes residing in depth 1, and
very few nodes in depth 3.
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• WIPO-alpha patent dataset (WIPO, 2001). The dataset consisted of the 1372 training and
358 testing document comprising the D section of the hierarchy. The number of nodes in the
hierarchy was 188, with maximum depth 3.

• ENZYME classification dataset. The training data consisted of 7700 protein sequences with
hierarchical classification given by the Enzyme Classification (EC) system.The hierarchy
consisted of 236 nodes organized into a tree of depth three. Test data consisted of 1755
sequences.

In all datasets, the membership of examples in the nodes of the hierarchy is indicated by binary
vectorsy ∈ {+1,−1}k. Multiple paths were actually present in one of the datasets, REUTERS,
approximately 8 percent of examples were classified into more than one category.

The two first datasets were processed into bag-of-words representation with TFIDF weighting.
No word stemming or stop-word removal was performed. For the ENZYME sequences a length-4
subsequence kernel was used.

We compared the performance of the presented learning approach—below denoted byH-M3—
to three algorithms:SVM denotes an SVM trained for each microlabel separately,H-SVM denotes
the case where the SVM for a microlabel is trained only with examples for whichthe ancestor labels
are positive.

The SVM and H-SVM were run using the SVM-light package. After pre-computation of the
kernel these algorithms are as fast as one could expect, as they just involve solving an SVM for each
node in the graph (with the full training set forSVM and usually a much smaller subset forH-SVM).

H-RLS is a batch version of the hierarchical least squares algorithm describedin Cesa-Bianchi
et al. (2004). It essentially solves for each nodei a least squares style problemwi = (I + SiST

i +
xxT)−1Siyi , whereSi is a matrix consisting of all training examples for which the parent of nodei
was classified as positive,yi is a microlabel vector for nodei of those examples andI is the identity
matrix. Predictions for a nodei for a new examplex is −1 if the parent of the node was classified
negatively and sign(wT

i x) otherwise.
H-RLS requires a matrix inversion for each prediction of each example, at each node along a

path for which errors have not already been made. No optimization of the algorithm was done,
except to use extension approaches to efficiently compute the matrix inverse(for each example an
inverted matrix needs to be extended by one row/column, so a straightforward application of the
Sherman-Morrison formula to efficiently update the inverse can be used).

The H-RLS and H-M3 algorithms were implemented in MATLAB. The tests were run on a
high-end PC. ForSVM,H-SVM and H-M3, the regularization parameter valueC = 1 was used in
all experiments.

Obtaining consistent labelings. As the learning algorithms compared here all decompose the
hierarchy for learning, the multilabel composed of naively combining the microlabel predictions
may be inconsistent, that is, they may predict a document as part of the child but not as part of the
parent. ForSVM andH-SVM consistent labelings were produced by post-processing the predicted
labelings as follows: start at the root and traverse the tree in a breadth-first fashion. If the label
of a node is predicted as−1 then all descendants of that node are also labeled negatively. This
post-processing turned out to be crucial to obtain good accuracy, thuswe only report results with
the postprocessed labelings. Note thatH-RLS performs essentially the same procedure (see above).
For H-M3 models, we computed by dynamic programming the consistent multilabel with maximum
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Figure 2: The objective function (% of optimum) andℓ∆ losses forH-M3 on training and test sets
(WIPO-alpha)

likelihood

u(x) = argmaxy∈YT
P(y|x) = argmaxywTφ(x,y),

whereYT is the set of multilabels that correspond to unions of partial paths inT. The algorithm is
otherwise the same as the one in 3.4, but the inconsistent edge-labelings arenot taken into account
in the maximization.

Efficiency of optimization. To give an indication of the efficiency of theH-M3 algorithm, Figure
2 shows an example learning curve on WIPO-alpha dataset. The number ofdual variables for this
training set is just over one million with a joint kernel matrix with approx 5 billion entries. Note
that the solutions for this optimization are not sparse, typically less than 25% ofthe marginal dual
variables are zero. Training and test losses (ℓ∆) are all close to their optima within 10 minutes of
starting the training, and the objective is within 2 percent of the optimum in 30 minutes.

To put these results in perspective, for the WIPO data setSVM (SVM-light) takes approximately
50 seconds per node, resulting in a total running time of about 2.5 hours, which makes it significantly
slower thanH-M3, in these tests. It is possible that using early stopping forSVM the training time
could be pushed down to the level ofH-M3, however, we have not explored this question. We also
suspect that early stopping forSVM may be more costly than forH-M3, due to the fact that the latter
predicts whole labelings for the trees where the weight of a single microlabelis small, and in fact
the predicted multilabels may contain microlabels that are not locally optimal. In otherwords, the
inference procedure for multilabels may correct poor microlabel predictions.
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Figure 3: Learning curves forH-M3 using LIPSOL and dynamic programming (DP) to compute
update directions (WIPO-alpha). Curves with iteration limits 1,10 and 50 are shown for
DP. The LIPSOL curve is computed with iteration limit set to 1.

The running time ofH-RLS was slower than the other methods, however this could be due to
our unoptimized implementation. It is our expectation that it would be very close tothe time taken
by H-SVM if coded more efficiently.

Therefore, the methods presented in this paper are very competitive froma computational ef-
ficiency point of view to other methods which do not operate in the large feature/output spaces of
H-M3.

Figure 3 shows on WIPO-alpha the efficiency of the dynamic programming (DP) based com-
putation of update directions as compared to solving the update directions with MATLAB’s linear
interior point solver LIPSOL. The DP based updates result in an order of magnitude faster optimiza-
tion than using LIPSOL.

In addition for DP the effect of the iteration limit for optimization speed is depicted. Setting the
iteration limit too low (1) or too high (50) slows down the optimization, for different reasons. A
too tight iteration limit makes the overhead in moving from one example to the other dominate the
running time. A too high iteration limit makes the the algorithm spend too much time optimizing
the dual variables of a single example. Unfortunately, it is not straightforward to suggest a iteration
limit that would be universally the best, as the optimal value depends on the dataset.

Effect of choice of the loss function. In order to show the effect of training theH-M3 algorithm
using the different loss functions described in Section 2.1, we studied the performance of the al-
gorithm on Reuters and WIPO data sets. The results can be seen in Table 5.The WIPO dataset
gives an indication that using a hierarchical loss function during training (e.g. eitherℓH̃-sibl. or
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Test loss
ℓ0/1 ℓ∆ ℓH̃ +scaling

Tr. loss % unif sibl. subtree
ℓ∆ 27.1 0.574 0.344 0.114 0.118
ℓH̃ -unif 26.8 0.590 0.338 0.118 0.122
ℓH̃ -sibl. 28.2 0.608 0.381 0.109 0.114
ℓH̃ -subtree 27.9 0.588 0.373 0.109 0.109

ℓ0/1 ℓ∆ ℓH̃ +scaling
Tr. loss % unif sibl. subtree
ℓ∆ 70.9 1.670 0.891 0.050 0.070
ℓH̃ -unif. 70.1 1.721 0.888 0.052 0.074
ℓH̃ -sibl. 64.8 1.729 0.927 0.048 0.071
ℓH̃ -subtree 65.0 1.709 0.919 0.048 0.072

Table 1: Prediction losses obtained using different training losses on Reuter’s (top) and WIPO-
alpha data (bottom). The lossℓ0/1 is given as a percentage, the other losses as averages
per-example.

ℓH̃-subtree) may lead to a reduced 0/1 loss on the test set. On Reuters dataset this effect is not
observed, however this is due to the fact that the label tree of the Reutersdata set is very shallow.

Comparison of predictive accuracies of different algorithms. In our final test we compare the
predictive accuracy ofH-M3 to other learning methods. ForH-M3 we include the results for training
with ℓ∆ andℓH̃-subtreelosses. For trainingSVM andH-SVM, these losses produce the same learned
model.

Table 2 depicts the different test losses, as well as the standard information retrieval statistics
precision (P), recall (R) and F1 statistic (F1 = 2PR/(P+R)). Precision and recall were computed
over all microlabel predictions in the test set. FlatSVM is expectedly inferior to the competing algo-
rithms with respect to most statistics, as it cannot utilize the dependencies between the microlabels
in any way. The two variants ofH-M3 are the most efficient in getting the complete tree correct as
shown by the lower zero-one loss. With respect to other statistics, the hierarchical methods are quite
evenly matched overall.

Finally, to highlight the differences between the predicted labelings, we computed level-wise
precision and recall values, that is, the set of predictions contained all test instances and microlabels
on a given level of the tree (Table 3). On all datasets, recall of all methods, especially withSVM and
H-SVM, diminishes when going farther from the root.H-M3 is the most efficient method in fighting
the recall decline, and is still able to obtain reasonable precision on REUTERS and WIPO-alpha,
especially when trained with the hierarchical loss.

The results on ENZYME data are generally not good for any of the methods, this is most prob-
ably due to the subsequence kernel used not being able to pick out the subsequences corresponding
to the active centers of the enzymes. Nevertheless, the effect ofH-M3 obtaining better recall in deep
nodes than the competition can be observed.
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REUTERS ℓ0/1 ℓ∆ P R F1
SVM 32.9 0.61 94.6 58.4 72.2

H-SVM 29.8 0.57 92.3 63.4 75.1
H-RLS 28.1 0.55 91.5 65.4 76.3

H-M3-ℓ∆ 27.1 0.58 91.0 64.1 75.2
H-M3-ℓH̃ 27.9 0.59 85.4 68.3 75.9

WIPO-alpha ℓ0/1 ℓ∆ P R F1
SVM 87.2 1.84 93.1 58.2 71.6

H-SVM 76.2 1.74 90.3 63.3 74.4
H-RLS 72.1 1.69 88.5 66.4 75.9

H-M3-ℓ∆ 70.9 1.67 90.3 65.3 75.8
H-M3-ℓH̃ 65.0 1.73 84.1 70.6 76.7

ENZYME ℓ0/1 ℓ∆ P R F1
SVM 99.7 1.3 99.6 41.1 58.2

H-SVM 98.5 1.2 98.9 41.7 58.7
H-RLS 95.6 2.0 51.9 54.7 53.3

H-M3-ℓ∆ 95.7 1.2 87.0 49.8 63.3
H-M3-ℓH̃ 85.5 2.5 44.5 66.7 53.4

Table 2: Prediction lossesℓ0/1 andℓ∆, precision, recall and F1 values obtained using different learn-
ing algorithms. All figures are given as percentages. Precision and recall are computed in
terms of totals of microlabel predictions in the test set.

6. Conclusions and Future Work

In this paper we have proposed a new method for training variants of the Maximum Margin Markov
Network framework for hierarchical multi-category text classification models.

Our method relies on a decomposition of the problem into single-example sub problems and
conditional gradient ascent for optimisation of the subproblems. The method scales well to medium-
sized datasets with label matrix (examples× microlabels) size upto hundreds of thousands, and
via kernelization, very large feature vectors for the examples can be used. Experimental results
on three classification tasks show that using the hierarchical structure ofmulti-category labelings
leads to improved performance over the more traditional approach of combining individual binary
classifiers.

Our future work includes generalization of the approach to general graph structures and looking
for ways to scale up the method further.
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REUTERS Level 0 Level 1 Level 2 Level 3
SVM 92.4/89.4/90.9 96.8/38.7/55.3 98.1/49.3/65.6 81.8/46.2/59.0

H-SVM 92.4/89.4/90.9 93.7/43.6/59.5 91.1/61.5/73,4 72.0/46.2/56,3
H-RLS 93.2/89.1/91.1 90.9/46.8/61.8 89.7/64.8/75.2 76.0/48.7/59.4

H-M3-ℓ∆ 94.1/83.0/88.2 87.3/48.9/62.7 91.1/63.2/74.6 79.4/69.2/73.9
H-M3-ℓH̃ 91.1/87.8/89.4 79.2/53.1/63.6 85.4/66.6/74.8 77.9/76.9/77.4

WIPO-alpha Level 0 Level 1 Level 2 Level 3
SVM 100/100/100 92.1/77.7/84.3 84.4/42.5/56.5 82.1/12.8/22.1

H-SVM 100/100/100 92.1/77.7/84.3 79.6/51.1/62.2 77.0/24.3/36.9
H-RLS 100/100/100 91.3/79.1/84.8 78.2/57.0/65.9 72.6/29.6/42.1

H-M3-ℓ∆ 100/100/100 90.8/80.2/85.2 86.1/50.0/63.3 72.1/31.0/43.4
H-M3-ℓH̃ 100/100/100 90.9/80.4/85.3 76.4/62.3/68.6 60.4/39.7/47.9

ENZYME Level 0 Level 1 Level 2 Level 3
SVM 100/100/100 84.3/4.9/9.3 100/0.4/0.8 100/0.3/0.6

H-SVM 100/100/100 84.3/4.9/9.3 72.3/1.9/3.7 67.5/1.5/2.9
H-RLS 100/97.4/98.7 33.0/39.3/35.9 22.4/22.6/22.5 15.2/17.0/16.0

H-M3-ℓ∆ 100/100/100 61.2/30.8/41.0 49.8/13.3/21.0 52.9/4.7/8.6
H-M3-ℓH̃ 100/100/100 49.3/56.0/52.4 21.5/42.5/28.6 14.7/35.2/20.7

Table 3: Precision/Recall/F1 statistics for each level of the hierarchy for different algorithms on
Reuters RCV1 (top), WIPO-alpha (middle), and ENZYME datasets (bottom).
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Abstract
We present a simple and scalable algorithm for maximum-margin estimation of structured output
models, including an important class of Markov networks andcombinatorial models. We formulate
the estimation problem as a convex-concave saddle-point problem that allows us to use simple
projection methods based on the dual extragradient algorithm (Nesterov, 2003). The projection
step can be solved using dynamic programming or combinatorial algorithms for min-cost convex
flow, depending on the structure of the problem. We show that this approach provides a memory-
efficient alternative to formulations based on reductions to a quadratic program (QP). We analyze
the convergence of the method and present experiments on twovery different structured prediction
tasks: 3D image segmentation and word alignment, illustrating the favorable scaling properties of
our algorithm.1

Keywords: Markov networks, large-margin methods, structured prediction, extragradient, Breg-
man projections

1. Introduction

Structured prediction problems are classification or regression problems inwhich the output vari-
ables (the class labels or regression responses) are interdependent.These dependencies may reflect
sequential, spatial, recursive or combinatorial structure in the problem domain, and capturing these
dependencies is often as important for the purposes of prediction as capturing input-output depen-
dencies. In addition to modeling output correlations, we may wish to incorporate hard constraints
between variables. For example, we may seek a model that maps descriptionsof pairs of structured
objects (shapes, strings, trees, etc.) into alignments of those objects. Real-life examples of such
problems include bipartite matchings in alignment of 2D shapes (Belongie et al., 2002) and word
alignment of sentences from a source language to a target language in machine translation (Ma-
tusov et al., 2004) or non-bipartite matchings of residues in disulfide connectivity prediction for
proteins (Baldi et al., 2005). In these examples, the output variables encode presence of edges in the
matching and may obey hard one-to-one matching constraints. The predictionproblem in such situ-

1. Preliminary versions of some of this work appeared in the proceedings of Advances in Neural Information Processing
Systems 19, 2006 and Empirical Methods in Natural Language Processing, 2005.
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ations is often solved via efficient combinatorial optimization such as finding the maximum weight
matching, where the model provides the appropriate edge weights.

Thus in this paper we define the termstructured output modelvery broadly, as a compact scor-
ing scheme over a (possibly very large) set of combinatorial structures and a method for finding
the highest scoring structure. For example, when a probabilistic graphical model is used to capture
dependencies in a structured output model, the scoring scheme is specifiedvia a factorized proba-
bility distribution for the output variables conditional on the input variables, and the search involves
some form of generalized Viterbi algorithm. More broadly, in models based on combinatorial prob-
lems, the scoring scheme is usually a simple sum of weights associated with vertices, edges, or
other components of a structure; these weights are often represented asparametric functions of the
inputs. Given training data consisting of instances labeled by desired structured outputs and a set
of features that parameterize the scoring function, the (discriminative) learning problem is to find
parameters such that the highest scoring outputs are as close as possibleto the desired outputs.

In the case of structured prediction based on graphical models, which encompasses most work to
date on structured prediction, two major approaches to discriminative learning have been explored:
(1) maximum conditional likelihood (Lafferty et al., 2001, 2004) and (2) maximum margin (Collins,
2002; Altun et al., 2003; Taskar et al., 2004b). Both approaches are viable computationally for re-
stricted classes of graphical models. In the broader context of the current paper, however, only the
maximum-margin approach appears to be viable. In particular, it has been shown that maximum-
margin estimation can be formulated as a tractable convex problem — a polynomial-size quadratic
program (QP) — in several cases of interest (Taskar et al., 2004a, 2005a); such results are not avail-
able for conditional likelihood. Moreover, it is possible to find interesting subfamilies of graphical
models for which maximum-margin methods are provably tractable whereas likelihood-based meth-
ods are not. For example, for the Markov random fields that arise in object segmentation problems
in vision (Kumar and Hebert, 2004; Anguelov et al., 2005) the task of finding the most likely as-
signment reduces to a min-cut problem. In these prediction tasks, the problem of finding the highest
scoring structure is tractable, while computing the partition function is #P-complete. Essentially,
maximum-likelihood estimation requires the partition function, while maximum-margin estimation
does not, and thus remains tractable. Polynomial-time sampling algorithms for approximating the
partition function for some models do exist (Jerrum and Sinclair, 1993), but have high-degree poly-
nomial complexity and have not yet been shown to be effective for conditional likelihood estimation.

While the reduction to a tractable convex program such as a QP is a significant step forward, it
is unfortunately not the case that off-the-shelf QP solvers necessarilyprovide practical solutions to
structured prediction problems. Indeed, despite the reduction to a polynomial number of variables,
off-the-shelf QP solvers tend to scale poorly with problem and training sample size for these models.
The number of variables is still large and the memory needed to maintain second-order information
(for example, the inverse Hessian) is a serious practical bottleneck.

To solve the largest-scale machine learning problems, researchers haveoften found it expedient
to consider simple gradient-based algorithms, in which each individual step ischeap in terms of
computation and memory (Platt, 1999; LeCun et al., 1998). Examples of this approach in the struc-
tured prediction setting include the Structured Sequential Minimal Optimization algorithm (Taskar
et al., 2004b; Taskar, 2004) and the Structured Exponentiated Gradient algorithm (Bartlett et al.,
2005). These algorithms are first-order methods for solving QPs arising from low-treewidth Markov
random fields and other decomposable models. In these restricted settings these methods can be
used to solve significantly larger problems than can be solved with off-the-shelf QP solvers. These

1628



STRUCTUREDPREDICTION, DUAL EXTRAGRADIENT AND BREGMAN PROJECTIONS

methods are, however, limited in scope in that they rely on dynamic programming tocompute es-
sential quantities such as gradients. They do not extend to models where dynamic programming is
not applicable, for example, to problems such as matchings and min-cuts. Another line of work in
learning structured prediction models aims to approximate the arising QPs via constraint genera-
tion (Altun et al., 2003; Tsochantaridis et al., 2004). This approach only requires finding the highest
scoring structure in the inner loop and incrementally solving a growing QP as constraints are added.

In this paper, we present a solution methodology for structured predictionthat encompasses a
broad range of combinatorial optimization problems, including matchings, min-cutsand other net-
work flow problems. There are two key aspects to our methodology. The first is that we take a
novel approach to the formulation of structured prediction problems, formulating them as saddle-
point problems. This allows us to exploit recent developments in the optimization literature, where
simple gradient-based methods have been developed for solving saddle-point problems (Nesterov,
2003). Moreover, we show that the key computational step in these methods—a certain projection
operation—inherits the favorable computational complexity of the underlying optimization prob-
lem. This important result makes our approach viable computationally. In particular, for decompos-
able graphical models, the projection step is solvable via dynamic programming.For matchings and
min-cuts, projection involves a min-cost quadratic flow computation, a problemfor which efficient,
highly-specialized algorithms are available.

The paper is organized as follows. In Section 2 we present an overviewof structured prediction,
focusing on three classes of tractable optimization problems. Section 3 showshow to formulate the
maximum-margin estimation problem for these models as a saddle-point problem. InSection 4 we
discuss the dual extragradient method for solving saddle-point problemsand show how it specializes
to our setting. We derive a memory-efficient version of the algorithm that requires storage propor-
tional to the number of parameters in the model and is independent of the number of examples in
Section 5. In Section 6 we illustrate the effectiveness of our approach ontwo very different large-
scale structured prediction tasks: 3D image segmentation and word alignment innatural language
translation. Finally, Section 7 presents our conclusions.

2. Structured Output Models

We begin by discussing three special cases of the general framework that we present subsequently:
(1) tree-structured Markov networks, (2) Markov networks with submodular potentials, and (3)
a bipartite matching model. Despite significant differences in the formal specification of these
models, they share the property that in all cases the problem of finding the highest-scoring output
can be formulated as a linear program (LP).

2.1 Tree-Structured Markov Networks

For simplicity of notation, we focus on tree networks, noting in passing that theextension to hy-
pertrees is straightforward. GivenN variables,y = {y1, . . . ,yN}, with discrete domainsy j ∈ D j =
{α1, . . . ,α|D j |}, we define a joint distribution overY = D 1× . . .×DN via

P(y) ∝ ∏
j∈V

φ j(y j) ∏
jk∈E

φ jk(y j ,yk),

where(V = {1, . . . ,N},E ⊂{ jk : j < k, j ∈V ,k∈V }) is an undirected graph, and where{φ j(y j), j ∈
V } are the node potentials and{φ jk(y j ,yk), jk ∈ E } are the edge potentials. We can find the most
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likely assignment, argmaxy P(y), using the Viterbi dynamic programming algorithm for trees. We
can also find it using a standard linear programming formulation as follows. Weintroduce variables
zjα to denote indicators1(y j = α) for all variablesj ∈ V and their valuesα ∈ D j . Similarly, we
introduce variableszjkαβ to denote indicators1(y j = α,yk = β) for all edgesjk ∈ E and the values
of their nodes,α ∈ D j ,β ∈ D k. We can formulate the problem of finding the maximal probability
configuration as follows:

max
0≤z≤1

∑
j∈V

∑
α∈D j

zjα logφ j(α) + ∑
jk∈E

∑
α∈D j ,β∈D k

zjkαβ logφ jk(α,β) (1)

s.t. ∑
α∈D j

zjα = 1, ∀ j ∈ V ; ∑
α∈D j ,β∈D k

zjkαβ = 1, ∀ jk ∈ E ; (2)

∑
α∈D j

zjkαβ = zkβ, ∀ jk ∈ E ,β ∈ D k; ∑
β∈D k

zjkαβ = zjα, ∀ jk ∈ E ,α ∈ D j , (3)

where (2) expresses normalization constraints and (3) captures marginalization constraints. This LP
has integral optimal solutions ifE is a forest (Chekuri et al., 2001; Wainwright et al., 2002; Chekuri
et al., 2005). In networks of general topology, however, the optimal solution can be fractional
(as expected, since the problem is NP-hard). Other important exceptionscan be found, however,
specifically by focusing on constraints on the potentials rather than constraints on the topology. We
discuss one such example in the following section.

2.2 Markov Networks with Submodular Potentials

We consider a special class of Markov networks, common in vision applications, in which inference
reduces to a tractable min-cut problem (Greig et al., 1989; Kolmogorov andZabih, 2004). We
assume that (1) all variables are binary (D j = {0,1}), and (2) all edge potentials are “regular” (i.e.,
submodular):

logφ jk(0,0)+ logφ jk(1,1) ≥ logφ jk(1,0)+ logφ jk(0,1), ∀ jk ∈ E . (4)

Such potentials prefer assignments where connected nodes have the samelabel, that is,y j = yk.
This notion of regularity can be extended to potentials over more than two variables (Kolmogorov
and Zabih, 2004). These assumptions ensure that the LP in Eq. (1) has integral optimal solu-
tions (Chekuri et al., 2001; Kolmogorov and Wainwright, 2005; Chekuriet al., 2005). Similar
kinds of networks (defined also for non-binary variables and non-pairwise potentials) were called
“associative Markov networks” by Taskar et al. (2004a) and Anguelov et al. (2005), who used them
for object segmentation and hypertext classification.

In figure-ground segmentation (see Fig. 1a), the node potentials capturelocal evidence about
the label of a pixel or range scan point. Edges usually connect nearbypixels in an image, and serve
to correlate their labels. Assuming that such correlations tend to bepositive(connected nodes tend
to have the same label) leads us to consider simplified edge potentials of the formφ jk(y j ,yk) =
exp{−sjk1(y j 6= yk)}, wheresjk is a nonnegative penalty for assigningy j andyk different labels.
Note that such potentials are regular ifsjk ≥ 0. Expressing node potentials asφ j(y j) = exp{sjy j},
we haveP(y) ∝ exp

{
∑ j∈V sjy j −∑ jk∈E sjk1(y j 6= yk)

}
. Under this restriction on the potentials, we

can obtain the following (simpler) LP:

max
0≤z≤1

∑
j∈V

sjzj − ∑
jk∈E

sjkzjk (5)

s.t. zj −zk ≤ zjk, zk−zj ≤ zjk, ∀ jk ∈ E ,
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Figure 1: Structured prediction applications: (a) 3D figure-ground segmentation; (b) Word align-
ment in machine translation.

where the continuous variableszj correspond to a relaxation of the binary variablesy j , and the con-
straints encodezjk = 1(zj 6= zk). To see this, note that the constraints can be equivalently expressed
as |zj − zk| ≤ zjk. Becausesjk is positive,zjk = |zk − zj | at the maximum, which is equivalent to1(zj 6= zk) if the zj ,zk variables are binary. An integral optimal solution always exists, since the
constraint matrix is totally unimodular (Schrijver, 2003).

We can parameterize the node and edge potentials in terms of user-providedfeaturesx j andx jk

associated with the nodes and edges. In particular, in 3D range data,x j might involve spin-image
features or spatial occupancy histograms of a pointj, while x jk might include the distance between
points j andk, the dot-product of their normals, etc. The simplest model of dependenceis a linear
combination of features:sj = w⊤

n fn(x j) andsjk = w⊤
e fe(x jk), wherewn andwe are node and edge

parameters, andfn andfe are node and edge feature mappings, of dimensiondn andde, respectively.
To ensure non-negativity ofsjk, we assume that the edge featuresfe are nonnegative and we impose
the restrictionwe ≥ 0. This constraint is incorporated into the learning formulation we present
below. We assume that the feature mappingsf are provided by the user and our goal is to estimate
parametersw from labeled data. We abbreviate the score assigned to a labelingy for an inputx as
w⊤f(x,y) = ∑ j y jw⊤

n fn(x j)−∑ jk∈E y jkw⊤
e fe(x jk), wherey jk = 1(y j 6= yk).

2.3 Matchings

Consider modeling the task of word alignment of parallel bilingual sentences(Fig. 1b) as a maxi-
mum weight bipartite matching problem in a graph, where the nodesV = V s∪V t correspond to
the words in the “source” sentence(V s) and the “target” sentence(V t) and the edgesE = { jk : j ∈
V s,k∈ V t} correspond to possible alignments between the words. For simplicity, assume that each
word aligns to one or zero words in the other sentence. The edge weightsjk represents the degree
to which word j in one sentence can translate into the wordk in the other sentence. Our objective is
to find an alignment that maximizes the sum of edge scores. We represent a matching using a set of

1631



TASKAR, LACOSTE-JULIEN AND JORDAN

binary variablesy jk that are set to 1 if wordj is assigned to wordk in the other sentence, and 0 oth-
erwise. The score of an assignment is the sum of edge scores:s(y) = ∑ jk∈E sjky jk. The maximum
weight bipartite matching problem, argmaxy∈Y s(y), can be found by solving the following LP:

max
0≤z≤1

∑
jk∈E

sjkzjk (6)

s.t. ∑
j∈V s

zjk ≤ 1, ∀k∈ V t ; ∑
k∈V t

zjk ≤ 1, ∀ j ∈ V s.

where again the continuous variableszjk correspond to the relaxation of the binary variablesy jk.
As in the min-cut problem, this LP is guaranteed to have integral solutions for any scoring function
s(y) (Schrijver, 2003).

For word alignment, the scoressjk can be defined in terms of the word pairjk and input features
associated withx jk. We can include the identity of the two words, the relative position in the re-
spective sentences, the part-of-speech tags, the string similarity (for detecting cognates), etc. We let
sjk = w⊤f(x jk) for a user-provided feature mappingf and abbreviatew⊤f(x,y) = ∑ jk y jkw⊤f(x jk).

2.4 General Structure

More generally, we consider prediction problems in which the inputx ∈ X is an arbitrary structured
object and the output is a vector of valuesy = (y1, . . . ,yLx) encoding, for example, a matching or a
cut in the graph. We assume that the lengthLx and the structure encoded byy depend determinis-
tically on the inputx. In our word alignment example, the output space is defined by the length of
the two sentences. Denote the output space for a given inputx asY (x) and the entire output space
asY =

S

x∈X Y (x).
Consider the class of structured prediction modelsH defined by the linear family:

hw(x) = argmax
y∈Y (x)

w⊤f(x,y), (7)

wheref(x,y) is a vector of functionsf : X × Y 7→ IRn. This formulation is very general. Indeed,
it is too general for our purposes—for many(f,Y ) pairs, finding the optimaly is intractable. We
specialize to the class of models in which the optimization problem in Eq. (7) can besolved in poly-
nomial time via convex optimization; this is still a very large class of models. Beyond the examples
discussed here, it includes weighted context-free grammars and dependency grammars (Manning
and Scḧutze, 1999) and string edit distance models for sequence alignment (Durbinet al., 1998).

3. Large Margin Estimation

We assume a set of training instancesS= {(xi ,yi)}
m
i=1, where each instance consists of a structured

objectxi (such as a graph) and a target solutionyi (such as a matching). Consider learning the
parametersw in the conditional likelihood setting. We can definePw(y | x) = 1

Zw(x) exp{w⊤f(x,y)},

whereZw(x) = ∑y′∈Y (x) exp{w⊤f(x,y′)}, and maximize the conditional log-likelihood∑i logPw(yi |
xi), perhaps with additional regularization of the parametersw. As we have noted earlier, however,
the problem of computing the partition functionZw(x) is computationally intractable for many of the
problems we are interested in. In particular, it is #P-complete for matchings andmin-cuts (Valiant,
1979; Jerrum and Sinclair, 1993).

1632



STRUCTUREDPREDICTION, DUAL EXTRAGRADIENT AND BREGMAN PROJECTIONS

We thus retreat from conditional likelihood and consider the max-margin formulation developed
in several recent papers (Collins, 2002; Altun et al., 2003; Taskar etal., 2004b). In this formulation,
we seek to find parametersw such that:

yi = argmax
y′i∈Y i

w⊤f(xi ,y′i), ∀i,

whereY i = Y (xi). The solution spaceY i depends on the structured objectxi ; for example, the space
of possible matchings depends on the precise set of nodes and edges in the graph.

As in univariate prediction, we measure the error of prediction using a lossfunction ℓ(yi ,y′i).
To obtain a convex formulation, we upper bound the lossℓ(yi ,hw(xi)) using the hinge function:
maxy′i∈Y i

[w⊤f i(y′i) + ℓi(y′i)−w⊤f i(yi)], whereℓi(y′i) = ℓ(yi ,y′i), andf i(y′i) = f(xi ,y′i). Minimizing
this upper bound will force the true structureyi to be optimal with respect tow for each instancei:

min
w∈W

∑
i

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]−w⊤f i(yi), (8)

whereW is the set of allowed parametersw. We assume that the parameter spaceW is a convex
set, typically a norm ball{w : ||w||p ≤ γ} with p= 1,2 and a regularization parameterγ. In the case
thatW = {w : ||w||2 ≤ γ}, this formulation is equivalent to the standard large margin formulation
using slack variablesξ and slack penaltyC (cf. Taskar et al., 2004b), for some suitable values ofC
depending onγ. The correspondence can be seen as follows: letw∗(C) be a solution to the optimiza-
tion problem with slack penaltyC and defineγ(C) = ||w∗(C)||. Thenw∗ is also a solution to Eq. (8).
Conversely, we can invert the mappingγ(·) to find those values ofC (possibly non-unique) that give
rise to the same solution as Eq. (8) for a specificγ. In the case of submodular potentials, there are
additional linear constraints on the edge potentials. In the setting of Eq. (5),we simply constrain
we ≥ 0. For general submodular potentials, we can parameterize the log of the edge potential using
four sets of edge parameters,we00,we01,we10,we11, as follows: logφ jk(α,β) = w⊤

eαβf(x jk). Assum-
ing, as before, that the edge features are nonnegative, the regularityof the potentials can be enforced
via a linear constraint:we00+we11 ≥ we10+we01, where the inequality should be interpreted com-
ponentwise.

The key to solving Eq. (8) efficiently is theloss-augmented inference problem,

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]. (9)

This optimization problem has precisely the same form as the prediction problemwhose parameters
we are trying to learn—maxy′i∈Y i

w⊤f i(y′i)—but with an additional term corresponding to the loss
function. Tractability of the loss-augmented inference thus depends not only on the tractability of
maxy′i∈Y i

w⊤f i(y′i), but also on the form of the loss termℓi(y′i). A natural choice in this regard is the
Hamming distance, which simply counts the number of variables in which a candidate solutiony′i
differs from the target outputyi . In general, we need only assume that the loss function decomposes
over the variables inyi .

In particular, for word alignment, we use weighted Hamming distance, which counts the number
of variables in which a candidate matchingy′i differs from the target alignmentyi , with different cost
for false positives(c+) and false negatives(c-):

ℓ(yi ,y′i) = ∑
jk∈E i

[
c-yi, jk(1−y′i, jk)+c+ y′i, jk(1−yi, jk)

]
(10)

= ∑
jk∈E i

c-yi, jk + ∑
jk∈E i

[c+ − (c- +c+)yi, jk]y
′
i, jk,
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whereyi, jk indicates the presence of edgejk in examplei andE i is the set of edges in examplei.
The loss-augmented matching problem can then be written as an LP similar to Eq. (6) (without the
constant term∑ jk c-yi, jk):

max
0≤zi≤1

∑
jk∈E i

zi, jk[w⊤f(xi, jk)+c+ − (c- +c+)yi, jk]

s.t. ∑
j∈V s

i

zi, jk ≤ 1, ∀k∈ V t
i ; ∑

k∈V t
i

zi, jk ≤ 1, ∀ j ∈ V s
i ,

wheref(xi, jk) is the vector of features of the edgejk in examplei andV s
i andV t

i are the nodes in
examplei. As before, the continuous variableszi, jk correspond to the binary valuesy′i, jk.

Generally, suppose we can express the prediction problem as an LP:

max
y′i∈Y i

w⊤f i(y′i) = max
zi∈Z i

w⊤Fizi ,

where
Z i = {zi : A izi ≤ bi , 0≤ zi ≤ 1}, (11)

for appropriately definedFi ,A i andbi . Then we have a similar LP for the loss-augmented inference
for each examplei:

max
y′i∈Y i

w⊤f i(y′i)+ ℓi(y′i) = di +max
zi∈Z i

(F⊤
i w+ci)

⊤zi , (12)

for appropriately defineddi andci . For the matching case,di = ∑ jk c-yi, jk is the constant term,Fi is
a matrix that has a column of featuresf(xi, jk) for each edgejk in examplei, andci is the vector of
the loss termsc+−(c- +c+)yi, jk. Letz= {z1, . . . ,zm} andZ = Z1× . . .×Zm. With these definitions,
we have the following saddle-point problem:

min
w∈W

max
z∈Z

∑
i

(
w⊤Fizi +c⊤i zi −w⊤f i(yi)

)
. (13)

where we have omitted the constant term∑i di . The only difference between this formulation and
our initial formulation in Eq. (8) is that we have created a concise continuous optimization problem
by replacing the discretey′i ’s with continuouszi ’s.

When the prediction problem is intractable (for example, in general Markovnetworks or tripar-
tite matchings), we can use a convex relaxation (for example, a linear or semidefinite program) to
upper bound maxy′i∈Y i

w⊤f i(y′i) and obtain an approximate maximum-margin formulation. This is
the approach taken in Taskar et al. (2004b) for general Markov networks using the LP in Eq. (1).

To solve (13), we could proceed by making use of Lagrangian duality. This approach, explored
in Taskar et al. (2004a, 2005a), yields a joint convex optimization problem.If the parameter space
W is described by linear and convex quadratic constraints, the result is a convex quadratic program
which can be solved using a generic QP solver.

We briefly outline this approach below, but in this paper, we take a different tack, solving the
problem in its natural saddle-point form. As we discuss in the following section, this approach
allows us to exploit the structure ofW andZ separately, allowing for efficient solutions for a wider
range of parameterizations and structures. It also opens up alternatives with respect to numerical
algorithms.

1634



STRUCTUREDPREDICTION, DUAL EXTRAGRADIENT AND BREGMAN PROJECTIONS

Before moving on to solution of the saddle-point problem, we consider the joint convex form
when the feasible set has the form of (11) and the loss-augmented inference problem is a LP, as
in (12). Using commercial convex optimization solvers for this formulation will provide us with a
comparison point for our saddle-point solver. We now proceed to present this alternative form.

To transform the saddle-point form of (13) into a standard convex optimization form, we take
the dual of the individual loss-augmented LPs (12):

max
zi∈Z i

(F⊤
i w+ci)

⊤zi = min
(λi ,µi)∈Λi(w)

b⊤
i λi +1⊤µi (14)

whereΛi(w)= {(λi ,µi)≥ 0 : F⊤
i w+ci ≤A⊤

i λi +µi} defines the feasible space for the dual variables
λi andµi . Substituting back in equation (13) and writingλ = (λ1, . . . ,λm), µ = (µ1, . . . ,µm), we
obtain (omitting the constant∑i di):

min
w∈W ,(λ,µ)≥0

∑
i

(
b⊤

i λi +1⊤µi −w⊤f i(yi)
)

(15)

s.t. F⊤
i w+ci ≤ A⊤

i λi +µi i = 1, . . . ,m.

If W is defined by linear and convex quadratic constraints, the above optimizationproblem can be
solved using standard commercial solvers. The number of variables and constraints in this problem
is linear in the number of the parametersand the training data (for example nodes and edges).

4. Saddle-Point Problems and the Dual Extragradient Method

We begin by establishing some notation and definitions. Denote the objective ofthe saddle-point
problem in (13) by:

L (w,z) ≡ ∑
i

w⊤Fizi +c⊤i zi −w⊤f i(yi).

L (w,z) is bilinear inw andz, with gradient given by:∇wL (w,z) = ∑i Fizi − f i(yi) and∇ziL (w,z) =
F⊤

i w+ci .
We can view this problem as a zero-sum game between two players,w andz. Consider a simple

iterative improvement method based on gradient projections:

wt+1 = πW (wt −η∇wL (wt ,zt)); zt+1
i = πZ i (z

t
i +η∇ziL (w

t ,zt)), (16)

whereη is a step size andπV (v) = argminv′∈V ||v− v′||2 denotes the Euclidean projection of a
vectorv onto a convex setV . In this simple iteration, each player makes a small best-response
improvement without taking into account the effect of the change on the opponent’s strategy. This
usually leads to oscillations, and indeed, this method is generally not guaranteed to converge for
bilinear objectives for any step size (Korpelevich, 1976; He and Liao, 2002). One way forward is
to attempt to average the points(wt ,zt) to reduce oscillation. We pursue a different approach that
is based on the dual extragradient method of Nesterov (2003). In our previous work (Taskar et al.,
2006), we used a related method, the extragradient method due to Korpelevich (1976). The dual
extragradient is, however, a more flexible and general method, in terms ofthe types of projections
and feasible sets that can be used, allowing a broader range of structured problems and parameter
regularization schemes. Before we present the algorithm, we introduce some notation which will be
useful for its description.
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Let us combinew and z into a single vector,u = (w,z), and define the joint feasible space
U =W ×Z . Note thatU is convex since it is a direct product of convex sets.

We denote the (affine) gradient operator on this joint space as



∇wL (w,z)
−∇z1L (w,z)

...
−∇zmL (w,z)


 =




0 F1 · · · Fm

−F⊤
1

... 0
−F⊤

m




︸ ︷︷ ︸




w
z1
...

zm




︸ ︷︷ ︸

−




∑i f i(yi)
c1
...

cm




︸ ︷︷ ︸

= Fu−a.

F u a

4.1 Dual Extragradient

We first present the dual extragradient algorithm of Nesterov (2003)using the Euclidean geometry
induced by the standard 2-norm, and consider a non-Euclidean setup in Sec. 4.2.

As shown in Fig. 2, the dual extragradient algorithm proceeds using very simple gradient and
projection calculations.

Initialize: Choosêu ∈ U , sets−1 = 0.
Iterationt, 0≤ t ≤ τ:

v = πU (û+ηst−1);

ut = πU (v−η(Fv−a)); (17)

st = st−1− (Fut −a).

Output: ūτ = 1
τ+1 ∑τ

t=0ut .

Figure 2: Euclidean dual extragradient.

To relate this generic algorithm to our setting, recall thatu is composed of subvectorsw and
z; this induces a commensurate decomposition of thev and s vectors into subvectors. To refer
to these subvectors we will abuse notation and use the symbolsw and zi as indices. Thus, we
write v = (vw,vz1, . . . ,vzm), and similarly foru ands. Using this notation, the generic algorithm
in Eq. (17) expands into the following dual extragradient algorithm for structured prediction (where
the brackets represent gradient vectors):

vw = πW (ûw +ηst−1
w ); vzi = πZ i (ûzi +ηst−1

zi
), ∀i;

ut
w = πW (vw −η

[

∑
i

Fivzi − f i(yi)

]
); ut

zi
= πZ i (vzi +η

[
F⊤

i vw +ci

]
), ∀i;

st
w = st−1

w −

[

∑
i

Fiut
zi
− f i(yi)

]
; st

zi
= st−1

zi
+

[
F⊤

i ut
w +ci

]
, ∀i.

In the convergence analysis of dual extragradient (Nesterov, 2003), the stepsizeη is set to the
inverse of the Lipschitz constant (with respect to the 2-norm) of the gradient operator:

1/η = L ≡ max
u,u′∈U

||F(u−u′)||2
||u−u′||2

≤ ||F||2,
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where||F||2 is the largest singular value of the matrixF. In practice, various simple heuristics can be
considered for setting the stepsize, including search procedures based on optimizing the gap merit
function (see, e.g., He and Liao, 2002).

4.1.1 CONVERGENCE

One measure of quality of a saddle-point solution is via the gap function:

G (w,z) =

[
max
z′∈Z
L (w,z′)−L ∗

]
+

[
L ∗− min

w′∈W
L (w′,z)

]
, (18)

where the optimal loss is denotedL ∗ = minw′∈W maxz∈Z L (w,z). For non-optimal points(w,z),
the gapG (w,z) is positive and serves as a useful merit function, a measure of accuracy of a solution
found by the extragradient algorithm. At an optimum we have

G (w∗,z∗) = max
z′∈Z
L (w∗,z′)− min

w′∈W
L (w′,z∗) = 0.

Define the Euclidean divergence function as

d(v,v′) =
1
2
||v−v′||22,

and define a restricted gap function parameterized by positive divergence radiiDw andDz

GDw,Dz(w,z) = max
z′∈Z

[
L (w,z′) : d(ẑ,z′) ≤ Dz

]
− min

w′∈W

[
L (w′,z) : d(ŵ,w′) ≤ Dw

]
,

where the point̂u = (ûw, ûz) ∈ U is an arbitrary point that can be thought of as the “center” ofU .
Assuming there exists a solutionw∗,z∗ such thatd(ŵ,w∗) ≤ Dw andd(ẑ,z∗) ≤ Dz, this restricted
gap function coincides with the unrestricted function defined in Eq. (18). The choice of the center
point û should reflect an expectation of where the “average” solution lies, as willbe evident from the
convergence guarantees presented below. For example, we can takeûw = 0 and letûzi correspond
to the encoding of the targetyi .

By Theorem 2 of Nesterov (2003), afterτ iterations, the gap of(w̄τ, z̄τ) = ūτ is upper bounded
by:

GDw,Dz(w̄
τ, z̄τ) ≤

(Dw +Dz)L
τ+1

. (19)

This implies thatO (1
ε ) steps are required to achieve a desired accuracy of solutionε as measured by

the gap function. Note that the exponentiated gradient algorithm (Bartlett etal., 2005) has the same
O (1

ε ) convergence rate. This sublinear convergence rate is slow compared tointerior point methods,
which enjoy superlinear convergence (Boyd and Vandenberghe, 2004). However, the simplicity
of each iteration, the locality of key operations (projections), and the linearmemory requirements
make this a practical algorithm when the desired accuracyε is not too small, and, in particular, these
properties align well with the desiderata of large-scale machine learning algorithms. We illustrate
these properties experimentally in Section 6.
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j

s t

k

Figure 3: Euclidean projection onto the matching polytope using min-cost quadratic flow. Source
s is connected to all the “source” nodes and targett connected to all the “target” nodes,
using edges of capacity 1 and cost 0. The original edgesjk have a quadratic cost1

2(z′jk −

zjk)
2 and capacity 1.

4.1.2 PROJECTIONS

The efficiency of the algorithm hinges on the computational complexity of the Euclidean projection
onto the feasible setsW andZ i . In the case ofW , projections are cheap when we have a 2-norm
ball {w : ||w||2 ≤ γ}: πW (w) = γw/max(γ, ||w||2). Additional non-negativity constraints on the
parameters (e.g.,we ≥ 0) can also be easily incorporated by clipping negative values. Projections
onto the 1-norm ball are not expensive either (Boyd and Vandenberghe, 2004), but may be better
handled by the non-Euclidean setup we discuss below.

We turn to the consideration of the projections ontoZ i . The complexity of these projections
is the key issue determining the viability of the extragradient approach for our class of problems.
In fact, for both alignment and matchings these projections turn out to reduce to classical network
flow problems for which efficient solutions exist. In case of alignment,Z i is the convex hull of the
bipartite matching polytope and the projections ontoZ i reduce to the much-studied minimum cost
quadratic flow problem (Bertsekas, 1998). In particular, the projectionproblemz = πZ i (z

′
i) can be

computed by solving

min
0≤zi≤1

∑
jk∈E i

1
2
(z′i, jk −zi, jk)

2

s.t. ∑
j∈V s

i

zi, jk ≤ 1, ∀ j ∈ V t
i ; ∑

k∈V t
i

zi, jk ≤ 1, ∀k∈ V s
i .

We use a standard reduction of bipartite matching to min-cost flow (see Fig. 3)by introducing a
source nodesconnected to all the words in the “source” sentence,V s

i , and a target nodet connected
to all the words in the “target” sentence,V t

i , using edges of capacity 1 and cost 0. The original
edgesjk have a quadratic cost1

2(z′i, jk − zi, jk)
2 and capacity 1. Since the edge capacities are 1, the

flow conservation constraints at each original node ensure that the (possibly fractional) degree of
each node in a valid flow is at most 1. Now the minimum cost flow from the sources to the targett
computes projection ofz′i ontoZ i .
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The reduction of the min-cut polytope projection to a convex network flow problem is more
complicated; we present this reduction in Appendix A. Algorithms for solving convex network
flow problems (see, for example, Bertsekas et al., 1997) are nearly as efficient as those for solving
linear min-cost flow problems, bipartite matchings and min-cuts. In case of word alignment, the
running time scales with the cube of the sentence length. We use standard, publicly-available code
for solving this problem (Guerriero and Tseng, 2002).2

4.2 Non-Euclidean Dual Extragradient

Euclidean projections may not be easy to compute for many structured prediction problems or pa-
rameter spaces. The non-Euclidean version of the algorithm of Nesterov(2003) affords flexibility
to use other types of (Bregman) projections. The basic idea is as follows. Let d(u,u′) denote a
suitable divergence function (see below for a definition) and define a proximal step operator:

Tη(u,s) ≡ argmax
u′∈U

[s⊤(u′−u)−
1
η

d(u,u′)].

Intuitively, the operator tries to make a large step fromu in the direction ofs but not too large as
measured byd(·, ·). Then the only change to the algorithm is to switch from using a Euclidean
projection of a gradient stepπU (u + 1

ηs) to a proximal step in a direction of the gradientTη(u,s)
(see Fig. 4):

Initialize: Choosêu ∈ Ũ , sets−1 = 0.
Iterationt, 0≤ t ≤ τ:

vw = Tη(ûw,st−1
w ); vzi = Tη(ûzi ,s

t−1
zi

), ∀i;

ut
w = Tη(vw,−

[

∑
i

Fivzi − f i(yi)

]
); ut

zi
= Tη(vzi ,

[
F⊤

i vw +ci

]
), ∀i;

st
w = st−1

w −

[

∑
i

Fiut
zi
− f i(yi)

]
; st

zi
= st−1

zi
+

[
F⊤

i ut
w +ci

]
, ∀i.

Output: ūτ = 1
τ+1 ∑τ

t=0ut .

Figure 4: Non-Euclidean dual extragradient.

To define the range of possible divergence functions and to state convergence properties of the
algorithm, we will need some more definitions. We follow the development of Nesterov (2003).
Given a norm|| · ||W onW and norms|| · ||Z i onZ i , we combine them into a norm onU as

||u|| = max(||w||W , ||z1||
Z1, . . . , ||zm||

Zm).

We denote the dual ofU (the vector space of linear functions onU ) asU ∗. The norm|| · || on the
spaceU induces the dual norm|| · ||∗ for all s∈ U ∗:

||s||∗ ≡ max
u∈U ,||u||≤1

s⊤u.

2. Available from http://www.math.washington.edu/∼tseng/netflowgnl/.
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The Lipschitz constant with respect to this norm (used to setη = 1/L) is

L ≡ max
u,u′∈U

||F(u−u′)||∗
||u−u′||

.

The dual extragradient algorithm adjusts to the geometry induced by the norm by making use
of Bregman divergences. We assume a strongly convex functionh(u):

h(αu+(1−α)u′) ≤ αh(u)+(1−α)h(u′)−α(1−α)
σ
2
||u−u′||2, ∀u,u′,α ∈ [0,1],

for someσ > 0, the convexity parameter ofh(·). This function is constructed from strongly convex
functions on each of the spacesW andZ i by a simple sum:h(u) = h(w)+ ∑i h(zi). Its conjugate
is defined as:

h∗(s) ≡ max
u∈U

[s⊤u−h(u)].

Sinceh(·) is strongly convex,h∗(u) is well-defined and differentiable at anys∈ U ∗. We define

Ũ ≡ {∇h∗(s) : s∈ U ∗}.

We further assume thath(·) is differentiable at anyu ∈ Ũ ; since it is also strongly convex, for any
two pointsu ∈ Ũ andu′ ∈ U we have

h(u′) ≥ h(u)+∇h(u)⊤(u′−u)+
σ
2
||u′−u||2,

and we can define the Bregman divergence:

d(u,u′) = h(u′)−h(u)−∇h(u)⊤(u′−u).

Note that when|| · || is the 2-norm, we can useh(u) = 1
2||u||

2
2, which has convexity parameterσ = 1,

and induces the usual squared Euclidean distanced(u,u′) = 1
2||u−u′||22. When|| · || is the 1-norm,

we can use the negative entropyh(u) = −H(u) (say ifU is a simplex), which also hasσ = 1 and
recovers the Kullback-Leibler divergenced(u,u′) = KL(u′||u).

With these definitions, the convergence bound in Eq. (19) applies to the non-Euclidean setup,
but now the divergence radii are measured using Bregman divergence and the Lipschitz constant is
computed with respect to a different norm.

EXAMPLE 1: L1 REGULARIZATION

SupposeW = {w : ||w||1 ≤ γ}. We can transform this constraint set into a simplex constraint by the
following variable transformation. Letw = w+−w−, v0 = 1−||w||1/γ, andv ≡ (v0,w+/γ,w−/γ).
ThenV = {v : v ≥ 0;1⊤v = 1} corresponds toW . We defineh(v) as the negative entropy ofv:

h(v) = ∑
d

vd logvd.

The resulting conjugate function and its gradient are given by

h∗(s) = log∑
d

esd ;
∂h∗(s)

∂sd
=

esd

∑d esd
.
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Hence, the gradient space ofh∗(s) is the interior of the simplex,̃V = {v : v > 0;1⊤v = 1}. The
corresponding Bregman divergence is the standard Kullback-Leibler divergence

d(v,v′) = ∑
d

v′d log
v′d
vd

, ∀v ∈ Ṽ ,v′ ∈ V ,

and the Bregman proximal step or projection,ṽ = Tη(v,s) = argmaxv′∈v[s
⊤v′− 1

ηd(v,v′)] is given
by a multiplicative update:

ṽd =
vdeηsd

∑d vdeηsd
.

Note that we cannot chooseûv = (1,0,0) as the center of̃V —given that the updates are multi-
plicative the algorithm will not make any progress in this case. In fact, this choice is precluded by

the constraint that̂uv ∈ Ṽ , not justûv ∈ V . A reasonable choice is to setûv to be the center of the
simplexV , ûvd = 1

|V |
= 1

2|W |+1.

EXAMPLE 2: TREE-STRUCTURED MARGINALS

Consider the case in which each examplei corresponds to a tree-structured Markov network, andZ i

is defined by the normalization and marginalization constraints in Eq. (2) and Eq. (3) respectively.
These constraints define the space of valid marginals. For simplicity of notation, we assume that
we are dealing with a single examplei and drop the explicit indexi. Let us use a more suggestive
notation for the components ofz: zj(α) = zjα andzjk(α,β) = zjkαβ. We can construct a natural joint
probability distribution via

Pz(y) = ∏
jk∈E

zjk(y j ,yk) ∏
j∈V

(zj(y j))
1−q j ,

whereq j is the number of neighbors of nodej. Now z defines a point on the simplex of joint
distributions overY , which has dimension|Y |. One natural measure of complexity in this enlarged
space is the 1-norm. We defineh(z) as the negative entropy of the distribution represented byz:

h(z) = ∑
jk∈E

∑
α∈D j ,β∈D k

zjk(α,β) logzjk(α,β)+(1−q j) ∑
j∈V

∑
α∈D j

zj(α) logzj(α).

The resultingd(z,z′) is the Kullback-Leibler divergence KL(Pz′ ||Pz). The corresponding Breg-
man step or projection operator,z̃ = Tη(z,s) = argmaxz′∈Z [s

⊤z′− 1
ηKL(Pz′ ||Pz)] is given by a mul-

tiplicative update on the space of distributions:

P̃z(y) =
1
Z

Pz(y)eη[∑ jk sjk(y j ,yk)+∑ j sj (y j )] =
1
Z ∏

jk

zjk(y j ,yk)e
ηsjk(y j ,yk) ∏

j
(zj(y j))

1−q j eηsj (y j ),

where we use the same indexing for the dual space vectorsas forz andZ is a normalization constant.
Hence, to obtain the projectionz̃, we compute the node and edge marginals of the distributionP̃z(y)
via the standard sum-product dynamic programming algorithm using the node and edge potentials
defined above. Note that the form of the multiplicative update of the projectionresembles that of
exponentiated gradient. As in the example above, we cannot letûz be a corner (or any boundary
point) of the simplex sincẽZ does not include it. A reasonable choice forûz would be either the
center of the simplex or a point near the target structure but in the interior ofthe simplex.
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5. Memory-Efficient Formulation

Consider the memory requirements of the algorithm. The algorithm maintains the vector sτ as well
as the running average,̄uτ, a total dimensionality of|W |+ |Z |. Note, however, that these vectors
are related very simply by:

sτ = −
τ

∑
t=0

(Fut −a) = −(τ+1)(Fūτ −a).

So it suffices to only maintain the running averageūτ and reconstructs as needed.
In problems in which the number of examples,m, is large we can take advantage of the fact

that the memory needed to store the target structureyi is often much smaller than the corresponding
vectorzi . For example, for word alignment, we needO (|V s

i | log|V t
i |) bits to encode a matchingyi

by using roughly logV t
i bits per node inV s

i to identify its match. By contrast, we need|V s
i ||V

t
i |

floating numbers to maintainzi . The situation is worse in context-free parsing, where a parse tree
yi requires space linear in the sentence length and logarithmic in grammar size, while |Z i | is the
product of the grammar size and the cube of the sentence length.

Note that fromūτ = (ūτ
w, ūτ

z), we only care about̄uτ
w, the parameters of the model, while the

other component,̄uτ
z, maintains the state of the algorithm. Fortunately, we can eliminate the need

to storeūz by maintaining it implicitly, at the cost of storing a vector of size|W |. This allows us to
essentially have the same small memory footprint of online-type learning methods, where a single
example is processed at a time and only a vector of parameters is maintained. Inparticular, instead
of maintaining the entire vector̄ut and reconstructingst from ūt , we can instead store onlȳut

w and
st
w between iterations, since

st
zi

= (t +1)(F⊤
i ūt

w +ci).

The diagram in Fig. 5 illustrates the process and the algorithm is summarized in Fig. 6. We
use two “temporary” variablesvw and rw of size |W | to maintain intermediate quantities. The
additional vectorqw shown in Fig. 5 is introduced only to allow the diagram to be drawn in a
simplified manner; it can be eliminated by usingsw to accumulate the gradients as shown in Fig. 6.
The total amount of memory needed is thus four times the number of parameters plus memory for
a single example(vzi ,uzi ). We assume that we do not need to storeûzi explicitly but can construct
it efficiently from (xi ,yi).

Note that in case the dimensionality of the parameter space is much larger than thedimen-
sionality of Z , we can use a similar trick to only store variables of the size ofz. In fact, if
W = {w : ||w||2 ≤ γ} and we use Euclidean projections ontoW , we can exploit kernels to de-
fine infinite-dimensional feature spaces and derive a kernelized version of the algorithm.

6. Experiments

In this section we describe experiments focusing on two of the structured models we described
earlier: bipartite matchings for word alignments and restricted potential Markov nets for 3D seg-
mentation.3 We compared three algorithms: the dual extragradient (dual-ex ), the averaged pro-
jected gradient (proj-grad ) defined in Eq. (16), and the averaged perceptron (Collins, 2002). For

3. Software implementing our dual extragradient algorithm can be foundat
http://www.cs.berkeley.edu/ ∼slacoste/research/dualex .
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Figure 5: Dependency diagram for memory-efficient dual extragradient. The dotted box represents
the computations of an iteration of the algorithm. Onlyūt

w andst
w are kept between itera-

tions. Each example is processed one by one and the intermediate results areaccumulated
asrw = rw −Fivzi + f i(yi) andqw = qw −Fiuzi + f i(yi). Details shown in Fig. 6, except
that intermediate variablesuw andqw are only used here for pictorial clarity.

Initialize: Choosêu ∈ Ũ , sw = 0, ūw = 0, η = 1/L.
Iterationt, 0≤ t ≤ τ:

vw = Tη(ûw,sw); rw = 0.
Examplei, 1≤ i ≤ m:

vzi = Tη(ûzi , t(F
⊤
i ūw +ci)); rw = rw −Fivzi + f i(yi);

uzi = Tη(vzi ,F
⊤
i vw +ci); sw = sw −Fiuzi + f i(yi).

ūw =
tūw+Tη(vw,rw)

t+1 .
Outputw = ūw.

Figure 6: Memory-efficient dual extragradient.

dual-ex and proj-grad , we used Euclidean projections, which can be formulated as min-cost
quadratic flow problems. We usedw = 0 andzi corresponding toyi as the centroid̂u in dual-ex
and as the starting point ofproj-grad .

In our experiments, we consider standardL2 regularization,{||w||2 ≤ γ}. A question which
arises in practice is how to choose the regularization parameterγ. The typical approach is to run the
algorithm for several values of the regularization parameter and pick the best model using a valida-
tion set. This can be quite expensive, though, and several recent papers have explored techniques
for obtaining the whole regularization path, either exactly (Hastie et al., 2004), or approximately us-
ing path following techniques (Rosset, 2004). Instead, we run the algorithm without regularization
(γ = ∞) and track its performance on the validation set, selecting the model with best performance.
For comparison, whenever feasible with the available memory, we used commercial software to
compute points on the regularization path. As we discuss below, the dual extragradient algorithm
approximately follows the regularization path in our experiments (in terms of the training objective
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and test error) in the beginning and the end of the range ofγ and often performs better in terms of
generalization error in the mid-range.

6.1 Object Segmentation

We tested our algorithm on a 3D scan segmentation problem using the class of Markov networks
with regular potentials that were described above. The dataset is a challenging collection of cluttered
scenes containing articulated wooden puppets (Anguelov et al., 2005). It contains eleven different
single-view scans of three puppets of varying sizes and positions, with clutter and occluding objects
such as rope, sticks and rings. Each scan consists of around 7,000 points. Our goal was to segment
the scenes into two classes—puppet andbackground. We use five of the scenes for our training
data, three for validation and three for testing. Sample scans from the training and test set can be
seen athttp://www.cs.berkeley.edu/˜taskar/3DSegment/ . We computed spin images of size 10× 5
bins at two different resolutions, then scaled the values and performed PCA to obtain 45 principal
components, which comprised our node features. We used the surface links output by the scanner as
edges between points and for each edge only used a single feature, setto a constant value of 1 for all
edges. This results in all edges having the same potential. The training data contains approximately
37,000 nodes and 88,000 edges. We used standard Hamming distance for our loss functionℓ(yi ,y′i).

We compared the performance of the dual extragradient algorithm along itsunregularized path
to solutions of the regularized problems for different settings of the norm.4 For dual extragradient,
the stepsize is set toη = 1/||F||2 ≈ 0.005. We also compared to a variant of the averaged perceptron
algorithm (Collins, 2002), where we use the batch updates to stabilize the algorithm, since we only
have five training examples. We set the learning rate to 0.0007 by trying several values and picking
the best value based on the validation data.

In Fig. 7(a) we track the hinge loss on the training data:

∑
i

max
y′i∈Y i

[w⊤f i(y′i)+ ℓi(y′i)]−w⊤f i(yi). (20)

The hinge loss of the regularization path (reg-path ) is the minimum loss for a given norm, and
hence is always lower than the hinge loss of the other algorithms. However,as the norm increases
and the model approaches the unregularized solution,dual-ex loss tends towards that ofreg-path .
Note thatproj-grad behaves quite erratically in the range of the norms shown. Fig. 7(b) shows
the growth of the norm as a function of iteration number fordual-ex andave-perc . The unreg-
ularized dual extragradient seems to explore the range of models (in terms on their norm) on the
regularization path more thoroughly than the averaged perceptron and eventually asymptotes to the
unregularized solution, whileproj-grad quickly achieves very large norm.

Fig. 7(c) and Fig. 7(d) show validation and test error for the three algorithms. The best valida-
tion and test error achieved by thedual-ex andave-perc algorithms as well asreg-path are fairly
close, however, this error level is reached at very different norms.Since the number of scenes in the
validation and test data is very small (three), because of variance, the best norm on validation is not
very close to the best norm on the test set. Selecting the best model on the validation set leads to
test errors of 3.4% for dual-ex , 3.5% for ave-perc , 3.6% for reg-path and 3.8% for proj-grad

4. We used CPLEX to solve the regularized problems and also to find the projections onto the min-cut polytope, since
the min-cost quadratic flow code we used (Guerriero and Tseng, 2002) does not support negative flows on edges,
which are needed in the formulation presented in Appendix A.
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Figure 7: Object segmentation results: (a) Training hinge loss for the regularization path
(reg-path ), the averaged projected gradient (proj-grad ), the averaged perceptron
(ave-perc ) and unregularized dual extragradient (dual-ex ) vs. the norm of the pa-
rameters. (b) Norm of the parameters vs. iteration number for the three algorithms.
(c) Validation error vs. the norm of the parameters. (d) Test error vs.the norm of the
parameters.

(proj-grad actually improves performance after the model norm is larger than 500, which is not
shown in the graphs).

6.2 Word Alignment

We also tested our algorithm on word-level alignment using a data set from the 2003 NAACL
set (Mihalcea and Pedersen, 2003), the English-French Hansards task. This corpus consists of
1.1M pairs of sentences, and comes with a validation set of 37 sentence pairs and a test set of 447
word-aligned sentences. The validation and test sentences have been hand-aligned (see Och and
Ney, 2003) and are marked with bothsureandpossiblealignments. Using these alignments, the
alignment error rate(AER) is calculated as:

AER(A,S,P) = 1−
|A∩S|+ |A∩P|

|A|+ |S|
,
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whereA is a set of proposed alignment pairs,S is the set of sure gold pairs, andP is the set of
possible gold pairs (whereS⊆ P).

We experimented with two different training settings. In the first one, we splitthe original test
set into 100 training examples and 347 test examples—this dataset is called the ‘Gold’ dataset. In
the second setting, we used GIZA++ (Och and Ney, 2003) to produce IBM Model 4 alignments for
the unlabeled sentence pairs. We took the intersection of the predictions of the English-to-French
and French-to-English Model 4 alignments on the first 5000 sentence pairs from the 1.1M sentences
in order to experiment with the scaling of our algorithm (training on 500, 1000and 5000 sentences).
The number of edges for 500, 1000 and 5000 sentences of GIZA++ were about 31,000, 99,000 and
555,000 respectively. We still tested on the 347 Gold test examples, and used the validation set
to select the stopping point. The stepsize for the dual extragradient algorithm was chosen to be
1/||F||2.

We used statistics computed on the 1.1M sentence pairs as the edge features for our model. A
detailed analysis of the constructed features and corresponding erroranalysis is presented in Taskar
et al. (2005b). Example features include: a measure of mutual information between the two words
computed from their co-occurrence in the aligned sentences (Dice coefficient); the difference be-
tween word positions; character-based similarity features designed to capture cognate (and exact
match) information; and identity of the top five most frequently occurring words. We used the
structured lossℓ(yi ,y′i) defined in Eq. (10) with(c+,c-) = (1,3) (where 3 was selected by testing
several values on the validation set). We obtained low recall when using equal cost for both type
of errors because the number of positive edges is significantly smaller thanthe number of negative
edges, and so it is safe (precision-wise) for the model to predict feweredges, hurting the recall.
Increasing the cost for false negatives solves this problem.

Fig. 8(a) and Fig. 8(e) compare the hinge loss of the regularization path withthe evolution of
the objective for the unregularized dual extragradient, averaged projected gradient and averaged
perceptron algorithms when trained on the Gold data set, 500 sentences and1000 sentences of the
GIZA++ output respectively.5 The dual extragradient path appears to follow the regularization path
closely for ||w|| ≤ 2 and||w|| ≥ 12. Fig. 8(b) compares the AER on the test set along the dual
extragradient path trained on the Gold dataset versus the regularization path AER. The results on
the validation set for each path are also shown. On the Gold data set, the minimumAER was
reached roughly after 200 iterations.

Interestingly, the unregularized dual extragradient path seems to give better performance on the
test set than that obtained by optimizing along the regularization path. The dominance of the dual
extragradient path over the regularization path is more salient in figure 8(f) for the case where both
are trained on 1000 sentences from the GIZA++ output. We conjecture that the dual extragradi-
ent method provides additional statistical regularization (compensating for the noisier labels of the
GIZA++ output) by enforcing local smoothness of the path in parameter space.

The averaged projected gradient performed much better for this task thansegmentation, getting
somewhat close to the dual extragradient path as is shown in Fig. 8(c). The online version of the
averaged perceptron algorithm varied significantly with the order of presentation of examples (up to
five points of difference in AER between two orders). To alleviate this, we randomize the order of
the points at each pass over the data. Fig. 8(d) shows that a typical run of averaged perceptron does
somewhat worse than dual extragradient. The variance of the averaged perceptron performance for

5. The regularization path is obtained by using the commercial optimization software Mosek with the QCQP formulation
of Eq. (15). We did not obtain the path in the case of 5000 sentences, as Mosek runs out of memory.
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Figure 8: Word alignment results: (a) Training hinge loss for the three different algorithms and the regularization path
on the Gold dataset. (b) AER for the unregularized dual extragradient (dual-ex ) and the regularization path
(reg-path ) on the 347 Gold sentences (test ) and the validation set (valid ) when trained on the 100 Gold
sentences; (c) Same setting as in (b), comparingdual-ex with the averaged projected-gradient (proj-grad );
(d) Same setting as in (b), comparingproj-grad with the averaged perceptron (ave-perc ); (e) Training
hinge loss fordual-ex andreg-path on 500 and 1000 GIZA++ labeled sentences. (f) AER fordual-ex
andreg-path tested on the Gold test set and trained on 1000 and 5000 GIZA++ sentences. The graph for
500 sentences is omitted for clarity.
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different datasets and learning rate choices was also significantly higherthan for dual extragradient,
which is more stable numerically. The online version of the averaged perceptron converged very
quickly to its minimum AER score; converging in as few as five iterations for the Gold training set.
Selecting the best model on the validation set leads to test errors of 5.6% for dual-ex , 5.6% for
reg-path , 5.8% for proj-grad and 6.1% for ave-perc on the Gold data training set.

The running time for 500 iterations of dual extragradient on a 3.4 Ghz IntelXeon CPU with
4G of memory was roughly 10 minutes, 30 minutes and 3 hours for 500, 1000 and 5000 sentences,
respectively, showing the favorable linear scaling of the algorithm (linearin the number of edges).
Note, by way of comparison, that Mosek ran out of memory for more than 1500 training sentences.

The framework we have presented here supports much richer models forword alignment; for
example, allowing finer-grained, feature-based fertility control (numberof aligned words for each
word) as well as inclusion of positive correlations between adjacent edges in alignments. These
extensions are developed in Lacoste-Julien et al. (2006).

7. Conclusions

We have presented a general and simple solution strategy for large-scalestructured prediction prob-
lems. Using a saddle-point formulation of the problem, we exploit the dual extragradient algorithm,
a simple gradient-based algorithm for saddle-point problems (Nesterov, 2003). The factoring of
the problem into optimization over the feasible parameter spaceW and feasible structured out-
put spaceZ allows easy integration of complex parameter constraints that arise in estimation of
restricted classes of Markov networks and other models.

Key to our approach is the recognition that the projection step in the extragradient algorithm can
be solved by network flow algorithms for matchings and min-cuts (and dynamic programming for
decomposable models). Network flow algorithms are among the most well-developed algorithms in
the field of combinatorial optimization, and yield stable, efficient algorithmic platforms.

One of the key bottlenecks of large learning problems is the memory requirement of the algo-
rithm. We have derived a version of the algorithm that only uses storage proportional to the number
of parameters in the model, and is independent of the number of examples. Wehave exhibited the
favorable scaling of this overall approach in two concrete, large-scalelearning problems. It is also
important to note that the general approach extends and adopts to a much broader class of problems
by allowing the use of Bregman projections suitable to particular problem classes.
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Appendix A. Min-Cut Polytope Projections

Consider projection for a single examplei:

min
z ∑

j∈V

1
2
(z′j −zj)

2 + ∑
jk∈E

1
2
(z′jk −zjk)

2 (21)

s.t. 0≤ zj ≤ 1, ∀ j ∈ V ; zj −zk ≤ zjk, zk−zj ≤ zjk, ∀ jk ∈ E .

Let h+
j (zj) = 1

2(z′j − zj)
2 if 0 ≤ zj , else∞. We introduce non-negative Lagrangian variables

λ jk,λk j for the two constraints for each edgejk andλ j0 for the constraintzj ≤ 1 each nodej.
The Lagrangian is given by:

L(z,λ) = ∑
j∈V

h+
j (zj)+ ∑

jk∈E

1
2
(z′jk −zjk)

2− ∑
j∈V

(1−zj)λ j0

− ∑
jk∈E

(zjk −zj +zk)λ jk − ∑
jk∈E

(zjk −zk +zj)λk j

Letting λ0 j = λ j0 +∑k: jk∈E (λ jk −λk j)+∑k:k j∈E (λ jk −λk j), note that

∑
j∈V

zjλ0 j = ∑
j∈V

zjλ j0 + ∑
jk∈E

(zj −zk)λ jk + ∑
jk∈E

(zk−zj)λk j.

So the Lagrangian becomes:

L(z,λ) = ∑
j∈V

[
h+

j (zj)+zjλ0 j −λ j0

]
+ ∑

jk∈E

[
1
2
(z′jk −zjk)

2−zjk(λ jk +λk j)

]
.

Now, minimizingL(z,λ) with respect toz, we have

min
z

L(z,λ) = ∑
jk∈E

q jk(λ jk +λk j)+ ∑
j∈V

[q0 j(λ0 j)−λ j0],

whereq jk(λ jk +λk j) = minzjk

[
1
2(z′jk −zjk)

2−zjk(λ jk +λk j)
]

andq0 j(λ0 j) = minzj [h
+
j (zj)+zjλ0 j ].

The minimizing values ofz are:

z∗j = argmin
zj

[
h+

j (zj)+zjλ0 j

]
=

{
0 λ0 j ≥ z′j ;
z′j −λ0 j λ0 j ≤ z′j ;

z∗jk = argmin
zjk

[
1
2
(z′jk −zjk)

2−zjk(λ jk +λk j)

]
= z′jk +λ jk +λk j.

Hence, we have:

q jk(λ jk +λk j) = −z′jk(λ jk +λk j)−
1
2
(λ jk +λk j)

2

q0 j(λ0 j) =

{
1
2z′j

2 λ0 j ≥ z′j ;
z′jλ0 j −

1
2λ2

0 j λ0 j ≤ z′j .
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The dual of the projection problem is thus:

max
λ

∑
j∈V

[q0 j(λ0 j)−λ j0]+ ∑
jk∈E

[
−z′jk(λ jk +λk j)−

1
2
(λ jk +λk j)

2
]

(22)

s.t. λ j0−λ0 j + ∑
jk∈E

(λ jk −λk j) = 0, ∀ j ∈ V ;

λ jk,λk j ≥ 0, ∀ jk ∈ E ; λ j0 ≥ 0, ∀ j ∈ V .

Interpretingλ jk as flow from nodej to nodek, andλk j as flow fromk to j andλ j0,λ0 j as flow
from and to a special node 0, we can identify the constraints of Eq. (22) as conservation of flow
constraints. The last transformation we need is to address the presence of cross-termsλ jkλk j in
the objective. Note that in the flow conservation constraints,λ jk, λk j always appear together as
λ jk −λk j. Since we are minimizing(λ jk + λk j)

2 subject to constraints onλ jk −λk j, at least one of
λ jk, λk j will be zero at the optimum and the cross-terms can be ignored. Note that allλ variables
are non-negative except forλ0 j ’s. Many standard flow packages support this problem form, but we
can also transform the problem to have all non-negative flows by introducing extra variables. The
final form has a convex quadratic cost for each edge:

min
λ

∑
j∈V

[−q0 j(λ0 j)+λ j0]+ ∑
jk∈E

[
z′jkλ jk +

1
2

λ2
jk

]
+ ∑

jk∈E

[
z′jkλk j +

1
2

λ2
k j

]
(23)

s.t. λ j0−λ0 j + ∑
jk∈E

(λ jk −λk j) = 0, ∀ j ∈ V ;

λ jk,λk j ≥ 0, ∀ jk ∈ E ; λ j0 ≥ 0, ∀ j ∈ V .
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Abstract
We extend the traditional active learning framework to include feedback on features in addition

to labeling instances, and we execute a careful study of the effects of feature selection and human
feedback on features in the setting of text categorization.Our experiments on a variety of cate-
gorization tasks indicate that there is significant potential in improving classifier performance by
feature re-weighting, beyond that achieved via membershipqueries alone (traditional active learn-
ing) if we have access to anoracle that can point to the important (most predictive) features.Our
experiments on human subjects indicate that human feedbackon feature relevance can identify a
sufficient proportion of the most relevant features (over 50% in our experiments). We find that
on average, labeling a feature takes much less time than labeling a document. We devise an al-
gorithm that interleaves labeling features and documents which significantly accelerates standard
active learning in our simulation experiments. Feature feedback can complement traditional active
learning in applications such as news filtering, e-mail classification, and personalization, where the
human teacher can have significant knowledge on the relevance of features.
Keywords: active learning, feature selection, relevance feedback, term feedback, text classifica-
tion

1. Introduction

Automated text categorization has typically been tackled as a supervised machine learning problem
(Sebastiani, 2002; Lewis, 1998). The training data should be fairly representative of the test data
in order to learn a fairly accurate classifier. In document classification where categories can be as
broad assports, this means that a large amount of training data would be needed. The trainingdata
is often labeled by editors who are paid to do the job. Now consider a scenario where a user wants
to organize documents on their desktop into categories of their choice. The user might be willing to
engage in some amount of interaction to train the system, but may be less willing to label as much
data as a paid editor. To build a generic text categorization system that couldlearn almost arbitrary
categories based on an end user’s changing needs and preferences, for example in applications such
as news filtering and e-mail classification, the system should extract a largenumber of features. In
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e-mail classification for example, any subset of the features extracted from the subject, the sender,
and the text in the body of the message could be highly relevant. While algorithmssuch as Winnow
(Littlestone, 1988) and Support Vector Machines (SVMs) (Joachims, 1998) are robust in the pres-
ence of large numbers of features, these algorithms still require a substantial amount of labeled data
to achieve adequate performance.

Techniques such as active learning (Cohn et al., 1994), semi-supervised learning (Zhu, 2005),
and transduction (Joachims, 1999) have been pursued with considerable success in reducing labeling
requirements. In the standard active learning paradigm, learning proceeds sequentially, with the
learning algorithm actively asking for thelabels(categories) of some instances from a teacher (also
referred to as membership queries). The objective is to ask the teacher to label the most informative
instances in order to reduce labeling costs and accelerate the learning. Still,in text categorization
applications in particular, active learning might be perceived to be too slow,especially since the
teacher may have much prior knowledge on relevance of features for thetask. Such knowledge may
be more effectively communicated to the learner than mere labeling of whole documents. There has
been very little work in supervised learning in which the teacher is queried onsomething other than
whole instances.

One possibility is to ask the user questions about features. That users have useful prior knowl-
edge which can be used to access information is evident in information retrieval tasks. In the infor-
mation retrieval setting, the user issues a query, that is, states a few words(features) indicating her
information need. Thereafter, feedback which may be either at a term or at a document level may
be incorporated. In fact, even in traditional supervised learning, the editors may use keyword based
search to locate the initial training instances1. However, traditional supervised learning tends to
ignore this knowledge of features that the user has, once a set of training instances have been ob-
tained. In experiments in this paper we study the benefits and costs of feature feedback via humans
on active learning.

We try to find a marriage between approaches to incorporating user feedback from machine
learning and information retrieval and show that active learning should bea twofold process – at
the term-level and at the document-level. We find that people have a good intuition for important
features in text classification tasks, since features are typically words, and the categories to learn
may often be approximated by some disjunction or conjunction of a subset of the features. We show
that human knowledge on features can indeed increase active learning efficiency and accelerate
training significantly in the initial stages of learning. This has applications in e-mailclassification
and news filtering where the user has knowledge of the relevance of features and a willingness to
label some (as few as possible) documents in order to build a system that suitsher needs.

This paper extends our previous work in employing such a two-tiered approach to active learning
(Raghavan et al., 2005). We state the active learning problems that we address and present our
approach to use feedback on both features and instances to solve the problems in Section 2. We
give the details of the implementations in Section 3. In Section 4 we describe the data and metrics
we will use to evaluate the performance of active learning. We obtain a sense of the extent of the
improvement possible via feature feedback by defining and using a feature oracle. The oracle and
the experiments are described in Section 2, and the results are reported in Section 5. In section 6 we
show that humans can indeed identify useful features. Furthermore, wefind that labeling a feature

1. Seehttp://projects.ldc.upenn.edu/TDT4/Annotation/label instructions.html. The annotators at the
LDC (Linguistic Data Consortium, home-page:http://ldc.upenn.edu) use a combination of techniques like
nearest neighbors and creative search to annotate corpora for the Topic Detection and Tracking (Allan, 2002) task.
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takes one fifth of the time of labeling a document. In Section 6.2 we show that the human-chosen
features significantly accelerate learning in experiments that simulate human feedback in an active
learning loop. We discuss related work in Section 7 and conclude in Section 8.

Standard Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances), initsize (number
of random feedback iterations)
Output:M T (Model)

t = 1;U 0 = U ; M 0 =NULL;
1. While t ≤ init size

a. 〈Xt ,U t〉 = InstanceSelection(M 0, U t−1, random)
b. Teacher assigns labelYt to Xt

d.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
c. t ++

2. While t ≤ T
a. 〈Xt ,U t〉 = InstanceSelection(M t−1, U t−1,uncertain)
b. Teacher assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. t ++

ReturnM T

Instance Selection

Teacher/
Oracle

  M

Steps 1,2

t<=T

Figure 1: Algorithm and block diagram for traditional active learning where the system asks for
feedback on instances only (System 1).

2. Active Learning

For background on the use of machine learning in automated text categorization as well as active
learning, we refer the reader to the works of Sebastiani (2002) and Lewis and Catlett (1994). Ac-
tive learning techniques are sequential learning methods that are designed to reduce manual training
costs in achieving adequate learning performance. Active learning methodsreduce costs by request-
ing training feedback selectively and intelligently from ateacher. The teacher is a human in the text
categorization domain. The teacher may also be called theuser, especially when the teacher training
the model is the same as the person using it, for example a user who is training a personalized news
filtering system. Traditionally in active learning the teacher is askedmembership querieswhich are
questions on the class labels or categories of selected instances (documents in our case).

The teacher is sometimes referred to as an oracle in the literature (Baum and Lang, 1992). We
will also use the term oracle to refer to a source that gives feedback on instances and/or features, but
in this paper we make a distinction between teacher and oracle. We will reserve the term teacher
or user to refer to a real human, whose feedback may not be perfect, and we use the term oracle to
refer to a source whose feedback is (close to) perfect for speedingactive learning. See Section 2.1
for a longer discussion of the distinction between the two.

1657



RAGHAVAN , MADANI AND JONES

A typical algorithm for active learning and a block diagram are shown in Figure 1. Aninstance
X (which is a document in our case) belongs to aclass Y. X is represented as a vectorx1...xN of
features, whereN is the total number of features. The features we use for documents are words,
bi-grams (adjacent pairs of words) and tri-grams (adjacent triples of words), since these have consis-
tently been found to work well for topic classification. The value ofx j is the number of occurrences
of term i in documentX. We work on binaryone-versus-restclassification. Therefore the value of
Y for each learning problem of interest is either -1 or 1, signaling whether the instance belongs to
the category of interest, or not. An instance in the document collection isunlabeledif the algorithm
does not know itslabel (Y value). The active learner may have access to all or a subset of the
unlabeled instances. This subset is called thepool (denoted byU ).

Active Learning Augmented with Feature Feedback

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances), initsize (number
of random feedback iterations)
Output:M T (Model)

t = 1;U 0 = U ; M 0 =NULL;
1. While t ≤ init size

a.〈Xt ,U t〉 = InstanceSelection(M 0, U t−1, random)
b. Teacher assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. t ++

2. While t ≤ T
a. 〈Xt ,U t〉=

InstanceSelection(M t−1, U t−1,uncertain)
b. Teacher assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. i. {F1, ...,Ff} = FeatureSelection(M t ,U t)

ii. Teacher selects{F1, ..,Fk} ⊆ {F1, ...,Ff}
e. IncorporateFeatureFeedback(M t , {F1, ...,Fk})
c. t ++

ReturnM T .

Feature Selection

Instance Selection

Teacher/
Oracle

t <= T

Step 2

Instance Selection

t <= init_size

Step 1

M

M

Figure 2: An active learning system where feedback on features is alsorequested (System 2).

The algorithm begins by training the classifier or modelM on some initial set of labeled in-
stances of sizeinit size. The subscriptt onM ,U , X andY correspond to the value whent instances
have been labeled. The initial set is picked by a random sampling procedure (step 1) fromU . The
parameterrandomis passed to it. Sometimes one may use keyword based search or some other pro-
cedure in place of random sampling. Next, active learning begins. In each iteration of active learning
the learner selects an instance fromU using some criterion (e.g., a measure of informativeness) and
asks the teacher to label it (step 2.a). In a popular active learning method, called uncertainty sam-
pling, the classifier selects the mostuncertaininstance (Lewis and Catlett, 1994), for a given model
(M) and a pool of unlabeled instances (U ). The newly labeled instance is added to the set of labeled
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instances and the classifier is retrained (step 2.c). The teacher is querieda total ofT times. The
train classifiersubroutine uses the labeled data as training, as well as the model (M ) learned in a
previous iteration, allowing for the case of incremental training (Domeniconiand Gunopulos, 2001)
or the case when the model may be initialized by prior knowledge (Wu and Srihari, 2004).

We will also consider the variant in which instances are picked uniformly at random in all
iterations, which we callrandom sampling(it is equivalent to regular supervised learning on a
random sample of data). In the pseudo-code in Figure 1, random samplingcorresponds to the case
wheninit size> T.

2.1 Our Proposal: Feature Feedback and Instance Feedback in Tandem

In this paper we propose to extend the traditional active learning framework to engage the teacher in
providing feedback on features in addition to instances. A realization of thisidea is system 2 shown
in Figure 2, where the active learner not only queries the teacher on an informative document, but
also presents a list off features for the teacher to judge (step 2.d) at each iteration. The simplest
implementation of such a system can consist of one wheref = |X| (the length of the documentX),
and where the user is simply asked to highlight relevant words or phrases(features) or passages
while reading the document in order to label the document (step 2b), akin to the system in the
paper by Croft and Das (1990). In our experiments, individual features are presented to the user for
selection. Section 6.3 provides the details of our method.

In our proposed system the teacher is asked two types of questions: (1)membership queries
and (2) questions about the relevance of features. A relevant feature is highly likely to help dis-
criminate the positive class from the negative class. In this paper we aim to determine whether a
human teacher can answer the latter type of question sufficiently effectively so that active learn-
ing is accelerated significantly. A human and a classifier probably use verydifferent processes to
categorize instances. A human may use her understanding of the sentences within the document,
which probably involves some reasoning and use of knowledge, in orderto make the categorization
decision, while a (statistical) classifier, certainly of the kind that we use in this paper, simply uses
patterns of occurrences of the features (phrases). Therefore, itis not clear whether a human teacher
can considerably accelerate the training of a statistical classifier, beyondsimple active learning, by
providing feedback on features.

Before we address that issue, we determine whether feature feedbackcan accelerate active learn-
ing in an idealized setting. We seek to get a sense of the room for improvement.We will then exam-
ine how actual human teachers can approximate this ideal. Towards this goalwe define a (feature)
oracle. We use the oracle to obtain an upper bound on the performance of our proposed two-tiered
approach. The oracle knows the correct answer needed by the learning algorithm. For example the
word ct is a highly relevant feature for classifying Reuters news articles on theearningscategory
and our oracle would be able to determine that this feature is relevant when asked. However, a
teacher (human) who did not understand thatct stood forcentsmay not be able to identifyct as
relevant (we will see this exact example in Section 6.1). Therefore, the oracle and teacher may
differ in their answers to questions about features, that is, questions oftype (2) above. We assume
that the oracle and the teacher always agree on the labels of documents that is, questions of type (1)
above. After showing the usefulness of oracle feature selection, we willthen show that humans can
emulate the oracle for feature feedback to an extent that results in significant improvements over
traditional active learning.
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2.2 Extent of Speed Up Possible: Oracle Experiments

We perform two types of experiments with the oracle. In the first kind, the oracle, knowing the
allotted timeT, picks the best subset of features to improve, as much as possible, the performance of
active learning. The procedure is shown in Figure 3. In Figure 3, theIncorporateFeatureFeedback
subroutine is called to initialize the model. When System 3 is used with a user insteadof the oracle
it is equivalent to a scenario where prior knowledge is used to initialize the classifier (Schapire et al.,
2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones, 2005). In Section 3.4 we describe how
this oracle isapproximatedin our experiments.

Use of Feature Feedback Before Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances),init size(number
of random feedback iterations)
Output:M T (Model)

t = 1;U 0 = U ; M 0 =NULL;
1.a.{F1, ...,Ff} = FeatureSelection(U 0)

b. Oracle selects{F1, ..,Fk} ⊆ {F1, ...,Ff}
2.IncorporateFeatureFeedback(M 0, {F1, ...,Fk})
3. While t ≤ init size

a. 〈Xt ,U t〉=InstanceSelection(M t−1, U t−1, random)
b. Oracle assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. t ++

4. While t ≤ T
a. 〈Xt ,U t〉=InstanceSelection(M t−1, U t−1,uncertain)
b. Oracle assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. t ++

ReturnM T

Instance Selection

Teacher/
Oracle

M

Feature Selection M

Steps 1,2

t<= T

Step 3,4

Figure 3: An active learning system where feature selection is done before instance selection (Sys-
tem 3). This is one of the two set-ups used in our oracle experiments described inSection
2.2. The second set-up is shown in Figure 4.

The second type of experiment is a slight variation designed to isolate the effect of oracle feature
selection on example selection versus model selection during active learning. In these experiments,
active learning proceeds normally with all the features available, but afterall the instances are picked
(after T iterations), the best set ofk features that improve the resulting trained classifier the most
are picked and the resulting performance is reported. This is shown schematically and with pseudo-
code in Figure 4. We note that even when starting with the same initial set of labeled instances,
the classifiers learned during active learning, hyperplanes in our case, in these two systems may
be different as they are learned in different spaces (using different feature subset sizes). Besides,
the set of labeled instances is small, so the learning algorithm may not be able to find the best
“unique” hyperplane. In turn, the instances picked subsequently during active learning may differ
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substantially as both the spaces the instances reside in and the learned classifiers may be different.
The classifier learned in the feature reduced space may have better accuracy or lead to better choice
of instances to label during active learning, though this is not guaranteedor the benefits may be
negligible. In short, the trajectory of the active learning process, that is,the instances labeled and
classifiers learned, can be different in the two regimes, which may lead to substantially different
active learning performance. In Section 5 we provide the details of these experiments.

Systems 3 and 4 can also be used with a teacher (a human) instead of an oracle. For an actual
use in practice, we prefer an approach that combines feature selection and instance selection (e.g.,
as proposed in Section 2.1) because it also allows the system to benefit from the increase in the
knowledge of the teacher or the process may help remind the teacher aboutthe usefulness of features
as she reads the documents. For example, the teacher who did not know that ct stood forcentsmay
realize that the word is indeed relevant upon reading documents containingthe term. We will discuss
these related approaches in Section 7.

Use of Feature Feedback After Active Learning

Input: T (Total number of feedback iterations),U (Pool of unlabeled instances, initsize (number
of random feedback iterations)
Output:M T (Model)

t = 1;U 0 = U ; M 0 =NULL;
1. While t ≤ init size

a. Xt = InstanceSelection(M 0, U t−1, random)
b. Oracle assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
c. t ++

2. While t ≤ T
a. 〈Xt ,U t〉 = InstanceSelection(M t−1, U t−1, instance)
b. Oracle assigns labelYt to Xt

c.M t = train classifier({〈Xi ,Yi〉|i = 1...t},M t−1)
d. t ++

3. a.{F1, ...,Ff} = FeatureSelection(M T , U T)
b. Oracle selects{F1, ..,Fk} ⊆ {F1, ...,Ff}

4. IncorporateFeatureFeedback(M T , {F1, ...,Fk})

ReturnM T

Instance SelectionTeacher/
Oracle

 M

Feature Selection   M

t<=T

Step 1,2

Step 4,5

Figure 4: An active learning system where feature selection is done afterinstance selection (System
4). This is one of the two set-ups used in our oracle experiments described inSection 2.2.
The first set-up is shown in Figure 3.
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3. Implementation

In this section we give implementation details for our experiments. While our approach is applicable
to a variety of machine learning algorithms and feature selection approaches, we give the details of
our implementation. We use Support Vector Machines (SVMs) as the machine learned classifier,
uncertainty sampling as our approach to active learning and information gainas the feature selection
technique. We also give details on how we construct the approximate feature oracle.

3.1 Classifier: Support Vector Machines

We use support vector machines (SVMs) in our experiments (the modelM is a Support Vector Ma-
chine (SVM)) (Joachims, 1998). An SVM learning algorithm tries to find a hyperplane of maximum
margin that separates the data into one of two classes(Y ∈ {−1,+1}). A linear SVM is a binary
classifier given as

f (X) = sign(w•X +b), (1)

wherew is the vector of weights andb is a threshold, both learned by the SVM learning algorithm.
SVMs are considered to be state-of-the-art classifiers in the domains thatwe described in Sec-

tion 4.1 and have been found to be fairly robust even in the presence of many redundant and irrele-
vant features (Brank et al., 2002; Rose et al., 2002.). Our SVM implementation uses the LibSVM
toolkit (Chang and Lin).

3.2 Active Learning: Uncertainty Sampling

Uncertainty sampling (Lewis and Catlett, 1994) is a type of active learning in which the instance
that the teacher is queried on is the unlabeled instance that the classifier is most uncertain about.
In the case of a naive Bayes classifier, this is the instance which is almost equally likely to be in
either of the two classes in a binary classification setting. When the classifier isan SVM, unlabeled
instances closest to the margin are chosen as queries (Schohn and Cohn, 2000; Tong and Koller,
2002). This results in the version space being split approximately in half each time an instance is
queried. We use a pool size of 500 in our experiments, such that for each instance selection, we
look at a new random sample of 500 instances from the unlabeled data. All our methods start out
with two randomly picked instances, one in the positive class and one in the negative class. Each
subsequent instance is picked through uncertainty sampling.

3.3 Feature Selection: Information Gain

We could have chosen any one of several methods for the ordering of features (Sebastiani, 2002;
Brank et al., 2002). Information gain is a common measure for ranking features and has been found
to be quite effective (Sebastiani, 2002; Brank et al., 2002), and is easyand quick to compute.

Information gain is given as

IG = ∑
c∈{−1,+1}

∑
τ∈{0,1}

P(c,τ) log
P(c,τ)

P(c)P(τ)
(2)

wherec denotes the class label (+1 or -1) from section 3.1, andτ is 0 or 1 indicating the presence
or absence of a feature respectively. We used information gain wherever we needed to do feature
selection.
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3.4 Construction of the Approximate Feature Oracle

The (feature) oracle in our experiments has access to the labels of all documents in the data-set
(hence the name oracle) and uses this information to return a ranked list of features sorted in de-
creasing order of importance. We use information gain for feature ranking since it is easy to com-
pute, especially with a large number of training instances. Other feature selection methods (e.g.,
forward selection) may somewhat increase our upper bound estimates of usefulness of oracle fea-
ture feedback. Such improvements will further motivate the idea of using feature feedback, but we
don’t expect the improvements to be very high. In our oracle experiments,we cut off the ranked
list (therefore obtaining a feature subset) at the point that yields the highest average active learning
performance. The next section describes our experiments and performance measures.

4. Experimental Set Up

We will now describe our data sets and our data collection methodology for experiments which use
teacher feedback on features.2 We then describe our evaluation framework.

4.1 Data Sets

Our test bed for this paper comes from three domains. The first data set consists of the 10 most
frequent classes from the Reuters-21578 corpus (Rose et al., 2002.). The 12,902 documents are
Reuters news articles categorized based on topics such asearningsandacquisitions. The Reuters
corpus is a standard benchmark for text categorization. The second corpus is the 20-Newsgroups
data set collected by Lang (1995). It has 20,000 documents which are postings on 20 Usenet news-
groups. This is a slightly harder problem because it has a large vocabulary compared to the Reuters
corpus (news articles tend to be more formal and terse) and it has many documents in each category
which are tangentially related to the topic. The topics reside in a hierarchy with broader topics like
sportsandcomputersat the top level which are further divided into narrower subdivisions. For ex-
ample,sportsencompasses more focused groups likebaseballandhockey. There are 20 categories
at the lowest level of the hierarchy.

The third corpus is the TDT3 corpus (Allan, 2002) . We used 10 topics from the TDT3 corpus
which has 67,111 documents in three languages from both broadcast andnews-wire sources. The
Linguistic Data Consortium (LDC) provides the output of an automatic speechrecognizer (ASR) for
the broadcast news sources. Similarly they provide the machine translationsof all documents that
are not originally in English. We use the ASR and machine translated documentsin our experiments.
The noise in the ASR and machine translation output makes the TDT corpus particularly difficult
to work with. The topics in the TDT corpus are based on news events. Thus, hurricane Mitch
and hurricane George would be two different topics and developing a classifier to separate the two
classes is seemingly a more difficult problem. The two classes would have a lotof common words
especially with regard to lives lost, rescue operations etc. For example, thewordsstormanddamage
each respectively occur in 50% and 27% of the documents on hurricane Mitch and in 75% and
54% of the documents on hurricane George. These common words are probably useful to detect a
generic topic likehurricanebut are not that useful in discriminating hurricane Mitch from hurricane
George. However, we think it would be fairly trivial for a human to point out Mitch andGeorge
as two keywords of importance which could then accelerate learning. The word Mitch occurs in

2. The data sets have been made available athttp://ciir.cs.umass.edu/∼hema/data/jmlr2006/.
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42% documents on hurricane Mitch and in 0 documents on hurricane George. Similarly, the word
George appears in 0.05% documents on the topic of hurricane Mitch and in 88% of the documents
on hurricane George.

For all three corpora we consider each topic as a one-versus-rest classification problem, giving
us a total of 40 such problems listed in Appendix A. We also pick two pairs of easily confusable
classes from the 20-Newsgroups domain to obtain two binary classification problems viz.,baseball
vs hockeyandautomobiles vs motorcycles. In all we have 42 classification problems. As features
we use words, bi-grams and trigrams obtained after stopping and stemming with the Porter stemmer
(Porter, 1980) in the Rainbow toolkit (McCallum, 1996).

4.2 Data for Whether Humans Can Emulate the Oracle

We picked five classification problems which we thought were perceptible to anon-expert and also
represented the broad spectrum of problems from our set of 42 classification problems. We took the
two binary classification problems and from the remaining 40 one-versus-rest problems we chose
three (earnings, hurricane Mitchandtalk.politics.mideast). For a given classification problem we
took the top 20 features as ranked by information gain on the entire labeled set. We randomly mixed
these with features which are much lower in the ranked list. We showed each user one feature at a
time and gave them two options –relevantandnot-relevant/don’t know. A feature is relevant if it
helps discriminate the positive or the negative class. We measured the time it tookthe user to label
each feature. We did not show the user all the features as a list, though thismay be easier, as lists
provide some context and serve as a summary. Hence we expect that ourmethod provides an upper
bound on the time it takes a user to judge a feature. The instructions given to the annotator are given
in Appendix B.

Similarly, we obtain judgments on fifteen documents in each of five categories (see Appendix
C). In this case we gave the user three choices – Class 1, Class 2, Don’tknow. We randomly sampled
documents such that at least five documents belonged to each class. We have complete judgments
on all the documents for all three data sets. The main purpose of obtaining document judgments
was to determine how much time it would take a person to judge documents. We compare the time
it takes a user to judge a feature with the time it takes a user to judge a document. We measure
the precision and recall of the user’s ability to label features. We ask the user to first label the
features and then documents, so that the feature labeling process receives no benefit due to the fact
that the user has viewed relevant documents. In the learning process wehave proposed, though,
the user would be labeling documents and features simultaneously, so the user would indeed be
influenced by the documents she reads. Hence, we expect that the feature labels we obtained by
our experimental method are worse in terms of precision and recall than the real setting. We could
in practice ask users to highlight terms as they read documents. Experiments inthis direction have
been conducted in information retrieval (Croft and Das, 1990).

Our users (participants) were six graduate students and two employees ofan Information Tech-
nology company, none of whom were authors of this paper. Of the graduate students, five were
in computer science and one from public health. All our users were familiar with the use of com-
puters. Five users understood the problem of document classification but none had worked with
these corpora. One of our users was not a native speaker of English. The topics were distributed
randomly, and without considering user expertise, so that each user got an average of two to three
topics. There were overlapping topics between users such that each topic was labeled by two to
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three users on average. A feedback form asking the users some questions about the difficulty of the
task was handed out at the end (see Appendix D).

4.3 Evaluation

Thedeficiencymeasure was proposed by Baram et al. (2003) as a measure of the speed of an active
learning algorithm, useful for comparing different active learning algorithms. Baram et al. defined
deficiency in terms of accuracy. Accuracy is a reasonable measure of performance when the positive
class is a sizable portion of the total. Since this is not the case for all the classification problems we
have chosen, we modify the definition of deficiency, and define it in terms oftheF1 score (harmonic
mean of precision and recall). For deficiency a lower value is better. As wealso report on theF1
scores, for which higher values are better, for consistency and easier interpretation of our charts and
tables we defineefficiency= 1−deficiency. Efficiency has a range from 0 to 1, and a larger value
indicates a faster rate of learning. Thus, in all our reports higher valuesare better.

Let F1t(RAND) be the averageF1 achieved by an algorithm when it is trained ont randomly
picked instances andF1t(ACT) be the averageF1 obtained usingt actively picked instances.

Efficiency,ET is defined as

ET = 1−
∑T

t=2(F1M(RAND)−F1t(ACT))

∑T
t=2(F1M(RAND)−F1t(RAND))

. (3)

F1M(RAND) is theF1 obtained with a large number (M) of randomly picked instances. The
valueF1M(RAND) represents the performance of a classifier with a large amount of training data,
and can be considered the optimal performance under supervised learning. With large amounts of
training data, we expect the performance of a classifier trained using active learning to be about the
same as a classifier trained using random sampling. However, we would like active learning to ap-
proach this level asquicklyas possible. The metric therefore takes into consideration how far the per-
formance is from the optimal performance by computing the differenceF1M(RAND)−F1t(ACT)
and F1M(RAND)− F1t(RAND). The metric compares this difference whent documents have
been actively picked to the difference whent documents have been randomly picked for increasing
number of training documentst.

Since we are concerned with the beginning of the learning curve, we stop after T = 42 number
of documents have been sampled. For expedience, we did not measure performance at every point
from 2 to 42 labeled documents, but compute the summation at discrete intervals,measuringF1
after each additional five documents have been labeled:t = 2,7,12,17...42. For this paper we take
M = 1000, that is, we consider the optimal random-learning performance to be attained after the
classifier has seen 1000 labeled instances. In our experimentsF1t(•) is the averageF1 computed
over 10 trials. In addition to efficiency we reportF1t for some values oft.

To understand the intuition behind efficiency, we can draw the active learning curve by plotting
F1t(ACT) for increasing values oft, as shown in Figure 5(a). Similarly we can draw the random
learning curve by measuringF1t(RAND) for increasing values oft. F1M is a straight line repre-
senting the best achievable performance. Then efficiency is one minus theratio of the solid colored
area to the spotted area. The higher the efficiency, the better the active learning algorithm. We aim
to maximize both efficiency andF1. In some of our experiments we obtain efficiencies exceeding
1. This is due to using a finiteM: it is possible that a classifier produced by active learning on 42 or
fewer instances may do better than a classifier trained on a random sample ofa 1000 instances.
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Figure 5: The figure on the left (a) illustratesefficiency, the performance metric which captures
rate of learning. The figure on the right illustrates thelearning surface. The plot is a
measure ofF1 as a function of the number of features and training documents. The
dotted line traces the region of maximumF1. With few training documents, aggressive
feature selection (few features) are needed to maintain high accuracy. The thick dark
band illustrates traditional active learning.

5. Results: Experiments with an Oracle

In this section we seek the answer to the following questions:

• Can feature feedback significantly boost active learning performance?

• Should we use feature feedback during the entire active learning process (both instance selec-
tion, and model selection) or only for model selection?

To measure how much gain we can get from feature feedback we can measure the impact of the
oracle (which has knowledge of the best set of features) on active learning. This gives us an upper
bound on how useful feature feedback is for active learning. Then inthe next section we go on to
measure the extent to which humans can emulate the oracle.

We will use systems 3 and 4 (described in Section 2.2) to help understand the answers to the
above questions.

5.1 Improvements to Active Learning with Feature Selection

Following the algorithm for system 3 (see Section 2.2, Figure 3), letf = N (the total number of
features) and let us assume that the oracle selects thek most important features (by information
gain) in step 1.b, which is used to initialize the model in step 2. Random sampling (step 3.a), in this
particular implementation, does not use any of the feature information or the initial model. Then
in step 3.c, we prune the data set by retaining only the chosenk features for each instance. We
now perform active learning on the instances in this reduced feature space (step 4). We evaluate
these experiments at many points in the two-dimensional space of number of featuresk versus num-
ber of labeled documentst by measuring the F1 score:F1t(ACT,k). We can similarly measure
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E42(k) F17(ACT,k) F122(ACT,k) F11000

Data Set k k n k k m k k p
↓ = N = n = N = m = N = p

Reuters 0.59 0.68 11179.3 0.36 0.48 8481.1 0.580 0.66 11851.6 0.73
20 NG 0.40 0.66 41.5 0.07 0.22 48.3 0.21 0.29 487.1 0.45
TDT 0.26 0.34 1275.7 0.19 0.29 11288 0.28 0.41 10416.1 0.75

Bas vs Hock 0.29 0.55 25 0.59 0.70 25 0.78 0.83 200 0.96

Auto vs Mot. 0.68 0.32 125 0.43 0.72 62 0.76 0.86 31 0.90

Table 1: Improvements in efficiency,F17 andF122 using an oracle to select the most important
features (Figure 3). We show results for each metric atN (total number of features for
a particular data set) and at feature set sizes for which the scores are maximized (n, m
and p for E42, F7, andF22 respectively). For each of the three metrics, figures in bold
are statistically significant improvements over uncertainty sampling using all features (the
corresponding columns with feature set size of N). We see that with only seven documents
labeled (F17) the optimal number of features is smaller (8481.1 on average), while with
more documents labeled, (22 documents labeled forF122) the optimal number of features
is larger (11851.6 on average). When 1000 documents are labeled (F11000) using the entire
feature set leads to better scores with theF1 measure. This suggests that our best active-
learning algorithm would adjust the feature set size according to the numberof training
documents available.

performance in the reduced feature space when instances are picked randomly. Thus we can com-
pute efficiency in the reduced feature space asET(k). When f = k = N the algorithm reduces to
traditional active learning (Figure 1).

Figure 5(b) shows a plot ofF1t(ACT,k) for different values of the number of featuresk and
number of labeled training instancest, for theearningscategory in Reuters. The dotted curve traces
the maximumFt for each value oft. Thex, y andz axes denotek, t andF1t(ACT,k) respectively.
The number of labeled training instancest ranges from 2 to 42 in increments of 5. The number
of features used for classificationk has values from 33,378 (all features), 33378/2, 33378/4 to
32. The dark band represents the case when all features are used. This method of learning in one
dimension is representative of traditional active learning. Clearly when thenumber of documents is
few, performance is better when there is a smaller number of features. As the number of documents
increases the number of features needed to maintain high accuracy increases. From the figure it is
obvious that we can get a big boost in accuracy by starting with fewer features and then increasing
the complexity of the model as the number of labeled documents increase.

Table 1 captures the behavior of all the problems in the Reuters corpus when there is an oracle to
do the feature selection. The second column (k = N) in Table 1 shows the efficiency obtained using
uncertainty sampling and all (N) features. The third column (k = n) indicates the average efficiency
obtained using uncertainty sampling and a reduced subset of features. The feature set sizen at which
this efficiency is attained is shown in column four. For each classification problem, we identify the
feature set size which optimizes the efficiency, that is, optimizes the rate at which classification
performance under active learning approaches learning with all of the data. This optimal feature set
size for active learningn is given by
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n = argmaxkE42(k).

Figure 6 shows the efficiencies atE42(N) andE42(n) for the individual problems in the three corpora.
In many cases,E42(N) is much less thanE42(n).

Column 5 (k = N) in Table 1 shows the value ofF17(ACT,N): the F1 score with seven in-
stances selected using active learning, when all features are used. Column 6 shows the average
F17(ACT,m) using a reduced feature subset. As for efficiency the best feature subset size (m) for
each classification problem is obtained as the feature subset size at whichF17(ACT,k) is maximum.
For example in Figure 5(b) at seven instances the bestF1 is obtained with 512 features. Figure 7
shows the values ofF17 computed using all (N) features and using a reduced subset of (m) features
for individual problems.

Columns 7, 8, and 9 in Table 1 show similar results forF122(ACT,k) with the best feature
subset size att = 22 being denoted byp. The values for individual problems is illustrated in Figure
8. The last column showsF11000(RAND).

All 42 of our classification problems exhibit behavior as in Figure 5(b). For all classification
problems,n, mandp are less than the maximum number of features. Also, for 31 of 42 casesm≤ p
(that is, the number of features optimal for seven labeled instances,m is less than the number of
features optimal for 22 labeled instances,p) meaning that as the number of labeled instances (t)
increases, the complexity of the classifier also needs to increase. For 20-Newsgroups, for all classes
we observe that efficiency,F17 andF122 are best at very small feature subset sizes. For Reuters
and TDT there are classes for which a large number of features become important very early (for
example:trade, Bin Laden indictment, NBA labor disputes).

5.2 Feature Selection for Instance Selection or Model Selection

As mentioned in Section 2.2 the difference between systems 3 and 4 is in that feature selection
precedes active learning in the former, and the best feature subset is picked in a retrospective manner,
while it follows active learning in the latter. The two systems when used with oracle feature selection
will help us understand the extent to which oracle feedback aids different aspects of the active
learning process. Figure 9 compares the results of using system 4 and system 3 on the Reuters
corpus.

There is hardly any difference between systems 3 and 4, especially onF17. All other data sets
exhibit the same behavior. TheF122 andE42 values are slightly better for the method that does
feature selection before active learning (system 3) but it is not significantly different (determined
using a t-test at the 0.05 level of confidence) from the method where feature pruning is done after
instance selection (system 4). Thus, our experimental results suggest there is some benefit for
instance selection but most of the benefit from oracle feature selection comes from improving the
model learned (model selection).

5.3 Discussion: Why Does Feature Selection Help?

Intuitively, with limited labeled data, there is little evidence to prefer one feature over another, so
the learner has to spread the feature weights more or less evenly on many features. In other words,
the learner has to remain conservative. Feature/dimension reduction by theoracle allows the learner
to “focus” on dimensions that matter, rather than being overwhelmed with numerous dimensions
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Figure 6: Improvements in efficiency using an oracle to select the most important features. For
each problem we show efficiency atN (total number of features for a particular data set)
on the right and efficiency at the feature set sizes for which the efficiency is maximized
(n) on the left. The class keys are given in Appendix A.
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Figure 7: Improvements inF17 using an oracle to select the most important features. For each
problem we showF17 at N (total number of features for a particular data set) on the
left andF17 at the feature set sizes for which theF17 is maximized (m) on the right.
Remember, the objective is to maximizeF17. The class keys are given in Appendix A.
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Figure 8: Improvements inF122 using an oracle to select the most important features. For each
problem we showF122 at N (total number of features for a particular data set) on the
right andF122 at the feature set sizes for which theF122 is maximized (p). Remember
that the objective is to maximizeF122. The class keys are given in Appendix A.
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Figure 9: F17, F122 and efficiencyE42 for the Reuters corpus when feature selection is done be-
fore active learning (system 3) and when feature selection is done afteractive learning
(system 4).
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right at the outset of learning. Oracle feature reduction allows the learner to assign higher weights
to fewer features. This tends to improve accuracy, since the oracle selected features are the actual
most predictive features. Oracle feature reduction may also improve instance selection as the learner
obtains instances to query that are important for finding better weights on thefeatures that matter. As
the number of labeled instances increases, feature selection becomes lessimportant, as the learning
algorithm becomes better capable of finding the discriminating hyperplane (feature weights) on its
own. We experimented with filter based methods for feature selection, which did not work very
well (we got tiny or no improvements). This is expected given such limited training set sizes, and
is consistent with most previous findings (Sebastiani, 2002). Next we determine if humans can
identify theseimportant features.

6. Results: Experiments with a Human (Teacher)

Consider our introductory example of the editor who was looking for traininginstances for the
topichurricane Mitch. From a human perspective the wordshurricane, Mitch etc may be important
features in documents discussing this topic. Given a large number of documents labeled as on-topic
and off-topic, and given a classifier trained on these documents, the classifier may also find these
features to be most relevant. With little labeled data (say two labeled instances) the classifier may
not be able to determine the discriminating features. While in general in machine learning the source
of labels is not important to us, in active learning scenarios in which we expect the labels to come
from humans we have valid questions to pose:

1. Can humans label features as well as documents? In other words are features that are impor-
tant to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, is the feedback still beneficial to active
learning?

We address the first question in the following section. Our concern in this paper is asking people
to give feedback on features, or word n-grams, as well as entire documents. We may expect this to
be more efficient, since documents are often long and may contain redundant or irrelevant content,
and results from our oracle experiments indicate great potential in doing feature selection. We
then move on to discuss a real system which employs a two-tiered approach of document feedback
and feature feedback like the system in Figure 2 which we evaluate using a simulation: we obtain
feedback on features and documents apriori, and use the judgments so obtained to measure the
effectiveness of our approach. We employed this approach rather than one where an actual user
labels features and documents in tandem because our approach allows usto run many repeated
trials of our experiments, enabling us to do significance testing. Given that we have demonstrated
the effectiveness of our algorithm, we reserve a more realistic evaluation with a true human in the
loop for future work.

6.1 Can Humans Emulate the Oracle?

We evaluated user feature labeling by calculating their average precision and recall at identifying
the top 20 features as ranked by an oracle using information gain on the entire labeled set. Table
2 shows these results. For comparison we have also provided the precision and recall (against the
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Class Precision Recall Avg. Time (secs) kappa
Problem Hum. @50 Hum. @50 Feat. Docs
baseball vs hockey 0.42 0.30 0.70 0.30 2.83 12.60 0.503
auto vs motorcycle 0.54 0.25 0.81 0.25 3.56 19.84 0.741
earnings 0.53 0.20 0.66 0.25 2.97 13.00 0.495
talk.politics.mideast 0.68 0.35 0.55 0.35 2.38 12.93 0.801
hurricane Mitch 0.72 0.65 0.56 0.65 2.38 13.19 0.857
Average 0.580 0.35 0.65 0.38 2.82 14.31 0.68

Table 2: Ability of users to identify important features. Precision and Recallagainst an oracle,
of users (Hum.) and an active learner which has seen 50 documents (@50). Note that
precision and recall denote the ability of the user to recognize the oracle features and are
not measures of classification accuracy. Average labeling times for features and documents
are also shown. All numbers are averaged over users.

same oracle ranking of top 20 features) obtained using 50 labeled instances (picked using uncer-
tainty sampling) denoted by @50. Precision and recall of our participants is high, supporting our
hypothesis that features that a classifier finds to be relevant after seeing a large number of labeled
instances are obvious to a human after seeing little or no labeled data (the latter case being true
of our experiments). Additionally the precision and recall @50 is significantlylower than that of
humans, indicating that a classifier like an SVM needs to see much more data before it can find
discriminatory features.

Table 2 also shows the times taken for labeling features and documents. On average humans
take five times longer to label one document than to label one feature. Note that features may be
even easier to label if they are shown in context – as lists, with relevant passages etc. We measured
whether document length influences document labeling time. We found the two tobe correlated
by r = 0.289 which indicates a small increase in time for a large increase in length. The standard
deviations for precision and recall are 0.14 and 0.15 respectively. Different users vary significantly
in precision, recall and the total number of features labeled relevant. From the post-labeling survey
we are inclined to believe that this is due to individual caution exercised during the labeling process.

We also measure the extent to which our users tend to agree with each other about the importance
of features. For this we use the kappa statistic (Cohen, 1960) which is a measure that quantifies the
agreement between annotators that independently classify a set of entities(in our case the features)
into classes (relevant versus non-relevant/don’t know). Kappa is given by:

kappa= (po− pc)/(1− pc) (4)

Wherepo is the observed proportion of agreement andpc is the agreement due to chance (Cohen,
1960; Landis and Koch, 1977). Landis and Koch (1977) provide a table giving guidelines about how
to interpret kappa values. We find a value of 0.68 to be the average kappaacross the five categories
in our user study. According to Landis and Koch (1977) this indicates substantial agreement.

We obtained judgments on a handful of documents for each user. We usedthose judgments to
measure time. Some of our users had difficulty judging documents. For example, for the earnings
category, one of our users had very low agreement with the true Reuterscategories. This person did
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not have a finance background and could not distinguish well between earnings and acquisitions,
often confusing the two. But this user did quite a good job of identifying useful features. She
missed only six of 20 of the relevant features and had only five false alarms. The features that she
marked relevant, when used in the human-in-the-loop algorithm resulted in anefficiency of 0.29.
This is still an improvement over traditional uncertainty sampling which has a efficiency of 0.10.
These results can be explained by looking at the question posed to the annotator. When it came to
features, the question was on the discriminative power of the feature. Hence a user did not have to
determine whether the wordsshareswas pertinent toearningsor not but rather she only needed to
indicate whether the word was likely to be discriminatory. Additionally, one of our users suggested
that terms shown in context would have carried more meaning. The user saidthat she did not realize
the termct stood forcentsuntil she read the documents. But since she was made to judge terms
before documents this user’s judgment had marked the termct as non-relevant/don’t know.

Some of the highlights of the post-labeling survey are as follows. On average users found the
ease of labeling features to be 3.8 (where 0 is most difficult and 5 is very easy) and documents 4.2. In
general users with poor prior knowledge found the feature labeling process very hard. The average
expertise (5=expert) was 2.4, indicating that most users felt they had little domain knowledge for
the tasks they were assigned. We now proceed to see how to use featureslabeled as relevant by our
naive users in active learning.

6.2 Using Human Feature Feedback simultaneously with Document Feedback in Active
Learning

We saw in Section 5 that feature selection coupled with uncertainty sampling gives us big gains in
performance when there are few labeled instances. In Section 6.1 we sawthat humans can discern
discriminative features with reasonable accuracy. We now describe ourapproach of applying term
and document level feedback simultaneously in active learning. In Section2.2 we discussed the
possible cognitive advantages of an interleaved approach of feature selection and instance selection.
Additionally, we found that feature selection does not hurt uncertainty sampling and may aid it. In
the following section we describe an implementation for system 2.

6.3 Implementation

Following Figure 2, the features to be displayed to the user (in step 2.d.i) are the top f features
obtained by ordering the features by information gain. More specifically, we trained the SVM
classifier on theset labeled instances. Then to compute information gain, we used the five top
ranked (farthest from the margin on the positive side) documents from theunlabeled set in addition
to the t labeled documents. Using the unlabeled data for term level feedback is very common
in information retrieval and is called pseudo-relevance feedback (Salton,1968). The user labels
k≥ 0 of the f features as relevant or discriminative (step 2.d.ii). If a user has labeled afeature in a
previous iteration, we don’t show the user that feature again (the topf are picked from the unlabeled
features). We setf to 10 in our experiments.

We incorporate feature feedback (step 2.e) as follows. Let~s = s1...sN be a vector containing
weights of relevant features. If a feature numberi that is presented to the user is labeled as relevant
then we setsi = a, otherwisesi = b, wherea andb are parameters of the system. For eachX in the
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labeled and unlabeled sets we multiplyxi by si to getx′i . In other words, we scale all the features
that the user indicated as relevant bya and the rest of the features byb. We seta = 10 andb = 1. 3

By scaling the important features bya we are forcing the classifier to assign higher weights to
these features. We demonstrate the intuition with the following example. Considera linear SVM,
N = 2 and two data pointsX1 = (1,2) andX2 = (2,1) with labels+1 and−1 respectively. An SVM
trained on this input learns a classifier withw = (−0.599,+0.599). Thus, both features are deemed
equally discriminative by the learned classifier. If feature 1 is indicated to bemore discriminative
by our user, then by our methodX′

1 = (10,2) andX′
2 = (20,1) andw′ = (0.043,−0.0043), thus

f1 is assigned a much higher weight in the learned classifier. Now, this is a “soft” version of the
feature selection mechanism of section 5. But in that case the oracle knew the ideal set of features.
Those experiments may be viewed as a special case whereb = 0. We expect that human feedback
is imperfect and we do not want to zero-out potentially relevant features.

6.4 Simulating User Feedback

We use the relevance judgments on features obtained as described in Section 6.1 to simulate the
user in each iteration. At each iteration of the algorithm, if a feature that is presented had been
marked by the user as relevant, in the relevance judgment experiments of theprevious section, we
mark the value of that feature as 1 in the vector~s. The vector~s is noisier (less complete) than the
case where we would have obtained relevance judgments on features during the actual execution
of the algorithm. This is because in addition to mistakes made by the user, we lose out on those
features that the user might have considered relevant, had she been presented that feature when we
were collecting relevance judgments for a relatively small subset of features. In a real life scenario
this might correspond to the lazy user who labels few features as relevantand leaves some features
unlabeled in addition to making mistakes.

To make our experiments repeatable (to compute average performance andfor convenience) we
simulate user interaction as follows. For each classification problem we maintaina list of features
that a user might have considered relevant had she been presented that feature. For these lists we
used the judgments obtained in Section 4.2. Thus for each of the five classification problems we
had two or three such lists, one per user who judged that topic. For the 10 TDT topics we have topic
descriptions as provided by the LDC. These topic descriptions contain names of people, places and
organizations that are key players in this topic in addition to other keywords.We used the words
in these topic descriptions to be equal to the list of relevant features. Now,given these lists we
can perform the simulated HIL (human in the Loop) experiments for 15 classification problems.
Figure 10 shows the performance of the HIL experiments. Like before wereport efficiency (E42),
theF1 score with 7 labeled documents (F17), and theF1 score with 22 labeled documents (F122)
for each of uncertainty sampling (Unc), oracle feature selection with uncertainty sampling (Ora)
and the Human in the Loop (HIL) algorithm. As a baseline we also report results for the case
when the top 20 features as obtained by the information gain oracle are inputto the simulated
HIL experiments (this represents what a user with 100% precision and recall would obtain by our
method). The oracle is (as expected) much better than plain uncertainty sampling, on all three
measures, validating the effectiveness of our proposed system Section2.1. The performance of the
HIL experiments is almost as good as the oracle, indicating that user input (although imperfect)

3. We picked our algorithm’s parameters based on a quick test on three topics (baseball, earnings, and acquisitions)
using the oracle features of Section 5.
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can help improve performance significantly. The plot on the right is ofF1t(HIL) for hurricane
Mitch. As a comparisonF1t(ACT) is shown. The HIL values are much higher than for uncertainty
sampling.

Dataset E42 F17 F122

Unc Ora HIL Unc Ora HIL Unc Ora HIL
Baseball 0.29 0.59 0.54 0.49 0.63 0.60 0.63 0.79 0.70
Earnings 0.10 0.36 0.36 0.61 0.79 0.73 0.80 0.85 0.86
Auto vs Motor 0.18 0.66 0.40 0.35 0.62 0.60 0.71 0.83 0.73
Hurr. Mitch 0.11 0.62 0.62 0.04 0.46 0.60 0.08 0.63 0.58
mideast 0.51 0.72 0.72 0.14 0.28 0.29 0.32 0.49 0.49
TDT (avg) 0.14 0.23 0.11 0.09 0.21 0.24 0.18 0.32 0.22
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(b) The graph shows the learning curves forHurricane Mitch (6th row of
the above table) with the x-axis being the number of labeled documents and
y-axisF1(HIL).

Figure 10: Improvements due to human feature selection. TheF17 andF122 scores in the table
show the points on the curves where 7 and 22 documents have been labeled. The differ-
ence between no feature feedback (Unc) and human-labeled features(HIL) is greatest
with few documents labeled, but persists up to 42 documents labeled.

When to stop asking for labels on both features and documents and switch entirely to documents
remains an area for future work. We provide some initial results in this regard. Consider that we ask
for both document and feature feedback up toj iterations and after that we only ask for document
feedback. Figure 11 shows the active learning curves for differentvalues of j for the hurricane
Mitch problem in the TDT corpus. The case whenj = 0 represents traditional uncertainty sampling.
When j = 5 there is improvement over the case whenj = 0, and whenj = 10 there is even more
improvement. Beyondj = 10 there is little gain in obtaining feature feedback. It seems that relevant
features are usually spotted in very early iterations. We see similar behaviorfor other problems in
our domains. For theauto vs motorcyclesproblem, the user has been asked to label 75% of the
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oracle features (averaged over multiple iterations and multiple users) at somepoint or the other.
The most informative words (as determined by the oracle) –car andbikeare asked of the user in
very early iterations. The label forcar is always (100% of the times) asked, and 70% of the time the
label for this word is asked to the user in the first iteration itself. This is closelyfollowed by the word
bikewhich the user is queried about within the first five iterations 80% of the time. Most relevant
features are asked within 10 iterations which makes us believe that we can often stop feature level
feedback in around 10 iterations.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5  10  15  20  25  30  35  40

j=0

j=5

j=10

j=15
j=25

j=35

j=40

number of training documents

F1

Figure 11: Human Feature Selection forHurricane Mitchfor different amounts of feature feedback.
The legend indicates the number of iterations (j) for which there was both feature and
document feedback, after which only document feedback was asked for. The line at
the bottom, labeledj = 0 corresponds to regular uncertainty sampling or the case when
feature feedback was asked for 0 iterations. The line corresponding toj = 5 iterations
is significantly better than whenj = 0. All other cases,j = 10 ... j = 40 are clumped at
the top.

7. Related Work

Our work is related to a number of areas including query learning, active learning, use of (prior)
knowledge and feature selection in machine learning, term-relevance feedback in information re-
trieval, and human-computer interaction.

Term level feedback has been studied in information retrieval (Anick, 2003; Croft and Das,
1990; Belkin et al., 2001). Many participants in the TREC HARD track (Voorhees and Buckland,
2005) generate clarification forms for users to refine or disambiguate theirquery. Many of the
effective forms are composed of lists of terms and the user is asked to mark terms as relevant or not,
and some have found that term level feedback is more effective than document level feedback (Diaz
and Allan, 2005). The TREC interactive task has focused on issues regarding the kinds of questions
that can be asked of the user. They find that users are happy to use interfaces which ask the user to
reformulate their queries through a list of suggested terms. They also find that users are willing to
mark both positive and negative terms (Belkin et al., 2001).
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Our proposed method is an instance of query-based learning and an extension of standard
(“pool-based”) active learning which focuses on selective sampling ofinstances from a pool of
unlabeled data alone (Cohn et al., 1994). Although query-based learning can be very powerful in
theory (Angluin, 1992), arbitrary queries may be difficult to answer in practice (Baum and Lang,
1992). Hence the popularity of pool-based methods, and the motivation forstudying the effective-
ness and ease of predictive feature identification by humans in our application area. To best of our
knowledge, all prior work on query learning and active learning focused on variants of membership
queries, that is, requesting the label of a possibly synthesized instance.Our work is unique in the
field of active learning as we extend the query model to include feature as well as document level
feedback.

Feature feedback may be viewed as the teacher providing evidence or anexplanation for the
learner on the reasoning behind the labeling. The field of explanation-based learning, however,
concerns itself on a deductive rather than an inductive learning task, using one instance and a given
domain theory to generalize (Mitchell et al., 1986; DeJong and Mooney, 1986).

Feature selection can lead to improvements in the performance (accuracy) or in the space or time
efficiency of the classifier. When there are sufficient labeled instances, most state of the art learning
algorithms are able to distinguish the relevant features from the irrelevant ones (Brank et al., 2002).
Hence there is little improvement in performance with an additional feature selection component.
When there are few labeled instances, working with a small set of relevantfeatures tends to be more
useful. This phenomenon has been referred to in statistics as the Hughes phenomenon (Hughes,
1968). Weight regularization may be viewed as a soft version of featureselection: for best per-
formance, in general the smaller the training set, the smaller the total weight thatis allowed to be
spread over the features. Unfortunately, to do automatic feature selectionwell, we need sufficient
training data, leading to a chicken-and-egg problem. Fortunately, in document classification users
have the intuition to point out a small subset of useful features which wouldbe beneficial when
there are few labeled instances.

Budgeted learning also works on identifying the predictive features during an active learning
setting, but in this case the feature values are unknown and there is a costto finding each feature’s
value for each instance of interest (such as the outcome of blood test on an individual) (Lizotte et al.,
2003). That human prior knowledge can accelerate learning has been investigated by Pazzani and
Kibler (1992), but our work differs in techniques (they use prior knowledge to generate horn-clause
rules) and application domains. Beineke et al. (2004) use human prior knowledge of co-occurrence
of words, at feature generation time, to improve classification of product reviews. None of this
work, however, considers the use of prior knowledge in the active (sequential) learning setting.

Our study of the human factors (such as quality of feedback and costs) isalso a major differen-
tiating theme between our work from previous work in incorporating prior knowledge for training.
Past work has not addressed this issue, or might have assumed expertsin machine learning taking a
role in training the system (Schapire et al., 2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones,
2005). We only assume knowledge about the topic of interest. Our algorithmictechniques and the
studied modes of interaction also differ somewhat and are worth further comparison. Jones (2005)
also used single feature-set labeling in the context of active learning: theuser was queried on a
feature rather than the whole instance. The labeled feature was taken as aproxy for the label of any
instance containing that feature, so a single feature labeling potentially labeled many documents
(similar to thesoft labeling technique discussed next). This was found to be more economical than
whole-instance labeling for some tasks. The instances in this work consistedof only two features (a
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noun-phrase and a context), so labeling one feature is equivalent to labeling half an instance. Our
work differs in that our instances (documents) contain many features (words) and we combine both
feature labeling and document labeling. Our work also differs in that we use the labeled features for
feature selection and feature re-weighting, rather than as proxies for document labels.

Both Wu and Srihari (2004) and Schapire et al. (2002) assume that prior knowledge is given at
the outset which leads to a “soft” labeling of the unlabeled data. This extra labeling is incorporated
into training via modified boosting or SVM training. By soft labeling, we mean the extra labels,
generated via prior knowledge, are not certain and a method that uses such information may for
example assign low confidences to such labellings or lower the misclassificationcosts compared
to misclassification costs for instances labeled directly by a human. However,in our scheme the
user is labeling documents and features in an interactive and interleaved fashion. We expect that
our proposed interactive mode has an advantage over requesting priorknowledge from the outset,
as it may be easier for the user to identify or recall relevant features whilelabeling documents in
the collection and being presented with candidate features. Our method of scaling the dimensions
and training (without using the unlabeled data) has an advantage over soft labeling in situations
where one may not have access to much unlabeled data, for example in onlinetasks such as filtering
news streams and categorizing personal emails. Furthermore, we simplify theuser’s task in that
our technique does not require the user to specify whether the feature ispositively or negatively
correlated with the category, just whether the user thinks the feature is relevant or predictive. On the
other hand, in the presence of ample unlabeled data, soft labeling methods might more effectively
incorporate the information available in the unlabeled data. Both approachesrequire extra param-
eters specifying how much to scale the dimensions or the confidence or misclassification costs to
assign to the generated labellings, though some fixed parameter settings may work for most cases,
or automated methods could be designed.

The work of Godbole et al. (2004) emphasizes system issues and focuses on multi-class train-
ing rather than a careful analysis of effects of feature selection and human efficacy. Their pro-
posed method is attractive in that it treats features as single term documents that can be labeled by
humans, but they also study labeling features before documents (and onlyin an “oracle” setting,
without using actual human annotators). They do not observe much improvements using their par-
ticular method over standard active learning in the single domain (Reuters) they test on. Finally, we
mention another method of incorporating prior knowledge that has much similarityto our method
of differential scaling of dimensions: differential weightings of featuresin feature weight initial-
izations when using online methods such as Winnow. A better understanding of effective ways of
incorporating (prior) knowledge in various learning scenarios is a promising research direction.

8. Conclusions and Future Work

We have demonstrated experimentally that for learning with few labeled examples good (oracle-
based) feature selection is extremely useful. As the number of examples increases, the “vocabulary”
of the system, in other words, the effective feature set size for best performance, also needs to
increase. A teacher, who may not necessarily be knowledgeable in machine learning, but has prior
knowledge on the relevance of the features, can help accelerate trainingthe system by pointing out
the potentially important features for the system to focus on. We conducted auser study to see how
well naive users performed as compared to a feature oracle in the domain of text categorization.
Our technique weighted the features marked relevant by the users more than the other features. We
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used our users’ outputs in realistically simulatedhuman in the loopexperiments and observed a
significant increase in learning performance with our techniques over plain active learning.

In summary, our contributions are:

1. We demonstrated that access to a feature importance oracle can improve performance (theF1
score) significantly over uncertainty sampling, even with as few as 7 examples labeled.

2. We found that even naive users can provide effective feedbackon the most relevant features
(about 60% accuracy of the oracle in our experiments).

3. We measured the manual costs of relevance feedback on features versus labeling documents:
we found that feature feedback takes about one fifth of the time taken by document labeling
on average.

4. We devised a method of simultaneously soliciting class labels and feature feedback that im-
proves classifier performance significantly over soliciting class labels alone.

Consider a user who is interested in training a personalized news filter that delivers news stories
on topics of their interest as and when they appear in the news. The user isprobably willing to
engage in some form of interaction in order to train the system to better suit theirneed. Similarly
a user wanting to organize their e-mail into folders may be willing to train the e-mail filter as long
as training is not too time consuming. Both the news filter and the e-mail filter are document clas-
sification systems. The idea of using as few documents as possible for training classifiers has been
studied in semi-supervised learning and active learning. In this paper we extended the traditional
active learning setting which concerns the issue of minimal feedback and proposed an approach
where the user provides feedback on features as well as documents. We showed that such an ap-
proach has good potential in significantly decreasing the overall amount of interaction required for
training the system.

This paper points to three promising inter-related questions for further exploration. The first
question concerns what to ask from the user. In general, the active learner has to make decisions at
various time points during active learning regarding the choice of feedback. For example, whether
to ask for feedback on a document or on a feature, or even whether to stop asking questions all
together (ask nothing), appropriate for a scenario where no additionalfeedback is likely to improve
performance significantly. This involves some implicit or explicit assessment of the expected bene-
fits and costs of different kinds of feedback. Furthermore, there arealternate kinds of feedback that
are potentially useful – feedback on clusters of features for example. The second question involves
human computer interaction issues and seeks to explore how to translate whatthe learner needs to
know, into a question, or a user interface, that the human teacher can easily understand. In our case,
the learner asked the teacher labels on word features and documents, both of which required little
effort on the part of the teacher to understand what was being asked of him. Our subjects did in-
deed find labeling words without context a little hard, and suggested that context might have helped.
An attractive alternative or complementary method of soliciting feature feedback is asking users to
highlight some relevant or predictive terms as they read a document. Experiments in this direction
have been conducted in information retrieval (Croft and Das, 1990). The third question is about the
choice of learning algorithms for effectively incorporating these alternateforms of feedback. We
explored one method in this paper and discussed alternatives in Section 7. Related to the above is
better understanding and quantifying the potential of active learning enhanced with feature feedback

1681



RAGHAVAN , MADANI AND JONES

as a function of various aspects of the learning problem, such as measures of the difficulty of the
category that one seeks to learn.
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Appendix A. Class Key

The class key for the Reuters corpus is given below:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade 6. interest 7.wheat
8. corn 9. money supply 10. gold

The class key for the 20 Newsgroups corpus is given below:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc 4. comp.sys.ibm.pc.hw
5. comp.sys.mac.hw 6. comp.windows.x 7. misc.forsale 8. rec.autos
9. rec.motorcycles 10. rec.sport.baseball 11. rec.sport.hockey 12. sci.crypt
13. sci.electronics 14. sci.med 15. sci.space 16. soc.rel.christian
17. talk.politics.guns 18. talk.politics.mideast 19. talk.politics.misc 20. talk.religion.misc

Similarly the class key for the TDT corpus is:

1. Cambodian government coalition 2. Hurricane Mitch 3. Pinochet Trial
4. Chukwu Octuplets 5. Bin Laden Indictment 6. NBA Labor Disputes
7. Congolese Rebels 8. APEC Summit Meeting 9. Anti-Doping Proposals
10. Car Bomb in Jerusalem

Appendix B. Instructions for Annotating Features

Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of features one at a time. For each feature you will be
asked to determine whether it is relevant or not for the given classificationproblem. If it is relevant
to Class 1 or to Class 2, mark the radio button which says “Relevant”. If it is not relevant or you
don’t know whether the feature is relevant mark DONT KNOW correspondingly

A feature is relevant if it helps discriminate between documents in Class 1 versus documents in
Class 2. Features are words, pairs of words (bi grams) and so on. Think of a bi gram as a pair of
words that may occur in close proximity to each other For every feature askyourself the following
question: “Is this more likely to occur in a document in Class 1 as opposed to Class 2?”. If that is the

1682



ACTIVE LEARNING WITH FEEDBACK ON FEATURES AND INSTANCES

case mark the feature as relevant. If the reverse is true then again mark thefeature as relevant. If the
feature is not really relevant, for example “banana” may make no sense in trying to find documents
in either class mark the “Not relevant/Don’t know” option. DO NOT use any resources(the web,
encyclopedias etc) to determine your answer. If you are not sure simply click the “Don’t Know”
option

The time between which you are shown a feature and you hit the submit button istimed. So do
not do anything else in this time. After you submit, A THANK YOU page is displayed. You may
take a break here before you proceed to the next feature.

To modify the last annotation use the browsers BACK button.
To begin annotating click here.

Appendix C. Instructions for Annotating Documents

Class 1: Documents from the Usenet newsgroups that discuss baseball
Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of documents one at a time. For each documents you will
be asked to determine whether it belongs to class 1 or class 2. You also havethe option to mark
a document as DONT KNOW. Read as much of the document as is needed to make an informed
judgment. The time between which you are shown a document and you hit the submit button is
timed. So do not do anything else in this time. After you submit, A THANK YOU page isdisplayed.
You may take a break here before you proceed to the next document.

To modify the last annotation use the browsers BACK button
To begin annotating click here

Appendix D. End of Labeling Survey

Please take 2 minutes to fill out the following:

1. How easy was it to mark features?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

2. How easy was it to mark documents?
(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

3. For each of the following tasks please state your domain knowledge (onlyif you did relevance
assessments for them) on a scale of 1-5 (1=very little, 5=expert):
(a) Baseball versus Hockey. (b) Earnings versus All.
(c) Automobiles versus Motorcycles. (d) Hurricane Mitch versus all.
(e) Middle eastern crisis versus all.

4. Your Internet connection
(a) DSL/Cable (b) T1 LAN (c) Dial-up
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Abstract

We show how the concave-convex procedure can be applied to transductive SVMs, which tradition-
ally require solving a combinatorial search problem. This provides for the first time a highly scal-
able algorithm in the nonlinear case. Detailed experimentsverify the utility of our approach. Soft-
ware is available athttp://www.kyb.tuebingen.mpg.de/bs/people/fabee/transduction.
html.

Keywords: transduction, transductive SVMs, semi-supervised learning, CCCP

1. Introduction

Transductive support vector machines (TSVMs) (Vapnik, 1995) area method of improving the
generalization accuracy of SVMs (Boser et al., 1992) by using unlabeled data. TSVMs, like SVMs,
learn a large margin hyperplane classifier using labeled training data, but simultaneously force this
hyperplane to be far away from the unlabeled data.

One way of justifying this algorithm, in the context ofsemi-supervised learningis that one is
finding a decision boundary that lies in a region of low density, implementing the so-called cluster
assumption (see e.g. Chapelle and Zien, 2005). In this framework, if you believe the underlying
distribution of the two classes is such that there is a “gap” or low density region between them,
then TSVMs can help because it selects a rule with exactly those properties.Vapnik (1995) has a
different interpretation for the success of TSVMs, rooted in the idea thattransduction (labeling a
test set) is inherently easier than induction (learning a general rule). In either case, experimentally
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it seems clear that algorithms such as TSVMs can give considerable improvement in generalization
over SVMs, if the number of labeled points is small and the number of unlabeledpoints is large.

Unfortunately, TSVM algorithms (like other semi-supervised approaches)are often unable to
deal with a large number of unlabeled examples. The first implementation of TSVM appeared
in (Bennett and Demiriz, 1998), using an integer programming method, intractable for large prob-
lems. Joachims (1999b) then proposed a combinatorial approach, knownas SVMLight-TSVM, that
is practical for a few thousand examples. Fung and Mangasarian (2001) introduced a sequential op-
timization procedure that could potentially scale well, although their largest experiment used only
1000 examples. However, their method was for the linear case only, and used a special kind of
SVM with a 1-norm regularizer, to retain linearity. Finally, Chapelle and Zien (2005) proposed a
primal method, which turned out to show improved generalization performanceover the previous
approaches, but still scales as(L +U)3, whereL andU are the numbers of labeled and unlabeled
examples. This method also stores the entire(L +U)× (L +U) kernel matrix in memory. Other
methods (Bie and Cristianini, 2004; Xu et al., 2005) transform the non-convex transductive problem
into a convex semi-definite programming problem that scales as(L+U)4 or worse.

In this article we introduce a large scale training method for TSVMs using the concave-convex
procedure (CCCP) (Yuille and Rangarajan, 2002; Le Thi, 1994), expanding on the conference pro-
ceedings paper (Collobert et al., 2006). CCCP iteratively optimizes non-convex cost functions that
can be expressed as the sum of a convex function and a concave function. The optimization is car-
ried out iteratively by solving a sequence of convex problems obtained bylinearly approximating
the concave function in the vicinity of the solution of the previous convex problem. This method is
guaranteed to find a local minimum and has no difficult parameters to tune. Thisprovides what we
believe is the best known method for implementing transductive SVMs with an empirical scaling of
(L+U)2, which involves training a sequence of typically 1-10 conventional convexSVM optimiza-
tion problems. As each of these problems is trained in the dual we retain the SVM’s linear scaling
with problem dimensionality, in contrast to the techniques of Fung and Mangasarian (2001).

2. The Concave-Convex Procedure for TSVMs
Notation We consider a set ofL training pairsL = {(x1,y1), . . . ,(xL,yL)}, x ∈ R

n, y∈ {1,−1}
and an (unlabeled) set ofU test vectorsU = {xL+1, . . . ,xL+U}. SVMs have a decision functionfθ(.)
of the form

fθ(x) = w·Φ(x)+b,

whereθ = (w, b) are the parameters of the model, andΦ(·) is the chosen feature map, often imple-
mented implicitly using the kernel trick (Vapnik, 1995).

TSVM Formulation The original TSVM optimization problem is the following (Vapnik, 1995;
Joachims, 1999b; Bennett and Demiriz, 1998). Given a training setL and a test setU , find among
the possible binary vectors

{Y = (yL+1, . . . ,yL+U)}

the one such that an SVM trained onL ∪ (U ×Y ) yields the largest margin.

This is a combinatorial problem, but one can approximate it (see Vapnik, 1995) as finding an
SVM separating the training set under constraints which force the unlabeled examples to be as far
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Figure 1: Three loss functions for unlabeled examples, from left to right(i) the Symmetric Hinge
H1(|t|) = max(0, 1−|t|) , (ii) Symmetric SigmoidS(t) = exp(−3t2) ; and (iii) Symmetric
Ramp loss,Rs(|t|) = min(1+ s,max(0,1− |t|)). The last loss function has a plateau of
width 2|s| wheres∈ (−1,0] is a tunable parameter, in this cases= −0.3.

as possible from the margin. This can be written as minimizing

1
2
‖w‖2 +C

L

∑
i=1

ξi +C∗
L+U

∑
i=L+1

ξi

subject to
yi fθ(xi) ≥ 1−ξi , i = 1, . . . ,L

| fθ(xi)| ≥ 1−ξi , i = L+1, . . . ,L+U

This minimization problem is equivalent to minimizing

J(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+U

∑
i=L+1

H1(| fθ(xi)|), (1)

where the functionH1(·) = max(0, 1− ·) is the classical Hinge Loss (Figure 2, center). The loss
function H1(| · |) for the unlabeled examples can be seen in Figure 1, left. ForC∗ = 0 in (1) we
obtain the standard SVM optimization problem. ForC∗ > 0 we penalize unlabeled data that is
inside the margin. This is equivalent to using the hinge loss on the unlabeled data as well, but where
we assume the label for the unlabeled example isyi = sign( fθ(xi)).

Losses for transduction TSVMs implementing formulation (1) were first introduced in SVM-
Light (Joachims, 1999b). As shown above, it assigns a Hinge LossH1(·) on the labeled examples
(Figure 2, center) and a “Symmetric Hinge Loss”H1(| · |) on the unlabeled examples (Figure 1, left).
More recently, Chapelle and Zien (2005) proposed to handle unlabeled examples with a smooth ver-
sion of this loss (Figure 1, center). While we also use the Hinge Loss for labeled examples, we use
for unlabeled examples a slightly more general form of the Symmetric Hinge Loss, that we allow to
be “non-peaky” (Figure 1, right). Given an unlabeled examplex and using the notationz= fθ(x),
this loss can be written as

z 7→ Rs(z)+Rs(−z)+const.1 , (2)

where−1 < s≤ 0 is a hyper-parameter to be chosen andRs = min(1−s,max(0,1− t)) is what we
call the “Ramp Loss”, a “clipped” version of the Hinge Loss (Figure 2, left).

1. The constant does not affect the optimization problem we will later describe.
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Losses similar to the Ramp Loss have been already used for different purposes, like in the
Doom II algorithm (Mason et al., 2000) or in the context of “Ψ-learning” (Shen et al., 2003). Thes
parameter controls where we clip the Ramp Loss, and as a consequence it also controls the wideness
of the flat part of the loss (2) we use for transduction: whens= 0, this reverts to the Symmetric
HingeH1(| · |). Whens 6= 0, we obtain a non-peaked loss function (Figure 1, right) which can be
viewed as a simplification of Chapelle’s loss function. We call this loss function(2) the “Symmetric
Ramp Loss”.
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Figure 2: The Ramp Loss functionRs(t) = min(1− s,max(0,1− t)) = H1(t)−Hs(t) (left) can be
decomposed into the sum of the convex Hinge Loss (center) and a concave loss (right),
whereHs(t) = max(0,s− t). The parameterscontrols the cutoff point of the usual Hinge
loss.

Training a TSVM using the loss function (2) is equivalent to training an SVM using the Hinge
lossH1(·) for labeled examples, and using the Ramp lossRs(·) for unlabeled examples, where each
unlabeled example appears as two examples labeled with both possible classes. More formally, after
introducing

yi = 1 i ∈ [L+1. . .L+U ]
yi = −1 i ∈ [L+U +1. . .L+2U ]
xi = xi−U i ∈ [L+U +1. . .L+2U ] ,

we can rewrite (1) as

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi)) . (3)

This is the minimization problem we now consider in the rest of the paper.
Balancing constraint One problem with TSVM as stated above is that in high dimensions with
few training examples, it is possible to classify all the unlabeled examples as belonging to only one
of the classes with a very large margin, which leads to poor performance. To cure this problem, one
further constrains the solution by introducing a balancing constraint that ensures the unlabeled data
are assigned to both classes. Joachims (1999b) directly enforces that the fraction of positive and
negatives assigned to the unlabeled data should be the same fraction as found in the labeled data.
Chapelle and Zien (2005) use a similar but slightly relaxed constraint, which we also use in this
work:

1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi . (4)

1690



LARGE SCALE TRANSDUCTIVE SVMS

Concave-Convex Procedure (CCCP) Unfortunately, the TSVM optimization problem as given
above is not convex, and minimizing a non-convex cost function is often considered difficult. Gra-
dient descent techniques, such as conjugate gradient descent or stochastic gradient descent, often
involve delicate hyper-parameters (LeCun et al., 1998). In contrast, convex optimization seems
much more straight-forward. For instance, the SMO algorithm (Platt, 1999) locates the SVM solu-
tion efficiently and reliably.

We propose to solve this non-convex problem using the “Concave-Convex Procedure” (CCCP)
(Yuille and Rangarajan, 2002). The CCCP procedure is closely related tothe “Difference of Con-
vex” (DC) methods that have been developed by the optimization community during the last two
decades (Le Thi, 1994). Such techniques have already been applied for dealing with missing values
in SVMs (Smola et al., 2005), for improving boosting algorithms (Krause and Singer, 2004), and
in the “Ψ-learning” framework (Shen et al., 2003).

Assume that a cost functionJ(θ) can be rewritten as the sum of a convex partJvex(θ) and
a concave partJcav(θ). Each iteration of the CCCP procedure (Algorithm 1) approximates the
concave part by its tangent and minimizes the resulting convex function.

Algorithm 1 : The concave-convex procedure (CCCP)

Initialize θ0 with a best guess.
repeat

θt+1 = argmin
θ

(
Jvex(θ)+J′cav(θ

t) ·θ
)

(5)

until convergence ofθt

One can easily see that the costJ(θt) decreases after each iteration by summing two inequalities
resulting from (5) and from the concavity ofJcav(θ).

Jvex(θ
t+1)+J′cav(θ

t) ·θt+1 ≤ Jvex(θ
t)+J′cav(θ

t) ·θt (6)

Jcav(θ
t+1) ≤ Jcav(θ

t)+J′cav(θ
t) ·
(
θt+1−θt) (7)

The convergence of CCCP has been shown by Yuille and Rangarajan (2002) by refining this argu-
ment. The authors also showed that the CCCP procedure remains valid ifθ is required to satisfy
some linear constraints. Note that no additional hyper-parameters are needed by CCCP. Further-
more, each update (5) is a convex minimization problem and can be solved using classical and
efficient convex algorithms.

CCCP for TSVMs Interestingly, the Ramp Loss can be rewritten as the difference between two
Hinge losses (see Figure 2):

Rs(z) = H1(z)−Hs(z) . (8)

Because of this decomposition, the TSVM minimization problem as stated in (3) is amenable to
CCCP optimization. The costJs(θ) can indeed be decomposed into a convexJs

vex(θ) and concave
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Js
cav(θ) part as follows:

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi))

=
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

H1(yi fθ(xi))

︸ ︷︷ ︸

Js
vex(θ)

−C∗
L+2U

∑
i=L+1

Hs(yi fθ(xi))

︸ ︷︷ ︸

Js
cav(θ)

.

(9)

This decomposition allows us to apply the CCCP procedure as stated in Algorithm1. The convex
optimization problem (5) that constitutes the core of the CCCP algorithm is easily reformulated into
dual variablesα using the standard SVM technique.

After some algebra, we show in Appendix A that enforcing the balancing constraint (4) can be
achieved by introducing an extra Lagrangian variableα0 and an examplex0 implicitely defined by

Φ(x0) =
1
U

L+U

∑
i=L+1

Φ(xi) ,

with labely0 = 1. Thus, if we noteK the kernel matrix such that

Ki j = Φ(xi) ·Φ(x j) ,

the column corresponding to the examplex0 is computed as follow:

Ki0 = K0i =
1
U

L+U

∑
j=L+1

Φ(x j) ·Φ(xi) ∀i . (10)

The computation of this special column can be achieved very efficiently by computing it only once,
or by approximating the sum (10) using an appropriate sampling method.

Given the decomposition of the cost (9) and the trick of the special extra example (10) to enforce
the balancing constraint, we can easily apply Algorithm 1 to TSVMs. To simplifiy the first order
approximation of the concave part in the CCCP procedure (5), we denote

βi = yi
∂Js

cav(θ)

∂ fθ(xi)
=

{
C∗ if yi fθ(xi) < s
0 otherwise

, (11)

for unlabeled examples (that isi ≥ L + 1).2 The concave partJs
cav does not depend on labeled

examples (i ≤ L) so we obviously haveβi = 0 for all i ≤ L. This yields Algorithm 2, after some
standard derivations detailed in Appendix A.

Convergence of Algorithm 2 in finite timet∗ is guaranteed because variableβ can only take
a finite number of distinct values, becauseJ(θt) is decreasing, and because inequality (7) is strict
unlessβ remains unchanged.

2. Note thatJs
cav(·) is non-differentiable atz= s, becauseHs(·) is not. It can be shown that the CCCP remains valid

when using any super-derivative of the concave function. Alternatively, the functionHs(·) could be made smooth in
a small interval[s− ε,s+ ε].
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Algorithm 2 : CCCP for TSVMs

Initialize θ0 = (w0,b0) with a standard SVM solution on the labeled points.

Computeβ0
i =

{
C∗ if yi fθ0(xi) < sandi ≥ L+1
0 otherwise

Setζi = yi for 1≤ i ≤ L+2U andζ0 = 1
L ∑L

i=1yi

repeat
• Solvethe following convex problem ( withKi j = Φ(xi) ·Φ(x j) )

max
α

(

α ·ζ−
1
2

αT K α

)

subject to







α ·1 = 0
0≤ yi αi ≤C ∀1≤ i ≤ L
−βi ≤ yi αi ≤C∗−βi ∀i ≥ L+1

• Computebt+1 using fθt+1(xi) =
L+2U

∑
j=0

αt+1
j Ki j + bt+1 and

∀i ≤ L : 0 < yi αi < C =⇒ yi fθt+1(xi) = 1
∀i > L : −βi < yi αi < C∗−βi =⇒ yi fθt+1(xi) = 1

• Compute βt+1
i =

{
C∗ if yi fθt+1(xi) < s andi ≥ L+1
0 otherwise

until βt+1 = βt

Complexity The main point we want to emphasize in this paper is the advantage in terms of
training time of our method compared to existing approaches. Training a CCCP-TSVM amounts
to solving a series of SVM optimization problems withL +2U variables. Although SVM training
has a worst case complexity ofO ((L+2U)3) it typically scales quadratically (see Joachims, 1999a;
Platt, 1999), and we find this is the case for our TSVM subproblems as well. Assuming a constant
number of iteration steps, the whole optimization of TSVMs with CCCP should scalequadratically
in most practical cases (see Figure 3, Figure 8 and Figure 9). From ourexperience, around five
iteration steps are usually sufficient to reach the minimum, as shown in the experimental section of
this paper, Figure 4.

3. Previous Work

SVMLight-TSVM Like our work, the heuristic optimization algorithm implemented in SVM-
Light (Joachims, 1999b) solves successive SVM optimization problems, but on L +U instead of
L + 2U data points. It improves the objective function by iteratively switching the labels of two
unlabeled pointsxi andx j with ξi + ξ j > 2. It uses two nested loops to optimize a TSVM which
solves a quadratic program in each step. The convergence proof of the inner loop relies on the fact
that there is only a finite number 2U of labelings ofU unlabeled points, even though it is unlikely
that all of them are examined. However, since the heuristic only swaps the labels of two unlabeled
examples at each step in order to enforce the balancing constraint, it might need many iterations to
reach a minimum, which makes it intractable for big data set sizes in practice (cf.Figure 3).
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SVMLight uses annealing heuristics for the selection ofC∗. It begins with a small value ofC∗

(C∗ = 1e−5), and multipliesC∗ by 1.5 on each iteration until it reachesC. The numbers 1e−5 and
1.5 are hard coded into the implementation. On each iteration the tolerance on the gradients is also
changed so as to give more approximate (but faster) solutions on earlier iterations. Again, several
heuristics parameters are hard coded into the implementation.

∇TSVM The∇TSVM of Chapelle and Zien (2005) is optimized by performing gradient descent
in the primal space: minimize

1
2
‖w‖2 +C

L

∑
i=1

H2(yi fθ(xi))+C∗
L+U

∑
i=L+1

H∗(yi fθ(xi)),

whereH2(t) = max(0,1− t)2 and H∗(t) = exp(−3t2) (cf. Figure 1, center). This optimization
problem can be considered a smoothed version of (1).∇TSVM also has similar heuristics forC∗ as
SVMLight-TSVM. It begins with a small value ofC∗ (C∗ = bC), and iteratively increasesC∗ over
l iterations until it finally reachesC. The valuesb = 0.01 andl = 10 are default parameters in the
code available at:http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds.

Since the gradient descent is carried out in the primal, to learn nonlinear functions it is necessary
to perform kernel PCA (Scḧolkopf et al., 1997). The overall algorithm has a time complexity equal
to the square of the number of variables times the complexity of evaluating the cost function. In this
case, evaluating the objective scales linearly in the number of examples, so the overall worst case
complexity of solving the optimization problem for∇TSVM isO ((U +L)3). The KPCA calculation
alone also has a time complexity ofO ((U +L)3). This method also requires one to store the entire
kernel matrix in memory, which clearly becomes infeasible for large data sets.

CS3VM The work of Fung and Mangasarian (2001) is algorithmically the closest TSVM approach
to our proposal. Following the formulation of transductive SVMs found in Bennett and Demiriz
(1998), the authors consider transductive linear SVMs with a 1-norm regularizer, which allow them
to decompose the corresponding loss function as a sum of a linear functionand a concave function.
Bennett proposed the following formulation which is similar to (1): minimize

||w||1 +C
L

∑
i=1

ξi +C∗
U

∑
i=L+1

min(ξi ,ξ∗i )

subject to
yi fθ(xi) ≥ 1−ξi , i = 1, . . . ,L

fθ(xi) ≥ 1−ξi , i = L+1, . . . ,L+U

−(w ·xi +b) ≥ 1−ξ∗i , i = L+1, . . . ,L+U

ξi ≥ 0,ξ∗i ≥ 0.

The last term of the objective function is nonlinear and corresponds to theloss function given in
Figure 1, left. To deal with this, the authors suggest to iteratively approximate the concave part
as a linear function, leading to a series of linear programming problems. This can be viewed as
a simplified subcase of CCCP (a linear function being convex) applied to a special kind of SVM.
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Note also that the algorithm presented in their paper did not implement a balancing constraint for the
labeling of the unlabeled examples as in (4). Our transduction algorithm is nonlinear and the use of
kernels, solving the optimization in the dual, allows for large scale training with high dimensionality
and number of examples.

4. Small Scale Experiments

This section presents small scale experiments appropriate for comparing our algorithm with ex-
isting TSVM approaches. In order to provide a direct comparison with published results, these
experiments use the same setup as (Chapelle and Zien, 2005). All methods usethe standard RBF
kernel,Φ(x) ·Φ(x′) = exp(−γ||x−x′||2).

data set classes dims points labeled
g50c 2 50 500 50
Coil20 20 1024 1440 40
Text 2 7511 1946 50
Uspst 10 256 2007 50

Table 1: Small-Scale Data Sets. We used the same data sets and experimental setup in these exper-
iments as found in Chapelle and Zien (2005).

(number of
Coil20 g50c Text Uspst hyperparameters)

SVM 24.64 8.32 18.86 23.18 2
SVMLight-TSVM 26.26 6.87 7.44 26.46 2
∇TSVM 17.56 5.80 5.71 17.61 2

CCCP-TSVM|s=0
UC∗=LC 16.69 5.62 7.97 16.57 2

CCCP-TSVM|UC∗=LC 16.06 5.04 5.59 16.47 3
CCCP-TSVM 15.92 3.92 4.92 16.45 4

Table 2: Results on Small-Scale Data Sets. We report the best test error over the hyperparameters
of the algorithms, as in the methodology of Chapelle and Zien (2005). SVMLight-TSVM
is the implementation in SVMLight.∇TSVM is the primal gradient descent method of
Chapelle and Zien (2005). CCCP-TSVM|s=0

UC∗=LC reports the results of our method using the
heuristicUC∗ = LC with the Symmetric Hinge Loss, that is withs= 0. We also report
CCCP-TSVM|UC∗=LC where we allow the optimization ofs, and CCCP-TSVM where we
allow the optimization of bothC∗ ands.

Table 1 lists the data sets we have used. Theg50c data set is an artificial data set where the
labels correspond to two Gaussians in a 50-dimensional space. The meansof those Gaussians are
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placed in such a way that the Bayes error is 5%. Thecoil20 data is a set of gray-scale images of 20
different objects taken from different angles, in steps of 5 degrees (S.A.Nene et al., 1996). Thetext
data set consists of the classesmswindows andmac of theNewsgroup20 data set preprocessed as in
Szummer and Jaakkola (2001a). Theuspst data set is the test part of theUSPS hand written digit
data. All data sets are split into ten parts with each part having a small amount of labeled examples
and using the remaining part as unlabeled data.

4.1 Accuracies

Consistent with (Chapelle and Zien, 2005), all hyperparameters are tuned on the test set. Chapelle
and Zien (2005) argue that, in order to perform algorithm comparisons, itis sufficient to be “inter-
ested in the best performance and simply select the parameter values minimizing the test error”.
However we should be more cautious when comparing algorithms that have different sets of hyper-
parameters. For CCCP-TSVMs we have two additional parameters,C∗ ands. Therefore we report
the CCCP-TSVM error rates for three different scenarios:

• CCCP-TSVM, where all four parameters are tuned on the test set.

• CCCP-TSVM|UC∗=LC where we chooseC∗ using a heuristic method. We use heuristicUC∗ =
LC because it decreasesC∗ when the number of unlabeled data increases. Otherwise, for large
enoughU no attention will be paid to minimizing the training error. Further details on this
choice are given in Section 4.3.

• CCCP-TSVM|s=0
UC∗=LC where we chooses= 0 andC∗ using heuristicUC∗ = LC. This setup has

the same free parameters (C andγ) as the competing TSVM implementations, and therefore
provides the most fair comparison.

The results are reported in Table 2. CCCP-TSVM in all three scenarios achieves approximately
the same error rates as∇TSVM and appears to be superior to SVMLight-TSVM. Section 4.3 pro-
vides additional results using different hyperparameter selection strategies and discusses more pre-
cisely the impact of each hyperparameter.

4.2 Training Times

At this point we ask the reader to simply assume that all authors have chosentheir hyperparameter
selection method as well as they could. We now compare the computation times of these three
algorithms.

The CCCP-TSVM algorithm was implemented in C++.3 The successive convex optimizations
are performed using a state-of-the-art SMO implementation. Without furtheroptimization, CCCP-
TSVMs run orders of magnitude faster than SVMLight-TSVMs and∇TSVM.4 Figure 3 shows
the training time ong50c and text for the three methods as we vary the number of unlabeled
examples. For each method we report the training times for the hyperparameters that give optimal
performance as measured on the test set on the first split of the data (we use CCCP-TSVM|s=0

UC∗=LC in
these experiments). Using all 2000 unlabeled data on Text, CCCP-TSVMs are approximately133
times fasterthan SVMLight-TSVM and50 times fasterthan∇TSVM.

3. Source code available athttp://www.kyb.tuebingen.mpg.de/bs/people/fabee/transduction.html.
4. ∇TSVM was implemented by adapting the Matlab LDS code of Chapelle and Zien (2005) available athttp://www.

kyb.tuebingen.mpg.de/bs/people/chapelle/lds.
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Figure 3: Training times forg50c (left) andtext (right) for SVMLight-TSVMs, ∇TSVMs and
CCCP-TSVMs using the best parameters for each algorithm as measured on the test set
in a single trial. For the Text data set, using 2000 unlabeled examples CCCP-TSVMs are
133xfaster than SVMLight-TSVMs, and50x faster than∇TSVMs.
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Figure 4: Value of the objective function and test error during the CCCP iterations of training
TSVM on two data sets (single trial),g50c (left) andtext (right). CCCP-TSVM tends
to converge after only a few iterations.

We expect these differences to increase as the number of unlabeled examples increases further.
In particular,∇TSVM requires the storage of the entire kernel matrix in memory, and is therefore
clearly infeasible for some of the large scale experiments we attempt in Section 5.

Finally, Figure 4 shows the value of the objective function and test error during the CCCP
iterations of training TSVM on two data sets. The CCCP-TSVM objective function converges after
five to ten iterations.
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Figure 5: Computation times for different choices of hyperparameters on data setg50c (first split
only) for the three TSVM implementations tested (top three figures). The bottomtwo
figures show the computation time for all three algorithms with respect to the parameter
C only, where the time is the mean training time taken over the possible values ofγ.
The bottom right figure is a scale up of the bottom left figure, as SVMLight-TSVM is
so slow it hardly appears on the left figure. In general, SVMLight-TSVMcomputation
time appears very sensitive to parameter choices, with small values of C andγ resulting in
computation times around 2250 seconds, whereas large values ofC andγ are much faster.
∇ TSVM has almost the opposite trend on this data set: it is slower for large values ofC
or γ, although even the slowest time is still only around 20 seconds. Our CCCP-TSVM
takes only around 1 second for all parameter choices.

4.3 Hyperparameters

We now discuss in detail how the hyperparametersγ, C, C∗ ands affect the performance of the
TSVM algorithms.

Effect of the parametersγ and C. The parametersγ andC have similar effects on generalization
as in the purely supervised SVM approach (see Keerthi and Lin. (2003) for an empirical study).
However, during model selection, one has to try many choices of parameters. Some algorithms
have different computational behaviour across different parameter choices. Therefore we have stud-
ied how different choices ofC andγ affect the computation times of all three TSVM algorithms.
Figure 5 compares these computation times for theg50c data set. SVMLight-TSVM is particularly
slow for smallγ andC, taking up to 2250 seconds, whereas the other two algorithms are relatively
more stable. In particular, CCCP-TSVM takes only around 1 second for every possible parameter
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choice. This means that during cross validation the CCCP-TSVM speedup over SVMLight-TSVM
is even larger than the 133x speedup observed for the relatively benignchoice of hyperparameters
in Figure 3.

Effect of the parameter C∗ As mentioned before, both SVMLight-TSVM and∇TSVM use an
annealing heuristic for hyperparameterC∗. They start their optimization using a small value ofC∗

and slowly increaseC∗ until it reaches the final desired valueC∗ = C. CCCP-TSVM solves the
optimization problem for the desired value ofC∗ without an annealing heuristic. When one wishes
to avoid optimizingC∗, we suggest the heuristicUC∗ = LC.

Comparing the heuristics C∗ = C and UC∗ = LC Table 3 compares theC∗ = C andUC∗ = LC
heuristics on the small scale data sets. Results are provided for the cases= 0 and the case where
we allow the optimization ofs. Although the heuristicC∗ = C gives reasonable results for small
amounts of unlabeled data, we prefer the heuristicUC∗ = LC. When the number of unlabeled
examplesU becomes large, settingC∗ = C will mean the third term in the objective function (1)
will dominate, resulting in almost no attention being paid to minimizing the training error.In these
experiments the heuristicUC∗ = LC is close to the best possible choice ofC∗, whereasC∗ = C is a
little worse.

We also conducted an experiment to compare these two heuristics for largerunlabeled data sizes
U . We took the sameuspst data set (that is, the test part of the USPS data set) and we increased
the number of unlabeled examples by adding up to 6000 additional unlabeled examples taken from
the original USPS training set. Figure 6 reports the best test error for both heuristics over possible
choices ofγ andC, taking the mean of the same 10 training splits with 50 labeled examples as
before. The results indicate thatC∗ = C works poorly for largeU .

(number of
Coil20 g50c Text Uspst hyperparameters)

CCCP-TSVM|s=0
C∗=C 22.33 4.68 7.76 20.09 2

CCCP-TSVM|s=0
UC∗=LC 16.69 5.62 7.97 16.57 2

CCCP-TSVM|s=0 16.67 4.56 7.76 16.55 3
CCCP-TSVM|C∗=C 19.02 4.28 5.22 18.33 3
CCCP-TSVM|UC∗=LC 16.06 5.04 5.59 16.47 3
CCCP-TSVM 15.92 3.92 4.92 16.45 4

Table 3: Comparison ofC∗ = C andC∗ = L
U C heuristics on on Small-Scale Data Sets with the

best optimized value ofC∗ (CCCP-TSVM|s=0 or CCCP-TSVM, depending on whethers
is fixed). The heuristicC∗ = L

U C maintains the balance between unlabeled pointsU and
labeled pointsL asU andL change, and is close to the best possible choice ofC∗. The
C∗ = C heuristic also works for relatively small values ofU as in this case. We report all
methods with and without the optimization ofs.

Iteratively increasing C∗ — Iteratively increasingC∗ during the optimization can be interpreted as
starting from a convex problem (C∗ = 0) and gradually making it more non-convex, which may be a
good strategy to solve such non-convex problems. However, we believethat the annealing procedure

1699



COLLOBERT, SINZ , WESTON AND BOTTOU

1000 2000 3000 4000 5000 6000
15

16

17

18

19

20

21

22

Number of unlabeled examples

Te
st

 E
rr

or

CCCP−TSVM
C

*
=C,s=0

CCCP−TSVM
LC

*
=UC,s=0

Figure 6: Comparison of theC∗ = C andUC∗ = LC heuristics on theuspst data set as we increase
the number of unlabeled examples by adding extra unlabeled data from the original usps
training set. We report the best test error for both heuristics over possible of choices ofγ
andC, taking the mean of the same 10 training splits with 50 labeled examples as before.
As the number of unlabeled examples increases, theC∗ = C heuristic gives too much
weight to the unlabeled data, resulting in no improvement in performance. Intuitively, the
UC∗ = LC heuristic balances the weight of the unlabeled and labeled data and empirically
performs better.

also has a regularizing effect. The optimization is more likely to get stuck in a local minimum that
appears whenC∗ has a value much smaller thanC. This may be why theC∗ = C heuristic works
well for algorithms that also use the annealing trick.

We conducted an experiment to see the performance of SVMLight-TSVM withand without the
annealing heuristic. Ong50c, we chose a linear kernel and computed the optimal value ofC on the
test set usingC∗ = C. With the annealing heuristic, we obtain a test error of 7.6%. For the same
parameters without the annealing procedure, we obtain 12.4%. Clearly the annealing heuristic has
a strong effect on the results of SVMLight-TSVM. CCCP-TSVM has no such heuristic.

Effect of the parameters The parameters in CCCP-TSVM controls the choice of loss function to
minimize over. It controls the size of the plateau of the Symmetric Ramp function (Figure 1, right).
Training our algorithm with a tuned value ofs appears to give slightly improved results over using
the Symmetric Hinge loss (s= 0, see Figure 1, left), especially on thetext data set, as can be seen
in Tables 2 and 3. Furthermore, Figure 7 highlights the importance of the parameters of the loss
function (2) by showing the best test error over different choices ofs for two data sets,text and
g50c.

We conjecture that the peaked loss of the Symmetric Hinge function forces early decisions for
theβ variables and might lead to a poor local optimum. This effect then disappearsas soon as we
clip the loss. That is, the flat part of the loss far inside the margin prevents our algorithm from
making erroneous early decisions regarding the labels of the unlabeled data that may be hard to
undo later in the optimization.
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Figure 7: Effect of the parametersof the Symmetric Ramp loss (see Figure 1 and equation (2) ) on
thetext data set (left) and theg50c data set (right). The peaked loss of the Symmetric
Hinge function (s= 0) forces early decisions for theβ variables and might lead to a poor
local optimum. This effect then disappears as soon as we clip the loss.

In fact, the∇TSVMauthors make a similar argument to explain why they prefer their algorithm
over SVMLight: “(SVMLight) TSVM might suffer from the combinatorial nature of its approach.
By deciding, from the very first step, the putative label of every point (even with low confidence), it
may lose important degrees of freedom at an early stage and get trapped in a bad local minimum”.

Here, the authors are refering to the way SVMLight TSVM has a discrete rather than continuous
approach of assigning labels to unlabeled data. However, we think that thesmoothed loss function
of ∇TSVM may help it to outperform the Symmetric Hinge loss of SVMLight TSVM, making it
similar to the clipped loss when we uses< 0. Indeed, the∇TSVM smoothed loss, exp(−3t2), has
small gradients whent is close to 0.

A potential issue of the Symmetric Ramp loss is the fact that the gradient is exactly0 for points
lying on the plateau. Points are not updated at all in this region. This may be sub-optimal: if we are
unlucky enough that all unlabeled points lie in this region, we perform no updates at all. Performing
model selection on parameters eliminates this problem. Alternatively, we could use a piece-wise
linear loss with two different slopes for| f (x)| > s and for | f (x)| < s. Although it is possible to
optimize such a loss function using CCCP, we have not evaluated this approach.

5. Large Scale Experiments

In this section, we provide experimental results on large scale experiments.Since other methods are
intractable on such data sets, we only compare CCCP-TSVM against SVMs.

5.1 RCV1 Experiments

The first large scale experiment that we conducted was to separate the twolargest top-level cate-
gories CCAT (CORPORATE/INDUSTRIAL) and GCAT (GOVERNMENT/SOCIAL) of the training part
of the Reuters data set as prepared by Lewis et al. (2004). The set ofthese two categories consists
of 17754 documents. The features are constructed using the bag of words technique, weighted with
a TF.IDF scheme and normalized to length one. We performed experiments using 100 and 1000 la-
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Method Train Unlabeled Parameters Test
size size Error

SVM 100 0 C = 252.97, σ = 15.81 16.61%
TSVM 100 500 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.99%
TSVM 100 1000 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.67%
TSVM 100 2000 C = 2.597,C∗ = 10, s= −0.2, σ = 3.95 11.47%
TSVM 100 5000 C = 2.597,C∗ = 2.5297, s= −0.2, σ = 3.95 10.65%
TSVM 100 10000 C = 2.597,C∗ = 2.5297, s= −0.4, σ = 3.95 10.64%
SVM 1000 0 C = 25.297, σ = 7.91 11.04%

TSVM 1000 500 C = 2.597,C∗ = 10, s= −0.4, σ = 3.95 11.09%
TSVM 1000 1000 C = 2.597,C∗ = 2.5297, s= −0.4, σ = 3.95 11.06%
TSVM 1000 2000 C = 2.597,C∗ = 10, s−0.4 =, σ = 3.95 10.77%
TSVM 1000 5000 C = 2.597,C∗ = 2.5297, s= −0.2, σ = 3.95 10.81%
TSVM 1000 10000 C = 2.597,C∗ = 25.2970, s= −0.4, σ = 3.95 10.72%

Table 4: Comparing CCCP-TSVMs with SVMs on the RCV1 problem for different number of
labeled and unlabeled examples. See text for details.

beled examples. For model selection we use a validation set with 2000 and 4000 labeled examples
for the two experiments. The remaining 12754 examples were used as a test set.

We chose the parameterC and the kernel parameterγ (using an RBF kernel) that gave the best
performance on the validation set. This was done by training a TSVM using thevalidation set as
the unlabeled data. These values were then fixed for every experiment.

We then varied the number of unlabeled examplesU , and reported the test error for each choice
of U . In each case we performed model selection to find the parametersC∗ ands. A selection of the
results can be seen in Table 4.

The best result we obtained for 1000 training points was 10.58% test error, when using 10500
unlabeled points, and for 100 training points was 10.42% when using 9500 unlabeled points. Com-
pared to the best performance of an SVM of 11.04% for the former and 16.61% for the latter,
this shows that unlabeled data can improve the results on this problem. This is especially true in
the case of few training examples, where the improvement in test error is around 5.5%. However,
when enough training data is available to the algorithm, the improvement is only in theorder of one
percent.

Figure 8 shows the training time of CCCP optimization as a function of the number ofunlabeled
examples. On a 64 bit Opteron processor the optimization time for 12500 unlabeled examples was
approximately 18 minutes using the 1000 training examples and 69 minutes using 100 training
examples. Although the worst case complexity of SVMs is cubic and the optimization time seems
to be dependent on the ratio of the number of labeled to unlabeled examples, the training times show
a quadratic trend.
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Figure 8: Optimization time for the Reuters data set as a function of the number ofunlabeled data.
The algorithm was trained on 1,000 points (left) and on 100 points (right). The dashed
lines represent a parabola fitted at the time measurements.

Method Training Unlabeled Parameters Test
size size Error

SVM 100 0 C = 10,γ = 0.0128 23.44%
TSVM 100 2000 C∗ = 1, s= −0.1 16.81%
SVM 1000 0 C = 10,γ = 0.0128 7.77%

TSVM 1000 2000 C∗ = 5, s= −0.1 7.13%
TSVM 1000 5000 C∗ = 1, s= −0.1 6.28%
TSVM 1000 10000 C∗ = 0.5, s= −0.1 5.65%
TSVM 1000 20000 C∗ = 0.3, s= −0.1 5.43%
TSVM 1000 40000 C∗ = 0.2, s= −0.1 5.31%
TSVM 1000 60000 C∗ = 0.1, s= −0.1 5.38%

Table 5: Comparing CCCP-TSVMs with SVMs on the MNIST problem for different number of
labeled and unlabeled examples. See text for details.

5.2 MNIST Experiments

In the second large scale experiment, we conducted experiments on the MNIST handwritten digit
database, as a 10-class problem. The original data has 60,000 training examples and 10,000 testing
examples. We subsampled the training set for labeled points, and used the test set for unlabeled
examples (or the test set plus remainder of the training set when using more than 10,000 unlabeled
examples). We performed experiments using 100 and 1000 labeled examples. We performed model
selection for 1-vs-the-rest SVMs by trying a grid of values forσ andC, and selecting the best ones by
using a separate validation set of size 1000. For TSVMs, for efficiencyreasons we fixed the values
of σ andC to be the same ones as chosen for SVMs. We then performed model selectionusing
2000 unlabeled examples to find the best choices ofC∗ ands using the validation set. When using
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Figure 9: Optimization time for the MNIST data set as a function of the number of unlabeled data.
The algorithm was trained on 1,000 labeled examples and up to 60,000 unlabeled exam-
ples. The dashed lines represent a polynomial of degree two with a least square fit on the
algorithm’s time measurements.

more unlabeled data, we only reperformed model selection onC∗ as it appeared that this parameter
was the most sensitive to changes in the unlabeled set, and kept the other parameters fixed. For the
larger labeled set we took 2000, 5000, 10000, 20000, 40000 and 60000 unlabeled examples. We
always measure the error rate on the complete test set. The test error rateand parameter choices for
each experiment are given in the Table 5, and the training times are given in Figure 9.

The results show an improvement over SVM for CCCP-TSVMs which increases steadily as the
number of unlabeled examples increases. Most experiments in semi-supervised learning only use
a few labeled examples and do not use as many unlabeled examples as described here. It is thus
reassuring to know that these methods do not apply just to toy examples with around 50 training
points, and that gains are still possible with more realistic data set sizes.

6. Discussion and Conclusions

TSVMs are not the only means of using unlabeled data to improve generalization performance on
classification tasks. In the following we discuss some competing algorithms for utilizing unlabeled
data, and also discuss the differences between the transductive and semi-supervised learning frame-
works. Finally, we conclude with some closing remarks.

6.1 Cluster Kernels and Manifold-Learning

Transductive SVMs are not the only method of leveraging unlabeled data ina supervised learning
task. In recent years this has become a popular research topic, and a battery of techniques have
been proposed. One popular class of methods, which we refer to as cluster kernels, do not change
the learning algorithm at all, but merely the representation of the data as a pre-processing step. In
a purely unsupervised fashion, these methods learn cluster or manifold structure from the data, and
produce a new representation of it such that distances between points in the new space are small if
they are in the same cluster or on the same manifold. Some of the main methods include(Chapelle

1704



LARGE SCALE TRANSDUCTIVE SVMS

et al., 2002; Chapelle and Zien, 2005; Sindhwani et al., 2005; Szummer and Jaakkola, 2001b); and
(Weston et al., 2003).

Other notable methods include generalizations of nearest-neighbor or Parzen window type ap-
proaches to learning manifolds given labeled data (Zhu et al., 2003; Belkinand Niyogi, 2002; Zhou
et al., 2004). Finally, Bayesian approaches have also been pursued (Graepel et al., 2000; Lawrence
and Jordan, 2005).

We note that some cluster kernel methods (Chapelle and Zien, 2005) can perform significantly
better than TSVM on some data sets. In fact, Chapelle and Zien (2005) showthat, as these methods
provide a new representation, one can just as easily run TSVM on the newrepresentation. The
combination of TSVM and cluster kernels then provides state-of-the-art results.

6.2 Semi-Supervised Versus Transductive Learning

From a theoretical point of view, there is much ideological debate over which underlying theory that
explains TSVM is correct. The argument here is largely about which framework, semi-supervised
learning or transductive, is interesting to study theoretically or to apply practically.

Semi-supervised school The majority of researchers appear to be in thesemi-supervisedschool
of thought, which claims that TSVMs help simply because of a regularizer thatreflects prior knowl-
edge, see e.g. (Chapelle and Zien, 2005). That is, one is given a set of unlabeled data, and one uses
it to improve an inductive classifier to improve its generalization on an unseen test set.

Transductive school Vapnik (1982) describestransductionas a mathematical setup for describing
learning algorithms that benefit from the prior knowledge of the unlabeled test patterns. Vapnik
claims that transduction is an essentially easier task than first learning a general inductive rule
and then applying it to the test examples. Transductive bounds address the performance of the
trained system on these test patterns only. They do not apply to test patterns that were not given
to the algorithm in the first place. As a consequence, transductive boundsare purely derived from
combinatorial arguments (Vapnik, 1982) and are more easily made data-dependent (Bottou et al.,
1994; Derbeko et al., 2004). Whether this is a fundamental property or atechnical issue is a matter
of debate.

Experiments The following experiments attempt to determine whether the benefits of TSVMs are
solelycaused by the prior knowledge represented by the distribution of the unlabeled data. If this is
the case, the accuracy should not depend on the presence of the actual test patterns in the unlabeled
data.

The following experiments consider three distinct subsets: a small labeled training set and two
equally sized sets of unlabeled examples. Generalization accuracies are always measured on the
third set. On the other hand, we run CCCP-TSVM using either the second orthe third set as
unlabeled data. We respectively name these results “Semi-Supervised TSVM” and “Transductive
TSVM”. Experiments were carried out on both the Text and MNIST data set (class 8 vs rest) using
ten splits. For Text, we fixed to a linear kernel,C = 1000, ands= −0.3. For MNIST-8 we fixed
γ = 0.0128 andC = 10. We report the best test error over possible values ofC∗. Table 6 shows that
transductive TSVMs perform slightly better than semi-supervised TSVMs on these data sets.

Transductive TSVMs are only feasible when the test patterns are knownbefore training. In that
sense, its applicability is more limited than that of Semi-Supervised TSVMs. On the other hand,
when the test and training data are not identically distributed, we believe the concept of transduction
could be particularly worthwhile.

1705



COLLOBERT, SINZ , WESTON AND BOTTOU

Text MNIST-8
SVM 18.86% 6.68%
semi-supervised TSVM 6.60% 5.27%
transductive TSVM 6.12% 4.87%

Table 6: Transductive TSVM versus Semi-Supervised TSVM.

6.3 Conclusion and Future Directions

In this article we have described an algorithm for TSVMs using CCCP that brings scalability im-
provements over existing implementation approaches. It involves the iterativesolving of standard
dual SVM QP problems, and usually requires just a few iterations. One nicething about being an
extension of standard SVM training is that any improvements in SVM scalability can immediately
also be applied to TSVMs. For example in the linear case, one could easily apply fast linear SVM
training such as in (Keerthi and DeCoste, 2005) to produce very fast linear TSVMs. For the non-
linear case, one could apply the online SVM training scheme of Bordes et al.(2005) to give a fast
online transductive learning procedure.
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Appendix A. Derivation of the Optimization Problem

We consider a set ofL training pairsL = {(x1,y1), . . . ,(xL,yL)}, x ∈ R
n, y∈ {1,−1} and a (un-

labeled) set ofU test vectorsU = {xL+1, . . . ,xL+U}. SVMs have a decision functionfθ(.) of the
form

fθ(x) = w·Φ(x)+b,

whereθ = (w, b) are the parameters of the model, andΦ(·) is the chosen feature map.
We are interested in minimizing the TSVM cost function (3), under the constraint (4). We

rewrite the problem here for convenience: minimizing

Js(θ) =
1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

Rs(yi fθ(xi)) , (12)

under the constraint
1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi . (13)

Assume that a cost functionJ(θ) can be rewritten as the sum of a convex partJvex(θ) and a
concave partJcav(θ). As mentioned above in Algorithm 1, the minimization ofJ(θ) with respect to
θ (θ being possibly restricted to a spaceA defined by some linear constraints) can be achieved by
iteratively updating the parametersθ using the following update

θt+1 = argmin
θ∈A

(
Jvex(θ)+J′cav(θ

t) ·θ
)

. (14)
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In the case of our cost (12), we showed (see (9)) thatJs(θ) can be decomposed into the sum of
Js

vex(θ) andJs
cav(θ) where

Js
vex(θ) =

1
2
‖w‖2 +C

L

∑
i=1

H1(yi fθ(xi))+C∗
L+2U

∑
i=L+1

H1(yi fθ(xi)) (15)

and

Js
cav(θ) = −C∗

L+2U

∑
i=L+1

Hs(yi fθ(xi)) . (16)

In order to apply the CCCP update (14) we first have to calculate the derivative of the concave
part (16) with respect toθ:

∂Js
cav(θ)

∂θ
= −C∗

L+2U

∑
i=L+1

∂Js
cav(θ)

∂ fθ(xi)

∂ fθ(xi)

∂θ

We introduce the notation

βi = yi
∂Js

cav(θ)

∂ fθ(xi)

=

{
C∗H ′

s[yi fθ(xi)] if i ≥ L+1
0 otherwise

=

{
C∗ if yi fθ(xi) < s andi ≥ L+1
0 otherwise

.

Since fθ(xi) = w ·Φ(xi)+ b with θ = (w,b), and∂ fθ(xi)/∂θ = (Φ(xi),1), each update (14)
of the CCCP procedure applied to the our minimization problem (12) consists in minimizing the
following cost

Js
vex(θ)+

∂Js
cav(θ)

∂θ
·θ = Js

vex(θ)+

(
L+2U

∑
i=L+1

yi βi
∂ fθ(xi)

∂θ

)

·θ

= Js
vex(θ)+

L+2U

∑
i=L+1

βi yi [w ·Φ(xi)+b] ,

(17)

under the linear constraint (13).
The convex part (16) contains Hinge Losses which can be rewritten as

H1(z) = max(0, 1−z) = minξ s.t ξ ≥ 0, ξ ≥ 1−z.

It is thus easy to see that the minimization of (17) under the constraint (13) is equivalent to the
following quadratic minimization problem under constraints:

argmin
θ,ξ

1
2
||w||2 +C

L

∑
i=1

ξi +C∗
L+2U

∑
i=L+1

ξi +
L+2U

∑
i=L+1

βi yi fθ(xi)

s.t.
1
U

L+U

∑
i=L+1

fθ(xi) =
1
L

L

∑
i=1

yi (18)

yi fθ(xi) ≥ 1−ξi ∀1≤ i ≤ L+2U (19)

ξi ≥ 0 ∀1≤ i ≤ L+2U (20)
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Introducing Lagrangian variablesα0, α andν corresponding respectively to constraints (18), (19)
and (20), we can write the Lagrangian of this problem as

L (θ, ξ, α,ν) =
1
2
||w||2 +C

L

∑
i=1

ξi +C∗
L+2U

∑
i=L+1

ξi +
L+2U

∑
i=L+1

βi yi fθ(xi)

−α0

(

1
U

L+U

∑
i=L+1

fθ(xi)−
1
L

L

∑
i=1

yi

)

−
L+2U

∑
i=1

αi (yi fθ(xi)−1+ξi)

−
L+2U

∑
i=1

νiξi ,

(21)

whereα0 can be positive or negative (equality constraint) andαi , i ≥ 1 are non-negative (inequality
constraints).

Taking into account thatβi = 0 for i ≤ L, calculating the derivatives with respect to the primal
variables yields

∂L
∂w

= w−
L+2U

∑
i=1

yi (αi −βi)Φ(xi)−
α0

U

L+U

∑
i=L+1

Φ(xi)

∂L
∂b

= −
L+2U

∑
i=1

yi (αi −βi)−α0

∂L
∂ξi

= C−αi −νi ∀1≤ i ≤ L

∂L
∂ξi

= C∗−αi −νi ∀L+1≤ i ≤ L+2U .

For simplifying the notation, we now define an extra special examplex0 in an implicit manner:

Φ(x0) =
1
U

L+U

∑
i=L+1

Φ(xi) ,

and we sety0 = 1 andβ0 = 0. Setting the derivatives to zero gives us

w =
L+2U

∑
i=0

yi (αi −βi)Φ(xi) (22)

and
L+2U

∑
i=0

yi (αi −βi) = 0 (23)

and also
C−αi −νi = 0 ∀1≤ i ≤ L, C∗−αi −νi ∀L+1≤ i ≤ L+2U . (24)

In order to find the minimum of the minimization problem (12) we want to find a saddlepoint
of the Lagrangian (21), as in classical SVMs methods. Substituting (22), (23) and (24) into the
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Lagrangian (21) yields the following maximization problem

argmax
α

−
1
2

L+2U

∑
i, j=0

yi y j(αi −βi)(α j −β j)Φ(xi) ·Φ(x j)

+
L+2U

∑
i=1

αi +α0

(

1
L

L

∑
i=1

yi

) (25)

under the constraints
0≤ αi ≤C ∀1≤ i ≤ L

0≤ αi ≤C∗ ∀L+1≤ i ≤ L+2U
∑L+2U

i=0 yi (αi −βi) = 0.

(26)

The parameterw is then given by (22) andb is obtained using one of the following Karush-Kuhn-
Tucker (KKT) conditions:

α0 6= 0 =⇒
1
U

L+U

∑
i=L+1

[w ·Φ(xi)+b] =
1
L

L

∑
i=1

yi

∀1≤ i ≤ L, 0 < αi < C =⇒ yi [w ·Φ(xi)+b] = 1

∀L+1≤ i ≤ L+2U, 0 < αi < C∗ =⇒ yi [w ·Φ(xi)+b] = 1

If we defineζi = yi for 1≤ i ≤ L+2U andζ0 = 1
L ∑L

i=1yi , and consider the kernel matrixK such
that

Ki j = Φ(xi) ·Φ(x j) ,

and we perform the substitution
α̃i = yi (αi −βi) ,

then we can rewrite the maximization problem (25) under the constraints (26) as the following

argmax
α̃

ζ · α̃−
1
2

α̃TKα̃

under the constraints

0≤ yi α̃i ≤C ∀1≤ i ≤ L

−βi ≤ yi α̃i ≤C∗−βi ∀L+1≤ i ≤ L+2U (27)

∑L+2U
i=0 α̃i = 0.

Obviously this optimization problem is very close to an SVM optimization problem. It isthus
possible to optimize it with a standard optimizer for SVMs. Note that only the bounds in (27) on
theα̃i have to be adjusted after each update ofβ.
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Abstract
Receiver Operating Characteristic (ROC) curves are a standard way to display the performance

of a set of binary classifiers for all feasible ratios of the costs associated with false positives and
false negatives. For linear classifiers, the set of classifiers is typically obtained by training once,
holding constant the estimated slope and then varying the intercept to obtain a parameterized set
of classifiers whose performances can be plotted in the ROC plane. We consider the alternative of
varying the asymmetry of the cost function used for training. We show that the ROC curve obtained
by varying both the intercept and the asymmetry, and hence the slope, always outperforms the ROC
curve obtained by varying only the intercept. In addition, we present a path-following algorithm for
the support vector machine (SVM) that can compute efficiently the entire ROC curve, and that has
the same computational complexity as training a single classifier. Finally, we provide a theoretical
analysis of the relationship between the asymmetric cost model assumed when training a classifier
and the cost model assumed in applying the classifier. In particular, we show that the mismatch
between the step function used for testing and its convex upper bounds, usually used for training,
leads to a provable and quantifiable difference around extreme asymmetries.

Keywords: support vector machines, receiver operating characteristic (ROC) analysis, linear clas-
sification

1. Introduction

Receiver Operating Characteristic (ROC) analysis has seen increasing attention in the recent statis-
tics and machine-learning literature (Pepe, 2000; Provost and Fawcett, 2001; Flach, 2003). The
ROC is a representation of choice for displaying the performance of a classifier when the costs as-
signed by end users to false positives and false negatives are not known at the time of training. For
example, when training a classifier for identifying cases of undesirable unsolicited email, end users
may have different preferences about the likelihood of a false negative and false positive. The ROC
curve for such a classifier reveals the ratio of false negatives and positives at different probability
thresholds for classifying an email message as unsolicited or normal email.

In this paper, we consider linear binary classification of points in an Euclidean space—noting
that it can be extended in a straightforward manner to non-linear classification problems by using

c©2006 Francis R. Bach, David Heckerman and Eric Horvitz.
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Mercer kernels (Schölkopf and Smola, 2002). That is, given data x ∈ R
d , d > 1, we consider

classifiers of the form f (x) = sign(w>x + b), where w ∈ R
d and b ∈ R are referred to as the slope

and the intercept. To date, ROC curves have been usually constructed by training once, holding
constant the estimated slope and varying the intercept to obtain the curve. In this paper, we show
that, while that procedure appears to be the most practical thing to do, it may lead to classifiers with
poor performance in some parts of the ROC curve.

The crux of our approach is that we allow the asymmetry of the cost function to vary, that is,
we vary the ratio of the cost of a false positive and the cost of a false negative. For each value
of the ratio, we obtain a different slope and intercept, each optimized for this ratio. In a naive
implementation, varying the asymmetry would require a retraining of the classifier for each point of
the ROC curve, which would be computationally expensive. In Section 3.1, we present an algorithm
that can compute the solution of a support vector machine (SVM) (see, for example, Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004) for all possible costs of false positives and
false negatives, with the same computational complexity as obtaining the solution for only one cost
function. The algorithm extends to asymmetric costs the algorithm of Hastie et al. (2005) and is
based on path-following techniques that take advantage of the piecewise linearity of the path of
optimal solutions. In Section 3.2, we show how the path-following algorithm can be used to obtain
ROC curves. In particular, by allowing both the asymmetry and the intercept to vary, we can obtain
better ROC curves than by methods that simply vary the intercept.

In Section 4, we provide a theoretical analysis of the relationship between the asymmetry of
costs assumed in training a classifier and the asymmetry desired in its application. In particular, we
show that, even in the population (i.e., infinite sample) case, the use of a training loss function which
is a convex upper bound on the true or testing loss function (a step function) creates classifiers with
sub-optimal accuracy. We quantify this problem around extreme asymmetries for several classical
convex-upper-bound loss functions, including the square loss and the erf loss, an approximation of
the logistic loss based on normal cumulative distribution functions (also referred to as the “error
function,” and usually abbreviated as erf). The analysis is carried through for Gaussian and mixture
of Gaussian class-conditional distributions (see Section 4 for more details). The main result of this
analysis is that given an extreme user-defined testing asymmetry, the training asymmetry should
almost always be chosen to be less extreme.

As we shall see, the consequences of the potential mismatch between the cost functions as-
sumed in testing versus training underscore the value of using the algorithm that we introduce in
Section 4.3. Even when costs are known (i.e., when only one point on the ROC curve is needed),
the classifier resulting from our approach, which builds the entire ROC curve, is never less accurate
and can be more accurate than one trained with the known costs using a convex-upper-bound loss
function. Indeed, we show in Section 4.3 that computing the entire ROC curve using our algorithm
can lead to substantial gains over simply training once.

The paper is organized as follows: In Section 2, we give an introduction to the linear classifica-
tion problem and review the ROC framework. Section 3 contains the algorithmic part of the paper,
while Section 4 provide a theoretical analysis of the discrepancy between testing and training asym-
metries, together with empirical results. This paper is an extended version of previously published
work (Bach et al., 2005a).
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2. Problem Overview

Given data x∈R
d and labels y∈{−1,1}, we consider linear classifiers of the form f (x) = sign(w>x+

b), where w is the slope of the classifier and b the intercept. A classifier is determined by the pa-
rameters (w,b) ∈ R

d+1. In Section 2.1, we introduce notation and definitions; in Section 2.2, we lay
out the necessary concepts of ROC analysis, while in Section 2.3, we describe how these classifiers
and ROC curves are typically obtained from data.

2.1 Asymmetric Cost and Loss Functions

Positive (resp. negative) examples are those for which y = 1 (resp. y = −1). The two types of
misclassification, false positives and false negatives, are assigned two different costs. We let C+

denote the cost of a false negative and C− the cost of a false positive. The total expected cost is
equal to

R(C+,C−,w,b) = C+P{w>x+b < 0, y = 1}+C−P{w>x+b > 0, y = −1}.

In the context of large margin classifiers (see, for example, Bartlett et al., 2004), the expected cost
is usually expressed in terms of the 0–1 loss function; indeed, if we let φ0−1(u) = 1u<0 be the 0–1
loss, we can write the expected cost as

R(C+,C−,w,b) = C+E{1y=1φ0−1(w
>x+b)}+C−E{1y=−1φ0−1(−w>x−b)},

where E denotes the expectation with respect to the joint distribution of (x,y).
The expected cost defined using the 0–1 loss is the cost that end users are usually interested in

during the use of the classifier, while the other cost functions that we define below are used solely
for training purposes. The convexity of these cost functions makes learning algorithms convergent
without local minima, and leads to attractive asymptotic properties (Bartlett et al., 2004).

A traditional set-up for learning linear classifiers from labeled data is to consider a convex upper
bound φ on the 0–1 loss φ0−1, and to use the expected φ-cost:

Rφ(C+,C−,w,b) = C+E{1y=1φ(w>x+b)}+C−E{1y=−1φ(−w>x−b)}.

We refer to the ratio C+/(C− +C+) as the asymmetry. We shall use training asymmetry to refer to
the asymmetry used for training a classifier using a φ-cost, and the testing asymmetry to refer to the
asymmetric cost characterizing the testing situation (reflecting end user preferences) with the actual
cost based on the 0–1 loss. In Section 4, we will show that these may be different in the general
case.

We shall consider several common loss functions. Some of the loss functions (square loss,
hinge loss) lead to attractive computational properties, while others (square loss, erf loss) are more
amenable to theoretical manipulations (see Figure 1 for the plot of the loss functions, as they are
commonly used and defined below1):

• square loss : φsq(u) = 1
2(u−1)2; the classifier is equivalent to linear regression on y,

• hinge loss : φhi(u) = max{1− u,0}; the classifier is the support vector machine (Shawe-
Taylor and Cristianini, 2004),

1. Note that by rescaling, each of these loss functions can be made to be an upper bound on the 0–1 loss which is tight
at zero.
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Figure 1: Loss functions. Left: plain: 0–1 loss; dotted: hinge loss, dashed: erf loss, dash-dotted:
square loss. Right: plain: 0–1 loss, dotted: probit loss, dashed: logistic loss.

• erf loss : φer f (u) = [uψ(u)−u+ψ′ (u)], where ψ is the cumulative distribution of the stan-
dard normal distribution, that is : ψ(v) = 1√

2π

R v
−∞ e−t2/2dt, and ψ′(v) = 1√

2π e−v2/2. The erf

loss can be used to provide a good approximation of the logistic loss φlog(u) = log(1 + e−u)
as well as its derivative, and is amenable to closed-form computations for Gaussians and mix-
ture of Gaussians (see Section 4 for more details). Note that the erf loss is different from the
probit loss − logψ(u), which leads to probit regression (Hastie et al., 2001).

2.2 ROC Analysis

The aim of ROC analysis is to display in a single graph the performance of classifiers for all possible
costs of misclassification. In this paper, we consider sets of classifiers fγ(x), parameterized by a
variable γ ∈ R (γ can either be the intercept or the training asymmetry).

For a classifier f (x), we can define a point (u,v) in the “ROC plane,” where u is the proportion
of false positives u = P( f (x) = 1|y = −1), and v is the proportion of true positives v = P( f (x) =
1|y = 1). When γ is varied, we obtain a curve in the ROC plane, the ROC curve (see Figure 2 for
an example). Whether γ is the intercept or the training asymmetry, the ROC curve always passes
through the point (0,0) and (1,1), which corresponds to classifying all points as negative (resp.
positive).

The upper convex envelope of the curve is the set of optimal ROC points that can be achieved by
the set of classifiers; indeed, if a point in the envelope is not one of the original points, it must lie in
a segment between two points (u(γ0),v(γ0)) and (u(γ1),v(γ1)), and all points in a segment between
two classifiers can always be attained by choosing randomly between the two classifiers. Note that
this classifier itself is not a linear classifier; its performance, defined by given true positive and false
positive rates, can only be achieved by a mixture of two linear classifiers. However, if the user is
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Figure 2: Left: ROC curve: (plain) regular ROC curve; (dashed) convex envelope. The points a
and c are ROC-consistent and the point b is ROC-inconsistent. Right: ROC curve and
dashed equi-cost lines: All lines have direction (p+C+, p−C−), the plain line is optimal
and the point “a” is the optimal classifier.

only interested in the testing cost, which is a weighted linear combination of the true positive and
false positive rates, the lowest testing cost is always achieved by both of these two classifiers (see
Section 4.3 for an example of such a situation).

Denoting p+ = P(y = 1) and p− = P(y = −1), the expected (C+,C−)-cost for a classifier (u,v)
in the ROC space, is simply p+C+(1− v)+ p−C−u, and thus optimal classifiers for the (C+,C−)-
cost can be found by looking at lines of slope that are normal to the direction (p−C−,−p+C+),
which intersects the ROC curve and are as close as the point (0,1) as possible (see Figure 2).

A point (u(γ),v(γ)) is said to be ROC-consistent if it lies on the upper convex envelope; In this
case, the tangent direction (du/dγ,dv/dγ) defines a cost (C+(γ),C−(γ)) for which the classifier is
optimal (for the testing cost, which is defined using the 0–1 loss). The condition introduced earlier,
namely that (du/dγ,dv/dγ) is normal to the direction (p−C−,−p+C+), leads to:

p−C−
du
dγ

(γ)− p+C+
dv
dγ

(γ) = 0.

The optimal testing asymmetry β(γ) defined as the ratio C+(γ)
C+(γ)+C−(γ) , is thus equal to

β(γ) ,
C+(γ)

C+(γ)+C−(γ)
=

1

1+ p+

p−
dv
dγ (γ)/

du
dγ (γ)

. (1)

If a point (u(γ),v(γ)) is ROC-inconsistent, then the quantity β(γ) has no meaning, and such a
classifier is generally useless, because, for all settings of the misclassification cost, that classifier can
be outperformed by the other classifiers or a combination of classifiers. See Figure 2 for examples
of ROC-consistent and ROC-inconsistent points.

In Section 4, we relate the optimal asymmetry of cost in the testing or eventual use of a classifier
in the real world, to the asymmetry of cost used to train that classifier; in particular, we show that
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they differ and quantify this difference for extreme asymmetries (i.e., close to the corner points
(0,0) and (1,1)). This analysis highlights the value of generating the entire ROC curve, even when
only one point is needed, as we will present in Section 4.3.

Handling ROC surfaces In this paper, we will also consider varying both the asymmetry of the
cost function and the intercept, leading to a set of points in the ROC plane parameterized by two
real values. Although the concept of ROC-consistency could easily be extended to ROC surfaces,
for simplicity we do not consider it here. In all our experiments, those ROC surfaces are reduced to
curves by computing their convex upper envelopes.

2.3 Learning From Data

Given n labeled data points (xi,yi), i = 1, . . . ,n, the empirical cost is equal to

R̂(C+,C−,w,b) =
C+

n
#{yi(w

>xi +b) < 0,yi = 1}+
C−
n

#{yi(w
>xi +b) < 0,yi = −1},

where #A denotes the cardinality of the set A. The empirical φ-cost is equal to

R̂φ(C+,C−,w,b) =
C+

n ∑
i∈I+

φ(yi(w
>xi +b))+

C−
n ∑

i∈I−
φ(yi(w

>xi +b)),

where I+ = {i,yi = 1} and I− = {i,yi = −1}. When learning a classifier from data, a classical
setup is to minimize the sum of the empirical φ-cost and a regularization term 1

2n ||w||2, that is, to
minimize Ĵφ(C+,C−,w,b) = R̂φ(C+,C−,w,b)+ 1

2n ||w||2.
Note that the objective function is no longer homogeneous in (C+,C−); the sum C+ +C− is

referred to as the total amount of regularization. Thus, two end-user-defined parameters are needed
to train a linear classifier: the total amount of regularization C+ +C− ∈ R

+, and the asymmetry
C+

C++C−
∈ [0,1]. In Section 3.1, we show how the minimum of Ĵφ(C+,C−,w,b), with respect to w and

b, can be computed efficiently for the hinge loss, for many values of (C+,C−), with a computational
cost that is within a constant factor of the computational cost of obtaining a solution for one value
of (C+,C−).

Building an ROC curve from data If a sufficiently large validation set is available, we can train
on the training set and use the empirical distribution of the validation data to plot the ROC curve.
If sufficient validation data is not available, then we can use several (typically 10 or 25) random
splits of the data and average scores over those splits to obtain the ROC scores. We can also use this
approach to obtain confidence intervals (Flach, 2003).

3. Building ROC Curves for the SVM

In this section, we present an algorithm to compute ROC curves for the SVM that explores the
two-dimensional space of cost parameters (C+,C−) efficiently. We first show how to obtain optimal
solutions of the SVM without solving the optimization problems many times for each value of
(C+,C−). This method generalizes the results of Hastie et al. (2005) to the case of asymmetric cost
functions. We then describe how the space (C+,C−) can be appropriately explored and how ROC
curves can be constructed.
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3.1 Building Paths of Classifiers

Given n data points xi, i = 1, . . . ,n which belong to R
d , and n labels yi ∈ {−1,1}, minimizing the

regularized empirical hinge loss is equivalent to solving the following convex optimization prob-
lem (Schölkopf and Smola, 2002):

min
w,b,ξ

∑
i

Ciξi +
1
2
||w||2 such that ∀i, ξi > 0, ξi > 1− yi(w

>xi +b),

where Ci = C+ if yi = 1 and Ci = C− if yi = −1.

Optimality conditions and dual problems We know derive the usual Karush-Kuhn-Tucker (KKT)
optimality conditions (Boyd and Vandenberghe, 2003). The Lagrangian of the problem is (with dual
variables α,β ∈ R

n
+):

L(w,b,ξ,α,β) = ∑
i

Ciξi +
1
2
||w||2 +∑

i

αi(1− yi(w
>xi +b))−ξi)−∑

i

βiξi.

The derivatives with respect to the primal variables are

∂L
∂w

= w−∑
i

αiyixi ,
∂L
∂b

= −∑
i

αiyi ,
∂L
∂ξi

= Ci −αi −βi ,

The first set of KKT conditions corresponds to the nullity of the Lagrangian derivatives with
respect to the primal variables, that is:

w = ∑
i

αiyixi , ∑
i

αiyi = α>y = 0 , ∀i, Ci = αi +βi. (2)

The slackness conditions are

∀i, αi(1−ξi + yi(w
>xi +b)) = 0 and βiξi = 0. (3)

Finally the dual problem can be obtained by computing the minimum of the Lagrangian with
respect to the primal variables. If we let denote K the n×n Gram matrix of inner products, that is,
defined by Ki j = x>i x j, and K̃ = Diag(y)K Diag(y), the dual problem is:

max
α∈Rn

−1
2

α>K̃α+1>α such that α>y = 0, ∀i, 0 6 αi 6 Ci.

In the following, we only consider primal variables (w,b,ξ) and dual variables (α,β) that verify
the first set of KKT conditions (2), which implies that w and β are directly determined by α.

Piecewise affine solutions Following Hastie et al. (2005), for an optimal set of primal-dual vari-
ables (w,b,α), we can separate data points in three disjoint sets, depending on the values of yi(w>xi +
b) = (K̃α)i +byi.

Margin : M = {i, yi(w>xi +b) = 1 },
Left of margin : L = {i, yi(w>xi +b) < 1 },
Right of margin : R = {i, yi(w>xi +b) > 1 }.

1719



BACH, HECKERMAN AND HORVITZ

Because of the slackness conditions (3), the sign of yi(w>xi + b)− 1 is linked with the location of
αi in the interval [0,Ci]. Indeed we have:

Left of margin : i ∈ L ⇒ αi = Ci,
Right of margin : i ∈ R ⇒ αi = 0.

In the optimization literature, the sets L , R and M are usually referred to as active sets (Boyd
and Vandenberghe, 2003; Scheinberg, 2006). If the sets M , L and R are known, then α,b are
optimal if and only if:

∀i ∈ L ,αi = Ci

∀i ∈ R ,αi = 0

∀i ∈ M ,(K̃α)i +byi = 1

α>y = 0.

This is a linear system with as many equations as unknowns (i.e., n + 1). The real unknowns (not
clamped to Ci or 0) are αM and b, and the smaller system is (zA denotes the vector z reduced to its
components in the set A and KA,B denotes the submatrix of K with indices in A and B):

K̃M ,M αM +byM = 1M − K̃M ,LCL

y>M αM = −y>LCL ,

whose solution is affine in CL and thus in C.
Consequently, for known active sets, the solution is affine in C, which implies that the optimal

variables (w,α,b) are piecewise affine continuous functions of the vector C. In our situation, C
depends linearly on C+ and C−, and thus the path is piecewise affine in (C+,C−).

Following a path The active sets (and thus the linear system) remain the same as long as all
constraints defining the active sets are satisfied, that is, (a) yi(w>xi +b)−1 is positive for all i ∈ R
and negative for all i ∈ L , and (b) for each i ∈ M , αi remains between 0 and Ci. This defines a
set of linear inequalities in (C+,C−). The facets of the polytope defined by these inequalities can
always be found in linear time in n, if efficient convex hull algorithms are used (Avis et al., 1997).
However, when we only follow a straight line in the (C+,C−)-space, the polytope is then a segment
and its extremities are trivial to find (also in linear time O(n)).

Following Hastie et al. (2005), if a solution is known for one value of (C+,C−), we can follow
the path along a line, by monitoring which constraints are violated at the boundary of the polytope
that defines the allowed domain of (C+,C−) for the given active sets.

Numerical issues Several numerical issues have to be solved before the previous approach can
be made efficient and stable. Some of the issues directly follow the known issues of the simplex
method for linear programming (which is itself an active set method) (Maros, 2002).

• Path initialization: In order to easily find a point of entry into the path, we look at situations
when all points are in L , that is, ∀i, αi = Ci. In order to verify α>y = 0, this implies that
∑i∈I+

Ci = ∑i∈I− Ci, that is, this means C+n+ = C−n− (where n+ = |I+| and n− = |I−| are the
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number of positive and negative training examples), which we now assume. The active sets
remain unchanged as long as ∀i,yi(w>xi +b) 6 1, that is:

∀i ∈ I+ , b 6 1−C+

(
(K̃δ+)i +

n+

n−
(K̃δ−)i

)

∀i ∈ I− , b > −1+C+

(
(K̃δ+)i +

n+

n−
(K̃δ−)i

)
,

where δ+ (resp. δ−) is the indicator vector of the positive (resp. negative) examples.

Let us define the following two maxima: m+ = maxi∈I+

(
(K̃δ+)i +

n+

n−
(K̃δ−)i

)
(attained at

i+) and m− = maxi∈I−

(
(K̃δ+)i +

n+

n−
(K̃δ−)i

)
(attained at i−). The previous conditions are

equivalent to
−1+C+m− 6 b 6 1−C+m+.

Thus, all points are in L as long as C+ 6 2/(m− +m+), and when this is verified, b is unde-
termined, between −1 +C+m− and 1−C+m+. At the boundary point C+ = 2/(m− + m+);
then both i+ and i− are going from L to M .

Since we vary both C+ and C− we can start by following the line C+n+ = C−n− and we are
thus able to avoid to solve a quadratic program to enter the path, as is done by Hastie et al.
(2005) when the data sets are not perfectly balanced.

• Switching between active sets: Indices can go from L to M , R to M , or M to R or L .
Empirically, when we follow a line in the plane (C+,C−), most points go from L to R through
M (or from R to L through M ), with a few points going back and forth; this implies that
empirically the number of kinks when following a line in the (C+,C−) plane is O(n).

• Efficient implementation of linear system: The use of Cholesky updating and downdating is
necessary for stability and speed (Golub and Van Loan, 1996).

• Computational complexity: Following the analysis of Hastie et al. (2005), if m is the maxi-
mum number of points in M along the path and p is the number of path following steps, then
the algorithm has complexity O(m2 p + pmn). Empirically, the number of steps is O(n) for
one following one line in the (C+,C−) plane, so the empirical complexity is O(m2n+mn2).

It is worth noting that the complexity of obtaining one path of classifiers across one line is
roughly the same as obtaining the solution for only one SVM using classical techniques such
as sequential minimal optimization (Platt, 1998).

Classification with kernels The path following algorithm developed in this section immediately
applies to non-linear classification, by replacing the Gram matrix defined as Ki j = x>i x j, by any
kernel matrix K defined as Ki j = k(xi,x j), where k is a positive semi-definite kernel function (Shawe-
Taylor and Cristianini, 2004).

3.2 Constructing the ROC Curve

Given the tools of Section 3.1, we can learn paths of linear classifiers from data. In this section, we
present an algorithm to build ROC curves from the paths. We do this by exploring relevant parts of
the (C+,C−) space, selecting the best classifiers among the ones that are visited.
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C+n+=C−n−

C+

C−

Figure 3: Lines in the (C+,C−)-space. The line C+n+ =C−n− is always followed first; then several
lines with constant C+ +C− are followed in parallel, around the optimal line for the
validation data (bold curve).

We assume that we have two separate data sets, one for training and one for testing. This
approach generalizes to cross validation settings in a straightforward manner.

Exploration phase In order to start the path-following algorithm, we need to start at C+ =C− = 0
and follow the line C+n+ = C−n−. We follow this line up to a large upper bound on C+ +C−. For
all classifiers along that line, we compute a misclassification cost on the testing set, with given
asymmetry (C0

+,C0
−) (as given by the user, and usually, but not necessarily, close to a point of

interest in the ROC space). We then compute the best performing pair (C1
+,C1

−) and we select pairs
of the form (rC1

+,rC1
−), where r belongs to a set R of the type R = {1,10,1/10,100,1/100, . . .}.

The set R provides further explorations for the total amount of regularization C+ +C−.

Then, for each r, we follow the paths of direction (1,−1) and (−1,1) starting from the point
(rC1

+,rC1
−). Those paths have a fixed total amount of regularization but vary in asymmetry. In

Figure 3, we show all of lines that are followed in the (C+,C−) space.

Selection phase After the exploration phase, we have |R|+1 different lines in the (C+,C−) space:
the line C−n− = C+n+, and the |R| lines C+ +C− = r(C1

+ +C1
−),r ∈ R. For each of these lines, we

know the optimal solution (w,b) for any cost settings on that line. The line C−n− = C+n+ is used
for computational purposes (i.e., to enter the path), so we do not use it for testing purposes.

For each of the R lines in the (C+,C−)-plane, we can build the three following ROC curves, as
shown in the top of Figure 4 for a simple classification problem involving mixtures of Gaussians:

• Varying intercept: We extract the slope w corresponding to the best setting (C1
+ +C1

−), and
vary the intercept b from −∞ to ∞. This is the traditional method for building an ROC curve
for an SVM.

1722



CONSIDERING COST ASYMMETRY IN LEARNING CLASSIFIERS

• Varying asymmetry: We only consider the line C+ +C− = C1
+ +C1

− in the (C+,C−)-plane; the
classifiers that are used are the optimal solutions of the convex optimization problem. Note
that for each value of the asymmetry, we obtain a different value of the slope and the intercept.

• Varying intercept and asymmetry: For each of the points on the R lines in the (C+,C−)-plane,
we discard the intercept b and keep the slope w obtained from the optimization problem; we
then use all possible intercept values; this leads to R two-dimensional surfaces in the ROC
plane. We then compute the convex envelope of these, to obtain a single curve.

Since all classifiers obtained by varying only the intercept (resp. the asymmetry) are included
in the set used for varying both the intercept and the asymmetry, the third ROC curve always out-
performs the first two curves (i.e., it is always closer to the top left corner). This is illustrated in
Figure 4. Once ROC curves are obtained for each of the R lines, we can combine them by taking
their upper convex envelope to obtain ROC curves obtained from even larger sets of classifiers,
which span several total amounts of regularization. Note that the ROC scores that we consider are
obtained by using held out testing data or cross-validation scores; thus by considering larger sets of
classifiers, taking upper convex envelopes will always lead to better performance for these scores,
which are only approximations of the expected scores on unseen data, and there is a potential risk of
overfitting the cross-validation scores (Ng, 1997). In Section 4.3, we present empirical experiments
showing that by carefully selecting classifiers based on held out data or cross-validation scores, we
are not overfitting.

Intuitively, the ROC curve obtained by varying the asymmetry should be better than the ROC
generated by varying the intercept because, for each point, the slope of the classifier is optimized.
Empirically, this is generally true, but is not always the case, as displayed in the top of Figure 4.
In the bottom of Figure 4, we show the same ROC curve, but in the infinite sample case, where the
solution of the SVM was obtained by working directly with densities, separately for each training
asymmetry. The ROC curve in the infinite sample case exhibit the same behavior than in the finite
sample case, hinting that this behavior is not a small sample effect.

Another troubling fact is that the ROC curve obtained by varying asymmetry, exhibits strong
concavities, that is, there are many ROC-inconsistent points: for those points, the solution of the
SVM with the corresponding asymmetry is far from being the best linear classifier when perfor-
mance is measured with the same asymmetry but with the exact 0–1 loss. In addition, even for
ROC-consistent points, the training asymmetry and the testing asymmetry differ. In the next sec-
tion, we analyze why they may differ and characterize their relationships in some situations.

4. Training Versus Testing Asymmetry

We observed in Section 3.2 that the training cost asymmetry can differ from the testing asymmetry.
In this section, we analyze their relationships more closely for the population (i.e., infinite sample)
case. Although a small sample effect might alter some of the results presented in this section, we
argue that most of the discrepancies come from using a convex surrogate to the 0−1 loss.

Recent results (Bartlett et al., 2004; Zhang, 2004) have shown that using a convex surrogate
may lead, under certain conditions, to the Bayes optimal, that is, the (usually non-linear) classifier
with minimal expected cost. However, those conditions are usually not met in practice, since they
essentially implies that the class of functions over which the expected surrogate cost is minimized
contains the Bayes optimal classifier. In many cases, the Bayes optimal classifier does not belong
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Figure 4: Two examples of ROC curves for bimodal class conditional densities, varying intercept
(dotted), varying asymmetry (plain) and varying both (dashed). Top: ROC curves ob-
tained from 10 random splits, using the data shown on the left side (one class is plotted
as circles, the other one as crosses); Bottom: ROC curves obtained from corresponding
population densities.
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to the class of functions, and the best that can be hoped for is to obtain the classifier with minimal
expected cost within the class of functions which is considered. Using a surrogate does not always
lead to this classifier and the results of this section illustrate and quantify this fact in the context of
varying cost asymmetries.

Since we are using population densities, we can get rid of the regularization term and thus only
the asymmetry will have an influence on the results, that is, we can restrict ourselves to C++C− = 1.
We let γ = C+/(C+ +C−) = C+ denote the training asymmetry. For a given training asymmetry γ
and a loss function φ, in Section 2.2, we defined the optimal testing asymmetry β(γ) for the training
asymmetry γ as the testing asymmetry for which the classifier obtained by training with asymmetry
γ is optimal. In this section, we will refer to the β(γ) simply as the testing asymmetry.

Although a difference might be seen empirically for all possible asymmetries, we analyze the
relationship between the testing cost asymmetry and training asymmetry in cases of extreme asym-
metries, that is, in the ROC framework, close to the corner points (0,0) and (1,1). We prove that,
depending on the class conditional densities, there are three possible different regimes for extreme
asymmetries and that under two of these regimes, the training asymmetry should be chosen less
extreme. We also provide, under certain conditions, a simple test that can determine the regime
given class conditional densities.

In this section, we choose class conditional densities that are either Gaussian or a mixture of
Gaussians, because (a) any density can be approximated as well as desired by mixtures of Gaus-
sians (Hastie et al., 2001), and (b) for the square loss and the erf loss, they enable closed-form
calculations that lead to Taylor expansions.

4.1 Optimal Solutions for Extreme Cost Asymmetries

We assume that the class conditional densities are mixtures of Gaussians, that is, the density of pos-
itive (resp. negative) examples is a mixture of k+ Gaussians, with means µi

+ and covariance matrix
Σi

+, and mixing weights πi
+, i ∈ {1, . . . ,k+} (resp. k− Gaussians, with means µi

− and covariance
matrix Σi

−, and mixing weights πi
−, i ∈ {1, . . . ,k−} ). We denote M+ (resp. M−) the d × k+ (resp.

d × k−) the matrix of means.

We denote p+ and p− as the marginal class densities, p+ = P(y = 1), p− = P(y = −1). We
assume that all mixing weights πi

± are strictly positive, that all covariance matrices Σi
± have full

rank, and that p+, p− ∈ (0,1).

In the following sections, we provide Taylor expansions of various quantities around the null
training asymmetry γ = 0. The quantities trivially extend around the reverse asymmetry γ = 1. We
focus on two losses, the square loss and the erf loss. The square loss, which leads to a classifier ob-
tained by usual least-square linear regression on the class labels, leads to closed form computations
and simple analysis. However, losses φ(u) which remain bounded when u tends to +∞ are viewed
as preferable and usually lead to better performance (Hastie et al., 2001). Losses as the hinge loss or
the logistic loss, which tend to zero as u tends to +∞, lead to similar performances. In order to study
if using such losses might alter the qualitative behavior observed and analyzed for the square loss
around extreme testing asymmetries, we use another loss with similar behavior as u tends to +∞, the
erf loss. The erf loss is defined as φer f (u) = [uψ(u)−u+ψ′ (u)] and leads to simpler computations
than the hinge loss or the logistic loss2.

2. Note that the erf loss φer f is a tight approximation of a rescaled logistic loss 1
2 log(1+e−2u), with similar derivatives.
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We start with an expansion of the unique global minimum (w,b) of the φ-cost with asymmetry
γ. For the square loss, (w,b) can be obtained in closed form for any class conditional densities
so the expansion is easy to obtain, while for the erf loss, an asymptotic analysis of the optimality
conditions has to be carried through, and is only valid for mixtures of Gaussians (see Appendix A
for a proof).

We use the following usual asymptotic notations, that is, if f and g are two functions defined
around x = 0, with g everywhere nonnegative then, f = O(g) if and only if there exists an A positive
such that | f (x)| 6 Ag(x) for all x sufficiently small, f = o(g) if and only if f (x)/g(x) tends to zero
when x tends to zero, f ∼ g if and only if f (x)/g(x) tends to one when x tends to zero.

Proposition 1 (square loss) Under previous assumptions, we have the following expansions:

w(γ) = 2
p+

p−
γΣ−1

− (µ+−µ−)+O(γ2),

b(γ) = −1+
p+

p−
γ[2−2µ>−(µ+−µ−)]+O(γ2),

where m = µ+ −µ−, and Σ± and µ± are the class conditional means and covariance matrices. For
mixtures of Gaussians, we have Σ± = ∑i πi

±Σi
± +M±(diag(π±)−π±π>

±)M>
± and µ± = ∑i πi

±µi
±.

Proposition 2 (erf loss) Under previous assumptions, we have the following expansions:

w(γ) = (2log(1/γ))−1/2 Σ̃−1
− (µ̃+− µ̃−)+o

(
log(1/γ)−1/2

)
,

b(γ) = −(2log(1/γ))1/2 +o
(

log(1/γ)1/2
)

,

with m̃ = µ+ − µ̃−, µ̃− = ∑i ξiµi
− and Σ̃− = ∑i ξiΣi

−, where ξ ∈ R
n
+ verifies ∑i ξi = 1 and ξ is the

unique solution of a convex optimization problem defined in Appendix A.

Note that when there is only one mixture component (Gaussian densities), then ξ1 = 1, and the
expansion obtained in Proposition 2 has a simpler expression similar to the one from Proposition 1.

The previous propositions provide a closed-form expansion of the solutions of the convex opti-
mization problems defined by the square loss and the erf loss. In the next section, we compute the
testing costs using those classifiers.

4.2 Expansion of Testing Asymmetries

Using the expansions of Proposition 1 and 2, we can readily derive an expansion of the ROC
coordinates for small γ, as well as the testing asymmetry β(γ). We have (see Appendix B for a
proof):

Proposition 3 (square loss) Under previous assumptions, we have the following asymptotic expan-
sion:

log

(
p−
p+

(β(γ)−1 −1)

)
= A

p2
−

8p2
+

1
γ2 +o(1/γ2),

where

A =

(
max

i−

1

m>Σ−1
− Σi−

−Σ−1
− m

−max
i+

1

m>Σ−1
− Σi+

+ Σ−1
− m

)
.
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Figure 5: Case A < 0: (left) plot of the optimal testing asymmetry β(γ) as a function of the train-
ing asymmetry γ, (right) ROC curve around (0,0) as γ varies close to zero. Classifiers
corresponding to γ close to zero are ROC-inconsistent.

Proposition 4 (erf loss) Under previous assumptions, we have the following asymptotic expansion:

log

(
p−
p+

(β(γ)−1 −1)

)
= 2Ã log(1/γ)+o(log(1/γ)), (4)

where

Ã =

(
max

i−

1

m̃>Σ̃−1
− Σi−

− Σ̃−1
− m̃

−max
i+

1

m̃>Σ̃−1
− Σi+

+ Σ̃−1
− m̃

)
.

The rest of the analysis is identical for both losses and thus, for simplicity, we focus primarily
on the square loss. For the square loss, we have two different regimes, depending on the sign of

A =

(
max

i−

1

m>Σ−1
− Σi−

−Σ−1
− m

−max
i+

1

m>Σ−1
− Σi+

+ Σ−1
− m

)
:

• A < 0: from the expansion in Eq. (3), we see that log
(

p−
p+(β(γ)−1−1)

)
is asymptotically

equivalent to a negative constant times 1/γ2, implying that the testing asymmetry β(γ) tends
to one exponentially fast. In addition, from Eq. (1), p−

p+(β(γ)−1−1) is equal to dv/dγ
du/dγ , which is

the slope of the ROC curve. Because this is an expansion around the null training asymmetry,
the ROC curve must be starting from the point (0,0); since the slope at that point is zero, that
is, proportional to the horizontal axis, the ROC curve is on the bottom right part of the main
diagonal and the points corresponding to training asymmetries close to γ = 0 are not ROC-
consistent, that is, the classifiers with training asymmetry too close to zero are useless as they
are too extreme. See Figure 5 for a plot of the ROC curve around (0,0) and of β(γ) around
γ = 0. In this situation, better performance for a given testing asymmetry can be obtained by
using a less extreme training asymmetry, simply because too extreme training asymmetries
lead to classifier who perform worse than trivial classifiers.

• A > 0: from the expansion in Eq. (3), we see that the testing asymmetry tends to 0 expo-
nentially fast, in particular, the derivative dβ/dγ is null at γ = 0, meaning, that the testing
asymmetry is significantly smaller than the training asymmetry, that is, more extreme. The
slope of the ROC curve around (0,0) is then vertical. See Figure 6 for a plot of the ROC curve
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Figure 6: Case A > 0. Left: Plot of the optimal testing asymmetry β(γ) as a function of the training
asymmetry γ; Right: ROC curve around (0,0) as γ varies close to zero. Classifiers corre-
sponding to γ close to zero are ROC-consistent, but since β(γ) < γ, best performance for
a given testing asymmetry is obtained for less extreme training asymmetries.

around (0,0) and of β(γ) around zero. In this situation, better performance for a given testing
asymmetry can be obtained by using a less extreme training asymmetry.

• A = 0: the asymptotic expansion does not provide any information relating to the behavior
of the testing asymmetry. We are currently investigating higher-order expansions in order to
study the behavior of this limiting case. Given two random class-conditional distributions, this
regime is unlikely. Precise measure theoretic statements regarding conditions under which the
measure of the set of pairs of class-conditional distributions that belong to this regime is zero,
are beyond the scope of this paper.

Note that when the two class conditional densities are Gaussians with identical covariance (a
case where the Bayes optimal classifier is indeed linear for all asymmetries), we are in the
present case.

Overall, in the two more likely regimes where A 6= 0, we have shown that, given an extreme test-
ing asymmetry, the training asymmetry should be chosen less extreme. Because we have considered
mixtures of Gaussians, this result applies to a wide variety of distributions. Moreover, this result is
confirmed empirically in Section 4.3, where we show in Table 2 examples of the mismatch between
testing asymmetry and training asymmetry. Moreover, the strength of the effects we have described
above depends on the norm of m = µ+ − µ−: if m is large, that is, the classification problem is
simple, then those effects are less strong, while when m is small, they are stronger.

For the erf loss, there are also three regimes, but with weaker effects since the testing asymmetry
β(γ) tends to zero or one polynomially fast, instead of exponentially fast. However, the qualitative
result remains the same: there is a mismatch between testing and training asymmetries.

In Figure 7 and Figure 8, we provide several examples for the square loss and the erf loss, with
the two regimes A > 0 and A < 0 and different strengths. Those figures (as well as the bottom
of Figure 4) are obtained by solving the respective convex optimization problems with population
densities separately for each asymmetry, using Newton’s method (Boyd and Vandenberghe, 2003).
It is worth noting, that, although the theoretical results obtained in this section are asymptotic ex-
pansions around the corners (i.e., extreme asymmetries), the effects also often remain valid far from

1728



CONSIDERING COST ASYMMETRY IN LEARNING CLASSIFIERS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

training asymmetry

te
st

in
g 

as
ym

m
et

ry

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

training asymmetry

te
st

in
g 

as
ym

m
et

ry

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

training asymmetry

te
st

in
g 

as
ym

m
et

ry

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

training asymmetry

te
st

in
g 

as
ym

m
et

ry

Figure 7: Training asymmetry vs. testing asymmetry, square loss: (Left) Gaussian class condi-
tional densities, (right) testing asymmetry vs. training asymmetry; from top to bottom,
the values of A are 0.12, -6, 3, -0.96.
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Figure 8: Training asymmetry vs. testing asymmetry, erf loss. Left: Gaussian class conditional
densities; Right: Testing asymmetry vs. training asymmetry; from top to bottom, the
values of Ã are 0.12, -6, 3, -0.96.
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the corners. However, in general, for non-extreme asymmetries, the mismatch might be inverted,
that is, a more extreme training asymmetry might lead to better performance.

Although the results presented in this section show that there are two regimes, given data, they
do not readily provide a test to determine which regime is applicable and compute the corresponding
optimal training asymmetry for a given testing asymmetry; an approach similar to the one presented
by Tong and Koller (2000) could be followed, that is, we could estimate class conditional Gaussian
mixture densities and derive the optimal hyperplane from those densities using the tests presented
in this paper (which can be performed in closed form for the square loss, while for the erf loss, they
require to solve a convex optimization problem). However, this approach would only applicable
to extreme asymmetries (where the expansions are valid). Instead, since we have developed an
efficient algorithm to obtain linear classifiers for all possible training asymmetries, it is simpler to
choose among all asymmetries the one that works best for the problem at hand, which we explore
in the next section.

4.3 Building the Entire ROC Curve for a Single Point

As shown empirically in Section 3.2, and demonstrated theoretically in the previous section, training
and testing asymmetries may differ; this difference suggests that even when the user is interested in
only one cost asymmetry, the training procedure should explore more cost asymmetries, that is, build
the ROC curve as presented in Section 3.2 and chose the best classifier as follows: a given testing
asymmetry leads to a unique slope in the ROC space, and the optimal point for this asymmetry is
the point on the ROC curve whose tangent has the corresponding slope and which is closest to the
upper-left corner. In our simulations, we compare two types of ROC curves, one which is obtained
by varying the intercept, and one which is obtained by varying both the training asymmetry and
the intercept. In our context, using the usual ROC curve obtained by varying only the intercept is
essentially equivalent to the common practice of keeping the slope optimized with the convex risk
and optimizing the intercept directly using the 0-1 loss instead of the convex surrogate (which is
possible by grid search since only one real variable is considered for optimization).

We thus compare in Table 1 and 2, for various data sets and linear classifiers, and for all testing
cost asymmetries3 γ, the three different classifiers: (a) the classifier obtained by optimizing the con-
vex risk with training cost asymmetry γ (a classifier referred to as “one”), (b) the classifier selected
from the ROC curve obtained from varying the intercept of the previous classifier (a classifier re-
ferred to as “int”), and (c) the classifier selected from the ROC curve obtained by varying both the
training asymmetry and the intercept (a classifier referred to as “all”).

The ROC curves are obtained by 10-fold cross validation with a wrapper approach to handle
the selection of the training asymmetries. The goals of these simulations are to show (1) that using
only an approximation to the performance on unseen data is appropriate to select classifiers, and (2)
that the performance can be significantly enhanced by simply looking at more training asymmetries.
We use several data sets from the UCI data set repository (Blake and Merz, 1998), as well as the
mixture of Gaussians shown in Figure 4 and the first Gaussian density in Figure 7.

We used the following wrapper approach to build the ROC curves and compare the perfor-
mance of the three methods by 10-fold cross validation (Kohavi and John, 1997): for each of the

3. More precisely, 1000 values of testing and training asymmetries were tried, uniformly spread in [0,1]. Note that our
algorithmic framework allows us to obtain classifiers for all asymmetries in [0,1]; therefore considering 1000 values
is not computationally expensive.
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10 outer folds, we select the best parameters (i.e., training asymmetry and/or intercept) by 10-fold
cross validation on the training data. The best classifier for each of the two ROC curves is kept if
the difference in performance with the usual classifier “one” on the ten inner folds is statistically
significant, as measured by one-tailed Wilcoxon signed rank tests with 5% confidence level (Hol-
lander and Wolfe, 1999). In cases where statistical significance is not found, the original classifier
obtained with the training asymmetry equal to the testing asymmetry is used (in this case, the clas-
sifier is identical to the classifier “one”). The selected classifier is then trained on the entire training
data of the outer fold and tested on the corresponding testing data. We thus obtain for each outer
fold, the performance of the three classifiers (“one”, “int”,“all”).

In Table 1, we report the results of statistical tests performed to compare the three classifiers.
For each testing asymmetry, we performed one-tailed Wilcoxon signed rank tests on the testing
costs of the outer folds, with 5% confidence levels (Hollander and Wolfe, 1999). The proportions
of acceptance (i.e., the number of acceptances divided by the number of testing asymmetries that
are considered) for all one-sided tests are reported in Table 1. The empirical results from columns
“all>one” and “int>one” show that comparing classifiers with only an approximation of the testing
cost on unseen data, namely cross-validation scores, leads to classifiers that most of the time per-
form no worse than the usual classifier (based only on the testing asymmetry and the convex risk),
which strongly suggests that we are not overfitting the cross-validation data. Moreover, the column
“one>int” shows that there is a significant gain in simply optimizing the intercept using the non-
convex non-differentiable risk based on the 0-1 loss, and columns “one>all” and “int>all” show
that there is even more gain in considering all training asymmetries4. As mentioned earlier, when
the increase of performance of the classifiers “all” and “int” is not deemed statistically significant
on the inner cross-validation folds, the classifier “one” is used instead. It is interesting to note that,
when we do not allow the possibility to keep ”one”, we obtain significantly worse performance on
the outer-fold tests

To highlight the potential difference between testing and training asymmetries, Table 2 gives
some examples of mismatches between the testing asymmetry and the training asymmetry selected
by the cross validation procedure. Since the training asymmetries corresponding to a given testing
asymmetry may differ for each outer fold, we use the training asymmetry that was selected by
the first (i.e., a random) outer fold of cross validation, and compute the cross-validation scores
corresponding to this single training asymmetry for all nine other outer folds. For each data set,
testing asymmetries were chosen so that the difference in testing performance between the classifier
“one” and “all” on the first fold is greatest. Note that the performance of the classifier “int” is
different from the performance of “all” only if the difference was deemed significant on the outer
fold used to select the training asymmetry. Results in Table 2 show that in some cases, the difference
is large, and that a simple change in the training procedure may lead to substantial gains. Moreover,
when the testing asymmetry is extreme, such as for the GAUSSIAN and PIMA data sets, the training
asymmetry is less extreme and leads to better performance, illustrating the theoretical results of
Section 4. Note also, that for other data sets, such as TWONORM or IONOSPHERE, the optimal
training asymmetry is very different from the testing asymmetry: we find that using all asymmetries

4. In some cases, considering all training asymmetries performs worse than using a single asymmetry with optimized
intercept (column “all>int” in Table 1); in those cases, the difference in performance, although statistically signif-
icant, is small and we conjecture it is due to using an approximation of expected testing performance to select the
training asymmetry.
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Data set d n one>all all>one int>all all>int one>int int>one
BREAST 9 683 8.7 0.0 4.1 0.0 5.2 0.0
DERMATOLOGY 34 358 0.0 0.0 0.0 0.0 0.0 0.0
GAUSSIANS 2 2000 17.6 0.0 14.2 0.0 9.5 0.0
MIXTURES 2 2000 49.7 0.0 25.8 0.0 41.2 0.0
LIVER 6 345 0.0 0.0 0.0 0.0 0.0 0.0
VEHICLE 18 416 13.1 0.0 13.1 0.0 0.0 0.0
PIMA 8 768 9.2 0.0 0.0 0.0 5.6 0.0
RINGNORM 2 2000 48.6 0.0 5.9 0.0 40.4 0.0
TWONORM 2 2000 97.4 0.0 15.8 5.2 91.3 0.0
ADULT 13 2000 12.0 0.0 8.8 0.0 3.2 0.0
IONOSPHERE 33 351 42.0 0.0 13.2 0.0 22.5 0.0

Table 1: Comparison of performances of classifiers: for each data set, the number of features is d,
the total number of data points is n, and the proportions of acceptance (i.e., the number of
acceptances divided by the number of testing asymmetries that are considered) of the six
one-sided tests between the three classifiers are given in the last six columns (Wilcoxon
signed rank tests with 5% confidence level comparing cross-validation scores). Note that
we compare testing by using costs, and hence better performance corresponds to smaller
costs. See text for details.

Data set γ (test) “one” “int” “all” γ (train)
BREAST 0.008 0.51 ± 0.07 0.55 ± 0.96 0.51 ± 0.07 0.995
DERMATOLOGY 0.991 0.37 ± 0.05 0.37 ± 0.05 0.37 ± 0.05 0.991
GAUSSIANS 0.067 6.66 ± 0.00 5.10 ± 0.59 6.66 ± 0.00 0.128
MIXTURES 0.327 29.80 ± 2.61 16.73 ± 2.20 19.70 ± 1.82 0.990
LIVER 0.192 16.10 ± 0.96 15.96 ± 4.44 16.10 ± 0.96 0.560
PIMA 0.917 10.83 ± 0.35 9.61 ± 2.32 10.83 ± 0.35 0.500
RINGNORM 0.327 33.18 ± 1.07 25.53 ± 3.95 25.15 ± 4.86 0.500
VEHICLE 0.010 0.21 ± 0.15 0.21 ± 0.15 0.21 ± 0.15 0.010
TWONORM 0.382 36.98 ± 0.34 1.46 ± 1.00 1.55 ± 1.35 0.872
ADULT 0.947 2.67 ± 0.09 2.50 ± 0.08 2.67 ± 0.09 0.500
IONOSPHERE 0.933 4.77 ± 0.21 2.30 ± 2.22 4.77 ± 0.21 0.067

Table 2: Training with the testing asymmetry γ versus training with all cost asymmetries: we report
cross-validation testing costs (multipled by 100). Only the asymmetry with the largest
difference in testing performance between the classifier “one” and “all” is reported. We
also report the training asymmetry which led to the best performance. Given an asymmetry
γ we use the cost settings C+ = 2γ, C− = 2(1−γ) (which leads to the misclassification error
if γ = 1/2). See text for details.
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leads to better performance. However, we have not identified general rules for selecting the best
training asymmetry.

5. Conclusion

We have presented an efficient algorithm to build ROC curves by varying the training cost asym-
metries for SVMs. The algorithm is based on the piecewise linearity of the path of solutions when
the cost of false positives and false negatives vary. We have also provided a theoretical analysis of
the relationship between the potentially different cost asymmetries assumed in training and testing
classifiers, showing that they differ under certain circumstances. In particular, in case of extreme
asymmetries, our theoretical analysis suggests that training asymmetries should be chosen less ex-
treme than the testing asymmetry.

We have characterized key relationships, and have worked to highlight the potential practical
value of building the entire ROC curve even when a single point may be needed. All learning al-
gorithms considered in this paper involve using a convex surrogate to the correct non differentiable
non convex loss function. Our theoretical analysis implies that because we use a convex surro-
gate, using the testing asymmetry for training leads to non-optimal classifiers. We thus propose to
generate all possible classifiers corresponding to all training asymmetries, and select the one that
optimizes a good approximation to the true loss function on unseen data (i.e., using held out data or
cross validation). As shown in Section 3, it turns out that this can be done efficiently for the support
vector machine. Such an approach can lead to a significant improvement of performance with little
added computational cost.

Finally, we note that, although we have focused in this paper on the single kernel learning
problem, our approach can be readily extended to the multiple kernel learning setting (Bach et al.,
2005b) with appropriate numerical path following techniques.
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Appendix A. Proof of Expansion of Optimal Solutions

In this appendix, we give the proof of the expansions of optimal solutions for extreme asymme-

tries, for the square and erf loss. We perform the expansions using the variable ρ(γ) =
C+p+

C−p−
=

γp+

(1− γ)p−
=

γp+

p−
+O(γ2) around zero.
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A.1 Square Loss. Proof of Proposition 1.

In this case, the classifier is simply a linear regression on y and (w,b) can be obtained in closed form
as the solution of the following linear system (obtained from the normal equations):

b =
ρ−1
ρ+1

−w> ρµ+ +µ−
ρ+1

,

(
ρΣ+ +Σ− +

ρ
ρ+1

(µ+−µ−)(µ+−µ−)>
)

w =
2ρ

ρ+1
(µ+−µ−),

where Σ+ and Σ− are the class conditional means and covariance matrices.
The first two terms of the Taylor expansions around ρ = 0 (i.e., around γ = 0) are straightforward

to obtain:

w = 2ρΣ−1
− m−2ρ2

[
Σ−1
− m+Σ−1

− (Σ+ +mm>)Σ−1
− m

]
+O(ρ3),

b = −1+ρ
[
2−2µ>−Σ−1

− m
]
+O(ρ2).

A.2 Erf Loss. Proof of Proposition 2.

We begin by proving Proposition 2 in the Gaussian case, where the proof is straightforward, and we
then extend to the Gaussian mixture case. In order to derive optimality conditions for the erf loss,
we first need to compute expectations of the erf loss and its derivatives for Gaussian densities.

A.2.1 EXPECTATION OF THE ERF LOSS AND ITS DERIVATIVES FOR GAUSSIAN DENSITIES

A short calculation shows that, when expectations are taken with respect to a normal distribution
with mean µ and covariance matrix Σ, we have:

Eφer f (w
>x+b) = (−w>µ−b)ψ

( −w>µ−b

(1+w>Σw)1/2

)

+(1+w>Σw)1/2ψ′
( −w>µ−b

(1+w>Σw)1/2

)
,

E
∂φer f (w>x+b)

∂w
= −µψ

( −w>µ−b

(1+w>Σw)1/2

)
+

Σw

(1+w>Σw)1/2
ψ′
( −w>µ−b

(1+w>Σw)1/2

)
,

E
∂φer f (w>x+b)

∂b
= −ψ

( −w>µ−b

(1+w>Σw)1/2

)
.

A.2.2 GAUSSIAN CASE

In order to derive the asymptotic expansion, we derive the optimality conditions for (w,b) and study

the behavior as ρ tends to zero. Let’s define t− =
w>µ− +b

(1+w>Σ−w)1/2
and t+ =

−w>µ+−b

(1+w>Σ+w)1/2
.

The optimality conditions for (w,b) are the following (obtained by zeroing derivatives with
respect to b and w):

p+C+

(
−µ+ψ(t+)+

Σ+w

(1+w>Σ+w)1/2
ψ′(t+)

)
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+p−C−

(
µ−ψ(t−)+

Σ−w

(1+w>Σ−w)1/2
ψ′(t−)

)
= 0,

−p+C+ψ(t+)+ p−C−ψ(t−) = 0.

They can be rewritten as follows (with ρ =
C+p+

C−p−
):

ρ
(
−µ+ψ(t+)+

Σ+w

(1+w>Σ+w)1/2
ψ′(t+)

)
+

(
µ−ψ(t−)+

Σ−w

(1+w>Σ−w)1/2
ψ′(t−)

)
= 0, (5)

ρψ(t+) = ψ(t−). (6)

Since the cumulative function ψ is always between zero and one, Eq. (6) implies that as ρ tends
to zero, ψ(t−) tends to zero, and thus t− tends to −∞. This in turn implies that b/(1 + ||w||) tends
to −∞, which in turn implies that t+ tends to infinity and ψ(t+) tends to 1.

It is well known that as z tends to −∞, we have ψ(z) ≈ ψ′(z)
−z (see, for example, Bleistein and

Handelsman (1986)). Thus, if we divide Eq. (5) by ψ(t−), we get:

−ρ
ψ(t+)

ψ(t−)
µ+ +ρ

Σ+w

(1+w>Σ+w)1/2

ψ′(t+)

ψ(t+)

ψ(t+)

ψ(t−)
+µ− +

Σ−w

(1+w>Σ−w)1/2

ψ′(t−)

ψ(t−)
= 0, that is,

Σ+w

(1+w>Σ+w)1/2

ψ′(t+)

ψ(t+)
+

Σ−w

(1+w>Σ−w)1/2
(−t−) ∼ µ+−µ−. (7)

The first term in the left hand side of Eq. (7) is the product of a bounded term and a term that
goes to zero, it is thus tending to zero as ρ tends to zero. Since the right hand side is constant, this
implies that the second term in the left hand side must be bounded, and thus, since |t−| tends to
infinity, that w tends to zero. By removing all negligible terms in Eq. (7), we have the following
expansion for w:

w ≈ 1
−t−

Σ−1
− (µ+−µ−).

In order to obtain the expansion as a function of ρ, we need to expand t−. From Eq. (6) and the
fact that ψ(t+) tends to one, we obtain ψ(t−) ∼ ρ, A classical asymptotic result on the inverse erf
function shows that t− ∼−

√
2log(1/ρ). This finally leads to:

b(ρ) ∼ −(2log(1/ρ))1/2,

w(ρ) ∼ (2log(1/ρ))−1/2Σ−1
− (µ+−µ−).

A.2.3 GENERAL CASE

We assume that each πi
± is strictly positive and that each covariance matrix Σi

± is positive definite.

We define t i
− =

w>µi
− +b

(1+w>Σi
−w)1/2

and t i
+ =

−w>µi
+−b

(1+w>Σi
+w)1/2

.
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Without loss of generality, we can assume that the positive class is centered, that is, µ+ =

∑i πi
+µi

+ = 0. The optimality conditions for (w,b) are the following (obtained by zeroing derivatives
with respect to b and w):

ρ

(

∑
i

πi
+

{
−µi

+ψ(t i
+)+

Σi
+w

(1+w>Σi
+w)1/2

ψ′(t i
+)

})

+

(

∑
i

πi
−

{
µi
−ψ(t i

−)+
Σi
−w

(1+w>Σ−w)1/2
ψ′(t i

−)

})
= 0, (8)

−ρ∑
i

πi
+ψ(t i

+)+∑
i

πi
−ψ(t i

−) = 0. (9)

From Eq. (9), we obtain that ψ(t i
−) tends to zero for all i, and this implies that b/(1 + ||w||)

tends to −∞, and in turn that ψ(t i
+) tends to 1 for all i. We can now divide Eq. (8) by ∑i πi

−ψ(t i
−) =

ρ∑i πi
+ψ(t i

+), to obtain:

∑i πi
−ψ(t i

−)µi
−

∑i πi
−ψ(t i

−)
− ∑i πi

+ψ(t i
+)µi

+

∑i πi
+ψ(t i

+)
= − 1

∑i πi
+ψ(t i

+)
∑

i

πi
+ψ(t i

+)

{
Σi

+w

(1+w>Σi
+w)1/2

ψ′(t i
+)

ψ(t i
+)

}

− 1

∑i πi
−ψ(t i

−)
∑

i

πi
−ψ(t i

−)

{
Σi
−w

(1+w>Σi
−w)1/2

ψ′(t i
−)

ψ(t i
−)

}
.

Let π̃+
i =

πi
+ψ(t i

+)

∑ j π j
+ψ(t j

+)
and π̃−

i =
πi
−ψ(t i

−)

∑ j π j
−ψ(t j

−)
. We can rewrite the preceding equation as

∑
i

π̃i
−µi

−−∑
i

π̃i
+µi

+ = −∑
i

π̃i
+

{
Σi

+w

(1+w>Σi
+w)1/2

ψ′(t i
+)

ψ(t i
+)

}

−∑
i

π̃i
−

{
Σi
−w

(1+w>Σi
−w)1/2

ψ′(t i
−)

ψ(t i
−)

}
.

As in the Gaussian case, the first term of the right hand is negligible compared to the second
term when ρ goes to zero. Moreover, for all i, we have ψ′(t i

−)/ψ(t i
−) ≈−t i

− and we thus get:

∑
i

π̃i
−µi

−−∑
i

π̃i
+µi

+ = −∑
i

π̃i
−

{ −t i
−

(1+w>Σi
−w)1/2

}
Σi
−w. (10)

The left hand side of Eq. (10) is bounded; Because π̃− sums to one, the lowest eigenvalue of the
matrix ∑i π̃i

−Σi
− is lower-bounded by the smallest of the smallest eigenvalues of Σi

−, i = 1, . . . ,k−.
Thus Eq. (10) implies that t i

−w is bounded as ρ tends to zero. This in turn implies that w tends to
zero, that b ∼ t i

− for all i, and that bw is bounded.

The quantities bw, π̃+ and π̃− are functions of ρ. As ρ tends to zero, they all remain bounded.
We now proceed to prove that all points of accumulation of those quantities as ρ tends to zero satisfy
a set of equations with an unique solution. This will imply that those quantities converge as ρ tends
to zero.
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Equation for π̃+ Since t i
+ tends to +∞, π̃i

+ tends to πi
+, and ∑i π̃i

+µi
+ tends to zero, since we have

assumed that ∑i πi
+µi

+ = 0.

Equation for π̃− and bw Let θ and ξ be points of accumulation of bw and π̃− as ρ tends to zero
(i.e., θ and ξ are limits of sequences b(ρk)w(ρk) and π̃−(ρk) as k tends to ∞, with ρk → 0). From
Eq. (10), we get:

∑
i

ξiµ
i
−−0 =

(

∑
i

ξiΣi
−

)
θ. (11)

We can now expand (t i
−)2 − (t j

−)2 for all i, j by keeping the leading terms, noting that w → 0,
|b| → +∞, and bw is bounded:

(t i
−)2 − (t j

−)2 =
(w>µi

− +b)2

1+w>Σi
−w

− (w>µ j
− +b)2

1+w>Σ j
−w

∼ 2bw>(µi
−−µ j

−)−b2w>(Σi
−−Σ j

−)w

→ (2θ>µi
−−θ>Σi

−θ)− (2θ>µ j
−−θ>Σ j

−θ) as ρk → 0.

We thus have

π̃i
−

π̃ j
−

=
πi
−ψ(t i

−)

π j
−ψ(t j

−)
=

πi
−ψ′(t i

−)

π j
−ψ′(t j

−)

ψ′(t j
−)

ψ(t j
−)

∼ πi
−

π j
−

ψ′(t i
−)

ψ′(t j
−)

t j
−

t i
−
∼ πi

−
π j
−

exp(−1
2
[(t i

−)2 − (t j
−)2]) since t i

− ∼ t j
−

→ πi
− exp(−θ>µi

− + 1
2 θ>Σi

−θ)

π j
− exp(−θ>µ j

− + 1
2 θ>Σ j

−θ)
as ρk → 0,

which implies that the vector ξ is proportional to the vector with components πi
− exp(−θ>µi

− +
1
2 θ>Σi

−θ), that is:

∀i, ξi =
πi exp(−θ>µi

− + 1
2 θ>Σi

−θ)

∑ j π j exp(−θ>µ j
− + 1

2 θ>Σ j
−θ)

. (12)

We have shown that points of accumulation (θ,ξ) must verify two equations, Eq. (11) and
Eq. (12).

Unique solution of Eq. (11) and Eq. (12) We now prove that Eq. (11) and Eq. (12) together have
an unique solution, obtained as the optimum solution of a strictly convex problem. From Eq. (11),
we can write θ as a function of ξ as:

θ(ξ) =

(

∑
i

ξiΣi
−

)−1

∑
i

ξiµ
i
−. (13)

Let us define the following function defined on the positive orthant {ξ,ξi > 0,∀i}:

H(ξ) = ∑
i

ξi logξi −∑
i

ξi

{
logπi

−−θ(ξ)>µi
− +

1
2

θ(ξ)>Σi
−θ(ξ)

}
.
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Short calculations show that:

∂θ
∂ξi

=

(

∑
k

ξkΣk
−

)−1 (
µi
−−Σi

−θ(ξ)
)
,

∂
{
−θ(ξ)>µi

− + 1
2 θ(ξ)>Σi

−θ(ξ)
}

∂ξ j
= −

(
µi
−−Σi

−θ(ξ)
)
(

∑
k

ξkΣk
−

)−1(
µ j
−−Σ j

−θ(ξ)
)

,

∂H
∂ξi

= logξi +1−
(

logπi
−−θ(ξ)>µi

− +
1
2

θ(ξ)>Σi
−θ(ξ)

)
,

∂2H
∂ξi∂ξ j

= δi j
1
ξi

+
(
µi
−−Σi

−θ(ξ)
)
(

∑
k

ξkΣk
−

)−1(
µ j
−−Σ j

−θ(ξ)
)

.

The last equation shows that the function H is strictly convex in the positive orthant. Thus, minimiz-
ing H(ξ) subject to ∑i ξi = 1 has an unique solution. Optimality conditions are derived by writing
down the Lagrangian:

L(ξ,α) = H(ξ)+α(∑
i

ξi −1),

which leads to the following optimality conditions:

∀i,
∂H
∂ξi

+α = 0, (14)

∑
i

ξi = 1. (15)

The last two equations are exactly equivalent to Eq. (12). We have thus proved that the system
defining θ and ξ (Eq. (11) and Eq. (12)) has an unique solution obtained from the solution of the
convex optimization problem:

minimize ∑
i

ξi logξi −∑
i

ξi

{
logπi

−−θ(ξ)>µi
− +

1
2

θ(ξ)>Σi
−θ(ξ)

}

with respect to ξ
such that ξi > 0,∀i

∑
i

ξi = 1

with

θ(ξ) =

(

∑
i

ξiΣi
−

)−1

∑
i

ξiµ
i
−.

Asymptotic equivalent From the value of θ and ξ obtained above, we can derive the asymptotic
expansions of w and b. From Eq. (9) and the fact that t i

+ tends to +∞, we get ∑i πi
−ψ(t i

−)∼ ρ∑i πi
+ =

ρ. In addition, we can show by expanding (t i
−)2 that (t i

−)2 −b2 has a limit when ρ tends to 0, which
in turn implies that ψ(b)/ρ has a finite limit. This implies that b ≈ −(2log(1/ρ))1/2. From the
fact that bw tends to a limit θ, we immediately obtain that w ≈ θ/b, which completes the proof of
Proposition 2.
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Appendix B. Proof of Expansion of Testing Asymmetries

For the two losses we considered (square and erf), the expansions of w and b around γ = 0 lead to

w(γ)
b(γ)

≈−c(γ)a,

where c(γ) = 2 p+

p−
γ, a = Σ−1

− (µ+−µ−) for the square loss and c(γ) = (2log(1/γ))−1, a = Σ̃−1
− (µ̃+−

µ̃−) for the erf loss.
The proportion of false positives u(γ) and true positives v(γ) can be obtained as:

u(γ) = P(w>x+b > 0|y = −1) = ∑
i

πi
−ψ
(

w>µi
− +b

(w>Σi
−w)1/2

)
= ψ(t i

u(γ)),

v(γ) = P(w>x+b > 0|y = 1) = ∑
i

πi
+ψ
(

w>µi
+ +b

(w>Σi
+w)1/2

)
= ψ(t i

v(γ)),

and we have the expansions

t i
u(γ) ,

w>µi
− +b

(w>Σi
−w)1/2

≈ −1

c(γ)(a>Σi
−a)1/2

,

t i
v(γ) ,

w>µi
+ +b

(w>Σi
+w)1/2

≈ −1

c(γ)(a>Σi
+a)1/2

,

du
dγ

= ∑
i

πi
−

dt i
u

dc
dc
dγ

ψ′(t i
u(γ)) ∼

dc
dγ ∑

i

πi
−

1√
2π

exp(−(a>Σi
−a)−1/2c(γ)2)

c(γ)2(a>Σi
−a)−1/2

,

dv
dγ

= ∑
i

πi
+

dt i
v

dc
dc
dγ

ψ′(t i
v(γ)) ∼

dc
dγ ∑

i

πi
+

1√
2π

exp(−(a>Σi
+a)−1/2c(γ)2)

c(γ)2(a>Σi
+a)−1/2

.

The expansions of du
dγ and dv

dγ are each dominated by a single term, corresponding to indices i− and

i+ that respectively maximized (a>Σi
−a)−1 and (a>Σi

+a)−1 (we assume for simplicity that all values
of a>Σi

±a are distinct). We then obtain

log

(
dv
dγ

/
du
dγ

)
∼ 1

2c(γ)2

(
1

a>Σi−
− a

− 1

a>Σi+
− a

)
.

Proposition 3 and 4 follows from dv
dγ/

du
dγ = p−

p+
(β(γ)−1 −1), which is a consequence of Eq. (1).
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Abstract
We study the computational and sample complexity of parameter and structure learning in graphical
models. Our main result shows that the class of factor graphs with bounded degree can be learned
in polynomial time and from a polynomial number of training examples, assuming that the data
is generated by a network in this class. This result covers both parameter estimation for a known
network structure and structure learning. It implies as a corollary that we can learn factor graphs for
both Bayesian networks and Markov networks of bounded degree, in polynomial time and sample
complexity. Importantly, unlike standard maximum likelihood estimation algorithms, our method
does not require inference in the underlying network, and so applies to networks where inference
is intractable. We also show that the error of our learned model degrades gracefully when the
generating distribution is not a member of the target class of networks. In addition to our main
result, we show that the sample complexity of parameter learning in graphical models has an O(1)
dependence on the number of variables in the model when using the KL-divergence normalized by
the number of variables as the performance criterion.1

Keywords: probabilistic graphical models, parameter and structure learning, factor graphs, Markov
networks, Bayesian networks

1. Introduction

Graphical models are widely used to compactly represent structured probability distributions over
(large) sets of random variables. Learning a graphical model from data is important for many
applications. This learning problem can vary along several axes, including whether the data is fully
or partially observed, and whether the structure of the network is given or needs to be learned from
data.

In this paper, we focus on the problem of learning both network structure and parameters from
fully observable data, restricting attention to discrete probability distributions over finite sets. We
focus on the problem of learning a factor graph representation (Kschischang et al., 2001) of the
distribution. Factor graphs subsume both Bayesian networks and Markov networks, in that every
Bayesian network or Markov network can be written as a factor graph of (essentially) the same
size.2

1. A preliminary version of some of this work was reported in Abbeel et al. (2005).
2. The factor graph corresponding to either a Bayesian network or a Markov network can be constructed in linear time

(as a function of the size of the original network). See, for example, Kschischang et al. (2001), and Yedidia et al.

c©2006 Pieter Abbeel, Daphne Koller and Andrew Y. Ng.
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We provide a new parameterization of factor graph distributions, which forms the basis for
our results. In this new parameterization, every factor is written as a product of probabilities over
the variables in the factor and its neighbors. We will refer to such subsets of variables as “local
subsets of variables.” These local subsets of variables are of size at most d2 for factor graphs
of bounded degree d. Thus, for factor graphs of bounded degree d, the probabilities appearing
in our new parameterization are over at most d2 variables and can be estimated efficiently from
training examples.3 Hence this new parameterization naturally leads to an algorithm that solves the
parameter learning problem in closed-form by estimating the probabilities over these local subsets
of variables from training examples. We show that our closed-form estimation procedure results in
a good estimate of the true distribution. More specifically, for factor graphs of bounded degree, if
the generating distribution falls into the target class, we show that our estimation procedure returns
an accurate solution—one of low KL-divergence from the true distribution—given a polynomial
number of training examples.

In contrast to our new parameterization, the factors in a factor graph (or a Markov network) are
typically considered to have no probabilistic interpretation at all. One exception is the canonical
parameterization used in the Hammersley-Clifford theorem for Markov networks (Hammersley and
Clifford, 1971; Besag, 1974b). The Hammersley-Clifford canonical parameterization expresses the
distribution as a product of probabilities over all variables. However, the number of different in-
stantiations is exponential in the number of variables. Therefore such probabilities over all variables
cannot be estimated accurately from a small number of training examples. As a consequence the
Hammersley-Clifford canonical parameterization is not suited for parameter learning.

Our closed-form parameter learning algorithm is the first polynomial-time and polynomial
sample-complexity parameter learning algorithm for factor graphs of bounded degree, and thereby
for Markov networks of bounded degree. In contrast, we do not know how to do maximum like-
lihood (ML) estimation in Markov networks or factor graphs without evaluating the likelihood.
Evaluating the likelihood is equivalent to evaluating the partition function. Evaluating the parti-
tion function is known to be NP-hard, both exactly and approximately (Jerrum and Sinclair, 1993;
Barahona, 1982). Indeed, all known exact algorithms grow exponentially in the tree-width of the
graph, making the computation of the partition function intractable for many, even moderately sized,
factor graphs. (See, for example, Cowell et al., 1999, for more details on such exact algorithms.)
For example, n by n grids over binary variables (which have degree bounded by 4, independently
of n) have tree-width n and the computational complexity of known algorithms for computing the
partition function (and thus of known ML algorithms) is O(2n).

We analyze the sample complexity of parameter learning as a function of the number of variables
in the network. We show that (under some mild assumptions) the sample complexity of parameter
learning in graphical models has on O(1) dependence on the number of variables in the graphical
model when using KL-divergence normalized by the number of variables as the performance crite-
rion. This result is important since it gives theoretical support for the common practice of learning
large graphical models from a relatively small number of training examples. More specifically, the
number of training examples can be much smaller than the number of parameters when learning
large graphical models.

(2001), for more details on the equivalence and conversion between factor graphs, Bayesian networks and Markov
networks.

3. For a pairwise Markov network with degree of the undirected graph bounded by d, the local subsets are of size at
most 2d.
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Building on our closed-form parameter learning algorithm, we provide an algorithm for learning
not only the parameters, but also the structure. In our new parameterization, factors that are not
present in the distribution can be computed in the same way from local probabilities as factors that
are present in the distribution. As will become clear later, a key property of our new parameterization
is that the factors not present in the distribution have all entries equal to one. This gives a very
simple test to decide whether or not a factor is present in the distribution. Thus no iterative search
procedure—as is common for most structure learning algorithms—is needed. However, to compute
all the factors from local probabilities, we need to know which variables are its neighbors. So to
complete the structure learning algorithm, we need to show how to find each factor’s neighbors.
We show that local independence tests can be used to find the neighbors of each factor. Since local
independence tests use statistics over a small number of variables only, the neighbors can be found
efficiently from a small number of training examples.

Our structure learning algorithm provides the first polynomial-time and polynomial sample-
complexity structure learning algorithm for factor graphs, and thereby for Markov networks. Note
that our algorithm applies to any factor graph of bounded degree, including those (such as grids)
where inference is intractable.

We also show that our algorithms degrade gracefully, in that they return reasonable answers
even when the underlying distribution does not come exactly from the target class of networks.

We note that the proposed algorithms are unlikely to be useful in practice in their current form.
The structure learning algorithm does an exhaustive enumeration over the possible neighbor sets of
factors in the factor graph, a process which is—although polynomial—generally infeasible even in
moderately sized networks. Both the parameter and the structure learning algorithm do not make
good use of all the available data. Nevertheless, the techniques used in our analysis open new
avenues towards efficient parameter and structure learning in undirected, intractable models.

The remainder of this paper is organized as follows. Section 2 provides necessary background
about Gibbs distributions, the factor graph associated with a Gibbs distribution, Markov blankets
and the Hammersley-Clifford canonical parameterization. In its original form, the Hammersley-
Clifford theorem applies to Markov networks only. We provide an extension that applies to factor
graphs. In Section 3, building on the canonical parameterization for factor graphs, we derive our
novel parameterization, which forms the basis of our parameter estimation algorithm. We present
our algorithm and provide formal running time and sample complexity guarantees. We conclude the
section with an in-depth analysis of the relationship between the sample complexity and the number
of random variables. In Section 4, we present our structure learning algorithm, and its formal
guarantees. Section 5 discusses related work. For clarity of exposition, we provide the complete
proofs of all theorems and propositions in the appendix.

Table 1 gives an overview of the notation we use throughout this paper.

2. Preliminaries

In this section we first introduce Gibbs distributions, the factor graph associated with a Gibbs distri-
bution, Markov blankets and the canonical parameterization. Then we present an extension of the
Hammersley-Clifford theorem—which in its original form only applies to Markov networks—to
factor graphs. Throughout the paper we restrict attention to discrete probability distributions over
finite sets.
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Figure 1: Example factor graph.

2.1 Gibbs Distributions

The probability distributions we consider are referred to as Gibbs distributions.

Definition 1 (Gibbs distribution) A factor f with scope4 D is a mapping from val(D) to R
+. A

Gibbs distribution P over a set of random variables X = {X1, . . . ,Xn} is associated with a set of
factors { f j}J

j=1 with scopes {C j}J
j=1, such that

P(X1 = x1, . . . ,Xn = xn) =
1
Z

J

∏
j=1

f j(C j[x1, . . . ,xn]).

The normalizing constant Z is the partition function.

The factor graph associated with a Gibbs distribution is a bipartite graph whose nodes corre-
spond to variables and factors, with an edge between a variable X and a factor f j if the scope of f j

contains X . There is one-to-one correspondence between factor graphs and the sets of scopes. Fig-
ure 1 gives an example of a factor graph. Here the Gibbs distribution is over the variables X1, · · · ,X9,
which are represented by circles in the factor graph. The factors are represented by squares and
have the following respective scopes: {X1,X2,X3}, {X1,X2}, {X2,X3}, {X1,X4}, {X2,X5}, {X3,X6},
{X4,X5}, {X5,X6}, {X4,X7}, {X5,X8}, {X7,X9}, {X7,X8}, {X8,X9}. The corresponding Gibbs dis-
tribution is given by

P(X1 = x1, · · · ,X9 = x9) =
1
Z

f{X1,X2,X3}(x1,x2,x3) f{X1,X2}(x1,x2) · · · f{X8,X9}(x8,x9).

A Gibbs distribution also induces a Markov network—an undirected graph whose nodes corre-
spond to the random variables X and where there is an edge between two variables if there is a factor
in which they both participate. The set of scopes uniquely determines the structure of the Markov
network, but several different sets of scopes can result in the same Markov network. For example, a
fully connected Markov network can correspond both to a Gibbs distribution with

(n
2

)
factors over

pairs of variables, and to a distribution with a factor which is a joint distribution over X . We will

4. A function has scope X if its domain is val(X), the set of possible instantiations of the set of random variables X.
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use the more precise factor graph representation in this paper. Our results are easily translated into
results for Markov networks.

Definition 2 (Markov blanket) Let a set of scopes C = {C j}J
j=1 be given. The Markov blanket of

a set of random variables D ⊆ X is defined as

MB(D) = ∪{C j : C j ∈ C , C j ∩D 6= /0}−D.

Thus, the Markov blanket of a set of variables D is the minimal set of variables that separates D from
the other variables in the factor graph. For the factor graph distribution of Figure 1 we have, for ex-
ample, MB({X1}) = {X2,X3,X4}, MB({X1,X2}) = {X3,X4,X5}, and MB({X5}) = {X2,X4,X6,X8}.

For any Gibbs distribution, we have, for any subset of random variables D, that

D ⊥ X −D−MB(D) | MB(D), (1)

or in words: given its Markov blanket MB(D), the set of variables D is independent of all other
variables X −D−MB(D).5

A standard assumption for a Gibbs distribution, which is critical for identifying its structure
(see Lauritzen, 1996, Ch. 3), is that the distribution be positive—all of its entries be non-zero. Our
results use a quantitative measure for how positive P is. Let γ = minx,i P(Xi = xi|X−i = x−i), where
the −i subscript denotes all entries but entry i. Note that, if we have a fixed bound on the number
of factors in which a variable can participate, a fixed bound on the domain size for each variable,
and a fixed bound on how skewed each factor is (more specifically a bound on the ratio of its
lowest and highest entries), we are guaranteed a bound on γ that is independent of the number n
of variables in the network. Thus, under these assumptions, our sample complexity results, which
are expressed as a function of γ, have no hidden dependence on the number of variables n. In
contrast, γ̃ = minx P(X = x) generally has an exponential dependence on n. For example, if we
have n independent and identically distributed (i.i.d.) Bernoulli( 1

2 ) random variables, then γ = 1
2

(independent of n) but γ̃ = 1
2n .

2.2 The Canonical Parameterization

A Gibbs distribution is generally over-parameterized relative to the structure of the underlying fac-
tor graph, in that a continuum of possible parameterizations over the graph can all encode the same
distribution. The canonical parameterization (Hammersley and Clifford, 1971; Besag, 1974b) pro-
vides one specific choice of parameterization for a Gibbs distribution, with some nice properties
(see below). The canonical parameterization forms the basis for the Hammersley-Clifford theorem,
which asserts that any distribution that satisfies the independence assumptions encoded by a Markov
network can be represented as a Gibbs distribution with factors corresponding to each of the cliques
in the Markov network. In its original formulation, the canonical distribution is defined for Gibbs
distributions over Markov networks. We use a more refined parameterization, defined at the factor
level; results at the clique level (or, equivalently, results for Markov networks) are trivial corollaries.

The canonical parameterization is defined relative to an arbitrary (but fixed) set of “default”
assignments x̄ = (x̄1, . . . , x̄n). Let any subset of variables D = 〈Xi1 , . . . ,Xi|D|〉, and any assignment

5. By X ⊥ Y we denote that X is independent of Y. By X ⊥ Y | Z we denote that X is conditionally independent of Y
given Z.
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d = 〈xi1 , . . . ,xi|D|〉 be given. Let any U ⊆ D be given. We define σ·[·] such that for all i ∈ {1, . . . ,n}:

(σU[d])i =

{
xi if Xi ∈ U,
x̄i if Xi /∈ U.

In words, σU[d] keeps the assignments to the variables in U as specified in d, and augments it to
form a full assignment using the default values in x̄. Note that the assignments to variables outside
U are always ignored, and replaced with their default values. Thus, the scope of σU[·] is always U.

Let P be a positive Gibbs distribution.The canonical factor for D ⊆ X is defined as follows:

f ∗D(d) = exp
(
∑U⊆D(−1)|D−U| logP(σU[d])

)
. (2)

The sum is over all subsets of D, including D itself and the empty set /0.
The following theorem extends the Hammersley-Clifford theorem (which applies to Markov

networks) to factor graphs.

Theorem 3 Let P be a positive Gibbs distribution with factor scopes {C j}J
j=1. Let {C∗

j}J∗
j=1 =

∪J
j=12C j − /0 (where 2X is the power set of X—the set of all of its subsets). Then

P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j
(c∗j),

where c∗j is the instantiation of C∗
j consistent with x.

The proof is in the appendix.
The parameterization of P using the canonical factors { f ∗C∗

j
}J∗

j=1 is called the canonical param-

eterization of P. Although typically J∗ > J, the additional factors are all subfactors of the original
factors. Note that first transforming a factor graph into a Markov network and then applying the
Hammersley-Clifford theorem to the Markov network generally results in a significantly less sparse
canonical parameterization than the canonical parameterization from Theorem 3.

We now give an example to clarify the definition of canonical factors and canonical parameter-
ization.

Example 1 Consider again the factor graph of Figure 1. Assume we take the fixed assignment to
be all zeros, namely we have x̄1 = 0, x̄2 = 0, · · · , x̄9 = 0. Then the canonical factor f ∗{X1,X2} over the
variables X1,X2 instantiated to x1,x2 is given by

log f ∗{X1,X2}(x1,x2) = logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0). (3)

So to compute the canonical factor, we start with the joint instantiation of the factor variables
{X1,X2} with all other variables {X3, · · · ,X9} set to their default instantiations. Then we subtract
out the instantiations for which one of the factor variables is changed to its default instantiation.
Crudely speaking, we subtract out the interactions that are already captured by a canonical factor
over a smaller set of variables. Then we adjust for double counting by adding back in the instanti-
ation where both factor variables have been set to their default instantiation.
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Similarly, the canonical factor f ∗{X1,X2,X3} over the variables X1,X2,X3 instantiated to x1,x2,x3 is
given by

log f ∗{X1,X2,X3}(x1,x2,x3) = logP(X1 = x1,X2 = x2,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = x2,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = x3,X4 = 0, · · · ,X9 = 0)

− logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = 0,X3 = x3,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = 0,X2 = x2,X3 = 0,X4 = 0, · · · ,X9 = 0)

+ logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0).

The canonical factor over just the variable X1 instantiated to x1 is given by

log f ∗{X1}(x1) = logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0)

− logP(X1 = 0,X2 = 0,X3 = 0,X4 = 0, · · · ,X9 = 0).

Theorem 3 applied to our example gives the following expression for the probability distribution:

P(X1 = x1, · · · ,X9 = x9) = P(X1 = 0, · · · ,X9 = 0)

× f ∗{X1,X2,X3}(x1,x2,x3)

× f ∗{X1,X2}(x1,x2) f ∗{X2,X3}(x2,x3) · · · f ∗{X8,X9}(x8,x9)

× f ∗{X1}(x1) f ∗{X2}(x2) · · · f ∗{X9}(x9)

=
1
Z
× f ∗{X1,X2,X3}(x1,x2,x3)

× f ∗{X1,X2}(x1,x2) f ∗{X2,X3}(x2,x3) · · · f ∗{X8,X9}(x8,x9)

× f ∗{X1}(x1) f ∗{X2}(x2) · · · f ∗{X9}(x9). (4)

3. Parameter Estimation

In this section we first introduce the parameter estimation ideas informally by expanding on Ex-
ample 1. Then we formally introduce the key idea of Markov blanket canonical factors, which
give a parameterization of a factor graph distribution only in terms of local probabilities. This new
parameterization directly results in the proposed parameter estimation algorithm. We analyze the
algorithm’s computational and sample complexity. In addition, we show an O(1) dependence on
the number of variables in the network for the sample complexity when using the KL-divergence
normalized by the number of variables in the network as performance criterion.

3.1 Parameter Estimation by Example

Consider the problem of estimating the parameters of the distribution in Figure 1 from training
examples. From Eqn. (4) we have that it is sufficient to estimate all the canonical factors. Each
canonical factor is expressed in terms of probabilities. So one could estimate the canonical factors
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(and thus the distribution) in closed-form by estimating these probabilities from data. Unfortunately
the probabilities appearing in the canonical factors are over full joint instantiations of all variables.
As a consequence, these probabilities can not be estimated accurately from a small amount of data.

However, we will now consider the factor f ∗{X1,X2} more carefully and show it can be estimated
from probabilities over small subsets of the variables only. The factor f ∗{X1,X2} contains an equal
number of terms with positive and negative sign. For the sum of two such terms, we now derive
a novel expression which contains local probabilities only (instead of probabilities of full joint
instantiations of all variables).

logP(X1 = x1,X2 = x2,X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0,X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

+ logP(X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0,X6 = 0,X7 = 0,X8 = 0,X9 = 0)

= logP(X1 = x1,X2 = x2|MB({X1,X2}) =~0)

− logP(X1 = x1,X2 = 0|MB({X1,X2}) =~0)

= logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0). (5)

Here we used in order: the definition of conditional probability; same terms with opposite sign
cancel; conditioning on the Markov blanket is equivalent to conditioning on all other variables;
MB({X1,X2}) = {X3,X4,X5} in our example.

The last expression in Eqn. (5) contains local probabilities only, which can be estimated accu-
rately from a small number of training examples. Using a similar reasoning as above for the other
two terms of the factor f ∗{X1,X2}, we get the following expression for f ∗{X1,X2}, which contains local
probabilities only:

log f ∗{X1,X2}(x1,x2) = logP(X1 = x1,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = x1,X2 = 0|X3 = 0,X4 = 0,X5 = 0)

− logP(X1 = 0,X2 = x2|X3 = 0,X4 = 0,X5 = 0)

+ logP(X1 = 0,X2 = 0|X3 = 0,X4 = 0,X5 = 0)

= log f ∗{X1,X2}|{X3,X4,X5}(x1,x2). (6)

The last line defines f ∗{X1,X2}|{X3,X4,X5}(x1,x2) (which we refer to as the Markov blanket canonical fac-
tor for {X1,X2}). Although f ∗{X1,X2}(x1,x2) = f ∗{X1,X2}|{X3,X4,X5}(x1,x2) when exact probabilities are
used, we use different notation to explicitly distinguish how they are computed from probabilities.
The Markov blanket canonical factor f ∗{X1,X2}|{X3,X4,X5}(x1,x2) is computed from local probabilities
as given in Eqn. (6). The (original) canonical factor f ∗{X1,X2}(x1,x2) is computed from probabilities
over full joint instantiations as given in Eqn. (3).
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Similarly, the other canonical factors have equivalent Markov blanket canonical factors which
involve local probabilities only. This gives us an efficient closed-form parameter estimation algo-
rithm for our example. In the next few sections we formalize this idea for general factor graphs and
analyze the computational and sample complexity.

3.2 Markov Blanket Canonical Factors

Considering the definition of the canonical parameters, we note that all of the terms in Eqn. (2) can
be estimated from empirical data using simple counts, without requiring inference over the network.
Thus, it appears that we can use the canonical parameterization as the basis for our parameter
estimation algorithm. However, as written, this estimation process is statistically infeasible, as
the terms in Eqn. (2) are probabilities over full instantiations of all variables, which can never be
estimated from a reasonable number of training examples.

We now generalize our observation from the example in the previous section: namely, that we
can express the canonical factors using only probabilities over much smaller instantiations—those
corresponding to a factor and its Markov blanket. Let D = 〈Xi1 , . . . ,Xi|D|〉 be any subset of variables,
and d = 〈xi1 , . . . ,xi|D|〉 be any assignment to D. For any U⊆D, we define σU:D[d] to be the restriction
of the full instantiation σU[d] of all variables in X to the corresponding instantiation of the subset D.
In other words, σU:D[d] keeps the assignments to the variables in U as specified in d, and changes
the assignment to the variables in D−U to the default values in x̄. Let D ⊆ X and Y ⊆ X −D. Then
the factor f ∗D|Y over the variables in D is defined as follows:

f ∗D|Y(d) = exp
(
∑U⊆D(−1)|D−U| logP(σU:D[d]|Y = ȳ)

)
, (7)

where the sum is over all subsets of D, including D itself and the empty set /0.
For example, we have that f ∗{X1,X2}|{X3,X4,X5} of the factor graph in Figure 1 is given by Eqn. (6)

in the previous section.
The following proposition shows an equivalence between the factors computed using Eqn. (2)

and Eqn. (7).

Proposition 4 Let P be a positive Gibbs distribution with factor scopes {C j}J
j=1, and {C∗

j}J∗
j=1 as

above (i.e., {C∗
j}J∗

j=1 = ∪J
j=12C j − /0). Then for any D ⊆ X , we have:

f ∗D = f ∗D|X−D = f ∗D|MB(D), (8)

and (as a direct consequence)

P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j |X−C∗
j
(c∗j) (9)

= P(x̄)∏J∗
j=1 f ∗C∗

j |MB(C∗
j)
(c∗j), (10)

where c∗j is the instantiation of C∗
j consistent with x.

Proposition 4 shows that we can compute the canonical parameterization factors using probabilities
over factor scopes and their Markov blankets only. From a sample complexity point of view, this
is a significant improvement over the standard definition which uses joint instantiations over all
variables. Using Eqn. (7) we can expand the Markov blanket canonical factors in Proposition 4 and
we see that any factor graph distribution can be parameterized as a product of local probabilities
only.
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X ,Y, . . . random variables
x,y, . . . instantiations of the random variables
X,Y, . . . sets of random variables
x,y, . . . instantiations of sets of random variables
val(X) set of values the variable X can take
D[x] instantiation of D consistent with x (abbreviated as d when no ambiguity is

possible)
X ⊥ Y X is independent of Y
X ⊥ Y | Z X is conditionally independent of Y given Z
f factor
P positive Gibbs distribution over a set of random variables X = 〈X1, . . . ,Xn〉
{ f j}J

j=1 factors of P
{C j}J

j=1 scopes of factors of P
P̂ empirical (sample) distribution
P̃ distribution returned by learning algorithm
f ∗· canonical factor as defined in Eqn. (2)
f ∗·|· canonical factor as defined in Eqn. (7)

f̂ ∗·|· canonical factor as defined in Eqn. (7), but using the empirical distribution P̂

MB(D) Markov blanket of D
k max j|C j|
γ minx,i P(Xi = xi|X−i = x−i)
v maxi|val(Xi)|
b max j|MB(C j)|
m number of training examples

D(·‖·) KL-divergence, D(P‖Q) = ∑x∈valX P(x) log P(x)
Q(x)

C the set of candidate factor scopes for the structure learning algorithm, Factor-
Graph-Structure-Learn (C = {C∗

j : C∗
j ⊆ X ,C∗

j 6= /0, |C∗
j | ≤ k})

Table 1: Notational conventions.

3.3 Parameter Estimation Algorithm

Based on the parameterization above, we propose the following Factor-Graph-Parameter-Learn al-
gorithm. The algorithm takes as inputs: the scopes of the factors {C j}J

j=1, training examples

{x(i)}m
i=1, a baseline instantiation x̄. Then for {C∗

j}J∗
j=1 as above (i.e., {C∗

j}J∗
j=1 = ∪J

j=12C j − /0),
Factor-Graph-Parameter-Learn does the following:

• Compute the estimates of the canonical factors { f̂ ∗C∗
j |MB(C∗

j )
}J∗

j=1 as in Eqn. (7), but using the

empirical estimates based on the training examples.

• Return the probability distribution P̃(x) ∝ ∏J∗
j=1 f̂ ∗C∗

j |MB(C∗
j)
(c∗j).
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Theorem 5 (Parameter learning: computational complexity) The running time of the Factor-
Graph-Parameter-Learn algorithm is in O(m2kJ(k +b)+22kJvk).6

The proof is given in the appendix.
Note the representation of the factor graph distribution is Ω(Jvk), thus exponential dependence

on k is unavoidable for any algorithm. More importantly, there is no dependence on the running time
of evaluating the partition function. On the other hand, all currently known maximum likelihood
estimation algorithms require evaluating the partition function, which is known to be NP-hard, both
exactly and approximately (Jerrum and Sinclair, 1993; Barahona, 1982).

3.4 Sample Complexity

We now analyze the sample complexity of the Factor-Graph-Parameter-Learn algorithm, showing
that it returns a distribution that is a good approximation of the true distribution when given only a
“small” number of training examples. We will use the sum of KL-divergences D(P‖P̃)+ D(P̃‖P)
to measure how well the distribution P̃ approximates the distribution P.7

Theorem 6 (Parameter learning: sample complexity) Let any ε,δ > 0 be given. Let Factor-Graph-
Parameter-Learn be given (a) m training examples {x(i)}m

i=1 drawn i.i.d. from a distribution P and
(b) the factor graph structure according to which the distribution P factors. Let P̃ be the probability
distribution returned by Factor-Graph-Parameter-Learn. Then, we have that, for

D(P‖P̃)+D(P̃‖P) ≤ Jε

to hold with probability at least 1−δ, it suffices that the number of training examples m satisfies:

m ≥ (1+ ε
22k+2 )

2 24k+3

γ2k+2bε2 log 2k+2Jvk+b

δ . (11)

A complete proof is given in the appendix.
Theorem 6 shows that—assuming the true distribution P factors according to the given structure—

Factor-Graph-Parameter-Learn returns a distribution that is Jε-close in KL-divergence. The sample
complexity scales exponentially in the maximum number of variables per factor k, and polynomially
in 1

ε ,
1
γ .

The error in the KL-divergence grows linearly with the number of factors J. This is a con-
sequence of the fact that the number of terms in the distributions is equal to the number of fac-
tors J, and each term can accrue an error. We can obtain a more refined analysis if we elimi-
nate this dependence by considering the KL-divergence normalized by the number of variables,
Dn(P‖P̃) = 1

n D(P‖P̃). We return to this topic in Section 3.5.
We now sketch the proof idea. The Markov blanket canonical factors are a product of local

conditional probabilities. These local conditional probabilities can be estimated accurately from a
“small” number of training examples. Thus the Markov blanket canonical factors can be estimated
accurately from a small number of training examples. Thus the factor graph distribution—which is
just a product of the Markov canonical factors—can be estimated accurately from a small number
of training examples.

6. The upper bound is based on a very naive implementation’s running time. It assumes that operations on numbers
(such as reading, writing, adding, etc.) take constant time.

7. D(P‖Q) = ∑x∈valX P(x) log P(x)
Q(x)

.
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Theorem 6 considers the case when P factors according to the given structure. The following
theorem shows that our error degrades gracefully even if the training examples are generated by a
distribution Q that does not factor according to the given structure.

Theorem 7 (Parameter learning: graceful degradation) Let any ε,δ > 0 be given. Let {x(i)}m
i=1

be i.i.d. samples from a distribution Q. Let MB and M̂B be the Markov blankets according to the
distribution Q and the given structure respectively. Let { f ∗D∗

j |MB(D∗
j)
}J̄

j=1 be the non-trivial Markov

blanket canonical factors of Q (those factors with not all entries equal to one). Let {C∗
j}J∗

j=1 be the
scopes of the canonical factors in the factor graph given to the algorithm. Let P̃ be the probability
distribution returned by Factor-Graph-Parameter-Learn. Then we have that for

D(Q‖P̃)+D(P̃‖Q) ≤ Jε+2∑
j:D∗

j /∈{C∗
k}J∗

k=1

maxd∗
j

∣∣ log f ∗D∗
j
(d∗

j)
∣∣+2∑

j : MB(C∗
j )6=M̂B(C∗

j)

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣

to hold with probability at least 1− δ, it suffices that the number of training examples m satisfies
Eqn. (11) of Theorem 6.

Note the sample complexity depends on parameters k = max j|C∗
j | and b = max j|MB(C∗

j)| of the
given target structure (rather than the true structure). The graceful degradation result is important,
as it shows that each canonical factor that is incorrectly captured by our target structure adds at most
a constant (namely, l2l+1 log 1

γ for an incorrectly captured factor over l variables) to our bound on

the KL-divergence.8 This constant can be large, so we discuss the actual error contribution in more
detail. A canonical factor could be incorrectly captured when the corresponding factor scope is not
included in the given structure. Canonical factors are designed so that a factor over a set of variables
captures only the residual interactions between the variables in its scope, once all interactions be-
tween its subsets have been accounted for in other factors. Thus, canonical factors over large scopes
are often close to the trivial all-ones factor in practice. Therefore, if our structure approximation
is such that it only ignores some of the larger-scope factors, the error in the approximation may be
quite limited. A canonical factor could also be incorrectly captured when the given structure does
not have the correct Markov blanket for that factor. The resulting error depends on how good an
approximation of the Markov blanket we do have. See Section 4 for more details on the error caused
by incorrect Markov blankets.

3.5 Reducing the Dependence on Network Size

Our previous analysis showed a linear dependence of the sample complexity on the number of
factors J in the network (for parameter learning). In a sense, this dependence is inevitable. To un-
derstand why, consider a distribution P defined by a set of n independent Bernoulli random variables
X1, . . . ,Xn, each with parameter 0.5. Assume that Q is an approximation to P, where the Xi are still
independent, but have parameter 0.4999. Intuitively, a Bernoulli(0.4999) distribution is a very good

8. Each factor over l variables is a fraction of a product of 2l−1 conditional probabilities over another product of 2l−1

conditional probabilities. Recall that γ = minx,i P(Xi = xi|X−i = x−i) > 0, so we have that each conditional probability
over l variables lies in the interval [γl ,1]. Thus we have for a factor over l variables that maxd∗

j

∣∣ log f ∗D∗
j
(d∗

j)
∣∣ ≤

log 1
γl2l−1 = l2l−1 log 1

γ . Similarly, we have that maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j )

(c∗j )

f ∗
C∗

j |M̂B(C∗
j )

(c∗j )

∣∣∣≤ l2l log 1
γ .
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estimate of a Bernoulli(0.5); thus, for most applications, Q can safely be considered to be a very
good estimate of P. However, the KL-divergence D(P(X1:n)‖Q(X1:n)) = ∑n

i=1 D(P(Xi)‖Q(Xi)) =
Ω(n). Thus, if n is large, the KL divergence between P and Q would be large, even though Q is a
good estimate for P. To remove such unintuitive scaling effects when studying the dependence on
the number of variables, we can consider instead the normalized KL divergence criterion:

Dn(P(X1:n)‖Q(X1:n)) = 1
n D(P(X1:n)‖Q(X1:n)).

As we now show, with a slight modification to the algorithm, we can achieve a bound of ε for
our normalized KL-divergence while eliminating the logarithmic dependence on J in our sample
complexity bound. Specifically, we can modify our algorithm so that it clips probability estimates
∈ [0,γk+b) to γk+b. The clipping procedure is motivated by the proof of Theorem 8 and effectively
ensures that the KL-divergence is bounded.9 Note that—since true probabilities which we are trying
to estimate are never in the interval [0,γk+b)—this change can only improve the estimates.10

For this slightly modified version of the algorithm, the following theorem shows the dependence
on the size of the network is O(1), which is tighter than the logarithmic dependence shown in
Theorem 6.11

Theorem 8 (Parameter learning: size of the network) Let any ε,δ > 0 be given and fixed. Let
{x(i)}m

i=1 be i.i.d. samples from P. Let the domain size of each variable be fixed. Let the degree of
both the factor and variable nodes be bounded by a fixed constant. Let γ = minx,i P(Xi = xi|X−i =
x−i) be fixed. Let P̃ be the probability distribution returned by Factor-Graph-Parameter-Learn. Then
we have that, for

Dn(P‖P̃)+Dn(P̃‖P) ≤ ε

to hold with probability at least 1−δ, it suffices that we have a certain number of training examples
that does not depend on the number of variables in the network.

The following theorem shows a similar result for Bayesian networks, namely that for a fixed
bound on the number of parents per node, the sample complexity dependence on the size of the
network is O(1).12

9. In particular, we first show that the error contribution from any fixed factor is small with high probability. Then—
rather than using a Union bound to ensure the error contributions from all factors are small, which would result
in a logarithmic dependence of the sample complexity on the number of factors (or variables)—we use Markov’s
inequality to show that the error contribution of almost all factors is small with high probability. This leaves us to
bound the error contribution of the (few) remaining factors, for which the error contribution is not small. By clipping
the probability estimates, we can ensure their error contribution is bounded. A very similar reasoning applies to the
case of Theorem 9. (See the proofs of Theorems 8 and 9, given in the appendix, for more details.)

10. This solution assumes that γ is known. If not, we can use a clipping threshold as a function of the number of training
examples. Such an adaptive clipping procedure was used by Dasgupta (1997) to derive sample complexity bounds
for learning fixed structure Bayesian networks.

11. We note that Theorem 8 assumes the maximum number of factors a variable can participate in is fixed (i.e., it cannot
grow with the number of variables in the network). As a consequence, the dependence on the number of factors J
and the dependence on the number of variables n are equivalent (up to a constant factor).

12. Complete proofs for Theorems 8 and 9 (and all other results in this paper) are given in the appendix of this paper.
In the appendix we actually give a much stronger version of Theorem 9, including dependencies of m on ε,δ,k and
a graceful degradation result. We note that for non-binary random variables the clipping procedure is a bit more
subtle than for binary random variables. In particular, to ensure that the resulting clipped probabilities sum to one,
we might have to subtract a small quantity from the highest probability estimate after the clipping. For example, for
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Theorem 9 Let any ε > 0 and δ > 0 be given. Let any Bayesian network (BN) structure over n
variables with at most k parents per variable be given. Let P be a probability distribution that
factors over the BN. Let P̃ denote the probability distribution obtained by fitting the conditional
probability tables (CPT) entries via maximum likelihood and then clipping each CPT entry to the
interval [ ε

8|val(Xj)|3 ,1−
ε

8|val(Xj)|3 ]. Then we have that for

Dn(P‖P̃) ≤ ε

to hold with probability at least 1−δ, it suffices that we have a certain number of training examples
that does not depend on the number of variables in the network.

Theorems 8 and 9 provide theoretical support for the common practice of learning large graph-
ical models from a relatively small number of training examples. More specifically, the number of
training examples can be much smaller than the number of parameters when learning large graphical
models. In contrast, for many problems in machine learning, the sample complexity grows roughly
linearly or at most as some low-order polynomial in the number of parameters (Vapnik, 1998).
The difference in sample complexity relates to the discussion of generative versus discriminative
training. Indeed our result generalizes and even strengthens the results of Ng and Jordan (2002).
They showed a logarithmic dependence on the number of variables for the very specific case of a
graphical model with the naive Bayes structure.

4. Structure Learning

The algorithm described in the previous section uses the known network to establish a Markov
blanket for each factor. This Markov blanket is then used to estimate the canonical parameters from
empirical data. In this section, we show how we can build on this algorithm to perform structure
learning, by first identifying (from the data) an approximate Markov blanket for each candidate
factor, and then using this approximate Markov blanket to compute the parameters of that factor
from a “small” number of training examples.

4.1 Identifying Markov Blankets

In the parameter learning results, the Markov blanket MB(C∗
j) is used to efficiently estimate the

conditional probability P(C∗
j |X −C∗

j), which is equal to P(C∗
j |MB(C∗

j)). This suggests to measure
the quality of a candidate Markov blanket Y by how well P(C∗

j |Y) approximates P(C∗
j |X −C∗

j). In
this section we show how conditional entropy can be used to find a candidate Markov blanket that
gives a good approximation for this conditional probability.13

ε sufficiently small, we have that naively clipping the probability estimates (0,0,1/4,3/4) to the interval (ε,1− ε)
results in (ε,ε,1/4,3/4), which does not sum to one (but rather to 1 + 2ε). Subtracting the additional probability
mass 2ε from the highest entry fixes this problem. For this example we get (ε,ε,1/4,3/4− 2ε). In general, for
v-valued random variables, the probability estimates can be made to sum to one (after clipping) by subtracting at
most (v− 1)ε from the highest probability estimate. In the appendix we expand more on the topic of clipping for
non-binary random variables.

13. For some readers, some intuition might be gained from the fact that the conditional entropy of C∗
j given the candidate

Markov blanket Y corresponds to the log-loss of predicting C∗
j given the candidate Markov blanket Y.
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Definition 10 (Conditional Entropy) Let P be a probability distribution over over X,Y. Then the
conditional entropy H(X|Y) of X given Y is defined as

−∑
x∈val(X),y∈val(Y)

P(X = x,Y = y) logP(X = x|Y = y).

Proposition 11 (Cover & Thomas, 1991) Let P be a probability distribution over X,Y,Z. Then
we have H(X|Y,Z) ≤ H(X|Y).

Proposition 11 shows that conditional entropy can be used to find the Markov blanket for a given
set of variables. Namely, let D,Y ⊆ X , D∩Y = /0, then we have

H(D|MB(D)) = H(D|X −D) ≤ H(D|Y), (12)

where the equality follows from the Markov blanket property stated in Eqn. (1) and the inequality
follows from Proposition 11. Thus, we can select the set of variables Y that minimizes H(D|Y) as
our candidate Markov blanket for the set of variables D.

Our first difficulty is that, when learning from data, we do not have the true distribution, and
hence the exact conditional entropies are unknown. The following lemma shows that the conditional
entropy can be efficiently estimated from samples.

Lemma 12 Let P be a probability distribution over X,Y such that for all instantiations x,y we have
P(X = x,Y = y) ≥ λ. Let Ĥ be the conditional entropy computed based upon m i.i.d. samples from
P. Then for ∣∣H(X|Y)− Ĥ(X|Y)

∣∣≤ ε

to hold with probability 1−δ, it suffices that:

m ≥ 8|val(X)|2|val(Y)|2
λ2ε2 log 4|val(X)||val(Y)|

δ .

However, as the empirical estimates of the conditional entropy are noisy, the true Markov blan-
ket is not guaranteed to achieve the minimum of H(D|Y). In fact, in some probability distributions,
many sets of variables could be arbitrarily close to reaching equality in Eqn. (12). Thus, in many
cases, our procedure will not recover the actual Markov blanket, when given only a finite num-
ber of training examples. Fortunately, as we show in the next lemma, any set of variables U∪W
that is close to achieving equality in Eqn. (12) gives an accurate approximation P(C j|U,W) of the
probabilities P(C j|X −C j) used in the canonical parameterization.

Lemma 13 Let any ε > 0 be given. Let P be a distribution over disjoint sets of random variables
U,V,W,X,Y. Let λ1 = minu∈val(U),v∈val(V),w∈val(W) P(u,v,w), and let
λ2 = minx∈val(X),u∈val(U),v∈val(V),w∈val(W) P(x|u,v,w). Assume the following holds:

X ⊥ Y,W | U,V, (13)

H(X|U,W) ≤ H(X|U,V,W,Y)+ ε. (14)

Then we have that ∀ x,y,u,v,w

∣∣ logP(x|u,v,w,y)− logP(x|u,w)
∣∣≤

√
2ε

λ2
√

λ1
. (15)

1757



ABBEEL, KOLLER AND NG

In other words, if a set of variables U∪W looks like a Markov blanket for X, as evaluated by the
conditional entropy H(X|U,W), then the conditional distribution P(X|U,W) must be close to the
conditional distribution P(X|X −X). Thus, it suffices to find such an approximate Markov blanket
U∪W as a substitute for knowing the true Markov blanket U∪V. This makes conditional entropy
suitable for structure learning.

4.2 Structure Learning Algorithm

We propose the following Factor-Graph-Structure-Learn algorithm. The algorithm receives as input:
training examples {x(i)}m

i=1; k: the maximum number of variables per factor; b: the maximum
number of variables per Markov blanket for any set of variables up to size k; x̄: a base instantiation.14

Let C be the set of candidate factor scopes, let Y be the set of candidate Markov blankets. I.e.,
we have

C = {C∗
j : C∗

j ⊆ X ,C∗
j 6= /0, |C∗

j | ≤ k}, (16)

Y = {Y : Y ⊆ X , |Y| ≤ b}. (17)

The algorithm does the following:

• ∀ C∗
j ∈ C , find M̂B(C∗

j) = argminY∈Y ,Y∩C∗
j= /0 Ĥ(C∗

j |Y), which is the best candidate Markov
blanket.

• ∀ C∗
j ∈ C , compute the estimates { f̂ ∗

C∗
j |M̂B(C∗

j)
} j of the canonical factors as defined in Eqn. (7)

using the empirical distribution.

• Threshold to one the factor entries f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j) satisfying | log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤ ε

2k+2 , and

discard the factors that have all entries equal to one.

• Return the probability distribution P̃(x) ∝ ∏ j f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j).

The thresholding step finds the factors that actually contribute to the distribution. The specific
threshold is chosen to suit the proof of Theorem 15. If no thresholding were applied, the error
in Eqn. (18) would be |C |

2k ε instead of Jε, which is much larger in case the true distribution has a
relatively small number of factors J.

Theorem 14 (Structure learning: computational complexity) The running time15 of Factor-
Graph-Structure-Learn is in O

(
mknkbnb(k +b)+ knkbnbvk+b + knk2kvk

)
.

Thus the running time is exponential in the maximum factor scope size k and the maximum Markov
blanket size b, polynomial in the number of variables n and the maximum domain size v, and linear
in the number of training examples m.

The first two terms in Theorem 14 result from going through the data and computing the em-
pirical conditional entropies. Since the algorithm considers all combinations of candidate factors
and Markov blankets, we have an exponential dependence on the maximum scope size k and the

14. Note in the parameter learning setting we had b equal to the size the largest Markov blanket for an actual factor in
the distribution. In contrast, now b corresponds to the size of the largest Markov blanket for any candidate factor up
to size k.

15. The upper bound is based on a very naive implementation’s running time.
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maximum Markov blanket size b. The last term comes from computing the Markov blanket canon-
ical factors. Importantly, unlike for currently-known (exact) ML approaches, the running time does
not depend on the tractability of inference in the (unknown) factor graph from which the data was
sampled, nor on the tractability of inference in the recovered factor graph.

Theorem 15 (Structure learning: sample complexity) Let any ε,δ > 0 be given. Let Factor-Graph-
Structure-Learn be given (a) m training examples {x(i)}m

i=1 drawn i.i.d. from a distribution P, (b)
an upper bound k on the number of variables per factor in the factor graph for P, and (c) an upper
bound b on the number of variables per Markov blanket for any set of variables up to size k in the
factor graph for P. Let P̃ be the distribution returned by Factor-Graph-Structure-Learn. Then for

D(P‖P̃)+D(P̃‖P) ≤ Jε (18)

to hold with probability 1−δ, it suffices that the number of training examples m satisfies:

m ≥ (1+ εγk+b

22k+3 )
2 v2k+2b28k+19

γ6k+6b min{ε2,ε4} log 8kbnk+bvk+b

δ . (19)

Proof (sketch). From Lemmas 12 and 13 we have that the conditioning set chosen by Factor-Graph-
Structure-Learn results in a good approximation of the true canonical factor. At this point the
structure is fixed, and we can use the sample complexity theorem for parameter learning to finish
the proof.

Theorem 15 shows that the sample complexity depends exponentially on the maximum factor size
k and the maximum Markov blanket size b; and polynomially on 1

γ and 1
ε . If we modify the analysis

to consider the normalized KL-divergence, as in Section 3.5, we obtain a logarithmic dependence
on the number of variables in the network.

To understand the implications of this theorem, consider the class of Gibbs distributions where
every variable can participate in at most d factors and every factor can have at most k variables
in its scope. Then we have that the Markov blanket size b ≤ dk2. Bayesian network probability
distributions can also be represented using factor graphs.16 If the number of parents per variable
is bounded by numP and the number of children per variable is bounded by numC, then we have
k ≤ numP + 1, and that b ≤ (numC + 1)(numP + 1)2. Thus our factor graph structure learning
algorithm allows us to efficiently learn distributions that can be represented by Bayesian networks
with a bounded number of children and parents per variable. Note that our algorithm recovers
a distribution which is close to the true generating distribution, but the distribution it returns is
encoded as a factor graph, which may not be representable as a compact Bayesian network.

Theorem 15 considers the case where the generating distribution P factors according to a struc-
ture with factor scope sizes bounded by k and size of Markov blankets (of any subset of variables of
size less than k) bounded by b. As we did in the case of parameter estimation, we can show that we
have graceful degradation of performance for distributions that do not satisfy these assumptions.

16. Given a Bayesian network (BN), the following factor graph represents the same distribution: The factor graph has
one variable node per variable in the BN. The factor graph has one factor for each variable in the BN. Each factor’s
scope is equal to the union of the corresponding variable itself and its parents. Each factor’s entries are equal to the
corresponding conditional probability table entries of the BN.
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Theorem 16 (Structure learning: graceful degradation) Let any ε,δ > 0 be given. Let {x(i)}m
i=1

be training examples drawn i.i.d. from a distribution Q. Let MB and M̂B be the Markov blan-
kets according to the distributions Q and found by Factor-Graph-Structure-Learn respectively. Let
{ f ∗D∗

j |MB(D∗
j )
} j be the non-trivial Markov blanket canonical factors of Q (those factors with not all

entries equal to one). Let J be the number of non-trivial Markov blanket canonical factors in Q with
scope size smaller than k. Let P̃ be the probability distribution returned by Factor-Graph-Parameter-
Learn. Then we have that for

D(Q‖P̃)+D(P̃‖Q) ≤ (J + |S|)ε+ 2 ∑
j:|D∗

j |>k

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣

+ 2 ∑
C∗

j∈C : |MB(C∗
j)|>b

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣

to hold with probability at least 1− δ, it suffices that the number of training examples m satisfies
Eqn. (19) of Theorem 15. Here S = { j : C∗

j /∈ {Dl}l, |MB(C∗
j)| > b} is the set that indexes over

the subsets of variables of size smaller than k over which there is no factor in the true distribution
and for which the Markov blanket in the true distribution is larger than b; C is the set of candidate
factor scopes C = {C∗

j : C∗
j ⊆ X ,C∗

j 6= /0, |C∗
j | ≤ k}.

Theorem 16 shows that (similar to the parameter learning setting) each canonical factor that
is not captured by our learned structure contributes at most a constant to our bound on the KL-
divergence (namely l2l+1 log 1

γ for a factor over l variables, see footnote 8 for details) to our bound
on the KL-divergence. This bound on the error contribution can be large, so we discuss the actual
error contribution in more detail. The reason a canonical factor is not captured could be two-fold.
First, the scope of the factor could be too large. The paragraph after Theorem 7 discusses when
the resulting error is expected to be small. Second, the Markov blanket of the factor could be too
large. As shown in Lemma 13, a good approximate Markov blanket is sufficient to get a good
approximation. So we can expect these error contributions to be small if the true distribution is
mostly determined by interactions between small sets of variables.

Recall that the structure learning algorithm correctly clips all estimates of trivial canonical fac-
tors to the trivial all-ones factor, when the structural assumptions are satisfied. I.e., trivial factors
are correctly estimated as trivial if their Markov blanket is of size smaller than b. The additional
term |S|ε corresponds to estimation error on the factors that are trivial in the true distribution but
that have a Markov blanket of size larger than b, and are thus not correctly estimated and clipped to
trivial all-ones factors.

5. Related Work

Tables 2 and 3 summarize the prior work on Markov network and Bayesian network learning that
comes with formal guarantees. In the following two sections we discuss the prior work on Markov
network (factor graph) learning and Bayesian network learning in more detail. We also discuss
algorithms that do not have formal guarantees.
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Target distribution True distribution Structure/Parameter Samples Time Graceful degradation Reference
ML tree any structure poly poly yes [1]
ML bounded tree-width any structure poly NP-hard yes [2]
Bounded tree-width same structure poly poly no [3]
Factor graph same parameter infinite convex no [4], [5]
Factor graph same parameter poly poly yes [6]
Factor graph same structure poly poly yes [6]

Table 2: Overview of prior work on learning Markov networks that has formal guarantees. More
details are given in Section 5.1. The references in the table are: [1]: Chow and Liu (1968);
[2] Srebro (2001); [3]: Narasimhan and Bilmes (2004); [4]: Besag (1974b); [5]: Gidas
(1988); [6]: this paper. “Convex” refers to the time of solving a convex optimization
problem.

5.1 Markov Networks

We split the discussion into two parts: parameter learning and structure learning.

5.1.1 PARAMETER LEARNING

The most natural algorithm for parameter estimation in undirected graphical models is maximum
likelihood (ML) estimation (possibly with some regularization). Unfortunately, evaluating the like-
lihood of such a model requires evaluating the partition function. All currently known ML algo-
rithms for undirected graphical models require evaluating the partition function. Therefore, they
are computationally tractable only for networks in which inference is computationally tractable.
In contrast, our closed form solution can be efficiently computed from the data, even for Markov
networks where inference is intractable. Note that our estimator does not return the ML solution,
so that our result does not contradict the “hardness” of ML estimation. However, it does provide
a low KL-divergence estimate of the probability distribution, with high probability, from a “small”
number of training examples, assuming the true distribution approximately factors according to the
given structure.

Criteria different from ML have been proposed for learning Markov networks. The most promi-
nent one is pseudo-likelihood (Besag, 1974b), and its extension, generalized pseudo-likelihood
(Huang and Ogata, 2002). The pseudo-likelihood criterion gives rise to a tractable convex opti-
mization problem. Pseudo-likelihood estimation is consistent, that is, in the infinite sample limit it
returns the true distribution, when the assumed structure is correct. (See, for example, Gidas, 1988,
.) However, in the finite sample case the pseudo-likelihood estimate is often significantly worse
than the maximum likelihood estimate. More information on the statistical efficiency of the pseudo-
likelihood estimate can be found in, for example, Besag (1974a); Geyer and Thompson (1992);
Guyon and Künsch (1992). In contrast to our results, no finite sample bounds have been provided
for pseudo-likelihood estimation. Moreover, the theoretical analyses (e.g., Geman and Graffigne,
1986; Comets, 1992; Guyon and Künsch, 1992) only apply when the generating model is in the true
target class.

5.1.2 STRUCTURE LEARNING

Structure learning for Markov networks is notoriously difficult, as it is generally based on using ML
estimation of the parameters (with smoothing), often combined with a penalty term for structure
complexity. As evaluating the likelihood is only possible for the class of Markov networks in which
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Target distribution True distribution Structure/Parameter Samples Time Graceful degradation Reference
ML polytree any structure poly NP-hard yes [1], [2]
ML BN any structure poly NP-hard yes [1], [3]
BN same structure infinite poly yes [4], [5]
Factor graph BN (same) structure poly poly yes [6]

Table 3: Overview of prior work on learning Bayesian networks that has formal guarantees. More
details are given in Section 5.2. The references in th table are: [1]: Höffgen (1993); [2]:
Dasgupta (1999); [3]: Chickering et al. (2003); [4]: Spirtes et al. (2000); [5]: Cheng et al.
(2002); [6]: this paper.

inference is tractable, there have been two main research tracks for ML structure learning. The first,
starting with the work of Della Pietra et al. (1997), uses local-search heuristics to add factors into
the network (see also McCallum, 2003). The second searches for a structure within a restricted
class of models in which inference is tractable, more specifically, bounded tree-width Markov net-
works. Indeed, ML learning of the class of tree Markov networks—networks of tree-width 1—can
be performed very efficiently (Chow and Liu, 1968). Unfortunately, Srebro (2001) proves that for
any tree-width k greater than 1, even finding the ML tree-width-k network is NP-hard. Karger and
Srebro (2001) provide an approximation algorithm but the approximation factor is a very large mul-
tiplicative factor of the log-likelihood. In particular, for tree-width k, they find a Markov network (of
tree-width k) with log-likelihood at least 1/(8kk!(k +1)!) times the optimal log-likelihood. Several
heuristic algorithms to learn models with small tree-width have been proposed (Malvestuto, 1991;
Bach and Jordan, 2002; Deshpande et al., 2001), but (not surprisingly, given the NP-hardness of the
problem) they do not come with any performance guarantees.

Recently, Narasimhan and Bilmes (2004) provided a polynomial time algorithm with a polyno-
mial sample complexity guarantee for the class of Markov networks of bounded tree-width. Their
algorithm computes approximate conditional independence information followed by dynamic pro-
gramming to recover the bounded tree-width structure. The parameters for the recovered bounded
tree-width model are estimated by standard ML methods. Our algorithm applies to a different fam-
ily of distributions: factor graphs of bounded connectivity (including graphs in which inference is
intractable). Factor graphs with small connectivity can have large tree-width (e.g., grids) and fac-
tor graphs with small tree-width can have large connectivity (e.g., star graphs). Thus, the range of
applicability is incomparable. Narasimhan and Bilmes (2004) did not provide any graceful degra-
dation guarantees when the generating distribution is not a member of the target class. However,
future research might extend their algorithm to this setting.

Pseudo-likelihood has been extended to a criterion for model selection: the resulting criterion
is statistically consistent (Ji and Seymour, 1996). In particular they show that the probability of
selecting an incorrect model goes to zero as the number of training examples goes to infinity. They
also provide a bound on how fast this probability goes to zero. Importantly, Ji and Seymour (1996)
only provide a model selection criterion. They do not provide an algorithm to efficiently find the
best pseudo-likelihood model (according to their evaluation criterion) over the super-exponentially
large set of candidate models from which we want to select in the structure learning problem.

5.2 Bayesian Networks

Again, we split the discussion into two parts: parameter learning and structure learning.
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5.2.1 PARAMETER LEARNING

ML parameter learning in Bayesian networks (possibly with smoothing) only requires computing
the empirical conditional probabilities of each variable given its parent instantiations. Thus there is
no computational challenge.

Dasgupta (1997), following earlier work by Friedman and Yakhini (1996), analyzes the sample
complexity of learning Bayesian networks, showing that it is polynomial in the maximal number
of different instantiations per family. His sample complexity result has logarithmic dependence on
the number of variables in the network, when using the KL-divergence normalized by the number
of variables in the network. In this paper, we strengthen his result, showing an O(1) dependence
of the number of training examples on the number of variables in the network. So for bounded
fan-in Bayesian networks, the sample complexity is independent of the number of variables in the
network.

5.2.2 STRUCTURE LEARNING

Results analyzing the complexity of structure learning of Bayesian networks fall largely into two
classes. The first class of results assumes that the generating distribution is DAG-perfect with
respect to some DAG G with at most k parents for each node. (That is, P and G satisfy precisely
the same independence assertions.) In this case, algorithms based on various independence tests
(Spirtes et al., 2000; Cheng et al., 2002) can identify the correct network structure in the infinite
sample limit (i.e., when given an infinite number of training examples), using a polynomial number
of independence tests. The infinite sample limit setting is critical in their analysis since it allows for
exact independence tests. Neither Spirtes et al. (2000) nor Cheng et al. (2002) provide guarantees
for the case of a finite number of training examples, but future research might extend their results to
this setting. Chickering and Meek (2002) relax the assumption that the distribution be DAG-perfect;
they show that, under a certain assumption, a simple greedy algorithm will, in the infinite sample
limit, identify a network structure which is a minimal I-map of the distribution. They provide
no polynomial time guarantees, but future work might provide such guarantees for models with
bounded connectedness (such as the ones our algorithm considers).

The second class of results relates to the problem of finding a network structure whose score is
high, for a given set of training examples and some appropriate scoring function. Although finding
the highest-scoring tree-structured network can be done in polynomial time (Chow and Liu, 1968),
Chickering (1996) shows that the problem of finding the highest scoring Bayesian network where
each variable has at most k parents is NP-hard, for any k ≥ 2. (See Chickering et al., 2003, for
details.) Even finding the maximum likelihood structure among the class of polytrees (Dasgupta,
1999) or paths (Meek, 2001) is NP-hard. These results do not address the question of the number
of training examples for which the highest scoring network is guaranteed to be close to the true
generating distribution.

Höffgen (1993) analyzes the problem of PAC-learning the structure of Bayesian networks with
bounded fan-in, showing that the sample complexity depends only logarithmically on the number of
variables in the network (when considering KL-divergence normalized by the number of variables
in the network). Höffgen does not provide an efficient learning algorithm (and to date, no efficient
learning algorithm is known), stating only that if the optimal network for a given data set can be
found (e.g., by exhaustive enumeration), it will be close to optimal with high probability.
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In contrast, we provide a polynomial-time learning algorithm with similar performance guaran-
tees for Bayesian networks with bounded fan-in and bounded fan-out. However, we note that our
algorithm does not construct a Bayesian network representation, but rather a factor graph; this factor
graph may not be compactly representable as a Bayesian network, but it is guaranteed to encode a
distribution which is close to the generating distribution, with high probability.

6. Discussion

We have presented the first polynomial-time and polynomial sample-complexity algorithms for both
parameter estimation and structure learning in factor graphs of bounded degree. When the generat-
ing distribution is within this class of networks, our algorithms are guaranteed to return a distribution
close to it, using a polynomial number of training examples. When the generating distribution is
not in this class, our algorithm degrades gracefully. Thus our algorithms and analysis are the first to
establish the efficient learnability of an important class of distributions.

While of significant theoretical interest, our algorithms, as described, are probably impractical.
From a statistical perspective, our algorithm is based on the canonical parameterization, which is
evaluated relative to a canonical assignment x̄. Many of the empirical estimates that we compute
in the algorithm use only a subset of the training examples that are (in some ways) consistent with
x̄. As a consequence, we make very inefficient use of data, in that many training examples may
never be used. In regimes where data is not abundant, this limitation may be quite significant in
practice. From a computational perspective, our algorithm uses exhaustive enumeration over all
possible factors up to some size k, and over all possible Markov blankets up to size b. When we fix
k and b to be constant, the complexity is polynomial. But in practice, the set of all subsets of size k
or b is often much too large to search exhaustively.

Nevertheless, aside from proving the efficient learnability of an important class of probability
distributions, the algorithms we propose might provide insight into the development of new learning
algorithms that do work well in practice. In particular, we might be able to address the statistical
limitation by putting together canonical factor estimates from multiple canonical assignments x̄. We
might be able to address the computational limitation using a more clever (perhaps heuristic) algo-
rithm for searching over subsets. Given the limitations of existing parameter and structure learning
algorithms for undirected models, we believe that the techniques suggested by our theoretical anal-
ysis are well worth exploring.
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Appendix A. Proofs for Section 2.2

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 2.2.

A.1 Proof of Theorem 3

Proof [Theorem 3] The proof consists of two parts:

1. If we let {C∗
j}J∗

j=1 = 2X − /0, then P(x) = P(x̄)∏J∗
j=1 f ∗C∗

j
(c∗j).

2. If P is a positive Gibbs distribution with factor scopes {C j}J
j=1, then the canonical factors f ∗D

are trivial all-ones factors, whenever D /∈ ∪J
j=12C j .

The first part states that the canonical parameterization gives the correct distribution assuming we
use a canonical factor for each subset of variables. It is easily verified by counting how often the
probabilities P(σU[d]) contribute for each U ⊆ D ⊆ X , and is a standard part of most Hammersley-
Clifford theorem proofs. The second part states that we can ignore canonical factors over subsets of
variables that do not appear together in one of the factor scopes {C j}J

j=1. We now prove the second
part. We have

log f ∗D(d) = ∑
U⊆D

(−1)|D−U| logP(σU[d])

= ∑
U⊆D

(−1)|D−U|
(

J

∑
j=1

log fC j(C j[σU[d]])+ log
1
Z

)

=
J

∑
j=1

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]). (20)

To obtain the last equality, we used the fact that there is an equal number of terms (log 1
Z ) and

(− log 1
Z ). Now consider the contribution of one factor fC j in the above expression. By assumption

we have that D /∈∪J
j=12C j and thus D−C j 6= /0. Now let Y be any element of D−C j. Then we have

that

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]) = ∑
U⊆D−Y

(−1)|D−U| log fC j(C j[σU[d]])

+(−1)|D−U−Y | log fC j(C j[σU∪Y [d]]).

Now since Y /∈ C j, we have C j[σU[d]] = C j[σU∪Y [d]]. And thus we get

∑
U⊆D

(−1)|D−U| log fC j(C j[σU[d]]) = 0. (21)

And thus combining Eqn. (21) with Eqn. (20) establishes the second part of the proof.
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Appendix B. Proofs for Section 3.2

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.2.
Proof [Proposition 4] In Eqn. (2) the number of terms with a positive sign and a negative sign are
both equal to 2|D|−1. So we can divide the argument of the log in each term by the same constant
P(X −D = (X −D)[x̄]) without changing the factor. The resulting expression is exactly the expres-
sion defining f ∗D|X−D in Eqn. (7), thus proving the first equality in Eqn. (8). The second equality in
Eqn. (8) follows directly from Eqn. (1) and the definition of the factors as functions of probabilities
in Eqn. (7). Eqn. (9) and (10) follow directly from Eqn. (8) and Theorem 3.

Appendix C. Proofs for Section 3.3

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.3.
Proof [Theorem 5] The algorithm consists of two parts:

• Collecting the empirical probabilities for each of the factors, jointly with the default instantia-
tion of their Markov blanket. This can be done in three steps. [Below, recall that the maximum
factor scope size is k, so there are at most 2kJ different canonical factors. Each variable can
take on at most v different values.]

– For all instantiations of all factors initialize the occurrence count to zero. This can be
done in O(2kJvk).

– When going through the m data points, we need to add to the counts of the observed
instantiation whenever the Markov blanket is in the default instantiation. Reading a
specific instantiation of a specific factor and its Markov blanket takes O(k + b) to read
every variable. Thus collecting the data counts from which the empirical probabilities
will be computed takes O(m2kJ(k +b)).

– Renormalizing all of the entries to get the empirical conditional probabilities takes time
O(2kJvk).

• Computing the factor entries from the empirical probabilities. To compute one factor entry
f ∗C∗

j
(c∗j), we have to add (and subtract) 2|C

∗
j | empirical log-probabilities. (Note this is the case

independent of the cardinality of the variables in the factor, as seen from Eqn. (7).) This gives
us O(2|C

∗
j |) operations per factor entry, and thus O(J22kvk) total for computing the canonical

factor entries from the empirical probabilities.

Adding up the upper bounds on the running times of each step proves the theorem.

Appendix D. Proofs for Section 3.4

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 3.4.
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D.1 Proof of Theorem 6

The proof of the theorem is based on a series of lemmas.
The following lemma shows that the log of the empirical average is an accurate estimate of the

log of the population average, if the population average is bounded away from zero.

Lemma 17 Let any ε > 0,δ > 0,λ ∈ (0,1) be given. Let {Xi}m
i=1 be i.i.d. Bernoulli(φ) random

variables, where λ ≤ φ ≤ 1−λ. Let φ̂ = 1
m ∑m

i=1 Xi. Then for

| logφ− log φ̂| ≤ ε

to hold w.p. 1−δ, it suffices that

m ≥ (1+ ε)2

2λ2ε2 log
2
δ
.

Proof From the Hoeffding inequality we have that for

|φ− φ̂| ≤ ε′

to hold w.p. 1−δ it suffices that

m ≥ 1
2ε′2

log
2
δ
. (22)

Since the function f (x) = logx is Lipschitz with Lipschitz-constant smaller than 1
λ−ε′ over the inter-

val [λ− ε′,1], we have that for

| logφ− log φ̂| ≤ ε′

λ− ε′

to hold w.p. 1− δ, it suffices that m satisfies Eqn. (22). Now for ε′
λ−ε′ ≤ ε to hold, it suffices that

ε′ ≤ ελ
1+ε . Using this choice of ε′ in Eqn. (22) gives the condition for m as stated in the lemma.

The following lemma shows that for distributions that are bounded away from zero, conditional
probabilities can be accurately estimated from a small number of samples.

Lemma 18 Let any ε,δ > 0 be given. Let {x(i),y(i)}m
i=1 be i.i.d. samples from a distribution P over

X,Y. Let P̂ be the empirical distribution. Let λ = minx,y P(X = x,Y = y). Then for

| logP(X = x|Y = y)− log P̂(X = x|Y = y)| ≤ ε

to hold for all x,y with probability 1−δ, it suffices that

m ≥ (1+ ε
2 )2

2λ2( ε
2 )2 log 4|val(X)||val(Y)|

δ .

Proof We have (using the definition of conditional probability and the triangle inequality)
∣∣ logP(X = x|Y = y)− log P̂(X = x|Y = y)

∣∣
=

∣∣( logP(X = x,Y = y)− logP(Y = y)
)

−
(

log P̂(X = x,Y = y)− log P̂(Y = y)
)∣∣

≤
∣∣(logP(X = x,Y = y)− log P̂(X = x,Y = y)

∣∣
+
∣∣(logP(Y = y)− log P̂(Y = y)

∣∣.
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Now using Lemma 17 (note that λ = minx,y P(X = x,Y = y)≤miny P(Y = y)) and the Union bound
to bound both terms by ε/2, we get that for

∣∣ logP(X = x|Y = y)− log P̂(X = x|Y = y)
∣∣≤ ε (23)

to hold with probability 1−2δ′, it is sufficient that

m ≥ (1+ ε/2)2

2λ2(ε/2)2 log
2
δ′

. (24)

Using the Union bound, we get that for Eqn. (23) to hold with probability 1− 2|val(X)||val(Y)|δ′

for all x ∈ val(X),y ∈ val(Y) it suffices that m satisfies Eqn. (24). Choosing δ = 2|val(X)||val(Y)|δ′

gives the statement of the lemma.

Our algorithm uses probability estimates to compute canonical factors. The following lemma
shows that accurate probabilities are sufficient to obtain accurate canonical factors.

Lemma 19 Let any ε > 0 be given. Let any D,Y,W ⊆ X ,D∩Y = /0,D∩W = /0 be given. Then for
all d ∈ val(D) for

| log f ∗D|Y(d)− log f̂ ∗D|W(d)| ≤ ε

to hold, it suffices that for all instantiations d ∈ val(D) we have that

| logP(d|ȳ)− log P̂(d|w̄)| ≤ ε
2|D| . (25)

Proof
∣∣ log f ∗D|Y(d)− log f̂ ∗D|W(d)

∣∣ =
∣∣ ∑

Z⊆D
(−1)|D−Z| logP(σZ:D[d]|Y = ȳ)

− ∑
Z⊆D

(−1)|D−Z| log P̂(σZ:D[d]|W = w̄)
∣∣

≤ ∑
Z⊆D

∣∣ logP(σZ:D[d]|Y = ȳ)

− log P̂(σZ:D[d]|W = w̄)
∣∣

≤ ∑
Z⊆D

ε
2|D|

= ε,

where, in order, we used the definitions of f ∗ and f̂ ∗; triangle inequality; Eqn. (25); number of
subsets of D equals 2|D|.

The next step is to show that, if we obtain good estimates of the factors, the distributions they
induce should be close as well. The following lemma shows that distributions with approximately
the same factors are close to each other, by proving a bound on D(P‖P̂)+D(P̂‖P), and thus (since
D(·‖·) ≥ 0) a bound on D(P‖P̂).
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Lemma 20 Let P(x) = 1
Z ∏J

j=1 f j(c j) and P̂(x) = 1
Ẑ ∏J

j=1 f̂ j(c j). Let ε = max j∈{1,··· ,J},c j
| log f j(c j)−

log f̂ j(c j)|. Then we have that
D(P‖P̂)+D(P̂‖P) ≤ 2Jε.

Proof

D(P‖P̂)+D(P̂‖P) = EX∼P
(
logP(X)− log P̂(X)

)
+EX∼P̂

(
log P̂(X)− logP(X)

)

= EX∼P

J

∑
j=1

(
log f j(C∗

j)− log f̂ j(C∗
j)
)
− log

Z

Ẑ

+EX∼P̂

J

∑
j=1

(
log f̂ j(C∗

j)− log f j(C∗
j)
)
− log

Ẑ
Z

≤ 2Jε,

where we used in order: the definition of KL-divergence; the definition of P, P̂; log Z
Ẑ

+ log Ẑ
Z = 0,

and the fact that each term in the expectation is bounded in absolute value by ε.

Note that (by using the sum of the KL-divergences) we have that the terms that involve the
partition functions Z and Ẑ cancel. This enables us to prove an error bound without bounding the
difference | logZ − log Ẑ| as a function of the errors in the factors.

We now show how the previous lemmas can be used to prove the parameter learning sample
complexity result stated in Theorem 6.
Proof [Theorem 6] First note that since the scopes of the canonical factors used by the algorithm
are subsets of the given scopes {C j}J

j=1, we have that

max j|C∗
j ∪MB(C∗

j)| ≤ b+ k.

Let P̂ be the empirical distribution as given by the samples {x(i)}m
i=1. Let M∗

j = MB(C∗
j). Then

from Lemma 18 we have that for any j ∈ {1, . . . ,J∗} for
∣∣ logP(C∗

j = c∗j |M∗
j = m∗

j)− log P̂(C∗
j = c∗j |M∗

j = m∗
j)
∣∣≤ ε′ (26)

to hold for all instantiations c∗j ,m
∗
j with probability 1−δ′, it suffices that

m ≥ (1+ ε′
2 )2

2γ2k+2b( ε′
2 )2

log
4vk+b

δ′
. (27)

Using Lemma 19 we obtain that for all instantiations c∗j we have that Eqn. (26) implies

| log f ∗C∗
j |MB(C∗

j )
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j)
(c∗j)| ≤ 2kε′. (28)

Using the union bound, we get that for Eqn. (28) to hold for all j ∈ J∗ with probability 1− J∗δ′, it
suffices that m satisfies Eqn. (27). When Eqn. (28) holds for all j ∈ J∗, Lemma 20 and Proposition 4
give us that

D(P‖P̃)+D(P̃‖P) ≤ 2J∗2kε′. (29)

We have that J∗ ≤ 2kJ. Choosing ε′ = ε
22k+1 and δ′ = δ

2kJ and substituting these choices into Eqn. (27)
and Eqn. (29) gives the theorem.
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D.2 Proof of Theorem 7

Proof [Theorem 7] From Proposition 4 we have that

Q(x) =
1
Z

J̄

∏
j=1

f ∗D∗
j |MB(D∗

j)
(d∗

j).

We can rewrite this product as follows:

Q(x) =
1
Z ∏

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

f ∗D∗
j |MB(D∗

j)
(d∗

j)

∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) 6= M̂B(D∗

j)

f ∗D∗
j |MB(D∗

j)
(d∗

j)

∏
j:D∗

j /∈{C∗
k}J∗

k=1

f ∗D∗
j |MB(D∗

j)
(d∗

j). (30)

We also have

P̃(x) =
1

Z̃

J∗

∏
j=1

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j). (31)

We can rewrite this product as follows:

P̃(x) =
1

Z̃ ∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) = M̂B(D∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

∏
j:

D∗
j ∈ {C∗

k}J∗
k=1

MB(D∗
j) 6= M̂B(D∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)

∏
j:

C∗
j /∈ {D∗

k}J̄
k=1

MB(C∗
j) = M̂B(C∗

j)

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∏
j:

C∗
j /∈ {D∗

k}J̄
k=1

MB(C∗
j) 6= M̂B(C∗

j)

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j). (32)

We have (adding and subtracting same term):

log
f ∗D∗

j |MB(D∗
j)
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
= log

f ∗D∗
j |MB(D∗

j)
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
+ log

f ∗
D∗

j |M̂B(D∗
j)
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j)
(d∗

j)
. (33)
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We also have for j : C∗
j /∈ {D∗

k}k that log f ∗C∗
j |MB(C∗

j )
(C∗

j) = 0. Thus we have (adding zero and adding

and subtracting same term):

log f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j) = log

f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

+ log
f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

f ∗C∗
j |MB(C∗

j)
(c∗j)

. (34)

Using Eqn. (30), Eqn. (32), Eqn. (33) and Eqn. (34) we get that D(Q‖P̃)+D(P̃‖Q) =

EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) = M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |MB(D∗

j )
(d∗

j)

)
(35)

+EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(36)

+EX∼Q

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
D∗

j ∈ {C∗
k}J∗

k=1

MB(D∗
j) 6= M̂B(D∗

j)

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(37)

+EX∼Q

(
∑

j:D j /∈{C∗
k}J∗

k=1

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)
−EX∼P̃

(
∑

j:D j /∈{C∗
k}J∗

k=1

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)

(38)

−EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) = M̂B(C∗

j)

log f̂ ∗C∗
j |MB(C∗

j )
(c∗j)

)
+EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) = M̂B(C∗

j)

log f̂ ∗C∗
j |MB(C∗

j )
(c∗j)

)
(39)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
−EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

f̂ ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
(40)

+EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
−EX∼P̃

(
∑

j:
C∗

j /∈ {D∗
k}J̄

k=1

MB(C∗
j) 6= M̂B(C∗

j)

log
f ∗C∗

j |MB(C∗
j )
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(c∗j)

)
(41)

+ log
Z̃
Z

+ log
Z

Z̃
. (42)

Recall T = { j : C∗
j /∈ {D∗

k}J̄
k=1,MB(C∗

j) 6= M̂B(C∗
j)}. Using the same reasoning as in the proof

of Theorem 6, we have that for the sum of the terms in lines (35), (36), (39) and (40) to be bounded
by Jε with probability at least 1− δ, it suffices that m satisfies the condition on m in Eqn. (11) of
Theorem 6 .

The sum of the terms in lines (37) and (41) can be bounded by

2 ∑
j : MB(C∗

j)6=M̂B(C∗
j)

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j)
(c∗j)

∣∣∣.
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The sum of the terms in lines (38) can be bounded by

2 ∑
j:D∗

j /∈{C∗
k}J∗

k=1

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣.

The two terms in line (42) sum to zero.
This establishes the theorem.

Appendix E. Proofs for Section 3.5

We will treat the proofs for the factor graph case and the Bayesian network case in two separate
sections.

E.1 Proof of Theorem 8

Proof [Theorem 8] Using the same reasoning as in the proof of Theorem 6, we get that for any fixed
j ∈ {1, · · · ,J∗} for

| log f ∗C∗
j |MB(C∗

j)
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j )
(c∗j)| ≤

ε′

2k+1 (43)

to hold for all instantiations c∗j with probability 1−δ′ it suffices that

m ≥
(1+ ε′

22k+2 )
2

2γ2k+2b( ε′
22k+2 )2

log
4vk+b

δ′
. (44)

Also, using the same reasoning as in the proof of Lemma 20, we get that

Dn(P‖P̃)+Dn(P̃‖P) ≤ 2
n

J∗

∑
j=1

maxc∗j | log f ∗C∗
j |MB(C∗

j)
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j )
(c∗j)|.

We have for all factors and instantiations that (recall that 2k probabilities contribute to each factor,
and each probability is over k variables, thus each (log) conditional probability has maximal skew

log (1−γ)k

γk ≤ k log 1
γ )

| log f ∗C∗
j |MB(C∗

j )
(c∗j)− log f̂ ∗C∗

j |MB(C∗
j)
(c∗j)| ≤ k2k log

1
γ
.

Note that clipping of the probability estimates ensures this holds with probability one. Thus we get
that

E
(
Dn(P‖P̃)+Dn(P̃‖P)

)
≤ 2

n
J∗

ε′

2k+1 +δ′
2
n

J∗k2k log
1
γ

≤ J
n

ε′ +
J
n

k22k+1δ′ log
1
γ
,

where for the last inequality we used J∗ ≤ 2kJ. The Markov inequality (P(X ≤ α) ≥ 1− EX
α ) gives

us that
Dn(P‖P̃)+Dn(P̃‖P) ≤ ε (45)
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holds with probability

1−
J
n ε′ + J

n k22k+1δ′ log 1
γ

ε
.

Now choosing ε′,δ′ such that δ
2 = J

n
ε′
ε = J

n

k22k+1δ′ log 1
γ

ε and substituting this back into the sufficient
condition on m, gives us that for Eqn. (45) to hold with probability 1−δ, it suffices that

m ≥
(1+ n

J
εδ

22k+3 )
2

2γ2k+2b( n
J

εδ
22k+3 )2

log
k22k+4vk+b log 1

γ
n
J εδ

.

Since the number of factors per variables is bounded by a constant, we have that J
n is bounded

by that constant. And thus we have that m is O(1) when considering only the dependence on n, the
number of variables.

E.2 Proof of Theorem 9

For clarity of the overall proof structure of Theorem 9, we defer the proofs of the helper lemmas
to the next section. Note the theorem stated in this section is stronger than Theorem 9: it includes
dependencies of m on ε,δ, the maximum domain size of the variables v, and the maximum number
of parents k. It also shows the graceful degradation for the case of learning a distribution that does
not factor according to the given structure.

For any γ < 1
v , and any multinomial distribution with means θ1:v, the multinomial distribution

with means clipped to [γ,1− γ] refers to the distribution obtained by clipping every θi to [γ,1− γ],
after which the θi are adjusted to sum to one, while kept in the interval [γ,1− γ]. It is easily verified
this is always possible without changing any θi by more than vγ. (Although the adjustment such that
the entries sum to one need not be unique, it does not matter for our results which choice is made.)
We write D(θ(1)

1:v‖θ(2)
1:v) as a shortcut for D(P1‖P2), where P1,P2 are multinomial distributions with

means θ(1)
1 , . . . ,θ(1)

v and θ(2)
1 , . . . ,θ(2)

v respectively. The following lemmas establish the basic results
used to prove our main sample complexity bounds for Bayesian networks parameter learning.

Lemma 21 Let any δ > 0,ε > 0 be fixed, and let there be m i.i.d. samples drawn from a v-valued
multinomial distribution with means θ∗

1:v, and let θ̃1:v be the empirical distribution, clipped to the

interval [ ε
4v3 ,1− ε

4v3 ]. Then if m ≥ 8v4

ε2 log 2v
δ , we have that D(θ∗

1:v‖θ̃1:v) ≤ ε w.p. 1−δ.

Lemma 22 Let two v-valued multinomial distributions with means θ(1)
1:v ∈ [0,1]v,θ(2)

1:v ∈ [γ,1−γ]v be

given. Then we have that D(θ(1)
1:v‖θ(2)

1:v) ≤ log 1
γ .

Lemma 23 Let mH be the sum of m i.i.d. Bernoulli(p) random variables. If m ≥ 8
p log 1

δ , then we
have that mH ≥ mp

2 with probability 1−δ.

Lemma 24 Let {Xi}k+1
i=1 be a set of k + 1 random variables with |val(Xi)| ≤ v for all i = 1 : k + 1.

Let u ∈ val(X1:k). Let any ε > 0,δ > 0 be given. Let P̃(Xk+1|X1:k = u) be the empirical estimate
of Xk+1|X1:k = u (based on m independent samples of {Xi}k+1

i=1 drawn from P(X1:k+1)) clipped to the
interval [ ε

4|val(Xk+1)|3 ,1−
ε

4|val(Xk+1)|3 ]. Then to ensure that D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u)) ≤
ε

vk/2
√

P(X1:k=u)
w.p. 1−δ, it suffices that m ≥ 16 v4+k

ε2 log2 4v3

ε log 4v
δ .
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Lemma 25 Let {Xi}k+1
i=1 be a set of k + 1 random variables with val(Xi) ≤ v for all i = 1 : k + 1.

Let any ε > 0,δ > 0 be given. For all u ∈ val(X1:k) let P̃(Xk+1|X1:k = u) be the empirical esti-
mate of Xk+1|X1:k = u (based on m independent samples of {Xi}k+1

i=1 drawn from P(X1:k+1)) clipped
to the interval [ ε

4|val(Xk+1)|3 ,1−
ε

4|val(Xk+1)|3 ]. Then for ∑u∈val(X1:k) P(X1:k = u)D(P(Xk+1|X1:k = u)

‖P̃(Xk+1|X1:k = u)) ≤ ε to hold with probability 1−δ, it suffices that m ≥ 16 v4+k

ε2 log2 4v3

ε log 4vk+1

δ .

Because KL divergence can be unbounded, typically some process, such as clipping, is needed
to ensure that our algorithms do not suffer infinite loss. Lemmas 21 and 22 show that we can bound
the KL divergence by clipping the (estimated) probabilities away from {0,1}. (Abe et al. (1991)
and Abe et al. (1992) give a more detailed treatment of uniform convergence for KL divergence
loss.) Lemma 24 shows how to bound our error on individual conditional probability table (CPT)
entries. Note that in Lemma 24, the loss is allowed to be larger for less likely instantiations of the
conditioning variables. Also note that Lemma 24 shows that the number of samples m required
does not depend on the probability of the instantiations of the conditioning variables, no matter
how likely/unlikely. Lemma 23 is used in our proof of Lemma 24 to relate the required number of
samples with a specific instantiation u of the conditioning variables to the actual number of training
examples required. Lemma 25 relates the loss on individual CPT entries to the conditional KL
divergence, and follows directly from Lemma 24 and Cauchy-Schwarz.

Using the lemmas above, we are now ready to prove a bound on the sample complexity of learn-
ing a fixed structure BN. We note that Dasgupta (1997) showed a bound on the sample complexity
of BN learning that was polynomial in the number of variables n. His proof method relied on using a
Union bound to show that all of the n nodes in the BN will have accurate CPT entries, which meant
the bound necessarily had to have a dependence on n (even if the normalized KL criterion had been
used). For the normalized KL criterion, his method gives a logarithmic dependence on n. Below,
we will derive a strictly stronger bound, which has no dependence on the number of variables in
the BN. Our bound is based on showing that (i) Given any fixed node, with high probability, its
CPT entries will be accurate (Lemma 25), and (ii) Using the Markov inequality to show that, as a
consequence, almost all of the nodes in the network will have CPT entries that are accurate. This
turns out to be sufficient to ensure the estimated BN parameters will provide a good approximation
to the joint distribution, and eliminates the bound’s dependence on n.

In the theorem below, P is some “true” underlying distribution from which the samples are
drawn; PBN is the best possible approximation to P using a given BN structure (in the sense of
minimizing Dn(P‖·)), and P̃BN is the learned estimate of P. We give a bound on the number of
training examples required for P̃BN’s performance to approach that of PBN .

Theorem 26 Let any ε > 0 and δ > 0 be fixed. Let P be any probability distribution over n multi-
nomial random variables X1:n, where each of the random variables Xi can take on at most v values.
Let any BN structure be given, and let k be the maximum number of parents per variable. (P may
not factor according to the BN structure.) Let PBN be the best possible estimate of P using a model
that factorizes according to the BN structure. (I.e., PBN’s conditional probability distributions sat-
isfy PBN(Xi|PaXi) = P(Xi|PaXi).) Let P̃BN denote the probability distribution obtained by fitting (via
maximum likelihood) a BN model with the given structure to the m i.i.d. training examples drawn
from P, and then clipping for each X j each CPT entry to the interval [ ε

8|val(Xj)|3 ,1−
ε

8|val(Xj)|3 ]. Then,

to ensure that with probability 1−δ, P̃BN is nearly as good an estimate as PBN of the true distribution
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P, that is, we have
Dn(P‖P̃BN) ≤ Dn(P‖PBN)+ ε,

it suffices that the training set size be

m ≥ 64
v4+k log2 8v3

ε
ε2 log(

8vk+1

εδ
log

8v3

ε
).

Remark. Note that if P does factor according to the given BN structure, then the term Dn(P‖PBN)
above equals zero.
Proof The following equality is easily verified:

D(P‖P̃BN) = D(P‖PBN)

+
n

∑
j=1

∑
u∈val(PaXj)

P(PaX j = u)D(P(X j|PaX j = u)‖P̃(X j|PaX j = u)). (46)

From Lemma 25 we have that for estimates clipped to [ ε′
4|val(Xj)|3 ,1−

ε′
4|val(Xj)|3 ], that for

∑
u∈val(PaXj)

P(PaX j = u)D(P(X j|PaX j = u)‖P̃(X j|PaX j = u)) ≤ ε′

to hold with probability 1− τ, it suffices that

m ≥ 16
v4+k log2 4v3

ε′
ε′2 log 4vk+1

τ . (47)

Now let Z = ∑i ηi be the sum over indicator variables ηi = 1{∑u P(PaXi = u)D(P(X j|PaX j =
u)‖P̃(X j|PaX j = u)) > ε′}, and let τ be as above. Then applying the Markov inequality to the
non-negative random variable Z gives

P(∑n
i=1 ηi ≤ nτ

δ ) ≥ 1−δ. (48)

So, we have that

Dn(P‖P̃BN) ≤ Dn(P‖PBN)+ 1
n ∑n

i=1(1−ηi)ε′ + 1
n ∑n

i=1 ηi log 4v3

ε′

≤ Dn(P‖PBN)+ ε′ + τ
δ log 4v3

ε′ w.p. 1−δ. (49)

For the first inequality we used Eqn. (46), the definition of ηi and Lemma 22. The second inequality
follows from Eqn. (48). To bound the right hand side of Eqn. (49), we bound each of the terms by
ε
2 . For the first term this implies ε′ = ε

2 , for the second term, this allows us to solve for the free
parameter τ = εδ

2log 4v3

ε′
= εδ

2log 8v3
ε

. Substituting these expressions for ε′ and τ into Eqn. (47, 49), gives

the statement of the theorem.

Note that Eqn. (46) holds for all distributions P̃BN that factor according to the BN. Since KL
divergence is always non-negative, Eqn. (46) implies that D(P‖PBN) ≤ D(P‖P̃BN). So the clipped
maximum likelihood learning achieves the minimal KL divergence loss for infinite sample size.
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Also note that in general, D(P‖P̃BN) is not equal to D(P‖PBN) + D(PBN‖P̃BN). In particular, the
second term in Eqn. (46) is not equal to D(PBN‖P̃BN), since PBN(PaX j = u) is (in general) not equal
to P(PaX j = u). (In contrast, for log-linear models/undirected graphical models a decomposition of
the KL-divergence does hold.17)

E.3 Proofs of Lemmas 21, 22, 23, 24, 25

We will first state and prove two lemmas that are used to subsequently prove lemmas 21, 22, 23, 24, 25.

Lemma 27 For any θ(1)
1:v ,θ

(2)
1:v ∈ [0,1]v,∑v

i=1 θ(1)
i = 1,∑v

i=1 θ(2)
i = 1, we have

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

(θ(1)
i −θ(2)

i )2

θ(2)
i

.

Proof We use the concavity of the log function, to upper bound it with a tangent line at θ(2)
i , which

gives the following inequality:

logθ(1)
i ≤ logθ(2)

i +
1

θ(2)
i

(θ(1)
i −θ(2)

i ). (50)

Substituting Eqn. (50) into the definition of D(θ(1)
1:v‖θ(2)

1:v) gives us:

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

θ(1)
i

θ(2)
i

(θ(1)
i −θ(2)

i ).

Adding 0 = ∑v
i=1

−θ(2)
i

θ(2)
i

(θ(1)
i −θ(2)

i ) to the right hand side gives:

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

1

θ(2)
i

(θ(1)
i −θ(2)

i )2,

which proves the theorem.

Lemma 28 For any v-valued multinomial distributions with means θ(1)
1:v ∈ [0,1]v and θ(2)

1:v ∈ [γ,1−
γ]v, with γ < 1

v , we have

D(θ(1)
1:v‖θ(2)

1:v) ≤
v

∑
i=1

(θ(1)
i −θ(2)

i )2

γ
.

Proof Immediately from Lemma 27, since 1
θ(2)

i

≤ 1
γ .

17. Let P be any distribution, let {Pθ} be a family of log-linear models parameterized by θ, let θ∗ = argminθ D(P‖Pθ).
Then we do have that D(P‖Pθ) = D(P‖Pθ∗)+ D(Pθ∗‖Pθ). The proof relies on the fact that θ∗ is such that EP[ηi] =
EPθ∗ [ηi],∀i, with ηi the natural parameters of the log-linear model (see, for example, Kullback (1959)). Due to the
local normalization constraints, this is not true in BN’s.
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Proof [Lemma 21] Let θ̂1:v be the unclipped sample means. The triangle inequality gives for any
i ∈ {1, · · · ,v}:

|θ∗
i − θ̃i| ≤ |θ∗

i − θ̂i|+ |θ̂i − θ̃i|. (51)

From the Hoeffding inequality and the Union bound we have that for all i ∈ {1, · · · ,v} for

|θ∗
i − θ̂i| ≤ ε′ (52)

to hold w.p. 1−δ, it suffices that

m ≥ 1
2(ε′)2 log

2v
δ

. (53)

Since θ̃1:v are obtained by clipping θ̂1:v into [γ,1− γ] (for now γ is a free parameter, which will soon
be matched to the clipping choice of ε

4v3 of the lemma), we have that (see introduction of previous
section)

|θ̂i − θ̃i| ≤ vγ. (54)

Using Lemma 28 and then Eqn. (51), (52), and (54) we have that

D(θ1:v‖θ̃1:v) ≤
v

∑
i=1

(θ∗
i − θ̃i)

2

γ
≤ v

(ε′ + vγ)2

γ
(55)

holds w.p. 1− δ if m satisfies Eqn. (53). The choice of γ = ε′
v minimizes the right hand side of

Eqn. (55), and gives us that
D(θ1:v‖θ̃1:v) ≤ 4v2ε′. (56)

Now choosing ε′ = ε
4v2 (corresponding to γ = ε

4v3 ) gives us that for

D(θ1:v‖θ̃1:v) ≤ ε

to hold w.p. 1−δ it suffices that

m ≥ 8v4

ε2 log
2v
δ

,

which proves the lemma.

Proof [Lemma 22] We have

D(θ(1)
1:v‖θ(2)

1:v) =
v

∑
i=1

θ(1)
i log

θ(1)
i

θ(2)
i

≤ maxi log
θ(1)

i

θ(2)
i

≤ maxi log
1

θ(2)
i

≤ maxy∈[γ,1−γ] log
1
y

= log
1
γ
,
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which proves the lemma.

Proof [Lemma 23] Let p̂ = mH
m , then

Pr(mH ≤ pm
2

) = Pr(p̂ ≤ p
2
) = Pr(

p− p̂√
p

≥
√

p

2
).

Applying the (multiplicative) Chernoff bound gives

Pr(mH ≤ pm
2

) ≤ exp(
−pm

8
) = δ,

where the last equality defines δ. Solving the last equation for m shows that m = 8
p log 1

δ samples
are sufficient to guarantee Pr(mH > pm

2 ) ≥ 1−δ, which is the statement of the lemma.

Proof [Lemma 24] Below let θi = P(Xk+1 = i|X1:k = u), let θ̃i = P̃(Xk+1 = i|X1:k = u), and let
v̄ = |val(Xk+1)|. We split the proof into 2 cases

1. ε
vk/2

√
P(X1:k=u)

≥ log 4v3

ε This case is trivial, since by Lemma 22 we have that D(θ1:v̄‖θ̃1:v̄)≤

log 4v̄3

ε ≤ log 4v3

ε and the statement of the lemma is trivially implied, for all θ̃1:v̄ ∈ [ 4v̄3

ε ,1−
4v̄3

ε ]v̄, so m = 0 samples is sufficient.

2. ε
vk/2

√
P(X1:k=u)

< log 4v3

ε Let mu be the number of samples for which X1:k = u. Then (using

Lemma 21 and v̄ ≤ v) a number of samples

mu ≥ 8v4 vkP(X1:k = u)

ε2 log
2v
δ′

(57)

is sufficient to guarantee that D(θ1:v̄‖θ̃1:v̄) ≤ ε
vk/2

√
P(X1:k=u)

with probability 1−δ′. To obtain,

with probability 1−δ′′, at least mu samples from P(X1:k+1) for which X1:k = u, it suffices that
the total number of samples m from P(X1:k+1) satisfies

m ≥ max{ 8
P(X1:k = u)

log
1
δ′′

,
2mu

P(X1:k = u)
},

where we used Lemma 23. Using P(X1:k = u) ≥ ε2

vk log2 4v3
ε

(we are in case 2) and (57), and

setting δ′ = δ/2, δ′′ = δ/2, gives the statement of the lemma.

Proof [Lemma 25] Using Lemma 24 and the union bound over all instantiations u of X1:k (there are
at most vk instantiations) we get that for

∀u ∈ val(X1:k) D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u)) ≤ ε
vk/2
√

P(X1:k = u)
(58)

1778



LEARNING FACTOR GRAPHS IN POLYNOMIAL TIME AND SAMPLE COMPLEXITY

to hold with probability 1−δ, it suffices that

m ≥ 16v4+k log2 4v3

ε
ε2 log

4vk+1

δ
. (59)

So we have that the following inequalities hold w.p. 1−δ if m satisfies Eqn. (59):

∑
u∈val(X1:k)

P(X1:k = u)D(P(Xk+1|X1:k = u)‖P̃(Xk+1|X1:k = u))

≤ ∑
u

P(X1:k = u)
ε

v
k
2
√

P(X1:k = u)

≤ ∑
u

ε
√

P(X1:k = u)

vk/2

≤ ε,

where we used in order: Eqn. (58), simplification, Cauchy-Schwarz. The last inequality together
with the condition in Eqn. (59) prove the lemma.

Appendix F. Proofs for Section 4

In this section we give formal proofs of all theorems, propositions and lemmas appearing in Sec-
tion 4.

F.1 Proof of Lemma 12

We first prove the following lemma.

Lemma 29 Let any ε > 0,δ > 0 be given. Let any λ ∈ (0,1) be given. Let {Xi}m
i=1 be i.i.d.

Bernoulli(φ) random variables, where λ ≤ φ ≤ 1−λ. Let φ̂ = 1
m ∑m

i=1 Xi. Then for

|φ logφ− φ̂ log φ̂| ≤ ε

to hold w.p. 1−δ, it suffices that

m ≥ max{ 2
λ2 log

2
δ
,

2
λ2ε2 log

2
δ
}.

Proof From the Hoeffding inequality we have that for

|φ− φ̂| ≤ ε′

to hold w.p. 1−δ it suffices that

m ≥ 1
2ε′2

log
2
δ
. (60)

Now since the function f (x) = x logx is Lipschitz with Lipschitz-constant smaller than max{1, | log(λ−
ε′)|} over the interval [λ− ε′,1], we have that for

|φ logφ− φ̂ log φ̂| ≤ ε′max{1, | log(λ− ε′)|}
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to hold w.p. 1−δ, it suffices that m satisfies Eqn. (60). If we choose ε′ such that ε′ ≤ λ/2 we get

|φ logφ− φ̂ log φ̂| ≤ ε′max{1, | log(λ/2)|}.

To ensure the right hand side is smaller than ε, it suffices that the following three conditions are
satisfied:

ε′ ≤ λ
2
,

ε′ ≤ ε,

ε′ ≤ ελ/2 ≤ ε/| log
λ
2
|.

The last inequality holds since λ ∈ (0,1). Since λ ∈ (0,1) we can simplify this to the following two
conditions:

ε′ ≤ λ
2
,

ε′ ≤ ελ/2.

Substituting this into Eqn. (60) gives us the condition for m as in the statement of the lemma.

Proof [Lemma 12] We abbreviate P(X = x,Y = y) as P(x,y) and similarly for P̂,x,y,x|y. We
abbreviate ∑x∈val(X) by ∑x and similarly for y.

∣∣∣H(X|Y)− Ĥ(X|Y)
∣∣∣ =

∣∣∣∑
x,y

P(x,y) logP(x|y)−∑
x,y

P̂(x,y) log P̂(x|y)
∣∣∣

=
∣∣∣∑

x,y
P(x,y) logP(x,y)−∑

y
P(y) logP(y)

−∑
x,y

P̂(x,y) log P̂(x,y)+∑
y

P̂(y) log P̂(y)
∣∣∣

≤ ∑
x,y

∣∣∣P(x,y) logP(x,y)− P̂(x,y) log P̂(x,y)
∣∣∣

+∑
y

∣∣∣P(y) logP(y)− P̂(y) log P̂(y)
∣∣∣

Now using Lemma 29 (and the Union bound) we get that for
∣∣∣H(X|Y)− Ĥ(X|Y)

∣∣∣≤ |val(X)||val(Y)|ε′ + |val(Y)|ε′

to hold w.p. 1−|val(X)||val(Y)|δ′−|val(X)|δ′, it suffices that

m ≥ max{ 2
λ2ε′2

log
2
δ′

,
2
λ2 log

2
δ′
}.

Choosing ε = ε′/(2|val(X)||val(Y)|) and δ = δ′/(2|val(X)||val(Y)|) gives that for

|H(X|Y)− Ĥ(X|Y)| ≤ ε
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to hold with probability 1−δ, it suffices to have

m ≥ max{8|val(X)|2|val(Y)|2
λ2ε2 log

4|val(X)||val(Y)|
δ

,
2
λ2 log

4|val(X)||val(Y)|
δ

}. (61)

Now since for any two distributions P and P̂ we have |H(X|Y) − Ĥ(X|Y)| ≤ log |val(X)|
≤ 2|val(X)||val(Y)|, we have that for any ε ≥ 2|val(X)||val(Y)| the statement of the lemma holds
trivially independent of the number of samples m. Thus we can simplify the conditions on m in
Eqn. (61) to one condition:

m ≥ 8|val(X)|2|val(Y)|2
λ2ε2 log

4|val(X)||val(Y)|
δ

,

which proves the lemma.

F.2 Proof of Lemma 13

We abbreviate P(X = x) as P(x) and similarly for other variables.
Proof [Lemma 13] Using Eqn. (14) and the definition of conditional entropy we get that

∑
x,u,v,w,y

P(x,u,v,w,y) logP(x|u,v,w,y)− ∑
x,u,w

P(x,u,w) logP(x|u,w) ≤ ε.

We can rewrite this as

∑
x,u,v,w,y

P(x,u,v,w,y) log
P(x|u,v,w,y)

P(x|u,w)
≤ ε.

Now using Eqn. (13) (U∪V is the Markov blanket of X) gives us

∑
x,u,v,w,y

P(x,u,v,w,y) log
P(x|u,v)

P(x|u,w)
≤ ε.

We can simplify this to

∑
x,u,v,w

P(x,u,v,w) log
P(x|u,v)

P(x|u,w)
≤ ε.

Using the definition of conditional probability and Eqn. (13) (U∪V is the Markov blanket of X) we
get

∑
u,v,w

P(u,v,w)∑
x

P(x|u,v) log
P(x|u,v)

P(x|u,w)
≤ ε.

Now since λ1 ≤ P(u,v,w) and each term ∑x P(x|u,v) log P(x|u,v)
P(x|u,w) is positive (it’s a KL-divergence)

we get that for all u,v,w

∑
x

P(x|u,v) log
P(x|u,v)

P(x|u,w)
≤ ε

λ1
.
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The left hand side of this equation is the KL-divergence between a distribution Qu,v,w(X) = P(X|U =
u,V = v) and a distribution Q̂u,v,w(X) = P(X|U = u,W = w). Now using the KL-divergence prop-
erty that 1

2(∑x |P1(x)−P2(x)|)2 ≤ D(P1‖P2) (see, for example, Cover and Thomas, 1991, p. 300),
we get that for all u,v,w

1
2
(∑

x
|P(x|u,v)−P(x|u,w)|)2 ≤ ε

λ1
.

As a consequence, we have for all x,u,v,w that

|P(x|u,v)−P(x|u,w)| ≤
√

2
ε

λ1
.

Now since λ2 ≤ P(x|u,v) and λ2 ≤ P(x|u,w) we have that

| logP(x|u,v)− logP(x|u,w)| ≤
√

2ε
λ2
√

λ1
.

Now using Eqn. (13) (U∪V is the Markov blanket of X) to substitute P(x|u,v) by P(x|u,v,w,y),
we obtain Eqn. (15).

F.3 Proof of Theorem 14

Proof [Theorem 14] There are O(knkbnb) 〈candidate factor, candidate Markov blanket〉 pairs, each
with O(vk+b) different instantiations. Collecting the required empirical probabilities from the data
takes O(knkbnbvk+b +mknkbnb(k +b)). (Similar reasoning as in the proof of Theorem 5.) Comput-
ing the empirical entropies from the empirical probabilities takes O(knkbnbvk+b). There are O(knk)
actual factors computed. From (the proof of) Theorem 5, we have that this takes O(knk(m(k +b)+
2kvk)). Putting it all together gives us an upper bound on the running time of

O
(
knkbnbvk+b +mknkbnb(k +b)+ knkbnbvk+b

+ knk(m(k +b)+2kvk)
)
.

After simplification we get a running time of

O
(
knkbnbvk+b +mknkbnb(k +b)+ knk2kvk).

F.4 Proof of Theorem 15

Proof [Theorem 15] Let C , Y be defined as in Eqn. (16) and Eqn. (17) of the structure learning
algorithm description. For all C∗

j ∈ C we have by assumption |val(C∗
j )| ≤ vk. For all Y ∈ Y we

have |val(Y)| ≤ vb. Also note that P(C∗
j = c∗j ,Y = y) ≥ 1

γk+b . Using Lemma 12 we get that for any
C∗

j ∈ C ,Y ∈ Y for ∣∣H(C∗
j |Y)− Ĥ(C∗

j |Y)
∣∣≤ ε′ (62)
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to hold with probability 1−δ′ it suffices that

m ≥ 8
v2kv2b

γ2b+2kε′2
log4

vkvb

δ′
. (63)

Taking the union bound we get that for Eqn. (62) to hold for all C∗
j ∈ C and for all Y ∈ Y with

probability 1−|C ||Y |δ′ it suffices that m satisfies Eqn. (63).
For M̂B(C∗

j) = argminY∈Y ,Y∩C∗
j= /0 Ĥ(C∗

j |Y) we have Ĥ(C∗
j |M̂B(C∗

j))≤ Ĥ(C∗
j |MB(C∗

j)). Com-
bining this with Eqn. (62) gives us

H(C∗
j |M̂B(C∗

j)) ≤ H(C∗
j |MB(C∗

j))+2ε′. (64)

From Lemma 13 we have that Eqn. (64) implies that

| logP(C∗
j |M̂B(C∗

j))− logP(C∗
j |X −C∗

j)| ≤
√

4ε′

γk
√

γ2b

=
2
√

ε′

γk+b . (65)

Now from Lemma 18 we have that for

| logP(C∗
j |M̂B(C∗

j))− log P̂(C∗
j |M̂B(C∗

j))| ≤
2
√

ε′

γk+b (66)

to hold for all instantiations c∗j ∈ val(C∗
j ) with probability 1−δ′′, it suffices that

m ≥
(1+

√
ε′

γk+b )
2

2γ2k+2b(
√

ε′
γk+b )2

log
4vk+b

δ′′
. (67)

Using the Union bound, we get that for Eqn. (66) to hold for all C∗
j ∈ C with probability 1−|C |δ′′,

it suffices that m satisfies Eqn. (67). Or after simplification (and slightly loosening using γ < 1), we
get the condition

m ≥ (1+2
√

ε′)2

2γ2k+2bε′
log

4vk+b

δ′′
. (68)

Combining Eqn. (66) and Eqn. (65) gives us

| logP(C∗
j |X −C∗

j)− log P̂(C∗
j |M̂B(C∗

j))| ≤
4
√

ε′

γk+b .

From Lemma 19 we have that this implies

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j)
(c∗j)| ≤ 2k+2

√
ε′

γk+b .

Now choosing ε′ = ( ε
2k+2 )

2 γ2k+2b

22k+4 gives us that

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤

ε
2k+2 .
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The clipping to one of factor entries f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j) satisfying | log f̂ ∗

C∗
j |M̂B(C∗

j)
(c∗j)| ≤ ε

2k+2 introduces

at most an additional error of ε
2k+2 . Thus after the clipping we have,

| log f ∗C∗
j |X−C∗

j
(c∗j)− log f̂ ∗

C∗
j |M̂B(C∗

j )
(c∗j)| ≤

ε
2k+1 , (69)

for all canonical factors of P. We also have that all candidate factors that are not present in the
canonical form of the true distribution P will now have been removed and do not contribute to
P̃. (By our assumption on b the algorithm considered large enough Markov blanket candidates to
include the true Markov blanket. Such a large enough b for these factors (which can be larger than
the maximum Markov blanket size for factors present in the distribution) is important. Trivial (all-
ones) canonical factors computed using their Markov blanket require a true Markov blanket to be
all-ones.)

So far we have shown that Eqn. (69) holds with probability 1−|C ||Y |δ′−|C |δ′′ if m satisfies
both Eqn. (63) and Eqn. (68). Or, after substituting in the choice of ε′, if the following hold

m ≥ 28k+19v2k+2b

γ6k+6bε4 log
4vk+b

δ′
,

m ≥ 24k+7 (1+2 εγk+b

22k+4 )
2

γ4k+4bε2 log
4vk+b

δ′′
.

So choosing δ′ = δ′′ = δ/(2|C ||Y |), we have that for Eqn. (69) to hold with probability 1− δ, it
suffices that

m ≥ (1+
εγk+b

22k+3 )2 v2k+2b28k+19

γ6k+6b min{ε2,ε4} log
8|C ||Y |vk+b

δ
.

Now using the fact that |C | ≤ knk and |Y | ≤ bnb we obtain the following result: with probability
1−δ, Eqn. (69) holds for all non-trivial canonical factors in the target distribution if m satisfies the
condition on m in the theorem, namely Eqn. (19). Moreover (recall the clipping procedure removed
all candidate factors with scope less than k and Markov blanket size less than b that are not present
in the canonical form of the true distribution P) we have that zero error is incurred on all other
factors. Thus (after using Lemma 20) we have that

D(P‖P̂)+D(P̂‖P) ≤ 2J∗
ε

2k+1 ≤ Jε.

The second inequality follows since J∗ ≤ 2kJ.

F.5 Proof of Theorem 16

Proof [Theorem 16] From Proposition 4 we have that

Q(x) =
1
Z ∏

j
f ∗D∗

j |MB(D∗
j)
(d∗

j).
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We can rewrite this product as follows:

Q(x) = 1
Z ∏

j:|D∗
j |≤k,|MB(D∗

j )|≤b

f ∗D∗
j |MB(D∗

j )
(d∗

j) ∏
j:|D∗

j |≤k,|MB(D∗
j )|>b

f ∗D∗
j |MB(D∗

j )
(d∗

j)

∏
j:|D∗

j |>k

f ∗D∗
j |MB(D∗

j)
(d∗

j) (70)

The learned distribution P̃ = 1
Z̃ ∏J∗

j=1 f̂ ∗
C∗

j |M̂B(C∗
j)
(c∗j), can be rewritten as

P̃(x) =
1

Z̃ ∏
j:|D∗

j |≤k,|MB(D∗
j)|≤b

f̂ ∗D∗
j |M̂B(D∗

j)
(d∗

j) ∏
j:|D∗

j |≤k,|MB(D∗
j)|>b

f̂ ∗D∗
j |M̂B(D∗

j)
(d∗

j)

∏
j:C∗

j /∈{D∗
k}k,|MB(C∗

j )|≤b

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j) ∏

j:C∗
j /∈{D∗

k}k,|MB(C∗
j )|>b

f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j). (71)

Using Eqn. (70), Eqn. (71), the fact that for all C∗
j /∈ {D∗

k}k we have that the canonical fac-
tor is trivial, namely log f ∗C∗

j |MB(C∗
j )
(c∗j) = 0 (and adding and subtracting the same terms) we get:

D(Q‖P̃)+D(P̃‖Q) =

EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| ≤ b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| ≤ b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
(72)

+EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
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D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗
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log
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D∗

j |M̂B(D∗
j )
(d∗

j)

f̂ ∗D∗
j |M̂B(D∗

j )
(d∗

j)

)
(73)

+EX∼Q

(
∑

j:
|D∗

j | ≤ k
|MB(D∗

j)| > b

log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
−EX∼P̃

(
∑

j:
|D∗

j | ≤ k
|MB(D∗
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log
f ∗D∗

j |MB(D∗
j )
(d∗

j)

f ∗
D∗

j |M̂B(D∗
j )
(d∗

j)

)
(74)

+EX∼Q

(
∑

j:|D∗
j |>k

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)
−EX∼P̃

(
∑

j:|D∗
j |>k

log f ∗D∗
j |MB(D∗

j )
(d∗

j)
)

(75)

−EX∼Q

(
∑

j:
C∗

j /∈ {D∗
k}k

|MB(C∗
j)| ≤ b

log f̂ ∗C∗
j |M̂B(C∗

j )
(c∗j)

)
+EX∼P

(
∑
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)
(76)

+EX∼Q
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+ log
Z

Z̃
+ log

Z̃
Z

. (79)
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Using the same reasoning as in the proof of Theorem 15 we obtain that for the sum of the terms
in lines (72), (73), (76) and (77) to be bounded by (J + |S|)ε with probability at least 1−δ, it suffices
that m satisfies Eqn. (19). The additional term in the bound, namely |S|ε, is necessary to bound the
error contribution of the terms in line (77).

The sum of the terms in lines (74) and (78) can be bounded by

2 ∑
C∗

j∈C : |MB(C∗
j)|>b

maxc∗j

∣∣∣ log
f ∗C∗

j |MB(C∗
j)
(c∗j)

f ∗
C∗

j |M̂B(C∗
j )
(C∗

j)

∣∣∣

The sum of the terms in line (75) can be bounded by (recall MB(·) is the true Markov blanket
for the true distribution Q, thus f ∗D∗

j
(d j) = f ∗D∗

j |MB(D∗
j )
(d j))

2 ∑
j:|D∗

j |>k

maxd∗
j

∣∣ log f ∗D∗
j
(d j)

∣∣.

The two terms in line (79) sum to zero.
This establishes the theorem.
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Abstract
In this article we describe a set of scalable techniques for learning the behavior of a group of agents
in a collaborative multiagent setting. As a basis we use the framework of coordination graphs of
Guestrin, Koller, and Parr (2002a) which exploits the dependencies between agents to decompose
the global payoff function into a sum of local terms. First, we deal with the single-state case and
describe a payoff propagation algorithm that computes the individual actions that approximately
maximize the global payoff function. The method can be viewed as the decision-making ana-
logue of belief propagation in Bayesian networks. Second, we focus on learning the behavior of
the agents in sequential decision-making tasks. We introduce different model-free reinforcement-
learning techniques, unitedly called Sparse CooperativeQ-learning, which approximate the global
action-value function based on the topology of a coordination graph, and perform updates using
the contribution of the individual agents to the maximal global action value. The combined use of
an edge-based decomposition of the action-value function and the payoff propagation algorithm for
efficient action selection, result in an approach that scales only linearly in the problem size. We pro-
vide experimental evidence that our method outperforms related multiagent reinforcement-learning
methods based on temporal differences.

Keywords: collaborative multiagent system, coordination graph, reinforcement learning,Q-
learning, belief propagation

1. Introduction

A multiagent system (MAS) consists of a group of agents that reside in an environment and can
potentially interact with each other (Sycara, 1998; Weiss, 1999; Durfee, 2001; Vlassis, 2003). The
existence of multiple operating agents makes it possible to solve inherently distributed problems,
but also allows one to decompose large problems, which are too complex or tooexpensive to be
solved by a single agent, into smaller subproblems.

In this article we are interested in collaborative multiagent systems in which the agents have
to work together in order to optimize a shared performance measure. In particular, we investigate
sequential decision-making problems in which the agents repeatedly interactwith their environ-
ment and try to optimize the long-term reward they receive from the system, which depends on a
sequence of joint decisions. Specifically, we focus oninherently cooperativetasks involving a large
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group of agents in which the success of the team is measured by the specificcombination of actions
of the agents (Parker, 2002). This is different from other approaches that assume implicit coordina-
tion through either the observed state variables (Tan, 1993; Dutta et al., 2005), or reward structure
(Becker et al., 2003). We concentrate on model-free learning techniques in which the agents do not
have access to the transition or reward model. Example application domains include network rout-
ing (Boyan and Littman, 1994; Dutta et al., 2005), sensor networks (Lesser et al., 2003; Modi et al.,
2005), but also robotic teams, for example, exploration and mapping (Burgard et al., 2000), motion
coordination (Arai et al., 2002) and RoboCup (Kitano et al., 1995; Kok et al., 2005).

Existing learning techniques have been proved successful in learning the behavior of a single
agent in stochastic environments (Tesauro, 1995; Crites and Barto, 1996; Ng et al., 2004). However,
the presence of multiple learning agents in the same environment complicates matters. First of all,
the action space scales exponentially with the number of agents. This makes it infeasible to apply
standard single-agent techniques in which an action value, representingexpected future reward, is
stored for every possible state-action combination. An alternative approach would be to decompose
the action value among the different agents and update them independently.However, the fact
that the behavior of one agent now influences the outcome of the individually selected actions of
the other agents results in a dynamic environment and possibly compromises convergence. Other
difficulties, which are outside the focus of this article, appear when the different agents receive
incomplete and noisy observations of the state space (Goldman and Zilberstein, 2004), or have a
restricted communication bandwidth (Pynadath and Tambe, 2002; Goldman andZilberstein, 2003).

For our model representation we will use the collaborative multiagent Markov decision process
(collaborative multiagent MDP) model (Guestrin, 2003). In this model eachagent selects an indi-
vidual action in a particular state. Based on the resulting joint action the systemtransitions to a
new state and the agents receive anindividual reward. The global reward is the sum of all individ-
ual rewards. This approach differs from other multiagent models, for example, multiagent MDPs
(Boutilier, 1996) or decentralized MDPs (Bernstein et al., 2000), in whichall agents observe the
global reward. In a collaborative MDP, it is still the goal of the agents to optimize the global re-
ward, but the individually received rewards allow for solution techniques that take advantage of the
problem structure.

One such solution technique is based on the framework of coordination graphs (CGs) (Guestrin
et al., 2002a). This framework exploits that in many problems only a few agents depend on each
other and decomposes a coordination problem into a combination of simpler problems. In a CG
each node represents an agent and connected agents indicate a local coordination dependency. Each
dependency corresponds to a local payoff function which assigns a specific value to every possible
action combination of the involved agents. The global payoff function equals the sum of all local
payoff functions. To compute the joint action that maximizes the global payofffunction, a vari-
able elimination (VE) algorithm can be used (Guestrin et al., 2002a). This algorithm operates by
eliminating the agents one by one after performing a local maximization step, and has exponen-
tial complexity in the induced tree width (the size of the largest clique generatedduring the node
elimination).

In this article we investigate different distributed learning methods to coordinate the behavior
between the agents. The algorithms are distributed in the sense that each agent only needs to com-
municate with the neighboring agents on which it depends. Our contribution is two-fold. First, we
describe a ‘payoff propagation’ algorithm (max-plus) (Vlassis et al., 2004; Kok and Vlassis, 2005)
to find an approximately maximizing joint action for a CG in which all local functionsare speci-
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fied beforehand. Our algorithm exploits the fact that there is a direct duality between computing
the maximum a posteriori configuration in a probabilistic graphical model and finding the optimal
joint action in a CG; in both cases we are optimizing over a function that is decomposed in local
terms. This allows message-passing algorithms that have been developed for inference in proba-
bilistic graphical models to be directly applicable for action selection in CGs. Max-plus is a popular
method of that family. In the context of CG, it can therefore be regarded as an approximate alterna-
tive to the exact VE algorithm for multiagent decision making. We experimentally demonstrate that
this method, contrary to VE, scales to large groups of agents with many dependencies.

The problem of finding the maximizing joint action in a fixed CG is also related to the work
on distributed constraint satisfaction problems (CSPs) in constraint networks (Pearl, 1988). These
problems consist of a set of variables which each take a value from a finite, discrete domain. Prede-
fined constraints, which have the values of a subset of all variables as input, specify a cost. The ob-
jective is to assign values to these variables such that the total cost is minimized (Yokoo and Durfee,
1991; Dechter, 2003).

As a second contribution, we study sequential decision-making problems in which we learn the
behavior of the agents. For this, we apply model-free reinforcement-learning techniques (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998). This problem is different than finding the joint action
that maximizes predefined payoff relations, since in this case the payoff relations themselves have
to be learned. In our approach, namedSparse CooperativeQ-learning(Kok and Vlassis, 2004), we
analyze different decompositions of the global action-value function using CGs. The structure of
the used CG is determined beforehand, and reflects the specific problem under study. For a given
CG, we investigate both a decomposition in terms of the nodes (or agents), as well as a decom-
position in terms of the edges. In the agent-based decomposition the local function of an agent
is based on its own action and those of its neighboring agents. In the edge-based decomposition
each local function is based on the actions of the two agents forming this edge. Each state is re-
lated to a CG with a similar decomposition, but with different values for the local functions. To
update the local action-value function for a specific state, we use the contribution of the involved
agents to the maximal global action value, which is computed using either the max-plus or VE
algorithm. We perform different experiments on problems involving a large group of agents with
many dependencies and show that all variants outperform existing temporal-difference based learn-
ing techniques in terms of the quality of the extracted policy. Note that in our work we only consider
temporal-difference methods; other multiagent reinforcement-learning methods exist that are based,
for example, on policy search (Peshkin et al., 2000; Moallemi and Van Roy, 2004) or Bayesian ap-
proaches (Chalkiadakis and Boutilier, 2003).

The remainder of this article is structured as follows. We first review the notion of a CG and
the VE algorithm in Section 2. Next, in Section 3, we discuss our approximate alternative to VE
based on the max-plus algorithm and perform experiments on randomly generated graphs. Then,
we switch to sequential decision-making problems. First, we review severalexisting multiagent
learning methods in Section 4. In Section 5, we introduce the different variants of our Sparse Coop-
erativeQ-learning method, and give experimental results on several learning problems in Section 6.
We end with the conclusions in Section 7.
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2. Coordination Graphs and Variable Elimination

All agents in a collaborative multiagent system can potentially influence each other. It is therefore
important to ensure that the actions selected by the individual agents resultin optimal decisions
for the group as a whole. This is often referred to as thecoordination problem. In this section
we review the problem of computing a coordinated action for a group ofn agents as described by
Guestrin et al. (2002a). Each agenti selects an individual actionai from its action setA i and the
resultingjoint actiona = (a1, . . . ,an), as all other vectors of two or more variables in this article
emphasized using a bold notation, generates a payoffu(a) for the team. The coordination problem
is to find the optimal joint actiona∗ that maximizesu(a), that is,a∗ = argmaxa u(a).

We can compute the optimal joint action by enumerating over all possible joint actions and select
the one that maximizesu(a). However, this approach quickly becomes impractical, as the size of
the joint action space|A1× . . .×An| grows exponentially with the number of agentsn. Fortunately,
in many problems the action of one agent does not depend on the actions of all other agents, but
only on a small subset. For example, in many real-world domains only agents which are spatially
close have to coordinate their actions.

The framework of coordination graphs (CGs) (Guestrin et al., 2002a) isa recent approach to
exploit these dependencies. This framework assumes the action of an agent i only depends on a
subset of the other agents,j ∈ Γ(i). The global payoff functionu(a) is then decomposed into a
linear combination of local payoff functions, as follows,

u(a) =
n

∑
i=1

fi(ai). (1)

Each local payoff functionfi depends on a subset of all actions,ai ⊆ a, whereai = A i ×(× j∈Γ(i)A j),
corresponding to the action of agenti and those of the agents on which it depends. This decompo-
sition can be depicted using an undirected graphG = (V,E) in which each nodei ∈V represents an
agent and an edge(i, j)∈ E indicates that the corresponding agents have to coordinate their actions,
that is,i ∈ Γ( j) and j ∈ Γ(i). The global coordination problem is now replaced by a number of local
coordination problems each involving fewer agents.

In the remainder of this article, we will focus on problems with payoff functions including at
most two agents. Note that this still allows for complicated coordinated structures since every agent
can have multiple pairwise dependency functions. Furthermore, it is possible to generalize the
proposed techniques to payoff functions with more than two agents because any arbitrary graph can
be converted to a graph with only pairwise inter-agent dependencies (Yedidia et al., 2003; Loeliger,
2004). To accomplish this, a new agent is added for each local function that involves more than two
agents. This new agent contains an individual local payoff function that is defined over the combined
actions of the involved agents, and returns the corresponding value of the original function. Note
that the action space of this newly added agent is exponential in its neighborhood size (which can
lead to intractability in the worst case). Furthermore, new pairwise payoff functions have to be
defined between each involved agent and the new agent in order to ensure that the action selected
by the involved agent corresponds to its part of the (combined) action selected by the new agent.

Allowing only payoff functions defined over at most two agents, the globalpayoff functionu(a)
can be decomposed as

u(a) = ∑
i∈V

fi(ai)+ ∑
(i, j)∈E

fi j (ai ,a j). (2)
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Figure 1: Example CG with eight agents; an edge represents a coordinationdependency.
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Figure 2: CG corresponding to the decomposition (3) before and after eliminating agent 1.

A local payoff functionfi(ai) specifies the payoff contribution for the individual actionai of agenti,
and fi j defines the payoff contribution for pairs of actions(ai ,a j) of neighboring agents(i, j) ∈ E.
Fig. 1 shows an example CG with 8 agents.

In order to solve the coordination problem and finda∗ = argmaxa u(a) we can apply the vari-
able elimination (VE) algorithm (Guestrin et al., 2002a), which is in essence identical to variable
elimination in a Bayesian network (Zhang and Poole, 1996). The algorithm eliminates the agents
one by one. Before an agent (node) is eliminated, the agent first collectsall payoff functions related
to its edges. Next, it computes a conditional payoff function which returns the maximal value it is
able to contribute to the system for every action combination of its neighbors, and a best-response
function (or conditional strategy) which returns the action corresponding to the maximizing value.
The conditional payoff function is communicated to one of its neighbors and the agent is elimi-
nated from the graph. Note that when the neighboring agent receives afunction including an action
of an agent on which it did not depend before, a new coordination dependency is added between
these agents. The agents are iteratively eliminated until one agent remains. This agent selects the
action that maximizes the final conditional payoff function. This individual action is part of the
optimal joint action and the corresponding value equals the desired value maxa u(a). A second pass
in the reverse order is then performed in which every agent computes its optimal action based on its
conditional strategy and the fixed actions of its neighbors.
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We illustrate VE on the decomposition graphically represented in Fig. 2(a), that is,

u(a) = f12(a1,a2)+ f13(a1,a3)+ f34(a3,a4), (3)

We first eliminate agent 1. This agent does not depend on the local payoff function f34 and therefore
the maximization ofu(a) in (3) can be written as

max
a

u(a) = max
a2,a3,a4

{

f34(a3,a4)+max
a1

[ f12(a1,a2)+ f13(a1,a3)]
}

. (4)

Agent 1 computes a conditional payoff functionφ23(a2,a3) = maxa1[ f12(a1,a2)+ f13(a1,a3)] and
the best-response functionB1(a2,a3) = argmaxa1[ f12(a1,a2) + f13(a1,a3)] which respectively re-
turn the maximal value and the associated best action agent 1 is able to perform given the actions
of agent 2 and 3. Since the functionφ23(a2,a3) is independent of agent 1, it is now eliminated from
the graph, simplifying (4) to maxa u(a) = maxa2,a3,a4[ f34(a3,a4)+ φ23(a2,a3)]. The elimination of
agent 1 induces a new dependency between agent 2 and 3 and thus a change in the graph’s topology.
This is depicted in Fig. 2(b). We then eliminate agent 2. Onlyφ23 depends on agent 2, so we define
B2(a3) = argmaxa2 φ23(a2,a3) and replaceφ23 by φ3(a3) = maxa2 φ23(a2,a3) producing

max
a

u(a) = max
a3,a4

[ f34(a3,a4)+φ3(a3)], (5)

which is independent ofa2. Next, we eliminate agent 3 and replace the functionsf34 andφ3 re-
sulting in maxa u(a) = maxa4 φ4(a4) with φ4(a4) = maxa3[ f34(a3,a4)+ φ3(a3)]. Agent 4 is the last
remaining agent and fixes its optimal actiona∗4 = argmaxa4 φ4(a4). A second pass in the reverse
elimination order is performed in which each agent computes its optimal (unconditional) action
from its best-response function and the fixed actions from its neighbors.In our example, agent 3
first selectsa∗3 = B3(a∗4). Similarly, we geta∗2 = B2(a∗3) anda∗1 = B1(a∗2,a

∗
3). When an agent has more

than one maximizing best-response action, it selects one randomly, since it always communicates its
choice to its neighbors. The described procedure holds for the case ofa truly distributed implemen-
tation using communication. When communication is restricted, additional common knowledge
assumptions are needed such that each agent is able to run a copy of the algorithm (Vlassis, 2003,
ch. 4).

The VE algorithm always produces the optimal joint action and does not depend on the elimi-
nation order. The execution time of the algorithm, however, does. Computing the optimal order is
known to be NP-complete, but good heuristics exist, for example, first eliminating the agent with the
minimum number of neighbors (Bertelé and Brioschi, 1972). The execution time is exponential in
the induced width of the graph (the size of the largest clique computed duringnode elimination). For
densely connected graphs this can scale exponentially inn. Furthermore, VE will only produce its
final result after the end of the second pass. This is not always appropriate for real-time multiagent
systems where decision making must be done under time constraints. In these cases, an anytime
algorithm that improves the quality of the solution over time is more appropriate (Vlassis et al.,
2004).

3. Payoff Propagation and the Max-Plus Algorithm1

Although the variable elimination (VE) algorithm is exact, it does not scale well with densely con-
nected graphs. In this section, we introduce themax-plus algorithmas an approximate alternative
to VE and compare the two approaches on randomly generated graphs.

1Section 3 is largely based on (Kok and Vlassis, 2005).
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1 2
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µ12(a2)

µ21(a1)

µ23(a3)

µ32(a2)

µ24(a4)

µ42(a2)

Figure 3: Graphical representation of different messagesµi j in a graph with four agents.

3.1 The Max-Plus Algorithm

The max-product algorithm (Pearl, 1988; Yedidia et al., 2003; Wainwright et al., 2004) is a pop-
ular method for computing themaximum a posteriori(MAP) configuration in an (unnormalized)
undirected graphical model. This method is analogous to the belief propagation or sum-product
algorithm (Kschischang et al., 2001). It operates by iteratively sendinglocally optimized messages
µi j (a j) between nodei and j over the corresponding edge in the graph. For tree-structured graphs,
the message updates converge to a fixed point after a finite number of iterations (Pearl, 1988). After
convergence, each node then computes the MAP assignment based on its local incoming messages
only.

There is a direct duality between computing the MAP configuration in a probabilistic graphical
model and finding the optimal joint action in a CG; in both cases we are optimizing over a function
that is decomposed in local terms. This allows message-passing algorithms thathave been devel-
oped for inference in probabilistic graphical models, to be directly applicable for action selection in
CGs. Max-plus is a popular method of that family. In the context of CG, it cantherefore be regarded
as a ‘payoff propagation’ technique for multiagent decision making.

Suppose that we have a coordination graphG = (V,E) with |V| vertices and|E| edges. In order
to compute the optimal joint actiona∗ that maximizes (2), each agenti (node inG) repeatedly sends
a messageµi j to its neighborsj ∈ Γ(i). The messageµi j can be regarded as a local payoff function
of agentj and is defined as

µi j (a j) = max
ai

{

fi(ai)+ fi j (ai ,a j)+ ∑
k∈Γ(i)\ j

µki(ai)

}

+ci j , (6)

whereΓ(i) \ j represents all neighbors of agenti except agentj, andci j is a normalization value
(which can be assumed zero for now). This message is an approximation ofthe maximum payoff
agenti is able to achieve for a given action of agentj, and is computed by maximizing (over the
actions of agenti) the sum of the payoff functionsfi and fi j and all incoming messages to agenti
except that from agentj. Note that this message only depends on the payoff relations between agent i
and agentj and the incoming message to agenti. Messages are exchanged until they converge to a
fixed point, or until some external signal is received. Fig. 3 shows a CG with four agents and the
corresponding messages.

A messageµi j in the max-plus algorithm has three important differences with respect to the
conditional payoff functions in VE. First, before convergence each message is an approximation
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of the exact value (conditional team payoff) since it depends on the incoming (still not converged)
messages. Second, an agenti only has to sum over the received messages from its neighbors which
are defined over individual actions, instead of enumerating over all possible action combinations of
its neighbors. This is the main reason for the scalability of the algorithm. Finally, inthe max-plus
algorithm, messages are always sent over the edges of the original graph. In the VE algorithm,
the elimination of an agent often results in new dependencies between agentsthat did not have to
coordinate initially.

For trees the messages converge to a fixed point within a finite number of steps (Pearl, 1988;
Wainwright et al., 2004). Since a messageµji (ai) equals the payoff produced by the subtree with
agentj as root when agenti performs actionai , we can at any time step define

gi(ai) = fi(ai)+ ∑
j∈Γ(i)

µji (ai), (7)

which equals the contribution of the individual function of agenti and the different subtrees with the
neighbors of agenti as root. Using (7), we can show that, at convergence,gi(ai) = max{a′|a′i=ai}u(a′)
holds. Each agenti can then individually select its optimal action

a∗i = argmax
ai

gi(ai). (8)

If there is only one maximizing action for every agenti, the globally optimal joint actiona∗ =
argmaxa u(a) is unique and has elementsa∗ = (a∗i ). Note that this optimal joint action is computed
by only local optimizations (each node maximizesgi(ai) separately). In case the local maximizers
are not unique, an optimal joint action can be computed by a dynamic programming technique
(Wainwright et al., 2004, sec. 3.1). In this case, each agent informs its neighbors in a predefined
order about its action choice such that the other agents are able to fix their actions accordingly.

centralized max-plus algorithm for CG= (V,E)
initialize µi j = µji = 0 for (i, j) ∈ E, gi = 0 for i ∈V andm= −∞
while fixed point = falseand deadline to send action has not yet arriveddo

// run one iteration
fixed point = true
for every agenti do

for all neighborsj = Γ(i) do
sendj messageµi j (a j) = maxai

{

fi(ai)+ fi j (ai ,a j)+∑k∈Γ(i)\ j µki(ai)
}

+ci j

if µi j (a j) differs from previous message by a small thresholdthen
fixed point = false

determinegi(ai) = fi(ai)+∑ j∈Γ(i) µji (ai) anda′i = argmaxai gi(ai)
if use anytime extensionthen

if u((a′i)) > m then
(a∗i ) = (a′i) andm= u((a′i))

else
(a∗i ) = (a′i)

return(a∗i )

Algorithm 1: Pseudo-code of the centralized max-plus algorithm.
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Unfortunately there are no guarantees that max-plus converges in graphs with cycles and there-
fore no assurances can be given about the quality of the corresponding joint actiona∗ = (a∗i ) with
ai from (8) in such settings. Nevertheless, it has been shown that a fixed point of message pass-
ing exists (Wainwright et al., 2004), but there is no algorithm yet that provably converges to such
a solution. However, bounds are available that characterize the quality ofthe solution if the algo-
rithm converges (Wainwright et al., 2004). Regardless of these results, the algorithm has been suc-
cessfully applied in practice in graphs with cycles (Murphy et al., 1999; Crick and Pfeffer, 2003;
Yedidia et al., 2003). One of the main problems is that an outgoing message from agenti which
is part of a cycle eventually becomes part of its incoming messages. As a result the values of the
messages grow extremely large. Therefore, as in (Wainwright et al., 2004), we normalize each sent
message by subtracting the average of all values inµik usingci j = 1

|Ak|
∑k µik(ak) in (6). Still, the

joint action might change constantly when the messages keep fluctuating. Thisnecessitates the de-
velopment of an extension of the algorithm in which each (local) action is only updated when the
corresponding global payoff improves. Therefore, we extend the max-plus algorithm by occasion-
ally computing the global payoff and only update the joint action when it improves upon the best
value found so far. The best joint action then equals the last updated joint action. We refer to this
approach as theanytimemax-plus algorithm.2

The max-plus algorithm can be implemented in either a centralized or a distributed version.
The centralized version operates using iterations. In one iteration each agent i computes and sends
a messageµi j to all its neighborsj ∈ Γ(i) in a predefined order. This process continues until all
messages are converged, or a ‘deadline’ signal (either from an external source or from an internal
timing signal) is received and the current joint action is reported. For the anytime extension, we
insert the current computed joint action into (2) after every iteration and only update the joint action
when it improves upon the best value found so far. A pseudo-code implementation of the centralized
max-plus algorithm, including the anytime extension, is given in Alg. 1.

The same functionality can also be implemented using a distributed implementation. Now,
each agent computes and communicates an updated message directly after it has received a new
(and different) message from one of its neighbors. This results in a computational advantage over
the sequential execution of the centralized algorithm since messages are now sent in parallel. We
additionally assume that after a finite number of steps, the agents receive a ‘deadline’ signal after
which they report their individual actions.

For the distributed case, the implementation of the anytime extension is much more complex
since the agents do not have direct access to the actions of the other agents or the global payoff
function (2). Therefore, the evaluation of the (distributed) joint action is only initiated by an agent
when it believes it is worthwhile to do so, for example, after a big increase in the values of the
received messages. This agent starts the propagation of an ‘evaluation’ message over a spanning
treeST. A spanning tree is a tree-structured subgraph ofG that includes all nodes. This tree is fixed
beforehand and is common knowledge among all agents. An agent receiving an evaluation message
fixes its individual action until after the evaluation. When an agent is a leaf of ST it also computes
its local contribution to the global payoff and sends this value to its parent inST. Each parent
accumulates all payoffs of its children and after adding its own contribution sends the result to its
parent. Finally, when the root ofSThas received all accumulated payoffs from its children, the sum
of these payoffs (global payoff) is distributed to all nodes inST. The agents only update their best

2An alternative, and perhaps more accurate, term is ‘max-plus with memory’. However, we decided on the term
‘anytime’ for reasons of consistency with other publications (Kok and Vlassis, 2005; Kok, 2006).
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distributed max-plus for agent i, CG= (V,E), spanning tree ST= (V,S)
initialize µi j = µji = 0 for j ∈ Γ(i), gi = 0, pi = 0 andm= −∞
while deadline to send action has not yet arriveddo

wait for messagemsg
if msg= µji (ai) // max-plus messagethen

for all neighborsj ∈ Γ(i) do
computeµi j (a j) = maxai

{

fi(ai)+ fi j (ai ,a j)+∑k∈Γ(i)\ j µki(ai)
}

+ci j

send messageµi j (a j) to agentj if it differs from last sent message
if use anytime extensionthen

if heuristic indicates global payoff should be evaluatedthen
sendevaluate( i ) to agenti // initiate computation global payoff

else
a∗i = argmaxai [ fi(ai)+∑ j∈Γ(i) µji (ai)]

if msg= evaluate( j ) // receive request for evaluation from agentj then
if a′i not locked, locka′i = argmaxai [ fi(ai)+∑ j∈Γ(i) µji (ai)] and setpi = 0
sendevaluate( i ) to all neighbors (parent and children) inST 6= j
if i = leaf inST then

sendaccumulate payoff( 0 ) to agenti // initiate accumulation payoffs
if msg= accumulate payoff( p j ) from agentj then

pi = pi + p j // add payoff childj
if received accumulated payoff from all children inST then

get actionsa′j from j ∈ Γ(i) in CG and setgi = fi(a′i)+ 1
2 ∑ j∈Γ(i) fi j (a′i ,a

′
j)

if i = root ofST then
sendglobal payoff( gi + pi ) to agenti

else
sendaccumulate payoff( gi + pi ) to parent inST

if msg= global payoff( g ) then
if g > m then

a∗i = a′i andm= g
sendglobal payoff( g ) to all children inST and unlock actiona′i

returna∗i

Algorithm 2: Pseudo-code of a distributed max-plus implementation.

individual actiona∗i when this payoff improves upon the best one found so far. When the ‘deadline’
signal arrives, each agent reports the action related to the highest found global payoff, which might
not correspond to the current messages. Alg. 2 shows a distributed version in pseudo-code.

3.2 Experiments

In this section, we describe our experiments with the max-plus algorithm on differently shaped
graphs. For cycle-free graphs max-plus is equivalent to VE when the messages in the first iteration
are sent in the same sequence as the elimination order of VE and in the reverse order for the second
iteration (comparable to the reversed pass in VE). Therefore, we only test max-plus on graphs with
cycles.
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(a) Graph with 15 edges (average
degree of 2).

(b) Graph with 23 edges (average
degree of 3.07).

(c) Graph with 37 edges (average
degree of 4.93).

Figure 4: Example graphs with 15 agents and cycles.

We ran the algorithms on differently shaped graphs with 15 agents and a varying number of
edges. In order to generate balanced graphs in which each agent approximately has the same degree,
we start with a graph without edges and iteratively connect the two agents with the minimum number
of neighbors. In case multiple agents satisfy this condition, an agent is picked at random from the
possibilities. We apply this procedure to create 100 graphs for each|E| ∈ {8,9, . . . ,37}, resulting
in a set of 3,000 graphs. The set thus contains graphs in the range of on average 1.067 neighbors
per agent (8 edges) to 4.93 neighbors per agent (37 edges). Fig. 10 depicts example graphs with
respectively 15, 23 and 37 edges (on average 2, 3.07 and 4.93 neighbors per node). We create three
copies of this set, each having a different payoff function related to the edges in the graph. In the
first set, each edge(i, j) ∈ E is associated with a payoff functionfi j defined over five actions per
agent and each action combination is assigned a random payoff from a standard normal distribution,
that is, fi j (ai ,a j) ∼ N (0,1). This results in a total of 515, around 3 billion, different possible joint
actions. In the second set, we add one outlier to each of the local payoff functions: for a randomly
picked joint action, the corresponding payoff value is set to 10·N (0,1). For the third test set, we
specify a payoff function based on 10 actions per agent resulting in 1015 different joint actions. The
values of the different payoff functions are again generated using a standard normal distribution.

For all graphs we compute the joint action using the VE algorithm, the standard max-plus al-
gorithm, and the max-plus algorithm with the anytime extension. Irrespectively of convergence, all
max-plus methods perform 100 iterations. As we will see later in Fig. 6 the policyhas stabilized
at this point. Furthermore, a random ordering is used in each iteration to determine which agents
sends its messages.

The timing results for the three different test sets are plotted in Fig. 5.3 The x-axis shows the
average degree of the graph, and they-axis shows, using a logarithmic scale, the average timing
results, in milliseconds, to compute the joint action for the corresponding graphs. Remember from
Section 2 that the computation time of the VE algorithm depends on the induced widthof the
graph. The induced width depends both on the average degree and the actual structure of the graph.
The latter is generated at random, and therefore the complexity of graphs with the same average
degree differ. Table 1 shows the induced width for the graphs used in theexperiments based on the
elimination order of the VE algorithm, that is, iteratively remove a node with the minimumnumber

3All results are generated on an Intel Xeon 3.4GHz / 2GB machine using aC++ implementation.
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(a) 5 actions per agent.
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(b) 5 actions and outliers.
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(c) 10 actions per agent.

Figure 5: Timing results for VE and max-plus for different graphs with 15 agents and cycles.

average degree (1,2] (2,3] (3,4] (4,5]

induced width 1.23 (±0.44) 2.99 (±0.81) 4.94 (±0.77) 6.37 (±0.68)

Table 1: Average induced width and corresponding standard deviation for graphs with an average
degree in(x−1,x].

of neighbors. The results are averaged over graphs with a similar average degree. For a specific
graph, the induced width equals the maximal number of neighbors that have tobe considered in a
local maximization.

In Fig. 5, we show the timing results for the standard max-plus algorithm; the results for the
anytime extension are identical since they only involve an additional check ofthe global payoff
value after every iteration. The plots indicate that the time for the max-plus algorithm grows lin-
early as the complexity of the graphs increases. This is a result of the relation between the number
of messages and the (linearly increasing) number of edges in the graph. The graphs with 10 actions
per agent require more time compared to the two other sets because the computation of every mes-
sage involves a maximization over 100 instead of 25 joint actions. Note that all timing results are
generated with a fixed number of 100 iterations. As we will see later, the max-plus algorithm can
be stopped earlier without much loss in performance, resulting in even quicker timing results.

For the graphs with a small, less than 2.5, average degree, VE outperforms the max-plus algo-
rithm. In this case, each local maximization only involves a few agents, and VE isable to finish its
two passes through the graph quickly. However, the time for the VE algorithmgrows exponentially
for graphs with a higher average degree because for these graphs ithas to enumerate over an increas-
ing number of neighboring agents in each local maximization step. Furthermore, the elimination of
an agent often causes a neighboring agent to receive a conditional strategy involving agents it did
not have to coordinate with before, changing the graph topology to an even denser graph. This ef-
fect becomes more apparent as the graphs become more dense. More specifically, for graphs with 5
actions per agent and an average degree of 5, it takes VE on average23.8 seconds to generate the
joint action. The max-plus algorithm, on the other hand, only requires 10.18 milliseconds for such
graphs. There are no clear differences between the two sets with 5 actions per agent since they both
require the same number of local maximizations, and the actual values do not influence the algo-
rithm. However, as is seen in Fig. 5(c), the increase of the number of actions per agent slows the
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VE algorithm down even more. This is a result of the larger number of joint actions which has to
be processed during the local maximizations. For example, during a local maximization of an agent
with five neighbors 55 = 3,125 actions have to be enumerated in the case of 5 actions per agent.
With 10 actions per agent, this number increases to 105 = 100,000 actions. During elimination the
topology of the graph can change to very dense graphs resulting in evenlarger maximizations. This
is also evident from the experiments. For some graphs with ten actions per agent and an average
degree higher than 3.2, the size of the intermediate tables grows too large for the available memory,
and VE is not able to produce a result. These graphs are removed from the set. For the graphs with
an average degree between 3 and 4, this results in the removal of 81 graphs. With an increase of the
average degree, this effect becomes more apparent: VE is not able to produce a result for 466 out of
the 700 graphs with an average degree higher than 4; all these graphs are removed from the set. This
also explains why the increase in the curve of VE in Fig. 5(c) decreases:the more difficult graphs,
which take longer to complete, are not taken into account. Even without thesegraphs, it takes VE on
average 339.76 seconds, almost 6 minutes, to produce a joint action for the graphs with anaverage
degree of 5. The max-plus algorithm, on the other hand, needs on average 31.61 milliseconds.

The max-plus algorithm thus outperforms VE with respect to the computation time for densely
connected graphs. But how do the resulting joint actions of the max-plus algorithm compare to the
optimal solutions of the VE algorithm? Fig. 6 shows the payoff found with the max-plus algorithm
relative to the optimal payoff, after each iteration. A relative payoff of 1 indicates that the found
joint action corresponds to the optimal joint action, while a relative payoff of0 indicates that it
corresponds to the joint action with the minimal possible payoff. Each of the four displayed curves
corresponds to the average result of a subset with a similar average degree. Specifically, each subset
contains all graphs with an average degree in(x−1,x], with x∈ {2,3,4,5}.

We first discuss the result of the standard max-plus algorithm in the graphson the left. For all
three sets, the loosely connected graphs with an average degree less than two converge to a similar
policy as the optimal joint action in a few iterations only. As the average degreeincreases, the
resulting policy declines. As seen in Fig. 6(c), this effect is less evident inthe graphs with outliers;
the action combinations related to the positive outliers are clearly preferred,and lowers the number
of oscillations. Increasing the number of actions per agent has a negative influence on the result, as
is evident from Fig. 6(e), because the total number of action combinations increases. The displayed
results are an average of a large set of problems, and an individual run typically contains large
oscillations between good and bad solutions.

When using the anytime version, which returns the best joint action found sofar, the obtained
payoff improves for all graphs. This indicates that the failing convergence of the messages causes
the standard max-plus algorithm to oscillate between different joint actions and ‘forget’ good joint
actions. Fig. 6 shows that for all sets near-optimal policies are found, although more complex graphs
need more iterations to find them.

4. Collaborative Multiagent Reinforcement Learning

Until now, we have been discussing the problem of selecting an optimal joint action in a group of
agents for a given payoff structure and a single state only. Next, we considersequential decision-
making problems. In such problems, the agents select a joint action which provides them a reward
and causes a transition to a new state. The goal of the agents is to select actions that optimize a
performance measure based on the received rewards. This might involve asequenceof decisions.
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(a) Max-plus (5 actions per agent).
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(b) Anytime max-plus (5 actions).
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(c) Max-plus (5 actions per agent and outliers)
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(d) Anytime max-plus (5 actions and outliers).
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(e) Max-plus (10 actions per agent).
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(f) Anytime max-plus (10 actions).

Figure 6: Relative payoff compared to VE for both standard max-plus (graphs on the left) and
anytime max-plus (graphs on the right) for graphs with 15 agents and cycles.
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An important aspect of this problem is that the agents have no prior knowledge about the effect of
their actions, but that this information has to belearnedbased on the, possibly delayed, rewards.
Next, we review a model to represent such a problem and describe several solution techniques.

4.1 Collaborative Multiagent MDP and Q-Learning

Different models exist to describe a group of agents interacting with their environment. We will use
the collaborative multiagent MDP framework (Guestrin, 2003) which is an extension of the single-
agent Markov decision process (MDP) framework (Puterman, 1994).It consists of the following
model parameters:

• A time stept = 0,1,2,3, . . ..

• A group ofn agentsA = {A1,A2, ...,An}.

• A set of discrete state variablesSi . The global state is the cross-product of allm variables:
S= S1× ...×Sm. A statest ∈ Sdescribes the state of the world at timet.

• A finite set of actionsA i for every agenti. The action selected by agenti at time stept
is denoted byat

i ∈ A i . The joint actionat ∈ A = A1 × . . .× An is the combination of all
individual actions of then agents.

• A state transition functionT : S×A ×S→ [0,1] which gives transition probabilityp(st+1|st ,at)
that the system will move to statest+1 when the joint actionat is performed in statest .

• A reward functionRi : S×A → R which provides agenti with an individual rewardr t
i ∈

Ri(st ,at) based on the joint actionat taken in statest . The global reward is the sum of all
local rewards:R(st ,at) = ∑n

i=1Ri(st ,at).

This model assumes that the Markov property holds which denotes that the state description at
time t provides a complete description of the history before timet. This is apparent in both the
transition and reward function in which all information before timet is ignored. Furthermore, it
also assumes that the environment is stationary, that is, the reward and transition probabilities are
independent of the time stept. Since the transition function is stationary, we will in most cases omit
the time stept superscript when referring to a statest , and use the shorthands′ for the next state
st+1.

A policy π : s → a is a function which returns an actiona for any given states. The objec-
tive is to find an optimal policyπ∗ that maximizes the expected discounted future returnV∗(s) =
maxπ E

[

∑∞
t=0 γtR(st ,π(st))|π,s0 = s

]

for each states. The expectation operatorE[·] averages over
stochastic transitions, andγ ∈ [0,1) is the discount factor. Rewards in the near future are thus pre-
ferred over rewards in the distant future. The return is defined in terms of the sum of individual
rewards, and the agents thus have to cooperate in order to achieve their common goal. This differs
from self-interested approaches (Shapley, 1953; Hansen et al., 2004) in which each agent tries to
maximize its own payoff.

Q-functions, or action-value functions, represent the expected futurediscounted reward for a
states when selecting a specific actiona and behaving optimally from then on. The optimalQ-
functionQ∗ satisfies the Bellman equation:

Q∗(s,a) = R(s,a)+ γ∑
s′

p(s′|s,a)max
a′

Q∗(s′,a′). (9)
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GivenQ∗, the optimal policy for the agents in states is to jointly select the action argmaxa Q∗(s,a)
that maximizes the expected future discounted return.

Reinforcement learning (RL) (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996) can be
applied to estimateQ∗(s,a). Q-learning is a widely used learning method for single-agent systems
when the agent does not have access to the transition and reward model. The agent interacts with
the environment by selecting actions and receives(s,a, r,s′) samples based on the experienced state
transitions.Q-learning starts with an initial estimateQ(s,a) for each state-action pair. At each time
step the agent selects an action based on an exploration strategy. A commonlyused strategy isε-
greedy which selects the greedy action, argmaxaQ(s,a), with high probability, and, occasionally,
with a small probabilityε selects an action uniformly at random. This ensures that all actions, and
their effects, are experienced. Each time an actiona is taken in states, rewardR(s,a) is received,
and next states′ is observed, the correspondingQ-value is updated with a combination of its current
value and the temporal-difference error, the difference between its current estimateQ(s,a) and the
experienced sampleR(s,a)+ γmaxa′ Q(s′,a′), using

Q(s,a) = Q(s,a)+α[R(s,a)+ γmax
a′

Q(s′,a′)−Q(s,a)] (10)

whereα ∈ (0,1) is an appropriate learning rate which controls the contribution of the new experi-
ence to the current estimate. When every state-action pair is associated with auniqueQ-value and
every action is sampled infinitely often (as with theε-greedy action selection method), iteratively
applying (10) is known to converge to the optimalQ∗(s,a) values (Watkins and Dayan, 1992).

Next, we describe four multiagent variants of tabularQ-learning to multiagent environments,
and discuss their advantages and disadvantages. We do not consider any function-approximation
algorithms. Although they have been been successfully applied in severaldomains with large state
sets, they are less applicable for large action sets since it is more difficult to generalize over nearby
(joint) actions. Furthermore, we only consider model-free methods in which the agents do not have
access to the transition and reward function. The agents do observe the current state and also receive
an individual reward depending on the performed joint action and the unknown reward function.
Finally, we assume the agents are allowed to communicate in order to coordinate their actions.

4.2 MDP Learners

In principle, a collaborative multiagent MDP can be regarded as one largesingle agent in which
each joint action is represented as a single action. It is then possible to learnthe optimalQ-values
for the joint actions using standard single-agentQ-learning, that is, by iteratively applying (10). In
thisMDP learnersapproach either a central controller models the complete MDP and communicates
to each agent its individual action, or each agent models the complete MDP separately and selects
the individual action that corresponds to its own identity. In the latter case, the agents do not need to
communicate but they have to be able to observe the executed joint action and the received individual
rewards. The problem of exploration is solved by using the same random number generator (and
the same seed) for all agents (Vlassis, 2003).

Although this approach leads to the optimal solution, it is infeasible for problemswith many
agents. In the first place, it is intractable to model the complete joint action space, which is ex-
ponential in the number of agents. For example, a problem with 7 agents, each able to perform 6
actions, results in almost 280,000Q-values per state. Secondly, the agents might not have access
to the needed information for the update because they are not able to observe the state, action, and
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reward of all other agents. Finally, it will take many time steps to explore all jointactions resulting
in slow convergence.

4.3 Independent Learners

At the other extreme, we have theindependent learners(IL) approach (Claus and Boutilier, 1998)
in which the agents ignore the actions and rewards of the other agents, andlearn their strategies
independently. Each agent stores and updates an individual tableQi and the globalQ-function is
defined as a linear combination of all individual contributions,Q(s,a) = ∑n

i=1Qi(s,ai). Each local
Q-function is updated using

Qi(s,ai) := Qi(s,ai)+α[Ri(s,a)+ γmax
a′i

Qi(s′,a′i)−Qi(s,ai)]. (11)

Note that eachQi is based on the global states. This approach results in big storage and compu-
tational savings in the action-space, for example, with 7 agents and 6 actionsper agent only 42
Q-values have to be stored per state. However, the standard convergence proof forQ-learning does
not hold anymore. Because the actions of the other agents are ignored in the representation of the
Q-functions, and these agents also change their behavior while learning, the system becomes non-
stationary from the perspective of an individual agent. This might lead to oscillations. Despite the
lack of guaranteed convergence, this method has been applied successfully in multiple cases (Tan,
1993; Sen et al., 1994).

4.4 Coordinated Reinforcement Learning

In many situations an agent has to coordinate its actions with a few agents only,and acts indepen-
dently with respect to the other agents. In Guestrin et al. (2002b) three differentCoordinated Rein-
forcement Learningapproaches are described which take advantage of the structure of theproblem.
The three approaches are respectively a variant ofQ-learning, policy iteration, and direct policy
search. We will concentrate on theQ-learning variant which decomposes the globalQ-function into
a linear combination of local agent-dependentQ-functions. Each localQi is based on a subset of all
state and action variables,

Q(s,a) =
n

∑
i=1

Qi(si ,ai), (12)

wheresi andai are respectively the subset of state and action variables related to agenti. These
dependencies are established beforehand and differ per problem. Note that in this representation,
each agent only needs to observe the state variablessi which are part of its localQi-function. The
corresponding CG is constructed by adding an edge between agenti and j when the action of agentj
is included in the action variables of agenti, that is,a j ∈ ai . As an example, imagine a computer
network in which each machine is modeled as an agent and only depends on the state and action
variables of itself and the machines it is connected to. The coordination graph would in this case
equal the network topology.

A local Qi is updated using the global temporal-difference error, the difference between the
current globalQ-value and the expected future discounted return for the experienced state transition,
using

Qi(si ,ai) := Qi(si ,ai)+α[R(s,a)+ γmax
a′

Q(s′,a′)−Q(s,a)]. (13)
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The global rewardR(s,a) is given. The maximizing action ins′ and the associated maximal ex-
pected future return, maxa′ Q(s′,a′), are computed in a distributed manner by applying the VE al-
gorithm discussed in Section 2 on the CG. The estimate of the globalQ-value ins, Q(s,a) in (13),
is computed by fixing the action of every agent to the one assigned ina and applying a message
passing scheme similar to the one used in the VE algorithm. We use a table-based representation for
theQ-functions in our notation. However, since each individualQ-function is entirely local, each
agent is allowed to choose its own representation, for example, using a function approximator as in
Guestrin et al. (2002b).

The advantage of this method is that it is completely distributed. Each agent keeps a localQ-
function and only has to exchange messages with its neighbors in the graph inorder to compute
the globalQ-values. In sparsely connected graphs, this results in large computational savings since
it is not necessary to consider the complete joint action-space. However,the algorithm is still
slow for densely connected graphs because of two main reasons. First,the size of each localQ-
function grows exponentially with the number of neighbors of the corresponding agent. Secondly,
the computational complexity of the VE algorithm is exponential in the induced widthof the graph,
as shown in Section 3.2.

4.5 Distributed Value Functions

Another method to decompose a large action space is the distributed value functions (DVF) ap-
proach (Schneider et al., 1999). Each agent maintains an individual local Q-function, Qi(si ,ai),
based on its individual action and updates it by incorporating theQ-functions of its neighboring
agents. A weight functionf (i, j) determines how much theQ-value of an agentj contributes to the
update of theQ-value of agenti. This function defines a graph structure of agent dependencies, in
which an edge is added between agentsi and j if the corresponding functionf (i, j) is non-zero. The
update looks as follows:

Qi(si ,ai) := (1−α)Qi(si ,ai)+α[Ri(s,a)+ γ ∑
j∈{i∪Γ(i)}

f (i, j)max
a′j

Q j(s′,a′j)]. (14)

Note thatf (i, i) also has to be defined and specifies the agent’s contribution to the current estimate.
A common approach is to weigh each neighboring function equally,f (i, j) = 1/|i ∪ Γ( j)|. Each
Q-function of an agenti is thus divided proportionally over its neighbors and itself. This method
scales linearly in the number of agents.

5. Sparse Cooperative Q-Learning

In this section, we describe our Sparse CooperativeQ-learning, or SparseQ, methods which also
approximate the globalQ-function into a linear combination of localQ-functions. The decompo-
sition is based on the structure of a CG which is chosen beforehand. In principle we can select
any arbitrary CG, but in general a CG based on the problem under studyis used. For a given CG,
we investigate both a decomposition in terms of the nodes (or agents), as well as the edges. In the
agent-based decomposition the local function of an agent is based on its own action and those of its
neighboring agents. In the edge-based decomposition each local function is based on the actions of
the two agents it is connected to. In order to update a local function, the keyidea is to base the up-
date not on the difference between the current globalQ-value and the experienced global discounted
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(a) Agent-based decomposition.
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(b) Edge-based decomposition.

Figure 7: An agent-based and edge-based decomposition of the globalQ-function for a 4-agent
problem.

return, but rather on the current localQ-value and thelocal contributionof this agent to the global
return.

Next, we describe an agent-based decomposition of the globalQ-function and explain how the
local contribution of an agent is used in the update step. Thereafter, we describe an edge-based
decomposition, and a related edge-based and agent-based update method.

5.1 Agent-Based Decomposition4

As in Guestrin et al. (2002b) we decompose the globalQ-function over the different agents. Every
agenti is associated with a localQ-function Qi(si ,ai) which only depends on a subset of all pos-
sible state and action variables. These dependencies are specified beforehand and depend on the
problem. TheQi-functions correspond to a CG which is constructed by connecting each agent with
all agents in which its action variable is involved. See Fig. 7(a) for an exampleof an agent-based
decomposition for a 4-agent problem.

Since the globalQ-function equals the sum of the localQ-functions of alln agents,Q(s,a) =

∑n
i=1Qi(si ,ai), it is possible to rewrite theQ-learning update rule in (10) as

n

∑
i=1

Qi(si ,ai) :=
n

∑
i=1

Qi(si ,ai)+α
[

n

∑
i=1

Ri(s,a)+ γmax
a′

Q(s′,a′)−
n

∑
i=1

Qi(si ,ai)
]

. (15)

Only the expected discounted return, maxa′ Q(s′,a′), cannot be directly written as the sum of local
terms since it depends on theglobally maximizing joint action. However, we can use the VE al-
gorithm to compute, in a distributed manner, the maximizing joint actiona∗ = argmaxa′ Q(s′,a′)
in states′, and from this compute the local contributionQi(s′i ,a

∗
i ) of each agent to the total action

valueQ(s′,a∗). Note that the local contribution of an agent to the global action value might belower
than the maximizing value of its localQ-function because it is unaware of the dependencies of its
neighboring agents with the other agents in the CG. Since we can substitute maxa′ Q(s′,a′) with
∑n

i=1Qi(s′,a∗i ), we are able to decompose all terms in (15) and rewrite the update for each agent i
separately:

Qi(si ,ai) := Qi(si ,ai)+α[Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)]. (16)

4Subsection 5.1 is based on (Kok and Vlassis, 2004).
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This update is completely based on local terms and only requires the distributedVE algorithm to
compute the maximizing joint actiona∗. In contrast to CoordRL, we directly take advantage of the
local rewards received by the different agents. Especially for larger problems with many agents, this
allows us to propagate back the reward to the local functions related to the agents responsible for
the generated rewards. This is not possible in CoordRL which uses the global reward to update the
different local functions. As a consequence, the agents are not ableto distinguish which agents are
responsible for the received reward, and all functions, including the ones which are not related to
the received reward, are updated equally. It might even be the case that the high reward generated
by one agent, or a group of agents, is counterbalanced by the negativereward of another agent. In
this case, the combined global reward equals zero and no functions are updated.

Just as the coordinated RL approach, both the representation of the local Qi-functions and the
VE algorithm grow exponentially with the number of neighbors. This becomes problematic for
densely connected graphs, and therefore we also investigate an edge-based decomposition of the
Q-function which does not suffer from this problem in the next section.

5.2 Edge-Based Decomposition

A different method to decompose the globalQ-function is to define it in terms of the edges of the
corresponding CG. Contrary to the agent-based decomposition, which scales exponentially with the
number of neighbors in the graph, the edge-based decomposition scales linearly in the number of
neighbors. For a coordination graphG= (V,E) with |V| vertices and|E| edges, each edge(i, j)∈ E
corresponds to a localQ-function Qi j , and the sum of all localQ-functions defines the globalQ-
function:

Q(s,a) = ∑
(i, j)∈E

Qi j (si j ,ai ,a j), (17)

wheresi j ⊆ si ∪s j is the subset of the state variables related to agenti and agentj which are relevant
for their dependency. Note that each localQ-function Qi j always depends on the actions of two
agents,ai anda j , only. Fig. 7(b) shows an example of an edge-based decomposition for a4-agent
problem.

An important consequence of this decomposition is that it only depends on pairwise functions.
This allows us to directly apply the max-plus algorithm from Section 3 to compute themaximizing
joint action. Now, both the decomposition of the action-value function and the method for action
selection scale linearly in the number of dependencies, resulting in an approach that can be applied
to large agent networks with many dependencies.

In order to update a localQ-function, we have to propagate back the reward received by the
individual agents. This is complicated by the fact that the rewards are received per agent, while the
localQ-functions are defined over the edges. For an agent with multiple neighbors it is therefore not
possible to derive which dependency generated (parts of) the reward. Our approach is to associate
each agent with a localQ-functionQi that is directly computed from the edge-basedQ-functionsQi j .
This allows us to relate the received reward of an agent directly to its agent-basedQ-functionQi .
In order to computeQi , we assume that each edge-basedQ-function contributes equally to the two
agents that form the edge. Then, the localQ-functionQi of agenti is defined as the summation of
half the value of all localQ-functionsQi j of agenti and its neighborsj ∈ Γ(i), that is,

Qi(si ,ai) =
1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j). (18)
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Figure 8: A graphical representation of the edge-based and agent-based update method after the
transition from states to s′. See the text for a detailed description.

The sum of all localQ-functionsQi equalsQ in (17). Next, we describe two update methods for the
edge-based decomposition defined in terms of these local agent-basedQ-functions.

5.2.1 EDGE-BASED UPDATE

The first update method we consider updates each localQ-functionQi j based on its current estimate
and its contribution to the maximal return in the next state. For this, we rewrite (16) by replacing
every instance ofQi with its definition in (18) to

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j) :=
1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j)+

α

[

∑
j∈Γ(i)

Ri(s,a)

|Γ(i)|
+ γ

1
2 ∑

j∈Γ(i)

Qi j (s′i j ,a
∗
i ,a

∗
j )−

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j)

]

. (19)

Note that in this decomposition for agenti we made the assumption that the rewardRi is divided
proportionally over its neighborsΓ(i). In order to get an update equation for an individual local
Q-function Qi j , we remove the sums. Because, one half of every localQ-function Qi j is updated
by agenti and the other half by agentj, agent j updates the localQ-function Qi j using a similar
decomposition as (19). Adding the two gives the following update equation for a single localQ-
functionQi j :

Qi j (si j ,ai ,a j) := Qi j (si j ,ai ,a j)+

α
[

Ri(s,a)

|Γ(i)|
+

Rj(s,a)

|Γ( j)|
+ γQi j (s′i j ,a

∗
i ,a

∗
j )−Qi j (si j ,ai ,a j)

]

. (20)

Each localQ-functionQi j is updated with a proportional part of the received reward of the two
agents it is related to and with the contribution of this edge to the maximizing joint actiona∗ =
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(a∗i ) = argmaxa′ Q(s′,a′) in the states′. The latter is computed by either applying the exact VE
algorithm or the approximate max-plus algorithm. We can also derive (20) from (10) directly using
(17). However, we want to emphasize that it is possible to derive this update rule from the agent-
based decomposition discussed in Section 5.1.

Fig. 8(a) shows a graphical representation of the update. The left part of the figure shows a
partial view of a CG in states. Only the agentsi and j, their connecting edge, which is related to a
local edge-basedQ-functionQi j , and some outgoing edges are depicted. The right part of the figure
shows the same structure for states′. Following (20), a localQ-function Qi j is directly updated
based on the received reward of the involved agents and the maximizing local Q-functionQi j in the
next state.

5.2.2 AGENT-BASED UPDATE

In the edge-based update method the reward is divided proportionally over the different edges of an
agent. All other terms are completely local and only correspond to the localQ-functionQi j of the
edge that is updated. A different approach is to first compute the temporal-difference errorper agent
and divide this value over the edges. For this, we first rewrite (16) for agenti using (18) to

1
2 ∑

j∈Γ(i)

Qi j (si j ,ai ,a j) :=

1
2 ∑

j∈Γ(i)

[Qi j (si j ,ai ,a j)]+α[Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)]. (21)

In order to transfer (21) into a local update function, we first rewrite thetemporal-difference error
as a summation of the neighbors of agenti, by

Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai) = ∑

j∈Γ(i)

Ri(s,a)+ γQi(s′i ,a
∗
i )−Qi(si ,ai)

|Γ(i)|
. (22)

Note that this summation only decomposes the temporal-difference error intoj equal parts, and
thus does not usej explicitly. Because now all summations are identical, we can decompose (21)
by removing the sums. Just as in the edge-based update, there are two agents which update the same
local Q-functionQi j . When we add the contributions of the two involved agentsi and j, we get the
local update equation

Qi j (si j ,ai ,a j) := Qi j (si j ,ai ,a j) + α ∑
k∈{i, j}

Rk(s,a)+ γQk(s′k,a
∗
k)−Qk(sk,ak)

|Γ(k)|
. (23)

This agent-based update rule propagates back the temporal-differenceerror from the two agents
which are related to the localQ-function of the edge that is updated, and incorporates the infor-
mation ofall edges of these agents. This is different from the edge-based update method which
directly propagates back the temporal-difference error related to the edge that is updated. This is
depicted in Fig. 8(b). Again, the left part of the figure represents the situation in states, and the
right part the situation in the next states′. The edge-basedQ-functionQi j is updated based on the
local agent-basedQ-functions of the two agents that form the edge. These functions are computed
by summing over the local edge-basedQ-functions of all neighboring edges.
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Next, we will describe several experiments and solve them using both the agent-based and the
edge-based decomposition. For the latter, we apply both the agent-based and edge-based update
method, and show the consequences, both in speed and solution quality, ofusing the max-plus
algorithm as an alternative to the VE algorithm.

6. Experiments

In this section, we describe experiments using the methods discussed in Section 4 and Section 5.
We give results on a large single-state problem and on a distributed sensornetwork problem, which
was part of the NIPS 2005 benchmarking workshop. We selected these problems because they are
both fully specified and, more importantly, require the selection of a specific combination of actions
at every time step. This is in contrast with other experiments in which coordination can be modeled
through the state variables, that is, each agent is able to select its optimal action based on only the
state variables (for example, its own and other agents’ positions) and doesnot have to model the
actions of the other agents (Tan, 1993; Guestrin et al., 2002b; Becker et al., 2003).

6.1 Experiments on Single-State Problems

Now, we describe several experiments in which a group ofn agents have to learn to take the optimal
joint action in a single-state problem. The agents repeatedly interact with their environment by
selecting a joint action. After the execution of a joint actiona, the episode is immediately ended
and the system provides each agent an individual rewardRi(a). The goal of the agents is to select
the joint actiona which maximizesR(a) = ∑n

i=1Ri(a). The local rewardRi received by an agenti
only depends on a subset of the actions of the other agents. These dependencies are modeled using a
graph in which each edge corresponds to a local reward function that assigns a valuer(ai ,a j) to each
possible action combination of the actions of agenti and agentj. Each local reward function is fixed
beforehand and contains one specific pair of actions,(ãi , ã j) that results in a high random reward,
uniformly distributed in the range[5,15], that is, 5+U ([0,10]). However, failure of coordination,
that is, selecting an actionr(ãi ,a j) with a j 6= ã j or r(ai , ã j) with ai 6= ãi , will always result in a
reward of 0. All remaining joint actions,r(ai ,a j) with ai 6= ãi anda j 6= ã j , give a default reward
from the uniform distributionU ([0,10]). The individual rewardRi for an agenti equals the sum of
the local rewards resulting from the interactions with its neighbors,Ri(a) = ∑ j∈Γ(i) r(ai ,a j). Fig. 9
shows an example of the construction of the individual reward receivedby an agent based on its
interaction with its four neighbors, together with an example reward functionr(ai ,a j) corresponding
to an edge between agenti and agentj.

The goal of the agents is to learn, based on the received individual rewards, to select a joint
action that maximizes the global reward. Although we assume that the agents know on which other
agents it depends, this goal is complicated by two factors. First, the outcome of a selected action
of an agent also depends on the actions of its neighbors. For example, theagents must coordinate
in order to select the joint action(ãi , ã j) which, in most cases, returns the highest reward. Failure
of coordination, however, results in a low reward. Secondly, becauseeach agent only receives an
individual reward, they are not able to derive which neighbor interaction caused which part of the
reward. An important difference with the problem specified in Section 3.2, inwhich the the agents
have to select a joint action that maximizes predefined payoff functions, is that in this case the payoff
relations themselves have to be learned based on the received rewards.
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(a) Construction of rewardR1(a).
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(b) Exampler(ai ,a j ) function.

Figure 9: Construction of the reward for agent 1 in the single-state problem. (a) The individual
rewardR1 is the sum of the rewardsr(a1,a j) generated by the interactions with its neigh-
bors j ∈ Γ(1) = {2,3,4,5}. (b) Exampler(ai ,a j) function.

We perform experiments with 12 agents, each able to perform 4 actions. The group as a whole
thus has 412 ≈ 1.7·107, or 17 million, different joint actions to choose from. We investigate reward
functions with different complexities, and apply the method described in Section 3.2 to randomly
generate 20 graphsG = (V,E) with |V| = 12 for each|E| ∈ {7,8, . . . ,30}. This results in 480
graphs, 20 graphs in each of the 24 groups. The agents of the simplest graphs (7 edges) have an
average degree of 1.16, while the most complex graphs (30 edges) have an average degree of 5.
Fig. 10 shows three different example graphs with different average degrees. Fig. 10(a) and (c)
depict respectively the minimum and maximal considered average degree, while Fig. 10(b) shows a
graph with an average degree of 2.

We apply the different variants of our sparse cooperativeQ-learning method described in Sec-
tion 5 and different existing multiagentQ-learning methods, discussed in Section 4, to this problem.
Since the problem consists of only a single state, allQ-learning methods storeQ-functions based
on actions only. Furthermore, we assume that the agents have access to a CG which for each agent
specifies on which other agents it depends. This CG is identical to the topology of the graph that
is used to generate the reward function. Apart from the differentQ-learning methods, we also ap-
ply an approach that selects a joint action uniformly at random and keeps track of the best joint
action found so far, and a method that enumerates all possible joint actions and stores the one with
the highest reward. To summarize, we now briefly review the main characteristics of all applied
methods:

Independent learners (IL) Each agenti stores a localQ-function Qi(ai) only depending on its
own action. Each update is performed using the private rewardRi according to (11). An agent
selects an action that maximizes its own localQ-functionQi .

Distributed value functions (DVF) Each agenti stores a localQ-function based on its own action,
and an update incorporates theQ-functions of its neighbors following (14). For stateless
problems, as the ones in this section, theQ-value of the next state is not used and this method
is identical to IL.
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(a) A graph with 7 edges (average
degree of 1.16).

(b) A graph with 12 edges (aver-
age degree of 2).

(c) A graph with 30 edges (aver-
age degree of 5.00).

Figure 10: Example graphs with 12 agents and different average degrees.

Coordinated reinforcement learning (CoordRL) Each agenti stores an individualQ-function
based on its own action and the actions of its neighborsj ∈ Γ(i). Each function is updated
based on theglobal temporal-difference error using the update equation in (13). This rep-
resentation scales exponentially with the number of neighbors. VE is used to determine the
optimal joint action which scales exponentially with the induced width of the graph.

Sparse cooperative Q-learning, agent-based (SparseQ agent) Each agent stores aQ-function that
is based on its own action and the actions of its neighborsj ∈ Γ(i). A function is updated
based on thelocal temporal-difference error following (16). The representation and compu-
tational complexity are similar to the CoordRL approach.

Sparse cooperative Q-learning, edge-based (SparseQ edge) Each edge in the used CG is associ-
ated with aQ-function based on the actions of the two connected agents. We apply both the
edge-basedupdate method (SparseQ edge, edge) from (20) which updates aQ-function based
on the value of the edge that is updated, and theagent-basedupdate method (SparseQ edge,
agent) from (23), which updates aQ-function based on the localQ-functions of the agents
forming the edge.

The two update methods are both executed with the VE algorithm and the anytime max-plus
algorithm in order to determine the optimal joint action, resulting in four different methods
in total. The max-plus algorithm generates a result when either the messages converge, the
best joint action has not improved for 5 iterations, or more than 20 iterations are performed.
The latter number of iterations is obtained by comparing the problem under study with the
coordination problem addressed in Section 3.2. Both problem sizes are similar, and as is
visible in Fig. 6 the coordination problem reaches a good performance after20 iterations.

Random method with memory Each iteration, each agent selects an action uniformly at random.
The resulting joint action is evaluated and compared to the best joint action found so far. The
best one is stored and selected.

Enumeration In order to compare the quality of the different methods, we compute the optimal
value by trying every possible joint action and store the one which results in the highest
reward. This requires an enumeration over all possible joint actions. Notethat this approach
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method (1,2] (2,3] (3,4] (4,5]

IL/DVF 48 48 48 48

edge-based 152 248 344 440

agent-based 528 2,112 8,448 33,792

Table 2: Average number ofQ-values needed for the different decompositions for graphs with an
average degree in(x−1,x].

does not perform any updates, and quickly becomes intractable for problems larger than the
one addressed here.

We do not apply the MDP learners approach since it would take too long to find a solution. First,
it requires an enumeration over 412(≈ 17 million) actions at every time step. Secondly, assuming
there is only one optimal joint action, the probability to actually find the optimal joint action is
negligible. An exploration action should be made (probabilityε), and this exploration action should
equal the optimal joint action (probability of1412).

Table 2 shows the average number ofQ-values required by each of the three types of decompo-
sitions. The numbers are based on the generated graphs and averagedover similarly shaped graphs.
Note the exponential growth in the agent-based decomposition that is used in both the CoordRL and
agent-based SparseQ approach.

We run each method on this problem for 15,000 learning cycles. Each learning cycle is directly
followed by a test cycle in which the reward related to the current greedy joint action is computed.
The values from the test cycles, thus without exploration, are used to compare the performance
between the different methods. For allQ-learning variants, theQ-values are initialized to zero and
the parameters are set toα = 0.2, ε = 0.2, andγ = 0.9.

Fig. 11 shows the timing results for all methods.5 Thex-axis depicts the average degree of the
graph. They-axis, shown in logarithmic scale, depicts the average number of seconds spent in the
15,000 learning cycles on graphs with a similar average degree. For the enumeration method it
represents the time for computing the reward of all joint actions.

The results show that the random and IL/DVF approach are the quickestand take less than a
second to complete. In the IL/DVF method each agent only stores functions based on its individual
action and is thus constant in the number of dependencies in the graph. Notethat the time increase
in the random approach for graphs with a higher average degree is caused by the fact that more local
reward functions have to be enumerated in order to compute the reward. This occurs in all methods,
but is especially visible in the curve of the random approach since for this method the small absolute
increase is relatively large with respect to its computation time.

The CoordRL and the agent-based SparseQ method scale exponentially withthe increase of
the average degree, both in their representation of the localQ-functions and the computation of
the optimal joint action using the VE algorithm. The curves of these methods overlap in Fig. 11.
Because these methods need a very long time, more than a day, to process graphs with a higher
average degree than 3, the results for graphs with more than 18 edges are not computed. The
edge-based decompositions do not suffer from the exponential growthin the representation of the

5All results are generated on an Intel Xeon 3.4GHz / 2GB machine using aC++ implementation.
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Figure 11: Timing results for the different methods applied to the single-state problems with 12
agents and an increasing number of edges. The results overlap for the CoordRL and the
agent-based SparseQ decomposition, and the two edge-based decompositions using the
VE algorithm.

localQ-functions. However, this approach still grows exponentially with an increase of the average
degree when the VE algorithm is used to compute the maximizing joint action. This holds for both
the agent-based and edge-based update method, which overlap in the graph. When the anytime max-
plus algorithm is applied to compute the joint action, both the representation of theQ-function and
the computation of the joint action scale linearly with an increasing average degree. The agent-based
update method is slightly slower than the edge-based update method because the first incorporates
the neighboringQ-functions in its update (23), and therefore the values in theQ-functions are less
distinct. As a consequence, the max-plus algorithm needs more iterations in anupdate step to find
the maximizing joint action.

Finally, the enumeration method shows a slight increase in the computation time with anin-
crease of the average degree because it has to sum over more local functions for the denser graphs
when computing the associated value. Note that the problem size was chosensuch that the enumer-
ation method was able to produce a result for all different graphs.

Fig. 12 shows the corresponding performance for the most relevant methods. Each figure depicts
the running average, of the last 10 cycles, of the obtained reward relative to the optimal reward for
the first 15,000 cycles. The optimal reward is determined using the enumeration method. Results
are grouped for graphs with a similar complexity, that is, having about the same number of edges
per graph.

Fig. 12(a) depicts the results for the simplest graphs with an average degree less than or equal
to 2. We do not show the results for the CoordRL approach since it is not able to learn a good policy
and quickly stabilize around 41% of the optimal value. This corresponds to a method in which
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(a) Average degree less than 2.
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(b) Average degree between 2 and 3.
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(c) Average degree between 3 and 4.
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(d) Average degree between 4 and 5.

Figure 12: Running average, of the last 10 cycles, of the received reward relative to the optimal
reward for different methods on the single-state, 12-agent problems. The legend of
Fig. 12(a) holds for all figures. See text for the problem description.

each agent selects a value uniformly at random each iteration. The CoordRL approach updates each
local Q-function with the global temporal-difference error. Therefore, the same global reward is
propagated to each of the individualQ-functions and the expected future discounted return, that is,
the sum of the localQ-functions, is overestimated. As a result theQ-values blow up, resulting in
random behavior.

The IL/DVF approach learns a reasonable solution, but it suffers from the fact that each agent
individually updates itsQ-value irrespective of the actions performed by its neighbors. Therefore,
the agents do not learn to coordinate and the policy keeps oscillating.

The random method keeps track of the best joint action found so far and slowly learns a better
policy. However, it learns slower than the different SparseQ methods. Note that this method does
not scale well to larger problems with more joint actions.

The agent-based SparseQ decomposition converges to an optimal policy since it stores aQ-
value for every action combination of its neighbors, and is able to detect the best performing action
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(b) Average degree between 2 and 3.
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(c) Average degree between 3 and 4.
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Figure 13: Running average of the received reward relative to the optimal reward for the different
edge-based methods, using either the VE or anytime max-plus algorithm, on the single-
state, 12-agent problem.

combination. However, this approach learns slower than the different edge-based decompositions
since it requires, as listed in Table 2, more samples to update the large number of Q-values. The two
edge-based decompositions using the anytime extension both learn a near-optimal solution. The
agent-based update method performs slightly better since it, indirectly, includes the neighboring
Q-values in its update.

As is seen in Fig. 12(b), the results are similar for the more complicated graphswith an average
degree between 2 and 3. Although not shown, the CoordRL learners are not able to learn a good
policy and quickly stabilizes around 44% of the optimal value. On the other hand, the agent-based
decomposition converges to the optimal policy. Although the final result is slightly worse compared
to the simpler graphs, the edge-based decompositions still learn near-optimalpolicies. The result of
the agent-based update method is better than the edge-based update method since the first includes
the neighboringQ-values in its update.
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method (1,2] (2,3] (3,4] (4,5]

Random with memory 0.9271 0.9144 0.9122 0.9104

IL 0.8696 0.8571 0.8474 0.8372

CoordRL 0.4113 0.4423 - -

SparseQ agent (VE) 1.0000 0.9983 - -

SparseQ edge, agent (VE) 0.9917 0.9841 0.9797 0.9765

SparseQ edge, edge (VE) 0.9843 0.9614 0.9416 0.9264

SparseQ edge, agent (anytime)0.9906 0.9815 0.9722 0.9648

SparseQ edge, edge (anytime)0.9856 0.9631 0.9419 0.9263

Table 3: Relative reward with respect to the optimal reward after 15,000 cycles for the different
methods and differently shaped graphs. Results are averaged over graphs with an average
degree in(x−1,x], as indicated by the column headers.

Similar results are also visible in Fig. 12(c) and Fig. 12(d). The agent-based decompositions are
not applied to these graphs. As was already visible in Fig. 11, the algorithm needs too much time to
process graphs of this complexity.

Fig. 13 compares the difference between using either the VE or the anytime max-plus algorithm
to compute the joint action for the SparseQ methods using an edge-based decomposition. Fig. 13(a)
and Fig. 13(b) show that the difference between the two approaches is negligible for the graphs with
an average degree less than 3. However, for the more complex graphs (Fig. 13(c) and Fig. 13(d))
there is a small performance gain when the VE algorithm is used for the agent-based update method.
The agent-based update method incorporates the neighboringQ-functions, and therefore the values
of theQ-functions are less distinct. As a result, the max-plus algorithm has more difficulty in finding
the optimal joint action. But note that, as was shown in Fig. 11, the VE algorithm requires substan-
tially more computation time for graphs of this complexity than the anytime max-plus algorithm.

Although all results seem to converge, it is difficult to specify in which cases the proposed algo-
rithms converge, and if so, whether they converge to an optimal solution. The difficulties arise from
the fact that the reinforcement-learning algorithms deal with a double optimization: the computa-
tion of the optimal joint action with the maximalQ-value, and the global (long-term) optimization
of the average discounted rewards. In this article we focus on the empirical results.

Table 3 gives an overview of all results and compares the value of the jointaction correspond-
ing to the learned strategy in cycle 15,000 for the different methods. Although the results slowly
decrease for the more complex reward functions, all SparseQ methods learn near-optimal poli-
cies. Furthermore, there is only a minimal difference between the methods that use the VE and
the anytime max-plus algorithm to compute the joint action. For the densely connected graphs, the
edge-based decompositions in combination with the max-plus algorithm are the only methods that
are able to compute a good solution. The algorithms using VE fail to produce a result because of
their inability to cope with the complexity of the underlying graph structure (see Section 3.2).
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6.2 Experiments on a Distributed Sensor Network

We also perform experiments on a distributed sensor network (DSN) problem. This problem is a
sequential decision-making variant of the distributed constraint optimization problem described by
Ali et al. (2005), and was part of the NIPS 2005 benchmarking workshop.6

The DSN problem consists of two parallel chains of an arbitrary, but equal, number of sensors.
The area between the sensors is divided into cells. Each cell is surrounded by exactly four sensors
and can be occupied by a target. See Fig. 14(a) for a configuration with eight sensors and two targets.
With equal probability a target moves to the cell on its left, to the cell on its right, orremains on its
current position. Actions that move a target to an illegal position, that is, an occupied cell or a cell
outside the grid, are not executed.

Each sensor is able to perform three actions: focus on a target in the cellto its immediate left,
to its immediate right, or don’t focus at all. Every focus action has a small costmodeled as a reward
of −1. When in one time step at least three of the four surrounding sensors focus on a target, it
is ‘hit’. Each target starts with a default energy level of three. Each time a target is hit its energy
level is decreased by one. When it reaches zero the target is capturedand removed, and the three
sensors involved in the capture each receive a reward of+10. In case four sensors are involved in a
capture, only the three sensors with the highest index receive the reward. An episode finishes when
all targets are captured.

As in the NIPS-05 benchmarking event, we will concentrate on a problem witheight sensors
and two targets. This configuration results in 38 = 6,561 joint actions and 37 distinct states, that is,
9 states for each of the 3 configurations with 2 targets, 9 for those with one target, and 1 for those
without any targets. This problem thus has a large action space compared toits state space. When
acting optimally, the sensors are able to capture both targets in three steps, resulting in a cumulative
reward of 42. However, in order to learn this policy based on the received rewards, the agents have
to cope with the delayed reward and learn how to coordinate their actions such that multiple targets
are hit simultaneously.

In our experiments we generate all statistics using the benchmark implementation,with the
following two differences. First, because the NIPS-05 implementation of the DSN problem only
returns the global reward, we change the environment to return the individual rewards in order to
comply to our model specification. Second, we set the fixed seed of the random number generator
to a variable seed base on the current time in order to be able to perform varying runs.

We apply the different techniques described in Section 4 and Section 5 to the DSN problem.
We do not apply the CoordRL approach, since, just as in the experiments inSection 6.1, it propa-
gates back too much reward causing the individualQ-functions to blow up. However, we do apply
the MDP learners approach which updates aQ-function based on the full joint action space. All
applied methods learn for 10,000 episodes which are divided into 200 episode blocks, each con-
sisting of 50 episodes. The following statistics are computed at the end of each episode block: the
average reward, that is, the undiscounted sum of rewards divided bythe number of episodes in an
episode block, the cumulative average reward of all previous episode blocks, and the wall-clock
time. There is no distinction between learning and testing cycles, and the received reward thus
includes exploration actions. TheQ-learning methods all use the following parameters:α = 0.2,
ε = 0.2, andγ = 0.9, and start with zero-valuedQ-values. We assume that both the DVF and the

6Seehttp://www.cs.rutgers.edu/∼mlittman/topics/nips05-mdp/ for a detailed description of the bench-
marking event andhttp://rlai.cs.ualberta.ca/RLBB/ for the used RL-framework.
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(a) Network configuration. (b) Network with corresponding CG.

Figure 14: Fig. 14(a) shows an example sensor network with eight sensors (
N

) and two targets (•).
Fig. 14(b) shows the corresponding CG representing the agent dependencies. The graph
has an average degree of 4, and an induced width of 3.

different SparseQ variants have access to a CG which specifies for each agent on which other agents
it depends. This CG is shown in Fig. 14(b), and has an average degreeof 4.

The results, averaged over 10 runs with different random seeds, for the different techniques are
shown in Fig. 15. The results contain exploration actions and are thereforenot completely stable.
For this reason, we show the running average over the last 10 episode blocks. Fig. 15(a) shows the
average reward for the different approaches. The optimal policy is manually implemented and, in
order to have a fair comparison with the other approaches, also includes random exploration actions
with probabilityε. It results in an average reward just below 40. The MDP approach settles to an
average reward around 17 after a few episodes. Although this value is low compared to the result of
the optimal policy, the MDP approach, as seen in Fig. 15(b), does learn to capture the targets in a
small number of steps. From this we conclude that the low reward is mainly a result of unnecessary
focus actions performed by the agents that are not involved in the actual capture. The MDP approach
thus discovers one of the many possible joint actions that results in a captureof the target and the
generation of a positive reward, and then exploits this strategy. However, the found joint action is
non-optimal since one or more agents do not have to focus in order to capture the target. Because of
the large action space and the delayed reward, it takes the MDP approachmuch more than 10,000
episodes to learn that other joint actions result in a higher reward.

Although the DVF approach performs better than IL, both methods do not converge to a stable
policy and keep oscillating. This is caused by the fact that both approaches store action values
based on individual actions and therefore fail to select coordinated joint actions which are needed
to capture the targets.

In the different SparseQ variants each agent stores and updates local Q-values. Since these are
also based on the agent’s neighbors in the graph, the agents are able to learn coordinated actions.
Furthermore, the explicit coordination results in much more stable policies than the IL and DVF
approach. The agent-based decomposition produces a slightly lower average reward than the edge-
based decompositions, but, as shown in Fig. 15(b), it needs less steps to capture the targets. Identical
to the MDP approach, the lower reward obtained by the agent-based decomposition is a consequence
of the large action space involved in each local term. As a result the agents are able to quickly
learn a good policy that captures the targets in a few steps, but it takes a long time to converge
to a joint action that does not involve the unnecessary focus actions of some of the agents. For
example, each of the four agents in the middle of the DSN coordinates with 5 other agents, and
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(a) Average reward.
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(b) Average number of steps.
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(c) Cumulative average reward.
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(d) Cumulative time.

Figure 15: Different results on the DSN problem, averaged over 10 runs. One run consists of 200
episode blocks, each corresponding to 50 learning episodes.

each of them thus stores aQ-function defined over 36 = 729 actions per state. Because in the agent-
based decomposition the full action space is decomposed into different independent local action
values, it does result in a better performance than the MDP learners, bothin the obtained average
reward and the number of steps needed to capture the targets. With respect to the two edge-based
decompositions, the edge-based update method generates a slightly higher reward, and a more stable
behavior than the agent-based update method. Although in both cases the difference between the
two methods is minimal, this result is different compared to the stateless problems described in
Section 6.1 in which the agent-based update method performed better. The effectiveness of each
approach thus depends on the type of problem. We believe that the agent-based update method has
its advantages for problems with fine-grained agent interactions since it combines all neighbors in
the update of theQ-value.

Fig. 15(c) shows the cumulative average reward of the different methods. Ignoring the manual
policy, the edge-based update methods result in the highest cumulative average reward. This is also
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method reward steps method reward steps

Optimal 38.454 3.752 SparseQ edge, edge (anytime)27.692 8.795

MDP 19.061 7.071 SparseQ edge, edge (VE) 28.880 8.113

DVF 16.962 22.437 SparseQ agent (VE) 24.844 6.378

IL 6.025 31.131 SparseQ edge, agent (VE) 25.767 8.413

SparseQ edge, agent (anytime)23.738 8.930

Table 4: Average reward and average number of steps per episode over the last 2 episode blocks
(100 episodes) for the DSN problem. Results are averaged over 10 runs.

seen in Table 4 which shows the reward and the number of steps per episode averaged over the
last 2 episode blocks, that is, 100 episodes, for the different methods.Since the goal of the agents
is to optimize the received average reward, the SparseQ methods outperform the other learning
methods. However, none of the variants converge to the optimal policy. Oneof the main reasons is
the large number of dependencies between the agents. This requires a choice between an approach
that models many of the dependencies but learns slowly because of the exploration of a large action
space, for example, the agent-based SparseQ or the MDP learners, oran approach that ignores some
of the dependencies but is able to learn an approximate solution quickly. Thelatter is the approach
taken by the edge-based SparseQ variants: it models pairwise dependencies even though it requires
three agents to capture a target.

Fig. 15(d) gives the timing results for the different methods. The IL and DVF methods are the
fastest methods since they only store and update individualQ-values. The agent-based SparseQ
method is by far the slowest. This method stores aQ-function based on all action combinations of
an agent and its neighbors in the CG. This slows down the VE algorithm considerably since it has
to maximize over a large number of possible joint action combinations in every local maximization
step.

Finally, Fig. 16 compares the difference between using the VE or the anytime max-plus algo-
rithm to compute the joint action for the SparseQ methods using an edge-baseddecomposition.
Fig. 16(a) shows that there is no significant difference in the obtained reward for these two meth-
ods. Fig. 16(b) shows that the edge-based SparseQ variants that usethe anytime max-plus algorithm
need less computation time than those using the VE algorithm. However, the differences are not that
evident as in the experiments from Section 6.1 because the used CG has a relative simple structure
(it has an induced width of 3), and VE is able to quickly find a solution when iteratively eliminating
the nodes with the smallest degree.

7. Conclusion and Future Directions

In this article we addressed the problem of learning how to coordinate the behavior of a large group
of agents. First, we described a payoff propagation algorithm (max-plus) that can be used as an
alternative to variable elimination (VE) for finding the optimal joint action in a coordination graph
(CG) with predefined payoff functions. VE is an exact method that will always report the joint
action that maximizes the global payoff, but it is slow for densely connectedgraphs with cycles
because its worst-case complexity is exponential in the number of agents. Furthermore, this method
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Figure 16: Results of the edge-based decomposition methods on the DSN problem, averaged
over 10 runs. One run consists of 200 episode blocks, each corresponding to 50 learning
episodes.

is only able to report a solution after the complete algorithm has ended. The max-plus algorithm,
analogous to the belief propagation algorithm in Bayesian networks, operates by repeatedly sending
local payoff messages over the edges in the CG. By performing a local computation based on its
incoming messages, each agent is able to select its individual action. For tree-structured graphs,
this approach results in the optimal joint action. For large, highly connected graphs with cycles, we
provided empirical evidence that this method can find near-optimal solutions exponentially faster
than VE. Another advantage of the max-plus algorithm is that it can be implementedfully distributed
using asynchronous and parallel message passing.

Second, we concentrated on model-free reinforcement-learning approaches to learn the coor-
dinated behavior of the agents in a collaborative multiagent system. In our Sparse Cooperative
Q-learning (SparseQ) methods, we approximate the globalQ-function using a CG representing the
coordination requirements of the system. We analyzed two possible decompositions, one in terms
of the nodes and one in terms of the edges of the graph. During learning, each localQ-function is
updated based on its contribution to the maximal global payoff found with eitherthe VE or max-
plus algorithm. Effectively, each agent learns its part of the global solution by only coordinating
with the agents on which it depends. Results on both a single-state problem with12 agents and
more than 17 million actions, and a distributed sensor network problem show that our SparseQ vari-
ants outperform other existing multiagentQ-learning methods. The combination of the edge-based
decomposition and the max-plus algorithm results in a method which scales only linearly in the
number of dependencies of the problem. Furthermore, it can be implemented fully distributed and
only requires that each agent is able to communicate with its neighbors in the graph. When com-
munication is restricted, it is still possible to run the algorithm when additional common knowledge
assumptions are made.

There are several directions for future work. First of all, we are interested in comparing dif-
ferent approximation alternatives from the Bayesian networks or constraint processing literature
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to our max-plus algorithm. A natural extension is to consider factor graph representations of the
problem structure (Kschischang et al., 2001), allowing more prior knowledge about the problem to
be introduced beforehand. Another possible direction involves the ‘mini-bucket’ approach, an ap-
proximation in which the VE algorithm is simplified by changing the full maximization foreach
elimination of an agent to the summation of simpler local maximizations (Dechter and Rish, 1997).
A different alternative for the VE algorithm is the usage of constraint propagation algorithms for
finding the optimal joint action (Modi et al., 2005). Another interesting issue isrelated to theQ-
updates of the edge-based decomposition of the SparseQ reinforcement-learning method. Now we
assume that the received reward of an agent is divided proportionally over its edges (see (20) and
(23)), but other schemes may also be possible. Furthermore, we like to apply our method to prob-
lems in which the topology of the CG differs per state, for example, when agents are dynamically
added or removed from the system, or dependencies between the agents change based on the current
situation (Guestrin et al., 2002c). Since allQ-functions and updates are defined locally, it is possible
to compensate the addition or removal of an agent by redefining only theQ-functions in which this
agent is involved. The max-plus algorithm and the local updates do not have to be changed as long
as the neighboring agents are aware of the new topology of the CG.

Acknowledgments

We would like to thank Carlos Guestrin and Ron Parr for providing ample feedback to this work.
Furthermore, we like to thank all three reviewers for their detailed and constructive comments. This
research is supported by PROGRESS, the embedded systems research program of the Dutch orga-
nization for Scientific Research NWO, the Dutch Ministry of Economic Affairsand the Technology
Foundation STW, project AES 5414.

References

S. Muhammad Ali, S. Koenig, and M. Tambe. Preprocessing techniques foraccelerating the DCOP
algorithm ADOPT. InProceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 1041–1048, Utrecht, The Netherlands, 2005.

T. Arai, E. Pagello, and L. E. Parker. Editorial: Advances in multi-robot systems.IEEE Transactions
on Robotics and Automation, 18(5):665–661, 2002.

R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-independent decentralized
Markov decision processes. InProceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Melbourne, Australia, 2003.

D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control of
Markov decision processes. InProceedings of Uncertainty in Artificial Intelligence (UAI), Stan-
ford, CA, 2000.
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Abstract
Consider the problem of joint parameter estimation and prediction in a Markov random field: that
is, the model parameters are estimated on the basis of an initial set of data, and then the fitted model
is used to perform prediction (e.g., smoothing, denoising, interpolation) on a new noisy observa-
tion. Working under the restriction of limited computation, we analyze a joint method in which the
same convex variational relaxation is used to construct an M-estimator for fitting parameters, and
to perform approximate marginalization for the prediction step. The key result of this paper is that
in the computation-limited setting, using an inconsistent parameter estimator (i.e., an estimator that
returns the “wrong” model even in the infinite data limit) is provably beneficial, since the resulting
errors can partially compensate for errors made by using an approximate prediction technique. En
route to this result, we analyze the asymptotic properties of M-estimators based on convex varia-
tional relaxations, and establish a Lipschitz stability property that holds for a broad class of convex
variational methods. This stability result provides additional incentive, apart from the obvious
benefit of unique global optima, for using message-passing methods based on convex variational
relaxations. We show that joint estimation/prediction based on the reweighted sum-product algo-
rithm substantially outperforms a commonly used heuristic based on ordinary sum-product.

Keywords: graphical model, Markov random field, belief propagation, variational method, pa-
rameter estimation, prediction error, algorithmic stability

1. Introduction

Graphical models such as Markov random fields (MRFs) are widely used in many application do-
mains, including machine learning, natural language processing, statistical signal processing, and
communication theory. A fundamental limitation to their practical use is the difficulty associated
with computing various statistical quantities (e.g., marginals, data likelihoods etc.); such quantities
are of interest both Bayesian and frequentist settings. Sampling-based methods, especially those
of the Markov chain Monte Carlo (MCMC) variety (Liu, 2001; Robert and Casella, 1999), repre-
sent one approach to obtaining stochastic approximations to marginals and likelihoods. A possible
disadvantage of sampling methods is their relatively high computational cost. It is thus of consider-
able interest for various application domains to consider less computationally intensive methods for
generating approximations to marginals, log likelihoods, and other relevant statistical quantities.

Variational methods are one class of techniques that can be used to At the foundation of these
methods is the fact that for a broad class of MRFs, the computation of the log likelihood and

c©2006 Martin J. Wainwright.
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marginal probabilities can be reformulated as a convex optimization problem; see Yedidia (2001)
or Wainwright and Jordan (2003) for overviews. Although this optimization problem is intractable
to solve exactly for general MRFs, it suggests a principled route to obtaining approximations—
namely, by relaxing the original optimization problem, and taking the optimal solutions to the re-
laxed problem as approximations to the exact values. In many cases, optimization of the relaxed
problem can be carried out by “message-passing” algorithms, in which neighboring nodes in the
Markov random field convey statistical information (e.g., likelihoods) by passing functions or vec-
tors (referred to as messages). Well-known examples of such variational methods include mean field
algorithms, the belief propagation or sum-product algorithm, as well as various extensions including
generalized belief propagation and expectation propagation.

Estimating the parameters of a Markov random field from data poses another significant chal-
lenge. A direct approach—for instance, via (regularized) maximum likelihood estimation—entails
evaluating the cumulant generating (or log partition) function, which is computationally intractable
for general Markov random fields. One viable option is the pseudolikelihood method (Besag, 1975,
1977), which can be shown to produce consistent parameter estimates under suitable assumptions,
though with an associated loss of statistical efficiency. Other researchers have studied algorithms for
ML estimation based on stochastic approximation (Younes, 1988; Benveniste et al., 1990), which
again are consistent under appropriate assumptions, but can be slow to converge.

1.1 Overview

As illustrated in Figure 1, the problem domain of interest in this paper is that of joint estimation and
prediction in a Markov random field. More precisely, given samples {X 1, . . . ,Xn} from some un-
known underlying model p( · ;θ∗), the first step is to form an estimate of the model parameters. Now
suppose that we are given a noisy observation of a new sample path Z ∼ p( · ;θ∗), and that we wish
to form a (near)-optimal estimate of Z using the fitted model, and the noisy observation (denoted Y ).
Examples of such prediction problems include signal denoising, interpolation of missing data, and
sentence parsing. Disregarding any issues of computational cost and speed, one could proceed via
Route A in Figure 1—that is, one could envisage first using a standard technique (e.g., regularized
maximum likelihood) for parameter estimation, and then carrying out the prediction step (which
might, for instance, involve computing certain marginal probabilities) by Monte Carlo methods.

This paper, in contrast, is concerned with the computation-limited setting, in which both sam-
pling or brute force methods are overly intensive. With this motivation, a number of researchers
have studied the use of approximate message-passing techniques, both for problems of predic-
tion (Heskes et al., 2003; Ihler et al., 2005; Minka, 2001; Mooij and Kappen, 2005b; Tatikonda,
2003; Wainwright et al., 2003a; Wiegerinck, 2005; Yedidia et al., 2005) as well as for parameter
estimation (Leisink and Kappen, 2000; Sutton and McCallum, 2005; Teh and Welling, 2003; Wain-
wright et al., 2003b). However, despite their wide-spread use, the theoretical understanding of such
message-passing techniques remains limited1, especially for parameter estimation. Consequently,
it is of considerable interest to characterize and quantify the loss in performance incurred by using
computationally tractable methods versus exact methods (i.e., Route B versus A in Figure 1). More

1. The behavior of sum-product is relatively well understood in certain settings, including graphs with single cy-
cles (Weiss, 2000), Gaussian models (Freeman and Weiss, 2001; Rusmevichientong and Roy, 2000) and Ising mod-
els (Tatikonda and Jordan, 2002; Ihler et al., 2005; Mooij and Kappen, 2005a). Similarly, there has been substantial
progress for graphs with high girth (Richardson and Urbanke, 2001), but much of this analysis breaks down in appli-
cation to graphs with short cycles.
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specifically, our analysis applies to variational methods that are based on convex relaxations. This
class includes a number of existing methods—among them the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2005), reweighted forms of generalized belief propagation (Wiegerinck,
2005), and semidefinite relaxations (Wainwright and Jordan, 2005). Moreover, it is possible to
modify other variational methods—for instance, expectation propagation (Minka, 2001)—so as to
“convexify” them.

APPROXIMATE  PARAMETER
          ESTIMATION

        ESTIMATION
OPTIMAL PARAMETER

APPROXIMATE
PREDICTION

OPTIMAL
PREDICTION

DATA SOURCE

PREDICTION  

PREDICTION  
ROUTE A

ROUTE B

NEW OBSERVATIONS

PSfrag replacements

{X i}

θ̂

θ∗ ẑopt(Y ;θ∗)

ẑapp(Y ; θ̂)

Y Error: ‖ẑopt(Y ;θ∗)− ẑapp(Y ; θ̂)‖

Figure 1: Route A: computationally intractable combination of parameter estimation and predic-
tion. Route B: computationally efficient combination of approximate parameter estima-
tion and prediction.

1.2 Our Contributions

At a high level, the key idea of this paper is the following: given that approximate methods can lead
to errors at both the estimation and prediction phases, it is natural to speculate that these sources
of error might be arranged to partially cancel one another. The theoretical analysis of this paper
confirms this intuition: we show that with respect to end-to-end performance, it is in fact beneficial,
even in the infinite data limit, to learn the “wrong” the model by using inconsistent methods for
parameter estimation. En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability property that holds for
a broad class of variational methods. Such global algorithmic stability is a fundamental concern
given statistical models imperfectly estimated from limited data, or for applications in which “er-
rors” may be introduced into message-passing (e.g., due to quantization or other forms of communi-
cation constraints in sensor networks). Thus, our global stability result provides further theoretical
justification—apart from the obvious benefit of unique global optima—for using message-passing
methods based on convex variational relaxations. Finally, we provide some empirical results to
show that joint estimation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.

The remainder of this paper is organized as follows. Section 2 provides background on Markov
random fields. In Section 3, we introduce background on variational representations, including the
notion of a convex surrogate to the cumulant generating function, and then illustrate this notion via
the tree-reweighted Bethe approximation (Wainwright et al., 2005). In Section 4, we describe how
any convex surrogate defines a particular joint scheme for parameter estimation and prediction. Sec-
tion 5 provides results on the asymptotic behavior of the estimation step, as well as the stability of
the prediction step. Section 6 is devoted to the derivation of performance bounds for joint estimation
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and prediction methods, with particular emphasis on the mixture-of-Gaussians observation model.
In Section 7, we provide experimental results on the performance of a joint estimation/prediction
method based on the tree-reweighted Bethe surrogate, and compare it to a heuristic method based on
the ordinary belief propagation algorithm. We conclude in Section 8 with a summary and discussion
of directions for future work.

2. Background

We begin with background on Markov random fields. Consider an undirected graph G = (V,E),
consisting of a set of vertices V = {1, . . . ,N} and an edge set E. We associate to each vertex s ∈V
a multinomial random variable Xs taking values in the set Xs = {0,1, . . . ,m−1}. We use the lower
case letter xs to denote particular realizations of the random variable Xs in the set Xs. This paper
makes use of the following exponential representation of a pairwise Markov random field over the
multinomial random vector X := {Xs, s ∈V}. We begin by defining, for each j = 1, . . . ,m−1, the
{0,1}-valued indicator function

I j[xs] :=

{
1 if xs = j

0 otherwise
(1)

These indicator functions can be used to define a potential function θs(·) : Xs→ R via

θs(xs) :=
m−1

∑
j=1

θs; jI j[xs] (2)

where θs = {θs; j, j = 1, . . . ,m− 1} is the vector of exponential parameters associated with the po-
tential. Our exclusion of the index j = 0 is deliberate, so as to ensure that the collection of indicator
functions φs(xs) := {I j[xs], j = 1, . . . ,m−1} remain affinely independent. In a similar fashion, we
define for any pair (s, t) ∈ E the pairwise potential function

θst(xs,xt) :=
m−1

∑
j=1

m−1

∑
k=1

θst; jkI j[xs] I k[xt ],

where we use θst := {θst; jk, j,k = 1,2, . . . ,m−1} to denote the associated collection of exponential
parameters, and φst(xs,xt) := {I j[xs]I k[xs], j,k = 1,2, . . . ,m−1} for the associated set of sufficient
statistics.

Overall, the probability mass function of the multinomial Markov random field in exponential
form can be written as

p(x ; θ) = exp
{

∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)−A(θ)
}
. (3)

Here the function

A(θ) := log
[

∑
x∈X N

exp
{

∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}]

(4)

is the logarithm of the normalizing constant associated with p(· ; θ).

1832



ESTIMATING THE “WRONG” GRAPHICAL MODEL

The collection of distributions thus defined can be viewed as a regular and minimal exponential
family (Brown, 1986). In particular, the exponential parameter θ and the vector of sufficient statis-
tics φ are formed by concatenating the exponential parameters (respectively indicator functions)
associated with each vertex and edge—viz.

θ = {θs,s ∈V}∪{θst , (s, t) ∈ E}
φ(x) = {φs(xs),s ∈V}∪{φst(xs,xt), (s, t) ∈ E}

This notation allows us to write Equation (3) more compactly as p(x ; θ) = exp{〈θ, φ(x)〉−A(θ)}.
A quick calculation shows that θ ∈ R

d , where d = N(m−1)+ |E|(m−1)2 is the dimension of this
exponential family.

The following properties of A are well-known:

Lemma 1 (a) The function A is convex, and strictly so when the sufficient statistics are affinely
independent.
(b) It is an infinitely differentiable function, with derivatives corresponding to cumulants. In partic-
ular, for any indices α,β ∈ {1, . . . ,d}, we have

∂A
∂θα

= Eθ[φα(X)],
∂2A

∂θα ∂θβ
= covθ{φα(X), φβ(X)},

where Eθ and covθ denote the expectation and covariance respectively.

We use µ ∈ R
d to denote the vector of mean parameters defined element-wise by µα = Eθ[φα(X)]

for any α ∈ {1, . . . ,d}. A convenient property of the sufficient statistics φ defined in Equations (1)
and (2) is that these mean parameters correspond to marginal probabilities. For instance, when
α = (s; j) or α = (st; jk), we have respectively

µs; j = Eθ[I j[xs]] = p(Xs = j ; θ), and (5a)

µst; jk = Eθ
{
I j[xs]I k[xt ]

}
= p(Xs = j,Xt = k ; θ). (5b)

3. Construction of Convex Surrogates

This section is devoted to a systematic procedure for constructing convex functions that represent
approximations to the cumulant generating function. We begin with a quick development of an
exact variational principle, one which is intractable to solve in general cases; see the papers (Pietra
et al., 1997; Wainwright and Jordan, 2005) for further details. Nonetheless, this exact variational
principle is useful, in that various natural relaxations of the optimization problem can be used to
define convex surrogates to the cumulant generating function. After a high-level description of
such constructions in general, we then illustrate it more concretely with the particular case of the
“convexified” Bethe entropy (Wainwright et al., 2005).

3.1 Exact Variational Representation

Since A is a convex and continuous function (see Lemma 1), the theory of convex duality (Rock-
afellar, 1970) guarantees that it has a variational representation, given in terms of its conjugate dual
function A∗ : R

d → R∪{+∞}, of the following form

A(θ) = sup
µ∈Rd

{
θT µ−A∗(µ)

}
.
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In order to make effective use of this variational representation, it remains determine the form of
the dual function. A useful fact is that the exponential family (3) arises naturally as the solution of
an entropy maximization problem. In particular, consider the set of linear constraints

Ep[φ(X)] := ∑
x∈X N

p(x)φα(x) = µα for α = 1, . . . ,d, (6)

where µ ∈ R
d is a set of target mean parameters. Letting P denote the set of all probability distri-

butions with support on X N , consider the constrained entropy maximization problem: maximize the
entropy H(p) :=−∑x∈X N p(x) log p(x) subject to the constraints (6).

A first question is when there any distributions p that satisfy the constraints (6). Accordingly,
we define the set

MARGφ(G) :=
{

µ ∈ R
d
∣∣µ = Ep[φ(X)] for some p ∈ P

}
,

corresponding to the set of µ for which the constraint set (6) is non-empty. For any µ /∈MARGφ(G),
the optimal value of the constrained maximization problem is −∞ (by definition, since the problem
is infeasible). Otherwise, it can be shown that the optimum is attained at a unique distribution in
the exponential family, which we denote by p(· ; θ(µ)). Overall, these facts allow us to specify the
conjugate dual function as follows:

A∗(µ) =

{
−H(p(· ; θ(µ))) if µ ∈MARGφ(G)

+∞ otherwise.
(7)

See the technical report (Wainwright and Jordan, 2003) for more details of this dual calculation.
With this form of the dual function, we are guaranteed that the cumulant generating function A has
the following variational representation:

A(θ) = max
µ∈MARGφ(G)

{
θT µ−A∗(µ)

}
. (8)

However, in general, solving the variational problem (8) is intractable. This intractability should
not be a surprise, since the cumulant generating function is intractable to compute for a general
graphical model. The difficulty arises from two sources. First, the constraint set MARGφ(G) is
extremely difficult to characterize exactly for a general graph with cycles. For the case of a multino-
mial Markov random field (3), it can be seen (using the Minkowski-Weyl theorem) that MARGφ(G)
is a polytope, meaning that it can be characterized by a finite number of linear constraints. The
question, of course, is how rapidly this number of constraints grows with the number of nodes N
in the graph. Unless certain fundamental conjectures in computational complexity turn out to be
false, this growth must be non-polynomial; see Deza and Laurent (1997) for an in-depth discus-
sion of the binary case. Tree-structured graphs are a notable exception, for which the junction tree
theory (Lauritzen, 1996) guarantees that the growth is only linear in N.

Second, the dual function A∗ lacks a closed-form representation for a general graph. Note in
particular that the representation (7) is not explicit, since it requires solving a constrained entropy
maximization problem in order to compute the value H(p(· ; θ(µ))). Again, important exceptions
to this rule are tree-structured graphs. Here a special case of the junction tree theory guarantees
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that any Markov random field on a tree T = (V,E(T )) can be factorized in terms of its marginals as
follows

p(x ; θ(µ)) = ∏
s∈V

µs(xs) ∏
(s,t)∈E(T )

µst(xs,xt)

µs(xs)µt(xt)
. (9)

Consequently, in this case, the negative entropy (and hence the dual function) can be computed
explicitly as

−A∗(µ;T ) = ∑
s∈V

Hs(µs)− ∑
(s,t)∈E(T )

Ist(µst) (10)

where Hs(µs) := −∑xs
µs(xs) logµs(xs) and Ist(µst) := ∑xs,xt

µst(xs,xt) log µst(xs,xt)
µs(xs)µt(xt)

are the singleton
entropy and mutual information, respectively, associated with the node s∈V and edge (s, t)∈ E(T ).
For a general graph with cycles, in contrast, the dual function lacks such an explicit form, and is not
easy to compute.

Given these challenges, it is natural to consider approximations to A∗ and MARGφ(G). As
we discuss in the following section, the resulting relaxed optimization problem defines a convex
surrogate to the cumulant generating function.

3.2 Convex Surrogates to the Cumulant Generating Function

We now describe a general procedure for constructing convex surrogates to the cumulant generating
function, consisting of two main ingredients. Given the intractability of characterizing the marginal
polytope MARGφ(G), it is natural to consider a relaxation. More specifically, let RELφ(G) be a
convex and compact set that acts as an outer bound to MARGφ(G). We use τ to denote elements
of RELφ(G), and refer to them as pseudomarginals since they represent relaxed versions of local
marginals. The second ingredient is designed to sidestep the intractability of the dual function: in
particular, let B∗ be a strictly convex and twice continuously differentiable approximation to A∗.
We require that the domain of B∗ (i.e., dom(B∗) := {τ ∈R

d |B∗(τ) < +∞}) be contained within the
relaxed constraint set RELφ(G).

By combining these two approximations, we obtain a convex surrogate B to the cumulant gen-
erating function, specified via the solution of the following relaxed optimization problem

B(θ) := max
τ∈RELφ(G)

{
θT τ−B∗(τ)

}
. (11)

Note the parallel between this definition (11) and the variational representation of A in Equation (8).
The function B so defined has several desirable properties, as summarized in the following

proposition:

Proposition 2 Any convex surrogate B defined via (11) has the following properties:

(i) For each θ ∈ R
d , the optimum defining B is attained at a unique point τ(θ).

(ii) The function B is convex on R
d .

(iii) It is differentiable on R
d , and more specifically:

∇B(θ) = τ(θ).
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Proof (i) By construction, the constraint set RELφ(G) is compact and convex, and the function B∗

is strictly convex, so that the optimum is attained at a unique point τ(θ).
(ii) Observe that B is defined by the maximum of a collection of functions linear in θ, which ensures
that it is convex (Bertsekas, 1995).
(iii) Finally, the function θT τ− B∗(τ) satisfies the hypotheses of Danskin’s theorem (Bertsekas,
1995), from which we conclude that B is differentiable with ∇B(θ) = τ(θ) as claimed.

Given the interpretation of τ(θ) as a pseudomarginal, this last property of B is analogous to the
well-known cumulant generating property of A—namely, ∇A(θ) = µ(θ)—as specified in Lemma 1.

3.3 Convexified Bethe Surrogate

The following example provides a more concrete illustration of this constructive procedure, using
a tree-based approximation to the marginal polytope, and a convexifed Bethe entropy approxima-
tion (Wainwright et al., 2005). As with the ordinary Bethe approximation (Yedidia et al., 2005),
the cost function and constraint set underlying this approximation are exact for any tree-structured
Markov random field.

Relaxed polytope: We begin by describing a relaxed version RELφ(G) of the marginal polytope
MARGφ(φ). Let τs and τst represent a collection of singleton and pairwise pseudomarginals, respec-
tively, associated with vertices and edges of a graph G. These quantities, as locally valid marginal
distributions, must satisfy the following set of local consistency conditions:

LOCALφ(G) :=
{

τ ∈ R
d
+

∣∣ ∑
xs

τs(xs) = 1, ∑
xt

τst(xs,xt) = τs(xs)
}
.

By construction, we are guaranteed the inclusion MARGφ(G)⊂ LOCALφ(G). Moreover, a special
case of the junction tree theory (Lauritzen, 1996) guarantees that equality holds when the underlying
graph is a tree (in particular, any τ ∈ LOCALφ(G) can be realized as the marginals of the tree-
structured distribution of the form (9)). However, the inclusion is strict for any graph with cycles;
see Appendix A for further discussion of this issue.

Entropy approximation: We now define an entropy approximation B∗ρ that is finite for any pseu-
domarginal τ in the relaxed set LOCALφ(G). We begin by considering a collection {T ∈ T} of
spanning trees associated with the original graph. Given τ ∈ LOCALφ(G), there is—for each span-
ning tree T —a unique tree-structured distribution that has marginals τs and τst on the vertex set V
and edge set E(T ) of the tree. Using Equations (9) and (10), the entropy of this tree-structured
distribution can be computed explicitly. The convexified Bethe entropy approximation is based on
taking a convex combination of these tree entropies, where each tree is weighted by a probability
ρ(T ) ∈ [0,1]. Doing so and expanding the sum yields

B∗ρ(τ) := ∑
T∈T

ρ(T )
{

∑
s∈V

Hs(τs)− ∑
(s,t)∈E(T )

Ist(τst)
}

= ∑
s∈V

Hs(τs)− ∑
(s,t)∈E

ρstIst(τst), (12)

where ρst = ∑T ρ(T )I [(s, t) ∈ T ] are the edge appearance probabilities defined by the distribution
ρ over the tree collection. By construction, the function B∗ρ is differentiable; moreover, it can be
shown (Wainwright et al., 2005) that it is strictly convex for any vector {ρst} of strictly positive
edge appearance probabilities.
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Bethe surrogate and reweighted sum-product: We use these two ingredients—the relaxation
LOCALφ(G) of the marginal polytope, and the convexified Bethe entropy approximation (12)—to
define the following convex surrogate

Bρ(θ) := max
τ∈LOCALφ(G)

{
θT τ−B∗ρ(τ)

}
. (13)

Since the conditions of Proposition 2 are satisfied, we are guaranteed that Bρ is convex and dif-
ferentiable on R

d , and moreover that ∇Bρ(θ) = τ(θ), where (for each θ ∈ R
d) the quantity τ(θ)

denotes the unique optimum of problem (13). Perhaps most importantly, the optimizing pseudo-
marginals τ(θ) can be computed efficiently using a tree-reweighted variant of the sum-product
message-passing algorithm (Wainwright et al., 2005). This method operates by passing “messages”,
which in the multinomial case are simply m-vectors of non-negative numbers, along edges of the
graph. We use Mts = {Mts(i), i = 0, . . . ,m−1} to represent the message passed from node t to node
s. In the tree-reweighted variant, these messages are updated according to the following recursion

Mts(xs) ← ∑
xt

exp
{

θt(xt)
θst(xs,xt)

ρst

}∏u∈Γ(t)\s
[
Mut(xt)

]ρut

[
Mst(xt)

]1−ρst
. (14)

Here Γ(t) denotes the set of all neighbors of node t in the graph. Upon convergence of the updates,
the fixed point messages M∗ yield the unique global optimum of the optimization problem (13) via
the following equations

τs(xs;θ) ∝ exp
{

θs(xs)
}

∏
u∈Γ(s)

[
Mus(xs)

]ρus , and (15a)

τst(xs,xt ;θ) ∝ exp
{

θs(xs)+θt(xt)+
θst(xs,xt)

ρst

} ∏
u∈Γ(s)

[
Mus(xs)

]ρus ∏
v∈Γ(s)

[
Mvs(xs)

]ρvs

Mst(xt) Mts(xs)
(15b)

Further details on these updates and their properties can be found in Wainwright et al. (2005).

4. Joint Estimation and Prediction Using Surrogates

We now turn to consideration of how convex surrogates, as constructed by the procedure described
in the previous section, are useful for both approximate parameter estimation as well as prediction.

4.1 Approximate Parameter Estimation

Suppose that we are given i.i.d. samples {X 1, . . . ,Xn} from an MRF of the form (3), where the
underlying true parameter θ∗ is unknown. One standard way in which to estimate θ∗ is via maximum
likelihood (possibly with an additional regularization term); in this particular exponential family
setting, it is straightforward to show that the (normalized) log likelihood takes the form

`(θ) = 〈µ̂n, θ〉−A(θ)−λnR(θ)

where function R is a regularization term with an associated (possibly data-dependent) weight λn.
The quantities µ̂n := 1

n ∑n
i=1 φ(X i) are the empirical moments defined by the data. For the indicator-

based exponential representation (5), these empirical moments correspond to a set of singleton and
pairwise marginal distributions, denoted µ̂n

s and µ̂n
st respectively.
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It is intractable to maximize the regularized likelihood directly, due to the presence of the cu-
mulant generating function A. Thus, a natural thought is to use the convex surrogate B to define an
alternative estimator obtained by maximizing the regularized surrogate likelihood:

`B(θ) := 〈µ̂n, θ〉−B(θ)−λnR(θ). (16)

By design, the surrogate B and hence the surrogate likelihood `B, as well as their derivatives, can
be computed in a straightforward manner (typically by some sort of message-passing algorithm).
It is thus straightforward to compute the parameter θ̂n achieving the maximum of the regularized
surrogate likelihood (for instance, gradient descent would a simple though naive method).

For the tree-reweighted Bethe surrogate (13), we have shown in previous work (Wainwright
et al., 2003b) that in the absence of regularization, the optimal parameter estimates θ̂n have a very
simple closed-form solution, specified in terms of the weights ρst and the empirical marginals µ̂.
(We make use of this closed form in our experimental comparison in Section 7; see Equation (32).)
If a regularizing term is added, these estimates no longer have a closed-form solution, but the op-
timization problem (16) can still be solved efficiently using the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2003b, 2005).

4.2 Joint Estimation and Prediction

Using such an estimator, we now consider a joint approach to estimation and prediction. Recalling
the basic set-up, we are given an initial set of i.i.d. samples {x1, . . . ,xn} from p(· ; θ∗), where the
true model parameter θ∗ is unknown. These samples are used to form an estimate of the Markov
random field. We are then given a noisy observation y of a new sample z∼ p(· ; θ∗), and the goal is
to use this observation in conjunction with the fitted model to form a near-optimal estimate of z. The
key point is that the same convex surrogate B is used both in forming the surrogate likelihood (16)
for approximate parameter estimation, and in the variational method (11) for performing prediction.

For a given fitted model parameter θ∈R
d , the central object in performing prediction is the pos-

terior distribution p(z | y ; θ) ∝ p(z ; θ) p(y |z). In the exponential family setting, for a fixed noisy
observation y, this posterior can always be written as a new exponential family member, described
by parameter θ+γ(y). (Here the term γ(y) serves to incorporate the effect of the noisy observation.)
With this set-up, the procedure consists of the following steps:

Joint estimation and prediction:

1. Form an approximate parameter estimate θ̂n from an initial set of i.i.d. data {x1, . . . ,xn} by
maximizing the (regularized) surrogate likelihood `B.

2. Given a new noisy observation y (i.e., a contaminated version of z ∼ p(· ; θ∗)) specified by a
factorized conditional distribution of the form p(y |z) = ∏N

s=1 p(ys |zs), incorporate it into the
model by forming the new exponential parameter

θ̂n
s ( ·)+ γs(y)

where γs(y) merges the new data with the fitted model θ̂n. (The specific form of γ depends on
the observation model.)
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3. Using the message-passing algorithm associated with the convex surrogate B, compute ap-
proximate marginals τ(θ̂+ γ) for the distribution that combines the fitted model with the new
observation. Use these approximate marginals to construct a prediction ẑ(y;τ) of z based on
the observation y and pseudomarginals τ.

Examples of the prediction task in the final step include smoothing (e.g., denoising of a noisy
image) and interpolation (e.g., in the presence of missing data). We provide a concrete illustration of
such a prediction problem in Section 6 using a mixture-of-Gaussians observation model. The most
important property of this joint scheme is that the convex surrogate B underlies both the parameter
estimation phase (used to form the surrogate likelihood), and the prediction phase (used in the
variational method for computing approximate marginals). It is this matching property that will be
shown to be beneficial in terms of overall performance.

5. Analysis

In this section, we turn to the analysis of the surrogate-based method for estimation and prediction.
We begin by exploring the asymptotic behavior of the parameter estimator. We then prove a Lips-
chitz stability result applicable to any variational method that is based on a strongly concave entropy
approximation. This stability result plays a central role in our subsequent development of bounds
on the performance loss in Section 6.

5.1 Estimator Asymptotics

We begin by considering the asymptotic behavior of the parameter estimator θ̂n defined by the sur-
rogate likelihood (16). Since this parameter estimator is a particular type of M-estimator (Serfling,
1980), its asymptotic behavior can be investigated using standard methods, as summarized in the
following:

Proposition 3 Recall the cumulant generating function A defined in Equation (4). Let B be a strictly
convex surrogate for A, defined via Equation (11) with a strictly concave entropy approximation
−B∗. Consider the sequence of parameter estimates {θ̂n} given by

θ̂n := argmax
θ∈Rd
{〈µ̂n, θ〉−B(θ)−λnR(θ)} (17)

where R is a non-negative and convex regularizer, and the regularization parameter satisfies λn =
o( 1√

n).
Then for a general graph with cycles, the following results hold:

(a) we have θ̂n p−→ θ̂, where θ̂ is (in general) distinct from the true parameter θ∗.

(b) the estimator is asymptotically normal:

√
n
[
θ̂n− θ̂

] d−→ N

(
0,

(
∇2B(θ̂)

)−1∇2A(θ∗)
(
∇2B(θ̂)

)−1
)

Proof By construction, the convex surrogate B and the (negative) entropy approximation B∗ are
a Fenchel-Legendre conjugate dual pair. From Proposition 2, the surrogate B is differentiable.

1839



WAINWRIGHT

Moreover, the strict convexity of B and B∗ ensure that the gradient mapping ∇B is one-to-one and
onto the relative interior of the constraint set RELφ(G) (see Section 26 of Rockafellar (1970)).
Moreover, the inverse mapping (∇B)−1 exists, and is given by the dual gradient ∇B∗.

Let µ∗ be the moment parameters associated with the true distribution θ∗—that is, µ∗ = Eθ∗ [φ(X)].
In the limit of infinite data, the asymptotic value of the parameter estimate is defined by

∇B(θ̂) = µ∗. (18)

Note that µ∗ belongs to the relative interior of MARGφ(G), and hence to the relative interior of
RELφ(G). Therefore, Equation (18) has a unique solution θ̂ = ∇−1B(µ∗).

By strict convexity, the regularized surrogate likelihood (17) has a unique global maximum.
Let us consider the optimality conditions defining this unique maximum θ̂n; they are given by
∇B(θ̂n) = µ̂n−λn∂R(θ̂n), where ∂R(θ̂n) denotes an arbitrary element of the subdifferential of the
convex function R at the point θ̂n. We can now write

∇B(θ̂n)−∇B(θ̂) = [µ̂n−µ∗]−λn∂R(θ̂n). (19)

Taking inner products with the difference θ̂n− θ̂ yields

0
(a)

≤
[
∇B(θ̂n)−∇B(θ̂)

]T [
θ̂n− θ̂

]
≤ [µ̂n−µ∗]T

[
θ̂n− θ̂

]
+λn∂R(θ̂n)T

[
θ̂− θ̂n

]
, (20)

where inequality (a) follows from the convexity of B. From the convexity and non-negativity of R,
we have

λn∂R(θ̂n)T
[
θ̂− θ̂n

]
≤ λn

[
R(θ̂)−R(θ̂n)

]
≤ λnR(θ̂).

Applying this inequality and Cauchy-Schwartz to Equation (20) yields

0 ≤
[
∇B(θ̂n)−∇B(θ̂)

]T
[

θ̂n− θ̂
‖θ̂n− θ̂‖

]
≤ ‖µ̂n−µ∗‖+λnR(θ̂)

Since λn = o(1) by assumption and ‖µ̂n − µ∗‖ = op(1) by the weak law of large numbers, the

quantity
[
∇B(θ̂n)−∇B(θ̂)

]T [
θ̂n−θ̂
‖θ̂n−θ̂‖

]
converges in probability to zero. By the strict convexity of

B, this fact implies that θ̂n converges in probability to θ̂, thereby completing the proof of part (a).

To establish part (b), we observe that
√

n [µ̂n−µ∗]
d−→ N(0,∇2A(θ∗)) by the central limit theo-

rem. Using this fact and applying the delta method to Equation (19) yields that

√
n∇2B(θ̂)

[
θ̂n− θ̂

]
d−→ N

(
0,∇2A(θ∗)

)
,

where we have used the fact that
√

nλn = o(1). The strict convexity of B guarantees that ∇2B(θ̂) is
invertible, so that claim (b) follows.

A key property of the estimator is its inconsistency—that is, the estimated model differs from
the true model θ∗ even in the limit of large data. Despite this inconsistency, we will see that the
approximate parameter estimates θ̂n are nonetheless useful for performing prediction.
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5.2 Global Algorithmic Stability

A desirable property of any algorithm—particularly one applied to statistical data—is that it exhibit
an appropriate form of stability with respect to its inputs. Not all message-passing algorithms have
such stability properties. For instance, the standard sum-product message-passing algorithm, al-
though stable for weakly coupled MRFs (Ihler et al., 2005; Mooij and Kappen, 2005b,a; Tatikonda
and Jordan, 2002; Tatikonda, 2003), can be highly unstable in other regimes due to the appearance
of multiple local optima in the non-convex Bethe problem. However, previous experimental work
has shown that methods based on convex relaxations, including the reweighted sum-product (or
belief propagation) algorithm (Wainwright et al., 2003b), reweighted generalized BP (Wiegerinck,
2005), and log-determinant relaxations (Wainwright and Jordan, 2005) appear to be globally sta-
ble—that is, even for very strongly coupled problems. For instance, Figure 2 provides a simple
illustration of the instability of the ordinary sum-product algorithm, contrasted with the stability of
the tree-reweighted updates. Wiegerinck (2005) provides similar results for reweighted forms of the
generalized belief propagation. Here we provide theoretical support for these empirical observa-
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Figure 2: Contrast of the instability of the ordinary sum-product algorithm with the stability of
the tree-reweighted version (Wainwright et al., 2005). Results shown with a grid with
N = 100 nodes over a range of attractive coupling strengths. The ordinary sum-product
undergoes a phase transition, after which the quality of marginal approximations degrades
substantially. The tree-reweighted algorithm, shown for two different settings of the edge
weights ρst , remains stable over the full range of coupling strengths. See Wainwright
et al. (2005) for full details.

tions: in particular, we prove that, in sharp contrast to non-convex methods, any variational method
based on a strongly convex entropy approximation is globally stable. This stability property plays a
fundamental role in providing a performance guarantee on joint estimation/prediction methods.
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We begin by noting that for a multinomial Markov random field (3), the computation of the
exact marginal probabilities is a globally Lipschitz operation:

Lemma 4 For any discrete Markov random field (3), there is a constant L < +∞ such that

‖µ(θ+δ)−µ(θ)‖ ≤ L‖δ‖ for all θ,δ ∈ R
d .

This lemma, which is proved in Appendix B, guarantees that small changes in the problem pa-
rameters—that is, “perturbations” δ—lead to correspondingly small changes in the computed mar-
ginals.

Our goal is to establish analogous Lipschitz properties for variational methods. In particular, it
turns out that any variational method based on a suitably concave entropy approximation satisfies
such a stability condition. More precisely, a function f : R

n→ R is strongly convex if there exists
a constant c > 0 such that f (y) ≥ f (x)+ ∇ f (x)T

(
y− x)+ c

2‖y− x‖2 for all x,y ∈ R
n. For a twice

continuously differentiable function, this condition is equivalent to having the eigenspectrum of the
Hessian ∇2 f (x) be uniformly bounded below by c. With this definition, we have:

Proposition 5 Consider any strictly convex surrogate B based on a strongly concave entropy ap-
proximation −B∗. Then there exists a constant R < +∞ such that

‖τ(θ+δ)− τ(θ)‖ ≤ R‖δ‖ for all θ,δ ∈ R
d .

Proof From Proposition 2, we have τ(θ) = ∇B(θ), so that the statement is equivalent to the assertion
that the gradient ∇B is a Lipschitz function. Applying the mean value theorem to ∇B, we can write
∇B(θ+δ)−∇B(θ)= ∇2B(θ+tδ)δ where t ∈ [0,1]. Consequently, in order to establish the Lipschitz
condition, it suffices to show that the spectral norm of ∇2B(γ) is uniformly bounded above over all
γ ∈ R

d . Since B and B∗ are a strictly convex Legendre pair, we have ∇2B(θ) = [∇2B∗(τ(θ))]−1.
By the strong convexity of B∗, we are guaranteed that the spectral norm of ∇2B∗(τ) is uniformly
bounded away from zero, which yields the claim.

A number of existing entropy approximations can be shown to be strongly concave. In Appendix C,
we provide a detailed proof of this fact for the convexified Bethe entropy (12).

Lemma 6 For any set {ρst} of strictly positive edge appearance probabilities, the convexified Bethe
entropy (12) is strongly concave.

We note that the same argument can be used to establish strong concavity for the reweighted Kikuchi
approximations studied by Wiegerinck (2005). Moreover, it can be shown that the Gaussian-based
log-determinant relaxation proposed by Wainwright and Jordan (2006) is also strongly concave. For
all of these variational methods, then, Proposition 5 guarantees that the pseudomarginal computation
is globally Lipschitz stable, thereby providing theoretical confirmation of previous experimental
results (Wiegerinck, 2005; Wainwright et al., 2005; Wainwright and Jordan, 2006). The entropy
approximations that underlie other variational methods (e.g., expectation-propagation Minka, 2001)
can also be modified so as to be strongly concave; Proposition 5 provides further justification—in
addition to the obvious benefit of unique global optima—for such “convexification” of entropy
approximations.
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6. Performance Bounds

In this section, we develop theoretical bounds on the performance loss of our approximate approach
to joint estimation and prediction, relative to the unattainable Bayes optimum. So as not to unnec-
essarily complicate the result, we focus on the performance loss in the infinite data limit2 (i.e., for
which the number of samples n = +∞).

In the infinite data setting, the Bayes optimum is unattainable for two reasons:

1. it is based on knowledge of the exact parameter θ∗, which is not easy to obtain.

2. it assumes (in the prediction phase) that computing exact marginal probabilities µ of the
Markov random field is feasible.

Of these two difficulties, it is the latter assumption—regarding the computation of marginal prob-
abilities—that is the most serious. As discussed earlier, there do exist computationally tractable
estimators of θ∗ that are consistent though not statistically efficient under appropriate conditions;
one example is the pseudolikelihood method (Besag, 1975, 1977) mentioned previously. On the
other hand, MCMC methods may be used to generate stochastic approximations to marginal prob-
abilities, but may require greater than polynomial complexity.

Recall from Proposition 3 that the parameter estimator based on the surrogate likelihood `B

is inconsistent, in the sense that the parameter vector θ̂ returned in the limit of infinite data is
generally not equal to the true parameter θ∗. Our analysis in this section will demonstrate that this
inconsistency is beneficial.

6.1 Problem Set-up

Although the ideas and techniques described here are more generally applicable, we focus here on
a special observation model so as to obtain a concrete result.

Observation model: In particular, we assume that the multinomial random vector X = {Xs, s ∈
V} defined by the Markov random field (3) is a label vector for the components in a finite mixture of
Gaussians. For each node s∈V , we specify a new random variable Zs by the conditional distribution

p(Zs = zs |Xs = j)∼ N(ν j,σ2
j) for j ∈ {0,1, . . . ,m−1},

so that Zs is a mixture of m Gaussians. Such Gaussian mixture models are widely used in spa-
tial statistics as well as statistical signal and image processing (Crouse et al., 1998; Ripley, 1981;
Titterington et al., 1986).

Now suppose that we observe a noise-corrupted version of zs—namely, a vector Y of observa-
tions with components of the form

Ys = αZs +
√

1−α2Ws, (21)

where Ws ∼ N(0,1) is additive Gaussian noise, and the parameter α ∈ [0,1] specifies the signal-to-
noise ratio (SNR) of the observation model. Note that α = 0 corresponds to pure noise, whereas
α = 1 corresponds to completely uncorrupted observations.

2. Note, however, that modified forms of the results given here, modulo the usual O(1/n) corrections, hold for the finite
data setting.
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Optimal prediction: Our goal is to compute an optimal estimate ẑ(y) of z as a function of the
observation Y = y, using the mean-squared error as the risk function. The essential object in this
computation is the posterior distribution p(x | y ; θ∗) ∝ p(x ; θ∗) p(y | x), where the conditional
distribution p(y | x) is defined by the observation model (21). As shown in the sequel, the posterior
distribution (with y fixed) can be expressed as an exponential family member of the form θ∗+ γ(y)
(see Equation (26a)). Disregarding computational cost, it is straightforward to show that the optimal
Bayes least squares estimator (BLSE) takes the form

ẑopt
s (Y ;θ∗) :=

m−1

∑
j=0

µs; j(θ∗+ γ(Y ))

[
ω j(α)

(
Ys−αν j

)
+ν j

]
, (22)

where µs; j(θ∗ + γ) denotes the marginal probability associated with the posterior distribution
p(x ; θ∗+ γ), and

ω j(α) :=
ασ2

j

α2σ2
j +(1−α2)

(23)

is the usual BLSE weighting for a Gaussian with variance σ2
j .

Approximate prediction: Since the marginal distributions µs; j(θ∗+ γ) are intractable to compute
exactly, it is natural to consider an approximate predictor, based on a set τ of pseudomarginals
computed from a variational relaxation. More explicitly, we run the variational algorithm on the
parameter vector θ̂+ γ that is obtained by combining the new observation y with the fitted model θ̂,
and use the outputted pseudomarginals τs(·; θ̂+ γ) as weights in the approximate predictor

ẑapp
s (Y ; θ̂) :=

m−1

∑
j=0

τs; j(θ̂+ γ(Y ))

[
ω j(α)

(
Ys−αν j

)
+ν j

]
, (24)

where the weights ω are defined in Equation (23).
We now turn to a comparison of the Bayes least-squares estimator (BLSE) defined in Equa-

tion (22) to the surrogate-based predictor (24). Since (by definition) the BLSE is optimal for the
mean-squared error (MSE), using the surrogate-based predictor will necessarily lead to a larger
MSE. Our goal is to prove an upper bound on the maximal possible increase in this MSE, where the
bound is specified in terms of the underlying model θ∗ and the SNR parameter α. More specifically,
for a given problem, we define the mean-squared errors

Ropt(α,θ∗) :=
1
N

E‖ẑopt(Y ;θ∗)−Z‖2, and Rapp(α, θ̂) :=
1
N

E‖ẑapp(Y ; θ̂)−Z‖2,

of the Bayes-optimal and surrogate-based predictors respectively, where the expectation is taken
over the joint distribution of (Y,Z). We seek upper bounds on the increase ∆R(α,θ∗, θ̂) := Rapp(α, θ̂)
−Ropt(α,θ∗) of the approximate predictor relative to Bayes optimum.

6.2 Role of Stability

Before providing a technical statement and proof, we begin with some intuition underlying the
bounds, and the role of Lipschitz stability. First, consider the low SNR regime (α ≈ 0) in which
the observation Y is heavily corrupted by noise. In the limit α = 0, the new observations are pure
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noise, so that the prediction of Z should be based simply on the estimated model—namely, the
true model p(· ; θ∗) in the Bayes optimal case, and the “incorrect” model p(· ; θ̂) for the method
based on surrogate likelihood. The key point here is the following: by properties of the MLE and
surrogate-based estimator, the following equalities hold:

∇A(θ∗)
(a)
= µ(θ∗)

(b)
= µ∗

(c)
= τ(θ̂)

(d)
= ∇B(θ̂).

Here equality (a) follows from Lemma 1, whereas equality (b) follows from the moment-matching
property of the MLE in exponential families. Equalities (c) and (d) hold from the Proposition 2
and the pseudomoment-matching property of the surrogate-based parameter estimator (see proof of
Proposition 3). As a key consequence, it follows that the combination of surrogate-based estima-
tion and prediction is functionally indistinguishable from the Bayes-optimal behavior in the limit
of α = 0. More specifically, in the limiting case, the errors systematically introduced by the in-
consistent learning procedure are cancelled out exactly by the approximate variational method for
computing marginal distributions. Of course, exactness for α = 0 is of limited interest; however,
when combined with the Lipschitz stability ensured by Proposition 5, it allows us to gain good con-
trol of the low SNR regime. At the other extreme of high SNR (α≈ 1), the observations are nearly
perfect, and hence dominate the behavior of the optimal estimator. More precisely, for α close to 1,
we have ω j(α)≈ 1 for all j = 0,1, . . . ,m−1, so that ẑopt(Y ;θ∗)≈ Y ≈ ẑapp(Y ; θ̂). Consequently, in
the high SNR regime, accuracy of the marginal computation has little effect on the accuracy of the
predictor.

6.3 Bound on Performance Loss

Although bounds of this nature can be developed in more generality, for simplicity in notation we
focus here on the case of m = 2 mixture components. We begin by introducing the factors that play
a role in our bound on the performance loss ∆R(α,θ∗, θ̂). First, the Lipschitz stability enters in the
form of the quantity:

L(θ∗; θ̂) := sup
δ∈Rd

σmax
(
∇2A(θ∗+δ)−∇2B(θ̂+δ)

)
, (25)

where σmax denotes the maximal singular value. Following the argument in the proof of Proposi-
tion 5, it can be seen that L(θ∗; θ̂) is finite.

Second, in order to apply the Lipschitz stability result, it is convenient to express the effect
of introducing a new observation vector y, drawn from the additive noise observation model (21),
as a perturbation of the exponential parameterization. In particular, for any parameter θ ∈ R

d and
observation y from the model (21), the conditional distribution p(x |y;θ) can be expressed as p(x;θ+
γ(y,α)), where the exponential parameter γ(y,α) has components3

γs =
1
2

{
log

α2σ2
0 +(1−α2)

α2σ2
1 +(1−α2)

+
(ys−αν0)

2

α2σ2
0 +(1−α2)

− (ys−αν1)
2

α2σ2
1 +(1−α2)

}
∀ s ∈V.(26a)

γst = 0 ∀ (s, t) ∈ E. (26b)

See Appendix D for a derivation of these relations.

3. For consistency in notation with the general m > 2 case, these components should be labeled as γs;1 and γst;11, but we
drop the additional indices for simplicity.
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Third, it is convenient to have short notation for the Gaussian estimators of each mixture com-
ponent:

g j(Ys;α) := ω j(α)(Ys−αν j)+ν j for j = 0,1,

With this notation, we have the following

Theorem 7 The MSE increase ∆R(α,θ∗, θ̂) := R(α, θ̂)−R(α,θ∗) is upper bounded by

∆R(α,θ∗, θ̂) ≤ E



min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

) √
∑N

s=1 |g1(Ys)−g0(Ys)|4
N



 . (27)

Before proving the bound (27), we illustrate it by considering its behavior in some special cases.

6.3.1 SUPERIORITY TO TRUE MODEL

Theorem 7 can be used to establish that applying an approximate message-passing algorithm to
the “incorrect” model yields prediction results superior to those obtained by applying the same
message-passing algorithm to the true underlying model. To see one regime in which this claim is
true, consider the low SNR limit in which α→ 0+. In this limit, it can be seen that ‖γ(Y ;α)‖→ 0, so
that the the overall bound ∆R(α) tends to zero. That is, the combination of approximate estimation
and approximate prediction is asymptotically optimal in the low SNR limit. In sharp contrast, this
claim need not be true when approximate prediction is applied to the true underlying model. As
a particular example, consider a Gaussian mixture with m = 2 components, with equal variances
but distinct means (say ν0 =−1 and ν1 = 1). Moreover, suppose that the mixture indicator vectors
X ∈ {0,1}N are sampled from an underlying distribution p(x;θ∗), and let µs = [µs;0 µs;1] denote the
marginal distributions associated with this underlying model. In the limit of zero SNR (i.e., α = 0),
it is straightforward to see that the BLSE of Z is simply its mean, given (for component s ∈V ) by

E[Zs | Y ] = E[Zs] = µs;0ν0 +µs;1ν1 = µs;1−µs;0,

for the two-component mixture specified above. Now suppose that when applied to this true model,
the approximate message-passing algorithm yields an incorrect set of singleton pseudomarginals—
say τs 6= µs. Since standard message-passing algorithms are rarely (if ever) exactly correct on non-
trivial models with cycles, this assumption is more than reasonable. Consequently applying the
approximate predictor to the true model will yield an estimate of Z which is incorrect, even in the
zero SNR limit; in particular, the approximate estimate is given by

Ẑ(Y ;θ∗) = τs;0ν0 + τs;1ν1 = τs;1− τs;0 6= E[Z].

Thus, in contrast to the combination of approximate estimation with approximate estimation, apply-
ing the approximate message-passing algorithm to the true model fails to be exact even in the limit
of zero SNR. In fact, our later experimental results show that the superiority of using the “wrong”
model holds for a broader range of SNRs as well (see Figure 4).

We conclude by turning to the high SNR limit as α→ 1−, in which we see that ω j(α)→ 1 for
j = 0,1, which drives the differences |g1(Ys)−g0(Ys)|, and in turn the overall bound ∆R(α) to zero.
Thus, the surrogate-based method is optimal in both the low and high SNR regimes; its behavior in
the intermediate regime is governed by the balance between these two terms.

1846



ESTIMATING THE “WRONG” GRAPHICAL MODEL

6.3.2 EFFECT OF EQUAL VARIANCES

Now consider the special case of equal variances σ2 ≡ σ2
0 = σ2

1, in which case ω(α) ≡ ω0(α) =
ω1(α). Thus, the difference g1(Ys,α)− g0(Ys,α) simplifies to (1−αω(α))(ν1− ν0), so that the
bound (27) reduces to

∆R(α,θ∗, θ̂) ≤ (1−αω(α))2 (ν1−ν0)
2

E

{
min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

)}
. (28)

As shown by the simpler expression (28), for ν1 ≈ ν0, the MSE increase is very small, since such a
two-component mixture is close to a pure Gaussian.

6.3.3 EFFECT OF MEAN DIFFERENCES

Finally consider the case of equal means ν≡ ν0 = ν1 in the two Gaussian mixture components. In
this case, we have g1(Ys,α)−g0(Ys,α) = [ω1(α)−ω0(α)] [Ys−αν], so that the bound (27) reduces
to

∆R(α,θ∗, θ̂) ≤ [ω1(α)−ω0(α)]2 E

{
min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

)√
∑s(Ys−αν)4

N

}
.

Here the MSE increase depends on the SNR α and the difference

ω1(α)−ω0(α) =
ασ2

1

α2σ2
1 +(1−α2)

− ασ2
0

α2σ2
0 +(1−α2)

=
(1−α2) (σ2

1−σ2
0)[

α2σ2
0 +(1−α2)

] [
α2σ2

1 +(1−α2)
] .

Observe, in particular, that the MSE increases tends to zero as the difference σ2
1−σ2

0 decreases, as
should be expected intuitively.

6.4 Proof of Theorem 7

We now turn to the proof of the main bound (27). By the Pythagorean relation that characterizes the
Bayes least squares estimator ẑopt(Y ;θ∗) = E(Z |Y,θ∗)[Z], we have

∆R(α;θ∗, θ̂) :=
1
N

E‖ẑapp(Y ; θ̂)−Z‖2
2−

1
N

E‖ẑopt(Y ;θ∗)−Z‖2
2

=
1
N

E‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2
2.

Using the definitions of ẑapp(Y ; θ̂) and ẑopt(Y ;θ∗), some algebraic manipulation yields
[
ẑapp

s (Y ; θ̂)− ẑopt
s (Y ;θ∗)

]2
=

[
τs(θ̂+ γ)−µs(θ∗+ γ)

]2
[g1(Ys)−g0(Ys)]

2

≤
∣∣∣τs(θ̂+ γ)−µs(θ∗+ γ)

∣∣∣ [g1(Ys)−g0(Ys)]
2 ,

where the second inequality uses the fact that |τs−µs| ≤ 1 since τs and µs are marginal probabilities.
Next we write

1
N
‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2

2 ≤ 1
N

N

∑
s=1

∣∣∣τs(θ̂+ γ)−µs(θ∗+ γ)
∣∣∣ [g1(Ys)−g0(Ys)]

2 (29)

≤ 1√
N
‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2

√
∑N

s=1 |g1(Ys)−g0(Ys)|4
N
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where the last line uses the Cauchy-Schwarz inequality.
It remains to bound the 2-norm ‖τ(θ̂+γ)−µ(θ∗+γ)‖2. An initial naive bound follows from the

fact τs,µs ∈ [0,1] implies that |τs−µs| ≤ 1, whence

1√
N
‖τ−µ‖2 ≤ 1. (30)

An alternative bound, which will be better for small perturbations γ, can be obtained as follows.
Using the relation τ(θ̂) = µ(θ∗) guaranteed by the definition of the ML estimator and surrogate
estimator, we have

‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2 =
∥∥∥
[
τ(θ̂+ γ)− τ(θ̂)

]
+[µ(θ∗)−µ(θ∗+ γ)]

∥∥∥
2

=
∥∥∥
[
∇2B(θ̂+ sγ)−∇2A(θ∗+ tγ)

]
γ
∥∥∥

2
,

for some s, t ∈ [0,1], where we have used the mean value theorem. Thus, using the definition (25)
of L, we have

1√
N
‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2 ≤ L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

. (31)

Combining the bounds (30) and (31) and applying them to Equation (29), we obtain

1
N
‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2

2 ≤ min

{
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

} √
∑N

s=1 |g1(Ys)−g0(Ys)|4
N

.

Taking expectations of both sides yields the result.

7. Experimental Results

In order to test our joint estimation/prediction procedure, we have applied it to coupled Gaussian
mixture models on different graphs, coupling strengths, observation SNRs, and mixture distribu-
tions. Here we describe both experimental results to quantify the performance loss of the tree-
reweighted sum-product algorithm (Wainwright et al., 2005), and compare it to both a baseline in-
dependence model, as well as a closely related heuristic method that uses the ordinary sum-product
(or belief propagation) algorithm.

7.1 Methods

In Section 4.2, we described a generic procedure for joint estimation and prediction. Here we
begin by describing the special case of this procedure when the underlying variational method is
the tree-reweighted sum-product algorithm (Wainwright et al., 2005). Any instantiation of the tree-
reweighted sum-product algorithm is specified by a collection of edge weights ρst , one for each
edge (s, t) of the graph. The vector of edge weights must belong to the spanning tree polytope;
see Wainwright et al. (2005) for further background on these weights and the reweighted algorithm.
Given a fixed set of edge weights ρ, the joint procedure based on the tree-reweighted sum-product
algorithm consists of the following steps:
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1. Given an initial set of i.i.d. data {X 1, . . . ,Xn}, we first compute the empirical marginal distri-
butions

µ̂s; j :=
1
n

n

∑
i=1

I [X i
s = j], µ̂st; jk :=

1
n

n

∑
i=1

I [X i
s = j] I [X i

t = k],

and use them to compute the approximate parameter estimate

θ̂n
s; j := log µ̂s; j, θ̂n

s; j := ρst log
µ̂st; jk

µ̂s; jµ̂t;k
. (32)

As shown in our previous work (Wainwright et al., 2003b), the estimates (32) are the global
maxima of the surrogate likelihood (16) based on the convexified Bethe approximation (12)
without any regularization term (i.e., R = 0).

2. Given the new noisy observation Y of the form (21), we incorporate it by by forming the new
exponential parameter

θ̂n
s + γs(Y ),

where Equation (26a) defines γs for the Gaussian mixture model under consideration.

3. We then compute approximate marginals τ(θ̂ + γ) by running the TRW sum-product algo-
rithm with edge appearance weights ρst , using the message updates (14), on the graphical
model distribution with exponential parameter θ̂+ γ. We use the approximate marginals (see
Equation (15)) to construct the prediction ẑapp in Equation (24).

We evaluated the tree-reweighted sum-product based on its increase in mean-squared error
(MSE) over the Bayes optimal predictor (22). Moreover, we compared the performance of the
tree-reweighted approach to the following alternatives:

(a) As a baseline, we used the independence model in which the mixture distributions at each
node are all assumed to be independent. In this case, ML estimates of the parameters are
given by θ̂s; j = log µ̂s; j, with all of the coupling terms θ̂st; jk equal to zero. The prediction step
reduces to computing the Bayes least squares estimate at each node independently, based only
on the local data ys.

(b) The standard sum-product or belief propagation (BP) approach is closely related to the tree-
reweighted sum-product method, but based on the edge weights ρst = 1 for all edges. In
particular, we first form the approximate parameter estimate θ̂ using Equation (32) with ρst =
1. As shown in our previous work (Wainwright et al., 2003b), this approximate parameter
estimate uniquely defines the Markov random field for which the empirical marginals µ̂s and
µ̂st are fixed points of the ordinary belief propagation algorithm. We note that a parameter
estimator of this type has been used previously by other researchers (Freeman et al., 2000;
Ross and Kaebling, 2005). In the prediction step, we then use the ordinary belief propagation
algorithm (i.e., again with ρst = 1) to compute approximate marginals of the graphical model
with parameter θ̂ + γ. Finally, based on these approximate BP marginals, we compute the
approximate predictor using Equation (24).

Although our methods are more generally applicable, here we show representative results for
m = 2 components, and two different types of Gaussian mixtures.
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(a) Mixture ensemble A is bimodal, with components (ν0,σ2
0) = (−1,0.5) and (ν1,σ2

1) = (1,0.5).

(b) Mixture ensemble B was constructed with mean and variance components (ν0,σ2
0) = (0,1)

and (ν1,σ2
1) = (0,9); these choices serve to mimic heavy-tailed behavior.

In both cases, each mixture component is equally weighted; see Figure 3 for histograms of the
resulting mixture ensembles.
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Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (ν0,σ2

0) = (−1,0.5) and (ν1,σ2
1) = (1,0.5). (b) Ensemble B: mimics a heavy-

tailed distribution, with (ν0,σ2
0) = (0,1) and (ν1,σ2

1) = (0,9).

Here we show results for a 2-D grid with N = 64 nodes. Since the mixture variables have m = 2
states, the coupling distribution can be written as

p(x ; θ∗) ∝ exp
{

∑
s∈V

θ∗s xs + ∑
(s,t)∈E

θ∗stxsxt
}
,

where x ∈ {−1,+1}N are “spin” variables indexing the mixture components. In all trials (except
those in Section 7.2), we chose θ∗s = 0 for all nodes s ∈ V , which ensures uniform marginal dis-
tributions p(xs ; θ∗) = [0.5 0.5]T at each node. We tested two types of coupling in the underlying
Markov random field:

(a) In the case of attractive coupling, for each coupling strength β ∈ [0,1], we chose edge param-
eters as θ∗st ∼U[0,β].

(b) In the case of mixed coupling, for each coupling strength β∈ [0,1], we chose edge parameters
as θ∗st ∼U[−β,β].

Here U[a,b] denotes a uniform distribution on the interval [a,b]. In all cases, we varied the SNR
parameter α, as specified in the observation model (21), in the interval [0,1].

7.2 Comparison between “Incorrect” and True Model

We begin with an experimental comparison to substantiate our earlier claim that applying an ap-
proximate message-passing algorithm to the “incorrect” model yields prediction results superior to
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those obtained by applying the same message-passing algorithm to the true underlying model. As
discussed earlier in Section 6.3.1, for any underlying model p(x;θ∗) in which approximate message-
passing yields the incorrect marginals (without any additional observations), there exists a range of
SNR around α≈ 0 for which this superior performance will hold.
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Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRW method
applied to the true model (black circles) versus the approximate model (red diamonds) as
a function of observation SNR for grids with N = 64 nodes, and attractive coupling β =
0.70. As predicted by theory, using the “incorrect” model leads to superior performance,
when prediction is performed using the approximate TRW method, for a range of SNR.

Figure 4 provides an empirical demonstration of this claim, when the TRW algorithm for pre-
diction is applied to a grid with N = 64 nodes and attractive coupling strength β = 0.70, and the
node observations chosen randomly as θ∗s ∼ N(0,0.5). Plotted versus the SNR parameter α is the
percentage increase in MSE performance relative to the Bayes optimal baseline. Note that for all
SNR parameters up to α ≈ 0.40, applying the TRW algorithm to the true model yields worse per-
formance than applying it to the “incorrect model”. Beyond this point, the pattern reverses, but any
differences between the two methods are rather small for α > 0.40.

7.3 Comparison between Tree-reweighted and Ordinary Sum-product

We now compare the performance of the prediction method based on tree-reweighted sum-product
(TRW) message-passing to that based on ordinary sum-product or belief propagation (BP) message-
passing. Shown in Figure 5 are 2-D surface plots of the average percentage increase in MSE,
taken over 100 trials, as a function of the coupling strength β ∈ [0,1] and the observation SNR
parameter α ∈ [0,1] for the independence model (left column), BP approach (middle column) and
TRW method (right column). The top two rows show performance for attractive coupling, for
mixture ensemble A ((a) through (c)) and ensemble B ((d) through (f)), whereas the bottom two row
show performance for mixed coupling, for mixture ensemble A ((g) through (i)) and ensemble B
((j) through (l)).

First, observe that for weakly coupled problems (β ≈ 0), whether attractive or mixed coupling,
all three methods—including the independence model—perform quite well, as should be expected
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (ν0,σ2

0) = (−1,0.5) and (ν1,σ2
1) = (1,0.5). Second

row: Attractive coupling and a Gaussian mixture with components (ν0,σ2
0) = (0,1) and

(ν0,σ2
1) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components

(ν0,σ2
0) = (−1,0.5) and (ν1,σ2

1) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (ν0,σ2

0) = (0,1) and (ν0,σ2
1) = (0,9).
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given the weak dependency between different nodes in the Markov random field. Although not clear
in these plots, the standard BP method outperforms the TRW-based method for weak coupling; how-
ever, both methods lose less than 1% in this regime. As the coupling is increased, the BP method
eventually deteriorates quite seriously; indeed, for large enough coupling and low/intermediate
SNR, its performance can be worse than the independence (IND) model. This deterioration is
particularly severe for the case of mixture ensemble A with attractive coupling, where the percent-
age loss in BP can be as high as 50%. Note that the degradation is not caused by failure of the
BP algorithm to converge. Rather, by looking at alternative models (in which phase transitions are
known), we have found that this type of rapid degradation coincides with the appearance of multiple
fixed points for the BP algorithm. In contrast, the behavior of the TRW method is extremely stable,
which is consistent with our theoretical results.

7.4 Comparison between Theory and Practice

We now compare the practical behavior of the tree-reweighted sum-product algorithm to the the-
oretical predictions from Theorem 7. In general, we have found that in quantitative terms, the
bounds (27) are rather conservative—in particular, the TRW sum-product method performs much
better than the bounds would predict. However, here we show how the bounds can capture qualita-
tive aspects of the MSE increase in different regimes.

Figure 6 provides plots of the actual MSE increase for the TRW algorithm (solid red lines),
compared to the theoretical bound (27) (dotted blue lines), for the grid with N = 64 nodes, and
attractive coupling of strength β = 0.70. For all comparisons in both panels, we used L = 0.10,
which numerical calculations showed to be a reasonable choice for this coupling strength. (Overall,
changes in the constant L primarily cause the bounds to shift up and down on the log scale, and
so do not overly affect the qualitative comparisons given here.) Panel (a) provides the comparison
ensembles of type A, with fixed variances σ2

0 = σ2
1 = 0.5 and mean vectors (ν0,ν1) ranging from

(−0.5,0.5) to (−2.5,2.5). Note how the bounds capture the qualitative behavior for low SNR, for
which the difficulty of the problem increases as the mean separation is increased. In contrast, in the
high SNR regime, the bounds are extremely conservative, and fail to predict that the sharp drop-off
in error as the SNR parameter α approaches one. This drop-off is particularly pronounced for the
ensemble with largest mean separation (marked with +). Panel (b) provides a similar comparison
for ensembles of type B, with fixed mean vectors ν0 = ν1 = 0, and variances (σ1

0,σ2
1) ranging from

(1,1.25) to (1,25). In this case, although the bounds are still very conservative in quantitative terms,
they reasonably capture the qualitative behavior of the error over the full range of SNR.

8. Discussion

Key challenges in the application of Markov random fields include the estimation (learning) of
model parameters, and performing prediction using noisy samples (e.g., smoothing, interpolation,
denoising). Both of these problems present substantial computational challenges for general Markov
random fields. In this paper, we have described and analyzed methods for joint estimation and pre-
diction that are based on convex variational methods. Our central result is that using inconsistent pa-
rameter estimators can be beneficial in the computation-limited setting. Indeed, our results provide
rigorous confirmation of the fact that using parameter estimates that are “systematically incorrect” is
helpful in offsetting the error introduced by using an approximate method during the prediction step.
Moreover, our analysis establishes an additional benefit—aside from the obvious one of ensuring
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Figure 6: Comparison of actual MSE increase and upper bounds for grid with N = 64 nodes with
attractive coupling. (a) Equal variances σ2

0 = σ2
1 = 0.5, and mean vectors (ν0,ν1) ranging

from (−0.5,0.5) to (−2.5,2.5). (b) Equal mean vectors ν0 = ν1 = 0, and variances
(σ2

0,σ2
1) ranging from (1,1.25) to (1,25).

unique global optima—to using variational methods based on convex approximations. In particular,
we established a global Lipschitz stability property that applies to any message-passing algorithm
that is based on a strongly concave entropy approximation. This type of global stability is a key con-
sideration for algorithms that are applied to models estimated from data, or in which errors might
be introduced during message-passing (e.g., due to quantization or other forms of communication
constraints). Our empirical results showed that a joint prediction/estimation method using the tree-
reweighted sum-product algorithm yields good performance across a wide range of experimental
conditions. Although our work has focused on a particular scenario, we suspect that similar ideas
and techniques will be useful in related applications of approximate methods for learning combined
with prediction and/or classification.
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Appendix A. Tree-Based Relaxation

As an illustration on the single cycle on 3 vertices, the pseudomarginal vector with elements

τs(xs) =

[
0.5
0.5

]
for s = 1,2,3 and τst(xs,xt) =

[
αst 0.5−αst

0.5−αst αst

]
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belongs to LOCALφ(G) for all choices αst ∈ [0,0.5], but fails to belong to MARGφ(G), for instance,
when α12 = α23 = α13 = 0.

Appendix B. Proof of Lemma 4

Using Lemma 1 and the mean value theorem, we write

µ(θ+δ)−µ(θ) = ∇A(θ+δ)−∇A(θ)

= ∇2A(θ+ tδ)δ

for some t ∈ (0,1). Hence, it suffices to show that the eigenspectrum of the Hessian ∇2A(θ) =
covθ{φ(X)} is uniformly bounded above by L < +∞. The functions φ are all 0-1 valued indi-
cator functions, so that the diagonal elements of covθ

{
φ(X)

}
are bounded above—in particular,

var(φα(X))≤ 1
4 for any index α ∈ {1, . . . ,d}. Consequently, we have

λmax(covθ{φ(X)}) ≤
d

∑
α=1

λα(covθ{φ(X)} = trace(covθ{φ(X)} =
d
4

as required.

Appendix C. Proof of Lemma 6

Consider a spanning tree T of G with edge set E(T ). Given a vector τ ∈ LOCALφ(G), we associate
with T a subvector τ(T ) formed by those components of τ associated with vertices V and edges
E(T ). Note that by construction τ(T ) ∈ LOCALφ(T ) = MARGφ(T ). The mapping τ 7→ τ(T ) can
be represented by a projection matrix ΠT ∈ R

d(T )×d with the block structure

ΠT :=
[
Id(T )×d(T ) 0d(T )×(d−d(T ))

]
.

In this definition, we are assuming for convenience that τ is ordered such that the d(T ) components
corresponding to the tree T are placed first. With this notation, we have ΠT τ =

[
τ(T ) 0

]′
.

By our construction of the function Bρ, there exists a probability distribution ρ := {ρ(T ) | T ∈ T}
such that Bρ(τ) = ∑T∈T ρ(T )A∗(τ(T )), where A∗(τ(T )) denotes the negative entropy of the tree-
structured distribution defined by the vector of marginals τ(T ). Hence, the Hessian of Bρ has the
decomposition

∇2Bρ(τ) = ∑
T∈T

ρ(T )(ΠT )′∇2A∗(τ(T ))(ΠT ). (33)

To check dimensions of the various quantities, note that ∇2A∗(τ(T )) is a d(T )× d(T ) matrix, and
recall that each matrix ΠT ∈ R

d(T )×d .
Now by Lemma 4, the eigenvalues of the ∇2A are uniformly bounded above; hence, the eigen-

values of ∇2A∗ are uniformly bounded away from zero. Hence, for each tree T , there exists a
constant CT such that for all z ∈ R

d

z′(ΠT )′∇2A∗(τ(T ))(ΠT )z ≥ CT‖ΠT z‖2 = CT‖zT‖2,
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where we use zT = ΠT z as a shorthand for the projection of z onto the indices associated with T .
Substituting this relation into our decomposition (33) and expanding the sum over T yields

z′∇2Bρ(τ)z ≥ ∑
T∈T

ρ(T )CT‖zT‖2

=
[

∑
T∈T

ρ(T )CT
]
∑
s∈V

‖zs‖2 + ∑
(s,t)∈E

[
∑

T∈T
ρ(T )CT I [(s, t) ∈ E(T )]

]
‖zst‖2. (34)

Defining C∗ := minT∈TCT , we have the lower bounds

[
∑

T∈T
ρ(T )CT

]
≥ C∗ ∑

T∈T
ρ(T ) = C∗ > 0

∑
T∈T

ρ(T )CT I [(s, t) ∈ E(T )] ≥ C∗ ∑
T∈T

ρ(T )I [(s, t) ∈ E(T )] = C∗ρst ≥ C∗ρ∗ > 0,

where ρ∗ := min
(s,t)∈E

ρst > 0. Applying these bounds to Equation (34) yields the final inequality

z′∇2Bρ(τ)z ≥ C∗ρ∗‖z‖2 ∀z ∈ R
d

with C∗ρ∗ > 0, which establishes that the eigenvalues of ∇2Bρ(τ) are bounded away from zero.

Appendix D. Form of Exponential Parameter

Consider the observation model ys = αzs +
√

1−α2vs, where vs ∼ N(0,1) and zs is a mixture of
two Gaussians (ν0,σ2

0) and (ν1,σ2
1). Conditioned on the value of the mixing indicator Xs = j, the

distribution of ys is Gaussian with mean αν j and variance α2σ2
j +(1−α2).

Let us focus on one component p(ys |xs) in the factorized conditional distribution p(y |x) =

∏n
s=1 p(ys |xs). For j = 0,1, it has the form

p(ys |Xs = j) =
1√

2π
[
α2σ2

j +(1−α2)
] exp

{
− 1

2
[
α2σ2

j +(1−α2)
](ys−αν j)

2
}
.

We wish to represent the influence of this term on xs in the form exp(γsxs) for some exponential
parameter γs. We see that γs should have the form

γs = log p(ys |Xs = 1)− log p(ys |Xs = 0)

=
1
2

log

[
α2σ2

0 +(1−α2)
]

[
α2σ2

1 +(1−α2)
] +

(ys−αν0)
2

2
[
α2σ2

0 +(1−α2)
] − (ys−αν1)

2

2
[
α2σ2

1 +(1−α2)
] .
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Abstract

In streamwise feature selection, new features are sequentially considered for addition to a predic-
tive model. When the space of potential features is large, streamwise feature selection offers many
advantages over traditional feature selection methods, which assume that all features are known in
advance. Features can be generated dynamically, focusing the search for new features on promising
subspaces, and overfitting can be controlled by dynamically adjusting the threshold for adding fea-
tures to the model. In contrast to traditional forward feature selection algorithms such as stepwise
regression in which at each step all possible features are evaluated and the best one is selected,
streamwise feature selection only evaluates each feature once when it is generated. We describe
information-investing and α-investing, two adaptive complexity penalty methods for streamwise
feature selection which dynamically adjust the threshold on the error reduction required for adding
a new feature. These two methods give false discovery rate style guarantees against overfitting.
They differ from standard penalty methods such as AIC, BIC and RIC, which always drastically
over- or under-fit in the limit of infinite numbers of non-predictive features. Empirical results show
that streamwise regression is competitive with (on small data sets) and superior to (on large data
sets) much more compute-intensive feature selection methods such as stepwise regression, and
allows feature selection on problems with millions of potential features.

Keywords: classification, stepwise regression, multiple regression, feature selection, false discov-
ery rate

1. Introduction

In many predictive modeling tasks, one has a fixed set of observations from which a vast, or even
infinite, set of potentially predictive features can be computed. Of these features, often only a small
number are expected to be useful in a predictive model. Pairwise interactions and data transforma-
tions of an original set of features are frequently important in obtaining superior statistical models,
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but expand the number of feature candidates while leaving the number of observations constant.
For example, in a recent bankruptcy prediction study (Foster and Stine, 2004b), pairwise interac-
tions between the 365 original candidate features led to a set of over 67,000 resultant candidate
features, of which about 40 proved to be significant. The feature selection problem is to identify
and include features from a candidate set with the goal of building a statistical model with minimal
out-of-sample (test) error. As the set of potentially predictive features becomes ever larger, careful
feature selection to avoid overfitting and to reduce computation time becomes ever more critical.

In this paper, we describe streamwise feature selection, a class of feature selection methods
in which features are considered sequentially for addition to a model, and either added to the
model or discarded, and two simple streamwise regression algorithms1, information-investing and
α-investing, that exploit the streamwise feature setting to produce simple, accurate models. Figure
1 gives the basic framework of streamwise feature selection. One starts with a fixed set of y values
(for example, labels for observations), and each potential feature is sequentially tested for addition
to a model. The threshold on the required benefit (for example, error or entropy reduction, or sta-
tistical significance) for adding new features is dynamically adjusted in order to optimally control
overfitting.

Streamwise regression should be contrasted with “batch” methods such as stepwise regression
or support vector machines (SVMs). In stepwise regression, there is no order on the features; all
features must be known in advance, since all features are evaluated at each iteration and the best
feature is added to the model. Similarly, in SVMs or neural networks, all features must be known in
advance. (Overfitting in these cases is usually avoided by regularization, which leaves all features
in the model, but shrinks the weights towards zero.) In contrast, in streamwise regression, since
potential features are tested one by one, they can be generated dynamically.

By modeling the candidate feature set as a dynamically generated stream, we can handle can-
didate feature sets of unknown, or even infinite size, since not all potential features need to be
generated and tested. Enabling selection from a set of features of unknown size is useful in many
settings. For example, in statistical relational learning (Jensen and Getoor, 2003; Dzeroski et al.,
2003; Dzeroski and Lavrac, 2001), an agent may search over the space of SQL queries to augment
the base set of candidate features found in the tables of a relational database. The number of candi-
date features generated by such a method is limited by the amount of CPU time available to run SQL
queries. Generating 100,000 features can easily take 24 CPU hours (Popescul and Ungar, 2004),
while millions of features may be irrelevant due to the large numbers of individual words in text.
Another example occurs in the generation of transformations of features already included in the
model (for example, pairwise or cubic interactions). When there are millions or billions of potential
features, just generating the entire set of features (for example, cubic interactions or three-way table
merges in SQL) is often intractable. Traditional regularization and feature selection settings assume
that all features are pre-computed and presented to a learner before any feature selection begins.
Streamwise regression does not.

Streamwise feature selection can be used with a wide variety of models where p-values or
similar measures of feature significance are generated. We evaluate streamwise regression using

1. The algorithms select features and add these features into regression models. Since feature selection and regression
are closely coupled here, we use “streamwise feature selection” and “streamwise regression” interchangeably. Some
papers use the terms “regression” for continuous responses and “classification” for categorical responses. We use
“regression” for both cases, since generalized linear regression methods such as logistic regression handle categorical
responses well.
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Input: A vector of y values (for example, labels), and a stream of features x.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
while CPU time used < max CPU time do

xi ← get next feature()
{Is xi a “good” feature?}
if fit of(xi, model) > threshold then

model ← model ∪ xi // add xi to the model
decrease threshold

else
increase threshold

end if
i ← i+1

end while

Figure 1: Algorithm: general framework of streamwise feature selection. The threshold on statis-
tical significance of a future new feature (or the entropy reduction required for adding
the future new feature) is adjusted based on whether current feature was added. fit of(xi,
model) represents a score, indicating how much adding xi to the model improves the
model. Details are provided below.

linear and logistic regression (also known as maximum entropy modeling), where a large variety
of selection criteria have been developed and tested. Although streamwise regression is designed
for settings in which there is some prior knowledge about the structure of the space of potential
features, and the feature set size is unknown, in order to compare it with stepwise regression, we
apply streamwise regression in traditional feature selection settings, that is, those of fixed feature
set size. In such settings, empirical evaluation shows that, as predicted by theory, for smaller feature
sets such as occur in the UCI data sets, streamwise regression produces performance competitive
to stepwise regression using traditional feature selection penalty criteria including AIC (Akaike,
1973), BIC (Schwartz, 1978), and RIC (Donoho and Johnstone, 1994; Foster and George, 1994).
As feature set size becomes larger, streamwise regression offers significant computational savings
and higher prediction accuracy.

The ability to do feature selection well encourages the use of different transformations of the
original features. For sparse data, principal components analysis (PCA) or other feature extraction
methods generate new features which are often predictive. Since the number of potentially useful
principal components is low, it costs very little to generate a couple different projections of the
data, and to place these at the head of the feature stream. Smaller feature sets should be put first.
For example, first PCA components, then the original features, and then interaction terms. Results
presented below confirm the efficiency of this approach.

Features in the feature stream can be sorted by cost. If features which are cheaper to collect
are placed early in the feature stream, they will be preferentially selected over redundant expensive
features later in the stream. When using the resulting model for future predictions, one needs not
collect the redundant expensive features.
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Alternatively, features can be sorted so as to place potentially higher signal content features
earlier in the feature stream, making it easier to discover the useful features. Different applications
benefit from different sorting criteria. For example, sorting gene expression data on the variance of
features sometimes helps (see Section 6.2). Often features come in different types (person, place,
organization; noun, verb, adjective; car, boat, plane). A combination of domain knowledge and
use of the different sizes of the feature sets can be used to provide a partial order on the features,
and thus to take full advantage of streamwise feature selection. As described below, one can also
dynamically re-order feature streams based on which features have been selected so far.

2. Traditional Feature Selection: A Brief Review

Traditional feature selection typically assumes a setting consisting of n observations and a fixed
number m of candidate features. The goal is to select the feature subset that will ultimately lead
to the best performing predictive model. The size of the search space is therefore 2m, and iden-
tifying the best subset is NP-complete. Many commercial statistical packages offer variants of a
greedy method, stepwise feature selection, an iterative procedure in which at each step all features
are tested at each iteration, and the single best feature is selected and added to the model. Stepwise
regression thus performs hill climbing in the space of feature subsets. Stepwise selection is termi-
nated when either all candidate features have been added, or none of the remaining features lead
to increased expected benefit according to some measure, such as a p-value threshold. We show
below that an even greedier search, in which each feature is considered only once (rather than at
every step) gives competitive performance. Variants of stepwise selection abound, including for-
ward (adding features deemed helpful), backward (removing features no longer deemed helpful),
and mixed methods (alternating between forward and backward). Our evaluation and discussion
will assume a simple forward search.

There are many methods for assessing the benefit of adding a feature. Computer scientists tend
to use cross-validation, where the training set is divided into several (say k) batches with equal
sizes. k− 1 of the batches are used for training while the remainder batch is used for evaluation.
The training procedure is run k times so that the model is evaluated once on each of the batches
and performance is averaged. The approach is computationally expensive, requiring k separate
retraining steps for each evaluation. A second disadvantage is that when observations are scarce the
method does not make good use of the observations. Finally, when many different models are being
considered (for example, different combinations of features), there is a serious danger of overfitting
when cross-validation is used. One, in effect, is selecting the model to fit the test set.

Penalized likelihood ratio methods (Bickel and Doksum, 2001) for feature selection are pre-
ferred to cross-validation by many statisticians, as they do not require multiple re-trainings of the
model and they have attractive theoretical properties. Penalized likelihood can be represented as:

score = −2log(likelihood)+F ×q

where F is a function designed to penalize model complexity, and q represents the number of fea-
tures currently included in the model at a given point. The first term in the equation represents a
measure of the in-sample error given the model, while the second is a model complexity penalty.
Table 1 contains the definitions which we use throughout the paper. In addition, we define ben-
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Symbol Meaning
n Number of observations
m Number of candidate features
m∗ Number of beneficial features in the candidate feature set
q Number of features currently included in a model

Table 1: Symbols used throughout the paper and their definitions.

Name Nickname Penalty
Akaike information criterion AIC 2
Bayesian information criterion BIC log(n)
risk inflation criterion RIC 2log(m)

Table 2: Different choices for the model complexity penalty F .

eficial2 or spurious features as those which, if added to the current model, would or would not
reduce prediction error, respectively, on a hypothetical infinite large test data set. Note that under
this definition of beneficial, if two features are perfectly correlated, the first one in the stream would
be beneficial and the second one spurious, as it would not improve prediction accuracy. Also, if a
prediction requires an exact XOR of two features, the raw features themselves could be spurious,
even though the derived XOR-feature might be beneficial. We speak of the set of beneficial features
in a stream as those which would have improved the prediction accuracy of the model at the time
they were considered for addition if all prior beneficial features had been added.

Only features that decrease the score defined in Equation (1) are added to the model. In other
words, the benefit of adding the feature to the model as measured by the likelihood ratio must
surpass the penalty incurred by increasing the model complexity. We focus now on choice of F .
Many different functions F have been used, defining different criteria for feature selection. The most
widely used of these criteria are the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), and the risk inflation criterion (RIC). Table 2 summarizes the penalties F used in
these methods.

For exposition we find it useful to compare the different choices of F as alternative coding
schemes for use in a minimum description length (MDL) criterion framework (Rissanen, 1999). In
MDL, both sender and receiver are assumed to know the feature matrix and the sender wants to
send a coded version of a statistical model and the residual error given the model so that the receiver
can construct the response values. Equation (1) can be viewed as the length of a message encoding
a statistical model (the second term in Equation (1)) plus the residual error given that model (the
first term in Equation (1)). To encode a statistical model, an encoding scheme must identify which
features are selected for inclusion and encode the estimated coefficients of the included features.
Using the fact that the log-likelihood of the data given a model gives the number of bits to code
the model residual error leads to the criteria for feature selection: accept a new feature xi only
if the change in log-likelihood from adding the feature is greater than the penalty F , that is, if

2. Some papers use the terms “useful” or “relevant”; please see Kohavi and John (1997) and Blum and Langley (1997)
for a discussion and definitions of these terms. If the features were independent (orthogonal), then we could speak
of “true” features, which improve prediction accuracy for a given classification method regardless of which other
features are already in the model.
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2log(P(y|ŷxi))−2log(P(y|ŷ−xi)) > F where y is the response values, ŷxi is the prediction when the
feature xi is added into the model, and ŷ−xi is the prediction when xi is not added. Different choices
for F correspond to different coding schemes for the model.

Better coding schemes encode the model more efficiently; they produce a more accurate depic-
tion of the model using fewer bits. AIC’s choice of F = 2 corresponds to a version of MDL which
uses universal priors for the coefficient of a feature which is added into the model (Foster and Stine,
1999). BIC’s choice of F = log(n) employs more bits to encode the coefficient as the training set
size grows larger. Using BIC, each zero coefficient (feature not included in the model) is coded with
one bit, and each non-zero coefficient (feature included in the model) is coded with 1+ 1

2 log(n) bits
(all logs are base 2). BIC is equivalent to an MDL criterion which uses spike-and-slab priors if the
number of observations n is large enough (Stine, 2004).

However, neither AIC nor BIC are valid codes for m � n. They thus are expected to perform
poorly as m grows larger than n, a situation common in streamwise regression settings. We confirm
this theory through empirical investigation in Section 6.2.

RIC corresponds to a penalty of F = 2log(m) (Foster and George, 1994; George, 2000). Al-
though the criterion is motivated by a minimax argument, following Stine (2004) we can view RIC
as an encoding scheme where log(m) bits encode the index of which feature is added. Using RIC,
no bits are used to code the coefficients of the features that are added. This is based on the assump-
tion that m is large, so that the log(m) cost dominates the cost of specifying the coefficients. Such
an encoding is most efficient when we expect few of the m candidate features enter the model.

RIC can be problematic for streamwise feature selection since RIC requires that we know m in
advance, which is often not the case (see Section 3). We are forced to guess a m, and when our guess
is inaccurate, the method may be too stringent or not stringent enough. By substituting F = 2log(m)
into Equation (1) and examining the resulting chi-squared hypothesis test, it can be shown that the
p-value required to reject the null hypothesis must be smaller than 0.05

m . In other words, RIC may be
viewed as a Bonferroni p-value thresholding method. Bonferroni methods are known to be overly
stringent (Benjamini and Hochberg, 1995), a problem exacerbated in streamwise feature selection
applications when m should technically be chosen to be the largest number of features that might be
examined. On the other hand, if m is picked to be a lower bound of the number of predictors that
might be examined, then it is too small and there is increased risk that some feature will appear by
chance to give significant performance improvement.

Streamwise feature selection is closer in spirit to an alternate class of feature selection methods
that control the false discovery rate (FDR), the fraction of the features that are added to the model
that reduce predictive accuracy (Benjamini and Hochberg, 1995). Unlike AIC, BIC and RIC, which
require each potential feature to be above the same threshold, FDR methods compute p-values (here,
the probability of feature increasing test error), sort the features by p-value, and then use a threshold
which depends on both the total number of features considered (like RIC) and the number of features
that have been added, making use of the fact that adding some features which are almost certain to
reduce prediction error allows us to add other features which are more marginal, while still meeting
the FDR criterion. In this paper we propose an alternative to FDR that, among other benefits, can
handle infinite feature streams, and make the above claims precise.
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3. Interleaving Feature Generation and Testing

In streamwise feature selection, candidate features are sequentially presented to the modeling code
for potential inclusion in the model. As each feature is presented, a decision is made using an
adaptive penalty scheme as to whether or not to include the feature in the model. Each feature needs
be examined at most once.

The “streamwise” view supports flexible ordering on the generation and testing of features.
Features can be generated dynamically based on which features have already been added to the
model.3 Note that the theory provided below is independent of the feature generation scheme used.
All that is required is a method of generating features, and an estimation package which given
a proposed feature for addition to the model returns a p-value for the corresponding coefficient
or, more generally, the change in likelihood of the model resulting from adding the feature. One
can also test the same feature more than once (as in stepwise regression), but we have not found
significant benefit from doing multiple passes through the features.

New features can be generated in many ways. For example, in addition to the m original fea-
tures, m2 pairwise interaction terms can be formed by multiplying all m2 pairs of features together.
(Almost half of these features are, of course, redundant with the other half due to symmetry, and so
need not be generated and tested.) We refer to the interaction terms as generated features; they are
examples of a more general class of features formed from transformations of the original features
(square root, log, etc.), or combinations of them including, for instance, PCA. Such strategies are
frequently successful in obtaining better predictive models.

Rather than testing all possible interactions in an arbitrary order, it is generally better to initially
test interactions of the features that have already been selected with themselves, then to test interac-
tions of the selected features with the original features, and finally (if computer power permits) to
test all interactions of the original features. This requires dynamic generation of the feature stream,
since the first interaction terms can not be specified in advance, as they depend on which features
have already been selected. (It can be the case, as in an XOR or parity problem, that interactions are
significant when none of the individual component features are, but it still makes sense as a search
strategy to try the smaller parts of the feature space first.)

Statistical relational learning (SRL) methods can easily generate millions of potentially predic-
tive features as they “crawl” through a database or other relational structure and generate features
by building increasingly complex compound relations or SQL queries (Popescul and Ungar, 2004).
For example, when building a model to predict the journal in which an article will be published,
potentially predictive features include the words in the target article itself, the words in the articles
cited by the target article, the words in articles that cite articles written by the authors of the target
article, and so forth.

Both stepwise regression and standard shrinkage methods require knowing all features in ad-
vance, and are poorly suited for the feature sets generated by SRL. Since stepwise regression tests
all features for inclusion at each iteration, it is computational infeasible on large data sets. Even if
computer speed and memory were not an issue, control of overfitting using standard penalty meth-
ods would fail. Some other strategy such as streamwise feature selection is required. Interleaving
the generation of features with the assessment of model improvement allows the search over po-

3. One cannot use the coefficients of the features that were not added to the model, since streamwise regression does
not include the cost of coding these coefficients, and so this would lead to overfitting. One can, of course, use the
rejected features themselves in interaction terms, just not their coefficients.
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tential features to be pruned to promising regions. A potentially intractable search thus becomes
tractable.

In SRL, one searches further in those branches of a refinement graph where more component
terms have proven predictive. In searching for interaction terms, one looks first for interactions or
transformations of features which have proven significant. This saves the computation, and more
importantly, avoids the need to take a complexity penalty for the many interaction terms which are
never examined.

There are also simple ways to dynamically interleave multiple kinds of features, each of which is
in its own stream. The main feature stream used in streamwise regression is dynamically constructed
by taking the next feature from the sub stream which has had the highest success in having features
accepted. If a previously successful stream goes long enough without having a feature selected, then
other streams will be automatically tried. To assure that all streams are eventually tried, one can use
a score for each stream defined as (number of features selected + a)/(number of features tried + b).
The exact values of a and b do not matter, as long as both are positive. A single feature stream is
used in this paper.

4. Streamwise Regression using Information-investing

Streamwise regression can be used either in an MDL setting (“information-investing”) or in a sta-
tistical setting using a t or F statistic (“α-investing”). We first present streamwise regression in an
information-investing setting. Information-investing (Ungar et al., 2005) is derived using a min-
imum description length (MDL) approach (Stine, 2004). From a coding viewpoint, we wish to
transmit a message to a receiver in order to let the receiver get the response values (y), assuming
that the receiver knows x. In this sense, the score in Equation (1) is the description length required
to code this message. The model is then chosen that minimizes the description length. If a feature is
added to the model and reduces the description length, we call this reduction the bits saved. There-
fore, bits saved is the decrease in the bits required to code the model error minus the increase in the
bits required to code the model. The coding used to calculate bits saved is described in details in
Section 4.3. If bits saved is larger than a threshold, we add the feature to the model. The algorithm
is shown in Figure 2. We set both W0 and WΔ to 0.5 bit in all of the experiments presented in this
paper.

Information-investing allows us, for any valid coding, to have a false discovery rate (FDR) style
bound, and thus to minimize the expected test error by adding as many features as possible subject
to controlling the FDR bound (Zhou et al., 2005).

Streamwise regression with information-investing consists of three components:

• Wealth Updating: a method for adaptively adjusting the bits available to code the features
which will not be added to the model.

• Bid Selection: a method for determining how many bits, εi, one is willing to spend to code
the fact of not adding a feature xi. Asymptotically, it is also the probability of adding this
feature. We show below how bid selection can be done optimally by keeping track of the
bits available to cover future overfitting (that is, the wealth).

• Feature Coding: a coding method for determining how many bits are required to code a
feature for addition. We use a two part code, coding the presence or absence of the features,
and then, if the feature is present, coding the sign and size of the estimated coefficient.
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Input: A vector of y values (for example, labels), a stream of features x, W0, and WΔ.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
w1 = W0 // initial bits available for coding
while CPU time used < max CPU time do

xi ← get next feature()
εi ← wi/2i // select bid amount
{see Section 4.3 for the calculation of bits saved}
if bits saved(xi,εi,model) > WΔ then

model ← model ∪ xi // add xi to the model
wi+1 ← wi +WΔ // increase wealth

else
wi+1 ← wi − εi // reduce wealth

end if
i ← i+1

end while

Figure 2: Algorithm: streamwise regression using information-investing.

4.1 Wealth Updating

The information-investing coding scheme is adjusted using the wealth, w, which represents the
number of bits currently available for future overfitting. The wealth is “invested” in testing features.
Wealth starts at an initial value W0.

Each time a feature is added, it is (in expectation) likely to be a beneficial feature and lead to a
decrease in the total description length, leaving more bits available to risk future overfitting. Thus,
wealth is increased by WΔ. By increasing wealth, we gain more feature selection power under the
FDR bound. Our algorithm guarantees that the sum of wealth (which is increased by WΔ) and total
description length (which is decreased by more than WΔ) is decreased. If a feature is not added to
the model, ε bits is “invested” to code this fact and subtracted from wealth.

4.2 Bid Selection

The selection of εi as wi/2i gives the slowest possible decrease in wealth such that all wealth is
used; that is, so that as many features as possible are included in the model without systematically
overfitting.4

Theorem 1 Computing εi as proportional to wi/2i gives the slowest possible decrease in wealth
such that limi→∞ wi = 0.

4. Slightly better and more complex bid selection methods such as εi ← wi/(i log(i)) could be used, but they are sta-
tistically equivalent to the simpler one in terms of rates, and more importantly they generate tests that have no more
power. We will stick with the simpler one in this paper.
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Proof Define δi = εi/wi to be the fraction of wealth invested at time i. If no features are added
to the model, wealth at time i is wi = Πi(1− δi). If we pass to the limit to generate w∞, we have
w∞ = Πi(1−δi) = e∑ log(1−δi) = e−∑δi+O(δ2

i ). Thus, w∞ = 0 iff ∑δi is infinite.
Thus if we let δi go to zero faster than 1/i, say i−1−γ where γ > 0 then w∞ > 0 and we have

wealth that we never use.

4.3 Feature Coding

To code an added feature, we code both the fact that the feature is added and the value of its esti-
mated coefficient. Since ε is the number of bits available to code the fact of not adding a feature, the
probability of not adding a feature should be e−ε if the coding is optimal. Therefore, the probability
of adding a feature is 1− e−ε = 1− (1− ε +O(ε2)) ≈ ε, and the cost in bits of coding the fact the
feature is added is roughly − log(ε) bits. Different codings can be used for the feature’s estimated
coefficient. For example, BIC uses 1

2 log(n) bits. In section 4.3.1, we present an optimal coding of
the estimated coefficients.

For now, for simplicity assume we use b bits to code each feature x’s estimated coefficient β̂
when x is added to the model. Adding x to the model reduces the model entropy by 1

2 t2 log(e) bits

where t is the t statistic associated with β̂, as defined above. Here, and below log() is log based 2;
the log(e) converts the t2 to bits. Then,

bits saved =
1
2

t2 log(e)− (− log(ε)+b).

4.3.1 OPTIMAL CODING OF COEFFICIENTS IN INFORMATION-INVESTING

A key question is what coding scheme to use to code the coefficient of a feature which is added to
the model. We describe here an “optimal” coding scheme which can be used in the information-
investing criterion. The key idea is that coding an event with probability p requires log(p) bits. This
equivalence allows us to think in terms of distributions and thus to compute codes which handle
fractions of a bit. Our goal is to find a (legitimate) coding scheme which, given a “bid” ε, will
guarantee the highest probability of adding the feature to the model. We show below that given
any actual distribution f̃β of the coefficients, we can produce a coding corresponding to a modified
distribution fβ which produces a coding which uniformly dominates it.

Assume, for simplicity, that we increase the wealth by one bit when a feature xi with coefficient
βi is added. Thus, when xi is added, we have

log
p(xi is a beneficial feature)
p(xi is a spurious feature)

> 1 bit,

that is, the log-likelihood decreases by more than one bit.
Let fβi

be the distribution implied by the coding scheme for tβi
if we add xi and f0(tβi

) be the
normal distribution (the null model in which xi should not be added). The coding saves enough bits
to justify adding a feature whenever fβi

(tβi
) ≥ 2 f0(tβi

). This happens with probability αi ≡ p0({tβi
:

fβi
(tβi

) ≥ 2 f0(tβi
)}) under the null. αi is the area under the tails of the null distribution.

There is no reason to have fβi
(tβi

) � 2 f0(tβi
) in the tails, since this would “waste” probability

or bits. Hence, the optimal coding is fβ(tβi
) = 2 f0(tβi

) for all the features that are likely to be
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Figure 3: Optimal distribution fβ.

added. Using all of the remaining probability mass (or equivalently, making the coding “Kraft
tight”) dictates the coding for the case when the feature is not likely to be added. The most efficient
coding to use is thus: {

fβ(tβi
) = 2 f0(tβi

) if |tβi
| > tαi

fβ(tβi
) = 1−2αi

1−αi
f0(tβi

) otherwise

and the corresponding cost in bits is:

{
log( fβ(tβi

)/ f0(tβi
)) = log(2) = 1 bit if |tβi

| > tαi

log( fβ(tβi
)/ f0(tβi

) = log(1−2αi
1−αi

) ≈−αi bits otherwise.

Figure 3 shows the distribution fβ(t(βi)), with the probability mass transferred away from the
center, where features are not added, out to the tails, where features are added.

The above equations are derived assuming that 1 bit is added to the wealth. It can be generalized
to add WΔ bits to the wealth each time a feature is added to the model. Then, when a feature is added
to the model the probability of it being “beneficial” should be 2WΔ times that of it being “spurious”,
and all of the 2’s in the above equations are replaced with 2WΔ .

5. Streamwise Regression using Alpha-investing

One can define an alternate form of streamwise regression, α-investing (Zhou et al., 2005), which
is phrased in terms of p-values rather than information theory. The p-value associated with a t-
statistic is the probability that a coefficient of the observed size could have been estimated by chance
even though the true coefficient was zero (Larsen and Marx, 2001). Of the three components of
streamwise regression using information-investing, in α-investing, wealth updating is similar, bid
selection is identical, and feature coding is not required. The two different streamwise regression
algorithms are asymptotically identical (the wealth update of αΔ −αi approaches the update of WΔ
as αi becomes small), but differ slightly when the initial features in the stream are considered. The
relation between the two methods follows from the fact that coding an event with probability p
requires log(p) bits. The α-investing algorithm is shown in Figure 4, and the equivalence between
α-investing and information-investing is shown in Table 3. Wealth updating is now done in terms
of α, the probability of adding a spurious feature.
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Input: A vector of y values (for example, labels), a stream of features x, W0, and αΔ.
{initialize}
model = {} //initially no features in model
i = 1 // index of features
w1 = W0 // initial prob. of false positives
while CPU time used < max CPU time do

xi ← get next feature()
αi ← wi/2i
{Is p-value of the new feature below threshold?}
if get p-value(xi,model) < αi then

model ← model ∪ xi // add xi to the model
wi+1 ← wi +αΔ −αi // increase wealth

else
wi+1 ← wi −αi // reduce wealth

end if
i ← i+1

end while

Figure 4: Algorithm: streamwise regression with α-investing.

information-investing α-investing
wi log(wi)

bits saved test statistic = Δlog-likelihood
bits saved > WΔ p-value < αi

Table 3: The equivalence of α-investing and information-investing.

α-investing controls the FDR bound by dynamically adjusting a threshold on the p-statistic
for a new feature to enter the model (Zhou et al., 2005). Similarly to the information-investing,
α-investing adds as many features as possible subject to the FDR bound giving the minimum out-
of-sample error.

The threshold, αi, corresponds to the probability of including a spurious feature at step i. It
is adjusted using the wealth, wi, which represents the current acceptable number of future false
positives. Wealth is increased when a feature is added to the model (presumably correctly, and hence
permitting more future false positives without increasing the overall FDR). Wealth is decreased
when a feature is not added to the model. In order to save enough wealth to add future features, bid
selection is identical to the information-investing.

More precisely, a feature is added to the model if its p-value is greater than α. The p-value is
computed by using the fact that Δlog-likelihood is equivalent to a t-statistic. The idea of α-investing
is to adaptively control the threshold for adding features so that when new (probably predictive)
features are added to the model, one “invests” α increasing the wealth, raising the threshold, and
allowing a slightly higher future chance of incorrect inclusion of features. We increase wealth by
αΔ −αi. Note that when αi is very small, this increase amount is roughly equivalent to αΔ. Each
time a feature is tested and found not to be significant, wealth is “spent”, reducing the threshold so
as to keep the guarantee of not adding more than a target fraction of spurious features. There are
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two user-adjustable parameters, αΔ and W0, which can be selected to control the FDR; we set both
of them to 0.5 in all of the experiments presented in this paper.

6. Experimental Evaluation

We compared streamwise feature selection using α-investing against both streamwise and stepwise
feature selection (see Section 2) using the AIC, BIC and RIC penalties on a battery of synthetic
and real data sets. After a set of features are selected from the real data sets, we applied logistic
regression on this feature set selected, calculated the probability of observation labels, provided a
cutoff/threshold of 0.5 to classify the response labels if label values are binary and get the prediction
accuracies or balance errors. (Actually, different cutoffs could be used for different loss functions.)
Information-investing gives extremely similar results, so we do not report them. We used R to
implement our evaluation.

6.1 Evaluation on Synthetic Data

The base synthetic data set contains 100 observations each of 1,000 features, of which 4 are pre-
dictive. We generated the features independently from a normal distribution, N(0,1), with the true
model being the sum of four of the features (their coefficients are one’s)5 plus noise, N(0,0.12). The
artificially simple structure of the data (the features are uncorrelated and have relatively strong sig-
nal) allows us to easily see which feature selection methods are adding spurious features or failing
to find features that should be in the model.

The results are presented in Table 4. As expected, AIC massively overfits, always putting in as
many features as there are observations. BIC overfits severely, although less badly than AIC. RIC
gives performance comparable to α-investing. As one would also expect, if all of the beneficial
features in the model occur at the beginning of the stream, α-investing does better, giving the same
error as RIC, while if all of the beneficial features in the model are last, α-investing does (two times)
worse than RIC. In practice, if one is not taking advantage of known structure of the features, one
can randomize the feature order to avoid such bad performance.

Stepwise regression gave noticeably better results than streamwise regression for this problem
when the penalty is AIC or BIC. Using AIC and BIC still resulted in n features being added, but at
least all of the beneficial features were found. Stepwise regression with RIC gave the same error
of its streamwise counterpart. However, using standard code from R, the stepwise regression was
much slower than streamwise regression. Running stepwise regression on data sets with tens of
thousands of features, such as the ones presented in Table 5, was not possible.

One might hope that adding more spurious features to the end of a feature stream would not
severely harm an algorithm’s performance.6 However, AIC and BIC, since their penalty is not a
function of m, will add even more spurious features (if they haven’t already added a feature for
every observation!). RIC (Bonferroni) produces a harsher penalty as m gets large, adding fewer
and fewer features. As Table 5 and 6 show, α-investing is clearly the superior method in this case.

5. Similar results are also observed, if instead of using coefficients which are strictly 0 or 1, we use coefficients that are
generated in either of the two cases: (a) most coefficients are zeros and several are from Gaussian distribution; (b) all
coefficients are generated from t distribution with degree of freedom of two.

6. One would not, of course, intentionally add features known not to be predictive. However, as described above, there
is often a natural ordering on features so that some classes of features, such as interactions, have a smaller fraction of
predictive features, and can be put later in the feature stream.
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streamwise AIC BIC RIC α-invest. α-invest.
first last

features 100 90 4.3 4.2 4.6 3.7
error 6.13 1.91 0.33 0.42 0.33 0.71

stepwise AIC BIC RIC
features 100 100 4.5 – – –

error 0.54 0.54 0.33 – – –

Table 4: AIC and BIC overfit for m � n. The number of features selected and the out-of-sample
error, averaged over 20 runs. n = 100 observations, m = 1,000 features, m∗ = 4 beneficial
features in data. Synthetic data: x ∼N(0,1), y is linear in x with noise σ2 = 0.1. Beneficial
features are randomly distributed in the feature set except the “first” and “last” cases.
“first” and “last” denote the beneficial features being first or last in the feature stream.

m 1,000 10,000 100,000 1,000,000
RIC features 4.3 4.0 4.0 3.4
RIC false pos. 0.3 0.2 0.2 0.4
RIC error 0.33 0.42 0.50 0.97

α-invest. features 4.2 4.1 4.7 4.8
α-invest. false pos. 0.3 0.2 0.7 0.9
α-invest. error 0.42 0.42 0.43 0.45

Table 5: Effect of adding spurious features. The average number of features selected, false posi-
tives, and out-of-sample error (20 runs). m∗ = 4 beneficial features, randomly distributed
over the first 1,000 features. Otherwise the same model as Table 4.

Table 6 shows that when the number of potential features goes up to 1,000,000, RIC puts in one less
beneficial feature, while streamwise regression puts the same four beneficial features plus a half of a
spurious feature. Thus, streamwise regression is able to find the extra feature even when the feature
is way out in the 1,000,000 features.

6.2 Evaluation on Real Data

Tables 7, 8, and 9 provide a summary of the characteristics of the real data sets that we used. All are
for binary classification tasks. The six data sets in Table 7 were taken from the UCI repository. The
seven data sets in Table 8 are bio-medical data, in which each feature represents a gene expression
value for each observation (patient with cancer or healthy donor). For example, in aml data set,
observations consist of patients with acute myeloid leukemia and patients with acute lymphoblastic
leukemia. The classification task is to identify which patient has which cancer. ha and hung are
private data sets and other gene expression data sets are available to the public (Li and Liu, 2002).
The NIPS data sets are from the NIPS2003 workshop (Guyon, 2003).

The observations are shuffled and those observations which contain missing feature values are
deleted. Since the gene expression data sets have large feature sets, we shuffled their original fea-
tures five times (in addition to the cross validations), applied streamwise regression on each feature
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m 1,000 10,000 100,000 1,000,000
RIC features 4.3 4.2 3.9 3.7
RIC false pos. 0.3 0.3 0.1 0.6
RIC error 0.33 0.42 0.50 0.97

α invest. features 4.2 4.2 4.5 4.9
α invest. false pos. 0.3 0.3 0.6 0.8
α invest. error 0.42 0.42 0.43 0.42

Table 6: Effect of adding spurious features. The average number of features selected, false posi-
tives, and out-of-sample error (20 runs). m∗ = 4 beneficial features: when m = 1,000, all
four beneficial features are randomly distributed; in the other three cases, there are three
beneficial features randomly distributed over the first 1,000 features and another benefi-
cial feature randomly distributed within the feature index ranges [1001, 10000], [10001,
100000], and [100001, 1000000] when m = 10000, 100000, and 1000000 respectively.
Otherwise the same model as Table 4 and 5.

cleve internet ionosphere spect wdbc wpbc
features, m 13 1558 34 22 30 33

nominal features 7 1555 0 22 0 0
continuous features 6 3 34 0 30 33

observations, n 296 2359 351 267 569 194
baseline accuracy 54% 84% 64% 79% 63% 76%

Table 7: Description of the UCI data sets.

order, and averaged the five evaluation results. The baseline accuracy is the accuracy (on the whole
data set) when predicting the majority class. The feature selection methods were tested on these
data sets using ten-fold cross-validation.

On the UCI and gene expression data sets, experiments were done on two different feature sets.
The first experiments used only the original feature set. The second interleaved feature selection
and generation, initially testing PCA components and the original features, and then generating in-
teraction terms between any of the features which had been selected and any of the original features.
On the NIPS data sets, since our main concern is to compare against the challenge best models, we
did only the second kind of experiment.

aml ha hung ctumor ocancer pcancer lcancer
features, m 7,129 19,200 19,200 2,000 15,154 12,600 12,533

observations, n 72 83 57 62 253 136 181
baseline accuracy 65% 71% 63% 65% 64% 57% 92%

Table 8: Description of the gene expression data sets. All features are continuous.
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arcene dexter dorothea gisette madelon
features, m 10,000 20,000 100,000 5,000 500

observations, n 100 300 800 6,000 2,000
baseline accuracy 56% 50% 90% 50% 50%

Table 9: Description of the NIPS data sets. All features are nominal.

On UCI data sets (Figure 5)7 , when only the original feature set is used, paired two-sample
t-tests show that α-investing has better performance than streamwise AIC and BIC only on two of
the six UCI data sets: the internet and wpbc data sets. On the other data sets, which have relatively
few features, the less stringent penalties do as well as or better than streamwise regression. When
interaction terms and PCA components are included, α-investing gives better performance than
streamwise AIC on five data sets, than streamwise BIC on three data sets, and than streamwise RIC
on two data sets. In general, when the feature set size is small, there is no significant difference in
the prediction accuracies between α-investing and the other penalties. When the feature set size is
larger (that is, when new features are generated) α-investing begins to show its superiority over the
other penalties.

On the UCI data sets (Figure 5), we also compared streamwise regression with α-investing8 with
stepwise regression. Paired two-sample t-tests show that when the original feature set is used, α-
investing does not differ significantly from stepwise regression. α-investing has better performance
than stepwise regression in 5 cases, and worse performance in 3 cases. (Here a “case” is defined as
a comparison of α-investing and stepwise regression under a penalty, that is, AIC or BIC or RIC,
on a data set.) However, when interaction terms and PCA components are included, α-investing
gives better performance than stepwise regression in 9 cases, and worse performance in none of the
cases. Thus, in our tests, α-investing is comparable to stepwise regression on the smaller data sets
and superior on the larger ones.

On the UCI data sets (Table 10), α-investing was also compared with support vector machines
(SVM), neural networks (NNET), and decision tree models (TREE). In all cases, standard packages
available with R were used9. No doubt these could be improved by fine tuning parameters and kernel
functions, but we were interested in seeing how well “out-of-the-box” methods could do. We did
not tune any parameters in streamwise regression to particular problems either. Paired two-sample
t-tests show that α-investing has better performance than NNET on 3 out of 6 data sets, and than
SVM and TREE on 2 out of 6 data sets. On the other data sets, streamwise regression doesn’t have

7. In Figure 5, a small training set size of 50 was selected to make sure the problems were difficult enough that the
methods gave clearly different results. The right columns graphs differs from the left ones in that: (1) we generated
PCA components from the original data sets and put them at the front of the feature sets; (2) after the PCA component
“block” and the original feature “block”, there is an interaction term “block” in which the interaction terms are
generated using the features selected from the first two feature blocks. This kind of feature stream was also used in
the experiments on the other data sets. We were unable to compute the stepwise regression results on the internet
data set using the software at hand when interaction terms and PCA components were included giving millions of
potential features with thousands of observations. It is indicative of the difficulty of running stepwise regression on
large data sets.

8. In later text of this section, for simplicity, we use “α-investing” to mean the “streamwise regression with α-investing”.
9. Please find details at http://cran.r-project.org/doc/packages for SVM (e1071.pdf), NNET (VR.pdf), and TREE

(tree.pdf). SVM uses the radial kernel. NNET uses feed-forward neural networks with a single hidden layer. TREE
grows a tree by binary recursive partitioning using the response in the specified formula and choosing splits from the
terms of the right-hand-side.
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significant better or worse performance than NNET, SVM, or TREE. These tests shows that the
performance of streamwise regression is at least comparable to those of SVM, NNET, and TREE.

On the gene expression data sets (Figure 6), when comparing α-investing with streamwise AIC,
streamwise BIC, and streamwise RIC, paired two-sample t-tests show that when the original features
are used, the performances of α-investing and streamwise RIC don’t have significant difference on
any of the data sets. But when interaction terms and PCA components are included , RIC is often
too conservative to select even only one feature, whereas α-investing has stable performance and
the t-tests show that α-investing has significant better prediction accuracies than streamwise RIC on
5 out of 7 data sets. Note that, regardless of whether or not interaction terms and PCA components
are included, α-investing always has much higher accuracy than streamwise AIC and BIC.

The standard errors (SE) of prediction accuracies in shuffles gave us sense of the approach
sensitivity to the feature order. When the original features are used, α-investing has a maximum
SE of four percent on pcancer and its other SEs are less than two percents in accuracy. When PCA
components and interaction terms are included, α-investing has a maximum SE of two percents
on ha and its other SEs are around or less than one percent. Streamwise RIC has similar SEs as
α-investing has, but streamwise AIC and BIC usually have one percent higher SEs than α-investing
and streamwise RIC. We can see that the feature shuffles don’t change the performance much on
most of gene expression data sets.

When PCA components and interaction terms are included and the original feature set is sorted
in advance by feature value variance (one simple way of making use of the ordering in the stream),
the prediction accuracy of α-investing on hung is increased from 79.3% to 86.7%; for the other gene
expression data, sorting gave no significant change.

Also note that, for streamwise AIC, BIC, and RIC, adding interaction terms and PCA compo-
nents often hurts. In contrast, the additional features have not much effect on α-investing. With
these additional features, the prediction accuracies of α-investing are improved or kept the same on
4 out of 6 UCI data sets and 5 out of 7 gene data sets.

On the gene expression data sets (Figure 6), we also compared α-investing with stepwise re-
gression. The results show that, α-investing is competitive with stepwise regression with the RIC
penalty. Stepwise regression with AIC or BIC penalties gives inferior performance.

On the NIPS data sets (Table 11), we compared α-investing against results reported on the
NIPS03 competition data set using other feature selection methods (Guyon et al., 2006). Table
11 shows the results we obtained, and compares them against the two methods which did best in
the competition. These methods are BayesNN-DFT (Neal, 1996, 2001), which combines Bayesian
neural networks and Bayesian clustering with a Dirichlet diffusion tree model and greatest-hits-
one (Gilad-Bachrach et al., 2004), which normalizes the data set, selects features using distance
information, and classifies them using a perceptron or SVM.

Different feature selection approaches such as those used in BayesNN-DFT can be contrasted
based on their different levels of greediness. Screening methods or filters look at the relation
between y and each xi independently. In a typical screen, one computes how predictive each xi

(i = 1...m) is of y (or how are they correlated), or the mutual information between them, and all
features above a threshold are selected. In an extension of the simple screen, FBFS (Fleuret, 2004)
looks at the mutual information I(y;xi|x j) (i, j = 1...m), that is, the effect of adding a second feature
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after one has been added.10 Streamwise and stepwise feature selection are one step less greedy,
sequentially adding features by computing I(y;xi|Model).

BayesNN-DFT uses a screening method to select features, followed by a sophisticated Bayesian
modeling method. Features were selected using the union of three univariate significance test-based
screens (Neal and Zhang, 2003): correlation of class with the ranks of feature values, correlation of
class with a binary form of the feature (zero/nonzero), and a runs test on the class labels reordered
by increasing feature value. The threshold was selected by comparing each to the distribution found
when permuting the class labels. This richer feature set of transformed variables could, of course,
be used within the streamwise feature selection setting, or streamwise regression could be used to
find an initial set of features to be provided to the Bayesian model.

greatest-hits-one applied margin based feature selection on data sets arcene and madelon, and
used a simple infogain ranker to select features on data sets dexter and dorothea. Assuming a fixed
feature set size, a generalization error bound is proved for the margin based feature selection method
(Gilad-Bachrach et al., 2004).

Table 11 shows that we mostly get comparable accuracy to the best-performing of the NIPS03
competition methods, while using a small fraction of the features. Many of the NIPS03 contestants
got far worse performance, without finding small feature sets (NIPS’03, 2003). When SVM is
used on the features selected by streamwise regression, the errors on arcene, gisette, and madelon
are reduced further to 0.151, 0.021, 0.214 respectively. One could also apply more sophisticated
methods, such as the Bayesian models which BayesNN-DFT used, to our selected features.

There is only one data set, madelon, where streamwise regression gives substantially higher
error than the other methods. This may be partly due to the fact that madelon has substantially
more observations than features, thus making streamwise regression (when not augmented with
sophisticated feature generators) less competitive with more complex models. Madelon is also the
only synthetic data set in the NIPS03 collection, and so its structure may benefit more from the
richer models than typical real data.

7. Discussion: Statistical Feature Selection

Recent developments in statistical feature selection take into account the size of the feature space,
but only allow for finite, fixed feature spaces, and do not support streamwise feature selection.
The risk inflation criterion (RIC) produces a model that possesses a type of competitive predictive
optimality. RIC chooses a set of features from the potential feature pool so that the loss of the
resulting model is within a factor of log(m) of the loss of the best such model. In essence, RIC
behaves like a Bonferroni rule (Foster and George, 1994). Each time a feature is considered, there
is a chance that it will enter the model even if it is merely noise. In other words, the tested null
hypothesis is that the proposed feature does not improve the prediction of the model. Doing a
formal test generates a p-value for this null hypothesis. Suppose we only add this feature if its p-
value is less than α j when we consider the jth feature. Then the Bonferroni rule keeps the chance
of adding even one extraneous feature to less than, say, 0.05 by constraining ∑α j ≤ 0.05.

Bonferroni methods like RIC are conservative, limiting the ability of a model to add features that
improve its predictive accuracy. The connection of RIC to α-spending rules leads to a more powerful
alternative. An α-spending rule is a multiple comparison procedure that bounds its cumulative type
one error rate at a small level, say 5%. For example, suppose one has to test the m hypotheses

10. FBFS has been developed only for binary features, but could be easily extended.
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Figure 5: UCI Data Streamwise vs. Stepwise Validation Accuracy for different penalties. Training
size is 50. The average accuracy is on 10 cross-validations. The black-dot and solid black
bars are the average accuracies using streamwise regressions. The transparent bars are the
average accuracies using stepwise regressions. Raw features are used in the left column
graphs. Additional interaction terms and PCA components are used in the right column
graphs. Please see Footnote 7 for additional information about this figure. Section 6.2
gives the results of paired two-sample t-tests.
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cleve internet ionosphere
stream. (α-invest.) 84.3±1.8 (8.5) 96.5±0.3 (166) 91.4±1.8 (23)

SVM 82.0±2.0 93.4±0.6 92.2±1.7
NNET 70.3±4.5 84.2±0.9 91.7±1.9
TREE 76.0±3.3 96.5±0.5 86.7±1.8

spect wdbc wpbc
stream. (α-invest.) 82.2±2 (2) 95.1±0.6 (37) 77±3.4 (4.4)

SVM 81.5±2.4 96.3±0.8 76.5±4.9
NNET 78.9±2.2 68.8±4.5 75.0±5.0
TREE 81.1±1.9 94.2±0.9 74.0±3.0

Table 10: Comparison of streamwise regression and other methods on UCI Data. Average accuracy
using 10-fold cross validation. The number before ± is the average accuracy; the num-
ber immediately after ± is the standard deviation of the average accuracy. The number
in parentheses is the average number of features used by the streamwise regression, and
these features includes PCA components, raw features, and interaction terms (see Foot-
note 7 for the details of this kind of feature stream). SVM, NNET, and TREE use the
whole raw feature set. Section 6.2 gives the results of paired two-sample t-tests.

arcene dexter dorothea gisette madelon
α-invest. error 0.176 0.067 0.090 0.037 0.295

α-invest. features 8 21 8 72 24
greatest-hits-one error 0.172 0.053 0.109 0.030 0.086

greatest-hits-one features 10,000 1,400 300 5,000 18
BayesNN-DFT error 0.133 0.039 0.085 0.013 0.072

BayesNN-DFT features 10,000 303 100,000 5,000 500

Table 11: Comparison of Streamwise regression and other methods on NIPS Data. error is the
“balanced error”(Guyon, 2003); features is the number of features selected by models.
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Figure 6: Gene expression data Streamwise vs. Stepwise Validation Accuracy for different penal-
ties. Average accuracy using 10-fold cross validation. The black-dot bars are the average
accuracies using streamwise regressions on raw features. The solid black bars are the
average accuracy using streamwise regressions with PCA components, raw features, and
interaction terms (see Footnote 7 for the details of this kind of feature stream). The trans-
parent bars are the average accuracies using stepwise regressions on raw features. Section
6.2 gives the results of paired two-sample t-tests.
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H1,H2, . . . ,Hm. If we test the first using level α1, the second using level α2 and so forth with
∑ j α j = 0.05, then we have only a 5% chance of falsely rejecting one of the m hypotheses. If we
associate each hypothesis with the claim that a feature improves the predictive power of a regression,
then we are back in the situation of a Bonferroni rule for feature selection. Bonferroni methods and
RIC simply fix α j = α/m for each test.

Alternative multiple comparison procedures control a different property. Rather than controlling
the cumulative α (also known as the family wide error rate), they control the so-called false discov-
ery rate (Benjamini and Hochberg, 1995). Control of the FDR at 5% implies that at most 5% of the
rejected hypotheses are false positives. In feature selection, this implies that of the included features,
at most 5% degrade the accuracy of the model. The Benjamini-Hochberg method for controlling
the FDR suggests the α-investing rule used in streamwise regression, which keeps the FDR below
α: order the p-values of the independents tests of H1,H2, . . . ,Hm so that p1 ≤ p2 ≤ ·· · pm. Now find
the largest p-value for which pk ≤ α/(m−k) and reject all Hi for i ≤ k. Thus, if the smallest p-value
p1 ≤ α/m, it is rejected. Rather than compare the second largest p-value to the RIC/Bonferroni
threshold α/m, reject H2 if p2 ≤ 2α/m. Our proposed α-investing rule adapts this approach to eval-
uate an infinite sequence of features. There have been many papers that looked at procedures of this
sort for use in feature selection from an FDR perspective (Abramovich et al., 2000), an empirical
Bayesian perspective (George and Foster, 2000; Johnstone and Silverman, 2004), an information
theoretical perspective (Foster and Stine, 2004a), or simply a data mining perspective (Foster and
Stine, 2004b). But all of these require knowing the entire list of possible features ahead of time.
Further, most of them assume that the features are orthogonal and hence tacitly assume that m < n.
Obviously, the Benjamini-Hochberg method fails as m gets large; it is a batch-oriented procedure.

The α-investing rule of streamwise regression controls a similar characteristic. Framed as a
multiple comparison procedure, the α-investing rule implies that, with high probability, no more
than α times the number of rejected tests are false positives. That is, the procedure controls a
difference rather than a rate. As a streamwise feature selector, if one has added, say, 20 features to
the model, then with high probability (tending to 1 as the number of accepted features grows) no
more than 5% (that is, one feature in the case of 20 features) are false positives.

8. Summary

A variety of machine learning algorithms have been developed over the years for online learning
where observations are sequentially added. Algorithms such as the streamwise regression presented
in this paper, which are online in the features being used are much less common. For some prob-
lems, all features are known in advance, and a large fraction of them are predictive. In such cases,
regularization or smoothing methods work well and streamwise feature selection does not make
sense. For other problems, selecting a small number of features gives a much stronger model than
trying to smooth across all potential features. (See JMLR (2003) and Guyon (2003) for a range of
feature selection problems and approaches.) For example, in predicting what journal an article will
be published in, we find that roughly 10−20 of the 80,000 features we examine are selected (Popes-
cul and Ungar, 2003). For the problems in citation prediction and bankruptcy prediction that we
have looked at, generating potential features (for example, by querying a database or by computing
transformations or combinations of the raw features) takes far more time than the streamwise fea-
ture selection. Thus, the flexibility that streamwise regression provides to dynamically decide which
features to generate and add to the feature stream provides potentially large savings in computation.
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Empirical tests show that for the smaller UCI data sets where stepwise regression can be done,
streamwise regression gives comparable results to stepwise regression or techniques such as deci-
sion trees, neural networks, or SVMs. However, unlike stepwise regression, streamwise regression
scales well to large feature sets, and unlike the AIC, BIC and RIC penalties or simpler variable
screening methods which use univariate tests, streamwise regression with information-investing or
α-investing works well for all values of number of observations and number of potential features.
Key to this guarantee is controlling the FDR by adjusting the threshold on the information gain or
p-value necessary for adding a feature to the model. Fortunately, given any software which incre-
mentally considers features for addition and calculates their p-value or entropy reduction, stream-
wise regression using information-investing or α-investing is extremely easy to implement. For
linear and logistic regression, we have found that streamwise regression can easily handle millions
of features.

The results presented here show that streamwise feature selection is highly competitive even
when there is no prior knowledge about the structure of the feature space. Our expectation is that in
real problems where we do know more about the different kinds of features that can be generated,
streamwise regression will provide even greater benefit.
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Abstract

The problem of finding the most probable (MAP) configuration in graphical models comes up in
a wide range of applications. In a general graphical model this problem is NP hard, but various
approximate algorithms have been developed. Linear programming (LP) relaxations are a standard
method in computer science for approximating combinatorial problems and have been used for
finding the most probable assignment in small graphical models. However, applying this powerful
method to real-world problems is extremely challenging dueto the large numbers of variables
and constraints in the linear program. Tree-Reweighted Belief Propagation is a promising recent
algorithm for solving LP relaxations, but little is known about its running time on large problems.

In this paper we compare tree-reweighted belief propagation (TRBP) and powerful general-
purpose LP solvers (CPLEX) on relaxations of real-world graphical models from the fields of
computer vision and computational biology. We find that TRBPalmost always finds the solu-
tion significantly faster than all the solvers in CPLEX and more importantly, TRBP can be applied
to large scale problems for which the solvers in CPLEX cannotbe applied. Using TRBP we can
find the MAP configurations in a matter of minutes for a large range of real world problems.

1. Introduction

The task of finding the most probable assignment (or MAP) in a graphical model comes up in a wide
range of applications including image understanding (Tappen and Freeman, 2003), error correcting
codes (Feldman et al., 2003) and protein folding (Yanover and Weiss, 2002). For an arbitrary graph,
this problem is known to be NP hard (Shimony, 1994) and various approximation algorithms have
been proposed [see. e.g (Marinescu et al., 2003) for a recent review].

Linear Programming (LP) Relaxationsare a standard method for approximating combinatorial
optimization problems in computer science (Bertismas and Ttsitskikilis, 1997). They have been
used for approximating the MAP problem in a general graphical model by Santos (1991). More
recently, LP relaxations have been used for error-correcting codes(Feldman et al., 2003), and for
protein folding (Kingsford et al., 2005). LP relaxations have an advantage over other approximate
inference schemes in that they come with an optimality guarantee – when the solution to the linear
program is integer, then the LP solution is guaranteed to give the global optimum of the posterior
probability.
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The research described in this paper grew out of our experience in using LP relaxations for
problems in computer vision, computational biology and statistical physics. In all these fields, the
number of variables in a realistic problem may be on the order of 106 or more. We found that
using powerful, off-the-shelf LP solvers, these problems cannot be solved using standard desktop
hardware. However, linear programs that arise out of LP relaxations for graphical models have a
common structure and are a small subset of all possible linear programs. The challenge is to find an
LP solver that takes advantage of this special structure.

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation (BP) suggested by
Wainwright and colleagues (Wainwright et al., 2002), that has been shown to find the same solution
as LP relaxations. Each iteration of TRBP is similar in time and space complexity to that of ordinary
BP and hence it can be straightforwardly applied to very large graphicalmodels. However, little is
known regarding the convergence properties of TRBP nor about the actual number of iterations
needed to solve large problems.

In this paper we compare tree-reweighted BP and powerful commercial LPsolvers (CPLEX)
on relaxations of real-world graphical models from the fields of computer vision and computational
biology. We find that TRBP almost always finds the solution significantly faster than all the solvers
in CPLEX and more importantly, TRBP can be applied to large scale problems forwhich the solvers
in CPLEX cannot be applied. Using TRBP we can find the MAP configurations in a matter of
minutes for a large range of real world problems.

2. MAP, Integer Programming and Linear Programming

We briefly review the formalism of graphical models. We usex to denote a vector of hidden variables
andy to denote the observation vector. We assume the conditional distribution Pr(x|y) is Markovian
with respect to a graphG – that is, it factorizes into a product of potential functions defined on the
cliques of the graphG. In this paper, we focus on pairwise Markov Random Fields and assume that

Pr(x|y) =
1
Z ∏

<i j>
Ψi j (xi ,x j)∏

i
Ψi(xi)

=
1
Z

e−∑<i j> Ei j (xi ,x j )−∑i Ei(xi),

where< i j > refers to all pairs of nodes that are connected in the graphG and we defineEi j (xi ,x j),
Ei(xi) as the negative logarithm of the potentialΨi j (xi ,x j),Ψi(xi).

The MAP assignment is the vectorx∗ which maximizes the posterior probability:

x∗ = argmax
x ∏

<i j>

Ψi j (xi ,x j)∏
i

Ψi(xi)

= argmin
x ∑

<i j>

Ei j (xi ,x j)+∑
i

Ei(xi).

To define the LP relaxation, we first reformulate the MAP problem as one ofinteger program-
ming. We introduce indicator variablesqi(xi) for each individual variable and additional indicator
variablesqi j (xi ,x j) for all connected pairs of nodes in the graph. Using these indicator variables we
define the integer program:
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minimize

J({q}) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

subject to

qi j (xi ,x j) ∈ {0,1},

∑
xi ,x j

qi j (xi ,x j) = 1,

∑
xi

qi j (xi ,x j) = q j(x j),

where the last equation enforces the consistency of the pairwise indicatorvariables with the single-
ton indicator variable.

This integer program is completely equivalent to the original MAP problem, and is hence com-
putationally intractable. We can obtain the linear programming relaxation by allowing the indicator
variables to take on non-integer values. This leads to the following problem:

The LP relaxation of MAP:
minimize

J({q}) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

subject to

qi j (xi ,x j) ∈ [0,1], (1)

∑
xi ,x j

qi j (xi ,x j) = 1, (2)

∑
xi

qi j (xi ,x j) = q j(x j). (3)

This is now a linear program – the cost and the constraints are linear. It can therefore be solved
in polynomial time and we have the following guarantee:

Lemma If the solutions{qi j (xi ,x j),qi(xi)} to the MAP LP relaxation are allinteger, that is
qi j (xi ,x j),qi(xi) ∈ {0,1}, thenx∗i = argmaxxi qi(xi) is the MAP assignment.+

2.1 The Need for Special Purpose LP Solvers

Given the tremendous amount of research devoted to LP solvers, it may seem that the best way to
solve LP relaxations for graphical models, would be to simply use an industrial-strength, general-
purpose LP solver. However, by relaxing the MAP into a linear program we increase the size of the
problem tremendously. Formally, denote byki the number of possible states of nodei. The number
of variables and constraints in the LP relaxation is given by

Nvariables = ∑
i

ki + ∑
<i, j>

kik j ,

Nconstraints = ∑
<i, j>

(ki +k j +1).
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The additional∑<i, j> 2kik j bound constraints, derived from equation (1), are usually not considered
part of the constraint matrix.

As an example, consider an image processing problem (an example of sucha problem, the
stereo problem, is discussed in Section 4.1). If the image is a modest 200×200 pixels and each
pixel can take on 30 discrete values, then the LP relaxation will have over 72 million variables
and four million constraints. Obviously, we need a solver that can somehow take advantage of the
problem structure in order to deal with such a large-scale problem.

3. Solving Linear Programs Using Tree-Reweighted Belief Propagation

Tree-reweighted belief propagation (TRBP) is a variant of belief propagation introduced by Wain-
wright and colleagues (Wainwright et al., 2002). We start by briefly reviewing ordinary max-product
belief propagation [see e.g. (Yedidia et al., 2001; Pearl, 1988)]. The algorithm receives as input a
graphG and the potentialsΨi j ,Ψi . At each iteration, a nodei sends a messagemi j (x j) to its neighbor
in the graphj. The messages are updated as follows:

mi j (x j)← αi j max
xi

Ψi j (xi ,x j)Ψi(xi) ∏
k∈Ni\ j

mki(xi) (4)

whereNi\ j refers to all neighbors of nodei except j. The constantαi j is a normalization constant
typically chosen so that the messages sum to one (the normalization has no influence on the final
beliefs). After the messages have converged, each node can form anestimate of its local “belief”
defined as

bi(xi) ∝ Ψi(xi) ∏
j∈Ni

mji (xi).

It is easy to show that when the graph is singly-connected, choosing an assignment that maxi-
mizes the local belief will give the MAP estimate (Pearl, 1988). In fact, when the graph is a chain,
equation 4 is simply a distributed computation of dynamic programming. When the graph has cy-
cles, ordinary BP is no longer guaranteed to converge, nor is there a guarantee that it can be used to
find the MAP.

In tree-reweighted BP (TRBP), the algorithm receives as input an additional set ofedge appear-
ance probabilities, ρi j . These edge appearance probabilities are essentially free parameters of the
algorithm and are derived from a distribution over spanning trees of the graphG. They represent
the probability of an edge(i j ) appearing in a spanning tree under the chosen distribution. As in
standard belief propagation, at each iteration a nodei sends a messagemi j (x j) to its neighbor in the
graph j. The messages are updated as follows:

mi j (x j)← αi j max
xi

Ψ1/ρi j
i j (xi ,x j)Ψi(xi)

∏
k∈Ni\ j

mρki
ki (xi)

m
1−ρ ji
ji (xi)

. (5)

Note that forρi j = 1 the algorithm reduces to standard belief propagation.
After one has found a fixed-point of these message update equations, the singleton and pairwise

beliefs are defined as

bi(xi) ∝ Ψi(xi) ∏
j∈Ni

m
ρ ji
ji (xi),
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bi j (xi ,x j) ∝ Ψi(xi)Ψ j(x j)Ψ
1/ρi j
i j (xi ,x j) ·

∏
k∈Ni\ j

mρki
ki (xi)

m
1−ρ ji
ji (xi)

∏
k∈Nj\i

m
ρk j

k j (x j)

m
1−ρi j
i j (x j)

.

The relationship between TRBP and the solution to the LP relaxation has been studied by (Wain-
wright et al., 2002; Kolmogorov, 2005; Kolmogorov and Wainwright, 2005) and is a subject of
ongoing research. We briefly summarize some of the relationships.

Given a set of TRBP beliefs, we define thesharpened beliefsas follows:

qi(xi) ∝ δ(bi(xi)−max
xi

bi(xi)),

qi j (xi ,x j) ∝ δ(bi j (xi ,x j)−max
xi ,x j

bi j (xi ,x j)),

whereδ(·) is the Dirac delta function (δ(0) = 1 andδ(x) = 0 for all x 6= 0). That is, we get a uniform
distribution over all the maximizing values and assign 0 probability to all non-maximizing values.
To illustrate this definition, a belief vector(0.6,0.4) would be sharpened to(1,0) and a belief vector
(0.4,0.4,0.2) would be sharpened to(0.5,0.5,0).

Using these sharpened beliefs, the following properties hold:

• At any iteration, and in particular in fixed-point, the TRBP beliefs provide a lower bound on
the solution of the LP (see appendix A).

• If there exists a unique maximizing value for the pairwise beliefsbi j (xi ,x j) then the sharpened
beliefs solve the LP. In that casex∗i = argmaxxi bi(xi) is the MAP.

• Suppose the TRBP beliefs have ties. If there existsx∗ such thatx∗i ,x
∗
j maximizebi j (xi ,x j) and

x∗i maximizebi(xi), thenx∗ is the MAP. In that case, defineq∗i j ,q
∗
i as indicator variables for

x∗, thenq∗i j ,q
∗
i are a solution for the LP.

• If the sharpened beliefs at a fixed-point of TRBP satisfy the LP constraints (equations 1-3),
then the sharpened beliefs are a solution to the LP relaxation.

• Suppose the TRBP beliefs have ties. If there existsb̃i , b̃i j that satisfy the LP constraints and
for all xi ,x j , b̃i(xi) = 0 if qi(xi) = 0 and b̃i j (xi ,x j) = 0 if qi j (xi ,x j) = 0, thenb̃i , b̃i j are a
solution to the LP relaxation.

The lower-bound property is based on Lagrangian duality and is provenin (Wainwright et al.,
2002; Kolmogorov, 2005). The subsequent properties follow from thelower-bound property.

Based on these properties, we use the following algorithm to extract the LP solution and the
MAP from TRBP beliefs:

1. Run TRBP until convergence and identify the tied nodesxT .

2. For all non-tied nodes,xNT, setx∗i = argmaxxi bi(xi).

3. Construct a new graphical model that includes only the tied nodes and the possible states are
only those that maximize the beliefs. The pairwise potentials are 1 if the pair maximizes the
pairwise belief andε otherwise. Use the junction tree algorithm (Cowell, 1998) to findx∗T ,
the MAP in this new graphical model. Ifx∗T has energy equal to zero thenx∗ = (x∗NT,x∗T) is
the MAP andq∗i j ,q

∗
i , defined as indicator variables forx∗, are a solution to the LP.
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3.1 TRBP Complexity

Little is known about the number of iterations needed for TRBP to converge,but what is relatively
straightforward to calculate is the cost per iteration. In every TRBP iteration, each node calculates
and sends messages to all its neighbors. Thus the number of message updates is two times the
number of edges in the graph. Each message update equation involves point-wise multiplication
of vectors of lengthki followed by a matrix by vector max-multiplication,1 where the size of the
matrix isk j ×ki . By working in the log domain, the point-wise multiplications can be transformed
into summations, and the raising of the messages to the powersρi j ,1−ρi j are transformed into mul-
tiplications. In summary, the dominant part of the computation is equivalent to 2|E |multiplications
of aki×k j matrix times ak j ×1 vector (where|E | is the number of edges in the graph).

The amount of memory needed depends on the particular implementation. In the simplest im-
plementation, we would need to store the potentialsΨi j ,Ψi in memory. The size of the potentials
is exactly the number of variables in the linear program:∑i ki + ∑<i, j> kik j . Additionally, storing
the messages in memory requires∑<i, j> ki +k j (which is typically small relative to the memory re-
quired for the pairwise potentials). In many problems, however, the pairwise potentials can be stored
more compactly. For example, in the Potts model, the pairwise potentialΨi j (xi ,x j) is ak×k table
that has only two unique values: 1 on the diagonal ande−λi j for the off-diagonal terms. Additional
implementation techniques for reducing the memory requirements of BP appear in(Felzenszwalb
and Huttenlocher, 2004; Kolmogorov, 2005).

4. The Benchmark Problems

We constructed benchmark problems from three domains: stereo vision, side-chain prediction and
protein design. We give here a short overview of how we constructed the graphical models in all
three cases. The exact graphical models can be downloaded from the JMLR web site.

4.1 Stereo Vision

The stereo problem is illustrated in Figure 1. Given a stereo pair of images,Left(u,v) andRight(u,v),
the problem is to find the disparity of each pixel in a reference image. This disparity can be straight-
forwardly translated into depth from the camera.

The main cue for choosing disparities are the similarities of local image informationin the left
and right image. That is, we search for a disparity so that

Left(u,v)≈ Right(u+disp(u,v),v),

or equivalently,

disp∗(u,v) = arg min
disp(u,v)

[Left(u,v)−Right(u+disp(u,v),v)]2 .

This criterion by itself is typically not enough. Locally, there can be many disparities for a pixel
that are almost equally good. The best algorithms currently known for the stereo problem are those
that minimize a global energy function (Scharstein and Szeliski, 2002):

disp∗ = argmin
disp

∑
u,v

dissim[Left(u,v),Right(u+disp(u,v),v)]+λ ·smoothness(disp),

1. Max-multiplication of a matrix by a vector is equivalent to ordinary matrix multiplication but all summations are
replaced by maximizations.

1892



LP RELAXATIONS AND BP–AN EMPIRICAL STUDY

Left Right

Disparity

Figure 1: An illustration of the stereo problem. Given two images taken from slightly different
viewpoints (Left,Right) we search for the disparity of each pixel. The best results for this
problem use energy minimization formulations which are equivalent to solving the MAP
for a grid graphical model.

wheresmoothness(disp) is a cost that penalizes disparity fields where neighboring pixels have dif-
ferent disparities anddissim[Left(u,v),Right(u′,v′)] measures the dissimilarity of the left and right
image at corresponding locations.

We associate each disparitydisp(u,v) with an assignment of a nodexi in a two dimensional grid
graph. If we definex to be the disparity field, andP(x|y) ∝ exp(−E(x)) whereE(x) is the energy
function, minimizing the energy is equivalent to maximizing P(x). Furthermore, sinceE(x) is a sum
of singleton and pairwise terms,P(x) will factorize with respect to the two-dimensional grid:

Pr(x|y) ∝ ∏
i

Ψi(xi) ∏
<i j>

Ψi j (xi ,x j) =

= e−∑i Ei(xi)−∑<i j> Ei j (xi ,x j ).

The problem of finding the most probable set of disparities is NP hard. Good approximate
solutions can be achieved using algorithms based on min-cut/max-flow formulations (Boykov et al.,
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(a) (b) (c)

Figure 2: (a) Cow actin binding protein (PDB code 1pne).(b) A closer view of its 6 C-terminal
residues. Given the protein backbone (black) and the amino acid sequence, side-chain
prediction is the problem of predicting the native side-chain conformation (gray). (c)
Problem representation as a graphical model for those C-terminal residues shown in (b)
(nodes located atCα atom positions, edges drawn in black).

1999; Kolmogorov and Zabih, 2004) and Belief Propagation (Felzenszwalb and Huttenlocher, 2004;
Tappen and Freeman, 2003; Sun et al., 2002).

In this work we use the same energy function used by Tappen and Freeman(2003). The local
cost is based on the Birchfield-Tomasi matching cost (Birchfield and Tomasi, 1998) and the pairwise
energy penalizes for neighboring pixels having different disparities. The amount of penalty depends
only on the intensity difference between the two pixels and therefore, for each pair of neighboring
pixels, the penalty for violating the smoothness constraint is constant. Thus the MRF is equivalent
to a Potts model. Specifically, the pairwise energy penalty is defined using 3 parameters –s, P and
T – and set toP ·s when the intensity difference between the two pixels is smaller than a threshold
T, ands otherwise.

We used four images from the standard Middlebury stereo benchmark set(Scharstein and
Szeliski, 2003). By varying the parameters of the energy function, as in (Tappen and Freeman,
2003), we obtained 22 different graphical models. The parameterss,P,T are constant over the
whole image.

4.2 Side-Chain Prediction

Proteins are chains of simpler molecules calledamino acids. All amino acids have a common
structure – a central carbon atom (Cα) to which a hydrogen atom, an amino group (NH2) and a
carboxyl group (COOH) are bonded. In addition, each amino acid has a chemical group called
the side-chain, bound toCα. This group distinguishes one amino acid from another and gives its
distinctive properties. Amino acids are joined end to end during protein synthesis by the formation
of peptide bonds. An amino acid unit in a protein is called aresidue. The formation of a succession
of peptide bonds generates thebackbone(consisting ofCα and its adjacent atoms,N andCO, of
each reside), upon which the side-chains are hanged (Figure 2).

Theside-chain predictionproblem is defined as follows: given the 3 dimensional structure of
the backbone we wish to predict the placements of the side-chains. This problem is considered of
central importance in protein-folding and molecular design and has been tackled extensively using
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a wide variety of methods. Typically, an energy function is defined over a discretization of the side-
chain angles and search algorithms are used to find the global minimum. Even when the energy
function contains only pairwise interactions, the configuration space grows exponentially and it can
be shown that the prediction problem is NP-complete (Fraenkel, 1997; Pierce and Winfree, 2002).

Formally, our search space is a set of energetically preferred conformations (calledrotamers)
and we wish to minimize an energy function that is typically defined in terms of pairwise interactions
among nearby residues and interactions between a residue and the backbone:

E(r) = ∑
<i j>

Ei j (r i , r j)+∑
i

Ei(r i ,backbone),

wherer = (r1, ..., rN) denotes an assignment of rotamers for all residues.
Since we have a discrete optimization problem and the energy function is a sumof pairwise

interactions, we can transform the problem into a graphical model with pairwise potentials. Each
node corresponds to a residue, and the state of each node representsthe configuration of the side-
chain of that residue. SinceE(r) is a sum of singleton and pairwise terms,P(r) will factorize:

P(r) =
1
Z

e−E(r) =
1
Z

e
−∑

i
Ei(r i)− ∑

<i j>
Ei j (r i ,r j )

=
1
Z ∏

i
Ψi(r i) ∏

<i j>
Ψi j (r i , r j) (6)

whereZ is an explicit normalization factor. Equation (6) requires multiplyingΨi j for all pairs of
residuesi, j but in all reasonable energy functions the pairwise interactions go to zerofor atoms
that are sufficiently far away. Thus we only need to calculate the pairwise interactions for nearby
residues. To define the topology of the undirected graph, we examine all pairs of residuesi, j and
check whether there exists an assignmentr i , r j for which the energy is nonzero. If it exists, we
connect nodesi and j in the graph and set the potential to be:Ψi j (r i , r j) = e−Ei j (r i ,r j ).

Figure 2(c) shows a subgraph of the undirected graph. The graph is relatively sparse (each node
is connected to nodes that are close in 3D space) but contains many small loops. A typical protein
in the data set gives rise to a model with hundreds of loops of size 3.

As a data set we used 370 X-ray crystal structures with resolution better than or equal to 2̊A, R
factor below 20% and mutual sequence identity less than 50%. Each protein consisted of a single
chain and up to 1,000 residues. Protein structures were acquired from the Protein Data Bank site
(http://www.rcsb.org/pdb). For each protein, we have built two representing graphical models:

1. Using the SCWRL energy function (Canutescu et al., 2003), which approximates the repulsive
portion of Lennard-Jones 12-6 potential.

2. Using the more elaborate energy function used in the Rosetta program (Kuhlman and Baker,
2000) which is comprised of (Rohl et al., 2004): (1) the attractive portionof the 12-6 Lennard-
Jones potential, (2) The repulsive portion of a 12-6 Lennard Jones potential. This term is
dampened in order to compensate for the use of a fixed backbone and rotamer set, (3) solvation
energies calculated using the model of Lazaridis and Karplus (1999), (4) an approximation to
electrostatic interactions in proteins, based on PDB statistics, (5) hydrogen-bonding potential
(Kortemme et al., 2003) and (6) backbone dependent internal free energies of the rotamers
estimated from PDB statistics performed by Dunbrack and Kurplus (1993).
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The Rosetta energy function accounts for distant interactions and therefore gives rise to denser
graphical models, compared to SCWRL’s. In both cases we used Dunbrack and Kurplus (1993)
backbone dependent rotamer library to define up-to 81 configurations for each side-chain. The side-
chain prediction data sets are publicly available and can be downloaded from http://www.jmlr.
org/papers/volume7/yanover06a/SCWRL SCP Dataset.tgz andhttp://www.jmlr.org/pap
ers/volume7/yanover06a/Rosetta SCP Dataset.tgz.2

4.3 Protein Design

The protein design problem is the inverse of the protein folding problem. Given a particular 3D
shape, we wish to find a sequence of amino-acids that will be as stable as possible in that 3D
shape. Typically this is done by finding a set of (1) amino-acids and (2) rotamer configurations
that minimizes an approximate energy [see (Street and Mayo, 1999) for a review of computational
protein design].

While the problem is quite different from side-chain prediction it can be solved using the same
graph structure. The only difference is that now the nodes do not just denote rotamers but also the
identity of the amino-acid at that location. Thus, the state-space here is significantly larger than
in the side-chain prediction problem. We, again, used the Rosetta energy function to define the
pairwise and local potentials (Kuhlman and Baker, 2000). As a data set weused 97 X-ray crystal
structures, 40-180 amino acids long. For each of these proteins, we allowed all residues to assume
any rotamer of any amino acid. There are, therefore, hundreds of possible states for each node. The
protein design data set is available fromhttp://www.jmlr.org/papers/volume7/yanover06a/
Rosetta Design Dataset.tgz.

5. Experiments

We compared TRBP to the LP solvers available from CPLEX (CPLEXv9.0,tomlab.biz). CPLEX
is widely considered to be one of the most powerful LP packages availablecommercially and (ac-
cording to the company’s website) is used in 95% of all academic papers thatreference an LP
solver. In addition to its widespread use, CPLEX is well suited for our empirical study because it
is highly optimized for solving LP relaxations (as opposed to arbitrary LPs).Indeed as the original
programmer of CPLEX notes “the solution of integer programs is the dominant application of linear
programming in practice” (Bixby, 2001) and CPLEX contains a large numberof optimizations that
are based on exploiting the sparse structure of LPs that arise from LP relaxations (Bixby, 2001).

Specifically, we tried the following solvers from CPLEX.

1. Primal anddualsimplex solvers.

2. CPLEX has a very efficient algorithm fornetworkmodels. Network constraints have the
following property: each non-zero coefficient is either a+1 or a−1 and column appearing in
these constraints has exactly 2 nonzero entries, one with a+1 coefficient and one with a−1
coefficient. CPLEX can also automatically extract networks that do not adhere to the above
conventions as long as they can be transformed to have those properties.

2. Note that loading a protein file in Matlab requires using the sparsecell package available fromhttp://www.cs.
huji.ac.il/∼cheny.
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Figure 3: The number of variables and constraints in the LP relaxation of thestereo disparity prob-

lem as a function of the size of the image. The largest image that could be solved using
the CPLEX solvers is approximately 50×50 while TRBP can be run on full size images.

3. Thebarrier algorithm is a primal-dual logarithmic barrier algorithm which generates a se-
quence of strictly positive primal and dual solutions. The barrier algorithmis highly opti-
mized for large, sparse problems.

4. CPLEX provides asifting algorithm which can be effective on problems with many more
variables than equations. Sifting solves a sequence of LP subproblems where the results from
one subproblem are used to select columns from the original model for inclusion in the next
subproblem.

5. Theconcurrentoptimizer can apply multiple algorithms to a single linear programming prob-
lem. Each algorithm operates on a different CPU.

We used thetomlab package that provides a Matlab interface to CPLEX 9.0. Our TRBP im-
plementation was written in C++ and linked to Matlab as a cmex file. The TRBP implementation is
completely general and receives as input a graph and the potential functions. It iterates the message
updating equations (equation 5) until convergence. To improve the convergence properties “damp-
ening” is used – we only move the new messages halfway towards the new value of the message.
The messages are represented in the log domain so that multiplication is replacedwith summation.
Convergence is declared when the beliefs change by no more than 10−8 between successive itera-
tions and the same threshold is used to determine ties. The edge appearance probabilitiesρi j are
automatically calculated for a given graph by greedily constructing a set ofspanning trees until all
edges in the graph appear in exactly one spanning tree. The junction tree algorithm needed for
the post-processing of the TRBP beliefs is performed in Matlab using Kevin Murphy’s BNT pack-
age (Murphy, 2001). Despite the Matlab implementation, the junction tree run-timeis negligible
compared to the TRBP run times (typically less than 30 seconds for the junction tree). We also
compared the run-times of ordinary BP by running the same code but withρi j = 1 for all edges. All
algorithms were run on a dual processor Pentium 4 with 4G memory (but using a single processor
only).
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Figure 4: The number of variables, constraints and non-zero entries in the constraint matrix for
our benchmark problems in side-chain prediction, using SCWRL (left) and Rosetta (mid-
dle) energy functions, and protein design (right). For the side-chain prediction problem
both TRBP and the CPLEX solvers could solve the LP relaxation for all proteins in the
database. For the protein design problem, on the other hand, the CPLEX solvers could
only solve a small fraction of the database (3/97) while TRBP could solve the relaxations
for all the proteins in the database (the horizontal line in the plots in the right column in-
dicates the largest model that could be solved using CPLEX).

1898



LP RELAXATIONS AND BP–AN EMPIRICAL STUDY

5 10 15 20 25
0

100

200

300

400

500

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP PRIMAL

5 10 15 20 25
0

10

20

30

40

50

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP DUAL

5 10 15 20 25
0

10

20

30

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP NET

5 10 15 20 25
0

1

2

3

4

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP BARRIER

5 10 15 20 25
0

50

100

150

200

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP SIFTING

5 10 15 20 25
0

10

20

30

40

non zeros

tim
e 

[m
in

.]

 

 

BP TRBP CONCURRENT

Figure 5: Comparison of run-times of the six solvers from CPLEX and TRBPon a set of subprob-
lems constructed from the “map” image in the Middlebury stereo benchmark set.The
barrier method is the fastest of the CPLEX solvers but it is still significantly slower than
TRBP for relatively large problems.

The first question we asked was: what is the largest problem in each dataset that can be solved
within 12 hours by each of the solvers ? Figure 3 shows the results for a standard stereo bench-
mark image (the “map” image from the Middlebury stereo benchmark set (Scharstein and Szeliski,
2003)). We constructed smaller problems by taking subimages from the full image. Out of the
CPLEX solvers, the dual simplex algorithm could solve the largest subproblem (the barrier algo-
rithm requires more memory) but it could not solve an image larger than approximately 50× 50
pixels. In contrast, TRBP can be run on the full benchmark images (approximately 250×250 pix-
els). Figure 4 shows the problem sizes for the side-chain prediction and the protein design problems.
For the side-chain prediction problem all solvers could be applied to the fullbenchmark set. How-
ever for the protein design problem (in which the state space is much larger)the CPLEX solvers
could solve only 2 out of the 96 problems in the database (this is indicated by thehorizontal line in
the plots in the right column) while TRBP could solve them all.

In the second experiment we asked: how do the run-times of the solvers compare in settings
where all solvers can be applied. Figure 5 compares the run-times on the sequence of subproblems
constructed from the Middlebury stereo benchmark set. As can be seen,the barrier method is the
fastest of the CPLEX solvers but it is still significantly slower than TRBP on large problems.

Figure 6 compares the run times of the different solvers on the side-chain prediction graphical
models. Again, the barrier method is the fastest of the CPLEX solvers (with dual simplex and
network solvers providing similar performance with less memory requirements)but is significantly
slower than TRBP for large problems. Figure 7 shows the run times of TRBP,BP, and the barrier
CPLEX solver on the protein design problem. For the few cases for which the barrier method did
not run out of memory, TRBP is significantly faster.
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Figure 6: A comparison of the run-times of the different solvers in CPLEX and TRBP on the side-
chain prediction benchmark. Again the barrier method is the fastest of the CPLEX solvers
(with dual simplex and the network solver providing similar performance with less mem-
ory requirements). TRBP consistently converges faster than the barriermethod and the
difference becomes more significant as the problem size increases.
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Figure 7: A comparison of the run-times of the barrier method and TRBP on theprotein design
problem. For the few cases in which the barrier method did not run out of memory,
TRBP is significantly faster.

In the third set of experiments we asked: in what fraction of the runs can we use the results of
the LP relaxation to find the MAP? We define a run of TRBP as “successful”if the TRBP beliefs
allowed us to find the MAP of the graphical model (i.e. if we could find an assignmentx∗ that
maximized the pairwise and singleton beliefs). In the stereo benchmark we could directly find the
MAP in 12 out of 22 cases, but by using additional algorithms on the TRBP output we could find
the MAP on 19 out of the 22 cases (Meltzer et al., 2005). Figure 8 shows the success rate for TRBP
in the side-chain prediction problems. For these problems, TRBP’s success rate was over 90% for
proteins in our database with length less than 200 amino acids. As the proteins become larger, the
problem becomes more complex and the success rate decreases. The figures also show the fraction
of times in which the TRBP beliefs allowed us to solve the linear program. The protein design
problem is, apparently, a more difficult problem and the success rate is therefore much lower – the
MAP assignment could be found for 2 proteins only and TRBP beliefs allowed us to solve the LP
relaxations for 6 proteins only. Note, however, that we could still use the TRBP beliefs to obtain a
lower bound on the optimal solution.

We also assessed the success rate of the standard LP solvers, which wedefined as a case when
the LP solution was nonfractional. We found thatin all cases in which the LP solution was nonfrac-
tional the TRBP beliefs had a unique maximum. Thus the success rate of the standard LP solvers
was strictly less than that of TRBP (since TRBP also allows for obtaining a solution with partially
tied beliefs).

6. What is TRBP’s Secret?

Given the performance advantages of TRBP over the solvers in CPLEX,it is natural to ask “what is
TRBP’s secret?”. The first thing to emphasize in this context is thatTRBP is not a general purpose
LP solver. It can only solve a tiny fraction of linear programs with a very special structure.

To see this structure, consider the general LP problem: minimizecTq subject toAq = b and
Cq < d. If we translate LP relaxations of MAP into this form we find that the equality matrix
A, the inequality matrixC, and the vectorsb, d all contain only elements in{−1,0,1}. Tardos
(1986) has shown that linear programs with integer constraint matrices canbe solved with a strongly
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Figure 8: Success rate of TRBP on the side-chain prediction problems. A run of the algorithm was
considered a success if we could use the TRBP beliefs to find the MAP of thegraphical
model. The figures also show the fraction of times in which the TRBP beliefs allowed us
to solve the linear program.
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Figure 9: The sparsity pattern of a typical equality matrixA (a) and a random permutation of this
matrix (b). Blue and red dots indicate+1 and−1 entries respectively.

polynomial algorithm (suggesting that they are easier to solve than generalpurpose LPs for which
no strongly polynomial algorithm is known).

The matrixA that arises in LP relaxations of MAP has additional structure, beyond the fact
that its elements are in{−1,0,1}. Figure 9(a) shows the sparsity pattern of the matrixA for a
small graphical model. The matrix is sparse and has a special block form. The special structure
arises from the fact that we only have a consistency constraint for a pairwise indicatorqi j to the
two singleton indicators, that involve nodesi and j. There is no interaction between the pairwise
indicatorsqi j and any other pairwise indicatorqkl nor is there an interaction with any other singleton
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Figure 10: A comparison of the run-times of the barrier method and TRBP on(a) binary spin glass
models (Potts models with positive and negativeλi j ), as a function of grid size and on
(b) a 25×25 grid Potts model, as a function of the number of possible states,k. Each
datapoint represents the average over 10 random samplings ofλi j .

indicatorqk in the graph. For comparison, Figure 9(b) shows a random permutation ofthe matrix –
this has the same sparsity pattern but without the block structure.

Note that TRBP does not even represent the matrixA explicitly. Instead, TRBP explicitly repre-
sents the graphG which implicitly defines the matrixA. In contrast, the CPLEX solvers explicitly
representA and this matrix implicitly represents the graphG (by finding the correct permutation of
A that reveals the block structure, it is possible to reconstruct the graphG). We believe that this
difference in representation may be responsible for TRBP’s superior performance.

To investigate the conjecture that TRBP’s advantage is related to an explicit representation of
the graph structure, we compared the run-times of the barrier LP solver and TRBP on spin glass
models (Potts models with positive and negativeλi j ) with different numbers of possible states per
node,k. Note that the size of the block in the constraint matrix in Figure 9 is directly related to k
– for binary nodes the blocks are of size 5×4 and we conjectured that when the blocks are small,
TRBP’s advantage will decrease.

As Figure 10(a) shows, for binary nodes the barrier solver was consistently faster than TRBP.
However, as we increasedk, and consequently – the size of the blocks inA, the barrier solver
became much slower than TRBP (Figure 10(b)). This seems to support the assumption that the
explicit representation of block structure was responsible for TRBP’s superior performance in our
benchmark set. In the benchmark set,k was (at least) in the order of dozens. We should also note,
that even for binary problems, the barrier method will run out of memory muchfaster than TRBP.

7. Discussion

As pointed out in (Bixby, 2001), advances in hardware and in LP algorithms have greatly expanded
the size of problems that can be solved using LP relaxations. Despite this progress, many real world
problems are still too large to be handled using desktop hardware and standard LP solvers. In this
paper we have experimented with the powerful solvers in CPLEX on LP relaxations of the MAP
problem for graphical models from the fields of computer vision and computational biology. Despite
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the many optimizations in CPLEX for exploiting sparsity, we found that many of thegraphical
models gave rise to linear programs that were beyond the capability of all the solvers in CPLEX. In
contrast, tree-reweighted BP could be applied to all the linear programs in our database and almost
always gave faster solutions. By running the junction tree algorithm on a reduced graphical model
defined by the nodes for which the TRBP beliefs had ties, we could find the MAP solution for a
large range of real-world problems.

The LP solvers available in CPLEX are of course only a subset of the large number of LP
algorithms suggested in the literature and it may very well be possible to design LP solvers that
outperform TRBP on our benchmark set. To stimulate research in this direction, both the linear
programs used in this paper and our implementation of TRBP are available on theinternet. One
direction of research that we are currently working on, involves tighter LP relaxations (Meltzer et al.,
2005). As the problems become more complex, the standard LP relaxation of MAP is apparently
not tight enough and solving the LP often does not enable solving for the MAP. We are exploring
methods for solving a sequence of tighter and tighter relaxations and are interested in a method that
will allow us to use some of the computations used in one relaxation in solving a tighter relaxation.
We believe this research direction offers great potential benefit for interaction between researchers
in the field of graphical models and convex optimization.
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Appendix A. Deriving Bounds for the LP Solution Using TRBP

In this section, we give the formula for calculating a bound on the LP solution from TRBP fixed-
point beliefsbi j ,bi . We assume that the beliefs have been normalized so that maxxi ,x j bi j (xi ,x j) = 1
and maxxi bi(xi) = 1. Note that this normalization does not change the nature of fixed-points soin
case we have any set of fixed-point beliefs, we can just divide everypairwise belief by the maximal
value in that belief and similarly divide every singleton belief by its maximal value.The normalized
beliefs will still be fixed-points.

It can be shown (Wainwright et al., 2002) that any fixed-point of TRBPsatisfies the “admissibil-
ity” equation. For any assignmentx, the probability (or equivalently the energy) can be calculated
from the original potentials or from the beliefs:

ZPr(x) = ∏
i j

Ψi j (xi ,x j)Ψi(xi)

= K(b)∏
i j

b
ρi j
i j (xi ,x j)∏

i
bci

i (xi)

with ci = 1−∑ j ρi j and K(b) is a constantindependent of x. K(b) can be calculated from any
assignmentx, e.g.x0 = 0 where all nodes are in their first state, by

K(b) =
∏i j Ψi j (x0

i ,x
0
j )Ψi(x0

i )

∏i j b
ρi j
i j (x0

i ,x
0
j )∏i b

ci
i (x0

i )
(7)
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Similarly, it can be shown that for anyqi j ,qi that satisfy the LP constraints, one can calculate
the energy from the beliefs:

J(q) = ∑
<i j>

∑
xi ,x j

qi j (xi ,x j)Ei j (xi ,x j)+∑
i

∑
xi

qi(xi)Ei(xi)

= − lnK(b)− ∑
<i j>

ρi j ∑
xi ,x j

qi j (xi ,x j) lnbi j (xi ,x j)−∑
i

ci ∑
xi

qi(xi) lnbi(xi).

By using the admissibility constraint and the properties of the numbersρi j ,ci it can be shown
that J(q) ≥ − lnK(b). Direct inspection shows that ifqi j,qi are the sharpened beliefs then they
achieve the bound (since they are nonzero only whenbi j (xi ,x j) = 1 orbi(xi) = 1).
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Abstract

Incremental Support Vector Machines (SVM) are instrumental in practical applications of online
learning. This work focuses on the design and analysis of efficient incremental SVM learning, with
the aim of providing a fast, numerically stable and robust implementation. A detailed analysis of
convergence and of algorithmic complexity of incremental SVM learning is carried out. Based on
this analysis, a new design of storage and numerical operations is proposed, which speeds up the
training of an incremental SVM by a factor of 5 to 20. The performance of the new algorithm
is demonstrated in two scenarios: learning with limited resources and active learning. Various
applications of the algorithm, such as in drug discovery, online monitoring of industrial devices
and and surveillance of network traffic, can be foreseen.

Keywords: incremental SVM, online learning, drug discovery, intrusion detection

1. Introduction

Online learning is a classical learning scenario in which training data is provided one example at a
time, as opposed to the batch mode in which all examples are available at once (e.g. Robbins and
Munro (1951); Murata (1992); Saad (1998); Bishop (1995); Orr and Müller (1998); LeCun et al.
(1998); Murata et al. (2002)).

Online learning is advantageous when dealing with (a) very large or (b) non-stationary data. In
the case of non-stationary data, batch algorithms will generally fail if ambiguous information, e.g.
different distributions varying over time, is present and is erroneously integrated by the batch algo-
rithm (cf. Murata (1992); Murata et al. (2002)). Many problems of highinterest in machine learning
can be naturally viewed as online ones. An important practical advantage of online algorithms is
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that they allow to incorporate additional training data, when it is available, without re-training from
scratch. Given that training is usually the most computationally intensive task,it is not surprising
that availability of online algorithms is a major pre-requisite imposed by practitioners that work on
large data sets (cf. LeCun et al. (1998)) or even have to perform real-time estimation tasks for con-
tinuous data streams, such as in intrusion detection (e.g. Laskov et al. (2004); Eskin et al. (2002)),
web-mining (e.g. Chakrabarti (2002)) or brain computer interfacing (e.g. Blankertz et al. (2003)).

In the 1980’s online algorithms were investigated in the context of PAC learning (e.g. Angluin
(1988); Littlestone et al. (1991)). With the emergence of Support VectorMachines (SVM) in the
mid-1990’s, interest to online algorithms for this learning method arose as well.However, early
work on this subject (e.g. Syed et al., 1999; Rüping, 2002; Kivinen et al., 2001; Ralaivola and
d’Alché Buc, 2001) provided only approximate solutions.

An exact solution to the problem of online SVM learning has been found by Cauwenberghs and
Poggio (2001). Their incremental algorithm (hereinafter referred to asa C&P algorithm) updates
an optimal solution of an SVM training problem after one training example is added (or removed).

Unfortunately acceptance of the C&P algorithm in the machine learning community has been
somewhat marginal, not to mention that it remains widely unknown to potential practitioners. Only
a handful of follow-up publications is known that extend this algorithm to other related learning
problems (e.g. Martin, 2002; Ma et al., 2003; Tax and Laskov, 2003); toour knowledge, no suc-
cessful practical applications of this algorithm has been reported.

At a first glance, a limited interest to incremental SVM learning may seem to result the absence
of well-accepted implementations, such as its counterparts SVMlight (Joachims, 1999), SMO (Platt,
1999) and LIBSVM (Chang and Lin, 2000) for batch SVM learning. Theoriginal Matlab imple-
mentation by the authors1 has essentially the semantics of batch learning: training examples are
loaded all at once (although learned one at a time) and unlearning is only used for computation of
the – ingenious – leave-one-out bound.

There are, however, deeper reasons why incremental SVM may not beso easy to implement.
To understand them – and to build a foundation for an efficient design andimplementation of the
algorithm, a detailed analysis of the incremental SVM technique is carried out inthis paper. In
particular we address the “accounting” details, which contain pitfalls of performance bottlenecks
unless underlying data structures are carefully designed, and analyzeconvergence of the algorithm.

The following are the main results of our analysis:

1. Computational complexity of a minor iteration of the algorithm is quadratic in the number
of training examples learned so far. The actual runtime depends on the balance of memory
access and arithmetic operations in a minor iteration.

2. The main incremental step of the algorithm is guaranteed to bring progressin the objective
function if a kernel matrix is positive semi-definite.

Based on the results of our analysis, we propose a new storage design and organization of
computation for a minor iteration of the algorithm. The idea is to judiciously use row-major and
column-major storage of matrices, instead of one-dimensional arrays, in order to possibly eliminate
selection operations. The second building block of our design is gaxpy-type matrix-vector multipli-
cation, which allows to further minimize selection operations which cannot be eliminated by storage

1. http://bach.ece.jhu.edu/pub/gert/svm/incremental/
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design alone. Our experiments show that the new design improves computational efficiency by the
factor of 5 to 20.

To demonstrate applicability of incremental SVM to practical applications, two learning scenar-
ios are presented. Learning with limited resources allows to learn from largedata sets with as little
as 2% of the data needed to be stored in memory. Active learning is another powerful technique
by means of which learning can be efficiently carried out in large data sets with limited availability
of labels. Various applications of the algorithm, such as in drug discovery,online monitoring of
industrial devices and and surveillance of network traffic, can be foreseen.

In order to make this contribution self-contained, we begin with the presentation of the C&P
algorithm, highlighting the details that are necessary for a subsequent analysis. An extension of the
basic incremental SVM to one-class classification is presented in Section 3. Convergence analy-
sis of the algorithm is carried out in Section 4. Analysis of computational complexity, design of
efficient storage and organization of operations are presented and evaluated in Section 5. Finally,
potential applications of incremental SVM for learning with limited resources and active learning
are illustrated in Section 6.

2. Incremental SVM Algorithm

In this section we present the basic incremental SVM algorithm. Before proceeding with our pre-
sentation we need to establish some notation.

2.1 Preliminaries

We assume the training data and their labels are given by a set

{(x1,y1), . . . ,(xn,yn)}.

The inner product between data points in a feature space is defined by a kernel functionk(xi ,x j).
Then×n kernel matrixK0 contains the inner product values for all 1≤ i, j ≤ n. The matrixK is
obtained from the kernel matrix by incorporating the labels:

K = K0⊙ (yyT).

The operator⊙ denotes the element-wise matrix product, and a vectory denotes labels as ann×1
vector. Using this notation, the SVM training problem can be formulated as

max
µ

min
0≤α≤C
yT α=0

W :=−1Tα+ C
2 αTKα+µyTα. (1)

Unlike the classical setting of the SVM training problem, which is usually formulated as maximiza-
tion or minimization, the problem (1) is a saddle-point formulation obtained by incorporating the
equality constraint directly into the cost function. The reason for such construction will become
clear shortly.

2.2 Derivation of the Basic Incremental SVM Algorithm

The main building block of the incremental SVM is a procedure for adding oneexample to an
existing optimal solution. When a new pointxc is added, its weightαc is initially set to 0. If this
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assignment is not an optimal solution, i.e. whenxc should become a support vector, the weights
of other points and the thresholdµ must be updated in order to obtain an optimal solution for the
enlarged data set. The procedure can be reversed for a removal of an example: its weight is forced
to zero while updating weights of the remaining examples and the thresholdµ so that the solution
obtained withαc = 0 is optimal for the reduced data set. For the remaining part of this paper we
only consider addition of examples.

The saddle point of the problem (1) is given by the Kuhn-Tucker conditions:

gi :=−1+Ki,:α+µyi







≥ 0, if αi = 0

= 0, if 0 < αi < C

≤ 0, if αi = C

(2)

∂W
∂µ

:= yTα = 0. (3)

Before an addition of a new examplexc, the Kuhn-Tucker conditions are satisfied for all previous
examples. The goal of the weight update in the incremental SVM algorithm is to find a weight
assignment such that the Kuhn-Tucker conditions are satisfied for the enlarged data set.

Let us introduce some further notation. Let the setS denote unbounded support vectors (0<
αi < C), the setE denote bounded support vectors (αi = C), and the setO denote non-support
vectors (αi = 0); let R= E∪O. These index sets induce respective partitions on the kernel matrix
K and the label vectory (we shall use the lower-case letterss, e, o andr for such partitions).

By writing out the Kuhn-Tucker conditions (2)–(3) before and after anupdate∆α we obtain the
following condition that must be satisfied after an update:







∆gc

∆gs

∆gr

0







=







yc Kcs

ys Kss

yr Krs

0 yT
s







[
∆µ
∆αs

]

︸ ︷︷ ︸

∆s

+ ∆αc







KT
cc

KT
cs

KT
cr

yc







. (4)

One can see that∆αc is in equilibrium with∆αs andµ: any change to∆αc must be absorbed by the
appropriate changes in∆αs andµ in order for the condition (4) to hold.

The main equilibrium condition (4) can be further refined as follows. It follows from (2) that
∆gs = 0. Then lines 2 and 4 of the system (4) can be re-written as

[
0
0

]

=

[
0 αT

s
αs Kss

]

∆s+

[
αc

KT
cs

]

∆αc. (5)

This linear system is easily solved for∆sas follows:

∆s = β∆αc, (6)

where

β = −

[
0 αT

s
αs Kss

]−1

︸ ︷︷ ︸

Q

[
αc

KT
cs

]

︸ ︷︷ ︸

~η

(7)

is the gradient of the manifold of optimal solutions parameterized byαc.
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One can further substitute (6) into lines 1 and 3 of the system (4):
[

∆gc

∆gr

]

= γ∆αc, (8)

where

γ =

[
yc Kcs

yr Krs

]

β+

[
Kcc

KT
cr

]

(9)

is the gradient of the manifold of gradientsgr at an optimal solution parameterized byαc.
The upshot of these derivations is that the update is controlled by very simple sensitivity rela-

tions (6) and (8), whereβ is sensitivity of∆s with respect to∆αc andγ is sensitivity of∆gc,r with
respect to∆αc.

2.3 Accounting

Unfortunately the system (4) cannot be used directly to obtain the new SVM state. The problem
lies in the changing composition of the setsSandR with the change of∆s and∆αc in Eq. (4). To
handle this problem, the main strategy of the algorithm is to identify the largest increase∆αc such
that some point migrates between the setsS andR. Four cases must be considered to account for
such structural changes:

1. Someαi in S reaches a bound (an upper or a lower one). Letε be a small number. Compute
the sets

I
S
+ = {i ∈ S: βi > ε}

I
S
− = {i ∈ S: βi <−ε}.

The examples in setI S+ have positive sensitivity with respect to the weight of the current
example; that is, their weight would increase by taking the step∆αc.2 These examples should
be tested for reaching the upper boundC. Likewise, the examples in setI S− should be tested
for reaching zero. The examples with−ε < βi < ε should be ignored, as they are insensitive
to ∆αc. Thus the possible weight updates are

∆αmax
i =

{

C−αi , if i ∈ I S+

−αi , if i ∈ I S−,

and the largest possible∆αS
c before some example inSmoves toR is

∆αS
c = absmin

i∈I S+∪I
S
−

∆αmax
i

βi
, (10)

where
absmin

i
(x) := min

i
|xi | ·sign(x(argmin

i
|xi |)).

2. Somegi in R reaches zero. Compute the sets

I
R
+ = {i ∈ E : γi > ε}
I

R
− = {i ∈O : γi <−ε}.

2. It can be shown that the step∆αc is always positive in the incremental case.
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The examples in setI R+ have positive sensitivity of the gradient with respect to the weight of
the current example. Therefore their (negative) gradients can potentially reach zero. Likewise,
gradients of the examples in setI R− are positive but are pushed towards zero with the increasing
weight of the current example. Thus the largest increase∆αg

c before some point inR moves
to Scan be computed as

∆αR
c = min

i∈I R+∪I
R
−

−gi

γi
. (11)

3. gc becomes zero. This case is similar to case 2, with the feasibility test in the form

γc > ε.

If the update is feasible the largest step∆αg
c is computed as

∆αg
c =
−gc

γc
. (12)

4. αc reachesC. The largest possible increment∆αα
c is clearly

∆αα
c = C−αc. (13)

Finally, the smallest of the four values

∆αmax
c = min(∆αS

c,∆αR
c ,∆αg

c,∆αα
c ) (14)

constitutes the largest possible increment ofαc.
After the largest possible increment ofαc is determined, the updates∆s and∆g are carried out.

The inverse matrixQ must be also re-computed in order to account for the new composition of the
setS. Efficient update of this matrix is presented in section 2.4. The sensitivity vectors β andγ
must be also re-computed. The process repeats until the gradient of the current example becomes
zero or its weight reachesC. The high-level summary of incremental SVM algorithm is given in
Algorithm 1.

2.4 Recursive Update of the Inverse Matrix

It is clearly infeasible to explicitly invert the matrixQ in Eq. (7) every time the setS is changed.
Luckily, it is possible to use the fact that this set is always updated one element at a time – an
example is either added to, or removed from the setS.

Consider addition first. When the examplexk
3 is added to the setS, the matrix to be inverted is

partitioned as follows:

R :=





0 yT
s yk

ys Kss KT
ks

yk Kks Kkk



 =

[
Q−1 ηk

ηT
k Kkk

]

, (15)

where

ηk =

[
yk

KT
ks

]

.

3. A different indexk is used to emphasize that this example is not the same as the current example xc.
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Algorithm 1 Incremental SVM algorithm: high-level summary.
1: Read examplexc, computegc.
2: while gc < 0 & αc < C do
3: Computeβ andγ according to (7), (9).
4: Compute∆αS

c,∆αR
c ,∆αg

c and∆αα
c according to (10)–(13).

5: Compute∆αmax
c according to (14).

6: αc← αc +∆αmax
c .

7: αs← β∆αmax
c

8: gc,r ← γ∆αmax
c

9: Let k be the index of the example yielding the minimum in (14).
10: if k∈ S then
11: Movek from S to eitherE or O.
12: else ifk∈ E∪O then
13: Movek from eitherE or O to S.
14: else
15: {k = c: do nothing, the algorithm terminates.}
16: end if
17: UpdateQ recursively.{See section 2.4.}
18: end while

Defineβk =−Qηk, and denote the enlarged inverse matrix byQ̃. Applying the Sherman-Morrison-
Woodbury formula for block matrix inversion (see e.g. Golub and van Loan(1996)) toQ̃, we obtain:

[
Q−1 ηk

ηT
k Kkk

]−1

︸ ︷︷ ︸

Q̃

=

[
Q+κ−1(Qηk)(Qηk)

T −κ−1Qηk

−κ−1(Qηk)
T κ−1

]

=

[
Q+κ−1βkβT

k κ−1βk

κ−1βT
k κ−1

]

=

[
Q 0
0 0

]

+
1
κ

[
βk

1

]
[
βT

k 1
]
, (16)

where

κ = Kkk−ηT
k Qηk. (17)

Thus the update of the inverse matrix involves expansion with a zero row andcolumn and addition
of a rank-one matrix obtained via a matrix-vector multiplication. The running time needed for
an update of the inverse matrix is quadratic in the size ofQ, which is much better than explicit
inversion.

The removal case is straightforward. Knowing the inverse matrixQ̃ and using (16), we can write

Q̃ =

[
q11 q12

q21 q22

]

=

[
Q+κ−1βkβT

k κ−1βk

κ−1βT
k κ−1

]

.
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Re-writing this block matrix expression component-wise, we have:

Q = q11−κ−1βkβT
k (18)

βk = κq12 = q12/q22 (19)

βT
k = κq21 = q21/q22 (20)

κ−1 = q22. (21)

Substituting the last three relations into the first we obtain:

Q = q11−
q12q21

q22
. (22)

The running time of the removal operations is also quadratic in the size ofQ.

3. Extension to One-Class Classification

Availability of labels, especially online, may not be possible in certain applications. For example,
analysis of security logs is extremely time-consuming, and labels may be availableonly in limited
quantities after forensic investigation. As another example, monitoring of critical infrastructures,
such as power lines or nuclear reactors, must prevent a system from reaching a failure state which
may lead to gravest consequences. Nevertheless, algorithms similar to SVM classification can be
applied for data-description, i.e. for automatic inference of a concept descriptions deviations from
which are to be considered abnormal. Since examples of the class to be learned are not (or rarely)
available, the problem is known as “one-class classification”.

The two well-known approaches to one-class classification are separation of data points from
the origin (Scḧolkopf et al., 2001) and spanning of data points with a sphere (Tax and Duin, 1999).
Although they use different geometric constructions, these approacheslead to similar, and in certain
cases even identical, formulations of dual optimization problems. As we shall see, incremental
learning can be naturally extended to both of these approaches.

The dual formulation of the “sphere” one-class classification is given bythe following quadratic
program:

max
α

n

∑
i=1

αik(xi ,xi)−
1
2

n

∑
i=1

n

∑
j=1

αiα jk(xi ,x j)

subject to: 0≤ αi ≤C, i = 1, . . . ,n
n

∑
i=1

αi = 1.

(23)

In order to extend the C&P algorithm for this problem consider the following abstract saddle-point
quadratic problem:

max
µ

min
0≤α≤C

aT α+b=0

W :=−cTα+ C
2 αTHα+µ(aTα+b). (24)

It can be easily seen that formulation (24) generalizes both problems (23)and (1), subject to follow-
ing definition of the abstract parameters:

c = diag(K), H = K, a = 1, b = 1.
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Algorithm 2 Initialization of incremental one-class SVM.

1: Take the first⌊ 1
C⌋ objects, assign them weightC and put them inE.

2: Take the next objectc, assignαc = 1−⌊ 1
C⌋C and put it inS.

3: Compute the gradientsgi of all objects, using Eq. (2).
4: Computeµ so as to ensure non-positive gradients inE: µ=−max

i∈E
gi

5: Enter the main loop of the incremental algorithm.

The C&P algorithm presented in sections 2.2–2.4 can be applied to formulation (24) almost without
modification. The only necessary adjustment is a special initialization procedure for identification
of an initial feasible solution presented in Algorithm 2.4

4. Convergence Analysis

A very attractive feature of Algorithm 1 is that it obviously makes progressto an optimal solution if
a non-zero update∆αc is found. Thus potential convergence problems arise only when a zero update
step is encountered. This can happen in several situations. First, if the set S is empty, no non-zero
update of∆αc is possible since otherwise the equality constraint of the SVM training problemis
violated. Second, a zero update can occur when two or more points simultaneously migrate between
the index sets. In this case, each subsequent point requires a structural update without improvement
of ∆αc. Furthermore, it must be guaranteed, that after a point migrates from oneset to another,
say fromE to S, it is not immediately thrown out after the structure and the sensitivity parameters
are re-computed. These issues constitute the scope of convergence analysis to be covered in this
section. In particular we present a technique for handling the special case of the empty setS and
show that immediate cycling is impossible if a kernel matrix is positive semi-definite.

4.1 Empty SetS

The procedure presented in the previous two sections requires a non-empty set of unbounded support
vectors, otherwise a zero matrix must be inverted in Eq. (7). To handle this situation, observe that
the main instrument needed to derive the sensitivity relations is pegging of the gradient to zero for
unbounded support vectors, which follows from the Kuhn-Ticker conditions (2). Notice that the
gradient can also be zero for some points in setsE andO. Therefore, if the setS is empty we can
freely move some examples with zero gradients from the setsE andO to it and continue from there.
The question arises: what if no points with zero gradients can be found inE or O?

With ∆α = 0, ∆αc = 0 and no examples in the setS, the equilibrium condition (4) reduces to

∆gc = yc∆µ

∆gr = yr∆µ.
(25)

This is an equilibrium relation between∆gc,r and the scalar∆µ, in which sensitivity is given by the
vector[yc;yr ]. In other words, one can changeµ freely until one of components ingr or gc hits zero,
which would allow an example to be brought intoS.

4. Through the presentation of the C&P algorithm it was assumed that a feasible solution is always available. This is
indeed no problem for the classification SVM since the zero solution is always feasible. For the sphere formulation
of one-class classification this is not the case.

1917



LASKOV, GEHL, KRÜGER AND M ÜLLER

The problem remains – since∆µ is free as opposed to non-negative∆αc – to determine the
direction in which the components ofgr are pushed by changes inµ. This can be done by first
solving (25) for∆µ, which yields the dependence of∆gr on ∆gc:

∆gr =−
yr

yc
∆gc.

Since∆gc must be non-negative (gradient of the current example is negative andshould be brought
to zero if possible), the direction of∆gr is given by− yr

yc
. Hence the feasibility conditions can be

formulated as
I

R
+ = {i ∈ E :−

yi

yc
> ε}

I
R
− = {i ∈O :−

yi

yc
<−ε}.

The rest of the argument essentially follows the main case. The largest possible step∆µR is
computed as

∆µR = min
i∈I R+∪I

R
−

−gi

yi
. (26)

and the largest possible step∆µc is computed as

∆µc =−
gc

yc
. (27)

Finally, the update∆µmax is chosen as

∆µmax = min(∆µR,∆µc). (28)

4.2 Immediate Cycling

A more dangerous situation can occur if an example entering the setS is immediately thrown out at
a next iteration without any progress. It is not obvious why this kind of immediate cycling cannot
take place, since the sensitivity information contained in vectorsβ andγ does not seem to provide
a clue what would happen to an example after the structural change. The analysis provided in this
section shows that, in fact, such look-ahead information is present in the algorithm and that this
property is related to positive semi-definiteness of a kernel matrix.

When an example is added to the setS, the corresponding entry in the sensitivity vectorβ is
added at the end of this vector. Let us computeβ̃ after an addition of example k to set S:

β̃ =−Q̃η =−

[
Q 0
0 0

][
yc

Kcs

]

−
1
κ

[
βkβT

k βk

βT
k 1

][
yc

Kcs

]

.

Computing the last line in the above matrix products we obtain:

β̃end=−
1
κ

(

βT
k

[
yc

Kcs\end

]

+Kck

)

︸ ︷︷ ︸

γk

. (29)

Let us assume thatκ (defined in Eq. (17)) is non-negative. Examples withκ = 0 must be
prevented from entering the setSexternally, otherwise invertibility ofQ is ruined; thereforeκ > 0
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for the examples entering the setS. Thus we can see that the sign ofβ̃end after the addition of the
elementk to setS is the oppositeto the sign ofγk before the addition. Recalling the feasibility
conditions for inclusion of examples in setS, one can see that if an example is joining from the
setO its β̃ after inclusion will be positive, and if an example is joining from the setE its β̃ after
inclusion will be negative. Therefore, in no case will an example be immediatelythrown out of the
setS.

Thus to prove that immediate cycling is impossible it has to be shown thatκ≥ 0. Two technical
lemmas are useful before we proceed with the proof of this fact.

Lemma 1 Let z=−Qηk, z̃= [z,1]T . Thenκ = z̃TRz̃.

Proof By writing out the quadratic form we obtain:

z̃TRz̃= zTQ−1z+ηT
k z+zTηk +Kkk

= ηT
k QQ−1Qηk−2ηkQηk +Kkk

= Kkk−ηkQηk.

The result follows by the definition ofκ.

The next lemma establishes a sufficient condition for non-negativity of a quadratic form with a
matrix of the special structure possessed by matrixR.

Lemma 2 Let x̃ = [x0,x]T , K̃ =

[

0 yT

y K

]

, where x0 is a scalar, x,y are vectors of length n, and K is

a positive semi-definite n×n matrix. If xTy = 0 thenx̃TK̃x̃≥ 0.

Proof By writing out the quadratic form we obtain

x̃TK̃x̃ = 2x0xTy+xTKx.

SinceK is positive semi-definite the second term is greater than or equal to 0, whereas the first term
vanished by the assumption of the lemma.

Finally, the intermediate results of the lemmas are used in the main theorem of this section.

Theorem 3 If the kernel matrix K is positive semi-definite thenκ≥ 0.

Proof Lemma 1 provides a quadratic form representation ofκ. Our goal is thus to establish its
non-negativity using the result of Lemma 2.

Using the partition matrix inversion formula we can writeQ (cf. Eq. 7) as

Q =

[
−1

δ
1
δyT

s K−1
ss

1
δK−1

ss ys K−1
ss −

1
δK−1

ss ysyT
s K−1

ss

]

,
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whereδ = yT
s K−1

ss ys. SubstitutingQ into the definition ofz in Lemma 1 and explicitly writing out
the first term, we obtain:

z :=

[
z0

z\0

]

=−

[
−1

δ
1
δyT

s K−1
ss

1
δK−1

ss ys K−1
ss −

1
δK−1

ss ysyT
s K−1

ss

][
yk

Ksk

]

=

[ 1
δyk−

1
δyT

s K−1
ss Ksk

−1
δK−1

ss ysyk−K−1
ss Ksk+

1
δK−1

ss ysyT
s K−1

ss Ksk

]

.

Then

zT
\0ys+yk =−

1
δ

yky
T
s K−1

ss ys
︸ ︷︷ ︸

δ

−KT
skK
−1
ss ys+

1
δ

KT
skK
−1
ss ysy

T
s K−1

ss ys
︸ ︷︷ ︸

δ

+yk = 0

and the result follows by Lemma 2.

5. Runtime Analysis and Efficient Design

Let us now zoom in on computational complexity of Algorithm 1 which constitutes aminor iteration
of the overall training algorithm.5 Asymptotically, the complexity of a minor iteration is quadratic in
a number of examples learned so far: re-computation of the gradient,β andγ involve matrix-vector
multiplications, which have quadratic complexity, and the recursive update ofan inverse matrix has
also been shown (cf. Section 2.4) to be quadratic in the number of examples.These estimates have
to be multiplied by a number of minor iterations needed to learn an example. The number of minor
iterations depends on the structure of a problem, namely on how often examples migrate between
the index sets until an optimal solution is found. This number cannot be control in the algorithm,
and can be potentially exponentially large.6

For the practical purposes it is important to understand the constants hidden in asymptotic esti-
mates. To this end, the analysis of a direct implementation of Algorithm 1 in Matlab is presented in
Section 5.1. The focus of our analysis lies on the complexity of the main steps ofa minor iteration
in terms of arithmetic and memory access operations. This kind of analysis is important because
arithmetics can be implemented much more efficiently than memory access. Performance-tuned
numeric libraries, such as BLAS7 or ATLAS,8 make extensive use of the cache memory which is
an order of magnitude faster than the main memory. Therefore, a key to efficiency of the incre-
mental SVM algorithm lies in identifying performance bottlenecks associated withmemory access
operations and trying to eliminate them in a clever design. The results of our analysis are illustrated
by profiling experiments in Section 5.2, in which relative complexity of the main computational
operations, as a percentage of total running time, is measured for different kernels and sample sizes.

5. A major iteration corresponds to inclusion of a new example; therefore, all complexity estimates must be multiplied
by a number of examples to be learned. This is, however, a (very) worst case scenario, since no minor iteration is
needed for many points that do not become support vectors at the time of their inclusion.

6. The structure of the problem is determined by the geometry of a set of feasible solutions in a feature space. Since we
essentially follow the outer boundary of the set of feasible solutions, we are bound by the same limitation as linear
and non-linear programming in general, for which it is known that problems exist with exponentially many vertices
in a set of feasible solutions (Klee and Minty, 1972).

7. http://www.netlib.org/blas/
8. http://math-atlas.sourceforge.net/
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It follows from our analysis and experiments that the main difficulty in efficient implementation
of incremental SVM indeed lies in selection of non-contiguous elements of matrices, e.g. in Eq. (9).
The problem cannot be addressed within Matlab in which storage organization is one-dimensional.
Furthermore, it must be realized, as our experience showed us, that merely re-implementing in-
cremental SVM without addressing the tradeoff between selection and arithmetic operations, for
example using C++ with one-dimensional storage,does notsolve the problem. The solution pro-
posed in Section 5.3, which allows to completely eliminate expensive selection operations at a cost
of minor increase of arithmetic operations, is based on a mixture of row- and column-major storage
and on the gaxpy-type (e.g. Golub and van Loan (1996)) matrix-vector products. The evaluation of
the new design presented in Section 5.4 shows performance improvement of5 to 20 times.

5.1 Computational Complexity of Incremental SVM

On the basis of the pseudo-code of Algorithm 1 we will now discuss the key issues that will later be
used for a more efficient implementation of the incremental SVM.

Line 1: Computation ofgc is done according to Eq. (2). This calculation requires partial computa-
tion of the kernel rowKcs for the current example and examples in the setS. If the condition
of the while loop in line 2 does not hold then the rest of the kernel rowKcr has to be computed
for Eq. (9) in line 3. Computation of a kernel row is expensive since a subset of input points,
usually stored as a matrix, has to be selected using the index setsSandR.

Line 3: The computation ofγ via Eq. (9) is especially costly since a two-dimensional selection
has to be performed to obtain the matrixKrs (O(sr) memory access operations), followed
by a matrix-vector multiplication (O(sr) arithmetic operations). The computation ofβ in
line 3 is relatively easy because the inverse matrixQ is present and only the matrix-vector
multiplication for Eq. (7) (O(ss) arithmetic operations) has to be performed. The influence of
γ andβ for the algorithm scales with the size of setSand the number of data points.

Lines 4-8: These lines have minor runtime relevance because only vector-scalar calculations and
selections are to be performed.

Lines 9-16: Administration operations for setsSandR have inferior complexity. If a kernel row of
the examplek is not present (in case ofxk entering theSfrom O) then it has to be re-computed
for the update of the inverse matrix in line 17.

Line 17: The update of the inverse matrix requires the calculation ofκ according to Eq. (17) (O(ss)
arithmetic operations), which is of a similar order as the computation ofβ. The expansion
and rank-one matrix computation have also effect on the algorithm runtime. The expansion
requires memory operation (in the naive implementation, a reallocation of the entire matrix)
and is thus expensive for a large inverse matrix.

To summarize, the main performance bottlenecks of the algorithm are lines 1, 3, and 17, in which
memory access operations take place.
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5.2 Performance Evaluation

We now proceed with experimental evaluation of the findings of Section 5.1. Asa test-bed the
MNIST handwritten digits data set9 is used to profile the training of an incremental SVM. For every
digit, a test run is made on the data sets of size 1000, 2000, 3000, 5000 and10,000 randomly drawn
from the training data set. Every test run was performed for a linear kernel, a polynomial kernel of
degree 2 and an RBF kernel withσ = 30. Profiles were created by the Matlab profiler.

Eight operations were identified where a Matlab implementation of Algorithm 1 spends the bulk
of its runtime (varying from 75% to 95% depending on a digit). Seven of theseoperations pertain
to the bottlenecks identified in Section 5.1. Another relatively expensive operation is augmentation
of a kernel matrix with a kernel row. Figure 1 shows proportions of runtimespent in the most
expensive operations for the digit 8.
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Line 17, Eq.(17) : kappa calculation 
Line 17, Eq.(16) : update of matrix Q
Line 13               : kernel matrix augmentation
Line   3, Eq.(7)   : beta calculation 
Line   3, Eq.(9)   : matrix−vector multiplication
Line   3, Eq.(9)   : matrix creation from kernel matrix
Line   1/3            : kernel calculation
Line   1/3            : matrix creation from input space

Figure 1: Profiling results for digit 8 (MNIST).

The analysis clearly shows that memory access operations dominate the runtimeshown in Fig-
ure 1. It also reveals that the portion of kernel computation scales down with increasing data size
for all three kernels.

9. This data set can be found at http://yann.lecun.com/exdb/mnist/, and contains 60,000 training and 10,000 test images
of size 28×28.
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5.3 Organization of Matrix Storage and Arithmetic Computations

Having found the weak spots in the Matlab implementation of the incremental SVM, we will now
consider the possibilities for the efficiency improvement. In to order gain control over the storage
design we choose C++ as an implementation platform. Numerical operations canbe efficiently
implemented by using the ATLAS library.

5.3.1 STORAGE DESIGN

As it was mentioned before, the difficulty of selection operations in Matlab result from storing ma-
trices as one-dimensional arrays. For this type of storage, selection of rows and columns necessarily
required a large amount of copying.

Figure 2: C++ matrix design

An alternative representation of a matrix in C++ is a pointer-to-pointer schemeshown in Fig-
ure 2. Depending on whether rows or columns of a matrix are stored in one-dimensional pointed to
double** pointers, either a row-major or a column-major storage is realized.

What are the benefits of a pointer-to-pointer storage for our purposes? Such matrix represen-
tation has the advantage that selection along the pointer-of-pointer array requires hardly any time
since only addresses of rows or columns need to be fetched. As a resultone can completely elimi-
nate selection operations in line 1 by storing the input data in a column-major matrix.Furthermore,
by storing a kernel matrix in a row-major format (a) additions of kernel rows can be carried out with-
out memory relocation, and (b) selections in the matrixKrs are somewhat optimized sincer ≫ s.
Another possible problem arises during addition of a new example when columns have to added to
a kernel matrix. This problem can be solved by pre-allocation of columns which can be done in
constant-time (amortized).

5.3.2 MATRIX OPERATIONS

The proposed memory design does not completely solve the problem: we still have to perform col-
umn selection ins when computingKrs. Although tolerable for smaller number of support vectors,
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Algorithm 3 C++ calculation ofγ for (9) using gaxpy-type matrix-vector multiplication
Create an empty vectorz
for i = 1 : |s| do

z= βi+1Ksi ,: +z {gaxpy call}
end for
Computeγ = β1yr +zr +Kcr

Algorithm 4 C++ calculation ofγ for (9) using a naive matrix-vector multiplication
Create a matrixZ
Z =

[
yT

r ;Ksr
]

Computeγ = βTZ+Kcr {dgemm call}

the problem becomes acute whens grows with the arrival of more and more examples. Yet it turns
out to be possible to eliminate even this selection by re-organizing the computationof γ.

Consider the following form of computing Eq. (9):10

γT = β1yT
r +βT

2:endKsr +Kcr. (30)

The first and the last terms are merely vectors, while the middle term is computed using a matrix-
vector multiplication and selection over a matrix. Using the transposed matrixKsr (still stored in a
row-major form) at first seems counter-intuitive, as we argued in the previous section that expensive
selection should be carried out over short indices inS and not the long indices inR. However,
consider the following observation:

Sinces≪ r we can just as well run the productβT
2:endKs,1:endat a tolerable extra cost of

O(ss) arithmetic operations.

By doing so we do not need to worry about selection! The extras elements in a product vector can
be discarded (of course by a selection, however selection over a vector is cheap).

Still another problem with the form (30) of theγ-update remains. If we run it as an inner-product
update, i.e. multiplying a row vector with columns of a matrix stored in a row-major format, this
loop must be run over the elements in non-contiguous memory. This is as slow asusing selection.
However, by running it as a gaxpy-type update (e.g. Golub and van Loan, 1996) we end up with
loops running over therows of a kernel matrix, which brings a full benefit of performance-tuned
numerics. The summary of the gaxpy-type computation ofγ is given in Algorithm 3. For com-
parison, Algorithm 4 shows a naive implementation of theγ-update using inner-product operations
(dgemm-type update).

This same construction can be also applied to the inverse matrix update in Eq. (16) by using the
following format:

Qi =
βi

κ
β+Qi,:. (31)

By doing so explicit creation of a rank-one matrix can be avoided.
To summarize our design, by using the row-major storage of (transposed)matrix K and the

gaxpy-type matrix-vector multiplication selection can be avoided by at a cost of extraO(ss) arith-
metic operations and performing a selection on a resulting vector.

10. For cleaner notation we ignore the first line in Eq. (9) here.
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Line 17, Eq.(17) : kappa calculation 
Line 17, Eq.(16) : update of matrix Q
Line 13               : kernel matrix augmentation
Line   3, Eq.(7)   : beta calculation
Line   3, Eq.(9)   : gamma calculation by gaxpy loop
Line   1/3            : kernel calculation without matrix creation

Figure 3: C++ runtime proportion digit 8 (MNIST)

5.4 Experimental Evaluation of the New Design

The main goal of the experiments to be presented in this section is to evaluate the impact of the
new design of storage and arithmetic operations on the overall performance of incremental SVM
learning. In particular, the following issues are to be investigated:

• How is the runtime profile of the main operations affected by the new design?

• How does the overall runtime of the new design scale with an increasing size of a training
set?

• What is the overall runtime improvement over the previous implementations and how does it
depend on the size of a training set?

To investigate the runtime profiles of the new design, check-pointing has been realized in our
C++ implementation. The profiling experiment presented in Section 5.2 (cf. Figure 1) has been
repeated for the new design, and the results are shown in Figure 3. The following effects of the new
design can be observed:

1. The selection operation in Lines 1/3 is eliminated. The selection was necessary in a Matlab
implementation due to one-dimensional storage – a temporary matrix had to be created in
order to represent a sub-matrix of the data. In the new design using the column-major stor-
age for the data matrix a column sub-matrix can be directly passed (as pointersto columns)
without a need for selection.
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2. Matrix creation has been likewise eliminated in the computation ofγ in Line 3. However,
the relative cost of the gaxpy computation in the new design remains as high asthe relative
cost of the combined matrix creation / matrix-vector multiplication operations in the Matlab
implementation. The relative cost of theβ computation is not affected by the new design.

3. Matrix augmentation in Line 13 takes place at virtually no computational cost –due to row-
major storage of the kernel matrix.

4. The relative cost of operations in Line 17 is not affected by the new design.

The overall cost distribution of main operations remains largely the same in the new design, kernel
computation having the largest weight for small training sets and gamma computation – for the large
training sets. However, as we will see from the following experiments, the new design results in
major improvement of the absolute running time.

Evaluation of the absolute running time is carried out by means of the scaling factor experiments.
The same data set and the same SVM parameters are used as in the profiling experiments. Four
implementations of incremental SVM are compared: the original Matlab implementationof C&P
(with leave-one-out error estimation turned off), the Matlab implementation of Algorithm 1, the C++
implementation of Algorithms 1 & 3 and the C++ implementation of Algorithms 1 & 4. The latter
configuration is used in order to verify that the performance gains indeedstem from the gaxpy-type
updates rather than from switching from Matlab to C++.

The algorithms are run on the data sets ranging from 1000 to 10000 examplesin size, and the
training times are plotted against the training set size at a log-log scale. Theseplots are shown in
Figure 4 (for the linear kernel) and 5 (for the RBF kernel). The results for the polynomial kernel are
similar to the linear kernel and are not shown. Ten plots are shown separately for each of the digits.

One can see that the C++ implementation significantly outperforms both Matlab implementa-
tions. The RBF kernel is more difficult for training than the linear kernel for the MNIST data set,
which is reflected by a larger proportion of support vectors (on average 15% for the RBF kernel
compared to 5% with the linear kernel, at 10000 training examples). Becauseof this the experi-
ments with the C&P algorithm at 10000 training points were aborted. The Matlab implementation
of Algorithm 1 was able to crank about 15000 examples with the RBF kernel, whereas the C++
implementation succeeded to learn 28000 examples, before running out of memory for storing the
kernel matrix and the auxiliary data structures (at about 3GB). The relative performance gain of
the C++ implementation using gaxpy-updates against the “best Matlab competitor” and against the
dgemm-updates is shown in Figure 6 (linear kernel, C&P algorithm) and Figure 7(RBF kernel,
Algorithm 1). Major performance improvement in comparison to Matlab and the naive C++ imple-
mentations can be observed, especially visible on larger training set sizes.

6. Applications

As it was mentioned in the introduction, various applications of incremental SVMlearning can
be foreseen. Two exemplare applications are presented in this session in order to illustrate some
potential application domains.
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Figure 4: Scaling factor plots of incremental SVM algorithms with the linear kernel.
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Figure 5: Scaling factor plots of incremental SVM algorithms with the RBF kernel (σ = 30).

1927



LASKOV, GEHL, KRÜGER AND M ÜLLER
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Figure 6: Runtime improvement, linear kernel.

6.1 Learning with Limited Resources

To make SVM learning applicable to very large data sets, a classifier has to beconstrained to have
a limited number of objects in memory. This is, in principle, exactly what an online classifier with
fixed window sizeM does. Upon arrival of a new example, a least relevant example needs tobe
removed before a new example can be incorporated. A reasonable criterion for relevance is the
value of the weight.

USPS experiment: learning with limited resources. As a proof of concept for learning with
limited resources we train an SVM on the USPS data set under the limitations on the number of
points that can be seen at a time. The USPS data set contains 7291 training and 2007 images
of handwritten digits, size 16× 16 (Vapnik, 1998). On this 10-class data set 10 support vector
classifiers with a RBF kernel,σ2 = 0.3 ·256 andC = 100, were trained.11 During the evaluation of
a new object, it is assigned to the class corresponding to the classifier with thelargest output. The
total classification error on the test set for different window sizesM is shown in Figure 8.

One can see that the classification accuracy deteriorates marginally (by about 10%) until the
working size of 150, which is about 2% of the data. True, by discarding “irrelevant” examples,
one removes potential support vectors that cannot be recovered at alater stage. Therefore one can

11. The best model parameters as reported in (Vapnik, 1998) were used.
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Figure 7: Runtime improvement, RBF kernel.
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Figure 8: Test classification errors on the USPS data set, using a support vector classifier (RBF
kernel,σ2 = 0.3·256) with a limited ”window” of training examples.

expect that performance of a limited memory classifier would be worse than that of an unrestricted
classifier. It is also obvious that no more points than the number of supportvectors are eventually
needed, although the latter number is not known in advance. The averagenumber of support vectors
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per each unrestricted 2-class classifier in this experiment is 274. Therefore the results above can be
interpreted as reducing the storage requirement by 46% from the minimal at the cost of 10% increase
of classification problem.

Notice that the proposed strategy differs from the caching strategy, typical for many SVMlight-
like algorithms (Joachims, 1999; Laskov, 2002; Collobert and Bengio, 2001), in which kernel prod-
ucts are re-computed if the examples are found missing in the fixed-size cache and the accuracy of
the classifier is not sacrificed. Our approach constitutes a trade-off between accuracy and computa-
tional load because kernel products never need to be re-computed. Itshould be noted, however, that
computational cost of re-computing the kernels can be very significant, especially for the problems
with complicated kernels such as string matching or convolution kernels.

6.2 Active Learning

Another promising application of incremental SVM is active learning. In this scenario, instead
of having all data labelled beforehand, an algorithm “actively” choosesexamples for which labels
must be assigned by a user. Active learning can be extremely successful, if not indispensable, when
labelling is expensive, e.g. in computer security or in drug discovery applications.

A very powerful active learning algorithm using SVM was proposed by Warmuth et al. (2003).
Assume that the goal of learning is to identify “positive” examples in a data set.The meaning of
positivity can vary across applications; for example, it can be binding properties of molecules in
drug discovery applications, or hacker attacks in security applications. Selection of a next point
to be labelled is carried out in the algorithm of Warmuth et al. (2003) using two heuristics that
can be derived from an SVM classifier trained on points with known labels.The “largest positive”
heuristic selects the point that has the largest classification score among allexamples still unlabeled.
The “near boundary” heuristic selects the point whose classification score has the smallest absolute
value. Although the semantics of these two heuristics differ – in one case we trying to explore the
space of positive examples as fast as possible, whereas in the other case the effort is focused on
learning the boundary – in both cases the SVM has to be re-trained after each selection. In the
original application of Warmuth et al. (2003) the data samples were relativelysmall, therefore one
could afford re-training SVM from scratch after addition of new points. Obviously, a better way to
proceed is by applying incremental learning as presented in this paper.

In the remaining part of this section experiments will be presented that provethe usefulness of
active learning in the intrusion detection context. Since the observed data can contain thousands
and even millions of examples it is clear that the problem can be addressed only using incremental
learning. As a by-product of our experiments, it will be seen that activelearning helps to uncover
the structure of a learning problem revealed by the number of support vectors.

The underlying data for the experiments is taken from the KDD Cup 1999 dataset.12 As a
training set, 1000 examples are randomly drawn with an attack rate of 10 percent. The incremental
SVM was run with the linear kernel and the RBF kernel withσ = 30. An independent set of the same
length with the same attack distribution is used for testing. The results are not averaged over multiple
repetitions in order not to “disturb” the semantics of different phases of active learning as can be
seen from the ROC curves. However, similar behavior was observed over multiple experiments.

KDD Cup experiment: active learning. Consider the following learning scenario. Assume that
we can run an anomaly detection tool over our data set which ranks all the points according to

12. http://www-cse.ucsd.edu/users/elkan/clresults.html
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Figure 9: linear kernel, n=10 and m=50

their degree of anomaly. No labels are needed for this; however, if we know them, we can evaluate
anomaly detection by a ROC curve. It is now the goal to use active learning tosee if a ROC curve
of anomaly detection can be improved.

We take the firstn examples with the highest anomaly scores and train a (batch) SVM to obtain
an initial model. After that we turn to active learning and learn the nextm examples. We are now
ready to classify the remaining examples by the trained SVM. The question arises: after spending
manual effort to labeln+mexamples, can we classify the remaining examples better than anomaly
detection?

In order to address this question, an accuracy measure must be definedfor our learning scenario.
This can be done using the fact that only the ranking of examples according to their scores – and not
the score values themselves – matters for the computation of a ROC curve (Cortes and Mohri, 2004).
The ranking in our experiment can be defined as follows: the firstn examples are ranked according
to their anomaly scores, the nextmexamples are ranked according to their order of inclusion during
the active learning phase, and the remaining examples are ranked according to their classification
scores.

The ROC curves for active learning with the two heuristics and for anomaly detection are shown
in Figure 9. One can easily see a different behavior exhibited by the two active learning rules. The
“largest positive” rule attains the highest true positive rate during the active learning phase, but does
not perform significantly better than anomaly detection during the classification phase (i > 60). On
the contrary, the “near boundary” rule is close or worse than anomaly detection during the learning
phase but exhibit a sharp increase of the true positive rate after moving toclassification mode. Its
accuracy then remains consistently better than anomaly detection for a considerable false positive
interval (until FP = 0.3 for the linear kernel and until FP = 0.9 for the RBF kernel). Similar behavior
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Figure 10: linear kernel, n=10 and m=50

of the two heuristics in the active learning phase was also observed by Warmuth et al. (2003). Yet
the “near boundary” heuristic is obviously more suitable for classification,since it explores the
boundary region and not merely the region of positive examples.

Another interesting insight can be gained by investigating the behavior of active learning on
test data. In this case, supervised learning can also be drawn into comparison. In particular, we
consider a full SVM (using a training set size of 1000 examples as opposed to only 60 examples
used in the active learning) and a reduced SVM. The latter is obtained froma full SVM by finding
a hyperplane closest to a full SVM hyperplane subject to 1-norm regularization over expansion
coefficients (cf. Scḧolkopf et al. (1999)). The regularization constant is chosen such thata reduced
SVM has approximately the same number of support vectors as the solution obtain by active learning
(in our case the valueλ = 2.5 resulted in about 30 support vectors). Thus one can compare active
learning with supervised learning given equal complexity of solutions.

The ROC curves of active learning, supervised learning and anomaly detection on test data are
shown in Figure 10. It can be observed that the “near-boundary” heuristic of active learning attains
a solution which is at least as good (for FP≤ 0.4) as a reduced SVM for the linear kernel and
significantly better for the RBF kernel. This shows that active learning does a very good job at
discovering the necessary structure of a solution – it picks a better representation within a desired
complexity since it is using a learning-related criterion to select an interesting representation instead
of a merely geometric one.

1932



INCREMENTAL SUPPORTVECTORLEARNING

7. Discussion and Conclusions

Online learning algorithms have proved to be essential when dealing with (a) very large (see e.g. Le-
Cun et al. (1998); Bordes et al. (2005); Tsang et al. (2005)) or (b) non-stationary data (see e.g. Rob-
bins and Munro (1951); Murata (1992); Murata et al. (1997, 2002)). While classical neural net-
works (e.g. LeCun et al. (1998); Saad (1998)) have a well established online learning toolbox for
optimization, incremental learning techniques for Support Vector Machineshave been only recently
developed (Cauwenberghs and Poggio, 2001; Tax and Laskov, 2003; Martin, 2002; Ma et al., 2003;
Ma and Perkins, 2003).

The current paper contributes two-fold to the field of incremental SVM learning. The conver-
gence analysis of the algorithm has been performed showing that immediate cycling of the algorithm
is impossible provided a kernel matrix is positive semi-definite. Furthermore, we propose a better
scheme for organization of memory and arithmetic operations in exact incremental SVM using the
gaxpy-type updates of the sensitivity vector. As it is demonstrated by our experiments, the new
design results in major constant improvement in the running time of the algorithm.

The achieved performance gains open wide possibilities for application of incremental SVM
to various practical problems. We have presented exemplary applications to two possible scenar-
ios: learning with limited resources and active learning. Potential applicationsof incremental SVM
learning include, among others, drug discovery, intrusion detection, network surveillance, monitor-
ing of non-stationary time series etc. Our implementation is available free of charge for academic
use at http://www.mind-ids.org/Software.

It is interesting to compare exact incremental learning to recently proposedalternative ap-
proaches to online learning. The recent work of Bordes et al. (2005)presents an online algorithm
for L1 SVM, in which a very close approximation of the exact solution is built online before the
last gap is bridged in the REPROCESS phase in an offline fashion. This algorithm has been shown
to scale well to several hundred thousand examples, however its online solution is not as accurate
as the exact solution. It has been observed (cf. Fig. 9 in Bordes et al.(2005)) that the REPROCESS
phase may result in major improvement of the test error and may come at a high price in comparison
with the online phase, depending on a data set. Another recent algorithm, theCore Vector Machine
of Tsang et al. (2005), is based on the L2 formulation of an SVM and has be shown to scale to
several million of examples. The idea of this algorithm is to approximate a solution toan L2 SVM
by a solution to the two-class Maximal Enclosing Ball problem, for which several efficient online
algorithms are known. While scalability results of CVM are very impressive, the approximation of
the exact solution can likewise in higher test errors.

The major limilation of the exact incremental learning is its memory requirement, sincethe set
of support vectors must be retained in memory during the entire learning. Due to this limitation,
the algorithm is unlikely to be scalable beyond tens of thousands examples; however, for data sizes
within this limit it offers an advantage of immediate availablility of the exact solution (crucial in e.g
learning of non-stationary problems) and reversibility.

Future work will include further investigation of properties of incremental SVM such as numer-
ical stability and their utility for tracking the values of generalization bounds. Arelationship with
parametric optimization needs to be further clarified. Extensions to advance learning modes, such
as learning for structured domains and semi-supervised learning, are being considered.
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Abstract
We study the problem of long-run average cost control of Markov chains conditioned on a rare
event. In a related recent work, a simulation based algorithm for estimating performance measures
associated with a Markov chain conditioned on a rare event has been developed. We extend ideas
from this work and develop an adaptive algorithm for obtaining, online, optimal control policies
conditioned on a rare event. Our algorithm uses three timescales or step-size schedules. On the
slowest timescale, a gradient search algorithm for policy updates that is based on one-simulation
simultaneous perturbation stochastic approximation (SPSA) type estimates is used. Deterministic
perturbation sequences obtained from appropriate normalized Hadamard matrices are used here.
The fast timescale recursions compute the conditional transition probabilities of an associated chain
by obtaining solutions to the multiplicative Poisson equation (for a given policy estimate). Further,
the risk parameter associated with the value function for a given policy estimate is updated on a
timescale that lies in between the two scales above. We briefly sketch the convergence analysis
of our algorithm and present a numerical application in the setting of routing multiple flows in
communication networks.

Keywords: Markov decision processes, optimal control conditioned on a rare event, simulation
based algorithms, SPSA with deterministic perturbations, reinforcement learning

1. Introduction

Markov decision processes (MDPs) (Bertsekas, 2001; Puterman, 1994), form a general framework
for studying problems of control of stochastic dynamic systems (SDS). Many times, one encounters
situations involving control of SDS conditioned on a rare event of asymptotically zero probability.
This could be, for example, a problem of damage control when faced with a catastrophic event.
For instance, in the setting of a large communication network such as the internet, one may be
interested in obtaining optimal flow and congestion control or routing strategies in a subnetwork
given that an extremal event such as a link failure has occurred in another remote subnetwork. Our
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objective in this paper is to consider a problem of this nature wherein a rare event is specifically
defined to be the time average of a function of the MDP and its associated control-valued process
exceeding a threshold that is larger than its mean. We consider the infinite horizon long-run average
cost criterion for our problem and devise an algorithm based on policy iteration for the same.

Research on developing simulation based methods for control of SDS has gathered momentum
in recent times. These largely go under the names of neuro-dynamic programming (NDP) or rein-
forcement learning (RL), (see, for example, Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998),
and are applicable in the case of systems for which model information is not known or computa-
tionally forbiddingly expensive, but output data obtained either through a real system or a simulated
one is available. Our problem does not share this last feature, but we do borrow certain algorithmic
paradigms from this literature. Before we proceed further, we first review some representative recent
work along these lines. In Baxter and Bartlett (2001), an algorithm for long-run average cost MDPs
is presented. The average cost gradient is approximated using that associated with a corresponding
infinite horizon discounted cost MDP problem. The variance of the estimates however increases
rapidly as the discount factor is brought closer to one. In Baxter et al. (2001), certain variants based
on the algorithm in Baxter and Bartlett (2001) are presented and applications on some experimental
settings shown.

In Cao and Guo (2004), a perturbation analysis (PA) type approach is used to obtain the per-
formance gradient based on sample path analysis. In Cao (1998), a PA-based method is proposed
for solving long-run average cost MDPs. This requires keeping track of the regeneration epochs
of the underlying process for any policy and aggregating data over these. The above epochs can
however be very infrequent in most real life systems. In Marbach and Tsitsiklis (2001), the average
cost gradient is computed by assuming that sample path gradients of performance and transition
probabilities are known in functional form. Amongst other RL-based approaches, the temporal dif-
ference (TD) and Q-learning, (see Sutton and Barto, 1998; Watkins and Dayan, 1992, respectively),
have been popular in recent times. These are based on value function approximations. A parallel
development is that of actor-critic algorithms based on the classical policy iteration algorithm in
dynamic programming. Note that the classical policy iteration algorithm proceeds via two nested
loops—an outer loop in which the policy improvement step is performed and an inner loop in which
the policy evaluation step for the policy prescribed by the outer loop is conducted. The respective
operations in the two loops are performed one-after-the-other in a cyclic manner. The inner loop
can in principle take a long time to converge, making the overall procedure slow in practice. In
Konda and Borkar (1999), certain simulation-based algorithms that use multi-timescale stochastic
approximation are proposed. The idea is to use coupled stochastic recursions driven by different
step-size schedules or timescales. The recursion corresponding to policy evaluation is run on the
faster timescale while that corresponding to policy improvement is run on the slower one. Thus
while both recursions proceed simultaneously, the algorithm converges to the optimal policy. The
algorithms of Konda and Borkar (1999) (as with those described in the previous paragraph) are for
finite state and finite action MDPs, under both the discounted and long-run average cost criteria. A
variant of the above algorithms for the case of finite state but compact (non-discrete) action sets, in
the setting of infinite horizon discounted cost MDPs is presented by Bhatnagar and Kumar (2004),
and performs gradient search in the space of stationary deterministic policies using a simultaneous
perturbation stochastic approximation (SPSA) gradient estimate.

Standard SPSA (Spall, 1992) uses two simulations for estimating the performance/cost gradient
regardless of the dimension N of the parameter vector, unlike Kiefer-Wolfowitz (K-W) based esti-
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mates that require (N +1) simulations for the same. This it done by randomly perturbing all param-
eter components at each update epoch. The original SPSA algorithm of Spall (1992) is, however,
a one-timescale Robbins-Monro variant for parameter optimization and is not directly applicable
when the cost to be optimized is for instance the long-run average of a running cost function, viz.,
the objective function for a given parameter value is derived only after viewing the entire sample
path / trajectory of the system for that parameter value. Perturbation analysis (PA) schemes (see
Chong and Ramadge, 1994; Ho and Cao, 1991), that were proposed for problems such as these
use largely one simulation, however, they require certain constraining regularity conditions on the
system dynamics and cost functions in order to allow for an interchange between the ‘gradient’
and ‘expectation’ operators. Moreover, many of these schemes update parameters only at certain
regeneration epochs of the underlying process, making them slow in practice. In Bhatnagar and
Borkar (1997, 1998), certain two-timescale stochastic approximation algorithms were introduced as
alternatives to PA type schemes. These do not require constraining regularity conditions like PA,
while they also update parameters at certain deterministic epochs. The key in the above algorithms
is the use of two-timescale stochastic approximation, whereby on the faster timescale, data corre-
sponding to a given parameter update is aggregated and on the slower timescale, the parameter is
updated. These algorithms, however, use K-W estimates. In Bhatnagar et al. (2001), variants that
use SPSA estimates were proposed and were found to show significantly improved performance.
In Spall (1997), a one-simulation (one-timescale) variant of the original SPSA algorithm was pro-
posed, which however does not show good performance because of the presence of an ‘additional’
bias term in its gradient estimate whose contribution to overall bias tends to be high. In Bhatnagar
et al. (2003), it was observed in a similar setting by Bhatnagar and Borkar (1997), Bhatnagar and
Borkar (1998) and Bhatnagar et al. (2001), respectively, that the use of deterministic perturbation
sequences (instead of randomized) derived using normalized Hadamard matrices significantly alle-
viates this problem in the case of one-simulation SPSA with the latter subsequently showing good
performance. It was shown that perturbation sequences derived using normalized Hadamard matri-
ces satisfy the desired properties on such sequences that result in all bias terms getting cancelled at
regular intervals. Further, the space of perturbations derived as above has a cardinality of 2log2(N+1)

as against 2N when randomized perturbations are used (the perturbation vectors in both spaces be-
ing {±1}N-valued). To sum up, the use of normalized Hadamard matrix based perturbations in the
setting as described above has the inherent advantage that one may use a fast one-simulation SPSA
based algorithm that updates all parameter components at each update epoch (the epochs themselves
being deterministically spaced). In particular, the algorithms of Bhatnagar et al. (2003) update the
parameter once every L epochs for a given, arbitrarily chosen integer L while working with a more
general class of systems than what the PA based methods allow.

The works cited above represent some recent developments in the general area of simulation
based optimization and control of SDS. We now review some of the work that is more directly re-
lated to the problem we study in this paper. In Borkar et al. (2004), a simulation-based algorithm for
estimating performance measures of a Markov chain conditioned on a rare event of zero probability
has been developed. This is based on the result that the transition probabilities of the Markov chain
conditioned on a rare event as above are the same as those of another irreducible chain on the same
state space whose transition probabilities are absolutely continuous w.r.t. those of the former chain.
The calculation of these calls for the solution of an associated multiplicative Poisson equation, an
object familiar from risk-sensitive control and large deviations theory (see Kontoyiannis and Meyn,
2003; Balaji and Meyn, 2000). The simulation based algorithm of Borkar et al. (2004) recursively
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obtains the solution to this multiplicative Poisson equation and uses the same to learn, online, the
new transition probabilities. In Ahamed et al. (2006), a reinforcement learning based importance
sampling scheme for estimating expectations associated with rare events has also been proposed.

A related paper by Rubinstein (1997), in which a simulation based technique for optimizing cer-
tain performance measures in discrete event systems conditioned on rare events is presented. The
problem there is formulated as a constrained optimization problem with an importance sampling
estimate in the objective function that is obtained by assuming the underlying processes to be re-
generative. The constraint there corresponds to the occurrence of the given rare event. The above
problem is then solved as a two-stage stochastic programming problem. Our work is fundamentally
different from that of Rubinstein (1997) in many ways. First, we consider the problem of obtaining
an optimal control policy conditioned on a rare event and not just one of optimizing certain per-
formance metrics within a parameterized class as with Rubinstein (1997). Next, even though we
assume that our underlying process for any given stationary policy is ergodic Markov and hence re-
generative, we do not use the regenerative structure per se in obtaining estimates of performance as
Rubinstein (1997) does. For the latter, one needs in particular to keep track of regeneration epochs
of the underlying process that can be very infrequent in the case of most systems. Finally, we
use a stochastic approximation based recursive procedure that incorporates reinforcement learning
type estimates, unlike (as already mentioned) Rubinstein (1997) who formulates the problem as a
stochastic program.

Our work can be viewed as an extension of Borkar et al. (2004) that addresses the important
problem of optimal control of a Markov chain conditioned on a rare event. In our framework, the
results of Borkar et al. (2004) correspond to policy evaluation for a fixed stationary deterministic
policy. We develop and use a simulation-based algorithm to find the optimal randomized policy
‘on top of’ the algorithm of Borkar et al. (2004). Our algorithm uses three timescales or step-size
schedules and iterates in the space of stationary randomized policies. The policy itself, however,
is updated on the slowest timescale. The value function updates for finding the solution to the
multiplicative Poisson equation for a given policy, based on which the transition probabilities of an
associated chain are obtained, are performed on the fastest timescale. The risk parameter associated
with the multiplicative Poisson equation is updated on a timescale that is faster than the one on which
policy is updated, but slower than that on which value function is updated. Finally, there is another
recursion that is used for averaging the cost function with the latter average used in the policy
update step. This proceeds on the fastest scale as well (same as the one on which the value function
is updated). We show in the analysis that the difference in timescales of the various recursions
results in the desired algorithmic behavior. For policy updates, we use a one-simulation SPSA
based recursion with normalized Hadamard matrices (Bhatnagar et al., 2003). Finally, we present
numerical experiments using our algorithm in the setting of routing multiple flows in communication
networks conditioned on a rare event. We observe that our algorithm exhibits good performance in
this setting. It must be noted here that adaptive importance sampling (IS) schemes require storage of
transition probabilities and our algorithm is no different in this regard. Thus it may not be applicable
(as is also the case with other IS methods) in scenarios that involve very large state spaces for which
storage of such information is not possible. Nevertheless, feature based methods as in RL may still
be applied for ease of computation in the case of problems with state and action spaces that are
moderately large but for which storage of vectors of the size of state space is not a major concern.
Further, in many cases such as queuing networks, the transition probabilities are easy to compute
and transitions easy to simulate using simple local dynamic laws. In such scenarios, storage of
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transition probability matrices may also not be a major concern as these are known to be highly
sparse.

The rest of the paper is organized as follows: Section 2 presents the problem formulation and
gives the basic results. Section 3 presents the simulation-based algorithm. Its convergence analysis
is also briefly sketched here. The numerical results are presented in Section 4. Finally, Section 5
presents the concluding remarks.

2. Problem Formulation and Basic Results

Consider a Markov decision process (MDP) {Xn, n ≥ 0} on a finite state space S = {1,2, . . . ,s}.
For Xn = i, i ∈ S, let A(i) be the set of feasible controls or actions. We assume A(i) has the form
A(i) = {a1

i ,a
2
i , . . ., aNi

i }. Let A = ∪i∈SA(i) denote the action space (which is also finite). Let {Zn,
n ≥ 0} denote the associated control-valued sequence such that Zn ∈ A(Xn) ∀n. Suppose p(i, j,a)
denotes the transition probability from state i to state j under action a ∈ A(i). Then the evolution of
{Xn} is governed by

Pr(Xn+1 = j | Xn = i,Zn = a,Xn−1 = in−1,Zn−1 = an−1, . . . ,X0 = i0,Z0 = a0) = p(i, j,a),

for any i0, . . . , in−1, i, j, a0, . . . ,an−1, a, in appropriate sets.
A sequence of functions π = {µ1, µ2, . . .} with each µn : S → A, n ≥ 1, is said to be an admissible

policy if µn(i) ∈ A(i), ∀i ∈ S. This corresponds to the control choice Zn = µn(Xn) ∀n. An admissible
policy π = {µ1, µ2, . . .} with each µn = µ, n ≥ 1, is said to be a stationary deterministic policy (SDP).
By a common abuse of notation, we simply refer to µ itself as the SDP. By a randomized policy (RP)
ψ, we mean a sequence ψ = {φ1, φ2, . . .} with each φn : S → P (A), n ≥ 1. Here P (A) is the set of
all probability vectors on A such that for each i ∈ S, n ≥ 1, φn(i) ∈ P (A(i)), with P (A(i)) being the
set of all probability vectors on A(i). A stationary randomized policy (SRP) is an RP ψ for which
φn(i) = φ ∀n ≥ 1. By an abuse of notation, we refer to φ itself as the SRP. The a−th component of
φ(i), φ(i)(a) is the probability of choosing action a when in state i. Thus this corresponds to picking
Zn with probability distribution φ(Xn) at time n, independent of all other random variables realized
till n. We make

Assumption (A) Under any SDP µ, the process {Xn} forms an irreducible Markov chain.

Let Eµ[·] denote the expectation w.r.t. the stationary distribution of {Xn} under SDP µ. Let
g : S×A → R be a given function such that Eµ[g(Xn,µ(Xn))] < α < ∞ for a given constant α, for
every SDP µ. The rare event that we consider corresponds to

lim
n→∞

1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α.

The choice of the function g(·, ·) and α will be, in practice, dictated by the application. For example,
in reliability, one may want to look at the stationary probability of crossing a very large threshold,
say, N. Then g(Xm,µ(Xm)) can be chosen to be I{Xm ≥ N}, where I{·} is the indicator function and
α could be a convenient upper bound on the stationary expectation.

Let h : S×A×S → R denote the cost function that we assume is bounded. For any SDP µ, let
for any (initial state) X0 ∈ S,

J(µ) = lim
n→∞

1
n

n−1

∑
m=0

h(Xm,µ(Xm),Xm+1)
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be the long-run average cost. Let D be the set of all possible stationary deterministic policies. The
aim is to find

µ∗ = argmin
µ∈D

J(µ),

conditioned on the rare event lim
n→∞

1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α, ∀µ ∈ D. Let pµ,∗(i, j) = lim
n→∞

P(X1 = j

| X0 = i,Z0 = µ(i),
1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α) denote the transition probabilities under SDP µ condi-

tioned on a rare event (as defined above). We now present the basic results for a given SDP µ. These
have been directly adapted from Borkar et al. (2004) for a fixed SDP and are stated here for the sake
of completeness. Some of these results are also available in the context of risk sensitive control of
Markov chains (see, for instance, Balaji and Meyn, 2000; Hernández-Hernández and Marcus, 1996;
Kontoyiannis and Meyn, 2003). We briefly explain the risk sensitive control problem in order to put
things in perspective. Suppose (that instead of the original) the aim is simply to find an SDP µ that
minimizes Jζ(µ) defined by

Jζ(µ) = lim
n→∞

1
n

ln

(

E

[

exp(
n−1

∑
m=0

ζg(Xm,µ(Xm)))

])

,

where ζ denotes the risk parameter. Note above that the cost considered in this setting is given
by the function g and not h. The cases ζ > 0 and ζ < 0 correspond to the risk-averse and risk-
preferring cases, respectively. For a given µ, Jζ(µ) and ρµ

ζ are a solution (see Balaji and Meyn, 2000;
Hernández-Hernández and Marcus, 1996) to the multiplicative Poisson equation: For i ∈ S,

V µ
ζ (i) =

exp(ζg(i,µ(i)))

ρµ
ζ

∑
j

p(i, j,µ(i))V µ
ζ ( j), i ∈ S, (1)

where V µ
ζ (·) is a bounded function (that is unique up to a multiplicative constant). It turns out that ρµ

ζ
corresponds to exp(Jζ(µ)) or that Jζ(µ) = lnρµ

ζ. Note that solution of this equation is an eigenvalue

problem for the positive matrix [[exp(ζg(i,µ(i)))p(i, j,µ(i))]]i, j∈S with V µ
ζ and ρµ

ζ corresponding to
its Perron-Frobenius eigenvector and eigenvalue respectively.

For the problem considered in this paper, as shown by Borkar et al. (2004), the multiplicative
Poisson equation also arises via the conditional transition probabilities pµ,∗(i, j) (for given SDP µ),
see (2) below. In fact, for any given i ∈ S, upon summing over all j ∈ S on both sides of (2), one
obtains the multiplicative Poisson Equation (1). For any SDP µ and risk parameter ζ, Jζ(µ) = lnρµ

ζ
corresponds to the infinite horizon risk-sensitive cost. As in Borkar et al. (2004), we fix the choice
of V µ

ζ (·) by setting V µ
ζ (i0) = ρµ

ζ for a given i0 ∈ S in order to obtain unique V µ
ζ (i) ∀i ∈ S.

Theorem 1 (Borkar et al., 2004)

(a) The map ζ → ρµ
ζ is convex for each SDP µ and there exists a unique ζµ

∗
4
= argmaxζ≥0(ζα−

ln(ρµ
ζ)) for any µ.
(b) pµ,∗(i, j), i, j ∈ S is given by

pµ,∗(i, j) =
exp(ζµ

∗g(i,µ(i)))p(i, j,µ(i))V µ
∗ ( j)

ρµ
∗V

µ
∗ (i)

. (2)
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(c) The regular conditional law of the MDP {Xm, m ≥ 0} under SDP µ, conditioned on the event

{X0 = x,
1
n

n−1

∑
k=0

g(Xk,µ(Xk)) ≥ α} converges to the law of a Markov chain starting at x with transition

probabilities pµ,∗(·, ·).

In the above, ρµ
∗

4
= ρµ

ζµ
∗

and V µ
∗

4
= V µ

ζµ
∗
, respectively. It can be shown as in Lemma 2 of Borkar

et al. (2004) using a generalization of Theorem 6.3 of Kontoyiannis and Meyn (2003) that as n → ∞,

Px(
1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ αn) ∼
V µ
∗ (x)exp(−n(ζµ

∗α− ln(ρµ
∗)))exp(kζµ

∗)

ζµ
∗

√

2πnλµ
∗

where αn = α−
k
n

and λµ
∗ =

√

∂2 lnρµ
ζ

∂ζ2 |ζ=ζ∗ . The result in Theorem 1(b) follows in a straightfor-

ward manner from the above. Thus the transition probabilities pµ,∗(·, ·) depend on the risk parameter
ζµ
∗ given in Theorem 1(a).

For a given ζ > 0 and SDP µ, let {X ζ,µ
n , n ≥ 0} represent a Markov chain on S with (suitably

normalized) transition probabilities

pµ,ζ(i, j)
4
=

exp(ζg(i,µ(i)))p(i, j,µ(i))V µ
ζ ( j)

ρµ
ζV µ

ζ (i)
, i, j ∈ S.

In particular, we consider here the corresponding risk-averse case (ζ > 0). The risk-preferring case
(ζ < 0) is easier to handle and is not considered in this paper. In view of Assumption (A), {X ζ,µ

n } is
irreducible. Let ηµ

ζ(·) denote its unique stationary distribution. We now have the following lemma
whose proof follows as in Proposition 4.9 of Kontoyiannis and Meyn (2003).

Lemma 1
∂ ln(ρµ

ζ)

∂ζ
= ∑

i∈S

ηµ
ζ(i)g(i,µ(i)).

In classical Markov decision theory, one is minimizing expectation and not conditional expec-
tation of the ergodic cost and one can prove that it suffices to consider only SDPs. Such a result is
not proved here, so it is our choice to restrict to these. Finally, in principle, the requirement that the
rare event condition hold for all SDPs µ (see the problem definition above) is not strictly needed in
order for the theory to go through. However, one expects this to be true in typical applications. In
the next section, we present an adaptive algorithm for finding optimal µ and ζ by building on the
basic results of Theorem 1 and Lemma 1.

3. The Adaptive Algorithm

Given an SRP φ : S → P (A), one can identify φ(i) with a parameter vector θi = (θ1
i , . . ., θNi−1

i )T ,

where θ j
i ≥ 0 are the probabilities of picking actions a j

i , j = 1, . . . ,Ni−1. Thus
Ni−1

∑
j=1

θ j
i ≤ 1. Further,

θNi
i (the probability of selecting action aNi

i ) is directly obtained from the above representation of

φ(i) as θNi
i = 1 −

Ni−1

∑
j=1

θ j
i . Let θ = (θ1 . . ., θs)

T = (θ1
1, . . ., θN1−1

1 , θ1
2, . . ., θN2−1

2 , . . ., θ1
s , . . ., θNs−1

s )T .

Let pθi(i, j), i, j ∈ S, be defined by pθi(i, j) = θ1
i p(i, j,a1

i ) + . . . + θNi
i p(i, j,aNi

i ). Thus pθi(i, j)
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correspond to the transition probabilities of the resulting Markov chain under SRP φ. Suppose
gθi(i) = θ1

i g(i,a1
i ) + . . .+θNi

i g(i,aNi
i ) and hθi(i, j) = θ1

i h(i,a1
i , j) + . . .+θNi

i h(i,aNi
i , j), respectively,

denote the expected values of the function g(·, ·) and the single-stage cost h(·, ·, ·) under SRP φ.
Define three step-size sequences {a(n)}, {b(n)} and {c(n)} satisfying

Assumption (B)

∑
n

a(n) = ∑
n

b(n) = ∑
n

c(n) = ∞, ∑
n

(a(n)2 +b(n)2 + c(n)2) < ∞, (3)

c(n) = o(b(n)), b(n) = o(a(n)). (4)

Examples of {a(n)}, {b(n)} and {c(n)} that satisfy (3)-(4) are a(n) =
1

n3/5
, b(n) =

1

n4/5
, c(n) =

1
n

,

and a(n) =
logn

n
, b(n) =

1
n

, c(n) =
1

n logn
, respectively. Let

Ti = {xi
4
= (x1

i , . . . ,x
Ni−1
i )T | x j

i ≥ 0, j = 1, . . . ,Ni −1, and
Ni−1

∑
j=1

x j
i ≤ 1}

denote the policy simplex in state i onto which, after each policy update recursion, the vector of
probabilities corresponding to the first Ni − 1 actions is projected. The probability xNi

i of selecting

the Ni−th action in state i is then set according to xNi
i = 1−

Ni−1

∑
j=1

x j
i .

For any i ∈ S, let 4 j
i (n), j = 1, . . . ,Ni −1, n ≥ 0, be ±1-valued variables. These shall constitute

the perturbations in SPSA type gradient estimates. Exact values of these for any given n are obtained
using a normalized Hadamard matrix based construction as in Bhatnagar et al. (2003) (see below).
Let 4i(n) = (41

i (n), . . ., 4Ni−1
i (n))T denote the vector of perturbations at the nth epoch. In general,

an m×m (m≥ 2) matrix H is said to be a Hadamard matrix of order m if its entries belong to {1,−1}
and HT H = mIm, where Im is the m×m identity matrix. A Hadamard matrix is said to be normalized
if all the elements in its first column are 1. The construction used by Bhatnagar et al. (2003) that we
also use here is the following:

• For k = 1, let

H2 =

[

1 1
1 −1

]

• For general k > 1,

H2k =

[

H2k−1 H2k−1

H2k−1 −H2k−1

]

.

For an (Ni − 1)-dimensional parameter vector as above, the order of the Hadamard matrix used is
Mi = 2dlog2(Ni)e. It is easy to see that Ni −1 < Mi. Next form a matrix Ĥi in the following manner:
Remove the first column from the normalized Hadamard matrix constructed above. Next pick any
(Ni−1) of the remaining (Mi−1) columns and all Mi rows to form the new matrix. If only (Ni−1)
columns remain after deleting the first column above, then pick all the remaining columns. Thus
Ĥi is an Mi × (Ni − 1) matrix. Let the Mi rows of this matrix be represented by Ĥi(1), . . ., Ĥi(Mi),
respectively. Finally, the perturbation sequence 4i(n) is cyclically moved through the sequence
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{Ĥi(1), . . ., Ĥi(Mi)} of vectors by setting 4i(n) = Ĥi(n mod Mi + 1). In what follows, we present
an adaptive single simulation stochastic approximation based algorithm that performs asynchronous
updates. Suppose νi(n) denotes the number of times that state i is visited by the MDP {Xm} in n

epochs. Then, one can write, νi(n) =
n

∑
m=1

I{Xm = i}. We generate new 4i(n) only for those instants

n for which state i is visited by the chain, that is, Xn = i. For all other instants, θi(n) and 4i(n) are

held fixed. Let 4i(n)−1 denote the vector 4i(n)−1 = (
1

41
i (n)

, . . . ,
1

4Ni−1
i (n)

)T . We now present

our algorithm.

3.1 The Algorithm

Suppose δ > 0 is a given constant and Γi : R Ni−1 → R Ni−1 be the projection from R Ni−1 to the
simplex Ti. Let θi(n), n ≥ 0 denote the nth update of θi. Let θ̄i(n) = Γi(θi(n) + δ4i(n)), where
4i(n), n ≥ 0 are obtained using normalized Hadamard matrices as explained earlier. We analo-

gously denote θ̄i(n) as the vector θ̄i(n) = (θ̄1
i (n), . . ., θ̄Ni−1

i (n))T and let θ̄Ni
i (n) = 1−

Ni−1

∑
j=1

θ̄ j
i (n).

The simulated MDP {Xn} is governed by the perturbed randomized policy in the following manner:
If Xn = i, then an action from the set A(i) is selected according to the randomized policy θ̄i(n).
Let Yi(n), n ≥ 0 be quantities defined via the recursions below that are used for averaging the cost
function. Let Vn(i), i ∈ S denote the nth update of value function and ζn the nth update of the risk

parameter, respectively. We also let θ j
i (0) =

1
Ni

, ∀ j = 1, . . . ,Ni, i ∈ S, implying that the simulation

is started with a policy that assigns equal weightage to every feasible action in each state. Other
initial values for the same could be selected as well. The algorithm is described as follows:

The Algorithm

• Step 0 (Initialize): Fix θi(0)
4
= (θ1

i (0), . . .θNi−1
i (0))T , i ∈ S, as the vectors of initial proba-

bilities for selecting actions in states i with θNi
i (0) = 1−

Ni−1

∑
j=1

θ j
i . Fix integers L and (large)

P arbitrarily. Fix a (small) constant δ > 0. Set n := 0 and m := 0. Generate Mi × Mi,
normalized Hadamard matrices (Hi) where Mi = 2dlog2(Ni)e, i ∈ S. Let Ĥi, i ∈ S, be Mi ×Ni

matrices formed from Hi by choosing any Ni of its columns other than the first and let Ĥi(p),
p = 1, ...,Mi denote the Mi rows of Ĥi. Now set ∆i(0) := Ĥi(1), ∀i ∈ S. Set θ̄i(0) = Γi(θi(0)
+δ∆i(0)), i ∈ S as the initial value of the perturbed randomized policy. Alternatively, denote

θ̄i(0) = (θ̄1
i (0), . . . , θ̄Ni−1

i (0)) and let θ̄Ni
i (0) = 1−

Ni−1

∑
j=1

θ j
i (0). Obtain initial transition proba-

bilities pθ̄i(0)(i, j), i, j ∈ S by setting pθ̄i(0)(i, j) = θ̄1
i (0)p(i, j,a1

i ) + . . .+ θ̄Ni
i (0)p(i, j,aNi

i ). Set

pθ̄i(0)
0 (i, j)

4
= pθ̄i(0)(i, j) as the transition probabilities of the new Markov chain. Set gθ̄i(0)(i) =

θ̄1
i (0)g(i,a1

i ) + . . .+ θ̄Ni
i (0)g(i,aNi

i ) and hθ̄i(0)(i, j) = θ̄1
i (0)h(i,a1

i , j) + . . .+ θ̄Ni
i (0)h(i,aNi

i , j),
respectively. Set V0(i), ∀i ∈ S as the initial estimates of the cost-to-go function. Also, set
ζ0 = 0. Fix a state i0 ∈ S to be a given reference state and set Yi(0) = 0,∀i ∈ S.
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• Step 1: For all states XnL+m = i∈ S, simulate the corresponding next states XnL+m+1 according

to transition probabilities pθ̄i(n)
n (i, ·). For all i ∈ S, perform the following updates:

VnL+m+1(i) = VnL+m(i)+a(νi(n))I{XnL+m = i}×
(

exp(ζnL+mgθ̄i(n)(i))
VnL+m(i0)

VnL+m(XnL+m+1)
pθ̄i(n)(i,XnL+m+1)

pθ̄i(n)
n (i,XnL+m+1)

−VnL+m(i)

)

(5)

ζnL+m+1 = ζnL+m +b(n)
(

α−gθ̄XnL+m+1 (n)(XnL+m+1)
)

(6)

Yi(nL+m+1) = Yi(nL+m)+a(νi(n))I{XnL+m = i}×
(

hθ̄i(n)(i,XnL+m+1)

(

pθ̄i(n)(i,XnL+m+1)

pθ̄i(n)
n (i,XnL+m+1)

)

−Yi(nL+m)

)

(7)

If m = L−1, set nL := (n+1)L, m := 0 and go to Step 2;

else, set m := m+1 and repeat Step 1.

• Step 2: For all i ∈ S,

θi(n+1) = Γi

(

θi(n)− c(νi(n))I{XnL = i}
Yi(nL)4i(νi(n))−1

δ

)

. (8)

Set n := n+1. If n = P, go to Step 3;

else, for all i ∈ S, set ∆i(n) := Ĥ(n mod Mi +1) as the new Hadamard matrix generated
perturbation. Set θ̄i(n) = (Γi(θi(n) +δ∆i(n)), i ∈ S as the new perturbed randomized policy.
For all i, j ∈ S, set pθ̄i(n)(i, j), = θ̄1

i (n)p(i, j,a1
i ) + . . . + θ̄Ni

i (n)p(i, j,aNi
i ). Set gθ̄i(n)(i) =

θ̄1
i (n)g(i,a1

i ) + . . .+ θ̄Ni
i (n)g(i,aNi

i ) and hθ̄i(n)(i, j) = θ̄1
i (n)h(i,a1

i , j) + . . .+ θ̄Ni
i (n)h(i,aNi

i , j),

respectively. Finally, for all i, j ∈ S, update estimates pθ̄i(n)
n (i, j) of the transition probabilities

for the new chain according to

pθ̄i(n)
n (i, j) =

exp(ζnLg(i, θ̄i(n)))

VnL(i)VnL(i0)
pθ̄i(n)(i, j)VnL( j).

Normalize pθ̄i(n)
n (i, j) such that pθ̄i(n)

n (i, j) ≥ 0, ∀i, j and ∑ j∈S pθ̄i(n)
n (i, j) = 1,∀i.

Go to Step 1.

• Step 3 (termination): Terminate algorithm and output θ̄i(P), i ∈ S as the final randomized
policy.

Remark 1: As we did in the algorithm, and because we found it useful in the experiments, we
update the slowest timescale recursion (8) every (given) L ≥ 1 visits to state i, i ∈ S, and keep the
randomized policy fixed in between. This, in effect, amounts to an additional averaging over and
above that resulting from the use of different step-size schedules (see also Bhatnagar et al., 2001,
2003) for certain simulation based parametric optimization algorithms that use a similar ‘additional’
averaging. As observed by Spall (1997) and also Bhatnagar et al. (2003), the one-simulation SPSA
algorithms that use randomized perturbation sequences do not show good performance because of
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the presence of extra bias terms in the gradient estimates of these. As described in Section 1 (see
also the discussion after Eq.(15) below), the use of normalized Hadamard matrices significantly
improves performance since all bias terms get cancelled after regular deterministic intervals that
are, in general, also significantly shorter in duration as compared to the case when randomized
perturbations are used. Finally, even though we present our algorithm for the case when the number
of iterations P is fixed apriori, it can be easily modified to allow for stopping criteria based on
desired accuracy levels, a scenario that we consider in our numerical experiments in Section 4. The
convergence analysis that follows carries through for this case with minor modifications.

3.2 Sketch of Convergence Analysis

The convergence analysis uses the following basic principle of two timescale, or more generally
multiple timescale, stochastic approximation (Borkar, 1997): Each iteration in such a scheme can
be analyzed separately by treating other iteration(s) on slower timescale(s) as quasi-static, that is,
freezing the parameter(s) updated by the latter; while treating other iteration(s) on faster timescale(s)
as quasi-equilibrated, that is, averaging the parameter(s) updated by the latter w.r.t. their equilib-
rium behavior, arrived at similarly by treating all slower components as constants and all faster
components as equilibrated. For simplicity of presentation, we show here the analysis for the case
corresponding to L = 1. The extension to the general case is straightforward (see Bhatnagar et al.,
2001, 2003). Let us first consider the synchronous version of the algorithm. Recursions (5)-(8) can
be written as follows: For all i ∈ S,

Vn+1(i) = Vn(i)+a(n)

(

exp(ζngθ̄i(n)(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−Vn(i)

)

, (9)

ζn+1 = ζn +b(n)
(

α−gθ̄Xn+1 (n)(Xn+1)
)

, (10)

Yi(n+1) = Yi(n)+a(n)

(

hθ̄i(n)(i,Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−Yi(n)

)

, (11)

θi(n+1) = Γi

(

θi(n)− c(n)
Yi(n)4i(n)−1

δ

)

. (12)

Iteration (9):

It can be shown that iteration (9) for fixed ζn and θ̄i(n) viz., ζn ≡ ζ and θ̄i(n) ≡ θ̄i, respectively,
asymptotically tracks the trajectories of the ordinary differential equation (ODE): For i ∈ S,

.
xt(i) =

exp(ζgθ̄i(i))
xt(i0)

∑
j∈S

pθ̄i(i, j)xt( j)− xt(i). (13)

The ODE (13) has a unique asymptotically stable fixed point in the positive quadrant (which is
invariant under the ODE) which corresponds to the solution to the multiplicative Poisson equation.
To see how this comes by, we use the fact that

E

[

exp(ζgθ̄i(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(i,Xn+1)

pθ̄i
n (i,Xn+1)

)

| Xn = i

]

=
exp(ζgθ̄i(i))

Vn(i0)
∑
j∈S

pθ̄i(i, j)Vn( j).
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Thus (9) can be rewritten as

Vn+1(i) = Vn(i)

+ a(n)

(

exp(ζgθ̄i(i))
Vn(i0)

∑
j∈S

pθ̄i(i, j)Vn( j))−Vn(i)

)

+ a(n)

(

exp(ζngθ̄i(n)(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−
exp(ζgθ̄i(i))

Vn(i0)
∑
j∈S

pθ̄i(i, j)Vn( j))

)

.

This is seen as a noisy discretization of the ODE (13) with decreasing stepsize a(n) and a ‘martin-
gale difference’ or ‘noise’ error term. The contribution to the net error due to the former vanishes
asymptotically because a(n) → 0 and so does the contribution of the latter ‘almost surely’ follow-
ing a standard martingale argument. This is a commonly used technique in reinforcement learning
based algorithms (see Konda and Borkar, 1999; Bhatnagar and Kumar, 2004), with the idea being
to replace conditional averages by evaluation at actual or simulated transitions and, then exploit the
incremental nature of stochastic approximation scheme to do the averaging for you.

Iteration (10):

The iteration (10) is a stochastic gradient scheme that, for fixed θ̄i(n) ≡ θ̄i, can be seen, from
the first part of Theorem 1 and Lemma 1, to asymptotically track the point ζθ̄

∗ corresponding to the
given policy above (using again martingale type arguments and the latter part of (3) on {b(n)} now).

Note from (4) that c(n) = o(b(n)) and c(n) = o(a(n)), respectively. This implies that recursions
(9) and (10), respectively, proceed on faster timescales as compared to (12). Moreover, since b(n) =
o(a(n)) as well, (9) proceeds on a faster scale than (10). Using standard analysis of multi-timescale
stochastic approximations (Borkar, 1997), one can show that the iterations (10) and (12) appear to
be quasi-static when viewed from the timescale on which (9) is updated. Moreover, when viewed
from either of the timescales on which (10) or (12) are updated, the recursion (9) appears to be
essentially equilibrated. Similarly, when viewed from the timescale on which (10) is performed,
the recursion (9) appears to be equilibrated while, as already stated, (12) appears to be quasi-static.
The above justifies selecting time-invariant quantities ζn ≡ ζ and θ̄i(n)≡ θ̄i (resp. θ̄i(n)≡ θ̄i) in the
convergence analysis of recursion (9) (resp. (10)).

Iteration (11):

The iteration (11) proceeds on the fastest timescale {a(n)} as well and is merely used to perform
averaging of the cost function. The updates from this recursion are then used in the gradient estimate
for average cost in the slow timescale recursion (12).

Iteration (12):

Iteration (12) does policy update. Note that here one is interested in finding the minimizing
policy parameters (i.e., the probabilities) for the long-run average cost albeit conditioned on the rare
event. Thus one is interested in finding the gradient of the average cost. This is achieved by our
slow timescale iteration as explained below.

For a bounded, continuous vi(·) : R Ni−1 → R Ni−1, define

Γ̄i(vi(y)) = lim
η↓0

(

Γi(y+ηvi(y))−Γi(y)
η

)

.
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Suppose θ = (θ1
1, . . . ,θ

N1−1
1 , . . ., θ1

s , . . . ,θNs−1
s )T be a given SRP. Let Ĵ(θ) denote the long-run aver-

age cost under SRP θ. Let ∇ j
i Ĵ(θ) denote the derivative of Ĵ(θ) w.r.t. θ j

i , j = 1, . . . ,Ni − 1, and let
∇iĴ(θ) correspond to ∇iĴ(θ) = (∇1

i Ĵ(θ), . . ., ∇Ni−1
i Ĵ(θ))T . The policy update can be shown to track

(in the limits as P → ∞ and δ → 0) the trajectories of the ODE: For i ∈ S,

.
θi(t) = Γ̄i(−∇iĴ(θ)). (14)

The proof broadly proceeds as follows. A standard analysis of (11), see for instance, Bhatnagar
and Borkar (1998), Bhatnagar et al. (2001), using the fact that the chain under each stationary policy
is irreducible (and hence positive recurrent) shows that

‖ Yi(n)− Ĵ(θ̄(n)) ‖→ 0 as n → ∞.

Here θ̄(n) = (θ̄1(n), . . . , θ̄s(n))T . Suppose for all i ∈ S, θi(n) ∈ T 0
i , where T 0

i corresponds to the
interior of the simplex Ti. Then for δ sufficiently small, θi(n) +δ4i(n) ∈ T 0

i as well. Hence θ̄i(n)
= Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n). Moreover, since c(n) → 0 as n → ∞, ‖ Ĵ ‖< ∞ and δ > 0,
one can ensure by choosing n large enough that

Γi

(

θi(n)− c(n)
Ĵ(θ̄(n))4i(n)−1

δ

)

= θi(n)− c(n)
Ĵ(θ(n)+δ4(n))4i(n)−1

δ
.

Using a Taylor series expansion of Ĵ(θ(n) +δ4(n)) around θ(n), one obtains

Ĵ(θ(n)+δ4(n)) = Ĵ(θ(n))+δ
s

∑
l=1

Nl−1

∑
j=1

4
j
l (n)∇ j

l Ĵ(θ(n))+O(δ2).

For a given k ∈ {1, . . . ,Ni −1},

Ĵ(θ(n)+δ4(n))

δ4k
i (n)

=
Ĵ(θ(n))

δ4k
i (n)

+∇k
i Ĵ(θ(n))+

Ni−1

∑
j=1, j 6=k

4
j
i (n)∇ j

i Ĵ(θ(n))

4k
i (n)

+
s

∑
l=1,l 6=i

Nl−1

∑
j=1

4
j
l (n)∇ j

l Ĵ(θ(n))

4k
i (n)

+O(δ). (15)

The first term in the RHS above corresponds to the ‘additional’ bias term, described earlier, whose
overall contribution to bias depends on the magnitude of δ and the frequency with which 4k

i (n)
change sign as a function of n, for all k and i. It can be shown as in Theorem 2.5 of Bhatnagar

et al. (2003) that for any n ≥ 0,
n+Mi

∑
m=n

1

4k
i (m)

= 0, ∀k = 1, . . . ,Ni, and
n+Mi

∑
m=n

4
j
i (m)

4k
i (m)

= 0, ∀ j 6= k,

j,k ∈ {1, . . . ,Ni}, respectively. Note that because of the use of Hadamard matrices, Mi is typically
small, as a result of which the bias contributed by the above terms is not significant in general.

One can also show in a similar manner as Corollary 2.6 of Bhatnagar et al. (2003) that

‖
n+M̄

∑
m=n

s

∑
l=1,l 6=i

Nl−1

∑
j=1

c(m)

c(n)

4
j
l (m)∇ j

l Ĵ(θ(m))

4k
i (m)

‖→ 0 as n → ∞,
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where M̄ = max(M1, . . . ,Ms). (Recall that Mi is the number of rows in the Ĥi, i = 1, . . . ,s, matrix
defined earlier.) Thus (12) can be seen to be analogous to the recursion

θi(n+1) = Γi(θi(n)− c(n)(∇iĴ(θ(n))+ξ1(n)+O(δ))), (16)

where ξ1(n) = o(n). In general, one can write Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n) +δri(n) where
ri(n) correspond to error terms because of the projection operator, such that ‖ ri(n) ‖ ≤ ‖ 4i(n) ‖
with equality only when ri(n) = −4i(n). In the latter case,

‖
n+Mi

∑
m=n

c(m)

c(n)

Ĵ(θ(m))

δ4k
i (m)

‖→ 0 as n → ∞, ∀δ > 0. (17)

Finally, we consider the case of any other θi(n) lying on the boundary of Ti. Suppose the

correction term ri(n)
4
= (r1

i (n), . . ., rNi−1
i (n))T , i ∈ S. Now ∃ j ∈ {1, . . . ,Ni − 1} for which if sign

of 4 j
i (n) is such that the vector θi(n) +δ4i(n) points outwards from the boundary, then r j

i (n) =

−4
j
i (n). For simplicity, suppose all other 4l

i(n) are such that components θl
i(n)+δ4l

i(n) lie inside
their respective regions. Then again one can see that (16) is valid. Also, for k = j, (17) continues to

hold. Now the function Ĵ(·) itself serves as a Liapunov function for the ODE (14) which has K
4
=

{θ ∈ T1×T2 ×·· ·×Ts | Γ̄i(∇iĴ(θ)) = 0 ∀i ∈ S} as its asymptotically stable fixed points. A standard
argument now shows that the iterations (12) converge to K almost surely in the limits as P → ∞ and
δ→ 0. The equilibria for the projected gradient scheme here correspond to Kuhn-Tucker points with
the stable ones being local minima. By ‘avoidance of traps’ results, see Borkar (2003), Brandiere
(1998), the scheme converges to one of these with probability one. (Strictly speaking, this requires
some additional conditions on the noise component of the iterations that can be ensured by adding
independent noise if necessary. Most often, as here, it is empirically observed that the existing noise
suffices.)

For the asynchronous case that we actually work with, the step-size sequences are {a(νi(n))},
{b(νi(n))} and {c(νi(n))}, respectively, and the parameters corresponding to state i are updated
only at instants when the MDP {Xn} under the running policy visits state i. It can be shown as in
Borkar (1998), Borkar (2001), Borkar (2002), and Borkar and Meyn (2002), respectively, that the
iterate (5) for fixed ζ and θ̄ as before, asymptotically tracks trajectories of the (combined) ODE

.
xt = Π(t)

















exp(ζgθ̄1 (1))
xt(i0) ∑ j∈S pθ̄1(1, j)xt( j)− xt(1)

.

.

.
exp(ζgθ̄s (s))

xt(i0) ∑ j∈S pθ̄s(s, j)xt( j)− xt(s)

















.

Here Π(t) is an s× s scaling matrix which is a positive scalar in [0,1] times the identity matrix
under some additional technical conditions on the stepsize sequence, see (i)− (iv), pp. 842 of
Borkar (1998). Hence this ODE is a time-scaled version of the synchronous ODE. One thus obtains
the same result here as before with the only difference being that the convergence to the desired
limit points can now become slower as compared to the synchronous case. We now present our
numerical results.
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4. Numerical Results

The problem of routing multiple flows in communication networks has been well studied during the
last few decades (Bertsekas and Gallager, 1991) with several approaches having been proposed for
static and dynamic optimization of routing. In Tsitsiklis and Bertsekas (1986) as well as Bertsekas
and Gallager (1991), gradient based projection algorithms for optimal routing have been studied.
More recently, in Marbach et al. (2000), Nowe et al. (1998) and Varadarajan et al. (2003), rein-
forcement learning techniques have also been applied to the problem of routing. We consider here
an application of our algorithm to finding optimal routes for flows in communication networks,
conditioned on a rare event. The basic setting is shown in Fig. 1.

NODE 2

LINK 1

LINK 2

INCOMING FLOWS OUTGOING FLOWS
NODE 1

Figure 1: The Model

Nodes A and B are connected via two links. We assume that the system is slotted with time slots
of equal length. Customers/flows arrive at the beginning of time slots at A, and have to be sent to
B. There are two routes R1 and R2 from A to B. An arrival occurs with a certain probability (p) in a
given time slot independent of others. At the beginning of a time slot, decision on whether to route
all arrivals (that occur in the time slot) onto R1 or R2 is made by a controller (at Node A). Thus, all
new arrivals at the beginning of a time slot are routed either to R1 or R2. However, we also assume
that both R1 and R2 can accommodate at most M customers (or flows) at any given instant. All flows
that cannot be accommodated in a given slot immediately leave the system. Suppose each flow at
any given instant (or a slot boundary) finishes service w.p. q1 on R1 and w.p. q2 on R2, respectively,
independent of other flows. Further, if a flow does not finish service in a time slot, its service
extends to the next slot independently of the number of flows in either route and the number of slots
the given flow has been in service for. The above process is repeated again in subsequent slots.
Thus the number of slots that a customer is in service at node j, j = 1,2 equals i with probability
(1− q j)

i−1q j, for i ≥ 1. Let X (1)
n (resp. X (2)

n ) denote the number of flows on R1 (resp. R2) in time
slot n. Let {A(n)} with A(n) ∈ {a1,a2} ∀n ≥ 1, denote the associated action-valued process, where
ai corresponds to the action of routing new flows in a time slot on the route Ri, i = 1,2. Then under
a given SDP, {Xn}, where Xn = (X (1)

n ,X (2)
n ), n ≥ 0, forms a discrete time Markov chain with state

transition equation given by

(

X (1)
n+1

X (2)
n+1

)

=

(

min[X (1)
n −Q1(n)+ I{A(n) = a1}B(n),M]

min[X (2)
n −Q2(n)+ I{A(n) = a2}B(n),M]

)

,
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where the departures from routes R1 and R2 during time slot n are denoted as Q1(n) and Q2(n),
respectively, and satisfy 0 ≤ Q j(n)≤ N j(n), j = 1,2. Also, B(n) denotes the number of new arrivals
at Node A, at the beginning of time slot (n+1). Note that since there are only two actions associated
with each state here, the parameter vector θi(n) of the randomized policy is simply θi(n) = θ1

i (n).
The simplex Ti associated with each state here corresponds to the interval [0,1] ∀i. The projection
map Γi is thus defined by Γi(x) = max(0,min(x,1)) ∀i. Also, θ̄i(n) = Γi(θ1

i (n) +δ41
i (n)). The

sequences {41
i (n), n ≥ 0}, i ∈ S are generated using normalized Hadamard matrices. These turn

out to be simply 41
i (n) = (−1)n. The step-sizes are chosen as a(n) = b(n) = c(n) = 1, n = 0,1, and

for n ≥ 2,

a(n) =
log(n)

n
,b(n) =

1
n
,c(n) =

1
n log(n)

.

The single-stage cost in state i under policy θ̄i(n) is given by hθ̄i(n)(i,Xn+1) = |X (1)
n+1 − N1|

+|X (2)
n+1 −N2|, where N1 and N2 are given thresholds and (as before) Xn+1 = (X (1)

n+1, X (2)
n+1) corre-

sponds to the state at the next instant. The cost function thus aims to keep the number of flows
along R1 to be near threshold N1 and those along R2 to be near N2 for some 0 ≤ N1, N2 ≤ M. Here
the parameters N1 and N2 may be set arbitrarily. Note that since all new arrivals in a time slot are
routed to either R1 or R2, N1 and N2 should be judiciously chosen. A value of N1 or N2 close to zero
would lead to under-utilization while a value close to M would result in leaving less room for ac-
commodating future flows on the corresponding route. The latter is required, for instance, in cases
where there are different categories of traffic flows in the network each having a possibly different
pay off (a scenario not considered in this paper). Any other choice for the cost function may be used
as well.

The function g·(·) used for defining the rare event is given as gθ̄Xn (Xn) = I{X (2)
n > N}, where N

is another (given integer) threshold. Thus g·(·) equals one if X (2)
n ∈ {N +1, . . . ,M} and is zero other-

wise. The long-run average lim
n→∞

1
n

n−1

∑
m=0

gθ̄Xm (Xm) in this case corresponds to the stationary probability

of the number of flows at the second node exceeding N. For any given SDP, the latter quantity would
depend on the resulting transition probability matrix for the process {Xn} under that SDP. We con-
sider two different settings for our experiments that we refer to as settings (a) and (b), respectively.
The input parameters for the two settings are given in Table 1 below.

Note that in the algorithm in Section 3.1, the number of iterations P is fixed apriori. However,
for obtaining more accurate estimates, we use a different stopping criterion for the algorithm that
is based on an accuracy parameter ε as explained below and not one based on a fixed value of P.
For a given ε > 0, let kε be the transition number of the Markov chain at which the estimate of
ρµ∗

ζ ≡V µ∗

ζ (i0) converges to within ε of its previous value 100 times in succession. We let the value

of ε to be 5× 10−9 for setting (a) and 5× 10−8 for setting (b), respectively. The above values of
ε (for the two settings) will in fact be denoted as ε̄. More experiments using other values of ε are
subsequently discussed.

In Figs. 2 and 4, we show the optimal policies θ∗(·) for the two settings. The corresponding
value functions are shown in Figs. 3 and 5. We observed from the optimal policies in both settings
that for states (i1, i2), for given i1, the value of θ∗(·), that is, the probability of selecting action a1,
on the whole seems to increase, starting from a low value, as i2 is increased from 0 to M. Thus, in
general, for low values of i2, for given i1, the preferred action is a2 (i.e., to route customers on the
second link) while for higher values of i2, the preferred action becomes a1. This is along expected
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Input Parameter Setting (a) Setting (b)

Link Capacity, M 10 20
Ni N1 = 3, N2 = 5 N1 = 6, N2 = 12
N 7 13
α 0.25 0.25
Arrival probability, p 0.65 0.85
Departure probability, qi q1 = 0.7,

q2 = 0.52
q1 = 0.7,
q2 = 0.52

δ 0.01 0.01
L 11 11
ε̄ 5.000000e-09 5.000000e-08
n (see Equation (18) ) 50 150
ζ0 0 0
V0(i), ∀i ∈ S 1 1
Yi(0), ∀i ∈ S 0 0
Initial policy ∀i ∈ S θ1

i (0) = θ2
i (0) =

0.5
θ1

i (0) = θ2
i (0) =

0.5
Reference state, i0 (2,2) (2,2)

Table 1: Input Parameters for the two settings

lines given the form of the associated cost function. The value function V ∗(·) (in both settings)
takes low values for low values of (i1, i2) and gradually increases (overall) when either i1 or i2 is
increased. What is more interesting, however, is that there is a step-increase in these values as soon
as the set of rare event states is reached and it stays high over those states. This is not surprising
since the conditional probabilities of the rare event states will be higher as we are conditioning on
the rare event.

In Table 2, values of various performance metrics under the optimal policy are shown. Note that
ζ∗ corresponds to the converged value of the risk parameter obtained from the recursion (6). The
quantities Eθ∗X [X (1)] and Eθ∗X [X (2)] denote the mean numbers of flows on the two routes. These, in
general, depend on the parameters p, q1, q2, M and θ∗, and in the present case, can be seen to be less
than the thresholds N1 and N2, in either setting. The mean cost Eθ∗X [hθ̄i(i,X (1),X (2))], is higher in
Setting (b) as compared to Setting (a) since the values of thresholds N1 and N2 in the former setting
are higher.

Next, we performed some additional experiments along similar lines as Borkar et al. (2004)
and Bucklew (1990), to estimate the rare event probability p̂n (see below) under the optimal policy
for both settings. Note that even though our main aim is to obtain the optimal policy (above), the
additional experiments provide insight on the choice of the accuracy parameter ε and its effect on
computational performance. We define

p̂n = Px(
1
n

n−1

∑
m=0

gθ∗Xm (Xm) ≥ α). (18)
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Figure 2: Setting (a): Optimal Policy θ∗(·)
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Figure 3: Setting (a): Value Function V ∗(·)
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Figure 4: Setting (b): Optimal Policy θ∗(·)
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Figure 5: Setting (b): Value Function V ∗(·)
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Performance Metric Setting (a) Setting (b)

ζ∗ 1.652923e+00 7.370684e-01
ζ∗α− ln(ρζ∗) 2.456064e-01 5.742653e-02
Eθ∗X [X (1)] 1.092038e+00 2.836020e+00
Eθ∗X [X (2)] 4.183547e+00 8.720516e+00
Eθ∗X [hθ̄i(i,X (1),X (2))] 5.488044e+00 1.096857e+01

Table 2: Performance under optimal policy

The values of n are described in Table 1 for the two settings. An importance sampling estimator for
this probability is the average of the i.i.d. samples

I{
1
n

n−1

∑
m=0

gθ∗(Xm) ≥ α}
pθ∗X0 (X0,X1)pθ∗X1 (X1,X2) · · · pθ∗Xn−2 (Xn−2,Xn−1)

p
θ∗X0
∗ (X0,X1)p

θ∗X1
∗ (X1,X2) · · · p

θ∗Xn−2
∗ (Xn−2,Xn−1)

.

In practice, one is able to obtain the above estimate only upto a certain specified degree of accuracy
as obtained from the quantity ε (see above). There is however a tradeoff involved in the choice of
ε. The variance of the estimates tends to be high if ε is not chosen to be small enough, which may
affect their accuracy. On the other hand, as the value of ε is decreased beyond a point, the amount
of computational effort required increases rapidly.

We run the algorithm for different values of ε. For each value of ε, we obtain an estimate pε
∗(·, ·)

of pθ∗
∗ (·, ·) that is then used to generate i.i.d. samples for the estimate of the rare event probability

p̂n (see above). The mean and variance of the rare event probability are then determined using the
batch means method. The simulation is terminated when the 95% confidence interval, see Law and
Kelton (2000), of probability lies within 5% of its estimated mean value. Let Tε denote the total
computational effort involved in terms of the number of simulated transitions of the MDP that are
generated during this process. We show in Figs. 6 and 8, plots of kε, Tε and (kε +Tε) as functions of
ε for settings (a) and (b), respectively. The total computational effort (in terms of (kε +Tε)) is found
to be the least for ε ≡ ε∗ = 5×10−5 in setting (a) and for ε ≡ ε∗ = 10−4 in setting (b), respectively.
Also, Figs. 7 and 9 show the plots of the rare event probability p̂n (described in the figures as pε)
obtained for different accuracy levels ε. The values of ε in the above figures are shown on the log
scale for convenience.

In Table 3, we describe the values of the various parameters and metrics obtained for the rare
event probability experiments. The quantities kε∗ , Tε∗ and (kε∗ + Tε∗), respectively, correspond to
the case when ε = ε∗ is chosen for both settings. Also ε̄ = 5× 10−9 (resp. ε̄ = 5× 10−8) is the
lowest value of ε for which the simulations were run for setting (a) (resp. setting (b)). This level of
accuracy was obtained in about 1.18×1010 iterations in setting (a) and about 3.05×109 iterations
in setting (b). As stated previously, the value of ε̄ is used as the accuracy parameter in the earlier
experiments (cf. Figs. 2 to 5 and Table 2). In Table 3, pε∗ (resp. pε̄) corresponds to the value of p̂n

obtained when ε = ε∗ (resp. ε = ε̄). Note that these values are much lower for setting (a) than for
setting (b) (see also Figs. 7 and 9). As a consequence of the above, the values of kε∗ and Tε∗ are seen
to be much less for setting (b) as compared to the corresponding values of these for setting (a).

1956



ERGODIC CONTROL OF MARKOV CHAINS CONDITIONED ON RARE EVENTS

 0
 2e+09
 4e+09
 6e+09
 8e+09
 1e+10

 1.2e+10
 1.4e+10
 1.6e+10

 1e-09  1e-08  1e-07  1e-06  1e-05  0.0001  0.001

It
e

ra
ti
o

n
s

ε 

( kε+Tε )
Tε
kε

Figure 6: Setting (a): Plot of kε,Tε and (kε +Tε) w.r.t. ε
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Figure 7: Setting (a): Variation of pε with ε
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Figure 8: Setting (b): Plot of kε,Tε and (kε +Tε) w.r.t. ε
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Figure 9: Setting (b): Variation of pε with ε
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Parameters/Performance Metrics Setting (a) Setting (b)

kε̄ 11287258742 1247427803
pε̄ 5.785067e-07 1.704158e-05
ε∗ 5.000000e-05 1.000000e-04
kε∗ 9292162 1197983
Tε∗ 2760999897 92719997
(kε∗ + Tε∗) 2770292059 93917980
pε∗ 5.446732e-07 1.574290e-05

Table 3: Rare Event Probability Experiments

5. Conclusions

We developed an adaptive simulation based stochastic approximation algorithm for ergodic control
of Markov chains conditioned on a rare event of zero probability. Our algorithm uses coupled re-
cursions that are driven by different timescales. We briefly sketched the convergence analysis of our
algorithm and presented numerical experiments on a setting involving routing multiple flows in com-
munication networks. The results obtained demonstrate the usefulness of the proposed algorithm in
obtaining optimal policies conditioned on a rare event and in estimating the rare event probability.
The numerical setting considered here was, however, a simple setting designed to demonstrate the
usefulness of the proposed algorithm. More complex settings involving, say, networks with multiple
nodes and more routes with large numbers of flows on each should be tried in order to study the
scalability of the proposed algorithm. The SPSA technique, in general, is known to be highly scal-
able as has been demonstrated through several applications over the last decade. In the simulation
based optimization framework, SPSA based multi-timescale algorithms have been found to perform
well computationally in the case of high-dimensional parameter settings studied in Bhatnagar et al.
(2001) and Bhatnagar et al. (2003) (by more than an order of magnitude over related K-W based
algorithms). Implementations involving such high-dimensional settings (along the lines described
above) need to be studied for the proposed algorithm in the setting of this paper. Recently, in Bhat-
nagar (2005), certain Newton-based multiscale SPSA algorithms that estimate both the gradient and
Hessian of the average cost have been developed in the simulation optimization setting. Similar
algorithms for the setting considered here may also be developed.

One may extend these ideas further by applying these for optimal control conditioned on multi-
ple rare events. For problems with large action spaces, one may consider suitable parameterizations
of the policy space. One may also use feature based methods for problems with moderately large
state spaces. Our adaptive algorithm can be used to derive optimal parameterized policies using
features in place of states. It must be noted here that adaptive importance sampling techniques re-
quire storage of transition probabilities and our algorithm is no different in this regard. Hence it
cannot directly be applied in the case of problems with very large state spaces where storage of such
information itself is computationally infeasible. However, in many cases such as queuing networks,
the transition probabilities are easy to compute and transitions easy to simulate using simple local
dynamic laws. Further, storage of transition probability matrices may not be a major concern in
such scenarios since these are known to be highly sparse. Developing similar algorithms in general
scenarios involving very large state spaces would be an interesting research direction to pursue.
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Abstract

Spectral clustering refers to a class of techniques which rely on the eigenstructure of a similarity
matrix to partition points into disjoint clusters, with points in the same cluster having high similarity
and points in different clusters having low similarity. In this paper, we derive new cost functions
for spectral clustering based on measures of error between a given partition and a solution of the
spectral relaxation of a minimum normalized cut problem. Minimizing these cost functions with
respect to the partition leads to new spectral clustering algorithms. Minimizing with respect to the
similarity matrix leads to algorithms for learning the similarity matrix from fully labelled data sets.
We apply our learning algorithm to the blind one-microphone speech separation problem, casting
the problem as one of segmentation of the spectrogram.

Keywords: spectral clustering, blind source separation, computational auditory scene analysis

1. Introduction

Spectral clustering has many applications in machine learning, exploratory data analysis, computer
vision and speech processing. Most techniques explicitly or implicitly assume a metric or a simi-
larity structure over the space of configurations, which is then used by clustering algorithms. The
success of such algorithms depends heavily on the choice of the metric, but this choice is generally
not treated as part of the learning problem. Thus, time-consuming manual feature selection and
weighting is often a necessary precursor to the use of spectral methods.

Several recent papers have considered ways to alleviate this burden by incorporating prior
knowledge into the metric, either in the setting of K-means clustering (Wagstaff et al., 2001; Xing
et al., 2003; Bar-Hillel et al., 2003) or spectral clustering (Yu and Shi, 2002; Kamvar et al., 2003).
In this paper, we consider a complementary approach, providing a general framework for learning
the similarity matrix for spectral clustering from examples. We assume that we are given sample
data with known partitions and are asked to build similarity matrices that will lead to these partitions
when spectral clustering is performed. This problem is motivated by the availability of such data
sets for at least two domains of application: in vision and image segmentation, databases of hand-
labelled segmented images are now available (Martin et al., 2001), while for the blind separation
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of speech signals via partitioning of the time-frequency plane (Brown and Cooke, 1994), training
examples can be created by mixing previously captured signals.

Another important motivation for our work is the need to develop spectral clustering methods
that are robust to irrelevant features. Indeed, as we show in Section 4.5, the performance of current
spectral methods can degrade dramatically in the presence of such irrelevant features. By using our
learning algorithm to learn a diagonally-scaled Gaussian kernel for generating the similarity matrix,
we obtain an algorithm that is significantly more robust.

Our work is based on cost functions J1(W,E) and J2(W,E) that characterize how close the eigen-
structure of a similarity matrix W is to a partition E. We derive these cost functions in Section 2.
As we show in Section 2.5, minimizing those cost functions with respect to the partition E leads to
new clustering algorithms that take the form of weighted K-means algorithms. Minimizing them
with respect to W yields a theoretical framework for learning the similarity matrix, as we show in
Section 3. Section 3.3 provides foundational material on the approximation of the eigensubspace
of a symmetric matrix that is needed for Section 4, which presents learning algorithms for spectral
clustering.

We highlight one other aspect of the problem here—the major computational challenge involved
in applying spectral methods to domains such as vision or speech separation. Indeed, in image
segmentation, the number of pixels in an image is usually greater than hundreds of thousands,
leading to similarity matrices of potential huge sizes, while, for speech separation, four seconds
of speech sampled at 5.5 kHz yields 22,000 samples and thus a naive implementation would need
to manipulate similarity matrices of dimension at least 22,000× 22,000. Thus a major part of
our effort to apply spectral clustering techniques to speech separation has involved the design of
numerical approximation schemes that exploit the different time scales present in speech signals. In
Section 4.4, we present numerical techniques that are appropriate for generic clustering problems,
while in Section 6.3, we show how these techniques specialize to speech.

2. Spectral Clustering and Normalized Cuts

In this section, we present our spectral clustering framework. Following Shi and Malik (2000)
and Gu et al. (2001), we derive the spectral relaxation through normalized cuts. Alternative frame-
works, based on Markov random walks (Meila and Shi, 2002), on different definitions of the nor-
malized cut (Meila and Xu, 2003), or on constrained optimization (Higham and Kibble, 2004), lead
to similar spectral relaxations.

2.1 Similarity Matrices

Spectral clustering refers to a class of techniques for clustering that are based on pairwise similarity
relations among data points. Given a data set I of P points in a space X , we assume that we are
given a P×P “similarity matrix” W that measures the similarity between each pair of points: Wpp′ is
large when points indexed by p and p′ are preferably in the same cluster, and is small otherwise. The
goal of clustering is to organize the data set into disjoint subsets with high intra-cluster similarity
and low inter-cluster similarity.

Throughout this paper we always assume that the elements of W are nonnegative (W > 0) and
that W is symmetric (W =W>). Moreover, we make the assumption that the diagonal elements
of W are strictly positive. In particular, contrary to most work on kernel-based algorithms, our
theoretical framework makes no assumptions regarding the positive semidefiniteness of the matrix
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(a symmetric matrix W is positive semidefinite if and only if for all vectors u∈R
P, u>Wu > 0). If in

fact the matrix is positive semidefinite this can be exploited in the design of efficient approximation
algorithms (see Section 4.4). But the spectral clustering algorithms presented in this paper are not
limited to positive semidefinite matrices.

A classical similarity matrix for clustering in R
d is the diagonally-scaled Gaussian similarity,

defined between pairs of points (x,y) ∈ R
d×R

d as:

W (x,y) = exp(−(x− y)>Diag(α)(x− y)),

where α∈R
d is a vector of positive parameters, and Diag(α) denotes the d×d diagonal matrix with

diagonal α. It is also very common to use such similarity matrices after transformation to a set of
“features,” where each feature can depend on the entire data set (xi)i=1,...,P or a subset thereof (see,
for example, Shi and Malik, 2000, for an example from computational vision and see Section 5 of
the current paper for examples from speech separation).

In the context of graph partitioning where data points are vertices of an undirected graph and
Wi j is defined to be one if there is an edge between i and j, and zero otherwise, W is often referred
to as an “affinity matrix” (Chung, 1997).

2.2 Normalized Cuts

We let V = {1, ...,P} denote the index set of all data points. We wish to find R disjoint clusters,
A=(Ar)r∈{1,...,R}, where

S

rAr =V , that optimize a certain cost function. In this paper, we consider
the R-way normalized cut, C(A,W ), defined as follows (Shi and Malik, 2000; Gu et al., 2001). For
two subsets A,B of V , define the total weight between A and B as W (A,B) = ∑i∈A ∑ j∈BWi j. Then
the normalized cut is equal to:

C(A,W ) =
R

∑
r=1

W (Ar,V\Ar)

W (Ar,V )
. (1)

Noting that W (Ar,V ) = W (Ar,Ar)+W (Ar,V\Ar), we see that the normalized cut is small if for all
r, the weight between the r-th cluster and the remaining data points is small compared to the weight
within that cluster. The normalized cut criterion thus penalizes unbalanced partitions, while non-
normalized criteria do not and often lead to trivial solutions (e.g., a cluster with only one point) when
applied to clustering. In addition to being more immune to outliers, the normalized cut criterion and
the ensuing spectral relaxations have a simpler theoretical asymptotic behavior when the number of
data points tend to infinity (von Luxburg et al., 2005).

Let er be the indicator vector in R
P for the r-th cluster, that is, er ∈ {0,1}P is such that er has

a nonzero component only for points in the r-th cluster. Knowledge of E =(e1, . . . ,eR) ∈ R
P×R is

equivalent to knowledge of A=(A1, . . . ,AR) and, when referring to partitions, we will use the two
formulations interchangeably. A short calculation reveals that the normalized cut is then equal to:

C(E,W ) =
R

∑
r=1

e>r (D−W )er

e>r Der

,

where D denotes the diagonal matrix whose i-th diagonal element is the sum of the elements in
the i-th row of W , that is, D = Diag(W1), where 1 is defined as the vector in R

P composed of
ones. Since we have assumed that all similarities are nonnegative, the matrix L = D−W , usually
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referred to as the “Laplacian matrix,” is a positive semidefinite matrix (Chung, 1997). In addition,
its smallest eigenvalue is always zero, with eigenvector 1. Also, we have assumed that the diagonal
of W is strictly positive, which implies that D is positive definite. Finally, in the next section, we
also consider the normalized Laplacian matrix defined as L̃ = I−D−1/2WD−1/2. This matrix is also
positive definite with zero as its smallest eigenvalue, associated with eigenvector D1/21.

Minimizing the normalized cut is an NP-hard problem (Shi and Malik, 2000; Meila and Xu,
2003). Fortunately, tractable relaxations based on eigenvalue decomposition can be found.

2.3 Spectral Relaxation

The following proposition, which extends a result of Shi and Malik (2000) for two clusters to an
arbitrary number of clusters, gives an alternative description of the clustering task, and leads to a
spectral relaxation:

Proposition 1 For all partitions E into R clusters, the R-way normalized cut C(W,E) is equal to
R− trY>D−1/2WD−1/2Y for any matrix Y ∈ R

P×R such that:
(a) the columns of D−1/2Y are piecewise constant with respect to the clusters E,
(b) Y has orthonormal columns (Y>Y = I).

Proof The constraint (a) is equivalent to the existence of a matrix Λ ∈ R
R×R such that D−1/2Y =

EΛ. The constraint (b) is thus written as I=Y>Y =Λ>E>DEΛ. The matrix E>DE is diagonal, with
elements e>r Der and is thus positive and invertible. The R×R matrix M = (E>DE)1/2Λ satisfies
M>M = I, that is, M is orthogonal, which implies I = MM> = (E>DE)1/2ΛΛ>(E>DE)1/2.

This immediately implies that ΛΛ>=(E>DE)−1. Thus we have:

R− trY>(D−1/2WD−1/2)Y = R− trΛ>E>D1/2(D−1/2WD−1/2)D1/2EΛ
= R− trΛ>E>WEΛ
= R−E>WEΛΛ>= trE>WE(E>DE)−1

= C(W,E),

which completes the proof.

By removing the constraint (a), we obtain a relaxed optimization problem, whose solutions involve
the eigenstructure of D−1/2WD−1/2 and which leads to the classical lower bound on the optimal
normalized cut (Zha et al., 2002; Chan et al., 1994). The following proposition gives the solution
obtained from the spectral relaxation1:

Proposition 2 The maximum of trY>D−1/2WD−1/2Y over matrices Y ∈R
P×R such that Y>Y = I is

the sum of the R largest eigenvalues of D−1/2WD−1/2. It is attained at all Y of the form Y =UB1

where U ∈ R
P×R is any orthonormal basis of the R-th principal subspace of D−1/2WD−1/2 and B1

is an arbitrary orthogonal matrix in R
R×R.

Proof Let W̃ = D−1/2WD−1/2. The proposition is equivalent to the classical variational character-
ization of the sum of the R largest eigenvalues λ1(W̃ ) > · · ·> λR(W̃ ) of W̃—a result known as Ky
Fan’s theorem (Overton and Womersley, 1993):

λ1(W̃ )+ · · ·+λR(W̃ ) = max{trY>W̃Y,Y ∈ R
P×R,Y>Y = I},

1. Tighter relaxations that exploit the nonnegativity of cluster indicators can be obtained (Xing and Jordan, 2003). These
lead to convex relaxations, but their solution cannot be simply interpreted in terms of eigenvectors.
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where the maximum is attained for all matrices Y of the form Y =UB1, where U ∈ R
P×R is any

orthonormal basis of the R-th principal subspace of W̃ and B1 is an arbitrary orthogonal matrix in
R

R×R. Note that the R-th principal subspace is uniquely defined if and only if λR 6= λR+1 (i.e., there
is a positive eigengap).

The solutions found by this relaxation will not in general be piecewise constant, that is, they
will not in general satisfy constraint (a) in Proposition 1, and thus the relaxed solution has to be
projected back to the constraint set defined by (a), an operation we refer to as “rounding,” due
to the similarity with the rounding performed after a linear programming relaxation of an integer
programming problem (Bertsimas and Tsitsiklis, 1997).

2.4 Rounding

Our rounding procedure is based on the minimization of a metric between the relaxed solution and
the entire set of discrete allowed solutions. Different metrics lead to different rounding schemes.
In this section, we present two different metrics that take into account the known invariances of the
problem.

2.4.1 COMPARISON OF SUBSPACES

Solutions of the relaxed problem are defined up to an orthogonal matrix, that is, Yeig = UB1, where
U ∈ R

P×R is any orthonormal basis of the R-th principal subspace of M and B1 is an arbitrary
orthogonal matrix. The set of matrices Y that correspond to a partition E and that satisfy constraints
(a) and (b) are of the form Ypart = D1/2E(E>DE)−1/2B2, where B2 is an arbitrary orthogonal matrix.

Since both matrices are defined up to an orthogonal matrix, it makes sense to compare the
subspaces spanned by their columns. A common way to compare subspaces is to compare the
orthogonal projection operators on those subspaces (Golub and Loan, 1996), that is, to compute the
Frobenius norm between YeigY>eig = UU> and the orthogonal projection operator Π0(W,E) on the

subspace spanned by the columns of D1/2E = D1/2(e1, . . . ,er), equal to:

Π0(W,E) = YpartY
>
part

= D1/2E(E>DE)−1E>D1/2

= ∑
r

D1/2ere>r D1/2

e>r Der
.

We thus define the following cost function:

J1(W,E)= 1
2

∥∥∥U(W )U(W )>−Π0(W,E)
∥∥∥

2

F
. (2)

Other cost functions could be derived using different metrics between linear subspaces, but as shown
in Section 2.5, the Frobenius norm between orthogonal projections has the appealing feature that it
leads to a weighted K-means algorithm.2

2. Another natural possibility followed by Yu and Shi (2003) is to compare directly U (or a normalized version thereof)
with the indicator matrix E, up to an orthogonal matrix R, which then has to be estimated. This approach leads to an
alternating minimization scheme similar to K-means.
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Using the fact that both U(W )U(W )> and Π0(W,E) are orthogonal projection operators on
linear subspaces of dimension R, we have:

J1(W,E) =
1
2

trU(W )U(W )>+
1
2

trΠ0(W,E)Π0(W,E)>− trU(W )U(W )>Π0(W,E)

=
R
2

+
R
2
− trU(W )U(W )>Π0(W,E)

= R−∑
r

e>r D1/2U(W )U(W )>D1/2er

e>r Der
.

Note that if the similarity matrix W has rank equal to R, then our cost function J1(W,E) is exactly
equal to the normalized cut C(W,E).

2.4.2 NORMALIZATION OF EIGENVECTORS

By construction of the orthonormal basis U of the R-dimensional principal subspace of
W̃ = D−1/2WD−1/2, the P R-dimensional rows u1, . . . ,uP ∈ R

R are already globally normalized,
that is, they satisfy U>U = ∑P

i=1 uiu>i = I. Additional renormalization of those eigenvectors has
proved worthwhile in clustering applications (Scott and Longuet-Higgins, 1990; Weiss, 1999; Ng
et al., 2002), as can be seen in the idealized situation in which the similarity is zero between points
that belong to different clusters and strictly positive between points in the same clusters. In this
situation, the eigenvalue 1 has multiplicity R, and D1/2E is an orthonormal basis of the principal
subspace. Thus, any basis U of the principal subspace has rows which are located on orthogonal
rays in R

R, where the distance from the i-th row ui to the origin is simply D1/2
ii . By normalizing

each row by the value D1/2
ii or by its norm ‖ui‖, the rows become orthonormal points in R

R (in
the idealized situation) and thus are trivial to cluster. Ng et al. (2002) have shown that when the
similarity matrix is “close” to this idealized situation, the properly normalized rows tightly cluster
around an orthonormal basis.

We also define an alternative cost function by removing the scaling introduced by D; that is, we
multiply U by D−1/2 and re-orthogonalize to obtain: V = D1/2U(U>D−1U)−1/2, where we use any
of the matrix square roots of U>D−1U (our framework is independent of the chosen square root).
Note that this is equivalent to considering the generalized eigenvectors (i.e., vectors x 6= 0 such that
Wx = λDx for a certain λ). We thus define the following cost function:

J2(W,E) =
1
2

∥∥∥V (W )V (W )>−E(E>E)−1E>
∥∥∥

2

F
(3)

=
1
2

∥∥∥∥∥V (W )V (W )>−
r

∑
i=1

ere>r
e>r er

∥∥∥∥∥

2

F

.

Our two cost functions characterize the ability of the matrix W to produce the partition E when
using its eigenvectors. Minimizing with respect to E leads to new clustering algorithms that we now
present. Minimizing with respect to the matrix W for a given partition E leads to algorithms for
learning the similarity matrix, as we show in Section 3 and Section 4.

In practice, the two cost functions lead to very similar results. The first cost function has closest
ties to the normalized cut problem since it is equal to the normalized cut for similarity matrices
of rank R, while the second cost function leads to better theoretical learning bounds as shown in
Section 3.2.
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2.5 Spectral Clustering Algorithms

In this section, we provide a variational formulation of our two cost functions. Those variational
formulations lead naturally to K-means and weighted K-means algorithms for minimizing those
cost functions with respect to the partition. While K-means is often used heuristically as a post-
processor for spectral clustering (Ng et al., 2002; Meila and Shi, 2002), our approach provides a
mathematical foundation for the use of K-means.

2.6 Weighted K-means

The following theorem, inspired by the spectral relaxation of K-means presented by Zha et al.
(2002), shows that the cost function can be interpreted as a weighted distortion measure:

Theorem 3 Let W be a similarity matrix and let U =(u1, . . . ,uP)>, where up ∈R
R, be an orthonor-

mal basis of the R-th principal subspace of D−1/2WD−1/2, and dp = Dpp for all p. For any partition
E ≡ A, we have

J1(W,E)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp‖upd−1/2
p −µr‖2.

Proof Let D(µ,A)=∑r ∑p∈Ar
dp‖upd−1/2

p −µr‖2. Minimizing D(µ,A) with respect to µ is a decou-
pled least-squares problem and we get:

minµ D(µ,A) = ∑r ∑p∈Ar
u>p up−∑r ‖∑p∈Ar

d1/2
p up‖2/(∑p∈Ar

dp)

= ∑p u>p up−∑r ∑p,p′∈Ar
d1/2

p d1/2
p′ u>p up′/(e>r Der)

= R−∑r e>r D1/2UU>D1/2er/(e>r Der)=J1(W,E).

This theorem has an immediate algorithmic implication—to minimize the cost function J1(W,E)
with respect to the partition E, we can use a weighted K-means algorithm. The resulting algorithm
is presented in Figure 1.

For the second cost function, we have a similar theorem, which leads naturally to the K-means
algorithm presented in Figure 2:

Theorem 4 Let W be a similarity matrix and let U be an orthonormal basis of the R-th principal
subspace of D−1/2WD−1/2, and V = D1/2U(U>DU)−1/2. For any partition E ≡ A, we have

J2(W,E)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

‖vp−µr‖2.

The rounding procedures that we propose in this paper are similar to those in other spectral
clustering algorithms (Ng et al., 2002; Yu and Shi, 2003). Empirically, all such rounding schemes
usually lead to similar partitions. The main advantage of our procedure—which differs from the
others in being derived from a cost function—is that it naturally leads to an algorithm for learning
the similarity matrix from data, presented in Section 3.
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Input: Similarity matrix W ∈ R
P×P.

Algorithm:
1. Compute first R eigenvectors U of D−1/2WD−1/2 where D=diag(W1).
2. Let U =(u1, . . . ,uP)> ∈ R

P×R and dp =Dpp.
3. Initialize partition A.
4. Weighted K-means: While partition A is not stationary,

a. For all r, µr =∑p∈Ar
d1/2

p up/∑p∈Ar
dp

b. For all p, assign p to Ar where r=argminr′ ‖upd−1/2
p −µr′‖

Output: partition A, distortion measure ∑r ∑p∈Ar
dp‖upd−1/2

p −µr‖2

Figure 1: Spectral clustering algorithm that minimizes J1(W,E) with respect to E with weighted
K-mean. See Section 2.6 for the initialization of the partition A.

Input: Similarity matrix W ∈ R
P×P.

Algorithm:
1. Compute first R eigenvectors U of D−1/2WD−1/2 where D=diag(W1).
2. Let V =D1/2U(U>DU)−1/2

3. Let V =(v1, . . . ,vP)> ∈ R
P×R

4. Initialize partition A.
5. Weighted K-means: While partition A is not stationary,

a. For all r, µr =
1
|Ap| ∑p∈Ar

up

b. For all p, assign p to Ar where r=argminr′ ‖up−µr′‖
Output: partition A, distortion measure ∑r ∑p∈Ar

‖up−µr‖2

Figure 2: Spectral clustering algorithm that minimizes J2(W,E) with respect to E with K-means.
See Section 2.6 for the initialization of the partition A.
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Initialization The K-means algorithm can be interpreted as a coordinate descent algorithm and is
thus subject to problems of local minima. Thus good initialization is crucial for the practical success
of the algorithm in Figure 1.

A similarity matrix W is said perfect with respect to a partition E with R clusters if the cost
functions J1(W,E) and J2(W,E) are exactly equal to zero. This is true in at least two potentially
distinct situations: (1) when the matrix W is block-constant, where the block structure follows
the partition E, and, as seen earlier, (2) when the matrix W is such that the similarity between
points in different clusters is zero, while the similarity between points in the same clusters is strictly
positive (Weiss, 1999; Ng et al., 2002).

In both situations, the R cluster centroids are orthogonal vectors, and Ng et al. (2002) have
shown that when the similarity matrix is “close” to the second known type of perfect matrices, those
centroids are close to orthogonal. This lead to the following natural initialization of the partition A
for the K-means algorithm in Figure 1 and Figure 2 (Ng et al., 2002): select a point up at random,
and successively select R−1 points whose directions are most orthogonal to the previously chosen
points; then assign each data point to the closest of the R chosen points.

2.7 Variational Formulation for the Normalized Cut

In this section, we show that there is a variational formulation of the normalized cut similar to
Theorem 3 for positive semidefinite similarity matrices, that is, for matrices that can be factorized
as W =GG> where G ∈ R

P×M , where M 6 P. Indeed we have the following theorem, whose proof
is almost identical to the proof of Theorem 3:

Theorem 5 If W =GG> where G ∈ R
P×M , then for any partition E, we have:

C(W,E)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp‖gpd−1
p −µr‖2 +R− trD−1/2WD−1/2.

This theorem shows that for positive semidefinite matrices, the normalized cut problem is equiv-
alent to the minimization of a weighted distortion measure. However, the dimensionality of the
space involved in the distortion measure is equal to the rank of the similarity matrices, and thus
can be very large (as large as the number of data points). Consequently, this theorem does not
lead straightforwardly to an efficient algorithm for minimizing normalized cuts, since a weighted
K-means algorithm in very high dimensions is subject to severe local minima problems (see, for
example, Meila and Heckerman, 2001). See Dhillon et al. (2004) for further algorithms based on
the equivalence between normalized cuts and weighted K-means.

3. Cost Functions for Learning the Similarity Matrix

Given a similarity matrix W , the steps of a spectral clustering algorithms are (1) normalization, (2)
computation of eigenvalues, and (3) partitioning of the eigenvectors using (weighted) K-means to
obtain a partition E. In this section, we assume that the partition E is given, and we develop a
theoretical framework and a set of algorithms for learning a similarity matrix W .

It is important to note that if if we put no constraints on W , then there is a trivial solution,
namely any perfect similarity matrix with respect to the partition E, in particular, any matrix that
is block-constant with the appropriate blocks. For our problem to be meaningful, we thus must
consider a setting in which there are several data sets to partition and we have a parametric form
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for the similarity matrix. The objective is to learn parameters that generalize to unseen data sets
with a similar structure. We thus assume that the similarity matrix is a function of a vector variable
α ∈ R

F , and develop a method for learning α.
Given a distance between partitions, a naive algorithm would simply minimize the distance

between the true partition E and the output of the spectral clustering algorithm. However, the K-
means algorithm that is used to cluster eigenvectors is a non continuous map and the naive cost
function would be non continuous and thus hard to optimize. In this section, we first show that
the cost function we have presented is an upper bound of the naive cost function; this upper bound
has better differentiability properties and is amenable to gradient-based optimization. The function
that we obtain is a function of eigensubspaces and we provide numerical algorithms to efficiently
minimize such functions in Section 3.3.

3.1 Distance Between Partitions

Let E = (er)r=1,...,R and F = ( fs)s=1,...,S be two partitions of P data points with R and S clusters,
represented by the indicator matrices of sizes P×R and P× S, respectively. We use the following
distance between the two partitions (Hubert and Arabie, 1985):

d(E,F) =
1√
2

∥∥∥E(E>E)−1E>−F(F>F)−1F>
∥∥∥ (4)

=
1√
2

∥∥∥∥∑
r

ere>r
e>r er

−∑
s

fs f>s
f>s fs

∥∥∥∥
F

=
1√
2

(
R+S−2∑

r,s

(e>r fs)
2

(e>r er)( f>s fs)

)1/2

.

The term e>r fs simply counts the number of data points which belong to the r-th cluster of E and
the s-th cluster of F . The function d(E,F) is a distance for partitions, that is, it is nonnegative
and symmetric, it is equal to zero if and only if the partitions are equal, and it satisfies the triangle
inequality. Moreover, if F has S clusters and E has R clusters, we have 0 6 d(E,F) 6 ( R+S

2 −1)1/2.
In simulations, we compare partitions using the squared distance.

3.2 Cost Functions as Upper Bounds

We let E1(W ) denote the clustering obtained by minimizing the cost function J1(W,E) with re-
spect to E, and let E2(W ) denote the clustering obtained by minimizing the cost function J2(W,E).
The following theorem shows that our cost functions are upper bounds on the distance between a
partition and the output of the spectral clustering algorithm:

Theorem 6 Let η(W ) = maxp Dpp/minp Dpp > 1. If E1(W ) = argminR J1(W,E) and E2(W ) =
argminR J2(W,E), then for all partitions E, we have:

d(E,E1(W ))2
6 4η(W )J1(W,E) (5)

d(E,E2(W ))2
6 4J2(W,E). (6)

Proof Given a similarity matrix W , following Section 2.4, we have

J2(W,E) =
1
2
‖V (W )V (W )>−E(E>E)−1E>‖2

F ,
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where we let denote V (W ) = D1/2U(W )(U(W )>DU(W ))−1/2 and U(W ) is an orthonormal basis of
the R-th principal subspace of D−1/2WD−1/2. With that definition, for all partitions E, we have:

d(E,E2(W )) =
1√
2

∥∥∥E(E>E)−1E>−E(W )(E(W )>E(W ))−1E(W )>
∥∥∥

6
1√
2

∥∥∥E(E>E)−1E>−V (W )V (W )>
∥∥∥

+
1√
2

∥∥∥V (W )V (W )>−E(W )(E(W )>E(W ))−1E(W )>
∥∥∥

= (J2(E,W ))1/2 +min
E

(J2(E,W ))1/2

6 2(J2(E,W ))1/2,

which proves Eq. (6). In order to prove Eq. (5), we define a distance between partitions that is scaled
by D, that is:

dD(E,F) =
1√
2

∥∥∥D1/2E(E>DE)−1E>D1/2−D1/2F(F>DF)−1F>D1/2
∥∥∥ .

Following the same steps as above, we can prove:

dD(E,E1(W )) 6 2(J1(E,W ))1/2.

Finally, in order to obtain Eq. (5), we use Lemma 9 in Appendix A.

The previous theorem shows that minimizing our cost functions is equivalent to minimizing an
upper bound on the true cost function. This bound is tight at zero, consequently, if we are able to
produce a similarity matrix W with small J1(W,E) or J2(W,E) cost, then the matrix will provably
lead to partition that is close to E. Note that the bound in Eq. (5) contains a constant term dependent
on W and is thus weaker than the bound in Eq. (6) which does not. In Section 3.4, we compare our
cost functions to previously proposed cost functions.

3.3 Functions of Eigensubspaces

Our cost functions, as defined in Eq. (2) and Eq. (3), depend on the R-th principal eigensub-
space, that is, the subspace spanned by the first R eigenvectors, U ∈ R

P×R, of W̃ = D−1/2WD−1/2.
In this section, we review classical properties of eigensubspaces, and present optimization tech-
niques to minimize functions of eigensubspaces. In this section, we focus mainly on the cost
function J1(W,E) which is defined in terms of the projections onto the principal subspace of W̃ =
D−1/2WD−1/2. The extensions of our techniques to the alternative cost function J2(W,E) is straight-
forward. In this section, we first assume that all considered matrices are positive semidefinite, so
that all eigenvalues are nonnegative, postponing the treatment of the general case to Section 3.3.5.

3.3.1 PROPERTIES OF EIGENSUBSPACES

Let MP,R be the set of symmetric matrices such that there is a positive gap between the R-th largest
eigenvalue and the (R+1)-th largest eigenvalue. The set MP,R is open (Magnus and Neudecker,
1999), and for any matrix in MP,R, the R-th principal subspace ER(M) is uniquely defined and the
orthogonal projection ΠR(M) on that subspace is an unique identifier of that subspace. If UR(M) is
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an orthonormal basis of eigenvectors associated with the R largest eigenvalues, we have ΠR(M) =
UR(M)UR(M)>, and the value is independent of the choice of the basis UR(M). Note that the R-th
eigensubspace is well defined even if some eigenvalues larger than the R-th eigenvalue coalesce (in
which case, the R eigenvectors are not well defined but the R-th principal eigensubspace is).

The computation of eigenvectors and eigenvalues is a well-studied problem in numerical linear
algebra (see, for example, Golub and Loan, 1996). The two classical iterative techniques to obtain a
few eigenvalues of a symmetric matrix are the orthogonal iterations (a generalization of the power
method for one eigenvalue) and the Lanczös method.

The method of orthogonal iterations starts with a random matrix V in R
P×R, successively multi-

plies V by the matrix M and orthonormalizes the result with the QR decomposition. For almost all
V , the orthogonal iterations converge to the principal eigensubspace, and the convergence is linear
with rate λR+1(M)/λR(M), where λ1(M) > · · · > λR+1(M) are the R+1 largest eigenvalues of M.
The complexity of performing q steps of the orthogonal iterations is qR times the complexity of
the matrix-vector product with the matrix M. If M has no special structure, the complexity is thus
O(qRP2). As discussed in Section 4.4, if special structure is present in M it is possible to reduce this
to linear in P. The number of steps to obtain a given precision depends directly on the multiplicative

eigengap εR(M) = λR+1(M)/λR(M) 6 1; indeed this number of iterations is O
(

1
1−εR(M)

)
.

The Lanczös method is also an iterative method, one which makes better use of the available in-
formation to obtain more rapid convergence. Indeed the number of iterations is only O

(
1

(1−εR(M))1/2

)
,

that is, the square root of the number of iterations for the orthogonal iterations (Golub and Loan,
1996). Note that it is usual to perform subspace iterations on more than the desired number of
eigenvalues in order to improve convergence (Bathe and Wilson, 1976).

Finally, in our setting of learning the similarity matrix, we can speed up the eigenvalue compu-
tation by initializing the power or Lanczös method with the eigensubspace of previous iterations.
Other techniques are also available that can provide a similar speed-up by efficiently tracking the
principal subspace of slowly varying matrices (Comon and Golub, 1990; Edelman et al., 1999).

3.3.2 EXACT DIFFERENTIAL

The following proposition shows that the function ΠR(M) is continuous and differentiable on MP,R

(for a proof see Appendix B).

Proposition 7 The function ΠR(M), the orthogonal projection on the R-th principal eigensubspace
of R, is an infinitely differentiable function on MP,R and for any differentiable path M(t) of symmetric

matrices with values in MP,R such that M(0) = M, the derivative dΠR(M(t))
dt at t = 0 is equal to

UN>+NU>, where N is the unique solution of the linear system

MN−NU>MU =−(I−UU>)M′(0)U and U>N = 0, (7)

and where U is any orthonormal basis of the R-th principal subspace of M. The value of the
derivative is independent of the chosen orthonormal basis.

The linear system Eq. (7) has PR equations and PR unknowns. It turns out that this system is
a positive definite system, with a condition number that is upper bounded by 1/(1− εR(M)). Thus
solving this system using the conjugate gradient method takes a number of iterations proportional
to 1

(1−εR(M))1/2 , that is, the complexity of obtaining one derivative is the same as that of computing
the first R eigenvectors with the Lanczös method.
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Note that if all the first R eigenvalues of M are distinct, the system Eq. (7) decouples into R
smaller systems that characterize the differential of a single eigenvector (Magnus and Neudecker,
1999; Cour et al., 2005). However, the condition number of such systems might be very large if
some eigenvalues are close. We thus advocate the use of the full system, for which the complexity
of each iteration of conjugate gradient is the same complexity as the sum of the decoupled algo-
rithms, but for which the condition number is better behaved. We hereby follow the classical rule of
thumb of numerical linear algebra, namely that eigensubspaces are better behaved than individual
eigenvectors (Edelman et al., 1999).

3.3.3 APPROXIMATION OF EIGENSUBSPACE AND ITS DIFFERENTIAL

When learning the similarity matrix, the cost function and its derivatives are computed many times
and it is thus worthwhile to use an efficient approximation of the eigensubspace as well as its differ-
ential. A very natural solution is to stop the iterative methods for computing eigenvectors at a fixed
iteration q. The following proposition shows that for the method of power iterations, for almost all
starting matrix V ∈ R

P×R, the projection obtained by early stopping is an infinitely differentiable
function:

Proposition 8 Let V ∈R
P×R be such that η= max

u∈ER(M)⊥,v∈range(V )
cos(u,v) < 1. Then if we let Vq(M)

denote the results of q orthogonal iterations, the function Vq(M)Vq(M)> is infinitely differentiable in
a neighborhood of M, and we have: ‖Vq(M)Vq(M)>−ΠR(M)‖2 6

η
(1−η2)1/2 (|λR+1(M)|/|λR(M)|)q.

Proof Golub and Loan (1996) show that for all q, MqV always has rank R. When only the projection
on the column space is sought, the result of the orthogonal iterations does not depend on the chosen
method of orthonormalization (usually the QR decomposition), and the final result is theoretically
equivalent to orthonormalizing at the last iteration. Thus Vq(M)Vq(M)>= MqV (V>M2qV )−1V>Mq.
Vq(M)Vq(M)> is C∞ since matrix inversion and multiplication are C∞. The bound is proved in Golub
and Loan (1996) for the QR orthogonal iterations, and since the subspaces computed by the two
methods are the same, the bound also holds here. The derivative can easily be computed using the
chain rule.

Note that numerically taking powers of matrices without care can lead to disastrous results (Golub
and Loan, 1996). By using successive QR iterations, the computations can be made stable and the
same technique can be used for the computation of the derivatives.

3.3.4 POTENTIALLY HARD EIGENVALUE PROBLEMS

In most of the literature on spectral clustering, it is taken for granted that the eigenvalue problem is
easy to solve. It turns out that in many situations, the (multiplicative) eigengap is very close to one,
making the eigenvector computation difficult (examples are given in the following section).

When the eigengap is close to one, a large power is necessary for the orthogonal iterations to
converge. In order to avoid those situations, we regularize the approximation of the cost function
based on the orthogonal iterations by a term which is large when the matrix D−1/2WD−1/2 is ex-
pected to have a small eigengap, and small otherwise. We use the function n(W ) = trW/ trD, which
is always between 0 and 1, and is equal to 1 when W is diagonal (and thus has no eigengap).

We thus use the cost function defined as follows. Let V ∈ R
P×R be defined as D1/2F , where

the r-th column of F is the indicator matrix of a random subset of the r-th cluster normalized by
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the number of points in that cluster. This definition of W ensures that when W is diagonal, the cost
function is equal to R−1, that is, if the power iterations are likely not to converge, then the value is
the maximum possible true value of the cost.

Let B(W ) be an approximate orthonormal basis of the projections on the R-th principal subspace
of D−1/2WD−1/2, based on orthogonal iterations starting from V .3

The cost function that we use to approximate J1(W,E) is

F1(W,E)=
1
2

∥∥∥B(W )B(W )>−Π0(W,E)
∥∥∥

2

F
−κ log(1−n(W )).

We define also C(W ) = D1/2B(W )(B(W )>DB(W ))−1/2. The cost function that we use to ap-
proximate J2(W,E) is then

F2(W,E)=
1
2

∥∥∥C(W )C(W )>−Π0(E)
∥∥∥

2

F
−κ log(1−n(W )).

3.3.5 NEGATIVE EIGENVALUES

The spectral relaxation in Proposition 2 involves the largest eigenvalues of the matrix
W̃ = D−1/2WD−1/2. The vector D1/21 is an eigenvector with eigenvalue 1; since we have assumed
that W is pointwise nonnegative, 1 is the largest eigenvalue of W̃ . Given any symmetric matrices
(not necessarily positive semidefinite) orthogonal iterations will converge to eigensubspaces cor-
responding to eigenvalues which have largest magnitude, and it may well be the case that some
negative eigenvalues of W̃ have larger magnitude than the largest (positive) eigenvalues, thus pre-
venting the orthogonal iterations from converging to the desired eigenvectors. When the matrix W
is positive semidefinite this is not possible. However, in the general case, eigenvalues have to be
shifted so that they are all nonnegative. This is done by adding a multiple of the identity matrix to
the matrix W̃ , which does not modify the eigenvectors but simply potentially change the signs of
the eigenvalues. In our context adding exactly the identity matrix is sufficient to make the matrix
positive; indeed, when W is pointwise nonnegative, then both D +W and D−W are diagonally
dominant with nonnegative diagonal entries, and are thus positive semidefinite (Golub and Loan,
1996), which implies that −I 4 W̃ 4 I, and thus I +W̃ is positive semidefinite.

3.4 Empirical Comparisons Between Cost Functions

In this section, we study the ability of the various cost functions we have proposed to track the
gold standard error measure in Eq. (4) as we vary the parameter α in the similarity matrix Wpp′ =
exp(−α‖xp− xp′‖2). We study the cost functions J1(W,E) and J2(W,E) as well as their approx-
imations based on the power method presented in Section 3.3.3. We also present results for two
existing approaches, one based on a Markov chain interpretation of spectral clustering (Meila and
Shi, 2002) and one based on the alignment (Cristianini et al., 2002) of D−1/2WD−1/2 and Π0. Our
experiment is based on the simple clustering problem shown in Figure 3(a). This apparently simple
toy example captures much of the core difficulty of spectral clustering—nonlinear separability and
thinness/sparsity of clusters (any point has very few near neighbors belonging to the same cluster, so
that the weighted graph is sparse). In particular, in Figure 3(b) we plot the eigengap of the similarity

3. The matrix D−1/2WD−1/2 always has the same largest eigenvalue 1 with eigenvector D1/21 and we could consider
instead the (R−1)th principal subspace of D−1/2WD−1/2−D1/211>D1/2/(1>D1).
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matrix as a function of α, noting that for all optimum values of α, this gap is very close to one, and
thus the eigenvalue problem is hard to solve. Worse, for large values of α, the eigengap becomes
so small that the eigensolver starts to diverge. It is thus essential to prevent our learning algorithm
from yielding parameter settings that lead to a very small eigengap. In Figure 3(e), we plot our
approximation of the cost function based on the power method, and we see that, even without the
additional regularization presented in Section 3.3.4, our approximate cost function avoids a very
small eigengap. The regularization presented in Section 3.3.4 strengthens this behavior.

In Figure 3(c) and (d), we plot the four cost functions against the gold standard. The gold
standard curve shows that the optimal α lies above 2.5 on a log scale, and as seen in Figure 3(c) and
(e), the minima of the new cost function and its approximation lie among these values. As seen in
Figure 3(d), on the other hand, the alignment and Markov-chain-based cost functions show a poor
match to the gold standard, and yield minima far from the optimum.

The problem with the latter cost functions is that these functions essentially measure the dis-
tance between the similarity matrix W (or a normalized version of W ) and a matrix T which (after
permutation) is block-diagonal with constant blocks. Spectral clustering does work with matrices
which are close to block-constant; however, one of the strengths of spectral clustering is its ability
to work effectively with similarity matrices which are not block-constant, and which may exhibit
strong variations among each block.

Indeed, in examples such as that shown in Figure 3, the optimal similarity matrix is very far from
being block diagonal with constant blocks. Rather, given that data points that lie in the same ring
are in general far apart, the blocks are very sparse—not constant and full. Methods that try to find
constant blocks cannot find the optimal matrices in these cases. In the language of spectral graph
partitioning, where we have a weighted graph with weights W , each cluster is a connected but very
sparse graph. The power W q corresponds to the q-th power of the graph; that is, the graph in which
two vertices are linked by an edge if and only if they are linked by a path of length no more than
q in the original graph. Thus taking powers can be interpreted as “thickening” the graph to make
the clusters more apparent, while not changing the eigenstructure of the matrix (taking powers of
symmetric matrices only changes the eigenvalues, not the eigenvectors). Note that other clustering
approaches based on taking powers of similarity matrices have been studied by Tishby and Slonim
(2001) and Szummer and Jaakkola (2002); these differ from our approach in which we only take
powers to approximate the cost function used for learning the similarity matrix.

4. Algorithms for Learning the Similarity Matrix

We now turn to the problem of learning the similarity matrix from data. We assume that we are
given one or more sets of data for which the desired clustering is known. The goal is to design
a “similarity map,” that is, a mapping from data sets of elements in X to the space of symmetric
matrices with nonnegative elements. In this paper, we assume that this space is parameterized. In
particular, we consider diagonally-scaled Gaussian kernel matrices (for which the parameters are the
scales of each dimension), as well as more complex parameterized matrices for the segmentation of
line drawings in Section 4.6 and for speech separation in Section 5. In general we assume that the
similarity matrix is a function of a vector variable α ∈ R

F . We also assume that the parameters are
in one-to-one correspondence with the features; setting one of these parameters to zero is equivalent
to ignoring the corresponding feature.
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Figure 3: Empirical comparison of cost functions. (a) Data with two clusters (red crosses and blue
circles). (b) Eigengap of the similarity matrix as a function of α. (c) Gold standard clus-
tering error (black solid), spectral cost function J1 (red dotted) and J2 (blue dashed). (d)
Gold standard clustering error (black solid), the alignment (red dashed), and a Markov-
chain-based cost, divided by 20 (blue dotted). (e) Approximations based on the power
method, with increasing power q: 2 4 16 32.

1978



LEARNING SPECTRAL CLUSTERING, WITH APPLICATION TO SPEECH SEPARATION

4.1 Learning Algorithm

We assume that we are given several related data sets with known partitions and our objective is to
learn parameters of similarity matrices adapted to the overall problem. This “supervised” setting
is not uncommon in practice. In particular, as we show in Section 5, labelled data sets are readily
obtained for the speech separation task by artificially combining separately-recorded samples. Note
also that in the image segmentation domain, numerous images have been hand-labelled and a data
sets of segmented natural images is available (Martin et al., 2001).

More precisely, we assume that we are given N data sets Dn, n∈ {1, . . . ,N}, of points in X . Each
data set Dn is composed of Pn points xnp, p ∈ {1, . . . ,Pn}. Each data set is segmented; that is, for
each n we know the partition En. For each n and each α, we have a similarity matrix Wn(α). The cost
function that we use is H(α)= 1

N ∑n F(Wn(α),En)+C ∑F
f=1 |α f |. The `1 penalty serves as a feature

selection term, tending to make the solution sparse. The learning algorithm is the minimization of
H(α) with respect to α ∈ R

F , using the method of steepest descent.

Given that the complexity of the cost function increases with q, we start the minimization with
small q and gradually increase q up to its maximum value. We have observed that for small q,
the function to optimize is smoother and thus easier to optimize—in particular, the long plateaus
of constant values are less pronounced. In some cases, we may end the optimization with a few
steps of steepest descent using the cost function with the true eigenvectors, that is, for q = ∞; this is
particularly appropriate when the eigengaps of the optimal similarity matrices happen to be small.

4.2 Related Work

Several other frameworks aim at learning the similarity matrices for spectral clustering or related
procedures. Closest to our own work is the algorithm of Cour et al. (2005) which optimizes directly
the eigenvectors of the similarity matrix, rather than the eigensubpaces, and is applied to image
segmentation tasks. Although differently motivated, the frameworks of Meila and Shi (2002) and
Shental et al. (2003) lead to similar convex optimization problems. The framework of Meila and
Shi (2002) directly applies to spectral clustering, but we have shown in Section 3.4 that the cost
function, although convex, may lead to similarity matrices that do not perform well. The proba-
bilistic framework of Shental et al. (2003) is based on the model granular magnet of Blatt et al.
(1997) and applies recent graphical model approximate inference techniques to solve the intractable
inference required for the clustering task. Their framework leads to a convex maximum likelihood
estimation problem for the similarity parameters, which is based on the same approximate inference
algorithms. Among all those frameworks, ours has the advantage of providing theoretical bounds
linking the cost function and the actual performance of spectral clustering.

4.3 Testing Algorithm

The output of the learning algorithm is a vector α ∈ R
F . In order to cluster previously unseen

data sets, we compute the similarity matrix W and use the algorithm of Figure 1 or Figure 2. In
order to further enhance testing performance, we also adopt an idea due to Ng et al. (2002)—during
testing, we vary the parameter α along a direction β. That is, for small λ we set the parameter value
to α + βλ and perform spectral clustering, selecting λ such that the (weighted) distortion obtained
after application of the spectral clustering algorithm of Figure 1 or Figure 2 is minimal.
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In our situation, there are two natural choices for the direction of search. The first is to use
β = α/‖α‖, that is, we hold fixed the direction of the parameter but allow the norm to vary.
This is natural for diagonally-scaled Gaussian kernel matrices. The second solution, which is
more generally applicable, is to used the gradient of the individual cost functions, that is, let
Gn = dF(Wn(α),En)

dα ∈ R
F . If we neglect the effect of the regularization, at optimality, ∑n Gn = 0.

We take the unit-norm direction such that ∑n(β>Gn)
2 is maximum, which leads to choosing β as

the largest eigenvector of ∑n GnG>n .

4.4 Handling Very Large Similarity Matrices

In applications to vision and speech separation problems, the number of data points to cluster can
be enormous: indeed, even a small 256× 256 image leads to more than P = 60,000 pixels while
3 seconds of speech sampled at 5 kHz leads to more than P = 15,000 spectrogram samples. Thus,
in such applications, the full matrix W , of size P×P, cannot be stored in main memory. In this
section, we present approximation schemes for which the storage requirements are linear in P, for
which the time complexity is linear in P, and which enable matrix-vector products to be computed
in linear time. See Section 6.3 for an application of each of these methods to speech separation.

For an approximation scheme to be valid, we require that the approximate matrix W̃ is sym-
metric, with nonnegative elements, and has a strictly positive diagonal (to ensure in particular that
D has a strictly positive diagonal). The first two techniques can be applied generally, while the
last method is specific to situations in which there is natural one-dimensional structure, such as in
speech or motion segmentation.

4.4.1 SPARSITY

In applications to vision and related problems, most of the similarities are local, and most of the
elements of the matrix W are equal to zero. If Q 6 P(P+1)/2 is the number of elements less than
a given threshold (note that the matrix is symmetric so just the upper triangle needs to be stored),
the storage requirement is linear in Q, as is the computational complexity of matrix-vector products.
However, assessing which elements are equal to zero might take O(P2). Note that when the sparsity
is low, that is, when Q is large, using a sparse representation is unhelpful; only when the sparsity is
expected to be high is it useful to consider such an option.

Thus, before attempting to compute all the significant elements (i.e., all elements greater than
the threshold) of the matrix, we attempt to ensure that the resulting number of elements Q is small
enough. We do so by selecting S random elements of the matrix and estimating from those S
elements the proportion of significant elements, which immediately yields an estimate of Q.

If the estimated Q is small enough, we need to compute those Q numbers. However, although
the total number of significant elements can be efficiently estimated, the indices of those significant
elements cannot be obtained in less than O(P2) time without additional assumptions. A particular
example is the case of diagonally-scaled Gaussian kernel matrices, for which the problem of com-
puting all non-zero elements is equivalent to that of finding pairs of data points in an Euclidean
space with distance smaller than a given threshold. We can exploit classical efficient algorithms to
perform this task (Gray and Moore, 2001).

If W is an element-wise product of similarity matrices, only a subset of which have a nice
structure, we can still use these techniques, albeit with the possibility of requiring more than Q
elements of the similarity matrix to be computed.
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4.4.2 LOW-RANK NONNEGATIVE DECOMPOSITION

If the matrix W is not sparse, we can approximate it with a low-rank matrix. Following Fowlkes et al.
(2001), it is computationally efficient to approximate each column of W by a linear combination of
a set of randomly chosen columns: if I is the set of columns that are selected and J is the set
of remaining columns, we approximate each column w j, j ∈ J, as a combination ∑i∈I Hi jwi. In the
Nyström method of Fowlkes et al. (2001), the coefficient matrix H is chosen so that the squared error
on the rows in indexed by I is minimum, that is, H is chosen so that ∑k∈I (w j(k)−∑i∈I Hi jwi(k))

2.
Since W is symmetric, this only requires knowledge of the columns indexed by I. The solution of
this convex quadratic optimization problem is simply H = W (I, I)−1W (I,J), where for any sets A
and B of distinct indices W (A,B) is the (A,B) block of W . The resulting approximating matrix is
symmetric and has a rank equal to the size of I.

When the matrix W is positive semidefinite, then the approximation remains positive semidef-
inite. However, when the matrix W is element-wise nonnegative, which is the main assumption
in this paper, then the approximation might not be and this may lead to numerical problems when
applying the techniques presented in this paper. In particular the approximated matrix D might
not have a strictly positive diagonal. The following low-rank nonnegative decomposition has the
advantage of retaining a pointwise nonnegative decomposition, while being only slightly slower.
We use this decomposition in order to approximate the large similarity matrices, and the required
rank is usually in the order of hundreds; this is to be contrasted with the approach of Ding et al.
(2005), which consists in performing a nonnegative decomposition with very few factors in order to
potentially obtain directly cluster indicators.

We first find the best approximation of A =W (I,J) as V H, where V =W (I, I) and H is element-
wise nonnegative. This can be done efficiently using algorithms for nonnegative matrix factoriza-
tion (Lee and Seung, 2000). Indeed, starting from a random positive H, we perform the following
iteration until convergence:

∀i, j, Hi j←
∑k VkiAk j/(V H)k j

∑k Vki
. (8)

The complexity of the iteration in Eq. (8) is O(M2P), and empirically we usually find that we
require a small number of iterations before reaching a sufficiently good solution. Note that the
iteration yields a monotonic decrease in the following divergence:

D(A||VH) = ∑
i j

(
Ai j log

Ai j

(V H)i j
−Ai j +(V H)i j

)
.

We approximate W (J,J) by symmetrization,4 that is, W (J, I)H +H>W (I,J). In order to obtain
a better approximation, we ensure that the diagonal of W (J,J) is always used with its true (i.e.,
not approximated) value. Note that the matrices H found by nonnegative matrix factorization are
usually sparse.

The storage requirement is O(MP), where M is the number of selected columns. The complexity
of the matrix-vector products is O(MP). Empirically, the average overall complexity of obtaining
the decomposition is O(M2P).

4. For a direct low-rank symmetric nonnegative decomposition algorithm, see Ding et al. (2005).
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4.4.3 LOW-RANK BAND DECOMPOSITION

There are situations in between the two previous cases, that is, the matrix W is not sparse enough
and it cannot be well approximated by a low-rank matrix. When there is a natural one-dimensional
structure, such as in audio or video, then we can use the potential “bandedness” structure of W . The
matrix W is referred to as band-diagonal with bandwidth B, if for all i, j, |i− j|> B⇒Wi j = 0. The
matrix has then at most O(BP) non zero elements.

We can use the bandedness of the problem to allow the rank M to grow linearly with P, while re-
taining linear time complexity. We assume that the M columns are sampled uniformly. Let C = P/M
be the average distance between two successive sampled columns. For the low-rank approximation
to make sense, we require that B�C (otherwise, W (I, I) is close to being diagonal and carries no
information). Moreover, the approximation is only useful if M� P, that is, the rank M is signif-
icantly smaller than P, which leads to the requirement C� 1. This approximating scheme is thus
potentially useful when C is between 1 and B.

For the Nyström technique, if the sampling of columns of I is uniform, then W (I, I) is expected
to be band-diagonal with bandwidth B/C, and thus inverting W (I, I) takes time O(M(B/C)2) =
O(B2/C3×P). The inverse is also band-diagonal with the same bandwidth. The storage and the
matrix multiplications are then O(B/C×P), that is, everything is linear in P, while the rank M is
allowed to grow with P.

In summary, if we require a nonnegative decomposition, it is possible to adapt the iteration
Eq. (8) using band matrix techniques, to obtain a linear complexity in P, even though the rank M
grows with P.

4.5 Simulations on Toy Examples

We performed simulations on synthetic data sets involving two-dimensional data sets similar to that
shown in Figure 3, where there are two rings whose relative distance is constant across samples (but
whose relative orientation has a random direction). We add D irrelevant dimensions of the same
magnitude as the two relevant variables. The goal is thus to learn the diagonal scale α ∈ R

D+2 of a
Gaussian kernel that leads to the best clustering on unseen data. We learn α from N sample data sets
(N=1 or N=10), and compute the clustering error of our algorithm with and without adaptive tuning
of the norm of α during testing (cf. Section 4.3) on ten previously unseen data sets. We compare to
an approach that does not use the training data: α is taken to be the vector of all ones and we again
search over the best possible norm during testing (we refer to this method as “no learning”). We
report results in Table 1. Without feature selection, the performance of spectral clustering degrades
very rapidly when the number of irrelevant features increases, while our learning approach is very
robust, even with only one training data set.

4.6 Simulations on Line Drawings

In this section, we consider the problem of segmenting crossing line drawings in the plane. In
Section 4.6.1 we describe the features that we used. Section 4.6.2 discusses the construction of the
parameterized similarity matrices and Section 4.6.3 presents our experimental results. The general
setup of the experiments is that we learn the parameters on a training set of images and test on unseen
images. In one of the experiments, we focus on drawings whose segmentations are ambiguous; in
this case we learn two different parameterized similarity matrices with two different sets of hand-
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D no learning w/o tuning learning with tuning
learning N=1 N=10 N=1 N=10

0 0 15.5 10.5 0 0
1 60.8 37.7 9.5 0 0
2 79.8 36.9 9.5 0 0
4 99.8 37.8 9.7 0.4 0
8 99.8 37 10.7 0 0
16 99.7 38.8 10.9 14 0
32 99.9 38.9 15.1 14.6 6.1

Table 1: Performance on synthetic data sets: clustering errors (multiplied by 100) for method with-
out learning (but with tuning) and for our learning method with and without tuning, with
N =1 or 10 training data sets; D is the number of irrelevant features.

θ

tangent

osculating
circle

drawing

1/ρ

Figure 4: (Left) example of segmented drawing, (Right) tangent and osculating circle.

labelings reflecting the ambiguous segmentation. The goal is then to see if we can disambiguate the
test images.

4.6.1 FEATURES FOR HAND DRAWINGS

We represent hand drawings as a two-dimensional image which is obtained by the binning of a
continuous drawing. Each drawing is thus represented as an Nx×Ny binary image. See Figure 4
for an example. In order to segment the drawings, we estimate, at each inked point, the direction
and relative curvature. This is done by convolving the drawing with patches of quarters of circles of
varying angles and curvature. In simulations, we use 50 different angles and 50 different curvatures.
We thus obtain, for each inked point, a score for each angle and each curvature. We take as a feature
the angle θ and curvature ρ that attains the maximum score. We also keep the log of the ratio of the
maximum score to the median score; this value, denoted c, is an estimate of the confidence of the
estimate of θ and ρ.
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Figure 5: (Left) First pairwise feature, equal to the product of the magnitude of the cosines of angles
µ and λ, (Right) Second pairwise features, built from the two osculating circles Ci and C j,
and all circles that go through point i and j.

4.6.2 PARAMETERIZED SIMILARITY MATRICES FOR HAND DRAWINGS

For a given image, we need to build a matrix that contains the pairwise similarities of all the inked
points. Let P be the number of inked points in a given drawing. For i = 1, . . . ,P, we have the
following features for each inked point: the coordinates (xi,yi), the angle of the direction of the
tangent θi (note that directions are defined modulo π), and the curvature ρi, as well as the estimated
confidence ci.

We also build “pairwise features”; in particular we build two specialized similarity matrices that
are based on the geometry of the problem. Given two points of the same image indexed by i and j,
with features (xi,yi,θi,ρi) and (x j,y j,θ j,ρ j), the first feature is defined as

ai j =
|(x j− xi)cosθi +(y j− yi)sinθi|× |(x j− xi)cosθ j +(y j− yi)sinθ j|

(xi− x j)2 +(yi− y j)2 .

The feature ai j is symmetric and is always between zero and one, and is equal to the product of
the cosines between the two tangents and the chord that links the two points. (See the left panel of
Figure 5). The feature ai j is equal to one if the tangents are both parallel to the chord, and the two
points are then likely to belong to the same cluster.

The second pairwise feature characterizes how well the two osculating circles at point i and j
match. We consider all circles that go through points i and points j, and we compute the products
of metrics between C0 and C j, and C0 and Ci. The maximum (over all circles C0) possible metric
is chosen as the feature. The metric between two circles that intersect in two points is defined as
the product of the cosines of the angles between the tangents at those two points times a Gaussian
function of the difference in curvature. The measure bi j is also symmetric and always between zero
and one; it characterizes how well a circle can be fit to the two local circles defined by the two sets
of features.
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Figure 6: Segmentation results after learning the parameterized similarity matrices. The first two
rows are correctly segmented examples while the third row shows examples with some
mistakes.
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Figure 7: Subsets of training data sets for ambiguous line drawings: (top) first data set, favoring
connectedness, (bottom) second data set, favoring direction continuity.

Figure 8: Testing examples: (top) obtained from parameterized similarity matrices learned using
the top row of Figure 7 for training, (bottom) obtained from parameterized similarity
matrices learned using the bottom row of Figure 7 for training.

The pairwise similarity that we use is thus:

− logWi j = α1(xi− xi)
2 +α1(yi− yi)

2 +α3(cos2θi− cos2θi)
2 +α4(sin2θi− sin2θi)

2

+α5(ci− c j)
2 +α6(|ρi|− |ρ j|)2−α7 logai j−α8 logbi j.
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4.6.3 SIMULATIONS

In a first experiment, we learned the parameters of the similarity matrices on 50 small to medium
images with two clusters and tested on various images with varying size and varying number of
clusters. In these simulations, the desired number of clusters was always given. See Figure 6
for examples in which segmentation was successful and examples in which the similarity matrices
failed to lead to the proper segmentation.

In a second experiment, we used two different training data sets with the same drawings, but with
different training partitions. We show some examples in Figure 7. In the first data set, connectedness
of a single cluster was considered most important by the human labeller, while in the second data
set, continuity of the direction was the main factor. We then tested the two estimated parameterized
similarity matrices on ambiguous line drawings and we show some results in Figure 8.

5. Speech Separation as Spectrogram Segmentation

The problem of recovering signals from linear mixtures, with only partial knowledge of the mixing
process and the signals—a problem often referred to as blind source separation—is a central prob-
lem in signal processing. It has applications in many fields, including speech processing, network to-
mography and biomedical imaging (Hyvärinen et al., 2001). When the problem is over-determined,
that is, when there are no more signals to estimate (the sources) than signals that are observed (the
sensors), generic assumptions such as statistical independence of the sources can be used in order
to demix successfully (Hyvärinen et al., 2001). Many interesting applications, however, involve
under-determined problems (more sources than sensors), where more specific assumptions must be
made in order to demix. In problems involving at least two sensors, progress has been made by
appealing to sparsity assumptions (Zibulevsky et al., 2002; Jourjine et al., 2000).

However, the most extreme case, in which there is only one sensor and two or more sources, is
a much harder and still-open problem for complex signals such as speech. In this setting, simple
generic statistical assumptions do not suffice. One approach to the problem involves a return to
the spirit of classical engineering methods such as matched filters, and estimating specific models
for specific sources—for example, specific speakers in the case of speech (Roweis, 2001; Jang and
Lee, 2003). While such an approach is reasonable, it departs significantly from the desideratum
of “blindness.” In this section we present an algorithm that is a blind separation algorithm—our
algorithm separates speech mixtures from a single microphone without requiring models of specific
speakers.

Our approach involves a “discriminative” approach to the problem of speech separation that is
based on the spectral learning methodology presented in Section 4. That is, rather than building a
complex model of speech, we instead focus directly on the task of separation and optimize param-
eters that determine separation performance. We work within a time-frequency representation (a
spectrogram), and exploit the sparsity of speech signals in this representation. That is, although two
speakers might speak simultaneously, there is relatively little overlap in the time-frequency plane
if the speakers are different (Roweis, 2001; Jourjine et al., 2000). We thus formulate speech sep-
aration as a problem in segmentation in the time-frequency plane. In principle, we could appeal
to classical segmentation methods from vision (see, for example, Shi and Malik, 2000) to solve
this two-dimensional segmentation problem. Speech segments are, however, very different from
visual segments, reflecting very different underlying physics. Thus we must design features for
segmenting speech from first principles.
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Figure 9: Spectrogram of speech (two simultaneous English speakers). The gray intensity is pro-
portional to the amplitude of the spectrogram.

5.1 Spectrogram

The spectrogram is a two-dimensional (time and frequency) redundant representation of a one-
dimensional signal (Mallat, 1998). Let f [t], t = 0, . . . ,T − 1 be a signal in R

T . The spectrogram
is defined via windowed Fourier transforms and is commonly referred to as a short-time Fourier
transform or as Gabor analysis (Mallat, 1998). The value (U f )mn of the spectrogram at time window
n and frequency m is defined as (U f )mn = 1√

M ∑T−1
t=0 f [t]w[t−na]ei2πmt/M, where w is a window of

length T with small support of length c, and M > c. We assume that the number of samples T is an
integer multiple of a and c. There are then N = T/a different windows of length c. The spectrogram
is thus an N×M image which provides a redundant time-frequency representation of time signals5

(see Figure 9).

Inversion Our speech separation framework is based on the segmentation of the spectrogram of
a signal f [t] in R > 2 disjoint subsets Ai, i = 1, . . . ,R of [0,N − 1]× [0,M− 1]. This leads to R
spectrograms Ui such that (Ui)mn = Umn if (m,n) ∈ Ai and zero otherwise. We now need to find R
speech signals fi[t] such that each Ui is the spectrogram of fi. In general there are no exact solutions
(because the representation is redundant), and a classical technique is to find the minimum `2 norm
approximation, that is, find fi such that ‖Ui−U fi‖2 is minimal (Mallat, 1998). The solution of
this minimization problem involves the pseudo-inverse of the linear operator U (Mallat, 1998) and

5. In our simulations, the sampling frequency is f0 = 5.5 kHz and we use a Hanning window of length c = 216 (i.e.,
43.2 ms). The spacing between window is equal to a = 54 (i.e., 10.8 ms). We use a 512-point FFT (M = 512).
For a speech sample of length 4 seconds, we have T = 22,000 samples and then N = 407, which yields ≈ 2× 105

spectrogram samples.
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is equal to fi = (U∗U)−1U∗Ui, where U∗ is the (complex) adjoint of the linear operator U . By
our choice of window (Hanning), U ∗U is proportional to the identity matrix, so that the solution
to this problem can simply be obtained by applying the adjoint operator U ∗. Other techniques for
spectrogram inversion could be used (Griffin and Lim, 1984; Mallat, 1998; Achan et al., 2003)

5.2 Normalization and Subsampling

There are several ways of normalizing a speech signal. In this paper, we chose to rescale all speech
signals as follows: for each time window n, we compute the total energy en = ∑m |U fmn|2, and its
20-point moving average. The signals are normalized so that the 90th percentile of those values is
equal to one.

In order to reduce the number of spectrogram samples to consider, for a given pre-normalized
speech signal, we threshold coefficients whose magnitudes are less than a value that was chosen so
that the resulting distortion is inaudible.

5.3 Generating Training Samples

Our approach is based on the learning algorithm presented in Section 4. The training examples that
we provide to this algorithm are obtained by mixing separately-normalized speech signals. That is,
given two volume-normalized speech signals, f1 and f2, of the same duration, with spectrograms
U1 and U2, we build a training sample as U train = U1 +U2, with a segmentation given by z =
argmin{U1,U2}. In order to obtain better training partitions (and in particular to be more robust
to the choice of normalization), we also search over all α ∈ [0,1] such that the `2 reconstruction
error obtained from segmenting/reconstructing using z = argmin{αU1,(1−α)U2} is minimized.
An example of such a partition is shown in Figure 10 (top).

5.4 Features and Grouping Cues for Speech Separation

In this section we describe our approach to the design of features for the spectral segmentation. We
base our design on classical cues suggested from studies of perceptual grouping (Cooke and Ellis,
2001). Our basic representation is a “feature map,” a two-dimensional representation that has the
same layout as the spectrogram. Each of these cues is associated with a specific time scale, which
we refer to as “small” (less than 5 frames), “medium” (10 to 20 frames), and “large” (across all
frames). (These scales will be of particular relevance to the design of numerical approximation
methods in Section 6.3). Any given feature is not sufficient for separating by itself; rather, it is the
combination of several features that makes our approach successful.

5.4.1 NON-HARMONIC CUES

The following non-harmonic cues have counterparts in visual scenes and for these cues we are able
to borrow from feature design techniques used in image segmentation (Shi and Malik, 2000).

• Continuity Two time-frequency points are likely to belong to the same segment if they are
close in time or frequency; we thus use time and frequency directly as features. This cue acts
at a small time scale.

• Common fate cues Elements that exhibit the same time variation are likely to belong to the
same source. This takes several particular forms. The first is simply common offset and com-
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mon onset. We thus build an offset map and an onset map, with elements that are zero when
no variation occurs, and are large when there is a sharp decrease or increase (with respect
to time) for that particular time-frequency point. The onset and offset maps are built using
oriented energy filters as used in vision (with one vertical orientation). These are obtained by
convolving the spectrogram with derivatives of Gaussian windows (Shi and Malik, 2000).

Another form of the common fate cue is frequency co-modulation, the situation in which
frequency components of a single source tend to move in sync. To capture this cue we simply
use oriented filter outputs for a set of orientation angles (8 in our simulations). Those features
act mainly at a medium time scale.

5.4.2 HARMONIC CUES

This is the major cue for voiced speech (Gold and Morgan, 1999; Brown and Cooke, 1994; Bregman,
1990), and it acts at all time scales (small, medium and large): voiced speech is locally periodic and
the local period is usually referred to as the pitch.

• Pitch estimation In order to use harmonic information, we need to estimate potentially sev-
eral pitches. We have developed a simple pattern matching framework for doing this that
we present in Appendix C. If S pitches are sought, the output that we obtain from the pitch
extractor is, for each time frame n, the S pitches ωn1, . . . ,ωnS, as well as the strength ynms of
the s-th pitch for each frequency m.

• Timbre The pitch extraction algorithm presented in Appendix C also outputs the spectral
envelope of the signal (Gold and Morgan, 1999). This can be used to design an additional
feature related to timbre which helps integrate information regarding speaker identification
across time. Timbre can be loosely defined as the set of properties of a voiced speech signal
once the pitch has been factored out (Bregman, 1990). We add the spectral envelope as a
feature (reducing its dimensionality using principal component analysis).

5.4.3 BUILDING FEATURE MAPS FROM PITCH INFORMATION

We build a set of features from the pitch information. Given a time-frequency point (m,n), let
s(m,n) = argmaxs

ynms

(∑m′ ynm′s)
1/2 denote the highest energy pitch, and define the features ωns(m,n),

ynms(m,n), ∑m′ ynm′s(m,n),
ynms(m,n)

∑m′ ynm′s(m,n)
and

ynms(m,n)

(∑m′ ynm′s(m,n)))
1/2 . We use a partial normalization with the

square root to avoid including very low energy signals, while allowing a significant difference be-
tween the local amplitude of the speakers.

Those features all come with some form of energy level and all features involving pitch values
ω should take this energy into account when the similarity matrix is built in Section 6. Indeed, this
value has no meaning when no energy in that pitch is present.

6. Spectral Clustering for Speech Separation

Given the features described in the previous section, we now show how to build similarity matrices
that can be used to define a spectral segmenter. In particular, our approach builds parameterized
similarity matrices, and uses the learning algorithm presented in Section 4 to adjust these parame-
ters.
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6.1 Basis Similarity Matrices

We define a set of “basis similarity” matrices for each set of cues and features defined in Section 5.4.
Those basis matrices are then combined as described in Section 6.2 and the weights of this combi-
nation are learned as shown in Section 4.

For non-harmonic features, we use a radial basis function to define affinities. Thus, if fa

is the value of the feature for data point a, we use a basis similarity matrix defined as Wab =
exp(−‖ fa− fb‖2). For a harmonic feature, on the other hand, we need to take into account the
strength of the feature: if fa is the value of the feature for data point a, with strength ya, we use
Wab = exp(−min{ya,yb}‖ fa− fb‖2).

6.2 Combination of Similarity Matrices

Given m basis matrices, we use the following parameterization of W : W = ∑K
k=1 γkW

α j1
1 × ·· · ×

W
α jm
m , where the products are taken pointwise. Intuitively, if we consider the values of similarity

as soft boolean variables, taking the product of two similarity matrices is equivalent to considering
the conjunction of two matrices, while taking the sum can be seen as their disjunction. For our
application to speech separation, we consider a sum of K = 2 matrices. This has the advantage of
allowing different approximation schemes for each of the time scales, an issue we address in the
following section.

6.3 Approximations of Similarity Matrices

The similarity matrices that we consider are huge, of size at least 50,000×50,000. Thus a signif-
icant part of our effort has involved finding computationally efficient approximations of similarity
matrices.

Let us assume that the time-frequency plane is vectorized by stacking one time frame after
the other. In this representation, the time scale of a basis similarity matrix W exerts an effect on
the degree of “bandedness” of W . Recall that the matrix W is referred to as band-diagonal with
bandwidth B, if for all i, j, |i− j|> B⇒Wi j = 0. On a small time scale, W has a small bandwidth;
for a medium time scale, the band is larger but still small compared to the total size of the matrix,
while for large scale effects, the matrix W has no band structure. Note that the bandwidth B can be
controlled by the coefficient of the radial basis function involving the time feature n.

For each of these three cases, we have designed a particular way of approximating the matrix,
while ensuring that in each case the time and space requirements are linear in the number of time
frames, and thus linear in the duration of the signal to demix.

• Small scale If the bandwidth B is very small, we use a simple direct sparse approximation.
The complexity of such an approximation grows linearly in the number of time frames.

• Medium and large scale We use a low-rank approximation of the matrix W , as presented in
Section 4.4. For mid-range interactions, we need an approximation whose rank grows with
time, but whose complexity does not grow quadratically with time (see Section 4.4), while
for large scale interactions, the rank is held fixed.

1991



BACH AND JORDAN

Bound Clust Pitch Freq
English ( SNR ) 2.3% 6.9% 31.1% 33.4%
English ( SNRdB ) 16.4 11.6 5.1 4.8
French ( SNR ) 3.3% 15.8% 35.4% 40.7%
French ( SNRdB ) 14.8 8.0 4.5 3.9

Table 2: Comparison of signal-to-noise ratios.

6.4 Experiments

We have trained our segmenter using data from four different male and female speakers, with speech
signals of duration 3 seconds. There were 15 parameters to estimate using our spectral learning
algorithm. For testing, we use mixes from speakers which were different from those in the training
set.

In Figure 10, for two English speakers from the testing set, we show an example of the segmen-
tation that is obtained when the two speech signals are known in advance (top panel), a segmentation
that would be used for training our spectral clustering algorithm, and in the bottom panel, the seg-
mentation that is output by our algorithm.

Although some components of the “black” speaker are missing, the segmentation performance
is good enough to obtain audible signals of reasonable quality. The speech samples for these ex-
amples can be downloaded from http://cmm.ensmp.fr/˜bach/speech/. On this web site, there are
several additional examples of speech separation, with various speakers, in French and in English.
Similarly, we present in Figure 11, segmentation results for French speakers. Note that the same
parameters were used for both languages and that the two languages were present in the training set.
An important point is that our method does not require knowing the speakers in advance in order to
demix successfully; rather, it is only necessary that the two speakers have distinct pitches most of
the time (another but less crucial condition is that one pitch is not too close to twice the other one).

A complete evaluation of the robustness of our approach is outside the scope of this paper; how-
ever, for the two examples shown in Figure 10 and Figure 11, we can compare signal-to-noise ratios
for various competing approaches. Given the true signal s (known in our simulation experiments)

and an estimated signal ŝ, the signal-to-noise ratio (SNR) is defined as SNR = ‖s−ŝ‖2

‖s‖2 , and is often

reported in decibels, as SNRdB =−10log10
‖s−ŝ‖2

‖s‖2 . In order to characterize demixing performance,
we use the maximum of the signal-to-noise ratios between the two true signals and the estimated
signals (potentially after having permuted the estimated signals). In Table 2, we compare our ap-
proach (“Clust”), with the demixing solution obtained from the segmentation that would serve for
training purposes (“Bound”) (this can be seen as an upper bound on the performance of our ap-
proach). We also performed two baseline experiments: (1) In order to show that the combination
of features is indeed crucial for performance, we performed K-means clustering on the estimated
pitch to separate the two signals (“Pitch”). (2) In order to show that a full time-frequency approach
is needed, and not simply frequency-based filtering, we used Wiener filters computed from the true
signals (“Freq”). Note that to compute the four SNRs, the “Pitch” and “Freq” methods need the true
signals, while the two other methods (“Clust” and “Bound”) are pure separating approaches.

From the results in Table 2, we see that pitch alone is not sufficient for successful demixing
(see the third column in the table). This is presumably due in part to the fact that pitch is not
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Figure 10: (Top) Optimal segmentation for the spectrogram of English speakers in Figure 9 (right),
where the two speakers are “black” and “grey”; this segmentation is obtained from the
known separated signals. (Bottom) The blind segmentation obtained with our algorithm.
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Figure 11: (Top) Optimal segmentation for the spectrogram of French speakers in Figure 9 (right),
where the two speakers are “black” and “grey”; this segmentation is obtained from the
known separated signals. (Bottom) The blind segmentation obtained with our algorithm.
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the only information available for grouping in the frequency domain, and due in part to the fact
that multi-pitch estimation is a hard problem and multi-pitch estimation procedures tend to lead to
noisy estimates of pitch. We also see (the forth column in the table) that a simple frequency-based
approach is not competitive. This is not surprising because natural speech tends to occupy the whole
spectrum (because of non-voiced portions and variations in pitch).

Finally, as mentioned earlier, there was a major computational challenge in applying spectral
methods to single microphone speech separation. Using the techniques described in Section 6.3,
the separation algorithm has linear running time complexity and memory requirement and, coded
in Matlab and C, it takes 3 minutes to separate 4 seconds of speech on a 2 GHz processor with 1GB
of RAM.

7. Conclusions

In this paper, we have presented two sets of algorithms—one for spectral clustering and one for
learning the similarity matrix. These algorithms can be derived as the minimization of a single cost
function with respect to its two arguments. This cost function depends directly on the eigenstructure
of the similarity matrix. We have shown that it can be approximated efficiently using the power
method, yielding a method for learning similarity matrices that can cluster effectively in cases in
which non-adaptive approaches fail. Note in particular that our new approach yields a spectral
clustering method that is significantly more robust to irrelevant features than current methods.

We applied our learning framework to the problem of one-microphone blind source separation
of speech. To do so, we have combined knowledge of physical and psychophysical properties of
speech with learning algorithms. The former provide parameterized similarity matrices for spectral
clustering, and the latter make use of our ability to generate segmented training data. The result is an
optimized segmenter for spectrograms of speech mixtures. We have successfully demixed speech
signals from two speakers using this approach.

Our work thus far has been limited to the setting of ideal acoustics and equal-strength mixing
of two speakers. There are several obvious extensions that warrant investigation. First, the mixing
conditions should be weakened and should allow some form of delay or echo. Second, there are
multiple applications where speech has to be separated from non-stationary noise; we believe that
our method can be extended to this situation. Third, our framework is based on segmentation of
the spectrogram and, as such, distortions are inevitable since this is a “lossy” formulation (Jang
and Lee, 2003; Jourjine et al., 2000). We are currently working on post-processing methods that
remove some of those distortions. Finally, while the running time and memory requirements of our
algorithm are linear in the duration of the signal to be separated, the resource requirements remain
a concern. We are currently working on further numerical techniques that we believe will bring our
method significantly closer to real-time.
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Appendix A. Proof of Lemma 9

We prove the following lemma that relates distance between orthonormal bases of subspaces:

Lemma 9 Let S and T be two matrices in R
P×R, with rank R. Let D be a symmetric positive definite

matrix in R
P×P. Let g(S,T ) denote 1

2‖S(S>S)−1S>−T (T>T )−1T>‖2
F and η = λ1(D)

λP(D) > 1 denote
the ratio of the largest and smallest eigenvalue of D. We then have:

1
η

g(D1/2S,D1/2T ) 6 g(S,T ) 6 ηg(D1/2S,D1/2T ). (9)

Proof We can expand the Frobenius norm and rewrite g(S,T ) as

g(S,T ) =
1
2

tr
{

S(S>S)−1S>S(S>S)−1S>

−2S(S>S)−1S>T (T>T )−1T>+T (T>T )−1T>T (T>T )−1T>
}

= tr
{

I−S(S>S)−1S>T (T>T )−1T>
}

= tr
{

I− (S>S)−1/2S>T (T>T )−1T>S(S>S)−1/2
}

= tr
{
(S>S)−1/2(S>S−S>T (T>T )−1T>S)(S>S)−1/2

}
.

The matrix S>S− S>T (T>T )−1T>S is the Schur complement of the top left block in the matrix

M = (S T )>(S T ) =

(
S>S S>T
T>S T>T

)
. Let MD = (S T )>D(S T ). We have the following inequalities

between matrices: MD � λ1(D)M and MD � λP(D)M, which implies the same inequality for the
top left blocks (S>S and S>DS) and their Schur complements (N = S>S− S>T (T>T )−1T>S and
ND = S>DS−S>DT (T>DT )−1T>DS). We then have:

(S>S)−1/2N(S>S)−1/2 � η(S>DS)−1/2ND(S>DS)−1/2

(S>S)−1/2N(S>S)−1/2 � 1
η

(S>DS)−1/2ND(S>DS)−1/2,

which implies Eq. (9) by taking the trace.

Appendix B. Proof of Proposition 7

Proposition 10 The function ΠR(M), the orthogonal projection on the R-th principal eigensub-
space of R, is an infinitely differentiable function on MP,R. For any differentiable path M(t) of

symmetric matrices with values in MP,R such that M(0) = M, the derivative dΠR(M(t))
dt at t = 0 is

equal to UV>+VU>, where N is the unique solution of linear system:

MN−NU>MU =−(I−UU>)M′(0)U and U>N = 0 (10)

where U is any orthonormal basis of the R-th principal subspace of M. The value of the derivative
is independent of the chosen orthonormal basis.
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Proof For simplicity, we assume that the first R + 1 eigenvalues of M0 ∈MP,R are distinct, noting
that the result can be easily extended to cases where some of the first R eigenvalues coalesce. We let
U0 denote an orthogonal matrix composed of the first R eigenvectors of M0 (well defined up to sign
because all eigenvalues are simple), and S0 =U>0 S0U0 the diagonal matrix of the first R eigenvalues.

It is well known that the unit norm eigenvector associated with a simple eigenvalue is uniquely
defined up to multiplication by±1, and that once a sign convention is adopted locally, the eigenvec-
tor and the eigenvalue are infinitely differentiable at M0. Since the projection ΠR on the principal
subspace is invariant with respect to the sign conventions, this implies that ΠR(M) is infinitely dif-
ferentiable at M0. We now compute the derivative by showing that it can be obtained from the
unique solution of a linear system.

We let U denote the first eigenvectors of M (with appropriate sign conventions) and S the diag-
onal matrix of eigenvalues of M. Differentiating the system,

U>U = I and MU = US

we obtain:
U>dU +dU>U = 0 and MdU +dM U−dU S−UdS = 0.

By pre-multiplying the second equation by U>, we obtain dS = SU>dU +U>dM U −U>dU S,
and by substituting dS into the first equation, we obtain:

(M−USU>)dU− (I−UU>)dU S =−(I−UU>)dM U.

Moreover, we have dΠ = UdU>+dU U> and dU>U +U>dU = 0, which implies

dΠ = (I−UU>)dU U>+UdU>(I−UU>).

If we let N = (I−UU>)dU , we have

dΠ = NU>+UN> (11)

N>U = 0 (12)

MN−NS =−(I−UU>)dM U. (13)

We have proved that the differential of Π must satisfy Eq. (11), Eq. (12) and Eq. (13). To complete
the proof we have to prove that the system of equations Eq. (12) and Eq. (13) has a unique solution.
We let T denote an orthonormal basis of the orthogonal complement of U . We can reparameterize
N as N = UA+T B. The system then becomes:

A = 0 and T>MT B−BS =−T>dMU.

The linear operator L from R
(P−R)×R to R

(P−R)×R defined by LB = T>MT B−BS is self-adjoint; a
short calculation shows that its largest eigenvalue is λR+1(M)−λR(M) < 0. The operator is thus
negative definite and hence invertible. The system of equations Eq. (12) and Eq. (13) thus has a
unique solution.

Moreover, when the matrix M0 is positive semidefinite, The system of equations Eq. (12) and
Eq. (13) can be solved by solving a positive definite linear system whose condition condition num-
ber is upper bounded by 1/(1−λR+1(M)/λR(M)). The conjugate gradient algorithm can be used
to solve the system and can be designed so that each iteration is requiring R matrix vector multipli-
cations by M.
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Appendix C. Pitch Extraction

As seen in Section 5, harmonic features such as pitch are essential for successful speech separation.
In this appendix, we derive a simple pattern matching procedure for pitch estimation.

C.1 Pitch Estimation for One Pitch

We assume that we are given one time slice s of the spectrogram magnitude, s ∈ R
M . The goal is to

have a specific pattern match s. Since the speech signals are real, the spectrogram is symmetric and
we consider only M/2 samples.

If the signal is exactly periodic, then the spectrogram magnitude for that time frame is exactly
a superposition of bumps at multiples of the fundamental frequency. The patterns we are consid-
ering thus have the following parameters: a “bump” function u 7→ b(u), a pitch ω ∈ [0,M/2] and
a sequence of harmonics x1, . . . ,xH at frequencies ω1 = ω, . . . ,ωH = Hω, where H is the largest
acceptable harmonic multiple, that is, H = bM/2ωc. The pattern s̃ = s̃(x,b,ω) is then built as a
weighted sum of bumps.

By pattern matching, we mean finding the pattern s̃ that is as close as possible to s in the L2-
norm sense. We impose a constraint on the harmonic strengths (xh), namely, that they are samples

at intervals hω of a function g with small second derivative norm
R M/2

0 |g(2)(ω)|2dω. The function
g can be seen as the envelope of the signal and is related to the “timbre” of the speaker (Bregman,
1990). The explicit consideration of the envelope and its smoothness is necessary for two reasons:
(a) it provides a timbre feature helpful for separation, (b) it helps avoid pitch-halving, a traditional
problem of pitch extractors (Gold and Morgan, 1999).

Given b and ω, we minimize with respect to x, ||s− s̃(x)||2 + λ
R M/2

0 |g(2)(ω)|2dω, where xh =
g(hω). Since s̃(x) is linear function of x, this is a spline smoothing problem, and the solution can be
obtained in closed form with complexity O(H3) (Wahba, 1990).

We now have to search over b and ω, knowing that the harmonic strengths x can be found in
closed form. We use exhaustive search on a grid for ω, while we take only a few bump shapes.
The main reason for using several bump shapes is to account for the fact that voiced speech is only
approximately periodic. For further details and extensions, see Bach and Jordan (2005).

C.2 Pitch Estimation for Several Pitches

If we are to estimate S pitches, we estimate them recursively, by removing the estimated harmonic
signals. In this paper, we assume that the number of speakers and hence the maximum number
of pitches is known. Note, however, that since all our pitch features are always used with their
strengths, our separation method is relatively robust to situations in which we try to find too many
pitches.
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Abstract
In recent years, several methods have been proposed for the discovery of causal structure from
non-experimental data. Such methods make various assumptions on the data generating process
to facilitate its identification from purely observational data. Continuing this line of research, we
show how to discover the complete causal structure of continuous-valued data, under the assump-
tions that (a) the data generating process is linear, (b) there are no unobserved confounders, and (c)
disturbance variables have non-Gaussian distributions of non-zero variances. The solution relies on
the use of the statistical method known as independent component analysis, and does not require
any pre-specified time-ordering of the variables. We provide a complete Matlab package for per-
forming this LiNGAM analysis (short for Linear Non-Gaussian Acyclic Model), and demonstrate
the effectiveness of the method using artificially generated data and real-world data.

Keywords: independent component analysis, non-Gaussianity, causal discovery, directed acyclic
graph, non-experimental data

1. Introduction

Several authors (Spirtes et al., 2000; Pearl, 2000) have recently formalized concepts related to
causality using probability distributions defined on directed acyclic graphs. This line of research
emphasizes the importance of understanding the process which generated the data, rather than only
characterizing the joint distribution of the observed variables. The reasoning is that a causal un-
derstanding of the data is essential to be able to predict the consequences of interventions, such as
setting a given variable to some specified value.

One of the main questions one can answer using this kind of theoretical framework is: ‘Under
what circumstances and in what way can one determine causal structure on the basis of observational
data alone?’. In many cases it is impossible or too expensive to perform controlled experiments,
and hence methods for discovering likely causal relations from uncontrolled data would be very
valuable.

Existing discovery algorithms (Spirtes et al., 2000; Pearl, 2000) generally work in one of two
settings. In the case of discrete data, no functional form for the dependencies is usually assumed.
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Figure 1: A few examples of data generating models satisfying our assumptions. For example, in
the left-most model, the data is generated by first drawing the ei independently from their
respective non-Gaussian distributions, and subsequently setting (in this order) x4 = e4,
x2 = 0.2x4 + e2, x1 = x4 + e1, and x3 = −2x2 − 5x1 + e3. (Here, we have assumed for
simplicity that all the ci are zero, but this may not be the case in general.) Note that
the variables are not causally sorted (reflecting the fact that we usually do not know the
causal ordering a priori), but that in each of the graphs they can be arranged in a causal
order, as all graphs are directed acyclic graphs. In this paper we show that the full causal
structure, including all parameters, are identifiable given a sufficient number of observed
data vectors x.

On the other hand, when working with continuous variables, a linear-Gaussian approach is almost
invariably taken.

In this paper, we show that when working with continuous-valued data, a significant advantage
can be achieved by departing from the Gaussianity assumption. While the linear-Gaussian approach
usually only leads to a set of possible models, equivalent in their conditional correlation structure,
a linear-non-Gaussian setting allows the full causal model to be estimated, with no undetermined
parameters.

The paper is structured as follows.1 First, in Section 2, we describe our assumptions on the
data generating process. These assumptions are essential for the application of our causal discovery
method, detailed in Sections 3 through 5. Section 6 discusses how one can test whether the found
model seems plausible and proposes a statistical method for pruning edges. In Sections 7 and 8,
we conduct a simulation study and provide real data examples to verify that our algorithm works as
stated. We conclude the paper in Section 9.

2. Linear Causal Networks

Assume that we observe data generated from a process with the following properties:

1. The observed variables xi, i ∈ {1, . . . ,m} can be arranged in a causal order, such that no
later variable causes any earlier variable. We denote such a causal order by k(i). That is, the
generating process is recursive (Bollen, 1989), meaning it can be represented graphically by
a directed acyclic graph (DAG) (Pearl, 2000; Spirtes et al., 2000).

1. Preliminary results of the paper were presented at UAI2005 and ICA2006 (Shimizu et al., 2005, 2006b; Hoyer et al.,
2006a).
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2. The value assigned to each variable xi is a linear function of the values already assigned to
the earlier variables, plus a ‘disturbance’ (noise) term ei, and plus an optional constant term
ci, that is

xi = ∑
k( j)<k(i)

bi jx j + ei + ci.

3. The disturbances ei are all continuous-valued random variables with non-Gaussian distribu-
tions of non-zero variances, and the ei are independent of each other, that is, p(e1, . . . ,em) =
∏i pi(ei).

A model with these three properties we call a Linear, Non-Gaussian, Acyclic Model, abbreviated
LiNGAM.

We assume that we are able to observe a large number of data vectors x (which contain the com-
ponents xi), and each is generated according to the above-described process, with the same causal
order k(i), same coefficients bi j, same constants ci, and the disturbances ei sampled independently
from the same distributions.

Note that the above assumptions imply that there are no unobserved confounders (Pearl, 2000).2

Spirtes et al. (2000) call this the causally sufficient case. Also note that we do not require ‘stability’
in the sense as described by Pearl (2000), that is, ‘faithfulness’ (Spirtes et al., 2000) of the generating
model. See Figure 1 for a few examples of data models fulfilling the assumptions of our model.

A key difference to most earlier work on the linear, causally sufficient, case is the assumption of
non-Gaussianity of the disturbances. In most work, an explicit or implicit assumption of Gaussianity
has been made (Bollen, 1989; Geiger and Heckerman, 1994; Spirtes et al., 2000). An assumption of
Gaussianity of disturbance variables makes the full joint distribution over the xi Gaussian, and the
covariance matrix of the data embodies all one could possibly learn from observing the variables.
Hence, all conditional correlations can be computed from the covariance matrix, and discovery
algorithms based on conditional independence can be easily applied.

However, it turns out, as we will show below, that an assumption of non-Gaussianity may actu-
ally be more useful. In particular, it turns out that when this assumption is valid, the complete causal
structure can in fact be estimated, without any prior information on a causal ordering of the vari-
ables. This is in stark contrast to what can be done in the Gaussian case: algorithms based only on
second-order statistics (i.e., the covariance matrix) are generally not able to discern the full causal
structure in most cases. The simplest such case is that of two variables, x1 and x2. A method based
only on the covariance matrix has no way of preferring x1 → x2 over the reverse model x1 ← x2;
indeed the two are indistinguishable in terms of the covariance matrix (Spirtes et al., 2000). How-
ever, assuming non-Gaussianity, one can actually discover the direction of causality, as shown by
Dodge and Rousson (2001) and Shimizu and Kano (2006). This result can be extended to several
variables (Shimizu et al., 2006a). Here, we further develop the method so as to estimate the full
model including all parameters, and we propose a number of tests to prune the graph and to see
whether the estimated model fits the data.

2. A simple explanation is as follows: Denote by f hidden common causes and by G its connection strength matrix.
Then a new model with hidden common causes f can be written as x = Bx + G f + e′. Since common causes
f introduce some dependency between e = G f + e′, the new model is different from the LiNGAM model with
independent (not merely uncorrelated) disturbances e. See Hoyer et al. (2006b) for details.
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3. Model Identification Using Independent Component Analysis

The key to the solution to the linear discovery problem is to realize that the observed variables are
linear functions of the disturbance variables, and the disturbance variables are mutually independent
and non-Gaussian. If we as preprocessing subtract out the mean of each variable xi, we are left with
the following system of equations:

x = Bx+ e, (1)

where B is a matrix that could be permuted (by simultaneous equal row and column permutations)
to strict lower triangularity if one knew a causal ordering k(i) of the variables (Bollen, 1989). (Strict
lower triangularity is here defined as lower triangular with all zeros on the diagonal.) Solving for x
one obtains

x = Ae, (2)

where A = (I−B)−1. Again, A could be permuted to lower triangularity (although not strict lower
triangularity, actually in this case all diagonal elements will be non-zero) with an appropriate per-
mutation k(i). Taken together, Equation (2) and the independence and non-Gaussianity of the com-
ponents of e define the standard linear independent component analysis model.

Independent component analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001) is a fairly re-
cent statistical technique for identifying a linear model such as that given in Equation (2). If the
observed data is a linear, invertible mixture of non-Gaussian independent components, it can be
shown (Comon, 1994) that the mixing matrix A is identifiable (up to scaling and permutation of
the columns, as discussed below) given enough observed data vectors x. Furthermore, efficient
algorithms for estimating the mixing matrix are available (Hyvärinen, 1999).

We again want to emphasize that ICA uses non-Gaussianity (that is, more than covariance in-
formation) to estimate the mixing matrix A (or equivalently its inverse W = A−1). For Gaussian
disturbance variables ei, ICA cannot in general find the correct mixing matrix because many differ-
ent mixing matrices yield the same covariance matrix, which in turn implies the exact same Gaussian
joint density (Hyvärinen et al., 2001). Our requirement for non-Gaussianity of disturbance variables
stems from the same requirement in ICA.

While ICA is essentially able to estimate A (and W), there are two important indetermina-
cies that ICA cannot solve: First and foremost, the order of the independent components is in no
way defined or fixed (Comon, 1994). Thus, we could reorder the independent components and,
correspondingly, the columns of A (and rows of W) and get an equivalent ICA model (the same
probability density for the data). In most applications of ICA, this indeterminacy is of no signifi-
cance and can be ignored, but in LiNGAM, we can and we have to find the correct permutation as
described in Section 4 below.

The second indeterminacy of ICA concerns the scaling of the independent components. In ICA,
this is usually handled by assuming all independent components to have unit variance, and scaling
W and A appropriately. On the other hand, in LiNGAM (as in SEM) we allow the disturbance
variables to have arbitrary (non-zero) variances, but fix their weight (connection strength) to their
corresponding observed variable to unity. This requires us to re-normalize the rows of W so that
all the diagonal elements equal unity, before computing B, as described in the LiNGAM algorithm
below.

Our discovery algorithm, detailed in the next section, can be briefly summarized as follows:
First, use a standard ICA algorithm to obtain an estimate of the mixing matrix A (or equivalently
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of W), and subsequently permute it and normalize it appropriately before using it to compute B
containing the sought connection strengths bi j.3

4. LiNGAM Discovery Algorithm

Based on the observations given in Sections 2 and 3, we propose the following causal discovery
algorithm:

Algorithm A: LiNGAM discovery algorithm

1. Given an m×n data matrix X (m � n), where each column contains one sample vector x, first
subtract the mean from each row of X, then apply an ICA algorithm to obtain a decomposition
X = AS where S has the same size as X and contains in its rows the independent components.
From here on, we will exclusively work with W = A−1.

2. Find the one and only permutation of rows of W which yields a matrix W̃ without any zeros
on the main diagonal. In practice, small estimation errors will cause all elements of W to be
non-zero, and hence the permutation is sought which minimizes ∑i 1/|W̃ii|.

3. Divide each row of W̃ by its corresponding diagonal element, to yield a new matrix W̃′ with all
ones on the diagonal.

4. Compute an estimate B̂ of B using B̂ = I−W̃′.

5. Finally, to find a causal order, find the permutation matrix P (applied equally to both rows and
columns) of B̂ which yields a matrix B̃ = PB̂PT which is as close as possible to strictly lower
triangular. This can be measured for instance using ∑i≤ j B̃2

i j.

A complete Matlab code package implementing this algorithm is available online at our LiNGAM
homepage: http://www.cs.helsinki.fi/group/neuroinf/lingam/

We now describe each of these steps in more detail.
In the first step of the algorithm, the ICA decomposition of the data is computed. Here, any

standard ICA algorithm can be used. Although our implementation uses the FastICA algorithm
(Hyvärinen, 1999), one could equally well use one of the many other algorithms available (see e.g.,
Hyvärinen et al., 2001). However, it is important to select an algorithm which can estimate indepen-
dent components of many different distributions, as in general the distributions of the disturbance
variables will not be known in advance. For example, FastICA can estimate both super-Gaussian
and sub-Gaussian independent components, and we don’t need to know the actual functional form
of the non-Gaussian distributions (Hyvärinen, 1999).

Because of the permutation indeterminacy of ICA, the rows of W will be in random order. This
means that we do not yet have the correct correspondence between the disturbance variables ei and
the observed variables xi. The former correspond to the rows of W while the latter correspond to
the columns of W. Thus, our first task is to permute the rows to obtain a correspondence between
the rows and columns. If W were estimated exactly, there would be only a single row permutation

3. It would be extremely difficult to estimate B directly using a variant of ICA algorithms, because we don’t know the
correct order of the variables, that is, the matrix B should be restricted to ‘permutable to lower triangularity’ not
‘lower triangular’ directly. This is due to the permutation problem illustrated in Appendix B.
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that would give a matrix with no zeros on the diagonal, and this permutation would give the correct
correspondence. This is because of the assumption of DAG structure, which is the key to solving
the permutation indeterminacy of ICA. (A proof of this is given in Appendix A, and an example of
the permutation problem is provided in Appendix B.)

In practice, however, ICA algorithms applied on finite data sets will yield estimates which are
only approximately zero for those elements which should be exactly zero, and the model is only
approximately correct for real data. Thus, our algorithm searches for the permutation using a
cost function which heavily penalizes small absolute values in the diagonal, as specified in step
2. In addition to being intuitively sensible, this cost function can also be derived from a maximum-
likelihood framework; for details, see Appendix C.

When the number of observed variables xi is relatively small (less than eight or so) then finding
the best permutation is easy, since a simple exhaustive search can be performed. However, for higher
dimensionalities a more sophisticated method is required. We also provide such a permutation
method for large dimensions; for details, see Section 5.

Once we have obtained the correct correspondence between rows and columns of the ICA de-
composition, calculating our estimates of the bi j is straightforward. First, we normalize the rows
of the permuted matrix to yield a diagonal with all ones, and then remove this diagonal and flip the
sign of the remaining coefficients, as specified in steps 3 and 4.

Although we now have estimates of all coefficients bi j we do not yet have available a causal
ordering k(i) of the variables. Such an ordering (in general there may exist many if the generating
network is not fully connected) is important for visualizing the resulting graph. A causal ordering
can be found by permuting both rows and columns (using the same permutation) of the matrix B̂
(containing the estimated connection strengths) to yield a strictly lower triangular matrix. If the
estimates were exact, this would be a trivial task. However, since our estimates will not contain
exact zeros, we will have to settle for approximate strict lower triangularity, measured for instance
as described in step 5.4

It has to be noted that the computational stability of our method cannot be guaranteed. This is
because ICA estimation is typically based on optimization of non-quadratic, possibly non-convex
functions, and the algorithm might get stuck in local minima. Thus, for different random initial
points used in the optimization algorithm, we might get different estimates of W. An empirical
observation is that typically ICA algorithms are relatively stable when the model holds, and un-
stable when the model does not hold. For a computational method addressing this issue, based on
rerunning the ICA estimation part with different initial points, see Himberg et al. (2004).

5. Permutation Algorithms for Large Dimensions

In this section, we describe efficient algorithms for finding the permutations in steps 2 and 5 of the
LiNGAM algorithm.

4. A reviewer pointed out that from a Bayesian viewpoint, the non-zero entries of the matrix B̂ that would be zero in the
infinite data case manifest a more general concept: the data cannot identify ‘the’ DAG structure, they can only help
assign posterior probabilities to different structures.
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5.1 Permuting the Rows of W

An exhaustive search over all possible row-permutations is feasible only in relatively small dimen-
sions. For larger problems other optimization methods are needed. Fortunately, it turns out that the
optimization problem can be written in the form of the classical linear assignment problem. To see
this set Ci j = 1/|W̃i j|, in which case the problem can be written as the minimization of

m

∑
i=1

Cφ(i),i,

where φ denotes the permutation to be optimized over. A great number of algorithms exist for
this problem, with the best achieving worst-case complexity of O(m3) where m is the number of
variables (see e.g., Burkard and Cela, 1999).

5.2 Permuting B to Get a Causal Order

It would be trivial to permute both rows and columns (using the same permutation) of B̂ to yield
a strictly lower triangular matrix if the estimates were exact, because one could use the following
algorithm:

Algorithm B: Testing for DAGness, and returning a causal order if true

1. Initialize the permutation p to be an empty list

2. Repeat until B̂ contains no more elements:

(a) Find a row i of B̂ containing all zeros, if not possible return false

(b) Append i to the end of the list p

(c) Remove the i-th row and the i-th column from B̂

3. Return true and the found permutation p

However, since our estimates will not contain exact zeros, we will have to find a permutation
such that setting the upper triangular elements to zero changes the matrix as little as possible. For
instance, we could define our objective to be to minimize the sum of squares of elements on and
above the diagonal, that is ∑i≤ j B̃2

i j where B̃ = PB̂PT denotes the permuted B̂, and P denotes the
permutation matrix representing the sought permutation. In low dimensions, the optimal permuta-
tion can be found by exhaustive search. However, for larger problems this is obviously infeasible.
Since we are not aware of any efficient method for exactly solving this combinatorial problem, we
have taken another approach to handling the high-dimensional case.

Our approach is based on setting small (absolute) valued elements to zero, and testing whether
the resulting matrix can be permuted to strict lower triangularity. Thus, the algorithm is:

Algorithm C: Finding a permutation of B̂ by iterative pruning and testing

1. Set the m(m+1)/2 smallest (in absolute value) elements of B̂ to zero
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SHIMIZU, HOYER, HYVÄRINEN AND KERMINEN

2. Repeat

(a) Test if B̂ can be permuted to strict lower triangularity (using Algorithm B above). If the
answer is yes, stop and return the permuted B̂, that is, B̃.

(b) Additionally set the next smallest (in absolute value) element of B̂ to zero

If in the estimated B̂, all the true zeros resulted in estimates smaller than all of the true non-
zeros, this algorithm finds the optimal permutation. In general, however, the result is not optimal
in terms of the above proposed objective. However, simulations below show that the approximation
works quite well.

6. Statistical Tests for Pruning Edges

The LiNGAM algorithm consistently estimates the connection strengths (and a causal order) if the
model assumptions hold and the amount of data is sufficient. But what if our assumptions do not in
fact hold? In such a case there is of course no guarantee that the proposed discovery algorithm will
find true causal relationships between the variables.

The good news is that, in some cases, it is possible to detect violations of the model assump-
tions. In the following sections, we provide three statistical tests: i) testing significance of bi j for
pruning edges; ii) examining an overall fit of the model assumptions including estimated structure
and connection strengths to data; iii) comparing two nested models. Then we propose a method for
pruning edges of an estimated network using these statistical tests.

Unfortunately, however, it is never possible to completely confirm the assumptions (and hence
the found causal model) purely from observational data. Controlled experiments, where the individ-
ual variables are explicitly manipulated (often by random assignment) and their effects monitored,
are the only way to verify any causal model. Nevertheless, by testing the fit of the estimated model
to the data we can recognize situations in which the assumptions clearly do not hold and reject mod-
els (e.g., Bollen, 1989). Only pathological cases constructed by mischievous data designers seem
likely to be problematic for our framework. Thus, we think that a LiNGAM analysis will prove
a useful first step in many cases for providing educated guesses of causal models, which might
subsequently be verified in systematic experiments.

6.1 Wald Test for Examining Significance of Edges

After finding a causal ordering k(i), we set to zero the coefficients of B̂ which are implied zero by
the order (i.e., those corresponding to the upper triangular part of the causally permuted connection
matrix B̃). However, all remaining connections are in general non-zero. Even estimated connection
strengths which are exceedingly weak (and hence probably zero in the generating model) remain
and the network is fully connected. Both for achieving an intuitive understanding of the data, and
especially for visualization purposes, a pruned network would be desirable. The Wald statistics
provided below can be used to test which remaining connections should be pruned.

We would like to test if the coefficients of B are zero or not, which is equivalent to testing the
coefficients of W̃ (see steps 3 and 4 in the LiNGAM algorithm above). Such tests are conducted
to answer the fundamental question: Does the observed variable x j have a statistically significant
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effect on xi? Here, the null and alternative hypotheses H0 and H1 are as follows:

H0 : w̃i j = 0 versus H1 : w̃i j 
= 0,

equivalently

H0 : bi j = 0 versus H1 : bi j 
= 0.

One can use the following Wald statistics

w̃2
i j

avar(w̃i j)
,

to test significance of w̃i j (or bi j), where avar(w̃i j) denote the asymptotic variances of w̃i j (see
Appendix D for the complete formulas). The Wald statistics can be used to test the null hypothesis
H0. Under H0, the Wald statistic asymptotically approximates to a chi-square variate with one
degree of freedom (Bollen, 1989). Then we can obtain the probability of having a value of the Wald
statistic larger than or equal to the empirical one computed from data. We reject H0 if the probability
is smaller than a significance level, and otherwise we accept H0. Acceptance of H0 implies that the
assumption w̃i j = 0 (or bi j) fits data. Rejection of H0 suggests that the assumption is in error so that
H1 holds (Bollen, 1989). Thus, we can test significance of remaining edges using Wald statistics
above.

6.2 A Chi-Square Test for Evaluating the Overall Fit of the Estimated Model

Next we propose a statistical measure using the model-based second-order moment structure to
evaluate an overall fit of the model, for example, linearity, lower-triangularity (acyclicity), estimated
structure and connection strengths, to data.

6.2.1 MOMENT STRUCTURES OF MODELS

First, we introduce some notations. For simplicity, assume x to have zero mean. Let us denote by
σ2(τ) the vector that consists of elements of the covariance matrix based on the model where any
duplicates due to symmetry have been removed and by τ the vector of statistics of disturbances and
coefficients of B that uniquely determines the second-order moment structures of the model σ2(τ).
Then the σ2(τ) can be written as

σ2(τ) = vec+{E(xxT )}, (3)

where vec+(·) denotes the vectorization operator which transforms a symmetric matrix to a column
vector by taking its non-duplicate elements. The parameter vector τ consists of free parameters of
B and E(e2

i ).
Let x1, . . . ,xn be a random sample from a LiNGAM model in (1), and define the sample coun-

terparts to the moments in (3) as

m2 =
1
n

n

∑
j=1

vec+(x jxT
j ).

Let us denote by τ0 the true parameter vector. The σ2(τ0) can be estimated by the m2 when n is
enough large: σ2(τ0) ≈ m2.
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We now propose to evaluate the fit of the model by measuring the distance between the moments
of the observed data m2 and those based on the model σ2(τ) in a weighted least-squares sense (see
below for details). In the approach, a large residual can be considered as badness of fit of the model
found to data, which would imply violation of the model assumptions. Thus, this approach gives
information on validity of the assumptions.

6.2.2 SOME TEST STATISTICS TO EVALUATE A MODEL FIT

We provide some test statistics to examine an overall model fit. Here, the null and alternative
hypotheses H0 and H1 are as follows:

H0 : E(m2) = σ2(τ) versus H1 : E(m2) 
= σ2(τ),

where E(m2) is the expectation of m2. Assume that the fourth-order moments of xi are finite. Let us
denote by V the covariance matrix of m2, which consists of fourth-order moments cov(xix j,xkxl) =
E(xix jxkxl)−E(xix j)E(xkxl). One can take a sample covariance matrix of m2 as a nonparametric
estimator V̂ for V.

Denote J = ∂σ2(τ)/∂τT and assume that J is of full column rank (see Appendix E for the exact
form). Define

F(τ̂) = {m2 −σ2(τ̂)}T M̂{m2 −σ2(τ̂)} ,

where

M̂ = V̂−1 − V̂−1Ĵ(ĴT V̂−1Ĵ)−1ĴT V̂−1

Ĵ =
∂σ2(τ)

∂τT

∣∣∣∣τ=τ̂
. (4)

Then a test statistic T1 = n×F(τ̂) could be used to test the null hypothesis H0, that is, to examine a
fit of the model considered to data. Under H0, the statistic T1 asymptotically approximates to a chi-
square variate with degrees u− v of freedom where u is the number of distinct moments employed
and v is the number of parameters employed to represent the second-order moment structure σ2(τ),
that is, the number of elements of τ. The required assumption for this is that τ̂ is a

√
n-consistent

estimator. No asymptotic normality is required (see Browne, 1984, for details). Acceptance of
H0 implies that the model assumptions fit data. Rejection of H0 suggests that at least one model
assumption is in error so that H1 holds (Bollen, 1989). Thus, we can assess the overall fit of the
estimated model to data.

However, it is often pointed out that this type of test statistics requires large sample sizes for T1

to behave like a chi-square variate (e.g., Hu et al., 1992). Therefore, we would apply a proposal by
Yuan and Bentler (1997) to T1 to improve its chi-square approximation and employ the following
test statistic T2:

T2 =
T1

1+F(τ̂)
.

6.2.3 A DIFFERENCE CHI-SQUARE TEST FOR MODEL COMPARISON OF NESTED MODELS

Let us consider the comparison of two models that are nested, that is, one is a simplified model of
the other. Assume that Models 1 and 2 have q and q−1 edges, and Model 2 is a simplified version of
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Model 1 by pruning one edge out. Denote by T2(q) and T2(q−1) the model fit statistics for Models
1 and 2, respectively. Then, the difference between T2(q)−T2(q−1) asymptotically approximates
to a chi-square variate with one degree of freedom (e.g., Bollen, 1989), by which we can test if
the two models with q and q− 1 edges have significantly different model fits. In principle, a more
complex model fits better. If the two model fits are significantly different, the edge should not be
pruned since the model fit becomes significantly worse. This means that we examine significance
of the edge in terms of overall model fit.

6.3 A Method for Pruning Edges

Using the tests developed above, we now propose a sophisticated method for pruning the edges
(connection strengths).

The Wald statistics above tell us how likely each edge is, which can be considered an evaluation
of the individual fit of each edge to data. On the other hand, the chi-square test assesses the overall
model fit by measuring the residual between the data covariance matrix and model-based covariance
matrix. A straightforward approach would be to test the significance of remaining edges using
Wald statistics only. That is, we prune all the non-significant edges with the p values higher than
a significance level, for example, 0.05 (5%). However, it would be more effective (e.g., the test
has more power) to use both the individual and overall fits for assessing significance of edges.
Furthermore, it is also important that the pruned estimated model is accepted by the chi-square test
of model fit. Thus, we propose a pruning method utilizing all the three tests above, Wald test, the
chi-square test and the difference test (see Section 6.2.3 for the difference test). The algorithm is as
follows:

Algorithm D: Pruning edges using Wald test, model fit test and difference test.

1. Set a significance level α (e.g., 0.05)

2. Find non-significant edges by applying Wald test to each edge

3. Set the least significant strictly lower triangular element of B̃ (in Step 5 of the LiNGAM discov-
ery algorithm) among the non-significant edges accepted by Wald test to zero

4. Repeat until all the non-significant edges by Wald test are examined

(a) Test if the overall model fits for the last model and current model with one less edge than
the last model are significantly different by the difference test. Further test the model fit
of the current model by the chi-square test. If both null hypotheses are accepted in the
two tests, adopt the current model, that is, prune the edge out. Otherwise, adopt the last
model, that is, do not prune the edge.

(b) Additionally set the next least significant element of B̃ to zero

5. Return the pruned B̃

The pruned B̂ can be obtained by the relation B̂ = PT B̃P (see step 5 in the LiNGAM algorithm).
Thus, we would be able to find a pruned network that fits data. We conduct a simulation to study
the empirical performance of this pruning method (Section 7.2).
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A potential alternative to Wald statistics would be to use resampling techniques (e.g., Efron
and Tibshirani, 1993). We provide a basic method using resamplings as an option in our Matlab
code. In our implementation we take the causal ordering obtained from the LiNGAM algorithm,
and then simply estimate the connection strengths using covariance information alone for different
resamplings of the original data. In this way, it is possible to obtain measures of the variances
of the estimates of the bi j, and use these variances to prune those edges whose estimated means
are low compared with their standard deviations. Future versions of our software packages should
incorporate the more advanced methods including bootstrapping.

The issue of multiple comparisons also arises in this context. Usually, W̃ and B have more than
one element. In many cases, we need to perform more than one test simultaneously to find out if
all or a set of the coefficients are significantly large in an absolute value sense. Although a given
significance level may be appropriate for each individual test, it is not for the set of all the tests. We
could have a lot of spurious significance if we just repeat tests without any corrections. In such a
case, it would be effective to employ multiple comparison procedures (see Hochberg and Tamhane,
1987, for details). A simple and basic method is the Bonferroni correction, where we simply divide a
significance level by the number of tests to obtain the significance level for individual test. However,
it is often pointed out that the Bonferroni method is too conservative when the number of tests is
large. Some authors have improved the Bonferroni procedure or devised new techniques so that they
have more power of test (e.g., Benjamini and Hochberg, 1995; Hochberg, 1988; Holm, 1979; Simes,
1986). We would like to study such multiple comparison techniques in future work and implement
them in our software package.5

7. Simulations

To verify the validity of our method (and of our Matlab code), we performed extensive experiments
with simulated data. All experimental code (including the precise code to produce Figures 2, 3, 4
and Table 7.2) is included in the LiNGAM code package.

7.1 Estimation of B

We repeatedly performed the following experiment:

1. First, we randomly constructed a strictly lower-triangular matrix B. Various dimensionalities
(3, 5, 10, 20 and 100) were used. Both fully connected (no zeros in the strictly lower triangular
part) and sparse networks (many zeros) were tested. We also randomly selected variances of
the disturbance variables and values for the constants ci.

2. Next, we generated data by independently drawing the disturbance variables ei from Gaus-
sian distributions and subsequently passing them through a power non-linearity (raising the
absolute value to an exponent in the interval [0.5, 0.8] or [1.2, 2.0], but keeping the original
sign) to make them non-Gaussian. Various data set sizes (200, 1000 and 5000) were tested.
The ei were then scaled to yield the desired variances, and the observed data X was generated
according to the assumed recursive process.

5. It would also be possible to devise a Bayesian technique for scoring models as proposed by Geiger and Heckerman
(1994) if we knew the distributions of non-Gaussian disturbances. However, in practice, it is quite difficult to model
the exact functional form of the non-Gaussian distributions, and therefore it would be difficult to score the models
requiring parametric models.
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Figure 2: Scatterplots of the estimated bi j versus the original (generating) values. The different
plots correspond to different numbers of variables and different numbers of data vectors.
Five data sets were generated for each scatterplot. For the last two rows, 1,000 plot points
were randomly selected and plotted to improve the clarity of the figures.

3. Before feeding the data to the LiNGAM algorithm, we randomly permuted the rows of the
data matrix X to hide the causal order with which the data was generated. At this point, we
also permuted B, the ci, as well as the variances of the disturbance variables to match the new
order in the data.

4. Finally, we fed the data to our discovery algorithm, and compared the estimated parameters to
the generating parameters. In particular, we made a scatterplot of the entries in the estimated
matrix B̂ against the corresponding ones in B.
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Since the number of different possible parameter configurations is limitless, we feel that the
reader is best convinced by personally running the simulations using various settings. Nevertheless,
we here show some representative results.

Figure 2 gives combined scatterplots of the elements of B versus the generating coefficients.
The different plots correspond to different dimensionalities (numbers of variables) and different
data sizes (numbers of data vectors), where each plot combines the data for a number of different
network sparseness levels and non-linearities. Although for very small data sizes the estimation
often fails, when the data size grows the estimation works practically flawlessly, as evidenced by
the grouping of the data points onto the main diagonal.

In summary, the experiments verify the correctness of the method and demonstrate that reliable
estimation is possible even with fairly limited amounts of data. We note that for larger dimensions
we clearly need more data, but the amounts of data required are still reasonable.

7.2 Pruning Edges

We examined the performance of the pruning method developed in Section 6.3 using artificial data.
The simulation consisted of 1000 trials. In each trial, we generated five- and ten-dimensional data
of sample size n = 1000,5000,10000 in the same manner as in Section 7.1 above.

The LiNGAM discovery algorithm was then applied to the data. We subsequently applied the
pruning method to the estimated networks. The significance level was set at 5%. Then we computed
the numbers of correctly identified edges (true positives) and the numbers of correctly identified
absence of edges (true negatives) only in the strictly lower triangular part of the matrix B to see the
performance of our pruning method. We also counted how many edges were falsely added (false
positives) and how many were falsely missing (false negatives).

True pos. False neg. True neg. False pos. Sums of false
pos. and neg.

Dim.=5
n =1000 8101 (90.5%) 849 (9.5%) 921 (87.7%) 129 (12.3%) 978 (9.8%)

5000 8556 (95.6%) 394 (4.4%) 943 (89.8%) 107 (10.2%) 501 (5.0%)
10000 8691 (97.1%) 259 (2.9%) 972 (92.6%) 78 (7.4%) 337 (3.4%)

Dim.=10
n =1000 27825 (80.6%) 6698 (19.4%) 8171 (78.0%) 2306 (22.0%) 9004 (20.0%)

5000 31623 (91.6%) 2900 (8.4%) 9350 (89.2%) 1127 (10.8%) 4027 (8.9%)
10000 32477 (94.1%) 2046 (5.9%) 9466 (90.4%) 1011 (9.6%) 3057 (6.8%)

Table 1: Numbers of true positives, false negatives, true negatives, and false positives (1000 trials).
n is sample size.

The results are shown in Table 7.2. Some representative pruned estimated networks are shown
in Figures 3 and 4.6 First, we examine the numbers of false positives for the edges that had non-zero
values. The false positive rates were approximately 10% except the case with sample size 1000 for
both 5 and 10 variables. Second, we see the statistical power of the test (numbers of true positives)

6. Graphs were plotted using the latest version of the LiNGAM package which connects seamlessly to the free Graphviz
software, a sophisticated tool for plotting graphs.
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for the other edges that had non-zero values. The power of 0.90 (8055 true positives for 5 variables
and 31071 true positives for 10 variables) was achieved for all the conditions other than when the
number of variables was 10 and the sample size was 1000. Finally, we would mention that the sums
of the two errors (false negatives and false positives) were small enough (less than 10%) except for
the case with the number of variables 10 and the sample size 1000. Thus, Table 7.2 implied that our
pruning method worked well for reasonable sample sizes.
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Figure 3: Left: example original network. Right: estimated network. The sample size was 10000.
The structure of the original network was correctly estimated, and all the edge strengths
were approximately correct.

8. Examples With Real-World Data

As a real-world example, we have applied the LiNGAM analysis to a set of time series. As a cause
must precede its effect in time, we can expect the LiNGAM analysis to find the correct time ordering
of the variables in any data generated from a LiNGAM model.

A time series can be approximated by a LiNGAM model if it is a stationary AR(p) process. An
AR(p) process, or an autoregressive process of order p, is defined by the equation (Box and Jenkins,
1976)

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +at .

That is, the value of Xt is a weighted sum of p previous variables and white noise (at). The weights
φ1,φ2, . . . ,φp are called the parameters of the process. A process is stationary, if the variance is
finite, the mean remains the same over time, and the autocovariance function depends only on the
time lag of two variables (Brockwell and Davis, 1987). The last condition also implies that the
variance remains the same over time. If we want to approximate a stationary AR(p) process by a
LiNGAM model, the white noise process must be non-Gaussian.

A time series must be presented to the LiNGAM analysis as a multivariate data set. To do this,
the time series is divided into time windows with the same size as the number of variables in the
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Figure 4: Left: example original network. Right: estimated network. The sample size was 10000.
This shows what kind of mistakes the LiNGAM algorithm might make. The estimated
network had one added edge (x1 → x7) and one missing edge (x1 → x6). However, both the
added and missing edges had quite low strengths (x1 → x7, -0.019 and x1 → x6, 0.0088).
Note that the other edges were correctly identified, and the connection strengths were
approximately correct as well.

LiNGAM model. These time windows are then treated as samples of multivariate data. This intro-
duces confounding variables to the model, against the assumptions of the LiNGAM analysis. To
see this, consider an example of an AR(2) process, and a time window of three variables (Figure 5).
Here, variables Xt and Xt+1 are confounded by a variable outside the time window. In a general
case, an AR(p) process introduces confounding variables to p first variables in a time window. The
LiNGAM model holds strictly only for first order processes.

For the tests, a total of 22 data sets were selected from time series data repositories on the
Internet (Hyndman, 2005; Statistical Software Information; National Statistics). We did not seek
data sets that would fit the LiNGAM model, but a diverse set of data to see how well the LiNGAM
analysis will perform with real-world data, when the assumptions of the model are violated at least
to some extent. The data sets can be roughly categorized as economic time series and environmental
time series. Economic time series included data sets like currency exchange rates and stock rates.
Environmental time series included a more diverse set of data, ranging from monthly river-flows to
daily temperatures. Before the tests, the sample autocorrelation and partial autocorrelation functions
for the series were analyzed to gain insight into how well the series actually fit the AR(p) model.
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Figure 5: An example of confounding. Variables Xt and Xt+1 are confounded by a variable outside
the time window.

The LiNGAM analysis was run for each data set with varying parameters. The number of
variables in the LiNGAM model was 3, 5, or 7, corresponding to AR(p) processes of orders 2,
4, and 6. Since the partial autocorrelations of economic time series indicated that the processes
are at most second order processes, only models with 3 or 5 variables were tested for them. All
possible time windows were used as multivariate data samples, including overlapping windows.
For each number of variables, the LiNGAM analysis was run many times (100) to see if the analysis
produced consistent results, where initial points of FastICA algorithm were randomized to assess
the computational stability, that is, the effect of local minima.

Keeping in mind that there are possibly deviations from the LiNGAM model in the data, there
are different possible results for applying the LiNGAM analysis. If the data generating process is
indeed a stationary AR(p) process with non-Gaussian noise, we can expect to find the correct time
ordering of the variables. An important nonstationary process, commonly encountered in economic
time series, is the random walk Xt = Xt−1 + at . If the generating process is a random walk, we
cannot determine the direction of time. Hence, both the correct time ordering and the reverse time
ordering are possible results. It is also possible that the variables are not causally related, and the
weight matrix B is a matrix, none of which elements are significantly different from zero. In this
case, any ordering of the variables is plausible. Also, any of the assumptions may fail to hold in
real-world data: the process might be non-linear, the error terms might have Gaussian distribution,
or there might be confounding variables. In this case, the LiNGAM analysis will probably fail,
producing unpredictable results.

Reflecting the possibilities explained above, four distinct categories of results were distin-
guished from the tests.

1. The correct causal order was found (5 cases).

2. The reverse causal order was found (9 cases).

3. The B matrix was estimated as a zero matrix (1 case).

4. No consistent estimate for causal order was found (7 cases).

For the first three categories, the estimates were consistent over all experiments. The last category
included data sets for which no consistent estimate was found. It also included some data sets for
which a consistent estimate was found for some test setting, but not for all settings. An example
from each category is provided for further analysis. The examples are listed Table 2, together with
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their sample sizes and descriptions. Figure 6 plots the example series. The sample autocorrelation
function (acf) and the partial autocorrelation function (pacf) are plotted for each example in Figure 7.
The horizontal lines in pacf plots are 99% (solid line) and 95% (dashed line) confidence intervals
for the null hypothesis that the partial autocorrelation is zero.

Name Size Description
PEAS 768 Monthly precipitation in Eastport, USA [mm].
DAILYIBM 3333 Daily closing price of IBM stock.
PRECIP 792 Daily precipitation in Hveravellir [mm].
MLCO2 372 Monthly carbon dioxide above Mauna Loa, Hawaii

[parts per million].

Table 2: Sample sizes and descriptions of the example data sets.
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Figure 6: Plots for the example data sets.

The correct causal order was found from the PEAS data set. The statistical properties of the data
indicate that the process could be modeled fairly well as an AR(2) process. There are no signs of a
trend in the sample autocorrelation function, and the estimated partial correlations are significant for
time lags 1 and 2. Still, there seems to be a small seasonal component, reflecting yearly seasonality
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of precipitation. The most frequent model estimated by LiNGAM was an AR(2) process with small
parameters, in accordance with the estimated partial correlations.

The reverse causal order was found from the DAILYIBM data set. The acf and the pacf of the
data resemble those of a random walk, thus the result is expected. Also the estimated causal model
is close to a random walk, values of nearly one are estimated consistently for the first parameter of
the AR(p) process, other weight estimates being zero.
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Figure 7: The sample autocorrelation and partial autocorrelation functions for the example data
sets.

For the PRECIP data set, the estimates for causal order were consistent, but not consistently
either correct or reverse. Most of the time, the estimated B matrix was a zero matrix. As a zero B
matrix is consistent with any time ordering of the variables, this largely explains the results. For the
cases when the B matrix was not a zero matrix, the estimated weights were small (less than 0.1),
and did not correspond to an AR(p) model of any order, but rather random estimation errors. The
pacf of this series supports the results of the LiNGAM analysis: none of the partial autocorrelations
is statistically significant.

For the MLCO2 data set, the LiNGAM analysis produced inconsistent estimates of the causal
order. There are several possible reasons for this. First of all, the series has a trend and a seasonal
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component. More probably, the basic assumptions of the LiNGAM analysis are violated. The
process might be non-linear, or the level of carbon dioxide might be caused by other environmental
variables, leading to a confounded model. It is also possible, although unlikely, that the data is
Gaussian.

9. Conclusions

Developing methods for causal inference from non-experimental data is a fundamental problem
with a very large number of potential applications. Although one can never fully prove the validity
of a causal model from observational data alone, such methods are nevertheless crucial in cases
where it is impossible or very costly to perform experiments.

Previous methods developed for linear causal models (Bollen, 1989; Spirtes et al., 2000; Pearl,
2000) have been based on an explicit or implicit assumption of Gaussianity, and have hence been
based solely on the covariance structure of the data. Because of this, additional information (such
as the time-order of the variables) is usually required to obtain a full causal model of the variables.
Without such information, algorithms based on the Gaussian assumption cannot in most cases dis-
tinguish between multiple equally possible causal models.

In this paper, we have shown that an assumption of non-Gaussianity of the disturbance variables,
together with the assumption of linearity and causal sufficiency, allows the causal model to be
completely identified. Furthermore, we have proposed a practical algorithm which estimates the
causal structure under these assumptions and provided a number of tests to prune the graph and to
see whether the estimated model fits the data.

The practical value of the LiNGAM analysis needs to be determined by applying it to real-world
data sets and comparing it to other methods for causal inference from non-experimental data. The
real data examples reported here are rather limited. Also, in many cases involving real-world data,
practitioners in the field already have a fairly good understanding of the causal processes underlying
the data. An interesting question is how well methods such as ours do on such data sets. These are
important topics for future work.
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Appendix A. Proof of Uniqueness of Row Permutation

Here, we show that, were the estimates of ICA exact, there is only a single permutation of the rows
of W which results in a diagonal with no zero entries.

It is well-known (Bollen, 1989) that the DAG structure of the network guarantees that for some
permutation of the variables, the matrix B is strictly lower-triangular. This implies that the correct
W̃ (where the disturbance variables are aligned with the observed variables) can be permuted to
lower-triangular form (with no zero entries on the diagonal) by equal row and column permutations,
that is,

W̃ = PdMPT
d ,

where M is lower-triangular and has no zero entries on the diagonal, and Pd is a permutation matrix
representing a causal ordering of the variables. Now, ICA returns a matrix with randomly permuted
rows,

W = PicaW̃ = PicaPdMPT
d = P1MPT

2 ,

where Pica is the random ICA row permutation, and on the right we have denoted by P1 = PicaPd

and P2 = Pd , respectively, the row and column permutations from the lower triangular matrix M.
We now prove that W has no zero entries on the diagonal if and only if the row and column

permutations are equal, that is, P1 = P2. Hence, there is only one row permutation of W which
yields no zero entries on the diagonal, and it is the one which finds the correspondence between the
disturbance variables and the observed variables.

Lemma 1 Assume M is lower triangular and all diagonal elements are non-zero. A permutation of
rows and columns of M has only non-zero entries in the diagonal if and only if the row and column
permutations are equal.

Proof First, we prove that if the row and columns permutations are not equal, there will be zero
elements in the diagonal.

Denote by K a lower triangular matrix of all ones in the lower triangular part. Denote by P1 and
P2 two permutation matrices. The number of non-zero diagonal entries in a permuted version of K
is tr(P1KPT

2 ). This is the maximum number of non-zero diagonal entries when an arbitrary lower
triangular matrix is permuted.

We have tr(P1KPT
2 ) = tr(KPT

2 P1). Thus, we can consider permutations of columns only, given
by PT

2 P1. Assume the columns of K are permuted so that the permutation is not equal to identity.
Then, there exists an index i so that the column of index i has been moved to column index j
where j < i (If there were no such columns, all the columns would be moved to the right, which is
impossible.) Obviously, the diagonal entry in the j-th column in the permuted matrix is zero. Thus,
any column permutation not equal to the identity creates at least one zero entry in the diagonal.

Thus, to have non-zero diagonal, we must have PT
2 P1 = I. This means that the column and row

permutations must be equal.
Next, assume that the row and column permutations are equal. Consider M = I as a worst-

case scenario. Then the permuted matrix equals P1IPT
2 which equals identity, and all the diagonal

elements are non-zero. Adding more non-zero elements in the matrix only increases the number of
non-zero elements in the permuted version.

Thus, the lemma is proven.
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Appendix B. An Example of the Permutation Problem

Here we show with an example that if the permutation is not correctly determined, the parameters
bi j can have very different values, yet give the same data distribution. This example considers the
general case where the system is not DAG. For simplicity, let us consider the two variables case.
Assume we parameterize the mixing model in (2) as[

x1

x2

]
=

1
1−b12b21

[
1 b12

b21 1

]
diag(σ1,σ2)

[
s1

s2

]
,

where σ1 and σ2 are standard deviations of e1 and e2, and s1 and s2 are normalized versions of e1

and e2, that is, e1/σ1 and e2/σ2.
Then, take the following new set of parameters:

b′12 = 1/b21

b′21 = 1/b12

σ′
1 = σ2/b21

σ′
2 = σ1/b12,

and do the permutation and sign change:

s′1 = −s2

s′2 = −s1.

Then, the two parameterizations give the same data, that is, the same model fit. This is because

1
1−b′12b′21

[
1 b′12

b′21 1

]
diag(σ′

1,σ
′
2)

[
s′1
s′2

]
=

1
1−1/(b12b21)

[
1 1/b21

1/b12 1

]
diag(σ2/b21,σ1/b12)

[ −s2

−s1

]
=

−b12b21

1−b12b21

[
1/b21 1/(b21b12)

1/(b12b21) 1/b12

]
diag(σ2,σ1)

[ −s2

−s1

]
=

b12b21

1−b12b21

[
1/b21 1/(b21b12)

1/(b12b21) 1/b12

]
diag(σ2,σ1)

[
s2

s1

]
=

1
1−b12b21

[
b12 1
1 b21

]
diag(σ2,σ1)

[
s2

s1

]
=

1
1−b12b21

[
1 b12

b21 1

]
diag(σ1,σ2)

[
s1

s2

]
.

Therefore, the parameter sets with or without “prime” are equivalent. The model fit is the same
with two different sets of parameters. Estimation of the model can equally well give any of these
two sets. However, the numerical values of b and b′ are quite different. In this example, the system
was not constrained to be a DAG. In fact, if the original system is a DAG, the system with primes
has infinite coefficients. Thus, we see how the constraint of DAG is helpful.
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Appendix C. ML Derivation of Objective Function for Finding the Correct Row
Permutation

Since the ICA estimates are never exact, all elements of W will be non-zero, and one cannot base
the permutation on exact zeros. Here we show that the objective function for step 2 of the LiNGAM
algorithm can be derived from a maximum likelihood framework.

Let us denote by eit the value of disturbance variable i for the t-th data vector of the data set.
Assume that we model the disturbance variables eit by a generalized Gaussian density:

log p(eit) = −|eit |α/β+Z,

where the α,β are parameters and Z is a normalization constant. Then, the log-likelihood of the
model equals

∑
t

∑
i

−1
β

∣∣∣∣ eit

wii

∣∣∣∣α
= −∑

i

1
β|wii|α ∑

t
|eit |α,

because each row of W is subsequently divided by its diagonal element. To maximize the likelihood,
we find the permutation of rows for which the diagonal elements maximize this term. For simplicity,
assuming that the pdf’s of all independent components are the same, this means we solve

min
all row perms

∑
i

1
|wii|α .

In principle, we could estimate α from the data using ML estimation as well, but for simplicity we
fix it to unity because it does not really change the qualitative behavior of the objective function.
Regardless of its value, this objective function heavily penalizes small values on the diagonal, as we
intuitively (based on the argumentation in Section 4) require.

Appendix D. Asymptotic Variance of ICA

Several authors studied asymptotic variance of ICA (Pham and Garrat, 1997; Hyvärinen, 1997; Car-
doso and Laheld, 1996; Tichavský et al., 2006), where the theory of estimating functions (Godambe,
1991) was often used. Let us consider a semiparametric model p(x|θ), where θ is a r-dimensional
parameter vector of interest. Note that the density function p(x|θ) is unknown. Let us denote by
θ0 the true parameter vector of interest. A r-dimensional vector-valued function f (x,θ) is called an
estimating function when it satisfies the following conditions for any p(x|θ0):

E[ f (x,θ0)] = 0

|det J| 
= 0, where J = E

[
∂

∂θT f (x,θ)
∣∣∣∣θ=θ0

]
E[‖ f (x,θ0)‖2] < ∞,

where the expectation E is taken over x with respect to p(x|θ0).
Let x(1), · · · ,x(n) be a random sample from p(x|θ0). Then an estimator θ̂ is obtained by solving

the estimating equation:

n

∑
i=1

f (x(i),θ) = 0.
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Under some regularity conditions including identification conditions for θ, the estimator θ̂ is con-
sistent when n goes to infinity and asymptotically distributes according to the Gaussian distribution
N(θ0,G), and

G =
1
n

J−1E[ f (x,θ0) f T (x,θ0)]J−T . (5)

Pham and Garrat (1997) derived an estimating function for (quasi-) maximum likelihood es-
timation. Kawanabe and Müller (2005) provided estimating functions for JADE (Cardoso and
Souloumiac, 1993) and for ICA based on non-Gaussianity maximization with orthogonality (un-
correlatedness) constraints including FastICA (Hyvärinen, 1999).

In this paper, we restrict ourselves to testing mixing and demixing coefficients estimated by
FastICA. In the FastICA, we first center the data to make its mean zero and whiten the data by
computing a matrix V such that the covariance matrix of z = Vx is the identity matrix. After that, we
find an orthogonal matrix Q so that components of QT z = QT Vx have maximum non-Gaussianity.
Then we obtain estimates of A and W by A = V−1Q and W = QT V.

Let us consider the following function:

F(x,Q) = yyT − I+ ygT (y)−g(y)yT ,

where y = Wx = QT Vx = QT z and g(u) is the non-linearity. The estimating function for FastICA
is obtained as f = vec(F) taking θ = vec(Q) (Kawanabe and Müller, 2005). Here, vec(·) denotes
the vectorization operator which creates a column vector from a matrix by stacking its columns.

According to the estimating function theory, we obtain the asymptotic covariance matrix of
vec(Q) by (5). Here we assume that the variance in the estimate of V is negligible with respect
to the variance in Q. Then we obtain the asymptotic covariance matrix of vec(A) and vec(W) as
follows:

acov{vec(A)} = acov{vec(V−1Q)}
= (I⊗V−1)acov{vec(Q)}(I⊗V−1)T

acov{vec(W)} = acov{vec(QT V)}
= (VT ⊗ I)acov{vec(QT )}(VT ⊗ I)T ,

where ⊗ denotes the Kronecker product.7

The formula of acov{vec(Q)} for FastICA is written as

acov{vec(Q)} =
1
n

J−1E[vec{F(x,Q)}vec{F(x,Q)}T ]J−T .

Let us denote by Fpq and Fq the (p,q)-element and the q-th column of F, respectively. We shall
provide E(FpqFrs) to compute E{vec(F)vec(F)T}. Denote by i, j,k, l four different subscripts. Then

7. The Kronecker product Y⊗Z of matrices Y and Z is defined as a partitioned matrix with (i, j)-th block equal to yi jZ.
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we have

E(FiiFii) = E(s4
i )+1, E(FiiFj j) = 2, E(FkiFi j) = −E{g(sk)}E{g(s j)}

E(FkiFli) = E{g(sk)}E{g(sl)}, E(FkiFk j) = E{g(si)}E{g(s j)}
E(FiiFli) = −E(s3

i )E{g(sl)}, E(FkiFii) = −E(s3
i )E{g(sk)}

E(FiiFi j) = E(s3
i )E{g(s j)}, E(FjiFj j) = E(s3

j)E{g(si)}
E(FiiFl j) = 0, E(FkiFj j) = 0, E(FkiFl j) = 0

E(FjiFi j) = 1+2E{sig(si)}E{s jg(s j)}−E{g(si)2}−E{g(s j)2}
E(FjiFl j) = 1+E{sig(si)}+E{s jg(s j)}+E{sig(si)}E{s jg(s j)}−E{g(si)}E{g(sl)}
E(FkiFki) = 1+2E{sig(si)}−2E{skg(sk)}+E{g(si)2}+E{g(sk)2}

−2E{sig(si)}E{skg(sk)}.

Further we shall give E
{

(∂Fi)/(∂qT
j )

}
to compute J = E

[{∂vec(F)}/{∂vec(Q)T}]:
E

[
∂Fi

∂qT
i

]
=

{
2E(qT

i zzT )
E{qT

k zzT − zT g(qT
k z)+qT

k zg′(qT
i z)zT}

=
{

2qT
i (i−th row)

[1−E{skg(sk)}+E{g′(si)}]qT
k (k−th row, k 
= i)

E

[
∂Fi

∂qT
j

]
=

{
E[{1−g′(qT

j z)}qT
i zzT + zT g(qT

i z)]
0T

=
{

[1−E{g′(s j)}+E{sig(si)]qT
i ( j−th row, j 
= i)

0T (k−th row, k 
= j)
.

Appendix E. Exact Form of J = ∂σ2(τ)/∂τT

We here derive the exact form of J = ∂σ2(τ)/∂τT in (4). Let us denote by Σ2 the covariance matrix
based on the model or E(xxT ). The σ2(τ) in (3) is obtained by vec+(Σ2). Let us rewrite the
LiNGAM model as:

x = (I−B)−1e

= (I−B)−1D
1
2 ẽ,

where D = cov(e) and ẽ = D− 1
2 e. Note that E(e) = 0 is assumed. Then the model-based covariance

matrix Σ is:

Σ = (I−B)−1D
1
2 cov(ẽ)D

1
2 (I−B)−T

=
{

D− 1
2 (I−B)

}−1 {
D− 1

2 (I−B)
}−T

= YYT ,

where

Y =
{

D− 1
2 (I−B)

}−1
.
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Now we need to compute the following derivatives:

∂Σi j

∂bkl
=

∂(YYT )i j

∂bkl
= ∑

p
∑
q

∂(YYT )i j

∂Ypq

∂Ypq

∂bkl

∂Σi j

∂dkk
=

∂(YYT )i j

∂dkk
= ∑

p
∑
q

∂(YYT )i j

∂Ypq

∂Ypq

∂dkk
.

We provide ∂(YYT )i j/∂Ypq, ∂Ypq/∂bkl , and ∂Ypq/∂dkk to compute the derivatives above:

∂(YYT )i j

∂Ypq
=

⎧⎪⎪⎨⎪⎪⎩
2Ypq (i = p, j = p)
Y jq (i = p, j 
= p)
Yiq (i 
= p, j = p)
0 (i 
= p, j 
= p)

∂Y
∂bkl

= −Y
∂Y−1

∂bkl
Y

= YD− 1
2 JklY

∂Y
∂dkk

= −Y
∂Y−1

∂dkk
Y

= Y
d−3/2

kk

2
Jkk(I−B)Y,

where Jkl is the single-entry matrix with 1 at (k, l) and zero elsewhere. Thus, we can compute
J = ∂σ2/∂τT = ∂vec+(Σ2)/∂τT .
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Abstract
We present a new framework based on walks in a graph for analysis and inference in Gaussian
graphical models. The key idea is to decompose the correlation between each pair of variables as
a sum over all walks between those variables in the graph. The weight of each walk is given by a
product of edgewise partial correlation coefficients. This representation holds for a large class of
Gaussian graphical models which we call walk-summable. We give a precise characterization of
this class of models, and relate it to other classes including diagonally dominant, attractive, non-
frustrated, and pairwise-normalizable. We provide a walk-sum interpretation of Gaussian belief
propagation in trees and of the approximate method of loopy belief propagation in graphs with
cycles. The walk-sum perspective leads to a better understanding of Gaussian belief propagation
and to stronger results for its convergence in loopy graphs.
Keywords: Gaussian graphical models, walk-sum analysis, convergence of loopy belief propaga-
tion

1. Introduction

We consider multivariate Gaussian distributions defined on undirected graphs, which are often re-
ferred to as Gauss-Markov random fields (GMRFs). The nodes of the graph denote random variables
and the edges capture the statistical dependency structure of the model. The family of all Gauss-
Markov models defined on a graph is naturally represented in the information form of the Gaussian
density. The key parameter of the information form is the information matrix, which is the inverse
of the covariance matrix. The information matrix is sparse, reflecting the structure of the defining
graph such that only the diagonal elements and those off-diagonal elements corresponding to edges
of the graph are non-zero.

Given such a model, we consider the problem of computing the mean and variance of each
variable, thereby determining the marginal densities as well as the mode. In principle, these can be
obtained by inverting the information matrix, but the complexity of this computation is cubic in the
number of variables. More efficient recursive calculations are possible in graphs with very sparse

∗. This paper elaborates upon our earlier brief publication (Johnson, Malioutov, and Willsky, 2006) and presents sub-
sequent developments. This research was supported by the Air Force Office of Scientific Research under Grants
FA9550-04-1-0351, FA9550-06-1-0324, and the Army Research Office under Grant W911NF-05-1-0207. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the Air Force or Army.

c©2006 Dmitry M. Malioutov, Jason K. Johnson and Alan S. Willsky.
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structure—for example, in chains, trees and in graphs with “thin” junction trees. For these models,
belief propagation (BP) or its junction tree variants efficiently compute the marginals (Pearl, 1988;
Cowell et al., 1999). In large-scale models with more complex graphs, for example, for models
arising in oceanography, 3D-tomography, and seismology, even the junction tree approach becomes
computationally prohibitive. Iterative methods from numerical linear algebra (Varga, 2000) can be
used to compute the marginal means. However, in order to efficiently compute both means and
variances, approximate methods such as loopy belief propagation (LBP) are needed (Pearl, 1988;
Yedidia, Freeman, and Weiss, 2003; Weiss and Freeman, 2001; Rusmevichientong and Van Roy,
2001). Another important motivation for using LBP, emphasized for example by Moallemi and Van
Roy (2006a), is its distributed nature which is important for applications such as sensor networks.
While LBP has been shown to often provide good approximate solutions for many problems, it is
not guaranteed to do so in general, and may even fail to converge.

In prior work, Rusmevichientong and Van Roy (2001) analyzed Gaussian LBP on the turbo-
decoding graph. For this special case they established that variances converge, means follow a
linear system upon convergence of the variances, and that if means converge then they are correct.
Weiss and Freeman (2001) analyzed LBP from the computation tree perspective to give a sufficient
condition (equivalent to diagonal dominance of the information matrix) for convergence, and also
showed correctness of the means upon convergence. Wainwright et al. (2003) introduced the tree
reparameterization view of belief propagation and, in the Gaussian case, also showed correctness
of the means upon convergence. Convergence of other forms of LBP are analyzed by Ihler et al.
(2005), and Mooij and Kappen (2005), but unfortunately their sufficient conditions are not directly
applicable to the Gaussian case.

We develop a “walk-sum” formulation for computation of means, variances and correlations as
sums over certain sets of weighted walks in a graph.1,2 This walk-sum formulation applies to a wide
class of Gauss-Markov models which we call walk-summable. We characterize the class of walk-
summable models and show that it contains (and extends well beyond) some “easy” classes of mod-
els, including models on trees, attractive, non-frustrated, and diagonally dominant models. We also
show the equivalence of walk-summability to the fundamental notion of pairwise-normalizability,
and that inference in walk-summable models can be reduced to inference in an attractive model
based on a certain extended graph.

We use the walk-sum formulation to develop a new interpretation of BP in trees and of LBP in
general. Based on this interpretation we are able to extend the previously known sufficient condi-
tions for convergence of LBP to the class of walk-summable models. Our sufficient condition is
stronger than that given by Weiss and Freeman (2001) as the class of diagonally dominant models
is a strict subset of the class of pairwise-normalizable models. Our results also explain why they did
not find any examples where LBP does not converge. The reason is that they presumed pairwise-
normalizability. We also give a new explanation, in terms of walk-sums, of why LBP converges to
the correct means but not to the correct variances. The reason is that LBP captures all of the walks
needed to compute the means but only computes a subset of the walks needed for the variances.

1. After submitting the paper we became aware of a related decomposition for non-Gaussian classical spin systems in
statistical physics developed by Brydges et al. (1983). Similarly to our work, the decomposition is connected to the
Neumann series expansion of the matrix inverse, but in addition to products of edge weights, their weight of a walk
includes a complicated multi-dimensional integral.

2. Another interesting decomposition of the covariance in Gaussian models in terms of path sums has been proposed
in Jones and West (2005). It is markedly different from our approach (e.g., unlike paths, walks can cross an edge
multiple times, and the weight of a path is rather hard to calculate, as opposed to our walk-weights).
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In general, walk-summability is not necessary for LBP convergence. Hence, we also provide a
tighter (essentially necessary) condition for convergence of LBP variances based on a weaker form
of walk-summability defined on the LBP computation tree. This provides deeper insight into why
LBP can fail to converge—because the LBP computation tree is not always well-posed—which
suggests connections to Tatikonda and Jordan (2002).

In related work, concurrent with Johnson et al. (2006), Moallemi and Van Roy (2006a) have
shown convergence of their consensus propagation algorithm, which uses a pairwise-normalized
model. In this paper, we demonstrate the equivalence of pairwise-normalizability and walk-summability,
which suggests a connection between their results and ours. In their more recent work (Moallemi
and Van Roy, 2006b), concurrent with this paper, they make use of our walk-sum analysis of LBP,
assuming pairwise-normalizability, to consider other initializations of the algorithm.3 However, the
critical condition is still walk-summability, which is presented in this paper.

In Section 2 we introduce Gaussian graphical models and describe exact BP for tree-structured
graphs as well as approximate BP for loopy graphs, and their connection to Gaussian elimination.
Next, in Section 3 we describe our walk-based framework for inference, define walk-summable
models, and explore the connections between walk-summable models and other subclasses of Gaus-
sian models. We present the walk-sum interpretation of LBP and our conditions for its convergence
in Section 4. We discuss non-walksummable models, and tighter conditions for LBP convergence in
Section 5. Finally, conclusions and directions for further work are discussed in Section 6. Detailed
proofs omitted from the main body of the paper appear in the appendices.

2. Preliminaries

In this section we give a brief background of Gaussian graphical models (Section 2.1) and of Gaus-
sian elimination and its relation to belief propagation (Section 2.2).

2.1 Gaussian Graphical Models

A Gaussian graphical model is defined by an undirected graph G = (V,E), where V is the set of
nodes (or vertices) and E is the set of edges (a set of unordered pairs {i, j} ⊂V ), and a collection of
jointly Gaussian random variables x = (xi, i ∈V ). The probability density is given by

p(x) ∝ exp{− 1
2 xT Jx+hT x} (1)

where J is a symmetric, positive definite matrix (J � 0) that is sparse so as to respect the graph
G: if {i, j} 6∈ E then Ji j = 0. The condition J � 0 is necessary so that (1) defines a valid (i.e.,
normalizable) probability density. This is the information form of the Gaussian density. We call
J the information matrix and h the potential vector. They are related to the standard Gaussian
parameterization in terms of the mean µ , E{x} and covariance P , E{(x−µ)(x−µ)T} as follows:

µ = J−1h and P = J−1.

This class of densities is precisely the family of non-degenerate Gaussian distributions which are
Markov with respect to the graph G (Speed and Kiiveri, 1986): if a subset of nodes B ⊂V separates

3. Here, we choose one particular initialization of LBP. However, fixing this initialization does not restrict the class of
models or applications for which our results apply. For instance, the application considered by Moallemi and Van
Roy (2006a) can also be handled in our framework by a simple reparameterization.
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two other subsets A ⊂ V and C ⊂ V in G, then the corresponding subsets of random variables xA

and xC are conditionally independent given xB. In particular, define the neighborhood of a node i to
be the set of its neighbors: N (i) = { j | {i, j} ∈ E}. Then, conditioned on xN (i), the variable xi is
independent of the rest of the variables in the graph.

The partial correlation coefficient between variables xi and x j measures their conditional cor-
relation given the values of the other variables xV\i j , (xk,k ∈ V \ {i, j}). These are computed by
normalizing the off-diagonal entries of the information matrix (Lauritzen, 1996):

ri j ,
cov(xi;x j|xV\i j)

√

var(xi|xV\i j)var(x j|xV\i j)
= −

Ji j
√

JiiJ j j
. (2)

Hence, we observe the relation between the sparsity of J and conditional independence between
variables. In agreement with the Hammersley-Clifford theorem (Hammersley and Clifford, 1971),
for Gaussian models we may factor the probability distribution

p(x) ∝ ∏
i∈V

ψi(xi) ∏
{i, j}∈E

ψi j(xi,x j)

in terms of node and edge potential functions:4

ψi(xi) = exp{− 1
2 Aix

2
i +hixi} and ψi j(xi,x j) = exp{− 1

2 [ xi x j ]Bi j
[ xi

x j

]

}. (3)

Here, Ai and Bi j must add up to J such that

xT Jx = ∑
i

Aix
2
i + ∑

{i, j}∈E

( xi x j )Bi j
( xi

x j

)

.

The choice of a decomposition of J into such Ai and Bi j is not unique: the diagonal elements Jii can
be split in various ways between Ai and Bi j, but the off-diagonal elements of J are copied directly
into the corresponding Bi j. It is not always possible to find a decomposition of J such that both
Ai > 0 and Bi j � 0.5 We call models where such a decomposition exists pairwise-normalizable.

Our analysis is not limited to pairwise-normalizable models. Instead we use the decomposition

Ai = Jii and Bi j =
[

0 Ji j
Ji j 0

]

, which always exists, and leads to the following node and edge potentials:

ψi(xi) = exp{− 1
2 Jiix

2
i +hixi} and ψi j(xi,x j) = exp{−xiJi jx j}. (4)

Note that any decomposition in (3) can easily be converted to our decomposition (4) using local
operations (the required elements of J can be read off by adding overlapping matrices).

We illustrate this framework with a prototypical estimation problem. Suppose that we wish
to estimate an unknown signal x (e.g., an image) based on noisy observations y. A commonly
used prior model in image processing is the thin membrane model p(x) ∝ exp({− 1

2((α∑i x2
i +

4. To be precise, it is actually the negative logarithms of ψi and ψi j that are usually referred to as potentials in the
statistical mechanics literature. We abuse the terminology slightly for convenience.

5. For example the model with J =
[ 1 0.6 0.6

0.6 1 0.6
0.6 0.6 1

]

is a valid model with J � 0, but no decomposition into single and

pairwise positive definite factors exists. This can be verified by posing an appropriate semidefinite feasibility problem,
or as we discuss later through walk-summability.
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β∑{i, j}∈E(xi − x j)
2)))} where α,β > 0 and E specifies nearest neighbors in the image. This model

is described by a sparse information matrix with Jii = α+β|N (i)| and Ji j = −β for {i, j} ∈ E.
Now, consider local observations y, such that p(y|x) = ∏i p(yi|xi). The distribution of interest is

then p(x|y) ∝ p(y|x)p(x), which is Markov with respect to the same graph as p(x), but with modified
information parameters. For instance, let y = x + v where v is Gaussian distributed measurement
noise with zero mean and covariance σ2I. Then p(x|y) ∝ exp{− 1

2 xT Ĵx + hT x}, where Ĵ = J +
1

σ2 I and h = 1
σ2 y. Hence, introducing local observations only changes the potential vector h and

the diagonal of the information matrix J. Without loss of generality, in subsequent discussion we
assume that any observations have already been absorbed into J and h.

2.2 Belief Propagation and Gaussian Elimination

An important inference problem for a graphical model is computing the marginals pi(xi), obtained
by integrating p(x) over all variables except xi, for each node i.6 This problem can be solved very
efficiently in graphs that are trees by a form of variable elimination, known as belief propagation,
which also provides an approximate method for general graphs.

Belief Propagation in Trees In principle, the marginal of a given node can be computed by re-
cursively eliminating variables one by one until just the desired node remains. Belief propagation
in trees can be interpreted as an efficient form of variable elimination. Rather than computing the
marginal for each variable independently, we instead compute these together by sharing the results
of intermediate computations. Ultimately each node j must receive information from each of its
neighbors, where the message, mi→ j(x j), from neighbor i to j represents the result of eliminating
all of the variables in the subtree rooted at node i and including all of its neighbors other than j (see
Figure 1). Since each of these messages is itself made up of variable elimination steps correspond-
ing to the subtrees rooted at the other neighbors of node i, there is a set of fixed-point equations that
relate messages throughout the tree:

mi→ j(x j) =
Z

ψi j(xi,x j)ψi(xi) ∏
k∈N (i)\ j

mk→i(xi) dxi. (5)

Given these fixed-point messages, the marginals are obtained by combining messages at each node,

pi(xi) ∝ ψi(xi) ∏
k∈N (i)

mk→i(xi),

and normalizing the result.
The equations (5) can be solved in a finite number of steps using a variety of message sched-

ules, including one schedule that corresponds roughly to sequential variable elimination and back-
substitution (a first pass from leaf nodes toward a common, overall “root” node followed by a
reverse pass back to the leaf nodes) and a fully parallel schedule in which each node begins by
sending non-informative messages (all mi→ j initially set to 1), followed by iterative computation
of (5) throughout the tree. For trees, either message schedule will terminate with the correct val-
ues after a finite number of steps (equal to the diameter of the tree in the case of the fully parallel
iteration).

6. Another important problem is computation of max-marginals p̂i(xi), obtaining by maximizing with respect to the
other variables, which is useful to determine the mode x̂ = argmax p(x). In Gaussian models, these are equivalent
inference problems because marginals are proportional to max-marginals and the mean is equal to the mode.
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As we have discussed, there are a variety of ways in which the information matrix in GMRFs
can be decomposed into edge and node potential functions, and each such decomposition leads to
BP iterations that are different in detail.7 In our development we will use the simple decomposition
in (4), directly in terms of the elements of J.

For Gaussian models expressed in information form, variable elimination/marginalization cor-
responds to Gaussian elimination.8 For example, if we wish to eliminate a single variable i to obtain
the marginal over U = V\i, the formulas yielding the information parameterization for the marginal
on U are:

ĴU = JU,U − JU,iJ
−1
ii Ji,U and ĥU = hU − JU,iJ

−1
ii hi.

Here ĴU and ĥU specify the marginal density on xU , whereas JU,U and hU are a submatrix and a
subvector of the information parameters on the full graph. The messages in Gaussian models can
be parameterized in information form

mi→ j(x j) , exp{− 1
2 ∆Ji→ jx

2
j +∆hi→ jx j}, (6)

so that the fixed-point equations (5) can be stated in terms of these information parameters. We do
this in two steps. The first step corresponds to preparing the message to be sent from node i to node
j by collecting information from all of the other neighbors of i:

Ĵi\ j = Jii + ∑
k∈N (i)\ j

∆Jk→i and ĥi\ j = hi + ∑
k∈N (i)\ j

∆hk→i. (7)

The second step produces the information quantities to be propagated to node j:

∆Ji→ j = −J jiĴ
−1
i\ j J ji and ∆hi→ j = −J jiĴ

−1
i\ j ĥi\ j. (8)

As before, these equations can be solved by various message schedules, ranging from leaf-root-
leaf Gaussian elimination and back-substitution to fully parallel iteration starting from the non-
informative messages in which all ∆Ji→ j and ∆hi→ j are set to zero. When the fixed point solution
is obtained, the computation of the marginal at each node is obtained by combining messages and
local information:

Ĵi = Jii + ∑
k∈N (i)

∆Jk→i and ĥi = hi + ∑
k∈N (i)

∆hk→i, (9)

which can be easily inverted to recover the marginal mean and variance:

µi = Ĵ−1
i ĥi and Pii = Ĵ−1

i .

In general, performing Gaussian elimination corresponds, upto a permutation, to computing an
LDLT factorization of the information matrix—that is, PJPT = LDLT where L is lower-triangular, D
is diagonal and P is a permutation matrix corresponding to a particular choice of elimination order.
This factorization exists if J is non-singular. In trees, the elimination order can be chosen such that
at each step of the procedure, the next node eliminated is a leaf node of the remaining subtree. Each
node elimination step then corresponds to a message in the “upward” pass of the leaf-root-leaf form

7. One common decomposition for pairwise-normalizable models selects Ai > 0 and Bi j � 0 in (3) (Plarre and Kumar,
2004; Weiss and Freeman, 2001; Moallemi and Van Roy, 2006a).

8. The connection between Gaussian elimination and belief propagation has been noted before by Plarre and Kumar
(2004), although they do not use the information form.
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mi→ ji j

A message mi→ j passed from node i to
node j ∈N (i) captures the effect of elim-
inating the subtree rooted at i.

Figure 1: An illustration of BP message-passing on trees.

of Gaussian BP. In particular, Dii = Ĵi\ j at all nodes i except the last (here, j is the parent of node
i when i is eliminated) and Dii = Ĵi for that last variable corresponding to the root of the tree. It is
clear that Dii > 0 for all i if and only if J is positive definite. We conclude that for models on trees,
J being positive definite is equivalent to all of the quantities Ĵi\ j and Ĵi in (7),(9) being positive, a
condition we indicate by saying that BP on this tree is well-posed. Thus, performing Gaussian BP
on trees serves as a simple test for validity of the model. The importance of this notion will become
apparent shortly.

Loopy Belief Propagation The message passing formulas derived for tree models can also be
applied to models defined on graphs with cycles, even though this no longer corresponds precisely
to variable elimination in the graph. This approximation method, called loopy belief propagation
(LBP), was first proposed by Pearl (1988). Of course in this case, since there are cycles in the graph,
only iterative message-scheduling forms can be defined. To be precise, a message schedule {M (n)}

specifies which messages m(n)
i→ j, corresponding to directed edges (i, j) ∈ M (n),9 are updated at step

n. The messages in M (n) are updated using

m(n)
i→ j(x j) =

Z

ψi j(xi,x j)ψi(xi) ∏
k∈N (i)\ j

m(n−1)
k→i (xi) dxi (10)

and m(n)
i→ j = m(n−1)

i→ j for the other messages. For example, in the fully parallel case all messages are
updated at each iteration whereas, in serial versions, only one message is updated at each iteration.
For GMRFs, application of (10), with messages m(n)

i→ j parameterized as in (6), reduces to iterative

application of equations (7),(8). We denote the information parameters at step n by ∆J (n)
i→ j and ∆h(n)

i→ j.
We initialize LBP with non-informative zero values for all of the information parameters in these
messages. It is well known that LBP may or may not converge. If it does converge, it will not, in
general, yield the correct values for the marginal distributions. In the Gaussian case, however, it is
known (Weiss and Freeman, 2001; Rusmevichientong and Van Roy, 2001) that if LBP converges,
it yields the correct mean values but, in general, incorrect values for the variances. While there
has been considerable work on analyzing the convergence of LBP in general and for GMRFs in
particular, the story has been far from complete. One major contribution of this paper is analysis
that both provides new insights into LBP for Gaussian models and also brings that story several
steps closer to completion.

A key component of our analysis is the insightful interpretation of LBP in terms of the so-called
computation tree (Yedidia et al., 2003; Weiss and Freeman, 2001; Tatikonda and Jordan, 2002),
which captures the structure of LBP computations. The basic idea here is that to each message m(n)

i→ j

9. For each undirected edge {i, j} ∈ E there are two messages: mi→ j for direction (i, j), and m j→i for ( j, i).
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Figure 2: (a) Graph of a Gauss-Markov model with nodes {1,2,3,4} and with edge weights (partial
correlations) as shown. (b) The parallel LBP message passing scheme. In (c), we show
how, after 3 iterations, messages link up to form the computation tree T (3)

1 of node 1 (the

subtree T (3)
4→1, associated with message m(3)

4→1, is also indicated within the dotted outline).
In (d), we illustrate an equivalent Gauss-Markov tree model, with edge weights copied
from (a), which has the same marginal at the root node as computed by LBP after 3
iterations.

and marginal estimate p(n)
i there are associated computation trees T (n)

i→ j and T (n)
i that summarize

their pedigree. Initially, these trees are just single nodes. When message m(n)
i→ j is computed, its

computation tree T (n)
i→ j is constructed by joining the trees T (n−1)

k→i , for all neighbors k of i except

j, at their common root node i and then adding an additional edge (i, j) to form T (n)
i→ j rooted at

j. When marginal estimate p(n)
i is computed, its computation tree T (n)

i is formed by joining the

trees T (n−1)
k→i , for all neighbors k of i, at their common root. Each node and edge of the original

graph may be replicated many times in the computation tree, but in a manner which preserves the
local neighborhood structure. Potential functions are assigned to the nodes and edges of T (n)

i by
copying these from the corresponding nodes and edges of the original loopy graphical model. In
this manner, we obtain a Markov tree model in which the marginal at the root node is precisely
p(n)

i as computed by LBP. In the case of the fully parallel form of LBP, this leads to a collection of

“balanced” computation trees T (n)
i (assuming there are no leaf nodes in G) having uniform depth n,

as illustrated in Figure 2. The same construction applies for other message schedules with the only
difference being that the resulting computation trees may grow in a non-uniform manner. Our walk-
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sum analysis of LBP in Section 6, which relies on computation trees, applies for general message
passing schedules.

As we have mentioned, BP on trees, which corresponds to performing Gaussian elimination, is
well-posed if and only if J is positive definite. LBP on Gaussian models corresponds to Gaussian
elimination in the computation tree, which has its own information matrix corresponding to the
unfolding illustrated in Figure 2 and involving replication of information parameters of the original
loopy graphical model. Consequently, LBP is well-posed, yielding non-negative variances at each
stage of the iteration, if and only if the model on the computation tree is valid, that is, if and only
if the information matrix for the computation tree is positive definite. Very importantly, this is not
always the case (even though the matrix J on the original graph is positive definite). The analysis
in this paper, among other things, makes this point clear through analysis of the situations in which
LBP converges and when it fails to converge.

3. Walk-Summable Gaussian Models

Now we describe our walk-sum framework for Gaussian inference. It is convenient to assume that
we have normalized our model (by rescaling variables) so that Jii = 1 for all i. Then, J = I−R where
R has zero diagonal and the off-diagonal elements are equal to the partial correlation coefficients ri j

in (2). We label each edge {i, j} of the graph G with partial correlations ri j as edge weights (e.g.,
see Figures 3 and 5).

3.1 Walk-Summability

A walk of length l ≥ 0 in a graph G is a sequence w = (w0,w1, . . . ,wl) of nodes wk ∈ V such that
each step of the walk (wk,wk+1) corresponds to an edge of the graph {wk,wk+1} ∈ E. Walks may
visit nodes and cross edges multiple times. We let l(w) denote the length of walk w. We define the
weight of a walk to be the product of edge weights along the walk:

φ(w) =
l(w)

∏
k=1

rwk−1,wk .

We also allow zero-length “self” walks w = (v) at each node v for which we define φ(w) = 1.
To make a connection between these walks and Gaussian inference, we decompose the covariance
matrix using the Neumann power series for the matrix inverse:10

P = J−1 = (I −R)−1 =
∞

∑
k=0

Rk, for ρ(R) < 1.

Here ρ(R) is the spectral radius of R, the maximum absolute value of eigenvalues of R. The power
series converges if ρ(R) < 1.11 The (i, j)-th element of Rl can be expressed as a sum of weights of

walks w that go from i to j and have length l (denoted w : i
l
→ j):

(Rl)i j = ∑
w1,...,wl−1

ri,w1rw1,w2 ...rwl−1, j = ∑
w:i

l
→ j

φ(w).

10. The Neumann series holds for the unnormalized case as well: J = D−K, where D is the diagonal part of J. With the

weight of a walk defined as φ(w) = ∏l(w)
k=1 Kwk−1,wk /∏l(w)

k=0 Dwk,wk , all our analysis extends to the unnormalized case.
11. Note that ρ(R) can be greater than 1 while I −R � 0. This occurs if R has an eigenvalue less than −1. Such models

are not walk-summable, so the analysis in Section 5 (rather than Section 4.2) applies.

2039



MALIOUTOV, JOHNSON AND WILLSKY

The last equality holds because only the terms that correspond to walks in the graph have non-zero
contributions: for all other terms at least one of the partial correlation coefficients rwk,wk+1 is zero.
The set of walks from i to j of length l is finite, and the sum of weights of these walks (the walk-
sum) is well-defined. We would like to also define walk-sums over arbitrary countable sets of walks.
However, care must be taken, as walk-sums over countably many walks may or may not converge,
and convergence may depend on the order of summation. This motivates the following definition:

We say that a Gaussian distribution is walk-summable (WS) if for all i, j ∈V the unordered sum
over all walks w from i to j (denoted w : i → j)

∑
w:i→ j

φ(w)

is well-defined (i.e., converges to the same value for every possible summation order). Appealing to
basic results of analysis (Rudin, 1976; Godement, 2004), the unordered sum is well-defined if and
only if it converges absolutely, that is, if ∑w:i→ j |φ(w)| converges.

Before we take a closer look at walk-summability, we introduce additional notation. For a matrix
A, let Ā be the element-wise absolute value of A, that is, Āi j = |Ai j|. We use the notation A ≥ B for
element-wise comparisons, and A � B for comparisons in positive definite ordering. The following
version of the Perron-Frobenius theorem (Horn and Johnson, 1985; Varga, 2000) for non-negative
matrices (here R̄ ≥ 0) is used on several occasions in the paper:

Perron-Frobenius theorem There exists a non-negative eigenvector x ≥ 0 of R̄ with eigenvalue
ρ(R̄). If the graph G is connected (where ri j 6= 0 for all edges of G) then ρ(R̄) and x are strictly
positive and, apart from γx with γ > 0, there are no other non-negative eigenvectors of R̄.

In addition, we often use the following monotonicity properties of the spectral radius:

(i) ρ(R) ≤ ρ(R̄) (ii) If R̄1 ≤ R̄2 then ρ(R̄1) ≤ ρ(R̄2). (11)

We now present several equivalent conditions for walk-summability:

Proposition 1 (Walk-Summability) Each of the following conditions are equivalent to walk-summability:

(i) ∑w:i→ j |φ(w)| converges for all i, j ∈V .

(ii) ∑l R̄l converges.

(iii) ρ(R̄) < 1.

(iv) I − R̄ � 0.

The proof appears in Appendix A. It uses absolute convergence to rearrange walks in order of
increasing length, and the Perron-Frobenius theorem for part (iv). The condition ρ(R̄)< 1 is stronger
than ρ(R) < 1. The latter is sufficient for the convergence of the walks ordered by increasing length,
whereas walk-summability enables convergence to the same answer in arbitrary order of summation.
Note that (iv) implies that the model is walk-summable if and only if we can replace all negative
partial correlation coefficients by their absolute values and still have a well-defined model (i.e., with
information matrix I − R̄ � 0). We also note that condition (iv) relates walk-summability to the
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Figure 3: Example graphs: (a) 4-cycle with a chord. (b) 5-cycle.

so-called H-matrices in linear algebra (Horn and Johnson, 1991; Varga, 2000).12 As an immediate
corollary, we identify the following important subclass of walk-summable models:

Corollary 2 (Attractive Models) Let J = I−R be a valid model (J � 0) with non-negative partial
correlations R ≥ 0. Then, J = I −R is walk-summable.

A superclass of attractive models is the set of non-frustrated models. A model is non-frustrated if
it does not contain any frustrated cycles, that is, cycles with an odd number of negative edge weights.
We show in Appendix A (in the proof of Corollary 3) that if the model is non-frustrated, then one
can negate some of the variables to make the model attractive13. Hence, we have another subclass
of walk-summable models (the inclusion is strict as some frustrated models are walk-summable, see
Example 1):

Corollary 3 (Non-frustrated models) Let J = I−R be valid. If R is non-frustrated then J is walk-
summable.

Example 1. In Figure 3 we illustrate two small Gaussian graphical models, which we use
throughout the paper. In both models the information matrix J is normalized to have unit diago-
nal and to have partial correlations as indicated in the figure. Consider the 4-cycle with a chord
in Figure 3(a). The model is frustrated (due to the opposing sign of one of the partial correla-
tions), and increasing r worsens the frustration. For 0 ≤ r ≤ 0.39039, the model is valid and
walk-summable: for example, for r = 0.39, λmin(J) = 0.22 > 0, and ρ(R̄) ≈ 0.9990 < 1. In the
interval 0.39039 ≤ r ≤ 0.5 the model is valid, but not walk-summable: for example, for r = 0.4,
λmin = 0.2 > 0, and ρ(R̄) ≈ 1.0246 > 1. Also, note that for R (as opposed to R̄), ρ(R) ≤ 1 for
r ≤ 0.5 and ρ(R) > 1 for r > 0.5. Finally, the model stops being diagonally dominant above r = 1

3 ,
but walk-summability is a strictly larger set and extends until r ≈ 0.39039. We summarize various
critical points for this model and for the model in Figure 3(b) in the diagram in Figure 4.

Here are additional useful implications of walk-summability, with proof in Appendix A:

Proposition 4 (WS Necessary Conditions) All of the following are implied by walk-summability:

12. A (possibly non-symmetric) matrix A is an H-matrix if all eigenvalues of the matrix M(A), where Mii = |Aii|, and
Mi j =−|Ai j| for i 6= j, have positive real parts. For symmetric matrices this is equivalent to M being positive definite.
In (iv) J is an H-matrix since M(J) = I − R̄ � 0.

13. This result is referred to in Kirkland et al. (1996). However, in addition to proving that there exists such a sign
similarity, our proof also gives an algorithm which checks whether or not the model is frustrated, and determines
which subset of variables to negate if the model is non-frustrated.
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Figure 4: Critical regions for example models from Figure 3. (a) 4-cycle with a chord. (b) 5-cycle.

(i) ρ(R) < 1.

(ii) J = I −R � 0.

(iii) ∑k Rk = (I −R)−1.

Implication (ii) shows that walk-summability is a sufficient condition for validity of the model.
Also, (iii) shows the relevance of walk-sums for inference since P = J−1 = (I −R)−1 = ∑k Rk and
µ = J−1h = ∑k Rkh.

3.2 Walk-Sums for Inference

Next we show that, in walk-summable models, means and variances correspond to walk-sums over
certain sets of walks.

Proposition 5 (WS Inference) If J = I−R is walk-summable, then the covariance P = J−1 is given
by the walk-sums:

Pi j = ∑
w:i→ j

φ(w).

Also, the means are walk-sums reweighted by the value of h at the start of each walk:

µi = ∑
w:∗→i

h∗φ(w)

where the sum is over all walks which end at node i (with arbitrary starting node), and where ∗
denotes the starting node of the walk w.

Proof. We use the fact that (Rl)i j = ∑
w:i

l
→ j

φ(w). Then,

Pi j = ∑
l

(Rl)i j = ∑
l

∑
w:i

l
→ j

φ(w) = ∑
w:i→ j

φ(w)
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Single walk: w = (1,2,3). Weight: φ(w) = r1,2r2,3,
φh(w) = h1r1,2r2,3.

Self-return walks, W (1 → 1): {(1),(1,2,1),(1,3,1),
(1,2,3,1),(1,3,2,1),(1,2,1,2,1), ...}
P1,1 = φ(1 → 1) = 1+ r1,2r2,1 + r1,3r3,1 + r1,2r2,3r3,1 + ....

Set of walks W (∗→ 1): {(1),(2,1),(3,1),(2,3,1),
(3,2,1),(1,2,1)(1,3,1), ...}
µ1 = φh(∗→ 1) = h1 +h2r2,1 +h3r3,1 +h2r2,3r3,1 + ....

Figure 5: Illustration of walk-sums for means and variances.

and
µi = ∑

j

h jPji = ∑
j

∑
w: j

l
→i

h jφ(w) = ∑
w:∗→i

h∗φ(w) �

Walk-Sum Notation We now provide a more compact notation for walk-sets and walk-sums. In
general, given a set of walks W we define the walk-sum:

φ(W ) = ∑
w∈W

φ(w)

and the reweighted walk-sum:
φh(W ) = ∑

w∈W
hw0φ(w)

where w0 denotes the initial node in the walk w. Also, we adopt the convention that W (. . .) denotes
the set of all walks having some property . . . and denote the associated walk-sums simply as φ(. . .)
or φh(. . .). For instance, W (i → j) denotes the set of all walks from i to j and φ(i → j) is the
corresponding walk-sum. Also, W (∗→ i) denotes the set all walks that end at node i and φh(∗→ i)
is the corresponding reweighted walk-sum. In this notation, Pi j = φ(i → j) and µi = φh(∗ → i). An
illustration of walk-sums and their connection to inference appears in Figure 5 where we list some
walks and walk-sums for a 3-cycle graph.

Walk-Sum Algebra We now show that the walk-sums required for inference in walk-summable
models can be significantly simplified by exploiting the recursive structure of walks. To do so, we
make use of some simple algebraic properties of walk-sums. The following lemmas all assume that
the model is walk-summable.

Lemma 6 Let W = ∪∞
k=1Wk where the subsets Wk are disjoint. Then, φ(W ) = ∑∞

k=1 φ(Wk).

Proof. By the sum-partition theorem for absolutely convergent series (Godement, 2004):
∑w∈W φ(w) = ∑k ∑w∈Wk

φ(w). �

Lemma 7 Let W = ∪∞
k=1Wk where Wk ⊂ Wk+1 for all k. Then, φ(W ) = limk→∞ φ(Wk).
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Proof. Let W0 be the empty set. Then, W = ∪∞
k=1(Wk \Wk−1). By Lemma 6,

φ(W ) =
∞

∑
k=1

φ(Wk \Wk−1) = lim
N→∞

N

∑
k=1

(φ(Wk)−φ(Wk−1)) = lim
N→∞

(φ(WN)−φ(W0))

where we use φ(W0) = 0 in the last step to obtain the result. �

Given two walks u = (u0, . . . ,un) and v = (v0, . . . ,vm) with un = v0 (walk v begins where walk
u ends) we define the product of walks uv = (u0, . . . ,un,v1, . . . ,vm). Let U and V be two countable
sets of walks such that every walk in U ends at a given node i and every walk in V begin at this
node. Then we define the product set UV = {uv | u ∈ U,v ∈ V }. We say that (U,V ) is a valid
decomposition if for every w ∈ UV there is a unique pair (u,v) ∈ U ×V such that uv = w.

Lemma 8 Let (U,V ) be a valid decomposition. Then, φ(UV ) = φ(U)φ(V ).

Proof. For individual walks it is evident that φ(uv) = φ(u)φ(v). Note that UV = ∪u∈U uV ,
where the sets uV , {uv|v ∈ V } are mutually disjoint. By Lemma 6,

φ(UV ) = ∑
u∈U

φ(uV ) = ∑
u∈U

∑
v∈V

φ(uv) = ∑
u∈U

∑
v∈V

φ(u)φ(v) =

(

∑
u∈U

φ(u)

)(

∑
v∈V

φ(v)

)

where we have used φ(uV ) = ∑v∈V φ(uv) because uV is one-to-one with V . �

Note that W (i → i) is the set of self-return walks at node i, that is, walks which begin and end

at node i. These self-return walks include walks which return to i many times. Let W (i
\i
→ i) be

the set of all walks with non-zero length that begin and end at i but do not visit i at any other point
in between. We call these the single-revisit self-return walks at node i. The set of self-return walks

that return exactly k times is generated by taking the product of k copies of W (i
\i
→ i) denoted by

W k(i
\i
→ i). Thus, we obtain all self-return walks as

W (i → i) = ∪k≥0W k(i
\i
→ i) (12)

where W 0(i
\i
→ i) , {(i)}.

Similarly, recall that W (∗→ i) denotes the set of all walks which end at node i. Let W (∗
\i
→ i)

denote the set of walks with non-zero length which end at node i and do not visit i previously (we
call them single-visit walks). Thus, all walks which end at i are obtained as:

W (∗→ i) =

(

{(i)}∪W (∗
\i
→ i)

)

W (i → i), (13)

which is a valid decomposition.
Now we can decompose means and variances in terms of single-visit and single-revisit walk-

sums, which we will use in section 4.1 to analyze BP.

Proposition 9 Let αi = φ(i
\i
→ i) and βi = φh(∗

\i
→ i). Then,

Pii =
1

1−αi
and µi =

hi +βi

1−αi
.
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Figure 6: (a) A frustrated model defined on G with one negative edge (r > 0). (b) The corresponding
attractive model defined on Ĝ.

Proof. First note that the decomposition of W k(i
\i
→ i) into products of k single-revisit self-

return walks is a valid decomposition. By Lemma 8, φ(W k(i
\i
→ i)) = φk(i

\i
→ i) = αk

i . Then, by (12)
and Lemma 6:

Pii = φ(i → i) = ∑
k

αk
i =

1
1−αi

.

Walk-summability of the model implies convergence of the geometric series (i.e., |αi| < 1). Lastly,
the decomposition in (13) implies

µi = φh(∗→ i) = (hi +φh(∗
\i
→ i))φ(i → i) =

hi +βi

1−αi
�

3.3 Correspondence to Attractive Models

We have already shown that attractive models are walk-summable. Interestingly, it turns out that
inference in any walk-summable model can be reduced to inference in a corresponding attractive
model defined on a graph with twice as many nodes. The basic idea here is to separate out the walks
with positive and negative weights.

Specifically, let Ĝ = (V̂ , Ê) be defined as follows. For each node i ∈ V we define two corre-
sponding nodes i+ ∈V+ and i− ∈V−, and set V̂ = V+∪V−. For each edge {i, j} ∈ E with ri j > 0 we
define two edges {i+, j+},{i−, j−} ∈ Ê, and set the partial correlations on these edges to be equal
to ri j. For each edge {i, j} ∈ E with ri j < 0 we define two edges {i+, j−},{i−, j+} ∈ Ĝ, and set the
partial correlations to be −ri j. See Figure 6 for an illustration.

Let (R+)i j = max{Ri j,0} and (R−)i j = max{−Ri j,0}. Then R can be expressed as the difference

of these non-negative matrices: R = R+−R−. Based on our construction, we have that R̂ =
(

R+ R−
R− R+

)

and Ĵ = I − R̂. This defines a unit-diagonal information matrix Ĵ on Ĝ. Note that if Ĵ � 0 then this
defines a valid attractive model.

Proposition 10 Ĵ = I − R̂ � 0 if and only if J = I −R is walk-summable.

The proof relies on the Perron-Frobenius theorem and is given in Appendix A. Now, let h =

h+ − h− with (h+)i = max{hi,0} and (h−)i = max{−hi,0}. Define ĥ =
(

h+

h−

)

. Now we have the

information form model (ĥ, Ĵ) which is a valid, attractive model and also has non-negative node
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potentials. Performing inference with respect to this augmented model, we obtain the mean vector

µ̂ =
(

µ̂+
µ̂−

)

, Ĵ−1ĥ and covariance matrix P̂ =
(

P̂++ P̂+−

P̂−+ P̂−−

)

, Ĵ−1. From these calculations, we can

obtain the moments (µ,P) of the original walk-summable model (h,J):

Proposition 11 P = P̂++− P̂+− and µ = µ̂+− µ̂−.

The proof appears in Appendix A. This proposition shows that estimation of walk-summable
models may be reduced to inference in an attractive model in which all walk-sums are sums of posi-
tive weights. In essence, this is accomplished by summing walks with positive and negative weights
separately and then taking the difference, which is only possible for walk-summable models.

3.4 Pairwise-Normalizability

To simplify presentation we assume that the graph does not contain any isolated nodes (a node
without any incident edges). Then, we say that the information matrix J is pairwise-normalizable
(PN) if we can represent J in the form

J = ∑
e∈E

[Je]

where each Je is a 2× 2 symmetric, positive definite matrix.14 The notation [Je] means that Je is
zero-padded to a |V |× |V | matrix with its principal submatrix for {i, j} being Je (with e = {i, j}).
Thus, xT [Je]x = xT

e Jexe. Pairwise-normalizability implies that J � 0 because each node is covered
by at least one positive definite submatrix Je. Let JPN denote the set of n×n pairwise-normalizable
information matrices J (not requiring unit-diagonal normalization). This set has nice convexity
properties. Recall that a set X is convex if x,y ∈ X implies λx+(1−λ)y ∈ X for all 0 ≤ λ ≤ 1 and
is a cone if x ∈ X implies αx ∈ X for all α > 0. A cone X is pointed if X ∩−X = {0}.

Proposition 12 (Convexity of PN models) The set JPN is a convex pointed cone.

The proof is in Appendix A. We now establish the following fundamental result:

Proposition 13 (WS ⇔ PN) J = I−R is walk-summable if and only if it is pairwise-normalizable.

Our proof appears in in Appendix A. An equivalent result has been derived independently in
the linear algebra literature: Boman et al. (2005) establish that symmetric H-matrices with positive
diagonals (which is equivalent to WS by part (iv) of Proposition 1) are equivalent to matrices with
factor width at most two (PN models). However, the result PN ⇒ WS was established earlier by
Johnson (2001). Our proof for WS ⇒ PN uses the Perron-Frobenius theorem, whereas Boman et al.
(2005) use the generalized diagonal dominance property of H-matrices.

Equivalence to pairwise-normalizability gives much insight into the set of walk-summable mod-
els. For example, the set of unit-diagonal J matrices that are walk-summable is convex, as it is the
intersection of JPN with an affine space. Also, the set of walk-summable J matrices that are sparse
with respect to a particular graph G (with some entries of J are restricted to 0) is convex.

Another important class of models are those that have a diagonally dominant information ma-
trix, that is, where for each i it holds that ∑ j 6=i |Ji j| < Jii.

14. An alternative definition of pairwise-normalizability is the existence of a decomposition J = cI + ∑e∈E [Je], where
c > 0, and Je � 0. For graphs without isolated nodes, both definitions are equivalent.
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i j

k2

k1 Ti\ j

Ti→ j

ri j

Figure 7: Illustration of the subtree notation, Ti→ j and Ti\ j.

Proposition 14 Diagonally dominant models are pairwise-normalizable (walk-summable).

A constructive proof is given in Appendix A. The converse does not hold: not all pairwise-
normalizable models are diagonally dominant. For instance, in our example of a 4-cycle with a
chord shown in Figure 3(a), with r = .38 the model is not diagonally dominant but is walk-summable
and hence pairwise-normalizable.

4. Walk-sum Interpretation of Belief Propagation

In this section we use the concepts and machinery of walk-sums to analyze belief propagation. We
begin with models on trees, for which, as we show, all valid models are walk-summable. Moreover,
for these models we show that exact walk-sums over infinite sets of walks for means and variances
can be computed efficiently in a recursive fashion. We show that these walk-sum computations map
exactly to belief propagation updates. These results (and the computation tree interpretation of LBP
recursions) then provide the foundation for our analysis of loopy belief propagation in Section 4.2.

4.1 Walk-Sums and BP on Trees

Our analysis of BP makes use of the following property:

Proposition 15 (Trees are walk-summable) For tree structured models J � 0 ⇔ ρ(R̄)≤ 1 (i.e., all
valid trees are walk-summable). Also, for trees ρ(R̄) = ρ(R) = λmax(R).

Proof. The proof is a special case of the proof of Corollary 3. Trees are non-frustrated (as there
are no cycles, let alone frustrated cycles) so they are walk-summable. Negating some variables
makes the model attractive and does not change the eigenvalues. �

The proposition shows that walk-sums for means and variances are always defined on tree-
structured models, and can be reordered in arbitrary ways without affecting convergence. We rely on
this fact heavily in subsequent sections. The next two results identify walk-sum variance and mean
computations with the BP update equations. The ingredients for these results are decompositions
of the variance and mean walk-sums in terms of sums over walks on subtrees, together with the
decomposition in terms of single-revisit and single-visit walks provided in Proposition 9.
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Walk-Sum Variance Calculation Let us look first at the computation of the variance at node j,
which is equal to the self-return walk-sum φ( j → j). This can be computed directly from the single-

revisit walk-sum α j = φ( j
\ j
→ j) as in Proposition 9. This latter walk-sum can be further decomposed

into sums over disjoint subsets of walks each of which corresponds to single-revisit self-return walks
that exit node j via a specific one of its neighbors, say i. In particular, as illustrated in Figure 7, the
single-revisit self-return walks that do this correspond to walks that live in the subtree Ti→ j. Using

the notation W ( j
\ j
→ j | Ti→ j) for the set of all single-revisit walks which are restricted to stay in

subtree Ti→ j we see that

α j = φ( j
\ j
→ j) = ∑

i∈N ( j)

φ( j
\ j
→ j | Ti→ j) , ∑

i∈N ( j)

αi→ j .

Moreover, every single-revisit self-return walk that lives in Ti→ j must leave and return to node
j through the single edge (i, j), and between these first and last steps must execute a (possibly
multiple-revisit) self-return walk at node i that is constrained not to pass through node j, that is, to
live in the subtree Ti\ j indicated in Figure 7. Thus

αi→ j = φ( j
\ j
→ j | Ti→ j) = r2

i jφ(i → i | Ti\ j) , r2
i jγi\ j . (14)

We next show that the walk-sums α j and αi→ j (hence variances Pj) can be efficiently calculated
by a walk-sum analog of belief propagation. We have the following result:

Proposition 16 Consider a valid tree model J = I−R. Then αi→ j =−∆Ji→ j and γi\ j = Ĵ−1
i\ j , where

∆Ji→ j and Ĵ−1
i\ j are the quantities defined in the Gaussian BP equations (7) and (8).

See Appendix A for the proof.

Walk-Sum Mean Calculation We extend the above analysis to calculate means in trees. Mean µ j

is the reweighted walk-sum over walks that start anywhere and end at node j, µ j = φh(∗→ j). Any
walk that ends at node j can be expressed as a single-visit walk to node j followed by a multiple-

revisit self-return walk from node j: φh(∗ → j) =

(

h j +φh(∗
\ j
→ j)

)

φ( j → j), where the term h j

corresponds to the length-zero walk that starts and ends at node j.
As we have done for the variances, the single-visit walks to node j can be partitioned into the

single-visit walks that reach node j from each of its neighbors, say node i and thus prior to this last
step across the edge (i, j), reside in the subtree Ti\ j, so that

βi→ j , φh(∗
\ j
→ j | Ti→ j) = ri jφh(∗→ i | Ti\ j).

Proposition 17 Consider a valid tree model J = I −R. Then βi→ j = ∆hi→ j, where ∆hi→ j is the
quantity defined in the Gaussian BP equation (8).

The proof appears in Appendix A.
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4.2 LBP in Walk-Summable Models

In this subsection we use the LBP computation tree to show that LBP includes all the walks for the
means, but only a subset of the walks for the variances. This allows us to prove LBP convergence
for all walk-summable models. In contrast, for non-walksummable models LBP may or may not
converge (and in fact the variances may converge but the means may not). As we will see in Section
5, this can be analyzed by examining walk-summability (and hence validity) of the computation
tree, rather than walk-summability of the original model.

As we have discussed, running LBP for some number of iterations yields identical calculations
at any particular node i to the exact inference calculations on the corresponding computation tree
rooted at node i. We use the notation T (n)

i for the nth computation tree at node i, Ti for the full

computation tree (as n → ∞) and we assign the label 0 to the root node. Then, P0(T
(n)

i ) denotes
the variance at the root node of the nth computation tree rooted at node i in G. The LBP variance
estimate at node i after n steps is equal to

P̂(n)
i = P0(T

(n)
i ) = φ(0 → 0 | T (n)

i ).

Similarly, the LBP estimate of the mean µi after n steps of LBP is

µ̂(n)
i = µ0(T

(n)
i ) = φh(∗→ 0 | T (n)

i ).

As we have mentioned, the definition of the computation trees T (n)
i depend upon the message

schedule {M (n)} of LBP, which specifies which subset of messages are updated at iteration n. We
say that a message schedule is proper if every message is updated infinitely often, that is, if for
every m > 0 and every directed edge (i, j) in the graph there exists n > m such that (i, j) ∈ M (n).
Clearly, the fully parallel form is proper since every message is updated at every iteration. Serial
forms which iteratively cycle through the directed edges of the graph are also proper. All of our
convergence analysis in this section presumes a proper message schedule. We remark that as walk-
summability ensures convergence of walk-sums independent of the order of summation, it makes
the choice of a particular message schedule unimportant in our convergence analysis. The following
result is proven in Appendix A.

Lemma 18 (Walks in G and in Ti) There is a one-to one correspondence between finite-length walks
in G that end at i, and walks in Ti that end at the root node. In particular, for each such walk in G

there is a corresponding walk in T (n)
i for n large enough.

Now, recall that to compute the mean µi we need to gather walk-sums over all walks that start
anywhere and end at i. We have just shown that LBP gathers all of these walks as the computation
tree grows to infinity. The story for the variances is different. The true variance Pii is a walk-sum
over all self-return walks that start and end at i in G. However, walks in G that start and end at i
may map to walks that start at the root node of T (n)

i , but end at a replica of the root node instead of
the root. These walks are not captured by the LBP variance estimate.15 The walks for the variance
estimate P0(T

(n)
i ) are self-return walks W (0 → 0 | T (n)

i ) that start and end at the root node in the

15. Recall that the computation tree is a representation of the computations seen at the root node of the tree, and it is only
the computation at this node—that is, at this replica of node i that corresponds to the LBP computation at node i in
G.

2049



MALIOUTOV, JOHNSON AND WILLSKY

computation tree. Consider Figure 2. The walk (1,2,3,1) is a self-return walk in the original graph
G but is not a self-return walk in the computation tree shown in Figure 2(d). LBP variances capture
only those self-return walks of the original graph G that are also self-return walks in the computation
tree—for example, the walk (1,3,2,3,4,3,1) is a self-return walk in both Figures 2(a) and (d). We
call such walks backtracking. Hence,

Lemma 19 (Self-return walks in G and in Ti) The LBP variance estimate at each node is a sum
over the backtracking self-return walks in G, a subset of all self-return walks needed to calculate
the correct variance.

Note that back-tracking walks for the variances have positive weights, since each edge in the
walk is traversed an even number of times. With each LBP step the computation tree grows and new
back-tracking walks are included, hence variance estimates grow monotonically.16

We have shown which walks LBP gathers based on the computation tree. The convergence
of the corresponding walk-sums remains to be analyzed. In walk-summable models the answer is
simple:

Lemma 20 (Computation trees of WS models are WS) For a walk-summable model all its com-

putation trees T (n)
i (for all n and i) are walk-summable and hence valid.

Intuitively, walks in the computation tree T (n)
i are subsets of the walks in G, and hence they con-

verge. This implies that the computation trees are walk-summable, and hence valid. This argument
can be made precise, but a shorter formal proof using monotonicity of the spectral radius (11)
appears in Appendix A. Next, we use these observations to show convergence of LBP for walk-
summable models.

Proposition 21 (Convergence of LBP for walk-summable models) If a model on a graph G is
walk-summable, then LBP is well-posed, the means converge to the true means and the LBP vari-
ances converge to walk-sums over the backtracking self-return walks at each node.

Proof. Let W (i
BT
→ i) denote the back-tracking self-return walks at node i. By Lemmas 18 and

19, we have:

W (∗→ i) = ∪nW (∗→ 0|T (n)
i )

W (i
BT
→ i) = ∪nW (0 → 0|T (n)

i ).

We note that the computation trees T (n)
i at node i are nested, T (n)

i ⊂ T (n+1)
i for all n. Hence, W (∗→

0|T (n)
i ) ⊂ W (∗ → 0|T (n+1)

i ) and W (0 → 0|T (n)
i ) ⊂ W (0 → 0|T (n+1)

i ). Then, by Lemma 7, we
obtain the result:

µi = φh(∗→ i) = lim
n→∞

φh(∗→ 0|T (n)
i ) = lim

n→∞
µ̂(n)

i

P(BT )
i , φ(i

BT
→ i) = lim

n→∞
φ(0 → 0|T (n)

i ) = lim
n→∞

P̂(n)
i . �

16. Monotonically increasing variance estimates is a characteristic of the particular initialization of LBP that we use,
that is, the potential decomposition (4) together with uninformative initial messages. If one instead uses a pairwise-
normalized potential decomposition, the variances are then monotonically decreasing.
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Figure 8: (a) LBP variances vs. iteration. (b) ρ(Rn) vs. iteration.

Corollary 22 LBP converges for attractive, non-frustrated, and diagonally dominant models. In
attractive and non-frustrated models LBP variance estimates are less than or equal to the true
variances (the missing non-backtracking walks all have positive weights).

In Weiss and Freeman (2001) Gaussian LBP is analyzed for pairwise-normalizable models.
They show convergence for the case of diagonally dominant models, and correctness of the means
in case of convergence. The class of walk-summable models is strictly larger than the class of diag-
onally dominant models, so our sufficient condition is stronger. They also show that LBP variances
omit some terms needed for the correct variances. These terms correspond to correlations between
the root and its replicas in the computation tree. In our framework, each such correlation is a walk-
sum over the subset of non-backtracking self-return walks in G that, in the computation tree, begin
at a particular replica of the root.

Example 2. Consider the model in Figure 3(a). We summarize various critical points for this
model in Figure 9. For 0 ≤ r ≤ .39039 the model is walk-summable and LBP converges; then for
a small interval .39039 ≤ r ≤ .39865 the model is not walk-summable but LBP still converges, and
for larger r LBP does not converge. We apply LBP to this model with r = 0.39,0.395 and 0.4, and
plot the LBP variance estimates for node 1 vs. the iteration number in Figure 8(a). LBP converges
in the walk-summable case for r = .39, with ρ(R̄) ≈ .9990. It also converges for r = 0.395 with
ρ(R̄) ≈ 1.0118, but soon fails to converge as we increase r to 0.4 with ρ(R̄) ≈ 1.0246.

Also, for r = .4, we note that ρ(R) = .8 < 1 and the series ∑l Rl converges (but ∑l R̄l does not)
and LBP does not converge. Hence, ρ(R) < 1 is not sufficient for LBP convergence showing the
importance of the stricter walk-summability condition ρ(R̄) < 1.

5. LBP in Non-Walksummable Models

While the condition in Proposition 21 is necessary and sufficient for certain special classes of
models—for example, for trees and single cycles—it is only sufficient more generally, and, as
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in Example 2, LBP may converge for some non-walksummable models. We extend our analy-
sis to develop a tighter condition for convergence of LBP variances based on a weaker form of
walk-summability defined with respect to the computation trees (instead of G). We have shown in
Proposition 15 that for trees walk-summability and validity are equivalent, and ρ(R̄) < 1 ⇔ ρ(R) <
1 ⇔ J � 0. Hence, our condition essentially corresponds to validity of the computation tree.

First, we note that when a model on G is valid (J is positive definite) but not walk-summable,
then some finite computation trees may be invalid (indefinite). This turns out to be the primary
reason why belief propagation can fail to converge. Walk-summability on the original graph implies
walk-summability (and hence validity) on all of its computation trees. But if the model is not walk-
summable, then its computation tree may or may not be valid.

We characterize walk-summability of the computation trees as follows. Let T (n)
i be the nth

computation tree rooted at some node i. We define R(n)
i , I − J(n)

i where J(n)
i is the normalized

information matrix for T (n)
i and I is an identity matrix. The nth computation tree T (n)

i is walk-

summable (valid) if and only if ρ(R(n)
i ) < 1 due to the fact that ρ(R̄(n)

i ) = ρ(R(n)
i ) for trees. We are

interested in the validity of all finite computation trees, so we consider the quantity limn→∞ ρ(R(n)
i ).

Lemma 23 guarantees the existence of this limit:

Lemma 23 The sequence {ρ(R(n)
i )} is monotonically increasing and bounded above by ρ(R̄). Thus,

limn→∞ ρ(R(n)
i ) exists, and is equal to supn ρ(R(n)

i ).

In the proof we use k-fold graphs, which we introduce in Appendix B. The proof appears in Ap-
pendix A. The limit in Lemma 23 is defined with respect to a particular root node and message
schedule. The next lemma shows that for connected graphs, as long as the message schedule is
proper, they do not matter.

Lemma 24 For connected graphs and with proper message schedule, ρ∞ , limn→∞ ρ(R(n)
i ) is inde-

pendent of i. The limit does not change by using any other proper message schedule.

This independence results from the fact that for large n the computation trees rooted at different
nodes overlap significantly. Technical details of the proof appear in Appendix A. Using this lemma
we suppress the dependence on the root node i from the notation to simplify matters. The limit ρ∞
turns out to be critical for convergence of LBP variances:

Proposition 25 (LBP validity/variance convergence) (i) If ρ∞ < 1, then all finite computation
trees are valid and the LBP variances converge to walk-sums over the back-tracking self-return
walks. (ii) If ρ∞ > 1, then the computation tree eventually becomes invalid and LBP is ill-posed.

Proof. (i) Since ρ∞ = limn→∞ ρ(R(n)) < 1 and the sequence {ρ(R(n))} is monotonically increas-
ing, then there exists δ > 0 such that ρ(R(n)) ≤ 1−δ for all n. This implies that all the computation
trees T (n) are walk-summable and that variances monotonically increase (since weights of back-
tracking walks are positive, see the discussion after Lemma 19). We have that λmax(R(n)) ≤ 1− δ,
so λmin(J(n)) ≥ δ and λmax(P(n)) ≤ 1

δ . The maximum eigenvalue of a matrix is a bound on the max-
imum entry of the matrix, so (P(n))ii ≤ λmax(P(n)) ≤ 1

δ . The variances are monotonically increasing
and bounded above, hence they converge.

(ii) If limn→∞ ρ(R(n)) > 1, then there exists an m such that ρ(R(n)) > 1 for all n ≥ m. This means
that these computation trees T (n) are invalid, and that the variance estimates at some of the nodes
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are negative. �

As discussed in Section 2.2, the LBP computation tree is valid if and only if the information
parameters Ĵ(n)

i\ j and Ĵ(n)
i in (7), (9) computed during LBP iterations are strictly positive for all n.

Hence, it is easily detected if the LBP computation tree becomes invalid. In this case, continuing to
run LBP is not meaningful and will lead to division by zero (if the computation tree is singular) or
to negative variances (if it is not positive definite).

Recall that the limit ρ∞ is invariant to message order by Lemma 24. Hence, by Proposition 25,
convergence of LBP variances is likewise invariant to message order (except possibly when ρ∞ = 1).
The limit ρ∞ is bounded above by ρ(R̄), hence walk-summability in G is a sufficient condition for
well-posedness of the computation tree: ρ∞ ≤ ρ(R̄) < 1. However, the bound is not tight in general
(except for trees and single cycles). This is related to the phenomenon that the limit of the spectral
radius of the finite computation trees can be less than the spectral radius of the infinite computation
tree (which has no leaf nodes). See He et al. (2000) for analysis of a related discrepancy.

Means in non-WS models For the case where ρ∞ < 1 < ρ(R̄), the walk-sums for LBP variances
converge absolutely (see proof of Proposition 25), but the walk-sums for the means do not. The
reason is that LBP only computes a subset of the self-return walks for the variances but captures
all the walks for the means. However, the series LBP computes for the means, corresponding to a
particular ordering of walks, may still converge.

It is well known (Rusmevichientong and Van Roy, 2001) that once variances converge, the
updates for the means follow a linear system. Consider (7) and (8) with Ĵi\ j fixed, then the LBP
messages for the means ∆h = (∆hi→ j | {i, j} ∈ E) follow a linear system update. For the parallel
message schedule we can express this as:

∆h(n+1) = L ∆h(n) +b (15)

for some matrix L and some vector b. Convergence of this system depends on the spectral radius
ρ(L). However, it is difficult to analyze ρ(L) since the matrix L depends on the converged values of
the LBP variances. To improve convergence of the means, one can damp the message updates by
modifying (8) as follows:

∆h(n+1)
i→ j = (1−α)∆h(n)

i→ j +α(−Ji j(Ĵ
(n)
i\ j )

−1ĥ(n)
i\ j) with 0 < α ≤ 1. (16)

We have observed in experiments that for all the cases where variances converge we also obtain
convergence of the means with enough damping of BP messages. We have also tried damping
the updates for the ∆J messages, but whether or not variances converge appears to be independent
of damping. Apparently, it is the validity of the computation tree (ρ∞ < 1) that is essential for
convergence of both means and variances in damped versions of Gaussian LBP.

Example 3. We illustrate Proposition 25 on a simple example. Consider the 5-node cycle model
from Figure 3(b). In Figure 8(b), for ρ = .49 we plot ρ(Rn) vs. n (lower curve) and observe that
limn→∞ ρ(Rn) ≈ .98 < 1, and LBP converges. For ρ = .51 (upper curve), the model defined on the
5-node cycle is still valid but limn→∞ ρ(Rn) ≈ 1.02 > 1 so LBP is ill-posed and does not converge.

As we mentioned, in non-walksummable models the series that LBP computes for the means
is not absolutely convergent and may diverge even when variances converge. For our 4-cycle with
a chord example in Figure 3(a), the region where variances converge but means diverge is very
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Figure 9: Critical regions for example models from Figure 3. (a) 4-cycle with a chord. (b) 5-cycle.
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Figure 10: The 4-cycle with a chord example. (a) Convergence and divergence of the means near
the LBP mean critical point. (b) Variance near the LBP variance critical point: (top)
number of iterations for variances to converge, (bottom) true variance, LBP estimate and
the error at node 1.

narrow, r ≈ .39865 to r ≈ .39867 (we use the parallel message schedule here; the critical point for
the means is slightly higher using a serial schedule). In Figure 10(a) we show mean estimates vs. the
iteration number on both sides of the LBP mean critical point for r = 0.39864 and for r = 0.39866.
In the first case the means converge, while in the latter they slowly but very definitely diverge. The
spectral radius of the linear system for mean updates in (15) for the two cases is ρ(L) = 0.99717 < 1
and ρ(L) = 1.00157 > 1 respectively. In the divergent example, all the eigenvalues of L have real
components less than 1 (the maximum such real component is 0.8063 < 1). Thus by damping we
can force all the eigenvalues of L to enter the unit circle: the damped linear system is (1−α)I +αL.
Using α = 0.9 in (16) the means converge.

In Figure 10(b) we illustrate that near the LBP variance critical point, the LBP estimates become
more difficult to obtain and their quality deteriorates dramatically. We consider the graph in Figure

2054



WALK-SUMS IN GAUSSIAN GRAPHICAL MODELS

Valid Models

LBP well−posed

Walksummable

Non−frustrated

DiagonallyTrees

Attractive
dominant

Figure 11: Venn diagram summarizing various subclasses of Gaussian models.

3(a) again as r approaches 0.39867, the critical point for the convergence of the variances. The
picture shows that the number of iterations as well as the error in LBP variance estimates explode
near the critical point. In the figure we show the variance at node 1, but similar behavior occurs at
every node. In Figure 9, we summarize the critical points of both models from Figure 3.

6. Conclusion

We have presented a walk-sum interpretation of inference in Gaussian graphical models, which
holds for a wide class of models that we call walk-summable. We have shown that walk-summability
encompasses many classes of models which are considered “easy” for inference—trees, attractive,
non-frustrated and diagonally dominant models—but also includes many models outside of these
classes. A Venn diagram summarizing relations between these sets appears in Figure 11. We have
also shown the equivalence of walk-summability to pairwise-normalizability.

We have established that in walk-summable models LBP is guaranteed to converge, for both
means and variances, and that upon convergence the means are correct, whereas the variances only
capture walk-sums over back-tracking walks. We have also used the walk-summability of valid (i.e.,
positive definite) models on trees to develop a more complete picture of LBP for non-walksummable
models, relating variance convergence to validity of the LBP computation tree.

There are a variety of directions in which these results can be extended. One involves developing
improved walk-sum algorithms that gather more walks than LBP does, to yield better variance
estimates. Results along these lines—involving vectors of variables at each node as well as factor
graph versions of LBP that group larger sets of variables—will be presented in a future publication.
Another direction is to apply walk-sum analysis to other algorithms for Gaussian inference, for
example, Chandrasekaran et al. are applying walk-sums to better understand the embedded trees
algorithm (Sudderth et al., 2004).

Our current work is limited to Gaussian models, as walk-sums arise from the power series ex-
pansion for the matrix inverse. However, related expansions of correlations in terms of walks have
been investigated for other models. Fisher (1967) developed an approximation to the pairwise cor-
relations in Ising models based on self-avoiding walks. Brydges et al. (1983) use walk-sums for
non-Gaussian classical and quantum spin-systems, where the weights of walks involve complicated
multi-dimensional integrals. It would be very useful to develop ways to compute or approximate
self-avoiding or non-Gaussian walk-sums efficiently and extend the walk-sum perspective to infer-
ence in a broader class of models.
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Appendix A. Detailed Proofs

Proof of Proposition 1 Proof of (i) ⇒ (ii). We examine convergence of the matrix series in (ii)
element-wise. First note that (R̄l)i j is an absolute walk-sum over all walks of length l from i to j:

(R̄l)i j = ∑
w:i

l
→ j

|φ(w)|

(there are a finite number of these walks so the sum is well-defined). Now, if (i) holds then using
properties of absolute convergence we can order the sum ∑w:i→ j |φ(w)| however we wish and it still
converges. If we order walks by their length and then group terms for walks of equal lengths (each
group has a finite number of terms) we obtain:

∑
w:i→ j

|φ(w)| = ∑
l

∑
w:i

l
→ j

|φ(w)| = ∑
l

(R̄l)i j . (17)

Therefore, the series ∑l(R̄
l)i j converges for all i, j.

Proof of (ii) ⇒ (i). To show convergence of the sum ∑w:i→ j |φ(w)| it is sufficient to test con-
vergence for any convenient ordering of the walks. As shown in (17), ∑l(R̄

l)i j corresponds to one
particular ordering of the walks which converges by (ii). Therefore, the walk-sums in (i) converge
absolutely.

Proof of (ii) ⇔ (iii). This is a standard result in matrix analysis (Varga, 2000).
Proof of (iii) ⇔ (iv). Note that λ is an eigenvalue of R̄ if and only if 1−λ is an eigenvalue of

I − R̄ (R̄x = λx ⇔ (I − R̄)x = (1−λ)x). Therefore, λmin(I − R̄) = 1−λmax(R̄). According to the
Perron-Frobenius theorem, ρ(R̄) = λmax(R̄) because R̄ is non-negative. Thus, ρ(R̄) = 1−λmin(I− R̄)
and we have that ρ(R̄) < 1 ⇔ λmin(I − R̄) > 0. �

Proof of Corollary 3 We will show that for any non-frustrated model there exists a diagonal D
with Dii = ±1, that is, a signature matrix, such that DRD = R̄. Hence, R and R̄ have the same
eigenvalues, because DRD = DRD−1 is a similarity transform which preserves the eigenvalues of a
matrix. It follows that I −R � 0 implies I − R̄ � 0 and walk-summability of J by Proposition 1(iv).

Now we describe how to construct a signature similarity which makes R attractive for non-
frustrated models. We show how to split the vertices into two sets V + and V− such that negating V−

makes the model attractive. Find a spanning tree T of the graph G. Pick a node i. Assign it to V +.
For any other node j, there is a unique path to i in T . If the product of edge weights along the path
is positive, then assign j to V +, otherwise to V−. Now, since the model is non-frustrated, all edges
{ j,k} in G such that j,k ∈V + are positive, all edges with j,k ∈V− are positive, and all edges with
j ∈V + and k ∈V− are negative. This can be seen by constructing the cycle that goes from j to i to
k in T and crosses the edge {k, j} to close itself. If j,k ∈V + then the paths j to i and i to k have a
positive weight, hence in order for the cycle to have a positive weight, the last step {k, j} must also
have a positive weight. The other two cases are similar. Now let D be diagonal with Dii = 1 for

i ∈V +, and Dii = −1 for i ∈V−. Then DRD =
[

RV+ −RV+ ,V−

−RV−,V+ RV−

]

≥ 0, that is, DRD = R̄. �

Proof of Proposition 4 Proof of WS ⇒ (i). WS is equivalent to ρ(R̄) < 1 by Proposition 1. But
ρ(R) ≤ ρ(R̄) by (11). Hence, ρ(R̄) < 1 ⇒ ρ(R) < 1.
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Proof of (i) ⇒ (ii). Given J = I−R, it holds that λmin(J) = 1−λmax(R). Also, λmax(R) ≤ ρ(R).
Hence, λmin(J) = 1−λmax(R) ≥ 1−ρ(R) > 0 for ρ(R) < 1.

Proof of (i) ⇒ (iii). This is a standard result in matrix analysis. �

Proof of Proposition 10 Assume that G is connected (otherwise we apply the proof to each con-
nected component, and the spectral radii are the maxima over the respective connected components).
We prove that ρ(R̄) = ρ(R̂). By the Perron-Frobenius theorem, there exists a positive vector x such
that R̄x = ρ(R̄)x. Let x̂ = (x;x). Then R̂x̂ = ρ(R̄)x̂ because

(R̂x̂)± = (R+ +R−)x = R̄x = ρ(R̄)x.

Hence, ρ(R̄) is an eigenvalue of R̂ with positive eigenvector x̂. First suppose that Ĝ is connected.
Then, by the Perron-Frobenius theorem, ρ(R̄) = ρ(R̂) because R̂ has a unique positive eigenvector
which has eigenvalue equal to ρ(R̂). Now, Ĵ = I − R̂ � 0 ⇔ Ĵ is WS ⇔ ρ(R̂) < 1 ⇔ ρ(R̄) < 1 ⇔
J = I −R is WS. If Ĝ is disconnected then R̂ is a block-diagonal matrix with two copies of R̄ (after
relabeling the nodes), so ρ(R̂) = ρ(R̄). �

Proof of Proposition 11 We partition walk-sums into sums over “even” and “odd” walks accord-
ing to the number of negative edges crossed by the walk. Thus a walk w is even if φ(w) > 0 and is
odd if φ(w) < 0. The graph Ĝ is defined so that every walk from i+ to j+ is even and every walk
from i+ to j− is odd. Thus,

Pi j = ∑
even w:i→ j

φ(w)+ ∑
odd w:i→ j

φ(w)

= ∑
w:i+→ j+

φ̂(w)− ∑
w:i+→ j−

φ̂(w)

= P̂i+, j+ − P̂i+, j− .

The second part of the the proposition follows by similar logic. Now we classify a walk as even if
hw0φ(w) > 0 and as odd if hw0φ(w) < 0. Note also that setting ĥ = (h+;h−) has the effect that all
walks with hw0 > 0 begin in V+ and all walks with hw0 < 0 begin in V−. Consequently, every even
walk ends in V+ and every odd walk ends in V−. Thus,

µi = ∑
even w:∗→i

h∗φ(w)+ ∑
odd w:∗→i

h∗φ(w)

= ∑
w:∗→i+

ĥ∗φ̂(w)− ∑
w:∗→i−

ĥ∗φ̂(w)

= µ̂i+ − µ̂i− �

Proof of Proposition 12 Take J1 and J2 pairwise-normalizable. Take any α,β ≥ 0 such that at
least one of them is positive. Then αJ1 + βJ2 is also pairwise-normalizable simply by taking the
same weighted combinations of each of the Je matrices for J1 and J2. Setting β = 0 shows that JPN

is a cone, and setting β = 1−α shows convexity. The cone is pointed since it is a subset of the cone
of semidefinite matrices, which is pointed. �

2057



MALIOUTOV, JOHNSON AND WILLSKY

Proof of Proposition 13 Proof of PN ⇒WS. It is evident that any J matrix which is pairwise-
normalizable is positive definite. Furthermore, reversing the sign of the partial correlation coeffi-
cient on edge e simply negates the off-diagonal element of Je which does not change the value of
detJe so that we still have Je � 0. Thus, we can make all the negative coefficients positive and the re-
sulting model I − R̄ is still pairwise-normalizable and hence positive definite. Then, by Proposition
1(iv), J = I −R is walk-summable.

Proof of WS ⇒PN. Given a walk-summable model J = I−R we construct a pairwise-normalized
representation of the information matrix. We may assume the graph is connected (otherwise, we
may apply the following construction for each connected component of the graph). Hence, by the
Perron-Frobenius theorem there exists a positive eigenvector x > 0 of R̄ such that R̄x = λx and
λ = ρ(R̄) > 0. Given (x,λ) we construct a representation J = ∑e[Je] where for e = {i, j} we set:

Je =

(

|ri j|x j

λxi
−ri j

−ri j
|ri j|xi

λx j

)

.

This is well-defined (there is no division by zero) since x and λ are positive. First, we verify that
J = ∑e∈E [Je]. It is evident that the off-diagonal elements of the edge matrices sum to −R. We
check that the diagonal elements sum to one:

∑
e

[Je]ii =
1

λxi
∑

j

|ri j|x j =
(R̄x)i

λxi
=

(λx)i

λxi
= 1.

Next, we verify that each Je is positive definite. This matrix has positive diagonal and determinant

detJe =

(

|ri j|x j

λxi

)(

|ri j|xi

λx j

)

− (−ri j)
2 = r2

i j

(

1
λ2 −1

)

> 0.

The inequality follows from walk-summability because 0 < λ < 1 and hence
(

1
λ2 −1

)

> 0. Thus,
Je � 0. �

Proof of Proposition 14 Let ai = Jii −∑ j 6=i |Ji j|. Note that ai > 0 follows from diagonal domi-
nance. Let deg(i) denote the degree of node i in G. Then, J = ∑e∈E [Je] where for edge e = {i, j}
we set

Je =

(

|Ji j|+
ai

deg(i) Ji j

Ji j |Ji j|+
a j

deg( j)

)

with all other elements of [Je] set to zero. Note that:

∑
e

[Je]ii = ∑
j∈N (i)

(

|Ji j|+
ai

deg(i)

)

= ai + ∑
j∈N (i)

|Ji j| = Jii .

Also, Je has positive diagonal elements and has determinant det(Je) > 0. Hence, Je � 0. Thus, J is
pairwise-normalizable. �
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Proof of Proposition 16 To calculate the walk-sum for multiple-revisit self-return walks in Ti\ j,
we can use the single-revisit counterpart:

γi\ j = φ(i → i | Ti\ j) =
1

1−φ
(

i
\i
→ i | Ti\ j

) . (18)

Now, we decompose the single-revisit walks in the subtree Ti\ j in terms of the possible first step
of the walk (i,k), where k ∈ N (i)\ j. Hence,

φ(i
\i
→ i | Ti\ j) = ∑

k∈N (i)\ j

φ(i
\i
→ i | Tk→i). (19)

Using (14), (18), and (19), we are able to represent the walk-sum φ( j
\ j
→ j | Ti→ j) in Ti→ j in terms of

the walk-sums φ(i
\i
→ i | Tk→i) on smaller subtrees Tk→i. This is the basis of the recursive calculation:

αi→ j = r2
i j

1
1−∑k∈N (i)\ j αk→i

.

These equations look strikingly similar to the belief propagation updates. Combining (7) and (8)
from Section 2.1 we have:

−∆Ji→ j = J2
i j

1
Jii +∑k∈N (i)\ j ∆Jk→i

.

It is evident that the recursive walk-sum equations can be mapped exactly to belief propagation
updates. In normalized models Jii = 1. We have the message update αi→ j = −∆Ji→ j, and the
variance estimate in the subtree Ti\ j is γi\ j = Ĵ−1

i\ j . �

Proof of Proposition 17 A multiple-revisit walk in Ti\ j can be written in terms of single-visit
walks:

φh(∗→ i | Ti\ j) =

(

hi +φh(∗
\i
→ i | Ti\ j)

)

φ(i → i | Ti\ j).

We already have γi\ j = φ(i → i | Ti\ j) from (18). The remaining term φh(∗
\i
→ i | Ti\ j) can be

decomposed by the subtrees in which the walk lives:

φh(∗
\i
→ i | Ti\ j) = ∑

k∈N (i)\ j

φh(∗
\i
→ i | Tk→i).

Thus we have the recursion:

βi→ j = ri jγi\ j(hi + ∑
k∈N (i)\ j

βk→i).

To compare this to the Gaussian BP updates, let us combine (7) and (8) in Section 2.2:

∆hi→ j = −Ji jĴ
−1
i\ j

(

hi + ∑
k∈N (i)\ j

∆hk→i

)

.

Thus BP updates for the means can also be mapped exactly into recursive walk-sum updates via
βi→ j = ∆hi→ j. �
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Proof of Lemma 18 First, we note that for every walk w which ends at the root node of T (n)
i there

is a corresponding walk in G which ends at i. The reason is that the neighbors of a given node j in
T (n)

i correspond to a subset of the neighbors of j in G. Hence, for each step (wk,wk+1) of the walk

in T (n)
i there is a corresponding step in G.

Next, we show that every walk w = (w0, . . . ,wl) in G is contained in T (n)
wl for some n. First

consider the parallel message schedule, for which the computation tree T (n)
wl grows uniformly. Then

for any walk in G that ends at wl and has length n there is a walk in T (n)
wl that ends at the root.

The intuition for other message schedules is that every step (i, j) of the walk will appear even-
tually in any proper message schedule M . A formal proof is somewhat technical. First we unwrap
the walk w into a tree Tw rooted at wl in the following way: start at wl , the end of the walk, and
traverse the walk in reverse. First add the edge {wl ,wl−1} to Tw. Now, suppose we are at node wk in
Tw and the next step in w is {wk,wk−1}. If wk−1 is already a neighbor of wk in Tw then set the current
node in Tw to wk−1. Otherwise create a new node wk−1 and add the edge to Tw. It is clear that loops
are never made in this procedure, so Tw is a tree.

We now show for any proper message schedule M that Tw is part of the computation tree
T (n)

wl for some n. Pick a leaf edge {i1, j1} of Tw. Since {M (n)} is proper, there exist n1 such

that (i1, j1) ∈ M (n1). Now (i1, j1) ∈ T (n1)
i1→ j1 , and the edge appears at the root of T (n1)

i1→ j1 . Also,

T (n1)
i1→ j1 ⊂ T (m)

i1→ j1 for m > n1, so this holds for all subsequent steps as well. Now remove {i1, j1}

from Tw and pick another leaf edge {i2, j2}. Again, since {M (n)} is proper, there exist n2 > n1

such that (i2, j2) ∈ M (n2). Remove {i2, j2} from Tw, and continue similarly. At each such point
nk of eliminating some new edge {ik, jk} of Tw, the whole eliminated subtree of Tw extending from

{ik, jk} has to belong to T (nk)
ik→ jk

. Continue until just the root of Tw remains at step n. Now the com-

putation tree T (n)
wl (which is created by splicing together T (n)

i→ j for all edges (i, j) coming into the root
of Tw) contains Tw, and hence it contains the walk w. �

Proof of Lemma 20 This result comes as an immediate corollary of Proposition 28, which states
that ρ(R(n)

i ) ≤ ρ(R̄) (here R(n)
i is the partial correlation matrix for T (n)

i ). For WS models, ρ(R̄) < 1
and the result follows. �

Proof of Lemma 23 The fact that the sequence {ρ(R(n)
i )} is bounded by ρ(R̄) is a nontrivial fact,

proven in Appendix B using a k-fold graph construction. To prove monotonicity, note first that
for trees ρ(R(n)

i ) = ρ(R̄(n)
i ). Also, note that all of the variables in the computation tree T (n)

i are

also present in T n+1
i . We zero-pad R̄(n)

i to make it the same size as R̄(n+1)
i (this does not change

the spectral radius). Then it holds that R̄(n)
i ≤ R̄(n+1)

i element-wise. Using (11), it follows that

ρ(R̄(n)
i ) ≤ ρ(R̄(n+1)

i ), establishing monotonicity. �

Proof of Lemma 24 Let T (n)
i (M ) denote the nth computation tree under a proper message sched-

ule M rooted at node i. We use the following simple extension of Lemma 18: Let T (n)
i (M1) be the

nth computation tree rooted at i under message schedule M1. Take any node in T (n)
i (M1) which is

a replica of node j in G. Then there exists m such that T (n)
i (M1) ⊂ T (m)

j (M2), where M2 is another
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G G1 G2

1′ 2′

3′4′

1 2

4 3

1 2

34

(a) (b)

Figure 12: Illustration of (a) graph G and (b) a 2-fold graph of G.

message schedule. The proof parallels that of Lemma 18: the tree T (n)
i (M1) has a finite number of

edges, and we use induction adding one edge at a time.

Consider message schedule M1. By Lemma 23, ρi , limn→∞ ρ(R(n)
i (M1)) exists. For any ε

pick an L such that for n ≥ L it holds that |ρ(R(n)
i (M1))− ρi| ≤

ε
2 . Pick a replica of node j in-

side T (L)
i (M1). Then using the property from the previous paragraph, there exists M such that

T (L)
i (M1) ⊂ T (M)

j (M2). Similarly there exists N such that T (M)
j (M2) ⊂ T (N)

i (M1). It follows

that R̄(L)
i (M1) ≤ R̄(M)

j (M2) ≤ R̄(N)
i (M1), where we zero-pad the first two matrices to have the

same size as the last one. Then, ρ(R̄(L)
i (M1)) ≤ ρ(R̄(M)

j (M2)) ≤ ρ(R̄(N)
i (M1)). Then it holds that

ρi −
ε
2 ≤ ρ(R̄(M)

j (M2)) ≤ ρi +
ε
2 . Hence, |ρ(R̄(M)

j (M2))−ρi| ≤ ε, and limn→∞ ρ(R̄(n)
j (M2)) = ρi. �

Appendix B. K-fold Graphs and Proof of Boundedness of ρ(R(n)
i ).

Consider an arbitrary graph G = (V,E). Suppose that we have a pairwise MRF defined on G with
self potentials ψi(xi), for vi ∈ V and pairwise potentials ψi j(xi,x j) for (vi,v j) ∈ E. We construct a
family of K-fold graphs based on G as follows:

1. Create K disconnected copies Gk, k ∈ {1, ..,K} of G, with nodes v(k)
i , and edges (v(k)

i ,v(k)
j ).

The nodes and the edges of Gk are labeled in the same way as the ones of G. The potentials
ψi and ψi j are copied to the corresponding nodes and edges in all Gk.

2. Pick some pair of graphs Gk, Gl , and choose an edge (vi,v j) in G. We flip the corresponding

edges in Gk and Gl , edges (v(k)
i ,v(k)

j ) and (v(l)
i ,v(l)

j ) become (v(k)
i ,v(l)

j ) and (v(l)
i ,v(k)

j ). The
pairwise potentials are adjusted accordingly.

3. Repeat step 2 an arbitrary number of times for a different pair of graphs Gk, or a different
edge in G.

An illustration of the procedure appears in Figure 12. The original graph G is a 4-cycle with a
chord. We create a 2-fold graph based on G by flipping the edges (1,2) in G1 and (1′,2′) in G2.

Now we apply the K-fold graph construction to Gaussian MRF models. Suppose that we have
a model with information parameters J and h on G. Suppose that J is normalized to have unit-
diagonal. Let GK be a K-fold graph based on G with the information matrix JK (which is also
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unit-diagonal by construction). Also, let T (n)
i be the nth computation tree for the original graph, and

J(n)
i the corresponding information matrix (also unit-diagonal). Let R = I − J, RK = IK − JK , and

R(n)
i = I(n)− J(n)

i (here I, IK , and I(n) are identity matrices of appropriate dimensions).

Lemma 26 (Spectral radii of R and RK) For any K-fold graph GK based on G: ρ(R̄K) = ρ(R̄).

Proof. Suppose that G is connected (otherwise apply the proof to each connected component
of G, and the spectral radius for G will be the maximum of the spectral radii for the connected
components).

Then, by the Perron-Frobenius theorem there exists a vector x > 0 such that R̄x = ρ(R̄)x. Create
a K-fold vector xK by copying entry xi into each of the K corresponding entries of xK . Then xK is
positive, and it also holds that R̄KxK = ρ(R̄)xK (since the local neighborhoods in G and GK are the
same). Now R̄K is a non-negative matrix, and xK is a positive eigenvector, hence it achieves the
spectral radius of R̄K by the Perron-Frobenius theorem. Thus, ρ(R̄) = ρ(R̄K). �

The construction of a K-fold graph based on G has parallels with the computation tree on G.
The K-fold graph is locally equivalent to G and the computation tree, except for its leaf nodes, is
also locally equivalent to G. We show next that the computation tree T (n)

i is contained in some GK

for K large enough.

Lemma 27 (K-fold graphs and computation trees) Consider a computation tree T (n)
i correspond-

ing to graph G. There exists a K-fold graph GK , which contains T (n)
i as a subgraph, for K large

enough.

Proof. We provide a simple construction of a K-fold graph, making no attempt to minimize K.
Let T (n)

i = (Vn,En). Each node v′ ∈ Vn corresponds to some node v ∈ V in G. We create a K-fold

graph GK by making a copy Gv′ of G for every node v′ ∈ T (n)
i . Hence K = |Vn|. For each edge

(u′,v′) ∈ En in the computation tree, we make an edge flip between nodes in graphs Gu′ and Gv′ that

correspond to u and v in G. This operation is well-defined because edges in T (n)
i that map to the

same edge in G do not meet. Thus, the procedure creates GK which contains T (n)
i as a subgraph. �

Finally, we use the preceding lemmas to prove a bound on the spectral radii of the matrices R(n)
i

for the computation tree T (n)
i .

Proposition 28 (Bound on ρ(R(n)
i )) For computation tree T (n)

i : ρ(R(n)
i ) ≤ ρ(R̄).

Proof. Consider a computation tree T (n)
i . Recall that ρ(R(n)

i ) = ρ(R̄(n)
i ), since T (n)

i is a tree. Use

Lemma 27 to construct a K-fold graph GK which has T (n)
i as a subgraph. Zero-padding R̄(n)

i to have

the same size as R̄K , it holds that R̄(n)
i ≤ R̄K . Since R̄(n)

i ≤ R̄K , using (11) and Lemma 26 we have:

ρ(R(n)
i ) ≤ ρ(R̄K) = ρ(R̄). �
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Thomas Kämpke KAEMPKE@FAW-NEU-ULM.DE

Forschungsinstitut für Anwendungsorientierte Wissensverarbeitung/n FAW/n
Lise-Meitner-Str. 9
89081 Ulm, Germany

Editor: Peter Dayan

Abstract

Similarity of edge labeled graphs is considered in the sense of minimum squared distance between
corresponding values. Vertex correspondences are established by isomorphisms if both graphs are
of equal size and by subisomorphisms if one graph has fewer vertices than the other. Best fit
isomorphisms and subisomorphisms amount to solutions of quadratic assignment problems and are
computed exactly as well as approximately by minimum cost flow, linear assignment relaxations
and related graph algorithms.

Keywords: assignment problem, best approximation, branch and bound, inexact graph matching,
model data base

1. Introduction

Structural similarity is involved in a variety of pattern recognition problems when considered from
an abstract perspective. The abstraction refers to measurements and observations whose specifics
are ignored. One class of such problems is encountered in image processing, where a set of features
or objects with topological interrelations is detected in several scenes. Whenever these are presumed
to be similar according to position, proximity or else, the degree of similarity is of interest.

Structures are represented throughout by labeled graphs such as image graphs. In image graphs,
vertices represent image edges, corners or regions of interest such as regions of constant intensity or
homogenous texture. Graph edges represent relations such as neighborhoods or concept hierarchies.
Edge labels represent distances, degrees of association or else.

Structural similarity is considered as similarity between two labeled graphs. Typical roles of the
two graphs are that of a model graph from a model data base or a prototype data base and that of an
instance graph representing an ’as is’ structure which is encountered ’at run time’. The issue is then
to determine the similarity between prototype and instance.

Similarity will be formulated as a best approximation problem. This involves minimization of
squared distances which results in a quadratic assignment problem. The problem is approached
by several algorithmic concepts including network algorithms with emphasis on linear assignment
relaxations. Also, cost minimal flows of given strength will play a major role. The focus is on
approximate algorithms for best graph approximation since the exact problem is NP-hard.

Besides image processing, structural similarity is encountered, for example, in document analy-
sis and molecular graph search. However, the objective of this work is not to consider one particular
real or potential application. Instead, common problem formulations and algorithms are presented.

c©2006 Thomas Kämpke.



KÄMPKE

The remainder of this work is organized as follows. Section 2 introduces the best approxima-
tion problem for edge-labeled graphs and reviews related work. Polynomial time approximation
algorithms are stated in Section 3. Since the best graph approximation problem contains subgraph
isomorphism as a special case, no exact algorithm can be expected to run in polynomial worst case
time. The approximations are consequently based on linear assignment problems since the original
problem is a quadratic assignment problem. Approximations have interesting side features such as
being suited for grid computations. Section 4 contains two sketches of approaches for exact algo-
rithms for the best graph approximation problem. One is based on flows, the other on branch and
bound.

Unless otherwise stated, all graphs considered are undirected which means that edges have no
preferred directions. Moreover, the graphs are simple which means that there is at most one edge
between any two vertices and there are no loops so that no edge begins and ends in the same vertex.
The edge labels themselves must allow to be subtractable from each other but are otherwise uncon-
strained. In particular, the edge labels themselves do not have to reflect any notion of similarity.

The 2-norm or Euclidean norm of any vector z = (z1, . . . ,zn) of real numbers zi is denoted by

||z|| = ||z||2 =
√

z2
1 + . . .+ z2

n. The number of elements of a finite set A is denoted by |A|.

2. Problem and Related Work

A distance pattern is understood to be an undirected graph with edge labels. The graph vertices
denote objects or states and the edge labels denote distances, transition times etc. Though it may
take quite some effort to generate these graphs in applications, this effort is ignored here and two
such graphs are assumed to be given.

2.1 Problem Formulation

The best approximation of a labeled graph by another labeled graph is defined by a subisomorphism
of the vertex set of the first graph to the vertex set of the second graph. Thereby edge labels of the
first graph are approximated by corresponding edge labels of the second graph as minimum sum of
squared differences.

Formally, two undirected graphs with edge labelings are given by G1 = (V1,E1) with l1 : E1 → IR
and G2 = (V2,E2) with l2 : E2 → IR. The first graph has n = |V1| vertices and the second graph has
m = |V2| vertices with n ≤ m. The best approximation of G1 by G2 is defined via an optimal
approximating subisomorphism

ϕ0 = argminϕ:V1→V2, ϕ invertible

√

∑
{vi,v j}∈E1

(

l1(vi,v j)− l2(ϕ(vi),ϕ(v j))
)2

.

The best approximation is given by the image of the first vertex set ϕ0(V1) so that ϕ0(V1) ⊆V2. The
minimum value is called the distance of the best approximation.

In order to be well defined, the problem entails a technical condition that, whenever two vertices
of the first graph are joined by an edge, the images of the two vertices must be joined by an edge in
the second graph. Without further restrictions to the subisomorphisms this implies that the second
graph must be complete.
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The objective of best approximation can be considered as Frobenius distance when both graphs
are complete. The edge labelings then denote distance matrices D1,D2 with entries

D1(vi,v j) =

{
l1(vi,v j), for vi 6= v j

0, for vi = v j
D2(wi,w j) =

{
l2(wi,w j), for wi 6= w j

0, for wi = w j.

The best approximation objective can then be written as follows since counting over all edges
amounts to counting twice over all vertex pairs. Pairs of identical vertices are negligible because
they contribute value zero.

∑
{vi,v j}∈E1

(

l1(vi,v j)− l2(ϕ(vi),ϕ(v j))
)2

=
1
2 ∑

vi,v j∈V1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

=
1
2
||(D1(·, ·))− (D2(ϕ(·),ϕ(·)))||2F .

The Frobenius norm of any matrix is the square root of the sum of all squared entries (Golub
and van Loan, 1985).

Distance matrices allow to consider the best approximation problem also for graphs which are
not complete. Whenever one of the two given graphs is not complete, all missing edges are inserted.
The complete graph is then labeled by the shortest path distances according to the original edge
labeling. Original edge labels are preserved when these satisfy the triangle inequality. Original
edge labels may be overwritten when these do not satisfy the triangle inequality.

The celebrated graph isomorphism problem is contained in the best approximation problem as
the following special case. Suppose H1 and H2 are two unlabeled graphs with same number of
vertices and arbitrary edge sets. Each graph is extended to the complete graph on its vertex set and
receives the edge labels

li(e) :=

{
1, if edge e belongs to original graph Hi

0, if edge e does not belong to original graph Hi,

i = 1,2. These graphs are denoted G1 and G2 respectively. The original graphs are isomorphic if
and only if the best approximation of G1 by G2 and the best approximation of G2 by G1 both have
distance zero.

The most trivial case of the best approximation problem is given for the smaller graph being
the smallest possible. This is a two vertex graph with one edge only. The single edge graph is
best approximated by that edge from the larger graph whose label comes closest to the label of the
single-edge graph. A non-trivial example of the best approximation problem is given in Figures 1
and 2.

Best graph approximation can be considered as search for a minimum weight clique of given
size in a suitably defined graph, the association graph or correspondence graph. This relation is such
that the given clique size equals the size of the smaller graph and that no larger cliques exist in the
association graph. Mnemonically, best graph approximation can thus be remembered as search for
a minimum weight clique of maximum size.

The association graph of two graphs is defined as their product. Each vertex of one graph is
paired with each vertex of the other graph and each such pair is identified with a vertex of the asso-
ciation graph. Two vertices of the association graph are joined by an edge if the two vertices stem
from four distinct vertices of the original graphs. The construction is illustrated in Figure 3. The
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Figure 1: The left three vertex graph is best approximated by the triangle with edge labels 3,10,16
in the larger graph. The subisomorphism is ϕ(v1) = w1, ϕ(v2) = w4 and ϕ(v3) = w3 with
the two vertices w2 and w5 being unattained. The graph isomorphism is given explicitly
in the next figure.
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Figure 2: Original graph (left) and best approximating isomorphic substructure (right) for the situ-
ation of Figure 1. The squared distance between the two graphs is (2−3)2 +(8−10)2 +
(20−16)2 = 21.

cost of the edge between the vertices (vi,w j) and (vk,wl) is set equal to (D1(vi,vk)−D2(w j,wl))
2.

The meaning of selecting any vertex of the form (vi,w j) is that the original vertex vi is mapped to
the original vertex w j by a subisomorphism. These ”associations” motivate the name association
graph and the cost of a clique, which equals the cost sum over all edges between selected vertices,
is the objective of graph approximation.

An alternative view of best graph approximation can be obtained from quadratic assignment
problems such as the following

min
x

xTCx

such that
n

∑
i=1

xi j ≤ 1 ∀ j = 1, . . . ,m

m

∑
j=1

xi j = 1 ∀ i = 1, . . . ,n

xi j ∈ {0,1} ∀ i, j.

The binary variable xi j attaining value one means that vertex vi is assigned to vertex w j and
that variable attaining the value zero means that this assignment is not valid. The vector x has n ·m
coordinates and C is an n ·m× n ·m matrix denoting the cost incurred by pairwise assignments;
the assignments vi 7→ w j and vk 7→ wl entail the cost (D1(vi,vk)−D2(w j,wl))

2. The cost matrix is
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Figure 3: A ”small” graph and a ”large” graph (top) and their association graph (bottom). The
indicated clique of the vertices (v1,w4), (v2,w2) and (v3,w3) denotes the subisomorphism
ϕ(v1) = w4, ϕ(v2) = w2 and ϕ(v3) = w3.

computed as

C =






(D1(v1,v1)−D2(·, ·))
2 . . . (D1(v1,vn)−D2(·, ·))

2

...
...

...
(D1(vn,v1)−D2(·, ·))

2 . . . (D1(vn,vn)−D2(·, ·))
2






where D2(·, ·) is the m×m matrix of all distance values for the second graph and (c−M)2, the
square of a constant c minus a matrix M, is understood as a matrix of the size of M with each
element denoting the squared distance from the constant so that (c−M)2 = ((c−mab)

2)ab. The size
of the cost matrix is unfortunately large as it already is a 15×15 matrix for the small graphs from
Figure 1.

2.2 Related Work

The subisomorphism problem which is contained as special case of the best approximation problem
must not be confused with that version of the SUBGRAPH ISOMORPHISM problem which is
known to be NP-complete, see Garey and Johnson (1981, problem GT48). That problem does not
admit edge labels and it considers the two operations of vertex removal and edge removal for the
transition from the larger to the smaller graph. Even more, the LARGEST COMMON SUBGRAPH
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problem also is NP-complete, see Garey and Johnson (1981, problem GT49). This problem allows
edge removals only in order to find isomorphic subgraphs. Here, only vertex removals matter and
edge removals are allowed only in so far as they are implied by vertex removals.

A widely used measure for so-called inexact graph matching is the edit distance between two
unlabeled graphs. One graph is therefore modified by a minimum number of vertex insertions and
deletions and by edge insertions and deletions. The concept in general as well as a particular focus
on tree graphs is given in Wang et al. (1998). A simplification of the edit distance does not refer
to the graphs themselves and isomorphism between them but to their degree histograms which are
to be made equal by a minimum number of changes (Papadopoulos and Manolopoulos, 1999). The
edit distance for subisomorphisms of labeled graphs is considered by Messmer and Bunke (1998a).

Subisomorphism with vertices and edges both carrying labels is considered by Hlaoui and Wang
(2002). Conflicts of tentatively assigning several vertices of the smaller graph to one vertex of the
larger graph are resolved in a hierarchical manner. The method is reported to be well suited for
small graphs. Best graph approximation in terms of matching problems is considered by Gold and
Rangarajan (1996). There, the problem is extended to a sequence of continuous surrogate prob-
lems. This leads to an iterative, matrix-based solution scheme which is controlled by a continuous
parameter that intends to drive continuous relaxations to a discrete vertex assignment. While leav-
ing slight uncertainties about the control of this parameter and while using a linear instead of a
quadratic distance between edge labels, the method makes, like the approaches given below, use
of the assignment problem. A quite different, probabilistic approach which makes use of potential
functions is given in Caetano et al. (2005).

Best graph approximation can be considered as ”dual” to joint edge and label construction. This
construction was developed for trees by Desper and Vingron (2002). Only distance information
is required in order to build one tree with edge weights so that the given distances are approxi-
mated by path lengths between leaves of the tree. The construction is formulated as a least square
approximation problem so that solution methods have a strong algebraic component.

Matching techniques for graphs whose vertices denote positions in space have been developed
from the analogy of physical elasticity, compare Wiskott et al. (1997) and Wiskott and Malsburg
(2002). In addition, the elasticity idea supports the generation of the model graph from examples.
These physical methods are complemented by probabilistic methods for unlabeled graph subiso-
morphisms by Bengoetxea (2002).

Motivated by graphs that describe the structure of SQL data bases, an interactive fixpoint al-
gorithm for similarity computing has been proposed by Melnik et al. (2002). The method is based
on the assumption that adjacent vertices are more similar than non-adjacent vertices. The quality
of the matching result is measured by the number of human adjustment steps that are eventually
needed. For a similar data base purpose, case-based reasoning, similarity of graphs with character-
string labels has been considered (Champin and Solnon, 2003). Similarity is measured by weighted
counts of identical labels with vertex correspondence being generated by a greedy algorithm. This
algorithm maximizes the similarity score in each iteration.

Best graph approximation relates given lists of numbers by vertex-edge incidences. When these
are dropped, that is, when numbers are given as mere list entries of one list and when the numbers
are viewed as Euclidean distances on the real line, a complete line graph may be searched for
such that the given numbers form a coherent distance labeling. This is the NP-complete PARTIAL
DIGEST problem from genomic mapping, see Skiena and Sundaram (1994). Whenever the best
graph approximation problem refers to graphs with Euclidean distances on the line and whenever
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the smaller graph is known to be contained in the larger graph, methods for PARTIAL DIGEST can
help to identify the actual subgraph isomorphism.

Subgraph isomorphism for unlabeled graphs has been studied in Messmer and Bunke (1998b)
motivated by symbol recognition problems. A polynomial time algorithm is given which requires
preprocessing and exponential space in the worst case. Graph similarity has even been investigated
for machine learning (Pope and Lowe, 1996). A quite sketchy outline of graph search methods over
molecular graphs is presented in Shasha et al. (2002), while the perspective of distance methods for
molecular similarity and superstructure retrieval is given in Kämpke (2004).

3. Approximate Algorithms

The best approximation problem obviously is finite and, thus, can, in principle, be solved by enu-
meration over all

(m
n

)
n! selections for admissible functions ϕ. Approximate algorithms of different

types as well as a strategy for exact algorithms are given in the sequel. The present approximations
mainly focus on linear assignment problems since the original problem is a quadratic assignment
problem.

To illustrate the intuitive aim of best graph approximation, the squared approximation distance
is rewritten for the special case of equally sized graphs. The best isomorphism then is a solution of
the maximization problem

max
ϕ:V1→V2, ϕ invertible

∑
{vi,v j}∈E1

D1(vi,v j) ·D2(ϕ(vi),ϕ(v j)).

The sum can be considered as an inner product over edges. When all edges of the first graph are
sorted increasingly then the maximization is obtained by an isomorphism that maintains monotonic-
ity ”as far as possible”. This is motivated by the well known inner product maximization ∑N

i=1 aibπ(i)

problem over all permutations π. The solution is a permutation with bπ(1) ≤ . . . ≤ bπ(N) whenever
all coordinates of the first vector are sorted as a1 ≤ . . . ≤ aN , compare with Hardy et al. (1948). A
monotonicity preserving isomorphism does generally not exist for the edge labels.

3.1 Distance Lists

A heuristic procedure for best subgraph isomorphism can be devised on local, that is, vertex-oriented
decisions. These are based on distance lists. The distance list of a vertex contains the labels of all
edges that are incident with the vertex. Any distance list can also be considered as a vector. The
distance list of a vertex v is denoted by distlist(v). A distance list in a complete graph with edge
labels D(·, ·) is given by distlist(v) = (D(v,vi))vi∈V−{v}. For the ease of comparability, all vertex
lists are sorted increasingly. Distance lists generalize vertex degrees since they count the ”ones”
when unlabeled graphs receive the binary edge labeling as given above for the embedding of the
graph isomorphism problem.

The distance lists for the three-vertex graph from Figure 1 are given by distlist(v1) = (2,8),
distlist(v2) = (8,20) and distlist(v3) = (2,20). The five-vertex graph of the same figure has the dis-
tance lists distlist(w1) = (3,3,7,10), distlist(w2) = (6,7,7,9), distlist(w3) = (3,6,8,16),
distlist(w4) = (9,10,16,62) and distlist(w5) = (3,7,8,62).

Viewing distance lists as vectors allows to consider Euclidean distances between distance lists.
This only requires standard notions for vector distances as long as distance lists have the same
number of coordinates. The lists being sorted makes these differences meaningful. Whenever two
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distance lists have different numbers of coordinates, a proper selection is made from the larger
distance list. In the foregoing example, selections of two out of the four coordinates from the
distance lists of the five-vertex graph are made.

The approximation of a distance list by a selection from a larger distance list can be formulated
as a weighted or cost minimal assignment problem. Therefore, two distance lists distlist(v) =
(x1, . . . ,xn−1) and distlist(w) = (y1, . . . ,ym−1), n ≤ m, are endowed with a complete bipartite graph.
Each coordinate receives one vertex and each coordinate of one distance list is connected by an
edge to each coordinate of the other distance list. No two coordinates of the same list are connected.
The edge connecting coordinates xi and y j is labeled by the squared difference of the list entries
(xi − y j)

2, compare with Figure 4.
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Figure 4: Complete bipartite graph for two distance lists. The vertices correspond to the coordinates
of the distance lists rather than to the vertices of the original graphs. Only one of the
(n−1) · (m−1) edge labels is sketched.

Any approximation of the first distance list by the second distance list amounts to a selection
of n− 1 distinct coordinates or indices from the second list. The approximation objective can be
formulated as a linear function of the edge labels

min
1≤ j1<...< jn−1≤m−1

n−1

∑
i=1

(xi − y ji)
2
.

Alternatively, the best approximation problem for distance lists can be formulated as cost minimal
perfect matching problem and as a cost minimal integral flow problem with flow value set to level
n−1, compare with Section 4.

The best approximation of a distance list distlist(v) by the distance list distlist(w) is denoted
as the projection pr(distlist(w), distlist(v)). The squared approximation error equals DL(v,w) =
||pr(distlist(w), distlist(v))− distlist(v)||2. Samples of distance lists, their best approximations
and approximation errors are given in the following table whose data refer to Figure 1.
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distlist(vi) distlist(w j) pr(distlist(w j), DL(vi,w j)
distlist(vi))

(2,8) (3,3,7,10) (3,7) (2−3)2 +(8−7)2 = 2
(2,8) (6,7,9,10) (6,7) or (6,9) (2−6)2 +(8−7)2 = 17

i = 1 (2,8) (3,6,11,16) (3,6) (2−3)2 +(8−6)2 = 5
(2,8) (9,10,16,62) (9,10) (2−9)2 +(8−10)2 = 53
(2,8) (3,10,11,62) (3,10) (2−3)2 +(8−10)2 = 5
(8,20) (3,3,7,10) (7,10) (8−7)2 +(20−10)2 = 101
(8,20) (6,7,9,10) (7,10) or (9,10) (8−7)2 +(20−10)2 = 101

i = 2 (8,20) (3,6,11,16) (6,16) (8−6)2 +(20−16)2 = 20
(8,20) (9,10,16,62) (9,16) (8−9)2 +(20−16)2 = 17
(8,20) (3,10,11,62) (10,11) (8−10)2 +(20−11)2 = 85
(2,20) (3,3,7,10) (3,10) (2−3)2 +(20−10)2 = 101
(2,20) (6,7,9,10) (6,10) (2−6)2 +(20−10)2 = 116

i = 3 (2,20) (3,6,10,16) (3,16) (2−3)2 +(20−16)2 = 17
(2,20) (9,10,16,62) (9,16) (2−9)2 +(20−16)2 = 65
(2,20) (3,10,11,62) (3,10) (2−3)2 +(20−10)2 = 101

3.2 Best Approximations by Distance Lists

The idea of cost minimal assignments can be carried over from distance lists of single vertices to the
whole graph. This results in an efficient heuristic algorithm for best graph approximation. Again, the
approximation problem is formulated as cost minimal assignment problem over a complete bipartite
graph. One set of vertices corresponds to the smaller graph and the other to the larger graph. The
edges are labeled by the errors of best distance list approximations. The general situation is sketched
in Figure 5.
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Figure 5: Complete bipartite graph for a heuristic solution of best graph approximation. The edge
labels refer to best approximations of distance lists.

A greedy heuristic for best graph approximation can now be based on iterative decisions accord-
ing to minimum distance list errors.
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ApproxDistList

1. Input complete labeled graphs G1,G2 with |V1| ≤ |V2|.
Initialization. Computation of distance list errors DL(v,w) for all v ∈ V1, w ∈ V2. A = V ,
B = W .

2. While A 6= /0 do

(a) Computation of W (v) = argminw∈BDL(v,w) and level(v,B) = DL(v,W (v)) and for all
v ∈ A.

(b) Selection of v0 = argminv∈Alevel(v,B).

(c) ϕ(v0) = w(v0) with w(v0) ∈W (v0).

(d) A = A−{v0}.

(e) B = B−{ϕ(v0)}.

3. Output subisomorphism ϕ(·) on V1.

The level computations in step 2(a) determine the best fit decision that can be made without
taking back prior decisions. The sets W (v) indicate all vertices from the second graph that attain the
minimum. Ties for selections in step 2(b) as well as for selections from the set W (v0) in step 2(c)
are broken arbitrarily. While the sets A and B of unassigned vertices decrease along the iterations
of the algorithm, the distance lists to consider become fewer but not smaller. Thus, the edge labels
DL(v,w) do not have to be updated along the iterations.

The greedy procedure applied to the graphs of Figure 1 can be traced with the data from the
table of Section 3.1. The resulting subisomorphism is given by selecting the minima for each vertex
from the smaller graph. This is exactly the solution indicated by Figure 2.

The foregoing algorithm need not solve the cost minimum assignment problem exactly. An
optimal solution of this problem (which still need not lead to the best graph approximation since the
assignment problem is only an approximative encoding for best graph approximation problem) can
be found by any weighted assignment algorithm for bipartite graphs. These algorithms are typically
based on transformations to cost minimum flow problems. Therefore, all vertices of the smaller
graph are connected to an extra source vertex and all vertices of the larger graph are connected to an
extra sink vertex. All the extra edges receive a unit capacity on the flow. All edges become oriented
edges or arcs as indicated in the flow network in Figure 6.

Among the cost minimal flows of strength n there is one with all integer values. This flow
amounts to a cost minimal assignment of all vertices from the smaller graph. The out of kilter
algorithm allows to compute the desired cost minimum flow, see Ahuja et al. (1993).

A different solution for cost minimal assignment problems can be obtained from straightforward
transformations to cost minimal perfect matching problems by introducing additional vertices for
the smaller graph. Both sets of the vertex partition then have the same size. All dummy vertices
for the smaller graph are connected to all vertices from the larger graph by edges with zero cost. A
matching is a set of edges such that any two edges do not have a common vertex. A matching is
perfect if each vertex of the graph is covered by an edge.

A polynomial time algorithm for cost minimal perfect matchings can be based on augmenting
paths that are constructed by shortest paths. Implementations thereof are available in the LEDA
system, see Mehlhorn and Näher (2000, Chapter 7). More recent scaling algorithms are given in
Ahuja et al. (1993).
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Figure 6: Flow network for a distance label heuristic. The edges that are incident either to the source
or the sink carry capacities but no cost coefficients while the edges with cost coefficients
do not carry capacities.

3.3 Direct Methods

Direct methods for graph approximation will use the original edge labels and the unaltered best
approximation errors for all fitting assessments.

3.3.1 SEQUENTIAL ASSIGNMENTS

A subisomorphism can be constructed by sequentially assigning vertices from the smaller graph to
the larger graph so that the sum of squared label distances over all new edge pairs is minimal. The
first assignment may stem from two best matching edges. No assignment is ever revised by the
following procedure.

SeqAssign

1. Input complete labeled graphs G1,G2 with |V1| ≤ |V2|.
Initialization. Computation of (e0, f0) = argmine∈E1, f∈E2 (D1(e)−D2( f ))2.

Selection of one vertex v1 of the two vertices incident with e0.
Selection of one vertex w1 of the two vertices incident with f0.
ϕ(v1) = w1.
Labeling all other vertices from V1 by v2, . . . ,vn.
B = V2 −{ϕ(v1)}.

2. For i = 2, . . . ,n do

(a) Computation of w0 = argminw∈B ∑i−1
j=1(D1(v j,vi)−D2(ϕ(v j),w)2.

(b) ϕ(vi) = w0.

(c) B = B−{ϕ(vi)}.

3. Output subisomorphism ϕ(·) on V1.
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3.3.2 IMPROVEMENTS

Whenever a subisomorphism is not optimal or not known to be optimal, improvements can be aimed
at by swapping two vertex assignments or by swapping an assigned with an unassigned vertex.
Swaps of both types can easily be evaluated.

For notational ease the vertices are numbered such that ϕ(vk) = wk, k = 1, . . . ,n, for some given
subisomorphism ϕ : V1 → V2. First, two vertices vi,v j, 1 ≤ i 6= j ≤ n are considered for swapping
their assignments while all other assignments are preserved.

ϕ′(vk) =







w j if k = i
wi if k = j
wk if k 6= i, j.

The new subisomorphism leads to a smaller approximation error if and only if

n

∑
k=1,k 6=i, j

(

l1(vi,vk)− l1(v j,vk)
)

·
(

l2(w j,wk)− l2(wi,wk)
)

> 0.

This condition being true is denoted by Imp(i, j) = true. Second, one vertex vi, 1 ≤ i ≤ n is con-
sidered for changing its assignment to an unassigned vertex w0 ∈ V2 −ϕ(V1), that is, the present
subisomorphism is compared to the new subisomorphism

ϕ′(vk) =

{
w0 if k = i
wk if k 6= i.

The new subisomorphism leads to a smaller approximation error if and only if

n

∑
k=1,k 6=i

l2
2(wi,wk)− l2

2(w0,wk) > 2
n

∑
k=1,k 6=i

l1(vi,vk) ·
(

l2(wi,wk)− l2(w0,wk)
)

.

This condition being true is denoted by Imp(i,w0) = true. The improvement conditions results in the
following procedure.

Imp

1. Input complete labeled graphs G1, G2.
Subisomorphism ϕ : V1 →V2 with ϕ(vk) = wk, k = 1, . . . ,n.

2. While Imp(i, j) = true or Imp(i,w0) = true for some w0 do

(a) If Imp(i, j) = true then ϕ(vi) = w j and ϕ(v j) = wi

else ϕ(vi) = w0

(b) Vertex relabeling such that ϕ(vk) = wk, k = 1, . . . ,n.

3. Output swap-improved subisomorphism ϕ : V1 →V2.

Swaps for triples, quadruples etc. can be considered instead of pairwise swaps. Though the
complexity of evaluating such swaps increases only little, the number of swap candidates increases
by one order of m for each size increase of the swap candidates.
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3.4 Relaxation Method

The previous methods can all be considered as primally feasible which means that all assignments
actually are subisomorphisms though not necessarily optimal. The subisomorphism constraint may
tentatively be relaxed in analogy to so-called dual optimization techniques. Starting from some
promising structure, a sequence of changes will be made that eventually attain feasibility and that
tend to incur as little additional cost as possible per step.

3.4.1 INITIAL STRUCTURE

A promising initial structure is constructible by enumerating the first vertex set. Each vertex from
that set is paired with all vertices from the second vertex set which amounts to considering their
common vertices in the association graph. The label sum of all edges which emanate from each of
these common vertices is minimized under the choice of the second vertex. This can be expressed
as the following nested minimization:

µ(i) = argmin j=1,...,m

n

∑
k=1,k 6=i

min
l=1,...,m

(

D1(vi,vk)−D2(w j,wl)
)2

.

This minimization implies a function from the first vertex set into the second vertex set by
vi 7→ wµ(i). The inner minimizations are independent of each other and, thus, may lead to overas-
signments which means that the same index l is attained as minimum for different outer indices.
The analogue is true for the outer minimization. The presence of overassignments implies that the
overall function is not a subisomorphism. However, the independence of the minimizations makes
them easy to compute and the resulting cost value provides a lower bound for the cost of best graph
approximation. The edges for summation in one minimization of the initial relaxation are sketched
in Figure 7. It is worth noticing that the minimization for the initial structure may lead to even

r(vi,w j)

r(vn,wln)

...

...

r(v2,wl2)

r(v1,wl1)

r(vi,wli)����XXXX

������

@
@

@
@

@
@

Figure 7: Vertices and edges of the association graph that are considered while computing the value
µ(i) for the initial structure of the relaxation method.

smaller objective values than the distance lists.

3.4.2 IMPROVEMENT

After initialization, the relaxation method proceeds by iteratively selecting an overassigned vertex
and redirecting or backtracking at least one assignment to a yet unassigned vertex. Several vertex
assignments may be altered in each iteration. Each iteration is organized by computing a wave front
of node potentials that emanates from an overassigned vertex.
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The edges for the wave front computations are directed. All edges of the current structure are
oriented as backward edges from the second vertex set to the first vertex set and all other edges are
oriented as forward edges from the first to the second vertex set, see Figure 8. Not all edge labels are
initially known in quite a contrast to the ordinary dual method for assignment problems. Actually,
node potentials will be computed according to edge transitions rather than by explicitly given edge
labels.
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Figure 8: Forward edges (thin) and four backward edges (bold) for the wave front computations to
resolve the double assignment of vertex w j0 . The wave front begins in that vertex and
ends in a suitable vertex from the second set from which no edge leads back into the first
set.

The relaxation method assigns tentative and permanent labels to graph nodes in analogy to the
Dijkstra algorithm. The labels are potentials which equal the cost of functions from the first vertex
set or a subset thereof into the second vertex set. Such functions need not be one-to-one. For-
mally, the potential of a function ϕ is computable as cost(ϕ) = ∑v∈dom(ϕ) ∑v′∈dom(ϕ)−{v}(D1(v,v′)−
D2(ϕ(v),ϕ(v′)))2, where dom(ϕ) denotes the domain of function ϕ. Whenever a function is altered
by deleting an assignment like v4 7→ w3 it is denoted by ϕ− (v4 7→ w3), when then the assignment
v4 7→ w8 is inserted, the function is denoted by ϕ− (v4 7→ w3)+ (v4 7→ w8) etc. Backward edges
amount to deleting assignments and forward edges amount to inserting assignments.

NoPo

1. Input Structure ϕ, overassigned vertex w0 ∈V2.
Initialization L = V1 ∪V2 −{w0}, m(l) = ∞ ∀ l ∈ L, and m(w0) = cost(ϕ).

2. While (V2 −ϕ(V1) ⊆ L) do:

(a) Selection of u = argminl∈Lm(l).

(b) L = L−{u}.

(c) ∀z ∈ L∩S(u) do:

i. ϕz = ϕu +(u 7→ z) if z ∈V2 and u ∈V1

ϕz = ϕu − (u 7→ z) if z ∈V1 and u ∈V2.
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ii. Computation of cost(ϕz).

iii. If cost(ϕz) < m(z) then m(z) = cost(ϕz).

3. Termination. Output ϕz for that z ∈ V2 − ϕ(V1) which received its permanent label most
recently.

The set S(u) denotes the set of all immediate successors of vertex u which is the set of all vertices
to which an edge points from vertex u. The list L contains all vertices that are tentatively labeled.
The graph vertices which are not contained in the list are permanently labeled. The algorithm
terminates as soon as the first yet unassigned vertex from the second set receives a permanent label.

It may occur during wave front propagation that an already assigned vertex from the second
set is permanently labeled. This means that an assignment of the input function ϕ is revised. The
node potential algorithm terminates with exactly one additional vertex assignment from the second
graph. The algorithm is applied repeatedly until all overassignments are eliminated.

The improvement algorithm Imp from Section 3.3.2 can be obtained from the mode potential
algorithm NoPo by starting at a vertex that is attained exactly once (with all vertices of the second
set being attained at most once). The search for cost reductions proceeds along wave fronts of length
two or four and by allowing the wave front to return to its origin.

3.5 Grid Computing Methods

The recently celebrated framework of grid computing is based on the idea of a system which co-
ordinates distributed resources using standard, open, general purpose protocols and interfaces to
deliver nontrivial qualities of services (Foster and Kesselman, 2004). Though the distribution of a
computational problem into subproblems is not an inherent feature of grid computing in general,
it is here considered as exactly that. The breakdown of a computational problem into subproblems
that amend to partial computations without any communication between them is here called grid
distribution. Grids with several thousand computing nodes have already become feasible.

The lack of any communication between computations means that neither intermediate results
nor data are shared. Whenever common data are required, they are physically copied and stored
separately before computations begin in order to avoid any access collision. The avoidance of
intermediate result communication is a trivial concept. But this makes distributed computations
feasible from a practical perspective. Multiple execution of certain operations is the price to be
paid. The computational subproblems are generated, distributed and possibly queued by a master.
The master also collects the individual computing results and aggregates them to the final computing
result.

Best graph approximation lends to grid computing in a straightforward manner. To this end, the
strategy of pivoting is here proposed for grid distribution. The idea is that of selecting a vertex from
the larger graph as pivot element. This means that best graph approximation is tentatively reduced to
only those subisomorphisms which attain that vertex and the optimal of such pivot-subisomorphisms
is computed exactly or approximately. Eventually, all vertices of the second graph are chosen as
pivot elements and the pivoting-subisomorphism with smallest objective value is reported as the
best one. Heuristics which make use of assignment problems are particularly suited for pivoting.

Any subisomorphism which attains the pivot element w j0 ∈ V2 from some vertex vi0 ∈ V1 is
denoted by ϕi0 7→ j0 . A candidate for the best subisomorphism of this type will be computed and the
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best ϕ j0 of these over all vertices from the first graph is selected by independent computations. Then,
the best ϕ0 of these over all vertices from the second graph is centrally computed. Schematically
this is denoted as

ϕi0 7→ j0

mini0∈{1,...,n}
−→

︸ ︷︷ ︸

grid

ϕ j0
pass result
−→ ϕ j0

min j0∈{1,...,m}
−→

︸ ︷︷ ︸

central

ϕ0.

The weighted assignment problems that are solved for each of the subisomorphisms ϕi0 7→ j0 is
sketched in Figure 9.
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Figure 9: Complete bipartite graph for pivot vertex and preselected vertex from the first graph.

The resulting algorithm that has to be executed at the grid nodes is as follows.

GridPivot

1. Input complete labeled graphs G1,G2 with n ≤ m and j0 ∈ {1, . . . ,m}.

2. Computations

(a) Computation of ϕi0 7→ j0 as minimal weighted assignment for all i0 ∈ {1, . . . ,n}.

(b) Selection of ϕ j0 with minimum objective of ϕi0 7→ j0 over all i0 ∈ {1, . . . ,n}.

3. Output subisomorphism ϕ j0 on V1.

The minimization in step 2(b) adheres to the original objective of best graph approximation and
no longer to the objective functions of the assignment problems from step 2(a). The computations
in step 2(a) can be coupled by using the optimal assignment for one problem—for one value of i0—
as an initial assignment for the next problem—for the next value of i0. This is feasible for primal
methods as well as for dual methods such as the relaxation method, see above.

The grid distribution of the complete problem into subproblems and the selection ϕ0 of the best
of their results is conceptually obvious.
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4. Towards Exact Methods

Since the focus is on practical algorithms, the descriptions of exact algorithmic solutions of best
graph approximations is kept to an informal level. First, flows are extended and second, a branch
and bound method is sketched.

4.1 Flows

Best graph approximation can be formulated as a cost minimal flow problem in loose analogy to
the distance list heuristic. However, the graph is more complicated and additional constraints are
necessary. These include submodular edge capacities and integrality conditions for the flow through
some edges.

The main problem of transforming the best graph approximation into a flow problem is that
subisomorphisms refer to vertices while the costs refer to edge pairs. The cost issue is therefore
dealt by introducing a biquadratic number of network vertices that represent all possible edge pair-
ings induced by the vertex assignments. Each pair of distinct vertices from the smaller graph may
correspond to each pair of distinct vertices from the larger graph. The incurred cost is an edge label
with the edge connecting a network vertex (vi,v j,wk,wl) with the sink in the flow network.

A subisomorphism in the network is specified by all considering each vertex vi of the smaller
graph and all its possible assignments by introducing the network vertices (vi,w1), . . . ,(vi,wm).
These are connected by edges. Since each vertex of the second graph is attained at most once
by any subisomorphism, the edges into the network vertices (v1,w j), . . . ,(vn,w j) have one common
capacity constraint. The joint flow into all these vertices is bounded by one. The situation is depicted
by Figure 10.

...

rv j
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rvi

...

r(v j,wm)

...

r(v j,w1)

r(vi,wm)

...

r(vi,w1)

PPPPPPPPP
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Figure 10: The m vertices (vi,w1), . . . ,(vi,wm) together allow an inflow of strength one only for
each of the vertices vi. Edges with common capacity constraints are indicated with
identical number of ticks.

Common edge capacities are known as submodular flow constraints, see Fujishige (1991). The
flow from the source vertex to each of the graph vertices is bounded by one and the flow out of each
vertex (vi,w j) is bounded by 1

n−1 . The reason for this bound is that each vertex of the smaller graph

2081
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is incident with all n−1 other vertices and thus n−1 edges of the smaller graph are incident with
each vertex. The complete construction is illustrated in Figure 11 for the problem from Figure 1.
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Figure 11: Part of graph for an exact solution of the best approximation problem. The submodular
flow constraints as well as arc orientations are not indicated. Arcs are directed in the
general direction ”from left to right”. The arcs for which cost labels are specified refer
to the solution for the problem from Figure 1.

A best graph approximation amounts to a cost minimal flow of strength n from source to sink
such that the flows along the edges between all vi and (vi,w j) are integer. The other constraints then
imply that the flows are binary over these edges.

4.2 Branch and Bound

The complicated structure of the foregoing flow problem motivates to organize an exact best graph
approximation by branch and bound. Subisomorphisms will be built up sequentially by either prun-
ing or refining a partial subisomorphism. A partial subisomorphism is a subisomorphism defined
over a subset of the vertex set of the smaller graph. The domain of a partial subisomorphism is de-
noted by A(V1) and the partial subisomorphism itself is denoted by ϕ|A(V1). The special case of the
partial subisomorphism being defined over the complete vertex set of the smaller graph is denoted
by ϕ = ϕ|V1 .

A lower bound for the approximation distance of a partial subisomorphism can be obtained by
independently minimizing distances between unassigned and assigned vertices. Formally, the lower
bound is given by

∑
{vi,v j}∈E1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2
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≥ ∑
{vi,v j}∈E1,vi,v j∈A(V1)

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

+ ∑
v0∈A(V1)

c(v0)
2

=: Val(ϕ |A(V1)),

where c(v0) = minv∈V1−A(V1),w∈V2−ϕ(A(V1)) |D1(v0,v)−D2(ϕ(v0),w)| for all v0 ∈ A(V1).
Improved lower bounds can be constructed by cost minimal assignments in analogy to the

heuristic distance list constructions of Section 3. Independent minimization over unassigned ver-
tices is replaced by joint minimization. The vertex set of the bipartite graph for the assignment
problem consist of both sets of unassigned vertices which are V1 −A(V1) and V2 −ϕ(A(V1)). The
cost values of the edges are given by squared errors of distance list approximations DL(v,w), see
Figure 12.
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Figure 12: Assignment problem for improved lower bound of partial subisomorphism ϕ |A(V1).

The improved lower bound is

∑
{vi,v j}∈E1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

≥ ∑
{vi,v j}∈E1,vi,v j∈A(V1)

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

+ val(ϕ |A(V1))

=: Val∗(ϕ |A(V1)),

where val(ϕ |A(V1)) is the minimum cost value of the lower bounding assignment problem from
Figure 12. The bounding strategy of a branch and bound algorithm for best graph approximation
can now be readily specified as follows.

Bound
Case A(V1) 6= V1.

If Val∗(ϕ |A(V1)) ≤ M then refine ϕ |A(V1)

else ignore ϕ |A(V1). (prune or bound).
Case A(V1) = V1.

If Val∗(ϕ) = M then Lopt = Lopt ∪{ϕ}.
If Val∗(ϕ) < M then Lopt = {ϕ} and M = Val∗(ϕ).

The value M is the approximation distance of the best subisomorphism found so far and Lopt is
a list of all these best subisomorphisms. This results in the following branch and bound approach.
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The algorithm operates on a list U of unexplored partial subisomorphisms until this list becomes
empty. The initial setting of this list consists of partial subisomorphisms that make exactly one
assignment.

B+B

1. Input graphs G1,G2 with distances D1,D2.
Initialization. M cost of arbitrary subisomorphism. U = {ϕ |v1(v1) = w1, . . . ,ϕ |v1(v1) = wm}.
Lopt = /0.

2. While U 6= /0 do

(a) Selection ϕ |A(V1) ∈U .

(b) U = U −{ϕ |A(V1)}.

(c) Computation of Val∗(ϕ |A(V1)).

(d) (Bound)
If A(V1) = V1 then

If Val∗(ϕ) = M then Lopt = Lopt ∪{ϕ}.
If Val∗(ϕ) < M then Lopt = {ϕ} and M = Val∗(ϕ).

(e) (Branch)
If Val∗(ϕ |A(V1)) < M then U = U ∪

S

w0∈V2−ϕ(A(V1)){ϕ |A(V1)∪{v0} with
ϕ |A(V1)∪{v0} (v0) = w0} for one v0 ∈ A(V1).

3. Output list of optimal subisomorphisms Lopt .

The branch and bound procedure is informal in so far as the selection step 2(a) and the branching
step 2(e) leave many ways of specialization. Removal is specified implicitly here which means that
a partial subisomorphism selected in step 2(a) is removed anyway in step 2(b). Refinements of
the partial subisomorphism are possibly added to U in the branching step. Whenever a partial
subisomorphism is not pruned by the bounding step, the next iteration of step 2 may or may not
select a refinement of this partial subisomorphism to continue with.

5. Conclusion

Best graph approximation has been formulated for labeled graphs in analogy to isomorphism for
unlabeled graphs. Polynomial time approximation algorithms in terms of linear assignment prob-
lems have been given and exact algorithms have been outlined. All algorithms are independent from
application domains.

Whenever an instance graph is to be matched to several instead of one model graph, this can
obviously be done sequentially. The best match is given by the minimum over all approximation
distances and a ranking of the matching results is given by increasingly sorted approximation dis-
tances.
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Abstract
We introduce a computational design for pattern detection based on a tree-structured network of
support vector machines (SVMs). An SVM is associated with each cell in a recursive partitioning
of the space of patterns (hypotheses) into increasingly finer subsets. The hierarchy is traversed
coarse-to-fine and each chain of positive responses from the root to a leaf constitutes a detection.
Our objective is to design and build a network which balances overall error and computation.

Initially, SVMs are constructed for each cell with no constraints. This “free network” is then
perturbed, cell by cell, into another network, which is “graded” in two ways: first, the number
of support vectors of each SVM is reduced (by clustering) in order to adjust to a pre-determined,
increasing function of cell depth; second, the decision boundaries are shifted to preserve all positive
responses from the original set of training data. The limits on the numbers of clusters (virtual
support vectors) result from minimizing the mean computational cost of collecting all detections
subject to a bound on the expected number of false positives.

When applied to detecting faces in cluttered scenes, the patterns correspond to poses and the
free network is already faster and more accurate than applying a single pose-specific SVM many
times. The graded network promotes very rapid processing of background regions while maintain-
ing the discriminatory power of the free network.
Keywords: statistical learning, hierarchy of classifiers, coarse-to-fine computation, support vector
machines, face detection

1. Introduction

Our objective is to design and build a “pattern detection” system based on a tree-structured network
of increasingly complex support vector machines (SVMs) (Boser et al., 1992; Osuna et al., 1997).
The methodology is general, and could be applied to any classification task in machine learning in
which there are natural groupings among the patterns (classes, hypotheses). The application which
motivates this work is to detect and localize all occurrences in a scene of some particular object
category based on a single, grey-level image. The particular example of detecting faces against
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cluttered backgrounds provides a running illustration of the ideas where the groupings are based on
pose continuity.

Our optimization framework is motivated by natural trade-offs among invariance, selectivity
(background rejection rate) and the cost of processing the data in order to determine all detected
patterns. In particular, it is motivated by the amount of computation involved when a single SVM,
dedicated to a reference pattern (e.g., faces with a nearly fixed position, scale and tilt), is applied
to many data transformations (e.g., translations, scalings and rotations). This is illustrated for face
detection in Fig 1; a graded network of SVMs achieves approximately the same accuracy as a
pattern-specific SVM but with order 100 to 1000 times fewer kernel evaluations, resulting from the
network architecture as well as the reduced number of support vectors.

To design and construct such a graded network, we begin with a hierarchical representation of
the space of patterns (e.g., poses of a face) in the form of a sequence of nested partitions, one for
each level in a binary tree (Fleuret and Geman, 2001; Fleuret, 1999; Sahbi et al., 2002; Jung, 2001;
Blanchard and Geman, 2005; Amit et al., 2004; Gangaputra and Geman, 2006a). Each cell - distin-
guished subset of patterns - encodes a simpler, sub-classification task and is assigned a binary clas-
sifier. The leaf cells represent the resolution at which we desire to “detect” the true pattern(s). There
is also a “background class,” for example, a complex and heterogeneous set of non-distinguished
patterns, which is statistically dominant (i.e., usually true). A pattern is “detected” if the classifier
for every cell which covers it responds positively.

Initially, SVMs are constructed for each cell in the standard way (Boser et al., 1992) based on
a kernel and training data – positive examples (from a given cell) and negative examples (“back-
ground”). This is the “free network,” or “f-network” { ft}, where t denotes a node in the tree hierar-
chy. The “graded network,” or “g-network” {gt}, is indexed by the same hierarchy, but the number
of intervening terms in each gt is fixed in advance (by clustering those in ft as in Schölkopf et al.,
1998), and grows with the level of t. (From here on, the vectors appearing gt will be referred to
as “support vectors” even though, technically, they are constructed from the actual support vectors
appearing in ft .) Moreover, the decision boundaries are shifted to preserve all positive responses
from the original set of training data; consequently, the false negative (missed detection) rate of gt

is at most that of ft and any pattern detected by the f-network is also detected by the g-network. But
the g-network will be far more efficient.

The limits on the numbers of support vectors result from solving a constrained optimization
problem. We minimize the mean computation necessary to collect all detections subject to a con-
straint on the rate of false detections. (In the application to face detection, a false detection refers to
finding a face amidst clutter.) Mean computation is driven by the background distribution. This also
involves a model for how the selectivity of an SVM depends on complexity, which is assumed pro-
portional to the number of support vectors, and invariance, referring to the “scope” of the underlying
cell in the hierarchy.

In the free network, the complexity of each SVM decision function depends in the usual way
on the underlying probability distribution of the training data. For instance, the decision function
for a linearly separable training set might be expressed with only two support vectors, whereas
the SVMs induced from complex tasks in object recognition usually involve many support vectors
(Osuna et al., 1997). For the f-network, the complexity generally decreases as a function of depth
due to the progressive simplification of the underlying tasks. This is illustrated in Fig 2 (left) for
face detection; the classifiers ft were each trained on 8000 positive examples and 50,000 negative
examples. Put differently, complexity increases with invariance.
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Figure 1: Comparison between a single SVM (top row) dedicated to a nearly fixed pose and our
designed network (bottom row) which investigates many poses simultaneously. The sizes
of the three images are, left to right, 520× 739, 462× 294 and 662× 874 pixels. The
network achieves approximately the same accuracy as the pose-specific SVM but with
order 100-1000 times fewer kernel evaluations. Some statistics comparing efficiency are
given in Table 1.

Consider an SVM f in the f-network with N support vectors and dedicated to a particular hy-
pothesis cell; this network is slow, but has high selectivity and few false negatives. The correspond-
ing SVM g has a specified number n of support vectors with n ≤ N. It is intuitively apparent that
g is less selective; this is the price for maintaining the false negative rate and reducing the number
of kernel evaluations. In particular, if n is very small, g will have low selectivity (cf. Fig 2 (right)).
In general, of course, with no constraints, the fraction of support vectors provides a rough measure
of the difficulty of the problem; here, however, we are artificially reducing the number of support
vectors, thereby limiting the selectivity of the classifiers in the g-network.

Building expensive classifiers at the upper levels (n ≈ N) leads to intensive early processing,
even when classifying simple background patterns (e.g., flat areas in images), so the overall mean

2089



SAHBI AND GEMAN

Figures ”Mona Lisa” ”Singers” ”Star Trek”
1 SVM f-net g-net 1 SVM f-net g-net 1 SVM f-net g-net

# Subimages Processed 2 . 105 2 . 103 2 . 103 5 . 104 8 . 102 8 . 102 2 . 105 4 . 103 4 . 103

# Kernel Evaluations 5 . 107 107 3 . 104 2 . 107 7 . 106 104 8 . 107 2 . 107 5 . 104

Processing Time (s) 172.45 28.82 0.53 55.87 17.83 0.26 270.1 48.92 0.87
# Raw Detections 3 3 4 12 14 15 19 20 20

Table 1: Comparisons among i) a single SVM dedicated to a small set of hypotheses (in this case a
constrained pose domain), ii) the f-network and iii) our designed g-network, for the images
in Fig 1. For the single SVM, the position of the face is restricted to a 2× 2 window, its
scale to the range [10,12] pixels and its orientation to [−50,+50]; the original image is
downscaled 14 times by a factor of 0.83 and for each scale the SVM is applied to the
image data around each non-overlapping 2×2 block. In the case of the f and g-networks,
we use the coarse-to-fine hierarchy and the search strategy presented here.
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Figure 2: Left: The average number of support vectors for each level in an f-network built for face
detection. The number of support vectors is decreasing due to progressive simplification
of the original problem. Right: False alarm rate as a function of the number of support
vectors using two SVM classifiers in the g-network with different pose constraints.

cost is also very large (cf. Fig 3, top rows). As an alternative to building the g-network, suppose we
simply replace the SVMs in the upper levels of f-network with very simple classifiers (e.g., linear
SVMs); then many background patterns will reach the lower levels, resulting in an overall loss of
efficiency (cf. Fig 3, middle rows).

We focus in between these extremes and build {gt} to achieve a certain trade-off between cost
and selectivity (cf. Fig 3, bottom rows). Of course, we cannot explore all possible designs so a
model-based approach is necessary: The false alarm rate of each SVM is assumed to vary with
complexity and invariance in a certain way. This functional dependence is consistent with the one
proposed in Blanchard and Geman (2005), where the computational cost of a classifier is modeled
as the product of an increasing function of scope and an increasing function of selectivity.

Finally, from the perspective of computer vision, especially image interpretation, the interest of
this paper is the proposed architecture for aggregating binary classfiers such as SVMs for organized
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Maximum Level Reached 1 2 3 4 5 6

# Samples 1697 56 4 1 0 2
(f-network)
# Samples 936 555 135 17 54 63
(heuristic)
# Samples 1402 336 2 0 3 17
(g-network)

# Kernel Evaluations 2−10 10−102 102−103 103−104 104−105 105−106

# Samples 0 0 0 1697 58 5
(f-network)
# Samples 936 755 67 2 0 0
(heuristic)
# Samples 1402 340 18 0 0 0
(g-network)

Figure 3: In order to illustrate varying trade-offs among cost, selectivity and invariance, and to
demonstrate the utility of a principled, global analysis, we classified 1760 subimages of
size 64× 64 extracted from the image shown above using three different types of SVM
hierarchies of depth six. In each case, the hierarchy was traversed coarse-to-fine. For
each hierarchy type and each subimage, the upper table shows the distribution of the
deepest level visited and the lower table shows the distribution of cost in terms of the
total number of kernel evaluations. In both tables: Top row: The unconstrained SVM
hierarchy (“f-network”) with a Gaussian kernel at all levels; the SVMs near the top are
very expensive (about 1400 support vectors at the root; see Fig 2) resulting in high overall
cost. Middle row: An ad hoc solution: the same f-network, except with linear SVMs
(which can be assumed to have only two support vectors) at the upper three levels in order
to reduce computation; many images reach deep levels. Bottom row: The constrained
SVM hierarchy (“g-network”), globally designed to balance error and computation; the
number of (virtual) support vectors grows with depth.
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scene parsing. For some problems, dedicating a single classifier to each hypothesis, or a cascade
(linear chain) of classifiers to a small subset of hypotheses (see Section 2), and then training with
existing methodology (even off-the-shelf software) might suffice, in fact provide state-of-the-art
performance. This seems to the case for example with frontal face detection as long as large training
sets are available, at least thousands of faces and sometimes billions of negative examples, for
learning long, powerful cascades. However, those approaches are either very costly (see above)
or may not scale to more ambitious problems involving limited data, or more complex and varied
interpretations, because they rely too heavily on brute-force learning and lack the structure necessary
to hardwire efficiency by simultaneously exploring multiple hypotheses.

We believe that hierarchies of classifiers provide such a structure. In the case of SVMs, which
may require extensive computation, we demonstrate that building such a hierarchy with a global
design which accounts for both cost and error is superior to either a single classifier applied a great
many times (a form of template-matching) or a hierarchy of classifiers constructed independently,
node-by-node, without regard to overall performance. We suspect that the same demonstration
could be carried out with other “base classifiers” as long as there is a natural method for adjusting
the amount of computation; in fact, the global optimization framework could be applied to improve
other parsing strategies, such as cascades.

The remaining sections are organized as follows: A review of coarse-to-fine object detection,
including related work on cascades, is presented in Section 2. In Section 3, we discuss hierarchical
representation and search in general terms; decomposing the pose space provides a running exam-
ple of the ideas and sets the stage for our main application - face detection. The f-network and
g-network are defined in Section 4, again in general terms and the statistical framework and op-
timization problem are laid out in Section 5. This is followed in Section 6 by a new formulation
of the “reduced set” method (Burges, 1996; Schölkopf et al., 1998), which is used to construct an
SVM of specified complexity. These ideas are illustrated for a pose hierarchy in Section 7, includ-
ing a specific instance of the model for chain probabilities and the corresponding minimization of
cost subject to a constraint on false alarms. Experiments are provided in Section 8, where the g-
network is applied to detect faces in standard test data, allowing us to compare our results with other
methods. Finally, some conclusions are drawn in Section 9.

2. Coarse-to-Fine Object Detection

Our work is motivated by difficulties encountered in inducing semantic descriptions of natural
scenes from image data. This is often computationally intensive due to the large amount of data
to be processed with high precision. Object detection is such an example and has been widely
investigated in computer vision; see for instance Osuna et al. (1997); Fleuret and Geman (2001);
Kanade (1977); Schneiderman and Kanade (2000); Sung (1996); Viola and Jones (2001) for work
on face detection. Nonetheless, there is as yet no system which matches human accuracy; moreover,
the precision which is achieved often comes at the expense of run-time performance or a reliance
on massive training sets.

One approach to computational efficiency is coarse-to-fine processing, which has been applied
to many problems in computer vision, including object detection (Fleuret and Geman, 2001; Viola
and Jones, 2001; Geman et al., 1995; Baker and Nayar, 1996; Amit and Geman, 1999; Rowley,
1999; Heisele et al., 2001), matching (Borgefors, 1988; Huttenlocher and Rucklidge, 1993; Gee
and Haynor, 1996), optical flow (Battiti and Koch, 1991), tracking (Sobottka and Pittas, 1996) and
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Figure 4: Left: Detections using our system. Right: The darkness of a pixel is proportional to the
amount of local processing necessary to collect all detections.

other tasks such as compression, registration, noise reduction and estimating motion and binocular
disparity. In the case of object detection, one strategy is to focus rapidly on areas of interest by
finding characteristics which are common to many instantiations; in particular, background regions
are quickly rejected as candidates for further processing (see Fig 4).

In the context of finding faces in cluttered scenes, Fleuret and Geman (2001) developed a fast,
coarse-to-fine detector based on simple edge configurations and a hierarchical decomposition of the
space of poses (location, scale and tilt). (Similar, tree-structured recognition strategies appear in
Geman et al. (1995); Baker and Nayar (1996).) One constructs a family of classifiers, one for each
cell in a recursive partitioning of the pose space and trained on a sub-population of faces meeting the
pose constraints. A face is declared with pose in a leaf cell if all the classifiers along the chain from
root to leaf respond positively. In general, simple and uniform structures in the scene are quickly
rejected as face locations (i.e., very few classifiers are executed before all possible complete chains
are eliminated) whereas more complex regions, for instance textured areas and face-like structures,
require deeper penetration into the hierarchy. Consequently, the overall cost to process a scene
is dramatically lower than looping over many individual poses, a form of template- matching (cf.
Fig 1).

Work on cascades (Viola and Jones, 2001; Elad et al., 2002; Eveland et al., 2005; Keren et al.,
2001; Socolinsky et al., 2003; Romdhani et al., 2001; Kienzle et al., 2004; Wu et al., 2005) is also
motivated by an early rejection principle to exploit skewed priors (i.e., background domination).
In that work, as in ours, the time required to classify a pattern (e.g., an input subimage) depends
on the resemblance between that pattern and the objects of interest. For example, Viola and Jones
(2001) developed an accurate, real-time face detection algorithm in the form of a cascade of boosted
classifiers and computationally efficient feature detection. Other variations, such as those in Wu
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et al. (2005); Romdhani et al. (2001) for face detection, and the cascade of inner products in Keren
et al. (2001) for object identification, employ very simple linear classifiers. In nearly all cases the
individual node learning problems are treated heuristically; an exception is Wu et al. (2005), where,
for each node, the classifiers are designed to solve a (local) optimization problem constrained by
desired (local) error rates.

There are several important differences between our work and cascades. Cascades are coarse-
to-fine in the sense of background filtering whereas our approach is coarse-to-fine both in the sense
of hierarchical pruning of the background class and representation of the space of hypotheses. In
particular, cascades operate in a more or less brute-force fashion because every pose (e.g., position,
scale and tilt) must be examined separately. In comparing the two strategies, especially our work
with cascades of SVMs for face detection as in Kienzle et al. (2004); Romdhani et al. (2001), there is
then a trade-off between very fast early rejection of individual hypotheses (cascades) and somewhat
slower rejection of collections of hypotheses (tree-structured pruning).

No systematic comparison with cascades has been attempted. Moving beyond an empirical
study would require a model for how cost scales with other factors, such as scope and selectivity.
One such model was proposed in Blanchard and Geman (2005), in which the computational cost
C( f ) of a binary classifier f dedicated to a set A of hypotheses (against a universal “background”
alternative) is expressed as

C( f ) = Γ(|A|)×Ψ(1−δ)

where δ is false positive rate of the classifier f (so 1−δ is what we have called the selectivity) and
Γ and Ψ are increasing functions with Γ subadditive and Ψ convex. (Some empirical justification
for this model can be found in Blanchard and Geman (2005).) One can then compare the cost of
testing a “small” set A of hypotheses (e.g., all poses over a small range of locations, scales and tilts,
as in cascades) versus a “large” set B ⊃ A (e.g., many poses simultaneously, as here). Under this
cost model, and equalizing the selectivity, the subadditivity of Γ would render the test dedicated to
B cheaper than doing the test dedicated to A approximately |A||B| times, even ignoring the inevitable
reduction in selectivity due to repeated tests.

More importantly, perhaps, it is not clear that cascades will scale to more ambitious problems
involving many classes and instantiations since repeatedly testing a coarse set of hypotheses will
lack selectivity and repeatedly testing a narrow one will require a great many implementations.

Finally, to our knowledge, the work presented in this paper is the first to consider a global
construction of the system in an optimization framework. In particular, no global criteria appear in
either Fleuret and Geman (2001) or Viola and Jones (2001); in the former, the edge-based classifiers
are of roughly constant complexity whereas in the latter the complexity of the classifiers along the
cascade is not explicitly controlled.

3. Hierarchical Representation and Search

Let Λ denote a set of “patterns” or “hypotheses” of interest. Our objective is to determine which,
if any, of the hypotheses λ ∈ Λ is true, the alternative being a statistically dominant “background”
hypothesis {0}, meaning that most of the time 0 is the true explanation. Let Y denote the true state;
Y = 0 denotes the background state. Instead of searching separately for each λ ∈ Λ, consider a
coarse-to-fine search strategy in which we first try to exploit common properties (“shared features”)
of all hypotheses to “test” simultaneously for all λ ∈ Λ, that is, test the compound hypothesis H :
Y ∈ Λ against the alternative H0 : Y = 0. If the test is negative, we stop and declare background; if
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the test is positive, we separately test two disjoint subsets of Λ against H0; and so forth in a nested
fashion.

The tests are constructed to be very conservative in the sense that each false negative error rate
is very small, that is, given that Y ∈ A, we are very unlikely to declare background if A ⊂ Λ is the
subset of hypotheses tested at a given stage. The price for this small false negative error is of course
a non-negligible false positive error, particularly for testing “large” subsets A. However, this proce-
dure is highly efficient, particularly under the background hypothesis. This “divide-and-conquer”
search strategy has been extensively examined, both algorithmically (see for example Fleuret and
Geman, 2001; Amit et al., 2004; Gangaputra and Geman, 2006a) and mathematically (Blanchard
and Geman, 2005; Fleuret, 1999; Jung, 2001).

Note: There is an alternate formulation in which Y is directly modeled as a subset of Λ with Y = /0
corresponding to the background state. In this case, at each node of the hierarchy, we are testing a
hypothesis of the form H : Y ∩A 6= /0 vs the alternative Y ∩A = /0. In practice, the two formulations
are essentially equivalent; for instance, in face detection, we can either “decompose” a set of “ref-
erence” poses which can represent at most one face and then execute the hierarchical search over
subimages or collect all poses into one hierarchy with virtual tests near the root; see Section 7.1.
We shall adopt the simpler formulation in which Y ∈ Λ∪{0}.

Of course in practice we do all the splitting and construct all the “tests” in advance. (It should be
emphasized that we are not constructing a decision tree; in particular, we are recursively partitioning
the space of interpretations not features and, when the hierarchy is processed, a data point can travel
down many branches and arrive at none of the leaves.) Then, on line, we need only execute the tests
in the resulting hierarchy coarse-to-fine. Moreover, the tests are simply standard classifiers induced
from training data - examples of Y ∈ A for various subsets of A and examples of Y = 0. In particular,
in the case of object detection, the classifiers are constructed from the usual types of image features,
such as averages, edges and wavelets (Sahbi et al., 2002).

The nested partitions are naturally identified with a tree T . There is a subset Λt for each node
t of T , including the root (Λroot = Λ) and each leaf t ∈ ∂T . We will write t = (l,k) to denote the
k’th node of T at depth or level l. For example, in the case of a binary tree T with L levels, we then
have:







Λ1,1 = Λ
Λl,k = Λl+1,2k−1 ∪ Λl+1,2k

Λl+1,2k−1 ∩ Λl+1,2k = /0
l ∈ {1, ...,L−1} , k ∈

{

1, ...,2l−1
}

.

The hierarchy can be manually constructed (as here, copying the one in Fleuret and Geman, 2001)
or, ideally, learned.

Notice that the leaf cells Λt , t ∈ ∂T , needn’t correspond to individual hypotheses. Instead, they
represent the finest “resolution” at which we wish to estimate Y . More careful disambiguation
among candidate hypotheses may require more intense processing, perhaps involving online opti-
mization. It then makes sense to modify our definition of Y to reflect this possible coarsening of the
original classification problem: the possible “class” values are then {0,1, ...,2L−1}, corresponding
to “background” ({0}) and the 2L−1 “fine” cells at the leaves of the hierarchy.

Example: The Hierarchy for Face Detection. Here, the pose of an object refers to parameters
characterizing its geometric appearance in the image. Since we are searching for instances of a
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{

(p,φ,s) ∈ R
4 : p ∈ [−8,+8]2,φ ∈ [−200,+200],s ∈ [10,20]

}

{

(p,φ,s) ∈ R
4 : p ∈ [−1,+1]2,φ ∈ [00,+200],s ∈ [15,20]

}

Figure 5: An illustration of the pose hierarchy showing a sample of faces at the root cell and at one
of the leaves.

one object class – faces – the family of hypotheses of interest is a set of poses Λ. Specifically, we
focus attention on the position, tilt and scale of a face, denoted θ = (p,φ,s), where p is the midpoint
between the eyes, s is the distance between the eyes and φ is the angle with the line orthogonal to
the segment joining the eyes. We then define

Λ =
{

(p,φ,s) ∈ R
4 : p ∈ [−8,+8]2,φ ∈ [−200,+200],s ∈ [10,20]

}

.

Thus, we regard Λ as a “reference set” of poses in the sense of possible instantiations of a single
face within a given 64×64 image assuming that the position is restricted to a subwindow (e.g., an
16× 16 centered in the subimage) and the scale to the stated range. The “background hypothesis”
is “no face” (with pose in Λ). The leaves of T do not correspond to individual poses θ ∈ Λ; for
instance, the final resolution on position is a 2× 2 window. Hence, each “object hypothesis” is a
small collection of fine poses.

The specific hierarchy used in our experiments is illustrated in Fig (5). It has six levels (L = 6),
corresponding to three quaternary splits in location (four 8× 8 blocks, etc.) and one binary split
both on tilt and scale. Therefore, writing νl for the number of cells in T at depth l: ν1 = 1, ν2 = 41,
ν3 = 42 = 16, ν4 = 43 = 64, ν5 = 2 43 = 128 and ν6 = 22 43 = 256.

This is the same, manually-designed, pose hierarchy that was used in Fleuret and Geman (2001).
The partitioning based on individual components, as well as the splitting order, is entirely ad hoc.
The important issue of how to automatically design or learn the “divide-and-conquer” architecture
is not considered here. Very recent work on this topic appears in Fan (2006) and Gangaputra and
Geman (2006a).

Search Strategy:
Consider coarse-to-fine search in more detail. Let Xt be the test or classifier associated with

node t, with Xt = 1 signaling the acceptance of Ht : Y ∈ Λt and Xt = 0 signaling the acceptance
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of H0 : Y = 0. Also, let ω ∈ Ω represent the underlying data or “pattern” upon which the tests are
based; hence the true class of ω is Y (ω) and Xt : Ω−→ {0,1}.

The result of coarse-to-fine search applied to ω is a subset D(ω) ⊂ Λ of “detections”, possibly
empty, defined to be all λ∈Λ for which Xt(ω) = 1 for every test which “covers” λ, that is, for which
λ ∈ Λt . Equivalently, D is the union over all Λt , t ∈ ∂T such that Xt = 1 and the test corresponding
to every ancestor of t ∈ ∂T is positive, that is, all “complete chains of ones” (cf. Fig 6, B).

Both breadth-first and depth-first coarse-to-fine search lead to the same set D. Breadth-first
search is illustrated in Fig (6, C): Perform X1,1; if X1,1 = 0, stop and declare D = /0; if X1,1 = 1,
perform both X2,1 and X2,2 and stop only if both are negative; etc. Depth-first search explores the
sub-hierarchy rooted at a node t before exploring the brother of t. In other words, if Xt = 1, we visit
recursively the sub-hierarchies rooted at t; if Xt = 0 we “cancel” all the tests in this sub-hierarchy.
In both cases, a test is performed if and only if all its ancestors are performed and are positive.
(These strategies are not the same if our objective is only to determine whether or not D = /0; see
the analysis in Jung (2001).)

Notice that D = /0 if and only if there is a “null covering” of the hierarchy in the sense of a
collection of negative responses whose corresponding cells cover all hypotheses in Λ. The search
is terminated upon finding such a null covering. Thus, for example, if X1,1 = 0, the search is ter-
minated as there cannot be a complete chain of ones; similarly, if X2,1 = 0 and X3,3 = X3,4 = 0, the
search is terminated.

(A) (B) (C)

θ3 θ4

Figure 6: A hierarchy with fifteen tests. (A) The response to an input image were all the tests
to be performed; the positive tests are shown in black and negative tests in white. (B)
There are two complete chains of ones; in the case of object detection, the detected pose
is the average over those in the two corresponding leaves. (C) The breadth-first search
strategy with the executed tests are shown in color; notice that only seven of the tests
would actually be performed.

Example: The Search Strategy for Face Detection. Images ω are encoded using a vector of
wavelet coefficients; in the remainder of this paper we will write x to denote this vector of coeffi-
cients computed on a given 64×64 subimage. If D(x) 6= /0, the estimated pose of the face detected
in ω is obtained by averaging over the “pose prototypes” of each leaf cell represented in D, where
the pose prototype of Λt is the midpoint (cf. Fig 6, B).

A scene is processed by visiting non-overlapping 16× 16 blocks, processing the surrounding
image data to extract the features (wavelet coefficients) and classifying these features using the
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Figure 7: Multi-scale search. The original image (on the left) is downscaled three times. For each
scale, the base face detector visits each non-overlapping 16×16 block, and searches the
surrounding image data for all faces with position in the block, scale anywhere in the
range [10,20] and in-plane orientation in the range [−20o,+20o].

search strategy described earlier in this section. This process makes it possible to detect all faces
whose scale s lies in the interval [10,20] and whose tilt belongs to [−20o,+20o]. Faces at scales
[20,160] are detected by repeated down-sampling (by a factor of 2) of the original image, once for
scales [20,40], twice for [40,80] and thrice for [80,160](cf. Fig 7). Hence, due to high invariance to
scale in the base detector, only four scales need to be investigated altogether.

Alternatively, we can think of an extended hierarchy over all possible poses, with initial branch-
ing into disjoint 16×16 blocks and disjoint scale ranges, and with virtual tests in the first two layers
which are passed by all inputs. Given color or motion information (Sahbi and Boujemaa, 2000), it
might be possible to design a test which handles a set of poses larger than Λ; however, our test at
the root (accounting simultaneously for all poses in Λ) is already quite coarse.

4. Two SVM Hierarchies

Suppose we have a training set T = {(ω1,y1), ...,(ωn,yn)}. In the case of object detection, each
ω is some 64× 64 subimage taken, for example, from the Web, and either belongs to the “object
examples” L (subimages ω for which Y (ω) 6= 0) or “background examples” B (subimages for which
Y (ω) = 0).

All tests Xt , t ∈ T , are based on SVMs. We build one hierarchy, the free network or f-network for
short, with no constraints, that is, in the usual way from the training data once a kernel and any other
parameters are specified (Boser et al., 1992). The other hierarchy, the graded network or g-network,
is designed to meet certain error and complexity specifications.
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4.1 The f-network

Let ft be an SVM dedicated to separating examples of Y ∈ Λt from examples of Y = 0. (In our ap-
plication to face detection, we train ft based on face images ω with pose in Λt .) The corresponding
test is simply 1{ ft>0}. We refer to { ft , t ∈ T} as the f-network. In practice, the number of support
vectors decreases with the depth in the hierarchy since the classification tasks are increasingly sim-
plified; see Fig 2, left. We assume the false negative rate of ft is very small for each t; in other
words, ft(ω) > 0 for nearly all patterns ω for which Y (ω) ∈ Λt . Finally, denote the corresponding
data-dependent set of detections of the f-network by D f .

4.2 The g-network

The g-network is based on the same hierarchy {Λt} as the f-network. However, for each cell Λt ,
a simplified SVM decision function gt is built by reducing the complexity of the corresponding
classifier ft . The set of hypotheses detected by the g-network is denoted by Dg. The targeted
complexity of gt is determined by solving a constrained minimization problem (cf. Section 5).

We want gt to be both efficient and respect the constraint of a negligible false negative rate.
As a result, for nodes t near the root of T the false positive rate of gt will be higher than that of
the corresponding ft since low cost comes at the expense of a weakened background filter. Put
differently, we are willing to sacrifice selectivity for efficiency, but not at the expense of missing
(many) instances of our targeted hypotheses. Thus, for both networks, a positive test by no means
signals the presence of a targeted hypothesis, especially for the very computationally efficient tests
in the g-network near the top of the hierarchy.

Instead of imposing an absolute constraint on the false negative error, we impose one relative to
the f-network, referred to as the conservation hypothesis: For each t ∈ T and ω ∈Ω:

ft(ω) > 0⇒ gt(ω) > 0.

This implies that an hypothesis detected by the f-network is also detected by the g-network, namely

D f (ω)⊂ Dg(ω), ∀ω ∈Ω.

Consider two classifiers gt and gs in the g-network and suppose node s is deeper than node t.
With the same number of support vectors, gt will generally produce more false alarms than gs since
more invariance is expected of gt (cf. Fig 2, right). In constructing the g-network, all classifiers
at the same level will have the same number of support vectors and are then expected to have
approximately the same false alarm rate (cf. Fig 8).

In the following sections, we will introduce a model which accounts for both the overall mean
cost and the false alarm rate. This model is inspired by the trade-offs among selectivity, cost and
invariance discussed above. The proposed analysis is performed under the assumption that there
exists a convex function which models the false alarm rate as a function of the number of support
vectors and the degree of “pose invariance”.

5. Designing the g-network

Let P be a probability distribution on Ω. Write Ω = L ∪B , where L denotes the set of all possi-
ble patterns for which Y (ω) > 0, that is, Y ∈ {1, ...,2L−1}, hence a targeted pattern, and B = L c
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Figure 8: For the root cell, a particular cell in the fifth level and three particular pose cells in the
sixth level of the g-network, we built SVMs with varying numbers of (virtual) support
vectors. All curves show false alarm rates with respect to the number of (virtual) support
vectors. For the sixth level, and in the regime of fewer than 10 (virtual) support vectors,
the false alarm rates show considerable variation, but have the same order of magnitude.
These experiments were run on background patterns taken from 200 images including
highly textured areas (flowers, houses, trees, etc.)

contains all the background patterns. Define P0(.) = P(.|Y = 0) and P1(.) = P(.|Y > 0), the con-
ditional probability distributions on background and object patterns, respectively. Throughout this
paper, we assume that P(Y = 0) >> P(Y > 0), which means that the presence of the targeted pattern
is considered to be a rare event in data sampled under P.

Face Detection Example (cont): We might take P to be the empirical distribution on a huge set
of 64× 64 subimages taken from the Web. Notice that, given a subimage selected at random, the
probability to have a face present with location near the center is very small.

Relative to the problem of deciding Y = 0 vs Y 6= 0, that is, deciding between “background”
and “object” (some hypothesis in Λ), the two error rates for the f-network are P0 (D f 6= /0), the false
positive rate, and P1 (D f = /0), the false negative rate. The total error rate is, P0 (D f 6= /0)P(Y = 0) +
P1 (D f = /0) P(Y > 0). Clearly this total error is largely dominated by the false alarm rate.

Recall that for each node t ∈ T there is a subset Λt of hypotheses and an SVM classifier gt with
nt support vectors. The corresponding test for checking Y ∈ Λt against the background alternative
is 1{gt>0}. Our objective is to provide an optimization framework for specifying {nt}.

5.1 Statistical Model

We now introduce a statistical model for the behavior of the g-network. Consider the event that a
background pattern traverses the hierarchy up to node t, namely the event

T

s∈At
{gs > 0}, where

At denotes the set of ancestors of t – the nodes from the parent of t to the root, inclusive. We will
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assume that the probability of this event under P0, namely

P0(gs > 0,s ∈ At), (1)

depends only on the level of t in the hierarchy (and not on the particular set At) as well as on the
numbers n1, ...,nl−1 of support vectors at levels one through l − 1, where t is at level l. These
assumptions are reasonable and roughly satisfied in practice; see Sahbi (2003).

The probability in (1) that a background pattern reaches depth l, that is, there is a chain of
positive responses of length l− 1, is then denoted by δ(l− 1;n), where n denotes the sequence
(n1, ...,nL). Naturally, we assume that δ(l;n) is decreasing in l. In addition, it is natural to assume
that δ(l;n) is a decreasing function of each n j,1 ≤ j ≤ l. In Section 7 we will present an example
of a two-dimensional parametric family of such models.

There is an equivalent, and useful, reformulation of these joint statistics in terms of conditional
false alarm rates (or conditional selectivity). One specifies a model by prescribing the quantities

P0(groot > 0), P0(gt > 0|gs > 0,s ∈ At) (2)

for all nodes t with 2 ≤ l(t) ≤ L. Clearly, the probabilities in (1) determine those in (2) and vice-
versa.

Note: We are not specifying a probability distribution on the entire family of variables {gt , t ∈ T},
equivalently, on all labeled trees. However, it can be shown that any (decreasing) sequence of
positive numbers p1, ..., pL for the chain probabilities is “consistent” in the sense of providing a well-
defined distribution on traces, the labeled subtrees that can result from coarse-to-fine processing,
which necessarily are labeled “1” at all internal nodes; see Gangaputra and Geman (2006b).

In order to achieve efficient computation (at the expense of extra false alarms relative to the
f-network), we choose n = (n1, ...,nL) to solve a constrained minimization problem based on the
mean total computation in evaluating the g-network and a bound on the expected number of detected
background patterns:

min
n

C (n1, ...,nL)

s.t. E0 (|Dg|) ≤ µ
(3)

where E0 refers to expectation with respect to the probability measure P0. We first compute this ex-
pected cost, then consider the constraint in more detail and finally turn to the problem of choosing
the model.

Note: In our formulation, we are assuming that overall average computation is well-approximated
by estimating total computation under the background probability by itself rather than with respect
to a mixture model which accounts for object instances. In other words, we are assuming that
background processing accounts for most of the work. Of course, in reality, this is not strictly
the case, especially at the lower levels of the hierarchy, at which point evidence has accrued for
the presence of objects and the conditional likelihoods of object and background are no longer
extremely skewed in favor of the latter. However, computing under a mixture model would severely
complicate the analysis. Moreover, since extensive computation is rarely performed, we believe our
approximation is valid; whereas an expanded analysis might somewhat change the design of the
lower levels, it would not appreciably reduce overall cost.
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5.2 Cost of the g-network

Let ct indicate the cost of performing gt and assume

ct = a nt +b.

Here a represents the cost of kernel evaluation and b represents the cost of “preprocessing” – mainly
extracting features from a pattern ω (e.g., computing wavelet coefficients in a subimage). We will
also assume that all SVMs at the same level of the hierarchy have the same number of support
vectors, and hence approximately the same cost.

Recall that νl is the number of nodes in T at level l; for example, for a binary tree, νl = 2l−1.
The global cost is then:

Cost = ∑
t

1{gt is performed} ct

=
L

∑
l=1

νl

∑
k=1

1{gl,k is performed} cl,k

(4)

since gt is performed in the coarse-to-fine strategy if and only if gs > 0 ∀s ∈ At , we have, from
equation (4), with δ(0;n) = 1,

C (n1, ...,nL) = E0 (Cost)

=
L

∑
l=1

νl

∑
k=1

P0 ({gl,k is performed}) cl,k

=
L

∑
l=1

νl

∑
k=1

δ(l−1;n) cl,k

=
L

∑
l=1

νl δ(l−1;n) cl

= a
L

∑
l=1

νl δ(l−1;n) nl +b
L

∑
l=1

νl δ(l−1;n).

The first term is the SVM cost and the second term is the total preprocessing cost. In the
application to face detection we shall assume the preprocessing cost – the computation of Haar
wavelet coefficients for a given subimage – is small compared with kernel evaluations, and set a = 1
and b = 0. Hence,

C (n1, ...,nL) = n1 +
L

∑
l=2

νl nl δ(l−1;n).

5.3 Penalty for False Detections

Recall that Dg(ω) – the set of detections – is the union of the sets Λt over all terminal nodes t for
which there is a complete chain of positive responses from the root to t. For simplicity, we assume
that |Λt | is the same for all terminal nodes t. Hence |Dg| is proportional to the total number of
complete chains:

|Dg| ∝ ∑
t∈∂T

1{gt>0} ∏
s∈At

1{gs>0}.

2102



A HIERARCHY OF SUPPORT VECTOR MACHINES FOR PATTERN DETECTION

It follows that

E0|Dg| ∝ E0 ∑
t∈∂T

1{gt>0} ∏
s∈At

1{gs>0}

= ∑
t∈∂T

δ(L;n)

= νLδ(L;n)

By the Markov inequality,

P0(Dg 6= /0) = P0(|Dg| ≥ 1)≤ E0|Dg|.

Hence bounding the mean size of Dg also yields the same bound on the false positive probability.
However, we cannot calculate P0(|Dg| ≥ 1) based only on our model {δ(l;n)}l since this would re-
quire computing the probability of a union of events and hence a model for the dependency structure
among chains.

Finally, since we are going to use the SVMs in the f-network to build those in the g-network,
the number of support vectors nl for each SVM in the g-network at level l is bounded by the corre-
sponding number, Nl , for the f-network. (Here, for simplicity, we assume that Nt is roughly constant
in each level; otherwise we take the minimum over the level.)

Summarizing, our constrained optimization problem (3) becomes

min
n1,...,nL

n1 +
L

∑
l=2

νl nl δ(l−1;n) s.t.

{

νLδ(L;n) ≤ µ
0 < nl ≤ Nl .

(5)

5.4 Choice of Model

In practice, one usually stipulates a parametric family of statistical models (in our case the chain
probabilities) and estimates the parameters from data. Let {δ(l;n,β)},β ∈ B} denote such a family
where β denotes a parameter vector, and let n∗ = n∗(β) denote the solution of (5) for model β. We
propose to choose β by comparing population and empirical statistics. For example, we might select
the model for which the chain probabilities best match the corresponding relative frequencies when
the g-network is constructed with n∗(β) and run on sample background data. Or, we might simply
compare predicted and observed numbers of background detections:

β∗ .
= argmin

β∈B
|E0 (|Dg|;n∗(β))− µ̂0(n∗(β))|

where µ̂0(n∗(β)) is the average number of detections observed with the g-network constructed from
n∗(β). In Section 7 we provide a concrete example of this model estimation procedure.

6. Building the g-network

Since the construction is node-by-node, we can assume throughout this section that t is fixed and
that Λ = Λt and f = ft are given, where f is an SVM with N f support vectors. Our objective is to
build an SVM g = gt with two properties:

• g is to have Ng < N f support vectors, where Ng = n∗l(t) and n∗ = (n∗1, ...,n
∗
L) is the optimal

design resulting from the upcoming reformulation (8) of (5) which incorporates our model
for {δ(l : n)}; and
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• The “conservation hypothesis” is satisfied; roughly speaking this means that detections under
f are preserved under g.

Let x(ω) ∈ R
q be the feature vector; for simplicity, we suppress the dependence on ω. The

SVM f is constructed as usual based on a kernel K which implicitly defines a mapping Φ from
the input space R

q into a high-dimensional Hilbert space H with inner product denoted by 〈 〉.
Support vector training (Boser et al., 1992) builds a maximum margin hyperplane (w f ,b f ) in H .
Re-ordering the training set as necessary, let

{

Φ(v(1)), ...,Φ(v(N f ))
}

and {α1, ...,αN f } denote, re-
spectively, the support vectors and the training parameters. The normal w f of the hyperplane is

w f = ∑N f

i=1 αi y(i) Φ(v(i)).

The decision function in R
q is non-linear:

f (x) = 〈w f ,Φ(x)〉 + b f =
N f

∑
i=1

αi y(i) K(v(i),x) + b f .

The parameters {αi} and b f can be adjusted to ensure that ‖w f ‖
2 = 1.

The objective now is to determine (wg,bg), where

g(x) = 〈wg,Φ(x)〉 + bg =
Ng

∑
k=1

γk K(z(k),x) + bg.

Here Z =
{

z(1), ...,z(Ng)
}

is the reduced set of support vectors (cf. Fig 9, right), γ =
{

γ1, ...,γNg

}

the
underlying weights, and the labels y(k) have been absorbed into γ.
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6.1 Determining wg: Reduced Set Technique

The method we use is a modification of the reduced set technique (RST) (Burges, 1996; Burges and
Schölkopf, 1997). Choose the new normal vector to satisfy:

w∗g = arg min
wg:‖wg‖=1

〈wg−w f ,wg−w f 〉.

Using the kernel trick, and since wg = ∑Ng

k=1 γk Φ(z(k)), the new optimization problem becomes:

min
Z,γ ∑

k,l

γkγl K(z(k),z(l)) + ∑
i, j

αiα j y(i) y( j) K(v(i),v( j))−2∑
k,i

γkαi y(i) K(z(k),v(i)). (6)

For some kernels (for instance the Gaussian), the function to be minimized is not convex; con-
sequently, with standard optimization techniques such as conjugate gradient, the normal vector
resulting from the final solution (Z,γ) is a poor approximation to w f (cf. Fig 9, left). This prob-
lem was analyzed in Sahbi (2003), where it is shown that, in the context of face detection, a good
initialization of the minimization process can be obtained as follows: First cluster the initial set of
support vectors {Φ(v(1)), ...,Φ(v(N f ))}, resulting in Ng centroids, each of which then represents a
dense distribution of the original support vectors. Next, each centroid, which is expressed as a linear
combination of original support vectors, is replaced by one support vector which best approximates
this linear combination. Finally, this new reduced set is used to initialize the search in (6) in order to
improve the final solution. Details may be found in Sahbi (2003) and the whole process is illustrated
in Section 7.

6.2 Determining bg: Conservation Hypothesis

Regardless of how bg is selected, g is clearly less powerful than f . However, in the hierarchical
framework, particularly near the root, the two types of mistakes (namely not detecting patterns in
Λ and detecting background) are not equally problematic. Once a distinguished pattern is rejected
from the hierarchy it is lost forever. Hence we prefer to severely limit the number of missed de-
tections at the expense of additional false positives; hopefully these background patterns will be
filtered out before reaching the leaves.

We make the assumption that the classifiers in the f-network have a very low false negative
rate. Ideally, we would choose bg such that g(x(ω)) > 0 for every ω ∈ Ω for which f (x(ω)) > 0.
However, this results in an unacceptably high false positive rate. Alternatively, we seek to minimize

P0 ( g ≥ 0 | f < 0 )

subject to
P1 ( g < 0 | f ≥ 0 )≤ ε.

Since we do not know the joint law of ( f ,g) under either P0 or P1, these probabilities are estimated
empirically: for each bg calculate the conditional relative frequencies using the training data and
then choose the optimal bg based on these estimates.

7. Application to Face Detection

We apply the general construction of the previous sections to a particular two-class problem – face
detection – which has been widely investigated, especially in the last ten years. Existing methods
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include artificial neural networks (Schneiderman and Kanade, 2000; Sung, 1996; Rowley et al.,
1998; Féraud et al., 2001; Garcia and Delakis, 2004), networks of linear units (Yang et al., 2000),
support vector machines (Osuna et al., 1997; Evgeniou et al., 2000; Heisele et al., 2001; Romdhani
et al., 2001; Kienzle et al., 2004), Bayesian inference (Cootes et al., 2000), deformable templates
(Miao et al., 1999), graph-matching (Leung et al., 1995), skin color learning (Hsu et al., 2001; Sahbi
and Boujemaa, 2000), and more rapid techniques such as boosting a cascade of classifiers (Viola
and Jones, 2001; Li and Zhang, 2004; Wu et al., 2005; Socolinsky et al., 2003; Elad et al., 2002)
and hierarchical coarse-to-fine processing (Fleuret and Geman, 2001).

The face hierarchy was described in Section 3. We now introduce a specific model for (1), the
probability of a chain under the background hypothesis, and finally the solution to the resulting
instance of the constrained optimization problem expressed in (8) below. The probability model
links the cost of the SVMs to their underlying level of invariance and selectivity. Afterwords, in
Section 8, we illustrate the performance of the designed g-network in terms of speed and error on
both simple and challenging face databases including the CMU and the MIT datasets.

7.1 Chain Model

Our model family is {δ(l;n,β),β ∈ B}, where δ(l;n,β) is the probability of a chain of “ones” of
depth l−1. These probabilities are determined by the conditional probabilities in (2). Denote these
by

δ(1;n,β) = P0(groot > 0)

and
δ(l | 1, ..., l−1;n,β) = P0(gt > 0|gs > 0,s ∈ At).

Specifically, we take:

δ(1;n,β) = 1
β1n1

β1 > 0

δ(l | 1, ..., l−1;n,β) =
β1n1 + ...+βl−1nl−1

β1n1 + ...+βl−1nl−1 +βlnl
, β1, ...,βl > 0.

Loosely speaking, the coefficients β = {β j j = 1, ...,L} are inversely proportional to the degree
of “pose invariance” expected from the SVMs at different levels. At the upper, highly invariant,
levels l of the g-network, minimizing computation yields relatively small values of βl and vice-versa
at the lower, pose-dedicated, levels. The motivation for this functional form is that the conditional
false alarm rate δ(l | 1, ..., l− 1;n,β) should be increasing as the number of support vectors in
the upstream levels 1, ..., l− 1 increases. Indeed, when gs > 0 for all nodes s upstream of node
t, and when these SVMs have a large number of support vectors and hence are very selective, the
background patterns reaching node t resemble faces very closely and are likely to be accepted by the
test at t. Of course, fixing the numbers of support vectors upstream, the conditional selectivity (that
is, one minus the false positive error rate) at level l grows with nl . Notice also that the model does
not anticipate exponential decay, corresponding to independent tests (under P0) along the branches
of the hierarchy.

Using the marginal and the conditional probabilities expressed above, the probability δ(l;n,β)
to have a chain of ones from the root cell to any particular cell at level l is easily computed:

δ(l;n,β) =
1

β1n1

β1 n1

β1 n1 +β2 n2
...

β1 n1 + ...+βl−1nl−1

β1n1 + ...+βlnl
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=

(

l

∑
j=1

β jn j

)−1

. (7)

Clearly, for any n and β, these probabilities decrease as l increases.

7.2 The Optimization Problem

Using (7), the constrained minimization problem (5) becomes:

min
n1,...,nL



n1 +
L

∑
l=2

(

l−1

∑
i=1

βini

)−1

νl nl





s.t.











νL

(

L

∑
i=1

βini

)−1

≤ µ

0 < nl ≤ Nl .

(8)

This problem is solved in two steps:

• Step I: Start with the solution for a binary network (i.e., νl+1 = 2νl). This solution is provided
in Appendix A.

• Step II: Pass to a dyadic network using the solution to the binary network, as shown in Sahbi
(2003, p. 127).

7.3 Model Selection

We use a simple function with two degrees of freedom to characterize the growth of β1, ...,βL:

βl = Ψ−1
1 exp{Ψ2(l−1)} (9)

where Ψ = (Ψ1,Ψ2) are positive. Here Ψ1 represents the degree of pose invariance at the root cell
and Ψ2 is the rate of the decrease of this invariance. Let n∗(Ψ) denote the solution to (8) for β given
by (9) and suppose we restrict Ψ ∈ Q, a discrete set. (In our experiments, |Q|= 100 corresponding
to ten choices for each parameter Ψ1 and Ψ2, namely Ψ1 ranges from 0.0125 to 0.2 and Ψ2 ranges
from 0.1 to 1.0, both in equal steps.) In other words, n∗(Ψ) are the optimal numbers of support
vectors found when minimizing total computation (8) under the false positive constraint for a given
fixed β = {β1, ...,βL} determined by (9). Then Ψ∗ is selected to minimize the discrepancy between
the model and empirical conditional false positive rates:

min
Ψ∈Q

L

∑
l=1

∣

∣

∣
δ(l | 1, ..., l−1;n∗(Ψ),Ψ)− δ̂(l | 1, ..., l−1;n∗(Ψ))

∣

∣

∣
(10)

where δ̂(l | 1, ..., l−1;n∗(Ψ)) is the underlying empirical probability of observing gt > 0 given that
gs > 0 for all ancestors s of t, averaged over all nodes t at level l, when the g-network is built with
n∗(Ψ) support vectors.

In practice, it takes 3 days (on a 1-Ghz pentium-III) to implement this design, which includes
building the f-network (SVM training), solving the minimization problem (8) for different instances

2107



SAHBI AND GEMAN

Algorithm: Design of the g-network.

- Build the f-network using standard SVM training and learning set L ∪B
- for (Ψ1,Ψ2) ∈ Q do

- βl ← Ψ−1
1 exp{Ψ2(l−1)}, l = 1, ...,L

- Compute n∗(Ψ) using (8).
- Build the g-network using the reduced set method and the specified

costs n∗(β).
- Compute the model and empirical conditional probabilities

δ(l | 1, ..., l−1;n∗(Ψ),Ψ) and δ̂(l | 1, ..., l−1;n∗(Ψ)).
end
- Ψ∗ ← (10)
- The specification for the g-network is n∗(Ψ∗)

of Ψ = (Ψ1,Ψ2) and applying the reduced set technique (6) for each sequence of costs n∗(Ψ) in
order to build the g-network.

When solving the constrained minimization problem (8) (cf. Appendix A), we find the optimal
numbers n∗1, ...,n

∗
6 of support vectors, rounded to the nearest even integer, are given by:

n∗ = {2, 2, 2, 4, 8, 22} ,

(cf. table 2), corresponding to Ψ∗ = ((Ψ−1
1 )∗,Ψ∗2) = (7.27,0.55), resulting in

β∗ = {7.27, 25.21, 87.39, 302.95, 525.09, 910.11}. For example, we estimate

P0(groot > 0) =
1

2×7.27
= 0.069

the false positive rate at the root.
The empirical conditional false alarms were estimated on background patterns taken from 200

images including highly textured areas (flowers, houses, trees, etc.). The conditional false positive
rates for the model and the empirical results are quite similar, so that the cost in the objective
function (8) approximates effectively the observed cost. In fact, when evaluating the objective
function in (8), the average cost was 3.379 kernel evaluations per pattern whereas in practice this
average cost was 3.196 per pattern taken from scenes including highly textured areas.

Again, the coefficients β∗l and the complexity n∗l of the SVM classifiers are increasing as we go
down the hierarchy, which demonstrates that the best architecture of the g-network is low-to-high
in complexity.

7.4 Features and Parameters

Many factors intervene in fitting our cost/error model to real observations (the conditional false
alarms), including the size of the training sets and the choice of features, kernels and other parame-
ters, such as the bound on the expected number of false alarms. Obviously the nature of the resulting
g-network can be sensitive to variations of these factors. We have only used wavelet features, the
Gaussian kernel, selecting the parameters by cross-validation, and the very small ORL database.

Whereas we have not done systematic experiments to analyze sensitivity, it is reasonable to sup-
pose that having more data or more powerful features would increase performance. For instance,
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Ψ1 Ψ2 L1 error Number of support vectors per level

Ψ2 = .70 0.980 1.03 1.08 1.42 1.87 4.98 16.375
Ψ1 = .2000 Ψ2 = .55 0.809 1.49 2.35 3.69 4.99 11.64 32.12

Ψ2 = .30 1.207 2.70 8.13 17.45 24.36 42.89 93.50
Ψ2 = .70 1.129 1.00 1.08 1.46 1.98 5.40 18.12

Ψ1 = .1875 Ψ2 = .55 0.750 1.39 2.20 3.46 4.68 10.91 30.12
Ψ2 = .30 1.367 2.53 7.62 16.36 22.83 40.20 87.62
Ψ2 = .70 0.995 1.00 1.18 1.70 2.46 7.20 25.50

Ψ1 = .1750 Ψ2 = .55 0.766 1.30 2.05 3.23 4.37 10.19 28.12
Ψ2 = .30 1.401 2.36 7.12 15.27 21.32 37.56 81.87
Ψ2 = .70 0.981 1.00 1.29 2.00 3.13 9.84 37.00

Ψ1 = .1625 Ψ2 = .55 0.752 1.21 1.91 3.00 4.06 9.46 26.12
Ψ2 = .30 1.428 2.19 6.61 14.18 19.80 34.86 76.00
Ψ2 = .70 0.839 1.00 1.41 2.38 4.03 13.74 55.12

Ψ1 = .1500 Ψ2 = .55 0.605 1.11 1.76 2.77 3.75 8.74 24.12
Ψ2 = .30 1.339 2.02 6.10 13.09 18.27 32.17 70.12
Ψ2 = .70 1.137 1.00 1.56 2.87 5.30 19.72 85.12

Ψ1=.1375 Ψ2=.55 0.557 1.02 1.61 2.54 3.43 8.01 22.12
Ψ2 = .30 1.580 1.85 5.59 11.99 16.74 29.47 64.25
Ψ2 = .70 1.230 1.00 1.75 3.53 7.16 29.29 137.12

Ψ1 = .1250 Ψ2 = .55 0.808 1.00 1.71 2.89 4.21 10.56 30.62
Ψ2 = .30 1.441 1.69 5.08 10.91 15.23 26.83 58.50
Ψ2 = .70 NS - - - - - -

Ψ1 = .1000 Ψ2 = .55 0.958 1.00 2.21 4.69 8.60 27.23 93.37
Ψ2 = .30 0.687 1.35 4.06 8.72 12.18 21.44 46.75
Ψ2 = .70 NS - - - - - -

Ψ1 = .0750 Ψ2 = .55 NS - - - - - -
Ψ2 = .30 1.242 1.01 3.05 6.55 9.14 16.11 35.12

Table 2: A sample of the simulation results. Shown, for selected values of (Ψ1, Ψ2), are the L1

error in (10) and also the numbers of support vectors which minimize cost. In practice
10× 10 possible values of Ψ1 and Ψ2 are considered (Ψ1 ∈ [0,0.2] and Ψ2 ∈ [0.1,1.0]).
(NS stands for “no solution”, L1 refers to the sum of absolute differences, and the bold line
is the optimal solution.)

with highly discriminating features, the separation between the positive and negative examples used
for training the f-network might be sufficient to allow even linear SVMs to produce accurate deci-
sion boundaries, in which case very few support vectors might be required in the f-network. The
leave-one-out error bound (see for instance Vapnik, 1998) would then suggest low error rates. Ac-
cordingly, in principle, the g-network could be designed with few (virtual) support vectors while
satisfying the false alarm bound in (3). The features we use – the Haar wavelet coefficients – are
generic and not especially powerful. The only other ones we tried were Daubechies wavelets, which
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were abandoned due to extensive computation; their performance is unknown. Similar arguments
apply to the choice of kernels and their parameters; for instance the scale of the Gaussian kernel
controls influences both the error rate and the number of support vectors in the f-network (and also
in the g-network.)

8. Experiments

All the training images of faces are based on the Olivetti database of 400 gray level pictures – ten
frontal images for each of forty individuals. The coordinates of the eyes and the mouth of each
picture were labeled manually. Most other methods (see below) use a far larger training set, in
fact, usually ten to one hundred times larger. In our view, the smaller the better in the sense that
the number of examples is a measure of performance along with speed and accuracy. Nonetheless,
this criterion is rarely taken into account in the literature on face detection (and more generally in
machine learning).

In order to sample the pose variation within Λt , for each face image in the original Olivetti
database, we synthesize 20 images of 64× 64 pixels with randomly chosen poses in Λt . Thus, a
set of 8,000 faces is synthesized for each pose cell in the hierarchy. Background information is
collected from a set of 1,000 images taken from 28 different topical databases (including auto-
racing, beaches, guitars, paintings, shirts, telephones, computers, animals, flowers, houses, tennis,
trees and watches), from which 50,000 subimages of 64×64 pixels are randomly extracted.

Given coarse-to-fine search, the “right” alternative hypothesis at a node is “path-dependent”.
That is, the appropriate “negative” examples to train against at a given node are those data points
which pass all the tests from the root to the parent of the node. As with cascades, this is what we
do in practice; more precisely, we merge a fixed collection of background images with a “path-
dependent” set (for details see Sahbi, 2003, chap. 4).

Each subimage, either a face or background, is encoded using the 16×16 low frequency coef-
ficients of the Haar wavelet transform computed efficiently using the integral image (Sahbi, 2003;
Viola and Jones, 2001). Thus, only the coefficients of the third layer of the wavelet transform are
used; see Chapter 2 of Sahbi (2003). The set of face and background patterns belonging to Λt are
used to train the underlying SVM ft in the f-network (using a Gaussian kernel).

8.1 Clustering Detections

Generally, a face will be detected at several poses; similarly, false positives will often be found in
small clusters. In fact, every method faces the problem of clustering detections in order to provide
a reasonable estimate of the “false alarm rate,” rendering comparisons somewhat difficult.

The search protocol was described in Section 7.1. It results in a set of detections Dg for each
non-overlapping 16×16 block in the original image and each such block in each of three downsam-
pled images (to detect larger faces). All these detections are initially collected. Evidently, there are
many instances of two “nearby” poses which cannot belong to two distinct, fully visible faces. Many
ad hoc methods have been designed to ameliorate this problem. We use one such method adapted to
our situation: For each hierarchy, we sum the responses of the SVMs at the leaves of each complete
chain (i.e., each detection in Dg) and remove all the detections from the aggregated list unless this
sum exceeds a learned threshold τ, in which case Dg is represented by a single “average” pose. In
other words, we declare that a block contains the location of a face if the aggregate SVM score of
the classifiers in the leaf-cells of complete chains is above τ. In this way, the false negative rate does
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not increase due to pruning and yet some false positives are removed. Incompatible detections can
and do remain.

Note: One can also implement a “voting” procedure to arbitrate among such remaining but incom-
patible detections. This will further reduce the false positive rate but at the expense of some missed
detections. We shall not report those results; additional details can be found in Sahbi (2003). Our
main intention is to illustrate the performance of the g-network on a real pattern recognition problem
rather than to provide a detailed study of face detection or to optimize our error rates.

8.2 Evaluation

We evaluated the g-network in term of precision and run-time in several large scale experiments
involving still images, video frames (TF1) and standard datasets of varying difficulty, including
the CMU+MIT image set; some of these are extremely challenging. All our experiments were run
under a 1-Ghz pentium-III mono-processor containing a 256 MB SDRM memory, which is today a
standard machine in digital image processing.

The Receiver Operator Characteristic (ROC) curve is a standard evaluation mechanism in ma-
chine perception, generated by varying some free parameter (e.g., a threshold) in order to investigate
the trade-off between false positives and false negatives. In our case, this parameter is the threshold
τ for the aggregate SVM score of complete chains discussed in previous section. Several points on
the ROC curve are given for the TF1 and CMU+MIT test sets whereas only a single point is reported
for easy databases (such as FERET).

8.2.1 FERET AND TF1 DATASETS

The FERET database (FA and FB combined) contains 3,280 images of single and frontal views of
faces. It is not very difficult: The detection rate is 98.8 % with 245 false alarms and examples are
shown in the top of Fig 10. The average run time on this set using a 1Ghz is 0.28 (s) for images of
size 256×384.

The TF1 corpus involves a News-video stream of 50 minutes broadcasted by the French TV
channel TF1 on May 5th, 2002. (It was used for a video segmentation and annotation project at
INRIA and is not publicly available.) We sample the video at one frame each 4(s), resulting into
750 good quality images containing 1077 faces. Some results are shown on the bottom of Fig 10
and the performance is described in Table 8.2.1 for three points on the ROC curve. The false alarm
rate is the total number of false detections divided by the total number of hierarchies traversed, that
is, the total number of 16×16 blocks visited in processing the entire database.

8.2.2 ARF DATABASE AND SENSITIVITY ANALYSIS

The full ARF database contains 4000 images on ten DVDs; eight of these DVDs – 3,200 images
with faces of 100 individuals against uniform backgrounds – are publicly available at
(http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html). This dataset is still very challenging due
to large differences in expression and lighting, and especially to partial occlusions due to scarves,
sunglasses, etc. The g-network was run on this set; sample results are given in the rows 2-4 of
Fig 10. Among the 10 face images for a given person, two images show the person with sunglasses,
three with scarves and five with some variation in the facial expression and/or strong lighting ef-
fects. Our face detection rate is only 78.79 % with 3 false alarms. Among the missed faces, 32.12 %
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Figure 10: Sample detections on three databases: FERET (top), ARF (middle), TF1 (bottom).

are due to occlusion of the mouth, 56 % due to occlusion of the eyes (presence of sun glasses) and
11.88 % due to face shape variation and lighting effects.

8.2.3 CMU+MIT DATASET

The CMU subset contains frontal (upright and in-plane rotated) faces whereas the MIT subset con-
tains lower quality face images. Images with an in-plane rotation of more than 200 were removed,
as well as “half-profile” faces in which the nose covers one cheek. This results in a subset of 141
images from the CMU database and 23 images from the MIT test set. These 164 images contain
556 faces. A smaller subset was considered in Rowley et al. (1998) and in Viola and Jones (2001),
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Threshold # Missed Detection # False False alarm Average
faces rate alarms rate run-time

τ = 0 017 98.4 % 333 1/9,632 0.351(s)
τ = 1 109 89.8 % 143 1/22,430 0.357(s)
τ = 2 151 85.9 % 096 1/33,411 0.343(s)

Table 3: Performance on the TF1 database of 750 frames with 1077 faces. The three rows cor-
respond to three choices of the threshold for clustering detections. The false alarm rate
is given as the number of background pattern declared as faces over the total number of
background patterns. The average run-time is reported for this corpus on images of size
500×409.

namely 130 images containing 507 faces, although in the former study other subsets, some account-
ing for half-profiles, were also considered (see Table 4).

Sahbi & Geman Viola and Jones (2001) Rowley et al. (1998)

# of images 164 130 130
# of faces 556 507 507
False alarms 112 95 95
Detection rate 89.61 % 90.8 % 89.2 %
Time (384×288) 0.20(s) 1

3 ×0.20(s) 5×0.20(s)

Table 4: Comparison of our work with other methods which achieve high performance.

The results are given in Table 4. The g-network achieves a detection rate of 89.61 % with 112
false alarms on the 164 images. These results are very comparable to those in Rowley et al. (1998);
Viola and Jones (2001): for 95 false alarms, the detection rate in Viola and Jones (2001) was 90.8 %
and in Rowley et al. (1998) it was 89.2 %. Put another way, we have an equivalent number of false
alarms with a larger test set but a slightly smaller detection rate; see Table 4. Our performance could
very likely be improved by utilizing a larger training set, exhibiting more variation than the Olivetti
set, as in Viola and Jones (2001); Rowley et al. (1998); Schneiderman and Kanade (2000), where
training sets of sizes 4916, 1048 and 991 images, respectively, are used.

Scenes are processed efficiently; see Fig 11. The run-time depends mainly on the size of the
image and its complexity (number of faces, presence of face-like structures, texture, etc). Our
system processes an image of 384×288 pixels (the dimensions reported in cited work) in 0.20(s);
this is an average obtained by measuring the total run time on a sample of twenty images of varying
sizes and computing the equivalent number of images (approximately 68) of size 384× 288. This
average is about three times slower than in Viola and Jones (2001), approximately five times faster
than the fast version in Rowley et al. (1998) and 200 times faster than in Schneiderman and Kanade
(2000). Notice that, for tilted faces, the fast version of Rowley’s detector spends 14(s) on images of
320×240 pixels.
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255×365, 0.14(s) 305×421, 0.26(s) 228×297, 0.14(s) 640×480, 0.50(s) 320×240, 0.16(s) 320×240, 0.12(s) 320×240, 0.16(s) 592×654, 0.54(s)

250×329, 0.14(s) 462×294, 0.27(s) 320×240, 0.16(s) 126×210, 0.07(s) 640×480, 0.41(s) 627×441, 0.60(s) 275×369, 0.22(s)

555×768, 0.57(s) 520×739, 0.53(s) 623×805, 0.79(s) 500×622, 0.57(s) 576×776, 0.50(s) 539×734, 0.79(s)

336×484, 0.30(s) 256×256, 0.70(s) 250×361, 0.16(s) 775×1024, 1.23(s) 340×350, 0.17(s)

469×375, 0.36(s) 628×454, 0.49(s) 271×300, 0.16(s) 367×364, 0.19(s) 259×324, 0.18(s) 271×403, 0.19(s)

660×656, 0.58(s) 352×352, 0.20(s) 490×338, 0.27(s) 233×174, 0.09(s) 628×454, 0.58(s) 601×444, 0.52(s)

Figure 11: Detections using the CMU+MIT test set. More results can be found on http://www-
rocq.inria.fr/who/Hichem.Sahbi/Web/face results/
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Threshold Detection # False False alarms
rate alarms rate

τ = 0 92.95 % 312 1/2,157
τ = 0.5 89.61 % 112 1/6,011
τ = 1 87.2 % 096 1/7,013
τ = 10 34.94 % 004 1/168,315

Table 5: Evaluation of our face detector on the CMU+MIT databases.

8.2.4 HALLUCINATIONS IN TEXTURE

Performance degrades somewhat on highly texture scenes. Some examples are provided in Fig 12.
Many features are detected, triggering false positives. However, there does not appear to an “explo-
sion” of hallucinated faces, at least not among the roughly 100 such scenes we processed, of which
only a few had order ten detections (two of these are shown in Fig 12).

9. Summary

We presented a general method for exploring a space of hypotheses based on a coarse-to-fine hier-
archy of SVM classifiers and applied it to the special case of detecting faces in cluttered images. As
opposed to a single SVM dedicated to a template, or even a hierarchical platform for coarse-to-fine
template-matching, but with no restrictions on the individual classifiers (the f-network), the pro-
posed framework (the g-network) allows one to achieve a desired balance between computation and
error. This is accomplished by controlling the number of support vectors for each SVM in the hier-
archy; we used the reduced set technique here, but other methods could be envisioned. The design
of the network is based on a model which accounts for cost, selectivity and invariance. Naturally,
this requires assumptions about the cost of an SVM and the probability that any given SVM will be
evaluated during the search.

We used one particular statistical model for the likelihood of a background pattern reaching a
given node in the hierarchy, and one type of error constraint, but many others could be considered. In
particular, the model we used is not realistic when the likelihood of an “object” hypothesis becomes
comparable with that of the “background” hypothesis. This is in fact the case at deep levels of the
hierarchy, at which point the conditional selectivity of the classifiers should ideally be calculated
with respect to both object and background probabilities. A more theoretical approach to these
issues, especially the cost/selectivity/invariance tradeoff, can be found in Blanchard and Geman
(2005), including conditions under which coarse-to-fine search is optimal.

Extensive experiments on face detection demonstrate the huge gain in efficiency relative to ei-
ther a dedicated SVM or an unrestricted hierarchy of SVMs, while at the same time maintaining
precision. Efficiency is due to both the coarse-to-fine nature of scene processing, rejecting most
background regions very quickly with highly invariant SVMs, and to the relatively low cost of most
of the SVMs which are ever evaluated.
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Figure 12: Left: Detections on highly textured scenes. (We thank Larry Jackal for the second (“face
in a tree”) image.) Right: The darkness of a pixel is proportional to the amount of local
processing necessary to collect all detections. The average number of kernel evaluations,
per block visited, are respectively 11, 6, 14 and 4.
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Appendix A.

In this appendix, we will show how an approximate solution of the constrained minimization prob-
lem (8) can be obtained for the case of a binary hierarchy (i.e., νl = 2l−1). An extension to any
arbitrary hierarchy can be found in Sahbi (2003).

Suppose β is fixed and consider the optimization problem in (8). Clearly, the unconstrained
problem is degenerate, minimized by choosing nl ≡ 0; indeed this minimizes cost. We start by
minimizing cost for a fixed value of nL and for real-valued nl , l = 1, ...,nL−1. In this case, the values
of n1,n2, ...,nL−1 which satisfy ∂C

∂nl
= 0, l = 1, ...,L−1, are given by:
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The proof is straightforward:
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We have:
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The above two equations imply:

2 j−1

(
j−1

∑
i=1

βini)

−β j
2 j n j+1

(
j

∑
i=1

βini)
2

−β j
2 j

β j+1 (
j

∑
i=1

βini)

= 0, j 6= 1. (13)

Suppose n1 is known; we show by a recursion that the general term nl is given by (11):

Combining
∂C
∂n1

= 0 and
∂C
∂n2

= 0, we obtain:

1 −
β1 2 n2

β2
1 n2

1

−
2 β1

β2 β1 n1
= 0 ⇒ n2 =

1
2

β1

β2
n1 (β2n1−2).

Assume for 2≤ j ≤ l(l ∈ {2,L−2})

n j = 2−
j( j−1)

2

(

j−1

∏
i=1

βi

)

β−1
j n j−1

1 (β jn1−2 j−1). (14)

We now demonstrate that:

nl+1 = 2−
(l+1)l

2

(

l

∏
i=1

βi

)

β−1
l+1 nl

1 (βl+1n1−2l). (15)

By (14), ∀ j ∈ {2, ..., l}, we have:
(

j

∑
i=1

βini

)

= β1n1 + β2
1
2

β1β−1
2 n1 (β2n1−2) + β3

1
8

β1β2β−1
3 n2

1 (β3n1−4)+ ...

+ β j−1

(

2−
( j−1)( j−2)

2

)

(

j−2

∏
i=1

βi

)

β−1
j−1 n j−2

1

(

β j−1n1−2 j−2
)

+ β j

(

2−
j( j−1)

2

)

(

j−1

∏
i=1

βi

)

β−1
j n j−1

1

(

β jn1−2 j−1
)

.

Hence, ∀ j ∈ {2, ..., l}:
(

j

∑
i=1

βini

)

= 2−
j( j−1)

2

(

j

∏
i=1

βi

)

n j
1. (16)

Let π j =
j

∏
i=1

βi. Using (16) and for j = l, we rewrite (13) as:

2l−1

2−
(l−1)(l−2)

2 πl−1 nl−1
1

−βl
2lnl+1

(

2−
l(l−1)

2 πl nl
1

)2 −
βl

βl+1

2l

2−
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2 πl nl
1

= 0

⇒ nl+1 = 2−
(l)(l+1)

2 πl β−1
l+1 nl

1 (βl+1n1−2l)
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which proves (15). As for n1, using (12) for j = L−1,

∂C
∂nL−1

= 0 ⇒ n1 =

((

1
πL−1

)

2L(L−1)/2 nL

)1/L

�

We can now rewrite (8) as:

min
nL

L

(

1
πL−1

2L(L−1)/2 nL

)1/L

−
L

∑
l=2

(

2l−1

βl

)

s.t.











νL

(

L

∑
i=1

βini

)−1

≤ µ

0 < nl ≤ Nl .

Using (11), this can be written entirely in terms of nL. We use a “generate-and-test” (brute-
force search) strategy: First, the parameter nL is varied from 1 to its upper bound NL (with some
quantization). Then, for each value of this parameter, we check the consistency of the candidate
solution, that is, whether the first constraint (on expected false alarms) is satisfied and whether each
nl is bounded Nl . The value nL minimizing the cost function is retained.
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Figure 13: The average cost C (n1, ...,nL) is an increasing function of nL.

For small values of nL, the objective function in (8) (the average cost) typically takes small
values (cf. Fig 13) and the upper bound constraints related to {nl} are generally satisfied, but the
mean false alarm constraint might not be satisfied. For large values of nL, the bounds on {nl} might
not be satisfied and the average cost increases, although the mean false alarm constraint is typically
satisfied.

Finally, we allow β to vary with Ψ according to (9). Notice that (8) might not have a solution
for any Ψ; obviously we only consider values for which the constraints are satisfied for some nL.
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Abstract 
In this paper, we propose a number of adaptive prototype learning (APL) algorithms. They employ 
the same algorithmic scheme to determine the number and location of prototypes, but differ in the 
use of samples or the weighted averages of samples as prototypes, and also in the assumption of 
distance measures. To understand these algorithms from a theoretical viewpoint, we address their 
convergence properties, as well as their consistency under certain conditions. We also present a 
soft version of APL, in which a non-zero training error is allowed in order to enhance the 
generalization power of the resultant classifier. Applying the proposed algorithms to twelve UCI 
benchmark data sets, we demonstrate that they outperform many instance-based learning 
algorithms, the k-nearest neighbor rule, and support vector machines in terms of average test 
accuracy. 
Keywords: adaptive prototype learning, cluster-based prototypes, consistency, instance-based 
prototype, pattern classification 

1 Introduction 
We divide this section into two parts, with the first part addressing the background of all related 
methods and the second part discussing our contributions. 

1.1 Background 
In pattern cognition, one method for classifying objects, expressed as feature vectors, is to 
compute the distance between the vectors and certain labeled vectors, called prototypes. This 
approach selects the k nearest prototypes for each test object and classifies the object in terms of 
the labels of the prototypes and a voting mechanism. Prototypes are vectors that reside in the 
same vector space as feature vectors and can be derived from training samples in various ways. 
The simplest way is to use all training samples as prototypes (Fix and Hodges, 1951, 1952, 
1991a, 1991b). Besides not incurring any training costs, this approach has two major advantages. 
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First, for a finite set of training samples S, the error rate using all samples as prototypes does not 
exceed twice the Bayes risk (Cover and Hart, 1967). Second, it ensures consistency, or 
asymptotic Bayes-risk efficiency (Stone, 1977; Devroye and Györfi, 1985; Zhao, 1987; Devroye 
et al., 1994). 
However, recruiting all training samples as prototypes can incur a high computational cost during 
the test procedure, which is prohibitive in applications with large corpora. Consequently, certain 
editing rules have been proposed to reduce the number of prototypes. The condensed nearest 
neighbor (CNN) rule (Hart, 1968) was the first, and perhaps simplest, proposal among many 
subsequent ones, all of which try to extract a subset from a collection of samples. These 
algorithms execute a process iteratively to check the satisfaction of certain criteria for the current 
set of prototypes, and add or drop prototypes until a stop condition is met. Wilson and Martinez 
(2000) collected and compared many algorithms of this type (in particular, DROP1 to DROP5), 
and categorized them as instance-based learning (IBL) algorithms. More recently, an alternative 
IBL algorithm called the Iterative Case Filtering (ICF) algorithm (Brighton and Mellish, 2002) 
was proposed. ICF runs faster than most IBL algorithms, which drop rather than add samples 
(this point is discussed further in Section 7.2), yet it achieves comparable accuracy to the latter 
algorithms. 

Another method for finding prototypes can be categorized as cluster-based learning (CBL) 
algorithms, in which prototypes are not samples per se, but can be derived as the weighted 
averages of samples. The k-means clustering algorithm (Lloyd, 1982; Max, 1960; Linde et al. 
1980), the fuzzy c-means algorithm (Bezdek, 1981; Höppner et al., 1999), and the learning vector 
quantization algorithm (Kohonen, 1988, 1990) are examples of this method. Instead of 
representing prototypes as the weighted averages of samples, they can be represented as centroids 
of clusters (Devi and Murty, 2002), or as hyperrectangles (high-dimensional rectangles) 
(Salzberg, 1991). In the latter case, the distance between a sample and a hyperrectangle not 
containing the sample is defined as the Euclidean distance between the sample and the nearest 
face of the hyperrectangle. 

In their guidelines for the design of prototype learning algorithms, Devroye et al. (1996, 
Chapter 19) propose some sufficient conditions for the consistency of this kind of algorithm. The 
conditions stipulate that: (a) the algorithm should minimize the empirical error, which is the error 
in classifying training samples; and (b) the number of prototypes should grow as a lower order of 
the number of training samples. 

Support vector machines (SVM) can also be used for pattern classification. In this approach, 
objects are classified by maximizing the margins between samples with different labels, where 
the margin is defined as the gap between two parallel hyperplanes (Figure 1a). The consistency of 
SVM is assured if the samples are bounded and the margin between samples with different labels 
holds (Vapnik, 1995; Schölkopf et al. 1999; Cristianini and Shawe-Taylor, 2000). 

1.2 Our Contributions 
The requirement that data should be bounded is reasonable, since it is a common practice in 
applications to normalize feature values to a certain bounded interval (between 0 and 1, for 
example). The margin assumption, on the other hand, is unique to SVM. However, we can prove 
the consistency of CNN under a more relaxed assumption (Figure 1b). For convenience, we say 
that two labeled entities (that is, samples or prototypes) are homogeneous if they have the same 
label; otherwise, they are heterogeneous. We require a non-zero distance between heterogeneous 
samples. 

Despite its consistency, CNN could be improved in two ways. First, its criterion for prototype 
satisfaction is rather weak and could be strengthened. Second, it is not difficult to develop an 
alternative process by using a cluster-based rule to construct prototypes. Experiments show that 
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the latter process often achieves better test accuracy than CNN. Another issue with this algorithm 
is its theoretical standing. The consistency of CNN derives from the fact that its prototypes are 
samples and thus always keep a certain distance from each other. The cluster centers, on the other 
hand, are not samples but the weighted averages of samples, so it is difficult to control the 
distances between them. To resolve this problem, we adopt a hybrid solution that combines 
cluster centers and certain selected samples to maintain a desirable separation between all the 
resultant prototypes. 

         
 (a) (b) 

Figure 1. (a) A margin exists between two data sets. (b) A positive distance exists between two 
data sets. 

Note that it is not always appropriate to minimize training errors for SVM. Sometimes, a 
higher number of training errors should be tolerated so that prediction errors can be reduced. Such 
flexibility, which is built into the “soft-margin” version of SVM (Cortes and Vapnik, 1995; 
Bartlett and Shaw-Taylor, 1999), yields better test accuracy than the “hard-margin” version. 
Fortunately, this flexibility also exists in adaptive prototype learning (APL) algorithms, and can 
be derived by a tradeoff between the number of prototypes and their predictive power. However, 
although APL reduces training errors by adding prototypes, it increases the risk of overfitting. A 
balance between these two factors is made possible by a cross-validation study, similar to that 
used for SVM. We discuss this point further in Section 6.  

In summary, we propose two types of prototype learning algorithm. The first is an instance-
based algorithm, which adds samples as prototypes according to an enhanced absorption criterion. 
The advantage of this approach (discussed in Section 7.2) is that it achieves substantially higher 
test accuracy at a relatively low training cost, compared to other instance-based algorithms, 
whose major merit is a lower ratio of prototypes to training samples. Although our algorithm 
achieves higher test accuracy at the expense of a somewhat higher ratio of prototypes to training 
samples, we believe this is acceptable, since it enables the proposed classifier to even outperform 
the k-nearest neighbor (k-NN) rule in terms of accuracy. The second approach is a hybrid method 
that constructs prototypes as either samples or the weighted averages of samples. Compared to 
SVM, the hybrid prototype learning method yields higher test accuracy, at the expense of a higher 
training cost (discussed in Section 7.3). 

The remainder of the paper is organized as follows. In the next section, we present the 
Vapnik-Chervonenkis (VC) theory of multiclass classification. In Section 3, we provide proof of 
the consistency of CNN under certain conditions. In Section 4, the extension of CNN to APL is 
discussed, along with the convergence of APL and its consistency under the same conditions. In 
Sections 5 and 6, respectively, we describe a kernelized version and a soft version of APL. 
Section 7 contains experimental studies of APL and comparisons with some instance-based 
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learning algorithms, namely, k-NN, CNN and SVM. Finally, in Section 8, we present our 
conclusions. 

2 Vapnik-Chervonenkis Theory of Multiclass Classification 
In this section, we develop a basic theory of prototype-learning algorithms. In particular, we 
derive an asymptotic result for generalization errors of prototype learning algorithms. For the case 
of binary classification, in which an object is classified as one of two class types, the standard 
Vapnik-Chervonenkis (VC) theory provides such a bound. This theory, however, is not sufficient 
for our purpose, since we deal with multiclass classifications in which we want to classify an 
object into one of m classes, with 2≥m . Here, we focus on extending the standard VC theory to 
such a case. 

The standard VC theory is a probabilistic theory that has great breadth and depth. To present 
a complete version of the theory in a journal paper is impossible. In fact, it is also unnecessary, 
since a comprehensive treatment can be found in the book A Probabilistic Theory of Pattern 
Recognition (Devroye et al., 1996). For this reason, we follow its notations closely (with some 
minor changes to suit our purpose) and quote those theorems that are relevant to our task. 

We assume there are n training samples (x1, y1), …, (xn, yn), and a test sample (x, y) drawn 
independently from the set Rd×Λ according to the same distribution, where Λ = {1, 2,…, m} is a 

set of labels or class types. Then, for a classifier g: Rd →Λ, we define its training error )(ˆ gLn  and 
testing error L(g) as follows. 

Definition 1 The training error of a classifier g is defined as the fraction of training samples 
misclassified by g, that is, ∑ = ≠= n

i ygn ii
IngL 1 })({)/1()(ˆ

x , where I is the indicator function such that 
1})({ =≠ ii ygI x  if and only if ii yg ≠)(x . The testing error of a classifier g is defined as the 

probability that a test sample has been misclassified by g, that is, L(g) = Pr{g(x)≠y}. 
Typically, from the training samples, a learning algorithm tries to build a classifier g of a 

generic class C, with the objective that g can generalize well in the sense that it has a small testing 
error. The standard VC theory provides a bound for the testing error of binary classifiers. This 
bound can be expressed in terms of the following complexity measure of C.  

Definition 2 Let C be a collection of binary classifiers of the form g : Rd → {0, 1}. For any n, the 
nth shatter coefficient of C  is defined as 

|,}:{|max),(
|| ,

CggnCS T
nTRT d

∈=
=⊆

 

where gT is the function obtained by restricting g to the domain T, and |X| for any set X is the 
number of elements of X. 

Intuitively, the nth shatter coefficient of C is the maximum number of ways that an n-element 
subset can be partitioned by the classifiers in C. The following well-known result of Vapnik and 
Chervonenkis (1971, 1974a, 1974b) provides a bound for the testing error of classifiers in C, 
which we denote as the VC-bound. We adopt this result from Theorem 12.6 in Devroye et al. 
(1996). 

Theorem 3 Let C be a collection of binary classifiers. Then, for any n and any 0>ε , 

.),(8|)()(ˆ|supPr 32/2εε n
n

Cg
enCSgLgL −

∈
≤

⎭
⎬
⎫

⎩
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Next, we explain how to obtain an analogous result for multiclass classifiers. For a collection 
C of multiclass classifiers g: Rd → Λ, let CB  be the class of binary classifiers gi: Rd → {0, 1} such 
that gi(x) = 1 if and only if g(x) = i, for g∈C and i = 1, 2, …, m. 

Theorem 4 Let C be a collection of multiclass classifiers of the form g: Rd →Λ. Then, for any n 
and any 0>ε ,  

.),(8|)()(ˆ|supPr )8/( 22 mnB
n

Cg
enCSgLgL εε −

∈
≤

⎭
⎬
⎫

⎩
⎨
⎧

>−  

Proof: First, consider any classifier g: Rd →Λ. A sample (x, y)∈ Rd×Λ is misclassified by g if and 

only if it is misclassified by both gy and gg(x). Thus, ∑ == m
i

i
nn gLgL 1 )(ˆ)(ˆ2 and 

.)()(2 1∑ == m
i

igLgL Then, by triangle inequality, the condition ε>− |)()(| gLgLn  implies that 
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This theorem follows from the previous theorem with ε  replaced by m/2ε .  
As stated in the above theorem, the VC-bound is the product of two terms. The first is just the 

shatter coefficient, whose magnitude depends on the collection of classifiers C. The second term 
decays exponentially to zero as ∞→n . To obtain an asymptotic result from this product, we 
need to know how fast the shatter coefficient grows as ∞→n . If its growth is slower than the 
decay of the second term, then the VC-bound approaches zero as ∞→n . 

Let us now define some terms. A prototype data pair (p, y) consists of a prototype dR∈p  
and its label y. We say that a classifier uses the 1-NN rule based on prototype data pairs if g 
assigns to each dR∈x the label of the nearest prototype to x. The collection of all multiclass 
classifiers using the1-NN rule based on k prototype data pairs is denoted by C(k), while the 
collection of binary classifiers using the 1-NN rule based on k prototype data pairs is denoted by 
B(k). We want to derive a result for C(k) in terms of a known result of B(k). To do this, we adopt the 
following lemma from Devroye et al. (1996, p. 305), which provides a bound for S(B(k), n). 

Lemma 5 S(B(k), n) ≤ (ne/(d+1))(d+1)(k-1). 
From Theorem 4 and Lemma 5, we derive the following result for C(k). 

Theorem 6 For any n and any 0>ε , 

.))1/((8|)()(ˆ|supPr )8/()1)(1( 22
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mnkd
n

Cg
ednegLgL

k

εε −−+

∈
+≤
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⎬
⎫

⎪⎩

⎪
⎨
⎧

>−  

Proof: In order to apply Theorem 4, we need to find a bound for ),( )( nCS B
k , where B

kC )(  derives 

from C(k) in the same way as CB derives from C. Since )()( k
B
k BC ⊆ , we have 

),(),( )()( nBSnCS k
B
k ≤ , which follows easily from the definition of the shatter coefficient. 



CHANG, LIN AND LU 

 2130 

Therefore, by Lemma 5, we have S( B
kC )( , n) ≤ (ne/(d+1))(d+1)(k-1). Combining this inequality and 

Theorem 4, we obtain the desired result.  
For a given sequence of training data Dn = {(x1, y1), …, (xn, yn)}, a classification rule is a 

sequence of classifiers {gn} such that gn is built on Dn. Such a rule is said to be consistent, or 
asymptotically Bayes-risk efficient, if  

,0})(inf)(Pr{lim =>−
∞→

εgLgL
gnn

 

for any 0>ε , where )(inf gL
g

is the infimum (i.e., the greatest lower bound) of the testing errors 

of all classifiers of the form g: Rd → Λ. A prototype classification rule, on the other hand, is a 
sequence {gn} such that gn uses the 1-NN rule based on kn prototypes for some kn. The following 
corollary provides a sufficient condition for the consistency of a prototype classification rule. 
Note that, in stating the corollary, we use o(f(n)) to denote a quantity whose ratio to f(n) 
approaches zero as ∞→n . 

Corollary 7 Suppose that {gn} is a prototype classification rule such that 0)(ˆ =nn gL  and kn = o( 
nε2/(m2dlogn) ) for all n. Then, for any 0>ε , 

.0})(Pr{lim})(inf)(Pr{lim =>=>−
∞→∞→

εε nngnn
gLgLgL  

Proof:  Since 0)(ˆ =nn gL , the condition that ε  )( >ngL  implies that ε  |)()(ˆ| >− nnn gLgL  and 

thus ε  |)()(ˆ|sup
)(

>−
∈

gLgLn
Cg nk

 as well. Hence, .|)()(ˆ|supPr})(Pr{
)( ⎪⎭

⎪
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⎪
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∈
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Also, since kn = o( nε2/(m2dlog n) ), by Theorem 6, we have 0}  )(Pr{ →> εngL  as ∞→n . 
Finally, ε>− )(inf)( gLgL

gn  implies that ε  )( >ngL , so the probability of the former inequality 

also approaches zero as ∞→n .  

3 The Condensed Nearest Neighbor Rule 
Following the notations defined in Section 2, we assume that a set of observed data, or samples, 
(x1, y1), (x2, y2), ..., (xn, yn) is given. Our goal here is to extract a subset Un from n

iinX 1}{ == x  in 
such a way that if u is the nearest member of Un to ix , then iyl =)(u , where )(ul  is the label of 
u. Members of Un are called prototypes, and samples whose labels match those of their nearest 
prototypes are said to be absorbed. 

The CNN rule (Hart, 1968) is a simple way of solving the above problem. Starting with 
}{ 0x=nU , where 0x  is randomly chosen from Xn, CNN scans all members of Xn. It then adds to 

Un a member x of Xn whose nearest prototype’s label does not match that of x. The algorithm 
scans Xn as many times as necessary, until all members of Xn have been absorbed or, equivalently, 
no more prototypes can be added to Un.  

Let )}()( and ,,||: min{|| jjnjijin llX xxxxxx ≠∈−=δ , that is, nδ  is the minimal distance 

between heterogeneous samples. Since }{ nδ  is a decreasing sequence, there exists a δ  such that 
δδ →n  as ∞→n . The consistency of the CNN rule can be proved under the following two 

conditions. 1) Boundedness: all samples are included in a bounded set; that is, there exists a 
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region H of radius R such that 1} Pr{ =∈ Hx . 2) Non-zero separation: the limit δ  of }{ nδ  is 
non-zero. 

Lemma 8 Under the conditions of boundedness and non-zero separation, the number of CNN 
prototypes cannot exceed dR )1/2( +δ , where R is the radius of H and δ is the limit of }{ nδ . 
Proof: We want to prove that all prototypes are δ-separated, that is, their distance is at least δ. 
This is true for any two prototypes with different labels, since all prototypes are samples and 
heterogeneous samples are δ -separated. Therefore, we only have to prove that all prototypes of 
the same label are also δ -separated. 

We assume that p and q are prototypes of the same label. As CNN is a sequential process, its 
prototypes are constructed in linear order. Without loss of generality, we assume that p is 
constructed before q; hence, there must be a prototype m that is constructed before q, 

)()( qm ll ≠ , and . ||||  |||| mqpq −≥−  Now, since q and m have different labels, .   |||| δ≥− mq  
Combining these two facts, we obtain .   |||| δ≥− pq  

We define a ball of radius r centered at w as rrB <−= |||| :{),( wxxw }. Let the prototypes be 
k
ii 1}{ =p . Since they are δ -separated from each other, all the balls )2/,( δiB p  are non-overlapping. 

Moreover, the union of these balls is contained in a ball of radius 2/δ+R  (Figure 2). So, we 
must have dd Rk )2/()2/( δδ +< , or .)1/2( dRk +< δ   

Rδ /2

R+δ /2

 
Figure 2.  If all samples are contained in a ball of radius R, then all balls of radius δ /2 centered at 

a sample are included in a ball of radius R+δ /2. 

From this lemma and the corollary to Theorem 6, we derive the following. 

Theorem 9 Let {gn} be a sequence of classifiers using the 1-NN rule based on CNN prototype 
data pairs. The boundedness and non-zero separation conditions ensure the consistency of {gn}. 

4 Adaptive Prototype Learning Algorithms 
An adaptive prototype learning algorithm is similar to CNN in that it adds as many prototypes as 
necessary until all samples have been absorbed. APL, however, differs from CNN in two 
respects: the absorption criterion and the nature of prototypes. In CNN, all prototypes are 
samples, whereas prototypes in APL can be samples or the weighted averages of samples. We 
denote prototypes that are samples as instance-based prototypes (IBPs) to differentiate them from 
cluster-based prototypes (CBPs), which are the weighted averages of samples. First, we develop a 
special type of APL algorithm for IBPs and prove its consistency under the conditions that ensure 
the consistency of CNN. We then propose a more complex type of APL that combines IBPs and 
CBPs, after which we address APL’s convergence and consistency properties. 
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4.1 Generalized CNN 
The instance-based APL includes CNN as a special case. For this reason, we denote it as a 
generalized CNN, or GCNN. The difference is that GCNN employs a strong absorption criterion, 
in contrast to the weak criterion employed by CNN. According to CNN, a sample x is absorbed if 

0  |||||||| >−−− pxqx ,                                                      (1) 

where p and q are prototypes, p is the nearest homogeneous prototype to x, and q is the nearest 
heterogeneous prototype to x. For GCNN, however, we adopt the following criterion: 

nρδ  |||||||| >−−− pxqx ,             )1,0[∈ρ .                        (2) 

We say that a sample is weakly absorbed if it satisfies (1), and strongly absorbed if it satisfies 
(2). Note that (1) corresponds to the case where ρ  = 0 in (2). Adopting (2) makes it possible to 
improve the classifier by optimizing ρ . The question of how to optimize ρ is addressed in 
Section 6. 

We now describe the steps of GCNN. 
G1 Initiation: For each label y, select a y-sample as an initial y-prototype. 
G2 Absorption Check: Check whether each sample is strongly absorbed (absorbed, for 

short). If all samples are absorbed, terminate the process; otherwise, proceed to the next 
step. 

G3 Prototype Augmentation: For each y, if any unabsorbed y-samples exist, select one as a 
new y-prototype; otherwise, no new prototype is added to label y. Return to G2 to 
proceed. 

In G1, a y-sample is selected as follows. We let each y-sample cast a vote to its nearest y-
sample, and select the one that receives the highest number of votes. In G3, an unabsorbed y-
sample is selected as follows. Let Ψy = {xi: l(xi)=y & xi is unabsorbed}. We let each member of Ψy 
cast a vote for the nearest member in this set. The selected y-sample is the member of Ψy that 
receives the highest number of votes. 

Lemma 10 GCNN prototypes satisfy the following properties. (a) For each prototype p, no 
heterogeneous sample can be found in ),( nB δp . (b) For any two heterogeneous prototypes p and 
q, nδ≥−  |||| qp . (c) For any two homogeneous prototypes m and n, nδρ)1( |||| −>− nm . 
Proof: Propositions (a) and (b) follow from the fact that GCNN prototypes are samples and the 
separation between any two heterogeneous samples is at least nδ . To prove (c), let two 
homogeneous prototypes m and n be given, and let m be constructed before n. Since n is not 
absorbed by the time it is taken as a prototype, there exists a heterogeneous prototype q such that 

nρδ≤−−−  |||||||| mnqn  or, equivalently, 

nρδ−−≥− ||||  |||| qnmn .                                                   (3) 

Since n and q are heterogeneous, by (a), n cannot lie in ),( nB δq . Thus, 

nδ  |||| ≥− qn .                                                              (4) 

Combining (3) and (4), we obtain nnn δρρδδ )1(  |||| −=−≥− mn .   

We define the number of iterations as the number of times G2 has been executed. The 
following lemma states that the number of iterations cannot exceed a certain magnitude. Let nR  
be the radius of the smallest ball containing all samples in Xn. 
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Lemma 11 The number of GCNN prototypes cannot exceed .])1/()2[( d
nnnR δρδ −+  Moreover, 

GCNN converges within a finite number of iterations. 
Proof: Lemma 10 ensures that homogeneous and heterogeneous GCNN prototypes are separated 
by certain constants. Using this fact and a similar argument to that in the proof of Lemma 8, we 
conclude that the number of GCNN prototypes cannot exceed .])1/()2[( d

nnR δρδ −+  Since at 
least one prototype is created at each iteration, the number of iterations cannot exceed this 
number either.  

Now, under the conditions of boundedness and non-zero separation, we can also show that 
the number of GCNN prototypes is bounded from above by d

nnR ])1/()2[( δρδ −+ , with R 
replacing nR . Since dd

nn RR ])1/()2[(])1/()2[( δρδδρδ −+≤−+ , the number of GCNN 
prototypes is bounded from above by a constant independent of n. The consistency of GCNN 
follows from the same argument that demonstrates the consistency of CNN. 

Theorem 12 Under the conditions of boundedness and non-zero separation, GCNN is consistent. 

4.2 Linear Adaptive Prototype Learning 
Having explained GCNN, we are ready to describe a more complex type of APL that can take a 
mixture of IBPs and CBPs as its prototypes. To differentiate it from GCNN, and from another 
version of APL to be described later, we denote this algorithm as linear APL (LAPL). 

Recall that the consistency of GCNN derives from the separation of prototypes. We wish to 
obtain a similar separation between LAPL prototypes, but the addition of CBPs raises some 
problems. 

The first problem is the separation required for heterogeneous prototypes. While a nδ  
separation can be easily maintained by any two heterogeneous IBPs, it may not be maintained so 
easily by two heterogeneous CBPs. Therefore, we require the separation to be nfδ , where 

]1,0[∈f . How we determine the optimal value of f is discussed in Section 6. 
The next problem is the absorption criterion. For LAPL, we adopt the following: 

nfδρ  |||||||| >−−− pxqx ,     for )1,0[∈ρ .                                     (5) 

How to optimize ρ is also addressed in Section 6. 
The third problem is how to maintain a positive separation between all LAPL prototypes. To 

achieve this objective, we specify the following requirements. 
(C1) For each prototype p, no heterogeneous sample exists in ),( nfB δp . 

(C2) For any two heterogeneous prototypes p and q, nfδ≥−  |||| qp . 

(C3) For any two homogeneous prototypes m and n, nfδρ)1(  |||| −>− nm . 

Thus, in the transition from GCNN to LAPL, we have systematically changed nδ  to nfδ . We 
now state the LAPL algorithm, and prove that the prototypes derived from it satisfy (C1), (C2), 
and (C3). We first describe the general scheme of the algorithm, and then provide the technical 
details. The steps of LAPL are: 

H1 Initiation: For each label y, initiate a y-prototype as the average of all y-samples. If this 
prototype does not satisfy (C1), (C2), and (C3), we apply the prototype adjustment 
module (described later in this section). 

H2 Absorption Check: Check whether each sample has been absorbed. If all samples have 
been absorbed, terminate the process; otherwise, proceed to the next step. 
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H3 Prototype Refreshment: For each un-satiated label y (i.e., some y-samples are 
unabsorbed), select an unabsorbed y-sample. We then apply a clustering algorithm to 
construct clusters, using the selected y-sample and all existing y-prototypes as seeds. 
The centers of the resultant clusters are new y-prototypes. If these prototypes do not 
satisfy (C1), (C2), and (C3), we apply the prototype adjustment module (described later 
in this section). Return to H2 to proceed. 

We now provide the technical details. 
Selection of Unabsorbed Samples in H1 and H3. The selection procedures in H1 and H3 

are the same as those in G1 and G3. 
Clustering Algorithms in H3. Any clustering algorithm can be used. For the experiment 

described in this paper, we use the k-means (KM) and the fuzzy c-means (FCM) clustering 
algorithms, both of which are applied to training samples of the same label. Thus, if there are m 
labels in the training data, we apply the algorithms m times. Details of the methods are as follows.  

The KM method (Lloyd, 1982; Max, 1960; Linde et al. 1980) derives a locally optimal 
solution to the problem of finding a set of cluster centers p

ii 1}{ =c  that minimizes the objective 
function 

2
1 ,...,1

||||min j
n
j ipi

xc −∑ = =
.                                                   (6) 

KM’s iterative process is performed as follows. Setting seeds as the initial cluster centers, we 
add each sample to the cluster whose center is nearest to it. We then reset the center of each 
cluster as the average of all the samples that fall in that cluster. To ensure rapid convergence of 
KM, we require that the process stops when the number of iterations reaches 30, or the 
membership of the clusters remains unchanged after the previous iteration. 

In FCM (Bezdek, 1981; Höppner et al., 1999), the objective function to be minimized is 

∑ ∑= = −n
j

p
i ji

m
iju1 1

2|||| xc ,     for ),1( ∞∈m                                (7) 

under the constraint 

∑ = =p
i iju1 1 ,         for j = 1, 2, ..., n,                                      (8) 

where iju is the membership grade of sample jx  to prototype ic . Using the Lagrangian method, 
we can derive the following equations: 
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for i = 1, 2, …, p, and j = 1, 2, …, n respectively. FCM is a numerical method that finds a locally 
optimal solution for (9) and (10). Using a set of seeds as the initial solution for p

ii 1}{ =c , the 
algorithm computes np

jiiju ,
1,}{ = and p

ii 1}{ =c  iteratively. To ensure rapid convergence of FCM, we 

require that the process stops when the number of iterations reaches 30, or ∑ = =−p
i

new
i

old
i1 0|||| cc . 

The prototype adjustment module is used to adjust the location of prototypes if they do not 
satisfy the separation conditions (C1), (C2), and (C3). 



ADAPTIVE PROTOTYPE LEARNING ALGORITHMS 

 2135 

Prototype Adjustment in H1. The purpose of this module is to replace prototypes that 
violate (C1) or (C2) with those that do not. Note that there is only one prototype per label in H1, 
so we do not need to worry about (C3). There are two steps in this stage. 

Step 1: If we find a CBP p that violates (C1), which requires that no heterogeneous sample 
exists in ),( nfB δp , we replace p with a sample of the same label. The replacement 
sample is an IBP and is selected in exactly the same way as a seed is selected in G1. 

Step 2: If we find a CBP p that violates (C2), which requires that nfδ≥−  |||| qp  for any 
other prototype q, we replace p with an IBP of the same label. We perform this 
operation iteratively, until the desired separations hold between CBPs, and between 
CBPs and IBPs. 

We now prove that after these two steps, all prototypes satisfy (C1) and (C2). We first prove 
that, after Step 1, all prototypes satisfy (C1). By assumption, all CBPs satisfy (C1) after this step. 
Also, all IBPs satisfy (C1), since all heterogeneous samples are nδ -separated from them and 

nn fδδ ≥ . We now prove that, after Step 2, all prototypes satisfy both (C1) and (C2). It is clear 
that all prototypes satisfy (C1) at the end of this step; and each CBP maintains nfδ -separations 
from other prototypes by assumption. Also, since each IBP maintains nδ -separations from other 
IBPs and nn fδδ ≥ , each IBP maintains nfδ -separations from other IBPs. 

Prototype Adjustment in H3.  This module adjusts prototypes in two steps. 
Step I:  A set of prototypes of the same label is called a pack. When a pack consists of CBPs 

that satisfy (C1) and they are nfδρ)1( − -separated from each other, as required by 
(C3), we preserve that pack. Otherwise, we replace it with the set of seeds from which 
the CBPs were derived. 

Step II: Two packs are said to be nfδ -separated if any two prototypes drawn from them are 

nfδ -separated. When we find two packs that are not nfδ -separated, we replace one of 
them with the set of seeds from which its prototypes were derived. We perform this 
operation iteratively until the remaining packs are nfδ -separated. 

We now show that, after Step I, all prototypes satisfy (C1) and (C3). For convenience, we call 
preserved packs P-packs and replacement packs R-packs. An R-pack consists of existing 
prototypes, called X-prototypes, and an unabsorbed sample, called a U-prototype. By induction, 
all X-prototypes meet (C1) and (C3). The U-prototype, denoted as u, also satisfies (C1), because 
heterogeneous samples are nδ -separated from each other. It remains to show that u is nfδρ)1( − -
separated from all X-prototypes. This fact follows from a similar argument to that for Lemma 
10(c), so we omit the proof. We conclude that all the prototypes satisfy (C1) and (C3). 

We now prove that, after Step II, all prototypes satisfy (C1), (C2), and (C3). It is clear that all 
prototypes satisfy (C1) and (C3) at the end of this step. It remains to prove that they also satisfy 
(C2), that is, heterogeneous prototypes are nfδ -separated. We want to show that all 
heterogeneous prototypes in the R-packs are nfδ -separated. As noted earlier, these prototypes 
consist of X-prototypes and U-prototypes. By induction, heterogeneous X-prototypes are nfδ -
separated. Heterogeneous U-prototypes are also nfδ -separated, as noted before. U-prototypes are 
also nfδ -separated from heterogeneous X-prototypes, since all X-prototypes satisfy (C1). Thus, 
at the end of Step II, all prototypes satisfy (C2).  

The nfδ -separation between heterogeneous prototypes and the nfδρ)1( − -separation between 
homogeneous prototypes imply the convergence of LAPL and also its consistency under the 
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conditions of boundedness and non-zero separation. Note that the above conclusions do not hold 
for the case where f = 0, which we deal with in Section 5. 

Theorem 13 The LAPL terminates within a finite number of iterations, provided that ]1,0(∈f , 
)1,0[∈ρ , and ),1( ∞∈m . 

Theorem 14. Let {gn} be a sequence of classifiers using the 1-NN rule based on LAPL prototype 
data pairs. The conditions of boundedness and non-zero separation ensure the consistency of 
{gn}, provided that ]1,0(∈f , )1,0[∈ρ , and ),1( ∞∈m . 

5 Kernelized Adaptive Prototype Learning Algorithms 
Let HRd →Φ : be a function that maps from the d-dimensional Euclidean space to a Hilbert 
space, whose dimension dim(H) may be infinite. In a kernelized adaptive prototype learning 
algorithm, the goal is to build prototypes in H. To this end, we first transform the given observed 
data n

jj 1}{ =x  into n
jj 1)}({ =Φ x . When either KM or FCM is used to compute prototypes, each 

prototype in H is of the form 

∑∑ == Φ= n
j

m
ij

n
j j

m
iji uu 11 /)(xc ,  

where ci and uij were introduced in (6), (7), and (8). When KM is used, ≡m 1. Moreover, uij = 1/ni 
provided that the jth sample falls in the ith cluster, whose population size is ni; otherwise, uij = 0. 
When FCM is used, we compute uij according to (9) in which the distance now becomes a kernel-
based distance, to be defined below. 

If ,)dim( ∞=H  ic  cannot be expressed in vector form. Even when dim(H) < ∞ , it can be 
computationally expensive to find an explicit form of ic . Fortunately, we can compute the 
distance between )( jxΦ  and ic  directly, provided there exists a kernel function (Mercer, 1909; 
Girosi, 1998) 

)(),(),( yxyx ΦΦ=K ,     for dR∈yx, .  

When such a function exists, we obtain the kernel-based distance as 

)(),( ||)(|| 2
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 )(),()(,2, jjjiii xxxccc ΦΦ+Φ−= .                      (11) 
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and 

),()(),( jjjj K xxxx =ΦΦ .                                                 (14) 

From np
jiKerji
,

1,
2 }||)({|| =Φ− xc , we derive np

jiiju ,
1,}{ =  according to the appropriate formula in the 

clustering algorithm being used. Since we do not want to express the prototypes explicitly, we use 
np
jiiju ,

1,}{ =  to represent them instead. From the prototypes, we can compute np
jiKerji
,

1,
2 }||)({|| =Φ− xc  

again, using (11)-(14). This iterative process stops if the number of iterations reaches 30, or 
001.0  ||max

,
<− new

ij
old

ji
uu

ij
. These steps represent the kernelized versions of KM and FCM, 

depending on which definition of np
jiiju ,

1,}{ =  is used. The kernelized version of FCM was proposed 
and studied by Wu, Xie and Yu (2003) and Kim et al. (2005). 

There is also a kernelized version of GCNN, but we do not consider it in this paper, for the 
reason to be given in Section 7. We denote the kernelized version of LAPL simply as KAPL, 
which is derived from LAPL by replacing KM or FCM with an appropriate kernelized version. In 
addition, we make the following changes. First, the initial y-prototype in KAPL should be the 
average of all })(:)({ yl =Φ xx . Using (11)-(14), we compute the distance of each )(xΦ  to this 
prototype. Second, we apply the prototype adjustment module in KAPL to separate prototypes.  
Prototype separation, however, does not imply the convergence of KAPL, since it may have to 
deal with data in a space of infinite dimensions. 

To ensure the convergence of KAPL, we modify the prototype adjustment module as follows. 
As in LAPL, we adopt the necessary operations to create the desired prototype separation. 
However, prior to these operations we check if each prototype in a pack has a non-empty domain 
of attraction (DOA), where the DOA of a y-prototype p is the set of all y-samples )(xΦ  for which 
p is the nearest prototype. Recall that we employ a clustering algorithm to create a pack of 
prototypes, using an unabsorbed sample )(uΦ  and some other prototypes as seeds. If any 
prototype in a pack has an empty DOA, we replace that pack with the pack of prototypes 
constructed earlier. In this case, )(uΦ is called a futile sample. If a sample is declared futile in an 
iteration, it will not be taken as a sample in any later iteration. 

Theorem 12 The KAPL algorithm converges within a finite number of iterations. 
Proof: The number of futile samples is bounded from above, since it cannot exceed n, that is, the 
number of samples. We assume that the last futile sample is created at iteration i, with i ≤ n. If all 
samples are absorbed at the end of i, the proof is complete; otherwise, more prototypes will be 
created, all with non-empty DOAs. The number of unabsorbed samples must decrease to zero, or 
else the number of DOAs would eventually exceed the number of samples, which would be an 
absurd result.  

Note that if we treat futile samples in LAPL in the same way, we can prove the convergence 
of LAPL in the setting where there is no guarantee of prototype separation. 
Theorem 13 Adopting the prototype adjustment module used in KAPL, LAPL converges for 

0=f  and ),1( ∞∈m . 

6 Soft Adaptive Prototype Learning Algorithms 
The versions of APL proposed thus far are designed to continue constructing prototypes until all 
training samples are absorbed or, equivalently, the training error declines to zero. These could be 
called hard versions of APL. Insistence on a zero training error, however, runs the risk of 
overfitting. Another approach, called the soft alternative, maintains the error rate at a level that 
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enhances the generalization power of the resultant classifier. The optimal error rate can be 
determined in a cross validation task, which is also needed to find the optimal values of the 
parameters. All versions of APL involve some parameters; for example, they all involve f and ρ , 
which regulate prototype separation (cf. (2), (5), (C1), (C2), and (C3)). Moreover, if FCM is used 
to compute cluster centers, there is another parameter m (cf. (7), (9), and (10)) to consider. In 
addition, some parameters in KAPL are used to define the kernel-based distance. For example, 
when the RBF kernel 

)||||exp(),( 2yxyx −−= γK                                             (15) 

is used to define the distance, there is an additional parameterγ , whose range is assumed to be 
),0( ∞ . 

To search for the optimal values of the parameters, we perform cross-validation. As all the 
parameters are assumed to be independent, we must evaluate all combinations of them and 
determine which one is the most suitable for the task. When a combination of parameter values Q 
is given, we build prototypes on K-1 folds of data, which serves as the training data, and measure 
the test accuracy on the remaining fold of data, which serves as the validation data. We determine 
the optimal training error rate associated with Q as follows. 

Given a set of training data and a set of validation data and assuming that the latter is the kth 
fold of the data, k = 1, 2, …, K, we construct prototypes and record the following information. 
First, for a given level of e, we record the lowest number of iterations ),( Qenk  at which the 
training error rate falls below e. We also compute the validation accuracy rate ),( Qevk  for all the 

prototypes obtained at the end of iteration ),( Qenk . Let ./),(),( 1 KQevQev K
k k∑ ==  The optimal 

training error rate is then  

).,(maxarg)( QevQe
e

opt =  

Note that once we have constructed prototypes to achieve a training error e1, we do not need 
to start from the scratch to obtain a lower training error e2. Instead, we continue to construct more 
prototypes until e2 is reached. At the end of this process, we obtain ),( Qev  for all e and thus 

).),(( QQev opt  When we have done this for all Q, we obtain the optimal Q as 

)),((maxarg QQevQ opt
Q

opt = .  

One additional parameter that needs be optimized is the number of k nearest prototypes, 
which we use in a voting mechanism to determine the label of a test sample. If a tie occurs, we 
classify the sample according to the nearest prototype. The optimal value of k should be evaluated 
in the cross-validation applied to the other parameters. 

7 Experimental Results 
To evaluate the APL algorithms and compare their performance with that of alternative methods, 
we use 12 benchmark data sets retrieved from the UCI databases (Newman et al., 1998). The 
results are described in three subsections. The first describes the four types of APL. In the second 
subsection, we compare the performance of GCNN with six instance-based prototype algorithms 
proposed in the literature. Then, in the third subsection, we compare the performance of the four 
APLs with SVM and k-NN. Note that many of the methods, including ours, require that the data 
must be bounded. One way to meet this requirement is to normalize all the feature values to 
[0,255], which can be done by the following linear transformation: 
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vV
vxx

−
×− 255)(

a  ,  

where x is a given feature value, V is the maximum value of the feature, and v is the minimum 
value. All experimental results reported in this section were obtained using an Intel Pentium 4 
CPU 3.4GHz with a 1GB RAM. 

7.1 Evaluation of APLs 
The four types of APL are listed in Table 1. The first one is GCNN. The other three types of APL 
are: fuzzy linear APL (f-LAPL), crisp kernelized APL (c-KAPL), and fuzzy kernelized APL (f-
KAPL). We use “f-” to indicate that the clustering algorithm employed is FCM, and “c-” to 
indicate that the technique is KM. In the experiments, the soft versions of the four APLs are used. 
Although we can consider the kernelized version of GCNN using RBF as the kernel function, this 
version of GCNN gains only slightly higher testing accuracy, at the expense of a much higher 
number of prototypes, than GCNN. So we choose not to discuss it. We do not discuss c-LAPL 
either, since it usually has a lower performance than f-LAPL. 

In Table 2, we show the parameters used in the four types of APL and also the values of the 
parameters whose combinations are considered in our experiments. The values result from a 
trade-off between the demand for accuracy and the need to reduce the computation time. When a 
combination, Q, of parameter values is given, we have to record ),( Qev  for certain values of e. In 
our experiments, the values of e, at which we record ),( Qev , are percentages that start from 0% 
and increase by some increments until they reach 30%. All the percentages are listed in Table 3. 
The 12 benchmark data sets retrieved from the UCI databases are listed in Table 4, which also 
shows the number of labels, the number of samples, the number of features per sample, and the 
number of folds into which we divide the samples during cross validation. 
 

 Assumed Distance  
GCNN Euclidean 
f-LAPL Euclidean 
c-KAPL RBF 
f-KAPL RBF 

Table 1.  The four types of APL studied in our experiments. 

 Values GCNN f-LAPL c-KAPL f-KAPL 
f 0., .1, .25, .5, .75, 1.  √ √ √ 
ρ  0., .1, .25, .5, .75, .99 √ √ √ √ 
m 1.05, 1.1, 1.2, 1.3, 1.4  √  √ 
γ  a×10-b; a = 1, 2, ..., 9; b = 4, 5, ..., 7   √ √ 

Table 2.  Parameters: their value range, and the types of APL that involve them; “√” indicates 
that the parameter is used in that type of APL. The parameters f and ρ  appear in (2), 
(5), (C1), (C2), and (C3); m appears in (7); and γ  appears in (15). 

Values of e 
0%, 1%, 2%, 3%, 4%, 5%, 7.5%, 10%, 20%

Table 3.  The values of e at which we record ),( Qev . 
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 Number of
Labels 

Number of 
Samples 

Number of  
Features 

Number of  
Folds 

Iris 3 150 4 5 
Wine 3 178 13 5 
Glass 6 214 9 5 

Ionosphere 2 351 34 10 
Cancer 2 683 9 10 

Zoo 7 101 16 5 
Heart 2 270 13 5 
TAE 3 151 5 5 

BUPA Liver Disorders (BLD) 2 345 6 5 
New Thyroid 3 215 5 5 

SPECTF 2 267 44 5 
Ecoli 8 336 7 5 

Table 4.  Information contained in the 12 data sets. 

In Table 5, we show three performance measures of the four APLs, namely, the accuracy rate, 
the training time, and the condensation ratio. Given that K-fold cross-validation is conducted, the 
accuracy rate (AR) is the average accuracy over all validation data sets, each of which is one of 
the K folds; the training time (TT) is the sum of the training times of all training data sets, each of 
which consists of K-1 folds; and the condensation ratio (CR) is the average prototype-to-sample 
ratios obtained from all training data. Note that for most types of APL, we drop the decimal parts 
of their training times, since they are relatively insignificant to the integer parts. At the bottom of 
Table 5, we also show the average of the three measures over the 12 data sets. The boldface 
figures indicate that the performance of the corresponding method is the best of all the methods 
applied to the given data set. 

The averaged figures in Table 5 show that, in terms of training time, the four APLs are 
ranked in the following order: GCNN, f-LAPL, c-KAPL, and f-KAPL. The number of all possible 
combinations of parameter values is the major factor that affects the amount of training time. If 
we divide the total training time by the above number, then the temporal differences among the 
four algorithms are reduced drastically, as shown in Table 6. Since APL training under different 
combinations of parameter values is conducted independently, some fashion of parallel 
computing, such as cluster computing or grid computing, would help reduce the training time. 

GCNN requires the least amount of training time because it picks samples as prototypes, 
thereby avoiding the rather costly computation of clustering. The c-KAPL and f-KAPL 
algorithms, on the other hand, employ kernelized versions of KM and FCM respectively, which 
are relatively slow. In terms of accuracy, the order of the four APLs is exactly the opposite of that 
for the training time. 
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DATA SET GCNN f-LAPL c-KAPL f-KAPL 
AR 96.62 97.95 98.63 98.40 
TT 0.8 30 16,225 81,334 Iris 
CR 9.6 10.33 54.00 5.83 
AR 98.06 99.02 99.02 99.56 
TT 1 144 24,378 175,647 Wine 
CR 21.7 18.40 20.22 92.98 
AR 69.39 71.26 72.23 72.73 
TT 1.37 314 18,906 108,891 Glass 
CR 48.5 35.98 44.98 22.90 
AR 89.07 91.46 95.88 95.87 
TT 9.45 8,010 399,693 3,078,420 Ionosphere 
CR 17.5 5.63 4.56 6.05 
AR 97.5 97.79 97.50 97.79 
TT 3.34 2,301 496,817 5,265,013 Cancer 
CR 17.9 4.44 12.74 19.70 
AR 97.66 97.66 97.66 97.66 
TT 0.83 11 21,666 135,346 Zoo 
CR 23.2 18.32 22.77 24.50 
AR 85.57 86.90 85.83 86.43 
TT 1.56 1,134 72,925 607,436 Heart Rate 
CR 42.6 21.67 35.83 23.98 
AR 63.21 62.47 65.22 65.61 
TT 0.95 229 18,682 133,157 TAE 
CR 43.2 51.82 45.86 46.85 
AR 65.93 67.34 67.72 70.52 
TT 2.4 3,379 232,211 1,378,124 BLD 
CR 47.9 35.87 74.13 23.33 
AR 97.31 97.76 98.57 99.05 
TT 0.92 135 19,289 134,671 New Thyroid 
CR 8.7 12.79 3.72 10.00 
AR 83.55 85.63 86.13 87.04 
TT 9.1 8,820 167,428 1,363,339 SPECTF 
CR 28.3 30.15 50.37 28.37 
AR 86.44 86.81 86.18 87.06 
TT 1.32 920 35,151 216,235 Ecoli 
CR 24.6 31.85 48.51 27.98 

AR 85.86 86.84 87.55 88.14 
TT 2.3 2,119 126,948 1,056,468 AVERAGE 
CR 27.5 23.10 34.81 27.71 

Table 5.  The performance of the four APLs, where AR = Accuracy Rate (%), TT = Training 
Time (sec), and CR = Condensation Ratio (%). 
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 Number of 
Combinations 

Total 
Training Time 

Training Time 
per Combination 

GCNN 6 2.3 0.38 
f-LAPL 155 2,119 13.67 
c-KAPL 1,116 126,948 113.75 
f-KAPL 5,580 1,056,468 189.33 

Table 6.  The number of all possible combinations of parameter values, the total training time, 
and the training time per combination for the four types of APL. 

 Time to Compute nδ  (sec) GCNN Run Time (sec) Ratio (%) 

Average 0.012 0.38 3.2 

Table 7.  The average amount of time to compute nδ , the average run time of GCNN, and their 
ratio. 

These findings suggest that the high accuracy rates of APLs are derived at the expense of a 
rather high computational cost. Hence, there is a tradeoff between accuracy rates and training 
costs, which allows users to choose the most suitable APL based on the size of their problems, 
their computing resources, and the degree of accuracy they require. There are two reasons for this 
tradeoff. First, the cluster-based approach has higher generalization power than the instance-
based approach, since it picks the weighted averages of samples as prototypes and they are 
relatively immune to noise. Second, the RBF-based approach has higher generalization power 
than the Euclidean-based approach. To understand why this is so, we note that for very small γ , 

the RBF distance between x and y is approximately 2||||2 yx −γ . This means that the RBF 
distance covers the Euclidean distance as a special case, and using the RBF distance may allow us 
to find a better-performing classifier than the one we obtain by using the Euclidean distance. 

Recall that when applying any APL algorithm we must first compute nδ , the minimum 
distance between heterogeneous samples. One may be curious about the ratio of the computing 
time for nδ  to the run time of APL. In fact, the ratio is 3.2% for GCNN (Table 7) and much less 
for the other types of APL. 

The reason for such a small ratio is as follows. If the number of training samples is n, then the 
time complexity of computing nδ  is in the order of n2, while the time complexity of conducting 
APL training is in the order of n3. To confirm the latter fact, we note that APL training takes no 
more than n iterations. Within each iteration, checking the absorption criterion takes no more than 
n2 steps, and clustering takes no more than 30×n2 steps (if cluster-based prototypes are required), 
where 30 is the maximum number of iterations allowed in a clustering algorithm. Furthermore, 
the space complexity of APL training is in the order of n2 at most. 

LAPL and KAPL are associated with parameters f and ρ , which appear in the absorption 
criterion (5) and requirements (C1), (C2), and (C3) (cf. Section 4). We were curious to know how 
the parameters’ values affect the prototypes built in the training process, so we studied the 
training of f-LAPL on the 12 data sets. We assume that all parameters, except f, are fixed at 
certain values. The absorption criterion requires that a training sample should be closer to its 
nearest homogeneous prototype than to its heterogeneous prototype by at least nfρδ . If we raise 
the value of f, we increase the likelihood of a sample becoming unabsorbed so that more 
prototypes would have to be built. This fact is reflected in Table 8, which shows that the average 
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condensation ratio increases as the value of f increases. What happens when we fix the values of 
all parameters except ρ ? By raising the value of ρ , we also make the absorption criterion more 
difficult to satisfy and therefore increase the number of prototypes that need to be built. This fact 
is reflected in Table 9. 

 
f 0.00 0.10 0.25 0.50 0.75 1.00 

Average Condensation Ratio (%) 22.18 23.26 24.56 27.83 30.70 34.92 

Table 8.  Average condensation ratio of f-LAPL over the 12 data sets for various values of f 
when m = 1.1, ρ = 0.5, and e = 0. 

ρ  0.00 0.10 0.25 0.50 0.75 0.99 
Averaged Condensation Ratio (%) 22.25 23.22 24.53 27.83 30.81 34.31 

Table 9.  Average condensation ratio of f-LAPL over the 12 data sets for various values of ρ  
when m = 1.1, f = 0.5, and e = 0. 

7.2 Comparison of GCNN with Some Instance-Based Learning Algorithms 
As noted earlier, GCNN differs from LAPL and KAPL in that it adopts samples as prototypes. It 
is thus one of the methods, called instance-based learning algorithms, which reduce an entire set 
of training samples to a subset, while maintaining as much generalization power as possible. For 
this reason, we compare GCNN with some of the methods that have been proposed in the 
literature.  

Two approaches can be adopted in IBL algorithms. The first is incremental, so it starts with a 
null set and gradually adds samples as prototypes. Both CNN and GCNN are incremental 
algorithms. For comparison purposes, we also include a primitive version of GCNN, called 
pGCNN. It is similar to GCNN, except that the value of parameter f is fixed at 0. Note that 
pGCNN is not the same as CNN. In pGCNN, we select unabsorbed samples through a voting 
procedure (cf. Section 4) and the training error rate e is determined by cross-validation (cf. 
Section 6). In CNN, however, unabsorbed samples are selected randomly and e is fixed at 0. 
The second approach is decremental, so it starts with the entire set of samples and gradually 
removes samples that are considered properly “protected” by the retained ones. For algorithms of 
this type, we include DROP1 to DROP5 (Wilson and Martinez, 2005) and ICF (Brighton and 
Mellish, 2002) for comparison. They differ from each other in the way samples are ordered for 
removal, and in the criterion for removing samples. For further details, readers should refer to the 
cited references. We used the code provided by Wilson and Martinez (2005) for DROP1 to 
DROP5, and implemented our own codes for ICF. 

For all the methods, we apply cross-validation, similar to that used for the APLs, whereby the 
12 data sets are divided into the same number of folds (cf. Table 4). Moreover, in measuring the 
test accuracy, we use the top-k nearest prototypes with k being determined in the cross-validation 
(cf. Section 6). Table 10 shows the performance of all the instance-based methods, with the 
averaged results shown at the bottom of the table. From the latter results, we observe that GCNN 
achieves the best accuracy among all the compared methods. In general, the incremental methods 
have lower training costs than the decremental methods. The only exception is GCNN, which is 
little slower than ICF.  On the other hand, the incremental methods build more prototypes than 
the decremental methods. Among the incremental methods, GCNN achieves a higher accuracy 
rate than the other two methods, at the expense of building more prototypes and a higher training 
cost.   Meanwhile, pGCNN constructs fewer prototypes and has a lower training cost than GCNN,  
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Incremental Methods Decremental Methods DATA SET CNN pGCNN GCNN DROP1 DROP2 DROP3 DROP4 DROP5 ICF 

AR 93.07 96.62 96.62 92.65 95.71 95.23 95.23 95.53 95.04 
TT 0.08 0.11 0.8 0.11 0.19 0.16 0.16 0.14 0.11 Iris 
CR 13.67 10.1 9.6 6.6 9.2 10.5 10.5 8.9 22 
AR 96.02 96.31 98.06 92.97 93.15 93.42 93.42 98.06 92.81 
TT 0.09 0.12 1 0.41 0.41 0.36 0.36 0.56 0.13 Wine 
CR 15.31 10.3 21.7 7.5 12.6 12.1 12.1 8.1 11.1 
AR 65.20 67.54 69.39 59.02 65.83 66.23 67.12 64.19 64.09 
TT 0.11 0.1 1.37 0.38 0.33 0.41 0.39 0.53 0.17 Glass 
CR 50.12 36.5 48.5 20.3 27.1 18.8 24.3 23.5 22.3 
AR 87.76 87.16 89.07 77.13 88.16 86.70 88.06 88.06 81.20 
TT 0.16 0.30 9.45 5.4 6.6 8.18 7.8 13.98 0.48 Ionosphere 
CR 23.01 15 17.5 5.9 10.1 5.3 8.2 9 3.7 
AR 96.47 97.21 97.5 96.32 96.47 96.03 96.47 96.32 96.47 
TT 0.14 0.30 3.34 21.1 34.2 34.8 30.2 21.9 0.67 Cancer 
CR 10.05 7.5 17.9 2.1 5 3 3.7 3.9 2.5 
AR 97.19 96.32 97.66 94.97 93.46 92.53 93.82 90.43 90.59 
TT 0.09 0.14 0.83 0.33 0.28 0.25 0.25 0.28 0.16 Zoo 
CR 15.25 11.6 23.2 14.8 17 18.4 18.8 15 44.3 
AR 83.88 81.95 85.57 77.36 82.10 79.73 80.31 81.09 76.41 
TT 0.11 0.17 1.56 0.89 0.97 1.09 1 1.2 0.14 Heart 
CR 41.11 30 42.6 11 16.1 11.1 12.8 13.5 14.3 
AR 58.16 61.69 63.21 51.08 51.15 51.36 53.63 55.64 52.12 
TT 0.1 0.13 0.95 0.09 0.09 0.11 0.11 0.07 0.11 TAE 
CR 61.26 42.7 43.2 25.6 27.1 23 24.3 28.8 26.6 
AR 65.95 65.41 65.93 57.38 60.34 59.98 62.75 63.92 60.22 
TT 0.15 0.23 2.4 0.56 0.5 0.63 0.55 0.7 0.12 BLD 
CR 58.84 42 47.9 23 29.9 19.3 25.2 23.4 18 
AR 94.89 96.28 97.31 90.83 93.85 95.27 94.42 93.61 93.55 
TT 0.09 0.13 0.92 0.27 0.36 0.33 0.33 0.45 0.14 New  

Thyroid CR 13.14 9.8 8.7 6.2 11.3 7.2 8.4 7.6 8 
AR 79.60 83.55 83.55 77.27 74.99 79.98 74.29 76.13 76.26 
TT 0.17 0.38 9.1 2.59 3.17 3.28 2.9 3.86 0.25 SPECTF 
CR 46.35 20.9 28.3 10 16.5 9.1 11.7 11.7 10.1 
AR 83.97 83.58 86.44 81.22 85.94 83.53 86.64 84.36 83.17 
TT 0.14 0.17 1.32 0.98 0.84 1.44 1.28 1.36 0.25 Ecoli 
CR 36.01 17.5 24.6 9.5 14.6 12.00 12.7 12.2 11.3 
AR 83.51 84.47 85.86 79.02 81.76 81.67 82.18 82.28 80.16 
TT 0.12 0.19 2.3 2.76 4 4.25 3.78 3.75 0.23 AVERAGE 
CR 32.01 21.2 27.5 11.9 16.4 12.5 14.4 13.8 16.2 

Table 10.  The performance of three incremental methods and six decremental methods. 

and yields higher accuracy and generates fewer prototypes than CNN. Both GCNN and pGCNN 
generate fewer prototypes than CNN, because their training error rate e can be non-zero, while it 
is fixed at zero for CNN. 

Since pGCNN is a special case of GCNN with 0=ρ , comparison of their accuracy rates 
offers us an opportunity to examine the sensitivity of GCNN to the parameter values. The 
difference between the average accuracy rates is 1.39%, but for the Ecoli and Heart data sets, the 
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differences increase to 2.86% and 3.62% respectively, showing that the search for the optimal 
parameter values can be very useful. A similar situation is found with other types of APL. 

7.3 Comparison of LAPL and KAPL with k-NN and SVM  
To further evaluate the performance of the four APLs, we run two other alternative learning 
methods: k-NN, and SVM. Once again, for both methods, we apply cross-validation, similar to 
that used for APLs. For SVM, we employ the soft-margin version with the RBF kernel. Recall 
that the RBF function involves a parameter γ . In SVM, the value range of γ  is taken as {a×10-b: 
a = 1, 2, …, 9 and b = 3, 4, …, 6}, which differs from that of KAPL by a factor of 10. Also, since 
the soft-margin version of SVM is used, there is an additional parameter C, which serves as a 
penalty factor for SVM training errors whose value range is taken as {10c: c = -1, 0, …, 5}. We 
use the LIBSVM toolkit (Hsu and Lin, 2002) to train SVM. For k-NN, the optimal value of k is 
determined during cross-validation, in much the same way that we optimize the k nearest 
prototypes for use in the voting procedure to determine the label of a test sample (cf. Section 6). 

One crucial difference between SVM and APL is the way of dealing with multiclass data sets, 
that is, data sets comprised of more than two class types. Since SVM only deals with one binary 
classification at a time, we need to use a decomposition scheme when applying it to multiclass 
data sets. We employ one-against-others (Bottou et al., 1994) in our experiment. In other words, 
if there are m class types in total, we train m SVM classifiers, each of which classifies a sample as 
A or not A, where A is one of the m class types. One-against-one (Knerr et al., 1990; Platt et al., 
2000) is an alternative decomposition scheme that allows us to train m(m-1)/2 classifiers. In our 
experience, the one-against-others scheme usually yields comparable or better accuracy rates than 
the one-against-one approach; however, the training cost is higher. For APLs, on the other hand, 
we construct prototypes for all class types simultaneously. Thus, in our experiments, there is no 
decomposition scheme for APLs.  

The accuracy rates and training times of all the methods are given in Table 11. The boldface 
numbers have the same meaning as before, while the underlined numbers are the accuracy rates 
that are lower than the corresponding SVM results. As usual, we list the averaged results over all 
the 12 data sets at the bottom of the table. From the last results, we observe that all the APLs 
outperform k-NN in terms of accuracy; and GCNN is faster in training than SVM, but it is less 
accurate. The other three APLs incur higher training costs than SVM, but yield higher accuracy 
rates. 

8 Conclusion 
We have proposed a number of adaptive prototype learning algorithms that construct prototypes 
out of training samples. They differ in the use of samples or the weighted averages of samples as 
prototypes, and in the use of the Euclidean distance or a kernel-based distance. The algorithms 
can be further strenghened by allowing a non-zero training error rate, which improves the test 
accuracy. Our experiments, in which four types of APL were applied to 12 benchmark data sets, 
confirm the algorithms’ efficacy in terms of test accuracy compared to many instance-based 
learning algorithms, the k-NN rule, and SVM. 

 
 

 
 
 
 
 



CHANG, LIN AND LU 

 2146 

APL Methods Alternative 
Methods DATA SET 

GCNN f-LAPL c-KAPL f-KAPL k-NN SVM 
AR 96.62 97.95 98.63 98.40 97.03 96.47 Iris 
TT 0.8 30  16,225 81,334  70.52 
AR 98.06 99.02 99.02 99.56 97.64 98.97 

Wine TT 1 144  24,378 175,647  90.88 
AR 69.39 71.26 72.23 72.73 70.40 69.43 Glass TT 1.37 314  18,906 108,891  299.68 
AR 89.07 91.46 95.88 95.87 86.72 95.08 Ionosphere TT 9.45 8,010  399,693 3,078,420  362.20 
AR 97.5 97.79 97.50 97.79 96.91 97.06 Cancer TT 3.34 2,301  496,817 5,265,013  321.92 
AR 97.66 97.66 97.66 97.66 96.55 95.86 Zoo TT 0.83 11  21,666 135,346  153.64 
AR 85.57 86.90 85.83 86.43 83.77 84.83 Heart TT 1.56 1,134  72,925 607,436  130.00 
AR 63.21 62.47 65.22 65.61 57.78 64.23 TAE TT 0.95 229  18,682 133,157  605.24 
AR 65.93 67.34 67.72 70.52 63.90 71.19 BLD TT 2.4 3,379  232,211 1,378,124  1181.68 
AR 97.31 97.76 98.57 99.05 96.31 97.78 New Thyroid TT 0.92 135  19,289 134,671  78.80 
AR 83.55 85.63 86.13 87.04 79.90 81.48 SPECTF TT 9.1 8,820  167,428 1,363,339  143.88 
AR 86.44 86.81 86.18 87.06 87.33 88.13 Ecoli 
TT 1.32 920  35,151 216,235  421.88 
AR 85.86 86.84 87.55 88.14 84.52 86.71 AVERAGE 
TT 2.3 2,119 126,948 1,056,468  321.72 

Table 11. The performance of the four APLs, k-NN and SVM. 
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Abstract
We propose a new scoring function for learning Bayesian networks from data using score+search
algorithms. This is based on the concept of mutual information and exploits some well-known
properties of this measure in a novel way. Essentially, a statistical independence test based on the
chi-square distribution, associated with the mutual information measure, together with a property
of additive decomposition of this measure, are combined in order to measure the degree of inter-
action between each variable and its parent variables in the network. The result is a non-Bayesian
scoring function called MIT (mutual information tests) which belongs to the family of scores based
on information theory. The MIT score also represents a penalization of the Kullback-Leibler di-
vergence between the joint probability distributions associated with a candidate network and with
the available data set. Detailed results of a complete experimental evaluation of the proposed scor-
ing function and its comparison with the well-known K2, BDeu and BIC/MDL scores are also
presented.
Keywords: Bayesian networks, scoring functions, learning, mutual information, conditional in-
dependence tests

1. Introduction

Nowadays, Bayesian networks (Jensen, 1996; Pearl, 1988) constitute a widely accepted formalism
for representing knowledge with uncertainty and efficient reasoning. A Bayesian network comprises
a qualitative and a quantitative component. While the qualitative part represents structural informa-
tion about a problem domain, in the form of causality, relevance or (in)dependence relationships
between variables, the quantitative part (which allows us to introduce uncertainty into the model)
represents probability distributions that quantify these relationships. Once a complete Bayesian net-
work has been built, it is an efficient tool for performing inferences. However, there still remains
the previous problem of building such a network, that is, to provide the graph structure and the
numerical parameters necessary for characterizing it. As it may be difficult and time-consuming to
build Bayesian networks using the method of eliciting opinions from domain experts, and given the
increasing availability of data in many domains, directly learning Bayesian networks from data is
an interesting alternative.

There are many learning algorithms for automatically building Bayesian networks from data.
Although some of these are based on testing conditional independences, in this paper we are more
interested in those algorithms based on the so-called score+search paradigm. These see the learning
task as a combinatorial optimization problem, where a search method operates on a search space
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associated with Bayesian networks, the search being guided by a scoring function that evaluates the
degree of fitness between each element in this space and the available data.

The aim of this work is to define and study a new scoring function to be used by this class
of Bayesian network learning algorithms as a competitive alternative to existing scoring functions
(Bouckaert, 1993, 1995; Buntine, 1991; Chow and Liu, 1968; Cooper and Herskovits, 1992; Fried-
man and Goldszmidt, 1996; Heckerman et al., 1995; Herskovits and Cooper, 1990; Lam and Bac-
chus, 1994; Suzuki, 1993). We also want to empirically evaluate the merits of the new score by
means of a comparative experimental study.

The proposed scoring function is based on the concept of mutual information. This measure has
several interesting properties, the most important for our purposes being the possibility of building a
statistical test of independence based on the chi-square distribution. Mutual information has already
been used either directly or indirectly within Bayesian network learning algorithms based on score
and search (Bouckaert, 1993; Chow and Liu, 1968; Lam and Bacchus, 1994). The associated statis-
tical test has also been used by several learning algorithms based on conditional independence tests
(Acid and de Campos, 2001; Cheng et al., 2002; de Campos and Huete, 2000; Spirtes et al., 1993).
However, what is new is the simultaneous quantification of the results of a set of independence tests
based on mutual information. Basically, we use mutual information in order to measure the degree
of interaction between each variable and its parent variables in the network, but penalizing this value
using a term related to the chi-square distribution. This penalization term takes into account not only
the network complexity but also its reliability. The result will undoubtedly be a scoring function,
but any score+search-based algorithm using it will have some similarities with the learning methods
based on independence tests (although we believe that our scoring function makes better use of the
information provided by the tests than these methods). To a certain extent what we are proposing is
a hybrid algorithm (either an algorithm based on scoring independences and search or an algorithm
based on quantitative conditional independence tests).

Sections 2 and 3 of this paper provide some background about learning Bayesian networks and
types of scoring functions, respectively. Section 4 covers the development of the new scoring func-
tion, which we shall call MIT (mutual information tests). Section 5 carries out an empirical com-
parative study of MIT against several state-of-the-art scoring functions (K2, BDeu and BIC/MDL).
We first define the performance measures to be used and we then describe the corresponding exper-
imental designs and the obtained results. Section 6 contains our conclusions and some proposals for
future research. Finally, Appendix A includes proof of all the theorems set out in the paper.

2. Learning Bayesian Networks

Let us consider a finite set Un = {X1,X2, . . . ,Xn} of discrete random variables.1 A generic variable
of the set Un will be denoted as either Xi or X . The domain of each variable Xi is a finite set Vi =
{xi1, . . . ,xiri}. A generic element of Vi will be denoted as xi. In general, we shall use uppercase letters
to denote variables, lowercase letters to denote states of the variables, and bold-faced letters (either
uppercase or lowercase) to denote sets (of either variables or states of the variables, respectively).

A Bayesian network (BN) is a graphical representation of a joint probability distribution (Pearl,
1988) that includes two components:

1. Although there are also Bayesian networks with continuous variables, here we are only interested in the case where
all the variables are discrete.
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• First, a directed acyclic graph (DAG) G = (Un,EG), where Un, the set of nodes, represents
the system variables,2 and EG, the set of arcs, represents direct dependency relationships
between variables; the absence of arcs linking pairs of variables in turn represents the ex-
istence of conditional independence relationships between these variables. A conditional
independence relationship between two variables Xi and X j, given a subset of variables Z,
denoted as I(Xi,X j|Z), means that given the values of the variables in Z, our degree of be-
lief about the possible values of Xi is not modified once we know the value of variable X j:
p(xi|x j,z) = p(xi|z). Each variable Xi ∈ Un has an associated parent set in the graph G,
PaG(Xi) = {X j ∈ Un | X j→Xi ∈ EG}. If Xi has no parent (it is a root node), then PaG(Xi) = /0.

• The second component is a set of numerical parameters, which usually represent conditional
probability distributions: for each variable Xi in Un, we store a family of conditional distri-
butions p(Xi|paG(Xi)), one for each possible configuration,3 paG(Xi), of the parent set of Xi

in the graph. If Xi has no parent, then p(Xi|paG(Xi)) equals p(Xi). From these conditional
distributions, we can obtain the joint distribution over Un using:

p(x1,x2, . . . ,xn) = ∏
Xi∈Un

p(xi|paG(Xi))

The problem of learning Bayesian networks from data consists in finding the BN that (according
to certain criterion) best fits the available data. This problem has been studied in depth over the last
ten years and consequently, there are currently a considerable number of learning algorithms. As
Bayesian networks have two different components (the graphical and the numerical model), the
algorithms for learning BNs must deal with two different but highly related tasks: learning the
structure (the DAG) and learning the parameters (the conditional probabilities). These two tasks
cannot be carried out completely independently: on the one hand, in order to estimate the conditional
probabilities, we must know the graphical structure; on the other, in order to determine whether the
graph we are trying to find contains certain arcs, we need to estimate certain statistics from the data
which, depending on the kind of learning algorithm being used, will be employed either to carry
out some conditional independence tests or to measure the intensity of the relationships between the
nodes involved in these arcs.

In this paper, we are only interested in algorithms for learning the structure of Bayesian net-
works. As we mentioned previously, most of these algorithms can be grouped into two different
categories: methods based on conditional independence tests (also called constraint-based meth-
ods) and methods based on scoring functions and search, although there are also algorithms that
use a combination of independence-based and scoring-based methods with different hybridization
strategies (Acid and de Campos, 2000, 2001; Dash and Druzdzel, 1999; de Campos et al., 2003;
Singh and Valtorta, 1995; Spirtes and Meek, 1995).

The algorithms based on independence tests (Cheng et al., 2002; de Campos, 1998; de Cam-
pos and Huete, 2000; Meek, 1995; Pearl and Verma, 1991; Spirtes et al., 1993; Verma and Pearl,
1990; Wermuth and Lauritzen, 1983) perform a qualitative study of the dependence and indepen-
dence relationships between the variables in the domain (obtained from the data by means of con-
ditional independence tests), and attempt to find a network that represents these relationships as far
as possible. Two fundamental issues for these algorithms are the number and the complexity of

2. In the same way, we shall represent a variable and its associated node in the graph.
3. A configuration of a set of variables Z is an assignment of values to each of the variables in Z.
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the independence tests, and this can also cause unreliable results. Nevertheless, constraint-based
algorithms generally come with rigorous theoretical founding and have developed a body of work
that details sound and complete methods to make use of independence relations in the data while
correctly accounting for structure.

The algorithms based on a scoring function attempt to find a graph that maximizes the selected
score, which is usually defined as a measure of fitness between the graph and the data. All of them
use the scoring function in combination with a search method in order to measure the goodness of
each explored structure from the space of feasible solutions. Different learning algorithms are ob-
tained depending on the search procedure used, as well as on the definitions of the scoring function
and the search space.

The scoring functions are based on different principles, such as entropy and information (Chow
and Liu, 1968; Herskovits and Cooper, 1990), the minimum description length (Bouckaert, 1993,
1995; Friedman and Goldszmidt, 1996; Lam and Bacchus, 1994; Suzuki, 1993), or Bayesian ap-
proaches (Buntine, 1991; Cooper and Herskovits, 1992; Heckerman et al., 1995; Kayaalp and
Cooper, 2002). The most usual scoring functions will be described later in more detail.

As far as the search is concerned, although the most frequently used are local search methods
(Buntine, 1991; Chickering et al., 1995; Cooper and Herskovits, 1992; de Campos et al., 2003;
Heckerman et al., 1995) due to the exponentially large size of the search space, there is a growing
interest in other heuristic search methods such as simulated annealing (Chickering et al., 1995),
tabu search (Acid and de Campos, 2003; Bouckaert, 1995), branch and bound (Tian, 2000), genetic
algorithms and evolutionary programming (Larrañaga et al., 1996; Myers et al., 1999; Wong et
al., 1999), Markov chain Monte Carlo (Kocka and Castelo, 2001; Myers et al., 1999), variable
neighborhood search (de Campos and Puerta, 2001a), ant colony optimization (de Campos et al.,
2002), greedy randomized adaptive search procedures (GRASP) (de Campos et al., 2002), and
estimation of distribution algorithms (Blanco et al., 2003).

Most learning algorithms employ different search methods but the same search space: the DAG
space. Possible alternatives are the space of the orderings of the variables (de Campos et al., 2002;
de Campos and Huete, 2002; de Campos and Puerta, 2001b; Friedman and Koller, 2003; Larrañaga
et al., 1996), with a secondary search in the DAG space compatible with a given ordering; the space
of essential graphs (Pearl and Verma, 1990) (also called patterns or completed PDAGs), which are
partially directed acyclic graphs4 or PDAGs that canonically represent equivalence classes of DAGs
(Andersson et al., 1997; Chickering, 2002; Dash and Druzdzel, 1999; Madigan et al., 1996; Spirtes
and Meek, 1995); and the space of RPDAGs (restricted PDAGs), which also represent equivalence
classes of DAGs (Acid and de Campos, 2003; Acid et al., 2005).

3. Scoring Functions for Learning Bayesian Networks

Focusing on the methods for learning Bayesian networks based on the score+search paradigm, the
problem can be formally expressed as follows: given a complete5 training data set D = {u1, . . . ,uN}
of instances of Un, find a DAG G∗ such that

G∗ = arg max
G∈Gn

g(G : D),

4. Containing both directed (arcs) and undirected (links) edges.
5. We consider neither missing values nor latent variables.
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where g(G : D) is the scoring function measuring the degree of fitness of any candidate DAG G to
the data set, and Gn is the family of all the DAGs defined on Un.

The learning algorithms that search in the DAG space with local search-based methods can be
more efficient if the scoring function being used has the property of decomposability: a scoring
function g is decomposable if the value assigned to each structure can be expressed as a sum (in the
logarithmic space) of local values that depend only on each node and its parents:

g(G : D) = ∑
Xi∈Un

g(Xi,PaG(Xi) : D)

g(Xi,PaG(Xi) : D) = g(Xi,PaG(Xi) : ND
Xi,PaG(Xi)

),

where ND
Xi,PaG(Xi)

are the sufficient statistics of the set of variables {Xi}∪PaG(Xi) in D, that is, the
number of instances in D corresponding to each possible configuration of {Xi}∪PaG(Xi).

For example, a search procedure that only changes one arc at each move can efficiently evaluate
the improvement obtained by this change. It can reuse most of the previous computations and
only the statistics for the variables whose parent sets have been modified must be recomputed. In
this way, the insertion or deletion of an arc X j → Xi in a DAG G can be evaluated by computing
only one new local score, g(Xi,PaG(Xi)∪{X j} : D) or g(Xi,PaG(Xi) \ {X j} : D), respectively; the
reversal of an arc X j → Xi requires the evaluation of two new local scores, g(Xi,PaG(Xi)\{X j} : D)
and g(X j,PaG(X j)∪{Xi} : D).

Another property which is particularly interesting if the learning algorithm searches in a space
of equivalence classes of DAGs is called the score equivalence: a scoring function g is score-
equivalent if it assigns the same value to all DAGs that are represented by the same essential graph.
In this way, the result of evaluating an equivalence class will be the same regardless of which DAG
from this class is selected.

There are different ways to measure the degree of fitness of a DAG with respect to a data set.
Most can be grouped into two categories: Bayesian and information measures. We shall use the
following notation: the number of states of the variable Xi is ri; the number of possible configura-
tions of the parent set PaG(Xi) of Xi is qi; obviously, qi = ∏X j∈PaG(Xi) r j; wi j, j = 1, . . .qi, represents
a configuration of PaG(Xi); Ni jk is the number of instances in the data set D where the variable
Xi takes the value xik and the set of variables PaG(Xi) take the value wi j; Ni j is the number of in-
stances in the data set where the variables in PaG(Xi) take their j-th configuration wi j; obviously
Ni j = ∑ri

k=1 Ni jk; similarly, Nik is the number of instances in D where the variable Xi takes its k-th
value xik, and therefore Nik = ∑qi

j=1 Ni jk; the total number of instances in D is N.

3.1 Bayesian Scoring Functions

Starting from a prior probability distribution on the possible networks, the general idea is to compute
the posterior probability distribution conditioned to the available data D, p(G|D). The best network
is the one that maximizes the posterior probability. It is not in fact necessary to compute p(G|D)
and for comparative purposes, computing p(G,D) is sufficient since the term p(D) is the same for
all the possible networks. As it is easier to work in the logarithmic space, in practice, the scoring
functions use the value log(p(G,D)) instead of p(G,D).

One of the first Bayesian scoring functions, called K2, was proposed by Cooper and Herskovits
(1992). It relies on several assumptions (multinomiality, lack of missing values, parameter inde-
pendence, parameter modularity, uniformity of the prior distribution of the parameters given the
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network structure), and can be expressed as follows:

gK2(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

(ri −1)!
(Ni j + ri −1)!

)

+
ri

∑
k=1

log
(

Ni jk!
)

]]

, (1)

where p(G) represents the prior probability of the DAG G. Afterwards, the so-called BD (Bayesian
Dirichlet) score was proposed by Heckerman et al. (1995) as a generalization of K2:

gBD(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

Γ(ηi j)

Γ(Ni j +ηi j)

)

+
ri

∑
k=1

log

(

Γ(Ni jk +ηi jk)

Γ(ηi jk)

)

]]

, (2)

where the values ηi jk are the hyperparameters for the Dirichlet prior distributions of the parameters
given the network structure, and ηi j = ∑ri

k=1 ηi jk. Γ(.) is the function Gamma, Γ(c) =
R ∞

0 e−uuc−1du.
It should be noted that if c is an integer, Γ(c) = (c−1)!. If the values of all the hyperparameters are
ηi jk = 1, we obtain the K2 score as a particular case of BD.

In practical terms, the specification of the hyperparameters ηi jk is quite difficult (except if we
use non-informative assignments, as the ones employed by K2). However, by considering the ad-
ditional assumption of likelihood equivalence (Heckerman et al., 1995), it is possible to specify the
hyperparameters relatively easily. While the result is a scoring function called BDe (and its expres-
sion is identical to the BD one in Equation 2), the hyperparameters can now be computed in the
following way:

ηi jk = η× p(xik,wi j|G0),

where p(.|G0) represents a probability distribution associated with a prior Bayesian network G0 and
η is a parameter representing the equivalent sample size.

A particular case of BDe which is especially interesting appears when p(xik,wi j|G0) = 1
riqi

, that
is, the prior network assigns a uniform probability to each configuration of {Xi}∪PaG(Xi). The
resulting score is called BDeu, which was originally proposed by Buntine (1991). This score only
depends on one parameter, the equivalent sample size η, and is expressed as follows:

gBDeu(G : D) = log(p(G))+
n

∑
i=1

[

qi

∑
j=1

[

log

(

Γ( η
qi

)

Γ(Ni j +
η
qi

)

)

+
ri

∑
k=1

log

(

Γ(Ni jk + η
riqi

)

Γ( η
riqi

)

)]]

. (3)

Regarding the term log(p(G)) which appears in all the previous expressions, it is quite common to
assume a uniform distribution (except if we really have information about the greater desirability of
certain structures) so that it becomes a constant and can be removed.

3.2 Scoring Functions based on Information Theory

These scoring functions represent another option for measuring the degree of fitness of a DAG
to a data set and are based on codification and information theory concepts. Coding attempts to
reduce as much as possible the number of elements which are necessary to represent a message
(depending on its probability). Frequent messages will therefore have shorter codes whereas larger
codes will be assigned to the less frequent messages. The minimum description length principle
(MDL) selects the coding that requires minimum length to represent the messages. Another more
general formulation of the same idea establishes that in order to represent a data set with one model
from a specific type, the best model is the one that minimizes the sum of the description length
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of the model and the description length of the data given the model. Complex models usually
require greater description lengths but reduce the description length of the data given the model
(they are more accurate). On the other hand, simple models require shorter description lengths
but the description length of the data given the model increases. The minimum description length
principle establishes an appropriate trade-off between complexity and precision.

In our case, the data set to be represented is D and the selected class of models are Bayesian
networks. Therefore, the description length includes the length required to represent the network
plus the length necessary to represent the data given the network (Bouckaert, 1993, 1995; Friedman
and Goldszmidt, 1996; Lam and Bacchus, 1994; Suzuki, 1993). In order to represent the network,
we must store its probability values, and this requires a length which is proportional to the number
of free parameters of the factorized joint probability distribution.6 This number, called network
complexity and denoted as C(G), is:

C(G) =
n

∑
i=1

(ri −1)qi.

The usual proportionality factor is 1
2 log(N) (Rissanen, 1986). Therefore, the description length of

the network is:
1
2

C(G) log(N).

Regarding the description of the data given the model, by using Huffmann codes its length turns out
to be the negative of the log-likelihood, that is, the logarithm of the likelihood function of the data
with respect to the network. This value is minimum for a fixed network structure when the network
parameters are estimated from the data set itself by using maximum likelihood. The log-likelihood
can be expressed in the following way (Bouckaert, 1995):

LLD(G) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

. (4)

Therefore, the MDL scoring function (by changing the signs to deal with a maximization problem)
is:

gMDL(G : D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

−
1
2

C(G) log(N). (5)

Another way of measuring the quality of a Bayesian network is to use measures based on in-
formation theory and some of these are closely related with the previous one. The basic idea is to
select the network structure that best fits the data, penalized by the number of parameters which are
necessary to specify the joint distribution. This leads to a generalization of the scoring function in
Equation 5:

g(G : D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

Ni jk

Ni j

)

−C(G) f (N), (6)

where f (N) is a non-negative penalization function. If f (N) = 1, the score is based on the Akaike
information criterion (AIC) (Akaike, 1974). If f (N) = 1

2 log(N), then the score, called BIC, is

6. There are other versions (Lam and Bacchus, 1994) that also include the description length of the graph itself, which is
proportional to the sum of the number of parents for each node, ∑n

i=1 |PaG(Xi)|. However, the most usual formulation
does not consider it.

2155



DE CAMPOS

based on the Schwarz information criterion (Schwarz, 1978), which coincides with the MDL score.
If f (N) = 0, we have the maximum likelihood score, although this is not very useful as the best
network using this criterion is always a complete network which includes all the possible arcs.

It is interesting to note that another way of expressing the log-likelihood in Equation 4 is:

LLD(G) = −N
n

∑
i=1

HD(Xi|PaG(Xi)), (7)

where HD(Xi|PaG(Xi)) represents the conditional entropy of the variable Xi given its parent set
PaG(Xi), for the probability distribution pD:

HD(Xi|PaG(Xi)) =
qi

∑
j=1

pD(wi j)

(

−
ri

∑
k=1

pD(xik|wi j) log(pD(xik|wi j))

)

,

and pD is the joint probability distribution associated with the data set D, obtained from the data
by maximum likelihood. The log-likelihood LLD(G) can also be expressed as follows (Bouckaert,
1995):

LLD(G) = −NHD(G),

where HD(G) represents the entropy of the joint probability distribution associated with the graph
G when the network parameters are estimated from D by maximum likelihood:

HD(G) = − ∑
x1,...,xn

((

n

∏
i=1

pD(xi|paG(Xi))

)

log

(

n

∏
i=1

pD(xi|paG(Xi))

))

.

Therefore, another interpretation of the scoring functions based on information is that they attempt
to minimize the conditional entropy of each variable given its parents, and so they search for the par-
ent set of each variable that gives as much information as possible about this variable (or which most
restricts the distribution). It is necessary to add a penalization term since the minimum conditional
entropy is always obtained after adding all the possible variables to the parent set.

An alternative way to avoid this overfitting without using a penalization function was proposed
by Herskovits and Cooper (1990) who used the maximum likelihood score, but the process of insert-
ing arcs into the network was stopped by means of a statistical test, which determined whether the
difference in entropy between the current network and the one obtained by including an additional
arc was statistically significant.

With respect to the characteristics of the different scoring functions, all are decomposable and
with the exception of K2 and BD, they are also score-equivalent (Chickering, 1995).

4. A New Scoring Function based on Mutual Information and Independence Tests

In order to explain the ideas behind the proposed scoring function more clearly, we shall first intro-
duce several preliminary considerations. These will lead to a first version of the scoring function,
which will be later refined in order to obtain the final version.

4.1 Preliminary Considerations

Our goal is to design a scoring function in such a way that the value g(G : D) represents a measure
of the distance between the joint probability distribution associated with the DAG G, pG, and the

2156



SCORING BAYESIAN NETWORKS USING MUTUAL INFORMATION AND INDEPENDENCE TESTS

joint probability distribution associated with the data, pD. We should mention that pG must be
understood to be the joint probability distribution that factorizes according to G and whose local
conditional probability distributions are estimated from D by means of maximum likelihood, that
is,

pG(x1, . . . ,xn) =
n

∏
i=1

pD(xi|paG(Xi)).

A reasonable choice for the distance measure is the Kullback-Leibler divergence (Kullback, 1968):

KL(pD, pG) = ∑
x1,...,xn

pD(x1, . . . ,xn) log

(

pD(x1, . . . ,xn)

pG(x1, . . . ,xn)

)

.

This distance can also be expressed in another more convenient way:

KL(pD, pG) = −HD({X1, . . . ,Xn})+
n

∑
i=1

PaG(Xi)= /0

HD(Xi)

+
n

∑
i=1

PaG(Xi)6= /0

(

HD({Xi}∪PaG(Xi))−HD(PaG(Xi))
)

, (8)

where HD(X) represents the entropy of the set of variables X with respect to the distribution pD.
We shall now consider the concept of mutual information. Given a probability distribution p

defined over two sets of variables X and Y, the mutual information between X and Y is:

MI(X,Y) = ∑
x,y

p(x,y) log

(

p(x,y)

p(x)p(y)

)

,

which can also be expressed in terms of entropy as:

MI(X,Y) = H(X)+H(Y)−H(X∪Y). (9)

Mutual information (which is simply the Kullback-Leibler divergence between the joint distribution
for X and Y and the product of the corresponding marginals) can be considered as a way of mea-
suring the dependence degree between the sets of variables X and Y, which is null when the two
sets of variables are independent and maximum when they are functionally dependent. By using
Equation 9, we can rewrite Equation 8 as follows (Lam and Bacchus, 1994):

KL(pD, pG) = −HD({X1, . . . ,Xn})+
n

∑
i=1

HD(Xi)−
n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)). (10)

As the two first terms in Equation 10 do not depend on the DAG G being considered, we obtain:

arg min
G∈Gn

KL(pD, pG) = arg max
G∈Gn

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)), (11)

and therefore minimizing the Kullback-Leibler divergence is equivalent to maximizing the sum of
the measures of mutual information between each variable and its parent variables in the graph.
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We have still not achieved anything useful, however, since mutual information has the property
that MI(X,Y∪W) ≥ MI(X,Y), in other words, mutual information always increases by including
additional variables. Therefore, the complete network will always have minimum Kullback-Leibler
divergence with respect to the data. In fact, by taking into account Equation 7 and the relation
between mutual information and conditional entropy, namely MI(X,Y) = H(X)−H(X|Y), we can
write:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
LLD(G)

N
+

n

∑
i=1

HD(Xi). (12)

Therefore, minimizing the Kullback-Leibler divergence is also equivalent to maximizing
log-likelihood. The following expression is equivalent to the previous one:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
1
N

n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(

N Ni jk

NikNi j

)

.

However, there are certain advantages to using mutual information instead of log-likelihood as we
shall see later. First, let us consider the concept of conditional mutual information between X and
Y given a set of variables Z, defined as:

MI(X,Y|Z) = ∑
z

(

p(z)∑
x,y

p(x,y|z) log

(

p(x,y|z)
p(x|z)p(y|z)

)

)

,

which can be expressed by MI(X,Y|Z) = H(X|Z)−H(X|Y∪Z), and also by:

MI(X,Y|Z) = H(X∪Z)+H(Y∪Z)−H(Z)−H(X∪Y∪Z).

The following property7 of conditional mutual information is important for our purposes:

MI(X,Y∪W|Z) = MI(X,Y|Z)+MI(X,W|Z∪Y). (13)

Another fundamental property of mutual information is:

Theorem 1 (Kullback, 1968) Given a data set D with N elements, if the hypothesis that X and Y
are conditionally independent given Z is true, then the statistics 2N MID(X,Y|Z) approximates to a
distribution χ2(l) (Chi-square) with l = (rX−1)(rY−1)rZ degrees of freedom, where rX, rY and rZ

represent the number of configurations for the sets of variables X, Y and Z, respectively. If Z = /0,
the statistics 2N MID(X,Y) approximates to a distribution χ2(l) with l = (rX − 1)(rY − 1) degrees
of freedom.

4.2 Developing a New Scoring Function

The basic idea underlying the new scoring function that we shall propose is very simple: to use the
mutual information MID(Xi,PaG(Xi)) in order to measure the degree of interaction between each
variable Xi and its parents PaG(Xi), as in Equation 11, but penalizing this value using a term related

7. It should be noted that this property is a numeric version of the properties of decomposition, weak union and con-
traction of the probabilistic independence relationships and other dependence models (Pearl, 1988). These three
properties, together with symmetry, characterize the dependence models called semi-graphoids.
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to the χ2 distribution. This term attempts to re-scale the mutual information values in order to
prevent these values from systematically increasing as the number of variables in PaG(Xi) does.

In our opinion, one problem with the scoring functions based on information (Equation 6) is that
they penalize log-likelihood globally, with a combination of the network complexity and a function
that depends only on the number of instances. Since we believe that as the log-likelihood can be
decomposed as a sum of components (each being associated with a variable and its parents), then
each of these components should be penalized differently, depending not only on its complexity but
also on its reliability. For example, a DAG where a variable Xi has many parents is always penalized
in the same way, without taking into account to what extent this topology is actually necessary to
adequately and reliably represent the distribution for Xi. The scoring function that we shall propose
naturally incorporates this kind of penalization, and is based on solid statistical grounds.

Given a DAG G, let us consider the mutual information between a variable Xi and its parents,
MID(Xi,PaG(Xi)). Let si be the number of parent variables8 of Xi, si = |PaG(Xi)|. Let us assume that
PaG(Xi) = {Xi1, . . . ,Xisi}. By iteratively applying Equation 13, we can express MID(Xi,PaG(Xi)) as:

MID(Xi,PaG(Xi)) = MID(Xi,{Xi1, . . . ,Xisi})

= MID(Xi,{Xi1, . . . ,Xi(si−1)})+MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)})

= MID(Xi,{Xi1, . . . ,Xi(si−2)})+MID(Xi,Xi(si−1)|{Xi1, . . . ,Xi(si−2)})+

MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)}) = . . . . . .

= MID(Xi,Xi1)+
si

∑
j=2

MID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)}). (14)

The elements in this decomposition of the mutual information will be interpreted as follows: start-
ing with an empty set of parents of Xi, we have first included the arc Xi1 → Xi, and the degree of
dependence between these variables is MID(Xi,Xi1). We then insert the arc Xi2 → Xi and as Xi1 is
already a parent of Xi, the dependence degree between Xi2 and Xi is MID(Xi,Xi2|Xi1). We continue
inserting arcs in this way until the last one Xisi → Xi (with a dependence degree between Xisi and Xi

equal to MID(Xi,Xisi |{Xi1, . . . ,Xi(si−1)})) has been included. If we do not insert any additional arcs,
this is because each remaining variable Xh does not contribute any additional information9 with re-
spect to Xi, this information being measured as MID(Xi,Xh|{Xi1, . . . ,Xisi}). The key question is how
to determine whether the values of mutual information represent an appreciable (i.e., statistically
significant) amount of information. At this point, we can use the result in Theorem 1.

We know that 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)}) approximates to a distribution χ2(li j), with the
appropriate degrees of freedom li j. Let us fix a confidence level α and determine the value χα,li j such
that p(χ2(li j)≤ χα,li j) = α. This does in fact represent a statistical test of conditional independence:
if 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})≤ χα,li j , then we accept the hypothesis of independence between
Xi and Xi j given {Xi1, . . . ,Xi( j−1)} (with probability α); otherwise we reject it.

The use of this kind of independence test within BN learning algorithms is quite frequent (Acid
and de Campos, 2001; de Campos and Huete, 2000; Spirtes et al., 1993). It has also been used by
algorithms based on score+search to stop the search process (Acid and de Campos, 2000; Herskovits
and Cooper, 1990). The problem with an independence test is that it only asserts whether the

8. si should not be confused with qi, which represents the number of configurations of these variables.
9. There may obviously be some variables that cannot be included as parents of Xi since they would create directed

cycles in the graph.
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variables are independent or not, rather than quantifying the extent to which they are. For example,
if an algorithm is trying to decide which of the two variables X j and Xk to exclude from the parent
set of another variable Xi, if both variables turn out to be dependent on Xi (given its current parent
set), the test is not able to discriminate between them, although it may be possible for one variable
to be more closely dependent on Xi than the other.

Our proposal is to quantify the result of the independence test to build the scoring function. The
difference 2NMID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})−χα,li j gives us a measure of the degree of interest for
adding the variable Xi j to the current parent set of Xi: if the difference is negative (the test would
say that Xi and Xi j are independent), the score will decrease, and the more clearly independent the
variables are, the more it will decrease; when the difference is positive (the test would assert that
these two variables are dependent), the score will increase, and the more dependent Xi and Xi j are,
the more it will increase.

Therefore, a measure of the global quality of the set PaG(Xi) as the parent set of variable Xi is:

g(Xi,PaG(Xi) : D) =
si

∑
j=2

(

2N MID(Xi,Xi j|{Xi1, . . . ,Xi( j−1)})−χα,li j

)

+2N MID(Xi,Xi1)−χα,li1 , (15)

where χα,li j is the value such that p(χ2(li j) ≤ χα,li j) = α, and the number of degrees of freedom is:

li j =

{

(ri −1)(ri j −1)∏ j−1
k=1 rik j = 2, . . . ,si

(ri −1)(ri1 −1) j = 1 .
(16)

The expression in Equation 15 is then a global quantification of a series of si simultaneous condi-
tional independence tests, and by virtue of the decomposition of mutual information in Equation 14,
it is equivalent to:

g(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−
si

∑
j=1

χα,li j . (17)

The scoring function would therefore be defined according to Equation 11 as:

g(G : D) =
n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−
si

∑
j=1

χα,li j

)

. (18)

It should be noted that although the value of mutual information will increase after new variables
are added to the parent set, the penalization component (which contains one term for each parent
variable) will also increase. In this way, we are able to appropriately re-scale the mutual information
measure.

The value of α, which represents the confidence level associated with the statistical test, is a
free parameter that may be fixed to any standard value (for example 0.90, 0.95 or 0.99). However,
since we are in fact performing several simultaneous tests (as many as the number of variables in
PaG(Xi)), and also taking into account the Bonferroni inequality,10 in order for the global confidence
level to be acceptable (that is to say, a reasonably high value of p(∩si

j=1(χ2(li j) ≤ χα,li j))), it will be
necessary for α to be greater than the standard values used when performing a single test.

10. p(∩n
i=1Ai) ≥ 1−∑n

i=1

(

1− p(Ai)
)

, where Ai represent any events.
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In order to accurately compute the values χα,l , we can use a standard method which is based
on the algorithm proposed by Hill and Pike (1965, 1985) to compute the chi-squared integral (i.e.,
the probability p(χ2(l) > x)) in combination with a simple bisection search. Alternatively, if speed
is more important than great accuracy, as the χ2(l) distribution can be approximated by several
transformations of the standardized normal distribution N(0,1) for large degrees of freedom (Evans
et al., 1993), we can use tabulated exact values for l ≤ 100 and the Wilson-Hilferty approximation
(which is quite accurate) for l > 100:

χ2(l) ≈ l
[

1−
2
9l

+

√

2
9l

N(0,1)
]3

.

4.3 The MIT Score

Throughout the previous discussion, we have omitted one very important detail: the decomposi-
tion of mutual information that we have used (Equation 14) is not unique and we can decompose
MID(Xi,PaG(Xi)) in many other ways - as many as the number of possible orderings of the variables
in PaG(Xi), that is, si!. Each corresponds to a different way of including the variables in the parent
set of Xi one at a time. The ordering does not affect the value MID(Xi,PaG(Xi)), but it can affect the
penalization component (this will be the case whenever the number of states rik of all the variables
is not the same). By way of example, let us assume that PaG(Xi) = {X1,X2,X3}. The six possible
decompositions of MID(Xi,{X1,X2,X3}) are:

MID(Xi,X1)+MID(Xi,X2|X1)+MID(Xi,X3|{X1,X2})

MID(Xi,X1)+MID(Xi,X3|X1)+MID(Xi,X2|{X1,X3})

MID(Xi,X2)+MID(Xi,X1|X2)+MID(Xi,X3|{X1,X2})

MID(Xi,X2)+MID(Xi,X3|X2)+MID(Xi,X1|{X2,X3})

MID(Xi,X3)+MID(Xi,X1|X3)+MID(Xi,X2|{X1,X3})

MID(Xi,X3)+MID(Xi,X2|X3)+MID(Xi,X1|{X2,X3}).

Let us suppose that the number of states of the variables Xi, X1, X2 and X3 is ri = 3, r1 = 2, r2 = 3
and r3 = 4. The penalization component in Equation 17 for each of the six previous decompositions
is therefore:

χα,2 +χα,8 +χα,36 = 107.93

χα,2 +χα,12 +χα,32 = 109.21

χα,4 +χα,6 +χα,36 = 108.91

χα,4 +χα,18 +χα,24 = 111.96

χα,6 +χα,8 +χα,32 = 111.07

χα,6 +χα,16 +χα,24 = 112.89.

The numerical values in these expressions are computed for the parameter α = 0.999. It should
be noted that the total number ∑si

j=1 li j of degrees of freedom is always the same, 46 in this case,
which would correspond to the degrees of freedom of a marginal independence test between Xi

and PaG(Xi); such a test would use (ri − 1)(∏si
j=1 ri j − 1) degrees of freedom11 (the value of χα,46

11. Observe that ∑si
j=1 li j = ∑si

j=1

(

(ri −1)(ri j −1)∏ j−1
k=1 rik

)

= (ri −1)(∏si
j=1 ri j −1).
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in the example is 81.40). In any case, the values are different since the chi-square distribution
is not additive with respect to the number of degrees of freedom.12 Therefore, depending on the
selected ordering, the score in Equation 17 will be different. This is undesirable since the same DAG
(depending on the path that the search process follows to reach it) would be evaluated differently.
In order to solve this problem, we believe that the best we can do is to use the most conservative
option, that is, to use the greatest of all these values so as to evaluate each parent set in the worst
possible way.

In order to formalize this idea, let σi = (σi(1), . . . ,σi(si)) denote any permutation of the index
set (1, . . . ,si) of the variables in PaG(Xi) = {Xi1, . . . ,Xisi}, and let us define:

liσi( j) =

{

(ri −1)(riσi( j)−1)∏ j−1
k=1 riσi(k) j = 2 . . . ,si

(ri −1)(riσi(1)−1) j = 1 .
(19)

Then, instead of using Equation 17, the global quality measure of the set PaG(Xi) that we propose
is:

g(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−max
σi

si

∑
j=1

χα,liσi( j)
.

The final expression of the proposed scoring function, which we shall call MIT (from mutual infor-
mation tests), is:

gMIT (G : D) =
n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−max
σi

si

∑
j=1

χα,liσi( j)

)

. (20)

Computing each penalization component maxσi ∑si
j=1 χα,liσi( j)

in the previous expression might seem
to be a very time-consuming task since it would be necessary to evaluate all the si! possible permu-
tations of the variables in the set PaG(Xi) in order to calculate the maximum. Fortunately, this will
not be necessary as this maximum can be obtained in a much simpler way:

Theorem 2 For the values liσi( j) defined in Equation 19,

max
σi

si

∑
j=1

χα,liσi( j)
=

si

∑
j=1

χα,liσ∗i ( j)
,

where σ∗
i is any permutation of PaG(Xi) satisfying riσ∗

i (1) ≥ riσ∗
i (2) ≥ . . . ≥ riσ∗

i (si), whenever the
function fi,α : N si −→ R , defined as fi,α(l1, . . . , lsi) = ∑si

j=1 χα,l j , is a Shur-concave function.

This result says that the permutation that produces the maximum penalization value is the one where
the first variable has the greatest number of states, the second variable has the second largest number
of states, and so on. In the previously considered example, this permutation is {X3,X2,X1}, and this
reaches a maximum value equal to 112.89.

Conjecture 3 The function fi,α defined in Theorem 2 is Shur-concave, whenever α ≥ 0.59.

12. With the exception of a sum of independent chi-square distributions, which obviously is not the case.
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The combination of theoretical and empirical arguments that support this conjecture is included
in the Appendix. The restriction concerning α does not represent any practical problem since we
shall always use values of α which are much greater than 0.59.

Another way of measuring the quality of a set of variables Z as the parent set of Xi, which as
it turns out is equivalent to the previous one, is as follows: we can consider that Z will be a good
parent set if it continues to be a good parent set when one of its variables is removed, Z\{Y}, and
also the variable Y that we have removed should not have been removed, that is, Y is not independent
of Xi given Z\{Y}. As we can do this for each variable in Z, the final value should be the smallest
one (we are again using a conservative or pessimistic view). This leads to a recursive definition
of g(Xi,PaG(Xi) : D). The way of measuring the degree of undesirability of removing the variable
Y from Z is to use the difference between the mutual information statistic 2N MID(Xi,Y |Z \ {Y})
and the chi-square value χα,l with the appropriate degrees of freedom. In this way, if Y is truly
independent on Xi given Z \ {Y}, then this difference will be negative and in this case we would
prefer to use Z \ {Y} instead of Z as the parent set of Xi. If, on the contrary, the difference is
positive, the set Z will be preferable to Z\{Y}.

We can therefore recursively define the score gr(Xi,PaG(Xi) : D) in the following way:

gr(Xi,PaG(Xi) : D) = min
Xi j∈PaG(Xi)

{

gr(Xi,PaG(Xi)\{Xi j} : D)+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

, (21)

where χα,lr
i j

is the value such that p(χ2(lr
i j) ≤ χα,lr

i j
) = α and the number of degrees of freedom is

lr
i j = (ri − 1)(ri j − 1)∏si

k=1
k 6= j

rik. The starting point of this recursive definition is obviously gr(Xi, /0 :

D) = 0. We can prove the following result:

Theorem 4 The MIT scoring function defined in Equation 20 can also be expressed as:

gMIT (G : D) =
n

∑
i=1

PaG(Xi)6= /0

gr(Xi,PaG(Xi) : D),

where gr(Xi,PaG(Xi) : D) are the local scores defined in Equation 21.

Let us study some of the properties of the MIT score.

Theorem 5 The MIT scoring function defined in Equation 20 is decomposable.

Unfortunately, MIT is not score-equivalent. Let us consider the following example: for the two
DAGs G1 and G2 in Figure 1 and which are equivalent, let us suppose that the number of states of
each variable is: r1 = 5, r2 = 4, r3 = 3, r4 = 2. Therefore:

g(G1 : D) = 2N(MID(X1,{X2,X3})+MID(X2,X3)+MID(X3,X4))

−(χα,12 +χα,32 +χα,6 +χα,2)

g(G2 : D) = 2N(MID(X2,{X1,X3})+MID(X3,X1)+MID(X4,X3))

−(χα,12 +χα,30 +χα,8 +χα,2).

Although it seems that the part corresponding to mutual information is different in both cases,
it is in fact not. It is sufficient to take into account Equation 12 and remember that the maximum
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Figure 1: Two equivalent DAGs with different values of the MIT score

likelihood score is score-equivalent. The problem appears with the penalization by means of the
sum of chi-square values: if the variables have a different number of states (as in this case), the
results are different. More specifically, the penalization component is 131.67 for G1 but 132.55 for
G2 (assuming that α = 0.999).

The MIT score, however, satisfies a less demanding property than score-equivalence, and this
concerns another type of space of equivalent DAGs, namely RPDAGs (Acid and de Campos, 2003).
They are PDAGs which represent sets of equivalent DAGs, although they are not a canonical rep-
resentation of equivalence classes of DAGs (two different RPDAGs may correspond to the same
equivalence class). Let us introduce some additional notation and then the concept of RPDAG. The
skeleton of a DAG is the undirected graph that results from ignoring the directionality of every arc.
A h-h pattern (head-to-head pattern) in a DAG G is an ordered triplet of nodes, (Xi,Xk,X j), such
that G contains the arcs Xi→Xk and X j →Xk. Given a PDAG G = (Un,EG), for each node Xi∈Un,
SibG(Xi) = {X j ∈ Un | Xi—X j ∈ EG} is the set of siblings or neighbors of Xi. A PDAG G is an
RPDAG if and only if it satisfies the following conditions:

1. ∀Xi ∈ Un, if PaG(Xi) 6= /0 then SibG(Xi) = /0.

2. G contains neither directed nor completely undirected cycles.

3. ∀Xi,X j ∈ Un, if X j ∈ PaG(Xi) then either |PaG(Xi)| ≥ 2 or PaG(X j) 6= /0.

The difference between essential graphs and RPDAGs appears when there are triangular structures:
essential graphs may have completely undirected cycles, but these cycles must be chordal (Anders-
son et al., 1997). In other words, undirected cycles are forbidden in RPDAGs, whereas in essential
graphs only undirected non-chordal cycles are forbidden. It can be seen that all the DAGs which
are represented by a given RPDAG are equivalent and have the same skeleton and the same h-
h patterns, whereas the DAGs associated with an essential graph have the same skeleton and the
same v-structures (h-h patterns where the extreme nodes are not adjacent) (Pearl and Verma, 1990).
Therefore, the role played by the v-structures in essential graphs is the same as that played by the
h-h patterns in RPDAGs. The objective of RPDAGs is to trade the uniqueness of the representation
of equivalence classes of DAGs for a more manageable one, because testing whether a given PDAG
G is an RPDAG is easier than testing whether G is an essential graph.

Theorem 6 The MIT scoring function assigns the same value to all DAGs that are represented by
the same RPDAG.

Although the MIT score should not be used to search in the space of essential graphs, we can
therefore use it without any problem to search in both the DAG and the RPDAG space.
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To conclude our study of the new score, we have observed an interesting relation between MIT
and the scoring functions based on Equation 6. First, it should be noted that the log-likelihood of the
simplest possible network, namely the empty network G /0, is, according to Equation 4 (and taking
into account that in this case qi = 1 and Ni jk = Nik):

LLD(G /0) =
n

∑
i=1

ri

∑
k=1

Nik log

(

Nik

N

)

= −N
n

∑
i=1

HD(Xi).

Then, considering Equation 12, we can express the sum of mutual information measures between
each variable and its set of parents in G as follows:

n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi)) =
LLD(G)−LL(G /0)

N
.

Therefore, the sum of mutual information measures coincides with the difference between the log-
likelihood of G and the one of G /0 or, equivalently, with the difference between the description length
of the data given G /0 and given G. Now, let us consider the difference between G and G /0 in terms of
complexity, which is:

C(G)−C(G /0) =
n

∑
i=1

(ri −1)qi −
n

∑
i=1

(ri −1) =
n

∑
i=1

PaG(Xi)6= /0

(ri −1)(qi −1) =
n

∑
i=1

PaG(Xi) 6= /0

si

∑
j=1

li j,

with li j defined as in Equation 16. Therefore, for the information-based scoring function defined in
Equation 6, using f (N) = 1/2, the difference between the scores of G and G /0 is:

g(G : D)−g(G /0 : D) =
(

LL(G)−C(G) f (N)
)

−
(

LL(G /0)−C(G /0) f (N)
)

= N
n

∑
i=1

PaG(Xi)6= /0

MID(Xi,PaG(Xi))−
1
2

n

∑
i=1

PaG(Xi)6= /0

si

∑
j=1

li j

=
1
2

n

∑
i=1

PaG(Xi)6= /0

(

2N MID(Xi,PaG(Xi))−
si

∑
j=1

li j

)

. (22)

The similarity of this expression with those in Equations 18 and 20 is apparent. Therefore, the MIT
score of a network G could be interpreted in terms of the difference between the information-based
scores of G and G /0, and also as the decrease in description length achieved by using G instead of
G /0. By considering that the mean value of a χ2 distribution with l degrees of freedom is just l, we
can see that the MIT score appears when we replace in Equation 22 the mean values of the χ2(li j)
distributions by the corresponding α-quantiles.

5. Experimental Evaluation

In order to determine the possible merit of the proposed scoring function in practical terms, in this
section we shall carry out an experimental evaluation of the MIT score, comparing it with other
well-known scoring functions. The selected scoring functions are the most frequently used: K2
(Equation 1), BDeu (Equation 3) and BIC/MDL (Equation 5). For BDeu, we shall use a uniform

2165



DE CAMPOS

prior distribution over possible structures and as this score is quite sensitive with respect to the
value of the equivalent sample size, we shall use five values of this parameter, more precisely η =
1,2,4,8,16. For the single parameter of the MIT score (i.e., the confidence level), we shall use three
values: α = 0.99,0.999,0.9999.

The software necessary to carry out the experiments has been developed on the Elvira system
(Elvira, 2002), a Java tool for building and using Bayesian networks and influence diagrams.

First, we define the performance criteria that we shall use to compare the different scoring
functions.

5.1 Performance Criteria

One way of measuring the quality of a scoring function is to study its ability to reconstruct (in com-
bination with a learning algorithm based on score+search) the Bayesian network which generated
the data. In other words, we begin with a Bayesian network G0 which is completely specified in
terms of structure and parameters, and we obtain a data set of a given size by sampling from G0.
Then, using the scoring function together with a search method, we obtain a learned network G,
which must be compared with the original network G0. This capacity for reconstruction can be
understood in two different but complementary ways: reconstructing the graphical structure and
reconstructing the associated joint probability distribution. In terms of the first of these, the usual
evaluation consists in measuring the structural differences between the original and the learned net-
works. More precisely, the number of added arcs (A(G)), deleted arcs (D(G)), and inverted arcs
(I(G)) in the learned network with respect to the original one is computed. In order to eliminate
fictitious differences or similarities between the two networks regarding the number of inverted arcs
(caused by different but equivalent subDAG structures), before the two networks are compared they
will be converted into their corresponding essential graph representation using the algorithm pro-
posed by Chickering (1995). If G′ and G′

0 represent the essential graphs associated with G and G0,
respectively, then the three measures of structural difference can be calculated using the following
expressions:

A(G) =
1
2

n

∑
i=1

|AdG′(Xi)\AdG′
0
(Xi)|

D(G) =
1
2

n

∑
i=1

|AdG′
0
(Xi)\AdG′(Xi)|

I(G) =
n

∑
i=1

(

|PaG′
0
(Xi)∩SibG′(Xi)|+|PaG′(Xi)∩SibG′

0
(Xi)|+|PaG′

0
(Xi)∩ChG′(Xi)|

)

.

where ChH(Xi) = {X j ∈ Un | Xi → X j ∈ EH} and AdH(Xi) = PaH(Xi)∪ChH(Xi)∪SibH(Xi) are the
sets of children and adjacent nodes of Xi in a PDAG H. As a way of summarizing these three
measures, the Hamming distance, which is simply the sum of all the structural differences, H(G) =
A(G)+D(G)+ I(G), is also usually considered.

In terms of the ability to reconstruct the joint probability distribution, we can evaluate this by
means of a distance measure between the distributions associated with the original and the learned
networks, pG0 and pG, respectively. We shall use the Kullback-Leibler divergence:

KL(G) = KL(pG0 , pG) = ∑
x1,...,xn

pG0(x1, . . . ,xn) log

(

pG0(x1, . . . ,xn)

pG(x1, . . . ,xn)

)

.
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The conditional probability distributions that constitute the factorization of pG will be calculated
from the data set using the Laplace estimation (Good, 1965), which avoids the problem of obtaining
an infinite value of the Kullback-Leibler divergence, caused by zero probability values in pG.

The calculus of this distance measure for joint distributions with many variables is computa-
tionally very expensive. However, by taking advantage of the factorization of the distributions, the
complexity may be considerably reduced and the value KL(G) can be expressed as follows:

KL(G) =
n

∑
i=1

ri

∑
k=1

q
G0
i

∑
j=1

pG0(xik,w
G0
i j ) log(pG0(xik|w

G0
i j ))

−
n

∑
i=1

ri

∑
k=1

qG
i

∑
j=1

pG0(xik,w
G
i j) log(pG(xik|w

G
i j)),

where wG0
i j and wG

i j represent the j-th configuration of the parent sets of Xi in G0 and G, respectively

(each having a total number of possible configurations equal to qG0
i and qG

i , respectively). In this
way, the only probability values that must be computed are pG0(xik,w

G0
i j ) and pG0(xik,wG

i j), and this
can be done relatively efficiently by using a propagation algorithm in the network G0. We have used
an exact algorithm based on variable elimination.

One alternative way of measuring the quality of a scoring function which does not require an
initial Bayesian network to be used as a starting point is to use the network learned with such a
scoring function for a specific task and then to evaluate the level of success achieved. As Bayesian
networks have been used in different ways to build classifiers, we can evaluate the quality of a scor-
ing function (at least in comparative terms) by building a classifier using an algorithm for learning
Bayesian networks which is specific for classification and equipped with the scoring function, and
then measuring its classification capacity.

5.2 Experiments for Reconstructing Bayesian Networks

In order to make our comparative study more representative, we shall use different problems or
rather different original networks. We shall also use different database sizes. Although this parame-
ter clearly affects the quality of the networks learned with any scoring function (greater sizes lead to
better estimations), we want to check which of the scoring functions may be more or less sensitive
in the sense that their behavior deteriorates more quickly when smaller sample sizes are used.

In the following sections, we shall first give details of the experimental design before presenting
the obtained results.

5.2.1 EXPERIMENTAL DESIGN

We have selected four Bayesian networks corresponding to different problems: Alarm (Figure 2),
Boblo (Figure 3), Insurance (Figure 4) and Hailfinder (Figure 5).

The Alarm network displays the relevant variables and relationships for the Alarm Monitor-
ing System (Beinlich et al., 1989), a diagnostic application for patient monitoring. This network
contains 37 variables and 46 arcs. Boblo (Rasmussen, 1995) is part of a system for determining
the blood group of Jersey cattle. The Boblo network contains 23 variables and 24 arcs. Hailfinder
(Abramson et al., 1996) is a normative system that forecasts severe summer hail in northeastern
Colorado. The Hailfinder network contains 56 variables and 66 arcs. Insurance (Binder et al., 1997)

2167



DE CAMPOS

1 2 3

25 18 26

17

19 20

10 21

27

28 29

7 8 9

30

32

12

34 35

33 14

22

15

23

13

16

36

24

6 5 4 11

31

37

Figure 2: The Alarm network

is a network for evaluating car insurance risks. The Insurance network contains 27 variables and 52
arcs. All these networks have been widely used in specialist literature for comparative purposes.

Figure 3: The Boblo network

Each network has been used to generate several databases, each of which contains 10000 in-
stances; more precisely, we have generated five data sets for each problem. The results that we
will show are the averages across the five data sets. The sample sizes considered are N = 10000,
5000 and 1000 (using the complete data sets and the first 5000 and 1000 instances of each one,
respectively).
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Figure 4: The Insurance network

The search method that we shall use is a local search in the DAG space with the classical
operators of arc addition, arc deletion and arc reversal. The starting point of the search is always
the empty graph. Although our main objective is to compare the proposed score with others, given
that MIT has some similarities with constraint-based methods, it is also interesting to include one
of these methods in the comparison. We have selected the well-known PC algorithm (Spirtes et al.,
1993). This algorithm also depends on one parameter α representing the confidence level of the
independence tests. We shall use three values: α = 0.90,0.95,0.99.

We therefore have a design 13× 4× 3 (10 scoring functions plus 3 versions of a constraint-
based algorithm, 4 problems and 3 sample sizes), and for each of these 156 configurations we use 5
different databases, which gives us a total of 780 experiments.

5.2.2 RECONSTRUCTION RESULTS

Tables 1, 2, 3 and 4 display the results obtained for the Alarm, Boblo, Hailfinder and Insurance
networks, respectively. For each sample size and each method, each table shows the average values
of the previously mentioned performance measures (A, D, I, H and KL). The best value for each
performance measure is written in bold and the second best in italics. In the last two rows of each
table, we also show the KL values for the original network (with parameters re-trained from the cor-
responding database) and the empty network, which may serve as a kind of scale. Table 5 displays
an illustrative summary of the results: it shows the number of times (from the 12 configurations
being considered for each method) that each method has obtained the best result (and either the best
or the second best result) for each of the five performance measures.

The first thing that can be observed is that these results seem to confirm our intuition about the
need to use MIT with a greater confidence level α than those typically used for independence tests,
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Figure 5: The Hailfinder network

since MIT with the values α = 0.999,0.9999 offers better results than with α = 0.99. It is also
possible to observe how MIT generally behaves better than the other scores, with respect to all the
performance measures, and more specifically, in terms of BIC/MDL (which is the closest scoring
function in spirit to the new score), MIT systematically obtains much better results. Although BIC
behaves acceptably in terms of the number of added arcs, it does however have a marked propensity
to remove a large number of arcs. This suggests that the penalization component used by BIC is
not well calibrated. On the other hand, the different versions of BDeu behave rather poorly (except
in terms of the number of deleted arcs). K2 only offers good results for the KL divergence. The
PC algorithm behaves very good for the number of added and inverted arcs. However, its results in
terms of the number of deleted arcs and KL divergence are extremely poor.

Focusing on the two main performance measures (the Hamming distance and the KL diver-
gence), for each pair of methods, Tables 6 and 7 contain the number of times that each method
obtains better results than the other. Table 6 refers to the KL divergence and Table 7 to the Ham-
ming distance. In both cases, the MIT versions using high confidence levels (0.9999 and 0.999)
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ALARM
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 4.2 4.6 9.6 18.4 0.32752 4.6 2.4 4.6 11.6 0.06384 7.6 2.6 9.2 19.4 0.04372
M999 4.2 4.0 9.4 17.6 0.31571 4.2 3.0 4.6 11.8 0.06448 9.8 2.6 10.0 22.4 0.04563

M99 7.8 4.0 9.4 21.2 0.31270 8.4 2.0 4.8 15.2 0.06925 12.6 2.4 10.0 25.0 0.04743
BIC 7.2 7.4 20.0 34.6 0.49799 7.4 4.6 14.0 26.0 0.18683 9.6 3.4 18.2 31.2 0.09983
K2 10.0 4.2 16.0 30.2 0.27079 8.4 3.2 14.2 25.8 0.07222 8.8 3.0 14.6 26.4 0.04375

BD1 11.0 4.0 17.4 32.4 0.32570 9.6 3.2 13.4 26.2 0.08782 8.2 3.0 14.2 25.4 0.04855
BD2 14.6 4.2 20.6 39.4 0.33198 11.0 2.8 15.0 28.8 0.09294 7.4 2.6 16.0 26.0 0.04387
BD4 18.0 3.4 15.4 36.8 0.32044 11.6 2.4 17.6 31.6 0.06652 14.0 3.2 19.4 36.6 0.04797
BD8 27.8 3.8 17.8 49.4 0.34363 16.8 2.6 16.0 35.4 0.07469 13.4 2.4 15.0 30.8 0.04491

BD16 48.8 3.6 19.4 71.8 0.42465 31.8 3.0 15.2 50.0 0.09508 24.4 2.8 14.2 41.4 0.04582
PC90 2.8 17.0 8.4 28.2 2.63819 0.6 9.0 5.4 15.0 1.21272 0.4 8.0 4.6 13.0 1.06377
PC95 2.2 17.6 8.4 28.2 2.69645 0.4 9.2 5.4 15.0 1.29207 0.2 7.6 5.8 13.6 0.95810
PC99 1.8 18.8 8.8 29.4 2.82810 0.2 10.6 6.0 16.8 1.63841 0.4 7.8 6.2 14.4 1.00228

true 0.21351 0.04759 0.02421
empty 10.2445 10.0677 10.0631

Table 1: Results for the Alarm network

BOBLO
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 0.4 5.0 0.8 6.2 0.15105 0.0 2.2 0.0 2.2 0.03359 0.8 0.2 1.6 2.6 0.01396

M999 0.4 4.4 0.4 5.2 0.14458 0.2 1.8 0.0 2.0 0.03266 0.8 0.2 1.6 2.6 0.01396
M99 1.0 4.0 1.2 6.2 0.14812 0.2 1.6 0.0 1.8 0.03208 1.2 0.0 1.6 2.8 0.01353
BIC 2.0 6.4 4.6 13.0 0.16222 3.0 3.8 4.6 11.4 0.03651 2.8 2.4 3.0 8.2 0.01993
K2 10.6 4.0 8.8 23.4 0.13805 11.0 2.6 7.6 21.2 0.03563 7.8 1.2 6.8 15.8 0.01748

BD1 28.6 3.2 2.8 34.6 0.15329 13.4 1.6 4.6 19.6 0.03211 7.2 2.0 4.4 13.6 0.01481
BD2 30.8 2.6 4.0 37.4 0.15452 21.2 2.2 7.2 30.6 0.03928 16.8 1.6 7.4 25.8 0.01705
BD4 37.4 2.6 2.8 42.8 0.16213 28.0 1.8 4.8 34.6 0.03983 26.2 1.4 6.4 34.0 0.02065
BD8 50.8 3.6 3.4 57.8 0.17616 41.2 1.4 5.2 47.8 0.04539 38.2 1.0 9.2 48.4 0.02317

BD16 64.2 2.6 6.6 73.4 0.18015 54.0 2.0 6.0 62.0 0.05415 49.6 1.4 3.2 54.2 0.02830
PC90 0.0 13.0 5.4 18.4 2.02929 0.8 10.0 6.2 17.0 1.44017 1.4 10.2 6.2 17.8 1.43512
PC95 0.0 14.4 5.0 19.4 2.22612 0.2 10.0 6.0 16.2 1.43634 0.2 9.6 6.4 16.2 1.42543
PC99 0.0 15.0 4.6 19.6 2.33032 0.0 10.8 5.6 16.4 1.50436 0.0 9.8 6.2 16.0 1.42574

true 0.13107 0.02712 0.01355
empty 7.44795 7.42898 7.42653

Table 2: Results for the Boblo network

compare favorably with the other scores. They systematically produce networks with much fewer
structural differences with respect to the original networks and, at the same time, they almost always
estimate the true joint probability distributions more closely. In terms of the Hamming distance, BIC
is somewhat better than K2 and much better than BDeu, which systematically obtains worse results
as the equivalent sample size increases. However, regarding the Kullback-Leibler divergence, K2
is much better than BIC and most of the versions of BDeu. The constraint-based algorithm is not
able to find a good approximation of the joint probability distribution, probably because of the high
number of deleted arcs together with the low number of added arcs.13 In terms of the Hamming
distance, PC performs better than all the Bayesian scores, although MIT and, to a lesser extent,
BIC, outperform it.

13. Extra arcs could be useful to compensate for the missing arcs.
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HAILFINDER
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 7.2 12.2 8.2 27.6 1.08438 8.0 5.8 4.2 18.0 0.26576 6.2 5.6 1.2 13.0 0.14678

M999 8.6 11.0 8.6 28.2 1.13183 9.6 5.6 4.6 19.8 0.29131 7.6 5.4 1.6 14.6 0.16634
M99 19.6 10.0 6.8 36.4 1.45014 21.2 5.8 8.8 35.8 0.47866 18.2 5.8 9.8 33.8 0.28220
BIC 6.4 16.2 15.0 37.6 1.36774 9.6 13.8 14.4 37.8 0.38606 10.0 10.2 17.2 37.4 0.21192
K2 10.4 13.2 18.2 41.8 1.09179 9.0 8.6 22.0 39.6 0.27891 10.2 7.6 22.2 40.0 0.15910

BD1 16.0 18.4 16.2 50.6 1.43422 17.0 13.0 21.4 51.4 0.40585 19.2 10.8 26.4 56.4 0.23520
BD2 16.2 17.0 20.4 53.6 1.35804 19.2 12.6 20.6 52.4 0.35806 16.2 9.8 18.8 44.8 0.19763
BD4 16.6 17.2 13.8 47.6 1.30878 18.4 13.2 18.0 49.6 0.36146 19.0 8.8 17.0 44.8 0.18702
BD8 15.8 15.8 16.8 48.4 1.25347 20.2 12.0 20.4 52.6 0.33352 21.4 9.2 25.6 56.2 0.18622

BD16 23.0 15.0 15.2 53.2 1.30559 22.8 10.4 15.0 48.2 0.33260 23.0 8.2 15.2 46.4 0.19391
PC90 10.2 36.6 8.8 55.6 9.19075 14.8 33.4 7.0 55.2 8.38057 16.6 33.2 8.4 58.2 8.25173
PC95 10.2 36.6 9.0 55.8 9.19961 13.8 33.2 6.8 53.8 8.38573 15.6 32.8 8.0 56.4 8.23382
PC99 11.6 36.8 9.4 57.8 9.15348 13.8 33.4 6.6 53.8 8.32864 14.8 32.4 7.2 54.4 8.21041

true 1.18225 0.28146 0.14798
empty 20.6712 20.6048 20.5969

Table 3: Results for the Hailfinder network

INSURANCE
N 1000 5000 10000

Score A D I H KL A D I H KL A D I H KL
M9999 3.4 14.8 13.4 31.6 0.50383 4.8 10.2 12.8 27.8 0.14468 3.8 7.2 6.4 17.4 0.06440

M999 3.6 14.0 13.0 30.6 0.50499 5.0 9.4 12.2 26.6 0.14226 4.2 6.6 9.0 19.8 0.06653
M99 3.8 12.2 13.4 29.4 0.45608 6.8 8.8 11.8 27.4 0.14513 4.6 6.4 14.0 25.0 0.06952
BIC 4.0 23.0 12.0 39.0 0.97628 4.4 14.8 15.8 35.0 0.25910 5.2 11.0 12.4 28.6 0.13403
K2 9.2 17.0 19.4 45.6 0.52187 10.6 12.8 23.2 46.6 0.16905 10.4 11.8 21.4 43.6 0.10118

BD1 6.2 17.2 13.8 37.2 0.57087 6.2 12.0 14.8 33.0 0.18197 7.2 10.6 19.0 36.8 0.12997
BD2 5.6 14.8 14.2 34.6 0.48989 7.2 12.6 21.0 40.8 0.16623 8.8 11.0 18.6 38.4 0.13644
BD4 9.4 15.0 19.0 43.4 0.50435 8.6 10.8 14.4 33.8 0.15113 6.0 8.4 16.4 30.8 0.08331
BD8 16.2 16.4 17.8 50.4 0.53299 14.6 11.6 21.6 47.8 0.15281 10.2 9.2 13.2 32.6 0.09064

BD16 22.2 14.6 19.6 56.4 0.58103 20.4 10.0 24.4 54.8 0.14247 18.8 7.6 19.8 46.2 0.08384
PC90 2.0 30.6 8.8 41.4 2.31070 0.2 22.2 8.4 30.8 0.96871 0.2 19.4 4.8 24.4 0.58962
PC95 1.8 30.6 9.0 41.4 2.31837 0.2 22.4 9.6 32.2 1.03911 0.2 19.6 5.0 24.8 0.57544
PC99 1.4 31.2 8.8 41.4 2.42852 0.2 23.2 10.8 34.2 1.05543 0.0 20.0 5.4 25.4 0.62231

true 0.55527 0.12023 0.06205
empty 8.46596 8.44041 8.43720

Table 4: Results for the Insurance network

We believe that these results support the conclusion that the MIT score can compete favor-
ably with state-of-the-art scoring functions and constraint-based algorithms for the task of learning
general purpose Bayesian networks. Moreover, in the case that we wish to select a non-Bayesian
scoring function based on information theory, we would recommend BIC/MDL be discarded and
MIT used instead.

It is also interesting to remark that the two scoring functions that behave best (MIT and K2)
are not score equivalent, whereas the two that obtain comparatively poor results (BIC and BDeu),
are. Therefore, score equivalence does not seem to be an important property for learning Bayesian
networks by searching in the DAG space. This confirms the previous results stated by Yang and
Chang (2002).

While it is clear from the previous experiments that the new score, in combination with the
particular search procedure being used, has an excellent performance, we would also like to test
whether the different scores differentiate structures that are more accurate or generalize better, inde-
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times best/times best or second best
Score A D I H KL

M9999 3 / 5 0 / 5 5 / 7 6 / 8 6 / 7
M999 0 / 3 2 / 8 4 / 6 4 / 11 1 / 5
M99 0 / 1 7 / 9 3 / 4 2 / 5 3 / 4
BIC 1 / 2 0 / 0 0 / 2 0 / 0 0 / 0
K2 0 / 1 0 / 0 0 / 0 0 / 0 2 / 6

BD1 0 / 0 0 / 2 0 / 1 0 / 0 0 / 1
BD2 0 / 0 1 / 2 0 / 0 0 / 0 0 / 1
BD4 0 / 0 2 / 3 0 / 0 0 / 0 0 / 0
BD8 0 / 0 2 / 2 0 / 0 0 / 0 0 / 0

BD16 0 / 0 1 / 2 0 / 0 0 / 0 0 / 1
PC90 2 / 4 0 / 0 5 / 5 1 / 1 0 / 0
PC95 3 / 9 0 / 0 1 / 5 0 / 1 0 / 0
PC99 8 / 9 0 / 0 1 / 2 0 / 0 0 / 0

Table 5: Number of times that each method obtained the best/the best or second best result in terms
of each performance measure

Kullback-Leibler
M9999 M999 M99 K2 BIC BD1 BD2 BD4 BD8 BD16 PC90 PC95 PC99

M9999 – 7 7 10 12 10 11 11 12 11 12 12 12
M999 4 – 8 6 12 11 10 11 11 12 12 12 12

M99 5 4 – 6 9 9 8 8 8 7 12 12 12
K2 2 6 6 – 12 10 9 8 10 10 12 12 12

BIC 0 0 3 0 – 3 2 2 3 3 12 12 12
BD1 2 1 3 2 9 – 6 3 4 6 12 12 12
BD2 1 2 4 3 10 6 – 6 6 7 12 12 12
BD4 1 1 4 4 10 9 6 – 8 8 12 12 12
BD8 0 1 4 2 9 8 6 4 – 9 12 12 12

BD16 1 0 5 2 9 6 5 4 3 – 12 12 12
PC90 0 0 0 0 0 0 0 0 0 0 – 7 7
PC95 0 0 0 0 0 0 0 0 0 0 5 – 9
PC99 0 0 0 0 0 0 0 0 0 0 5 3 –

Table 6: Number of times that the methods in rows are better than the ones in columns in terms of
the Kullback-Leibler divergence

pendently of the search issues. One way to do this is to generate an ensemble of networks that were
found by the search procedures using the different scores and see how each of the scores rank the
networks in this ensemble. So, for each of the sixty databases used in the previous experiments we
have considered the ten networks obtained by the different scoring functions, computing the ranking
of these networks according to each score. We have also computed the ranking of these networks
according to each of the two main performance measures, the KL divergence and the Hamming
distance.
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Hamming
M9999 M999 M99 K2 BIC BD1 BD2 BD4 BD8 BD16 PC90 PC95 PC99

M9999 – 5 8 12 12 12 12 12 12 12 11 11 11
M999 6 – 9 12 12 12 12 12 12 12 11 11 11

M99 3 3 – 12 12 12 12 12 12 12 9 9 11
K2 0 0 0 – 4 6 8 9 11 12 4 4 4

BIC 0 0 0 8 – 8 10 11 11 12 7 7 7
BD1 0 0 0 6 4 – 10 8 9 10 5 4 5
BD2 0 0 0 4 2 2 – 6 10 10 4 4 4
BD4 0 0 0 3 1 4 5 – 11 11 3 3 3
BD8 0 0 0 1 1 3 2 1 – 10 3 3 2

BD16 0 0 0 0 0 2 2 1 2 – 3 3 3
PC90 1 1 3 8 5 7 8 9 9 9 – 5 7
PC95 1 1 3 8 5 7 8 9 9 9 4 – 8
PC99 1 1 1 8 5 7 8 9 10 9 4 2 –

Table 7: Number of times that the methods in rows are better than the ones in columns in terms of
the Hamming distance

To measure the degree of association between the rankings generated by each scoring function
and each measure of performance, we have used the nonparametric Spearman correlation coeffi-
cient14 for ordinal data (Hogg and Craig, 1994), which varies between −1 (perfect negative corre-
lation) and +1 (perfect positive correlation).

Tables 8 and 9 display the average values of the Spearman coefficient with respect to Hamming
distance and KL divergence, respectively, grouped by problem and database size.

Average Spearman correlation w.r.t. Hamming distance
Problem Database size All

Alarm Boblo Hailfinder Insurance 1000 5000 10000
M9999 0.69 0.97 0.74 0.69 0.83 0.72 0.77 0.77
M999 0.62 0.98 0.71 0.68 0.81 0.70 0.73 0.75
M99 0.53 0.96 0.66 0.65 0.77 0.65 0.68 0.70

K2 0.55 0.63 -0.02 0.21 0.32 0.27 0.44 0.34
BIC 0.67 0.93 0.60 0.61 0.75 0.64 0.72 0.70
BD1 0.44 0.50 -0.40 0.40 0.12 0.18 0.40 0.23
BD2 0.41 0.29 -0.39 0.42 0.06 0.12 0.35 0.18
BD4 0.32 -0.12 -0.42 0.38 -0.13 -0.03 0.28 0.04
BD8 0.20 -0.59 -0.48 0.35 -0.27 -0.17 0.06 -0.13

BD16 -0.02 -0.77 -0.53 0.21 -0.50 -0.28 -0.05 -0.28

Table 8: Average values of the Spearman correlation coefficient between the rankings generated by
each scoring function and the Hamming distance

These results confirm that, in terms of the KL divergence, MIT and K2 are the best scores (with
K2 being in this case slightly better than MIT), whereas MIT and BIC are the best scores in terms of

14. ρ = 1− 6∑N
i=1 d2

i
N(N2−1)

, where {di} are the differences between the ranks of each observation on the two variables.
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Average Spearman correlation w.r.t. KL divergence
Problem Database size All

Alarm Boblo Hailfinder Insurance 1000 5000 10000
M9999 0.80 0.72 0.51 0.77 0.66 0.68 0.76 0.70
M999 0.83 0.74 0.47 0.80 0.71 0.69 0.74 0.71
M99 0.85 0.74 0.34 0.82 0.70 0.66 0.71 0.69

K2 0.92 0.81 0.55 0.70 0.76 0.70 0.77 0.74
BIC 0.48 0.65 0.33 0.30 0.34 0.44 0.55 0.44
BD1 0.84 0.51 -0.23 0.73 0.29 0.51 0.59 0.46
BD2 0.84 0.38 -0.17 0.79 0.28 0.52 0.58 0.46
BD4 0.84 0.05 -0.08 0.83 0.20 0.47 0.55 0.41
BD8 0.79 -0.37 -0.01 0.85 0.17 0.39 0.38 0.31

BD16 0.61 -0.51 -0.01 0.83 0.01 0.34 0.35 0.23

Table 9: Average values of the Spearman correlation coefficient between the rankings generated by
each scoring function and the KL divergence

the Hamming distance (with MIT being better than BIC). In our opinion, the fact that MIT behaves
very good in terms of both structural and distributional quality support the conclusion that it is a
very competitive scoring function.

5.3 Experiments in Automatic Classification

As we commented previously, another approach to evaluating the quality of a scoring function is to
use it to learn a Bayesian network classifier, and then to measure the performance of the classifier,
for example in terms of predictive accuracy. In this section, we shall apply this method in order to
compare MIT with the other scores.

Since the objective of a classifier is not to obtain a good representation of a joint probability
distribution for the class and the attributes but rather one for the posterior probability distribution of
the class given the attributes, several specialized algorithms that carry out the search into different
types of restricted DAG topologies have been developed (Acid et al., 2005; Cheng and Greiner,
1999; Ezawa et al., 1996; Friedman, Geiger and Goldszmidt, 1997; Sahami, 1996), most of these
being extensions (using augmenting arcs) or modifications of the well-known Naive Bayes basic
topology. This approach generally obtains more satisfactory results than the algorithms for learning
unrestricted types of Bayesian networks in terms of classification accuracy.

The BN learning algorithm that we shall use carries out a local search in a space of PDAGs called
class-focused RPDAGs (C-RPDAGs), which are RPDAGs representing sets of DAGs which are
equivalent in terms of classification (in the sense that they produce the same posterior probabilities
for the class variable). Using the BDeu score, this algorithm has proved more effective than other
Bayesian network classifiers (Acid et al., 2005).

As in the previous section, we shall first give details of the experimental design before going on
to present the obtained results.
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5.3.1 EXPERIMENTAL DESIGN

We have selected 29 data sets which were all obtained from the UCI repository of machine learn-
ing databases (Blake and Merz, 1998), with the exception of ‘mofn-3-7-10’ and ‘corral’, which
were designed by Kohavi and John (1997). All these data sets have been widely used in specialist
literature for comparative purposes in classification.

Table 10 briefly describes the characteristics of each database, including the number of in-
stances, attributes and states for the class variable. Some of these data sets have been preprocessed
in the following way: the continuous variables have been discretized using the procedure proposed
by Fayyay and Irani (1993), and the instances with undefined/missing values were eliminated. For
this preprocessing stage, we have used the MLC++ System (Kohavi et al., 1994).

# Database N. cases N. attributes N. classes
1 adult 45222 14 2
2 australian 690 14 2
3 breast 682 10 2
4 car 1728 6 4
5 chess 3196 36 2
6 cleve 296 13 2
7 corral 128 6 2
8 crx 653 15 2
9 diabetes 768 8 2

10 flare 1066 10 2
11 german 1000 20 2
12 glass 214 9 7
13 glass2 163 9 2
14 heart 270 13 2
15 hepatitis 80 19 2
16 iris 150 4 3
17 letter 20000 16 26
18 lymphography 148 18 4
19 mofn-3-7-10 1324 10 2
20 mushroom 8124 22 2
21 nursery 12960 8 5
22 pima 768 8 2
23 satimage 6435 36 6
24 segment 2310 19 7
25 shuttle-small 5800 9 7
26 soybean-large 562 35 19
27 vehicle 846 18 4
28 vote 435 16 2
29 waveform-21 5000 21 3

Table 10: Description of the data sets used in the classification experiments

For each database and each scoring function, we have built a classifier using the algorithm based
on C-RPDAGs. As in our previous experiments, the probability distributions associated with the
obtained network structures have been computed from the data sets using the Laplace estimation.
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The selected performance measure is predictive accuracy, that is, the percentage of successful
predictions on a test set which is different from the training set. This accuracy has been measured as
the average of three runs, the accuracy of each run being estimated using 10-fold cross-validation.
Within each run, the cross-validation folds were the same for all the classifiers on each data set.15

We used repeated runs and 10-fold cross-validation according to the recommendations by Kohavi
(1995) in order to obtain a good balance between bias and variance of the estimation.

As these experiments are much more computationally expensive than those in the previous sec-
tion, instead of using all the different versions of MIT and BDeu, we have selected only one. From
the results in Tables 6 and 7, we believe that the best candidate scores are M9999 and BD4. We
therefore have a 29× 4 design (29 problems and 4 scoring functions), and for each of these 116
configurations, we carry out 3 iterations of 10-fold cross-validation, with a total of 3480 runs of the
C-RPDAG learning algorithm.

5.3.2 CLASSIFICATION RESULTS

Table 11 displays the results of these experiments. The best results obtained for each problem are
highlighted in bold. We can observe that there are no great differences between the different scoring
functions (with the exception perhaps of BIC which seems to behave worst).

In order to determine whether the observed differences are statistically significant, we have also
used a non-parametric statistical test: the Wilcoxon paired signed rank test, with a significance level
equal to 0.01. We have used this test on each of the three cross-validation iterations. We shall then
say that there is a significant difference if the Wilcoxon test detects a difference in at least one of
the three iterations, and that there is a very significant difference if the test detects differences in all
the three iterations. Table 11 also indicates whether the results obtained for K2, BIC and BDeu are
significantly worse (–), very significantly worse (– –), significantly better (+) or very significantly
better (++) than those of MIT for each data set.

In Table 12, we compare each classifier with the others according to these criteria. The entry
in row i column j represents the number of times that classifier i is significantly better or very
significantly better than classifier j. These results confirm that K2, BDeu and MIT behave in a
similar way, with MIT being slightly better, and that BIC is clearly the worst score.

6. Concluding Remarks

In this paper, we have defined a new scoring function for learning Bayesian networks through
score+search algorithms. This is based on the well-known properties of the mutual information
measure and which are used in a novel way. We begin with the idea of minimizing the Kullback-
Leibler divergence between the joint probability distribution associated with a data set and the one
associated with a Bayesian network, which is equivalent to maximizing the sum of the mutual in-
formation measures between each variable and its set of parents in the network. We then use a
decomposition property of mutual information in order to express each of these measures as a sum
of the conditional mutual information measures between the variable and each of its parents, given
the subset of the remaining parent variables which antecede the current parent in a given order.

Using another mutual information property that allows us to build an independence test relying
on the chi-square distribution, it is possible to interpret mutual information between a variable and

15. The cross-validation folds are in fact the same as those considered by Acid et al. (2005).
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# Database K2 BIC BD4 M9999
1 adult 85.71 85.42 (–) 85.50 85.66
2 australian 85.65 86.28 85.27 85.22
3 breast 97.56 97.56 97.41 97.36
4 car 93.73 85.63 (– –) 93.83 94.17
5 chess 96.50 95.81 96.71 (+) 96.17
6 cleve 80.54 82.46 81.56 82.13
7 corral 100.00 100.00 100.00 100.00
8 crx 85.13 86.61 86.00 86.00
9 diabetes 78.65 78.56 78.60 78.60

10 flare 83.18 82.77 83.37 83.21
11 german 74.63 74.40 74.87 74.23
12 glass 71.57 70.12 71.56 71.85
13 glass2 85.45 84.83 85.22 85.44
14 heart 82.47 82.59 83.21 82.59
15 hepatitis 90.83 87.50 92.50 90.00
16 iris 93.33 94.22 94.44 94.22
17 letter 85.99 (+) 76.73 (– –) 85.55 85.45
18 lymphography 82.83 81.78 83.49 81.25
19 mofn-3-7-10 97.36 (–) 93.56 (– –) 99.09 100.00
20 mushroom 100.00 100.00 100.00 100.00
21 nursery 94.71 (– –) 91.30 (– –) 93.38 (– –) 95.45
22 pima 78.86 78.51 78.21 78.43
23 satimage 87.84 (–) 84.57 (– –) 88.32 88.51
24 segment 94.92 92.16 (– –) 94.55 95.11
25 shuttle-small 99.67 99.79 99.60 99.65
26 soybean-large 93.30 88.85 (–) 92.64 91.81
27 vehicle 72.46 71.75 72.10 72.26
28 vote 94.79 92.95 93.72 94.03
29 waveform-21 82.47 82.47 83.06 82.21

Average 87.94 86.52 88.06 87.97

Table 11: Predictive accuracy of the different scoring functions

K2 BIC BD4 M9999
K2 —– 9 / 5 2 / 1 1 / 0
BIC 0 / 0 —– 1 / 0 0 / 0
BD4 3 / 1 8 / 6 —– 1 / 0
M9999 3 / 1 8 / 6 1 / 1 —–

Table 12: Number of times that the classifiers in rows are significantly better / very significantly
better than the ones in columns

its parents as a sum of the statistics associated with a set of simultaneous conditional independence
tests. Each of these tests indicates whether it is worth adding a new parent, taking into account
those parents which have already been included. The value of each statistic is compared with a
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reference value, and the sum of the differences between statistics and reference values is used to
quantify the global quality of the parent set. The result is a scoring function (called MIT) which is
similar to those based on maximizing a penalized version of the log-likelihood, such as BIC/MDL.
In our case, however, the penalization component is specific rather than global for each variable and
its parents, and takes into account not only the complexity of the structure but also its reliability.
Although MIT is a scoring function, the result of using it within an algorithm based on score and
search has many similarities with learning algorithms based on independence tests. However, in our
case, the tests are not only used to decide whether the variables are independent or not, but they also
quantify the extent to which they are.

We have also carried out a complete experimental evaluation of the proposed score, comparing
it with state-of-the-art scoring functions (such as K2, BDeu and BIC/MDL) and with a constraint-
based algorithm using different evaluation criteria: structural differences between the original and
the learned networks, distance between the probability distributions associated with these networks,
and predictive accuracy of the classifiers constructed using the different scores. The results of these
experiments show that MIT can compete with the Bayesian scores and that it should be the score of
reference within those based on information theory.

The MIT scoring function is decomposable and is not score equivalent, although it satisfies
a restricted form of score equivalence which allows us to use it to search not only in the DAG
space but also in the RPDAG space. Nevertheless, for future research we would like to develop a
scoring function which is based on the same MIT principles but which satisfies the score equivalence
property, to be used by learning algorithms that search in the space of essential graphs. Furthermore,
the expression of the MIT score depends on a free parameter: the confidence level α associated with
the chi-square independence tests. Although experimental results confirm our previous analysis
which states that this parameter should be set to a high value (much higher than is usual for a single
statistical test), it would also be interesting to find some guidelines in order to automatically select
an appropriate value of α depending on the characteristics of the problem domain being considered.
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Appendix A

Proof of Theorem 2. We should first explain what a Shur-concave function is. Let us consider
two n-dimensional vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn), and let x↓ = (x↓1, . . . ,x

↓
n) and y↓ =

(y↓1, . . . ,y
↓
n) be the vectors whose entries are the entries of x and y, arranged in decreasing order,

that is, x↓1 ≥ x↓2 ≥ . . . ≥ x↓n and y↓1 ≥ y↓2 ≥ . . . ≥ y↓n. If ∑m
j=1 x↓j ≤ ∑m

j=1 y↓j ∀m ≤ n, then it is said that
x is majorized by y, written x ≺ y. A function f : N n −→ R is Shur-concave if for every vector
x = (x1, . . . ,xn) and y = (y1, . . . ,yn) such that x ≺ y, then f (x1, . . . ,xn) ≥ f (y1, . . . ,yn). This is one

2179



DE CAMPOS

of the essential properties of entropy and establishes that the more uniform a distribution is, the
greater the entropy.

Let us assume that the function fi,α(l1, . . . , lsi) = ∑si
j=1 χα,l j is Shur-concave, and we shall prove

the result stated in the theorem. For any permutation σi, let us consider the vector liσi = (liσi(1), . . . ,

liσi(si)). As rik ≥ 2∀k, then liσi( j) = (ri − 1)(riσi( j) − 1)∏ j−1
k=1 riσi(k) ≤ (ri − 1)riσi( j) ∏ j−1

k=1 riσi(k) ≤

(ri − 1) (riσi( j+1) − 1)riσi( j) ∏ j−1
k=1 riσi(k) = (ri − 1)(riσi( j+1) − 1)∏ j

k=1 riσi(k) = liσi( j+1). Therefore

liσi(si) ≥ . . . ≥ liσi(2) ≥ liσi(1), that is, l↓iσi(1) = liσi(si),. . ., l↓iσi(si)
= liσi(1).

Then, the values of ∑m
j=1 l↓iσi( j) can be expressed as follows:

m

∑
j=1

l↓iσi( j) =
si

∑
j=si−m+1

liσi( j) =
si

∑
j=si−m+1

(

(ri −1)(riσi( j)−1)
j−1

∏
k=1

riσi(k)

)

= (ri −1)
si

∑
j=si−m+1

(

riσi( j)

j−1

∏
k=1

riσi(k)−
j−1

∏
k=1

riσi(k)

)

= (ri −1)
si

∑
j=si−m+1

(

j

∏
k=1

riσi(k)−
j−1

∏
k=1

riσi(k)

)

= (ri −1)

(

si

∏
k=1

rik −
si−m

∏
k=1

riσi(k)

)

.

As the permutation σ∗
i ranks the variables in decreasing order of the number of states, ∏si−m

k=1 riσi(k)

≤ ∏si−m
k=1 riσ∗

i (k)
and therefore ∑m

j=1 l↓iσ∗
i ( j) ≤ ∑m

j=1 l↓iσi( j), that is, liσ∗
i
≺ liσi . By applying the Shur-

concavity of fi,α, we then obtain ∑si
j=1 χα,liσi( j)

≤ ∑si
j=1 χα,liσ∗i ( j)

∀σi, hence

∑si
j=1 χα,liσ∗i ( j)

= maxσi ∑si
j=1 χα,liσi( j)

.

Argument supporting Conjecture 3. We try to prove that the functions fi,α are Shur-concave. We
shall use the well-known result (Marshall and Olkin, 1979) which states that x ≺ y if and only if
F(x)≥F(y), where F(x) = ∑n

i=1 g(xi), for all concave functions f . In our case F(l) = fi,α(l1, . . . , lsi)
= ∑si

j=1 χα,l j , so that we must only prove that the function fα(l) = χα,l is concave in order to obtain

the result. A function f (l) is concave if and only if ∀l1 ≤ l2 ≤ l3,
f (l2)− f (l1)

l2−l1
≥ f (l3)− f (l1)

l3−l1
, which is

equivalent to
∀h,k ≥ 0, ∀l, (h+ k) f (l) ≥ k f (l +h)+h f (l− k).

We could prove the concavity of f by using induction on the ‘distances’ h and k. The base case is
h = k = 1, that is,

2 f (l) ≥ f (l +1)+ f (l−1), ∀l. (23)

Let us assume that ∀h ≤ h0,∀k ≤ k0, with k0 ≤ h0, (h + k) f (l) ≥ k f (l + h)+ h f (l − k)∀l. For the
values [l, h = h0, k = k0], we then obtain

(h0 + k0) f (l) ≥ k0 f (l +h0)+h0 f (l − k0). (24)

Using the values [l − k0, h = k0, k = 1], we now obtain

(k0 +1) f (l − k0) ≥ f (l)+ k0 f (l − k0 −1).

Simple algebraic manipulations of these two inequalities lead to (h0 + k0 + 1) f (l) ≥ (k0 + 1) f (l +
h0)+h0 f (l − k0 −1).
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Similarly, using the values [l +h0, h = 1, k = h0] instead of [l − k0, h = k0, k = 1], we obtain

(h0 +1) f (l +h0) ≥ h0 f (l +h0 +1)+ f (l). (25)

Once again, after algebraic manipulations of the inequalities (24) and (25), we obtain (h0 + k0 +
1) f (l) ≥ k0 f (l +h0 +1)+(h0 +1) f (l − k0). The induction step is therefore complete.

We must still prove the base case. Unfortunately, we have not been able to analytically prove
the inequality in Equation 23 when f (l) = fα(l) = χα,l . Therefore, in order to prove it empirically,
we have built a computer program that computes the values χα,l and tests the truth of the inequality.
It is obvious that while we cannot compute χα,l for all the values of l and α, we can for all the values
of practical interest. More specifically, we have tested all the values of l from 2 to 1000 and all the
values of α from 0.1000 to 0.9999 with a stepsize of 0.0001. The results of these experiments are as
follows: the inequality in Equation 23 is always true from α = 0.5827 to 0.9999; from α = 0.5429
to 0.5826, it is always true except for the case l = 2; from α = 0.4922 to 0.5428, the inequality
is false for many values of l (the lower α is, the more frequent the number of failures), and from
α = 0.1000 to 0.4921 it is always false. It can be seen that since the behavior of the function fα(l) is
quite homogeneous, we do not expect it to behave differently for the intermediate values of α which
have not been tested. We may therefore conclude that fα(l) is concave for all the values of α that
may be of interest when computing the MIT score.

Proof of Theorem 4. We shall use induction on the number of variables in PaG(Xi). The base case,
where |PaG(Xi)| = 1, is obviously true. Let us suppose that the result is true when the size of the
parent set of Xi is equal to si − 1 and consider a case where |PaG(Xi)| = si. Then, if σi j denotes a
permutation of the variables in the set PaG(Xi)\{Xi j}, we have

gr(Xi,PaG(Xi) : D) = min
Xi j∈PaG(Xi)

{

gr(Xi,PaG(Xi)\{Xi j} : D)+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

= min
Xi j∈PaG(Xi)

{

2N MID(Xi,PaG(Xi)\{Xi j})−max
σi j

si−1

∑
k=1

χα,liσi j(k)
+

2N MID(Xi,Xi j|PaG(Xi)\{Xi j})−χα,lr
i j

}

= min
Xi j∈PaG(Xi)

{

2N MID(Xi,PaG(Xi))−max
σi j

si−1

∑
k=1

χα,liσi j(k)
−χα,lr

i j

}

= 2N MID(Xi,PaG(Xi))− max
Xi j∈PaG(Xi)

{

max
σi j

si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}

= 2N MID(Xi,PaG(Xi))− max
Xi j∈PaG(Xi)

{

max
σi j

{ si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}}

.

The value ∑si−1
k=1 χα,liσi j(k)

+ χα,lr
i j

in the last expression can be seen as the value associated with a

permutation of the variables in PaG(Xi) where the last element is restricted to be Xi j, that is, if we
define a permutation σi\ j as σi\ j(k) = σi j(k), ∀k = 1, . . . ,si−1 and σi\ j(si) = j, then ∑si−1

k=1 χα,liσi j(k)
+

χα,lr
i j

= ∑si
k=1 χα,liσi\ j(k)

.
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The union of the sets of permutations of PaG(Xi) where the last element is fixed to Xi j, for all
Xi j, is the set of all the permutations of PaG(Xi), hence

max
Xi j∈PaG(Xi)

max
σi j

{ si−1

∑
k=1

χα,liσi j(k)
+χα,lr

i j

}

= max
Xi j∈PaG(Xi)

max
σi\ j

si

∑
k=1

χα,liσi\ j(k)
= max

σi

si

∑
k=1

χα,liσi(k)
.

Therefore, we have gr(Xi,PaG(Xi) : D) = 2N MID(Xi,PaG(Xi))−maxσi ∑si
k=1 χα,liσi(k)

and the re-
sult is also true for parent sets of Xi with size equal to si. This completes the induction step.

Proof of Theorem 5. This result is evident as the scoring function is, by definition, a sum of local
scores.

Proof of Theorem 6. As all DAGs that are represented by the same RPDAG have the same skeleton
and the same head-to-head patterns (either coupled or uncoupled), then the differences between
these DAGs can only be due to the different direction of certain arcs linking two nodes Xi and X j

that have at most a single parent. In such cases, the chi-square value associated with the local score
of the corresponding node (either Xi or X j) is always the same, χα,l , with l = (ri −1)(r j −1).
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Abstract
We develop a new component analysis framework, the Noisy-Or Component Analyzer (NOCA),
that targets high-dimensional binary data. NOCA is a probabilistic latent variable model that as-
sumes the expression of observed high-dimensional binary data is driven by a small number of
hidden binary sources combined via noisy-or units. The component analysis procedure is equiva-
lent to learning of NOCA parameters. Since the classical EM formulation of the NOCA learning
problem is intractable, we develop its variational approximation. We test the NOCA framework
on two problems: (1) a synthetic image-decomposition problem and (2) a co-citation data analy-
sis problem for thousands of CiteSeer documents. We demonstrate good performance of the new
model on both problems. In addition, we contrast the model to two mixture-based latent-factor
models: the probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA).
Differing assumptions underlying these models cause them to discover different types of structure
in co-citation data, thus illustrating the benefit of NOCA in building our understanding of high-
dimensional data sets.

Keywords: component analysis, vector quantization, variational learning, link analysis

1. Introduction

Latent variable (or latent factor) models (MacKay, 1995; Bishop, 1999a) provide an elegant frame-
work for modeling dependencies in high-dimensional data. Suppose that two observed random vari-
ables xi,x j are marginally dependent. A latent variable model explains their dependency by positing
the presence of a hidden variable s representing their common cause. Examples of latent factor mod-
els include probabilistic principal component analysis (Tipping and Bishop, 1997; Bishop, 1999b),
mixtures of factor analyzers (Attias, 1999), multinomial PCA (or aspect) models (Buntine, 2002;
Hofmann, 1999a; Blei et al., 2003), the multiple cause model (Ghahramani and Jordan, 1995; Ross
and Zemel, 2002) and independent component analysis frameworks (Attias, 1999; Miskin, 2000).
The models are most often used for component analysis, where we want to identify a small number
of underlying components (factors, sources, or signals) whose effects combine to form the observed
data. Once a model is learned, it can be used to make inferences on hidden factors, such as to
identify the document topics in the aspect model (Hofmann, 1999a; Blei et al., 2003) or regulatory
signals in the microarray DNA data (Lu et al., 2004). In addition to their role in understanding the
structure of high-dimensional data, latent factor models can be applied in dimensionality reduction,
where the hidden factor values are a low-dimensional representation of the data sample.

c©2006 Tomáš Šingliar and Miloš Hauskrecht.
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Factor and principal component analysis methods (Bartholomew and Knott, 1999; Jolliffe,
1986) and other component analysis frameworks (Attias, 1999) are traditionally applied to high-
dimensional continuous-valued data. More recently, multinomial mixture models (Hofmann, 1999a;
Blei et al., 2003) were shown to handle many-valued discrete variables successfully. However,
component analysis methods specifically tailored to binary data remain scarce. In this work, we
investigate a latent factor model designed for analysis of high-dimensional binary data. The depen-
dencies between observables are represented using a small number of hidden binary factors whose
effects are combined through noisy-or units. We therefore refer to the model as to “noisy-or com-
ponent analyzer” (NOCA). Binary variables can, for instance, represent failures or congestions in
transportation networks, spread of disease in epidemiology, or the presence of a link in a citation
graph.

The principal limitation of latent factor models is the complexity of their learning (or parameter
estimation), as the standard EM formulation becomes exponential in the number of hidden factors.
To address the problem, we adopt a variational inference algorithm for bipartite noisy-or (B2NO)
networks (Jaakkola and Jordan, 1999) and derive the corresponding learning algorithm for the model
with hidden sources.

Two aspects of the new method are evaluated: (1) the quality of the approximate learning al-
gorithm and (2) the adequacy of the model for real-world data. We use two different data sets to
evaluate NOCA and its learning algorithm: a synthetic image-decomposition problem and a co-
citation data analysis problem. The knowledge of the underlying model and hidden factors in the
first problem (image data) enables us to assess the performance of the learning algorithm and its
ability to recover the model. We judge the quality of the recovery both qualitatively and quantita-
tively in terms of the likelihood of test data and data reconstruction error. Running-time analysis
verifies the expected polynomial scale-up.

The second evaluation problem is an application of NOCA to link and citation analysis. Citation
data from over 6000 CiteSeer documents were extracted and analyzed with NOCA. To measure
how well NOCA’s hidden sources capture the co-citation relationships, we use a cosine-distance
based metric and an inspection by a human judge. Perplexity of the testing set is used to gauge
the predictive power of the learned model. NOCA results are compared to mixture-based latent
variable models, represented by probabilistic latent semantic analysis (Hofmann, 1999a; Cohn and
Chang, 2000) and its Bayesian extension—latent Dirichlet allocation (Blei et al., 2003). The mixture
models view a document differently from NOCA. In consequence, each model class sees different
facets of the data structure. NOCA’s benefit is in the discovery of publication subcommunities in
the data that the mixture models tend to overlook.

2. Noisy-OR Component Analysis

Technically, the noisy-or component analysis (NOCA) is a latent variable model with binary vari-
ables defined by a bipartite belief network structure in Figure 1.

The nodes in the top layer represent a vector of latent factors s = {s1,s2, . . . ,sK} (“sources”)
with binary values {0,1} and the nodes in the bottom layer an observable vector of binary features
x = {x1,x2, . . . ,xD}. The connections between the two layers represent dependencies among the
observables: the nodes coupled by a latent factor can exhibit a local dependency pattern. Parameter-
izing the bottom-layer nodes with noisy-or units reduces the model’s parameter space to KD+K +D
free parameters:
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s1 s2 . . . sK

x1 x2 . . . xD

π1 π2 . . . πK

p

N

Notation:
D – observable dimensionality
K – latent dimensionality, D > K
N – number of data points
x – observables, indexed by j: x j

s – latent sources, indexed by i: si

Parameters (square nodes):
p – loading matrix (with leak terms)
{πi} – source priors

Figure 1: The NOCA model in plate notation. Shaded nodes correspond to observables. (In the
entire text, boldface letters will denote vectors or matrices.)

• a set of K prior probabilities πi parameterizing the (Bernoulli) prior distributions P(si) for
every hidden factor si;

• a set of DK parameters p = {pi j}
i=1,...,K
j=1,...,D of the noisy-or conditional probability tables, one

for each pair of hidden factor i and observed component j.

• a set of D parameters p0 j representing “other causes.” These can be incorporated into p by
positing a latent factor s0 with p(s0 = 1) = 1, where notationally convenient.

The NOCA model resembles the QMR-DT model (Shwe et al., 1991) in the structure and type
of nodes used. However, it is from the outset assumed to be fully connected. The model is simplified
during learning by setting the weight of most connections to zero.1 NOCA makes no assumption as
to the interpretation of random variables. For example, although features might correspond to words
when analyzing text documents; citation indicator variables will be used when analyzing references
among scholarly articles.

2.1 The Joint Distribution over Observables

The joint probability of an observation vector P(x) exemplifies and subsumes the probabilistic
queries we need to evaluate. Given the bipartite model, P(x) is obtained as

P(x) = ∑
{s}

(

d

∏
j=1

P(x j|s)

)(

K

∏
i=1

P(si)

)

, (1)

where {s} denotes the sum over all configurations of s, and P(si) is the prior probability of a hid-
den factor si. Given a vector of hidden binary factors s, the conditional probability p(x j|s) for an

1. This is in contrast with the structure-learning algorithm proposed by Kearns and Mansour (1998). Their algorithm is
exponential in the maximum number of hidden factors contributing to any observable variable. Therefore, they limit
the in-degree of the bottom layer nodes to obtain a polynomial algorithm. Our algorithm does not make any such
structural assumption.
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observable random component x j ∈ {0,1} is obtained through the noisy-or model:

P(x j|s) =

[

1− (1− p0 j)
K

∏
i=1

(1− pi j)
si

]x j
[

(1− p0 j)
K

∏
i=1

(1− pi j)
si

](1−x j)

, (2)

where p0 j is the leak probability that models “all other” causes.
Equation 2 can be reparameterized with θi j =− log(1− pi j) to obtain:

P(x j|s) = exp

[

x j log

(

1− exp

{

−θ0 j−
k

∑
i=1

θi jsi

})

+(1− x j)

(

−θ0 j−
K

∑
i=1

θi jsi

)]

. (3)

This reparameterization will prove useful in the following description of the variational lower
bound.

2.2 The Factorized Variational Bound

The bottleneck in computing the joint probability over observables, P(x) in Equation 1, is the sum
that ranges over all possible latent factor configurations. However, it is easy to see that if P(x j|s)
for both x j = 0 and x j = 1 could be expressed in a factored form as:

P(x j|s) =
K

∏
i=1

h(x j|si), such that ∀i, j : h(x j|si)≥ 0, (4)

then the full joint P(x,s) and the joint over the observables P(x) would decompose:

P(x,s) =
d

∏
j=1

P(x j|s)
K

∏
i=1

P(si) =
K

∏
i=1

(

P(si)
d

∏
j=1

h(x j|si)

)

,

P(x) = ∑
{s}

K

∏
i=1

(

P(si)
d

∏
j=1

h(x j|si)

)

=
K

∏
i=1

(

∑
{si}

P(si)

[

d

∏
j=1

h(x j|si)

])

.

Such decomposition would imply that the summation in Equation 1 can be performed efficiently.
Note that the condition of Equation 4 is sufficient to ensure tractability of other inference queries,
such as the posterior of a hidden factor si:

P(si|x) ∝ P(si)
d

∏
j=1

h(x j|si). (5)

However, while Equation 3 defining P(x j|s) decomposes for x j = 0, it does not factorize for
x j = 1. Thus, in general, it is impossible to compute P(x) efficiently. We approximate P(x j|s) for
x j = 1 with a factored variational lower bound (Jaakkola and Jordan, 1999):

P(x j = 1|s)≥ (6)

P̃(x j|s) =
K

∏
i=1

exp

{

q j(i)si

[

log(1− e
−θ0 j−

θi j
q j(i) )− log(1− e−θ0 j)

]

+q j(i) log(1− e−θ0 j)

}

,
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where q js represent sets of variational parameters defining a multinomial distribution. Each com-
ponent q j(i) of the distribution can be viewed as a responsibility of a latent factor si for observing
x j = 1. If we denote the complex expression inside the product on the right-hand side of Equation 6
by h(x j|si), we have the sought-after decomposition.

Incorporating the variational bound into the first, nondecomposing term in Equation 3, we can
obtain approximations P̃(x|s,Θ,q) ≤ P(x|s,Θ), P̃(x,s|Θ,q) ≤ P(x,s|Θ) and P̃(x|Θ,q) ≤ P(x|Θ)
that factorize along latent factors si.

3. The Variational Learning Algorithm

The key step of component analysis corresponds to the learning of the latent factor model from
data. The problem of learning of bipartite noisy-or networks has been addressed only in the fully
observable setting; that is, when both the sources and observations are known. The learning methods
take advantage of the decomposition of the model created by the introduction of special hidden
variables (Heckerman, 1993; Vomlel, 2003; Diez and Gallan, 2003). The EM algorithm is then used
to estimate the parameters of the modified network, which translate directly into the parameters of
the original model. However, to our knowledge, no learning algorithm for B2NO networks has been
derived for the case of unobservable source layer.

In this section, we motivate and detail the derivation of the variational learning algorithm, fol-
lowing the EM-framework. We identify the crucial hurdles in deriving an efficient algorithm and
show how the variational approximation overcomes them.

3.1 Classical EM Formulation

Let D = {x1,x2, · · ·xN} be a set of N i.i.d. vectors of observable variables. Our objective is to find
parameters Θ that maximize the likelihood of the data, P(D|Θ). The standard approach to learn the
parameters of the model in the presence of hidden variables is the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). EM computes the parameters iteratively by taking the following
parameter update step:

Θ∗ = argmax
Θ

N

∑
n=1

〈logP(xn,sn|Θ)〉P(sn|xn,Θ′) ,

where Θ′ denotes previous-step parameters.
The main problem in applying the EM to the noisy-or model is that the joint distribution over

every “completed” sample P(xn,sn|Θ) does not decompose along hidden factors si and thus its ex-
pectation 〈logP(xn,sn|Θ)〉P(sn|xn,Θ′) requires iteration over all possible latent factor configurations.
This is infeasible since the configuration space grows exponentially in the number of factors. Note
that even if we could solve the inference query P(sn|xn,Θ′) efficiently, we still cannot push the
expectations inward over the nonlinearities—we also need to decompose the term inside the expec-
tation.

3.2 Variational EM

The idea of variational methods is to approximate the likelihood terms with their imprecise, but
structurally more convenient surrogates. In summary, an additional set of free variational parame-
ters q (Section 2.2) is introduced that offers the flexibility to perform more efficient calculations of
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the joint and posterior distributions within the EM algorithm. In particular, we replace the true con-
ditional probabilities P(xn|sn,Θ) that do not factorize with their factored lower-bound variational
approximation P̃(xn|sn,Θ,qn) as described in Section 2.2. As a consequence, the approximate pos-
terior P̃(sn|xn,Θ,qn) also factorizes, which simplifies the expectation step of the algorithm. The
new EM algorithm iteration becomes:

Θ∗ = argmax
Θ

N

∑
n=1

〈

log P̃(xn,sn|Θ,qn)
〉

P̃(sn|xn,Θ′,qn′ )
,

where Θ′ and qn′ denote previous-step model and variational parameters.
In ML learning, we maximize logP(D|Θ) with respect to Θ. In NOCA, we maximize a lower

bound on logP(D|Θ) instead, to ease the computational complexity brought by hidden variables.
First, let us simplify the expectation distribution—the hidden source posterior:

logP(D|Θ) = log
N

∏
n=1

P(xn|Θ)

=
N

∑
n=1

log

[

∑
{sn}

P(xn,sn|Θ)

]

=
N

∑
n=1

log

[

∑
{sn}

P(xn,sn|Θ,qn)
Q(sn)

Q(sn)

]

≥
N

∑
n=1

[

∑
{sn}

〈logP(xn,sn|Θ)〉Q(sn)−〈logQ(sn)〉Q(sn)

]

.

This lower bound follows from Jensen’s inequality for any arbitrary distribution over the hidden
sources Q(H) = ∏N

n=1 Q(sn) (Jordan et al., 1999; Saul et al., 1996; Ghahramani and Jordan, 1997).
However, even with a decomposable Q, we cannot take expectations of logP(xn,sn|Θ) easily, be-
cause the noisy-or distribution is not in the exponential family and the si’s reside inside nonlineari-
ties. We apply Equation 6 to obtain a further lower bound:

logP(D|Θ) ≥
N

∑
n=1

[

∑
{sn}

〈logP(xn,sn|Θ)〉Q(sn)−〈logQ(sn)〉Q(sn)

]

≥
N

∑
n=1

[

∑
{sn}

〈

log P̃(xn,sn|Θ,qn)
〉

Q(sn)
−〈logQ(sn)〉Q(sn)

]

=
N

∑
n=1

[

∑
{sn}

〈

log P̃(xn|sn,Θ,qn)P(sn|Θ)
〉

Q(sn)
−〈logQ(sn)〉Q(sn)

]

=
N

∑
n=1

Fn(xn,Q(sn))

= F (D,Q(H)),

where qn are parameters of the lower bound approximation described in Section 2.2.
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The variational EM that optimizes the bound also proceeds, like standard EM, in two steps. The
E-step computes the expectation distribution Q(sn). We could in principle choose any distribution
Q, but it is desirable to choose one that makes the variational bound as tight as possible. The
variational bound of logP(D|Θ) is the tightest at Q(sn) = P(sn|xn,Θ). Since that ideal posterior
is intractable, we define Q(sn) to be the tractable posterior probability P̃(sn|xn,Θ′,qn), where Θ′

are fixed previous step parameters and qn are tuned to obtain the best approximation to the true
posterior. (Alternatively, we could separately and explicitly optimize Q to maximize F (D,Q(H)).)

The new qn s are obtained that maximize P̃(xn|sn,Θ′,qn) by an iterative procedure described in
Figure 2. These iterative updates essentially form an embedded EM loop and are derived in Jaakkola
et al. (1996). The subsequent computation of P̃(sn|xn,Θ′,qn) decomposes along the hidden factors
and can be performed in linear time according to Equation 5. Obtaining the posteriors on hidden
sources concludes the E-step.

The M-step optimizes F (D,Q(H)) with respect to Θ. Given the decomposable Q(sn),
Fn(xn,Q(sn)) can be rewritten as:

Fn(xn,Q(sn)) =
〈

log P̃(xn|sn,qn,Θ)
〉

Q(sn)
−〈Q(sn)〉Q(sn)

=

[

K

∑
i=1

〈sn
i 〉Q(sn

i )
log

πi

(1−πi)
+ log(1−πi)

]

+

[

d

∑
j=1

(

K

∑
i=1

−〈sn
i 〉Q(sn

i )
θi j(1− xn

j)

)

−θ0 j(1− xn
j)

]

(7)

+
d

∑
j=1

K

∑
i=1

[

〈sn
i 〉Q(sn

i )
qn

j(i)x
n
j log

(

1− e
−θ0 j−

θi j
qn

j (i)

)

+
(

1−〈sn
i 〉Q(sn

i )

)

qn
j(i)x

n
j log(1− e−θ0 j)

]

− 〈Q(sn)〉Q(sn) .

The last term is the entropy of the variational distribution, it does not depend on Θ and can be
ignored in further M-step derivations.

For the rest of the paper all expectations are over Q(sn)—the variational posterior on hidden
factors based on previous-step parameters. The simplified notation leaves the dependence on x and q
implicit, but also expresses the intuition that by replacing the posterior by a variational distribution,
we effectively “disconnected” the model.

Since logP(xn,sn|Θ), the term inside expectation, is approximated using the same transforma-
tion of P(x|s) as the posterior distribution over the hidden sources, the q computed in the E-step
can be reused in the M-step. The parameter updates for M-step can be derived straightforwardly by
setting

∂
∂θi j

F (D,Q(H)) = 0
∂

∂θ0 j
F (D,Q(H)) = 0.

Unfortunately, no closed form solutions for these tasks exist. We update the parameters Θ
simultaneously by setting them to the numerical solutions of the above equations and iterate the
updates until convergence. The numerical solutions are obtained by bisection search (Figure 3).
The parameters are set to random non-zero values in the first EM iteration. We note that the depen-
dencies among parameters are relatively sparse and optimizations typically converge in very few
optimization steps. The complete parameter update formulas we derived and use in our procedure
are summarized in Figure 2.
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Updates of variational parameters qn
j(i). Iterate until fixpoint:

qn
j(i)← 〈s

n
i 〉Q(sn)

qn
j(i)

log(1− e−θ0 j)

[

log(1−An(i, j))−
θi j

qn
j(i)

An(i, j)
1−An(i, j)

− log(1− e−θ0 j)

]

subject to condition ∑K
i=1 qn

j(i) = 1 ensured through normalization. An(i, j) = e
−θ0 j−

θi j
qn

j (i) .

Updates of θi js. Find the root of ∂F /∂θi j = 0 numerically:

N

∑
n=1
〈sn

i 〉Q(sn)

[

−1+ xn
j

1
1−An(i, j)

]

= 0

Updates of θ0 js. Find the root of ∂F /∂θ0 j = 0 numerically:

N

∑
n=1

[

K

∑
i=1
〈sn

i 〉Q(sn)q
n
j(i)x

n
j

(

An(i, j)
1−An(i, j)

−
e−θ0 j

1− e−θ0 j

)

]

+

[

−(1− xn
j)+

K

∑
i=1

xn
jq

n
j(i)

e−θ0 j

1− e−θ0 j

]

= 0

Updates of πis: πi =
1
N

N

∑
n=1
〈sn

i 〉Q(sn)

Figure 2: A summary of iterative optimization steps for the variational learning method.
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Figure 3: M-step optimization is simply a bisection-search procedure. The curve is the partial
derivative of the objective function F w.r.t. θ11 plotted as a function of θ11. The little
stars on the curve represent iterations of the bisection algorithm. The advantages of the
bisection algorithm come from its simplicity: no derivatives that would be costly to com-
pute (we have to iterate through the data to compute F!) and good numerical stability.
The search typically converges in few (∼ 10) iterations.
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(a) (b)

Figure 4: Model reconstruction experiments. (a) Image patterns associated with hidden sources
used in the image decomposition problem. The ninth (bottom-right) pattern corresponds
to the leak. (b) Example images generated by the NOCA model with parameters corre-
sponding to patterns in panel (a).

3.3 Simplicity Bias

The empirical evaluation of the NOCA model revealed that the model is able to automatically shut
off “unused” noisy-or links between sources and observations. This suggests the presence of a
term encouraging sparse models in the functional F . Indeed, the term: −〈sn

i 〉Q(sn)θi j(1− xn
j) in

Equation 7 can be viewed as a regularization-like penalty2 assigned to large values of θi j if these are
not supported by data. A penalty proportional to θi j and the posterior of a hidden source is added
for each observable xn

j that is equal to 0. This has an appealing intuitive interpretation: it is unlikely
that the observation x j is 0, if the source is on ( 〈si〉 is high ) and the link between si and x j is strong
(θi j >> 0). Consequently, the link in between the source j and observation i is driven to zero if not
supported by the presence of positive observations. If all links between a source and observations
are driven to zero, the source is effectively disconnected and can be pruned from the network. We
demonstrate this effect in the experiments in Section 4.2.

4. Evaluation of NOCA

In this section, we will evaluate NOCA and its variational learning algorithm on a synthetic image
data set built using NOCA model. The advantage of using a synthetic data set is that the true model
as well as the instantiations of the hidden sources are known.

The image data sets used in the experiments are created by sampling from a NOCA model with
8 hidden sources. Each source is associated with an 8×8 image pattern. The patterns and examples
of the convoluted input images are shown in Figure 4, panels (a) and (b).

2. Standard regularization framework involves a data-independent term that penalizes for non-zero parameters. How-
ever, here the penalty term depends on data and is a property of the model.
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(a) (b) (c)

Figure 5: Examples of models learned from 50, 200 and 1000 samples (panels a through c). The
differences among models illustrate the improvement in the model recovery with increas-
ing sample size. Although some source images are identified quite well with as few as
50 samples, the noise in other images is apparent. Models learned from 200 and 1000
samples are visibly improved.

4.1 Model Reconstruction

Our first objective is to assess the ability of the variational algorithm to learn the NOCA model
from observational data. In this experiment, we used data sets of size 50–5000 data points that were
generated randomly from the model. The data sets were given to the learning algorithm and the
learned models were compared to the original model.

Figure 5 visualizes the parameters of three models recovered by the learning algorithm for
varied sample sizes. It is apparent that the increase in the number of samples leads to improved
models that are closer to the original model. The model learned from 50 samples suffers from high
variance caused by the low number of training examples. Nevertheless, it is still able to capture
some of the original source patterns. Sample sizes of 200 and 1000 improve the pattern recovery.
By learning from 1000 samples, we were able to recover almost all sources used to generate data
with a relatively small distortion.

Figure 5 illustrates the dependency of the model quality on the sample size in qualitative terms.
To measure this dependency more rigorously we use the training/testing validation framework and
a metric based on the joint distribution of observable data. The NOCA model is always learned
from a training set. We use training sets of size 50,100,200,500,1000,2000,5000. The testing set
(sample size 2000) is viewed as a sample from the true multivariate distribution. We calculate its log-
likelihood with respect to the learned model. A better fit of the model will be reflected in improved
log-likelihood of the test sample with respect to this model. Figure 6 shows the log-likelihoods
for NOCA models averaged over 50 testing sets. The results demonstrate that an increased size of
training sets leads to a better log-likelihood of test data and hence a better approximation of the true
distribution.

4.2 Model Selection

In practice, the correct latent dimensionality is rarely known in advance. Model selection is typi-
cally addressed within the Bayesian framework. Marginal data likelihood (Cooper and Herskovits,
1992) or its approximations (such as the Laplace approximation) are typically used for this purpose.
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Figure 6: Average log-likelihoods of NOCA models on testing sets. The models are learned from
training sets of size 50, 100, 200, 500, 1000, 2000 and 5000. The averages are over 50
trials. One-standard-deviation error bars are shown. The increase in the log-likelihood
illustrates the improvement in the model recovery with an increasing sample size.

However, in presence of hidden variables it is intractable to compute the marginal likelihood. To ad-
dress the model selection problem in NOCA we rely on the Bayesian Information Criterion (BIC).
The BIC is a large-sample approximation to the integrated likelihood (Schwarz, 1978):

BIC(k) =− ln p(D|k, Θ̂k)+
1
2

ψk lnN

where Θ̂k is the ML estimate of NOCA parameters for the model with k hidden sources and ψk is
the number of free parameters in this model.

Figure 7a shows the results of model selection experiments based on the BIC score. The results
are averages of BIC scores obtained by learning the model using 2000 images generated by sampling
from NOCA model with 8 hidden sources. In training on this data set, the number of assumed
hidden sources varied from 2 to 15. To assure fair comparison, the same training data was used for
all models in one train/test run. We see that the optimum BIC score is achieved at 8 sources which
corresponds to number of sources in the original model.

The BIC score penalizes models with larger number of parameters. The penalty opposes the
increase in the log-likelihood of training data we expect to see in more complex models with a larger
number of hidden sources. However, in Section 3.3 we have pointed out the existence of an inherent
“regularization” ability of NOCA, that is, its ability to shut down the influence of unnecessary
sources once the true dimensionality of the model is reached. In such a case we would expect the
log-likelihood of training data to level out for larger than the true number of sources. Figure 7b
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ŠINGLIAR AND HAUSKRECHT

0 2 4 6 8 10 12 14 16
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 10

5

number of sources

B
IC

 s
co

re

Model selection: BIC

0 2 4 6 8 10 12 14 16
−34

−32

−30

−28

−26

−24

−22

−20

number of sources

lo
gl

ik
el

ih
oo

d

Model selection: loglikelihood of data

(a) (b)

Figure 7: (a) The average BIC scores for the models with varied number of sources. (b) The av-
erage log-likelihood of data for model with varied number of sources. In both cases,
the true number of sources K is fixed at 8. Averages are calculated from 20 trials (one-
standard-deviation bars are shown). In each trial, the model was learned using 2000 data
points. The BIC reaches its optimal value at, and log-likelihood levels at 8 sources, which
corresponds to true number of sources.

illustrates this point by plotting the log-likelihood of data for models with different number of
sources. The setup of the experiment is the same as used in the BIC experiments. The log-likelihood
score increases for models with fewer than 8 sources. The log-likelihood for more than 8 sources
remains approximately the same. Visual inspection of the learned loading matrices reveals how this
happens: many sources are disconnected from the model when the model learns their corresponding
loading matrix rows to be identically 0. The models that were initialized with more than 8 sources
most often stabilized at 7-8 active (connected) sources. The fact that in some instances the number
of sources converged to 7 can be explained the ability of the leak factor to effectively model an
additional source.

4.3 Running-time Analysis

Precise time-complexity analysis of the NOCA learning algorithm is impossible since both the ex-
pectation and maximization steps involve iterative procedures whose convergence properties are not
well understood. Moreover, these are embedded in the EM loop itself and while eventual conver-
gence is assured, its rate is not. Therefore we evaluate the time complexity empirically, with respect
to N, the size of the training set and K, the number of latent sources.3 We have observed no de-
pendence between training set size, the assumed number of latent sources and the number of EM
iterations performed in experiments.

The running time of the learning algorithm for different training set sizes is shown in Figure 8(a).
A nearly straight line indicates that the complexity grows polynomially with the number of samples.

3. It follows from the form of the update equations that the algorithm is linear in D, the number of observable dimen-
sions.

2200



NOISY-OR COMPONENT ANALYSIS

50 100 200 500 1000 2000 5000
10

4

10
5

10
6

10
7

10
8

Samples

R
un

tim
e 

(m
s)

Scaling of runtime with sample size

2 3 4 5 6 7 8 9 10 12 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Dimensionality

R
un

tim
e 

(m
s)

Scaling of runtime with latent dimensionality

(a) (b)

Figure 8: (a) Runtimes of NOCA as they scale with increasing size of the training set. K is fixed
at 8. (b) Scale-up with the number of assumed latent sources, the data set size is fixed at
2000.

In fact, we have observed that the time complexity scales approximately linearly with the number
of samples in the training set. The analysis of running times for different number of sources in
Figure 8(b) shows that these scale roughly linearly with the number of assumed latent sources. This
gives empirical support for the efficiency of the variational EM approximation as compared to the
exact EM algorithm.

4.4 Dimensionality Reduction and Data Compression with NOCA

Latent variable models are inherently well suited for dimensionality reduction. Lossy compression
of the data by the NOCA model can be achieved as follows. Given the learned NOCA model and
an observed test-set image, we compute the posterior of each hidden source and pick the value
with the higher posterior probability. The values of the hidden sources act as a low-dimensional
representation of the test data. The high-dimensional data can then be recovered by sampling the
observables given the stored values of sources and compared to the original test-set.

Figure 9(a) illustrates the data reconstruction error of the NOCA model learned for different
sample sizes. The data reconstruction error is defined as the proportion of feature values in which
the original data set differs from the reconstructed data. We measure data reconstruction error on
both the training and the testing data. The training set is the data used to learned the model, the
testing set is an additional sample from the model. The data reconstruction error for the training
set is smaller for very small sample sizes and stabilizes for sample sizes over 200. This can be
explained by “overfitting”—the use of free model parameters for memorization of training data—
for small sample sizes, and saturation of the model to its stochastic limit for larger sample sizes.
The data reconstruction error for test sets behaves inversely—it is worse from smaller training sets
and stabilizes for larger training sets as the learned model improves.

2201
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Figure 9: (a) Average data reconstruction errors obtained for varied training sample sizes. (b) Av-
erage data reconstruction error plotted against the number of assumed latent sources. All
values are averaged over 50 runs.

Figure 9(b) shows the influence of the number of hidden sources on the data reconstruction error.
The data reconstruction error goes down with increasing K and flattens out as the learned models
use no more than the true number of sources (8), thanks to the effect described in Section 3.3.

A related dimensionality-reduction model tailored to binary data is offered by logistic PCA
(Schein et al., 2003). In this model, each component xn

j of a data point xn is assumed to be sampled
from a Bernoulli distribution whose parameter θn

j is determined by a logistic unit from the factors
v, latent coordinates u and the bias term ∆ j: θn

j = σ(v j.un
j + ∆ j). The crucial difference between

NOCA and logistic PCA is that the latent space in NOCA is discrete while in logistic PCA it is
continuous. As a result, logistic PCA uses a many-bit floating point representation to capture many
one-bit feature values. Figure 10 illustrates data reconstruction errors for the same experiments as
performed for NOCA in Figure 9. The results demonstrate better data reconstruction performance
of the logistic PCA model. This is expected since the complexity of NOCA’s latent space is much
smaller (finite as opposed to continuous). The differences in performance demonstrate the tradeoff
in between the complexity of the representation of the latent space and its accuracy. In particular,
NOCA uses 8 bits to represent each data point in the latent space while the logistic PCA uses a
vector of 8 floating point values per data point.

5. An Application of NOCA to Citation Analysis

The analysis of NOCA on image data sets confirms it can discover, fully unsupervised, the structure
of the hidden components reasonably well. But does the method apply to the real world? Do its
assumptions really fit the data it was designed for? To assess this aspect of NOCA we test it on
a citation analysis problem. We first discuss the data set and proceed to report the results of three
evaluation strategies: (1) evaluation by a human judge, (2) a cosine-distance based metric and (3)
perplexity of a testing set.
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Figure 10: Reconstruction errors achieved by the logistic PCA, a) as they vary with training set size
(fixed size testset), and b) as they vary with the latent dimension of the model.

5.1 Citation Data

We acquired a data set of approximately 17.000 documents from the CiteSeer online service. These
are the HTML documents that place a scientific article within the lattice of citations; not to be mis-
taken for the actual text of the article. We chose forty authors active in these publication areas:
Introductions and tutorials, Markov chain Monte Carlo, Variational methods, Loopy belief prop-
agation and Kernels and support vector machines. Naturally, there are overlaps; for example, a
publication discussing approximate inference in Bayesian networks is likely to mention both loopy
belief propagation and MCMC techniques. This overlapping structure renders the task quite non-
trivial. In addition, it makes it difficult to come up with an unambiguous “gold standard” clustering.

We selected all papers in the data set citing any of the selected authors. The data set was
preprocessed into a binary matrix Mi j, where the element (i, j) is 1 if document i cites a paper
authored by author j and 0 otherwise. Zero rows, that is documents that cite none of the authors,
are discarded. There were 6592 non-zero rows in the matrix.

5.2 NOCA Formulation of Citation Analysis

The citation data set consists of N documents, each of which cites a number of authors. The in-
dividual authors publish on one or more topics. Our conjecture is that certain citation patterns are
indicative of paper topics. We wish to discover these topics and their associated authors, in a fully
unsupervised manner.

To analyze the data with NOCA, we assume that the topics are represented with the hidden
binary variables s1, . . .sK ∈ {0,1}. Intuitively, si = 1 in the unobserved event that the document
discusses topic i. The citation features correspond to the observed variables x1, . . .xD. The n-th
document in the corpus is thus represented by a D-dimensional binary vector xn. The event that
document n cites author j is captured by observing xn

j = 1. The “affinity” of author j and topic i
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Figure 11: PLSA (a) and LDA (b) graphical models.

is expressed by the weights pi j which parameterize the noisy-or CPD’s of the bottom layer nodes.
This defines a generative probabilistic model at the document feature level:

• For all i = 1, . . . ,K, sample si from Bernoulli(πi).

• For all j = 1, . . . ,D, sample x j from the noisy-or distribution p(x j|s).

5.3 Mixture Models

Latent variable models have demonstrated good results in text and document analysis. Most of these
are mixture models that view a document as a mixture of hidden topic factors. The topic factors
are identified with distributions over words. The key assumption of a mixture model is that the
occurrence of a specific word is determined by a single mixture component. These models share
the bag-of-words view of a document and provide a probabilistic model for each word occurrence.
NOCA offers a different view of a document: A document is a combination of non-competing
topics and each word is determined by a combination of topics. NOCA does not define a model for
generation of each single word, which makes it less suitable for applications such as text modeling,
but it fits more naturally the type of data encountered in link analysis.

In the following, we briefly review two mixture models applied frequently in text modeling:
PLSA and LDA. These state-of-the-art text models have also been recast for link analysis purposes
(Cohn and Hofmann, 2001; Cohn and Chang, 2000).

Probabilistic Latent Semantic Analysis (PLSA) Hofmann (1999a), whose graphical model is
shown in Figure 11(a), assumes that each document is represented by a convex combination (a
mixture) of topics and that the features of the document are generated by the following process:

1. pick a document d according to Multinomial P(d) (defined by a dummy indexing of the
documents in the data set),

2. sample a topic z according to Multinomial P(z|d),

3. generate a feature from P(x|z).

The joint probability P(d,x) factorizes as P(d)∑z P(z|d)P(x|z). Since the topic variable z is un-
known, the algorithm for learning PLSA derives from the EM framework.
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Latent Dirichlet Allocation (LDA) Blei et al. (2003) adds Bayesian hyperparameters to the
PLSA model so that the mixture proportions themselves are a Dirichlet-distributed random vari-
ate (Figure 11). The following process is assumed to generate the documents:

1. sample a parameter θ from the exchangeable Dirichlet distribution Dir(α),

2. sample a topic from Multinomial P(z|θ),

3. generate a feature from P(x|z,β).

Both the parameter θ and the topic variable z are unobserved. The addition of the new hidden
parameters makes the exact inference for LDA intractable. To alleviate this problem Blei et al.
derive a variational inference algorithm which in turn allows them to develop an efficient variational
EM learning procedure.

The conceptual difference between NOCA on the one hand and PLSA or LDA on the other is
that NOCA views a document as a set of features, while the mixture methods regard it as a bag
of words. More importantly, NOCA makes a different assumption about the nature of the topic
factors. PLSA (Figure 11, left) and LDA (Figure 11, right) view the topic factors as points in
the vector space spanned by the orthogonal basis which is the vocabulary. Moreover, all these
points belong to a subspace of the (D− 1)-dimensional word simplex since they correspond to
normalized distributions. NOCA treats the topic as a separate type of entities that live in their own
K-dimensional space which projects non-linearly into the vocabulary space. As opposed to PLSA,
where one aspect is assumed to be responsible for the generation of a word, in NOCA, potentially
all of the topic factors contribute to the generation of a single word feature. Additionally, the added
freedom of the leak parameter allows NOCA to “put aside” the documents where no structure seems
to stand out. These do not have to be accounted for in the output components. Clearer clustering is
the outcome that we would expect from this organization.

5.4 Experiments

The evaluation of topic discovery in any of the frameworks relies on the identification of largest
elements of output vectors or matrices. Since the semantics of the numeric values differs in the
respective approaches, the only consistent way of comparing the outputs is by listing the most
prominent elements of each of the identified clusters. We achieve this goal for different models as
follows:

• Logistic PCA is parameterized by the loading matrix V and the constant bias vector ∆. We
interpret rows of V as the component vectors and list the authors corresponding to the largest
elements in each component vector.

• PLSA parameterization is not as in Figure 11(a), but instead the model is equivalently param-
eterized with P(z), P(d|z) and P(x|z) (Hofmann, 1999a). We list the authors x with the highest
P(x|z) for each aspect z. Also reported is P(z), to help assess the relative representation of the
aspects.

• LDA provides the matrix β and the Dirichlet hyperparameter α. The reported components
are the rows of β; the authors corresponding to the highest values in each row of β are listed.
The components that LDA recovers are very stable, which is characteristic of the Bayesian
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Community
Method intro MCMC var’l LBP Kernel
LogPCA 40.0 42.5 15.0 10.0 67.5
PLSA 67.5 57.5 50.0 32.5 75.0
LDA 80.0 95.0 62.5 5.0 87.5
NOCA 85.0 15.0 92.5 82.5 75.0

Table 1: Success rates in recovering subcommunities in the citation data. The numbers are percent-
ages averaged over 20 different random initializations.

approach taken in developing the model. Therefore we report results from 20 runs with dif-
ferent α (the initial exchangeable Dirichlet prior) instead, starting from α = 0.01 and ending
at α = 10.

• For NOCA, the output consists of the cluster priors πi, the loading matrix p and the “bias
vector” p0. The authors listed under each component are those who received the highest
weight in pi, the i-th row of the loading matrix p. Again we report the priors πi to compare
the relative size of the clusters. Note that the priors need not sum to one, since each of them
corresponds to a separate random variable.

5.4.1 QUALITATIVE EVALUATION

We ran all of the algorithms 20 times with different random initializations and visually judged the
results from displays such as that in Figure 13. If a particular topic factor appeared and was deter-
mined to be of good “cluster purity”, we assigned a score of 1 to the combination of community and
analysis technique. If the cluster was identifiable with a community, but judged to be of mediocre
purity, the score assigned was 1/2. Otherwise, the score assigned was 0. Whenever the community
was captured in more than one factor, only one was counted. The maximum score is 20 as there
were 20 experimental runs. The entries in Table 1 are the respective percentages.

The logistic PCA does not appear to be well suited for this task and is outperformed by the
other methods. PLSA finds on average 2 communities in each run. LDA discovers the MCMC topic
consistently, but fails to discover the LBP community. NOCA exhibits the opposite behavior: it
reliably discovers LBP but fails to find the MCMC community most of the time. The SVM/kernel
group and the variational methods community is consistently discovered by both NOCA and LDA,
as well as the authors of widely cited overview and tutorial articles.

The difference observed for the LBP and MCMC communities is striking and should be ex-
plained by pointing out the characteristics of the respective communities. The LDA model is able
to recover communities that have established their “market share” and have high enough prior prob-
ability that they are able to compete with the other groups for the direction that the topic simplex
takes in the “vocabulary” space. LDA thus has a difficult time finding small, emerging areas. On
the other hand, these nascent communities tend to be highly coherent, with a few pioneers that are
very likely to be cited for their seminal papers. Such structure favors the NOCA model, which has
a tendency to pick out tightly woven patterns and leave the more diffuse domains to be picked up
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Figure 12: A result of noisy-or component analysis on the citation data set. The columns visualize
the parameters of the noisy-or loading matrix after they are rescaled by the prior of the
source. Black fields correspond to 0s in the loading matrix, while white ones correspond
to 1s.
(a) With 5 components. The following components are discernible:
- The authors dominating the first component are: J. Pearl, M. Jordan, S. Lauritzen and
D. Spiegelhalter. Weaker ties are to W. Buntine, N. Friedman and D. Koller. This com-
ponent contains many respected authors of basic references and tutorials on Bayesian
belief networks.
- The second source was shut down in this run.
- C. Burges, B. Schölkopf, A. Smola and V. Vapnik form the core of the third component.
Without any doubt, this component represents the kernel and SVM research community.
- The authors prominent in the fourth factor are Z. Ghahramani, M. Jordan, G. Hinton,
R. Neal, L. Saul, C. Bishop and M. Tipping. This source captures the variational ap-
proximation community.
- The last component consists of the following authors: B. Frey, W. Freeman, K. Mur-
phy, S. Lauritzen, J. Pearl, Y. Weiss and J. Yedidia. All authors published extensively
on loopy belief propagation, using J. Pearl’s BP algorithm. The presence of an outlier in
this set, S. Lauritzen, can be attributed to the fact that he is among the most frequently
cited authors in the general context of Bayesian networks. We can conclude that our
algorithm found the LBP community.
(b) A run with 10 components illustrates the regularization behavior. Four out of ten
sources were completely or almost completely shut off.
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(a) logPCA
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(b) PLSA
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0.0022 0.0912 0.0858 0.0277 0.0102

Minka Vapnik Lauritzen Jordan Freeman

Jordan Smola Pearl GhahramaniYedidia

Jaakkola SchollkopfSpiegelhalterHinton Weiss

Yedidia Burges Jordan Bishop Frey

GhahramaniHastie Buntine Saul Murphy

Freeman Jaakkola Koller Jaakkola Welling

Frey Bishop Dechter Attias Pearl

? kernel intro variat’l LBP

(c) NOCA

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

α = 1

Vapnik Jordan Geman Friedman Pearl

Smola Hinton Doucet Koller Lauritzen

SchollkopfNeal de Freitas Hastie Jain

Bishop GhahramaniMurphy Kearns Spiegelhalter

Burges Weiss Gordon Buntine Dechter

Tipping Jaakkola Koller Chickering Freeman

Jaakkola Horvitz Welling SchuurmansFrey

kernel variat’l MCMCintro intro

(d) LDA

Figure 13: Typical outputs from the link analysis algorithms:
a) Logistic PCA.
b) Probabilistic latent semantic analysis. Also reported is the prior of each aspect P(z =
i).
c) Noisy-or component analysis. The prior on a source P(si) is also shown.
d) Latent Dirichlet allocation with α = 1.
Below each component, our evaluation of whether the component represents any of the
the publication communities.

by the leak factor. Thus the broader MCMC community eluded the noisy-or analyzer, while it was
reliably captured by LDA; and the NOCA brought to light the LBP community.

In summary, NOCA discovers on average as many clusters as LDA, but the clusters are of
different nature. If one wishes to gain insight into this type of data, we advocate that both methods
be used, as they discover distinct kinds of patterns.
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5.4.2 THE COSINE METRIC

While we took great care to assure objective evaluation, the above approach is nevertheless open to
criticism on the grounds of “subjectivity.” We would like our recovered components to align with
a “gold standard,” a set of vectors defined by a human before he or she sees the result of the clus-
tering algorithm. Therefore we defined 0-1 vectors corresponding to the established communities
as we perceive them. For example, the vector corresponding to LBP community has 1s at positions
corresponding to names such as Freeman, Frey, Yedidia, etc. and 0s elsewhere.

A standard distance metric for vectors is their cosine distance. The similarity of two vectors x,y
is the cosine of their angle: cosα(x,y) = x·y

|x||y| . With the cosine metric, one can evaluate the simi-
larity of two vectors. However, how do we quantitatively evaluate a component set X as a whole?
Recovered components need to be matched to the original components as they can be permuted
without affecting the likelihood. To obtain a one-to-one match, each original component is paired
with exactly one found by NOCA, so that the weighted sum of cosine distances is minimized. The
weights ui are defined so that they are proportional to the prior probabilities of the latent components
and form a convex combination (sum to 1). The computation can be described by the formula

wcos(X ,Y ) = min
π,ρ

K

∑
i=1

uπ(i) cosα(xπ(i),yρ(i)),

where π and ρ are permutations of the sets X and Y , respectively, and the minimization ranges over
all possible permutations. Note that although this formula suggests evaluating exponentially many
permutations, it effectively calls for finding a maximal-weight matching in a bipartite graph and can
be computed efficiently. The resulting weighted cosine similarities are shown and commented in
Figure 14.

5.4.3 PERPLEXITY

While the cosine scoring metric provides useful insights, using a standard probabilistic measure
of model quality is in order to gauge how well the model estimates the joint density of the ob-
servable data. To assess this aspect of model recovery we rely on the cross-entropy of the “true”
distribution and the distribution that the model entails. The testing set is viewed as a sample from
the true multivariate distribution t and the cross entropy with the model distribution m is defined
by H(t,m) = −∑{x} t(x) logm(x). Since the data points in the test set are by assumption inde-
pendent and identically distributed, the cross entropy is approximately the average unconditional
log-probability of data points in the test set (Cover and Thomas, 1991). Perplexity of the model
m is defined as the quantity 2H(t,m) and can be intuitively interpreted as the amount of information
needed to predict the next data point. In short, the lower the cross-entropy is, the more precisely the
model has learned the distribution of observables from the training set.

In the perplexity evaluation of NOCA and LDA, we use the tractable lower bounds on the
document probabilities P(x) (Equation 6 in this paper and Equation 13 in Blei et al. (2003)). The
PLSA and logistic PCA models cannot be evaluated under the perplexity framework since they
do not define a probability distribution on the test set. PLSA does define a distribution on the
training set and the fold-in heuristic can be used (Hofmann, 1999b) so that it defines one on the
test set. However, this heuristic gives PLSA an optical advantage over other models, as it allows
it to refit the mixing proportions. As a baseline model, we will use a simple mixture of unigrams
model. As NOCA provides no word-level model, but only a document-level probability model, we
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Figure 14: Weighted cosine similarities. On the horizontal axis is L, the number of components
matched. The vertical axis shows the weighted cosine similarity. The left panel shows
NOCA doing a superior job identifying the first few components, but it is soon over-
taken by the mixture-based methods. The methods in the left panel operated with latent
dimensionality 5, equal to the number of human-judged clusters. On the right, the pic-
ture changes when the latent dimensionality is increased to 10. While the performance
of mixture-based methods deteriorates, NOCA’s performance improves. This illustrates
the difference in the assumptions about the data-generating process. The picture sug-
gests that the more sophisticated methods do a better job in comparison with the baseline
(a simple mixture of unigrams model) when the asumed latent dimensionality slightly
exceeds the true number of clusters in the data.

Cross-entropy
K NOCA LDA PLSA MixUnigrams
5 < 6.5±5.2 < 9.0±7.8 6.1±6.9 22.9±31.3
10 < 6.5±5.2 < 8.4±7.5 4.9±6.4 32.5±46.0

Table 2: Cross-entropies between the model distribution and the empirical distribution induced by
the test set. These numbers were obtained as mean and standard deviation on 20 train/test
splits.

must compare all models in terms of document perplexity, instead of the standard approach that
works at the level of words. Inspecting Table 2, we observe that the bound on perplexity of NOCA
is significantly lower than that of LDA. PLSA shows a cross-entropy virtually on the level with
NOCA, or slightly better. The cross-entropy of the baseline mixture-of-unigrams model is high,
which is attributable to the data sparsity issue. Importantly, note that the values shown for LDA and
NOCA are lower bounds, while the PLSA and MixUnigrams are exact.
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6. Summary and Conclusions

We have presented NOCA: a new latent-variable component analysis framework for high-dimensional
binary data. To learn the NOCA model we have devised and presented an EM-based variational
algorithm that overcomes the complexity limitation of exact learning methods. The proposed algo-
rithm makes no assumption about the structure of the underlying noisy-or network, the structure is
fully recovered during the learning process.

In addition to the component analysis task and related structure discovery problems, NOCA can
be also used as a dimensionality reduction (data compression) tool, as well as a probabilistic model
of high-dimensional binary data. We have tested these aspects of the model on a synthetic image
decomposition problem and on a citation analysis problem of CiteSeer documents. The model
and the algorithm showed favorable scale-up behavior and a very good model recovery and error
reconstruction performance.

The task of community discovery has a natural formulation as a NOCA learning problem. A data
set of scientific paper citations in the field of machine learning was analyzed using the setup. The
results, under several metrics, indicate that our algorithm performs on par with the current state-of-
the-art mixture methods, but due to different data-generating assumptions it tends to expose different
data structure. Such behavior is valuable as it enriches our insight into the intrinsic composition of
the data set.
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Abstract

We consider the problem of learning a hypergraph using edge-detecting queries. In this model,
the learner may query whether a set of vertices induces an edge of the hidden hypergraph or not.
We show that an r-uniform hypergraph with m edges and n vertices is learnable with O(24rm ·
poly(r, logn)) queries with high probability. The queries can be made in O(min(2r(logm + r)2,
(logm + r)3)) rounds. We also give an algorithm that learns an almost uniform hypergraph of

dimension r using O(2O((1+ ∆
2 )r) ·m1+ ∆

2 · poly(logn)) queries with high probability, where ∆ is the
difference between the maximum and the minimum edge sizes. This upper bound matches our
lower bound of Ω(( m

1+ ∆
2
)1+ ∆

2 ) for this class of hypergraphs in terms of dependence on m. The

queries can also be made in O((1+∆) ·min(2r(logm+ r)2,(logm+ r)3)) rounds.

Keywords: query learning, hypergraph, multiple round algorithm, sampling, chemical reaction
network

1. Introduction

A hypergraph H = (V,E) is given by a set of vertices V and a set of edges E, which is a subset of
the power set of V (E ⊆ 2V ). The dimension of a hypergraph H is the cardinality of the largest set
in E. H is said to be r-uniform if E contains only sets of size r. In this paper, we are interested in
learning a hidden hypergraph using edge-detecting queries of the following form

QH(S) : does S include at least one edge of H?

where S ⊆ V . The query QH(S) is answered 1 or 0, indicating whether S contains all vertices of at
least one edge of H or not. We abbreviate QH(S) to Q(S) whenever the choice of H is clear from
the context. This type of query may be motivated by the following scenarios. We are given a set of
chemicals, in which some groups of chemicals react and others don’t. When multiple chemicals are
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combined in one test tube, a reaction is detectable if and only if at least one group of chemicals in
the tube react.

Considerable effort, for example, Grebinski and Kucherov (1998), Beigel et al. (2001), Alon
et al. (2004), Angluin and Chen (2004), and Alon and Asodi (2005), has been devoted to the case
when the underlying reaction network is a graph, that is, chemicals react in pairs. Among them,
Grebinski and Kucherov (1998), Beigel et al. (2001) and Alon et al. (2004) study the case when
the underlying networks are Hamiltonian cycles or matchings, which have specific applications to
genome sequencing. In this application, DNA sequences are aligned according to the reactions that
involve the two ends of pairs of DNA sequences in certain experimental settings. The reaction graph
can be characterized as either a Hamiltonian cycle or path (if you consider each DNA sequence as a
vertex) or a matching (if you consider each end of a DNA sequence as a vertex). Implementations of
some of these algorithms are in practical use. Grebinski and Kucherov (2000) also study a somewhat
different and interesting query model, which they call the additive model, where instead of giving a
1 or 0 answer, a query tells you the total number of edges contained in a certain vertex set.

Angluin and Chen (2004) generalize the problem of learning with edge-detecting queries to
general reaction graphs and show that general graphs are efficiently learnable. In this work, we
consider a more general problem when the chemicals react in groups of size more than two, that
is, the underlying reaction network is a hypergraph. In Angluin and Chen (2004), they give an
adaptive algorithm which takes O(logn) queries per edge, where n is the number of vertices. This
is nearly optimal as we can easily show using an information-theoretic argument. For the problem
of learning hypergraphs of bounded dimension and a given number of edges, a similar information-
theoretic argument gives a lower bound that is linear in the number of edges. However, the lower
bound is not achievable. It is shown in Angluin and Chen (2004) that Ω((2m/r)r/2) edge-detecting
queries are required to learn a general hypergraph of dimension r with m edges. In the heart of the
construction of Angluin and Chen (2004), edges of size 2 are deliberately arranged to hide an edge
of size r. The discrepancy in sizes of different coexisting edges is the main barrier for the learner.
However, this lower bound does not preclude efficient algorithms for classes of hypergraphs whose
edges sizes are close. In particular, the question whether there is a learning algorithm for uniform
hypergraphs using a number of queries that is linear in the number of edges is still left open, which
is the main subject of this paper.

In this paper, we are able to answer this question affirmatively. Let n be the number of vertices
and m be the number of edges in the hypergraph. We show that an r-uniform hypergraph is learnable
with O(24rm · poly(r, logn, log 1

δ)) queries with probability at least 1−δ.
We also obtain results for learning the class of hypergraphs that is almost uniform. Formally

speaking,

Definition 1 A hypergraph is (r,∆)-uniform, where ∆ < r, if its dimension is r and the difference
between its maximum and minimum edge sizes is ∆, or equivalently, the maximum and the minimum
edge sizes are r and r−∆ respectively.

The class of hypergraphs used in the construction of the lower bound in Angluin and Chen (2004)
is in fact (r,r− 2)-uniform. Therefore, they show that Ω((2m/r)r/2) edge-detecting queries are
required to learn a (r,r− 2)-uniform hypergraph. Based on this result, we show by a simple re-
duction that Ω(( m

1+ ∆
2
)1+ ∆

2 ) queries are required to learn the class of (r,∆)-uniform hypergraphs. On

the other hand, we extend the algorithm that learns uniform hypergraphs to learning the class of
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(r,∆)-uniform hypergraphs with O(2O((1+ ∆
2 )r) ·m1+ ∆

2 · poly(logn, log 1
δ)) queries with probability at

least 1−δ. The upper bound and lower bound have the same dependence on m.

Another important issue studied in the literature is the parallelism of algorithms. Since the
queries are motivated by an experiment design scenario, it is desirable that experiments can be
conducted in parallel. Alon et al. (2004) and Alon and Asodi (2005) give lower and upper bounds for
1-round algorithms for certain types of graphs. Beigel et al. (2001) describe an 8-round algorithm
for learning a matching. Angluin and Chen (2004) give a 5-round algorithm for learning a general
graph. In this paper, we show that in our algorithm for r-uniform hypergraphs, queries can be made
in O(min(2r(logm+r)2,(logm+r)3)) rounds, and in our algorithm for (r,∆)-uniform hypergraphs,
queries can be made in O((1+∆) ·min(2r(logm+ r)2,(logm+ r)3)) rounds.

In the paper, we also introduce an interesting combinatorial object, which we call an indepen-
dent covering family. Basically, an independent covering family of a hypergraph is a collection
of independent sets that cover all non-edges. An interesting observation is that the set of negative
queries of any algorithm that learns a hypergraph drawn from a class of hypergraphs that is closed
under the operation of adding an edge is an independent covering family of that hypergraph. Note
both the class of r-uniform hypergraphs and the class of (r,∆)-uniform hypergraphs are closed un-
der the operation of adding an edge. This implies that the query complexity of learning such a
hypergraph is bounded below by the minimum size of its independent covering families. In the
opposite direction, we give subroutines to find one arbitrary edge from a hypergraph. With the help
of the subroutines, we show that if we can construct small-sized independent covering families for
some class of hypergraphs, we are able to obtain an efficient learning algorithm for it. In this paper,
we give a randomized construction of an independent covering family of size O(r22rm logn) for
r-uniform hypergraphs with m edges. This yields a learning algorithm using a number of queries
that is quadratic in m, which is further improved to give an algorithm using a number of queries that
is linear in m.

As mentioned in Angluin and Chen (2004) and some other papers, the hypergraph learning
problem may also be viewed as the problem of learning a monotone disjunctive normal form (DNF)
boolean formula using membership queries only. Each vertex of H is represented by a variable and
each edge by a term containing all variables associated with the vertices of the edge. A membership
query assigns 1 or 0 to each variable, and is answered 1 if the assignment satisfies at least one term,
and 0 otherwise, that is, if the set of vertices corresponding to the variables assigned 1 contains all
vertices of at least one edge of H. An r-uniform hypergraph corresponds to a monotone r-DNF. An
(r,∆)-uniform hypergraph corresponds to a monotone DNF whose terms are of sizes in the range
of [r−∆,r]. Thus, our results apply also to learning the corresponding classes of monotone DNF
formulas using membership queries.

The paper is organized as follows. In Section 3, we formally define the concept of an inde-
pendent covering family and give a randomized construction of independent covering families for
general r-uniform hypergraphs. In Section 4, we show how to efficiently find an arbitrary edge in
a hypergraph and give a simple learning algorithm using a number of queries that is quadratic in
the number of edges. In Section 5, we give an algorithm that learns r-uniform hypergraphs using
a number of queries that is linear in the number of edges. Then we derive a lower bound for al-
most uniform hypergraphs in Section 6. Finally, we show how to learn the class of (r,∆)-uniform
hypergraphs in Section 7.
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2. Preliminaries

Let H = (V,E) be a hypergraph. In this paper, we assume that edges do not contain each other,
as there is no way to detect the existence of edges that contain other edges using edge-detecting
queries. A subset of V is an independent set of H if it contains no edge of H. We use the term
non-edge to denote any set that is a candidate edge in some class of hypergraphs but is not an edge
in the target hypergraph. For example, in an r-uniform hypergraph, any r-set that is not an edge is
a non-edge. In an (r,∆)-uniform hypergraph, any set of size in the range of [r−∆,r] that is not an
edge is a non-edge. The degree of a set χ⊆V in a hypergraph H denoted as dH(χ) is the number of
edges of H that contain χ. In particular, dH( /0) = |E| is the number of all edges in H.

Throughout the paper, we omit the ceiling and floor signs whenever they are not crucial.

3. An Independent Covering Family

Definition 2 An independent covering family of a hypergraph H is a collection of independent sets
of H such that every non-edge not containing an edge is contained in one of these independent sets.

When H is a uniform hypergraph, the above only requires that every non-edge is contained in
one of the independent sets in the independent covering family. An example is shown below.

Example 1 Let V = [1,6]. Let H = (V,{{1,2,3} ,{4,5,6} ,{2,4,5}}) be a 3-uniform hypergraph.

F = {{1,2,4,6} ,{1,2,5,6} ,{1,3,4,5} ,{1,3,4,6} ,{2,3,4,6} ,{2,3,5,6}}

is an independent covering family of H. As we can easily verify, all sets in F are independent sets,
and every triple except {1,2,3} ,{4,5,6} ,{2,4,5} is contained in some set in F .

The concept of independent covering families is central in this paper. This can be appreciated
from two aspects.

First, we observe that if the target hypergraph is drawn from a class of hypergraphs that is
closed under the operation of adding an edge (e.g., the class of all r-uniform hypergraphs), the
set of negative queries of any algorithm that learns it is an independent covering family of this
hypergraph. This is because if there is a non-edge not contained in any of the sets on which these
negative queries are made, we will not be able to distinguish between the target hypergraph and the
hypergraph with this non-edge being an extra edge. Therefore, the minimum size of independent
covering families bounds the query complexity from below. Furthermore, any learning algorithm
gives a construction of an independent covering family of the target hypergraph. Therefore, in order
to learn the hypergraph, we have to be able to construct an independent covering family for it.

Second, although the task of constructing an independent covering family seems substantially
easier than that of learning, since the hypergraph is known in the construction task, we show that
efficient construction of small-sized independent covering families yields an efficient learning algo-
rithm. In Section 4, we will show how to find an arbitrary edge out of a hypergraph of dimension
r using O(r logn) queries. Imagine a simple algorithm in which at each iteration we maintain a
sub-hypergraph of the target hypergraph which contains edges that we have found, and construct
an independent covering family for it and ask queries on all the sets in the family. If there is a set
whose query is answered positively, we can find at least one edge out of this set. The edge must
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be a new edge as the set is an independent set of the sub-hypergraph that we have found. We re-
peat this process until we have collected all the edges in the target hypergraph, in which case the
independent covering family we construct is a proof of this fact. Suppose that we can construct an
independent covering family of size at most f (m) for any hypergraph with at most m edges drawn
from certain class of hypergraphs. The above algorithm learns this class of hypergraphs using only
O( f (m) ·m · r logn) queries.

In the rest of this section, we give a randomized construction of a linear-sized (linear in the
number of edges) independent covering family of an r-uniform hypergraph which succeeds with
probability at least 1/2. By the standard probabilistic argument, the construction proves the existence
of an independent covering family of size linear in the number of edges for any uniform hypergraph.
This construction leads to a quadratic algorithm described in Section 4, and is also a central part of
our main algorithm given in Section 5.

Our main theorem in this section is as follows.

Theorem 3 Any r-uniform hypergraph with m edges has an independent covering family of size
O(r22rm logn).

Before giving the construction, we introduce some notation and definitions. We call a vertex set
χ⊆V relevant if it is contained in at least one edge in the hypergraph. Similarly, a vertex is relevant
if it is contained in at least one edge in the hypergraph. Let pH(χ) = 1/(2r+1dH(χ))1/(r−|χ|), where
χ is a relevant vertex set. We will call pH(χ) the discovery probability of χ, as this is a probability
that will help in discovering edges containing χ in our learning algorithms.

Definition 4 A (χ, p)-sample is a random set of vertices that contains χ and contains each other
vertex independently with probability p.

We will abbreviate (χ, p)-sample as χ-sample when the choice of p is clear or not important in the
context.

In the construction, we draw (χ, pH(χ))-samples independently for each relevant set χ. Each
(χ, pH(χ))-sample deals only with non-edges that contain χ. Let us take a look at the probability
that a (χ, pH(χ))-sample Pχ covers some non-edge z ⊇ χ while excluding all edges. Due to our
choice of pH(χ),

Pr[z⊆ Pχ] = pH(χ)r−|χ| =
1

2r+1dH(χ)
.

Therefore, if we draw 2r+1dH(χ) many χ-samples, the probability that z is contained in at least one
χ-sample is Ω(1). However, such a χ-sample is not necessarily an independent set. Especially when
z contains a high degree subset χ′, it is likely that such a χ-sample contains an edges that contains χ′.
But since we will also draw (χ′, pH(χ′))-samples, it is reasonable to hope that a (χ′, pH(χ′))-sample
has better chance of success in dealing with z. In fact, in our construction, we show that the set of
χ-samples, where χ⊆ z has the minimum discovery probability among all relevant subsets of z, has
an independent set that contains z with probability at least 1/2.

A construction of an independent covering family is given in Algorithm 1, which succeeds with
probability at least 1/2 as shown by Lemma 5.

Lemma 5 FH (constructed in Algorithm 1) contains an independent covering family of H with
probability at least 1/2.
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Algorithm 1 Construction of an independent covering family
1: FH ← a set containing 4(ln2 + r lnn) · 2rdH(χ) (χ, pH(χ))-samples drawn independently for

every relevant set χ.
2: Output the independent sets contained in FH as an independent covering family.

Proof Suppose z is a non-edge and χ is a subset of z with the minimum discovery probability. Let
Pχ be a χ-sample. As argued before,

Pr[z⊆ Pχ] =
1

2r+1dH(χ)
.

Since χ has the minimum discovery probability, the degree of any subset χ′ ⊆ z is at most
1/(2r+1 pH(χ)r−|χ′|). By the union bound,

Pr[Pχ is independent|z⊆ Pχ]≥ 1− ∑
χ′⊆z

dH(χ′)pH(χ)r−|χ′|

≥ 1− ∑
χ′⊆z

1

2r+1 pH(χ)r−|χ′| pH(χ)r−|χ′|

= 1/2.

The probability that a χ-sample contains z and is independent is at least 1/(2r+2dH(χ)). Therefore,
the probability that such a χ-sample exists in FH is at least

1− (1−
1

2r+2dH(χ)
)4(ln2+r lnn)·2rdH(χ)

≥1− e−(r lnn+ln2)

=1−
1

2n−r .

Thus, the probability that every non-edge is contained in some negative sample in FH is at least
1−

(n
r

)

/(2nr)≥ 1/2.

Theorem 3 is then established by the fact that the size of FH is bounded by ∑χ 4(ln2 + r lnn) ·
2rdH(χ) = O(r22rm logn).

4. A Simple Quadratic Algorithm

In this section, we first give an algorithm that finds an arbitrary edge in a hypergraph of dimension
r using only r logn edge-detecting queries. The algorithm is adaptive and takes r logn rounds. The
success probability in the construction of independent covering families in the previous section can
be easily improved by drawing more samples. Using the high-probability version of the construc-
tion, we obtain an algorithm using a number of queries that is quadratic in m that learns an r-uniform
hypergraph with m edges with high probability. Although the first algorithm for finding one edge is
deterministic and simple, the round complexity r logn might be too high when n is much larger than
m. We then improve the round complexity to O(logm + r) using only O(logm logn) more queries.
The improved algorithm is randomized and succeeds with high probability.
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4.1 Find One Edge

We start with a simpler task, finding just one relevant vertex in the hypergraph. The algorithm
FIND-ONE-VERTEX is shown in Algorithm 2.

Algorithm 2 FIND-ONE-VERTEX
1: S←V,A←V .
2: while |A|> 1 do
3: Divide A arbitrarily into A0 and A1, such that |A0|= d|A|/2e, |A1|= b|A|/2c.
4: if Q(S\A0) = 0 then
5: A← A0.
6: else
7: A← A1, S← S\A0.
8: end if
9: end while

10: Output the element in A.

Lemma 6 FIND-ONE-VERTEX finds one relevant vertex in a non-empty hypergraph with n ver-
tices using at most logn edge-detecting queries.

Proof First we show that the following equalities hold for each iteration (see Figure 1).

Q(S) = 1,Q(S\A) = 0.

V

S

A0      A1

A

Q(S\A) = 0 Q(S) = 1

Figure 1: An illustration of FIND-ONE-VERTEX

These equalities guarantee that A contains at least one relevant vertex. Since we assume that
the hypergraph is non-empty, the above equalities clearly hold for our initial assignment of S and A.
Let’s assume Q(S) = 1 and Q(S\A) = 0 at the beginning of an iteration. There are two cases:

1. Q(S\A0) = 0, clearly the equalities hold for S and A0.

2. Q(S\A0) = 1, since Q((S\A0)\A1) = Q(S\(A0∪A1)) = Q(S\A) = 0, the equalities hold for
S\A0 and A1.

Since the size of A halves at each iteration, after at most logn iterations, A has exactly one rele-
vant vertex. The algorithm takes at most logn edge-detecting queries in total, as it makes one query
in each iteration.
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Using FIND-ONE-VERTEX as a subroutine, FIND-ONE-EDGE (Algorithm 3) is a recursive
algorithm that finds one edge from a non-empty hypergraph, which is not necessarily uniform.
Note knowledge of r is not required in FIND-ONE-EDGE. It is included in the description of the
algorithm for the purpose of explanation.

Algorithm 3 FIND-ONE-EDGE
1: Let r > 0 be the dimension of the hypergraph.
2: Call FIND-ONE-VERTEX and let v be the found vertex.
3: Make a query on {v}.
4: if the query is answered 1 then
5: Output {v}.
6: else
7: FIND-ONE-VERTEX also computes a set S such that Q(S) = 1 and Q(S\{v}) = 0. That is,

S contains only edges incident with v.
8: Call FIND-ONE-EDGE on the hypergraph induced on S with the vertex v removed. The

hypergraph is of dimension at most r−1. Let e be the found edge.
9: Output the edge e∪{v}.

10: end if

Edge-detecting queries for recursive calls of FIND-ONE-EDGE can be simulated recursively.
To make an edge-detecting query for a next-level recursive call of FIND-ONE-EDGE, we just need
to make an edge-detecting query at the current level on the union of a subset of S and {v}. In fact,
each time, we make edge-detecting queries on the union of a subset of S and the set of vertices
already found.

In FIND-ONE-EDGE, because S contains only edges incident with v, e∪ {v} is an edge in the
hypergraph. This establishes its correctness. The following lemma shows that it uses only r logn
queries.

Lemma 7 FIND-ONE-EDGE finds one edge in a non-empty hypergraph of dimension r with n
vertices using r logn edge-detecting queries.

Proof When r = 1, the problem is exactly that of finding one relevant vertex and hence solvable us-
ing logn queries. It is evident that if FIND-ONE-EDGE uses (r−1) logn queries for a hypergraph
with dimension r−1. then it only uses (r−1) logn + logn = r logn queries for a hypergraph with
dimension r.

4.2 A Quadratic Algorithm

With the help of FIND-ONE-EDGE, we give the first learning algorithm for r-uniform hypergraphs.
A sketch of the algorithm has been described in Section 3. Let H = (V,E) be the sub-hypergraph
the algorithm has found so far. Algorithm 4 learns a uniform hypergraph with probability at least
1−δ. We will specify δ′ later.

In the algorithm we draw 4(ln( 1
δ′ ) + r lnn) · 2rdH(χ) χ-samples. Using essentially the same

argument as in Section 3, we can guarantee that FH contains an independent covering family with
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Algorithm 4 The quadratic algorithm
1: e← FIND-ONE-EDGE(V). E← {e}.
2: repeat
3: FH ← 4(ln 1

δ′ + r lnn) · 2rdH(χ) (χ, pH(χ))-samples drawn independently for every relevant
set χ in H.

4: Make queries on sets of FH that are independent in H.
5: Call FIND-ONE-EDGE on one positive sample if there exists any. Let e be the edge found.

E← E ∪{e}.
6: until no new edge found

probability at least 1− δ′. Algorithm 4 finds one new edge at each iteration because FH is an
independent covering family of the already found sub-hypergraph H. Thus, it ends after at most m
iterations. If we we choose δ′ = δ/m, it will succeed with probability at least 1−δ. As knowledge
of m is not assumed, we will choose δ′ = δ/

(n
r

)

≤ δ/m. The query complexity will be O(22rm2 ·
poly(r, logn) · log 1

δ), which is quadratic in m.

4.3 An Improved FIND-ONE-EDGE

Despite the simplicity of FIND-ONE-EDGE, its queries have to be made in r logn rounds. When
irrelevant vertices abound, that is, when n is much larger than m, we would like to arrange queries in
a smaller number of rounds. In the following, we use a technique developed in Damaschke (1998)
(for learning monotone boolean functions) to find one edge from a non-empty hypergraph with high
probability using only O(logm+r) rounds and O((logm+r) logn) queries. However, the algorithm
is more involved.

The new algorithm is also based on FIND-ONE-VERTEX. The process of FIND-ONE-VERTEX
can be viewed as a binary decision tree. At each internal node, a set A is split and a decision on
which branch to follow is made based on query results. The FIND-ONE-VERTEX algorithm does
not restrict how we split the set A as long as we divide it into halves. In the new algorithm, we will
pre-determine the way A’s will be divided at the very beginning of the algorithm.

Let us index each vertex by a distinct binary number b1b2 . . .blogn. Each split is based on a
certain bit. We say that we split a set A according to its ith (i ∈ [1, logn]) bit, we will divide A into
two sets, one containing vertices whose ith bits are 0 and the other containing vertices whose ith

bits are 1. We will denote these two sets A|bi=0 and A|bi=1 respectively. If we split A|bi=0 further
according to the jth bit, we get another two sets (A|bi=0)|b j=0 and (A|bi=0)|b j=1. We will abbreviate
these two sets as A|bi=0,b j=0 and A|bi=0,b j=1. In general, let s be a partial assignment that assigns
some bits to 0 or 1, we use A|s to denote the set of vertices in A that match the assignments of bits
in s.

Using this notation and our splitting scheme, at each iteration of FIND-ONE-VERTEX, A is
equal to V |s for some partial assignment s, and A0 and A1 are equal to A|bi=0 and A|bi=1 if we
split A according to the ith bit. One of the key ideas in Damaschke (1998) is that because the
splits are pre-determined, and the queries are monotone in terms of subset relation, we can make
queries on pre-determined splits to make predictions. The idea will be made clear in the rest of
the section. PARA-FIND-ONE-VERTEX (Algorithm 5) improves the round complexity of FIND-
ONE-VERTEX.
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Algorithm 5 PARA-FIND-ONE-VERTEX
1: S←V,A←V, I← [1, logn].
2: while |A|> 1 do
3: ∀i ∈ I, make queries on (S\A)∪A|bi=0 and (S\A)∪A|bi=1.
4: Let Ri = (Q((S\A)∪A|bi=0),Q((S\A)∪A|bi=1)) be the query results for i ∈ I.
5: case 1: ∃i ∈ I such that Ri = (0,0)
6: A← A|bi=0, I← I\{i}.
7: case 2: ∃i ∈ I such that Ri = (1,1)
8: Choose a from {0,1} uniformly at random.
9: A← A|bi=a, S← (S\A)∪A|bi=a, I← I\{i}.

10: case 3: ∀i ∈ I, Ri = (1,0) or Ri = (0,1)
11: Swap the indices of vertices so that Ri = (1,0) for every i ∈ I. (If Ri = (0,1), we flip the

ith bit of all the indices, that is, for every vertex, if the ith bit of its index is 0, we set the ith

bit to 1 and vice versa.)
12: ∀i ∈ I, let Ai = A|∀ j∈I, j≤i,b j=0 and make a query on Si = (S\A)∪Ai.
13: Let i∗ = min

{

i|Q(Si) = 0
}

if it exists and the largest index in I otherwise. Let j∗ =
max{ j| j < i∗, j ∈ I}.

14: I←{i|i > i∗, i ∈ I}.
15: if all queries are answered 1 then
16: A← Ai∗ ,S← Si∗ (i∗ is the largest index in I in this case).
17: else
18: A← Ai∗ ,S← S j∗ .
19: end if
20: end while
21: Output the element in A.

In PARA-FIND-ONE-VERTEX, the equalities Q(S) = 1,Q(S\A) = 0 are also preserved at all
times, which establishes the correctness. We first make queries on (S\A)∪A|bi=0 (= S\A|bi=1) and
(S\A)∪A|bi=1 (= S\A|bi=0) for every i. There are 3 possible query outcomes.

case 1: If there exists i such that Ri = (0,0), that is, both queries are answered 0, all edges contained
in S are split between A|bi=0 and A|bi=1, that is, the intersections of each edge with these two
sets are a partition of the edge. We call this case an edge-splitting event. The iterations at
which an edge-splitting event happens are edge-splitting iterations. Since we then set A to be
A|bi=0, the intersection of A with any edge contained in S becomes strictly smaller. Because
we will only shrink A in other cases, the intersections will never increase. Thus, there are at
most r−1 edge-splitting iterations as each edge is of size at most r.

case 2: If there exists i such that Ri = (1,1), that is, both queries are answered 1, we can set S to
be either of the two sets (S\A)∪A|bi=0 and (S\A)∪A|bi=1 as they both contain edges, and
set A to be A|bi=0 or A|bi=1 respectively. The equalities Q(S) = 1,Q(S\A) = 0 are preserved
in this case. However, we would like to choose whichever of the two sets (S\A)∪A|bi=0

and (S\A)∪A|bi=1 contains fewer edges. Because they do not share a common edge as their
intersection S\A does not contain an edge, the sum of the numbers of edges contained in
these two sets is at most the number of edges contained in S. If we choose the set with fewer
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edges, we will cut the number of edges contained in S in half. With a random choice, this
happens with probability 1/2. We will call this case an edge-separating event and call the
corresponding iteration an edge-separating iteration.

case 3: If neither of the two events happens, we need to deal with the third case where ∀i ∈ I, one
of the queries is answered 0 and the other is answered 1. In this case, for convenience of
exposition, we will flip the indices of all vertices, so that Ri = (1,0) for every i ∈ I. Thus,
∀i ∈ I,Q((S\A)∪A|bi=0) = 1. In this case, we can set A to A|bi=0 for some i ∈ I, and the
equalities Q(S) = 1,Q(S\A) = 0 are preserved. However, this won’t help us to reduce the
round complexity as it only cuts A in half.

Consider the next split. We shall divide A|bi=0 further into A|bi=0,b j=0 and A|bi=0,b j=1 for
some j ∈ I, j 6= i. Since we already know that Q((S\A)∪A|b j=1) = 0, the fact that A|bi=0,b j=1

is a subset of A|b j=1 implies Q((S\A)∪A|bi=0,b j=1) = 0. Therefore, we only need to know
Q((S\A)∪A|bi=0,b j=0).

(a) If it is 1, we can set A to be A|bi=0,b j=0 and continue.

(b) Otherwise, it is 0, an edge-splitting event takes place.

In PARA-FIND-ONE-VERTEX, we choose the indices we use to split A in the increasing
order of indices in I and make queries on Si = (S\A)∪Ai for every i ∈ I all in parallel (recall
that Ai = A|∀ j∈I, j≤i,b j=0). If all queries are answered 1, i∗ is the largest index in I and Ai∗ is
a singleton set containing a relevant vertex. Otherwise, we get an edge-splitting event, since
S j∗ = (S\A)∪A j∗ contains edges, but both (S\A)∪A j∗ |bi∗=0 and (S\A)∪A j∗ |bi∗=1 don’t (note
that j∗ is the index right before i∗ in the increasing order of indices in I and Ai∗ = A j∗ |bi∗=0). In
this case, it can be verified that our updates to A and S in the third case preserve the equalities
Q(S) = 1,Q(S\A) = 0.

By the above analysis, the first case and the third case both result in an edge-splitting event or
succeed in finding a relevant vertex. There are at most r such iterations. The second case results in
an edge-separating event, in which with probability 1/2 we will cut the number of edges contained
in S in half. We can show that in expectation there are logm edge-separating events. Therefore,
there are logm+ r iterations in expectation. At each iteration, we use at most 3 logn queries which
are made in at most 2 rounds. Therefore,

Lemma 8 In expectation, PARA-FIND-ONE-VERTEX finds one relevant vertex using O((logm +
r) logn) queries, and the queries can be made in 2(logm+ r) rounds.

PARA-FIND-ONE-VERTEX can work with FIND-ONE-EDGE to find an edge using expected
O(r(logm + r) logn) queries in expected 2r(logm + r) rounds. In fact, we can improve the round
complexity further to 2(logm+ r) based on two observations, both of which use the fact that in the
whole process we only shrink S.

The first observation is that edges removed from S in the edge-separating events will not be
considered again. Therefore, the logm bounds not only the expected number of edge-separating
iterations of PARA-FIND-ONE-VERTEX, but also that of the whole process.

The second observation is that the edge-splitting events can be remembered and reused when
we try to find the next relevant vertex. Since we only shrink S, the bits that split all edges in S will
continue to do so. Let I∗ be the set of edge-splitting indices. In the new vertex finding process,
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instead of starting with A = V = S (recall in a recursive call of FIND-ONE-EDGE, we look for a
relevant edge contained in the S. Therefore, in the recursive call, V is equal to the S we obtain in
the previous call), we start with A = S|i∈I∗,bi=0. Note that the equalities Q(S) = 1,Q(S\A) = 0 are
preserved. This helps us to bound the number of edge-splitting iterations by r− 1 for the whole
process.

Thus, we have the following lemma.

Lemma 9 There is an algorithm that finds an edge in a non-empty hypergraph using expected
O((logm+r) logn) edge-detecting queries. Moreover, the queries can be made in expected 2(logm+
r) rounds.

Since the algorithm terminates in expected logm+ r iterations, according to Markov’s Inequal-
ity, with probability at least 1/2, the algorithm terminates in 2(logm + r) iterations. We convert
it to one that succeeds with high probability by running log 1

δ copies, each of which has its own
independent random choices. All copies are synchronized at each iteration and the algorithm ends
when one of them succeeds. This leads to an algorithm that succeeds with high probability. We will
refer to this algorithm as PARA-FIND-ONE-EDGE.

Corollary 10 With probability at least 1−δ, PARA-FIND-ONE-EDGE finds an edge using O((logm+
r) logn log 1

δ) edge-detecting queries, and the queries can be made in 4(logm+ r) rounds.

5. A Linear-Query Algorithm

Reconstructing an independent covering family at the discovery of every new edge is indeed waste-
ful. In this section we show how to modify the quadratic algorithm to obtain an algorithm using
a number of queries that is linear in the number of edges. Our algorithm is optimal in terms of
the dependence on m. Moreover, the queries can be made in O(min(2r(logm + r)2,(logm + r)3))
rounds.

Before we begin to describe our algorithm, we introduce some notation and make some defini-
tions. First we reduce the discovery probabilities. Let

pH(χ) = 1/(2r+|χ|+2dH(χ))1/(r−|χ|),

where χ is a relevant vertex set. Let the best discovery probability of χ be the minimum discovery
probability among all its subsets. That is,

p∗H(χ) = min
χ′⊆χ

pH(χ′).

Definition 11 Let ρχ(p) be the probability that a (χ, p)-sample is positive, where χ is a relevant
vertex set.

Remark 12 ρχ(p) is continuous and monotonically increasing.

Angluin and Chen (2004) contains a proof of this fact.

Definition 13 Let pχ = min
{

p|ρχ(p) = 1/2r+1
}

be the threshold probability of a relevant vertex
set χ.
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Remark 14 Due to the fact that ρχ(0) = 0, ρχ(1) = 1 and that ρχ(p) is continuous and monotoni-
cally increasing, the threshold probability uniquely exists.

Note that both threshold probabilities and discovery probabilities reflect the degree of set χ
or the degrees of its subsets. The difference is that discovery probabilities reflect degrees in the
hypergraph we have found, while threshold probabilities reflect degrees in the target hypergraph.
Threshold probabilities are only used in analysis.

5.1 Overview Of The Algorithm

An “obvious” improvement to the quadratic algorithm is that instead of calling FIND-ONE-EDGE
on one positive sample at each iteration, we can call it on all positive samples. It is plausible that this
will yield more edges. However, there is no guarantee that different calls to FIND-ONE-EDGE will
output different edges. For instance, calls to FIND-ONE-EDGE on two sets that share a common
edge will produce the same edge in the worst case. We use several standard tricks to circumvent
this obstacle. In fact, the family of samples constructed here is more complex than that used in
Section 4, so as to ensure with high probability that the algorithm will make a certain amount of
progress at each iteration. By doing so, we are able to reduce the number of iterations from m to
O(min(2r(logm+ r),(logm+ r)2)). The number of queries will also be reduced.

First of all, the sampling probabilities are halved in order to accommodate more edges. More
precisely, imagine that we draw (χ, 1

2 pH(χ))-samples instead of (χ, pH(χ))-samples in the quadratic
algorithm. Take a look at a sample drawn several iterations ago, which the quadratic algorithm did
not call FIND-ONE-EDGE on. Such a sample will still have reasonable probability of excluding
all the edges that have been found, as long as the degree of χ has not been increased by a factor of
2r−|χ| or equivalently the discovery probability of χ has not been decreased by half.

Second, the algorithm uses the best discovery probability for each relevant set. We call a relevant
vertex set minimal if it has the minimum discovery probability among its subsets. In the quadratic
algorithm, the goal is that one of the samples will produce an edge. According to the proof of
Lemma 5, in the quadratic algorithm, we actually only need to draw samples for minimal relevant
sets. In this algorithm, we hope that samples drawn for every relevant set will produce edges. But
drawing samples for non-minimal relevant sets with discovery probabilities is not sufficient to avoid
edges we have already found. Therefore, the best discovery probabilities are used.

Finally, besides samples drawn proportional to degrees, the algorithm also draws samples pro-
portional to the contribution of each relevant set. The idea is simple. Draw more samples for those
relevant sets that are more likely to produce a new edge. The algorithm maintains a contribution
counter c(χ) for each relevant set χ, which records the number of new edges that χ-samples have
produced. As we have already said, different calls to FIND-ONE-EDGE at each iteration may
output the same edge. As all calls to FIND-ONE-EDGE at each iteration are made in parallel, it
is not clear which sample each new edge should be attributed to. To solve this problem, calls to
FIND-ONE-EDGE are processed sequentially in an arbitrary order.

In the algorithm, FH consists of two parts: F 1
H and F 2

H . In F 1
H , the algorithm draws samples

proportional to the contribution of each relevant set. F 2
H is closer to FH in Section 4. Intuitively, a

high-degree relevant set in the target hypergraph (not necessarily a high-degree relevant set in H),
or a relevant set with small threshold probability is important, because an edge or a non-edge may
not be found if its important relevant subsets are not found. The smaller the threshold probability
a relevant set is, the more important it is. The algorithm uses samples in F 1

H to find edges while
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samples in F 2
H are mainly used to cover non-edges of H. F 2

H not only gives a short proof when
H is indeed the target hypergraph, but also finds important relevant sets quickly. The design of
F 2

H guarantees that if the contribution of the most important subset of an edge or a non-edge stops
doubling, a more important relevant subset will be discovered with high probability.

5.2 The Algorithm

Let H = (V,E) be the hypergraph the algorithm has found so far. δ′ is a parameter we will specify
later. The algorithm is shown in Algorithm 6. At each iteration, the algorithm operates in two
phases, the query phase and the computation phase. In the query phase, the algorithm draws random
samples and make queries. The queries can be made in O(logm+ r) rounds, as queries of each call
to PARA-FIND-ONE-EDGE can be made in O(logm + r) rounds. In the computation phase, the
algorithm processes the query results to update the contribution counter of each relevant set and also
adds newly found relevant sets.

Algorithm 6 The linear-query algorithm
All PARA-FIND-ONE-EDGE’s are called with parameter δ′.

1: e← PARA-FIND-ONE-EDGE(V ).
2: E← {e}. c( /0)← 1.
3: repeat

QUERY PHASE
4: Let F 1

H be a family that for every known relevant set χ contains c(χ) ·2r+2 ln 1
δ′ (χ, 1

2 p∗H(χ))-
samples.

5: Let F 2
H be a family that for every known relevant set χ contains 23r+3dH(χ) ln 1

δ′ (χ, 1
4 p∗H(χ))-

samples.
6: Let FH = F 1

H ∪F 2
H . Make queries on sets in FH that are independent in H.

7: Call PARA-FIND-ONE-EDGE on all positive samples.
COMPUTATION PHASE

8: For each known relevant set χ, divide χ-samples in F 1
H into c(χ) groups of size 2r+2 ln 1

δ′ .
9: Process the samples in F 1

H group by group in an arbitrary order. Increase c(χ) by the number
of new edges that χ-samples produce. Add newly found edges to E.

10: Process the samples in F 2
H . Add newly found edges to E.

11: For every newly found relevant set χ, c(χ)← 1.
12: until no new edge is found

We will show that the algorithm terminates in O(min(2r(logm+r),(logm+r)2)) iterations with
high probability. Since ∑χ dH(χ)≤ 2rm and ∑χ c(χ)≤ (2r +1)m (note that c(χ) is one more than the
number of new edges that χ-samples in F 1

H produce), the number of queries made at each iteration
is at most O(24rm · poly(r, logn, log 1

δ′ )). Therefore, the total number of queries will be linear in the
number of edges with high probability, as desired.

5.3 Analysis

Consider some iteration of the algorithm. Let H be the hypergraph the algorithm has found at the
beginning of the iteration. Let e be an edge that has not yet been found. Let χ be a known subset of

2228



LEARNING A HIDDEN HYPERGRAPH

e. χ can be either active, in which case a χ-sample is likely to contain an edge or inactive otherwise.
Formally speaking,

Definition 15 We say that χ is active if ρχ(
1
2 p∗H(χ)) ≥ 1/2r+1 or, equivalently, 1

2 p∗H(χ) ≥ pχ, and
inactive otherwise.

The following two assertions serve as the goals for each iteration.

Assertion 16 Consider one group of χ-samples G in F 1
H . Let H ′ be the hypergraph the algorithm

has found before this group is processed. If χ is active, either p∗H ′(χ) < 1
2 p∗H(χ) or G will produce

a new edge.

Assertion 17 If χ is inactive, then at the end of this iteration, either e has been found or a subset
of e whose threshold probability is at most 1

2 pχ has been found (a relevant subset is found when an
edge that contains it is found).

The following two lemmas show that both assertions hold with high probability.

Lemma 18 Assertion 16 is true with probability at least 1−δ′.

Proof If p∗H ′(χ)≥ 1
2 p∗H(χ), the probability that a χ-sample contains an edge in H ′ is at most

∑
χ′⊆χ

dH ′(χ′)(
1
2

p∗H(χ))r−|χ′| ≤ ∑
χ′⊆χ

dH ′(χ′)p∗H ′(χ)r−|χ′| ≤
2|χ|

2r+|χ|+2
=

1
2r+2 .

On the other hand, since χ is active, we have ρχ(
1
2 p∗H(χ))≥ 1/2r+1. That is, with probability at least

1/2r+1 a χ-sample will contain an edge. Therefore the probability that a χ-sample contains a new
edge is at least 1/2r+1−1/2r+2 = 1/2r+2. Recall that G contains 2r+2 ln 1

δ′ χ-samples. Therefore,
with probability at least 1−δ′ there exists at least one sample in G that will produce a new edge.

Lemma 19 Assertion 17 is true with probability at least 1−δ′.

Proof Let χ∗ ⊆ χ have the minimum discovery probability among all subsets of χ at the beginning
of the iteration. Thus, pH(χ∗) = p∗H(χ) by the definition. Let us consider a χ∗-sample Pχ∗ in F 2

H .
Let A be the collection of all subsets of e whose threshold probabilities are not less than 1

2 pχ. We
do not want Pχ∗ to contain any edge that contains χ′ for any χ′ ∈ A because they prevent us from
discovering relevant sets with low threshold probabilities (< 1

2 pχ).
We observe that 1

2 pH(χ∗) = 1
2 p∗H(χ) < pχ because χ is inactive. Thus, we have that ∀χ′ ∈ A,

ρχ′(
1
4

pH(χ∗)) < ρχ′(
1
2

pχ)≤ ρχ′(pχ′) = 1/2r+1.

Therefore,

Pr[∃ an edge e′ ⊆ Pχ∗ ,e
′∩ e ∈ A|e⊆ Pχ∗ ]≤ ∑

χ′∈A

ρχ′(
1
4

pH(χ∗))≤ 1/2.
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Combining with the fact that

Pr[e⊆ Pχ∗ ] = (
1
4

pH(χ∗))r−|χ∗| =
1

2r+|χ∗|+2+2r−2|χ∗|dH(χ∗)
≥

1
23r+2dH(χ∗)

,

we have that with probability at least 1/(23r+3dH(χ∗)), Pχ∗ contains e but does not contain any edge
whose intersection with e is in A, in which case PARA-FIND-ONE-EDGE(Pχ∗) either outputs e or
outputs an edge whose intersection with e has threshold probability at most 1

2 pχ. The probability
that such a Pχ∗ exists in F 2

H is at least 1− δ′, as we draw at least 23r+3dH(χ∗) ln 1
δ′ (χ∗, 1

4 pH(χ∗))-
samples.

Let H ′ be the hypergraph that has been found at the end of the iteration. Let cH(χ) and cH ′(χ)
be the values of c(χ) at the beginning and end of the iteration respectively. At each iteration, if no
assertion is violated, one of the following two events happens.

1. Either cH ′(χ)≥ 2cH(χ) or p∗H ′(χ) < 1
2 p∗H(χ). (cH(χ) doubles when each of the cH(χ) groups

of χ-samples in F 1
H succeeds in producing a new edge.)

2. Either e has been found or a subset of e whose threshold probability is at most 1
2 pχ has been

found.

That is, the two assertions guarantee that the algorithm makes definite progress at each iteration.
The following lemma gives bound on the number of iterations of the algorithm.

Lemma 20 Assuming no assertion is violated, the algorithm terminates in O(min(2r(logm + r),
(logm+ r)2)) iterations.

Proof First we remark that the minimum and maximum possible values for both discovery prob-
abilities and threshold probabilities are 1/(22r+1m) and 1/2 respectively, and the minimum and
maximum possible values for c(χ) are 1 and m+1.

For each edge e, we divide the iterations into phases until e is found. Each phase is associated
with a known relevant subset χ of e which has the minimum threshold probability at the beginning
of the phase. A χ-phase ends when χ becomes inactive and then either e will be found or another
relevant subset of e with at most half of χ’s threshold probability will be found. Let us associate
χ’s threshold probability with a χ-phase. There are certainly at most 2r phases because this is a
bound on the number of subsets of e. Moreover, there are at most O(logm + r) phases as the asso-
ciated threshold probability halves at the end of each phase. Furthermore, each phase takes at most
O(logm + r) iterations, since either c(χ) doubles or the best discovery probability halves at each
iteration. Therefore the algorithm terminates in O(min(2r(logm+ r),(logm+ r)2)) iterations.

It is not hard to see that total number of assertions we need to satisfy before the algorithm
succeeds is bounded by poly(2r,m), including the assertions that each PARA-FIND-ONE-EDGE
will succeed. Choose δ′ = Θ(δ/poly(2r,m)) and the algorithm will succeed with probability at
least 1−δ. Although the choice of δ′ requires knowledge of m, it is sufficient to use an upper bound
of

(n
r

)

, and we have that log 1
δ′ ≤ poly(r, logn) · log 1

δ . Since queries at each iteration are made in
O(logm+ r) rounds, it follows that
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Theorem 21 With probability at least 1− δ, Algorithm 6 learns an r-uniform hypergraph with m
edges and n vertices, using O(24rm · poly(r, logn, log 1

δ)) queries, in O(min(2r(logm+ r)2,(logm+
r)3)) rounds.

6. Lower Bounds For Almost Uniform Hypergraphs

In this section, we derive a lower bound for the class of (r,∆)-uniform hypergraphs. The following
theorem is proved in Angluin and Chen (2004).

Theorem 22 Ω((2m/r)r/2) edge-detecting queries are required to identify a hypergraph drawn
from the class of all (r,r−2)-uniform hypergraphs with n vertices and m edges.

We show that by a simple reduction this gives us a lower bound for general (r,∆)-uniform hyper-
graphs.

Theorem 23 Ω((2m/(∆ + 2))1+ ∆
2 ) edge-detecting queries are required to identify a hypergraph

drawn from the class of all (r,∆)-uniform hypergraphs with n vertices and m edges.

Proof Given a (∆+2,∆)-uniform hypergraph H = (V,E), let H ′ = (V ∪V ′,E ′) be an (r,∆)-uniform
hypergraph, where |V ′|= r−∆−2, V ′∩V = φ and E ′ = {e∪V ′|e ∈ E}. Any algorithm that learns
H ′ can be converted to learn H with the same number of queries.

7. Learning Almost Uniform Hypergraphs

In this section, we extend our results to learning (r,∆)-uniform hypergraphs. The query upper bound
stated in the following theorem matches the lower bound of Theorem 23 in terms of dependence on
m. The round upper bound is only 1+∆ times more than that of Algorithm 6.

Theorem 24 There is a randomized algorithm that learns an (r,∆)-uniform hypergraph with m
edges and n vertices with probability at least 1− δ, using O(2O((1+ ∆

2 )r) ·m1+ ∆
2 · poly(logn, log 1

δ)))
queries. Furthermore, the queries can be made in O((1 + ∆) ·min(2r(logm + r)2,(logm + r)3))
rounds.

7.1 The Algorithm

One of the main modifications is the use of new discovery probabilities. We first provide some
intuition for the new discovery probabilities. We have been choosing the discovery probability for
a relevant set χ to be inversely proportional to the (r−|χ|)th root of its degree. It is so chosen that a
χ-sample has good chance of excluding edges that contain χ. In an almost uniform hypergraph, we
choose the discovery probabilities for the same purpose. In other words, we would like to choose p
such that ∑e∈E,e⊇χ p|e\χ| ≤ 1/2r+2. Similarly, we should set p to be inversely proportional to the wth

root of dH(χ), where w = mine⊇χ |e\χ| is the minimum difference in cardinalities between edges
containing χ and χ. However, w is no longer equal to r−|χ| as in uniform hypergraphs. There are
two cases. When |χ| < r−∆, we have w ≥ r−∆− |χ| because the minimum edge size is r−∆;
when |χ| ≥ r−∆, w can be as small as 1.
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The case when w = 1 is special, as it implies that there exists an edge e such that |e\χ|= 1 or e
has only one vertex v that χ does not have. We will call e a 1-edge of χ. On one hand, any χ-sample
containing v contains e, and hence is not an independent set; on the other hand, by excluding every
vertex whose union with χ contains an edge, we can easily exclude all corresponding edges. Thus
we remove these vertices from each χ-sample and the resulting sample, which we call a modified
χ-sample, is an improvement over the original one. (We remark that this improvement is available
for the uniform hypergraph problem in the case when |χ| = r− 1, but is not as important.) More
specifically, let νH(χ) be the set of all vertices v such that χ∪{v} contains an edge in H. A modified
(χ, p)-sample is a (χ,νH(χ), p)-sample defined as follows.

Definition 25 A (χ,ν, p)-sample (χ∩ ν = /0) is a random set of vertices that contains χ and does
not contain any vertex in ν and contains each other vertex independently with probability p.

Algorithm 7 Learning an (r,∆)-uniform hypergraph

All PARA-FIND-ONE-EDGE’s are called with parameter δ′.
1: e← PARA-FIND-ONE-EDGE(V ).
2: E← {e}. c( /0)← 1.
3: repeat

QUERY PHASE
4: Let F 1

H be a family that for every known relevant set χ contains c(χ) · 2r+2 ln 1
δ′ modified

(χ, 1
2 p∗H(χ))-samples and the same number of modified (χ, 1

2r+3+|χ|dH(χ)
)-samples.

5: Let F 2
H be a family that for every known relevant set χ contains 2(4/pH(χ))r−|χ| ln 1

δ′ modified
(χ, 1

4 p∗H(χ))-samples and 2r+4+|χ|dH(χ) ln 1
δ′ modified (χ, 1

2r+3+|χ|dH(χ)
)-samples.

6: Let FH = F 1
H ∪F 2

H . Make queries on sets in FH that are independent in H.
7: Call PARA-FIND-ONE-EDGE on all positive samples.

COMPUTATION PHASE
8: For each relevant set χ, divide χ-samples in F 1

H in c(χ) groups of 2r+2 ln 1
δ′ modified

(χ, 1
2 p∗H(χ))-samples and the same number of modified (χ, 1

2r+3+|χ|dH(χ)
)-samples.

9: Process the samples in F 1
H group by group in an arbitrary order. Increase c(χ) by the number

of new edges that χ-samples produce. Add newly found edges to E.
10: Process the samples in F 2

H . Add newly found edges to E.
11: 1-edge-finder: For any χ-sample Pχ ∈ F 2

H , let e be the output of PARA-FIND-ONE-
EDGE(Pχ). ∀v ∈ e, make a query on χ∪ {v} to test whether it is an edge. Add newly
found edges to E.

12: For every newly found relevant set χ, c(χ)← 1.
13: until no new edge is found

We remark that we can use original χ-samples and obtain a much simpler algorithm than Algo-
rithm 7. However, the query complexity will be roughly m∆+2 instead of m1+ ∆

2 . The reduction of
the complexity in the exponent of m is due to the fact that each modified χ-sample only needs to
deal with edges that have at least 2 vertices that χ does not have. This leads to the definition of the
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new discovery probability as follows.

pH(χ) =

{

1/(2r+|χ|+2dH(χ))1/(r−∆−|χ|), if |χ| ≤ r−∆−2

1/(2r+|χ|+2dH(χ))1/2, otherwise.

We use the new discovery probabilities in Algorithm 7. Although we use modified samples,
special care is still needed for 1-edges in order to parallelize the edge finding process. In fact, the
majority of effort in developing Algorithm 7 is devoted to dealing with 1-edges.

In both F 1
H and F 2

H , we draw (χ, 1
2r+3+|χ|dH(χ)

)-samples in addition. The reason for the design will

be made clear in the analysis section. A group of χ-samples in F 1
H will consist of both (χ, 1

2 p∗H(χ))-
samples and (χ, 1

2r+3+|χ|dH(χ)
)-samples. F 2

H contains (χ, 1
4 p∗H(χ))-samples as in Algorithm 6. Al-

though, the number of (χ, 1
4 p∗H(χ))-samples appears to be different from that of Algorithm 6, we

remark that 2(4/pH(χ))r−|χ| ln 1
δ′ is bounded by 23r+3dH(χ) ln 1

δ′ under the definition of discovery
probabilities in Section 5 and this group of samples are designed for essentially the same purpose
as those for Algorithm 6. We also use a subroutine called 1-edge-finder, specified in Algorithm 7.

7.2 Analysis

Round complexity
The following two definitions are analogous to those in Section 5. The extra subscript indi-

cates that the new definitions depend on the already found sub-hypergraph H, while the previous
definitions don’t.

Definition 26 Let ρχ,H(p) be the probability that a (χ,νH(χ), p)-sample is positive, where χ is a
vertex set that does not contain an edge.

Definition 27 Let pχ,H = min
{

p|ρχ,H(p) = 1/2r+1
}

be the threshold probability of χ.

Now we bound the number of iterations of Algorithm 7. We divide the process of the algorithm
into (1+∆) phases, each of which is indexed by a number in [r−∆,r]. The phase l begins when all
edges of size less than l have been found. Phase r−∆ is the first phase because there is no edge of
size less than r−∆.

Let e be an edge of size l and χ be a known relevant subset of e. We need to deal with two cases
: |χ|= l−1 and |χ| ≤ l−2, the latter of which is simpler as every 1-edge of χ has been discovered.
We make the following definition.

Definition 28 χ is active if it satisfies either of the following two conditions.

1. |χ| ≤ l−2 and ρχ,H( 1
2 p∗H(χ))≥ 1/2r+1.

2. |χ|= l−1 and ρχ,H( 1
2 p∗H(χ))≥ 1/2r+1 and ρχ,H( 1

2r+3+|χ|dH(χ)
)≥ 1/2r+1.

It is inactive otherwise.

The definition is analogous to that in Section 5, and so are the following assertions. The assertions
are made at phase l.

Assertion 29 Consider one group of χ-samples G in F 1
H . Let H ′ be the hypergraph the algorithm

has found before the group is processed. If χ is active, one of the following three events happens.
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1. p∗H ′(χ) < 1
2 p∗H(χ) ,

2. dH ′(χ) > 2dH(χ) , or

3. G will produce a new edge.

Assertion 30 If χ is inactive, at the end of this iteration, e has been found or a subset of e whose
threshold probability is at most 1

2 pχ,H has been found.

The two assertions guarantee that Algorithm 7 makes a certain progress at each iteration.

Lemma 31 If no assertion is violated, phase l terminates in O(min(2r(logm + r),(logm + r)2))
iterations.

Proof We need to prove that every edge of size l can be found in the specified number iterations. Let
e be an edge of size l. The proof proceeds similarly to that of Lemma 20. We divide the iterations
into sub-phases, each of which is associated with a subset of e (we use sub-phases here to avoid
confusion). Using an argument similar to that used in the proof of Lemma 20, we can show that
each sub-phase takes O(logm+ r) iterations. The only exception is that in this proof, the threshold
probability of a set χ might not be fixed (it depends on the already found sub-hypergraph H). When
more 1-edges of χ are found, ρχ,H(p) will decrease as more vertices are excluded from the sample.
Therefore, pχ,H might increase. After such a sub-phase, the associated threshold probability might
not halve. However, this exception only happens when the subset associated with the sub-phase is
of size l− 1 and only happens l ≤ r times as there are at most l such subsets and causes at most l
additional sub-phases. Therefore, we get the same asymptotic bound on the number of sub-phases,
which is O(min(2r, logm+ r)). This establishes the lemma.

Now we show the two assertions are true with high probability.

Lemma 32 Assertion 29 is true for Algorithm 7 with probability at least 1−δ′.

Proof G consists of two subgroups of samples with different sampling probabilities. In the analysis
we will only consider one subgroup. In the case that |χ| ≤ l−2, we use only (χ, 1

2 p∗H(χ))-samples.
In the case that |χ| = l− 1, we will use the subgroup with the smaller sampling probability. Let η
be the sampling probability of the subgroup we consider. We have η = 1

2 p∗H(χ) when |χ| ≤ l− 2
and η = min( 1

2 p∗H(χ), 1
2r+3+|χ|dH(χ)

) when |χ| = l − 1. By our definition of active, in both cases

ρχ,H(η)≥ 1/2r+1. The probability that a modified (χ,η)-sample contains an edge in H ′ is at most

∑
χ′⊆χ

dH ′(χ′) ·ηmax(r−∆−|χ′|,2) + |νH ′(χ)\νH(χ)| ·η. (1)

• When |χ| = l− 2, |νH ′(χ)\νH(χ)| = 0. Therefore, if η = 1
2 p∗H(χ) ≤ p∗H ′(χ), Equation (1) is

at most 1/2r+2.

• When |χ|= l−1, since every 1-edge of χ must contain χ in phase l, Equation (1) is bounded
by

∑
χ′⊂χ

dH ′(χ′) ·ηmax(r−∆−|χ′|,2) +dH ′(χ) ·η.

If 1
2 p∗H(χ)≤ p∗H ′(χ) and dH ′(χ)≤ 2dH(χ), the above is bounded by 1/2r+2.
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With probability at least 1/2r+2, a (χ,η)-sample contains an edge that is not contained in H ′.
Thus, with probability at least 1−δ′, G will produce a new edge.

Lemma 33 Assertion 30 is true for Algorithm 7 with probability at least 1−δ′.

Proof First we remark that if e has not been found, the probability that e is contained in a modified
χ-sample is the same as for an unmodified one. This is because e does not contain any vertex in
νH(χ). Otherwise, e contains an edge in H, which violates our assumption that edges do not contain
each other.

If ρχ,H( 1
2 p∗H(χ)) < 1/2r+1, the proof proceeds similarly to that of Lemma 19. We remark that

the differences are that ρχ,H and pχ,H are used instead of ρχ and pχ and we draw more samples in
F 2

H in Algorithm 7.
The remaining case is when |χ| = l − 1 and ρχ,H( 1

2r+3+|χ|dH(χ)
) < 1/2r+1. Consider a

(χ, 1
2r+3+|χ|dH(χ)

)-sample Pχ in F 2
H . Since e is of size l, we have |e\χ| = 1. Let {v} = e\χ. We

have that

Pr[v ∈ Pχ] =
1

2r+3+|χ|dH(χ)

and

Pr[∃ an edge e′ ⊆ Pχ such that v /∈ e′ | v ∈ Pχ]≤ ρχ,H(
1

2r+3+|χ|dH(χ)
) < 1/2r+1.

Therefore, with probability at least 1
2r+3+|χ|dH(χ)

· (1− 1/2r+1), Pχ contains v and contains only

edges that are incident with v. Our 1-edge-finder will find e in this case. As we draw 2r+4+|χ|dH(χ)
ln 1

δ′ samples, e will be found with probability at least 1−δ′.

Since the algorithm has only 1+∆ phases, the algorithm ends after O((1+∆) ·min(2r(logm+
r),(logm+ r)2)) iterations. If no assertion is violated, the round complexity of Algorithm 7 is

O((1+∆) ·min(2r(logm+ r)2,(logm+ r)3))

We can choose δ′ so that the algorithm succeeds with probability 1− δ and log 1
δ′ ≤ poly(r, logn) ·

log 1
δ .

Query complexity
The main discrepancy of the performance of this algorithm is due to the fact that in F 2

H , the
discovery probabilities are chosen as if all the edges were of minimum possible size, while the
numbers of samples drawn are chosen as if all the non-edges (or potential edges) of H were of
the maximum possible size. This causes the super-linear query complexity. At each iteration, the
number of χ-samples in F 2

H is at most

2(4/pH(χ))r−|χ| ln
1
δ′

=











O((2O(r) ·dH(χ))
r−|χ|

r−∆−|χ| · log
1
δ′

) if |χ| ≤ r−∆−2

O((2O(r) ·dH(χ))1+ ∆
2 · log

1
δ′

) otherwise.

Note that (r− |χ|)/(r−∆− |χ|) is at most 1 + ∆
2 when |χ| ≤ r−∆− 2. Therefore, the number

of modified χ-samples in F 2
H is at most O((2O(r) · dH(χ))1+ ∆

2 · log 1
δ′ ). Because ∑χ dH(χ) ≤ 2rm
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and ∀χ,dH(χ) ≤ m, we have ∑χ dH(χ)1+ ∆
2 ≤ (2rm)1+ ∆

2 . Therefore, the total number of queries the
algorithm makes is bounded by

O(2O((1+ ∆
2 )r) ·m1+ ∆

2 · poly(logn, log
1
δ
)).

This finishes the proof of Theorem 24.
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Abstract
We propose an active set algorithm to solve the convex quadratic programming (QP) problem which
is the core of the support vector machine (SVM) training. The underlying method is not new and is
based on the extensive practice of the Simplex method and its variants for convex quadratic prob-
lems. However, its application to large-scale SVM problems is new. Until recently the traditional
active set methods were considered impractical for large SVM problems. By adapting the methods
to the special structure of SVM problems we were able to produce an efficient implementation.
We conduct an extensive study of the behavior of our method and its variations on SVM problems.
We present computational results comparing our method with Joachims’ SVMlight (see Joachims,
1999). The results show that our method has overall better performance on many SVM problems.
It seems to have a particularly strong advantage on more difficult problems. In addition this al-
gorithm has better theoretical properties and it naturally extends to the incremental mode. Since
the proposed method solves the standard SVM formulation, as does SVMlight , the generalization
properties of these two approaches are identical and we do not discuss them in the paper.
Keywords: active set methods, support vector machines, quadratic programming

1. Introduction

In this paper we introduce an active set method to solve the following convex quadratic program-
ming (QP) optimization problem which is defined by the classic soft margin SVM formulation (see,
for example, Cristianini and Shawe-Taylor, 2000).

max −
1
2

α
T
Qα− c

T
ξ

−Qα+by+ s−ξ = −e, (1)

0 ≤ α ≤ c, s ≥ 0, ξ ≥ 0,

where α ∈ Rn is the vector of the dual variables, b is the bias (scalar) and s and ξ are the n-
dimensional vectors of the slack and the surplus variables, respectively. y is a vector of the labels,
±1. Q is the label encoded kernel matrix, Qi j = yiy jK(xi,x j), e is the vector of all 1’s of length n
and c is the penalty vector associated with the errors (in standard soft margin SVMs the vector c is
a product of vector e and a scalar penalty C, but here we will allow for any nonnegative vector c).
The dual of this problem is

min
1
2

α
T
Qα− e

T
α

c©2006 Katya Scheinberg.
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s.t. y
T
α = 0, (2)

0 ≤ α ≤ c.

To confirm that problem (1) is equivalent to the traditional soft margin SVM formulation

min
1
2

w
T
w+ c

T
ξ

s.t. yi(w
T
xi −b)− si +ξi ≥ 1, i = 1, . . . ,n (3)

s ≥ 0, ξ ≥ 0,

observe that (2) is the same as the dual of (3) and from optimality conditions of (3) and (2) we
have w = ∑n

i=1 yiαixi. Substituting this expression for w to (3) and denoting Qi j = yiy jαiα jx
T

i x j (or
Qi j = yiy jαiα jK(xi,x j) in the kernel case) we obtain the convex QP formulation (1), which we will
consider in this paper. Hence, (1) and soft margin SVM enjoy the same generalization properties.

General convex QPs are typically solved by one of the two approaches: interior point method
approach or active set method approach. If the Hessian of an objective function (matrix Q in the
case of SVM) and/or the constraint matrix of the QP problem is large and sparse then an interior
point method is usually the method of choice. If the problem is of moderate size but the matrices
are dense, then active set method is preferable. In SVM problems the Q matrix is typically dense.
Thus, large SVM problems present a challenge for both approaches. It was shown by Fine and
Scheinberg (2001) and Ferris and Munson (2000) that for some classes of SVMs, for which Q is
dense but low-rank, one can adapt an interior point method to work very efficiently. However, if the
rank of Q is high, an active set approach seems to remain the only main alternative.

One of the most “traditional” active set methods in the optimization literature is the Simplex
method for linear programming (LP) problems. The Simplex method is known to have very good
practical performance. The QP analogues, though not as extensively tested in practice, are also
considered to be very efficient. There are a few methods based on the Simplex method idea for
solving QP problems (see Fletcher, 1971; Goldfarb, 1972; Goldfarb and Idnani, 1983). Many of
them are theoretically equivalent, meaning that they produce the same sequence of iterations, but
they have different numerical properties (such as per-iteration complexity and numerical stability).
In this paper we derive an implementation targeted to SVM problems based on the framework
described in Fletcher (1971), Goldfarb (1972) and Nocedal and Wright (1999).

The main idea of this method in the context of SVM is to fix, at each iteration, all variables in the
current dual active set1 at their current values (0 or c), and then to solve the reduced dual problem.
After obtaining a solution - decide whether it is optimal for the overall dual problem (same as being
feasible for the overall primal problem), or if any of the dual variables should be released from the
active set.

When applied to SVM, this approach poses the following problem: if the complement of the
dual active set (the set of “free” variables) has large cardinality, then solving the restricted subprob-
lems may be too expensive, since Q is completely dense. Also determining the next variable to
leave the active set may be expensive for the same reason. Therefore, updating all “free” variables
at once was considered impractical.

The most common approach to large SVM problems is to use a restricted active set method,
such as chunking (Boser et al., 1992) or decomposition (Osuna et al., 1997; Joachims, 1999) where

1. The dual active set is the set of dual variables α whose values are at their bound.
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at each iteration only a small number of variables are allowed to be varied. The size of such “chunk”
is determined heuristically or is chosen by the user. There are a few skillfully implemented SVM
solvers based on this type of restricted active set methods (Joachims, 1999; Platt, 1999). The main
disadvantage of these methods is that they tend to have slow convergence when getting closer to the
optimal solution. Moreover, their performance is sensitive to the changes in the chunk size and there
is no good way of predicting a good choice for the size of the chunks for a particular problem.2

A full active set method, such as the one presented in this paper, avoids these disadvantages.
The method itself is not new (see Nocedal and Wright, 1999). Our contribution is to adapt it to the
SVM framework and provide an efficient implementation.

First we notice that a support vector that violates the margin constraint (that is the ξ surplus
variable is positive) corresponds to a variable α which is at its upper bound and therefore is in the
dual active set. The complement of the dual active set contains variables α that are strictly between
the upper and lower bounds. Such variables correspond only to the support vectors that are exactly
on the margin (that is both the corresponding slack and the surplus variables are zero). The current
number of such support vectors, ns, is the size of the reduced QP (RQP). Solving such RQP directly
(say, by an IPM method, as it is done in SVMlight) requires at least O(n3

s ) operations, which might
be prohibitively expensive if repeated over and over again and if ns is relatively large. We do not
solve RQP directly, but only make one step toward its solution at each iteration. Moreover, the
active set is incremented only by one variable at a time (either one variable leaving, or one entering
the active set), hence we can store and update a factorization of the reduced matrix Q. Each update
takes O(n2

s ) operations and so does solving a system of equations with the reduced matrix Q.
At each such step toward the optimal solution of the RQP, we either find that solution or en-

counter a bound on one of the “free” variables. In the latter case this variable is included into the
active set and the process repeats.

This process does not always produce an optimal solution to the subproblem, but usually pro-
duces a good approximation of it. Typically this does not affect the overall number of iterations
significantly, whereas the reduction of the per-iteration cost is significant.

The RQP may sometimes have an infinite solution, if reduced matrix Q is singular. In this case
an infinite descent direction is computed and a step is taken along this direction until one of the
variable bounds is encountered. We provide the full treatment of the various cases for solving the
RQP subproblem. We use the approach described in Frangioni (1996).

If the search for the optimum of the RQP subproblem is terminated then our method determines
whether the primal feasibility was achieved and if not, which dual variable should leave the active
set. To do that we need to compute a product of a submatrix of Q that corresponds to the variables
at their upper bounds and the unit vector of an appropriate length. This can be very expensive to
compute at each iteration, instead one should rather store and update the result of this multiplication.
Another advantage of using “one-variable-at-a-time” increments is in potentially reducing the cost
of such updates.

The multiple updates to the active set, which are used in “chunking” and “decomposition” meth-
ods could still have an advantage if the overall number of iterations were significantly smaller than
in the case of single updates. But as our computational results indicate this is not the case. We offer
some intuition to support this claim. Assume that your data contains 10 identical data points which
at the current iteration are the most violated examples and we would like to introduce them into the

2. See Section 12.1.1 in Platt (1999) for a similar discussion which motivated Platt’s SMO. Essentially SMO is an active
set method in which the chunk size is fixed to be the smallest possible, namely 2.
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next “chunk”. Introducing all 10 at once implies 10 times more work than introducing just one. Yet
since they are identical, introducing just one produces the same result as introducing all ten. Since
the training data is often somewhat repetitive (there may not be identical points, but rather very
similar points, for instance, in clustered data sets) this example is not too far fetched.

As the computational results show, our method has particular advantage over SVMlight on prob-
lems where the number of the support vectors or the number of outliers is large (but not necessarily
excessive, such as ∼ 1000 out of 20000 vectors). Our algorithm currently requires the storage of
the Cholesky factors of the reduced matrix Q, which might require excessive amount of memory for
problems where the number of unbounded support vectors is very large. However, this often means
that the chosen kernel suffers from overfitting the data, so the problem is badly posed in some sense,
unless the entire test set is very large, in which case one should consider a different implementation,
and, possibly, a more powerful computer.

The most expensive step of our algorithm (and of SVMlight , in fact) is pricing the primal con-
straints and choosing the next constraint to enter the active set. We will compare two approaches.
One of these approaches is shrinking, which is used by SVMlight , and the other is sprint which is an
industry standard in advanced implementations of LP solvers (Bixby et al., 1992). We observe that
sprint appears to work better than shrinking on difficult SVM problems.

The proposed method enjoys several theoretical advantages compared to the methods based
on chunking. First of all it converges in a finite number of iterations (Fletcher, 1971; Frangioni,
1996). In the worst case this number might be exponential, but it is hardly the case in practice. The
method is also well suited for analysis of various situations. For instance, in Balcazar et al. (2001)
a randomized active set algorithm for SVM is introduced and shown to have a quasi-linear average
complexity. Our algorithm can be easily adapted to fit the randomized framework of Balcazar et al.
(2001), hence similar average case results apply.

Recently, active set methods for SVM similar to ours were used in Cauwenberghs and Poggio
(2001) for incremental learning and in Hastie et al. (2004) for generating the entire regularization
path. Their methods, unlike ours, require primal and dual feasibility to be satisfied at every iteration
and progress by changing the optimization problem itself (in a manner dictated by the respective
uses of their methods). However, many of the efficiency issues of the algorithms are similar, such as
the possible singularity of the reduced matrix Q and efficient updates of its Cholesky factorization.
Though we choose to focus on one specific active set method in this paper, we believe the the
experience we present here will be useful for other active set methods for SVM problems. Some of
the ideas presented in the paper to improve the efficiency of the active set methods for SVMs were
also suggested in Kaufman (1998).

The paper is organized as follows. In the next section we introduce the dual active set method
for the soft-margin SVM problem and describe the details of solving the reduced QP problem.
In Section 3 we will present the results of comparing our method to SVMlight on a selection of
classification problems from the UCI repository (Blake and Merz, 1998). In Section 4 we will
focus on various implementational issues that arise in the attempt to improve the performance of the
method. In Subsection 4.4 we apply our method to the incremental case. Section 5 contains some
conclusions.
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2. Dual Active Set Method for SVMs

Any optimal solution to problems (1) or (2) must satisfy the Karush-Kuhn-Tucker (KKT) necessary
and sufficient optimality conditions:

1 αisi = 0, i = 1, . . . ,n

2 (ci −αi)ξi = 0, i = 1, . . . ,n

3 y
T
α = 0,

4 −Qα+by+ s−ξ = −e,

5 0 ≤ α ≤ c,

6 s ≥ 0, ξ ≥ 0.

Let us introduce some notation. A primal-dual solution (α,b,s,ξ) is called dual basic feasible
if it satisfies condition 1-5 of the KKT system, but may violate condition 6. For a given dual basic
feasible solution, (α,b,s,ξ), we partition the index set I = {1, . . . ,n} into three sets I0, Ic and Is in
the following way: ∀i ∈ I0 si ≥ 0 and αi = 0, ∀i ∈ Ic ξi ≥ 0 and αi = ci and ∀i ∈ Is si = ξi = 0 and
0 < αi < ci. It is easy to see that I0 ∪ Ic ∪ Is = I and I0 ∩ Ic = Ic ∩ Is = I0 ∩ Is = /0. We will refer to Is

as the primal active set and to I0 ∪ Ic as the dual active set. Let ns = |Is|, n0 = |I0| and nc = |I0|,
Based on the partition (I0, Ic, Is) we define Qss (Qcs Qsc Qcc, Q0s, Q00) as the submatrix of Q

whose columns are the columns of Q indexed by the set Is (Ic, Is, Ic, I0, I0) and whose rows are the
rows of Q indexed by Is (Is, Ic, Ic, Is, I0). We also define ys (yc, y0) and αs (αc, α0) and the subvectors
of y and α whose entries are indexed by Is (Ic, I0). cc is the part of vector c indexed by Ic and by e
we denote a vector of all ones whose size is determined by the context.

To initiate the algorithm we assume that we have a dual basic feasible solution α0,b,s0,ξ0 and
the corresponding partition (I0

0
, Ic

0
, Is

0). For example setting α0 = 0 and I0 = {1, . . . ,n} produces a
starting point for the algorithm.

We know that ∀i ∈ I0 αi = 0 and ∀i ∈ Ic αi = ci. Then if we fix the variables in the dual active
set then our dual problem reduces to

minαs

1
2

α
T

s Qssαs + c
T

c Qcsαs − e
T
αs

s.t. y
T

s αs = −y
T

c cc,

0 ≤ αs ≤ c.

The outline of the algorithm is the following:

Step 0 Given α0, β0, s0, ξ0 find initial Is, I0 and Ic.

Step 1 If Is = /0, go to Step 2, otherwise:

(i) Solve

minαs

1
2

α
T

s Qssαs + c
T
Qcsαs − e

T
αs (4)

s.t. y
T

s αs = −y
T

c cc.

If a finite solution, α∗
s , exists, then set d = α∗

s −αs, otherwise find d - an infinite descent
direction.
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(ii) From the current iterate make a step along direction d until for some i ∈ Is αi = 0 or
αi = ci or until solution is reached. αk+1

s is the new point.

(iii) If for some i ∈ Is, αk+1
i = 0,

then update Is := Is\{i}, I0 := I0 ∪{i}, k := k +1 and go to the beginning of Step 1.

(iv) If for some i ∈ Is, αk+1
i = ci,

then update Is := Is\{i}, Ic := Ic ∪{i}, k := k +1 and go to the beginning of Step 1.

(v) If the optimum is reached in step (ii); that is αk+1
s = α∗

s , proceed to Step 2.

Step 2 Partition I0 into I′0 and I′′0 and partition Ic into I′c and I′′c

(i) Compute s′0, the subvector of s indexed by I ′0:

s′0 = −Q′
0sα

k+1
s − y′0β+1−Q′

0ccc

and ξ′c, the subvector of ξ indexed by I ′c:

ξ′c = Q′
csα

k+1
s + y′cβ−1+Q′

cccc,

where Q′
0s and Q′

0c (Q′
cs and Q′

cc ) are the submatrices of Q0s and Q0c, respectively, (Qcs

and Qcc, respectively ) with rows index by I0
′ (Ic

′).

(ii) Find i0 = argmini{si : i ∈ I0
′}.

Find ic = argmini{ξi : i ∈ Ic
′}.

(iii) If si0 ≥ 0 and ξic ≥ 0 then if I0
′ 6= I0 or Ic

′ 6= Ic then let I0
′ := I0 and Ic

′ := Ic and go to
Step 2(i). Else, the current solution is optimal, Exit.
If si0 ≤ ξic , then Is := Is ∪{i0} and I0 := I0\{i0}.

Else, Is := Is ∪{ic} and Ic := Ic\{ic}.

k := k +1, go to Step 1.

We will now discuss in details the implementation of the steps of the algorithm.

2.1 Solving the Quadratic Subproblem

When matrix Qss is strictly positive definite then problem (4) has a unique finite solution. This
solution satisfies the KKT conditions:

−Qssαs + y
T

s β = −e
T
+ c

T

c Qcsαs

y
T

s αs = −c
T

c yc,

or, in matrix form,
[

−Qss ys

y
T

s 0

](

αs

β

)

=

(

−e+Qsccc

−c
T

c yc

)

. (5)

Since we are considering the case when Qss is nonsingular, we can find β by taking the Schur
complement of the above system

(y
T

s Q−1
ss ys)β = y

T
Q−1

ss (−e+Qsccc)− c
T

c yc.
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Consider the Cholesky factorization Qss = LsLs
T

and denote Ls
−1ys by r1 and Ls

−1(−e+c
T

c Qcs)
by r2. Then the solution to (5) is

β =
r

T

1 r2 − c
T

c yc

r
T

1 r1
, αs = L

−T

s (r1β− r2).

It is often the case, however, that Qss is not strictly positive definite. This can even occur when an
RBF kernel (which is strictly positive definite for distinct data points) is used, if the set Is contains
indices of two identical data points with different labels.

If, due to singularity of Qss, system (5) is underdetermined, this means that problem (4) has
an unbounded solution. In this case Step 1(i) should produce an infinite descent direction for (4).
A direction d is an infinite direction if it satisfies Qssd = 0 and y

T

s d = 0. Depending on the sign
of (−e + ce

T
Qcs)

T
d either d or −d is chosen as the infinite descent direction. Variable β remains

unchanged in this case. We use the approach for positive semidefinite QP problems described in
Frangioni (1996) and Kiwiel (1989).

We consider several cases.

Case 1

Let Qss have only one zero eigenvalue. Then, subject to permutation and without loss of
generality, its Cholesky factorization can be written as

Qss =

[

Ls 0
l

T

s 0

][

Ls
T

ls
0 0

]

,

where Ls ∈ R(ns−1)×(ns−1) and Ls ∈ Rns−1. Then system (5) can be written as




−LsLs
T

−Lsls y1:ns−1

−l
T

s Ls
T

−l
T

s ls yns

y1:ns−1 yns 0









α1:ns−1

αns

β



 =





(−e+Qsccc)1:ns−1

(−e+Qsccc)ns

−c
T

c yc



 ,

where, following Matlab notation, y1:ns−1 (α1:ns−1, (−e+Qsccc)1:ns−1) denote the first ns −1
elements of vector y (α, (−e+ cQsce)) and yns (αns , (−e+Qsccc)ns) denotes the last compo-
nent of this vector.

Let r1 = Ls
−1y1:ns−1 and r2 = Ls

−1(−e + Qsccc)1:ns−1. By expressing α1:ns−1 in the above
system through αns and β, and by consecutively eliminating αns we obtain

(−l
T

s r1 + yns)β = (−e+Qsccc)ns − l
T

s r2.

We now have two cases.

(a) If l
T

s r1 6= yns then system (5) still has a unique solution

β =
(−e+Qsccc)ns − l

T

s r2

−lT
s r1 + yns

,

αns =
c

T

c yc + r
T

1 r2 −βr
T

1 r1

−r
T

1 ls + yns

αs = L
−T

s (−lsαns + r1β− r2).
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(b) If l
T

s r1 +yns = 0 then system (5) is singular, hence we are looking for an infinite direction
d. ds = ((Ls

−1ls)
T
,−1)

T
is such a direction. It can be easily shown that Qssds = 0 from

the form of the factorization of Qss, and it can be easily shown that y
T

s ds = 0 from the
fact that l

T

s r1 + yns = 0.

Case 2

Let us now consider the case when Qss has exactly two zero eigenvalues. Then, again w.l.o.g.,
we can write its Cholesky factorization as

Qss =





Ls 0 0
l

T

s1
0 0

l
T

s2
0 0









Ls
T

ls1 ls2

0 0 0
0 0 0



 ,

where Ls ∈ Rns−2×ns−2, ls1 , ls2 ∈ Rns−2. The system (5) is always underdetermined in this
case, hence an infinite direction always exists. There are, again, two possible cases.

(a) If l
T

s2
r1 6= yns then the following direction

d = (Ls
−T

(ls1 −ρls2),−1,ρ), where ρ =
yns−1 − l

T

s1
r1

yns − lT
s2

r1

is an infinite direction. Qssd = 0 follows from the form of the Cholesky factorization
and y

T
d = 0 is also easily shown by substitution.

(b) If l
T

s2
r1 = yns then

d = (Ls
−T

ls2 ,0,−1)

is an infinite direction. This case can be shown similarly to Case 1(b).

Case 3

Finally, let us consider the case when Qss has more than two zero eigenvalues. First, we
observe that this case can only happen in the early stage of the algorithm. Whenever Qss has
more than one zero eigenvalue, then system (5) is underdetermined and an infinite direction
is found during Step 1(i). Hence, during Step 1(ii) a boundary is always encountered. This
means that the set Is gets reduced by one element and the number of zero eigenvalues of
Qss may only decrease or remain the same. Step 1 repeats until Qss has at most one zero
eigenvalue. Hence, the only way that Qss may have more than two zero eigenvalues is if a
starting solution with such Qss matrix is given to the algorithm. Such case arises when a warm
start is used to initiate the algorithm, as described in Subsection 4.3, therefore, we consider
this case here. Let k > 2 be the number of zero eigenvalues of Qss; as before we write, w.l.o.g.,
the factorization of Qss:

Qss =









Ls 0 0 0
l

T

s1
0 0 0

l
T

s2
0 0 0

Hs 0 0 0

















Ls
T

ls1 ls2 H
T

s
0 0 0 0
0 0 0 0
0 0 0 0









,
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where Ls ∈ Rns−k×ns−k, ls1 , ls2 ∈ Rns−k and Hs ∈ Rns−k×k−2. We generate the infinite direction
for the first ns − k + 2 variables exactly as it is done in Case 2 and we do not change the last
k− 2 variables. During each application of Case 3 of Step 1 we reduce Is by one elements
until Qss has at most 1 nonzero eigenvalue, and Case 3 does not arise again for that problem.

2.2 Rank-one Updates to Qss

On each iteration of the algorithm the set Is can decrease by one element only and/or increase by one
element only. Hence, from each iteration to the next, Qss changes by an addition and/or a deletion
of one row and column. Instead of recomputing the Cholesky factorization each time, which would
require O(n3

s ) operations, it is more efficient to keep the Cholesky factorization of Qss and update it
accordingly when a row and a column are added to or deleted from Qss. Each such update requires
only O(n2

s ) operations. These updates can be found in Golub and Van Loan (1996), but we present
them here for completeness.

Increasing Is. Assume first that Qss is nonsingular and Qss = LsLs
T

is its Cholesky factorization.
Let qs ∈ Rns+1 be the new row (column) that is added to Qss. Aside from possible numerical
issues, which we discuss later, qs can be added as the last row and column of Qss. Then the
Cholesky factorization of the new matrix is

[

Ls Ls
−1(qs)1:ns

0 (qs)
2
ns+1 − (qs)

T

1:ns
Ls

−T
Ls

−1(qs)1:ns

]

,

where (qs)1:ns are the first ns components of the vector qs and (qs)ns+1 is its last component.
It is easy to see that obtaining the new factorization requires O(n2

s ) operations.

If Qss is singular, then from the discussion in Case 3 of the previous subsection, it can only
have one nonzero eigenvalue, since Is is increased and hence Step 2 was performed. In this
case we permute the rows and columns of Qss so that the dependent column and row are at the
end of Qss and inserted column and row are placed in the one before last positions. The the
last two rows of Cholesky factorization may need to be updated in a similar manner to above,
however the total work is still O(n2

s ). In case when Qss is nonsingular, but nearly so, it is
sometimes important for numerical stability to use pivoting during its Cholesky factorization
procedure (Fine and Scheinberg, 2001). In such a case refactorization of several rows of Ls

might be required even if only one row and column are added to Qss. However, we did not
encounter such situations in our computational experiments.

Decreasing Is. When Is is decreased by one element, then a row and a column are removed from
Qss which corresponds to removing a row from the Cholesky factor Ls. If, say, k-th row was
removed from Ls then it is no longer lower triangular. In fact it is nearly lower triangular,
except for the elements in positions ( j, j + 1) for j = k + 1, . . . ,ns − 1. To zero out these
elements we apply Givens rotations (Golub and Van Loan, 1996) to the new matrix Ls; in
other words we multiply Ls on the right by orthogonal matrices of the form















1 · · · 0 0 0
...

...
0 0 c −s 0
0 0 s c 0
0 · · · 0 0 1















.
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Each such matrix multiplication takes O(ns) operations and zeros out one off-diagonal ele-
ments, hence we need O(ns−k) such multiplications, which results in the total work of O(n2

s )
to update the Cholesky factorization of Qss when an elements is removed from Is.

Remark 1 In Frangioni (1996) there are efficient updates for the vectors r1 and r2, that we
introduced in Subsection 2.1. These vectors are results of backsolves with the Cholesky factors
of Qss and given right hand side vectors. In the case of Frangioni (1996) the right hand side
vectors remain the same throughout the algorithm and only the Cholesky factors change. In
our case this is true only for r1 but not for r2, which changes each time the set Ic changes.
These updates can also improve the efficiency of the algorithm when these backsolves have a
noticeable contribution to the overall workload of the algorithms. Since this does not occur
very frequently we do not get into further details in this paper.

Remark 2 If ns is very large and is comparable to n then even storing and updating the
Cholesky factors of Qss become too expensive compared to solving the entire problem. Our
method is not practical on such problems. However, it is questionable whether such problems
should ever be solved, since the resulting classifiers is most likely overfitting the data and its
generalization properties are expected to be very poor. 3

Updating Ic Finally we discuss a trivial but useful updates to Qsccc, Q0ccc and Qcccc when the set
Ic is either increased or decreased by one element. We maintain vector Qccc throughout the
algorithm, when index i is added to Ic then a ci multiple of the i-th column of Q is added to
Qccc. If index i is removed from Ic, then such a vector is subtracted from Qccc.

3. Comparison to SVMlight

In this section we compare our implementation of the proposed algorithm, which we call SVM-
QP, to SVMlight . SVM-QP currently is implemented in Fortran 77, although a C++ version is
under development. SVM-QP is an open source software and is available from the www.coin-or.org
website. We used a high-end IBM RS/6000 workstation in our experiments. We made the same
amount of memory available to both methods. Just as in SVMlight the sparsity of the examples is
exploited by SVM-QP during the kernel evaluations. Unlike SMO (Platt, 1999) there is no special
handling for the case of linear kernel.

We used the following data sets in our experiments:

• Letter-G: The Letter Image Recognition data set from the UCI Repository (Blake and Merz,
1998) - A large number of black-and-white character images were randomly distorted to pro-
duce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical
attributes (statistical moments and edge counts) which were then scaled to fit into a range of
integer values from 0 through 15. We examined performances on an arbitrary binary classifi-
cation problem which was set to separate the letter “G” from all the other letters.

3. See for example Cristianini and Shawe-Taylor (2000), Theorem 4.25, for the generalization power of compression
schemes, and the discussion right after and in Chapter 6.
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• OCR: USPS (United States Postal Service) data set of hand written digits. This data set
comprises 7291 training and 2007 test patterns, represented as 257 dimensional vectors with
entries between 0 and 255. T0(T9) stand for the binary classification problem in which the
target is the digit 0(9) vis. the all the other digits.

• Web and Adult4 : We used the tasks that was compiled by Platt and available from the SMO
home page5

– Adult - The goal is to predict whether a household has an income greater than $50000.
After discretization of the continuous attributes, there are 123 binary features, with ≈ 14
non-zeros per example.

– Web - A text classification problem with binary representation based on 300 keyword
features. This representation is extremely sparse. On the average there are only ≈ 12
non-zero features per example.

For both problems we chose the test cases with half of the overall available example. We did
so to enable to complete many computational tests in a reasonable amount of time. We also
present a table with the results of comparing only the runtime of SVM-QP and SVMlight on
the full test sets for these two problems.

• Abalone: The Abalone data set from the UCI Repository (Blake and Merz, 1998). Since,
we were not interested in evaluating generalization performances, we fed the training al-
gorithm with increasing subsets up to the whole set (of size 4177). The gender encoding
(male/female/infant) was mapped into {(1,0,0),(0,1,0),(0,0,1)}. Then data was scaled to lie in
the [-1,1] interval.

• Spam: This is another data set from the UCI Repository. It was created by M. Hopkins, E.
Reeber, G. Forman and J. Suermondt of Hewlett-Packard Labs. It contains 4601 examples of
emails roughly 39% of which are classified as spam. There are 57 attributes for each example,
most of which represent how frequently certain words or characters appear in the email.

For each data set we used a selection of kernels and parameters to demonstrate how the perfor-
mance of the methods is affected by ns - the number of support vectors at the margin, and nc - the
number of support vectors at the upper bound. For the same reason we use various values of C. We
use RBF kernel with parameter σ. We also use the linear kernel for a Letter-G and Spam problems
and polynomial kernel of degree 5 for the Abalone data set. In the tables of results we indicate
the kernel and the value of C in the name of the test case. For instance web 100 10 stands for the
web data set with parameter σ = 100 and C = 10. Name letter lin 100 stands for the Letter-G set
with linear kernel and C = 100, finally abalone p5 100 stands for the Abalone set with polynomial
kernel of degree 5 and C = 100.

We provide two columns of CPU times for SVMlight . The first one, SVMlight , contains the time
of the runs with default accuracy 10−3. The second column, SVMlight

ε contains the CPU time of the
runs with the accuracy set to 10−6 which is the accuracy of SVM-QP. Both algorithms apply the
accuracy tolerance to the constraints −Qα+by+s−ξ =−e. Specifically, SVM-QP applies a given
tolerance ε on Step 2(iii) of the algorithm (see Section 2) to determine if si0 ≥−ε and ξic ≥ ε.

4. Original data set is from the UCI Repository (Blake and Merz, 1998).
5. http://www.research.microsoft.com/j̃platt/smo.html
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Name n k ns nc SVMlight SVMlight
e SVM-QP

web 100 100 24692 300 980 453 380 918 65
web 40 10 24692 300 1037 568 241 377 68
web 40 100 24692 300 1214 313 368 685 84
web 100 10 24692 300 679 835 203 358 40
letter 100 100 20000 16 241 39 19 26 3
letter 40 1 20000 16 250 266 6 7 5
letter 40 100 20000 16 346 8 11 16 4
letter 100 10 20000 16 193 146 10 15 4
letter 40 10 20000 16 320 57 8 10 4
letter lin 100 20000 16 17 1056 1052 1190 35
ocr9 256 100 7291 256 378 0 13 13 5
ocr0 256 100 7291 256 309 0 8 9 4
abalone 4 100 4177 10 64 1863 135 198 5
abalone p5 100 4177 10 304 1520 - - 22
spam 300 100 4601 57 1417 181 90 - 64
spam lin 100 4601 57 58 822 - - 11
adult 100 1 16100 123 97 5996 153 154 81
adult 100 100 16100 123 871 4823 515 856 175
adult 200 1 16100 123 168 5785 159 152 85
adult 200 100 16100 123 483 5219 332 447 140
adult 50 10 16100 123 615 5143 207 243 120

Table 1: Performance comparison of SVM-QP and SVMlight .

We chose CPU time (in seconds) as the most reasonable performance measure in our setting.
The “-” in the table indicates the failure of SVMlight on that problem.

Table 1 contains the results for the test problems that we examine in this paper. As we can see,
SVM-QP is faster than even the lower accuracy SVMlight , on all of the problems. It is faster by at
least a factor of 2 on almost all of the problems and by a factor of 5 or more on a few problems.

In Table 2 we present the comparison of SVM-QP and SVMlight on the full test sets for adult
and web. These results were obtained by Hans Mittleman, at Arizona State University using a high-
end Unix workstation. The “*” in the last column of the last row indicates that SVM-QP ran out
of memory, since it was trying to store an ns ×ns matrix, with ns ≈ 10000. The stopping tolerance
was set to be 10−6 for both codes, but it is interesting to note that the resulting support vector sets
differed significantly. For example, the number of active support vectors for web 10 100 reported
by SVM-QP was 3446, while the same number reported by SVMlight was 4025. This discrepancy
is due to the fact that SVMlight converges to the optimal active set asymptotically, while SVM-QP
steps from one feasible active set to another in an “exact” manner, until the optimal is found.

4. Implementation Issues

Now we will discuss some implementation choices.
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Name n k ns nc SVMlight
e SVM-QP

web 1000 100 49749 300 297 1702 694 92
web 100 100 49749 300 1404 905 3581 174
web 10 100 49749 300 3446 527 1354 715
adult 1000 100 32561 123 143 11361 937 278
adult 100 100 32561 123 1317 9879 5685 460
adult 10 100 32561 123 9959 3200 14466 *

Table 2: Performance comparison of SVM-QP and SVMlight on large data sets.

4.1 Selecting the Incoming Element of Is

In this subsection we discuss the implementation of Step 2(i). First of all we note that the compu-
tational cost of Step 2(i) depends on whether the kernel values are available in the memory or have
to be computed. We need O(|Is|(|I′0|+ |I′c|)) kernel values at each iteration when Step 2 is invoked.
Specifically we need the elements of matrix Q whose column indices are in Is and whose row indices
are in I′c and I′0.

We note that we always store the ns × ns matrix Qss. This can be a problems when ns is large.
Our algorithm requires storage of the Cholesky factor of Qss, hence even if we do not store Qss

itself, the storage requirement can be reduced at most by half. In our experiments the size of Qss

and its Cholesky factor was reasonable. For extremely large problems a different implementation
may be necessary which solves the linear system in Step 1 by an iterative solver.

To reduce the computational cost it is best to be able to store the entire Qs matrix (that is the
submatrix of Q whose column indices are in Is). In some cases this might be prohibitively expensive
in terms of memory. In our experiments we were able to store Qs in the space not exceeding 400MB.
At the end of this subsection we will discuss the memory saving version of our code.

Let us assume for now that matrix Qs is available. We will consider various ways of reducing
the number of elements in I ′0 and I′c at each repetition of Step 2(i). One simple way to achieve
this is to compute the elements of s′0 and ξ′c until a negative element is encountered, hence, not
looking for the maximum violation, but for any violation. This may reduce the per-iteration time,
but greatly increases the number of iterations, as has been shown by the extensive practice of the
Simplex method in linear programming (Vanderbei, 2001). We will demonstrate this in the section
on the incremental mode, since the incremental mode lacks the ability to “look ahead” and select
the maximum violated constraint. We conclude that it is important to select the most negative or
nearly the most negative element of s′0 and ξ′c during Step 2.

We use the following concepts, common in LP literature. The primal slack and surplus variables
si and ξi are the reduced costs of the associated dual variable αi, whose value is currently at a bound.
Computing the values of the reduced costs (recall that for each i only one of the reduced costs is not
equal to zero) is called pricing of the appropriate dual variable. Hence it is important to price all
variables with indices in I0

′ and Ic
′ and maintain these sets in such a way that they contain indices

of substantially negative reduced costs.
The efficiency of the large-scale SVM training relies heavily on the fact that at the optimal

solution the cardinality of Is is often much smaller than the total number of data points n. Hence, the
cardinalities of I0 and, possibly, Ic are expected to be large in comparison to Is. If in Step 2(i) I0

′ and
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Ic
′ are large, while Is is not very small, then the complexity of this step, which is O(|Is|(|I′0|+ |I′c|)),

might become too high.

Let us assume for a moment that we know some of the indices that at optimality belong to Ic

and I0. Then we can place these indices in I ′′0 and I′′c at the beginning of each Step 2. This can
result in substantial savings in the run time, since Step 2(i) requires O(|Is|(|I′0|+ |I′c|)) operations
and |I′0| = |I0|− |I0

′′| and |I′c| = |Ic|− |Ic
′′|. When all the reduced costs of variables whose indices

are in I0
′ and Ic

′ are nonnegative, then so are the reduced costs of variables whose indices are in I0
′′

and Ic
′′, due to our assumption about these two subsets.

Naturally, we usually do not know which indices will be in I0 and Ic at optimality, however,
to reduce the workload at each iteration we try to guess which indices are the most likely ones to
end up in I0 and Ic at optimality. We place such indices in I0

′′ and Ic
′′ sets, respectively. If we

guess well, then after all the reduced costs for I0
′ and Ic

′ become nonnegative, hopefully, only a few
reduced costs for I0

′′ and Ic
′′ are negative. Here we see a trade-off: if we select I0

′′ and Ic
′′ too small,

then the computational saving is insignificant, and if we select I0
′′ and Ic

′′ too large, then some of
large negative reduced costs might be missed and the overall number of iterations might increase.
Moreover, once all the dual variables with indices in I0

′ and Ic
′ are priced, then we have to price all

variables with indices in I0
′′ and Ic

′′, which are large. So it is important to choose I0
′′ and Ic

′′ in such
a way that pricing the variables in I0

′′ and Ic
′′ does not occur too many times.

We will describe two possible strategies for maintaining sets I0
′, Ic

′, I0
′′ and Ic

′′. One strategy
is very simple and is called shrinking in SVM literature (Joachims, 1999). At each iteration an
index is placed in I0

′′ or Ic
′′ if its appropriate reduced cost remained nonnegative for a given number

of consecutive iterations (say 100). According to this strategy the sets I0
′ and Ic

′ are large during
the earlier iterations and become gradually smaller during the course of the algorithm. This nicely
correlates with the fact that the size of Is is very small in the earlier iterations Is gets gradually larger
during the course of the algorithm. It is often the case that maximum of |Is|(|I′0|+ |I′c|) over all
iteration is 3 or 4 times smaller than max{|Is|}×max{(|I′0|+ |I′c|)}. At the end one still has to price
all the dual variables for I0

′′ and Ic
′′, but only a few of such iterations are usually needed.

The second strategy is called sprint in Linear Programming literature and was introduced by
Forrest (1989). Sprint (sometimes also called sifting) has been proven to be very effective in practice
for problems that contain large number of inactive constraints (see Bixby et al., 1992). Following the
sprint strategy we select a relatively small subset of dual variables with the smallest (including the
most negative) reduced costs and we form I0

′ and Ic
′ from the indices of those variables. Once the

problems was solved for I0
′ and Ic

′ the remaining constraints are priced again and the next relatively
small sets of candidates are selected. Pricing all remaining variables and choosing the next small
subset is called a major iteration. According to this strategy I0

′ and Ic
′ are always kept small, but

the sets I0
′′ and Ic

′′ have to be considered regularly throughout the algorithm. As long as the ratio of
major iterations to the number of “cheap” iterations is small, the implementation will be efficient.

Table 3 below shows that sprint outperforms shrinking in most cases, especially on larger, more
difficult problems.

4.2 Memory Saving Version

We now discuss the memory saving version. SVMlight has an elegant scheme, where the kernel
values are stored in cache according to their most recent usage. The size of the cache is dictated by
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Name n k ns nc SVM-QPshr SVM-QP
web 100 100 24692 300 980 453 537 65
web 40 10 24692 300 1037 568 281 68
web 40 100 24692 300 1214 313 416 84
web 100 10 24692 300 679 835 124 40
letter 100 100 20000 16 241 39 6 3
letter 40 1 20000 16 250 266 6 5
letter 40 100 20000 16 346 8 7 4
letter 100 10 20000 16 193 146 6 4
letter 40 10 20000 16 320 57 7 4
letter lin 100 20000 16 17 1056 20 35
ocr9 256 100 7291 256 378 0 7 5
ocr0 256 100 7291 256 309 0 6 4
abalone 4 100 4177 10 64 1863 4 5
abalone p5 100 4177 10 304 1520 31 22
spam 300 100 4601 57 1417 181 80 64
spam lin 100 4601 57 58 822 15 11
adult 100 1 16100 123 97 5996 89 81
adult 100 100 16100 123 871 4823 253 175
adult 200 1 16100 123 168 5785 95 85
adult 200 100 16100 123 483 5219 107 140
adult 50 10 16100 123 615 5143 120 120

Table 3: Sprint vs. Shrinking.
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Name n k ns nc SVM-QP SVM-QPmem SVMlight
mem

web 100 100 24692 300 980 453 65 428 1097
web 40 10 24692 300 1037 568 68 447 553
web 40 100 24692 300 1214 313 84 524 1201
web 100 10 24692 300 679 835 40 230 348
letter 100 100 20000 16 241 39 3 14 26
letter 40 1 20000 16 250 266 5 17 9
letter 40 100 20000 16 346 8 4 17 15
letter 100 10 20000 16 193 146 4 14 14
letter 40 10 20000 16 320 57 4 20 11
letter lin 100 20000 16 17 1056 35 72 1052
ocr9 256 100 7291 256 378 0 5 24 13
ocr0 256 100 7291 256 309 0 4 13 9
abalone 4 100 4177 10 64 1863 5 13 78
abalone p5 100 4177 10 304 1520 22 44 -
adult 100 1 16100 123 97 5996 81 171 228
adult 100 100 16100 123 871 4823 175 624 1541
adult 200 1 16100 123 168 5785 85 174 253
adult 200 100 16100 123 483 5219 140 173 1360
adult 50 10 16100 123 615 5143 120 355 593

Table 4: Comparison for memory saving mode.

the user. In the experiments discussed above we allowed the size of the cache to be 500MB, which
is at least as much memory as was used by SVM-QP.

We did not implement such sophisticated memory handling mechanism in our code. Luckily
sprint provides a natural setting for a memory saving mode. Instead of storing the whole Qs we
only store the elements of Q whose columns are in Is and whose rows are in Is ∪ I′0 ∪ I′c. The size
of I′0 ∪ I′c can be regulated according to the available storage space. At each major iteration all the
elements of Qs whose row indices are in I ′′0 ∪ I′′c have to be recomputed. This can be a costly step.
To further try to reduce the computational cost of that step, we apply shrinking to I ′′0 ∪ I′′c . That is,
if during a few consecutive major iterations a certain reduced cost remained nonnegative then the
appropriate variable is removed from I ′′0 ∪ I′′c and is ignored until the later stage of the algorithm. In
Table 4 below we present our results. We chose the size of I ′0 and I′c to be 50 each, this way the total
storage for the elements of Qs (including Qss) did not exceed 20MB. We compare our CPU time to
that of SVMlight with 20MB of cache limit. We also list the CPU times for the version of SVM-QP
that stores the full Qs, to demonstrate the trade-off between the CPU time and memory requirement.

4.3 Warm Start

One of the significant advantages of the active set methods over the interior point methods is that
the former can benefit very well from warm starts. For instance, if some additional labeled training
data become available, the old optimal solution is used as a starting point for the active set algorithm
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and the new optimal solution is typically obtained within a few iterations. This will be explored in
more detail in the subsection on the incremental mode of our algorithm.

Another situation where warm start arises, is when one wants to explore the path of optimal
solutions for various values of penalty parameter C. In Hastie et al. (2004) the whole solution path
is generated using an active set method similar to ours. There some differences between the two
methods, however. The method in Hastie et al. (2004) is a parametric active set method, which in
practice is usually slower than a purely primal or dual active set method, such as ours. Also their
method requires that at each iteration an optimal solution of a parametric problem is available, hence
there does not seem to be any possibility to use sprint or shrinking. It remains to be seen whether
a good implementation of the algorithm in Hastie et al. (2004) can match the performance of our
algorithm.

Our algorithm is not suitable directly for generating the entire parametric path, but using the
warm starts one can easily use it to generate solutions for a selection of the values of parameter C.

The warm starts can also be used when one wants to explore different values of kernel parame-
ters, but the efficiency of such application needs a separate computational study.

Here we investigate the use of warm start to increase the efficiency of the algorithm itself. It has
been noticed (see, for example, Fine and Scheinberg, 2001) that for many SVM problems the matrix
Q has eigenvalues decaying to zero. It was suggested in Fine and Scheinberg (2001) to use a low
rank approximation of Q and solve the approximate problem with an interior point method using
product form Cholesky factorizations, which benefit from the low rank of Q. Such approximations,
however, are not always very accurate. The idea we explore here is to use the solution of the
approximate problem to warm start the active set method.

If k is the rank of the approximation of Q, then per iteration complexity of the IPM is O(nk2).
There is a trade-off in choosing the right value for k: if k is chosen to be too large, then the IPM will
not be efficient and if k is too small then the solution produced by the IPM is too far from the optimal
solution of the true problem. We chose k = 50, which is reasonably small to make the IPM part fast
and sufficiently large to hope for a good warm start. The results in Table 5 are not as dramatic as
one might hope. Often the active set method itself is so fast that it outperforms the IPM even for
k = 50, for instance on letter x x problems. In other cases the approximation does not produce a
good enough warm start. There also cases where Q itself has very low rank and, hence, the problem
can be solved to optimality just by the IPM; see letter lin 100, for instance. There are examples
however, where the combined method achieves better timing results than either method, when used
separately. This seem to happen for the problems with relatively large Ic sets, such as the adult x x
problems. We have to note that we are using a rather crude implementation of the IPM for SVM.
One might achieve better results with a more efficient implementation of an IPM.

4.4 Incremental Mode

Incremental mode is used when the training data is available one point (or a few points) at a time.
Our algorithm applies naturally and almost without change to the incremental mode. Whenever
more data points become available, their indices get placed in set I0, then Step 2(i) is applied to price
the corresponding variables, and if a negative reduced cost is found, then the algorithm proceeds in
the usual manner. The only difference with the batch case (when all data is available at once) is that
the pricing is Step 2(i) cannot be applied to the data that is not available yet. Hence, the constraints
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Name n k ns nc SVM-QPp SVM-QP
web 100 100 24692 300 980 453 113 65
web 40 10 24692 300 1037 568 112 68
web 40 100 24692 300 1214 313 142 84
web 100 10 24692 300 679 835 82 40
letter 100 100 20000 16 241 39 36 3
letter 40 1 20000 16 250 266 38 5
letter 40 100 20000 16 346 8 49 4
letter 100 10 20000 16 193 146 33 4
letter 40 10 20000 16 320 57 44 4
letter lin 100 20000 16 17 1056 7 35
ocr9 256 100 7291 256 378 0 21 5
ocr0 256 100 7291 256 309 0 15 4
abalone 4 100 4177 10 64 1863 5 5
abalone p5 100 4177 10 304 1520 10 22
spam 300 100 4601 58 1417 181 40 64
spam lin 100 4601 58 58 822 9 11
adult 100 1 16100 123 97 5996 66 81
adult 100 100 16100 123 871 4823 125 175
adult 200 1 16100 123 168 5785 68 85
adult 200 100 16100 123 483 5219 92 140
adult 50 10 16100 123 615 5143 95 120

Table 5: Warm starting SVM-QP by an IPM.
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Name n k ns nc SVM-QP SVM-QPinc

web 100 100 24692 300 980 453 65 1388
web 40 10 24692 300 1037 568 68 1017
web 40 100 24692 300 1214 313 84 1190
web 100 10 24692 300 679 835 40 1101
letter 100 100 20000 16 241 39 3 24
letter 40 1 20000 16 250 266 5 37
letter 40 100 20000 16 346 8 4 34
letter 100 10 20000 16 193 146 4 24
letter 40 10 20000 16 320 57 4 39
letter lin 100 20000 16 17 1056 35 43
ocr9 256 100 7291 256 378 0 5 27
ocr0 256 100 7291 256 309 0 4 16
abalone 4 100 4177 10 64 1863 5 13
abalone p5 100 4177 10 304 1520 22 137
spam 300 100 4601 58 1417 181 64 414
spam lin 100 4601 58 58 822 11 647
adult 100 1 16100 123 97 5996 81 372
adult 100 100 16100 123 871 4823 175 5882
adult 200 1 16100 123 168 5785 85 330
adult 200 100 16100 123 483 5219 140 1819
adult 50 10 16100 123 615 5143 120 2274

Table 6: Incremental mode.

with sufficiently negative reduced costs are not included, until their data points are added to the
problem. As we show in Table 6, this results in a dramatic increase of CPU time.

Notice, that the sifting does not make sense in the incremental mode, since it selects the sets I0
′

and Ic
′ based on the entire data set. However, shrinking can be easily applied, since its selection of

I0
′ and Ic

′ is only based on the past behavior of each individual constraint.

5. Concluding Remarks

Traditional active set methods for convex QPs were considered impractical for large-scale SVM
problems. However, they have theoretical appeal for many reasons. In this paper we studied in
details an active set method SVM and show that an efficient implementation can outperform other
state-of-the-art SVM software.

Furture direction of this work lies in a more comprehensive theoretical analysis of the behavior
and complexity of the method for SVM problems.
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Abstract
We present Variable Influence Structure Analysis, or VISA, an algorithm that performs hierarchical
decomposition of factored Markov decision processes. VISA uses a dynamic Bayesian network
model of actions, and constructs a causal graph that captures relationships between state variables.
In tasks with sparse causal graphs VISA exploits structure by introducing activities that cause the
values of state variables to change. The result is a hierarchy of activities that together represent a
solution to the original task. VISA performs state abstraction for each activity by ignoring irrelevant
state variables and lower-level activities. In addition, we describe an algorithm for constructing
compact models of the activities introduced. State abstraction and compact activity models enable
VISA to apply efficient algorithms to solve the stand-alone subtask associated with each activity.
Experimental results show that the decomposition introduced by VISA can significantly accelerate
construction of an optimal, or near-optimal, policy.

Keywords: Markov decision processes, hierarchical decomposition, state abstraction

1. Introduction

Markov decision processes, or MDPs, are widely used to model stochastic control tasks. Many
researchers have developed algorithms that determine optimal or near-optimal decision policies
for MDPs. However, most of these algorithms scale poorly as the size of a task grows. Much
recent research on MDPs has focused on finding task structure that makes it possible to simplify
construction of a useful policy. In this paper, we present Variable Influence Structure Analysis,
or VISA, an algorithm that identifies task structure in factored MDPs and combines hierarchical
decomposition and state abstraction to exploit task structure and simplify policy construction. VISA
was first introduced in a conference paper (Jonsson and Barto, 2005); this paper provides more detail
and additional insights as well as a new section on compact activity models.

Hierarchical decomposition exploits task structure by introducing stand-alone policies (also
known as activities, macro-actions, temporally-extended actions, options, or skills) that can take
multiple time steps to execute. We use the term activity (Harel, 1987) to denote such a stand-alone
policy. Activities can exploit repeating structure by representing subroutines that are executed mul-
tiple times during solution of a task. If an activity has been learned in one task, it can be reused
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in other tasks that require execution of the same subroutine. Activities also enable more efficient
exploration by providing high-level behavior that enables a decision maker to look ahead to the
completion of the associated subroutine. There exist three major models of activities in reinforce-
ment learning: Hierarchical Abstract Machines, or HAMs (Parr and Russell, 1998), options (Sutton
et al., 1999), and MAXQ (Dietterich, 2000a).

It may not be apparent to a system designer how to select subroutines that enable efficient
hierarchical decomposition. To take full advantage of hierarchical decomposition, a system should
be able to identify useful subroutines on its own. Several researchers have developed algorithms
that use task-specific knowledge to identify useful subroutines. One approach is to identify useful
subgoals and introduce activities that accomplish the subgoals (Digney, 1996; McGovern and Barto,
2001; Şimşek and Barto, 2004). Another approach is to solve several tasks and identify activities
that are useful across tasks (Pickett and Barto, 2002; Thrun and Schwartz, 1996). There also exist
algorithms that use graph theory to cluster states into regions and introduce activities for moving
between regions (Menache et al., 2002; Mannor et al., 2004; Şimşek et al., 2005). Other algorithms
introduce activities that cause the values of specific variables to change (Hengst, 2002; Singh et al.,
2005).

Hierarchical decomposition is intimately related to state abstraction, that is, ignoring part of the
available information to reduce the effective size of the state space. At each moment, only some of
the information that is part of the state description may be relevant for selecting an optimal action.
For example, the color of the wall is most likely irrelevant for the task of navigating to the front
door of a building. State abstraction compresses the state space by grouping together states that
only differ on irrelevant information. Each group of states can be treated as a single state, reducing
the complexity of policy computation. Dean and Givan (1997) showed that under certain conditions,
the optimal policy of an MDP is preserved under state abstraction.

Each activity can be viewed as a stand-alone subtask that can be solved independently. If each
subtask is as difficult to solve as the original task, hierarchical decomposition actually increases the
complexity of finding an optimal policy. However, if state abstraction is used to simplify the solution
of each subtask, hierarchical decomposition can significantly accelerate policy computation. In
particular, information that is relevant for one subtask may be irrelevant for another. In other words,
it makes sense to perform state abstraction separately for each subtask (Dietterich, 2000b; Jonsson
and Barto, 2001).

VISA uses a compact model of factored MDPs first suggested by Boutilier et al. (1995). When
an action is executed, the resulting value of a state variable depends on the values of state variables
prior to executing the action. In many cases, the resulting value is conditionally independent of a
subset of the state variables at the previous time step. The compact model uses dynamic Bayesian
networks, or DBNs (Dean and Kanazawa, 1989), to represent the effect of actions in factored MDPs.
Since DBNs encode conditional independence, the model can represent the effect of actions using
much less memory than the number of states. Several researchers have developed algorithms that
take advantage of the DBN model to efficiently compute policies of factored MDPs (Boutilier et al.,
1995; Feng et al., 2003; Guestrin et al., 2001; Hoey et al., 1999; Kearns and Koller, 1999).

2. Overview

In addition to being compact, the DBN model contains information about the preconditions neces-
sary for an action to have the desired effect. For example, consider a task in which the objective is
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to play music, described by two state variables: one representing my current location, and the other
representing the current sound level. There are actions for changing my location, and an action to
turn on the stereo. Being next to the stereo is a precondition for causing music to play when mak-
ing a motion to turn on the stereo, a fact that is encoded in the transition probabilities of the DBN
model. In other words, there is a causal relationship between the location variable and the sound
level variable, conditional on the action of turning on the stereo.

To change the value of the sound level variable, it is first necessary to satisfy the precondition
of being next to the stereo. Thus, a useful activity is one that causes my location to be next to the
stereo. Given such an activity, it is straightforward to solve the task: first execute the activity that
causes my location to be next to the stereo, and then turn on the stereo. The idea behind VISA is to
use the DBN model to identify the preconditions necessary to change the value of each state variable
and introduce activities for satisfying those preconditions. The result is a hierarchy of activities that
can be used in a compact representation of the solution to the factored MDP. The HEX-Q algorithm
(Hengst, 2002) is based on similar ideas, but does not use the DBN model to identify preconditions.

The goal of VISA is to introduce activities in such a way that their associated subtasks are easier
to solve than the original task. Since the DBN model implicitly represents relationships between
state variables, it is relatively easy to determine which state variables and activities are relevant for
solving a particular subtask. This makes it possible to perform state abstraction for subtasks by
ignoring irrelevant state variables and activities. For example, while causing my location to be next
to the stereo, it is possible to ignore differences in sound level, since the sound level typically has
no impact on location. If the subtasks are sufficiently easy to solve, hierarchical decomposition can
lead to a significant reduction in computational complexity.

VISA, described in Section 4, uses the DBN model to construct a causal graph describing state
variable relationships. If two state variables mutually influence each other, it is not possible to
introduce activities that change the value of one without taking into account the value of the other.
Consequently, it is not possible to perform state abstraction in a way that makes the associated
subtasks easier to solve. State variables that mutually influence each other correspond to cycles in
the causal graph, so VISA gets rid of cycles by identifying the strongly connected components of
the graph and constructing a component graph with one node per component.

The algorithm then identifies exits (Hengst, 2002), that is, combinations of variable values and
actions that cause the value of some state variable to change. For each exit, VISA introduces an
activity that solves the subtask of changing the corresponding variable value. VISA uses the causal
graph to identify state variables and activities that are relevant for solving the subtask, and performs
state abstraction by ignoring irrelevant state variables and activities. At the top level, the algorithm
introduces an activity that corresponds to the original MDP. Experimental results show that the
decomposition generated by VISA can significantly accelerate construction of an optimal or near-
optimal policy.

If VISA had access to compact models of activities, similar to the DBN model of primitive
actions, it could apply more efficient algorithms to construct the stand-alone policies of activities.
To fully model the stand-alone subtask associated with each activity, it is necessary to determine
the transition probabilities of the lower-level activities used to solve the subtask. However, existing
methods cannot determine transition probabilities of activities without enumerating the state space.
Since the state space grows exponentially with the number of state variables, this seems like a bad
idea. Instead, the implementation of VISA in Section 4 uses reinforcement learning (Sutton and
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Barto, 1998), which does not require knowledge of transition probabilities, to learn the policy of
each activity.

In Section 5, we describe an algorithm that constructs compact activity models without enu-
merating the state space. We decompose computation of an activity model by considering the con-
ditional probabilities of one state variable at a time. The result is a DBN model for each activity
identical to the DBN model of primitive actions. VISA can then apply the more efficient algorithms
that take advantage of DBN models, accelerating construction of the stand-alone policies even fur-
ther. Experimental results show that our algorithm can construct compact activity models without
significantly decelerating solution of a task.

3. Background

In this section, we provide a background to the problem that our algorithm attempts to solve, and
we introduce notation of concepts that we use throughout the paper.

3.1 Markov Decision Processes

A finite Markov decision process, or MDP (Bellman, 1957), is a tuple M = 〈S,A,Ψ,P,R〉, where S is
a finite set of states, A is a finite set of actions, Ψ⊆ S×A is a set of admissible state-action pairs, P is
a transition probability function, and R is an expected reward function. Let As ≡ {a∈ A | (s,a)∈Ψ}
be the set of admissible actions in state s ∈ S. Ψ is such that for each state s ∈ S, As is non-empty,
that is, there is at least one admissible action for each state. As a result of executing action a ∈ As

in state s ∈ S, the process transitions to state s′ ∈ S with probability P(s′ | s,a) and provides the
decision maker with an expected reward R(s,a). P is such that for each admissible state-action pair
(s,a) ∈Ψ, ∑s′∈S P(s′ | s,a) = 1.

For each state s ∈ S and each action a ∈ As, a stochastic policy π selects action a in state s with
probability π(s,a). π is such that for each state s ∈ S, ∑a∈As

π(s,a) = 1. In the discounted case, the
optimal value function V ∗ associated with MDP M is defined by the Bellman optimality equation:

V ∗(s) = max
a∈As

[

R(s,a)+ γ ∑
s′∈S

P(s′ | s,a)V ∗(s′)

]

, (1)

where γ is a discount factor. An optimal policy π∗ is any stochastic policy that, in each state s ∈ S,
assigns positive probabilities only to actions in the set

A∗(s)≡ argmax
a∈As

[

R(s,a)+ γ ∑
s′∈S

P(s′ | s,a)V ∗(s′)

]

.

A factored MDP is described by a set of discrete state variables S. Each state variable Si ∈ S
takes on values in its domain D(Si). The set of states S ⊆ ×Si∈SD(Si) is a subset of the Cartesian
product of the state variable domains. A state s ∈ S is an assignment of values to the set of state
variables S. Let fC, C⊆ S, be a projection such that if s is an assignment to S, fC(s) is s’s assignment
to C. We define a context c as an assignment of values to the subset of state variables C⊆ S.

3.2 Coffee Task

We illustrate factored MDPs using the coffee task (Boutilier et al., 1995), in which a robot has to
deliver coffee to its user. The coffee task is described by six binary state variables: SL, the robot’s
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Figure 1: The DBN for action GO in the coffee task

location (office or coffee shop); SU, whether the robot has an umbrella; SR, whether it is raining; SW,
whether the robot is wet; SC, whether the robot has coffee; and SH, whether the user has coffee. To
distinguish between variable values we use the notation D(Si) = {i, i}, which has obvious meaning
for all state variables except SL, where we use L to denote the coffee shop and L to denote the office.
The robot has four actions: GO, causing its location to change and the robot to get wet if it is raining
and it does not have an umbrella; BC (buy coffee) causing it to hold coffee if it is in the coffee shop;
GU (get umbrella) causing it to hold an umbrella if it is in the office; and DC (deliver coffee) causing
the user to hold coffee if the robot has coffee and is in the office. All actions have a chance of
failing. The robot gets a reward of 0.9 whenever the user has coffee plus a reward of 0.1 whenever
it is dry.

3.3 DBN Model

Boutilier et al. (1995) developed a compact model of factored MDPs that uses dynamic Bayesian
networks, or DBNs (Dean and Kanazawa, 1989), to represent the effect of actions. The DBN model
contains one DBN for each action a ∈ A of a factored MDP. Figure 1 illustrates the DBN for action
GO in the coffee task. The DBN has two nodes for each state variable plus two nodes representing
expected reward. Nodes on the left represent the values of variables prior to executing GO, and
nodes on the right represent the values after executing GO. The value of a state variable Si as a
result of executing GO depends on the values of state variables that have edges to Si in the DBN. Let
Pa(Si)⊆ S denote the subset of state variables with edges to Si. A dashed line indicates that a state
variable is unaffected by GO.

In the DBN for action a, each state variable Si is associated with a conditional probability distri-
bution Pa

i that determines the value of Si after executing a. Like Boutilier et al. (1995), we assume
that conditional probabilities are stored in trees. Figure 1 illustrates the conditional probability tree
associated with state variable SW and action GO. For example, if the robot is dry (W ), it is raining
(R), and the robot does not have an umbrella (U), the robot becomes wet with probability 0.8 after
executing GO. We assume that there are no edges between state variables in the same layer of the
DBN. Consequently, the DBN model cannot represent arbitrary transition probabilities. Instead, the
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transition probabilities are approximated according to P(s′ | s,a)≈∏Si∈S Pa
i (Si = f{Si}(s

′) |Pa(Si) =
fPa(Si)(s)).

3.4 Options

We use options (Sutton et al., 1999) to model activities. Given an MDP M = 〈S,A,Ψ,P,R〉, an
option is a tuple o = 〈I,π,β〉, where I ⊆ S is an initiation set, π is a policy, and β is a termination
function. Option o can be executed in any state s ∈ I, repeatedly selects actions a ∈ A according
to π, and terminates in state s′ ∈ S with probability β(s′). An action a ∈ A can be viewed as an
option with initiation set I = {s ∈ S | (s,a) ∈Ψ} whose policy always selects a and terminates in all
states with probability 1. Adding options to the action set of an MDP forms a semi-Markov decision
process, or SMDP (Puterman, 1994). It is possible to construct hierarchies of options in which the
options on one level selects among options on a lower level.

Ravindran (2004) showed that an option o is associated with a stand-alone task given by the op-
tion SMDP Mo = 〈S,Oo,Ψo,Po,Ro〉, where Oo is a set of lower-level options. The set of admissible
state-option pairs Ψo ⊆ S×Oo is determined by the initiation sets of options in Oo. The transition
probability function Po is determined by the transition probability function P of the underlying MDP
and the policies and termination functions of the options in Oo. The expected reward function Ro is
independent of the expected reward function R of the underlying MDP and can be selected to reflect
the desired behavior of option o. The policy π of option o can be defined as any optimal policy of
the option SMDP Mo.

SMDP Q-learning (Bradtke and Duff, 1995) maintains estimates of the optimal option-value
Q(s,o), representing the return for executing option o in state s. Following execution of an option o
in state s, the option-value is updated using the following update rule:

Q(s,o)← Q(s,o)+α
[

r + γk max
o′∈Oo

Q(s′,o′)−Q(s,o)

]

,

where s′ is the state in which o terminated, k is the number of time steps elapsed during the execution
of o, r is the cumulative discounted reward during this time, and α is the learning rate. Parr (1998)
showed that SMDP Q-learning eventually converges to an optimal policy when the learning rate α
is appropriately decreased towards 0.

3.5 State Abstraction

We use partitions to represent state abstraction in MDPs. A partition Λ of the set of states S is a
collection of disjoint subsets, or blocks, λ ⊆ S such that

S

λ∈Λ λ = S. [s]Λ ∈ Λ denotes the block to
which state s ∈ S belongs. A function f : S→ X from S onto an arbitrary set X induces a partition
Λ f of S such that for each pair of states (si,s j) ∈ S2, [si]Λ f = [s j]Λ f if and only if f (si) = f (s j).
Let Λ1 and Λ2 be two partitions of S. Partition Λ1 refines Λ2, denoted Λ1 ≤ Λ2, if and only if, for
each pair of states (si,s j) ∈ S2, [si]Λ1 = [s j]Λ1 implies that [si]Λ2 = [s j]Λ2 . The relation ≤ is a partial
ordering on the set of partitions of S.

Dean and Givan (1997) defined two properties of partitions of the set of states S. A partition
Λ has the stochastic substitution property if, for each pair of states (si,s j) ∈ S2, each action a ∈
A and each block λ ∈ Λ, [si]Λ = [s j]Λ implies that ∑sk∈λ P(sk | si,a) = ∑sk∈λ P(sk | s j,a). Λ is
reward respecting if for each pair of states (si,s j) ∈ S2 and each action a ∈ A, [si]Λ = [s j]Λ implies
that R(si,a) = R(s j,a). A partition Λ that has the stochastic substitution property and is reward
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respecting induces a reduced MDP which has fewer states and preserves optimality (Dean and
Givan, 1997). Ravindran (2004) developed a theory of MDP homomorphisms and extended the
above definitions to partitions of the set Ψ of admissible state-action pairs.

4. VISA

Variable Influence Structure Analysis, or VISA (Jonsson and Barto, 2005), is an algorithm that ana-
lyzes causal relationships between state variables to perform hierarchical decomposition of factored
MDPs. VISA uses the DBN model of factored MDPs to compactly represent transition probabilities
and expected reward. However, VISA makes additional use of the DBN model. The conditional
probability distributions of the DBN model specify which preconditions have to hold for the value
of a state variable to change as a result of executing an action. The aim of VISA is to facilitate
variable value changes by introducing activities that satisfy those preconditions. For example, if the
task is to play music, a useful activity is one that causes my location to be next to the stereo, since
being next to the stereo is a precondition for successfully making a motion to turn it on.

Algorithm 1 VISA
1: Input: DBN model of a factored MDP
2: construct the causal graph of the task
3: identify the strongly connected components of the causal graph
4: for each strongly connected component
5: identify a set of exits that cause the values of state variables in the component to change
6: for each exit
7: construct the components of an option SMDP
8: use the causal graph to perform state abstraction for the option SMDP
9: apply reinforcement learning techniques to learn the policy of each option SMDP

Algorithm 1 gives a high-level description of VISA. Before decomposing the task, VISA uses
the DBN model to construct a causal graph that determines how state variables influence each other.
A state variable influences another if it appears in the precondition of an action that changes the
value of the latter. If two state variables mutually influence each other, changing the value of
one variable depends on the value of the other. Thus, it is impossible to decompose the task by
introducing activities that exclusively change the value of one of the variables. State variables that
mutually influence each other correspond to cycles in the causal graph. VISA gets rid of cycles by
identifying the strongly connected components of the causal graph. State variables in a strongly
connected component are treated as a single variable for the purpose of decomposition.

For each strongly connected component, VISA searches the conditional probability distributions
of the DBN model for exits (Hengst, 2002), that is, pairs of a precondition and an action that cause
the value of a state variable in the component to change. For each exit, VISA introduces an exit
option, that is, an activity that terminates when the precondition of the exit is met and then executes
the exit action. In other words, the purpose of an exit option is to change the value of a state
variable by first satisfying the necessary precondition and then executing the appropriate action. To
determine the policy of each exit option, VISA constructs the components of an option SMDP and
defines the policy as a solution to the resulting option SMDP.

To simplify learning the policy of an exit option, VISA performs state abstraction for the option
SMDP. From the causal graph it is easy to identify a set of state variables that are irrelevant, that
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Figure 2: The causal graph of the coffee task

is, do not influence state variables whose values appear in the precondition. VISA performs state
abstraction by ignoring differences in the values of irrelevant state variables. In addition, the option
SMDP only needs to include actions and options that change the values of state variables that appear
in the precondition. The resulting state abstraction significantly reduces the complexity of learning
the exit option policies. The causal graph implicitly defines a hierarchy of options in which an exit
option that changes the value of a state variable in a strongly connected component selects between
options that change the values of state variables in strongly connected components with incoming
edges.

4.1 Causal Graph

The first step of VISA is to construct a causal graph representing the causal relationships between
state variables. The causal graph contains one node per state variable plus one node corresponding
to expected reward. There is a directed edge between two state variables S j and Si if and only if
there exists an action a ∈ A such that there is an edge between S j and Si in the DBN for a. In other
words, each edge in the causal graph represents a causal relationship between two state variables
conditional on one or several actions. The algorithm labels each edge with the actions that give rise
to the causal relationship.

Recall that Figure 1 shows the DBN for action GO in the coffee task. There are several interesting
things to note. For each state variable Si, the value of Si as a result of executing GO depends on
the value of Si prior to executing GO. In other words, each node in the causal graph should have
an associated reflexive edge. However, we are not interested in the causal relationship of a state
variable onto itself, so we remove reflexive edges in the causal graph. Also, there are edges from
state variable SU to state variable SW in the DBN, as well as from SR to SW. Consequently, there
should be an edge from SU to SW in the causal graph labeled GO, as well as an edge from SR to SW
labeled GO.

The causal graph of the coffee task is shown in Figure 2. Note that the edges from the DBN for
action GO have been incorporated, as well as edges from the DBNs for the other actions. Also note
that there are no cycles in the causal graph. However, this is not true for arbitrary tasks, since it is
possible for state variables to mutually influence each other. VISA gets rid of cycles in the causal
graph by identifying the strongly connected components of the graph, each consisting of one or
several state variables that are pairwise connected through directed paths. It is possible to construct
a component graph in which each node is a strongly connected component, and which has an edge
between two nodes if and only if there is an edge in the causal graph between a state variable of the
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SL SC SH SU SW SR R

Figure 3: HEX-Q’s state variable ordering in the coffee task

first component and a state variable of the second component. The component graph is guaranteed
to contain no cycles. In the coffee task, each state variable in the causal graph is its own strongly
connected component, so the component graph is identical to the causal graph.

The expected reward node deserves additional explanation. Just as for the other variables, there
is an edge in the causal graph between a state variable Si and the expected reward node if and only
if there is an action a ∈ A such that the expected reward as a result of executing a depends on the
value of Si. All edges to the expected reward node are incoming, since the value of a state variable
never depends on the expected reward received at the previous time step. Thus, the expected reward
as a result of executing any action only depends on the values of state variables with edges to the
expected reward node in the causal graph. For the purpose of optimizing reward, it is only necessary
to consider actions and options that change the values of those state variables.

4.2 Identifying Exits

VISA builds on ideas from the HEX-Q algorithm (Hengst, 2002), an algorithm that also performs
hierarchical decomposition of factored MDPs. The HEX-Q algorithm first determines an ordering
on the state variables by randomly executing actions and counting the frequency with which the
value of each state variable changes. The state variable whose value changes the most frequently
becomes the lowest variable in the ordering, and so on. For each state variable Si in the ordering,
the HEX-Q algorithm identifies exits 〈k,a〉, pairs of a state variable value k ∈ D(Si) and an action
a∈A, that cause the value of the next state variable in the ordering to change. The HEX-Q algorithm
introduces an option for each exit, and the options on one level of the hierarchy become actions on
the next level.

Even though the HEX-Q algorithm achieved some early success, the frequency of change heuris-
tic may not be an accurate indicator of how state variables influence each other. In addition, the
ordering does not capture the fact that the value of a state variable may depend on multiple other
state variables. Figure 3 illustrates the state variable ordering that the HEX-Q algorithm comes up
with in the coffee task. There are several differences between this ordering and the causal graph.
The ordering wrongly concludes that state variable SW influences SR, when it is really the other way
around. The ordering also fails to capture the fact that the value of SH depends on both SL and SC.

VISA also searches for exits that cause the values of state variables to change. However, instead
of the frequency of change heuristic, VISA uses the causal graph to determine how state variables
influence each other. Since the causal graph more realistically describes the causal relationships
between state variables, VISA is able to successfully decompose more general tasks than the HEX-
Q algorithm. Also, since the value of a state variable may depend on several other state variables,
an exit 〈c,a〉 in VISA is composed of a context c and an action a ∈ A. Recall that a context c is an
assignment of values to a subset C⊆ S of the state variables.

VISA searches for exits in the conditional probability trees of the DBN model. Consider the
conditional probability tree associated with state variable SW and action GO in Figure 1. The third
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EXIT VARIABLE CHANGE

〈(),GO〉 SL L→ L, L→ L
〈(SL = L),BC〉 SC C→C
〈(SL = L),DC〉 SC C→C
〈(SL = L,SC = C),DC〉 SH H→ H
〈(SL = L),GU〉 SU U →U
〈(SU = U ,SR = R),GO〉 SW W →W

Table 1: Exits identified in the coffee task

leaf from the left is associated with states that assign W to SW, R to SR, and U to SU. As a result
of executing action GO in such states, the value of SW becomes W with probability 0.8. Since the
value of state variable SW changes from W to W with non-zero probability, VISA generates an exit
〈(SU =U ,SR = R),GO〉 that causes the value of SW to change. The context of the exit is determined by
the values of state variables on the path from the root to the leaf. Note that the value of SW does not
appear in the exit since that is the state variable whose value the exit changes. Also note that the exit
〈(SU = U ,SR = R),GO〉 does not cause the value of SW to change with probability 1, so to effectuate
the change the robot may have to execute GO multiple times in the context (SU = U ,SR = R).

Table 1 shows a complete list of exits identified by VISA in the coffee task. The table shows
which state variable is affected by each exit together with the resulting change. To generate these
exits, VISA had to search through each leaf of each conditional probability tree of the DBN model.
At each leaf, the algorithm examined whether the value of state variable Si changes, where Si is
the state variable whose conditional probabilities the current tree represents. In other words, the
complexity of this part of the algorithm is proportional to the number of leaves of the conditional
probability trees.

4.3 Exit Transformations

Sometimes it is possible to transform exits in order to take further advantage of causality. Consider
the two exits 〈(SL = L),DC〉 and 〈(SL = L,SC =C),DC〉 in the coffee task. These are almost identical:
their associated exit options both terminate in states that assign the value L to state variable SL and
execute action DC following successful termination. Recall that C→C is the exit option associated
with the exit 〈(SL = L),DC〉, causing the value of SC to change from C to C. The effect of the exit
〈(SL = L,SC = C),DC〉 is equivalent to the effect of a transformed exit 〈(SC = C),C→ C〉, that is,
reach a state that assigns C to SC and execute option C→C following termination. The benefit of
this transformation is that the exit option H→ H associated with the exit 〈(SL = L,SC = C),DC〉 no
longer has to care about the value of SL, effectively removing an edge in the component graph of the
task. After identifying an exit, VISA compares it to exits identified for ancestor strongly connected
components, and performs exit transformations when possible.

4.4 Introducing Exit Options

For each exit 〈c,a〉 with a non-empty context c, VISA introduces an option o = 〈I,π,β〉. Option
o terminates in any state s ∈ S whose projection fC(s) onto C equals c. We refer to an option
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Figure 4: The transition graph (left) and reachability tree (right) of the component SU

introduced by VISA as an exit option. Unlike regular options, an exit option associated with an exit
〈c,a〉 executes action a following termination. Note that it is not necessary to introduce options
for exits with empty contexts, since these options are in fact equivalent to primitive actions. For
example, VISA identifies an exit 〈(),GO〉 in the coffee task. Executing action GO in any state causes
the location of the robot to change, so the exit option associated with this exit is equivalent to the
primitive action GO. As we shall see, it is still useful to detect exits with empty contexts.

In the coffee task example, we adopt the convention of referring to an exit option using the
change that it causes, since this is an unambiguous and simple notation. For example, option W→W
is the exit option associated with the exit 〈(SU =U ,SR = R),GO〉 that causes the value of SW to change
from W to W with non-zero probability. In general, several exits may cause the same change in the
value of a variable, and VISA would introduce an exit option for each of these exits, so this notation
is not always unambiguous.

4.4.1 INITIATION SET

The initiation set I of exit option o determines when o is admissible, that is, the subset of states in
which it is possible to execute o. Two factors influence the initiation set. Option o should only be
admissible in states from which it is possible to reach the associated context c. For example, option
W →W should only be admissible in states that assign U to SU and R to SR. The robot has no action
for getting rid of an umbrella, and it cannot affect whether it is raining, so it can only get wet if it
does not have an umbrella and it is raining. Option o should also only be admissible if it causes
the value of at least one state variable to change. In our example, option W →W should only be
admissible in states that assign W to SW, since otherwise the option cannot cause the value of SW to
change from W to W .

VISA includes a method for constructing the initiation set of each exit option. For each strongly
connected component, the algorithm constructs a transition graph that represents possible transitions
between contexts in the joint value set of its state variables. Each transition graph is in the form of
a tree in which possible transitions are represented as directed edges between the leaves. Possible
transitions are determined using the conditional probability trees of the DBN model. Figure 4 (left)
shows the transition graph of the strongly connected component containing the state variable SU in
the coffee task. The robot can acquire an umbrella by executing the exit option U →U , so there is
a corresponding edge in the transition graph between the leaf associated with states that assign U
to SU and the leaf associated with states that assign U to SU. However, the robot has no action for
getting rid of an umbrella, so there is no edge going the other way.

VISA uses the transition graphs to construct a set of trees that represent the initiation set I. For
each transition graph, VISA constructs a reachability tree that classifies states based on whether
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(true) or not (false) the associated context is reachable. Figure 4 (right) shows the reachability tree
for SU associated with the context (SU = U ,SR = R) of the exit associated with W →W . Similarly,
VISA constructs a reachability tree for SR. VISA also constructs a tree that classifies states based on
whether or not the associated exit changes the value of at least one state variable in the corresponding
strongly connected component. In our example, states that assign W to SW map to a leaf labeled true,
and states that assign W to SW map to a leaf labeled false. The initiation set I of option o is implicitly
defined by the trees constructed by VISA. A state s ∈ S is an element in I if and only if s maps to a
leaf labeled true in each tree. Algorithm 2 summarizes the method used by VISA to construct the
initiation set of an exit option.

Algorithm 2 Initiation set
1: Input: DBN model, component graph, exit 〈c,a〉
2: identify the set of components that contain state variables whose values appear in c
3: for each component in this set
4: use the DBN model to construct a transition graph of the component
5: perform search in the transition graph to construct a reachability tree
6: construct a tree that determines whether 〈c,a〉 changes the value of at least one variable
7: define the initiation set as the set of states that map to true in each tree

Alternatively, reachability could be computed directly using operations on trees or algebraic
decision diagrams (ADDs). Feng and Hansen (2002) showed how to compute forward reachability
in factored MDPs using ADDs. Since an exit represents termination of an exit option, here we
are interested in computing backward reachability: from which states is it possible to reach the
exit? Algorithmically, this is similar to forward reachability. However, VISA makes further use
of transition graphs, and once the transition graphs have been constructed, reachability is easily
computed using depth-first search on the reverse edges. For this reason we chose to stick with the
above approach.

4.4.2 TERMINATION CONDITION

An exit option terminates as soon as it reaches the context c of its associated exit 〈c,a〉, or as soon
as it can no longer reach c. Even though an exit option executes action a following termination, we
can still represent termination of the option using the standard termination condition function β. For
an exit option, β(s) is 1 for states in the set {s ∈ S | fC(s) = c}, where c is the associated context.
β(s) is also 1 for states s /∈ I, that is, when the process can no longer reach the associated context c.
In all other cases, β(s) = 0.

4.4.3 POLICY

VISA cannot directly define the policy of an exit option since it does not know the best strategy
for reaching the associated context c. Instead, the algorithm constructs an option SMDP Mo =
〈So,Oo,Ψo,Po,Ro〉 for option o that implicitly defines its policy π. First, the algorithm defines
So = S. Next, the algorithm finds all strongly connected components that contain at least one state
variable whose value appears in the context c associated with option o. The algorithm defines Oo as
the set of options that cause the values of state variables in those strongly connected components to
change. For example, consider the exit option W →W and its associated context (SU = U ,SR = R).
Two strongly connected components contain state variables whose values appear in the context: the
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strongly connected component containing SU, and the strongly connected component containing SR.
A single option, U →U , causes the values of state variables to change in the former component,
while no option causes the values of state variables to change in the latter. In other words, the
option set Oo of W →W only needs to include the exit option U →U . Note that primitive actions
may change the values of state variables in strongly connected components for which there are no
options; for example, action GO changes the value of state variable SL.

If there are lower-level options that cause the process to leave the initiation set of an option in
Oo, VISA includes these options in Oo as well. For example, the exit option U → U causes the
process to leave the initiation set of the exit option W →W . If the robot does not have an umbrella
and it is raining, the exit option W →W will no longer be admissible as a result of executing the
exit option U →U causing the robot to hold an umbrella. In other words, an option whose option
set Oo includes the exit option W →W should include the exit option U →U as well.

VISA defines the expected reward function Ro as −1 everywhere except when option o termi-
nates unsuccessfully, in which case the algorithm administers a large negative reward. This ensures
that the policy of option o attempts to reach the context c as quickly as possible. Note that this may
not be optimal in terms of the expected reward of the original task; we address this issue at a later
point. The set of admissible state-option pairs, Ψo, is determined by the initiation sets of the options
in Oo. VISA does not represent the transition probability function Po explicitly. It is possible to
construct a DBN model for each option similar to the DBN model for the primitive actions. How-
ever, there is currently no technique that constructs DBN models of options without enumerating all
states. Since a goal of VISA is to alleviate the curse of dimensionality, we want to avoid enumerat-
ing the states. Instead, VISA uses reinforcement learning (Sutton and Barto, 1998), which does not
require explicit knowledge of the transition probabilities, to learn the policy of each option. In the
next section, we develop an algorithm that constructs DBN models of options identified by VISA
without enumerating all states, as an alternative to reinforcement learning. The transition graphs
of strongly connected components play a part in constructing DBN models of options, but nothing
prevents options from changing the values of state variables that do not appear in the associated
context, which makes the issue slightly more complicated.

4.5 State Abstraction

VISA simplifies learning in the option SMDPs by performing state abstraction separately for each
exit option. This is where causality really matters. Let us consider all strongly connected compo-
nents that contain at least one state variable whose value appears in the context c associated with
an option. Let Z ⊆ S denote the subset of state variables contained in those strongly connected
components. Let Y ⊆ S denote the subset of state variables Si such that either Si ∈ Z or there is a
directed path in the causal graph from Si to a state variable in Z. For example, in the case of exit
option W →W , Z = {SU,SR} and Y = {SL,SU,SR}, since there is a directed path from SL to SU in
the causal graph of the coffee task.

Recall that the goal of an exit option o is to reach the associated context c. We know that
C⊆ Z⊆ Y, that is, that the state variables whose values appear in the context c are contained in Y.
We also know that there are no edges from any state variable S j /∈ Y to any state variable Si ∈ Y; if
there were, state variable S j would have been included in Y. It follows that the option SMDP Mo

can ignore the values of state variables not in Y since they have no influence on the variables in C,
whose values we want to set to c.
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More formally, we can define a partition that satisfies the stochastic substitution property and
is reward respecting (cf. Section 3.5), and thus guaranteed to preserve an optimal solution to the
option SMDP Mo.

Theorem 1 The projection function fY induces a partition ΛY of S that has the stochastic substitu-
tion property and is reward respecting.

Proof The projection function fY induces a partition ΛY of S such that two states s1 and s2 belong
to the same block if and only if fY(s1) = fY(s2), that is, if s1 and s2 assign exactly the same values to
state variables in Y. Let yλ denote the assignment to Y of states in block λ of the induced partition,
that is, for each state s ∈ λ, we have that fY(s) = yλ. Then for each pair of states (s1,s2) ∈ S2, each
action a ∈ A, and each block λ ∈ ΛY, [s1]ΛY = [s2]ΛY implies that

∑
s∈λ

P(s | s1,a) = ∑
s∈λ

P( fY(s) | s1,a)P( fS−Y(s) | s1,a) =

= ∑
s∈λ

P(yλ | fY(s1),a)P( fS−Y(s) | s1,a) =

= P(yλ | fY(s1),a) ∑
s∈λ

P( fS−Y(s) | s1,a) =

= P(yλ | fY(s2),a) ∑
s∈λ

P( fS−Y(s) | s2,a) =

= ∑
s∈λ

P(yλ | fY(s2),a)P( fS−Y(s) | s2,a) =

= ∑
s∈λ

P( fY(s) | s2,a)P( fS−Y(s) | s2,a) = ∑
s∈λ

P(s | s2,a).

The equality ∑s∈λ P( fS−Y(s) | s1,a) = ∑s∈λ P( fS−Y(s) | s2,a) follows from the fact that as we sum
over states in λ, we go through every possible assignment of values to state variables in the set
S−Y, so in fact, ∑s∈λ P( fS−Y(s) | s′,a) = 1 for each state s′ ∈ S. It follows that the partition ΛY

induced by fY has the stochastic substitution property.
In general, the partition ΛY induced by fY is not reward respecting with respect to the expected

reward function R of the original MDP. However, recall that the expected reward function Ro of
option o is independent of the expected reward function R of the original MDP. To form a reduced
option SMDP it is sufficient that the partition ΛY is reward respecting with respect to Ro. Ro is de-
fined as −1 everywhere except when the process leaves the initiation set of option o. The initiation
set of option o is determined by the state variables in Z ⊆ Y, so whether or not the process leaves
the initiation set depends only on those state variables. It follows that ΛY is reward respecting with
respect to Ro.

VISA goes a step further and forms the partition ΛZ induced by the projection fZ. In other
words, the option SMDP of option o ignores all state variables not in strongly connected components
for which the value of at least one state variable appears in the context c associated with option o.

Theorem 2 The projection function fZ induces a partition ΛZ of S that is reward respecting and
has the stochastic substitution property if and only if for each pair of states s1,s2 ∈ S2, each option
o′ ∈Oo, and each block λ ∈ ΛZ, [s1]ΛZ = [s2]ΛZ implies that Po(zλ | fY(s1),o′) = Po(zλ | fY(s2),o′),
where zλ is the assignment of values to Z of states in block λ.
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Proof ΛZ is still reward respecting with respect to Ro. However, a state variable in Y−Z may
influence the state variables in Z, so ΛZ does not always have the stochastic substitution property.
We can write the sum ∑s∈λ Po(s | s1,o′) as

∑
s∈λ

Po(s | s1,o
′) = ∑

s∈λ
Po( fZ(s) | s1,o

′)Po( fS−Z(s) | s1,o
′) =

= ∑
s∈λ

Po(zλ | fY(s1),o
′)Po( fS−Z(s) | s1,o

′) =

= Po(zλ | fY(s1),o
′) ∑

s∈λ
Po( fS−Z(s) | s1,o

′) =

= Po(zλ | fY(s1),o
′).

Using the same calculations, we obtain ∑s∈λ Po(s | s2,o′) = Po(zλ | fY(s2),o′). ΛZ has the stochas-
tic substitution property if and only if for each pair of states (s1,s2) ∈ S2, each option o′ ∈ Oo,
and each block λ ∈ ΛZ, [s1]ΛZ = [s2]ΛZ implies that Po(zλ | fY(s1),o′) = Po(zλ | fY(s2),o′), where
fY(s1) = fY(s2) does not hold in general.

From the work of Dean and Givan (1997) and Theorem 1 it follows that the partition ΛY induces
a reduced SMDP that preserves optimality. Since the reduced SMDP can have far fewer state-action
pairs than the original option SMDP, it can be significantly easier to solve, resulting in an important
reduction in complexity. In addition, it follows from Theorem 2 that the partition ΛZ induces a
reduced SMDP that preserves optimality if and only if for each exit option o′ ∈ Oo, state variables
in Y−Z do not influence the state variables in Z as a result of executing o′. Instead of solving the
option SMDP directly, VISA solves the reduced SMDP induced by the partition ΛZ, which can have
even fewer state-action pairs than the reduced SMDP induced by ΛY.

Because of the way exits are defined, the exit options discovered by VISA often satisfy Theorem
2. For example, consider the exit option H → H in the coffee task. After exit transformations,
Z = {SC} and Y = {SL,SC}, so Y−Z = {SL}. The options in the set Oo are C → C and C →
C, with associated exits 〈(SL = L),BC〉 and 〈(SL = L),DC〉, respectively. As a result of executing
action BC, the resulting value of state variable SC depends on the previous value of state variable SL.
However, as a result of executing the exit option C→C, the resulting value of SC does not depend
on the previous value of SL. Regardless of the previous value of SL, option C→C always reaches
the context (SL = L) prior to executing BC, which causes the robot to buy coffee with non-zero
probability. The same is true for exit option C→C, so it follows from Theorem 2 that the partition
ΛZ induced by fZ has the stochastic substitution property.

If there exists a state variable in Y−Z that influences a state variable in Z, the partition ΛZ

does not have the stochastic substitution property. In other words, an optimal solution to the option
SMDP Mo is not preserved in the reduced SMDP induced by the partition ΛZ. A solution to the
reduced SMDP only corresponds to an approximate solution to Mo. However, we believe that
there is still a reason to perform state abstraction this way. The size of the partition ΛY may be
exponentially larger than the size of ΛZ, so the difference in learning complexity may be significant
in the two cases. We argue that the reduction in learning complexity often outweighs the loss of
exact optimality.

To take even further advantage of structure, VISA stores the policies of options in the form of
policy trees. The benefit of using a policy tree is that the number of leaves in the tree may be smaller
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than the actual number of states. At each leaf of the policy tree, VISA stores action-values or, more
accurately described, option-values, which indicate the utility of executing different options in states
that map to that leaf. Recall that VISA maintains a transition graph, in the form of a tree, for each
strongly connected component in the causal graph. The policy tree structure of an option can be
constructed by merging the transition graph trees of strongly connected components that contain
state variables whose values appear in the associated context. The policy tree structure induces a
partition Λπ such that ΛZ ≤ Λπ, that is, Λπ is guaranteed to have at most as many blocks as ΛZ.

Another part of abstraction is reducing the number of options in the option set Oo of the option
SMDP Mo. If there are fewer options to select from, an autonomous agent can discover more
quickly which option or options result in an optimal value for each block of the state partition.
As we explained above, VISA finds strongly connected components that contain at least one state
variable whose value appears in the context c associated with option o. The algorithm fills the
option set Oo with options that change the values of state variables in those strongly connected
components. The algorithm also includes options that leave the initiation sets of options in Oo. It
is not necessary to include other options in Oo since they do not have any impact on reaching the
context c associated with option o. Thus, VISA can reduce the number of options of each option
SMDP, further reducing the complexity of learning.

4.6 Task Option

VISA also introduces an option, which we call the task option, associated with the reward node in
the component graph of the task. The purpose of the task option is to approximate a solution to the
original MDP. However, instead of being a policy that selects among primitive actions, the policy
of the task option selects among the exit options introduced by VISA. Thus, the policy of the task
option represents a hierarchical solution to the task that takes advantage of the exit options to set the
values of relevant state variables in such a way as to maximize expected reward.

The task option is admissible everywhere, that is, its initiation set equals S. If the task is finite-
horizon, the termination condition function β is defined such that the task option terminates when-
ever the task is completed. If the task is infinite-horizon, β is defined such that the task option never
terminates. To learn the task option policy, VISA constructs the option SMDP corresponding to
the task option using the same strategy it uses for the exit options. However, the expected reward
function of the task option SMDP is equal to the expected reward function of the original MDP.
For determining the policy of the task option, the expected reward for executing an exit option o is
defined as the sum of discounted reward of the primitive actions selected during the execution of o.

VISA also performs state abstraction for the task option SMDP in the same way it does for exit
options. First, VISA finds the set of state variables Z ⊆ V in strongly connected components with
edges to the expected reward node in the component graph. VISA performs state abstraction by
ignoring the values of state variables not in Z, and it constructs a policy tree structure to further
reduce the number of states. In addition, the option set of the task option SMDP only includes exit
options that change the values of state variables in Z.

The task option is the only reward-dependent component of VISA. If several tasks share the
same set of state variables and actions, the same set of exit options apply to all of these tasks. For
example, this would apply to a workshop environment with a fixed number of objects where a robot
may be instructed to perform several tasks, such as moving objects. VISA can construct a causal
graph that is common to all tasks by excluding the expected reward node, and use the graph to
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Figure 5: The hierarchy of options discovered by VISA in the coffee task

introduce exit options as before. When provided with the expected reward function of a specific
task, VISA can construct the task option by overlaying the expected reward node onto the existing
causal graph. This way, VISA just needs to learn the policies of the exit options once and can
reuse them throughout all tasks. This facilitates transfer of knowledge between tasks in the same
environment.

4.7 Option Hierarchy

The task option together with the exit options introduced by VISA implicitly define a hierarchy of
options in which the options on one level selects options on the next lower level. Recall that for an
option associated with a node in the component graph, the option SMDP only includes options that
change state variables in components that have edges to that node. In other words, the component
graph determines the structure of the option hierarchy. Since the component graph is guaranteed to
contain no cycles, the option hierarchy is well-defined, and it is not possible for an option to execute
itself, either directly or indirectly.

Figure 5 shows the hierarchy of options that VISA comes up with in the coffee task. The option
hierarchy is determined by the component graph of the coffee task, illustrated in Figure 2. The
task option always sits at the top level of the hierarchy. There are two components with edges to
the expected reward node, namely SH and SW. Option H → H changes the value of SH, and option
W →W changes the value of SW. In addition, option U→U causes the process to leave the initiation
set of W →W . In other words, the task option selects among the three options H → H, W →W ,
and U →U .

In turn, there are two components with edges to the component SH, namely SL and SC. The
primitive action GO changes the value of SL, while options C → C and C → C change the value
of SL. Consequently, option H → H selects among GO, C→ C, and C→ C. There are also two
components with edges to SW, namely SU and SR. Option U → U changes the value of SU, while
no option changes the value of SR. Thus, W →W can only select U →U . Finally, there are edges
between SL and SC as well as between SL and SU, so options C→C, C→C, and U →U all select
among the primitive action GO that changes the value of SL.

2275



JONSSON AND BARTO

4.8 Merging Strongly Connected Components

If there are many context-action pairs that cause changes, it is not particularly useful to introduce an
option for each of them. Instead, VISA merges two strongly connected components that are linked
by too many exits. After VISA identifies exits for a strongly connected component, the algorithm
counts the number of exits identified. If the number of exits is larger than a threshold, VISA merges
the strongly connected component with one or several of its parents. The merge operation places all
state variables in the strongly connected components into a single component and recomputes the
exits of the new component. As a result, the complexity of solving an associated subtask increases
because there are more state variables in the set Z. However, the number of subtasks decreases since
there are fewer exits as a result.

4.9 Summary of the Algorithm

In summary, VISA first constructs the causal graph to determine how state variables are related. If
there are cycles in the causal graph, it is not possible to decompose the task, so VISA gets rid of
cycles by identifying the strongly connected components. For each strongly connected component,
VISA uses the DBN model to identify exits, that is, pairs of variable values and actions that cause
the value of some state variable in the component to change. For each exit, VISA constructs the
components of an exit option, whose purpose it is to bring about the corresponding variable value
change using a minimum number of options. At the top level, VISA constructs a task option that
uses the exit options to approximate a solution to the original MDP. VISA uses reinforcement learn-
ing techniques to learn a policy of each option introduced. Algorithm 3 provides pseudo-code for
VISA.

4.10 Limitations of the Algorithm

VISA only decomposes a task if there are two or more strongly connected components in the causal
graph of the task. Otherwise, VISA cannot exploit conditional independence between state variables
to identify options. Since the option SMDPs are stand-alone, the hierarchy discovered by VISA
enables recursive optimality at best, as opposed to hierarchical optimality (Dietterich, 2000a). In
addition, VISA works best when there are relatively few exits that cause the values of state variables
in a strongly connected component to change.

Furthermore, the option-specific state abstraction performed by VISA is independent of the
way options are formed. Given access to the causal graph, VISA makes it possible to efficiently
perform state abstraction for any option whose goal is to reach a context specified by an assignment
of values to a subset of the state variables. For the purpose of state abstraction, it does not matter
how an autonomous agent determines that it is useful to reach that specific context. In other words,
the state abstraction part of VISA could be combined with other techniques for discovering useful
activities, as long as they are of the required form.

State abstraction for the task option is particularly efficient in tasks for which the expected
reward depends on only a few state variables. If most state variables influence reward, learning the
task option policy requires almost the same effort as learning a policy over primitive actions. Also
note that exit options attempt to change the value of a state variable using as few primitive actions as
possible. In terms of expected reward, such a behavior may not be optimal, since each action does
not necessarily incur the same expected reward. In some tasks, it would be necessary to choose a
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Algorithm 3 VISA

1: Input: DBN model of a factored MDP M with set of state variables S
2: construct the causal graph of the task
3: compute the strongly connected components of the causal graph
4: perform a topological sort of the strongly connected components
5: for each strongly connected component SC⊆ S in topological order
6: identify exits that cause the values of state variables in SC to change
7: while the number of exits exceeds a threshold
8: merge SC with a parent strongly connected component
9: label the new strongly connected component SC and recompute the exits

10: for each exit 〈c,a〉 of the strongly connected component SC
11: perform any possible exit transformations
12: compute the set Z of influencing state variables
13: construct an initiation set I
14: construct a termination function β using the context c
15: construct a policy tree by merging transition graphs of parent components
16: let So be the leaves of the policy tree
17: let Oo be the set of options that changes values of state variables in Z
18: let Ψo be defined by the initiation sets of options in Oo

19: define Ro as −1 everywhere except when the context c is unreachable
20: let Po be undefined
21: construct the option SMDP Mo = 〈So,Oo,Ψo,Po,Ro〉
22: construct an exit option o = 〈I,π,β〉, where π = optimal policy of Mo

23: construct the transition graph of the strongly connected component SC
24: construct a task option corresponding to the original task
25: use reinforcement learning techniques to learn the policy of each option
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different expected reward function for exit option SMDPs to avoid large negative rewards. However,
VISA is most efficient in tasks for which few state variables influence reward. In such tasks, lower-
level variables do not influence reward, so the optimal behavior is to achieve the precondition of
an exit as quickly as possible. For example, in the coffee task, the option hierarchy discovered by
VISA enables optimality, since none of the exit options choose suboptimal actions.

4.11 Experiments

We ran several experiments to test the performance of VISA. Since VISA uses the DBN model of
factored MDPs, it would be unfair to compare it to algorithms that begin with less prior knowledge.
Instead, we compared VISA to two algorithms that also assume knowledge of the DBN model:
SPUDD (Hoey et al., 1999) and symbolic Real-Time Dynamic Programming, or sRTDP (Feng
et al., 2003). SPUDD is a more efficient version of policy iteration that takes advantage of the
compactness of the DBN model to compute the value function in the form of an algebraic decision
diagram, or ADD.

sRTDP is an online planning algorithm that, at each step, constructs a set of states that are similar
to the current state according to one of two heuristics, called value and reach. The algorithm uses the
DBN model to determine the set of possible next states, and performs a masked backup of the value
function restricted to the set of current and next states. The algorithm then selects for execution one
of the actions whose current action-value estimate is highest. sRTDP stores the value function in
the form of ADDs, and uses SPUDD to perform the masked value backup at each step. SPUDD
includes a mechanism that limits the size of the ADDs, divides the state variables into subsets, and
decomposes the value backup into several smaller computations. In our implementation, we did not
allow the size of the ADDs to exceed 10,000 nodes.

We performed experiments with each algorithm in four tasks: the coffee task, the Taxi task, the
Factory task (Hoey et al., 1999), and a simplified version of the autonomous guided vehicle (AGV)
task of Ghavamzadeh and Mahadevan (2001). In the Taxi task (Dietterich, 2000a), a taxi has to pick
up a passenger from their location and deliver them to their destination. The Taxi task has 600 states
and 6 actions. In the Factory task (Hoey et al., 1999), a robot has to assemble a component made of
two objects. Before assembly is possible, the robot has to perform various operations on each of the
two objects, such as shaping, smoothing, polishing and painting. The objects can then be connected
either by drilling and bolting or by gluing. The task is described by 17 binary variables, for a total
of approximately 130,000 states, and the robot has 14 actions.

The Factory task was designed as a infinite-horizon task whose reward function assigns partial
reward in many states. When the component has been assembled, the optimal policy repeatedly
selects the same action in the same state for maximal reward. However, when using reinforcement
learning to learn a policy, it is necessary to reset the state once in a while to ensure that a policy
is learned for all states. When the state is reset, the positive reward as a result of assembling the
component is not large enough to prevent the learning agent from exploiting the partial reward in
other states. For this reason, we redefined the reward function of the Factory task to only assign
positive reward when the component has been assembled. This neither affects the optimal policy
nor the set of state variables that influence reward.

In the AGV task (Ghavamzadeh and Mahadevan, 2001), an autonomous guided vehicle (AGV)
has to transport parts between machines in a manufacturing workshop. We simplified the task by
reducing the number of machines from 4 to 2 and setting the processing time of machines to 0 to
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make the task fully observable. The resulting task is illustrated in Figure 6 and has approximately
75,000 states. The goal of the AGV is to proceed to the load station, pick up a random part i,
transport it to the drop-off location Di of machine Mi, drop it off, then proceed to the pick-up
location Pi of machine Mi, pick up the processed part, transport it to the warehouse, and finally
drop it off. The AGV is restricted to move unidirectionally along the arrows in the figure, and has
to ensure that at least one part of each type is stored in the warehouse. The set of state variables
describing the task is S = {Sx,Sy,S f ,Sh,Sd1,Sp1,Sd2,Sp2,Sa1,Sa2}, where Sx and Sy represent the
location of the AGV, S f the direction it is facing, Sh the part it is holding, Sdi the number of parts at
the drop-off location Di of machine Mi, Spi the number of parts at the pick-up location Pi, and Sai

whether a part of type i is present in the warehouse. The AGV has 6 actions: move in the direction
it is facing, turn left or right, drop off a part, pick up a part, and idle. Even though we simplified the
AGV task, its size still presents a challenge for algorithms that discover activities.

Each graph in the results illustrates the average reward over 100 learning runs with each algo-
rithm. Since the algorithms are fundamentally different, we compared the actual running time in
milliseconds. The graphs for VISA include the time it takes to decompose the factored MDP. We
used SMDP Q-learning to learn the option policies, which reduces to regular Q-learning for poli-
cies that select among primitive actions. We set the discount factor to γ = 0.9 and initially used a
step-size parameter α = 0.05, which we decayed at regular time intervals by multiplying the current
step-size parameter by 0.9. The policies of all options, including the task option, were learned in
parallel. Prior to executing, sRTDP computes action ADDs; the graphs include the time it takes to
do this. We report results of both heuristics (value and reach) used by sRTDP to construct the set of
similar states. All algorithms were coded in Java, except that the CUDD library (written in C) was
used to manipulate ADDs through the Java Native Interface.

SPUDD is conceptually different from VISA and sRTDP in that it does not require actual expe-
rience in the domain. Instead, it uses the transition probabilities and expected reward of the DBN
model to repeatedly update the policy off-line. Consequently, it is not possible to measure the re-
ward received as a result of executing actions in the environment. To evaluate the running time
of SPUDD, we first recorded the time elapsed between each iteration of the algorithm. After each
iteration, we recorded the current policy and stored it in memory. When policy iteration converged,
we retrieved each stored policy from memory. For each policy, we ran experiments in the domain
and selected actions according the policy. The average reward of each experiment appears at the
time at which the policy was recorded. Just as for VISA and sRTDP, we ran 100 trials and plotted
the average reward across trials.

In the results, we also present a comparison of the size of the state partitions produced by
SPUDD and VISA. The size of the state partition produced by SPUDD equals the number of leaves
in the ADD used to represent the value function. In contrast, the size of the state partition produced
by VISA equals the total number of leaves in the policy trees of exit options, including the task
option. Since the state partition produced by VISA does not necessarily preserve optimality, it is
often smaller than that of SPUDD.

4.12 Results

Figure 7 illustrates the results of the experiments in the coffee task. Since the coffee task is very
small, all algorithms converge quickly to an optimal policy, although SPUDD has a slight edge over
the others. The state partition produced by SPUDD contains 48 aggregated states, as compared to
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Figure 6: Illustration of the AGV task
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Figure 7: Results of learning in the coffee task

the 26 = 64 total states of the task. In contrast, the state partition produced by VISA contains a total
of 20 aggregated states.

Figure 8 illustrates the results of the experiments in the Taxi task. In this task, VISA and SPUDD
perform significantly better than sRTDP, with SPUDD slightly faster than VISA. The state partition
of SPUDD contains 525 aggregated states, almost as many as the 600 states of the original task. In
comparison, the state partition produced by VISA contains a total of 106 aggregated states.

Figure 9 illustrates the results of the experiments in the Factory task. Again, SPUDD and VISA
have a similar convergence times, although it appears as if VISA converges to a slightly suboptimal
policy. The Factory task poses a significant challenge to online learning algorithms since a lot of
actions undo the effect of other actions, making it difficult to achieve the objective. We believe this
is the reason that sRTDP is struggling to converge quickly. The reason VISA does so well is that
the hierarchical decomposition restricts the policy to select between options that achieve relevant
subgoals, guiding the process towards the ultimate objective. The state partition of SPUDD contains
4,550 states, significantly less than the 217 ≈ 130,000 states of the task. The state partition produced
by VISA is even smaller, containing 2,620 aggregated states.

Figure 10 illustrates the results of the experiments in the AGV task of VISA and sRTDP using
the reach heuristic. VISA decomposes the task in roughly 6 seconds and learning converges after 20
seconds. In comparison, it took SPUDD more than 4 minutes to converge to an optimal policy, and
its performance is not shown in Figure 10. sRTDP using the reach heuristic completes the task a few
times within the first minute of running time but convergence is much slower than for VISA. During
our experiments, sRTDP using the value heuristic failed to complete the task even once within the
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Figure 8: Results of learning in the Taxi task
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Figure 9: Results of learning in the Factory task
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Figure 10: Results of learning in the AGV task

first 15 minutes. The state partition of SPUDD contains 11,096 states, compared to the 75,000 states
of the task, while the state partition of VISA contains 5,996 aggregated states.

The results of the experiments illustrate the power of hierarchical decomposition when com-
bined with option-specific abstraction. Even though SPUDD and sRTDP take advantage of task
structure and are empirically faster than regular reinforcement learning algorithms, they still suffer
from the curse of dimensionality as the size of the state space grows. On the other hand, VISA
decomposes the original tasks into smaller, stand-alone tasks that are easier to solve without ever
enumerating the state space. Instead, the complexity of the decomposition is polynomial in the size
of the conditional probability trees of the DBN model. Each stand-alone task only distinguishes
among values of a subset of the state variables, which means that the complexity of learning does
not necessarily increase with the number of state variables. Evidently, the advantage offered by
VISA varies between tasks and is dependent on the causal graph structure.

5. Constructing Compact Option Models

VISA computes option policies by first constructing the option SMDP, Mo, of each exit option
o. Since VISA does not have access to an estimate of the transition probability function, Po, it
cannot use a planning algorithm to solve the option SMDP. Instead, VISA uses SMDP Q-learning
to learn the option policies, which does not require knowledge of transition probabilities as long as
the algorithm has access to a real system and enough time. If VISA had access to DBN models
that compactly describe the transition probabilities as a result of executing options, it would be
possible to apply existing planning algorithms that exploit the DBN models to efficiently solve the
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option SMDPs. Access to DBN models of options would open up new possibilities for learning and
planning with options.

In this section, we develop ideas for constructing compact models of the exit options introduced
by VISA. Current techniques for constructing option models require the state space to be enumer-
ated. Since the goal of VISA is to reduce the complexity of learning by ignoring a subset of state
variables, we want to avoid enumerating the state space. Instead, we define theoretical properties of
partitions that preserve the transition probabilities and expected reward of options. We then discuss
how to construct representations of transition probabilities and expected reward using partitions
with these properties. In many cases, the partitions contain far fewer blocks than the number of
states, resulting in a compact representation.

5.1 Multi-Time Option Models

Sutton et al. (1999) defined the multi-time model of an option o = 〈I,π,β〉 as

P(s′ | s,o) =
∞

∑
t=1

γtP(s′, t | s,o), (2)

R(s,o) = E{
t

∑
k=1

γk−1R(sk,ak) | s1 = s}, (3)

where t is the random duration until o terminates and P(s′, t | s,o) is the probability that o terminates
in state s′ ∈ S after t time steps when executed in state s ∈ S. The expectation in Equation 3 is
taken over the distribution of state-action pairs (sk,ak), k ∈ [1, t]. This distribution is determined by
the functions P(sk+1 | sk,ak), π(sk,ak), and β(sk). We refer to the terms P(s′ | s,o) as discounted
probabilities since they do not sum to 1 for γ < 1. However, the multi-time model enables learning
and planning with options as single units, which Sutton et al. (1999) call SMDP value learning and
SMDP planning, respectively.

It is possible to use dynamic programming to compute the multi-time model in Equations 2 and
3. We can set up the Bellman form of the equations in which each term is a function of the terms at
the next time step:

P(s′ | s,o) = γ ∑
a∈A

π(s,a)

[

P(s′ | s,a)β(s′)+ ∑
s′′∈S

P(s′′ | s,a)(1−β(s′′))P(s′ | s′′,o)

]

, (4)

R(s,o) = ∑
a∈A

π(s,a)

[

R(s,a)+ γ ∑
s′∈S

P(s′ | s,a)(1−β(s′))R(s′,o)

]

. (5)

Let us label each state with a unique subscript i∈ {1, . . . , |S|}. Let Pa, a∈ A, be the transition matrix
for action a whose entry (i, j) is P(s j | si,a), and let Po be the corresponding matrix for option o.
Let Πa, a ∈ A, be the diagonal matrix whose entry (i, i) is π(si,a), and let B be the diagonal matrix
whose entry (i, i) is β(si). Let Ra, a ∈ A, be the vector whose ith entry is R(si,a), and let Ro be
the corresponding vector for option o. To avoid confusion with the option initiation set I, we use
E to denote the identity matrix. Then we can write Equations 4 and 5 respectively in the following
forms:

Po = γ ∑
a∈A

ΠaPa(B+(E−B)Po), (6)

Ro = ∑
a∈A

Πa(Ra + γPa(E−B)Ro). (7)
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5.2 Multi-Time Models for Exit Options

Recall that an exit option o is associated with an exit 〈c,a〉, composed of a context c and an action
a. Unlike regular options, the exit option executes action a following termination in context c. In
addition, if o is executed in a state that already satisfies context c, o immediately terminates and
executes action a. As a consequence, it is necessary to modify the multi-time model to suit exit
options. The multi-time model of an exit option o has the following form:

Po = γ(BPa +(E−B) ∑
a′∈A

Πa′Pa′Po), (8)

Ro = BRa +(E−B) ∑
a′∈A

Πa′(Ra′ + γPa′Ro), (9)

where a is the action of the exit associated with o. The above definition assumes that o always
terminates in a state that satisfies context c, so that a is always executed following termination.

Because we modified the multi-time model to handle the case of exit options, we need to show
that the discounted probabilities, Po, and expected reward, Ro, associated with an exit option o are
well-defined under the condition that o is guaranteed to eventually terminate.

Definition 3 An option o is proper if for each state si ∈ I, o eventually terminates with probability
1 when executed in si.

Definition 3 imposes a restriction on the policy π and termination condition function β of an option
o.

Theorem 4 For a proper option o, the systems of linear equations in Equations 8 and 9 are consis-
tent and have unique solutions.

The unknown quantities that we want to solve for are Po and Ro. If we move the unknowns to the
left-hand side of Equations 8 and 9 we obtain the following systems of equations:

[

E− γ(E−B) ∑
a′∈A

Πa′Pa′

]

Po = γBPa, (10)

[

E− γ(E−B) ∑
a′∈A

Πa′Pa′

]

Ro = BRa +(E−B) ∑
a′∈A

Πa′Ra′ . (11)

Note that the unknown quantities Po and Ro are multiplied by the same matrix M = E − γ(E −
B)∑a′∈A Πa′Pa′ . The systems of linear equations in Equations 10 and 11 are consistent and have
unique solutions if and only if matrix M is invertible, that is, if and only if the determinant of M is
non-zero. The proof of Theorem 4 appears in Appendix A.

Since Equations 6 and 7 resemble the Bellman optimality equation in Equation 1, it is possible to
use algorithms similar to value iteration and policy iteration to solve for Po and Ro. Note, however,
that we do not want to represent the matrices explicitly, since their size is proportional to the number
of states. Instead, we can use decision trees or ADDs to compactly represent the matrices. The
policy of an exit option is already in the form of a tree, and it is easy to construct a tree that represents
the termination condition function β. SPUDD (Hoey et al., 1999) contains an efficient subroutine
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that uses the DBN model to perform multiplication of a matrix with the transition probability matrix
Pa without explicitly representing Pa. For a proper option o, iteratively performing the calculations
on the right-hand side of Equations 8 and 9 will eventually converge to a compact representation of
Po and Ro.

5.3 Decomposition of the Option Model

In Section 4, we compared VISA with several algorithms that take advantage of the DBN model
to compactly represent transition probabilities and expected reward. Even though these algorithms
construct compact representations of the value function, VISA outperformed these algorithms in
several tasks. The reason for this is that VISA introduces a set of subtasks and performs state
abstraction for each subtask by ignoring irrelevant state variables, making each subtask easier to
solve than the original task. It is possible to decompose computation of the multi-time option model
in a similar way.

Recall that we approximate the transition probabilities of primitive actions as products of the
conditional probabilities of each state variable Sd ∈ S:

P(s′ | s,a)≈ ∏
Sd∈S

Pd( f{Sd}(s
′) | fPa(Sd)(s),a).

The expression is an approximation for tasks in which there are dependencies between state vari-
ables at a same time step because our formalism does not account for such synchronous dependen-
cies.

It is possible to approximate the terms of the multi-time model in a similar way. However,
the multi-time model of an option o has two distributions that resemble transition probabilities:
P(s′ | s,o), the discounted probability of transitioning from s to s′ as a result of executing o; and
P(s′, t | s,o), the exact probability of transitioning from s to s′ in t time steps as a result of executing
o. We can choose which of the two distributions to approximate.

If we choose to approximate P(s′ | s,o), we obtain the following approximation:

P(s′ | s,o)≈ ∏
Sd∈S

Pd( f{Sd}(s
′) | fPa(Sd)(s),o).

Since we do not (yet) have access to a DBN model of option o, we assume that all state variables are
parents of Sd , so fPa(Sd)(s) = fS(s) = s. We can compute the terms Pd( f{Sd}(s

′) | s,o) in the same
way as the multi-time model:

Pd( f{Sd}(s
′) | s,o) =

∞

∑
t=1

γtPd( f{Sd}(s
′), t | s,o).

As a result, we obtain the following final approximation of Equation 2:

P(s′ | s,o)≈ ∏
Sd∈S

∞

∑
t=1

γtPd( f{Sd}(s
′), t | s,o). (12)

Equation 12 enables us to compute the conditional probabilities Pd(vd | s,o) of the multi-time model
separately for each state variable Sd . Here, vd ∈ D(Sd) denotes one of the values of state variable
Sd .
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If we instead choose to approximate P(s′, t | s,o), we obtain the following alternative approxi-
mation of Equation (2):

P(s′ | s,o) =
∞

∑
t=1

γtP(s′, t | s,o)≈
∞

∑
t=1

∏
Sd∈S

γtPd( f{Sd}(s
′), t | s,o). (13)

Note that the difference between Equations 12 and 13 is the order of the summation and the product.
As a result, Equation 12 assigns non-zero probability to events that could never occur, such as “the
value of state variable SL becomes L in 2 time steps, and the value of state variable SW becomes W in
3 time steps.” This event could never occur because an option cannot simultaneously terminate after
2 time steps and 3 time steps. In this sense, Equation 13 is a better approximation of P(s′ | s,o), but
on the other hand, it does not enable us to compute a multi-time model of option o separately for
each state variable. As we shall see, the ability to decompose the computation significantly reduces
the complexity of computing the multi-time model. We believe that the reduction in complexity
justifies the loss of accuracy, although we currently have no bounds on the approximation error. For
this reason, we use Equation 12 as our approximation of Equation 2.

For each state variable Sd , each state s ∈ S, and each value vd ∈ D(Sd), we seek the term
Pd(vd | s,o) representing the probability of transitioning into a state that assigns vd to Sd when o is
executed in state s. Pd(vd | s,o) is given by the following equation:

Pd(vd | s,o) = γ(β(s)Pd(vd | s,a)+(1−β(s)) ∑
a′∈A

π(s,a′) ∑
s′∈S

P(s′ | s,a′)Pd(vd | s′,o)). (14)

Let Po
d be a |S| × |D(Sd)| matrix whose entry (i, j) equals Pd( j | si,o). We can solve for Po

d using
the following system of equations:

Po
d = γ(BPa

d +(E−B) ∑
a′∈A

Πa′Pa′Po
d ), (15)

where Pa
d is the equivalent of Po

d for exit action a.

Lemma 5 For a proper option o, the system of linear equations in Equation 15 is consistent and
has a unique solution.

Let us again move all unknowns to the left side of the equation to obtain
[

E− γ(E−B) ∑
a′∈A

Πa′Pa′

]

Po
d = γBPa

d . (16)

The proof of Lemma 5 follows directly from the proof of Theorem 4 since the matrix M =
[

E− γ(E−B)∑a′∈A Πa′Pa′
]

that we need to invert to solve Equation 16 is the same as the matrix in

Equations 10 and 11.
Instead of a single system of equations (8), we now have to solve one system of equations per

state variable (15) to approximate the discounted probabilities Po. Since the system of equations are
similar, it appears as if little is gained, but as it turns out, the complexity of the computation may be
dramatically lower. The matrix Po

d only has one column per value in D(Sd), which is considerably
less than the number of columns of Po, even for a very compact state representation. This means
that matrix multiplications can be carried out more efficiently. In addition, some state variables may
be irrelevant for computing Po

d , making the representation even more compact throughout the com-
putation. Specifically, decomposing computation of the option model makes it possible to construct
a different compact representation for each state variable.
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5.4 Partitions

We formalize the ability to construct compact representations for each state variable using partitions.
Recall that a partition Λ of the state set S that has the stochastic substitution property and is reward
respecting induces a reduced MDP that preserves optimality. We define three more properties of
partitions of S with respect to a factored MDP M and an option o = 〈I,π,β〉:

Definition 6 A partition Λ of S is policy respecting if for each pair of states (si,s j) ∈ S2 and each
action a ∈ A, [si]Λ = [s j]Λ implies that π(si,a) = π(s j,a).

Definition 7 A partition Λ of S is termination respecting if for each pair of states (si,s j) ∈ S2,
[si]Λ = [s j]Λ implies that β(si) = β(s j).

Definition 8 A partition Λ of S is probability respecting of state variable Sd if for each pair of states
(si,s j) ∈ S2, each action a ∈ A, and each value vd ∈D(Sd), [si]Λ = [s j]Λ implies that Pd(vd | si,a) =
Pd(vd | s j,a).

Using these definitions, it is possible to define partitions of S that preserve the multi-time model of
an option o, which we prove in the following two theorems:

Theorem 9 Let o be a proper option and let Λd be a partition of S that has the stochastic sub-
stitution property, is policy respecting, termination respecting, and probability respecting of Sd .
Then for each pair of states (si,s j) ∈ S2 and each value vd ∈ D(Sd), [si]Λd = [s j]Λd implies that
Pd(vd | si,o) = Pd(vd | s j,o).

The proof of Theorem 9 appears in Appendix B. As a consequence of Theorem 9, it is possible
to ignore some state variables while computing the discounted probability model of an exit option.
Take the example of computing the discounted probability Po

W
associated with state variable SW and

exit option C→C in the coffee task. The policy and termination condition function of C→C only
distinguish between values of state variable SL, that is, any partition of S that distinguishes between
values of SL is policy respecting and termination respecting. The value of SW as a result of executing
any action is determined by the previous values of SU, SR, and SW, that is, any partition of S that
distinguishes between values of SU, SR, and SW is probability respecting of SW. From Theorem 1
we know that a partition of S has the stochastic substitution property and is reward respecting if it
distinguishes between values of all state variables that influence relevant state variables. It follows
from Theorem 9 that a partition of S that distinguishes between values of SL, SU, SR, and SW preserves
the discounted probability Po

W
, that is, state variables SC and SH are irrelevant for computing Po

W
.

Theorem 10 Let o be a proper option and let ΛR be a partition of S that has the stochastic substi-
tution property, is reward respecting, policy respecting, and termination respecting. Then for each
pair of states (si,s j) ∈ S2, [si]ΛR = [s j]ΛR implies that R(si,o) = R(s j,o).

The proof of Theorem 10 appears in Appendix C. Usually, all state variables indirectly influence
reward, so normally it is not possible to ignore the values of any state variables while computing the
expected reward model Ro associated with exit option o.
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5.5 Distribution Irrelevance

Dietterich (2000b) defined a condition that he calls result distribution irrelevance: a subset of the
state variables may be irrelevant for the resulting distribution of a temporally-extended activity. This
condition only exists in the undiscounted case, that is, for γ = 1. Otherwise, the time it takes the
activity to terminate influences subsequent reward. We can take advantage of distribution irrelevance
to compute the multi-time model of an exit option when γ = 1. Let o be the exit option associated
with the exit 〈c,a〉. Since o terminates in the context c, we know the value of each state variable in
the set C⊆ S immediately before action a is executed. In other words, the values of state variables
in the set C prior to executing o are irrelevant for the resulting distribution of o.

Because of distribution irrelevance, we do not need to solve Equation 15 for state variables in
the set C. Instead, the conditional probabilities associated with state variable Sd ∈ C and option o
are given by the conditional probabilities associated with Sd and the exit action a, restricted to states
s ∈ S such that fC(s) = c. For example, as a result of executing the exit option associated with the
exit 〈(SL = L),BC〉 in the coffee task, the value of state variable SL is L immediately before executing
BC. Executing the exit action BC has no influence on the value of SL. As a result of executing the
option that acquires coffee, the location of the robot is always the coffee shop, regardless of its
previous location.

We can also simplify computation of conditional probabilities for state variables that are un-
affected by actions that the policy selects. Let Uo ⊆ S denote the subset of state variables whose
values do not change as a result of executing any action selected by the policy π of exit option o. For
the exit option o associated with exit 〈(SL = L),BC〉 in the coffee task, Uo = {SU,SR,SC,SH}, since
the values of these state variables do not change as a result of executing GO, the only action selected
by the policy of o. Thus, the conditional probabilities associated with state variables in the set Uo

can be computed without solving Equation 15.

5.6 Summary of the Algorithm

In summary, to compute the multi-time model of an exit option one should first solve Equation 9
to compute the expected reward. In addition, for each state variable, one should solve Equation 15
to compute the discounted probability model associated with that state variable. If γ = 1 and it is
possible to take advantage of distribution irrelevance, it is not necessary to solve Equation 15 for
that state variable. The computation is most efficient if matrices are represented as trees or ADDs;
in that case, the resulting models are also trees.

When we have computed the conditional probability tree associated with each state variable
for an exit option, as well as a tree representing expected reward, we can construct a DBN for the
option in the same way that we can for primitive actions. Figure 11 shows the DBN for the exit
option associated with the exit 〈(SL = L),BC〉 in the coffee task when γ = 1, taking advantage of
distribution irrelevance. Note that there is no edge to state variable SL, which indicates that the
resulting location does not depend on any of the state variables.

Since the DBN model of an option is in the same form as the DBN models of primitive actions,
we can treat the option as a single unit and apply any of the algorithms that take advantage of
compact representations. In addition, the DBN model makes it possible to apply our technique to
nested options, that is, options selecting between other options. Once the policy of an option has
been learned, we can construct its DBN model and use that model both to learn the policy of a
higher-level option and later to construct a DBN model of the higher-level option.
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Figure 11: DBN for the option associated with 〈(SL = L),BC〉

TASK SPUDD VISA VISA-D

Coffee 75 ± 3 100 ± 33 18 ± 14
Taxi 4,965 ± 20 2,220,102 ± 1,861 7,465 ± 139

Table 2: Comparison of time (ms) to convergence in two tasks

5.7 Experimental Results

We conducted a set of experiments to test the complexity of computing multi-time models for exit
options. First, we ran VISA on the coffee task and used Equations 8 and 9 to compute the multi-time
model of each exit option introduced. For each exit option, including the task option at the top level,
we used SPUDD to compute an optimal policy. In a second experiment, we ran VISA again, but this
time used Equation 15 to compute a separate transition probability model for each state variable.
We set γ = 1 and used distribution irrelevance whenever possible to simplify computation of the
transition probability model. We repeated these experiments in the Taxi task. For comparison, we
also computed the time it takes SPUDD to converge in these two tasks.

Table 2 presents the results of the experiments, averaged over 100 trials. VISA-D denotes the
VISA algorithm with the decomposed transition probability model. In all cases, the algorithms
converged to an optimal policy for the task. Since the coffee task is very small, all algorithms
converged relatively quickly. However, note that in the Taxi task, the convergence time of VISA
is orders of magnitudes larger than that of SPUDD and VISA-D, while the convergence time of
VISA-D is almost on par with that of SPUDD, even though it includes the time it took to compute
the compact option models. Evidently, distribution irrelevance and simplified computation of the
transition probability models can have a huge impact on the complexity of computing multi-time
models for exit options.
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6. Related Work

There exist several algorithms that decompose tasks into a hierarchy of activities. We have already
mentioned the HEX-Q algorithm (Hengst, 2002) and its relation to our work. Dean and Lin (1995)
used a fixed partition of the state space to decompose a factored MDP into regions. The authors
developed an algorithm for solving the decomposed task by constructing activities for moving be-
tween regions. At the top level, the algorithm forms an abstract MDP with the regions as states and
the activities as actions to approximate a global solution. Hauskrecht et al. (1998) extended this idea
by suggesting several ways of constructing the set of activities given the decomposition. Most of
their techniques rely on partial knowledge of the value function at different states to decide which
activities to introduce. These techniques rely on prior knowledge of a useful partition, while our
algorithm relies on the DBN model to decompose a task.

Nested Q-learning (Digney, 1996) introduces an activity for each value of each state variable.
The goal of each activity is to reach the context described by the single state variable value. Mc-
Govern and Barto (2001) use diverse density to locate bottlenecks in successful solution paths, and
introduce activities that reach these bottlenecks. Şimşek and Barto (2004) measure the relative nov-
elty of each visited state, and introduce activities that reach states whose relative novelty exceeds a
threshold value. Recent work on intrinsic motivation (Singh et al., 2005) tracks salient changes in
variable values and introduces activities that cause salient changes to occur.

Other researchers use graph-theoretic approaches to decompose tasks. Menache et al. (2002)
construct a state transition graph and introduce activities that reach states on the border of strongly
connected regions of the graph. The authors use a max-flow/min-cut algorithm to identify border
states in the transition graph. Mannor et al. (2004) use a clustering algorithm to partition the state
space into different regions and introduce activities for moving between regions. Şimşek et al.
(2005) identify subgoals by partitioning local state transition graphs that represent only the most
recently recorded experience.

Another approach is to track learning in several related tasks and identify activities that are use-
ful across tasks. SKILLS (Thrun and Schwartz, 1996) identifies activities that minimize a function
of the performance loss induced by the resulting hierarchy and the total description length of all
actions. PolicyBlocks (Pickett and Barto, 2002) identifies regions in the state space for which the
policy is identical across tasks, and introduces activities that represent the policy of each region.
Each activity is only admissible within its region of the state space.

Helmert (2004) developed an algorithm that constructs a causal graph similar to that of VISA
and uses the graph to decompose deterministic planning tasks. The algorithm assumes a STRIPS
formulation of actions (Fikes and Nilsson, 1971), which is similar to the DBN model of factored
MDPs. Just like the DBN model, the STRIPS formulation expresses actions in terms of causes and
effects on the state variables, except that the causes and effects are deterministic. Helmert (2004)
uses the STRIPS action formulation to construct a causal graph in a special class of deterministic
tasks in which the causal graph has one absorbing state variable with edges from each of the other
state variables. The author shows that his algorithm efficiently solves a set of standard planning
tasks using activities to represent the stand-alone tasks of the resulting decomposition.

There are several efficient algorithms for solving factored MDPs that use the DBN model to
compactly describe transition probabilities and expected reward. Structured Policy Iteration, or
SPI (Boutilier et al., 1995), stores the policy and value function in the form of trees. The algorithm
performs policy iteration by intermittently updating the policy and value function, possibly changing
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the structure of the trees in the process. Hoey et al. (1999) modified SPI to include algebraic decision
diagrams, or ADDs, which store conditional probabilities more compactly than trees. Symbolic
Real-Time Dynamic Programming, or sRTDP (Feng et al., 2003), also assumes that the conditional
probabilities of the DBN model are stored using ADDs. sRTDP is an extension of Real-Time
Dynamic Programming, or RTDP (Barto et al., 1995), that clusters states into abstract states based
on two criteria, and performs an efficient backup of the value of the current abstract state following
each execution of an action in the environment.

The DBN-E3 algorithm (Kearns and Koller, 1999) is based on the assumption that there exists
an approximate planning algorithm for the task, and that the structure of the DBN model is given.
Using the planning procedure as a subroutine, the algorithm explores the state space and fills in the
parameters of the DBN model. The running time of the algorithm is polynomial in the number of
parameters of the DBN model, generally much smaller than the number of states. Guestrin et al.
(2001) developed an algorithm based on linear programming that combines the DBN model with
max-norm projections to solve factored MDPs. The algorithm is based on the assumption that there
is a set of basis functions for representing the value function. It is guaranteed to converge to an
approximately optimal solution.

Sutton et al. (1999) developed the multi-time model of options that we used to represent the
effect of activities. The multi-time model includes an estimate of the transition probabilities and
expected reward of options. Using the multi-time model of an option, it is possible to treat the
option as a single unit during learning and planning. SMDP value learning (Sutton et al., 1999) uses
the multi-time model to learn values or action-values in an SMDP. SMDP planning (Sutton et al.,
1999) uses the multi-time model to perform planning in an SMDP, similar to policy iteration.

7. Conclusion

We presented Variable Influence Structure Analysis, or VISA, an algorithm that decomposes fac-
tored MDPs into hierarchies of options. VISA uses a DBN model of the factored MDP to construct
a causal graph describing how state variables are related. The algorithm then searches in the con-
ditional probability trees of the DBN model for exits, that is, combinations of state variable values
and actions that cause the values of other state variables to change. VISA introduces an option for
each exit and uses sophisticated techniques to construct the components of each option. The result
is a hierarchy of options in which the policy of an option selects among options at a lower level in
the hierarchy. Experimental results in a series of tasks show that the performance of VISA is com-
parable to that of state-of-the-art algorithms that exploit the DBN model, and in one task (AGV)
VISA significantly outperforms the other algorithms.

VISA is based on the assumption that the values of key state variables change relatively infre-
quently. This is the same assumption made by Hengst (2002), Helmert (2004), and Singh et al.
(2005). Just like the HEX-Q algorithm (Hengst, 2002), VISA decomposes a task into activities
by detecting the combinations of state variable values and actions that cause key variable value
changes. However, as we already discussed, VISA uses the causal graph to represent how state
variables are related, which is a more realistic model than that used by HEX-Q. Unlike the work of
Helmert (2004), VISA can handle any configuration of the causal graph.

Many existing algorithms need to accumulate extensive experience in the environment to de-
compose a task into activities, and they usually store quantities for each state. Assuming that the
DBN model is given, VISA does not need to accumulate experience in the environment to perform
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the decomposition. In addition, VISA only stores quantities proportional to the size of the condi-
tional probability trees of the DBN model. Although we do not provide any comparisons, it is likely
that VISA uses less memory and performs decomposition of a task in less time than these other
algorithms.

Our second algorithm is a method for computing compact models of the options discovered by
VISA. Existing methods for computing compact option models do not scale well to large tasks.
For this reason, the first implementation of VISA uses reinforcement learning to approximate an
optimal policy of each option. If VISA had access to compact option models, it could use dynamic
programming techniques to compute the option policies without interacting with the environment.
Our algorithm constructs partitions with certain properties to reduce the complexity of computing
compact option models. The algorithm computes a DBN model for each option identical to the
DBN model for primitive actions. This makes it possible to apply existing algorithms that use the
DBN model to efficiently approximate option policies.

For VISA to successfully decompose a task, the causal graph needs to contain at least two
separate strongly connected components. In tasks for which each state variable indirectly influences
each other state variable, decomposition using this strategy is not possible. In other words, VISA
is limited to function well in tasks with relatively sparse relationships between state variables. We
believe that a non-trivial number of realistic tasks fall within this category. For example, in most
navigation tasks, location influences the value of variables representing stationary objects, which in
turn have no impact on location. Moreover, constructing the causal graph is polynomial in the size
of the DBNs, so it is relatively inexpensive to test whether or not VISA can successfully decompose
a task.

7.1 Future Work

Hoey et al. (1999) pioneered the use of algebraic decision diagrams, or ADDs, to store the condi-
tional probability distributions of the DBN model. Since ADDs are a more compact representation
than trees, they require less memory. More importantly, several operations can be executed faster
on ADDs than on trees. Although VISA uses trees to represent the conditional probability distri-
butions, it would be relatively straightforward to change the representation to ADDs. Possibly, this
modification could speed up decomposition and construction of compact option models.

It is also possible to combine VISA with other techniques that facilitate scaling. For example,
once VISA has decomposed a task into options, we can apply reinforcement learning with function
approximation to learn the option policies. Another possibility is to use existing algorithms to
detect bottlenecks in the transition graph of a strongly connected component in the causal graph.
This would enable further decomposition of the option SMDPs into even smaller subtasks.

Recall that VISA performs state abstraction for an option SMDP by constructing the partition
ΛZ, where Z ⊆ S is the set of state variables in strongly connected components whose variable
values appear in the context of the associated exit. As a result of state abstraction, the option policy
may be suboptimal. The problem occurs when an option selected by the option policy changes the
value of a state variable not in Z that indirectly influences state variables in Z. This problem would
be alleviated if we merge strongly connected components whose state variables are affected by the
same actions. The resulting decomposition would be less efficient in terms of learning complexity
but would guarantee recursive optimality.
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Our formal analysis of constructing compact option models requires partitions with a set of
established properties. The requirement that the partitions should have all of these properties is
quite strong. A possible line of future research is to relax or approximate the required properties
of partitions, which could lead to even more efficient computation of option models, albeit with
some loss of accuracy. An analysis of the resulting approximation could help determine a tradeoff
between the complexity of computing compact option models and the accuracy of the resulting
model.

We also made a strong independence assumption in order to reduce the complexity of computing
a compact option model. Our algorithm assumes that the value of a state variable that results from
executing an option is independent of the resulting values of other state variables. Since an option
takes variable time to execute, the option passes through many states during execution. The inde-
pendence assumption only holds if the resulting values of state variables are independent regardless
of which state the option is currently in. In many cases, our independence assumption induces an
approximation error. If possible, we would like to establish bounds on this approximation error to
analyze the accuracy of our algorithm.

It is unrealistic to assume that a DBN model is always given prior to learning. If no DBN model
is available, it is necessary to learn a DBN model from experience prior to executing VISA. There
exist algorithms for active learning of Bayesian networks that can be applied to factored MDPs
(Murphy, 2001; Steck and Jaakkola, 2002; Tong and Koller, 2001). However, these algorithms
assume that it is possible to sample the MDP at arbitrary states. If we assume that it is only possible
to sample the MDP along trajectories, it becomes necessary to develop novel algorithms for active
learning of DBN models. Such algorithms would select actions with the goal of learning a DBN
model describing the effect of actions on the state variables as quickly as possible.
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Appendix A. Proof of Theorem 4

In this appendix we prove Theorem 4 from Section 5. Equations 10 and 11 are consistent and
have unique solutions if and only if the matrix M = E− γ(E−B)∑a∈A ΠaPa is invertible, that is, if
det(M) 6= 0. Each element of Pa is in the range [0,1], and each row of Pa sums to 1. Because of
the properties of π, it follows that ∑a∈A Πa = E and that ∑a∈A ΠaPa has the same properties as Pa.
(E−B) is a diagonal matrix whose elements are in the range [0,1]. Then γ(E−B) ∑a∈A ΠaPa is a
matrix such that each element is in the range [0,1] and such that the sum of each row is in the range
[0,1]. In other words, M has the following properties, where n = |S|:

1. for each i = 1, . . . ,n: 0≤ mii ≤ 1,

2. for each i = 1, . . . ,n, j 6= i: −mii ≤ mi j ≤ 0,

3. for each i = 1, . . . ,n: 0≤ ∑n
j=1 mi j ≤ mii.
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Lemma 11 An element mii on the diagonal of M equals 0 if and only if

1. γ = 1,

2. β(si) = 0,

3. for each action a ∈ A such that π(si,a) > 0, P(si | si,a) = 1.

Proof mii = 1−γ(1−β(si))∑a∈A π(si,a)P(si | si,a). The only solution to mii = 0 is γ = 1, β(si) = 0,
and P(si | si,a) = 1 for each action a ∈ A such that π(si,a) > 0.

An option is proper if and only if there is no set of absorbing states S′ such that β(s) = 0 for
each state s ∈ S′. A set of states S′ is absorbing if and only if the probability of transitioning from
any state in S′ to any state outside S′ is 0. A special case occurs when S′ contains a single state
si such that β(si) = 0 and such that P(si | si,a) for each action a ∈ A such that π(si,a) > 0. From
Lemma 11 it follows that an element mii on the diagonal of M equals 0 if and only if si is an absorb-
ing state such that β(si) = 0. Since no such state exists for a proper option o, we conclude that all
elements on the diagonal of M are larger than 0 for a proper option o. Then it is possible to mul-
tiply each row of M by its diagonal element 1/mii to obtain a matrix A with the following properties:

1. for each i = 1, . . . ,n: aii = 1,

2. for each i = 1, . . . ,n, j 6= i: −1≤ ai j ≤ 0,

3. for each i = 1, . . . ,n: 0≤ ∑n
j=1 ai j ≤ 1.

Since matrix A is obtained by multiplying each row of M by a scalar, the determinant of M equals 0
if and only if the determinant of A equals 0. We can write A as

A =











1 a12 · · · a1n

a21 1 · · · a2n
...

...
. . .

...
an1 an2 · · · 1











=











− r1 −
− r2 −

...
− rn −











,

where ri is the ith row of A. It is possible to eliminate an element ai j, j < i, by subtracting ai jr j

from row ri:

ri−ai jr j =
(

ai1−ai ja j1 · · · ai j−ai j ·1 · · · 1−ai ja ji · · · ain−ai ja jn
)

.

Lemma 12 0≤ 1−ai ja ji ≤ 1, and 1−ai ja ji = 0 if and only if ai j = a ji =−1.

Proof Follows immediately from the properties of A.

Lemma 13 If 1−ai ja ji > 0, elimination of ai j preserves the properties of A.

Proof Since 1−ai ja ji > 0, we can multiply ri−ai jr j by 1/(1−ai ja ji):

r̄i =
1

1−ai ja ji
[ri−ai jr j] =

(

ai1−ai ja j1

1−ai ja ji
· · · 0 · · · 1 · · ·

ain−ai ja jn

1−ai ja ji

)

.
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It follows immediately that element i of row r̄i equals (1−ai ja ji)/(1−ai ja ji) = 1 and that element
j equals (ai j−ai j ·1)/(1−ai ja ji) = 0. For each k = 1, . . . ,n, k 6= i, j, compute bounds on element
k of r̄i:

aik−ai ja jk

1−ai ja ji
≤

aik−0
1−ai ja ji

≤
0−0

1−ai ja ji
= 0,

aik−ai ja jk

1−ai ja ji
=

1−ai ja ji +aik−ai ja jk− (1−ai ja ji)

1−ai ja ji
=

=
1+aik−ai j(a ji +a jk)

1−ai ja ji
−1≥

≥
1+aik +ai j

1−ai ja ji
−1≥

1−1
1−ai ja ji

−1 =−1.

Also compute bounds on the sum of the elements of r̄i:

n

∑
k=1

aik−ai ja jk

1−ai ja ji
=

j−1

∑
k=1

aik−ai ja jk

1−ai ja ji
+

ai j−ai j ·1
1−ai ja ji

+
i−1

∑
k= j+1

aik−ai ja jk

1−ai ja ji
+

+
1−ai ja ji

1−ai ja ji
+

n

∑
k=i+1

aik−ai ja jk

1−ai ja ji
≤

≤ 0+0+0+1+0 = 1,
n

∑
k=1

aik−ai ja jk

1−ai ja ji
=

1
1−ai ja ji

[

n

∑
k=1

aik−ai j

n

∑
k=1

a jk

]

≥
0+0

1−ai ja ji
= 0.

It follows that row r̄i satisfies the properties of A.

From Lemma 12 and Lemma 13 it follows that the properties of A are preserved under elimina-
tion unless the element on the diagonal equals 0. We can compute the determinant of A by repeatedly
performing elimination until A is an upper triangular matrix. If any element on the diagonal becomes
0 during elimination, det(A) = 0. Otherwise, the determinant of A equals the inverse of the product
of the coefficients by which we multiplied rows during elimination. Since each coefficient is larger
than 0, it follows that det(A) > 0.

Lemma 14 Let C = {c1, . . . ,cm} be a set of m indices, and let S(C,ri) = ∑m
k=1 aick be the sum of

elements of row ri whose column indices are elements of C. Assume that i ∈C and that S(C, r̄i) = 0
after elimination of an element ai j, j < i. Then S(C∪{ j},ri) = 0 and S(C∪{ j},r j) = 0 prior to
elimination of ai j.

Proof When we eliminate an element ai j, j < i, the sum of elements of row r̄i whose column indices
are elements of C is

S(C, r̄i) = S(C, r̄i)+0 =

=
m

∑
k=1

aick −ai ja jck

1−ai ja ji
+

ai j−ai j ·1
1−ai ja ji

=

=
1

1−ai ja ji

[(

m

∑
k=1

aick +ai j

)

−ai j

(

m

∑
k=1

a jck +1

)]

.
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Since i is one of the indices in C, it follows from the properties of A that S(C, r̄i) = 0 if and only
if ∑m

k=1 aick + ai j = 0 and either ai j = 0 or ∑m
k=1 a jck + 1 = 0. If ai j = 0, there was no reason to

perform elimination, so it follows that S(C∪{ j},ri) = ∑m
k=1 aick +ai j = 0 and that S(C∪{ j},r j) =

∑m
k=1 a jck +1 = 0.

Lemma 15 If S(C,rk) = 0 for each row rk, k ∈C, after elimination of an element ai j, j /∈C, in row
ri, i ∈C, it follows that S(C∪{ j},rk) = 0 for each row rk, k ∈C∪{ j} prior to elimination of ai j.

Proof If S(C,ri) = 0 following elimination of ai j, it follows from Lemma 14 that S(C∪{ j},ri) = 0
and that S(C∪{ j},r j) = 0 prior to elimination of ai j. For k ∈C−{i}, S(C∪{ j},rk) = S(C,rk)+
ak j = ak j. Since ak j ≤ 0 and S(C∪{ j},rk)≥ 0, it follows that S(C∪{ j},rk) = ak j = 0.

Lemma 16 If det(A) = 0, it is possible to rearrange the rows and columns of A to obtain

(

X 0
Y Z

)

,

where X is a k× k matrix such that for each i = 1, . . . ,k, ∑k
j=1 xi j = 0.

Proof If det(A) = 0, there exists i, j < i such that aii becomes 0 during elimination of ai j. From
Lemma 12 it follows that ai j = a ji = −1 prior to elimination of ai j, so S({i, j},ri) = ai j + aii =
−1 + 1 = 0 and S({i, j},r j) = a j j + a ji = 1−1 = 0. Let C = {i, j}. Recursively find each index l
such that elimination of element akl occurred prior to this round in row rk, k ∈C. Then it follows
from Lemma 15 that S(C∪{l},rk) = 0 for each k ∈C∪{l} prior to elimination of akl . Add each
such index l to C. Prior to elimination of any element, it is possible to rearrange the rows and
columns of A to obtain





















a′11 · · · a′1m 0 · · · 0
...

. . .
...

...
. . .

...
a′m1 · · · a′mm 0 · · · 0

a′(m+1)1 · · · a′(m+1)m a′(m+1)(m+1) · · · a′(m+1)n
...

. . .
...

...
. . .

...
a′n1 · · · a′nm a′n(m+1) · · · a′nn





















,

where the first m rows and columns are those whose indices are elements of C. Since S(C,rk) = 0
for each row rk, k ∈C, it follows that the sum of row rk equals 0 and that for each l /∈C, element
akl equals 0.

From the definition of M it follows that it is only possible to rearrange the rows and columns to
obtain

(

X 0
Y Z

)

,
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such that the sum of each row of X equals 0, if there is an absorbing set of states S′ such that β(s) = 0
for each state s ∈ S′ and if γ = 1. For a proper option o, it is not possible to rearrange M that way.
Since the sum of one row of M equals 0 if and only if the sum of the same row of A equals 0, it
is not possible to rearrange A that way either. It follows from the contrapositive of Lemma 16 that
det(A) 6= 0, which also means that det(M) 6= 0. This concludes the proof of Theorem 4.

Appendix B. Proof of Theorem 9

Assume that for each block λ and each value vd ∈ D(Sd), the probability Pd(vd | sk,o) is identical
for each state sk ∈ λ. Let Po

λ,vd
denote that probability. We will show that Pd(vd | si,o) = Pd(vd | s j,o)

checks under this assumption if [si]Λd = [s j]Λd .
From Equation 14, the expression for Pd(vd | si,o) is given by

γ

[

β(si)Pd(vd | si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′) ∑

s′∈S

P(s′ | si,a
′)Pd(vd | s′,o)

]

.

We can expand the sum ∑s′∈S by first summing over blocks λ of partition Λd and then over states sk

in block λ, replacing Pd(vd | sk,o) with Po
λ,vd

:

γ

[

β(si)Pd(vd | si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′) ∑

λ∈Λd

∑
sk∈λ

P(sk | si,a
′)Po

λ,vd

]

.

Since Po
λ,vd

does not depend on sk, we can move it outside the summation to obtain

γ

[

β(si)Pd(vd | si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′) ∑

λ∈Λd

Po
λ,vd ∑

sk∈λ
P(sk | si,a

′)

]

.

We can expand the expression for Pd(vd | s j,o) in the same way to obtain

γ

[

β(s j)Pd(vd | s j,a)+(1−β(s j)) ∑
a′∈A

π(s j,a
′) ∑

λ∈Λd

Po
λ,vd ∑

sk∈λ
P(sk | s j,a

′)

]

.

If [si]Λd = [s j]Λd , it follows immediately from the definitions of stochastic substitution property,
policy respecting, termination respecting, and probability respecting of Sd that Pd(vd | si,o) = Pd(vd |
s j,o). Lemma 5 states that the solution to the equations in Equation 15 is unique. Since we know
that Pd(vd | si,o) = Pd(vd | s j,o) is a solution, it follows from Lemma 5 that it is the only solution.
This concludes the proof.

Appendix C. Proof of Theorem 10

Assume that for each block λ ∈ ΛR and each state sk ∈ λ, the expected reward R(sk,o) as a result of
executing option o is equal, and let Ro

λ denote that expected reward. We will show that R(si,o) =
R(s j,o) checks under this assumption if [si]ΛR = [s j]ΛR .

From Equation 9, the expression for R(si,o) is given by

R(si,o) = β(si)R(si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′)

[

R(si,a
′)+ ∑

s′∈S

P(s′ | si,a
′)R(s′,o)

]

.
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We can expand the sum ∑s′∈S by first summing over blocks λ of partition ΛR and then over states sk

in block λ, replacing R(sk,o) with Ro
λ:

R(si,o) = β(si)R(si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′)

[

R(si,a
′)+ ∑

λ∈ΛR

∑
sk∈λ

P(sk | si,a
′)Ro

λ

]

.

Since Ro
λ does not depend on sk, we move it outside the summation to obtain

R(si,o) = β(si)R(si,a)+(1−β(si)) ∑
a′∈A

π(si,a
′)

[

R(si,a
′)+ ∑

λ∈ΛR

Ro
λ ∑

sk∈λ
P(sk | si,a

′)

]

.

We expand the expression for R(s j,o) in the same way to obtain

R(s j,o) = β(s j)R(s j,a)+(1−β(s j)) ∑
a′∈A

π(s j,a
′)

[

R(s j,a
′)+ ∑

λ∈ΛR

Ro
λ ∑

sk∈λ
P(sk | s j,a

′)

]

.

If [si]Λd = [s j]Λd , it follows immediately from the definitions of stochastic substitution property,
reward respecting, policy respecting, and termination respecting that R(si,o) = R(s j,o). Theorem
4 states that the solution to the equations in Equation 9 is unique. Since we know that R(si,o) =
R(s j,o) is a solution, it follows from Theorem 4 that it is the only solution. This concludes the
proof.
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Abstract

The eigenvalues of the kernel matrix play an important role in a number of kernel methods, in
particular, in kernel principal component analysis. It is well known that the eigenvalues of the kernel
matrix converge as the number of samples tends to infinity. We derive probabilistic finite sample
size bounds on the approximation error of individual eigenvalues which have the important property
that the bounds scale with the eigenvalue under consideration, reflecting the actual behavior of the
approximation errors as predicted by asymptotic results and observed in numerical simulations.
Such scaling bounds have so far only been known for tail sums of eigenvalues. Asymptotically,
the bounds presented here have a slower than stochastic rate, but the number of sample points
necessary to make this disadvantage noticeable is often unrealistically large. Therefore, under
practical conditions, and for all but the largest few eigenvalues, the bounds presented here form a
significant improvement over existing non-scaling bounds.

Keywords: kernel matrix, eigenvalues, relative perturbation bounds

1. Introduction

In the theoretical analysis of kernel principal component analysis (Schölkopf et al., 1998), the ap-
proximation error between the eigenvalues of the kernel matrix and their asymptotic counterparts
plays a crucial role, as the eigenvalues compute the principal component variances in kernel fea-
ture space, and these are related to the reconstruction error of projecting to leading kernel principal
component directions.

In order to obtain accurate bounds on the approximation error of eigenvalues, it has proven to
be of prime importance to derive bounds which scale with the eigenvalue under consideration. The
reason is that the approximation error scales with the eigenvalue such that the error is typically
much smaller for small eigenvalues. Therefore, non-scaling bounds tend to overestimate the error
for small eigenvalues as they are dominated by the largest occurring errors. Now, since smooth
kernels usually display rapidly decaying eigenvalues, and such kernels are typically used in machine
learning, obtaining accurate bounds in particular for small eigenvalues is highly relevant.

In an asymptotic setting, the effect that the approximation errors scale with the corresponding
eigenvalues is well understood. In a paper by Koltchinskii and Giné (2000), a central limit theorem
for the distribution of the approximation errors is derived. Considering only a single eigenvalue with
multiplicity one, the asymptotic distribution of the properly scaled difference between approximate
and true eigenvalue asymptotically approaches a normal distribution with mean zero and variance
λ2

i Varµ(ψ2
i ). Thus, we would expect that the approximation error is of order O(λi Stdµ(ψ2

i )n
−1/2),

c©2006 Mikio L. Braun.
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(a) Approximate eigenvalues (box plots) and the
true eigenvalues (dotted line). Note that although
the box plots appear to become larger visually,
due to the logarithmic scale the approximation
error actually becomes small quickly.
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(b) Approximation errors (box plots). For ori-
entation, the true eigenvalues (dotted line) have
also be included in the plot. The dashed line
plots the smallest possible non-scaling bound on
the approximation error. The solid lines plot two
bounds derived in this paper, the smaller one re-
quiring the knowledge of the true eigenfunctions.

Figure 1: Approximated eigenvalues for kernel matrices with rapidly decaying eigenvalues have an
approximation error which scales with the true eigenvalue.

leading to a much smaller approximation error for small eigenvalues than for large eigenvalues
(neglecting the variance of ψ2

i for the moment).
We are interested in deriving a probabilistic finite sample size bound to show that this effect not

only occurs asymptotically, but can already be observed for small sample sizes. The following nu-
merical example illustrates this effect: In Figure 1 we have plotted the approximate eigenvalues and
the approximation errors for a kernel function with exponentially decaying eigenvalues constructed
from Legendre polynomials (see Section 7.1 for details). The approximation errors scale with the
true eigenvalue, and the smallest possible non-scaling bound (dashed line) overestimates the error
severely for all but the first four eigenvalues. On the other hand, our bounds (solid lines) scale with
the eigenvalues resulting in a bound which matches the true approximation error significantly better.

Such scaling bounds have recently been derived for tail sums of eigenvalues by Blanchard et al.
(2006). There, the square root of the considered tail sum occurs in the bound, leading to bounds
which correctly predict that the error for tail sums of small eigenvalues is smaller than that for tail
sums starting with larger eigenvalues.

However, scaling bounds for the approximation error between individual eigenvalues, as are
derived in this work, were not known so far. Note that these two settings are not interchangeable:
although bounds on tail sums can be combined (more concretely, subtracted) to obtain bounds for
single eigenvalues, the scaling still depends on tail sums, not single eigenvalues.

Note that the error bounds presented in this paper depend on the true eigenvalue. At first,
this seems to be an undesirable feature, as this limits the practical applicability of these bounds.
However, we have adopted a more theoretical approach in this work with the goal to understand
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the underlying principles which permit the derivation of scaling bounds for individual eigenvalues
first. In a second step, one could then use these results to construct statistical tests to estimate, for
example, the overall decay rate of the eigenvalues based on these bounds. We will briefly discuss
the question of constructing confidence bounds again in Section 9.

Overview

This paper is structured as follows: Section 2 contains the statements of the main results and explains
the involved quantities. The actual proofs of the results can be found in Sections 3–6. Several
numerical examples are discussed in Section 7. The results are compared to existing results in
Section 8. Finally, Section 9 summarizes the results and suggests some directions for future work.
Supplementary material can be found in the Appendix. References to the Appendix are prefixed by
an “A.”.

2. The Main Results

The main result consists of three parts: a basic bound, and specialized estimates for two classes
of kernel functions. The basic perturbation bound deals with the approximation error based on the
norms of certain error matrices. The norms of these error matrices are estimated for kernels with
uniformly bounded eigenfunctions, and for kernels with bounded diagonal. Note that the scaling
property is already present in the basic perturbation bound, and not a consequence of the estimates
of the norms of the error matrices.

2.1 Preliminaries

We consider the following setting: Let k be a Mercer kernel on a probability space X with probabil-
ity measure µ. This means that k can be written as

k(x,y) =
∞

∑
i=1

λiψi(x)ψi(y),

where (λi)i∈N is a sequence of summable non-negative, non-increasing numbers, and (ψi)i∈N is
a family of mutually orthogonal unit norm functions with respect to the scalar product ( f ,g) 7→
R

X f gdµ. The λi are the eigenvalues and the ψi the eigenfunctions of the integral operator Tk which
maps f to the function x 7→ R

X k(x,y) f (y)µ(dy). Slightly abbreviating the true relationships, we will
call λi the eigenvalues and ψi the eigenfunctions of k.

Let X1, . . . ,Xn be an i.i.d. sample from µ. The (normalized) kernel matrix is the n×n matrix Kn

with entries

[Kn]i j :=
1
n

k(Xi,X j).

Denote the (random) eigenvalues of Kn by l1 ≥ . . . ≥ ln ≥ 0. These eigenvalues of Kn converge to
their asymptotic counterparts (λi)i∈N (see, for example, the papers by Koltchinskii and Giné, 2000,
and Dauxois et al., 1982, or more recently, the Ph.D. thesis of von Luxburg, 2004).
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For kernels with an infinite number of non-zero eigenvalues, k can be decomposed into a degen-
erate kernel k[r] and an error function er given a truncation point r:

k[r](x,y) :=
r

∑
i=1

λiψi(x)ψi(y),

er(x,y) := k(x,y)− k[r](x,y).

(1)

Note that k[r] and er are both Mercer kernels as well. The kernel matrices induced by k[r] and er will
be denoted by K[r]

n and Er
n, respectively, such that Er

n = Kn −K[r].
Furthermore, let Ψr

n be the n× r matrix with entries

[Ψr
n]i` =

1√
n

ψ`(Xi).

The `th column of Ψr
n is thus the sample vector of the eigenfunction ψ`. Therefore, Ψr

n is called

the eigenfunction sample matrix. Using Ψr
n, we can write K[r]

n = Ψr
n diag(λ1, . . . ,λr)Ψr

n
> (compare

Equation (3)).
The norm of a matrix ‖A‖ will always be the operator norm max‖x‖=1 ‖Ax‖. The ith eigenvalue

of a matrix A in decreasing order will be denoted by λi(A).

2.2 The Basic Perturbation Bound

The following theorem forms the basis for the finite sample size bounds which we will present. It
is a deterministic bound which also holds for non-random choices of points x1, . . . ,xn.

Theorem 1 (Basic Perturbation Bound) For 1 ≤ r ≤ n, 1 ≤ i ≤ n,

|li −λi| ≤ λi‖Cr
n‖+λr +‖Er

n‖,

with Cr
n = Ψr

n
>Ψr

n − Ir.

The bound consists of two competing terms. Let us introduce the following symbols and names
for the error terms:

C(r,n) = ‖Cr
n‖, (relative error term)

E(r,n) = λr +‖Er
n‖. (absolute error term)

These two terms will be bounded under different assumptions on the kernel matrix.
The relative error term C(r,n) measures the amount of non-orthogonality of the sample vectors

of the first r eigenfunctions of k. As n → ∞, C(r,n) → 0 almost surely because the scalar products
between the sample vectors converge to the scalar product with respect to µ and the ψi form an
orthogonal family of unit norm functions with respect to that scalar product. The absolute error
term E(r,n) measures the effect of the truncation of the kernel function. Consequently, as r → ∞,
E(r,n)→ 0. On the other hand, both terms compete against each other, because for r →∞, C(r,n)→
∞, and E(r,n) does in general not converge to zero as n → ∞. Depending on the choice of r (see
below), the bound will have a characteristic shape which first scales with λi while the first term
dominates, until, for large i (and small eigenvalues), the bound stagnates at a certain level. Also
note that if the kernel is degenerate (has only a finite number of non-zero eigenvalues), the bound
will be fully relative.

We see that r has to be chosen to balance these two terms. Trivially, the best bound is obtained
by minimizing with respect to r, which gives the following corollary.
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Corollary 2 For all 1 ≤ i ≤ n,

|li −λi| ≤ min
1≤r≤n

(λiC(r,n)+E(r,n)).

Note that the optimal choice of r can not be easily computed in general since the choice depends on
the true eigenvalues and, as we will see below, the form of the bounds on C and E might not allow
to write down the minimizer in closed form.

However, even suboptimal choices of r can lead to meaningful bounds and insights. For the
two classes of kernel functions considered below, we will discuss three alternatives with increasing
dependency on i, the index of the eigenvalue considered, and the sample size n: (i) Keep r fixed.
This choice will typically lead to good bounds when i < r. However, the bound does not converge to
zero as n → ∞. (ii) Choose r according to i, for example r = i. This choice can be used to show that
the bounds decay quickly as i increases. Again, the bound does not converge to zero. (iii) Choose
r according to n. The goal is to let r grow slowly with n to ensure that the overall bound converges
to zero, showing the asymptotic rate of the bound. This case will be discussed in more depth in
Section 6.

2.3 Estimates I: Bounded Eigenfunctions

The first class of kernel functions which we consider are Mercer kernels whose eigenfunctions ψi

are uniformly bounded. An example for this case is given by ψi being a sine basis on X = [0,2π].
In the following, let Λ>r = ∑∞

i=r+1 λi. Convergence of this series follows from the requirement that
(λi) ∈ `1, and λi ≥ 0.

Theorem 3 (Bounded Eigenfunctions) Let k be a Mercer kernel with bounded eigenfunctions,
|ψi(x)| ≤ M < ∞ for all i ∈ N, x ∈ X . Then, for 1 ≤ r ≤ n, with probability larger than 1−δ,

C(r,n) < M2r

√

2
n

log
r(r +1)

δ
, E(r,n) < λr +M2Λ>r

Consequently, Theorem 1 implies that

|li −λi| = O(λir
√

logrn−
1
2 +Λ>r).

Since the eigenfunctions are uniformly bounded, the estimation errors involved in C(r,n) can be
bounded conveniently using the Hoeffding inequality uniformly over all r(r + 1)/2 entries of Cr

n.
In particular, in contrast to the bound derived in the next section, C(r,n) does not depend on the
eigenvalues. Moreover, E(r,n) can be bounded in a deterministic fashion in this case.

Next we discuss different choices of r as explained at the end of the previous section. For any
fixed r, the bound converges to λr + M2Λ>r with the usual stochastic convergence rate of O(n− 1

2 ).
Unless Λ>r = 0, the bound will not converge to zero.

Setting r = i, we see that the bound converges to λi + M2Λ>i = O(Λ>i). This term decays
quickly as i → ∞. For example, if λi = O(i−α) for some α > 1, then Λ>i = O(i1−α), and if λi =
O(e−βi) for some β > 0, then Λ>i = O(e−βi) (see Theorem A.4 in the Appendix). From these
considerations we see that although the bound does not vanish as n → ∞ for this choice of r, the
bound scales with the true eigenvalue at a rate which is only slightly slower. This error is still much
smaller than that given by non-scaling error bounds, unless the sample size is very large.
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Eigenvalues rate for r(n) error rate

λi = O(i−α), α > 1 r(n) = n
1

2α n
1−α
2α
√

logn

λi = O(e−βi), β > 0 r(n) = logn
1

2β n−
1
2 (logn)

3
2

Table 1: Optimal rates for r(n) and the resulting rates for the upper bound on the approximation
error for the case of kernels with bounded eigenfunctions.

Finally, choosing r to grow with n will ensure that the bound vanishes as n → ∞, but this choice
will also lower the rate of C(r,n) → 0 such that the resulting overall rate will be sub-stochastic. In
Table 2, the optimal rates for r(n) and the resulting rates for the bound are shown for the cases of
polynomial and exponential decay of the true eigenvalues (see Section 6 for the proofs). We also
see that in the best case (for α → ∞ in the polynomial case, and also for the exponential case), we
obtain a rate which is slower than O(n−1/2) only by a log-factor, which is almost negligible.

2.4 Estimates II: Bounded Kernel Function

Since the restriction of uniformly bounded eigenfunctions is rather severe, we next consider the
case where the kernel function is bounded. More specifically, we will require that the diagonal
x 7→ k(x,x) is bounded. A prominent example for such kernel functions are radial-basis kernel
functions. Typically, these are kernel functions on normed spaces which are written as

k(x,y) = g(‖x− y‖),

where g is a bounded function. The choice g(a) = exp(−a2/2σ) is often simply called the rbf-kernel
with kernel width σ.

In the following theorem, two independent estimates of the error terms are presented, one based
on the Bernstein inequality, and the other based on the Chebychev inequality. The reason for pre-
senting two bounds is that while the bound based on the Bernstein inequality is asymptotically
faster, the bound based on the Chebychev inequality usually gives much smaller estimates for small
sample sizes since the Bernstein bound contains an O(n−1) term which can have a prohibitively
large constant if one considers small eigenvalues.

Theorem 4 (Bounded Kernel Function) Let k be a Mercer kernel with k(x,x) ≤ K < ∞ for all
x ∈ X . Then, for 1 ≤ r ≤ n, with probability larger than 1−δ,

C(r,n) < r

√

2K
nλr

log
2r(r +1)

δ
+

4Kr
3nλr

log
2r(r +1)

δ
,

E(r,n) < λr +Λ>r +

√

2KΛ>r

n
log

2
δ

+
2K
3n

log
2
δ
.

Consequently, by Theorem 1,

|li −λi| = O(λiλ
− 1

2
r r
√

logrn−
1
2 +Λ>r +

√

Λ>rn
− 1

2 +λiλ−1
r n−1r logr +n−1).
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Eigenvalues rate for r(n) error rate

λi = O(i−α), α > 1 r(n) = n
1

2+3α n
1−α
2+3α

λi = O(e−βi), β > 0 r(n) = logn
1

3β n−
1
3 (logn)2

Table 2: Optimal rates for r(n) and the resulting rates for the upper bound on the approximation
error for bounded kernels.

The λiλ−1
r n−1r logr term in this bound can become prohibitively large for small n and small λr. In

this case, an alternative bound gives more realistic estimates for moderately small δ:

C(r,n) < r

√

2r(r +1)K
2λrnδ

, E(r,n) < λr +Λ>r +

√

2KΛ>r

nδ
. (2)

For these bounds,

|li −λi| = O(λiλ
− 1

2
r r2n−

1
2 +Λ>r +

√

Λ>rn
− 1

2 ).

These bounds give a similar picture as those for bounded eigenfunctions. The most significant
difference is the occurrence of λ−1/2

r and λ−1
r in C(r,n). These terms appear because the eigenfunc-

tions of bounded kernels may have values as large as
√

K/λr, leading to large second moments of
the eigenfunctions and large error terms in ‖Cr

n‖.
These observations are also mirrored by the asymptotic rates for the more realistic bound (2)

which are summarized in Table 2 (and proved in Section 6). At most, we obtain a rate of n−1/3.
However, as we will see in Section 7.3, for small sample sizes, the resulting bounds are still much
tighter than those for non-scaling bounds.

Overview of Sections 3–6

In the next four sections we will prove the main results. We have tried to make the proofs as
self-contained as possible. The derivation of the basic perturbation result relies on several results
from the perturbation theory of symmetric matrices which are collected in the Appendix, while
the estimates of the norm of the error matrices in Section 4 and 5 rely on standard large deviation
bounds. Those two sections could be informative for improving the error estimates in the presence
of additional a priori information. Readers not interested in the technical details can safely skip
to page 2318 where examples are presented and the discussion of the results is continued. That
discussion does not refer to details of the proofs.

3. The Basic Perturbation Bound

In this section, we prove the basic perturbation bound (Theorem 1) which derives a bound on the
perturbation in terms of the norms of certain error matrices. The proof uses two classic results on
the perturbation of symmetric matrices attributed to Weyl and Ostrowski.

Recall that the kernel function k is decomposed into a degenerate kernel k[r] obtained by trunca-
tion, and the error term er (see Equation (1)). From these functions, we form the n×n matrices K[r]

n
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and Er
n with entries

[K[r]
n ]i j =

1
n

k[r](Xi,X j), [Er
n]i j =

1
n

er(Xi,X j).

Therefore, Kn = K[r]
n + Er

n, such that Kn is an additive perturbation of K[r]
n by Er

n. The effect on
individual eigenvalues of such perturbations is addressed by Weyl’s theorem (Theorem A.1).

Lemma 5 For 1 ≤ i ≤ n, r ∈ N,
|λi(K

[r]
n )− li| ≤ ‖Er

n‖.

Proof By Weyl’s theorem,
|λi(K

[r]
n )−λi(K

[r]
n +Er

n)| ≤ ‖Er
n‖,

and K[r]
n +Er

n = Kn.

For the degenerate kernel matrix K[r]
n , we will derive a multiplicative bound on the approxima-

tion error of the eigenvalues. The main step is to realize that the kernel matrix of the truncated
kernel can be written as the multiplicative perturbation of the diagonal matrix containing the true
eigenvalues: Recall that [Ψr

n]i` = ψ`(Xi)/
√

n (see Section 2.1) and let Λr = diag(λ1, . . . ,λr). Then,

we can easily verify that for all r,n ∈ N, K[r]
n = Ψr

nΛrΨr
n
>, since

[Ψr
nΛrΨr

n
>]i j =

r

∑̀
=1

[Ψr
n]i`[Λ

r]``[Ψr
n] j` =

1
n

r

∑̀
=1

ψ`(Xi)λ`ψ`(X j) =
1
n

k[r](Xi,X j). (3)

Applying Ostrowski’s Theorem (Theorem A.2 and its Corollary) leads to a multiplicative bound
for the eigenvalues of K[r]

n :

Lemma 6 For 1 ≤ i ≤ r ≤ n,
|λi(K

[r]
n )−λi| ≤ λi‖Cr

n‖.

Proof By Ostrowski’s theorem,

|λi(Ψr
nΛrΨr

n
>)−λi(Λr)| ≤ |λi(Λr)|‖Ψr

n
>Ψr

n − I‖ = λi‖Cr
n‖,

and λi(Ψr
nΛrΨr

n
>) = λi(K

[r]
n ), |λi(Λr)| = λi, since λi ≥ 0.

Combining this bound for K[r]
n with the error induced by the truncation as in Lemma 5 results in

the proof of Theorem 1.
Proof (of Theorem 1) For i ≤ r, by Lemma 6,

|λi(K
[r]
n )−λi| ≤ λi‖Cr

n‖.

For i > r, since λi(K
[r]
n ) = 0,

|λi(K
[r]
n )−λi| = |λi| = λi.

Thus,

|li −λi| ≤ |li −λi(K
[r]
n )|+ |λi(K

[r]
n )−λi| ≤ ‖Er

n‖+

{

λi‖Ψr
n
>Ψr

n − I‖, (1 ≤ i ≤ r)

λi (r < i ≤ n).

2310



ERROR BOUNDS FOR THE EIGENVALUES OF THE KERNEL MATRIX

where |li −λi(K
[r]
n )| has been bounded using Lemma 5. Now, since λi ≤ λr for r < i ≤ n,

|li −λi| ≤ λi‖Cr
n‖+λr +‖Er

n‖,

and the theorem is proven.

4. Estimates I: Bounded Eigenfunctions

In this section, we will prove Theorem 3. We consider the case where the eigenfunctions are uni-
formly bounded and there exists an M < ∞ such that for all i ∈ N and x ∈ X ,

|ψi(x)| ≤ M.

Lemma 7 For 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ < M2r

√

2
n

log
r(r +1)

δ
.

Proof Let

c`m = [Cr
n]`m =

1
n

n

∑
i=1

ψ`(Xi)ψm(Xi)−δ`m.

Note that
−M2 −δ`m ≤ ψ`(Xi)ψm(Xi)−δ`m ≤ M2 −δ`m,

such that the range of ψ`(Xi)ψm(Xi)−δ`m is given by 2M2. Using Hoeffding’s inequality, it follows
that

P{|c`m| ≥ ε} ≤ 2exp

(

−2nε2

4M4

)

. (4)

In order to bound ‖Cr
n‖, recall that ‖Cr

n‖ ≤ r max1≤`,m≤r |c`m| and therefore,

P{‖Cr
n‖ ≥ ε} ≤ P

{

max
1≤`,m≤r

|c`m| ≥
ε
r

}

.

Since c`m = cm`, there are r(r+1)/2 different elements in the maximum. Thus, by the union bound,

P

{

max
1≤`,m≤r

|c`m| ≥
ε
r

}

≤ ∑
`≥m

P
{

|c`m| ≥
ε
r

}

≤ r(r +1)exp

(

− nε2

2M4r2

)

by (4). Equating the right hand side with δ and solving for ε results in the claimed inequality.

In order to bound the size of ‖Er
n‖ we use a non-probabilistic upper bound.

Lemma 8 For r,n ∈ N,

‖Er
n‖ ≤ M2

∞

∑
i=r+1

λi.
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Proof Recall that the entries of Er
n are constructed by evaluating the error function er(x,y) defined

in (1) on all pairs (Xi,X j) and dividing by n. For x,y ∈ X ,

∣

∣

∣

∣

1
n

er(x,y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
n

∞

∑
i=r+1

λiψi(x)ψi(y)

∣

∣

∣

∣

∣

≤ M2

n

∞

∑
i=r+1

λi.

Therefore,

‖Er
n‖ ≤ n max

1≤i, j≤n

∣

∣

∣

∣

1
n

er(Xi,X j)

∣

∣

∣

∣

≤ M2
∞

∑
i=r+1

λi.

Based on the estimates from these two lemmas, we obtain the final result:
Proof (of Theorem 3) The result is a direct consequence of Theorem 1 and plugging in the esti-
mates from Lemma 7 and 8 for the error terms.

5. Estimates II: Bounded Kernel Function

In this section, we treat the case of bounded kernel functions. We have split this section into three
subsections, treating the relative error term ‖Cr

n‖, the absolute error term λr +‖Er
n‖, and the proof

of Theorem 4 separately.
Throughout this section, we assume that there exists a K < ∞ such that for all x ∈ X , k(x,x)≤ K.

From this condition, one can derive upper bounds on individual eigenfunctions ψi and the error
function er. The following easy lemma will prove to be very useful.

Lemma 9 For I ⊆ N,

0 ≤ ∑
i∈I

λiψ2
i (x) ≤ k(x,x) ≤ K

for all x ∈ X , and in particular |ψi(x)| ≤
√

K/λi. Consequently, the diagonal of the error function
er is bounded by 0 ≤ er(x,x) ≤ K for all r ∈ N.

Proof Since all the summands λiψ2
i (x) are positive,

K ≥ k(x,x) =
∞

∑
i=1

λiψ2
i (x) ≥ ∑

i∈I

λiψ2
i (x) ≥ 0.

The bound on ψi follows for I = {i}, and the bound on er for I = {r +1, . . .}.

5.1 The Relative Error Term

We begin by discussing the relative error term. The first step consists in computing an upper bound
on the variance of the random variables from which Cr

n is constructed.

2312



ERROR BOUNDS FOR THE EIGENVALUES OF THE KERNEL MATRIX

Lemma 10 For `,m ∈ N,

Eµ(ψ2
`ψ2

m) ≤ min(K/λ`,K/λm),

Varµ(ψ`ψm −δ`m) ≤ min(K/λ`,K/λm)−δ`m.

Proof By the Hölder inequality,

Eµ(ψ2
`ψ2

m) ≤ Eµ(|ψ2
` |)sup

x∈X
|ψ2

`(x)| ≤
K
λ`

,

because Eµ(|ψ2
` |) = ‖ψ`‖2 = 1, and by Lemma 9. The same bound holds with ` and m interchanged

which proves the first inequality.
The second inequality follows from the definition of the variance and the fact that Eµ(ψiψ j) =

δi j:

Varµ(ψ`ψm −δ`m) = Varµ(ψ`ψm) = Eµ(ψ2
`ψ2

m)− (Eµψ`ψm)2 ≤ min(K/λ`,K/λm)−δ`m.

Lemma 11 For 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ < r

√

2K
nλr

log
r(r +1)

δ
+

4rK
3nλr

log
r(r +1)

δ

Proof Let

c`m = [Cr
n]`m =

1
n

n

∑
i=1

ψ`(Xi)ψm(Xi)−δ`m.

Then, for 1 ≤ ` ≤ r, by Lemma 9, supx∈X |ψ`(x)ψ`(x)| ≤ K/λr,

− K
λr

−δ`m ≤ c`m ≤ K
λr

−δ`m,

and the range of c`m has size M := 2K/λr.
We can bound the variance of ψ`(Xi)ψm(Xi)−δ`m using Lemma 10 as follows:

Varµ(ψ`ψm −δ`m) ≤ K
λr

=: σ2.

By the Bernstein inequality (see for example van der Vaart and Wellner, 1996),

P{|c`m| ≥ ε} ≤ 2exp

(

− nε2

2σ2 +2Mε/3

)

.

In the proof of Lemma 7, we showed that

P{‖Cr
n‖ ≥ ε} ≤ ∑

`≥m

P
{

|c`m| ≥
ε
r

}

.
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Thus,

P{‖Cr
n‖ ≥ ε} ≤ r(r +1)exp

(

− n(ε/r)2

2σ2 +2Mε/3r

)

.

Setting the right hand side equal to δ and solving for ε yields that with probability larger than 1−δ,

‖Cr
n‖ <

2Mr
3n

log
r(r +1)

δ
+ r

√

2σ2

n
log

r(r +1)

δ
.

Substituting the values for σ2 and M yields the claimed upper bound.

Corollary 12 Alternatively, using the Chebychev inequality instead of the Bernstein inequality, one
obtains that for 1 ≤ r ≤ n, with probability larger than 1−δ,

‖Cr
n‖ ≤ r

√

r(r +1)K
2λrnδ

.

Proof By the Chebychev inequality,

P{|c`m| ≥ ε} <
Varµ(ψ`ψm −δ`m)

nε2 ≤ K
λrnε2 .

Thus,

P{‖Cr
n‖ ≥ ε} ≤ r(r +1)

2
Kr2

λrnε2 .

Equating the right hand side to δ and solving for ε proves the corollary.

5.2 The Absolute Error Term

Next, we study the properties of the random variable ‖Er
n‖. Recall that Er

n is obtained by evaluating
the error function er on all pairs of samples (Xi,X j). First of all, note that by the definition of
er, the error function is itself a Mercer kernel such that Er

n is positive-semidefinite for all sample
realizations. Thus, we can bound ‖Er

n‖ = λ1(Er
n) by the trace of Er

n:

‖Er
n‖ ≤ trEr

n =
1
n

n

∑
i=1

er(Xi,Xi).

By the strong law of large numbers,

1
n

n

∑
i=1

er(Xi,Xi) →a.s. E(er(X ,X)) =: tr

with X ∼ µ, the common distribution of the Xi.
In this section, we will first compute E(er(X ,X)) in terms of the eigenvalues of k, and then

derive a probabilistic bound on ‖Er
n‖.
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Lemma 13 For r ∈ N,

tr = Λ>r :=
∞

∑
i=r+1

λi.

Proof We compute tr:

tr =
Z

X
er(x,x)µ(dx) =

Z

X

(

∞

∑
`=r+1

λ`ψ2
`(x)

)

µ(dx)
(1)
=

∞

∑
`=r+1

λ`

Z

X
ψ2

`(x)µ(dx)
(2)
=

∞

∑
`=r+1

λ`,

where at (1), the integration and summation commute because the function x 7→ K is an integrable
majorant to the sum in parenthesis and Lebesgue’s theorem, and (2) holds because

R

ψ2
`(x)µ(dx) =

‖ψ`‖2 = 1.

Since we are interested in the situation when tr is much smaller than K, we will use the following
bound on the variance.

Lemma 14 For r ∈ N,

0 ≤ er(X ,X) ≤ K, Var(er(X ,X)) ≤ KE(er(X ,X)) = Ktr.

Proof The first inequality has been proven in Lemma 9. The variance can be bounded using the
Hölder inequality as follows:

Var(er(X ,X)) = E(er(X ,X)2)− (Eer(X ,X))2

≤ E(|er(X ,X)|)K − (Eer(X ,X))2 ≤ E(er(X ,X))K = trK.

Lemma 15 For r,n ∈ N, with probability larger than 1−δ,

‖Er
n‖ < tr +

√

2Ktr
n

log
1
δ

+
2K
3n

log
1
δ
.

Proof In order to apply Bernstein’s inequality, we first have to compute the size of the range of
er(Xi,Xi) and its variance. In Lemma 14, we have proven that the range of er(Xi,Xi) has size K, and
that Var(er(Xi,Xi)) ≤ Ktr.

Thus, by the Bernstein inequality, with probability larger than 1−δ,

P{‖Er
n‖− tr ≥ ε} ≤ exp

(

− nε2

2Ktr + 2Kε
3

)

.

Setting the right hand side equal to δ and solving for ε results in the claimed upper bound.

Again replacing the Bernstein inequality by the Chebychev inequality, one can show an alterna-
tive confidence bound which can be considerably smaller for moderately small δ and small n.

Corollary 16 For r,n ∈ N, with probability larger than 1−δ,

‖Er
n‖ < tr +

√

Ktr
nδ

.
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5.3 The Final Result

We finally combine the estimates from the previous two sections to obtain the bound for bounded
kernel functions.
Proof (of Theorem 4) The basic perturbation bound holds by Theorem 1. The upper bounds on
‖Cr

n‖ and ‖Er
n‖ were derived in Lemmas 11 and 15. Finally, both estimates can be combined

according from the individual bounds at confidence δ/2.1

Using the alternative bounds from Corollary 12 and 16, one obtains the bounds from Equa-
tion (2).

6. Asymptotic Rates

In this section, we derive the optimal growth rates (up to logarithmic factors) for r(n) such that the
overall bound converges to zero. The computations have to be carried out for four different settings:
kernels with bounded eigenfunctions/bounded kernels, and polynomial decay/exponential decay of
eigenvalues.

6.1 Case I: Bounded Eigenfunctions

Polynomial Decay Assume that λi = O(i−α) with α > 1. For fixed i, we wish to let r grow with
n such that the approximation from Theorem 3 tends to 0. The rate is given as

|li −λi| = O(r
√

logrn−
1
2 +Λ>r).

We omit the
√

logr term first. From λi = O(i−α), we obtain the following condition (see Ap-
pendix A.2 for rates concerning the tail sums Λ>r):

rn−
1
2 + r1−α = o(1).

We use the following Ansatz: r = nε with ε > 0. Thus, we wish to find ε such that

nε− 1
2 +nε(1−α) = o(1).

This condition is obviously met if ε < 1/2. We wish to balance the two terms in order to minimize
the overall rate. This rate is attained if

ε− 1
2

= ε(1−α)  ε =
1

2α
.

Plugging in this rate shows that

|li −λi| = O(n
1−α
2α
√

logn).

1. Let X ,X ′ be positive random variables such that P{X > ε} ≤ δ, P{X ′ > ε′} ≤ δ. Then, P{X +X ′ > ε+ ε′} ≤ 2δ,
because P{X +X ′ > ε+ ε′} ≤ P{X > ε or X ′ > ε′} ≤ P{X > ε}+P{X ′ > ε′} ≤ 2δ.

2316



ERROR BOUNDS FOR THE EIGENVALUES OF THE KERNEL MATRIX

Exponential Decay We assume that λi = O(e−βi), β > 0, such that Λ>r = O(e−βr). We are
looking for the slowest rate such that Λ>r = O(n−

1
2 ). Using the Ansatz r = lognε, we obtain the

condition

e−β lognε
= n−βε = O(n−

1
2 ) if −βε ≤−1

2
 ε =

1
2β

.

Plugging this choice of ε gives the overall rate of

|li −λi| = O(n−
1
2 (logn)

3
2 ).

6.2 Case II: Bounded Kernel function

In this case, the rate is (using the bound based on the Chebychev inequality)

|li −λi| = O(λ− 1
2

r r2n−
1
2 +Λ>r +

√

Λ>rn
− 1

2 ).

Polynomial Decay Plugging in λr = r−α, Λ>r = r1−α (omitting the constants) gives

r2+ α
2 n−

1
2 + r1−α + r

1−α
2 n−

1
2 .

We again set r = nε and obtain the three terms

nε(2+ α
2 )− 1

2 +nε(1−α) +nε( 1−α
2 )− 1

2 .

First of all, the first term tells us that ε ≤ 1
4+α , otherwise the bound diverges. Also note that of the

three terms, only the first two are relevant, because the third term is always smaller than the first
term. They are balanced if

ε
(

4+α
2

)

− 1
2

= ε(1−α)  ε =
1

2+3α
,

which is also smaller than 1
4+α for α > 1. Plugging this into either term shows that the resulting rate

is
|li −λi| = O(n

1−α
2+3α ).

Exponential Decay In this case, λr = e−βr, Λ>r = O(e−βr). Therefore, the rate becomes (omitting
all constants)

e
β
2 rr2n−

1
2 + e−βr + e−

β
2 rn−

1
2 .

With the Ansatz r = lognε, we get

n
βε
2 − 1

2 (lognε)2 +n−βε +n−
βε
2 − 1

2 .

From the first term we get that ε ≤ 1/β, otherwise it diverges. But for ε ≤ 1/β, the third term is
always smaller than the second term, such that we have to balance the first and the second term.
Thus, the optimal rate is given if

βε
2
− 1

2
= −βε  ε =

1
3β

.

This choice results in the overall rate of

|li −λi| = O(n−
1
3 (logn)2).
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Figure 2: The example from the introduction revisited. The box plots show the distributions of
the observed approximation errors for kernel matrices built from n = 1000 sample points
over 100 re-samples. The two solid lines plot the approximation error bound derived in
this work. The upper line uses the bound on ‖Cr

n‖ from Theorem 3, while the lower line
uses the largest observed value of ‖Cr

n‖ on the samples in conjunction with Theorem 1,
which requires knowledge of the true eigenfunctions.

7. Examples

We claim that the bounds which we have derived give realistic error estimates already for small
sample sizes. In this section, we discuss several examples for both classes of kernels on numerical
simulations to support our claim.

7.1 Examples for Kernels with Bounded Eigenfunctions

For the class of Mercer kernels whose eigenfunctions are uniformly bounded, we have been able
to derive rather accurate finite sample size bounds. In particular, the truncation error E(r,n) can
be bounded in a deterministic fashion. The relative error term C(r,n) scales rather moderately as
r
√

logr with r, and E(r,n) decays quickly, depending on the rate of decay of the eigenvalues, for
both the case of polynomial and exponential decay.

Consider the following example already briefly discussed in the introduction. We construct a
Mercer kernel function by specifying an orthogonal set of functions and a sequence of eigenval-
ues. As orthogonal functions, we use Legendre polynomials Pn(x) (Abramowitz and Stegun, 1972),
which are orthogonal polynomials on [−1,1]. We take the first 20 polynomials, and set λi = exp(−i).
Then,

k(x,y) =
19

∑
i=0

νie
−iPi(x)Pi(y)

defines a Mercer kernel, where νi = 1/(2i + 1) comes from normalization:
√

νiPi has unit norm
with respect to the probability measure induced by µ([a,b]) = |b−a|/2.

For convenience, the plot from Figure 1(b) is reproduced in Figure 2. Since this kernel has
only 20 non-zero eigenvalues, we obtain a purely relative bound (neglecting the round-off errors)
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by setting r = 20. We see that the bound accurately reflects the true behavior of the approximation
error.

We have also marked the smallest possible non-scaling error bound on the maximal observed
approximation error. Any non-scaling error bound will necessarily be larger than this observed error
with high probability. This plot illustrates the fact that it is essential for obtaining accurate estimates
that the error bounds scale with the considered eigenvalue. A non-scaling bound will overestimate
the error of smaller eigenvalues significantly.

The plot might suggest that our bound is actually worse for the first few large eigenvalues, but
note that the dashed line is only a lower bound to any non-scaling error bound, and actual error
bounds will typically be much larger.

Next, we turn to a non-degenerate kernel. In Figure 3, some examples are plotted for the sine-
basis kernel, defined as follows. The eigenfunctions are given by

ψi(x) =
√

2sin(ix/2), i ∈ N,

which form an orthogonal family of functions on the Hilbert space of functions defined on [0,2π]
with the scalar product ( f ,g) 7→ R 2π

0 f (x)g(x)dx/2π. These functions are uniformly bounded by
√

2.
Since we cannot write down the resulting kernel given some choice of eigenvalues in closed

form, we truncate the expansion to the first 1000 terms, resulting in a negligible difference to the
true kernel function. The resulting kernel function for different choices of eigenvalues are plotted
in Figure 3(a). In Figures 3(b)–(d), three such examples are plotted, two for polynomially decay-
ing eigenvalues, and one for exponentially decaying eigenvalues. We plot the bound for different
choices of r and see that, with increasing r, the absolute error term becomes smaller such that the
bound for small eigenvalues also becomes smaller while, at the same time, the bound for larger
eigenvalues becomes larger.

In Figure 3(d), it appears that the bound is actually smaller than the observed eigenvalues. This
effect is due to the finite precision arithmetic used in the computations. These rounding errors
effectively lead to an additive perturbation of the kernel matrix, which in turn results in an additive
perturbation of the eigenvalues of the same magnitude. An interesting observation is that although
our bounds fail to be purely relative in the general case, numerically computed eigenvalues will
always display a stagnation of small eigenvalues at a certain level due to round-off errors as well.
Thus, for numerically computed eigenvalues, fully relative approximation errors are not possible.

7.2 Examples for Kernels with Bounded Kernel Functions

The second class of kernel functions are kernels with bounded diagonal. This class includes the
important radial basis function kernels (rbf-kernels). In this case, the eigenfunctions can in principle
grow unboundedly as the eigenvalues become smaller, leading to considerably larger error estimates.
The most important difference to the previous case is that the relative error term depends on the
eigenvalues themselves and scales with the factor 1/

√
λr. Therefore, having smaller eigenvalues

can lead to a much larger relative error term (which will nevertheless ultimately decay to zero).
The example we will consider is designed to display this slow rate of convergence. It is well-

known that Bernoulli random variables maximize the variance among all bounded random variables
taking values in [0,1]. We thus consider the following kernel: Let (Ai)

∞
i=1 be a partition of X with

µ(A1) ≥ µ(A2) ≥ . . . ≥ 0. Then, set

λi = µ(Ai), ψi(x) =
1√
λi

1Ai(x). (5)
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decay rates are λi = i−2 (dotted lines), λi = i−10

(dashed lines), λi = e−i (solid lines). Note that
the smoothness depends on rate of decay.
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(b) For quadratic decay, the bounds are only
slightly better than the best possible non-scaling
bound. (Shaded areas correspond to quartile
ranges, similar to box plots. See explanation in
figure caption.)
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(c) For faster polynomial decay, the bounds are
much more accurate than the best possible non-
scaling bound for small eigenvalues.
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(d) For exponential decay, the bounds are much
more accurate than the best possible non-scaling
bound as observed on the data. In fact, the
actual approximation error becomes even larger
than the bound due to finite precision arithmetics
starting with eigenvalue λ40.

Figure 3: The sine-kernel example. We consider the decay rates λi = i−2, λi = i−10, and λi = e−i. In
(a), some example kernel functions are plotted. In (b)–(d), we plot approximation errors
as observed over 100 re-samples of n = 200 points uniformly sampled from [0,2π], and
the bound for r ∈ {10,35,50,100} for confidence δ = 0.05. The dashed line plots the
best achievable non-scaling error bound. The distribution of the observed approximation
errors is illustrated by differently shaded areas similar to box plots: dark gray area shows
lower to upper quartile range, while light gray area shows data points which lie in 1.5
times the interquartile range. Points beyond that are plotted as small dots.
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This defines a Mercer kernel

k(x,y) =
∞

∑
i=1

1Ai(x)1Ai(y) =

{

1 if there exists an i such that x,y ∈ Ai,

0 else.

Note that the matrix Cr
n is always diagonal for this choice of basis functions because

ψi(x)ψ j(x) =
1

√

λiλ j
δi j.

Thus, we obtain a slightly improved bound over the one from Corollary 12 because ‖Cr
n‖ =

max1≤i≤r |[Cr
n]ii| since Cr

n is diagonal. Then,

P{‖Cr
n‖ ≥ ε} ≤ r max

1≤i≤r
P{|[Cr

n]ii| ≥ ε} ≤ r
λrnε2 ,

and consequently, with probability larger than 1−δ,

‖Cr
n‖ <

√

r
λrnδ

. (6)

Figure 4 plots the bound for this example. Again, the kernel function cannot be computed in
closed form, and we truncate to the first 1000 terms. We plot two different bounds, the bound
from (6), and the general result from Theorem 4. Note that the error does not fluctuate after eigen-
value λ20. The reason is that λi is so small that not a single point has hit Ai in the sample of n = 1000
points; the kernel is effectively degenerate and the approximate eigenvalues beyond l20 are equal to
zero. In this case, the approximation error is equal to the true eigenvalue which explains the expo-
nential decay. Note though, that for the first 20 eigenvalues, the (slower) rate is actually matched by
the bound.

Over all, compared with the examples for bounded kernel functions, the bounds are considerably
less tight, but they still correctly predict the scaling of the approximation error with regard to the
true eigenvalue.

7.3 Comparisons with a Non-Scaling Hoeffding-Type Bound

Finally, we would like compare our bound numerically against a non-scaling Hoeffding-type bound.
As discussed in Section 6, while the bounds presented in this paper are more accurate for small
eigenvalues, the overall rate as n → ∞ is slower than the usual stochastic rate O(n−1/2). To illustrate
that the bounds can nevertheless be much more accurate even for moderately small sample sizes, we
will compare our bounds against a Hoeffding-type bound which does not scale with the eigenvalue
under consideration.

We face the problem of choosing an appropriate non-scaling bound. Such bounds exist, but
only for tail sums of eigenvalues (see the papers by Shawe-Taylor et al., 2005, and Blanchard et al.,
2006, and the discussion in Section 8). However, the full complexity of these bounds is not really
necessary for the illustrative purposes we have in mind. In Theorem 6 of the paper by Shawe-Taylor
et al. (2005), there is a bound on the concentration of single eigenvalues around their mean: with
probability larger than 1−δ,

|li −E(li)| ≤ K2

√

1
2n

log
2
δ
.
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(a) The bound based on the estimate from Equa-
tion (6) for C(r,n) which was specifically derived
for this example.
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(b) The bound using the general result from The-
orem 4. Note that although the bound becomes
very large for large r, the minimum over all
bounds is the final bound on the approximation
error.

Figure 4: The indicator function example (see Equation (5)). This kernel has maximal variance
given the constraint that the resulting kernel function is bounded. We consider eigenval-
ues λi = ei/3/Z, where Z is the normalization constant. The sample size is n = 1000,
and the bounds are computed for confidence δ = 0.05. The solid lines are the bounds
for r ∈ {10,50,200,500}, while the dashed line shows the best possible non-scaling error
bound.
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This bound has the required asymptotic decay rate of O(n−1/2). Terms similar to this bound also
occur in the more complex bounds on tail sums of eigenvalues, albeit with larger constants. We will
therefore pretend that this is an overly optimistic guess of the approximation error and compare our
bounds to it.

We are particularly interested in the question if the Hoeffding-type bound, due to its better
asymptotic rate, quickly compensates for its non-scaling constant and becomes as small as our
bound. We therefore compare the bounds for sample sizes up to n = 10000. Figure 5 plots the
Hoeffding-type bound with the bound derived in this work. For these plots, since the eigenvalues
are known, the optimal r has been computed by numerically minimizing the bound. The optimal r
with respect to i have been plotted in Figure 5(d). For polynomial decay of rate λi = i−2, the bounds
are clearly inferior to the Hoeffding-type bounds and one can also clearly see that the overall rate
is sub-stochastic. However, for faster decay rates, the bounds for smaller eigenvalues are clearly
superior, also demonstrating that the number of samples necessary to yield a comparably small
bound using the Hoeffding-type bound is fairly large.

So far, we have compared the bounds only for the errors of individual eigenvalues. Let us now
compare the bounds for sums of eigenvalues. As we will discuss in Section 8, there exist bounds
which directly deal with tail sums of eigenvalues and are more accurate in this case. However, it is
instructive to derive a rough estimate for tail sums based on our bounds. We start with bounding the
difference between tail sums by summing the individual bounds:

∣

∣

∣

∣

∣

n

∑
i=r+1

li −
∞

∑
i=r+1

λi

∣

∣

∣

∣

∣

≤
n

∑
i=r+1

|li −λi|+Λ>n+1 ≤
n

∑
i=r+1

(λiC(r,n)+E(r,n))+Λ>n+1.

Let us roughly estimate the size of the resulting bound. The key to obtain a good estimate lies in
choosing a different r for each i. Let us set r = i. Then, omitting constants and using the bound for
bounded kernel functions which is based on the Chebychev inequality, we get that

∑
i=r+1

(

√

λii
2n−

1
2 +Λ>i +

√

Λ>in
− 1

2

)

+Λ>n+1

= n−
1
2

(

n

∑
i=r+1

i2
√

λi +
n

∑
i=r+1

√

Λ>i

)

+
n

∑
i=r+1

Λ>i +Λ>n+1.

Let us consider these tail sums for i → ∞. All of these sums converge if α > 6, because

i2
√

λi = O(i2−
α
2 ) = O(i−1),

√

Λ>i = O(i
1−α

2 ) = O(i−2 1
2 ), Λ>i = O(i1−α) = O(i−5).

Thus, for large i, the bound on the tail sums actually becomes small, giving more accurate bounds
than those obtainable by a non-scaling bound.

In Figure 6, we again compare the bound derived in this work against a Hoeffding-type bound
for tail sums of eigenvalues. We do not use the rough estimate derived above, but sum the individual
approximation error bounds selecting the optimal r in each case. Again we see that these bounds
give much smaller estimates than the non-scaling Hoeffding-type bound.

8. Related Work

The bounds presented in this work are the first finite sample size bounds for single eigenvalues which
scale with the eigenvalue under consideration. These results contribute to the already existing body
of work which we briefly review in this chapter.
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(a) λi = i−2
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(b) λi = i−10
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(c) λi = e−i/Z (normalization)
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Figure 5: Upper bounds with the best choice of r (solid lines) compared with a Hoeffding-type
non-scaling O(n−

1
2 ) bound (dashed line) for single eigenvalues. The bounds are plotted

for eigenvalues λ1,λ5,λ10,λ50,λ100, and for the cases of polynomial decay, also for λ500.
The truncation point r has been chosen optimally by explicitly minimizing the bound.
The confidence was δ = 0.05.
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Bounds on the approximation error for tail sums

(a) λ = i−2
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Bounds on the approximation error for tail sums

(b) λ = i−10
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Bounds on the approximation error for tail sums

(c) λ = e−i/Z (normalization)

Figure 6: Upper bounds for tail sums (solid lines) compared with a Hoeffding-type non-scaling
O(n−

1
2 ) bound (dashed line). The tail sums are plotted for r ∈ {10,20,30,40,50}. The

confidence was set to δ = 0.5.

The asymptotic setting is addressed for example in Dauxois et al. (1982) and Koltchinskii and
Giné (2000) where central limit type results for the limit distributions of the eigenvalues are derive.
The finite sample setting has been addressed more recently, in particular in Shawe-Taylor et al.
(2005) and Blanchard et al. (2006).

The paper by Shawe-Taylor et al. (2005) discusses several aspects of the relation between the
approximate eigenvalues and their asymptotic counterparts. These also include concentration in-
equalities relating the approximate eigenvalues to their expectations (similar inequalities can also
be found in the Ph.D. thesis of Mika, 2002). Finally, Theorem 1 and 2 of that paper provide fi-
nite sample size bounds on the approximation error for tail sums of the eigenvalues. However, these
bounds do not scale with the size of the eigenvalues, leading to the already discussed overestimation
of the true approximation error in particular for small eigenvalues.

These results are further refined and extended in the paper by Blanchard et al. (2006). In par-
ticular, non-scaling bounds are derived exhibiting fast convergence rates, as well as scaling bounds
for tail sums of eigenvalues. As already explained, the latter bounds are particularly important for
obtaining accurate estimates for small eigenvalues.

Compared to the results presented in this work, all of these results are either dealing with the
asymptotic setting or, in the case of finite sample size bounds, are non-scaling or only deal with
tail sums of eigenvalues. Obtaining accurate bounds, in particular bounds which scale with the
eigenvalue under consideration, was an open problem so far (see the comments below Theorem 4.2
in the paper by Blanchard et al., 2006). Note that these two problems are not interchangeable: While
it is possible to construct bounds for single eigenvalues from bounds of tail sums by subtracting
bounds for neighboring indices, and also vice versa by summing up bounds, the resulting scaling
factors will not match the quantity under consideration.

From a technical point of view, the approach taken in this work and the one by Blanchard et al.
(2006) also differ considerably. While the analysis in the latter is carried out in abstract Hilbert
spaces, in this work, the analysis is based in the finite dimensional domain, having the potential
advantage that the arguments are somewhat more elementary. However, one could suspect that the
absolute terms occurring in our bounds are an artifact of the more elementary approach (in particular
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since these terms are a side-effect of the truncation of the kernel matrix). Then, a more abstract
approach might be able to obtain fully relative bounds. Note however, that Ostrowski’s inequality
does not easily extend to the high-dimensional case, as the convergence of the error matrix Cr

n
scales with the dimension of the finite-dimensional case. At any rate, these questions are interesting
possible direction for future research.

9. Conclusion and Outlook

We have derived finite sample size bounds on the error between single eigenvalues of the kernel
matrix and their asymptotic limits. These bounds scale with the eigenvalue under consideration
leading to significantly more accurate bounds for single eigenvalues than previously known bounds
in particular for small eigenvalues and small sample sizes. Also for fairly large sample sizes, the
bounds can still be superior to existing bounds since the number of samples necessary to make
existing non-scaling bounds competitive can be unrealistically large.

For future work, we would like to suggest three possibilities. (i) If additional information on
the kernel, or the probability distribution is available, the bounds on the norms of the error matrices
could be improved leading to more accurate bounds.

(ii) Note that the resulting bounds require the knowledge of the true eigenvalues. From a the-
oretical point of view, this approach is acceptable, because we were specifically interested in ap-
proximation errors of small eigenvalues, and this assumption is codified into the knowledge of the
true eigenvalues. In practical situations, however, one might be interested in obtaining a confidence
bound without knowledge of the eigenvalues. This means that one has to derive some property of
the true eigenvalues, for example, their rate of decay. Statistical tests could be constructed to this
means based on the bounds presented here. Then, the bounds presented in this work predict that the
estimated eigenvalues decay at the same rate giving confidence bounds which scale at the correct
rate.

(iii) Finally, since the basic perturbation bound also holds for non-random choices of points, the
result could be applied in the analysis of the numerical approximation of integral equations. The
norms of the error matrices would then be bounded using approximation theory.
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Appendix A. Supplementary Results

In this section, we collect some supplementary results for reference, which are used in the main text.

A.1 Perturbation of Hermitian Matrices

We use two classical results on the perturbation of eigenvalues for Hermitian matrices.

Theorem A.1 (Weyl) (Horn and Johnson, 1985, Theorem 4.3.1) Let A,E be Hermitian n× n ma-
trices. Then, for each 1 ≤ i ≤ n,

λi(A)+λn(E) ≤ λi(A+E) ≤ λi(A)+λ1(E).

This implies that
|λi(A)−λi(A+E)| ≤ ‖E‖.

Theorem A.2 (Ostrowski) (Horn and Johnson, 1985, Theorem 4.5.9., Corollary 4.5.11) Let A be
a Hermitian n× n matrix, and S a non-singular n× n matrix. Then, for 1 ≤ i ≤ n, there exist non-
negative real θi with λn(SS∗) ≤ θi ≤ λ1(SS∗) such that

λi(SAS∗) = θiλi(A).

Consequently,
|λi(SAS∗)−λi(A)| ≤ |λi(A)|‖S∗S− I‖.

For the case of non-square S, the same result holds as can be shown by extending either S or A
with zeros until both matrices are square and have the same size and by a continuity argument to
extend Ostrowski’s theorem to singular S (Horn and Johnson, 1985, p. 224).

Corollary A.3 Ostrowski’s theorem also holds if S is a (non-square) n×m matrix.

A.2 Asymptotics of Infinite Sums

For convenience, we collect two elementary computations to estimate the asymptotic rates of tail
sums of sequences with polynomial and exponential decay.

Theorem A.4 For α > 1 and β > 0,

∞

∑
i=r+1

i−α ≤ r1−α

α−1
= O(r1−α),

∞

∑
i=r+1

e−βi =
e−β(r+1)

1− e−β = O(e−βr).

To prove these two rates, note that

∞

∑
i=r+1

i−α ≤
Z ∞

r+1
(x−1)−αdx =

Z ∞

r
x−αdx =

x1−α

1−α

∣

∣

∣

∣

∞

r
= 0− r1−α

1−α
=

r1−α

α−1
.

Furthermore, since ∑∞
i=r+1(e

−β)i is the tail of a geometric series,

∞

∑
i=r+1

e−βi ≤ 1

1− e−β − 1−
(

e−β)r+1

1− e−β =

(

e−β)r+1

1− e−β .
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Abstract

We propose a novel approach to optimize Partially Observable Markov Decisions Processes
(POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs
are restricted to discrete states, actions, and observations, but many real-world problems such as,
for instance, robot navigation, are naturally defined on continuous spaces. In this work, we demon-
strate that the value function for continuous POMDPs is convex in the beliefs over continuous state
spaces, and piecewise-linear convex for the particular case of discrete observations and actions but
still continuous states. We also demonstrate that continuous Bellman backups are contracting and
isotonic ensuring the monotonic convergence of value-iteration algorithms. Relying on those prop-
erties, we extend the PERSEUS algorithm, originally developed for discrete POMDPs, to work in
continuous state spaces by representing the observation, transition, and reward models using Gaus-
sian mixtures, and the beliefs using Gaussian mixtures or particle sets. With these representations,
the integrals that appear in the Bellman backup can be computed in closed form and, therefore, the
algorithm is computationally feasible. Finally, we further extend PERSEUS to deal with continuous
action and observation sets by designing effective sampling approaches.

Keywords: planning under uncertainty, partially observable Markov decision processes, continu-
ous state space, continuous action space, continuous observation space, point-based value iteration

1. Introduction

Automated systems can be viewed as taking inputs from the environment in the form of sensor
measurements and producing outputs toward the realization of some goals. An important problem
is the design of good control policies that produce suitable outputs (e.g., actions) based on the
inputs received (e.g., observations). When the state of the environment is only partially observable
through noisy measurements, and actions have stochastic effects, optimizing the course of action
is a non-trivial task. Partially Observable Markov Decision Processes, POMDPs (Åström, 1965;
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Dynkin, 1965) provide a principled framework to formalize and optimize control problems fraught
with uncertainty. Such problems arise in a wide range of application domains including assistive
technologies (Montemerlo et al., 2002; Boger et al., 2005), mobile robotics (Simmons and Koenig,
1995; Cassandra et al., 1996; Theocharous and Mahadevan, 2002; Pineau et al., 2003b), preference
elicitation (Boutilier, 2002), spoken-dialog systems (Roy et al., 2000; Zhang et al., 2001; Williams
et al., 2005), and gesture recognition (Darrell and Pentland, 1996).

Policy optimization (i.e., optimization of the course of action) can be done with or without
a model of the environment dynamics. Model-free techniques such as neuro-dynamic program-
ming (Bertsekas and Tsitsiklis, 1996), and stochastic gradient descent (Meuleau et al., 1999; Ng
and Jordan, 2000; Baxter and Bartlett, 2001; Aberdeen and Baxter, 2002) directly optimize a pol-
icy by simulation. These approaches are quite versatile since there is no explicit modeling of the
environment. On the other hand, the absence of explicit modeling information is compensated by
simulation which may take an unbearable amount of time. In practice, the amount of simulation can
be reduced by restricting the search for a good policy to a small class.

In contrast, model-based approaches assume knowledge about a transition model encoding the
effects of actions on environment states, an observation model defining the correlations between
environment states and sensor observations, and a reward model encoding the utility of environ-
ment states. Even when sufficient a priori knowledge is available to encode a complete model,
policy optimization remains a hard task that depends heavily on the nature of the model. To date,
most existing algorithms for model-based POMDPs assume discrete states, actions and observa-
tions. Even then, optimization is generally intractable (Papadimitriou and Tsitsiklis, 1987; Madani
et al., 1999; Lusena et al., 2001) and one must resort to the exploitation of model-specific structural
properties to obtain approximate scalable algorithms for POMDPs with large state spaces (Boutilier
and Poole, 1996; Roy and Gordon, 2003; Poupart and Boutilier, 2003, 2005) and complex policy
spaces (Pineau et al., 2003a; Spaan and Vlassis, 2005; Smith and Simmons, 2004; Poupart and
Boutilier, 2004, 2005).

Many real-world POMDPs are naturally modeled by continuous states, actions and observations.
For instance, in a robot navigation task, the state space may correspond to robot poses (x,y,θ), the
observations may correspond to distances to obstacles measured by sonars or laser range finders,
and actions may correspond to velocity and angular controls. Given the numerous optimization
techniques for discrete models, a common approach for continuous models consists of discretizing
or approximating the continuous components with a grid (Thrun, 2000; Roy et al., 2005). This
usually leads to an important tradeoff between complexity and accuracy as we vary the coarseness of
the discretization. More precisely, as we refine a discretization, computational complexity increases.
Clearly, an important research direction is to consider POMDP solution techniques that operate
directly in continuous domains, which would render the discretization of the continuous components
superfluous.

Duff (2002) considered a special case of continuous POMDPs in the context of model-based
Bayesian reinforcement learning, in which beliefs are maintained over the space of unknown pa-
rameters of the transition model of a discrete-state MDP. As those parameters are probabilities, the
corresponding POMDP is defined over a continuous domain. Duff (2002) demonstrated that, for
this special case, the optimal value function of the POMDP is parameterized by a set of functions,
and for finite horizon it is piecewise-linear and convex (PWLC) over the belief space of multino-
mial distributions. Independently, Porta et al. (2005) considered the case of robot planning under
uncertainty, modeled as a continuous POMDP over the pose (continuous coordinates) of the robot.
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They also proved that the optimal value function is parameterized by an appropriate set of functions
called α-functions (in analogy to the α-vectors in discrete POMDPs). Moreover, they demonstrated
that the value function for finite horizon is PWLC over the robot belief space for any functional form
of the beliefs. In addition, Porta et al. (2005) provided an analytical derivation of the α-functions
as linear combinations of Gaussians when the transition, reward, and observation models of the
POMDP are also Gaussian-based.

In this paper, we generalize the results of Duff (2002) and Porta et al. (2005), and describe a
framework for optimizing model-based POMDPs in which the state space and/or action and obser-
vation spaces are continuous. We first concentrate on the theoretical basis on which to develop a
sound value-iteration algorithm for POMDPs on continuous spaces. We demonstrate that the value
function for arbitrary continuous POMDPs is in general convex, and it is PWLC in the particular
case when the states are continuous but the actions and observations are discrete. We also demon-
strate that Bellman backups for continuous POMDPs are contracting and isotonic, which guarantees
the monotonic convergence of a value-iteration algorithm.

Functions defined over continuous spaces (e.g., beliefs, observation, action and reward models)
can have arbitrary forms that may not be parameterizable. In order to design feasible algorithms
for continuous POMDPs, it is crucial to work with classes of functions that have simple parame-
terizations and that yield to closed belief updates and Bellman backups. We investigate Gaussian
mixtures and particle-based representations for the beliefs and linear combinations of Gaussians for
the models. Using these representations, we extend the PERSEUS algorithm (Spaan and Vlassis,
2005) to solve POMDPs with continuous states but discrete actions and observations. We also show
that POMDPs with continuous states, actions, and observations can be reduced to POMDPs with
continuous states, discrete actions, and discrete observations using sampling strategies. As such, we
extend PERSEUS to handle general continuous POMDPs.

The rest of the paper is structured as follows. Section 2 introduces POMDPs. Section 3 includes
the proofs of some basic properties that are used to provide sound ground to the value-iteration
algorithm for continuous POMDPs. Section 4 reviews the point-based POMDP solver PERSEUS.
Section 5 investigates POMDPs with Gaussian-based models and particle-based representations for
belief states, as well as their use in PERSEUS. Section 6 addresses the extension of PERSEUS to deal
with continuous action and observation spaces. Section 7 presents some experiments showcasing
the extended PERSEUS algorithm on a simulated robot navigation task. Section 8 gives an overview
of related work on planning for continuous POMDPs. Finally, Section 9 concludes and highlights
some possibilities for future work.

2. Preliminaries: MDPs and POMDPs

The Markov Decision Process (MDP) framework is a well-known planning paradigm that can be
applied whenever we have an agent making decisions in a system described by

• a set of system states, S,

• a set of actions available to the agent, A,

• a transition model defined by p(s′|s,a), the probability that the system changes from state s
to s′ when the agent executes action a, and
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• a reward function defined as ra(s) ∈ R, the reward obtained by the agent if it executes action
a when the system is in state s.

The dynamics of a discrete-time MDP is the following: at a given moment, the system is in a state s
and the agent executes an action a. As a result, the agent receives a reward r and the system state
changes to s′. The state contains enough information to allow to plan optimally, and thus a policy
is a mapping from states to actions. To assess the quality of a given policy, π, the value function
condenses the immediate and delayed reward that can be obtained from a given state s0

V π(s0) = E
[ n

∑
t=0

γtrπ(st)(st)
]

,

where the state evolves according to the transition model p(st+1|st ,π(st)), n is the planning horizon
(possibly infinite), and γ ∈ [0,1) is a discount factor that trades off the importance of the immediate
and the delayed reward.

The objective of MDP-based planning is to determine an optimal policy, π∗, that is, a policy that
assigns to each state the action from which the most future reward can be expected. In the literature,
there are several algorithms for computing an optimal policy for any MDP. When the transition
and the reward model are known in advance, we can use planning algorithms mainly developed
within the operations research field. Algorithms also exist for the case where the transition and
reward models must be learned by the agent as it interacts with the environment. These learning
algorithms are typically developed within the reinforcement learning community (Bertsekas and
Tsitsiklis, 1996; Sutton and Barto, 1998).

Three popular planning algorithms are value iteration, policy iteration, and linear program-
ming. We will focus on the first one, value iteration. This algorithm computes a sequence of value
functions departing from an initial value function V0 and using the following recursion

Vn(s) = max
a∈A

Qn(s,a),

with
Qn(s,a) = ra(s)+ γ ∑

s′∈S

p(s′|s,a)Vn−1(s
′).

The above recursion is usually written in functional form

Qa
n = Ha Vn−1,

Vn = H Vn−1, (1)

and it is known as the Bellman recursion (Bellman, 1957). This recursion converges to V ∗, from
which we can define an optimal policy π∗ as

π∗(s) = argmax
a

Q∗(s,a).

For each value function, Vn, we can readily derive an approximation to the optimal policy. Bounds
on the quality of this approximation are given by Puterman (1994) in Theorem 6.3.1.

The MDP framework assumes the agent has direct knowledge of the system state. In many re-
alistic situations, however, the agent can not directly access the state, but it receives an observation
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that stochastically depends on it. In these cases, the system can be modeled as a Partially Observable
Markov Decision Process (POMDP). This paradigm extends the MDP framework by incorporating
a set of observations O, and an observation model defined by p(o|s), the probability that the agent
observes o when the system reaches state s. In a POMDP, the agent typically needs to infer the state
of the system from the sequence of received observations and executed actions. A usual represen-
tation for the knowledge about the system state is a belief, that is, a probability distribution over the
state space. The initial belief is assumed to be known and, if b is the belief of the agent about the
state, the updated belief after executing action a and observing o is

ba,o(s′) =
p(o|s′)

p(o|b,a)
p(s′|b,a), (2)

with p(s′|b,a) the propagation of the belief b through the transition model. For a continuous set of
states S, this propagation is defined as

p(s′|b,a) =
Z

s∈S
p(s′|s,a)b(s)ds, (3)

and, for a discrete set S, the integral is replaced by a sum. Under the Markov assumption, the belief
carries enough information to plan optimally (see Bertsekas, 2001). Thus, a belief-based discrete-
state POMDP can be seen as an MDP with a continuous state space that has one dimension per state.
In the case of continuous-state POMDPs, the corresponding belief space is also continuous, but with
an infinite number of dimensions since there are infinitely many physical states. This additional
complexity is one of the reasons why most of the POMDP research focuses on the discrete-state
case.

The belief-state MDP defined from a POMDP has a transition model

p(b′|b,a) =

{

p(o|b,a) if b′ = ba,o,

0 otherwise,

and its policy and value function are defined on the space of beliefs. The Bellman recursion is
defined as

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
p(o|b,a)Vn−1(b

a,o)do
}

. (4)

For discrete observation and action spaces, the integral over the observation space is replaced by a
sum and the sup over the action space by a max operator. In Eq. 4, the 〈 f ,b〉 operation is used to
express the expectation of the function f in the probability space defined by sample space S, the
σ-algebra on S, and the probability distribution b. For continuous-state POMDPs, this operator is
computed with an integral over S

〈 f ,b〉=
Z

s∈S
f (s)b(s)ds,

and for discrete-state POMDPs, it corresponds to the inner product

〈 f ,b〉= ∑
s∈S

f (s)b(s).
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Note that, in both cases and for a fixed f , the expectation operator is a linear function in the belief
space since we have

〈 f ,k b〉= k 〈 f ,b〉,

〈 f ,b+b′〉= 〈 f ,b〉+ 〈 f ,b′〉,

for any k independent of the integration/sum variable.
At first sight computing the POMDP value function seems intractable, but Sondik (1971) has

shown that, for discrete POMDP, this function can be expressed in a simple form

Vn(b) = argmax
{αi

n}i

〈αi
n,b〉,

with {αi
n}i a set of vectors. Each α-vector is generated for a particular action, and the optimal action

with planning horizon n for a given belief is the action associated with the α-vector that defines Vn

for that belief. Thus, the set of αi
n vectors encodes not only the value, but also the optimal policy.

Since the 〈·, ·〉 function is linear, the value function Vn computed as a maximum of a set of
such expectations is piecewise-linear convex (PWLC) in the belief space. Using this formulation,
value iteration algorithms for discrete state POMDPs typically focus on the computation of the αn-
vectors. Two basic strategies for POMDP value iteration are found in the literature. In the first one,
the initial value function (i.e., at planning horizon 0) is a set of α-vectors directly defined from the
reward function (Sondik, 1971; Monahan, 1982; Cheng, 1988; Kaelbling et al., 1998; Cassandra
et al., 1997; Pineau et al., 2003a). In the second strategy, the initial value function is a single α-
vector that lower bounds the value function for any possible planning horizon (Zhang and Zhang,
2001; Spaan and Vlassis, 2005). In both cases, exact value iteration converges to the same fixed
point, but the second strategy may be more effective in approximate value iteration schemes.

3. Properties of Continuous POMDPs

In the previous section, we saw that algorithms for discrete POMDPs rely on a representation of the
value function as a PWLC function based on a discrete set of supporting vectors. In this section, we
show that this representation can be generalized to continuous-state POMDPs, while still assuming
a discrete set of actions and observations. In Section 6, we discuss how to tackle POMDPs with
continuous actions and observations via sampling.

First, we prove that the value function for a continuous POMDP is convex and, next, that it is
PWLC for the case of continuous states, but discrete observations and actions. In this last case, the
value function can be represented as a set of α-functions that play the same role as α-vectors in a
discrete POMDP. We also prove that the continuous POMDP value-function recursion is an isotonic
contraction. From these results, it follows that this recursion converges to a single fixed point
corresponding to the optimal value function V ∗. The theoretical results presented in this section
establish that there is in principle no barrier in defining value iteration algorithms for continuous
POMDPs.

3.1 The Optimal Value Function for Continuous POMDPs is Convex

To prove that the optimal value function for continuous POMDPs is convex, we first prove the
following lemma.
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Lemma 1 The n-step optimal value function Vn in a continuous POMDP can be expressed as

Vn(b) = sup
{αi

n}i

〈αi
n,b〉,

for appropriate continuous set of α-functions αi
n : S→ R.

Proof The proof, as in the discrete case, is done via induction. In the following we assume that all
operations (e.g., integrals) are well-defined in the corresponding spaces. For planning horizon 0, we
only have to take into account the immediate reward and, thus, we have that

V0(b) = sup
a∈A
〈ra,b〉,

and, therefore, if we define the continuous set

{αi
0}i = {ra}a∈A, (5)

we have that, as desired
V0(b) = sup

{αi
0}i

〈αi
0,b〉.

For the general case, we have that, using Eq. 4

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
p(o|b,a)Vn−1(b

a,o)do
}

and, by the induction hypothesis,

Vn−1(b
a,o) = sup

{α j
n−1} j

〈α j
n−1,b

a,o〉.

From Eq. 2 and the definition of the 〈·, ·〉 expectation operator,

Vn−1(b
a,o) =

1
p(o|b,a)

sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|b,a)ds′.

With the above

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|b,a)ds′ do

}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s′
α j

n−1(s
′) p(o|s′)

[

Z

s
p(s′|s,a)b(s)ds

]

ds′ do
}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

Z

s

[

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′

]

b(s)ds do
}

= sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

n−1} j

〈

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′,b

〉

do
}

.
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At this point, we can define

α j
a,o(s) =

Z

s′
α j

n−1(s
′) p(o|s′) p(s′|s,a)ds′. (6)

Note that these functions are independent of the belief point b for which we are computing Vn. With
this, we have that

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
sup
{α j

a,o} j

〈α j
a,o,b〉do

}

,

and we define
αa,o,b = argsup

{α j
a,o} j

〈α j
a,o,b〉. (7)

The αa,o,b set is just a subset of the α j
a,o set defined above. Using this subset, we can write

Vn(b) = sup
a∈A

{

〈ra,b〉+ γ
Z

o
〈αa,o,b,b〉do

}

= sup
a∈A

〈

ra + γ
Z

o
αa,o,b do,b

〉

.

Now
{αi

n}i =
[

∀b

{ra + γ
Z

o
αa,o,b do}a∈A, (8)

is a continuous set of functions parameterized in the continuous action set. Intuitively, each αn-
function corresponds to a plan and, the action associated with a given αn-function is the optimal
action for planning horizon n for all beliefs that have such function as the maximizing one.

With the above definition, we have that Vn can be put in the desired form

Vn(b) = sup
{αi

n}i

〈αi
n,b〉, (9)

and, thus, the lemma holds.

Using the above lemma we can directly prove the convex property for the value function on
continuous POMDPs. Recall that, as mentioned in Section 2, for a fixed αi

n-function the 〈αi
n,b〉

operator is linear in the belief space. Therefore, the convex property is given by the fact that Vn is
defined as the supreme of a set of convex (linear) functions and, thus, we obtain a convex function
as a result. The optimal value function, V ∗ is the limit for Vn as n goes to infinite and, since all Vn

are convex functions so is V ∗.

Lemma 2 When the state space is continuous but the observation and action sets are discrete, the
finite horizon value function is piecewise-linear convex (PWLC).

Proof First, we have to prove that the {αi
n}i sets are discrete for all n. Again, we can proceed via

induction. For discrete actions, {αi
0}i is discrete from its definition (see Eq. 5). For the general

case, we have to observe that, for discrete actions and observations and assuming M = |{α j
n−1}|,

the sets {α j
a,o} are discrete: for a given action a and observation o we can generate at most M
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α j
a,o-functions. Now, using a reasoning parallel to that of the enumeration phase of the Monahan’s

algorithm (Monahan, 1982), we have at most |A|M |O| different αi
n-functions (fixing the action, we

can select one of the M α j
a,o-functions for each one of the observations) and, thus, {αi

n}i is a discrete
set.

From the previous lemma, we know the value function to be convex. The piecewise-linear part
of the property is given by the fact that, as we have just seen, the {αi

n}i set is of finite cardinality
and, therefore, Vn is defined as a finite set of linear functions.

When the state space is discrete, the α-functions become α-vectors and the above proof is equiv-
alent to the classical PWLC demonstration first provided by Sondik (1971).

3.2 The Continuous POMDP Bellman Recursion is a Contraction

Lemma 3 For the continuous POMDP value recursion H and two given value functions V and U,
it holds that

‖HV −HU‖ ≤ β‖V −U‖,

with 0≤ β < 1 and ‖ · ‖ the supreme norm. That is, the continuous POMDP value recursion H is a
contractive mapping.

Proof The H mapping can be seen as

HV (b) = max
a

HaV (b),

with
HaV (b) = 〈ra,b〉+ γ

Z

o
p(o|b,a)V (ba,o)do.

Assume that ‖HV −HU‖ is maximum at point b. Denote as a1 the optimal action for HV at b and
as a2 the optimal one for HU

HV (b) = Ha1V (b),

HU(b) = Ha2U(b).

Then it holds
‖HV (b)−HU(b)‖= Ha1V (b)−Ha2U(b),

assuming, without loss of generality that HV (b) ≤ HU(b). Since a1 is the action that maximizes
HV at b we have that

Ha2V (b)≤ Ha1V (b).

Therefore, we have that

‖HV −HU‖=

‖HV (b)−HU(b)‖=

Ha1V (b)−Ha2U(b)≤

Ha2V (b)−Ha2U(b) =

γ
R

o p(o|a2,b) [V (ba2,o)−U(ba2,o)]do≤

γ
R

o p(o|a2,b)‖V −U‖do =

γ‖V −U‖ .
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Since γ is in [0,1), the lemma holds.

The space of value functions define a vector space (i.e., a space closed under addition and scalar
scaling) and the contraction property ensures this space to be complete (i.e., all Cauchy sequences
have a limit in this space). Therefore, the space of value functions together with the supreme norm
form a Banach space and the Banach fixed-point theorem ensures (a) the existence of a single fixed
point, and (b) that the value recursion always converges to this fixed point (see Puterman, 1994,
Theorem 6.2.3 for more details).

3.3 The Continuous POMDP Bellman Recursion is Isotonic

Lemma 4 For any two value functions V and U, we have that

V ≤U ⇒ HV ≤ HU

that is, the continuous POMDP value recursion H is an isotonic mapping.

Proof Let us denote as a1 the action that maximizes HV at point b and a2 the action that does so
for HU

HV (b) = Ha1V (b),

HU(b) = Ha2U(b).

By definition, the value for action a1 for HU at b is lower (or equal) than that for a2, that is

Ha1U(b)≤ Ha2U(b).

From a given b we can compute ba1,o, for an arbitrary o and, then, the following holds

V ≤U ⇒

∀b,o, V (ba1,o)≤U(ba1,o)⇒
Z

o
p(o|a1,b)V (ba1,o)do≤

Z

o
p(o|a1,b)U(ba1,o)do ⇒

〈ra1 ,b〉+ γ
Z

o
p(o|a1,b)V (ba1,o)do≤ 〈ra1 ,b〉+ γ

Z

o
p(o|a1,b)U(ba1,o)do ⇒

Ha1V (b)≤ Ha1U(b) ⇒

Ha1V (b)≤ Ha2U(b) ⇒

HV (b)≤ HU(b) ⇒

HV ≤ HU.

Since b and, from it ba1,o, can be chosen arbitrarily, the value function is isotonic.

The isotonic property of the value recursion ensures that value iteration converges monotoni-
cally.
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4. PERSEUS: A Point-Based POMDP Solver

Eqs. 6 to 8 constitute the value-iteration process for continuous POMDPs since they provide a con-
structive way to define the α-elements (α-functions for the continuous-state case and α-vectors for
the discrete one) defining Vn from those defining Vn−1. The implementation of this value iteration,
however, will be only computationally feasible if all the involved integrals can be either derived in
closed form or approximated numerically. Moreover, the {αi

n}i are continuous sets and this makes
the actual implementation of the described value-iteration process challenging. In this section, we
concentrate on continuous-state POMDPs (POMDPs with continuous states, but discrete actions
and observations). In this case, the {αi

n}i sets contain finitely many elements and the value func-
tion is PWLC. This allows us to adapt POMDP solving algorithms designed for the discrete case.
In particular, we describe the point-based value-iteration algorithm PERSEUS (Spaan and Vlassis,
2005) which has been shown to be very efficient for discrete POMDPs. The description shown in
Table 1 is generic so that it can be used for either discrete or continuous-state POMDPs. Extensions
of PERSEUS to deal with continuous action and observation spaces are detailed in Section 6.

The computation of the mapping H (Eq. 1) for a given belief point b is called a backup. This
mapping determines the α-element (α-function for continuous POMDPs and α-vector for discrete-
state POMDPs) to be included in Vn for a belief point under consideration (see Eqs. 6 to 8). A
full backup, that is, a backup for the whole belief space, involves the computation of all relevant α-
elements for Vn. Full backups are computationally expensive (they involve an exponentially growing
set of α-elements), but the backup for a single belief point is relatively cheap. This is exploited
by recent point-based POMDP algorithms to efficiently approximate Vn on a fixed set of belief
points (Pineau et al., 2003a; Spaan and Vlassis, 2005). The α-elements for this restricted set of
belief points generalize over the whole belief space and, thus, they can be used to approximate the
value function for any belief point.

The backup for a given belief point b is

backup(b) = argmax
{αi

n}i

〈αi
n,b〉,

where αi
n(s) is defined in Eqs. 7 and 8 from the αa,o-elements (Eq. 6). Using the backup operator,

the value of Vn at b (Eq. 9) is simply

Vn(b) = 〈backup(b),b〉.

If this point-backup has to be computed for many belief points, the process can be speeded up
by computing the set {α j

a,o} j for all actions, observations, and elements in Vn−1 (see Eq. 6) since
these α-elements are independent of the belief point and are the base components to define the αa,o,b

for any particular belief point, b.
Using this backup operator, PERSEUS is defined as follows. First (Table 1, line 2), we let the

agent randomly explore the environment and collect a set B of reachable belief points. Next (Table 1,
lines 3-5), we initialize the value function V0 as a constant function over the state space. The value
for V0 is the minimum possible accumulated discounted reward, min{R}/(1− γ) with R the set of
possible rewards. In line 3, u denotes a function on S so that

〈u,b〉= 1,

for any possible belief, b and, in particular, for the beliefs in B. The exact form for u depends on the
representation we use for the α-elements. For instance, for a discrete set of states, u is a constant
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Perseus
Input: A POMDP.
Output: Vn, an approximation to the optimal

value function V ∗.
1: Initialize
2: B← A set of randomly sampled belief points.

3: α← min{R}
1−γ u

4: n← 0
5: Vn←{α}
6: do
7: ∀b ∈ B,
8: Elementn(b)← argmaxα∈Vn

〈α,b〉
9: Valuen(b)← 〈Elementn(b),b〉
10: Vn+1← /0
11: B̃← B
12: do
13: b← Point sampled randomly from B̃.
14: α← backup(b)
15: if 〈α,b〉< Valuen(b)
16: α← Elementn(b)
17: endif
18: B̃← B̃\{b′ ∈ B̃ | 〈α,b′〉 ≥ Valuen(b′)}
19: Vn+1←Vn+1∪{α}
20: until B̃ = /0
21: n← n+1
22: until convergence

Table 1: The PERSEUS algorithm: a point-based value-iteration algorithm for planning in
POMDPs.

vector of |S| ones, and for a continuous state space, u can be approximated by a properly scaled
Gaussian with a large covariance in all the dimensions of the state space.

Starting with V0, PERSEUS performs a number of approximate value-function update stages.
The definition of the value-update process can be seen on lines 10–20 in Table 1, where B̃ is a set of
non-improved points: points for which Vn+1(b) is still lower than Vn(b). At the start of each update
stage, Vn+1 is set to /0 and B̃ is initialized to B. As long as B̃ is not empty, we sample a point b
from B̃ and compute the new α-elements associated with this point using the backup operator. If
this α-element improves the value of b, that is, if 〈α,b〉 ≥ Vn(b), we add α to Vn+1. The hope is
that α improves the value of many other points, and all these points are removed from B̃. Often, a
small number of α-elements will be sufficient to improve Vn(b) ∀b ∈ B, especially in the first steps
of value iteration. As long as B̃ is not empty we continue sampling belief points from it and trying
to add their α-elements to Vn+1.

If the α computed by the backup operator does not improve at least the value of b (i.e., 〈α,b〉<
Vn(b), see lines 15–17 in Table 1), we ignore α and insert a copy of the maximizing element of b
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from Vn in Vn+1. Point b is now considered improved and is removed from B̃, together with any
other belief points that had the same function as maximizing one in Vn. This procedure ensures that
B̃ shrinks at each iteration and that the value update stage terminates.

PERSEUS stops when a given convergence criterion holds. This criterion can be based on the
stability of the value function, on the stability of the associated policy, or simply on a maximum
number of iterations or maximum planning time.

5. Representations for Continuous-State POMDPs

PERSEUS can be used with different representations for the beliefs, the α-functions, and the tran-
sition, observation and reward models. The selected representations should fulfill three minimum
requirements. First, the belief update has to be closed, that is, the representation used for the beliefs
must be closed under the propagation through the transition model (Eq. 3) and the multiplication
with the observation model (Eq. 2). The second requirement is that the representation for the α-
functions must be closed under addition and scaling (to compute Eq. 8), and closed for the inte-
gration after the product with the observation and the action models (see Eq. 6). Finally, the third
requirement is that the 〈α,b〉 expectation operator must be computable.

For discrete-state POMDP, the belief and the α-functions are represented by vectors and the
models by matrices. In this case, all operations are linear algebra that produce closed form results.
Next, we describe two alternative representations for continuous-state POMDPs. The first one uses
linear combinations of Gaussian distributions to represent α-functions and mixtures of Gaussian
distributions to represent belief states. The second one also uses linear combinations of Gaussian
distributions to represent α-functions, but uses sets of particles to represent beliefs.

5.1 Models for Continuous-State POMDPs

For POMDPs with continuous states and discrete observations, a natural observation model p(o|s)
would consist of a continuum of multinomial distributions over o (i.e., one multinomial for each s).
Unfortunately, such an observation model will not keep α-functions in closed form when multiplied
by the observation model in a Bellman backup. Instead, we consider observation models such that
p(o|s) is approximated by a mixture of Gaussians in s for a given observation o.

We define the observation model p(o|s) indirectly by specifying p(s|o). More specifically, for
a fixed observation o, we assume that p(s|o) is a mixture of Gaussians on the state space defined
non-parametrically from a set of samples T = {(si,oi) | i∈ [1,N]} with oi an observation obtained at
state si. The training set can be obtained in a supervised way (Vlassis et al., 2002) or by autonomous
interaction with the environment (Porta and Kröse, 2004). The observation model is

p(o|s) =
p(s|o) p(o)

p(s)
,

and, assuming a uniform p(s) in the space covered by T , and approximating p(o) from the samples
in the training set we have

p(o|s) ∝
[ 1

No

No

∑
i=1

λo
i φ(s|so

i ,Σ
o
i )

]No

N
=

No

∑
i=1

wo
i φ(s|so

i ,Σ
o
i ),

where so
i is one of the No points in T with o as an associated observation, φ is a Gaussian with mean

so
i and covariance matrix Σo

i , and wo
i = λo

i /N is a weighting factor associated with that training point.
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The sets {λo
i }i and {Σo

i }i should be defined so that

No

∑
i=1

λo
i = No,

λo
i ≥ 0,

and so that

p(s) = ∑
o

p(s|o) p(o) = ∑
o

No

∑
i=1

wo
i φ(s|so

i ,Σ
o
i ),

is (approximately) uniform in the area covered by T .
As far as the transition model is concerned, we assume it is linear-Gaussian

p(s′|s,a) = φ(s′|s+∆(a),Σa), (10)

with φ a Gaussian centered at s+∆(a) with covariance Σa. The function ∆(·) is a mapping from the
action space to the state space and encodes the changes in the state produced by each action. For
discrete action sets, this function can be seen as a table with one entry per action.

Finally, the reward model ra(s) is defined by a linear combination of (a fixed number of) Gaus-
sians

ra(s) = ∑
i

wi φi(s|µ
a
i ,Σ

a
i ),

where µa
i and Σa

i are the mean and covariance of each Gaussian.

5.2 α-Functions Representation

As mentioned above, we require an α-function representation that allow us to get a closed expres-
sion for the α j

a,o (Eq. 7). With the above models, the α-functions can be represented by a linear
combination of Gaussians as stated in the following lemma.

Lemma 5 The functions αi
n(s) can be expressed as linear combinations of Gaussians, assuming the

observation, transition and reward models are also linear combinations of Gaussians.

Proof This lemma can be proved via induction. For n = 0, αi
0(s) = ra(s) for a fixed a and thus it is

indeed a linear combination of Gaussians. For n > 0, we assume that

α j
n−1(s

′) = ∑
k

w j
k φ(s′|s j

k,Σ
j
k).

Then, with our particular models, α j
a,o(s) in Eq. 6 is the integral of three linear combinations of

Gaussians

α j
a,o(s) =

Z

s′

[

∑
k

w j
k φ(s′|s j

k,Σ
j
k)

][

∑
l

wo
l φ(s′|so

l ,Σ
o
l )

]

φ(s′|s+∆(a),Σa)ds′

=
Z

s′
∑
k,l

w j
k wo

l φ(s′|s j
k,Σ

j
k)φ(s′|so

l ,Σ
o
l )φ(s′|s+∆(a),Σa)ds′

= ∑
k,l

w j
k wo

l

Z

s′
φ(s′|s j

k,Σ
j
k)φ(s′|so

l ,Σ
o
l )φ(s′|s+∆(a),Σa)ds′.
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To compute this equation, we have to perform the product of two Gaussians and a closed formula is
available for this operation

φ(x|a,A)φ(x|b,B) = δ φ(x|c,C),

with

δ = φ(a|b,A+B) = φ(b|a,A+B),

C = (A−1 +B−1)−1,

c = C (A−1 a+B−1 b).

In the above case, we have to apply this formula twice, once for φ(s′|s j
k,Σ

j
k) and φ(s′|so

l ,Σ
o
l ) to get

(δ j,o
k,l φ(s′|s1,Σ1)) and once more for (δ j,o

k,l φ(s′|s1,Σ1)) and φ(s′|s+∆(a),Σa) to get (δ j,o
k,l β j,o,a

k,l (s)φ(s′|s,Σ)).

The scaling terms δ j,o
k,l and β j,o,a

k,l (s) can be expressed as

δ j,o
k,l = φ(so

l |s
j
k,Σ

j
k +Σo

l ),

β j,o,a
k,l (s) = φ(s|s j,o

k,l −∆(a),Σ j,o
k,l +Σa),

with

Σ j,o
k,l = [(Σ j

k)
−1 +(Σo

l )
−1]−1,

s j,o
k,l = Σ j,o

k,l [(Σ j
k)
−1 s j

k +(Σo
l )
−1 so

l ].

With this, we have

α j
a,o(s) = ∑

k,l

w j
k wo

l

Z

s′
δ j,o

k,l β j,o,a
k,l (s)φ(s′|s,Σ)ds′

= ∑
k,l

w j
k wo

l δ j,o
k,l β j,o,a

k,l (s)
Z

s′
φ(s′|s,Σ)ds′

= ∑
k,l

w j
k wo

l δ j,o
k,l β j,o,a

k,l (s).

Using Eqs. 7 and 8, we define the elements in {αi
n} as

αi
n = ra + γ∑

o
argmax
{α j

a,o} j

〈α j
a,o,b〉.

Since the result of the argmax is just one of the members of the set {α j
a,o} j, all the elements involved

in the definition of αi
n are linear combinations of Gaussians and so is the final result.

One point that deserves special consideration is the explosion of the number of components in
the linear combinations of Gaussians defining the α-functions. If No is the number of components in
the observation model and Cr is the average number of components in the reward model, the number
of components in the αn-functions scales with O((No)

n Cr). Appendix A details an algorithm to
bound the number of components of a mixture while losing as little information as possible.
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5.3 Belief Representation

To get a belief update and an expectation operator that are computable, we consider two possible
representations for the beliefs. The first one is Gaussian-based and the second one is particle-based.

5.3.1 GAUSSIAN-BASED REPRESENTATION

In this first case, we will assume that belief points are represented as Gaussian mixtures

b(s) = ∑
j

w j φ(s|s j,Σ j), (11)

with φ a Gaussian with mean s j and covariance matrix Σ j and where the mixing weights satisfy w j >
0, ∑ j w j = 1. In the extreme case, Gaussian mixtures with an infinite number of components would
be necessary to represent a given point in the infinite-dimensional belief space of a continuous-state
POMDP. However, only Gaussian mixtures with few components are needed in practical situations.

The belief update on Eq. 2 can be implemented in our model taking into account that it consists
of two steps. The first one is the application of the action model on the current belief state. This can
be computed as the propagation of the Gaussians representing b(s) (Eq. 11) through the transition
model (Eq. 10)

p(s′|b,a) =
Z

s
p(s′|s,a)b(s)ds = ∑

j

w j φ(s|s j +∆(a),Σ j +Σa).

In the second step of the belief update, the prediction obtained with the action model is corrected
using the information provided by the observation model

ba,o(s′) ∝
[

∑
i

wo
i φ(s′|so

i ,Σ
o
i )

][

∑
j

w j φ(s|s j +∆(a),Σ j +Σa)
]

= ∑
i, j

wo
i w j φ(s′|so

i ,Σ
o
i )φ(s|s j +∆(a),Σ j +Σa).

As mentioned, the product of two Gaussian functions is a scaled Gaussian. Therefore, we have that

ba,o(s′) ∝ ∑
i, j

wo
i w j δa,o

i, j φ(s′|sa,o
i, j ,Σa,o

i, j ),

with

δa,o
i, j = φ(s j +∆(a) | so

i ,Σ
o
i +Σ j +Σa),

Σa,o
i, j = ((Σo

i )
−1 +(Σ j +Σa)−1)−1,

sa,o
i, j = Σa,o

i, j ((Σo
i )
−1 so

i +(Σ j +Σa)−1 (s j +∆(a))).

Finally, we can rearrange the terms to get

ba,o(s′) ∝ ∑
k

wk φ(s′|sk,Σk),

with wk = wo
i w j δa,o

i, j , sk = sa,o
i, j , and Σk = Σa,o

i, j for all possible i, j. The proportionality in the definition
of ba,o(s′) implies that the weights (wk, ∀k) should be scaled to sum to one

ba,o(s′) =
1

∑k wk
∑
k

wk φ(s′|sk,Σk).
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An increase in the number of components representing a belief occurs when computing the
belief update just detailed. If b0 has Cb components and p(o|s) is represented with an average of
Co components, the number of components in the belief bt scales with O(Cb(Co)

t). As in the case
of the α-functions, the procedure detailed in Appendix A could be used to bound the number of
components in the beliefs.

Taking into account that the α-functions are also Gaussian-based, the expectation operator 〈·, ·〉
can be computed in closed form as

〈α,b〉=
Z

s

[

∑
k

wk φ(s|sk,Σk)
][

∑
l

wl φ(s|sl,Σl)
]

ds

= ∑
k,l

wk wl

Z

s
φ(s|sk,Σk)φ(s|sl,Σl)ds

= ∑
k,l

wk wl φ(sl|sk,Σk +Σl)
Z

s
φ(s|sk,l,Σk,l)ds

= ∑
k,l

wk wl φ(sl|sk,Σk +Σl).

5.3.2 PARTICLE-BASED REPRESENTATION

An alternative to parameterize the belief densities using Gaussian mixtures is to represent the belief
using N random samples, or particles, positioned at points si and with weights wi. Thus, the belief
is

bt(s) =
N

∑
i=1

wi d(s− si),

where d(s− si) is a Dirac’s delta function centered at 0. Particle-based representations have been
very popular in recent years, and they have been used in many applications from tracking to Simul-
taneous Localization and Mapping, SLAM, (see Doucet et al., 2001, for a review).

A particle-based representation has many advantages: it can approximate arbitrary probability
distributions (with an infinite number of particles in the extreme case), it can accommodate non-
linear transition models without the need of linearizing the model, and it allows several quantities
of interest to be computed more efficiently than with the Gaussian-based belief representation. In
particular, the integral in the belief update equation becomes a simple sum

ba,o(s′) ∝ p(o|s′)
N

∑
i=1

wi p(s′|si,a).

The central issue in the particle filter approach is how to obtain a set of particles to approximate
ba,o(s′) from the set of particles approximating b(s). The usual Sampling Importance Re-sampling
(SIR) approach (Dellaert et al., 1999; Isard and Blake, 1998) samples particles s′i using the motion
model p(s′|si,a), then it assigns a new weight to each one of these particles proportional to the
likelihood p(o|s′i), and finally it re-samples particles using these new weights in order to make all
particles weights equal. The main problem of the SIR approach is that it requires many particles to
converge when the likelihood p(o|s′) is too peaked or when there is only a small overlap between
the prior and the posterior likelihood.
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In the auxiliary particle filter (Pitt and Shephard, 1999) the sampling problem is addressed by
inserting the likelihood inside the mixture

ba,o(s′) ∝
N

∑
i=1

wi p(o|s′) p(s′|si,a).

The state s′ used to define the likelihood p(o|s′) is not observed when the particles are resampled
and we have to resort to approximations

ba,o(s′) ∝
N

∑
i=1

wi p(o|µi) p(s′|si,a).

with µi any likely value associated with the i-th component of the transition density p(s′|si,a), for
example its mean. In this case, we have that µi = si + ∆(a). Then ba,o(s′) can be regarded as a
mixture of the N transition components p(s′|si,a) with weights wi p(o|µi). Therefore, sampling a
new particle s′j to approximate ba,o(s′) can be carried out by selecting one of the N components, say
i j, with probability wi p(o|µi) and then sampling s′j from the corresponding component p(s′|si j ,a).
Sampling is performed in the intersection of the prior and the likelihood and, consequently, particles
with larger prior and larger likelihood (even if this likelihood is small in absolute value) are more
likely to be used.

After the set of states for the new particles is obtained using the above procedure, we have to
define their weights. This is done using

w′j ∝
p(o|s′j)

p(o|µi j)
.

Using the sample-based belief representation the averaging operator 〈·, ·〉 becomes

〈α,b〉=
Z

s

[

∑
k

wk φ(s|sk,Σk)
][

∑
l

wl d(s− sl)
]

ds

= ∑
k

wk

Z

s
φ(s|sk,Σk) ∑

l

wl d(s− sl)ds

= ∑
k

wk ∑
l

wl φ(sl|sk,Σk)

= ∑
k,l

wk wl φ(sl|sk,Σk).

Other re-sampling strategies such as those proposed by Fox (2003) that on-line adapt the number of
sampled particles can also be applied here.

Given the common features between beliefs and α-functions in value iteration (i.e., beliefs and
α-functions are both continuous functions of the state space), the α-functions also admit a particle
representation. Note however that we cannot have both beliefs and α-functions represented by
particles since the computation of 〈α,b〉 requires that either b or α be in functional form to generalize
over the entire state space.
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Perseus
Input: A POMDP.
Output: Vn, an approximation to the optimal

value function, V ∗.
1: Initialize
2: B← A set of randomly sampled belief points.

3: α← min{R}
1−γ U

4: n← 0
5: Vn←{α}
6: do
7: ∀b ∈ B,
8: Elementn(b)← argmaxα∈Vn

〈α,b〉
9: Valuen(b)← 〈Elementn(b),b〉
10: Vn+1← /0
11: B̃← B
12: do
13: b← Point sampled randomly from B̃.
14a: A← SampleActions(b)
14b: α← backup(b)
15: if 〈α,b〉< Valuen(b)
16: α← Elementn(b)
17: endif
18: B̃← B̃\{b′ ∈ B̃ | 〈α,b′〉 ≥ Valuen(b′)}
19: Vn+1←Vn+1∪{α}
20: until B̃ = /0
21: n← n+1
22: until convergence

Table 2: Modification of the PERSEUS algorithm in Table 1 to deal with large or continuous action
spaces.

6. Extensions to Continuous Action and Observation Spaces

In Section 4, we presented a point-based value iteration algorithm to deal with continuous-state
POMDPs. Now, we describe how to extend the presented framework to deal with continuous sets
of actions and observations so that fully continuous POMDPs can also be addressed. The basic
idea is that general continuous POMDPs can be cast in the continuous-state POMDP paradigm via
sampling strategies.

6.1 Dealing with Continuous Actions

The backup operator in continuous-state value iteration requires computing a set of α-functions in
Eq. 8, one function for each action a ∈ A, and then choosing the best function to back up. When
the action space A is finite and small, the above optimization can be carried out efficiently by enu-
merating all possible actions and choosing the best, but in very large discrete action spaces this is
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computationally inefficient. In this case, or when actions are continuous, one can resort to sampling-
based techniques. As proposed by Spaan and Vlassis (2005), we can replace the full maximization
over actions with a sampled max operator that performs the maximization over a subset of actions
randomly sampled from A. One may devise several sampling schemes for choosing actions from A,
for example, uniform over A or using the best action up to a given moment. Actions sampled uni-
formly at random can be viewed as exploring actions, while the latter can be viewed as exploiting
current knowledge. Spaan and Vlassis (2005) provide more details on this point.

The use of a sampled max operator is very well suited for the point-based backups of PERSEUS,
in which we only require that the values of belief points do not decrease over two consecutive
backup stages. However, some modifications need to be introduced in the action and reward models
described in Section 5.1. The action model described can be easily extended to continuous actions
defining a continuous instead of a discrete function ∆ : A→ S and evaluating it for the actions in the
newly sampled A. As far as the reward model is concerned, we simply need to evaluate it for the
sampled actions. Table 2 describes a modification of the basic PERSEUS algorithm to deal with large
or continuous action spaces. Observe that, before computing the backup for the randomly selected
belief point b (line 14b), we have to sample a new set of actions, A (line 14a) and the transition and
reward models have to be modified accordingly, since they depend on the action set. Beside the
action sampling and the on-line models computation, the rest of the algorithm proceeds the same
as the one in Table 1. Note however, that the actions are sampled specifically for each belief b and,
therefore we can not compute something similar to the α j

a,o-elements (see Eq. 6) that are common
for all beliefs.

6.2 Dealing with Continuous Observations

In value iteration, the backup of a belief point b involves computing the expectation over observa-
tions

Vn(b) = argmax
a

{

〈ra,b〉+ γVn−1(b
a)

}

,

with
Vn−1(b

a) =
Z

o
p(o|b,a)Vn−1(b

a,o)do.

Using the definition of value function, the above reads

Vn−1(b
a) =

Z

o
p(o|b,a) max

{α j
n−1} j

〈α j
n−1,b

a,o〉do. (12)

Building on an idea proposed by Hoey and Poupart (2005), assuming a finite number of α-elements
α j

n−1, observation spaces can always be discretized without any loss of information into regions
corresponding to each α-element. In Eq. 12, all observations that lead to belief states ba,o with the
same maximizing α-element can be aggregated together into one meta observation O j

a,b defined as
follows

O j
a,b = {o |α j

n−1 = argmax
{α j

n−1} j

〈α,ba,o〉}.

Using O j
b,a, we can rewrite Eq. 12 as a sum over α-elements

Vn−1(b
a) = ∑

j

Z

o∈O j
a,b

p(o|b,a) 〈α j
n−1,b

a,o〉do.
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Rewriting the observation probabilities p(o|b,a) in terms of s′, we obtain

Vn−1(b
a) =

〈

∑
j

Z

s′
α j

n−1(s
′)

[

Z

o∈O j
a,b

p(o|s′)do
]

p(s′|s,a)ds′,b
〉

.

Hoey and Poupart (2005) assume a discrete state space, in which case the above quantity can be sim-
plified by accumulating probability masses over observations in O j

a,b, that is, defining p(O j
a,b|s

′) =
R

o∈O j
a,b

p(o|s′)do for each state s′, and then approximating p(O j
a,b|s

′) by sampling observations from

p(o|s′). When the variable s′ is continuous we can sample observations by importance sampling
from some proposal distribution q(o). With this we have

p(O j
a,b|s

′)'
1
N

N j

∑
i=1

p(o j
i |s
′)

q(o j
i )

,

with O j
a,b = {o j

1, . . . ,o
j
N j
} the set of observations for which α j

n−1 is maximal. The proposal distri-
bution q(o) can be, for instance, p(o|b′) with b′ uniform in S or p(o|b′) with b′ the current belief
point. In our experiments we simply used a uniform distribution in O.

When working with continuous observations, the model given in Section 5.1 is no longer valid.
However, we can assume the observation model to be defined using kernel smoothing from a training
set including state-observation tuples. From those samples we can define

p(o,s) =
N

∑
i=1

λi φ(o|oi,Σo
i )φ(s|si,Σs

i ),

and, using that,

p(o|s) =
p(o,s)
p(s)

.

Assuming a uniform p(s), we have that p(o|s) for a fixed observation is a Gaussian in s′, which
guarantees that α-functions remain closed under Bellman backups (see Section 5.1). With the ob-
servation model in the above form, we can further simplify p(O j

a,b|s
′) since we have that

p(O j
a,b|s

′)'
1
N

N j

∑
i=1

p(o j
i |s
′)

q(o j
i )

=
1
N

N j

∑
i=1

1

q(o j
i )

[ N

∑
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∑
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∑
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∑
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∑
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i )

.
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With the discretized observation model we can define

α j
a,b = ∑

j

Z

s′
α j

n−1(s
′) p(O j

a,b|s
′) p(s′|s,a)ds′,

that plays the same role in the Bellman backup as the α j
a,o,b-functions introduced in Eq. 7. With the

above we have
Vn−1(b

a) = 〈α j
a,b,b〉,

and the α-elements for Vn at belief b are defined as

{αi
n}i = {ra + γ α j

a,b}a∈A.

Thus, as far as implementation is concerned, continuous observation spaces introduce a modi-
fication in the backup, but this modification is independent of the rest of the algorithm. Therefore
this new operator can be used both in PERSEUS with either discrete or sampled continuous actions
(see Table 1 and Table 2, respectively).

Note that if we work with continuous observation spaces, the α j
a,b-functions are computed

specifically for each belief and, therefore no precomputation similar to those of the α j
a,o-elements is

possible.

7. Experiments and Results

To demonstrate the viability of our method we carried out some experiments in a simulated robotic
domain. The simulation was programmed in Matlab 7.1 using a Pentium Xeon at 3 GHz running
under Linux. In the simulated problem (see Fig. 1-a), a robot is moving along a corridor with four
doors, where the state space is the continuous interval [−21,21]. The target for the robot is to
locate the second door from the right and enter it. The robot only receives positive reward when it
enters the target door (see Fig. 1-c). When the robot tries to move beyond the end of the corridor
(either right or left), or when it tries to enter a door at a wrong position, it receives negative reward.
The reward function is represented using a linear combination of nine Gaussian functions. Three
Gaussians are placed at each extreme of the corridor to represent the negative reward for trying to
move beyond the end of the corridor (with means±21,±19,±17, covariance 0.05, and weight−2).
Two Gaussians represent the negative reward for trying to enter a door at the wrong position (with
means±25, covariance 12.5, and weight−10). Finally, one Gaussian is used for the positive reward
associated with entering the correct door (with mean 3, covariance 0.15, and weight 2).

In all reported experiments, the set of beliefs B used in the PERSEUS algorithm contains 500
unique belief points collected using random walks departing from a uniform belief, the latter being
approximated with a Gaussian mixture with four components. The walks of the robot along the
corridor are organized in episodes of 30 actions (thus, for instance, the robot can repetitively try to
enter the correct door accumulating positive reward). In all experiments we set γ = 0.95.

In the first experiment we assume discrete observations and actions. There are four distinct
observations, left-end, right-end, door, and corridor. The observation model, shown in Fig. 1-b, is
approximated using a training set of 22 samples evenly placed every two space units from −21 to
21 (with Σo = 4). The five right/left-most samples correspond to observations right-end and left-
end, respectively, each sample taken in front of a door corresponds to observation door, and the rest
of the samples correspond to observation corridor. There are three distinct actions: the robot can
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Figure 1: A pictorial representation of the test problem (a), the corresponding observation model
(b), and the reward model (c).

move two units either to the left or to the right (with Σa = 0.05), or it can try to enter a door at any
point. In this experiment we used Gaussian mixtures to represent the beliefs, compressing them, if
necessary, to a maximum of four components, and similarly we used α-functions with a maximum
of nine Gaussian components.

Fig. 2 shows the average results obtained after 10 runs of the version of PERSEUS described in
Section 4. The first plot (top-left) shows the convergence of the value computed as ∑bV (b). The
second plot (top-right) shows the expected discounted reward computed by running for 50 episodes
the policy available at the corresponding time slice. The fact that this plot converges to a positive
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Figure 2: Results for the simulated robotic problem using continuous states but discrete actions
and observations. Top: Evolution of the value for all the beliefs in B and the average
accumulated discounted reward for 10 episodes. Bottom: Number of elements in Vn

and the number of policy changes. Results are averaged for 10 repetitions and the bars
represent the standard deviation.

value indicates that the robot successfully learns to avoid collisions, to find out its position, and to
identify the target door. Next plot (bottom-left) shows the number of α-functions used to represent
the value function. We can see that the number of α-functions increases, but it remains far below
500, the maximum possible number of α-functions (in the extreme case we would use a different
α-function for each point in B). Finally, the bottom-right plot shows the number of changes in the
policy from one time step to another. The changes in the policy are computed as the number of
beliefs in B with a different optimal action from one time slice to the next. The number of policy
changes drops to zero, indicating convergence with respect to the particular B. In Fig. 3 we show
a typical trajectory of the robot when executing a policy found at convergence of PERSEUS. The
snapshots show the evolution of the belief of the robot, and the actions taken, from the beginning of
the episode (the robot starts at location 7) until the target door is entered.
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Figure 3: Evolution of the belief when following the discovered policy. The arrows under the snap-
shots represent the actions:→ for moving right,← for moving left, and ↑ for entering the
door. The four numbers on the x-axis indicate the locations of the four doors.

PSfrag replacements

V
al

ue

µ

σ

0

5

5
−5

10

−10

15

−15

2

6

10

10

0

0.2

0.4

0.6

0.8

µ

σ

Figure 4: Value function for single-component beliefs as a function of the mean µ and the standard
deviation σ.

2353



PORTA, VLASSIS, SPAAN AND POUPART

PSfrag replacements

tim
e

(s
)

No. components

1

2

3

4

5

6

7

8

5

10

15

20

4 6

9

12

15

16

18

20

21

24

27

28

30

32
33

PSfrag replacements

tim
e

(s
)

No. components

1

2

3

4

5

6

7

8

5

10

15

20

4

6

9 12 15

16

18

20

21 24 27

28

30
32

33

Figure 5: Execution time in seconds for the first iteration of PERSEUS as the number of components
representing the beliefs increase (left) and as the number of components representing the
α-functions increase (right).

Since the state space is one-dimensional in this example, beliefs with a single (Gaussian) com-
ponent can be fully characterized by their sufficient statistics, that is, the mean µ and the variance
σ2. In Fig. 4 we plot the value of single-Gaussian beliefs for different µ and σ. We note that, as
the uncertainty about the position of the robot grows (i.e., the σ is larger), the value of the corre-
sponding belief decreases. The colors/shadings in the figure correspond the different actions: black
for moving to the right, light-gray for entering the door, and dark-gray for moving to the left. This
plot demonstrates that a value function that is convex over the belief space may not necessarily be
convex over the space of sufficient statistics of the beliefs.

Fig. 5-left shows the increase in the execution time as more components are used to represent
the beliefs. The plotted data correspond to the time in seconds for the first PERSEUS value update
stage, that is, for the computation of the first backup (line 14 in Table 1) and the new value for all
the beliefs in B (line 18 in the algorithm). The cost of executing the first iteration is an indicator of
the computational complexity of the system that is independent of the problem at hand; the cost of
later stages of PERSEUS scales with the number of elements in the previous value function approx-
imation, Vn−1, and the number of elements to be generated for the new approximation, Vn, and both
quantities are problem-dependent. We can see that the increase in the execution time is rather linear
with the number of components in the belief. In all the experiments summarized in Fig. 5-left, we
used nine components to represent the α-functions. To assess the effects of increasing the number
of components in the α-functions, in Fig. 5-right we show the increase in the execution time for the
first PERSEUS iteration when beliefs are represented with four components and the α-functions are
represented with an increasing number of elements. We can observe that after about 24 components
the execution time is almost constant. This is due to the fact that, for the problem at hand, no more
components are needed to represent the α-functions. The Gaussian mixture condensation algorithm
detailed in Appendix A has the property of discarding some components from the output if these
are not necessary.

The effect on the quality of the solution when reducing the number of components for the beliefs
and the α-functions can be seen in Fig. 6 where we depict the average accumulated discounted
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Figure 6: Reduction in the obtained average accumulated discounted reward when reducing the
number of components in the beliefs to just one (dotted line) and in the α-functions to
three (dashed line). The solid line is the average accumulated reward when using 4 com-
ponents for the beliefs and 9 for the α-functions.

reward when representing beliefs with one component and α-functions with three components. We
observe that when using fewer components for the α-functions, the algorithm may converge to a
suboptimal policy. We also noticed that when using more than nine components, the improvements
in the final policy were marginal. When representing the beliefs with just one component, the quality
of the obtained policy also decreases. This is due to the fact that the problem at hand presents some
degree of perceptual aliasing (i.e., states for which different actions are required but where the same
observation is obtained). This aliasing can only be solved properly when using a multi-modal belief
representation, which is not the case for single Gaussians.

We note that the advantage of using a continuous state space is that we obtain a scale-invariant
solution. If we have to solve the same problem in a longer corridor, we can just scale the Gaussians
used in the problem definition and we will obtain the solution with the same cost as we have now.
The only difference is that more actions would be needed in each episode to reach the correct door.

Another way to solve this problem would be to discretize the state space and then apply the
PERSEUS algorithm for discrete POMDPs. When discretizing the environment, the granularity
has to be in accordance with the size of the actions taken by the robot (±2 left/right) and, thus,
the number of states and, consequently, the cost of the planning grows as the environment grows.
Fig. 7-left shows the execution time in seconds for the first stage of PERSEUS in a discretized
version of the problem as the number of states grows. The discretization is performed by selecting
n states uniformly sampled on the state space and then using the continuous models to define the
discrete ones. As we can see in the figure, the increase in the execution time with respect to the
number of states is higher than linear. With more than 100 states the execution is slower than that
for the continuous version when using 4 components for the beliefs and 9 for the α-functions (the
dashed line in Fig. 7-left is the time for the execution of the first iteration of PERSEUS in this case).
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Figure 7: Left: Execution time in seconds for the first iteration of PERSEUS in a discretized version
of the problem as the number of states grows. The dashed line is the time for the first it-
eration in the continuous-state version of the same problem. Right: Average accumulated
discounted reward obtained with the continuous-state version of PERSEUS with 4 compo-
nents for the beliefs and 9 for the α-functions (solid line) compared with the one obtained
with the discrete version of PERSEUS using only 20 states (dotted line) and using 200
states (dashed line) .

Note that the discrete version of PERSEUS relies on linear algebra operations that can be sped up
by taking advantage of the sparsity of the matrices and vectors defining the models and the beliefs,
however, such speedups are not implemented in the version of PERSEUS we use for the experiments.
A remarkable difference between the continuous and the discrete-state version is that the first one
spends most of the time in the computation of the value for all beliefs (i.e., in the 〈·, ·〉 operator)
while the second one spends most of the time in the computation of the α j

a,o vectors that are later on
used in the backup. Fig. 7-right shows the average accumulated discounted reward obtained with the
discrete version of PERSEUS working on different number of states compared with the one obtained
in the first experiment (see Fig. 2). We can see that, when using a too coarse discretization (only
20 states) the discrete version of the problem does not capture all the features of the continuous one
and, therefore, we observe convergence to a sub-optimal solution. Only when using enough states in
the discretization the discrete version of PERSEUS delivers a plan that is as good as the one obtained
with the continuous PERSEUS. The average accumulated discounted reward with a discretization
with 200 states is shown in Fig. 7-right.

In the following experiment, the same problem was solved using particles to represent the beliefs
instead of Gaussian mixtures. In this case, the α-functions are still represented as Gaussian mixtures,
with 9 components. The results obtained using 75 particles are shown in Fig. 8. Note that the results
are similar to those obtained when using Gaussian mixtures to represent the beliefs (see Fig. 2) but
they are obtained in about 5 times more execution time. This is reasonable since, although the basic
operations implementing the expectation operator 〈·, ·〉 are more efficient when using particle-based
beliefs, this is compensated by the fact that, in general, we have to use a large amount of particles.
Therefore, the use of particles might only be advantageous when the belief cannot be represented
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Figure 8: Results when using 75 particles to represent the beliefs. Top: Evolution of the value for all
the beliefs in B and the average accumulated discounted reward for 10 episodes. Bottom:
Number of elements in Vn and the number of policy changes. Results are averaged for 10
repetitions and the bars represent the standard deviation.

with a few-components Gaussian mixture, when the action model is not linear, or when using an
on-line mechanism to dynamically adjust the number of particles (Fox, 2002, 2003).

Fig. 9 shows the average accumulated discounted reward using two different sets of actions.
When using an action set including short robot movements (±1), the number of steps to reach the
target increase and, since positive reward is only obtained at the end of the run when entering the
door, the average accumulated reward decreases. When using a set of actions with too large move-
ments (±4) the robot has problems aiming the correct door and the average accumulated reward
also decreases. Since the appropriate set of actions for each problem is hard to forecast, it would be
nice to have a planning system able to determine a proper set of actions by itself. For this purpose
in the next experiment we let the robot execute actions in the continuous range [−6,6], where an
action can be regarded here as a measure of velocity of the robot. When the robot is almost stopped
(i.e., its velocity is below 5% of the maximum one) we interpret this as trying to enter a door. In
each backup at planning stage n, we consider the optimal action according to Vn−1 and three more
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Figure 9: Average accumulated discounted reward using different sets of actions.

actions selected at random with uniform distribution in the range [−6,6]. Fig. 10 shows the average
results obtained by 10 repetitions. The policy change in the bottom-right plot is computed as the
sum squared difference of the actions in two consecutive PERSEUS iterations for all beliefs. The
fact that this norm goes to zero means that policy gets stable and, observing the plot for the reward,
we can see that the discovered policy is better than the one in Fig. 2, meaning that the algorithm is
able to determine better motion actions than the ones we manually fixed in the initial version of the
problem (±2), and that is able to select enter door actions when necessary.

Finally, we modified the initial problem so that it is formalized with continuous state, action,
and observation spaces. Here we assume that the robot observations are obtained with a noisy sen-
sor that measures the width of the corridor. The observations are noise-perturbed versions of four
nominal integer values: 1 for the right extreme, 2 for the left one, 4 for the doors, and 3 for the
rest of positions (see Fig. 1-a). The sensor noise is assumed white Gaussian with covariance equal
to 0.3, resulting in a continuous set of observations in the range [0,5]. For each backup, we still
use four actions (the optimal one up for Vn−1 and three randomly selected ones) and we discretize
the observation space by uniformly sampling 100 observations. Fig. 11 shows the results obtained
in this case. We see a performance similar to the one obtained with continuous states, continuous
actions, and discrete observations, implying that the observation-space discretization does not affect
the quality of the final policy. An interesting observation is that the algorithm converges faster and
that the optimal value is approximated with fewer α-functions than when using discrete observa-
tions. This is probably due to the fact that the observation discretization takes advantage (and relies
on) the structure of the previous approximation to the value function.

With this experiment we conclude our demonstration that the full continuous POMDP case can
be addressed with the techniques proposed in this paper.

8. Related Work

The literature on POMDPs with continuous states is still relatively sparse. A common approach is
to assume a discretization of the state space, which can be a poor model of the underlying system.
However, when the system is linear and the reward function is quadratic, an exact solution for
continuous-state POMDPs is known that can be computed in closed form (Bertsekas, 2001). While
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Figure 10: Results when the problem is modeled with continuous states and actions. Top: Evolution
of the value for all the beliefs in B and the average accumulated discounted reward for
10 episodes. Bottom: Number of elements in Vn and the average policy change. Results
are averaged for 10 repetitions and the bars represent the standard deviation.

such an assumption on the reward function can be reasonable in certain control applications, it is a
severe restriction for the type of AI applications that we consider.

Roy (2003) has proposed compression techniques for handling POMDPs with large (discrete)
state spaces, one of which compresses beliefs to two parameters: the state with maximum likelihood
and the belief’s entropy. Such a representation may lead to poor performance when multi-modal
beliefs are likely to occur in a particular application. Recently, Brooks et al. (2006) have proposed
a related parameterization of the beliefs using the sufficient statistics of an appropriately chosen
parametric family (e.g., Gaussians). Both methods compute an approximate value function on a grid
in their low-dimensional parameter spaces, and do not use the PWLC property of the POMDP value
function. In contrast, we exploit the known shape of the value function, which offers an attractive
potential for generalization through the use of α-functions, analogous to the effective exploitation
of α-vectors in discrete-state POMDPs.
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Figure 11: Results when the problem is modeled with continuous states, observations and actions.
Top: Evolution of the value for all the beliefs in B and the average accumulated dis-
counted reward for 100 episodes. Bottom: Number of elements in Vn and the number
of policy changes. Results are averaged for 10 repetitions and the bars represent the
standard deviation.

An approach to continuous-state POMDPs that is closely related to ours is the Monte Carlo
POMDP (MC-POMDP) method of Thrun (2000), in which real-time dynamic programming is ap-
plied on a POMDP with a continuous state and action space. In that work beliefs are represented
by sets of samples drawn from the state space, while Q(b,a) values are approximated by nearest-
neighbor interpolation from a (growing) set of prototype values and are updated by online explo-
ration and the use of sampling-based Bellman backups. The MC-POMDP method approximates
the Bellman backup operator by sampling from the belief transition model, whereas in our case, we
compute the Bellman backup operator analytically given the particular value-function representa-
tion. In the MC-POMDP algorithm nearest-neighbor interpolation is used to approximate the value
of beliefs outside the set. This is in contrast with our Gaussian-mixture representation, in which
the value function achieves generalization through a set of α-functions. When the value function
maintained by MC-POMDP does not contain enough neighbors within a certain distance for an
encountered belief, the belief is added to the value function. PERSEUS operates on a fixed set of
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beliefs, and does not require such an online expansion. Furthermore, the PERSEUS value function
is likely to generalize better over the belief space through the use of α-functions. In contrast with
PERSEUS, the MC-POMDP method does not exploit the piecewise linearity and convexity of the
value function.

Duff (2002) considered the problem of Bayesian reinforcement learning, in which the parame-
ters of the transition model of an MDP are treated as random variables. Experience in the form of ob-
served state transitions and received rewards is used to estimate the unknown MDP models. In con-
trast with straightforward exploration strategies such as ε-greedy, Bayesian reinforcement-learning
techniques try to identify the action that will maximize long-term reward. Such an optimally-
exploring action might sacrifice expected immediate payoff for refining the model estimates, thus
facilitating better control in the future. Duff (2002) models the Bayesian reinforcement-learning
problem as a POMDP, in which the parameters of the transition model form the state of the system,
and experienced transition tuples (s,a,s′) are the possible observations. Such a POMDP has a con-
tinuous state space as the transition probabilities can be any real number between zero and one. A
Monte Carlo algorithm is proposed for learning a (stochastic) finite-state controller for this partic-
ular class of POMDPs, where the required integrals are approximated by sampling and numerical
methods. Recently, Poupart et al. (2006) demonstrated that the optimal value function in Bayesian
reinforcement learning can be represented by a set of multivariate polynomials, in direct analogy to
the α-function representations for Gaussian-based POMDPs in this paper.

In the case of continuous action spaces only few methods exist that can handle continuous action
spaces directly (Thrun, 2000; Ng and Jordan, 2000; Baxter and Bartlett, 2001). Certain policy search
methods tackle continuous actions, for instance Pegasus (Ng and Jordan, 2000), which estimates the
value of a policy by simulating trajectories from the POMDP using a fixed random seed, and adapts
its policy in order to maximize this value. Pegasus can handle continuous action spaces at the cost
of a sample complexity that is polynomial in the size of the state space (Ng and Jordan, 2000,
Theorem 3). Baxter and Bartlett (2001) propose a policy gradient method that searches in the space
of randomized policies, and which can also handle continuous actions. The main disadvantages
of policy search methods are the need to choose a particular policy class and the fact that they are
prone to local optima.

Traditional POMDP methods assume discretized observation spaces. POMDPs with continuous
observation spaces have mainly been studied in model-free settings, for instance to learn policies for
a partially observable version of the classic pole-balancing task (Whitehead and Lin, 1995; Meuleau
et al., 1999; Bakker, 2003). Rudary et al. (2005) extend Predictive State Representations (PSRs) to
the linear-Gaussian case, which allows them to learn a PSR model of a linear dynamical system
with a continuous observation space. Finally, the analytic solution for the quadratic reward case
mentioned above can also handle continuous observations with a linear noise model (Bertsekas,
2001).

9. Conclusions and Future Work

In this paper we described an analytical framework for optimizing POMDPs with continuous states,
actions, and observations. For POMDPs with continuous states, we demonstrated the piecewise
linearity and convexity of value functions defined over infinite-dimensional belief states induced by
continuous states. We also demonstrated that continuous Bellman backups are isotonic and con-
tracting, allowing value iteration to be adapted to continuous POMDPs. In particular, we extended
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the PERSEUS algorithm with linear combinations of Gaussians and particle-based representations
for belief states. These are expressive representations that are closed under Bellman backups and
belief updates. Finally, we also extended PERSEUS to continuous actions and observations by par-
ticular sampling strategies that reduce the problem to a continuous state POMDP that can be tackled
by the PERSEUS algorithm.

In the near future, we plan to investigate reinforcement learning approaches for scenarios where
the POMDP model is unknown. The particle-based approach may be adaptable to reinforcement
learning since particles may be thought as sampled values. Conversely, note that discrete Bayesian
reinforcement learning can be cast as a POMDP with continuous states (Duff, 2002). Poupart et al.
(2006) recently developed a similar technique to optimize policies in environments with (partially)
unknown transition dynamics modeled by multinomials. It would be interesting to follow up on this
work by tackling Bayesian reinforcement learning problems with Gaussian-based dynamics.

Another interesting research direction would be to investigate which families of functions (be-
yond mixtures of Gaussians) are closed under Bellman backups and belief updates for different
types of transition, observation and reward models. In particular, mixtures of log-linear distribu-
tions provide an expressive parameterization that is likely to possess the necessary properties.
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Appendix A.

As a large number of components representing beliefs and α-functions slows down the basic oper-
ations of the algorithm, an efficient implementation of the algorithm is required to keep the number
of components reasonably bounded.

We use the procedure described by Goldberger and Roweis (2005) that transforms a given Gaus-
sian mixture with k components to another Gaussian mixture with at most m components, m < k,
while retaining the initial component structure. The algorithm is detailed in Table 3.

The algorithm uses the Kullback-Leibler, KL, distance between to Gaussian distributions f i =
N(µ,Σ), g j = N(µ′,Σ′) that is

KL( fi‖g j) =
1
2

(

log
|Σ′|
|Σ|

+Tr((Σ′)−1Σ)+(µ−µ′)>(Σ′)−1(µ−µ′)− c

)

,

with c the dimensionality of the space where the Gaussians are defined.
Observe that the above procedure is defined for Gaussian mixtures (with positive weights that

sum to 1), but our α-functions are linear combinations of Gaussian (with possibly negative weights).
Therefore, for the α-function compression, we use a modified version of the procedure just de-
scribed where the weights are normalized after taking its absolute value. This way, the distance
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Gaussian Mixture Condensation(f, m)
Input: A Gaussian mixture f = ∑k

i=1 wi fi(x|µi,Σi).
The maximum number of components

in the output mixture, m, m < k.
Output: A Gaussian mixture g = ∑m

i=1 w′i gi(x|µ′i,Σ′i) that
locally minimizes ∑k

i=1 wi min j∈[1,m]KL( fi‖g j)

1: Initialize
2: for j = 1 to m
3: w′j← w j

4: µ′j← µ j

5: Σ′j← Σ j

6 : d← ∑k
i=1 wi min j∈[1,m] KL( fi‖g j)

7: do
8: Compute the mapping from f to g
9: for i = 1 to k
10: π(i)← argmin j∈[1,m],w′j>0 KL( fi‖g j)

11: Define a new g
12: for j = 1 to m
13: I j←{i |π(i) = j, i ∈ [1,k]}
14: w′j← ∑i∈I j

wi

15: µ′j←
1

w′j
∑i∈I j

wi µi

16: Σ′j←
1

w′j
∑i∈I j

wi (Σi +(µi−µ′j)(µi−µ′j)
>)

17: d′← d
18: d← ∑k

i=1 wi KL( fi‖gπ(i))

19: until d < ε or |d−d′|
d < ε

Table 3: Gaussian mixture condensation algorithm where ε is a sufficiently small threshold (10−5 in
our implementation).

(locally) minimized by the algorithm in Table 3 is

d =
k

∑
i=1

|wi| min
j∈[1,m]

KL( fi‖g j).

Therefore, the algorithm tries to preserve the relevant peaks (either positive or negative) in the
original mixture. After the compression, the weights are re-computed taken into account the original
weights and the map π provided by the algorithm above.
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Abstract
Many perceptual models and theories hinge on treating objects as a collection of constituent parts.
When applying these approaches to data, a fundamental problem arises: how can we determine
what are the parts? We attack this problem using learning, proposing a form of generative latent
factor model, in which each data dimension is allowed to select a different factor or part as its expla-
nation. This approach permits a range of variations that posit different models for the appearance of
a part. Here we provide the details for two such models: a discrete and a continuous one. Further,
we show that this latent factor model can be extended hierarchically to account for correlations
between the appearances of different parts. This permits modeling of data consisting of multiple
categories, and learning these categories simultaneously with the parts when they are unobserved.
Experiments demonstrate the ability to learn parts-based representations, and categories, of facial
images and user-preference data.

Keywords: parts, unsupervised learning, latent factor models, collaborative filtering, hierarchical
learning

1. Introduction

Many collections of data exhibit a common underlying structure: they consist of a number of parts
or factors, each with a range of possible states. When data are represented as vectors, parts manifest
themselves as subsets of the data dimensions that take on values in a coordinated fashion. In the
domain of digital images, these parts may correspond to the intuitive notion of the component parts
of objects, such as the arms, legs, torso, and head of the human body. Prominent theories of compu-
tational vision, such as Biederman’s Recognition-by-Components (Biederman, 1987) advocate the
suitability of a parts-based approach for recognition in both humans and machines. Recognizing
an object by first recognizing its constituent parts, then validating their geometric configuration has
several advantages:

1. Highly articulate objects, such as the human body, are able to appear in a wide range of
configurations. It would be difficult to learn a holistic model capturing all of these variants.

2. Objects which are partially occluded can be identified as long as some of their parts are
visible.

c©2006 David A. Ross and Richard S. Zemel.
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3. The appearances of certain parts may vary less under a change in pose than the appearance of
the whole object. This can result in detectors which, for example, are more robust to rotations
of the target object.

4. New examples from an object class may be recognized as simply a novel combination of
familiar parts. For example a parts-based face detection system could generalize to detect
faces with both beards and sunglasses, having been trained only on faces containing one, but
not both, of these features.

The principal difficulty in creating such systems is determining which parts should be used, and
identifying examples of these parts in the training data.

In the part-based detectors created by Mohan et al. (2001) and Heisele et al. (2000) parts
were chosen by the experimenters based on intuition, and the component-detectors—support vec-
tor machines—were trained on image subwindows containing only the part in question. Obtaining
these subwindows required that they be manually extracted from hundreds or thousands of train-
ing images. In contrast, the parts-based detector created by Weber et al. (2000) proposed a way to
automate this process. During training of the geometric model, parts were selected from an initial
set of candidates to include only those which lead to the highest detection performance. The re-
sulting detector relied on a very small number of parts (e.g., 3) corresponding to very small local
features. Unlike the SVMs, which were trained on a range of appearances of the part, each of these
part-detectors could identify only a single fixed appearance.

Parts-based representations of data can also be learned in an entirely unsupervised fashion.
These parts can be used for subsequent supervised learning, but the models constructed can also be
valuable on their own. A parts-based model provides an efficient, distributed representation, and
can aid in the discovery of causal structure within data. For example, a model consisting of K parts,
each with J possible states, can represent JK different objects. Inferring the state of each part can
be done efficiently, as each part depends only on a fraction of the data dimensions.

These computational considerations make parts-based models particularly suitable for modeling
high-dimensional data such as user preferences in collaborative filtering problems. In this setting,
each data vector contains ratings given by a human subject to a number of items, such as books or
movies. Typically there are thousands of unique items, but for each user we can only observe ratings
for a small fraction of them. The goal in collaborative filtering is to make accurate predictions of
the unobserved ratings. Parts can be formed from groups of related items, and the states of a part
correspond to different attitudes towards the items. Unsupervised learning of a parts-based model
allows us to learn the relationships between items, which allows for efficient online and active
learning.

Here we propose a probabilistic generative approach to learning parts-based representations of
high-dimensional data. Our key assumption is that the dimensions of the data can be separated
into several disjoint subsets, or factors, which take on values independently of each other. Each
factor has a range of possible states or appearances, and we investigate two ways of modeling this
variability. First we address the case in which each factor has a small number of discrete states, and
model it using a vector quantizer. In some situations, however, continually-varying descriptions
of parts are more suitable. Thus, in our second approach we model part-appearances using factor
analysis. Given a set of training examples, our approach learns the association of data dimensions
with factors, as well as the states of each factor. Inference and learning are carried out efficiently
via variational algorithms. The general approach, as well as details for the models, are given in
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Section 2. Experiments showing parts-based representations learned for real data sets follow in
Section 3.

Although we initially assume that parts take on states independently, clearly in real-world situ-
ations there are dependencies. For example, consider the case of modeling images of human faces.
A model could be constructed representing the various parts of the face (eyes, nose, mouth, etc.),
and the various appearances of each part. If one part were to select an appearance with high pixel
intensities, due to lighting conditions or skin tone, then it seems likely that the other parts should
appear similarly bright. Realizing this, in Section 4 we propose a method of learning these depen-
dencies between part selections hierarchically, by introducing an additional higher-level cause, or
‘class’ variable, on which state selections for the factors are conditioned. This allows us to model
different categories of data using the same vocabulary of parts, and to induce the categories when
they are not available in advance. We conclude with a comparison to related methods, and a final
discussion in Sections 5 and 6.

2. An Approach to Learning Parts-Based Models

We approach the problem of learning parts by posing it as a stochastic generative model. We assume
that there are K factors, each a probabilistic model for the range of appearances of one of the parts.
To generate an observed data vector of D dimensions, x ∈ ℜD, we stochastically select one state
for each factor, and one factor for each data dimension, xd . The first selection allows each part to
independently choose its appearance, while the second dictates how the parts combine to produce
the observed data vector.

This approach differs from a traditional mixture model in that each dimension of the data is gen-
erated by a different linear combination of the factors. Rather than clustering the data vectors based
on which mixture component gives the highest probability, we are grouping the data dimensions
based on which part provides the best explanation.

The selection of factors for each dimension are represented as binary latent variables, R = {rdk},
for d = 1...D,k = 1...K. The variable rdk = 1 if and only if factor k has been selected for data
dimension d. These variables can be described equivalently as multinomials, rd ∈ 1...K, and are
drawn according to their respective prior distributions, P(rdk) = adk. The choice of state for each
factor is also a latent variable, which we will represent by sk. Using θk to represent the parameters
of the kth factor, we arrive at the following complete likelihood function:

P(x,R,S|θ) = ∏
d,k

(adk
rdk)∏

k

(P(sk))∏
d,k

(P(xd |θk,sk)
rdk) . (1)

This probability model is depicted graphically in Figure 1.
As described thus far, the approach is independent of the particular choice of model used for

each of the factors. We now provide details for two particular choices: a discrete model of factors,
vector quantization; and a continuous model, factor analysis.

2.1 Multiple Cause Vector Quantization

In Multiple Cause Vector Quantization, first proposed in Ross and Zemel (2003), we assume that
each part has a small number of appearances, and model them using a vector quantizer (VQ) of J
possible states. To generate an observed data example, we stochastically select one state for each
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xdda kbksdr

θk
D

K

Figure 1: Graphical representation of the parts-based learning model. We let rd=1 represent all the
variables rd=1,k, which together select a factor for x1. Similarly, sk=1 selects a state for
factor 1. The plates depict repetitions across the D input dimensions and the K factors.
To extend this model to multiple data cases, we would include an additional plate over r,
x, and s.

VQ, and, as described above, one VQ for each dimension. Given these selections, a single state
from a single VQ determines the value of each data dimension xd .

As before, we represent the selections using binary latent variables, S = {sk j}, for k = 1...K, j =
1...J, where sk j = 1 if and only if state j is selected for VQ k. Again we introduce prior selection
probabilities P(sk j) = bk j, with ∑ j bk j = 1.

Assuming each VQ state specifies the mean as well as the standard deviation of a Gaussian
distribution, and the noise in the data dimensions is conditionally independent, we have (where
θk = {µdk j,σdk j}, and N is the Gaussian pdf)

P(x|R,S,θ) = ∏
d,k, j

N (xd ; µdk j, σ2
dk j)

rdk sk j .

The resulting model can be thought of as a Gaussian mixture model over J×K possible states
for each data dimension (xd). The single state k j is selected if sk jrdk = 1. Note that this selection has
two components. The selection in the j component is made jointly for the different data dimensions,
and in the k component it is made independently for each dimension.

2.1.1 LEARNING AND INFERENCE

The joint distribution over the observed vector x and the latent variables is

P(x,R,S|θ) = P(R|θ)P(S|θ)P(x|R,S,θ),

= ∏
d,k

(

ardk
dk

)

∏
k, j

(

b
sk j

k j

)

∏
d,k, j

N (xd ; θk)
rdksk j .

Given an input x, the posterior distribution over the latent variables, P(R,S|x,θ), cannot tractably
be computed, since all the latent variables become dependent.

We apply a variational EM algorithm to learn the parameters θ, and infer latent variables given
observations. For a given observation, we could approximate the posterior distribution using a
factored distribution, where g and m are variational parameters related to r and s respectively:

Q0(R,S|x,θ) = ∏
d,k

(

grdk
dk

)

∏
k, j

(

m
sk j

k j

)

. (2)
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The model is learned by optimizing the following objective function (Neal and Hinton, 1998),
also known as the variational free energy:

F (Q0,θ) = EQ0 [logP(x,R,S|θ)− logQ0(R,S|x,θk)] ,

= EQ0

[

−∑
d,k

rdk log(gdk/adk)−∑
k, j

sk j log(mk j/bk j)+ ∑
d,k, j

rdksk j logN (xd ; θ)

]

,

= −∑
d,k

gdk log
gdk

adk
−∑

k, j

mk j log
mk j

bk j
− ∑

d,k, j

gdk mk j εdk j,

where εdk j = logσdk j +
(xd−µdk j)

2

2σ2
dk j

. The objective function F is a lower bound on the log likelihood

of generating the observations, given the particular model parameters. The variational EM algorithm
improves this bound by iteratively maximizing F with respect to Q0 (E-step) and to θ (M-step).

Extending this to handle multiple observations—the columns of X = [x1 . . .xC]—we must now
consider approximating the posterior P(R ,S |X,θ), where R = {rc

dk} and S = {sc
k j} are the latent

selections for all training cases c. Our aim is to learn models which have a posterior distribution over
factor selections for each data dimension that is consistent across all data (that is to say, regardless
of the data case, each xd will typically be associated with the same part or parts). Thus, in the
variational posterior we constrain the parameters {gdk} to be the same across all observations xc,c =
1 . . .C. In this general case, the variational approximation to the posterior becomes (cf. Equation (2))

Q(R ,S |X,θ) = ∏
c,d,k

(

gdk
rc

dk

)

∏
c,k, j

(

mc
k j

sc
k j

)

. (3)

It is important to point out that this choice of variational approximation is somewhat unorthodox,
nonetheless it is perfectly valid and has produced good results in practice. A comparison to more
conventional alternatives appears in Appendix A.

Under this formulation, only the {mc
k j} parameters are updated during the E step for each ob-

servation xc:

mc
k j = bk j exp

(

−∑
d

gdk εc
dk j

)

/
J

∑
ρ=1

bkρ exp
(

−∑
d

gdk εc
dρk

)

.

The M step updates the parameters, µ and σ, which relate each latent state k j to each input
dimension d, the parameters of Q related to factor selection {gdk}, and the priors {adk} and {bk j}:

gdk = adk exp
(

−
1
C ∑

c, j

mc
k j εc

dk j

)

/
K

∑
ρ=1

adρ exp
(

−
1
C ∑

c, j

mc
jρ εc

d jρ

)

, (4)

µdk j =
∑c mc

k jx
c
d

∑c mc
k j

, σ2
dk j =

∑c mc
k j(x

c
d−µdk j)

2

∑c mc
k j

,

adk = gdk, bk j =
1
C ∑

c
mc

k j.

As can be seen from the update equations, an iteration of EM learning for MCVQ has compu-
tational complexity linear in each of C, D, J, and K.
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A variational approximation is just one of a number of possible approaches to performing the
intractable inference (E) step in MCVQ. One alternative, known as Monte Carlo EM, is to approxi-
mate the posterior with a set of samples {Rn,Sn}

N
n=1 drawn from the true posterior P(R ,S |X,θ)

via Gibbs sampling. The M step now becomes a maximization of the approximate likelihood
1
N ∑n P(X,Rn,Sn|θ) with respect to the model parameters θ. Note that the intractable marginal-
ization over {rc

dk,s
c
k j} has been replaced with the less-costly sum over N samples. Details of this

approach for a related model can be found in Ghahramani (1995), and a general description in
Andrieu et al. (2003).

2.2 Multiple Cause Factor Analysis

In MCVQ, each factor is modeled as a set of basis vectors, one of which is chosen at a time when
generating data. A more general approach is to allow data to be generated by arbitrary linear com-
binations of the basis vectors in each factor. This extension (with the appropriate choice of prior
distribution) amounts to modeling the range of appearances for each part with a factor analyzer.

A factor analysis (FA) model (e.g., Ghahramani and Hinton, 1996) proposes that the data vectors
come from a low-dimensional linear subspace, represented by the basis vectors of the factor loading
matrix, Λ∈ℜD×J , and an offset ρ∈ℜD from the origin. A data vector is produced by taking a linear
combination s ∈ℜJ of the columns of Λ. The linear combination is treated as an unobserved latent
variable, with a standard Gaussian prior P(s) = N (s;0,I). To this is added zero-mean Gaussian
noise, independent along each dimension. The probability model is

P(x,s|θ) = N (x;Λs+ρ,Ψ) N (s;0,I) (5)

where Ψ is a D×D diagonal covariance matrix.
As with MCVQ, we assume that the data contains K parts and model each using a factor analyzer

θk = (Λk,ρk,Ψk). A data vector is again generated by stochastically selecting one state sk per factor
k, and choosing one factor per data dimension. Under this model factor analyzer k proposes that the
value of xd has a Gaussian distribution centered at Λk

dsk +ρdk with variance Ψk
d (where Λk

d indicates
the dth row of factor loading matrix k, and Ψk

d the dth entry on the diagonal of Ψk). Thus the
likelihood is

P(x|R,S,θ) = ∏
d,k

N (xd ;Λk
dsk +ρdk,Ψk

d)
rdk .

2.2.1 LEARNING AND INFERENCE

Again this model produces an intractable posterior over latent variables S and R, so we resort to a
variational approximation:

Q(R ,S |X,θ) = ∏
c,d,k

(

g
rc

dk
dk

)

∏
c,k

N (sc
k;mc

k,Ωck).

This differs from the approximation used for MCVQ, Equation (3), in that here we assume the state
variables sk have Gaussian posteriors. Thus, in the E step we must now estimate the first and second
moments of the posterior over sk. As before, we also tie the {gdk} parameters to be the same across
all data cases. Setting up the objective function and differentiating, gives us the following updates
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for the E-step:1

mc
k = ΩckΛkT Ψ−1

k ((xc−ρk) .∗gk),

Ωck =
(

ΛkT gk

Ψk Λk + I
)−1

, 〈sc
ksc

k
T 〉= Ωck +mc

kmc
k

T ,

where gk
Ψk is a diagonal matrix with entries gdk/Ψk

d . Note that the expression for Ωck is independent
of the index over training cases, c, thus we need only have one Ωk = Ωck,∀c.

The M-step involves updating the prior and variational posterior factor-selection parameters,
{adk} and {gdk}, as well as the parameters (Λk,ρk,Ψk) of each factor analyzer. At each iteration
the prior, adk = gdk is set to the posterior at the previous iteration. The remaining updates are

gdk ∝
adk

|Ψk
d|

1/2
exp

[

−1

2CΨk
d
∑
c

(

(xc
d−ρdk)

2 +Λk
d〈s

c
ksc

k
T 〉Λk

d
T
−2(xc

d−ρdk)Λk
dmc

k

)

]

,

Λk =
(

X−ρk1
T )MT

k

(

∑
c
〈sc

ksc
k

T 〉

)−1

,

ρk =
1
C ∑

c

(

xc−Λkmc
k

)

,

Ψk
d =

1
C ∑

c

(

(xc
d−ρdk)

2 +Λk
d〈s

c
ksc

k
T 〉Λk

d
T
−2(xc

d−ρdk)Λk
dmc

k

)

.

where (Mk is a J×C matrix in which the cth column is mc
k).

2.3 Related Algorithms

Here we present the details of two related algorithms, principal components analysis (PCA), and
non-negative matrix factorization (NMF). A more detailed comparison of these algorithms with
MCVQ and MCFA appears below, in Section 5.

The goal of PCA is to learn a factorization of the data matrix X into the product of a coefficient
matrix S and an orthogonal basis Λ so that X≈ ΛS. Typically Λ has fewer columns than rows, so S
can be thought of as a reduced-dimensionality approximation of X, and Λ as the key features of the
data. Using a squared-error cost function, the optimal solution is to let Λ be the top eigenvectors of
the sample covariance matrix, 1

C−1 XXT , and let S = ΛT X.
PCA can also be posed as a probabilistic generative model, closely related to factor analysis

(Roweis, 1997; Tipping and Bishop, 1999). In fact, probabilistic PCA proposes the same generative
model, Equation (5), except that the noise covariance, Ψ, is restricted to be a scalar times the identity
matrix: Ψ = σ2I.

Non-negative matrix factorization (Lee and Seung, 1999) also learns a factorization X ≈WH
of the data matrix, but includes the additional restriction that X, W, and H must be entirely non-
negative. By allowing only additive combinations of a non-negative basis, Lee & Seung propose
to obtain basis vectors that correspond to the intuitive parts of the data. Instead of squared error,
NMF seeks to minimize the divergence D(X‖WH) = ∑d,c

[

xc
d log(WH)dc− (WH)dc

]

which is the

1. The second uncentered moment 〈sc
ksc

k
T 〉 need not be computed explicitly, since it can be expressed as a combination

of the first and second centered moments, mk and Ωck. It is, however, a useful subexpression for computing the
M-step updates and likelihood bound.
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negative log-probability of the data, assuming a Poisson density function with mean WH. A local
minimum of the divergence is obtained by iterating the following multiplicative updates:

wd j← wd j ∑
c

xc
d

(WH)dc
h jc, wd j←

wd j

∑d′ wd′ j
, h jc← h jc ∑

d

wd j
xc

d

(WH)dc
.

Despite the probabilistic interpretation, X ∼ Poisson(WH), NMF is not a proper probabilistic
generative model, since it does not specify a prior distribution over the latent variable H. Thus NMF
does not specify how new data could be generated from a learned basis.

Like the above methods, MCVQ and MCFA can be viewed as matrix factorization methods,
where the left-hand matrix is formed from the {gdk} and the collection of VQ/FA basis vectors,
while the right-hand matrix is comprised of the latent variables {mc

k j}. This view highlights the key
contrast between the assumptions about the data embodied in these earlier models, as opposed to the
proposed model. Here the data is viewed as a concatenation of components or parts, corresponding
to particular subsets of data dimensions, each of which is modeled as a convex combination of
appearances.

3. Experiments

In this section we examine the ability of MCVQ and MCFA to learn parts-based representations of
data from two different problem domains.

We begin by modeling sets of digital images, in this case images of human faces. The parts
learned are fixed subsets of the data dimensions (pixels), corresponding to fixed regions of the
images, that closely resemble intuitive notions of the parts of faces. The ability to learn parts is
robust to partial occlusions in the training images.

The application of MCVQ and MCFA to image data assumes that the images are normalized,
that is, that the head is in a similar pose in each image, and aligned with respect to position and
scale. This constraint is standard for learning methods that attempt to learn visual features beyond
low level edges and corners, though, if desired, the model could be extended to perform automatic
alignment of images (Jojic and Caspi, 2004). While normalization may require a preprocessing step
for image applications, in many other types of applications, the input representation is more stable.
For instance, in collaborative filtering each data vector consists of a single user’s ratings for a fixed
set of items; each data dimension always corresponds to the same item.

Thus, we also explore the application of MCVQ and MCFA to the problem of predicting ratings
of unseen movies, given observed ratings for a large set of users. Here parts correspond to subsets
of the movies which have correlated ratings.

Code implementing MCVQ and MCFA in MATLAB, as used for the following experiments, can
be obtained at http://www.cs.toronto.edu/∼dross/mcvq/.

3.1 Face Images

The face data set consisted of 2429 images from the CBCL Face database #1 (MIT-CBCL, 2000).
Each image contained a single frontal or near-frontal face, depicted in 19×19 pixel grayscale. The
images were histogram equalized, and pixel values rescaled to lie in [−2,2]. Sample training images
are shown in Figure 2.

Using these images as input, we trained MCVQ and MCFA models, each containing K = 6
factors. The MCVQ model with J = 10 states converged in 120 iterations of Monte Carlo EM, while
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Figure 2: Sample training images from the CBCL Face database #1.

VQ 1

VQ 2

VQ 3

VQ 4

VQ 5

VQ 6

Figure 3: The parts-based model of faces learned by MCVQ. On the left are plots showing the
posterior probability with which each pixel selects the indicated VQ. On the right are the
means, for each state of each VQ, masked by the aforementioned selection probabilities
(µk j .∗gk).

the MCFA model with J = 4 basis vectors converged in 15 variational EM iterations. In practice, the
Monte Carlo approach to inference leads to better local maxima of the objective function, and better
parts-based models of the data. For both MCVQ and MCFA, prior probabilities were initialized
to uniform, and states/basis vectors to randomly selected training images. The learned parts-based
decompositions are depicted in Figures 3 and 4.

On the left of each figure is a plot of posterior probabilities {gdk} that each pixel selects the
indicated factor as its explanation. White indicates high probability of selection, and black low. As
can be seen, each gk can be thought of as a mask indicating which pixels ‘belong’ to factor k.

In the noise-free case, each image generated by one of these models is a sum of the contributions
from the various factors, where each contribution is ‘masked’ by the probability of pixel selection.
For example in Figure 3 the probability of selecting VQ #4 is non-zero only around the nose, thus
the contribution of this VQ to the remaining areas of the face in any generated image is negligible.

On the right of each figure is a plot of the 10 states/4 basis vectors for each factor. Each image
has been masked (via element-wise multiplication) with the corresponding gk. For MCVQ this is
(µdk j .∗gdk), and for MCFA this is (Λk

d j .∗gdk). In the case of MCVQ, each state is an alternative
appearance for the corresponding part. For example VQ #4 gives 10 alternative noses to select from
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FA 6

Figure 4: The parts-based model of faces learned by MCFA.

when generating a face. These range from thin to wide, with shadows of the left or right, and with
light or dark upper-lips (possibly corresponding to moustaches). In MCFA, on the other hand, the
basis vectors are not discrete alternatives. Rather these vectors are combined via arbitrary linear
combinations to generate an appearance of a part.

To test the fidelity of the learned representations, the trained models were used to probabilisti-
cally classify held-out test images as either face or non-face. The test data consisted of the 472 face
images and 472 randomly-selected non-face images from the CBCL database test set. To classify
test images, we evaluated their probability under the model, labeling an image as face if its prob-
ability exceeded a threshold, and non-face if it did not. For each model the threshold was chosen
to maximize classification performance. Evaluating the probability of a data vector under MCVQ
and MCFA can be difficult, since it requires marginalizing over all possible values of the latent vari-
ables. Thus, in practice, we use a Monte Carlo approximation, obtained by averaging over a sample
of possible selections. The results of this experiment are shown in Table 1. In addition to MCVQ
and MCFA, we performed the same experiment with four other probabilistic models: probabilistic
principal components analysis (PPCA), mixture of Gaussians, a single Gaussian distribution, and
cooperative vector quantization (Hinton and Zemel, 1994) (which is described further in Section 5).
It is important to note that in this experiment an increase in model size (using more VQs, states,
or basis vectors) does not necessarily improve the ability to discriminate faces from non-faces. For
example, PPCA achieves its highest accuracy when using only three basis vectors, and a mixture of
Gaussians with 60 states outperforms one with 84 states. As can be seen, the highest performance
is achieved by an MCVQ model with 6 VQs and 14 states per VQ.

Another way of validating image models it to use them to generate new examples and see how
closely they resemble images from the observed data—in this case how much the generated im-
ages resemble actual faces. Examples of images generated from MCVQ and MCFA are shown in
Figure 5.
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Model Accuracy
MCVQ (6 VQs, 14 states each) 0.8305
Mixture of Gaussians (60 states) 0.8072
MCVQ (6 VQs, 10 states each) 0.8030
Probabilistic PCA (3 components) 0.7903
Gaussian distribution (diagonal covariance) 0.7871
Mixture of Gaussians (84 states) 0.7680
MCFA (6 FAs, 3 basis vectors each) 0.7415
MCFA (6 FAs, 4 basis vectors each) 0.7267
Cooperative Vector Quantization (6 VQs, 10 states each) 0.6208

Table 1: Results of classifying test images as face or non-face, by computing their probabilities
under trained generative models of faces.

Figure 5: Synthetic images generated using MCVQ (left) and MCFA (right).

The parts-based models learned by MCVQ and MCFA differ from those learned by NMF and
PCA, as depicted in Figure 6, in two important ways. First, the basis is sparse—each factor con-
tributes to only a limited region of the image, whereas in NMF and PCA basis vectors include
more global effects. Secondly MCVQ and MCFA learn a grouping of vectors into related parts, by
explicitly modeling the sparsity via the gdk distributions.

A further point of comparison is that, in images generated by PPCA and NMF, a significant
proportion of the pixels in the generated images lie outside the range of values appearing in the
training data (7% for PPCA and 4.5% for NMF), requiring that the generated values be thresholded.
On the other hand, MCVQ will never generate pixel values outside the observed range. This is a
simple result, since each generated image is a convex combination of basis vectors, and each basis
vector is a convex combination of data vectors. Although no such guarantee exists for MCFA, in
practice pixels it generates are all within-range.
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Figure 6: Bases learned by non-negative matrix factorization (left) and probabilistic principal com-
ponents analysis (right), when trained on the face images.

3.1.1 PARTIAL OCCLUSION

Parts-based models can also be reliably learned from image data in which the object is partially
occluded. As an illustration, we trained an MCVQ model on a data set containing partially-occluded
faces. The occlusions were generated by replacing pixels in randomly-selected contiguous regions
of each training image with noise. The noise, which covered 1

4 to 1
2 of each image, had the same

first- and second-order statistics as the unoccluded pixels. The resulting training set contained 4858
images, half of which were partially occluded.

Examples of the training images, and the resulting model, can be seen in Figure 7. In the model
each VQ has learned at least one state containing a blurry region, which corresponds to an occluded
view of the respective part (e.g., for VQ 1, the second state from the right). Thus this model is able
to generate and reconstruct (recognize) partially-occluded faces.

3.2 Collaborative Filtering

Here we test MCVQ on a collaborative filtering task, using the EachMovie data set, where the
input vectors are ratings by viewers of movies, and a given element always corresponds to the same
movie. The original data set contains ratings, on a scale from 1 to 6, of a set of 1649 movies, by
74,424 viewers. In order to reduce the sparseness of the data set, since many viewers rated only a
few movies, we only included viewers who rated at least 20 movies, and removed unrated movies.
The remaining data set, containing 1623 movies and 36,656 viewers, was still very sparse (95.7%).

We evaluated the performance of MCVQ using the framework proposed by Marlin (2004) for
comparison of collaborative filtering algorithms. From each viewer in the EachMovie set, a single
randomly-chosen rating was held out. The performance of the model at predicting these held-out
ratings was evaluated using 3-fold cross validation. In each fold, the model was fit to a training set
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Figure 7: The model learned by MCVQ on partially-occluded faces. On the left are six representa-
tive images from the training data. In the middle are plots of the posterior part selection
probability (the gdk’s) for each VQ. On the right are the (unmasked) means for each state
of each VQ. Note that each VQ has learned at least one state to represent partial occlusion
of the corresponding part.

of 2/3 of the viewers, with the remaining 1/3 viewers retained as a testing set.2 This model was used
to predict the held-out ratings of the training viewers, a task referred to as weak generalization, as
well as the held-out ratings of the testing viewers, called strong generalization. Each prediction was
obtained by first inferring the latent states of the factors mk j, then averaging the mean of each state
by its probability of selection: ∑k, j gdk mk j µk jd .

Prediction performance was calculated using normalized mean absolute error (NMAE). Given
a set of predictions {pi}, and the corresponding ratings {ri}, the NMAE is

1
zn

n

∑
i=1

|ri− pi|

where z is a normalizing factor equal to the expectation of the mean absolute error, assuming
uniformly distributed pi’s and ri’s (Marlin, 2004).3 For the EachMovie data set this value is
z = 35/18≈ 1.9444.

We trained several models on this data set, including MCVQ, MCFA, factor analysis, mixture
of Gaussians, as well as a baseline algorithm which, for each movie, simply predicts the mean of

2. This differs slightly from Marlin’s approach. He used three randomly sampled training and test sets of 30000 and
5000 viewers respectively. However, his test sets were not disjoint, introducing a potential bias in the error estimate.
We, instead, partitioned the data into thirds, using 2/3 of the viewers for training and 1/3 for testing in each of the
three folds. The resulting estimates of error should be less biased, but remain directly comparable to Marlin’s results.

3. For data sets in which the ratings range over the integers, from a minimum of m to a maximum of M, there is a simple

expression for z. Let N = M−m be the largest possible absolute error. Then z =
N(N+2)
3(N+1)

.
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Model Weak Generalization Strong Generalization
MCVQ K = 5,J = 12 0.4896 0.4942
Gaussian mixture J = 60 0.4945 0.4895
Factor Analysis J = 60 0.5314 0.5318
MCFA K = 4,J = 6 0.5502 0.5503
Predict mean observed rating 0.5621 0.5621

Table 2: Collaborative filtering performance. For each algorithm we show the prediction error, in
terms of NMAE (see text), on held out ratings from the training data (weak generalization)
and the test data (strong generalization). K and J give the number of factors and basis
vectors per factor respectively.

the observed ratings for that movie. MCVQ and MCFA were both trained using variational EM,
converging in 15 iterations. We selected this approach due to its efficiency, as running each of
these algorithms on the large data sets used in these experiments via the Monte Carlo EM approach
would require considerable computation time. Note that in the graphical model (Fig. 1), all the
observation dimensions are leaves, so a data variable whose value is not specified in a particular
observation vector will not play a role in inference or learning. This makes inference and learning
with sparse data rapid and efficient in MCVQ and MCFA.

The results of rating prediction are summarized in Table 2 For each model, we have included the
best performance, under the restriction that JK ≤ 60. For comparison, the current state-of-the-art
performance on this experiment is 0.4422 weak and 0.4557 strong generalization, by Marlin’s User
Rating Profile model (Marlin, 2004).

In addition to its utility for rating prediction, the parts-based model learned by MCVQ can
also provide key insights regarding the relationships between the movies. These relationships are
largely captured by the learned {gdk} parameters. For a movie d, the probability distribution gd =
[gd1 . . .gdK ] indicates the affinity of the movie for each of the K factors. To study these relationships
we retrained MCVQ on the EachMovie set, using all available data, again with K = 5 and J = 12.

When trained on the full data set, the average entropy of the gd distributions was only 0.0475
bits. In other words, for 98% of the movies, at least one factor was consistently selected with a
posterior probability exceeding 0.9. The movies in the training set were distributed fairly evenly
amongst the available factors. Specifically, using a probability of gdk > 0.9 to indicate strong asso-
ciation, VQs 1 to 5 were assigned 14%, 33%, 9%, 20% and 22% respectively of the movies. Thus
MCVQ learned a partitioning of the movies into approximately disjoint subsets.

In the parts-based model, movies with related ratings were associated with the same factor. For
example, all seven movies from the Amityville Horror series were assigned to VQ #1. Similarly the
three original Star Wars movies, as well as seven of the eight Star Trek movies were all associated
with VQ #5. By examining VQ #5 in more detail we can see that each state of the VQ corresponds
to a different attitude towards the associated movies, or ‘ratings profile’. In Figure 8 we compare
the ratings given to the Star Wars and Star Trek movies by various states of VQ #5. For each state
we have plotted the difference between the predicted rating and the mean rating, µdk j−∑ j′(µdk j′/J),
for each of the 10 movies. This score will be large for a particular movie if the state, or profile, gives
the movie a much higher rating than it ordinarily receives.
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The four states depicted in Figure 8 show a range of possible ratings profiles. State 2 shows a
strong preference for all the movies, with each receiving a rating 1-2.5 points higher than usual. In
contrast, state 9 shows an equally strong dislike for the movies. State 10 indicates a viewer who is
fond of Star Wars, but not Star Trek. Finally, state 11 shows an ambivalent attitude: slight preference
for some films, and slight dislike for others.

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 2

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 9

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 10

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 11

Star Wars W1 Star Trek III: The Search for Spock T3
The Empire Strikes Back W2 Star Trek IV: The Voyage Home T4
Return of the Jedi W3 Star Trek V: The Final Frontier T5
Star Trek: The Motion Picture T1 Star Trek VI: The Undiscovered Country T6
Star Trek II: The Wrath of Khan T2 Star Trek: First Contact T7

Figure 8: Ratings profiles learned by MCVQ on the EachMovie data, for Star Wars and Star Trek
movies. Each state represents a different attitude towards the movies. Positive scores
correspond to above-average ratings for the movie, and negative to below-average.

3.2.1 ACTIVE LEARNING

When collaborative filtering is posed in an online or active setting, the set of available data is con-
tinually growing, as viewers are queried and new ratings are observed. When a viewer provides a
new rating for an item, the system’s beliefs about his preferences must be updated. In generative
models, such as we have described, this entails updating the distribution over latent state variables
for the viewer. This update is often costly, and can pose a problem when the system must be used
interactively. Furthermore, queries of the sort “What is the rating of xd?” must be generated online,
based on the viewer’s previous responses, to maximize the value of the information obtained. This
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value could simply be the system’s certainty as to the viewer’s preferences, or, more interestingly,
its ability to recommend movies that he might enjoy.

The parts based models we describe significantly simplify both of these computations. By
learning a partitioning of the items, a new rating will only affect beliefs about unobserved ratings
associated with the same factor. Specifically, only one mk j will be updated for each new rating, and
the update will depend only on a fraction of the observations.

Also, since we explicitly model the relationships between items, we can determine how the
possible responses to a putative query would affect predictions. Thus, we can formulate a query
designed to identify movies with high predicted ratings. More details on a successful application of
MCVQ to active collaborative filtering, using these ideas, can be found in Boutilier et al. (2003).

4. Hierarchical Learning

Thus far it has been assumed that the states of each factor are selected independently. Although
this assumption has proven useful, it is unrealistic to suppose that, for example, the appearance of
the eyes and mouth in a face are entirely uncorrelated. Rather than simply being a violation of our
modeling assumptions, these correlations can be viewed as an additional source of information from
which we can learn higher-order structure present in the data.

Here we relax the assumption of independence by including an additional higher-level latent
variable upon which state selections are conditioned. This variable has two possible interpretations.
First, if the higher-level cause is unobserved, it can be learned, inducing a categorization of the data
vectors based on their state selections. Secondly, if the variable is observed, it can be treated as side
information available during learning. In this case the prior over state selections will be adapted to
account for the side information.

We now develop both approaches, and demonstrate their use on a set of images containing
different facial expressions.

4.1 Extending the Generative Model

Suppose that each data vector comes from one of N different classes. We assume that for a given
data vector the selections of the states for each factor (the sk’s) depend on the class, but that the
selections of a factor per data dimension (the rd’s) do not. Specifically, for training case x, we
introduce a new multinomial variable y which selects exactly one of the N classes. y can be thought
of as an indicator vector y ∈ {0,1}N , where yn = 1 if and only if class n has been selected. Using a
prior P(yn = 1) = βn over y, the complete likelihood takes the following form (cf. Equation (1)):

P(x,R,S,y|θ) = P(x|R,S,θ)P(R)P(S|y)P(y),

= ∏
d,k

(P(xd|θk,sk)
rdk)∏

d,k

(

ardk
dk

)

∏
n,k, j

(

b
sk jyn

nk j

)

∏
n

(βyn
n ) . (6)

The graphical model representation is given in Figure 9.
Note that for each class n there is a different prior distribution over the state selections. We

represent these distributions with {bnk j}nk j, ∑ j bnk j = 1, where bnk j is the probability of selecting
state j from factor k given class n. Since the model contains N priors over S, one to be selected for
each data vector, then we can think of this model as incorporating an additional vector quantization
or clustering, this time over distributions for S.
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βxdda ksdr

θk
D

K

y

Figure 9: Graphical model with additional class variable, y. Note that y can be either observed or
unobserved.

If the class variable y corresponds to an observed label for each data vector, then the new model
can be thought of as a standard MCVQ or MCFA model, but with the requirement that we learn
a different prior over S for each class. On the other hand, if y is unobserved, then the new model
learns a mixture over the space of possible priors for S, rather than the single maximum likelihood
point estimate learned in standard MCVQ and MCFA.

Below we derive the EM updates for the hierarchical MCVQ model. The derivation of hierar-
chical MCFA is similar.

4.2 Unsupervised Case

In the unsupervised case, yc, for each training case c = 1 . . .C is an unobserved variable, like Rc

and Sc. As in standard MCVQ, the posterior P(R,S,y|x,θ) over latent variables cannot tractably be
computed. Instead, we use the following factorized variational approximation:

Q(R ,S ,Y ) =

(

∏
c,d,k

g
rc

dk
dk

)(

∏
c,n,k, j

mc
nk j

sc
k jy

c
n

)(

∏
c,n

zc
n

yc
n

)

.

Note that, as in standard MCVQ, we restrict the posterior selections of VQ made for each
training case to be identical, that is, {gdk} is independent of c. Using the variational posterior and
the likelihood, Equation (6), we obtain the following lower bound on the log-likelihood:

F = EQ [logP(X ,R ,S ,Y |θ)− logQ(R ,S ,Y |X,θ))] ,

= EQ

[

∑
c

logP(xc|Rc,Sc,yc,θ)+∑
c

logP(Rc,Sc,yc)−∑
c

logQ(Rc,Sc,yc)

]

,

= − ∑
c,d,k

gdk log
gdk

adk
− ∑

c,n,k, j

mc
nk jz

c
n log

mc
nk j

bnk j
−∑

c,n
zc

n log
zc

n

βn

− ∑
c,d,k, j

gdk
(

∑
n

mc
nk jz

c
n

)

εc
dk j−

CD
2

log(2π).

By differentiating F with respect to each of the parameters and latent variables, and solving for
their respective maxima, we obtain the EM updates used for learning the model. The E-step updates
for mc

nk j and zc
n are

mc
nk j ∝ bnk j exp

(

−∑
d

gdkεc
dk j

)

,
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zc
n ∝ βn exp

(

∑
k j

mc
nk j log

bnk j

mc
nk j
−∑

dk j

gdkmc
nk jε

c
dk j

)

.

The M-step updates for adk,gdk,µdk j, and σdk j are unchanged from standard MCVQ, except for
the substitution of ∑n(m

c
nk jz

c
n) in place of mc

k j, wherever it appears. The updates for βn and bnk j are

βn =
1
C ∑

c
zc

n, bnk j =
∑c mc

nk jz
c
n

∑c zc
n

.

A useful interpretation of the latent variable y is that, for a given data vector, it indicates the
assignment of that datum to one of N clusters. Specifically, zc

n can be thought of as the posterior
probability that example c belongs to cluster n.

4.3 Supervised Case

In the supervised case, we are given a set of labeled training data (xc,yc) for c = 1 . . .C. Note that
this case is essentially the same as the unsupervised case—we can obtain the supervised updates by
constraining zc = yc,∀c. Since the class is known, we may now drop the subscript n from mc

nk j.
As stated earlier, when the y’s are given, we learn a different prior over state selections for each

class n:

bnk j =
1

Cβn
∑
c

mc
k jy

c
n,

where the prior probability of observing class n, βn, can be calculated from the training labels:

βn =
1
C ∑

c
yc

n.

The posterior probabilities of state selection for each example c, mc
k j, depend only on the prior

corresponding to c’s class:

mc
k j ∝ byck j exp

(

−∑
d

gdkεc
dk j

)

.

4.4 Experiments

In this section we present experimental results obtained by training the above models on images
taken from the AR Face Database (Martinez and Benavente, 1998). This data consists of images of
frontal faces of 126 subjects under a number of different conditions. The five conditions used for
these experiments were: 1) anger, 2) neutral, 3) scream, 4) smile, and 5) sunglasses.

The data set in its raw form contains faces which, although roughly centered, appear at different
locations, angles, and scales. Since the learning algorithms do not attempt to compensate for these
differences, we manually aligned each face such that the eyes always appeared in the same location.
Next we cropped the images tightly around the face, and subsampled to reduce the size to 29×22
pixels. Finally, we converted the image data to grayscale, with pixel values ranging from -1 to 1.
Examples of the preprocessed images can be seen in Figure 10.

The above preprocessing steps are standard when applying unsupervised learning methods, such
as NMF, PCA, ICA, etc., to image data.
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Figure 10: Examples of preprocessed images from the AR Face Database. These images, from left
to right, correspond to the conditions: anger, neutral, scream, smile, and sunglasses.

4.4.1 SUPERVISED CASE: LEARNING CLASS-CONDITIONAL PRIORS

We first trained a supervised model on the entire data set, with a goal of learning a different prior
over state selections for each of the five classes of image (anger, neutral, scream, smile, and sun-
glasses).

The model consisted of 5 VQs, 10 states each. The image regions that each VQ learned to
explain are shown in Figure 11. For each VQ k we have plotted, as a grayscale image, the prior
probability of each pixel selecting k (i.e., adk, d = pixel index). Two regions which we expected to
be class discriminative, the mouth and the eyes, were captured by VQs 3 and 4 respectively.

VQ 1 VQ 2 VQ 3 VQ 4 VQ 5

Figure 11: Image regions explained by each VQ. The prior probability of a VQ being selected for
each pixel is plotted as a gray value between 0=black and 1=white.

The priors over state selection for these VQs varied widely depending on the class of the image
being considered. As an example, in Figure 12 we have plotted the prior probability, given the
class, of selecting each of the states from VQ 3. In the figure we can see that the prior probabilities
closely matched our intuition as to which mouth shapes corresponded to which facial expressions.
For example the first state (top left) appears to depict a smiling mouth. Accordingly, the smile class
assigned it the highest prior probability, 0.34, while the other classes each assigned it 0.05 or less.
Also, given the scream class, we see that the highest prior probabilities were assigned to the third
and fourth states—both widely screaming mouths. States 6 through 9 (second row) range from
depicting a neutral to an angry mouth.

Note that for sunglasses, which does not presuppose a mouth shape, the prior showed a prefer-
ence for the more neutral mouths. The explanation for this is simply that most subjects in the data
adopted a neutral expression when wearing sunglasses.
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Figure 12: Class-conditional priors over mouth selections. Each image displayed is the mean of
a state learned for VQ 3, masked (multiplied) by the prior probability of VQ 3 being
selected for that pixel. The bar charts indicate, for each state, the prior probability of
it being selected given each of the five class labels. From left to right these are anger
(A), neutral (N), scream (S), smile (M), and sunglasses (G). On each chart, the y-axis
extends up to a probability of 0.4.
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One method for qualitatively evaluating the suitability of a class-conditional prior is to use it to
generate novel images from the model, and see how well they match the class. Samples drawn this
way using each of the five priors can be seen in Figure 13.

Anger Neutral Scream Smile Glasses

Figure 13: Sample images generated from the supervised hierarchical MCVQ model. Four images
are depicted for each of the five class-conditional priors. Note the generated images
can contain a novel combination of parts not seen in the training data, such as a person
screaming and wearing glasses (Scream, upper-left). (The images do not include the
Gaussian noise described in the generative process.)

4.4.2 UNSUPERVISED CASE

To evaluate the performance of the unsupervised model, we trained a model on a subset of the five
classes, with the hope that it would learn clusters corresponding to the original classes.

The data set was restricted to contain only three classes—neutral, scream, and sunglasses—
totaling 765 images. To prevent the images from being clustered simply by their overall brightness
levels, for this experiment we performed equalization of the intensity histogram for each of the
training images. The model we trained consisted of 15 VQs, 10 states each, and the latent class
variable had 3 settings (i.e., 3 clusters).

In Table 3 we see the relationship between learned clusters and classes. The first cluster corre-
sponded to the sunglasses class, containing all but two of the sunglasses images. The second and
third clusters contained approximately equal numbers of neutral and scream images. Closer exam-
ination revealed that, of those not wearing sunglasses, 88% of the males had been placed in cluster
2, and 80% of the females in cluster 3. While we predicted that the model would learn classes
corresponding to neutral and scream, it appears instead to have learned classes corresponding to
gender. Examples of training images assigned to each of the clusters are shown in Figure 14.

Figure 14: Two training examples randomly selected from each of the three learned clusters.
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cluster 1 2 3
neutral 0 154 101
scream 0 139 116
sunglasses 253 0 2
totals 253 293 219

cluster 1 2 3
female 112 46 184
male 141 247 35
totals 253 293 219

Table 3: Number of images from each class assigned to each cluster. We consider an image to
belong to the cluster with the highest posterior probability (zc

n).

4.5 Discussion

In this section we have presented an extension to MCVQ that allows higher-level causes or rela-
tionships to be learned from the data. Specifically, assuming the data comes from a pre-specified
number of classes, this extension models the relationships between data vectors, based on the state
selections each class favours in an MCVQ model.

Given a set of labeled data, such as facial images classified by the expression of the subject, this
approach learns a single vocabulary of parts, and the likelihood of each part appearing in images
of a given class. These probabilities are of interest since, by applying Bayes’ rule, we can discover
how the possible states for each feature affect what class a data vector will belong to.

Finally, when the data are not labeled, the proposed method can learn a clustering of the data
into classes while simultaneously learning the relationships described above.

5. Related Models

MCVQ and MCFA fall into the expanding class of unsupervised algorithms known as factorial
methods, in which the aim of the learning algorithm is to discover multiple independent causes, or
factors, that can well characterize the observed data. Their direct ancestor is Cooperative Vector
Quantization (Zemel, 1993; Hinton and Zemel, 1994; Ghahramani, 1995), which has a very simi-
lar generative model to MCVQ, but lacks the stochastic selection of one VQ per data dimension.
Instead, a data vector is generated cooperatively: each VQ selects one vector, and these vectors
are summed to produce the data (again using a Gaussian noise model). The contrast between these
approaches mirrors the development of the competitive mixture-of-experts algorithm (Jacobs et al.,
1991) which grew out of the inability of a cooperative, linear combination of experts to decompose
inputs into separable experts.

Unfortunately Cooperative Vector Quantization can learn unintuitive global features which in-
clude both additive and subtractive effects. The aforementioned non-negative matrix factorization
(NMF) (Lee and Seung, 1999, 2001; Mel, 1999) overcomes this problem by proposing that each
data vector is generated by taking a non-negative linear combination of non-negative basis vec-
tors. Since each basis vector contains only non-negative values, it is unable to ‘subtract away’ the
effects of other basis vectors it is combined with. This property encourages learning a basis of
sparse vectors, each capturing a single instantiation of one of the independent latent factors, for
example a local feature of an image. Like NMF, given non-negative data MCVQ will learn a non-
negative basis, taken only in non-negative combinations. Unlike MCVQ and MCFA, NMF provides
no mechanism for learning compositional structure - how basis images or parts may be combined
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to form a valid whole. Rather, it considers any non-negative linear combination of basis vectors
to be equally suitable, and hence NMF and MCVQ models differ in the range of novel examples
they can generate. Interestingly, the conditions under which non-negative matrix factorization will
learn a correct parts-based decomposition, as shown by Donoho and Stodden (2004), closely re-
semble the generative model proposed by MCVQ. However one of these conditions—that the data
set contain a complete factorial sampling of all JK possible part configurations—seems difficult to
achieve in practice. Other work such as Li et al. (2001) suggests that, when using realistic data sets,
non-negativity alone may not be sufficient to ensure the learned basis corresponds to localized parts.

MCVQ also resembles a wide range of generative models developed to address image segmen-
tation (Williams and Adams, 1999; Hinton et al., 2000; Jojic and Frey, 2001). These are generally
complex, hierarchical models designed to focus on a different aspect of this problem than that of
MCVQ: to dynamically decide which pixels belong to which objects. The chief obstacle faced by
these models is the unknown pose (primarily limited to position) of an object in an image, and they
employ learned object models to find the single object that best explains each pixel. MCVQ adopts
a more constrained solution with respect to part locations, assuming that these are consistent across
images, and instead focuses on the assembling of input dimensions into parts, and the variety of
instantiations of each part. The constraints built into MCVQ limit its generality, but also lead to
rapid learning and inference, and enable it to scale up to high-dimensional data.

A recent generative model closely related to MCVQ is the Probabilistic Index Map (PIM) (Jojic
and Caspi, 2004; Winn and Jojic, 2005). PIMs propose that an image is generated by selecting,
for each pixel, one colour from a palette of K colours (in the simplest case—the palette could also
contain texture, filter coefficients, etc.). Pixels are grouped together if they select the same index
into the palette. Across a collection of images, segmentation of the pixels into consistent parts is
accomplished via a shared prior distribution over the palette index, and variation between images
is accounted for by learning a different palette for each image. When learning parts, PIMs group
together pixels which are self-similar (e.g., a similar colour), while MCVQ groups pixels which are
highly correlated, regardless of their relative intensities.

Connections can also be made between MCVQ and algorithms for biclustering, which aim to
produce a simultaneous clustering of both the rows and the columns of the data matrix (Mirkin,
1996). Biclustering has recently become popular in bioinformatics as a tool for analyzing DNA mi-
croarray data, which presents the expression levels for different genes under multiple experimental
conditions as a matrix (Cheng and Church, 2000). Assuming column-vector data, the selection of
a VQ for each data dimension in MCVQ produces a clustering of the rows. MCVQ differs from
other biclustering methods in that it produces not one but K clusterings of the columns, one for each
of the K VQs. In Section 4 we presented an hierarchical extension that combines the clusterings,
allowing MCVQ to produce a single biclustering of the data.

Finally, MCVQ also closely relates to sparse matrix decomposition techniques, such as the as-
pect model (Hofmann, 1999), a latent variable model which associates an unobserved class variable,
the aspect z, with each observation. Observations consist of co-occurrence statistics, such as counts
of how often a specific word occurs in a document. The latent Dirichlet allocation model (LDA)
(Blei et al., 2002) can be seen as a proper generative version of the aspect model: each docu-
ment/input vector is not represented as a set of labels for a particular vector in the training set, and
there is a natural way to examine the probability of some unseen vector. MCVQ shares the ability
of these models to associate multiple aspects with a given document, yet it achieves this in a slightly
different manner, since the two approaches present different ways of generating documents. The
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aspect and LDA models propose that each document—a list of exchangeable words—is generated
by sampling an aspect, then sampling a word from the aspect, for each word in the document. Thus
each occurrence of a word is associated with a single aspect, but different aspects can generate the
same word. On the other hand MCVQ models the aggregate word counts of a document. That is,
each data vector has a number of components D equal to the size of the vocabulary, and xc

d indicates
the number of times word d appears in document c. For each word in the vocabulary, its entire
document frequency is generated according to the dictates of a stochastically-selected aspect (VQ).
The stochastic selection leads to a posterior probability stipulating a soft mixture over aspects for
each word.

Recently LDA and the aspect model have also been applied to images, by first representing
each image as an exchangeable set of ‘visual words’—interest points or image patches extracted
from the image (Fei-Fei and Perona, 2005; Sivic et al., 2005; Fergus et al., 2005; Sudderth et al.,
2005). By selecting as ‘words’ (or parts) image features that can be recognized regardless of the
position or scale at which they appear, these models can be made invariant to the position of the
target object in the training images. Since these models are designed for object detection and image
categorization, they learn very different object representations than MCVQ/MCFA. First, parts are
represented using invariant descriptors (typically SIFT descriptors, Lowe, 2004), which are useful
for recognizing a part but provide little information about its actual appearance. Second, since
interest points generally do not appear on all regions of the object, the learned parts are not sufficient
for describing all aspects of its appearance. Thus, unlike MCVQ/MCFA, one cannot use these
models to synthesize or repair a realistic image of the object.

The generative model of MCFA, and the EM algorithm for learning it, are related to the mixture
of factor analyzers model (MFA) (Ghahramani, 1995). The distinction between the two is that
in MFA a data point is generated entirely by one selected factor analyzer, while in MCFA data
dimensions can be generated by different FAs. Thus MFA does not attempt to learn parts, rather it
fits the data with a mixture of linear manifolds. MCFA also resembles a recently proposed method
employing factor analysis to model the appearance and occlusion masks of moving ‘sprites’ in video
(Frey et al., 2003).

6. Conclusion

In this paper we have proposed an approach to learning parts-based models of data, and provided
details for a discrete appearance model (MCVQ) and a continuous appearance model (MCFA) for
the latent factors.

This approach can be used to learn informative and intuitively appealing models of various
kinds of vector-valued data, such face images and movie ratings. The parts-based models can be
interpreted as a set of sparse basis vectors, with constraints on how they can be combined to generate
a valid data vector. The sparsity is not assumed a priori, or forcibly encoded in the model. Rather it
results naturally from our assumption that different parts choose their states independently.

When the independence assumption does not hold, we have shown that the model can be ex-
tended hierarchically, learning the dependencies between latent states. This permits modeling of
data containing multiple categories with a single vocabulary of parts, in addition to clustering data
based on the states used for each part in the generative process.

Considering the four potential advantages of parts-based models for objects in images, as out-
lined in the introduction, our approach has managed to realize two of these. Firstly, addressing
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advantage 2., our approach naturally allows the generation of new images that are novel combi-
nations of familiar parts (see Figure 13). Secondly, addressing advantage 4., we have shown that
MCVQ is robust to partial occlusions in the training images (see Section 3.1.1, including Figure 7).
Unfortunately, however, the approach we present for learning parts is not well-suited to handling
pose variation and articulation of the target object in images. This is because in our models a part is
essentially a group of like-minded pixels, thus is tied to specific dimensions of the input vector. As
such it cannot handle variation in the spatial location of parts. One way to address this would be to
incorporate the transformation invariances developed by Frey and Jojic (2003).

An important direction for future research is the problem of automatically discovering the num-
ber of parts present in the data. Possible methods for this include employing ideas from variational
Bayesian modeling (Beal and Ghahramani, 2003), or infinite mixture models and Dirichlet process
(Teh et al., 2005).
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Appendix A.

In this appendix we motivate, in more detail, our choice of approximate posterior for variational
EM learning of MCVQ (and consequently for MCFA as well). This choice is somewhat unorthodox
in that the generative model proposes a selection variable rc

dk for each dimension of each training
vector c, yet the approximate posterior (3) includes only one parameter gdk for all the training
vectors. There are two alternatives which might seem more natural: the number of variational
parameters could be increased to match the generative model, or the generative model could be
modified so that the selection of factors is made only once for all data vectors.

The simplest and most conventional variation approximation, the fully-factorized mean-field
method (Ghahramani, 1995), proposes using a set of variational parameters gc

dk for each training
case c. This causes a number of changes to the EM updates. First of all the gc

dk’s, now updated in
the E-step, depend only on a single training case c, while in the M-step their prior is computed by
averaging:

gc
dk ∝ adk exp

(

−∑
j

mc
k jε

c
dk j

)

, adk =
1
C ∑

c
gc

dk.

The remaining changes consist of replacing gdk with gc
dk in the update of mc

k j, and replacing mc
k j

with gc
dkmc

k j in the updates of µdk j and σ2
dk j. Experimentally this results in a weak (high-entropy)

prior, unable to discover any parts in the data. Adding a low-entropy hyper-prior to the adk’s, as
proposed by Brand (1999), did not improve learning.

Another closely related model proposes only a single set of factor selections, rdk, which are used
to generate all of the data vectors. For this model, which we will call the r-tied model, equation (3)
is the natural fully-factorized mean-field approximation. Working through the EM updates, the only
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change from Section 2.1.1 is in the update for gdk, which becomes

gdk ∝ adk exp

(

−∑
c j

mc
k jε

c
dk j

)

.

This update differs from (4) only in the omission of a factor of 1
C inside the exponential. Thus the

new gdk’s can be obtained from the old ones through exponentiating by the power C and renormal-
izing. This has the effect of pushing the low probability factor selections closer to zero and high
probability selections closer to 1, resulting in new gdk’s with lower entropy.

As a quantitative comparison, we trained MCVQ models using each of the three algorithms
on the face images described in Section 3.1. For each trained model we computed the mean and
standard deviation of the entropy of the adk parameters, as well as the sum-of-squares error recon-
structing 100 held-out face images. A low mean entropy indicates that a near-binary association
between data dimensions and factors was been learned, while a low reconstruction error shows that
a good model of faces was obtained. The results appear in Table 4.

Learning Algorithm Standard Fully-Factorized r-Tied
Average Entropy in adk 0.6751 1.9662 0.4365
Squared Reconstruction Error 1.5163e+04 1.9699e+04 1.5362e+04

Table 4: A quantitative comparison of alternative learning algorithms for MCVQ.

As expected, the entropy in the prior distribution over factor selection is lowest in the r-tied
model, and highest in the fully-factorized model. The fully-factorized model also has the highest
reconstruction error, while the standard model shows a slight advantage over the r-tied model. In
practice, the fully-factorized model performs poorly, and is unable to discover any parts in the
data. The standard and r-tied models often show similar performance, but the standard algorithm
is usually qualitatively better at discovering parts. A possible explanation could be that the r-tied
updates push the gdk parameters too quickly to a low-entropy configuration during the early stages
of learning.

In the future we plan to explore the possibility of combining these alternatives, in hope of being
able to realize benefits provided by each. For instance, the parameters learned by a standard or r-tied
MCVQ model could be used as an initialization for learning with the fully-factorized variational
approximation. This approach has the potential to be able to discover parts, while still allowing
some variation in parts between data (e.g., borderline pixels could be assigned to the nose in some
face images, and to the upper-lip in others).

Code for MCVQ, which also implements all the alternatives described here, can be obtained at
http://www.cs.toronto.edu/∼dross/mcvq/.
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Abstract
We propose a family of learning algorithms based on a new form of regularization that allows us
to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework
that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph
learning algorithms and standard methods including support vector machines and regularized least
squares can be obtained as special cases. We use properties of reproducing kernel Hilbert spaces
to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in
contrast to purely graph-based approaches) we obtain a natural out-of-sample extension to novel
examples and so are able to handle both transductive and truly semi-supervised settings. We present
experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled
data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning
within our general framework.

Keywords: semi-supervised learning, graph transduction, regularization, kernel methods, mani-
fold learning, spectral graph theory, unlabeled data, support vector machines

1. Introduction

In this paper, we introduce a framework for data-dependent regularization that exploits the geometry
of the probability distribution. While this framework allows us to approach the full range of learning
problems from unsupervised to supervised (discussed in Sections 6.1 and 6.2 respectively), we focus
on the problem of semi-supervised learning.

The problem of learning from labeled and unlabeled data (semi-supervised and transductive
learning) has attracted considerable attention in recent years. Some recently proposed methods
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include transductive SVM (Vapnik, 1998; Joachims, 1999), cotraining (Blum and Mitchell, 1998),
and a variety of graph-based methods (Blum and Chawla, 2001; Chapelle et al., 2003; Szummer
and Jaakkola, 2002; Kondor and Lafferty, 2002; Smola and Kondor, 2003; Zhou et al., 2004; Zhu
et al., 2003, 2005; Kemp et al., 2004; Joachims, 1999; Belkin and Niyogi, 2003b). We also note
the regularization based techniques of Corduneanu and Jaakkola (2003) and Bousquet et al. (2004).
The latter reference is closest in spirit to the intuitions of our paper. We postpone the discussion of
related algorithms and various connections until Section 4.5.

The idea of regularization has a rich mathematical history going back to Tikhonov (1963), where
it is used for solving ill-posed inverse problems. Regularization is a key idea in the theory of splines
(e.g., Wahba, 1990) and is widely used in machine learning (e.g., Evgeniou et al., 2000). Many
machine learning algorithms, including support vector machines, can be interpreted as instances of
regularization.

Our framework exploits the geometry of the probability distribution that generates the data and
incorporates it as an additional regularization term. Hence, there are two regularization terms—
one controlling the complexity of the classifier in the ambient space and the other controlling the
complexity as measured by the geometry of the distribution. We consider in some detail the special
case where this probability distribution is supported on a submanifold of the ambient space.

The points below highlight several aspects of the current paper:

1. Our general framework brings together three distinct concepts that have received some inde-
pendent recent attention in machine learning:
i. The first of these is the technology of spectral graph theory (see, e.g., Chung, 1997) that has
been applied to a wide range of clustering and classification tasks over the last two decades.
Such methods typically reduce to certain eigenvalue problems.
ii. The second is the geometric point of view embodied in a class of algorithms that can be
termed as manifold learning.1 These methods attempt to use the geometry of the probability
distribution by assuming that its support has the geometric structure of a Riemannian mani-
fold.
iii. The third important conceptual framework is the set of ideas surrounding regularization
in Reproducing Kernel Hilbert Spaces (RKHS). This leads to the class of kernel based al-
gorithms for classification and regression (e.g., Scholkopf and Smola, 2002; Wahba, 1990;
Evgeniou et al., 2000).

We show how these ideas can be brought together in a coherent and natural way to incorporate
geometric structure in a kernel based regularization framework. As far as we know, these
ideas have not been unified in a similar fashion before.

2. This general framework allows us to develop algorithms spanning the range from unsuper-
vised to fully supervised learning.

In this paper we primarily focus on the semi-supervised setting and present two families of
algorithms: the Laplacian Regularized Least Squares (hereafter, LapRLS) and the Laplacian
Support Vector Machines (hereafter LapSVM). These are natural extensions of RLS and SVM
respectively. In addition, several recently proposed transductive methods (e.g., Zhu et al.,
2003; Belkin and Niyogi, 2003b) are also seen to be special cases of this general approach.

1. See http://www.cse.msu.edu/∼lawhiu/manifold/ for a long list of references.
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In the absence of labeled examples our framework results in new algorithms for unsupervised
learning, which can be used both for data representation and clustering. These algorithms are
related to spectral clustering and Laplacian Eigenmaps (Belkin and Niyogi, 2003a).

3. We elaborate on the RKHS foundations of our algorithms and show how geometric knowledge
of the probability distribution may be incorporated in such a setting through an additional
regularization penalty. In particular, a new Representer theorem provides a functional form of
the solution when the distribution is known; its empirical version involves an expansion over
labeled and unlabeled points when the distribution is unknown. These Representer theorems
provide the basis for our algorithms.

4. Our framework with an ambiently defined RKHS and the associated Representer theorems
result in a natural out-of-sample extension from the data set (labeled and unlabeled) to novel
examples. This is in contrast to the variety of purely graph-based approaches that have been
considered in the last few years. Such graph-based approaches work in a transductive setting
and do not naturally extend to the semi-supervised case where novel test examples need to
be classified (predicted). Also see Bengio et al. (2004) and Brand (2003) for some recent
related work on out-of-sample extensions. We also note that a method similar to our regu-
larized spectral clustering algorithm has been independently proposed in the context of graph
inference in Vert and Yamanishi (2005).

The work presented here is based on the University of Chicago Technical Report TR-2004-05,
a short version in the Proceedings of AI and Statistics 2005, Belkin et al. (2005) and Sindhwani
(2004).

1.1 The Significance of Semi-Supervised Learning

From an engineering standpoint, it is clear that collecting labeled data is generally more involved
than collecting unlabeled data. As a result, an approach to pattern recognition that is able to make
better use of unlabeled data to improve recognition performance is of potentially great practical
significance.

However, the significance of semi-supervised learning extends beyond purely utilitarian consid-
erations. Arguably, most natural (human or animal) learning occurs in the semi-supervised regime.
We live in a world where we are constantly exposed to a stream of natural stimuli. These stimuli
comprise the unlabeled data that we have easy access to. For example, in phonological acquisi-
tion contexts, a child is exposed to many acoustic utterances. These utterances do not come with
identifiable phonological markers. Corrective feedback is the main source of directly labeled ex-
amples. In many cases, a small amount of feedback is sufficient to allow the child to master the
acoustic-to-phonetic mapping of any language.

The ability of humans to learn unsupervised concepts (e.g., learning clusters and categories of
objects) suggests that unlabeled data can be usefully processed to learn natural invariances, to form
categories, and to develop classifiers. In most pattern recognition tasks, humans have access only
to a small number of labeled examples. Therefore the success of human learning in this “small
sample” regime is plausibly due to effective utilization of the large amounts of unlabeled data to
extract information that is useful for generalization.

Consequently, if we are to make progress in understanding how natural learning comes about,
we need to think about the basis of semi-supervised learning. Figure 1 illustrates how unlabeled
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Figure 1: Unlabeled data and prior beliefs

examples may force us to restructure our hypotheses during learning. Imagine a situation where one
is given two labeled examples—one positive and one negative—as shown in the left panel. If one is
to induce a classifier on the basis of this, a natural choice would seem to be the linear separator as
shown. Indeed, a variety of theoretical formalisms (Bayesian paradigms, regularization, minimum
description length or structural risk minimization principles, and the like) have been constructed to
rationalize such a choice. In most of these formalisms, one structures the set of one’s hypothesis
functions by a prior notion of simplicity and one may then justify why the linear separator is the
simplest structure consistent with the data.

Now consider the situation where one is given additional unlabeled examples as shown in the
right panel. We argue that it is self-evident that in the light of this new unlabeled set, one must
re-evaluate one’s prior notion of simplicity. The particular geometric structure of the marginal
distribution suggests that the most natural classifier is now the circular one indicated in the right
panel. Thus the geometry of the marginal distribution must be incorporated in our regularization
principle to impose structure on the space of functions in nonparametric classification or regression.
This is the intuition we formalize in the rest of the paper. The success of our approach depends on
whether we can extract structure from the marginal distribution, and on the extent to which such
structure may reveal the underlying truth.

1.2 Outline of the Paper

The paper is organized as follows: in Section 2, we develop the basic framework for semi-supervised
learning where we ultimately formulate an objective function that can use both labeled and unla-
beled data. The framework is developed in an RKHS setting and we state two kinds of Representer
theorems describing the functional form of the solutions. In Section 3, we elaborate on the theo-
retical underpinnings of this framework and prove the Representer theorems of Section 2. While
the Representer theorem for the finite sample case can be proved using standard orthogonality ar-
guments, the Representer theorem for the known marginal distribution requires more subtle consid-
erations. In Section 4, we derive the different algorithms for semi-supervised learning that arise out
of our framework. Connections to related algorithms are stated. In Section 5, we describe experi-
ments that evaluate the algorithms and demonstrate the usefulness of unlabeled data. In Section 6,

2402



MANIFOLD REGULARIZATION

we consider the cases of fully supervised and unsupervised learning. In Section 7 we conclude this
paper.

2. The Semi-Supervised Learning Framework

Recall the standard framework of learning from examples. There is a probability distribution P
on X ×R according to which examples are generated for function learning. Labeled examples are
(x,y) pairs generated according to P. Unlabeled examples are simply x ∈ X drawn according to the
marginal distribution PX of P.

One might hope that knowledge of the marginal PX can be exploited for better function learning
(e.g., in classification or regression tasks). Of course, if there is no identifiable relation between PX

and the conditional P (y|x), the knowledge of PX is unlikely to be of much use.
Therefore, we will make a specific assumption about the connection between the marginal and

the conditional distributions. We will assume that if two points x1,x2 ∈ X are close in the intrinsic
geometry of PX , then the conditional distributions P (y|x1) and P (y|x2) are similar. In other words,
the conditional probability distribution P (y|x) varies smoothly along the geodesics in the intrinsic
geometry of PX .

We use these geometric intuitions to extend an established framework for function learning.
A number of popular algorithms such as SVM, Ridge regression, splines, Radial Basis Functions
may be broadly interpreted as regularization algorithms with different empirical cost functions and
complexity measures in an appropriately chosen Reproducing Kernel Hilbert Space (RKHS).

For a Mercer kernel K : X ×X → R, there is an associated RKHS HK of functions X → R with
the corresponding norm ‖ ‖K . Given a set of labeled examples (xi,yi), i = 1, . . . , l the standard
framework estimates an unknown function by minimizing

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γ‖ f‖2
K , (1)

where V is some loss function, such as squared loss (yi − f (xi))
2 for RLS or the hinge loss func-

tion max [0,1− yi f (xi)] for SVM. Penalizing the RKHS norm imposes smoothness conditions on
possible solutions. The classical Representer Theorem states that the solution to this minimization
problem exists in HK and can be written as

f ∗(x) =
l

∑
i=1

αiK(xi,x).

Therefore, the problem is reduced to optimizing over the finite dimensional space of coefficients
αi, which is the algorithmic basis for SVM, regularized least squares and other regression and
classification schemes.

We first consider the case when the marginal distribution is already known.

2.1 Marginal PX is Known

Our goal is to extend this framework by incorporating additional information about the geometric
structure of the marginal PX . We would like to ensure that the solution is smooth with respect to
both the ambient space and the marginal distribution PX . To achieve that, we introduce an additional
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regularizer:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K + γI‖ f‖2

I , (2)

where ‖ f‖2
I is an appropriate penalty term that should reflect the intrinsic structure of PX . Intuitively,

‖ f‖2
I is a smoothness penalty corresponding to the probability distribution. For example, if the

probability distribution is supported on a low-dimensional manifold, ‖ f‖2
I may penalize f along

that manifold. γA controls the complexity of the function in the ambient space while γI controls
the complexity of the function in the intrinsic geometry of PX . It turns out that one can derive an
explicit functional form for the solution f ∗ as shown in the following theorem.

Theorem 1 Assume that the penalty term ‖ f‖I is sufficiently smooth with respect to the RKHS norm
‖ f‖K (see Section 3.2 for the exact statement). Then the solution f ∗ to the optimization problem in
Equation 2 above exists and admits the following representation

f ∗(x) =
l

∑
i=1

αiK(xi,x)+
Z

M
α(z)K(x,z)dPX(z) (3)

where M = supp{PX} is the support of the marginal PX .

We postpone the proof and the formulation of smoothness conditions on the norm ‖ ‖I until the next
section.

The Representer Theorem above allows us to express the solution f ∗ directly in terms of the
labeled data, the (ambient) kernel K, and the marginal PX . If PX is unknown, we see that the solution
may be expressed in terms of an empirical estimate of PX . Depending on the nature of this estimate,
different approximations to the solution may be developed. In the next section, we consider a
particular approximation scheme that leads to a simple algorithmic framework for learning from
labeled and unlabeled data.

2.2 Marginal PX Unknown

In most applications the marginal PX is not known. Therefore we must attempt to get empirical
estimates of PX and ‖ ‖I . Note that in order to get such empirical estimates it is sufficient to have
unlabeled examples.

A case of particular recent interest (for example, see Roweis and Saul, 2000; Tenenbaum et al.,
2000; Belkin and Niyogi, 2003a; Donoho and Grimes, 2003; Coifman et al., 2005, for a discussion
on dimensionality reduction) is when the support of PX is a compact submanifold M ⊂ R

n. In
that case, one natural choice for ‖ f‖I is

R

x∈M ‖∇M f‖2 dPX(x), where ∇M is the gradient (see, for
example Do Carmo, 1992, for an introduction to differential geometry) of f along the manifold M
and the integral is taken over the marginal distribution.

The optimization problem becomes

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K + γI

Z

x∈M
‖∇M f‖2 dPX(x).

The term
R

x∈M ‖∇M f‖2 dPX(x) may be approximated on the basis of labeled and unlabeled data
using the graph Laplacian associated to the data. While an extended discussion of these issues goes
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beyond the scope of this paper, it can be shown that under certain conditions choosing exponential
weights for the adjacency graph leads to convergence of the graph Laplacian to the Laplace-Beltrami
operator ∆M (or its weighted version) on the manifold. See the Remarks below and Belkin (2003);
Lafon (2004); Belkin and Niyogi (2005); Coifman et al. (2005); Hein et al. (2005) for details.

Thus, given a set of l labeled examples {(xi,yi)}l
i=1 and a set of u unlabeled examples {x j} j=l+u

j=l+1,
we consider the following optimization problem:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K +

γI

(u+ l)2

l+u

∑
i, j=1

( f (xi)− f (x j))
2Wi j,

= argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K +

γI

(u+ l)2 fT Lf. (4)

where Wi j are edge weights in the data adjacency graph, f = [ f (x1), . . . , f (xl+u)]
T , and L is the

graph Laplacian given by L = D−W . Here, the diagonal matrix D is given by Dii = ∑l+u
j=1Wi j. The

normalizing coefficient 1
(u+l)2 is the natural scale factor for the empirical estimate of the Laplace

operator. We note than on a sparse adjacency graph it may be replaced by ∑l+u
i, j=1Wi j.

The following version of the Representer Theorem shows that the minimizer has an expansion
in terms of both labeled and unlabeled examples and is a key to our algorithms.

Theorem 2 The minimizer of optimization problem 4 admits an expansion

f ∗(x) =
l+u

∑
i=1

αiK(xi,x) (5)

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality argument and is presented in Section 3.4.
Remark 1: Several natural choices of ‖ ‖I exist. Some examples are:

1. Iterated Laplacians (∆M )k. Differential operators (∆M )k and their linear combinations pro-
vide a natural family of smoothness penalties.

Recall that the Laplace-Beltrami operator ∆M can be defined as the divergence of the gradient
vector field ∆M f = div(∇M f ) and is characterized by the equality

Z

x∈M
f (x)∆M f (x)dµ =

Z

x∈M
‖∇M f (x)‖2 dµ.

where µ is the standard measure (uniform distribution) on the Riemannian manifold. If µ
is taken to be non-uniform, then the corresponding notion is the weighted Laplace-Beltrami
operator (e.g., Grigor’yan, 2006).

2. Heat semigroup e−t∆M is a family of smoothing operators corresponding to the process of
diffusion (Brownian motion) on the manifold. One can take ‖ f‖2

I =
R

M f et∆M ( f )dPX . We
note that for small values of t the corresponding Green’s function (the heat kernel of M ),
which is close to a Gaussian in the geodesic coordinates, can also be approximated by a sharp
Gaussian in the ambient space.
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3. Squared norm of the Hessian (cf. Donoho and Grimes, 2003). While the Hessian H( f ) (the
matrix of second derivatives of f ) generally depends on the coordinate system, it can be shown
that the Frobenius norm (the sum of squared eigenvalues) of H is the same in any geodesic
coordinate system and hence is invariantly defined for a Riemannian manifold M . Using
the Frobenius norm of H as a regularizer presents an intriguing generalization of thin-plate
splines. We also note that ∆M ( f ) = tr(H( f )).

Remark 2: Why not just use the intrinsic regularizer? Using ambient and intrinsic regularizers
jointly is important for the following reasons:

1. We do not usually have access to M or the true underlying marginal distribution, just to data
points sampled from it. Therefore regularization with respect only to the sampled manifold is
ill-posed. By including an ambient term, the problem becomes well-posed.

2. There may be situations when regularization with respect to the ambient space yields a better
solution, for example, when the manifold assumption does not hold (or holds to a lesser
degree). Being able to trade off these two regularizers may be important in practice.

Remark 3: While we use the graph Laplacian for simplicity, the normalized Laplacian

L̃ = D−1/2LD−1/2

can be used interchangeably in all our formulas. Using L̃ instead of L provides certain theoretical
guarantees (see von Luxburg et al., 2004) and seems to perform as well or better in many practical
tasks. In fact, we use L̃ in all our empirical studies in Section 5. The relation of L̃ to the weighted
Laplace-Beltrami operator was discussed in Lafon (2004).
Remark 4: Note that a global kernel K restricted to M (denoted by KM ) is also a kernel defined on
M with an associated RKHS HM of functions M → R. While this might suggest

‖ f‖I = ‖ fM ‖KM

( fM is f restricted to M ) as a reasonable choice for ‖ f‖I , it turns out, that for the minimizer f ∗ of the
corresponding optimization problem we get ‖ f ∗‖I = ‖ f ∗‖K , yielding the same solution as standard
regularization, although with a different parameter γ. This observation follows from the restriction
properties of RKHS discussed in the next section and is formally stated as Proposition 6. Therefore
it is impossible to have an out-of-sample extension without two different measures of smoothness.
On the other hand, a different ambient kernel restricted to M can potentially serve as the intrinsic
regularization term. For example, a sharp Gaussian kernel can be used as an approximation to the
heat kernel on M . Thus one (sharper) kernel may be used in conjunction with unlabeled data to
estimate the heat kernel on M and a wider kernel for inference.

3. Theoretical Underpinnings and Results

In this section we briefly review the theory of reproducing kernel Hilbert spaces and their connection
to integral operators. We proceed to establish the Representer theorems from the previous section.
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3.1 General Theory of RKHS

We start by recalling some basic properties of reproducing kernel Hilbert spaces (see the original
work of Aronszajn, 1950; Cucker and Smale, 2002, for a nice discussion in the context of learning
theory) and their connections to integral operators. We say that a Hilbert space H of functions
X → R has the reproducing property, if ∀x ∈ X the evaluation functional f → f (x) is continuous.
For the purposes of this discussion we will assume that X is compact. By the Riesz representation
theorem it follows that for a given x ∈ X , there is a function hx ∈ H , s.t.

∀ f ∈ H 〈hx, f 〉H = f (x).

We can therefore define the corresponding kernel function

K(x,y) = 〈hx,hy〉H .

It follows that hx(y) = 〈hx,hy〉H = K(x,y) and thus 〈K(x, ·), f 〉 = f (x). It is clear that K(x, ·) ∈ H .
It is easy to see that K(x,y) is a positive semi-definite kernel as defined below:

Definition: We say that K(x,y), satisfying K(x,y) = K(y,x), is a positive semi-definite kernel if
given an arbitrary finite set of points x1, . . . ,xn, the corresponding n×n matrix K with Ki j = K(xi,x j)
is positive semi-definite.

Importantly, the converse is also true. Any positive semi-definite kernel K(x,y) gives rise
to an RKHS HK , which can be constructed by considering the space of finite linear combina-
tions of kernels ∑αiK(xi, ·) and taking completion with respect to the inner product given by
〈K(x, ·),K(y, ·)〉HK

= K(x,y). See Aronszajn (1950) for details.
We therefore see that reproducing kernel Hilbert spaces of functions on a space X are in one-to-

one correspondence with positive semidefinite kernels on X .
It can be shown that if the space HK is sufficiently rich, that is if for any distinct point x1, . . . ,xn

there is a function f , s.t. f (x1) = 1, f (xi) = 0, i > 1, then the corresponding matrix Ki j = K(xi,x j)
is strictly positive definite. For simplicity we will sometimes assume that our RKHS are rich (the
corresponding kernels are sometimes called universal).
Notation: In what follows, we will use kernel K to denote inner products and norms in the cor-
responding Hilbert space HK , that is, we will write 〈 , 〉K , ‖ ‖K , instead of the more cumbersome
〈 , 〉HK

, ‖ ‖HK
.

We proceed to endow X with a measure µ (supported on all of X). The corresponding L 2
µ Hilbert

space inner product is given by

〈 f ,g〉µ =
Z

X
f (x)g(x)dµ.

We can now consider the integral operator LK corresponding to the kernel K:

(LK f )(x) =
Z

X
f (y)K(x,y)dµ.

It is well-known that if X is a compact space, LK is a compact operator and is self-adjoint with
respect to L2

µ . By the spectral theorem, its eigenfunctions e1(x),e2(x), . . ., (scaled to norm 1) form an
orthonormal basis of L2

µ . The spectrum of the operator is discrete and the corresponding eigenvalues
λ1,λ2, . . . are of finite multiplicity, limi→∞ λi = 0.

We see that
〈K(x, ·),ei(·)〉µ = λiei(x).
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and therefore K(x,y) = ∑i λiei(x)ei(y). Writing a function f in that basis, we have f = ∑aiei(x) and
〈K(x, ·), f (·)〉µ = ∑i λiaiei(x).

It is not hard to show that the eigenfunctions ei are in HK (e.g., see the argument below). Thus
we see that

e j(x) = 〈K(x, ·),e j(·)〉K = ∑
i

λiei(x)〈ei,e j〉K .

Therefore 〈ei,e j〉K = 0, if i 6= j, and 〈ei,ei〉K = 1
λi

. On the other hand 〈ei,e j〉µ = 0, if i 6= j, and
〈ei,ei〉µ = 1.

This observation establishes a simple relationship between the Hilbert norms in HK and L2
µ . We

also see that f = ∑aiei(x) ∈ HK if and only if ∑ a2
i

λi
< ∞.

Consider now the operator L1/2
K . It can be defined as the only positive definite self-adjoint

operator, s.t. LK = L1/2
K ◦L1/2

K . Assuming that the series K̃(x,y) = ∑i

√
λiei(x)ei(y) converges, we

can write

(L1/2
K f )(x) =

Z

X
f (y)K̃(x,y)dµ.

It is easy to check that L1/2
K is an isomorphism between H and L2

µ , that is

∀ f ,g ∈ HK 〈 f ,g〉µ = 〈L1/2
K f ,L1/2

K g〉K .

Therefore HK is the image of L1/2
K acting on L2

µ .

Lemma 3 A function f (x) = ∑i aiei(x) can be represented as f = LKg for some g if and only if

∞

∑
i=1

a2
i

λ2
i

< ∞. (6)

Proof Suppose f = LKg. Write g(x) = ∑i biei(x). We know that g ∈ L2
µ if and only if ∑i b2

i < ∞.

Since LK(∑i biei) = ∑i biλiei = ∑i aiei, we obtain ai = biλi. Therefore ∑∞
i=1

a2
i

λ2
i
< ∞.

Conversely, if the condition in the inequality 6 is satisfied, f = Lkg, where g = ∑ ai
λi

ei.

3.2 Proof of Theorems

Now let us recall the Equation 2:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K + γI‖ f‖2

I .

We have an RKHS HK and the probability distribution µ which is supported on M ⊂ X . We denote
by S the linear space, which is the closure with respect to the RKHS norm of HK , of the linear span
of kernels centered at points of M :

S = span{K(x, ·) |x ∈ M }.
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Notation. By the subscript M we will denote the restriction to M . For example, by SM we denote
functions in S restricted to the manifold M . It can be shown (Aronszajn, 1950, p. 350) that the
space (HK)M of functions from HK restricted to M is an RKHS with the kernel KM , in other words
(HK)M = HKM .

Lemma 4 The following properties of S hold:

1. S with the inner product induced by HK is a Hilbert space.

2. SM = (HK)M .

3. The orthogonal complement S⊥ to S in HK consists of all functions vanishing on M .

Proof
1. From the definition of S it is clear by that S is a complete subspace of HK .
2. We give a convergence argument similar to the one found in Aronszajn (1950). Since

(HK)M = HKM any function fM in it can be written as fM = limn→∞ fM ,n, where
fM ,n = ∑i αinKM (xin, ·) is a sum of kernel functions.

Consider the corresponding sum fn = ∑i αinK(xin, ·). From the definition of the norm we see
that ‖ fn − fk‖K = ‖ fM ,n − fM ,k‖KM and therefore fn is a Cauchy sequence. Thus f = limn→∞ fn

exists and its restriction to M must equal fM . This shows that (HK)M ⊂ SM . The other direction
follows by a similar argument.

3. Let g∈ S⊥. By the reproducing property for any x∈M , g(x) = 〈K(x, ·),g(·)〉K = 0 and there-
fore any function in S⊥ vanishes on M . On the other hand, if g vanishes on M it is perpendicular
to each K(x, ·),x ∈ M and is therefore perpendicular to the closure of their span S .

Lemma 5 Assume that the intrinsic norm is such that for any f ,g ∈ HK , ( f −g)|M ≡ 0 implies that
‖ f‖I = ‖g‖I . Then assuming that the solution f ∗ of the optimization problem in Equation 2 exists,
f ∗ ∈ S .

Proof Any f ∈ HK can be written as f = fS + f⊥S , where fS is the projection of f to S and f ⊥S is its
orthogonal complement.

For any x ∈ M we have K(x, ·) ∈ S . By the previous Lemma f ⊥S vanishes on M . We have
f (xi) = fS (xi) ∀i and by assumption ‖ fS‖I = ‖ f‖I .

On the other hand, ‖ f‖2
K = ‖ fS‖2

K + ‖ f⊥S ‖2
K and therefore ‖ f‖K ≥ ‖ fS‖K . It follows that the

minimizer f ∗ is in S .

As a direct corollary of these consideration, we obtain the following

Proposition 6 If ‖ f‖I = ‖ f‖KM then the minimizer of Equation 2 is identical to that of the usual
regularization problem (Equation 1) although with a different regularization parameter (λA +λI).

We can now restrict our attention to the study of S . While it is clear that the right-hand side of
Equation 3 lies in S , not every element in S can be written in that form. For example, K(x, ·), where
x is not one of the data points xi cannot generally be written as

l

∑
i=1

αiK(xi,x)+
Z

M
α(y)K(x,y)dµ.
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We will now assume that for f ∈ S

‖ f‖2
I = 〈 f ,D f 〉L2

µ
.

We usually assume that D is an appropriate smoothness penalty, such as an inverse integral operator
or a differential operator, for example, D f = ∆M f . The Representer theorem, however, holds under
quite mild conditions on D:

Theorem 7 Let ‖ f‖2
I = 〈 f ,D f 〉L2

µ
where D is a bounded operator D : S → L2

PX
. Then the solution

f ∗ of the optimization problem in Equation 2 exists and can be written as

f ∗(x) =
l

∑
i=1

αiK(xi,x)+
Z

M
α(y)K(x,y)dPX(y). (7)

Proof
For simplicity we will assume that the loss function V is differentiable. This condition can

ultimately be eliminated by approximating a non-differentiable function appropriately and passing
to the limit.

Put

H( f ) =
1
l

l

∑
i=1

V (xi,yi, f (xi))+ γA‖ f‖2
K + γI‖ f‖2

I .

We first show that the solution to Equation 2, f ∗, exists and by Lemma 5 belongs to S . It follows
easily from Cor. 10 and standard results about compact embeddings of Sobolev spaces (e.g., Adams,
1975) that a ball Br ⊂ HK , Br = { f ∈ S ,s.t. ‖ f‖K ≤ r} is compact in L∞

X . Therefore for any such
ball the minimizer in that ball f ∗r must exist and belong to Br. On the other hand, by substituting
the zero function

H( f ∗r ) ≤ H(0) =
1
l

l

∑
i=1

V (xi,yi,0).

If the loss is actually zero, then zero function is a solution, otherwise

γA‖ f ∗r ‖2
K <

l

∑
i=1

V (xi,yi,0),

and hence f ∗r ∈ Br, where

r =

√

∑l
i=1V (xi,yi,0)

γA
.

Therefore we cannot decrease H( f ∗) by increasing r beyond a certain point, which shows that
f ∗ = f ∗r with r as above, which completes the proof of existence. If V is convex, such solution will
also be unique.

We proceed to derive the Equation 7. As before, let e1,e2, . . . be the basis associated to the
integral operator (LK f )(x) =

R

M f (y)K(x,y)dPX(y). Write f ∗ = ∑i aiei(x). By substituting f ∗ into
H( f ) we obtain:

H( f ∗) =
1
l

l

∑
j=1

V (x j,y j,∑
i

aiei(xi))+ γA‖ f ∗‖2
K + γI‖ f ∗‖2

I .
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Assume that V is differentiable with respect to each ak. We have ‖∑i aiei(x)‖2
K = ∑i

a2
i

λi
. Differenti-

ating with respect to the coefficients ai yields the following set of equations:

0 =
∂H( f ∗)

∂ak
=

1
l

l

∑
j=1

ek(x j)∂3V (x j,y j,∑
i

aiei)+2γA
ak

λk
+ γI〈D f ,ek〉+ γI〈 f ,Dek〉,

where ∂3V denotes the derivative with respect to the third argument of V .
〈D f ,ek〉+ 〈 f ,Dek〉 = 〈(D+D∗) f ,ek〉 and hence

ak = − λk

2γAl

l

∑
j=1

ek(x j)∂3V (x j,y j, f ∗)− γI

2γA
λk〈D f ∗ +D∗ f ∗,ek〉.

Since f ∗(x) = ∑k akek(x) and recalling that K(x,y) = ∑i λiei(x)ei(y)

f ∗(x) = − 1
2γAl ∑

k

l

∑
j=1

λkek(x)ek(x j)∂3V (x j,y j, f ∗)− γI

2γA
∑
k

λk〈D f ∗ +D∗ f ∗,ek〉ek,

= − 1
2γAl

l

∑
j=1

K(x,x j)∂3V (x j,y j, f ∗)− γI

2γA
∑
k

λk〈D f ∗ +D∗ f ∗,ek〉ek.

We see that the first summand is a sum of the kernel functions centered at data points. It re-
mains to show that the second summand has an integral representation, that is, can be written as
R

M α(y)K(x,y)dPX(y), which is equivalent to being in the image of LK . To verify this we apply
Lemma 3. We need that

∑
k

λ2
k〈D f ∗ +D∗ f ∗,ek〉2

λ2
k

= ∑
k

〈D f ∗ +D∗ f ∗,ek〉2 < ∞.

Since D, its adjoint operator D∗ and hence their sum are bounded the inequality above is satisfied
for any function in S .

3.3 Manifold Setting2

We now show that for the case when M is a manifold and D is a differential operator, such as
the Laplace-Beltrami operator ∆M , the boundedness condition of Theorem 7 is satisfied. While we
consider the case when the manifold has no boundary, the same argument goes through for manifold
with boundary, with, for example, Dirichlet’s boundary conditions (vanishing at the boundary).
Thus the setting of Theorem 7 is very general, applying, among other things, to arbitrary differential
operators on compact domains in Euclidean space.

Let M be a C ∞ manifold without boundary with an infinitely differentiable embedding in some
ambient space X , D a differential operator with C ∞ coefficients and let µ, be the measure corre-
sponding to some C ∞ nowhere vanishing volume form on M . We assume that the kernel K(x,y) is
also infinitely differentiable.3 As before for an operator A, A∗ denotes the adjoint operator.

2. We thank Peter Constantin and Todd Dupont for help with this section.
3. While we have assumed that all objects are infinitely differentiable, it is not hard to specify the precise differentiability

conditions. Roughly speaking, a degree k differential operator D is bounded as an operator HK → L2
µ, if the kernel

K(x,y) has 2k derivatives.
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Theorem 8 Under the conditions above D is a bounded operator S → L 2
µ .

Proof First note that it is enough to show that D is bounded on HKM , since D only depends on the
restriction fM . As before, let LKM ( f )(x) =

R

M f (y)KM (x,y) dµ is the integral operator associated
to KM. Note that D∗ is also a differential operator of the same degree as D. The integral operator
LKM is bounded (compact) from L2

µ to any Sobolev space Hsob. Therefore the operator LKM D is also
bounded. We therefore see that DLKM D∗ is bounded L2

µ → L2
µ. Therefore there is a constant C, s.t.

〈DLKM D∗ f , f 〉L2
µ
≤C‖ f‖L2

µ
.

The square root T = L1/2
KM

of the self-adjoint positive definite operator LKM is a self-adjoint
positive definite operator as well. Thus (DT )∗ = T D∗. By definition of the operator norm, for any
ε > 0 there exists f ∈ L2

µ,‖ f‖L2
µ
≤ 1+ ε, such that

‖DT‖2
L2

µ
= ‖T D∗‖2

L2
µ
≤ 〈T D∗ f ,T D∗ f 〉L2

µ
=

= 〈DLD∗ f , f 〉L2
µ
≤ ‖DLD∗‖L2

µ
‖ f‖2

L2
µ
≤C(1+ ε)2.

Therefore the operator DT : L2
µ → L2

µ is bounded (and also ‖DT‖L2
µ
≤C, since ε is arbitrary).

Now recall that T provides an isometry between L2
µ and HKM . That means that for any g ∈ HKM

there is f ∈ L2
µ, such that T f = g and ‖ f‖L2

µ
= ‖g‖KM . Thus ‖Dg‖L2

µ
= ‖DT f‖L2

µ
≤C‖g‖KM , which

shows that T : HKM → L2
µ is bounded and concludes the proof.

Since S is a subspace of HK the main result follows immediately:

Corollary 9 D is a bounded operator S → L2
µ and the conditions of Theorem 7 hold.

Before finishing the theoretical discussion we obtain a useful

Corollary 10 The operator T = L1/2
K on L2

µ is a bounded (and in fact compact) operator L2
µ → Hsob,

where Hsob is an arbitrary Sobolev space.

Proof Follows from the fact that DT is bounded operator L2
µ → L2

µ for an arbitrary differential op-
erator D and standard results on compact embeddings of Sobolev spaces (see, for example, Adams,
1975).

3.4 The Representer Theorem for the Empirical Case

In the case when M is unknown and sampled via labeled and unlabeled examples, the Laplace-
Beltrami operator on M may be approximated by the Laplacian of the data adjacency graph (see
Belkin, 2003; Bousquet et al., 2004, for some discussion). A regularizer based on the graph Lapla-
cian leads to the optimization problem posed in Equation 4. We now provide a proof of Theorem 2
which states that the solution to this problem admits a representation in terms of an expansion
over labeled and unlabeled points. The proof is based on a simple orthogonality argument (e.g.,
Scholkopf and Smola, 2002).
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Proof (Theorem 2) Any function f ∈ HK can be uniquely decomposed into a component f|| in the
linear subspace spanned by the kernel functions {K(xi, ·)}l+u

i=1 , and a component f⊥ orthogonal to it.
Thus,

f = f|| + f⊥ =
l+u

∑
i=1

αiK(xi, ·)+ f⊥.

By the reproducing property, as the following arguments show, the evaluation of f on any data
point x j, 1 ≤ j ≤ l +u is independent of the orthogonal component f⊥:

f (x j) = 〈 f ,K(x j, ·)〉 = 〈
l+u

∑
i=1

αiK(xi, ·),K(x j, ·)〉+ 〈 f⊥,K(x j, ·)〉.

Since the second term vanishes, and 〈K(xi, ·),K(x j, ·)〉 = K(xi,x j), it follows that
f (x j) = ∑l+u

i=1 αiK(xi,x j). Thus, the empirical terms involving the loss function and the intrinsic
norm in the optimization problem in Equation 4 depend only on the value of the coefficients {αi}l+u

i=1
and the gram matrix of the kernel function.

Indeed, since the orthogonal component only increases the norm of f in HK :

‖ f‖2
K = ‖

l+u

∑
i=1

αiK(xi, ·)‖2
K +‖ f⊥‖2

K ≥ ‖
l+u

∑
i=1

αiK(xi, ·)‖2
K.

It follows that the minimizer of problem 4 must have f⊥ = 0, and therefore admits a representation
f ∗(·) = ∑l+u

i=1 αiK(xi, ·).

The simple form of the minimizer, given by this theorem, allows us to translate our extrinsic and
intrinsic regularization framework into optimization problems over the finite dimensional space of
coefficients {αi}l+u

i=1 , and invoke the machinery of kernel based algorithms. In the next section, we
derive these algorithms, and explore their connections to other related work.

4. Algorithms

We now discuss standard regularization algorithms (RLS and SVM) and present their extensions
(LapRLS and LapSVM respectively). These are obtained by solving the optimization problems
posed in Equation 4) for different choices of cost function V and regularization parameters γA,γI .
To fix notation, we assume we have l labeled examples {(xi,yi)}l

i=1 and u unlabeled examples

{x j} j=l+u
j=l+1. We use K interchangeably to denote the kernel function or the Gram matrix.

4.1 Regularized Least Squares

The regularized least squares algorithm is a fully supervised method where we solve:

min
f∈HK

1
l

l

∑
i=1

(yi − f (xi))
2 + γ‖ f‖2

K .

The classical Representer Theorem can be used to show that the solution is of the following
form:

f ?(x) =
l

∑
i=1

α?
i K(x,xi).
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Substituting this form in the problem above, we arrive at following convex differentiable objec-
tive function of the l-dimensional variable α = [α1 . . .αl]

T :

α∗ = argmin
1
l
(Y −Kα)T (Y −Kα)+ γαT Kα,

where K is the l × l gram matrix Ki j = K(xi,x j) and Y is the label vector Y = [y1 . . .yl ]
T .

The derivative of the objective function vanishes at the minimizer:

1
l
(Y −Kα∗)T (−K)+ γKα∗ = 0,

which leads to the following solution:

α∗ = (K + γlI)−1Y.

4.2 Laplacian Regularized Least Squares (LapRLS)

The Laplacian regularized least squares algorithm solves the optimization problem in Equation 4)
with the squared loss function:

min
f∈HK

1
l

l

∑
i=1

(yi − f (xi))
2 + γA‖ f‖2

K +
γI

(u+ l)2 fT Lf.

As before, the Representer Theorem can be used to show that the solution is an expansion of
kernel functions over both the labeled and the unlabeled data:

f ?(x) =
l+u

∑
i=1

α?
i K(x,xi).

Substituting this form in the equation above, as before, we arrive at a convex differentiable
objective function of the l +u-dimensional variable α = [α1 . . .αl+u]

T :

α∗ = argmin
α∈Rl+u

1
l
(Y − JKα)T (Y − JKα)+ γAαT Kα+

γI

(u+ l)2 αT KLKα,

where K is the (l + u)× (l + u) Gram matrix over labeled and unlabeled points; Y is an (l + u)
dimensional label vector given by: Y = [y1, . . . ,yl,0, . . . ,0] and J is an (l + u)× (l + u) diagonal
matrix given by J = diag(1, . . . ,1,0, . . . ,0) with the first l diagonal entries as 1 and the rest 0.

The derivative of the objective function vanishes at the minimizer:

1
l
(Y − JKα)T (−JK)+(γAK +

γIl
(u+ l)2 KLK)α = 0,

which leads to the following solution:

α∗ = (JK + γAlI +
γI l

(u+ l)2 LK)−1Y. (8)

Note that when γI = 0, Equation 8) gives zero coefficients over unlabeled data, and the coeffi-
cients over the labeled data are exactly those for standard RLS.
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4.3 Support Vector Machine Classification

Here we outline the SVM approach to binary classification problems. For SVMs, the following
problem is solved:

min
f∈HK

1
l

l

∑
i=1

(1− yi f (xi))+ + γ‖ f‖2
K ,

where the hinge loss is defined as: (1− y f (x))+ = max(0,1− y f (x)) and the labels yi ∈ {−1,+1}.
Again, the solution is given by:

f ?(x) =
l

∑
i=1

α?
i K(x,xi). (9)

Following SVM expositions, the above problem can be equivalently written as:

min
f∈HK ,ξi∈R

1
l

l

∑
i=1

ξi + γ‖ f‖2
K

subject to: yi f (xi) ≥ 1−ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l.

Using the Lagrange multipliers technique, and benefiting from strong duality, the above problem
has a simpler quadratic dual program in the Lagrange multipliers β = [β1, . . . ,βl]

T ∈ R
l :

β? = max
β∈Rl

l

∑
i=1

βi −
1
2

βT Qβ

subject to:
l

∑
i=1

yiβi = 0

0 ≤ βi ≤
1
l

i = 1, . . . , l.

where the equality constraint arises due to an unregularized bias term that is often added to the sum
in Equation 9, and the following notation is used:

Y = diag(y1,y2, ...,yl),

Q = Y

(

K
2γ

)

Y,

α? =
Y β?

2γ
.

Here again, K is the gram matrix over labeled points. SVM practitioners may be familiar with a
slightly different parameterization involving the C parameter: C = 1

2γl is the weight on the hinge loss
term (instead of using a weight γ on the norm term in the optimization problem). The C parameter
appears as the upper bound (instead of 1

l ) on the values of β in the quadratic program. For additional
details on the derivation and alternative formulations of SVMs, see Scholkopf and Smola (2002);
Rifkin (2002).
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4.4 Laplacian Support Vector Machines

By including the intrinsic smoothness penalty term, we can extend SVMs by solving the following
problem:

min
f∈HK

1
l

l

∑
i=1

(1− yi f (xi))+ + γA‖ f‖2
K +

γI

(u+ l)2 fT Lf.

By the representer theorem,as before, the solution to the problem above is given by:

f ?(x) =
l+u

∑
i=1

α?
i K(x,xi).

Often in SVM formulations, an unregularized bias term b is added to the above form. Again,
the primal problem can be easily seen to be the following:

min
α∈Rl+u,ξ∈Rl

1
l

l

∑
i=1

ξi + γAαT Kα+
γI

(u+ l)2 αT KLKα

subject to: yi(
l+u

∑
j=1

α jK(xi,x j)+b) ≥ 1−ξi, i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l.

Introducing the Lagrangian, with βi,ζi as Lagrange multipliers:

L(α,ξ,b,β,ζ) =
1
l

l

∑
i=1

ξi +
1
2

αT (2γAK +2
γA

(l +u)2 KLK)α

−
l

∑
i=1

βi(yi(
l+u

∑
j=1

α jK(xi,x j)+b)−1+ξi)−
l

∑
i=1

ζiξi.

Passing to the dual requires the following steps:

∂L
∂b

= 0 =⇒
l

∑
i=1

βiyi = 0,

∂L
∂ξi

= 0 =⇒ 1
l
−βi −ζi = 0,

=⇒ 0 ≤ βi ≤
1
l

(ξi,ζi are non-negative) .

Using above identities, we formulate a reduced Lagrangian:

LR(α,β) =
1
2

αT (2γAK +2
γI

(u+ l)2 KLK)α−
l

∑
i=1

βi(yi

l+u

∑
j=1

α jK(xi,x j)−1),

=
1
2

αT (2γAK +2
γI

(u+ l)2 KLK)α−αT KJTY β+
l

∑
i=1

βi,
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where J = [I 0] is an l× (l +u) matrix with I as the l× l identity matrix (assuming the first l points
are labeled) and Y = diag(y1,y2, ...,yl).

Taking derivative of the reduced Lagrangian with respect to α:

∂LR

∂α
= (2γAK +2

γI

(u+ l)2 KLK)α−KJTY β.

This implies:

α = (2γAI +2
γI

(u+ l)2 LK)−1JTY β?. (10)

Note that the relationship between α and β is no longer as simple as the SVM algorithm. In
particular, the (l +u) expansion coefficients are obtained by solving a linear system involving the l
dual variables that will appear in the SVM dual problem.

Substituting back in the reduced Lagrangian we get:

β∗ = max
β∈Rl

l

∑
i=1

βi −
1
2

βT Qβ (11)

subject to:
l

∑
i=1

βiyi = 0

0 ≤ βi ≤
1
l

i = 1, . . . , l (12)

where

Q = Y JK(2γAI +2
γI

(l +u)2 LK)−1JTY.

Laplacian SVMs can be implemented by using a standard SVM solver with the quadratic form
induced by the above matrix, and using the solution to obtain the expansion coefficients by solving
the linear system in Equation 10.

Note that when γI = 0, the SVM QP and Equations 11 and 10, give zero expansion coefficients
over the unlabeled data. The expansion coefficients over the labeled data and the Q matrix are as in
standard SVM, in this case.

The manifold regularization algorithms are summarized in the Table 1.
Efficiency Issues: It is worth noting that our algorithms compute the inverse of a dense Gram matrix
which leads to O((l + u)3) complexity. This may be impractical for large data sets. In the case of
linear kernels, instead of using Equation 5, we can directly write f ?(x) = wT x and solve for the
weight vector w using a primal optimization method. This is much more efficient when the data is
low-dimensional. For highly sparse data sets, for example, in text categorization problems, effective
conjugate gradient schemes can be used in a large scale implementation, as outlined in Sindhwani
et al. (2006). For the non-linear case, one may obtain approximate solutions (e.g., using greedy,
matching pursuit techniques) where the optimization problem is solved over the span of a small set
of basis functions instead of using the full representation in Equation 5. We note these directions
for future work. In section 5, we evaluate the empirical performance of our algorithms with exact
computations as outlined in Table 1 with non-linear kernels. For other recent work addressing
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Manifold Regularization algorithms

Input: l labeled examples {(xi,yi)}l
i=1, u unlabeled examples {x j}l+u

j=l+1

Output: Estimated function f : R
n → R

Step 1 � Construct data adjacency graph with (l + u) nodes using, for
example, k nearest neighbors or a graph kernel. Choose edge
weights Wi j, for example, binary weights or heat kernel weights
Wi j = e−‖xi−x j‖2/4t .

Step 2 � Choose a kernel function K(x,y). Compute the Gram matrix
Ki j = K(xi,x j).

Step 3 � Compute graph Laplacian matrix: L = D−W where D is a di-
agonal matrix given by Dii = ∑l+u

j=1Wi j.
Step 4 � Choose γA and γI .
Step 5 � Compute α∗ using Equation 8 for squared loss (Laplacian RLS)

or using Equations 11 and 10 together with the SVM QP solver for
soft margin loss (Laplacian SVM).

Step 6 � Output function f ∗(x) = ∑l+u
i=1 α∗

i K(xi,x).

Table 1: A summary of the algorithms

scalability issues in semi-supervised learning, see, example, Tsang and Kwok. (2005); Bengio et al.
(2004).

4.5 Related Work and Connections to Other Algorithms

In this section we survey various approaches to semi-supervised and transductive learning and high-
light connections of manifold regularization to other algorithms.

Transductive SVM (TSVM) (Vapnik, 1998; Joachims, 1999): TSVMs are based on the follow-
ing optimization principle:

f ∗ = argmin
f∈HKyl+1,...yl+u

C
l

∑
i=1

(1− yi f (xi))+ +C∗
l+u

∑
i=l+1

(1− yi f (xi))+ +‖ f‖2
K ,

which proposes a joint optimization of the SVM objective function over binary-valued labels on the
unlabeled data and functions in the RKHS. Here, C,C∗ are parameters that control the relative hinge-
loss over labeled and unlabeled sets. The joint optimization is implemented in Joachims (1999) by
first using an inductive SVM to label the unlabeled data and then iteratively solving SVM quadratic
programs, at each step switching labels to improve the objective function. However this procedure
is susceptible to local minima and requires an unknown, possibly large number of label switches
before converging. Note that even though TSVM were inspired by transductive inference, they do
provide an out-of-sample extension.

Semi-Supervised SVMs (S3VM) (Bennett and Demiriz, 1999; Fung and Mangasarian, 2001):
S3VM incorporate unlabeled data by including the minimum hinge-loss for the two choices of
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labels for each unlabeled example. This is formulated as a mixed-integer program for linear SVMs
in Bennett and Demiriz (1999) and is found to be intractable for large amounts of unlabeled data.
Fung and Mangasarian (2001) reformulate this approach as a concave minimization problem which
is solved by a successive linear approximation algorithm. The presentation of these algorithms is
restricted to the linear case.

Measure-Based Regularization (Bousquet et al., 2004): The conceptual framework of this
work is closest to our approach. The authors consider a gradient based regularizer that penalizes
variations of the function more in high density regions and less in low density regions leading to the
following optimization principle:

f ∗ = argmin
f∈F

l

∑
i=1

V ( f (xi),yi)+ γ
Z

X
〈∇ f (x),∇ f (x)〉p(x)dx,

where p is the density of the marginal distribution PX . The authors observe that it is not straightfor-
ward to find a kernel for arbitrary densities p, whose associated RKHS norm is

Z

〈∇ f (x),∇ f (x)〉p(x)dx.

Thus, in the absence of a representer theorem, the authors propose to perform minimization of the
regularized loss on a fixed set of basis functions chosen apriori, that is, F = {∑q

i=1 αiφi}. For the
hinge loss, this paper derives an SVM quadratic program in the coefficients {αi}q

i=1 whose Q matrix
is calculated by computing q2 integrals over gradients of the basis functions. However the algorithm
does not demonstrate performance improvements in real world experiments. It is also worth noting
that while Bousquet et al. (2004) use the gradient ∇ f (x) in the ambient space, we use the gradient
over a submanifold ∇M f for penalizing the function. In a situation where the data truly lies on
or near a submanifold M , the difference between these two penalizers can be significant since
smoothness in the normal direction to the data manifold is irrelevant to classification or regression.

Graph-Based Approaches See, for example, Blum and Chawla (2001); Chapelle et al. (2003);
Szummer and Jaakkola (2002); Zhou et al. (2004); Zhu et al. (2003, 2005); Kemp et al. (2004);
Joachims (2003); Belkin and Niyogi (2003b): A variety of graph-based methods have been pro-
posed for transductive inference. However, these methods do not provide an out-of-sample exten-
sion. In Zhu et al. (2003), nearest neighbor labeling for test examples is proposed once unlabeled
examples have been labeled by transductive learning. In Chapelle et al. (2003), test points are
approximately represented as a linear combination of training and unlabeled points in the feature
space induced by the kernel. For graph regularization and label propagation see (Smola and Kondor,
2003; Belkin et al., 2004; Zhu et al., 2003). Smola and Kondor (2003) discusses the construction of
a canonical family of graph regularizers based on the graph Laplacian. Zhu et al. (2005) presents a
non-parametric construction of graph regularizers.

Manifold regularization provides natural out-of-sample extensions to several graph-based ap-
proaches. These connections are summarized in Table 2.

We also note the recent work (Delalleau et al., 2005) on out-of-sample extensions for semi-
supervised learning where an induction formula is derived by assuming that the addition of a test
point to the graph does not change the transductive solution over the unlabeled data.

Cotraining (Blum and Mitchell, 1998): The cotraining algorithm was developed to integrate
abundance of unlabeled data with availability of multiple sources of information in domains like
web-page classification. Weak learners are trained on labeled examples and their predictions on
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subsets of unlabeled examples are used to mutually expand the training set. Note that this set-
ting may not be applicable in several cases of practical interest where one does not have access to
multiple information sources.

Bayesian Techniques See, for example, Nigam et al. (2000); Seeger (2001); Corduneanu and
Jaakkola (2003). An early application of semi-supervised learning to Text classification appeared
in Nigam et al. (2000) where a combination of EM algorithm and Naive-Bayes classification is pro-
posed to incorporate unlabeled data. Seeger (2001) provides a detailed overview of Bayesian frame-
works for semi-supervised learning. The recent work in Corduneanu and Jaakkola (2003) formu-
lates a new information-theoretic principle to develop a regularizer for conditional log-likelihood.

Parameters Corresponding algorithms (square loss or hinge loss)

γA ≥ 0 γI ≥ 0 Manifold Regularization
γA ≥ 0 γI = 0 Standard Regularization (RLS or SVM)
γA → 0 γI > 0 Out-of-sample extension for Graph Regularization

(RLS or SVM)
γA → 0 γI → 0 Out-of-sample extension for Label Propagation
γI � γA (RLS or SVM)
γA → 0 γI = 0 Hard margin SVM or Interpolated RLS

Table 2: Connections of manifold regularization to other algorithms

5. Experiments

We performed experiments on a synthetic data set and three real world classification problems aris-
ing in visual and speech recognition, and text categorization. Comparisons are made with inductive
methods (SVM, RLS). We also compare Laplacian SVM with transductive SVM. All software and
data sets used for these experiments will be made available at:
http://www.cs.uchicago.edu/∼vikass/manifoldregularization.html.

For further experimental benchmark studies and comparisons with numerous other methods, we
refer the reader to Chapelle et al. (2006); Sindhwani et al. (2006, 2005).

5.1 Synthetic Data: Two Moons Data Set

The two moons data set is shown in Figure 2. The data set contains 200 examples with only 1 la-
beled example for each class. Also shown are the decision surfaces of Laplacian SVM for increasing
values of the intrinsic regularization parameter γI . When γI = 0, Laplacian SVM disregards unla-
beled data and returns the SVM decision boundary which is fixed by the location of the two labeled
points. As γI is increased, the intrinsic regularizer incorporates unlabeled data and causes the deci-
sion surface to appropriately adjust according to the geometry of the two classes. In Figure 3, the
best decision surfaces across a wide range of parameter settings are also shown for SVM, transduc-
tive SVM and Laplacian SVM. Figure 3 demonstrates how TSVM fails to find the optimal solution,
probably since it gets stuck in a local minimum. The Laplacian SVM decision boundary seems to
be intuitively most satisfying.
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Figure 2: Laplacian SVM with RBF kernels for various values of γI . Labeled points are shown in
color, other points are unlabeled.
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Figure 3: Two Moons data set: Best decision surfaces using RBF kernels for SVM, TSVM and
Laplacian SVM. Labeled points are shown in color, other points are unlabeled.

5.2 Handwritten Digit Recognition

In this set of experiments we applied Laplacian SVM and Laplacian RLS algorithms to 45 binary
classification problems that arise in pairwise classification of handwritten digits. The first 400 im-
ages for each digit in the USPS training set (preprocessed using PCA to 100 dimensions) were taken
to form the training set. The remaining images formed the test set. 2 images for each class were
randomly labeled (l=2) and the rest were left unlabeled (u=398). Following Scholkopf et al. (1995),
we chose to train classifiers with polynomial kernels of degree 3, and set the weight on the regular-
ization term for inductive methods as γl = 0.05(C = 10). For manifold regularization, we chose to
split the same weight in the ratio 1 : 9 so that γAl = 0.005, γI l

(u+l)2 = 0.045. The observations reported
in this section hold consistently across a wide choice of parameters.

In Figure 4, we compare the error rates of manifold regularization algorithms, inductive clas-
sifiers and TSVM, at the break-even points in the precision-recall curves for the 45 binary classi-
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fication problems. These results are averaged over 10 random choices of labeled examples. The
following comments can be made: (a) manifold regularization results in significant improvements
over inductive classification, for both RLS and SVM, and either compares well or significantly out-
performs TSVM across the 45 classification problems. Note that TSVM solves multiple quadratic
programs in the size of the labeled and unlabeled sets whereas LapSVM solves a single QP (Equa-
tion 11) in the size of the labeled set, followed by a linear system (Equation 10). This resulted in
substantially faster training times for LapSVM in this experiment. (b) Scatter plots of performance
on test and unlabeled data sets, in the bottom row of Figure 4, confirm that the out-of-sample ex-
tension is good for both LapRLS and LapSVM. (c) Also shown, in the rightmost scatter plot in the
bottom row of Figure 4, are standard deviation of error rates obtained by LapSVM and TSVM. We
found LapSVM to be significantly more stable than the inductive methods and TSVM, with respect
to choice of the labeled data. In Figure 5, we demonstrate the benefit of unlabeled data as a function
of the number of labeled examples.

10 20 30 40
0

5

10

15

20

RLS vs LapRLS

45 Classification Problems

Er
ro

r R
at

es

RLS
LapRLS

10 20 30 40
0

5

10

15

20

SVM vs LapSVM

45 Classification Problems

Er
ro

r R
at

es

SVM
LapSVM

10 20 30 40
0

5

10

15

20
TSVM vs LapSVM

45 Classification Problems

Er
ro

r R
at

es

TSVM
LapSVM

0 5 10 15
0

5

10

15
Out−of−Sample Extension

LapRLS (Unlabeled)

La
pR

LS
 (T

es
t)

0 5 10 15
0

5

10

15
Out−of−Sample Extension

LapSVM (Unlabeled)

La
pS

VM
 (T

es
t)

0 2 4 6
0

5

10

15
Std Deviation of Error Rates

SV
M

 (o
) ,

 T
SV

M
 (x

) S
td

 D
ev

LapSVM Std Dev

Figure 4: USPS Experiment: (Top row) Error rates at precision-recall break-even points for 45
binary classification problems. (Bottom row) Scatter plots of error rates on test and unla-
beled data for Laplacian RLS, Laplacian SVM; and standard deviations in test errors of
Laplacian SVM and TSVM.

Method SVM TSVM LapSVM RLS LapRLS
Error 23.6 26.5 12.7 23.6 12.7

Table 3: USPS Experiment: one-versus-rest multiclass error rates

We also performed one-vs-rest multiclass experiments on the USPS test set with l = 50 and
u = 1957 with 10 random splits as provided by Chapelle and Zien (2005). The mean error rates
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Figure 5: USPS Experiment: mean error rate at precision-recall break-even points as a function of
number of labeled points (T: test set, U: unlabeled set)

in predicting labels of unlabeled data are reported in Table 3. In this experiment, TSVM actually
performs worse than the SVM baseline probably since local minima problems become severe in a
multi-class setting. For several other experimental observations and comparisons on this data set,
see Sindhwani et al. (2005).

5.3 Spoken Letter Recognition

This experiment was performed on the Isolet database of letters of the English alphabet spoken in
isolation (available from the UCI machine learning repository). The data set contains utterances of
150 subjects who spoke the name of each letter of the English alphabet twice. The speakers are
grouped into 5 sets of 30 speakers each, referred to as isolet1 through isolet5. For the purposes of
this experiment, we chose to train on the first 30 speakers (isolet1) forming a training set of 1560
examples, and test on isolet5 containing 1559 examples (1 utterance is missing in the database due
to poor recording). We considered the task of classifying the first 13 letters of the English alphabet
from the last 13. We considered 30 binary classification problems corresponding to 30 splits of the
training data where all 52 utterances of one speaker were labeled and all the rest were left unlabeled.
The test set is composed of entirely new speakers, forming the separate group isolet5.

We chose to train with RBF kernels of width σ = 10 (this was the best value among several
settings with respect to 5-fold cross-validation error rates for the fully supervised problem using
standard SVM). For SVM and RLS we set γl = 0.05 (C = 10) (this was the best value among several
settings with respect to mean error rates over the 30 splits). For Laplacian RLS and Laplacian SVM
we set γAl = γI l

(u+l)2 = 0.005.
In Figure 6, we compare these algorithms. The following comments can be made: (a) LapSVM

and LapRLS make significant performance improvements over inductive methods and TSVM, for
predictions on unlabeled speakers that come from the same group as the labeled speaker, over all
choices of the labeled speaker. (b) On Isolet5 which comprises of a separate group of speakers,
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Figure 6: Isolet Experiment - Error Rates at precision-recall break-even points of 30 binary classi-
fication problems

performance improvements are smaller but consistent over the choice of the labeled speaker. This
can be expected since there appears to be a systematic bias that affects all algorithms, in favor
of same-group speakers. To test this hypothesis, we performed another experiment in which the
training and test utterances are both drawn from Isolet1. Here, the second utterance of each letter
for each of the 30 speakers in Isolet1 was taken away to form the test set containing 780 examples.
The training set consisted of the first utterances for each letter. As before, we considered 30 binary
classification problems arising when all utterances of one speaker are labeled and other training
speakers are left unlabeled. The scatter plots in Figure 7 confirm our hypothesis, and show high
correlation between in-sample and out-of-sample performance of our algorithms in this experiment.
It is encouraging to note performance improvements with unlabeled data in Experiment 1 where the
test data comes from a slightly different distribution. This robustness is often desirable in real-world
applications.

In Table 4 we report mean error rates over the 30 splits from one-vs-rest 26-class experiments
on this data set. The parameters were held fixed as in the 2-class setting. The failure of TSVM
in producing reasonable results on this data set has also been observed in Joachims (2003). With
LapSVM and LapRLS we obtain around 3 to 4% improvement over their supervised counterparts.
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Figure 7: Isolet Experiment - Error Rates at precision-recall break-even points on test set versus
unlabeled set. In Experiment 1, the training data comes from Isolet 1 and the test data
comes from Isolet5; in Experiment 2, both training and test sets come from Isolet1.

Method SVM TSVM LapSVM RLS LapRLS
Error (unlabeled) 28.6 46.6 24.5 28.3 24.1

Error (test) 36.9 43.3 33.7 36.3 33.3

Table 4: Isolet: one-versus-rest multiclass error rates

5.4 Text Categorization

We performed Text Categorization experiments on the WebKB data set which consists of 1051 web
pages collected from Computer Science department web-sites of various universities. The task is
to classify these web pages into two categories: course or non-course. We considered learning
classifiers using only textual content of the web pages, ignoring link information. A bag-of-word
vector space representation for documents is built using the the top 3000 words (skipping HTML
headers) having highest mutual information with the class variable, followed by TFIDF mapping.4

Feature vectors are normalized to unit length. 9 documents were found to contain none of these
words and were removed from the data set.

4. TFIDF stands for Term Frequency Inverse Document Frequency. It is a common document preprocessing procedure,
which combines the number of occurrences of a given term with the number of documents containing it.
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For the first experiment, we ran LapRLS and LapSVM in a transductive setting, with 12 ran-
domly labeled examples (3 course and 9 non-course) and the rest unlabeled. In Table 5, we report
the precision and error rates at the precision-recall break-even point averaged over 100 realizations
of the data, and include results reported in Joachims (2003) for spectral graph transduction, and
the cotraining algorithm (Blum and Mitchell, 1998) for comparison. We used 15 nearest neigh-
bor graphs, weighted by cosine distances and used iterated Laplacians of degree 3. For inductive
methods, γAl was set to 0.01 for RLS and 1.00 for SVM. For LapRLS and LapSVM, γA was set
as in inductive methods, with γI l

(l+u)2 = 100γAl. These parameters were chosen based on a simple
grid search for best performance over the first 5 realizations of the data. Linear kernels and cosine
distances were used since these have found wide-spread applications in text classification problems,
for example, in Dumais et al. (1998).

Method PRBEP Error

k-NN 73.2 13.3
SGT 86.2 6.2

Naive-Bayes — 12.9
Cotraining — 6.20

SVM 76.39 (5.6) 10.41 (2.5)
TSVM 88.15 (1.0) 5.22 (0.5)

LapSVM 87.73 (2.3) 5.41 (1.0)

RLS 73.49 (6.2) 11.68 (2.7)
LapRLS 86.37 (3.1) 5.99 (1.4)

Table 5: Precision and Error Rates at the Precision-Recall Break-even Points of supervised and
transductive algorithms.

Since the exact data sets on which these algorithms were run, somewhat differ in preprocess-
ing, preparation and experimental protocol, these results are only meant to suggest that manifold
regularization algorithms perform similar to state-of-the-art methods for transductive inference in
text classification problems. The following comments can be made: (a) transductive categorization
with LapSVM and LapRLS leads to significant improvements over inductive categorization with
SVM and RLS. (b) Joachims (2003) reports 91.4% precision-recall break-even point, and 4.6% er-
ror rate for TSVM. Results for TSVM reported in the table were obtained when we ran the TSVM
implementation using SVM-Light software on this particular data set. The average training time for
TSVM was found to be more than 10 times slower than for LapSVM. (c) The cotraining results were
obtained on unseen test data sets utilizing additional hyperlink information, which was excluded in
our experiments. This additional information is known to improve performance, as demonstrated
in Joachims (2003) and Blum and Mitchell (1998).

In the next experiment, we randomly split the WebKB data into a test set of 263 examples and a
training set of 779 examples. We noted the performance of inductive and semi-supervised classifiers
on unlabeled and test sets as a function of the number of labeled examples in the training set. The
performance measure is the precision-recall break-even point (PRBEP), averaged over 100 random
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Figure 8: WebKb Text Classification Experiment: The top panel presents performance in terms of
precision-recall break-even points (PRBEP) of RLS,SVM,Laplacian RLS and Laplacian
SVM as a function of number of labeled examples, on test (marked as T) set and unlabeled
set (marked as U and of size 779-number of labeled examples). The bottom panel presents
performance curves of Laplacian SVM for different number of unlabeled points.

data splits. Results are presented in the top panel of Figure 8. The benefit of unlabeled data can be
seen by comparing the performance curves of inductive and semi-supervised classifiers.

We also performed experiments with different sizes of the training set, keeping a randomly cho-
sen test set of 263 examples. The bottom panel in Figure 8 presents the quality of transduction and
semi-supervised learning with Laplacian SVM (Laplacian RLS performed similarly) as a function
of the number of labeled examples for different amounts of unlabeled data. We find that transduc-
tion improves with increasing unlabeled data. We expect this to be true for test set performance
as well, but do not observe this consistently possibly since we use a fixed set of parameters that
become suboptimal as unlabeled data is increased. The optimal choice of the regularization param-
eters depends on the amount of labeled and unlabeled data, and should be adjusted by the model
selection protocol accordingly.

6. Unsupervised and Fully Supervised Cases

While the previous discussion concentrated on the semi-supervised case, our framework covers both
unsupervised and fully supervised cases as well. We briefly discuss each in turn.
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6.1 Unsupervised Learning: Clustering and Data Representation

In the unsupervised case one is given a collection of unlabeled data points x1, . . . ,xu. Our basic
algorithmic framework embodied in the optimization problem in Equation 2 has three terms: (i)
fit to labeled data, (ii) extrinsic regularization and (iii) intrinsic regularization. Since no labeled
data is available, the first term does not arise anymore. Therefore we are left with the following
optimization problem:

min
f∈HK

γA‖ f‖2
K + γI‖ f‖2

I

Of course, only the ratio γ = γA
γI

matters. As before ‖ f‖2
I can be approximated using the unlabeled

data. Choosing ‖ f‖2
I =

R

M 〈∇M f ,∇M f 〉 and approximating it by the empirical Laplacian, we are
left with the following optimization problem:

f ∗ = argmin
∑i f (xi)=0; ∑i f (xi)

2=1

f∈HK

γ‖ f‖2
K + ∑

i∼ j

( f (xi)− f (x j))
2. (13)

Note that to avoid degenerate solutions we need to impose some additional conditions (cf. Belkin
and Niyogi, 2003a). It turns out that a version of Representer theorem still holds showing that the
solution to Equation 13 admits a representation of the form

f ∗ =
u

∑
i=1

αiK(xi, ·).

By substituting back in Equation 13, we come up with the following optimization problem:

α = argmin
1T Kα=0

αT K2α=1

γ‖ f‖2
K + ∑

i∼ j

( f (xi)− f (x j))
2,

where 1 is the vector of all ones and α = (α1, . . . ,αu) and K is the corresponding Gram matrix.
Letting P be the projection onto the subspace of R

u orthogonal to K1, one obtains the solution
for the constrained quadratic problem, which is given by the generalized eigenvalue problem

P(γK + KLK)Pv = λPK2Pv. (14)

The final solution is given by α = Pv, where v is the eigenvector corresponding to the smallest
eigenvalue.
Remark 1: The framework for clustering sketched above provides a method for regularized spec-
tral clustering, where γ controls the smoothness of the resulting function in the ambient space. We
also obtain a natural out-of-sample extension for clustering points not in the original data set. Fig-
ures 9,10 show results of this method on two two-dimensional clustering problems. Unlike recent
work (Bengio et al., 2004; Brand, 2003) on out-of-sample extensions, our method is based on a
Representer theorem for RKHS.
Remark 2: By taking multiple eigenvectors of the system in Equation 14 we obtain a natural
regularized out-of-sample extension of Laplacian Eigenmaps. This leads to new method for dimen-
sionality reduction and data representation. Further study of this approach is a direction of future
research. We note that a similar algorithm has been independently proposed in Vert and Yamanishi
(2005) in the context of supervised graph inference. A relevant discussion is also presented in Ham
et al. (2005) on the interpretation of several geometric dimensionality reduction techniques as kernel
methods.
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Figure 9: Two Moons data set: Regularized clustering
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Figure 10: Two Spirals data set: Regularized clustering

6.2 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since standard
supervised algorithms (SVM and RLS) are special cases of manifold regularization, our framework
is also able to deal with a labeled data set containing no unlabeled examples. Additionally, manifold
regularization can augment supervised learning with intrinsic regularization, possibly in a class-
dependent manner, which suggests the following algorithm:

f ∗ = argmin
f∈HK

1
l

l

∑
i=1

V (xi,yi, f )+ γA‖ f‖2
K +

γ+
I

(u+ l)2 fT
+L+f+ +

γ−I
(u+ l)2 fT

−L−f−.

Here we introduce two intrinsic regularization parameters γ+
I , γ−I and regularize separately for the

two classes: f+, f− are the vectors of evaluations of the function f , and L+, L− are the graph
Laplacians, on positive and negative examples respectively. The solution to the above problem for
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RLS and SVM can be obtained by replacing γIL by the block-diagonal matrix

(

γ+
I L+ 0
0 γ−I L−

)

in the manifold regularization formulas given in Section 4.
Detailed experimental study of this approach to supervised learning is left for future work.

7. Conclusions and Further Directions

We have a provided a novel framework for data-dependent geometric regularization. It is based
on a new Representer theorem that provides a basis for several algorithms for unsupervised, semi-
supervised and fully supervised learning. This framework brings together ideas from the theory of
regularization in reproducing kernel Hilbert spaces, manifold learning and spectral methods.

There are several directions of future research:
1. Convergence and generalization error: The crucial issue of dependence of generalization
error on the number of labeled and unlabeled examples is still very poorly understood. Some very
preliminary steps in that direction have been taken in Belkin et al. (2004).
2. Model selection: Model selection involves choosing appropriate values for the extrinsic and
intrinsic regularization parameters. We do not as yet have a good understanding of how to choose
these parameters. More systematic procedures need to be developed.
3. Efficient algorithms: The naive implementations of our algorithms have cubic complexity in
the number of labeled and unlabeled examples, which is restrictive for large scale real-world appli-
cations. Scalability issues need to be addressed.
4. Additional structure: In this paper we have shown how to incorporate the geometric structure
of the marginal distribution into the regularization framework. We believe that this framework will
extend to other structures that may constrain the learning task and bring about effective learnability.
One important example of such structure is invariance under certain classes of natural transforma-
tions, such as invariance under lighting conditions in vision. Some ideas are presented in Sindhwani
(2004).
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Abstract
The consistency of classification algorithm plays a central role in statistical learning theory. A
consistent algorithm guarantees us that taking more samples essentially suffices to roughly recon-
struct the unknown distribution. We consider the consistency of ERM scheme over classes of
combinations of very simple rules (base classifiers) in multiclass classification. Our approach is,
under some mild conditions, to establish a quantitative relationship between classification errors
and convex risks. In comparison with the related previous work, the feature of our result is that
the conditions are mainly expressed in terms of the differences between some values of the convex
function.
Keywords: multiclass classification, classifier, consistency, empirical risk minimization, con-
strained comparison method, Tsybakov noise condition

1. Introduction

We consider the consistency of empirical risk minimization (ERM) algorithm in multiclass classifi-
cation.

Given an input vector x ∈ X ⊆R
d , we would like to predict its corresponding label y ∈ {1,2, . . . ,

K}. A classifier f is a function defined on X with values in {1,2, . . . ,K}. The quality of this
classifier can be measured by the classification error

R ( f ) = EX ,Y I{ f (X)6=Y},

where IA is the characteristic function of set A, and X ,Y are drawn from an unknown underlying
distribution D. It is clear that R ( f ) = P{Y 6= f (X)}. If we know the conditional density P{Y =
c|X = x}, then the classifier φB given by

φB(x) := arg max
c∈{1,2,...,K}

P{Y = c|X = x},

referred to as Bayes rule, minimizes R ( f ) over all classifiers: R (φB) = infR ( f ). Henceforth,
let R ∗ stand for the number infR ( f ). However, the conditional density is unknown in practice.

c©2006 Di-Rong Chen and Tao Sun.



CHEN AND SUN

Instead, we are given n samples {(X1,Y1), . . . ,(Xn,Yn)} of independent random variable drawn from
the underlying distribution D. The goal of statistical learning is to find a classifier based on the
samples and a pre-chosen set F of vector functions with K-components. For this purpose, a very
successful method used in binary classification is to solve a minimization problem of a risk based
on a convex loss φ. Main examples of φ include the exponential loss φ(x) = e−x used in AdaBoost,
the logit loss φ(x) = ln(1+e−x) and the hinge loss φ(x) = (1−x)+ used in support vector machine,
where (u)+ = max{0,u} for a number u ∈ R.

Probably since one can solve a multiclass classification problem (K > 2) by solving several
binary classification problems, there are much fewer studies on multiclass classification algorithms
based directly on minimizing empirical risk with convex loss. Recently, Zhang (2004b) proposes a
natural version of EMR scheme in solving a multiclass problem:

f̂ = argmin
f∈F

1
n

n

∑
i=1

ΨYi(f(Xi)), (1)

where Ψc is a mapping from R
K to R, which is usually constructed by some convex loss function

φ. In the following, we use bold symbols such as f and q to denote vectors, and fc and qc to denote
their c-th component. We also use f(·) to denote a vector function. Once obtaining f̂, we have a
classifier C(f̂), where C(f) is defined by

C(f)(x) = argmax
c

fc(x), ∀f = ( f1(x), . . . , fK(x)).

A natural question is how close the optimal Bayes error R ∗ can be approximately reached by
R (C(f̂)). A very desirable property is the consistency of algorithm: the excess error R (C(f̂))−
R ∗ → 0 in some sense, as the size n of samples increases to ∞. A consistent algorithm guarantees
us that taking more samples essentially suffices to roughly reconstruct the unknown distribution. A
good learning algorithm should be consistent.

In recent years, a large part of research has been focused on classifiers which base their decision
on a certain combination of (base) classifiers. Suppose that H is a set of classifiers and λ is a
positive number. Let F = Fλ be the following set of vector functions

Fλ =
{

f =
( J

∑
j=1

β jTc(h j(·))
)K

c=1
: β j > 0,h j ∈ H ,J = 1,2, . . . ,

J

∑
j=1

β j = λ
}

,

where Tc,c = 1, . . . ,K, are functions defined on {1,2, . . . ,K} by

Tc(h) =

{

K −1, if h = c,
−1 if h 6= c.

A classifier C(f) with f ∈ Fλ may be thought as one that, upon observing x, takes a weighted
vote of classifiers h1, . . . ,hJ , using weights β1, . . . ,βJ .

For K = 2, the vector function f = ( f1, f2) ∈ Fλ satisfies f1 + f2 = 0. Therefore Fλ is usually
regarded as the set of functions f = ∑J

j=1 β jT1(h j(·)),h j ∈ H ,∑J
j=1 β j = λ. In different versions of

boosting, bagging and arcing algorithms, the output classifiers are constructed by weighted voting
schemes. Their consistency is established in Lugosi and Vayatis (2004) under the assumption that
the Bayes classifier can be approximated by Fλ and H has a finite VC dimension.

2436



MULTICLASS EMPIRICAL RISK MINIMIZATION METHODS

The computational feasibility of schemes (1) has been recognized all along. Moreover, in binary
classification, as revealed recently in binary classification problem, a striking feature of ERM (1)
using a convex loss is that one can upper bound the excess error by the excess {Ψc}c-risk E(f̂)−E∗,
where E(f) = EX ,Y ΨY (f(X)) is the expectation of ΨY (f(X)), referred to as the {Ψc}-risk, and E∗ is
the infimum inff E(f) of E(f) over an appropriate set (not restricted to F ). Consequently, we have
a very important implication relation (e.g., Bartlett et al., 2005; Lugosi and Vayatis, 2004; Chen et
al., 2004; Zhang, 2004a)

E(f̂) → E∗ ⇒ R (C(f̂)) → R ∗.

The notion of classification calibrated in Bartlett et al. (2005) is extended to multiclass classi-
fication problem and is used to characterize above implication in Tewari and Bartlett (2005). Such
an implication is also established under the so called infinite-sample-consistency (ISC) condition
on {Ψc}c (see Zhang, 2004b). Moreover, an quantitative relation between the excess error and the
excess {Ψc}-risk is obtained for One-versus-All method in Zhang (2004b).

In this paper we consider the constrained comparison method in multiclass classification prob-
lem. One of our goals is to generalize the results of consistency for weighted voting schemes in
Lugosi and Vayatis (2004) to multiclass case. We first establish an inequality concerning with the
excess error and the excess {Ψc}-risk. The inequality is interesting in its own right.

The paper is organized as following. In Section 2, we upper bound the excess error by the excess
{Ψc}-risk under some mild conditions. In comparison with the previous work, our conditions are
mainly expressed in terms of the differences between some values of function φ. On the other hand,
the sufficient conditions ensuring the quantitative relationships, even in case K = 2, are expressed
previously in terms of the infimum inff E(ΨY (f(X))|X = x). In Section 3, we apply the results in
Section 2 to establish a consistency result in multiclass case, similar to that of Lugosi and Vayatis
(2004).

2. Bounding Classification Error by Convexity

In this section, we upper bound, under some conditions on convex loss φ, the excess classification
error R (C(f))−R ∗ by the excess {Ψc}-risk E(f)−E∗ for the constrained comparison method.
Similar result is established for the One-versus-All method (see Zhang, 2004b). The two meth-
ods are different: in the One-versus-All method, one can deal with each component of the vector
function separately. The conditions and proofs here are different from those in Zhang (2004b).
Moreover, a tighter upper bound is given under Tsybakov noise condition.

Recall that P{Y = c|X = x} is the conditional probability. Let

q(x) = (qc(x))
K
c=1, qc(x) = P{Y = c|X = x}.

Suppose that φ is a convex function on R. The constrained comparison method proposed in
Zhang (2004b) uses Ψc below.

Ψc(f) =
K

∑
k=1,k 6=c

φ(− fk), f ∈ Ω :=
{

f ∈ R
K : ∑

c
fc = 0

}

.

Then the risk E(f) may by expressed as

E(f) = EXW (q(X), f(X)), (2)
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with W (q, f) = ∑K
c=1(1−qc)φ(− fc).

Note that we use qc to denote the c-th component of a K-dimensional vector q ∈ ΛK , where ΛK

is the set of possible conditional probability vectors:

ΛK =
{

q ∈ R
K :

K

∑
c=1

qc = 1,qc ≥ 0
}

.

Denote by B the set of all K-dimensional vectors of Borel measurable functions on X and
BΩ = {f ∈ B : ∀x ∈ X , f(x) ∈ Ω}. Let E ∗ = inff∈BΩ E(f).

For any q ∈ ΛK , let W ∗(q) := inff∈ΩW (q, f). It is easily seen that

E∗ = EW ∗(q(X)).

Lemma 2.1 Assume that φ is a decreasing and convex function on R. Let W (q, f) be given as
above. Suppose that q ∈ ΛK and f ∈ BΩ satisfy that there are i, j such that qi < q j and f j < fi. Then

W (q, f′) ≤W (q, f), where f′ = ( f ′1, · · · , f ′K) is given by f ′i = f ′j =
fi+ f j

2 , and f ′c = fc, c 6= i, j.

Proof. Without loss of generally, we can assume that q1 < q2 and f2 < f1. Then

f1 + f2

2
≤ (1−q1) f1 +(1−q2) f2

2−q1 −q2
.

By assumption, we have

(2−q1 −q2)φ
(

− f1+ f2
2

)

≤ (2−q1 −q2)φ
(

− (1−q1) f1+(1−q2) f2
2−q1−q2

)

≤ (1−q1)φ(− f1)+(1−q2)φ(− f2).

Therefore the proof is complete by

W (q, f)−W (q, f′)
= (1−q1)φ(− f1)+(1−q2)φ(− f2)− (2−q1 −q2)φ(− f1+ f2

2 ) ≥ 0.

Lemma 2.2 Assume that φ is a decreasing and convex function on R. Suppose that there exist
positive constants k > 0 and α ≥ 1 such that for any q ∈ ΛK ,

k(q j −qi)
α ≤W ∗(q′)−W ∗(q), (3)

where j = argmaxc qc and qi < q j, and q′ is given by q′ = (q′1, · · · ,q′K), where q′i = q′j =
qi+q j

2 , and
q′c = qc,c 6= i, j. Then for any f ∈ BΩ,

k(R (C(f))−R ∗) ≤ E(f)−E∗)
1
α .

Proof. Recall that qc(x) is the conditional probability P{Y = c|X = x}. For any f we have by
definition of R (C(f))

R (C(f))−R ∗ =
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX . (4)
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Let q(x) = (qc(x))K
c=1. Also by (2)

E(f)−E∗ =
Z

X

(

W (q(x), f(x))−W ∗(q(x))
)

dρX . (5)

Let x∈X be given such that qC(f)(x)(x) 6= qφB(x)(x). Denote j = φB(x) and i =C(f)(x). We regard
q(x), f(x) and f′(x) as q , f and f′ in Lemma 2.1 respectively.

By assumption, we have W (q(x), f′(x)) = W (q′(x), f′(x)) ≥W ∗(q′(x)). It follows from Lemma
2.1 that W ∗(q′(x)) ≤W (q(x), f(x)). Therefore by (3)

k(q j(x)−qi(x))
α ≤W (q(x), f(x))−W ∗(q(x)).

Integrating the above inequality over the set X ′ = {x ∈ X : C(f)(x) 6= φB(x)}, we have

k
Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX ≤
Z

X ′

(

W (q(x), f(x))−W ∗(q(x))
)

dρX .

By Hölder inequality, for α ≥ 1
(

Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX

)α
≤

Z

X ′

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX .

Then we have the desired inequality by the definition of X ′, (4) and (5). The proof is complete.

In the following we impose some conditions on φ.

Assumption 2.3 1. φ is a differentiable, convex and decreasing function on R such that
lim

x→+∞
φ(x) = 0 and lim

x→−∞
φ(x) = +∞.

2. For any q = (qc)
K
c=1 ∈ ΛK with all qc < 1,c ∈ {1, . . . ,K}, there is a minimizer f∗ = ( f ∗c )K

c=1 of
W (q, f). Moreover, φ is twice differentiable at points − f ∗c ,c = 1, . . . ,K, and φ′′(− f ∗c ) > 0,c ∈
{1, . . . ,K}.

For any q = (qc)
K
c=1, let j = argmaxc qc and i ∈ {1, . . . ,K} with qi < q j. We introduce qt =

(qt
c)

K
c=1 ∈ ΛK for 0 ≤ t ≤ q j−qi

2 as following.

qt
i = qi + t, qt

j = q j − t, and qt
c = qc, c 6= i, j.

Clearly, qt
c < 1 for 0 < t <

q j−qi

2 and any 1 ≤ c ≤ K. Therefore, for any t, there is a ft,∗ = ( f t,∗
c )K

c=1
minimizing W (qt , f), that is, W ∗(qt) = W (qt , ft,∗).

Under a condition weaker than Assumption 2.3, Zhang (2004b) proves that the excess error
R (C(f))−R ∗ is small whenever the excess {Ψ}-risk E(f)−E ∗ is small. Our goal however is,
under Assumption 2.3, to establish an inequality between the above two quantities. We give a
sufficient condition for (3) in terms of the differences between any pair of φ(− f t,∗

c ),c ∈ {1, . . . ,K}.

Theorem 2.4 Assume that φ satisfies Assumption 2.3. Suppose that there exist positive constants
k1 > 0 and β ≥ 0 such that for any q ∈ ΛK ,

k1(q j −qi −2t)β ≤ φ(− f t,∗
j )−φ(− f t,∗

i ), 0 < t <
q j −qi

2
, (6)
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whenever j = argmaxc qc, qi < q j and ft,∗ = ( f t,∗
c )K

c=1 is a minimizer of W (qt , f). Then for any vector
f ∈ BΩ,

R (C(f))−R ∗ ≤ 2(β+1)

k1
(E(f)−E∗)

1
β+1 .

Proof. We establish condition (3) with α = β + 1 and k = k1
2(β+1) . As above, let ft,∗ = ( f t,∗

c )K
c=1 be

the minimizer of W (qt , f). The first-order optimality condition is the set of equations

(1−qt
c)φ

′(− f t,∗
c ) = µ, c = 1, . . . ,K,

where µ, independent of c, is the Lagrangian multiplier. Assumption 2.3 implies that fc,t is differen-
tiable with respect to t,c = 1, . . . ,K. Moreover, the constraint ∑K

c=1 f t,∗
c = 0(∀t ∈ (0, q2−q1

2 )) yields

∑K
c=1

d f t,∗
c

dt = 0. Consequently,

dW ∗(qt)

dt

= φ(− f t,∗
j )−φ(− f t,∗

i )−
K
∑

c=1
(1−qt

c)φ′(− f t,∗
c )d f t,∗

c
dt

= φ(− f t,∗
j )−φ(− f t,∗

i ).

Therefore, we have by (6)

dW ∗(qt)

dt
≥ k1(q j −qi −2t)β, 0 < t <

q j −qi

2
.

Integrating the above inequality over [0,
q j−qi

2 ] gives (3) with α = β+1 and k = k1
2(β+1) . Our conclu-

sion follows from Lemma 2.2. The proof is complete.

We consider the exponential loss as the first example.

Example 2.5 Let φ(x) = e−x. Then for any vector f ∈ BΩ, we have

R (C(f))−R ∗ ≤ 4 K
√

K −1

K

√

( 2K
2K−1)2K−2

√

E(f)−E∗.

Proof. For q = (qc)
K
c=1 ∈ ΛK with all qc < 1, the unique minimizer f∗ = ( f ∗c )K

c=1 is determined by
(1− qc)exp( f ∗c ) = µ,c = 1, · · · ,K, with µ the Lagrangian multiplier. Assumption 2.3 holds for φ.

By ∑c f ∗c = 0 we have µ = K

√

∏K
c=1(1−qc). Therefore

φ(− f ∗k ) =

K

√

∏K
c=1(1−qc)

1−qk
, k = 1, . . . ,K.

Let j = argmaxc qc and i ∈ {1, . . . ,K} such that qi < q j. Recall that qt and ft,∗ be defined as
before. We apply the above equality and obtain

φ(− f t,∗
j )−φ(− f t,∗

i ) =

K

√

∏
c6=i, j

(1−qc)

((1−q j + t)(1−qi − t))
K−1

K

(q j −qi −2t).
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If K = 2, ∏
c6=i, j

(1− qc) is understood as 1. If K > 2, the K − 2 nonnegative numbers qc,c 6=

i, j, may be arranged in the decreasing order, so that it is easily seen that they are not larger than
1
2 , . . . , 1

K−1 respectively. Therefore

∏
c6=i, j

(1−qc) ≥
K−1

∏
c=2

(1− 1
c
) =

1
K −1

.

On the other hand, (1−q j +t)(1−qi−t)≤ (1− qi+q j

2 )2 for 0≤ t ≤ qi−q j

2 . Note qi+q j

2 ≥ q j

2 ≥ 1
2K .

Consequently,

φ(− f t,∗
j )−φ(− f t,∗

i ) ≥
K

√

( 2K
2K−1)2K−2

K
√

K −1
(q j −qi −2t).

This is (6) with β = 1 and k1 =
K
√

( 2K
2K−1 )2K−2

K√K−1
. The conclusion follows from Theorem 2.4.

Let p≥ 1 and φ(x) = ( 1
K−1 −x)p

+, where (x)+ = max{x,0}. The resulting risk is just the one used
in p-norm Support vector machine (SVM). Chen and Xiang (2004) have established the inequality
for p = 1

R (C(f))−R ∗

K −1
≤ E(f)−E∗.

Example 2.6 Let φ(x) = ( 1
K−1 − x)2

+. Then for any vector f ∈ BΩ, we have

R (C(f))−R ∗ ≤ 4(K−1
K )2

k2

√

E(f)−E∗,

where k2 = 2( 2K−1
2K )2 +( 2K−1

2K )4
((

1
2

)2
+ · · ·+

(

K−2
K−1

)2)

for K > 2 and k2 = 1
8 for K = 2.

Proof. For q = (qc)
k
c=1 with all qc < 1, by the method of Lagrange multiplier we conclude that the

minimizer f∗ = ( f ∗c )K
c=1 satisfies − f ∗c < 1

K−1 ,c ∈ {1, . . . ,K}. Thus, Assumption 2.3 is satisfied by
φ. Moreover, we have

φ(− f ∗k ) =
( K

K −1

)2 1

(1−qk)2
K
∑

c=1

1
(1−qc)2

, k = 1, . . . ,K.

Let j = argmaxc qc and i ∈ {1, . . . ,K} such that qi < q j. Moreover, qt and ft,∗ are defined as
before. An application of the above equality to qt and ft,∗ yields

φ(− f t,∗
j )−φ(− f t,∗

i )

=
(

K
K−1

)2 (q j −qi −2t)(2−qi −q j)

(1−qi − t)2(1−q j + t)2
(

1
(1−qi+t)2 + 1

(1−q j+t)2 + ∑
c6=i, j

1
(1−qc)2

) ,

where ∑c6=i, j
1

(1−qc)2 is understood as 0 for K = 2. It is easily seen that

(1−qi − t)2(1−q j + t)2
( 1

(1−qi + t)2 +
1

(1−q j + t)2

)

≤ 2(1− q j +qi

2
)2 ≤ 2(

2K −1
2K

)2, ∀ t ∈ [0,
q j −qi

2
],
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where the second inequality holds by 1/K ≤ q j.
As in Example 2.5, again we arrange qc,c 6= i, j, in decreasing order so that they are not larger

than 1
2 , . . . , 1

K−1 respectively. It follows that, for 0 ≤ t ≤ q j−qi

2 ,

(1−qi − t)2(1−q j + t)2 ∑
c6=i, j

1
(1−qc)2 ≤

(2K −1
2K

)4((1
2

)2
+ · · ·+

(K −2
K −1

)2)

.

Therefore, the condition (6) holds with β = 1 and k1 =
(

K
K−1

)2
k2. The conclusion follows from

Theorem 2.4.

Remark 2.7 For φ(x) = ( 1
K−1 − x)p

+ with p > 1, we can also apply Theorem 2.4 and get an in-

equality R (C(f))−R ∗ ≤ k′
√

E(f)−E∗, where k′ is a constant. The argument is similar to that of
Example 2.8. We point out that − f ∗c < 1

K−1 for any q = (qc)
K
c=1 with all qc < 1,c = 1, . . . ,K, which

ensures that φ satisfies Assumption 2.3. Moreover, by simple computation,

φ(− f ∗k ) =
( K

K −1

)
p

p−1 1

∑K
c=1

(

1−qk
1−qc

)
p

p−1
, k = 1, . . . ,K.

The bounds in Lemma 2.2 and Theorem 2.4 may be improved under the so-called Tsybakov
noise condition. For any x ∈ X , let

m(x) = qφB(x)(x)−max{qi(x) : qi(x) < qφB(x)(x), i = 1 . . . ,K}

if the set {qi(x) : qi(x) < qφB(x)(x), i = 1 . . . ,K} is not empty, and m(x) = 0 otherwise.

Definition 2.8 Let s ∈ [0,1]. We say that P satisfies Tsybakov noise condition with exponent s, if
there is a constant c such that

P{X ∈ X : 0 < m(X) < t} ≤ ct
s

1−s , 0 < t ≤ 1.

As in binary classification (see Bartlett and Mendelson, 2002), Tsybakov noise condition with
exponent s implies that there is a constant c such that, for any f ∈ BΩ,

P{x : x ∈ X ,qφB(x)(x) 6= qC(f)(x)(x)} ≤ c(R (C(f))−R ∗)s. (7)

In fact, Tsybakov noise condition and (4) tell us

R (C(f))−R ∗

≥
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)

I{t≤m(x)}dρX

≥ t
(

P{x : x ∈ X , qφB(x)(x) 6= qC(f)(x)(x)}− ct
s

1−s

)

.

.

Minimizing the last term over t establishes (7).
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Theorem 2.9 Suppose that P satisfies Tsybakov noise condition with exponent s. If the conditions
of Lemma 2.2 are satisfied, then for any vector f ∈ BΩ we have

R (C(f))−R ∗ ≤ kφ(E(f)−E∗)
1

α−(α−1)s , (8)

where kφ is a constant.
Consequently, under Tsybakov noise condition with exponent s and conditions of Theorem 2.4,

we have for any vector f ∈ BΩ

R (C(f))−R ∗ ≤ kφ(E(f)−E∗)
1

β+1−βs .

Proof. For f ∈ BΩ and t ∈ (0,1] set X1 = {x : x ∈ X ,0 < qφB(x)(x)− qC(f)(x)(x) < t} and X2 = {x :
x ∈ X , t ≤ qφB(x)(x)− qC(f)(x)(x)}. Clearly, X1 ⊆ {x : x ∈ X ,qφB(x)(x) 6= qC(f)(x)(x)}, which implies
P(X1) ≤ c(R (C(f)(x))−R ∗)s by (7). On the other hand,

Z

X2

(

qφB(x)(x)−qC(f)(x)(x)
)

dρX

≤ t−α+1
Z

X

(

qφB(x)(x)−qC(f)(x)(x)
)α

dρX

≤ 1
ktα−1 (E(f)−E∗),

where the last inequality follows from the proof of Lemma 2.2. Therefore we have by (4) that

R (C(f))−R ∗ ≤ tc(R (C(f))−R ∗)s +
1

ktα−1 (E(f)−E∗).

Minimizing the right hand side of above inequality over t ∈ (0,1] yields the inequality (8) for some
constant cφ.

As a consequence, the second conclusion follows from Theorem 2.4 and (8) with α = β + 1.
The proof is complete.

3. Consistency of Weighted Voting Schemes

In this section, we consider the consistency of weight voting schemes by the results of section 2.
Recall that BΩ is given in Section 2. It is easily seen that, for any set H of classifiers, Fλ ⊂ BΩ.

Assumption 3.1 Recall that E ∗ is defined in Section 2. Suppose that the set H of classifiers satisfies

lim
λ→∞

inf
f∈Fλ

E(f) = E∗.

The notion of VC dimension plays an important role in classification (see Devroye et al., 1996;
Vapnik, 1998). Recall that for a collection A of some sets A, the VC dimension VA of A is defined
to be the largest number d, when exists, such that A shatters a set of some d points (see Devroye et
al., 1996). If there exists no such an integer d we define VA = ∞.

With n samples {(Xi,Yi)}n
i=1 ⊂ Zn, the empirical {Ψc}-risk En(f) of a vector function f is defined

by

En(f) =
1
n

n

∑
i=1

ΨYi(f(Xi)).

Clearly, E(f) = EZnEn(f).
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Lemma 3.2 Suppose that φ satisfies the condition 1 of Assumption 2.3. Moreover, suppose that, for
any c ∈ {1, . . . ,K}, the collection Ac of all sets

{(x,c) : h(x) 6= c}, h ∈ H ,

has a finite VC dimension VAc . Then for any n and λ > 0 we have

E sup
f∈Fλ

|E(f)−En(f)| ≤ 4K2λ|φ′(−λ(K −1))|
√

2V ln(4n+2)

n
, (9)

where V = max
1≤c≤K

VAc . Also, for any δ > 0, with probability at least 1−δ,

sup
f∈Fλ

|E(f)−En(f)|

≤ 4K2λ|φ′(−λ(K −1))|
√

2V ln(4n+2)

n
+2exp

( −nδ2

2(K −1)2φ2(−λK)

)

.
(10)

Proof. The proof is similar to that of Lugosi and Vayatis (2004) Lemma 2. Let σ1, . . . ,σn be the
independent symmetric sign variables, that is,

P{σi = −1} = P{σi = 1} =
1
2
.

Then, by a standard symmetrization argument,

E sup
f∈Fλ

|E(f)−En(f)| ≤ 2E sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))− (K −1)φ(0))
∣

∣

∣
.

On the other hand, it is easily seen that

sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))− (K −1)φ(0))
∣

∣

∣

= sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi

K

∑
c=1,c6=Yi

(φ(− fc(Xi))−φ(0))
∣

∣

∣

≤
K

∑
c=1

sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi(φ(−λ fc(Xi))−φ(0))
∣

∣

∣
,

where the equality holds by the definition of Fλ.
For any c ∈ {1, . . . ,K}, let g(t) = φ(−λt)−φ(0), t ∈ [−1,K−1]. Then g(0) = 0, and g satisfies

Lipschitz condition with Lipschitz constant L = −λφ′(−λ(K − 1)). We appeal to the “contraction
principle” to conclude for any c ∈ {1, . . . ,K}

E sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi(φ(−λ fc(Xi))−φ(0))
∣

∣

∣
≤ 2LE sup

f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
,

and consequently,

E sup
f∈Fλ

∣

∣

∣

1
n

n

∑
i=1

σi(ΨYi(f(Xi))−1)
∣

∣

∣
≤ 2L

K

∑
c=1

E sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
. (11)

2444



MULTICLASS EMPIRICAL RISK MINIMIZATION METHODS

Since any fc = ∑ j α jTc(h j) is a convex combination of Tc(h j) with h j ∈ H , it follows that

sup
f∈F1

∣

∣

∣

1
n

n

∑
i=1

σi fc(Xi)
∣

∣

∣
= sup

h∈H

∣

∣

∣

1
n

n

∑
i=1

σiTc(h(Xi))
∣

∣

∣
. (12)

With Xi, i = 1, . . . ,n, fixed, ∑n
i=1 σiTc(h(Xi)) is a sum of n independent zero mean random vari-

ables bounded between −1 and K −1. The coefficients satisfy Tc(h(Xi)) = K −1−KI{h(Xi)6=c}. By
a version of the Vapnik-Chervonenkis inequality we conclude

E sup
h∈H

∣

∣

∣

1
n

n

∑
i=1

σiTc(h(Xi))
∣

∣

∣
≤ (K −1)

√

2VAc ln(4n+2)

n
, c = 1, . . . ,K.

The details are referred to Lugosi and Vayatis (2004). Summing the last inequalities for c = 1, . . . ,K
and appealing to (11) and (12) we prove (9).

It is easily seen that the random variable sup
f∈Fλ

|E(f)−En(f)| satisfies the bounded difference

assumption with constant ci = 2(K−1)φ(−λK)/n,1 ≤ i ≤ n. Now inequality (10) follows from (9)
and McDiarmid’s bounded difference inequality (see Lugosi, 2002; McDiarmid, 1989). The proof
is complete.

We are in a position to establish the consistency.

Theorem 3.3 Suppose that the condition of Theorem 2.4 hold for φ and that H satisfies VAc < ∞
for c = 1, . . . ,K. Choose λn such that λn → ∞ and λnφ′(−λn(K −1))

√

lnn
n → 0 as n → ∞. Assume

that, for any n samples {(X1,Y1), . . . ,(Xn,Yn)}, there exists an f̂n ∈ Fλn
such that

En(f̂n) ≤ inf
f∈Fλn

En(f)+ εn, (13)

where εn is a sequence of positive numbers converging to zero. Then under Assumption 3.1, we have
the consistency

lim
n→∞

ER (C(f̂n)) = R ∗.

Proof. Denote by fλn
an element of Fλn

which minimizes E(f). By (13) we have

E(f̂n)−E(fλn
)

= E(f̂n)−En(f̂n)+En(f̂n)−En(fλn
)+En(fλn

)−E(fλn
)

≤ 2 sup
f∈Fλn

|E(f)−En(f)|+ εn.

Therefore,
EE(f̂n) ≤ 2E sup

f∈Fλn

|E(f)−En(f)|+E(fλn
)+ εn.

With our choice of λn, the first term on the right-hand side converges to zero by (9). Also
E(fλn

) → E∗ by Assumption 3.1. Thus we have EE(f̂n) → E∗. The proof is complete by Theorem
2.4 and the inequality

E(E(f̂n)−E∗)
1

β+1 ≤ (EE(f̂n)−E∗)
1

β+1 .
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Example 3.4 The most important choice of φ in Theorem 3.3 is φ(x) = e−x. In this case, we thus
choose λn such that

λn → ∞ and λneλn(K−1)

√

lnn
n

→ 0.

If the set H has a finite VC dimension and, for any samples {(Xi,Yi)}n
i=1, (13) holds, then we have

the consistency stated in Theorem 3.3.
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Abstract
In many pattern recognition/classification problem the true class conditional model and class prob-
abilities are approximated for reasons of reducing complexity and/or of statistical estimation. The
approximated classifier is expected to have worse performance, here measured by the probability
of correct classification. We present an analysis valid in general, and easily computable formulas
for estimating the degradation in probability of correct classification when compared to the optimal
classifier. An example of an approximation is the Naı̈ve Bayes classifier. We show that the perfor-
mance of the Naı̈ve Bayes depends on the degree of functional dependence between the features
and labels. We provide a sufficient condition for zero loss of performance, too.

Keywords: Bayesian networks, naı̈ve Bayes, plug-in classifier, Kolmogorov distance of variation,
variational learning

1. Introduction

Classification procedures based on probability models are widely used in data mining and machine
learning (Hand et al., 2001), since such models often lead to effective algorithms and modularity
in computation and have a conceptual foundation in statistical learning theory. For tractable com-
putation and learning these models may still in many cases require steps of approximation by less
complex model families (Jordan et al., 1999).

By classification we mean procedures that group items represented by a feature vector into dif-
ferent predefined classes. We consider classification procedures based on class conditional probabil-
ities that belong to a model family that does not necessarily contain the true probability distribution,
and analyze how the probability of correct classification is affected.

One straightforward procedure is known as a plug-in function. By this we refer to the formal
operation performed by the optimal classifier based on Bayes’ formula of posterior probabilities
of classes, but now plugging in the modeling or approximate class conditional densities as well as
approximated class probabilities. There are still a lot of unresolved issues concerning the effects of
plug-in functions in the context of classification with high-dimensional feature vectors.

A well known plug-in procedure in classification is modeling by independence, which is usually
called the ’Naı̈ve Bayes’ classifier. We will review, extend and sharpen the theoretical justification
for this procedure while connecting it to the general approximation theory. Friedman (1997) studies
also the Naı̈ve Bayes, when the optimal classifier is estimated from training data. He shows that the
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bias and variance components of the estimation error affect classification error in a different way
under the Gaussian approximation than the error in the estimated probabilities. This can help Naı̈ve
Bayes to perform better than expected in case the variance of the estimates of posterior probabilities
is low. Our analysis in the sequel will not involve the variance − bias decomposition.

Bayesian networks is a widely used class of models for probabilistic reasoning and for clas-
sification, see for example (Korb and Nicholson, 2004; Friedman et al., 1997). As the network
topologies increase in size and complexity, the run-time complexity of probabilistic inference and
classification procedures becomes prohibitive. In general, exact inference on Bayesian networks is
known to be NP-hard (Cooper, 1990). One way of approximating or simplifying the model is to
enforce additional conditional independencies or by removing edges in the graph, see van Engelen
(1997) and the references therein.

Here we analyze a simplification of Bayesian networks by a strategy of approximating factors of
the joint probability, and give a bound for the probability of correct classification under the ensuing
plug-in function. This corresponds to some degree to the general heuristics in the work by Lewis
(1959); Brown (1959); Chow and Liu (1968); Ku and Kullback (1969), who developed the idea of
approximating multivariate discrete probability distributions by a product of lower order marginal
distributions. The set of marginal distributions applied needs not be the full set of margins of some
order, the requirements are that the product is an extension of the lower order distributions which
are compatible.

2. Organization

We will start by introducing notation and basic definitions in Section 3. Section 4 provides ratio-
nales and examples of approximating models and plug-in classifiers. These will be used to illustrate
the mathematical results in the following sections. Section 5 introduces results about the degrada-
tion of classifier performance with respect to the optimal probability of correct classification. The
results are phrased in terms of a distance between probabilities known as the Kolmogorov variation
distance. There are several well known bounds for the Kolmogorov variation distance by other dis-
tances between probability measures, quoted in Section 5, which in many examples yield explicit
and computable bounds for the plug-in classifier performance. We give also a novel bound that con-
nects the work to variational learning theory (Jordan et al., 1999). Section 6 gives a rule for potential
reduction of the number of dimensions needed for evaluating the degradations, and presents more
easily computable bounds. Section 7 discusses the Naı̈ve Bayes classifier by sharpening a bound
for Naı̈ve Bayes and connecting it to one of the general approximation bounds in Section 6. Section
8 gives sufficient conditions on the margin (explained later) between two classes, which is used to
generalize the possible problems where Naı̈ve Bayes can be argued as optimal.

3. Notation, Bayes and Plug-In Classifiers

Let (Ω,F ,P) be a probability space, such that (C,X) is a F -measurable stochastic variable, s.v.
Let X = (Xi)

d
i=1, that is X is d-dimensional. When denoting a sample (observation) of X with no

missing components we use x, that is x = (xi)
d
i=1 (x can be called a feature vector). When referring

to the range of X we use X , which for completeness of presentation is assumed to be a Borel space
(Schervish, 1995). This assumption is needed to justify the use of results such as the Fubini theorem
and the existence of conditional densities.
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In the context of classification a sample x is assumed to have a source, one of a family of entities
called classes or labels, denoted by c, which is regarded as an outcome of the random variable C.
In classification C has range C = {1, . . . ,k}, that is, k is the number of classes. We assume, as
is common in much of classification theory, that the space of labels {1, . . . ,k} is without relevant
additional structure except whether two labels are equal or not. In order to resolve ties, it may, on
the other hand, be useful to think of the labels as ordered by 1 < 2 < .. . < k.

Definition 1 A classifier is a measurable function ĉ : X → C such that given x, ĉ(x) is an estimate
of c.

In classification we do not deal directly with the whole sample (c,x), but the class c is a hidden
variable. Hence we will deal with the class conditional probability. In

P(X ∈ A|C = c) =
Z

A
f (x|c)dµ(x)

we call f (x|c) the conditional density of a sample x given that the random variable C equals the label
c with respect to the σ-finite measure µ. We assume in other words that µ dominates, see Schervish
(1995), the probability measure P(·|C = c) for every c, that is, the same measure µ can be used
for all P(X · |C = c) to define the corresponding class conditional density f (x|c). The assumption
of domination justifies the validity of a number of formulas of distances between probability mea-
sures. P(c) is the short notation for the marginal probability P(C = c). We also encounter P(c|x),
the probability of the class c given the sample x. P(c|x) is used to define a classifier which is the
cornerstone of probabilistic classification. For example, the procedure known as proportional pre-
diction chooses the label for x by drawing c from the probability mass function P(c|x) (Goodman
and Kruskal, 1954). We study only deterministic classifiers ĉ.

Definition 2 Bayes classifier for a sample x is

ĉB(x) = argmax
c∈C

P(c|x).

Ties are resolved in some fixed manner, for example, by taking ĉB(x) the smallest of the tied labels
in (the ordered) C .

The posterior P(c|x) can be modeled directly (’the diagnostic paradigm’) but this may often
involve difficult computations (Ripley, 1996). Bayes’ formula gives effectively

ĉB(x) = argmax
c∈C

f (x|c)P(c). (1)

Thus we base Bayes classifier on f (x|c) as well as on P(c), the prior probability (or the prevalence)
of class c. In essence f (x|c) allows us to think of each class as generating x.

We evaluate the performance of a classifier by the probability of correct classification and assess
the effect of approximating f (x|c) by f̂ (x|c) and P(c) by P̂(c).

Definition 3 For a classifier ĉ(X) the probability of correct classification is P(ĉ(X) = C).
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There is a good reason for using Bayes classifier (Definition 2), since for every ĉ(X) it holds
that

P(ĉ(X) = C) 6 P(ĉB(X) = C).

A simple way of constructing a classifier given f̂ (x|c) and P̂(c) is to use these to replace the
respective target probabilities in (1).

Definition 4 ĉB̂(x) is a plug-in classifier with respect to the pair
(

f̂ (x|c), P̂(c)
)

if it is defined by

ĉB̂(x) = argmax
c∈C

f̂ (x|c)P̂(c). (2)

Ties are resolved as in Definition 2.

The question studied here can now be stated as that of computing or bounding the difference

P(ĉB(X) = C)−P(ĉB̂(X) = C).

It is for many P difficult or even impossible to compute explicitly P(ĉB(X) = C). Hence there
exists a literature for bounding the optimal probability of error, P∗

e = 1−P(ĉB(X) = C). If we set
Pe = 1−P(ĉB̂(X) = C), then

P(ĉB(X) = C)−P(ĉB̂(X) = C) = Pe −P∗
e .

This can be bounded downwards by, for example, the upper bounds for P∗
e in Bhattacharyya and

Toussaint (1982). We shall not pursue the lower bounds for P(ĉB(X) = C)−P(ĉB̂(X) = C) any
further.

4. Examples of Plug-In Approximations of the Bayes Classifier

As outlined in the introduction, there are several reasons for approximating f (x|c) in classifica-
tion. These include the problem of digitally storing probability tables, the topic introduced in Lewis
(1959), and the complexity, or even infeasibility, of computing ĉB(x). Therefore we could call f
the target density and f̂ the tractable density (Wainwright and Jordan, 2003). In block transmission
systems a tractable density is found for fast computation of the signal classifier (detector) (Kaleh,
1995). In this section we present some examples of plug-in classifiers motivated by these consider-
ations in pattern recognition and detection.

Example 1 We consider X = {0,1}d known as the binary hypercube in d dimensions. For the
binary hypercube we need in general 2d −1 parameters to specify each class conditional probability
mass function. Hence we may encounter a difficulty with storing of the tables of probabilities.

There are several canonical representations of the generic probability distribution on X and of
the 2d −1 parameters. Examples of these are given in Bahadur (1961b), Devroye et al. (1996), Ott
and Kronmal (1976), and Teugels (1990). We recapitulate the representation by Bahadur (1961b)
in the form given by Brunk and Pierce (1974). Let f (x|c) be a probability mass function on X such
that f (x|c) > 0 for all x ∈ X . Let

fic = ∑
x∈X ,xi=1

f (x|c), yic = yic (x) =
xi − fic√
fic (1− fic)

. (3)
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Let w = (w1,w2, . . . ,wd) ∈ {0,1}d be a binary vector of zeros and ones. Then we denote by Uw,c (x)
products of a subset of y1c, . . . ,ydc

Uw,c (x) =
d

∏
i=1

yic (x)wi , U0,c (x) = 1.

We set

f1(x|c) =
d

∏
i=1

f (xi|c) =
d

∏
i=1

f xi
ic (1− fic)

1−xi . (4)

Hence f1(x|c) is another probability mass function, which is positive on {0,1}d . Its marginal dis-
tributions coincide with those of f (x|c). With respect to f1 any binary random vector X = (Xi)

d
i=1

consists of independent components Xi.
We shall next regard the set V of real-valued functions on {0,1}d as a vector space of dimension

2d . Let us equip V with the scalar product defined for φ ∈V,ψ ∈V as

(φ,ψ) = ∑
x∈{0,1}d

φ(x)ψ(x) f1(x|c). (5)

Next we show that the functions {Uw,c (x)}w∈{0,1}d constitute an orthonormal basis with respect to
this scalar product. In fact

(Uw,c,Uw∗,c) = ∑
x∈{0,1}d

Uw,c(x)Uw∗,c(x) f1(x|c) =

= ∑
x∈{0,1}d

d

∏
i=1

yic (x)wi yic (x)w∗
i f1(x|c).

The sum in the right hand side is nothing but the expectation

E f1

[
d

∏
i=1

yic (X)wi yic (X)w∗
i

]
=

d

∏
i=1

E f1

[
yic (X)wi yic (X)w∗

i

]
, (6)

where we used the aforementioned independence of the components of X under f1, which yields the
independence of the yic (X) as defined by (3), too. We now show that the product in (6) equals zero,
if w 6= w∗. In this case there is at least one i such that wi 6= w∗

i , and for this i we get

E f1

[
yic (X)wi yic (X)w∗

i

]
= E f1 [yic (X)] =

E f1 [Xi]− fic√
fic (1− fic)

= 0,

since by the definitions above E f1 [Xi] = 1 ·P1 (Xi = 1) = fic. Hence the whole product in (6) is zero,
and we have shown that (Uw,c,Uw∗,c) = 0, if w 6= w∗. If w = w∗, then we get from (6) that

(Uw,c,Uw,c) = ∏
i=1:wi=1

E f1

[
yic (X)2

]
.

Here

E f1

[
yic (X)2

]
=

1
fic (1− fic)

E f1

[
(Xi − fic)

2
]
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But since Xi is a binary random variable (or, a Bernoulli random variable) with respect to f1, we
have

E f1

[
(Xi − fic)

2
]

= fic − f 2
ic = fic (1− fic) .

Hence (Uw,c,Uw,c) = 1, and we have shown that {Uw,c (x)}w∈{0,1}d is an orthonormal set in V with
respect to the scalar product in (5). Since the number of functions in {Uw,c (x)}w∈{0,1}d equals the

dimension of V (=2d), {Uw,c (x)}w∈{0,1}d must be an orthonormal basis in V .

Hence every function φ ∈V has a unique expansion in terms of the 2d coordinates (φ,Uw,c) with
respect to this basis written as

φ(x) = ∑
w∈{0,1}d

(φ,Uw,c)Uw,c (x) . (7)

If we take φ(x) = f (x|c)/ f1(x|c) we obtain
(

f
f1

,Uw,c

)
= ∑

x∈{0,1}d

f (x|c)Uw,c (x) = E f (Uw,c(X)) .

In other words the coordinate
(

f
f1
,Uw,c

)
equals the expectation of Uw,c(X) w.r.t. to the probability

mass function f (x|c). For this we introduce the standard notation

βw,c = E f (Uw,c(X)) . (8)

By substitution of (8) in (7) we obtain

f (x|c)
f1(x|c)

= ∑
w∈{0,1}d

βw,cUw,c (x) .

This gives us the the (Bahadur-Lazarsfeld) representation of any positive probability mass function
f (x|c) on {0,1}d as

f (x|c) = f1(x|c) fc,interactions(x), (9)

where we have written
fc,interactions(x) = ∑

w∈{0,1}d

βw,cUw,c (x) . (10)

The rank R(w) of the polynomial Uw,c is defined as

R(w) =
d

∑
i=1

wi.

Here β0,c = 1, and if R(w) = 1, then βw,c = 0. The probability mass function f1(x|c) in (4) is known
as the first order term. For R(w) = 2 the coefficients {βw} are correlations. We can think of the
coefficients β as interactions of order R(w) minus one.

One can define a family of probability mass functions called kth order Bahadur distributions as
the set of all probabilities on the binary hypercube in d dimensions such that βw = 0 for R(w) > k.
Anoulova et al. (1996) prove, simplifying their statement, that there is an algorithm that, given
enough samples, computes for any ε > 0 a plug-in classifier ĉB̂(x) such that P(ĉB(X) = C)−
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P(ĉB̂(X) = C) 6 ε, when the conditional distributions of X |C are in the class of kth order Bahadur
distributions.

If we expand log f (x|c)
f1(x|c) with respect to the basis {Uw,c (x)}w∈{0,1}d we obtain the following

canonical form

f (x|c) = f1(x|c)e∑w∈{0,1}d αw,cUw,c(x), (11)

where it follows similarly as above that

αw,c = E f1

[
log

f (X |c)
f1(X |c) ·Uw,c(X)

]
. (12)

The two canonical forms (10) and (11) above are of interest in the sequel for defining structures
of approximations and for evaluating the effect of a plug-in classifier on probability of correct
classification. First, the plug-in classifier

ĉB̂(x) = argmax
c∈C

f1(x|c)P̂(c)

is an instance of the Naı̈ve Bayes procedure to be treated in more generality in Section 7 below. In
the setting of the binary hypercube the Naı̈ve Bayes is said to take into account only the first order
term. A survey of the Naı̈ve Bayes in supervised and unsupervised learning of bacterial taxonomies
using binary features is found in Gyllenberg and Koski (2001). Further structures of plug-in clas-
sifiers can be defined by adding sets of higher order interactions to the first order term. Examples
of this are found in Bahadur (1961a), Chow and Liu (1968), Moore (1973), and Ott and Kronmal
(1976). Here the trade-off is between the additional complexity and the more accurate statistical
description, and, as it will turn out in the sequel, higher probability of correct classification with
the plug-in classifier.

A successful empirical application of the Bahadur representation in classification or diagnosis
of six diseases using eleven features or symptoms is reported in Scheinck (1972). The underlying
requirement f (x|c) > 0 for all x ∈ {0,1}11 is possibly overlooked in Scheinck (1972).

In some of the contributions referred to in the above the approximating structure is not neces-
sarily a probability, since an arbitrary truncation of a representation of a probability mass function
with respect to a basis is not always a probability mass function.

In case the support of f is a true subset of X = {0,1}d , a canonical representation (an interpo-
lator) of f has been reported in Pistone et al. (2001). This is based on the monomials ∏d

i=1 xwi
i and

the properties of Gröbner bases.

Example 2 One model of intersymbol interference (ISI) channels in digital communication theory,
see Kaleh (1995); Barbosa (1989), can be formulated as observing a d ×1 vector X with the class
conditional normal distribution

X |C = b ∼ N (Hb,Σ) ,
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where b is N × 1 vector such that bi ∈ {−1,+1}, and Σ is a positive definite d × d matrix, and H
represents a linear, time-invariant and causal ISI channel by the d ×N matrix

H =




h0 0 . . . 0

h1 h0
. . .

...
... h1

. . . 0

hL−1
...

. . . h0

0 hL−1
. . . h1

...
. . . . . .

...
0 . . . 0 hL−1




.

Here L is the length of the channel memory, if h0 6= 0 and hL−1 6= 0. Hence d = L +N −1. The set
of labels C equals in this case a subset of {−1,+1}N . C might be called a codebook. If all b are
equally likely a priori, we have (the optimal detector)

ĉB(x) = argmin
b∈C

‖Σ−1 (x−Hb)‖2,

where ‖x‖ =
√

xT x.
A suboptimal detector may be introduced, for example, for the purpose of reducing run time

complexity, see Barbosa (1989), by a d×N matrix M of the same structure as H, but with a shorter
memory and the plug-in classifier

ĉB̂(x) = argmin
b∈C

‖Σ−1 (x−Mb)‖2.

Here explicit expressions for both P(ĉB(X) = C) and P(ĉB̂(X) = C) are readily found, and the ques-
tion of developing techniques for estimating the loss of performance incurred by the introduction of
the suboptimal detector has been studied extensively for a number of designs of the matrices M.

5. A Performance Bound

There are several representations of the exact difference P(ĉB(X) = C)−P(ĉB̂(X) = C).
For typographical and readability reasons we will use the notation ĉB(x) = b as well as ĉB̂(x) = b̂.
We can write P(ĉB(X) = C)−P(ĉB̂(X) = C) as

P(ĉB(X) = C)−P(ĉB̂(X) = C) =
Z

{b̂6=b}

(
P(b) f (x|b)−P(b̂) f (x|b̂)

)
dµ(x). (13)

We may also re-write this as

=
Z

{b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)−

Z

{b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x)

−
Z

{b̂6=b}

(
P̂(b̂) f̂ (x|b̂)− P̂(b) f̂ (x|b)

)
dµ(x) (14)

since
=

Z

{b̂6=b}
P(b) f (x|b)dµ(x)−

Z

{b̂6=b}
P̂(b) f̂ (x|b)dµ(x)
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−
Z

{b̂6=b}
P(b̂) f (x|b̂)dµ(x)+

Z

{b̂6=b}
P̂(b̂) f̂ (x|b̂)dµ(x)

−
Z

{b̂6=b}
P̂(b̂) f̂ (x|b̂)dµ(x)+

Z

{b̂6=b}
P̂(b) f̂ (x|b)dµ(x),

where 4 integrals cancel each other and (13) is formed. The difficulty with these expressions is to
find the set {x|ĉB(x) 6= ĉB̂(x)} and to compute the integrals above.

We give next a first upper bound for P(ĉB(X) = C)−P(ĉB̂(X) = C). The result for the specific
case of k = 2 is presented in Ryzin (1966). When k > 2 the result in Theorem 5 can basically be
found inside a proof in Glick (1972). A proof is included here for completeness and readability. For
the specific approximation, where f̂ and P̂ are the maximum likelihood estimators, and samples are
discrete, rates of convergence are provided in Glick (1973), as the sample size increases to infinity.

Theorem 5

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 E f̂ P̂

∣∣∣∣
f (X |C)P(C)

f̂ (X |C)P̂(C)
−1

∣∣∣∣ . (15)

Proof From (14) P(ĉB(X) = C)−P(ĉB̂(X) = C) =

Z

{x|b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)

−
Z

{x|b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x)−

Z

{x|b̂6=b}

(
f̂ (x|b̂)P(b̂)− f̂ (x|b)P(b)

)
dµ(x).

Definition 4 implies that f̂ (x|b̂)P̂(b̂) > f̂ (x|b)P̂(b), hence

6

Z

{x|b̂6=b}

(
P(b) f (x|b)− P̂(b) f̂ (x|b)

)
dµ(x)−

Z

{x|b̂6=b}

(
P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)

)
dµ(x).

To simplify further
R

a− e 6 |R a− e| 6 |R a|+ |R e| 6 R |a|+ R |e| is used, resulting in

6

Z

{x|b̂6=b}

∣∣P(b) f (x|b)− P̂(b) f̂ (x|b)
∣∣dµ(x)+

Z

{x|b̂6=b}

∣∣P(b̂) f (x|b̂)− P̂(b̂) f̂ (x|b̂)
∣∣dµ(x).

Then divide into cases where b as well as b̂ are constant (they both depend on x)

=
k

∑
c=1

[
Z

{x|b6=b̂
T

b=c}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)

+
Z

{x|b6=b̂
T

b̂=c}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)

]
.

Now b 6= b̂
T

b = c and b 6= b̂
T

b̂ = c are disjoint sets so we can write both integrals as one integral,

=
k

∑
c=1

Z

{x|b6=b̂
T

(b=c
S

b̂=c)}
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x)
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We want an approximation that does not depend on b, b̂, such as

6

k

∑
c=1

Z

X

∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)
∣∣dµ(x) =

k

∑
c=1

Z

X
P̂(c) f̂ (x|c)

∣∣∣∣
P(c) f (x|c)
P̂(c) f̂ (x|c)

−1

∣∣∣∣dµ(x).

The right hand side of the inequality (15) is, when multiplied by the factor 1/2, an instance of
what is being called the Kolmogorov distance of variation, see for example Ali and Silvey (1966).
We shall resort to this terminology in order to be able to refer concisely to the quantity in the
right hand side of (15) (or of (16) below). The basic mathematical properties of this distance are
found in Strasser (1985). Probabilistically the size of the quantity P(ĉB(X) = C)−P(ĉB̂(X) = C)

in (15) is thus interpreted as the expected dispersion of f (X |C)P(C)

f̂ (X |C)P̂(C)
around unity with respect to the

approximating distribution f̂ P̂.
The result above is the starting point of our development of approximations of probability to

find plug-in classifiers for Bayesian networks and in particular to evaluate Naı̈ve Bayes. We note
that

E f̂ P̂

∣∣∣∣
f (X |C)P(C)

f̂ (X |C)P̂(C)
−1

∣∣∣∣=
k

∑
c=1

Z

X
f̂ (x|c)P̂(c)

∣∣∣∣
f (x|c)P(c)

f̂ (x|c)P̂(c)
−1

∣∣∣∣dµ(x)

=
k

∑
c=1

Z

X

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣dµ(x), (16)

which is the bound in (15) written as in Ryzin (1966) and Glick (1972). We shall, next present
examples of evaluating the bound directly.

Example 3 Let again as in Example 1 take X as the binary hypercube in d dimensions. We assume
that the true density (with respect to the counting measure µ) f (x|c) > 0 for all x ∈ X and P(c) =
P̂(c). When we approximate this density by its first order term f1(x|c) in (4) we get from (9) and
(10) that

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣= P(c) f1(x|c)

∣∣∣∣∣∑w6=0
βw,cUw,c (x)

∣∣∣∣∣ .

In words, here the bound in Theorem 5 expresses the deterioration of the classifier performance
by means of a sum of all interactions of order higher than one. Since the measure µ is the counting
measure we have the bound

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

P(c) ∑
x∈X

f1(x|c)
∣∣∣∣∣∑w6=0

βw,cUw,c (x)

∣∣∣∣∣ .

Example 4 The Kolmogorov distance of variation is very effectively evaluated and bounded for the
class of two dimensional densities having an expansion with respect to an orthonormal system of
polynomials. A diagonal expansion is possible, for example, for Gaussian, sinusoidal and Pearson
type II distributions, see McGraw and Wagner (1968), which also contains an extensive list of
references on the subject.
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We take as an illustration the two dimensional Gaussian density. Hence X = (Xi)
2
i=1, and X =

� × �
. The density f (x) is determined by the respective variances σ2

1 and σ2
2, the respective means

m1 and m2, and the coefficient of correlation ρ. Let f̂ (x) = f1(x1) f2(x2) be the product of the two
Gaussian marginal densities for X1 and X2. This corresponds again to an instance of the Naı̈ve
Bayes procedure. Then the classical Mehler expansion (Cramér, 1966) says for |ρ| < 1 that

f (x) = f1(x1) · f2(x2) ·
∞

∑
n=0

Hn

(
x1 −m1

σ1

)
·Hn

(
x2 −m2

σ2

)
· ρn

n!
,

where Hn (x) is the Hermite polynomial of order n, defined as Hn (x) = (−1)nex2 dn

xn e−x2
for n =

0,1, . . .,. If we assume P(c) = P̂(c), then Theorem 5 entails, since H0 (x) = 1,

P(ĉB(X) = C)−P(ĉB̂(X) = C)

6

k

∑
c=1

P(c)
Z

� × � f1(x1|c) f2(x2|c)
∣∣∣∣∣

∞

∑
n=1

Hn

(
x1 −m1(c)

σ1

)
·Hn

(
x2 −m2(c)

σ2

)
· ρn(c)

n!

∣∣∣∣∣dx1dx2,

where the means and coefficient of correlation are chosen to depend on c. The bound on the differ-
ence between the probabilities of correct classification is seen to be a power series in the absolute
value of the coefficient of correlation. There are computational routines for the Hermite polyno-
mials, and in addition integrals of the form

R

� | xi − mi |k fi(xi)dxi involved here are explicitly
computable. There is an extension of the Mehler expansion for n-variate densities (Slepian, 1972),
which could be used in some of the examples below, but we will not expand on this due to the
extensive notational machinery thereby required.

There are certain well known inequalities between the Kolmogorov distance of variation and
other distances or divergences between probability measures. These distances are often readily
computable in an explicit form, a compendium is recapitulated in Kailath (1967). An up-to-date
discussion of the inequalities to be presented below and several others is found in Topsoe (2000).
Nguyen et al. (2005) have presented techniques of replacing the Bayesian probability of error by
more general risk functions and analyzing them with corresponding divergences, which are surveyed
in Topsoe (2000).

For two probability densities f and f̂ we have the inequality due to Ch. Kraft, see Hoeffding
and Wolfowitz (1958); Pitman (1979),

1
2

Z

X

∣∣ f (x)− f̂ (x)
∣∣dµ(x) 6

√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

. (17)

The quantity
R

X

√
f (x) · f̂ (x)dµ(x) is known as the affinity or as the Bhattacharyya coefficient or as

the Hellinger integral.
We note next that (17) yields in (16)

k

∑
c=1

Z

X

∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)
∣∣dµ(x)

6 2

√√√√1−
[

k

∑
c=1

√
P(c)P̂(c)

Z

X

√
f (x|c) · f̂ (x|c)dµ(x)

]2

. (18)
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The Kullback-Leibler divergence (in natural logarithm) (Kullback, 1997; Cover and Thomas, 1991)
defined as

D
(

f , f̂
)

=
Z

X
f (x|c) log

(
f (x|c)
f̂ (x|c)

)
dµ(x).

We have

−1
2

D( f , f̂ ) =
Z

X
f (x|c) log

(
f̂ (x|c)
f (x|c)

) 1
2

dµ(x).

By Jensen’s inequality

6 log
Z

X
f (x|c)

(
f̂ (x|c)
f (x|c)

) 1
2

dµ(x) = log
Z

X

√
f (x|c) f̂ (x|c)dµ(x).

Hence
Z

X

√
f (x|c) f̂ (x|c)dµ(x) > e−

1
2 D( f , f̂ ).

Hoeffding and Wolfowitz (1958) were probably the first to observe this inequality. Furthermore,
√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

6

√
1− e−D( f , f̂ ). (19)

In hypothesis testing and pattern classification it is desirable that D( f1, f2) is large, or, the affinity is
small. The opposite is desirable for plug-in classifiers. By symmetry of the affinity in (19) we get
(D( f , f̂ ) need not be equal to D( f̂ , f )) that

√

1−
[

Z

X

√
f (x) · f̂ (x)dµ(x)

]2

6

√
1− e−D( f̂ , f ).

Brown (1959) and Ku and Kullback (1969) developed a convergent iteration that finds f̂ min-
imizing D( f̂ , f ) in the class of all densities on discrete X that have some given set of lower order
marginals. The iteration may in several situations be computationally infeasible without constrain-
ing f to some suitably simplified model family.

Example 5 In Example 3 we get by (17) the bound

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2
k

∑
c=1

P(c)

√√√√1−
[

∑
x∈X

f1(x|c)
√

∑
w6=0

βw,cUw,c (x)

]2

.

Since we shall need the generic formula in the sequel, we note that the Kullback-Leibler diver-
gence involved in this context is for discrete X

D
(

f (x|c)P(c), f1(x|c)P̂(c)
)

=
k

∑
c=1

∑
x∈X

f (x|c)P(c) log
f (x|c)P(c)

f1(x|c)P̂(c)

=
k

∑
c=1

P(c) ∑
x∈X

f (x|c) log
f (x|c)
f1(x|c)

+
k

∑
c=1

P(c) log
P(c)

P̂(c)
(20)
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=
k

∑
c=1

P(c)D( f (x|c), f1(x|c))+D
(
P(c), P̂(c)

)
.

Example 6 We continue with Example 3 but omit the assumption that P(c) = P̂(c). We consider
the plug-in classifier with the first order term f1(x|c) in (4). In view of (11) we get

∑
x∈X

f (x|c) log
f (x|c)
f1(x|c)

= ∑
x∈X

f (x|c) ∑
w∈{0,1}d

αw,cUw,c (x)

= ∑
w∈{0,1}d

αw,c ∑
x∈X

f (x|c)Uw,c (x) = ∑
w∈{0,1}d

αw,cE f [Uw,c(X)]

= ∑
w∈{0,1}d

αw,cβw,c, (21)

where we evoked (8). Hence we have by (19) and (20) obtained the following bound for the perfor-
mance of the Naı̈ve Bayes classifier for binary feature vectors

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2

√
1− e

−
{

∑k
c=1 P(c)∑w∈{0,1}d αw,cβw,c+∑k

c=1 P(c) log P(c)
P̂(c)

}

.

For f in a kth order Bahadur class in (9) we can often, at least for relatively low d, readily evaluate
the bounds above. An observation concerning the expression obtained in (21) is that U0,c = 1 gives
by (8) that β0,c = 1, and by (12) that

α0,cβ0,c = −D( f1(x|c), f (x|c)) .

Example 7 In Example 2 above the true and plug-in densities correspond to the distributions
N (Hb,Σ) and N (Mb,Σ), respectively. Since C ⊆ {−1,+1}N is a codebook of equally likely vec-
tors {b}, we modify the general notation for this example by denoting a label in C by b. Hence
P̂(b) = P(b) = 1

|C | , where |C | is the cardinality of the codebook.
In this example we use the bound (18). The expression for the required affinity is well known

(Kailath, 1967) and equals
Z

� d

√
f (x|b) · f̂ (x|b)dµ(x) = e−

1
4 D(N(Hb,Σ),N(Mb,Σ)), (22)

where D(N (Hb,Σ) ,N (Mb,Σ)) is in fact the Kullback-Leibler divergence

D(N (Hb,Σ) ,N (Mb,Σ)) =
1
2

((H −M)b)T Σ−1 ((H −M)b) , (23)

see Kullback (1997)). Therefore we obtain for the plug-in classifier (suboptimal detector) defined in
Example 2 by (18) that

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 2

√
1− 1

|C | ∑
b∈C

e−
1
8 ((H−M)b)T Σ−1((H−M)b). (24)

This expression can be used to compare different designs of suboptimal detectors represented by
their respective matrices M.

We want a way to calculate P(ĉB(X) = C)−P(ĉB̂(X) = C) in terms of (only) f̂ (x|c)P̂(c). We
will generalize the result in Theorem 5 (15) in the sense that it can be used when only certain parts in
a factorization of f̂ (x|c) are approximations. What we mean by ’components’ will be made precise
later.
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6. Approximating Bayesian Networks in Classification

While (14) is an exact expression of P(ĉB(X) =C)−P(ĉB̂(X) =C) it might be infeasible to calculate
it in practice. Thus we introduce more easily computable bounds in Corollary 8 and Theorem 11.
To avoid making these approximations, or bounds upwards too loose, we also take into account
the case where we have not approximated all of P(c|x) (Theorem 7). If the factor of P(c|x) that is
not approximated is not functionally dependent of the factor that is approximated, we can develop
sharper bounds on the degradation of the approximated classifier performance. Here we consider a
class of general approximations, applicable to Bayesian networks (Cowell et al., 1999). For ease of
reference we recapitulate first the definition of Bayesian networks.

Definition 6 Given a directed acyclic graph G = (V,E) with {Xi}d
i=1 designating (the random vari-

ables at) the vertices, Πi denotes the set of parents of Xi in the graph G. We use πi to denote the
parents states. The pair (G,P), is called a Bayesian network and satisfies

f (x|c,G) =
d

∏
i=1

f (xi|πi,c,G). (25)

Williamson (2005) suggests the following method of approximation. f (x|c) denotes a generic target
probability mass function and G is a directed acyclic graph. In principle one can compute the
probabilities f (xi|πi,c) on G using f . Then f̂ (x|c) is an approximating probability obtained by
taking

f̂ (xi|πi,c,G) = f (xi|πi,c), (26)

and multiplying f̂ (xi|πi,c,G) according to (25). The best approximating G (in some family of
directed acyclic graphs) is found by maximizing

∑
x∈X

f (x|c)
d

∑
i=1

log
f (xi,πi|c)

f (xi|c) f (πi|c)
,

which is shown to minimize D
(

f , f̂
)
. This constitutes also a method of learning network structures,

in case there is an effective algorithmic implementation.
We give next a few examples of Bayesian networks, which will also be used to illustrate some

of the results in the sequel.

Example 8 As in Example 1 we take X = {0,1}d and assume that G is a rooted tree. We order the
variables so that x1 is the state at the root. Direction is defined from parent to child. In a rooted
tree any node i, except for the root, has exactly one parent node π(i) < i. We write the parent state
as πi = xπ(i). Then the factorization in (25) becomes

f (x|c,G) = f (x1|c)
d

∏
i=2

f (xi|xπ(i),c,G). (27)

In other words this is a joint probability factorized along a rooted tree. This is in the sense of Lewis
(1959), as discussed above, a product approximation of a density with d variables with at most two
components per factor. We can also talk about a tree dependence. This dependence was introduced
in Chow and Liu (1968).
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We will use the form in Definition 6, (25) to express partial approximations. Let S = (S1, . . . ,S4)
be a partition of {Xi}d

i=1, where s = (s1, . . . ,s4) denotes the resulting partition of {xi}d
i=1.

We designate by f (si|G) the class conditional density of all s.v.’s that are in Si given its parents,
that is f (si|G) is short notation for

∏
{i|Xi∈Si}

f (xi|πi,c,G).

When referring to the range of Si we use Si. Next we describe an efficient choice of S. We make
some relevant definitions.

Xi is an proper ancestor of X j in G and X j is a proper descendent of Xi in G if there exist a
path from Xi to X j in G for i 6= j. A path is a sequence A0, ...,An of distinct vertices such that
(Ai−1,Ai) ∈ E for all i = 1, ...,n. Given a Bayesian network (G,P) and P̂, the partition S is defined
for a class conditional density as follows:

• Xi ∈ S1 if f (xi|πi,c) 6= f̂ (xi|πi,c).

• Xi ∈ S2 if for all xi,πi we have f (xi|πi,c) = f̂ (xi|πi,c) and for all j 6= i such that X j ∈ S1 we
have Xi 6∈ π j.

• Xi ∈ S3 if for all xi,πi, we have f (xi|πi,c) = f̂ (xi|πi,c), there exists j 6= i such that X j ∈ S1 and
Xi ∈ π j. Furthermore no proper ancestor Xk of Xi in GS\S2 is such that Xk ∈ S1.

• Xi ∈ S4 if Xi 6∈ S1, Xi 6∈ S2 and Xi 6∈ S3.

Example 9 We consider the rooted and directed tree in the Example 8. We approximate the joint
density in (27) by the product of marginal densities. This corresponds to removing all the edges
from the tree, the resulting set of nodes is a degenerate special case of a DAG.

Then S1 = {2,3, . . . ,d} and S3 = {1} = the root. The partitioning sets S2 and S4 are empty.

Example 10 Context-Specific Independence in Bayesian networks (Boutilier et al., 1996). In this
example Xi ∈ {0,1} and the graph for the Bayesian network is as in Figure 1. Then X9 is a context
in the sense that

f (x1|x5, . . . ,x9) =

{
f (x1|x5,x6) x9 = 0
f (x1|x7,x8) x9 = 1

. (28)

1

2 3 4

5 6 7 8 9

Figure 1: Original Bayesian network
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1

2 3 4

5

1011

67 8

9

(a) Transformed Bayesian network

1

2 3 4

5

10

6 7

11

8

9

(b) Transformed Bayesian network with the CSI assump-
tion

Figure 2: Transformed Bayesian networks with and without the CSI assumption

To encode this in a Bayesian network we transform the original Bayesian network into the net-
work in Figure 2(a). Figure 2(b) describes the graph, where the assumption in (28) holds, where
f (x10|x5,x6) = f (x1|x5,x6), f (x11|x7,x8) = f (x1|x7,x8) and

f (x1|x9,x10,x10) x9 x10 x11

0 0 0 0
0 0 0 1
1 0 1 0
1 0 1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1 .

If the context specific assumption is introduced as an approximation this would yield




S1 = {X10,X11}
S2 = {X1,X2,X3,X4,X9}
S3 = {X5,X6,X7,X8}
S4 = {∅}

.

Example 11 In this example we depict a graph G given a partition s, with some abuse of notation.
In Figure 3 if Xi ∈ S1 we label the vertex Xi as 1.

Theorem 7
R

X
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x) =

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G).

Proof We use S to write
R

X
∣∣P(c) f (x|c)− P̂(c) f̂ (x|c)

∣∣dµ(x) as

=
Z

X

∣∣P(c) f (s1|G)− P̂(c) f̂ (s1|G)
∣∣
[

4

∏
j=2

f (s j|G)

]
dµ(x). (29)
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Figure 3: Bayesian network

Now we use the definition of S2 and the Fubini theorem to write (29) as

Z

S1×S3×S4

∣∣P(c) f (s1|G)− P̂(c) f̂ (s1|G)
∣∣
Z

S2

[
4

∏
j=2

f (s j|G)

]
dµ(s2)dµ(s1 × s4)dµ(s3). (30)

We can express the innermost integral as
Z

S2

f (s2 × s3 × s4|s1,G)dµ(s2) = f (s3 × s4|s1,G).

We continue with (30). Since for all Xi ∈ S3 there exists no X j ∈ S1
S

S4 such that X j ∈ πi we can
write this as

Z

S3

f (s3|G)
Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)dµ(s3).

Since this result is an equality, it seems to indicate that isolated approximations are stable in the
sense that the classification error they introduce does only depend on a local neighborhood in the
original Bayesian network.

There exist several algorithms that can be used for finding an approximation of a BN such as
the ones described in Chow and Liu (1968) and Chickering (2002). If an approximation has been
constructed, Theorem 7 makes it possible to evaluate its effect depending on the approximations
made, rather than on the original problem.

Next we extend the result in Theorem 5, (15) by specifying the difference in probability of
correct classification in terms of the partial structure specific difference through combining Theorem
7 and Theorem 5.

Corollary 8
P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G). (31)
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Of course, it might still be computationally difficult to calculate the bound in Corollary 8. When
combining (31), (17) and (19) we obtain the following corollary.

Corollary 9 If P̂(c) = P(c) for all c ∈ C ,

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

2
k

∑
c=1

P(c)
Z

S3

√
1− e−D( f (s1×s4|c,G), f̂ (s1×s4|c,G))d f (s3|G).

The following examples demonstrate computable expressions for this bound.

Example 12 We consider the approximation in Example 9, where S1 = {2,3, . . . ,d} and S3 = {1}=
the root, and the other partitioning sets are empty. We have from (27)

f (s1|c,G) =
d

∏
i=2

f (xi|xπ(i),c,G),

which is a probability mass function on S1 and

f̂ (s1|c,G) =
d

∏
i=2

f (xi|c,G),

which is a probability mass function on S1. Then in view of (19) and (20) we compute

D
(

f (s1|c,G), f̂ (s1|c,G)
)

= ∑
s1∈S1

f (s1|c,G) log
f (s1|c,G)

f̂ (s1|c,G)

=
d

∑
i=2

∑
xi,xπ(i)

f
(
xi,xπ(i)|c,G

)
log

f
(
xi,xπ(i)|c,G

)

f (xi|c,G) · f
(
xπ(i)|c,G

) .

Here we recognize, see Cover and Thomas (1991), the mutual informations Ic,G
(
xi,xπ(i)

)
between

xi and xπ(i) so that the expression in the right hand side of the preceding equation equals

=
d

∑
i=2

Ic,G
(
xi,xπ(i)

)
.

It should be noted that this depends on S3 = {1} through those nodes i that have π(i) = 1. Chow
and Liu (1968) developed an algorithm for finding the tree from data that maximizes sum of the
mutual informations between a variable and its parents shown above.

Example 13 The conditionally Gaussian regressions are useful probability models for
Bayesian networks with both continuous and discrete variables, see Lauritzen (1990). In order to
fit the framework above to these distributions, we suppose that (X 1,X4) is a vector of r continuous
random variables, and that the variables in X 3 are decomposed into the discrete ones in X 3(4)
and into the t continuous variables X 3(γ). In order not to overburden the notation we omit here the
dependence on c in the expressions below.
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The conditionally Gaussian regressions are defined as follows. The conditional distribution of
(X1,X4) given X3 is a multivariate normal distribution

(X1,X4) |
(
X3(4) = π4,X3(γ) = πγ

)
∼ Nr

(
A(π4)+B(π4)πγ,Σ(π4)

)
,

where π4 the state of the discrete parents, πγ is the state of the continuous parents, and A(π4) is
a r× 1 vector, B(π4), is an r× t matrix, Σ(π4) is a positive definite symmetric matrix. The Naı̈ve
Bayes classifiers approximate Σ(π4) by a diagonal matrix.

We illustrate, however, the simplest of the upper bounds with the Kullback-Leibler divergence
by taking the plug-in distribution

N̂r
(
A+B(π4)πγ,Σ(π4)

)
.

Similarly to what has been done above, or more precisely, using Theorem 7, (18), and (22) above it
follows that for X = (X i)

4
i=1 corresponding to the decomposition S = (S1, . . . ,S4)

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

2
Z

S3




√√√√1−
(

k

∑
c=1

√
P(c)P̂(c)e

− 1
8

[
(A(π4)−A)

T Σ−1(π4)(A(π4)−A)
])2


d f (s3|G),

where, as noted above, some of the dependencies on c are not explicitly accounted for. Here f (s3|G)
is not in general a Gaussian density, as S3 may, for example, involve discrete states.

A way of further simplification of the bound in Corollary 8 is to bound the density upwards by the
following quantity.

Definition 10 Let

ε(c) := max
s1,s3,s4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣ .

With this quantity we can simplify the computation of the bound in Theorem 8.

Theorem 11 P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 ∑k
c=1 ε(c)µ(s1 × s4) .

Proof From Corollary 8 (31) we have that P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

Z

S3

Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)d f (s3|G).

6

k

∑
c=1

max
s3

[
Z

S1×S4

∣∣P(c) f (s1 × s4|G)− P̂(c) f̂ (s1 × s4|G)
∣∣dµ(s1 × s4)

]
.

We finish by using the definition of ε(c), which yields

6

k

∑
c=1

ε(c)
Z

S1×S4

dµ(s1 × s4) =
k

∑
c=1

ε(c)µ(s1 × s4) .

In the next section, 7, we will be able to use the bound in Theorem 11 as a way of motivating
the ’Naı̈ve Bayes’ approximation.
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7. Bounding the Kolmogorov Distance of Variation with Respect to Naı̈ve Bayes

In this section we assume that the feature space is finite and discrete, that is, X = ×d
i=1Xi and

Xi = {1, . . . ,ri}. A popular plug-in classifier is the Nav̈e Bayes, already defined for three special
cases in Examples 1, 4 and 13.

Definition 12 A Naı̈ve Bayes plug-in classifier is a classifier that assumes that the features of X are
independent given c,

f̂ (x|c) =
d

∏
i=1

f (xi|c).

In order not to overburden the notation we avoid symbols like fX i(xi|c) for marginal densities.
In spite of this we are not restricted to the case where all marginal densities are identical.

There are several practical reasons for the popularity of the Naı̈ve Bayes. For example, Toussaint
(1972) has shown that if Xi is the same for every i, then f̂ (x|c) is a polynomial.

There exist statistical tests for whether independence holds or not. In practice, however, we
often exclude independence of features by domain knowledge.

When c ∈ {1,2} (that is k = 2) and we have n samples (x,c)(n) = {(x,c)l}n
l=1, we define

ĉERM(x|x(n)) as the classifier that minimizes the empirical error on this sample. Without the Naı̈ve
Bayes assumption we can use bounds such as the following in (Devroye et al., 1996, Page 462) (for
k = 2)

E
[
P
(

ĉERM

(
X |(X ,C)(n)

)
6=C|(X ,C)(n)

)]
6 P(ĉB(X) 6= c)+ ε1,

but with Naı̈ve Bayes we have 0 6 ε2 6 ε1 such that for k = 2 see Devroye et al. (1996, Chapter
27.3)

E
[
P
(

ĉERM

(
X |(X ,C)(n)

)
6=C|(X ,C)(n)

)]
6 P(ĉB(X) 6= c)+ ε2.

The Naı̈ve Bayes assumption for specific data sets can actually perform better than a plug-in
classifier incorporating some dependencies as shown in Titterington et al. (1981). In Friedman et al.
(1997) Naı̈ve Bayes has been reported as performing worse than taking dependence into account
(but not on all data sets), and even then the difference was in many cases not large. In Huang et al.
(2003) it is found as suboptimal in most data sets. A more in-depth Meta study on the subject is
Hand and Yu (2001).

Our own experience does not speak against the conjecture that the advantage of taking depen-
dence into account may depend on the context (Ekdahl, 2006, Section 7). Instead of running yet
another simulation or arguing for or against on ad hoc grounds, we expand the existing theory
around Naı̈ve Bayes. The motivation for this can be intuitively outlined as follows.

Let us assume P(C) = P̂(C). Then the Kolmogorov variation distance is

1
2

E f̂ ,P̂

∣∣∣∣
f (X |C)

f̂ (X |C)
−1

∣∣∣∣ ,

where now f̂ (X |C) is as in Definition 12. As the level of dependence between the components in X

increases, the dispersion of f (X |C)

f̂ (X |C)
−1 increases. In the case d = 2, or X = (X i)

2
i=1 the Kolmogorov

variation distance with respect to the product of marginal densities was first studied by Hoeffding
(1942), who discovered that there is an upper bound for the distance, which is assumed when one
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of X1 or X2 is a function of the other. This would seem to restrict the effectiveness of the Naı̈ve
Bayes classifier to those situations, where the degree of dependence between the components of X
is moderate, as was to be expected. But to get a more diverse view we recall some of Vilmansen
(1971) and Vilmansen (1973).

The Kolmogorov variation distance measuring the degree of association between X and C is in
Vilmansen (1971, 1973) defined as

K (X ,C) =
1
2

k

∑
c=1

∑
x∈X

| f (x,c)− f (x)P(c)|.

The maximum of this distance is given by the next inequality, or

K (X ,C) 6 1−
k

∑
c=1

P2(c). (32)

This is shown in Vilmansen (1973), and is also found in Hoeffding (1942).
The maximum of K (X ,C) in (32) is obtained, as soon as there is a functional dependence

between X and C in the sense that the supports of the class-conditional densities are disjoint subsets
of X . Hence, in the last mentioned case the probability of correct classification is one. This extreme
case is approached when the dependence between X and C is “very close“ to being functional, in
the sense that each f (x|c) is concentrated around its mode, say mc, so that observation of mc is an
almost noise-free message, as it were, from the source c. In such a situation it should be possible for
the Naı̈ve Bayes classifier to perform well, too. The impact of strong dependence between the labels
and feature vectors for Naı̈ve Bayes has been argued in a different manner in Rish et al. (2001).

The following theorem shows in a more precise fashion how the modes of the densities f (x|c)
control the difference between the pertinent probabilities of the correct decision. We do not really
need unimodality for our proofs, but this is a natural assumption for model based classification and
simplifies the statements. In words the result in Theorem 13 below tells that, if the class conditional
probability densities are predominantly well concentrated, the Kolmogorov variation distance with
respect to Naı̈ve Bayes is small.

Theorem 13 Assume f (x|c) is unimodal for every c ∈ C . Let for any c ∈ C ,

mc := argmax
x∈X

f (x|c).

Then we have for the Naı̈ve Bayes plug-in that

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

k

∑
c=1

P(c)max
(

f (mc|c)− f (mc|c)d,1− f (mc|c)
)

. (33)

Proof We shall simplify notation without risk confusion by writing f (x|c) as f (x). We state first
some elementary observations. By the chain rule

f (x) = f (xi) f (x1, . . . ,xi−1,xi+1, . . . ,xn|xi)

6 f (xi), forall i, (34)
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which implies that

f (x)d =
d

∏
i=1

f (x) 6

d

∏
i=1

f (xi). (35)

The claim to be established will follow if we can show that for all x ∈ X
∣∣∣∣∣ f (x)−

d

∏
i=1

f (xi)

∣∣∣∣∣6 max
(

f (m)− f (m)d ,1− f (m)
)

. (36)

The proof of (36) is divided into three cases

1 Suppose that x = m.

1.1 If f (m) > ∏d
i=1 f (mi) ⇒ f (m)−∏d

i=1 f (mi) 6 f (m)− f (m)d by (35).

1.2 If f (m) < ∏d
i=1 f (mi) ⇒ ∏d

i=1 f (mi)− f (m) 6 1− f (m).

2 Consider next x 6= m. We have
∣∣ f (x)−∏d

i=1 f (xi)
∣∣

= max

(
f (x),

d

∏
i=1

f (xi)

)
−min

(
f (x),

d

∏
i=1

f (xi)

)
.

Since both max(a1,a2) and min(a1,a2) are positive for 0 ≤ a1,a2 ≤ 1

6 max

(
f (x),

d

∏
i=1

f (xi)

)
6 max( f (x), f (x j)) ,

where f (x) 6 ∑z 6=m f (z) = 1− f (m). Here j is chosen so that x j 6= m j, which exists since
x 6= m. By (34), f (m j) > f (m) we obtain

f (x j) 6 ∑
xi 6=m j

f (xi) = 1− f (m j) 6 1− f (m).

The inequality (36) and Theorem 5 imply (33), and thus the assertion in Theorem 13 is established
as claimed.

The inequality (36) is an improvement of a result in Rish et al. (2001). We have constructed a
tighter upper bound for

∣∣ f (x)−∏d
i=1 f (xi)

∣∣ than the one in Rish et al. (2001), which is recapitulated
in the next theorem.

Theorem 14 For all x ∈ X ,
∣∣ f (x)−∏d

i=1 f (xi)
∣∣6 d(1− f (m)).

The sharpness of Theorem 14 can be seen though a plot of maxx∈X
∣∣ f (x)−∏d

i=1 f (xi)
∣∣ as a function

of maxx∈X f (x) in two and tree dimensions in Figure 4. The plots are for a binary hypercube
(X = {0,1}d). The simulation tests several distributions and takes the worst one for each value of
simulated f (m) (the details of the simulation can be found in the simulation appendix).

It is possible to increase f (m) dividing for example multimodal class conditional densities into
many unimodal densities (Vilata and Rish, 2003), but a theoretical investigation of identification
and interpretation of such a partition scheme is lacking.
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Figure 4: Illustration of the bound in Theorem 14.

Next we verify that the inequality (36) is in fact an improvement of Theorem 14, that is,

max
(

f (m)− f (m)d,1− f (m)
)

6 d(1− f (m)).

It is enough to show that 1− f (m) 6 d(1− f (m)) and f (m)− f (m)d 6 d(1− f (m)). Here 1−
f (m) 6 d(1− f (m)) follow since 1− f (m) > 0 and d > 2. The remaining inequality can be shown
using Bernoulli’s inequality, so that

f (m)− f (m)d = f (m)− (1− (1− f (m)))d
6 f (m)− (1−d (1− f (m))) 6 d (1− f (m)) . (37)

As with Theorem 14 we plot maxx∈X
∣∣ f (x)−∏d

i=1 f (xi)
∣∣ as function of f (m) in two and three

dimensions and compare the maximal difference with the bounds in Theorem 14 and (36) (Figures
5 and 6).

From the three to five dimensional cases in Figures 5 and 6 we see that the inequality (36) is
often sharp enough, if the probability density is concentrated, that is f (m) is close to 1.

We give an additional upper bound ((39) below) readily derived from Theorem 13. We introduce
the entropy (in natural logarithm)

H (X |C = c) = − ∑
x∈X

f (x|c) ln f (x|c).

Then it is well known, see Arimoto (1971), that

1− f (mc|c) 6
H (X |C = c)

ln2
. (38)

Let us split C into two sets

C1 =
{

c| f (mc|c)− f (mc|c)d
> 1− f (mc|c)

}
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Figure 5: Illustration of the bounds in Theorem 14 and inequality (36) in two and three dimensions.
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Figure 6: Illustration of the bounds in Theorem 14 and (36) in four and five dimensions.
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and
C2 =

{
c| f (mc|c)− f (mc|c)d < 1− f (mc|c)

}
.

Thereby we get from (38)

k

∑
c=1

P(c)max
(

f (mc|c)− f (mc|c)d,1− f (mc|c)
)

6 ∑
C1

P(c)
(

f (mc|c)− f (mc|c)d
)

+∑
C2

P(c)
H (X |C = c)

ln2
.

It was shown above, see (37), that f (mc|c)− f (mc|c)d 6 d (1− f (mc|c)). We introduce the condi-
tional entropy

H (X |C) =
k

∑
c=1

P(c)H (X |C = c) .

Then we obtain

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6 (d −1)

(
1−∑

C1

P(c) f (mc|c)
)

+
H (X |C)

ln2
. (39)

This bound needs not to be sharp in general, but it gives some additional insight. The first term in
the right hand side is of similar form as the upper bound in (32) and can therefore be thought as
measuring the degree of functional dependence between X and C. The entropy H (X |C) is known
as equivocation and measures the uncertainty about X if C is observed (Cover and Thomas, 1991).

Corollary 8 can be combined with the inequality (36). We will do that in the same way as in
Section 6, that is we will allow for a partial Naı̈ve Bayes assumption in the following sense

f (x|c) = f (s2 × s3 × s4|c,s1) ∏
{i|Xi∈S1}

f (xi|c)

leading to the abridged notation

m1 ×m4 := arg max
s1,s3,s4∈S1×S3×S4

∏
{i|Xi∈S1∪S4}

f (xi|πi,c,G).

Corollary 15 Let P(c) = P̂(c), and take the partial Naı̈ve Bayes on s1 and s4. Then

P(ĉB(X) = ς)−P(ĉ(X) = ς)

6

k

∑
c=1

P(c)max
(

f (m1 ×m4|G)− f (m1 ×m4|G)d,1− f (m1 ×m4|G)
)

∏
{i|Xi∈S1∪S4}

ri.

Example 14 Let us take k = 10, and d = 1000. Most of the features are independent; however
expert knowledge reveals that each class has exactly three features (Xi, . . . ,Xi+2) that depend on
each other in accordance with the DAG in Figure 7. These features are very concentrated in
the sense that there exists a vector a such that P((Xi, . . . ,Xi+2) = a|c) > 0.995. The expert ex-
plains that this it due to the fact that they correspond to a physical feature critical to each class.
Which features have this dependence is, however, unknown and detection is complicated since
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Xi

Xi+1

Xi+2

Figure 7: Graphical representation of dependence

P(thereexistsat leastone j 6= isuchthat(X j, . . . ,X j+2|c) = a) is large. Here it is possible to model
with independence, since Corollary 15 then yields

P(ĉB(X) = C)−P(ĉB̂(X) = C) 6

10

∑
c=1

ε(c)µ [S1 ∪S4] = 0.048.

8. Plug-In Classifiers that Make Optimal Decisions

In this section the plug-in classifier is not necessarily Naı̈ve Bayes and X need not be discrete,
although the conditions in the results below are more difficult to satisfy in continuous settings. As
expounded above, it is easy to approximate f (x|c) f (c), when the classes are well separated, in the
sense there is almost a functional dependence between C and X . Sometimes it is possible to express
the dependence by simply observing that

f (x|c)P(c)− f (x|c̃)P(c̃)

is large for all x ∈ X and all c, c̃ ∈ C such that c 6= c̃. Here we present sufficient conditions for
this pointwise separation between classes so that the probability of correct classification does not
decrease by plugging in f̂ (x|c)P̂(c). The question is, how close must f̂ (x|c)P̂(c) be to f (x|c)P(c),
so that there should be no decrease in the probability of correct classification.

Definition 16 Let ε2(c) be any bound such that for all x ∈ X
∣∣ f (x|c)P(c)− f̂ (x|c)P̂(c)

∣∣6 ε2(c). (40)

For example, let X be discrete and finite. If ε2(x,c) = f (x|c)P(c)− f̂ (x|c)P̂(c), then we obviously
take ε2(c) = maxx∈X | ε2(x,c) |. Let us suppose that the approximation is a lower bound, that
is, f (x|c)P(c) > f̂ (x|c)P̂(c) for all x ∈ X , which is found by variation and normalization (Jordan
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et al., 1999; Wainwright and Jordan, 2003). These techniques give even expressions for ε2(x,c), for
example for the exponential family of densities. We continue, however, with a lemma that involves
this kind of differences in general.

Lemma 17 Assume that ε2(c) > 0 and ε2(c̃) > 0 exist as defined in (40). If P(c|x) > P(c̃|x) and

| f (x|c)P(c)− f (x|c̃)P(c̃)| > ε2(c)+ ε2(c̃)

then P̂(c|x) > P̂(c̃|x).
Proof We prove this by contradiction. First we assume that P̂(c|x) < P̂(c̃|x). With the plug-in
classifier and (2) we get

f̂ (x|c)P̂(c) < f̂ (x|c̃)P̂(c̃).

Now we continue by applying (40), that is, increasing margin in this inequality, which gives

⇒ f (x|c)P(c)− ε2(c) < f (x|c̃)P(c̃)+ ε2(c̃)

⇔ f (x|c)P(c)− f (x|c̃)P(c̃) < ε2(c)+ ε2(c̃).

By the assumption P(c|x) > P(c̃|x) and by (1) we get that the quantity in the left hand side of the
last inequality is positive, and hence the desired contradiction follows.

Lemma 17 used to state sufficient conditions such that f (x|c) can be approximated without
affecting the probability of correct classification.

Theorem 18 If for all c, c̃ ∈ C

| f (x|c)P(c)− f (x|c̃)P(c̃)| > ε2(c)+ ε2(c̃),

then P(ĉB(X) = C) = P(ĉB̂(X) = C).

Proof From (13) we have that

P(ĉB(X) = C)−P(ĉB̂(X) = C) =
Z

{x|ĉB̂(x)6=c}
(P(c) f (x|c)−P(ĉ) f (x|ĉ))dµ(x).

Now the result follows since Lemma 17 implies (through (1)) that P(c|x) = P(ĉ|x).
We can also combine Theorem 18 with inequality (36). This gives us next corollary.

Corollary 19 When ε2(c) = max
(

f (m|c)− f (m|c)d,1− f (m|c)
)

and
|P(c|x)P(c)−P(c̃|x)P(c̃)| > ε2(c)P(c)+ ε2(c̃)P(c̃), then

P(ĉB̂(X) = C) = P(ĉB(x) = C).

In the context of Naı̈ve Bayes our Corollary 19 can be seen as a generalization of the results
in Domingos and Pazzani (1997), the finding of which is that Naı̈ve Bayes is optimal for learning
conjunctions and disjunctions of literals, as well as an extension of the more general result in Rish
et al. (2001), which says that Naı̈ve Bayes is optimal if Bayes classifier assigns only one feature
to class 1 in a two-class problem. For example Corollary 19 is more general in the sense that a
classifier that assigns more than one feature to a class can be optimal if the margin is wide enough.
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9. Summary

We have presented exact and easily computable bounds for the degradation of probability of correct
classification when Bayes classifiers are used with respect to partial plug-in conditional densities in
a Bayesian network model (Theorem 7, Corollary 8 and Theorem 11).

An example of a Bayesian network plug-in classifier is the Naı̈ve Bayes classifier (Definition
12). In the case where a Naı̈ve Bayesian classifier is used, we have sharpened a bound of evaluating
its effect (Theorem 13).

We have presented a bound on the class conditional approximation as well as the class probabil-
ities such that the probability of making a correct decision is not degraded when basing the decision
on ĉB̂(x) instead of ĉB(x) using the bound in Theorem 13, thus generalizing the theory for explaining
when Naı̈ve Bayes is optimal.
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Appendix A. Simulation

Algorithm 1 Simulate(granularity,d)

1: atom = 1
granularity

2: state is a placement of atoms on X such that for a state x, f (x) = nr atoms there
granularity

3: while not all unique placements of atoms have been searched do
4: p = maxx∈X f (x)
5: di f f = maxx∈X

∣∣ f (x)−∏d
i=1 f (xi)

∣∣
6: if di f f > maxdi f f s[p] then
7: maxdi f f s[p] = di f f
8: end if
9: state = next unique placement of atoms

10: end while
11: return maxdi f f s
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Abstract

We introduce an algorithm that simultaneously estimates a classification function as well as its
gradient in the supervised learning framework. The motivation for the algorithm is to find salient
variables and estimate how they covary. An efficient implementation with respect to both memory
and time is given. The utility of the algorithm is illustrated on simulated data as well as a gene ex-
pression data set. An error analysis is given for the convergence of the estimate of the classification
function and its gradient to the true classification function and true gradient.

Keywords: Tikhnonov regularization, variable selection, reproducing kernel Hilbert space, gen-
eralization bounds, classification

1. Introduction

The advent of data sets with many variables or coordinates in the biological and physical sciences
has driven the use of a variety of machine learning approaches based on Tikhonov regularization
(global shrinkage estimators in the statistics literature) such as support vector machines (SVMs)
(Vapnik, 1998) and regularized least square classification (Poggio and Girosi, 1990). These algo-
rithms have been very successful in classification (binary regression) problems.

In a number of applications, such as the analysis of gene expression data, classical questions
from statistical modeling of which variables are of relevance and how these variables interact arise.
In the context of genomic data an objective of the analysis is to build an interpretable model of
the biological process giving rise to the data. An example of this is that genes co-regulated by a
biological pathway may be modeled as features that covary. Estimation of feature covariation is
not considered in standard regression or classification methods that allow for variable selection:
recursive feature elimination (RFE) (Guyon et al., 2002), least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), and basis pursuits denoising (Chen et al., 1999). Gradient
information was used in Hermes and Buhmann (2000) and Evgeniou et al. (2000a) to select features
via a sensitivity analysis on the gradient of the SVM solution. This approach does not directly
estimate the gradient and its shortcomings will be described in Remark 3. Statistical models based
on shrinkage or regularization were applied to the problem of learning coordinate covariation and
relevance for regression problems in Mukherjee and Zhou (2006). We extend this approach to the

c©2006 Sayan Mukherjee and Qiang Wu.
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binary regression or classification setting by simultaneously estimating the classification function
as well as its gradient.

1.1 Review on Convex Risk Minimization Approach for Classification

In this subsection we review the convex risk minimization approach.
Let X be a compact metric space and Y = {1,−1}. Let ρ(x,y) be a probability distribution on

Z := X×Y and z =
{

(xi,yi)
}m

i=1 ∈ Zm a random sample independently drawn according to ρ(x,y).
Convex risk minimization methods, which include support vector machines (SVMs) and boost-

ing as typical examples, have been successful in a variety of classification problems. This approach
involves a convex loss function φ and learns a real-valued classification function from a given sam-
ple z =

{

(xi,yi)
}m

i=1 by minimizing the convex empirical risk functional in a hypothesis space H
(often with a regularization or penalty term):

fz = arg min
f∈H

{ 1
m

m

∑
i=1

φ(yi f (xi))
}

. (1)

The loss function may take the form of the hinge loss φ(t) = (1− t)+ in SVMs and logistic loss
φ(t) = log(1+ e−t) in boosting. Define the expected error of a function f as

R ( f ) =
Z

φ(y f (x))dρ(x,y),

and the real-valued classification function as the function in L2
ρX

, where ρX is the marginal distribu-
tion on x, that minimizes

fφ = arg min
f∈L2

ρX

R ( f ).

Under certain conditions (Vapnik, 1998; Bartlett et al., 2005) sgn[ fφ] is a Bayes optimal classifier.
Extensive investigation in learning theory (Cortes and Vapnik, 1995; Vapnik, 1998; Evgeniou et al.,
2000b; Schoelkopf and Smola, 2001; Zhang, 2004; Bartlett et al., 2005; Wu and Zhou, 2005) has
shown that R ( fz)→R ( fφ), which implies that the error of sgn( fz) converges to the error of a Bayes
optimal classifier with respect to the misclassification error:

C (sgn( f )) = Prob{sgn( f (x)) 6= y}.

This forms the theoretical foundation of the convex risk minimization method.

1.2 Learning the Classification Function and Gradient

In this paper we are interested in simultaneously learning fφ and its gradient from the sample values,
z =

{

(xi,yi)
}m

i=1. Denote x = (x1,x2, . . . ,xn)T ∈ R
n. The gradient of fφ is the vector of functions (if

the partial derivatives exist)

∇ fφ =

(

∂ fφ

∂x1 , . . . ,
∂ fφ

∂xn

)T

.

Note that gradient learning is meaningful for classification problems in this sense because fφ is
real-valued and may be smooth. For example, in the case of the logistic function (Hastie et al.,
2001)

φ(y f (x)) = log
(

1+ e−y f (x)).
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the classification function has a clear statistical interpretation (modeling the conditional probability
ρ(y|X) as a Bernoulli random variable)

Prob(y =±1|x) =
1

1+ e−y fφ(x)
.

In this case the classification function is

fφ(x) = ln

[

Prob(y = 1|x)
Prob(y =−1|x)

]

and the gradient of fφ exists under very mild conditions on the underlying distribution ρ. This is one
of the reasons we use a logistic model rather than learning the gradient of a {−1,1} classification
function. In addition, the logistic model incorporates the uncertainty of the conditional probability
at each x which the binary classification function does not.

The relevance of learning the gradient with respect to the problems of variable selection and
estimating coordinate covariation is that the gradient provides the following information:

(a) variable selection: the norm of a partial derivative ‖ ∂ fφ
∂x j ‖L2

ρX
indicates the relevance of this vari-

able, since a small norm implies a small change in the discriminative function fφ with respect to the
j-th coordinate,

(b) coordinate covariation: the inner product between partial derivatives
〈

∂ fφ
∂x j ,

∂ fφ
∂x`

〉

indicates the

covariance of the j-th and `-th coordinates with respect to variation in fφ.
At first glance, the problem of estimating the gradient is equivalent to that of computing clas-

sical numerical derivatives in inverse problems. This is the case if we know the sample pair
{(xi, fφ(xi)}m

i=1. But we face the difficulty that what we have in hand is the set of samples z where
yi ∈ {±1} is not an approximation of the value fφ(xi) but only its sign. So the classical methods
for numerical derivatives fail for learning gradients in the classification setting. Instead, we will
motivate a new approach.

The derivation of our gradient learning algorithm can be motivated by the Taylor expansion of
fφ, assuming it exists:

fφ(x)≈ fφ(u)+∇ fφ(x) · (x−u), for x≈ u.

Our objective will be to estimate fφ by a function g and its gradient ∇ fφ by a vector valued
function ~f = ( f1, f2, . . . , fn)

T : X →R
n. If the estimates are accurate then the following should hold

fφ(x)≈ g(u)+ ~f (x) · (x−u), for x≈ u.

The optimization given in (1) suggests a method for estimating g and ~f : we minimize a quantity that
is like the convex empirical risk but with f (xi) replaced by g(u)+ ~f (xi) · (xi−u) with some u≈ xi.
As for the choice of u, a natural idea is to set u = x j and take a weighted average with the weights
being chosen to enforce the locality constraints x j ≈ xi implicit in the Taylor expansion. Various
weights may play the same role whenever they satisfies wi, j → 0 as |xi− x j| → 0. Throughout this
paper we will use a Gaussian with variance s as our weight function:1

wi, j = w(s)
i, j =

1
sn+2 e−

|xi−x j |2

2s2 = w(xi− x j), i, j = 1, . . . ,m.

1. In standard problems such as density estimation the Gaussian is normalized by a term of the form 1
sn since the

following integral should be invariant with respect to dimension

1
sn

Z

Rn
e−|x|

2/s2
dx = constant.

2483



MUKHERJEE AND WU

Other weight functions can be used as long as the bandwidth of the weight function decreases with
the number of samples. Using the Gaussian weight function leads to the following empirical error
functional.

Definition 1 Given a sample z∈ Zm, a function g : X→R, and a vector-valued function ~f : X→R
n,

we define the empirical error as follows:

Ez(g, ~f ) =
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi(g(x j)+ ~f (xi) · (xi− x j))
)

.

We may expect that minimizing this error functional using functions in a hypothesis space H n+1

leads to gz and ~fz such that

gz(u)+ ~fz(x) · (x−u)≈ fz(x)≈ fφ(x)≈ fφ(u)+∇ fφ(x) · (x−u), for x≈ u.

This in general leads to gz ≈ fφ and ~fz ≈ ∇ fφ.

To formulate the algorithm, we need to specify the hypothesis space. In this paper we will
restrict H to be a Reproducing Kernel Hilbert Space (RKHS) HK with an associated Mercer kernel
K : X × X → R that is continuous, symmetric and positive semidefinite. The RKHS is defined
(Aronszajn, 1950) to be the completion of the linear span of the set of functions {Kx := K(·,x) : x ∈
X} with the inner product 〈·, ·〉K satisfying 〈Ku,Kv〉K = K(u,v). The reproducing property of HK is

〈Kx, f 〉K = f (x), ∀x ∈ X , f ∈HK . (2)

This implies that every function f ∈HK is continuous and bounded. Hence HK ⊂C(X)⊂ L2
ρX

(X).

Regularizing or shrinking the empirical error Ez(g, ~f ) with respect to the RKHS norm defines
the following optimization problem.

Definition 2 Given a sample z∈ Zm we can estimate the classification function, gz, and its gradient,
~fz, as follows:

(gz, ~fz) = argmin
(g,~f )∈H n+1

K

{

Ez(g, ~f )+
λ
2
(‖g‖2

K +‖~f‖2
K)

}

, (3)

where s,λ > 0 are the regularization parameters and, for ~f = ( f 1, . . . , f n)∈H n
K , ‖~f‖2

K = ∑n
i=1 ‖ f i‖2

K .

The immediate advantages of this technique are preventing overfitting and easy computability
due to a representer theorem (see Section 2). Another advantage of our method is the derived
functions are already approximations of the partial derivatives and they have RKHS inner products
which are computed in the estimation process. The inner products reflect the nature of the measure,
which is often on a low dimensional manifold embedded in a high dimensional space.

In our paper for technical reasons that will become apparent in the proofs the following quantity should be invariant
with respect to dimension

1
sn+2

Z

Rn
e−|x|

2/s2 |x|2dx = constant.
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Remark 3 One may consider a natural approach of finding an approximation of fφ (for example
by (1)) and then computing partial derivatives. But recall our aim is feature (or variable) selection.
The problem with this approach is that the partial derivatives may no longer be in the RKHS of the
classification function. This leaves us with the problem of not having a norm or computable metric
to work with.

The hypothesis space H n
K in the optimization problem (3) may be replaced by some other space

of vector-valued functions (Micchelli and Pontil, 2005) in order to learn the gradients.
The distance between points in the Taylor expansion as well as in the weighting function are

in the input space and not the feature space of the kernel. This is a natural formulation and an
argument for this formulation is that with this distance the algorithms can be extended to a manifold
setting without any changes (Mukherjee et al., 2006).

1.3 Overview

In Section 2, we show that the minimizer of the optimization problem (3) satisfies a representer
theorem and then provide a procedure to compute the parameters. In Section 3, we prove the
convergence of our estimate of the gradient, ~fz, to the true gradient of the classification function,
∇ fφ. The utility of the algorithm is illustrated in Section 4 on simulated data as well as gene
expression data. We close with a brief discussion in Section 5.

2. Representer Theorem and Parameter Computation

The optimization problem defined by Equation (3) is a convex optimization problem because φ(·),
‖g‖2

K , and ‖~f‖2
K are all convex functionals. Denote R

p×q as the space of p× q matrices. The
algorithm that implements the optimization procedure is given in Section 2.1.

The following theorem is an analog of the standard representer theorem (Wahba, 1990; Schoelkopf
and Smola, 2001) that states the minimizer of the optimization problem defined by Equation (3) has
a finite dimensional representation.

Proposition 4 Given a sample z ∈ Zm the solution of (3) exists and takes the form

gz(x) =
m

∑
i=1

αi,zK(x,xi) and ~fz(x) =
m

∑
i=1

ci,zK(x,xi) (4)

with cz = (c1,z, . . . ,cm,z) ∈ R
n×m and αz = (α1,z, ...,αm,z)

T ∈ R
m.

Proof The existence follows from the convexity of φ and functionals ‖g‖2
K and ‖~f‖2

K . Suppose
(gz, ~fz) is a minimizer. We can write functions gz ∈HK and ~fz ∈H n

K as

gz = g‖+g⊥ and ~fz = ~f‖+~f⊥

where g‖ and each element of ~f‖ is in the span of {Kx1 , , ...,Kxm}, and g⊥ and ~f⊥ are functions in the

orthogonal complement. By the reproducing property gz(xi) = g‖(xi) and ~f (xi) = ~f‖(xi) for all xi.

So the functions g⊥ and ~f⊥ do not have an effect on Ez(g, ~f ). But ‖gz‖2
K = ‖g‖+ g⊥‖2

K > ‖g‖‖2
K

and ‖~fz‖2
K = ‖~f‖+ ~f⊥‖2

K > ‖~f‖‖2
K unless g⊥, ~f⊥ = 0. This implies that gz = g‖ and ~fz = ~f‖. This

results in the representations in Equation (4).
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The optimization in Equation (3) can be written in terms of the coefficients cz and αz. We
define a matrix C = (c1,c2, . . . ,cm) ∈ R

n×m (when optimized these will be the coefficients cz in the
gradient expansion) and the vector α ∈ R

m (when optimized the vector will be αz). We denote the
kernel matrix K where Ki j = K(xi,x j) for i, j = 1, ...,m and the i-th row of the matrix as ki. The
optimization function can be written in matrix form as

Φ(C,α) =
1

m2

m

∑
i, j=1

wi, jφ
(

yi(k jα+ kiC
T (xi− x j))

)

+
λ
2

(

αT Kα+Tr(CKCT )
)

, (5)

where Tr(M) is the trace of a matrix M.

Proposition 5 If φ is differentiable, then the coefficients cz and αz can be computed from the equa-
tion ∇Φ(α,C) = 0.

We can optimize (5) by using Newton’s method to solve ∇Φ(α,C) = 0. The matrix C however
is an n×m matrix and optimizing in R

mn is problematic for applications where n� m. We will
show that the coefficients can be computed by the optimization of an m×d matrix, where typically
d� m. We will then apply Newton’s method in this reduced space.

Define a vector-valued function

h = ((h0)T ,(h1)
T , . . . ,(hm)T )T : R

(n+1)m→ R
(n+1)m

with

h0 = (h0
1, . . . ,h

0
m)T , h0

j(α,C) =
1

m2

m

∑
i=1

wi, jφ′
(

yi(k jα+ kiC
T (x j− xi))

)

yi +λα j

and, for i = 1, . . . ,m,

hi(α,C) =
1

m2

m

∑
j=1

wi, jφ′
(

yi(k jα+ kiC
T (x j− xi))

)

yi(xi− x j)+λci.

By direct computation, we have

∇Φ(α,C) =

(

K 0
0 K⊗ In

)

h(α,C) (6)

where In is the n×n identity matrix. Solving for the coefficients will give us the following proposi-
tion.

Proposition 6 If the solution to the equation h(α,C) = 0 exists, then the coefficients cz in the repre-
sentation of ~fz satisfy the constraint for every i = 1, . . . ,m ci,z ∈Vx = span

{

xi− x j : i, j = 1, . . . ,m
}

.

Proof By the assumption, there exists (αz,cz) solving the equation h(α,C) = 0. So ∇Φ(αz,cz) = 0
and (αz,cz) gives the representation of gz and ~fz. By the definition of h, we have hi(αz,cz) = 0
which implies ci,z ∈Vx. This proves the proposition.
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Remark 7 We know the solution (gz, ~fz) exists and even is unique. This implies the existence of the
solution to ∇Φ(α,C) = 0. But the existence of the solution to h(α,C) = 0 is not clear. In fact, this
may not be always the case when K is not invertible.

Proposition 6 states that the coefficients ci,z are in the span of the pairwise differences of the
input data, which is a low dimensional subspace of R

n. This allows us to reduce the dimension of
the optimization problem of solving for the coefficients cz. We apply the well known approach of
singular value decomposition to the matrix involving the data x given by

Mx = (x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm) ∈ R
n×m.

Assume the rank of Mx is d. The theory of singular value decomposition tells us that there exists an
n×n orthogonal matrix V = (V1,V2, . . . ,Vn) and an m×m orthogonal matrix U = (U1,U2, . . . ,Um)
such that

Mx = V ΣUT = (V1 V2 · · · Vn)

(

diag{σ1,σ2, · · · ,σd} 0
0 0

)











UT
1

UT
2
...

UT
m











.

Here σ1 ≥ σ2 ≥ ·· · ≥ σd > σd+1 = . . . = σmin{m,n} = 0 are the singular values of Mx. The matrix

Σ is n×m and has entries of zero except for Σi,i = σi for i = 1, . . . ,d. The vectors {Vi}d
i=1 form an

orthonormal basis for Vx and denote V = (V1, . . . ,Vd).
Set βi ∈ R

d to satisfy xi− xm = V βi for i = 1, . . . ,m. For γ0 ∈ R
m and γ = (γ1, . . . ,γm) ∈ R

d×m,
define the vector-valued function

u = ((u0)T ,(u1)
T , . . . ,(um)T )T : R

m(d+1)→ R
m(d+1)

by

u0 = (u0
1, . . . ,u

0
m)T , u0

j(γ
0,γ) =

1
m2

m

∑
i=1

wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

yi +λγ0
j ,

and, for i = 1, . . . ,m,

ui(γ0,γ) =
1

m2

m

∑
j=1

wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

yi(βi−β j)+λγi.

Proposition 8 If γ0
z ∈R

m and γz = (γ1,z, . . . ,γm,z)∈R
d×m are solutions of the equation u(γ0,γ) = 0,

then cz and αz defined by

αz = γ0
z , ci,z = V γi,z for i = 1, . . . ,m,

solve ∇Φ(α,C) = 0 and hence yield a representation of gz and ~fz respectively.

Proof By the facts that ci = V γi for i = 1, . . . ,m defines a one-to-one mapping from Vx onto R
d and

V TV = Id the d-dimensional identity matrix, direct computation shows that u(γ0
z ,γz) = 0 implies

h(αz,cz) = 0. Then the conclusion follows from Proposition 5 and Equation (6).
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We now use Proposition 8 to derive the update rule in Newton’s method to optimize the coeffi-
cients γ0 and γ. Let η = ((γ0)T ,(γ1)

T , ...,(γm)T )T ∈R
m(d+1) and consider the map u(η) on R

m(d+1)

defined as u = ((u0)T ,(u1)
T , ...,(um)T )T . When φ is twice differentiable, we can use Newton’s

method to solve the equation u(η) = 0 by the following iterative update rule

ηt+1 = ηt − (∇u(ηt))
−1u(ηt).

2.1 The Optimization Algorithm

The results of the previous section are summarized here to formulate the algorithm that implements
the optimization procedure. Before we state the algorithm we restate the matrices and vectors
involved in the optimization:

1. the input data (xi)
m
i=1

2. the kernel matrix K given the kernel function

Ki, j = K(xi,x j) for i, j = 1, ..,m

3. the elements of the weight matrix given the parameter s

wi, j = exp(−‖xi− x j‖2/2s2) for i, j = 1, ..,m

4. the label vector computed from the output variables y = (y1, . . . ,ym)T

5. Mx = [x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm] ∈ R
n×m

6. V = (v1,v2, . . . ,vd) the d left eigenvectors of MT
x Mx

7. βi = V T (xi− xm) for i = 1 to m

8. at iteration t we have the vector ηt = ((γ0)T ,(γ1)
T , ...,(γm)T )T ∈R

m(d+1) with γ0 := ηt(1 : m),
γi := ηt(m+(i−1)d +1 : m+ id), and γ := (γ1, . . . ,γm)

9. at each iteration the matrix a ∈ R
m×m is defined by its components

ai, j = wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

where ki is the i-th column of the kernel matrix

10. at each iteration the matrix A ∈ R
m×m is defined by its components

Ai, j = wi, jφ′′
(

yi(k jγ0 + kiγT (βi−β j))
)

11. given the matrix a we define the vectors b0 = aT y and

bi = yi

m

∑
j=1

ai, j(βi−β j) where i = 1, . . . ,m
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12. given the matrix A we define the m×m matrix

K0 = diag(A1m)K where 1m = (1,1, . . . ,1)T

13. from the matrices

K1( j, `) =
m

∑
i=1

Ai, jK(xi,x`)(βi−β j)
T where j, ` = 1, ..,m

construct the matrix

K̃1 =







K1(1,1) . . . K1(1,m)
...

. . .
...

K1(m,1) . . . K1(m,m)







14. from the matrices

K2(i, `) =
m

∑
j=1

Ai, jK(x j,x`)(βi−β j) where i, ` = 1, ..,m

construct the matrix

K̃2 =







K2(1,1) . . . K2(1,m)
...

. . .
...

K2(m,1) . . . K2(m,m)







15. from the matrices

Bi =
m

∑
j=1

Ai, j(βi−β j)(βi−β j)
T where i = 1, ..,m

construct the matrix

K̃3 =











B1K(x1,x1) B1K(x1,x2) . . . B1K(x1,xm)
B2K(x2,x1) B2K(x2,x2) . . . B2K(x2,xm)

...
...

. . .
...

BmK(xm,x1) BmK(xm,x2) . . . BmK(xm,xm)











.

16. the coefficents of the classification function estimate, αz ∈ R
m and gz = ∑m

i=1 αi,zK(x,xi)

17. the coefficents of the gradient estimate (ci,z)
T ∈R

p for i = 1, . . . ,m and ~fz = ∑m
i=1 ci,zK(x,xi).

Given the above quantities we now state the algorithm for solving the optimization problem for
learning gradients.
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Algorithm 1: Algorithm for computing gz and ~fz

input : inputs x = (xi, . . . ,xm), labels y = (y1, . . . ,ym)T , kernel K, weights (wi, j),
regularization parameter s, λ > 0 and threshold ε > 0

return: coefficients αz and (ci,z)
m
i=1

Mx = [x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm];
[V,Σ,U ] = svd(Mx);

η0 = 0; stop← false; t← 0;
repeat

u(ηt) =
1

m2 (bT
0 ,bT

1 , . . . ,bT
m)T +ληt ;

∇u(ηt) = λIm(d+1) +
1

m2

(

K0 K̃1

K̃2 K̃3

)

;

∆ηt = (∇u(ηt))
−1u(ηt);

ηt+1 = ηt −∆ηt ;
t← t +1
If ‖∆ηt‖ ≤ ε stop← true

until stop=true ;

αz = ηt(1 : m);
γi,z = ηt(m+(i−1)d +1 : m+ id) for i = 1, . . . ,m;
ci,z = V γi,z for i = 1, . . . ,m;

3. Error Analysis

In this section, we investigate the statistical performance of the algorithm. We will show that under
certain conditions, gz→ fφ and ~fz → ∇ fφ as λ,s→ 0. Let us first illustrate this by a specific case
where φ(·) is the logistic loss and ( fφ,∇ fφ) ∈ H n+1

K (this case corresponds to the realizable setting
in the PAC learning paradigm). Denote as ∂X the boundary of X and d(x,∂X) the distance of x ∈ X
from ∂X .

Theorem 9 Let φ be the logistic loss. Assume that for some constants cρ > 0 and 0 < θ ≤ 1 the
marginal distribution ρX satisfies

ρX ({x ∈ X : d(x,∂X) < s})≤ cρs, (7)

and the density p(x) of ρX exists and satisfies

sup
x∈X

p(x)≤ cρ and |p(x)− p(u)| ≤ cρ|x−u|θ, ∀u,x ∈ X . (8)

2490



COORDINATE COVARIATION IN CLASSIFICATION

Suppose that K ∈C2 and ( fφ,∇ fφ)∈H n+1
K . Choose λ = λ(m) = m−

2θ
3(n+2+2θ) and s = s(m) = m−

1
3(n+2+2θ) .

Then there exists a constant C > 0 such that for any 0 < η < 1 with confidence 1−η

‖gz− fφ‖L2
ρX
≤ C log

4
η

(

1
m

) θ
6(n+2+2θ)

,

‖~fz−∇ fφ‖L2
ρX
≤ C log

4
η

(

1
m

) θ
6(n+2+2θ)

.

Condition (8) means the density of the marginal distribution is Hölder θ. Condition (7) is about
the behavior of ρX near the boundary of X . When the boundary is piecewise smooth, (8) implies (7).

Theorem 9 is a consequence of the more general Theorem 10 which we prove in Section A.3.
We first define two quantities that will be used extensively.

κ = sup
x∈X

√

K(x,x); D = max
x,u∈X

|x−u|.

Note that the reproducing property (2) of the RKHS HK implies ‖ f‖∞ ≤ κ‖ f‖K for f ∈ HK . This
will be used constantly in the following.

For a convex loss function φ and r > 0, define

Lr = max
{

|φ′(κ(1+D)r)|, |φ′(−κ(1+D)r)|
}

,

Mr = max{φ(κ(1+D)r),φ(−κ(1+D)r)} .

By convexity of φ both Lr and Mr increase with r.

Theorem 10 Let the convex loss function φ be twice differentiable and satisfy

q1(T ) = inf
|t|≤T

φ′′(t) > 0, q2(T ) = sup
|t|≤T

φ′′(t) < ∞.

Assume ρ satisfies (7) and (8), K ∈C2, ( fφ,∇ fφ) ∈ H n+1
K . Then there exists a constant C̃ such that

for 0 < δ < 1/2, 0 < s,λ≤ 1 with probability at least 1−2δ

max

{

‖gz− fφ‖2
L2

ρX
,‖~fz−∇ fφ‖2

L2
ρX

}

≤ C̃

{

r2sθ +Br

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

s−θ

}

,

where

r = c̃

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}1/2

(9)

with some c̃≥ 1, Lλ,s = L√
2φ(0)/λsn+2 , and Mλ,s = M√

2φ(0)/λsn+2 and Br = min
{

1
q1(c0r) ,r

}

with some

c0 > 0.

Remark 11 Theorem 10 applies only to the loss functions satisfying φ′′(t) > 0 because of the re-
quirements on q1, which excludes the SVM hinge loss. As for the quantity Br, we note that it does
not increase very quickly with r. One can take Br = r for logistic loss and exponential loss where
q1(T ) decays exponentially fast with T. While for the square loss, Br = 1 for q1(T )≡ 1.

2491



MUKHERJEE AND WU

Since the entire proof is rather complicated it has been postponed to the appendix. We now
prove Theorem 9 using Theorem 10.
Proof of Theorem 9. Note that for logistic loss, φ′(t) = −e−t

1+e−t ∈ (−1,1). So Lr ≤ 1 and Lλ,s ≤ 1.
Since φ(t) ≤ φ(0)+ |t| < 1 + |t|, we have Mr ≤ (1 + κ(1 + D))r when r ≥ 1 and so Mλ,s ≤ 2(1 +

κ(1 + D))(λsn+2)−1. Also, φ′′(t) = 2e−t

(1+e−t)2 implies 1
q1(r)
≥ c0r, q2(c0r) ≤ 1/2. Substitute Lλ,s and

Mλ,s into (9). The choice of λ,s ensures that r≤ r0 with r0 > 1 an absolute constant. Since Br,Lr,Mr

are increasing with respect to r, so is the upper bound in Theorem 10. Substituting r0 into this upper
bound and by the choice of λ,s, we obtain with confidence at least 1−2δ

max

{

‖gz− fφ‖2
L2

ρX
,‖~fz−∇ fφ‖2

L2
ρX

}

≤C log
2
δ

(

1
m

) θ
3(n+2+2θ)

,

where
C = C̃

(

(r0)
2 +Br0(Lr0r0 +Mr0 +2)

)

.

Setting δ = η
2 finishes the proof. �

Remark 12 In order to calculate the learning rate, we have imposed a rigid assumption on fφ:
both fφ and each element of ∇ fφ are in HK . But the convergence may hold under milder conditions,
say, they lie in the closure of HK in L2

ρX
. This is in general true if HK is dense in L2

ρX
, for example

the case of a Gaussian kernel.

4. Simulated Data and Gene Expression Data

In this section we apply the gradient learning algorithm (3) to the problem of estimating a classifica-
tion function and simultaneously selecting relevant variables and measuring their covariance. The

idea is to rank the importance of variables according to the norm of their partial derivatives ‖ ∂ fφ
∂x` ‖,

since a small norm implies small changes of the classification function with respect to this variable.
By our error analysis, we expect ~fz ≈ ∇ fφ. So we shall use the norms of the components of ~fz to
rank the variables.

Definition 13 The relative magnitude of the norm for the variables is defined as

sφ
` =

‖
(

~fz
)

`
‖K

(

∑n
j=1 ‖

(

~fz
)

j‖2
K

)1/2
, ` = 1, . . . ,n.

In the same way, we can study coordinate covariances by an empirical matrix.

Definition 14 The empirical gradient matrix (EGM), Fz, is the n×m matrix whose columns are
~fz(x j) with j = 1, . . . ,m. The empirical covariance matrix (ECM), Ξz, is the n×n matrix of inner
products of the directional derivative of two coordinates

Cov(~fz) :=
[

〈
(

~fz
)

p,
(

~fz
)

q〉K
]n

p,q=1
= czKcT

z =
m

∑
i, j=1

ci,zcT
j,zK(xi,x j).
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The ECM gives us the covariance between the coordinates while the EGM gives us information
as how the variables differ over different sections of the space.

We apply our idea to three data sets. The first two data sets are artificial ones which we use to
illustrate the procedure. The third is a cancer classification problem that has been well studied and
serves as further confirmation of the utility of the method. For all three the parameter s of the Gaus-
sian was set as the median of all pairwise distances between points in the data. More experiments
including data sets for more challenging classification problems can be found in Mukherjee et al.
(2006) where we also developed a novel feature selection procedure via learning gradients.

4.1 Linearly Separable Simulation

Linearly separable data is drawn from two classes in an n = 80 dimensional space. Samples from
class −1 were drawn from

x j ∼ No(1.5,1), for j = 1, . . . ,10,

x j ∼ No(−3,1), for j = 11, . . . ,20,

x j ∼ No(0,σnoise), for j = 21, . . . ,80,

where No(µ,σ) is the normal distribution with mean µ and standard deviation σ. Samples from class
+1 were drawn from

x j ∼ No(1.5,1), for j = 41, . . . ,50,

x j ∼ No(−3,1), for j = 51, . . . ,60,

x j ∼ No(0,σnoise)), for j = 1, . . . ,40,61, . . . ,80.

We ran our algorithm on draws of the above data using a linear kernel and report both the results
of the gradient estimate as well as the classification function passed through a logistic function.

Drawing twenty samples from the two respective classes results in a design matrix x that is
80×40 where the first twenty samples belong to class −1 and the remaining to class +1. Figure 1
contains results for data where we set σnoise = .1. A draw of this matrix is displayed in Figure 1a.
In Figure 1d we display the conditional likelihoods obtained by the classification function on the
training data. A leave-one-out analysis yields similar results. For Figure 2 the data was generated
with σnoise = 1. Note that in the this case standard methods such as PCA would not find the correct
features since the variance in all dimensions is equal. The plots corresponding to Figures 2a-d are
analogous to those in Figure 1.

In Figures 1b and 2b we plot the norm of each component of the estimate of the gradient,
{‖(~fz)`‖K}80

`=1. The norm of each component gives an indication of the importance of a variable
and variables with small norms can be eliminated. Note that the coordinates with large norms are
the ones we expect, ` = 1, . . . ,20,41, . . . ,60. Figures 1c and 2c display the empirical covariance
matrix. The blocking structure of this matrix indicates the covariance of coordinates.

4.2 Nonlinearly Separable Simulation

Data is drawn from two classes in an n = 200 dimensional space that are nonlinearly separable in
the first two dimensions. Samples from class +1 were drawn from

(x1,x2) = (r sin(θ),r cos(θ)), where r ∼U [0,1] and θ∼U [0,2π],

x j ∼ No(0.0, .2), for j = 3, . . . ,200,
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Figure 1: a) The data matrix x where each sample corresponds to a column and the first twenty
samples correspond to class −1 and the second twenty to class +1, b) the RKHS norm
for each dimension, c) the empirical covariance matrix, d) the predicted class probabilities
on the training data.
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Figure 2: a) The data matrix x where each sample corresponds to a column and the first twenty
samples correspond to class −1 and the second twenty to class +1, b) the RKHS norm
for each dimension, c) the empirical covariance matrix, d) the predicted class probabilities
on the training data.

where U [a,b] is the uniform distribution with support on the interval [a,b]. Samples from class −1
were drawn from

(x1,x2) = (r sin(θ),r cos(θ)), where r ∼U [2,3] and θ∼U [0,2π],

x j ∼ No(0.0, .2), for j = 3, . . . ,200.

Note that the data can be separated by a circle in the first two dimensions.
Drawing thirty samples from the two respective classes results in a design matrix x that is

200× 60 where the first thirty samples belong to class −1 and the remaining to class +1. A draw
of the first two dimensions of the data is displayed in Figure 3a. Since a linear function cannot
accurately classify the data we used a Gaussian kernel

K(u,v) = e−|u−v|2/2σ2
,

where σ was set to the median pairwise distances between points. In the following we report both
the results of the gradient estimate as well as the classification function passed through a logistic
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function. In Figure 3c,d we plot the norm of each component of the estimate of the gradient. The
norm of first two coordinates are much larger than the norm of any of the other coordinates,

mini=1,2 ‖
(

~fz
)

i‖K

maxi=3,...,200 ‖
(

~fz
)

i‖K
> 90.

In Figure 3b we plot the ECM. The blocking structure of the ECM indicates the covariance of the
first two coordinates. In Figure 3e we display the conditional likelihoods obtained by the classifica-
tion function on the training data without any feature selection. The classification accuracy improves
when we rerun our algorithm using only the dimensions with nonzero norms (3f). The classification
results are comparable to what would be obtained by using regularized logistic regression.

4.3 Gene Expression Data

In computational biology, specifically in the subfield of gene expression analysis variable selection
and estimation of covariation is of fundamental importance. Microarray technologies enable exper-
imenters to measure the expression level of thousands of genes, the entire genome, at once. The
expression level of a gene is proportional to the number of copies of mRNA transcribed by that
gene. This readout of gene expression is considered a proxy of the state of the cell. The goals
of gene expression analysis include using the expression level of the genes to predict classes, for
example tissue morphology or treatment outcome, or real-valued quantities such as drug toxicity
or sensitivity. Fundamental to understanding the biology giving rise to the outcome or toxicity is
determining which genes are most relevant for the prediction.

4.4 Leukemia Classification

We apply our procedure to a well studied expression data set. The data set is a result of a study
using expression data to discriminate acute myeloid leukemia (AML) from acute lymphoblastic
leukemia (ALL) (Golub et al., 1999; Slonim et al., 2000) and estimating the genes most relevant to
this discrimination. The data set contains 48 samples of AML and 25 samples of ALL. Expression
levels of n = 7,129 genes and expressed sequence tags (ESTs) were measured via an oligonucleotide
microarray for each sample. This data set was split into a training set of 38 samples and a test set of
35 samples.

Various variable selection algorithms have been applied to this data set by using the training set
specified in Golub et al. (1999) to select variables and build a classification model and then compute
the classification error on the test set. In the same spirit as recursive feature elimination (RFE) we
iteratively run our procedure on the training data and remove all variables except for the S with
the largest norm, sφ

` . In Table 1 we report test errors for various values of S that result from the
following procedure:

1. given training data z7129 and test data tz7129 compute the number of errors on the test data
ter7129(tz7129) = |sign[gz7129(tz7129)] 6= ty| and the vector of norms {sφ

`}7129
`=1

2. for S = 3000,1000,500,400,300,200,100,50 repeat steps 3,4

3. project the test and training data into the dimensions corresponding to the top S values of
{sφ

`} : zS and tzS
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Figure 3: a) The first two dimensions of the data matrix class +1 are the circles and class −1 are
the stars, b) the empirical covariance matrix for the first 10 dimensions, c) the RKHS
norm for the first 100 dimensions , d) the RKHS norm for the first 10 dimensions, e) the
predicted class probabilities on the training data with no feature selection again circles
are class +1 and stars are class −1, f) the predicted class probabilities on the training
data with feature selection.
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4. given the training data zS and test data tzS compute the number of errors on the test data
terS (tzS ) = |sign[gzS (tzS )] 6= ty| and the vector of norms {sφ

`}.

The classification accuracy is very similar to other feature selection algorithms such as recursive
feature elimination (RFE) (Guyon et al., 2002; Lee et al., 2004) and radius-margin bound (RMB)
(Chapelle et al., 2002) both of which were developed specifically for SVMs. In this context we
are doing as well as state of the art methods. However, it is important to note that many methods
will do very well on this data set and the previously mentioned methods cannot address the issue of
covariation.

genes (S) 50 100 200 300 400 500 1,000 3,000 7,129
test errors 2 1 1 1 1 1 1 1 2

Table 1: Number of errors in classification for various values of S using the genes corresponding
to dimensions with the largest norms. The predictions were made using the sign of the
classification function output by our method evaluated at each test sample.

In Figure 4a-d we plot the relative magnitude sequence sφ
` for the genes. On this data set the

decay in the ranked scores sφ
(`) is steeper than that for most statistics that have been previously used

on this data. To illustrate this we compared the gradient score to the Fisher score (Slonim et al.,
2000) for each gene

t` =
|µ̂AML

` − µ̂ALL
` |

σ̂AML
` + σ̂ALL

`

,

where µ̂AML
` is the mean expression level for the AML samples in the `-th gene, µ̂ALL

` is the mean
expression level for the ALL samples in the `-th gene, σ̂AML

` is the standard deviation of the expres-
sion level for the AML samples in the `-th gene, and σ̂ALL

` is the standard deviation of the expression
level for the ALL samples in the `-th gene. We then normalize these scores

sF
` =

t`
(

∑n
p=1 t2

p

)1/2
.

Figure 4a-d displays the relative decay of sφ
(`) and sF

(`) over various numbers of dimensions. In all

plots it is apparent that the decay rate of sφ
(`) is much steeper. Plotting the decay of the elements for

the normalized hyperplane w0

‖w0‖ that is the solution of a linear SVM or the solution of regularized
linear logistic regression results in a plot much more like that of the Fisher score than the gradient
statistic. Whether and how this steepness (sparsity) has an implication on the generalization error is
an open question.

We can also examine the EGM and the ECM. The EGM in this case is a 7,129×38 matrix and
the ECM is 7,129×7,129 matrix. In Figure 5 we plot the ECM for the 50 dimensions that resulted
from the iterative procedure outlined above. This matrix indicates how the dimensions covary and
can be used to construct clusters of genes.
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Figure 4: The decay of sφ
(`) (dashed line) and sF

(`) (solid line) over: a) all the genes/dimensions,
b) the top 3000 genes/dimensions, c) the top 1000 genes/dimensions, d) the top 500
genes/dimensions.

5. Discussion

We introduce an algorithm that learns a classification function and its gradient from sample data in
the logistic regression framework. The relevance of this method for variable selection is motivated.
An error analysis is given for the convergence of the estimated classification function and gradient
to the true ones respectively. This method also places the problem of variable selection into the
powerful framework of Tikhonov regularization. There are many extensions and refinements and
open questions regarding this method which we discuss below:

1. Accuracy of classification function: It seems intuitive that the classification function obtained
by our method should be strictly worse than that obtained by standard regularized logistic
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Figure 5: The ECM for the top 50 dimensions.

regression. This is simply a corollary of very useful dictum proposed by Vladimir Vapnik
(Vapnik, 1998), “When solving a a given problem, try to avoid solving a more general problem
as an intermediate step.” Although we strongly expect our classification function to be less
accurate than that provided by regularized logistic regression we need to do more empirical
work to confirm this.

2. Logistic regression models: An alternative optimization problem was proposed in Mukherjee
and Zhou (2006) for estimating the gradient ~fz in the binary regression problem

~fz,λ = arg min
~f∈H n

K

{

1
m2

m

∑
i, j=1

w(s)
i, j φ
(

yi
(

y j +~f (xi) · (xi− x j)
)

)

+λ‖~f‖2
K

}

.

This optimization problem does not follow from the Taylor expansion since in general y j need
not be close to fφ(x j), only the signs of the two functions need agree. This formulation does
have an interesting interpretation for variable selection in that variables that are relevant in the
classification problem will have large gradient norms and those not relevant will have norms
near zero. In practice, for large values of λ the gradient estimates of the above formulation
will be similar to those given by the optimization in (3).

3. Fully Bayesian model: The Tikhonov regularization framework coupled with the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in the context of
Bayesian radial basis (RB) models (Liang et al., 2006). The Bayesian RB framework can
be extended to develop a proper probability model for the gradient learning problem. The
optimization procedure (3) would be replaced by Markov Chain Monte-carlo methods and
the full posterior rather than the maximum a posteriori estimate would be computed. A very
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useful result of this is that in addition to the point estimates for the gradient we would also be
able to compute credible (confidence) intervals.

4. Intrinsic dimension: In Theorem 9 the rate of convergence of the gradient has the form of
O(m−1/n) which can be extremely slow if n is large. However, in most data sets and when
variable selection is meaningful the data are concentrated on a much lower dimensional man-
ifold embedded in the high dimensional space. In this setting an analysis that replaces the
ambient dimension n with the intrinsic dimension of the manifold nM would be of great in-
terest.

5. Semi-supervised setting: Intrinsic properties of the manifold X can be further studied by unla-
beled data. This is one of the motivations of semi-supervised learning. In many applications,
it is much easier to obtain unlabeled data with a larger sample size u� m. For our purpose,
unlabeled data x = (xi)

m+u
i=m+1 can be used to reduce the dimension or correlation. Since we

learn the gradient by ~f , it is natural to use the unlabeled data to control the approximate
norm of ~f in some Sobolev spaces and introduce a semi-supervised learning algorithm as
minimizing over (g, ~f ) ∈H n+1

K

{

Ez(g, ~f )+
µ

(m+u)2

m+u

∑
i, j=1

Wi, j|~f (xi)−~f (x j)|2`2(Rn) +λ‖~f‖2
K

}

,

where {Wi, j} are edge weights in the data adjacency graph, µ is another regularization param-
eter and often satisfies λ = o(µ).

6. Conclusion

The practical motivation for this work came from a problem in computational biology: pathway ex-
traction. The basic problem is given model systems with known genetic or molecular perturbations
infer gene expression “signatures of pathways” (sets of genes that characterize the perturbation in
the model system). The term pathway has both a biological and statistical connotation. A statis-
tical definition of a pathway is a set of genes that given a perturbation coordinately differentially
co-express with respect to the perturbation. This statistical definition allows us to formulate the
biological problem in the mathematical and computational framework of variable (gene) selection.
A variety of methods have been proposed for variable selection (Tibshirani, 1996; Chen et al., 1999;
Golub et al., 1999; Tusher et al., 2001; Chapelle et al., 2002; Guyon et al., 2002). However, all of
these methods have the shortcoming that they cannot determine which variables covary in addition
to being salient. This is the primary motivation for the method we propose.

Our proposal is that by studying the gradient of the classification function we can determine
which variables are salient with respect to the classification problem and how these variables covary.
The conceptual key is that an estimate of the gradient allows us to measure coordinate covariation

since the inner product between partial derivatives
〈

∂ fφ
∂x j ,

∂ fφ
∂x`

〉

indicates the covariance of the j-th

and `-th coordinates with respect to variation in the classification function fφ. This information
is of central importance when an understanding is required of the effect of perturbing a salient
explanatory variables (input features) on the other explanatory variables in addition to the response
variable (the output). The method proposed in this paper gives an estimate of this covariation
quantity. We implemented the method and tested it on a variety of simulated and real data sets,
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further testing is provided in Mukherjee et al. (2006). These simulations suggest that the method
does work for variable selection and some degree of covariation can be estimated. The efficacy
of the method was clearly demonstrated on the simulated data and applying the method to gene
expression data as well as images of digits (Mukherjee et al., 2006) gave an indication of its utility
in understanding models of real data.

The method as currently implemented is designed for the setting of few samples and many
dimensions. In this context it is more computationally intensive than methods that consider dimen-
sions separately (Golub et al., 1999; Tusher et al., 2001) and of a similar complexity as methods
based upon penalized loss (Tibshirani, 1996; Chen et al., 1999; Chapelle et al., 2002; Guyon et al.,
2002). The method as is will scale very poorly as the number of examples increases. This can be
addressed by using a basis set different than the difference between data points, for example the
bases proposed in Lin and Zhang (2006).

To realize the objective of providing methodology and software to be used by biologists and
clinicians for pathway extraction a system that works “right out of the box” is required. This means
that the setting of the parameters of our algorithm (see Section 2.1) as well as decisions as to
which variables are salient and which covary need to be automated. In addition finding blocks
in the covariance matrix is a problem that needs to be addressed. We provide matlab code for the
method—http://www.stat.duke.edu/˜sayan/covar1.html.
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Appendix A. Proof of Theorem 10

The idea behind the proof is to first bound the L2
ρX

differences by the excess error in Section A.1 and
then bound the excess error in Section A.2. The proof is finished in Section A.3.

A.1 Bounding L2
ρX

Differences by the Excess Error

Recall the empirical error (Definition 1) for (g, ~f ) : X → R
n+1

Ez(g, ~f ) =
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi(g(x j)+ ~f (xi) · (xi− x j))
)

.

One can similarly define the expected error

E(g, ~f ) =
Z

Z

Z

X
w(x−u)φ(y(g(u)+ ~f (x) · (x−u)))dρX (u)dρ(x,y).

Unlike the standard setting of classification and regression E(g, ~f ) and Ez(g, ~f ) are not respectively
the expected and empirical mean of a random variable. This is due to the extra dρX in the expected
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error term. However, since

Ez[Ez(g, ~f )] =
1

msn+2 R (g)+
m−1

m
E(g, ~f ),

the empirical and expected errors should be close to each other if the empirical error concentrates
with m increasing.

Define

Rs =
Z

X

Z

Z
w(x−u)φ(y fφ(x))dρ(x,y)dρX (u).

We will use the excess error, E(g, ~f )−Rs, to bound the L2
ρX

differences.
For r > 0, denote

Fr =
{

(g, ~f ) ∈H n+1
K : ‖g‖2

K +‖~f‖2
K ≤ r2

}

.

Theorem 15 Assume ρX satisfies the conditions (7) and (8) and ( fφ,∇ fφ) ∈ H n+1
K . For (g, ~f ) ∈ Fr

with some r > 1, there exist constants C0,C1 > 0 such that

‖g− fφ‖2
L2

ρX
≤C0

(

sθr2 + s2−θBr(E(g, ~f )−Rs)
)

and
‖ f −∇ fφ‖2

L2
ρX
≤C1

(

sθr2 + s−θBr(E(g, ~f )−Rs)
)

,

where Br = min
{

1
q1(c0r) ,r

}

with some c0 > 0.

To prove Theorem 15 we will need the following several lemmas which require the definition
of the following quantities.

Definition 16 Define for (g, ~f ) : X → R
n+1 the square error functional

Q (g, ~f ) =
Z

X

Z

X
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

dρX (u)dρX (x),

the border set
Xs =

{

x ∈ X : d(x,∂X) > s and p(x)≥ (1+ cρ)s
θ
}

,

and the moments for 0≤ p < ∞,

Np =
Z

{t∈Rn:|t|≤1}
e−

|t|2
2 |t|pdt, and Ñp =

Z

Rn
e−

|t|2
2 |t|pdt.

Note that Xs is nonempty when s is small enough.

Lemma 17 Under assumptions of Theorem 15

N0

s2−θ

Z

Xs

(g(x)− fφ(x))
2dρX (x)+

N2sθ

n

Z

Xs

|~f (x)−∇ fφ(x)|2dρX (x)≤ Q (g, ~f ).
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Proof For x ∈ Xs, {u ∈ X : |u− x| ≤ s} ⊂ X since d(x,∂X) > s. For u ∈ X such that |u− x| ≤ s

p(u) = p(x)− (p(x)− p(u))≥ (1+ cρ)s
θ− cρ|u− x|θ ≥ sθ.

Therefore,

Q (g, ~f ) ≥
Z

Xs

Z

|u−x|≤s
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

p(u)dudρX (x)

≥ sθ
Z

Xs

Z

|u−x|≤s
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

dudρX (x)

= sθ
Z

Xs

Z

|u−x|≤s
w(x−u)(g(x)− fφ(x))

2dudρX (x)

+2sθ
Z

Xs

Z

|u−x|≤s
w(x−u)(g(x)− fφ(x))((~f (x)−∇ fφ(x)) · (x−u))dudρX (x)

+sθ
Z

Xs

Z

|u−x|≤s
w(x−u)((~f (x)−∇ fφ(x)) · (x−u))2dudρX (x)

: = J1 + J2 + J3.

It can be verified that

J1 =
1

s2−θ

Z

Xs

(g(x)− fφ(x))
2

Z

|t|≤1
e−

|t|2
2 dtdρX (x) =

N0

s2−θ

Z

Xs

|g(x)− fφ(x)|2dρX (x) .

In the following, denote by the superscripts of x,u, t ∈R
n the corresponding coordinate indices.

For every i ∈ {1, . . . ,n}
Z

|u−x|≤s
w(x−u)(xi−ui)du =

1
s

Z

|t|≤1
e−

|t|2
2 t idt = 0.

It follows that J2 = 0.
Note that ((~f (x)−∇ fφ(x)) · (x−u))2 equals

n

∑
i=1

n

∑
j=1

(

f i(x)− ∂ fφ

∂xi (x)

)(

f j(x)− ∂ fφ

∂x j (x)

)

(xi−ui)(x j−u j).

But when j 6= i,
Z

|u−x|≤s
w(x−u)(xi−ui)(x j−u j)du =

Z

|t|≤1
e−

|t|2
2 t it jdt = 0.

Therefore

J3 = sθ
n

∑
i=1

Z

Xs

( f i(x)− ∂ fφ

∂xi (x))
2

Z

|t|≤1
e−

|t|2
2 (t i)2dtdρX (x) =

N2sθ

n

Z

Xs

|~f (x)−∇ fφ(x)|2dρX (x).

Plugging J1 and J3 into the inequality completes the proof.

In Lemma 20 below we will bound Q (g, ~f ) by the excess error E(g, ~f )−Rs. For this purpose,
we prove two facts which we state in Lemmas 18 and 19 and define the local error function of t ∈R

at x ∈ X as
errx(t) = Ey∼Y [φ(yt)] = φ(t)P(1|x)+φ(−t)P(−1|x),

which is a twice differentiable, univariate convex function for every x ∈ X .
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Lemma 18 For almost every x ∈ X , the following hold

(i) fφ(x) is a minimizer of the function errx(t), i.e., fφ(x) = argmin
t∈R

errx(t).

(ii) If T > max
{

|t|,‖ fφ‖∞
}

, then

1
2 q1(T )(t− fφ(x))

2 ≤ errx(t)− errx( fφ(x))≤ 1
2 q2(T )(t− fφ(x))

2.

(iii) If T ≥
{

|t|,3‖ fφ‖∞
}

there exists a constant c1 > 0 such that

errx(t)− errx( fφ(x))≥ c1 max

{

q1(T ),
1
T

}

(t− fφ(x))
2.

Proof The first conclusion is a direct consequence of the fact

R ( f ) =
Z

X
errx( f (x))dρX (x).

Note that (errx)
′( fφ(x)) = 0 since fφ(x) is a minimizer of errx(t). By a Taylor series expansion,

there exists t0 between t and fφ(x) such that

errx(t)− errx( fφ(x)) =
1
2
(errx)

′′(t0)(t− fφ(x))
2.

Since (errx)
′′(t0) = φ′′(t0)P(1|x)+φ′′(−t0)P(−1|x) and |t0| ≤ T the following holds

q1(T )≤ φ′′(t0),φ′′(−t0)≤ q2(T ).

It follows q1(T )≤ (errx)
′′(t0)≤ q2(T ) which proves (ii).

To show (iii), write

errx(t)− errx( fφ(x)) =
Z t

fφ(x)

Z r

fφ(x)
(errx)

′′(a)dadr.

Since (errx)
′′(a) is positive, if t ≥ 3‖ fφ‖∞ := 3Mφ, then

errx(t)− errx( fφ(x))≥
Z t

2Mφ

Z 2Mφ

| fφ(x)|
(errx)

′′(a)dadr ≥ q1(2Mφ)Mφ(|t|−2Mφ)

and, if t ≤−3Mφ, then

errx(t)− errx( fφ(x))≥
Z t

−2Mφ

Z −2Mφ

−| fφ(x)|
(errx)

′′(a)dadr ≥ q1(2Mφ)Mφ(|t|−2Mφ).

So, if |t|> 3Mφ,

errx(t)− errx( fφ(x))≥ q1(2Mφ)Mφ(|t|−2Mφ)≥
3q1(2Mφ)Mφ

16T
(t− fφ(x))

2,
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where we have used the facts |t|−2Mφ ≥ 1
4 |t− fφ(x)| and |t− fφ(x)| ≤ T +Mφ ≤ 4

3 T. On the other
hand, by (ii), if |t| ≤ 3Mφ

errx(t)− errx( fφ(x))≥
1
2

q1(3Mφ)(t− fφ(x))
2 ≥ 3q1(3Mφ)Mφ

2T
(t− fφ(x))

2.

Hence for all |t| ≤ T,

errx(t)− errx( fφ(x))≥
3q1(3Mφ)Mφ

16T
(t− fφ(x))

2.

Together with (ii), we obtain

errx(t)− errx( fφ(x))≥ c1 max

{

q1(T ),
1
T

}

(t− fφ(x))
2

with c1 = min
{

1
2 ,

3q1(3Mφ)Mφ
16

}

.

Lemma 19 If K ∈C2, then there exists a constant cK > 0 depending only on K such that

| f (x)− f (u)| ≤ cK‖ f‖K |x−u|, ∀ f ∈HK , x,u ∈ X .

Proof It follows from the reproducing property that

| f (x)− f (u)|= |〈 f ,K(x, ·)−K(u, ·)〉| ≤ ‖ f‖K

√

K(x,x)−2K(x,u)+K(u,u).

Denote ∇1K(x,u) as the gradient of K(x,u) with respect to the first variable x. Since K ∈ C2, we
have

K(x,x)−2K(x,u)+K(u,u)

=
Z 1

0
(∇1(K(u+ t(x−u),x)−∇1K(u+ t(x−u),y)) · (x−u)dt

≤
Z 1

0
|∇1(K(u+ t(x−u),x)−∇1K(u+ t(x−u),y)| |x−u|dt

≤ (cK)2|x−u|2

with

(cK)2 = max

{∥

∥

∥

∥

∂2K
∂xi∂u j

∥

∥

∥

∥

∞
, i, j = 1, . . . ,n

}

.

Hence the conclusion is true.

Lemma 20 Under the assumptions of Theorem 15, there exists a constant c2 > 0 such that

Q (g, ~f )≤ c2

(

r2s2 +Br(E(g, ~f )−Rs)
)

,

were Br is defined as in Theorem 15 with c0 = κmax
{

3‖ fφ‖K ,(1+D)
}

.
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Proof For (g, ~f ) ∈ Fr and u,x ∈ X , we have

|g(u)+ ~f (x)(x−u)| ≤ κ‖g‖K +κD‖~f‖K ≤ c0r.

Since c0r ≥ 3κ‖ fφ‖K ≥ 3‖ fφ‖∞, by Lemma 18 (iii),

E(g, ~f )−Rs =
Z

X

Z

X
w(x−u)

(

errx
(

g(u)+ ~f (x) · (x−u)
)

− errx
(

fφ(x)
)

)

dρX (x)dρX (u)

≥ c1

c0

1
Br

Z

X

Z

X
w(x−u)

(

g(u)+ ~f (x) · (x−u)− fφ(x)
)2

dρX (x)dρX (u),

Denote

t1 = g(u)− fφ(u)+(~f (u)−∇ fφ(u)) · (x−u),

t2 =
(

fφ(u)− fφ(x)+∇ fφ(u) · (x−u)
)

+(~f (x)− ~f (u)) · (x−u).

We have
Q (g, ~f ) =

Z

X

Z

X
w(x−u)(t1)

2dρX (x)dρX (u).

Note that
(

g(u)+ ~f (x) · (x−u)− fφ(x)
)2

= (t1 + t2)
2 ≥ (t1)

2 +2t1t2 ≥ (t1)
2−2|t1||t2|.

There holds

c0

c1
Br(E(g, ~f )−Rs)≥ Q (g, ~f )−2

Z

X

Z

X
w(x−u)|t1||t2|dρX (x)dρX (u).

By the fact ∇ fφ ∈H n
K and Lemma 19, we have

|t2| ≤ cK(‖∇ fφ‖K +‖~f‖K)|x−u|2 ≤ cK(‖∇ fφ‖K + r)|x−u|2.

Together with the assumption p(x)≤ cρ we obtain

Z

X

Z

X
w(x−u)|t1||t2|dρX (x)dρX (u)≤

√

Q (g, ~f )

(

Z

X

Z

X
w(x−u)|t2|2dρX (x)dρX (u)

)1/2

≤ cK
(

‖∇ fφ‖K + r
)

√

Q (g, ~f )

(

cρ

Z

X

Z

Rn
w(x−u)|x−u|4dxdρX (u)

)1/2

≤ cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s
√

Q (g, ~f ).

Combining the above arguments we obtain

Q (g, ~f )−2cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s
√

Q (g, ~f )≤ 1
c1

min

{

1
q1(c0r)

,c0r

}

(E(g, ~f )−Rs).

Solving this inequality gives

√

Q (g, ~f )≤ 2cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s+

√

1
c1

min

{

1
q1(c0r)

,c0r

}

(E(g, ~f )−Rs).
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This implies the conclusion with c2 = 2max
{

2(cK)2
(

‖∇ fφ‖K +1
)2

cρÑ4,
c0
c1

}

.

Proof of Theorem 15. Write

‖g− fφ‖2
L2

ρX
=

Z

X\Xs

(g(x)− fφ(x))
2dρX (x)+

Z

Xs

(g(x)− fφ(x))
2dρX (x). (10)

We have

ρX (X\Xs)≤ cρs+(1+ cρ)cρ|X |sθ ≤ (cρ +(1+ cρ)cρ|X |)sθ,

where |X | is the Lebesgue measure of X . So the first term on the right of (10) is bounded by

κ2(r +‖ fφ‖K)2(cρ +(1+ cρ)cρ|X |)sθ.

By Lemmas 17 and 20, the second term on the right of (10) is bounded by

s2−θ

N0
c2

(

r2s2 +Br
(

E( f , ~f )−Rs
)

)

Combing these two estimates finishes the proof of the first claim with

C0 = κ2(1+‖ fφ‖K)2(cρ +(1+ cρ)cρ|X |)+
c2

N0
.

Similarly, we can show the second claim with

C1 = κ2(1+‖∇ fφ‖K)2(cρ +(1+ cρ)cρ|X |)+
nc2

N2
. �

In order to apply Theorem 15 to (gz, ~fz), we need a bound on ‖gz‖2
K + ‖~fz‖2

K . We first state a
rough bound.

Lemma 21 For every s > 0 and λ > 0, ‖gz‖2
K +‖~fz‖2

K ≤
2φ(0)
λsn+2 .

Proof The conclusion follows from the fact

λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤ Ez(gz, ~fz)+
λ
2

(

‖gz‖2
K +‖~f‖2

K

)

≤ Ez(0,~0)+0 =
φ(0)

sn+2 .

Remark 22 Using this quantity the bound in Theorem 15 is at least of order O( 1
λsn+2−θ ) which tends

to ∞ as s→ 0 and λ→ 0. So a sharper bound is needed. We will obtain such a bound in Section
A.3.
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A.2 Bounding the Excess Error

In this section, we bound the quantity E(gz, ~fz)−Rs. Let

(gλ, ~fλ) = argmin
(g,~f )∈H n+1

K

{

E(g, ~f )+
λ
2
(‖g‖2

K +‖~f‖2
K)
}

.

Theorem 23 If ( fφ,∇ fφ) ∈ H n+1
K , (gz, ~fz) and (gλ, ~fλ) are in Fr for some r ≥ 1, then with confi-

dence 1−δ

E(gz, ~fz)−Rs ≤C2

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

,

where C2 > 0 is a constant depending on φ and ρ but not on r,s and λ.

By a standard decomposition procedure, we have the following result.

Proposition 24 The following hold

E(gz, ~fz)−Rs +
λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤S (z)+A (λ)

where
S (z) =

(

E(gz, ~fz)−Ez(gz, ~fz)
)

+
(

Ez(gλ, ~fλ)−E(gλ, ~fλ)
)

and

A (λ) = inf
(g,~f )∈H n+1

K

{

E(g, ~f )−Rs +
λ
2

(

‖g‖2
K +‖~f‖2

K

)

}

.

The quantity S (z) is called the sample error and can be bound by controlling

S(z,r) := sup
(g,~f )∈Fr

|Ez(g, ~f )−E(g, ~f )|.

In fact, if both (gz, ~fz) and (gλ, ~fλ) are in Fr for some r > 0, then

S (z)≤ 2S(z,r). (11)

Again Ez(g, ~f ) and E(g, ~f ) are not the empirical and expected means of a random variable. We will
use McDiarmid’s inequality (McDiarmid, 1989) to bound S(z,r).

Lemma 25 For every r > 0

Prob{|S(z,r)−ES(z,r)|> ε} ≤ 2exp

(

−mε2s2(n+2)

2M2
r

)

.

Proof Denote by z′i the sample which coincides with z except for the i-th pair (xi,yi) replaced by
(x′i,y

′
i). It is easy to verify that

S(z,r)−S(z′i,r) = sup
(g,~f )∈Fr

(

Ez(g, ~f )−E(g, ~f )
)

− sup
(g,~f )∈Fr

(

Ez′i
(g, ~f )−E(g, ~f )

)

≤ sup
(g,~f )∈Fr

(

Ez(g, ~f )−Ez′i
(g, ~f )

)

≤ 2m−1
m2

Mr

sn+2 .
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Interchanging the roles of z and z′i gives |S(z,r)−S(z′i,r)| ≤ 2Mr
msn+2 . By McDiarmid’s inequality we

obtain the desired estimate.

Lemma 26 For every r > 0

ES(z,r)≤ 8Lr(κ(1+2D)r +φ(0))

sn+2
√

m
+

2Mr

msn+2 .

In order to prove this lemma, we need Rademacher complexities. We refer to Koltchinskii and
Panchenko (2000) and van der Vaart and Wellner (1996) for definitions and properties.
Proof Denote ξ(x,y,u) = w(x− u)φ(y(g(u) + ~f (x) · (x− u))) for simplicity. Then E(g, ~f ) =
Eu E(x,y) ξ(x,y,u) and Ez(g, ~f ) = ∑m

i, j=1 ξ(xi,yi,x j). One can easily check that

S(z,r) ≤ sup
(g,~f )∈Fr

∣

∣

∣

∣

∣

E(g, ~f )− 1
m

m

∑
j=1

E(x,y) ξ(x,y,x j)

∣

∣

∣

∣

∣

+ sup
(g,~f )∈Fr

∣

∣

∣

∣

∣

1
m

m

∑
j=1

E(x,y) ξ(x,y,x j)−Ez(g, ~f )

∣

∣

∣

∣

∣

≤ E(x,y) sup
(g,~f )∈Fr

∣

∣

∣

∣

Eu ξ(x,y,u)− 1
m

m

∑
i=1

ξ(x,y,x j)

∣

∣

∣

∣

+
1
m

m

∑
j=1

sup
(g,~f )∈Fr

sup
u∈X

∣

∣

∣

∣

E(x,y) ξ(x,y,u)− 1
m−1

m

∑
i=1
i6= j

ξ(xi,yi,u)

∣

∣

∣

∣

+
1
m

m

∑
j=1

(

1
m

ξ(x j,y j,x j)+
1

m(m−1)

m

∑
i=1
i6= j

ξ(xi,yi,x j)

)

:= S1 +S2 +S3.

Let εi, i = 1, . . . ,m be independent Rademacher variables. Denote

G(x,y) =
{

h(u) = y(g(u)+ ~f (x) · (x−u)) : (g, ~f ) ∈ Fr

}

for every (x,y) ∈ Z. For S1, by using the properties of Rademacher complexities, we have

ES1(z) = E(x,y) E sup
h∈Gx,y

∣

∣

∣

∣

∣

Eu[w(x−u)φ(h(u))]− 1
m

m

∑
j=1

w(x− x j)φ(h(x j))

∣

∣

∣

∣

∣

≤ 2 sup
(x,y)∈Z

E sup
h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jw(x− x j)φ(h(x j))

∣

∣

∣

∣

∣

≤ 4
sn+2 sup

(x,y)∈Z
E sup

h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jφ(h(x j))

∣

∣

∣

∣

∣

≤ 4Lr

sn+2

(

sup
(x,y)∈Z

E sup
h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jh(x j)

∣

∣

∣

∣

∣

+
φ(0)√

m

)

≤ 4Lr

sn+2

(

E sup
‖g‖2

K≤r2

∣

∣

∣

∣

∣

m

∑
j=1

ε jg(x j)

∣

∣

∣

∣

∣

+2κr sup
x∈X

E

∣

∣

∣

∣

∣

m

∑
j=1

ε j‖x− x j‖
∣

∣

∣

∣

∣

+
φ(0)√

m

)

≤ 4Lr
(

κ(1+2D)r +φ(0))

sn+2
√

m
.
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Similarly, we can verify

ES2(z)≤
4Lr(κ(1+2D)r +φ(0))

sn+2
√

m−1
.

Obviously S3 ≤ 2Mr
msn+2 . Combining the estimates for S1, S2, and S3 completes the proof.

Proposition 27 Assume r > 1. There exists a constant c2 > 0 such that with confidence at least
1−δ

S (z)≤ c3
Lrr +Mr log 2

δ√
msn+2 .

Proof The result is a direct application of inequality (11) and Lemmas 25 and 26.

We now bound the approximation error A (λ).

Proposition 28 If ( fφ,∇ fφ) ∈H n+1
K , then A (λ)≤ c4(s2 +λ) for some c4 > 0.

Proof By the definition of A (λ) and the fact that ( fφ,∇ fφ) ∈H n+1
K

A (λ)≤ E( fφ,∇ fφ)−Rs +
λ
2
(‖ fφ‖2

K +‖∇ fφ‖2
K).

By Lemma 18 (ii), we have

E( fφ,∇ fφ)−Rs =
Z

X

Z

X
w(x−u)

(

errx( fφ(u)+∇ fφ(x) · (x−u))− errx( fφ(x)
)

dρX (u)dρX (x)

≤ q2(M̃φ)
Z

X

Z

X
w(x−u)

(

fφ(u)− fφ(x)+∇ fφ(x) · (x−u)
)2

dρX (u)dρX (x)

≤ q2(M̃φ)(cK)2‖∇ fφ‖2
Kcρ

Z

X

Z

X
w(x−u)|x−u|4dudρX (x)≤ q2(M̃φ)(cK)2‖∇ fφ‖2

KcρÑ4s2,

where M̃φ = κ‖ fφ‖K +κD‖∇ fφ‖K . Taking

c4 = max{q2(M̃φ)(cK)2‖∇ fφ‖2
KcρÑ4,

1
2(‖ fφ‖2

K +‖∇ fφ‖2
K)},

the result follows.

Theorem 23 follows directly from Propositions 24, 27 and 28.

A.3 Proof of Theorem 10

We will use Theorems 15 and 23 to prove Theorem 10.
Notice that both theorems need a bound r so that (gz, ~fz) and (gλ, ~fλ) are in Fr. In Lemma 21

we have shown

‖gz‖2
K +‖~fz‖2

K ≤
2φ(0)

λsn+2 .
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Similarly we can show ‖gλ‖2
K +‖~fλ‖2

K is also bounded by 2φ(0)
λsn+2 . So

√

2φ(0)
λsn+2 is a universal bound for

r such that (gz, ~fz) and (gλ, ~fλ) are in Fr. However, this bound is not sharp enough to be useful for
Theorem 15 (see Remark 22).

A sharper bound will be given below. This bound also improves the sample error estimate and
the estimate in Theorem 23.

Lemma 29 Under the assumptions of Theorem 10

‖gλ‖2
K +‖~fλ‖2

K ≤ 2c4

(

s2

λ
+1

)

.

Proof Since E(g, ~f )−Rs is non-negative for all pairs (g, ~f ), we have

λ
2 (‖gλ‖2

K +‖~fλ‖2
K)≤ E(gλ, ~fλ)−Rs + λ

2 (‖gλ‖2
K +‖~fλ‖2

K) = A (λ).

This in conjunction with Proposition 28 implies the conclusion.

Lemma 30 Under the assumptions of Theorem 10 with confidence at least 1−δ

‖gz‖2
K +‖~fz‖2

K ≤ c5

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}

for some c5 > 0.

Proof By the fact E(gz, ~fz)−Rs > 0 and Proposition 24 we have

λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤S (z)+A (λ).

Since both (gz, ~fz) and (gλ, ~fλ) are in F√
2φ(0)/λsn+2 , we apply Proposition 27 to get with probability

at least 1−δ

S (z)≤ c3

(

Lλ,s

√

2φ(0)

λsn+2 +Mλ,s log
2
δ

)

1√
msn+2 .

Together with Proposition 28, we obtain the desired estimate with c5 = 2max{c3,c4} .

We now prove Theorem 10.
Proof of Theorem 10. By Theorems 15 and 23 we have with probability at least 1− δ both ‖gz−
fφ‖L2

ρX
and ‖|~fz−∇ fφ|‖2

L2
ρX

are bounded by

max{C0,C1}
{

r2sθ +C2Br

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

s−θ

}

, (12)

if both (gz, ~fz) and (gλ, ~fλ) are in Fr for some r > 1. By Lemmas 29 and 30 we can state that both
{(gz, ~fz) ∈ Fr} and {(gλ, ~fλ) ∈ Fr} with probability at least 1−δ if

r2 = max(c4,c5,1)

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}

.

Substituting the above r into (12) gives us the desired bound with confidence at least 1−2δ. �
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Abstract
We introduce a method for approximate smoothed inference in a class of switching linear dynamical
systems, based on a novel form of Gaussian Sum smoother. This class includes the switching
Kalman ‘Filter’ and the more general case of switch transitions dependent on the continuous latent
state. The method improves on the standard Kim smoothing approach by dispensing with one of the
key approximations, thus making fuller use of the available future information. Whilst the central
assumption required is projection to a mixture of Gaussians, we show that an additional conditional
independence assumption results in a simpler but accurate alternative. Our method consists of
a single Forward and Backward Pass and is reminiscent of the standard smoothing ‘correction’
recursions in the simpler linear dynamical system. The method is numerically stable and compares
favourably against alternative approximations, both in cases where a single mixture component
provides a good posterior approximation, and where a multimodal approximation is required.
Keywords: Gaussian sum smoother, switching Kalman filter, switching linear dynamical system,
expectation propagation, expectation correction

1. Switching Linear Dynamical System

The Linear Dynamical System (LDS) (Bar-Shalom and Li, 1998; West and Harrison, 1999) is a
key temporal model in which a latent linear process generates the observed time-series. For more
complex time-series which are not well described globally by a single LDS, we may break the
time-series into segments, each modeled by a potentially different LDS. This is the basis for the
Switching LDS (SLDS) where, for each time-step t, a switch variable st ∈ 1, . . . ,S describes which
of the LDSs is to be used.1 The observation (or ‘visible’ variable) vt ∈ R V is linearly related to the
hidden state ht ∈ R H by

vt = B(st)ht +ηv(st), ηv(st)∼N (v̄(st),Σv(st)) (1)

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. The transition dy-
namics of the continuous hidden state ht is linear

ht = A(st)ht−1 +ηh(st), ηh(st)∼N
(

h̄(st),Σh(st)
)

. (2)

1. These systems also go under the names Jump Markov model/process, switching Kalman Filter, Switching Linear
Gaussian State-Space model, Conditional Linear Gaussian Model.

c©2006 David Barber.
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s1 s2 s3 s4

h1 h2 h3 h4

v1 v2 v3 v4

Figure 1: The independence structure of the aSLDS. Square nodes denote discrete variables, round
nodes continuous variables. In the SLDS links from h to s are not normally considered.

The dynamics of the switch variables is Markovian, with transition p(st |st−1). The SLDS is used in
many disciplines, from econometrics to machine learning (Bar-Shalom and Li, 1998; Ghahramani
and Hinton, 1998; Lerner et al., 2000; Kitagawa, 1994; Kim and Nelson, 1999; Pavlovic et al.,
2001). See Lerner (2002) and Zoeter (2005) for recent reviews of work.

AUGMENTED SWITCHING LINEAR DYNAMICAL SYSTEM

In this article, we will consider the more general model in which the switch st is dependent on
both the previous st−1 and ht−1. We call this an augmented Switching Linear Dynamical System2

(aSLDS), in keeping with the terminology in Lerner (2002). An equivalent probabilistic model is,
as depicted in Figure (1),

p(v1:T ,h1:T ,s1:T ) = p(v1|h1,s1)p(h1|s1)p(s1)
T

∏
t=2

p(vt |ht ,st)p(ht |ht−1,st)p(st |ht−1,st−1).

The notation x1:T is shorthand for x1, . . . ,xT . The distributions are parameterized as

p(vt |ht ,st) = N (v̄(st)+B(st)ht ,Σv(st)) , p(ht |ht−1,st) = N
(

h̄(st)+A(st)ht−1,Σh(st)
)

where p(h1|s1) = N (µ(s1),Σ(s1)). The aSLDS has been used, for example, in state-duration mod-
eling in acoustics (Cemgil et al., 2006) and econometrics (Chib and Dueker, 2004).

INFERENCE

The aim of this article is to address how to perform inference in both the SLDS and aSLDS. In par-
ticular we desire the so-called filtered estimate p(ht ,st |v1:t) and the smoothed estimate p(ht ,st |v1:T ),
for any t, 1≤ t ≤ T . Both exact filtered and smoothed inference in the SLDS is intractable, scaling
exponentially with time (Lerner, 2002). To see this informally, consider the filtered posterior, which
may be recursively computed using

p(st ,ht |v1:t) = ∑
st−1

Z

ht−1

p(st ,ht |st−1,ht−1,vt)p(st−1,ht−1|v1:t−1). (3)

At timestep 1, p(s1,h1|v1) = p(h1|s1,v1)p(s1|v1) is an indexed set of Gaussians. At time-step 2, due
to the summation over the states s1, p(s2,h2|v1:2) will be an indexed set of S Gaussians; similarly at

2. These models are closely related to Threshold Regression Models (Tong, 1990).
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time-step 3, it will be S2 and, in general, gives rise to St−1 Gaussians. More formally, in Lauritzen
and Jensen (2001), a general exact method is presented for performing stable inference in such
hybrid discrete models with conditional Gaussian potentials. The method requires finding a strong
junction tree which, in the SLDS case, means that the discrete variables are placed in a single cluster,
resulting in exponential complexity.

The key issue in the (a)SLDS, therefore, is how to perform approximate inference in a numer-
ically stable manner. Our own interest in the SLDS stems primarily from acoustic modeling, in
which the time-series consists of many thousands of time-steps (Mesot and Barber, 2006; Cemgil
et al., 2006). For this, we require a stable and computationally feasible approximate inference,
which is also able to deal with state-spaces of high hidden dimension, H.

2. Expectation Correction

Our approach to approximate p(ht ,st |v1:T ) ≈ p̃(ht ,st |v1:T ) mirrors the Rauch-Tung-Striebel (RTS)
‘correction’ smoother for the LDS (Rauch et al., 1965; Bar-Shalom and Li, 1998). Readers unfa-
miliar with this approach will find a short explanation in Appendix (A), which defines the important
functions LDSFORWARD and LDSBACKWARD, which we shall make use of for inference in the
aSLDS. Our correction approach consists of a single Forward Pass to recursively find the filtered
posterior p̃(ht ,st |v1:t), followed by a single Backward Pass to correct this into a smoothed posterior
p̃(ht ,st |v1:T ). The Forward Pass we use is equivalent to Assumed Density Filtering (Alspach and
Sorenson, 1972; Boyen and Koller, 1998; Minka, 2001). The main contribution of this paper is a
novel form of Backward Pass, based on collapsing the smoothed posterior to a mixture of Gaussians.

Unless stated otherwise, all quantities should be considered as approximations to their exact
counterparts, and we will therefore usually omit the tildes˜throughout the article.

2.1 Forward Pass (Filtering)

Readers familiar with Assumed Density Filtering (ADF) may wish to continue directly to Section
(2.2). The basic idea is to represent the (intractable) posterior using a simpler distribution. This
is then propagated forwards through time, conditioned on the new observation, and subsequently
collapsed back to the tractable distribution representation—see Figure (2). Our aim is to form a
recursion for p(st ,ht |v1:t), based on a Gaussian mixture approximation of p(ht |st ,v1:t). Without loss
of generality, we may decompose the filtered posterior as

p(ht ,st |v1:t) = p(ht |st ,v1:t)p(st |v1:t).

We will first form a recursion for p(ht |st ,v1:t), and discuss the switch recursion p(st |v1:t) later. The
full procedure for computing the filtered posterior is presented in Algorithm (1).

The exact representation of p(ht |st ,v1:t) is a mixture with O(St) components. We therefore
approximate this with a smaller It-component mixture

p(ht |st ,v1:t)≈ p̃(ht |st ,v1:t)≡
It

∑
it=1

p̃(ht |it ,st ,v1:t)p̃(it |st ,v1:t)

where p̃(ht |it ,st ,v1:t) is a Gaussian parameterized with mean3 f (it ,st) and covariance F(it ,st). The
Gaussian mixture weights are given by p̃(it |st ,v1:t). In the above, p̃ represent approximations to the

3. Strictly speaking, we should use the notation ft(it ,st) since, for each time t, we have a set of means indexed by it ,st .
This mild abuse of notation is used elsewhere in the paper.
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st st+1

it

ht ht+1

vt+1

Figure 2: Structure of the mixture representation of the Forward Pass. Essentially, the Forward
Pass defines a ‘prior’ distribution at time t which contains all the information from the
variables v1:t . This prior is propagated forwards through time using the exact dynamics,
conditioned on the observation, and then collapsed back to form a new prior approxima-
tion at time t +1.

corresponding exact p distributions. To find a recursion for these parameters, consider

p̃(ht+1|st+1,v1:t+1) = ∑
st ,it

p̃(ht+1,st , it |st+1,v1:t+1)

= ∑
st ,it

p̃(ht+1|it ,st ,st+1,v1:t+1)p̃(st , it |st+1,v1:t+1) (4)

where each of the factors can be recursively computed on the basis of the previous filtered results
(see below). However, this recursion suffers from an exponential increase in mixture components.
To deal with this, we will later collapse p̃(ht+1|st+1,v1:t+1) back to a smaller mixture. For the
remainder, we drop the p̃ notation, and concentrate on computing the r.h.s of Equation (4).

EVALUATING p(ht+1|st , it ,st+1,v1:t+1)

We find p(ht+1|st , it ,st+1,v1:t+1) from the joint distribution p(ht+1,vt+1|st , it ,st+1,v1:t), which is a
Gaussian with covariance and mean elements4

Σhh = A(st+1)F(it ,st)A
T(st+1)+Σh(st+1), Σvv = B(st+1)ΣhhBT(st+1)+Σv(st+1)

Σvh = B(st+1)F(it ,st), µv = B(st+1)A(st+1) f (it ,st), µh = A(st+1) f (it ,st). (5)

These results are obtained from integrating the forward dynamics, Equations (1,2) over ht , using
the results in Appendix (B). To find p(ht+1|st , it ,st+1,v1:t+1) we may then condition p(ht+1,vt+1|
st , it ,st+1,v1:t) on vt+1 using the results in Appendix (C)—see also Algorithm (4).

EVALUATING p(st , it |st+1,v1:t+1)

Up to a trivial normalization constant the mixture weight in Equation (4) can be found from the
decomposition

p(st , it |st+1,v1:t+1) ∝ p(vt+1|it ,st ,st+1,v1:t)p(st+1|it ,st ,v1:t)p(it |st ,v1:t)p(st |v1:t). (6)

4. We derive this for h̄t+1, v̄t+1 ≡ 0, to ease notation.
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Algorithm 1 aSLDS Forward Pass. Approximate the filtered posterior p(st |v1:t)≡ ρt , p(ht |st ,v1:t)≡
∑it wt(it ,st)N ( ft(it ,st),Ft(it ,st)). Also we return the approximate log-likelihood log p(v1:T ). We
require I1 = 1, I2 ≤ S, It ≤ S× It−1. θt(s) = A(s),B(s),Σh(s),Σv(s), h̄(s), v̄(s) for t > 1. θ1(s) =
A(s),B(s),Σ(s),Σv(s),µ(s), v̄(s)

for s1← 1 to S do
{ f1(1,s1),F1(1,s1), p̂}= LDSFORWARD(0,0,v1;θ(s1))
ρ1← p(s1)p̂

end for

for t← 2 to T do
for st ← 1 to S do

for i← 1 to It−1, and s← 1 to S do
{µx|y(i,s),Σx|y(i,s), p̂}= LDSFORWARD( ft−1(i,s),Ft−1(i,s),vt ;θt(st))
p∗(st |i,s)≡ 〈p(st |ht−1,st−1 = s)〉p(ht−1|it−1=i,st−1=s,v1:t−1)

p′(st , i,s)← wt−1(i,s)p∗(st |i,s)ρt−1(s)p̂
end for
Collapse the It−1 × S mixture of Gaussians defined by µx|y,Σx|y, and weights
p(i,s|st) ∝ p′(st , i,s) to a Gaussian with It components, p(ht |st ,v1:t) ≈
∑It

it=1 p(it |st ,v1:t)p(ht |st , it ,v1:t). This defines the new means ft(it ,st), covariances
Ft(it ,st) and mixture weights wt(it ,st)≡ p(it |st ,v1:t).
Compute ρt(st) ∝ ∑i,s p′(st , i,s)

end for
normalize ρt ≡ p(st |v1:t)
L← L+ log∑st ,i,s p′(st , i,s)

end for

The first factor in Equation (6), p(vt+1|it ,st ,st+1,v1:t), is a Gaussian with mean µv and covariance
Σvv, as given in Equation (5). The last two factors p(it |st ,v1:t) and p(st |v1:t) are given from the
previous iteration. Finally, p(st+1|it ,st ,v1:t) is found from

p(st+1|it ,st ,v1:t) = 〈p(st+1|ht ,st)〉p(ht |it ,st ,v1:t)
(7)

where 〈·〉p denotes expectation with respect to p. In the standard SLDS, Equation (7) is replaced
by the Markov transition p(st+1|st). In the aSLDS, however, Equation (7) will generally need to be
computed numerically. A simple approximation is to evaluate Equation (7) at the mean value of the
distribution p(ht |it ,st ,v1:t). To take covariance information into account an alternative would be to
draw samples from the Gaussian p(ht |it ,st ,v1:t) and thus approximate the average of p(st+1|ht ,st)
by sampling.5

CLOSING THE RECURSION

We are now in a position to calculate Equation (4). For each setting of the variable st+1, we have
a mixture of It ×S Gaussians. In order to avoid an exponential explosion in the number of mixture

5. Whilst we suggest sampling as part of the aSLDS update procedure, this does not render the Forward Pass as a form
of sequential sampling procedure, such as Particle Filtering. The sampling here is a form of exact sampling, for
which no convergence issues arise, being used only to numerically evaluate Equation (7).
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components, we numerically collapse this back to It+1 Gaussians to form

p(ht+1|st+1,v1:t+1)≈
It+1

∑
it+1=1

p(ht+1|it+1,st+1,v1:t+1)p(it+1|st+1,v1:t+1).

Hence the Gaussian components and corresponding mixture weights p(it+1|st+1,v1:t+1) are defined
implicitly through a numerical (Gaussian-Mixture to smaller Gaussian-Mixture) collapse procedure,
for which any method of choice may be supplied. A straightforward approach that we use in our
code is based on repeatedly merging low-weight components, as explained in Appendix (D).

A RECURSION FOR THE SWITCH VARIABLES

A recursion for the switch variables can be found by considering

p(st+1|v1:t+1) ∝ ∑
it ,st

p(it ,st ,st+1,vt+1,v1:t).

The r.h.s. of the above equation is proportional to

∑
st ,it

p(vt+1|it ,st ,st+1,v1:t)p(st+1|it ,st ,v1:t)p(it |st ,v1:t)p(st |v1:t)

where all terms have been computed during the recursion for p(ht+1|st+1,v1:t+1).

THE LIKELIHOOD p(v1:T )

The likelihood p(v1:T ) may be found by recursing p(v1:t+1) = p(vt+1|v1:t)p(v1:t), where

p(vt+1|v1:t) = ∑
it ,st ,st+1

p(vt+1|it ,st ,st+1,v1:t)p(st+1|it ,st ,v1:t)p(it |st ,v1:t)p(st |v1:t).

In the above expression, all terms have been computed in forming the recursion for the filtered
posterior p(ht+1,st+1|v1:t+1).

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable way to ‘correct’ the filtered posterior
p(st ,ht |v1:t) obtained from the Forward Pass into a smoothed posterior p(st ,ht |v1:T ). We initially
derive this for the case of a single Gaussian representation—the extension to the mixture case is
straightforward and given in Section (2.3). Our derivation holds for both the SLDS and aSLDS.
We approximate the smoothed posterior p(ht |st ,v1:T ) by a Gaussian with mean g(st) and covariance
G(st), and our aim is to find a recursion for these parameters. A useful starting point is the exact
relation:

p(ht ,st |v1:T ) = ∑
st+1

p(st+1|v1:T )p(ht |st ,st+1,v1:T )p(st |st+1,v1:T ).
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The term p(ht |st ,st+1,v1:T ) may be computed as

p(ht |st ,st+1,v1:T ) =
Z

ht+1

p(ht ,ht+1|st ,st+1,v1:T )

=
Z

ht+1

p(ht |ht+1,st ,st+1,v1:T )p(ht+1|st ,st+1,v1:T )

=
Z

ht+1

p(ht |ht+1,st ,st+1,v1:t)p(ht+1|st ,st+1,v1:T ) (8)

which is in the form of a recursion. This recursion therefore requires p(ht+1|st ,st+1,v1:T ), which
we can write as

p(ht+1|st ,st+1,v1:T ) ∝ p(ht+1|st+1,v1:T )p(st |st+1,ht+1,v1:t). (9)

The above recursions represent the exact computation of the smoothed posterior. In our approxi-
mate treatment, we replace all quantities p with their corresponding approximations p̃. A difficulty
is that the functional form of p̃(st |st+1,ht+1,v1:t) in the approximation of Equation (9) is not squared
exponential in ht+1, so that p̃(ht+1|st ,st+1,v1:T ) will not be a mixture of Gaussians.6 One possibil-
ity would be to approximate the non-Gaussian p(ht+1|st ,st+1,v1:T ) (dropping the p̃ notation) by a
Gaussian (mixture) by minimizing the Kullback-Leilbler divergence between the two, or performing
moment matching in the case of a single Gaussian. A simpler alternative is to make the assumption
p(ht+1|st ,st+1,v1:T )≈ p(ht+1|st+1,v1:T ), see Figure (3). This is a considerable simplification since
p(ht+1|st+1,v1:T ) is already known from the previous backward recursion. Under this assumption,
the recursion becomes

p(ht ,st |v1:T )≈ ∑
st+1

p(st+1|v1:T )p(st |st+1,v1:T )〈p(ht |ht+1,st ,st+1,v1:t)〉p(ht+1|st+1,v1:T ) . (10)

We call the procedure based on Equation (10) Expectation Correction (EC) since it ‘corrects’ the
filtered results which themselves are formed from propagating expectations. In Appendix (E) we
show how EC is equivalent to a partial Discrete-Continuous factorized approximation.

Equation (10) forms the basis of the the EC Backward Pass. However, similar to the ADF
Forward Pass, the number of mixture components needed to represent the posterior in this recursion
grows exponentially as we go backwards in time. The strategy we take to deal with this is a form
of Assumed Density Smoothing, in which Equation (10) is interpreted as a propagated dynamics
reversal, which will subsequently be collapsed back to an assumed family of distributions—see
Figure (4). How we implement the recursion for the continuous and discrete factors is detailed
below.7

6. In the exact calculation, p(ht+1|st ,st+1,v1:T ) is a mixture of Gaussians since p(st |st+1,ht+1,v1:t) =
p(st ,st+1,ht+1,v1:T )/p(st+1,ht+1,v1:T ) so that the mixture of Gaussians denominator p(st+1,ht+1,v1:T ) cancels
with the first term in Equation (9), leaving a mixture of Gaussians. However, since in Equation (9) the two terms
p(ht+1|st+1,v1:T ) and p(st |st+1,ht+1,v1:t) are replaced by approximations, this cancellation is not guaranteed.

7. Equation (10) has the pleasing form of an RTS Backward Pass for the continuous part (analogous to LDS case),
and a discrete smoother (analogous to a smoother recursion for the HMM). In the Forward-Backward algorithm
for the HMM (Rabiner, 1989), the posterior γt ≡ p(st |v1:T ) is formed from the product of αt ≡ p(st |v1:t) and βt ≡
p(vt+1:T |st). This approach is also analogous to EP (Heskes and Zoeter, 2002). In the correction approach, a direct
recursion for γt in terms of γt+1 and αt is formed, without explicitly defining βt . The two approaches to inference are
known as α−β and α− γ recursions.
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st−1 st st+1 st+2

ht−1 ht ht+1 ht+2

vt−1 vt vt+1 vt+2

Figure 3: Our Backward Pass approximates p(ht+1|st+1,st ,v1:T ) by p(ht+1|st+1,v1:T ). Motivation
for this is that st only influences ht+1 through ht . However, ht will most likely be heavily
influenced by v1:t , so that not knowing the state of st is likely to be of secondary impor-
tance. The darker shaded node is the variable we wish to find the posterior state of. The
lighter shaded nodes are variables in known states, and the hashed node a variable whose
state is indeed known but assumed unknown for the approximation.

EVALUATING 〈p(ht |ht+1,st ,st+1,v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht |ht+1,st ,st+1,v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian in ht , whose statistics we will now compute.
First we find p(ht |ht+1,st ,st+1,v1:t) which may be obtained from the joint distribution

p(ht ,ht+1|st ,st+1,v1:t) = p(ht+1|ht ,st+1)p(ht |st ,v1:t) (11)

which itself can be found using the forward dynamics from the filtered estimate p(ht |st ,v1:t). The
statistics for the marginal p(ht |st ,st+1,v1:t) are simply those of p(ht |st ,v1:t), since st+1 carries no
extra information about ht .8 The remaining statistics are the mean of ht+1, the covariance of ht+1

and cross-variance between ht and ht+1,

〈ht+1〉= A(st+1) ft(st)

Σt+1,t+1 = A(st+1)Ft(st)A
T(st+1)+Σh(st+1), Σt+1,t = A(st+1)Ft(st).

Given the statistics of Equation (11), we may now condition on ht+1 to find
p(ht |ht+1,st ,st+1,v1:t). Doing so effectively constitutes a reversal of the dynamics,

ht =
←−
A (st ,st+1)ht+1 +

←−η (st ,st+1)

where
←−
A (st ,st+1) and ←−η (st ,st+1) ∼ N (←−m (st ,st+1),

←−
Σ (st ,st+1)) are easily found using the condi-

tioned Gaussian results in Appendix (C)—see also Algorithm (5). Averaging the reversed dynamics
we obtain a Gaussian in ht for 〈p(ht |ht+1,st ,st+1,v1:t)〉p(ht+1|st+1,v1:T ) with statistics

µt =
←−
A (st ,st+1)g(st+1)+←−m (st ,st+1), Σt,t =

←−
A (st ,st+1)G(st+1)

←−
A T(st ,st+1)+

←−
Σ (st ,st+1).

These equations directly mirror the RTS Backward Pass, see Algorithm (5).

8. Integrating over ht+1 means that the information from st+1 passing through ht+1 via the term p(ht+1|st+1,ht) van-
ishes. Also, since st is known, no information from st+1 passes through st to ht .
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st st+1

it jt+1

ht ht+1

vt vt+1

Figure 4: Structure of the Backward Pass for mixtures. Given the smoothed information at time-
step t +1, we need to work backwards to ‘correct’ the filtered estimate at time t.

EVALUATING p(st |st+1,v1:T )

The main departure of EC from previous methods is in treating the term

p(st |st+1,v1:T ) = 〈p(st |ht+1,st+1,v1:t)〉p(ht+1|st+1,v1:T ) . (12)

The term p(st |ht+1,st+1,v1:t) is given by

p(st |ht+1,st+1,v1:t) =
p(ht+1|st ,st+1,v1:t)p(st ,st+1|v1:t)

∑s′t p(ht+1|s′t ,st+1,v1:t)p(s′t ,st+1|v1:t)
. (13)

Here p(st ,st+1|v1:t) = p(st+1|st ,v1:t)p(st |v1:t), where p(st+1|st ,v1:t) occurs in the Forward Pass,
Equation (7). In Equation (13), p(ht+1|st+1,st ,v1:t) is found by marginalizing Equation (11).

Performing the average over p(ht+1|st+1,v1:T ) in Equation (12) may be achieved by any nu-
merical integration method desired. Below we outline a crude approximation that is fast and often
performs surprisingly well.

MEAN APPROXIMATION

A simple approximation of Equation (12) is to evaluate the integrand at the mean value of the
averaging distribution. Replacing ht+1 in Equation (13) by its mean gives the simple approximation

〈p(st |ht+1,st+1,v1:t)〉p(ht+1|st+1,v1:T ) ≈
1
Z

e−
1
2 zT

t+1(st ,st+1)Σ−1(st ,st+1|v1:t)zt+1(st ,st+1)

√

detΣ(st ,st+1|v1:t)
p(st |st+1,v1:t)

where zt+1(st ,st+1) ≡ 〈ht+1|st+1,v1:T 〉 − 〈ht+1|st ,st+1,v1:t〉 and Z ensures normalization over st .
This result comes simply from the fact that in Equation (12) we have a Gaussian with a mean
〈ht+1|st ,st+1,v1:t〉 and covariance Σ(st ,st+1|v1:t), being the filtered covariance of ht+1 given st ,st+1

and the observations v1:t , which may be taken from Σhh in Equation (5). Then evaluating this
Gaussian at the specific point 〈ht+1|st+1,v1:T 〉, we arrive at the above expression. An alternative
to this simple mean approximation is to sample from the Gaussian p(ht+1|st+1,v1:T ), which has
the potential advantage that covariance information is used.9 Other methods such as variational

9. This is a form of exact sampling since drawing samples from a Gaussian is easy. This should not be confused with
meaning that this use of sampling renders EC a sequential Monte-Carlo sampling scheme.
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Algorithm 2 aSLDS: EC Backward Pass (Single Gaussian case I = J = 1). Approximates p(st |v1:T )
and p(ht |st ,v1:T )≡N (gt(st),Gt(st)). This routine needs the results from Algorithm (1) for I = 1.

GT ← FT , gT ← fT ,
for t← T −1 to 1 do

for s← 1 to S, s′← 1 to S do,
(µ,Σ)(s,s′) = LDSBACKWARD(gt+1(s′),Gt+1(s′), ft(s),Ft(s),θt+1(s′))
p(s|s′) = 〈p(st = s|ht+1,st+1 = s′,v1:t)〉p(ht+1|st+1=s′,v1:T )

p(s,s′|v1:T )← p(st+1 = s′|v1:T )p(s|s′)
end for
for st ← 1 to S do

Collapse the mixture defined by weights p(st+1 = s′|st ,v1:T ) ∝ p(st ,s′|v1:T ), means
µ(st ,s′) and covariances Σ(st ,s′) to a single Gaussian. This defines the new means
gt(st), covariances Gt(st).
p(st |v1:T )← ∑s′ p(st ,s′|v1:T )

end for
end for

approximations to this average (Jaakkola and Jordan, 1996) or the unscented transform (Julier and
Uhlmann, 1997) may be employed if desired.

CLOSING THE RECURSION

We have now computed both the continuous and discrete factors in Equation (10), which we wish
to use to write the smoothed estimate in the form p(ht ,st |v1:T ) = p(st |v1:T )p(ht |st ,v1:T ). The distri-
bution p(ht |st ,v1:T ) is readily obtained from the joint Equation (10) by conditioning on st to form
the mixture

p(ht |st ,v1:T ) = ∑
st+1

p(st+1|st ,v1:T )p(ht |st ,st+1,v1:T )

which may be collapsed to a single Gaussian (or mixture if desired). As in the Forward Pass, this
collapse implicitly defines the Gaussian mean g(st) and covariance G(st). The smoothed posterior
p(st |v1:T ) is given by

p(st |v1:T ) = ∑
st+1

p(st+1|v1:T )p(st |st+1,v1:T )

= ∑
st+1

p(st+1|v1:T )〈p(st |ht+1,st+1,v1:t)〉p(ht+1|st+1,v1:T ) . (14)

The algorithm for the single Gaussian case is presented in Algorithm (2).

NUMERICAL STABILITY

Numerical stability is a concern even in the LDS, and the same is to be expected for the aSLDS.
Since the LDS recursions LDSFORWARD and LDSBACKWARD are embedded within the EC al-
gorithm, we may immediately take advantage of the large body of work on stabilizing the LDS
recursions, such as the Joseph form (Grewal and Andrews, 1993), or the square root forms (Park
and Kailath, 1996; Verhaegen and Van Dooren, 1986).
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RELAXING EC

The conditional independence assumption p(ht+1|st ,st+1,v1:T ) ≈ p(ht+1|st+1,v1:T ) is not strictly
necessary in EC. We motivate it by computational simplicity, since finding an appropriate moment
matching approximation of p(ht+1|st ,st+1,v1:T ) in Equation (9) requires a relatively expensive non-
Gaussian integration. If we therefore did treat p(ht+1|st ,st+1,v1:T ) more correctly, the central as-
sumption in this relaxed version of EC would be a collapse to a mixture of Gaussians (the additional
computation of Equation (12) may usually be numerically evaluated to high precision). Whilst we
did not do so, implementing this should not give rise to numerical instabilities since no potential
divisions are required, merely the estimation of moments. In the experiments presented here, we did
not pursue this option, since we believe that the effect of this conditional independence assumption
is relatively weak.

INCONSISTENCIES IN THE APPROXIMATION

The recursion Equation (8), upon which EC depends, makes use of the Forward Pass results,
and a subtle issue arises about possible inconsistencies in the Forward and Backward approxi-
mations. For example, under the conditional independence assumption in the Backward Pass,
p(hT |sT−1,sT ,v1:T ) ≈ p(hT |sT ,v1:T ), which is in contradiction to Equation (5) which states that
the approximation to p(hT |sT−1,sT ,v1:T ) will depend on sT−1. Similar contradictions occur also for
the relaxed version of EC. Such potential inconsistencies arise because of the approximations made,
and should not be considered as separate approximations in themselves. Furthermore, these incon-
sistencies will most likely be strongest at the end of the chain, t ≈ T , since only then is Equation (8)
in direct contradiction to Equation (5). Such potential inconsistencies arise since EC is not founded
on a consistency criterion, unlike EP—see Section (3)—but rather an approximation of the exact
recursions. Our experience is that compared to EP, which attempts to ensure consistency based on
multiple sweeps through the graph, such inconsistencies are a small price to pay compared to the
numerical stability advantages of EC.

2.3 Using Mixtures in the Backward Pass

The extension to the mixture case is straightforward, based on the representation

p(ht |st ,v1:T )≈
Jt

∑
jt=1

p(ht |st , jt ,v1:T )p( jt |st ,v1:T ).

Analogously to the case with a single component,

p(ht ,st |v1:T ) = ∑
it , jt+1,st+1

p(st+1|v1:T )p( jt+1|st+1,v1:T )p(ht | jt+1,st+1, it ,st ,v1:T )

· 〈p(it ,st |ht+1, jt+1,st+1,v1:t)〉p(ht+1| jt+1,st+1,v1:T ) .

The average in the last line of the above equation can be tackled using the same techniques as
outlined in the single Gaussian case. To approximate p(ht | jt+1,st+1, it ,st ,v1:T ) we consider this as
the marginal of the joint distribution

p(ht ,ht+1|it ,st , jt+1,st+1,v1:T ) = p(ht |ht+1, it ,st , jt+1,st+1,v1:t)p(ht+1|it ,st , jt+1,st+1,v1:T ).
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Algorithm 3 aSLDS: EC Backward Pass. Approximates p(st |v1:T ) and p(ht |st ,v1:T ) ≡
∑Jt

jt=1 ut( jt ,st)N (gt( jt ,st),Gt( jt ,st)) using a mixture of Gaussians. JT = IT ,Jt ≤ S× It× Jt+1. This
routine needs the results from Algorithm (1).

GT ← FT , gT ← fT , uT ← wT (*)
for t← T −1 to 1 do

for s← 1 to S, s′← 1 to S, i← 1 to It , j′← 1 to Jt+1 do
(µ,Σ)(i,s, j′,s′) = LDSBACKWARD(gt+1( j′,s′),Gt+1( j′,s′), ft(i,s),Ft(i,s),θt+1(s′))
p(i,s| j′,s′) = 〈p(st = s, it = i|ht+1,st+1 = s′, jt+1 = j′,v1:t)〉p(ht+1|st+1=s′, jt+1= j′,v1:T )

p(i,s, j′,s′|v1:T )← p(st+1 = s′|v1:T )ut+1( j′,s′)p(i,s| j′,s′)
end for
for st ← 1 to S do

Collapse the mixture defined by weights p(it = i,st+1 = s′, jt+1 = j′|st ,v1:T ) ∝
p(i,st , j′,s′|v1:T ), means µ(it ,st , j′,s′) and covariances Σ(it ,st , j′,s′) to a mixture with
Jt components. This defines the new means gt( jt ,st), covariances Gt( jt ,st) and mix-
ture weights ut( jt ,st).
p(st |v1:T )← ∑it , j′,s′ p(it ,st , j′,s′|v1:T )

end for
end for

(*) If JT < IT then the initialization is formed by collapsing the Forward Pass results at time T to JT

components.

As in the case of a single mixture, the problematic term is p(ht+1|it ,st , jt+1,st+1,v1:T ). Analogously
to before, we may make the assumption

p(ht+1|it ,st , jt+1,st+1,v1:T )≈ p(ht+1| jt+1,st+1,v1:T )

meaning that information about the current switch state st , it is ignored.10 We can then form

p(ht |st ,v1:T ) = ∑
it , jt+1,st+1

p(it , jt+1,st+1|st ,v1:T )p(ht |it ,st , jt+1,st+1,v1:T ).

This mixture can then be collapsed to smaller mixture using any method of choice, to give

p(ht |st ,v1:T )≈
Jt

∑
jt=1

p(ht | jt ,st ,v1:T )p( jt |st ,v1:T )

The collapse procedure implicitly defines the means g( jt ,st) and covariances G( jt ,st) of the smoothed
approximation. A recursion for the switches follows analogously to the single component Backward
Pass. The resulting algorithm is presented in Algorithm (3), which includes using mixtures in both
Forward and Backward Passes. Note that if JT < IT , an extra initial collapse is required of the IT

component Forward Pass Gaussian mixture at time T to JT components.
EC has time complexity O(S2IJK) where S are the number of switch states, I and J are the

number of Gaussians used in the Forward and Backward passes, and K is the time to compute the
exact Kalman smoother for the system with a single switch state.

10. As in the single component case, in principle, this assumption may be relaxed and a moment matching approximation
be performed instead.
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3. Relation to Other Methods

Approximate inference in the SLDS is a long-standing research topic, generating an extensive liter-
ature. See Lerner (2002) and Zoeter (2005) for reviews of previous work. A brief summary of some
of the major existing approaches follows.

Assumed Density Filtering Since the exact filtered estimate p(ht |st ,v1:t) is an (exponentially large)
mixture of Gaussians, a useful remedy is to project at each stage of the recursion Equation (3)
back to a limited set of K Gaussians. This is a Gaussian Sum Approximation (Alspach and
Sorenson, 1972), and is a form of Assumed Density Filtering (ADF) (Minka, 2001). Simi-
larly, Generalized Pseudo Bayes2 (GPB2) (Bar-Shalom and Li, 1998) also performs filtering
by collapsing to a mixture of Gaussians. This approach to filtering is also taken in Lerner
et al. (2000) which performs the collapse by removing spatially similar Gaussians, thereby
retaining diversity.

Several smoothing approaches directly use the results from ADF. The most popular is Kim’s
method, which updates the filtered posterior weights to form the smoother (Kim, 1994; Kim
and Nelson, 1999). In both EC and Kim’s method, the approximation
p(ht+1|st ,st+1,v1:T )≈ p(ht+1|st+1,v1:T ), is used to form a numerically simple Backward Pass.
The other approximation in EC is to numerically compute the average in Equation (14). In
Kim’s method, however, an update for the discrete variables is formed by replacing the re-
quired term in Equation (14) by

〈p(st |ht+1,st+1,v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st |st+1,v1:t). (15)

This approximation11 decouples the discrete Backward Pass in Kim’s method from the con-
tinuous dynamics, since p(st |st+1,v1:t) ∝ p(st+1|st)p(st |v1:t)/p(st+1|v1:t) can be computed
simply from the filtered results alone (the continuous Backward Pass in Kim’s method, how-
ever, does depend on the discrete Backward Pass). The fundamental difference between EC
and Kim’s method is that the approximation (15) is not required by EC. The EC Backward
Pass therefore makes fuller use of the future information, resulting in a recursion which in-
timately couples the continuous and discrete variables. The resulting effect on the quality of
the approximation can be profound, as we will see in the experiments.

Kim’s smoother corresponds to a potentially severe loss of future information and, in general,
cannot be expected to improve much on the filtered results from ADF. The more recent work
of Lerner et al. (2000) is similar in spirit to Kim’s method, whereby the contribution from
the continuous variables is ignored in forming an approximate recursion for the smoothed
p(st |v1:T ). The main difference is that for the discrete variables, Kim’s method is based on a
correction smoother (Rauch et al., 1965), whereas Lerner’s method uses a Belief Propagation
style Backward Pass (Jordan, 1998). Neither method correctly integrates information from the
continuous variables. How to form a recursion for a mixture approximation which does not
ignore information coming through the continuous hidden variables is a central contribution
of our work.

Kitagawa (1994) used a two-filter method in which the dynamics of the chain are reversed.
Essentially, this corresponds to a Belief Propagation method which defines a Gaussian sum

11. In the HMM this is exact, but in the SLDS the future observations carry information about st .
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EC Relaxed EC EP Kim
Mixture Collapsing to Single x

Mixture Collapsing to Mixture x x x
Cond. Indep. p(ht+1|st ,st+1,v1:T )≈ p(ht+1|st+1,v1:T ) x x

Approx. of p(st |st+1,v1:T ), average Equation (12) x x
Kim’s Backward Pass x

Mixture approx. of p(ht+1|st ,st+1,v1:T ), Equation (9) x

Table 1: Relation between methods. In the EC methods, the mean approximation may be replaced
by an essentially exact Monte Carlo approximation to Equation (12). EP refers to the
Single Gaussian approximation in Heskes and Zoeter (2002). In the case of using Relaxed
EC with collapse to a single Gaussian, EC and EP are not equivalent, since the underlying
recursions on which the two methods are based are fundamentally different.

approximation for p(vt+1:T |ht ,st). However, since this is not a density in ht ,st , but rather
a conditional likelihood, formally one cannot treat this using density propagation methods.
In Kitagawa (1994), the singularities resulting from incorrectly treating p(vt+1:T |ht ,st) as a
density are heuristically finessed.

Expectation Propagation EP (Minka, 2001), as applied to the SLDS, corresponds to an approxi-
mate implementation of Belief Propagation12 (Jordan, 1998; Heskes and Zoeter, 2002). EP
is the most sophisticated rival to Kim’s method and EC, since it makes the least assumptions.
For this reason, we’ll explain briefly how EP works. Unlike EC, which is based on an ap-
proximation of the exact filtering and smoothing recursions, EP is based on a consistency
criterion.

First, let’s simplify the notation, and write the distribution as p = ∏t φ(xt−1,vt−1,xt ,vt), where
xt ≡ ht ⊗ st , and φ(xt−1,vt−1,xt ,vt)≡ p(xt |xt−1)p(vt |xt). EP defines ‘messages’ ρ, λ13 which
contain information from past and future observations respectively.14 Explicitly, we define
ρt(xt) ∝ p(xt |v1:t) to represent knowledge about xt given all information from time 1 to t.
Similarly, λt(xt) represents knowledge about state xt given all observations from time T to
time t + 1. In the sequel, we drop the time suffix for notational clarity. We define λ(xt)
implicitly through the requirement that the marginal smoothed inference is given by

p(xt |v1:T ) ∝ ρ(xt)λ(xt) . (16)

Hence λ(xt) ∝ p(vt+1:T |xt ,v1:t) = p(vt+1:T |xt) and represents all future knowledge about
p(xt |v1:T ). From this

p(xt−1,xt |v1:T ) ∝ ρ(xt−1)φ(xt−1,vt−1,xt ,vt)λ(xt) . (17)

12. Non-parametric belief propagation (Sudderth et al., 2003), which performs approximate inference in general contin-
uous distributions, is also related to EP applied to the aSLDS, in the sense that the messages cannot be represented
easily, and are approximated by mixtures of Gaussians.

13. These correspond to the α and β messages in the Hidden Markov Model framework (Rabiner, 1989).
14. In this Belief Propagation/EP viewpoint, the backward messages, traditionally labeled as β, correspond to conditional

likelihoods, and not distributions. In contrast, in the EC approach, which is effectively a so-called α− γ recursion,
the backward γ messages correspond to posterior distributions.
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Taking the above equation as a starting point, we have

p(xt |v1:T ) ∝
Z

xt−1

ρ(xt−1)φ(xt−1,vt−1,xt ,vt)λ(xt) .

Consistency with Equation (16) requires (neglecting irrelevant scalings)

ρ(xt)λ(xt) ∝
Z

xt−1

ρ(xt−1)φ(xt−1,vt−1,xt ,vt)λ(xt) .

Similarly, we can integrate Equation (17) over xt to get the marginal at time xt−1 which, by
consistency, should be proportional to ρ(xt−1)λ(xt−1). Hence

ρ(xt) ∝
R

xt−1
ρ(xt−1)φ(xt−1,xt)λ(xt)

λ(xt)
,λ(xt−1) ∝

R

xt
ρ(xt−1)φ(xt−1,xt)λ(xt)

ρ(xt−1)
(18)

where the divisions can be interpreted as preventing over-counting of messages. In an exact
implementation, the common factors in the numerator and denominator cancel. EP addresses
the fact that λ(xt) is not a distribution by using Equation (18) to form the projection (or
‘collapse’). In the numerator,

R

xt−1
ρ(xt−1)φ(xt−1,xt)λ(xt) and

R

xt
ρ(xt−1)φ(xt−1,xt)λ(xt)

represent p(xt |v1:T ) and p(xt−1|v1:T ). Since these are distributions (an indexed mixture of
Gaussians in the SLDS), they may be projected/collapsed to a single indexed Gaussian. The
update for the ρ message is then found from division by the λ potential, and vice versa.
In EP the explicit division of potentials only makes sense for members of the exponential
family. More complex methods could be envisaged in which, rather than an explicit divi-
sion, the new messages are defined by minimizing some measure of divergence between
ρ(xt)λ(xt) and

R

xt−1
ρ(xt−1)φ(xt−1,xt)λ(xt), such as the Kullback-Leibler divergence. In this

way, non-exponential family approximations (such as mixtures of Gaussians) may be consid-
ered. Whilst this is certainly feasible, it is somewhat unattractive computationally since this
would require for each time-step an expensive minimization.

For the single Gaussian case, in order to perform the division, the potentials in the numerator
and denominator are converted to their canonical representations. To form the ρ update,
the result of the division is then reconverted back to a moment representation. The resulting
recursions, due to the approximation, are no longer independent and Heskes and Zoeter (2002)
show that using more than a single Forward and Backward sweep often improves on the
quality of the approximation. This coupling is a departure from the exact recursions, which
should remain independent.

Applied to the SLDS, EP suffers from severe numerical instabilities (Heskes and Zoeter,
2002) and finding a way to minimize the corresponding EP free energy in an efficient, robust
and guaranteed way remains an open problem. Our experience is that current implementa-
tions of EP are unsuitable for large scale time-series applications. Damping the parameter
updates is one suggested approach to heuristically improve convergence. The source of these
numerical instabilities is not well understood since, even in cases when the posterior ap-
pears uni-modal, the method is problematic. The frequent conversions between moment and
canonical parameterizations of Gaussians are most likely at the root of the difficulties. An
interesting comparison here is between Lauritzen’s original method for exact computation on
conditional Gaussian distributions (for which the SLDS is a special case) Lauritzen (1992),
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which is numerically unstable due to conversion between moment and canonical representa-
tions, and Lauritzen and Jensen (2001), which improves stability by avoiding using canonical
parameterizations.

Variational Methods Ghahramani and Hinton (1998) used a variational method which approxi-
mates the joint distribution p(h1:T ,s1:T |v1:T ) rather than the marginal p(ht ,st |v1:T )—related
work is presented in Lee et al. (2004). This is a disadvantage when compared to other methods
that directly approximate the marginal. The variational methods are nevertheless potentially
attractive since they are able to exploit structural properties of the distribution, such as a fac-
tored discrete state-transition. In this article, we concentrate on the case of a small number of
states S and hence will not consider variational methods further here.15

Sequential Monte Carlo (Particle Filtering) These methods form an approximate implementation
of Equation (3), using a sum of delta functions to represent the posterior—see, for example,
Doucet et al. (2001). Whilst potentially powerful, these non-analytic methods typically suffer
in high-dimensional hidden spaces since they are often based on naive importance sampling,
which restricts their practical use. ADF is generally preferential to Particle Filtering, since in
ADF the approximation is a mixture of non-trivial distributions, which is better at capturing
the variability of the posterior. Rao-Blackwellized Particle Filters (Doucet et al., 2000) are an
attempt to alleviate the difficulty of sampling in high-dimensional state spaces by explicitly
integrating over the continuous state.

Non-Sequential Monte Carlo

For fixed switches s1:T , p(v1:T |s1:T ) is easily computable since this is just the likelihood of
an LDS. This observation raises the possibility of sampling from the posterior p(s1:T |v1:T ) ∝
p(v1:T |s1:T )p(s1:T ) directly. Many possible sampling methods could be applied in this case,
and the most immediate is Gibbs sampling, in which a sample for each t is drawn from
p(st |s\t ,v1:T )—see Neal (1993) for a general reference and Carter and Kohn (1996) for an
application to the SLDS. This procedure may work well in practice provided that the initial
setting of s1:T is in a region of high probability mass—otherwise, sampling by such individual
coordinate updates may be extremely inefficient.

4. Experiments

Our experiments examine the stability and accuracy of EC against several other methods on long
time-series. In addition, we will compare the absolute accuracy of EC as a function of the number
of mixture components on a short time-series, where exact inference may be explicitly evaluated.

Testing EC in a problem with a reasonably long temporal sequence, T , is important since nu-
merical stabilities may not be apparent in time-series of just a few time-steps. To do this, we
sequentially generate hidden states ht ,st and observations vt from a given model. Then, given only
the parameters of the model and the observations (but not any of the hidden states), the task is to
infer p(ht |st ,v1:T ) and p(st |v1:T ). Since the exact computation is exponential in T , a formally exact
evaluation of the method is infeasible. A simple alternative is to assume that the original sam-
ple states s1:T are the ‘correct’ inferred states, and compare our most probable posterior smoothed

15. Lerner (2002) discusses an approach in the case of a large structured discrete state transition. Related ideas could
also be used in EC.
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Figure 5: SLDS: Throughout, S = 2, V = 1 (scalar observations), T = 100, with zero output bias.
A(s) = 0.9999 ∗ orth(randn(H,H)), B(s) = randn(V,H), v̄t ≡ 0, h̄1 = 10 ∗ randn(H,1),
h̄t>1 = 0, Σh

1 = IH , p1 = uniform. The figures show typical examples for each of the two
problems: (a) Easy problem. H = 3, Σh(s) = IH , Σv(s) = 0.1IV , p(st+1|st) ∝ 1S×S + IS.
(b) Hard problem. H = 30, Σv(s) = 30IV ,Σh(s) = 0.01IH , p(st+1|st) ∝ 1S×S.
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Figure 6: SLDS ‘Easy’ problem: The number of errors in estimating a binary switch p(st |v1:T ) over
a time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments. The histograms have been cutoff at 20
errors in order to improve visualization. (PF) Particle Filter. (RBPF) Rao-Blackwellized
PF. (EP) Expectation Propagation. (ADFS) Assumed Density Filtering using a Single
Gaussian. (KimS) Kim’s smoother using the results from ADFS. (ECS) Expectation
Correction using a Single Gaussian (I = J = 1). (ADFM) ADF using a multiple of I = 4
Gaussians. (KimM) Kim’s smoother using the results from ADFM. (ECM) Expectation
Correction using a mixture with I = J = 4 components. In Gibbs sampling, we use the
initialization from ADFM.

estimates argmaxst p(st |v1:T ) with the assumed correct sample st .16 We look at two sets of experi-
ments, one for the SLDS and one for the aSLDS. In both cases, scalar observations are used so that
the complexity of the inference problem can be visually assessed.

16. We could also consider performance measures on the accuracy of p(ht |st ,v1:T ). However, we prefer to look at approx-
imating argmaxst p(st |v1:T ) since the sampled discrete states are likely to correspond to the exact argmaxst p(st |v1:T ).
In addition, if the posterior switch distribution is dominated by a single state s∗1:T , then provided they are correctly
estimated, the model reduces to an LDS, for which inference of the continuous hidden state is trivial.
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Figure 7: SLDS ‘Hard’ problem: The number of errors in estimating a binary switch p(st |v1:T ) over
a time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments.

SLDS EXPERIMENTS

We chose experimental conditions that, from the viewpoint of classical signal processing, are dif-
ficult, with changes in the switches occurring at a much higher rate than the typical frequencies in
the signal. We consider two different toy SLDS experiments : The ‘easy’ problem corresponds to
a low hidden dimension, H = 3, with low observation noise; The ‘hard’ problem corresponds to
a high hidden dimension, H = 30, and high observation noise. See Figure (5) for details of the
experimental setup.

We compared methods using a single Gaussian, and methods using multiple Gaussians, see Fig-
ure (6) and Figure (7). For EC we use the mean approximation for the numerical integration of
Equation (12). For the Particle Filter 1000 particles were used, with Kitagawa re-sampling (Kita-
gawa, 1996). For the Rao-Blackwellized Particle Filter (Doucet et al., 2000), 500 particles were
used, with Kitagawa re-sampling. We included the Particle Filter merely for a point of comparison
with ADF, since they are not designed to approximate the smoothed estimate.

An alternative MCMC procedure is to perform Gibbs sampling of p(s1:T |v1:T ) using p(st |s\t ,v1:T ) ∝
p(v1:T |s1:T )p(s1:T ), where p(v1:T |s1:T ) is simply the likelihood of an LDS—see for example Carter
and Kohn (1996).17 We initialize the state s1:T by using the most likely states st from the filtered
results using a Gaussian mixture (ADFM), and then swept forwards in time, sampling from the state
p(st |s\t ,v1:T ) until the end of the chain. We then reversed direction, sampling from time T back to
time 1, and continued repeating this procedure 100 times, with the mean over the last 80 sweeps
used as the posterior mean approximation. This procedure is expensive since each sample requires
computing the likelihood of an LDS defined on the whole time-series. The procedure therefore
scales with GT 2 where G is the number of sweeps over the time series. Despite using a reasonable
initialization, Gibbs sampling struggles to improve on the filtered results.

We found that EP was numerically unstable and often struggled to converge. To encourage
convergence, we used the damping method in Heskes and Zoeter (2002), performing 20 iterations
with a damping factor of 0.5. The disappointing performance of EP is most likely due to conflicts

17. Carter and Kohn (1996) proposed an overly complex procedure for computing the likelihood p(v1:T |s1:T ). This is
simply the likelihood of an LDS (since s1:T are assumed known), and is readily computable using any of the standard
procedures in the literature.

2532



EXPECTATION CORRECTION

0 10 20 30 40 50 60
0

200

400

600

800

1000
PF

0 10 20 30 40 50 60

ADFS

0 10 20 30 40 50 60

ECS

0 10 20 30 40 50 60

ADFM

0 10 20 30 40 50 60

ECM

Figure 8: aSLDS: Histogram of the number of errors in estimating a binary switch p(st |v1:T ) over a
time series of length T = 100. Hence 50 errors corresponds to random guessing. Plotted
are histograms of the errors over 1000 experiments. Augmented SLDS results. ADFM
used I = 4 Gaussians, and ECM used I = J = 4 Gaussians. We used 1000 samples to
approximate Equation (12).

I 1 4 4 16 16 64 64 256 256
J 1 1 4 1 16 1 64 1 256

error 0.0989 0.0624 0.0365 0.0440 0.0130 0.0440 4.75e-4 0.0440 3.40e-8

Table 2: Errors in approximating the states for the multi-path problem, see Figure (9). The mean
absolute deviation |pec(st |v1:T )− pexact(st |v1:T )| averaged over the S = 4 states of st and
over the times t = 1, . . . ,5, computed for different numbers of mixture components in EC.
The mean approximation of Equation (12) is used. The exact computation uses ST−1 = 256
mixtures.

resulting from numerical instabilities introduced by the frequent conversions between moment and
canonical representations.

The various algorithms differ widely in performance, see Figures (6,7). Not surprisingly, the
best filtered results are given using ADF, since this is better able to represent the variance in the
filtered posterior than the sampling methods. Unlike Kim’s method, EC makes good use of the
future information to clean up the filtered results considerably. One should bear in mind that both
EC, Kim’s method and the Gibbs initialization use the same ADF results. These results show that
EC may dramatically improve on Kim’s method, so that the small amount of extra work in making
a numerical approximation of p(st |st+1,v1:T ), Equation (12), may bring significant benefits.

AUGMENTED SLDS EXPERIMENTS

In Figure (8), we chose a simple two state S = 2 transition distribution p(st+1 = 1|st ,ht) = σ
(
hT

t w(st)
)
,

where σ(x) ≡ 1/(1 + e−x). Some care needs to be taken to make a model so for which even exact
inference would produce posterior switches close to the sampled switches. If the switch variables
st+1 changes wildly (which is possible given the above formula since the hidden state h may have a
large projected change if the hidden state changes) essentially no information is left in the signal for
any inference method to produce reasonable results. We therefore set w(st) to a zero vector except
for the first two components, which are independently sampled from a zero mean Gaussian with
standard deviation 5. For each of the two switch states, s, we have a transition matrix A(s), which
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Figure 9: (a) The multi-path problem. The particle starts from (0,0) at time t = 1. Subsequently,
at each time-point, either the vector (10,10) (corresponding to states s = 1 and s = 3)
or (−10,10) (corresponding to states s = 2 and s = 4), is added to the hidden dynamics,
perturbed by a small amount of noise, Σh = 0.1. The observations are v = h+ηv(s). For
states s = 1,2 the observation noise is small, Σv = 0.1I, but for s = 3,4 the noise in the
horizontal direction has variance 1000. The visible observations are given by the x’. The
true hidden states are given by ‘+’. (b) The exact smoothed state posteriors pexact(st |v1:T )
computed by enumerating all paths (given by the dashed lines).

we set to be block diagonal. The first 2× 2 block is set to 0.9999Rθ, where Rθ is a 2× 2 rotation
matrix with angle θ chosen uniformly from 0 to 1 radians. This means that st+1 is dependent on the
first two components of ht which are rotating at a restricted rate. The remaining H−2×H−2 block
of A(s) is chosen as (using MATLAB notation) 0.9999 ∗ orth(rand(H−2)), which means a scaled
randomly chosen orthogonal matrix. Throughout, S = 2, V = 1, H = 30, T = 100, with zero output
bias. Using partly MATLAB notation, B(s) = randn(V,H), v̄t ≡ 0, h̄1 = 10∗ randn(H,1), h̄t>1 = 0,
Σh

1 = IH , p1 = uniform. Σv = 30IV , Σh = 0.1IH .
We compare EC only against Particle Filters using 1000 particles, since other methods would

require specialized and novel implementations. In ADFM, I = 4 Gaussians were used, and for
ECM, I = J = 4 Gaussians were used. Looking at the results in Figure (8), we see that EC performs
well, with some improvement in using the mixture representation I,J = 4 over a single Gaussian
I = J = 1. The Particle Filter most likely failed since the hidden dimension is too high to be explored
well with only 1000 particles.

EFFECT OF USING MIXTURES

Our claim is that EC should cope in situations where the smoothed posterior p(ht |st ,v1:T ) is multi-
modal and, consequently, cannot be well represented by a single Gaussian.18 We therefore con-
structed an SLDS which exhibits multi-modality to see the effect of using EC with both I and J
greater than 1. The ‘multi-path’ scenario is described in Figure (9), where a particle traces a path
through a two dimensional space. A small number of time-steps was chosen so that the exact
p(st |v1:T ) can be computed by direct enumeration. The observation of the particle is at times ex-
tremely noisy in the horizontal direction. This induces multi-modality of p(ht |st ,v1:T ) since there

18. This should not be confused with the multi-modality of p(ht |v1:T ) = ∑st
p(ht |st ,v1:T )p(st |v1:T ).
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are several paths that might plausibly have been taken to give rise to the observations. The accuracy
with which EC predicts the exact smoothed posterior is given in Table (2). For this problem we
see that both the number of Forward (I) and Backward components (J) affects the accuracy of the
approximation, generally with improved accuracy as the number of mixture components increases.
For a ‘perfect’ approximation method, one would expect that when I = J = ST−1 = 256, then the
approximation should become exact. The small error for this case in Table (2) may arise for several
reasons: the extra independence assumption used in EC, or the simple mean approximation used
to compute Equation (12), or numerical roundoff. However, at least in this case, the effect of these
assumptions on the performance is very small.

5. Discussion

Expectation Correction is a novel form of Backward Pass which makes less approximations than the
widely used approach from Kim (1994). In Kim’s method, potentially important future information
channeled through the continuous hidden variables is lost. EC, along with Kim’s method, makes the
additional assumption p(ht+1|st ,st+1,v1:T )≈ p(ht+1|st+1,v1:T ). However, our experience is that this
assumption is rather mild, since the state of ht+1 will be most heavily influenced by its immediate
parent st+1.

Our approximation is based on the idea that, although exact inference will consist of an expo-
nentially large number of mixture components, due to the forgetting which commonly occurs in
Markovian models, a finite number of mixture components may provide a reasonable approxima-
tion. In tracking situations where the visible information is (temporarily) not enough to specify
accurately the hidden state, then representing the posterior p(ht |st ,v1:T ) using a mixture of Gaus-
sians may improve results significantly. Clearly, in systems with very long correlation times our
method may require too many mixture components to produce a satisfactory result, although we are
unaware of other techniques that would be able to cope well in that case.

We hope that the straightforward ideas presented here may help facilitate the practical appli-
cation of dynamic hybrid networks to machine learning and related areas. Whilst models with
Gaussian emission distributions such as the SLDS are widespread, the extension of this method to
non-Gaussian emissions p(vt |ht ,st) would clearly be of considerable interest.

Software for Expectation Correction for this augmented class of Switching Linear Gaussian
models is available from www.idiap.ch/∼barber.
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Algorithm 4 LDS Forward Pass. Compute the filtered posteriors p(ht |v1:t) ≡ N ( ft ,Ft) for
a LDS with parameters θt = A,B,Σh,Σv, h̄, v̄, for t > 1. At time t = 1, we use parameters
θ1 = A,B,Σ,Σv,µ, v̄, where Σ and µ are the prior covariance and mean of h. The log-likelihood
L = log p(v1:T ) is also returned.

F0← 0, f0← 0, L← 0
for t← 1,T do
{ ft ,Ft , pt}= LDSFORWARD( ft−1,Ft−1,vt ;θt)
L← L+ log pt

end for
function LDSFORWARD( f ,F,v;θ)

Compute joint p(ht ,vt |v1:t−1):
µh← A f + h̄, µv← Bµh + v̄
Σhh← AFAT +Σh, Σvv← BΣhhBT +Σv, Σvh← BΣhh

Find p(ht |v1:t) by conditioning:
f ′← µh +ΣT

vhΣ−1
vv (v−µv), F ′← Σhh−ΣT

vhΣ−1
vv Σvh

Compute p(vt |v1:t−1):

p′← exp
(

− 1
2 (v−µv)

T Σ−1
vv (v−µv)

)

/
√

det2πΣvv

return f ′,F ′, p′

end function

Appendix A. Inference in the LDS

The LDS is defined by Equations (1,2) in the case of a single switch S = 1. The LDS Forward
and Backward passes define the important functions LDSFORWARD and LDSBACKWARD, which
we shall make use of for inference in the aSLDS.

FORWARD PASS (FILTERING)

The filtered posterior p(ht |v1:t) is a Gaussian which we parameterize with mean ft and covariance
Ft . These parameters can be updated recursively using p(ht |v1:t) ∝ p(ht ,vt |v1:t−1), where the joint
distribution p(ht ,vt |v1:t−1) has statistics (see Appendix (B))

µh = A ft−1 + h̄, µv = Bµh + v̄

Σhh = AFt−1AT +Σh, Σvv = BΣhhBT +Σv, Σvh = BΣhh.

We may then find p(ht |v1:t) by conditioning p(ht ,vt |v1:t−1) on vt , see Appendix (C). This gives rise
to Algorithm (4).

BACKWARD PASS

The smoothed posterior p(ht |v1:T )≡N (gt ,Gt) can be computed recursively using:

p(ht |v1:T ) =
Z

ht+1

p(ht |ht+1,v1:T )p(ht+1|v1:T ) =
Z

ht+1

p(ht |ht+1,v1:t)p(ht+1|v1:T )

where p(ht |ht+1,v1:t) may be obtained from the joint distribution

p(ht ,ht+1|v1:t) = p(ht+1|ht)p(ht |v1:t) (19)
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Algorithm 5 LDS Backward Pass. Compute the smoothed posteriors p(ht |v1:T ). This requires the
filtered results from Algorithm (4).

GT ← FT , gT ← fT

for t← T −1,1 do
{gt ,Gt} = LDSBACKWARD(gt+1,Gt+1, ft ,Ft ;θt+1)

end for
function LDSBACKWARD(g,G, f ,F;θ)

µh← A f + h̄, Σh′h′ ← AFAT +Σh, Σh′h← AF←−
Σ ← Ft −ΣT

h′hΣ−1
h′h′Σh′h,

←−
A ← ΣT

h′hΣ−1
h′h′ ,

←−m ← f −←−A µh

g′←←−A g+←−m , G′←←−A G
←−
A T +

←−
Σ

return g′,G′

end function

which itself can be obtained by forward propagation from p(ht |v1:t). Conditioning Equation (19) to
find p(ht |ht+1,v1:t) effectively reverses the dynamics,

ht =
←−
At ht+1 +

←−ηt

where
←−
At and←−η t ∼N (←−mt ,

←−
Σt ) are found using the conditioned Gaussian results in Appendix (C)—

these are explicitly given in Algorithm (5). Then averaging the reversed dynamics over p(ht+1|v1:T )
we find that p(ht |v1:T ) is a Gaussian with statistics

gt =
←−
At gt+1 +←−mt , Gt =

←−
At Gt+1

←−
At

T +
←−
Σt .

This Backward Pass is given in Algorithm (5). For parameter learning of the A matrix, the smoothed
statistic

〈
hthT

t+1

〉
is required. Using the above formulation, this is given by

←−
At Gt+1 + 〈ht〉

〈
hT

t+1

〉
.

This is much simpler than the standard expressions cited in Shumway and Stoffer (2000) and Roweis
and Ghahramani (1999).

Appendix B. Gaussian Propagation

Let y be linearly related to x through y = Mx + η, where η ∼ N (µ,Σ), and x ∼ N (µx,Σx). Then
p(y) =

R

x p(y|x)p(x) is a Gaussian with mean Mµx +µ and covariance MΣxMT +Σ.

Appendix C. Gaussian Conditioning

For a joint Gaussian distribution over the vectors x and y with means µx, µy and covariance elements
Σxx,Σxy,Σyy, the conditional p(x|y) is a Gaussian with mean µx + ΣxyΣ−1

yy (y−µy) and covariance
Σxx−ΣxyΣ−1

yy Σyx.

Appendix D. Collapsing Gaussians

The user may provide any algorithm of their choice for collapsing a set of Gaussians to a smaller
set of Gaussians (Titterington et al., 1985). Here, to be explicit, we present a simple one which is
fast, but has the disadvantage that no spatial information about the mixture is used.
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First, we describe how to collapse a mixture to a single Gaussian: We may collapse a mix-
ture of Gaussians p(x) = ∑i piN (x|µi,Σi) to a single Gaussian with mean ∑i piµi and covariance
∑i pi

(
Σi +µiµT

i

)
−µµT.

To collapse a mixture to a K-component mixture we retain the K−1 Gaussians with the largest
mixture weights—the remaining N−K Gaussians are simply merged to a single Gaussian using the
above method. The alternative of recursively merging the two Gaussians with the lowest mixture
weights gave similar experimental performance.

More sophisticated methods which retain some spatial information would clearly be potentially
useful. The method presented in Lerner et al. (2000) is a suitable approach which considers remov-
ing Gaussians which are spatially similar (and not just low-weight components), thereby retaining
diversity over the possible solutions.

Appendix E. The Discrete-Continuous Factorization Viewpoint

An alternative viewpoint is to proceed analogously to the Rauch-Tung-Striebel correction method
for the LDS (Grewal and Andrews, 1993):

p(ht ,st |v1:T ) = ∑
st+1

Z

ht+1

p(st ,ht ,ht+1,st+1|v1:T )

= ∑
st+1

p(st+1|v1:T )
Z

ht+1

p(ht ,st |ht+1,st+1,v1:t)p(ht+1|st+1,v1:T )

= ∑
st+1

p(st+1|v1:T )〈p(ht |ht+1,st+1,st ,v1:t)p(st |ht+1,st+1,v1:t)〉

≈ ∑
st+1

p(st+1|v1:T )〈p(ht |ht+1,st+1,st ,v1:t)〉〈p(st |st+1,v1:T )〉
︸ ︷︷ ︸

p(st |st+1,v1:T )

(20)

where angled brackets 〈·〉 denote averages with respect to p(ht+1|st+1,v1:T ). Whilst the factorized
approximation in Equation (20) may seem severe, by comparing Equations (20) and (10) we see that
it is equivalent to the apparently milder assumption p(ht+1|st ,st+1,v1:T )≈ p(ht+1|st+1,v1:T ). Hence
this factorized approximation is equivalent to the ‘standard’ EC approach in which the dependency
on st is dropped.
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Abstract

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences
and social sciences. Model selection is a commonly used method to find such models, but usually
involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being
used as a computationally feasible alternative to model selection. Therefore it is important to study
Lasso for model selection purposes.

In this paper, we prove that a single condition, which we call the Irrepresentable Condition,
is almost necessary and sufficient for Lasso to select the true model both in the classical fixed p
setting and in the large p setting as the sample size n gets large. Based on these results, sufficient
conditions that are verifiable in practice are given to relate to previous works and help applications
of Lasso for feature selection and sparse representation.

This Irrepresentable Condition, which depends mainly on the covariance of the predictor vari-
ables, states that Lasso selects the true model consistently if and (almost) only if the predictors that
are not in the true model are “irrepresentable” (in a sense to be clarified) by predictors that are in
the true model. Furthermore, simulations are carried out to provide insights and understanding of
this result.

Keywords: Lasso, regularization, sparsity, model selection, consistency

1. Introduction

A vastly popular and successful approach in statistical modeling is to use regularization penalties in
model fitting (Hoerl and Kennard, 1970). By jointly minimizing the empirical error and penalty, one
seeks a model that not only fits well and is also “simple” to avoid large variation which occurs in
estimating complex models. Lasso (Tibshirani, 1996) is a successful idea that falls into this category.
Its popularity is largely because the regularization resulting from Lasso’s L1 penalty leads to sparse
solutions, that is, there are few nonzero estimates (among all possible choices). Sparse models are
more interpretable and often preferred in the sciences and social sciences. However, obtaining such
models through classical model selection methods usually involves heavy combinatorial search.
Lasso, of which the entire regularization path can be computed in the complexity of one linear
regression (Efron et al., 2004; Osborne et al., 2000b), provides a computationally feasible way for
model selection (also see, for example, Zhao and Yu, 2004; Rosset, 2004). However, in order to use
Lasso for model selection, it is necessary to assess how well the sparse model given by Lasso relates
to the true model. We make this assessment by investigating Lasso’s model selection consistency
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under linear models, that is, when given a large amount of data under what conditions Lasso does
and does not choose the true model.

Assume our data is generated by a linear regression model

Yn = Xnβn + εn.

where εn = (ε1, ...,εn)
T is a vector of i.i.d. random variables with mean 0 and variance σ2. Yn is an

n×1 response and Xn = (Xn
1 , ...,Xn

p) = ((xn
1)

T , ...,(xn
n)

T )T is the n× p design matrix where X n
i is its

ith column (ith predictor) and xn
j is its jth row ( jth sample). βn is the vector of model coefficients.

The model is assumed to be “sparse”, that is, some of the regression coefficients βn are exactly zero
corresponding to predictors that are irrelevant to the response. Unlike classical fixed p settings, the
data and model parameters β are indexed by n to allow them to change as n grows.

The Lasso estimates β̂n = (β̂n
1, ..., β̂

n
j , ...)

T are defined by

β̂n(λ) = argmin
β

‖Yn −Xnβ‖2
2 +λ‖β‖1, (1)

where ‖ · ‖1 stands for the L1 norm of a vector which equals the sum of absolute values of the
vector’s entries.

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate. Setting λ = 0
reverses the Lasso problem to Ordinary Least Squares which minimizes the unregularized empirical
loss. On the other hand, a very large λ will completely shrink β̂n to 0 thus leading to the empty or
null model. In general, moderate values of λ will cause shrinkage of the solutions towards 0, and
some coefficients may end up being exactly 0.

Under some regularity conditions on the design, Knight and Fu (2000) have shown estimation
consistency for Lasso for fixed p and fixed βn (i.e., p and βn are independent of n) as n → ∞. In
particular, they have shown that β̂n(λn) →p β and asymptotic normality of the estimates provided

that λn = o(n). In addition, it is shown in the work that for λn ∝ n
1
2 (on the same order of n

1
2 ), as

n → ∞ there is a non-vanishing positive probability for lasso to select the true model.
On the model selection consistency front, Meinshausen and Buhlmann (2006) have shown that

under a set of conditions, Lasso is consistent in estimating the dependency between Gaussian vari-
ables even when the number of variables p grows faster than n. Addressing a slightly different but
closely related problem, Leng et al. (2004) have shown that for a fixed p and orthogonal designs,
the Lasso estimate that is optimal in terms of parameter estimation does not give consistent model
selection. Furthermore, Osborne et al. (1998), in their work of using Lasso for knot selection for
regression splines, noted that Lasso tend to pick up knots in close proximity to one another. In
general, as we will show, if an irrelevant predictor is highly correlated with the predictors in the true
model, Lasso may not be able to distinguish it from the true predictors with any amount of data and
any amount of regularization.

Since using the Lasso estimate involves choosing the appropriate amount of regularization, to
study the model selection consistency of the Lasso, we consider two problems: whether there ex-
ists a deterministic amount of regularization that gives consistent selection; or, for each random
realization whether there exists a correct amount of regularization that selects the true model. Our
main result shows there exists an Irrepresentable Condition that, except for a minor technicality,
is almost necessary and sufficient for both types of consistency. Based on this condition, we give
sufficient conditions that are verifiable in practice. In particular, in one example our condition co-
incides with the “Coherence” condition in Donoho et al. (2004) where the L2 distance between the
Lasso estimate and true model is studied in a non-asymptotic setting.
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After we had obtained our almost necessary and sufficient condition result, it was brought to our
attention of an independent result in Meinshausen and Buhlmann (2006) where a similar condition
to the Irrepresentable Condition was obtained to prove a model selection consistency result for
Gaussian graphical model selection using the Lasso. Our result is for linear models (with fixed p
and p growing with n) and it could accommodate non-Gaussian errors and non-Gaussian designs.
Our analytical approach is direct and we thoroughly explain through special cases and simulations
the meaning of this condition in various cases. We also make connections to previous theoretical
studies and simulations on Lasso (e.g., Donoho et al., 2004; Zou et al., 2004; Tibshirani, 1996).

The rest of the paper is organized as follows. In Section 2, we describe our main result—
the Irrepresentable Condition for Lasso to achieve consistent selection and prove that it is almost
necessary and sufficient. We then elaborate on the condition by extending to other sufficient con-
ditions that are more intuitive and verifiable to relate to previous theoretical and simulation studies
of Lasso. Sections 3 contains simulation results to illustrate our result and to build heuristic sense
of how strong the condition is. To conclude, Section 4 compares Lasso with thresholding and
discusses alternatives and possible modifications of Lasso to achieve selection consistency when
Irrepresentable Condition fails.

2. Model Selection Consistency and Irrepresentable Conditions

An estimate which is consistent in term of parameter estimation does not necessarily consistently
select the correct model (or even attempt to do so) where the reverse is also true. The former requires

β̂n −βn →p 0, as n → ∞

while the latter requires

P({i : β̂n
i 6= 0} = {i : βn

i 6= 0}) → 1, as n → ∞.

In general, we desire our estimate to have both consistencies. However, to separate the selection
aspect of the consistency from the parameter estimation aspect, we make the following definitions
about Sign Consistency that does not assume the estimates to be estimation consistent.
Definition 1 An estimate β̂n is equal in sign with the true model βn which is written

β̂n =s βn

if and only if
sign(β̂n) = sign(βn)

where sign(·) maps positive entry to 1, negative entry to -1 and zero to zero, that is, β̂n matches the
zeros and signs of β.

Sign consistency is stronger than the usual selection consistency which only requires the zeros
to be matched, but not the signs. The reason for using sign consistency is technical. It is needed
for proving the necessity of the Irrepresentable Condition (to be defined) to avoid dealing with
situations where a model is estimated with matching zeros but reversed signs. We also argue that an
estimated model with reversed signs can be misleading and hardly qualifies as a correctly selected
model.

Now we define two kinds of sign consistencies for Lasso depending on how the amount of
regularization is determined.
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Definition 2 Lasso is Strongly Sign Consistent if there exists λn = f (n), that is, a function of n
and independent of Yn or Xn such that

lim
n→∞

P(β̂n(λn) =s βn) = 1.

Definition 3 The Lasso is General Sign Consistent if

lim
n→∞

P(∃λ ≥ 0, β̂n(λ) =s βn) = 1.

Strong Sign Consistency implies one can use a preselected λ to achieve consistent model se-
lection via Lasso. General Sign Consistency means for a random realization there exists a correct
amount of regularization that selects the true model. Obviously, strong sign consistency implies
general sign consistency. Surprisingly, as implied by our results, the two kinds of sign consistencies
are almost equivalent to one condition. To define this condition we need the following notations on
the design.

Without loss of generality, assume βn = (βn
1, ...,β

n
q,βn

q+1, ...β
n
p)

T where βn
j 6= 0 for j = 1, ..,q

and βn
j = 0 for j = q + 1, ..., p. Let βn

(1) = (βn
1, ...,β

n
q)

T and βn
(2) = (βn

q+1, ...,β
n
p). Now write Xn(1)

and Xn(2) as the first q and last p−q columns of Xn respectively and let Cn = 1
n Xn

T Xn. By setting
Cn

11 = 1
n Xn(1)′Xn(1), Cn

22 = 1
n Xn(2)′Xn(2), Cn

12 = 1
n Xn(1)′Xn(2) and Cn

21 = 1
n Xn(2)′Xn(1). Cn can

then be expressed in a block-wise form as follows:

Cn =

(

Cn
11 Cn

12
Cn

21 Cn
22

)

.

Assuming Cn
11 is invertible, we define the following Irrepresentable Conditions

Strong Irrepresentable Condition. There exists a positive constant vector η

|Cn
21(C

n
11)

−1sign(βn
(1))| ≤ 1−η,

where 1 is a p−q by 1 vector of 1’s and the inequality holds element-wise.
Weak Irrepresentable Condition.

|Cn
21(C

n
11)

−1sign(βn
(1))| < 1,

where the inequality holds element-wise.
Weak Irrepresentable Condition is slightly weaker than Strong Irrepresentable Condition. Cn

can converge in ways that entries of |Cn
21(C

n
11)

−1sign(βn
(1))| approach 1 from the below so that Weak

Condition holds but the strict inequality fails in the limit. For a fixed p and βn = β, the distinction
disappears for random designs when, for example, xn

i ’s are i.i.d. realizations with covariance matrix
C, since then the two conditions are equivalent to |C21(C11)

−1sign(β(1))| < 1 almost surely.
The Irrepresentable Conditions closely resembles a regularization constraint on the regression

coefficients of the irrelevant covariates (Xn(2))) on the relevant covariates (Xn(1)). In particular,
when signs of the true β are unknown, for the Irrepresentable Condition to hold for all possible
signs, we need the L1 norms of the regression coefficients to be smaller than 1. To see this, recall
for (2) to hold for all possible sign(β(1)), we need

|((Xn(1)T Xn(1))−1Xn(1)T Xn(2)| = |(Cn
11)

−1Cn
12| < 1−η, (2)
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that is, the total amount of an irrelevant covariate represented by the covariates in the true model is
not to reach 1 (therefore the name “irrepresentable” ).

As a preparatory result, the following proposition puts a lower bound on the probability of
Lasso picking the true model which quantitatively relates the probability of Lasso selecting the
correct model and how well Strong Irrepresentable Condition holds:
Proposition 1. Assume Strong Irrepresentable Condition holds with a constant η > 0 then

P(β̂n(λn)) =s βn) ≥ P(An ∩Bn)

for

An = {|(Cn
11)

−1W n(1)| <
√

n(|βn
(1)|−

λn

2n
|(C11

n )−1sign(βn
(1))|)},

Bn = {|Cn
21(C

n
11)

−1W n(1)−W n(2)| ≤ λn

2
√

n
η},

where

W n(1) =
1√
n

Xn(1)′εn and
1√
n

W n(2) = Xn(2)′εn.

It can be argued (see the proof of Proposition 1 in the appendix) that An implies the signs of
of those of βn

(1) are estimated correctly. And given An, Bn further imply β̂n
(2) are shrunk to zero.

The regularization parameter λn trades off the size of these two events. Smaller λn leads to larger
An but smaller Bn which makes it likely to have Lasso pick more irrelevant variables. On the other
hand, larger constant η always leads to larger Bn and have no impact on An. So when Strong
Irrepresentable Condition holds with a larger constant η, it is easier for Lasso to pick up the true
model. This is quantitatively illustrated in Simulation 3.2.

Our main results relate Strong and Weak Irrepresentable Conditions with strong and general
sign consistency. We describe the results for small q and p case next followed by results for large q
and p in Section 2.2. Then, analysis and sufficient conditions are given in Section 2.3 to achieve a
better understanding of the Irrepresentable Conditions and relate to previous works.

2.1 Model Selection Consistency for Small q and p

In this section, we work under the classical setting where q, p and βn are all fixed as n → ∞. In this
setting, it is natural to assume the following regularity conditions:

Cn →C, as n → ∞. (3)

where C is a positive definite matrix. And,

1
n

max
1≤i≤n

((xn
i )

T xn
i ) → 0, as n → ∞. (4)

In practice, the covariates are usually scaled so that the diagonal elements of Cn are all 1’s. The
convergence in (3) and (4) are deterministic. However, the results in this is section also holds quite
generally for random designs. Specifically, in the case of a random design, X can be conditioned
on and the asymptotic results still apply if the probability of the set where (3) and (4) hold is 1. In
general, (3) and (4) are weak in the sense that if one assumes xi are i.i.d. with finite second moments
then C = E((xn

i )
T xn

i ),
1
n Xn

T Xn →a.s. C and max1≤i≤n xT
i xi = op(n), thus (3) and (4) hold naturally.
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Under these conditions we have the following result.
Theorem 1. For fixed q, p and βn = β, under regularity conditions (3) and (4), Lasso is strongly sign
consistent if Strong Irrepresentable Condition holds. That is, when Strong Irrepresentable Condition
holds, for ∀λn that satisfies λn/n → 0 and λn/n

1+c
2 → ∞ with 0 ≤ c < 1, we have

P(β̂n(λn) =s βn) = 1−o(e−nc
).

A proof of Theorem 1 can be found in the appendix.
Theorem 1 states that, if Strong Irrepresentable Condition holds, then the probability of Lasso

selecting the true model approaches 1 at an exponential rate while only the finite second moment
of the noise terms is assumed. In addition, from Knight and Fu (2000) we know that for λn = o(n)
Lasso also has consistent estimation and asymptotic normality. Therefore Strong Irrepresentable
Condition allows for consistent model selection and parameter estimation simultaneously. On the
other hand, Theorem 2 shows that Weak Irrepresentable Condition is also necessary even for the
weaker general sign consistency.
Theorem 2. For fixed p, q and βn = β, under regularity conditions (3) and (4), Lasso is general sign
consistent only if there exists N so that Weak Irrepresentable Condition holds for n > N.

A proof of Theorem 2 can be found in the appendix.
Therefore, Strong Irrepresentable Condition implies strong sign consistency implies general

sign consistency implies Weak Irrepresentable Condition. So except for the technical difference
between the two conditions, Irrepresentable Condition is almost necessary and sufficient for both
strong sign consistency and general sign consistency.

Furthermore, under additional regularity conditions on the noise terms εn
i , this “small” p result

can be extended to the “large” p case. That is, when p also tends to infinity “not too fast” as n tends
to infinity, we show that Strong Irrepresentable Condition, again, implies Strong Sign Consistency
for Lasso.

2.2 Model Selection Consistency for Large p and q

In the large p and q case, we allow the dimension of the designs Cn and model parameters βn grow as
n grows, that is, p = pn and q = qn are allowed to grow with n. Consequently, the assumptions and
regularity conditions in Section 2.1 becomes inappropriate as Cn do not converge and βn may change
as n grows. Thus we need to control the size of the smallest entry of βn

(1), bound the eigenvalues of
Cn

11 and have the design scale properly. Specifically, we assume:
There exists 0 ≤ c1 < c2 ≤ 1 and M1,M2,M3,M4 > 0 so the following holds:

1
n
(Xn

i )′Xn
i ≤ M1 for ∀i, (5)

α′Cn
11α ≥ M2, for ∀‖α‖2

2 = 1, (6)

qn = O(nc1), (7)

n
1−c2

2 min
i=1,..,q

|βn
i | ≥ M3. (8)

Condition (5) is trivial since it can always be achieved by normalizing the covariates. (6) re-
quires the design of the relevant covariates have eigenvalues bounded from below so that the inverse
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of Cn
11 behaves well. For a random design, if the eigenvalues of the population covariance matrix

are bounded from below and qn/n → ρ < 1 then (6) usually follows Bai (1999).
The main conditions are (7) and (8) which are similar to the ones in Meinshausen (2005) for

Gaussian graphical models. (8) requires a gap of size nc2 between the decay rate of βn
(1) and n−

1
2 .

Since the noise terms aggregate at a rate of n− 1
2 , this prevents the estimation to be dominated by the

noise terms. Condition (7) is a sparsity assumption which requires square root of the size of the true
model

√
qn to grow at a rate slower than the rate gap which consequently prevents the estimation

bias of the Lasso solutions from dominating the model parameters.
Under these conditions, we have the following result:

Theorem 3. Assume εn
i are i.i.d. random variables with finite 2k’th moment E(εn

i )
2k < ∞ for

an integer k > 0. Under conditions (5), (6), (7) and (8), Strong Irrepresentable Condition implies
that Lasso has strong sign consistency for pn = o(n(c2−c1)k). In particular, for ∀λn that satisfies
λn√

n = o(n
c2−c1

2 ) and 1
pn

( λn√
n)2k → ∞, we have

P(β̂n(λn) =s βn) ≥ 1−O(
pnnk

λ2k
n

) → 1 as n → ∞.

A proof of Theorem 3 can be found in the appendix.
Theorem 3 states that Lasso can select the true model consistently given that Strong Irrepre-

sentable Condition holds and the noise terms have some finite moments. For example, if only the
second moment is assumed, p is allowed to grow slower than nc2−c1 . If all moments of the noise
exist then, by Theorem 3, p can grow at any polynomial rate and the probability of Lasso selecting
the true model converges to 1 at a faster rate than any polynomial rate. In particular, for Gaussian
noises, we have:
Theorem 4 (Gaussian Noise). Assume εn

i are i.i.d. Gaussian random variables. Under conditions
(5), (6), (7) and (8), if there exists 0≤ c3 < c2−c1 for which pn = O(enc3 ) then strong Irrepresentable

Condition implies that Lasso has strong sign consistency. In particular, for λn ∝ n
1+c4

2 with c3 < c4 <
c2 − c1,

P(β̂n(λn) =s βn) ≥ 1−o(e−nc3
) → 1 as n → ∞.

A proof of Theorem 4 can be found in the appendix. As discussed in the introduction, this result
has also been obtained independently by Meinshausen and Buhlmann (2006) in their study of high
dimensional multivariate Gaussian random variables. This result is obtained more directly for linear
models and differs from theirs by the use of fixed designs to accommodate non-Gaussian designs.
pn is also allowed to grow slightly faster than the polynomial rates used in that work.

It is an encouraging result that using Lasso we can allow p to grow much faster than n (up to
exponentially fast) while still allow for fast convergence of the probability of correct model selection
to 1. However, we note that this fast rate is not achievable for all noise distributions. In general,
the result of Theorem 3 is tight in the sense that if higher moments of the noise distribution do not
exist then the tail probability of the noise terms does not vanish quick enough to allow p to grow at
higher degree polynomial rates.

Through Theorem 3 and 4, we have shown, for cases with large p—(polynomial in n given that
noise have finite moments, exponential in n for Gaussian noises), Strong Irrepresentable Condition
still implies the probability of Lasso selecting the true model converges to 1 at a fast rate. We
have found it difficult to show necessariness of Irrepresentable Condition for the large p setting in
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a meaningful way. This is mainly due to the technical difficulty that arises from dealing with high
dimensional design matrices. However, by the results for the small p case, the necessariness of
Irrepresentable Condition is implied to some extent.

2.3 Analysis and Sufficient Conditions for Strong Irrepresentable Condition

In general, the Irrepresentable Condition is non-trivial when the numbers of zeros and nonzeros
are of moderate sizes, for example, 3. Particularly since we do not know sign(β) before hand, we
need the Irrepresentable Condition to hold for every possible combination of different signs and
placement of zeros. A closer look discloses that (2) does not depend on Cn

22, that is, the covariance
of the covariates that are not in the true model. It linearly depends on Cn

21, the correlations between
the covariates that are in the model and the ones that are not. For the Cn

11 part, except for special
cases (Corollary 1) we also want the correlations between covariates that are in the model to be
small otherwise Cn

11 may contain small eigenvalues which leads to large eigenvalues for (Cn
11)

−1

and results in the violation of (2).
To further elaborate and relate to previous works, we give some sufficient conditions in the fol-

lowing corollaries such that Strong Irrepresentable Condition is guaranteed. All diagonal elements
of Cn are assumed to be 1 which is equivalent to normalizing all covariates in the model to the same
scale since Strong Irrepresentable Condition is invariant under any common scaling of Cn. Proofs
of the corollaries are included in the appendix.
Corollary 1. (Constant Positive Correlation) Suppose

Cn =







1 . . . rn
...

. . .
...

rn . . . 1







and there exists c > 0 such that 0 < rn ≤ 1
1+cq , then Strong Irrepresentable Condition holds.

Corollary 1 has particularly strong implications for applications of Lasso where the covariates
of the regression are designed with a symmetry so that the covariates share a constant correlation.
Under such a design, this result implies that Strong Irrepresentable Condition holds even for p
growing with n as long as q remains fixed and consequently ensures that Lasso selects the true model
asymptotically. However, when the design is random or, for example, arises from an observational
study we usually do not have the constant correlation. Correspondingly, we have the following
result on bounded correlations.
Corollary 2. (Bounded Correlation) Suppose β has q nonzero entries. Cn has 1’s on the diagonal
and bounded correlation |ri j| ≤ c

2q−1 for a constant 0 ≤ c < 1 then Strong Irrepresentable Condition
holds.

Corollary 2 verifies the common intuition that when the design matrix is slightly correlated
Lasso works consistently. And the larger q is, the smaller the bound on correlation becomes. For a
q of considerable size, the bound becomes too small to meet in practice. Unfortunately, this bound
is also tight in the following sense: when the bound is violated, one can construct

Cn =







1 . . . r
...

. . .
...

r . . . 1
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with r ≤ − 1
2q−1 and make the nonzero βi’s all positive then |C21(C11)

−1sign(β(1))| ≥ 1 holds
element-wise which fails Strong Irrepresentable Condition.

In comparison, Donoho et al. (2004) showed that, in a non-asymptotic setup, the L2 distance
between the sparsest estimate and the true model is bounded by a linear multiple of the noise level
if

q < (1/r +1)/2,

where r = maxi, j |Cn
i j| (called Coherence). This is equivalent to

max
i, j

|Cn
i j| <

1
2q−1

which coincides with the condition of Corollary 2. Interestingly, for the same result to apply to the
Lasso estimates, Donoho et al. (2004) required tighter bound on the correlation, that is, maxi, j |Cn

i j|<
1

4q−1 .
Another typical design used for Lasso simulations (e.g., Tibshirani, 1996; Zou et al., 2004) is

setting the correlation between X n
i and Xn

j to be ρ|i− j| with an constant 0 < ρ < 1. Although this
design introduces more sophisticated correlation structure between the predictors and does not seem
restrictive, the following corollary states under this design Strong Irrepresentable Condition holds
for any q.
Corollary 3. (Power Decay Correlation) Suppose for any i, j = 1, ..., p, Cn

i j = (ρn)
|i− j|, for |ρn| ≤

c < 1, then Strong Irrepresentable Condition holds.
In addition, as instances of Corollary 2, under some simplified designs which are often used for

theoretical studies, Lasso is consistent for model selection.
Corollary 4. If

• the design is orthogonal, or

• q = 1 and the predictors are normalized with correlations bounded from 1, or

• p = 2 and the predictors are normalized with correlations bounded from 1

then Strong Irrepresentable Condition holds.
One additional informative scenario to consider is a block-wise design. As it is commonly

assumed in practice, this assumed scenario is a hybrid between the most highly structured designs
like the orthogonal design and a general design. For this design, it can be shown that
Corollary 5. For a block-wise design such that

Cn =







Bn
1 . . . 0
...

. . .
...

0 . . . Bn
k







with βn written as βn = (bn
1, ...,b

n
k) to correspond to different blocks, Strong Irrepresentable Condi-

tion holds if and only if there exists a common 0 < η≤ 1 for which Strong Irrepresentable Condition
holds for all Bn

j and bn
j , j = 1, ...,k.

Combinations of Corollary 5 and Corollary 1-4 cover some interesting cases such as models
with 2×2 design blocks and models where 0, 1 or all parameters out of each block are nonzero.
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Through Corollaries 1 - 5, we have shown that under specific designs, which are commonly used
or assumed in previous works, Irrepresentable Condition holds which leads to Lasso’s consistency in
model selection. Next, we demonstrate Lasso’s model selection consistency and the Irrepresentable
Conditions using simulations.

3. Simulation Studies

In this section, we give simulation examples to illustrate the established results. The first simulation
illustrates the simplest case (p = 3, q = 2, cf. Corollary 4) under which Lasso is inconsistent
for model selection. We also analyze the Lasso algorithm to explain how Lasso is misled into
inconsistency when Irrepresentable Conditions fail. The second simulation quantitatively relates
the consistency (inconsistency) of Lasso to how well the Strong Irrepresentable Condition holds
(fails) by counting the percentages of Lasso selecting the true model and comparing it to η∞ =
1−‖Cn

21(C
n
11)

−1sign(βn
(1))‖∞. In the last simulation, we establish a heuristic sense of how strong

our Strong Irrepresentable Condition is for different values of p and q by observing how often the
condition holds when C is sampled from Wishart(p, p) distribution.

3.1 Simulation Example 1: Consistency and Inconsistency with 3 Variables

In this simple example, we aim to give some practical sense of the Lasso algorithm’s behaviors
when Strong Irrepresentable Condition holds and fails. We first generate i.i.d. random variables
xi1, xi2, ei and εi with variance 1 and mean 0 for i = 1, ...,n and n = 1000. A third predictor xi3 is
generated to be correlated with xi1 and xi2 by

xi3 =
2
3

xi1 +
2
3

xi2 +
1
3

ei,

then by construction, xi3 is also i.i.d. with mean 0 and variance 1.
The response is generated by

Yi = xi1β1 + xi2β2 + εi.

Lasso is applied (through the LARS algorithm by Efron et al., 2004) on Y , X1, X2 and X3 in two
settings: (a) β1 = 2, β2 = 3 ; and (b) β1 = −2, β2 = 3. In both settings, X(1) = (X1,X2), X(2) = X3

and through (2), it is easy to get C21C−1
11 = ( 2

3 , 2
3). Therefore Strong Irrepresentable Condition fails

for setting (a) and holds for setting (b).
Now we investigate how these two set-ups lead to Lasso’s sign consistency and inconsistency

respectively. As we vary the amount of regularization (controlled by λ), we get different Lasso solu-
tions which form the Lasso path (as illustrated by the left and right panels of Figure 1). This Lasso
path follows the least angle direction (as described in for example, Efron et al. (2004) and Zhao and
Yu (2004)), that is, β̂(λ) progresses in coordinates on which the absolute values of inner products
between Y ∗(λ) := Y −X β̂(λ) and the predictors are the largest while entries of β̂(λ) corresponding
to smaller inner products are left at zero.

In this example,

|X ′
3Y ∗| = |(2

3
X1 +

2
3

X2 +
1
3

e)′Y ∗|

≥ 4
3

min(|X ′
1Y

∗|, |X ′
2Y

∗|)(sign(X ′
1Y ∗)+ sign(X ′

2Y ∗)
2

)− 1
3
|e′Y ∗|.
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(a) β1 = 2, β2 = 3 (b) β1 = −2, β2 = 3

Figure 1: An example to illustrate Lasso’s (in)consistency in Model Selection. The Lasso paths for
settings (a) and (b) are plotted in the left and right panel respectively.

For large n, e′ ∗Y ∗ is on a smaller order than the rest of the terms. If β̂3 is zero, the signs of X1’s
and X2’s inner products with Y agree with the signs of β̂1 and β̂2. Therefore for Lasso to be sign
consistent, the signs of β1 and β2 has to disagree which happens in setting (b) but not setting (a).

Consequently, in setting (a) Lasso does not shrink β̂3 to 0. Instead, the L1 regularization prefers
X3 over X1 and X2 as Lasso picks up X3 first and never shrinks it back to zero. For setting (b), Strong
Irrepresentable Condition holds and with a proper amount of regularization, Lasso correctly shrinks
β̂3 to 0.

3.2 Simulation Example 2: Quantitative Evaluation of Impact of Strong Irrepresentable
Condition on Model Selection

In this example, we give some quantitative sense on the relationship between the probability of
Lasso selecting the correct model and how well Strong Irrepresentable Condition holds (or fails).
First, we take n = 100 ,p = 32, q = 5 and β1 = (7,4,2,1,1)T and choose a small σ2 = 0.1 to allow
us to go into asymptotic quickly.

Then we would like to generate 100 designs of X as follows. We first sample a covariance
matrix S from Wishart(p,p) (see section 3.3 for details), then take n samples of Xi from N(0,S), and
finally normalize them to have mean squares 1 as in common applications of Lasso. Such generated
samples represent a variety of designs: some satisfy Strong Irrepresentable Condition with a large
η, while others fail the condition badly. To evaluate how well the Irrepresentable condition holds we
calculate η∞ = 1−‖Cn

21(C
n
11)

−1sign(βn
(1))‖∞. So if η∞ > 0, Strong Irrepresentable holds otherwise it
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1

Figure 2: Comparison of Percentage of Lasso Selecting the Correct Model and η∞. X-axis: η∞.
Y -axis: Percentage of Lasso Selecting the Correct Model.

fails. The η∞’s of the 100 simulated designs are within [−1.02,0.33] with 67 of them being smaller
than 0 and 33 of them bigger than 0.

For each design, we run the simulation 1000 times and examine general sign consistencies. Each
time, n samples of ε are generated from N(0,σ2) and Y = Xβ+ε are calculated. We then run Lasso
(through the LARS algorithm by Efron et al., 2004) to calculate the Lasso path. The entire path is
examined to see if there exists a model estimate that matches the signs of the true model. Then we
compute the percentage of runs that generated matched models for each design and compare it to
η∞ as shown in Figure 2.

As can be seen from Figure 2, when η∞ gets large, the percentage of Lasso selecting the correct
model goes up with the steepest increase happening around 0. For η∞ considerably larger than 0
(> 0.2) the percentage is close to 1. On the other hand, for η∞ considerably smaller than 0 (<−0.3)
there is little chance for Lasso to select the true model. In general, this is consistent with our result
(Proposition 1 and Theorem 1 to 4), as for η∞ > 0, if n is large enough, the probability of Lasso
selects the true model gets close to 1 which does not happen if η∞ < 0. This quantitatively illustrates
the importance of Strong Irrepresentable Condition for Lasso’s model selection performance.

3.3 Simulation Example 3: How Strong is Irrepresentable Condition?

As illustrated by Corollaries 1 to 4, Strong Irrepresentable Condition holds for some constrained
special settings. While in Section 3.1 and 3.2, we have seen cases where Irrepresentable Condition
fails. In this simulation, we establish some heuristic sense of how strong our Strong Irrepresentable
Condition is for different values of p and q.

For a given p, the set of Cn is the set of nonnegative definite matrix of size p. To measure the
size of the subset of Cn’s on which Irrepresentable Condition holds, the Wishart measure family
can be used. Since Strong Irrepresentable Condition holds for designs that are close to orthogonal
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p = 23 p = 24 p = 25 p = 26 p = 27 p = 28

q = 1
8 p 100% 93.7% 83.1% 68.6% 43.0% 19.5%

q = 2
8 p 72.7% 44.9% 22.3% 4.3% < 1% 0%

q = 3
8 p 48.3% 19.2% 3.4% < 1% 0% 0%

q = 4
8 p 33.8% 8.9% 1.3% 0% 0% 0%

q = 5
8 p 23.8% 6.7% < 1% 0% 0% 0%

q = 6
8 p 26.4% 7.1% < 1% 0% 0% 0%

q = 7
8 p 36.3% 12.0% 1.8% 0% 0% 0%

Table 1: Percentage of Simulated Cn that meet Strong Irrepresentable Condition.

(Corollary 2), we take the Wishart(p, p) measure which centers but does not concentrate around the
identity matrix.

In this simulation study, we sample Cn’s from white Wishart(p, p) and examine how often Irrep-
resentable Condition holds. For each p = 23,24,25,26,27,28 and correspondingly q = 1

8 p, 2
8 p, ..., 7

8 p
we generate 1000 Cn’s from Wishart and re-normalize it to have 1’s on the diagonal. Then we ex-
amine how often Irrepresentable Condition holds. The entries of β(1) are assumed to be positive,
otherwise a sign flip of the corresponding Xi’s can make the corresponding βi positive. The result is
shown in Table 1.

Table 1 shows that, when the true model is very sparse (q small), Strong Irrepresentable Con-
dition has some probability to hold which illustrates Corollary 2’s conclusion. For the extreme
case, q = 1, it has been proved to hold (see Corollary 4). However, in general, for large p and q,
Irrepresentable Condition rarely (measured by Wishart(p, p)) holds.

4. Discussions

In this paper, we have provided Strong and Weak Irrepresentable Conditions that are almost neces-
sary and sufficient for model selection consistency of Lasso under both small p and large p settings.
We have explored the meaning of the conditions through theoretical and empirical studies. Al-
though much of Lasso’s strength lies in its finite sample performance which is not the focus here,
our asymptotic results offer insights and guidance to applications of Lasso as a feature selection
tool, assuming that the typical regularity conditions are satisfied on the design matrix as in Knight
and Fu (2000). As a precaution, for data sets that can not be verified to satisfy the Irrepresentable
Conditions, Lasso may not select the model correctly. In comparison, traditional all subset meth-
ods like BIC and MDL are always consistent but computationally intractable for p of moderate
sizes. Thus, alternative computationally feasible methods that lead to selection consistency when
the condition fails are of interest.

In particular, for small p cases, if consistency is the only concern then thresholding (either
hard or soft) is an obvious choice that guarantees consistent selection. Since the OLS estimate
β̂OLS converges at a 1/

√
n rate, therefore a threshold that satisfies tn/

√
n → ∞ and tn → 0 leads to

consistent selection. However, as emphasized earlier, consistency does not mean good performance
in finite sample which is what matters in many applications where Lasso-type of technique is used.
In particular, when the linear system is over determined p > n, the approach is no longer applicable
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since the OLS estimates are not well defined. On the other hand, Theorem 3 and Theorem 4 indicate
that for cases where p may grow much faster then n, the Lasso still perform well.

To get some intuitive sense of how the thresholding performs comparing to the Lasso in finite
sample, we ran the same simulations as in Section 3.2 and examined the sign matching rate of
thresholding and compare it to the Lasso’s performance. Our observation is, when the sample size
is large, that is, in the asymptotic domain, even when Strong Irrepresentable Condition holds, Lasso
does not perform better than simple thresholding in term of variable selection. In the small sample
domain, however, Lasso seems to show an advantage which is consistent with the results reported
in other publications (e.g., Tibshirani, 1996).

Another alternative that selects model consistently in our simulations is given by Osborne et al.
(1998). They advise to use Lasso to do initial selection. Then a best subset selection (or a similar
procedure, for example, forward selection) should be performed on the initial set selected by Lasso.
This is loosely justified since, for instance, from Knight and Fu (2000) we know Lasso is consistent
for λ = o(n) and therefore can pick up all the true predictors if the amount of data is sufficient
(although it may over-select).

Finally, we think it is possible to directly construct an alternative regularization to Lasso that se-
lects model consistently under much weaker conditions and at the same time remains computation-
ally feasible. This relies on understanding why Lasso is inconsistent when Strong Irrepresentable
Condition fails: to induce sparsity, Lasso shrinks the estimates for the nonzero β’s too heavily.
When Strong Irrepresentable Condition fails, the irrelevant covariates are correlated with the rele-
vant covariates enough to be picked up by Lasso to compensate the over-shrinkage of the nonzero
β’s. Therefore, to get universal consistency, we need to reduce the amount of shrinkage on the β
estimates that are away from zero and regularize in a more similar fashion as l0 penalty. However,
as a consequence, this breaks the convexity of the Lasso penalty, therefore more sophisticated algo-
rithms are needed for solving the minimization problems. A different set of analysis is also needed
to deal with the local minima. This points towards our future work.
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Appendix A. Proofs

To prove Proposition 1 and the rest of the theorems, we state Lemma 1 which is a direct consequence
of KKT (Karush-Kuhn-Tucker) conditions:
Lemma 1. β̂n(λ) = (β̂n

1, ..., β̂
n
j , ...) are the Lasso estimates as defined by (1) if and only if

d‖Yn −Xnβ‖2
2

dβ j
|β j=β̂n

j
= λsign(β̂n

j) for j s.t. β̂n
j 6= 0

|d‖Yn −Xnβ‖2
2

dβ j
|β j=β̂n

j
| ≤ λ for j s.t. β̂n

j = 0.

With Lemma 1, we now prove Proposition 1.
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Proof of Proposition 1. First, by definition

β̂n = argmin
β

[
n

∑
i=1

(Yi −Xiβ)2 +λn‖β‖1].

Let ûn = β̂n −βn, and define

Vn(u
n) =

n

∑
i=1

[(εi −Xiu
n)2 − ε2

i ]+λn‖un +β‖1,

we have

ûn = argmin
un

[
n

∑
i=1

(εi −Xiu
n)2 +λn‖un +β‖1].

= argmin
un

Vn(u
n). (9)

The first summation in Vn(un) can be simplified as follows:

n

∑
i=1

[(εi −Xiu
n)2 − ε2

i ]

=
n

∑
i=1

[−2εiXiu
n +(un)T XT

i Xiu
n],

= −2W n(
√

nun)+(
√

nun)TCn(
√

nun), (10)

where W n = (Xn)T εn/
√

n. Notice that (10) is always differentiable w.r.t. un and

d[−2W n(
√

nun)+(
√

nun)TCn(
√

nun)]

dun = 2
√

n(Cn(
√

nun)−W n). (11)

Let ûn(1), W n(1) and ûn(2), W n(2) denote the first q and last p−q entries of ûn and W n respec-
tively. Then by definition we have:

{sign(β̂n
j) = sign(βn

j), for j = 1, ...,q.} ∈ {sign(βn
(1))û

n(1) > −|βn
(1)|}.

Then by Lemma 1, (9), (11) and uniqueness of Lasso solutions, if there exists ûn, the following
holds

Cn
11(

√
nûn(1))−W n(1) = − λn

2
√

n
sign(βn

(1)),

|ûn(1)| < |βn
(1)|,

− λn

2
√

n
1 ≤Cn

21(
√

nûn(1))−W n(2) ≤ λn

2
√

n
1.

then sign(β̂n
(1)) = sign(βn

(1)) and β̂n
(2) = un(2) = 0.

Substitute ûn(1), ûn(2) and bound the absolute values, the existence of such µ̂n is implied by

|(Cn
11)

−1W n(1)| <
√

n(|βn
(1)|−

λn

2n
|(Cn

11)
−1sign(βn

(1))|), (12)
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|Cn
21(C

n
11)

−1W n(1)−W n(2)| ≤ λn

2
√

n
(1−|Cn

21(C
n
11)

−1sign(βn
(1))|) (13)

(12) coincides with An and (13)∈ Bn. This proves Proposition 1.
Using Proposition 1, we now prove Theorem 1.

Proof of Theorem 1. First, by Proposition 1 we have By Proposition 1, we have

P(β̂n(λn) =s β) ≥ P(An ∩Bn).

Whereas

1−P(An ∩Bn) ≤ P(Ac
n)+P(Bc

n)

≤
q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )+
p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi).

where zn = (zn
1, ...,z

n
p)

′ = (Cn
11)

−1W n(1), ζn = (ζn
1, ...,ζ

n
p−q)

′ = Cn
21(C

n
11)

−1W n(1)−W n(2) and b =

(bn
1, ...,b

n) = (Cn
11)

−1sign(βn
(1)).

It is standard result (see for example, Knight and Fu, 2000) that under regularity conditions (3)
and (4),

(Cn
11)

−1W n(1) →d N(0,C−1
11 ),

and
Cn

21(C
n
11)

−1W n(1)−W n(2) →d N(0,C22 −C21C−1
11 C12).

Therefore all zn
i ’s and ζn

i ’s converge in distribution to Gaussian random variables with mean 0 and
finite variance E(zn

i )
2,E(ζn

i )
2 ≤ s2 for some constant S > 0.

For t > 0, the Gaussian distribution has its tail probability bounded by

1−Φ(t) < t−1e−
1
2 t2

. (14)

Since λn
n → 0, λn

n
1+c

2
→ ∞ with 0 ≤ c < 1, p, q and βn are all fixed, therefore

q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )

≤ (1+o(1))
q

∑
i=1

(1−Φ((1+o(1))
1
s

n
1
2 |βi|))

= o(e−nc
),

and

p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi) =

p−q

∑
i=1

(1−Φ(
1
s

λn

2
√

n
ηi)) = o(e−nc

).

Theorem 1 follows immediately.
Proof of Theorem 2. Consider the set Fn

1 , on which there exists λn such that,

sign(β̂n
(1)) = sign(βn

(1))

(β̂n
(2)) = 0.
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General Sign Consistency implies that P(Fn
1 ) → 1 as n → 1.

Conditions of Fn
1 imply that β̂n

(1) 6= 0 and β̂n
(2) = 0. Therefore by Lemma 1 and (11) from the

proof of Proposition 1, we have

Cn
11(

√
nûn(1))−W n(1) = − λn

2
√

n
sign(β̂n

(1)) = − λn

2
√

n
sign(βn

(1)) (15)

|Cn
21(

√
nûn(1))−W n(2)| ≤ λn

2
√

n
1 (16)

which hold over Fn
1 .

Re-write (16) by replacing ûn(1) using (15), we get

Fn
1 ⊂ Fn

2 := {(λn/2
√

n)Ln ≤Cn
21(C

n
11)

−1W n(1)−W n(2) ≤ (λn/2
√

n)Un}

where

Ln = −1+Cn
21(C

n
11)

−1sign(βn
(1)),

Un = 1+Cn
21(C

n
11)

−1sign(βn
(1)).

To prove by contradiction, if Weak Irrepresentable Condition fails, then for any N there always
exists n > N such that at least one element of |Cn

21(C
n
11)

−1sign(βn
(1))| ≥ 1. Without loss of generality,

assume the first element of Cn
21(C

n
11)

−1sign(βn
(1)) ≥ 1, then

[(λn/2
√

n)Ln
1,(λn/2

√
n)Un

1 ] ⊂ [0,+∞),

for any λn ≥ 0. Since Cn
21(C

n
11)

−1W n(1)−W n(2)→d N(0,C22−C21C−1
11 C12), there is a non-vanishing

probability that the first element is negative, then the probability of F n
2 holds does not go to 1, there-

fore
liminfP(Fn

1 ) ≤ liminfP(Fn
2 ) < 1.

This contradicts with the General Sign Consistency assumption. Therefore Weak Irrepresentable
Condition is necessary for General Sign Consistency.

This completes the proof.
Proofs of Theorem 3 and 4 are similar to that of Theorem 1. The goal is to bound the tail

probabilities in Proposition 1 using different conditions on the noise terms. We first derive the
following inequalities for both Theorem 3 and 4.
Proof of Theorem 3 and Theorem 4. As in the proof of Theorem 1, we have

1−P(An ∩Bn) ≤ P(Ac
n)+P(Bc

n)

≤
q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )+
p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi).

where zn = (zn
1, ...,z

n
p)

′ = (Cn
11)

−1W n(1), ζn = (ζn
1, ...,ζ

n
p−q)

′ = Cn
21(C

n
11)

−1W n(1)−W n(2) and b =

(bn
1, ...,b

n) = (Cn
11)

−1sign(βn
(1)).

Now if we write zn
i = H ′

Aεn where H ′
A = (ha

1, ...,h
a
q)

′ = (Cn
11)

−1(n−
1
2 Xn(1)), then

H ′
AHA = (Cn

11)
−1(n−

1
2 Xn(1)′)((Cn

11)
−1(n−

1
2 Xn(1))′)′ = (Cn

11)
−1.
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Therefore zn
i = (ha

i )
′ε with

‖ha
i ‖2

2 ≤
1

M2
for ∀i = 1, ..,q. (17)

Similarly if we write ζn = H ′
Bεn where H ′

B = (hb
1, ...,h

b
p−q)

′ = Cn
21(C

n
11)

−1(n−
1
2 Xn(1)′)

−n−
1
2 Xn(2)′, then

H ′
BHB =

1
n
(Xn(2))′(I −Xn(1)((Xn(1)′(Xn(1))−1Xn(1)′)Xn(2).

Since I −Xn(1)((Xn(1)′(Xn(1))−1Xn(1)′ has eigenvalues between 0 and 1, therefore ζn
i = (hb

i )
′ε

with
‖hb

i ‖2
2 ≤ M1 for ∀i = 1, ..,q. (18)

Also notice that,

|λn

n
bn| =

λn

n
|(Cn

11)
−1sign(βn

(1))| ≤
λn

nM2
‖sign(βn

(1))‖2 =
λn

nM2

√
q (19)

Proof of Theorem 3. Now, given (17) and (18), it can be shown that E(εn
i )

2k < ∞ implies E(zn
i )

2k <
∞ and E(ζn

i )
2k < ∞. In fact, given constant n-dimensional vector α,

E(α′εn)2k ≤ (2k−1)!!‖α‖2
2E(εn

i )
2k.

For radome variables with bounded 2k’th moments, we have their tail probability bounded by

P(zn
i > t) = O(t−2k).

Therefore, for λ/
√

n = o(n
c2−c1

2 ), using (19), we get

q

∑
i=1

P(|zn
i | >

√
n(|βn

i |−
λn

2n
bn

i )

= qO(n−kc2) = o(
pnk

λ2k
n

).

Whereas

p−q

∑
i=1

P(|ζn
i | >

λn

2
√

n
ηi)

= (p−q)O(
nk

λ2k
n

) = O(
pnk

λ2k
n

).

Sum these two terms and notice for p = o(nc2−c1), there exists a sequence of λn s.t. λ/
√

n =

o(n
c2−c1

2 ) and = o( pnk

λ2k
n

). This completes the proof for Theorem 3.

Proof of Theorem 4. Since εn
i ’s are i.i.d. Gaussian, therefore by (17) and (18), zi’s and ζi’s are

Gaussian with bounded second moments.
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Using the tail probability bound (14) on Gaussian random variables , for λn ∝ n
1+c4

2 , by (19) we
immediately have

q

∑
i=1

P(|zn
i | >

√
n(|βn

i |−
λn

2n
bn

i )

= q ·O(1−Φ( (1+o(1))M3M2nc2/2 ) = o(e−nc3
).

(since q < n = elogn) and

p−q

∑
i=1

P(|ζn
i | >

λn

2
√

n
ηi)

= (p−q) ·O(1−Φ(
1

M1

λn√
n
)η) = o(e−nc3

).

This completes the proof for Theorem 4.
Proof of Corollary 1. First we recall, for a positive definite matrix of the form















a b · · · b b
b a · · · b b
...

...
. . .

...
...

b b · · · a b
b b · · · b a















q×q

.

The eigenvalues are e1 = a+(q−1)b and ei = a−b for i ≥ 2. Therefore the inversion of

Cn
11 =















1 rn · · · rn rn

rn 1 · · · rn rn
...

...
. . .

...
...

rn rn · · · 1 rn

rn rn · · · rn 1















q×q

can be obtained by applying the formula and taking reciprocal of the eigenvalues which gets us

(Cn
11)

−1 =















c d · · · d d
d c · · · d d
...

...
. . .

...
...

d d · · · c d
d d · · · d c















q×q

for which e′1 = c+(q−1)d = 1
e1

= 1
1+(q−1)rn

.
Now since Cn

21 = rn ×1(p−q)×q so

Cn
21(C

n
11)

−1 = rn(c+(q−1)d)1(p−q)×q =
rn

1+(q−1)rn
1(p−q)×q.
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By which, we get

|Cn
21(C

n
11)

−1sign(βn
(1))| =

rn

1+(q−1)rn
|∑sign(βi)|1q×1

≤ qrn

1+(q−1)rn
1q×1 ≤

q
1+cq

1+ q−1
1+cq

=
1

1+ c
,

that is, Strong Irrepresentable Condition holds.
Proof of Corollary 2. Without loss of generality, consider the first entry of |Cn

21(C
n
11)

−1sign(βn
(1))|

which takes the form |α′(Cn
11)

−1sign(βn
(1))| where α′ is the first row of Cn

21. After proper scaling,

this is bounded by the largest eigenvalue of (Cn
11)

−1 or equivalently the reciprocal of the smallest
eigenvalue of Cn

11, that is,

|α′(Cn
11)

−1sign(βn
(1))| ≤ ‖α‖‖sign(βn

(1))‖
1
e1

<
cq

2q−1
1
e1

. (20)

To bound e1, we assume Cn
11 = ci jq×q. Then for a unit length q× 1 vector x = (x1, ...,xq)

′, we
consider

x′Cn
11x = ∑

i, j

xici jx j = 1+ ∑
i6= j

xici jx j

≥ 1−∑
i6= j

|xi||ci j||x j|

≥ 1− 1
2q−1 ∑

i6= j

|xi||x j|

= 1− 1
2q−1

(∑
i, j

|xi||x j|−1)

≥ 1− q−1
2q−1

=
q

2q−1
, (21)

where the last inequality is by Cauchy-Schwartz. Now put (21) through (20), we have
|Cn

21(C
n
11)

−1sign(βn
(1))| < c1. This completes the proof for Corollary 2.

Proof of Corollary 3. Without loss of generality, let us assume x j, j = 1, ...,n are i.i.d. N(0,Cn)
random variables. Then the power decay design implies an AR(1) model where

x j1 = η j1

x j2 = ρx j1 +(1−ρ2)
1
2 η j2

...

x jp = ρx j(p−1) +(1−ρ2)
1
2 η jp

where ηi j are i.i.d. N(0,1) random variables. Thus, the predictors follow a Markov Chain:

x j1 → x j2 → ·· · → x jp.

Now let

I1 = i : βi 6= 0

I2 = i : βi = 0.
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For ∀k ∈ I2, assume

kl = {i : i < k}∩ I1

kh = {i : i > k}∩ I1.

Then by the Markov property, we have

x jk ⊥ x jg|(x jkl ,x jkh)

for j = 1, ..,n and ∀g ∈ I1/{kl ,kh}. Therefore by the regression interpretation as in (2), to check
Strong Irrepresentable Condition for x jk we only need to consider x jkl and x jkh since the rest of the
entries are zero by the conditional independence. To further simplify, we assume ρ ≥ 0 (otherwise
ρ can be modified to be positive by flipping the signs of predictors 1,3,5, ...). Now regressing x jk

on (x jkl ,x jkh) we get

Cov(

(

x jkl

x jkh

)

)−1Cov(x jk,

(

x jkl

x jkh

)

)

=

(

1 ρkh−kl

ρkh−kl 1

)−1 (

ρkh−k

ρk−kl

)

=





ρkl−k−ρk−kl

ρkl−kh−ρkh−kl

ρk−kh−ρkh−k

ρkl−kh−ρkh−kl



 .

Then sum of both entries follow

ρkl−k −ρk−kl

ρkl−kh −ρkh−kl
+

ρk−kh −ρkh−k

ρkl−kh −ρkh−kl
=

ρkl−k +ρk−kh

1+ρkl−kh
= 1− (1−ρkl−k)(1−ρk−kh)

1+ρkl−kh
< 1− (1− c)2

2
.

Therefore Strong Irrepresentable Condition holds entry-wise. This completes the proof.

Proof of Corollary 4.

(a) Since the correlations are all zero so the condition of Corollary 2 holds for ∀q. Therefore
Strong Irrepresentable Condition holds.

(b) Since q = 1, so 1
2q−1 = 1 therefore the condition of Corollary 2 holds. Therefore Strong

Irrepresentable Condition holds.

(c) Since p = 2, therefore for q = 0 or 2, proof is trivial. When q = 1, result is implied by (b).
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Proof of Corollary 5.
Let M be the set of indices of nonzero entries of βn and B j, j = 1, ..,k be the set of indices of

each block. Then the following holds

Cn
21(C

n
11)

−1sign(βn
(1))

=







Cn
M c∩B1,M ∩B1

· · · 0

· · · . . . · · ·
0 · · · Cn

M c∩Bk,M ∩Bk







×







Cn
M ∩B1,M ∩B1

· · · 0

· · · . . . · · ·
0 · · · Cn

M ∩Bk,M ∩Bk







−1

sign(







βn
M ∩B1

...
βn

M ∩Bk






)

=







Cn
M c∩B1,M ∩B1

(Cn
M ∩B1,M ∩B1

)−1sign(βn
M ∩B1

)
...

Cn
M c∩Bk,M ∩Bk

(Cn
M ∩Bk,M ∩Bk

)−1sign(βn
M ∩Bk

)






.

Corollary 5 is implied immediately from the shown equalities.
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Abstract
We study some stability properties of algorithms which minimize (or almost-minimize) empirical
error over Donsker classes of functions. We show that, as the number n of samples grows, the L2-
diameter of the set of almost-minimizers of empirical error with tolerance ξ(n) = o(n− 1

2 ) converges
to zero in probability. Hence, even in the case of multiple minimizers of expected error, as n
increases it becomes less and less likely that adding a sample (or a number of samples) to the
training set will result in a large jump to a new hypothesis. Moreover, under some assumptions
on the entropy of the class, along with an assumption of Komlos-Major-Tusnady type, we derive
a power rate of decay for the diameter of almost-minimizers. This rate, through an application
of a uniform ratio limit inequality, is shown to govern the closeness of the expected errors of the
almost-minimizers. In fact, under the above assumptions, the expected errors of almost-minimizers
become closer with a rate strictly faster than n−1/2.

Keywords: empirical risk minimization, empirical processes, stability, Donsker classes

1. Introduction

The empirical risk minimization (ERM) algorithm has been studied in learning theory to a great
extent. Vapnik and Chervonenkis (1971, 1991) showed necessary and sufficient conditions for its
consistency. In recent developments, Bartlett and Mendelson (2006); Bartlett et al. (2004); Koltchin-
skii (2006) proved sharp bounds on the performance of ERM. Tools from empirical process theory
have been successfully applied, and, in particular, it has been shown that the localized Rademacher
averages play an important role in studying the behavior of the ERM algorithm.

In this paper we are not directly concerned with rates of performance of ERM. Rather, we prove
some properties of ERM algorithms, which, to our knowledge, do not appear in the literature. The
analysis of this paper has been motivated by the study of algorithmic stability: the behavior of a
learning algorithm with respect to perturbations of the training set. Algorithmic stability has been
studied in the recent years as an alternative to the classical (complexity-oriented) approach to de-
riving generalization bounds (Bousquet and Elisseeff, 2002; Kutin and Niyogi, 2002; Mukherjee
et al., 2006; Poggio et al., 2004; Rakhlin et al., 2005). Motivation for studying algorithmic stability
comes, in part, from the work of Devroye and Wagner (1979). Their results indicate that for any al-
gorithm, the performance of the leave-one-out estimator of expected error is bounded by L1-stability
of the algorithm, that is, by the average L1 distance between hypotheses on similar samples. This

c©2006 Andrea Caponnetto and Alexander Rakhlin.
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result can be used to derive bounds on the performance of the leave-one-out estimate for algorithms
such as k-Nearest Neighbors. It is important to note that no class of finite complexity is searched
by algorithms like k-NN, and so the classical approach of using complexity of the hypothesis space
fails.

Further important results were proved by Bousquet and Elisseeff (2002), where a large family
of algorithms (Tikhonov regularization based methods) has been shown to possess a strong L∞
stability with respect to changes of single samples of the training set, and exponential bounds have
been proved for the generalization error in terms of empirical error. Tikhonov regularization based
algorithms minimize the empirical error plus a stabilizer, and are closely related to ERM. Though
ERM is not, in general, L∞-stable, it is L1-stable over certain classes of functions, as one of the
results of this paper shows. To the best of our knowledge, the outcomes of the present paper do not
follow directly from results available in the machine learning literature. In fact we had to turn to
empirical process theory for the mathematical tools necessary for studying stability of ERM.

Various assumptions on the function class, over which ERM is performed, have been considered
recently to obtain fast rates on the performance of ERM. The importance of having a unique best
function in the class has been shown by Lee et al. (1998): the difficult learning problems seem to be
the ones where two minimizers of the expected error exist and are far apart. Although the present
paper does not address the question of performance rates, it does shed some light on the behavior of
ERM when two (or more) minimizers of expected error exist. Our results imply that, under a certain
weak condition on the class, as the expected performance of empirical minimizers approaches the
best in the class with the addition of new samples, a jump to a different part of the function class
becomes less and less likely.

Since ERM minimizes empirical error instead of expected error, it is reasonable to require that
the two quantities become close uniformly over the class, as the number of examples grows. Hence,
ERM is a sound strategy only if the function class is uniform Glivenko-Cantelli, that is, it satisfies
the uniform law of large numbers. In this paper we focus our attention on a more restricted family
of function classes: Donsker classes (see for example, Dudley, 1999). These are classes satisfying
not only the law of large numbers, but also a version of the central limit theorem. Though a more
restricted family of classes, Donsker classes are still quite general. In particular, uniform Donsker
and uniform Glivenko-Cantelli properties are equivalent in the case of binary-valued functions (and
also equivalent to finiteness of VC dimension). The central limit theorem for Donsker classes states
a form of convergence of the empirical process to a Gaussian process with a specific covariance
structure (see for example, Dudley, 1999; van der Vaart and Wellner, 1996). This structure is used
in the proof of the main result of the paper to control the correlation of the empirical errors of ERM
minimizers on similar samples.

The paper is organized as follows. In Section 2 we introduce the notation and background
results. Section 3 presents the main result of the paper, which is proved in the appendix using tools
from empirical process theory. In Section 4, we show L1-stability of ERM over Donsker classes as
an application of the main result of Section 3. In Section 5 we show an improvement (in terms of
the rates) of the main result under a suitable Komlos-Major-Tusnady condition and an assumption
on entropy growth. Section 6 combines the results of Sections 4 and 5 and uses a uniform ratio limit
theorem to obtain fast rates of decay on the deviations of expected errors of almost-ERM solutions,
thus establishing strong expected error stability of ERM (see Mukherjee et al., 2006). Section 7 is
a final summary of the results of the paper. Most of the proofs are postponed to the Appendix.
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2. Notation and Background Results

Let (Z,A) be a measurable space. Let P be a probability measure on (Z,A) and Z1, . . . ,Zn be
independent copies of Z with distribution P. Let F be a class of functions from Z to R. In the
setting of learning theory, samples Z are input-output pairs (X ,Y ) and for f ∈ F , f (Z) measures
how well the relationship between X and Y is captured by f . The goal is to minimize P f = E f (Z)
where information about the unknown P is given only through the finite sample S = (Z1, . . . ,Zn).
Define the empirical measure as Pn = 1

n ∑n
i=1 δZi .

Definition 1 Given a sample S,

fS := argmin
f∈F

Pn f = argmin
f∈F

1
n

n

∑
i=1

f (Zi)

is a minimizer of the empirical risk (empirical error), if the minimum exists.

Since an exact minimizer of the empirical risk might not exist, as well as for algorithmic reasons,
we consider the set of almost-minimizers of empirical risk.

Definition 2 Given ξ ≥ 0 and S, define the set of almost empirical minimizers

M ξ
S = { f ∈ F : Pn f − inf

g∈F
Png ≤ ξ}

and define its diameter as
diamM ξ

S = sup
f ,g∈M ξ

S

‖ f −g‖ .

The ‖·‖ in the above definition is the seminorm on F induced by symmetric bilinear product

〈

f , f ′
〉

= P
(

( f −P f )
(

f ′−P f ′
))

,

hence ‖ f‖ is the standard deviation of f relative to P.
This is a natural measure of distance between functions, as will become apparent later, because

of the central role of the covariance structure of Brownian bridges in our proofs. The results obtained
for the seminorm ‖·‖ will be easily extended to the L2(P) norm, thanks to the close relation of these
two notions of distance.

Definition 3 The empirical process νn indexed by F is defined as the map

f 7→ νn( f ) =
√

n(Pn −P) f =
1√
n

n

∑
i=1

( f (Zi)−P f ).

Definition 4 A class F is called P-Donsker if

νn ν

in `∞(F ), where the limit ν is a tight Borel measurable element in `∞(F ) and ” ” denotes weak
convergence, as defined on p. 17 of van der Vaart and Wellner (1996).
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In fact, it follows that the limit process ν must be a zero-mean Gaussian process with covariance
function Eν( f )ν( f ′) = 〈 f , f ′〉 (i.e., a Brownian bridge).

Various Donsker theorems provide sufficient conditions for a class being P-Donsker. Here we
mention a few known results (see van der Vaart and Wellner 1996, Equation 2.1.7 and van de Geer
2000, Theorem 6.3) in terms of entropy and entropy with bracketing, which we define below (see
van der Vaart and Wellner, 1996).

Definition 5 The covering number N (ε,F ,‖ · ‖) is the minimal number of balls {g : ‖g− f‖ < ε}
of radius ε needed to cover the set F . The centers of the balls need not belong to F , but they should
have finite norms. The entropy is the logarithm of the covering number.

Definition 6 Given two functions l and u, the bracket [l,u] is the set of all functions f with l ≤ f ≤
u. An ε-bracket is a bracket [l,u] with ‖u− l‖ < ε. The bracketing number N[](ε,F ,‖ · ‖) is the
minimum number of ε-brackets needed to cover F . The upper and lower bounds u and l need not
belong to F but are assumed to have finite norms. The entropy with bracketing is the logarithm of
the bracketing number.

Definition 7 An envelope function of a class F is any function x 7→ F(x) such that | f (x)| ≤ F(x)
for every x and f ∈ F .

Proposition 8 If the envelope F of F is square integrable and
Z ∞

0
sup

Q

√

logN (ε‖F‖Q,2 ,F ,L2(Q))dε < ∞,

then F is P-Donsker for every P, that is, F is a universal Donsker class. Here the supremum is
taken over all finitely discrete probability measures, and the L2(Q)-norm is defined as ‖ f‖Q,2 =
(

R | f |2
)1/2

.

Proposition 9 If
R ∞

0

√

logN[](ε,F ,L2(P))dε < ∞, then F is P-Donsker.

From the learning theory perspective, however, the most interesting theorems are probably those
relating the Donsker property to the VC-dimension. For example, if F is a {0,1}-valued class,
then F is universal Donsker if and only if its VC dimension is finite (Theorem 10.1.4 of Dudley
(1999) provides a more general result involving Pollard’s entropy condition). As a corollary of their
Proposition 3.1, Giné and Zinn (1991) show that under the Pollard’s entropy condition, the {0,1}-
valued class F is in fact uniform Donsker. Finally, Rudelson and Vershynin extended these results
to the real-valued case: a class F is uniform Donsker if the square root of its scale-sensitive VC
dimension is integrable.

3. Main Result

We now state the main result of this paper.

Theorem 10 Let F be a P-Donsker class. For any sequence ξ(n) = o(n−1/2),

diamM ξ(n)
S

P∗
−→ 0.
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The outer probability P∗ above is due to measurability issues. Definitions and results on various
types of convergence, as well as ways to deal with measurability issues arising in the proofs, are
based on the rigorous book of van der Vaart and Wellner (1996).

The following corollary, whose proof is given in Appendix A, extends the above result to L2

(and thus L1) diameters.

Corollary 11 The result of Theorem 10 holds if the diameter is defined with respect to the L2(P)
norm.

It is easy to verify that the dependence ξ(n) = o(n−1/2) of the tolerance, assumed in Theorem
10, is not improvable. In fact a simple example can show that if ξ(n) � n−1/2 the set of ξ(n)-almost
minimizers may not shrink in probability.

Example 1 Consider Z = {x1,x2} with x1 6= x2, and P = 1
2(δx1 + δx2). Moreover let F be the set

of functions { f1, f2}, with

fi(x) =

{

0 if x = xi,
1 otherwise.

Then it is clear that, given the finite sample S = (Z1, . . . ,Zn), M ξ
S = F (and hence diamM ξ(n)

S = 1)
whenever Pn f1 −Pn f2 = 2

n |q−Eq| ≤ ξ(n), where q is the binomial random variable

q = #{i|Zi = x1}.

Now since the variance of q is n
4 , it is clear that

∀C > 0 Pr
{

|q−Eq| ≤Cn
1
2

}

= Ω(1),

which shows that, if ξ(n) � n−1/2, with probability bounded away from zero, diamM ξ(n)
S = 1.

The above example is very basic, yet provides important intuition. A class can contain two quite
different functions with the smallest expectation, but it is unlikely that they both almost-minimize
the empirical error to within o(n−1/2). In fact, the above example suggests that the fluctuations of
the difference in empirical performance of two functions is of the order n−1/2. The extension of
this result to more general function classes with possibly infinite number of expected minima is the
main goal of Theorem 10.

Before diving into the proof of Theorem 10, let us state a few notions of stochastic convergence.

Definition 12 (Definition 1.9.1 in van der Vaart and Wellner (1996)) Let (Z,A ,P) be a proba-
bility space. Let Zn,Z : Z 7→ D be arbitrary maps and (D,d) be a metric space.

• Zn converges in outer probability to Z if d(Zn,Z)∗ → 0 in probability; this means that

P(d(Zn,Z)∗ > ε) = P∗(d(Zn,Z) > ε) → 0, for every ε > 0, and is denoted by Zn
P∗
−→ 0.

• Zn converges almost uniformly to Z if, for every ε > 0, there exists a measurable set A with
P(A) ≥ 1− ε and d(Zn,Z) → 0 uniformly on A; this is denoted Zn

au−→ Z.

The proof of Theorem 10 relies on the almost sure representation theorem (van der Vaart and
Wellner, 1996, Theorem 1.10.4). Here we state the theorem applied to νn and ν.
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Proposition 13 Suppose F is P-Donsker. Let νn : Zn 7→ `∞(F ) be the empirical process. There
exist a probability space (Z ′,A ′,P′) and maps ν′,ν′

n : Z′ 7→ `∞(F ) such that

1. ν′
n

au→ ν′,

2. E
∗ f (ν′

n) = E
∗ f (νn) for every bounded f : `∞(F ) 7→ R for all n.

Lemma 14 is the main preliminary result used in the proof of Theorem 10 (and Theorem 17 in
Section 5). We postpone its proof to Appendix A.

Lemma 14 Let νn : Zn 7→ `∞(F ) be the empirical process. Fix n and assume that there exist a
probability space (Z ′,A ′,P′) and a map ν′

n : Z′ 7→ `∞(F ) such that E
∗ f (ν′

n) = E
∗ f (νn) for every

bounded f : `∞(F ) 7→ R. Let ν′ be a P-Brownian bridge defined on (Z ′,A ′,P′). Fix C > 0, ε =
min(C3/128,C/4) and suppose δ ≥ ξ

√
n for a given ξ > 0. Then, if F is P-Donsker, the following

inequality holds

Pr∗
(

diamM ξ
S > C

)

≤ N (ε,F ,‖·‖)2

(

128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

.

We are now ready to prove the main result of this section.
Proof [Theorem 10] Lemma 1.9.3 in van der Vaart and Wellner (1996) shows that when the limiting
process is Borel measurable, almost uniform convergence implies convergence in outer probability.
Therefore, the first implication of Proposition 13 states that for any δ > 0

Pr∗
(

sup
F

|ν′
n −ν′| > δ

)

→ 0.

By Lemma 14,

Pr∗
(

diamM ξ(n)
S > C

)

≤ N (ε,F ,‖·‖)2

(

128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

for any C > 0, ε = min(C3/128,C/4), and any δ ≥ ξ(n)
√

n. Since ξ(n) = o(n−1/2), δ can be chosen

arbitrarily small, and so Pr∗
(

diamM ξ(n)
S > C

)

→ 0.

4. Stability of almost-ERM

The main result of this section, Corollary 15, shows L2-stability of almost-ERM on Donsker classes.
It implies that, in probability, the L2 (and thus L1) distance between almost-minimizers on similar
training sets (with o(

√
n) changes) goes to zero when n tends to infinity.

This result provides a partial answer to the questions raised in the machine learning literature
by Kutin and Niyogi (2002); Mukherjee et al. (2006): is it true that when one point is added to the
training set, the ERM algorithm is less and less likely to jump to a far (in the L1 sense) hypothesis?
In fact, since binary-valued function classes are uniform Donsker if and only if the VC dimension is
finite, Corollary 15 proves that almost-ERM over binary VC classes possesses L1-stability. For the
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real-valued classes, uniform Glivenko-Cantelli property is weaker than uniform Donsker property,
and therefore it remains unclear if almost-ERM over uGC but not uniform Donsker classes is stable
in the L1 sense.

Use of L1-stability goes back to Devroye and Wagner (1979), who showed that this stability
is sufficient to bound the difference between the leave-one-out error and the expected error of a
learning algorithm. In particular, Devroye and Wagner show that nearest-neighbor rules possess
L1-stability (see also Devroye et al., 1996). Our Corollary 15 implies L1-stability of ERM (or
almost-ERM) algorithms on Donsker classes.

In the following [n] denotes the set {1,2, . . . ,n} and A4B is the symmetric difference of sets A
and B.

Corollary 15 Assume F is P-Donsker and uniformly bounded with envelope F ≡ 1. For I ⊂ N,

define S(I) = (Zi)i∈I . Let In ⊂ N such that Mn := |In 4 [n]| = o(n1/2). Suppose fn ∈ M ξ(n)
S([n]) and

f ′n ∈ M ξ′(n)
S(In)

for some ξ(n) = o(n−1/2) and ξ′(n) = o(n−1/2) . Then

∥

∥ fn − f ′n
∥

∥

P∗
−→ 0.

The norm ‖·‖ can be replaced by L2(P) or L1(P) norm.

Proof It is enough to show that f ′n ∈ M ξ′′(n)
S([n]) for some ξ′′(n) = o(n−1/2) and result follows from

Theorem 10.

1
n ∑

i∈[n]

f ′n(Zi) ≤
Mn

n
+

1
n ∑

i∈In

f ′n(Zi)

≤ Mn

n
+

|In|
n

(

ξ′(n)+ inf
g∈F

1
|In| ∑

i∈In

g(Zi)

)

≤ Mn

n
+

|In|
n

ξ′(n)+
1
n ∑

i∈In

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n)+
1
n ∑

i∈[n]

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n)+ξ(n)+ inf
g∈F

1
n ∑

i∈[n]

g(Zi).

Define

ξ′′(n) := 2
Mn

n
+

|In|
n

ξ′(n)+ξ(n).

Because Mn = o(n
1
2 ), it follows that ξ′′(n) = o(n−1/2). Corollary 11 implies convergence in L2(P),

and, therefore, in L1(P) norm.

5. Rates of Decay of diamM ξ(n)
S

The statement of Lemma 14 reveals that the rate of the decay of the diameter diamM ξ(n)
S is related

to the rate at which Pr∗
(

supF |ν−νn| ≥ δ
)

→ 0 for a fixed δ. A number of papers studied this
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rate of convergence, and here we refer to the notion of Komlos-Major-Tusnady class (KMT class),
as defined by Koltchinskii (1994). Let ν′

n : Zn 7→ `∞(F ) be the empirical process defined on the
probability space (Z ′,A ′,P′).

Definition 16 F is called a Komlos-Major-Tusnady class with respect to P and with the rate of
convergence τn (F ∈ KMT (P;τn)) if F is P-pregaussian and for each n ≥ 1 there is a version ν(n)

of a P-Brownian bridge defined on (Z ′,A ′,P′) such that for all t > 0,

Pr∗
(

sup
F

|ν(n)−ν′
n| ≥ τn(t +K logn)

)

≤ Λe−θt

where K > 0, Λ > 0 and θ > 0 are constants, depending only on F .

Sufficient conditions for a class to be KMT (P;n−α) have been investigated in the literature;
some results of this type can be found in Koltchinskii (1994); Rio (1993) and Dudley (2002), Section
9.5(B).

The following theorem shows that for KMT classes fulfilling a suitable entropy condition, it is
possible to give explicit rates of decay for the diameter of ERM almost-minimizers.

Theorem 17 Assume F is P-Donsker and F ∈ KMT (P;n−α) for some α > 0. Assume

N (ε,F ,‖·‖) ≤
(

A
ε
)V

for some constants A,V > 0. Let ξ(n)
√

n = o(n−η), η > 0. Then

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < 1
3(2V+1) min(α,η).

Proof The result of Lemma 14 is stated for a fixed n. We now choose C, ξ, and δ depending on n
as follows. Let C(n) = Bn−γ, where γ < 1

3(2V+1) min(α,η) and B > 0 is an arbitrary constant. Let

ξ = ξ(n). Let δ(n) = n−β, where β = 1
2(min(α,η)+ 3(2V + 1)γ). When β is defined this way, we

have

min(α,γ) > β > 3(2V +1)γ

because γ < 1
3(2V+1) min(α,η) by assumption. In particular, β < η and, hence, eventually δ(n) >

ξ(n)
√

(n) = o(n−η).
Since C(n) decays to zero and ε(n) = min(C(n)3/128,C(n)/4), eventually ε(n) = C(n)3/128 =

n−3γB3/128.
Since F ∈ KMT (P;n−α),

Pr∗
(

sup
F

|ν(n)−νn| ≥ n−α(t +K logn)

)

≤ Λe−θt

for any t > 0, choosing t = nαδ(n)/2−K logn we obtain

Pr∗
(

sup
F

|ν(n)−νn| ≥ δ(n)/2

)

≤ Λe−θ(nα−β/2−K logn).
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Lemma 14 then implies

Pr∗
(

diamM ξ(n)
S > C(n)

)

≤ N (ε,F ,‖·‖)2

(

128δ
C(n)3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

≤
(

128A
B3 n3γ

)2V 128
B3 n−βn3γ +

(

128A
B3 n3γ

)2V

Λe−θ(nα−β/2−K logn)

=

(

128A
B3

)2V 128
B3 n3γ(2V+1)−β +Λ

(

128A
B3

)2V

nkθ+6γV e−
θ
2 nα−β

.

Since α > β > 3γ(2V +1), both terms above go to zero, that is,

Pr∗
(

nγdiamM ξ(n)
S > B

)

→ 0 for any B > 0.

The entropy condition in Theorem 17 is clearly verified by VC-subgraph classes of dimension
V . In fact, since L2 norm dominates ‖·‖ seminorm, upper bounds on L2 covering numbers of VC-
subgraph classes induce analogous bounds on ‖·‖ covering numbers. Corollary 18 is a an application
of Theorem 17 to this important family of classes. It follows in a straight-forward way from the
remark above.

Corollary 18 Assume F is a VC-subgraph class with VC-dimension V , and for some α > 0 F ∈
KMT (P,n−α). Let ξ(n)

√
n = o(n−η), η > 0. Then

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < 1
3(2V+1) min(α,η).

6. Expected Error Stability of almost-ERM

In the previous section, we proved bounds on the rate of decay of the diameter of almost-minimizers.
In this section, we show that given such a bound, as well as some additional conditions on the class,
the differences between expected errors of almost-minimizers decay faster than n−1/2. This implies
a form of strong expected error stability for ERM.

The proof of Theorem 20 relies on the following ratio inequality of Pollard (1995).

Proposition 19 Let G be a uniformly bounded function class with the envelope function G ≡ 2.
Assume N (γ,G) = supQ N (2γ,G ,L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over all discrete prob-
ability measures. Then

Pr∗
(

sup
f∈G

|Pn f −P f |
ε(Pn| f |+P| f |)+5γ

> 26

)

≤ 32N (γ,G)exp(−nεγ).

The next theorem gives explicit rates for expected error stability of ERM over VC-subgraph
classes fulfilling a KMT type condition.
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Theorem 20 If F is a VC-subgraph class with VC-dimension V , F ∈ KMT (P;n−α) and
√

nξ(n) =

o(n−η), then for any κ < min
(

1
6(2V+1) min(α,η),1/2

)

n1/2+κ sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| P∗
−→ 0.

7. Conclusions

We presented some new results establishing stability properties of ERM over certain classes of
functions. This study was motivated by the question, raised by some recent papers, of L1-stability
of ERM under perturbations of a single sample (Mukherjee et al., 2006; Kutin and Niyogi, 2002;
Rakhlin et al., 2005). We gave a partially positive answer to this question, proving that, in fact,
ERM over Donsker classes fulfills L2-stability (and hence also L1-stability) under perturbations of
o(n

1
2 ) among the n samples of the training set. This property follows directly from the main result

of the paper which shows decay (in probability) of the diameter of the set of solutions of almost-
ERM with tolerance function ξ(n) = o(n−

1
2 ). We stress that for classification problems (i.e., for

binary-valued functions) no generality is lost in assuming the Donsker property, since for ERM to
be a sound algorithm, the equivalent Glivenko-Cantelli property has to be assumed anyway. On the
other hand, in the real-valued case many complexity-based characterizations of Donsker property
are available in the literature.

In the perspective of possible algorithmic applications, we analyzed some additional assump-
tions implying uniform rates on the decay of the L1 diameter of almost-minimizers. It turned out
that an explicit rate of this type can be given for VC-subgraph classes satisfying a suitable Komlos-
Major-Tusnady type condition. For this condition, many independent characterizations are known.

Finally, using a suitable ratio inequality we showed how L1-stability results can induce strong
forms of expected error stability, providing a further insight into the behavior of the Empirical Risk
Minimization algorithm.

Results of this paper can be used to analyze stability of a class of clustering algorithms by
casting them in the empirical risk minimization framework (see Rakhlin and Caponnetto, 2006).

Algorithmic implications of our results would require further investigation. For example, in the
context of on-line learning, when a point is added to the training set, with high probability one would
only have to search for empirical minimizers in a small L1-ball around the current hypothesis, which
might be a tractable problem. Moreover, L1-stability might have consequences for computational
complexity of ERM. While it has been shown that ERM is NP-hard even for simple function classes
(see for example, Ben-David et al., 2003), our results could allow more optimistic average-case
analysis.

Acknowledgments

We would like to thank S. Mukherjee, T. Poggio and S. Smale for useful discussions and sugges-
tions.

This report describes research done at the Center for Biological & Computational Learning,
which is in the McGovern Institute for Brain Research at MIT, as well as in the Dept. of Brain
& Cognitive Sciences, and which is affiliated with the Computer Sciences & Artificial Intelligence

2574



STABILITY PROPERTIES OF EMPIRICAL RISK MINIMIZATION OVER DONSKER CLASSES

Laboratory (CSAIL), as well as in the Dipartimento di Informatica e Scienze dell’Informazione
(DISI) at University of Genoa, Italy. This research was sponsored by grants from: Office of Naval
Research (DARPA) Contract No. MDA972-04-1-0037, Office of Naval Research (DARPA) Con-
tract No. N00014-02-1-0915, National Science Foundation (ITR/SYS) Contract No. IIS-0112991,
National Science Foundation (ITR) Contract No. IIS-0209289, National Science Foundation-NIH
(CRCNS) Contract No. EIA-0218693, National Science Foundation-NIH (CRCNS) Contract No.
EIA-0218506, and National Institutes of Health (Conte) Contract No. 1 P20 MH66239-01A1. Ad-
ditional support was provided by: Central Research Institute of Electric Power Industry (CRIEPI),
Daimler-Chrysler AG, Compaq/Digital Equipment Corporation, Eastman Kodak Company, Honda
R&D Co., Ltd., Industrial Technology Research Institute (ITRI), Komatsu Ltd., Eugene McDer-
mott Foundation, Merrill-Lynch, NEC Fund, Oxygen, Siemens Corporate Research, Inc., Sony,
Sumitomo Metal Industries, and Toyota Motor Corporation. This research has also been partially
funded by the FIRB Project ASTAA and the IST Programme of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778.

Appendix A.

In this appendix we derive some results presented in Section 3. In particular, Lemma 14, which was
used in the proof of Theorem 10, and Corollary 11. Let us start with some technical Lemmas.

Lemma 21 Let f0, f1 ∈ F , ‖ f0 − f1‖ ≥ C/2, ‖ f1‖ ≤ ‖ f0‖. Let h : F → R be defined as h( f ′) =
〈 f ′, f0〉
‖ f0‖2 . Then for any ε ≤ C3

128

inf
B( f0,ε)

h− sup
B( f1,ε)

h ≥ C2

16
.

Proof

∆ := inf
B( f0,ε)

h− sup
B( f1,ε)

h

= h( f0)−h( f1)+ inf{h( f ′− f0)+h( f1 − f ′′)| f ′ ∈ B( f0,ε), f ′′ ∈ B( f1,ε)}

≥ h( f0)−h( f1)−
2ε
‖ f0‖

≥ h( f0)−h( f1)−
8ε
C

,

since ‖ f0‖ ≥C/4.
Finally

2〈 f0 − f1, f0〉 = ‖ f0 − f1‖2 −‖ f1‖2 +‖ f0‖2 ≥ ‖ f0 − f1‖2 ≥ C2

4
,

then

h( f0)−h( f1) ≥
C2

8‖ f0‖2 ≥ C2

8
,

which proves that

∆ ≥ C2

8
− 8ε

C
≥ C2

16
.
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The following Lemma is an adaptation of Lemma 2.3 of Kim and Pollard (1990).

Lemma 22 Let f0, f1,h be defined as in Lemma 21. Suppose ε ≤ C3

128 . Let νµ be a Gaussian process
on F with mean µ and covariance cov(νµ( f ),νµ( f ′)) = 〈 f , f ′〉.

Then for all δ > 0

Pr∗
(

| sup
B( f0,ε)

νµ − sup
B( f1,ε)

νµ| ≤ δ

)

≤ 64δ
C3 .

Proof Define the Gaussian process Y (·) = νµ(·)−h(·)νµ( f0). Since cov(Y ( f ′),νµ( f0)) = 〈 f ′, f0〉−
h( f ′)‖ f0‖2 = 0, νµ( f0) and Y (·) are independent.

We now reason conditionally with respect to Y (·). Define

Γi(z) = sup
B( fi,ε)

{Y (·)+h(·)z} with i = 0,1.

Notice that

Pr∗
(

| sup
B( f0,ε)

νµ − sup
B( f1,ε)

νµ| ≤ δ|Y
)

= Pr∗ (|Γ0(νµ( f0))−Γ1(νµ( f0))| ≤ δ) .

Moreover Γ0 and Γ1 are convex and

inf∂−Γ0 − sup∂+Γ1 ≥ inf
B( f0,ε)

h− sup
B( f1,ε)

h ≥ C2

16
,

by Lemma 21. Then Γ0 = Γ1 in a single point z0 and

Pr∗ (|Γ0(νµ( f0))−Γ1(νµ( f0))| ≤ δ) ≤ Pr∗ (νµ( f0) ∈ [z0 −∆,z0 +∆]) ,

with ∆ = 16δ/C2.
Furthermore,

Pr∗ (νµ( f0) ∈ [z0 −∆,z0 +∆]) ≤ 32δ
C2
√

2πvar(νµ( f0))
,

and var(νµ( f0)) = ‖ f0‖2 ≥C2/16, which completes the proof.

The reasoning in the proof of the next lemma goes as follows. We consider a finite cover of F .
Pick any two almost-minimizers which are far apart. They belong to two covering balls with centers
far apart. Because the two almost-minimizers belong to these balls, the infima of the empirical
risks over these two balls are close. This is translated into the event that the suprema of the shifted
empirical process over these two balls are close. By looking at the Gaussian limit process, we are
able to exploit the covariance structure to show that the suprema of the Gaussian process over balls
with centers far apart are unlikely to be close.
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Proof [Lemma 14]

Consider the ε-covering { fi|i = 1, . . . ,N (ε,F ,‖·‖)}. Such a covering exists because F is totally

bounded in ‖·‖ norm (see page 89, van der Vaart and Wellner, 1996). For any f , f ′ ∈ M ξ
S s.t.

‖ f − f ′‖ > C, there exist k and l such that ‖ f − fk‖ ≤ ε ≤ C/4, ‖ f ′− fl‖ ≤ ε ≤ C/4. By triangle
inequality it follows that ‖ fk − fl‖ ≥C/2.

Moreover

inf
F

Pn ≤ inf
B( fk,ε)

Pn ≤ Pn f ≤ inf
F

Pn +ξ

and

inf
F

Pn ≤ inf
B( fl ,ε)

Pn ≤ Pn f ′ ≤ inf
F

Pn +ξ.

Therefore,

∣

∣

∣

∣

inf
B( fk,ε)

Pn − inf
B( fl ,ε)

Pn

∣

∣

∣

∣

≤ ξ.

The last relation can be restated in terms of the empirical process νn:

∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ ξ
√

n ≤ δ.

Pr∗
(

diamM ξ
S > C

)

= Pr∗
(

∃ f , f ′ ∈ M ξ
S ,
∥

∥ f − f ′
∥

∥> C
)

≤

Pr∗
(

∃l,k s.t. ‖ fk − fl‖ ≥C/2,

∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.

By union bound

Pr∗
(

diamM ξ
S > C

)

≤
N (ε,F ,‖·‖)

∑
k,l=1

‖ fk− fl‖≥C/2

Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.
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We now want to bound the terms in the sum above. Assuming without loss of generality that
‖ fk‖ ≥ ‖ fl‖, we obtain

Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′
n −

√
nP}− sup

B( fl ,ε)
{−ν′

n −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP+ν′−ν′
n}− sup

B( fl ,ε)
{−ν′−

√
nP+ν′−ν′

n}
∣

∣

∣

∣

∣

≤ δ

)

≤ Pr∗
(∣

∣

∣

∣

∣

| sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}|−2sup
F

∣

∣ν′
n −ν′∣

∣

∣

∣

∣

∣

∣

≤ δ

)

≤ Pr∗
(

2sup
F

∣

∣ν′
n −ν′∣

∣≥ δ ∨
∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}
∣

∣

∣

∣

∣

≤ 2δ

)

≤ Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}
∣

∣

∣

∣

∣

≤ 2δ

)

+Pr∗
(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

)

≤ 128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

)

,

where the first inequality results from a union bound argument while the second one results
from Lemma 22 noticing that −ν′−√

nP is a Gaussian process with covariance 〈 f , f ′〉 and mean
−√

nP, and since by construction ε ≤C3/128.
Finally, the claimed result follows from the two last relations.

We now prove, Corollary 11, the extension of Theorem 10 to L2 diameters. The proof relies on
the observation that a P-Donsker class is also Glivenko-Cantelli.
Proof [Corollary 11] Note that

∥

∥ f − f ′
∥

∥

2
L2

=
∥

∥ f − f ′
∥

∥

2
+
(

P( f − f ′)
)2

.

The expected errors of almost-minimizers over a Glivenko-Cantelli (and therefore over Donsker)
class are close because empirical averages uniformly converge to the expectations.

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∥

∥ f − f ′
∥

∥

L2
> C

)

≤ Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> C/
√

2
)

+Pr∗
(

diamM ξ(n)
S > C/

√
2
)

.

The first term can be bounded as

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> C/
√

2
)

≤ Pr∗
(

∃ f , f ′ ∈ F ,
∣

∣Pn f −Pn f ′
∣

∣≤ ξ(n),
∣

∣P f −P f ′
∣

∣> C/
√

2
)

≤ Pr∗
(

sup
f , f ′∈F

|(Pn −P)( f − f ′)| > |C/
√

2−ξ(n)|
)
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which goes to 0 because the class { f − f ′| f , f ′ ∈ F } is Glivenko-Cantelli. The second term goes to
0 by Theorem 10.

Appendix B.

In this appendix we report the proof of Theorem 20 stated in Section 6. We first need to derive a
preliminary lemma.

Lemma 23 Let F be P-Donsker class with envelope function G ≡ 1. Assume N (γ,F ) =
supQ N (γ,F ,L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over all discrete probability measures. Let

M ξ(n)
S be defined as above with ξ(n) = o(n−1/2) and assume that for some sequence of positive

numbers λ(n) = o(n1/2)

λ(n) sup
f , f ′∈M ξ(n)

S

P| f − f ′| P∗
−→ 0. (1)

Suppose further that for some 1/2 < ρ < 1

λ(n)2ρ−1 − logN (
1
2

n−1/2λ(n)ρ−1,F ) → +∞. (2)

Then

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131λ(n)ρ−1



→ 0.

Proof Define G = { f − f ′ : f , f ′ ∈F } and G ′ = {| f − f ′| : f , f ′ ∈F }. By Example 2.10.7 of van der
Vaart and Wellner (1996), G = (F )+ (−F ) and G ′ = |G | ⊆ (G ∧ 0)∨ (−G ∧ 0) are Donsker as
well. Moreover, N (2γ,G)≤ N (γ,F )2 and the envelope of G is G ≡ 2. Applying Proposition 19 to
the class G , we obtain

Pr∗
(

sup
f , f ′∈F

|Pn( f − f ′)−P( f − f ′)|
ε(Pn| f − f ′|+P| f − f ′|)+5γ

> 26

)

≤ 32N (γ/2,F )2 exp(−nεγ).

The inequality therefore holds if the sup is taken over a smaller (random) subclass M ξ(n)
S .

Pr∗



 sup
f , f ′∈M ξ(n)

S

|P( f − f ′)|−ξ(n)

ε(Pn| f − f ′|+P| f − f ′|)+5γ
> 26



≤ 32N (γ/2,F )2 exp(−nεγ).

Since supx
A(x)
B(x) ≥ supx

A(x)
supx B(x) =

supx A(x)
supx B(x) ,

Pr∗



 sup
f , f ′∈M ξ(n)

S

(

|P( f − f ′)|−ξ(n)
)

> 26 sup
f , f ′∈M ξ(n)

S

(

ε(Pn| f − f ′|+P| f − f ′|)+5γ
)



 (3)

≤ 32N (γ/2,F )2 exp(−nεγ).
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By assumption,

λ(n) sup
f , f ′∈M ξ(n)

S

P| f − f ′| P∗
−→ 0.

Because G ′ is Donsker and λ(n) = o(n1/2),

λ(n) sup
f , f ′∈M ξ(n)

S

∣

∣Pn| f − f ′|−P| f − f ′|
∣

∣

P∗
−→ 0.

Thus,

λ(n) sup
f , f ′∈M ξ(n)

S

Pn| f − f ′|+P| f − f ′| P∗
−→ 0.

Letting ε = ε(n) := n−1/2λ(n)ρ, this implies that for any δ > 0, there exist Nδ such that for all
n > Nδ,

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

26ε(n)
(

Pn| f − f ′|+P| f − f ′|
)

> λ(n)ρ−1



< δ.

Now, choose γ = γ(n) := n−1/2λ(n)ρ−1 (note that since ρ < 1, eventually 0 < γ(n) < 1), the last
inequality can be rewritten in the following form

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

26
(

ε(n)
(

Pn| f − f ′|+P| f − f ′|
)

+5γ(n)
)

> 131λ(n)ρ−1



< δ.

Combining the relation above with Equation 3,

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131λ(n)ρ−1





≥ 1−32N
(

1
2

n−1/2λ(n)ρ−1,F
)2

exp(−λ(n)2ρ−1)−δ.

The result follows by the assumption on the entropy and by arbitrariness of δ.

We are now ready to prove Theorem 20.
Proof [Theorem 20] By Corollary 18,

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < min
(

1
3(2V+1) min(α,η),1/2

)

. Let λ(n) = nγ and note that λ(n) = o(
√

n), which is a

condition in Lemma 23. First, we show that a power decay of the ‖·‖ diameter implies the same rate
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of decay of the L1 diameter, hence verifying condition (1) in Lemma 23. Proof of this fact is very
similar to the proof of Corollary 11, except that C is replaced by Cλ(n)−1.

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∥

∥ f − f ′
∥

∥

L2
> Cλ(n)−1

)

≤ Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

+Pr∗
(

diamM ξ(n)
S > Cλ(n)−1/

√
2
)

.

The second term goes to zero since λ(n)diamM ξ(n)
S

P∗
−→ 0. Moreover, since λ(n) = o(

√
n) and G is

Donsker, the first term can be bounded as

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

≤ Pr∗
(

∃ f , f ′ ∈ F ,
∣

∣Pn f −Pn f ′
∣

∣≤ ξ(n),
∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

≤ Pr∗
(

sup
f , f ′∈F

|P( f − f ′)−Pn( f − f ′)| >
∣

∣

∣

∣

C√
2

λ(n)−1 −ξ(n)

∣

∣

∣

∣

)

= Pr∗
(

λ(n) sup
g∈G

|Pg−Png| >
∣

∣

∣

∣

C√
2
−ξ(n)λ(n)

∣

∣

∣

∣

)

→ 0,

proving condition (1) in Lemma 23.
We now verify condition (2) in Lemma 23. Since F is a VC-subgraph class of dimension V , its

entropy numbers logN (ε,F ) behave like V log A
ε (A is a constant), that is

logN
(

1
2

n−1/2λ(n)ρ−1,F
)

≤ const +
1
2

V logn+(1−ρ)V logλ(n).

Condition (2) of Lemma 23 will therefore hold whenever λ(n) grows faster than (logn)
1

2ρ−1 , for any
1 > ρ > 1

2 . In our problem, λ(n) grows polynomially, so condition (2) is satisfied for any fixed
1 > ρ > 1/2.

Hence, by Lemma 23

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131nγ(ρ−1)



→ 0.

Choose any 0 < κ < γ/2 and multiply both sides of the inequality by nκ. We obtain

Pr∗



nκ√n sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| ≤
√

nξ(n)nκ +131nγ(ρ−1)+κ



→ 0.

Now fix a ρ such that 1/2 < ρ < 1−κ/γ. Because 0 < κ < γ/2, there is always such a choice of
ρ. Furthermore, 1 > ρ > 1/2 so that the above convergence holds. Our choice of ρ implies that
γ(ρ−1)+κ < 0 and so nγ(ρ−1)+κ → 0. Since κ < γ/2 < η,

√
nξ(n)nκ → 0. Hence,

n1/2+κ sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| P∗
−→ 0

2581



CAPONNETTO AND RAKHLIN

for any κ < min
(

1
6(2V+1) min(α,η),1/2

)

.
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Abstract
We apply a type of generative modelling to the problem of blind source separation in which
prior knowledge about the latent source signals, such as time-varying auto-correlation and quasi-
periodicity, are incorporated into a linear state-space model. In simulations, we show that in terms
of signal-to-error ratio, the sources are inferred more accurately as a result of the inclusion of
strong prior knowledge. We explore different schemes of maximum-likelihood optimization for
the purpose of learning the model parameters. The Expectation Maximization algorithm, which
is often considered the standard optimization method in this context, results in slow convergence
when the noise variance is small. In such scenarios, quasi-Newton optimization yields substantial
improvements in a range of signal to noise ratios. We analyze the performance of the methods on
convolutive mixtures of speech signals.
Keywords: blind source separation, state-space model, independent component analysis, convo-
lutive model, EM, speech modelling

1. Introduction

We are interested in blind source separation (BSS) in which unknown source signals are estimated
from noisy mixtures. Real world application of BSS techniques are found in as diverse fields as
audio (Yellin and Weinstein, 1996; Parra and Spence, 2000; Anemüller and Kollmeier, 2000), brain
imaging and analysis (McKeown et al., 2003), and astrophysics (Cardoso et al., 2002). While most
prior work is focused on mixtures that can be characterized as instantaneous, we will here inves-
tigate causal convolutive mixtures. The mathematical definitions of these classes of mixtures are
given later in this introductory section. Convolutive BSS is relevant in many signal processing ap-
plications, where the instantaneous mixture model cannot possibly capture the latent causes of the
observations due to different time delays between the sources and sensors. The main problem is
the lack of general models and estimation schemes; most current work is highly application specific
with the majority focused on applications in separation of speech signals. In this work we will
also be concerned with speech signals, however, we will formulate a generative model that may be
generalizable to several other application domains.

One of the most successful approaches to convolutive BSS is based on the following assump-
tions: 1) The mixing process is linear and causal, 2) the source signals are statistically independent,
3) the sources can be fully characterized by their time variant second order statistics (Weinstein
et al., 1993; Parra and Spence, 2000). The last assumption is defining for this approach. Keeping
to second order statistics we simplify computations but have to pay the price of working with time-
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variant statistics. It is well-known that stationary second order statistics, that is, covariances and
correlation functions, are not informative enough in the convolutive mixing case.

Our research concerns statistical analysis and generalizations of this approach. We formulate
a generative model based on the same statistics as the Parra-Spence model. The benefit of this
generative approach is that it allows for estimation of additional noise parameters and injection of
well-defined a priori information in a Bayesian sense (Olsson and Hansen, 2005). Furthermore, we
propose several algorithms to learn the parameters of the proposed models.

The linear mixing model reads

xt =
L−1

∑
k=0

Akst−k +wt . (1)

At discrete time t, the observation vector, xt , results from the convolution sum of the L time-lagged
mixing matrices Ak and the source vector st . The individual sources, that is, the elements of st , are
assumed to be statistically independent. The observations are corrupted by additive i.i.d. Gaussian
noise, wt . BSS is concerned with estimating st from xt , while Ak is unknown. It is apparent from
(1) that only filtered versions of the elements of st can be retrieved, since the inverse filtering can be
applied to the unknown Ak. As a special case of the filtering ambiguity, the scale and the ordering
of the sources is unidentifiable. The latter is evident from the fact that various permutation applied
simultaneously to the elements of st and the columns of At produce identical mixtures, xt .

Equation (1) collapses to an instantaneous mixture in the case of L = 1 for which a variety
of Independent Component Analysis (ICA) methods are available (e.g., Comon, 1994; Bell and
Sejnowski, 1995; Hyvarinen et al., 2001). As already mentioned, however, we will treat the class of
convolutive mixtures, that is L > 1.

Convolutive Independent Component Analysis (C-ICA) is a class of BSS methods for (1) where
the source estimates are produced by computing the ‘unmixing’ transformation that restores statis-
tical independence. Often, an inverse linear filter (e.g., FIR) is applied to the observed mixtures.
Simplistically, the separation filter is estimated by minimizing the mutual information, or ‘cross’
moments, of the ‘separated’ signals. In many cases non-Gaussian models/higher-order statistics are
required, which require a relatively long data series for reliable estimation. This can be executed in
the time domain (Lee et al., 1997; Dyrholm and Hansen, 2004), or in the frequency domain (e.g.,
Parra and Spence, 2000). The transformation to the Fourier domain reduces the matrix convolu-
tion of (1) to a matrix product. In effect, the more difficult convolutive problem is decomposed
into a number of manageable instantaneous ICA problems that can be solved independently using
the mentioned methods. However, frequency domain decomposition suffers from permutation over
frequency which is a consequence of the potential different orderings of sources at different fre-
quencies. Many authors have explored solutions to the permutation-over-frequency problem that
are based on measures of spectral structure (e.g., Anemüller and Kollmeier, 2000), where amplitude
correlation across frequency bands is assumed and incorporated in the algorithm.

The work presented here forges research lines that treat instantaneous ICA as a density estima-
tion problem (Pearlmutter and Parra, 1997; Højen-Sørensen et al., 2002), with richer source priors
that incorporate time-correlation, non-stationarity, periodicity and the convolutive mixture model to
arrive at an C-ICA algorithm. The presented algorithm, which operates entirely in the time-domain,
relies on a linear state-space model, for which estimation and exact source inference are available.
The states directly represent the sources, and the transition structure can be interpreted as describ-
ing the internal time-correlation of the sources. To further increase the audio realism of the model,
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Olsson and Hansen (2005) added a harmonic excitation component in the source speech model
(Brandstein, 1998); this idea is further elaborated and tested here.

Algorithms for the optimization of the likelihood of the linear state-space model are devised and
compared, among them the basic EM algorithm, which is used extensively in latent variable models
(Moulines et al., 1997). In line with Bermond and Cardoso (1999), the EM-algorithm is shown to
exhibit slow convergence in good signal to noise ratios.

It is interesting that the two ‘unconventional’ aspects of our generative model: the non-stationarity
of the source signals and their harmonic excitation, do not change the basic quality of the state-space
model, namely that exact inference of the sources and exact calculation of the log-likelihood and its
gradient are still possible.

The paper is organized as follows: First we introduce the state-space representation of the con-
volutive mixing problem and the source models in Section 2, in Section 3 we briefly recapitulate the
steps towards exact inference for the source signals, while Section 4 is devoted to a discussion of
parameter learning. Sections 5 and 6 present a number of experimental illustrations of the approach
on simulated and speech data respectively.

2. Model

The convolutive blind source separation problem is cast as a density estimation task in a latent
variable model as was suggested in Pearlmutter and Parra (1997) for the instantaneous ICA problem

p(X|θ) =
Z

p(X|S,θ1)p(S|θ2)dS.

Here, the matrices X and S are constructed as the column sets of xt and st for all t. The functional
forms of the conditional likelihood, p(X|S,θ1), and the joint source prior, p(S|θ2), should ideally
be selected to fit the realities of the separation task at hand. The distributions depend on a set of
tunable parameters, θ ≡ {θ1,θ2}, which in a blind separation setup is to be learned from the data. In
the present work, p(X|S,θ1) and p(S|θ2) have been restricted to fit into a class of linear state-space
models, for which effective estimation schemes exist (Roweis and Ghahramani, 1999)

st = Fnst−1 +Cnut +vt , (2)

xt = Ast +wt . (3)

Equations (2) and (3) describe the state/source and observation spaces, respectively. The parameters
of the former are time-varying, indexed by the block index n, while the latter noisy mixing process
is stationary. The randomness of the model is enabled by i.i.d. zero mean Gaussian variables,
vt ∼ N (0,Qn), and wt ∼ N (0,R) The ‘input’ or ‘control’ signal ut ≡ ut(ψn) deterministically
shifts the mean of st depending on parameters ψn. Various structures can be imposed on the model
parameters, θ1 = {A,R} and θ2 = {Fn,Cn,Qn,ψn}, in order to create the desired effects. For
equations (2) and (3) to pose as a generative model for the instantaneous mixture of first-order
autoregressive, AR(1), sources it need only be assumed that Fn and Qn are diagonal matrices and
that Cn = 0. In this case, A functions as the mixing matrix. In Section 2.1, we generalize to AR(p)
and convolutive mixing.

2587



OLSSON AND HANSEN

��� � �
� � � � � �

� � � � � �

� � � � � �

� ��� �
� ��� � � �

� ��� � � �

� ��� � � �

	 � � �
	 ��
 �	 ��
 �

	 � � �

	
� 
 �

	
� 
 �

	
� 
 �

	
� 
 �











��� � �

� � � �

��� � �
� � � � � �

� � � � � �

� � � � � �

� � � �
� � � � � �

� � � � � �

� � � � � �

�
�

� �

� �
� � � � � � �

� � �

a

��� � �
��� � �

!�� � � � "

#�� � �
# � � � $ �

#�� � � $ %
#�� � � $ �

#��&� �
# �&� � $ �

# �&� � $ %
#��&� � $ �

'(� )

* �

+�� � �
+(�,� �

-.�

!/� � � � � !�� � � � %!�0 � 0 � 1
!/� � � � "2!(�&� � � � !��&� � � %!�� � � � �

! �&� � � " ! � � � � � ! � � � � %! �&� � � �
!��&� �&� "3!/� � �4� � !�� � �&� %!(�&� � � �

54687:9<;4=�>@?�>A=B7DCFE<=G>

H I J

b

Figure 1: The dynamics of the linear state space model when it has been constrained to describe
a noisy convolutive mixture of P = 2 autoregressive (AR) sources. This is achieved by
augmenting the source vector to contain time-lagged signals. In a is shown the corre-
sponding source update, when the order of the AR process is p = 4. In b, the sources are
mixed through filters (L = 4) into Q = 2 noisy mixtures. Blanks signify zeros.

2.1 Auto-Regressive Source Prior

The AR(p) source prior for source i in frame n is defined as follows,

si,t =
p

∑
k=1

f n
i,ksi,t−k + vi,t

where t ∈ {1,2, ..,T}, n ∈ {1,2, ..,N} and i ∈ {1,2, ..,P}. The excitation noise is i.i.d. zero mean
Gaussian: vi,t ∼ N (0,qn

i ). It is an important point that the convolutive mixture of AR(p) sources
can be contained in the linear state-space model (2) and (3), this is illustrated in Figure 1. The
enabling trick, which is standard in time series analysis, is to augment the source vector to include
a time history so that it contains L time-lagged samples of all P sources

st =
[

(s1,t)
> (s2,t)

> . . . (sP,t)
>

]>

where the i’th source is represented as

si,t =
[

si,t si,t−1 . . . si,t−L+1
]>

.
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Furthermore, constraints are enforced on the matrices of θ

Fn =











Fn
1 0 · · · 0

0 Fn
2 · · · 0

...
...

. . .
...

0 0 · · · Fn
P











,

Fn
i =















f n
i,1 f n

i,2 · · · f n
i,p−1 f n

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















,

Qn =











Qn
1 0 · · · 0

0 Qn
2 · · · 0

...
...

. . .
...

0 0 · · · Qn
P











,

(Qn
i ) j j′ =

{

(q2
i )

n j = j′ = 1
0 j 6= 1

W

j′ 6= 1
,

Cn = 0,

where Fn
i was defined for p = L. In the interest of the simplicity of the presentation, it is assumed

that Fn
i has L row and columns. We furthermore assume that p ≤ L; in the case of p < L, zeros

replace the affected (rightmost) coefficients. Hence, the dimensionality of A is Q× (p×P),

A =











a>11 a>12 .. a>1P
a>21 a>22 .. a>2P
...

...
. . .

...
a>Q1 a>Q2 .. a>QP











where ai j = [ai j,1,ai j,2, ..,ai j,L]
> can be interpreted as the impulse response of the channel filter

between source i and sensor j. Overall, the model can described can be described as the generative,
time-domain equivalent of Parra and Spence (2000).

2.2 Harmonic Source Prior

Many classes of audio signals, such as voiced speech and musical instruments, are approximately
piece-wise periodic. By the Fourier theorem, such sequences can be represented well by a harmonic
series. In order to account for colored noise residuals and noisy signals in general, a harmonic and
noise (HN) model is suggested (McAulay and Quateri, 1986). The below formulation is used

si,t =
p

∑
t ′=1

f n
i,t ′si,t−t ′ +

K

∑
k=1

[

cn
i,2k−1 sin(ωn

0,it)+ cn
i,2k cos(ωn

0,it)
]

+ vi,t

where ωn
0,i’ is the fundamental frequency of source i in frame n and the Fourier coefficients are

contained in cn
i,2k−1 and cn

i,2k. The harmonic model is represented in the state space model (2) & (3)
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through the definitions

Cn =















(cn
1)

> 0 · · · 0
0 0 · · · 0
0 (cn

2)
> · · · 0

...
...

. . .
...

0 0 · · · (cn
P)>















,

cn
i =

[

cn
i,1 cn

i,2 · · · cn
i,2K

]>
,

un
t =

[

(un
1,t)

> (un
2,t)

> . . . (un
P,t)

>
]>

,

where the k’th harmonics of source i in frame n are defined as (un
i,t)2k−1 = sin(kωn

0,it) and (un
i,t)2k =

cos(kωn
0,it), implying the following parameter set for the source mean: ψn =

[

ωn
0,1 ωn

0,2 . . . ωn
0,P

]

.

Other parametric mean functions could, of course, be used, for example, a more advanced speech
model.

3. Source Inference

In a maximum a posteriori sense, the sources, st , can be optimally reconstructed using the Kalman
filter/smoother (Kalman and Bucy, 1960; Rauch et al., 1965). This is based on the assumption
that the parameters θ are known, either a priori or have been estimated as described in Section 4.
While the filter computes the time-marginal moments of the source posterior conditioned on past
and present samples, that is, 〈st〉p(S|x1:t ,θ) and

〈

sts>t
〉

p(S|x1:t ,θ)
, the smoother conditions on samples

from the entire block: 〈st〉p(S|x1:T ,θ) and
〈

sts>t
〉

p(S|x1:T ,θ)
. For the Kalman filter/smoother to compute

MAP estimates, it is a precondition due that the model is linear and Gaussian. The computational
complexity is O(T L3) due to a matrix inversion occurring in the recursive update. Note that the
forward recursion also yields the exact log-likelihood of the parameters given the observations,
L(θ). A thorough review of linear state-space modelling, estimation and inference from a machine
learning point of view can be found in Roweis and Ghahramani (1999).

4. Learning

The task of learning the parameters of the state-space model from data is approached by maximum-
likelihood estimation, that is, the log-likelihood function, L(θ), is optimized with respect to the
parameters, θ. The log-likelihood is defined as a marginalization over the hidden sources

L(θ) = logp(X|θ) = log
Z

p(X,S|θ)dS.

A closed-form solution, θ = argmaxθ′ L(θ′), is not available, hence iterative algorithms that opti-
mize L(θ) are employed. In the following sections three such algorithms are presented.

4.1 Expectation Maximization Algorithm

Expectation Maximization (EM) (Dempster et al., 1977), has been applied to latent variable models
in, for example, Shumway and Stoffer (1982) and Roweis and Ghahramani (1999). In essence, EM

2590



LINEAR STATE-SPACE MODELS FOR BLIND SOURCE SEPARATION

is iterative optimization of a lower bound decomposition of the log-likelihood

L(θ) ≥ F (θ, p̂) = J (θ, p̂)−R (p̂) (4)

where p̂(S) is any normalized distribution and the following definitions apply

J (θ, p̂) =
Z

p̂(S) logp(X,S|θ)dS,

R (p̂) =
Z

p̂(S) log p̂(S)dS.

Jensen’s inequality leads directly to (4). The algorithm alternates between performing Expectation
(E) and Maximization (M) steps, guaranteeing that L(θ) does not decrease following an update.
On the E-step, the Kalman smoother is used to compute the marginal moments from the source
posterior, p̂ = p(S|X,θ), see Section 3. The M-step amounts to optimization of J (θ, p̂) with respect
to θ (since this is the only F (θ, p̂) term which depends on θ. Due to the choice of a linear Gaussian
model, closed-form estimators are available for the M-step (see appendix A for derivations).

In order to improve on the convergence speed of the basic EM algorithm, the search vector
devised by the M-step update is premultiplied by an adaptive step-size η. A simple exponentially
increase of η from 1 was used until a decrease in L(θ) was observed at which point η was reset
to 1. This speed-up scheme was applied successfully in Salakhutdinov and Roweis (2003). Below
follow the M-step estimators for the AR and HN models. All expectations 〈·〉 are over the source
posterior, p(S|X,θ):

4.1.1 AUTOREGRESSIVE MODEL

For source i in block n:

fn
i,new =

[
T+t0(n)

∑
t=2+t0(n)

〈si,t−1s>i,t−1〉
]−>[

T+t0(n)

∑
t=2+t0(n)

〈si,tsi,t−1〉
]

,

qn
i,new =

1
T −1

T+t0(n)

∑
t=2+t0(n)

[

〈s2
i,t〉−

(

fn
i,new

)>
〈si,tsi,t−1〉

]

,

where t0(n) = (n−1)T . Furthermore:

Anew =
[ NT

∑
t=1

xt〈st〉
>
][ NT

∑
t=1

〈st(st)
>〉

]−1
,

Rnew =
1

NT

NT

∑
t=1

diag[xt(xt)
>−Anew〈st〉(xt)

>],

where the diag[·] operator extracts the diagonal elements of the matrix. Following an M-step, the
solution corresponding to ||Ai|| = 1 ∀i is chosen, where || · || is the Frobenius norm and Ai =
[

ai1 ai2 · · · aiQ
]>

, meaning that A and Qn are scaled accordingly.

4.1.2 HARMONIC AND NOISE MODEL

The linear source parameters and signals are grouped as

dn
i ≡

[

(fn
i )

> (cn
i )

>
]>

, zi ≡
[

(si,t−1)
> (ui,t)

>
]>

,
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where

fn
i ≡

[

f n
i,1 f n

i,2 . . . f n
i,p

]>
, cn

i ≡
[

ci,1 cn
i,2 . . . cn

i,p

]>
.

It is in general not trivial to maximize J (θ, p̂) with respect to ωn
i,0, since several local maxima exist,

for example, at multiples of ωn
i,0 (McAulay and Quateri, 1986). However, simple grid search in a

region provided satisfactory results. For each point in the grid we optimize J (θ, p̂) with respect to
dn

i :

dn
i,new =

[

NT

∑
t=2

〈

zi,t(zi,t)
>
〉

]−1 NT

∑
t=2

〈

zi,t(si,t)
>
〉

.

The estimators of A, R and qn
i are similar to those in the AR model.

4.2 Gradient-based Learning

The derivative of the log-likelihood, dL(θ)
dθ , can be computed and used in a quasi-Newton (QN)

optimizer as is demonstrated in Olsson et al. (2006). The computation reuse the analysis of the
M-step. This can be realized by rewriting L(θ) as in Salakhutdinov et al. (2003):

dL(θ)

dθ
=

Z

p(S|X,θ)
d logp(X,S|θ)

dθ
dS =

dJ (θ, p̂)

dθ
. (5)

Due to the definition of J (θ, p̂), the desired gradient in (5) can be computed following an E-step
at relatively little effort. Furthermore, the analytic expressions are available from the derivation of
the EM algorithm, see appendix A for details. A minor reformulation of the problem is necessary
in order to maintain non-negative variances. Hence, the reformulations Ω2 = R and (φn

i )
2 = qn

i are
introduced. Updates are devised for Ω and φn

i . The derivatives are

dL(θ)

dA
= −R−1A

NT

∑
t=1

〈

sts>t
〉

+R−1
N

∑
t=1

xt

〈

s>t
〉

,

dL(θ)

dΩ
= Ω−3

NT

∑
t=1

[

xtx>t +A
〈

sts>t
〉

A>−2xt

〈

s>t
〉

A>
]

,

dL(θ)

dfn
i

=
T+t0(n)

∑
t=2+t0(n)

[

〈si,tsi,t−1〉−
〈

si,t−1s>i,t−1

〉

fn
i /qn

i

]

,

dL(θ)

dφn
i

= (1−T )/φn
i +

φ−3
i

T−1+t0(n)

∑
t=2+t0(n)

[〈

si,ts
>
i,t

〉

+(fn
i )

>
〈

si,t−1s>i,t−1

〉

fn
i −2(fn

i )
>

〈

si,ts>i,t−1

〉]

.

In order to enforce the unit L2 norm on Ai, a Lagrange multiplier is added to the derivative of A. In
this work, the QN optimizer of choice is the BFGS optimizer of Nielsen (2000).
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4.3 Stochastic Gradient Learning

Although quasi-Newton algorithms often converge rapidly with a high accuracy, they do not scale
well with the number of blocks, N. This is due to the fact that the number of parameters is asymp-
totically proportional to N, and therefore the internal inverse Hessian approximation becomes in-
creasingly inaccurate. In order to be able to efficiently learn θ2 (A and R) for large N, a stochastic
gradient approach (SGA), (Robbins and Monro, 1951), is employed.

It is adapted here to estimation in block-based state-space models, considering only a single
randomly and uniformly sampled block, n, at any given time. The likelihood term corresponding to
block n is L(θn

1,θ2), where θn
1 = {Fn,Cn,Qn,ψn}. The stochastic gradient update to be applied is

computed at the current optimum with respect to θn
1,

∆θ2 = η
dL(θ̂n

1,θ2)

dθ2
,

θ̂n
1 = argmax

θn
1

L(θn
1,θ2).

where θ̂n
1 is estimated using the EM algorithm. Employing an appropriate ‘cooling’ of the learning

rate, η, is mandatory in order to ensure convergence: one such, devised by Robbins and Monro
(1951), is choosing η proportional to 1

k where k is the iteration number. In our simulations, the SGA
seemed more robust to the initial parameter values than the QN and the EM algorithms.

5. Learning from Synthetic Data

In order to investigate the convergence of the algorithms, AR(2) processes with time-varying pole
placement were generated and mixed through randomly generated filters. For each signal frame,
T = 200, the poles of the AR processes were constructed so that the amplification, r, was fixed
while the center frequency was drawn uniformly from U (π/10,9π/10). The filter length was L = 8
and the coefficients of the mixing filters, that is, the ai j of A, were generated from i.i.d. Gaussians
weighted by an exponentially decaying function. Quadratic mixtures with Q = P = 2 were used: the
first 2 elements of a12 and a21 were set to zero to simulate a situation with different channel delays.
All channel filters were normalized to ||ai j||2 = 1. Gaussian i.i.d. noise was added in each channel,
constructing the desired signal to noise ratio.

For evaluation purposes, the signal-to-error ratio (SER) was computed for the inferred sources.
The true and estimated sources were mapped to the output by filtering through the direct channel
so that the true source at the output is s̃i,t = aii ∗ si,t . Similarly defined, the estimated source at the
sensor is ŝi,t . Permutation ambiguities were resolved prior to evaluating the SER,

SERi =
∑t s̃2

i,t

∑t (s̃i,t − ŝi,t)
2 .

The EM and QN optimizers were applied to learn the parameters from N = 10 frames of samples
with SNR = 20dB, r = 0.8. The algorithms were restarted 5 times with random initializations,
Ai j ∈ N (0,1), the one that yielded the maximal likelihood was selected. Figure 2 shows the results
of the EM run: the close match between the true and learned models confirms that the parameters
can indeed be learned from the data using maximum-likelihood optimization. In Table 1, the gen-
erative approach is contrasted with a stationary finite impulse response (FIR) filter separator that
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Figure 2: The true (bold) and estimated models for the first 3 frames of the synthetic data based
on the autoregressive model. The amplitude frequency responses of the combined source
and channel filters are shown: for source i, this amounts to the frequency response of
the filter, with the scaling and poles of θ1,i and zeros of the direct channel aii. For the
mixtures, the responses across channels were summed. The EM algorithm provided the
estimates.

Estimated Generative MSE FIR
AR 9.1±0.4 9.7±0.4 7.5±0.2
HN 11.8±0.7 13.2±0.4 7.9±0.5

Table 1: The signal-to-error ratio (SER) performance on synthetic data based on the autoregressive
(AR) and harmonic-and-noise (HN) source models. Mean and standard deviation of the
mean are shown for 1) the EM algorithm applied to the mixtures, 2) inferences from data
and the true model, and, 3) the optimal FIR filter separator. The mean SER and the standard
deviation of the mean were calculated from N = 10 signal frames, SNR = 20dB.

in a supervised fashion was optimized to minimize the squared error between the estimated and
true sources, LFIR = 25. Depending on the signal properties, the generative approach, which re-
sults in a time-varying filter, results in a clear advantage over the time-invariant FIR filter, which
has to compromise across the signal’s changing dynamics. As a result, the desired signals are only
sub-optimally inferred by methods that apply a constant filter to the mixtures. The performance of
the learned model is upper-bounded by that of the generative model, since the maximum likelihood
estimator is only unbiased in the limit.

The convergence speed of the EM scheme is highly sensitive to the signal-to-noise ratio of
the data, as was documented in Olsson et al. (2006), whereas the QN algorithm is more robust to
this condition. In Bermond and Cardoso (1999), it was shown that the magnitude of the update
of A scales inversely with the SNR. By varying the SNR in the synthetic data and applying the
EM algorithm, it was confirmed that the predicted convergence slowdown occurs at high SNR. In
contrast, the QN algorithm was found to be much more robust to the noise conditions of the data.
Figure 3 shows the SER performance of the two algorithms as computed following a fixed number
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Figure 3: Convergence properties of the EM and QN algorithms as measured on the synthetic data
(autoregressive sources). The signal-to-error ratio (SER) was computed in a range of SNR
following 300 iterations. As the SNR increases, more accurate estimates are provided by
all algorithms, but the number of iterations required increases more dramatically for the
EM algorithm. Results are shown for the basic EM algorithm as well as for the step-size
adjusted version.

of iterations (imax = 300). It should be noted that the time consumption per iteration is similar for the
two algorithms, since a similar number of E-step computations is used (and E-steps all but dominate
the cost).

For the purpose of analyzing the HN model, a synthetic data set was generated. The fundamental
frequency of the harmonic component was sampled uniformly in a range, see Figure 4, amplitudes
and phases, K = 4, were drawn from a Gaussian distribution and subsequently normalized such that
||ci|| = 1. The parameters of the model were estimated using the EM algorithm on data, which was
constructed as SNR = 20dB, HNR = 20dB. The fundamental frequency search grid was defined
by 101 evenly spaced points in the generative range. In Figure 4, true and learned parameters are
displayed. A close match between the true and estimated harmonics is observed.

In cases when the sources are truly harmonic and noisy, it is expected that the AR model per-
forms worse than the HN model. This is due to the fact that a harmonic mean structure is required
for the model to be unbiased. The AR model will compensate by estimating a larger variance, qi,
leading to suboptimal inference. In Figure 5, the bias is quantified by measuring the performance
gap between the HN and AR models for varying HNR. The source parameters were estimated by
the EM algorithm, whereas the mixing matrix, A, was assumed known.
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ization purposes, the estimated waveform was shifted by a small offset.

PSfrag replacements

HNR (dB)

SE
R

(d
B

)

HN (30dB)

AR (10dB)
AR (20dB)
AR (30dB)
HN (10dB)
HN (20dB)
HN (30dB)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-20 -10 0 10 20 30

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10

15

20

25

Figure 5: The signal-to-error ratio (SER) performance of the autoregressive (AR) and harmonic-
and-noisy (HN) models for the synthetic data set (N = 100) in which the harmonic-to-
noise ratio (HNR) was varied. Results are reported for SNR = 10,20,30dB. The results
indicate that the relative advantage of using the correct model (HN) can be significant.
The error-bars represent the standard deviation of the mean.

6. Speech Mixtures

The separation of multiple speech sources from room mixtures has potential applications in hearing
aids and speech recognition software (see, for example, Parra and Spence, 2000). For this purpose,
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Figure 6: The separation performance (SER) on test mixtures as a function of the training data
duration for the autoregressive (AR) and harmonic-and-noisy (HN) priors. Using the
stochastic gradient (SG) algorithm, the parameters were estimated from the training data.
Subsequently, the learned filters, A, were applied to the test data, reestimating the source
model parameters. The noise was constructed at 40dB and assumed known. For ref-
erence, a frequency domain (FD) blind source separation algorithm was applied to the
data.

we investigate the models based on the autoregressive (AR) and harmonic-and-noisy source (HN)
priors and compare with a standard frequency domain method (FD). More specifically, a learning
curve was computed in order to illustrate that the inclusion of prior knowledge of speech benefits
the separation of the speech sources. In Figure 6 is shown the relationship between the separation
performance on test mixtures and the duration of the training data, confirming the hypothesis that
the AR and HN models converge faster than the FD method. Furthermore it is seen that the HN
model can obtain a larger SER than the AR model.

The mixtures were constructed by filtering speech signals (sampled at 8Hz) through a set of
simulated room impulse responses, that is, ai j, and subsequently adding the filtered signals. The
room impulse responses were constructed by simulating Q = 2 speakers and P = 2 microphones
in an (ideal) anechoic room, the cartesian coordinates in the horizontal plane given (in m) by
{(1,3) ,(3,3)} and {(1.75,1) ,(2.25,1)} for the speakers and microphones, respectively.1. This
corresponds to a maximum distance of 1.25m between the speakers and the microphones, and a set
of room impulse responses that are essentially Kronecker delta functions well represented using a
filter length of L = 8.

1. A Matlab function, rir.m, implementing the image method (Allen and Berkley, 1979) is available at
http://2pi.us/rir.html.
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The SG algorithm was used to fit the model to the mixtures and subsequently infer the source
signals. The speech data, divided into blocks of length T = 200, was preprocessed with a standard
pre-emphasis filter, H(z) = 1−0.95z−1, and inversely filtered prior to the SER calculations. From
initial conditions (qn

i = 1, f n
i, j = 0, cn

i, j = 0 and ai, j,k normally distributed, variance 0.01, for all
i, j,n,k except a1,1,1 = 1, a2,2,1 = 1; ωn

0,i was drawn from a uniform distribution corresponding to
the interval 50− 200Hz), the algorithm was allowed imax = 500 iterations to converge and restarts
were not necessary. The source model order was set to p = 1 (autoregression order) and in the
case of the harmonic-and-noise model, the number of harmonics was set to K = 6. The complex
JADE algorithm was employed in the frequency domain as the reference method (Cardoso and
Souloumiac, 1993). In order to correct the permutations across the 101 frequencies, amplitude
correlation between the bands was maximized (see, for example, Olsson and Hansen, 2006).

In order to qualitatively assess the effect of the two priors, a mixture of speech signals was
constructed using P = 2 speech signals (a female and a male, shown in Figure 7a and b). They were
mixed through artificial channels, A, which were generated as in Section 5. Noise was added up to
a level of 20dB. The EM algorithm was used to fit the source models to the mixtures. It is clear
from Figure 7 c-f that the estimated harmonic model to a large extent explains the voiced parts of the
speech signals, and the unvoiced parts to a lesser extent. In regions of rapid fundamental frequency
variation, the harmonic part cannot be fitted as well (the frames are too long here). In Figure 7 g
and h, the separation performances of the AR and HN models are contrasted. Most often, the HN
performs better than the AR model. A notable exception occurs in the case when either speaker is
silent, in which case the misfit of the HN model is more severe, suggesting that the performance can
be improved by model control.

7. Conclusion

It is demonstrated that careful generative modelling is a viable approach to convolutive source sepa-
ration and can yield improved results. Noisy observations, non-stationarity of the sources and small
data volumes are examples of scenarios which benefit from the higher level of modelling detail.

The performance of the model was shown to depend on the choice of optimization scheme
when the signal-to-noise ratio is high. In this case, the EM algorithm, which is often preferable for
its conceptual and analytical simplicity, experiences a substantial slowdown, and alternatives must
be employed. Such an alternative is a gradient-based quasi-Newton algorithm, which is shown to
be particularly useful in low-noise settings. Furthermore, the required gradients are obtained in the
process of deriving the EM algorithm.

The harmonic-and-noise model was investigated as a means to estimating more accurately a
number of speech source signals from the their mixtures. Although a substantial improvement is
shown to result when the sources are truly harmonic, the overall model is vulnerable to overfitting
when the energy of one or more sources is locally near-zero. An improvement of the existing
framework would be a model control scheme, such as variational Bayes, which could potentially
cancel the negative impact of speaker silence. This is a topic for future research.
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Figure 7: The source parameters of the autoregressive (AR) and harmonic-and-noisy (HN) models
were estimated from Q = 2 convolutive mixtures using the EM algorithm. Spectrograms
show the low-frequent parts of the original female (a) and male (b) speech sources. The
appropriateness of the HN model can be assessed in c and d, which displays the re-
synthesization of the two sources from the parameters (K = 6), as well as e and f, where
the estimated ratio of harmonics to noise (HNR) is displayed. Overall the fit seem good,
except at rapid variations of the fundamental frequency, for example, at (I), where the
analysis frames are too long. The relative separation performance of the AR and HN
models, which is shown in g and h for the two sources, confirms that the HN model is
superior in most cases, with a notable exception in regions such as (II), where one of the
speakers is silent. This implies a model complexity mismatch which is more severe for
the more complex HN model.

Appendix A.

Below, an example of an M-step update derivation is shown for Fn. As a by-product of the analy-
sis, the derivative for the gradient-based optimizers appears. Care must be devised in obtaining the
derivatives, since Fn is a structured matrix, for example, certain elements are one and zero. There-
fore, the cost-function is expressed in terms of fn

i rather than Fn. Since all variables, which are here
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indexed by the block identifier, n, are Gaussian, we have that:

J (θ) = −
1
2

N

∑
n=1

[ P
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i=1

{

log |Σn
i |+

〈

(

sn
i,1 −µn

i

)T
(Σn

i )
−1 (

sn
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i
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P

∑
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logqn
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qn
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∑
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∑
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sn
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T

∑
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〈
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.

The vector derivative of J (θ) with respect to fn
i is:

dJ (θ)

dfn
i

=
1
qn

i

[

T

∑
t=2

〈

sn
i,t−1

(

sn
i,t−1

)>
〉

fn
i −

T

∑
t=2

〈

sn
i,t−1sn

i,t

〉

]

.

This was the desired gradient, which is directly applicable in a gradient-based algorithm. By equat-
ing to zero and solving, the M-step update is derived:

fn
i,new =

[

T

∑
t=2

〈

sn
i,t−1

(

sn
i,t−1

)>
〉

]−1 T

∑
t=2

〈

sn
i,t−1sn

i,t

〉

.
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Abstract
Kernels are two-placed functions that can be interpreted as inner products in some Hilbert space. It
is this property which makes kernels predestinated to carry linear models of learning, optimization
or classification strategies over to non-linear variants. Following this idea, various kernel-based
methods like support vector machines or kernel principal component analysis have been conceived
which prove to be successful for machine learning, data mining and computer vision applications.
When applying a kernel-based method a central question is the choice and the design of the kernel
function. This paper provides a novel view on kernels based on fuzzy-logical concepts which allows
to incorporate prior knowledge in the design process. It is demonstrated that kernels mapping to
the unit interval with constant one in its diagonal can be represented by a commonly used fuzzy-
logical formula for representing fuzzy rule bases. This means that a great class of kernels can be
represented by fuzzy-logical concepts. Apart from this result, which only guarantees the existence
of such a representation, constructive examples are presented and the relation to unlabeled learning
is pointed out.
Keywords: kernel, triangular norm, T -transitivity, fuzzy relation, residuum

1. Motivation

Positive-definiteness plays a prominent role especially in optimization and machine learning due to
the fact that two-place functions with this property, so-called kernels, can be represented as inner
products in some Hilbert space. Thereby, optimization techniques conceived on the basis of linear
models can be extended to non-linear algorithms. For a survey of applications see, for example,
Jolliffe (1986), Schölkopf and Smola (2002) and Schölkopf et al. (1998).

Recently in Moser (2006) it was shown that kernels with values from the unit interval can
be interpreted as fuzzy equivalence relations motivated by the idea that kernels express a kind of
similarity. This means that the concept of fuzzy equivalence relations, or synonymously fuzzy
similarity relations, is more general than that of kernels, provided only values in the unit interval
are considered. Fuzzy equivalence relations distinguish from Boolean equivalence relations by a
many-valued extension of transitivity which can be interpreted as many-valued logical model of the
statement “IF x is similar to y AND y is similar to z THEN x is similar to z”. In contrast to the
Boolean case, in many-valued logics the set of truth values is extended such that also assertions,
for example, whether two elements x and y are similar, can be treated as a matter of degree. The
standard model for the set of (quasi) truth values of fuzzy logic and other many-valued logical
systems is the unit interval. If E(x,y) represents the (quasi) truth value of the statement that x is

c©2006 Bernhard Moser.
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similar to y, then the many-valued version of transitivity is modeled by

T (E(x,y),E(y,z)) ≤ E(x,z)

where T is a so-called triangular norm which is an extension of the Boolean conjunction. This
many-valued concept for transitivity is called T -transitivity. For a survey on triangular norms see,
for example, Dubois and Prade (1985), Gottwald (1986), Gottwald (1993) and Klement et al. (2000),
and for fuzzy equivalence relations and T -transitivity see, for example, Bodenhofer (2003), Höhle
(1993), Höhle (1999), Klement et al. (2000), and Zadeh (1971).

Based on the semantics of fuzzy logic, this approach allows to incorporate knowledge-based
models for the design of kernels. From this perspective, the most interesting mathematical question
is how positive-semidefinite fuzzy equivalence relations can be characterized or at least constructed
under some circumstances. At least for some special cases, proofs are provided in Section 4, which
motivate further research aiming at establishing a more general theory on the positive-definiteness
of fuzzy equivalence relations. These cases are based on the most prominent representatives of
triangular norms, that is the Minimum, the Product and the Łukasiewicz t-norm.

The paper is structured as follows. First of all, in Section 2, some basic prerequisites concerning
kernels and fuzzy relations are outlined. In Section 3, a result about the T -transitivity of kernels
from Moser (2006) is cited and interpreted as existence statement that guarantees a representation
of kernels mapping to the unit interval with constant 1 in its diagonal by a certain, commonly used,
fuzzy-logical construction of a fuzzy equivalence relation. Finally, in contrast to the pure existence
theorem of Section 3, in Section 4 constructive examples of fuzzy equivalence relations are provided
which are proven to be kernels. In a concluding remark, the relationship to the problem of labeled
and unlabeled learning is pointed out.

2. Prerequisites

This section summarizes definitions and facts from the theory of kernels as well as from fuzzy set
theory which are needed later on.

2.1 Kernels and Positive-Semidefiniteness Preserving Functions

There is an extensive literature concerning kernels and kernel-based methods like support vector
machines or kernel principal component analysis especially in the machine learning, data mining
and computer vision communities. For an overview and introduction, see, for example, Schölkopf
and Smola (2002). Here we present only what is needed later on. For completeness let us recall the
basic definition for kernels and positive-semidefiniteness.

Definition 1 Let X be a non-empty set. A real-valued function k : X ×X → R is said to be a
kernel iff it is symmetric, that is, k(x,y) = k(y,x) for all x,y ∈ X , and positive-semidefinite, that is,
∑n

i, j=1 cic jk(xi,x j) ≥ 0 for any n ∈ N, any choice of x1, . . . ,xn ∈ X and any choice of c1, . . . ,cn ∈ R.

One way to generate new kernels from known kernels is to apply operations which preserve the
positive-semidefiniteness property. A characterization of such operations is provided by C. H. FitzGer-
ald (1995).

Theorem 2 (Closeness Properties of Kernels) Let f : R
n → R, n ∈ N, then k : X ×X → R given by

k(x,y) := f (k1(x,y), . . . ,kn(x,y))
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is a kernel for any choice of kernels k1, . . . ,kn on X ×X iff f is the real restriction of an entire
function on C

n of the form

f (x1, . . . ,xn) = ∑
r1≥0,...,rn≥0

cr1,...,rnxr1
1 · · ·xrn

n (1)

where cr1,...,rn ≥ 0 for all nonnegative indices r1, . . . ,rn.

2.2 Triangular Norms

Triangular norms have been originally studied within the framework of probabilistic metric spaces,
see Schweizer and Sklar (1961) and Schweizer and Sklar (1983). In this context, t-norms proved to
be an appropriate concept when dealing with triangle inequalities. Later on, t-norms and their dual
version, t-conorms, have been used to model conjunction and disjunction for many-valued logic,
see Dubois and Prade (1985), Gottwald (1986), Gottwald (1993) and Klement et al. (2000).

Definition 3 A function T : [0,1]2 → [0,1] is called t-norm (triangular norm), if it satisfies the
following conditions:

(i) ∀x,y ∈ [0,1] : T (x,y) = T (y,x) (commutativity)
(ii) ∀x,y,z ∈ [0,1] : T (x,T (y,z)) = T (T (x,y),z) (associativity)
(iii) ∀x,y,z ∈ [0,1] : y ≤ z =⇒ T (x,y) ≤ T (x,z) (monotonicity)
(iv) ∀x,y ∈ [0,1] : T (x,1) = x∧T (1,y) = y (boundary condition)

Further, a t-norm is called Archimedean if it is continuous and satisfies

x ∈ (0,1) ⇒ T (x,x) < x.

Due to its associativity, many-placed extensions Tn : [0,1]n → [0,1], n ∈ N, of a t-norm T are
uniquely determined by

Tn(x1, . . . ,xn) = T (x1,Tn−1(x2, . . . ,xn)).

Archimedean t-norms are characterized by the following representation theorem due to Ling (1965):

Theorem 4 Let T : [0,1]2 → [0,1] be a t-norm. Then T is Archimedean if, and only if, there is a
continuous, strictly decreasing function f : [0,1] → [0,∞] with f (1) = 0 such that for x,y ∈ [0,1],

T (x,y) = f−1(min( f (x)+ f (y), f (0))).

By setting g(x) = exp(− f (x)), Ling’s characterization yields an alternative representation with a
multiplicative generator function

T (x,y) = g−1(max(g(x)g(y),g(0))).

For g(x) = x we get the product TP(x,y) = xy. The setting f (x) = 1 − x yields the so-called
Łukasiewcz t-norm TL(x,y) = max(x + y−1,0). Due to Ling’s theorem 4 an Archimedean t-norm
T is isomorphic either to TL or TP, depending on whether the additive generator takes a finite value
at 0 or not. In the former case, the Archimedean t-norm is called non-strict, in the latter it is called
strict.
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A many-valued model of an implication is provided by the so-called residuum given by

→
T (a,b) = sup{c ∈ [0,1]|T (a,c) ≤ b} (2)

where T is a left-continuous t-norm. Equation (2) is uniquely determined by the so-called adjunction
property

∀a,b,c ∈ [0,1] : T (a,b) ≤ c ⇔ a ≤
→
T (b,c). (3)

Consequently, the operator
↔
T (a,b) = min

{→
T (a,b),

→
T (b,a)

}

(4)

models a biimplication. For details, for example, see Gottwald (1986) and Klement et al. (2000).

Tables 1 and 2 list examples of t-norms with their induced residuum
→
T . For further examples see,

for example, Klement et al. (2000).

Tcos(a,b) = max(ab−
√

1−a2
√

1−b2,0)
TL(a,b) = max(a+b−1,0)
TP(a,b) = ab
TM(a,b) = min(a,b)

Table 1: Examples of t-norms

→
T cos(a,b) =

{

cos(arccos(b)− arccos(a)) if a > b,

1 else
→
T L(a,b) = min(b−a+1,1)

→
T P(a,b) =

{

b
a if a > b,

1 else
→
T M(a,b) =

{

b if a > b,

1 else

Table 2: Examples of residuums

2.3 T -Equivalences

If we want to classify based on a notion of similarity or indistinguishability, we face the problem of
transitivity. For instance, let us consider two real numbers to be indistinguishable if and only if they
differ by at most a certain bound ε > 0, this is modeled by the relation ∼ε given by x ∼ε y :⇔|x−y|<
ε, ε > 0, x,y ∈ R. Note that the relation ∼ε is not transitive and, therefore, not an equivalence
relation. The transitivity requirement turns out to be too strong for this example. The problem of
identification and transitivity in the context of similarity of physical objects was early pointed out
and discussed philosophically by Poincaré (1902) and Poincaré (1904). In the framework of fuzzy
logic, the way to overcome this problem is to model similarity by fuzzy relations based on a many-
valued concept of transitivity, see Bodenhofer (2003), Höhle (1993), Höhle (1999), Klement et al.
(2000) and Zadeh (1971).
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Definition 5 A function E : X2 −→ [0,1] is called a fuzzy equivalence relation, or synonymously,
T -equivalence with respect to the t-norm T if it satisfies the following conditions:

(i) ∀x ∈ X : E(x,x) = 1 (reflexivity)
(ii) ∀x,y ∈ X : E(x,y) = E(y,x) (symmetry)
(iii) ∀x,y,z ∈ X : T (E(x,y),E(y,z)) ≤ E(x,z) (T-transitivity).

The value E(x,y) can be also looked at as the (quasi) truth value of the statement “x is equal to y”.
Following this semantics, T-transitivity can be seen as a many-valued model of the proposition, “If
x is equal to y and y is equal to z, then x is equal to z”. T -equivalences for Archimedean t-norms are
closely related to metrics and pseudo-metrics as shown by Klement et al. (2000) and Moser (1995).

Theorem 6 Let T be an Archimedean t-norm given by

∀a,b ∈ [0,1] : T (a,b) = f −1(min( f (a)+ f (b), f (0))),

where f : [0,1] → [0,∞] is a strictly decreasing, continuous function with f (1) = 0.
(i) If d : X2 → [0,∞[ is a pseudo-metric, then the function Ed : X2 → [0,1] defined by

Ed(x,y) = f−1(min(d(x,y), f (0)))

is a T -equivalence with respect to the t-norm T .
(ii) If E : X2 → [0,1] is a T -equivalence relation, then the function dE : X2 → [0,∞] defined by

dE(x,y) = f (E(x,y))

is a pseudo-metric.

Another way to construct T -equivalences is to employ
→
T -operators. The proof of the following

assertion can be found in Trillas and Valverde (1984), Kruse et al. (1993) and Kruse et al. (1994).

Theorem 7 Let T be a left-continuous t-norm,
↔
T its induced biimplication, µi : X → [0,1], i ∈ I, I

non-empty; then E : X ×X → [0,1] given by

E(x,y) = inf
i∈I

↔
T (µi(x),µi(y)) (5)

is a T -equivalence relation.

For further details on T -equivalences see also Boixader and Jacas (1999), Höppner et al. (2002),
Jacas (1988), Trillas et al. (1999) and Valverde (1985).

3. Representing Kernels by T -Equivalences

It is interesting that the concept of kernels, which is motivated by geometric reasoning in terms
of inner products and mappings to Hilbert spaces and which is inherently formulated by algebraic
terms, is closely related to the concept of fuzzy equivalence relations as demonstrated and discussed
in more detail in Moser (2006). In this section, we start with the result that any kernel k : X ×X →
[0,1] with k(x,x) = 1 for all x ∈ X is T -transitive and, therefore, a fuzzy equivalence relation. The
proof can be found in Moser (2006), see also Appendix A.1.
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Theorem 8 Any kernel k : X ×X → [0,1] with k(x,x) = 1 is (at least) Tcos-transitive, where

Tcos(a,b) = max{ab−
√

1−a2
√

1−b2,0}. (6)

The nomenclature is motivated by the fact that the triangular norm defined by Equation (6) is an
Archimedean t-norm which is generated by the arcosine function as its additive generator. From
this result, the following existence theorem can be derived, which guarantees that any kernel under
consideration can be represented by the fuzzy-logical formula given by (5). In fuzzy systems, this
formula is commonly used for modeling rule bases (see, for example, Kruse et al., 1993, 1994).

Theorem 9 Let X be a non-empty universe of discourse, k : X ×X → [0,1] a kernel in the sense of
Definition 1 and k(x,x) = 1 for all x ∈ X ; then there is a family of membership functions µi : X →
[0,1], i ∈ I, I non-empty and a t-norm T , such that

∀x,y ∈ X : k(x,y) = inf
i∈I

↔
T (µi(x),µi(y)). (7)

Proof. Let us set I := X , µx0(x) = k(x,x0) and let us choose Tcos as t-norm. For convenience let us
denote

h(x,y) = inf
x0∈X

↔
T cos(µx0(x),µx0(y)),

which is equivalent to

h(x,y) = inf
x0∈X

↔
T cos(k(x0,x),k(x0,y)).

According to Theorem 8, k is Tcos-transitive, that is,

∀x0,x,y ∈ X :
↔
T cos(k(x0,x),k(x0,y)) ≤ k(x,y).

This implies that h(x,y) ≤ k(x,y) for all x,y ∈ X . Now let us consider the other inequality. Due to
the adjunction property (3), we obtain

Tcos(k(x,y),k(x0,y)) ≤ k(x,x0) ⇔ k(x,y) ≤
→
T cos(k(x0,y),k(x,x0))

and
Tcos(k(x,y),k(x0,x)) ≤ k(y,x0) ⇔ k(x,y) ≤

→
T cos(k(x0,x),k(y,x0)),

from which it follows that

∀x,y,x0 ∈ X : k(x,y) ≤ min{
→
T cos(k(x0,y),k(x,x0)),

→
T cos(k(x0,x),k(y,x0))}.

Hence by Definition 4,
∀x,y ∈ X : k(x,y) ≤ h(x,y)

which ends the proof.
For an arbitrary choice of fuzzy membership functions, there is no necessity that the resulting re-
lation (7) implies positive-semidefiniteness and, therefore, a kernel. For an example of a Tcos-
equivalence which is not a kernel see Appendix A.4. Theorem 9 guarantees only the existence of a
representation of the form (5) but it does not tell us how to construct the membership functions µi.
In the following section, we provide examples of fuzzy equivalence relations which yield kernels
for any choice of membership functions.
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4. Constructing Kernels by Fuzzy Equivalence Relations

In the Boolean case, positive-definiteness and equivalence are synonymous, that is, a Boolean rela-
tion R : X ×X →{0,1} is positive-definite if and only if R is the indicator function of an equivalence
relation ∼=, that is, R(x,y) = 1 if x ∼= y and R(x,y) = 0 if x 6∼= y. For a proof, see Appendix A.2. This
relationship can be used to obtain an extension to fuzzy relations as given by the next theorem whose
proof can be found in the Appendix A.3.

Theorem 10 Let X be a non-empty universe of discourse, µi : X → [0,1], i ∈ I, I non-empty; then
the fuzzy equivalence relation EM : X ×X → [0,1] given by

EM(x,y) = inf
i∈I

↔
T M(µi(x),µi(y))

is positive-semidefinite.

In the following, the most prominent representatives of Archimedean t-norms, the Product TP

and the Łukasiewicz t-norm TL, are used to construct positive-semidefinite fuzzy similarity rela-
tions. Though the first part can also be derived from a result due to Yaglom (1957) that charac-
terizes isotropic stationary kernels by its spectral representation, here we prefer to present a direct,
elementary proof. Compare also Bochner (1955) and Genton (2001).

Theorem 11 Let X be a non-empty universe of discourse, ν : X → [0,1] and let h : [0,1] → [0,1]
be an isomorphism of the unit interval that can be expanded in the manner of Equation (1), that is
h(x) = ∑k ck xk with ck ≥ 0; then the fuzzy equivalence relations EL,h,EP,h : X ×X → [0,1] given by

EL,h(x,y) = h
(↔

T L
(

h−1 (ν(x)) ,h−1 (ν(y))
)

)

(8)

and
EP,h(x,y) = h

(↔
T P
(

h−1 (ν(x)) ,h−1 (ν(y))
)

)

(9)

are positive-semidefinite.

Proof. To prove the positive-definiteness of the two-placed functions EL,h and EP,h given by equa-
tions (8) and (9) respectively, we have to show that

n

∑
i, j=1

EL,h(xi,xi)cic j ≥ 0,
n

∑
i, j=1

EP,h(xi,x j)cic j ≥ 0

for any n ∈N and any choice of x1, . . . ,xn ∈ X , respectively. According to an elementary result from
Linear Algebra this is equivalent to the assertion that the determinants (1 ≤ m ≤ n)

Dm = det
[

(E(xi,x j))i, j∈{1,...,m}

]

of the minors of the matrix (E(xi,x j))i, j satisfy

∀m ∈ {1, . . . ,n} : Dm ≥ 0,

where E denotes either EL,h or EP,h. Recall that the determinant of a matrix is invariant with respect
to renaming the indices, that is, if σ : {1, . . . ,n}→ {1, . . . ,n} is a permutation then

det [(ai j)i, j] = det
[

(aσ(i)σ( j))i, j
]

.
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For convenience, let denote µi = h−1(ν(xi)). Then, without loss of generality, we may assume that
the values µi are ordered monotonically decreasing, that is,

µi ≥ µ j for i < j. (10)

Case TL: Note that
↔
T L(a,b) = min{

→
T L(a,b),

→
T L(b,a)} = 1− |a− b|. Then we have to show that

for all dimensions n ∈ N, the determinant of

E(n) = (1−|µi −µ j|)i, j∈{1,...,n}

is non-negative, that is
det[E(n)] ≥ 0.

Due to the assumption (10), we have

1−|µi −µ j| =
{

1− (µi −µ j) if i ≤ j,

1− (µ j −µi) else

which yields

E(n) =



















1 1− (µ1 −µ2) . . . 1− (µ1 −µn−1) 1− (µ1 −µn)
1− (µ1 −µ2) 1 . . . 1− (µ2 −µn−1) 1− (µ2 −µn)
1− (µ1 −µ3) 1− (µ2 −µ3) . . . 1− (µ3 −µn−1) 1− (µ3 −µn)

...
...

. . .
...

...
1− (µ1 −µn−1) 1− (µ2 −µn−1) . . . 1 1− (µn−1 −µn)
1− (µ1 −µn) 1− (µ2 −µn) . . . 1− (µn−1 −µn) 1



















.

Now let us apply determinant-invariant elementary column operations to simplify this matrix by
subtracting the column with index i−1 from the column with index i, i ≥ 2. This yields

Ẽ(n) =



















1 µ2 −µ1 . . . µn−1 −µn−2 µn −µn−1

1− (µ1 −µ2) −(µ2 −µ1) . . . µn−1 −µn−2 µn −µn−1

1− (µ1 −µ3) −(µ2 −µ1) . . . µn−1 −µn−2 µn −µn−1
...

...
. . .

...
...

1− (µ1 −µn−1) −(µ2 −µ1) . . . −(µn−2 −µn−1) µn −µn−1

1− (µ1 −µn) −(µ2 −µ1) . . . −(µn−2 −µn−1) −(µn−1 −µn)



















.

Therefore,

α =
n

∏
i=2

(µi−1 −µi) ≥ 0 (11)

det[E(n)] = det[Ẽ(n)] = αdet[Ên],

where

Ê(n) =



















1 −1 . . . −1 −1
1− (µ1 −µ2) +1 . . . −1 −1
1− (µ1 −µ3) +1 . . . −1 −1

...
...

. . .
...

...
1− (µ1 −µn−1) +1 . . . +1 −1
1− (µ1 −µn) +1 . . . +1 +1



















. (12)
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Let us apply Laplacian determinant expansion by minors to the first column of matrix (12), that is

det[A] =
n

∑
i=1

(−1)i+ jai jdet[Ai j]

where A = (ai j) is an n×n-matrix, j arbitrarily chosen from {1, . . . ,n} and Ai j is the matrix corre-
sponding to the cofactor ai j obtained by canceling out the i-th row and the j-th column from A (see,
for example, Muir, 1960). For n = 1, we get the trivial case det[Ê(1)] = 1. Note that the first and

the last rows of the matrices Ê(n)
i,1 for 1 < i < n only differ by their signum, consequently the minors

det[Ê(n)
i,1 ] for 1 < i < n, n ≥ 2, are vanishing, that is,

det[Ai,1] = 0, for 1 < i < n.

Therefore, according to the Laplacian expansion, we get

det[Ê(n)] = 1 ·det[Ê(n)
1,1 ]+ (−1)n(1− (µ1 −µn)) ·det[Ê(n)

1,n ]. (13)

Observe that

det[Ê(n)
1,1 ] = 2n−2

det[Ê(n)
1,n ] = (−1)n−12n−2.

Consequently, Equation (13) simplifies to

det[Ê(n)] = 2n−2 (1+(−1)n(−1)n−12n−2(1− (µ1 −µn))
)

= 2n−2 (1− (1− (µ1 −µn)))

= 2n−2 (µ1 −µn)

≥ 0

which together with (11) proves the first case.

Case TP: First of all, let us compute
↔
T P(a,b) = min{

→
T P(a,b),

→
T L(b,a)}. Hence,

↔
T P(a,b) =























min{ b
a , a

b} if a,b > 0,

0 if a = 0 and b > 0 ,

0 if b = 0 and a > 0 ,

1 if a = 0 and b = 0 .

Again, without loss of generality, let us suppose that the values µi, i ∈ {1, . . . ,n} are ordered mono-
tonically decreasing, that is µ1 ≥ µ2 ≥ . . . ≥ µn. Before checking the general case, let us consider
the special case of vanishing µ-values. For this, let us assume for the moment that

µi =

{

> 0 if i < i0 ,

0 else

which implies that
↔
T P(µi,µ j) = 0 for i < i0 and j ≥ i0 and

↔
T P(µi,µ j) = 1 for i ≥ i0 and j ≥ i0. This

leads to a decomposition of the matrix

E(n) =
(↔

T P(µi,µ j)
)

i j
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such that
det[E(n)] = det[E(i0−1)] ·det[In−i0−1]

where Ik denotes the k×k-matrix with constant entries 1, hence det[In−i0−1]∈ {0,1}. Therefore, we
may assume that

µ1 ≥ µ2 ≥ . . . ≥ µn > 0.

Then we have to show that for all dimensions n ∈ N, the determinant of

E(n) =

(

min

{

µi

µ j
,
µ j

µi

})

i, j∈{1,...,n}

is non-negative, that is
det[E(n)] ≥ 0.

Consider

E(n) =





















1 µ2
µ1

. . . µn−1
µ1

µn
µ1

µ2
µ1

1 . . . µn−1
µ2

µn
µ2

µ3
µ1

µ3
µ2

. . . µn−1
µ3

µn
µ3

...
...

. . .
...

...
µn−1
µ1

µn−1
µ2

. . . 1 µn
µn−1

µn
µ1

µn
µ2

. . . µn
µn−1

1





















. (14)

Now, multiply the i-th column by −µi+1/µi and add it to the (i + 1)-th column of matrix (14),
1 ≤ i < n, then we get

Ẽ(n) =



























1 0 . . . 0 0

∗ 1−
(

µ2
µ1

)2
. . . 0 0

∗ ∗ . . . 0 0
...

...
. . .

...
...

∗ ∗ . . . 1−
(

µn−1
µn−2

)2
0

∗ ∗ . . . ∗ 1−
(

µn
µn−1

)2



























(15)

where ∗ is a placeholder for any real value. By this, the determinant of the matrix in Equation (15)
readily turns out to be

det[E(n)] = det[Ẽ(n)] =
n−1

∏
i=1

(

1−
(

µi+1

µi

)2
)

≥ 0

which together with Theorem (2) ends the proof.
Note that relations (8) and (9) are T -transitive with respect to the corresponding isomorphic
Archimedean t-norms,

TL,h(x,y) = h(TL(h
−1(x),h−1(x))) and TP,h(x,y) = h(TP(h−1(x),h−1(x))),

respectively.
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Corollary 12 Let X be a non-empty universe of discourse, µi : X → [0,1], λi ∈ ]0,1] with ∑i λi = 1
where i ∈ {1, . . . ,n}, n ∈ N, then the fuzzy equivalence relations ẼL, ẼP : X ×X → [0,1] given by

ẼL(x,y) =
n

∑
i=1

λi
↔
T L(µi(x),µi(y)) (16)

and

ẼP(x,y) =
n

∏
i=1

(↔
T P(µi(x),µi(y))

)λi

(17)

are TL- and TP-equivalences, respectively, and kernels.

Proof. First of all, let us check the TL-transitivity of formula (16). This can readily be shown by

means of the definition of TL and the TL-transitivity of
↔
T L due to the following inequalities:

TL

(

n

∑
i=1

λi
↔
T L(µi(x),µi(y)),

n

∑
i=1

λi
↔
T L(µi(y),µi(yz)

)

=

max

{

n

∑
i=1

λi
↔
T L(µi(x),µi(y))+

n

∑
i=1

λi
↔
T L(µi(y),µi(z))−1,0

}

=

max

{

n

∑
i=1

λi

(

↔
T L(µi(x),µi(y))+

n

∑
i=1

λi
↔
T L(µi(y),µi(z))−1

)

,0

}

≤

max

{

n

∑
i=1

λiTL

(

↔
T L(µi(x),µi(y)),

n

∑
i=1

λi
↔
T L(µi(y),µi(z))

)

,0

}

≤

max

{

n

∑
i=1

λi
↔
T L(µi(x),µi(z)),0

}

=

λi
↔
T L(µi(x),µi(z)).

This, together with the TP-transitivity of
↔
T P, proves that the formulas given by (16) and (17) are TL-

and TP-equivalences, respectively.
Expanding the factors of formula (17) yields

(↔
T P(µi(x),µi(y))

)λi

=







1 if µi(x) = µi(y) = 0,

min(µ
λi
i (x),µ

λi
i (y))

max(µ
λi
i (x),µ

λi
i (y))

else
(18)

which by comparing case TP of the proof of Theorem 11 shows that the left-hand side of Equa-
tion (18) is positive-semidefinite.

As the convex combination and the product are special cases of positive-semidefiniteness pre-
serving functions according to Theorem 1, the functions defined by equations (16) and (17) prove
to be again positive-semidefinite and, therefore, kernels.
It is interesting to observe that both formulas (16) and (17) can be expressed in the form, f (‖τ(x)−
τ(y)‖1), where f : I → [0,1], I some interval, is a strictly decreasing function, τ : X → I n, I some
interval, τ(x) = (τ1(x), . . . ,τn(x)) and ‖τ(x)‖1 = ∑n

i=1 |τi(x)|. Indeed, for Equation (16) let us define

fL : [0,1] → [0,1], fL(a) = 1−a

τL : X → [0,1]n, τL(x) = (λ1µ1(x), . . . ,λnµn(x))
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and for Equation (17) and positive membership functions µi, µi(x) > 0 for all x ∈ X , let us define

fP : [0,∞[→ [0,1], fP(a) = e−a

τP : X → ]−∞,1]n, τP(x) = (λ1 ln(µ1(x)), . . . ,λn ln(µn(x)))

Therefore, we get

ẼL(x,y) = 1−‖τL(x)− τL(y)‖1 (19)

ẼP(x,y) = e−‖τP(x)−τP(y)‖1 . (20)

While formulas (19) and (20) provide a geometrical interpretation by means of the norm ‖.‖1, the
corresponding formulas (16) and (17) yield a semantical model of the assertion

“IF x is equal to y with respect to feature µ1 AND . . . AND x is equal to y with respect to feature µn

THEN x is equal to y”

as aggregation of biimplications in terms of fuzzy logic. While in the former case, the aggregation
has some compensatory effect, the latter is just a conjunction in terms of the Product triangular
norm. For details on aggregation operators see, for example, Saminger et al. (2002) and Calvo et al.
(2002).

The formulas (16) and (17) coincide for the following special case. If the membership functions
µi are indicator functions of sets Ai ⊆ X which form a partition of X , then the kernels (16) and
(17) reduce to the indicator function characterizing the Boolean equivalence relation induced by
this partition {A1, . . . ,An}.

The formulas (16) and (17) for general membership functions therefore provide kernels which
can be interpreted to be induced by a family of fuzzy sets and, in particular, by fuzzy partitions, that
is, families of fuzzy sets fulfilling some criteria which extend the axioms for a Boolean partition
in a many-valued logical sense. For definitions and further details on fuzzy partitions see, for
example, De Baets and Mesiar (1998), Demirci (2003) and Höppner and Klawonn (2003).

It is a frequently used paradigm that the decision boundaries for a classification problem lie
between clusters rather than intersecting them. Due to this cluster hypothesis, the problem of de-
signing kernels based on fuzzy partitions is closely related to the problem of learning kernels from
unlabeled data. For further details on semi-supervised learning see, for example, Seeger (2002),
Chapelle et al. (2003) and T. M. Huang (2006). It is left to future research to explore this relation-
ship to the problem of learning from labeled and unlabeled data and related concepts like covariance
kernels.

5. Conclusion

In this paper, we have presented a novel view on kernels from a fuzzy logical point of view. Par-
ticularly, the similarity-measure aspect of a kernel is addressed and investigated by means of the
so-called T -transitivity which is characteristic for fuzzy equivalence relations. As a consequence,
we derived that a large class of kernels can be represented in a way that is commonly used for
representing fuzzy rule bases. In addition to this proof for the existence of such a representation,
constructive examples are presented. It is the idea of this research to look for a combination of
knowledge-based strategies with kernel-based methods in order to facilitate a more flexible design-
ing process of kernels which also allows to incorporate prior knowledge. Further research aims at
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analyzing the behavior of kernels constructed in this way when applied in the various kernel meth-
ods like support vector machines, kernel principal components analysis and others. In particular,
it is intended to focus on the problem of learning kernels from unlabeled data where the fuzzy
partitions are induced by appropriate clustering principles.
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Appendix A.

For sake of completeness the following sections provide proofs regarding Theorem 8, the charac-
terization of kernels in the Boolean case and the construction of kernels by means of the minimum
t-norm TM. Furthermore, in Section A.4 an example of a non-positive-semidefinite Tcos-equivalence
is given.

A.1 Proof of Theorem 8

Let us start with the analysis of 3-dimensional matrices.

Lemma 13 Let M = (mi j)i j ∈ [0,1]3×3 be a 3× 3 symmetric matrix with mii = 1, i = 1,2,3; then
M is positive-semidefinite iff for all i, j,k ∈ {1,2,3} there holds

mi jm jk −
√

1−m2
i j

√

1−m2
jk ≤ mik

Proof. For simplicity, let a = m1,2, b = m1,3 and c = m2,3. Then the determinant of M, Det(M), is a
function of the variables a,b,c given by

D(a,b,c) = 1+2abc−a2 −b2 − c2.

For any choice of a,b, the quadratic equation D(a,b,c) = 0 can be solved for c, yielding two solu-
tions c1 = c1(a,b) and c2 = c2(a,b) as functions of a and b,

c1(a,b) = ab−
√

1−a2
√

1−b2

c2(a,b) = ab+
√

1−a2
√

1−b2.

Obviously, for all |a| ≤ 1 and |b| ≤ 1, the values c1(a,b) and c2(a,b) are real. By substituting
a = cosα and b = cos(β) with α,β ∈ [0, π

2 ], it becomes readily clear that

c1(a,b) = c1(cos(α),cos(β))

= cos(α)cos(β)− sin(α)sin(β)

= cos(α+β) ∈ [−1,1]
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and, analogously,

c2(a,b) = c2(cos(α),cos(β))

= cos(α)cos(β)+ sin(α)sin(β)

= cos(α−β) ∈ [−1,1].

As for all a,b ∈ [−1,1] the determinant function Da,b(c) := D(a,b,c) is quadratic in c with negative
coefficient for c2, there is a uniquely determined maximum at c0(a,b) = ab. Note that for all
a,b ∈ [−1,1], we have

c1(a,b) ≤ c0(a,b) ≤ c2(a,b)

and

D(a,b,c0(a,b)) = 1+2ab(ab)−a2 −b2 − (ab)2 = (1−a2)(1−b2) ≥ 0.

Therefore, D(a,b,c) ≥ 0 if and only if c ∈ [c1(a,b),c2(a,b)].
Recall from linear algebra that by renaming the indices, the determinant does not change. There-

fore, without loss of generality, we may assume that

a ≥ b ≥ c.

For convenience, let Q = {(x,y,z)∈ [0,1]3|x≥ y≥ z}. Then, obviously, for any choice of a,b∈ [0,1]
there holds (a,b,c1(a,b)) ∈ Q. Elementary algebra shows that (a,b,c2(a,b)) ∈ Q is only the case
for a = b = 1. As for a = b = 1 the two solutions c1, c2 coincide, that is, c1(1,1) = c2(1,1) = 1, it
follows that for any choice of (a,b,c) ∈ Q, there holds D(a,b,c) ≥ 0 if and only if

c1(a,b) = ab−
√

1−a2
√

1−b2 ≤ c. (21)

If (a,b,c) 6∈ Q, then the inequality (21) is trivially satisfied which together with (21) proves the
lemma

Now Theorem 8 immediately follows from Definition (1), Lemma (13) and the characterizing in-
equality (21).

A.2 Characterization of Kernels in the Boolean Case

The following lemma and proposition can also be found as an exercise in Schölkopf and Smola
(2002).

Lemma 14 Let ∼ be an equivalence relation on X and let k : X ×X →{0,1} be induced by ∼ via
k(x,y) = 1 if and only if x ∼ y; then k is a kernel.

Proof. By definition of positive-definiteness, let us consider an arbitrary sequence of elements
x1, . . . ,xn. Then there are at most n equivalence classes Q1, . . . ,Qm on the set of indices {1, . . . ,n},
m≤ n, where

S

i=1,...,m Qi = {1, . . . ,n} and Qi∩Q j = /0 for i 6= j. Note that k(xi,x j) = 0 if the indices
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i, j belong to different equivalence classes. Then, for any choice of reals c1, . . . ,cn, we obtain

∑
i, j

cic jk(xi,x j) =
m

∑
p=1

∑
i, j∈Qp

cic jk(xi,x j)

=
m

∑
p=1

∑
i, j∈Qp

cic j ·1

=
m

∑
p=1

(

∑
i∈Qp

ci

)2

≥ 0

Proposition 15 k : X ×X → {0,1} with k(x,x) = 1 for all x ∈ X is a kernel if and only if it is
induced by an equivalence relation.

Proof. It only remains to be shown that if k is a kernel, then it is the indicator function of an
equivalence relation, that is, it is induced by an equivalence relation. If k is a kernel, according to
Lemma 13, for all x,y,z ∈ X , it has to satisfy Tcos(k(x,y),k(y,z)) ≤ k(x,z), which implies,

k(x,y) = 1, k(y,z) = 1 =⇒ k(x,z) = 1.

Obviously, we have k(x,x) = 1 and k(x,y) = k(y,x) due to the reflexivity and symmetry assumption
of k, respectively.

A.3 Constructing Kernels by TM

For convenience let us recall the basic notion of an α-cut from fuzzy set theory:

Definition 16 Let X be a non-empty set and µ : X → [0,1]; then

[µ]α = {x ∈ X |µ(x) ≥ α}
is called the α-cut of the membership function µ.

Lemma 17 k : X ×X → [0,1] is a TM-equivalence if and only if all α-cuts of k are Boolean equiv-
alence relations.

Proof.

(i) Let us assume that k is a TM-equivalence. Let α ∈ [0,1], then by definition,

[k]α = {(x,y) ∈ X ×X |k(x,y) ≥ α}.
In order to show that [k]α is a Boolean equivalence, the axioms for reflexivity, symmetry
and transitivity have to be shown. Reflexivity and symmetry are trivially satisfied as for all
x,y ∈ X , there holds by assumption that k(x,x) = 1 and k(x,y) = k(y,x). In order to show
transitivity, let us consider (x,y),(y,z) ∈ [k]α, that means k(x,y) ≥ α and k(y,z) ≥ α; then by
the TM-transitivity assumption it follows that

α ≤ min(k(x,y),k(y,z)) ≤ k(x,z),

hence (x,z) ∈ [k]α.
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(ii) Suppose now that all α-cuts of k are Boolean equivalence relations. Then, in particular, [k]α
with α = 1 is reflexive, hence k(x,x) = 1 for all x ∈ X . The symmetry of k follows from the
fact that for all α ∈ [0,1] and pairs (x,y) ∈ [k]α, by assumption, we have (y,x) ∈ [k]α. In order
to show the TM-transitivity property, let us consider arbitrarily chosen elements x,y,z∈X . Let
α = min(k(x,y),k(y,z)); then by the transitivity assumption of [k]α, it follows that (x,z)∈ [k]α,
consequently

k(x,z) ≥ α = min(k(x,y),k(y,z)).

Proposition 18 If k : X ×X → [0,1] is a TM-equivalence then it is positive-semidefinite.

Proof. Choose arbitrary elements x1, . . . ,xn ∈ X and consider the set of values which are taken by
all combinations k(xi,x j), i, j ∈ {1, . . . ,n} and order them increasingly, that is

{

k(xi,x j)| i, j ∈ {1, . . . ,n}} = {α1, . . . ,αm
}

,

where 0 ≤ α1 ≤ ·· ·αm ≤ 1. Observe that for all pairs (xi,x j), i, j ∈ {1, . . . ,n} there holds

k(xi,x j) =
m

∑
v=2

(αv −αv−1)1[k]αv
(xi,x j)+α11[k]α1

(xi,x j)

showing that on the set {x1, . . . ,xn}×{x1, . . . ,xn}, the function k is a linear combination of indicator
functions of Boolean equivalences (which are positive-semidefinite by Proposition 15) with non-
negative coefficients and, consequently, it has to be positive semidefinite.

A.4 Example of a Non-Positive-Semidefinite Tcos-Equivalence

For dimensions n > 3, the Tcos-transitivity is no longer sufficient to guarantee positive semi-
definiteness. Consider, for example An = (a(n)

i j )i j where

a(n)
i j =











λ if min(i, j) = 1, max(i, j) > 1 ,

1 if i = j,

0 else .

(22)

Choose λ = 1/
√

2, then Tcos(λ,λ) = 0, hence we have Tcos(a
(n)
i j ,a(n)

jk ) ≤ a(n)
ik for all indices i, j,k ∈

1, . . . ,n. As det(An) < 0 for n > 3, the matrix An cannot be positive-semidefinite though the Tcos-
transitivity conditions are satisfied.
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Abstract
Learning of large-scale networks of interactions from microarray data is an important and challeng-
ing problem in bioinformatics. A widely used approach is to assume that the available data consti-
tute a random sample from a multivariate distribution belonging to a Gaussian graphical model. As
a consequence, the prime objects of inference are full-order partial correlations which are partial
correlations between two variables given the remaining ones. In the context of microarray data
the number of variables exceed the sample size and this precludes the application of traditional
structure learning procedures because a sampling version of full-order partial correlations does not
exist. In this paper we consider limited-order partial correlations, these are partial correlations
computed on marginal distributions of manageable size, and provide a set of rules that allow one
to assess the usefulness of these quantities to derive the independence structure of the underlying
Gaussian graphical model. Furthermore, we introduce a novel structure learning procedure based
on a quantity, obtained from limited-order partial correlations, that we call the non-rejection rate.
The applicability and usefulness of the procedure are demonstrated by both simulated and real data.

Keywords: Gaussian distribution, gene network, graphical model, microarray data, non-rejection
rate, partial correlation, small-sample inference

1. Introduction

High-throughput experimental technologies developed within the field of molecular biology allow
one to observe in real time the activity of thousands of biomolecules in the cell under tens of dif-
ferent experimental conditions. These technologies, known as microarray technologies, are able to
put together in a solid substrate (a chip) of a few squared centimeters a bidimensional matrix (an
array) formed by tens of thousands of probes. Each probe is specific to a nucleic acid sequence that
recognizes (hybridises) marked samples (biomolecules) of complementary RNA (coming from the
experimental conditions under study), quantifying the abundance of each recognized biomolecule.
An open question within molecular biology research is to be able to describe the set of interactions,
or biomolecular network, between the different functional elements in the genome that mediate the
production of the biomolecules we observe through these high-throughput platforms. These data,
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the so-called microarray data, can be seen as a random sample of a multivariate distribution de-
fined by a set of random variables associated to the genome functional elements under study (e.g.,
genes). Each record corresponds to a vector of values describing the abundance of a particular
kind of biomolecule (e.g., messenger RNA) produced by each genome functional element under
a specific experimental condition (e.g., a specific tissue or cell line). Thus, a way to describe the
interactions among the genome functional elements is by using conditional independencies and,
more concretely, graphical models (see Pearl, 1988; Whittaker, 1990; Lauritzen, 1996) which have
emerged as a powerful tool for the learning, description and manipulation of conditional indepen-
dencies.

However, in a typical microarray data set the number of observations n (on the order of tens) is
substantially smaller than the number of variables p (on the order of hundreds or even thousands)
and this prevents us from applying directly most of the existing multivariate methods for structure
learning of graphical models due to the difficulties in obtaining estimates of the joint probability
distribution.

In this paper, we focus in Gaussian graphical models and investigate the role of marginal dis-
tributions in their structure learning. Firstly, we formally introduce the concept of q-partial graph
that is a graph associated with the set of all marginal distributions of dimension q + 2 and, fur-
thermore, we provide a comprehensive description of the connection between a q-partial graph and
the graph associated with the Gaussian graphical model of interest. Secondly, we propose a novel
q-partial-correlations based procedure, qp-procedure hereafter, for structure learning of q-partial
graphs based on a quantity that we call the non-rejection rate. The results of this paper can be
applied also outside the biological context because they can be more generally useful whenever
structure learning of a Gaussian graphical model is carried out in the special context in which (i) p
is large compared to n, (ii) the underlying structure of the graphical model is sparse. Furthermore,
the qp-procedure can also be regarded as a method to obtain shrinkage estimators of the covariance
matrix. We remark that the theory of q-partial graphs is developed under the assumption of faithful-
ness of the probability distribution to its independence graph, however the qp-procedure is robust
with respect to this assumption as we shall discuss at the end of the paper.

The paper is organized as follows. Sections 2 and 3 give the theory of Gaussian graphical models
and their application to learning of biomolecular networks from microarray data, respectively. The
theory of q-partial graphs is given in Section 4 whereas the required graph theory is provided in the
Appendix. The qp-procedure is introduced in Section 5 where instances of its application to both
simulated and real data are given and, finally, Section 6 contains a brief discussion.

2. Gaussian Graphical Models

In this section we review the Gaussian graphical model theory required for this paper. For a full
account of graphical model theory we refer to Cox and Wermuth (1996), Lauritzen (1996) and
Whittaker (1990) whereas, for the theory relating to structure learning of graphical models we refer
to Cowell et al. (1999), Edwards (2000), Jones et al. (2005) and Whittaker (1990).

Let XV ≡ X be a random vector indexed by V = {1, . . . , p} with probability distribution PV and
let G = (V,E) be an undirected graph; see Appendix A for the graph theory used here. For a subset
A ⊆V , we denote by XA the subvector of X indexed by A, and by PA the associated marginal distri-
bution. For a triplet I,J,U ⊆ V we write XI⊥⊥XJ|XU to denote that XI is conditionally independent
of XJ given XU ; we allow U to be the empty set to denote the marginal independence of XI and XJ .
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We say that PV is (undirected) Markov with respect to G if it holds that XI⊥⊥XJ|XU whenever U sep-
arates I and J in G; in particular this implies that if (i, j) ∈ Ē then Xi⊥⊥X j|XV\{i, j}. Here Ē denotes
the set of missing edges of G = (V,E) as formally defined in Appendix A. We say that PV is faithful
to G if all the conditional independence relationships in PV can be read off the graph G through
the Markov property. Consider a graph G′ = (V,E ′) larger than G, G ⊆ G′. It is straightforward to
check that if PV is Markov with respect to G then it is also Markov with respect to G′. However, if
PV is faithful to G then it is faithful to G′ if and only if G = G′.

Throughout this paper XV is assumed to have a multivariate normal distribution with mean
vector µV and positive definite covariance matrix ΣVV ≡ Σ. Furthermore, we assume that PV is both
Markov and faithful with respect to an undirected graph G = (V,E). Hence, for a subset Q ⊂V with
i, j 6∈ Q it holds that Xi⊥⊥X j|XQ if and only if the partial correlation coefficient

ρi j.Q =
−κA

i j√
κA

ii κA
j j

is equal to zero, where A = Q∪ {i, j} and KA = {κA
i j} is the concentration matrix of XA, KA =

(ΣAA)−1 (Lauritzen, 1996, p. 130). Of special interest is the case A = V because the concentration
matrix KV ≡ K = {κi j} is the inverse of Σ and the structure of G = (V,E) can be derived from the
zero pattern of K. More specifically, it holds that (Lauritzen, 1996, Proposition 5.2)

ki j = 0 ⇔ ρi j.V\{i, j} = 0 ⇔ (i, j) ∈ Ē, (1)

and for this reason G is called the concentration graph of XV . For |Q| = q, the parameter ρi j.Q is
called a q-order partial correlation of Xi and X j, and if q = p−2, that is, Q = V\{i, j}, we say that
ρi j.Q is the full-order partial correlation of Xi and X j.

A Gaussian graphical model (Dempster, 1972) is the family of p-variate normal distributions
that are Markov with respect to a given undirected graph G = (V,E). Let X (n) = (X1, . . . ,Xn) be a
random sample from PV . For a Gaussian graphical model with graph G the sufficient statistics are
given by the sample mean vector and by the sample covariance matrices SCC for C ∈ C where C is
the set of cliques of G (Lauritzen, 1996, p. 132). It follows that, when G is complete the sufficient
statistics are the sample mean and the sample covariance matrix S. Here, we consider problems
in which the sample size is small, and it is thus important to recall that, for A ⊆ V , the sample
covariance matrix SAA from X (n)

A has full rank, with probability one, if and only if n > |A| (Dykstra,
1970) and that a necessary condition for the computation of several statistical quantities such as the
maximum likelihood estimates of K and of the partial correlations in (1) is that SCC has full rank for
all C ∈ C .

Structure learning aims at identifying the structure G = (V,E) with the fewest number of edges
on the basis of the available data such that the underlying distribution PV is undirected Markov over
G. In a frequentist approach to inference, a basic operation to be performed in structure learning
procedures is a statistical test for the hypothesis that a given partial correlation is zero, ρi j.Q = 0,
since for Q = V\{i, j} this is equivalent to the hypothesis that (i, j) ∈ Ē. If, for A = Q∪{i, j}, XA

has an (unrestricted) normal distribution then the generalized likelihood ratio test for the hypothesis

that ρi j.Q = 0 has form L = −n log(1− ρ̂2
i j.Q) where ρ̂i j.Q = −κ̂A

i j/
√

κ̂A
ii κ̂A

ii and K̂A = (SAA)−1 is

the maximum likelihood estimate of KA (Whittaker, 1990, p. 175). Under the null hypothesis, the
asymptotic distribution of L is χ2

1, even though for a small sample size the exact distribution of the
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statistical test may be preferred; see Schäfer and Strimmer (2005a). An alternative way to verify
the above hypothesis is provided by the connection between partial correlations and regression
coefficients. More specifically, in the regression of Xi on XA\{i} the regression coefficient associated
with X j is zero if and only if ρi j.Q = 0 (see Cox and Wermuth, 1996, p. 69). In the structure learning
procedure proposed in this paper, to verify the absence of an edge from the unrestricted model we
will apply the usual t test for zero regression coefficients because it is optimal, in the sense that it is
Uniformly Most Powerful Unbiased (UMPU) (see Lehmann, 1986, p. 397).

3. Gaussian Graphical Models For biomolecular Networks

Microarray data quantify the abundance of biomolecules, commonly known as expression level, by
probing functional elements along the genome which, without loss of generality, we shall hereafter
refer to as genes. A set of p genes being probed define a vector of random variables Xi, i = 1, . . . , p,
that take normalized values of the expression levels of the corresponding genes. For every variable
Xi there is vector of n values coming from n different experimental conditions forming the so-called
expression profile. The microarray data consist of the expression profiles of a set of genes and form
a snapshot of the interactions between the genes in terms of statistical (in)dependencies which,
in principle, could be inferred through structure learning of Gaussian graphical models and thus
leading to a description of the underlying biomolecular network in these terms. Hence, the prime
object of interest is the inverse of the covariance matrix, also known as concentration matrix, whose
zero pattern defines the structure of the graphical model, known then as concentration graph.

However, in contrast with the usual data sets found in the literature, on which structure learning
of Gaussian graphical models is applied, microarray data constitute a challenging problem because
microarray experiments typically measure the expression level of a large number of genes across a
small number of experimental conditions. As a consequence of the scarcity of the data, the max-
imum likelihood of the inverse covariance matrix does not exist because the sample covariance
matrix has full rank, with probability one, if and only if n > p (Dykstra, 1970). This paper tackles
this specific circumstance under which we perform structure learning of Gaussian graphical models
with small n and large p.

An important observation in this context is that a growing body of biological evidence suggests
that biomolecular networks have a sparse structure. This feature, usually regarded as an advantage,
has been exploited in a number of ways to enable learning of Gaussian graphical models from
microarray data (see, among others, Wong et al., 2003; Dobra et al., 2004; Wille et al., 2004; Wille
and Bühlmann, 2006; Shäfer and Strimmer, 2005a, 2005b, 2005c) among which some methods
work by obtaining shrinkage estimators of the covariance matrix (Wong et al., 2003; Shäfer and
Strimmer, 2005c) while some other have made an attempt to learn an approximate version of the
biomolecular network by using marginal distributions of dimension smaller than n. We shall discuss
this latter approach in more detail below.

Instead of trying to learn the concentration graph of a Gaussian graphical model from microar-
ray data, a tool employed by the bioinformatics community to describe interactions between genes
is the relevance network; see Butte et al. (2000) and Steuer et al. (2003a, 2003b). In relevance
networks missing edges denote zero correlations between pairs of genes, that in the Gaussian case
imply marginal independence. In these graphs, edges are typically represented by undirected lines;
nevertheless in the graphical model literature these models are known as covariance graphs (Cox
and Wermuth, 1993, 1996) and edges are represented by either bidirected arrows or dashed undi-
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rected lines. A correlation coefficient is zero if and only if the corresponding covariance is zero
and therefore the structure of a covariance graph is derived from the zero pattern of the covariance
matrix Σ. Although structure learning of covariance graphs is not straightforward (Drton and Perl-
man, 2004; Drton and Richardson, 2004), a statistical test for the hypothesis that a single correlation
coefficient is zero can be easily carried out for n > 2. This allows the implementation of naive learn-
ing procedures that consider separately every edge of the graph overcoming the large p and small
n problem. In a similar vein to the relevance network approach see also the ARACNE algorithm by
Margolin et al. (2006).

More recently, other families of graphical models have been used to describe biomolecular net-
works (see Friedman, 2004) and among these, an important role is played by Gaussian graphical
models where missing edges correspond to zero partial correlations and, therefore, to conditional
independence relationships. In these models an edge between two genes represents a direct associ-
ation and, more generally, a path connecting two genes represents an undirect association mediated
by other genes in the path (see Jones and West, 2005). The reason why concentration graphs are
more adequate than covariance graphs to describe gene networks is that, even though two genes may
present a non-zero correlation because they belong to a common biological pathway, they should
not be joined by an edge when they influence each other only indirectly through other observed
genes that act as confounders.

The Pearson correlation is a marginal measure of association between two genes, regardless
of other genes in the network. On the other hand, partial correlation is a measure of association
between two genes that keeps into account all the remaining observed genes. Consequently, partial
correlations cannot be computed by only looking at bivariate marginal distributions but require the
full joint distribution of genes, and this is problematic when n is small. More formally, the network
structure is derived from the zero pattern of the concentration matrix K = Σ−1 whose maximum
likelihood estimate is K̂ = S−1 which requires that S has full rank and this holds, with probability
one, if and only if n > p (Dykstra, 1970). Furthermore, the statistical properties of procedures for
fitting and testing partial correlations depend on n− p and, as pointed out for instance by Yang and
Berger (1994) and Dempster (1969), the estimators based on scalar multiples of S tend to distort the
Eigenstructure of the true covariance matrix, unless n � p.

Several solutions have been proposed in the literature to carry out structure learning of biomolec-
ular networks by means of concentration graphs; see Jones et al. (2005) and Shäfer and Strimmer
(2005c) for a review. A popular approach is based on limited-order partial correlations, that is
q-order partial correlations with q < (n−2). Procedures based on limited-order partial correlations
have been applied, among others, by de la Fuente et al. (2004), Magwene and Kim (2004), Wille
et al. (2004), Wille and Bühlmann (2006) and are also implemented in the statistical software MIM
(Edwards, 2000). The key point here is that if a set of q + 2 genes such that (q + 2) < n is con-
sidered, then a test for the hypothesis of a zero q-order partial correlation can be carried out with
standard techniques such as those described in Section 2. Consequently, it seems somehow sensible
to replace full-order partial correlations with lower-order partial correlations so as to obtain a graph
that can be regarded as an approximation of the entire concentration graph G. The procedures pro-
posed in the literature for learning such an approximating graph are based on the application of the
following rule to every distinct pair of vertices i, j ∈V :

Test the hypotheses ρi j.Q = 0 for every Q ⊆ V\{i, j} such that |Q| = q. Then, i and
j are joined by an edge if and only if all of such hypotheses of zero q-order partial
correlations are rejected.
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In principle, q-order partial correlations can be computed for any q < (n−2); however, in prac-
tice, testing

(p−2
q

)
partial correlations for each of the p×(p−1)/2 pairs of genes is computationally

intensive unless q is small and, to our knowledge, the above procedure has only be applied for q ≤ 3.
For instance, Wille and Bühlmann (2006) proposed a modified version of the above procedure that
considers all q-order partial correlations for q ≤ 1. We remark that this learning procedure presents
two main drawbacks. Firstly, as shown in the next section, the usefulness of q-order partial cor-
relations increases with q, so that a procedure that can be applied for larger values of q is called
for. More seriously, however, an edge is added to the graph if all of

(p−2
q

)
null hypotheses are re-

jected. The statistical tests are performed separately so that the well-known problems deriving from
the sequential application of several tests may occur. In particular, the probability that at least one
hypothesis of zero q-order partial correlation is wrongly non-rejected increases with the number of
performed tests and, consequently, if the value of

(p−2
q

)
is large then one should expect that most,

or even all, of the edges are removed.

In the next section we provide a formal definition of the graph associated with q-order partial
correlations that we call the q-order partial correlation graph of XV , q-partial graph hereafter,
denoted by G(q) = (V,E(q)), and derive some of its properties. In this way we generalize the results
of Wille and Bühlmann (2006) given for q = 1 to an arbitrary value of q. In particular, it is easy
to check that, under the assumption of faithfulness, it holds that G ⊆ G(q), and consequently that
PV is undirected Markov with respect to G(q). This means that every pair of vertices separated in
G(q) corresponds to a conditional independence relation between the two corresponding variables
and, more specifically, every missing edge corresponds to a pairwise conditional independence. In
practice, however, the usefulness of G(q) depends on its closeness to G, that is, on the number of
edges that are present in G(q) but are missing in G, and we will formally address this point.

Even though the q-partial graph G(q) of XV may provide a good approximation to the concen-
tration graph G, our standpoint is that the real object of interest is the concentration graph and that
the q-partial graph is useful as an intermediate step of the analysis. In fact, if the dimension of the
largest clique of G(q) is smaller than the sample size, then the corresponding graphical model, as
well as all its submodels, can be fitted and, consequently, it is possible to apply traditional search
procedures to learn the concentration graph by using the fitted q-partial graph as a starting point.
In this perspective, in Section 5 we propose a novel procedure to learn q-partial graphs from data.
This is based on limited-order partial correlations but can be used with larger values of q and, fur-
thermore, it does not suffer of the problems deriving from multiple testing. Since the selected graph
is the starting point for further investigation, our procedure is designed to be conservative, that is,
it aims at keeping the number of wrongly removed edges small and, consequently, the probability
of breaking the Markov condition of PV low. It follows that the selected graph may still contain
edges that should be removed. However, if the underlying concentration graph is sparse the proce-
dure will remove a large number of edges leading to a great simplification of the learning problem.
Furthermore, as shown by examples carried out on both simulated and real data, the resulting graph
is manageable with standard techniques. We remark that our procedure neither imposes any con-
straints to induce a dimensionality reduction nor makes any assumption of sparseness of the graph.
However, the usefulness of the proposed procedure does depend on the sparseness of G. It provides
an indication whether the underlying concentration graph is sparse and, in this case, it will lead to a
great simplification of the structure learning problem.
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4. q-Partial Graphs

The use of limited-order partial correlations in structure learning is appealing when either p > n or
the available data are too scarce to produce reliable estimates of the concentration matrix. However,
the object of interest is the concentration graph G of XV and it is not clear which graph can be learnt
by using q-order partial correlations, and what is the connection between such a graph and G. In
this section we formally approach this question: firstly, we introduce the q-partial graph of XV ,
that is a graph in which missing edges correspond to zero q-order partial correlations. Secondly, we
characterize the class of graphs for which concentration graphs and q-partial graphs coincide and, in
particular, we show how information on the concentration graph of XV can be extracted from the q-
partial graph of XV . The theory here developed relies on the graph theory described in Appendix A
and more specifically on the concepts of the outer connectivity of two vertices i and j, d(i, j|G),
the outer connectivity of the edges of G, d(E|G), the outer connectivity of the missing edges of G,
d(Ē|G), and finally, the outer connectivity of G, d(G).

The concentration graph of XV is associated with the probability distribution of XV and we define
the q-partial graph of XV as a graph associated with the set of all marginal distributions of XV of
dimension (q+2).

Definition 1 For a random vector XV and an integer 0 ≤ q ≤ (p−2) we define the q-partial graph
of XV , denoted by G(q) = (V,E(q)), as the undirected graph where (i, j) ∈ Ē(q) if and only if there
exists a set U ⊆V with |U | ≤ q and i, j 6∈U such that Xi⊥⊥X j|XU holds in PV .

We first observe that G(p−2) and G(0) are the concentration graph and the covariance graph of
XV respectively, whereas G(1) is the 0-1 conditional independence graph introduced by Wille and
Bühlmann (2006, Definition 3). It is also easy to show that that G(q) is larger than G, G ⊆ G(q),
that is every edge in G is also an edge in G(q). This follows from the fact that if (i, j) ∈ E then the
faithfulness of XV to G implies that there is no set U ⊆ V with i, j 6∈ U such that Xi⊥⊥X j|XU , and
therefore it holds that (i, j) ∈ E (q); see also Wille and Bühlmann (2006).

The relation G ⊆ G(q) implies that XV is Markov with respect to G(q). However, the usefulness
of G(q) as a surrogate of G depends on the closeness of the two graphs. Every edge of G is present in
G(q) and in the following proposition we characterize the missing edges of G that are also missing
in G(q).

Proposition 1 Let G = (V,E) and G(q) = (V,E(q)) be the concentration and the q-partial graph of
XV respectively. If (i, j) ∈ Ē then (i, j) ∈ Ē(q) if and only if d(i, j|G) ≤ q.

Proof Sufficiency. If d(i, j|G)≤ q then there exists a nontrivial minimal {i, j}-separator S ∈ S(i, j|G)

such that |S| ≤ q. By the Markov property, it holds that Xi⊥⊥X j|XS so that (i, j) ∈ Ē(q) by definition
of q-partial graph. Necessity. If (i, j) ∈ Ē(q) then there exists a set U ⊆V with |U | ≤ q and i, j 6∈U
such that Xi⊥⊥X j|XU . By the faithfulness assumption, such a conditional independence relation
can be also read off the graph G through the Markov property. In other worlds, U is a nontrivial
{i, j}-separator in G so that there exists a subset S ⊆ U such that S ∈ S(i, j|G) and, consequently,
d(i, j|G) ≤ |S| ≤ q.

The result stated in the above proposition is very intuitive. A missing edge in G is missing also in
G(q) if and only if the outer connectivity of the corresponding vertices is smaller or equal to q or,
that is, if and only if there exists a marginal distribution of XV of dimension (q + 2) in which the
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corresponding variables are conditionally independent. If this relation is satisfied for all the missing
edges of G then the q-partial graph and the concentration graph are identical.

Proposition 2 Let G = (V,E) and G(q) = (V,E(q)) be the concentration and the q-partial graph of
XV respectively. Then G = G(q) if and only if d(Ē|G) ≤ q.

Proof We have already shown that the inclusion relation G⊆G(q) is always satisfied. Consequently,
we have only to show that G ⊇ G(q) if and only if d(Ē|G) ≤ q. The condition G ⊇ G(q) is satisfied
if and only if (i, j) ∈ Ē implies (i, j) ∈ Ē(q), and in the following we consider the latter formulation
of the condition. Sufficiency. By Equation (9) in the Appendix, d(Ē|G) ≤ q implies d(i, j|G) ≤ q
for all (i, j) ∈ Ē and, by Proposition 1, this implies that (i, j) ∈ Ē(q) for every (i, j) ∈ Ē. Necessity.
By Proposition 1, if (i, j) ∈ Ē(q) for all (i, j) ∈ Ē, then d(i, j|G) ≤ q for all (i, j) ∈ Ē, and it follows
from (9) that d(Ē|G) ≤ q.

The result of Proposition 2 clarifies that the concentration graph G and the q-partial graph G(q) of
XV coincide when d(Ē|G) is not greater than q so that a natural question concerns the connection
between the sparseness of G and the value of d(Ē|G). This is discussed at the end of Appendix
A where it is shown that there is no direct connection between the degree of sparseness of G and
outer degree of missing edges. In particular it is possible to find examples in which the condition
of Proposition 2 is satisfied for a graph G′ but is not satisfied for a sparser graph G ⊂ G′. Note also
that the condition of Proposition 2 is always satisfied when G is the complete graph. The point here
is that sparseness is useful as long as it implies small separators for non-adjacent vertices, however
it is not difficult to draw a very sparse graph in which two non-adjacent vertices have high value of
outer connectivity.

It is somehow intuitive that larger values of q should be preferred and, in fact, an immediate con-
sequence of Proposition 1 is the following relation of inclusion between partial graphs of different
order.

Corollary 3 Let G(q) = (V,E(q)) and G(r) = (V,E(r)) be the q-partial and the r-partial graph of XV

respectively. If r ≤ q then G(q) ⊆ G(r).

Proof We show that if r ≤ q and (i, j) ∈ Ē(r) then (i, j) ∈ Ē(q). From the definition of outer connec-
tivity (see Appendix) (i, j)∈ Ē(r) implies d(i, j|G(r))≤ r. Since r ≤ q, d(i, j|G(r))≤ q and therefore
by Proposition 1 (i, j) ∈ Ē(q).

The results provided so far allow to understand in which cases q-partial graphs may be useful.
They give a set of necessary and sufficient conditions, however such conditions are stated with
respect to G, which is unknown, and therefore their usefulness is limited in practice to situations
in which background knowledge on the problem under analysis may provide information on the
structure of G. Also G(q) is typically unknown but it can be learnt from data and in the rest of this
section we show how information on the structure of G can be extracted from G(q).

The fact that G(q) is larger than G implies that if an edge is missing in G(q) then it is also missing
in G and the next theorem provides a sufficient condition to check whether an edge that is present
in G(q) is also present in G.

Theorem 4 Let G = (V,E) and G(q) = (V,E(q)) be the concentration and the q-partial graph of
XV respectively. If (i, j) ∈ E(q) then a sufficient condition for the relation (i, j) ∈ E to hold is
d(i, j|G(q)) ≤ q.
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Proof Assume (i, j)∈E(q) and d(i, j|G(q))≤ q. As mentioned earlier in the paper, from the faithful-
ness of PV it follows G ⊆ G(q) and thus by Equation (13) in Theorem 6 d(i, j|G) ≤ d(i, j|G(q)) ≤ q.
By Proposition 1, d(i, j|G) ≤ q implies that if (i, j) ∈ Ē then (i, j) ∈ Ē(q) which would contradict
the initial assumption and therefore (i, j) ∈ E.

Note that the condition of Theorem 4 can be checked on G(q), and an immediate consequence of
Theorem 4 is the following corollary that provides a sufficient condition for checking the identity
G = G(q) directly from G(q).

Corollary 5 Let G = (V,E) and G(q) = (V,E(q)) be the concentration and the q-partial graph of
XV respectively. A sufficient condition for the relation G = G(q) to hold is that d(E(q)|G(q)) ≤ q.

Assuming that G(q) is known, then Corollary 5 gives a condition to check the identity G = G(q).
In the case one cannot conclude that G is equal to G(q) then Theorem 4 can be applied to decide
which edges of G(q) belong also to G and which edges of G(q) may be spurious. Theorem 4 and
Corollary 5 should be compared with Propositions 1 and 2. The former give weaker results but
are of more practical use because if an estimate Ĝ(q) = (V, Ê(q)) of G(q) is available, then one can
estimate d(E(q)|G(q)) with d(Ê(q)|Ĝ(q)) and d(i, j|G(q)) with d(i, j|Ĝ(q)).

The computation of the outer connectivity of two vertices is known to be a NP-hard problem.
Nevertheless several algorithms are available to derive both upper and lower bounds to this number
(Rosenberg and Heath, 2001) and, since all the results stated in this section involve inequalities,
then such upper and lower bounds may be sufficient to check the required conditions. Note also that
equations (7), (10), (11) and (12) in Appendix A are instances of easily computable upper bounds.

We close this section by noticing that the outer connectivity of edges and the outer connectivity
of missing edges play a different role with respect to G(q). The quantities that determine the “close-
ness” of G(q) to G are d(i, j|G) for (i, j) ∈ Ē. Indeed, both the value of d(E|G) and of d(E (q)|G(q))
are irrelevant here, and a concentration graph can coincide with a q-partial graph even if its edges
have a very high maximal degree of outer connectivity; recall that d(E|G) ≤ d(E (q)|G(q)) by (14).
On the other hand, the values of d(i, j|G(q)) for (i, j)∈E(q) are important for the practical usefulness
of q-partial graphs: the larger the number of edges of (i, j) ∈ E (q) with d(i, j|G(q)) ≤ q the larger is
the amount of information that G(q) provides with respect to G. Note also that, unlike d(Ē|G), the
value of d(E|G) is related with the sparseness of G (see Theorem 6 in Appendix A).

5. The qp-Procedure

We now introduce a novel procedure to learn the q-partial graph G(q) of XV , that we name the qp-
procedure. This is based on limited-order partial correlations and, more specifically, on a quantity
that we call the non-rejection rate. The latter is a probability associated with every pair of variables
Xi and X j, and turns out to be useful in discriminating between present and missing edges in G(q).
The qp-procedure firstly estimates the value of all the p× (p−1)/2 non-rejection rates and then a
graph Ĝ(q) is constructed by removing from the complete graph all the edges corresponding to the
pairs of variables whose fitted value of the non-rejection rate is above a given threshold. In Section
5.1 we formally introduce the non-rejection rate. In Section 5.2 we describe the procedure in more
detail by means of two examples and, finally, in Section 5.3 we provide istances of the application
of the procedure on both simulated and real data.
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5.1 The Non-Rejection Rate

For a pair of vertices i, j ∈V , with i 6= j, and an integer q ≤ (p−2) let Qi j be the set made up of all
the subsets Q of V\{i, j} such that |Q| = q; thus the cardinality of Qi j is m =

(p−2
q

)
. Furthermore,

let T q
i j be the random variable resulting of the two stage experiment in which firstly an element Q is

sampled from Qi j according to a (discrete) uniform distribution and then the data X (n) are used to
test the null hypothesis H0 : ρi j.Q = 0 against the alternative hypothesis HA : ρi j.Q 6= 0. The random
variable T q

i j takes value 0 if the above null hypothesis is rejected and 1 otherwise. It follows that T q
i j

has a Bernoulli distribution and the non-rejection rate is defined as follows.

Definition 2 For a random sample X (n) from XV the non-rejection rate for the variables Xi and X j

with i, j ∈V , i 6= j, is given by

E
[
T q

i j

]
= Pr(T q

i j = 1).

In order for the non-rejection rate to be unambiguously defined, we have to specify the statistical
test we use. In the following, we always take q < (n− 2) and apply the t test for zero regression
coefficient as described at the end of Section 2.

If Pr(T q
i j = 1|Q) denotes the probability that H0 is not rejected for a given set Q ∈ Qi j, then

Pr(T q
i j = 1|Q) =

{
(1−α) if Q separates i and j in G;

βi j.Q otherwise;
(2)

where α and βi j.Q are the probability of the first and the second type error of the test respectively.
The value of α can be arbitrarily specified and we take it constant over all pairs of vertices and all
elements of Qi j. The value of βi j.Q is usually unknown because it depends on the true value of the
parameters. Nevertheless, the effectiveness of the qp-procedure depends on the statistical properties
of the power function of the test, and for this reason we use a UMPU test; in particular, recall that
βi j.Q ≤ (1−α).

The non-rejection rate for Xi and X j can thus be computed by using the law of total probability
as follows

Pr(T q
i j = 1) = ∑

Q∈Qi j

Pr(T q
i j = 1|Q)Pr(Q)

=
1
m ∑

Q∈Qi j

Pr(T q
i j = 1|Q). (3)

An element Q of Qi j can either separate i and j in G or not separate them. We denote by 1i j(Q)
the indicator function that is 1 if Q ∈ Qi j separates i and j in G and 0 otherwise. Furthermore, we
denote by πi j the proportion of elements of Qi j which separate i and j in G so that

πi j =
1
m ∑

Q∈Qi j

1i j(Q) and (1−πi j) =
1
m ∑

Q∈Qi j

{1−1i j(Q)}.

The second type error is defined only for the sets Q ∈ Qi j such that 1i j(Q) = 0 and we define the
average value of the second type error for the pair i and j over Qi j as

βi j :=
1

m(1−πi j)
∑

Q∈Qi j

βi j.Q {1−1i j(Q)} (4)
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with βi j = 0 if πi j = 1.
We can now turn to the computation of the non-rejection rate in (3). By (2) it holds that

Pr(T q
i j = 1) =

1
m ∑

Q∈Qi j

[βi j.Q{1−1i j(Q)}+(1−α)1i j(Q)]

and, by (4),

Pr(T q
i j = 1) =

1
m

{
βi j m(1−πi j)+(1−α)mπi j

}

so that we obtain the final form

Pr(T q
i j = 1) = βi j (1−πi j)+(1−α)πi j. (5)

Equation (5) can be used to clarify the usefulness of the non-rejection rate in the statistical
learning of G(q).

Consider first the situation in which the vertices i and j are joined by an edge in G(q) = (V,E(q)),
that is, (i, j) ∈ E(q). In this case no element of Qi j separates i and j in G = (V,E) so that πi j = 0 and
Pr(T q

i j = 1) = βi j where βi j is the mean value of βi j.Q for Q ∈ Qi j. Since for every Q ∈ Qi j, βi j.Q

belongs to the interval (0,1−α) then also 0 ≤ βi j ≤ (1−α) but, more interestingly, βi j is close to
the boundary (1−α) only if the distribution of the βi j.Q for Q ∈ Qi j is highly asymmetric on the
interval (0,1−α) with most of the values very close to the boundary (1−α); in other words, if
the second type error βi j.Q is uniformly very high over Qi j. It follows that a value of Pr(T q

i j = 1)

“close” to 1−α means either that (i, j) ∈ Ē(q) or that (i, j) ∈ E(q) but that such an edge is very
difficult to identify on the basis of q-order partial correlations and of the available data. The qp-
procedure aims at identifying some of, but not necessarily all the, missing edges of G(q) by keeping
the number of wrongly removed edges low and thus trying to avoid breaking the Markov condition
of the underlying probability distribution. In this perspective, it makes sense to remove the edges
with Pr(T q

i j = 1) above a given threshold β∗. By keeping the value β∗ very close to the boundary
(1 − α) the procedure will wrongly remove a present edge only when data strongly support its
removal.

We now turn to the situation in which (i, j) ∈ Ē(q). In this case Pr(T q
i j = 1) belongs to the

interval (βi j,1−α) and, although it can take any value in such interval, it is important to notice that
it will be closer to the boundary (1−α) for larger values of πi j.

A missing edge is identified by the qp-procedure if its non-rejection rate is above β∗; however,
the procedure does not aim at removing all missing edges and it is only important that the value
of the non-rejection rate is above β∗ for a large number of missing edges. A sufficient condition
for this to happen is that (i) G(q) has a large number of missing edges and (ii) for a large number
of such missing edges, the value of πi j is high. Condition (i) can obviously be satisfied only if G
is sparse but also the value of q plays a fundamental role because as shown in Corollary 3 a larger
value of q increases the sparseness of the q-partial graph and, consequently, the values of the πi j’s.
On the other hand, a present edge is correctly identified by the procedure if the value of βi j is below
β∗ and, in turn, this depends on the second type errors βi j.Q for Q ∈ Qi j. The statistical properties
of inferential procedures involving q-order partial correlations depend on n− q. In the context we
are considering, the sample size n cannot be easily increased but a way to make n− q larger is to

2631



CASTELO AND ROVERATO

decrease the value of q. We can conclude that a larger value of q allows us to identify a larger
number of missing edges but also decreases the power of the statistical tests, making present edges
more difficult to identify; see Section 5.3.

An interesting observation is that, in general, the effectiveness of inferential procedures in mul-
tivariate problems depends on the quantity n− p being sufficiently large. The effectiveness of pro-
cedures based on the non-rejection rate also depends on n− p but split such quantity into two parts:

(n− p) = (n−q)− (p−q) (6)

the term n− q has to be sufficiently large to guarantee the required power of statistical tests and
(p−q) has to be sufficiently small to guarantee the required sparseness of G(q), and there is a trade-
off between these two requirements. However, for problems in which G is very sparse, the q-partial
graph G(q) can be sufficiently sparse also for small values of q and, in turn, this leads to satisfactory
values of (n−q) even in the case n− p is very small or even negative.

5.2 Description Of The Procedure

The qp-procedure is made up of five steps:

1. Specify a value q < (n−2);

2. estimate the non-rejection rate E[T q
i j ] for every pair of variables;

3. on the basis of the estimated non-rejection rates, decide whether to go

3.1 on to step 4

3.2 back to step 1 and modify the value of q (if possible);

4. specify a threshold β∗;

5. return a graph Ĝ(q) obtained by removing from the complete graph all the edges whose esti-
mated non-rejection rate is greater than β∗.

We now describe every step in detail by means of an example. Figure 1 gives the image of a
partial correlation matrix for 164 variables. It is made up of 20 diagonal blocks of size 12×12 and
there is a 4×4 submatrix overlap between every two adjacent blocks. The associated concentration
graph, that we denote by G, has 1206 edges corresponding to 9% of all possible edges. We used this
matrix as a concentration matrix to generate n = 40 independent observations from a multivariate
normal distribution with zero mean.

It is straightforward to check, by using the results of Section 4, that G(20) = G whereas G(3) is
the complete graph and in this example we compare the qp-procedure for both q = 3 and q = 20.

We have thus set the value of q, and the second step of the procedure requires the estimation
of the non-rejection rates. In principle, an unbiased estimate of the non-rejection rate for a pair of
variables Xi and X j can be easily obtained by first testing the hypothesis ρi j.Q = 0 for all Q ∈ Qi j, on
the basis of the available data X (n), and then by computing the proportion of such tests in which the
null hypothesis is not rejected. In practice, however, this requires the computation of

(p−2
q

)
statistical

tests for every one of the p× (p− 1)/2 pairs of variables and may be computationally unfeasible.
In order to overcome this difficulty we use a Monte Carlo method in which, for every pair Xi and
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Figure 1: Image of a partial correlation matrix for 164 variables. Every entry of the matrix is
represented as a gray-scaled point between zero (white points) and ±1 (black points).

X j, the required statistical tests are computed for a large number of sets randomly sampled from
Qi j according to a uniform distribution. In the example we are considering, the non-rejection rate
is estimated by sampling 500 elements from Qi j, for all of the 13366 pairs of variables. For the
case q = 20, Figure 2 gives the boxplots of the estimates of the non-rejection rate for the present
and missing edges of G(20). This picture provides a clear example of the different behavior of the
non-rejection rate for present and missing edges and it is also worth recalling that that there is a
large difference in the number of present and missing edges: 1206 versus 12160.

The third step involves a decision on the adequateness of the chosen value of q and possibly
on the effectiveness of the non-rejection rate for the considered problem. The main tools used here
are two plots that we call the qp-hist plot and the qp-clique plot respectively. The first is the his-
togram of estimated values of the p× (p−1)/2 non-rejection rates, see Figure 3. The latter is more
complex, see Figure 4, and provides information on the graphs potentially selected by specifying
different values of the threshold β∗. More specifically, every circle in the plot corresponds to a graph
and has three values associated with it: the threshold value used to construct the graph (horizontal
axis); the number of vertices of the largest clique of the graph (vertical axis); the percentage of
present edges in the graph (number inside the plot, beside the circle). Furthermore, adjacent circles
are joined by a line and the dotted horizontal line corresponds to the sample size n. To understand
the usefulness of this plot one has to recall that in Gaussian graphical models the real dimension
of the problem is given by the size of the largest clique of the concentration graph. The qp-clique
plot gives the dimension of the largest cliques of the graphs associated with different values of the
threshold thus providing a way to assess the effectiveness of the non-rejection rate as a tool for
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Figure 2: Boxplots of the estimated values of the non-rejection rate for the 1206 present edges and
for the 12160 missing edges of G = G(20).

dimensionality reduction. In particular, every circle below the dotted horizontal line corresponds
to a model whose dimension is smaller than the sample size, and therefore that can be dealt with
standard techniques.

We now analyze these two types of plots for the example considered. Both histograms in Fig-
ure 3 are asymmetric but the first histogram, for q = 3, is less asymmetric with a heavier left tail, and
this is a first indication that for the case q = 3 the non-rejection rate may be of limited usefulness
because we will not be able to remove many edges that are really missing without removing many
others that should not be removed.

However, a more clear difference between the two cases can be derived from Figure 4. The
dimension of models grows almost linearly for q = 3 whereas, for the case q = 20, it grows expo-
nentially, increasing drastically only for threshold values larger than 0.975. For instance, for q = 20,
a threshold equal to 0.9 would lead to the removal of 77% of edges, returning a graph with 23% of
edges left. The same threshold for q = 3 would only lead to the removal of 43% of edges, returning
a graph with 57% of edges left. Furthermore, the largest threshold that produces a graph for which
the dimension of the largest clique is smaller than the sample size is 0.5 for q = 3 and 0.975 for
q = 20. The qp-clique plot provides an indication of the sparseness of the q-marginal graph as well
as of the usefulness of the non-rejection rate in statistical learning. As explained in Section 5.1, in
the qp-procedure the threshold β∗ has to be a value very close to one, and in the example for q = 3
any value close to one would lead to an insufficient dimensionality reduction. In this case, one
should go back to the first step and, if possible, to increase the value of q. If the value of q cannot be
increased, then one can conclude that the use of q-partial graphs is not appropriate for the problem
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Figure 3: Histograms of the estimated values of the non-rejection rates.

under analysis. For the case q = 20 we can set β∗ = 0.975 selecting in this way a graph Ĝ(20) with
9751 out of 13366 possible edges and whose largest clique has size 32. Figure 5 gives the adjacency
matrix of Ĝ(20) and shows that, although this is clearly an overparameterized model, a substantial
dimensionality reduction has been achieved while preserving the block diagonal structure of G(20).
Indeed, only 34 of the 1206 present edges are wrongly removed corresponding to an error of 2.8%.

5.3 Experimental Results

In this section we use simulated data to describe the behavior of the non-rejection rate for different
values of q, n and different degrees of sparsity of the concentration graph. Furthermore, we present
the application of the procedure to a real data set.

For the simulations, we set p = 150 and constructed two graphs, G1 = (V,E1) and G2 = (V,E2)
which have been randomly generated by imposing that every vertex has at most 5 and 20 adjacencies
respectively. In this way, it follows from the results of Section 4 that for all q ≥ 5 it holds that
G(q)

1 = G1 whereas for all q ≥ 20 it holds that G(q)
2 = G2. The graph G1 has 375 edges whereas

G2 has 1499 edges that correspond to 3.36% and 13.4% of the 11175 possible edges respectively.
Successively, an inverse covariance matrix with the zero pattern induced by G1 has been randomly
constructed (see Roverato, 2002) and then two samples, of size 20 and 150 respectively, have been
randomly generated from a normal distribution with zero mean and the given covariance matrix.
The same procedure was used to generate two random samples of size 20 and 50 for G2.

We first consider G1 and n = 20 and independently apply the qp-procedure with six different
values of q, ranging from 1 to 17; recall that the latter is the maximum possible value of q when
n = 20. Figure 6 shows the six qp-hist plots, which are displayed for increasing values of (n− q),
that is, for decreasing values of q, because the power of the statistical test we use increases with
(n− q). For q = 17 the tests have very low power and this results in a qp-hist plot where the
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Figure 4: Plots giving the largest clique sizes of the graphs selected with different threshold values.
For every graph the percentage of present edges is given and the dotted horizontal line is
the sample size n.

non-rejection rate is very high for all pairs of variables. As the value of (n− q) increases the qp-
hist plots show heavier left tails while maintaining a strong negative asymmetric form. As Figure
7 clarifies, this happens because the distributions of the non-rejection rate for present and missing
edges become more and more separated as (n−q) increases. We remark that the present and missing

edges in Figure 7 are relative to G1 and not to G(q)
1 .

A numerical description of the results of these simulations is given in Tables 1 and 2. The
first part of these tables gives the quantities used in the construction of the qp-clique plots: some
threshold values (thr.) and, for every threshold, the size of the largest clique (l.c.) and the percentage
of present edges (% pre.) of the corresponding graph. The remaining columns provide measures of
goodness of the graph associated with each threshold. More specifically, “err.” gives the number
of wrongly removed edges, “% err.” is the percentage of wrongly removed edges with respect to
all the removed edges and, finally, “% imp.” is the rate of improvement with respect to the random
removal of edges: a learning procedure based on the random removal of edges would lead to a
relative error whose expected value is the proportion of edges in the graph, that is 3.36% for G1,
and the improvement rate of a graph is the relative difference between “% err.” and the proportion
of present edges in the concentration graph. We remark that the last three columns of these tables
are not available in real applications where the concentration graph is unknown.

Figures 6 and 7 seem to indicate that the value of q should be chosen as low as possible; nev-
ertheless, as described in Section 5.1 the value of q should not be chosen too small in order to
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Figure 5: Adjacency matrix of the graph selected by the qp-procedure with q = 20 and β∗ = 0.975.
Black points are present edges (value 1 in the adjacency matrix) and white points missing
edges (value 0 in the adjacency matrix).

guarantee an adequate sparseness of G(q)
1 . If in Tables 1 and 2 one takes, for the different values of q

and n = 20, the largest threshold corresponding to a graph whose largest clique size is smaller than
n, then the best solution is provided by q = 10 with a graph in which 6601 edges are missing, the
largest clique has size 13 and the absolute error is 97 with a 56.21% improvement rate. However,
also the case q = 5 provides a good solution with a graph in which 7194 edges are missing, the
largest clique has size 19 and the absolute error is 103 with a 57.33% improvement rate. A value of
q equal either to 5 or to 10 represents the most natural choice in the trade-off between (n− q) and
(p− q) in (6), however we notice that, apart from q = 17 where the relative improvement is only
38.32%, all the other considered values of q provide satisfying solutions. This seems to suggest that
the qp-procedure is not very sensitive to the choice of q. We can conclude that the qp-procedure
is very effective despite the fact that we are considering an extremely challenging problem where
the sample size is very small, n = 20, compared to the number of variables, p = 150. In order to
show the behavior of the non-rejection rate as the sample size increases, in Figure 8 and Table 2
we provide an example in which the sample size is larger, n = 150, but still too low to permit
the computation of sample full-order partial correlations. The boxplots in Figure 8 highlights the
great effectiveness of the non-rejection rate in this case. Table 2 shows that one can either select
the largest graph manageable with standard techniques, choosing in this way a graph with only 12
wrongly removed edges, or select a sparser graph; for instance, the threshold 0.60 gives a graph
with 9365 out of 11175 missing edges, absolute error 85 and a 72.94% improvement rate. It is also
interesting to compare Figure 8 with the case q = 17 in Figures 6 and 7.
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n q thr. l.c. % pre. err. % err. % imp.
20 1

0.30 10 10.4 187 1.87 44.37
0.60 13 14.2 177 1.85 45.00
0.80 14 17.1 169 1.82 45.63
0.85 14 18.5 166 1.82 45.68
0.90 15 21.3 155 1.76 47.50
0.95 17 27.2 136 1.67 50.18
0.97 19 32.4 123 1.63 51.51
0.98 19 36.9 111 1.58 53.05
0.99 22 46.9 88 1.48 55.81

20 3
0.30 7 4.7 228 2.14 36.18
0.60 9 10.1 191 1.90 43.35
0.80 12 16.7 170 1.83 45.59
0.85 14 19.8 156 1.74 48.15
0.90 14 24.5 143 1.69 49.50
0.95 17 34.2 120 1.63 51.36
0.97 20 42.7 96 1.50 55.36
0.98 22 50.4 79 1.43 57.49
0.99 27 63.8 53 1.31 60.99

20 5
0.30 6 2.9 235 2.16 35.49
0.60 8 6.9 195 1.87 44.13
0.80 11 13.8 163 1.69 49.57
0.85 12 17.3 152 1.65 50.98
0.90 13 22.9 138 1.60 52.27
0.95 19 35.6 103 1.43 57.33
0.97 23 47.1 83 1.40 58.15
0.98 28 57.0 65 1.35 59.70
0.99 36 74.2 38 1.32 60.80

Table 1: Graph G1 = (V,E1). Numerical description of the output of the qp-procedure applied
for n = 20 and q = 1,3,5. The first part of the table gives the quantities used in the
construction of the qp-clique plots: some threshold values (thr.) and, for every threshold,
the size of the largest clique (l.c.) and the percentage of present edges (% pre.) of the
corresponding graph. The last three columns give the number of wrongly removed edges
(err.), the percentage of wrongly removed edges with respect to all the removed edges
(% err.) and the rate of improvement with respect to the random removal of edges (% imp.).
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n q thr. l.c. % pre. err. % err. % imp.
20 10

0.30 4 0.7 313 2.82 15.94
0.60 5 2.5 244 2.24 33.26
0.80 7 7.6 199 1.93 42.59
0.85 8 11.4 174 1.76 47.66
0.90 9 19.0 149 1.65 50.93
0.95 13 40.9 97 1.47 56.21
0.97 25 67.2 58 1.58 52.83
0.98 45 85.6 26 1.62 51.82
0.99 99 98.1 6 2.82 16.06

20 15
0.30 2 0.1 371 3.32 1.03
0.60 3 0.3 347 3.11 7.20
0.80 5 1.0 303 2.74 18.36
0.85 6 1.9 278 2.54 24.45
0.90 6 5.5 233 2.21 34.28
0.95 11 45.5 104 1.71 49.08
0.97 50 94.2 10 1.53 54.29
0.98 124 99.6 0 0.00 100.00
0.99 150 100.0 0 0.00 100.00

20 17
0.30 1 0.0 375 3.36 0.00
0.60 1 0.0 375 3.36 0.00
0.80 1 0.0 375 3.36 0.00
0.85 2 0.1 366 3.28 2.31
0.90 3 0.4 339 3.05 9.23
0.95 11 53.3 108 2.07 38.32
0.97 89 98.7 2 1.38 58.90
0.98 149 99.9 0 0.00 100.00
0.99 150 100.0 0 0.00 100.00

150 17
0.30 6 7.0 118 1.14 66.17
0.60 9 16.2 85 0.91 72.94
0.80 13 29.4 60 0.76 77.32
0.85 15 35.6 53 0.74 78.07
0.90 17 44.3 44 0.71 78.93
0.95 23 60.4 34 0.77 77.10
0.97 34 70.7 30 0.92 72.72
0.98 44 77.5 21 0.84 75.09
0.99 62 86.3 12 0.78 76.61

Table 2: Graph G1 = (V,E1). Numerical description of the output of the qp-procedure applied with
different values of n and q. See Table 1 for a description of columns.
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Figure 6: qp-hist plots for G1 = (V,E1) with n = 20.

We now apply the qp-procedure for the case with concentration graph G2, n = 20,50 and q =

5,10; see Figure 9 and Table 3. The graph G2 is not sparse and both G(5)
2 and G(10)

2 are even more
dense, and this affects the shape of the qp-hist plots in Figure 9. Indeed, all the three histograms
are clearly less asymmetric than the corresponding histograms in Figure 6; note also that this is less
evident in the case n = 20 and q = 10 because the quantity (n−q) is smaller than in the other two
cases.

We deem that this kind of behavior of the qp-hist plot should be read as an indication that the
considered q-partial graphs do not provide satisfying approximations of the required concentration
graphs. Hence, if the value of q cannot be increased then we suggest that the application of any
learning procedure based on limited-order partial correlations should be avoided for the problem
under analysis.

We close this section applying the qp-procedure to a subset of the gene expression data from
the study by West et al. (2001). This subset was extracted and analysed originally by Jones et al.
(2005) and contains the expression profiles for p = 150 genes associated with the estrogen receptor
pathway coming from n = 49 breast tumor samples.

We have applied the qp-procedure with q = 20 and the qp-hist and qp-clique plots, given in
Figure 10, provide a strong indication that G(20) is sparse. Hence, we set β∗ = 0.975 and, in this
way, we identify a graph with 7240 out of 11175 possible edges and whose largest clique has size
24 which can be taken as an estimate of the maximum size of the highly interconnected sets of
interacting genes. Such sets are a class of the so-called network motifs (Milo et al., 2002) which are
characteristic network patterns whose identification can be used to draw hypotheses on basic cellular
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Figure 7: Distribution of the non-rejection rate for present and missing edges of G1 = (V,E1), to be
associated with the corresponding histograms in Figure 6.
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Figure 8: qp-hist plot and associated distributions of the non-rejection rate for present and missing
edges of G1 = (V,E1), resulting from the application of the qp-procedure where n = 150
and q = 17.

mechanisms (Yeger-Lotem et al., 2005). Note that the theory of q-partial graphs developed in this
paper, and implemented through the qp-procedure, allows us to obtain this estimate, and eventually
explore other ones, in relationship to the amount of true interactions we are willing to remove and
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Figure 9: qp-hist plots and associated distributions of the non-rejection rate for present and missing
edges of G2 = (V,E2), resulting from the application of the qp-procedure for different
values of n and q.

the dimension of the data. Such a feature may be a critical piece of information when dealing with
real data for which we lack background knowledge on its underlying structure of interactions.
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Figure 10: Estrogen receptor data of West et al. (2001): qp-hist and qp-clique plots for q = 20.
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n q thr. l.c. % pre. err. % err. % imp.
20 5

0.30 5 3.6 1342 12.45 6.78
0.60 10 15.7 1099 11.66 12.72
0.80 21 40.8 735 11.11 16.82
0.85 29 54.2 580 11.33 15.16
0.90 55 72.9 328 10.84 18.89
0.95 103 91.6 90 9.59 28.18
0.97 123 96.5 31 7.81 41.55
0.98 134 98.3 23 12.30 7.94
0.99 144 99.5 6 10.00 25.15

20 10
0.30 3 0.5 1451 13.05 2.36
0.60 5 2.8 1333 12.27 8.13
0.80 7 11.9 1094 11.12 16.77
0.85 9 19.5 971 10.80 19.19
0.90 12 34.3 758 10.32 22.72
0.95 43 73.1 292 9.69 27.44
0.97 88 92.4 76 8.91 33.31
0.98 116 97.8 20 8.16 38.90
0.99 141 99.7 2 6.90 48.38

50 10
0.30 6 6.0 1171 11.14 16.59
0.60 9 21.4 869 9.89 25.96
0.80 17 49.2 518 9.13 31.69
0.85 27 64.3 351 8.79 34.20
0.90 62 82.8 152 7.91 40.81
0.95 120 96.9 27 7.87 41.08
0.97 134 99.4 7 9.59 28.23
0.98 143 99.8 3 12.50 6.44
0.99 148 100.0 0 0.00 100.00

Table 3: Graph G2 = (V,E2). Numerical description of the output of the qp-procedure applied for
different values of n and q. See Table 1 for a description of columns.

6. Discussion

This paper provides two main contributions: the theory related to q-partial graphs and the qp-
procedure.

The theory of q-partial graphs clarifies the connection between the sparseness of the concentra-
tion graph and the usefulness of marginal distributions in structure learning, under the assumption
of faithfulness.

The qp-procedure is designed to learn q-partial graphs and overcomes the main drawbacks of
the existing procedures based on limited-order partial correlations. Furthermore, our procedure has
several advantages. Most importantly, it is robust with respect to the assumption of faithfulness be-
cause the estimation of the non-rejection rate is based on a large number of statistical tests involving
different marginal distributions and, therefore, a zero q-order partial correlation deriving from the
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lack of faithfulness has a very weak impact on the resulting estimate. Apart from faithfulness, the
qp-procedure does not require any additional assumptions with respect to traditional structure learn-
ing procedures and, in particular, the sparseness of the concentration graph, despite being crucial
for the effectiveness of the procedure, is not assumed but exploited when present. In the case the
qp-hist and qp-clique plots provide and indication that the concentration graph is not sparse, then
this should be read as a warning on the real usefulness of limited-order partial correlations in the
problem under analysis. The fact that the qp-procedure is designed to select an overparameterized
model might be regarded as a limitation, but in fact we deem that this is a useful feature that adds
additional flexibility in its use. Indeed, the qp-procedure can be used as an explorative tool to assess
the sparseness of the concentration graph and, therefore, the usefulness of q-partial correlations in
structure learning. Furthermore, the result of the procedure may be applied to obtain a shrinkage
estimate of the covariance matrix useful both in the case n is larger, but close, to p and in the case n
is smaller than p. Finally, the set of all the submodels of the selected model may identify a restricted
search space where a traditional structure learning procedure, either in a Bayesian or in a frequentist
approach to inference, can be applied. In Gaussian graphical models it is assumed that XV follows
a multivariate normal distribution, and the normality of microarray data is a disputed question. We
refer to Wit and McClure (2004; Section 6.2.2) for a discussion of this point, but we remark that
the non-rejection rate is a quantity that can be obtained from any test for conditional independence
computed on marginal distributions, and therefore it constitutes a general tool that can be used also
outside the multivariate normal case.

The qp-procedure, jointly with other functions showing the qp-hist and qp-clique plots, has been
implemented in a package, named qp, for the statistical software R (http://www.r-project.org).
This package can be downloaded from The Comprehensive R Archive Network (CRAN) at http:
//cran.r-project.org/src/contrib/PACKAGES.html.

The qp-procedure is implemented in this package through the R and C programming languages
requiring 10 minutes in a laptop 1.33GHz PowerPC G4 with 1.25 Gbyte RAM running Mac OS
X, as well as in a desktop Intel 1.60GHz P4 with 1 Gbyte RAM running Linux, to perform the
calculations of one of the simulations involving p = 150 variables, n = 50 observations, and q =
15 sampling 500 conditioning subsets to estimate the non-rejection rate for each of the 11 175
adjacencies. Note also that the p× (p−1)/2 non-rejection rates could be estimated in parallel and
thus such an implementation would greatly improve the performance.
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Appendix A. Graph Theory

In this appendix we present the graph theory required for this paper and, in particular, we introduce
the novel concept of outer connectivity that is used in Section 4 to describe the properties of q-
partial graphs. We refer to Cowell et al. (1999) for a full account of graph theory usually applied
in graphical models, to Diestel (2005) for the theory relating separators and independent paths
and, finally, to Rosenberg and Heath (2005) for a comprehensive description of the techniques for
obtaining upper and lower bounds on the sizes of graph separators.

An undirected graph is a pair G = (V,E), where V = {1, . . . , p} is a finite set of vertices and
in this paper E, called the edge set, is a subset of the set of unordered distinct pair of vertices. If
two vertices i, j ∈ V form an edge then we say that i and j are adjacent and write (i, j) ∈ E; recall
that edges are unordered pairs, so that (i, j) = ( j, i). Graphs are usually represented by drawing a
dot for each vertex and joining two of these dots by a line if the corresponding two vertices form
an edge; see Figure 11 for a few examples. For a subset A ⊆ V the subgraph of G induced by A
is GA = (A,EA) with EA = E ∩ (A×A). For two graphs with common vertex set, G = (V,E) and
G′ = (V,E ′), we say that G′ is larger than G, and write G ⊆ G′, if E ⊆ E ′; when the inclusion is
strict, that is, E ⊂ E ′, we write G ⊂ G′ . The boundary of a vertex v ∈ V , denoted by bdG(v), is
the set of vertices adjacent to v. A subset C ⊆V with all vertices being mutually adjacent is called
complete, and when V is complete then we say that G is complete. A subset C ⊆ V is called a
clique if it is maximally complete, that is, C is complete, and if C ⊂ D, then D is not complete. An
undirected graph can be identified by the set C of its cliques. The set Ē is the set of missing edges of
G; that is, for a pair i, j ∈V , (i, j) ∈ Ē if and only if i 6= j and (i, j) 6∈ E. A path of length l > 0 from
v0 to vl is a sequence v0,v1, . . . ,vl of distinct vertices such that (vk−1,vk) ∈ E for all k = 1, . . . , l.
Two or more paths from v0 to vl are independent if they have no common vertices other then v0 and
vl . We can define an equivalence relation on V as

i ∼p j ⇔ there is a path v0,v1, . . . ,vl with v0 = i,vl = j.

The subgraphs induced by the equivalence classes are the connected components of G. If there is
only one equivalence class, we say that G is connected. The subset U ⊆V is said to separate I ⊆V
from J ⊆ V if for every i ∈ I and j ∈ J all paths from i to j have at least one vertex in U . For a
pair of vertices i 6= j with (i, j) ∈ Ē, a set U ⊆ V is called a {i, j}-separator if it separates {i} and
{ j} in G. If either i ∈U or j ∈U then we say that U is trivial. If no proper subset of U is a {i, j}-
separator we say that U is minimal; see also Cowell et al. (1999). Note that the unique possible
minimal {i, j}-separators that are trivial are {i} and { j}. Hereafter, to stress that a separator is
nontrivial and minimal we denote it by S; furthermore, we denote by S(i, j|G) the set of all nontrivial
minimal {i, j}-separators in G, so that S(i, j|G) = { /0} if and only if i and j are in different connected
components. There is a close connection between the concepts of connectivity and separation:
the dimension of the smallest {i, j}-separator, that is the cardinality of the smallest (possibly non
unique) set in S(i, j|G), is called the connectivity of i and j because it represents both the maximum
number of independent paths between i and j in G and the minimum number of vertices that need
to be removed from G to make i and j disconnected (see Theorem 3.3.1 of Diestel, 2005). In order
to deal with q-partial graphs we need to introduce a slightly different definition of connectivity of
two vertices.
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Definition 3 Let i 6= j be a pair vertices of an undirected graph G = (V,E). The outer connectivity
of i and j is defined as

d(i, j|G) = min
S∈S(i, j|Gi j)

|S|

where Gi j is the graph with vertex set V and edge set Ei j = E\{(i, j)}.

Hence, d(i, j|G) is the connectivity of i and j in Gi j. The latter graph is constructed by removing the
edge (i, j) from G, so that if (i, j)∈ Ē then G = Gi j. The idea here is that the edge (i, j) represents an
inner, or direct, connection between i and j and it should not be considered when outer, or indirect,
connectivity is of concern.

Example 1 For the vertex set V = {1, . . . ,6} let Gi = (V,Ei), i = 1, . . . ,3 be the graphs in Figure
11 and let G4 be the complete graph. Then

• d(2,3|Gi) = 0 for i = 1,2,3 whereas d(2,3|G4) = 4;

• d(1,6|G1) = 0, d(1,6|Gi) = 1 for i = 2,3 whereas d(1,6|G4) = 4;

• d(3,4|Gi) = 0 for i = 1,2 whereas d(3,4|G3) = 1;

• d(3,6|G1) = 0, d(3,6|G2) = 1, d(3,6|G3) = 2.PSfrag replacements

1 2 3 4 5 6 G1PSfrag replacements

1 2 3 4 5 6 G2

PSfrag replacements

1 2 3

4

5

6 G3

Figure 11: Examples of undirected graph.

Computing the connectivity of two vertices is known to be a NP-hard problem, however several
algorithms are available to derive both upper and lower bounds to this number; see Rosenberg and
Heath (2001). Here we remark that the cardinality of any {i, j}-separator in Gi j is an upper bound
to the connectivity of i and j; consequently, since bdGi j(i) and bdGi j( j) are both {i, j}-separators in
Gi j, then the number

d̃(i, j|G) := min{|bdGi j(i)|, |bdGi j( j)|} (7)

provides an easy-to-compute upper bound to the outer connectivity of i and j; formally

d(i, j|G) ≤ d̃(i, j|G) for all i, j ∈V ; i 6= j. (8)

It is useful to consider separately the pairs of vertices that define an edge in G from the pairs of
vertices that are not adjacent in G. Hence, we define the outer connectivity of the edges of G = (V,E)
as

d(E|G) := max
(i, j)∈E

d(i, j|G),
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with the understanding that d(E|G) = 0 if E = /0; that is if G as no edges. Similarly, the outer
connectivity of the missing edges of G = (V,E) is defined as

d(Ē|G) := max
(i, j)∈Ē

d(i, j|G), (9)

with the understanding that d(Ē|G) = 0 if Ē = /0; that is if G is complete. Finally, the outer connec-
tivity of G = (V,E) is given by

d(G) := max
i, j∈V ;i6= j

d(i, j|G)

= max{d(E|G),d(Ē|G)} .

It is a straightforward consequence of (8) that the quantities

d̃(Ē|G) := max
(i, j)∈Ē

d̃(i, j|G), (10)

d̃(E|G) := max
(i, j)∈E

d̃(i, j|G), (11)

and

d̃(G) := max
{

d̃(E|G), d̃(Ē|G)
}

(12)

are upper bounds to d(Ē|G), d(E|G) and d(G) respectively.

Example 2 For the graphs in Figure 11 it holds that

G1: d(Ē|G1) = 0, d(E|G1) = 0, d(G1) = 0;

G2: d(Ē|G2) = 1, d(E|G2) = 0, d(G2) = 1;

G3: d(Ē|G3) = 2, d(E|G3) = 1, d(G3) = 2;

There is no strict distinction between sparse and dense graphs, however a sparse graph can be
informally defined as a graph in which the number of edges is much less than the possible number
of edges. Thus the complete graph is dense and the graph in which the edge set is empty is sparse;
furthermore, if G ⊂ G′ than we can say that G is sparser than G′. Since G is obtained by removing
edges from the larger graph G′ the intuition suggests that G has a smaller number of independent
paths between vertices and consequently smaller values of outer connectivity. This is formally stated
in the following theorem.

Theorem 6 Let G = (V,E) and G′ = (V,E ′) be two undirected graphs such that G ⊆ G′. For any
pair of vertices i, j ∈V with i 6= j it holds that

d(i, j|G) ≤ d(i, j|G′) (13)

furthermore,

d(E|G) ≤ d(E ′|G′) and d(G) ≤ d(G′). (14)
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Proof Let S be a smallest nontrivial {i, j}-separator in G′
i j so that d(i, j|G′) = |S| and every path

from i to j in G′
i j has a vertex in S. By construction, every edge in Gi j is an edge in G′

i j and this
implies that every path form i to j in Gi j is also a path from i to j in G′

i j and, consequently, that
every path form i to j in Gi j has a vertex in S. Thus, S is a nontrivial {i, j}-separator in Gi j so that
d(i, j|G)≤ |S|= d(i, j|G′), that proves (13). We consider now the first inequality in (14). Let i, j ∈V
be two vertices such that (i, j) ∈ E and d(E|G) = d(i, j|G); recall that (i, j) ∈ E implies (i, j) ∈ E ′.
Then, d(E|G) = d(i, j|G) ≤ d(i, j|G′) ≤ d(E ′|G′) where the first inequality holds by (13) and the
second holds for every (i, j) ∈ E ′. A similar reasoning can be used to prove the second inequality
in (14): if i and j are such that d(G) = d(i, j|G), then d(G) = d(i, j|G) ≤ d(i, j|G′) ≤ d(G′) where
the first inequality holds by (13) and the second is always true.

Note that neither the inequality d(Ē|G) ≥ d(Ē ′|G′) nor the inequality d(Ē|G) ≤ d(Ē ′|G′) are sat-
isfied in general. For a counterexample, let G1 = (V,E1) and G3 = (V,E3) be the empty and the
complete graph respectively, and let G2 = (V,E2) be the graph with exactly one edge missing.
Clearly, G1 ⊆ G2 ⊆ G3, however

{d(Ē1|G1) = 0} ≤ {d(Ē2|G2) = p−2} and {d(Ē2|G2) = p−2} ≥ {d(Ē3|G3) = 0}.
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Abstract
In this paper we investigate conditions on the features of a continuous kernel so that it may approx-
imate an arbitrary continuous target function uniformly on any compact subset of the input space.
A number of concrete examples are given of kernels with this universal approximating property.
Keywords: density, translation invariant kernels, radial kernels

1. Introduction

Let X be a prescribed input space and set Nn := {1,2, . . . ,n}. We shall call a function K from X ×X
to C a kernel on X provided that for any finite sequence of inputs x := {x j : j ∈ Nn} ⊆ X the matrix

Kx := (K(x j,xk) : j,k ∈ Nn) (1)

is Hermitian and positive semi-definite. Kernels are an essential component in a multitude of novel
algorithms for pattern analysis (Bishop, 1995; Hastie et al., 2001; Schölkopf and Smola, 2002).
Besides their superior performance on a wide spectrum of learning tasks from data, they have a
substantial theoretical basis, as they are reproducing kernels of Hilbert spaces of functions on X
for which point evaluation is always continuous (Aronszajn, 1950). Such spaces are called Repro-
ducing Kernel Hilbert Spaces (RKHS) and an important reason for the interest in kernels is the
(essentially) unique correspondence between them and RKHS. This relationship leads, by means of
the regularization approach to learning, functions having the representation

f := ∑
j∈Nn

c jK(·,x j) (2)

where {c j : j ∈ Nn} ⊆ C are parameters typically obtained from training data (Bishop, 1995; Ev-
geniou et al., 2000; Hastie et al., 2001; Schölkopf and Smola, 2002). This useful fact is known as
the Representer Theorem and has wide applicability (Schölkopf et al., 1999; Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Wahba, 1990). We shall refer to the function in the sum
on the right hand side of (2) as sections of the kernel K.
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Certainly, the choice of the kernel in (2) affects the performance of kernel based learning algo-
rithms and so, is important. For recent work in this direction, see Argyriou et al. (2005, 2006), Bach
et al. (2004), Lanckriet et al. (2004), Micchelli and Pontil (2005), Micchelli et al. (2006), Neumann
et al. (2004), Ong et al. (2005), Sonnenburg et al. (2006) and references therein. Following Poggio
et al. (2002), we ask a conceptually simpler, but very basic question about choosing the kernel : can
the function representation (2), as the number of summands increases without bound, approximate
any target function arbitrarily close? In the study of this question it is important which norm is used
to compute the error between the function appearing in (2) and a given target function. Indeed, it
is well-known that if we use the norm in the RKHS whose kernel is K then all members of this
Hilbert space are approximable arbitrarily by functions of the type appearing in (2). Actually, this is
the way the Hilbert space associated with a kernel is constructed from the kernel itself (Aronszajn,
1950).

Our concern here is with the uniform norm. To this end, we assume that the input space X is
a Hausdorff topological space and that all kernels to be considered are continuous on X ×X . To
begin to address the problem which interests us here, we let Z be a fixed but arbitrary compact
subset of X and, as usual, let C(Z) be the space of all continuous complex-valued functions from Z
to C equipped with maximum norm ‖ ·‖Z . Our hypothesis that the input space is Hausdorff ensures
that it has an abundance of compact subsets. We shall always enforce this hypothesis throughout
and for simplicity of presentation we do not mention it again.

Given a kernel K we form the space of kernel sections

K(Z) := span{Ky : y ∈ Z},

where Ky : X → C is the function defined at every x ∈ X by the equation Ky(x) := K(x,y). The set
K(Z) consists of all functions in C(Z) which are uniform limits of functions of the form (2) where
{x j : j ∈ Nn} ⊆ Z .

We want to identify kernels with the following universal approximating property: given any
prescribed compact subset Z of X , any positive number ε and any function f ∈ C(Z) there is a
function g ∈ K(Z) such that ‖ f −g‖Z ≤ ε. That is, for any choice of compact subset Z of the input
space X , the set K(Z) is dense in C(Z) in the maximum norm. When a kernel has this property we
call it a universal kernel. In other words, a universal kernel K has the property that K(Z) = C(Z). It
is this question of characterizing universal kernels that we address here. We shall demonstrate that it
has a satisfactory resolution in terms of any feature map representation of the kernel K. Indeed, we
provide a necessary and sufficient condition for K to have the universal approximating property in
terms of its features, thereby completing preliminary remarks made about this problem in Micchelli
and Pontil (2004) and Micchelli et al. (2003).

Concrete examples of kernels with their feature maps and observations about the associated
density problem are investigated in Section 3. In Section 4, we stress translation invariant kernels
on Rd and give several useful sufficient conditions for K to be a universal translation invariant
kernel. This discussion includes the popular choice of the Gaussian kernel. We end the paper with
a remark about issues for further investigation.
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2. Kernels Defined by Feature Maps

We start from a Hilbert space W over C and a continuous kernel K on X ×X . A feature map for
the kernel K is any continuous function Φ : X → W such that for each (x,y) ∈ X ×X

K(x,y) = (Φ(x),Φ(y))W (3)

where (·, ·)W is the inner product on W . Every kernel has such a representation and conversely
whenever it does then it is a kernel. However, a feature space representation is not unique. Let us
elaborate on these well-known facts. First, it is straightforward to see that any function K which
has the representation (3) is a kernel. The reason for this fact is that the input matrix appearing in
(1) is formed by the mutual inner products of the set of vectors {Φ(x j) : j ∈ Nn} and such a matrix
is certainly Hermitian and positive semi-definite. To establish the converse, we first construct the
Hilbert space H associated with the continuous kernel K and then observe for all x,y ∈ X , by the
reproducing kernel property, that

K(x,y) := (Kx,Ky)H .

Hence, we may choose W = H and for any x ∈ X we let Φ(x) = Kx. This feature space represen-
tation is continuous because for all x,y ∈ X we have that

‖Φ(x)−Φ(y)‖2
W = K(x,x)+K(y,y)−K(x,y)−K(y,x)

where ‖ · ‖W denotes the norm on W .
There are alternate means to construct a feature space representation for a continuous kernel K

which has the advantage that the Hilbert space W can be chosen to be separable. To construct such
a representation we must choose a compact subset Z of X and a finite Borel measure µ on Z with
supp(µ) = Z (see (15) for the definition of the support of a Borel measure). This measure yields a
linear operator T : L2(Z,µ) → L2(Z,µ) defined for g ∈ L2(Z,µ) by the equation

T g :=
Z

Z
K(·,y)g(y)dµ(y). (4)

Following the ideas of Mercer (1909), T has countably many nonnegative Eigenvalues (each of finite
multiplicities with zero as the only accumulation point of nonnegative Eigenvalues) {λi : i ∈ N} and
corresponding orthonormal Eigenfunctions {φi : i ∈ N} ⊆ L2(Z,µ) such that

K(x,y) := ∑
i∈N

λiφi(x)φi(y), (x,y) ∈ Z ×Z (5)

where the series above converges absolutely and uniformly on Z ×Z, see also Lax (2002).
To write K in the form (3), we let `2(N) be the Hilbert space of square summable sequences on

N and define a feature map Ψ : Z → `2(N) at each x ∈ Z and j ∈ N as

Ψ(x)( j) :=
√

λ jφ j(x).

Therefore, the Mercer representation in Equation (5) establishes for each x,y ∈ Z that

K(x,y) = (Ψ(x),Ψ(y))`2(N).
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Since we have for all x,y ∈ Z that

‖Ψ(x)−Ψ(y)‖2
`2(N) = K(x,x)+K(y,y)−K(x,y)−K(y,x),

the continuity of the K implies that the feature map Ψ : Z → `2(N) is also continuous.
Of course, to find an Eigenfunction feature representation of a kernel, except in special cir-

cumstances, is a serious challenge both analytically and computationally. Moreover, it should be
observed that this feature space representation depends on the measure µ. Recent extensions of the
Mercer theorem can be found in Sun (2005) and the reference therein.

Let us now return to the general case of formula (3). To this end, we need to recall facts about
the dual space of C(Z), that is, the space of all continuous linear functionals on C(Z). By the
Riesz representation theorem the linear functionals in dual space of C(Z) are identified as regu-
lar complex-valued measures on Z (see, for example, Lax, 2002; Royden, 1988). The norm of a
complex-valued measure, which is inherited from the norm on C(Z), is its total variation and is
defined as

TV(ν) := sup{|
Z

Z
g(x)dν(x)| : ‖g‖Z ≤ 1,g ∈C(Z)}.

We denote the space of all regular complex-valued measures on Z with this norm by B(Z). For any
ν ∈ B(Z), we wish to define the integral

R

Z Φ(x)dν(x) as an element of W . This is done by noting
that the conjugate linear functional L defined on W for each u ∈ W by the equation

L(u) :=
Z

Z
(Φ(x),u)W dν(x) (6)

has a norm satisfying the inequality

‖L‖ ≤ TV(ν)‖Φ‖∞ < ∞,

where ‖Φ‖∞ := max{‖Φ(x)‖W : x ∈ Z}. Therefore, by the Riesz representation theorem, for the
Hilbert space W (Lax, 2002; Rudin, 1991) there exists a unique element w ∈ W such that for each
u ∈ W that

L(u) = (w,u)W .

It is this vector w which we shall denote by
R

Z Φ(x)dν(x). Consequently, we have the useful formula

(
Z

Z
Φ(x)dν(x),u)W =

Z

Z
(Φ(x),u)W dν(x) (7)

valid for all u ∈ W .
Next, we introduce a map U : B(Z) → W by letting for each ν ∈ B(Z)

U(ν) :=
Z

Z
Φ(x)dν(x) (8)

and so the formula (7) becomes

(U(ν),u)W =
Z

Z
(Φ(x),u)W dν(x). (9)

For any y ∈ Z we set u = Φ(y) in formula (9) above to obtain by the definition of the kernel (3)
that

(U(ν),Φ(y))W =
Z

Z
K(x,y)dν(x). (10)
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We now conjugate both sides of this equation, integrate both sides of the resulting equation with
respect to the complex-valued measure ν and then simplify the resulting left side by another appli-
cation of Equation (7) with the choice u = U(ν). Next, we use the feature space representation of
the kernel in (3) on the right hand side of the equation to obtain the equation

‖U(ν)‖2
W =

Z

Z

Z

Z
K(x,y)dν̄(y)dν(x) (11)

where ν̄ is the conjugate of the complex-valued measure ν defined for each Borel set S ⊆ Z by
ν̄(S) := ν(S). We remark here that since the kernel K is continuous and Z is compact, Fubini’s
theorem assures that we can interchange the order in the integral on the right hand side of the above
equation (see, for example, Royden, 1988). Moreover, from this formula it follows that the linear
operator U is continuous. Indeed, its norm satisfies the inequality

‖U‖ ≤
√

‖K‖∞

where ‖K‖∞ denotes the maxium norm of K on C(Z ×Z).

To continue, we recall the notion of annihilator of a subset V of C(Z). This consists of all
elements in B(Z) which are zero on all functions in V . In other words, we have that

V ⊥ := {ν : ν ∈ B(Z),
Z

Z
f (x)dν(x) = 0, f ∈ V }.

Note that the annihilator of a subset of C(Z) is a subspace of B(Z). Furthermore, the closed linear
span of subset V of C(Z), denoted by spanV , has the same annihilator as the set V itself. More-
over, two subsets V1 and V2 of C(Z) have the same annihilator if and only if spanV1 = spanV2.
Also, recall that two closed subspaces are equal if and only if their annihilators are the same (see,
for example, Lax, 2002; Royden, 1988; Rudin, 1991, for these facts).

We shall denote the null space of U by N (U), that is, the subspace of all elements ν in B(Z)
for which U(ν) is zero, given by

N (U) := {ν : ν ∈ B(Z),U(ν) = 0}.

We remark here that the operator U depends on the set Z.

Proposition 1 If Z is a compact subset of the input space X then

K(Z)⊥ = N (U). (12)

Consequently, K(Z) = C(Z) if and only if U is injective.

Proof By the Hahn Banach theorem, the linear span of a subset V is dense in C(Z), that is,
spanV = C(Z) if and only if V ⊥ = {0} (Lax, 2002; Royden, 1988; Rudin, 1991). Therefore, the
second claim follows from (12). We now turn to the proof of this equation. If ν ∈ K(Z)⊥ then by
definition, for all y ∈ Z we have that

Z

Z
K(x,y)dν(x) = 0
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and so by (11) we get that ν ∈ N (U). Therefore, we have established that K(Z)⊥ ⊆ N (U). To
prove the opposite inclusion we suppose that ν ∈ N (U), then appeal to (10) and conclude that
ν ∈ K(Z)⊥, thereby proving the theorem.

Equation (7) has another consequence. To this end, we introduce a subspace of W defined as

Φ(Z) := span{Φ(x) : x ∈ Z}.

If Q is a linear mapping between two linear spaces and S is a subset of its domain we use the standard
notation Q(S) for its image under Q. When the set S is the domain of Q then its image is the range
of Q and is denoted by R (Q). From these definitions it follows that Q(spanS) = spanQ(S).

Proposition 2
R (U) = Φ(Z). (13)

Proof We shall prove the proposition by showing that

R (U)⊥ = Φ(Z)⊥.

If u ∈ Φ(Z)⊥ then (7) implies for any ν ∈ B(Z) that u ∈ R (U)⊥. Conversely, if u ∈ R (U)⊥ then
again we get for any ν ∈ B(Z) from (7) that

R

Z(Φ(x),u)W dν(x) = 0. In particular, choosing ν to
be the point evaluation at an arbitrary x ∈ Z we obtain that (Φ(x),u)W = 0 and so we conclude that
u ∈ Φ(Z)⊥, thereby establishing (13).

Let us now introduce another linear operator V : W →C(Z) defined for any u∈W and x ∈Z as
(V (u))(x) := (Φ(x),u)W . Certainly, V is bounded, as its norm satisfies the inequality ‖V‖ ≤ ‖Φ‖∞.
Moreover, according to (7) we have that

(U(ν),u)W =
Z

Z
(V (u))(x)dν(x) (14)

which means that the adjoint of the operator V denoted by V ∗ : B(Z) → W is U , that is, U = V ∗.
Next, we point out a consequence of this fact and Proposition 1.

Corollary 3 K(Z) = R (V ).

Proof It is generally true for any bounded linear operator that N (Q∗) = R (Q)⊥ (Lax, 2002; Rudin,
1991) and, in particular, N (U) = R (V )⊥ so the result follows directly from Proposition 1.

We recall that the linear span of a subset S is dense in W , that is, spanS = W , if and only if the
only u ∈ W with (u,v) = 0 for all v ∈ S is u = 0 (We already use a similar fact for the space C(Z)).
It follows directly from Equation (14), for any subset S of W such that spanS is dense in W , that
V (S)⊥ = N (U) and so with this remark and Proposition 1 we conclude that

K(Z) = spanV (S).
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We use this equation in the following manner. Recall that a subset Y of W is orthonormal
if for every distinct elements u,v ∈ Y we have that (u,v) = 0 and also (u,u) = 1. Every Hilbert
space has an orthonormal basis Y (which may not be countable) such that for every u ∈ W the set
{y : y ∈ Y ,(u,y) 6= 0} is countable. Moreover, we have for u ∈ W the decomposition

u = ∑
y∈Y

(u,y)y,

where the sum on the right hand side of this equation converges in W for any ordering of elements
of Y (Lax, 2002; Rudin, 1991). Corresponding to each element y in an orthonormal basis Y of W
we define the function Fy ∈ C(Z) at x ∈ Z by the equation Fy(x) = (Φ(x),y)W and introduce the
corresponding subspace of C(Z)

Φ(Y ) := span{Fy : y ∈ Y }.
Note the important difference between the sets Φ(Z) and Φ(Y ). The first is in the Hilbert space

W and the second is in C(Z). Combining the above remarks we obtain the following equivalence
between density of kernel representation and feature function density in C(Z).

Theorem 4 If Z is a compact subset of the input space X , K a kernel with feature space represen-
tation (3) and Y an orthornormal basis for W then K(Z) = Φ(Y ).

Parallel to our notion that a kernel is universal, we say a feature map Φ is universal provided
that given any compact subset Z of the input space X , any positive number ε and any function
f ∈C(Z) there is a function g ∈ Φ(Y ) such that ‖ f −g‖Z ≤ ε. That is, for any choice of compact
subset Z of the input space X , the set {Fy : y ∈ Y } is dense in C(Z). In other words, we have that
Φ(Y ) = C(Z). Therefore, with this terminology we can succinctly summarize our conclusion in
Theorem 4 by saying that a kernel K expressed in feature space form (3) is universal if and only if
its features are universal!

We now consider an alternate way to express the universality of a kernel K in terms of the
operator T and the corresponding measure µ defined in Equation (4) which determines it. To this
end, we recall the that the support of a Borel measure ν on Z is defined to be the closed set

supp(ν) :=
\

{

S ⊆ Z : S is closed, ν(SC) = 0
}

. (15)

Consequently, if
R

Z f (x)dν(x) = 0, ν a Borel measure with supp(ν) = Z and f is a nonnegative and
continuous function on Z then f = 0.

The first statement we make is about the mapping T defined in Equation (4) which is an imme-
diate consequence of Theorem 4 concerning its Eigenfunctions.

Corollary 5 If K is a kernel on an input space X , Z a compact subset of X , {λi : i ∈ N} ⊆ R+\{0}
and {φi : i ∈ N} ⊆ L2(Z,µ) are the nonzero Eigenvalues and corresponding orthonormal Eigen-
functions of the compact operator T where supp(µ) = Z then K(Z) = C(Z) if and only if span{φi :
i ∈ N} = C(Z).

The next comment concerns the range of the operator T .

Theorem 6 If supp(µ)= Z for the measure appearing in Equation (4) then K(Z) = R (T ).
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Proof It suffices to show that K(Z)⊥ = R (T )⊥. If ν ∈ K(Z)⊥ then for each y ∈ Z
Z

Z
K(x,y)dν(x) = 0.

By Fubini’s theorem, we observe for each g ∈ L2(Z,µ) that
Z

Z
(T g)(x)dν(x) =

Z

Z
g(y){

Z

Z
K(x,y)dν(x)}dµ(y) = 0

and so we conclude that ν ∈ R (T )⊥. Conversely, ν ∈ R (T )⊥ then by the above equation we obtain
for any g ∈C(Z) that

Z

Z
g(y){

Z

Z
K(x,y)dν(x)}dµ(y) = 0.

We now choose g =
R

Z K(x, ·)dν(x) in this equation and conclude that
Z

Z
|g(y)|2dµ(y) = 0.

Since supp(µ) = Z, we obtain that g = 0, that is, ν ∈ K(Z)⊥.

As a consequence of Theorem 6, we observe that K(Z) = C(Z) if and only if R (T ) = C(Z).
We end this section by remarking that the results presented here may be extended from C(Z) to

Lp− spaces where p ∈ [1,∞). However, as we remarked in the introduction our focus here is on the
maximum norm and so we do not go into this matter here.

3. Examples of Universal Kernels

In this section, we give examples of kernels defined by feature maps and study the corresponding
density problem. We begin with a set {φ j : j ∈ I} of continuous complex-valued functions on X
where I is a countable set of indices and define the kernel K by

K(x,y) := ∑
j∈I

φ j(x)φ j(y), (x,y) ∈ X ×X , (16)

where we assume that the series converges uniformly on Z ×Z for every compact subset Z of X .
To make use of the presentation in Section 2 we set W = `2(N), choose the standard orthonormal
basis Y for W in Theorem 4 and obtain the following result.

Theorem 7 The kernel K defined by Equation (16) is universal if and only if the set of features
{φ j : j ∈ I} is universal.

We shall now apply Theorem 7 to dot product kernels on various domains of Rd and Cd . To this
end, we start with an entire function G defined at any z ∈ C by the equation

G(z) := ∑
n∈Z+

anzn (17)

where the coefficients {an : n ∈ Z+} are assumed to be all positive. The function G induces the dot
product kernel K defined at x,y ∈ Cd by the equation

K(x,y) := G((x,y)) (18)
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where we shall always use (x,y) for the standard inner product between the vectors x and y. For an
extensive discussion of dot product kernels see FitzGerald et al. (1995).

Corollary 8 The dot product kernel defined in Equation (18) is universal on Cd and Rd .

Proof For any lattice vector α := (α j : j ∈Nd)∈Zd
+ we set |α| := ∑ j∈Nd

α j. Using the multinomial
expansion we conclude that the dot product kernel defined in Equation (18) can be expressed in the
form

K(x,y) := ∑
α∈Z

d
+

φα(x)φα(y), x,y ∈ Cd

where the features are defined for α ∈ Zd
+ at x ∈ Cd as

φα(x) :=

√

a|α|

(|α|
α

)

xα.

As is well-known, for example as a special case of the Stone-Weierstrass approximation theorem
(Rudin, 1991, page 122), these features are universal on Cd and Rd so the result follows from The-
orem 7.

The next result we present is a version of the above remark appropriate for the unit ball Bd :=
{x : (x,x) < 1} in Rd . We have in mind the following fact. Again, we start with the function
G defined above in (17) but in the next result we only assume that it is analytic in the unit disc
∆ := {z : |z| < 1,z ∈ C}

Corollary 9 If G is analytic in ∆ and has all positive coefficients then K is universal on Bd .

The proof is identical to the proof of Corollary 8 and therefore is omitted.
We end our discussion of dot product kernels by considering the case of the unit sphere Sd in

Rd+1. To this end, we review the construction of Schoenberg kernels on Sd (Schoenberg, 1942).
Let Pd

k , k ∈ Z+ be the k-th degree ultraspherical polynomial. When d = 1, P1
k is the k-th degree

Chebyshev polynomial (Rivlin, 1990) and for d > 1, Pd
k is determined by the generating function

1

(1−2zt + z2)(d−1)/2
= ∑

k∈Z+

Pd
k (t)zk, z ∈ ∆, t ∈ [−1,1].

We assume that we have a sequence of nonnegative numbers {ak : k ∈ Z+} such that

∑
k∈Z+

akPd
k (1) < ∞. (19)

Let the function g : [0,π] → R be given at t ∈ [0,π] by the equation

g(t) := ∑
k∈Z+

akPk(cos t). (20)

The condition (19) ensures that the series in (20) converges uniformly on [0,π], since Pd
k achieves

its maximum in absolute value on the interval [−1,1] at 1 (Szegö, 1959, page 166).
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The geodesic distance between x,y ∈ Sd is given by

Dd(x,y) := arccos(x,y)

and Schoenberg proved in Schoenberg (1942) that K is kernel on Sd if and only if it has this form

K(x,y) := g(Dd(x,y)), x,y ∈ Sd . (21)

Theorem 10 The kernel given by Equation (21) is universal on Sd if and only if for all k ∈ Z+, ak

is positive.

Proof We write the kernel in (21) in the feature form. For this purpose, we recall some basic
facts about spherical harmonics which can be found in Stein and Weiss (1971). Let Hk be the
set of all homogeneous harmonic polynomials of total degree k on Rd+1 restricted to Sd and set
hk := dim Hk. We view Hk as a subspace of the L2(Sd ,ωd) where ωd is the Lebesgue measure on
Sd . Let {Y k

j : j ∈ Nhk} be an orthonormal basis for Hk and recall that Hk is orthogonal to H ′
k if

k 6= k′ (Stein and Weiss, 1971). For each k ∈ Z+, there exists a positive constant ck such that for all
x,y ∈ Sd

Pk((x,y)) = ck ∑
j∈Nhk

Y k
j (x)Y

k
j (y). (22)

Therefore, by Equations (20) and (22), we have that

K(x,y) = ∑
k∈Z+

akck ∑
j∈Nhk

Y k
j (x)Y

k
j (y), x,y ∈ Sd .

We let I := {(k, j) : k ∈ Z+, j ∈ Nhk} and introduce for each ` = (k, j) ∈ I the feature

φ` :=
√

akckY
k
j .

Now, if all the ak, k ∈ Z+ are positive we conclude that span{φ` : ` ∈ I} is the linear space of all
polynomials and, in particular, is universal. However, if there exists a m ∈ Z+ such that am = 0 then
span{φ` : ` ∈ I} is orthogonal to Hm and hence is not universal.

4. Translation Invariant Kernels on Rd

In the remaining part of this paper we shall focus on translation invariant kernels on Rd which have
the form

K(x,y) = k(x− y), x,y ∈ Rd

for some function k which is continuous on Rd . Recall that Bochner (1959) proved that K is a kernel
if and only if there is a unique finite Borel measure µ on Rd such that k at any x ∈ Rd has the form

k(x) :=
Z

Rd
ei(x,y)dµ(y). (23)

We shall study the question of the universality of the kernel K in terms of the properties of its
corresponding finite Borel measure µ. We start by identifying the input space as X := Rd and then
introduce our Hilbert space W of all complex-valued functions on supp(µ) with inner product
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( f ,g)W :=
Z

supp(µ)
f (x)g(x)dµ(x).

Next, we introduce the feature map Φ : Rd → W which is defined by setting for each x,y ∈ Rd

Φ(x)(y) := ei(x,y) (24)

so that K(x,y) = (Φ(x),Φ(y))W , x,y ∈ Rd . Note that in this case the Hilbert space W is the usual
L2(supp(µ),µ) space of all square integrable complex-valued functions relative to the measure µ
on supp(µ). Since µ is a finite Borel measure every bounded continuous function on supp(µ) is
contained in W .

Next, we introduce the set of exponentials

E(µ) := {Φ(x) : x ∈ supp(µ)}.

We say E(µ) is universal provided that E(µ) is dense in C(Z) for every compact subset Z of Rd .

Lemma 11 For each compact subset Z of Rd , K(Z) = C (Z) if and only if spanE(µ) = C(Z).

Proof We observe by Fubini’s theorem that the map U : B(Z) → W corresponding to Φ in Equa-
tion (24) is identified by formula (7) for each ν ∈ B(Z) and y ∈ supp(µ) to be

U(ν)(y) :=
Z

Z
ei(x,y)dν(x).

Hence, we see that N (U) = E(µ)⊥ and so U is injective if and only if spanE(µ) is dense in C(Z).
Therefore, the result follows from Proposition 1.

As a consequence of Lemma 11, we find that the universality of K depends on the density of the
set E(µ) of complex exponentials.

Theorem 12 The translation kernel K is universal if and only if the set of exponential features E(µ)
is universal.

An interesting feature of this result is that whenever a translation kernel K is universal with
corresponding measure µ then any kernel corresponding to any other measure ρ with the same
support as µ is also universal! Another consequence of this result pertains to the integral operator T
defined by Equation (4). Specifically, let Z be a compact subset of Rd , ν a finite Borel measure on
Z such that supp(ν) = Z and T the integral operator defined by (4) then Theorem 6 and Lemma 11
yield the following result.

Corollary 13 If K is a translation kernel on Rd then R (T ) =C(Z) if and only if spanE(µ) =C(Z).

We now turn our attention to describing various conditions on the support of the measure µ
which ensures the corresponding set of exponential features E is universal. To this end, we say,
as in Micchelli et al. (2003), that a subset S of Cd is a uniqueness set if an entire function on Cd

vanishes on S then it is everywhere zero on Cd . We recall the following result from Micchelli et al.
(2003).
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Proposition 14 If supp(µ) is a uniqueness subset of Cd then the translation kernel K is universal.

Proof By Theorem 12, it suffices to show that for each compact set Z of Rd there does not exist
nontrivial ν ∈ B(Z) satisfying for each y ∈ supp(µ) that

Z

Z
ei(x,y)dν(x) = 0. (25)

Suppose there exists ν ∈ B(Z) that satisfies (25) for all y ∈ supp(µ). Then the entire function F
defined for each z ∈ Cd as

F(z) :=
Z

Z
ei(z,x)dν(x)

vanishes on supp(µ). Consequently, F must be everywhere zero and so ν = 0.

We note here that the proof above adapts to show that for each finite Borel measure ω on Z
and p ∈ [1,∞), K(Z) = Lp(Z,ω) if and only if spanE(µ) = Lp(Z,ω). This fact, together with the
remark at the end of Section 2, implies that R (T ) = Lp(Z,ω) if and only if spanE(µ) = Lp(Z,ω).

Proposition 15 If supp(µ) has positive Lebesgue measure on Rd then the translation kernel K is
universal.

Proof By Proposition 14, we suffice to point out the well-known fact that the real zeros of any
nontrivial entire function on Cd form a set of Lebesgue measure zero on Rd .

By Proposition 15, the uniqueness condition is satisfied by a large class of finite Borel measures
on Rd . To elaborate on this point further, we apply the Lebesgue decomposition theorem to µ and
write it uniquely as

µ = µc +µs

where µc is the continuous part of µ (Royden, 1988), in other words, there is a nonnegative function
g ∈ L1(Rd), such that for all Borel sets S ⊆ Rd

µc(S) =
Z

S
g(x)dx (26)

and µs is the singular part of µ so that the Lebesgue measure of its support is zero. Our next result
makes use of this decomposition.

Proposition 16 If the continuous part of µ in its Lebesgue decomposition is nonzero then the trans-
lation kernel K is universal.

Proof We only need to show that supp(µ) has positive Lebesgue measure if the continuous part µc

of µ in its Lebesgue decomposition is nonzero. Let g be the nonnegative function in L1(Rd) that
determines µc by (26). The hypothesis that µc 6= 0 implies g 6= 0. Since supp(µc) = supp(g) ⊆
supp(µ) it follows that supp(µ) has positive Lebesgue measure.
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We shall now turn our attention to the Schoenberg kernels on Rd ×Rd (Schoenberg, 1938). A
continuous function g : R+ → R determines a radial kernel on Rd ×Rd by the formula

K(x,y) := g(‖x− y‖2), x,y ∈ Rd (27)

where ‖x‖ :=
√

(x,x) is the usual euclidean norm of x ∈ Rd . It was proved in Schoenberg (1938)
that K is a kernel on Rd ×Rd for all d ∈ N if and only if there exists a finite Borel measure µ on R+

such that for all t ∈ R+

g(t) :=
Z

R+

e−tσdµ(σ). (28)

All kernels of this type are not universal. Indeed, the choice of a measure concentrated only at
σ = 0 gives a kernel K that is identically constant and therefore it is not universal. This is the only
exceptional case as we shall explain in the next result.

Theorem 17 If the measure µ in Equation (28) is not concentrated at zero then the radial kernel K
in (27) is universal.

Proof We first show how to prove the result using Proposition 16 when the measure µ has the
additional property that for some a > 0 its support is contained in the ray [a,∞). In that case, we
use the formula

e−σ‖x‖2
=

1
(2π)d

Z

Rd

(π
σ

)d/2
ei(x,ξ)e−

‖ξ‖2

4σ dξ

valid for all x ∈ Rd and σ > 0. Using Fubini’s theorem, we express the function k in (23) for the
kernel K in (27) at x ∈ Rd as

k(x) :=
Z

Rd
ei(x,y) f (y)dy

where the function f is defined at y ∈ Rd by the equation

f (y) :=
1

(2π)d

Z ∞

a

(π
σ

)d/2
e−

‖y‖2

4σ dµ(σ).

The function f is strictly positive and
Z

Rd
f (y)dy =

Z ∞

a
dµ(σ) > 0,

so the theorem is a consequence of Proposition 16. If the support of the measure is not a subset
of the open ray R+ we proceed differently. A direct computation using the power series for the
exponential function and the multinomial expansion yields the formula

K(x,y) = ∑
α∈Z

d
+

(|α|
α

)

2|α|

|α|!

Z

supp(µ)
σ|α|xαe−σ‖x‖2

yαe−σ‖y‖2
dµ(σ).

This suggests that we introduce the Hilbert space W of real-valued functions on the set M :=
Zd

+× supp(µ) with inner product

(F,G)W := ∑
α∈Z

d
+

(|α|
α

)

2|α|

|α|!

Z

supp(µ)
F(α,σ)G(α,σ)dµ(σ)
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and a feature map Φ : Rd → W defined at (α,σ) ∈ M and x ∈ Rd as

Φ(x)(α,σ) := σ|α|/2xαe−σ‖x‖2
.

Hence we have the feature space representation for the kernel K given for each x,y ∈ Rd as

K(x,y) = (Φ(x),Φ(y))W .

Now, we let Z be some prescribed compact subset of Rd . As in the proof of Theorem 11 we
identify the operator U : B(Z) → W in (7) at ν ∈ B(Z) and (α,σ) ∈ M as

U(ν)(α,σ) =
Z

Z
σ|α|/2xαe−σ‖x‖2

dν(x).

Therefore, if there is a positive ρ ∈ supp(µ) and ν ∈ N (U) then for any α ∈ Zd
+ we have that

Z

Z
xαe−ρ‖x‖2

dν(x) = 0.

This implies, by the density of all polynomials in C(Z), that ν = 0. In other words, U is injective
and so the result follows from Proposition 1.

As a consequence of Theorem 17 we conclude that the following two classes of kernels are
universal:

K(x,y) := e−α‖x−y‖2
, x,y ∈ Rd

and
K(x,y) := (β+‖x− y‖2)−α, x,y ∈ Rd

where α and β are arbitrary positive numbers.
Next, we give a quite different condition on the support of the measure µ so that the correspond-

ing translation kernel is universal. For this discussion we shall use the celebrated Stone-Weierstrass
theorem (Rudin, 1991).

Proposition 18 If supp(µ) is a subgroup of Rd such that for each x ∈ Rd \{0} the set {(x,y) : y ∈
supp(µ)} * Z then K is universal.

Proof By Theorem 12, it suffices to show that spanE(µ) is dense in C(Z). Suppose all the hypothe-
ses are satisfied and there exists some compact set Z ⊆ Rd such that K(Z) is not dense in C(Z).
Since supp(µ) is a subgroup of Rd we see that 1 ∈ spanE(µ) and that for all f ,g ∈ spanE(µ),
both f g and f̄ belong to spanE(µ). Therefore, by the Stone-Weierstrass theorem, there exist dis-
tinct points x1,x2 ∈ Z such that for all f ∈ spanE(µ), f (x1) = f (x2). That is, for each y ∈ supp(µ)
ei(x1−x2,y) = 1 or in other words, (x1 − x2,y)/2π ∈ Z. This contradiction proves the proposition.

Corollary 19 If d = 1, supp(µ) is a subgroup of R and there exists y1,y2 ∈ supp(µ)\{0} such that
y1/y2 is an irrational number then K is universal.

Proof By the hypotheses of the corollary, it is clear that there does not exist x ∈ R\{0} such that
both xy1 and xy2 are integers. The result follows immediately from Proposition 18.
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5. Conclusion

We have provided a variety of conditions for a kernel to be universal in terms of properties of its
features. Several examples of universal dot product kernels are given. In the case of translation
kernels we showed that universality depends on the density of a set of complex exponentials. This
problem has attracted much interest in the literature. An extensive survey of existing results on the
univariate case is given in Redheffer (1977) and additional information in Beurling and Malliavin
(1967). With this available information a complete characterization of univariate translation kernels
follows. We show that except in rare circumstances all Schoenberg radial kernels are universal.

Our study indicates that there is intimate relationship between uniformly approximating a pre-
scribed target function by a kernel and approximating by its features. There is an important problem
which is not treated here that deserves careful attention. Given a prescribed error ε > 0 and a
prescribed target function f , what is the relationship between the number of features needed to rep-
resent f with error ε and the number of kernel sections needed for the same purpose. We intend to
address this issue on another occasion.
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Abstract

The prevalent use of computers and internet has enhanced the quality of life for many people, but
it has also attracted undesired attempts to undermine these systems. This special topic contains
several research studies on how machine learning algorithms can help improve the security of
computer systems.

Keywords: computer security, spam, images with embedded text, malicious executables, network
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1. Introduction

As computers have become more ubiquitous and connected, their security has become a major
concern. Attacks are more pervasive and diverse—they range from unsolicited email messages that
can trick users in providing personal information to dangerous viruses that can erase data and shut
down computer systems. Consequently, security breaches are not rare topics in the news.

Conventional security software requires a lot of human effort to identity threats, extract char-
acteristics from the threats, and encode the characteristics into software to detect the threats. This
labor-intensive process can be more efficient by applying machine learning algorithms. As a result,
a number of researchers have investigated various machine learning algorithms to detect attacks
more efficiently and reliably. Two edited books (Barbara and Jajodia, 2002; Maloof, 2006) have
been published and two workshops at research conferences (Chan et al., 2003; Brodley et al., 2004)
have been conducted in recent years. Due to the level of interest from the researchers and maturity
of some of their studies, we decided to organize a special topic on “Machine Learning for Computer
Security” for this journal.
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Figure 1: Adversarial spam image designed to defeat OCR text extraction

2. JMLR Special Topic

We received nineteen submissions for this special topic. After considering the reviews for each
submission, we selected four papers to be included in this special topic.

Bratko et al. (2006) describe a recent advance in the ongoing battle between those that generate
and those that want to block unwanted spam email. They apply adaptive statistical compression
algorithms (Dynamic Markov Compression (DMC) and Prediction by Partial Matching (PPM))
to build models for email messages. DMC learns a Markov model incrementally via a cloning
technique to introduce new states in the model. PPM learns a table of contexts and the frequency of
the symbol following the contexts. To classify if a message is spam, they use minimum cross entropy
(MCE) and minimal description length (MDL). MCE calculates the number of bits to encode a
message based on competing models learned from normal and spam messages, and classifies the
message to the class whose model requires fewer encoded bits. MDL measures the additional
number of bits needed to encode a message after adding it to the competing models, and classifies
the message to the class whose model needs fewer additional bits. The authors evaluated their
techniques on three datasets and against six open source spam filters. For both DMC and PPM
models, they found that MDL yields lower 1-AUC (1 - Area under ROC) than MCE. They also
reported that DMC consistently outperforms the six open source spam filters.

Similar to Bratko et al. (2006), Fumera et al. (2006) tackle the problem of spam email, however,
they consider spam messages with embedded images. They developed an approach to analyze spam
email when spam text messages are embedded in attached images instead of in the text email body
(for example, Figure 1). Standard optical character recognition (OCR) software is used to extract
words embedded in images and these extra words are used in addition to text in the email header
and body to improve performance of a support vector machine spam classifier. At a false alarm rate
of 1%, this technique often reduced the miss rate by a factor of two for spam email that contained
embedded images. Evidently, this approach has been adopted by commercial spam filtering compa-
nies. Spammers have reacted by adding varied background and distorting text embedded in images
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to make it difficult for OCR systems to extract spam messages but easy for humans to interpret these
messages. Figure 1 shows an example of an image from a recent spam email suggesting a stock to
purchase. This paper illustrates that pattern classification techniques can be effective for complex
problems such as spam, but that it can be difficult to obtain a long-standing advantage in adversarial
environments.

Instead of email messages, Kolter and Maloof (2006) analyze executables. They demonstrate
that N-gram analysis of executables can be used to distinguish between normal computer programs
and malicious virus, worm, and Trojan horse programs. Even though roughly 20% of the malicious
software samples used were obfuscated with either compression or encryption, detection accuracy
for 291 previously unseen malicious executables was roughly 98% correct at a false alarm rate of
5%. These good results were made possible by collecting and carefully confirming and labeling a
training corpus of 1971 benign and 1651 malicious executables and using 10-fold cross-validation
to select both the top-performing N-grams and the best performing classifier which in this case was
a boosted tree classifier.

As network traffic is increasingly encrypted, Wright et al. (2006) address the problem of in-
ferring application protocol behaviors in encrypted traffic to help intrusion detection systems. The
authors first propose using k-nearest neighbor methods for identifying protocols in data instances,
each of which is known to belong to one protocol. Experiments on eight protocols indicate 75-100%
true detection rate. They then propose Hidden Markov Models (HMMs) for identifying protocols in
traffic with mixed protocols. Each protocol has an HMM model. Each model has a group of states
(a pair of client and server states, and a pair of insert and delete states) and the number of groups is
equal to the average number of packets in a connection for the protocol. The emitting symbols are
codewords for packet size and inter-arrival time. To classify, they pick the protocol, whose model
has the best Viterbi path that explains the observation. Their empirical results indicate that HMMs
can achieve 58-87% true detection rate on eight protocols. They last propose methods for identi-
fying the number of connections in encrypted tunnels. They assume the number of connections is
Gaussian and the number of packets of a certain type is Poisson. Each HMM state corresponds to
a connection count, the output is a tuple of counts for the different types of packets. They use the
Gaussian and Poisson assumptions to estimate standard deviations of the number of connections
and rates of each packet type. The number of connections at a certain time is predicted by the most
probable state at that time. They evaluated their techniques on four tunnels.

3. Concluding Remarks

These four papers demonstrate the need for carefully constructed training and test corpora, effec-
tive feature extraction and selection, and valid evaluations on representative corpora when applying
pattern classification to computer security problems. They also suggest a new important direction
for pattern classification research. This is to develop approaches that provide sustained good perfor-
mance in adversarial environments where a malicious adversary takes actions to subvert a classifier.
Some of these actions could be: (1) obscure important discriminating input features, for example
by modifying text in images to be difficult for an OCR to extract, (2) add extraneous additional fea-
tures to make an input appear more normal, for example by adding sentences extracted from normal
emails to the end of spam emails, (3) alter the prior probabilities of abnormal inputs, and (4) take
all of these actions over time in a way designed to thwart systems that learn and adapt over time.
The paper on spam detection (Fumera et al., 2006) mentions this problem and another recent paper
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(Newsome et al., 2006) shows how an adversary can defeat a system that learns to automatically ex-
tract signatures to detect computer worms. Further research is needed to determine if there are any
systematic approaches that can lead to classifiers that are more robust in adversarial environments.
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Abstract

Spam filtering poses a special problem in text categorization, of which the defining characteristic
is that filters face an active adversary, which constantly attempts to evade filtering. Since spam
evolves continuously and most practical applications are based on online user feedback, the task
calls for fast, incremental and robust learning algorithms. In this paper, we investigate a novel
approach to spam filtering based on adaptive statistical data compression models. The nature of
these models allows them to be employed as probabilistic text classifiers based on character-level
or binary sequences. By modeling messages as sequences, tokenization and other error-prone pre-
processing steps are omitted altogether, resulting in a method that is very robust. The models are
also fast to construct and incrementally updateable. We evaluate the filtering performance of two
different compression algorithms; dynamic Markov compression and prediction by partial match-
ing. The results of our empirical evaluation indicate that compression models outperform currently
established spam filters, as well as a number of methods proposed in previous studies.

Keywords: text categorization, spam filtering, Markov models, dynamic Markov compression,
prediction by partial matching
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1. Introduction

Electronic mail is arguably the “killer app” of the internet. It is used daily by millions of people to
communicate around the globe and is a mission-critical application for many businesses. Over the
last decade, unsolicited bulk email has become a major problem for email users. An overwhelming
amount of spam is flowing into users’ mailboxes daily. In 2004, an estimated 62% of all email was
attributed to spam, according to the anti-spam outfit Brightmail.1 Not only is spam frustrating for
most email users, it strains the IT infrastructure of organizations and costs businesses billions of
dollars in lost productivity. In recent years, spam has evolved from an annoyance into a serious
security threat, and is now a prime medium for phishing of sensitive information, as well the spread
of malicious software.

Many different approaches for fighting spam have been proposed, ranging from various sender
authentication protocols to charging senders indiscriminately, in money or computational resources
(Goodman et al., 2005). A promising approach is the use of content-based filters, capable of discern-
ing spam and legitimate email messages automatically. Machine learning methods are particularly
attractive for this task, since they are capable of adapting to the evolving characteristics of spam,
and data is often available for training such models. Nevertheless, spam filtering poses a special
problem for automated text categorization, of which the defining characteristic is that filters face
an active adversary, which constantly attempts to evade filtering. Unlike most text categorization
tasks, the cost of misclassification is heavily skewed: Labeling a legitimate email as spam, usually
referred to as a false positive, carries a much greater penalty than vice-versa. Since spam evolves
continuously and most practical applications are based on online user feedback, the task calls for
fast, incremental and robust learning algorithms.

In this paper, we consider the use of adaptive data compression models for spam filtering.
Specifically, we employ the dynamic Markov compression (Cormack and Horspool, 1987) and pre-
diction by partial matching (Cleary and Witten, 1984) algorithms. Classification is done by first
building two compression models from the training corpus, one from examples of spam and one
from legitimate email. The compression rate achieved using these two models on the target mes-
sage determines the classification outcome. Two variants of the method with different theoretical
underpinnings are evaluated. The first variant (Frank et al., 2000; Teahan, 2000) estimates the prob-
ability of a document using compression models derived from the training data, and assigns the class
label based on the model that deems the target document most probable. The second variant, which
is introduced in this paper, selects the class for which the addition of the target document results in
a minimal increase in the description length of the entire data set. The difference in practice is that
the models are used adaptively in this second approach, that is, they are updated at each position
in the target document so that statistics from the initial part of the document are taken into account
when examining the remainder. In this way, repeated occurrences of similar, “already seen”, pat-
terns, have diminishing influence on the classification outcome, thereby putting greater weight on
heterogeneous evidence.

While the idea of using data compression algorithms for text categorization is not new, we are
aware of no existing research that considers such methods for spam filtering. In the present paper, we
demonstrate that compression models are extremely well suited to the spam filtering problem. We
propose a simple, yet effective modification of the original method, which substantially improves

1. http://brightmail.com/, 2004-03-12
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filtering performance in our experiments. We generalize the results to compression algorithms not
considered in other studies, showing that they exhibit similar, strong performance.

In online learning experiments on three large email collections, we find that compression models
generally outperform established spam filters according to several measures. On the TREC public
corpus, currently the largest publicly available spam data set, spam misclassification at a false posi-
tive rate of 1 in 1000 is 1.2% – 1.8% (depending on the compression algorithm), compared to 2.6%
– 6.9% achieved by six reference systems. We also conducted cross validation experiments on the
Ling-Spam, PU1 and PU3 data sets, in which compression models compare favorably to a variety
of methods considered in previous studies on the same data. Finally, we show that compression
models are robust to the type of noise introduced in text by obfuscation tactics which are commonly
used by spammers against tokenization-based filters.

2. Related Work

The basic idea of using data compression in classification and other machine learning tasks has been
reinvented many times. The intuition arises from the principal observation that compact representa-
tions of objects are only possible after some recurring patterns or statistical regularities are detected.
This has motivated many applications of general-purpose data compression algorithms in machine
learning and data mining problems, in which data compression algorithms are most often used to
produce a distance or (dis)similarity measure between pairs of data points (Li et al., 2003; Keogh
et al., 2004; Sculley and Brodley, 2006).

Most relevant to our study is the work of Frank et al. (2000), who first proposed the use of com-
pression models for automated text categorization. They investigate using the prediction by partial
matching (PPM) algorithm as a Bayesian text classifier, that is, they build a PPM model of each class
and use these models to estimate the class-conditional probabilities of the target document. They
find that the compression-based method is inferior to support vector machines (SVM) and roughly
on par with naive Bayes on the classical Reuters-21578 data set. The same method was investigated
by Teahan (2000), and later applied to a number of text categorization problems, such as authorship
attribution, dialect identification and genre classification (Teahan and Harper, 2003). They find the
compression-based method particularly suitable for dialect identification and authorship attribution,
and report fair performance for genre classification and topic detection.

Peng et al. (2004) propose augmenting a word-based naive Bayes classifier with statistical lan-
guage models to account for word dependencies. They also consider training the language mod-
els on characters instead of words, resulting in a method that is effectively very similar to the
compression-based method of Frank et al. (2000). In experiments on a number of categorization
tasks, they find that the character-based method often outperforms the word-based approach. They
also find that character-level language models reach or improve previously published results on four
of the six classification tasks considered in the study.

In most spam filtering work, text is modeled with the bag-of-words (BOW) representation, even
though it is widely accepted that tokenization is a vulnerability of keyword-based spam filters. Some
filters use character n-grams instead of word tokens and apply standard machine learning algorithms
on the resulting feature vector (Goodman et al., 2005).

Two particular approaches (that we are aware of) go a step further towards operating directly
on character sequences. IBM’s Chung-Kwei system (Rigoutsos and Huynh, 2004) uses pattern
matching techniques originally developed for DNA sequences. Messages are filtered based on the
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number of occurrences of patterns associated with spam and the extent to which they cover the
target document. Recently, Pampapathi et al. (2006) proposed a filtering technique based on the
suffix tree data structure. They investigate a number of ad hoc scoring functions on matches found
in the target document against suffix trees constructed from spam and legitimate email. However,
the techniques proposed in these studies are different to the statistical data compression models that
are evaluated here. In particular, while these systems use character-based features in combination
with some ad hoc scoring functions, compression models were designed from the ground up for the
specific purpose of probabilistic modeling of sequential data. This property of data compression
models allows them to be employed in an intuitively appealing and principled way.

The methods presented in this paper were first evaluated on a number of real-world email collec-
tions in the framework of the 2005 Text REtrieval Conference (TREC). The results of this evaluation
showed promise in the use of statistical data compression models for spam filtering (Bratko and Fil-
ipič, 2005). This article describes the methods used at TREC in greater detail and extends the
TREC paper in a number of ways: We compare the use of adaptive and static models for classifica-
tion, extend our analysis to compression algorithms not considered in previous work, compare the
performance of compression models with results published in other studies, and evaluate the effect
of noise in text on the filtering performance of compression models and tokenization-based filters.

3. Statistical Data Compression

Probability plays a central role in data compression: Knowing the exact probability distribution
governing an information source allows us to construct optimal or near-optimal codes for messages
produced by the source. A statistical data compression algorithm exploits this relationship by build-
ing a statistical model of the information source, which can be used to estimate the probability of
each possible message. This model is coupled with an encoder that uses these probability estimates
to construct the final binary representation. For our purposes, the encoding problem is irrelevant.
We therefore focus on the source modeling task.

3.1 Preliminaries

We denote by X the random variable associated with the source, which may take the value of any
message the source is capable of producing, and by P the probability distribution over the values of
X with the corresponding probability mass function p. We are particularly interested in modeling
of text generating sources. Each message x produced by such a source is naturally represented as a
sequence x = xn

1 = x1 . . .xn ∈ Σ∗ of symbols over the source alphabet Σ. The length |x| of a sequence
can be arbitrary. For text generating sources, it is common to interpret a symbol as a single character,
but other schemes are possible, such as binary (bitwise) or word-level models.

The entropy H(X) of a source X gives a lower bound on the average per-symbol code length
required to encode a message without loss of information:

H(X) = Ex∼P

(

−
1
|x|

log p(x)

)

.

This bound is achievable only when the true probability distribution P governing the source is
known. In this case, an average message could be encoded using no less than H(X) bits per symbol.
However, the true distribution over all possible messages is typically unknown. The goal of any
statistical data compression algorithm is then to infer a probability mass function over sequences

2676



SPAM FILTERING USING STATISTICAL DATA COMPRESSION MODELS

f : Σ∗ → [0,1], which matches the true distribution of the source as accurately as possible. Ideally2,
a sequence x is then encoded with L(x) bits, where

L(x) = − log f (x).

The compression algorithm must therefore learn an approximation of P in order to encode
messages efficiently. A better approximation will, on average, lead to shorter code lengths. This
simple observation alone gives compelling motivation for the use of compression algorithms in
text categorization, but we defer this discussion until Section 5, and first describe the compression
models used in the study.

3.2 Finite Memory Markov Sources

To make the inference problem over all (possibly infinite) sequences tractable, sources are usually
modeled as stationary and ergodic Markov sources3 with limited memory k. Each symbol in a
message x is therefore assumed to be independent of all but the preceding k symbols (the context):

p(x) =
|x|

∏
i=1

p(xi|x
i−1
1 ) ≈

|x|

∏
i=1

p(xi|x
i−1
i−k).

We assume that a string of k leading symbols that otherwise cannot occur in any sequence is
prepended to x to overcome the technical difficulty in estimating the first k symbols. In practice, a
compression algorithm would normally use a shorter context for prediction here.

The number of context symbols k is referred to as the order of the Markov model. Higher order
models have the potential to better approximate the characteristics of a complex source. However,
since the number of possible contexts increases exponentially with context length, accurate param-
eter estimates are hard to obtain. For example, an order-k model requires Σk(Σ−1) parameters. To
tackle this problem, different strategies are employed by different algorithms. The common ground
to all such algorithms is that the complexity of the model is increased only after the amount of
training data is sufficient to support a more complex model. We describe two particular algorithms
that were also used in our experiments later in this section.

3.3 Two-part vs. Adaptive Coding

Two-part data compression methods first transmit the model which is used for encoding, followed
by the encoded data. The decoder reads the model first and then uses this information to decode
the remaining part of the message. Such methods require two passes over the data. The first pass is
required to train the model and the second pass is required for the encoding.

Adaptive methods do not explicitly include the model in the encoded message. Rather, they
start encoding the message using an empty model, for example, a uniform distribution over all
symbols. The model is incrementally updated after each symbol, gradually adapting to an ever

2. The “ideal” code length ignores the practical requirement that codes have an integer length.
3. The stationarity and ergodicity properties are necessary preconditions for learning to stabilize arbitrarily close to

(the best approximation of) the data generating process asymptotically, that is, as the length of the training sequence
increases without bound. They are stated here for completeness and are usually taken for granted in a typical machine
learning setting, where we expect to learn from past observations.
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closer approximation of the data generating process. The probability assigned to a sequence x by
an order-k adaptive algorithm is then

f (x) =
|x|

∏
i=1

f (xi|x
i−1
i−k ,M(xi−1

1 )) (1)

where M(xi−1
1 ) denotes the current model at time i, constructed from the input sequence xi−1

1 . The
decoder repeats the learning process, building its own version of the model as the message is de-
coded. It is important to note that adaptive methods require only a single pass over the data, a
property that we will turn to our advantage in subsequent developments.

3.4 Algorithms

In this section, we describe the dynamic Markov compression and prediction by partial matching
compression algorithms with which we obtain our main results. Both of the algorithms are adaptive,
that is, the model used for prediction may be updated efficiently after each symbol in a sequence.

3.4.1 DYNAMIC MARKOV COMPRESSION

The dynamic Markov compression (DMC) algorithm (Cormack and Horspool, 1987) models an
information source with a finite state machine (FSM). A probability distribution over symbols is
associated with each state and is used to predict the next binary digit emitted by the source. The
algorithm begins in a predefined initial state and moves to the next state after each digit in the
sequence. An example FSM structure, corresponding to an order-1 binary Markov model, is shown
in the left side of Figure 1. Each state S in the FSM has two outbound transitions, one for each
binary symbol. These transitions are equipped with frequency counts, from which next-symbol
probabilities for the state S are calculated (as relative frequencies).

1/1/f=4

A B

0/f=4

0/f=2 1/f=12 A

B’

0/f=3

1/f=5

0/f=2 1/f=3

B

0/f=1

1/f=9
cloning of state B

a) b)

Figure 1: An example of DMC’s state cloning operation. The active state and transition at time a) and b) are
highlighted. The left hand side shows the model when state A is active and the observed symbol is
‘1’. This triggers the cloning of state B and a state transition to the new state B′, as shown on the
right hand side of the figure. The transition frequencies (visit counts) before and after the cloning
operation are also shown.

In an adaptive DMC algorithm, the frequency counts of transitions are incremented whenever
a transition fires (once after each symbol in the sequence). The structure of the state machine may
also be built incrementally, by using a special state cloning operation. Specifically, as soon as the
algorithm finds that a transition from some state A to some other state B in the FSM is used often,
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the target state of the transition is considered for cloning. Figure 1 depicts this cloning operation, in
which a new state B′ is spawned. The new state B′ has a single inbound transition, which replaces
the former transition from A to B. All outbound transitions of B are copied to B′.

After cloning state B, the FSM maintains separate statistics for situations when state B is reached
from state A, and when it is reached from other states. Without loss of generality, suppose the former
transition from A to B is associated with the symbol ‘1’, as in the example. The new state B′ then
corresponds to the situation when state A is followed by ‘1’. As cloning continues, new states
begin to express more and more specific situations, allowing the algorithm to incorporate richer
context information when predicting the next symbol. The context used for prediction is implicitly
determined by the longest string of symbols that matches all suffixes of paths leading to the current
state of the FSM.

After cloning, the statistics associated with the cloned state B are distributed among B′ and B in
proportion to the number of times state B was reached from state A, relative to the number of times
state B was reached from other states (again, refer to Figure 1). Two parameters control the state
cloning operation in DMC. These are the minimal frequencies of B′ and B after cloning. Both of
the new states must exceed this minimal frequency that is required for stable probability estimates
in order to trigger the cloning operation. At each position in the sequence only one state needs to be
considered for cloning: The target state of the transition in the FSM that is triggered by the current
symbol.

In the most basic version, the initial model contains a single state, corresponding to a memo-
ryless source. When dealing with byte-aligned data, it is customary to start with a slightly more
complex initial state machine which is capable of expressing within-byte dependencies. This initial
FSM structure corresponds to an order-7 binary Markov model. All transitions in the initial FSM are
primed with a small initial visit count to avoid singular probabilities. We note that although DMC
restricts the source alphabet to binary symbols, it nevertheless achieves state-of-the-art performance
on typical ASCII encoded text sequences (Cormack and Horspool, 1987).

3.4.2 PREDICTION BY PARTIAL MATCHING

The prediction by partial matching (PPM) algorithm (Cleary and Witten, 1984) has set the standard
for lossless text compression since its introduction over two decades ago (Cleary and Teahan, 1997).
Essentially, the PPM algorithm is a back-off smoothing technique for finite-order Markov models,
similar to back-off models used in natural language processing.

It is convenient to assume that an order-k PPM model stores a table of all contexts (up to length
k) that occur anywhere in the training text. For each such context, the frequency counts of symbols
that immediately follow it is maintained. When predicting the next symbol xi in a sequence xn

1,
its context xi−1

i−k is matched against the stored statistics. The longest matching context xi−1
i−l found

in the table is examined first (note that l ≤ k). If the target symbol has appeared in this context
in the training text, its relative frequency within the context is used for prediction. However, this
probability is discounted by a small amount to reserve some probability mass, which is called the
escape probability. The escape probability that is accumulated in this way estimates the probability
of observing a zero-frequency symbol in the context xi−1

i−l . The escape probability is distributed
among symbols not seen in the current context, according to a lower-order model, that is, according
to statistics for the context xi−1

i−l+1. The procedure is applied recursively until all symbols receive
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a non-zero probability. If necessary, a default model of order −1 is used, which always predicts a
uniform distribution among all possible symbols.

An adaptive compression algorithm based on the PPM model starts with an empty model which
always defaults to the uniform distribution among all symbols. After each symbol is encoded, the
algorithm updates the statistics of all contexts (up to order k) of the current symbol.

Many versions of the PPM algorithm exist, differing mainly in the way the escape probability
is estimated. In our implementation, we used escape method D (Howard, 1993), which simply dis-
counts the frequency of each observed character by 1/2 occurrence and uses the gained probability
mass for the escape probability.

4. Minimum Description Length Principle

The minimum description length (MDL) principle (Rissanen, 1978; Barron et al., 1998; Grünwald,
2005) favors models that yield compact representations of the data. The traditional two-part MDL
principle states that the preferred model results in the shortest description of the model and the
data, given this model. In other words, the model that best compresses the data is selected. This
model selection criterion naturally balances the complexity of the model and the degree to which
this model fits the data.

A problem of the two-part MDL principle is that it gives no guidelines as to how the model
should be encoded. The refined MDL principle which is described later in this section aims to
remedy this problem.

4.1 Universal Codes

A universal code relative to a class of source models has the property that it compresses data “al-
most” as well as the best model in the model class. More precisely, the difference in code length
between a universal code and the best model in the model class increases sublinearly with the length
of the sequence. Rissanen gives a precise non-asymptotic lower bound on this difference in the worst
case (Rissanen, 1986), which turns out to be linearly related to the complexity of the data generat-
ing process (in terms of the number of parameters). He also shows that codes exist that achieve this
bound.

Two-part codes are universal, since only a finite code length is required to specify the model. It
turns out that adaptive codes are also universal codes (Rissanen, 1984). In fact, adaptive compres-
sion algorithms exist that are proven to achieve Rissanen’s lower bound relative to the class of all
finite-memory tree sources (e.g., Willems et al., 1995). The redundancy incurred due to the fact that
adaptive methods start with an empty, uninformed model, can be compared to the cost of separately
encoding the model in two-part codes.

4.2 Predictive MDL

The limitations of the original two-part MDL principle were largely overcome with the modern
version of the principle (Rissanen, 1996), which advocates the use of one-part universal codes for
measuring description length relative to a chosen model class. The use of adaptive codes for this
task is sometimes denoted predictive MDL and is encouraged when the data is sequential in nature
(Grünwald, 2005).
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We aim to measure the description length of a set of documents relative to the class of Markov
models of a certain order by using adaptive universal data compression algorithms, and to employ
this measure as a criterion for classification. It is necessary to mention here that while PPM is
universal in this sense, the same cannot be said for DMC. This is due to its “greedy” strategy of
adapting its model without bound, that is, increasing the order of the model as soon as possible. On
the other hand, this strategy might well lead to a better approximation of the source and thus more
accurate prediction. In terms of data compression performance, DMC is competitive to PPM on
the types of sequences that are of practical interest to us, particularly for natural language text and
binary computer files (Cormack and Horspool, 1987).4

5. Text Classification Using Compression Models

In essence, compression algorithms can be applied to text categorization by building one compres-
sion model from the training documents of each class and using these models to evaluate the target
document.

In the following subsections, we describe two approaches to classification. Both approaches
model a class as an information source, and consider the training data for each class a sample
of the type of data generated by the source. They differ in the way classification is performed.
We first describe the minimum cross-entropy (MCE) approach (Frank et al., 2000; Teahan, 2000).
This method chooses the class for which the associated compression model assigns the highest
probability to the target document. We then propose a simple modification to this method, in which
the model is adapted while evaluating the target document in the sense of Equation 1. Unlike
the former approach, this method measures the increase of the description length of the data set
as a result of the addition of the target document. It chooses the class for which the description
length increase is minimal, which is why we consider this a minimum description length (MDL)
approach. In subsequent sections, we also refer to this approach as using adaptive models and the
MCE approach as using static models for obvious reasons.

We denote by C the set of classes and by c : Σ∗ →C the (partially specified) function mapping
documents to class labels. Given a set of pre-classified training documents D, the task is to assign a
target document d with an unknown label to one of the classes c ∈C.

5.1 Classification by Minimum Cross-entropy

The cross-entropy H(X ,M) determines the average number of bits per symbol required to encode
messages produced by a source X when using a model M for compression:

H(X ,M) = Ex∼P

(

1
|x|

L(x|M)

)

.

In the above equation, L(x|M) denotes the ideal code length for x under model M. Note that
H(X ,M) ≥ H(X) always holds, that is, the best possible model achieves a compression rate equal
to the entropy.

4. As a side-note, we mention here that the techniques presented in this paper were also evaluated in combination with
the Context Tree Weighting (CTW) compression algorithm (Willems et al., 1995) in the framework of the TREC 2005
spam track (Bratko and Filipič, 2005). Although the CTW algorithm is universal and provably achieves Rissanen’s
optimal minimax regret for the class of sources it considers, its performance for spam filtering in the TREC evaluation
was comparable, although slightly inferior, to PPM. Since the CTW algorithm is also computationally less efficient,
we omit the CTW algorithm from the present paper.

2681



BRATKO, CORMACK, FILIPIČ, LYNAM AND ZUPAN

The exact cross-entropy is hard to compute, since it would require knowing the source distribu-
tion P. It can, however, be approximated by applying the model M to sufficiently long sequences
of symbols, with the expectation that these sequences are representative samples of all possible
sequences generated by the source (Brown et al., 1992; Teahan, 2000):

H(X ,M) ≈
1
|x|

L(x|M). (2)

As |x| becomes large, this estimate will approach the actual cross-entropy in the limit almost
surely if the source is ergodic (Algoet and Cover, 1988). Recall that if M is a Markov model with
limited memory k, then

L(x|M) = − log
|x|

∏
i=1

f (xi|x
i−1
i−k ,M)

where f (xi|x
i−1
i−k ,M) is the probability assigned to xi given xi−1

i−k by M.
Following Teahan (2000), we refer to the cross-entropy estimated on the target document d as

the document cross-entropy H(X ,M,d). This is simply a substitution of x with d in the right hand
of Equation 2. We expect that a model that achieves a low cross-entropy on the target document
approximates the information source that actually generated the document well. This is therefore
our measure for classification:

c(d) = argmin
c∈C

H(X ,Mc,d)

= argmin
c∈C

−
1
|d|

log
|d|

∏
i=1

f (di|d
i−1
i−k ,Mc). (3)

In the above equation, Mc denotes the compression model built from all examples of class c in the
training data.

5.2 Classification by Minimum Description Length

The MCE criterion assumes that the test document d was generated by some unknown information
source. The document is considered a sample of the type of data generated by the unknown source.
Classification is based on the distance between each class and the source that generated the docu-
ment. This distance is measured with the document cross-entropy, which serves as an estimate of
the cross-entropy between the unknown source and each of the class information sources.

However, we know that the document did not originate from some unknown source and that it
ultimately must be attributed to one of the classes. The MDL classification criterion tests, for each
class c ∈ C, the hypothesis that c(d) = c, by adding the document to the training data of the class
and estimating how much this addition increases the description length of the data set:

∆L(D,c,d) = L({x ;x ∈ D,c(x) = c)} ∪ {d})−L({x ;x ∈ D,c(x) = c)}).

We are searching for the classification hypothesis that yields the most compact description of the
observed data. The resulting description length is measured with adaptive compression algorithms
which allow efficient estimation of this quantity, although other universal codes could also be used
to measure the description length increase. This is in line with the approach suggested by Kontkanen
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et al. (2005) in their MDL framework for clustering, in which the cluster assignment should be such
that it results in a minimal description length of the data, measured by a suitable universal model.

Adaptive models are particularly suitable for this type of classification, since they can be used
to estimate the increase in description length without re-evaluating the entire data set:

∆L(D,c,d) = − log
|d|

∏
i=1

f (di|d
i−1
i−k ,Mc(d

i−1
1 )).

In the above equation, Mc(d
i−1
1 ) denotes the current model at position i, constructed from the train-

ing examples for class c and the input sequence d i−1
1 .

Typically, the description length increase ∆L(D,c,d) will be larger for longer documents. We
therefore use the per-symbol description length increase in the final class selection rule:

c(d) = argmin
c∈C

1
|d|

∆L(D,c,d)

= argmin
c∈C

−
1
|d|

log
|d|

∏
i=1

f (di|d
i−1
i−k ,Mc(d

i−1
1 )). (4)

The additional 1/|d| factor does not affect the classification outcome for any target document, but
it does help to produce scores that are comparable across documents of different length. This is
crucial when thresholding is used to reach a desirable tradeoff in misclassification rates. Note that
the only difference in implementation in comparison to the MCE criterion in Equation 3 is that the
model is adapted while evaluating the target. It is clear, however, that Equation 4 no longer amounts
to measuring the document cross-entropy H(X ,Mc,d) with respect to model Mc, since a different
model is used at each position of the sequence d.

Intuitively, the description length increase ∆L(D,c,d) measures the “surprise” at observing d
under the hypothesis c(d) = c, which is proportional to the (im)probability of d under the model
for c. The intuition behind adapting the model Mc is that it conditionally continues to learn about
c from the target document: If the hypothesis c(d) = c actually holds and an improbable pattern is
found in the initial part of d, then the probability that the pattern reoccurs in the remainder of the
document should increase. Although we do not know whether the hypothesis c(d) = c is true or
not, it is assumed to be true for the purpose of testing its tenability.

Let us conclude this section with an illustrative example as to why the MDL classification cri-
terion might be preferable to the MCE approach. Consider a hypothetical spam filtering problem
in which a machine learning researcher uses a compression-based classifier to filter spam from his
email. In addition to research-related email, our researcher also receives an abundant amount of
spam that advertises prescription drugs. At some point, he receives an email on machine learning
methods for drug discovery. This is a legitimate email, but it contains many occurrences of two
particular terms that the filter strongly associates with spam: “medicine” and “drugs”. In this sce-
nario, the prevalence of these two terms might cause the MCE criterion to label the email as spam,
but the MDL criterion would probably consider the email legitimate. This is because while the
first occurrence of the terms “medicine” and “drugs” are surprising under the hypothesis “document
is legitimate”, subsequent occurrences are less surprising. They are, in a sense, redundant. The
classifier will learn this as a direct consequence of allowing the model to adapt to the target.

It is interesting to note that Benedetto et al. (2002), who consider the use of the LZ77 compres-
sion algorithm (zip) for language identification and authorship attribution, notice that LZ77 adapts
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to the target text and take measures to prevent this behavior. We, on the other hand, believe this
effect is beneficial, which is supported in the results of our experiments.

6. Experimental Setup and Evaluation Methodology

Our primary concern is the use of compression models in spam filtering. This problem differs from
classical text categorization tasks in a number of ways:

• The cost of misclassification is highly unbalanced. Although the exact tradeoff will vary in
different deployment environments, it tends to be biased toward minimizing false positives
(i.e., misclassified legitimate messages).

• Messages in an email stream arrive in chronological order and must be classified upon de-
livery. It is also common to deploy a filter without any training data. Although previous
studies typically use cross validation experiments, the appropriateness of cross validation is
questionable in this setting.

• Many useful features may be gleaned from various message headers, formats and encodings,
punctuation patterns and structural features. It is therefore desirable to use raw, unobfuscated
messages with accompanying meta data intact for evaluation.

These unique characteristics of the spam filtering problem are reflected in the design of our
experiments and the choice of measures that were used for classifier evaluation. This section gives
an overview of the test corpora and evaluation methodology used to obtain our results.

6.1 Online Spam Filter Evaluation

An online learning scheme that lends itself well to typical usage of spam filters was adopted as
the primary means of classifier evaluation. In this setup, messages are presented to the classifier in
chronological order. For each message, the classifier must produce a score as to how likely it is that
the message is spam, after which it is communicated the gold standard judgment. This allows the
classifier to update its model before assessing the next message.

The setup aims to simulate a typical setting in personal email filtering, which is usually based
on online user feedback, with the additional assumption that the user promptly corrects the classifier
after every misclassification. The same evaluation method was used in the large-scale spam filter
evaluation at TREC 2005, an overview of which can be found in the TREC proceedings (Cormack
and Lynam, 2005).

The performance of different compression models and classification criteria were evaluated us-
ing the described scheme. We also compared compression models to a selection of established spam
filters in this manner. Standard cross validation experiments on predefined splits were performed to
compare compression models to previously published results which were also obtained with cross
validation.

6.2 Evaluation Measures

Special care must be taken in the choice of evaluation measures for spam filtering. Classification
accuracy, that is, the total proportion of misclassified messages, is a poor performance measure in
this application domain, since all errors are treated on equal footing (Androutsopoulos et al., 2000).
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In the binary spam filtering problem, spam messages are usually associated with the positive
class, since these are the messages filtered by the system. Legitimate messages are thus designated
to the negative class. If p is the total number of positive examples in the test set and n is the
total number of negative examples, four classification outcomes are defined by the standard binary
contingency table. Legitimate message may be incorrectly labeled as spam ( f p – false positives) or
correctly identified as legitimate (tn – true negatives). Similarly, spam messages may be incorrectly
labeled as legitimate ( f n – false negatives) or correctly identified as spam (t p – true positives). The
false positive rate (FPR) and spam misclassification rate (SMR) are then defined as follows:

FPR =
f p
n

, SMR =
f n
p

.

FPR and SMR measures are intuitive and appealing, however, it is difficult to compare systems
based on these measures alone, since one of them can always be improved at the expense of the
other.

It is assumed that the scores produced by a learning system are comparable across messages,
so that a fixed filtering threshold can be used to balance between spam misclassification and false
positive rates. Such scores lend themselves well to Receiver Operating Characteristic (ROC) curve
analysis, which was the primary means of classifier evaluation in the study. The ROC curve is a plot
of spam accuracy (1−SMR) on the Y axis, as a function of the false positive rate on the X axis.5

Each point on the curve corresponds to an actual (FPR, SMR) pair achieved by the classifier at a
certain threshold value. The curve thus captures the behavior of the system at all possible filtering
thresholds.

A good performance is characterized by a curve that reaches well into the upper left quadrant
of the graph. The area under the ROC curve (AUC) is then a meaningful statistic for comparing
filters. If we assume that high score values are associated with the positive class, the area under the
curve equals the probability that a random positive example receives a higher score than a random
negative example:

AUC = P(score(x) > score(y) | c(x) = positive, c(y) = negative).

Typical spam filters achieve very high values in the AUC statistic. For this reason, we report on
the complement of the AUC value, that is, the area above the curve (1-AUC). Bootstrap resampling
was used to compute confidence intervals for logit-transformed AUC values and to test for signifi-
cance in paired comparisons. Where suitable, we also report SMR at filtering thresholds that result
in “acceptable” false positives rates (0.01%, 0.1% and 1%). This measure is easier to interpret and
gives insight in the kind of performance one can expect from a spam filter.

6.3 Data Sets

We report experimental results on five publicly available data sets and a private collection of email
compiled by one of the authors. The basic statistics for all six corpora are given in Table 1.

The TREC public6 corpus contains messages received by employees of the Enron corporation
over a one year period. The original Enron data was carefully augmented with the addition of

5. It is traditional to name the axes of an ROC plot 1-specificity (X axis) and sensitivity (Y axis). Sensitivity is the
proportion of correctly identified positive examples and specificity is the proportion of correctly identified negative
examples.

6. The TREC corpus is available for download at http://plg.uwaterloo.ca/˜gvcormac/treccorpus/.
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Data Set Messages Spam Legitimate Spam proportion
TREC public 92189 52790 39399 57.3%
MrX 49086 40048 9038 81.6%
SpamAssassin 6033 1884 4149 31.2%
Ling-Spam 2893 481 2412 16.6%
PU1 1090 480 610 44.0%
PU3 4130 1820 2310 44.1%

Table 1: Basic statistics for the evaluation data sets.

approximately 50,000 spam messages, so that they appear to be delivered to the Enron employees
in the same time period as the legitimate email.

The MrX data set contains email messages received by a single email user over a period of 8
months. This data set and the TREC corpus were recently used for the spam filter evaluation track in
TREC 2005. Results from the TREC evaluation that are most relevant to our study are reproduced
in this paper.

The SpamAssassin7 data set contains legitimate and spam email collected from the SpamAs-
sassin developer mailing list. This data set is arguably the most widely used resource in popular
evaluations of publicly available spam filters, often conducted by enthusiasts or system authors.

Ling-Spam8 is a collection of email messages posted to a linguistics newsgroup, which were
augmented with spam received by the authors of the data set. The messages are stripped of all
attachments and headers, except for the subject field. A fair number of research studies report
results on the Ling-Spam corpus. We used the “bare” version of this data set in our evaluation.

The PU1 and PU39 data sets are relatively small personal email collections. In order to pre-
serve privacy, the words in the messages are replaced with numerical identifiers and punctuation is
discarded. Non-textual message headers, sender and recipient fields, attachments and HTML tags
are not included in these data sets. Duplicate spam messages received on the same day are also
removed.

We used the online evaluation scheme described in the previous subsection to evaluate per-
formance on the TREC public, MrX and SpamAssassin corpora. We performed cross validation
experiments on the remaining three data sets, as was done in previous studies. The Ling-Spam, PU1
and PU3 data sets contain predefined 10-fold cross validation splits, which we used in our experi-
ments. These data sets do not contain message headers, so the original chronological order required
for online evaluation could not be recovered.

6.4 Implementation and Parameters of DMC and PPM Models

All results reported in the study were achieved using our own implementations of DMC and PPM
compression models. Classifiers based on the DMC and PPM compression models were devel-
oped independently by the authors and differ in preprocessing strategies and certain implementation
details.

7. The SpamAssassin data set is available at http://spamassassin.org/publiccorpus/.
8. The Ling-Spam data set is available at http://www.aueb.gr/users/ion/data/.
9. The PU1 and PU3 data sets are available for download at http://www.iit.demokritos.gr/skel/i-config/

downloads/PU123ACorpora.tar.gz.

2686



SPAM FILTERING USING STATISTICAL DATA COMPRESSION MODELS

The DMC model was primed with an initial braid structure (Cormack and Horspool, 1987),
corresponding to an order-7 binary Markov model. DMC uses two parameters that control its state
cloning mechanism. These parameters were set somewhat arbitrarily to (2,2), since such values
were known by the authors to perform well for data compression. The initial transition counts
were set to 0.2, following a similar argument. The DMC implementation does not include MIME
decoding. It also truncates all messages to 2500 bytes.

The PPM implementation used an order-6 PPM-D model in all trials. Order-4 and order-8
models were also tested in the TREC evaluation, from which it was concluded that performance is
robust to the choice of this parameter (Bratko and Filipič, 2005). In data compression, an order-6
model would also be considered suitable for compression of English text. The source alphabet for
PPM was restricted to 72 ASCII characters including alphanumerical symbols and commonly used
punctuation. This alphabet was complemented with an additional symbol that was used for all other
ASCII codes found in the text. Our PPM-based classifier decodes base64-encoded message parts
and discards all non-text attachments before evaluation.

The PPM-based classifier used a memory buffer of approximately 800MB, substantially less
than the DMC implementation which was limited to 2GB of RAM. Both algorithms used the same
retraining strategy when this memory limit was reached in online evaluation experiments. Specif-
ically, half of the training data was discarded and models were retrained from the more recent part
of the email stream. This mechanism was invoked up to twice during online evaluation on the two
larger data sets (MrX and the TREC public corpus), but was not used in any of the other trials.

We realize that this setup does not facilitate a fair comparison between the two compression
algorithms in the online experiments (on raw email data), as the different preprocessing schemes
were found to have an effect on performance in some of these experiments. However, the aim of
this paper is the evaluation of compression models against existing spam filtering techniques, as
well as a comparison of the two classification criteria discussed in Section 5. We are satisfied with
the general observation that both algorithms exhibit similar performance, which strengthens our
confidence in the applicability of the proposed methods for the spam filtering problem.

6.5 Reference Systems Used for Comparative Evaluation

A number of freely available open source spam filters have been introduced in recent years, moti-
vated mainly by the influential essays of Graham (2004) and Robinson (2003). A wide variety of
learning algorithms, training strategies, preprocessing schemes and recipes for feature engineering
are employed in these systems. It is interesting to note that most publications that address spam
filtering do not compare their proposed methods to these established alternatives.

We evaluate the performance of compression models against six popular open source filters. We
also summarize results obtained in other studies that use the Ling-Spam, PU1 and PU3 corpora, and
from which it is possible to determine misclassification rates from the published results. Table 2
lists all systems that were included in any of the comparisons.

7. Results

In this section, we report the main results of our evaluation. We first evaluate the performance of
the MCE and MDL classification criteria, that is, the effect of adapting the model to the target, for
both compression algorithms. This is followed by an extensive evaluation of compression-based
classifiers in comparison to established spam filters and results published in other studies. We
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Label Description
Bogofiltera ? Version 0.94.0, default parameters (http://www.bogofilter.org).
Bogofilterb • Bogofilter version 0.95.2 as configured for TREC 2005 by the track organizers.
CRM114a ? Version 20041231, default parameters (http://crm114.sourceforge.net).
CRM114b • CRM114 specially configured by Assis et al. (2005) for TREC. Labeled

“CRMSPAM2” at TREC 2005.
dbacla ? Version 1.91, default parameters (http://dbacl.sourceforge.net).
dbaclb • A custom version of dbacl prepared by the author for evaluation at TREC

(Breyer, 2005). Labeled “lbSPAM2” at TREC 2005.
SpamAssassina ? Version 3.0.2, combination of rule-based and learning components (http://

spamassassin.apache.org).
SpamAssassinb • Version 3.0.2, learning component only, as configured for TREC 2005 by the

track organizers.
SpamBayesa ? Version 1.03, default parameters (http://spambayes.sourceforge.net).
SpamBayesb • SpamBayes specially configured by Meyer (2005) for TREC. Labeled

“tamSPAM1” at TREC 2005.
SpamProbe •? Version 1.0a, default parameters (http://spamprobe.sourceforge.net).
a-Bayes � Naive Bayes, multi-variate Bernoulli model with binary features (Androutsopou-

los et al., 2000).
a-FlexBayes � Flexible naive Bayes—uses kernel density estimation for estimating class-

conditional probabilities of continuous valued attributes (Androutsopoulos et al.,
2004).

a-LogitBoost � LogitBoost (variant of boosting) with decision stumps as base classifiers (An-
droutsopoulos et al., 2004).

a-SVM � Linear kernel support vector machines (Androutsopoulos et al., 2004).
b-Stack � Stacking of linear support vector machine classifiers built from different message

fields (Bratko and Filipič, 2006).
c-AdaBoost � Boosting of decision trees with real-valued predictions (Carreras and Márquez,

2001).
gh-Bayes � Naive Bayes (exact model unknown) with weighting of training instances ac-

cording to misclassification cost ratio (Hidalgo, 2002).
gh-SVM � Linear support vector machine with weighting of training instances according to

misclassification cost ratio (Hidalgo, 2002).
h-Bayes � Multinomial naive Bayes (Hovold, 2005).
ks-Bayes � Multinomial naive Bayes (Schneider, 2003).
p-Suffix � Pattern matching of character sequences based on the suffix tree data structure

and various heuristic scoring functions (Pampapathi et al., 2006).
m-Filtron � Support vector machines with linear kernels (Michelakis et al., 2004).
s-Stack � Stacking of naive Bayes and k-nearest neighbors (Sakkis et al., 2001).
s-kNN � k-nearest neighbors with attribute and distance weighting (Sakkis et al., 2003).
SVM ? An adaptation of the SVMlight package (Joachims, 1998) for the PU1 data set

due to Tretyakov (2004), linear kernel with C = 1.
Perceptron ? Implementation of the perceptron algorithm due to Tretyakov (2004).

Table 2: Reference systems and results of previous studies reproduced for comparison. Entries are delimited
by primary authors. Symbols indicate the source of reported results:
? – this study • – TREC 2005 evaluation � – reproduced from other studies
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conclude the section with experiments that study the effect of noise introduced in data by typical
obfuscation tactics employed by spammers to evade filtering. Additional results from our evaluation
are available in Online Appendix 1.10

7.1 Performance of MCE vs. MDL Classification Criteria

We evaluated the effect of adapting the compression model to the target document on the TREC
public, MrX and SpamAssassin data sets. AUC scores achieved by the static and adaptive DMC and
PPM models are listed in Table 3. The adaptive models clearly outperform their static counterparts
on all data sets, sometimes strikingly so. The area above the ROC curve is more than halved in
two of the six experiments and substantially improved in three of the remaining four trials. The
improvement is smallest for the DMC model tested on the TREC public data set. As we shall see,
even the baseline performance achieved by the static model is exceptionally good in this experiment,
and thus hard to improve.

DMC PPM
Data Set MCE MDL MCE MDL

TREC 0.014 (0.010–0.020) 0.013 (0.010–0.018) 0.038 (0.027–0.052) 0.019† (0.015–0.023)
MrX 0.065 (0.040–0.11) 0.037† (0.026–0.053) 0.11 (0.073–0.16) 0.069† (0.044–0.11)
SpmAssn 0.31 (0.21–0.47) 0.20† (0.14–0.30) 0.35 (0.20–0.60) 0.15† (0.086–0.26)

Table 3: Performance of DMC and PPM algorithms in combination with the MCE and MDL classification
criteria on the TREC public, MrX and SpamAssassin data sets. Results are in the area above the
ROC curve 1-AUC(%) statistic and include 95% confidence intervals for this measure. The best
results for each algorithm/data set pair are in bold. Statistically significant differences are marked
with a ‘†’ sign (p < 0.01, one-tailed).

The ROC curves and 1-AUC learning curves of adaptive and static DMC and PPM models are
depicted in Figure 2. Let us first comment on the ROC curves, which reveal an interesting and
remarkably consistent pattern. Note that the ROC graphs are plotted in logarithmic scale for clarity,
so a non-convex ROC area is not necessarily unexpected. Although adaptive models dominate
throughout the curve in most experiments, the gain in the 1-AUC statistic can mostly be attributed
to the fact that the adaptive models perform better at the extreme ends of the curves. Performance
is comparable when FPR and SMR are balanced. The logarithmic scale should again be taken into
consideration when examining the magnitude of this effect. This suggests that the adaptive model
makes less gross mistakes, which are costly in terms of the AUC measure. Performance at the
extreme ends of the curve is especially important when the cost of misclassification is unbalanced,
so this is certainly a desirable property for spam filtering.

The learning curves in Figure 2 depict accumulated 1-AUC scores sampled at 1000 message
intervals during the online learning experiments. They are again plotted in logarithmic scale to
facilitate evaluation of the asymptotic performance of classifiers. The main observation offered by
the learning curves is that the adaptive models do not achieve better overall performance at the price
of slower learning rates. Their performance is superior throughout the runs. The difference in 1-
AUC scores is in fact greater in the earlier stages of learning for two of the three data sets. This
is intuitive, since the effect of adapting the models will be greater for simpler models built from

10. Available at http://ai.ijs.si/andrej/papers/jmlr2006/.
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Figure 2: ROC curves (left) and 1-AUC learning curves (right) on the MrX, SpamAssassin and TREC public
corpora. MCE and MDL classification criteria estimated with the DMC and PPM algorithms are
compared.
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limited training data. In Online Appendix 2,11 we address an apparent anomaly which occurs in the
learning curve of the static version of the PPM classifier at around 12,000 messages on the TREC
public corpus. The analysis presented in the appendix exposes the differences between the MCE
and MDL classification criteria, but is beyond the scope of the current discussion.

7.2 Comparison to Open Source Spam Filters

The results of our experimental comparison of compression models and established open source
filters are summarized in Table 4. Adaptive versions of the PPM and DMC classifiers were used for
this comparison. In terms of the 1-AUC score, both compression models uniformly outperformed
all of the competing filters, with the exception of the PPM classifier on the MrX corpus. The
performance of DMC and PPM models on the TREC public corpus is particularly notable. Spam
misclassification rates at hypothetical filtering thresholds that result in a low proportion of false
positives are also shown. Although definitive conclusions are harder to draw from these measures,
we find that both DMC and PPM feature prominently, outperforming other methods in two of the
tree tradeoff points on every data set. ROC curves and learning curves of compression models and
open source filters on the TREC public corpus are shown in Figure 3.
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Figure 3: ROC curves (left) and 1-AUC learning curves (right) for compression models and a selection of
established spam filters on the TREC public corpus.

7.3 Comparison with Published Results

We conducted standard cross validation experiments to evaluate classification performance of PPM
and DMC (adaptive versions) on the Ling-Spam, PU1 and PU3 data sets. Implementations of the
perceptron and SVM classifiers, as well as Bogofilter, a well-performing open source filter from
previous experiments, were also tested in this manner. Results of these experiments are presented
in Figures 4 and 5, in which we also reproduce results of previous studies on the same data. The
simplified ROC-style graphs plot the number of misclassified spam messages against the number of
false positives.

11. Available at http://ai.ijs.si/andrej/papers/jmlr2006/.
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TREC public corpus

Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP

DMC †0.013 (0.010 – 0.018) 0.22% 1.17% 14.47%
PPM †0.019 (0.015 – 0.023) 0.36% 1.78% 9.89%
dbaclb 0.037 (0.031 – 0.045) 0.45% 5.19% 19.77%
Bogofilterb 0.048 (0.038 – 0.062) 0.33% 3.41% 10.39%
SpamAssassinb 0.059 (0.044 – 0.081) 0.37% 2.56% 7.81%
SpamProbe 0.059 (0.049 – 0.071) 0.65% 2.77% 15.30%
CRM114b 0.122 (0.102 – 0.145) 0.68% 4.52% 17.17%
SpamBayesb 0.164 (0.142 – 0.189) 1.63% 6.92% 12.55%

MrX corpus

Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP

DMC †0.037 (0.026 – 0.053) 0.32% 5.08% 36.16%
Bogofilterb 0.045 (0.032 – 0.063) 0.57% 3.90% 31.04%
CRM114b 0.051 (0.035 – 0.075) 0.43% 9.65% 47.76%
PPM 0.069 (0.044 – 0.107) 0.56% 9.72% 94.42%
dbaclb 0.083 (0.054 – 0.130) 0.43% 10.24% 99.09%
SpamAssassinb 0.097 (0.070 – 0.135) 0.77% 6.19% 83.06%
SpamProbe 0.097 (0.063 – 0.150) 0.35% 15.54% 95.08%
SpamBayesb 0.138 (0.111 – 0.171) 1.10% 6.51% 45.65%

SpamAssassin corpus

Filter 1-AUC (%) SMR at 1% FP SMR at 0.1% FP SMR at 0.01% FP
PPM 0.148 (0.086 – 0.256) 1.06% 38.67% 66.42%
DMC 0.202 (0.136 – 0.301) 2.39% 48.86% 64.93%
Bogofiltera 0.209 (0.140 – 0.312) 3.08% 57.67% 99.10%
SpamAssassina 0.254 (0.173 – 0.373) 4.93% 24.77% 100.00%
dbacla 0.262 (0.169 – 0.404) 2.65% 58.36% 79.26%
SpamProbe 0.296 (0.195 – 0.450) 2.18% 74.43% 99.47%
CRM114a 1.143 (0.902 – 1.446) 6.26% 57.82% 83.02%
SpamBayesa 1.391 (1.036 – 1.867) 11.35% 92.73% 99.26%

Table 4: Performance of DMC, PPM and a selection of established spam filters on the TREC public, MrX
and SpamAssassin data sets. Filters are ordered by decreasing performance in the 1-AUC statistic.
Significant differences between AUC scores achieved by the compression models and the best
competing filter are marked with a ‘†’ sign (p < 0.05, one-tailed).

On the Ling-Spam data set, both compression models are comparable to the suffix tree approach
of Pampapathi et al. (2006). These three classifiers dominate the other methods at all filtering
thresholds. Both the suffix tree classifier and the compression models considered in this paper
operate on character-level or binary sequences. All other methods use the standard bag-of-words
representation for modeling text. This suggests that methods based on sub-word symbol sequences
are more suitable for the Ling-Spam data set, and we believe this to be the case for spam filtering
in general. However, experimental results on the PU1 and PU3 corpora show that character or
binary-level modeling of text is not the only advantage offered by the compression models.
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Figure 4: Performance of compression models in comparison to the perceptron and SVM classifiers, Bo-
gofilter and previously published results on the Ling-Spam data set.

The PU1 and PU3 data sets contain pre-tokenized messages in which the original words are
replaced with numeric identifiers. We converted these messages to binary format by replacing token
identifiers with their 16 bit binary equivalents. This representation was used to evaluate the perfor-
mance of the DMC classifier on the two data sets. We believe this is fair, since DMC uses a binary
alphabet and is hurt by the artificial tokenization of these data sets. The PPM classifier was tested
on the unprocessed original version of the data sets. Digits in numeric identifiers were converted
to alphabetical characters for testing with Bogofilter, since the filter handles digits differently from
alphabetical character strings.

The graphs in Figure 5 show classification performance on the PU1 and PU3 data sets and are
perhaps the most surprising result reported in this paper. Both compression models outperform other
classifiers almost uniformly across the range of ‘interesting’ filtering thresholds, despite the fact that
the data sets were produced for tokenization-based filters. The SVM is competitive on the PU1 data
set. Other methods are further behind the SVM in both trials. We attribute the good performance
of compression models in these tests to the fact that tokens are not considered independently. Their
probability is always evaluated with respect to the local context, which was already found to be
beneficial for word-level models in previous studies (Peng et al., 2004). Compression models offer
the additional advantage over language models considered by Peng et al. (2004) in their effective
strategy for adapting the model structure incrementally. By design, the compression models can
discover phrase-level patterns just as naturally as sub-word patterns.

7.4 Sensitivity to Noise in the Data

One of the perceived advantages of statistical data compression models over standard text catego-
rization algorithms is that they do not require any preprocessing of the data. Classification is not
based on word tokens or manually constructed features, which is in itself appealing from the imple-
mentation standpoint. For spam filtering, this property is especially welcome, since preprocessing
steps are error-prone and are often exploited by spammers in order to evade filtering. A typical
strategy is to distort words with common spelling mistakes or character substitutions, which may
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Figure 5: Performance of compression models in comparison to the perceptron and SVM classifiers, Bo-
gofilter and previously published results on the PU1 (left) and PU3 (right) data sets.

confuse an automatic filter. We believe that compression models are much more robust to such
tactics than methods which require tokenization.

To support this claim, we conducted an experiment in which all messages in the SpamAssassin
data set were distorted by substituting characters in the original text with random alphanumeric
characters and punctuation. The characters in the original message that were subject to such a
substitution were also chosen randomly. By varying the probability of distorting each character, we
evaluated the effect of such noise on classification performance.

For this experiment, all messages were first decoded and stripped of non-textual attachments.
Noise was added to the subject and body parts of messages. Adaptive compression models and
Bogofilter, a representative tokenization-based filter, were evaluated on the resulting data set. We
then stripped the messages of all headers except subjects and repeated the evaluation. The results
of these experiments are depicted in Figure 6. They show that compression models are indeed
very robust to noise. Even after 20% of all characters are distorted, rendering messages practically
illegible, they retain a respectable performance. The advantage of compression models on noisy
data is particularly pronounced in the second experiment, where the classifier must rely solely on
the (distorted) textual contents of the messages. It is interesting to note that the performance of PPM
increases slightly at the 5% noise level if headers are kept intact. We have no definitive explanation
for this phenomenon. We suspect that introducing noise in the text implicitly increases the influence
of the non-textual message headers, and that this effect is beneficial.

8. Conclusion

In comparison to tokenization-based classification methods, compression models offer a number of
advantages that are especially relevant for spam filtering. By operating directly on sequences, tok-
enization, stemming and other tedious and error-prone preprocessing steps are omitted altogether.
It is precisely these volatile preprocessing steps that are often exploited by spammers in order to
evade filtering. Also, characteristic sequences of punctuation and other special characters, which
are generally thought to be useful in spam filtering, are naturally included in the model. The algo-
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Figure 6: Effect of noise on classification performance on the SpamAssassin data set. The graph shows 1-
AUC scores with 95% confidence intervals for PPM, DMC and the tokenization-based Bogofilter
system at different levels of artificial random noise in the data.

rithms are efficient, with training and classification times linear in the amount of data. The models
are incrementally updateable, which is often a requirement for practical spam filters that support
online learning based on user feedback.

Empirically, we demonstrate that compression models perform very well for spam filtering,
consistently outperforming established spam filters and other methods proposed in previous studies.
We also show that compression models are very robust to the type of noise introduced in the text
by typical obfuscation tactics used by spammers. This should make them difficult for spammers to
defeat, but also makes them attractive for other text categorization problems that contain noisy data,
such as classification of text extracted with optical character recognition.

Finally, we find that updating compression models adaptively to the target document is benefi-
cial for classification, particularly in improving the AUC measure. This is especially desirable when
the cost of misclassification is uneven, as is the case in spam filtering. The modification has a natu-
ral interpretation in terms of the minimum description length principle. Although we are aware of
no parallel to this in existing text classification research, the same approach could easily be adopted
for the popular multinomial naive Bayes model (McCallum and Nigam, 1998) and possibly also for
other incremental models. We believe this to be an interesting avenue for future research.

The large memory requirements of compression models are a major disadvantage of this ap-
proach. To this end, effective pruning strategies should be investigated in order to bring the models
within limits that would be suitable for practical applications. Should compression models actually
be employed in practice, the adversarial nature of spam filtering suggests spammers will react to
these techniques. It remains to be seen whether their efforts could reduce the long-term efficacy of
the proposed approach.
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Abstract

In recent years anti-spam filters have become necessary tools for Internet service providers to face
up to the continuously growing spam phenomenon. Current server-side anti-spam filters are made
up of several modules aimed at detecting different features of spam e-mails. In particular, text
categorisation techniques have been investigated by researchers for the design of modules for the
analysis of the semantic content of e-mails, due to their potentially higher generalisation capability
with respect to manually derived classification rules used in current server-side filters. However,
very recently spammers introduced a new trick consisting of embedding the spam message into
attached images, which can make all current techniques based on the analysis of digital text in
the subject and body fields of e-mails ineffective. In this paper we propose an approach to anti-
spam filtering which exploits the text information embedded into images sent as attachments. Our
approach is based on the application of state-of-the-art text categorisation techniques to the analysis
of text extracted by OCR tools from images attached to e-mails. The effectiveness of the proposed
approach is experimentally evaluated on two large corpora of spam e-mails.

Keywords: spam filtering, e-mail, images, text categorisation

1. Introduction

In the last decade the continuous growth of the spam phenomenon, namely the bulk delivery of
unsolicited e-mails, mainly of commercial nature, but also with offensive content or with fraudu-
lent aims, has become a main problem of the e-mail service for Internet service providers (ISP),
corporate and private users. Recent surveys reported that over 60% of all e-mail traffic is spam.
Spam causes e-mail systems to experience overloads in bandwidth and server storage capacity, with
an increase in annual cost for corporations of over tens of billions of dollars. In addition, phish-
ing spam emails are a serious threat for the security of end users, since they try to convince them
to surrender personal information like passwords and account numbers, through the use of spoof
messages which are masqueraded as coming from reputable on-line businesses such as financial
institutions. Although it is commonly believed that a change in Internet protocols can be the only
effective solution to the spam problem, it is acknowledged that this can not be achieved in a short
time (Weinstein, 2003; Geer, 2004). Different kinds of solutions have therefore been proposed so
far, of economical, legislative (for example the CAN-SPAM act in the U.S.) and technological na-
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ture. The latter in particular consists of the use of software filters installed at ISP e-mail servers or
on the client side, whose aim is to detect and automatically delete, or to appropriately handle, spam
e-mails. Server-side spam filters are deemed to be necessary to alleviate the spam problem (Geer,
2004; Holmes, 2005), despite their drawbacks: for instance they can lead to delete legitimate e-mails
incorrectly labelled as spam, and do not eliminate bandwidth overload since they work at the recip-
ient side. At first, anti-spam filters were simply based on keyword detection in e-mail’s subject and
body. However, spammers systematically introduce changes to the characteristics of their e-mails
to circumvent filters, which in turn pushes the evolution of spam filters towards more complex tech-
niques. Tricks used by spammers can be subdivided into two categories. At the transport level, they
exploit vulnerabilities of mail servers (like open relays) to avoid sender identification, and add fake
information or errors in headers. At the content level, spammers use content obscuring techniques
to avoid automatic detection of typical spam keywords, for example by misspelling words and in-
serting HTML tags inside words. Currently, spam filters are made up of different modules which
analyse different features of e-mails (namely sender address, header, content, etc.).

In this work we focus on modules of spam filters aimed at textual content analysis. Techniques
currently used in commercial spam filters are mainly based on manually coded rules derived from
the analysis of spam e-mails. Such techniques are characterised by low flexibility and low gen-
eralisation capability, which makes them ineffective in detecting e-mails similar, but not identical,
to those used for rules definition. This has lead in recent years to investigate the use of text cate-
gorisation techniques based on the machine learning and pattern recognition approaches for e-mail
semantic content analysis (see for instance Sahami et al., 1998; Drucker et al., 1999; Graham, 2002;
Zhang et al., 2004). The advantages of these techniques are the automatic construction of classifi-
cation rules, and their potentially higher generalisation capability with respect to manually encoded
rules. However, a new trick has recently been introduced by spammers, and its use is rapidly grow-
ing. It consists of embedding the e-mail’s message into images sent as attachments, which are
automatically displayed by most e-mail clients. Examples of such kinds of e-mails are shown in
Figures 1-3. This can make all content filtering techniques based on the analysis of plain text in the
subject and body fields of e-mails ineffective. It is worth pointing out that this trick is often used in
phishing e-mails (see the example in Figure 3), which are one of the most harmful kinds of spam.
To our knowledge no work in literature has so far addressed the issue of exploiting text embedded
into attached images to the purpose of spam filtering. Moreover, among commercial and open-
source spam filters currently available, only a plug-in of the SpamAssassin spam filter is capable of
analyzing text embedded into images (http://wiki.apache.org/spamassassin/OcrPlugin).
However, it just provides a boolean attribute indicating whether more than one keyword among a
given set is detected in the text extracted by an OCR system from attached images.

This paper’s goal is to propose an approach to anti-spam filtering which exploits the text in-
formation embedded into images sent as attachments, and to experimentally evaluate its potential
effectiveness in improving the capability of content-based filters to recognise such kinds of spam
e-mails. After a survey of content-based spam filtering techniques, given in Section 2, in Section
3 we discuss the issues related to the analysis of text embedded into images and describe our ap-
proach. Possible implementations of this novel anti-spam filter based on visual content analysis are
experimentally evaluated in Section 4 on two large corpora of spam e-mails.
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Figure 1: Example of spam e-mail in which the text of the spam message is embedded into an
attached image. The subject and body fields contain only bogus text.

Figure 2: Example of spam e-mail containing text embedded into several attached images. In this
case the text in the subject and body fields is more clearly identifiable as spam than the
text embedded into the images.

2. Content-based Spam Filtering

As explained in Section 1, current commercial and open-source server-side spam filters are made up
of different modules each aimed at detecting specific characteristics of spam e-mails. The different
modules can work in parallel, and in this case the decision whether labeling an e-mail as legitimate
or spam is based on combining the outputs of each module, usually given as continuous-valued
scores. Modules can also be organised hierarchically, so that simpler ones (like those based on
black/white lists) are used first, while more complex ones are used only if a reliable decision can
not be taken on the basis of previous ones. The main modules of a server-side anti-spam filter are
depicted in Figure 4. The simplest one is based on the analysis of the sender’s address through
black/white lists (e-mails whose sender address are in the black or in the white list are respectively
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Figure 3: An example of a phishing e-mail in which the text of the whole message is embedded
into an attached image, while the body field contains only bogus text.

automatically discarded or delivered without any further control). Another module is aimed at
analysing the header of the e-mail, to detect anomalies typical of spam e-mails. Some filters also
compare incoming e-mails with a database of known spam e-mails through the use of a low-level
representation based on a digital signature. E-mail content (namely plain text in the subject field and
plain or structured text in the body field) is analysed using techniques mainly based on hand-made
rules which look for specific keywords or for lexicographic characteristics typical of spam e-mails,
like the presence of non-alphabetic characters used to “hide” spam keywords. URLs in the body
field can also be checked to see if they point to known spammer web sites.

With regard to the analysis of the semantic content of e-mails, text categorisation techniques
based on the machine learning and pattern recognition approaches have been investigated by sev-
eral researchers in recent years, due to their potentially higher generalisation capability. Basically,
text categorisation techniques (see Sebastiani, 2002, for a detailed survey) apply to text documents
represented in unstructured ASCII format, or in structured formats like HTML. They can obviously
also be applied to e-mail messages based on RFC 2822 and MIME specifications (the standards
which specify the syntax of e-mail messages). The first step, named tokenization, consists of ex-
tracting a plain text representation of document content. At training phase, a vocabulary made up
of all terms belonging to training documents is then constructed. The following step is named in-
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Figure 4: Schematic representation of the main modules of current server-side spam filters.

dexing, and corresponds to the feature extraction phase of pattern recognition systems. It consists
of representing a document as a fixed-length feature vector, in which each feature (usually a real
number) is associated to a term of the vocabulary. Terms usually correspond to individual words, or
to phrases found in training documents. Indexing is usually preceded by the removal of punctuation
and of stop words, and by stemming, with the aim of discarding non-discriminant terms and to re-
duce the vocabulary size (and thus the computational complexity). The simplest feature extraction
techniques are based on the bag-of-words approach, namely only the number of term occurrences
in a document is taken into account, discarding their position. Widely used features are the oc-
currence of the corresponding terms in a document (boolean values), the number of occurrences
(integer values), or their frequencies relative to document length (real values). The number of oc-
currences both in the indexed document and in all training documents is taken into account in the
tf-idf (term-frequency inverted-document-frequency) kind of features (Sebastiani, 2002). Statistical
classifiers can then be applied to the feature-vector representation of documents. The main text cat-
egorisation techniques analysed so far for the specific task of spam filtering are based on the Naı̈ve
Bayes text classifier (McCallum & Nigam, 1998), and are named “Bayesian filters” in this context
(Sahami et al., 1998; Graham, 2002). It is worth noting that such techniques are currently used in
several client-side spam filters. The use of support vector machine (SVM) classifiers has also been
investigated (Drucker et al., 1999; Zhang et al., 2004), given their state-of-the-art performance on
text categorisation tasks.

We point out that the task of spam filtering has distinctive characteristics that make it more
difficult than traditional text categorisation tasks. The main problem is that this is a non-stationary
classification task, which makes it difficult to define an appropriate set of discriminant features. An-
other problem is that it is difficult to collect representative samples of both categories for the training
phase of machine learning techniques. Indeed, besides the non-stationary nature of spam, legitimate
e-mails can exhibit very different characteristics across users, and obvious privacy concerns make
them difficult to collect. Moreover, no standard benchmark data sets of spam e-mails yet exist,
although some efforts in this direction have been made recently (see for instance the SpamArchive
and SpamAssassin data sets1).

It should also be noted that, although the effectiveness of text categorisation techniques could be
affected by tricks used by spammers for content obscuring (for instance separating word characters
with spacing characters or HTML comment tags, or misspelling words to avoid automatic detection
without compromising their understanding by human readers), spam e-mails containing such kinds

1. Found at http://www.spamarchive.org and http://spamassassin.apache.org.
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of tricks can be identified by other modules of a spam filter, for instance by performing lexicographic
analysis or analysis of syntactic anomalies.

All the techniques for content analysis mentioned above rely on a digital representation of text
in the e-mails’ subject and body. However these techniques are ineffective when the spam message
is carried by text embedded into images sent as attachments, and bogus text not related to the spam
message, or even text made up of random words, is included in the subject and body of such e-mails
with the aim of misleading statistical text classifiers (see the examples in Figures 1 and 3). We point
out that the use of such tricks, recently introduced by spammers, is rapidly growing. As an example,
among around 21,000 spam e-mails collected by the authors in their personal mailboxes from Octo-
ber 2004 to August 2005 (see Section 4), 4% contained attached images. However this percentage
increased to 25% in spam e-mails collected between April and August 2006. As another example,
among 143,061 spam e-mails donated by end users throughout 2005 to the ‘submit’ archive of the
publicly available SpamArchive corpus (see again Section 4), 9% contained attached images, while
the percentage increased to 17% among the 18,928 spam e-mails posted between January and June
2006. This means that the percentage of spam e-mails erroneously labelled as legitimate (false neg-
ative errors) by current spam filters can increase significantly. Although these kinds of errors can be
tolerated by end users more than false positive errors (legitimate e-mails labeled as spam), a high
false negative error rate is nevertheless a serious problem, and is even harmful in cases like phishing
e-mails. Accordingly, improving content-based spam filters with the capability of analysing text
embedded into attached images is becoming a relevant issue given the current spam trend.

Besides the SpamAssassin plug-in mentioned in Section 1, techniques used in some commercial
spam filters to take into account attached images are based on extracting image signatures, but they
exhibit a very poor generalisation capability. A recent work proposed to detect the presence of text
by using low-level features like colour distribution, texture and the area of text regions (Wu et al.,
2005). However, to our knowledge, no study has addressed the problem of analysing the semantic
content of e-mails by taking into account the text information embedded into images. In the next
section we discuss this problem and propose an approach to spam filtering based on the analysis of
the text embedded into images.

3. An Anti-spam Filter Based on the Analysis of Text Information Embedded into
Images

Carrying out semantic analysis of text embedded into images attached to e-mails first requires text
extraction by OCR techniques. In the context of the considered application, this immediately raises
two issues. Firstly, is the OCR computational cost compatible with the huge amount of e-mails
handled daily by server-side filters? Secondly, spammers could use content obscuring techniques
(as in the case of body text) by distorting images to the extent that OCR techniques would not be
able to extract any meaningful text.

Concerning the first issue, we point out that computational complexity could be reduced by
using a hierarchical architecture for the spam filter. Text extraction and analysis could be carried out
only if previous and less complex modules were not able to reliably determine whether an e-mail is
legitimate or not. To further reduce computational complexity, techniques based on image signature
could be employed: although they are ineffective in recognising similar (but not identical) images,
they can nevertheless avoid the re-processing of identical images (note that a server-side filter is
likely to handle several copies of identical spam e-mails sent to different users). For instance, the text
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Figure 5: High-level scheme of the approach proposed in this work to implement a spam filter based
on both the text in the subject and body fields of e-mails, and the text embedded into
attached images. The traditional document processing steps (tokenization, indexing and
classification) are extended by including in the tokenization phase the plain text extraction
by OCR from attached images, besides plain text extraction from the subject and body
fields. These two kinds of text can then be handled in several ways in the indexing and
classification phases.

extracted by an image could be stored together with the image signature, so that it is immediately
available if an image with the same signature has to be analysed.

Concerning the second issue, it should be noted that at present no content obscuring techniques
are used by spammers for text embedded into attached images, as observed also in Wu et al. (2005).
Moreover, we believe that content obscuring can not be excessive in the most harmful forms of
spam like phishing, in which e-mails should look as if they come from reputable senders, and thus
should be as “clean” as possible. However, it is likely that in the future spammers will try to make
OCR systems ineffective without compromising human readability, for instance by placing text on
non-uniform background, or by techniques like the ones exploited in CAPTCHAs. In particular,
CAPTCHAs have proven to be a hard challenge for OCR systems, although some of them have
been defeated (Baird & Riopka, 2005; Chellapilla et al., 2005), and several researchers believe that
many of today’s CAPTCHAs are vulnerable (see, for instance, Baird et al., 2005). This issue is thus
not of immediate concern, although it could become relevant in the future.

We now discuss how to perform the semantic analysis of text extracted from attached images.
In this work we propose an approach based on the following consideration: text embedded into
images plays the same role as text in the body of e-mails without images, namely it conveys the
spam message. The text contained in the body of the e-mail and that embedded into images can
thus be viewed simply as a different “coding” of the message carried by an e-mail. Accordingly, we
propose to carry out the semantic analysis of text embedded into images using text categorisation
techniques like the ones applied to the body of the e-mail. The basic idea is to extend the phase of
tokenization in the document processing steps of a TC system, for the specific application of spam
filtering, also including plain text extraction from attached images, as well as from the subject and
body fields. A high-level scheme of this approach is shown in Figure 5. The subsequent steps,
namely vocabulary construction, indexing, classifier training and classification of new e-mails, can
then be implemented in several ways, which are discussed in the following.

Since text extracted from the subject and body fields of an e-mail and text extracted from at-
tached images are viewed as playing an identical role of carrying the e-mail message, the vocabulary

2705



FUMERA, PILLAI AND ROLI

can be constructed from training documents by merging terms belonging to these two kinds of text.
However, it should be taken into account that a vocabulary in which clean digital text is mixed with
noisy text (due to OCR) could affect the generalisation capability of a text classifier. To avoid in-
cluding spurious terms generated by OCR noise in the vocabulary, only the terms coming from the
subject and body fields could be used to create it. Terms extracted from images can instead be used
only at the indexing phase, when the feature vector representation of e-mails is constructed.

Consider now the indexing phase. For e-mails containing text embedded into images, a possible
choice is to use both the terms belonging to such text and the ones belonging to the subject and body
fields to compute the feature vector. However, if terms belonging to images attached to training e-
mails are not included in the vocabulary, it could be better not to use them even for indexing training
e-mails. The rationale is again to avoid that OCR noise affects the generalisation capability of the
text classifier. In this case the whole training phase of the text classifier would be carried out without
taking into account text extracted from images. Such text would be used only for indexing testing
e-mails at the classification phase.

Indexing of testing e-mails can also be performed in different ways, to take into account that
in spam e-mails with attached images the whole spam message is often embedded into images,
while the body field contains only bogus text or random words (as in the examples in Figures 1,3).
One possibility is the following: if an e-mail does not contain attached images, its feature vector
is computed as usual from the text in the subject and body fields; otherwise it is computed using
only text extracted from attached images. In other words, text in the subject and body is disregarded
at classification phase, if the e-mail has text embedded into an attached image. A more complex
strategy can also be used: both the above feature vectors can be computed, namely one taking into
account only terms in the subject and body fields, and the other one taking into account only terms
in the text extracted from images. These two feature vectors are then independently classified, and
the two classification outcomes (either at the score or at the decision level) are then combined either
within the considered module of the spam filter to yield a single decision for that module, or at
a higher level outside that module. This strategy could be effective if the spam message is often
(but not always) carried only by text embedded into images. For instance, the maximum of the
two scores could be taken, assuming that the text classifier is trained to give higher scores to spam
e-mails.

Let us now discuss a possible problem with the above approach. If a text classifier is trained only
on clean digital text (that is, the text in the subject and body of training e-mails), its categorisation
accuracy could be poor on text affected by OCR noise. This issue has recently been experimentally
investigated in Vinciarelli (2005), in the context of categorisation of noisy text obtained from differ-
ent kinds of media, among which OCR. For the purposes of this work, it is worth noting that results
obtained in Vinciarelli (2005) showed that state-of the art text categorisation algorithms (based on
SVMs) trained on clean digital text are resilient to noise introduced by OCR, and that performance
loss is minimal in tasks in which a high precision is required, and recall values up to 60-70 percent
are acceptable. We point out that the task of e-mail categorisation for spam filtering fits this charac-
teristic, since a high precision on spam e-mails (that is, a small false positive misclassification rate,
namely the fraction of legitimate e-mails misclassified as spam) is more important than a high recall
(that is, a small false negative misclassification rate). This means that using a text classifier trained
only on clean digital text can be feasible, at least in principle, for the specific task considered in this
work, namely for categorisation of text extracted by OCR from images attached to e-mails.

2706



SPAM FILTERING BASED ON THE ANALYSIS OF TEXT INFORMATION EMBEDDED INTO IMAGES

We finally point out that the effectiveness of the different implementations described above of
the approach in Figure 5 can strongly depend on the characteristics of spam e-mails. As an example,
in the two data sets used for our experiments (see Section 4) we found that many e-mails with text
embedded into images also contain clean digital text easily identifiable as spam in the body field, and
not only random words or bogus text. This means that using a unique feature vector representation
of the e-mail text, mixing body text and text extracted by OCR, could be a suitable approach for
these data sets. Instead, if the body of most spam e-mails with attached images contained only
random words, it could be better to use a distinct representation of body text and of text extracted
from images.

In the next section we will present an experimental evaluation of the spam filtering approach
described above.

4. Experimental Results

In this section, we first describe the experimental setup, and then the results on two different corpora
of spam e-mails.

4.1 Experimental Setup

Two corpora of spam e-mails were used for our experiments: a personal corpus and the publicly
available SpamArchive corpus (www.spamarchive.org), which is a collection of spam e-mails
donated by end users for testing, developing, and benchmarking anti-spam tools. This corpus is
periodically updated. At the beginning of this work, to our knowledge there were no publicly
available data sets of spam e-mails containing attached images. A corpus of spam e-mails was
thus collected from October 2004 to August 2005 in the authors’ mailboxes, and used for the first
experiments. This corpus is made up of around 21,000 spam e-mails, among which around 4%
contain attached images with embedded text. The e-mails in the examples of Figures 1-3 belong to
this corpus. Subsequently, the SpamArchive corpus was updated with e-mails containing attached
images. For our experiments we used the data set named ‘submit’, available in January 2006, made
up of 142,897 spam e-mails, of which around 10% contained attached images.

Classifier training requires a data set containing samples of both e-mail categories, namely spam
and legitimate e-mails. However, to our knowledge the only publicly available large data set of
legitimate e-mails is the Enron data set (Klimt & Yang, 2004) (http://www.cs.cmu.edu/∼enron/).
This data set is made up of more than 600,000 e-mails, related to 158 users. Some other data sets
containing legitimate e-mails exist (for instance the LingSpam and SpamAssassin archives,2 but
their size is much smaller than that of the two data sets of spam e-mails used in these experiments.
We therefore chose to use a subset of the Enron corpus as a source of legitimate e-mails for our
experiments. Unfortunately the Enron data set does not contain e-mails with attached images (as
in the other data sets mentioned above). This can be a limitation to our experiments, although it
should be noted that legitimate e-mails containing text embedded into attached images should be
much rarer than spam e-mails. As suggested in Klimt & Yang (2004), to avoid many duplicate
e-mails we first discarded from the Enron data set the ones in the “deleted items”, “all documents”
and “sent” folders, reducing it to about 200,000 e-mails. We then selected two subsets of legitimate

2. Found at http://iit.demokritos.gr/skel/i-config/downloads/lingspam_public.tar.gz and http://
spamassassin.apache.org/publiccorpus/.
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number of e-mails runs of the e-mails with images
spam corpus spam legitimate experiments in each test set

personal
training set 3275 2183

3 85, 63, 297validation set 1091 727
test 2913 1942

SpamArchive
training set 6430 4287

10
747, 352, 646, 616,
384, 362, 485, 570,
763, 683

validation set 2143 1429
test set 5716 3810

Table 1: Size of the data sets used in each run of the experiments. Three distinct data sets were
obtained from the personal corpus of spam e-mails and from legitimate e-mails taken from
the Enron corpus, and ten distinct data sets from the SpamArchive and Enron corpora.

e-mails to be added to our data set of spam e-mails and to the SpamArchive data set. The number of
legitimate e-mails for the two data sets was chosen so that the ratio between spam and legitimate e-
mails was 3:2, according to recent estimates about true e-mail traffic. We first considered all e-mails
related to the years 2000 and 2001 (since these were the most represented years), chronologically
ordered them, selected the first 15,000 and 93,000 e-mails, and added them respectively to our data
set of spam e-mails and to the SpamArchive data set.3

To perform OCR on images attached to e-mails, we used the commercial software ABBYY
FineReader 7.0 Professional (http://www.abbyy.com/). We did not perform the preliminary train-
ing of this software, and used default parameter settings (obviously in a real spam filter the OCR
software should be optimized to the specific kinds of images with embedded text attached to e-
mails). The only exception was the use of a fixed resolution setting of 75 dpi for all images. This
choice was determined by the fact that in the header of several images of our data set the resolution
indicated was not correct and was very different from the true one, which could negatively affect
OCR performance. The value of 75 dpi we used was midway between the maximum and minimum
resolution found in our images, and gave a good OCR performance.

To make several runs of the experiments, the spam e-mails of our data set and of the Spa-
mArchive data set, and the legitimate e-mails taken from the Enron corpus, were first chronologi-
cally ordered on the basis of the date in the ‘Received’ field, and then subdivided (in chronological
order) respectively into three and ten data sets, each one of about 12,000 and 24,000 e-mails re-
spectively. Each of these data sets was further subdivided, in chronological order, into training,
validation and test sets, respectively containing 45%, 15% and 40% of the e-mails. We point out
that the chronological subdivision was due to the marked time-varying characteristics of spam: a
random subdivision into training, validation and testing e-mails would not reflect the operation of a
real spam filter and could lead to an over-optimistic performance estimation. In Table 1 we report
the exact size of the data set of each run of the experiments, and the number of e-mails containing
attached images in each test set. The experiments described below were carried out on the training,
validation and test set of each run independently.

3. All the e-mails used in our experiments are available at the web site of our research group: http://ce.diee.unica.
it/en/publications/papers-prag/spam-datasets.zip.
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The standard tokenization phase (namely the extraction of the plain text from the subject and
body field of e-mails) was carried out using the open-source SpamAssassin spam filter.4 In partic-
ular, all HTML tags (if any), punctuation and stop words were removed, and stemming was then
carried out, using the software SMART.5 Vocabulary lists with between 40,000 and 44,000 distinct
terms were obtained in the different runs, both from our data set of spam e-mails and from the Spa-
mArchive data set. The experiments have been carried out using four kinds of features widely used
in text categorisation (Sebastiani, 2002): binary weights (for a given e-mail, the feature xi associ-
ated to term ti is defined as xi = 1, if ti appears in that e-mail, and xi = 0 otherwise); number of
term occurrences (xi equals the number of times ti appears in an e-mail) with subsequent Euclidean
normalization of the feature vector; term frequencies (xi equals the ratio between number of occur-
rences of ti in an e-mail and the number of terms appearing in that e-mail); tf-idf measure, defined as

xi = #(ti,e)× ln
(

|T |
#(ti,T )

)

, where #(ti,e) is the number of times ti occurs in an e-mail e, #(ti,T ) is the

number of e-mails in the training set T in which ti occurs, and |T | is the number of training e-mails.
Feature selection was performed on the training set using the classifier-independent Information
Gain criterion (Sebastiani, 2002). Experiments have been repeated using 2,500, 5,000, 10,000, and
20,000 features.

Indexing of training e-mails containing attached images was carried out as well using only terms
extracted from the subject and body fields. Indexing and classification of testing e-mails containing
attached images was carried out in three different ways:

1. For comparison, only the terms in the subject and body fields were used (as in standard spam
filters). This indexing method will be denoted in the following as T .

2. Terms extracted from the subject and body fields, and from attached images, were first
merged. The corresponding text was then used to construct the feature vector. This indexing
method will be denoted as T + I (where I stands for “Image” text).

3. Only terms extracted from attached images were used to construct the feature vector. This
method will be denoted as I.

Note that in all the above settings, a single feature-vector representation of each e-mail was com-
puted. Moreover, to assess the loss in categorisation performance due to noisy OCR text, all the
experiments carried out on our personal corpus of spam e-mails were also repeated by manually ex-
tracting text embedded into images. To distinguish between manual and automatic text extraction,
the symbol ‘I’ introduced above we will followed by the index ‘m’ or ‘a’, respectively.

A SVM was used as text classifier, given its state-of-the-art performance on text categorisation
tasks. The SVM-light software (Joachims, 2004), available at http://svmlight.joachims.org/,
was used for SVM training. A linear kernel was used, which is a typical choice in text categorisation
works. For a given input pattern whose feature vector is denoted as x, a SVM classifier produces a
continuous-valued output given by f (x) = ∑n

i=1 yiαiκ(xi,x)+ b, where n is the number of training
samples, κ(·, ·) is the kernel function, b is the bias term (obtained from the training phase), yi, xi

are respectively the class label (either +1 or −1) and the feature vector of the i-th sample, while
αi is the corresponding Lagrange multiplier (obtained from the training phase). In our experiments,
spam and legitimate e-mails in the training set were labelled respectively as +1 and −1. In pattern

4. Found at http://spamassassin.apache.org.
5. Found at ftp://ftp.cs.cornell.edu/pub/smart/.
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recognition tasks where all misclassifications have the same cost, the decision function is usually
obtained by sign( f (x)), that is, patterns for which f (x) ≥ 0 ( f (x) < 0) are labeled as belonging to
class +1 (−1). However, this is not suitable in text categorisation tasks, where a trade-off between
precision and recall (or on related measures) depending on application requirements has to be found
by an appropriate choice of the threshold. This also happens for the specific task of spam filtering,
in which a false positive error (labelling a legitimate e-mail as spam) is more costly than a false
negative error (labelling a spam e-mail as legitimate). Therefore, a suitable working point on the
receiver operating characteristic (ROC) curve has to be found, according to specific application
requirements. To this aim, the minimization of a weighted combination of false positive and false
negative misclassification rates (denoted from now on respectively as FP and FN) was proposed in
several works (for instance, Androutsopoulos et al., 2000; Wang & Cloete, 2005). However, the
definition of misclassification costs for this application is somewhat arbitrary, and no consensus
exists in literature. In our experiments we chose to evaluate classification performance in terms
of the whole ROC curve. Different points of the ROC curve were obtained by setting different
decision thresholds t on the SVM output f (x), using an approach analogous to Zhang et al. (2004).
Spam and legitimate training e-mails were labeled respectively as +1 and −1. Accordingly, at
classification phase an e-mail was labeled as spam (legitimate), if f (x)≥ t ( f (x) < t). Each value of
t (corresponding to a single point of the ROC curve) was computed on validation e-mails (not used
during the SVM training phase) by minimizing FN, while keeping FP below a given value.

The results of our experiments are presented in the next section.

4.2 Results on the Personal Corpus of Spam E-mails

Figure 6 shows the average ROC curves (over three runs of the experiments) obtained on our per-
sonal corpus of spam e-mails, when 20,000 features of the term-frequency kind were used. The
three curves correspond to the indexing methods T, T+Ia (that is, the text embedded into images
was automatically extracted by the OCR software) and T+Im (that is, the text embedded into images
was manually extracted). The different points of the ROC curves correspond to different maximum
allowed FP values. Very similar ROC curves were obtained using the Im and Ia indexing methods
(that is, when only the text embedded into images, if any, was used at classification phase, either
manually or automatically extracted): for this reason we did not report the corresponding curves in
Figure 6. Qualitatively similar results were also obtained for all the other combinations of kind and
number of features considered.

In the ROC of Figure 6, the most relevant working points in the design of spam filters are the
ones corresponding to FP and FN respectively around 2% and 20%. We point out that a better
trade-off between the FP and FN (that is, lower values of both FP and FN) is required in real spam
filters. However in our experiments only a single module based on a text classifier was used, while
real filters also exploit other modules among the ones described in Section 2. We also point out
that the above results are not directly comparable to the ones reported in other studies about spam
filtering with text categorisation techniques, given that different (and often smaller) data sets are
used by different authors, and that performance is often evaluated using measures different than
the ROC curve, as explained in Section 4.1, or using a single working point of the ROC curve.
A rough comparison can be made with results reported in Cormack & Lynam (2006), where an
attempt to compare the results of different studies was made, recasting them, if possible, to common
measures. Disregarding the differences in the data sets and in the experimental settings, the results
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Figure 6: Test set ROC curves (1−FN vs FP) obtained on our corpus of spam e-mails using 20,000
features of the term-frequency kind, averaged over the three runs of the experiments.
Three ROC curves are shown, corresponding to the index methods T, T+Ia and T+Ia.

summarized in Cormack & Lynam (2006) seem to show that, for values of FP below 2%, lower FN
values than the ones in Figure 6 can be attained by other spam filters based on text classification
methods proposed in literature. These results suggest that our spam filter does not provide the best
performance, but that it provides good performance and can be used to investigate whether the
performance of a given filter on spam e-mails with attached images can be improved by also taking
into account the text information embedded into images.

Remember that only spam e-mails contained attached e-mails. Therefore, when text embedded
into images was taken into account at classification phase, all the other experimental conditions
being equal (namely the kind and number of features, and the maximum allowed FP value), only
the value of FN could change. We found that the use of the text embedded into images slightly
degraded the performance for values of FP above 0.06, which in any case are too high to be of
interest for the design of a spam filter. For lower values of FP, the use of text embedded into images
instead allowed the attainment of lower values of FN, although this is not evident from the whole
ROC curve due to the fact that e-mails with embedded images were only 297 out of 4,855 (see
Table 1). To precisely assess the categorisation performance attained on e-mails with embedded
images, in Table 2 we report the fraction of misclassified test set e-mails among the ones containing
attached images, averaged over the three runs of the experiments, for all the different number of
features and for three values of the maximum allowed FP value. These results again refer to the
term-frequency kind of features. We again point out that in our experiments e-mails with attached
images are the only ones for which the label assigned by the classifier depends on whether text
embedded into images is taken into account or not, the other experimental conditions as described
above being equal.
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number of indexing maximum allowed FP
features method 0.050 0.030 0.010

2500

T 0.166 0.251 0.463
T+Im 0.048 0.097 0.256
T+Ia 0.049 0.106 0.262
Im 0.054 0.076 0.194
Ia 0.055 0.096 0.203

5000

T 0.096 0.205 0.428
T+Im 0.041 0.093 0.268
T+Ia 0.042 0.099 0.265
Im 0.048 0.087 0.180
Ia 0.052 0.102 0.184

10000

T 0.090 0.179 0.416
T+Im 0.039 0.088 0.306
T+Ia 0.043 0.095 0.315
Im 0.054 0.066 0.208
Ia 0.047 0.063 0.218

20000

T 0.077 0.143 0.369
T+Im 0.040 0.071 0.246
T+Ia 0.038 0.084 0.253
Im 0.055 0.080 0.192
Ia 0.048 0.080 0.190

Table 2: Fraction of misclassified test set spam e-mails among the ones containing attached images
in the personal data set, for three different values of the maximum allowed FP value and
for all the different numbers of features, when the term-frequency kind of features was
used. Reported values are averaged across the three runs of the experiments, and refer to
all the five indexing methods considered.

First of all, Table 2 shows that even when only the text in the subject and body fields was used
(indexing method T), most of the e-mails containing attached images were correctly classified. This
means that in our data set, e-mails with text embedded into images often contained also digital text
in the subject and body fields which allowed the identification of them as spam. Nevertheless, Table
2 shows that when the text automatically extracted from images was also taken into account, the
number of misclassified spam e-mails always decreased. In particular, when both kinds of text were
used (T+Ia), the fraction of misclassified e-mails was reduced up to around one half, although greater
reductions correspond to higher overall FP values. Higher improvements were obtained when only
text automatically extracted from images was used (Ia), except for the highest overall FP value. As
an example, consider the spam e-mail with an attached image and bogus text in the subject and
body fields shown in Figure 1. In the second run of the experiments, with 20,000 features (count of
term occurrences), this e-mail was misclassified when only text in the subject and body fields was
used, but it was correctly classified when the text embedded into the attached image was used at
classification phase, both with and without the text in the subject and body fields.
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By comparing results obtained with manual and automatic extraction of text from images (that
is, T+Ia vs T+Im, and Ia vs Im) it can be seen that the corresponding categorisation accuracies
were very similar. This means that noise introduced by OCR did not significantly degrade the
performance of the text classifier used with respect to the ideal condition of zero OCR noise. On
the contrary, it can be seen that sometimes results obtained using text manually extracted were
slightly worse than in the cases of text automatically extracted, especially when only text extracted
from images was used at classification phase (namely in the cases Ia and Im). We found that this
counter-intuitive behaviour was due to the fact that sometimes words not correctly recognised by the
OCR software were not typical spam words: they were instead related to finance or economics, and
appeared also in several legitimate e-mails (remember that legitimate e-mails were taken from the
Enron corpus). Therefore, including these words (when text was manually extracted from images)
caused the score produced by the text classifier to decrease, becoming in some cases lower than
the decision threshold, thus leading to the misclassification of the e-mail as legitimate. Results
analogous to those reported in Table 2 were obtained when the other three kinds of features were
used.

It is worth pointing out that a finer analysis of the effect of different levels of OCR noise would
be an interesting issue for this application, also in view of the possible use of techniques for content
obscuring by spammers. However, this was beyond the scope of this work, also because no well-
established methodology yet exists to analyse the effect of OCR noise on the performance of text
categorisation systems, as explained in Vinciarelli (2005).

From Table 2 one can wonder whether the improvement in categorisation accuracy attained
using text automatically extracted from images (either T+Ia or Ia) was due only to the correct clas-
sification of some e-mails that were instead misclassified when only the text into the subject and
body fields was used. To investigate this issue, we compared the fraction of e-mails correctly and
wrongly classified among the ones containing attached images in the personal data set, attained
by using at classification phase only the text in the subject and body fields (T), and by using the
text automatically extracted from images (both T+Ia and Ia). The results reported in Tables 3 and
4 are related to the term frequency kind of features and to the same values of maximum allowed
overall FP value of Table 2, and are averaged over all the considered number of features and over
the three runs of the experiments. From Table 3 it can be seen that a certain fraction of e-mails
(between 0.104 and 0.195, depending on the maximum allowed overall FP rate) were misclassified
using only the text in the subject and body fields (T), but were correctly classified as spam when
also the text embedded into images was used at classification phase (T+Ia). However it can also be
seen that a fraction between 0.027 and 0.039 of e-mails that were correctly classified using only the
text in the subject and body fields, was misclassified when text automatically extracted from images
was taken into account. Since the latter fraction was lower than the former, the net results was the
improvement of categorisation accuracy which was observed in Table 2. However the results in Ta-
ble 3 clearly show that for some e-mails text embedded into images was detrimental to their correct
classification. Similar considerations can be drawn from Table 4. Analogous results were obtained
for the other kinds of features.

4.3 Results on the SpamArchive Corpus

In Figure 7 we report the average ROC curves (over ten runs of the experiments) obtained on the
SpamArchive data set, under the same experimental conditions of Figure 6. Similar considerations
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maximum allowed overall FP
0.050 0.030 0.010
T+Ia T+Ia T+Ia

correct wrong correct wrong correct wrong

T
correct

0.834 0.028 0.734 0.027 0.451 0.039
(0.086) (0.037) (0.120) (0.031) (0.204) (0.030)

wrong
0.104 0.034 0.146 0.092 0.195 0.315

(0.071) (0.029) (0.083) (0.063) (0.052) (0.181)

Table 3: Comparison between the fraction of correctly and wrongly classified e-mails among the
ones containing attached images in the personal data set, attained by using at classification
phase only the text in the subject and body fields (T), and by using both the text in the
subject and body fields and that automatically extracted from images (T+Ia). These results
refer to the term-frequency kind of features, and to three different values of the maximum
allowed FP value, and are averaged over the four number of features considered and over
the three runs of the experiments. Standard deviation is reported between brackets.

maximum allowed overall FP
0.050 0.030 0.010

Ia Ia Ia

correct wrong correct wrong correct wrong

T
correct

0.804 0.058 0.696 0.066 0.414 0.076
(0.109) (0.082) (0.136) (0.075) (0.205) (0.040)

wrong
0.116 0.021 0.191 0.048 0.329 0.181

(0.083) (0.022) (0.116) (0.043) (0.148) (0.151)

Table 4: The same comparison as in Table 3, but referred to the case in which only the text auto-
matically extracted from images was used at classification phase (Ia).
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Figure 7: Test set ROC curves (1−FN vs FP) obtained on the SpamArchive corpus using 20,000
features of term-frequency kind, averaged over the ten runs of the experiments. Two ROC
curves are shown, corresponding to the T and T+Ia indexing methods.

as for Figure 6 can be made in this case also, except for the fact that in this data set the use of text
automatically extracted from images allowed the improvement of categorisation accuracy also for
lower FN values.

Table 5 reports the fraction of misclassified test set e-mails among the ones containing attached
images, averaged over the ten runs of the experiments, for all the different number of features con-
sidered and for three values of the maximum allowed overall FP value. As in Table 2, these results
refer to the term-frequency kind of features. Results are qualitatively similar to those obtained on
the personal data set. It can, however, be seen that, when only the text in the subject and body
fields was used at classification phase, the fraction of misclassified e-mails in the SpamArchive data
set was lower. Also in this data set, using both the text in the subject and body fields and the text
automatically extracted from images allowed a reduction in the misclassification rate with respect
to using only the text in the subject and body fields, up to about one half, with greater reductions
corresponding to higher FP values. We also point out that even lower misclassification rates were
attained for the lowest FP values, using only the text extracted from images.

The comparison between the fraction of correctly and wrongly classified e-mails among the ones
containing attached images in the SpamArchive data set, attained by using at classification phase
only the text in the subject and body fields (T), and by using the text automatically extracted from
images (either T+Ia or Ia) is reported in Tables 6 and 7, under the same experimental conditions
of Tables 3 and 4. As in our data set of spam e-mails, also for the SpamArchive data set it can be
seen that for some e-mails text embedded into images was detrimental to their correct classification,
although a higher fraction of e-mails for which the opposite happened resulted in a net improvement
in categorisation accuracy observed in Table 5.
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number of indexing maximum allowed overall FP
features method 0.050 0.030 0.010

2500
T 0.118 (0.054) 0.179 (0.071) 0.394 (0.128)

T+Ia 0.053 (0.038) 0.106 (0.074) 0.277 (0.139)
Ia 0.076 (0.068) 0.125 (0.107) 0.247 (0.142)

5000
T 0.084 (0.041) 0.136 (0.056) 0.362 (0.140)

T+Ia 0.035 (0.033) 0.073 (0.042) 0.279 (0.141)
Ia 0.068 (0.065) 0.109 (0.073) 0.272 (0.149)

10000
T 0.062 (0.035) 0.110 (0.049) 0.346 (0.139)

T+Ia 0.025 (0.026) 0.067 (0.049) 0.262 (0.136)
Ia 0.053 (0.051) 0.094 (0.087) 0.246 (0.149)

20000
T 0.047 (0.029) 0.074 (0.032) 0.300 (0.121)

T+Ia 0.029 (0.027) 0.059 (0.058) 0.250 (0.137)
Ia 0.057 (0.065) 0.088 (0.086) 0.229 (0.137)

Table 5: Fraction of misclassified test set spam e-mails among the ones containing attached images
in the SpamArchive data set, for three different values of the maximum allowed FP value
and for all the different numbers of features, when the term-frequency kind of features
was used. Reported values are averaged across the ten runs of the experiments, and refer
to three indexing methods T, T+Ia and Ia. Standard deviation is reported between brackets.

maximum allowed overall FP
0.050 0.030 0.010
T+Ia T+Ia T+Ia

correct wrong correct wrong correct wrong

T
correct

0.882 0.022 0.800 0.047 0.535 0.081
(0.084) (0.027) (0.130) (0.053) (0.189) (0.064)

wrong
0.065 0.031 0.092 0.061 0.170 0.215

(0.043) (0.033) (0.052) (0.055) (0.070) (0.116)

Table 6: Comparison between the fraction of correctly and wrongly classified e-mails among the
ones containing attached images in the SpamArchive data set, attained by using at classi-
fication phase only the text in the subject and body fields (T), and by using both the text
in the subject and body fields and that automatically extracted from images (T+Ia). These
results refer to the term-frequency kind of features, and to three different values of the
maximum allowed FP value, and are averaged over the four number of features considered
and over the ten runs of the experiments. Standard deviation is reported between brackets.

In summary, the results of our experiments showed that the categorisation accuracy attained by
a spam filter on spam e-mails with attached images can be improved by taking into account also
the text information embedded into images. Both the T+Ia and Ia indexing methods considered
for e-mails with attached images outperformed the standard indexing method (T) which does not
take into account such text. Neither of them clearly outperformed the other one, although the Ia
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maximum allowed overall FP
0.050 0.030 0.010

Ia Ia Ia

correct wrong correct wrong correct wrong

T
correct

0.847 0.058 0.756 0.091 0.479 0.136
(0.111) (0.062) (0.152) (0.083) (0.201) (0.087)

wrong
0.077 0.018 0.116 0.038 0.244 0.141

(0.052) (0.020) (0.067) (0.043) (0.094) (0.094)

Table 7: The same comparison as in Table 6, but referred to the case in which only the text auto-
matically extracted from images is used at classification phase (Ia).

kind of features
indexing method term occurrence n. of occurrences term frequency tf-idf

T 0.490 (0.157) 0.538 (0.135) 0.601 (0.129) 0.543 (0.142)
T+Ia 0.084 (0.042) 0.053 (0.035) 0.032 (0.023) 0.052 (0.034)

Ia 0.459 (0.165) 0.439 (0.136) 0.403 (0.127) 0.435 (0.143)

Table 8: Fraction of test set spam e-mails with attached images (personal data set) for which the
three indexing methods considered in this work lead to the lowest score at classification
phase. Results are averaged over all numbers of features considered and over the three
runs of the experiments. Standard deviation is shown between brackets.

method allowed the attainment of lower misclassification rates of e-mail with attached images for
low values of the overall FP rate, especially on the SpamArchive data set. To further investigate
these two indexing methods, we analysed the scores assigned by the text classifier to the spam e-
mails with attached images, that is, the outputs of the SVM classifier before thresholding. In Tables
8 and 9 we report the fraction of such e-mails (averaged over all number of features and over all
runs of the experiments) on which the lowest score was attained by each of three indexing methods,
respectively on the personal data set and on the SpamArchive data set. Note that the classifier is
trained to assign higher scores to spam e-mails. As can be expected, on most e-mails the lowest
score was obtained when only the text in the subject and body fields was used at classification phase
(T). This is consistent with the highest misclassification rates attained by the T indexing method
on all our experiments. The comparison between the T+Ia and Ia indexing methods shows that the
former lead to a lower score on a much lower fraction of e-mails than the latter. This suggests that, at
least in the considered data sets, terms that allow the correct recognition of an e-mail with attached
images as spam can often be found both in the subject or body fields, and in text embedded into the
images.

5. Conclusions

In this work we proposed an approach to anti-spam filtering which exploits the text information
embedded into images sent as e-mail attachments. This is a trick whose use is rapidly increasing

2717



FUMERA, PILLAI AND ROLI

kind of features
indexing method term occurrence n. of occurrences term frequency tf-idf

T 0.522 (0.109) 0.617 (0.111) 0.744 (0.139) 0.606 (0.111)
T+Ia 0.037 (0.025) 0.030 (0.021) 0.040 (0.028) 0.029 (0.019)

Ia 0.470 (0.108) 0.377 (0.109) 0.257 (0.139) 0.386 (0.111)

Table 9: Fraction of test set spam e-mails with attached images (SpamArchive data set) for which
the three indexing methods considered in this work lead to the lowest score at classification
phase. Results are averaged over all numbers of features considered and over the ten runs
of the experiments. Standard deviation is shown between brackets.

among spammers, and can make all current spam filtering techniques based on the analysis of digital
text in the subject and body fields of e-mails ineffective. Our approach is based on applying state-of-
the-art text categorisation techniques to text extracted by OCR tools from attached images, as well
as to text extracted from the subject and body fields. In particular, in our approach the extraction
of plain text from images is viewed as part of the tokenization phase, which is the first step of text
document processing techniques. After tokenization, we proposed to carry out indexing of e-mails
at classification phase either by simply merging the text in the subject and body fields and that
extracted from images, or by using only one of the the two texts, depending on whether the e-mail
has an attached image or not.

The effectiveness of our approach has been evaluated on two large data sets of spam e-mails,
a personal corpus and the publicly available SpamArchive corpus, in which respectively 4% and
10% of e-mails contained attached images. In our experiments, the proposed approach allowed the
improvement of the categorisation accuracy on e-mails which contained text embedded into attached
images, using both indexing methods. In particular, for values of the overall false positive and false
negative misclassification rates which are most relevant in the design of spam filters, among the
ones attained by our classifier (namely FP around or below 2%, and FN below 20%), the fraction of
misclassified spam e-mails among the ones containing attached images was reduced up to around a
half.

We point out the main limits of our experiments. Firstly, no legitimate e-mail among the ones
used in our experiments contained attached images (although legitimate e-mails in which the whole
text message is embedded into an image are likely to be much rarer than spam e-mails). Secondly,
we used an OCR software not optimized for this task, neither from the viewpoint of the specific kind
of images to be processed, nor from the viewpoint of the computational complexity. Nevertheless,
we believe that our results are a first clear indication that exploiting text information embedded into
images attached to spam e-mails through the use of OCR tools and text categorisation techniques,
as in the proposed approach, can effectively improve the categorisation accuracy of server-side
spam filters. These results are relevant given that an increasing fraction of spam e-mails has text
embedded into images, although it is likely that in the future spammers will also apply content
obscuring techniques to images, to make OCR systems ineffective without compromising human
readability. Accordingly, analysing the robustness of the approach proposed in this paper to OCR
noise is an interesting development of our work.
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Abstract
We describe the use of machine learning and data mining to detect and classify malicious exe-
cutables as they appear in the wild. We gathered 1,971 benign and 1,651 malicious executables
and encoded each as a training example using n-grams of byte codes as features. Such processing
resulted in more than 255 million distinct n-grams. After selecting the most relevant n-grams for
prediction, we evaluated a variety of inductive methods, including naive Bayes, decision trees, sup-
port vector machines, and boosting. Ultimately, boosted decision trees outperformed other methods
with an area under the ROC curve of 0.996. Results suggest that our methodology will scale to larger
collections of executables. We also evaluated how well the methods classified executables based
on the function of their payload, such as opening a backdoor and mass-mailing. Areas under the
ROC curve for detecting payload function were in the neighborhood of 0.9, which were smaller
than those for the detection task. However, we attribute this drop in performance to fewer training
examples and to the challenge of obtaining properly labeled examples, rather than to a failing of
the methodology or to some inherent difficulty of the classification task. Finally, we applied detec-
tors to 291 malicious executables discovered after we gathered our original collection, and boosted
decision trees achieved a true-positive rate of 0.98 for a desired false-positive rate of 0.05. This
result is particularly important, for it suggests that our methodology could be used as the basis for
an operational system for detecting previously undiscovered malicious executables.

Keywords: data mining, concept learning, computer security, invasive software

1. Introduction

Malicious code is “any code added, changed, or removed from a software system to intentionally
cause harm or subvert the system’s intended function” (McGraw and Morisett, 2000, p. 33). Such
software has been used to compromise computer systems, to destroy their information, and to render
them useless. It has also been used to gather information, such as passwords and credit card num-
bers, and to distribute information, such as pornography, all without the knowledge of a system’s

∗. This work is based on an earlier work: Learning to Detect Malicious Executables in the Wild, in Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, c© ACM, 2004.
http://doi.acm.org/10.1145/1014052.1014105.

c©2006 J. Zico Kolter and Marcus A. Maloof.
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users. As more and more novice users obtain sophisticated computers with high-speed connections
to the Internet, the potential for further abuse is great.

Malicious executables generally fall into three categories based on their transport mechanism:
viruses, worms, and Trojan horses. Viruses inject malicious code into existing programs, which
become “infected” and, in turn, propagate the virus to other programs when executed. Viruses come
in two forms, either as an infected executable or as a virus loader, a small program that only inserts
viral code. Worms, in contrast, are self-contained programs that spread over a network, usually
by exploiting vulnerabilities in the software running on the networked computers. Finally, Trojan
horses masquerade as benign programs, but perform malicious functions. Malicious executables do
not always fit neatly into these categories and can exhibit combinations of behaviors.

Excellent technology exists for detecting known malicious executables. Software for virus de-
tection has been quite successful, and programs such as McAfee Virus Scan and Norton AntiVirus
are ubiquitous. Indeed, Dell recommends Norton AntiVirus for all of its new systems. Although
these products use the word virus in their names, they also detect worms and Trojan horses.

These programs search executable code for known patterns, and this method is problematic.
One shortcoming is that we must obtain a copy of a malicious program before extracting the pattern
necessary for its detection. Obtaining copies of new or unknown malicious programs usually entails
them infecting or attacking a computer system.

To complicate matters, writing malicious programs has become easier: There are virus kits
freely available on the Internet. Individuals who write viruses have become more sophisticated,
often using mechanisms to change or obfuscate their code to produce so-called polymorphic viruses
(Anonymous, 2003, p. 339). Indeed, researchers have recently discovered that simple obfuscation
techniques foil commercial programs for virus detection (Christodorescu and Jha, 2003). These
challenges have prompted some researchers to investigate learning methods for detecting new or
unknown viruses, and more generally, malicious code.

Our previous efforts to address this problem (Kolter and Maloof, 2004) resulted in a fielded
prototype, built using techniques from machine learning (e.g., Mitchell, 1997) and data mining
(e.g., Hand et al., 2001). The Malicious Executable Classification System (MECS) currently detects
unknown malicious executables “in the wild,” that is, as they would appear undetected on a user’s
hard drive, without preprocessing or removing any obfuscation. To date, we have gathered 1,971
system and non-system executables, which we will refer to as “benign” executables, and 1,651
malicious executables with a variety of transport mechanisms and payloads (e.g., key-loggers and
backdoors). Although all were for the Windows operating system, it is important to note that our
approach is not restricted to this operating system.

We extracted byte sequences from the executables, converted these into n-grams, and con-
structed several classifiers: IBk, naive Bayes, support vector machines (SVMs), decision trees,
boosted naive Bayes, boosted SVMs, and boosted decision trees. In this domain, there is an issue of
unequal but unknown costs of misclassification error, so we evaluated the methods using receiver
operating characteristic (ROC) analysis (Swets and Pickett, 1982), using area under the ROC curve
as the performance metric. Ultimately, boosted decision trees outperformed all other methods with
an area under the curve of 0.996.

We delivered MECS to the MITRE Corporation, the sponsors of this project, as a research pro-
totype, and it is being used in an operational environment. Users interact with MECS through a
command line. They can add new executables to the collection, update learned models, display
ROC curves, and produce a single classifier at a specific operating point on a selected ROC curve.
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In this paper, we build upon our previous work (Kolter and Maloof, 2004) by presenting results
that suggest our estimates of the detection rate for malicious executables hold in an operational
environment. To show this, we built classifiers from our entire collection, which we gathered early
in the summer of 2003. We then applied all of the classifiers to 291 malicious executables discovered
after we gathered our collection. Detection rates for three different false-positive rates corresponded
to results we obtained through experimentation. Boosted decision trees, for example, achieved a
detect rate of 0.97 for a desired false-positive rate of 0.05.

We also present results suggesting that one can use our methodology to classify malicious exe-
cutables based on their payload’s function. For example, from 520 malicious executables containing
a mass-mailer, we were able to build a detector for such executables that achieved an area under the
ROC curve of about 0.9. Results were similar for detecting malicious executables that open back-
doors and that load viruses.

With this paper, we make three main contributions. We show how to use established methods
of text classification to detect and classify malicious executables. We present empirical results from
an extensive study of inductive methods for detecting and classifying malicious executables in the
wild. We show that the methods achieve high detection rates, even on completely new, previously
unseen malicious executables, which suggests this approach complements existing technologies and
could serve as the basis for an operational system.

In the three sections that follow, we describe related work, our data collection, and the methods
we applied. Then, in Sections 5–7, we present empirical results from three experiments. The first
involved detecting malicious executables; the second, classifying malicious executables based on
the function of their payload; and the third, evaluating fully trained methods on completely new,
previously unseen malicious executables. Finally, before making concluding remarks, we discuss
in Section 8 our results, challenges we faced, and other approaches we considered.

2. Related Work

There have been few attempts to use machine learning and data mining for the purpose of identifying
new or unknown malicious code (e.g., Lo et al., 1995; Kephart et al., 1995; Tesauro et al., 1996;
Schultz et al., 2001; Kolter and Maloof, 2004). These have concentrated mostly on PC viruses (Lo
et al., 1995; Kephart et al., 1995; Tesauro et al., 1996; Schultz et al., 2001), thereby limiting the
utility of such approaches to a particular type of malicious code and to computer systems running
Microsoft’s Windows operating system. Such efforts are of little direct use for computers running
the UNIX operating system, for which viruses pose little threat. However, the methods proposed
are general, meaning that they could be applied to malicious code for any platform, and presently,
malicious code for the Windows operating system poses the greatest threat, mainly because of its
ubiquity.

In an early attempt, Lo et al. (1995) conducted an analysis of several programs—evidently by
hand—and identified telltale signs, which they subsequently used to filter new programs. While they
attempted to extract patterns or signatures for identifying any class of malicious code, they presented
no experimental results suggesting how general or extensible their approach might be. Researchers
at IBM’s T.J. Watson Research Center have investigated neural networks for virus detection (Kephart
et al., 1995) and have incorporated a similar approach for detecting boot-sector viruses into IBM’s
Anti-virus software (Tesauro et al., 1996).
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Method TP Rate FP Rate Accuracy (%)
Signature + hexdump 0.34 0.00 49.31
RIPPER + DLLs used 0.58 0.09 83.61
RIPPER + DLL function used 0.71 0.08 89.36
RIPPER + DLL function counts 0.53 0.05 89.07
Naive Bayes + strings 0.97 0.04 97.11
Voting Naive Bayes + hexdump 0.98 0.06 96.88

Table 1: Results from the study conducted by Schultz et al. 2001.

More recently, instead of focusing on boot-sector viruses, Schultz et al. (2001) used data mining
methods, such as naive Bayes, to detect malicious code. The authors collected 4,301 programs for
the Windows operating system and used McAfee Virus Scan to label each as either malicious or
benign. There were 3,301 programs in the former category and 1,000 in the latter. Of the malicious
programs, 95% were viruses and 5% were Trojan horses. Furthermore, 38 of the malicious programs
and 206 of the benign programs were in the Windows Portable Executable (PE) format.

For feature extraction, the authors used three methods: binary profiling, string sequences, and
so-called hex dumps. The authors applied the first method to the smaller collection of 244 executa-
bles in the Windows PE format and applied the second and third methods to the full collection.

The first method extracted three types of resource information from the Windows executables:
(1) a list of Dynamically Linked Libraries (DLLs), (2) function calls from the DLLs, and (3) the
number of different system calls from each DLL. For each resource type, the authors constructed
binary feature vectors based on the presence or absence of each in the executable. For example, if
the collection of executables used ten DLLs, then they would characterize each as a binary vector of
size ten. If a given executable used a DLL, then they would set the entry in the executable’s vector
corresponding to that DLL to one. This processing resulted in 2,229 binary features, and in a similar
manner, they encoded function calls and their number, resulting in 30 integer features.

The second method of feature extraction used the UNIX strings command, which shows the
printable strings in an object or binary file. The authors formed training examples by treating the
strings as binary attributes that were either present in or absent from a given executable.

The third method used the hexdump utility (Miller, 1999), which is similar to the UNIX octal
dump (od -x) command. This printed the contents of the executable file as a sequence of hexadec-
imal numbers. As with the printable strings, the authors used two-byte words as binary attributes
that were either present or absent.

After processing the executables using these three methods, the authors paired each extraction
method with a single learning algorithm. Using five-fold cross-validation, they used RIPPER (Cohen,
1995) to learn rules from the training set produced by binary profiling. They used naive Bayes to
estimate probabilities from the training set produced by the strings command. Finally, they used
an ensemble of six naive-Bayesian classifiers on the hexdump data by training each on one-sixth of
the lines in the output file. The first learned from lines 1, 6, 12, . . . ; the second, from lines 2, 7, 13,
. . . ; and so on. As a baseline method, the authors implemented a signature-based scanner by using
byte sequences unique to the malicious executables.

The authors concluded, based on true-positive (TP) rates, that the voting naive-Bayesian classi-
fier outperformed all other methods, which appear with false-positive (FP) rates and accuracies in
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Table 1. The authors also presented ROC curves (Swets and Pickett, 1982), but did not report the
areas under these curves. Nonetheless, the curve for the single naive Bayesian classifier appears to
dominate that of the voting naive Bayesian classifier in most of the ROC space, suggesting that the
best performing method was actually naive Bayes trained with strings.

However, as the authors discuss, one must question the stability of DLL names, function names,
and string features. For instance, one may be able to compile a source program using another
compiler to produce an executable different enough to avoid detection. Programmers often use
methods to obfuscate their code, so a list of DLLs or function names may not be available.

The authors paired each feature extraction method with a learning method, and as a result,
RIPPER was trained on a much smaller collection of executables than were naive Bayes and the
ensemble of naive-Bayesian classifiers. Although results were generally good, it would have been
interesting to know how the learning methods performed on all data sets. It would have also been
interesting to know if combining all features (i.e., strings, bytes, functions) into a single training
example and then selecting the most relevant would have improved the performance of the methods.

There are other methods of guarding against malicious code, such as object reconciliation
(Anonymous, 2003, p. 370), which involves comparing current files and directories to past copies;
one can also compare cryptographic hashes. One can also audit running programs (Soman et al.,
2003) and statically analyze executables using predefined malicious patterns (Christodorescu and
Jha, 2003). These approaches are not based on data mining, although one could imagine the role
such techniques might play.

Researchers have also investigated classification methods for the determination of software au-
thorship. Most notorious in the field of authorship are the efforts to determine whether Sir Frances
Bacon wrote works attributed to Shakespeare (Durning-Lawrence, 1910), or who wrote the twelve
disputed Federalist Papers, Hamilton or Madison (Kjell et al., 1994). Recently, similar techniques
have been used in the relatively new field of software forensics to determine program authorship
(Spafford and Weeber, 1993). Gray et al. (1997) wrote a position paper on the subject of author-
ship, whereas Krsul (1994) conducted an empirical study by gathering code from programmers of
varying skill, extracting software metrics, and determining authorship using discriminant analysis.
There are also relevant results published in the literature pertaining to the plagiarism of programs
(Aiken, 1994; Jankowitz, 1988), which we will not survey here.

Krsul (1994) collected 88 programs written in the C programming language from 29 program-
mers at the undergraduate, graduate, and faculty levels. He then extracted 18 layout metrics (e.g.,
indentation of closing curly brackets), 15 style metrics (e.g., mean line length), and 19 structure met-
rics (e.g., percentage of int function definitions). On average, Krsul determined correct authorship
73% of the time. Interestingly, of the 17 most experienced programmers, he was able to determine
authorship 100% of the time. The least experienced programmers were the most difficult to classify,
presumably because they had not settled into a consistent style. Indeed, they “were surprised to find
that one [programmer] had varied his programming style considerably from program to program in
a period of only two months” (Krsul and Spafford, 1995, §5.1).

While interesting, it is unclear how much confidence we should have in these results. Krsul
(1994) used 52 features and only one or two examples for each of the 20 classes (i.e., the authors).
This seems underconstrained, especially when rules of thumb suggest that one needs ten times more
examples than features (Jain et al., 2000). On the other hand, it may also suggest that one simply
needs to be clever about what constitutes an example. For instance, one could presumably use
functions as examples rather than programs, but for the task of determining authorship of malicious
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programs, it is unclear whether such data would be possible to collect or if it even exists. Fortunately,
as we discuss in the next section, a lack of data was not a problem for our project.

3. Data Collection

As stated previously, the data for our study consisted of 1,971 benign executables and 1,651
malicious executables. All were in the Windows PE format. We obtained benign executables
from all folders of machines running the Windows 2000 and XP operating systems. We gath-
ered additional applications from SourceForge (http://sourceforge.net) and download.com
(http://www.download.com).

We obtained virus loaders, worms, and Trojan horses from the Web site VX Heavens (http:
//vx.netlux.org) and from computer-forensic experts at the MITRE Corporation, the sponsors
of this project. Some executables were obfuscated with compression, encryption, or both; some
were not, but we were not informed which were and which were not. For one small collection,
a commercial product for detecting viruses failed to identify 18 of the 114 malicious executables.
For the entire collection of 1,651 malicious executables, a commercial program failed to identify
50 as malicious, even though all were known and in the public domain. Note that, for viruses, we
examined only the loader programs; we did not include infected executables in our study.

As stated previously, we gathered this collection early in the summer of 2003. Recently, we
obtained 291 additional malicious executables from VX Heavens that have appeared after we took
our collection. As such, they were not part of our original collection and were not part of our
previous study (Kolter and Maloof, 2004). These additional executables were for a real-world,
online evaluation, which we motivate and discuss further in Section 7.

We used the hexdump utility (Miller, 1999) to convert each executable to hexadecimal codes
in an ASCII format. We then produced n-grams, by combining each four-byte sequence into a
single term. For instance, for the byte sequence ff 00 ab 3e 12 b3, the corresponding n-grams
would be ff00ab3e, 00ab3e12, and ab3e12b3. This processing resulted in 255,904,403 distinct
n-grams. One could also compute n-grams from words, something we explored and discuss further
in Section 5.2. Using the n-grams from all of the executables, we applied techniques from text
classification, which we discuss further in the next section.

4. Classification Methodology

Our overall approach drew techniques from machine learning (e.g., Mitchell, 1997), data mining
(e.g., Hand et al., 2001), and, in particular, text classification (e.g., Dumais et al., 1998; Sahami
et al., 1998). We used the n-grams extracted from the executables to form training examples by
viewing each n-gram as a Boolean attribute that is either present in (i.e., T) or absent from (i.e., F)
the executable. We selected the most relevant attributes (i.e., n-grams) by computing the information
gain (IG) for each:

IG( j) = ∑
v j∈{0,1}

∑
Ci

P(v j,Ci) log
P(v j,Ci)

P(v j)P(Ci)
,

where Ci is the ith class, v j is the value of the jth attribute, P(v j,Ci) is the proportion that the jth
attribute has the value v j in the class Ci, P(v j) is the proportion that the jth n-gram takes the value
v j in the training data, and P(Ci) is the proportion of the training data belonging to the class Ci. This
measure is also called average mutual information (Yang and Pederson, 1997).
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We then selected the top 500 n-grams, a quantity we determined through pilot studies (see
Section 5.2), and applied several learning methods, all of which are implemented in the Wakaito
Environment for Knowledge Acquisition (WEKA) (Witten and Frank, 2005): IBk, naive Bayes, a
support vector machine (SVM), and a decision tree. We also “boosted” the last three of these learn-
ers, and we discuss each of these methods in the following sections. Since the task is to detect
malicious executables, in subsequent discussion, we refer to the malicious class as the positive class
and refer to the benign class as the negative class.

4.1 Instance-based Learner

One of the simplest learning methods is the instance-based (IB) learner (Aha et al., 1991). Its
concept description is a collection of training examples or instances. Learning, therefore, is the
addition of new examples to the collection. To classify an unknown instance, the performance
element finds the example in the collection most similar to the unknown and returns the example’s
class label as its prediction for the unknown. For Boolean attributes, such as ours, a convenient
measure of similarity is the number of values two instances have in common. Variants of this
method, such as IBk, find the k most similar instances and return the majority vote of their class
labels as the prediction. Values for k are typically odd to prevent ties. Such methods are also known
as nearest neighbor and k-nearest neighbors.

One can estimate a probability distribution from the nearest neighbors and their distances. For
ROC analysis, we used the probability of the negative class as a case rating, which indicates the
degree to which an example is negative. Such ratings paired with the true labels of the test cases
are sufficient for estimating an ROC curve (Swets and Pickett, 1982), a matter we discuss further in
Section 5.1.

4.2 Naive Bayes

Naive Bayes is a probabilistic method that has a long history in information retrieval and text clas-
sification (Maron and Kuhns, 1960). It stores as its concept description the prior probability of each
class, P(Ci), and the conditional probability of each attribute value given the class, P(v j|Ci). It es-
timates these quantities by counting in training data the frequency of occurrence of the classes and
of the attribute values for each class. Then, assuming conditional independence of the attributes,
it uses Bayes’ rule to compute the posterior probability of each class given an unknown instance,
returning as its prediction the class with the highest such value:

C = argmax
Ci

P(Ci)∏
j

P(v j|Ci) .

For ROC analysis, we used the posterior probability of the negative class as the case rating.

4.3 Support Vector Machines

Support vector machines, or SVMs (Boser et al., 1992), have performed well on traditional text
classification tasks (Dumais et al., 1998; Joachims, 1998; Sahami et al., 1998), and performed well
on ours. The method produces a linear classifier, so its concept description is a vector of weights, ~w,
and an intercept or a threshold, b. However, unlike other linear classifiers, such as Fisher’s (1936),
SVMs use a kernel function to map training data into a higher-dimensioned space so that the problem
is linearly separable. It then uses quadratic programming to set ~w and b such that the hyperplane’s

2727



KOLTER AND MALOOF

margin is optimal, meaning that the distance is maximal from the hyperplane to the closest examples
of the positive and negative classes. During performance, the method predicts the positive class if
〈~w ·~x〉−b > 0 and predicts the negative class otherwise. Quadratic programming can be expensive
for large problems, but sequential minimal optimization (SMO) is a fast, efficient algorithm for
training SVMs (Platt, 1998) and is the one implemented in WEKA (Witten and Frank, 2005). During
performance, this implementation computes the probability of each class (Platt, 2000), and for ROC

analysis, we used probability of the negative class as the rating.

4.4 Decision Trees

A decision tree is a rooted tree with internal nodes corresponding to attributes and leaf nodes cor-
responding to class labels. For symbolic attributes, branches leading to children correspond to the
attribute’s values. The performance element uses the attributes and their values of an instance to
traverse the tree from the root to a leaf. It predicts the class label of the leaf node. The learning
element builds such a tree by selecting the attribute that best splits the training examples into their
proper classes. It creates a node, branches, and children for the attribute and its values, removes
the attribute from further consideration, and distributes the examples to the appropriate child node.
This process repeats recursively until a node contains examples of the same class, at which point,
it stores the class label. Most implementations use the gain ratio for attribute selection (Quinlan,
1993), a measure based on the information gain. In an effort to reduce overtraining, most imple-
mentations also prune induced decision trees by removing subtrees that are likely to perform poorly
on test data. WEKA’s J48 (Witten and Frank, 2005) is an implementation of the ubiquitous C4.5
(Quinlan, 1993). During performance, J48 assigns weights to each class, and we used the weight of
the negative class as the case rating.

4.5 Boosted Classifiers

Boosting (Freund and Schapire, 1996) is a method for combining multiple classifiers. Researchers
have shown that ensemble methods often improve performance over single classifiers (Dietterich,
2000; Opitz and Maclin, 1999). Boosting produces a set of weighted models by iteratively learning
a model from a weighted data set, evaluating it, and reweighting the data set based on the model’s
performance. During performance, the method uses the set of models and their weights to predict
the class with the highest weight. We used the AdaBoost.M1 algorithm (Freund and Schapire, 1996)
implemented in WEKA (Witten and Frank, 2005) to boost SVMs, J48, and naive Bayes. As the case
rating, we used the weight of the negative class. Note that we did not apply AdaBoost.M1 to IBk
because of the high computational expense.

5. Detecting Malicious Executables

With our methodology defined, our first task was to examine how well the learning methods de-
tected malicious executables. We did so by conducting three experimental studies using a standard
experimental design. The first was a pilot study to determine the size of words and n-grams, and the
number of n-grams relevant for prediction. With those values determined, the second experiment
consisted of applying all of the classification methods to a small collection of executables. The third
then involved applying the methodology to a larger collection of executables, mainly to investigate
how the approach scales.
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5.1 Experimental Design

To evaluate the approach and methods, we used stratified ten-fold cross-validation. That is, we
randomly partitioned the executables into ten disjoint sets of equal size, selected one as a testing
set, and combined the remaining nine to form a training set. We conducted ten such runs using each
partition as the testing set.

For each run, we extracted n-grams from the executables in the training and testing sets. We
selected the most relevant features from the training data, applied each classification method, and
used the resulting classifier to rate the examples in the test set.

To conduct ROC analysis (Swets and Pickett, 1982), for each method, we pooled the ratings from
the iterations of cross-validation, and used labroc4 (Metz et al., 2003) to produce an empirical
ROC curve and to compute its area and the standard error of the area. With the standard error, we
computed 95% confidence intervals (Swets and Pickett, 1982).

5.2 Pilot Studies

We conducted pilot studies to determine three parameters: the size of n-grams, the size of words,
and the number of selected features. Unfortunately, due to computational requirements, we were
unable to evaluate exhaustively all methods for all settings of these parameters, so we assumed that
the number of features would most affect performance, and began our investigation accordingly.

Using the experimental methodology described previously, we extracted bytes from 476 mali-
cious executables and 561 benign executables and produced n-grams, for n = 4. (This smaller set
of executables constituted our initial collection, which we later supplemented.) Using information
gain, we then selected the best 10, 20, . . . , 100, 200, . . . , 1,000, 2,000, . . . , 10,000 n-grams, and
evaluated the performance of naive Bayes, SVMs, boosted SVMs, J48, and boosted J48. Selecting
500 n-grams produced the best results.

We fixed the number of n-grams at 500, and varied n, the size of the n-grams. We evaluated the
same methods for n = 1,2, . . . ,10, and n = 4 produced the best results. We also varied the size of
the words (one byte, two bytes, etc.), and results suggested that single bytes produced better results
than did multiple bytes.

And so by selecting the top 500 n-grams of size four produced from single bytes, we evaluated
all of the classification methods on this small collection of executables. We describe the results of
this experiment in the next section.

5.3 Experiment with a Small Collection

Processing the small collection of executables produced 68,744,909 distinct n-grams. Following
our experimental methodology, we used stratified ten-fold cross-validation, selected the 500 best
n-grams, and applied all of the classification methods. The ROC curves for these methods are in
Figure 1, while the areas under these curves (AUC) with 95% confidence intervals are in Table 2.

As one can see, the boosted methods performed well, as did the instance-based learner and
the support vector machine. Naive Bayes did not perform as well, and we discuss this further in
Section 8.
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Figure 1: ROC curves for detecting malicious executables in the small collection. Top: The entire
ROC graph. Bottom: A magnification.

Method AUC

Boosted J48 0.9836±0.0095
Boosted SVM 0.9744±0.0118
IBk, k = 5 0.9695±0.0129
SVM 0.9671±0.0133
Boosted Naive Bayes 0.9461±0.0170
J48 0.9235±0.0204
Naive Bayes 0.8850±0.0247

Table 2: Results for detecting malicious executables in the small collection. Measures are area
under the ROC curve (AUC) with a 95% confidence interval.
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Figure 2: ROC curves for detecting malicious executables in the larger collection. Top: The entire
ROC graph. Bottom: A magnification.

Method AUC

Boosted J48 0.9958±0.0024
SVM 0.9925±0.0033
Boosted SVM 0.9903±0.0038
IBk, k = 5 0.9899±0.0038
Boosted Naive Bayes 0.9887±0.0042
J48 0.9712±0.0067
Naive Bayes 0.9366±0.0099

Table 3: Results for detecting malicious executables in the larger collection. Measures are area
under the ROC curve (AUC) with a 95% confidence interval.
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5.4 Experiment with a Larger Collection

With success on a small collection, we turned our attention to evaluating the methodology on a
larger collection of executables. As mentioned previously, this collection consisted of 1,971 benign
executables and 1,651 malicious executables, while processing resulted in over 255 million distinct
n-grams of size four. We followed the same experimental methodology—selecting the 500 top n-
grams for each run of stratified ten-fold cross-validation, applying the classification methods, and
plotting ROC curves.

Figure 2 shows the ROC curves for the various methods, while Table 3 presents the areas under
these curves with 95% confidence intervals. As one can see, boosted J48 outperformed all other
methods. Other methods, such as IBk and boosted SVMs, performed comparably, but the ROC curve
for boosted J48 dominated all others.

6. Classifying Executables by Payload Function

We next attempted to classify malicious executables based on the function of their payload. That is,
rather than detect malicious executables, we investigated the extent to which classification methods
could determine whether a given malicious executable opened a backdoor, mass-mailed, or was an
executable virus. We see this aspect of our work most useful for experts in computer forensics.
A tool performing this task reliably could reduce the amount of effort to characterize previously
undiscovered malicious executables.

Our first challenge was to identify and enumerate the functions of payloads of malicious exe-
cutables. For this, we consulted VX Heavens and Symantec’s Web site. Obviously, the information
on these Web sites was not designed to support data-mining experiments, so we had to translate text
descriptions into a more structured representation.

However, a greater problem was that we could not find information for all of the malicious
executables in our collection. Indeed, we found information for only 525 of the 1,651 malicious
executables. As a result, for most categories, we had too few executables to build classifiers and
conduct experiments.

A second challenge was that many executables fell into multiple categories. That is, many were
so-called multi-class examples, a problem common in bioinformatics and document classification.
For instance, a malicious executable might open a backdoor and log keystrokes, so it would be in
both the backdoor and keylogger classes.

One approach is to create compound classes, such as backdoor+keylogger, in addition to the
simple classes (e.g., backdoor and keylogger). One immediate problem was that we had too few
examples to support this approach. We had a number of backdoors, a number of keyloggers, but
had few executables that were both backdoors and keyloggers.

As a result, we chose to use one-versus-all classification. This involves grouping all of, say, the
executables with backdoor capabilities into the backdoor class, regardless of their other capabilities
(e.g., key logging), and placing all other executables into a non-backdoor class. One then builds a
detector for the backdoor class, and does the same for all other classes.

To make a decision, one applies all of the detectors and reports the predictions of the individual
classifiers as the overall prediction of the executable. For example, if the detectors for backdoor and
for keylogger report hits, then the overall prediction for the executable is backdoor+keylogger.
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Figure 3: ROC curves for detecting malicious executables with mass-mailing capabilities. Left: The
entire ROC graph. Right: A magnification.

Payload
Method

Mass Mailer Backdoor Virus
Boosted J48 0.8888±0.0152 0.8704±0.0161 0.9114±0.0166
SVM 0.8986±0.0145 0.8508±0.0171 0.8999±0.0175
IBk, k = 5 0.8829±0.0155 0.8434±0.0174 0.8975±0.0177
Boosted SVM 0.8758±0.0160 0.8625±0.0165 0.8775±0.0192
Boosted Naive Bayes 0.8773±0.0159 0.8313±0.0180 0.8370±0.0216
J48 0.8315±0.0184 0.7612±0.0205 0.8295±0.0220
Naive Bayes 0.7820±0.0205 0.8190±0.0185 0.7574±0.0250

Table 4: Results for detecting payload function. Measures are area under the ROC curve (AUC) with
a 95% confidence interval.
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Figure 4: ROC curves for detecting malicious executables with backdoor capabilities. Left: The
entire ROC graph. Right: A magnification.
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Figure 5: ROC curves for detecting executable viruses. Left: The entire ROC graph. Right: A
magnification.

6.1 Experimental Design

We followed an experimental design similar to that described previously, but for each of the func-
tional categories, we created a data set using only malicious executables. We divided it into two
subsets, one containing executables that performed the function and one containing those that did
not. We then proceeded as before, using stratified ten-fold cross-validation, applying and evaluating
the methods, and constructing ROC curves.

6.2 Experimental Results

We present results for three functional categories: mass-mailer, backdoor, and executable virus.
Figures 3–5 present the ROC curves for seven methods on the task of detecting executables that mass-
mail, open a backdoor, or contain an executable virus. The areas under these ROC curves appear
in Table 4. Overall, the results are not as good as those in the experiment that involved detecting
malicious executables in our full collection of malicious executables, and we discuss possible causes
in Section 8.

The relative performance of the methods on this task was roughly the same as in previous ex-
periments. Naive Bayes generally did not perform as well as the other methods, and we discuss the
reasons for this in Section 8. Boosted J48 and the SVM were again the best performing methods,
although on this task, the SVM performed slightly better than on previous tasks.

7. Evaluating Real-world, Online Performance

Finally, to estimate what performance might be in an operational environment, we applied the meth-
ods to 291 malicious executables discovered after we gathered our original collection. In the pre-
vious sections, we generally followed a common experimental design in machine learning and data
mining: We randomly partitioned our data into training and testing sets, applied algorithms to the
training set, and evaluated the resulting detectors on the testing set. However, one problem with this
design for this application is that learning methods were trained on recent malicious executables
and tested on older ones. Crucially, this design does not reflect the manner in which a system based
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Desired False-positive Rate
Method 0.01 0.05 0.1

P A P A P A

Boosted J48 0.94 0.86 0.99 0.98 1.00 1.00
SVM 0.82 0.41 0.98 0.90 0.99 0.93
Boosted SVM 0.86 0.56 0.98 0.89 0.99 0.92
IBk, k = 5 0.90 0.67 0.99 0.81 1.00 0.99
Boosted Naive Bayes 0.79 0.55 0.94 0.93 0.98 0.98
J48 0.20 0.34 0.97 0.94 0.98 0.95
Naive Bayes 0.48 0.28 0.57 0.72 0.81 0.83

Table 5: Results of a real-world, online evaluation. Predicted (P) versus actual (A) detect rates for
three desired false-positive rates on 291 new, previously unseen malicious executables.
Predicted detect rates are from Figure 2 and the experiment described in Section 5.4.

on our methodology would be used. In this section, we rectify this and describe an experiment
designed to better evaluate the real-world, online performance of the detectors.

As mentioned previously, we gathered our collection of executables in the summer of 2003. In
August of 2004, we retrieved from VX Heavens all of the new malicious executables and selected
those that were discovered after we gathered our original collection. This required retrieving the
3,082 new executables that were in the PE format and using commercial software to verify inde-
pendently that each executable was indeed malicious. We then cross-referenced the names of the
verified malicious executables with information on various Web sites to produce the subset of ma-
licious executables discovered between July of 2003 and August of 2004. There were 291 such
executables.

7.1 Experimental Design

To conduct this experiment, we built classifiers from all of the executables in our original collection,
both malicious and benign. We then selected three desired false-positive rates, 0.01, 0.05, and
0.1. This, in turn, let us select three decision thresholds from each ROC curve for each method.
Using these thresholds to parameterize specific classifiers, we applied them to each of the 291 new
malicious executables in the order of their date of discovery.

7.2 Experimental Results

Rather than analyze all of these results, we will discuss the actual (A) detection rates for the desired
false-positive rate of 0.05.1 As one can see, boosted decision trees detected about 98% of the new
malicious executables, missing 6 of 291 malicious executables. For some applications, six may be
too many, but if one is willing to tolerate a false-positive rate of 0.1, then one can achieve a perfect
detect rate, at least on these 291 malicious executables.

1. Our reasoning was that, for most operational scenarios, a desired false-positive rate of 0.1 would be too high, and
the detect rates achieved for a desired false-positive rate of 0.01 were too low. Knowledge of a given operational
environment would presumably help us choose a more appropriate decision threshold.
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However, it is also important to compare the actual detection rates to the predicted rates from
the experiment using our larger collection of executables, discussed in Section 5.4. As one can
see in Table 5 by comparing the predicted (P) and actual (A) detection rates for a desired false-
positive rate of 0.05, four methods (SVM, boosted SVM, IBk, and J48) performed worse on the new
malicious executables, two methods (boosted J48 and boosted naive Bayes) performed about as
well under both conditions, and one method (naive Bayes) performed much better. Nonetheless,
we determined that boosted decision trees achieved the best performance overall, not only in terms
of the best actual performance on the new malicious executables, but also in terms of matching the
predicted performance from the experiment involving the larger collection of executables.

8. Discussion

To date, our results suggest that methods of machine learning, data mining, and text classification
are appropriate and useful for detecting malicious executables in the wild. Boosted classifiers, IBk,
and a support vector machine performed exceptionally well given our current data collection. That
the boosted classifiers generally outperformed single classifiers echos the conclusion of several
empirical studies of boosting (Bauer and Kohavi, 1999; Breiman, 1998; Dietterich, 2000; Freund
and Schapire, 1996), which suggest that boosting improves the performance of unstable classifiers,
such as J48, by reducing their bias and variance (Bauer and Kohavi, 1999; Breiman, 1998). Boosting
can adversely affect stable classifiers (Bauer and Kohavi, 1999), such as naive Bayes, although in
our study, boosting naive Bayes improved performance. Stability may also explain why the benefit
of boosting SVMs was inconclusive in our study (Breiman, 1998).

Our experimental results suggest that the methodology will scale to larger collections of executa-
bles. The larger collection in our study contained more than three times the number of executables
in the smaller collection. Yet, as one can see in Tables 2 and 3, the absolute performance of all of
the methods was better for the larger collection than for the smaller one. The relative performance
of the methods changed somewhat. For example, the SVM moved from fourth to second, displacing
the boosted SVMs and IBk.

Regarding our results for classifying executables by function, we suspect the methods did not
perform as well as they did on the detection task for two reasons. First, with the classification
task, the algorithms must make finer distinctions between malicious and benign executables. For
example, a malicious executable that mass-mails will be similar in some respects to a legitimate
e-mail client. Such similarity could account for the lower performance.

Indeed, in pilot studies, we attempted to use the methods to distinguish between benign and
malicious executables that edited the registry. Performance on this task was lower than on the
others, and we suspect this is because editing the registry is a function common to many executables,
malicious and benign. Such similarity could have accounted for the lower performance.

Second, we suspect that, on the classification task, performance suffered because the algorithms
built classifiers from fewer examples. Performance on the detection task improved when we added
additional examples, and we suspect that, likewise, with additional examples, we will obtain similar
improvements in accuracy on the classification task.

Regarding our online evaluation of the methods, we believe the experimental design represents
how such methods would be used in a commercial or operational system. We did not conduct this
experiment from the outset (Kolter and Maloof, 2004) because it was impossible to determine the
date of discovery of all of the malicious executables in our collection. Moreover, to conduct the ideal
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030b0105 = T
| 0b010219 = T: malicious (2.0)
| 0b010219 = F
| | 0000000a = T
| | | 0001ff25 = T
| | | | 0c100001 = T
| | | | | 0000c700 = T: benign (6.0)
| | | | | 0000c700 = F: malicious (2.0)
| | | | 0c100001 = F: malicious (2.0)
| | | 0001ff25 = F: benign (10.0)
| | 0000000a = F: benign (253.0)
030b0105 = F
...

Figure 6: Portion of a decision tree built from benign and malicious executables.

experiment, we would also need to collect different versions of benign executables and when they
were released. It was easier to take one “snapshot” of existing malicious and benign executables,
conduct traditional experiments, and then, at a later date, retrieve any new malicious executables for
the online experiment.

During the processing of the 291 new malicious executables, we did not update the classifiers
when there was a mistake or a so-called “near miss”. Clearly, in an operational setting, if the system
were to make a mistake or to detect a malicious executable with low certainty, then, ideally, one
would add it to the collection and reprocess everything. (One would also have to do the same for
benign executables.) However, because of the computational overhead, we did not do this, and as
a consequence, our results are pessimistic. Presumably, all of the methods would perform better
with the benefit of additional training data. Nonetheless, for some methods, the results are quite
promising, as shown in Table 5.

Visual inspection of the concept descriptions yielded interesting insights, but further work is
required before these descriptions will be directly useful for computer-forensic experts. Figure 6
shows a portion of one decision tree built from benign and malicious executables.

As an example, the first branch of the tree indicates that if an executable contains the n-grams
030b0105 and 0b010219, then it is malicious. After an analysis of our collection of malicious
executables, we discovered that both n-grams were from the PE header, implying that a single file
contained two such headers. More investigation revealed that two executables in our collection
contained another executable, which explains the presence of two PE headers in a single file. This
was an interesting find, but it represented an insignificantly small portion of the malicious programs.

Leaf nodes covering many executables were often at the end of long branches where one set of
n-grams (i.e., byte codes) had to be present and another set had to be absent. Understanding why
the absence of byte codes was important for an executable being malicious proved to be a difficult
and often impossible task.

It was fairly easy to establish that some n-grams in the decision tree were from string sequences
and that some were from code sequences, but some were incomprehensible. For example, the n-
gram 0000000a appeared in 75% of the malicious executables, but it was not part of the executable
format, it was not a string sequence, and it was not a code sequence. We have yet to determine its
purpose.
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Nonetheless, for the large collection of executables, the size of the decision trees averaged over
10 runs was about 90 nodes. No tree exceeded 103 nodes. The heights of the trees never exceeded
13 nodes, and subtrees of heights of 9 or less covered roughly 99.3% of the training examples.
While these trees did not support a thorough forensic analysis, they did compactly encode a large
number of benign and malicious executables.

Unfortunately, the best performing method did not always produce the most readable concept
descriptions. Of the methods we considered, J48 is mostly likely to produce descriptions useful
for computer-forensic experts. However, J48 was not the best performing method in any of our
experiments. The best performing method was boosted J48. While it is true that this method also
produces decision trees, it actually produces a set of weighted trees. We discussed the difficulties
of analyzing a single tree, so it is unclear if analyzing an ensemble of weighted trees will be helpful
for experts. And since J48 was not the best performing method, we may also have to question the
utility of analyzing a single decision tree when its performance is subpar.

We estimated that about 20–25% of the malicious executables in our collection were obfuscated
with either compression or encryption. To the best of our knowledge, none of the benign executables
were obfuscated. Early in our investigation, we conjectured that obfuscation would likely interfere
with classifying payload function, but that it would not do so with detecting whether the executable
is malicious. Our results on these tasks seem to support our conjecture: We were able to detect
malicious executables with high accuracy, so it is unlikely that obfuscation affected performance.
On the other hand, we were not able to achieve the same high accuracy when classifying payload
function, and the presence of obfuscation may have contributed to this result.

With the detection task, it is possible that the methods simply learned to detect certain forms
of obfuscation, such as run-time compression, but this does not seem problematic as long as those
forms are correlated with malicious executables. Based on our collection and our own investigation,
this is presently the case.

To place our results in context with the study of Schultz et al. (2001), they reported that the
best performing approaches were naive Bayes trained on the printable strings from the program
and an ensemble of naive-Bayesian classifiers trained on byte sequences. They did not report areas
under their ROC curves, but visual inspection of these curves suggests that with the exception of
naive Bayes, all of our methods outperformed their ensemble of naive-Bayesian classifiers. It also
appears that our best performing methods, such as boosted J48, outperformed their naive Bayesian
classifier trained with strings.

These differences in performance could be due to several factors. We analyzed different types of
executables: Their collection consisted mostly of viruses, whereas ours contained viruses loaders,
worms, and Trojan horses. Ours consisted of executables in the Windows PE format; about 5.6% of
theirs was in this format.

Our better results could be due to how we processed byte sequences. Schultz et al. (2001) used
non-overlapping two-byte sequences, whereas we used overlapping sequences of four bytes. With
their approach it is possible that a useful feature (i.e., a predictive sequence of bytes) would be split
across a boundary. This could explain why in their study string features appeared to be better than
byte sequences, since extracted strings would not be broken apart. Their approach produced much
less training data than did ours, but our application of feature selection reduced the original set of
more than 255 million n-grams to a manageable 500.

Our results for naive Bayes were poor in comparison to theirs. We again attribute this to the
differences in data extraction methods. Naive Bayes is well known to be sensitive to conditionally
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dependent attributes (Domingos and Pazzani, 1997). We used overlapping byte sequences as at-
tributes, so there were many that were conditionally dependent. Indeed, after analyzing decision
trees produced by J48, we found evidence that overlapping sequences were important for detection.
Specifically, some subpaths of these decision trees consisted of sequentially overlapping terms that
together formed byte sequences relevant for prediction. Schultz et al.’s (2001) extraction methods
would not have produced conditionally dependent attributes to the same degree, if at all, since they
used strings and non-overlapping byte sequences.

Regarding our experimental design, we decided to pool a method’s ratings and produce a single
ROC curve (see Section 5.1) because labroc4 (Metz et al., 2003) occasionally could not fit an ROC

curve to a method’s ratings from a single fold of cross-validation (i.e., the ratings were degener-
ate). We also considered producing ROC convex hulls (Provost and Fawcett, 2001) and cost curves
(Drummond and Holte, 2000), but determined that traditional ROC analysis was appropriate for our
results (e.g., the curve for boosted J48 dominated all other curves).

In our study, there was an issue of high computational overhead. Selecting features was ex-
pensive, and we had to resort to a disk-based implementation for computing information gain,
which required a great deal of time and space to execute. However, once selected, WEKA’s (Witten
and Frank, 2005) Java implementations executed quickly on the training examples with their 500
Boolean attributes.

The greatest impediment to our investigation was the absence of detailed, structured information
about the malicious executables in our collection. As mentioned previously, we had 1,651 malicious
executables, but found information for only 525 that was sufficient to support our experiment on
function classification, described in Section 6.

We arduously gathered this information by reading it from Web pages. We contemplated im-
plementing software to extract this information, but abandoned this idea because of the difficulty
of processing such semi-structured information and because of that information’s ad hoc nature.
As an example, for one executable, the description that it opened a backdoor appeared in a section
describing the executable’s payload, whereas the same information for another executable appeared
in a section describing how the malicious executable degrades performance. This suggests the need
for a well-engineered database for storing information about malicious software.

As another example, we found incomplete information about the dates of discovery of many of
the malicious executables. With this information, we could have evaluated our methods on the mali-
cious executables in the order they were discovered. This would have been similar to the evaluation
we conducted using the 291 previously unseen malicious executables, as described in Section 7,
but having complete information for all of the executables would have resulted in a much stronger
evaluation.

However, to conduct a proper evaluation, we would also needed a comparable collection of
benign executables. It seems unlikely that we would be able to reconstruct realistic snapshots of
complete Windows systems over a sufficient period of time. Snapshots of the system software might
be possible, but creating a historical archive of application software and their different versions
seems all but impossible. Such snapshots would be required for a commercial system, and creating
such snapshots would be easier going forward.

In terms of our approach, it is important to note that we have investigated other methods of
data extraction. For instance, we examined whether printable strings from the executable might
be useful, but reasoned that subsets of n-grams would capture the same information. Indeed, after
inspecting some of the decision trees that J48 produced, we found evidence suggesting that n-grams
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formed from strings were being used for detection. Nonetheless, if we later determine that explicitly
representing printable strings is important, we can easily extend our representation to encode their
presence or absence. On the other hand, as we stated previously, one must question the use of
printable strings or DLL information since compression and other forms of obfuscation can mask
this information.

We also considered using disassembled code as training data. For malicious executables using
compression, being able to obtain a disassembly of critical sections of code may be a questionable
assumption. Moreover, in pilot studies, a commercial product failed to disassemble some of our
malicious executables.

We considered an approach that runs malicious executables in a “sandbox” and produces an au-
dit of the machine instructions. Naturally, we would not be able to execute completely the program,
but 10,000 instructions may be sufficient to differentiate benign and malicious behavior. We have
not pursued this idea because of a lack of auditing tools, the difficulty of handling large numbers
of interactive programs, and the inability of detecting malicious behavior occurring near the end of
sufficiently long programs. Moreover, some malicious programs can detect when they are being
executed by a virtual machine and either terminate execution or avoid executing malicious sections
of code.

There are at least two immediate commercial applications of our work. The first is a system,
similar to MECS, for detecting malicious executables. Server software would need to store all known
malicious executables and a comparably large set of benign executables. Due to the computational
overhead of producing classifiers from such data, algorithms for computing information gain and
for evaluating classification methods would have to be executed incrementally, in parallel, or both.

Client software would need to extract only the top n-grams from a given executable, apply a
classifier, and predict. Updates to the classifier could be made remotely over the Internet. Since
the best performing method may change with new training data, it will be critical for the server
to evaluate a variety of methods and for the client to accommodate any of the potential classifiers.
Used in conjunction with standard signature methods, these methods could provide better detection
of malicious executables than is currently possible.

The second is a system oriented more toward computer-forensic experts. Even though work
remains before decision trees could be used to analyze malicious executables, one could use IBk to
retrieve known malicious executables similar to a newly discovered malicious executable. Based
on the properties of the retrieved executables, such a system could give investigators insights into
the new executable’s function. While it remains an open issue whether an executable’s statistical
properties are predictive of its function, we have presented evidence suggesting it may be possible
to achieve useful detection rates when predicting function.

9. Concluding Remarks

We considered the application of techniques from machine learning, data mining, and text classifi-
cation to the problem of detecting and classifying unknown malicious executables in the wild. After
evaluating a variety of inductive methods, results suggest that, for the task of detecting malicious
executables, boosted J48 produced the best detector with an area under the ROC curve of 0.996.

We also investigated the ability of these methods to classify malicious executables based on their
payload’s function. For payloads that mass-mail, open a backdoor, and inject viral code, boosted
J48 again produced the best detectors with areas under the ROC curve around 0.9. While overall
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the performance on this task was not as impressive as that on the detection task, we contend that
performance will improve with the removal of obfuscation and with additional training examples.

Finally, boosted J48 also performed well on the task of detecting 291 malicious executables
discovered after we gathered our original collection, an evaluation that best reflects how one might
use the methodology in an operational environment. Indeed, our methodology resulted in a fielded
prototype called MECS, the Malicious Executable Classification System, which we delivered to the
MITRE Corporation.

In future work, we hope to remove obfuscation from our malicious executables and rerun the
experiment on classifying payload function. Removing obfuscation and producing “clean” executa-
bles may prove challenging, but doing so would provide the best opportunity to evaluate whether
obfuscation affected the performance of the classifiers.

We also plan to investigate the similarity of malicious executables and how such executables
change over time. In this regard, we have not yet attempted to cluster our collection of executables,
but doing so may yield two insights. First, if a new, unanalyzed malicious executable is similar to
others that have been analyzed, it may help computer-forensic experts conduct a faster analysis of
the new threat.

Second, if we add information about when the executables were discovered, we may be able to
determine how malicious executables were derived from others. Although there is a weak analog
between DNA sequences and byte codes from executables, we may be able to use a collection of
malicious executables to build phylogenetic trees that may elucidate “evolutionary relationships”
existing among them.

We anticipate that inductive approaches, such as ours, is but one process in an overall strategy
for detecting and classifying “malware.” When combined with approaches that use cryptographic
hashes, search for known signatures, execute and analyze code in a virtual machine, we hope that
such a strategy for detecting and classifying malicious executables will improve the security of
computers. Indeed, the delivery of MECS to MITRE has provided computer-forensic experts with
a valuable tool. We anticipate that continued investigation of inductive methods for detecting and
classifying malicious executables will yield additional tools and more secure systems.
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Abstract

Several fundamental security mechanisms for restricting access to network resources rely on the
ability of a reference monitor to inspect the contents of traffic as it traverses the network. How-
ever, with the increasing popularity of cryptographic protocols, the traditional means of inspecting
packet contents to enforce security policies is no longer a viable approach as message contents
are concealed by encryption. In this paper, we investigate the extent to which common applica-
tion protocols can be identified using only the features that remain intact after encryption—namely
packet size, timing, and direction. We first present what we believe to be the first exploratory
look at protocol identification in encrypted tunnels which carry traffic from many TCP connections
simultaneously, using only post-encryption observable features. We then explore the problem of
protocol identification in individual encrypted TCP connections, using much less data than in other
recent approaches. The results of our evaluation show that our classifiers achieve accuracy greater
than 90% for several protocols in aggregate traffic, and, for most protocols, greater than 80% when
making fine-grained classifications on single connections. Moreover, perhaps most surprisingly,
we show that one can even estimate the number of live connections in certain classes of encrypted
tunnels to within, on average, better than 20%.

Keywords: traffic classification, hidden Markov models, network security

1. Introduction

To effectively manage large networks, an administrator’s ability to characterize the traffic within the
network’s boundaries is critical for diagnosing problems, provisioning capacity, and detecting at-
tacks or misuses of the network. Unfortunately, for the most part, current approaches for identifying
application traffic rely on inspecting packets on the wire, which can fail to provide a reliable, or even
correct, characterization of the traffic. For one, that information (e.g., port numbers and TCP flags)
is determined entirely by the end hosts, and thus can be easily changed to disguise or conceal aber-
rant traffic. In fact, such malicious practices are not uncommon, and often occur after an intruder
gains access to the network (e.g., to install a “backdoor”) or when legitimate users attempt to violate
network policies. For example, many chat and file sharing applications can be easily configured to
use the standard port for HTTP in order to bypass simple packet-filtering firewalls. Furthermore,
recent peer-to-peer file-sharing applications such as BitTorrent (Cohen, 2003) can run entirely on
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user-specified ports, and Trojan horse or virus programs may encrypt their communication to deter
the development of effective detection signatures.

Even more problematic for such traffic characterization techniques is the fact that with the in-
creased use of cryptographic protocols such as SSL (Rescorla, 2000) and SSH (Ylonen, 1996), fewer
and fewer packets in legitimate traffic become available for inspection. While the growing popu-
larity of such protocols has greatly enhanced the security of the user experience on the Internet—
by protecting messages from eavesdroppers—one can argue that its use hinders legitimate traffic
analysis. Furthermore, we may reasonably expect that the use of encrypted communications will
only become more commonplace as Internet users become more security-savvy. Therefore future
techniques for identifying application protocols and behaviors may only have access to a severely
restricted set of features, namely those that remain intact after encryption.

Clearly, the ability to reliably detect instances of various application protocols “in the dark” (Kara-
giannis et al., 2005) would be of tremendous practical value. For one, armed with this capability,
network administrators would be in a much better position to detect violations of network policies
by users running instances of forbidden applications over encrypted channels (e.g., using SSH’s port-
forwarding feature). Unfortunately, most of the existing work on traffic classification either relies
on inspecting packet payloads (Zhang and Paxson, 2000a; Moore and Papagiannaki, 2005), TCP
headers (Early et al., 2003; Moore and Zuev, 2005; Karagiannis et al., 2005), or can only assign
flows to broad classes of protocols such as “bulk data transfer,” “p2p,” or “interactive” (Moore and
Papagiannaki, 2005; Moore and Zuev, 2005; Karagiannis et al., 2005).

Here we investigate the extent to which common Internet application protocols remain dis-
tinguishable even when packet payloads and TCP headers have been stripped away, leaving only
extremely lean data which includes nothing more than the packets’ timing, size, and direction. We
begin our analysis in §3 by exploring protocol recognition techniques for traffic aggregates where all
flows carry the same application protocol. We then develop tools to enhance the initial analysis pro-
vided by these first tools by addressing more specific scenarios. In §4, we relax the single-protocol
assumption and address protocol recognition with very lean data on individual TCP connections.
These methods might be used to estimate the traffic mix on traces which are believed to contain
several distinct protocols, or as a fine-grained way to verify that a set of connections really does
contain only a single given application protocol. In §5 we relax the assumption that the individual
flows can be demultiplexed from the aggregate and show how, when there is only a single appli-
cation protocol in use, we can nevertheless still glean meaningful information from the stream of
packets and track the number of live connections in the tunnel. We review related work in §6 and
discuss future directions in §7.

2. Data

To be useful in practice, traffic analysis approaches of the type we develop in this paper must be
effective in dealing with the noisy and skewed data typical of real Internet traffic. We therefore
empirically evaluate our techniques using real traffic traces collected by the Statistics Group at
George Mason University in 2003 (Faxon et al., 2004). The traces contain headers for IP packets on
GMU’s Internet (OC-3) link from the first 10 minutes of every quarter hour over a two-month period.
The data set contains traffic for a class B network which includes several university-wide and
departmental servers for mail, web, and other services, as well as hundreds of Internet-connected
client machines. From these traces, we extract inbound TCP connections on the well-known ports
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for SMTP (25), HTTP (80), HTTP over SSL (443), FTP (20), SSH (22), and Telnet (23), as well as
outbound SMTP and AOL Instant Messenger traffic. Since we do not have access to packet payloads
in these traces, we do not attempt to determine the “ground truth” of which connections truly belong
to which protocols.1 Instead, we simply use the TCP port numbers as our class labels, and therefore,
it is likely some connections have been incorrectly labeled. However, because these mislabeled
connections only increase the entropy of the data, the net result will be that we under-estimate the
accuracy our techniques could achieve if given a perfectly-labeled version of the same traces (Lee
and Xiang, 2001).

For each extracted TCP connection, we record the sequence of 〈size, arrival time〉 tuples for
each packet in the connection, in arrival order. We encode the packet’s direction in the sign bit
of the packet’s size, so that packets sent from server to client have size less than zero and those
from client to server have size greater than zero. Since the traces in this data set consist mostly of
unencrypted, non-tunneled TCP connections, a few additional preprocessing steps are necessary to
simulate the more challenging scenarios which our techniques are designed to address. To simulate
the effect of encryption on the traffic in our data set we assume the encryption is performed with a
symmetric block cipher such as AES (Federal Information Processing Standards, 2001), and round
the observed packet sizes up accordingly. We perform our evaluation using a block size of 64 bytes
(512 bits), which is larger than most used in practice, yet still affords a good balance of recognition
accuracy and computational efficiency. If analyzing real traffic encrypted with a smaller block size
(for example, 128 bits), we can always round the observed packet sizes up.

3. Traffic Classification in Aggregate Encrypted Traffic

Here we investigate the problem of determining the application protocol in use in aggregate traffic
composed of several TCP connections which all employ the same application protocol. Unlike
previous approaches such as BLINC (Karagiannis et al., 2005), our approach does not rely on any
information about the hosts or network involved; instead, we use only the features of the actual
packets on the wire which remain observable after encryption, namely: timing, size, and direction.

The techniques we develop here can be used to quickly and efficiently infer the nature of the
application protocol used in aggregate traffic without demultiplexing or reassembling the individual
flows from the aggregate. Such traffic might correspond to a set of TCP connections to a given
host or network, perhaps running on a nonstandard port and identified using techniques like that
of Xu et al. (2005) as comprising a dominant or “heavy hitter” behavior in the network. Our tech-
niques could then be used by a network administrator to determine the application layer behavior.
Furthermore, these techniques are also applicable to certain classes of encrypted tunnels, namely
those which carry traffic for a single application protocol. We address the case of tunneled traffic in
greater detail in §5.

To evaluate the techniques developed in this section, we assemble traffic aggregates for each
protocol using several TCP connections extracted from the GMU data as described in §2. For each
10-minute trace and each protocol, we select all connections for the given protocol in the given trace,
and interleave their packets into a single unified stream, sorted in order of arrival on the link. We then
split this stream into several smaller epochs of constant length s and count the number of packets

1. We have checked randomly-selected subsets of flows for each protocol and verified, using visualization techniques
(Wright et al., 2006), that the behaviors exhibited therein appear reasonable for the given protocols. Examples of
these visualizations are available on the web at http://www.cs.jhu.edu/˜cwright/traffic-viz.
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of several different types (based on size and direction) that arrive during each epoch. Currently, we
group packets into four types; any packet is classified as either small (i.e., 64 bytes or less) or not
(i.e., greater than 64 bytes), and as either traveling from client to server or from server to client. In
general, when we consider M different packet types, this splitting and counting procedure yields a
vector-valued count of packets n̂t = 〈nt1,nt2, . . . ,ntM〉 for each epoch t. An aggregate consisting of
T s-length epochs is then represented by the sequence of vectors n̂1, n̂2, . . . , n̂T . The epoch length
s is typically on the order of several seconds, yielding a sequence length T of about 100 for each
10-minute trace.

3.1 Identifying Application Protocols in Aggregate Traffic

To identify the application protocol used in a single-protocol aggregate, we first construct a k-
Nearest Neighbor (k-NN) classifier which assigns protocol labels to the s-length epochs of time
based on the number of packets of each type that arrive during the given interval.

To build the k-NN classifier, we select a random day in the GMU data for use as a training
set. We then assemble single-protocol aggregates from this day’s traces for each protocol in the
study, yielding a list of vectors n̂1, n̂2, . . . for each such aggregate. To allow for differences in traffic
intensity while preserving the relative frequencies of the different packet types, each resulting vector
of counts n̂t is then normalized so that ∑M

m=1 ntm = 1. Finally, each normalized vector, together with
its protocol label, is added to the classifier.

To classify a new epoch u using the k-NN classifier, we the use Kullback-Leibler distance,
or divergence (Kullback and Leibler, 1951), to determine which k vectors in the training set are
“nearest” to the vector n̂u of counts for the given epoch. The K-L distance is a logical distance
metric in this instance because each normalized vector of counts n̂i essentially represents a discrete
probability mass function over the set of packet types, and the K-L distance is frequently used
to measure the similarity of discrete distributions. One potential drawback of using this distance
metric for our application is that, for vectors of counts n̂i and n̂ j, if n̂it = 0 for some packet type t but
n̂ jt �= 0, then the K-L distance from n̂ j to n̂i is ∞. Clearly, it is not desirable for a single component to
cause such a large increase in the distance, especially when n̂ jt is also small. To avoid this problem,
we apply additive smoothing of the packet counts by initializing all counts for each epoch to one
instead of zero.

Figure 1 plots the true detection rates for the k-NN classifier on s-length epochs of HTTP, HTTPS,
SMTP-out, and SSH traffic for several values of s and k. Recognition rates for most of the protocols
tend to increase with both s and k. Larger values of s mean that each epoch includes packets from a
greater number of connections, so it is not surprising that, as s increases, the mix of packets observed
in a given epoch approaches the mix of packets the protocol tends to produce overall. On the
other hand, smaller values of s allow us to analyze shorter traces and should make it more difficult
for an adversary to successfully masquerade one protocol as another. We leave a more detailed
investigation of the effectiveness of shorter epoch lengths and other countermeasures against active
adversaries for future work. For now, we set s = 10 sec to achieve an acceptable balance between
recognition accuracy and granularity of analysis.

From this simple k-NN classifier with s-length epochs, we can construct a classifier for aggre-
gates that span longer periods of time as follows. Given a sequence of packets corresponding to
a traffic aggregate, we begin by preprocessing it into a sequence of vectors of packet counts and
normalizing each vector just as we did for each of the aggregates in the training set. We then use
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Figure 1: Per-epoch recognition rates for HTTP, HTTPS, SMTP-out and SSH with varying values of s
and k

the k-NN classifier to determine the protocol label for each vector of counts. Finally, given this list
of labels, we simply take its mode—that is, the most frequently-occurring label—as the class label
for the aggregate as a whole.

We evaluate this classifier using traffic from a randomly-selected day distinct from that used for
training. Table 1 shows the true detection (TD) and false detection (FD) rates for the kNN-based
classifier on aggregates assembled from the testing day’s traces, using several values of k. For ex-
ample, when k = 3, Table 1 shows that the classifier correctly labels 100% of the FTP aggregates and
incorrectly labels 1.2% of the other aggregates as FTP. This classifier is able to correctly recognize
100% of the aggregates for several of the protocols with many different values of k, leading us to
believe that the vectors of packet counts observed for each of these protocols tend to cluster together
into perhaps a few large groups. The recognition rates for the more interactive protocols are slightly
lower than those for noninteractive protocols, and appear to be more dependent on the parameter k:
while AIM is recognized better with smaller values of k, the recognition rates for SSH and Telnet
generally tend to improve as k increases.

The results in this section show that, by using the Kullback-Leibler distance to construct a k-
Nearest Neighbor classifier for short slices of time, we can then build a classifier for longer traces
which performs quite well on aggregate traffic where only a single application protocol is involved.
However, we may not always be able to assume that all flows in the aggregate carry the same appli-
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1-NN 3-NN 5-NN 7-NN
protocol TD FD TD FD TD FD TD FD
HTTP 100.0 00.0 100.0 00.0 100.0 00.0 100.0 00.0
HTTPS 100.0 00.0 100.0 01.2 100.0 01.2 100.0 03.6
AIM 91.7 00.0 91.7 00.0 91.7 00.0 83.3 00.0

SMTP-in 100.0 00.0 100.0 00.0 100.0 00.0 100.0 00.0
SMTP-out 100.0 03.6 91.7 03.6 91.7 03.6 75.0 03.6

FTP 100.0 03.6 100.0 01.2 100.0 01.2 100.0 02.4
SSH 75.0 00.0 75.0 00.0 75.0 00.0 75.0 00.0

Telnet 83.3 00.0 100.0 00.0 100.0 00.0 100.0 00.0

Table 1: Protocol detection rates for the k-NN classifier (s = 10sec)
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Figure 2: Detection rates for multi-flow protocol detectors (k = 7,s = 10sec)

cation protocol. For the specific case where the individual TCP connections can be demultiplexed
from the aggregate, we explore techniques in §4 for performing more in-depth analysis to more
accurately identify the protocols.

3.2 An Efficient Multi-flow Protocol Detector

Sometimes, a network administrator may be less concerned with classifying all traffic by protocol,
and interested instead only in detecting the presence of a few prohibited applications in the network,
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such as, for example, the AOL Instant Messenger or similar applications. In this setting, the k-NN
classifier in §3.1 can be easily modified for use as an efficient protocol detector. If we are concerned
only with detecting instances of a given target protocol (or indeed, a set of target protocols), we
simply label the vectors in the training set based on whether they contain an instance of the target
protocol(s). Then, to run the detector on a new trace of aggregate traffic, we split the trace into
several short s-length segments of time as before, and we classify each segment using the k-NN
classifier. We flag the aggregate as an instance of the target protocol if and only if the percentage of
the time slices for which the classifier returns True is above some threshold. This detector can thus
be tuned to be more or less sensitive by adjusting the threshold value.

Figure 2 shows the detection rates for the k-Nearest Neighbor-based multi-flow protocol detec-
tors for AIM, HTTP, FTP, and SMTP-in, with k = 7. In each graph, the x-axis represents the threshold
level, and the plots show the probability that the given detector, when set with a particular threshold,
flags instances of each protocol in the study.

Overall, the multi-flow protocol detectors seem to perform quite well detecting broad classes
of protocol behavior. The detectors for SMTP-in (a) and HTTP (b) are particularly effective at dis-
tinguishing their target protocols from the rest. For example, in Figure 2(b), we see that, for all
threshold values above ≈ 30%, the HTTP detector flags 100% of the simulated HTTP tunnels in our
test set with no false positives. Even with a threshold level of 10%, it flags nothing but HTTP and
HTTPS. The FTP detector’s rates (d) show that, when observed in a multi-flow aggregate, the more
interactive protocols exhibit very similar on-the-wire behaviors; after FTP itself, the FTP detector is
most likely to flag instances of AIM, SSH, and Telnet. Nevertheless, at a threshold level of 60%, the
FTP detector achieves a true detection rate over 90% with no false positives.

Interestingly, Figure 2 also gives us information about the kNN classifier’s ability to correctly
label the individual s-length epochs in each tunnel. The steep drop in correct detections in each plot
occurs approximately when the threshold level exceeds the kNN classifier’s accuracy for the epochs
of the given protocol.

While we have thus far developed techniques which do fairly well in the multi-flow scenario,
frequently it may be reasonable to assume that we can in fact demultiplex the individual flows from
the aggregate, and finer-grained analysis is often desirable for security applications. For example,
consider the scenario where a network administrator uses clustering techniques such as those of Xu
et al. (2005) or McGregor et al. (2004) to discover a set of suspicious connections running on non-
standard ports. Even if the connections use SSL or TLS to encrypt their packets, the administrator
could perform more in-depth analysis to determine the application protocol used in each individual
TCP connection. In the next section, we explore techniques for performing such in-depth analysis,
again using only a minimal set of features.

4. Machine Learning Techniques for the Analysis of Single Flows

We now relax the earlier assumption that all TCP connections in a given set carry the same applica-
tion protocol, but retain the assumption that the individual TCP connections can be demultiplexed.
Our approaches are equally applicable to the case where there is no aggregate, and instead we simply
wish to determine the application protocol(s) in use in a set of TCP connections.

We present an approach based on building statistical models for the sequence of packets pro-
duced by each protocol of interest, and then use these models to identify the protocol in use in new
TCP connections. To model these streams of packets, and to compare new streams to our mod-
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els, we use techniques based on profile hidden Markov models (Krogh et al., 1994; Eddy, 1995).
Identifying protocols in this setting is fairly difficult due to the fact that certain application proto-
cols exhibit more than one typical behavior pattern (e.g., SSH has SCP for bulk data transfer and an
interactive, Telnet-like, behavior), while other protocols like SMTP and FTP behave very similarly
in almost every regard (Zhang and Paxson, 2000a). These similarities and multi-modal behaviors
combine to make accurate protocol recognition challenging even for benign traffic. Nevertheless,
here we show that fairly good accuracy can be achieved using vector quantization techniques to
learn packet size and timing characteristics in the same discrete-alphabet profile HMM.

For each protocol, denoted pi, we build a profile model λi to capture the typical behavior of
a single TCP connection for the given protocol. We train the model λi using a set of training
connections pi1, pi2, . . . , pin collected from known instances of the given protocol pi observed in the
wild. Next, given the set of profile models, λ1, . . . ,λn, that correspond to the protocols of interest
(say AIM, SMTP, FTP), the goal is to pick the model that best describes the sequences of encrypted
packets observed in the different connections.

The overall process for our design and evaluation is illustrated in Figure 3 and entails (i) data
collection and preprocessing (ii) feature selection, modeling and model selection, and finally (iii)
the classification of test data and evaluation of the classifiers’ performance.

Network

Data capture
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log 
transform

Build 
codebook

Quantize 
training data
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training data

Vector 
Quantization

preprocessing
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quantize 
test data 

using 
codebook

Max. 
likelihood

Viteribi

Classify test 
data

VQ (only) 

Phase II Phase III

Figure 3: Process overview for construction of our Hidden Markov Model-based classifiers.

In the following sections we describe in greater detail the design of our Hidden Markov models
(HMMs) and the classifiers we build using them. We begin with an introduction to profile HMMs
and to the Viterbi classifier that we use to recognize protocols. We then present two extensions to
the basic profile HMM-based classifier design: first, a vector quantization approach that allows us
to combine both packet size and timing in the same model to achieve improved recognition rates for
almost all protocols, and second, an efficient method for detecting individual protocols, similar in
spirit to those in §3.2.

4.1 Modeling Protocols with HMMs

We now explain the design and use of the profile hidden Markov models we employ to capture the
behavior exhibited by single TCP connections. Given a set of connections for training, we begin
by constructing an initial model (see Figure 4) such that the length of the chain of states in the
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model is equal to the average length (in packets) of the connections in the training set. Using initial
parameters that assign uniform probabilities over all packets in each time step, we apply the well-
known Baum-Welch algorithm (Baum et al., 1970) to iteratively find new HMM parameters which
maximize the likelihood of the model for the sequences of packets in the training connections.
Additionally, a heuristic technique called “model surgery”(Schliep et al., 2003) is used to search for
the most suitable HMM topology by iteratively modifying the length of the model and retraining.

4.1.1 PROFILE HIDDEN MARKOV MODELS

Our hidden Markov models follow a design similar to those used by Krogh et al. (1994), Eddy
(1995), and Schliep et al. (2003) for protein sequence alignment. The profile HMM (Figure 4)
is best described as a left-right model built around two long parallel chains of hidden states. Each
chain has one state per packet in the TCP connection, and each state emits symbols with a probability
distribution specific to its position in the chain. States in these central chains are referred to as Match
states, because their probability distributions for symbol emissions match the normal structure of
packets produced by the protocol.

To allow for variations between the observed sequences of packets in connections of the same
protocol, the model has two additional states for each position in the chain. One, called Insert,
allows for one or more extra packets “inserted” in an otherwise conforming sequence, between two
normal parts of the session. The other, called the Delete state, allows for the usual packet at a
given position to be omitted from the sequence. Transitions from the Delete state in each column
to Insert state in the next column allow for a normal packet at the given position to be removed
and replaced with a packet which does not fit the profile.

Just as the output symbols in the HMMs used by Krogh et al. (1994) and others to model
proteins represent the different amino acids that make up the protein, the symbols output by states
in our HMM correspond directly to the different types of packets that occur in TCP connections.
In §4.2 we sort packets into bins based on their size (rounded up to a multiple of the hypothetical
cipher’s block size) and direction, so symbols in those models are merely bin numbers. In §4.3 we
use vector quantization to also incorporate timing information in the model, and the output symbols
then become codeword numbers from our vector quantizer.

The main difference between this profile HMM and those used in other domains (Krogh et al.,
1994; Eddy, 1995; Schliep et al., 2003) is that the HMMs used to model proteins have only a
single chain of Match states. In our case, the addition of a second match state per position was
intended to allow the model to better represent the correlation between successive packets in TCP
connections (Wright et al., 2004). Since TCP uses sliding windows and positive acknowledgments
to achieve reliable data transfer, the direction of a packet is often closely correlated (either positively
or negatively) to the direction of the previous packet in the connection. Therefore, the Server
Match state matches only packets observed traveling from the server to the client, and the Client
Match state matches packets traveling in the opposite direction. For example, a transition from a
Client Match state to a Server Match state indicates that a typical packet (for the given protocol)
was observed traveling from the client to the server, followed by a similarly typical packet on its
way from the server to the client. In practice, the Insert states represent duplicate packets and
retransmissions, while the Delete states account for packets lost in the network or dropped by the
detector. Both types of states may also represent other protocol-specific variations in higher layers
of the protocol stack.
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Figure 4: Profile HMM for TCP sequences

4.2 HMM-based Classifiers

Given a HMM trained for each protocol, we then construct a classifier for the task of choosing, in
an automated fashion, the best model—and, hence, the best-matching protocol—for new sequences
of packets. The task of a model-based classifier is, given an observation sequence O of packets,
and a set C of k classes with models λ = λ1,λ2, ...,λk, to find c ∈ C such that c = class(O). We
experimented with two HMM-based classifiers for assigning protocol labels to single flows.

Our first such classifier assigns protocol labels to sequences according to the principle of max-
imum likelihood. Formally, we choose class(O) = argmax

c
P(O | λc), where argmax

c
repre-

sents the class c with the highest likelihood of generating the packets in O. Our second classifier
is similar to the first, but it makes use of the well-known Viterbi algorithm (Viterbi, 1967) for
finding the most likely sequence of states (S) for a given output sequence O and HMM λ. The
Viterbi algorithm can be used to find both the most likely state sequence (i.e., the “Viterbi path”),
and its associated probability Pviterbi(O,λ) = max

S
P (O, S | λ). Given an output sequence O, our

Viterbi classifier finds Viterbi paths for the sequence in each model λi and chooses the class c
whose model produces the best Viterbi path. We can express this decision policy concisely as
class(O) = argmax

c
Pviterbi(O,λc).

In practical terms, the Viterbi classifier finds each model’s best explanation for how the packets
in the sequence were generated (whether by normal application behavior, TCP retransmissions,
etc.), represented by the Viterbi path, and the likelihood of each model’s explanation (i.e., the Viterbi
path probability). It then picks the model that provides the best explanation for the observed packets.

Empirical Evaluation To demonstrate the applicability of our techniques to real traffic, we ran-
domly select 9 days from over a period of one month and extract traces over a 10 hour period
between 10 a.m. and 8 p.m. on each day. For a given experiment, we select one day for use as a
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micro-level equivalence class
protocol TD FD TD FD
AIM 80.80 3.41 80.80 3.41

SMTP-out 73.20 3.07 80.10 1.82
SMTP-in 77.20 4.39 87.80 3.97
HTTP 90.30 2.10 96.70 1.47
HTTPS 88.50 3.24 94.40 2.72
FTP 57.70 2.01 57.70 2.01
SSH 69.10 2.93 71.00 2.88

Telnet 82.90 3.77 86.10 4.08

Table 2: Protocol detection rates for the Viterbi classifier, using packet sizes only

training set. From this day’s traces, we randomly select approximately 400 connections 2 of each
protocol and use these to build our profile HMMs. Then, for each of the remaining 8 days, we ran-
domly select approximately 400 connections for each protocol and use the model-based classifier to
assign class labels to each of them. We repeat this experiment a total of nine times using each day
once as the training set, and the recognition rates we report are averages over the 9 experiments.

By selecting testing and training sets that include the same number of connections for each pro-
tocol, we purposefully exclude from our classifiers any knowledge about the traffic mix in the net-
work, in order to show that our techniques are applicable even when we know nothing a priori about
the particular network under consideration. As a result, we believe the detection rates presented here
could be improved for a given network by including the relative frequencies of the protocols (i.e., as
Bayesian priors). Additionally, while greater recognition accuracy could be achieved by rebuilding
new models more frequently (e.g., weekly), we do not do so, in order to present a more rigorous
evaluation. On a 2.4GHz Intel Xeon processor, our unoptimized classifier can assign class labels to
one experiment’s test set of 3200 connections in roughly 5 minutes.

Table 2 presents our results for the Viterbi classifier when considering only the size and di-
rection of the packets. Again, recall in this case that we make decisions at the granularity of
single flows and potentially have much less information at our disposal than in §3.1. With the
exception of the connections for FTP and SSH, the Viterbi classifier correctly identifies the protocol
more than 73% of the time. Moreover, the average false detection rates for all protocols (i.e., the
probability that an unrelated connection is incorrectly classified as an instance of the given proto-
col) are below 5%. The full confusion matrix is given in Table 4 in Appendix A, and shows that
many of the misclassifications can be attributed to confusions with protocols in the same equiv-
alence class, for example, HTTP versus HTTPS. As such, we also report the true detection (TD)
and false detection (FD) rates when we group protocols into the following equivalence classes:
{[AIM], [HTTP,HTTPS], [SMTP− in,SMTP−out], [FTP], [SSH,Telnet]} where the latter class repre-
sents the grouping of the interactive protocols.

We find the Viterbi classifier to be slightly more accurate than the Maximum Likelihood clas-
sifier in almost every case,3 but the protocol whose recognition rates are most improved with the
Viterbi method is SSH. Unlike the other protocols in this study, SSH has at least two very different
modes of operation—interactive shell (SSH) and bulk data transfer (SCP)—so we are not surprised

2. We choose 400 because it is the largest size for which we can select the same number of instances of each protocol
on every day in the data set.

3. Therefore, due to space constraints we do not provide recognition rates for that classifier.
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micro-level equivalence class
protocol TD FD TD FD
AIM 83.90 2.53 83.90 2.53

SMTP-out 74.40 2.24 79.70 1.60
SMTP-in 79.80 3.34 85.90 3.02
HTTP 78.00 1.09 92.90 0.62
HTTPS 87.20 3.74 91.10 1.88
FTP 58.20 1.81 58.20 1.81
SSH 76.30 8.37 77.80 7.90

Telnet 79.50 2.44 90.70 2.60

Table 3: Protocol detection rates for the Viterbi classifier with 140-codeword VQ

to find that for many SSH sessions, some sequences of states in the HMM for SSH are much more
likely than other state sequences in the same model.

4.3 Vector Quantization for HMMs on Multiple Features

While the results thus far show surprising success for building models of network protocols using
only a single variable, one would suspect that recognition rates could be further improved by includ-
ing both size and timing information in the same model. To evaluate this hypothesis, we employ
a vector quantization technique to transform our two-dimensional packet data into symbols from a
discrete alphabet so that we can then use the same type of models and techniques as used for dealing
with timing or size individually. Our vector quantization approach proceeds as follows: given train-
ing data and viewing each packet as a two-dimensional tuple of 〈inter-arrival time, size〉, we first
apply a log transform to the times to reduce their dynamic range (Feldmann, 2000; Paxson, 1994).
Next, to assign the sizes and times equal weight, we scale the 〈log (time), size〉 vectors into the -1,1
square.

The nature of our models requires that we treat packets differently based on the direction they
travel. We therefore split the packets into two sets: those sent from the client to the server, and those
sent from server to client. We then run the k-means clustering algorithm separately on each set to
find a representative set of vectors, or codewords, for the packets in the given set. For a quantizer
with a codebook of N codewords, for each of the two sets of packets, we begin by randomly selecting
k = N/2 vectors as cluster centroids. Then, in each iteration, for each 〈time, size〉 vector, we find
its nearest centroid and assign the vector to the corresponding cluster. We recalculate each centroid
at the end of each iteration as the vector mean of all the vectors currently assigned to the cluster,
and stop iterating when the fraction of vectors which move from one cluster to another drops below
some threshold (currently 1%).

After clustering both sets of packet vectors, we take the list of centroid vectors as the codebook
for our quantizer. To quantize the vector representation of a packet, we simply find the codeword
nearest the vector, and encode the packet as the given codeword’s index in the codebook. After
performing vector quantization of the packets in the training set of connections, we can then build
discrete HMMs as before, using codeword numbers as the HMM’s output alphabet. In doing so,
we add important information to our models at only a modest cost in complexity and computational
efficiency. Before classifying test connections, we use the codebook built on the training set to
quantize their packets in the same manner.
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Table 3 depicts the results for the Viterbi classifier, using a codebook of 140 codewords.4 By in-
cluding both size and timing information in the same profile model, we are able to recognize interac-
tive traffic more accurately—SSH’s recognition rate is now over 75 percent in the detailed test. Both
protocols in the “interactive” equivalence class show improvement in their coarse-grained recog-
nition rates, and while micro-level recognition of the WWW protocols decreases due to increased
confusions of HTTP as HTTPS and vice versa, the classifier’s ability to identify the equivalence class
of non-interactive sequences remains unchanged.

However, like our previous HMM classifier in §4.2, the vector quantized version still does not
recognize FTP as accurately as the other protocols; its 58% recognition rate is the lowest of any of
our current classifiers. We believe this poor performance is caused by the presence of strong multi-
modal behaviors in the FTP traces; unlike the other protocols in our study, FTP has three common
behavior modes which are very distinct and clearly identifiable in visualizations. (See, for example,
http://www.cs.jhu.edu/˜cwright/traffic-viz.)

4.4 A Protocol Detector for Single Flows

In this section, we evaluate the suitability of our profile HMMs for a slightly different task: identi-
fying the TCP connections that belong to a given protocol of interest. As in §3.2, such a detector
could be used, for example, by a network administrator to detect policy violations by a user running
a prohibited application (such as instant messenger) or remotely accessing a rogue SMTP server over
an encrypted connection.

One approach to this problem would be to simply use the classifiers from Section 4.2, and have
the system flag a detection when a sequence is classified as belonging to the protocol of interest.
However, such an approach is computationally intensive because of the large number of models
required. To classify a sequence of packets, the classifier in Section 4.2 must compute the sequence’s
Viterbi path probability on each protocol’s model before making its decision. So, for example, in
our earlier experiments, for each test sequence we explored Viterbi paths across 8 models. While we
believe this cost to be warranted when we are interested in determining which protocol generated
what connections in the network, at other times one may simply be interested in determining whether
or not connections belong to a target protocol. In this case, we show how to build a detector with
much lower runtime costs by using only two or three models.

To construct an efficient single-protocol detector we adopt the techniques presented by Eddy
et al. (1995) for searching protein sequence databases. As in the previous sections, we build a
profile HMM λP for the target protocol P. We also build a “noise” model λR to represent the overall
distribution of sequences in the network. For the noise model, we use a simple HMM with only
a single state which thus only captures the unigram packet frequencies observed in the network.
Intuitively, this model is intended to represent the packets we expect to see in background traffic, so
we estimate its parameters using connections from all protocols in the study.5

4. Derived empirically by exploring various codebook sizes up to 180 codewords. No significant difference in recogni-
tion ability was observed beyond 140.

5. We note that one might instead train λR on only the set of non-target protocols for each detector. However, doing so
relies on a closed-world assumption and risks over-estimating the detector’s real accuracy because λR is then a model
for all the things that the target protocol specifically is not. In practice, there are simply too many protocols in use on
modern networks for such an approach to be feasible.
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Figure 5: Detection rates for threshold-based protocol detectors for AIM and HTTP

To determine whether an observed sequence O belongs to the protocol of interest P, we calculate
its log odds score as

score(O) = log
Pviterbi(O | λP)
Pviterbi(O | λR)

.

Our general approach is now as follows: We use a holdout set of connections for the target protocol,
distinct from the set used to estimate the model’s parameters, to determine a threshold score TP

for the protocol. This allows us to tune the detector’s false positive and true positive rates. To
set the threshold, we calculate log odds scores for each connection in the holdout set, and set the
threshold in accordance with our desired detection rate. For example, if we wish to detect 90% of all
instances of the given protocol (at the risk of incorrectly flagging many connections that belong to
other protocols), we set the threshold at the log odds score of the held-out connection which scored
in the 10th percentile, so that 90% of all connections in the holdout set score above the threshold.
In our simplest (and most efficient) protocol detector, a test connection whose log odds score falls
above the threshold is immediately flagged as an instance of the given protocol.

The goal, of course, is to build detectors which simultaneously achieve high detection rates for
their target protocols and near-zero detection rates for the other, non-target protocols. To empirically
evaluate the extent to which our protocol detectors are able to do so, we run each detector on a
number of instances of each protocol. For this round of experiments, we select three days at random
from the GMU traces. In each experiment, we designate one of the three randomly-selected days for
use as a training set, then randomly select one of the remaining two days for use as a holdout set and
use the third day as our test set. We then extract 400 connections from the training set for each of the
protocols we want to detect, and use these connections to build one profile HMM for each protocol
and one unigram HMM for the noise model. Similarly, we randomly select 400 connections from
the holdout set for each protocol, and use these to determine thresholds for a range of detection rates
between 1% and 99% for each protocol detector.

Finally, we randomly select 400 connections of each protocol from the test set, and run each
protocol detector on all 3200 test connections. Figure 5 presents the detection rates for the AIM and
HTTP detectors. Such detectors are able to analyze one experiment’s test connections in roughly 15
seconds—around 20 times faster than the full classifier from Section 4.2.
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Figure 6: Detection rates for the improved protocol detectors for SMTP-in FTP

In Fig. 5(a) and 5(b), we see that both the AIM detector and the HTTP detector achieve over
80% true detections while flagging less than 10% of other traffic. Moreover, the HTTP detector, for
example, can be tuned to achieve a near-zero false detection rate yet still correctly identify over 70%
of HTTP connections. Similarly, detectors for HTTPS, SMTP and FTP built on this basic design are
also able to distinguish their respective protocols from most of the other protocols in our test set,
with reasonable accuracy.

However, the FTP and SMTP-in detectors are both prone to incorrectly claim each other’s con-
nections as their own. For example, a SMTP-in detector built in this manner would incorrectly flag
60% of all FTP sessions while detecting only 75% of incoming SMTP. This is not surprising, since
FTP and SMTP share a similar “numeric code and status message” format and generate sequences of
packets that look very similar, even when examining packet payloads. Indeed, the two are so simi-
lar that Zhang and Paxson (2000a) went so far as to use the same rule set to detect both protocols.
Nevertheless, we are able to improve our initial false positive rates for these two protocols using a
technique based on iteratively refining of the set of protocols that we suspect a connection might
belong to.

To build an improved protocol detector, we construct profile HMMs not only for the target pro-
tocol, but also for any other similarly-behaving protocols with which it is frequently confused. As
above, we construct a unigram HMM for the noise model. In the iterative refinement technique,
we first use the simple threshold-based detector described above as a first-pass filter, to determine
if a connection is likely to contain the target protocol. If a connection passes this first filter, we use
the Viterbi classifier (Sec. 4.2) with the models for the frequently-confused protocols to identify
the other (non-target) protocol most likely to have generated the sequence of packets in the con-
nection. Only if the model for the target protocol produces a higher Viterbi path probability than
this protocol’s model, do we flag the connection as an instance of the target protocol. While these
improved detectors operate ≈ 3 times slower than the simple detectors described previously, their
performance is still over 6 times faster than that of the full classifier.

Fig. 6(a) and 6(b) show the detection rates for the iterative refinement detectors for SMTP-in
and FTP, respectively, when the detectors know that incoming SMTP and FTP are frequently con-
fused with each other. While the FTP detector suffers a decrease in true positives with the iterative
refinement technique, it also achieves false positive rates of less than 15% for all protocols, at all
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thresholds. We note that an SMTP detector built in this manner is much less prone to falsely flagging
FTP sessions; its worst false positive rate for FTP is now below 20%. Again, we stress that if better
accuracy rates are required, one can fall back to the design in Section 4.2 at the cost of greater
computational overhead.

5. Tracking the Number of Live Connections in Encrypted Tunnels

In §3, we showed that it is often possible to determine the application protocol used in aggregate
traffic without demultiplexing or reassembling the TCP connections in the aggregate. Then, in §4,
we demonstrated much-improved recognition rates by taking advantage of the better semantics in
the case where we can demultiplex the flows from the aggregate and analyze them individually.

We now turn our attention to the case where we cannot demultiplex the flows or determine
which packets in the aggregate belong to which flows, as is the case when aggregate traffic is en-
crypted at the network layer using IPsec Encapsulating Security Payload (Kent and Atkinson, 1998)
or SSH tunneling. Specifically, we develop a model-based technique which enables us to accurately
track the number of connections in a network-layer tunnel which carries traffic for only a single ap-
plication protocol. As an example of this scenario, consider a proxy server which listens for clients’
requests on one edge network and forwards them through an encrypted tunnel across the Internet to
a set of servers on another edge network. Despite our inability to demultiplex the flows inside such
a tunnel, the technique developed in §3 still enables us to correctly identify the application protocol
much of the time. We now go on to show how we can, given the application protocol, derive an
estimate for the number of connections in the tunnel at each point in time. This technique might be
used, for example, by a network administrator to distinguish between a legitimate tunnel used by a
single employee for access to her mail while on the road, versus a backdoor used by spammers to
inject large quantities of unsolicited junk mail.

Our approach is founded on a few basic assumptions about the behavior of the tunneled TCP
connections and their associated packets. These assumptions, while not entirely correct for real
traffic, nevertheless allow us to employ simple and usable models which, as we demonstrate later,
produce reasonable results for a variety of protocols.

Assumption 1 The process Nt describing the number of connections in the tunnel is a Martingale
(Doob, 1953; Williams, 1991), meaning that, on average, it tends to stay about the same over time.

Assumption 2 The process Nt describing the number of connections in the tunnel is a Gaussian
process. That is, the number of connections Nt in each time slice t follows a Gaussian distribution.

Assumption 3 For each packet type m, each connection in the tunnel generates packets of type m
according to a homogeneous Poisson process with constant rate γm, which is determined by the
application protocol in use in the connection.

Implications It follows from Assumption 1 and Assumption 2 that, in each timeslice, the number
of connections in the tunnel will have a Gaussian distribution with mean equal to the number of
connections in the tunnel during the previous timeslice. From Assumption 3, it follows that during
an interval of length s, the number of type-m packet arrivals will follow a Poisson distribution with
parameter equal to γms. Accordingly, the set of packet rates {γm} provides a sufficiently descriptive
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model for the given application protocol (in this scenario). We use these observations in the follow-
ing section to build models that enable us to extract information about the number of tunneled TCP
connections from the observed sequence of packet arrivals.

5.1 A Model for Multi-Flow Tunnels

To track the number of connections in a multi-flow tunnel, we build a statistical model which relates
the stochastic process describing the number of live connections to the stochastic process of packet
arrivals. For such a doubly-stochastic process, it is natural to again use hidden Markov models.
Here, the hidden state transition process describes the changing number of connections Nt in the
tunnel, and the symbol output process describes the arrival of packets on the link. States in the
HMM therefore correspond to connection counts, and the event that the HMM is in state i at time t
corresponds to the event that we see packets from i distinct connections during time slice t. When
we consider M different types of packets, the HMM’s outputs are M-tuples of packet counts.

To build such a model, we derive the state transition and symbol emission probabilities directly
from two parameters which, in turn, we must estimate based on some training data. These parame-
ters are: first, the standard deviation σ of the number of live connections in each epoch, and second,
the set of base packet rates {γm : packet types m}.

Under Assumption 2, the average number of live connections in a time slice follows a Normal
distribution with mean equal to the average number of live connections in the previous interval and
standard deviation σ. Therefore, the probability of a state transition from state i to state j is simply
the probability that a Normal random variable with mean i and standard deviation σ falls between
j − 0.5 and j + 0.5, and thus, rounded to the nearest integer, is j. Re-expressed in terms of the
standard Normal, we therefore have

ai j = Φ(
( j−0.5)− i

σ
)−Φ(

( j +0.5)− i
σ

).

Due to Assumption 3, that each live connection generates packets independently according to a
Poisson process, we expect the total packet arrival rate to increase linearly with the number of live
connections. Then, when there are j connections in the tunnel, the number of type-m packet arrivals
in an interval of length s will follow a Poisson distribution with parameter equal to jγms. Therefore,
the probability of the joint event that we observe ntm packets of each type m during an interval of
length s, when there are j connections in the tunnel, is given by

b j(n̂t) =
M

∏
m=1

e− jγms ( jγms)ntm

ntm!
.

Parameter Estimation To estimate the two fundamental parameters of our model, {γm} and σ,
we observe the characteristics of real network traffic from a training set of traces. We begin by
preprocessing traces from our training set as described in §3.1, dividing the training trace(s) into
many smaller intervals of uniform length s. For each s-length interval t, we measure (1) the number
of connections Nt in the tunnel during the interval, and (2) n̂t = 〈nt1,nt2, ...,ntM〉, the number of
packets of each type which arrive during the given interval. For each packet type m, we fit a line to
the set of points {(Nt ,ntm)} using least squares approximation, and we derive our estimate for γm as
the slope of this line. That is, γm gives us the rate at which the number of packets observed increases
with the number of connections in the tunnel.
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We estimate σ as the sample conditional standard deviation of the number of connections in the
tunnel Nt during an interval t, given the number Nt−1 in the tunnel in the preceding interval. For the
HMM’s remaining parameter, the initial state distribution π, we simply use a uniform distribution.
In doing so, we refrain from making any assumptions about the traffic intensity on the test network.

5.2 Tracking the Number of Connections

To derive the state sequence that best explains an observed sequence of packet counts (and, hence,
the average number of live connections during each interval), we use the Forward and Backward
dynamic programming variables from the Baum-Welch algorithm (Baum et al., 1970) to calculate
the probability that the HMM visits each state in each time step. The forward variable, αt(i), gives
the probability that, in step t, the model has produced the outputs n̂1, . . . , n̂t and is in state i. We can
define αt recursively:

α1(i) = πibi(n̂1),

αt(i) =
N

∑
j=1

αt−1( j) a ji bi(n̂t).

Similarly, the backward variable, βt(i), gives the probability that the model, starting from state i in
step t, produces the remaining outputs n̂t , . . . , n̂T . It is also defined recursively:

βT (i) = 1,

βt(i) =
N

∑
j=1

bi(n̂t) ai j βt+1( j).

With this, we can calculate the probability that the model is in state i at time step t as

P(state i at time t) =
αt(i)βt(i)

∑N
j=1 αt( j)βt( j)

and we can calculate the most-likely individual state at time t as

φt = argmax
i

P(state i at time t)

which reduces to
φt = argmax

i
αt(i)βt(i).

And thus φt is our estimate of the number of connections Nt in the tunnel at time step t.

5.3 Empirical Results

To evaluate the effectiveness of our approach in practice, we randomly select one day in the GMU
data set for use as a training set and one day as a test set. We use a collection of traces from several
hours on the training day to learn the model’s parameters and construct a HMM for each protocol.
We then simulate tunnels for each of the protocols in each 10-minute trace from the designated
testing day, by assembling aggregates as we did in §3. Instead of using all traces in the data set
as before, in this section we simulate traffic for an encrypted proxy server by selecting only those
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Figure 7: Actual and estimated number of connections in simulated tunnels for AIM, HTTP, HTTPS,
and SSH in the 12:00 trace on the testing day

connections which go to the most common IP addresses in each 10-minute trace. For each protocol,
we split its tunnel into several short time slices and derive the corresponding sequence n̂1, n̂2, ..., n̂T

of packet counts. We then use the given protocol’s model to derive a sequence of estimates for the
number of connections in the tunnel during each slice.

Often, our model is able to closely track the number of live connections in the tunnel, although
it can under- or over-estimate at times. Figure 7 shows the actual number of connections Nt and the
model’s estimates φt for AIM, HTTP, HTTPS, and SSH in the 10-minute GMU trace for 12:00 noon, the
busiest period on the testing day. The models for AIM and HTTPS are able to track the true number of
connections in their tunnels especially well: on average, their predictions differ from true number
of connections by only 22% and 19%, respectively. Between time ticks 45 and 90, the HTTPS model
tracks large swings in the population size, and the AIM model follows the general trend quite closely
between 30 and 100 time ticks.

The model for HTTP, on the other hand, has some difficulty with this particular trace; while such
errors do not occur in all traces, we include this example to demonstrate some of the weaknesses of
our current assumptions. We suspect the large spike at around 20 ticks may be due to already-open
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persistent connections suddenly requesting pages and thus generating a burst of packets. Between
40 and 65 ticks, the HTTP tunnel produces a sequence of packets where the relative frequencies of the
different packet types are out of proportion to those on the training day. The model can find no state
with a non-negligible probability of generating such a traffic mix, and so sets its estimate for the
number of HTTP connections in the tunnel to zero. Despite some intermittent errors as exemplified
here, because our technique operates in near-real time, an administrator could observe an encrypted
tunnel for many such windows of time and then still derive a good estimate for the traffic intensity in
the tunnel. In the short term, we hope to improve these results by using Viterbi training to improve
the model’s initial parameters.

6. Related Work

While traffic classification has recently been the subject of much research, all but one of the ap-
proaches we are aware of require significantly more information about the flows, or only group
flows into broad categories such as “bulk data transfer,” “p2p,” or “interactive.” Zhang and Paxson
(2000a) present one of the earliest studies of techniques for network protocol recognition without
using port numbers, based on matching patterns in the packet payloads. Dreger et al. (2006) and
Moore and Papagiannaki (2005) present similar approaches to that of Zhang and Paxson, but apply
more sophisticated analyses which require payload-level inspection. More closely related to our
work is that of Early et al. (2003), where a decision tree classifier that used n-grams of packets was
proposed for distinguishing among flows from HTTP, SMTP, FTP, SSH and Telnet servers based on
average packet size, average inter-arrival time, and TCP flags. Moore and Zuev (2005) use Bayesian
analysis techniques on similar data from packet headers to classify flows as belonging to one of sev-
eral broad categories. Bernaille et al. (2006) build a classifier based on k-means clustering of the
sizes of the first five packets in each connection to identify application protocols “on the fly.” Be-
cause the focus of that work is on speed rather than security, they do not consider all packets in the
connection as we do.

A direct comparison of our empirical results with those of the above approaches is not feasible
at this time because there is currently no (realistic) shared data set on which to evaluate the various
techniques side-by-side. In fact, in the preliminary stages of this work (Wright et al., 2004), we
attempted to do just that by evaluating our preliminary classifier on network traces from the MIT
Lincoln Labs Intrusion Detection Evaluation (Lippmann et al., 2000). However, the MITLL data
set is now several years old, and it has been criticized as unrepresentative of real traffic (McHugh,
2000). The validity of these criticisms is evident in our own experiences: our naı̈ve classifier, which
was able to recognize a handful of protocols in the MITLL data with reasonable accuracy, did not
perform well on real wide-area traffic (Faxon et al., 2004). Its evaluation on real data highlighted
many of the problems addressed herein.

Recently, Karagiannis et al. (2005) proposed an interesting approach for performing traffic clas-
sification “in the dark” which, like ours, does not use port numbers or the contents of packet pay-
loads. However, their technique does rely on information about the behavior of the hosts in the
network. In particular, the approach makes use of the social and functional roles of hosts, that
is, their interactions with other hosts and whether they act as a provider or consumer of a service,
respectively. In this way, Karagiannis et al. (2005) focuses more on learning host behavior and infer-
ring the applications in flows based on the hosts’ interactions. Unfortunately, while this technique
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may be capable of identifying the type of an application, it might not be able to identify distinct
applications (Karagiannis et al., 2005), and it does not classify individual flows or connections.

McGregor et al. (2004) present a technique for clustering network flows without using packet
payloads. Whereas we view flows as sequences of packet sizes and times, they represent each
flow as a finite-dimensional vector of flow attributes and use the standard k-means algorithm to
cluster them. Similar to the idea present here, Coull et al. (2003) recently used sequence alignment
techniques to detect masquerades in Unix shell histories. We believe our results in this paper validate
their application of sequence alignment methods for the purpose of masquerade detection. However,
unlike that of Coull et al. (2003), our profiling technique does not require pairwise alignments of
all sequences, and is therefore better suited for studying network protocols (where the training data
requirements may be fairly large).

More distantly related work is that on stepping stone detection. By correlating the timing of
on/off periods in inbound and outbound interactive connections, Zhang and Paxson (2000b) demon-
strate how to detect “stepping stone” connections whereby an adversary tries to conceal the true
source of an attack by hopping from one host to another. Wang et al. (2002) and Yoda and Etoh
(2000) subsequently used methods similar to sequence alignment to detect stepping stones by identi-
fying TCP connections with similar packet streams—the general idea being to find good alignments
of the streams by identifying locations where the two subsequences of inter-arrival times are most
similar.

Packet timing and/or size information have also been used in several application-specific infor-
mation leakage attacks on various kinds of encrypted traffic. For example, Sun et al. (2002) identify
web pages within SSL–encrypted connections by examining the sizes of the HTML objects returned
in the HTTP response. Similarly, Felten and Schneider (2000) demonstrate that web servers can use
the inter-arrival time of HTTP requests for objects on a web page to reveal the presence of items
in the browser’s cache. Song et al. (2001) show that the interarrival times of packets in SSH (ver-
sion 1) connections can be used to infer information about the user’s keystrokes and thereby reduce
the search space for cracking login passwords. A recent paper by Kohno et al. (2005) presents a
method for identifying individual physical devices over the network, using clock skew information
observable in the device’s TCP headers.

7. Conclusions and Future Work

In this paper, we demonstrate how application behavior remains detectable in encrypted network
traffic. First, we show how application protocols can be identified in aggregate traffic without de-
multiplexing and reassembling the individual TCP connections. We also show that, when it is pos-
sible to demultiplex the flows, more in-depth analysis of the packets in each flow can lead to even
more robust and accurate classification even when a mix of several protocols are included. Finally,
and perhaps most surprisingly, we show that encrypted tunnels which carry only a single application
protocol leak sufficient information about the flows in the tunnel to allow us to accurately track their
number.

In future work, we will explore ways to harden our current techniques against an active adver-
sary. Such work will necessarily include research into useful metrics for capturing the power of
an active adversary. Our current investigations explore the feasibility of using the divergence of
the adversary’s model from the data’s true distribution. Other metrics might include bounds on the
maximum number of bytes or packets the adversary can add to the original stream, or the maximum

2765



WRIGHT, MONROSE AND MASSON

delay or jitter she can induce. We also intend to extend our techniques to more general types of
encrypted tunnels, with the ultimate goal of being able to track the number of connections of each
protocol inside a full IPsec VPN (Kent and Atkinson, 1998).
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Appendix A.

Table 4 depicts shows the full confusion matrix for the Viterbi classifier when analyzing TCP con-
nections as sequences of packet sizes. These results averaged for 9 days chosen at random during
the same month, and reflect average classification rates over all 72 pairs of testing and training days.

Classification Probability
Protocol AIM SMTP-out SMTP-in HTTP HTTPS FTP SSH Telnet none
AIM 80.8 2.9 1.4 1.6 3.1 0.9 5.4 3.2 0.7

SMTP-out 7.1 73.2 6.9 1.2 1.9 2.3 1.9 5.2 0.3
SMTP-in 2.5 10.6 77.2 0.1 0.2 4.6 0.8 3.9 0.1
HTTP 0.7 0.3 0.1 90.3 6.4 0.3 1.3 0.4 0.1
HTTPS 0.9 0.8 0.1 5.9 88.5 0.6 1.9 0.8 0.5
FTP 7.1 4.1 11.1 0.9 2.1 57.7 6.0 11.0 0.0
SSH 3.4 1.8 9.3 1.5 6.8 2.8 69.1 1.9 3.2

Telnet 2.2 1.0 1.8 3.5 2.2 2.6 3.2 82.9 0.4

Table 4: Confusion matrix for Viterbi classifier with profile topology
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